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Abstract 

This thesis investigates multi-passband and tunable microwave filters, it includes a new 

generalised design technique for multi-passband filters and a new coupling tuning structure 

for tunable waveguide filters.  

The synthesis technique is an analytical approach and offers very fast solutions to the design 

once the desired filter specifications are given. The technique calculates the coupling matrix 

and external Q-factors for a wide range of filter specifications. The centre frequency and 

bandwidth of each passband, and the number of passbands can all be arbitrarily chosen. To 

verify the calculations, multi-passband filters are realised by using multi-passband resonator 

sections. Two X-band waveguide multi-passband filter examples are given to validate the 

theory. Besides the innovation in synthesis technique, new designs of fully tunable 

waveguide filters are also presented. These filters are based on the new coupling tuning 

structure and a separate frequency tuning structure offering tuning in both centre frequency 

and bandwidth of the filter. One tunable bandpass filter and one tunable notch filter is 

implemented in X-band waveguide circuit.  
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 INTRODUCTION CHAPTER 1 
 

The work presented in this thesis can be generally categorised into two parts, which are: (1) 

the design of multi-passband filters using analytical synthesis technique; (2) the designs of 

tunable rectangular waveguide filters, which include a tunable bandpass filter and a tunable 

notch filter. 

1.1 Thesis Motivation 

There have been extensive studies on multi-passband frequency selective circuits [1]. They 

are widely used in wireless communication and satellite applications, where multi-channel 

signals are transmitted or received through one beam [2]. As shown in Figure 1.1, there are 

broadly three configurations of them. Figure 1.1(a) shows a conventional configuration which 

has channelized banks of bandpass filters and power dividers / combiners. The shortcoming 

of this configuration is size of the circuit and power loss in the signal splitting and combining 

process [1]. Figure 1.1(b) shows another configuration which uses multiplexer and power 

combiner, but it still has disadvantages such as, inter-module matching issues. Besides, the 

design of wide-band power combiner becomes a critical issue in both configurations [1]. 

Compared with these two, the third one shown in Figure 1.1(c) solves all these issues by only 

using a single circuit that performs the multi-passband filtering function. 
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Figure 1.1 The configurations of the three kinds of frequency-selective circuits, (a) 
Channelized bank of bandpass filters with input/output power divider/combiner, (b) Input 
multiplexer with output power combiner, (c) Multi-passband filter (reproduced from [1]) 

 

One of the critical parts in multi-passband filter design is the synthesis of coupling matrix and 

external Q-factors with the desired filter specifications. The concepts of coupling matrix and 

external Q-factors, together with classic synthesis techniques for filters are introduced in 

Chapter 2. All the coupling matrices presented in this thesis are N×N matrices, each defines 

the inter-resonator couplings of the filter [3]. Generally, there are two ways to obtain a matrix; 

one is optimisation, and the other one is analytical synthesis. In this thesis, an analytical 
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synthesis technique for multi-passband filter is investigated. Compared with optimisation 

methods, this analytical synthesis technique provides a very fast and efficient solution.  

This technique is based on lowpass to multi-passband frequency transformation which maps a 

lowpass prototype response onto multiple frequency bands. From the topology point of view, 

the frequency transformation is realised by the so called multi-passband resonator section, 

which is also the basic building block for the proposed multi-passband filter. As long as the 

filter specifications are given clearly, this technique can guarantee there exists a solution that 

satisfies the desired specifications. This means that a multi-passband filter with arbitrary 

specifications can be generated; the relevant coupling matrix and external Q-factors can be 

calculated. Two selected multi-passband filters are implemented in the form of rectangular 

waveguide. The measured results are given in the thesis. 

Nowadays, tunable filters become more important in wireless communications and satellite 

applications. For example, most of the commercial communication satellites use fixed filter 

banks to fulfil flexibilities in centre frequency and bandwidth, but people are still putting 

efforts in making more flexible tunable payloads for satellite applications. The critical driver 

behind is to have more channels, longer lifetime and less weight at the same time [4]. It is 

quite obvious that mass and size are the key factors in satellite applications. Tunable devices 

permit multi-functional operations to be carried out with less volume of hardware which 

promisingly makes the payload smaller and lighter. Therefore, with a smaller size, more 

payloads may be added onto a satellite to enhance the performance, or more fuels can be 

carried to prolong its operation.  

The tunable filters implemented by cavity resonators enjoy good insertion loss level, good 

selectivity and transmission responses with little distortion [5, 6]. This is because it maintains 

a high unloaded Q-factor Qu over the tuning range. So far, the published tunable cavity filters 
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are mainly based on dielectric resonators with elaborate MEMS tuning elements integrated 

inside the cavity. These filters possess good frequency tuning ability, but do not have 

flexibility in bandwidth [5, 7-14]. On the other hand, most tunable filters implemented in 

planar circuits can achieve flexibilities in both frequency and bandwidth [4, 7, 15-39], but in 

general, their performances are not as good as that of the tunable cavity filters. 

The tunable rectangular waveguide filters proposed in the thesis provide a good compromise 

between tuning flexibilities and performance. This attributes to the design of a new coupling 

tuning structure based on rectangular waveguide. It changes the coupling between adjacent 

resonators; while maintains an acceptable insertion loss with the integration of chokes. A 

tunable bandpass filter and a tunable notch filter are designed and implemented in the form of 

rectangular waveguide. The passband centre frequency, the bandwidth and the notch position, 

can all be tuned. Both filters are fabricated and measured; the results are presented in the 

thesis. 

1.2 Thesis Overview 

The thesis is formed of seven chapters. Chapter 3 and 4 consists of the first part of work 

which comprises the design of the multi-passband filter. The second part of work about the 

tunable waveguide filter design is included in Chapter 5 and 6. The thesis is organised as 

follows. 

Chapter 1 states the motivations and objectives of the work in this thesis. The overview of the 

thesis is included in this chapter as well. 

Chapter 2 introduces the fundamental theories that are used in the design of multi-passband 

filters and tunable filters. It includes the general filter theory, coupling matrix theory and the 

classic synthesis techniques for bandpass filters. The characteristic polynomials are also 
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discussed, as they are used in the analytical multi-passband filter synthesis technique for 

plotting the S-parameters. 

Chapter 3 investigates an analytical synthesis technique for multi-passband filter. In order to 

show the freedom of this design technique, seven design examples are given; they have 

different centre frequencies, different bandwidths, different passband numbers and different 

passband shapes. For each example, its topology, S-parameters, coupling matrix and external 

Q-factors are calculated and presented. The generalised multi-passband filter topologies are 

also proposed in this chapter. 

Chapter 4 shows the waveguide implementation of the multi-passband filter. In the first part, 

the classic design technique of rectangular waveguide filters is introduced. It discusses the 

relationship between the coupling matrix and the dimensions of a real rectangular waveguide 

filter. In the second part, a 10th order five-passband filter with Chebyshev response which is 

implemented in rectangular waveguide is presented. The measured results are given and 

analysed. In the third part, another design example of a 20th order five-passband filter with 

quasi-elliptic response is presented, together with the measured results and analysis. 

Chapter 5 discusses the design of tunable waveguide circuits. A new coupling tuning 

structure with choke is presented in this chapter. It enables coupling tuning, while maintain 

the unloaded Q-factors of the resonator. This coupling tuning structure, together with a 

separate frequency tuning element are the two basic building components for the proposed 

tunable filter. As an example, a 3rd order tunable bandpass filter is designed and fabricated; 

the measured results are given in the end of the chapter. 

Chapter 6 is about the design of tunable notch filter, which uses the knowledges in Chapter 3 

and Chapter 5. A design example of 4th order tunable notch filter is given. It is based on the 
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dual-passband filter topology. The filter is implemented in the form of rectangular waveguide. 

The measured results are given. 

Chapter 7 concludes the whole thesis. It also gives the possible future plans based on the 

current achievements. 
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 FUNDAMENTAL THEORY CHAPTER 2 
 

2.1 Overview of Microwave Filters 

A filter is a frequency selective device; it usually has two ports. From the input port to the 

output port, it permits a good transmission for the desired frequency band(s) while stops the 

undesired one(s). In General, the filter can be categorised into four types: lowpass, high-pass, 

bandpass and band-stop [1]. Based on different transfer functions, there are various kinds of 

responses, what will be discussed here is Chebyshev response, Butterworth response and 

Quasi-elliptic response [2].  

Figure 2.1 presents the layout of a typical two-port network connected with a source and a 

load, which is used in a classical methodology for filter analysis. In Figure 2.1, 1V , 2V  and 1I ,

2I are the voltage and current variables for the ports; 01Z and 02Z  are the impedances of the 

terminals. sE is the source voltage [3].  

Two-port 
network

Z01
Z02Es

V1 V2

I1 I2

a1 a2

b1 b2

 
Figure 2.1 A two-port network representation with network variables [3] 

1a , 1b  and 2a , 2b  are wave variables. They are introduced because of the difficulty in 

measuring the voltage and current at radio frequency. a  and b indicate incident waves and 

reflected waves, respectively. They are expressed in terms of voltage and current and are 

given by [3], 
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0
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    n=1 and 2  (2-1) 
 

For the same reason as above, the scattering parameters (S-parameters) are introduced to 

indicate the transmitted and reflected energy [4]. The S-parameters for the two-port network 

shown in Figure 2.1 are given as [3], 

 
2

1

1 0

11
a

bS
a



           
1

1

2 0

12
a

bS
a



  

2

2

1 0

21
a

bS
a



           
1

2

2 0

22
a

bS
a



   

(2-2) 
 

The S-parameters in (2-2) are obtained when the impedances are perfectly matched at both 

ports. S11 and S22 are the reflection coefficients, whereas S12 and S21 are the transmission 

coefficients. In this thesis, the filters are reciprocal and symmetric two-port networks, hence 

12 21S S   and 11 22S S . Because the S-parameters are complex, they are usually 

expressed in terms of amplitude and phases. The amplitudes of the S-parameters are defined 

as [3], 

 
20log 21AL S      dB 

20log 11RL S      dB 

(2-3) 
 

where AL  and RL denote the insertion loss and return loss, respectively. The logarithm 

operation is base 10. Normally, rather than using the phase of S21 ( 21 ), the group delay ( d ) 

is introduced to characterize the phase response of the filter, which is defined as [3], 

 21
d

d
d





   (2-4) 
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where 21  is an angle in radians,   is the angular frequency in rad/s. The group delay is the 

real-time delay between the input port and the output port of a filter which a signal travels 

through. 

2.2 The Lowpass Prototype Filters and Filter Transfer Functions  

2.2.1 Lowpass Prototype Filters 

The lowpass prototype filter plays an important role in realising the filter transfer function 

into real circuits, which is a critical part of the filter synthesis [5-7]. In Figure 2.2, a ladder 

network structure and its duality of a normalised lowpass prototype filter are shown. They are 

based on lumped-elements which include capacitors, inductors and resistors.  

g0 g1

g2

g3

gn

gn+1

(n even) (n odd)

or gn gn+1

g0

g1

g2

g3

gn gn+1

(n even) (n odd)

or

gn

gn+1

(a)

(b)  

Figure 2.2 The lowpass prototype filters with (a) a ladder network structure and (b) its dual 

Both ladder networks produce the same nth order all-pole filter responses. 0g  and 1ng   denote 

the terminal element immittances (they are usually pure resistances or conductances) which 

are unity; whereas 1g  to ng denote the inductances or capacitances of the filter elements. 

Generally, the microwave filter design begins with a normalised lowpass prototype filter 
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whose source element value ( 0 1g  ) and cut-off angular frequency ( 1C  ) are unity [4]. 

This simplifies the filter design procedure, since the prototype filter has a normalised 

impedance and bandwidth. Then, by applying the lowpass to bandpass frequency 

transformation, the bandpass response can be obtained. Depending on the value of each 

element (inductors or capacitors), the lowpass prototype circuit may generate different 

responses. But since most of the designs in this thesis are based on Chebyshev response, the 

discussion on Chebyshev response will be given in detail first. It is then followed by brief 

discussions about Butterworth (maximally-flat) filter and quasi-elliptic filter. The synthesis 

procedures of g-values for Chebyshev filter and Butterworth filter are given in the following 

sections.                                                                                                           

2.2.2 Chebyshev Lowpass Prototype Response and Transfer Function  

A typical lowpass prototype Chebyshev response has an equal-ripple passband and 

maximally flat stopband. This is illustrated in an example response shown in Figure 2.3. The 

Chebyshev response can be defined by an amplitude-squared transfer function [3], 

  
 

2

2 2

121
1 n

S j
T

 
  

 (2-5) 
 

here   is the angular frequency (rad/s) in normalised frequency domain,   is the ripple 

constant which can be obtained from the level of passband ripple ArL  (the maximum 

attenuation in  passband, Figure 2.3(b)),  

 1010 1
ArL

    
(2-6) 

 

 nT  is a Chebyshev function which can be defined as [3], 
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

 (2-7) 
 

where n is the order of the Chebyshev filter, which implies there are n elements in the 

lowpass prototype circuit (Figure 2.2). 

LAr=0.043dB
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Figure 2.3 A 5th order lowpass prototype Chebyshev response with maximum passband 
return loss at 20dB, (a) the amplitude response of S-parameter, (b) the extended view of S21 
showing passband ripple 

 

-3 -2 -1 0 1 2 3 -50 

-45 

-40 

-35 

-30 

-25 

-20 

-15 

-10 

-5 

0 

Frequency in rad/s 

S
-p

a
ra

m
e

te
r 

in
 d

B
 

  

  
S11 
S21 



14 
 

Figure 2.3(a) shows a 5th order Chebyshev response; in order to illustrate the passband ripple, 

an extended view of S21 is given in Figure 2.3(b). Since it is a prototype filter, the cut-off 

angular frequency is normalised to one ( 1C   ). The passband ripple level ( ArL ) is 

0.043dB, which corresponds to a 20dB maximum return loss for a lossless filter 

( 2 211 21 1S S  ). Because all the transmission zeros of S21 are located at infinity, it is also 

called an all-pole Chebyshev filter. For an all-pole chebyshev lowpass prototype filter, its g-

values in the equivalent circuit (Figure 2.2) can be synthesised from the equation-set below 

[3], 
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 

 (2-8) 
 

where   and   are the variables introduced for the synthesis of g-values. For the 5th order 

lowpass prototype Chebyshev filter shown in Figure 2.3, its g-values have been calculated 

and given in Table 2.1. 

0g  1g  2g  3g  4g  5g  6g  

1 0.9714 1.3721 1.8014 1.3721 0.9714 1 

Table 2.1 The g values for the example of 5th order Chebyshev filter 
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2.2.3 Butterworth (Maximally-Flat) Lowpass Prototype Response and Transfer 

Function 

A generalized amplitude-squared transfer function of Butterworth filters is defined as [7], 

 
 

2

2
2

121

1
n

C

S j



 
 

  
 

 (2-9) 
 

where   is the ripple constant given in (2-6). However, unlike Chebyshev filter, the cut-off 

frequency ( C ) is usually specified as a frequency point which corresponds to a 3dB 

insertion loss ( 1  ). So for the lowpass prototype Butterworth filters ( 1C  ), (2-9) can be 

re-written as [3], 

  
2

2

121
1 nS j 


 (2-10) 
 

The corresponding g-values (also refer to Figure 2.2) of a Butterworth lowpass prototype 

filter can be synthesised by following equation-set [3], 

  
 

0 1 1.0

2 1
2sin 1,2, ,

2

n

i

g g

i
g i n

n


 

 
  

 

 (2-11) 
 

An example of a 5th order Butterworth filter is given, the g-values is presented in Table 2.2, 

whereas the response is shown in Figure 2.4. 

0g  1g  2g  3g  4g  5g  6g  

1 0.6180 1.6180 2 1.6180 0.6180 1 

Table 2.2 The g-values for the example of the 5th order Butterworth filter 
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Figure 2.4 A 5th order lowpass prototype Butterworth response 

2.2.4 Quasi-Elliptic Lowpass Prototype Response and Transfer Function 

Elliptic filters were introduced due to higher demands in selectivity; thanks to having all 

transmission zeros at finite frequencies, the elliptic filters have a much sharper cut-off rate 

compared with all-pole Chebyshev and Butterworth filters [8]. This feature improves the 

selectivity of a filter. However, because of the sophisticated synthesis procedure and 

difficulties in circuit implementation, a more practical alternative namely the quasi-elliptic 

filter has been developed. There are both finite and infinite transmission zeros for the 

response of a quasi-elliptic filter [9]. 

The amplitude-squared transfer function for quasi-elliptic filter is defined as [10], 

  
 

2

2 2

121
1 N

S j
F

 
  

 
(2-12) 
 

where  NF   is expressed as [10], 

      1 1 11 1cosh 2 cosh cosh cosha a
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a a

F n   
       
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 (2-13) 
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in which n is the order of the filter; a    ( 1a  ) are the frequencies of the transmission 

zeros outside the passband. The detailed process of quasi-elliptic filter synthesis is presented 

in [9, 11]. However, it is a rather sophisticated procedure and there are no closed-form 

equations for the synthesis of g-values [2]. So a table that contains design data of quasi-

elliptic filters which can be found in [10] and is always useful during the design. 

Optimisation is another way to obtain a quasi-elliptic filter. Some details about it are given in 

Appendix I. Here, an example response of a 4th order lowpass prototype quasi-elliptic filter is 

given in Figure 2.5. The maximum passband return loss is 20dB, while the two out-of-

passband transmission zeros fall on 1 6.  . For comparison, a 4th order lowpass prototype 

Chebyshev filter with same maximum passband return loss is given in the figure as well. It 

can be observed that the quasi-elliptic filter obtains a better selectivity compared with the 

same order Chebyshev response in the area between the two transmission zeros. 

 
Figure 2.5  In blue: a 4th order lowpass prototype quasi-elliptic response with two finite 
frequency transmission zeros on ±1.6.      In red: a 4th order lowpass prototype Chebyshev 
response 
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2.3 Immittance Inverters 

Both impedance (K-) inverters and admittance (J-) inverters are immittance inverters [3]. An 

ideal K-inverter or J-inverter works as a 1/4 wavelength transmission line with a 

characteristic impedance of K or characteristic admittance of J at all frequencies [2].  

ZKZK YJYJ

 

Figure 2.6  A definition schematic of impedance (K-) inverter and admittance (J-) inverter 

As shown in Figure 2.6, for a two-port network with an immittance inverter in between the 

load immittance at one port and the immittance which is seen from the other port, will have 

the following relationships [7]. 

 
2 2

K J
K JZ , Y
Z Y

   (2-14) 
 

It shows that if one port is loaded with an impedance Z or admittance Y, the K-inverter or J-

inverter will convert it into an arbitrary impedance ZK or admittance YJ by manipulating the 

value of K or J. Both K and J are real. It can also be found that if the load is inductive or 

capacitive, it will be capacitive or inductive seen from the other port; this implies that there is 

a 90   phase shift for the immittance inverter. K-inverter and J-inverter are interconvertible 

under certain conditions which for example 1K / J ; when this condition is reached, they 

will share same inverting properties [2]. 

There are also many other forms of circuits that perform as immittance inverters besides the 

1/4 wavelength transmission line; lumped-element equivalents which are shown in Figure 2.7 

and Figure 2.8 are popular ones. 
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Figure 2.7  Lumped-element equivalent of K-inverters 

-L

L

-L

J=1/ωL

(a)

-C

C

-C

J=ωC

(b)  

Figure 2.8  Lumped-element equivalent of J-inverters 

It is interesting to find that some element values in the above lumped-element equivalents are 

negative, which means it is impossible to achieve them in the form of real components. 

However, in practice, since the inverters are essential building blocks of a filter and are 

supposed to be connected with resonators, the negative elements will always be absorbed by 

the adjacent resonators [2]. As these are not ideal inverters, they are sensitive to frequency 

change; but for narrowband applications, they are still effective. According to [7], when using 

the above lumped-element inverters, filters that have up to 20% fractional bandwidth can be 

achieved if implemented with half-wavelength resonators. 

As shown in Figure 2.9, if it is in a two-port network, a series inductor which connected to 

the external ports through inverters may be seen as a shunt capacitance from both ports and 

vice versa [3]. This makes it more convenient to implement a filter, because the element 
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immittance can be manipulated through the values of J or K. For instance, the lowpass 

prototype filter with a ladder network shown in Figure 2.2 can be converted into the forms 

shown in Figure 2.10 [3]. This structure is useful in lowpass to bandpass frequency 

transformation which is going to be discussed in next section. 

CJ J

LL

K K C

 
Figure 2.9  A shunt capacitor and a series inductor are interconvertible through immittance 
inverters [3] 

(a)

(b)

L1

K0,1 K1,2

C1

K2,3 Kn,n+1

L2 Ln

Z0 Zn+1

J0,1 J1,2 J2,3 Jn,n+1Y0 Yn+1C2 Cn

 

Figure 2.10  A modified lowpass prototype filter with immittance inverters 

Likewise, a series tuned resonator and a shunt tuned resonator are also interconvertible 

through immittance inverter. Details are omitted here; the full information is given in [3]. 

