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Abstract

Innovative human-computer interaction paradigms with minimum motor control provide

realistic interactions and have potential for use in assistive technologies. Among the

human modalities, the eyes and the brain are the two modalities with minimum motor

requirements. Most of the existing assistive technologies based on tracking the eyes (such

as electrooculography and videooculography) are intrusive, limited to the laboratory en-

vironment and restrictive or are not accurate enough for real-life applications. The same

limitations apply to brain activity monitoring systems such as electroencephalography

(EEG).

In this research, the objective is to employ a less-intrusive, consumer-grade EEG head-

set designed for mobile applications to track the user’s eyes and reliably estimate focus

of foveal attention (FoA). To this end, signal processing approaches are proposed in or-

der to classify different types of eye movements and estimate FoA. The FoA estimation

is then improved using the brain responses to flickering stimuli recorded in EEG data.

Afterwards, the FoA estimation is again improved by proposing an automated method

to remove eye-related artefacts from brain responses to the stimuli. Finally, the FoA es-

timation is best improved by extracting eye-movement classification and brain-response

detection features from EEG data projected into independent sources. A matched set of

videooculography/EEG data is recorded to evaluate the proposed signal processing ap-

proaches. The work envisages eye-tracking technologies that utilise non-facially intrusive

EEG brain sensing via dry contact scalp-based electrodes, an approach that has found

various applications in EEG signal processing and eye tracking.
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“A good question is [already] half of

knowledge.”

Hasan ibn Ali (PBUH)

1
Introduction

In recent years, there has been a significant increase in the development of assistive tech-

nologies and innovative interfaces based on human modalities such as the eye (gaze)

[1], touch[2], speech[3] and the brain[4]. Thus, traditional computer inputs are being

supplemented or replaced by others that promise richer, more realistic human-computer

interaction (HCI) schemes for both healthy people and those with severe disabilities.

Generally, all HCI systems are challenging in terms of ensuring the user’s acceptance

of the interaction apparatus and achieving accurate performance from both the hardware

and the signal processing mechanism. Users prefer to use HCI methods that are affordable,

comfortable, less intrusive, highly portable and non-restrictive. The methods should also

require minimal personal calibration and operate with sufficient accuracy and speed.
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Among the new interaction methods, eye-tracking systems and brain-computer inter-

faces (BCI) can be considered as the final frontiers, and they are gaining more interest

in recent HC researches [5, 4]. This is due to the minimum motor control requirement

of BCI and eye-tracking systems, which makes the interaction possible for both healthy

people and those with limited motor control or severe disabilities.

The brain is the centre of the human nervous system; it exerts control over the other

organs of the body and all human actions and cognitive states [6]. Humans use their eyes

to gain information about their environment. As a result, the underlying patterns in both

brain activity and eye movement can distinguish among activities [7, 8].

1.1 Eye Tracking

Occurrence of different types of eye movements and estimating the focus of foveal attention

(FoA) are main aspects that are used in eye-based interactions. To date a variety of

techniques have been developed for eye-tracking [9]. The common peripherals to use eyes

in an interaction system are Electrooculogram (EOG) and videooculography (VOG). Both

methods are mostly limited to laboratory setups or are socially intrusive and their users

feel inconvenienced when use them.

1.2 Electroencephalography

The brain activities are usually detected by measuring electrical activity of the brain over

the scalp using electroencephalography (EEG). Brain signal processing via EEG provides

two additional sources of eye movement information: Oculomuscular movements via EOG

and the brain’s response to flickering stimuli - the Steady-State Visual Evoked Potential

(SSVEP) [10]. SSVEP is the electrical response of the brain to a flickering stimulus and

provides a means to detect a person’s FoA without the use of an eye tracker. The quality

of EEG signals is usually contaminated by different types of artefacts. The EOG activity

resulting from eye movements and blinking is the main source of artefacts which degrade
2



the quality of the EEG signal.

The Blind Source Separation (BSS) technique Independent Component Analysis (ICA)

has been successfully applied on EEG data to separate such artefacts [11]. Although it can

estimate independent components/sources it does not label them. Automatic labelling of

artefactual components for omission from the EEG signal reconstructed from components

is a current research topic [12] [13]. In addition to the artefacts, when users are exposed

to prolonged flashing stimuli there is a gradual decrement in their SSVEP response and

thus SSVEP detection - an effect known as habituation [14].

1.3 EEG Apparatus

Although EEG-based BCIs have been studied for more than 40 years [15], most BCI

research efforts remain at the stage of laboratory demonstration. Most studies in EEG and

EOG signal processing are motivated by Neuroscience and BCI rather than eye tracking;

eye movement is seen as an unwanted artefact. They normally use laboratory grade EEG

devices with a high number of channels (e.g. 64), each channel being sensed by a wet-

contact electrode. Scalp-based electrodes are normally complemented by others on the

face and chest to assist with artefact rejection. Consequently, such systems are costly and

not suited for wearable applications.

To bridge this gap and use EEG devices in real-life applications some important issues

need to be addressed; the performance must be reliable - between person variation and

signal artefacts must be adequately handled by the signal processing techniques. The

device should also be affordable and easy to use. Because of growing interest in using

BCI for gaming and other consumer applications, several manufacturers are currently

offering commercial portable EEG devices [16]. The emergence of these new compact and

wireless commercial EEG recording systems, measuring brain activity is no longer limited

to research and laboratory demonstration. In the long term, such BCI systems might be

even more convenient and accessible than remote controls, joysticks or phones.
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1.4 Research Questions

EEG artefact removal and developing low-cost, consumer-grade eye-tracking apparatus for

daily life applications are still active topics of research [17, 18, 19]. To reap the potential

benefits of the BCIs and eye-tracking systems in daily human-computer interaction, the

development of a signal processing method for removing artefacts from EEG signals and

of affordable and robust eye-tracking systems is necessary. Additionally, fusion of brain

signals and eye movements has the potential to lead to a more robust method for attention

detection and human activity recognition. In this work we are trying to answer the

following research questions:

• Can we use affordable consumer-grade EEG devices to reliably detect a subject’s

focus of foveal attention?

• What type of information can be extracted from EEG signals?

• Do the consumer-grade EEG devices collect real cerebral signals?

• How can we use the EEG signals for eye-tracking?

• How can we use cerebral information to improve eye-tracking?

• How eye-tracking information can be used to improve SNR of cerebral information

in the EEG signals?

• Is EEG artefact removal the optimum way to improve SNR of cerebral information

in the EEG signals?

1.5 Contributions

The work described in this thesis provides original contributions to EEG signal processing

and reveals the potential benefits of using consumer-grade EEG devices to estimate the

focus of foveal attention. The major contributions can be summarised as follows:
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• Assessment of the integrity of an affordable and non-intrusive consumer-grade EEG

device for BCI applications.

• Introduction of a novel VOG-EEG dataset specifically recorded for the purpose of

removing EOG artefacts arising from saccade and smooth pursuit eye movement as

well as for reducing the habituation effect.

• Proposal of a signal processing approach to classify blink, fixation saccade and

smooth pursuit eye movements, as well as to classify saccade amplitude and eye

movement direction.

• Proposal of a hybrid method which ulitises eye movement classification and SSVEP

detection to improve FoA estimation.

• Proposal of ‘Blink BVOG-ICA’, an ICA-based EEG artefact removal method which

employs optical eye-tracking information to detect ICA components corresponding

to blink and eye movements.

• Exploration of the effect of subject habituation on the amplitude of SSVEP re-

sponses.

• Improvement of eye movement classification, EEG pattern classification and FoA

estimation using the features extracted from ICA components rather than EEG

channels.

1.6 Thesis Structure

The thesis consist of eight chapters. While the next chapter provides necessary back-

ground, the main contributions of this research are presented in Chapter 3 to Chapter 7,

and a conclusion is made in Chapter 8. Figure 1.1 depicts the conceptual links between

different chapters of the manuscript. In the following, a brief overview of each chapter is

given.
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1.6.1 Chapter 2 - Background Knowledge

This chapter provides a background review of techniques used to detect a person’s focus of

foveal attention. The chapter begins by defining the eye-tracking problem and reviewing

some of the early eye-tracking experiments. This is followed by presenting the electrophys-

Figure 1.1: The hierarchical thesis structure.
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iology of the eyes and categorising different types of eye movements. Then, some of the

major signal processing methods used for eye tracking, including noise removal, feature

extraction and eye-movement classification, are outlined. In addition to conventional eye

tracking, EEG-based BCI is described as a means to detect the focus of foveal attention;

eye movement is introduced as a source of artefacts, exploiting EEG. This is followed by

an outline for some of the major noise removal methods, feature sets and classifiers used

for classification of the patterns in the EEG signals corresponding to different types of

activity. Finally, ICA is introduced as the most successful eye-related artefact removal

method, and the feasibility of using ICA as a feature extraction method, in addition to

artefact removal, is discussed.

1.6.2 Chapter 3 - Consumer-grade EEG Device Evaluation

In this chapter, the feasibility and reliability of employing commercial EEG recording

devices for routine BCI are assessed via evaluating integrity of a consumer-grade EEG

headset, Emotiv Epoc. The device is employed for recording EEG during three common

BCI experiments. The limitations of the device and recommendations on processing sig-

nals from the device are discussed. Additionally, a pilot study is performed to evaluate the

changes in the patterns of EEG signals originated by eye movements and blinking, which

are among the main sources of biological artefacts. In the pilot study, the performance

of the EEG device in classifying EEG signals arising from eye blinks and eyes moving

in different directions is assessed. This way, the feasibility of using the EEG headset to

detect point of gaze in addition to eye-related artefacts is evaluated.

1.6.3 Chapter 4 - Matched VOG-EEG Datasets

In this chapter, a matched EEG-VOG dataset, recorded using consumer-grade EEG and

VOG apparatus, is introduced. EEG and VOG data are simultaneously recorded dur-

ing four different experiments. Additionally, the details of another matched EEG-VOG

dataset, recorded using laboratory-grade apparatus by [13], are described. The datasets
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are later employed in the experiments described in Chapter 5 and 6.

1.6.4 Chapter 5 - Hybrid EEG-EOG Eye-Tracker

A signal processing approach to classify blink and different types of eye movements, in-

cluding fixation, saccade and smooth pursuit, is presented in this chapter. The method is

also used to classify saccade amplitude and direction of eye movements. In addition, the

focus of foveal attention is estimated using a hybrid approach of eye movement direction

classification and SSVEP detection. The datasets described in Chapter 4 are used to

evaluate the proposed signal processing approach.

1.6.5 Chapter 6 - Performance Improvement by VOG-based EOG

Artefact Removal

In this chapter, the FoA estimation is improved by proposing an EEG artefact removal

method based on ICA, thus improving SSVEP detection accuracy. Optical eye-tracking

information is used to detect and remove eye-related artefacts from EEG data and to

improve the accuracy of SSVEP detection. Additionally, the effect of subjects’ habituation

on SSVEP detection performance is explored. Similar to the previous chapter, the datasets

described in Chapter 4 are employed for evaluation of the proposed method.

1.6.6 Chapter 7 - Performance Improvement by Extracting Fea-

tures From Independent Sources

This chapter demonstrates that employing the independent sources estimated by ICA can

be beneficial for feature extraction, leading to improved eye movement and EEG pattern

classification. All the experiments conducted in Chapter 3 to 6 are repeated; however,

features are extracted from independent components rather than normal (raw or cleaned)

EEG channels. The datasets described in Chapter 3 and 4 are used to evaluate the

ICA-based feature extraction method.
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1.6.7 Chapter 8 - Conclusion

The final chapter provides a summary of the thesis, summarises the major results and

draws a conclusion of the thesis in addition to anticipating the future directions of the

work.

1.7 Summary

In this chapter, the motivations of the study, the research questions and thesis contribu-

tions are discussed. The chapter is finished by providing the thesis structure and a brief

summary of each chapter.
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“The most learned of men is one

who collects bits of knowledge from

others and thus enhances his own

knowledge.”

Prophet Muhammad (PBUH)

2
Background Knowledge

2.1 Introduction

The aim of this thesis is to develop signal processing approaches that are capable of

tracking the eyes, based on information obtained from recorded EEG data, captured

using an affordable, non-intrusive, consumer-grade EEG device. This chapter provides a

brief overview/background of eye-tracking and EEG signal processing methods. It begins

by introducing the characteristics of eye tracking, EEG and their applications. We also

outline different methods used in the literature for the classification of EEG patterns and

different types of eye movements, elicited during different activities. Extant EEG artefact

handling methods are discussed, followed by an introduction to the well-known artefact
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removal method, ICA, in detail.

2.2 Eye Tracking

The eye-tracking problem is defined as estimating a person’s point of gaze in his or her

visual field, or simply estimating his or her focus of foveal attention [20]. In the field of

human activity recognition and cognitive state detection, it also extends to other elements

such as analysing eye blinking rate and the repetition of specific patterns in the eye

movements [9, 21], or detecting different types of eye movements (e.g., saccade, fixation,

etc.) [22].

2.2.1 Eye Movements and Blinking

When a person participates in activities or looks at different scenes, his or her eyes do not

move in a smooth and steady pattern. The process involves different eye movement types.

To be able to use eye-tracking information, it is crucial to understand different types of

eye movements. Eye movements can be categorised as saccade, fixation, smooth pursuit

and blinking.

Saccade

Simultaneous and rapid movement of the eyes for redirecting the visual axis is known

as a saccade. The angular distance the eyes travel during saccade is called the saccade

amplitude. A typical saccade amplitude varies from 20 to 30 degrees and lasts from 10 to

100ms [23, 24]. Vertical and horizontal movements of the eyes on a visual scene can be

modelled using saccades.

Fixation

Fixation is the steady state of the eyes when the eyes remain still and are fixed on a

single location in the visual scene. Usually, fixation is defined as the duration between

11



each saccade, and it might last from tens of milliseconds to several seconds. However, the

average fixation duration lies between 100 and 200ms[7, 9].

Smooth Pursuit

Movement of the eyes for tracking moving targets is known as smooth pursuit eye move-

ment. The smooth pursuit eye movements are not generally under voluntary control; the

presence of a moving target is required.

Blinking

Regular openings and closings of the eyelids are called blinks. Blinks are the response

to irritation of the eyes, and they clean and lubricate the eyes by spreading tears across

the cornea [22]. The typical blinking rate is 12 to 19 blinks per minute, and each blink

lasts for 100 to 400ms [9]. In many lines of research, blinking is also considered as an eye

movement type.

2.2.2 Eye Tracking Techniques

A variety of techniques have been developed for eye tracking. Broadly speaking, they can

be classed as either optical (video-based) or non-optical (non-video-based). Non-optical

methods mostly rely on measuring potential changes in the eye movements (electroocu-

lography or EOG) [25, 9]. These methods are relatively cumbersome and can quickly

become uncomfortable or tiresome for the subjects. Moreover, the methods are usually

limited to laboratory experiments, and they cannot be employed in daily life and mobile

circumstances. Alternatively, the optical or videooculography (VOG) eye-tracking sys-

tems record a sequence of images of a subject’s eye, using high-resolution cameras. They

rely on the software processing system to obtain the subject’s gaze position [26, 9]. Apart

from the signal processing aspect of VOG eye trackers, the accuracy of these trackers

greatly depends on the resolution of the images they record.
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Figure 2.1: The dipolar model of the eyes.

Electrooculography

The eye can be modelled as a dipole in which the cornea is the positive pole and the retina

is the negative pole. EOG is a method for sensing eye movements based on measuring

changes in the steady corneo-retinal potential difference [25]. If the eye moves from its

steady state position (centre position) toward one side, the positive pole of the eye (cornea)

moves to one of the electrodes while the negative pole (retina) approaches the opposite

electrode (see Figure 2.1).The resulting change in dipole orientation causes a change in

the EOG signal amplitude. Blinks or eyelid movements also cause a change in the EOG

signals. Analysis of these EOG changes provides a means for tracking eye movements and

detecting blinks. EOG signal amplitudes are typically in the range of 50 to 200µV , with

a frequency range of about 0 to 30Hz. EOG has applications in HCI, behavioural and

perceptual research. Different types of eye movements (Section 2.2.1) that are captured

by EOG signals can be used for human-computer and human-robot interfaces which are

intended to be used by people with disabilities [27, 28, 29].

Video-oculography

VOG or video-based eye trackers usually use corneal reflection or pupil tracking [9],

to capture horizontal and vertical movements of the eyes. Generally, there are two ap-

proaches for VOG eye tracking: (1) remote eye tracking, in which the tracking cameras are

stationary with narrow visual field; and (2) head-mounted eye tracking, in which cameras
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capture a close-up shot of the eyes [30]. Since VOG eye trackers are video-based, there is

no need for direct contact with eyes, making them more comfortable and less intrusive.

However, in both types of VOG eye-tracking approaches, there are some challenges: re-

mote eye-trackers limit the visual field and mobility of the users, whereas head-mounted

trackers require users to wear cumbersome devices, which limits users’ physical activity.

VOG has been widely used in scientific research and cognitive science [31].

2.3 Brain Activity Measurement

The brain is the most complex unit in the human body, and it is the centre of the nervous

system. The nervous system is the command centre of the body; it sends and receives

signals every moment. The basic units of communication in the nervous system are nerve

cells, also known as neurons [32]. There are three types of neurons: sensory neurons,

which send information from the skin or other organs toward the central nervous system;

motor neurons, which send information from the central nervous system to muscles; and

association neurons, which make the connection between sensory and motor neurons.

Neurons transmit information using electrochemical signals. The neurons in certain

regions of the brain are activated unconsciously when a person perceives a specific exter-

nal stimulus or voluntarily, following an internal cognitive process or the performance of

a mental task. Generally, the brain is divided into two nearly symmetrical halves called

the right hemisphere (RH) and the left hemisphere (LH). Each hemisphere contains four

lobes: frontal, parietal, occipital and temporal. Areas within the brain lobes oversee all

forms of conscious experience, including perception, thought, planning and emotion, along

many unconscious emotional and cognitive processes. The frontal lobe assists in motor

control and cognitive activities, such as making decisions, planning, etc. The parietal

lobe assists in sensory processes, attention, language comprehension and spatial interpre-

tation. The occipital lobe processes visual information and passes its conclusions to the

temporal and parietal lobes. The temporal lobe assists in language comprehension, visual
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recognition and auditory perception. Therefore, measuring neural activity at different

locations of the brain can reveal the activities in which a person is involved. There are a

variety of techniques to measure brain activity. The non-invasive electroencephalography

(EEG) is the most extensively investigated and commonly used brain activity measur-

ing system, for both medical and HCI applications. Because EEG has a high temporal

resolution (i.e. changes in the functional activity of the brain can be measured after a

couple of milliseconds), is durable and more cost effective than other bulky and expensive

brain activity monitoring methods such as functional magnetic resonance imaging (fMRI),

positron emission tomography (PET) and magnetoencephalography (MEG) systems [33].

2.3.1 Electroencephalography-EEG

The variation of the surface potential distribution over the scalp results from neural ac-

tivity and reflects functional activities of the brain [34]. This surface potential variation

can be recorded by placing a set of electrodes (sensors) over the scalp and measuring the

voltage differences between pairs of these electrodes. Typically, EEG signals vary between

10µV to 100µV in amplitude, and lie within the frequency range of about 1 to 100Hz

[35, 36].

EEG electrodes are generally placed on the scalp and named according to a standard

mode - namely, the 10 − 20 international system [37]. The international 10 − 20 system

provides meaningful letters and numbers for positions in the brain. The letters are the first

letter of the brain lobes to which an electrode is attached (e.g., O for occipital lobe). The

odd and even numbers correspond to electrode locations on the left and right hemisphere

of the brain, respectively. For example, O2 corresponds to an electrode located over the

right side of the occipital lobe.

EEG measurement can be either invasive or non-invasive. In the invasive measure-

ments, signals are obtained by surgically placing probes (electrodes) within the brain

(i.e., under the skull). In non-invasive recordings, electrodes are placed outside the head -

for instance, on the scalp. The invasive approach produces the highest possible signal-to-
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noise ratio for measuring brain signals, but it is usually unacceptable because it requires

surgery and carries the risk of infection or brain damage. Non-invasive recordings are less

intrusive, less complex, easy to wear and much cheaper; however, the electrodes can read

brain signals less effectively. Through the acquisition of EEG signals, analogue signals

are amplified and converted into digital data. A filtering scheme is needed to reduce the

effects of the different sources of noise (e.g., 50Hz mains interference) from the signal.

