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ABSTRACT 

Efficacy of subcritical water in the recovery of the polyphenolic compounds from the apple 

pomace using a batch reactor system at 100-bar over a temperature range of 100-200oC for a 

residence time of 10–30 minutes was investigated. Organic solvent extractions using acetone 

and ethanol were carried out to serve as a baseline for comparison with the subcritical water 

extraction Subcritical water was efficient in solubilising the apple pomace, and extracting 

polyphenolics with high antioxidant activity. Maximum solubilisation of the apple pomace 

was achieved at 145oC for 30 minutes and total phenolic content and antioxidant activity at 

200oC. Solubilisation, ORAC activity and total phenolic content of subcritical water extract 

were 28.20g/100g DW, 99285μmol TE/g DW and 49.86mg/g GAE DW of apple pomace 

respectively, compared to 19.20g/100g DW, 6260.27 μmol TE/g DW and 21.70mg/g GAE 

DW of acetone extracts of apple pomace respectively. Protocatechuic aldehyde was identified 

for the first time only in the subcritical water extract and to date has not been identified in 

solvent extracts of cider apple pomace.  

Encapsulation of polyphenolic s of subcritical water extract using spray drying was explored. 

Particles/powders formed were derived from the naturally occurring carbohydrate polymers 

co-extracted with polyphenols. Addition of HPβ-Cyclodextrins (SWE+ HPβ-CD) to the 

directly encapsulated powder (SWE) significantly reduced hygroscopicity and improved 

antioxidant activity. 
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STRUCTURE OF THE THESIS 

The thesis has been structured in to 6 chapters and presented as follows. Chapter 1 reviews 

works related to apple pomace as a by-product of the food and drink industry, polyphenolics 

and related bioactivities, and applications of critical fluids both for extraction and 

encapsulation and the summary of the main objectives of the research. All analytical 

techniques used in the research are presented in chapter 2 as material and methods. Chapters 3 

and 4 addresses the optimisation of organic solvent and subcritical water mediated recovery of 

polyphenolic compounds from the apple pomace using response surface methodology. 

Chapter 5 discusses the feasibility of encapsulating the polyphenolic fraction derived from 

apple pomace using naturally occurring polymers co-extracted with polyphenolics under the 

subcritical water mediated hydrolysis to improve oxidative stability and assess the impact on 

formulations and performance in for example skin care products. Overall conclusions and 

recommendations for future work are presented in chapter 6. 
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Chapter 1  

Literature Review 
1.1 Apples and Apple pomace 

1.1.1 Apples 

Apples (Malus domestica) have a long history and are extensively cultivated 

throughout the world. The fruits are appreciated for taste and flavour but also for their 

vitamins, antioxidants and dietary fibre (Brendan, 2010). 

Apples are cultivated in moderate temperate regions of the world (Agrahari and 

Khurdiya, 2003, Joshi et al., 1996, Kaushal and Joshi, 1995, Kaushal et al., 2002). The global 

annual production in 2010 was approximately 70 × 106 tonnes covering a 4.8 × 106 hectares 

(FOA, 2011) thus making apples the 4th most cultivated fruit globally next to banana, oranges 

and grapes. See Table 1-1. 

China contributes over 40% of the world’s apple output. Within the European Union, 

the second largest producer in the world, Poland is the leading contributor. The United State 

contributes 6% of world output and is third in the international ranking. Iran, Turkey, Russian 

Federation, India and Chile are other large producers with Chile dominating production in 

Latin America which accounts for less than 6% of the world production. 

Broadly, the leading producers of apple in the world are also the principal consumers. 

However there are regional and country variation in per capita consumption for example, 

Turkey, Canada, and New Zealand recorded higher consumption per head in 2007 (Brendan, 

2010). 
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Each apple producing country at one time had their own local and regional cultivars as 

a result there are over 10,000 registered apple cultivars (Jules et al., 1996). However, due to 

expanding production and transport networks, and the need for commercial high quality 

products, only a select number of varieties are currently grown (Way et al., 1990). To date ten 

apple varieties dominate the market. These are ‘’McIntosh, Braeburn, Jonathan, Idared, 

Jonagold, Fuji, Granny Smith, Gala, Delicious and Golden Delicious (O’Rourke et al., 2003). 

Table 1-1 Major Apple Producing Countries in the World (2009- 10). 

Country Production (metric tonnes) 

China 29,857,163 

USA 4,358,710 

Poland 2,830,870 

Iran 2,718,775 

Turkey 2,504,490 

Italy 2,208,227 

France 1,940,200 

India 1,777,200 

Russian Federation 1,467,000 

Chile 1,370,000 

Argentina 1,300,000 

Brazil 1,124,155 

Germany 1,046,995 

Others 15,113,739 

World+ 69,819,324 

Source:  Food and Agriculture Organization of United Nation FAO, website 
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Apples can be categorised according to use for example, culinary, desert and apple 

juice production. The different categories have desired characteristics in terms of texture and 

taste. Cider apples are distinct from the desert and culinary apples, due to the high content of 

tannin and their fibroid nature. 

There are over seventy cider apple varieties reported in United Kingdom and 

approximately twenty three available in France (Johansen, 2000). The varieties are further 

categorised in to four groups according to acidity and tannins levels (Lea, 1990, Morgan and 

Richards, 1993).Sweet varieties are low in acidity and tannin and are the softest of the four 

groupings; common examples are court royal and sweet coppin. The Sweet apples are blended 

with the more strongly flavoured varieties in order to produce a commercially palatable cider. 

Bittersweet varieties typically, Dabinett and Yarlington Mill, impart the distinct 

flavour associated with ciders produced in the United Kingdom which are low in acidity and 

high in tannin content. Palate-astringency and bitterness of these apples are attributed to high 

tannin content. 

Brown’s apple and Crimson king are well-known sharp varieties of which acidity 

predominate over tannin content; however they are Scarce nowadays and are often substituted 

with culinary apples to balance flavour of cider. 

The last category of cider apples is bittersharp of which Stoke red is an example, have 

moderate acidity and tannin contents (The National Association of Cider Makers UK, cider 

fruit research overview). Table 1-2 summarises the classifications. 
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Table 1-2 Classification of Cider Apples in England  

Cider apple Acid <0.45% (W/V) Acid > 0.45% (W/V) 

Tannins < 0.2% Sweet Sharp 

Tannins >0.2% Bittersweet Bittersharp 

Developed by Long Ashton research station (Lea, 1990, Morgan and Richards, 1993) 
 

               

1.1.1.1 Principal Products from Apple processing  

Of the total production of apples at least 71% of the fruit is eaten fresh, and 

approximately 20% is processed into apple juice and cider after fermentation. The balance is 

used to produce spirits, apple purées and other apple by-products (Joshi, 1997, Joshi and Attri, 

1991, Kaushal et al., 2002). Various technologies are used to extract the juice from apples. A 

Continuous press method is used in large productions whereas simple vertical hydraulic 

presses are used in small production systems. Enzymes may be added to increase the 

extraction yield (Issenhuth, 2008). However the enzymes should not change the physical and 

chemical characteristics or standards related to the juice (Nogueira and Wosiacki, 2012). 

Apple pomace is the residue left after juice or must extraction and constitutes between 

20- 35% by weight of the original production feedstock. The amount of the pomace generated 

and its composition will depend on the variety of the apple and the techniques used in 

extracting the juice (Mahawar et al., 2012). 

1.1.2  Apple Pomace 

Approximately 9 × 106 tonnes of apple pomace are produced worldwide per the 

estimation of the amount of apples processed. The use and the amount of pomace vary 

according to country. China is the largest producer of apple pomace in the world with an 
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annual yield of over 3 million tons since 2009 (Yue et al., 2012). In India at least 1 million 

tonnes of apple pomace every year is produced, of which approximately 10,000 tonnes is 

utilised (Shalini and Gubta, 2010). In Brazil, 80,000 tonnes of pomace are generated each 

year and primarily utilised as animal feed (Vendruscolo et al., 2008). At least 20,000 tonnes 

per annum of the pomace is generated in northern Spain, a region which accounts for a 

significant proportion of the global cider apples production (Diñeiro García et al., 2009). 

There are two types of solid waste generated during the production of apple juice or 

cider. 1) apples which are rejected/ discarded during grading 2) the apple pomace residue as a 

result of pressing/juice extraction. The disposal of the solid wastes requires environmental 

consideration to forestall any pollution to the ecosystem. Apple pomace is a wet biomass and 

if dumped into landfills will create pollution problems because of its high chemical oxygen 

demand(COD) of 250-300g/kg which is prone to spontaneous fermentation (Mahawar et al., 

2012). Hence, the increasing desire to develop alternative routes where by apple pomace will 

be utilised both adding value but avoiding disposal costs(Kennedy et al., 1999). 

1.1.3 Basic Chemical Composition of Apple Pomace 

Apple pomace is a heterogeneous biomass residue consisting of peels, discarded 

apples, seeds, core, stems and exhausted apple tissue (Kennedy et al., 1999).  and as result 

contains water, sugar, small amount of protein at a low pH (Chantanta et al., 2008). 

It is very difficult to find a standardised chemical composition of the apple pomace as it is  

highly dependent on the variety of apples used, the region of growth, the degree of ripening, 

agricultural practices and the extraction processes involved (Kennedy et al., 1999). 

Furthermore the detail of the biochemical analysis reported in the literature is 

influenced by the research objective as illustrated in the following reports claimed apple 

pomace contained 26.4% dry matter, 4.0% proteins, 3.6% sugars, 6.8% cellulose, 0.3% ash, 
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0.42% acid and Calcium, 8.7 mg/100g of wet apple pomace. (Vasil’ev et al., 1976) While 

Carson et al (1994) went further and defined the fibre content of apple pomace suggesting it 

ranged from 11.6 to 44.5% and included cellulose, (12.0-23.2%), lignin (6.4 - 19.0%), Pectin 

(3.5 - 18%) and hemicellulose (5.0- 6.2%). The average dietary fibres (35.8%) and sugars 

(54.4%) this make up a total 91.2% of the pomace and the other constituents are lipids, 

proteins, and ash (Carson et al., 1994). 

The Table 1-3 below is a compilation of compositional data sourced from a number of 

reports. 

1.1.4 Potential Uses of Apple Pomace 

Apple pomace is a potential source of carbohydrate, fibre, polyphenolics and pectin 

(Cetkovic et al., 2008, Guyot et al., 2003) which can find application in the food, feed, 

pharmaceutical, cosmetics, chemical, and biofuels sectors (Sato et al., 2010) The following 

offers a snap shot of some of the approaches and studies undertaken to enhance utility of 

apple pomace biomass. 

1.1.4.1 Food sector 

Efforts to utilise apple pomace residue to produce Jams and sauces has been reported 

by Kaushal and Joshi 1995, for which a technology was worked out for the preparation of 

apple press cake from apple pomace powder. The techniques involved; moulding, drying, 

crushing and fractioning and many bakery ingredients incorporating the pomace powder were 

also demonstrated. Similarly two types of toffee were produced by replacing soy meal with 

the pomace powder and the quality was not negatively affected (Shalini and Gubta, 2010). 

Because of the large quantities of apple pomace produced during processing of apples 

it is important to explore a full range of products (Mahawar et al., 2012). 
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Table 1-3 Proximate composition of apple pomace  (Devaravjan, 1997, Joshi, 1998, Joshi and 
Attri, 2006, Joshi and Pandey, 1999, Joshi and Sandhu, 1996, Parma, 2003). 

Constituents 
Composition 

Wet weight basis Dry  weight basis 

Moisture g/100g) 66.4-78.2 3.97-5.40 

Acidity(% malic acid,w/v) N/A 2.54-3.28 

Total soluble solids(TSS,oB) N/A 57.85 

Totalcarbohydrate (mg/kg) 9.50-22.00 48.00-62.00 

Glucose(mg/kg) 6.1 22.70 

Frutose (mg/kg) 13.6 23.60 

Sucrose (mg/kg) N/A 1.80 

Xylose (mg/kg) N/A 0.06 

pH 3.05-3.80 3.9 

Vitamin C (mg/100g)  8.53-18.50 

Soluble Proteins N/A 3.29 

Proteins (mg/kg) 1.03-1.82 4.45-5.67 

Crude fiber(g/kg) 4.30-10.50 4.70-48.72 

Fat[ether extract(%)] 0.82-1.43 3.49-3.90 

Pectin (%) 1.50-2.50 3.50-14.32 

Ash (mg/kg) N/A 1.6 

Polyphenol (%) N/A 0.99% 

Amino acids (%) N/A 1.52 

Minerals   

Potassium (mg/kg) N/A 0.95 

Calcium (mg/kg) N/A 0.06 

Sodium (mg/kg) N/A 0.2 

Magnesium (mg/kg) N/A 0.02 

Copper (mg/kg) N/A 1.1 

Zinc (mg/l) N/A 15 

Manganese(mg/l) N/A 8.50-9.00 

Iron (mg/l) N/A 230 

Calorific value (Kcal/100g) N/A 295 

   
 

N/A = non applicable     
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1.1.4.1.1 Pectin Production 

Pectin is a structural heteropolysaccharide contained in the primary cell walls of 

terrestrial plants (Carpita and Gibeaut, 1993). Pectin is considered as a complex 

polysaccharide which consists of α1-,4-linked D-galacturonic acid, which are partly methyl 

esterified, and the side chain contains various neutral sugars, such as L-rhamnose, L-

arabinose, and D galactose (Helene et al., 2012). According FAO and the EU, pectin must be 

composed of not less than 65% galacturonic acid units (United Nation Food and Agricultural 

Organization).Figure 1-1 an illustration of the types of Pectin structures 

 

 

Historically, pectin was cited first in1750 in an article published in England regarding 

the production of jelly from apples (Kertesz, 1951). Extraction processes started to develop 

around 1908 in Germany and rapidly advanced to the United States of America, of which a 

patient (US. Patent number 1082682) was issued to Douglas in 1913 (Douglas, 1913). 

Pectins are categorised based on the extent of esterification into low methoxyl (LM) 

and high methoxyl (HM). Low methoxyl pectins are composed of between 25-50 % 

methoxylated carboxyl groups, and high methoxyl pectin contains between 50-80%. The 

Figure 1-1 An illustration of the types of Pectin structures (Harholt et al., 
2010) 

https://en.wikipedia.org/wiki/Heteropolysaccharide
https://en.wikipedia.org/wiki/Cell_wall
https://en.wikipedia.org/wiki/Terrestrial_plant
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characteristics of pectin portions are dictated by the structure of the molecules. Low methoxyl 

pectin form gel in the presence of cations like Ca2+ whereas high methoxyl pectins depends on 

high amount of co-solute in acidic medium to produce gel (Lundt et al., 2003, Voragen et al., 

1995). 

Presently the two main sources of pectin derived from plant materials are from citrus 

and apple peels. Other potential value resources are not explored due to unwanted properties 

(Marcon et al., 2005). Pectin is considered one of the essential components discovered in 

apples and capable of providing about 10% of a day fibre requirement. Interestingly, pectin is 

not broken down by digestive juices in the intestines and remains soluble. They help increase 

the amount of faecal substances in the intestines which aid their appropriate functioning. 

Pectin helps in retention of water and other residues in the intestines, promote removal of 

toxic substances onward with faecal matter, ensures good protection of mucus of intestines 

and aid in treatment of diarrhoea (Helene et al., 2012). 

Pectins are primarily considered as health promoting food ingredients and catalogued 

alongside other food constituents. Global consumption of pectin annually has been estimated 

to be around 45000 tons with international market value of approximately €400 million 

(Savary et al., 2003). 

In the food industry, pectin is used to enhance viscosity and act as safeguarding of 

colloids stability in foods and beverages (Helene et al., 2012). They are largely used during 

preparation of jellies and jams, fruit juice, confectionary food and baking industry as fillings. 

Pectins are used in stabilization of dairy products such as yogurts and mixture of milk and 

fruit juice because it is stable at acidic pH below 4.3 (May, 1990, Rolin and De Vries, 1990). 
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Apple pomace, on a dry weight basis contains approximately 10-15% pectin (Endreß, 

2000). The production of pectin from apple pomace is regarded as more economic and 

realistic approach of utilization of the residue both from a commercial and environmental 

considerations (Fox et al., 1991). 

The pomace has been used to recover pectin for several decades (Sharma et al., 1985). 

Normally for pectin recovery, dried apple pomace is usually employed in the extraction, by 

adding dilute mineral acids at relatively higher temperatures to ensure solubilisation of the 

insoluble pectic substances localised in the cell wall and middle lamella. The pectin is 

precipitated after concentrating, by adding ethanol. The precipitate is then dried, ground and 

sieved (May, 1990).  

1.1.4.2 Feed Sector  

Apple Pomace can be utilised as a component of animal feed formulations either fresh, 

dried and or after ensiling (Taasoli and Kafilzadeh, 2008).The apple pomace is highly 

palatable feed, medium in energy, but very low in protein content. When properly 

supplemented, it can replace up to about one-third of the concentrates in rations and 15-20% 

in complete feedlot rations. (Jane, 2007). Apple pomace has no fixed nutritive value and 

changes based on the varieties of apples, husbandry, maturity of fruit and the processes 

applied to extract the juice (Kennedy et al., 1999). The crude protein content of apple pomace 

varies from 19 to 65g Kg-1 on dry matter basis (Carson et al., 1994). However, due to the 

medium to low energy content after digestion compared to corn silage, apple pomace is 

considered as an average or poor quality animal fodder (Carson et al., 1994) The nutrient 

profile is shown in Table 1-4. 
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Moreover on a dry matter basis, the energy value of the ensiled apple pomace is about 

80% that of corn silage and it is advisable to mix a dry absorbent material with the pomace at 

the time of ensiling in order to prevent excessive nutrient loss from seepage (Rust, 1991). 

Table 1-4 Comparison of the nutrient profile for apples and apple pomace with Corn silage and 
corn, all nutrients expressed on DM basis 

Constituent Apple Apple pomace Corn silage Corn 

Moisture % 82.1 82.30 65 15 

Dry matter% 17.9 27.70 35 86 

TDN, % 69.7 63.40 72 90 

ME, MJ/Kg 10.58 5.52 10.85 13.61 

Fat, % 2.2 2.60 3.1 4.1 

Crude protein,% 2.8 4.30 8.7 9.8 

Crude fibre, % 7.3 38.2 19.5 2.3 

Calcium,% 0.06 0.15 0.25 0.03 

Potassium,% 0.78 0.58 1.14 0.44 

Magnesium,% 0.28 0.07 0.18 0.12 

Sulphur,% 0.06 0.11 0.12 0.11 

Sodium,% 0.06 0.11 0.01 0.01 

Phosphorus% 0.78 0.58 0.22 0.32 

Source: Steven Rust and Dan Buskirk, Michigan state University, Department of Animal 
science (Buskirk and Rust, 2008). ME-metabolisable energy; TDN-total digestable nutrient 

 

    

1.1.4.3 Chemical Sector 

1.1.4.3.1 Citric acid production 

Citric acid (2-hydroxyl-propane, 1-3-trix Carboxylic acid) with a molecular weight of 

210.14 g/mol is considered among world’s largest tonnage of fermentation products (Baei et 

al., 2008) with high demand (Hoseyini et al., 2011). It is white or colourless, odourless, 
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crystalline solid. Approximately 70% of citric acid produced is utilised in the food industry, 

12% in medicine and 18% in other industrial applications (Hang and Woodams, 1986). 

The commercial production of citric acid is achieved by submerged fungal 

fermentation of molasses (Kapoor et al., 1982), The physical nature of apple pomace restricts 

it use in submerged fermentation, however if apple pomace is diluted one-quarter its volume 

with water submerged fermentation is feasible. However, the amount of citric acid recovered 

from diluted pomace solutions was low and therefore not economic (Hang and Woodams, 

1986). 

The production of citric acid using solid state fermentation process of apple pomace 

was developed using the fungus Aspergillus niger NRRL 567. The technique produced 90g of 

citric acid/kg of apple pomace by adding 3-4% methanol at 30oC in 5days. Yields of citric 

acids of 77-88% were obtained if additional carbohydrate source was added (Hang and 

Woodams, 1986). 

Song et al., (2003) suggested adding cellulose to supplement low reducing sugar 

content of apple pomace to effectively get higher yields of citric acid. The research of Song et 

al demonstrated that, the enzyme -cellulase effectively enhanced the yield of glucose and 

significantly influenced the production of citric acid from apple pomace using Aspergillus 

niger fungus. It was shown that, the celluloytic enzyme, cellulase A6 could yield about 170g 

glucose per 1kg of apple pomace over 12h reaction time with cellulase concentration of 20 

U/g at pH=7 and 50oC within the medium without alkali pre-treatment. When cellulase treated 

apple pomace was used as a liquid substrate with Aspergillus niger-C fungus selected yields 

reached 256g citric acid per 1 kg dried apple pomace at 35oC in 3 days or 30oC in 5 days with 

rotation speed of flask at 210 rpm. However three important problems were raised 1) The 

Aspergillus niger C selected needed to be grown well for the production of citric acid from 
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apple pomace 2) yields of the product decreased during scale-up operations. Lastly extraction 

rate of citric acid was low and needed advance separation methods (Song et al., 2003). 

An improved solid state fermentation for citric acid production from apple pomace 

residue was reported by Dhillon et al., (2011) where they evaluated the production of citric 

acid using Aspergillus niger strain NRR-576 from apple pomace complemented with rice 

husk. Moisture content and inducers (methanol and ethanol) concentration were optimised, by 

response surface methodology. They established that moisture and methanol positively 

influenced the yield of citric acid production using Aspergillus niger bred on the apple 

pomace. Higher yields of citric acid (342.41g/kg and 248.20g/kg dry substrate) from apple 

pomace by Aspergillus niger were achieved with 75% (V/W) moisture along with [3 % (V/W) 

methanol and 3 % (V/W) ethanol] as inducers. The efficiency of fermentations was 93.9% 

and 66.42% respectively based upon the total carbon consumption over 144h period of 

incubation. Normal fermentation on a tray was performed with the same optimised parameters 

and citric acid concentrations of 187.96g/kg dry substrate with 3% (V/W) ethanol, 303.34g/kg 

dry substrate with 3% (V/W) methanol were recorded respectively. Efficiency of fermentation 

of 50.8% and 82.89% in ordinary fermentation were achieved based on the amount of carbon 

utilised after 120h period of incubation (Dhillon et al., 2011). Therefore citric acid production 

using apple pomace as substrate could serve another alternative means of utilising apple 

pomace (Song et al., 2003) 

However, the low content of reducing sugar in apple pomace (19.2%) makes the 

residue unsuitable for citric acid production directly and therefore a challenge in practical 

production (Song et al., 2003). However, fresh apple pomace is an acid-substrate with 

significant mean capacity which can facilitate microorganisms’ growth due to its high 
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moisture content (Chaudhary et al., 1978, Roukas, 1991, Sanroman et al., 1994, Shankaranand 

and Lonsane, 1994, Shojaosadati and Babaeipour, 2002, Tran and Mitchell, 1995) 

  

1.1.4.4 Biofuel sector 

1.1.4.4.1 Ethanol Production 

Bioethanol produced from biomass sources is regarded as an important biofuel 

because of the sustainable, environmental benefits (Fargione et al., 2008). Apple pomace is a 

bioactive biomass which poses problem with respect to disposal therefore can be seen as a 

cheap alternative feedstock for ethanol production. Ethanol has been produced from apple 

pomace using the Montrachet strain of Saccharomyces cerevisiae and more than 43g of 

ethanol was achieved from 1kg of apple pomace when fermented at 30oC over a period of 24h 

giving a fermentation efficiency of 89 % (Hang et al., 1982). 

Khosravi and Shojaosadati, 2003 described a process of ethanol production from apple 

pomace using Saccharomyces cerevisiae driven solid state fermentation. A moisture content 

of 75% (W/W), and starting sugar content of 26% (W/W), with 1% (W/W) content of 

nitrogen were the conditions applied. 2.5% (W/W) and 8% (W/W) of ethanol was produced 

without and with saccharification respectively. Their findings suggested production of ethanol 

by fermenting apple pomace could be a profitable means of producing biofuel at the same 

time reducing the amount apple pomace left as waste (Khosravi and Shojaosadati, 2003). 

1.1.4.5 Biogas 

Apple pomace has the potential to be used in anaerobic digestion plant to produce 

biogas, a renewable source of energy, which can be used directly in heating and cooking or 

used to drive electricity generation (Nicholas, 2012). The residue from the anaerobic digester 
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represents a nutrient rich bio-fertiliser which can be recycled back onto arable land. Dried 

apple pomace can be utilised as solid fuel and burnt directly (Fischer, 1984), or converted to 

Charcoal briquettes which again can be used as solid domestic fuel (Walter and Sherman, 

1976). 

1.1.4.6 Recovery of Polyphenols 

The preceding illustrated the potential to using the entire apple pomace biomass 

directly with little or no pre-treatment. However there is increasing awareness of the potential 

to add value to waste streams by applying what has become known as the biorefining concept.  

Therefore the recovery of polyphenols, which are bioactive compounds, by 

fractionating the biomass aligns with biorefining and at the same time generates valuable 

feedstocks for food, feed, pharmacological or cosmetic purposes (Cetkovic et al., 2008, Y. Lu 

and Foo, 1997, Y.  Lu and Foo, 2000). 

Apples represent an important source of flavonoids in diets within Europe and the 

United States. Approximately 22% of polyphenolics consumed in the United states are 

derived from apples (Vinson et al., 2001). The phenolic compounds are widely distributed in 

the fruit and vegetables where they contribute to the colour and flavour. The major phenolic 

compounds found in apples include; Procyanidins, Epicatechins, Chlorogenic acids, 

Phloridzin and the Quercetin conjugates (Bhushan et al., 2008). 

 

Flavonoids, and phenolic acids represent non-nutrient natural compounds derived 

from plants and are thought to offer protective effects of fruits and vegetables. It has been 

revealed that different polyphenolic compounds possess varied actions which could aid fight 

against diseases. Phytochemicals may impede proliferation of cancer cells, control immune 

and inflammatory response, and defend against oxidation of lipids (Hollman et al., 1997, Liu, 
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2003). A strong inverse relation exist between flavonoid intake and lung cancer development 

(Knekt et al., 1997), which results in a reduction in the risk of lung cancer associated with 

increased flavonoid consumption in younger people and in non-smokers. Potential functions 

of polyphenols on human body includes those shown is in Figure 1-2. 

 

 

Figure 1-2 Benefits of Polyphenols on human health (Alexis, 2008). 

 

Investigations have revealed that most of the phytochemicals are found in the peels 

(Serena et al., 2007). Therefore the polyphenolic content in the apple pomace will be greater 

than that in apple juice and varies among different cultivars of apples. The concentration of 

the polyphenolic compounds depends on several factors including storage of the apples, 

growth conditions, harvest time (Serena et al., 2007). 



17 
Chapter 1- Literature Review  
 
 
1.1.5 Classification of polyphenols 

Polyphenols or Phenolic compounds represent one of the diverse and extensively 

distributed class of substances in the plant kingdom with over 8000 chemical structures 

discovered so far (Harborne, 1993).  

The main group of polyphenolic compounds found in fruits and vegetables are 

classified as illustrated in Figure 1-3. 

 

Figure 1-3 Classification of Polyphenols (Alexis, 2008). 

 

Structures of Phenolic compounds are made up of one or more hydroxyl groups 

attached directly to an aromatic ring. Polyphenols on the other hand are compounds composed 

of at least one phenolic group attached to one or more aromatic rings (Crozier et al., 2006, 

Manach et al., 2004).The term polyphenols does not represent or refer to a polymer of simple 

phenols. Typically, polyphenols do not exist as free compounds in plants sources, but are 

found as glycoside or esters. They can vary from elementary compound like phenolic acid to 

extremely polymerized molecules as in tannins. Primarily, the sugar residues are glucose but 
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occasionally can be galactose, rhamnose, xylose and arabinose linked to the hydroxyl groups 

directly or otherwise (Laura et al., 2013). 

polyphenolic compounds are grouped into classes based on the number of carbon 

atoms in the molecule and also their chemical structure. They are classified as flavonoids and 

phenolic acids (Harborne, 1993). 

1.1.5.1 Flavonoids 

Flavonoids by far constitute the most diverse group of polyphenolic compounds in 

plants. Ordinarily they are discovered as glycosides derivatives and over 4000 flavonoids 

have been documented in plants (Harborne and Williams, 2000)). The list keeps growing 

because they can be many patterns of substitution of the ‘’hydroxyl, methoxy or glycosyl’’ 

groups of the primary structure, to form more complex ones (Véronique, 2005). 

Flavonoids are soluble in water and the backbone molecule contains 15 carbon atoms. 

They have 𝐶6 − 𝐶3 − 𝐶6 structure skeleton with ring A and B been phenolic in nature which 

are linked together by 3 grouped carbons as shown in Figure 1-4 

They are sub-divided into 13 classes according to the extent of hydroxylation and the 

presence of a double bond between 𝐶2-𝐶3 of the heterocycling pyron ring (A Scalbert and 

Williamson, 2000). 

One of the 3-grouped carbons invariable is joined to a carbon of one of the aromatic 

rings, to yield a middle third ring C either directly or through an oxygen bridge as in Figure 

1-5 Flavonoid structure. 

, (http://www.phytochemicals.info/). 
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Figure 1-4 Generalised structure of Flavonoids.  

 

                                                     

Figure 1-5 Flavonoid structure. 

 

The variations in the chromate ring C as a result of hydroxylation pattern allow 

flavonoids to be classified further into six (6) sub-groups as; flavonols, flavanols, flavones, 

flavanones anthocyannins, isoflavones (A Scalbert and Williamson, 2000, Tsao and 

McCallum, 2009). Chalcones are still classified as a member of the flavonoids, although they 

lacked the heterocyclic ring C (Tsao and McCallum, 2009). 

1.1.5.1.1 Flavonols and Flavones 

Flanonols have double bond between 𝐶2 = 𝐶3 and contain 𝑂𝐻 group at position 3. 

They are characterized by complete unsaturated C ring that link the aromatic rings A and B in 

a single compound as in Figure 1-6. 
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Figure 1-6 Flavonols structure. 

 

Flavonols are abundant in diet with quercetin the most common flavonoids. They are 

usually found as 𝑂 −Glycosides with at least 279 and 347 different glycosidic combinations 

for Quercetin and Kaempferol alone respectively (Tsao and McCallum, 2009). Onions, apples 

blueberries tea, curly kale and red wine are sources of flavonols (D’Archivio et al., 2007). 

Dietary intake and bioavailability of flavonols are controlled by several factors 

including plant variety, growth, season, extent of ripeness, exposure to sun light, method of 

food preparation and processing (Aherne and O’Brien, 2002). Biosynthesis of flavonols is 

accelerated by light and they are accumulated around the outer tissues of fruits. Interestingly, 

depending on the exposure to sunlight, there can be differences in the amount of flavonoids 

among fruits on the same tree and even between different sides of a single piece of fruits 

(Cortell and Kennedy, 2006). Unlike flavonoids, Flavones are not widespread and have no 𝑂𝐻 

– group attached to the position 3 of the 𝐶 ring. 

1.1.5.1.2 Flavanones  

Flavanones have structure similar to Flavones only there is no double bond between 

C2 and C3. All three carbon chain atoms are saturated and an oxygen atom in the 4th position. 

They are glycosylated generally in C7 by disaccharides. Higher concentrations of Flavanones 
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are obtained only from citrus species and lesser  from tomatoes and some aromatic plants such 

as mint (D’Archivio et al., 2007). 

1.1.5.1.3 Chalcones 

Chalcones or dihydrochalcones have a linear C3 chain connecting the 2 benzene rings. 

There is a double bond in the C3-chain whereas all bonds are saturated in the 

dihydrochalcones as in Figure 1-7. 

Typical example of dihydrochalcone is Phloridzin (Phloritin-2’-O-D-glucoside and 

commonly found in apple leaves and described as anti-tumour (Nelson and Falk, 1992). 

1.1.5.1.4 Anthocyanidins 

The plant pigments dominated by the water soluble anthocyanidins and are 

responsible for the colour of flowers, fruits, vegetables. Anthocyanins are mainly glycosides 

of anthocyanidins and are abundant in the skin except for some red fruits (e.g., pelargonidin, 

malvidin, cyanidins (Yildiz, 2010). Anthocyanidins have two double bonds in the C ring and 

also positively charged. Anthocyanin present large group of the colour pigments of plants 

with a sugar moiety attached primarily at C3 – position of ring C or at the 5 or 7 – position on 

aromatic ring A.  Very rare glycosylation at the 31 – 41 – 51 – position on the ring B have been 

reported(Mazza and Miniati, 1991). The sugar moieties may also be acylated by a range of 

aromatic or aliphatic acids. 

1.1.5.1.5 Flavanols and Proanthocyanidins 

Flavanols have structure similar to those of anthocyanidins with no positive charge on 

the oxygen atom. All the bonds in the ring 3- are saturated with hydroxyl group on the C3. 
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                                                       Chalcone 

                             

                                               Dihydrochalcone 

Figure 1-7 Structure of Chalcones and Dihydrochalcones. 
 

Flavanols have two chiral centres on C2 and C3 due to the hydroxylation on the C3 

which can possible yield four diastereomers. Catechin and Epicatechin are isomers with trans 

and cis configurations respectively. Each of the two flavan-3-ol have two stereoisomers as, 

(+)-catechin, (-)-catechin, (+)-epicatechin and (-)-epicatechin. They are commonly found in 

plants and are not glycosylated. Green tea, cocoa powder, red wine are example of sources of 

flavan-3-ol (Arts et al., 2000a, b).  

Proanthocyanidins or condensed tannins are polymers of flavan-3-ol consisting up to 

50 subunits resulting in formation of dimers and oligomers see Figure 1-8. 
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Figure 1-8 Simple Proanthocyanidins structure 

 

Oligomeric Procyanidins (OPC) are made of chains of catechins, epicatechins and 

their Gallic acid esters and are water soluble (Porter, 1989). Proanthocyanidins oligomers can 

have different variations in their structures to form A-type oligomers due to the formation of a 

second interflavanoid bond by C-O oxidative coupling (Porter, 1988, 1989). The complexity 

of this type of conversion makes A type Proanthocyanidins oligomers as compared to the B 

type (Morimoto et al., 1985). 

Proanthocyanidins are responsible for astringency in many fruits like grapes, apples, 

berries and some beverages such as, cider, wine tea, beer, and for the bitterness of cocoa. 

However it is important to note that astringency disappears when fruits are fully ripped 

(Rasmussen et al., 2005). 
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1.1.5.2 Phenolic Acids 

Phenolic acids constitute non – flavonoids polyphenolic compounds which are further 

grouped into two main types, as benzoic acid and cinnamic acid derivatives (Manach et al., 

2004). Free Phenolic acids are obtained from fruits and vegetables and are often in a bound 

form in grains and seeds and can be freed by acid or alkaline hydrolysis or treatment with 

enzymes (Adom and Liu, 2002, Chandrasekara and Shahidi, 2010, K.-H. Kim et al., 2006). 

1.1.5.2.1 Hydroxybenzoic acids 

They are characterized by the presence of the carboxyl group substituted on the 

Phenol. Examples are Protocatechuic acid, Salicylic acid, Vanillic acid and Gallic acid. Gallic 

and Protocatechuic acids are found very small concentrations in edible plants except for in 

blackberries and are usually not considered to be of high nutrition concern (D’Archivio et al., 

2007). Benzoic aldehydes are formed when the substitution on the phenol is aldehyde instead 

of the carboxyl group. The general phenolic acid structures are shown in Figure 1-9. 

 

                                    

      Hydroxybenzoic acid                    Hydroxycinammic acid 

Figure 1-9 Typical phenolic acid structure 
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1.1.5.2.2   Hydroxycinnamic acid 

Hydroxycinnamic acids are derived from cinnamic acids and comprised primarily of P-

coumaric, Caffeic, Ferulic and Sinapic acids. They are usually not found in the free form but 

are glycosylated derivatives or esters of quinic, shikimic or tartaric acid (Manach et al., 2004). 

Chlorogenic acid found in many fruits and coffee in higher concentration is an ester of Caffeic 

and Quinic acids. Caffeic acid is the most abundant phenolic acid representing over 75% of 

the total of hydrocinnamates in most fruits. Hydrocinnamic acid are distributed in all parts of 

fruits with higher concentrations around the outer part which increases with increase in size 

but decreases in the course of fruit ripening (D’Archivio et al., 2007). 

1.2 Extraction of phenolic compounds 

The extraction process is an essential step towards ‘’isolation, identification’’ and 

utilisation of polyphenolic compound and has therefore attracted increased research interest 

(Pinelo et al., 2007). The extracts are largely applied in, pharmaceutical, food and cosmetic 

industries because of their antioxidant properties. 

Innovative methods have been explored to recover the polyphenolic compounds from 

natural sources to reduce the extraction time, the amount of solvent used, and improve yields 

and quality of extracts (L. Wang and Weller, 2006). The traditional solvent extraction 

methods are often time consuming and require large volumes of solvents (Luque de Castro 

and Garcia-Ayuso, 1998). Moreover, the procedure is laborious and produces low selectivity 

and extraction yield (Ibáñez et al., 2008). However simply substituting the solvent type 

usually results in low yields of recovery because of poor solute-solvent affinities and 

moreover the cost could be higher. Therefore advanced techniques of extraction with reduced 

recovery time and organic solvents consumption and increase pollution prevention are 
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required. New extraction techniques like; Microwave assisted extraction, Ultrasound assisted 

extraction (UAE), Supercritical fluid extraction, Subcritical water (Pressurised hot water) 

extraction are perceived as efficient routes to recover phytochemical from plant matrices.  

1.2.1 Ultrasound Assisted Extraction 

Food and chemical industries have applied ultrasound technology for a variety of 

processes, as the approach is rapid, consumes less solvent produces a cleaner extract of higher 

yields while reducing the consumption of fossil energy (Pingret et al., 2012).  

The ultrasound technique has been applied to recover aromas (Caldeira et al., 2004, Xia et al., 

2006), pigments (Barbero et al., 2008, Chen et al., 2007) and antioxidant compounds 

including polyphenols (Khan et al., 2010, Ma et al., 2009, Pingret et al., 2012, Rodrigues and 

Pinto, 2007, Virot et al., 2010, Jing Wang et al., 2008). The acoustic cavitation generated in 

the organic solvent upon the passage of ultrasound radiation results in the rupture of cell walls 

therefore improving mass transfer between solute and solvent which accounts for the  

improved extraction yield (Ghafoor et al., 2009, Vinatoru, 2001). 

Pingret et al., 2012, evaluated the impact of ultrasound assisted extraction of 

polyphenolic compounds derived from lyophilised apple pomace utilising an aqueous buffer 

as solvent at low temperatures. The intensity of the ultrasound, temperature and time of 

extraction were optimised using a response surface methodology to achieve optimal 

polyphenolic content. A parallel investigation comparing the ultrasound method and 

traditional maceration technique were conducted and evaluated in terms of antioxidant 

activity and kinetics of extraction. Ultrasonic treated samples yielded 30% increase in total 

phenolic content with higher antioxidant activity (Pingret et al., 2012). 
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1.2.2 Critical fluid 

Critical state of a substance is that specific conditions of temperature, pressure or 

composition where liquid and gas converge, resulting in one single phase. It is the region 

where critical temperature (Tc) and critical pressure (Pc) intersect and no formation of liquid 

above the critical point (C) upon increasing pressure. Vapour pressure at the critical 

temperature is termed critical pressure. The phase diagram is shown in Figure 1-10. 

              

Figure 1-10 Phase diagram of Pressure-Temperature changes of water (Herrero et al., 2006) 

 

 

The supercritical state is attained when pressure and temperature and of a substance is 

increased beyond the critical values. At this stage there is no clear difference between the 

liquid and the gas states, and the fluid is termed supercritical fluid. It is easier to control the 

physicochemical properties like diffusivity, density, viscosity, and dielectric constant by 

simply varying pressure or the temperature after even crossing phase boundaries (Sihvonen et 

al., 1999). 
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1.2.3 Supercritical Fluid Extraction (SFE) 

Supercritical fluid extraction is among the more promising techniques able to 

overcome the drawbacks of using traditional solvent extraction (King, 2000). The extraction 

employs fluids in their supercritical state. Supercritical fluid has density similar to liquids and 

viscosities similar to gas. However its diffusivity is between those of liquids and gas (Herrero 

et al., 2006). 

The solvating strength of a supercritical fluid correlates with density which can be 

manipulated by simply varying temperature or pressure (Del Valle and Aguilera, 1999, 

Raventós  et al., 2002)., Which implies the solvent power of supercritical fluid can easily be 

manipulated. In addition supercritical fluids have superior coefficients of diffusion and 

inferior surface tension and viscosities compared to liquid solvents leading to a favourable 

mass transfer therefore allowing supercritical fluids to be a suitable solvent for extraction and 

separation processes (Sihvonen et al., 1999). The combined gas-like mass transfer and liquid 

–like solvating characteristics of supercritical fluids first lead analytical chemists to use them 

as chromatographic mobile phase and later as fluids capable of removing species from solids. 

Many compounds can be used as fluids in supercritical technology including those 

listed in Table 1-5. 

The most widely used supercritical fluid is carbon dioxide because of its modest 

critical pressure (72.9 atm) and temperature (31.2oC). Carbon dioxide is considered a 'green 

solvent' as it is not toxic and is chemically inert. Moreover, when extractions are completed 

and the system depressurised, the carbon dioxide is eliminated because it is a gas at room 

temperatures and no residue of it is left in extraction products. 

Therefore supercritical carbon dioxide is increasingly the solvent of choice in the food, 

pharmaceutical and nutraceutical sectors (Herrero et al., 2006, Luque de Castro et al., 1994). 
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Table 1-5 Critical Parameters of Selected Compounds 

 

Solvent 

Critical Property 

Temperature 

℃ 

Pressure 

atm 

Density 

g/ml 

Solubility 

𝛿𝑆𝐹𝐶(𝑐𝑎𝑙
−
1
2𝑐𝑚−

3
2) 

Ethane 32.4 48.2 0.200 5.8 

Ethene 10.1 50.5 0.200 5.8 

Carbon dioxide 31.2 72.9 0.470 7.5 

Methanol -34.4 79.9 0.272 8.9 

Water 101.1 217.6 0.322 13.5 

Nitrous oxide 36.7 71.7 0.460 7.2 

Sulphur hexafluoride 45.8 37.7 0.730 5.5 

n-Butene -139.9 36.0 0.221 5.2 

n-Pentane -76.5 33.3 0.237 5.1 
 

(M Herrero et al 2006, Luque de Castro et al., 1994) 

Although supercritical carbon dioxide is an excellent solvent and suitable for 

extracting temperature sensitive and non-polar phytochemicals, it is not able to effectively 

dissolve polar molecules like polyphenols because its polarity is too low. Modifiers or co-

solvents are usually added to improve the efficacy of extraction. Modifiers are strongly polar 

compounds, and when added in smaller quantities, can produce considerable changes of 

solvating properties of supercritical carbon dioxide (Valcárcel and Tena, 1997). The modifier 

exerts it effects mainly in two ways: 1) by interacting with the analyte/matrix complex to 

promote rapid desorption into the supercritical fluid and 2) by enhancing the solubility 

properties of the supercritical carbon dioxide. The combination of modifier and high 

temperature is highly effective (Yang et al., 1995). Addition of modifiers decreases extraction 

time improves yield and allow mild operating conditions. However the introduction of 

modifiers can complicate the thermodynamics of the system and also introduces additional 

cost (Herrero et al., 2006). 
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There are two ways the modifier can be added to the system. It can be added to the 

sample in the extraction cell prior to the supercritical fluid extraction or be mixed with the 

CO2. The latter is more effective since the modifier is continuously passed through the sample 

whereas in the former the modifier is swept from the extraction cell when the supercritical 

fluid starts to circulate through the sample. Normally two separate pumps are used in either 

situation. Alternatively a premixed fluid mixture of high purified gases can be prepared by 

suppliers, which eliminates the complexity and expense of operating two pumps in 

supercritical fluid extraction system. However this practice is not advisable because of the 

concentration shifts taking place during cylinder depletion (Via et al., 1994). 

Of the many co-solvent including ethanol, methanol, acetone, acetonitrile, water, 

dichloromethane and ethyl ether, methanol is the most applied for it effective miscibility (up 

to 20%) with CO2. Nonetheless ethanol could be preferred modifier in supercritical fluid 

extraction for food and nutraceutical applications because it is GRAS status (Hamburger et 

al., 2004, Lang and Wai, 2001).  

1.2.4 Subcritical Water Extraction 

Subcritical water extraction has emerged recently as a technique to substitute the 

conventional methods of extraction. Water is environmentally benign, non-toxic, easily 

accessible and inexpensive solvent for the extraction of bioactives from plant materials (Çam 

and Aaby, 2010). In addition it has been shown that subcritical water mediated extraction is 

efficient and can provide higher extraction yields from solid samples (Luque de Castro et al., 

1999). 