2.4 Lowpass to Bandpass Frequency Transformation 

The frequency transformation usually begins with a normalised lowpass prototype filter 

shown in Figure 2.2. A lowpass prototype filter can be transformed into many types of filters; 

conventionally, these include a practical lowpass filter, a highpass filter, a bandstop filter and 

a bandpass filter. In this section, the lowpass to bandpass frequency transformation is 

presented. 
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A lowpass prototype filter response can be mapped to a bandpass response with an arbitrary 

centre frequency ( 0 ) and passband-edges ( 1  , 2 ) by applying the lowpass to bandpass 

frequency transformation [3, 7, 12], 

 0

0

C

FBW


 

 
   

 
 (2-15) 

where FBW is the fractional bandwidth; FBW and 0  can be defined as, 

 2 1

0

FBW  




 ,    0 1 2     (2-16) 

 

By applying (2-15) to the series inductors and shunt capacitors shown in Figure 2.10, it is 

interesting to find that a series inductor or a shunt capacitor in lowpass prototype frequency 

domain will be transformed into a series or a parallel LC resonator in the de-normalised 

frequency domain. This transformation is illustrated in Figure 2.11. 
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Figure 2.11  A schematic of lowpass to bandpass frequency transformation 
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sL  and sC  are the elements in series LC resonator, pL  and pC  are the elements in parallel 

LC resonator. Similarly, applying the lowpass to bandpass frequency transformation to the 

lowpass prototype filter (Figure 2.10), a bandpass circuit can be obtained as shown in Figure 

2.12 [7]. 

(a)

(b)

K0,1 K1,2 K2,3 Kn,n+1Z0 Zn+1

J0,1 J1,2 J2,3 Jn,n+1Y0 Yn+1Cp1 Lp1 Cp2 Lp2 Cpn Lpn

Ls1 Cs1 Ls2 Cs2 Lsn Csn

Figure 2.12  A bandpass filter with LC resonators and inverters 

The elements in the bandpass filter can be obtained by [3], 
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 (2-17) 
 

where 0  is the impedance scaling factor defined by [3], 

 0 0
0

0 0

Z / g
g / Y



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

 (2-18) 
 

Since it is quite difficult to realise lumped-element circuits at radio and microwave 

frequencies, distributed-element circuits become good alternatives in microwave filter design. 

Couple-resonator circuit which is introduced to help the design of the distributed-element 
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circuits will be discussed in next section. The bandpass equivalent circuit which only contains 

inverters and resonators (Figure 2.12) provides more flexibility in design of coupled-

resonator circuits, such as microstrip filters and waveguide filters. It is worth mentioning that 

rectangular waveguide is the form in which the filters discussed in this thesis are realised.  

2.5 Coupling Matrix Representation of Coupled-Resonator Filter 

The history of coupling matrix dates back to 1970s when the required performance of 

spaceborne device was boosted by the rapid expanding of satellite communication industry. 

The innovation of the coupling matrix method in filter design was firstly proposed in a set of 

papers by Atia and Williams [13-16]. Instead of extracting the electrical elements one by one 

which is necessary in classical element extraction method, the coupling matrix method gives 

a full map of the network with its matrix elements having one to one correspondences with 

every physical component in the filter equivalent circuit [17]. This allows techniques such as 

matrix rotation (or similarity transformation) and matrix inversion to be used and to 

reconfigure the matrix which physically alters the coupling arrangement of the filter so as to 

meet the specified design requirements. 

Section 2.5.1 introduces the well-known theory of general coupling matrix which starts from 

a set of loop or node equations. Section 2.5.2 discusses synthesis techniques which are used 

to extract coupling coefficients and external Q-factors. 

2.5.1 The Theory of General Coupling Matrix  

There are two types of equivalent circuits for a two-port coupled-resonator filter; Figure 

2.13(a) shows the magnetic coupled model; Figure 2.13(b) shows the electric coupled model.  
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Figure 2.13  Equivalent of n-coupled resonator circuit for (a) loop-equation formulation 
(magnetic coupled), (b) node-equation formulation (electric coupled)[3] 

 

As shown in Figure 2.13, resistance, conductance, inductance and capacitance are represented 

by R, G, L and C, respectively. R1, G1, L1 and C1 are source elements; Rn, Gn, Ln and Cn are 

load elements. Rk, Gk, Lk and Ck are elements for resonator k. sE and sI  are the source 

voltage and current, respectively. For kth resonator, kv is the node voltage (magnetic coupled 

model), ki  is the loop current (electric coupled model); they are supposed to have the same 

direction for all the nodes and loops.  

The analyses for both models can be done in a similar way, so only the analysis of magnetic 

coupled one is given here. The discussion follows that in reference [3]. By applying the 

Kirchhoff’s voltage law (the sum of voltage drops around a closed loop is zero) to the 

equivalent circuit shown in Figure 2.13(a) , where there are n loop equations can be obtained 

[3], 
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where , ,i j j iL L  is the mutual inductance between ith and jth resonator; the above set of 

equations can also be presented in the form of matrix [3], 
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or in a more generalised expression, 

      sZ i E   
 

where  Z  is the n n  impedance matrix. A filter is synchronously tuned when all of its 

resonators are resonating at the same frequency 0 1 LC  , where 1 2 nL L L L   , 

1 2 nC C C C   . In this case, the impedance matrix in (2-20) can be expressed as [3], 

    0Z L FBW Z    (2-21) 
 

in which  Z is the normalized impedance matrix but only for synchronously tuned filter [3]. 
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where 0

0

1p j
FBW
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 
  

 
 is the complex lowpass frequency variable. As a narrow-band 

filter, it can be assumed that 0 1   , then the matrix (2-22) can be simplified as [3], 
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where , ,i j j im m is the normalised coupling coefficient between resonator ith and jth; eiq  

(i=1,n) are the normalised external Q-factors. They can be defined and related to the practical 

(de-normalised) coupling coefficient ,i jM and external Q-factor eiQ by [3], 

 

, ,
,

0

1

1,

i j i j
i j

ei ei
i

M L
m i j

FBW L FBW
Lq Q FBW FBW i n

R


   

    

 (2-24) 
 

For the case of asynchronously tuned filter (each resonator has an individual resonant 

frequency of 0 1i i iLC  ), the normalised coupling coefficient is defined by [3], 
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while the normalised impedance matrix is obtained by adding self-couplings ,i im  into the 

main diagonal elements in matrix (2-23), which is shown as [3], 
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Similarly, for the electric coupled model, by applying the Kirchhoff’s current law to the 

equivalent circuit shown in Figure 2.13(b), the normalised admittance matrix  Y can be 

obtained as well. It is interesting to find that  Y shares the same form of  Z , which means a 

general matrix  A may describe all types of couplings in a filter (regardless of whether it is an 

electric coupling or a magnetic coupling).  A is formed by three matrices [3], 
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 (2-27) 
 

or in a more generalised expression, 

        A q p U j m     
 

where  q  is an n n  matrix with 1eq and enq  representing for the normalised external Q-

factors,  U is an n n  unit matrix,  m is an n n  reciprocal matrix which is the so-called 

general coupling matrix. All the diagonal elements will be zeros when the filter is 

synchronously tuned. 
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Because the coupled-resonator equivalent circuit (Figure 2.13) is a two-port network (Figure 

2.1), the S-parameters can be obtained by [3], 
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 (2-28) 
 

With the help of coupling matrix theory, the design of coupled-resonator filter can be 

simplified and extracted as the synthesis of the general coupling matrix and external Q-

factors. 

2.5.2 Synthesis of Coupling Matrix and External Q-factors 

The bandpass filters that can be described by standard transfer functions have g-values for 

their lowpass prototype equivalent circuits. These g-values are used in the synthesis of the 

external Q-factors and coupling coefficients for these filters. The corresponding equations are 

given as [3], 
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(2-29) 
 

However, the classical synthesis method may not work on more complicated cases. For the 

designs of more complex filters, other methods such as optimisation becomes a more 

practical solution, but the classical synthesis method may still make contributions as it 

provides good starting values for the optimisation [18-20]. 

2.6 Polynomial Representations of Transfer Functions 

This section discusses the polynomial representation of transfer functions, as it is involved in 

the multi-passband filter synthesis technique which is presented in Chapter 3.  
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Generally, for any lossless two-port filter network with n inter-coupled resonators, the 

transfer function can be defined by a ratio of two polynomials [17]. To begin with, here is the 

well-known amplitude squared transfer function that defines any two-port lossless filter 

network [3], 

  
 

2

22

121
1 n

S s
D s


 

 (2-30) 
 

where s j    is the complex frequency variable,  nD s is the characteristic function 

which determines an nth order filter response.  nD s  can be expressed by a ratio of two 

polynomials, 
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F s
D s
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  (2-31) 

 

The  nF s and  nP s together with another polynomial  nE s are the so-called characteristic 

polynomials, which can be used to define the S-parameters as shown in (2-32) [19], 
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 (2-32) 
 

where the ripple constant   for Chebyshev response is defined as below in order to 

normalise the equal ripple level of S21 at 1  [19], 
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 (2-33) 
 

here RL is the passband return loss level in dB. 

It can be observed from (2-32) that  11S s  and  21S s  share the same denominator which is

 nE s . Since  nP s  is the numerator of  21S s , it determines the transmission zeros of the 
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filter’s response. For the same logic,  nF s  determines the reflection zeros. What should be 

noticed is that all of the three characteristic polynomials are assumed to be normalised (the 

coefficient of highest order term is unity) [4].  

Thanks to their natural relationships with transmission zeros and reflection zeros, the 

characteristic polynomials can always be defined in terms of their roots, 
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 (2-34) 
 

where iTZ  and iRZ  represent the frequency points of the transmission zeros and reflection 

zeros on the normalised frequency domain, respectively; zn  represent the number of the 

finite frequency transmission zeros; the number of the reflection zeros is always the same as 

the order of the filter, which is n in this case. 

With  nP s  and  nF s  known, as long as  nE s  is obtained, the S-parameters can be 

determined. By using alternating pole method,  nE s  can be obtained. Since these three 

characteristic polynomials are not independent from each other, they can be expressed in one 

equation by applying the conservation of energy law [4], 

 
       11 11 21 21 1S s S s S s S s 

 

           2

1
n n n n n nF s F s P s P s E s E s



  
   

(2-35) 
 

where  denotes the complex conjugate. Since  nP s  and  nF s  are known, by applying 

polynomial multiplications to the left hand side of (2-35),    n nE s E s  can be obtained. 

There will be 2n roots of    n nE s E s  on the complex plane; they are symmetrical to the 
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imaginary axis. The roots of  nE s is strictly Hurwitz polynomial, which satisfies two 

conditions:  

 The polynomial is real when s is real;  

 The roots have non-positive real parts.  

Therefore, the roots of    n nE s E s  on the left half plane have to belong to  nE s , while the 

roots on the right half plane belong to  nE s  . Hence,  nE s is obtained [4].  

References: 

1. Pozar, D.M., Microwave Engineering (Third Edition)2005: John Wiley & Sons, Inc. 
2. Zhou, J., Microwave and Millimeter Wave Technologies from Photonic Bandgap 

Devices to Antenna and Applications, ed. I. 2010, Online: Intech. 
3. Hong, J.-S. and M.J. Lancaster, Microstrip Filters for RF/Microwave Applications 

2001: John Wiley and Sons Ltd, United Kingdom. 
4. Cameron, R.J., R. Mansour, and C.M. Kudsia, Microwave Filters for Communication 

Systems: Fundamentals, Design and Applications, 2007, Wiley. 
5. Darlington, S., Synthesis of Reactance 4-poles which Produce Prescribed Insertion 

Loss Characteristics: Including Special Applications to Filter Design 1939: Columbia 
university. 

6. Saal, R. and E. Ulbrich, "On the Design of Filters by Synthesis," IRE Transactions on 
Circuit Theory, 1958. 5(4): p. 284-327. 

7. Matthaei, G.L., L. Young, and E.M.T. Jones, Microwave filters, impedance-matching 
networks, and coupling structures 1964: McGraw-Hill. 

8. Rhodes, J.D., Theory of Electrical Filters 1976: Wiley. 
9. Rhodes, J.D. and S.A. Alseyab, "The generalized chebyshev low-pass prototype 

filter," International Journal of Circuit Theory and Applications, 1980. 8(2): p. 113-
125. 

10. Hong, J.-S. and M.J. Lancaster, "Design of highly selective microstrip bandpass filters 
with a single pair of attenuation poles at finite frequencies,".  IEEE Transaction on 
Microwave Theory and Techniques, 2000. 48(7): p. 1098-1107. 

11. Levy, R., "Filters with Single Transmission Zeros at Real or Imaginary Frequencies,"  
IEEE Transaction on Microwave Theory and Techniques, 1976. 24(4): p. 172-181. 

12. Collin, R.E., Foundations for Microwave Engineering 2001: Wiley. 
13. Atia, A.E., A.E. Williams, and R.W. Newcomb, "Narrow-band multiple-coupled 

cavity synthesis," IEEE Transaction on Circuits and Systems, 1974. 21(5): p. 649-655. 
14. Atia, A.E. and A.E. Williams, "Narrow-Bandpass Waveguide Filters,"  IEEE 

Transaction on Microwave Theory and Techniques, 1972. 20(4): p. 258-265. 
15. Atia, A.E.W., A. E. , "New types of bandpass filters for satellite transponders," 

COMSAT Tech, 1971. 1: p. 23. 



32 
 

16. Atia, A.E. and A.E. Williams. "Non-Minimum Phase, Optimum Amplitude, Bandpass 
Waveguide Filters. in Microwave Symposium," IEEE G-MTT International. 1973. 

17. Cameron, R.J., "Advanced Filter Synthesis," IEEE Microwave Magazine, 2011. 12(6): 
p. 42-61. 

18. Cameron, R.J., "Advanced coupling matrix synthesis techniques for microwave 
filters,"  IEEE Transaction on Microwave Theory and Techniques, 2003. 51(1): p. 1-
10. 

19. Cameron, R.J., "General coupling matrix synthesis methods for Chebyshev filtering 
functions,"  IEEE Transaction on Microwave Theory and Techniques, 1999. 47(4): p. 
433-442. 

20. Lenoir, P., et al., "Synthesis and design of asymmetrical dual-band bandpass filters 
based on equivalent network simplification,"  IEEE Transaction on Microwave 
Theory and Techniques, 2006. 54(7): p. 3090-3097. 

21. Nicholson, G.L., "Development of Mathematical Design and Computer Program for a 
Gross Coupled Microwave Filter," School of Electronic, Electrcal and Computer 
Engineering 2009, University of Birmingham:. p. 233. 

 

  



33 
 

 A GENERALISED ANALYTICAL CHAPTER 3 
SYNTHESIS TECHNIQUE FOR MULTI-PASSBAND 

FILTERS 
 

3.1 Introduction 

Conventionally, the well-known lowpass to bandpass frequency transformation maps the 

lowpass prototype response into a higher frequency band. (3-1) is another form of frequency 

transformation given in (2-15), which is used in the lowpass to bandpass frequency scaling 

procedure [1], 

 o o

o

= B( )=
BW
 


 

 
  

 
 (3-1) 

where   is the frequency variable in de-normalised frequency domain; Ω is the frequency 

variable for lowpass prototype in normalised frequency domain; o is the centre frequency of 

the de-normalised passband; BW is the equal ripple bandwidth of the de-normalised passband. 

Figure 3.1 gives a more illustrative view of the de-normalised procedure based on (3-1), 

where L and H are the lower and higher passband limits, respectively. 

|S21|

-1        0        1         Frequency
  Ω Domain

                    

|S21|

ωL          ωo        ωH         Frequency
                   ω Domain

Bandwidth
(BW)

B(ω)

 

Figure 3.1 The conventional de-normalised procedure for bandpass filter 
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Now, let us consider another situation, by applying a new frequency transformation M( ) , 

the lowpass prototype response is mapped into multiple higher frequency bands in one de-

normalising procedure. Figure 3.2 gives an illustrative view of this procedure, where Li and

Hi are the passband limits for ith passband. 

  ωL1     ωH1                 ωLi     ωHi                   ωLM   ωHM

|S21|

Frequency
ω Domain

-1      0      1 

|S21|

Frequency
Ω Domain

M(ω)

Band 1 Band i Band M

 

Figure 3.2 The de-normalised procedure for multi-passband filter 

Starting with the dual-passband synthesis technique which was investigated by Macchiarella 

[2], followed by two triple-passband synthesis techniques which were investigated by Chen 

and Hao [3, 4], this chapter will go through the synthesis technique step by step. At the end, a 

new generalised approach of multi-passband filter design is given; it gives an analytical 

solution including coupling matrix, external Q-factors and S-parameters. At the end of the 

chapter, three design examples of five-passband filter is presented for verification of the 

novel generalised approach. 
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3.2 Dual-Passband Filter Synthesis Technique 

The technique described here provides a method that can design a dual-passband filter 

through an analytical synthesis procedure. What makes this technique distinct from the others 

is that it produces arbitrary asymmetrical bandwidths and controls the positions of the 

stopband without involvement of numerical optimisation [2]. This synthesis technique 

derives the so-called interim parameters (the resonant frequency and the susceptance slope 

parameter of each resonator) directly from the desired passband limits; the interim parameters 

together with the J-values from the lowpass prototype are sufficient for calculating the full 

filter design parameters (coupling matrix and external Q-factors). This analytical method is 

more effective than optimisation methods. However, since the synthesis procedure is 

sophisticated, an example will be given first, and then followed by a discussion about more 

generalised dual-passband filter structure. 

 

 A 4th Order Dual-Passband Filter with Chebyshev Response 3.2.1

For the sake of simplicity, a 4th order dual-passband filter is used as an example here to 

illustrate the synthesis procedure. 

The synthesis procedure has two steps. The first step is the synthesis of a 2nd order all-pole 

Chebyshev lowpass prototype which is described in Chapter 2; the second step is applying 

the lowpass to dual-passband frequency transformation D(ω) which maps the lowpass 

prototype response into a dual-passband de-normalised response. Figure 3.3 below illustrates 

the transformation procedure, 
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   ωL1        ωH1   ωL2  ωH2

|S21|

Frequency
ω Domain

-1      0      1 

|S21|

Frequency
Ω Domain ωo2

D(ω)

 

Figure 3.3 Lowpass to dual-passband frequency transformation procedure 

where L1 ,  H 1  are the passband limits for first band; L2 , H 2  are the passband limits for 

second band; they are the passband specifications of the filter. o2  is the frequency of the 

transmission zero between the passbands. The two passbands don’t need to be symmetrical or 

share equal bandwidth. However, each passband will have the same shape of in-band and out-

of-band response [2], and this is determined by the lowpass prototype response. 

The corresponding dual-passband frequency transformation which is used for the above de-

normalising procedure is given in [2], 
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(3-2) 

where 1b , o1 , 2b  and o2  together fully define the above frequency transformation (3-2). It 

is worth mentioning that, other than defining the frequency transformation, these four interim 

parameters also physically define all resonators in the proposed dual-passband filter. Among 

them, 1b  and 2b  are the susceptance slope parameters, o1  and o2  are the resonant 

frequencies of resonators. More details are given in the following paragraphs. 

The topology of a 4th order dual-passband filter is shown in Figure 3.4(a), with all the 

relevant design parameters labelled. Meanwhile, the equivalent circuits correspond to the 
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topology are given in Figure 3.4(b) and Figure 3.4(c), labelled with the interim parameters 

and the J-inverters that are connected to the bandpass resonators. Among the interim 

parameters, 1b  and o1  describe the bandpass resonator 1 and 2, 2b  and o2  describe the 

bandstop resonator 3 and 4;  

1 2

4

b1, ωo1
kp1,2 QeL

ks1,2ks1,2

QeS

3

Port 2Port 1

b2, ωo2
 

(a) 

1 2 Port 2Port 1
kp1,2 QeLQeS

 

 
(b) 

       

1
ks1,2

3
 

(c) 

Figure 3.4 (a) The topology of a 4th order dual-passband filter, (b) The equivalent circuit for 
bandpass resonators and ports, (c) The equivalent circuit for multi-passband resonator section 

 

Figure 3.4(a) shows the 4th order dual-passband topology, where the circles represent the 

resonators; the solid lines represent the direct couplings.  
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The two bandpass resonators together with the two ports are labelled in blue. eSQ  and eLQ  are 

the external Q-factors to source and load, respectively. 1 2p ,k  is the coupling between two 

bandpass resonators [2].  

A bandpass resonator and the bandstop resonator coupled to it forms a so-called multi-

passband resonator section (in this example, resonator 1 and 3 forms one section, resonator 2 

and 4 forms the other one). Such sections are labelled in red. Both sections share the same 

topology, and 1 2s ,k  is the coupling between the bandpass and the bandstop resonator. 