Because data resolution is important in terms of transferring and processing, the sampling

rate and the total number of electrodes are crucial parameters in EEG acquisitions [38].

Previous studies have revealed that a variety of information can be extracted from EEG

electrodes (sensors). This includes slow cortical potentials (SCP) [39], patterns associated

with different mental tasks [40], event-related desynchronisation (ERD) [41], steady-state

visual evoked potential (SSVEP) [10], and the P300 event-related potential (ERP) [42].

The information extracted from EEG signals is dependent upon the application. However,

the ERP and SSVEP have become popular because they need less training, have less

between-person variation and are more feasible for use in real-life applications.

2.3.2 Event-related Potential

The ERP is the brain’s response to an external stimulus. The ERP response can be

characterised by positive or negative deflections in the EEG signal from 100 to 900ms after

exposing a subject to a stimulus [43]. The ERP responses are stronger over electrodes

positioned at the vertex of the scalp. ERP responses are mostly used for brain spellers,

in which subjects are stimulated with flashing letters at certain times and their choices

are detected by detecting ERP response time-locked to the stimuli.

2.3.3 Steady-State Visual Evoked Potential

The SSVEP is an electrical response in the brain when the retina is stimulated by a

flickering visual stimulus at a frequency higher than 6Hz [44]. SSVEP responses are

oscillations in the EEG signals at the same frequency as the visual stimulation. By
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analysing the spectral content of the EEG signal, the SSVEP can be detected reliably

and without consideration of between-person difference. The SSVEP enables a person’s

focus of attention (FoA) to be estimated, providing the focus/stimulus is flickering. Thus,

augmenting the presentation of a focus with a flickering luminosity enables detection of

visual attention without the use of VOG.

EEG Wave Groups (Brain Rhythms)

Due to the large amount of information coming from each EEG electrode, the analysis

of continuous EEG signals is complex. Therefore, signals coming from each electrode are

usually divided into different waves with respect to their oscillation frequencies [45, 35].

The frequency bands of alpha (8 − 12Hz), beta (13 − 30Hz), delta (0.5 − 4Hz), theta

(4 − 7Hz) and gamma (above 30Hz) are conventionally used to describe brain waves

(brain rhythms). Sometimes, another rhythm called the mu (or sensorimotor rhythm)

is measured which lies in the same frequency range as the alpha rhythm. However, the

mu rhythm occurs in the motor cortex, in contrast to the alpha rhythm, which occurs

mostly over the visual cortex at the back of the scalp. Alpha is the most prominent wave

and can be utilised to measure the level of relaxation [46]. Alpha waves appear mainly

over posterior regions of the head and are usually found over the occipital lobe of the

brain [47]. They are best seen when the subject’s eyes are closed and he or she is in a

wakeful, relaxed state. It has also been demonstrated that preparation for movements or

the imagination of different motor actions, such as right- or left-hand movements, results

in a decrease in mu and/or beta rhythms in the contra-lateral side (i.e., right or left) of

the brain hemisphere for which movement is planned [48].

2.3.4 EEG Artefacts

EEG signals are always contaminated by artefacts, degrading the quality of EEG signals

and potentially making them unusable. There are two categories of artefacts: biological

and environmental [45].
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Biological artefacts are electrical activities which affect signal readings from the scalp,

but they have non-cerebral origins. The most common biological artefacts are electrical

activities produced by muscles (captured by means of electromyography or EMG) and

eye-induced artefacts or EOG.

Environmental artefacts originate from outside the body. Some common environmen-

tal artefacts are the misplacement of electrodes (resulting in spikes due to change in the

impedance of an electrode), poor grounding of the EEG electrodes (causing 50Hz or 60Hz

artefacts, depending on the local power system’s frequency) and conductivity between two

electrodes due to sweat.

2.4 EEG Signal Processing

The brain activity signals, recorded by EEG, are highly complex and random in nature.

Several signal processing methods have been proposed to extract hidden information from

these signals [35]. EEG signal processing usually consists of three major steps: artefact

handling, feature extraction and classification. Each step is explained in the following

sections.

2.4.1 Artefact handling methods

Most of the environmental artefacts are usually avoided by proper filtering and shielding.

However, in the case of biological artefacts, filtering performance may be compromised,

because EOG or EMG artefacts lie in the same frequency range as brain signals. There

are three approaches for handling biological artefacts: avoidance, rejection and removal

[49].

• Avoidance: The basic approach to handling biological artefacts is to avoid their

occurrence by instructing the subjects to remain as still as possible and asking them

to avoid blinking or rolling their eyes. However, eye and body movements can be

involuntary.
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• Rejection: In the rejection approach, EEG data contaminated with artefacts are

detected manually or automatically. The segments including artefacts can be ex-

cluded from the EEG data. The drawback of this method is that there would be

substantial loss of data due to the rejection of the contaminated segments.

• Removal: Another method for ensuring that the EEG data are as clean as possible

is artefact removal. Artefact removal tries to remove the effects of the artefacts from

the EEG signals while keeping the related neurological data intact.

Of the three artefact-handling methods, artefact removal is gaining more interest in

EEG research, due to the fact that there is less information loss compared to artefact rejec-

tion and that the method is more reliable and feasible than artefact avoidance. Numerous

methods have been proposed to remove EEG artefacts. Many of these existing methods

are based on regression models and attempt to regress out reference signals recorded by

electrodes placed around the eyes [50, 51]. However, regression-based artefact removal

has some major drawbacks. The EEG and EOG activities mix bidirectionally [52], and

consequently regressing out EOG results in removing some neural information in addition

to the EOG activities. Additionally, the regression methods do not work in the absence

of reference electrodes placed around the eyes. More recently, ICA has been used suc-

cessfully to remove EEG artefacts [53, 54, 55], and it has been demonstrated to be more

reliable than other artefact-removal methods [56].

2.4.2 Feature Extraction

EEG signal properties include non-Gaussianity, non-stationarity and non-linearity. The

goal of feature extraction is to find an appropriate representation of the data that enables

classification of different brain patterns. There are three main sets of features for raw

EEG signal processing [57], [35]: temporal, frequential and time-frequency.

• Temporal: these features are particularly adapted to describe EEG signals with

precise time signatures. For example, in ERP paradigms, the visual attention of the
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users is detected by monitoring amplitude deflections in EEG signals, time-locked

to certain stimuli [56].

• Frequential: as mentioned earlier, EEG signals are composed of a set of specific os-

cillations known as brain waves. Performing a given mental task (such as movement

imagination [58]) makes the amplitude of these waves vary. Subsequently, it appears

as natural to exploit the frequential information embedded in the EEG signals, such

as EEG waves’ band power.

• Time-frequency: these features are adopted to catch relatively sudden temporal

variations of the signals, while still keeping frequential information. For example,

in SSVEP paradigms, a short-time Fourier transform can extract information about

the times when a subject attended to stimuli flickering at a certain frequency [44].

2.4.3 Classification

The main aim of the feature classification is to distinguish and classify the extracted fea-

tures associated with different activities and/or mental states. There is a wide range of

classification algorithms used in EEG studies, such as K-nearest neighbour (KNN) [59],

support vector machine (SVM) [60], Linear Discriminant Analysis (LDA) [61], neural

networks (NN) [62], hidden Markov models (HMM) [63] and naive Bayesian (NB) clas-

sifiers [64]. They can generally be classified into discriminative classifiers (e.g., SVM)

and generative classifiers (e.g., NB). Generative classifiers model the distribution of the

data in order to categorise the signal, while discriminative classifiers make a classification

decision based on the characteristics of the data [65]. The KNN, NB and SVM are the

three common classification algorithms successfully used for classification of brain activity

patterns reflected in the EEG signals. A complete review of the classification algorithms

used for EEG pattern classification can be found in [66].
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Figure 2.2: A typical example of a KNN classification for a two class problem (i.e. the
"pink" and the "blue" circles) when the K parameter is set to "3" and "5". The green star
represents a unseen sample point.

K-Nearest Neighbour

The KNN classifier is a relatively simple but robust, data-driven discriminative classifier.

The classifier assigns a class label to an unseen point by comparing it to the K closest

labelled points (nearest neighbours) in the training set [67]. The nearest neighbours

are most commonly obtained by calculating the Euclidean distance. The value of K is

normally defined manually. If the value of K = 1, then the unseen point is labelled

according to the label of the closest labelled point in the training data. For K > 1,

usually a majority voting rule is applied. In majority voting, each class takes a vote for

each point in the K neighbours, which are labelled as that class. Then the unseen point

is classified as the class with the highest number of votes (see Figure 2.2). This way, the

classifier is less sensitive to outliers and it is robust to noisy and mislabelled training data.

Naive Bayesian

NB, the simplest and most widely used (generative) probabilistic classifier, is based on

Bayes’ theory [67]. NB is a simplified Bayesian probability and works under the naïve

assumption that the features are independent, so that the effect of a particular feature’s

value on a given class is independent of the values of other features. NB aims to assign
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an unseen point to a class with the highest posterior probability. Let X = x1, x2, ..., xn

represent a sample point, with n values of the n independent features, F1, F2, · · · , Fn; and

there are k classes (C1, C2, · · · , Ck). According to the Bayes theorem, the probability of

X belonging to class Ck can be calculated as follows:

p(Ck|X) = p(Ck)p(X|Ck)
p(X) (2.1)

where,

• p(Ck|X) is the posterior probability of class Ck given predictor X

• p(Ck) is the prior probability of class Ck, or probability of occurrence of class Ck in

the training set.

• p(X|Ck) is the likelihood or the probability of predictor X, given class Ck.

• p(X) is the prior probability of predictor X, or probability of occurrence of X in the

training set.

Given X, the NB classifier predicts that X belongs to the class with highest posterior

probability, conditioned on X, p(Ci|X). Therefore, it is desired to find the class which

maximises p(Ck|X). Because p(X) is constant for all the classes, only p(Ck) p(X|Ck)

needs to be maximized. According to the joint probability model,

p(Ck)p(X|Ck) = p(Ck, x1, x2, · · · , xn) (2.2)

and

p(Ck, x1, x2, · · · , xn) = p(Ck)p(x1|Ck)p(x2|Ck, x1), · · · , p(xn|Ck, x1, x2, · · · , xn−1)

Now based on the naïve assumption, each feature Fi is independent of every feature Fj;
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Figure 2.3: A typical example of a 2D binary classification with NB. A density contour
is plotted for the Gaussian model of each class (i.e. "blue" and "pink" contours) and the
decision boundary is shown in red.

for j 6= i, given class Ck. Consequently,

p(xi|Ck, x1) = p(xi|Ck)

p(xi|Ck, x1, x2, · · · , xn−1) = p(xi|Ck)

Mathematically this means that,

p(Ck|X) ∝ p(Ck)
n∏

i=1
p(xi|Ck) (2.3)

which can be easily estimated using the training set. In order to classify the unseen point

X, the posterior probability for each Ck is calculated, and the class which maximizes

p(Ck|X) is assigned to the X (see Figure 2.3).

Support Vector Machine

The SVM proposed by [68] is a discriminative parametric classifier and is popular due to its

good generalisation performance and computational efficiency. Given the labelled training

set, the SVM constructs and uses a discriminant hyperplane to identify classes. The
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Figure 2.4: SVM finds an optimal hyperplane which separates tow classes: the "pink" and
the "blue" circles.

hyperplane with maximum distance to the nearest training data samples (i.e., maximum

margin) of any class is selected for discrimination of the classes. A larger margin leads

to better generalisation capabilities (see Figure 2.4). The trade-off between maximum

margin size and misclassification error is determined by a free regularisation parameter,

C. Suppose we have a training set with N data points, where each D dimensional Xi

(Xi ∈ <D) belongs to a predefined class yi, {yi, Xi}N
i=1. An SVM aims to construct a

classifier based on the decision function f(X) as follows:

f(X) = sgn
(

N∑
i=1

yiαiΨ(X,Xi) + b

)
(2.4)

where X is a test vector and αi and b are positive and real constants, respectively.

Ψ(X,Xi) is the kernel function.

The kernel function is a computationally efficient method to obtain the projection

of input data into a higher-dimensional space. The kernel function is suitable for cases

where the points belonging to different classes are not linearly separable. There are

multiple choices for the kernel function; however, the radial basis function (RBF) is the

most widely used and has performed well in EEG signal processing.
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The performance of the RBF-SVM is highly dependent on the choice of two hyperpa-

rameters: C (regularisation parameter) and σ (RBF width or kernel parameter). More

details on SVM can be found in [67].

2.5 Independent Component Analysis

ICA is a blind source separation (BSS) [69] technique and is widely used for analysis

of EEG data. ICA is chiefly applied to separate neural activities from artefacts. ICA

assumes that the observed EEG signals from N electrodes, x1, x2, · · · , xN , are a linear

mixture of N independent source signals (components), s1, s2, · · · , sN , that build them;

xj = aj1s1 + aj2s2 + · · ·+ ajNsN , for all j (j = 1, 2, · · · , N). (2.5)

Where a are mixing coefficients. Let us defineX as a vector whose elements are x1, x2, · · · , xN ,

and define S as a vector whose elements are s1, s2, · · · , sN . Additionally, let us define A

as a matrix with elements aij. Therefore, the equation 2.5 can be written as

X = AS (2.6)

where A is the mixing matrix, and source signals S(t), are assumed to be independent,

non-Gaussian and stationary. The ICA objective is to estimate a time-invariant, invertible

mixing matrix A so that a set of non-gaussian and independent source signals, S(t), can be

reconstructed; using only the observationsX(t). Then, after estimating A, the “unmixing”

matrix W is obtained by computing the inverse of matrix A (W = A−1), and the ICs are

simply obtained:

S = WX (2.7)

Although ICA can estimate independent sources, it does not label them. Additionally,

ICA does not guarantee the sign of the estimated sources and does not recover the exact

amplitude of the sources. There are many ICA implementations which differ on the inde-
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pendence of the components and estimation of the mixing matrix, such as Infomax [70],

Extended-Infomax [71] and FastICA [72]. Many studies have compared the reliability

of the estimated sources by different ICA algorithms [73, 74]. In the most recent study,

researchers found that there is no significant difference between the performance of ICA

algorithms; further, they found that the reliability of estimated sources by ICA is highly

dependent on the pre-processing steps (e.g. proper filtering of raw EEG) applied to data

prior to ICA rather than the type of ICA algorithm [75].

2.5.1 ICA-based Artefact Removal

As mentioned in Section 2.4.1, ICA is the most commonly used EEG artefact-removal

method. In order to use ICA, usually the cerebral and artefactual sources are assumed

to be biologically separate (and independent) processes. Therefore, ICA is used to sep-

arate cerebral and artefactual sources. After obtaining the ICs, those sources which are

attributed to artefacts can be identified and removed; therefore, EEG signals can be re-

constructed without the identified artefact components. The main drawback of ICA is

that it does not label its estimated sources. Several attempts have been made to auto-

matically label the artefactual sources by employing the temporal, frequential and spatial

stereotyped characteristics of artefacts. For example, ADJUST [12], one of the most pop-

ular IC labelling techniques, uses a combination of temporal and spatial features to detect

different types of EEG artefacts.

2.6 Summary

This chapter reviewed the basic concepts of eye-tracking and EEG techniques that are em-

ployed for the rest of this thesis. Different signal processing methods used for classification

of EEG patterns were outlined. ICA, a successful EEG artefact-removal method that can

separate cerebral and non-cerebral sources from EEG observations, was also introduced.
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“Wisdom never attains perfection

except by following the truth.”

Hussain ibn Ali (PBUH)

3
Consumer-grade EEG Device Evaluation

3.1 Introduction

The development of consumer-grade EEG devices is accelerated by the ability of using

BCI as an assistive technology for people with physical impairments [76] and the growing

interest in using BCI in gaming and virtual reality applications [77]. The availability of

low-cost EEG devices affords the possibility of widespread use of brain signals in HCI.

However, in practice the uptake is hindered by limitations due to the low sampling rate,

the low number of channels to cover the whole scalp, the low SNR due to artefacts and

the unreliability of processed information.

In this chapter, the performance of a commercially available EEG device is evaluated
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for BCI paradigms for which it is most suited: cognitive load, motor imagery and SSVEP.

The study employs a portable, wireless, low-cost EEG device (i.e., the Emotiv EPOC)

and integrates it with a Python software platform to capture brain activity. The goal

of this chapter is to demonstrate the integrity of the Emotiv EPOC, and evaluate the

feasibility and reliability of employing commercial EEG recording devices for routine BCI

use. An additional objective of this study is to evaluate the changes in the patterns of

EEG signals originated by eye movements and blinking which are among the main sources

of biological artefacts. Thus, a pilot study was performed to assess performance of the

EEG device for classification of blink and eye movement artefacts. The pilot study also

assessed the feasibility of using the EEG headset to classify movements of eyes in different

directions. The evaluation results are demonstrated and we discuss recommendations on

processing signals from this EEG device.

3.2 Related Works

From the beginning of this research several researchers employed Emotiv EPOC consumer

EEG device in different EEG paradigms. Table 3.1 summarises some of the recent studies

evaluating the EEG headset with the obtained results.

Table 3.1: The obtained performance of different classification paradigms, in terms of
balanced accuracy, when Emotiv EPOC is employed to record EEG.

Experiment Results
ERP Classification 88.88% [78] 89.66% [79]
SSVEP Classification 73.5% [80] 75% [81] 95.83% [82]
Mental State Detection 68% [83] 64% [84]
Imagery movement Classification 82% [85] 76.92% [86] 82% [87]
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(a) A subject wearing Emotiv
EPOC EEG headset. (b) Electrode positioning.

Figure 3.1: Illustration of Emotiv EPOC EEG headset (a) in use and (b) its electrode
locations based on the international 10− 20 system.

3.3 Apparatus

For the purpose of recording EEG, an Emotiv EPOC consumer-grade EEG headset was

employed (Figure 3.1a). The headset’s fixed array of electrodes makes it easy to fit and

portable. Because it connects wirelessly to any PC, the user maintains a full range of

motion. Instead of applying conductive gel or paste, EPOC simply requires that the users

wet its felt-tipped electrodes with contact lens solution prior to each use. This device

also comes with an embedded, two-dimensional gyroscope sensor that can be utilised for

head-movement detection. The headset has 14 EEG electrodes (channels) located at the

positions AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4 on the

scalp, in accordance with the international 10−20 system, as shown in Figure 3.1b. There

are two additional reference electrodes located above the subject’s ears (CMS/DRL), for

the electrodes on the left and the right hemispheres of the head. The data sampling rate

is 128Hz. The sampled EEG signals are transmitted wirelessly to a PC in the frequency

of 2.4GHz.
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3.4 Methodology

Three BCI experiments were conducted in order to evaluate the integrity of the Emo-

tiv EPOC EEG headset. Performance of the EPOC was measured using the obtained

accuracies of the EEG signal classification through each experiment.

3.5 Data Collected

The dataset contains data recorded during three cue-based non-feedback (screening)

paradigms - namely, Cognitive Load (Experiment1), Motor Imagery (Experiment2) and

Steady-State Visual Evoked Potential (Experiment3). All subjects (described in sec-

tion 3.5.1) participated in all the experiments. The same experimental set-up was applied

to all. All the experiments were performed in one session.

3.5.1 Subjects

EEG data were recorded from 10 subjects (3 females, 7 males; age range 19 − 29, mean

23.10; 2 left-handed). The subjects had normal or corrected-to-normal vision and had no

history of neurological disorders. Written informed consent was obtained from all subjects

prior to their participation in the study. The study was approved by the University of

Birmingham ethics committee.

3.5.2 Experimental set-up

The participants were positioned in a comfortable chair at a distance of about 70cm from

a 15− inch liquid crystal display (LCD) panel, with a 60Hz vertical refresh rate, inside a

sound-attenuated recording booth. The screen was positioned at eye level. Subjects were

instructed to relax and remain as placid as possible, to avoid the contamination of EEG

signals with muscle artefacts. The entire preparation process took less than 5 minutes. In
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(a) Eyes-open vs. eyes-closed (b) Relaxation vs. active thinking

Figure 3.2: Timing scheme of the cognitive load experimental paradigm.

order to make participants feel more comfortable, they were given the chance to try the

EEG headset on beforehand.