Subcritical water refers to liquid water at a temperature between the atmospheric 

boiling point and the critical temperature (374oC) of water. Alternative terms include 
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pressurised hot water (PHW), near critical water (NCW), hot compressed water (HCW), or 

superheated water (Meyer et al., 1999). 

Application of Subcritical water as an extraction fluid was first reported by Hawthorne 

et al., 1994 for the extraction of some polar and non-polar analytes from soil samples  

(Hawthorne et al., 1994). 

The most essential factor to consider in subcritical water procedure is the variation of 

it dielectric constant. At room temperature and normal pressure, water has high dielectric 

constant (ε) because of its highly polar nature with extensive hydrogen- bonded structure. So 

water is not considered a good solvent for extracting non –polar or organic compounds at 

room temperature (Teo et al., 2010). Water at room temperature has a dielectric constant of 

approximately 80 and decreases to 27 at 250oC, which is similar to that of ethanol (see Figure 

1-11) therefore by modulating temperature and pressure water can perform like organic 

solvents solubilising low polarity analytes (Nieto et al., 2010). 

Moreover the enhancement of extraction efficiency of subcritical water can be 

attributed to an improvement in the solubility and mass transfer effects as a result of the 

modification of physicochemical properties of water at elevated temperature, which also leads 

to disruption of surface equilibria (Ong et al., 2006). Therefore the increase in temperature 

can break the solute-matrix association as a result of van der Waal forces, hydrogen bonding, 

and dipole attractions of the solute molecules and other active sites in the matrix. The efficacy 

and impact of using subcritical water will be the subject of this thesis. 
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Figure 1-11 Variability of dielectric constant of water with temperature (Herrero et al., 2006) 

 

Table 1-6 Dielectric constant of some common solvents (Mohsen-Nia et al., 2010) 

Compound Dielectric constant 

20℃ 

Water 79.99±0.04 

Methanol 33.30±0.02 

Ethanol 25.02±0.02 

Acetone 21.30±0.02 
 

 

1.3 Antioxidant properties of Phenolic Compound 

Antioxidants can protect materials susceptible to oxidation by delaying, inhibiting, or 

preventing their damage thereby reducing oxidative stress (Ames et al., 1993). They are 

regarded as good protectors of tissues prone to ROS damage (Wu-yang Huang et al., 2012). 

As discussed above antioxidant compounds possess anti-inflammatory, anti-atherosclerotic, 
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anti-proliferative, anti-tumour, anti-mutagenic, anti-carcinogenic, antibacterial or antiviral 

activities (Ratnam et al., 2006, Shuang et al., 2010). Currently, polyphenolic compounds have 

been shown to be strong antioxidants in vitro and demonstrated further effective antioxidant 

activity compared with Carotenoids, Vitamins C and E (Rice-Evans et al., 1997, Rice-Evans 

et al., 1995). There is a reported inverse relationship between the risk of oxidative related 

illness like cancer and cardiovascular diseases and the consumption of fruits and vegetables 

partly attributed to polyphenols (Hollman and Katan, 1999, Augustin Scalbert et al., 2005a, 

Augustin Scalbert et al., 2005b). Unfortunately, intervention studies with humans have not 

shown a clear benefit positively confirming the findings of epidemiological studies 

(Dimitrios, 2006). However, many reviews on effectiveness of polyphenolic compounds in 

humans have been published in classified nutritional journals, suggesting polyphenols may 

show some health benefits (Kroon et al., 2004). Furthermore, it is also very clear that, data 

from bioavailability studies are accumulating (Manach et al., 2004). 

Apples are common fruit in many diets, and represent a significant source of bioavailable 

polyphenolic compounds (Escarpa and Gonzalez, 1998). 

1.4 Determination of Total Antioxidant Capacity 

The composition of polyphenolic compounds, coupled with diverse chemical 

properties across the plant materials has made the isolation and investigation of antioxidant 

properties of individual phenolic compounds very ineffective and costly. Hence, the need to 

explore acceptable and fast methods of determination of antioxidant capacities of extracts 

(Dai  and Mumper, 2010). 

Interestingly, there is no simple or single acceptable standard method to accurately 

quantify antioxidant capacities of food substances. The need for a standardized method 
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according to Prior et al., 2005, will eliminate inconsistencies and provide proper interpretation 

of antioxidant capacity, and the standardised assay will allow; 

1.  Appropriate controls for assay application. 

2. Considerable comparison between market products 

3.  Discrepancies between or within products to be regulated 

4. Regulatory issues and health claims to be provided based on quality standards  

                                                                                    (Prior et al., 2005). 

 

1.4.1 Selection of Methods and Development 

Well established methods are normally given priority over new ones because the 

strengths and weaknesses of the existing ones are already known and fewer efforts are 

required to address any shortcomings. Nonetheless, newer methods may possess some 

potential or may even be better (Prior et al., 2005). 

Any new method should however meet the following classical criteria; 

1. Explain or measure the chemistry actually occurring in potential application. 

2. Employ biological relevant radical source. 

3. Must not be too complex. 

4.  Make use of well-defined chemical mechanism and end points. 

5. Instrumentation should not be difficult to come by. 

6. Acceptable reproducibility within-run- and between –days. 

7. Adjustable for assays of both hydrophilic and lipophilic antioxidants with different 

radical sources. 

8. Adaptable to high-throughput analysis for routine quality control analysis 

(Prior et al., 2003). 
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Methods for measuring antioxidants capacity in vitro have been reviewed by Cao and 

Prior, (1999) and classified into two groups according to the chemical reactions involved. 

Electron transfer (ET-based assays) and the hydrogen atom transfer (HAT) (D Huang et al., 

2005). Irrespective of the mechanisms involved, the final or end results should be equivalent, 

but may differ in terms of their kinetics and side reactions (Prior et al., 2005). The major 

factors that determine the mechanism and efficacy are the bond dissociation energy (BDE) 

and Ionization Potential (J. S. Wright et al., 2001). Therefore, an integrated protocol is 

required to incorporate the different properties of polyphenolic compounds, which possess 

potentially several different reaction routes. 

1.4.2 Hydrogen Atom Transfer Assays- HAT 

Mechanism of hydrogen atom transfer assays involves the simple donation of 

hydrogen atom by the antioxidant to inhibit free radicals as in;  

𝑋 . + 𝐴𝐻  → 𝑋𝐻 + 𝐴. 

Hydrogen atom transfer (HAT) based reactions are dependent on the bond dissociation 

energy (BDE) of the group in the antioxidant donating the hydrogen and also its ionization 

potential (IP) (J. S. Wright et al., 2001) which in turn are influenced by solvent, pH and the 

presence of reducing agents like metals which are capable of complicating the assays. HAT 

based reactions are very rapid and are completed within seconds to few minutes (Prior et al., 

2005). 

Hydrogen atom transfer methods (HAT) include: 

1. Oxygen radical absorbance capacity (ORAC) assay 

2. Lipid peroxidation inhibition capacity (LPIC) method 

3. Total radical trapping antioxidant parameter (TRAP) 

4. Inhibition oxygen uptake (IOC) 
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5. Crocin bleaching Nitric oxide radical inhibition activity 

6. Hydroxyl radical scavenging activity by p-NDA (p-butrisidunethyl aniline) 

7. Scavenging of H2O2 radicals 

8. ABTS radical scavenging of superoxide radical formation by alkaline (SASA). 

(Badarinath et al., 2010). 

The mechanism of many of the assays outlined above involve in a system of 

competition where the antioxidants and substrates battle for thermally generated peroxyl 

radicals from the decomposition of azo- compounds (D Huang et al., 2005). ORAC and 

TRAP assays are good examples that met most of the requirements for a screening assay 

outlined in the previous paragraphs (Prior et al., 2005). 

1.4.2.1 Oxygen Radical Absorbance Capacity (ORAC) Assay 

The ORAC assay measures the inhibition of free peroxyl radical damage by 

antioxidant to a fluorescent probe. The peroxyl radicals are generated by the decomposition of 

2, 2l-azobis (2-amidinopropane) dihydrochloride (AAPH) as in 

𝑅 − 𝑁 = 𝑁 − 𝑅𝑂𝑂 → 𝑁2 + 2𝑅𝑂𝑂
. 

𝑅𝑂𝑂. + 𝑃𝑟𝑜𝑏𝑒(𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑡) → 𝑅𝑂𝑂𝐻 + 𝑜𝑥𝑖𝑑𝑖𝑧𝑒𝑑 𝑝𝑟𝑜𝑏𝑒(𝑙𝑜𝑠𝑠 𝑜𝑓 𝑓𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒) 

𝑅𝑂𝑂. + 𝐴𝐻 → 𝑅𝑂𝑂𝐻 + 𝐴.  

𝑅𝑂𝑂. + 𝐴.  → 𝑅𝑂𝑂𝐴 

The fluorescence intensity is measured every minute under physiological conditions 

(pH 7.4, 37°C) to obtain a kinetic curve of fluorescence decay. The net area under the curve 

(AUC) calculated by subtracting the AUC of blank from that of the sample or standard over 

time, as compared to Trolox, a water-soluble analogue of α-tocopherol (Cao et al., 1995b, D 

Huang et al., 2005). Originally B- phycoerythrin (BPE) was the protein source which later 

found to have short comings (Sanchez-Moreno, 2002).as its reactivity with the peroxyl radical 
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was not stable (Cao and Prior, 1999) and complicate the observation of the fluorescent 

molecules when exposed to light (Niki, 2002). Additionally there are reports of its binding 

with some polyphenols especially Proanthocyannidins leading to inaccurate ORAC values 

(Prior et al., 2005). 

In recent times new fluorescent probes like FL; 3l, 6l-dihydroxy-spiro [isobenzofuran-

[3H], 9l[9H]-xanthen]-3-one (Ou et al., 2001) or dichlorofluorescein (H2DCF-dA; 2l,7l-

dichlorodihydrofluorescein diacetate) are preferred because they are less reactive and 

consistent (Ishige et al., 2001).ORAC assay can be automated (D Huang et al., 2002). 

COBAS FARA II analyser was the original automated equipment, whose production has been 

discontinued by the manufacturers (Cao et al., 1995a). The equipment in recent times had 

undergone some better improvements through innovations and with some fluorescent probes 

(Ou et al., 2001, Prior et al., 2003). Excellent results were achieved using multichannel liquid 

handling system coupled with a fluorescence microplate reader with either 96-or 48- well 

format (D Huang et al., 2002, Ou et al., 2001). The coefficient of variation of the assay was 

lower in the 48- well format compared with the 96-well format (i.e. 4-5%, compared to 4-10% 

in 96- well format) (Prior et al., 2003). It is very important to monitor temperature very 

closely throughout the plate as ORAC reactions is temperature sensitive and therefore 

incubating the reaction buffer before reacting with AAPH improves the variability between 

determinations (Prior et al., 2005). Reproducibility of the assay can be affected by slight 

variations in temperatures of the external wells of the microplate (Lussignoli et al., 1999). 

1.4.2.2 Total Radical Trapping Antioxidant Parameter (TRAP) 

Reaction mechanisms under TRAP are similar to ORAC assay and results are also 

reported in Trolox equivalents. TRAP has been demonstrated in human plasma sample. The 

lag-time induce by plasma was compared with that induced by Trolox within the same plasma 



38 
Chapter 1- Literature Review  
 
 
sample. The rate of peroxidation induced by AAPH 2,21-azinobis- methyl-propanidamide 

hydrochloride was monitored through the loss of fluorescence of the protein R-phycoerythrin 

(R-PE) (Ghiselli et al., 1995). Another reaction probe used was ABTS (2,2l-azinobis (3-

ethylbenzothiazoline-6-sulfonic acid (Bartosz et al., 1998). 

1.4.3 Electron Transfer- Based Assays (E-T) 

Electron transfer assays measure the capacity of antioxidants to transfer an electron to 

reduce free radicals, carbonyls and metallic compounds (J. S. Wright et al., 2001). 

𝑋 . + 𝐴𝐻 →  𝑋− + 𝐴𝐻.+                                                 

𝐴𝐻.+  
𝐻2𝑂
↔  𝐴. + 𝐻3𝑂

+                                  

𝑋− + 𝐻3 𝑂
+  → 𝑋𝐻 +𝐻2𝑂                                         

𝑀(𝐼𝐼𝐼) + 𝐴𝐻 →  𝐴𝐻+ +𝑀(𝐼𝐼) 

The E-T based assays include: 

1. Trolox equivalent antioxidant capacity (TEAC)  

2. Ferric reducing antioxidant power (FRAP) 

3. DPPH free radical scavenging assay 

4. Copper (II) reduction capacity 

5. Total phenols by Folin-Ciocalteu 

6. N, N-dimethyl-p-Phenylenediamine (DMPD) assay (Badarinath et al., 2010). 

Both electron transfer and hydrogen atom transfer almost occur simultaneously in all 

samples, however pH of medium and antioxidant structure determine the balance (Prior et al., 

2005). The reactivity of electron transfer assays are based on deprotonation (Lemanska et al., 

2001) and ionization potential (J. S. Wright et al., 2001) of the reactive functional group and 

therefore are pH dependent. Increasing pH generally decreases the ionization potential values 

and hence increased in electron donating ability with deprotonation (Prior and Gu, 2005, Prior 
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et al., 2005). ET- assays measure the capacity of an antioxidant in reduction of an oxidant 

probe, which changes colour when reduced (D Huang et al., 2005). The reaction is completed 

when the colour change stops and degree of colour change is proportional to the concentration 

of antioxidant. Electron transfer methods are very sensitive to ascorbic and uric acids, which 

are very important in maintaining plasma redox tone and also capable of detecting reducing 

polyphenolic compounds (Prior et al., 2005) The antioxidant power estimated using ET- 

assays is not dependent on the kinetics but on the percent decrease of product formed. If the 

half- life of the 𝐴𝐻∙+ is long enough very sufficient, secondary reactions may result in 

interference within the assay (Sartor et al., 1999).  

The oxidising  probes used are 2,2l-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) 

radical cation (𝐴𝐵𝑇𝑆·+) in TEAC, Fe3+(2,4,6-tripyridyl-s-triazine)2Cl3 in FRAP and 

bis(neocuproine) 𝐶𝑢2+𝐶𝑙2 in CUPRAC assays, respectively. TEAC method is practically, 

simple, reproducible, and inexpensive (Awika et al., 2003). Most importantly, the TEAC 

assay can be adapted to different media allowing the assessment of antioxidant capacity of 

plant extracts in terms of hydrophilicity and hydrophobicity, since the reagent is soluble in 

both aqueous and organic solvent media (Re et al., 1999). As opposed to TEAC assay, FRAP 

assay measures the reduction capacity of 𝐹𝑒3+ 𝑡𝑜 𝐹𝑒2+ of water-soluble antioxidants in acidic 

pH such 3.6.(Pulido et al., 2000). 

1.5 Bioavailability and Bioefficacy of Polyphenols  

The in vitro evaluation or assessment of the biological activity of polyphenols 

employs cultured cells as tissues which are exposed to aglycones or polyphenol rich-extracts. 

Unfortunately polyphenols exist in food sources as esters, glycosides or polymers and 

therefore human plasma and tissues are not exposed in vivo to free polyphenols forms and 

concentrations (D’Archivio et al., 2007, Roupas and Noakes, 2010). Furthermore, studies 
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have shown that the polyphenol undergo several modifications during digestion and therefore 

the forms registered in the blood and tissues are neither aglycones (except for green tea 

catechins) nor the forms in dietary sources (Roupas and Noakes, 2010). Enzymes in the 

intestines or gut microbiota interact with these compounds thereby changing their forms 

(Aron and Kennedy, 2008, D’Archivio et al., 2007, Saura-Calixto et al., 2007). In one such in 

vitro analysis, as high as 58% portion of polyphenol was released when treated with a 

digestive enzyme emphasizing the forms reaching the blood and tissues are different from 

those appearing in food (Saura-Calixto et al., 2007). Therefore action in the human body may 

be attributed to other metabolites and not polyphenolic compounds in their original form 

(Visioli et al., 2009).  

It is very important that concentration of polyphenols should be identical to those 

appearing in plasma. Concentrations of polyphenolic in an apple- rich meal are in the range 

0.1-10 μmol/L which is far higher than those in plasma and tissues and therefore 

bioavailability data and the understanding of the metabolism in human should be taken into 

consideration before making conclusions as the benefit/impact of polyphenolic in general 

(Kroon et al., 2004). Regrettably, literature on bioavailability issues of phytochemicals of 

whole food is not very extensive. Bioavailability' is the proportion of the nutrient that is 

digested, absorbed, and metabolised through normal pathways (D’Archivio et al., 2007). As a 

result it is important to distinguish between how much of a particular nutrient is present and 

how much of it is bioavailable (Srinivasan, 2001). It is a known fact that polyphenols are not 

totally absorbed in the small intestines because of the sugar residue and its position. Although 

flavonoids can be absorbed in the gastrointestinal tract, their absorption is incomplete and 

levels of circulation are low (Biedrzycka and Amarowicz, 2008). A study on bioavailability of 

polyphenols from alcoholic cider in human was done using volunteers (DuPont et al., 2002). 
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One hour after consuming 1.1 litres of apple cider, no quercetin was registered in their 

plasma, while low levels of 3l-methylquercetin and 4l- methylquercetin were observed. 

Caffeic acid which was rapidly absorbed could not be traced in the plasma after 1.5 hrs. 

Catechin, epicatechin and phloridzin were not seen in the plasma and according to the 

researchers it could be that their concentrations were low in the cider. The concentrations of 

hippuric acid, which is a type of carboxylic acid, and phloretin a dihydrochalcone both 

increased in the volunteers’ urine, after the consumption of the cider, however, no traces of 

quercetin, catechin and epicatechin in urine were registered (DuPont et al., 2002). 

Another study on bioavailability in humans revealed that the amount of quercetin from 

onions accumulated in plasma to higher levels compared those from apples. The differences 

were attributed to bioavailability of the conjugates of quercetin in the different foods. Onions 

have more quercetin aglycons and glycosides whereas apples contain quercetin 

monoglycosides and quercetin rutinoside which may be less bioavailable (Hollman et al., 

1997). Indeed it is becoming very clear that findings of in vitro studies may not necessary 

reflect in vivo effects. Quercetin, rutin, epicatechin have been shown to have high antioxidant 

capacity, but their contribution to the total effect in aqueous extract are low. There are 

situations where positive antioxidant effect  in vitro turned not to be reproducible in vivo in 

human studies and direct antioxidant effects of polyphenols in vivo are questionable. As 

previously mentioned, concentrations in blood are low compared with other antioxidants, and 

extensive metabolism after ingestion lowers their antioxidant activity (Hollman et al., 2011). 

Moreover the observed increase in antioxidant effect of some polyphenols in apples after 

ingestion may be due to a metabolic effects of fructose on urate and not flavonoids (Lotito 

and Frei, 2004). Therefore antioxidant effect in vivo is open to many interpretations and must 

be done with caution (Roupas and Noakes, 2010). However there are other findings that point 
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to the fact that polyphenols might exert other biological effects, such as inhibitions, and cell 

receptors (Kong et al., 2000, Spencer et al., 2003, Wiseman et al., 2001) and several other 

functions as shown in Figure 1-2. 

1.6 The role of Antioxidants in Cosmetics 

The human skin is the first line defence and therefore subjected to a range of biotic an 

abiotic pressures .The skins defence mechanism, generates reactive oxygen species (ROS) 

which in turn causes damage to DNA, proteins and destabilises membranes of epidermal cells 

resulting, in early or premature aging of the skin (Mariethoz et al., 1998). Approximately, half 

of all skin damage or disorders is attributable to free radicals induced by UV radiation 

(Harman, 2002, Herrmann et al., 1993). 

Interestingly, living tissues fight to balance the effects of the ROS by using internal 

antioxidative enzymes and nonenzymatic antioxidants. Antioxidative enzymes comprises 

superoxide dismutase, superoxide reductase, catalase, glutathione peroxidase whereas 

nonenzymatic antioxidants are vitamin E, vitamin C, glutathione, ubiquinone (Shindo et al., 

1994). For instance, when ROS are induced within the living cells, the endogenous 

antioxidants are utilised. Over time the endogenous defence mechanisms are stressed, and 

with increasing loads of reactive oxygen species, stimulate the aging process (Fuchs et al., 

1989). The equilibrium can be restored by supplying exogenous antioxidants (Pouillot et al., 

2011). 

External antioxidants like ascorbic acid (vitamin C), tocopherol (vitamin E), have been 

demonstrated to inhibit peroxidation and chain reactions within lipid membranes in topical 

applications. Similar results were reported for trace elements and some polyphenols. Vitamin 

E is a known powerful liposoluble antioxidant which reacts with free radicals to form the 

stable tocopheryl radical, that stops the chain reaction (Pouillot et al., 2011). In vitro and in 
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vivo analysis demonstrated the effect of vitamin E in preventing damages by reducing cell 

burn induced damage and decreasing the redness of the skin when prone to both UVA and 

UVB radiations (Streilen and Gilchrist, 1995). Vitamin C exhibited better protection against 

UVA or UVB when it was mixed in sunburn cream than cream alone (Darr et al., 1996). 

Therefore, incorporating vitamin C in to after–sun products was worked well against UV-

induced reactive oxygen species (Cabelli and Bielski, 1983). 

There is a growing concern that common synthetic produced preservatives may have 

hazardous effects (Krishnakumar and Gordon, 1996) which coupled to consumer demand for 

natural ingredient has driven increased interest in natural antioxidants and other active 

ingredients obtained from plants (COELHO et al., 2001). However topical formulations 

incorporating extracts derived from plant sources may be restricted due their physical and 

chemical properties, which might affect stability of the product and overall performance 

(Cardoso et al., 2011). 

Several plant extracts have been investigated for their antioxidant activity and utilised 

in the cosmetic industries. Proanthocyanidins from grape seeds extract has been shown to be 

potent antioxidants with free radical scavenging activities greater than vitamin C and E 

(Bagchi et al., 2000, Vinson et al., 1995) Mittal et al., 2003 demonstrated photo protection by 

inhibiting UV- radiation- induced oxidative stress with grape seed extract (Mittal et al., 2003). 

Therefore topical application of proanthocyanidins from grape seed seems to enhance the sun 

protection factor in human (Afaq et al., 2003). 

The green tea catechins are main antioxidant ingredients of green tea extracts and are 

made up of up epicatechin-derivatives, namely epicatechin (EC), epicatechin gallate (ECG), 

epigallocatechin (EGC), and epigallocatechin gallate (EGCG). kaemferol, myricetin and 
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quercetin are other constituent flavonoids in the extract (Graham, 1992). The antioxidant- rich 

extracts can be utilised either orally or topically (Katiyar et al., 2000). 

Phloridzin (Phloretin) is a major phenolic glycoside found in apple trees and has a 

characteristic bitter taste that contribute to the original flavour of cider (Whiting and Coggins, 

1975). However since its isolation from the bark of apple trees in 1835 by De Konnick 

(Petersen, 1835), Phloridzin has gained some attention as an ingredient in pharmaceutical 

applications and also a subject for human physiology research (Baldisserotto et al., 2012). 

Phloridzin and derivatives exhibited high in vitro antioxidant activity (Ridgway et al., 

1996), memory enhancement in humans (Boccia et al., 1999), inhibit peroxidation of lipids 

(Rezk et al., 2002), prevention of bone loss (Puel et al., 2005), and growth retardation of 

certain types of cancer cells (Veeriah et al., 2006). A phenolic extract rich in phloridzin was 

claimed to exert photo- genoprotective effects and free radical scavenging mediated the anti-

ultraviolet protective role of phloridzin (Gaudout et al., 2006, Salles et al., 1995). 

Unfortunately phloridzin has a poor stability in finished formulations as the aglycone is much 

easier to handle which is not the natural form derived from plants (Vertuani et al., 2011). 

Moreover previous reports about the dihydrochalcone presented promising dermo-cosmetic 

applications as potential antifungal agents with extracts from apple species (Hunter and Hull, 

1993). 

1.7 Encapsulation of Polyphenols 

During the last decades encapsulation has found many applications in the food, 

cosmetic and pharmaceutical industries in order to: (i) safeguard the active ingredient from 

degrading through lessening its activity to its surroundings; (ii) reduce rate of transfer of 

encapsulate to immediate environment due to evaporation; (iii) prevent alteration of the 

physical properties of starting material to ensure simpler manipulation; (iv) modify rate of 
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release active ingredient (v) cover-up undesired flavour or taste of the active ingredient; (vi) 

reduce concentration of active substance to required levels and ensuring uniform distribution 

within the carrier; (vii) to ensure components of the mixture are separated and do not react 

with one another. (Desai and Park, 2005) in (Fang and Bhandari, 2010). Encapsulation 

techniques of bioactive ingredients generally involve 3 steps: (i) Creation of a wall over the 

active ingredient to be encapsulated; (ii) Prevention of unwanted gradual loss; (iii) ensuring 

that unwanted substances are eliminated (Gibbs et al., 1999, Mozafari, 2006). 

The coated materials otherwise known as; packaged material, actives, fill, internal 

phase or payload usually made up of natural material or a mixture. Likewise, the coating 

materials can also be made from pure or modified polysaccharides and occasionally includes 

sugars, proteins, gums, lipids and synthetic polymers. They are also called carrier, shell, 

packaging material, wall material, membrane or capsule (Gibbs et al., 1999, Mozafari, 2006). 

1.7.1 Methods of Encapsulation 

Encapsulation techniques can be divided into three classes as chemical processes; 

physicochemical techniques; and physical processes. 

The chemical processes involves; chemical reaction and cross-linking of molecules 

concerned and include; in situ polymerization, interfacial polycondensation, interfacial cross-

linking, interfacial polymerization (Munin and Florence, 2011). 

Physicochemical processes includes; hot melts coating, spray- cooling, ionic gelation, 

simple or complex coacervation, and solvent evaporation- extraction. 

Physical processes comprised; freeze and spray drying, spheronisation, fluid bed 

coating, centrifugal extrusion, and procedures employing critical fluids. The focus of this 

review will be on encapsulation techniques applied to polyphenols. 
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1.7.1.1 Spray Drying 

Spray drying as an encapsulation technique is widely applied in the food industry 

because it is continuous operation, economical and flexible and delivers good quality, stable, 

dried particles (Desai and Park, 2005). The technique employs special equipment that 

generates particles from a solution containing homogenised active ingredients and coating 

agents (Giunchedi and Conte, 1995, Madene et al., 2006, Patel et al., 2009, Vehring, 2008). 

Initially the dispersed active ingredient within the coating agent is atomised by allowing it 

through a nozzle with the aid of a compressed gas system. Hot process nitrogen or air is 

delivered to meet with the atomised sample in order to rapidly evaporate the solvent from the 

droplets. The particles formed whose properties are strongly influenced by geometry of nozzle 

and viscosity of the feed, drop to the bottom of the drying chamber and a cyclone or filter bag 

is used to recover the powder from the exhaust (Munin and Florence, 2011). Spray dried 

particles are spherical with average size of particles ranges 10- 100μm (Gibbs et al., 1999). 

Spray dried technology however requires the carriers used are water soluble (Desai and Park, 

2005). 

Maltodextrins are commonly used as carrier for encapsulating polyphenols as well us 

flavours (BR Bhandari, 2004). Maltodextrins were able to protect the degradation of heat 

sensitive anthocyanins from the high temperatures of the process gas, thereby preserving the 

integrity of anthocyanins during encapsulation (Ersus and Yurdagel, 2007, Robert et al., 

2010). Maltodextrins can blend with gum arabic as coating substances (Fang and Bhandari, 

2010). A composition of gum arabic with Maltodextrins and in a ratio of 2:3 had been utilised 

for procyanidins encapsulation from grape seed extract (Lianfu Zhang et al., 2007). The active 

ingredient and coating material were mixed in a ratio 3:7 W/W, and amount of solid in feed 

was 20% W/V. Efficiency of encapsulation was close to 89% and the stability of the product 
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was clearly enhanced. Similarly epigallocatechin gallate (EGCG) has been successfully 

encapsulated within Maltodextrins as was shown to be efficacious in reducing carcinogenic 

cell development (Rocha et al., 2011). 

Chitosan, a linear polysaccharide has also been employed as a coating substance 

during spray drying of extracts from olive (Kosaraju et al., 2006). The polysaccharide was 

loaded with 27% of phenolic compounds and surface morphology of the microspheres 

produced was very smooth, FTIR spectroscopy revealed the antioxidant was physically 

incorporated into the Chitosan. 

Extract from soybean rich in polyphenols, have been stabilised within a composite mixture of 

maltodextrin, starch and silica (tixosil 333) (Georgetti et al., 2008). The results revealed a 

slight deterioration of the polyphenol encapsulated with tixosil 333, and the antioxidant 

activity was not significantly affected. Therefore inclusion of the bulking agent amid drying 

stage ensures efficacy and stability of the dried powder. 

Carrageenan, a sulphated linear polysaccharide derived from red algae has been used 

as a carrier and was effective in preserving the antioxidant activity of variety of extracts rich 

in polyphenolic compounds(Krishnaiah et al., 2009a, Krishnaiah et al., 2009b). 

An emulsion of sodium caseinate- soy lectithin (Protein –lipid) was another wall 

material used to stabilise polyphenols. The emulsion was added during spray drying of 

extracts of apple grape seed and olive leaf. The particle size distribution analysis and 

observations from light microscopy showed that, morphology of micronized particles were all 

spherical with uniform size distribution (80%, 6-60µm). Antioxidant activity after the 

encapsulation exercise was significantly retained as verified by radical scavenging studies 

(Kosaraju et al., 2008). 
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1.7.1.2 Freeze Drying 

Freeze drying also termed lyophilisation or cryodesiccation is the preferred 

dehydration method for many temperature sensitive and unstable substances (Fang and 

Bhandari, 2010). The process of freeze drying requires first freezing the substance and then 

decreasing the pressure of chamber and applying sufficient heat to cause water frozen within 

the material to sublime (Oetjen, 2004). Freeze drying is an encapsulation technology suitable 

for water-soluble perfumes or fragrances and aromas of natural origin, as well as drugs (Desai 

and Park, 2005). A pomace sample containing anthocyanins and maltodextrin DE20 was 

stable for two months when freeze dried and stored at 500C/0.5 (Delgado-Vargas et al., 2000). 

Extract of polyphenol- rich bakeapple (Robus chamaemorus) was subjected to freeze 

drying using two forms of maltodextrins (DE5-8 and DE18-5) as packaging materials. 

Encapsulated product showed good stability over long periods of time and offered an effective 

protection of the polyphenols against reaction with surrounding air during storage, while 

maintaining its antioxidant activity or slightly improving it (Laine et al., 2008). 

Nonetheless there is another school of thought that freeze-drying as an encapsulation 

technique could not enhance bioavailability or stability of products (Fang and Bhandari, 

2010). Antioxidant activity of the polyphenol after storage did not improve when extract of 

Hibiscus anthocyanins was encapsulated in black yeast by freeze drying. The freeze drying 

encapsulation did not exhibit any significant differences in their properties and no benefit in 

terms of antioxidant activity was achieved (Gradinaru et al., 2003). 

 

1.7.1.3 Molecular Inclusion Encapsulation 

Molecular inclusion is extensively realised by employing Cyclodextrins as a carrier 

substances. Cyclodextrins are cyclic polysaccharides consisting of six, seven or eight residues 
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of glucose. The glucopyranose units are linked by α (1-4) glycosidic bond. They are labelled 

as α, β, ϒ- Cyclodextrins, with the β- Cyclodextrins as the most widely used (Pagington, 

1986).  

 

Figure 1-12 Molecular structure of the three forms of Cyclodextrins; six membered alpha 
cyclodextrin (α-CD), seven member beta cyclodextrin (β-CD) and eight member gama 
cyclodextrin (γ-CD) (Olsson and Westman, 2013). 

 

 

The internal cavity of the cylindrical shaped Cyclodextrins exhibit hydrophobia, 

whereas the external surface is hydrophilic therefore Cyclodextrins are capable to 

accommodating diverse guests molecules including less polar ones (B. R.  Bhandari et al., 

1999, Dziezak, 1998). A wide range of phytochemicals with poor water solubility have been 

encapsulated within cyclodextrins. For example Resveratrol trapped in β- Cyclodextrin and 

Maltosyl-β-Cyclodextrin (Lucas-Abellán et al., 2007), extract of Olive leaf in β- 

Cyclodextrins (Mourtzinos et al., 2007), Kaemferol, Myricetin and Quercetin in 2- 

hydroxylpropyl-β-Cyclodextrins (Mercader-Ros et al., 2010), Rutin in β-Cyclodextrins 

(Haiyun et al., 2003), Hesperetin in hydroxylpropyl-β-Cyclodextrins (Tommasini et al., 

2005). The encapsulation of phytochemicals with Cyclodextrins resulted in improved 

solubility in water as well as their antioxidant activities. The increase in antioxidant capacity 
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may be the result of protection of the polyphenolic compounds against fast free radicals 

oxidation (Mercader-Ros et al., 2010) leading to higher solubility in biological matrices 

(Haiyun et al., 2003).  

However the encapsulation capacity of phenolic compounds depends on the wall 

material or the carrier. Smaller molecules with higher hydrophobicity are attracted more to the 

Cyclodextrins in for example hesperetin was more efficient compared to hesperidin based on 

their relative Cyclodextrins affinity (Tommasini et al., 2005). Also different carrier substances 

influence encapsulation efficiency for the same active ingredient (Fang and Bhandari, 2010). 

For example hydroxylpropyl-β-Cyclodextrins produced highest encapsulation efficiency for 

curcumin compared to other Cyclodextrins forms (Tang et al., 2002, Tomren et al., 2007). 

Furthermore, the order of the affinity of Myricetin and Quercetin to β-Cyclodextrins forms 

was hydroxylpropyl-β-Cyclodextrins > maltosyl-β-Cyclodextrins > β-Cyclodextrins, thus 

showing efficacy of modified or transformed Cyclodextrins (Lucas-Abella´n et al., 2008). 

Encapsulating polyphenolics within Cyclodextrins has also been shown to protect 

thermal degradation. A flavonoid rich extract encapsulated in the β-Cyclodextrin exhibited 

stability against thermo-oxidation and offered effective protection of polyphenolics against 

light when exposed to ultra violet rays at λ= 254 nm.(López-García et al., 2010). 

The insertion of Ferulic acid within the lipophilic interior of α-Cyclodextrin was 

studied based on modelling and simulation technology. The result showed the encapsulation 

of ferrulic acid increased the photo-stability and also regulated the release of Ferulic acid and 

can safely be included in cosmetic formulations to offer protection against radiation emitted 

by the sun (Anselmi et al., 2008). 
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1.7.1.4 Particle formation process with Supercritical fluids 

The application of supercritical fluids to support encapsulation processes are an 

alternative to traditional particle formation technology and have received tremendous 

attention over the last ten years (Cocero and Martin, 2008, Jung and Perrut, 2001, Shariati and 

Peters, 2003). Supercritical fluid technology offers new and interesting route for particle 

formation which avoids many of the drawbacks of the traditional methods (Fages et al., 

2004). Supercritical carbon dioxide is the most widely utilised fluid in supercritical fluid 

encapsulation technology processes because of relatively low or moderate critical parameters. 

In addition supercritical carbon dioxide is inexpensive, non-flammable and non- toxic, and are 

generally recognised as safe (Cocero et al., 2009). The supercritical fluid can be separated 

from the product by simply depressurisation (Miguel et al., 2006). 

Supercritical fluid based particle formation techniques can be classified into 3.groups. 

(i) Rapid Expansion of Supercritical Solution (RESS). 

(ii) Supercritical Anti-solvent (SAS). 

(iii) Particles from Gas Saturated solutions (PGSS) (Munin and Florence, 2011). 

1.7.1.4.1 Rapid Expansion of Supercritical Solution (RESS) 

The Rapid Expansion of Supercritical Solution (RESS) process consists of saturating 

supercritical fluid with a solute(s) and depressurising rapidly the solution using a nozzle of 

selected aperture into a low pressure chamber, resulting in rapid crystallisation of the solute 

into very small particles (Jung and Perrut 2001). The pressure drop as a result of the process 

creates very high jet velocity to atomise the droplets (Debenedetti et al., 1993). 
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Many researchers have applied the RESS to produce single- component particles with 

uniform particle size distributions (Chang, 2006, Matson et al., 1987, McHugh and Krukonis, 

2013, Mohamed et al., 1989, Petersen et al., 1986, Tom and Debenedetti, 1991). 

The concept has been applied in wide varieties of substances for example; dyes, 

polymers, inorganic substances, and in pharmaceuticals (Knez and Weidner, 2003). Different 

particle size and morphology can be produced from the primary material by carefully varying 

process parameters to influence supersaturation and rate of nucleation (Knez and Weidner, 

2003). Evaluation of solubility data is very important in designing the RESS process as it 

provides the process conditions necessary to investigate the feasibility of the process for 

particle formation (Jong‐Hyun Kim et al., 1996). Thus experiments to model solubility of 

solutes in the supercritical fluid are conducted or simple make use of published data if 

available (Knez and Weidner, 2003). 

Rapid Expansion of Supercritical Solution process can also be utilised in the 

production of composite substances. This is achieved by first dissolving both the payload and 

the carrier in the supercritical fluid and precipitate both substances simultaneously (Cocero et 

al., 2009). Host molecules like Cyclodextrins can be used to achieve microencapsulation by 

the RESS process (Fages et al., 2004). 

The RESS is a fairly simple process and requires only the use of one capillary nozzle 

for the expansion process (Chang, 2006). Very fine and controllable nanometre size particles 

are generated which are free from solvents (Knez and Weidner, 2003). 

 

Limitations of the RESS process 

The fundamental setback of the RESS process is the low solubility of many substances 

in supercritical carbon dioxide. The limitation is even worse for co-precipitation applications 
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which requires both substances to be soluble in the supercritical carbon dioxide (Cocero et al., 

2009). However it is possible to overcome this limitation by the use of alternative organic 

supercritical solvents such as, triflouromethane or chlorofluoromethane (Pestov et al., 2003), 

or organic co-solvents can be employed with supercritical carbon dioxide to improve the 

solubility of the target ingredient. Several pharmaceuticals and proteins were encapsulated by 

using RESS with modifiers/co-solvents (Mishima et al., 2000). Since RESS precipitation is 

extremely rapid, there is a difficulty in controlling loading and particle morphologies of 

composites as both criteria are very sensitive to the chain of ‘’supersaturation’’ which in turn 

rely on operation parameters and therefore is another potential limitation of RESS (Yeo and 

Kiran, 2005). Particle formation processes utilising coating substance that are sufficiently 

soluble in supercritical carbon dioxide would be simple, clean and is a very promising 

application (Cocero et al., 2009). 

1.7.1.4.2 Supercritical Antisolvent process (SAS) 

The supercritical fluid is utilised as a solvent under RESS process, which revealed 

several notable drawbacks. These limitations could be avoided by using the supercritical fluid 

as an antisolvent in micronisation processes. Supercritical antisolvent process was first 

proposed in the 1920 (Zsigmondy and Bachmann, 1918) and further developed in the 1980’s 

(Gallagher et al., 1989). Supercritical antisolvent processes are practicable for solutes whose 

solubilities are poor in supercritical fluid where the latter being utilised as an antisolvent to 

cause solute nucleation from solutions. Initially the active ingredient to be encapsulated is 

mixed with a solvent usually organic and later contacted with the supercritical fluid. 

However the solvent chosen should be miscible with the supercritical fluid at an 

appreciable level. At the same time the solute should not be soluble in the supercritical fluid at 

operating conditions. After intensive mixing, to saturate the liquid solution with the 
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supercritical fluid, causing the reduction in density and the solvating strength of the organic 

solvent, thereby removing it from solution. Solute concentration increases to supersaturation 

and finally micronised nano size particles are nucleated. The rate nucleation, growth rate, 

shape, particle size and, particle size distribution can be controlled by changing the 

temperature, pressure and mass transfer as they influence the supersaturation ratio. Particle 

size distribution from this process is non- homogeneous. The organic solvents normally used 

in such processes for pharmaceutical applications include; Dimethyl sulphur oxide (DMSO), 

ethanol, acetone and ethyl acetate. Excess solvent is removed after particle formation by 

continuous flow of pure antisolvent which is the supercritical fluid. Nonetheless this 

continuous stripping with the SCF is not able to remove all residual solvent because of the 

strong affinity between the solute and the solvent. Some solute may even be extracted if care 

is not taken. However, concentrations of solvent residue not exceeding 5000ppm are 

permitted in pharmaceutical applications (Fages et al., 2004, Knez and Weidner, 2003, Munin 

and Florence, 2011). 

Supercritical antisolvent process can be applied to generate composites by concurrent 

precipitation of the active ingredient and coating material together simultaneously or by 

encapsulating previously formed solute particles in a suspension of the walling material and 

precipitating (Yulu Wang et al., 2004). Supercritical antisolvent method is best for non-

soluble organic substances like proteins (Whitaker et al., 2005). 

Under co-precipitation utilisation, a situation where both active ingredient and coating 

material are insoluble in the same solvent, then it is appropriate to prepare two separate 

solutions with each substance and then co-precipitate by the antisolvent process (Cocero et al., 

2009). 
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1.7.1.4.3 Particles from Gas saturated Solutions (PGSS) 

  Particles from gas saturated solutions allow formation of substances that are insoluble 

in the supercritical fluid, but can absorb a substantial amount of the gas that either swells the 

substance or decrease melting point (Knez and Weidner, 2003). PGSS technique for particle 

formation is good for substances that take in supercritical fluids at higher concentrations 

(Cocero et al., 2009). The increased gas concentration in the liquid phase gives indication of a 

decrease of melting point, viscosity as well as interfacial tension, thereby allowing substances 

to be sprayed for which under normal circumstances would have been very difficult to form 

particles by spraying (Weidner, 2009). 

The solute which is to be micronised (in molten state) is pumped into a pressure 

resistant pipe, and pressurized gas is then allowed into the static mixer to meet the solute. 

After an intensive mixing, the mixture is then depressurised through a nozzle and fine droplets 

are formed by the Joule Thompson effect. As the gas rapidly cools down, it removes the heat 

from the molten solute droplets, and solidification time vary between 10mS and 100mS 

(Weidner, 2009). PGSS defer from RESS and Supercritical antisolvent technique because 

PGSS does not depend on solvent strength but rather utilises other properties of the 

supercritical fluids (Weidner et al., 1994a, Weidner et al., 1994b).  

The PGSS process is more applicable for particle formation of polymeric substances 

for encapsulating the active ingredient within the substance (Knez and Weidner, 2003). In this 

application, the incorporation of the active substance into the polymer is strongly assisted by 

effect of swelling of supercritical fluid. Interestingly, about 100 or more substances have been 

powdered using PGSS process (Weidner, 1996). 

Production of particles from PGSS has been feasible in the laboratory, and pilot scale 

production for both continuous and discontinuous modes can be employed. In the laboratory 
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scale, the active ingredient to be powdered is introduced into an autoclave and then 

pressurized. Subsequently an appreciable concentration of the gas is mixed with the solute, 

after which system is depressurized through a nozzle and partially received in spray tower 

connected to a cyclone and the gas escapes through the vent. Normally few kilograms of 

powdered substance are obtained in the laboratory scale operation. Larger quantities are 

produced from continuous process which can be a pilot plant (Weidner, 2009).  

The PGSS process has been demonstrated in pilot- scale for example surface-active 

components, waxes, resins, some polymers and pharmaceuticals. Improved micronized 

powders were produced compared to powders generated by traditional encapsulation 

techniques (Knez and Weidner, 2003). The benefits of the PGSS technique over the 

conventional methods for micronisation include:  

• The process is adaptable and, applicable to many substances; 

• Low pressures are used; 

• Solvent free powders are produced; 

• Minimum amount of gas is consumed; 

• Capable working with highly viscous and sticky products; 

• Different particle morphologies are produced; 

• Process can be scaled up. (Knez and Weidner, 2003). 

Supercritical fluid can also be employed in the established spray drying process 

(Reverchon, 2002, Sievers et al., 2003). The role of the supercritical fluid is to cause the 

disintegration of liquid-solute mixture to generate very fine droplets (Weidner, 2009). In this 

process the extracts can be preheated in a vessel and transported by the aid of a piston pump 

into a static mixer. The SCF is held high pressure tank at vapour pressure and is collected 

from the tank in the form of liquid using a diaphragm pump. The flow rate of the fluid varied 
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between 6 to 10 kg/hr which can be measured by Coriolis flow meter. The fluid is heated 

through a heat exchanger and pumped through a non-return valve to the static mixer to contact 

the solution to be dried like similarly to PGSS process. Hence the modified process is termed 

PGSS- drying. Subsequently the gas is depressurised, and fine droplets are formed. The spray 

conditions can be manipulated to allow the solvent escape alongside the gas. The temperature 

of the spray tower can be varied to ensure the mixture is superheated under pressure so as 

achieve a temperature not less than the dew point within the gas and solvent binary system. 