Figure 3.4(b) shows the equivalent circuit for the blue part of the topology. 0Y  is the 

normalised admittance, 12J  is the value of J-inverter between resonator 1 and 2, S1J  and 2LJ  

are the values of J-inverters that connected to the two ports. o1  and 1b  are the frequency and 

the susceptance slope parameter, respectively, for both bandpass resonators. This blue part 

alone produces a 2nd order all-pole Chebyshev response. 

Figure 3.4(c) shows the equivalent circuit of the red parts of the topology. Because both 

sections in the filter share the same topology, this equivalent circuit applies to both sections. 

The value of J-inverter between the bandpass resonator and the bandstop resonator is 1. o2  

and 2b  are the frequency and the susceptance slope parameter, respectively, for both 

bandstop resonators.  

The susceptance slope parameter ib  and the resonant frequency oi  are physically defined by 

(3-3) and (3-4), respectively, where Li and Ci are the equivalent inductance and capacitance of 

the corresponding resonator [5]. 

 i oi ib C   (3-3) 

 
oi

i i

1
L C

 


  (3-4) 
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The corresponding coupling matrix of the 4th order dual-passband filter shown in Figure 3.4(a) 

is given below in (3-5), 

  
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 (3-5) 

The elements in coupling matrix and the external Q-factors can be synthesized through the 

(3-6) to (3-11) shown below,  

pk  is the coupling between bandpass resonators [1, 5], 
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(3-6) 

 

sk  is the coupling between bandpass and bandstop resonators [5], 
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


 

(3-7) 

 

ik  is the self-coupling [6], 
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i
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 
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(3-8) 

 

It is worth mentioning that the above centre frequency ωo here is obtained from,  

 1 2o L H     (3-9) 

 

eSQ  is the external Q-factor to source [1, 5], 
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eLQ  is the external Q-factor to load [1, 5], 

 
1

eL 1 2 32
2L

bQ b g g
J

     
(3-11) 

 

The values of J-inverters can be obtained from the standard all-pole Chebyshev filter 

synthesis procedure that is discussed in Chapter 2. 

A relationship between the interim parameters ( o1 , o2 , 1b , 2b ) and the passband 

specifications ( L1 , L2 , H 1 , H 2 ) for the proposed dual-passband filter was discovered in 

[2]. The relationship is established by the frequency transformation. 

By applying the frequency transformation in (3-2), the two lower passband limits L1  and 

L2  on de-normalised frequency domain can be mapped to -1 on normalised frequency 

domain; similarly, the two higher passband limits H 1  and H 2  can be mapped to 1 (see 

Figure 3.3). Taken into consideration that (3-2) is an odd function, it can be expressed as: 

 
       1 2 1 2 1L L H HD D D D          (3-12) 

 

Let 

 1VD( ) D( )    (3-13) 
 

Then, it can be easily observed that L1 , L2 , H 1  and H 2  are the zeros of VD(ω).  

Meanwhile, VD( ) can be also expressed as,  
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(3-14) 
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The coefficient of the highest order term has been normalised. ZD( )  is the numerator, 

PD( )  is the denominator, iz  (i=0,1,2,3) is the coefficient of the polynomial ZD( ) , ip  

(i=0,1,2,3) is the coefficient of the polynomial PD( ) .  ZD( )  plays an important role in 

establishing the relationship between the interim parameters ( o1 , o2 , 1b , 2b ) and the 

passband specifications ( L1 , L2 , H 1 , H 2 ), because iz  (i=0,1,2,3) can be analytically 

derived from two separated ways.  

One way of deriving iz  (i=0,1,2,3) is by combining the (3-2), (3-13) and (3-14), which leads 

to the result shown in (3-15); iz  (i=0,1,2,3) are expressed in terms of the interim parameters 

( o1 , o2 , 1b , 2b ) [2], 
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(3-15) 

 

 

At the same time, since L1 , L2 , H 1  and H 2  are the roots of VD( ) , they are also the 

roots of ZD( ) . Therefore iz  (i=0,1,2,3) can also be derived in another way, which are 

expressed in terms of passband specifications ( L1 , L2 , H 1 , H 2 ) [2]. The result is shown in 

(3-16): 
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(3-16) 
 

 



42 
 

So far, the relationship between the passband specifications ( L1 , L2 , H 1 , H 2 ) and the 

interim parameters ( o1 , o2 , 1b , 2b ) has been established through iz  (i=0,1,2,3). As long as 

the passband specifications ( L1 , L2 , H 1 , H 2 ) are given, the interim parameters ( o1 , o2 ,

1b , 2b ) can be obtained.  

(3-15) can be re-written in the form of (3-17), which describes the interim parameters ( o1 ,

o2 , 1b , 2b ) in terms of iz  (i=0,1,2,3), 
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 (3-17) 
 

At this stage, the interim parameters ( o1 , o2 , 1b , 2b ) can be synthesised directly from the 

desired passband specifications ( L1 , L2 , H 1 , H 2 ). 

 Generalised Topology for Dual-Passband Filter with Chebyshev Response 3.2.2

Now, let us consider a more generalised dual-passband filter which contains 2n resonators. 

The topology is shown below in Figure 3.5. 

1 2

n+1 n+2

Port 2Port 1 n-1 n

2n-1 2n

kp1,2 kpi,i+1 kpn-1,n

ks1,2 ks1,2 ks1,2 ks1,2

b1, ωo1

b2, ωo2

 
Figure 3.5 Generalised topology of the dual-passband filter with Chebyshev response 
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Resonator 1 to n are the bandpass resonators, all of them are resonating at o1 ; resonator n+1 

to 2n are the bandstop resonators, all of them are resonating at o2 . There are n identical 

multi-passband resonator sections in this 2nth order filter. The section is the periodic unit of 

the dual-passband filter; it can be seen as the basic building blocks of the structure [3]. For 

generalised dual-passband filter topology, the frequency transformation in (3-2) is still valid; 

the response of this generalised topology still has two passbands, but each passband will have 

an nth order Chebyshev response.  

For the generalised 2nth order dual-passband filter with Chebyshev response, (3-7), (3-8) and 

(3-10) are still valid; pk  (coupling between bandpass resonators) and eLQ  (external Q-factor 

to load) can be re-written in more generalise forms, which are given below in (3-18) and 

(3-19).  

 1
1

1 1 1

1i ,i
pi ,i

i i ,i

J
k

b b g g






 


   (i=1,2,…,n-1) 
(3-18) 
 

 1
eL 1 n n 12

nL

bQ b g g
J      

(3-19) 
 

 

 The Verification 3.2.3

Two examples are given to validate the synthesis technique and to demonstrate the practical 

design procedure. A 4th order symmetrical dual-passband filter which is based on the 

topology shown in Figure 3.4(a) is synthesised step by step in example 1. This is followed by 

another design of a 10th order asymmetrical dual-passband filter, which is given in example 2 

to show the flexibility of this synthesis technique.  
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 Example 1: A 4th Order Even Dual-Passband Filter with Chebyshev Response 3.2.3.1

The topology is given in Figure 3.4(a), so it is not repeated here. The two passband of this 

filter are arbitrarily chosen at 9.13-9.59GHz and 10.06-10.52GHz, but the bandwidths are 

equal. The maximum return loss for both passband is chosen to be 20dB. The passband 

specifications and the corresponding interim parameters are given in Table 3.1, 

Passband specifications Interim parameters  
1 9 13L . GHz   1 9 78o . GHz   

1 9 59H . GHz   2 9 82o . GHz   

2 10 06L . GHz   1 10 52b .  

2 10 52H . GHz   2 14 36b .  
Table 3.1 The passband specifications and interim parameters for Example 1 

Below are the g-values of a standard 2nd order lowpass prototype Chebyshev filter with 20dB 

return loss, which are given in Table 3.2. The S-parameters are given in Figure 3.6. 

0g  1g  2g  3g  
1 0.6648 0.5445 1.2210 

Table 3.2 The g-values of a 2nd order Chebyshev filter with passband return loss at 20dB 

 
Figure 3.6 A 2nd order lowpass prototype Chebyshev response with 20dB return loss 
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As shown in Figure 3.6 above, the reflection zeros are placed at ±0.7071, while the 

transmission zeros are placed at ±∞. This lowpass response will be transformed into the 

desired two frequency bands which are given in Table 3.1. 

With the above information, the dual-passband filters can now be synthesised. According to 

(3-6), (3-7) and (3-8), the coupling coefficients can be calculated; 1 2p ,k  is 0 1579. , 1 2s ,k  is 

0 0813. , 1k  is 0 0041.  and 2k  is 0 0041. . They can be presented in a coupling matrix shown 

below,  

  

0 0041 0 1579 0 0813 0
0 1579 0 0041 0 0 0813
0 0813 0 0 0041 0

0 0 0813 0 0 0041

. . .
. . .

M
. .

. .

 
 

 
 
 
 

 (3-20) 
 

Also, according to (3-10) and (3-11), the external Q-factors ( eS eLQ Q ) are obtained as 6.99. 

The S-parameters are plotted using the characteristic polynomials. This is done by 

substituting (3-2) into (2-32), which is shown in (3-21). The ripple constant   is defined by 

(2-33). The polynomial P and F are obtained by fitting curves to transmission zeros and 

reflection zeros of the lowpass prototype, respectively; the polynomial E can be obtained 

from (2-35), once P and F are known. 
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 (3-21) 

The S-Parameters are shown in Figure 3.7.  
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Figure 3.7 The S-parameter of a 4th order symmetrical dual-passband filter with Chebyshev 
response (Passband 1: 9.13 ~ 9.59 GHz, Passband 2: 10.06 ~ 10.52 GHz) 

 

 Example 2: A 10th Order Asymmetrical Dual-Passband Filter with Chebyshev 3.2.3.2

Response 

To be distinct from the previous example, the second one is a 10th order dual-passband filter, 

with passband return loss at 25dB; the topology is shown in Figure 3.8. The two passbands 

are arbitrarily chosen at 8.5-9.5GHz and 10.5-11GHz, with unequal bandwidths.  
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Figure 3.8 The topology of a 10th order dual-passband filter 
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Passband specifications Interim parameters  
1 8 5L . GHz   1 9 47o . GHz   

1 9 5H . GHz   2 10 19o . GHz   

2 10 5L . GHz   1 6 32b .  

2 11H GHz   2 7 34b .  
Table 3.3 The passband specifications and interim parameters for Example 2 

The g-values of the lowpass prototype 5th order Chebyshev filter with 25dB passband return 

loss is given in Table 3.4; the corresponding lowpass response is shown in Figure 3.9. 

0g  1g  2g  3g  4g  5g  6g  
1 0.7956 1.3246 1.6202 1.3246 0.7956 1 

Table 3.4 The g-values of a 5th order Chebyshev filter with passband return loss at 25dB 

 
Figure 3.9 A 5th order lowpass prototype Chebyshev response with 25dB return loss 

For the above lowpass prototype response, the five reflection zeros are placed at ±0.9511, 

±0.5878 and 0, while the transmission zeros are still at ±∞. This lowpass response will be 

transformed into the desired two frequency bands which are given in Table 3.3. 

According to (3-7), (3-8) and (3-18), the coupling matrix can be obtained as below, 
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 

0 0417 0 1542 0 0 0 0 1468 0 0 0 0
0 1542 0 0417 0 1081 0 0 0 0 1468 0 0 0

0 0 1081 0 0417 0 1081 0 0 0 0 1468 0 0
0 0 0 1081 0 0417 0 1542 0 0 0 0 1468 0
0 0 0 0 1542 0 0417 0 0 0 0 0 1468

0 1468 0 0 0 0 0 1010 0 0 0 0
0 0 1468 0 0 0 0 0 1010 0 0 0
0 0 0 1468 0 0 0 0 0

. . .
. . . .

. . . .
. . . .

. . .
M

. .
. .

.












1010 0 0
0 0 0 0 1468 0 0 0 0 0 1010 0
0 0 0 0 0 1468 0 0 0 0 0 1010

.
. .

. .

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  (3-22) 
 

Also, according to (3-10) and (3-19), the external Q-factor ( eS eLQ Q ) is 5.03. 

The S-parameters are plotted using the same method shown in example 1; the results are 

given in Figure 3.10. 

 

Figure 3.10 The S-parameter of a 10th order uneven dual-passband filter with Chebyshev 
response (Passband 1: 8.5 ~ 9.5 GHz, Passband 2: 10.5 ~ 11 GHz) 
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 Conclusion 3.2.4

The full synthesis procedure is shown in a flowchart in Figure 3.11. For each step, a 

MATLAB computation takes less than 1 second to get all the results using a Core i5 

processor computer with 3 GB usable memory (this includes plotting the S-parameter which 

contains 20002 points). 

ωL1,ωH1,ωL2,ωH2   

from passband specs

ωo1,ωo2,b1,b2

S21,S11,[M],QeS,QeL

Inputs

Outputs

[g],[p],[f] 
from lowpass prototype 

Interim parameters

Step1:

Step2:

Order of the filter, 
passband return loss

Inputs

Outputs
Lowpass prototype 

 

Figure 3.11 The flowchart of the dual-passband filter synthesis procedure 

The first step has been discussed in Chapter 2. For the second step, the input variables are [p], 

[f], [g], and the passband specifications ( L1 , L2 , H 1 , H 2 ), where [p] is a matrix that 

contains the positions of transmission zeros of the lowpass prototype response. In this case, 

because it is an all-pole Chebyshev response, all the transmission zeros are at infinity. The 

transmission zeros mentioned here are for the lowpass prototype response. They are not the 

transmission zeros of the de-normalised response, i.e. the dual-passband filter response. The 

transmission zeros of the de-normalised responses are generated by the bandstop resonators. 

[f] is a matrix that contains the positions of reflection zeros of the lowpass prototype; [g] is a 

matrix that contains the g-values of the lowpass prototype. The interim parameters ( o1 , o2 ,
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1b , 2b ) which define the frequency transformation are synthesised directly from the passband 

specifications. The final outputs include S-parameters and design parameters. 

  

3.3 Triple-Passband Filter Synthesis Techniques 

Similar to the previous section, two analytical synthesis techniques which synthesise triple-

passband filters with Chebyshev response are discussed in this section. The two synthesis 

techniques involve two different forms of frequency transformations which correspond to 

different topologies of multi-passband resonator sections, but both of them produce triple-

passband response. Finite order filter examples will be given first to help the theory 

explanation, and then follows by a discussion on a more generalised filter topology. At the 

end of this section, design examples are given for verification. 

 Triple-Passband Synthesis Technique 1 3.3.1

Similar to that of the dual-passband filter, the triple-passband synthesis technique 1 also 

follows the two steps; the only difference is that, for the second step, the frequency 

transformation maps the lowpass prototype response into three frequency bands. Therefore, 

the discussion below only focuses on the second step. Figure 3.12 gives an illustrative view 

of the mapping procedure for the triple-passband synthesis technique 1, where L1 , H 1 , L2 , 

H 2 , L3  and H 3  are the passbands specifications. o2  and o3  are the frequency points of 

the transmission zeros in the de-normalised response. The three passbands don’t need to have 

equal bandwidth. They can have arbitrary passband centre frequencies and bandwidths. 
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Figure 3.12 Lowpass to triple-passband frequency transformation procedure (Technique 1) 

The frequency transformation is given below [3],  

 

 

1
1 1

1 2 3
2 3

2 3

1 1o

o o o

o o

= T ( )= b
b b




    

   

 
    

         
   

 
(3-23) 

All the notations in (3-23) are defined under the same way as the previous dual-passband 

example. 1b , o1 , 2b , o2 , 3b  and o3  are the interim parameters that define the frequency 

transformation . 

A 6th order triple-passband filter with Chebyshev response is used as an example here to 

explain the synthesis procedure. The topology of the proposed 6th order triple-passband filter 

is shown in Figure 3.13(a), the equivalent circuits are given in Figure 3.13 (b) and Figure 

3.13(c). 
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(a) 
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1 2 Port 2Port 1
kp1,2 QeLQeS

 

 
(b) 

 

1

3

5
ks1,3

ks1,2

 
(c) 

Figure 3.13 (a) The topology of a 6th order triple-passband filter, (b) The equivalent circuit 
for bandpass resonators and ports, (c) The equivalent circuit for multi-passband resonator 
section 

 

Figure 3.13(a) shows a 6th order triple-passband filter topology. Resonator 1 and 2 are the 

bandpass resonators resonating at o1 ; resonator 3 and 4 are the bandstop resonators 

resonating at o2 ; resonator 5 and 6 are the bandstop resonators resonating at o3 . The 

bandpass resonators and ports are shown in blue, while the multi-passband resonator sections 

are shown in red. In this triple-passband filter, each multi-passband resonator section has two 

bandstop resonators, which are not resonating at the same frequency, directly coupled to the 

same bandpass resonator. eSQ  and eLQ  are the external Q-factors of the source and load, 

respectively. 1 2p ,k  represents the coupling between the bandpass resonators. 1 2s ,k represents 

the coupling between the bandpass resonator and the bandstop resonator resonating at o2 . 

1 3s ,k  represents the coupling between the bandpass resonator and the bandstop resonator 

resonating at o3 . 
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Figure 3.13(b) shows the equivalent circuit of the blue part in Figure 3.13(a), which produces 

a 2nd order all-pole chebyshev response. This part shares the same equivalent circuit as the 

one given in Figure 3.4(b), so it is not discussed again here. 

Figure 3.13(c) shows the equivalent circuit of the multi-passband resonator section. The black 

nodes imply the points where the current section connected with the adjacent ones. 2b is the 

susceptance slope parameter of the bandstop resonator resonating at o2 ; 3b  is the susceptance 

slope parameter of the bandstop resonator resonating at o3 . 

The susceptance slope parameter ib  (i=1,2,3) and the resonant frequency oi  (i=1,2,3) are 

defined by (3-3) and (3-4). 

The corresponding coupling matrix of this 6th order triple-passband filter is given below, 

  

1 1 2 1 2 1 3

1 2 1 1 2 1 3

1 2 2

1 2 2

1 3 3

1 3 3

0 0
0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

p , s , s ,

p , s , s ,

s ,

s ,

s ,

s ,

k k k k
k k k k
k k

M
k k

k k
k k

 
 
 
 

  
 
 
 
 
 

 
(3-24) 

 

1 3s ,k  can be calculated through 

 1 3
1 3

1
s ,k

b b



 

(3-25) 

 

All other elements in matrix (3-24) and the external Q-factors can be synthesized by (3-6) to 

(3-11) and (3-25). 

Although in [3], a similar triple-passband topology had been investigated, there were no 

equations presented the relationship between the interim parameters ( o1 , o2 , o3 , 1b , 2b , 3b ) 
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and the passband specifications ( L1 , L2 , H 1 , H 2 , L3 , H 3 ). The corresponding equations 

are first presented here.  

The equations are obtained in a similar way that shown in dual-passband filter synthesis. The 

de-normalised lower passband limits L1 , L2 and L3  are mapped to -1 on the normalised 

frequency domain; the de-normalised higher passband limits H 1 , H 2 and H 3 are mapped 

to 1 on the normalised frequency domain (see Figure 3.12). The frequency transformation 

1T ( )  is an odd function, it can be expressed as: 

 
           1 1 1 2 1 3 1 1 1 2 1 3 1L L L H H HT T T T T T               (3-26) 

 

Let 

 1 1 1VT ( ) T ( )    (3-27) 
 

1VT ( )  can be written as, 

 
6 5 4 3 2

5 4 3 2 1 01
1 5 4 3 2

1 5 4 3 2 1 0

z z z z z zZT ( )VT ( )
PT ( ) p p p p p p

     


     

     
 

    
 (3-28) 

 

where 1ZT ( ) is the numerator, 1PT ( ) is the denominator, iz  (i=0,1,2,3,4,5) are the 

coefficient of the polynomial 1ZT ( ) , ip  (i=0,1,2,3,4,5) are the coefficient of the 

polynomial 1PT ( ) . 1ZT ( )  can be analytically derived from two ways.  

One way of deriving iz  (i=0,1,2,3,4,5) is by combining the (3-23), (3-27) and (3-28), which 

gives the results shown in (3-29); iz  (i=0,1,2,3,4,5) are function of the interim parameters 

( o1 , o2 , o3 , 1b , 2b , 3b ), 
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 (3-29) 
 

Because L1 , L2 , L3 , H 1 , H 2 , H 3  are the roots of 1VT ( ) , therefore they are the roots 

of 1ZT ( ) . Hence, iz  (i=0,1,2,3,4,5) can be derived from the passband specifications, i.e. 

L1 , L2 , H 1 , H 2 , L3 , H 3 . They are shown in (3-30): 
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(3-30) 
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The relationship between passband specifications ( L1 , L2 , L3 , H 1 , H 2 , H 3 ) and the 

interim parameters ( o1 , o2 , o3 , 1b , 2b , 3b ) can be established by equating iz  (i=0,1,2,3,4,5) 

in (3-29) and (3-30). 