Two Python-based applications were implemented, one for capturing the raw EEG

data and the other one for stimulus presentation. Both of the applications were launched

on a single PC and were fully synchronised. To check the quality of the synchronisation,

the machine’s CPU time was recorded using both applications. The recording application

ran first and started capturing EEG data points and CPU time, 128 times per second.

Then stimulus presentation application ran, and it recorded the machines CPU time at

the occurrence of each event and at the start and end of the stimulation.

3.5.3 Experiment 1: Cognitive Load

The screening paradigm in this experiment (Figure 3.2) consisted of three tasks: eyes-open

relaxed (class1), eyes-closed relaxed (class2) and eyes-closed mathematical task (class3).

Each subject participated in one screening session. The session consisted of 2 runs of 120s

each and 2 classes of tasks. This resulted in recording 240s of EEG data per run and 480s

of EEG data per session.

The first run started with the appearance of a fixation cross in the middle of the

screen (t = 0). Subjects were asked to relax and fix their gaze on the fixation cross.

After 120s (t = 120s), with the presentation of a visual cue (close your eyes) and hearing

of a signalling tone (1kHz, 100ms), the subjects closed their eyes and remained relaxed

for another 120s (see Figure 3.2a). Figure 3.3 depicts the power spectral density (PSD)
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Figure 3.3: A typical PSD of a subject’s EEG data, recorded at O1 channel, during
eyes-open and eye-closed task.

pattern of the recorded EEG data, recorded at a channel placed on the visual cortex,

when a subject was relaxed and performed eyes-open and eye-closed tasks.

The second run started with presentation of a fixation cross and a signalling tone

(t = 0), instructing the subjects to relax and close their eyes. After 120s (t = 120),

on the hearing of a signalling tone, the subjects started to conduct a mathematical task

(e.g., multiplication of 555 and 14), for another 120seconds (see Figure 3.2b). During

the eyes-open condition, subjects were instructed to fix their gaze on a fixation cross to

reduce contamination of EEG signals with artefacts arising from eye movements.

3.5.4 Experiment 2: Motor Imagery

The screening paradigm in this experiment (Figure 3.4) consists of two tasks: motor

imagery of the right hand (class1) and the left hand (class2). Each subject participated

in one screening session. The session consisted of 10 runs of 14s each and 2 classes of

task. This resulted in 20 motor imagery trials (280s of EEG data) per session.

Each run started with presentation of a fixation cross in the middle of the screen

(t = 0). After 2 seconds (t = 2), the fixation cross was overlaid with an arrow pointing

either to the right (class1) or the left (class2). The cue (arrow pointing to the right or the

left) remained on the screen for 12s. Presentation of the arrow prompted the subjects to
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Figure 3.4: Timing scheme of the motor imagery experimental paradigm.

close their eyes and imagine a right- or left- hand movement, depending on the direction

of the arrow. At second 14 (t = 14), the subjects were informed the run was finished, by

hearing a signalling tone.

3.5.5 Experiment 3: SSVEP Classification

This experiment consisted of three tasks: attending to a fixation cross, which was 0Hz

stimulation (class1), and visual stimulus flickering in 7Hz (class2) and 10Hz (class3).

Each subject participated in one screening session. The session consisted of 14 runs of 10s

each and 3 classes of tasks. This resulted in recording 20s of EEG data per run and 280s

of EEG data per session. In this experiment, users were presented with 7Hz and 10Hz

flickering visual stimuli (Figure 3.5).

Each run started with presentation of a fixation cross in the middle of the screen

(t = 0). Subjects were instructed to remain relaxed and fix their gaze on the fixation

Figure 3.5: Timing scheme of the SSVEP classification experimental paradigm.
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cross for 5s (class1). At time t = 5, a 10 × 10 checkerboard flickering in 7Hz or 10Hz

(corresponding to one of two classes, class2 or class3) covered the fixation cross and

remained for 5s. During the presentation of the flickering stimuli, subjects focused on

them. There was a 5s gap between each run.

3.6 Data Analysis

The captured data were used to classify the EEG patterns associated with different tasks

included in each experiment. First, the EEG data were preprocessed and DC drift and

high frequency noise were removed from the data. Then, ICA was used to remove artefacts

and clean EEG data. Different sets of features were extracted from EEG data recorded

during each experiment. Finally, the extracted features were fed into different classifiers

to perform the classification tasks.

3.6.1 Preprocessing

The EEG data recorded outside the time range of the screening paradigms (data recorded

before the start of the first run and after the end of the last run) in each experiment were

excluded from the data. In order to remove the slow drifts and high-frequency noise from

the recorded data, signals were band-pass filtered (bandwidth 1 − 40Hz). The filtering

was done by applying a zero phase forward/backward FIR filter.

3.6.2 ICA-based Artefact Removal

In order to separate and remove sources associated with artefacts from EEG, three com-

monly used ICA algorithms - FastICA, Infomax and Extended-Infomax - were applied

to the data, and the performances of the algorithms in artefact removal were compared.

Previous studies have shown that eye-related artefacts are the main source of biological

artefacts and explain more than 90% of data variance, when compared to other types of

artefacts [12]. Consequently, we only considered EOG artefact removal, and the sources
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corresponding to EOG artefacts were manually labelled by visually inspecting their time-

course, PSD and scalp map.

3.6.3 Feature Extraction

Features were extracted from the pre-processed EEG data channels. The EEG readings

of each channel were split into epochs of window lengths of 1.0, 1.5 and 2.0 seconds, with

different overlaps ranging from 100ms to 900ms with steps of 100ms. The larger the

window size, the lower the temporal resolution of the system.

In the first two experiments, a set of frequential features were extracted obtained by a

256-point fast fourier transform (FFT). In Experiment 1 (cognitive load) and Experiment 2

(motor imagery), the sum of the squared amplitude of frequencies lying in delta (1−4Hz),

theta (4 − 8Hz), alpha (8 − 13Hz) and beta (13 − 20Hz) bands and relative intensity

ratio of each band were considered as the features.

For Experiment 3 (SSVEP), the squared amplitude of the stimulation frequencies

(7Hzand10Hz) and their second harmonics (14Hz and 20Hz) were extracted from the

spectrum of the signal and considered as the feature.

For each experiment, the corresponding features are extracted from each single EEG

channel separately, then they are concatenated together to make the final feature vector.

3.6.4 Classification

A classifier was trained on a subset of data to distinguish different task-related patterns

in the EEG signal. In this study, RBF-SVM, NB and KNN classifiers were employed.

The distance metric used in KNN classifier was Euclidean distance and the consistency

of the classifier’s performance was optimised by varying the K value between 1 to 9. For

the RBF-SVM classifier, an optimal regularisation parameter C and a kernel parameter

σ were identified using grid search [88]. The parameter’s effectiveness was evaluated by

10-fold cross-validation.

For each experiment, classifiers were trained using a set of features, extracted from
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epochs with different window and overlap length. A 10−fold cross validation method

was used to evaluate the performance of the trained classifiers. In the 10−fold cross-

validation procedure, extracted features were divided into 10 subsets, each corresponding

to the data from one of 10 subjects. The classifiers were trained using 9 of 10 subsets, and

the remaining subset was used for testing. This procedure was repeated 10 times, giving

each feature instance an equal chance of being the training or test data.

3.7 Evaluation

The performance of the consumer EEG device was evaluated by measuring the classifiers’

performance for each experiment. The performance criterion for the three classifiers was

the accuracy of correctly classified instances in each experiment, averaged over 10 subjects.

Additionally, the effect of varying window size and overlap on the performance of the

classifiers was assessed.

3.8 Results

Figures 3.6, 3.7 and 3.8 illustrate the effect of varying window and overlap size on the

performance of the employed classifiers for classification of the tasks in the cognitive load

(Experiment1 ), motor imagery (Experiment2 ) and SSVEP classification (Experiment3 )

experiments, respectively.

Generally, the results indicate that there is a notable change in the performance of

all the classifiers in all the experiments, when window and overlap length vary. In most

of the cases, the classification performance is improved by increasing the percentage of

window overlaps.

Increasing the overlap results in increasing the number of training samples; therefore,

results suggest that there were not enough training samples in the short overlap sizes and

that the classifiers’ boundaries were not accurate enough. Consequently, the classifiers’

performance was improved by increasing the percentage of overlap, thus increasing the
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Figure 3.6: Performance of (a) Support Vector Machine, (b) Nearest Neighbour and (c)
Naive Bayesian classifiers when features are extracted from variable window and overlap
size, in Cognitive Load experiment (Experiment1 ).

Figure 3.7: Performance of (a) Support Vector Machine, (b) Nearest Neighbour and (c)
Naive Bayesian classifiers when features are extracted from variable window and overlap
size, in Motor Imagery experiment (Experiment2 ).

number of training samples.

In the cognitive load experiment (Figure 3.6), increasing the overlap size resulted in

approximately 15%, 26% and 25%, improvement in the performance of the SVM, KNN and

NB classifiers, respectively. This suggests that the KNN and NB classifiers benefited more

from increasing the overlap, than did the SVM classifier. However, Figure 3.7 indicates

that in the motor imagery experiment both the SVM and KNN classifiers achieved similar

levels of performance improvements (10%) from increasing the overlap size, and the NB

classifier benefited considerably more (20% improvement) from increasing the overlap size.

In the SSVEP classification experiment (Figure 3.8), increasing the overlap resulted in
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Figure 3.8: Performance of (a) Support Vector Machine, (b) Nearest Neighbour and (c)
Naive Bayesian classifiers when features are extracted from variable window and overlap
size, in SSVEP classification experiment (Experiment3 ).

approximately 35%, 15% and 33%, improvement in the performance of the SVM, KNN and

NB classifiers, respectively. In contrast with the two previous experiments (Experiment1

and Experiment2 ), in this experiment the SVM classifier benefited from increasing the

overlap more than the other two classifiers did, and the performance of KNN tended to be

more stable across varying overlaps than were the performance of the two other classifiers.

When comparing the results obtained in all three experiments, the performance of the

NB classifier was more sensitive to the variation of overlap size (and number of training

samples) than were the SVM and KNN classifiers; in all cases, the highest performance

of the classifiers was obtained when 90% overlap was used.

Table 3.2 highlights the results obtained by the three classifiers when 1.0s, 1.5s and

2.0s windows with 90% overlap were used for feature extraction. In terms of window size,

Table 3.2: The percentage (%) accuracy of the SVM, kNN and NB classifiers to classify
tasks in the Cognitive Load, Imagery Movement and SSVEP classification experiments
through various window sizes. The best obtained result for each experiment is highlighted
in bold.

Window Size Experiment1 Experiment2 Experiment3
SVM kNN NB SVM kNN NB SVM kNN NB

1.0 sec 90.86 89.58 84.11 96.01 89.42 90.16 90.94 89.20 74.12
1.5 sec 94.17 93.65 84.20 96.83 92.71 91.45 94.12 89.42 75.00
2.0 sec 95.33 95.20 84.33 96.86 94.46 92.85 94.23 93.13 75.10
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the highest and lowest performance of the classifiers were obtained when 2.0s and 1.0s

windows were used, respectively. In all three experiments, a set of frequential features were

extracted for task discrimination; therefore, although increasing the window size resulted

in poor time resolution and fewer training samples, this resulted in better frequency

resolution, and thus more effective frequential features with more discrimination power

were extracted. Overall, the highest performance of all classifiers was obtained in the

case of 2.0s window size and 90% overlap. When comparing the classification methods,

the two discriminative classifiers SVM and kNN achieved similar performance in all three

experiments and outperformed NB, which is a generative classifier.

The result, represented in Table 3.2, also suggests that SVM and NB classifiers were

less sensitive to the varying window size than was the KNN, and the kNN classifier

benefited more from larger window size than did the other two classifiers.

Table 3.3 illustrates the performance of the classification methods before and after

applying FastICA, Infomax and Extended-Infomax ICA algorithms for artefact removal.

In all of the experiments, there was an increase in the performance of the classifiers

when an ICA algorithm was employed to remove artefacts. In all the experiments, the

NB classifier benefited more from ICA-based artefact removal than did SVM and kNN

classifiers. NB performance improved up to 5.24%, 4.44% and 13.47% after applying ICA

in Experiment1, Experiment2 and Experiment3, respectively.

When comparing the performance of the three ICA algorithms based on classification

Table 3.3: The percentage (%) accuracy of the SVM, kNN and NB classifiers for different
experiments, prior applying ICA (NO-ICA) and after applying FastICA, Infomax and
Extended-Infomax ICA algorithms for artefact removal. The best obtained result for
each experiment is highlighted in bold.

ICA Algorithm Experiment1 Experiment2 Experiment3
SVM kNN NB SVM kNN NB SVM kNN NB

NO-ICA 95.33 95.20 84.33 96.86 94.46 92.85 94.23 93.13 75.10
FastICA 96.75 96.65 89.43 97.20 97.20 96.03 96.24 96.24 87.83
Infomax 97.65 97.65 89.57 97.63 97.57 97.00 96.87 96.87 88.23

Extended-Infomax 97.65 97.65 89.57 98.99 98.87 97.29 97.22 97.22 88.57
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Figure 3.9: Time taken by FastICA, Infomax and Extended-Infomax ICA algorithms
to converge, averaged over 10 subjects, through Cognitive Load (Experiment1 ), Motor
Imagery (Experiment2 ) and SSVEP (Experiment3 ) experiments.

accuracy, there was no considerable difference between the algorithms. However, the

highest classification accuracies were obtained when Extended-Infomax was applied for

artefact removal. Although, when the ICA algorithms are compared based on the CPU

time, they tended to estimate the independent sources and separate artefactual sources

from non-artefacts, Extended-infomax took considerably more time than did the other

algorithms (Figure 3.9). The shortest CPU time was obtained for fastICA.

Here, our main focus was to obtain best classification performance, not the shortest

processing time. Figure 3.10 shows the performance of the classification methods, averaged

over 10 subjects, after applying the best-performing ICA algorithm (Extended-Infomax)

to remove artefacts. In terms of classification methods, the SVM and kNN classifiers

almost achieved the same results and outperformed the NB classifier. Table 3.4 depicts

the obtained p-values when t-test is performed to compare the performance of the three

classifiers through all the experiments. In Experiment1 and Experiment3, the SVM and

KNN classifiers achieved significantly higher accuracy (approximately 8%) than did the

NB classifier. In Experiment2 they achieved approximately 2% more accuracy than did

the NB classifier, however this difference is not statistically significant. The error bars in

Figure 3.10 suggest that performance of the kNN classifier through different subjects was
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(a) Experiment1 (b) Experiment2 (c) Experiment3

Figure 3.10: Accuracy of the SVM, kNN and NB classifiers (averaged over 10 subjects)
after applying Extended-Infomax algorithm is applied to remove artefactual sources from
EEG data. The error bars represent standard errors.

more consistent than the performance of the SVM and NB classifiers, especially in the

SSVEP classification (Experiment3 ).

Overall, in the cognitive load experiment(Experiment1 ), the result demonstrates that

using the commercial EEG headset, the differences in the EEG patterns in three conditions

- opened-eyes relaxed, closed-eyes relaxed, closed-eyes while solving a math task - were

detected with accuracy of about 97.65%. The imaginary right- and left-hand movements

performed by subjects (Experiment2 ) were detected with accuracy of 98.99%. In the

SSVEP classification (Experiment3 ), the accuracy of detecting whether or not subjects

were looking at a stimulus flickering at 10Hz or 7Hz was 97.22%. The results demonstrate

comparable performance to other studies that used laboratory-based EEG devices (see

Figure 3.5). They also, demonstrate that all three experiments were successful and that

the commercial headset proved its integrity over a range of BCI applications.

3.9 Pilot Study: Consumer EEG for Blink and Eye-

movement Direction Classification

This experiment is designed to assess the feasibility of using the EEG headset for eye-

tracking applications via classification of blinking and movements of the eyes in different

directions. The experiment consists of five tasks: fixation (class1) and moving the eyes to

41



Table 3.4: Obtained p-values after performing t-test on the results presented in Fig-
ure 3.10. Performance of all the classifiers are compared pairwise. In the cases where
there is a significant difference (i.e. p-value<0.05) between performance of different clas-
sifiers, in each experiment, the p-values are highlighted in red. To avoid confusion the
cells with repeated results are left blank.

Experiment 1 Experiment 2 Experiment 3
SVM KNN NB SVM KNN NB SVM KNN NB

SVM - - -
KNN 1 - 0.80 - 1 -
NB 6×10−7 4×10−6 - 0.08 0.09 - 3×10−7 1×10−6 -

Table 3.5: The results (balanced accuracy) obtained for classification of different tasks,
when laboratory EEG devices used to capture brain activity. The tasks include (T1)
relaxation (baseline), (T2) right motor imagery, (T3) left motor imagery, (T4) performing
mathematical task, (T5) opening the eyes, (T6) closing the eyes, (T7) looking at different
SSVEP stimuli.

Experimental Paradigm Classification Accuracy
T1 + T4 91.4%[89], 95%[90]
T1 + T2 + T3 71%[91], 84%[92]
T2 + T3 87.4%[93], 89.3%[94], 90%[95]
T5 + T6 87%[96]
T7 90.50[97], 93.57[98], 94.4[99]

the right(class2), left (class3), up (class4) and down (class5). Each subject participated

in one session. The session consisted of 2 runs, blinking and eye movements. The first run

contained 30s of EEG data recorded during blinking (approximately 30 blinks per run).

The second run consisted of 10 repartitions of the eye movement tasks (class1− class5).

This resulted in recording 30s of EEG data associated to blinking and 50s of EEG data

associated to five eye-movement types (10 repartitions for each eye-movement type) per

session. The first run started with the appearance of a fixation cross. Subjects were asked

to fix their gaze on the fixation cross and blink approximately once a second for 30s. The

next run started with the presentation of a fixation cross as well, and then after 1s an

arrow pointing to the right, left, up or down covered the fixation cross for 1s (Figure 3.11).

During this run, subjects were instructed to fix their gaze on the fixation cross (class1)

or move their gaze from the fixation cross (centre of the screen) to the cued direction
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Figure 3.11: Timing scheme of the pilot study on gaze direction detection.

(class2 − 5), depending on the direction of the arrow. This procedure was repeated 10

times for each of the four directions (i.e., right, left, up and down).

3.9.1 Data Analysis

The preprocessing method described in Section 3.6.1 was also applied to the data collected

in this experiment. For blink classification, average power of EEG time-course and mini-

mum and maximum amplitudes occurring in a 500ms moving window with 50% overlap

were extracted from each channel as features. For eye-movement direction classification,

the time samples of the signal within a window, extracted from each channel, were consid-

ered as features. Features were extracted from 1000ms epochs of the pre-processed data

channels, time-locked to the stimuli. The final feature vectors were created by concate-

nating the time samples of all channels. The three classifiers described in section 3.6.4

(RBF-SVM, KNN and NB classifiers) were used for classification of the movements of the

eyes in different directions. Similar to section 3.6.4, a 10-fold cross validation method was

used to evaluate the performance of the three classifiers.
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3.9.2 Results

Figure 3.12a depicts time series of EEG data, recorded from a subject during the blinking

task. As shown in the figure, blinking produced rapid and high amplitude deflections;

based on the blinking task, the duration between blinks was approximately 1 second.

Figure 3.13a and Figure 3.13b illustrate performance of the SVM, kNN and NB clas-

sifiers, in terms of balanced-accuracy, in classification of blinking and eye movements into

different directions, respectively. According to Figure 3.13a, blinks were classified with

approximately 89% accuracy using both the SVM and kNN classifiers. The NB classifier

classified blinks with approximately 84% accuracy and achieved the worst classification

performance. Table 3.6 shows the confusion matrix of the blink classification, averaged

over all subjects. As shown in the table, 92.35% of the blink instances were correctly pre-

(a) Blinking

(b) Eye movements

Figure 3.12: Time series of EEG data captured at (a) AF3 channel, when a subject
performed the blinking task and (b) F7 channel, when a subject moved his eyes to the
right corner of the screen.
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(a) Blink and fixation classification
(b) Eye movement direction (i.e. up, down, left
,right and fixation) classification.

Figure 3.13: Accuracy of SVM, kNN and NB classifiers (averaged over all subjects) in (a)
Blink and (b) eye movement direction classification. The error bars represent standard
errors.

dicted (classified) as blinks; however, only 86.05% of all fixation instances were correctly

classified as fixation. This could be due to the fact that blinking happens involuntarily

in the fixation durations as well; additionally, there could be other types of activity, e.g.

electrode movements, can produce amplitude deflections similar to blinking.