This implies that the gas and solvent results in a uniform phase being removed from the spray. 

However it is very important to have an idea about the solubility of the solvent in the 

supercritical fluid under spray tower conditions(Meterc et al., 2008, Weidner et al., 2000). 

 

1.8 Objectives 

1.8.1  General Objectives 

The overall objective of this thesis is to develop an understanding of the utility of subcritical 

water to support efficient selective extraction of polyphenolics from the by-products of cider 

production and evaluate extracts in terms of antioxidant activity and the impact of 

encapsulation of the polyphenolics on overall stability and bio-availability. 

1.8.1.1 Specific research objectives  

The specific research objectives are as follows: 

 Develop an advanced understanding of the impact of process operating parameters on 

subcritical water mediated extraction of polyphenolics from apple pomace; 

 Develop a basic understanding of the efficacy of polyphenolics as a complex mixture 

with respect to antioxidant activity; and 
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 Evaluate the feasibility of encapsulating the polyphenolic fraction derived from apple 

pomace using naturally occurring polymers co-extracted with polyphenolics under the 

subcritical water mediated hydrolysis to improve oxidative stability and assess the 

impact on formulations and performance in for example skin care products. 
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Chapter 2  

Materials and Methods 
2.1  Materials 

2.1.1  Apple Pomace 

6.5 kg of apple pomace made up of 7 apple varieties (Michelin, Dabinett, Yarlinton 

Mill, Chisel Jersey, Brown Snout, Vilberie and Harry Masters Jersey) was collected from 

Universal Beverages Limited (UBL), Ledbury a subsidiary company of Bulmers, UK on the 

8th of November, 2012. The material was transported to the University of Birmingham and 

partitioned into 0.7 kg aliquots using freeze bags before storing at -20ºC until further use. 

2.2 Chemical Reagents 

All chemicals and standards used where purchased at the highest grade of purity from 

supplies indicated in the methods. 

2.2.1  Methods 

2.2.1.1 Dry weight content of apple pomace 

The dry weight and moisture content of the apple pomace obtained from Bulmers were 

determined using AOCS (American Oil Chemist Society) standard procedure and expressed 

as the percentage of total wet weight of the apple pomace. Apple pomace was very 

heterogeneous comprising, seeds, peel, apple flesh and calix, therefore was thoroughly mixed 

to ensure replicate samples were representative of the pomace population. Evaporating dishes 

(Pyrex glass, Fisher Scientific) were dried for 24h in a bench top Laboratory convention oven 

(STATUS International, UK) set at 103±3℃. The evaporating dishes were cooled in the 
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desiccator and their weight accurately determined. 10g ±0.03 of the pomace was sampled and 

placed in the evaporating dish using electronic semi micro balance (Mettler PM 4600 Delta 

Range) before transferring into the convection oven. Weight loss of pomace was monitored 

every 24hours until there was no change in weight. Dried pomace was allowed to cool in a 

desiccator for at least 30 minutes to return to ambient conditions before weighing again. To 

ensure good results gloves were worn throughout and all measurements were done in 

triplicates or more. 

Calculations: 

The change in the weight of the apple pomace during the drying process was used to 

determine the moisture content expressed as a percentage (% moisture content) of wet weight 

as received as shown in Equation 2-1and Equation 2-2 

Equation 2-1 Moisture Content Determination of Apple pomace 

% 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒   = [
(𝑤𝑒𝑖𝑔ℎ𝑡 𝑑𝑖𝑠ℎ + 𝑤𝑒𝑡 𝑝𝑜𝑚𝑎𝑐𝑒) − (𝑤𝑒𝑖𝑔ℎ𝑡 𝑑𝑖𝑠ℎ + 𝑑𝑟𝑦 𝑝𝑜𝑚𝑎𝑐𝑒)

(𝑤𝑒𝑖𝑔ℎ𝑡 𝑑𝑖𝑠ℎ + 𝑤𝑒𝑡 𝑝𝑜𝑚𝑎𝑐𝑒) − (𝑤𝑒𝑖𝑔ℎ𝑡 𝑒𝑚𝑝𝑡𝑦 𝑑𝑖𝑠ℎ)
]𝑋100 

 

The percent Dry weight content of the apple pomace was calculated as follows; 

Equation 2-2 Dry Matter Content Determination of Apple pomace 

% 𝐷𝑟𝑦 𝐴𝑝𝑝𝑙𝑒 𝑝𝑜𝑚𝑎𝑐𝑒 = 100 −% 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑜𝑓 𝑎𝑝𝑝𝑙𝑒 𝑝𝑜𝑚𝑎𝑐𝑒 

 

2.2.1.2 Preparation of freeze dried apple pomace 

Apple pomace was freeze dried using a vacuum freeze dryer (Model number EQ03 by 

Vacuum and Industrial products). The pomace sample previously stored at -20℃ was used. 

To set up the freeze dyer all valves of the instrument were closed and the refrigerator was 

switched on to allow temperature to cool to -50℃. Samples were loaded and the Pirani gauge 
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turned on and waited for some few minutes before opening the isolation valve for pressure to 

reach 670mmHg. The pump was kept cooled by keeping a standing fan by the equipment. 

Samples were dried when vacuum pressure was 4 Mbar. Prior to withdrawing the dried 

sample from the dryer, the isolation valve was closed, the vacuum pump switched off, and 

chamber drained. Samples were removed and placed in desiccator for at least 30 minutes to 

return to ambient conditions. Moisture and dry weight content of the freeze dried were 

determined as in section 2.2.1 and milled (1 minute) into a powder using a domestic Moulinex 

blender 530 (KEMAEU, France). Apple pomace powder was packed in dark plastic bags and 

stored at room temperature for subsequent use. 

2.2.1.3 Homogenisation of wet apple pomace 

Apple pomace was a heterogeneous source of biomass as stated above. In an attempt 

to minimise batch to batch variability, wet apple pomace was first homogenised (for 2 

minues) using a Moulinex domestic blending machine before material was sampled for 

further experimentation. Homogenised apple pomace was sampled for dry weight 

determination as in section 2.2.1 and the remaining bulk stored in freezer bags at -20℃ for 

further use. 

2.2.2 Solvent extraction of polyphenolics from apple pomace  

Extractions were done in an orbital shaker incubator MaxQ 4000 (Thermo Scientific). 

Known weight (according to Solid-to-solvent ratio) of the freeze dried apple pomace powder 

was placed in 100ml Duran bottle and solvent (Acetone or Ethanol) was added based on the 

solid -to - solvent ratio desired, and placed inside the incubator. A thermometer was attached 

to the inside of the incubator to confirm temperature conditions. Extraction time and shaking 

(150rpm) were set on the equipment. To prevent any loss of solvent during extraction, the lid 

of the Duran bottle was screwed tight before extraction begun. Shaking of incubator 
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automatically stops when extraction time has elapsed. Content of Duran bottle after extraction 

were immediately transferred into 50ml centrifuge tube and centrifuged at 4000g for 10 

minutes using the Juan C4 I centrifuge. The volume of supernatant were determined using a 

25ml glass measuring cylinder and clean extract subsequently transferred into a 50ml blue cap 

tube for further investigations. Extractions at higher temperatures (60℃ and 85℃) were 

carried out similarly in water bath equipment Grant OLS200 (England). 

2.2.3 Subcritical water extraction of polyphenolics from apple pomace 

2.2.3.1 Materials and Equipment 

Wet homogenised apple pomace was used in subcritical extraction equipment, Parr 

instrument model (5521), which was a stainless steel reactor vessel of internal volume 300ml 

with 2.5inch diameter and with a heating jacket. The vessel was connected with a temperature 

and pressure sensors whose readings were obtained from digital display of the meters. 

Magnetic stirrer (1240rpm) with integrated cooling system was attached to help enhance mass 

transfer. A back pressure regulatory valve was used to control pressure inside the vessel. A 

cylinder containing Nitrogen gas was connected and used to pressurize the vessel. The setup 

is shown in Figure 2-1. 

2.2.3.1.1 Operating Procedure of the subcritical water Reactor 

Wet homogenised apple pomace was loaded into the vessel according to the solid- to- 

solvent ratio (water) desired. The reactor vessel was sealed and placed inside the heating 

jacket. All valves into the reactor were closed. Checks were made to ensure the cooling 

systems to the vessel and stirrer were working. The stirrer mechanism to the mixer was 

connected and switched on. Gas purge valve (V-4) in Figure 2-1 was opened followed by gas 

valve (V-1) to set a maximum pressure of 100bar by opening gas regulator (V-2). Gas valve 
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(V-3) was then opened slowly to allow the Nitrogen gas into the reactor, while closing gas 

valve (V-4) slowly to purge the vessel within 10-15 seconds. Initial extraction pressure inside 

the vessel was set to 50 bar and the gas valve (V-3) closed. The desired extraction temperature 

was set on the controller and the heating switched on. Once the reaction was finished, the gas 

valve (V-1) was closed and the heating and stirring turned off. Cooling system to the reactor 

was turned on and vessel quickly removed from the heating jacket into an ice bath to allow 

the vessel to cool temperature below 50℃.The vessel was depressurised to release all gasses 

by carefully opening valve (V-4). The gas line was also depressurised by slowly opening the 

gas inlet valve (V-3). Gas regulator valve (V-2) was closed and the vessel opened to collect 

sample. 

 

Figure 2-1 Setup for the Subcritical water Extraction of Apple pomace. 

 

 

 

Key 
PI-Pressure Indicators 
RW-Raw water 
TIC-Temperature indicator 
V-1, 2,3,4,- one-way gas valves 
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Processing of Extract  

All extracts were transferred into a 500ml Beckman centrifuge bottles and centrifuged 

at 4000g for 10 minutes at a temperature 4℃ using the Beckman J2-20 centrifuge equipment. 

Supernatant were further filtered under normal pressure using Fisherbrand filter paper (QL 

100). The volumes of the filtrates were measured using a 250ml measuring cylinder and 

transferred into 150ml plastic bottles and stored at -20℃ for further analysis. Solid residue 

were collected into freezer bags and also stored at -20℃. 

2.2.4 Determination of biomass solubilisation  

1ml of clear supernatant extract was pipetted using the 1000µl pipette into pre-

weighed dried Eppendorf tube and reweighed to get the weight of tube and wet sample. Dry 

solid content of extract per millilitre were determined as in section 2.2.1. With total volume of 

extract already recorded, the total weight of solids (in grams) was determined and the fraction 

in terms of dry weight of the starting material was obtained using Equation 2-3. 

Equation 2-3 Fraction of Solids Solubilised 

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑜𝑙𝑖𝑑𝑠 𝑠𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑠𝑒𝑑

= 𝑤𝑒𝑖𝑔ℎ𝑡 (
𝑠𝑜𝑙𝑖𝑑𝑠 (𝑔)

𝑚𝑙
) × (

𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑚𝑙)

𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 (𝑔)
 

 

2.2.5 Total Phenolic Content Determination 

Total Phenolic Content (TPC) of all extracts were determined using Folin-Ciocalteu 

(FC) micro-scale method described by (Waterhouse, 2001). 

Background 

Phenolic compounds in the extracts were oxidized by the Folin Ciocalteus’s reagent 

(FC-reagent) composed of a mixture of phosphotungnstic acid 𝐻3𝑃𝑊12𝑂40, and 
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Phosphomolybdic acid 𝐻3𝑃𝑀𝑜12𝑂14. The acids were reduced to a mixture of blue oxides of 

tungsten, 𝑊8𝑂23 and Molybdenum 𝑀𝑜8𝑂23 in the presence of the phenols (V.L.;  Singleton 

and Rossi, 1965b). The blue pigment has maximum absorption in the region of 765nm which 

was proportional to concentration of phenolic compounds initially present. Usually the 

development of the colour takes some time and can be facilitated by moderately warming the 

sample. Excessive heat will cause the colour to disappear (V. L. Singleton and Rossi, 1965a). 

The Folin Ciocalteu’s method measures total phenolics in addition to other oxidisable 

substances within the sample matrix and can over estimate the value (V.L.;  Singleton et al., 

1999, V.L.;  Singleton and Rossi, 1965b). 

Total phenolic content determined was expressed in terms of Gallic acid equivalent 

(GAE). Gallic acid is so chosen because of its availability in pure form and relatively less 

expensive compared to other alternatives. 

2.2.5.1 Chemicals and Equipment 

Gallic acid 𝐶7𝐻6𝑂5, 2,2,2 Trichloroacetic acid, 99.5% (TCA), Folin & Ciocalteu’s 

Phenol reagent were procured from Sigma-Aldrich (Dorset, UK), Sodium  carbonate 𝑁𝑎2𝐶𝑂3 

from J.T. Baker (Holland), Absolute ethanol (Fisher Scientific, UK), Clifton unstirred water 

(Nickel Electro Ltd, England), Miximatic Vortex equipment  (JENCONS Scientific),  

Promega Glomax Microplate Spectrophotometer, Sigma k30 Laboratory centrifuge (SciQuip 

Ltd, UK). 

2.2.5.1.1 Trichloroacetic Acid, TCA 100% (W/V) Preparation 

30g of TCA solid was weighed using a precision balance (Mettler PM 4600 delta 

Range) into a 100ml glass beaker and 13.620ml of distilled water was measured using a 25ml 
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measuring cylinder to measure 13ml and a 1ml micro pipette to measure 0.620ml. The TCA 

solution was transferred into 80ml Duran bottle and stored at 4oC. 

2.2.5.1.2 Sodium Carbonate Solution 

200g of anhydrous Sodium Carbonate was weighed into 100ml glass beaker and 

800ml of distilled water added. The mixture was stirred continuously with heating using 

Clifton magnetic stirrer hot plate to completely dissolve the solid and brought to boil. The 

solution was left to cool and additional sodium carbonate solid added and allowed to stand for 

24hours. Precipitated crystals were filtered off and the solution transferred into a 1000ml 

volumetric flask. Distilled water was added to the mark and the Sodium carbonate solution 

was stored at room temperature which can be stable indefinitely. 

2.2.5.1.3 Gallic Acid Stock Solution (5g/l) 

0.5g of Gallic acid solid was weighed using (Mettler PM 4600 balance into 100ml 

volumetric flask and 10ml of absolute ethanol was added to aid dissolution. Distilled water 

was then added to the mark and transferred into 100ml Duran bottle and screwed tightly and 

stored at 4oC which can be stable up to 2 weeks. 

2.2.5.1.4 Gallic acid Standards for Calibration Curve 

Standard concentrations of 50, 100, 150, 250 and 500mg/l of Gallic acid were 

prepared by adding 1, 2, 3, 5 and 10ml of the stock Gallic acid solution into five separate 

100ml volumetric flasks. Distilled water was added to the mark to produce the resulting 

standard concentrations which were freshly prepared for calibration curve each time analysis 

was to be made.   
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2.2.5.1.5 Precipitation of Proteins in extracts (Sivaraman et al., 1997) 

Apple pomace contains about 4.0% proteins (Vasil’ev et al., 1976) and may be co-

extracted to interfere with the Folin- Ciocalteu’s reagent (Singleton and Rossi, 1965). The 

proteins were precipitated out by measuring 80μl of the polyphenolic rich extract sample into 

2ml Eppendorf tube, followed by 120μl of the 100% (W/V) TCA solution. The mixture was 

thoroughly mixed by using Miximatic Vortex equipment and kept under -20℃ for 5minutes, 

and then 4℃ for 15minutes. Sample was then centrifuged at 15000g, at 4℃ for 15minutes 

using the Sigma k30 Laboratory centrifuge with the rotor 12154-H. Supernatant was 

transferred to clean new 2ml Eppendorf tube for subsequent analysis. Any protein precipitate 

formed was discarded (Sivaraman et al., 1997). 

2.2.5.2 Microscale Procedure for Determination of Total Phenolic Content  

20μl of sample, standard and blank was pipetted into a test tube followed by addition 

of 1.58ml of distilled water. 100μl of the Folin- Ciocalteu’s phenol reagent was then added 

and shaken to mix. 300μl of Sodium Carbonate was then added and mixed thoroughly by 

Miximatic Vortex. Samples were left for 30 minutes at 40℃ in the Clifton Unstirred water 

bath. After the incubation period, 300μl of the resulting solutions were pipetted into 96 Well 

F/B microplate and absorbance of standards/sample and blank were read at 750nm. The actual 

wavelength for the absorbance measurement should have been 765nm but Promega Glomax 

Microplate spectrophotometer could only be read at 750nm. All measurements for 

sample/standard/ blank were in triplicates. Concentrated samples were diluted where 

necessary and the dilution factor accounted for when determining final concentration of 

samples.  
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Calculation of Concentration of Samples  

The variations of average absorbance with concentration of standard Gallic acid were 

used to construct a standard curve typically as in Figure 2-2 

              

Figure 2-2 Calibration curve of standard Gallic acid 

 

From the standard curve, the equation relating absorbance (𝑦) and total phenolic 

content (𝑥) is given by; 

                                   𝑦 = 0.000984𝑥 + 0.040299  (𝑅2  = 0.9991)                                   

 

Where 𝑦 is concentration in mg/l Gallic acid, and 𝑥  is absorbance in mAU. Therefore the 

concentration of sample was calculated in terms of Gallic acid equivalent (GAE) as; 

𝑥 =  
(𝑦 − 0.040299)

0.000984
 

 

Converting from mg/l GAE of Total phenolics to mg/g dry weight apple pomace is as 

in . 

Equation 2-4. 
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Equation 2-4 Expressing Total Phenolic Content in milligram per gram Apple pomace 

𝐺𝐴𝐸(𝑚𝑔/𝑔) =
𝐺𝐴𝐸 (

𝑚𝑔
𝑙
) × 𝑇𝑜𝑡𝑎𝑙 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝑣𝑜𝑙𝑢𝑚𝑒,𝑚𝑙

𝑆𝑎𝑚𝑝𝑙𝑒 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡(𝑔) × 1000
                               

 

2.2.6 Experimental Design 

Design of experiments for solvent extraction and subcritical water extraction 

techniques were divided into two sections. Preliminary or screening experiments and the 

actual design by response surface methodology. Screening experiments were conducted to 

identify effects of dependent variables and their limits leading to the actual design. 

2.2.6.1 Screening Experiments under organic Solvent Extraction 

The screening experiments involved one factor at a time (OFAT) executed by 

changing one experimental factor at a time whilst keeping the other factors constant. Solvent 

type, solvent concentration, solid- to- solvent ratio, temperature and extraction time were 

considered in the OFAT experiments. 

2.2.6.1.1 Solvent Selection 

The extractive capabilities of ethanol and acetone were investigated for consideration 

in an overall response surface design for optimization of polyphenolics from the apple 

pomace. Acetone and Ethanol were considered because they are generally recognized as safe 

(GRAS). Aqueous forms of the solvents were used, specifically 60% (V/V) for the 

investigation. Conditions applied were, fixing the loading ratio (solid: solvent) at (1:15, or 

6.67%) (Suarez et al., 2010), fixing the extraction time of 3 hours and at temperature (25℃) 

and polyphenolics were extracted per the procedure for solvent extraction enumerated in 
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section 2.2.2 above. Solvent extract with the highest Total phenolic value expressed in mg/g 

GAE (Gallic acid equivalent) dry weight was selected. 

2.2.6.1.2 Effect of Extraction time  

Recovery of polyphenolic compounds were done by varying the extraction time from 

60, through 360 minutes while maintaining temperature at 25℃ using a solid to solvent ratio 

of 1:20 with the best solvent chosen above. Total phenolic content of extracts were evaluated 

according to Folin Ciocalteu’s procedure and best time selected based on the highest TPC in 

mg/g GAE dry weight basis. 

2.2.6.1.3 Effect of solid-to-solvent ratio  

Using 60% (V/V) best solvent, at temperature 25℃ for 60minutes, the impact of 

loading was studied between 1 - 8% (W/V). Best solid-to-solvent in terms of total phenolic 

content (mg/g) GAE dry weight basis was selected for further screening. 

2.2.6.1.4 Effect of Solvent concentration 

With the best solvent selected and the best solid-to-solvent ratio, and a fixed extraction 

temperature at 25℃ and for 60minutes extraction time, phenolic compounds were extracted 

by varying the concentration of solvent from 20% (V/V) through 100% (V/V). Solvent 

concentration with highest total phenolic content in mg/g DW GAE was used for subsequent 

investigation. 

2.2.6.1.5 Effect of temperature  

The boiling points of solvents were taken into consideration before setting the upper 

limits of temperature in the experiment to avoid any loss of solvent by evaporation. Ethanol 

has a boiling point of 78℃ and acetone 56℃. Extractions were done below the boiling points. 
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2.2.7 Experimental Design for Optimization of Solvent Extraction 

The results of the preliminary experiments under solvent extraction was used with the 

aid of Stat-Ease design software 7.0  to design an experiment using the central composite 

rotatable design using four design parameters as shown Table 2-1. 

 

2.2.7.1 Screening Experiments under subcritical water extraction 

Screening exercise involved preliminary investigation into the nature or form of the 

apple pomace used, and the impact of extraction parameters such as solid-to-solvent ratio, 

temperature and residence time on the overall recovery of antioxidant compounds under sub-

critical water mediated hydrolysis. 
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Table 2-1 Experimental design by Central Composite Rotatable using 4 factors under acetone 
extraction 
 

Standard 

order 

Run 

order 

Factor 1 Factor 2 Factor 3 Factor 4 

A:Acetone 

conc. 

% 

 

B: Temp. 

oC 

C:Solid/solvent 

ratio 

 

% 

 

D:Time 

min 

11 1 40.0 60.0 1.0 90.0 

21 2 60.0 35.0 1.0 60.0 

13 3 40.0 10.0 8.0 90.0 

9 4 40.0 10.0 1.0 90.0 

28 5 60.0 35.0 4.5 60.0 

7 6 40.0 60.0 8.0 30.0 

18 7 100.0 35.0 4.5 60.0 

5 8 40.0 10.0 8.0 30.0 

25 9 60.0 35.0 4.5 60.0 

17 10 20.0 35.0 4.5 60.0 

1 11 40.0 10.0 1.0 30.0 

15 12 40.0 60.0 8.0 90.0 

19 13 60.0 10.0 4.5 60.0 

22 14 60.0 35.0 11.5 60.0 

16 15 80.0 60.0 8.0 90.0 

23 16 60.0 35.0 4.5 5.0 

6 17 80.0 10.0 8.0 30.0 

26 18 60.0 35.0 4.5 60.0 

14 19 80.0 10.0 8.0 90.0 

4 20 80.0 60.0 1.0 30.0 

24 21 60.0 35.0 4.5 120.0 

12 22 80.0 60.0 1.0 90.0 

8 23 80.0 60.0 8.0 30.0 

30 24 60.0 35.0 4.5 60.0 

29 25 60.0 35.0 4.5 60.0 

20 26 60.0 85.0 4.5 60.0 

10 27 80.0 10.0 1.0 90.0 

2 28 80.0 10.0 1.0 30.0 

3 29 40.0 60.0 1.0 30.0 

27 30 60.0 35.0 4.5 60.0 
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2.2.7.1.1 Nature of sample 

Wet and freeze dried homogenized apple pomace were investigated with solid-to-

solvent ratio (1-8%) under subcritical water mediated hydrolysis using procedure described in 

2.2.3 under a fixed temperature of 150℃ for a residence time of 20 minutes. The nature of the 

sample that yielded higher total phenolic content in mg/g DW GAE was selected and used 

thereafter. 

2.2.7.1.2 Temperature 

Now using the 1% (solid/solvent) loading and a fixed residence time of 20 minutes, 

extraction for phenolic compounds was targeted at 100℃, 160℃ and 200℃ using procedure 

described in section 2.2.3. Temperature condition with the highest value of total phenolic 

expressed in mg/g dry weight of Gallic acid equivalent was selected. 

2.2.7.1.3 Residence time 

Residence time (holding time at defined temperature of extraction) for 0, 10, 20, 30 

and 60 minutes were investigated with 1% loading and best extraction temperature. 

Extractions were done using procedure described in section 2.2.3. The residence time that 

yielded highest total phenolic content in mg/g dry weight Gallic acid equivalent (GAE) was 

selected. 

2.2.8 Experimental Design for Optimization of Subcritical water Extraction 

Depending on the outcome of the screening experiments, the nature of the apple 

pomace, limits for loading (solid/solvent) ratio, temperature and residence time were then 

used with the aid of Stat-Ease design software 7.0 to design the central composite rotatable 

design for the experiment as shown Table 2-2. 
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Table 2-2 Experimental design by Central Composite Rotatable using 3 factors under subcritical 
water extraction 

Standard Run 

Factor 1 Factor 2 Factor 3 

A:Solid/Solvent 
ratio 
% 

 
B:Temp 
℃ 
 

   C:Residence time 
min 

6 1 8.0 100.0 30.0 

11 2 4.5 66.0 20.0 

9 3 0.5 150.0 20.0 

18 4 4.5 150.0 20.0 

2 5 8.0 100.0 10.0 

3 6 1.0 200.0 10.0 

4 7 8.0 200.0 10.0 

12 8 4.5 234.1 20.0 

15 9 4.5 150.0 20.0 

20 10 4.5 150.0 20.0 

14 11 4.5 150.0 37.0 

13 12 4.5 150.0 3.0 

1 13 1.0 100.0 10.0 

7 14 1.0 200.0 30.0 

17 15 4.5 150.0 20.0 

8 16 8.0 200.0 30.0 

16 17 4.5 150.0 20.0 

5 18 1.0 100.0 30.0 

10 19 9.5 150.0 20.0 

19 20 4.5 150.0 20.0 

     
 

 

2.2.9 Separation, Identification and Quantification of Phenolic Compounds by High 

Performance Liquid Chromatography (HPLC) 

Reverse Phase high performance liquid chromatographic (HPLC) procedure 

previously described by (Schieber et al., 2001b) was used for the separation of the Phenolic 

compounds from the aqueous acetone and the subcritical water mediated hydrolysis extracts. 

The compounds were separated based on their respective affinities between the mobile and 

the stationary phase. Identifications were done using their respective retention times and 
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spectra data of respective standards. Quantification of the phenolic compounds made use of 

their chromatographic peak areas at maximum absorbance. Major polyphenolic compounds 

were identified and quantified. 

2.2.9.1 Reagents and Chemicals 

All reagents and chemicals used were either HPLC or analytical grade and will be stated when 

necessary. Phenolic standards comprising, Chlorogenic acid (≥ 95%), (-) Epicatechin (≥ 

90%), ± Catechin hydrate, Phloridzin dihydrate (≥ 99%), Procyanidin B2 (≥ 90%), Quercetin 

-3-β-D-glucoside (≥ 90%), Quercetin-3-D-galactoside (≥ 97%) Phloretin, Chromasolv for 

HPLC water purchased from Sigma-Aldrich (UK). Solvents such as Acetonenitrile, methanol 

and glacial acetic acid were obtained from Fisher Scientific (UK). 

2.2.9.2 Instrumentation and Operation 

Separation of phenolic compounds in extracts were performed using the Agilent 1100 

series HPLC value system with DAD-UV detector (Agilent Technologies- Germany), 

supplied with a solution Chemstation software for both online and offline sections. Prodigy 

5µm ODS3 100A, C18 (250 x 4.6 mm I.D) column from Phenomenex (Torrance, CA, USA) 

was the stationary phase with a guard column operated at 40℃. 

The mobile phase consisted of 2% (V/V) of the glacial Acetic acid in water as eluent 

A. Eluent B was made with 0.5% of Acetic acid in 50:50 (V/V) of Water and Acetonitrile.  

Eluent C was (100%) Acetonitrile. The gradient solvent systems programmed for the 

separation with a flow rate of 1ml/min were as follows: beginning with 10% of B and 

increasing the gradient to 55% B in 50 minutes. Further increased from 55%  B to 100% B 

was done in 10 minutes and finally decreased from 100% B to initial 10% B in 5 minutes. 

Eluent C was used in reconditioning the column under isocratic flow by pumping 100% C for 
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10 minutes, and 10% B also for 10 minutes. Volume of all samples injected at a time was 

10µl and phenolic compounds were monitored at 280nm (flavanols), 320nm (Hydrocinnamic 

acid) and 370nm (Flavonols).  Retention times and Spectra data were collected. 

2.2.10 Determination of Concentration of Phenolic Compounds 

Concentrations of phenolic compounds were derived from calibration curves of corresponding 

pure standards. Five different concentrations of the phenolic standards were each prepared 

from a stock solution and analysed on the HPLC system using the method described in 2.2.9 

above. Calibration curves were obtained by plotting areas under peaks against concentrations. 

2.2.10.1 Typical Calculation of concentration of Chlorogenic acid 

Stock solution of 1mg/ml of standard Chlorogenic acid was prepared by weighing 

0.05g of the solid into a 50ml volumetric flask and making it up to the mark with HPLC 

water. 5ml of 1mg/ml of the stock solution was pipetted using the 5ml pippete into a 

50ml volumetric flask and adding HPLC grade water to the mark to yield a solution of 

concentration 0.1mg/ml. The solution was transferred into a 50ml red cap tube covered with 

aluminium foil to prevent oxidation from light. 10, 100, 200, 300, 500 µl of the 0.1mg/ml of 

the Chlorogenic acid solution were pipetted into separate HPLC vials and adjusting total 

volume to 1ml using HPLC water with 1000µl micropipettes. The solutions were thoroughly 

mixed to give final concentrations of 1, 10, 20, 30 and 50µg/ml. 1ml of the 0.1mg/ml 

(100µg/ml) was also pipetted into the vial to result in six different concentrations of samples 

for the calibration curve. Autosamplar was loaded with the Samples and were analysed by the 

HPLC method described in section 2.2.9. 

The calibration curve for standard Chlorogenic acid is shown in Figure 2-3 below; 
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Figure 2-3 Calibration curve of standard Chlorogenic acid  

 

The regression equation for Standard Chromogenic acid is 

𝑦 =  26612𝑥                                   

Where 𝑦  represent peak area, and  𝑥 is Concentration of standard. 

𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑) =
𝑦

26612
 

The purity of the standard used is taken into consideration and corrected. It can be used as a 

multiplier. Purity of Chlorogenic acid used ≥95%, therefore the multiplier will be 

𝑀 = 
1

0.95
 = 1.0526 

And amount of Chlorogenic acid in sample = [( 𝑦

26612
) × 1.0526]  𝑚𝑔/𝑚𝑙 

Conversion of 𝑚𝑔/𝑚𝑙 to 𝑚𝑔/𝑔 𝐷𝑊 of apple pomace used is 

𝐴𝑚𝑜𝑢𝑛𝑡 (
𝑚𝑔

𝑔
𝐷𝑊) =

(𝐴𝑚𝑜𝑢𝑛𝑡 (
𝑚𝑔
𝑚𝑙
) × (𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑒𝑥𝑡𝑟𝑎𝑐𝑡,𝑚𝑙)

𝐷𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑎𝑝𝑝𝑙𝑒 𝑝𝑜𝑚𝑎𝑐𝑒 𝑢𝑠𝑒𝑑, 𝑔
 

Similar procedure was used to construct calibration curves for other phenolic standards and 

their concentrations derived from the graphs. 
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2.2.11 Estimation of Antioxidant Activity in-Vitro by ORAC Assay 

Determination of antioxidant activity of phenolic extracts by ORAC assay was 

described by Huang and co-workers with modifications (D Huang et al., 2002). 

The fundamental principle of the assay described the inhibition of the oxidation of a 

protein target by reactive oxygen species of a test sample relative to standard water soluble- 

like vitamin E (Trolox). The source of reactive oxygen species was a peroxyl radical (𝑅𝑂𝑂.) 

generated by thermal decomposition of 2, 2|-azinobis- methyl-propanidamide 

dihydrochloride, AAPH at 37℃, which quenches fluorescence signal overtime. Substances 

with antioxidant properties restrained and produced a more stable signal with extent of 

inhibition dependent on the capacity of the antioxidant. The inhibition was by hydrogen 

transfer mechanism and results were reported as ORAC values which obtained by comparing 

the area under the curve of the intensity of the fluorescence overtime of samples and Trolox 

relative to the blank. 

2.2.11.1 Materials and Methods 

2, 2|- azinobis- methyl-propanidamide dihydrochloride, AAPH, Phosphate buffer 

powder, Sodium Fluorescein salt were obtained from Sigma-Aldrich (UK), PHMP-4 

Microplate thermoshaker was used to preheat and incubate samples at 37℃ prior to reading. 

Fluorescence measurements were done using the Promega Glomax Microplate reader using 

96 Well black- microplate (single invitros use only). 

2.2.11.1.1 Phosphate Buffer 75mM, (𝐩𝐇 = 𝟕. 𝟒) 

All solutions were prepared using the phosphate buffer (pH=7.4). Buffer powder 

(P7994-1EA) from Sigma-Aldrich was reconstituted with 3.8litres of deionised water to 
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produce 0.1M stock buffer solution. 75mM of pH 7.4 was prepared by diluting 750ml of the 

0.1M Stock buffer solution with deionised water in a 1000ml volumetric flask to the mark. 

2.2.11.1.2 Sodium Fluorescein Solution 

A stock solution of 6.64µM of Sodium Fluorescein was made by weighing out 25mg 

of the salt into 100ml volumetric flask and diluted with phosphate buffer (75mM, pH=7.4) to 

the mark. Resulting solution was transferred into a clean 100ml Duran bottle and covered with 

an aluminium foil to prevent oxidation and stored at 4℃. Working fluorescein concentration 

of 300nM was freshly prepared by diluting 900µl of the stock fluorescein solution (6.64µM) 

to 20ml using 75mM phosphate buffer and covered with a foil and stored at 4℃ prior to use 

(Jumbu, 2014) . 

2.2.11.1.3 Trolox Standard Solution 

Standard stock solution of Trolox (0.02M) was prepared by weighing out 0.250g into 

10ml of absolute ethanol to facilitate dissolution and then transferred into a 50ml volumetric 

flask and diluted with Phosphate buffer (pH 7.4). Trolox working concentration of 25µM was 

prepared by measuring out 62.5µl of the 0.02M standard Trolox into a 50ml volumetric flask 

and further diluted with the buffer (pH 7.4). Concentrations such as 12.5µM, 6.25µM and 

lower were simply prepared by diluting 25µM with phosphate buffer (pH 7.4). 

2.2.11.1.4 AAPH Solution 

AAPH solution was freshly prepared each day of analysis by dissolving completely 

0.414g of the solid in 5ml of 750mM phosphate buffer (pH, 7.4) and incubated at 37℃ prior 

to application. 
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2.2.11.1.5 Assay Procedure 

150µl of the fluorescein working solution was added in quadruplicate into a 96 well 

microplate using a multichannel pipette designated as control, blank, sample and Trolox. 25µl 

of blank/sample/Trolox were added into the respective wells. 50µl of buffer (pH 7.4) was 

added only into the control wells. The content of the microplates were thoroughly mixed 

using the thermoshaker at 1000rpm for 3 minutes and left to incubate at 37℃ for 30minutes. 

25µl of previously incubated AAPH solution was then added to the blank/sample/Trolox 

wells using a multichannel pipette and thoroughly mixed using the thermoskaker at 1000rpm 

for 20 seconds.  Microplate was immediately placed into the Promega Microplate reader to 

record the fluorescence decay per minute for 45 minutes. 

Analysis of Data 

Data analysis was done using area under the curve of blank/sample/TROLOX in 

Microsoft Excel 2010 as shown Equation 2-5. 

Equation 2-5 Area under the fluorescence decay curve 

𝐴𝑈𝐶 = 0.5 + 
𝑓1
𝑓0
+⋯

𝑓𝑖
𝑓0
+⋯

𝑓44
𝑓0
 + 0.5 (

𝑓45
𝑓0
 ) 

 

   

Where 𝑓0 is the fluorescence reading at time 0 minutes, and  𝑓𝑖 is the reading at the ith minute. 

A typical decay curve of antioxidant standard and sample at different concentrations is shown 

in Figure 2-4 and normalised to 100%. 
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Figure 2-4 Typical decay curve of Trolox and sample 

2.2.11.1.6 Calculation of Relative ORAC Value 

Relative ORAC value is calculated using Equation 2-6 and expressed in µmol  

TE/ g DW. 

Equation 2-6 Calculation of Relative ORAC value 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑂𝑅𝐴𝐶 𝑣𝑎𝑙𝑢𝑒

=  [(𝐴𝑈𝐶𝑠𝑎𝑚𝑝𝑙𝑒 − 𝐴𝑈𝐶𝑏𝑙𝑎𝑛𝑘|𝐴𝑈𝐶𝑇𝑟𝑜𝑙𝑜𝑥 − 𝐴𝑈𝐶𝑏𝑙𝑎𝑛𝑘)](𝑀𝑜𝑙𝑎𝑖𝑡𝑦 𝑜𝑓 𝑇𝑟𝑜𝑙𝑜𝑥|𝑀𝑜𝑙𝑎𝑟𝑖𝑡𝑦 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒) 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑂𝑅𝐴𝐶 𝑣𝑎𝑙𝑢𝑒 =  
𝑆𝑙𝑜𝑝𝑒 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒

𝑆𝑙𝑜𝑝𝑒 𝑜𝑓 𝑇𝑟𝑜𝑙𝑜𝑥 
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2.2.12 Preparation of the inclusion complex 

Procedure previously described by Gioxari et al.,2010 was adopted with slight 

variations (Kalogeropoulos et al., 2010). The inclusion complex was prepared in a mixture of 

Subcritical water extract and HP-β-cyclodextrin in a mass ratio (4:1). 56.5g of HP-β-

Cyclodextrins was mixed with 500ml of subcritical water extract of the apple pomace 

containing 0.0283g/ml of dry extract in 1000ml Erlenmeyer flask covered with aluminium 

foil. Mixture was stirred continuously by magnetic stirring on a Clifton hot plate Stirrer for 

4hours at room temperature. Inclusion complex mixture was transferred into 1000ml plastic 

container and stored at 4℃ until further applications. Prior to storage, 5ml were pipetted into 

15ml plastic vials and frozen at -20℃ for 24hrs and then freeze dried according the procedure 

previously described under section 2.2.1 .Dried solid lumps were broken using glass rod and 

stored in a desiccator for future analysis. 

2.2.13 Spray Drying 

Laboratory scale spray dryer (Model- SS07, Labplant Ltd, UK) was used to prepare 

powders. All glassware were fitted to the unit and inlet temperature were set to 200℃ and left 

to warm up for 15 minutes before setting the actual spray temperature. Inlet and outlet 

temperatures were set at 170℃ and 84℃ respectively. Sample feed was delivered at 

(3.6ml/min) using a variable speed peristaltic pump into a 0.5mm two- fluid- stainless spray 

nozzle with air flow rate 180g/min. The subcritical water extract containing 0.0283g/ml dry 

solids was used to identify spray condition. Inclusion complex previously prepared in section 

2.2.12 was also sprayed at the same condition. Feeds were continuously stirred during 

spraying and dry powders were separated by a cyclone and collected into an insulated sample 

collection bottle. Total weight of powders was recorded, and portion sampled for analysis and 

bulk packed in seal polyethylene bags and stored in a desiccator for further investigation. 
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2.2.14 Determination of Density of Powder 

Gas displacement technique was employed to determine powder density using an 

equipment AccuPyc II 1340 gas Pycnometer by Micrometrics Instruments Corporation. A 

1cm3 volume capacity cup whose weight previously determined using the microbalance 

SART 1702 (Germany) was then filled with portions of powder and reweighed to obtain 

accurate weight of power. Powder in the cup was sealed in the instrument compartment and 

helium gas admitted to serve as displacement medium and expanded within the internal 

volume of powder. Solid phase volume of powder was computed from the changes in 

pressure during filling of sample chamber and that of the discharge empty chamber. Data 

were analysed using VI.05 software and density of powder was determined by dividing 

average volume into powder weight. 

2.2.15 Particle Size Measurement 

HELOS/RODOS/VIBRI dispersing system (Sympatec GmbH, Clausthal-Zellerfel 

Germany), a laser diffraction equipment was used to determine particle size and distribution 

of powders. The setup consisted of HELOS (Helium-Neon-Laser optical system), a dry 

powder dispersion system RODOS, and a vibrating feeder VIBRI. The feeder line has an inlet 

funnel connected to the dispersion line which produces the dispersed aerosols beam. 

Operating pressure of the entire setup was between 2- 3 bar air pressure. Powder samples 

were manually filled into the vibrating feeder through the funnel to an approximate 1cm3 

high. Different measuring ranges of laser sensors were provided by interchangeable objectives 

R1 (0.1-35µm), R2 (0.1-875µm) and R3 (0.9-175µm) selected based on the density value of 

powder. During operation, the powder passes through a plough scraper on a roller that 

removes excess sample and finally deliver them into the dispersing line. Operations were 

controlled by software WINDOX 5 for evaluation of particles size and other analysis. 
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2.2.16 Hygroscopicity Test 

0.5g of encapsulated dried powders (SWE and SWE+HPβ-CD) were weighed using a 

microbalance instrument GR-202 (A&D Scientific Laboratory suppliers) and spread 

uniformly on a glass petri dish. Three (3) replicates samples of each powder were kept at 23℃ 

in an incubator model SI- 600R (Medline Scientific). 300ml saturated Sodium Chloride 

solution was placed inside the incubator to provide approximately 75.5% relative humidity 

and left for 7 days. Samples were weighed after the 7 days and Hygroscopicity HG 

determined according to Equation 2-7. 

Equation 2-7 Calculation of Hygroscopicity of powder 

𝐻𝐺 =
∆𝑚/(𝑀 +𝑀𝑖)

1 +
∆𝑚
𝑀

 

Where ∆𝑚 was the increase in weight of powder after equilibrium. 𝑀 was the initial mass of 

powder and 𝑀𝑖 was the free water content of powder prior to exposure to the humid 

environment (Caparino et al., 2012, Jaya and Das, 2004, Sablani et al., 2008, Tonon et al., 

2008). 

2.2.17 Scanning Electron Microscopy 

Environmental Scanning Electron Microscopy (XL 30 ESEM FEG Philips Netherlands) was 

used to observe the morphology of the powders generated from freeze and spray dried 

processes. Samples were spread on ESEM-stub covered with sticky carbon tape, and sputter 

coated under high vacuum with Gold using EMSCOPE SC 500 Gold sputter coater. All 

samples were scanned at a voltage of 15kV using XL 30 ESEM FEG electron microscope and 

images captured for several magnifications at separate location on the sample. 
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2.2.18 Fourier Transform Infrared Spectroscopy (FT-IR) 

Molecular characterization of powders by FTIR analysis was performed on a Jasco FT-IR 

6300 infrared spectrometer. Resolution of 4 cm-1 and 32 scan were used in a range between 

4000 and 600 cm-1. Higher resolution gave more detailed (peaks), however, included more 

noise; increasing the number of scans decreased the noise, but increased significantly the time 

spent in each sample analysis by the spectrometer. 

 A background was performed before each sample to scan the environment and subtracted 

from the sample spectra to avoid any interference in the results.. 

2.2.19 Stability studies 

1.5ml of subcritical water extract and subcritical water extract with HPβ-cyclodextrin were 

measured into separate 2ml caped Eppendorf tubes and placed in an upright position on a test 

tube rack. All samples were stored at 65oC in a drying cabinet by Fisons Scientific 

instruments UK. Stability assessment in terms of antioxidant activity of all samples were 

determined every 7days for 35days by Folin Ciocalteu method. All measurements were done 

in triplicates and samples were not protected from external light. 

 

2.2.20 Statistical analysis 

All results were expressed as mean± standard error (at least 3 replicates).  One-way Analysis 

of variance (ANOVA) testing was conducted at 95% confidence interval with either Stat-Ease 

design expert software, XLstat and will be stated when applied.
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Chapter 3  

Optimisation of Organic Solvent Mediated Extraction 
of polyphenolic compounds from apple pomace using 

Response Surface Methodologies 
 

3.1 Introduction 

Recent interest by researchers and nutraceutical manufacturers in polyphenolic 

compounds from fruit and vegetable sources have grown because of their potential 

antioxidant properties (Manach et al., 2004). Extracts of these phytochemicals have found 

applications in food, pharmaceutical and cosmetic industries (Cetkovic et al., 2008, Hunter 

and Hull, 1993, Lu and Foo, 1997, 2000, Vinson et al., 2001). 

Recovery of the polyphenolic compounds from plant sources was regarded as the number 

one step towards their application and could be extracted from either fresh or dried samples 

(Dai  and Mumper, 2010). Apple pomace a by-product from apple juice and cider production 

is a source of polyphenolic compounds whose isolations are routes towards adding value to 

the residue (Ignat et al., 2011). The polyphenolics fall into two classes, non-extractable (NEP) 

and extractable (EP). Simple polar phenolic compounds such as hydrocinnamic acids and 

other flavonoids are easily extracted using organic solvents and therefore EPs dominate the 

scientific literature. Arranz et al., 2010, demonstrated that, non-extractable polyphenols are a 

major part of dietary polyphenols, therefore suggesting that solely reporting extractable 

polyphenolics will underestimate the nutritional value of fruits and vegetables. Non-
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extractable polyphenols constitute polymeric polyphenols for example proanthocyannidins 

and cell wall bound polyphenolics (Arranz et al., 2010, Saura-Calixto, 1998). Non extractable 

polyphenolics found in extracts may account for the variation of total phenolic content of 

apple pomace reported in the literature (Bai et al., 2010, Reis et al., 2012, Suarez et al., 2010, 

Wijngaard and Brunton, 2010).  