By re-arranging (3-29), the interim parameters ( o1 , o2 , o3 , 1b , 2b , 3b ) can be expressed in 

terms of iz  (i=0,1,2,3,4,5); the equations are given in (3-31) 
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(3-31) 
 

At this stage, with the desired passband specifications ( L1 , L2 , L3 , H 1 , H 2 , H 3 ), the 

relevant interim parameters ( o1 , o2 , o3 , 1b , 2b , 3b ) can be synthesised. Meanwhile, the 

frequency transformation in (3-23) is fully defined as well. A design example using this 

synthesis technique is given in Section 3.3.4, but before that, the 2nd synthesis technique for 

triple-passband filter is given in the following section. 
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 Triple-Passband Synthesis Technique 2 3.3.2

Another 6th order triple-passband filter with Chebyshev response is used as an example here 

to show a different approach of triple-passband synthesis. The mapping process is shown in 

Figure 3.14. What should be noted is that, unlike the first triple-passband synthesis technique, 

the positions of the transmission zeros are not the resonant frequencies of the bandstop 

resonators any more. 

-1      0      1 

|S21|

Frequency
Ω Domain

T2(ω)

 ωL1     ωH1  ωL2      ωH2  ωL3  ωH3

|S21|

Frequency
ω Domain  

Figure 3.14 Lowpass to triple-passband frequency transformation procedure (Technique 2) 

All the notations in the above figure are defined in the same way as the previous example. 

The three passbands can still have arbitrary passband centre frequencies and bandwidths. 

The corresponding frequency transformation for the second triple-passband synthesis 

technique is given below, 

 

 

1
2 1

1 2
2

2 3
3

3

1
1

o

o o

o o

o

= T ( )= b
b

b




  

  

 

 
   

     
    
 

 
(3-32) 

The topology of this 6th order triple-passband filter is shown in Figure 3.15(a); Figure 3.15(b) 

and Figure 3.15(c) are the equivalent circuits of the topology. 

In Figure 3.15(a), s2,3k  is the coupling between bandstop resonators. All the other notations 

have the same definitions as the previous examples. 
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Figure 3.15(b) shows the equivalent circuit of the blue part, which is same as the one shown 

in Figure 3.4(b). 

Figure 3.15(c) is the equivalent circuit of the corresponding multi-passband resonator section. 

The positions of the black nodes are different from that in Figure 3.13(c), which implies that 

the bandstop resonators are series connected, and only one bandstop resonator is directly 

connected to the bandpass resonator.  

1 2

3 4

5 6

Port 2Port 1
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ks1,2 ks1,2

ks2,3 ks2,3

QeS QeL b1, ωo1
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(a) 

1 2 Port 2Port 1
kp1,2 QeLQeS

 

 
(b) 

1

3

5

ks12

ks23

 
(c) 

Figure 3.15 (a) The topology of another 6th order triple-passband filter, (b) The equivalent 
circuit for bandpass resonators and ports, (c) The equivalent circuit for multi-passband 
resonator section 

 

The relevant coupling matrix of this 6th order triple-passband filter shown in Figure 3.15 is 

given in (3-33), 
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 (3-33) 

2 3s ,k can be calculated through 

 2 3
2 3

1
s ,k

b b



 

(3-34) 

 

The elements in matrix (3-33) and the external Q-factors can be synthesized through (3-6) to 

(3-11) and (3-34). 

The relationship between interim parameters ( o1 , o2 , o3 , 1b , 2b , 3b ) and the passband 

specifications ( L1 , L2 , H 1 , H 2 , L3 , H 3 ) for this triple-passband topology can be derived 

using the similar method shown previously. The equation 2VT ( )  can be expressed as,  
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  (3-35) 

Because the derivation process is similar to the previous examples, only the results are 

presented. iz (i=0,1,2,3,4,5) can be expressed only with the interim parameters ( o1 , o2 , o3 ,

1b , 2b , 3b ); the results are shown below in (3-36). 
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iz  (i=0,1,2,3,4,5) can also be expressed in the form of passband specifications ( L1 , L2 , H 1 ,

H 2 , L3 , H 3 ). The equations are given in (3-30). 

By re-arranging (3-36), the interim parameters ( o1 , o2 , o3 , 1b , 2b , 3b ) can be expressed in 

terms of iz  (i=0,1,2,3,4,5) [4], 

 

 

0 5
o1

1

2 2 2
1 4 5 0 1 5 1 3

o2 2 2 2
0 3 5 1 5 1 2 5

1
o3 2

5 o2

0
1

1 5

2
1 5

2 2
0 3 0 51

2 4 5 3
1 5 1

o1 o2 o3
3 2 2

1 2 3 5 o2 o3

z z
z

z z z z z z z z
z z z z z z z z

z
z

zb
z z

z zb
z z z zz z z z z

z z z

b
b b z z








  

 


 

      


      




 





    
        

  

 


    
   

(3-37) 
 

Therefore, as long as the passband specifications are given, the frequency transformation in 

(3-32) can be fully defined. An example is given in Section 3.3.4, but before that the 
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generalised topology for triple-passband filters with Chebyshev response are presented in the 

following section. 

 

 Generalised Topology for Triple-Passband Filter with Chebyshev Response 3.3.3

Generalised topologies for both type of triple-passband filter that have 3n resonators are 

presented here in Figure 3.16 and Figure 3.17.  
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Figure 3.16 Generalised topology for triple-passband synthesis technique 1 
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Figure 3.17 Generalised topology for triple-passband synthesis technique 2 

For both triple-passband filter topologies, the only difference is that they have different multi-

passband resonator sections. Both types of sections have one bandpass resonator and two 

bandstop resonators, but the way they coupled are different. The frequency transformation in 
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(3-23) and (3-32) are still valid for the two generalised topologies. It should be noted that 

each passband now has the shape of nth order all-pole Chebyshev response. 

For both generalised triple-passband topologies, (3-18) defines the coupling between 

bandpass resonators; (3-7), (3-25) and (3-34) define the couplings between bandpass and 

bandstop resonators; (3-10) and (3-19) define the external Q-factors. 

 Example Filters 3.3.4

The design examples of both 6th order triple-passband filters are given in this section, in order 

to verify the synthesis theory. For comparison, the identical passband specifications ( L1 , L2 ,

L3 , H 1 , H 2 , H 3 ) are applied in both designs. The syntheses are implemented in 

MATLAB. A flowchart can be used to summarise both syntheses and is given in Figure 3.18. 

ωL1,ωH1,ωL2,ωH2,ωL3,ωH3

from passband specs

ωo1,ωo2,ωo3,
b1,b2,b3

S21,S11,[M],QeS,QeL

Inputs

Outputs

[g],[p],[f] 
from lowpass prototype 

Interim parameters

Step1:

Step2:

Order of the filter, 
passband return loss

Inputs

Outputs
Lowpass prototype 

 

Figure 3.18 The flowchart for both triple-passband filter synthesis techniques 
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 Example 3: The Design of A 6th Order Triple-Passband Filter Using Triple-3.3.4.1

Passband Synthesis Technique 1 

This example uses the 6th order triple-passband filter topology shown in Section 3.3.1 (see 

Figure 3.13). The three passbands are arbitrarily chosen at 9.1-9.4GHz, 9.5-9.8GHz and 9.9-

10.1GHz. The design uses the 2nd order lowpass prototype Chebyshev filter which is given in 

Section 3.2.3.1 (refer to Figure 3.6 and Table 3.2). The interim parameters can be directly 

synthesised from the desired passband specifications. They are given in Table 3.5. 

Passband specifications Interim parameters  
1 9 1L . GHz   1 9 57o . GHz   

1 9 4H . GHz   2 9 44o . GHz   

2 9 5L . GHz   3 9 87o . GHz   

2 9 8H . GHz   1 11 97b .  

3 9 9L . GHz   2 85 78b .  

3 10 1H . GHz   3 112 06b .  
Table 3.5 The passband specifications and interim parameters for Example 3 

According to (3-6) to (3-8) and (3-25), the coupling matrix is calculated as follow, 

  

0 0029 0 1389 0 0312 0 0 0273 0
0 1389 0 0029 0 0 0312 0 0 0273
0 0312 0 0 0307 0 0 0

0 0 0312 0 0 0307 0 0
0 0273 0 0 0 0 0590 0

0 0 0273 0 0 0 0 0590

. . . .
. . . .
. .

M
. .

. .
. .

 
 

 
 

  
 

 
  
 

 (3-38) 
 

Also, according to (3-10) and (3-11), the external Q-factors are both 7.96. The S-parameters 

are below shown in Figure 3.19. 
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Figure 3.19 The S-parameter of a 6th order triple-passband filter with Chebyshev response 
using the triple-passband synthesis technique 1 (Passband 1: 9.1 ~ 9.4 GHz, Passband 2: 9.5 ~ 
9.8 GHz, Passband 3: 9.9 ~ 10.1 GHz) 

 

 Example 4: The Design of A 6th Order Triple-Passband Filter Using Triple-3.3.4.2

Passband Synthesis Technique 2 

The topology of this 6th order triple-passband filter can be found in Section 3.3.2 (Figure 

3.15). For comparison, this design uses the same passband specifications and the lowpass 

prototype which are used in Example 3. Although the desired filter specifications remain the 

same, the interim parameters synthesised by the 2nd technique are not the same. The 

unchanged passband specifications and the new interim parameters are given in Table 3.6, 

Passband specifications Interim parameters  
1 9 1L . GHz   1 9 57o . GHz   

1 9 4H . GHz   2 9 63o . GHz   

2 9 5L . GHz   3 9 68o . GHz   

2 9 8H . GHz   1 11 97b .  

3 9 9L . GHz   2 48 58b .  

3 10 1H . GHz   3 10 42b .  
Table 3.6 The passband specifications and interim parameters for Example 4 
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According to (3-6) to (3-8) and (3-34), the coupling matrix is calculated as, 

  

0 0029 0 1389 0 0415 0 0 0
0 1389 0 0029 0 0 0415 0 0
0 0415 0 0 0082 0 0 0444 0

0 0 0415 0 0 0082 0 0 0444
0 0 0 0444 0 0 0201 0
0 0 0 0 0444 0 0 0201

. . .
. . .
. . .

M
. . .

. .
. .

 
 

 
 

  
 
 
  
 

 (3-39) 
 

According to (3-10) and (3-11), the external Q-factors ( eS eLQ Q ) are both 7.96. The relevant 

S-parameters are plotted in Figure 3.20. 

 
Figure 3.20 The S-parameter of a 6th order triple-passband filter with Chebyshev response 
using the triple-passband synthesis technique 2 (Passband 1: 9.1 ~ 9.4 GHz, Passband 2: 9.5 ~ 
9.8 GHz, Passband 3: 9.9 ~ 10.1 GHz) 

 

It can be found that, given the same passband specifications and the same lowpass prototype, 

both synthesis techniques can produce identical triple-passband responses, but the topologies 

behind may not be the same. 
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3.4 Generalised Multi-Passband Synthesis Technique Based on Multi-
passband resonator section 

Given the above dual-passband and triple-passband examples, the generalised multi-passband 

filters can be synthesised with a similar routine. To make things clear, the synthesis 

techniques for multi-passband filter will be discussed from the multi-passband resonator 

section point of view, since it is the basic building block for the generalised multi-passband 

filter discussed here.  

 Introduction of Generalised Multi-Passband Filter Synthesis 3.4.1

In order to give a more straight-forward explanation of the generalised multi-passband filter 

synthesis technique, a comparison between the conventional bandpass filter design method 

and the proposed multi-passband filter synthesis technique is given. As shown in Figure 3.21, 

the bandpass filter is obtained by applying the well-known conventional lowpass to bandpass 

frequency transformation B(ω) (given in (3-1)) to the lowpass prototype filter. The black 

circles represent the lowpass resonators; while the white circles are the bandpass resonators. 
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Figure 3.21 The schematic of frequency transformation 

By applying the lowpass to multi-passband frequency transformation M(ω), the lowpass 

prototype filter will be transformed into a multi-passband filter. This is physically realised by 

replacing the lowpass resonators into multi-passband resonator sections which are denoted by 

dashed squares in Figure 3.21. 

The generalised multi-passband resonator sections can be broadly categorised into three 

major types, which are shown in Figure 3.22. For the first type, all bandstop resonators are 
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directly connected to the bandpass resonator; it is named as parallel coupled resonator section. 

For the second type, the bandstop resonators have an inline layout and only one bandstop 

resonator is directly connected to the bandpass resonator; it is named as the series coupled 

resonator section. The third one is the mixed coupled resonator section which contains both 

parallel and series couple resonator at the same time. The bigger circles represent bandpass 

resonators; the smaller circles represent bandstop resonators; the solid lines stand for 

couplings between resonators; the dashed lines represent the unshown re-occurring parts. 

(a) (b) (c)

Bandpass resonator

Bandstop resonator

Figure 3.22. Different kind of multi-passband resonator sections: (a) parallel section, (b) 
series section, (c) mixed section 

 

The multi-passband filters discussed here are built up with these sections. For each section, 

there is only one bandpass resonator, but the number of bandstop resonator is not limited. 

Within one particular multi-passband filter, all the sections share the same topology; the 

repeating sections are connected through the inverters between bandpass resonators.  It is 

worth mentioning that it is actually the multi-passband resonator section that ultimately 

determines the frequency transformation and the number of passband for this multi-passband 

synthesis technique [2].  
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 Parallel Coupled Resonator Section 3.4.2

Figure 3.23 shows a generalised multi-passband filter which is built up by parallel coupled 

resonator section. Resonator 1 to n are the bandpass resonators. If it is transformed from an 

nth order lowpass prototype Chebyshev filter, then each passband of this multi-passband filter 

will have the same in-band and out-of band response of the nth order Chebyshev filter.  

1 2 nPort 1 Port 2

Parallel coupled resonator sections

1st section 2nd section nth section

kp1,2 kpi,i+1

 
Figure 3.23 The topology of a generalised multi-passband filter which is built up by parallel 
coupled resonator section 

 
The couplings between bandpass resonators 1pi ,ik 

(i=1,2,…,n-1) can be calculated by (3-18). 

Figure 3.24 presents a detailed picture of the 1st parallel coupled resonator section of the 

multi-passband filter that is shown in Figure 3.23. The multi-passband filter is made up of n 

sections like this. It shows a generalised topology of a single parallel coupled resonator 

section. M is the number of resonators in one parallel coupled resonator section. M could be 

any positive integers. In each resonator section, the bandpass resonator is directly coupled to 

M-1 bandstop resonators. So there will be M n  resonators in total for the multi-passband 

filter. oi  and ib (i=1,2,3,…,M) are the resonant frequency and susceptance slope parameter 

for the ith resonator, respectively. When i=1, the resonator is a bandpass resonator; when 

i=2,3,…,M, the resonator is a bandstop resonator. Within one multi-passband filter, all the 

parallel coupled resonator sections must share the same layout and interim parameters. 
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Figure 3.24 1st parallel coupled resonator section (n is the order of the each passband, M is 
the total number of passbands) 

 

The couplings between the bandpass resonator and all bandstop resonators are calculated by,  

 

 
1

1

1
s ,i

i

k
b b




 (i=2,3,…,M-1) (3-40) 

The generalised frequency transformation PM ( )  for the multi-passband filter built by this 

generalised parallel coupled resonator sections is given below, 
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 (3-41) 
By applying the above frequency transformation, the lowpass prototype response can be 

mapped into M arbitrary frequency bands. Figure 3.25 gives an illustrative picture of this 

procedure, where Li and Hi (i=1,2,…,M) are the lower and higher passband limits for band i, 

respectively. oi  (i=2,3,…,M) are positions of the transmission zeros in the de-normalised 

response. There are M passbands in total for this multi-passband filter. It should be noted that 

this filter could have a large number of couplings to each bandpass resonator, which may 

make practical implementation difficult. 
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  ωL1     ωH1       ωL2     ωH2       ωL3      ωH3    ωL4      ωH4   ωL5     ωH5                                                                         ωLM       ωHM

|S21|

Frequency
ω Domain

-1      0      1 

|S21|

Frequency
Ω Domain

MP(ω)

Band 1 Band 2 Band MBand 3 Band 4 Band 5

ωo2 ωo3 ωo4 ωo5 ωoM

Figure 3.25 Schematic S21 for multi-passband synthesis technique with parallel coupled 
resonator section 

 

 Series Coupled Resonator Section 3.4.3

Figure 3.26 below is the topology of a generalised multi-passband filter based on series 

coupled resonator section. Again, the resonators from 1 to n are the bandpass resonators. All 

other resonators are bandstop resonators. 

1Port 1 Port 2

Series coupled resonator sections

1st section 2nd section nth section

kp1,2 kpi,i+12 n

 
Figure 3.26 The topology of a generalised multi-passband filter built up by series coupled 
resonator section 

 

Figure 3.27 shows the detail layout of the 1st series coupled resonator section in Figure 3.26. 

Similarly, in the multi-passband filter, there are n identical sections like this; each section 

contains one bandpass resonator resonating at 1o and M-1 bandstop resonators resonating at 

oi (i=2,3,…,M),. There are M n  resonators in this multi-passband filter, as well. 
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Figure 3.27 1st series coupled resonator section (n is the order of each passband, M is the total 
number of passbands) 

The couplings between the resonators in one section is defined by, 

The generalised frequency transformation SM ( ) for this series coupled resonator section 

based multi-passband filter is given below, 

1
1

1 2
2

2 3
3

3

1
1

1

1
1

1
1

o
S

o o

o o

o

oM
M

oM oM
M

oM

= M ( )= b
b

b

b
b


 

  

  

 



  

 






 
  

     
    
 


 

  
    
   

 

 

 (3-43) 
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The de-normalising procedure for this kind of multi-passband filter is illustrated in Figure 

3.28. 

  ωL1     ωH1       ωL2     ωH2       ωL3      ωH3                                              ωLM-1  ωHM-1     ωLM       ωHM

|S21|

Frequency
ω Domain

-1      0      1 

|S21|

Frequency
Ω Domain

MS(ω)

Band 1 Band 2 Band MBand 3 Band M-1

 
Figure 3.28 Schematic S21 for multi-passband synthesis technique with series coupled 
resonator section 

There are M passbands in total for this multi-passband filter, as well. But oi  (i=2,3,…,M) are 

not the positions of the transmission zeros in the de-normalised response any more.  

 

 Mixed Coupled Resonator Section 3.4.4

Figure 3.29 shows the generalised multi-passband filter made up by mixed coupled resonator 

sections which is a combination of both parallel and series coupled resonator section. 

Resonator 1 to n are still bandpass resonators, all other resonators are bandstop resonators. 

kp1,2 kpi,i+1
Port 1 Port 2

Mixed coupled resonator sections

1st section 2nd section nth section

1 2 n

 
Figure 3.29 The topology of a generalised multi-passband filter which is built up by mixed 
coupled resonator section 
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Because of the complicity in numbering, an intuitive example topology of a mixed couple 

resonator section is given in Figure 3.30 rather than a generalised topology, but it still gives a 

good explanation of the structure.  
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1

n+1

3n+1

4n+1

(ω01,b1 )(ω01,b1 )

(ω02,b2 )

(ω03,b3 )

(ω05,b5 )

(ω04,b4 )

ks1,2ks1,2

ks2,3

ks1,4

ks4,5

 

Figure 3.30 An example of the 1st mixed coupled resonator section (five-passband) 

In Figure 3.30, resonator 1 is the bandpass resonator; all the other four resonators are 

bandstop resonators. Two bandstop resonators (resonator n+1 and 3n+1) are directly coupled 

to the bandpass resonator; while the other two bandstop resonators (resonator 2n+1 and 4n+1) 

are indirectly connected to the bandpass resonator through the adjacent bandstop resonators. 

The inter resonator coupling in this mixed coupled section can be calculated using (3-40) and 

(3-42). With this specific section, a five-passband filter can be made with arbitrary required 

passband specifications. The corresponding frequency transformation for this five-passband 

filter is given in (3-44); once the passband specifications are given, the frequency 

transformation can be fully defined. 
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 (3-44) 
The de-normalising procedure by applying frequency transformation in (3-44) is presented in 

Figure 3.31, 
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Figure 3.31 Lowpass to five-passband frequency transformation procedure 

 

For the generalised mixed couple resonator section which has M resonators, the 

corresponding frequency transformation can be obtained in following way. First, there is a 

term 1
1

1

o

o

b 

 

 
 

 
, which corresponds the bandpass resonators; then, if a single bandstop 

resonator is directly connected to the bandpass resonator, a term of 1

oi
i

oi

b 

 


 

 
 

 (i is an 

integer between 2 and M) will be added into the frequency transformation; and if there is a set 

of series coupled bandstop resonators connected to the bandpass resonator, a new term which 

has the form of the second term given in (3-43) will be added into the frequency 

transformation. Finally, there should be in total M pairs of interim parameters in this 

frequency transformation, which define all the M resonators in the mixed coupled resonator 

section.  
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To verify the generalised multi-passband synthesis technique, three five-passband filters are 

given in next section as examples. They use the mixed coupled resonator section which is 

shown in Figure 3.30 as the basic building blocks,  (3-44) as the frequency transformation. 