Figure 3.12b shows a typical example of EEG data when a subject performed the

eye movement task. As shown in the figure, the eye movements produced a large ampli-

tude deflection similar to blinking; however, the duration of eye movements was longer

than blinking. Figure 3.13b shows the accuracy of the proposed method to classify eye

movements in different directions. As shown in the figure, eye-movement directions were

classified with accuracy of more than 89% using the KNN classifier, followed by the SVM

Table 3.6: Confusion matrix of blink classification, averaged over 10 subjects. The
numbers denote result of classification of EEG patterns, corresponding to blinking and
fixating the gaze.

Prediction
Blink Fixed

Tr
ut
h Blink 92.35% 7.65%

Fixed 13.95% 86.05%
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Table 3.7: Confusion matrix of eye movement direction classification, averaged over 10
subjects. The numbers denote result of classification of EEG patterns, corresponding to
eye movements into different directions and fixating the gaze.

Prediction
Right Left Up Down Fixed

Tr
ut
h

Right 95.28% 0% 3.10% 1.62% 0%
Left 0.50% 93.35% 1.15% 2.30% 2.70%
Up 5.00% 1.07% 85.23% 8.70% 0%

Down 5.16% 2.60% 11.80% 78.34% 2.10%
Fixed 0% 3.77% 0% 1.00% 95.23%

classifier (approximately 88%). Similar to the blink classification, the lowest accuracy was

obtained when the NB classifier was employed (3% lower than KNN and SVM).

The error bars in Figures 3.13a and 3.13b suggest that the performance of the KNN

classifier was more consistent across subjects than was the performance of the other two

classifiers, for both blink and eye-movement direction classification. Additionally, kNN

achieved the highest performance in blink classification and performed similarly to the

SVM classifier in eye-movement direction classification.

Table 3.7 illustrates the confusion matrix of the kNN classifier for eye-movement clas-

sification, averaged over all subjects. The diagonal elements of the confusion matrix are

observably dominant, indicating high classification quality. As shown in the table, the

best performance was achieved for classification of eyes moving to the right, 95.28%, fol-

lowed by fixation classification, 95.23%, which are only significantly (p-value<0.05) higher

than downward and upward eye movements. The weakest performance was achieved for

downward eye-movement classification (approximately 78%). As shown in Figure 3.1a,

there were no electrodes placed below the eyes, and the effect of downward eye movements

could be observed predominantly on the electrodes placed on the forehead (on top of the

eyes). Thus, almost 11% of the downward eye movements were erroneously classified as

upward eye movements (see Table 3.7). However, the difference between upward and

downward eye movements is not statistically significant (p-value>0.05).

Overall, the result demonstrates the reasonable potential of Emotiv EPOC to be em-
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ployed as a tool for blink and eye-movement direction classification, despite the fact that

the lack of electrodes placed below the eyes limits the device’s ability to detect downward

eye movements as accurately as movement of eyes in other directions. Additionally, the

performance of the simple KNN classifier for blink and eye-movement direction classi-

fication, was compared to more advanced classifiers such as SVM. The KNN classifier

performed eye-movement and blink classification more consistently across different sub-

jects than did the NB and SVM classifiers.

3.10 Summary

A series of experiments were performed to evaluate the integrity of a commercial EEG

device (i.e. Emotiv EPOC) to be utilised in BCI applications. Additionally, a pilot study

was performed to evaluate the feasibility of using the Emotiv EPOC to classify eye blinks

and eye movements in different directions. The result demonstrated comparable perfor-

mance of the device to similar studies which employed standard laboratory based EEG

devices. Given its low cost, the consumer EEG device showed remarkable performance in

cognitive load, mental state and SSVEP classification, confirming integrity of the device

for use in BCI applications. It was also demonstrated that selecting appropriate window

and overlap length and applying artefact removal methods have a considerable effect on

the performance of the classifiers in BCI paradigms. Optimum window and overlap size for

different BCI paradigms, using the Emotiv EPOC were reported and the best-performing

ICA algorithm for artefact removal was introduced. The device also showed reasonable

performance for classification of blink and eye movement in directions, suggesting the

feasibility of using the Emotiv EPOC in eye tracking applications.
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“The believer is not believing unless

he is afraid and hopeful, and he is

not afraid and hopeful unless he put

into practice what he is hopeful and

afraid of.”

Ja’far al-Sadiq (PBUH)

4
Matched VOG-EEG Dataset

4.1 Introduction

In the next experimental chapters of this thesis, different methods are proposed to classify

eye-movement types and remove EOG artefacts from EEG data. In this chapter, we intro-

duce a matched EEG/VOG dataset collected during four experiments specifically designed

for our study. The data are used to evaluate the proposed eye-movement classification

and EOG artefact removal methods. Details of the designed experimental paradigms, and

specification of the EOG and VOG recording apparatus are also described.

The first two experiments ( described in section 4.2.5 and 4.2.6) are designed to study

the EOG activity during saccadal eye movement. During the experiments, subjects are
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asked to fixate or produce saccades based on the visual cues presented on the screen.

The last two experiments are designed to investigate the effect of EOG activity due to

smooth pursuit eye movements, on SSVEP response detection, and explore the potential

benefits of SSVEP response detection for the focus of foveal attention estimation. In the

latter experiment, the brain response to a flickering stimulus and EOG activity due to

eye movement are produced at the same time by exposing the subject to flickering stimuli

moving in different directions.

During all the experiment, EEG and VOG data are captured simultaneously using

consumer-grade EEG and VOG apparatus. Both EEG and VOG apparatus are wearable,

non-intrusive and designed for mobile (wireless) situations outside of laboratory settings.

Additionally, in section 4.3 we describe a similar matched EEG/VOG dataset recorded

using laboratory EEG and VOG equipment. This dataset (named Plöchl), is recorded by

[13] to use VOG information for removing EOG artefacts and improving SNR of ERP

responses. Here, the dataset is used for benchmarking and evaluating the proposed EOG

artefact removal method.

4.2 Simultaneously Recorded VOG/EEG Dataset

This dataset contains data recorded during four cue-based non-feedback (screening) paradigms

namely, short saccade (experiment1), long saccade (experiment2), fixed SSVEP (experiment3)

and pursuit SSVEP (experiment4). All subjects (described in section 4.2.1) participated

in all of the experiments and the same experimental set-up is applied on all.

4.2.1 Subjects

This dataset contains EEG data recorded from seven subjects (all male; age range 23−30,

mean 26.05; 2 left-handed). The subjects have normal or corrected-to-normal vision and

have no history of neurological disorders. Informed consent is obtained from all subjects.

The study is approved by the University of Birmingham ethics committee.
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Figure 4.1: A subject
wearing EEG and VOG
recording devices.

Figure 4.2: Emotiv EPOC
EEG headset.

Figure 4.3: Tobii glasses, a
head mounted eye tracker.

4.2.2 Experimental set-up

Experimental set-up is similar to the one described in section 3.5.2, with some minor

differences. The subjects are positioned in a comfortable chair at a distance of about

100cm from a squared 19inch liquid crystal display (LCD) panel with 60Hz vertical refresh

rate. The screen is positioned at eye level. Subjects are instructed to relax and remain as

still as possible, to avoid the contamination of EEG signals with muscle artefacts. There

are four cue-based experiments included in the dataset; each experiment is performed in

one session.

4.2.3 Apparatus

EEG and VOG are captured using two non-intrusive consumer-grade recording apparatus

designed for mobile situations outside of laboratory settings. Figure 4.1 shows a subject

wearing the EEG and the VOG recording devices together.

EEG signals are recorded using the 14 electrode wireless Emotiv EPOC EEG headset

described in section 3.3 (Figure 4.2), at the sampling rate of 128Hz.

VOG data is captured using Tobii Eye Glasses (Figure 4.3), a head-mounted eye-

tracker, sampling at 30Hz. The glasses are a monocular eye-tracker that uses dark pupil

detection for tracking the subject’s right eye, with reported accuracy of 0.5◦.

In addition to the eye-tracking data, the eye-tracker records visual angles up to 56◦
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horizontally and 40◦ vertically, using a 1.3MegaPixels camera. Before each recording, a

9-point calibration procedure, to correctly map the eye-tracking data to the scene video,

is done. Calibration details can be found in the eye-tracker’s manual. In order to avoid

miscalibration, subjects are asked to not move the eye-tracking glasses during the exper-

iments.

Python applications described in section 3.5.2 are used for EEG recording and stimulus

presentation. In the stimulus presentation paradigm, the start and end of the stimulation

and stimulus presentation times are timestamped and displayed on the LCD. Timestamps

are captured by the eye-tracker’s scene camera. Exact time of all timestamps are labelled

in the VOG data using Tobii Studio software and used for synchronisation of EEG data,

the stimulus presentation paradigm and eye-tracking data.

4.2.4 Synchronisation

Since EEG and VOG data are recorded at different sampling rates, using different record-

ing apparatus, we need to synchronise the recorded data. For the aim of synchronisation,

in all of the VOG-EEG experiments, a set of time stamps are displayed on the stimu-

lus presentation screen and captured by the eyetracker’s scene camera. Synchronisation is

performed in three steps. First, the scene camera recordings are visually inspected to label

the stimulation start and end as well as the events displayed on the screen. Afterwards,

VOG data between the start and end of the stimulation is up-sampled to match the EEG

sample rate with linear interpolation [100]. Finally, the shared events between VOG and

EEG recordings are identified for checking the quality of the synchronisation. Knowing

that the exact time of all the events in the stimulation paradigm are automatically times-

tamped in the EEG data, the latency difference between corresponding events in the EEG

and the VOG data can be used as a measure to investigate the synchronisation error (in

samples).
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Figure 4.4: Timing scheme of the Short Saccade experimental paradigm (Experiment1 ).

4.2.5 Experiment 1: Short Saccade

The screening paradigm in this experiment consists of nine tasks namely, fixation (class1),

short horizontal saccades to the right (class2) and the left (class3), short vertical sac-

cades to the up (class4) and the down (class5) and short diagonal saccades to the up

right(class6), the up left (class7), the down right (class8) and the down left (class9).

Each subject participated in one session. The session consists of one run including 112 rep-

etitions for the fixation task (class1) and 112 repetitions of the saccade tasks (class2−9).

This resulted in recording approximately 600s of EEG data per session.

Referring to Figure 4.4, users are presented with a black square display and there are

8 possible stimulus locations around the screen edge. Sessions start with the appearance

of a white fixation cross in the centre of the screen (t = 0). After a random time between

500ms and 900ms (t = 500 − 900ms), the stimulus is presented at one of the nine edge

locations. In the saccade trials, the fixation cross disappears at a random interval between

500ms to 900ms after stimulus presentation (t = 1000− 1800ms), which provides the cue

for subjects to make a saccade to the stimulus location. Stimuli are presented for a further

1000ms after presentation of the cue. In the fixation trials, the fixation cross remains on

the screen and the stimuli presented at the edge disappear at a random interval between
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500ms to 900ms after its presentation (t = 1000 − 1800ms). Subjects should fix their

gaze on the fixation cross while it is presented on the screen. The fixation cross remains

on the screen for a further 1000ms after its presentation.

4.2.6 Experiment 2: Long Saccade

The paradigm in this experiment is similar to the Short Saccade experimental paradigm

described in section 4.2.5; however, in this experiment fixation cross appears at one of the

8 edge locations rather than centre of the screen.

The screening paradigm in this experiment consists of nine tasks namely, fixation

(class1), long horizontal saccades to the right (class2) and the left (class3), long vertical

saccades to the up (class4) and the down (class5) and long diagonal saccades to the up

right(class6), the up left (class7), the down right (class8) and the down left (class9).

Each subject participated in one session. The session consists of a run including 112

repetitions of the fixation task (class1) and 112 repetitions of the saccade tasks (class2−

9). This resulted in recording approximately 600s of EEG data per session.

Referring to Figure 4.5, users are presented with a black square display and there are 8

possible stimulus locations around the screen edge. Sessions start with the appearance of

a white fixation cross at one of the edge locations (t = 0). After a random time between

500ms and 900ms (t = 500 − 900ms), the stimulus is presented at one of the eight

remaining edge locations. In the saccade trials, the fixation cross disappears at a random

interval between 500ms to 900ms after stimulus presentation (t = 1000−1800ms); which

provides the cue for subjects to make a saccade to the stimulus location. Stimuli are

presented for a further 1000ms after presentation of the cue. In the fixation trials, the

fixation cross remains on the screen and the stimuli presented at the edge disappear at a

random interval between 500ms to 900ms after its onset (t = 1000− 1800ms). Subjects

should fix their gaze on the fixation cross while it is presented on the screen. The fixation

cross remains on the screen for a further 1000ms after its presentation.
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Figure 4.5: Timing scheme of the Long Saccade experimental paradigm (Experiment2 ).

Figure 4.6: Timing scheme of the Fixed SSVEP experimental paradigm (Experiment3 ).

4.2.7 Experiment 3: Fixed SSVEP

This experiment consists of three tasks, attending to a visual stimulus flickering at 7Hz

(class1), 10Hz (class2) and 12Hz (class3). Each subject is participated in one screening

session. The session consists of 8 runs of 19s each and 3 classes of task. This resulted in

recording 57s of EEG data per run and 456s of EEG data per session. In this experiment

users are presented with 7Hz, 10Hz and 12Hz flickering visual stimuli. Referring to

Figure 4.6, each run starts with presentation of a fixation cross in the middle of the screen

(t = 0). Subjects are instructed to remain relaxed and fix their gaze on the fixation

cross for 5s. At time t = 5, a 10 × 10 checkerboard flickering at 7Hz, 10Hz or 12Hz

(corresponding to one of three classes, class1, class2 or class3) overlays the fixation cross

and remains still for 14s. During the presentation of the flickering stimuli subjects should

focus on them.
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Figure 4.7: Timing scheme of the Pursuit SSVEP experimental paradigm (Experiment4 ).

4.2.8 Experiment 4: Smooth Pursuit SSVEP

This experiment consists of 24 tasks, attending to visual stimuli smoothly moving towards

one of the eight locations around the screen edge each flickering at 7Hz (class1−8), 10Hz

(class9−16) and 12Hz (class17−24). Each subject participated in one screening session.

The session consists of a 19s run and 24 classes of tasks. This resulted in recording 456s

of EEG data per session.

Participants are instructed to perform the tasks illustrated in Figure 4.7: The screen

is a black square which is divided into 8 possible locations which a stimulus can move

towards. The trials start with appearance of a white fixation cross on the centre of the

screen (t = 0). After 5 seconds (t = 5), a 10 × 10 checkerboard (the stimulus) flickering

at one of the three different frequencies (7Hz, 10Hz or 12Hz) covers the fixation cross.

The stimulus moves from centre towards one of the 8 edge locations on the screen for 14s.

There are also 8 trials for flickering stimuli moving in different directions.

4.2.9 Data file description

All EEG recordings are stored in .set and .fdt formats, readable by the EEGLAB toolbox

[101]. The .fdt file contains raw EEG data and the .set file contains header files and meta-

information (e.g. sampling frequency, referencing method, event markers, etc.). Data files

can be loaded using EEGLAB which is an open-source interactive MATLAB toolbox,

available for free at http://sccn.ucsd.edu/eeglab/. VOG recordings are stored in
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MATLAB’s .mat file.

Overall, there are two files for the datasets described in Chapter 3, and three files for

the dataset described in section 4.2, per subject per experiment.

4.3 Plöchl Dataset

The Plöchl dataset was originally collected using laboratory apparatus, to identify and

characterise eye movement artefacts and remove them from EEG data. In this study,

the dataset is used for evaluation of the proposed signal processing approaches described

in Chapter 5, 6 and 7, and comparing the obtained results with the data collected using

consumer-grade apparatus (described in section 4.2). The dataset contains simultaneously

recorded EEG and VOG data, during a cue-based non-feedback (screening) paradigm. All

subjects (described in section 4.3.1) participated at least in two runs of the experiment

and the same experimental set-up is applied on all.

4.3.1 Subjects

EEG and eye movements are simultaneously recorded from 14 subjects (7 male, 7 female;

age range 20 − 31 years). The subjects have normal or corrected-to-normal vision and

have no history of neurological disorders. Informed consent is obtained from all subjects.

4.3.2 Experimental set-up

The subjects were positioned at a distance of about 60cm from a 30inch thin-film-

transistor (TFT) LEDmonitor with 60Hz vertical refresh rate. Due to the limited tracking

range of the remote eye tracker only a square region of 960 × 960 pixels in the center of

the screen was used for stimulus presentation.
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Figure 4.8: Electrode locations in the comparison dataset.

4.3.3 Apparatus

EEG was recorded using an ActiCap 64-channel active electrode system with a BrainAmp

DC amplifier(Brain Products GmbH, Gilching, Germany). 61 of the electrodes are placed

equidistantly on the scalp, in accordance with the international 10−20 system (Figure 4.8).

The other 3 electrodes are used for EOG recording; and were placed on the forehead, and

on the left and right infraorbital rim, respectively. The EEG sampling rate was 1000Hz,

and data is online band-pass filtered between 0.016Hz and 250Hz. A nose tip electrode

is used as the reference for all the electrodes.

VOG was captured with Eyelink 1000, a remote eye tracker, sampling at 500Hz (Eye-

link 1000, SR Research Ltd., Mississauga, Canada). The eye tracker system uses monoc-

ular pupil tracking to track the subject’s left eye with averaged accuracy of 0.5◦. Prior to

each recording, a 13-point grid is used to calibrate eye position.

4.3.4 Synchronisation

First, EEG data is down-sampled to 500Hz and low-pass filtered at 100Hz, in order to

match the sampling rate of VOG data. Then, EEG and VOG data are aligned using the

shared events that are simultaneously sent to both, the EEG and eye tracking system.
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Figure 4.9: Possible stimulus locations and timing schemes of the comparison dataset
[13].

4.3.5 Experimental Procedure

The screening paradigm in this experiment consists of eighteen tasks namely, fixation

(class1), ERP (class2) short horizontal saccades to the right (class3) and the left (class4),

short vertical saccades to the up (class5) and the down (class6) and short diagonal

saccades to the up right (class7), the up left (class8), the down right (class9) and the

down left (class10), long horizontal saccades to the right (class11) and the left (class12),

long vertical saccades to the up (class13) and the down (class14) and long diagonal

saccades to the up right(class15), the up left (class16), the down right (class17) and the

down left (class18). The session consists of a run including 480 repetitions of the fixation

task (class1), 480 repetitions of the ERP task (class2) and 480 repetitions of the saccade

tasks (class3 − 17). This resulted in recording approximately 3000s of VOG and EEG

data per run. All subjects performed at least two runs of the experiment.

Referring to Figure 4.9, users are presented with a black square display and there are

8 possible stimulus locations around the screen edge. Sessions start with the appearance

of a white fixation cross in the centre of the screen (t = 0). After a random time between

500ms and 800ms (t = 500 − 800ms), the stimulus is presented at one of the other

eight remaining edge locations. In the short and long saccade conditions (Figure 4.9b
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and Figure 4.9c, respectively), the fixation cross disappears at a random interval between

500ms to 1000ms after stimulus presentation (t = 1000 − 1800ms), which provides the

cue for subjects to make a saccade to the stimulus location. In the fixation condition, the

stimuli presented at the edge disappear and are replaced by the fixation cross at a random

interval between 500ms to 800ms after its presentation (t = 1000 − 1800ms). Subjects

should fix their gaze on the fixation cross while it is presented on the screen. In both

conditions, the stimulus is presented for a further 1200ms after the disappearance of the

fixation cross.

4.4 Summary

In this chapter, we introduced two matched EEG/VOG datasets. The first dataset is

collected using wearable consumer-grade apparatus, while the latter dataset is recorded

using intrusive laboratory equipment. The EEG/VOG datasets are used, to evaluate

the proposed eye movement classification, EOG artefact removal and feature extraction

methods described in the next experimental chapters of the thesis (Chapters 5, 6 and 7).
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“There is no greater wealth than

wisdom, no greater poverty than ig-

norance; no greater heritage than

culture and no greater support than

consultation.”

Ali ibn Abi Talib (PBUH)

5
Hybrid EEG-EOG Eye Tracker

5.1 Introduction

Most studies in EEG signal processing are motivated by Neuroscience and BCI rather

than eye tracking; eye movement is seen as an unwanted artefact. In this chapter, we

propose a hybrid EEG-EOG eye tracking scheme, in which Oculomuscular movements via

EOG and the brain’s response to flickering stimuli - SSVEP, are used to estimate FoA.