The main objective of the present study was to explore selectivity of aqueous organic 

solvents towards polyphenolics and at the same time optimise process parameters to maximise 

the recovery of polyphenolic compounds from apple pomace so as to serve as a baseline for 

comparison with novel Subcritical water mediated extraction considered in Chapter 4. 

Solubilisation based on the biomass (apple pomace) loading was investigated to understand 

the relationship between soluble solids and total phenolic content recovered. The yields and 

content of polyphenolic compounds extracted from the apple pomace using organic solvents 

has been shown to be influenced by process parameters including solvent type, solvent 

concentration, temperature, sample to solvent ratio, and extraction time (residency time).  

Polyphenolic extraction was optimised by applying design of experiments (DoE) and 

surface response methodology which are, multivariate statistics techniques to assess 

interrelationship between process parameters (Çam and Aaby, 2010, Pinelo et al., 2007, Silva 

et al., 2007). Response Surface Methodology (RSM) was first described by Box et al.,1950 

(Gilmour, 2006), and is a collection of mathematical and statistical techniques employed to 

improve system performance for maximum benefits (Bazerra et al., 2008), by fitting a 

polynomial equation to observed data from within a designed experiment. The technique was 

able to predict the behaviour of a response based on the set of independent variables (Bazerra, 

2008). Response surface methodology has important application in process development, 

formulation and design of contemporary products in addition to established ones. The 
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technique is widely applicable in chemical and biochemical processes for different objectives 

(Bas and Boyaci 2007). Comprehensive description of design of experiments by response 

surface methodology can be obtained from (Box and Draper, 2007, Gunst, 1996, Myers et al., 

2009). 

In summary the aim of the current chapter was to extend the understanding of the 

behaviour of polyphenolics derived from apple pomace during organic solvent mediated 

extraction. 

3.2 Results and Discussion 

3.2.1 Sample preparation 

Correct and appropriate sample preparation is a very important initial step to ensure 

reproducible data is obtained therefore maximum care was employed to minimise errors so as 

to achieve quality results. Apple pomace as received was very heterogeneous and composed 

of peels, seeds, apple flesh and calix, and therefore was thoroughly mixed to ensure replicate 

samples were representative of the pomace population. 

The mean dry weight content of the apple pomace sample received estimated using the  

standard protocol described in section 2.2.1 as 27.7±0.3 g/100g wet weight with average 

moisture content of 72.3g/100g of wet apple pomace. The value obtained for the apple 

pomace moisture content falls within the 21.8-33.6g/100g reported in literature (Joshi and 

Attri, 2006, Kennedy et al., 1999, Sun et al., 2002). Measured dry weight of 27.7±0.3g/100g 

may include some amounts of moisture from the atmosphere and the freezer, but these sources 

were considered insignificant as compared to the nature of the apple pomace as received.  

However the differences in the measured values in the experiments were attributed largely to 

the heterogeneous nature of the apple pomace with pieces of rejected apples finding their way 
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into samples. Apple pomace represents a substrate with high moisture content and the analysis 

confirms the fact if left into the environment may result into a spontaneous fermentation due 

to the high chemical oxygen demand, thereby causing environmental pollution. The pomace 

can be stabilized by reducing the water content through drying. Furthermore Vasil’ev et al 

(1976) reported dry matter (DM) content of apple pomace to be 26.4g/100g of fresh weight 

apple pomace (Vasil’ev et al., 1976). The variations in the reports can also be attributed to the 

several varieties of apples occurring in nature and their composition which depends on the 

region of growth, the degree of ripening, agricultural practices and the extraction processes 

involved (Kennedy et al., 1999). 

Mean dry weight content of the apple pomace after freeze drying was 28.3±0.6g/100g 

fresh weight. Freeze drying method was chosen to stabilize apple pomace residue so as to 

retain the active ingredients (polyphenolics). There was high probability that quality of the 

apple pomace sample was assured after freeze drying. Freeze dried samples are thought to be 

free from biological and chemical activities (Luthria, 2006). 

3.2.2 Screening Experiments under organic solvent extraction 

Five factors were considered in the screening experiments to identify levels of 

influencing or important parameters to be used in an overall experimental design. Selection 

was based on the factors which resulted in highest total phenolic content expressed in mg/g 

GAE DW.  

3.2.2.1 Organic Solvent selection 

Efficiency of solvents in extraction of bioactive compounds depends strongly on the 

type of the plant material and has been reported in the literature (Dai  and Mumper, 2010). 

The controlling parameter in addition to the nature of the plant matrix is the polarity of the 
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 solvent. Polar solvents have higher efficiency to solubilize polar ingredients (Liyana-

Pathirana and Shahidi, 2005). Phenolic compounds are polar and therefore soluble in highly 

polar solvents. Solvents such as methanol, ethanol and acetone have been employed to 

recover polyphenolics at room temperature from plant sources. Many researchers have used 

these solvents particularly with varying concentrations to extract polyphenolics from apple 

pomace (Cetkovic et al., 2008, Diñeiro García et al., 2009, Foo and Lu, 1999, Lu and Foo, 

2000, Schieber et al., 2001b, Suarez et al., 2010). Aqueous acetone (60% (V/V) showed better 

recovery of phenolic compounds than corresponding aqueous ethanol as shown in  

Figure 3-1. 

               

Figure 3-1 Solvent type selection for maximum total phenolic content (TPC,mg/g GAE DW) apple 
pomace using 60%(v/v) Ethanol and 60%(v/v) acetone with solid to solvent ratio of 6.7% at 
25oC for 360 minutes extraction time 

 

This results agreed  with reports that, aqueous acetone extract polyphenolics better 

than aqueous ethanol (Heinonen et al., 1998, Kahkonen et al., 2001, Suarez et al., 2010). 

Acetone is regarded as a strong hydrogen bond breaker than ethanol (Hellström and Mattila, 

2008).Total phenolic content of the ethanolic extract was approximately 26% less than 
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acetone extracts. Massini et al., reported 20% less phenolic content in ethanol extract than 

acetone using apple pomace (Laura et al., 2013). The difference could be as a result of 

differences in the cultivars and also extraction methods. Therefore acetone was preferred 

solvent for the conventional solvent extraction throughout this investigation. 

3.2.2.2 Effect of extraction time  

The results of the effect of extraction time on total phenolic content of apple pomace 

under screening experiment described in section 2.2.6.1.2 is presented. Total phenolic content 

at the 60 minutes was 12.08 mg/g GAE DW whereas for 120 minutes and 360 minutes were 

respectively 11.21 mg/g GAE DW and 11.26 mg/g GAE DW as shown in Figure 3-2. 

 

              

Figure 3-2 Effect of Extraction time (minutes) on Total phenolic content (mg/g GAE DW) of 
apple pomace  using 60%(v/v) acetone concentration, 5%.solid-to-solvent ratio at 25oC 

 

From the results it was shown there was no advantage of extracting beyond 60 

minutes. The decrease in total phenolic content (mg/g GAE DW) could be as a result of 
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oxidation of the phenolic compounds due to exposure of surrounding light during the 

extended time, or reaction with dissolved oxygen in water (Silva et al., 2007). Phenolic 

compounds may also be degraded or formation of non oxidisable components which were not 

reactive with the Folin reagent. Therefore 60 minutes was considered maximum extraction 

time for subsequent investigations. Further scanning using 60% (V/V) acetone at 25℃ 

confirms 60 minutes extraction time better than 90 minutes as shown in Figure 3-3. 

      

Figure 3-3 Effect of Extraction time (minutes) on Total phenolic content (mg/g GAE DW) of 
apple pomace using 60%(v/v) acetone concentration, 1%. solid-to-solvent ratio at  extraction 
temperature 25oC. 

 

 

3.2.2.3 Effect of solid-to-solvent ratio 

The impact of solid-to-solvent ratio on total phenolic content from the freeze dried 

apple pomace powder using 60%(V/V) acetone for an extraction time of 60 minutes, is shown 

in Figure 3-4. 
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From the graph it shows that total phenolic content decreases as the ratio of solid to 

solvent increases. Total phenolic content of 1% was 22.93 mg/g GAE DW and for 8 % was 

9.69 mg/g GAE DW. The results showed that better mass transfers were observed in the lower 

loadings thereby giving higher amounts of total phenolic content. Solvent was able to touch 

almost every sheet of particle in lower solid-to-solvent ratio than higher loadings. See Figure 

3-4. 

                   

       Figure 3-4 Effects of solid-to-solvent ratio %(w/v) on Total phenolic content  (mg/g GAE 
DW) of apple pomace using 60%(v/v)  acetone concentration, at temperature 25oC for 60 
minutes extraction time 

 

Higher loading ratios may result to incomplete extraction due to insufficient amount of 

solvent (Cruz et al., 2013). Therefore 1% solid-to-solvent ratio was considered as the lower 

limit and the 8% as the higher limits to study how the influence of other parameters will 

impact total phenolic content. One of the most important goals of industry is to optimise 

operating cost to achieve higher output and increasing loading rate (Klein‐Marcuschamer et 

al., 2011). 
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3.2.2.4 Effect of Solvent Concentration 

The effect of the acetone concentration on the polyphenolic recovery is shown in Figure 3-5. 

 

                   

 Figure 3-5 Effect of acetone concentration %(v/v) on Total phenolic content (mg/g GAE DW) of 
apple pomace using 1% solid -to -solvent ratio at temperature 25oC for an extraction time of 60 
minutes 

 

From the graph total phenolic content increases from 20% (V/V) acetone 

concentration to 60% (V/V) and decreases thereafter. 60%(V/V) acetone showed the best 

solvent concentration in this comparison with total phenolic content of 22.93 mg/g GAE DW, 

suggesting that addition of water improved the polarity of acetone and hence its efficiency. 

However, too much water couldn’t enhance recovery of phenolic compounds as shown in 20 

% (V/V) acetone concentration recording approximately 14 mg/g GAE DW. Total phenolic 

content decreased above 60% (V/V) acetone concentration and to a low of 4.23 mg/g GAE 

DW at 100% (V/V). The results showed that pure or total acetone demonstrated poor recovery 

of antioxidant compounds. Similar results of poor efficacy of pure acetone in extracting 

polyphenolic compounds have been reported (Chen et al., 2007, Liyana-Pathirana and 
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Shahidi, 2005). Hence 40% (V/V) and 80% (V/V) were used as the lower and upper limits in 

designing the experiment. 

 

3.2.2.5 Effect of Temperature 

Total phenolic content of extracts of the screening experiments did not vary 

significantly from 25℃ to 45℃ suggesting that temperature has minimal effect on the 

extraction of polyphenolic compounds within this range. It is known that increasing 

temperature generally enhances solubility and diffusion rates which promote effective mass 

transfer to results in higher recovery. Increasing temperature lowers the surface tension and 

viscosity of solvent which enhances its percolation around sample matrixes resulting in higher 

yields of extract (Dai and Mumper, 2010). However this was not observed for the selected 

(solid/solvent) ratio of 1% where the solid matrix would have been well saturated with more 

than enough solvent and changes in temperature would have very minimal effect on overall 

recovery of phenolic compounds. The ANOVA results shows that there was no difference 

between the total phenolic content of extracts at 25℃, 35℃ and 45℃  (p<0.05). Extraction 

temperatures were lower than boiling point of acetone and may explain why slight variation 

of total phenolic content shown in Figure 3-6 below Therefore temperatures of 10℃ and 60℃ 

were employed as lower and upper limits in designing the experiment. 

3.2.3 Experimental Design by Response surface methodology (RSM) 

Following the results from the screening experiments, it was realised that acetone 

concentration, temperature, solid-to-solvent ratio and time were identified to have an impact 

on total phenolic content. The lower and upper limits of these variables were defined and 

Design Expert 7.0.0 (Stat-Ease Inc Minneapolis, USA),was used based on the Central 
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Composite Rotatable Design (CCRD) to generate 30 experimental runs, consisting of 16 trials 

for factorial points, 8 runs for axial points (2 for each of the 4 factors) and 6 replicates run 

around the centre points. This was shown in Table 2-1 for actual design and Table 3-1 for 

design summary under solvent extraction. 

 

                  

     Figure 3-6 Effect of temperature (oC) on Total Phenolic content (mg/g GAE DW) of apple 
pomace using 60%(v/v) acetone concentration, 1% solid to solvent ratio for 60 minutes 
extraction time. 

 

Table 3-1 Design summary under solvent extraction 

Factor Name Units Low High Mean Std. Dev 

A Acetone 

Concentration 

% 40 80 60 17.89 

B Temperature ℃ 10 60 35.83 20.90 

C Solid/Solvent % 1 8 4.62 2.99 

D Time min 30 90 60.17 26.47 
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Extractions of phenolic compounds were done based on the extraction procedure 

described in section 2.2.2 and total phenolic content quantified according to the protocol 

outlined in section 2.2.5 . Several other responses were considered and modelled as such. 

  

3.2.4 General Consideration for Model Selection 

Several options including linear, two factor interaction and polynomial models were 

investigated for selection of most appropriate one that will be able to depict real time response  

of the surface. Statistical analysis of variance (ANOVA) was performed on the data using the 

Stat-Ease design Expert. For a given model to fit well, it should be significant and the lack of 

fit insignificant. Additionally, the models were compared based on adjusted R2 and predicted 

R2. It is very important not to measure the success of the regression analysis based on the 

coefficient of determination R2 alone, which is the calculation of the ‘’variation explained by 

the model relative to the mean (overall, average of response)’’. As the statement goes ‘’ don’t 

let R2 value fool you’’ (Hair et al., 1995). The quadratic model was appropriate among the rest 

and follows a generalised second order polynomial equation as in Equation 3-1.  

Equation 3-1 Generalised second order polynomial equation 

y =  𝛽0 + ∑𝛽𝑖 

4

𝑖=1

𝑥𝑖 + ∑𝛽𝑖𝑖

4

𝑖=1

𝑥𝑖
2 +∑ ∑ 𝛽𝑖𝑗

4

𝑖<𝑗=1

 𝑥𝑖𝑥𝑗 

 

In building a good model, the simplest one is most preferred and to achieve this, may 

require eliminating outliers and transformation of the selected quadratic models. 
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3.2.5 Model Selection for Total Phenolic Content under solvent extraction  

Total phenolic content ranged from 6.99 mg/g DW GAE to 22.55 mg/g DW GAE with 

mean phenolic content of 12.42 mg/g DW GAE. By subjecting the experimental data to 

multiple regression analysis, at 95% confidence interval, a transformed quadratic equation 

excluding outliers in the analysis was selected. The model was based on most influential 

design parameter solid-to solvent ratio which varies with Total phenolic content as a single 

factor as in Figure 3-7. 

The transformed generalised second order polynomial model is as in Equation 3-2; 

 

                                    

   Figure 3-7 Variation of Total phenolic with Solid/Solvent ratio of apple pomace using 
60%(V/V) acetone concntration, at temperature 25oC for 60 minutes extraction time. 

 

 

Equation 3-2 Transformed generalised Polynomial Equation 

                        
.1 4

1

2
4

1

4

1
0 ji

j=<i
iji

=i
iii

=i
i xxβ+xβ+xβ+β=

y 
 



108 
Chapter 3- Optimisation of Organic Solvent Mediated Extraction of polyphenolic compounds from apple pomace using 
Response Surface Methodologies 
 
 
   

Where, 𝛽0 𝛽𝑖 𝛽𝑖𝑖 and 𝛽𝑖𝑗 are the respective coefficient of regression for intercept, linear, 

quadratic and interaction terms. 𝑥𝑖  𝑎𝑛𝑑 𝑥𝑗 are coded design variables. Results for the Analysis 

of variance (ANOVA) for the response surface of the reduced quadratic model are shown in 

Table 3-2. 

Solid/solvent which was the most significant factor among the independent variables within 

the selected range has probability values for both the linear and quadratic terms (p < 0.0001). 

Acetone concentration was significant only in the quadratic term (p< 0.0001). Interaction 

between solid-to-solvent ratio and time was significant (p=0.0346). 
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Table 3-2 ANOVA for Response Surface Reduced Quadratic Model for TPC under Solvent 
Extraction 

Source Sum 

of 

Squares 

df Mean 

Square 

F 

Value 

p 

value 

 

𝑀𝑜𝑑𝑒𝑙 0.051 7 7.217 × 10−3 49.70 <  0.0001 

𝐴 

𝐴𝑐𝑒𝑡𝑜𝑛𝑒 𝐶𝑜𝑛𝑐 

2.649 × 10−4 1 2.649 × 10−4 1.82 0.1945 

𝐵 

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

1.357 × 10−3 1 1.357 × 10−3 9.35 0.0071 

𝐶  

𝑆𝑜𝑙𝑖𝑑/𝑠𝑜𝑙𝑣𝑒𝑛𝑡 

0.042 1 0.042 288.76 <  0.0001 

𝐷 

𝑇𝑖𝑚𝑒 

1.054 × 10−4 1 1.054 × 10−4 0.73 0.4060 

𝐶𝐷 7.659 × 10−4 1 7.6659 × 10−4 5.27 0.0346 

𝐴2 4.392 × 10−3 1 4.392 × 10−3 30.86 < 0.0001 

        𝐶2 4.481 × 10−3 1 4.481 × 10−3 30.86 < 0.0001 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 2.468 × 10−3 17 1.452 × 10−4   

𝐿𝑎𝑐𝑘 𝑜𝑓 𝐹𝑖𝑡 1.263 × 10−3 12 1.053 × 10−4 0.44 0.8886 

𝑃𝑢𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 1.205 × 10−3 5 2.410 × 10−4   

𝐶𝑜𝑟 𝑇𝑜𝑡𝑎𝑙 0.053 24    
 

 

However, temperature effects was significant (P=0.0071) within the selected range 

contrary to observation in the optimization of antioxidant compounds from apple pomace by 

response surface methodology (Wijngaard and Brunton, 2010). A response surface 

methodology using a Box-Behnken design for the optimization of polyphenols from apple 

pomace by micro-wave assisted extraction method by Bai and co-workers revealed that, total 

phenolic content followed a normal quadratic and depended on the solid to solvent ratio in 

addition to microwave power, solvent concentration and extraction time (Bai et al., 2010). 
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Range of solid to solvent ratio was between 1: 10 and 1: 30 in their investigation compared to 

a ratio of 1: 12.5 to 1: 100 (8% to 1% W/V) in this research. This justifies a transformed 

quadratic model as suitable, simple and meaningful which was highly leveraged by the total 

phenolic content, and significantly depended on the loading of the biomass. Extraction time 

was not significant within the range (P=0.4060) consistent with results of the one-to-one 

factor experiments but generally cannot be accepted. The contribution of the centrifugation 

process to this phenomenon cannot possibly be ruled out as it may be compensating for the 

overall extraction time. From the regression analysis it shows that selected model was highly 

significant (P<0.0001) and lack of fit is insignificant (p> 0.1). Additionally, the predicted R2 

value of 0.9096 reasonable agrees to the adjusted R2 value of 0.9342 with a low coefficient of 

variation of 4.07% suggesting a high level of precision and reliability of measured values as 

shown in Table 3-3. 

Table 3-3  Adequacy Level for Response Surface Reduced Quadratic Model for TPC under Solvent 
Extraction 

Std. Dev. 0.0.12 𝑹𝟐 0.9534 

Mean 0.30 𝑹𝑨𝒅𝒋
𝟐  0.9342 

C.V. % 4.07 𝑹𝑷𝒓𝒊
𝟐  0.9096 

PRESS 4.790 × 10−3 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏𝒂𝒅𝒆𝒒 22.133 

    
 

 

Adequate precision defined as ‘’the ratio of signal to noise ratio’ ’of this analysis was 

22.133 which was good as a ratio greater than 4 is usually preferred. Hence this model can be 

used to navigate the design space. Final estimates for the intercept, linear and quadratic terms 

at 95% confidence interval are shown in Table 3-4. 
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Table 3-4 Coefficients Estimates terms for Reduced Quadratic Model for TPC under Solvent 
Extraction 

Factor 
Coefficient 

Estimate 

df Standard 

Error 

95% CI 

Low 

95% CI 

High 

VIF 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 0.30 1 4.075 × 10−3 0.29 0.30 

𝐴  

 

−3.523 × 10−3 1 2.609 × 10−3 −9.028

× 10−3 

1.981 × 10−3 1.02 

  𝐵 −8.598 × 10−3 1 2.812 × 10−3 −0.015 −2.664

× 10−3 

1.03 

𝐶 0.056 1 3.283 × 10−3 0.049 0.063 1.03 

𝐷 2.487 × 10−3 1 2.919 × 10−3 −3.671

× 10−3 

8.646 × 10−3 1.05 

𝐶𝐷 7.529 × 10−3 1 3.278 × 10−3 6.126 × 10−4 0.014 1.04 

𝐴2 0.013 1 2.361 × 10−3 8.004 × 10−3 0.18 1.02 

𝐶2 −0.028 1 4.965 × 10−3 −0.038 −0.017 1.05 
 

A= acetone concentration (%v/v), B=Temperature (oC), C= solid-to- solvent ratio, (%w/v) and 
D= extraction time (minutes). 

Coefficient estimates for acetone concentration was -3.523x10-3 of post ANOVA 

analysis at 95% confidence and a Variance inflation factor (VIF) of 1.02. Variance inflation 

factor is an estimation of how much of the variance of a coefficient is ‘’inflated’ ’because of 

linear dependence with other predictors. This factor has a lower bound value of 1 with several 

recommended upper bound values reported in literature. Maximum level of 10 was 

recommended (Hair et al., 1995), 5 (Rogerson, 2001), 4 (Park and Jackson, 2008) and 2.5 

(Allison, 2012). Lower levels of VIF are desired because higher levels constitute a problem 

and affect results in multiple regression analysis (Allison, 2012). Variance inflation factor of 

acetone concentration of 1.02 means the coefficient was larger than a factor 1.02 than would 

otherwise be if there were no intercorrelations between total phenolic content, solid-to solvent 

ratio, temperature and time. Variances of all coefficients in the model were not very much 

inflated as the highest value of 1.05 in the model was just close to the minimum VIF of 1.0.  
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Negative values of any coefficient suggest a certain maximum value beyond which total 

phenolic content will decrease significantly. Therefore increasing, acetone concentration, 

solid-to-solvent ratio and temperature arbitrary may not favour overall yield of polyphenolic 

compounds in extract. Higher loading of solids relative to solvent reduced effective mass 

transfer and higher temperature may lead decomposition of polyphenolic compounds 

originally accumulated around low temperatures as shown in Figure 3-8. 

                          

Figure 3-8 Variation of total phenolic content (mg/g GAE DW) with temperature (oC), acetone 
concentration (%(v/v) and solid-to solvent ratio (%(w/l) of apple pomace at a fixed extraction 
time of 60 minutes. 

 

        

Degradation of phenolic compounds under high temperatures in solvent extraction has 

previously been reported (Hismath et al., 2011, Pacheco-Palencia et al., 2009). 

The final equation in terms of actual factors is shown in Equation 3-3. 
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Equation 3-3 Model Equation for TPC under Acetone Extraction 

1

√𝑇𝑃𝐶 
=  +0.33175 − 4.07195 × 10−3𝐴 − 3.43929 × 10−4𝐵 + 0.031902𝐶 − 2.39748

× 10−4𝐷 + 7.17020 × 10−5𝐶 𝐷 + 3.24648 × 10−5𝐴2  − 2.25179 × 10−3𝐶2 

Where 𝐴,𝐵,𝐶,𝐷 and 𝑇𝑃𝐶 represent Acetone concentration, temperature solid/solvent ratio, 

extraction time and total phenolic content respectively. 

Case statistics report which is an evaluation of the model showing the experimental 

(actual) values of total phenolic content and the predicted are shown Table 3-5 below. 

This model was only an approximation and does not represent the actual and can’t be relied 

upon predictions outside the limits of the design factors. It was only good enough to give an 

idea or direction (Shari, 2013). 

Analysis of Response Surface Plots for Total Phenolic Content 

Three dimensional plots (3D) showing the effects of two independent factors whilst 

keeping other two at mean values  on the total phenolic content are represented in Figure 3-9 

below. Total phenolic content increases as acetone concentration, temperature increases 

initially and decreases significantly when acetone concentration was above 70% with 

increasing solid-to solvent ratio. 

3.2.5.1 Optimization of Process and Verification of Model for Total Phenolic Content 

Optimal conditions were obtained using the transformed quadratic model with the objective to 

achieve maximum total phenolic content from apple pomace. The conditions for the 

optimization were set using the numerical optimization and the design expert generated series 

of solutions with varying desirability.  
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Table 3-5 Actual total phenolic content vs predicted (mg/g)GAE DW 

Standard 

order 

Sample Actual TPC 

(mg/g) GAE DW 

Predicted TPC 

(mg/g) GAE DW 

1 40-10-1-30 17.47 17.36 

2 80-10-1-30 17.73 18.90 

3 40-60-1-30 19.58 18.90 

5 40-10-8-30 8.90 8.65 

6 80-10-8-30 8.90 8.65 

7 40-60-8-30 9.90 9.18 

8 80-60-8-30 9.87 9.18 

9 40-10-1-90 21.68 17.36 

11 40-60-1-90 19.25 18.90 

12 80-60-1-90 22.55 20.66 

14 80-10-8-90 8.74 8.65 

15 40-60-8-90 8.30 9.18 

16 80-60-8-90 9.36 9.18 

17 20-35-4.5-60 8.14 8.65 

18 100-35-4.5-60 8.46 8.65 

19 60-10-4.5-60 10.13 11.11 

20 60-85-4.5-60 14.03 14.79 

21 60-35-1-60 15.32 18.90 

22 60-35-11.5-60 9.27 9.77 

23 60-35-4.5-5 6.99 10.41 

24 60-35-4.5-120 10.95 10.41 

25 60-35-4.5-60 13.31 10.41 

26 60-35-4.5-60 11.92 10.41 

27 60-35-4.5-60 11.08 10.41 

28 60-35-4.5-60 11.57 10.41 

29 60-35-4.5-60 9.69 10.41 

30 60-35-4.5-60 11.85 10.41 
 

 Sample 80-60-8-90 reads as; 80%(v/v) acetone concentration at 60oC for 8% solid-to-solvent 
ratio for 90 minutes extraction time. 
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Figure 3-9 Effects of Acetone concentration % (v/v), temperature (oC), solid-to solvent ratio % 
(w/v), time (minutes) on Total phenolic content (mg/g)GAE DW for varying 2 faactors whilst 
maintaing other 2 at mean values used in design.. 

Conditions with highest value of desirability was selected and extractions were carried 

out in three replicates as in 2.4.3 and total phenolic content determined as in section 2.7.4 and 

the results shown in Table 3-6. 
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Table 3-6 Optimal conditions for Total phenolic content under Acetone Extraction 

Optimal  Conditions Total Phenolic Content 

Acetone 

Conc. 

(%) 

𝐸xtraction 

Temp 

℃ 

Solid/Solvent 

ratio 

(%) 

Extraction 

Time 

(min) 

Predicted 

TPC 

mg/gGAE 

DW 

Actual 

TPC 

mg/g GAE 

DW 

65 60 1 30 21.35 21.70±0.2 

 

 

The results showed no significant difference between the predicted and experimental 

values for total phenolic content of the aqueous acetone extracts. Therefore the statistical 

method could be used to predict phenolic content of apple pomace by response surface 

methodology within the parameters. Hence total phenolic content of 21.7mg/g GAE DW will 

serve as the baseline for comparison with subcritical water extraction. Total phenolic content 

of 21.75mg/g GAE DW and 27.04 mg/g GAE DW have previously been recovered from oven 

and freeze dried apple pomace respectively using up to 80% (V/V) acetone (Laura et al., 

2013). Wijngaard and Bruton reported optimum total phenolic content of 14.15 mg/g GAE 

DW using 65% aqueous acetone at 25℃ for 60minutes. Aqueous acetone, 70% at 20℃ was 

used by Suarez et al., and recorded 6.48 mg/g GAE DW (Suarez et al., 2010). 

3.2.6 Model selection for Fraction of Solids Solubilized under Acetone Extraction 

The fraction of solids solubilized in all extracts were determined as outlined in 2.2.4 

and ranges from 9.7% to 19.4% with a mean value of 16.23%. 

Similar rigorous procedures for selecting appropriate model were pursued as in 3.2.5 and the 

fraction of solids solubilized per 100g followed a reduced quadratic model as in Equation 3-1 

The proposed model was significant (p<0.0001) and an insignificant lack of fit 

(p=0.6319). In this case 𝐴, 𝐶, 𝐴𝐶, 𝐵𝐶, 𝐵𝐷, 𝐴2, 𝐷2 are significant model terms (P<0.05). 
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Overall regression coefficient was 0.9506 and  𝑅𝐴𝑑𝑗2 (0.9163) with undefined  𝑅𝑃𝑟𝑖2  and 

predictive residual sum of squares (PRESS) because the leverage in the analysis was 1.00. 

Coefficient of variation was 4.65% and all variances of the coefficients were inflated by less 

than 1.5. The final equation in terms of actual factors is Equation 3-4. 

Equation 3-4 Model Equation for Fraction of Solid Solubilised (FSS) under Acetone Extraction 

FSS =  −2.48025 − 0.082150𝐴 + 0.033668𝐵 + 0.88060𝐶 + 0.59345𝐷 − 0.010155AC

+ 5.69564 × 10−3𝐵𝐶 − 1.10062 × 10−3BD + 1.63244 × 10−3𝐴2  

− 4.65261 × 10−3𝐵2 

 

The diagnostic case statistics report is showing experimental (actual) values of fraction 

of solids solubilized per 100g of dried apple pomace and those predicted using the model 

within the design parameters are shown Table 3-7. 

3.2.6.1 Response surface plots for Fraction of Solids Solubilized under Acetone 

Extraction 

Response surface plots for fraction of solids solubilised from the acetone extracts for the 

various combinations of design parameters are shown in the figures 3-10 to 3-12 below; 

Solubility of solids in solvents depends on the activity coefficient which changes with 

temperature and has the capacity to modify activity coefficient. Fraction of solids solubilised 

increases linearly with temperature and solid-to solvent ratio (Figure 3-12) and decreases 

drastically at higher temperatures with extended extraction time (Figure 3-11). 
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Table 3-7 Experimental and predicted of fraction of solids solubilized g / 100g of starting 
material under different extraction conditions. 

Standard Order 

Experimental 

condition 

Actual 

Value(g/100g) 

Predicted Value 

(g/100g) 

1 40-10-1-30 10.00 11.00 

2 80-10-1-30 15.40 15.14 

4 80-60-1-30 15.40 15.46 

5 40-10-8-30 15.50 14.72 

6 80-10-8-30 16.00 16.02 

7 40-60-8-30 16.40 17.03 

8 80-60-8-30 19.00 18.33 

9 40-10-1-90 13.30 12.45 

11 40-60-1-90 9.70 9.46 

12 80-60-1-90 13.50 13.61 

13 40-10-8-90 16.10 16.17 

14 80-10-8-90 16.70 17.47 

15 40-60-8-90 15.00 15.18 

16 80-60-8-90 16.50 16.48 

17 20-35-4.5-60 18.20 18.20 

19 60-10-4.5-60 18.40 18.48 

21 60-35-1-60 16.30 16.66 

25 60-35-4.5-60 18.50 18.31 

26 60-35-4.5-60 19.20 18.31 

27 60-35-4.5-60 17.20 18.31 

28 60-35-4.5-60 18.50 18.31 

29 60-35-4.5-60 17.70 18.31 

30 60-35-4.5-60 19.20 18.31 
 

Rows 3, 9,10,12,16, 22 and 27 were ignored for the analysis, Experimental condition  60-35-4.5-
60 reads as; 60%(v/v) acetone concentration,at a temperature of 35oC, 4.5%(w/v) solid-to-
solvent ratio for 60 minutes extraction time. 
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Positive coefficient of acetone concentration in the quadratic term describes the 

curvature of the response plots in (Figure 3-10) whose increment positively impact on faction 

of solids solubilised. 

 

Figure 3-10 Effects of solid-to-solvent ratio (%w/v) and acetone concentration (%v/v)on 
fraction of solid solubilised (g/100g)during acetone extraction at temperature 35oC for 60 
minutes extraction time. 

 

 

Figure 3-11 Effects of time  (minutes)and temperature (oC)on fraction of solid solubilised 
(g/100g) using a fixed  concentration of 60%(v/v) and 4.5% solid-to-solvent ratio. 
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Figure 3-12 solid to solvent ratio (%w/v) and temperature effect (oC) on fraction of solid 
solubilised (g/100g) using 60%(v/v) acetone concentration for 60 minutes extraction time. 

 

3.2.6.2 Optimization of Process and Verification of Model for fraction of solids 

solubilized 

Conditions for optimization were based on the information from the response surface 

plots to achieve maximum solubility using numerical optimisation. Optimised conditions 

were obtained from the many solutions generated by the design expert. Conditions with the 

highest desirability were selected and extractions were carried out in three replicates as in 

2.2.2 and fraction of solids determined as in 2.2.4 and the results shown in Table 3-8. 
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Table 3-8 Optimal conditions for Fraction of solids solubilised under Acetone Extraction 

Optimal Conditions                                                                Fraction of solids solubilised 

Acetone 

Conc. 

(%) 

Extraction 

Temp 

(oC) 

Solid/solvent 

ratio 

(%) 

Extraction 

time 

(min) 

Predicted 

 

g/100g 

Actual 

 

g/100g 

 

78 

 

21 

 

4.7 

 

54 

 

19.92 

 

19.20±0.1 
 

 

3.2.7 Separation and Identification of Phenolic Compounds in Acetone extracts 

Separations of phenolic compounds were done using the protocol described fully in 

2.2.9. The phenolic compounds were identified by comparing retention times (tR) and spectra 

data of known complimentary phenolic standards at their maximum absorbance. Two main 

phenolic groups were observed as flavonoids and phenolic acid. Representative phenolic 

compounds were Chlorogenic acid, Caffeic acid Phloridzin, Procyanidin B2, Epicatechin, 

Quercetin -3-galactoside and Quercetin-3-glucoside. These compounds were identified in 

commercial apple pomace and documented in literature (Schieber et al., 2001, Çam and Aaby, 

2010, Diñeiro García et al., 2009, Suarez et al., 2010). Typical chromatogram of the phenolic 

compounds at 320nm is shown in Figure 3-13. 

Quercetin glycosides which were thought to be very difficult to separate because they related 

closely (Tsao and McCallum, 2009), were well resolved by the method.  Additionally 3 other 

quercetin glycosides were resolved but standards were not readily available for their 

identification. These quercetin glycosides could be quercetin -3-xyloside, quercetin-3- 

arabinoside and quercetin-3-O-rhamnoside according to elution order (Schieber et al., 2001a, 

Serena et al., 2007). Phloridzin, Epicatechin and Procyanidin B2 were detected at 280nm, and 
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Chlorogenic and Caffeic  acids at 320nm, and quercetin glycosides at 370nm.The retention 

times and of the various standards reported as ± standard error is recorded in Table 3-9. 

                    

Figure 3-13 Chromatogram (320nm) of phenolic compounds isolated from the apple pomace 
using aqueous acetone. 1= acetone, 2=chlorogenic acid, 3= procyanidin B2, 4= caffeic acid, 5= 
epicatechin, 7-Ferulic acid, 8= quercetin-3-galactoside, 9=quercetin-3-glucoside, 15= phloridzin. 

 

3.2.8 Quantification of Phenolic Compounds 

Concentration of phenolic compounds in all the extracts were obtained as described in 

2.2.10 and the regression equations as well as coefficient (R2) for the standard calibration 

graph are reported in Table 3-10. 
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Table 3-9 Retention time of  selected Phenolic standards 

Phenolic standard Retention time (min) 

5-HMF  7.3±0.05 

Furfural  10.4±0.06  

Protocatechuic aldehyde 12.4± 0.06 

Catechin 13.03 ± 0.01 

Chlorogenic acid  15.17±0.05  

Procyanidin B2  16.13±0.07  

Caffeic acid  17.5± 0.08  

Epicatechin 18.6 ±0.07 

P-Coumaric acid 25.3 ± 0.08 

Ferulic acid  29.3±0.20 

Quercetin- 3- galactoside 31.47± 0.11 

Quercetin -3-glucoside 32.4±0.01 

Phloridzin 41.5 ± 0.23 

Phloretin 50.32±0.12 

Quercetin 57±0.25 
 

 
Table 3-10 Equation for calibration of standard phenolic compounds 

Phenolic Standard Regression equation Correlation 

 Coefficient (R2) 

Chlorogenic acid 𝑦 = 25667𝑥 0.9992 

Procyanidin B2 𝑦 = 4.9706𝑥 0.9833 

Quercetin-3- galactoside 𝑦 = 26.232𝑥 0.9998 

Quercetin-3- glucoside 𝑦 = 13829𝑥 1.0000 

Phloridzin 𝑦 = 14704𝑥 0.9999 

Epicatechin 𝑦 = 6210𝑥 0.9998 

Catechin 𝑦 = 5901.3𝑥 1.0000 

Protocatechiuc aldehyde 𝑦 = 31800𝑥 0.9971 

5-HMF 𝑦 = 401717𝑥 0.9998 

Furfural 𝑦 = 42138𝑥 0.9997 
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Table 3-11 Concentration of Phenolic Compounds (mg/kg) 

Std 

Order 

CGA PHL Q-3-gal Q-3-glu E-CAT Pr-B2 

1 183.17 ± 4.7 686.35±21.5 159.99±2.4 111.14±2.6 ND ND 

15 170.85 ± 4.0 545.01±10.6 128.88±1.9 89.45±1.7 142.50±9.4 216.85±11.8 

19 187.78 ± 7.1 677.32±17.1 171.33±0.5 115.22±3.0 130.30±10.8 201.55±19.8 

22 160.99 ± 5.7 562.13±18.9 142.92±4.7 98.83±3.7 132.9±9.7 208.33±1.1 

16 201.80±8.7 722.53±25.3 175.09±8.2 117.74±4.7 193.6±33.1 165.80±26.0 

23 191.88±5.9 634.49±15.9 174.67±0.4 117.84±2.5 141.5±8.0 227.81±4.4 

6 177.39±12.2 641.86±37.7 174.10±12.6 116.91±7.6 173.2±37.9 140.35±28.3 

26 190.15±6.8 693.36±20.8 177.78±0.3 118.84±3.3 140.7±10.7 451.69±22.4 

14 175.36±7.6 636.60±23.2 173.16±8.1 116.47±4.7 167.4±32.8 150.40±23.3 

20 157.05±22.0 776.84±52.9 176.32±18.2 134.37±0.0 ND ND 

11 221.58±9.0 785.27±30.8 186.58±6.1 128.20±2.5 ND ND 

21 184.12±10.9 813.70±31.9 187.83±7.1 131.44±6.7 ND ND 

13 146.69±6.2 484.60±20.6 133.68±5.3 92.88±3.8 132.2±9.1 210.25±5.7 

9 167.89±8.7 723.64±36.7 162.88±7.8 114.46±5.9 ND ND 

28 191.38±8.4 713.80±5.7 181.05±1.3 121.81±4.4 152.5±20.0 224.06±3.1 

7 162.72±10.6 588.53±6.9 135.03±1.4 93.17±1.2 141.7±5.9 216.38±12.8 

18 34.49±4.2 273.55±33.1 30.34±6.5 29.22±0.0 ND ND 

5 156.00±3.5 516.75±12.2 136.02±2.7 94.57±2.1 133.1±6.9 218.26±9.0 

25 191.19±5.5 727.07±12.3 176.54±3.3 122.26±2.7 132.5±4.0 217.18±5.4 

17 140.67±0.9 314.72±4.2 147.77±0.8 103.45±1.0 109.9±1.6 207.83±10.1 

24 191.99±2.9 707.97±18.1 178.16±1.9 119.19±2.2 157.82±10.7 222.60±2.1 

12 168.67±14.8 894.62±62.4 172.08±15.4 119.92±0.0 ND ND 

8 190.21±11.3 717.27±28.7 173.37±8.1 116.41±4.3 193.27±19.3 167.11±28.0 

30 200.41±3.1 705.85±14.4 182.74±1.6 125.56±1.4 148.98±0.2 225.72±6.0 

29 193.29±2.5 709.51±13.0 184.98±1.9 120.09±1.1 142.30±1.8 212.80±0.6 

20 248.06±4.7 784.18±20.2 180.15±1.7 120.74±2.1 264.15±30.0 339.78±18.7 

10 143.60±13.7 845.59±67.5 164.39±14.0 ND ND ND 

2 124.51±11.6 847.53±64.9 173.26±11.8 ND ND ND 

3 189.90±0.9 674.83±44.2 149.79±0.9 104.02±1.4 ND ND 

27 192.57±3.0 682.51±15.8 175.66±1.7 121.14±1.6 138.97±5.2 216.97±3.1 

 Std= standard, CGA- Chlorogenic acid; PHL-Phloridzin; Q-3-gal-Quercetin-3-galatoside; Q-3-
glu- Quercetin-3-glucoside; E-CAT- Epicatechin; Pr-B2- Procyanidin B2; ND not detected. 
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Concentrations of the phenolic compounds of the various combinations of the 

independent variables were analysed statistically using the Stat-Ease software to study the 

influence of the design variables on their yield in order to give a better understanding of their 

behaviour in terms interactions between the independent factors and to optimised the 

extraction conditions. 

Summary of the regression analysis for identified phenolic compounds are shown in 

Table 3-12 and detailed ANOVA results are in the appendix. 

Table 3-12 Summary of significance of Design factors and interaction terms under acetone 
extraction 

Response Significance level (p<0.05) 

A B C D AC AD BC BD CD A2 B2 C2 

CGA             

PHL             

Q-gal             

Q-glu             

Pr- B2             

E-CAT             

TPC-hplc             

TPC-FC             

FSS             

ORAC             

CGA-Chlorogenic acid; PHL-Phloridzin; Q-gal- Quercetin-galactoside; Q-glu- Quercetin glucoside; 
Pr-B2-Procyanidin B2; E-CAT-epicatechin; TPC-hplc- total phenolic content(HPLC); TPC- FC- 
total phenolic- Folin-Ciocalteau; FSS- fraction of solid solubilised; -significant. A-acetone 
concntration; B-Temperature; C-Solid-to-solvent ratio; and D-extraction time 
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3.2.9 Model Analysis of Individual Phenolic Compounds under Acetone Extraction 

All selected models for individual phenolic compounds were significant (P<0.05) and 

insignificant lack of fit (P>0.05), except for Chlorogenic acid Quercetin 3-glucoside which 

had significant lack of fit (P<0.05) and may be due to the large blocking effect. Selected 

models had satisfactory level of adequacies in all with R2 > 0.9 and reasonable agreement 

between 𝑅𝐴𝑑𝑗2  and 𝑅𝑃𝑟𝑖2  was observed. Coefficients of variations were < 5% for each of the 

measurements at the 95% confidence interval. Yields of phenolic compounds were 

significantly affected by acetone concentration, solid- to- solvent ratio, temperature as well as 

their interactions. 

3.2.9.1 Predictive Model for Extraction of Chlorogenic acid under Acetone Extraction 

Concentration of Chlorogenic acid in extracts ranged from 124.5 to 221.58 mg/kg with 

mean amount of 176.24 mg/kg. The predictive model in terms of actual factors is shown in 

Equation 3-5. 

Equation 3-5 Model Equation for Chlorogenic acid under Acetone Extraction 

𝐶ℎ𝑙𝑜𝑟𝑜𝑔𝑒𝑛𝑖𝑐 𝐴𝑐𝑖𝑑

=  +100.52918 + 3.21207𝐴 + 0.29177𝐵 − 6.15519𝐶 + 3.24996 × 10−3𝐷

+ 0.24195AC − 0.038655𝐵𝐶 + 5.36020 × 10−3BD − 0.026760CD

− 0.037565𝐴2  − 0.56300𝐶2 

 

 

Hydrocinnamic acids are polar among polyphenolic compounds and extracting them 

from matrices will require a certain reasonable level of polarity of solvent. An increase in  
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temperature from 10 to 60oC for 1% loading at acetone concentration 40%(v/v), caused yield 

of Chlorogenic acid to increase by 14% but decreases by approximately 20% as concentration 

of acetone approaches 80%(v/v).Acetone concentration of around 52% at 40oC was reported 

as good for extracting Chlorogenic acid from apple pomace (Wijngaard and Brunton, 2010) 

contrary to 46% at 60oC of acetone under the current investigation. The investigation showed 

that decreasing the concentration of acetone and increasing temperature favours yield of 

Chlorogenic acid. Optimum concentration of 206.3mg/kg Chlorogenic acid was achieved and 

was within range 30 – 1766 mg/kg of selected cider apples (Serena et al., 2007). The variation 

of Chlorogenic acid depicting the behaviour are shown in Figure 3-14 and Figure 3-15. 