 

3.5 The Verification of Generalised Multi-Passband Synthesis Technique  

To validate the multi-passband synthesis technique, three examples of the five-passband filter 

are given. The first example is a 10th order five-passband filter with Chebyshev response 

which is used to present the detailed synthesis procedure; it produces five even bandwidth 

passband. To show the flexibility of the design technique, it is then followed by two concise 

examples. Both have uneven passband bandwidths which are chosen arbitrarily; one is 

another 10th order five-passband filter with Chebyshev response; the other one is a 20th order 

five-passband filter with quasi-elliptic response. 

 Example 5: A 10th Order Five-Passband Filter with Chebyshev Response (Even 3.5.1

Bandwidth) 

Figure 3.32(a) shows a 10th order five-passband filter which is built up with the mixed 

coupled resonator sections shown in Figure 3.30, the corresponding equivalent circuits are 

shown in Figure 3.32(b) and Figure 3.32(c). Red sections are multi-passband resonator 

section, while the blue section is the section of bandpass resonators. 
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(c) 

Figure 3.32 (a) The topology of the 10th order five-passband filter, (b) The equivalent circuit 
for bandpass resonators and ports, (c) The equivalent circuit for multi-passband resonator 
section 

All the notations and parameters here are named using the same routine as the previous 

examples. The coupling matrix for this 10th order five-passband filter is  

  
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 (3-45) 
 

All the couplings in matrix (3-45) and the external Q-factors can be calculated from ib , oi , 

(i=1,2,3,4,5) and g-values by applying (3-6), (3-8), (3-10), (3-11), (3-40) and (3-42). The 

frequency transformation procedure is shown in Figure 3.31. The synthesis details are given 

below. As F(ω) is the frequency transformation, it maps the passband limits in de-normalised 
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frequency domain onto ±1 in normalised frequency domain. Therefore, (3-46) can be written 

as, 
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(3-46) 

 

Let 

 1VF( ) F( )    (3-47) 
 

VF( ) can also be expressed as,  
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 (3-48) 

 

By combining (3-44), (3-47) and (3-48), the polynomial ZF’s coefficients iz (i=0,1,…,9) can 

be expressed in terms of oi  and ib  (i=1,2,3,4,5) 
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  (3-49) 
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Since Li and Hi  (i=1,2,3,4,5) are the roots of Equation (3-47), iz  (i=0,1,…,9) can also be 

analytically derived from equation below, 

                   

10 9 8 7 6 5 4 3 2
9 8 7 6 5 4 3 2 1 0

L1 L2 L3 L4 L5 H 1 H 2 H 3 H 4 H 5

z z z z z z z z z z         

                   

          

                  
 

  (3-50) 
 

It can be observed that, by expanding the right part of (3-50), iz (i=0,1,…,9) can be derived 

easily, and can be expressed only in terms of Li and Hi (i=1,2,3,4,5). Because of the 

extremely large volume of terms in it, the result will not be presented here.  

As long as the passband specification of Li and Hi (i=1,2,3,4,5) are known, iz (i=0,1,…,9) 

can be obtained from (3-50). Then, by substituting them into (3-49), the interim parameters of 

oi and ib  (i=1,2,3,4,5) can be solved. Hence, the frequency transformation (3-44) is fully 

defined. Then, if the lowpass prototype for this 10th order five-passband filter is given, the 

matrix in (3-44) and external Q-factors can also be fully derived as well. A numerical 

example is given below for validation. 

This example is based on the topology shown in Figure 3.32(a). The five passbands of this 

filter are 8.20 ~ 8.67 GHz, 9.13 ~ 9.60 GHz, 10.06 ~ 10.52 GHz, 11.00 ~ 11.46 GHz and 

11.92 ~ 12.40 GHz. It is transformed from the 2nd order lowpass prototype Chebyshev given 

in Section 3.2.3.1 (refer to Figure 3.6 and Table 3.2). The passband specifications and 

corresponding interim parameters are given in Table 3.7. 
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Passband specifications Interim parameters  
1 8 20L . GHz   1 10 04o . GHz   

1 8 67H . GHz   2 9 32o . GHz   

2 9 13L . GHz   3 9 29o . GHz   

2 9 60H . GHz   4 11 20o . GHz   

3 10 06L . GHz   5 11 39o . GHz   

3 10 52H . GHz   1 4 29b .  

4 11 00L . GHz   2 8 05b .  

4 11 46H . GHz   3 10 68b .  

5 11 92L . GHz   4 10 32b .  

5 12 40H . GHz   5 13 09b .  
Table 3.7 The passband specifications and interim parameters for Example 5 

According to (3-6), (3-8), (3-40) and (3-42), the coupling matrix is calculated below, 

 

0 0087 0 3874 0 1701 0 0 0 0 1503 0 0 0
0 3874 0 0087 0 0 1701 0 0 0 0 1503 0 0
0 1701 0 0 1577 0 0 1079 0 0 0 0 0

0 0 1701 0 0 1577 0 0 1079 0 0 0 0
0 0 0 1079 0 0 1641 0 0 0 0 0
0 0 0 0 1079 0 0 1641 0 0 0 0

0 1503 0 0 0 0 0 0 2104 0 0 0860 0
0 0 1503 0 0 0 0 0 0 210

. . . .
. . . .
. . .

. . .
. .

M
. .

. . .
. .














4 0 0 0860
0 0 0 0 0 0 0 0860 0 0 2442 0
0 0 0 0 0 0 0 0 0860 0 0 2442

.
. .

. .

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 (3-51) 
According to Equation (3-10) and (3-11), the external Q-factors ( eS eLQ Q ) are both 2.85. 

The S-parameters are plotted in Figure 3.33. 
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Figure 3.33 The S-parameter of a 10th order even bandwidth five-passband filter with 
Chebyshev response (Passband 1: 8.20 ~ 8.67 GHz, Passband 2: 9.13 ~ 9.60 GHz, Passband 3: 
10.06 ~ 10.52 GHz, Passband 4: 11.00 ~ 11.46 GHz, Passband 5: 11.92 ~ 12.40 GHz) 

 

The corresponding group delay for the above response is given below in Figure 3.34. 

 
Figure 3.34 The group delay of the 10th order even bandwidth five-passband filter with 
Chebyshev response. 
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 Example 6: A 10th Order Five-Passband Filter with Chebyshev Response 3.5.2

(Uneven Bandwidth) 

This example is also based on the 10th order topology given in Figure 3.32(a), but with 

uneven bandwidths. It is also transformed from the same lowpass prototype shown in Section 

3.2.3.1 (refer to Figure 3.6 and Table 3.2). The passband specifications and corresponding 

interim parameters are given in Table 3.8 

Passband specifications Interim parameters  
ωL1=9.20 GHz ωo1=9.94 GHz 
ωH1=9.29 GHz ωo2=9.59 GHz 
ωL2=9.41 GHz ωo3=9.43 GHz 
ωH2=9.67 GHz ωo4=10.35 GHz 
ωL3=9.80 GHz ωo5=10.43 GHz 
ωH3=10.17 GHz b1=9.22 
ωL4=10.25 GHz b2=51.88 
ωH4=10.48 GHz b3=12.16 
ωL5=10.57 GHz b4=78.94 
ωH5=10.70 GHz b5=13.30 

Table 3.8 The passband specifications and interim parameters for Example 6 

According to (3-6), (3-8), (3-40) and (3-42) the coupling matrix is calculated as,  

 

0 0037 0 1803 0 0457 0 0 0 0 0371 0 0 0
0 1803 0 0037 0 0 0457 0 0 0 0 0371 0 0
0 0457 0 0 0680 0 0 0398 0 0 0 0 0

0 0 0457 0 0 0680 0 0 0398 0 0 0 0
0 0 0 0398 0 0 1017 0 0 0 0 0
0 0 0 0 0398 0 0 1017 0 0 0 0

0 0371 0 0 0 0 0 0 0846 0 0 0309 0
0 0 0371 0 0 0 0 0 0 0846 0

. . . .

. . . .

. . .
. . .

. .
M

. .
. . .

. .










0 0309
0 0 0 0 0 0 0 0309 0 0 1000 0
0 0 0 0 0 0 0 0 0309 0 0 1000

.
. .

. .

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  (3-52) 
 

Also, according to (3-10) and (3-19), the external Q-factors ( eS eLQ Q ) are both 6.13. The S-

parameters and the group delay are plotted in Figure 3.35 and Figure 3.37, respectively.  
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Figure 3.35 The S-parameter of a 10th order uneven bandwidth five-passband filter with 
Chebyshev response (Passband 1: 9.20~ 9.29 GHz, Passband 2: 9.41 ~ 9.67 GHz, Passband 3: 
9.80 ~ 10.17 GHz, Passband 4: 10.25 ~ 10.48 GHz, Passband 5: 10.57 ~ 10.70 GHz)  

 
Figure 3.36 The group delay of the uneven bandwidth five-passband filter 

 
It can be found that the delay near the edges of the stopbands is greater than that of the 

previous example. This is inevitable due to the smaller FBW which causes sharper slopes of 

the S21. It extends well into the passbands [7]. 
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 Example 7: A 20th Order Five-Passband Filter with Quasi-Elliptic Response 3.5.3

(Uneven Bandwidth) 

Usually there are two ways to increase the selectivity of the passband. One way is to increase 

the order of the filter; the other one is to introduce transmission zeros to the sideband, which 

makes the attenuation goes down more quickly. Given the fact that, the filters with very large 

orders may be difficult to implement, the second method is used. As shown in Appendix I, by 

introducing cross-coupling, a cascaded quadruplet (CQ) structure can produce a quasi-elliptic 

response. In this example, the five-passband filter is transformed from the lowpass prototype 

quasi-elliptic filter given in Appendix I. From topology point of view, this means that, the 

four lowpass resonators are replaced by the mixed coupled resonator sections shown in 

Figure 3.30. The de-normalised 20th order five-passband filter has a topology shown in Figure 

3.37. For comparison, the passband specifications are designed to be the same as that in 

example 6, i.e. the interim parameters are same as well (refer to Table 3.8). Therefore, this 

20th order filter shares the exactly same mixed coupled resonator sections with the 10th order 

filter in example 6, but there are four of them now. 

Port 1 1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

Port 2

ω05 ,b5

ω04 ,b4

ω01 ,b1

ω02 ,b2

ω03 ,b3
1st section 2nd section 3rd section 4th section

 

Figure 3.37 The topology of a 20th order five-passband filter (each passband has a 4th order 
quasi-elliptic response) 
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According to (3-8), (3-18) and (3-42), the coupling matrix is calculated as, 

 

0.0037 0.0901 0 0.0321 0.0457 0 0 0 0 0 0 0 0.0371 0 0 0 0 0 0 0
0.0901 0.0037 0.0883 0 0 0.0457 0 0 0 0 0 0 0 0.0371 0 0 0 0 0 0

0 0.0883 0.0037 0.0901 0 0 0.0457 0 0 0 0 0 0 0 0.0371 0 0 0 0 0
0.0321 0 0.0901 0.0037 0 0 0 0.0457 0 0 0 0 0 0 0 0.0371 0 0 0 0

0.0457 0 0 0 0.0680

M









0 0 0 0.0398 0 0 0 0 0 0 0 0 0 0 0
0 0.0457 0 0 0 0.0680 0 0 0 0.0398 0 0 0 0 0 0 0 0 0 0
0 0 0.0457 0 0 0 0.0680 0 0 0 0.0398 0 0 0 0 0 0 0 0 0
0 0 0 0.0457 0 0 0 0.0680 0 0 0 0.0398 0 0 0 0 0 0 0 0
0 0 0 0 0.0398 0 0 0 0.1017 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.0398 0 0 0 0.1017 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.03











98 0 0 0 0.1017 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.0398 0 0 0 0.1017 0 0 0 0 0 0 0 0

0.0371 0 0 0 0 0 0 0 0 0 0 0 0.0846 0 0 0 0.0309 0 0 0
0 0.0371 0 0 0 0 0 0 0 0 0 0 0 0.0846 0 0 0 0.0309 0 0
0 0 0.0371 0 0 0 0 0 0 0 0 0 0 0 0.0846 0 0 0 0.0309 0
0 0 0 0.0371 0 0 0 0 0 0 0 0 0 0 0 0.0846 0 0 0 0.0309
0 0 0 0 0 0 0 0





0 0 0 0 0.0309 0 0 0 0.1000 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.0309 0 0 0 0.1000 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0309 0 0 0 0.1000 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0309 0 0 0 0.1000

 
 
 
 
 
 
 
 
 
 
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 
 
 
 
 
 
 
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 
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 
 
 
 
 
 
 
 
 

(3-53) 

Also, according to (3-10) and (3-19), the external Q-factors ( eS eLQ Q ) are both 8.92. The S-

parameters and group delay are plotted in Figure 3.38 and Figure 3.39, respectively. 

 
Figure 3.38 The S-parameter of a 20th order uneven bandwidth five-passband filter with 
quasi-elliptic response (Passband 1: 9.20~ 9.29 GHz, Passband 2: 9.41 ~ 9.67 GHz, Passband 
3: 9.80 ~ 10.17 GHz, Passband 4: 10.25 ~ 10.48 GHz, Passband 5: 10.57 ~ 10.70 GHz)  
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Figure 3.39 The group delay of a 20th order uneven bandwidth five-passband filter with 
quasi-elliptic response 

 

The above group delay is larger than that in Example 6, because the slope of S21 near 

stopband edges is sharper. It reaches infinity at the positions of transmission zeros. 

Because the 20th order five-passband filter has the exactly same multi-passband resonator 

section as the 10th order five-passband filter in example 6, they should have the same 

passband specifications. Therefore, a comparison of the two responses is given in Figure 3.40. 

The blue line is the S11 for the 10th order five-band filter with Chebyshev response. The red 

line is the S11 for the 20th order five-band filter with quasi-elliptic response. A dashed line is 

placed horizontally on -20dB as a reference line for passband. 
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Figure 3.40 The S11 comparison between the 20th order five-passband filter and the 10th order 
five-passband filter (Passband 1: 9.20~ 9.29 GHz, Passband 2: 9.41 ~ 9.67 GHz, Passband 3: 
9.80 ~ 10.17 GHz, Passband 4: 10.25 ~ 10.48 GHz, Passband 5: 10.57 ~ 10.70 GHz) 
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 RECTANGULAR WAVEGUIDE CHAPTER 4 
IMPLEMENTATION OF MULTI-PASSBAND FILTERS  
 

There are many ways to implement a filter topology in real world. The rectangular waveguide 

is one of them. In this chapter, the five-passband filters discussed in the previous chapter with 

uneven bandwidth are implemented in the form of rectangular waveguide. To begin with, a 

discussion on the fundamental theory of rectangular waveguide is given in Section 4.1. This 

section describes the two basic building blocks of the rectangular waveguide circuit, which 

are the resonator and the coupling iris. The procedure of interpreting the theoretical coupling 

values into the real circuit is also illustrated within this section. Section 4.2 will discuss the 

design of the 10th order five-passband filter with Chebyshev response. It is fabricated and 

measured; the results are given and analysed in this section. A 20th order five-passband filter 

with quasi-elliptic response will be presented in Section 4.3.  

4.1 The rectangular waveguide filter 

 Rectangular Waveguide 4.1.1

As its name indicates, a waveguide is a device that guides the energy of microwave signal 

along a pre-set path. There are many physical forms of transmission lines, including 

rectangular waveguide, coaxial cable, micro-strip, etc. They satisfy the design requirements 

for a range of applications. For low frequency (below 100MHz) applications, lumped element 

circuits work well, but for high frequency (above 1GHz) applications, as the lumped element 

circuit size is comparable to the wavelength of electromagnetic wavelength, it may have a 

significant power loss due to radiation and high current density; here waveguide circuits 

overcome these problems [1]. 
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Free space between a transmitter and a receiver can also be considered as a waveguide in a 

more general sense, because it provides channels for wireless communication [2]. However, 

for earth to space satellite communication, the transmission through the atmosphere has to be 

taken into consideration. RF and microwave communications are exploited here mainly 

because the atmosphere is almost transparent to these frequencies (30MHz ~30GHz). Within 

the RF and microwave region of the frequency spectrum, X-band (8.0 to 12.0 GHz) is a 

frequency band that is widely used in satellite communication and other communication 

systems, such as radar. The reason behind is that, it offers a good compromise in performance 

features such as, interference resilience, rain resilience, compact terminal size, good data 

rates and good remote coverage, which are especially suitable for wireless communication 

use [3]. Among the waveguide forms that can be used at X-band frequency, rectangular 

waveguide is a good choice, as it provides high Q-factor, low insertion loss and good 

shielding which meets high performance requirements for communication applications [2]. 

Although X-band is used widely in this thesis, of course the design principles apply to all 

other frequency bands for rectangular waveguide circuits as well. 

a

b

 
Figure 4.1 The configuration of a rectangular waveguide 

As shown in Figure 4.1, the typical geometric structure of a rectangular waveguide is a 

hollow metal tube with rectangular transverse cross-section; a is the dimension in x direction 
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(width), b is the dimension in y direction (height). For a standard WR90 X-band rectangular 

waveguide, a is 22.86mm (0.900inches), b is 10.16mm (0.400inches). 

As stated in [4], the transverse electromagnetic (TEM) mode does not exist in a rectangular 

waveguide, because there is only one conductor; but transverse electric (TE) mode and 

transverse magnetic (TM) mode can be supported by a rectangular waveguide. For each mode 

(TEm,n or TMm,n), there is a cut-off frequency cf  where propagation is only possible above this 

frequency [4]. cf  is defined by, 

 

2 21
2c

m nf
a b
 

 

   
    

   
 (4-1) 

 

here μ is the permeability, ε is the permittivity of the filling material; m and n represents the 

mode number in x and y directions, respectively. When the waveguide is filled up with 

vacuum, (4-1) can be re-written as, 

 

2 2

2c
c m nf

a b
   

    
   

 (4-2) 
 

Here, 0 01/c    is the speed of light in vacuum (μ0 and ε0 are permeability and 

permittivity of vacuum, respectively). When it is filled up with air, (4-1) can also provide a 

very good approximation, since the speed of light in air is very close to c. Usually, a standard 

rectangular waveguide has a width about twice the length of its height (a ≈ 2b). This makes 

the TE1,0 mode have the lowest cut-off frequency among all the modes, and also means that it 

is the dominant mode in the rectangular waveguide. It can be easily found from (4-2) that the 

TE2,0 mode has the second lowest cut-off frequency. The band between these two cut-off 

frequencies is normally the operating frequency band of a waveguide, as only TE1,0 mode 

exists within this band. There are reasons for the dimensions of rectangular waveguide to 

have the arrangement of a ≈ 2b. When b is between a/2 and a, TE0,1 mode will become the 



92 
 

second lowest mode; this will reduce the useful bandwidth of the rectangular waveguide. 

When b is smaller than a/2, it will reduce the power-handling capability of the waveguide [2].  

Figure 4.2 shows the electromagnetic (EM) field and surface current of the TE1,0 mode inside 

a rectangular waveguide. 

 

Figure 4.2 The EM field and surface current of TE1,0 mode inside a rectangular waveguide 
(reproduced from [5]) 

In Figure 4.2, g  is the guided wavelength for the case of TE1,0 mode, and it can be 

calculated by [4], 

 2
1,0 2

2 2
g

a

 


 
 

 

 
  
 

 (4-3) 
 

here 1,0  is the propagation constant for TE1,0 mode and can be calculated from the more 

generalized version of m,n  [4], 
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2 2

2
m,n

m n
a b
 

  
   

     
   

 
(4-4) 

 

Because practical filters are made up of non-perfect conductor materials, αc is introduced to 

describe the attenuation caused by conductor loss and for TE1,0 mode is given by [4], 

  2 3 2
3

1,0

2 8.686s
c

R b a k
a b k

 
 

     dB/m (4-5) 
 

here 2sR    is the surface resistance of the waveguide inner walls (  is the 

conductivity of the waveguide material); k    is the wave number;     is the 

intrinsic impedance for the filling material of the waveguide.  

 Rectangular Waveguide Resonator 4.1.2

As mentioned previously, rectangular waveguide cavity resonator is one of the building 

elements for rectangular waveguide filter circuits. The geometry of a resonator is shown in 

Figure 4.3.  

a

b

l

 
Figure 4.3 The geometric structure of a rectangular waveguide resonator, the blue indicates 
the air inside the resonator which is surrounded by conductor material 

 

As discussed previously for the waveguide, a is the width in x direction, b is the height in y 

direction; now l is the length in z direction (for resonator that compatible with WR90 

standard, a is 22.86mm, b is 10.16mm; when l is 20mm gives a frequency of 10GHz). 

Generally, there are two important parameters that describe a practical resonator, which are 
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resonant frequency 0f  and the unloaded Q-factor uQ . The electric energy and magnetic 

energy transform between each other in cycles within a resonator; the number of these cycles 

per second is 0f . The intrinsic loss of a resonator is characterised by uQ , which is a value 

that only determined by the physical dimension and the materials of the cavity resonator [6].  