First, we propose a signal processing method to classify blinks and different types

of eye movements. This could be beneficial for researchers interested in human activity

recognition based on number of blinks or eye movement types occurring during different

activities. Then, the proposed method is used for saccade amplitude and eye movement
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direction classification, leading to FoA estimation. The FoA estimation is then improved

by using the brain responses to SSVEP stimuli as an additional source of information.

The dataset described in section 4.2 is used to evaluate the proposed method. The

ultimate goal of the study is to assess the feasibility of employing non-intrusive and

affordable EEG apparatus for real-life applications. Therefore, in contrast with normal

EEG and EOG studies which use laboratory grade devices, the evaluation dataset is

recorded using wearable consumer-grade apparatus. This way the feasibility of using off-

the-shelf EEG devices for human activity recognition and eye-tracking is also assessed.

Additionally, in order to prove the integrity of our method and for the aim of comparison,

the method is applied on a VOG-EEG dataset recorded using laboratory-grade devices

(dataset descried in section 4.3).

5.1.1 Related Works

Several studies have focused on employing EEG for FoA estimation and have proposed

different algorithms for EEG-based FoA estimation [102, 103, 104]. However, most of

the proposed algorithms are either computationally demanding or EEG data are recorded

using intrusive laboratory-based apparatus. Some other studies attempted to use EOG

data for eye-tracking and FoA estimation. In the most recent study, [105] exploited the

nonlinearity of EOG and estimated absolute eye angle with an error less than 4◦. Also,

[7] used a SVM classifier to classify saccade, fixation and blinks with an average precision

of 76.1%. Although EOG is a simple method for FoA estimation, it performed well in

FoA estimation. Like EEG, it is intrusive and limits the visual field due to the electrodes

placed around the eyes. Typically, EOG users feel discomfort.

There is much research stating that simultaneous use of EEG and EOG is not viable,

especially in EEG researches, where EOG is seen as an unwanted source of artifacts that

must be removed from the data. However, recently, [106] proposed an algorithm to extract

EOG information from EEG data (recorded by laboratory apparatus) for classification of

eye movements in four directions and obtained an average accuracy of 64%. In a more
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recent study, [107] used a laboratory-based EEG apparatus with only two electrodes and

achieved an average accuracy of 85.20% for classification of eye movements in five different

directions.

The combined use of EEG and EOG has also gained interest in the research community,

and some research has attempted to use EOG artefacts as an extra source of information

to improve the performance of EEG paradigms [108, 109]. For example, in the most

recent study, [109] proposed a hybrid EEG/EOG approach in which the eye movements

detected using EOG (recorded using facial electrodes) are used along with ERP data

extracted from EEG, for robot control. Also, [108] used the combination of EOG and EEG

activity for asynchronous control of a wheelchair. All the described studies used methods

that were intrusive and recorded data using laboratory-grade equipment or achieved low

performance in eye-movement detection.

5.2 Methodology

A signal processing method for eye tracking based on the EEG integrated EOG infor-

mation and detection of SSVEP responses is proposed. The proposed method is used

to:

• Classify different types of eye movements- saccade, smooth pursuit and fixation.

• Classify direction and amplitude of eye movements, in case of saccade and smooth

pursuit.

• Estimate the eye position in relation to the visual field from the SSVEP response

detection and apriori knowledge of the positions of stimuli in the visual field.

Figure 5.1 illustrates the overall architecture of the proposed signal processing method.

Input to the processing chain are the 14 channel EEG signal (including timestamps of all

events) and the VOG signal capturing vertical and horizontal coordinates of the eyes.
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Figure 5.1: Architecture of the proposed eye movement classification and focus of foveal
attention estimation system.
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In the first step, as a preprocessing step, the 14 channel EEG data are filtered in order

to remove the undesired frequency ranges and high frequency noise. In the next step, a

set of features are extracted to classify blinks and three different types of eye movements

from the processed data: saccade, smooth pursuit and fixation. Then, the amplitude and

direction of the eye movements are classified. In parallel to eye movement classification,

a SSVEP classification procedure is performed to find out whether a subject is attending

to a flickering stimulus or not. In the last stage, the FoA is detected based on the results

obtained in the directional eye movement classification and SSVEP classification results.

The results are then evaluated using a Ground Truth generated from timestamped events

within the EEG data and optical information from the VOG data.

5.2.1 Blink and Eye Movement Classification

Blink and eye movement classification consists of multiple steps; noise removal, feature

extraction and classification. Details of each step are described in the following.

Noise Removal

EOG data (integrated with EEG) may be contaminated with noise originated from differ-

ent sources, such as the power line noise, DC drift, electrode displacement, etc. Existing

noises in the recordings, may spoil the eye movement analysis, thus it is crucial to remove

noise from eye movement data.

In order to classify the eye movements, the EOG characteristics such as steepness of

signal edges and signal amplitude, should be preserved after noise removal. Additionally,

the de-noising filters should not introduce additional noise that may be misinterpreted

as different types of eye movements. In order to identify optimum noise removal filters,

a moving average filter and a median filter [7] are applied on the data and results are

compared by visual inspection.

Figure 5.2 illustrates a comparison between the raw and filtered EEG signal during

blinking, when median and moving average filters are applied for de-noising. Based on
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the comparison, the median and moving average filters successfully preserved the signal

amplitude and removed noise at the same time. A similar result is obtained for preserving

the edge steepness of the signal (see Figure 5.2b). Comparing the two filters, both of them

successfully removed noise and preserved eye movement characteristics at the same time;

however, a smoother signal is obtained when the median filter is applied. Most of the small

fluctuations which are removed using the median filter are actually micro-saccades. As it

was described in Chapter 4, the employed VOG device is unable to record micro-saccades

due to its low sampling frequency. Therefore, in this research we do no take into account

the micro-saccades, and median filter is selected as the optimum filter. This confirmed the

results obtained by [7] in which the median filter is selected as the optimum EOG noise

removal filter. The choice of median filter’s window size is really important, due to the

fact that a very large window size could remove pulses such as blinks, of a width smaller

than about half of the window size; and very short window sizes might not effectively

remove noise from the signal. The window size of the median filter is empirically obtained

and is set to 100ms, which is large enough to preserve blink pulses [110].

Feature Extraction

Features are extracted from each of the cleaned EEG channels. To extract features,

each channel is epoched into 400ms temporal windows with 50% overlap. The window

and overlap size are empirically optimised based on the knowledge about duration of eye

movements (described in section 2.2.1) and the empirical results obtained in the pilot

study (described in section 3.9). Four features are extracted per window per channel- the

mean, variance, maximum amplitude and minimum amplitude. All the extracted features

are concatenated at the end. In total, 56 features (i.e. 4 features × 14 channels) are

extracted from each temporal window.
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(a) Blink signal

(b) Saccade Signal

Figure 5.2: Comparing performance of different filter types in removing noise while pre-
serving different eye movement characteristics for (a) blink and (b) saccade.

Classification

For feature classification, a K-Nearest neighbour (kNN) classifier with Euclidean distance

metric is employed. The value of k is set to 1 (i.e. 1-NN). The eye movement classification

procedure consists of multiple stages. In the first stage, 4 separate classifiers are trained

to distinguish blink from non-blink, fixations from non-fixation, saccade from non-saccade

and smooth pursuit from non-smooth pursuit. In the next stage, the feature instances

classified as saccades are inputted to two other classifiers for classification of amplitude

and direction of saccadal eye movements. In Parallel, the feature instances classified as

smooth pursuit are inputted to another classifier, to classify direction of smooth pursuit

eye movements.
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The classifiers in the first stage might not perfectly classify all instances, consequently,

there is a possibility that the inputs to the classifiers used for eye movement direction

and saccade amplitude classification might not be the correct saccade or smooth pursuit

eye movements at all. Therefore, for the aim of comparison, 4 other classifiers are trained

to classify saccade amplitude and direction of smooth pursuit, short saccade and long

saccade eye movements.

5.2.2 SSVEP Frequency Classification and Stimuli Detection

The SSVEP classification process is similar to the one described in section 3.6. However,

here the stimuli flicker at three different frequencies.

Preprocessing

EEG channels are band-pass filtered (1 –30Hz) to remove slow drift and high-frequency

noise (e.g. mains hum and EMG artefacts), which contaminate the EEG data.

Feature Extraction

Features are extracted from each of the preprocessed EEG channels. To extract features,

each channel is split into 2000ms temporal windows with 90% overlap. The window

and overlap size is selected based on the results obtained in section 3.8. Based on the

stimulation paradigm, 2 features per stimulus are extracted per channel - the spectral

power at the stimuli frequencies (typically either 7Hz, 10Hz or 12Hz) and the second

harmonics. The Power Spectral Density is estimated using Welch’s method [111]. The

extracted features from all channels are concatenated at the end to generate 84 features.

Classification

In order to detect whether subjects are attending to an SSVEP stimulus, the following

SSVEP detection procedure is performed. First, 1 − NN classifier with a Euclidean

distance metric is employed for SSVEP classification. The flickering frequencies of stimuli
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are classified into 4 classes- 7Hz (C7Hz), 10Hz (C10Hz), 12Hz (C12Hz) and fixation or

0Hz (C0Hz) . Then, if a feature instance, f is classified as belonging to fixation class,

C0Hz, the output of the SSVEP detector, SSV EPStim, is set to 0 (no SSVEP stimulation),

otherwise, there is SSVEP stimulation, and the output of the SSVEP detector is set to 1.

SSV EPStim =


0 if f belongs to class C0Hz

1 otherwise
(5.1)

5.2.3 Hybrid SSVEP-EOG for FoA estimation

The SSVEP response detection and apriori knowledge of the position of flickering stimuli

in the visual field are used as extra information to improve the classification of directional

pursuit eye movements, providing an estimation of the eye position in relation to the

visual field. To this aim, first SSVEP detection is performed. Then, the SSVEP detection

results are used as a new feature (with values 0 and 1) and is concatenated to the eye

movement feature vectors. If the value of the new feature is 0 it implies that there is no

smooth pursuit, and if the value is 1 it implies that there is smooth pursuit eye movement.

The new feature vectors are input to a 1-NN classifier for gaze estimation.

5.3 Evaluation

With the aim of evaluation, the proposed system is applied on a matched VOG-EEG

dataset captured during a screening paradigm. The system’s classification output is com-

pared to the Ground Truth (as described in section 5.3.3); and performance of the system

is assessed using the True Positive Rate, True Negative Rate, Balanced Accuracy and

Root Mean Square Error.
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Table 5.1: Application of the data recorded in each experiment, for saccade, fixation,
blink, smooth pursuit and FoA classification.

Experiment Blink Fixation Smooth
Pursuit Saccade Saccade

Amplitude

Eye
Movement
Direction

SSVEP

Exp.1 x x – x x x –
Exp.2 x x – x x x –
Exp.3 x x – – – – x
Exp.4 x x x – – x x

5.3.1 Data description

The matched VOG-EEG dataset described in section 4.2 is used. The dataset contains

data recorded during four experiments. In the first two experiments subjects are asked to

perform short and long saccadal eye movements; and in the next two experiments subjects

are asked to attend to flickering stimuli that are fixed on the screen, or move in different

directions.

Table 5.1 shows what is the usage of data recorded during each experiment. As is

illustrated in the table, fixation and blink classification is performed using the data from

all experiments. The data captured in experiments 1 and 2 are used to classify the saccadal

eye movements and amplitude of the saccade.

The data captured during experiments 1, 2 and 4 are used for classification of di-

rection of the eye movements. Smooth pursuit eye movements are classified using the

data captured during experiment 4. SSVEP frequency classification and stimulus detec-

tion is performed on the data captured in experiments 3 and 4. The dataset includes

matched VOG-EEG recorded from 7 subjects. However, the VOG data of 2 subjects is

not useful due to the large amount of missing data and large gaps in the VOG recording.

Consequently, the data collected from these 2 subjects are not considered in this study.
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5.3.2 Comparison Dataset - Plöchl

To evaluate the generalisability of the proposed blink and eye movement type and eye

movement direction classification method over different datasets, the signal processing

method wa applied to a comparison VOG-EEG dataset, recorded by laboratory equip-

ment. Details of the dataset and experimental paradigm can be found in section 4.3. The

dataset is used to classify blink, fixation, saccade, saccade amplitude and eye movement

directions.

5.3.3 Ground Truth

In order to evaluate the performance of the proposed blink and eye movement classification

system, a ground truth is needed. The system’s classification output is compared to the

labeled blinks and eye movements.

Eye movement labeling

All the eye movement events except blinks (i.e. saccade, fixation, smooth pursuit, direction

of eye movements and saccade amplitude), are automatically timestamped in the recorded

data, using the Python based stimulation paradigm described in section 3.5.2.

Blink labeling

Because the blinks occur involuntarily in the data, it is not possible to label the blink

events using the stimulation paradigm. It is known that when blink occur, the optical

eye-tracker cannot identify eyes, and gaps occur in the VOG data due to missing data

samples. It is also known that, average blink duration varies between 100 and 400ms (see

section 2.2.1). Therefore, the gaps in the VOG data which last between 100 to 400ms are

labeled as blink events.

Figure 5.3 shows the histogram of the detected blinks’ durations. The histogram

shows that blink durations have a near-uniform distribution. However, the duration of
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Figure 5.3: Distribution of the detected blink’s duration.

most blinks is between 125ms to 375ms; and less blinks lasted about 400ms.

5.3.4 Performance measures

By matching system’s classified blink and eye movement events with the annotated ground

truth, true positives (TPs), false positives(FPs), true negatives (TNs) and false negatives

(FNs) are calculated. Therefore, because the number of instances in all of the classes are

not necessarily equal (e.g. number of blink is not known and may not be equal to non-

blinks), Balanced Accuracy (BA), which is the average of True Positive Rate (TPR) and

True Negative Rate (TNR), and is unaffected by imbalanced classes [112], is calculated.

BA = (TPR + TNR)
2 (5.2)

where,

TPR = TP

TP + FN
(5.3)

TNR = TN

TN + FP
(5.4)
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The BA of the blink and different eye movement types are calculated separately; for each

subject. The BA of the proposed system for classification of blink and all other eye move-

ment types is obtained by averaging BA over all subjects. Additionally, performance of eye

movement direction classification is assessed by the Root Mean Square Error (RMSE) of

the difference between the detected angle and the real angle associated with the stimuli’s

position:

RMSE =

√√√√ 1
N

N∑
t=1

(θt − θ̂t)2 (5.5)

where N is the time length, and θt, θ̂t are the real and estimated angular position of

the stimuli at time t, respectively.

The performance of the classifiers is evaluated using a 5-fold cross-validation. The

data is divided into 5 folds, and each fold corresponds to the feature vector extracted

from data of 1 subject. There are 5 iterations in which during each iteration, the feature

vector of 4 subjects (4 folds) are taken as training data and the feature vector of the

remaining subject is taken as test data. The BA and RMSE (if applicable) are obtained

on each iteration. The system’s overall BA (and RMSE) is obtained by averaging the

obtained BA (and RMSE) over all the 5 iterations and subjects.

5.4 Results and Discussion

The obtained results for blink and eye movement classification as well as SSVEP detection

and hybrid FoA estimation are reported.

5.4.1 Blink and Eye Movement Classification

The heat-maps in Figure 5.4 illustrate the point of gaze, of a typical subject, corresponding

to VOG data recorded during different experiments. Table 5.2 summarises the results

obtained for blink and eye movement type classification. The average balanced accuracy

of the classifiers, and the corresponding experimental data, for blink, fixation, smooth
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(a) Experiment1:
short saccade

(b) Experiment2:
long saccade

(c) Experiment3:
fixed SSVEP

(d) Experiment4:
smooth pursuit SSVEP

Figure 5.4: Point of gaze of a typical subject during a) short saccade, b) long saccade,
c) fixed SSVEP and d) smooth pursuit SSVEP experiments, obtained from VOG data
recorded by an optical eye tracker. The details of each experiment are described in
section 4.2.

pursuit and saccade classification, are reported. Because each experimental paradigm is

designed for classification of certain types of eye movements, classification of some eye

movement types are not applicable using all of the experimental data. Despite the fact

that fixation and blink are common in all experiments, and the timestamps of both events

are annotated in all of the experimental data.

Table 5.2: Obtained BA for Blink and eye movement classification, using data recorded
during different experiments. Dash-line represents the cases where, using the correspond-
ing data, classification of specific types of eye movement is not applicable.

Experiment Blink (%) Fixation (%) Smooth Pursuit (%) Saccade (%)
Exp. 1 83.20 90.26 – 80.11
Exp. 2 79.01 95.70 – 85.23
Exp. 3 85.00 96.30 – –
Exp. 4 82.04 94.33 76.00 –
Average 82.31 94.14 76.00 82.67

As is evident from the results, fixation classification achieved the highest BA, 94.14%,

when compared to blink and other eye movement types. This could be due to the fact

that fixation segments have more stereotyped behavior than blink and other types of eye

movement. Additionally, according to the experimental paradigms, the training samples

for fixation classification are more than blink and other eye movement types. It can be

confirmed by looking at BA of fixation classification through different experiments. As is
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shown in the results, fixation’s BA is highest in experiment 3, where subjects are asked

to attend to a fixed SSVEP stimulus at the centre of the screen and avoid other types of

eye movements.

With 82.31% average BA, blink classification achieved approximately 12% lower BA

than fixation classification. This might be due to imperfect labeling of blink segments

in the data. Based on the sampling rate of the employed optical eye tracker and as is

mentioned in the eye tracker’s manual, some of rapid and large saccades might not be

captured by the eye tracker, resulting in missing points (gaps) in the VOG data. The

resulting gaps might be misinterpreted as blinks, and degrade the quality of blink ground

truth. This can be confirmed by the obtained BA of blink classification, which is the

worst in experiment 2 (79.01%), where subjects are asked to perform large saccades.

The average BA of saccade classification (82.67%) is similar to blink classification

(82.31%). Based on the experimental paradigms, saccade classification is only evaluated

using the data captured in experiments 1 and 2. As is shown in the results (Table 5.2),

saccade classification is highest in experiment 2 (approximately 85%), where subjects

perform large saccades, and it is worst in experiment 1 (approximately 80%), where

subjects perform short saccades. This is due to the fact that, large saccades have larger

amplitudes and are more distinguishable, from other types of eye movements, than short

saccades.

Smooth pursuit classification is only evaluated using data captured in experiment

4. Between all eye movement types, smooth pursuit achieved the worst BA (76%). By

looking at the predicted labels of the classifier, it is found that low BA of smooth pursuit

classification might be due to miss-classification of short saccades as smooth pursuit. This

suggests that, using the selected features, smooth pursuit is less distinguishable from short

saccades.

Table 5.3 shows the results obtained for classification of saccade amplitude. The results

shows, how accurate the system discriminates large saccades from short saccades. The

result presents the BA of saccade amplitude classifier, when it is applied on the output
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feature instances of saccade classification (discriminating saccades from non-saccades),

and when it is applied on the concatenated feature instances extracted from short and

large saccade experiment data (experiments 1 and 2, respectively). As is shown in the

results, the amplitude of saccades can be classified with 95.22% BA, when saccade classifi-

cation is not performed beforehand. However, the BA of saccade amplitude classification

decreases by approximately 22% when it is applied on the data labeled as saccade using

saccade classifier. According to the results, when saccade classification is applied before-

hand, the BA of large saccade classification in experiment 2 (BA= 73.50%), is 2% higher

than short saccade classification in experiment 1. Therefore, if saccade amplitude clas-

sification is applied on the output of saccade classifier, using both data in experiment 1

and 2, the average BA of saccade classification is 72.41%. Imperfect saccade classification

resulted in misclassification of some non-saccade instances as saccades; consequently, the

saccade amplitude classifier misclassified some non-saccade instances as either short or

long saccades.

The obtained results of eye movement direction classification are presented in Ta-

ble 5.4. The BA and RMSE of eye movement direction classification are reported. Re-

sults are compared when eye movement direction classification is applied on the feature

instances previously classified as smooth pursuit or saccade, and when it is applied on

the unlabeled feature instances. The results show that the highest BA and lowest RMSE

are obtained for direction classification of smooth pursuit eye movements from unlabeled

Table 5.3: Saccade amplitude classification result, when it is applied directly on the data
(Before Saccade Classification) or it is applied on the saccade instances obtained using
saccade classification (After Saccade Classification).