 

Figure 3-14 Effects of acetone concentration (%v/v), temperature (oC) and solid -to -solvent 
ratio  (%w/v) of apple pomace on the amount of Chlorogenic acid (mg/kg)for 60 minute 
extraction time. 
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Figure 3-15  Response plot of effects of temperature (oC), and solid to solvent ratio (%w/v) of 
apple pomace on the amonut of Chlorogenic acid (mg/kg) using 60%(v/v) acetone  for 60 
minutes extraction time 

 

3.2.9.2 Predictive Model for Extraction of Phloridzin under Acetone Extraction  

The concentration of Phloridzin in extracts ranged from 314.7mg/kg to 894.6 mg/kg 

consistent with 25mg/kg to 1061mg/kg of cider apples (Serena et al., 2007). Equation of 

model based on the regression analysis in terms of actual factors is shown in Equation 3-6. 

Equation 3-6 Model Equation for Phloridzin under Acetone Extraction 

𝑃ℎ𝑙𝑜𝑟𝑖𝑑𝑧𝑖𝑛 =  +106.89513 + 21.36305𝐴 − 1.01061𝐵 − 59.51068𝐶 + 0.81180𝐷

+ 0.18934𝐵C + 0.016002𝐵𝐷 − 0.20193CD − 0.14966𝐴2 + 4.52601𝐶2 

 

  

Phloridzin concentration increased by 16% at 1% solid –solvent ratio as the acetone 

concentration increases to 80% (v/v), and decrease by 24% as loading approaches 8%. 

Temperature had minimal effect on the recovery of the dihydrochalcone as it only increased 

by about 1% when temperature increased from 10 to 60oC as shown in Figure 3-16. 
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Figure 3-16 Effects of acetone concentration %(v/v), temperature (oC) and solid-to-solvent ratio 
(%w/v) of apple pomace on the ampunt of Phloridzin (mg/kg) for 60 minutes extraction time. 

 

The 3D plots depicting how Phloridzin responds when two independent variables were 

changed and the other two fixed at mean level are shown in Figure 3-17and Figure 3-18 

Optimum concentration of Phloridzin (858.92mg/kg) was achieved using 73% acetone 

at 60oC for 60 minutes as against 75% at 40oC for 60 minutes reported earlier (Wijngaard and 

Brunton, 2010). 
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Figure 3-17(A)-Effects acetone concentration %(v/v)-and temperature (oC)using 4.5%(w/v) 
solid-to-solvent ratio for 60 minutes extraction time on the amount of Phloridzin (mg/kg). (B)-
Time (minutes) effect on the amount of Phloridzin (mg/kg) using acetone concentration of 
60%(v/v) with 4.5% solid-to-solvent ratio. 

 

A 

B 
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Figure 3-18  (A)-Effects of Solid-to Solvent ratio %(w/v) and Temperature (oC) using 60%(v/v) 
acetone concentration for extraction time of 60 minutes on the amount of Phloridzin (mg/kg); 
(B)-Time(minutes)  and solid-to-solventeffects on the amount of Phloridzin using 60%(v/v) 
acetone concectration at temperature 35oC. 

 

3.2.9.3 Predictive Model for Extraction of Quercetin glycosides under acetone extraction 

Quercetin-3-galactoside dominates among other quercetin glycosides in apple peels 

(Tsao and McCallum, 2009) and ranged in the extract from 133.7-187.8 mg/kg dry weight of 

apple pomace with mean concentration of 168.6 mg/kg. Quercetin-3- glucoside ranged in 

extracts from 60 -128.2mg/kg. Both results agree with previous reports as 50-520mg/kg for 

A 

B 
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Quercetin-3-galactoside, and 9-152 mg/kg of quercetin-3-glucoside in cider apple peels 

(Serena et al., 2007). Transformed quadratic models were suitable and described the 

behaviour of the Quercetin glycosides as in the Equation 3-7. 

Equation 3-7 Transformed Reduced Quadratic Model equations for Quercetin glycosides 

1.0

𝑆𝑞𝑟𝑡(𝑄 − 𝑔𝑎𝑙)
     

=  +0.086163 − 1.15229 × 10−4𝐴 − 3.72357 × 10−4𝐵 + 2.1303710−3𝐶

− 6.64449 × 10−5𝐷 − 2.7551 × 10−5𝐴C + 1.52022 × 10−6𝐴𝐷 − 1.13192

× 10−6BD + 6.07617 × 10−6𝐵2 

 

1.0

𝑆𝑞𝑟𝑡(𝑄 − 𝑔𝑙𝑢)
     

=  +0.099931 − 4.32652 × 10−4𝐴 + 1.64815 × 10−3𝐶 − 1.0606 × 10−4𝐷

− 1.5 × 4954610−4𝐴𝐶 + 1.76547 × 10−6𝐴D + 1.06599 × 10−5𝐴2

+ 6.69141 × 10−4𝐶2 

 

 

Quercetin -3-galactoside concentration increases by 5.24% when concentration of 

acetone was increased to 80% (v/v) and slightly when temperature increases from 10- 60oC 

with increasing solid-to-solvent ratio as reflected in Figure 3-19. Interaction between acetone 

concentration and solid-to solvent ratio (AC) was more important than between temperature  

and time (BD) as revealed by their negative coefficient values which was higher in AC 

(2.7551 × 10−5) than BD (1.13192 × 10−6 ). The negative coefficient values of temperature 

and time as well as their interaction suggest that, overtime with increasing temperature, could 
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result in less recovery of the glycoside as shown in Figure 3-19. Decrease in concentration of 

the glycoside may be due to degradation or hydrolysis of the sugar moiety attached to the 

quercetin aglycone. Similar fears were reported during the solvent extraction of Quercetin 

glycosides from ‘’Idared’’ apple peels using ultra- sonication (Vasantha Rupasinghe et al., 

2011). 

       

Figure 3-19  The effects of temperature (oC), acetone concentration %(v/v) and solid-to-solvent 
ratio  %(w/v) on the amount of quercetin-3-galactoside (mg/kg) for 60 minutes extraction time.  

 

The behaviour of quercetin-3-galactoside when independent variables changes are 

shown in the 3D plots in Figure 3-20 and Figure 3-21. 



134 
Chapter 3- Optimisation of Organic Solvent Mediated Extraction of polyphenolic compounds from apple pomace using 
Response Surface Methodologies 
 
 

         

Figure 3-20 The effect of time (minutes)and temperature (oC) on the amount of quercetin-3- 
galactoside (mg/kg) for 60%(v/v) acetone concentration for 4.5%(w/v) solid-to-solvent ratio. 

 

                

Figure 3-21 Effects of acetone concentration %(v/v) and solid-to solvent ratio %(w/v) on the 
amount of quercetin-3-galactoside at temperature 35oC for 6o minutes extraction time. 

 

Optimal acetone concentration of 76% (v/v) with 6% solid/solvent ratio was good for 

extracting quercetin-3-galactoside at 41oC for 58 minutes extraction time. A predicted 

concentration of 189 mg/kg of quercetin-3-galactoside was suggested at the optimal 

conditions. 
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Quercentin-3-glucoside behaves differently from Quercetin -3-galactoside although 

they fall in the same category of quercetin glycosides. Interactions between experimental 

factors were different. Solid-to-solvent ratio term influenced positively the yield of quercetin -

3-galactoside whereas temperature controlled the elution of quercetin-3-glucoside.  

        

Figure 3-22 Effects of acetone concentration %(v/v), time(minutes) and solid-to solvent ratio 
%(w/v) on the amount of quercetin-3-glucooside at temperature 35oC  

 

                       

Figure 3-23 Effects of acetone concentration %(v/v) and solid-to solvent ratio %(w/v) on the 
amount of quercetin-3-glucoside at temperature 35oC for 6o minutes extraction time. 
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Figure 3-24 The effect of time (minutes)and acetone concentration %(v/v) on the amount of 

quercetin-3- glucoside (mg/kg) at temperature 35oC 60%(v/v) for 4.5%(w/v) solid-to-solvent 

ratio. 

The optimal conditions for extracting Quercetin-3-glucoside using aqueous acetone 

from the apple pomace were 40% (v/v) acetone, 3.5% solid-to solvent ratio for 31 minutes at 

23oC. Conditions were different to those of quercetin-3- galactoside. It is very important to 

emphasise that there are no data available in literature to the best of my knowledge as regards 

good extraction parameters for extracting Quercetin glycosides from cider apple pomace 

using acetone as an extraction solvent. 

3.2.9.4 Predictive Model for Extraction of Epicatechin under acetone extraction 

Epicatechin concentration in extract ranges from 0 – 193 mg/kg in extract which was 

identified as the major flava-3-ol in some selected cider apples with concentrations from 

46mg/kg to 2225mg/kg fresh weight (Serena et al., 2007). The predictive model from the 

regression analysis is as in Equation 3-8.  
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Equation 3-8 Model Equation for Epicatechin under Acetone Extraction 

𝐸𝑝𝑖𝑐𝑎𝑡𝑒𝑐ℎ𝑖𝑛 =  −53.92179 − 0.12460𝐴 − 0.037316𝐵 + 56.08802𝐶 + 0.16379𝐴C

+ 0.051178𝐵𝐶 − 5.00284𝐶2 

 

                    

Figure 3-25 Effects of acetone concentration %(v/v), temperature (oC) and solid-to-solvent ratio 
%(w/v) on the amount of Epicatechin (mg/kg) dry weight apple pomace for 60 minutes 
extraction time. 
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Figure 3-26 Effect of solid-to-solvent ratio %(w/v) and acetone concentration %(v/v) on the 
amount of Epicatechin (mg/kg) dry weight of apple pomace at temperature 35oC for 60 minutes 
extraction time. 

 

 

                     

Figure 3-27 Effect of solid-to solvent ratio %(w/v) and temperature (oC) on the amount of 
Epicatechin (mg/kg) dry weight of apple pomace using 60%(v/v) of actone for 60 minutes 
extraction time. 
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3.2.9.5 Predictive Model for Extraction of Procyanidin B2 under acetone 

Procyanidin B2, is a major representative of the various groups of the 

proanthocyanidins in apple peels (Schieber et al., 2001a) and ranged in the extract from 0 (not 

detectable) to 227.8mg/kg with mean concentration of 137.68mg /kg. Result was consistent 

with previous reports (56mg/kg to 1362mg/kg) of some selected British cider apples (Serena 

et al., 2007). Predicted model equation in terms of actual factors of Procyanidin B2 is shown 

in Equation 3-9. 

Equation 3-9 Model Equation for Procyanidin B2 under Acetone Extraction 

𝑃𝑟𝑜𝑐𝑦𝑎𝑛𝑖𝑑𝑖𝑛 𝐵2 

=  −182.02469 + 2.96978𝐴 − 0.011758𝐵 + 124.61390𝐶 − 0.35523𝐷

− 0.21364𝐴C + 0.034340𝐵𝐶 − 0.022831𝐴2 − 9.59429𝐶2 + 2.80355

× 10−3𝐵2 

 

The variation Procyanidin B2 with experimental factors are shown in Figure 3-28 and 

the surface response plots as two of the independent variables changes while maintaining the 

other two at average levels are shown in Figure 3-29 and Figure 3-29. 
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Figure 3-28 Effect of acetone concentration %(v/v), solid- to- solvent ratio %(w/v)and 
temperature  (oC)on the amount of Procyanidin B2 (mg/kg) dry weight for 60 minutes 
extraction time.of apple pomace. 

 

 

                 

Figure 3-29 Effect of solid- to- solvent ratio %(w/v) and temperature (oC)on the amountof 
Procyanidin B2 (mg/kg) dry weight for actone concentration of 60%(v/v) for 60 minutes 
extraction time. 
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The amount of Procyanidin B2 increases initially as loading (solid/solvent), 

temperature and acetone concentration increases and decreases significantly for further 

increase in these parameters. 

Optimal solvent concentration and solid-solvent ratio for extracting Procyanidin B2 

from the apple pomace at 25oC for 40 minutes were 54% (v/v) and 6% respectively contrary 

to 70 % (v/v) of acetone reported as good for extracting Procyanidins from the pomace 

(Hussein (Hussein et al., 1990, Monrad et al., 2010). 

3.2.9.6 Overall effect of Design Variables on Total Phenolic Content under HPLC 

From the forgoing analysis, it was shown that the most significant factors were 

acetone concentration and solid-to solvent ratio as well as their interaction. This was reflected 

in the nature of the response plots of total phenolic content (mg/kg) quantified by HPLC 

method as in Figure 3-30. 

           

Figure 3-30 Effect of acetone concentration %(v/v) and solid-to-solvent ratio %(w/v) on total 
phenolic content (TPC, mg/kg) of acetone extracts of the apple pomace by the HPLC 
determination. 
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Acetone concentration and solid-to-solvent ratio significantly affected the overall yields of 

extraction of polyphenolic compounds. Optimised conditions of 65 % (v/v) of acetone, 6% 

solid-to solvent ratio for 60 min at 60oC were suggested using the predicted model with 

optimal total phenolic content of 1394.01mg/kg. These conditions were comparable with the 

results of total phenolic content by the Folin-Ciocalteau method in this investigation except 

for solid-to solvent ratio. The spectrophotometric method predicted 1% loading to be the best 

for total phenolic content, however this loading was too dilute to detect, epicatechin and 

procyanidin B2. Higher amounts of phenolic compounds were mobilised around the 

optimised conditions. Folin-Ciocalteu method for determination of total phenolics` is not 

specific and often interfered with sugars and other oxidisable compounds. The 

chromatographic methods allowed quantification of individual phenolic compounds present in 

the extracts without any interference. This accounted for the differences in total phenolic 

content determined by the separate methods. The spectrophotometric assay quantifies total 

phenolic content in Gallic acid equivalents (GAE). Gallic acid is not found in apples and 

therefore complicates comparison between the two methods. Chromatographic determination 

have always been less than the spectrophotometric and have been reported in literature 

(Escarpa and González, 2001). The HPLC method may not well resolve all phenolic 

compounds in the extract. For instance oligomeric flavanols which represent about 71-90% of 

polyphenolic content in apples (Vrhovsek et al., 2004), was not observed in extracts under 

HPLC used because they might not be retained by the stationary phase. 

3.2.10 Determination of Antioxidant activity of solvent extracts by ORAC assay 

ORAC assay attempts to mimic antioxidant activity of phenolic compounds by 

making use of a biological relevant radical source and combines both time and extent of 

antioxidant activity (Ou et al., 2002). Data from the assay are standardized which permit 
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results across laboratories to be compared (Zulueta et al., 2009). Antioxidant capacities of 

many food beverages have been determined by ORAC assay and enjoy some level of 

acceptability in the nutraceutical industry to the extent that ORAC values are coated on the 

labels of some functional foods (Bank and Schauss, 2004, T. Wright, 2004). The assay  

requires up to date equipment which are very expensive and also time wasting (Dai  and 

Mumper, 2010) recording wide variations of results across equipment (Zulueta et al., 2009). 

Furthermore ORAC assay is limited by its capacity to scavenge other reactive oxygen species 

like, O2
- HO-, ONOO- and singlet oxygen found in biological systems which have different 

mechanism and therefore cannot represent antioxidant activity (Ou et al., 2002). Nonetheless 

ORAC assay is still preferred over other antioxidant methods because, the assay is capable of 

detecting both ‘’hydrophilic and hydrophobic antioxidants’’ by modifying the source of the 

radical and solvents (Prior et al., 2005). The separation or fractionation of phenolic 

compounds into individual ones in the extracts will be more expensive and unproductive as a 

result of the complex nature of the extracts. Therefore, overall determination of the 

antioxidant capacity of the extracts may be significant as there is report about synergistic 

nature of phenolic compounds from plant sources (Dai  and Mumper, 2010).  

Antioxidant capacities of all extracts were determined by ORAC assay. 1ml of extract 

was pipetted into an Eppendorf tube which was loosely capped and freeze dried for 48hours 

according to procedure described in 2.2.1.2  and ORAC analysis based on the procedure 

described by Huang et al., 2002 with slight modification and outlined in section 2.2.11. 

ORAC values varied in extracts from 1433μmol TE/g DW to 6260μmol TE/g DW 

with mean ORAC value of 2732μmol TE/g DW. Data for direct comparison of antioxidant 

activity by ORAC of selected cider apple peels were not available. However, Budak et 

al.,2015 reported ORAC value of 9.84 μmol TE/ml in cider (Budak et al., 2015) and 6.2 μmol 
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TE/ml in apple juice have also been reported (Seeram et al., 2008). ORAC value of 44.07 

μmol TE/g fresh weight of ethanolic extract of rare apple peels was published (Giomaro et al., 

2014). However it was difficult to compare results of different experimental conditions  

and the units in which reported data were expressed. Moreover data expressed in fresh weight 

are not easy to compare with those of dry weight and also phycoerythrin was used as the 

protein source whereas this current investigation employed sodium fluorescein as the 

fluorescent agent. 

The effect of independent experimental variables on the antioxidant activities of 

extracts was evaluated by subjecting the ORAC values to regression analysis (ANOVA) to fit 

a polynomial equation. Results of the analysis of variance are shown in Table 3-13. 
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Table 3-13 ANOVA for Response surface Reduced Quadratic Model for ORAC-Solvent Extraction 

Source Sum 

of 

Squares 

df Mean 

Square 

F 

Value 

p 

value 

 

𝑀𝑜𝑑𝑒𝑙 3.978 × 10−4 7 5.683 × 10−5 55.79 <  0.0001 

𝐴 

 

1.262 × 10−6 1 1.262 × 10−6 1.24 0.2812 

𝐵 

 

9.014 × 10−6 1 9.014 × 10−6 8.85 0.0085 

𝐶  

 

3.346 × 10−4 1 3.346 × 10−4 328.46 <  0.0001 

𝐷 

 

1.382 × 10−7 1 1.054 × 10−4 0.73 0.7172 

𝐶𝐷 5.336 × 10−6 1 5.336 × 10−6 5.24 0.0352 

𝐴2 2.594 × 10−5 1 2.594 × 10−5 25.46 < 0.0001 

        𝐶2 4.530 × 10−5 1 4.530 × 10−5 44.47 < 0.0001 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 1.732 × 10−5 17 1.019 × 10−6   

𝐿𝑎𝑐𝑘 𝑜𝑓 𝐹𝑖𝑡 8.527 × 10−6 12 7.106 × 10−7 0.40 0.9078 

𝑃𝑢𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 8.791 × 10−6 5 1.758 × 10−6   

𝐶𝑜𝑟 𝑇𝑜𝑡𝑎𝑙 4.151 × 10−4 24    
 

A= acetone concentration (%v/v), B=Temperature (oC), C= solid-to- solvent ratio, (%w/v) and 
D= extraction time (minutes) 

 

The proposed model was significant (p<0.05) and had an insignificant lack of fit 

(p>0.05). Model terms B, C, CD, A2, C2 were significant (p<0.05). The Predicted R2 was in 

reasonable agreement with adjusted R2 as shown in Table 3-14. 



146 
Chapter 3- Optimisation of Organic Solvent Mediated Extraction of polyphenolic compounds from apple pomace using 
Response Surface Methodologies 
 
 

Table 3-14 Adequacy Level for Response Surface Reduced Quadratic Model for ORAC under 
Solvent Extraction 

Std. Dev. 1.009 × 10−3 𝑹𝟐 0.9583 

Mean 0.021 𝑹𝑨𝒅𝒋
𝟐  0.9411 

C.V. % 4.89 𝑹𝑷𝒓𝒊
𝟐  0.9209 

PRESS 3.282 × 10−5 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏𝒂𝒅𝒆𝒒 22.964 
 

 

The signal to noise ratio (adequate precision) of 22.964 > 4 was good with relatively 

small measure of dispersion in ORAC values (C.V=4.89%) with acceptable variance of 

inflation VIF (≤ 1.05).  

Final equation in terms of design factors are shown in Equation 3-10 

Equation 3-10 Predictive Model Equation for ORAC under solvent extraction 

1

√𝑂𝑅𝐴𝐶
=  +0.022036 − 3.11539 × 10−4𝐴 − 2.80293 × 10−5𝐵 + 3.10225 × 10−3𝐶

− 2.39293 × 10−5𝐷 + 5.98469 × 10−6𝐶 𝐷 + 2.49482 × 10−6𝐴2  

− 2.26394 × 10−3𝐶2 

 The case statistics results which show the actual ORAC values determined under experiments 

and those predicted by the model equation is shown in Table 3-15 below. 
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Table 3-15 Actual ORAC values vs predicted ORAC values (μmol TE/g DW) 

Standard 

order 

Sample Actual ORAC 

(μmol TE/g DW) 

Predicted ORAC 

(μmol TE/g DW) 

1 40-10-1-30 4120 3906 

2 80-10-1-30 4216 4444 

3 40-60-1-30 4944 5102 

5 40-10-8-30 1725 1736 

6 80-10-8-30 1724 1736 

7 40-60-8-30 1925 1890 

8 80-60-1-90 1919 2066 

9 40-10-1-90 5856 4444 

11 40-60-1-90 4809 5917 

12 80-60-1-90 16260 5917 

14 80-10-8-90 1694 1479 

15 40-60-8-90 1614 1600 

16 80-60-8-90 1814 1736 

17 20-35-4.5-60 1586 1736 

18 100-35-4.5-60 1643 1600 

19 60-10-4.5-60 1974 1736 

20 60-85-4.5-60 2975 2066 

21 60-35-1-60 2561 2770 

22 60-35-11.5-60 1959 2268 

23 60-35-4.5-5 2298 2268 

24 60-35-4.5-120 21.59 2268 

25 60-35-4.5-60 2766 2268 

26 60-35-4.5-60 2394 2268 

27 60-35-4.5-60 2189 2268 

28 60-35-4.5-60 2307 2267 

29 60-35-4.5-60 1881 3906 

30 60-35-4.5-60 2377 4444 
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3.2.10.1 Analysis of Response Surface Plots for ORAC under Solvent extraction 

                      

Figure 3-31 Response surface plot for effects of time (minutes) and solid-to-solvent ratio 
%(w/v) on ORAC values (μmol TE/g DW)with 60%(v/v) acetone at temperature 35oC. 

 

 

                   

Figure 3-32 Response surface plot for effects of temperature (oC)and acetone concentration 
%(v/v)on ORAC values  (μmol TE/g DW) with  1% solid-to-solvent ratiofor 60 minutes 
extraction time. 
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Similar interaction of experimental parameters (solid/solvent ratio and time) were 

observed between total phenolic content and ORAC activity (see Figure 3-9) suggesting 

positive relationship between phenolic content and antioxidant activity. Significant 

correlations between total phenolic content and antioxidant activity methods have previously 

been reported (Javanmardi et al., 2003, Kaur and Kapoor, 2002, Kratchanova et al., 2010, 

Velioglu et al., 1998). Also a weak correlation between antioxidant activity with phenolic 

concentration have also been reported (Suarez et al., 2010). 

Lower acetone concentration (58 % (v/v), at 60oC, 60min) selectively favoured 

extraction of antioxidant compounds as against (65 % (v/v), at 60oC, 30min) for total phenolic 

content.  

3.3 Conclusions 

Results have shown that statistics can be used to design an experiment to study the 

interrelationship between experimental factors and to predict the region of optimum values. . 

The potential interaction of operational parameters effects of experimental factors such; 

nature of apple pomace, solid-to-solvent ratio, temperature, solvent concentration and 

residence time on yields of solubilisation of the apple pomace, polyphenolic content and 

antioxidant activity of extracts were studied using response surface methodology. Designed 

conditions demonstrated selectivity towards significant recovery of all responses studied  

Significant amounts of phenolic and flavonoids compounds like Chlorogenic acid, Phloridzin, 

Quercetin glycosides, Epicatechin and Procyanidin B2 were extracted using aqueous acetone 

as a solvent from dried apple pomace. Individual interaction of the polyphenolic compounds 

with design parameters differed, particularly with Quercetin-3- galactoside and Quercetin-3-

galactoside exhibiting separate relationship with experimental conditions although both 
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classified as Quercetin glycosides. Addition of water to improve polarity of the solvent 

demonstrated to be good for extracting Chlorogenic acid and Procyanidins from the pomace 

residue. Extract from the by-product and apple juice and cider production, exhibited high 

antioxidant activity by the oxygen radical absorbance capacity (ORAC) which can be 

alternative source of natural antioxidant compounds to be used in the cosmetic, nutraceutical 

and pharmaceutical industries 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



150 
Chapter 4- Optimisation of Subcritical water Mediated Extraction of polyphenolic compounds from apple pomace using 
Response Surface Methodologies 
 
 
 

Chapter 4  

Optimisation of Subcritical water Mediated 
Extraction of polyphenolic compounds from 

apple pomace using Response Surface 
Methodologies 

 
4.1 Introduction 

Application of critical fluids in the extraction of bioactive ingredients have received 

considerable attention in recent times due to their environmentally friendliness. Subcritical 

water extraction (temperature between 100-374oC), a relatively new technique has high 

potential to replace organic solvents because water is cheap, nontoxic, and readily available 

(Liang and Fan, 2013). Water under subcritical conditions has dielectric constant similar to 

acetone and ethanol with decreased viscosity and high diffusivity at the high temperature 

(Akiya and Savage, 2002).Subcritical water has been shown to demonstrate selectivity 

towards separate groups of compounds at selected temperatures depending on their polarities. 

Polar compounds are extracted at lower subcritical temperatures whereas less polar ones are 

recovered at higher temperatures (Ibañez et al., 2003). Water under subcritical conditions has 

high concentrations of H+ and OH- ions which can catalyse acid-base reactions (Arai et al., 

2013). Therefore other water mediated reactions such as hydrolysis and dehydration can occur 

at the high temperature (Brunner, 2009). For example hemicellulose, proteins and lignin from 

plant biomass can hydrolyse at the high subcritical water conditions to produce oligomer 

sugars and amino acids (Brunner, 2009). The modified physico-chemical properties at the 
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elevated temperature contribute to the disruption of solute-matrix interactions thereby 

improving solubility and mass transfer effects leading to elution of compounds that are 

strongly bound to cell wall. The released compounds can undergo transformation at the high 

temperatures to generate other compounds of different chemical properties and 

structures(Plaza et al., 2010). Utilisation of subcritical water towards recovery of bioactives 

from plant materials has been investigated (Herrero et al., 2012, Plaza et al., 2010). 

Recovery of phenolic and antioxidant compounds from pressurised hot water 

extraction from apple by-products has been reported (Çam and Aaby, 2010, Plaza et al., 

2013). Subcritical water with ethanol as a modifier was employed to recover antioxidant 

compounds from lyophilised apple pomace (Wijngaard and Brunton, 2009). 

The current research assessed the utility of subcritical water in the recovery of 

polyphenolic compounds from wet apple pomace. No organic co-solvents or modifiers were 

applied or addition of acid/base to the reaction mixture to transform the pH under the 

subcritical water conditions. Different levels of loading of industrial apple pomace under wet 

and dried conditions were employed to assess efficient solubilisation of the apple pomace 

residue for recovery of polyphenolics under subcritical water conditions. Recovery of 

polyphenolic antioxidant compounds was achieved through optimisation of subcritical water 

mediated operation parameters such as temperature, residence time and solid-to-solvent ratio 

in a batch reactor. Response surface methodology procedure similar to chapter 3 was 

employed to study the relationship between experimental factors to maximise extraction 

yields of responses. The composition and structure of the polyphenolics in the various extracts 

as well the antioxidant capacities were analysed. 
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4.2 Results and Discussion 

4.2.1 Homogenization of apple pomace 

The homogenized apple pomace although still heterogeneous was a better sample to 

use than the raw apple pomace. Result of the mean dry matter content of the homogenised 

apple pomace was 26.2 ± 0.1g/100g fresh weight and the amount of water removed during 

freeze drying of the homogenised pomace was 71.7 ± 0.4g/100g fresh weight. 

4.2.2 Screening Experiment under subcritical water extraction 

4.2.2.1 Nature of sample 

Wet and dried homogenised apple pomace were compared for recovery of 

polyphenolic compounds for consideration under subcritical water extraction at 150oC for 20 

minutes Variation of total phenolic content in terms of dry weight basis for wet and dried 

apple pomace are shown in Figure 4-1. 

Analysis of variance (ANOVA) was conducted using the statistical package XLSTAT-

2014.02 version with post hoc Tukey test for total phenolic content (TPC) of the wet and 

dried apples pomace. in terms mg/g GAE DW. The results shows no significant difference in 

total phenolic content between corresponding wet and dried samples for 1%, 2% and 4% 

(p>0.05). Results implies, the amount of phenolic compounds that can be recovered using 1% 

wet and dried apple pomace will be similar and so for 2% and 4% loadings. 

However recoveries for total phenolic content differ between 6% and 8% loadings 

with slightly higher recoveries achieved with the wet samples compared to corresponding 

dried ones. Drying of the apple pomace may cause some changes or transformation of some 

of its structural properties and the physical characteristics that were visible were shrinking of 

the size of their particles and changes in porosity. 
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Figure 4-1 Comparison of Total phenolic content (TPC) of wet and dried 
homogenized apple pomace  during subcritical water mediated hydrolysis at 150oC 
and 20 minutes extraction time. 

  

Alterations in the properties of the apple pomace as a result of drying had the potential to 

affect it uptake of water during the rehydration process. The absorptive ability in other words 

porosity changes limiting their rehydrating capacities may result in the lower amount of 

phenolic content in the 6 % and 8% of the dried samples consistent with similar observation 

previously reported for dried plant materials (Krokida and Philippopoulos, 2005, M.K and C., 

2005, Witrowa-Rajchert and Lewicki, 2006). Generally there are three processes that occur 

during rehydration of dried biomass which are taking place at the same time. 1) Absorption of 

water by the dried biomass; 2) Swelling or expanding of biomass as it takes up water; 3) 

Elution of the soluble ingredients into the extraction fluid (Lewicki, 1998, McMinn and 

Magee, 1997). In view of the fact that, more solids are in the 6% and 8% of dried pomace, 

which may delay leaching process hence lower amounts of phenolic content in extracts. For 
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higher loading the dried apple pomace will always lag behind by a step in the general 

mechanism involved in extraction of biomass under subcritical water extraction. The 

mechanism involved the diffusion of the solute from the core material to the surface to be 

transferred into the extraction fluid which would be finally be removed from the extraction 

cell (Ong et al., 2006). Depending on the amount of water available, the dried samples will 

always need to be rehydrated first before the actives are diffused from the core to the surface. 

Hence may explain why the higher loading for dried material recorded lower total phenolic 

values compared to corresponding wet samples. High biomass loading lead to incomplete 

extraction due to insufficient volume of water as solvent (Teo et al., 2010). Results in lower 

loadings (1-4%) confirms freeze drying operation did not do damage to phenolic compounds 

consistent with earlier reports, that operation was a mild one as excessive heat treatment may 

cause degradation of the phenolic compounds (Luthria, 2006, Peschel et al., 2006, Salimi 

Hizaji et al., 2011). Therefore the wet homogenized apple pomace was used for further 

investigations under the subcritical water mediated hydrolysis of the apple pomace to cut 

energy cost of drying, and to benefit the advantage of subcritical water extraction which can 

be used for wet samples directly without first drying them. 

4.2.2.2 Effect of temperature 

The impact of temperature on the recovery of polyphenolic compounds from the wet 

homogenised apple pomace was investigated under the single factor experiment. The solid –

to- solvent ratio used was 1% with a residence time of 20 minutes for subcritical water 

temperatures 100oC, 160oC and 200oC. Total phenolic content increases from 6.93 mg/g GAE 

DW to 46.25mg/g GAE DW as temperature was increased from 100oC to 200oC as shown in 

Figure 4-2. 
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Figure 4-2 Effects of temperature on total phenolic content (TPC, mg/g GAE)under subcritical 
water extraction using 1% solid-to-solvent ratio of wet homogenised apple pomace for 
resedience time of 20 minutes.. 

 

 

The high temperatures coupled with high pressure applied were able to break the 

cohesive forces holding the apple pomace particles together in the matrix. Associated forces 

may include van der Waals forces, dipole-dipole interaction (forces) and hydrogen bonding. 

Both adhesive and cohesive forces existing within the solute and the apple pomace matrix 

were disorganized and the solute was pushed into the subcritical water by simple convective 

mass transfer (Smith, 2002). However increasing temperature beyond certain limits may lead 

to degradation of phenolic compounds or even generate unwanted substances. Browning of 

extracts was observed beyond 150oC due to possible formation of melanoidins which have 

brown colour (Wijngaard and Brunton, 2009). At 200oC, the product was darker and had a 

different smell which could be attributed to non-enzymatic browning between proteins and 

carbohydrate, in addition to caramelisation of sugars in the extract (Rodríguez-Meizosoa et 
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al., 2010). Therefore temperature 200oC was selected for the upper limit since it recorded 

higher total phenolic content of 46.25 mg/g GAE and 100oC was the lower limit. 

4.2.2.3 Effect of residence time 

The investigation of the impact of residence time was done using 1% (solid/solvent) 

loading at 200oC for extraction time of 0, 20 and 30 and 60 minute’s residence time. The 

results showed that total phenolic content increased by about 36% for extraction time from 0 

to 20 minutes and remained about the same beyond 30 minutes as shown in Figure 4-3.   

                 

Figure 4-3 Effect of Residence time on total phenolic content(TPC mg/g GAE DW) under 
Subcritical water extraction using 1% solid-to-solvent ratio of wet homogenised apple 
pomace at temperature 200oC. 
     

 

 

Results did not show a highly significant difference between total phenolic content at 

20 and 30 and 60 minutes. Total phenolic content increase by 7.24% moving from 20 to 60 

minutes and this difference could be attributed to non-homogeneous nature of the apple 

pomace used in the extraction. Similar observations under subcritical water extraction of 

phenolic compounds from pomegranate seed residue where made (He et al., 2012) The results 
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revealed that, total phenolic content at 30 minutes extraction was not different from that of 

120 minutes and concluded that, there was no advantage in extracting the phenolic 

compounds beyond 30 minutes. Within this period, the solvent would have been able to 

saturate the apple pomace matrix with sufficient energy supplied thereby eluting the phenolic 

compounds earlier. Hence extending the time at this high temperature may lead to 

decomposition of the phenolic compounds that were already assembled (Luque-Rodríguez et 

al., 2007). Maximum residence time of 30 minutes where achieved during extraction of 

antioxidant compounds from grape pomace using pressurized water (Joana Gil-Chávez et al., 

2013). Therefore residence time of 10 and 30 minutes were selected and used as the lower and 

upper limits respectively. 

4.2.3 Experimental design by response surface methodology under Subcritical water 

extraction 

Total phenolic content under the subcritical water mediated hydrolysis was influenced 

by loading (solid/solvent) ratio, extraction temperature and residence time from the screening 

experiments. The lower and upper limits identified during the exercise were used to design an 

experiment with the help of the design expert Stat- Ease 7.0.0 (Inc Minneapolis, USA), for 

optimization of phenolic compounds from the apple pomace by response surface methodology 

using the central composite rotatable design. In all 20 experimental points were realised,  

consisting of 14 trials and 6 replicates runs around the centre points. The actual design points 

are shown in Table 2-2 and design summary in Table 4-1. 
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Table 4-1 Design summary under Subcritical Water Extraction (SWE) 

Factor Name Units Low 

Actual 

High 

Actual 

Mean Std. Dev. 

A Solid/Solvent % 1 8 4.55 2.64 

B Temperature ℃ 100 200 150 41.31 

C Residence Time Min 10 30 20 8.30 
 

 

Subcritical water extractions were performed for each of the experimental point using 

the wet homogenized apple pomace with dry matter content measured as 27% according to 

the method described in 2.2.3 and total phenolic content (TPC) measured as in 2.2.5. Also 

fractions of solids solubilised were determined based on the method described in 2.2.4 and 

recorded in Table 4-2.  

4.2.4  Selection of appropriate model for optimisation of total phenolic content under 

subcritical water extraction 

The procedure for selecting the appropriate model for total phenolic content is similar 

to one described in 3.2.5 under aqueous acetone extraction. The guiding principles have been 

that, selected model should be significant and lack of fit insignificant in addition to 

satisfactory levels of adequacy. A transformed reduced quadratic model was proposed to 

follow a generalised second order polynomial as in Equation 4-1.Error! Reference source 

not found. 

 

  Equation 4-1 Generalised transformed second order Polynomial   

          

1

√𝑦 
=  𝛽0 + ∑𝛽𝑖 

4

𝑖=1
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4

𝑖=1

𝑥𝑖
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Where β0, βi βii and βij are the respective coefficients of regression for intercept, linear, 

quadratic and interaction terms and  𝑥𝑖, 𝑥𝑗 are the coded design variables. 

Table 4-2 Mean total phenolic content and fraction of solid solubilised under the subcritical 
water extraction 

Standard order 
Sample 

Response 

 TPC (mg/g) FSS( g/100g) 

6 8-100-30 2.3 ± 0.20 14.7 ± 0.22 

11 4.5-66-20 3.5± 0.06 16.5± 0.17 

9 0.5-150-20 54.3 ± 0.50 27.4 ± 1.58 

18 4.5-150-20 8.7 ± 0.04 23.8 ± 0.43 

2 8-100-10 2.2 ± 0.01 14.2 ± 0.17 

3 1-200-10 51.1 ± 1.60 25.8 ± 0.29 

4 8-200-10 12.9 ± 0.04 12.9 ± 0.00 

12 4.5-234-20 31.1 ± 0.05 14.3 ± 2.14 

15 4.5-150-20 7.8 ± 0.06 22.9 ± 0.19 

20 4.5-150-20 7.8 ± 0.05 22.2 ± 0.21 

14 4.5-150-37 9.3 ± 0.11 24.8 ± 0.34 

13 4.5-150-3 5.7 ± 0.20 21.9 ± 0.14 

1 1-100-10 28.2 ± 1.9 21.2 ± 0.49 

7 1-200-30 60.3 ± 0.13 18.7 ± 0.58 

17 4.5-150-20 7.0 ± 0.01 23.4 ± 0.07 

8 8-200-30 13.3 ± 0.17 11.6 ± 0.06 

16 4.5-150-20 8.6 ± 0.13 26.3 ± 0.56 

5 1-100-30 33.6 ± 0.88 24.4 ± 0.29 

10 9-150-20 3.1 ± 0.08 14.2 ± 0.3 

19 4.5-150-20 7.5 ± 0.17 25.2± 0.19 

 
Sample 8-100-30 denotes 8% solid/solvent @100oC for 30 minutes. 
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The stepwise regression analysis for total phenolic content using the stat-Ease design software 

shows that the model was highly significant (p<0.0001) and the lack of fit not significant 

(p>0.05). Results of the statistical analysis of variance ANOVA is shown in  

Table 4-3. 

 
Table 4-3 ANOVA for Response Surface Reduced Quadratic Model for Total Phenolic Content 
under SWE 

Source 
Sum 

of 

Squares 

df Mean 

Square 

F 

Value 

p 

value 

 

 

𝑀𝑜𝑑𝑒𝑙 0.44 6 0.073 285.70 <  0.0001 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 

𝐴 0.24 1 0.24 932.80 <  0.0001  

𝐵 0.10 1 0.10 398.90 <  0.0001 

𝐶 2.373 × 10−5 1 2.373 × 10−5 0.093 0.7671 

𝐴𝐵 0.049 1 0.049 189.79 <  0.0001 

𝐴2 2.449 × 10−3 1 2.449 × 10−3 9.56 0.0114 

𝐶2 1.413 × 10−3 1 1.413 × 10−3 5.52 0.0407 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 2.561 × 10−3 10 2.561 × 10−4   

𝐿𝑎𝑐𝑘 𝑜𝑓 𝐹𝑖𝑡 1.475 × 10−3 5 2.951 × 10−4 1.36 0.3724 𝑛𝑜𝑡  

𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 

𝑃𝑢𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 1.086 × 10−3 5 2.172 × 10−4    

𝐶𝑜𝑟 𝑇𝑜𝑡𝑎𝑙 0.44 16     
 

 A= solid-to-solvent ratio, B= Temperature and C= Residence Time 
Row 10,1,12 were not used for analysis 

 

All design factors were significant except time (p<0.05) except residence time 

(p>0.05) for their linear terms, in addition to the interaction between (solid/solvent) and 

temperature (p<0.05), and only solid/solvent ratio and time was significant in the quadratic 

term. 
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Table 4-4 Adequacy Level for Response Surface Reduced quadratic Model for TPC under SWE 

Std. Dev. 0.016 𝑹𝟐 0.9942 

Mean 0.36 𝑹𝑨𝒅𝒋
𝟐  0.9907 

C.V. % 4.47 𝑹𝑷𝒓𝒊
𝟐  0.9742 

PRESS 0.011 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏𝒂𝒅𝒆𝒒 52.475 

 

 

The 𝑅𝑃𝑟𝑖2   value of 0.9742 was in reasonable agreement with the   𝑅𝐴𝑑𝑗2  of 0.9907 and "Adeq 

Precision” which measures the signal to noise ratio of 52.475 was good. A ratio greater than 

4 was desirable and the model can be used to navigate the design space. 

Coefficient estimates for intercept, linear, interaction and quadratic in terms of design factors 

are represented in Table 4-5 

Table 4-5 Coefficient Estimates for factors of Reduced quadratic Model for TPC under SWE 

Factor 
Coefficient 

Estimate 

df Standard 

Error 

95% CI 

Low 

95% CI 

High 

VIF 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 0.35 1 6.146 × 10−3 0.34 0.37  

𝐴- 0.16 1 5.291 × 10−3 0.15 0.17 1.12 

𝐵 −0.11 1 5.400 × 10−3 -0.12 −0.096 1.07 

𝐶- −1.769 × 10−3 1 5.812 × 10−3 -0.015 0.011 1.29 

𝐴𝐵 −0.087 1 6.318 × 10−3 -0.01 −0.073 1.08 

𝐴2 −0.021 1 6.703 × 10−3 -0.036 −5.793 × 10−3 1.15 

𝐶2 −0.014 1 5.764 × 10−3 −0.026 −6.944 × 10−4 1.21 
 

A= solid-to-solvent ratio, B=Temperature and C=residence time 

 

The final equation in terms of actual factors is shown in . 

Equation 4-2. 
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Equation 4-2 Transformed Quadratic Model Equation for TPC under SWE 

1

√𝑇𝑃𝐶 
=  +0.049943 + 0.13601𝐴 + 8.12397 × 10−5𝐵 + 5.23829 × 10−3𝐶 − 4.97393

× 10−4𝐴𝐵 − 1.69217 × 10−3𝐴2  − 1.35380 × 10−4𝐶2  

 

Where 𝐴, 𝐵, 𝐶𝑎𝑛𝑑 𝑇𝑃𝐶 are solid-to–solvent ratio, temperature, residence time, and total 

phenolic content respectively. 

4.2.4.1 Response surface plots for Total phenolic content under subcritical water 

extraction 

Results of total phenolic content of the subcritical water mediated hydrolysis showing 

the effects of solid-to solvent ratio between 1 - 8%, temperature 100-200℃ and time from 10 -

30 minutes are presented in Figure 4-4  and the response surface plots of solid-to solvent ratio 

and temperature interaction at a fixed time of 20 minutes is shown in Figure 4-5. 

          

Figure 4-4 Effects of Solid- to –solvent ratio %(w/v), temperature (oC)and residence time 
(minutes) on total phenolic content (mg/g GAE DW) under subcritical water extraction.of apple 
pomace. 

Increase in temperature from 100oC to 200oC at 1% increases total phenolic content by 

approximately 41%, and however slightly affected (5% increase) when time is extended to 30 
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minutes as seen Figure 4-4. The negative intercept of solid-to solvent ratio in the quadratic 

term (−1.69217 × 10−3) explains the curvature of the response plot and there was no 

advantage to recovery of phenolic compounds by increasing both temperature and amount of 

solids at the same time. 

             

Figure 4-5 Effects of Solid-to-solvent ratio %(w/v) and, temperature (oC) on total phenolic 
content (mg/g GAE DW) during subcritical water extraction of apple pomace at a fixed time of 
20minutes. 