 Centre Frequency 4.1.2.1

In a rectangular waveguide resonator, the transverse electric fields (for either TEm,n mode or 

TMm,n mode) is defined as [4],  

     , ,, , , m n m nj z j z
tE x y z e x y A e A e    

 
 (4-6) 

 
in which  ,e x y is a matrix in x and y directions which describes the transverse variation. A  

and A  represents the amplitude of waves that travels in +z and –z directions. ,m n  is the 

propagation constant which is defined in (4-4). 

By applying the boundary conditions that 0z   and z l  to equation (4-6), it is interesting to 

find that A A    when 0z  , ,m n l k     (k = 1,2,3…) when z l . Recalling (4-3), the 

latter formula can be re-written as, 

  
,

1,2,3,...
2

g

m n

l k k k



      (4-7) 

 
This indicates that the cavity length d must be integral multiple of the half guided wavelength 

g  of the propagated wave. Therefore, the modes in the resonator can be represented as 

TEm,n,k mode or TMm,n,k mode (k represents the mode number in z direction; in this thesis k=1); 

the centre frequency of a rectangular waveguide resonator can be obtained from [4]. 

 
2 2 2

0
1

2
m n kf
a b d
  

 

     
       

     
 (4-8) 
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Generally speaking, TE1,0,1 mode is the dominant mode of the rectangular waveguide 

resonator. The EM field of TE1,0,1 mode inside a cavity are shown in Figure 4.4.  

a

b

a

l

(a) (b)  
Figure 4.4 EM field configuration of TE1,0,1 mode, (a) front view of a resonator, (b) top view 
of a resonator 

 

Figure 4.4(a) shows the front of the resonator, the dashed line represents the magnetic field; 

the solid line represents the electric field with the arrow indicating the direction. Figure 4.4(b) 

shows the top view, where the dashed line means the anti-clockwise magnetic field, while the 

dots stand for the electric fields pointing out of the page. 

 Unloaded Q-factor 4.1.2.2

The unloaded Q-factor uQ  is a quantity that characterises the performance of a resonator in 

terms of stored energy and dissipated energy. For a resonator, a higher uQ  usually indicates 

lower loss and vice versa. There is a general equation given below which defines the uQ  of a 

resonator with arbitrary form [7], 

 
_

u
Time average energy stored in resonatorQ
Average power dissipated in resoantor

  (4-9) 
 

A number of mechanisms can cause the loss in a resonator; by nature, they are categorised 

into three groups, which are: conductor loss cQ , dielectric loss dQ  and radiation loss rQ . The 

uQ  is defined as the sum of all these three losses [7], 
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1 1 1 1

u c d rQ Q Q Q
    (4-10) 

 
For a closed rectangular waveguide cavity filled up with vacuum or air (TE1,0,1 mode), its dQ  

and rQ  can be considered as infinity; the only contribution to uQ  is cQ  which can be 

obtained from [4], 

 
 

 

3

2 3 3 3 32 2 2c
s

kad b
Q

R a b bd a d ad





  
 (4-11) 

 

This implies that, for such a waveguide resonator, uQ  is only determined by the conductor 

material and the dimension of the cavity. 

 The Physical Implementation of Coupling 4.1.3

During the design of a coupled-resonator filter, the physical implementation is usually based 

on given coupling matrix and external Q-factors that produce the desired response. Therefore, 

in order to realise the couplings in real circuits, they have to be interpreted into some 

particular physical form. This can be done with the help of an EM simulator. For the case of 

rectangular waveguide circuit, the coupling iris is the element to realise these couplings. The 

iris has different forms; Figure 4.5 shows the four that commonly use. 

a

b

a

b

a

b

a

b

(a)

(c) (d)

(b)

 
Figure 4.5 Coupling iris in different forms: (a) symmetrical inductive iris, (b) symmetrical 
capacitive iris, (c) asymmetrical inductive iris, (d) asymmetrically capacitive iris 
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The coupling strength is determined by the dimension of the coupling iris. For each iris, the 

dimensions can be determined individually with the help of EM simulator. In the following 

sections, the way to extract the dimensions of coupling iris is going to be investigated step by 

step.  

 External Q-Factor ( eQ )  4.1.3.1

The extraction procedure for Qe is usually done with the help of an EM simulator. In this 

thesis, Computer Simulation Technology Microwave Studio (CST mws) was the EM 

simulation software that chosen for the microwave filter design [8]. As shown in Figure 4.6, a 

waveguide structure has been modelled in CST mws to extract the Qe. This model was based 

on asymmetrical inductive irises. wr1 and wr2 were the widths of the two coupling irises, t 

was the thickness of both the irises. 

t

wr1
wr2

t

Coupling iris

Resonator Cavity
Port 1

Port 2

 
Figure 4.6 The structure modelled in CST for extracting Qe 

When a resonator is connected with external ports, the loaded Q-factor QL can be obtained 

from S21 [7],  

 0

3
L

dB

fQ
BW

  (4-12) 
 

Figure 4.7 was the simulated S21 response of the loaded single cavity resonator shown in 

Figure 4.6. It shows how the centre frequency f0 and the 3dB bandwidth BW3dB can be 

extracted from the S21. 
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S2
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 d

B

Frequency

3dB

f0

BW3dB

fHfL

 

Figure 4.7 The S21 of the loaded resonator. 

According to [4], QL can be defined in terms of  Qu and Qe, 

 
1 1 1

L u eQ Q Q
   (4-13) 

 
The cavity resonator discussed here satisfies the following conditions:  

 filled up with vacuum, so 1 0
dQ
 ,  

 closed cavity, there is no radiation slot, so 1 0
rQ
 , 

 the conducting material is perfect electric conductor (PEC), so 1 0
cQ
 .  

Therefore, 1 0
uQ
  , which makes 0

3
e L

dB

fQ Q
BW

  .  

For the model shown in Figure 4.6, the resonator is loaded with two external ports, therefore 

Qe is defined by Qe1 and Qe2 which are ultimately controlled by wr1 and wr2, respectively.  

 
1 2

1 1 1

e e eQ Q Q
   (4-14) 

 
The narrower the iris is, the larger the external Q-factor will be. Consequently, when wr2 is 

very small, i.e. the coupling is very weak at port 2; then Qe2 can be considered close to 

infinity (
2

1 0
eQ
 ). This means that Qe1 plays the dominant role in controlling Qe ( 1e eQ Q ). 

Because wr1 controls Qe1, wr1 also controls Qe. A relationship between Qe and wr1 is 
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obtained in Figure 4.8, when wr2 is 0.05mm (Qe2 is above 610 ), cavity length d is 18mm and 

iris thickness t is 2mm.  

 
Figure 4.8 The relationship between Qe and wr1 

 Inter-Resonator Coupling Coefficient (kc)  4.1.3.2

The coupling coefficient kc can be extracted with the EM simulator as well. Figure 4.9 shows 

a resonator pair coupled by asymmetrical inductive iris which was modelled in CST mws as 

an example for this purpose. In this particular example, kc is controlled by wr12. 

t

wr1

wr2

t

Coupling iris

Resonator Cavity
Port 1

Port 2
wr12

t

 

Figure 4.9 The structure modelled in CST for extracting kc 

To get a more accurate result, the couplings to external ports should be very weak (wr1 and 

wr2 should be small). A general equation for the extraction of kc is given in [9]. 
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22 2 22 2

01 02 01 021 2
2 2 2 2

02 01 1 2 01 02

1
2c

f f f ff fk
f f f f f f

     
        

     
 (4-15) 

 

01f  and 02f  are the centre frequency of the two resonators. 1f  and 2f  are the two frequency 

peaks shown in Figure 4.10.  

S2
1 

Frequencyf2f1  

Figure 4.10 A typical S21 of the coupled resonator pair 

(4-15) can be simplified when the two resonators are synchronously tuned ( 01 02f f ), which  

gives [10], 

 
2 2

1 2
2 2

1 2
c

f fk
f f

 
  

 
 (4-16) 

 
The wider the iris is, the larger the kc will be. The relationship between kc and wr12 is given 

in Figure 4.11; both wr1 and wr2 are set small to ensure weak external couplings 

(wr1=wr2=0.1mm, cavity length d for both resonator is 18mm, and iris thickness t is 2mm). 

 
Figure 4.11 The relationship between kc and r12 
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For the asynchronously tuned case, if the difference between 01f  and 02f  is small, (4-16) can 

still provide a good approximation  [9]. 

 Resonator Length 4.1.3.3

The coupling matrix is discussed in Chapter 2, and self-coupling is introduced to represent 

the frequency shift of the resonator. According to [11], self-coupling Mi,i can be directly 

obtained from,  

 0 0
,

0 0

i
i i

i

f fM
f f

 
  
 

 (4-17) 
 

in which 0f  is the centre frequency of the filter; 0if  is the centre frequency of the ith resonator. 

It is interesting to find that, Mi,i  is zero when 0 0if f  (synchronously tuned), negative when

0 0if f  and positive when 0 0if f  (asynchronously tuned). For asynchronously tuned case, 

Mi,i  can be obtained in terms of the centre frequency f0 and the length of the ith resonator li. 

For the ith resonator with TE1,0,1 as the dominant mode, the cavity length il  is / 2gi ; the 

guided wavelength gi  is defined in [4], where a is the width of the cavity resonator, c is the 

speed of light. 

 2 2 2
0

22
4

gi i

i

acl
a f c

  


 (4-18) 
 

Substituting (4-17) into (4-18), the relationship between Mi,i  and the ith cavity resonator is 

given [12], 
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(4-19) 
 

 
Hence, the resonator length can be determined from the self-couplings. 
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4.2 A 10th Order Five-Passband Rectangular Waveguide Filter with 
Chebyshev Response 

The 10th order five-passband filter implemented here is the one shown in Example 6 in 

Section 3.5.2.  Its topology is shown in Figure 4.12. 

1 2

3 4

5 6

87

109

Port 2Port 1

 
Figure 4.12 The topology of the 10th order five-passband filter 

 The Physical Configuration of The 10th Order Five-Passband Filter 4.2.1

All couplings are fulfilled by capacitive irises. The filter configuration is given in Figure 4.13.  

1Port

2Port

1

2

3
5

4
6

7

8

9

10

 

Figure 4.13 The 3D view of the 10th order five-passband rectangular waveguide filter (lower 
half) 

The filter is symmetrical in the E-plane (x-z plane). In order to facilitate the milling by CNC 

machine, it has to be cut through the E-plane; this means the filter will be assembled from 



103 
 

two parts including a lower half and an upper half. Figure 4.13 shows the lower half of the 

filter. There are 10 cavities inside the filter acting as the 10 resonators. They are numbered in 

red together with the two ports which meet the WR90 standard. The cylindrical holes are for 

assembly screws. 

The filter’s physical dimensions are labelled and named in Figure 4.14. 

Port 1 Port 2b b

b

wr12

b

b

wr2wr1 l1 l2

t t

tt

tt

b

b b

b

b

t

b

t

bl3 l4

l6l5

l9 l10

l8l7

wr79 wr810

wr17 wr28

wr13 wr24

wr46wr35

t t

t

 
Figure 4.14 The configuration of the 10th order five-passband rectangular waveguide filter (x-
z plane cross sectional view) 

 

Because Figure 4.14 is the top view, the dimension of a cannot be shown in the figure; it is 

perpendicular to this x-z plane. Since the coupling matrix and external Q-factors are given in 

Section 3.5.2, the dimensions of each iris and resonator can be obtained.  

 The Optimised Dimensions and Responses 4.2.2

When putting all the components together, further fine optimisation on the structure 

dimensions can be done by using the embedded optimiser in CST mws [8]. The dimensions 

of the resonator length l and iris width wr are further optimised in order to accurately meet 
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the required specification. The physical dimension before the optimisation and the one after 

the optimisation are all listed in Table 4.1. The filter is fabricated based on the optimised 

dimension. The final optimised results simulated by CST are given in Figure 4.15 and 

compared with the theoretical ones calculated by MATLAB. In order to illustrate the 

necessity of optimisation, the initial simulated results are compared with the optimised 

simulated results in Figure 4.16; they are corresponded to the dimensions given in Table 4.1. 

It takes no more than a week to obtain the optimised results from the initial dimension. 

 a b t l1 l2 l3 
Dimension before 
optimisation(mm) 22.86 22.86 2.0 29.0 29.0 23.0 

Dimension after 
optimisation(mm) 22.86 10.16 2.0 29.1 29.1 23.2 

 l4 l5 l6 l7 l8 l9 
Dimension before 
optimisation(mm) 23.0 23.0 23.0 20.0 20.0 19.0 

Dimension after 
optimisation(mm) 23.2 23.1 23.1 19.7 19.7 18.9 

 l10 wr1 wr2 wr12 wr13 wr35 
Dimension before 
optimisation(mm) 19.0 7.0 7.0 6.0 1.3 1.0 

Dimension after 
optimisation(mm) 18.9 8.0 8.0 7.0 1.2 0.8 

 wr17 wr79 wr24 wr46 wr28 wr810 
Dimension before 
optimisation(mm) 1.2 0.6 1.3 1.0 1.2 0.6 

Dimension after 
optimisation(mm) 1.0 0.6 1.2 0.8 1.0 0.6 

Table 4.1 Dimensions of the proposed 10th order five-passband rectangular waveguide filter 
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Figure 4.15 S-parameters comparison between the CST simulated results and MATLAB 

calculated results (a) S21, (b) S11 (Passband 1: 9.20 ~ 9.29 GHz, Passband 2: 9.41 ~ 9.67 

GHz, Passband 3: 9.80 ~ 10.17 GHz, Passband 4: 10.25 ~ 10.48 GHz, Passband 5: 10.57 ~ 

10.70 GHz) 
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Figure 4.16 S-parameters comparison between the initial simulated results and the optimised 

results (a) S21, (b) S11 

 

 Fabrications and Measurement 4.2.3

The photos of the fabricated filter are given in Figure 4.17. 
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                            (a)                                                                              (b) 

Figure 4.17 Photos of the fabricated 10th order five-passband rectangular waveguide filter. (a) 
full filter, (b) lower half of the filter 

 

The filter is fabricated using aluminium with an electrical conductivity of 3.56×107 S/m. The 

measured results are given in Figure 4.18 together with the simulated results for the purpose 

of comparison. The measured S21 has a 0.07dB mid-band insertion loss. 
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Figure 4.18 S-parameters comparison between the measured results and CST simulated 
results. (a) S21, (b) S11  

 Measured Result Analysis 4.2.4

The measured full passbands area is about 15MHz below the simulated one. In general, the 

measured S-parameters show good agreement with the simulated ones, except for the region 

of band 4 and band 5, which is between 10.2GHz to 10.7GHz. This is due to the fabrication 

errors in iris79 and iris810, which change the values of wr79 and wr810. The errors can be 

measured using a vernier caliper; both irises are about 0.12mm larger than the proposed 

widths. The defects can be recognised by eyes if observed closely. The close-up shot for the 

defect irises are given in Figure 4.19, and are labelled with red circles. 

8.5 9 9.5 10 10.5 11 11.5
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Frequency in GHz
(b)

S
1
1
 i
n
 d

B

 

 

S11 Measured

S11 Simulated



109 
 

7

9

8

10

 
Figure 4.19 Close-up shot of the defect irises 

Updated simulated responses are given in Figure 4.20, which considers the fabrication errors. 

Besides wr79 and wr810, l1 and l2 also artificially increase by 0.2mm to make the full 

passbands area move down by 15MHz. The updated simulated responses show very good 

agreement with the measured responses. 
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Figure 4.20 S-parameters comparison between the measured results and the updated CST 
simulated results. (a) S21, (b) S11 
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The corresponding updated dimension values are given in red in Table 4.2. 

 a b t l1 l2 l3 

Dimension (mm) 22.86 10.16 2.0 29.3 29.3 23.2 

 l4 l5 l6 l7 l8 l9 

Dimension (mm) 23.2 23.1 23.1 19.7 19.7 18.9 

 l10 wr1 wr2 wr12 wr13 wr35 

Dimension (mm) 18.9 8.0 8.0 7.0 1.2 0.8 

 wr17 wr79 wr24 wr46 wr28 wr810 

Dimension (mm) 1.0 0.72 1.2 0.8 1.0 0.72 
Table 4.2 Dimensions of the updated 10th order five-passband rectangular waveguide filter 

 

4.3 A 20th Order Five-Passband Rectangular Waveguide Filter with 
Quasi-Elliptic Response 

The 20th order five-passband filter implemented here is the Example 7 in Section 3.5.3.  It has 

a topology which is shown in Figure 4.21. The dashed line between resonator 1 and 4 

indicates the cross-coupling. 
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Figure 4.21 The topology of the 20th order five-passband filter 
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 The Physical Configuration of The 20th Order Five-Passband Filter 4.3.1

Figure 4.22 shows the configuration of the lower half of this 20th order filter. There are 20 

cavity resonators inside this filter; they together with the two ports are labelled and numbered 

in red. The two ports are WR90 standard waveguide ports. All couplings are fulfilled by 

capacitive irises except for the cross coupling between resonator 1 and 4 which is fulfilled by 

inductive iris. This filter is also symmetrical to the E-plane (y-z plane in this case). Therefore, 

for milling, it is also has to be cut through the E-plane. 
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Figure 4.22 The 3D view of the 10th order five-passband rectangular waveguide filter (lower 
half) 
 

The physical dimensions of the filter are labelled and named on the figure as shown in Figure 

4.23. The only inductive iris is a symmetrical inductive iris, named wr14 and are labelled in 

red. The width of it cannot be shown in this configuration, as it is perpendicular to this plane.  
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Figure 4.23 The configuration of the 20th order five-passband rectangular waveguide filter (y-
z plane cross sectional view) 

 

 The Optimised Dimensions and Response 4.3.2

The optimisation procedure for this 20th order filter follows the same procedure of the 

previous 10th order filter. Similarly, only the dimensions of the resonator length l and iris 
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width wr are further optimised in order to meet the specification accurately. The optimised 

results simulated by CST are given in Figure 4.24 and compared with the theoretical ones 

calculated by MATLAB. 

 

 
Figure 4.24 S-parameters comparison between the CST simulated results and MATLAB 
calculated results (a) S21, (b) S11 (Passband 1: 9.20 ~ 9.29 GHz, Passband 2: 9.41 ~ 9.67 
GHz, Passband 3: 9.80 ~ 10.17 GHz, Passband 4: 10.25 ~ 10.48 GHz, Passband 5: 10.57 ~ 
10.70 GHz) 
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The physical dimensions are given in Table 4.3. 

 a b t l1 l2 l3 l4 l5 l6 
Dimension 
(mm) 22.86 10.16 2.0 25.0 25.0 25.0 25.0 23.1 23.1 

 l7 l8 l9 l10 l11 l12 l13 l14 l15 
Dimension 
(mm) 23.1 23.1 23.5 23.5 23.5 23.5 19.7 19.7 19.7 

 l16 l17 l18 l19 l20 wr1 wr2 wr12 wr23 
Dimension 
(mm) 19.7 19.0 19.0 19.0 19.0 5.5 5.5 3.5 2.6 

 wr34 wr14 wr15 wr59 wr113 wr1317 wr26 wr610 wr214 
Dimension 
(mm) 3.5 7.5 1.2 0.8 1.0 0.6 1.2 0.8 1.0 

 wr1418 wr37 wr711 wr315 wr1519 wr48 wr812 wr416 wr1620 
Dimension 
(mm) 0.6 1.2 0.8 1.0 0.6 1.2 0.8 1.0 0.6 

Table 4.3 Dimensions of the updated 10th order five-passband rectangular waveguide filter 

For this 20th order filter, the match between the simulated responses and theoretical 

calculated ones are not as good as that of the 10th order filter. The reason is, due to the higher 

order of the filter, the freedom of resonator layout has to be compromised to some extent. 

Consequently, this introduces some additional cross couplings between non-adjacent 

resonators. For this 20th order filter design, ideally, there should be no couplings between 

resonator 8 and 13, resonator 1 and 8, resonator 4 and 13; but in practise, there are unwanted 

couplings between them through the path of iris48—iris14—iris113 as these three irises are 

geometrically close. For example, if artificially set M8,13, M1,8, M4, 13 to be -0.12, -0.1, -0.1, 

respectively, a new S11 can be calculated. It is shown in Figure 4.25, together with the 

previous simulated S11 for comparison. As can be seen from the figure, these additional cross 

couplings do play key roles in causing the mismatch between the calculated results and 

simulated results. 
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Figure 4.25 S11 comparison for simulated result from CST and updated calculated results 
from MATLAB 

 Fabrications and Measurement 4.3.3

The 20th order five-passband rectangular waveguide filter is fabricated based on the 

dimensions given in Table 4.3. The photos of the fabricated 20th order filter are given in 

Figure 4.26.  

 
                            (a)                                                                              (b) 
Figure 4.26 Photos of the fabricated 20th order five-passband rectangular waveguide filter. (a) 
full filter, (b) lower half of the filter 
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The filter is fabricated using aluminium as well (electric conductivity is 3.56×107 S/m). The 

measured results are given in Figure 4.27, together with the simulated ones. The measured 

S21 has a 0.4dB mid-band insertion loss. 