Saccade Amplitude Classification
Experiment Before Saccade

Classification
After Saccade
Classification

Exp.1 71.33 %
Exp.2

95.22 %
73.50 %

Average 95.22 % 72.41 %
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data in experiment 4 (BA=81.64% and RMSE=11.51◦). The performance is decreased by

almost 10% when feature instances classified as smooth pursuit are used for eye movement

direction classification. Eye movement direction classification for short and large saccades

achieved similar results (approximately BA=74% and RMSE=19◦), when unlabeled data

is used. The result is degraded by almost 4% when feature instances labeled as saccade

or smooth pursuit are used for eye movement classification. Similar to saccade ampli-

tude classification, the eye movement direction classification is degraded due to imperfect

saccade and smooth pursuit classification.

5.4.2 SSVEP Frequency Classification and Stimulus Detection

Table 5.5 summarises the results obtained for SSVEP frequency classification and stimulus

detection during fixations and smooth pursuits (experiments 3 and 4, respectively). The

BA of the classifiers are reported. Results suggests that the SSVEP response during

smooth pursuit movements is no harder to detect than fixations despite the potential

for more EEG signal contamination due to eye-related artefacts. Surprisingly, the result

shows that SSVEP frequency classification and stimulus detection increased by almost 3%

and 1%, respectively; during smooth pursuit (Exp. 4). The lower performance obtained

for fixed SSVEP might be due to habituation effects (see section 6.5.3 for more details).

Table 5.4: Eye movement classification result, when it is applied directly on the data (Be-
fore Saccade and Smooth Pursuit Classification) or it is applied on the classified saccade
or smooth pursuit instances (After Saccade and Smooth Pursuit Classification).

Eye Movement Direction Classification
Before Saccade and
Smooth Pursuit
Classification

After Saccade and
Smooth Pursuit
Classification

Experiment

RMSE(◦) BA(%) RMSE(◦) BA(%)
Exp. 1 19.02 73.84 23.80 69.73
Exp. 2 19.30 73.45 24.51 68.07
Exp. 4 11.51 81.64 20.61 72.00
Average 16.61 76.31 22.97 69.93
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Table 5.5: SSVEP frequency classification and stimulus detection results.

Experiment
SSVEP Frequency

Classification
SSVEP Stimulus

Detection
Exp. 3 83.87 % 91.38 %
Exp. 4 86.59 % 92.27 %
Average 82.23 % 91.82 %

Table 5.6: FoA estimation results, when SSVEP response detection is present (SSVEP
Present) and when it is not present (No SSVEP).

FoA Estimation
No SSVEP SSVEP PresentExperiment

RMSE (◦) BA (%) RMSE (◦) BA (%)
Exp. 4 11.51 81.64 10.87 84.00

Overall, on average BA of SSVEP frequency classification is 82.23% and BA of detecting

whether subjects are attending on SSVEP stimuli or not, is approximately %6 higher

(BA=91.82). The better performance on SSVEP stimulus detection is due to the fact

that there are fewer classes (2 classes) for SSVEP stimulus detection than for SSVEP

frequency classification (4 classes).

5.4.3 Hybrid SSVEP-EOG for FoA estimation

The result of using SSVEP as an extra source of information to improve eye movement

direction classification is reported in Table 5.6. Results demonstrate that the presence of

the SSVEP in the visual field not only does not hinder the classification of smooth pursuit

direction classification, but it also significantly (p-value=0.04) improves classification of

BA by almost 3% and reduces RMSE to 10.87◦. Overall, the BA of eye movement direction

classification is the best (i.e. 84.00%) with the least RMSE (i.e. 10.87◦), when both

SSVEP detection and EOG features are used for direction classification.
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Figure 5.5: The balanced accuracy of blink (C1), fixation (C2), saccade (C3), saccade
amplitude before performing saccade classification (C4) and saccade amplitude after per-
forming saccade classification (C5); when data is collected using consumer apparatus
(green bars) compared to data collected using laboratory apparatus (gray bars). The
error bars represent standard errors.

(a) Balanced Accuracy (b) Root Mean Square Error

Figure 5.6: (a) Balanced accuracy and (b) RMSE, of the eye movement direction classifi-
cation, before performing saccade classification (C6) and after performing saccade classi-
fication (C7); when data is collected using consumer apparatus (green bars) compared to
data collected using laboratory apparatus (gray bars). The error bars represent standard
errors.

5.4.4 Comparison Dataset - Plöchl

Figure 5.5 and 5.6 show the obtained results for blink, fixation, saccade, saccade ampli-

tude and eye movement direction classifications, when our proposed method is applied on

the data collected using laboratory based equipments (comparison dataset). The results

are compared with the results obtained in section 5.4.1, where consumer-grade equipment
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is used.

Results show the performance of all the classification tasks improved, with similar

trend to previous results, when the comparison dataset is employed. Although, when

t-test is performed, the improvement is only statistically significant (p-value=0.04) for

the blink classification. According to Figure 5.5, blink classification increased by 4%, to

86.26%. The highest and the lowest obtained BA are achieved for classification of saccade

amplitude, when saccade classification is not performed (BA=95.34%) and when saccade

classification is performed (BA=74.98%) prior to amplitude classification, respectively.

Figure 5.6 shows the results obtained for eye movement direction classification (i.e.

FoA estimation), in terms of BA and RMSE. According to the results, although using the

comparison dataset, the BA of the system is not significantly improved for FoA estimation,

the RMSE is significantly (p-value=0.04) improved (by approximately 3◦) when saccade

classification is performed prior to FoA estimation.

5.5 Summary

A signal processing scheme for extracting eye tracking data from wireless portable scalp-

based EEG has been proposed and explored in this chapter. Classification results demon-

strate reasonable performance of the proposed system to classify blink and different types

of eye movements, as well as FoA estimation. The blink and eye movement classification

can be used for human activity recognition and eye tracking applications. The result

also demonstrate improved FoA estimation performance when SSVEP response detection

is used along with eye movement direction classification. Consequently, FoA estimation

might further improved, by improving SSVEP response detection. Additionally, the in-

tegrity and generalisability of the proposed signal processing method is shown by applying

the method on a comparison dataset collected using laboratory-grade equipments.
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“Do not expect goodwill from some-

one whom you regard with ill will;

as his heart towards you is the same

as your heart towards him.”

Ali al-Hadi (PBUH)

6
Perfomance Improvement by VOG-based

EOG Artefact Removal

6.1 Introduction

In the previous chapter, it is demonstrated how SSVEP detection can be used along eye

movement direction classification to improve FoA estimation. Therefore, it is suggested

that improving performance of SSVEP detection might lead to improved FoA estimation.

Blinking and eye movements are the prevalent artefacts that contaminate EEG signals,

leading to less accurate SSVEP detection. In addition to the artefacts, when users are

exposed to prolonged flashing stimuli there is a gradual decrement in their SSVEP response
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and thus SSVEP detection - an effect known as habituation [14].

In the current chapter, we combine the problem of reliably detecting SSVEP for moving

stimuli with that of eye movement artefact removal for robust field BCI. Moving stimuli

will elicit eye movement artefacts - specifically slow moving ‘pursuit’ eye movement which

can degrade SSVEP detection accuracy. However, moving stimuli can avoid the issue of

habituation which can improve SSVEP detection accuracy.

ICA has been successfully applied on EEG data to separate blink and eye movement

artefacts from other sources of activity [11]. Although ICA can estimate independent

sources, it does not label them. In this chapter we proposed ’BVOG-ICA’- an automatic

EOG artefact removal algorithm based on ICA that uses VOG information from an eye-

tracker.

The proposed artefact removal method is evaluated using a matched VOG-EEG dataset

designed specifically to elicit EOG artefacts arising from pursuit eye movements, fixations

and saccades.

The datasets described in section 4.2 and 4.3 are used to evaluate the proposed

method. The results are compared with the state-of-art artefact rejection method pro-

posed by Plöchl et al [13] (named Plöchl).

6.1.1 Related Work

As was mentioned in section 2.5.1, most automatic IC labeling methods rely on the fre-

quential, temporal and spatial characteristic of the artefacts. Most of these methods were

successful in removing artefacts with distinct spectral or statistical properties. However,

there is no distinct properties for eye movement artefacts, specially in case of small sac-

cades or smooth pursuit eye movements. Different types of eye movements have their

specific statistical and spectral properties. Additionally, eye movement artefacts may be

distributed into multiple ICs. Most of the proposed eye-related artefact removal methods

can only detect blink and vertical and horizontal saccades, and consider only one IC for

each type of eye-related artefact. Additionally, they can only perform well when the arte-
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Figure 6.1: Block diagram of the proposed ICA-based artefact removal method.

facts are strongly presented in the data. To solve this problem most recently [13] and

[113] considered using optical eye tracking information for handling eye-related artefacts.

[113] used optical eye tracking information to detect ERP trials containing EOG artefacts,

and exclude them from analysis. This way a large amount of data is lost. However, [13]

used eye tracking information to label the artefacts arising from saccades. According to

[13], first the saccade and fixation events are detected in the eye tracking data, then the

ICs that their mean variance in the saccade durations is 10% larger than their fixation

durations, are taken as eye-related artefact. Their method is not properly evaluated and

have three major draw backs. First, the method is highly dependent on accuracy of de-

tecting saccade events in the eye tracking data. Secondly, their method can only detect

saccade artefacts. Finally, they used a fixed threshold, which limits the generalisation of

the method over other datasets.

6.2 Methodology

The block diagram of the proposed method is depicted in Figure 6.1. Different steps of

the proposed method for EOG artefact removal and SSVEP response classification are

shown. Input to the processing chain are the EEG and VOG signals. In the first step

ICA is applied to decompose the EEG data into independent sources, corresponding to

artefacts and non-artefacts. Then, optical information form VOG are used to detect and
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remove sources corresponding to blink and eye movements. In the next steps, clean EEG

data is reconstructed from remaining sources and is used to extract SSVEP features for

SSVEP frequency classification. Finally, the presence of SSVEP stimuli is detected via

the SSVEP frequency classification results.

Additionally, the habituation effect is investigated by comparing the performance of

SSVEP classification when users are exposed to fixed SSVEP stimuli with when they are

exposed to moving SSVEP stimuli.

6.2.1 EOG Artefact Identification based on VOG-enhanced ICA

The Extended-Infomax ICA algorithm is employed to separate EOG sources from non-

EOG sources (i.e. other EEG activity). According to the ICA assumptions, the N dimen-

sional observed scalp EEG signal E(t) = [e1(t) e2(t) · · · eN(t)] is a linear combination

of independent sources. The independent sources can be originated from cerebral or

non-cerebral origins. Here, we divided the independent sources into two parts, sources

corresponding to EOG artefact SEOG(t) and all other sources (including cerebral and

non-cerebral sources), SnEOG(t). Therefore, according to Equation 2.5, the observed EEG

signal of the channels E(t), can be expressed as follows:

E(t) = [AEOG AnEOG]N,N

 SEOG(t)

SnEOG(t)

 (6.1)

where AEOG and AnEOG are the corresponding mixing matrices for SEOG(t) and SnEOG(t),

respectively. Thus, if there are k number of EOG artefact sources, the observed EEG signal

for each channel ei(t) (i = 1, 2, · · · , N) can be expressed as a linear combination of EOG
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artefact sources and other activity sources as follows:



e1(t)

e2(t)
...

eN(t)


=



EOG artefactual sources︷ ︸︸ ︷
a1,1 s1(t) + · · ·+ a1,k sk(t) +

other activity sources︷ ︸︸ ︷
a1,k+1 sk+1(t) + · · ·+ a1,N sN(t)

a2,1 s1(t) + · · ·+ a2,k sk(t) + a2,k+1 sk+1(t) + · · ·+ a2,N sN(t)
...

aN,1 s1(t) + · · ·+ aN,k sk(t) + aN,k+1 sk+1(t) + · · ·+ aN,N sN(t)


(6.2)

Considering the limitation of ICA algorithm in separating EOG sources in the case of

small and rare eye movements in the EEG recordings, the value of k may vary between 0,

i.e. no EOG source, to N − 1, i.e. there is at least one source other than EOG artefact.

Eye Movement Source Detection

After applying ICA and source separation, we need to detect the EOG artefact sources. In

section 2.2.2, it is discussed that horizontal and vertical eye movements can be observed

by placing a set of electrodes around the eyes. Additionally, from Chapter 5 we know that

VOG recording gives the time-variant signals x(t) and y(t) representing the horizontal

and vertical coordinates of the gaze at time t, respectively. We therefore hypothesise that

if EEG and VOG signals are recorded simultaneously, the independent sources highly

correlated with x(t) and y(t) can be assumed to be EOG artefact sources corresponding

to horizontal and vertical eye movements, respectively.

Employing the Pearson product-moment correlation coefficient (PCC) is suggested to

show the strength of correlation between the sources estimated by ICA and horizontal

and vertical gaze coordinates. The PCC is a statistical measure of the linear dependence

between two time-variant signals X and S. The PCC value ranges from −1 to +1, where

−1 indicates perfect negative correlation, 0 indicates no correlation and +1 indicates

perfect positive correlation. The formula for PCC between two time-variant signals X
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and S, ρX,S, is as follows:

ρX,S = E[(X − µX)(S − µS)]
σXσS

(6.3)

where E[...] is the expected value and σX and σS refer to the standard deviation of X

and S, respectively.

From section 2.5, we know that ICA does not guarantee the sign of its estimated

sources, and the sign of the sources may change through each run of ICA. Consequently,

it is not possible to predict whether the correlation coefficient values, between an EOG

source S and gaze positionX (or Y ), is positive or negative. Hence, obtaining the absolute

value of PCC is of interest (i.e. |ρX,S|). The greater the value of |ρX,S|, the higher the linear

relationship between X and S. According to our hypothesis we can say that, the highest

|ρX,S| and |ρY,S| values correspond to the sources with most information about horizontal

and vertical eye movements, respectively. We have to consider that our hypothesis is only

true if the EEG and VOG acquisition equipment have the same temporal resolution and

the output signals are perfectly synchronised, which is an ideal case. Even if VOG and

EEG data are acquired at the same sampling rates, since independent clocks are usually

used in each recording device, the collected data may not be perfectly synchronised and

are considered asynchronous.

Figure 6.2 shows a typical example of saccade eye movement captured by synchronised

EEG and VOG data (see section 4.2.4 for synchronisation details). Based on the EOG

data recorded in EEG, the subject performed the saccade 100ms after the presentation

of saccade cue; however, based on the VOG data, the saccade is performed 20ms later.

When checked on our data, the duration of this time lag is not consistent through subjects.

The synchronisation issue can be addressed by calculating the cross-correlation [114]

of the sources S, with x(t) and y(t). Basically, the cross-correlation of two time-variant

signals S and X, measures the correlation between the two signals as a function of time.

This is done by sliding signal S along time and calculating the integral of their dot product
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Figure 6.2: Typical example of synchronised (a) VOG and (b) EEG data, when a subject
performs a long saccade. The solid black signals in (b) are the EOG activity recorded at
channels F7 and F8 using the consumer-grade EEG device. The black, red and orange
dashed lines represent onset and end of saccade cue, EOG saccade response (recorded in
EEG) and VOG saccade response events, respectively.

at each time t.

(X ? S)(τ) def=
∫ +∞

−∞
X∗(t) S(t− τ)dt (6.4)

where X∗ is the complex conjugate of X and τ is the time lag. As mentioned earlier,

we are looking for absolute correlation, so the absolute value of the cross-correlation

is of interest. The maximum value of cross-correlation indicates the time where the

signals S and X are best correlated (aligned). In addition to solve the synchronisation

problem, the cross-correlation can be used to determine the time lag between the EEG

and VOG recordings. This may help to understand the factors which might affect the

synchronisation of two signals (e.g. between experiment or subject variations). The
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time lag between two signals τlag is determined by calculating the time which maximum

correlation happens:

τlag = arg max
t

((X ? S)(τ) (6.5)

Therefore, for EOG artefact labelling, all of the sources are scored according to the max-

imum absolute values of their cross-correlation with x(t) and y(t), independently:

γX,i = max
t

(|(Si ∗X)(τ)|) (6.6)

γY,i = max
t

(|(Si ∗ Y )(τ)|) (6.7)

where γX,i and γY,i refer to the maximum absolute values of the cross-correlation

between the ith source, Si(t), and signals X(t) and Y (t), respectively.

In order to generalise our method on different types of datasets collected from different

subjects and recording apparatus, and to eliminate the scaling effect, all of the obtained

scores are normalised. For normalisation, Z-scores (normal scores) of γX,i and γY,i for each

source are calculated as follows:

ZγX,i = γX,i − E[γX,i]
σ(γX,i)

(6.8)

ZγY,i = γY,i − E[γY,i]
σ(γY,i)

(6.9)

where E[...] and σ(...) refer to the expected value and standard deviation of γX,i (and

γY,i), respectively. The Z-score of a source indicates the distance (deviation) of that

source from the distribution mean of all the sources. If score values of the sources are

normally distributed, approximately 95% of the sources should have Z-scores between −2

and +2 (i.e. −2 and +2 standard deviations away from the distribution mean) (see Figure

6.3). If the Z-score of a source does not fall within this range, it means that score of that
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Figure 6.3: Visualisation of z-scores and standard-deviations in a normal distribution.
Almost 95% of datum population lies between the red solid lines (the green area), corre-
sponding to the z-scores=±2.

source is significantly away from the mean and that source may have a less typical pattern

than other sources. Considering our hypothesis it means, sources with Z-scores above the

threshold, ZγX,i = 2.0 or ZγY,i = 2.0, are highly correlated with eye movements and are

detected as EOG artefacts. As we are only calculating the absolute values of maximum

cross-correlation, there could not be a negative Z-score less than −2.0.

Gap Fill in

In VOG recordings, occurrence of data loss is unavoidable and usually some data samples

cannot be collected. The data loss often occurs when eye-trackers cannot identify eyes

mainly due to blinking or looking away so that the eye-trackers’ scene of the eyes is

obscured. Data loss in eye tracking usually results in gaps of hundred milliseconds or

more in the VOG data. Therefore, prior to eye movement source detection, employing a

gap fill algorithm is needed. Interpolation is performed as a gap fill algorithm to cover

segments of lost data. During the interpolation, the average of the last value prior to the

gap and the first value after the gap are calculated and substituted as the first lost value

in the gap, for x and y coordinates. The procedure is continued forward until the last

missing value is substituted and the gap is filled.
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6.2.2 Blink Source Detection

Similar to the section 5.3.3, we exploited the gaps in the VOG data and derived a third

signal b(t), representing occurrence of the blink at time t. The blink trigger signal b(t)

is derived so that, the times when gaps, lasting between 100 to 400ms, occurred in the

VOG data, they are substituted with a large value (i.e. Blink −On) and all other times

are substituted with zero (i.e. Blink −Off).

Similar to eye movement source detection (section 6.2.1), ICs are scored according

to the maximum absolute values of their cross-correlation with b(t), and Z-Scores of the

obtained score by the sources are calculated. ICs with Z-scores above the threshold,

Zγb,i = 2.0, are highly correlated with eye blinks and are detected as blink artefactual

sources.

6.2.3 EOG Artefact Removal

All of the detected eye movement and blink artefacts are removed by making the weight

of the detected sources equal to zero, AEOG = 0k,k, where k is the number of sources

detected as EOG artefacts. The cleaned EEG signals E ′(t) is reconstructed as follow:

E
′(t) = [0k,k WnEOG]N,N

 SEOG(t)

SnEOG(t)

 (6.10)

Thus, according to equation 6.2, each cleaned EEG channel e′
i(t) can be expressed as

follow:

e
′

i(t) = 0 s1(t) + 0 s2(t) + · · ·+ 0 sk(t) + ai,k+1 sk+1(t) + · · ·+ ai,N−1 sN−1(t) + ai,N sN(t)

= ai,k+1 sk+1(t) + · · ·+ ai,N−1 sN−1(t) + ai,N sN(t)

(6.11)
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6.2.4 Improved FoA estimation

In section 5.2.3 we described how SSVEP response detection (derived from SSVEP clas-

sification) is used as an extra source of information to improve classification of directional

pursuit eye movements. The same method is applied here for classification of directional

pursuit eye movements, however this time, prior to SSVEP classification (and detection),

the proposed EOG artefact removal method is applied to improve accuracy of SSVEP

detection.