 

The case statistics report showing the experimental (actual) values of Total phenolic content 

and the predicted are shown in  

Table 4-6. Experimental values agreed with the predicted values to a large extent according to 

the proposed model. Therefore statistical technique could be used to predict total phenolic 

content within the experimental conditions. 
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Table 4-6 Case Statistics of  Report for Actual and Predicted  TPC under SWE 

Standard Order Sample Actual TPC Value 

(mg/g GAE) 

Predicted TPC 

Value 

(mg/g GAE) 

1 1-100-10 28.2 30.87 

2 8-100-10 2.2 2.16 

3 1-200-10 51.1 51.02 

4 8-200-10 12.9 11.89 

5 1-100-30 33.6 30.87 

6 8-100-30 2.3 2.16 

8 8-200-30 13.3 11.89 

9 0.5-150-20 54.3 51.02 

10 9.5-150-20 3.1 3.43 

11 4.5-150-20 3.5 3.43 

14 4.5-150-37 9.3 10.41 

15 4.5-150-20 7.8 8.16 

16 4.5-150-20 8.6 8.16 

17 4.5-150-20 7.0 8.16 

18 4.5-150-20 8.7 8.16 

19 4.5-150-20 7.5 8.16 

20 4.5-150-20 7.8 8.16 
 

 

4.2.4.2 Optimisation of Process and Verification of Model for total phenolic content 

under SWE 

Procedure for optimization of the process using the selected model did not vary from 

what has been described previously in Chapter 2. The best solution with maximum 

desirability from the numerical optimization was selected as shown in Table 4-7 and 

extractions were done in triplicate and the phenolic content determined. Because there was no 
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maximum as shown in the surface response, the maximum total phenolic content within the 

limits of design variables was at 200oC. 

Table 4-7 Optimal conditions for extracting phenolic compounds with TPC content of predicted 
and experimental  values 

Solid/solvent 

(%) 

Extraction 

Temp 

(oC) 

Extraction 

time 

(min) 

Predicted 

TPC 

(mg/g) 

GAE DW 

Actual 

TPC 

(m/g) 

GAE DW 

 

1 

 

200 

 

30 

 

53.76 

 

49.86 
 

 

4.2.5 Model selection for fraction of solids solubilized under subcritical mediated 

hydrolysis 

Solubilisation of solids in the liquid extracts during the subcritical water mediated 

hydrolysis of the apple pomace was determined according to the procedure described in 

section 2.2.4.The fraction of solids solubilised (g100g) in extracts ranged from 11.6 to 

27.4g/100g with a mean value of 20.3g/100g.Subjecting the results of fraction of the solids 

solubilised to regression analysis revealed a reduced form of the general quadratic model as in 

Equation 3-1. Analysis of variance showed that the reduced quadratic model was significant 

(p<0.05) and lack of fit insignificant (p>0.05) as shown in Table 4-8. 
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Table 4-8 ANOVA for Response Surface Reduced Quadratic Model for fraction of solid solubilised 
under SWE 

Source 
Sum of 

Squares 

df Mean 

Square 

F 

Value 

p value  

𝑀𝑜𝑑𝑒𝑙 441.14 6 73.52 27.42 <  0.0001 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 

𝐴 204.12 1 204.12 76.16 <  0.0001  

𝐵. 6.20 1 6.20 2.31 0.1524 

𝐶 2.999 × 10−3 1 2.999 × 10−3 8.576

× 10−4 

0.9771 

𝐵𝐶 18.30 1 18.30 6.83 0.0215  

𝐴2 41.53 1 41.53 15.49 0.0215 

𝐵2 141.72 1 141.72 52.86 <  0.0001 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 34.85 13 2.68   

𝐿𝑎𝑐𝑘 𝑜𝑓 𝐹𝑖𝑡 23.28 8 2.91 1.26 0.4179 𝑛𝑜𝑡 

𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 

𝑃𝑢𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 11.57 5 2.31    

𝐶𝑜𝑟 𝑇𝑜𝑡𝑎𝑙 476.00 19     
 

A= Solid-to-solvent ratio, B=Temperature and C=Residence time 

𝐴, 𝐵𝐶, 𝐴2 𝑎𝑛𝑑 𝐵2 were the significant model terms (p<0.05). The model had satisfactory level 

of adequacy where the Predicted 𝑅2 value of 0.8137 reasonable agrees to the adjusted 𝑅2 

value of 0.8930 as shown Table 4-9. 

Table 4-9 Adequacy Level for Response Surface Reduced Quadratic Model for FSS under 
Subcritical water Extraction 

𝑺𝒕𝒅.𝑫𝒆𝒗. 1.64 𝑹𝟐 0.9268 

𝑴𝒆𝒂𝒏 20.21 𝑹𝑨𝒅𝒋
𝟐  0.8931 

𝑪. 𝑽.% 8.10 𝑹𝑷𝒓𝒊
𝟐  0.8099 

𝑷𝑹𝑬𝑺𝑺 88.68 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏𝒂𝒅𝒆𝒒 14.174 
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Adequate precision value of 14.174 > 4 was good and the model can be used to navigate the 

design space. 

The regression analyses showing estimates for coefficients of the intercept, linear, 

interaction and quadratic terms at 95% confidence interval are shown in Table 4-10. 

Table 4-10 Coefficients Estimates terms for Reduced Quadratic Model for FSS under subcritical 
water extraction 

Factor 
Coefficient 

Estimate 

df Standard 

Error 

95% CI 

Low 

95% CI 

High 

VIF 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 23.75 1 0.58 22.50 24.99  

𝐴 −4.28 1 0.49 −5.34 −3.22 1.02 

𝐵 −0.67 1 0.44 −1.63 0.28 1.00 

𝐶 0.013 1 0.44 −0.94 0.97 1.00 

𝐵𝐶 −1.51 1 0.58 −2.76 −0.26 1.00 

𝐴2 −2.39 1 0.61 −3.70 −1.08 1.02 

𝐵2 −3.11 1 0.43 −4.03 −2.19 1.00 
 

 

The final equation of the model in terms of actual factors is shown Equation 4-3 

Equation 4-3  Quadratic Model Equation for FSS under Subcritical water extraction 

𝑦 =  −9.75204 + 0.53008𝐴 + 0.42011𝐵 + 0.45505𝐶 − 3.025 × 10−3𝐵𝐶 − 0.19488𝐴2

− 1.24362 × 10−3𝐵2 

 

Where 𝐴, 𝐵, 𝐶 , 𝑎𝑛𝑑 𝑦 are respectively, loading (solid/solvent), temperature, time and fraction 

of solids solubilised in g/100g. 

The interaction between extraction temperature and time under subcritical water extraction 

played an important factor in the solubilisation similar to aqueous acetone solubilisation. This 

strong relationship between temperature and extraction time have been confirmed under  
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pressurised water in terms recovery of solids (Smith, 2002). Solid-to-solvent ratio 

demonstrated similar effects for linear and the quadratic terms for both procedures. 

Temperature exhibited significance (p<0.05) for quadratic term under subcritical water 

whereas time was significant (p<0.05) under aqueous acetone extract in addition to loading. 

4.2.5.1 Response surface plots for fraction of solids solubilized under subcritical water 

extraction 

The effects of solid-to-solvent ratio, temperature and residence time on fraction of 

solids solubilised are shown in Figure 4-6. Solubilisation increases with increased in 

temperature up to 150oC and decreases thereafter as shown in Figure 4-7.Variation of solid-

to-solvent ratio with residence time is represented in Figure 4-9.  

       

Figure 4-6 Effects of temperature (oC), solid-to-solvent ratio %(w/v)and residence time on 
Fraction of solids solubilised (g/100g) during subcritical water extraction of apple pomace. 

 

 Increasing temperature may cause degradation of other heat sensitive ingredients from the 

solid matrix. It was expected that more solids would have been eluting at the higher 

temperature which was not observed. Apple pomace composed of considerable amounts of 
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carbohydrates and proteins which decomposed to their simpler monomers at high 

temperatures. For instance carbohydrates under subcritical water undergoes hydrolysis to 

form simple sugars and other disaccharides (Toor et al., 2011). Heteropolymer, hemicellulose 

solubilises at temperatures above 180oC under both acid- base catalysis to produce several 

monosaccharides like xylose, mannose, glucose and galactose (Bobleter, 1994). Proteins 

which comprise several peptide bonds can undergo decarboxylation and deamination to form 

amino acids and sugars through the cleavage of the peptide- chains at the high temperature 

(Toor et al., 2011). All these reactions occurring are expected to increase amount of solids in 

the extract which was not observed. The possible explanation could be that, under the high 

pressure –temperature conditions these molecules may combine to form macromolecules 

which can precipitate and fall back to the residue during processing of products from the 

batch reactor and are not accounted for in the estimation of yield of solid solubilised. Auto 

polymerization of 5-HMF to produce less soluble humins in water have previously been 

reported (Gaset et al., 1985). 

                

Figure 4-7 Response surface plot of temperature (oC) and residence time (minutes) on Fraction 
of solids solubilised (g/100g) under subcritical water extraction of apple pomace. 

 



170 
Chapter 4- Optimisation of Subcritical water Mediated Extraction of polyphenolic compounds from apple pomace using 
Response Surface Methodologies 
 
 

               

Figure 4-8 Response surface plot of temperature (oC) and Solid- to- solvent ratio %(w/v) effects 
on Fraction of solids solubilised under subcritical water extraction of apple pomace at a 
residence time of 20 minutes. 

 

 

          

Figure 4-9 Response surface plot of solid-to-solvent ratio %(w/v) and residence time (minutes) 
relationship on Fraction of solids solubilised (g/100g) under subcritical water extraction of 
apple pomace at temperature 150oC. 

 

The case statistics report showing the experimental (actual) values of fraction of solids 

solubilized per 100g of starting material and the predicted are shown in  
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Table 4-11. 

 
Table 4-11 Experimental and predicted of fraction of solids solubilized g /100g of apple pomace 
under subcritical water extraction 

Standard Order Sample Actual Value 

(g/100g) 

Predicted Value 

(g/100g) 

1 1-100-10 21.20 21.68 

2 8-100-10 14.20 13.12 

3 1-200-10 25.80 23.36 

4 8-20010 12.90 14.79 

5 1-100-30 24.40 24.73 

6 8-100-30 14.70 16.17 

7 1-200-30 18.70 20.36 

8 8-200-30 11.60 11.80 

9 0.5-150-20 27.40 25.53 

10 9.5-150-20 14.20 12.76 

11 4.5-66-20 16.50 16.09 

12 4.5-234-20 14.30 13.38 

13 4.5-150-3 21.90 23.76 

14 4.5-150-376 24.80 23.82 

15 4.5-150-20 22.90 23.79 

16 4.5-150-20 26.30 23.77 

17 4.5-150-20 23.40 23.75 

18 4.5-150-20 23.80 23.75 

19 4.5-150-20 25.20 23.75 

20 4.5-150-20 22.20 23.75 

    

Experimental and predicted values agree to a large extent. 
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4.2.5.2 Optimisation of Process and Verification of Model for fraction of solids 

solubilised under SWE 

The solution with maximum desirability of the numerical optimisation was selected 

and the fraction of solids solubilised, was determined and compared with the predicted value 

as shown in Table 4-12. 

Table 4-12 Optimal conditions for Fraction of solids solubilised/100g of apple pomace of 
predicted and experimental  values 

solid/solvent 

(%) 

Extraction Temp 

(oC) 

Extraction time 

(min) 

Predicted 

FSS 

(%) 

Actual 

FSS 

(%) 

 

1 

 

153 

 

30 

 

26.1 

 

28.2 
 

 

The observed value agrees with the predicted value as variations can be attributed to 

the non-homogeneous nature of the apple pomace. Subcritical water was able to solubilise 

more solids compared with the solvent extraction using acetone because subcritical water was 

not just extracting but hydrolysing as well. 28.2% of solids solubilised under subcritical water 

against 19.2% under aqueous acetone. Subcritical water was more efficient than acetone in the 

recovery of solutes from roots of rhizomes of piper widely used as medicinal soft drink in 

Europe (Kubátová et al., 2001). The high H+ ions coupled with high temperature and pressure 

under the subcritical water conditions promoted cleavage of the bonds and disrupted cell walls 

within the solid matrix thereby pushing more solids into solution (Brunner, 2009). 

4.2.6 Identification of polyphenolic compounds under Subcritical water extracts 

The extracts from the various design parameters combinations from the subcritical 

water extraction were analysed by the HPLC-DAD method described previously in 2.2.9. 



173 
Chapter 4- Optimisation of Subcritical water Mediated Extraction of polyphenolic compounds from apple pomace using 
Response Surface Methodologies 
 
 
The HPLC –DAD characterisation of the polyphenolic compounds of subcritical conditions at 

100oC reveals among others similar compounds under the aqueous acetone extraction. The 

main phenolic compounds identified were, Chrologenic acid, Phloridzin, Quercetin-3- 

galactoside, Quercetin-3-glucoside, Procyanidins B2., and Phloretin glycosides. Monomeric 

procyanidins like Catechin and Epicatechin were barely detected and the reason could that the 

UV-DAD was not very good enough for their detection. Protocatechuic aldehyde was 

detected at 150oC and beyond. These polyphenolic compounds with exception of 

Protocatechuic aldehyde were the main polyphenolic compounds recovered from apple 

pomace using pressurised ethanol/water as solvents, with other phenolic compounds like 

Caffeic acid, P- Coumaric acid, Catechins and Procyanidins, detected only at smaller 

concentrations (Wijngaard and Brunton, 2009). Phenolic compounds like anthocyanidins 

were not detected although the apple pomace sample used was a blend of varieties of cider 

apples including the red ones which were thought to contain high levels of the flavonoid. 

Anthocyanidins are highly unstable and may even oxidize before the start of the analysis 

(Delgado-Vargas et al., 2000). However there were other peaks typically of phenolic nature 

by their UV- spectra but standards were not available to identify them. Other compounds like 

5-hydroxymethylfurral (5-HMF), Furfural and other hydrolysis products were observed as 

temperature increases from 100oC. Typical chromatograms of the subcritical water mediated 

hydrolysis at 280nm and 320nm are shown in Figs 4-10-12. 
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Figure 4-10 Chromatogram of subcritical water extract for 8% solid-to-solvent ratio at 100oC for 
30 minutes; 1-5HMF; 2-furfural, 3- Chlorogenic acid; 4- Procyanidin b2; 5-Caffeic acid); 6-
Epicatechin; 7-Quercetin-3-galactosid; 8-Quercetin-3-glucoside, 9-Phlorodzin 

 

                            

Figure 4-11 Chromatogram of subcritical water extract for 4.5% solid-to-solvent ratio at 150oC 
for 30minutes; 1-5HMF; 2-furfural, 3- Protocatechuic aldehyde; 4- Chlorogenic acid; 5-(isomer of 
Chlorogenic acid); 6-caffeic acid; 7-Quercetin-3-galactosid; 8-Quercetin-3-glucoside,  9 and 10- 
are unidenfied polyphenolic compounds and 11-Phlorodzin. 
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Figure 4-12 Chromatogram of subcritical water extract  of apple pomace for 8% solid-to solvent 
ratio at 200oC for 30minutes; 1-5HMF; 2-furfural, 3- Protocatechuic aldehyde; 4- unidentified 
compound. 

 

4.2.7 Quantification of the phenolic compounds in the subcritical water extract 

Phenolic compounds identified were quantified based on the procedure outlined in 

section 2.2.10 and were  recorded as mean values ± standard error  and expressed in mg/kg of 

dry weight of apple pomace as shown in Table 4-13 and Table 4-14. 

4.2.8 Model Analysis of individual phenolic compounds under Subcritical water 

extraction 

Polyphenolic compounds (Chlorogenic acid, Phloridzin, Quercetin-3-galactoside, 

Quercetin-3-glucoside, Procyanidin B2), degradation compounds (Protocatechuic aldehyde, 

5-HMF and Furfural) were evaluated for optimization using the concentrations in Table 4-13 

and Table 4-14 .Detailed ANOVA results at 95% confidence interval are shown in the 

appendix section and summary on the level of significance of design factors and their 

interaction are shown in Table 4-15. 
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Table 4-13 Mean concentration of Phenolic compounds (mg/kg) dry weight under subcritical 
water extraction of apple pomace 

Std 

Order 

Sample 

 

CGA 

 

PHL 

 

Q-3-gal 

 

Q-3-glu 

 

6 8-100-30 35.05 ± 6.3 38.74 ± 3.6 16.54 ± 2.5 10.84 ± 1.9 

11 4.5-66-20 6.91±0.0 50.24±5.0 22.36 ± 6.9 ND 

9 0.5-150-20 ND ND ND ND 

18 4.5-150-20 60.37±1.8 57.61 ± 2.4 12.712 ± 0.7 21.43 ± 0.2 

2 8-100-10 24.67 ± 1.3 31.43 ± 1.32 16.66 ± 0.5 12.91± 0.4 

3 1-200-10 ND ND ND ND 

4 8-200-10 ND ND ND ND 

12 4.5-234-20 ND ND ND ND 

15 4.5-150-20 60.14±0.4 48.30 ± 7.0 14.45 ± 0.5 18.68 ± 

20 4.5-150-20 59.18 ± 2.8 43.48 ± 1.7 11.29 ± 0.2 19.46 ± 

14 4.5-150-37 54.90 ± 1.7 44.80 ± 2.3 10.59 ± 2.4 20.88 ± 2.6 

13 4.5-150-3 59.4 ± 2.4 50.49 ± 2.8 25.07 ± 1.1 22.97 ±1.7 

1 1-100-10 58.39±0.6 60.73 ± 76.16 ± 0.7 ND 

7 1-200-30 ND ND ND ND 

17 4.5-150-20 60.56 ± 1.5 45.29 ± 2.6 15.30 ± 0.9 18.32 ± 4.9 

8 8-200-30 ND ND ND ND 

16 4.5-150-20 34.49±1.2 22.37±4.3 25.33 ± 1.67 28.24 ± 4.7 

5 1-100-30 122.21±1.9 250.20 ± 22.2 97.00± 0.7 ND 

10 9.5-150-20 40.21±0.4 31.53 ± 1.2 5.83 ± 0.7 8.87 ± 2.9 

19 4.5-150-20 78.33±2.7 89.21 ± 1.02 19.24 ± 1.4 23.59 ± 4.9 

 
Sample 8-100-30 reads; 8% solid/solvent @ 100oC for 30 minutes; 
CGA- Chlorogenic acid; PHL- Phloridzin; Q-3-gal- Quercetin-3-galactoside; Q-3-glu-
Quercetin-3-glucoside, ND –not detected. 
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Table 4-14 Mean concentration of Procyanidin B2, Protocatechuic aldehyde, 5-HMF and Furfural 
all (mg/kg) dry weight  under subcritical water extract of the apple pomace. 

Std 

order 

Sample Pr-B2 PCA Furfural 5-HMF 

6 8-100-30 57.67 ± 5 ND 16.09 ± 1.7 4.19 ± 0 

11 4.5-66-20 ND ND ND ND 

9 0.5-150-20 ND ND ND 150.89 ± 8.1 

18 4.5-150-20 ND 39.6 ± 0.3 628.75±71 194.05 ± 33.0 

2 8-100-10 48.55 ± 0.1 ND 4.40 ± 0.23 2.02 ± 1.4 

3 1-200-10 ND 674.2 ± 0.1 17980.39± 406 3754.93 ± 67.7 

4 8-200-10 ND 337.8 ± 0.5 6653.63± 103 633.27 ± 2.7 

12 4.5-234-20 ND 1133.2 ± 0.6 15787.68± 265 1543.86 ± 13.5 

15 4.5-150-20 ND 40.5 ± 0.2 590.89 ± 42.5 168.32 ± 6.1 

20 4.5-150-20 ND 38.6 ± 1.4 631.12 ± 14.5 175.12 ± 6.0 

14 4.5-150-37 ND 62.2 ± 0.0 1042.49± 74.1 342.83 ± 1.8 

13 4.5-150-3 ND 18.4 ± 0.1 177.61 ± 20.3 33.36 ± 1.8 

1 1-100-10 ND ND 46.27±0.4  6.48 ± 0.2 

7 1-200-30 ND 966.4 ± 0.1 40330.39± 786 5767.29±170.5 

17 4.5-150-20 ND 39.7 ± 0.1 588.45 ± 1.57 162.24 ± 3.1 

8 8-200-30 ND 357.4 ± 23.9 9038.32 ± 158.6 795.93 ± 1.8 

16 4.5-150-20 ND 41.8 ± 0.1 753.07 ± 148 201.94 ±46.3 

5 1-100-30 ND ND 97.78 ± 9.3 4.34 ± 0.5 

10 9-150-20 ND 44.5 ± 1.1 652.88 ± 1.03 212.95 ± 5.0 

19 4.5-150-20 ND 41.6 ± 0.0 594.97± 11.9 185.97 ± 7.0 
 

ND= not detected; 1-100-30 reads 1% solid-to-solvent ratio at 100oC for 30 minutes residence 
time. 

 

Solid-to-solvent ratio, temperature and their interaction had significant effects on the yield of 

all responses except for FSS which has been previously discussed. Effect of time was not 

significant on extraction of phenolic compounds, consistent with earlier reports (Plaza et al., 
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2013). Residence time exerted its influence on the yield of Protocatechuic aldehyde, 5-HMF 

and furfural as well it’s interaction with temperature. 

Table 4-15 Summary of significance level of design factors and interaction terms under 
subcritical water extraction 

Response Significant level (p<0.05) 

A B C AB AC BC A2 B2 C2 

CGA          

PHL          

Q-gal.          

Q-glu.          

Pr-B2          

PCA          

5-HMF          

Furfural          

ORAC          

TPC          

FSS          

CGA-chlorogenic acid; PHL-phloridzin; Q-gal- quercetin-galactoside; Q-glu- quercetin glucoside; 
Pr-B2-procyanidin B2; TPC-total phenolic content, FSS fraction of solid solubilised. A-solid-to-
solvent ratio; B-temperature, and C- residence time in reactor 

 

  

High temperatures and extended time favour the yield of the decomposition products. 

All proposed models were significant (p<0.05) with satisfactory level of adequacies (R2 >0.9) 

and predicted R2 largely agreed with adjusted R2. Coefficient of variations and variance 

inflation factors were at acceptable levels. 

4.2.8.1 Predictive Model for Extracting Chlorogenic acid under Subcritical water 

Maximum Chlorogenic acid determined from the subcritical water extract was 122.2 

mg/kg which represents 55% of that recovered using aqueous acetone (221.58mg/kg). 
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Final equation in terms of actual factors is shown in Equation 4-4. 

 

Equation 4-4  Predictive Model Equation for Chlorogenic acid under Subcritical water extraction 

√𝐶ℎ𝑙𝑜𝑟𝑜𝑔𝑒𝑛𝑖𝑐 𝑎𝑐𝑖𝑑

=  −14.66360 − 1.11557𝐴 + 0.38727𝐵 + 0.19207𝐶 + 5.57786 × 10−3𝐴𝐵

− 1.09174 × 10−3𝐵𝐶 − 1.55493 × 10−3𝐵2 

 

 

Yield of Chlorogenic acid was significantly affected by loading ratio (solid/solvent) 

and temperature as well as their interaction (P<0.05). Only temperature shows significant 

effect in the quadratic term (p<0.05). Residence time had no significant influence on the 

recovery of Chlorogenic acid (p > 0.05). Maximum concentration of Chlorogenic acid was 

extracted around 100oC.Chlorogenic acid had been reported to degrade at temperature 112oC 

during pressurised liquid extraction of antioxidants from apple pomace using ethanol and 

water as solvent (Wijngaard and Brunton, 2009). A phenolic compound was observed at 

temperature 150oC with retention time 16.06 minutes which share similar spectra 

characteristics with Chlorogenic acid but with different retention times. This compound was 

observed to evolve from standard Chlorogenic acid investigation under temperature 60oC over 

time in a control experiment and could be an isomer or decomposition product of  

Chlorogenic acid (see peak number 4 in Figure 4-13). Chlorogenic acid which is an ester of 

Caffeic acid and Quinic acid has several isomers and classified based on the number and 

position of the acyl groups attached to them. The isomers include 5-O- caffeeoylquinic acid 

(common one), 4-O- caffeeoylquinic acid and others with two Caffeic acid molecules and 
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referred to as iso Chlorogenic acid comprising 3,4, dicaffeeoyliquinic acid and 3,5, 

dicaffeeoyliquinic acid (Clifford, 2000). Compound (peak 4) was not observed in solvent 

extracts of the dried apple pomace. On the other hand Winjgaard and Brunton reported, an 

increased in Chlorogenic acid concentration at temperatures higher than 160oC and attributed 

the release from a possible noncovalent relationship of Chlorogenic acid with melanoidins.  

Similarly Plaza and co-workers reported maximum concentration of 5-caffeoquinic acid 

(Chlorogenic acid) from apple pomace could be obtained between 175-200oC,which was not 

verifiefd (Plaza et al., 2013). Chlorogenic acid or any of its isomers were not detected at 

temperature 200oC in this investigation. The transformed polynomial model for Chlorogenic 

acid was used to navigate the design space and no prediction of any higher concentrations at 

higher temperatures was observed. . Predictive capacity of the model was tested which can be 

seen in the case statistics reports of Chlorogenic acid under the appendix section.  

Response surface plots for recovery of Chlorogenic acid showing the effects of 

solid/solvent ratio, temperature at a fixed residence time of 20 minutes residence time is 

shown in Figure 4-14. 
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Figure 4-13 . A= Chromatogram of standard Chrologenic acid solution. B= Chromatogram of the  
standard Chlorogenic acid solution after 7 days period Decomposition Products of stanadard 
Chlorogenic acid at 65oC observed are.1= unidentified Phenolic acid; 2= Protocatechuic 
aldehyde; 3= Chlorogenic acid; 4= unidentified Phenolic acid; 5= Cafeic acid. 

 

 

A 

B 
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Figure 4-14 Response surface plot for the effects of temperature (oC)and solid/solvent ratio 
%(w/v) on the amount of Chlorogenic acid (mg/kg) der weight under subcritical water 
extraction of apple pomace  for a residence time 20 minutes 

 

4.2.8.2 Predictive Model for Extracting Phloridzin under Subcritical water 

Maximum concentration of the dihydrochalcone glycosides Phloridzin in extracts was 

250.2mg/kg at 100oC which is consistent with similar extractions using ethanol/water as 

solvents for extraction (Wijngaard and Brunton, 2009). However it began to degrade at 

around 120oC. Phloridzin was not detected at temperature 200oC. 

The predictive model equation in terms of actual factors for extracting Phloridzin is shown 

below Equation 4-5. 

Equation 4-5 Model Equation for Phloridzin under Subcritical water extraction 

√𝑃ℎ𝑙𝑜𝑟𝑖𝑑𝑧𝑖𝑛 =  +8.95591 − 3.88579𝐴 + 0.22440𝐵 + 0.014146𝐴𝐵 + 0.11739𝐴2

− 1.32240 × 10−3𝐵2 
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The response surface plots shows highest amount of Phloridzin at 100℃ and stay 

relatively constant until around 120℃ and gradually decreases to zero at 200℃. The model 

could be used to navigate the design space. Similar to Chlorogenic acid, Plaza et al., 2013 

reported a deviation of response surface plots for Phloridzin under subcritical water extraction 

of apple peels. Response surface plots showing the effects of temperature, solid- to- solvent 

ratio at fixed residence time of 20 minutes on the yield of Phloridzin is shown in Figure 4-15. 

              

Figure 4-15 Response surface plot for the effects of temperature (oC) and solid/solvent ratio 
%(w/v) on  the amount of Phloridzin (mg/kg) dry weight  under subcritical water extraction of 
apple pomace  for residence time of 20 minutes. 

 

The predictive capacity of the transformed quadratic model for Phloridzin was 

assessed in the case statistics report which showed to a large extent the agreement between 

experimental results against those predicted by the model within the experimental parameter 

limits (appendix). 
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4.2.8.3 Predictive Model for Extracting Procyanidin B2 under Subcritical water 

Structural and molecular weight variation within Proanthocyanidins makes their 

evaluation very challenging. Moreover their complexation with other non-soluble polymers 

under estimate their quantification due to incomplete extraction  (Pérez-Jiménez et al., 2009). 

About 50-93% of apple Procyanidins may be retained within cell wall material during 

processing of apple juice (Le Bourvellec and Renard, 2012). 

Concentration of Procyanidin B2 under subcritical water extraction varied from 0.00 – 

57.67± 5.30mg/kg DW and the yield of Procyanidin B2 was both solid-to solvent ratio and 

temperature dependent as well as their interaction. Residence time had no influence on overall 

amount of Procyanidin B2 under the subcritical water extraction within selected range (see 

Table 4-15). Procyanidin B2 was not detected at 150oC and beyond suggesting that the 

amount originally accumulated at 100oC would have been degrading. Therefore it was not 

advisable to pursue predictive modelling based on the selected range although the design 

expert suggested predictive model and this could not be relied upon due to limited data 

because contour plots may be misleading. Optimal temperature conditions of 80-140oC were 

reported for extracting Procyanidins from grape pomace using ethanol /water mixture as 

solvents (Monrad et al., 2010). 

4.2.8.4 Predictive Model for Extracting Quercetin glycosides under Subcritical water 

The two quercetin glycosides have again differed in the way they responded to 

changes in temperature and solid- to- solvent ratio. From both the aqueous acetone and 

subcritical water extraction methods, quercetin-3-galactoside was influenced overall slightly 

by temperature whereas quercetin-3-glucoside is been controlled by solid-to-solvent ratio both 

in the quadratic terms. The interaction between solid-to solvent ratio and temperature was 
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positive for Quercetin-3-galactoside and negative Quercetin-3-gluctoside as shown in the. 

predictive equations. See Equation 4-6. 

Equation 4-6 Predictive model equations for Quercetin glycosides 

𝑄𝑢𝑒𝑟𝑐𝑒𝑡𝑖𝑛 − 3 − 𝑔𝑎𝑙𝑎𝑐𝑡𝑜𝑠𝑖𝑑𝑒

=  +95.97583 − 31.76127𝐴 + 0.45032𝐵 + 0.085086𝐴𝐵 + 1.63824𝐴2

− 4.32336 × 10−3 𝐵2 

 

𝑞𝑢𝑒𝑟𝑐𝑒𝑡𝑖𝑛 − 3 − 𝑔𝑙𝑢𝑐𝑜𝑠𝑖𝑑𝑒

=  −15.02656 + 16.48077𝐴 + 0.016964𝐵 − 0.016964𝐴𝐵 − 1.45421𝐴2 

 

 

 

The difference in the behaviour could be attributed to the structural configuration of 

galactose and glucose been sugar moieties attached to the quercetin aglycone. Although 

glucose and galactose can both occur in either open or cyclic structures, the five (5) hydroxyl 

groups in glucose can be arranged in a specific way on the six- carbon backbone whereas 

galactose has a carbonyl towards end of chain. These configurations contribute to the different 

boiling points of the sugars despite identical molecular weights as they are isomers 

(180.156g/mol for glucose and 180.16g/mol for galactose). Boiling points of glucose and 

galactose are 146- 150oC and 167oC respectively. 

Boiling points are reflection of the strength of the forces between molecules and 

indication of ease of separation of components which are bound together. Both quercetin 

glycosides have positive linear temperature coefficients which suggested their concentrations 

increase in extracts initially when temperature was raised up to 100oC. However further 

increase in temperature negatively affects the yields of the glycosides. The coefficients values 
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of interaction between solid-to solvent and temperature for both glycosides indicates that it 

was not advantageous to the yield of quercetin-3-galactoside when both factors are increased 

simultaneously whereas it positively influence the amount of the quercetin-3-glucoside as 

shown in the response surface plots. Optimal extraction conditions of 1% solid-to solvent 

ratio, at 100oC for 29 minutes for extracting quercetin -3-galactoside against 4.75% solid-to 

solvent ratio, at 104oC for 27 minutes for quercetin-3-glucoside. 

            

Figure 4-16 Response surface plot for the effects of temperature (oC) and solid/solvent ratio 
%(w/v) on the amount of Quercetin-3- galactoside (mg/kg) dry weight for 20 minutes residence 
time  under subcritical water extraction of apple pomace  . 
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Figure 4-17 Response surface plot for the effects of temperature (oC)and solid/solvent ratio 
%(w/v)on the amount of Quercetin-3- glucoside (mg/kg) dry weight for 20 minutes residence 
time under subcritical water extraction of apple pomace  . 

 

4.2.8.5 Predictive Model for Extracting Protocatechuic aldehyde under Subcritical 

water 

3, 4 – Dihydroxybenzaldehyde otherwise known as Protocatechuic aldehyde is not 

found freely in apples and no mention of it so far during subcritical water extraction of apple 

pomace phenolics to the best of my knowledge. Small amount (4μg/ml) of Protocatechuic 

aldehyde had evolved after 7days when standard Chlorogenic acid (1mg/ml) was investigated 

for degradation at 65℃ (see Figure 4-13). The phenolic aldehyde has been reported to be a 

stable product of thermal degradation of Chlorogenic acid (Moon and Shibamoto, 2010). 

Protocatechuic aldehyde was also the main stable compound from Caffeic acid degradation 

under subcritical water conditions within 160-240℃ (Khuwijitjaru et al., 2014). Either of 

these reports was acceptable because Chlorogenic acid is an ester of Quinic and Caffeic acids 

and Protocatechuic aldehyde could be released from both hydrocinnamic acids undergoing 

degradation.  
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The UV spectra of Protocatechuic aldehyde standard (red marking) and those in 

samples (blue marking) are shown in Figure 4-18. 

                                           

Figure 4-18 UV- Spectra of Protocatechuic aldehyde standard and in extract from the subcrtical 
water extraction of the apple pomace at 280nm. 

 

Water soluble Protocatechuic aldehyde in the extracts ranged from 0 – 966.4 mg/kg 

within the limits of design parameters. Protocatechuic aldehyde was not detected at 100℃ but 

only noticeable at 150℃ and was stable in the extract even up to 234℃.  

The transformed quadratic model was significant (p<0.05) with unfortunately a significant 

lack of fit (p>0.05) which was bad but yet the model should fit. All model terms were 

significant as well as their interactions. Only solid to solvent ratio was significant in the 

quadratic term as shown in Equation 4-7. 
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Equation 4-7 Predictive model equation for Protocatechuic aldehyde under subcritical water 
extraction 

√𝑃𝐶𝐴 = −25.29499 − 2.30741𝐴 + 0.27115𝐵 − 0.052261𝐶 − 0.014120𝐴𝐵

− 0.016414𝐴𝐶 + 1.41183 × 10−3𝐵𝐶 + 0.44974 × 10−3𝐴2 

 

Yield of Protocatechuic aldehyde increases from 150℃ to 200℃ with increasing 

residence time up to 30 minutes. However it decreases as solid to solvent ratio approaches 8% 

meaning decreasing the loading and increasing both temperature and residence time improves 

the yield of Protocatechuic aldehyde. Similar effect of experimental parameters on total 

phenolic content and antioxidant activity by ORAC were observed. Response surface plots 

depicting this behaviour of temperature, solid to solvent and residence time are shown Fig 4-

19-21 below; 

                    

 

Figure 4-19 Response surface plot for the effects of temperature (oC) solid/solvent ratio %(w/v) 
on theamount of Protocatechuic aldehyde (mg/kg) dry weight for 20 minutes residence time 
under subcritical water extraction of apple pomace  . 
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The predictive power of the model was assessed by the case statistics report shown in 

appendix section, where experimental values agree with the predicted ones. Model could be 

used to describe the behaviour of Protocatechuic aldehyde within the experimental variable 

limits. Numerical optimisation of extraction conditions for Protocatechuic aldehyde according 

to the maximum desirability value of 0.986 were 1% solid-to-solvent, 200℃ for 30 minutes 

residence time. 

                

Figure 4-20 Response surface plot for the effects of solid/solvent ratio %(w/v) and residence 
time (minutes) on the amount Protocatechuic aldehyde (mg/kg) dry weight under subcritical 
water extraction of apple pomace temperature of 200oC. 
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Figure 4-21 Response surface plot for the effects of temperature (oC)and residence time 
(minutes) on the amount of Protocatechuic aldehyde (mg/kg) dry weight with 1% solid-to-
solvent ratio under subcritical water extraction of apple pomace  . 

 

Protocatechuic aldehyde demonstrates a strong effect by suppressing replication of 

hepatitis B-virus both in vitro and in vivo studies (Zhou et al., 2007). 

4.2.8.6 Predictive Model for 5-HMF and Furfural under Subcritical water extraction 

HMF and furfural constitutes furan derivatives and are by-products of hexose and 

xylose degradation respectively (Ulbricht et al., 1984). The subcritical water extracts of the 

apple pomace contained varying concentration of monomeric sugars which degraded at higher 

temperatures and extended periods under the batch operations to produce the two Maillard 

agents. Statistical analysis of variance results described a transformed square root models for 

both 5-HMF and furfural shown Equation 4-8.  
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Equation 4-8 Predictive models for 5-HMF and Furfural under the subcritical water extraction 

√5𝐻𝑀𝐹 =  −57.06203 − 1.78796𝐴 + 0.63427𝐵 − 0.26542𝐶 − 0.059059𝐴𝐵

− 0.037606𝐴𝐶 + 4.38730 × 10−3𝐵𝐶 + 0.92923𝐴2 

 

√𝐹𝑢𝑟𝑓𝑢𝑟𝑎𝑙 =  −77.74299 − 22.99902𝐴 + 1.22185𝐵 − 2.21599𝐶 − 0.098922𝐴𝐵

+ 0.021109𝐵𝐶 + 3.49756𝐴2 

 

 

 

5-HMF and furfural varied significantly with temperature and solid to solvent ratio.  

High temperature favours the formation of furanic compounds which are also influenced by 

pH (Purlis, 2010). 5- HMF and furfural were not detected at temperatures 66oC which is 

consistent with results reported earlier (Çam and Aaby, 2010, Schieber et al., 2001a). Lower 

concentrations of 2.02 mg/kg and 4.4 mg/kg of 5-HMF and furfural were recorded at 100oC 

respectively. Concentrations of 5767.3 mg/kg and 40330.4 mg/kg of HMF and furfural 

respectively were achieved at 200oC with corresponding increase in browning of extract 

suggesting caramerisation reactions taking place.  
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4.2.8.6.1 Response Surface Plots for 5-HMF 

         

Figure 4-22 Response surface plot of effects of temperature (oC) and solid-to solvent ratio 
%(w/v) on 5-HMF (mg/kg)dry weight for 20 minutes residence time under the subcritical water 
extraction of apple pomace  . 

 

             

Figure 4-23 Response surface plot of effects of residence time (minutes) and solid-to solvent 
ratio %(w/v) on 5-HMF (mg/kg)dry weight at 200oC under the subcritical water extraction of 
apple pomace. 
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Increase in temperature under subcritical conditions decreased the pH of water  which 

enhances the dehydration reaction to 5-HMF (Aida et al., 2007). 

4.2.8.6.2 Response Surface Plots for Furfural 

     

Figure 4-24 Response surface plot of effects of temperature (oC)and solid-to solvent ratio 
%(w/v) on furfural (mg/kg) dry weight for 20 minutes extraction time under the subcritical 
water extraction of apple pomace. 

 

The diagnostic case statistics reports for 5-HMF and Furfural are shown in the 

appendix section. It is very important to note that higher concentrations recorded for 5-HMF 

and furfural may not exactly be correct, but an indication of how both concentrations would 

be present in extracts particularly at higher temperatures. Maximum concentrations used for 

the calibration curve of the furanic compounds were 1mg/l which by far below those 

recorded. Concentration higher than the maximum may deviate from the Beer Lamberts Law 

and this phenomenon could account for the higher residuals recorded for both 5-HMF and 

furfural in the case statistics reports. 
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Conditions for limiting extraction of 5-HMF while maximising extraction of 

polyphenolic compounds was 6.61%, Solid-to-Solvent, 101.08℃ for 25 minutes residence 

time, and those of furfural were 3.71%, 105.59℃ for 25 minutes residence time. 

4.2.9 Comparison of polyphenolic compounds under aqueous acetone and subcritical 

extracts   

Extracts of subcritical water were compared with those of the aqueous acetone to 

evaluate the efficacy of the subcritical water in overall recovery of polyphenolic compounds 

from the apple pomace. Concentrations of components in both extracts significantly varied 

although polyphenolic profiles were largely similar particularly for extracts for subcritical 

water at 100oC.  

Total phenolic content (antioxidant activity in terms of Folin-Ciocalteu method) of 

subcritical water extract was 2.4 times higher than those recovered under the acetone extracts. 

Higher temperatures under the subcritical conditions caused generation of new compounds 

like Protocatechuic aldehyde which can be oxidized by the Folin reagent to result in increase 

in antioxidant activity. The higher total phenolic value under subcritical water mediated 

hydrolysis could also be attributed to phenolic compounds that were not extracted under the 

aqueous acetone extraction. However individual polyphenolic concentrations of subcritical 

water extracts were lower compared to those of the aqueous acetone. Summary of maximum 

concentrations are recorded in Table 4-16. 
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Table 4-16 Optimised concentrations of responses under aqueous acetone and subcritical water   

Response Maximum Amounts 

Aqueous Acetone 

extraction 

Maximum Amounts 

Subcritical water 

extraction 

Total phenolic content 22.55 (mg/g GAE DW) 54.30 (mg/g GAE DW) 

Fraction of solids solubilised 19.20/100g 28.2/100g 

Chlorogenic acid 221.58 mg/kg 122.2 mg/kg 

Phloridzin 894.62 mg/kg 250.20mg/kg 

Procyanidin B2 227.810mg/kg 57.67 mg/kg 

Epicatechin 193.50 mg/kg N/A 

Quercetin-3-galactoside 187.83 mg/kg 76.12 mg/kg 

Quercetin-3-glucoside 128.20 23.59 mg/kg 

Protocatechuic aldehyde ND 966.40 mg/kg 

5-HMF ND 5767.29 mg/kg 

Furfural ND 40330.39 mg/kg 
 

ND- Not detected 

Results of optimisation of polyphenolic compounds during organic solvent extraction 

using acetone suggested water may be a good extraction solvent for Chlorogenic acid and 

Procyanidin B2. However the results under subcritical water reveals only about 55% of 

Chlorogenic acid of the acetone extracts value were recovered at 100oC under subcritical 

water. Yields of Chlorogenic acid from the apple pomace under subcritical water extraction  

could be higher but due to degradation as a result of higher temperature may form other new 

and compounds Concentration of Procyanidin B2 was even less as a quarter of its equivalent 

amounts were recovered under subcritical water extraction compared to the aqueous acetone. 

Phloridzin concentrations dominated among all polyphenolic compounds and 72% of the 

amount extracted using acetone was recorded during subcritical water extraction. The 

situations were not different for Quercetin glycosides as shown in the table 4.16 above. 

Higher temperatures under the subcritical water conditions caused degradation of phenolic 
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compounds and targeting phenolic compounds at lower temperatures (~100oC) will results in 

dilute extracts with lower antioxidant activity. The combination of organic solvent and water 

under the subcritical conditions may improve the yield. 

Subcritical water was rather superior in terms of solubilisation of components from the 

apple pomace than organic solvent acetone. Approximately 37% more solids were solubilised 

under optimised subcritical conditions compared to those of aqueous acetone. Hence 

subcritical water was more efficient in terms of solubilisation and generation of higher 

antioxidant compounds. 

4.2.10 Determination of Antioxidant Capacity of Subcritical Water Extracts  

An in vitro assessment of antioxidant activity of subcritical water by ORAC assay was 

conducted according to the procedure previously outlined in section 2.2.11. However it is 

very important to note these results cannot represent what happens in vivo. Results of ORAC 

analysis are recorded in Table 4-17. 

ORAC values ranges from 418 to 99285µmol/g DW of apple pomace with mean value 

of 11341µmol/g DW. 

4.2.11 Model Selection for Antioxidant Activity by ORAC 

Regression analysis was performed using the mean ORAC values measured to study 

the relationship between design variables and the antioxidant capacity. Summary of the 

ANOVA results are shown Table 4-15. 

Solid/solvent ratio, and extraction temperature had significance on the ORAC value as 

well as their interaction (p<0.0001). Residence time demonstrated least significant consistent 

with other findings (Plaza et al, 2013). Temperature was the most controlling factor in the 

quadratic term. A transformed quadratic model similar to that of total phenolic came out to be 

the most significant (P<0.0001) and has an insignificant lack of fit (P>0.05). 
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Table 4-17 Mean ORAC values of subcritical water extract (µmol/g DW) of apple pomace 

Run Sample Mean ORAC value (± standard Error) 

1 8-100-30 444 18 

2 4.5-66-20 1523 112 

3 0.5-150 92972 0 

4 4.5-150-20 2000 16 

5 8-100-10 418 14 

6 1-200-10 31760 3701 

7 8-200-10 1641 180 

8 4.5-234-20 3776 301 

9 4.5-150-20 1543 59 

10 4.5-150-20 1672 86 

11 4.5-150-36 1356 161 

12 4.5-150-3 1192 46 

13 1-100-10 7415 787 

14 1-200-30 99285 7201 

15 4.5-150-20 1580 170 

16 8-200-30 3741 105 

17 4.5-150-20 2690 228 

18 1-100-30 13973 1145 

19 9.5-150-20 437 16 

20 4.5-150-20 3627 166 

8-100-30 means 8% solid/solvent at 100oC for 30 minutes 
 

 

The coefficient of variation was 9.65% with 𝑅𝑃𝑟𝑖2  (0.96) in agreement with  𝑅𝑃𝑟𝑖𝐴𝑑𝑗2  

(0.98). Hence selected model could be used to navigate the design space. The predictive 

model in terms of actual factors is shown in Equation 4-9. 
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Equation 4-9  Predictive Model Equation for ORAC under subcritical water extraction 

1

√𝑂𝑅𝐴𝐶 
=  −0.22457 + 7.11598 × 10−3𝐴 + 4.99189 × 10−4𝐵 − 1.92259 × 10−4𝐶

− 3.14617 × 10−5𝐴𝐵 + 1.68692 × 10−4𝐴2 − 1.75480 × 10−6𝐵2 

 

 

The predictive capacity of the model was reviewed in the case statistics report 

showing agreements to a large extent the actual values measured and those predicted using the 

model. 