 

 
Figure 4.27 S-parameters comparison between the measured results and CST simulated 
results. (a) S21, (b) S11  
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 Measured Result Analysis 4.3.4

The measured result has the same issue as the previous 10th order filter. It shows good 

agreement with the simulated one in general, except for the region of band 4 and band 5. This 

is also due to the similar fabrication errors on particular irises, which affect the values of 

wr1317, wr1418, wr1519 and wr1620. The widths of these irises are again about 0.12mm 

larger than the proposed widths. The close-up shot for the defect irises are given in Figure 

4.28, and are labelled with red circles. 

All the defects are found on the smallest irises, which are 0.6mm in width. The reason is that, 

during the milling procedure, a smaller size drill is used to mill these smallest irises, but the 

drill is a defected one. 
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(a)                                                                                (b) 

Figure 4.28 Close-up shot, (a) defects for iris 1317 and 1620, (b) defects for iris 1418 and 
1519 

 

Updated simulated responses are given in Figure 4.29, which considers the fabrication errors. 

The new dimension values are listed in Table 4.4; the updated values are shown in red. The 

updated simulated responses show very good agreement with the measured responses. 
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 a b t l1 l2 l3 l4 l5 l6 
Dimension 
(mm) 22.86 10.16 2.0 25.0 25.0 25.0 25.0 23.1 23.1 

 l7 l8 l9 l10 l11 l12 l13 l14 l15 
Dimension 
(mm) 23.1 23.1 23.5 23.5 23.5 23.5 19.7 19.7 19.7 

 l16 l17 l18 l19 l20 wr1 wr2 wr12 wr23 
Dimension 
(mm) 19.7 19.0 19.0 19.0 19.0 5.5 5.5 3.5 2.6 

 wr34 wr14 wr15 wr59 wr113 wr1317 wr26 wr610 wr214 
Dimension 
(mm) 3.5 7.5 1.2 0.8 1.0 0.72 1.2 0.8 1.0 

 wr1418 wr37 wr711 wr315 wr1519 wr48 wr812 wr416 wr1620 
Dimension 
(mm) 0.72 1.2 0.8 1.0 0.72 1.2 0.8 1.0 0.72 

Table 4.4 Dimensions of the updated 10th order five-passband rectangular waveguide filter 
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Figure 4.29 S-parameters comparison between the measured results and the updated CST 
simulated results. (a) S21, (b) S11 

 

References: 

1. Cronin, N.J., Microwave and Optical Waveguides 1995: Taylor & Francis. 
2. Sorrentino, R. and G. Bianchi, Microwave and RF Engineering 2010: Wiley. 
3. Chambers, J., Commercial X-Band: The Technical + Operational Advantages, in 

Milsat Magazine 2013, Satnews. 
4. Pozar, D.M., Microwave Engineering (Third Edition) 2005: John Wiley & Sons, Inc. 
5. Sorrentino, R. and G. Bianchi, Ingegneria delle microonde e radiofrequenze 2005: 

McGraw-Hill Companies. 
6. Cameron, R.J., R. Mansour, and C.M. Kudsia, Microwave Filters for Communication 

Systems: Fundamentals, Design and Applications 2007: Wiley. 
7. Hong, J.-S. and M.J. Lancaster, Microstrip Filters for RF/Microwave Applications 

2001: John Wiley and Sons Ltd, United Kingdom. 
8. CST Microwave Studio 2013, CST - Computer Simulation Technology AG. 
9. Hong, J.S., "Couplings of asynchronously tuned coupled microwave resonators," IEE 

Proceedings on Microwaves, Antennas and Propagation, 2000. 147(5): p. 354-358. 
10. Lancaster, M.J., passive microwave device applications of high-temperature 

superconductors. 1997. 
11. Nedelchev, M.V. and I.G. Iliev, "Synthesis of Microwave Filters by Coupling Matrix 

Optimization," ICEST, 2011. 1: p. 167-170. 
12. Xia, W., "Diplexers and Multiplexers Design by using Coupling Matrix 

Optimisation," in 2015, University of Birmingham: Birmingham. p. 129. 

 

8.5 9 9.5 10 10.5 11 11.5
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Frequency in GHz
(b)

S
1
1
 i
n
 d

B

 

 

S11 Measured

S11 Simulated (updated)



121 
 

 TUNABLE BANDPASS FILTER DESIGN CHAPTER 5 
BASED ON RECTANGULAR WAVEGUIDE CIRCUIT 
 

The tunable bandpass filter discussed in this chapter has the flexibility in tuning both centre 

frequency and bandwidth. A new structure for coupling tuning based on rectangular 

waveguide filter is investigated in this chapter. To begin with, the design of new coupling 

tuning structure is given in Section 5.1. It is followed by Section 5.2, where a frequency 

tuning element is discussed. Lastly but not least, a 3rd order X-band rectangular waveguide 

tunable bandpass filter is implemented and measured in Section 5.3 for validation. 

The main novelties and advantages of the coupling tuning structure presented in this chapter 

is that it maintains the unloaded Q-factor of the resonator during the full tuning range, which 

significantly reduced the insertion loss and distortion of the filter response compared to most 

designs so far [1-36], which were using technologies like switched capacitor, varactors and 

elaborate MEMS structures for coupling tuning. With this new tuning structure, the tunable 

filter achieves a good compromise between tuning flexibilities and performance over its 

tuning range. Since it is a mechanically tuning structure, it improves the reliability and also 

reduces the fabrication cost of the filter. 

5.1 Coupling Tuning Structure 

A novel coupling tuning structure is presented here for the first time. This section has two 

parts. The first part shows a coupling tuning structure without chokes. In the second part, 

chokes are integrated and compared to the first model without chokes. It shows that the 

chokes improve the performance of the tuning structure by maintaining the unloaded Q-factor 

Qu of the waveguide resonator. 
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 Coupling Structure without Chokes 5.1.1

Figure 5.1 shows the structure of a tunable waveguide resonator with two coupling tuners; an 

expanded picture is also given to show the gaps between coupling tuner and waveguide main 

body (the gaps in the picture are enlarged for clearer illustration; its actual size are smaller). 

 

 
(a)                                                                      (b) 

Figure 5.1 (a) The perspective 3D view of a single resonator cavity with coupling tuners, (b) 
expanded side view focus near the coupling tuner 

 

In order to present the inside structure, the H-plane cross sectional view of this tunable 

waveguide resonator is given in Figure 5.2.   

 

Port 1 Port 2

Gaps
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Sidewall

a
l
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(a)                                                      (b) 

Figure 5.2 (a) The H-plane cross sectional view, (b) schematic of the waveguide resonator 

It is a WR90 standard rectangular waveguide resonator, the cavity width a is 22.86mm, the 

height b is 10.16mm (perpendicular to H-plane, not shown in Figure 5.2), the length l is 

18mm. The widths of the iris1 and iris2 are named as wr1 and wr2, respectively. The width of 



123 
 

the sidewall is set as 10mm which is the average quarter guided wavelength for X-band 

microwave. The reason behind is to make the sidewall as a 4g  transmission line which 

may reduce the energy leakage caused by the gaps between the tuners and the holes they 

reside in. 

The loss caused by the gaps has been investigated. When the gaps between coupling tuners 

and the holes are set to be 0.05mm, a set of S21s can be obtained from simulation and these 

are shown in Figure 5.3. In simulation, the building material for this model is PEC and the 

structure contains and is surrounded by vacuum. The two coupling tuners are moving 

together (wr1 and wr2 are same all the time); the widths of both irises change from 8mm to 

13mm with a step of 1mm. It should be noted that, the QL is not linear against the wr; the QL 

is more sensitive to the change of wr when QL is larger. 

 
Figure 5.3 A set of S21s when gaps are 0.05mm 

It is obvious that, there is insertion loss for this model. It is more significant when QL is larger, 

less significant but still exist when QL is low. This can be explained by additional losses in 

the cavity. Referring to (4-10), this means that the unloaded Q-factor Qu is not infinite. From 

(5-1) below, Qu can be defined in terms of and QL and S21(f0) [37], 
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  (5-1) 

 

Because the structure is built up by PEC and filled up with vacuum, there is no conductor loss 

or dielectric loss. The only contribution to the Qu is the radiation loss caused by the gaps. 

Therefore, for convenience, the radiation Q-factor caused by gaps (denoted as Qgap) is used to 

quantitate the radiation loss through the gaps; larger Qgap means lower loss. A relationship 

between Qgap and iris width can be obtained in Figure 5.4. 

 
Figure 5.4 The relationship between Qgap and wr when gaps are 0.05mm 

As shown above, Qgap is a little higher when wr1 and wr2 are between 10 and 11 (correspond 

to the S21s with frequency near 10GHz). The value of Qgap is between 2400 and 4700 with an 

average value of 3500.  

By repeating the above method with different gap sizes, a relationship between Qgap (average 

value) and gap size can be obtained in Figure 5.5. 
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Figure 5.5 The relationship between Qgap and gap size 

When the gap size increases, the value of Qgap will decrease. Considering the manufacturing 

error (the accuracy of a CNC machine about is 0.01 to 0.02mm) and assembling error, the 

practical gap size for design is taken as 0.1mm, therefore Qgap is about 1000. As Qgap is 

sensitive to the gap size, this result is not good enough for a resonator involving tuning 

elements. Besides, Qgap is lower than the conductor Q-factor Qc of aluminium cavity which is 

around 2000, when the gap size is larger than 0.07mm. 

 Coupling Structure with Chokes 5.1.2

In order to increase Qgap, two chokes are integrated into the sidewall. They cannot be seen 

from outside, so an H-plane cross sectional view is shown in Figure 5.6. The dimensions of 

cavity and two coupling tuners remain the same as the previous model. The size of choke is 

optimised by EM simulator. The initial value was 7.5 17 10.16  mm (at x,y,z direction 

respectively), which is based on the quarter wavelength of the guided wave of 10GHz. The 

final optimised value is 6.57 12 12  mm (at x,y,z direction respectively). 
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(a)                                                                   (b) 

Figure 5.6 (a) The H-plane cross sectional view with chokes, (b) schematic of the tunable 
waveguide resonator with chokes 

 

Again, when the gap size is 0.05mm, wr1 and wr2 are moved synchronously from 8mm to 

13mm with 1mm per step, a set of S21s can be obtained in Figure 5.7. 

 
Figure 5.7 A set of S21 when gap is 0.05mm (with choke) 

In the figure above, the insertion loss does not change significantly with wr1 and wr2 

compared with that in Figure 5.3, but variation still exists and is from 0.05 to 0.0001 dB. If 

there is no gap, the insertion loss will be 0dB. A relationship between Qgap and wr can be 

obtained as below. 
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Figure 5.8 The relationship between Qgap and wr when gap size is 0.05mm (with choke) 

In the figure, Qgap is above 106 with an average value of 61.76 10 . It is about a factor of 

1000 above the non-choke case. A relationship between Qgap (average value) and gap size can 

be obtained by repeating the procedure with different gap size; the results are shown in 

Figure 5.9 together with the results without choke. 

 
Figure 5.9 The relationship between Qgap and gap size (choke and without choke) 

The Qgap curve for the resonator with chokes follows the same trend compared to the one 

without chokes. With the integration of choke, though it is still sensitive to the gap size, the 

loss caused by the gap is now far smaller than the loss caused by conductor material 

(aluminium or copper). For an X-band waveguide circuit, as long as the gap size is smaller 

than 0.2mm, the effect of Qgap to the response is negligible if a choke is used [38].  
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To verify the simulations, a model was fabricated with the gap size of 0.1mm; its photos were 

shown in Figure 5.10. In Figure 5.10(a), the resonator was disassembled from several parts; 

the metallic parts were the upper half and lower half of the main body, while the white solid 

was the dielectric bearing for the coupling tuner, which was made of PTFE. Figure 5.10(b) 

shows the assembled resonator. 

 
(a)                                                            (b) 

Figure 5.10 The fabricated tunable waveguide resonator with chokes, (a) disassembled, (b) 
assembled 

 

The fabrication material was Aluminium with an electrical conductivity of 73.56 10 S/m. 

The measured results were given together with the simulated responses (in this simulation, 

the material was aluminium with an electrical conductivity of 73.56 10  S/m) for comparison 

in Figure 5.11. From right to left, the S21 corresponds to wr changing from 8 to 13mm. 
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Figure 5.11 The measured S21 of the fabricated single resonator cavity with choke 

The main contribution to insertion loss was the conductor loss of the aluminium (Qc≈2000 for 

one resonator). By analysing the results above, the relationship between Qe and wr is shown 

in Figure 5.12; the relationship between f0 and wr is shown in Figure 5.13. 

 
Figure 5.12 The simulated results and measure results for Qe vs wr 

8 9 10 11 12 13
10

1

10
2

10
3

10
4

10
5

The widths of iris 1 (wr1) and iris2 (wr2) in mm

E
x
te

rn
a

l 
Q

-f
a

c
to

r 
Q

e

 

 

Simulated

Measured

9 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6 -80 

-70 

-60 

-50 

-40 

-30 

-20 

-10 

0 

Frequency in GHz 

S
2
1
 i
n
 d

B
 

  

  

wr=8 (measured) 
wr=8 (simulated) 
wr=9 (measured) 
wr=9 (simulated) 
wr=10 (measured) 
wr=10 (simulated) 
wr=11 (measured) 
wr=11 (simulated) 
wr=12 (measured) 
wr=12 (simulated) 
wr=13(measured) 
wr=13 (simulated) 



130 
 

 
Figure 5.13 The simulated results and measure results for f0 vs wr 

For measured results, with the widths of both irises changing from 8 to 13mm, Qe changes 

from 59 to 12000. For a particular iris, Qe and kc have a relationship, and one of them can be 

calculated, once the other one is known [39]. The equivalent kc for this tunable resonator 

changes from 0.005 to 0.08, which covers many cases for narrow band Chebyshev filter 

design. The centre frequency shifts from 10.4GHz to 9.5GHz. But by integrating the 

frequency tuner which will be discussed in next section, the frequency shift can be 

compensated. 

 

5.2 Frequency Tuning Structure 

The frequency tuner design was based on the tuning structure which was discussed in [40, 41]. 

As shown in Figure 5.14, an x-direction cylindrical rod is the frequency tuner for this 

waveguide resonator. The tuner has a diameter d of 3.8mm and is placed at the centre of the 

cavity. The cavity has the same dimension of the models in previous section. The insertion 

depth of the frequency tuner is denoted as fr. The maximum value for fr is 22.86mm. When 

the gap between frequency tuner and main body is 0.1mm, the radiation Q-factor caused by 
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this gap is around 106. This value remains above 105, as long as the gap size is smaller than 

0.2mm.  

Frequency tuner

frd

 
Figure 5.14 The waveguide resonator with frequency tuner 

According to [41], for TE1,0,1 mode, the frequency tuning range increases if d/b increases 

(b=10.16mm for WR90 waveguide),  but the ratio should be kept smaller than 0.4 to avoid 

additional resonance and excitation of other modes [41]. When the widths of both irises are 

kept at 10mm, a set of S21s can be obtained by tuning fr. The simulated results are given in 

Figure 5.15. 

 
Figure 5.15 A set of S21s when fr changes from 0 to 22mm 
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The analysed result based on the above responses are given below, Figure 5.16 shows the 

relationship between f0 and fr. Figure 5.17 shows the curve of QL vs fr. 

 
Figure 5.16 Centre frequency f0 vs insertion depth of frequency tuner fr (widths of both irises 
are fixed at 10mm) 

 
Figure 5.17 QL vs fr (widths of both irises are fixed at 10mm) 

The frequency tuning range is from 9.3GHz to 10.2GHz, the maximum difference is 0.9GHz. 

QL increases slightly as the frequency tuner penetrates more into the cavity [41]. 

In next section, a fully tunable bandpass filter is designed and implemented in rectangular 

waveguide, based on the proposed frequency tuner and coupling tuner. 
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5.3 Design of A 3rd Order Tunable Bandpass Filter 

A 3rd order tunable bandpass filter is presented in this section. In order to achieve flexibility 

in both centre frequency and bandwidth, all the couplings in this filter can be tuned. The 

topology of the filter is given first, followed by the measured results. 

 The Filter Topology 5.3.1

The topology is given below in Figure 5.18, where the circles denote resonators, the lines 

denote couplings, mi,j is the coupling coefficient between resonator i and j, mi,i is the self-

coupling of resonator, QeS and QeL are the external Q-factors at port 1 and port 2, respectively. 

The blue arrows mean tunable inter-resonator couplings and external Q-factors which are 

implemented by coupling tuners, the red arrows stand for tunable resonant frequencies which 

are carried out by frequency tuners.  

1 2 3

Port 1 Port 2
QeS QeLm1,2 m2,3

m1,1 m2,2 m3,3

 
Figure 5.18 The topology of a 3rd order tunable filter 

The fabricated filter is shown in Figure 5.19. The metal part is the main body of the filter; the 

plastic part is the dielectric bearing for the tuners. There are scales on the tuners, the unit 

scale is 1mm. The material for main body is aluminium and the material for dielectric bearing 

is C6 (a polymer with similar dielectric properties to PTFE, but harder). 
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(a)                                                               (b) 

Figure 5.19 The fabricated 3rd order tunable filter, (a) the full structure, (b) a coupling tuner 
and a frequency tuner 

 

In order to illustrate the inside structure of the filter, an H-plane cross sectional view is given 

in Figure 5.20 (lower half of the main body and tuners). The figure shows 3 cavities, 3 

frequency tuners and 4 coupling tuners of the filter, all of which are labelled and named. The 

dimensions of the cavities and the tuners are identical to that of the tunable waveguide 

resonator. The width, height and length for all three cavities are 22.86mm, 10.16mm and 

18mm, respectively; the gaps around all tuners are 0.1mm. 

 
Figure 5.20 The H-plane cross-sectional view of the fabricated 3rd order tunable filter 

Freq tuner3  
Freq tuner2  
Freq tuner1  

Cavity1  Cavity2  Cavity3 

Coupling tuner 4 
Coupling tuner 3 
Coupling tuner 2  
Coupling tuner 1  
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The namings of the tunable parameters are shown below in Figure 5.21, where wr1, wr12, 

wr23 and wr2 are the widths of the irises, and fr1, fr2 and fr3 are the insertion depths of 

frequency tuners. 

Port 1 Port 2wr1 wr2fr2 fr3wr12 wr23

Coupling 
tuner 1

Coupling 
tuner 2

Coupling 
tuner 3

Coupling 
tuner 4

Frequency 
tuner 1

Frequency 
tuner 2

Frequency 
tuner 3

fr1a
l l l

 
Figure 5.21 The H-plane cross-sectional view of the 3rd order tunable filter 

 The Lowpass Prototype Response 5.3.2

The design of the tunable filter is based on a 3rd order lowpass prototype Chebyshev with 

15dB return loss level for passband. The lowpass prototype response is given below. 
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Figure 5.22 The lowpass prototype response of a 3rd order Chebyshev filter with 15dB return 
loss 

 
The corresponding normalised coupling matrix and the normalised external Q-factors are 

given in (5-2). 

 
 
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(5-2) 
 

 Passband Bandwidth Tuning 5.3.3

The bandwidth tuning ability is mainly implemented by coupling tuners. However, the 

frequency tuners also play assistant roles, since the moving of the coupling tuners may cause 

the resonant frequency shift and need to be compensated by the frequency tuners. Due to the 

limited tuning range of frequency tuner, the widest tuning range for the bandwidth is 

achieved when f0=9.5GHz, the FBW is from 0.9% to 3.8%. Because the filter can achieve 

continuous tuning, it is impossible to list all the responses, only selected responses are shown 

here. Table 5.1 shows the theoretically synthesised de-normalised coupling matrix and 
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external Q-factors at 9.5GHz. The corresponding theoretical calculated S-parameters are 

given in Figure 5.23. 

f0=9.5GHz 

FBW Coupling Matrix External Q-factors 

0.9% 

 
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Table 5.1 The coupling matrices and external Q-factors 

 
Figure 5.23 The calculated response of the 3rd order Chebyshev filter centred at 9.5GHz with 
FBW various from 0.9% to 3.8% (15dB passband return loss) 
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The coupling coefficients and external Q-factors in Table 5.1 can be interpreted into 

corresponding parameters of the tuners by using the methods shown in Section 4.1. They are 

good initial parameters; it is not difficult to obtain the desired S-parameters which are shown 

in Figure 5.24 and Figure 5.25. Figure 5.24 shows the simulated results when the filter is 

made of PEC; Figure 5.25 shows the simulated results when the filter is made of aluminium. 

The filling and background materials for both simulations are vacuum. 

 
Figure 5.24 The simulated response of the filter centred near 9.5GHz with FBW various from 
0.9% to 3.8% (PEC) 

 
Figure 5.25 The simulated response of the filter centred near 9.5GHz with FBW various from 
0.9% to 3.8% (Aluminium with electric conductivity of 3.56×107 S/m) 



139 
 

For PEC model, the mid-band insertion loss is smaller than 0.01dB. For aluminium model, 

the mid-band insertion loss is between 0.3dB to 1.6dB. 