6.2.5 Habituation

In order to investigate the effect of user habituation on the SSVEP responses, the am-

plitude of the SSVEP response during SSVEP stimulation is observed. The SSVEP am-

plitude variation and SSVEP frequency classification are performed when subjects are

exposed to a fixed or moving flickering stimulus and results are compared.

6.3 Evaluation

In order to evaluate the proposed IC labeling and artefact removal system, it is applied

on a matched VOG-EEG dataset, recorded during two SSVEP stimulation paradigms.

IC labeling is validated using a ground truth, manually generated by visual inspection.

Then, the system’s SSVEP classification output is compared to the annotated events,

and performance of the system is assessed using balanced accuracy. Additionally, for

benchmarking, the proposed method is applied on the dataset introduced by [13]. Because

the benchmarking dataset is recorded during an Event Relate-Potential paradigm, the

accuracy of ERP classification is used to assess quality of the proposed artefact removal

method. For comparison, the state-of-art artefact removal method, Plochl [13], is applied

on both datasets and results are compared with our method.
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6.3.1 The Dataset

To evaluate the VOG-ICA signal processing for EOG artefact removal, the proposed

method is applied on two matched VOG-EEG datasets (introduced in Chapter 4) col-

lected during different SSVEP experimental paradigms. In one of the experiments, sub-

jects are asked to attend on a fixed stimulus on the screen, while in the other experiment

subjects are intentionally prompt to generate pursuit eye movements, by following a mov-

ing stimulus. The stimulus in both of the experiments flickers at 7Hz, 10Hz and 12Hz.

Experiments are designed to investigate the effect of eye movements on SSVEP response

detection accuracy and to evaluate performance of the proposed artefact removal method

based on the improvements in SSVEP detection accuracy. The same data is used for

exploring the habituation effect.

6.3.2 IC Labeling Validation

In order to validate the ICs labeled as EOG artefacts, and to evaluate the performance

of the proposed IC classification system, a ground truth is generated. All of the ICs

are visually inspected and sources corresponding to EOG artefacts are manually labeled.

Visual inspection is performed by one expert, based on the ICs time series, scalp map and

power spectral density.

6.3.3 SSVEP Detection

The method described in section 5.2.2 is used to classify SSVEP stimulus frequencies and

detect presence of the SSVEP stimulus. EEG channels are bandpass filtered to remove

slow drifts and high frequency noise. The spectral power at the stimulus frequencies and

their second harmonics are extracted from 2000ms temporal windows with 90% overlap,

as features. A 1-NN classifier is employed for SSVEP feature classification. Finally, the

feature instances classified as non-fixation are considered as SSVEP instances.
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Figure 6.4: Illustration of the segments where extracted feature instances are labeled as
ERP and no-ERP.

6.4 Comparison Dataset - Plöchl

In order to evaluate generalisability of the proposed BVOG-ICA over different dataset,

recorded during different EEG paradigms, the proposed EOG source detection method

is also applied on the dataset described in section 4.3. The dataset contains matched

VOG-EEG data recorded during an ERP stimulation paradigm. Therefore, accuracy of

ERP classification, before and after cleaning the EEG, is used to evaluate performance of

the proposed artefact removal method in reconstructing artefact free EEG. The proposed

method is then compared to the state-of-art Plöchl [13].

6.4.1 Event-Related Potential Classification

The single trial ERP detection method proposed by [56], is utilised to evaluate per-

formance of the proposed system to remove eye-related artefacts. [13] showed in the

captured dataset, strongest ERP responses are observed over occipital electrode sites. In

order to avoid the curse of dimensionality, we used only 7 EEG channels placed over occip-

ital sites for ERP analysis. First, eye-related artefacts are removed using our method and

the method proposed by [13]; and cleaned EEG is reconstructed. Then, the cleaned EEG
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Figure 6.5: Sample processed VOG data where missing values in (a) are substituted using
interpolation; (b) shows the interpolated VOG data and the blink trigger signal derived
from the missing values.

data is band-pass filtered (0.1−4Hz). The time samples between 50ms to 400ms after the

stimulus, and 50ms to 400ms before stimulus onset are considered as, ERP and no-ERP

features, respectively (see Figure 6.4). To remove baseline drift, prior to feature extrac-

tion, the mean of the pre-stimulus segment (no-ERP) is subtracted from both the ERP

and no-ERP segments. In order to reduce the dimensionality of data, after selecting ERP

and noERP segments, the data samples are decimated with factor of 5 (for more details

see [56]). Feature vector is made by concatenating ERP and no-ERP samples, extracted

from each of the preselected EEG channels. In total 630 features (90samples×7channels)

are extracted. The extracted features are used to train a kNN classifier with Euclidean

distance (the value of k is set to 1). The accuracy of ERP classification, for each subject,

is obtained using a 10-fold cross validation. Therefore, all of the obtained accuracies are

averaged over all subjects, and total accuracy of the system is obtained.
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6.5 Results

Figure 6.5.b illustrates an instance where interpolation described in section 6.2.1 is per-

formed to fill the VOG gaps in Figure 6.5.a. Additionally, Figure 6.5.b depicts the blink

signal b(t), derived from 100 to 400ms gaps in the VOG data. As is shown in the fig-

ure, the employed gap filling method avoided the occurrence of manipulated saccades by

providing a smooth transition between the last data sample before the start of a gap

and the first data sample after the end of that gap. Fig. 6.6 shows the distribution of the

Figure 6.6: Distribution of the Z-Score values obtained by cross-correlation of each single
IC with b(t), x(t) and y(t). Scores belong to all subjects in (a) the Fixed SSVEP and (b)
the Smooth Pursuit SSVEP experiments. Red lines indicate the selected threshold (Zγb,i

,Zγx,i or Zγy,i = 2.0)..

blink, horizontal and vertical eye movement Z-Scores of ICs of all subjects in fixed SSVEP

(Fig. 6.6.a) and smooth pursuit SSVEP (Fig. 6.6.b). The ICs with Z-Scores higher than

2.0 are considered as EOG artefacts. As is shown in the figure, in the smooth pursuit

SSVEP where there are intentional eye movements, the ICs considered as EOG artefacts

are better separated from the mean distribution of all other ICs in the fixed SSVEP where

subjects are instructed to avoid eye movements. It can suggest that ICA performed a bet-

ter EOG source separation, when there are more eye movement activities conveying more

information about behaviour of the EOG sources.

Figure 6.7 shows an example of the time series, scalp map and the power spectral
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density of an IC automatically detected as the eye-related artefactual source. Considering

the dipolar behaviour of the eyes, the distribution of the detected IC over the right and left

frontal channels on the scalp map implies a horizontal eye movement. This is confirmed

by rapid amplitude fluctuations, similar to saccade activity, in the IC’s time series; and

higher spectral power of the IC below 5Hz, than all other frequencies.

The detected ICs are validated by comparing them to the ground truth. In the ground

truth, from 140 ICs (2 experiments ×5 subjects ×14 ICs ) in the SSVEP dataset, 18 ICs

are labeled as eye-related artefacts (8 blink ICs and 10 eye movement ICs).

Considering both fixed and smooth pursuit SSVEP, using the proposed method, there

are 11 ICs detected as blinks, 10 ICs detected as horizontal eye movements and 10 ICs

detected as vertical eye movement artefacts. The 10 ICs detected as horizontal eye move-

ments are the same ICs detected as vertical eye movements, suggesting information of

both types of eye movements are concentrated in the same ICs. Additionally, there are 2

ICs mutually detected as blink and eye movement artefacts. In total, there are 19 unique

ICs detected as EOG artefacts (either blink or eye movement artefacts).

Table 6.1a shows the confusion matrix of the eye-related IC detection, using our

method. Based on the confusion matrix, all of the 18 artefactual ICs labeled in the ground

truth, are correctly detected using the proposed method. Additionally, the method labeled

another IC which is not labeled as an artefact in the ground truth. The proposed method

achieved BA = 97%, which indicates the reliability of the eye-related IC detection, based

on the ground truth.

For comparison, Ploc̈h’s method is also applied to detect IC’s corresponding to eye-

movements. Because Ploc̈h is not designed to detect blink sources, the ICs labeled as

blink are excluded from the ground truth. Table 6.1b shows the confusion matrix of the

eye movements source detection, using Ploc̈h method. Ploc̈h achieved BA = 69% for eye

movement IC detection, 28% lower than our proposed method (p-value< 0.05).
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(a) Saccade time Series

(b) Saccade PSD (c) Saccade topography

Figure 6.7: Typical example of (a) time series, (b) power spectral density and (c) scalp
map (topography) of an IC, corresponding to the horizontal saccade, manually labeled in
the validation procedure.

6.5.1 SSVEP detection

Table 6.2 summarises the SSVEP detection accuracy across all subjects, when different

EOG artefact removal methods are applied. SSVEP response detection for all subjects

is the highest when the BVOG-ICA is applied in both experiments (i.e Fixed SSVEP

and Smooth Pursuit SSVEP). The average SSVEP classification accuracy significantly

increases by 7% in fixed SSVEP, and by 4% in smooth pursuit SSVEP. There is a signifi-

cant increase in the average SSVEP classification accuracy when VOG-ICA is applied as

well; 4% increase in fixed SSVEP and 3% increase in smooth pursuit SSVEP. However,

when comparing the SSVEP classification accuracy of the subjects individually, there are

some cases where SSVEP classification accuracy is decreased when VOG-ICA is applied.

96



Table 6.1: Confusion matrix of eye-related artefact detection using different methods.

(a) ICs detected by BVOG-ICA.

Prediction
Art Non-Art

Tr
ut
h Art 100% 0%

Non-Art 0.82% 99.18%

(b) ICs detected by Plöchl.

Prediction
Art Non-Art

Tr
ut
h Art 60% 40%

Non-Art 18.03% 81.97%

The lowest averaged SSVEP classification accuracy is obtained when Plöchl is applied.

As is expected from the IC validation procedure, when Plöchl is applied, the averaged

SSVEP classification accuracy falls below raw data by approximately 6% (in both tasks).

This might be due to false detection of EOG sources and removing the ICs containing

SSVEP information (see Table 6.1). Overall, SSVEP classification accuracy is increased

when VOG-ICA and BVOG-ICA are applied. However, only BVOG-ICA in fixed SSVEP

achieved significantly higher results (p-value=0.02). Comparing VOG-ICA and BVOG-

ICA, the latter method achieved better results; this is due to fact that in addition to the

eye movement sources detected by VOG-ICA, BVOG-ICA removes the artefacts arising

from eye blinks. Between all three EOG artefact removal methods, BVOG-ICA achieved

less between person variations (last rows of Table 6.2a and 6.2b).

6.5.2 Improved FoA estimation

Table 6.3 summarises the result of SSVEP classification and SSVEP detection, before

and after applying the proposed BVOG-ICA, for artefact removal. As is evident from the

results, as BVOG-ICA increased accuracy of SSVEP frequency classification, it increased

SSVEP stimulation detection as well. The result shows applying BVOG-ICA increased

the accuracy (BA) of both SSVEP frequency classification and SSVEP stimulation detec-

tion by 7% in the case of fixed SSVEP. In the case of smooth pursuit SSVEP, applying

BVOG-ICA improved the accuracy (BA) by 4% and 7% for SSVEP classification and

SSVEP stimulation detection, respectively. The increases in the SSVEP stimuli detection

is statistically significant for both fixed and smooth pursuit SSVEP (p-value = 0.03 and
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Table 6.2: Performance of SSVEP classification for each subject in (a) Fixed SSVEP and
(b)Smooth Pursuit SSVEP; when there is no EOG artefact removal (Orig) compared to
when Plöchl, VOG-ICA and BVOG-ICA are applied for EOG artefact removal. The best
obtained result is highlighted in bold.

(a) Fixed SSVEP

Subjects Fixed SSVEP
Orig (%) Plöchl (%) VOG-ICA (%) BVOG-ICA (%)

S01 82.98 68.36 81.60 82.98
S02 88.99 89.24 94.02 94.02
S03 80.38 76.10 90.65 93.02
S04 85.27 72.99 82.00 94.01
S05 81.76 _ 90.55 90.55

Ave 83.88 77.69 ∗ 87.76 90.91
std 3.37 8.08 5.62 4.65

(b) Smooth Pursuit SSVEP

Subjects Smooth Pursuit SSVEP
Orig (%) Plöchl (%) VOG-ICA (%) BVOG-ICA (%)

S01 89.14 _ 93.47 93.98
S02 88.65 64.55 91.24 92.34
S03 89.80 83.79 85.86 90.01
S04 83.85 83.29 95.01 96.00
S05 81.54 _ 80.12 81.88

Ave 86.60 80.46 ∗ 89.14 90.84
std 3.68 9.33 6.11 5.47

∗ In the cases where there is no IC detected as artefact (“—"), the original accuracy is
considered in calculation of the averaged accuracy.

0.04, respectively). As described in section 5.2.3, the detected SSVEP instances are em-

ployed as an extra source of information for FoA estimation based on the eye movement

direction classification. Figure 6.8 compares the result of FoA estimation, when i) SSVEP

response detection is not employed, ii) when SSVEP response detection is employed, but

EOG artefacts are not removed and iii) when artefacts are removed using BVOG-ICA

and, enhanced SSVEP response detection is used.

The results in Figure 6.8 demonstrate that when no EOG artefact removal is ap-
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Table 6.3: Results of SSVEP frequency classification and stimuli detection, before and
after applying BVOG-ICA, in Fixed SSVEP and Smooth Pursuit SSVEP experiments.

SSVEP Frequency
Classification

SSVEP Stimulation
Detection

Before
BVOG-ICA

After
BVOG-ICA

Before
BVOG-ICA

After
BVOG-ICA

Fixed SSVEP 83.87 % 90.91 % 91.38 % 98.34 %
Smooth Pursuit

SSVEP
86.59 % 90.84 % 92.27 % 98.87 %

(a) Balanced Accuracy (b) Root Mean Square Error

Figure 6.8: FoA estimation results without use of SSVEP compared to the presence of
SSVEP, when there is no artefact removal and when eye-related artefacts are removed by
BVOG-ICA. Results are compared in terms of obtained BA and RMSE.

plied, the presence of the SSVEP in the visual field, significantly (p-value=0.04) improves

classification BA by almost 3% and reduces RMSE to 10.87◦. Result also suggest that,

removing EOG artefacts, using the proposed EOG artefact removal method, significantly

(p-value=0.04) increases the FoA estimation by 5%, and reduces RMSE to 7.80◦. Overall,

the BA of eye movement direction classification is best (i.e. 89.26%) with the least RMSE

(i.e. 7.80◦), when both prior to SSVEP detection, BVOG-ICA is applied for EOG artefact

removal, and both SSVEP response detection and EOG features are used for direction

classification.
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6.5.3 Habituation

As is shown in Table 6.3, SSVEP classification accuracy in smooth pursuit SSVEP is

approximately 3% higher than fixed SSVEP. And the classification results for fixed and

smooth pursuit SSVEP is increased by 7% and 4%, respectively; when BVOG-ICA is

applied. The reason could be a gradual decrement in SSVEP amplitude responses due

to habituation of the subjects under the fixed SSVEP stimulation. In contrast, when

subjects follow the moving stimuli in Pursuit SSVEP, they are constantly exposing to a

new stimulation also paying more attention, therefore habituation is avoided. It can be

confirmed by looking at the SSVEP responses depicted in Figure 6.9.

Figure 6.9 illustrates a typical example of the amplitude of SSVEP responses during

fixed and smooth pursuit SSVEP stimulation (flickering at 10Hz). As is shown in the

figure, in most of the cases the amplitude of SSVEP responses to fixed SSVEP is lower

than smooth pursuit SSVEP where stimuli moves in different directions. It is also evident

that the SSVEP response amplitudes increased, in both fixed and smooth pursuit SSVEP,

when BVOG-ICA is applied to remove EOG artefacts.

6.5.4 Comparison Dataset - Plöchl

The BVOG-ICA and Plöchl are applied on the comparison dataset, with the aim of clean-

ing EOG artefacts. Table 6.4 shows the average ERP classification accuracy across all

subjects, before EOG artefact removal and after applying Plöchl, VOG-ICA after and

BVOG-ICA artefact removal methods. As is illustrated in the table, ERP classification

for all subjects is highest when the BVOG-ICA is applied for artefact removal. The aver-

age ERP classification accuracy significantly (p-value<0.05) increased by 2.2% to 88.43%.

There is an increase in the average ERP classification accuracy when VOG-ICA and

Plöchl are applied as well; 1.77% increase by VOG-ICA (p-value<0.05) and 0.8% increase

by Plöchl (p-value=0.26). When the ERP classification accuracy of the subjects are com-

pared individually, there is one case where no IC is detected as an eye movement source,
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Table 6.4: Performance of ERP classification for each subject; when there is no EOG
artefact removal (Orig) compared to when Plöchl, VOG-ICA and BVOG-ICA are applied
for EOG artefact removal. The best obtained result is highlighted in bold.

Subjects ERP Classification
Orig (%) Plöchl (%) VOG-ICA (%) BVOG-ICA (%)

S01 88.24 89.26 89.26 90.17
S02 84.23 85.33 86.43 86.43
S03 93.17 94.54 94.54 95.00
S04 94.45 96.12 96.12 96.12
S05 84.56 _ _ 85.64
S06 91.43 91.83 93.46 93.87
S07 82.87 83.00 83.92 84.35
S08 76.96 80.00 80.34 81.35
S09 80.01 83.56 83.56 83.56
S10 86.43 82.12 87.82 87.82

Ave 86.23 87.03 ∗ 88.00∗ 88.43
std 5.67 5.55 5.26 5.13

∗ In the cases where there is no IC detected as artefact (“—”), the original accuracy is
considered in calculation of the averaged accuracy.

using VOG-ICA and Plöchl (i.e. S05); and there is one subject where ERP classification

accuracy is decreased when Plöchl is applied (i.e. S10). The lowest averaged ERP clas-

sification accuracy is obtained when Plöchl is applied (accuracy = 87.03). Overall, ERP

classification accuracy is increased when Plöchl,VOG-ICA and BVOG-ICA are applied.

However, BVOG-ICA achieved significantly (p-value<0.05) better results due to fact that

Plöchl and VOG-ICA do not remove the artefacts arising from eye blinks. Additionally,

again between all three EOG artefact removal methods, BVOG-ICA achieved less between

person variations (last row of Table 6.4).

6.6 Summary

In this chapter, we proposed a VOG-based automatic method for the detection and re-

moval of eye movement and blink artefacts from EEG. The VOG signal from an optical
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eye tracker is used to assist in the detection of ICA components related to eye movement

artefacts. The proposed method outperforms the state-of-art method Plöchl et al. [13],

which does not account for blink detection explicitly by their algorithm, when evaluated

on matched VOG and EEG data. Removal of EOG artefacts detected by BVOG-ICA

leads to 7% and 4% improvement in SSVEP classification accuracy for fixed and moving

SSVEP stimuli, respectively. This resulted in 98% SSVEP stimulation detection which

is employed to improve the FoA estimation method introduced in Chapter 5. Perfor-

mance of the FoA estimation is significantly improved by almost 5%, to BA = 89.26%

and RMSE = 7.80.

Additionally, the proposed method significantly improved accuracy of the ERP classifi-

cation by almost 2% to 88.43%, when applied on the dataset recorded by Plöchl (described

in section 4.3.5). The result demonstrates BVOG-ICA provides a reliable automatic way

for EOG artefact removal in SSVEP and ERP paradigms, using both laboratory and con-

sumer grade EEG apparatus. Despite the fact that EEG and VOG data are recorded by

separate devices, with independent sampling clocks, the proposed method can efficiently

work without being affected by the synchronisation problem. Additionally, the trade-off

between increasing eye movement artefacts which lowers SSVEP detection performance

and reduces the effect of habituation by using moving stimuli which raises SSVEP detec-

tion performance is favourable.This study, highlights the benefits of using optical infor-

mation for EOG artefact removal.
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“Silence is a door among the doors

of wisdom.”

Ali al-Ridha (PBUH)

7
Performance Improvement by Extracting

Features From Independent Sources

7.1 Introduction

Previous studies in EEG chiefly apply ICA exclusively for artefact removal rather than

feature extraction. In this chapter, it is demonstrated that ICA components can be benefi-

cial as features for blink, eye movement, SSVEP and ERP classification. We demonstrate

improved performance by extracting features from source signals estimated by the blind

source separation technique ICA rather than the traditionally used preprocessed EEG

channels. The data introduced in Chapter 3 and 4 are used for evaluation. All of the clas-
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sification tasks conducted in previous chapters are repeated, however, this time features

are extracted from ICA decompositions rather than EEG channels. The results are then

compared with best obtained classification results in the previous chapters.