4.2.11.1 Analysis of Response Surface Plots for ORAC 

ORAC values increased with temperature from 100oC to 200℃, but decreasing 

exponentially as the solid/solvent ratio increases. The negative interaction coefficient of 

solid/solvent ratio and temperature suggest that, is unpractical to achieve higher amount of 

antioxidant activity by increasing both parameters simultaneously as seen Figure 4-25. 

          

Figure 4-25 Response surface plot for effects of temperature (oC) and solid/solvent ratio %(w/v) 
on ORAC values (μmol TE/g DW) under the subcritical water extraction of apple pomace  for 20 
minutes residence time. 
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Antioxidant capacity by the ORAC at 200℃ was about 5 times that at 100℃. An 

average increase of five times of antioxidant activity was reported using TEAC assay from 

100 to 200℃, under subcritical water extraction of phytochemicals from plant sources 

(Rodríguez-Meizosoa et al., 2010). ORAC values correlates positively with total phenolic 

content of the extracts because similar trends were observed and can be seen clearly by their 

surface response behaviour. Both ORAC and total phenolic are antioxidant capacities assays 

with different mechanisms as previously discussed in Chapter 1. Similar observations were 

previously reported of strong relationship between total phenolic content and antioxidant 

activities (Karacabey and Mazza, 2010, Plaza et al., 2013, Yu et al., 2005).  However 

increasing temperature increases both Total phenolic content and antioxidant activity with 

diminishing concentration of ordinary phenolic compounds and amount of soluble solids in 

extracts. Furthermore, it is very important to note that, higher antioxidant activity at higher 

temperatures cannot be attributed to ordinary phenolic compounds alone. Other new-phenolic 

compounds with antioxidant properties may be formed which could not be resolved by the 

chromatographic method so chosen. Several researchers have attributed the increased 

antioxidant activity at higher temperatures due to formation of new antioxidant compounds 

(Herrero et al., 2012, Plaza et al., 2010). These new compounds may have different chemical 

structures from the parent polyphenolic compounds because antioxidant capacities of 

polyphenolic compounds are affected by their chemical structure (Cao et al., 1997, Fukumoto 

and Mazza, 2000, Lien et al., 1999).  

Water soluble Protocatechuic aldehyde identified as a degradation product of some 

hydrocinnamic acids was stable in the extract up to 230℃ and may contribute to antioxidant 

activity at the high temperatures. Antioxidant activity and anti-inflammatory effects of 

Protocatechuic aldehyde on human umbilical vascular endothelial cells (HUVECS) has been 
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reported (Zhou et al., 2005). Although antioxidant capacities of aldehydes are less than  

corresponding acids, the ORAC value of Protocateuchuic aldehyde was comparable to those 

of Caffeic acid and slightly higher than Chlorogenic acid (Dávalos et al., 2004). The surface 

response graph shows the possibility to extract antioxidant compounds at higher temperature 

but nonetheless this condition was not suitable as higher amounts of 5-HMF and furfural were 

observed. These two compounds which constitute possible agents of Maillard reaction have 

toxicological issues in food samples (Morales and Jimenez, 2009). Similar fears were reported 

previously (Çam and Aaby, 2010, Plaza et al., 2013, Wijngaard and Brunton, 2009). 

Hydroxymethylfurfural was shown to be initiator and promoter  of colon cancer (X.M. Zhang 

et al., 1993), neurotoxicity (Bakhiya et al., 2009). They can undergo metabolism to 5-

sulphooxymethylfurfural which to some extent may be harmful (Arribas-Lorenzo and 

Morales, 2010). Higher concentrations of HMF were reported to be cytotoxic which causes 

irritation to eyes, upper respiratory tract, skin, and membranes of the mucous and oral dose of 

LD50 of 3.1g/kg body weight has been reported in rats(Ulbricht et al., 1984). Unfortunately 

data on levels of toxicity of 5-HMF in food had not been systematically documented 

(Abraham et al., 2011) and therefore giving confusing estimates for recommended intake with 

no conclusive standards about the dangers to human health due to exposure (Janzowski et al., 

2000). 40mg/kg and 50mg/kg of 5-HMF were recommended as limits in honey and apple 

juice respectively (EU, 2001) Other standard bodies like international Federation of fruit juice 

Processors and Turkish standards gave a maximum of 10mg/kg and 60mg/kg 5-HMF in fruit 

juices respectively (Gaspar and Lucena, 2009, TSE, 2003). 

However, research on toxicological and genotoxicity effects of furfural and its 

derivatives are still ongoing (EFSA, 2005, NTP, 2008). Optimized conditions for ORAC 

values of extract with maximising majority of phenolic compounds, and minimising evolution 
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of both 5-HMF and Furfural are 1.4% solid-to-solvent ratio at 100℃ for a residence of 30 

minutes. This results is consistent with previous findings under pressurised liquid extraction 

of apple pomace with 60% ethanol in water where optimal antioxidant activity using DPPH 

assay recorded at 102℃ with minimisation of 5-HMF (Wijngaard and Brunton, 

2009).Minimum concentrations for 5-HMF and Furfural predicted for optimised conditions 

for ORAC under the subcritical water extraction  were 1.12mg/kg and 4.80mg/kg respectively 

which are within the acceptable limits.

 

4.3 Conclusions 

Subcritical water mediated extraction of bioactive compounds was shown to be more 

efficient than aqueous acetone and was thought to be due to the simultaneous hydrolysis and 

solubilisation of the apple pomace thereby overcoming the potential stearic hindrance of the 

cell walls. Temperature played an important role in the extraction of antioxidant compounds 

from the apple pomace. Polyphenolic compounds were successfully extracted between 100 

and 150oC, and individual polyphenolic species differed in their response to temperature. 

However total phenolic content and antioxidant activity as determined by ORAC 

assay continued to increase with increasing temperature up to 200oC. Analysis of the extracts 

at 200oC revealed the dominant polyphenolics (Chlorogenic acid, Procyanidin B2, Phloridzin 

and Querctin glycosides) observed up to 150oC were no longer detected. Subcritical water 

extracts at 150oC and beyond exhibited high antioxidant activities and this was apportioned to 

the synthesis of novel compounds which may possess potentially high antioxidant capacities. 

Therefore phenolic acids and flavonoids observed in extracts below 150oC would have little 

contribution to antioxidant activities at the high temperatures. Protocatechuic aldehyde was 
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identified for the first time only in the subcritical water extract and to date has not been 

identified in solvent extracts of cider apple pomace extracts. The water soluble phenolic 

aldehyde was stable in extract even at 234oC and possibly could contribute to the high 

antioxidant activity at the high temperature. Therefore the stability of Protocatechuic aldehyde 

at this high temperature contradicts the commonly held school of thought that phenolic 

compounds are thermoliable and subcritical water at high temperature could be employed to 

recover high antioxidant compounds from the add pomace to add value to the residue. 
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Chapter 5  

Encapsulation of Polyphenolic fraction of subcritical 
water extract of apple pomace with naturally occurring 

polymers to improve oxidative stability  
 

5.1 Introduction 

Polyphenolic compounds can undergo oxidation and therefore molecular 

transformation when exposed to extreme environmental conditions. The subcritical water 

extract derived from apple pomace was shown to contain polyphenolic compounds with 

relatively high antioxidant activity. Stabilisation of the high antioxidant activity is therefore 

very important to ensure efficacy before, and during cosmetic and pharmaceutical 

applications. Encapsulation has been widely studied as a route to stabilise and protect 

bioactive compounds against oxidation within the food, cosmetic and pharmaceutical 

industries (Desai and Park, 2005). 

Encapsulation involves the creation of a barrier around an active ingredient thereby, 

modulating the interaction with the environment (Gibbs et al 1999, Mozafari 2006). The 

barrier material often referred to as the carrier can be derived from natural or modified 

polymeric material such as hemicellulose, lipids, starch, gum or synthetic polymers. Several 

microencapsulation techniques have been applied for food ingredients and have been 

discussed under section 1.7.1. Freeze and spray drying technologies have been applied 

extensively in recent times in the cosmetic and pharmaceutical industries to stabilise 

ingredients against oxidation, improve shelf-life, enhances solubility and bioavailability 
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during applications (Joana Gil-Chávez et al., 2013, Mourtzinos et al., 2007, Szente and 

Szejtli, 2004). During the spray drying process, as the solvent usually water rapidly dries as 

result of contact with hot processed gas and causes simultaneous entrapment of the active 

ingredient (usually smaller) into the larger molecules (Gharsalloaui et al 2007).  

The objective of this chapter was to assess the suitability of coupling extraction with 

encapsulation simultaneously by making use of polymeric substances co-extracted with the 

polyphenolic compounds as a carrier to improve stability against oxidation and to reduce the 

transfer rate of the polyphenolic antioxidant compounds to the external environment. 

Previous experiments in the laboratory have shown hemicellulose, proteins and lignin 

were co-extracted with polyphenolics under subcritical water condition. Interactions between 

polyphenols and carbohydrates in plant materials have been established (Le Bourvellec and 

Renard, 2012). Chlorogenic acid, cafeic, gallic acid, kaemferol, quercetin, myricetin, and 

green tea flavonoids have been encapsulated with soy protein (Rawel et al., 2002). Lipid 

nano-capsules were used as a carrier for quercetin delivery (Barras et al., 2009). Matsunaga et 

al., 2014 demonstrated direct formation of microparticulate polysaccharide powders from 

Ganoderma Lucidum, a mushroom with claimed health promoting properties after 

hydrolysing with subcritical water between 100oC-190oC (Matsunaga et al., 2014). On-line 

micronisation of quercetin and its derivatives extracted from onion waste with pressurised hot 

water and supercritical antisolvent processes have also been reported (Andersson et al., 2012). 

The current study employed spray drying technique to form an encapsulated product 

made up of polyphenolics and naturally occurring carbohydrate polymers co-extracted with 

the polyphenolics during subcritical water extraction of apple pomace. In addition, a 

comparative study was conducted using the subcritical water extract to form an inclusion 

complex upon mixing with β-Cyclodextrin, a molecule widely used for encapsulation. 
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Cyclodextrins are oligomers of glucose capable of forming inclusion complexes (Paramera et 

al., 2011). The micronised particles produced from the drying process of subcritical water 

extract of the apple pomace and the extract mixed with β-Cyclodextrins to form inclusion 

complex ,were investigated for improved storage and stability in terms of antioxidant activity. 

Physical characteristics such morphologies of encapsulated products and FT-IR spectra of the 

powders were explored to elucidate evidence of encapsulation. 

5.2 Results and Discussions 

5.2.1 Powder production 

Freeze dried powders of both subcritical water extract and those of the inclusion 

complex were obtained by freeze drying portions of the samples by the procedure similar to 

that described in section 2.2.1.2. Corresponding spray dried powders obtained as described in 

2.2.13. 

Colour of the directly encapsulated polyphenolic fraction (SWE) of the apple pomace 

with natural occurring polymers co-extracted under the subcritical water mediated was 

yellowish brown. Those of the HP-β-Cyclodextrins (SWE+ HP-β-CD) encapsulated reflected 

the colour of the directly encapsulated product in extract and were lightly brownish.  

Different conditions of inlet and outlet temperatures spray drying operations were 

selected by trial and error to favour the production of dried powders of the subcritical water 

extract. Direct encapsulated subcritical water extract (SWE) were obtained at inlet 

temperatures from 140 to 170oC. It was difficult to obtain fine and dried powders below 

140oC and beyond 180oC for the subcritical water extract alone whose concentration was only 

2.75% (w/v) solids. Wet products were observed below 140oC due to insufficient drying and 
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sticky brown products at 180oC due to caramelisation reaction of the monomeric sugars in the 

extract at the high temperatures. 

However spray drying of HPβ -Cyclodextrins encapsulated with the subcritical water 

extract (SWE+ HP-β-CD) was smooth without any challenges. The incorporation of HPβ –

Cyclodextrins reduced the stickiness during spray drying operation and whose inclusion 

raised the glass transition temperature of the subcritical water extracts thereby reducing the 

stickiness (Caparino et al., 2012). Previous reported research suggested, many challenges 

during spray drying of substances containing higher sugar levels (glucose, fructose, sucrose) 

without a wall material. However the current research has demonstrated successfully, 

production of micronized powders from subcritical water extracts from apple pomace. 

5.2.2 Characterisation of Powders 

5.2.2.1 Moisture Content of powder 

Residual water or moisture content associated with solid raw materials for 

pharmaceutical and cosmetic applications were known to affect significantly their physico-

chemical properties. Properties such as rate of dissolution, flow and compactibility, 

deterioration or degradation are affected by residual water as a result of prolonged exposure to 

the surroundings (Ahlneck and Zografi, 1990). 

Average moisture content (g water/100g) of the powders are shown in Table 5-1. 

Table 5-1 Some physico-chemical properties of  spray dried powders of subcritical water extract 
and extract encapsulated in HPβ-Cyclodextrin 

Powder 

Sample 

Moisture 

% 

Hygroscopicity 

g/100g 

Density 

g/cm3 

Particle size 

µm 

SWE+HPβ-CD 5.59 ± 0.4 5.08 ± 0.01 1.5030 ± 0.003 3.46 ±0.04   

SWE 7.22 ± 0.01 9.30 ± 0.11 1.5602 ± 0.001 3.41 ± 0.15  
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Moisture content of directly encapsulated subcritical water extract powders were 

significantly different from those of the inclusion complex by HPβ-cyclodextrin which 

suggested that increasing the solid content by mixing with HPβ-Cyclodextrin decreases the 

amount of moisture content of powders (approximately 22.6% reduction). Moisture content of 

microcapsules depended on type and concentration of the wall material (Şahin Nadeem et al., 

2011). Similar results have been documented during spray drying of phenolic compounds 

using maltodextrin (Pang et al., 2014). Higher moisture content of powders by subcritical 

water extracts alone suggested powder may be taking up water from the surroundings. 

5.2.2.2 Hygroscopicity of Powders 

Hygroscopicity is defined as the estimation of the ability of a substance to absorb 

moisture from a relatively high humid environment. The property is an important one to 

consider during storage of the powders (Haugaard et al., 1978, Rodríguez-Hernández et al., 

2005, Slade et al., 1991). Hygroscopicity of the spray dried powders were determined 

according to the procedure described in section 2.2.16 and results are listed in Table 5-1 

Spray dried powders of the subcritical water extract (SWE) exhibited high 

hygroscopicity compared with HPβ- cyclodextrin encapsulated subcritical water extract. The 

absorptive capacity of micronised subcritical water extract in moist environment was 

approximately twice that of HPβ -cyclodextrins encapsulated spray dried powder. Addition of  

HPβ -cyclodextrin reduces the hygroscopic nature of the extract. Data on hygroscopicity of 

spray dried powders of subcritical water extract of apple pomace were not readily available 

for comparison. However, mean hygroscopicity of 23g/100g was reported for apple pomace 

during vacuum drying at temperatures between 80 and 110oC with hygroscopicity decreasing 

at higher temperatures (Yan and Kerr, 2013). Hygroscopicity of instant coffee ranges from 
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9.09 - 10.32% and that of tomato soup powder 4.20 - 6.64% (Jaya and Das, 2004). A cut-off 

value for hygroscopicity of mango power was reported to be 5.13% to 9.38% (Caparino et al., 

2012). Many researchers have reported reduction of hygroscopicity of extracts when carriers 

were added. For instance hygroscopicity of acai extract reduced significantly when significant 

maltodextrin concentration was used  (Tonon et al., 2008). Least hygroscopicity of powder 

was obtained using 23% of maltodextrin with Cactus pear juice (Rodríguez-Hernández et al., 

2005). Reduction of hygroscopicity of mango powder with maltodextrin has also been 

reported. Sugars are generally hygroscopic and readily cause stickiness and lowering glass 

transition temperatures of high sugar containing powders (Jaya and Das, 2004). Glucose and 

fructose are accountable for the strong relationship with water molecules due to the polar 

nature of their terminal structures and leaves many products caking over storage (B. R. 

Bhandari et al., 1997, Haugaard et al., 1978, Slade et al., 1991). Powder stickiness can be 

reduced by addition of carriers like cyclodextrin or maltodextrin to increase glass transition 

temperature thereby eliminating the problem during storage (Jaya and Das, 2004, Tonon et al., 

2008). The physical state of the drying powders under the spray dry operation were already 

changing rapidly with stickiness during collection consistent with previously reported 

investigations for sugar containing samples (B. R. Bhandari et al., 1997). Stickiness of 

powders was lesser in the SWE+HPβ-CD compared to the auto-encapsulated subcritical water 

extract (SWE).  

5.2.2.3 Density and Particle size of Powders  

Many methods for determining particle density of solids have been applied and 

reported in literature (DeCarlo et al., 2004, Ehara and Shin, 1998, Le Bronec et al., 1999, 

McMurry et al., 2002, Morawska et al., 1999, Pitz et al., 2003, Schreiner et al., 2002). 
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However density of particles that made up the powder under this investigation were 

determined by gas displacement technique and described fully in section 2.2.14. Gas 

displacement methods are thought to be one of the most reliable to obtaining ‘’true, absolute 

and apparent volume and density’’ (Micrometrics, 2015). Average density of the powders 

recorded for 5 cycles at different times is listed in table 5-1 and graphically shown in Figure 

5-1.  

  

Figure 5-1 Density of powder as a function of time under 5 cycles with purge fill pressure of 
19.50psig and equilibrating rate at 0.020psig per minute. 

 

The SWE Powder was slightly denser than powders obtained after mixing with HPβ-

Cyclodextrins. The marginal increase in the volume of the HPβ-Cyclodextrins can be 

attributed to the less dense nature of the Cyclodextrins and may have higher volume 

compared to the compact co-extracted polymers with polyphenolics under subcritical water 

extract. 
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Particle size estimation of powders was done using the HELOS/RODOS laser 

diffractometer described in section 2.2.15 at a pressure of 4-bar and recorded in table 6-1. The 

cumulative distribution curves for both powder samples are presented in Figure 5-2. 

Mean particle size of (SWE+HPβ-CD) and SWE were 3.42µm and 3.35µm 

respectively. Differences in the average particle size were not significant (p<0.05). The 

closeness in the value of particle size for both could be because the feeding rate during spray 

dry operations were similar. Different particle sizes were reported to have been produced due 

to different pumping rates in spray dry operations (Nath and Satpathy, 1998).the marginal 

increase could also be due to higher solid content of the SWE+HPβ-CD due to the inclusion 

of the Cyclodextrins. 

 

  

Figure 5-2 Cumulative  distribution of particle size  percent  vs  the  upper  limit  of  each  size  
class  from the HELOS and RODOS particle size analyzer using density values of 1.5g/cm3 
(SWE+CD powder) and 1.56g/cm3(SWE powder) 

 

The ESEM morphology analysis reaffirms, particle size were in micrometres. 

Micronized powders are suitable for cosmetic and pharmaceutical formulations and can help 
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determine how much of the particles in nano size can be present in the formulation. Particle 

size of raw material for cosmetics influences the physical appearance, feel, stability of the end 

products. Particle size analysis is an indicator of quality and performance as size impacts flow 

and compaction properties. Larger particles will usually flow better than smaller particles 

(HORIBA, 2012). Particle sizes below 0.1µm are not good for cosmetic formulations and the 

issue had been addressed by FDA-United states and the cosmetic industry (FDA, 2007, Miller 

et al., 2006). Based on the characterization so far the HPβ-CD encapsulated powder would be 

preferred to the powder generated from the subcritical extract only for pharmaceutical and 

cosmetic formulations. 

5.2.2.4 Morphology of Powders 

Particle morphology of Pure HPβ-Cyclodextrins, freeze and spray dried encapsulated 

products were observed under Environmental Scanning Electron Microscopy (ESEM) as 

described in section 2.2.17 Nature of the crystals from the images captured helped to draw 

meaningful conclusions about the micronisation process. Particle morphologies of freeze 

dried samples were significantly different from spray dried samples. Morphology of the freeze 

dried subcritical water extract showed smooth flake-like and aggregates of particles with 

varying sizes at one location and amorphous, porous at another (Figure 5-4). Similar 

micrographs were observed and reported typically for freeze dried powders (Caparino et al., 

2012, Che Man et al., 1999, Desobry et al., 1997, Laine et al., 2008). The SEM images with 

different resolutions are shown in Figure 5-4. 

SEM images of the freeze dried encapsulated subcritical water extracts with HP β-

cyclodextrins consisted of smooth spherical surface with less shrunken. Absence of cracks or 

pores in the freeze dried microencapsulated with HP-β-CD could be an indicator of 
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preservation of the active ingredient. Similar micrographs for freeze dried quercetin 

encapsulated in β-CD were observed and reported (Pralhad and Rajendrakumar, 2004). The 

ice in the material during the freeze drying process prevented the collapse and shrinkage of 

the particles (Ratti, 2001) see Figure 5-5. 

However shrinkage or formation of dent particles in the spray dried powder was 

pronounced. The combined effects of drying rate and the mechanism of atomization occurring 

at the initial drying stages were responsible for this behaviour (Rosenberg et al., 1985, Sheu 

and Rosenberg, 1998). Viscoelasticity of the wall material prior to expansion of droplets 

could possible contribute to the deflated morphology and rapid solidification due to high rate 

of drying leading to formation of crust on particle surface which hinders the inflation of the  

microcapsules hence shrunken surface (Anandharamakrishnan et al., 2007, Rajam et al., 

2012). 
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Figure 5-3 SEM images of pure HPβ-Cyclodextrin s Powder ; with Magnifications; A=100X; 
B=500X; C=1000X and D=5000X 
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Figure 5-4 SEM images of freez dried encapsulated phenolic fraction with natural 
polysaccharides co-extracted under subcritical water extraction of apple pomace(SWE); with 
Magnifications; A=50X; B=100X; C=1000X and D=5000X 

 

Crust formation on surfaces of powder suggests incomplete encapsulation that yielded 

the dented morphology (Figure 5-6) (Poomkokrak et al., 2015). Structural collapse and blow-

holes on the surface of spray dried microencapsulated β-Cyclodexrin has also been reported 

(Al-Hakim and Stapley, 2004, Hundre et al., 2015, Rajam et al., 2012). Presence of holes on 

the cylindrical/spherical surfaces within microencapsulated structure could also indicate 

incomplete encapsulation because similar structures were seen in β- Cyclodextrins SEM 

images alone. The solid content of the HPβ-Cyclodextrins was in excess compared to 

subcritical water extract (4:1) and the possibility of incomplete encapsulation cannot be 
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discounted. The subcritical water extract which is a complex mixture of molecules with 

varying sizes could have an influence in the morphology of encapsulated HPβ - 

Cyclodextrins. The polyphenolic fraction with natural carbohydrates co-extracted could be 

bigger in terms of structure for HPβ - Cyclodextrins to host The shape of HPβ - Cyclodextrin 

is spherical with a hollow hole and changed as a result of the incorporation consistent with 

results of Cyclodextrin encapsulation (Scalia et al., 1999). 

 

 

  

  

Figure 5-5 SEM images of freez dried encapsulated subcritical water extract of apple pomace 
with HP-β-Cyclodextrins (SWE+ HP-β-CD);with Magnifications; A=100X; B=500X; C=1000X and 
D=2000X 
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Morphologies of spray dried subcritical water extract was an agglomerated one 

comprising of smaller and bigger molecules crosslinked together (Figure 5-7). 

 

  

  

Figure 5-6 SEM images of  spray dried encapsulated subcritical water extract of apple pomace 
with HP-β-Cyclodextrins (SWE+ HP-β-CD) with Magnifications; A=200X; B=1000X; C=2000X and 
D=5000X 
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Figure 5-7 SEM images of spray dried encapsulated phenolic fraction with natural 
polysaccharides co-extracted under subcritical water extraction of apple pomace(SWE) with 
Magnifications; A=100X; B=200X; C=500X and D=1000X 

 

5.2.3 Fourier Transform Infrared Spectroscopy (FT-IR) 

FT-IR spectroscopy was an additional technique used to study the interaction between 

HP-β-CD and the directly encapsulated subcritical water extract to support evidence of 

encapsulation. FT-IR application was based on the theory that, bonds or group of bonds 

vibrates or oscillate at defined frequencies. The vibrational spectra are unique physical 

characteristics or properties of molecules and therefore can be employed as a fingerprint for  

identifying an unknown by simply comparing the spectrum with that of a standard spectrum 

previously determined (Coates, 2000).  
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Figure 5-8 FTIR-spectra of HPβ-cyclodextrin(B-CD), spray dried HPβ-cyclodextrin with SWE (B-
CD-SDF), Freez dried HPβ-cyclodextrin with  SWE (FD-B-CDF), spray dried SWE (SDF) and 
Freeze dried SWE (FDF). 

 

Molecular structure of the powders were characterised by exploring representative 

functional groupings within the compounds. Scanning was done within 4000cm-1 – 600cm-1 

wavenumbers according to the procedure described in section 3.2.13. Infrared spectra of HPβ-
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Cyclodextrin spray and freeze dried HPβ-Cyclodextrin with SWE, spray and freeze dried 

SWE, powders are shown in Figure 5-8. 

There was no significant difference in the FTIR spectra between spray and freeze 

dried encapsulate products, only slight variations in the intensities which can be attributed to 

mode of dehydration. The spectra were monitored for the presence and absence of important 

peaks/bands (frequency) within a given spectrum. Functional groupings that were considered 

for the monitoring are shown in Table 5-2.  

Table 5-2 Infrared Absortption characteristics of selected functional groups (Koji Nakanishi, 
1963) 

Functional group Bond Wavenumber(frequency) 

cm-1 

Alcohols and phenols O-H stretching 3500-3200 

Alkanes C-H stretching 3000-2850 

General carbonyls C=O stretching 1760-1665 

Carboxylic acids C=O stretching 1760-1769 

Esters and others C-OH stretching 1320-1000 
 

 

The FTIR spectrum of pure HPβ-Cyclodextrin contains all the functional groups listed 

in Table 5-2 , with the exception of carboxylic acid group (C=O). However the C=O was 

present in the direct encapsulated product from subcritical water extract of the apple pomace 

and was observed in the encapsulated HPβ-Cyclodextrin  with the subcritical water extract as 

shown in Figure 5-8.The different chemical structure showed in the FTIR spectra of HPβ- and 

encapsulated Cyclodextrin was as a result of the interaction between the polyphenolic fraction 

and the co-extracted carbohydrate polymers in extract with HPβ-Cyclodextrin. The spectrum 

of the incorporated HPβ-Cyclodextrin showed a shift in the frequencies, and increased 

intensity due to the involvement of hydrogen bonding and generally shifted bands to higher 

frequencies as shown in Table 5-3 and Table 5-4. 
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Table 5-3 Comparison between frequencies of pure HPβ-CD and corresponding inclusion 
complex for spray dried powder 

Bond Frequency Change 

Δδ HPβ-CD HPβ-CD-Inclusion 

Complex 

O-H 3338.18 3341.07 +2.89 

C-H 2925.48 2926.45 +0.97 

C=O(general carbonyl) 1643.05 1627.63 -15.42 

C=O carboxyl - 1731.76 +1731.76 

C-OH 1020.16 1024.98 +4.82 
 

 

Table 5-4 Comparison between frequencies of pure HPβ-CD and corresponding inclusion 
complex for freeze dried powder 

Bond Frequency (cm-1) Change 

Δδ HPβ-CD HPβ-CD-Inclusion 

Complex 

O-H 3338.18 3317.93 -20.25 

C-H 2925.48 2928.38 +2.90 

C=O(general carbonyl) 1643.05 1634.38 -8.70 

C=O carboxyl - 1726.94 +1726.94 

C-OH 1020.16 1021.12 +0.96 
 

 

Carboxylic acid group (C=O) is peculiar to polyphenolic compounds and a strong 

band was reported to have appeared around 1740cm-1 when quercetin was encapsulated in a 

surfactant Poloxamers (Fraile et al., 2014). A shift of the ester (C-OH) band from 1183- 1206 

cm-1 (Δδ= +23) for dimethyl-β-Cyclodextrin (Chun and Yun, 1993) and 1180 to 1154cm-1 

(Δδ= +26) for Proxicam complexed with β-Cyclodextrin (Otero-Espinar et al., 1992). 

Results so far confirmed interaction between HPβ-CD and the phenolic extract but not very 

indicative enough to support evidence of encapsulation because FTIR spectroscopic method is 

less clarifying technique compared to other methods suitable for detecting inclusion 

complexes (Baboota et al., 2005, Erden and Çelebi, 1988, Lee et al., 2006). 



222 
Chapter 5- Encapsulation of Polyphenolic fraction of subcritical water extract of apple pomace with naturally occurring 
polymers to improve oxidative stability 
 
 
5.2.4 Stability Test 

Prior to the stability test, the antioxidant activity of the liquid subcritical water extract 

of the apple pomace and corresponding spray dried powders were determined by both ORAC 

assay described in section 2.2.11 and the total phenolic content. The results are shown in 

Table 5-5 and Table 5-6. 

Table 5-5 Antioxidant activity changes of subcritical water extract before and after spray drying 

Antioxidant activity Subcritical water extract Percentage loss in 

antioxidant 

activity (%) 

Before spray 

drying 

After spray 

drying 

TPC (mg/l) GAE 574.1 ± 13.9 318.8 ± 11.2 44.6 

ORAC(μmolTE/g)DW 1517.6 ± 93 811.7± 20 46.5 
 

 

Table 5-6 Antioxidant activity changes of subcritical water extract with HPβ-CD before and after 
spray drying 

Antioxidant activity Subcritical water extract with HPβ-CD Percentage loss in 

antioxidant 

activity (%) 

Before spray 

drying 

After spray 

drying 

TPC (mg/l) GAE 530.0 ± 4.4 513.5 ± 16 3.2 

      
 

 

Clearly from the results it shows that spray drying had significant impact on 

antioxidant activity. Average loss in antioxidant activity of the directly encapsulated product 

derived from the spray drying process was 46.5% and that of the inclusion complex 3.2%. 

The loss could be due to degradation of thermo sensitive antioxidant compounds in extracts. 

Decrease in polyphenolic content by 25% had been reported after spray drying of elderberry 

juice and the polyphenolic content decreases further with increasing inlet temperature 

(Murugesan and Orsat, 2011). In related findings, decreases of 28 to 50% in antioxidant 

activity were observed during spray drying of extracts from grape pomace (Larrauri et al., 
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1997). Also approximately 42% loss in antioxidant activity reported during spray drying of 

Momordica cochinchinensis, fruit aril powder (Kha et al., 2010). 

Higher temperatures under subcritical water extraction already demonstrated the 

diminishing concentration of dominant polyphenolic compounds at lower subcritical water 

temperatures as seen in Chapter 4 .So the higher inlet temperatures under spray drying process 

significantly affected antioxidant activity and of total polyphenolic content of the subcritical 

water extract. The subcritical water extracts were obtained at 150oC and then spray dried at 

170oC, and the increased in temperature had negative effect on both the antioxidant activity 

and Polyphenolic content. Degradation of active compounds with increasing temperature had 

already been reported (Desobry et al., 1997, Kosaraju et al., 2006). However the HPβ-CD 

demonstrated significant protection of the polyphenols as shown in the results above.  

5.2.4.1  Storage stability Test 

The relatively high hygroscopic and caking nature of the directly encapsulated powder 

(SWE) from subcritical water extract was a potential challenge to the stability studies to be 

conducted in the solid form. However aqueous forms were used for analysis because 

molecular encapsulation can occur both in the solid or in a solution (Singh et al., 2010). Both 

solid and liquid state inclusion complexes of β-Cyclodextrin with the glycosides, hesperidin, 

hesperetin, narigeninn and naringin have been reported using NMR, FT-IR, DSC and X-ray 

techniques to support evidence of encapsulation (Ficarra et al., 2002, Fronza et al., 2002). 

Loss of antioxidant activity of SWE and SWE+ HPβ-CD were monitored at facilitated 

conditions of 65oC to study the effect of time on the retention of polyphenolic antioxidant 

compounds. The procedure had been described in section 2.2.19. A Control experiment using 

Chlorogenic acid was set up similarly to aid in the understanding of stability of phenolic  
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compounds against time at the facilitated conditions. Folin Ciocalteu assay proposed among 

standardised methods for quality control and antioxidant activity determination was adopted 

and assay was very straightforward and reproducible. Assay principle and procedure had been 

outlined in section 2.2.5. 

The variations in antioxidant activity during the storage are presented in Figure 5-9. 

As shown in the Figure 5-9 , antioxidant activity decreases with time at the constant 

temperature 65oC. Decrease of 44% of antioxidant activity of the subcritical extract alone 

compared 25% loss of the subcritical water encapsulated in HPβ-CD over the 35days period.  

  

Figure 5-9 Antioxidant activity for subcritical water extract (SWE), extract with cyclodextrin 
(SWE+β-CD), Chlorogenic acid (CGA) and Chlorogenic acid with cyclodextrin (CGA-β-CD) 
following storage at 65oC for 35 days.  

Initial antioxidant activity of the HPβ- Cyclodextrins included samples of both 

subcritical water extract and standard Chlorogenic acid were less because HPβ- Cyclodextrins 

displaced some  volume  of sample prior to analysis. However antioxidant activity sharply 

increases within the 7 days period and began to decrease thereof. One –way ANOVA of 

antioxidant activity tested against time for each treatment with post hoc Tukey comparisons at 

95% confidence interval were conducted. The null hypothesis was that all means (antioxidant 
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activity) were equal against the alternative hypotheses that, at least one mean (antioxidant 

activity) was different. The results are shown in Table 5-7. 

The Tukey pairwise comparisons using the Tukey method at 95% confidence interval 

for all treatments are shown in Table 5-8. Means of antioxidant activities that do not share 

same letter for a particular set of treatment are significantly different (p<0.05). 

There was no significant change in antioxidant activity for subcritical water extracts 

within the first 7days (p>0.05). However antioxidant activity changed significantly after the 

7days (p<0.05) and no significant differences were observed from 14- 35days (p<0.05). In the 

control experiment using Chlorogenic acid, antioxidant activity significantly changed after 

7days (p>0.05) and no significant difference in antioxidant activity measured for 14-28 days 

were observed (p<0.05). Antioxidant activity of the 35th day of Chlorogenic acid was 

significantly different and this may be as a result of high antioxidant activity of degradation 

products of Chlorogenic acid or may simply be an experimental error. For the HPβ-CD 

complexes, antioxidant activities at day 7 were significantly higher compared to day 0 (initial) 

antioxidant activities (p<0.05).No significant difference in antioxidant activities for days, 

21,28 and 35 for HPβ-CD encapsulated subcritical water extract were observed (p>0.05). 

Similarly no signficant difference in antioxidant activities for days 0, 28, 35 for HPβ-

CD encapsulated Chlorogenic acid (p>0.05). 

ANOVA was performed with post hoc Tukey analysis at 95% confidence level to 

establish the protective effect of HPβ-CD on the polyphenolic antioxidant activity over the 

storage period of 35 days and the results are shown in Table 5-9. 
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Table 5-7 One-way ANOVA of Antioxidant activity versus time for Subcritical water extract 
(SWE), Subcritical  water extract + HPβ-Cyclodextrin (SWE+ HPβ-CD), Chlorogenic acid (CGA) 
and Chlorogenic acid + HPβ-Cyclodextrin (CGA+ HPβ-CD) 

 

Subcritical water extract (SWE) 

Source DF Adj SS Adj MS F-value P-Value 

Time(days) 5 169478 33895.5 37.55 0.0 

Error 11 9930 902.7   

Total 16 179407    

      

Subcritical  water extract + HPβ-Cyclodextrin (SWE+ HPβ-CD) 

Source DF Adj SS Adj MS F-value P-Value 

Time(days) 5 69182 13836.5 90.54 0.0 

Error 11 1681 152.8   

Total 16 70863    

      

Chlorogenic acid (CGA) 

Source DF Adj SS Adj MS F-value P-Value 

Time(days) 5 16821 3364.2 13.66 0.0 

Error 11 2710 246.3   

Total 16 19530    

      

Chlorogenic acid + HPβ-Cyclodextrin (CGA+ HPβ-CD) 

Source DF Adj SS Adj MS F-value P-Value 

Time(days) 5 18769 3753.9 26.28 0.0 

Error 10 1428 142.8   

Total 15 201980    
 

 

Clearly from Table 5-9, only weeks 0 and 1 antioxidant activities were comparable for 

both encapsulated and non-encapsulated subcritical water extracts samples (Group A).  

It implies that there was no significant difference between antioxidant activities for both 

treatments within the first 7days (p<0.05). 

However antioxidant activity for weeks (2, 3, 4 and5) of HPβ-CD encapsulated 

subcritical water extracts were significantly higher than corresponding non-encapsulated 
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samples (p>0.05). Coincidentally, only week 0 of control experiment using Chlorogenic acid 

was comparable week 1 of Chlorogenic acid + HPβ-Cyclodextrin (Group D, p<0.05). 

Encapsulation of Chlorogenic acid with HPβ-Cyclodextrin caused significant variation of the 

antioxidant activity after 7 days (p<0.05). Weeks 1,2,3,4 and 5 of Chlorogenic acid samples 

were significantly lower (p<0.05) in antioxidant activity than week 1,2,3,4, and 5 of HPβ-CD 

complex of Chlorogenic acid. 

Cyclodextrin offered good retention of the polyphenolic antioxidant compounds 

against degradation, and was confirmed in the control experiment using Chlorogenic acid 

standard. Nearly similar trends were observed in both experiments as shown in Figure 5-9. 

The slightest difference can be due the different environments of both experimental setups. 

Subcritical water extract was a complex mixture polyphenolic, other bioactive compounds 

and carbohydrate polymers, were as the control experiment contained largely Chlorogenic 

acid. 

Cyclodextrin is considered as secondary antioxidant and was reported to have 

protective effect on ascorbic acid and phenolic compound 2, 2, 5, 7, 8-pentamethylchroman-

6-ol (PMC) (Núñez-Delicado et al., 1997). Many other reports of protective effect of 

Cyclodextrin on antioxidant activity of bioactive compounds are already available (Antas, 

2015, Kalogeropoulos et al., 2010, Navarro et al., 2011). 

Protective effects of the Cyclodextrin against oxidation and degradation were 

apparently due to the complexation of the SWE and the Chlorogenic acid into its hydrophobic 

cavity. Therefore the HPβ-Cyclodextrin can be employed as a carrier to prolong shelf-life of 

the phenolic antioxidant compounds and to mask any undesired taste and colour for 

applications in nutraceutical, pharmaceutical industries.  
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Table 5-8 Tukey Pairwise Comparisons of antioxidant activity versus time for Subcritical water 
extract (SWE), Subcritical  water extract + HPβ-Cyclodextrin (SWE+ HPβ-CD), Chlorogenic acid 
(CGA) and Chlorogenic acid + HPβ-Cyclodextrin (CGA+ HPβ-CD). 

Subcritical water extract (SWE) 
Storage 
Time(days) 

N Mean Grouping 

0 3 574.1 A  
7 2 530.0 A  
14 3 380.0  B 
21 3 336.8  B 
35 3 329.4  B 
28 3 324.4  B 

 

Subcritical  water extract + HPβ-Cyclodextrin (SWE+ HPβ-CD) 
Storage 
Time(days) 

N Mean Grouping 

7 3 595.6 A   
0 2 530.0  B  
14 3 509.4  B  
35 3 429.8   C 
21 3 429.8   C 
28 3 426.5   C 

 

Chlorogenic acid (CGA) 
Storage 
Time(days) 

N Mean Grouping 

0 2 665.6 A   
7 3 613.9  B  
35 3 608.5  B  
14 3 590.0  B C 
28 3 580.4   C 
21 3 555.2   C 

 

Chlorogenic acid + HPβ-Cyclodextrin (CGA+ HPβ-CD) 
Storage 
Time(days) 

N Mean Grouping 

7 3 764.7 A   
21 3 732.5 A B  
14 3 728.1  B  
28 2 695.3  B C 
35 3 687.2   C 
0 3 656.5   C 
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Table 5-9 Tukey Pairwise Comparisons of antioxidant activity SWE and SWE+HPβ-CD against 
time and CGA and CGA+HPβ-CD against time.   

SWE and SWE+HPβ-CD against time 

StorageTime 

(weeks) 

N Mean Grouping 

W1 β-CD 3 595.6 A      

W0 3 574.1 A      

W1 2 530.0 A B     

W0 β-CD 3 530.0 A B     

W2 β-CD 3 478.0  B C    

W3 β-CD 3 437.7   C D   

W5 β-CD 3 429.8   C D   

W4 β-CD 2 426.5   C D E  

W2 3 380.0    D E F 

W3 3 336.4     E F 

W5 3 329.4      F 

W4 3 324.4      F 

 

CGA and CGA+HPβ-CD against time 

 Storage 

Time 

(weeks) 

N Mean Grouping 

W1-β-CD 3 764.7 A       

W3 β-CD1 3 732.5 A B      

W2 β-CD 3 728.1 A B C     

W4 β-CD 2 695.3  B C D    

W5 β-CD 3 687.2   C D    

W0 3 665.6    D    

W0 β-CD 3 656.5    D E   

W1 2 613.9     E F  

W5 3 608.5      F  

W2 3 590.0      F G 

W4 3 580.4      F G 

W3 3 555.2       G 
 

W0 =week 0 for non encapsulated samples, W0 β-CD= week 0 for encapsulated samples with 
Cyclodextrins. 
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5.3 Conclusions 

Micronisation of subcritical water extract was successfully demonstrated by spray 

drying method with and without the carrier HPβ-Cyclodextrin. Particle sizes of powders 

suitable for cosmetic formulations were achieved. However spray drying methods negatively 

affected antioxidant activity of the micronized samples. Directly encapsulated total 

antioxidant activity was approximately 50% less than the liquid subcritical water extract. 

Powders generated were found to be hygroscopic and can negatively affect their applications 

in formulation and also increase cost of storage. Hydroxyl propyl-β-cyclodextrin as a carrier 

was able to reduce the hygroscopicity of the subcritical water extract, mask the brown colour, 

and in addition, demonstrated protective effect against oxidation and degradation and thereby 

prolonging the shelf life of the antioxidants compounds. Electron scanning microscopy (SEM) 

and Fourier transform infra-red spectroscopy (FTIR) were selected to characterised powders 

to support evidence of encapsulation of the subcritical water extract into the hydrophobic 

cavity of the Cyclodextrins. Both techniques have revealed some level of interaction between 

the host HPβ-CD and subcritical water extract. However the results could not be conclusive 

enough to endorse complete evidence of encapsulation.   
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Chapter 6  

Conclusion and Future Work 

6.1 Conclusions 

The current investigations have shown that apple pomace, a by-product of apple juice 

and cider productions contain high levels of antioxidant compounds that can be used in 

nutraceutical, pharmaceutical and cosmetic industries. Recoveries of these polyphenolic 

antioxidant compounds from the apple pomace were done by employing two separate 

methods. Aqueous acetone for organic solvent extraction and novel subcritical water mediated 

hydrolysis. Extracts were analysed for total phenolic content, solubilisation and antioxidant 

activity. Phenolic compounds like Chlorogenic acid, Phloridzin, Procyanidins were the main 

representative phenolic acid and flavonoids identified in extracts from both techniques. Water 

soluble Protocatechuic aldehyde was identified only in extract of subcritical water mediated 

hydrolysis technique for the first time under subcritical water mediated hydrolysis of cider 

apple pomace. The phenolic aldehyde was not identified in the acetone extraction. 

Multivariate statistics methods were used to design the experiments by response surface 

methodology (RSM) to fit polynomial equations to observed data and then applied to predict 

the behaviour of all responses based on the set of experimental variables. Both extraction 

techniques have shown selectivity of solvent concentration, solid-to-solvent ratio, and 

temperature and residence time on polyphenolic compounds based on structure and 

composition. Solvent selectivity based on the models could serve a crucial role in recovery of 

polyphenols from the apple pomace. Overall subcritical water extraction technique was 
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shorter in extraction time and more efficient for solubilisation, higher total phenolic content 

and antioxidant activity by ORAC assay. Higher yields of solubilisation were achieved under 

the subcritical extraction due to better mass transfer rates where penetrability of the 

pressurised water within the sample matrix increased. Total phenolic content and antioxidant 

activity increased with increasing temperature with corresponding high levels of Maillard 

products and the water soluble Protocatechuic aldehyde in extracts. Therefore subcritical 

water extraction could be applied to recover high polyphenolic antioxidant compounds from 

fresh wet apple pomace to replace synthetic antioxidant in food and cosmetic application. 