7.2 Related Works

In most of the EEG studies ICA was used for source separation and artefact removal.

However, in the field of speech and image processing it is demonstrated, by projecting the

data into independent sources, ICA was useful for feature extraction. For example [115]

used ICA to extract features for image analysis, and [116] used ICA to extract features

for phoneme detection.

7.3 ICA-based Feature Extraction

As is described in section 2.5, ICA assumes that the observed data X, is a linear combi-

nation of statistically independent sources. The goal of ICA is to find the mixing matrix

A and the independent sources S (X = AS). In other words, ICA represents observed

data as a linear combination of maximally independent sources, corresponding to the

dimensionality of the observed data.

In most EEG studies, ICA is employed to separate and remove artefactual sources

from EEG signal [12, 13]. First, ICA is applied to estimate independent sources which are

either artefactual or non-artefactual. Then, the artefactual sources are detected based on

their stereotyped temporal, frequential and spatial characteristics[12]. However, because

ICA does not solve the inverse EEG problem, the subjective artefactual source detection

has no solid theoretical basis. Subjective selection of ICs based on suggestions in previous

studies, may prompt risk of biasing the results to support uncertain brain functioning

theories; specially in the case of removing artefacts from EEG data recorded during not

well-known cognitive tasks. Additionally, subjective IC selection might be affected by

introducing errors due to different EEG setups and inter-subject variations.
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Here, the main idea is that instead of detecting and removing artefactual ICs, all of

the independent sources estimated by ICA can be used as a set of independent features, to

be used for classification of EEG patterns, relating to different tasks. It can be beneficial

for classification methods such as Naïve Bayesian, which works under the assumption of

independence of the features.

Fo this purpose, first the Extended-Infomax ICA algorithm is applied on all the data

recorded during different experiments described in previous chapters. Then, instead of

extracting feature, from raw or reconstructed clean EEG, features are extracted from

estimated independent components.

7.3.1 t-Test Investigations

In order to evaluate the performance of the EEG pattern classifications based on ICA

features, t-testis is performed. We are testing the following hypothesises:

• Test Hypothesis: the population means of EEG pattern classification accuracy is dif-

ferent when features are extracted from reconstructed EEG channels or independent

components.

• Null Hypothesis: the population means of EEG pattern classification accuracy is the

same when features are extracted from reconstructed EEG channels or independent

components.

The p− value = 0.05 is considered as the level of significance; it corresponds to a 95%

confidence level.

7.3.2 Evaluation

In order to test the null hypothesis, we used a simple simulated data as well as the data

captured during all of the experiments in Chapter 3 and Chapter 4. The best results

obtained in previous chapters, for each task, are compared to the new results where
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features are extracted from ICs. Results are compared in terms of BA; and RMSE where

possible.

7.3.3 Simulated Data

A simple simulated dataset is generated to evaluate the proposed feature extraction ap-

proach. Suppose we are collecting data during a visual stimulation paradigm, stimulating

subjects at times t1 and t2, and we want to use a classifier and find the time segments

when stimulation occurred.

Assume, the two known signals in Figure 7.1a are original brain responses generated

within the brain. The cosine signal s(1) is considered as background EEG activity, gener-

ated from a part of the brain not responding to the task; and step signal s(2) is considered

as brain impulses to a specific cognitive task.

We know that, the EEG data collected from the scalp, is a mixture of the original

sources generated within the brain. Here we assume, the original source signals, s(1) and

s(2), are linearly mixed using the following (randomly generated) mixing matrix and build

up the observation signals x(1) and x(2), in Figure 7.1b.

WOrig =

0.8 0.2

0.7 0.3


We used a 50ms sliding window and extracted mean amplitude of each window from

each signal as a feature to train a classifier. There are two sets of features, mean amplitude

extracted from two observation signals x(1) and x(2) and mean amplitude extracted from

two estimated ICs u(1) and u(2). ICs are estimated using Extended-Infomax ICA algo-

rithm. In the training data, the feature instances extracted from durations in which step

impulses occurred are labeled as target and all other instances are labeled as non-target.

The extracted features, from observation signals and ICs, are separately used to train a

RBF-SVM classifier, a 1-NN classifier and a Naive Bayesian classifier. The classification

performance is assessed using a 5-fold cross-validation technique.
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(a) Original sources

(b) Observation

Figure 7.1: An illustration of the simulated data. a) Simulation of the original responses
generated within the brain. b) The observed simulated EEG data on the scalp. The red
dashed lines represents the hypothetical stimulation onsets at times t1 and t2.

7.3.4 Real Data

All the data described in Chapter 3 and Chapter 4, are used for evaluation in this chapter.

In Chapter 3 three types of data are recorded during three different experiments; namely,

Cognitive Load, Motor Imagery and SSVEP Classification. Additionally, a pilot dataset

is collected for classification of eye blinks and directional eye movements. In Chapter 4,

four types of data are captured during four experiments; namely, Short Saccade, Long

Saccade, Fixed SSVEP and Smooth Pursuit SSVEP. Additionally, a comparison dataset

is described which includes ERP stimulation.

All the above datasets are employed for classification problems described in the ex-
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perimental Chapters 3 to 6. The best obtained classification results in each chapter are

compared with new results obtained by the proposed ICA-based feature extraction.

Figure 7.2: The time series of the ICs estimated from simulated data.

7.4 Results

The effect of the proposed feature extraction approach on the classification performances

for both simulated and real data are reported.

7.4.1 Simulated Data

Figure 7.2 shows the independent sources estimated by the Extended-Infomax algorithm.

As is evident from Figure 7.1b, brain responses are not easily detectable by visually

inspecting observation signals x(1) and x(2), however, we can easily detect the times

when brain responses occurred, by looking at the time series of the estimated sources.

Figure 7.3a and 7.3b show the distribution of the feature instances extracted from

observation signals and independent components, respectively. The distribution of two

feature sets suggest that, features extracted from ICs are more independent and discrim-

inated than the features extracted from observation signals.

Table 7.1 depicts the obtained confusion matrix when RBF-SVM or 1-NN classifiers are

trained using features extracted from observation signals. Table 7.2 depicts the obtained
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(a) Original sources (b) Observation signals

Figure 7.3: Distribution of the features extracted from a) simulated EEG observations,
b) ICs estimated from observation data.

confusion matrices when Naive Bayesian classifier is trained using the same features. As

is evident in the results, the Naive Bayesian classifier could not classify any true brain

responses, while around half (54%) of the true brain responses are correctly classified by 1-

NN and RBF-SVM. RBF-SVM and 1-NN performed the same and achieved BA = 90.16%,

however, the NB classifier achieved BA = 44.47%.

Table 7.3 shows the obtained confusion matrices the three classifiers are trained using

features extracted from ICs. The same confusion matrix is obtained for all three classi-

fiers. As is shown in the results, performance of all the classifiers is improved and they

achieved the same BA, 93.88%. Comparing the obtained classification BA, across the

cross-validation folds with previous results, suggests significant improvement (p < 0.05)

in the performance of all classifiers, when features are extracted from ICs.

Table 7.1: Confusion matrix obtained
by 1-NN and RBF-SVM classifiers.

Target
Non-
Target

Target 0.54 0.45

Non-
Target

0.02 0.98

Table 7.2: Confusion matrix obtained
by NB classifier.

Target
Non-
Target

Target 0 1.00

Non-
Target

0.01 0.99
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Table 7.3: Confusion matrix obtained by 1-NN, RBF-SVM and NB classifier.

Target
Non-
Target

Target 0.82 0.18

Non-
Target

0.02 0.98

7.4.2 Real Data

Table 7.4, summarises the classification accuracy obtained in different experiments, using

the data described in Chapter 3. As is shown in the results, when ICA-based feature

extraction is used, performance of all the classification tasks is improved. However, the

improvement is only significant (p-value=0.03) for classification of blink and eye movement

direction, in the pilot dataset. From the results, it is also evident that blink and eye

movement direction classification, benefit more from ICA-based feature extraction.

In Table 7.5, the results of blink and different types of eye movement classification,

as well as FoA estimation based on SSVEP classification are shown. The results are ob-

tained by applying the methods described in Chapter 5 on the data in Chapter 4. The

best obtained results are compared to ICA-based feature extraction. As is expected, the

highest accuracies are obtained when ICA-based features are used. All of the classifica-

Table 7.4: The best obtained results for classification of different tasks described in
Chapter 3 are compared to new results obtained by extracting features from ICs (ICA
Features). The best obtained result is highlighted in bold.

Description
Accuracy (%)

Normal Features ICA Features

Cognitive Load Classification 97.65 98.22

Motor Imagery Movement Classification 98.99 99.10

SSVEP Frequency Classification 97.22 97.95

Pilot Blink Classification 89.95 97.15

Pilot Eye Movement Direction Classification 89.48 94.33
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Table 7.5: Classification results obtained for blink, eye movement and SSVEP classi-
fication, when features are extracted from normal EEG compared to when features are
extracted from ICs (ICA Features). The best obtained result is highlighted in bold.

Description
Accuracy (%)

Normal Features ICA Features

Blink Classification 82.31 85.16

Fixation Classification 94.14 98.12

Smooth Pursuit Classification 76.00 80.03

Saccade Classification 82.67 85.22

Saccade Amplitude Classification 95.22 97.33

Eye movement Direction Classification 76.31 91.39

SSVEP Frequency Classification 85.23 96.21

SSVEP Stimuli Detection 91.82 97.85

tion accuracies significantly improved (p − value < 0.05). The results suggest that, eye

movement direction classification achieved the highest percentage of improvement (15%

improvement in BA) and benefited most from ICA-based feature extraction. The lowest

BA increase is achieved for saccade amplitude classification (2% improvement in BA).

Table 7.6 summarises the result of SSVEP classification during fixed SSVEP and

smooth pursuit SSVEP experiments, when features are extracted from original EEG data

compared to when BVOG-ICA (proposed in Chapter 6) is used for cleaning EEG data,

and when no cleaning is performed and features are extracted from ICs rather than EEG

channels. Result shows that, the SSVEP classification for all subjects is higher when

features are extracted from ICs rather than EEG channels. It is also evident that, using

ICA-based features significantly (p-value< 0.05) increases average SSVEP classification

performance, and decreases the between-person variation.

The results of ERP classification, using the comparison dataset described in Chapter 4

(and analysed in Chapter 6) is reported in Table 7.7. Similar to SSVEP classification, the

results suggest significant improvement in ERP classification, and lower between person

variations, when ICA-based features are used. The new result is significantly higher than

the original data and the data cleaned using BVOG-ICA.
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Table 7.6: Performance of SSVEP classification for each subject in (a) Fixed SSVEP and
(b) Smooth Pursuit SSVEP; when features are extracted from original EEG data (Orig),
EEG data cleaned by BVOG-ICA and independent components (ICA Features). The best
obtained result is highlighted in bold.

(a) Fixed SSVEP

Subjects Fixed SSVEP
Orig (%) BVOG-ICA (%) ICA Features(%)

S01 82.98 82.98 96.69
S02 88.99 94.02 96.84
S03 80.38 93.02 96.08
S04 85.27 94.01 96.57
S05 81.76 90.55 95.72

Ave 83.88 90.91 96.38
std 3.37 4.65 0.46

(b) Smooth Pursuit SSVEP

Subjects Smooth Pursuit SSVEP
Orig (%) BVOG-ICA (%) ICA Features(%)

S01 89.14 93.98 96.87
S02 88.65 92.34 95.25
S03 89.80 90.01 95.03
S04 83.85 96.00 96.91
S05 81.54 81.88 96.21

Ave 86.60 90.84 96.05
std 3.68 5.47 0.88

Finally, Figure 7.4 illustrated the improvement of FoA estimation when BVOG-ICA

described in Chapter 6 is applied compared to when ICA-based features are used for

FoA estimation. Again the results shows significant (p-value=0.01) improvement in FoA

estimation (by 8.31% to 97.57%) and significant (p-value=0.01) decrease in RMSE (by

6.17◦ to 1.63◦), when ICA-based features are used.

Overall, as it is evident from the results, the accuracy of all classifiers is improved and

the between-person variation decreased significantly if features are extracted from ICA

components. Considering the RMSE, similar trend is obtained. This might be due to
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(a) Original sources (b) Observation

Figure 7.4: FoA estimation results with the presence of SSVEP, when features are ex-
tracted from EEG channels compared to when features are extracted from ICA compo-
nents. Results are compared in terms of obtained BA and RMSE.

Table 7.7: Performance of ERP classification for each subject; when features are extracted
from original EEG data (Orig), EEG data cleaned by BVOG-ICA and independent com-
ponents (ICA Features). The best obtained result is highlighted in bold.

Subjects ERP Classification
Orig (%) BVOG-ICA (%) ICA Features(%)

S01 88.24 90.17 92.33
S02 84.23 86.43 89.54
S03 93.17 95.00 96.35
S04 94.45 96.12 99.92
S05 84.56 85.64 90.89
S06 91.43 93.87 95.83
S07 82.87 84.35 89.10
S08 76.96 81.35 85.80
S09 80.01 83.56 88.86
S10 86.43 87.82 91.61

Ave 86.23 88.43 92.02
std 5.67 5.13 4.22

the maximal independence of estimated sources by ICA meaning that the mixed source

signals in the EEG can be well separated. Thus, the information extracted as a feature

from each IC can represent maximum possible information of the dominant source signal
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within that IC.

7.5 Summary

In this chapter we showed how ICA can be used as a feature extraction technique to signif-

icantly improve different classification tasks conducted in this thesis. Most importantly,

we demonstrated how ICA-based feature extraction improves eye movement classification

and SSVEP stimulus detection; which lead to enhanced FoA estimation. The performance

of eye movement classification and SSVEP stimulus detection increased by 15% and 6%,

respectively. As a result, FoA estimation BA is improved by 8% to 97.57% and RMSE

decreased to 1.63◦.
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“Knowledge is a great treasure

which does not come to an end.”

Ali ibn Abi Talib (PBUH)

8
Conclusion

This thesis evaluated the feasibility of employing a consumer-grade EEG device for eye-

tracking and FoA estimation. First, the integrity of a consumer-grade EEG device (i.e.

Emotiv EPOC) for common BCI paradigms is assessed, and reliability of the device to

be used in BCI applications is demonstrated. Then, novel matched VOG/EEG data is

introduced to explore blinking and eye movement patterns in the EEG data, and inves-

tigate the effect of eye-related artefacts and habituation on the performance of SSVEP

response detection. Afterwards, a signal processing method is proposed to classify blink,

saccade, fixation and smooth pursuit eye movement; in addition to saccade amplitude and

eye movement direction. The FoA is estimated by a hybrid of SSVEP detection and eye

movement direction classification. In the next step, performance of the proposed hybrid
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FoA estimation is improved by improving accuracy of SSVEP detection via BVOG-ICA- a

fully automated artefact removal method which employs VOG data to detect and remove

ICA components corresponding to blink and eye movements. Additionally, the habit-

uation effect on the SSVEP response detection is explored. Finally, FoA estimation is

improved by extracting eye movement direction and SSVEP classification features from

ICA components rather than EEG channels.

8.1 Summary of Results

In this research we first focused on the evaluation of Emotiv EPOC, a consumer EEG

headset. The evaluation is performed by conducting 3 experiments - cognitive task, Im-

agery movement and SSVEP classification. The consumer EEG device showed remarkable

performance and achieved above 97% accuracy in the classification of the tasks in each

experiment. Additionally, the effect of varying window and overlap size as well as ICA-

based artefact removal methods and classification methods are investigated. The optimum

window and overlap size, best performing ICA algorithm to remove artefacts, and best

classification method are reported. Moreover, the feasibility of using the EEG headset to

classify blink and eye movements into different directions are assessed in a pilot study. In

the pilot study, using the device blink and directional eye movements are classified with

accuracy above 89%.

After demonstrating the integrity of the consumer-grade EEG device, the device is

used along a consumer-grade eye-tracking glasses to record a matched VOG/EEG dataset

in a set of experiments. In the designed experiments, participants perform saccade and

smooth pursuit eye movements while looking at SSVEP stimuli. This way, on the one

hand, EEG patterns corresponding to different eye movements can be observed in the

data, on the other hand, the effect of eye-related artefacts on the SSVEP classification

performance can be explored.

A signal processing approach is proposed to classify blink and different types of eye
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movements, including fixation saccade and smooth pursuit, as well as saccade amplitude

and direction of eye movements. The matched VOG/EEG dataset is used for evaluation.

Using the proposed approach, blink, fixation, smooth pursuit, saccade, saccade direc-

tion and eye movement direction can be classified with 82.31%, 94.14%, 76.00%, 82.67%,

95.22%, 76.31% balanced-accuracy. Additionally, a hybrid of SSVEP detection and eye

movement direction classification is used to estimated the focus of foveal attention (FoA).

FoA is estimated with 84.00% balanced-accuracy, and RMSE less than 11◦.

Afterwards, the FoA estimation is improved by improving the accuracy of SSVEP de-

tection, via artefact removal. A fully automated ICA-based artefact removal method is

proposed which employs VOG information to detect and remove ICA components corre-

sponding to blink and eye movements. The proposed artefact removal method increased

SSVEP detection by 4% to 98%, which resulted in more than 5% improvement in FoA

estimation (BA=89.26% and RMSE=7.80◦). The ERP classification performance is also

improved by 2% to 88.43%, when the proposed method is applied on the dataset recorded

by Plöchl. The proposed method outperforms the state-of-art method Plöchl.

Finally, it is demonstrated that performance of all the classification problems con-

ducted in the thesis, as well as FoA estimation, improved significantly when features are

extracted from ICA components rather than EEG data. The eye movement direction clas-

sification improved the most, with 15% BA improvement to 91.39%. Using the new fea-

tures, FoA estimation is also significantly improved, by 8% increase in BA (BA=97.57%)

and 6◦ decrease in RMSE (RMSE=1.63◦).

8.2 Future Work

Eternally, there are countless number of ways in which the current work can be extended.

In the following, some of the possible extensions and future works are pointed out.

• The proposed EEG artefact removal method is evaluated on only ERP and SSVEP

paradigms. The generality of the proposed artefact removal method can be evaluated

118



by recording matched VOG/EEG data during other BCI paradigms such as imagery

movements, or P300 spellers.

• The evaluation datasets introduced in this work are collected from normal and

healthy subjects. In order to assess the generality and usability of the proposed

signal processing methods, collecting a database from people with sever motor dis-

abilities is of interest.

• All the data is collected in controlled conditions, where subjects are asked to remain

as still as possible. To be able to extend the work for real-life applications, collect-

ing a dataset recorded during less controlled conditions where subjects can freely

move is of interest. To this aim, similar to VOG, use of different types of on-body

sensors (e.g. MEG, accelerometer, etc ) to record and detect different types of body

movements can be beneficial.

• The use of Augmented Reality to modulate the visual field with flashing stimuli

potentially promises eye tracking technologies utilising SSVEP detection.

• The proposed blink and eye movement classification in addition to the FoA esti-

mation method, can be used for human activity recognition. The number of blink,

saccade, fixation and duration of smooth pursuit eye movements, as well as patterns

of eye movements can be employed to discriminate different activities.

• The data recorded using the EEG headset’s 2D gyroscope can be used to extend

the proposed EEG artefact removal method and eye movement classification in the

presence of EEG artefacts arising from head movement.

• In this work, VOG information is used to label the ICA sources corresponding to

eye-related artefacts. An interesting question would be the use of VOG information

and other information recorded using different sensors, to optimally estimate sources

with most amount of VOG (or information from types of artefact), using ICA.
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• All the experiments in this study are conducted in an offline manner. Proposing

a real-time ICA technique for online artefact removal is on interest for online BCI

applications.

The ultimate goal of this study is to explore the feasibility of using non-intrusive and

user-friendly EEG apparatus for BCI and eye-tracking applications at the same time.

Therefore, proposing an integrated hardware and software system which records EEG

data and at the same time removes different types of artefacts from EEG is of interest.

The proposed system could use real-time ICA for optimised estimation of eye-related

sources. Then, the eye-related sources can be used for eye-tracking applications and all

other non-artefactual sources can be used for BCI applications.
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