Concerns regarding safety of artificial antioxidant by consumers would therefore be 

addressed. 

Auto-encapsulation of the subcritical water extract was achieved by utilisation of 

natural occurring polysaccharides co-extracted with polyphenolic compounds by spray drying 

process. At the same time the extract were encapsulated with addition HPβ-CD. Relatively 

sticky and hygroscopic encapsulated products were generated, with the level of 

hygroscopicity decreased when HPβ-CD was added during the encapsulation process. 

Cyclodextrins offered protection against degradation of antioxidant compounds during the 

spray drying operation. Additionally it slowed down polyphenolic antioxidant degradation 

during storage by increasing the shelf-life of the antioxidant and can be effectively applied in 

formulation of cosmetic and nutraceutical products.  

6.2 Recommendations for Future Work 

Some areas in the research have been identified and require further investigations to give a 

better understanding of the utility of subcritical water in terms of solubilisation of the apple 

pomace and the release of high antioxidant compounds at the higher temperatures. For 

instance the batch reactor configuration used in the research should be replaced with a sem-
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continuous reactor system where products are withdrawn at subcritical water conditions of 

interest. The withdrawn products shouldn’t be centrifuged but rather analysed directly for 

solubilisation, phenolic content and antioxidant activities. In this way there will be a better 

understanding of solubilisation of the bioactives from the apple pomace and high quality of 

products can be guaranteed under the continuous reactor configuration. 

A new liquid chromatographic method either normal or reverse phase mode should be 

developed coupled with mass spectrometry (LC-MS) for resolution and identification of 

suspected high molecular weight compounds whose standards are not commercially available. 

Additionally analytical method should be explored for fractionation of the extract at various 

temperature conditions to identify compounds and analyse their contribution to overall 

antioxidant activity. Monomeric sugar analysis of extract should also be explored to correlate 

data between levels of total sugars and stickiness of products generated from the 

micronisation by spray drying operation. 
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APPENDIX A-  

RESULTS OF ANALYSIS OF VARIANCE FOR POLYPHENOLIC COMPOUNDS 

UNDER ACETONE EXTRACTION. 

These are the results from the stat-Ease design expert. 

Appendix A1- Chlorogenic acid 

ANOVA for Response Surface Reduced Quadratic Model for Chlorogenic acid 

Source Sum of 
Squares 

df Mean 
Square 

F 
Value 

p-value 
Prob > F 

 

Model 10841.32 10 1084.13 28.92 < 0.0001 significant 

A-Acetone 
Concentration 

244.98 1 244.98 6.53 0.0228  

B-
Temperature 

1804.86 1 1804.86 48.14 < 0.0001 

C-
Solid/Solvent 

20.56 1 20.56 0.55 0.4712 

D-Time 95.46 1 95.46 2.55 0.1329 

AC 4041.81 1 4041.81 107.80 < 0.0001 

BC 161.20 1 161.20 4.30 0.0571 

BD 227.73 1 227.73 6.07 0.0273 

CD 111.25 1 111.25 2.97 0.1070 

A^2 2769.28 1 2769.28 73.86 < 0.0001 

C^2 235.45 1 235.45 6.28 0.0252 

Residual 524.89 14 37.49   

Lack of Fit 518.84 10 51.88 34.31 0.0019 significant 

Pure Error 6.05 4 1.51    

Cor Total 11366.21 24    

  These Rows Were Ignored for this Analysis.     5, 16, 12, 9, 18 

Std. Dev. 6.12 R-Squared 0.9538 

Mean 175.62 Adj R-Squared 0.9208 

C.V. % 3.49 Pred R-Squared 0.8029 

PRESS 2240.45 Adeq Precision 19.877 
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Factor Coefficient 
Estimate 

df Standard  
Error 

                  95% CI VIF 

Low High 

Intercept 192.60 1 2.17 187.95 197.24  

A-Acetone 
Concentration 

-4.14 1 1.62 -7.61 -0.67 1.30 

B-
Temperature 

10.99 1 1.58 7.59 14.38 1.06 

C-
Solid/Solvent 

1.18 1 1.59 -2.23 4.58 1.07 

D-Time 2.11 1 1.32 -0.73 4.95 1.04 

AC 16.94 1 1.63 13.44 20.43 1.06 

BC -3.38 1 1.63 -6.88 0.12 1.06 

BD 4.02 1 1.63 0.52 7.52 1.06 

CD -2.81 1 1.63 -6.31 0.69 1.06 

A^2 -15.03 1 1.75 -18.78 -11.28 1.35 

C^2 -6.90 1 2.75 -12.80 -0.99 1.16 

 
Case statistics report  for chlorogenic acid under acetone extraction 
Standard Actual Predicted   

Order Value Value Residual Leverage 

1 183.17 175.30 7.87 0.537 

2 124.51 133.15 -8.64 0.549 

3 189.90 196.00 -6.10 0.523 

4 157.05 153.84 3.21 0.536 

5 156.00 156.17 -0.17 0.597 

6 177.39 181.76 -4.37 0.554 

7 162.72 163.33 -0.61 0.543 

8 190.21 188.93 1.28 0.629 

9 167.89 177.11 -9.22 0.532 

10 143.60 134.95 8.65 0.545 

11 221.58 213.88 7.70 0.523 

12 168.67 171.73 -3.06 0.536 

13 146.69 146.73 -0.042 0.552 

14 175.36 172.33 3.03 0.602 

15 170.85 169.98 0.87 0.721 

17 140.67 140.77 -0.10 0.95 # 

19 187.78 181.61 6.17 0.176 

21 184.12 184.52 -0.40 0.176 

23 191.88 188.72 3.16 0.283 

24 191.99 196.82 -4.83 0.311 

25 191.19 192.60 -1.41 0.125 

26 190.15 192.60 -2.45 0.125 

27 192.57 192.60 -0.025 0.125 

28 191.38 192.60 -1.22 0.125 
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29 193.29 192.60 0.69 0.125 

 

 

Appendix A2- Phloridzin 

ANOVA for Response Surface Reduced Quadratic Model for Phloridzin 

 Sum of  Mean F p-value  

Source Squares df Square Value Prob > F  

Model 3.720E+005 9 41332.68 80.24 < 0.0001 significant 

A-Acetone 
Concentration 

75116.17 1 75116.17 145.83 < 0.0001  

B-
Temperature 

6781.78 1 6781.78 13.17 0.0021  

C-
Solid/Solvent 

1.217E+005 1 1.217E+005 236.24 < 0.0001  

D-Time 4509.95 1 4509.95 8.76 0.0088  

BC 4391.71 1 4391.71 8.53 0.0096  

BD 2304.48 1 2304.48 4.47 0.0495  

CD 7192.74 1 7192.74 13.96 0.0016  

A^2 45289.78 1 45289.78 87.92 < 0.0001  

C^2 16034.32 1 16034.32 31.13 < 0.0001  

Residual 8756.80 17 515.11    

Lack of Fit 7530.66 12 627.55 2.56 0.1542 not 
significant 

Pure Error 1226.14 5 245.23    

Cor Total 3.808E+005 26     

  These Rows Were Ignored for this Analysis.     16, 12, 9 

Std. Dev. 22.70 R-Squared 0.9770 

Mean 684.00 Adj R-Squared 0.9648 

C.V. % 3.32 Pred R-Squared 0.9071 

PRESS 35365.99 Adeq Precision 41.612 

 

Coefficient Standard 95% CI 95% CI    

Factor Estimate df Error Low High VIF 

Intercept 695.99 1 7.57 680.02 711.96  

A-Acetone 
Concentration 

68.07 1 5.64 56.18 79.97 1.22 

B-
Temperature 

20.04 1 5.52 8.39 31.69 1.00 

C-
Solid/Solvent 

-84.93 1 5.53 -96.59 -73.27 1.01 

D-Time 13.90 1 4.70 3.99 23.80 1.00 

BC 16.57 1 5.67 4.60 28.54 1.00 

BD 12.00 1 5.67 0.030 23.97 1.00 
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CD -21.20 1 5.67 -33.17 -9.23 1.00 

A^2 -59.86 1 6.38 -73.33 -46.39 1.36 

C^2 55.44 1 9.94 34.48 76.41 1.21 

Case statistics reports for Phloridzin under acetone extraction 

     Internally Externally Influenc
e on 

  

Standar
d 

Actua
l 

Predicte
d 

  Studentiz
ed 

Studentiz
ed 

Fitted 
Value 

Cook's Run 

Order Value Value Residu
al 

Leverag
e 

Residual Residual DFFITS Distanc
e 

Orde
r 

1 686.3
5 

681.86 4.49 0.457 0.269 0.261 0.240 0.006 26 

2 847.5
3 

818.01 29.52 0.470 1.787 1.923 1.811 0.283 11 

3 674.8
3 

664.80 10.03 0.456 0.600 0.588 0.539 0.030 3 

4 776.8
4 

800.95 -24.11 0.470 -1.458 -1.513 -1.423 0.188 28 

5 516.7
5 

521.27 -4.52 0.476 -0.275 -0.268 -0.255 0.007 19 

6 641.8
6 

657.42 -15.56 0.476 -0.947 -0.944 -0.900 0.082 4 

7 588.5
3 

570.48 18.05 0.476 1.099 1.106 1.055 0.110 23 

8 717.2
7 

706.63 10.64 0.476 0.648 0.636 0.607 0.038 1 

9 723.6
4 

728.05 -4.41 0.457 -0.264 -0.257 -0.236 0.006 25 

10 845.5
9 

864.20 -18.61 0.470 -1.127 -1.136 -1.070 0.113 27 

11 785.2
7 

759.00 26.27 0.456 1.570 1.647 1.509 0.207 15 

12 894.6
2 

895.15 -0.53 0.469 -0.032 -0.031 -0.029 0.000 30 

13 484.6
0 

482.65 1.95 0.476 0.118 0.115 0.110 0.001 7 

14 636.6
0 

618.80 17.80 0.476 1.083 1.089 1.039 0.107 13 

15 545.0
1 

579.87 -34.86 0.476 -2.122 -2.401 * -2.29 0.409 21 

16 722.5
3 

716.02 6.51 0.476 0.396 0.386 0.368 0.014 5 

17 314.7
2 

320.39 -5.67 0.95 # -1.099 -1.106 * -4.74 * 2.22 2 

19 677.3
2 

675.95 1.37 0.157 0.066 0.064 0.027 0.000 24 

21 813.7 836.37 -22.67 0.174 -1.099 -1.106 -0.507 0.025 20 
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0 

23 634.4
9 

670.52 -36.03 0.258 -1.843 -1.999 -1.179 0.118 22 

24 707.9
7 

723.78 -15.81 0.279 -0.821 -0.812 -0.506 0.026 10 

25 727.0
7 

695.99 31.08 0.111 1.452 1.506 0.533 0.026 6 

26 693.3 
6 

695.99 -2.63 0.111 -0.123 -0.119 -0.042 0.000 17 

27 682.5
1 

695.99 -13.48 0.111 -0.630 -0.619 -0.219 0.005 29 

28 713.8
0 

695.99 17.81 0.111 0.832 0.824 0.292 0.009 8 

29 709.5
1 

695.99 13.52 0.111 0.632 0.620 0.219 0.005 14 

30 705.8
5 

695.99 9.86 0.111 0.461 0.450 0.159 0.003 18 

 

Appendix A3 Quercetin galactoside 

        ANOVA for Response Surface Reduced Quadratic Model for quercetin galactoside 

 Sum of  Mean F p-value  

Source Squares df Square Value Prob > F  

Model 3.569E-004 8 4.461E-005 23.94 < 0.0001 significant 

A-Acetone 
Concentration 

1.570E-004 1 1.570E-004 84.29 < 0.0001  

B-
Temperature 

2.104E-006 1 2.104E-006 1.13 0.3028  

C-
Solid/Solvent 

4.256E-005 1 4.256E-005 22.84 0.0002  

D-Time 4.292E-006 1 4.292E-006 2.30 0.1475  

AC 5.329E-005 1 5.329E-005 28.60 < 0.0001  

AD 1.192E-005 1 1.192E-005 6.40 0.0216  

BD 1.033E-005 1 1.033E-005 5.54 0.0308  

B^2 8.474E-005 1 8.474E-005 45.48 < 0.0001  

Residual 3.167E-005 17 1.863E-006    

Lack of Fit 2.873E-005 12 2.394E-006 4.06 0.0661 not 
significant 

Pure Error 2.946E-006 5 5.892E-007    

Cor Total 3.886E-004 25     

Transform: Inverse sqrt Constant: 0    These Rows Were Ignored for this Analysis.     21, 

16, 12, 9 

 

Std. Dev. 1.365E-003 R-Squared 0.9185 

Mean 0.077 Adj R-Squared 0.8801 
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C.V. % 1.77 Pred R-Squared 0.7554 

PRESS 9.505E-005 Adeq Precision 17.259 

 

Coefficient Standard 95% CI 95% CI    

Factor Estimate df Error Low High VIF 

Intercept 0.075 1 4.375E-004 0.074 0.076  

A-Acetone 
Concentration 

-2.960E-
003 

1 3.224E-004 -3.640E-
003 

-2.280E-
003 

1.06 

B-
Temperature 

-3.735E-
004 

1 3.515E-004 -1.115E-
003 

3.681E-004 1.05 

C-
Solid/Solvent 

1.671E-003 1 3.495E-004 9.331E-004 2.408E-003 1.04 

D-Time -4.455E-
004 

1 2.935E-004 -1.065E-
003 

1.738E-004 1.03 

AC -1.929E-
003 

1 3.606E-004 -2.689E-
003 

-1.168E-
003 

1.04 

AD 9.121E-004 1 3.606E-004 1.513E-004 1.673E-003 1.04 

BD -8.489E-
004 

1 3.606E-004 -1.610E-
003 

-8.815E-
005 

1.04 

B^2 3.798E-003 1 5.631E-004 2.610E-003 4.986E-003 1.05 

 

Diagnostics Case statistics report for quercetin galactoside under acetone extraction 

     Internally Externally Influenc
e on 

  

Standar
d 

Actu
al 

Predicte
d 

  Studentiz
ed 

Studentiz
ed 

Fitted 
Value 

Cook's Run 

Order Valu
e 

Value Residu
al 

Leverag
e 

Residual Residual DFFITS Distanc
e 

Orde
r 

1 0.07
9 

0.079 1.019E
-004 

0.477 0.103 0.100 0.096 0.001 26 

2 0.07
6 

0.075 9.010E
-004 

0.453 0.892 0.887 0.807 0.073 11 

3 0.08
2 

0.080 1.799E
-003 

0.490 1.846 2.003 1.965 0.364 3 

4 0.07
5 

0.076 -
7.120E
-004 

0.467 -0.714 -0.704 -0.658 0.050 28 

5 0.08
6 

0.086 -
4.128E
-004 

0.481 -0.420 -0.410 -0.394 0.018 19 

6 0.07
6 

0.075 1.233E
-003 

0.455 1.223 1.243 1.135 0.139 4 

7 0.08
6 

0.087 -
1.050E
-003 

0.495 -1.083 -1.088 -1.078 0.128 23 

8 0.07 0.076 4.420E 0.468 0.444 0.433 0.407 0.019 1 
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6 -004 

9 0.07
8 

0.078 4.147E
-004 

0.455 0.411 0.401 0.366 0.016 25 

10 0.07
8 

0.078 2.924E
-004 

0.481 0.297 0.289 0.279 0.009 27 

11 0.07
3 

0.075 -
2.286E
-003 

0.559 -2.522 -3.093 * -3.48 0.897 15 

12 0.07
6 

0.075 9.747E
-004 

0.492 1.002 1.002 0.985 0.108 30 

13 0.08
6 

0.085 1.352E
-003 

0.536 1.454 1.508 1.621 0.272 7 

14 0.07
6 

0.077 -
1.192E
-003 

0.487 -1.220 -1.239 -1.209 0.157 13 

16 0.07
6 

0.075 8.326E
-004 

0.490 0.855 0.847 0.831 0.078 5 

17 0.08
2 

0.081 1.427E
-003 

0.283 1.234 1.255 0.788 0.067 2 

19 0.07
6 

0.079 -
2.690E
-003 

0.111 -2.090 -2.352 -0.832 0.061 24 

21 0.07
3 

0.073 -
2.809E
-004 

0.157 -0.224 -0.218 -0.094 0.001 20 

23 0.07
6 

0.076 -
6.939E
-005 

0.262 -0.059 -0.057 -0.034 0.000 22 

24 0.07
5 

0.074 8.935E
-004 

0.283 0.773 0.764 0.480 0.026 10 

25 0.07
5 

0.075 3.455E
-004 

0.103 0.267 0.260 0.088 0.001 6 

26 0.07
5 

0.075 8.255E
-005 

0.103 0.064 0.062 0.021 0.000 17 

27 0.07
5 

0.075 5.338E
-004 

0.103 0.413 0.403 0.136 0.002 29 

28 0.07
4 

0.075 -
5.978E
-004 

0.103 -0.462 -0.451 -0.153 0.003 8 

29 0.07
4 

0.075 -
1.392E
-003 

0.103 -1.076 -1.082 -0.366 0.015 14 

30 0.07
4 

0.075 -
9.423E
-004 

0.103 -0.729 -0.718 -0.243 0.007 18 
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Appendix A5 Quercetin glucoside 

        ANOVA for Response Surface Reduced Quadratic Model 

 Sum of  Mean F p-value  

Source Squares df Square Value Prob > F  

Model 2.210E-003 7 3.157E-004 68.30 < 0.0001 significant 

A-Acetone 
Concentration 

3.335E-004 1 3.335E-004 72.13 < 0.0001  

C-
Solid/Solvent 

4.147E-004 1 4.147E-004 89.71 < 0.0001  

D-Time 3.310E-010 1 3.310E-010 7.159E-005 0.9934  

AC 1.506E-003 1 1.506E-003 325.70 < 0.0001  

AD 1.550E-005 1 1.550E-005 3.35 0.0870  

A^2 2.024E-004 1 2.024E-004 43.77 < 0.0001  

C^2 3.127E-004 1 3.127E-004 67.64 < 0.0001  

Residual 6.935E-005 15 4.623E-006    

Lack of Fit 6.826E-005 11 6.206E-006 22.85 0.0042 significant 

Pure Error 1.086E-006 4 2.716E-007    

Cor Total 2.280E-003 22     

Transform: Inverse sqrt Constant: 0 

  These Rows Were Ignored for this Analysis.     11, 27, 16, 12, 20, 9, 18 

 

Std. Dev. 2.150E-003 R-Squared 0.9696 

Mean 0.097 Adj R-Squared 0.9554 

C.V. % 2.21 Pred R-Squared N/A 

PRESS N/A Adeq Precision 27.748 

 

Diagnostic Case statistics Reports of quercetin glucoside under acetone extraction 

     Internally Externally Influenc
e on 

  

Standar
d 

Actu
al 

Predicte
d 

  Studentiz
ed 

Studentiz
ed 

Fitted 
Value 

Cook's Run 

Order Valu
e 

Value Residu
al 

Leverag
e 

Residual Residual DFFITS Distanc
e 

Orde
r 

1 0.09
5 

0.095 1.192E
-004 

0.356 0.069 0.067 0.050 0.000 26 

3 0.09
8 

0.095 3.312E
-003 

0.356 1.920 2.136 1.589 0.255 3 

4 0.12 0.12 -
2.513E

0.633 -1.930 -2.151 * -2.83 0.805 28 
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-003 

5 0.10 0.11 -
2.214E
-003 

0.356 -1.283 -1.314 -0.978 0.114 19 

6 0.09
2 

0.091 1.044E
-003 

0.383 0.618 0.605 0.477 0.030 4 

7 0.10 0.11 -
1.444E
-003 

0.356 -0.837 -0.828 -0.616 0.048 23 

8 0.09
3 

0.091 1.242E
-003 

0.383 0.736 0.724 0.571 0.042 1 

9 0.09
3 

0.093 8.599E
-004 

0.356 0.498 0.486 0.361 0.017 25 

11 0.08
8 

0.093 -
4.291E
-003 

0.356 -2.487 -3.135 * -2.33 0.428 15 

12 0.13 0.13 2.513E
-003 

0.633 1.930 2.151 * 2.83 0.805 30 

13 0.10 0.10 8.438E
-004 

0.356 0.489 0.476 0.354 0.017 7 

14 0.09
3 

0.094 -
8.924E
-004 

0.383 -0.529 -0.515 -0.406 0.022 13 

15 0.11 0.10 2.814E
-003 

0.356 1.631 1.738 1.293 0.184 21 

16 0.09
2 

0.094 -
1.393E
-003 

0.383 -0.825 -0.816 -0.644 0.053 5 

17 0.09
8 

0.098 0.000 1.00  * 2     

19 0.09
3 

0.091 1.691E
-003 

0.125 0.841 0.832 0.314 0.013 24 

23 0.09
2 

0.091 6.420E
-004 

0.288 0.354 0.343 0.218 0.006 22 

24 0.09
2 

0.091 1.340E
-004 

0.311 0.075 0.073 0.049 0.000 10 

25 0.09
0 

0.091 -
1.031E
-003 

0.125 -0.513 -0.500 -0.189 0.005 6 

26 0.09
2 

0.091 2.609E
-004 

0.125 0.130 0.125 0.047 0.000 17 

27 0.09
1 

0.091 -
6.141E
-004 

0.125 -0.305 -0.296 -0.112 0.002 29 

28 0.09
1 

0.091 -
8.644E
-004 

0.125 -0.430 -0.418 -0.158 0.003 8 

29 0.09 0.091 - 0.125 -0.108 -0.105 -0.040 0.000 14 
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1 2.178E
-004 

 

Appendix A6 Procyanidin B2 

 ANOVA for Response Surface Reduced Quadratic Model for Procyanidin B2  

Source Sum of 
Squares 

df Mean 
Square 

F 
Value 

p-value 
Prob > F 

 

Model 2.349E+005 9 26097.91 641.83 < 0.0001 significant 

A-Acetone 
Concentration 

3174.65 1 3174.65 78.07 < 0.0001  

B-
Temperature 

195.68 1 195.68 4.81 0.0444  

C-
Solid/Solvent 

1.352E+005 1 1.352E+005 3324.56 < 0.0001  

D-Time 6.91 1 6.91 0.17 0.6861  

AC 3243.78 1 3243.78 79.77 < 0.0001  

BC 130.95 1 130.95 3.22 0.0929  

A^2 1021.96 1 1021.96 25.13 0.0002  

C^2 65574.56 1 65574.56 1612.68 < 0.0001  

D^2 137.53 1 137.53 3.38 0.0858  

Residual 609.93 15 40.66    

Lack of Fit 493.89 11 44.90 1.55 0.3589 not 
significant 

Pure Error 116.04 4 29.01    

Cor Total 2.355E+005 24     

  These Rows Were Ignored for this Analysis.     15, 16, 12, 9, 17 

Std. Dev. 6.38 R-Squared 0.9974 

Mean 137.68 Adj R-Squared 0.9959 

C.V. % 4.63 Pred R-Squared 0.9900 

PRESS 2363.38 Adeq Precision 56.629 

 

Coefficient Standard 95% CI 95% CI    

Factor Estimate df Error Low High VIF 

Intercept 216.54 1 2.57 211.07 222.01  

A-Acetone 
Concentration 

-14.63 1 1.66 -18.15 -11.10 1.28 

B-
Temperature 

3.57 1 1.63 0.10 7.04 1.03 

C-
Solid/Solvent 

93.27 1 1.62 89.82 96.72 1.03 

D-Time -0.56 1 1.37 -3.48 2.35 1.03 

AC -14.95 1 1.67 -18.52 -11.39 1.03 

BC 3.00 1 1.67 -0.56 6.57 1.03 

A^2 -9.13 1 1.82 -13.01 -5.25 1.35 
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C^2 -117.53 1 2.93 -123.77 -111.29 1.21 

D^2 2.52 1 1.37 -0.40 5.45 1.03 

 

 Diagnostic Case statistics reports for Procyanidin B2 under acetone extraction 

     Internally Externally Influenc
e on 

  

Standar
d 

Actua
l 

Predicte
d 

  Studentiz
ed 

Studentiz
ed 

Fitted 
Value 

Cook's Run 

Order Value Value Residu
al 

Leverag
e 

Residual Residual DFFITS Distanc
e 

Orde
r 

1 0.000 -1.20 1.20 0.406 0.243 0.236 0.195 0.004 26 

2 0.000 -0.54 0.54 0.461 0.115 0.111 0.103 0.001 11 

3 0.000 -0.068 0.068 0.553 0.016 0.015 0.017 0.000 3 

4 0.000 0.59 -0.59 0.415 -0.121 -0.117 -0.099 0.001 28 

5 218.2
6 

209.25 9.01 0.418 1.853 2.039 1.727 0.247 19 

6 140.3
5 

150.08 -9.73 0.416 -1.998 -2.253 -1.901 0.284 4 

7 216.3
8 

222.39 -6.01 0.418 -1.236 -1.260 -1.068 0.110 23 

8 167.1
1 

163.23 3.88 0.417 0.796 0.786 0.665 0.045 1 

9 0.000 -2.32 2.32 0.434 0.484 0.472 0.413 0.018 25 

10 0.000 -1.67 1.67 0.422 0.344 0.333 0.285 0.009 27 

12 0.000 -0.54 0.54 0.445 0.113 0.109 0.098 0.001 30 

13 210.2
5 

208.12 2.13 0.417 0.438 0.426 0.360 0.014 7 

14 150.4
0 

148.96 1.44 0.418 0.297 0.288 0.244 0.006 13 

15 216.8
5 

221.27 -4.42 0.416 -0.906 -0.900 -0.760 0.058 21 

16 165.8
0 

162.10 3.70 0.418 0.760 0.748 0.634 0.041 5 

17 207.8
3 

209.27 -1.44 0.95 # -1.039 -1.042 * -4.70 * 2.19 2 

19 201.5
5 

212.97 -11.42 0.208 -2.013 -2.276 -1.166 0.106 24 

21 0.000 5.74 -5.74 0.249 -1.039 -1.042 -0.601 0.036 20 

23 227.8
1 

226.06 1.75 0.594 0.431 0.419 0.507 0.027 22 

24 222.6
0 

225.51 -2.91 0.713 -0.851 -0.843 -1.329 0.180 10 

25 217.1
8 

216.54 0.64 0.162 0.109 0.105 0.046 0.000 6 

27 216.9
7 

216.54 0.43 0.162 0.073 0.071 0.031 0.000 29 

28 224.0 216.54 7.52 0.162 1.288 1.319 0.580 0.032 8 
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6 

29 212.8
0 

216.54 -3.74 0.162 -0.641 -0.628 -0.276 0.008 14 

30 225.7
2 

216.54 9.18 0.162 1.572 1.662 0.731 0.048 18 

 

Appendix A7 Epicatechin 

ANOVA for Response Surface Reduced Quadratic Model 

 Sum of  Mean F p-value  

Source Squares df Square Value Prob > F  

Model 1.607E+005 7 22955.55 213.51 < 0.0001 significant 

A-Acetone 
Concentration 

2756.10 1 2756.10 25.63 < 0.0001  

B-
Temperature 

1022.67 1 1022.67 9.51 0.0064  

C-
Solid/Solvent 

92991.61 1 92991.61 864.93 < 0.0001  

AC 2004.45 1 2004.45 18.64 0.0004  

BC 327.21 1 327.21 3.04 0.0981  

B^2 7728.21 1 7728.21 71.88 < 0.0001  

C^2 38119.78 1 38119.78 354.56 < 0.0001  

Residual 1935.25 18 107.51    

Lack of Fit 1689.47 13 129.96 2.64 0.1452 not 
significant 

Pure Error 245.78 5 49.16    

Cor Total 1.626E+005 25     
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APPENDIX B-  

ANALYSIS OF VARIANCE RESULTS FOR POLYPHENOLIC COMPOUNDS 

UNDER SUBCRITICAL WATER EXTRACTION 

Appendix B1- Chlorogenic acid 

ANOVA for Response Surface Reduced Quadratic Model 

 Sum of  Mean F p-value  

Source Squares df Square Value Prob > F  

Model 196.51 6 32.75 62.93 < 0.0001 significant 

A-
Solid/Solvent 

7.62 1 7.62 14.65 0.0040  

B-
Temperature 

131.81 1 131.81 253.25 < 0.0001  

C-Residence 
Time 

1.09 1 1.09 2.10 0.1809  

AB 7.62 1 7.62 14.65 0.0040  

BC 2.38 1 2.38 4.58 0.0610  

B^2 112.46 1 112.46 216.08 < 0.0001  

Residual 4.68 9 0.52    

Lack of Fit 3.76 5 0.75 3.25 0.1382 not 
significant 

Pure Error 0.93 4 0.23    

Cor Total 201.20 15     

 

Std. Dev. 0.72 R-Squared 0.9767 

Mean 5.52 Adj R-Squared 0.9612 

C.V. % 13.07 Pred R-Squared 0.8984 

PRESS 20.44 Adeq Precision 22.294 

 

Coefficient Standard 95% CI 95% CI    

Factor Estimate df Error Low High VIF 

Intercept 7.75 1 0.25 7.19 8.31  

A-
Solid/Solvent 

-0.98 1 0.26 -1.55 -0.40 1.00 

B-
Temperature 

-3.80 1 0.24 -4.34 -3.26 1.17 

C-Residence 
Time 

0.28 1 0.20 -0.16 0.72 1.00 

AB 0.98 1 0.26 0.40 1.55 1.00 

BC -0.55 1 0.26 -1.12 0.031 1.00 

B^2 -3.89 1 0.26 -4.49 -3.29 1.17 
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Diagnostics Case statistics reports for Chlorogenic acid under subcritical water extraction 

Standard Actual Predicted   

Order Value Value Residual Leverage 

1 7.64 8.79 -1.14 0.586 

2 4.97 4.88 0.086 0.586 

3 0.000 0.33 -0.33 0.691 

4 0.000 0.33 -0.33 0.691 

5 11.05 10.44 0.61 0.586 

6 5.92 6.54 -0.62 0.586 

7 0.000 -0.20 0.20 0.691 

8 0.000 -0.20 0.20 0.691 

11 3.62 3.14 0.47 0.647 

13 7.71 7.28 0.43 0.326 

14 7.41 8.23 -0.82 0.326 

15 7.92 7.75 0.16 0.119 

17 7.78 7.75 0.030 0.119 

18 7.77 7.75 0.018 0.119 

19 8.85 7.75 1.10 0.119 

20 7.69 7.75 -0.059 0.119 

 

Appendix B2- Phloridzin 

ANOVA for Response Surface Reduced Quadratic Mode 

 Sum of  Mean F p-value  

Source Squares df Square Value Prob > F  

Model 279.36 4 69.84 13.00 0.0004 significant 

A-
Solid/Solvent 

37.65 1 37.65 7.01 0.0227  

B-
Temperature 

224.74 1 224.74 41.84 < 0.0001  

AB 37.65 1 37.65 7.01 0.0227  

B^2 86.07 1 86.07 16.03 0.0021  

Residual 59.08 11 5.37    

Lack of Fit 6.77 6 1.13 0.11 0.9914 not 
significant 

Pure Error 52.30 5 10.46    

Cor Total 338.44 15     

 

Std. Dev. 2.32 R-Squared 0.8254 

Mean 6.30 Adj R-Squared 0.7620 

C.V. % 36.79 Pred R-Squared 0.7528 

PRESS 83.67 Adeq Precision 11.693 
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Coefficient Standard 95% CI 95% CI    

Factor Estimate df Error Low High VIF 

Intercept 8.41 1 0.77 6.72 10.10  

A-
Solid/Solvent 

-2.38 1 0.90 -4.36 -0.40 1.04 

B-
Temperature 

-5.19 1 0.80 -6.96 -3.43 1.18 

AB 2.38 1 0.90 0.40 4.36 1.04 

B^2 -3.32 1 0.83 -5.14 -1.49 1.15 

 
Diagnostics Case statistics reports for Phloridzin under subcritical water extraction 

Standard Actual Predicted   

Order Value Value Residual Leverage 

2 5.61 5.53 0.075 0.407 

3 0.000 -0.098 0.098 0.494 

4 0.000 -0.098 0.098 0.494 

5 15.82 15.05 0.77 0.63 # 

6 6.22 5.53 0.69 0.407 

7 0.000 -0.098 0.098 0.494 

8 0.000 -0.098 0.098 0.494 

11 7.09 7.77 -0.68 0.71 # 

13 7.11 8.41 -1.31 0.110 

14 6.69 8.41 -1.72 0.110 

15 6.95 8.41 -1.46 0.110 

16 14.96 8.41 6.54 0.110 

17 6.73 8.41 -1.68 0.110 

18 7.59 8.41 -0.82 0.110 

19 9.45 8.41 1.03 0.110 

20 6.59 8.41 -1.82 0.110 

 

Appendix B4 Protocatechuic aldehyde 

ANOVA for Response Surface Reduced Quadratic Model 

 Sum of  Mean F p-value  

Source Squares df Square Value Prob > F  

Model 1348.18 7 192.60 477.44 < 0.0001 significant 

A-
Solid/Solvent 

48.85 1 48.85 121.09 < 0.0001  

B-
Temperature 

1112.43 1 1112.43 2757.67 < 0.0001  

C-Residence 
Time 

10.02 1 10.02 24.84 0.0011  

AB 48.85 1 48.85 121.09 < 0.0001  

AC 2.64 1 2.64 6.55 0.0337  

BC 3.99 1 3.99 9.88 0.0137  
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A^2 121.41 1 121.41 300.98 < 0.0001  

Residual 3.23 8 0.40    

Lack of Fit 3.18 3 1.06 110.62 < 0.0001 significant 

Pure Error 0.048 5 9.580E-003    

 

Std. Dev. 0.64 R-Squared 0.9976 

Mean 9.04 Adj R-Squared 0.9955 

C.V. % 7.03 Pred R-Squared 0.9326 

PRESS 91.14 Adeq Precision 69.890 

 

Coefficient Standard 95% CI 95% CI    

Factor Estimate df Error Low High VIF 

Intercept 6.28 1 0.22 5.76 6.80  

A-
Solid/Solvent 

-2.47 1 0.22 -2.99 -1.95 1.00 

B-
Temperature 

11.79 1 0.22 11.27 12.31 1.00 

C-Residence 
Time 

0.86 1 0.17 0.46 1.25 1.00 

AB -2.47 1 0.22 -2.99 -1.95 1.00 

AC -0.57 1 0.22 -1.09 -0.057 1.00 

BC 0.71 1 0.22 0.19 1.22 1.00 

A^2 5.51 1 0.32 4.78 6.24 1.00 

 
Diagnostics Case statistics report of Protocatechuic aldehyde under subcritical water extraction 

     

Standard Actual Predicted   

Order Value Value Residual Leverage 

1 0.000 -0.73 0.73 0.823 

2 0.000 0.42 -0.42 0.823 

3 25.97 26.39 -0.42 0.823 

4 18.38 17.65 0.73 0.823 

5 0.000 0.73 -0.73 0.823 

6 0.000 -0.42 0.42 0.823 

7 31.09 30.66 0.42 0.823 

8 18.91 19.63 -0.73 0.823 

13 4.29 4.84 -0.55 0.332 

14 7.89 7.72 0.16 0.332 

15 6.36 6.28 0.081 0.125 

16 6.47 6.28 0.18 0.125 

17 6.30 6.28 0.018 0.125 

18 6.29 6.28 0.010 0.125 

19 6.45 6.28 0.17 0.125 

20 6.21 6.28 -0.070 0.125 
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Appendix B6 Quercetin glucoside 

ANOVA for Response Surface Reduced Quadratic Model 

 Sum of  Mean F p-value  

Source Squares df Square Value Prob > F  

Model 1617.21 4 404.30 58.25 < 0.0001 significant 

A-
Solid/Solvent 

70.51 1 70.51 10.16 0.0086  

B-
Temperature 

70.51 1 70.51 10.16 0.0086  

AB 70.51 1 70.51 10.16 0.0086  

A^2 1405.69 1 1405.69 202.53 < 0.0001  

Residual 76.35 11 6.94    

Lack of Fit 4.44 6 0.74 0.052 0.9988 not 
significant 

Pure Error 71.90 5 14.38    

Cor Total 1693.56 15     

 

Std. Dev. 2.63 R-Squared 0.9549 

Mean 12.34 Adj R-Squared 0.9385 

C.V. % 21.35 Pred R-Squared 0.9377 

PRESS 105.49 Adeq Precision 14.745 

 

Coefficient Standard 95% CI 95% CI    

Factor Estimate df Error Low High VIF 

Intercept 21.72 1 0.93 19.66 23.77  

A-
Solid/Solvent 

2.97 1 0.93 0.92 5.02 1.00 

B-
Temperature 

-2.97 1 0.93 -5.02 -0.92 1.00 

AB -2.97 1 0.93 -5.02 -0.92 1.00 

A^2 -18.75 1 1.32 -21.65 -15.85 1.00 

 

Diagnostics Case Statistics for quercetin glucoside under subcritical water extraction 

Standard Actual Predicted   

Order Value Value Residual Leverage 

1 0.000 3.553E-015 0.000 0.500 

2 12.91 11.88 1.03 0.500 

3 0.000 3.553E-015 0.000 0.500 

4 0.000 3.553E-015 0.000 0.500 

5 0.000 3.553E-015 0.000 0.500 

6 10.84 11.88 -1.04 0.500 
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7 0.000 3.553E-015 0.000 0.500 

8 0.000 3.553E-015 0.000 0.500 

13 22.97 21.72 1.25 0.125 

14 20.88 21.72 -0.84 0.125 

15 18.68 21.72 -3.04 0.125 

16 28.24 21.72 6.52 0.125 

17 18.32 21.72 -3.40 0.125 

18 21.58 21.72 -0.14 0.125 

19 23.59 21.72 1.87 0.125 

20 19.46 21.72 -2.26 0.125 

 

Appendix B7 5-HMF 

ANOVA for Response Surface Reduced Quadratic Model 

Source Sum of 
Squares 

df Mean 
Square 

F 
Value 

p-value 
Prob > F 

 

Model 6457.60 7 922.51 253.84 < 0.0001 significant 

A-
Solid/Solvent 

903.20 1 903.20 248.53 < 0.0001  

B-
Temperature 

4163.29 1 4163.29 1145.58 < 0.0001  

C-Residence 
Time 

39.94 1 39.94 10.99 0.0161  

AB 854.55 1 854.55 235.14 < 0.0001  

AC 13.86 1 13.86 3.81 0.0987  

BC 38.50 1 38.50 10.59 0.0174  

A^2 444.26 1 444.26 122.24 < 0.0001  

Residual 21.81 6 3.63    

Lack of Fit 20.18 1 20.18 62.07 0.0005 significant 

Pure Error 1.63 5 0.33    

Cor Total 6479.40 13     

 

Std. Dev. 1.91 R-Squared 0.9966 

Mean 19.96 Adj R-Squared 0.9927 

C.V. % 9.55 Pred R-Squared 0.8003 

PRESS 1293.84 Adeq Precision 51.278 

 

 

Factor Coefficient 
Estimate 

df Standard 
Error 

95% CI 
Low 

95% CI 
High 

VIF 

Intercept 13.45 1 0.78 11.55 15.36  

A-
Solid/Solvent 

-10.63 1 0.67 -12.27 -8.98 1.00 
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B-
Temperature 

22.81 1 0.67 21.16 24.46 1.00 

C-Residence 
Time 

2.23 1 0.67 0.59 3.88 1.00 

AB -10.34 1 0.67 -11.98 -8.69 1.00 

AC -1.32 1 0.67 -2.97 0.33 1.00 

BC 2.19 1 0.67 0.54 3.84 1.00 

A^2 11.38 1 1.03 8.86 13.90 1.00 

 

Diagnostics Case statistics report of 5-HMF Transform Square root 

Standar
d 
Order 

Actu
al 
Valu
e 

Predicte
d 
Value 

Residu
al 

Leverag
e 

Internally 
Studentiz
ed 
Residual 

Externally 
Studentiz
ed 
Residual 

Influenc
e on 
Fitted 
Value 
DFFITS 

Cook's 
Distanc
e 

1 2.55 0.96 1.59 0.875 2.356  ** 7.88 * 20.84 * 4.86 

2 1.42 3.01 -1.59 0.875 -2.356  ** -7.88 * -20.84 * 4.86 

3 61.28 62.87 -1.59 0.875 -2.356  ** -7.88 * -20.84 * 4.86 

4 25.16 23.58 1.59 0.875 2.356  ** 7.88 * 20.84 * 4.86 

5 2.08 3.67 -1.59 0.875 -2.356  ** -7.88 * -20.84 * 4.86 

6 2.05 0.46 1.59 0.875 2.356  ** 7.88 * 20.84 * 4.86 

7 75.94 74.35 1.59 0.875 2.356  ** 7.88 * 20.84 * 4.86 

8 28.21 29.80 -1.59 0.875 -2.356  ** -7.88 * -20.84 * 4.86 

15 12.97 13.45 -0.48 0.167 -0.276 -0.253 -0.113 0.002 

16 14.21 13.45 0.76 0.167 0.435 0.403 0.180 0.005 

17 12.74 13.45 -0.72 0.167 -0.412 -0.381 -0.170 0.004 

18 13.93 13.45 0.48 0.167 0.274 0.252 0.112 0.002 

19 13.64 13.45 0.18 0.167 0.105 0.096 0.043 0.000 

20 13.23 13.45 -0.22 0.167 -0.127 -0.116 -0.052 0.000 
 

Appendix B8 Furfural 

ANOVA for Response Surface Reduced Quadratic Model 

Source Sum of 
Squares 

df Mean 
Square 

F 
Value 

p-value 
Prob > F 

 

Model 43014.62 6 7169.10 68.57 < 0.0001 significant 

A-
Solid/Solvent 

3963.17 1 3963.17 37.91 0.0005  

B-
Temperature 

28746.37 1 28746.37 274.94 < 0.0001  

C-Residence 
Time 

722.58 1 722.58 6.91 0.0340  
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AB 2397.46 1 2397.46 22.93 0.0020  

BC 891.19 1 891.19 8.52 0.0224  

A^2 6293.84 1 6293.84 60.20 0.0001  

Residual 731.88 7 104.55    

Lack of Fit 724.56 2 362.28 247.33 < 0.0001 significant 

Pure Error 7.32 5 1.46    

Cor Total 43746.50 13     

 

Std. Dev. 10.23 R-Squared 0.9833 

Mean 49.58 Adj R-Squared 0.9689 

C.V. % 20.62 Pred R-Squared 0.7348 

PRESS 11603.50 Adeq Precision 25.658 

 

Factor Coefficient 
Estimate 

df Standard 
Error 

95% CI 
Low 

95% CI 
High 

VIF 

Intercept 25.10 1 4.17 15.23 34.97  

A-
Solid/Solvent 

-22.26 1 3.62 -30.81 -13.71 1.00 

B-
Temperature 

59.94 1 3.62 51.40 68.49 1.00 

C-Residence 
Time 

9.50 1 3.62 0.96 18.05 1.00 

AB -17.31 1 3.62 -25.86 -8.76 1.00 

BC 10.55 1 3.62 2.01 19.10 1.00 

A^2 42.85 1 5.52 29.79 55.90 1.00 

 

Diagnostics Case statistics report of Furfural Transform Square root 

Standar
d 
Order 

Actua
l 
Value 

Predicte
d 
Value 

Residu
al 

Leverag
e 

Internally 
Studentiz
ed 
Residual 

Externally 
Studentiz
ed 
Residual 

Influenc
e on 
Fitted 
Value 
DFFITS 

Cook's 
Distanc
e 

1 16.00 14.00 2.01 0.750 0.393 0.368 0.637 0.066 

2 2.10 4.11 -2.01 0.750 -0.393 -0.368 -0.637 0.066 

3 134.0
9 

147.40 -13.31 0.750 -2.603  ** -13.46 * -23.32 * 2.90 

4 81.57 68.26 13.31 0.750 2.603  ** 13.46 * 23.32 * 2.90 

5 9.89 11.90 -2.01 0.750 -0.393 -0.368 -0.637 0.066 

6 4.01 2.00 2.01 0.750 0.393 0.368 0.637 0.066 

7 200.8
2 

187.52 13.31 0.750 2.603  ** 13.46 * 23.32 * 2.90 

8 95.07 108.38 -13.31 0.750 -2.603  ** -13.46 * -23.32 * 2.90 
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15 24.31 25.10 -0.79 0.167 -0.085 -0.079 -0.035 0.000 

16 27.44 25.10 2.34 0.167 0.251 0.233 0.104 0.002 

17 24.26 25.10 -0.84 0.167 -0.090 -0.084 -0.037 0.000 

18 25.07 25.10 -0.025 0.167 -0.003 -0.002 -0.001 0.000 

19 24.39 25.10 -0.71 0.167 -0.076 -0.070 -0.031 0.000 

20 25.12 25.10 0.023 0.167 0.002 0.002 0.001 0.000 
 