The corresponding tuning parameters for the above results are given in Table 5.2. As the 

tuning function is implemented by hand at current stage, the unit step is 0.5mm.  

f0=9.5GHz 

FBW wr1=wr2 (mm) wr12=wr23 (mm) fr1=fr3 (mm) fr2 (mm) 

0.9% 12.5 9.5 10.5 13.5 

2.1% 13.5 10.5 9 13 

3.8% 14.5 11.5 4.5 10 

Table 5.2 The corresponding tuning parameters  

Figure 5.26 shows the measured results of the fabricated device.  

 
Figure 5.26 The measured response of the filter centred near 9.5GHz with FBW various from 
0.9% to 3.8% 
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8.5 9 9.5 10 10.5
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Frequency (fc=9.5GHz)

S
-p

a
ra

 i
n
 d

B

 

 

S21 FBW=0.9%

S21 FBW=2.1%

S21 FBW=3.8%

S11 FBW=0.9%

S11 FBW=2.1%

S11 FBW=3.8%



140 
 

insertion loss here is mainly due to the H-plane cutting and assembly errors. The 

misalignments between different parts may cut the surface current and increase the insertion 

loss. Also, as the FBW decreases, the QL increases. This can be explained by (5-1), which 

indicates when Qu is fixed, the larger QL leads to higher insertion loss. 

 Passband Centre Frequency Tuning 5.3.4

In this section, the selected measured responses are categorised into 3 groups based on the 

positions of coupling tuners. For each group, the coupling tuners are fixed during the tuning; 

only the frequency tuners are moved to tune the centre frequency.  

 Group 1 (FBW from 3.4% to 3.8%) 5.3.4.1

In group 1, for the coupling tuners, wr1 and wr2 are both fixed at 14.5mm; wr12 and wr23 

are fixed at 11.5mm. By only moving the frequency tuners, the FBW of the responses can be 

maintained between 3.4% and 3.8%. Figure 5.27 shows the corresponding S-parameters with 

different passband centre frequencies. The values of the tuning parameters can be found in 

Table 5.3. 

 
Figure 5.27 The measured response of the filter when FBW is from 3.4% to 3.8% 

8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10 10.2
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Frequency in GHz

S
-p

a
ra

 i
n
 d

B



141 
 

Group1 

wr1=wr2=14.5 mm wr12=wr23=11.5 mm 

f0 (GHz) 9.17 9.25 9.32 9.39 9.45 9.48 9.50 

fr1=fr3 (mm) 10.5 9.5 8.5 7.5 6.5 5.5 4.5 

fr2 (mm) 16.5 14 12.5 11.5 11 10.5 10 

Absolute BW (GHz) 0.308 0.330 0.340 0.355 0.359 0.361 0.363 

FBW 3.4% 3.5% 3.6% 3.7% 3.8% 3.8% 3.8% 

Table 5.3 The corresponding parameters of tuners 

 Group 2 (FBW from 1.9% to 2.4%) 5.3.4.2

In group 2, wr1 and wr2 are both fixed at 13.5mm; wr12 and wr23 are fixed at 10.5mm. 

During the centre frequency tuning, the FBW remains between 1.9% and 2.4%. Figure 5.28 

shows the corresponding S-parameters with different passband centre frequencies. The values 

of the tuning parameters can be found in Table 5.4. 

 
Figure 5.28 The measured response of the filter when FBW is from 1.9% to 2.4% 

8.5 9 9.5 10 10.5
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Frequency in GHz

S
-p

a
ra

 i
n
 d

B



142 
 

Group 2 

wr1=wr2=13.5 mm wr12=wr23=10.5 mm 

f0 (GHz) 9.34 9.42 9.50 9.57 9.65 9.70 9.73 9.75 

fr1=fr3 (mm) 11 10 9 8 7 6 5 4 

fr2 (mm) 18 14.5 13 12 11 10.5 10 10 

Absolute BW (GHz) 0.178 0.195 0.220 0.226 0.232 0.233 0.237 0.237 

FBW 1.9% 2.0% 2.1% 2.2% 2.3% 2.4% 2.4% 2.4% 

Table 5.4 The corresponding parameters of tuners 

 Group 3 (FBW from 0.9% to 1.4%) 5.3.4.3

In group 3, wr1 and wr2 are both fixed at 12.5mm; wr12 and wr23 are fixed at 9.5mm. The 

FBW remains between 0.9% and 1.4%. Figure 5.29 shows the corresponding S-parameters 

with different passband centre frequencies. The values of the tuning parameters can be found 

in Table 5.5. 

 
Figure 5.29 The measured response of the filter when FBW is from 0.9% to 1.4% 
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Group 3 

wr1=wr2=12.5 mm wr12=wr23=9.5 mm 

f0 (GHz) 9.51 9.58 9.66 9.76 9.84 9.90 9.95 9.98 

fr1=fr3 (mm) 10.5 9.5 8.5 7.5 6.5 5.5 4.5 4 

fr2 (mm) 13.5 12.5 11.5 10.5 10 9.5 9 8.5 

Absolute BW (GHz) 0.087 0.102 0.110 0.116 0.127 0.135 0.140 0.139 

FBW 0.9% 1.0% 1.1% 1.2% 1.3% 1.4% 1.4% 1.4% 

Table 5.5 The corresponding parameters of tuners 

 Discussion 5.3.5

The filter achieves the maximum FBW tuning range of 0.9% to 3.8% at 9.5GHz. It also offers 

400MHz range for centre frequency tuning when coupling tuners are fixed.  

The passband is slightly uneven when the BW is narrow. This is caused by the mismatch of 

the coupling tuners. The external Q-factor Qe changes along with the positions of coupling 

tuner 1 and 4. As shown in Figure 5.12, they have a non-linear relation. Qe change per 

millimetre is smaller, when the value of Qe is smaller; and vice versa. This means that Qe is 

more sensitive to the positions of coupling tuner 1 and 4, when they are larger, i.e. BW is 

narrower. Consequently, the same scale errors of tuner position may cause more serious 

mismatch, when BW is narrower.  

During the frequency tuning, as the frequency tuners penetrate more into the cavities, the BW 

increases along with the centre frequency. This is an inevitable effect, as the increase of the 

insertion depths of frequency tuners will increase the QL which eventually makes BW wider. 

If BW is strictly required to be constant during the frequency tuning, the above effect can be 

compensated by further fine tuning the coupling coefficients and external Q-factors. Such 

fine tunings might require more accurate and higher resolution manipulation of the tuners.  
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 TUNABLE NOTCH FILTER DESIGN CHAPTER 6 
BASED ON RECTANGULAR WAVEGUIDE CIRCUIT 
 

Notch filters are widely used in industry and military applications, as they can suppress the 

unwanted jamming signals within the frequency spectrum. The Q-factor of the filter decides 

the sharpness of the rejection band. In order to achieve narrow and sharp notch, the Q-factor 

should be high. The tunable notch filter discussed in this chapter combines the tuning 

flexibility and high Q notch filter. The topology of the filter is based on the dual-passband 

filter topology investigated in Chapter 3. For such a dual-passband filter, when the stopband 

is much narrower than the passbands, it can be seen as a notch; meanwhile, the two passbands 

can be regarded as a single wide passband. In Section 6.1, a discussion on the topology 

selection for tunable notch filter is given. In Section 6.2, the lowpass prototype of a 4th order 

tunable notch filter is investigated. In Section 6.3, the 4th order lowpass prototype is 

transformed to X-band and implemented in the form of rectangular waveguide. 

6.1 Topology Selection of Tunable Notch Filter  

As proposed in Chapter 3, there are three major types of multi-passband resonator sections. In 

theory, no matter which type of the section is used, a multi-passband filter can always 

achieve the desired specifications. However, considered the practical design limitations, not 

all multi-passband filter topologies are suitable to be used as tunable notch filter design.  

For a tunable filter, the independence of tuning parameter is very important. This means that 

one or one group of tuning parameters only controls one kind of filter specification, and does 

not control other specifications of the filter. If a tunable filter does not have good 

independence of the tuning parameters, it will be very difficult to tune.  
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The analysis in Appendix II reveals that, in order to achieve same flexibility, the filters with 

series coupled resonator sections or mixed coupled resonator sections are more difficult to 

tune than the one with parallel coupled resonator sections. This is because for the filters with 

parallel coupled resonator sections, each tuning parameter has a better independence. For 

example, the notch positions are controlled by the frequency of bandstop resonators, the 

passband centre frequency is controlled by the frequency of bandpass resonators. If one 

specification needs to be changed, only one or one group of parameters change. On the 

contrary, for the filter with non-parallel coupled resonator sections, even if just one kind of 

specification needs to change, all the parameters will need to be tuned. Hence, from this point 

of view, the topologies with parallel coupled resonator sections are more practical for tunable 

notch filter design. 

However, besides the limitations in topologies, the physical configuration of coupling tuning 

structure also brings restrictions. The following conditions have to be considered: 

 Each bandpass resonator can connect to maximally one bandstop resonator. 

 There is no tuner between bandpass resonators and bandstop resonators; therefore the 

couplings between bandpass resonators and bandstop resonators cannot be tuned. 

The conditions imply that, there is only one bandstop resonator in each multi-passband 

resonator section. It has to be a dual-passband topology. 

Given the factors above, the generalised topology for tunable notch filter is illustrated below 

in Figure 6.1; all resonator frequencies are tunable, all couplings but the ones between 

bandpass resonators and bandstop resonators are tunable. 
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Figure 6.1 A generalised topology for tunable notch filter 

6.2 A 4th Order Tunable Notch Filter  

A 4th order tunable notch filter is discussed in this section as an example. The filter has a 

topology as shown in Figure 6.2. 
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QeS QeLM1,2

M2,4

4
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Figure 6.2 The topology of a 4th order tunable notch filter 

The response and design parameters discussed in this section are in normalised lowpass 

frequency domain (Ω domain). They can be transformed to any required frequency bands. It 

is worth mentioning that, in order to control the responses directly by coupling matrix, the S-

parameters shown in this chapter are plotted from the coupling matrix. This is different to that 

in Chapter 3, which uses characteristic polynomials to plot the S-parameters. A comparison 

between the S-parameters obtained from these two different approaches is given in Appendix 

III. As long as the FBW is small, the S-parameters can be considered accurate [1]. 

It should be noticed that the tunable notch filter can provide continuous tuning within its 

tuning range, but given the limited space, only the selected representative results are shown. 
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 Notch Position Tuning 6.2.1

Figure 6.3 shows a set of S-parameters with varying notch positions. They are plotted from 

the design parameters given in Table 6.1. The passbands are centred at 0Hz with a width of 

2Hz. The notch width is 0.2Hz. The solid lines are S21s, while the dotted line is S11. There 

are three S21s, displayed in red, blue and green, respectively; they have different notch 

positions but same centre frequency. In fact, besides the notch, only one of the S21s (red) can 

be seen, because they overlap with each other. For clearer illustration of the notch, only the 

red S11 is given in the figure, the other S11s have similar shapes. 

 
Figure 6.3 Fix centre frequency with varying notch positions 

The couplings involved in the tuning are labelled in colour in Table 6.1. By only tuning the 

self-couplings (resonant frequencies) of bandstop resonators, the filter can effectively achieve 

tuning in notch position. The centre frequency and bandwidth remain unchanged during the 

notch position tuning. 
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Table 6.1 The corresponding design parameters for notch position tuning 

 Passband Centre Frequency Tuning 6.2.2

Figure 6.4 shows a set of S-parameters with varying centre frequencies. The bandwidth is 

again 2Hz for this case, while the notch is placed at 0Hz and 0.2Hz wide. The three S21s each 

have different centre frequencies. The notch position is not changing during the tuning of 

centre frequency. The couplings involved in the tuning are labelled in colour in Table 6.2. 

The filter can achieve centre frequency tuning by only changing the resonant frequencies of 

the bandpass resonators. 

 
Figure 6.4 Fix notch with varying centre frequencies 
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Table 6.2 The corresponding design parameters for centre frequency tuning 

 Notch Out of Passband 6.2.3

Figure 6.5 shows a special case when the frequencies of bandstop resonators are not in the 

passband region. The analytical multi-passband synthesis technique cannot produce the 

response with notch outside the passband. This is because the passband limits are the 

fundamental values that define the response and the design parameters; in other words, with 

passband limits given as input, the notch falls within the passband region in default.  

 
Figure 6.5 Responses with notch in and out of passband 
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 The couplings involved in the tuning are labelled in colour in Table 6.3. 

 Passband width Coupling matrix External 
Q-factor 
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Table 6.3 The corresponding design parameters 

When the notch is tuned away from the passband, the passband is hardly affected by the 

notch. However, the bandstop resonators still create a transmission zero at their resonant 

frequency and at the same time, a very narrow passband is also introduced near the 

transmission zeros, which is shown in Figure 6.6 [2]. 
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(b) 

Figure 6.6 Left part of out-of-band response, (a) same scale with Figure 6.5, (b) an extended 
view near -9Hz 

As long as the notch is tuned away from the passband, it will no longer affect the passband. 

The main passband of the blue response shown in Figure 6.5 has a 2nd order Chebyshev 

response with a bandwidth of 1.8Hz. The 0.2Hz difference between two bandwidths is the 

notch width. This difference can be compensated by adjusting the certain couplings, and is 

shown in the following section. 

 

 Passband Bandwidth Tuning 6.2.4

The green response below in Figure 6.7 is tuned from the blue response shown in Figure 6.5 

by adjusting M1,2 and external Q-factors. The relevant new coupling matrix for green 

response is given in Table 6.4. For the reason of comparison, the red response in Figure 6.5 is 

shown again in Figure 6.7. 
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Figure 6.7 Responses with notch in and out of passband (bandwidth compensated) 

 Passband bandwidth Coupling matrix External 
Q-factor 

 
 

Red response 

 
 

2.000Hz 

0 1 4959 0 3162 0
1 4959 0 0 0 3162
0 3162 0 0

0 0 31
0

62 0 0

. .
. .
.

.

 
 
 
 
 
 

 

 
 

0.739 
 
 

 
 

Green response 

 
 

2.000Hz 

0 0 3162 0
0 0 0 3162

0 3162 0

1 6621
1 6621

9 000
9 0

0
0 0 6 0031 2 0

.
.

.
.

.
.

.
.

 
 
 
 
 
 





 

 
 

0.665 

Table 6.4 The corresponding design parameters for passband bandwidth tuning 

 
The bandwidth tuning can be achieved by only changing the external Q-factors and M1,2. It 

can be found that, the coupling matrix and external Q-factors are very close to the synthesised 

values of a standard 2nd order lowpass prototype Chebyshev filter. 

 Multi-notch Response 6.2.5

The 4th order tunable notch filter can produce two notches by making the two bandstop 

resonators asynchronously tuned. In such case, each bandstop resonator controls one notch 
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independently. To give an example, the blue response in Figure 6.8 has two notches placed at 

-0.3Hz and 0.6Hz, respectively. The corresponding design parameters are given in Table 6.5. 

 
Figure 6.8 Response with split notches 
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Table 6.5 The corresponding design parameters for two-notch tuning 
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In the table above, both coupling matrix are correct for the blue response. Compared with the 

red response (single notch), the notch width in blue response (two notches) decreases from 

0.2Hz to 0.1Hz. The centre frequency and bandwidth are not affected by the notch splitting.  

More notches could be introduced if the total order of the filter increases. Theoretically, there 

could be as many as n notches in a 2nth order filter, but it should be noted that, the multi-

notch response produced from such technique are not Chebyshev response any more. 

6.3 The Implementation of A 4th Order Tunable Notch Filter 

A 4th order tunable notch filter is implemented in the form of rectangular waveguide, with the 

tuning structure proposed in Chapter 5.  It is designed to have a frequency tuning range of 

810MHz which is from 8.670 to 9.480GHz. The passband bandwidth is tunable between 

110MHz and 260MHz. The notch width is 43±3MHz. 

 The Rectangular Waveguide Structure 6.3.1

The rectangular waveguide realisation of the corresponding topology is given in Figure 6.9; it 

is an H-plane cross-sectional view showing the lower-half of the filter. 

Frequency tuner 4

Frequency tuner 3

Cavity4 Cavity2

Coupling tuner 3
Frequency tuner 2
Coupling tuner 2
Frequency tuner 1
Coupling tuner 1

Cavity3 Cavity1
 

Figure 6.9 H-plane cross-sectional view of the 4th order tunable notch filter (lower-half) 
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There are four cavities and seven tuners in this filter. Among the four cavities, cavity 1 and 2 

act as the two bandpass resonators, while the other two cavities act as two bandstop 

resonators. Among the seven tuners, coupling tuner 1, 2 and 3 controls the QeS, M1,2 and QeL, 

respectively. Frequency tuner 1, 2, 3 and 4 control the frequencies of resonator 1, 2, 3 and 4, 

respectively. The dimensions of this filter are given in Figure 6.10. The dimensions of tuners 

and chokes, the gap size between the tuners and the main body is the same as that of the 3rd 

order tunable bandpass filter given in Chapter 5. 

50mm
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a=22.86mm

b=10.16mm h =9.96mm
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d
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a

l1=18mm

l2=l1

l3=l4

t

t

d =3.8mmd

d

(Top view)

(Side view)
 

Figure 6.10 The 4th order tunable notch filter dimensions  
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 Fabrication and Measurement 6.3.2

The filter is fabricated by a CNC milling machine. In order to facilitate the milling, the main 

body of the filter has to be cut through H-plane into two parts. The material used for main 

body is copper, which has an electrical conductivity of 5.96×107 S/m. The tuners are milled 

separately by the CNC machine. The material used for tuners is brass, which has an electrical 

conductivity of 2.74×107 S/m. The tuners are guided by dielectric polymer bearings. 

Photographs of the fabricated tunable notch filter are given in Figure 6.11 below.  

 
(a) 

 
(b) 

Figure 6.11 Fabricated rectangular waveguide tunable notch filter, (a) fully assembled filter; 
(b) disassembled filter main body  
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Because the filter can achieve continuous tuning, it is not possible to list all the measured 

results here. Hence, only some selected results are shown to illustrate the performance of the 

filter. By tuning functions, the results are categorised into five sections, which are centre 

frequency tuning with notch falling outside passband, centre frequency tuning with a fixed 

notch, notch position tuning with fixed centre frequency, multi-notch realisation and 

bandwidth tuning. All the relevant tuning parameters are named and labelled in Figure 6.12. 

Port 1

Port 2

wr1

wr2

fr2

wr12

Coupling 
tuner 1

Coupling 
tuner 2

Coupling 
tuner 3

Frequency 
tuner 1

Frequency 
tuner 2

fr1
fr3

Frequency 
tuner 3

fr4
Frequency 

tuner 4

a

a
 

Figure 6.12 Naming of the tuning parameters in tunable notch filter (H-plane cross-sectional 
view) 

 

 Passband Centre Frequency Tuning with A Fixed Notch  6.3.2.1

Four selected responses are presented in different colours and shown in Figure 6.13. During 

the centre frequency tuning, the bandwidth remains at 255±5MHz, the notch is fixed at 

8.807GHz, and only fr1 and fr2 change. The relevant tuning parameters are given in Table 

6.6. 

 Passband centre 
frequency 

 
wr1=wr2 

 
wr12 

 
fr1= fr2 

 
fr3= fr4 

 
Red response 

 
8.709GHz 

 
 
 

 
 
 

 
5.5mm 
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Blue response 

 
8.746GHz 

 

 
 

15.5mm 

 
 

12.5mm 

 
7.0mm 

 
 

5.0mm 
 

Green response 
 

8.829GHz 
 

 
8.5mm 

 
Purple response 

 
8.878GHz 

 
9.5mm 

Table 6.6 The corresponding tuning parameters for centre frequency tuning with fixed notch 

 
Figure 6.13 Centre frequency tuning with a fixed notch 

Four S21s with different centre frequencies are shown in the figure above. For clearer view, 

only the S11 for blue response is shown, the other three S11s have similar shapes. Because 

the notch is in the passband, the filter behaves like a 4th order dual-passband filter. The 

average mid-band insertion loss for these responses is 1.5dB.  

 Passband Tuning with Notch Falling outside The Passband 6.3.2.2

A set of S-parameters are given in Figure 6.14. During the tuning, the bandwidth remains at 

115±5MHz, and only fr1 and fr2 are involved. The relevant tuning parameters are given in 

Table 6.7 
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 Passband centre 
frequency 

 
wr1=wr2 

 
wr12 

 
fr1= fr2 

 
fr3= fr4 

 
Red response 

 
9.292GHz 

 
 
 
 
 

14.0mm 

 
 
 
 
 

11.0mm 

 
14.0mm 

 
 
 
 
 

5.0mm 

 
Blue response 

 
9.366GHz 

 

 
15.0mm 

 
Green response 

 
9.426GHz 

 

 
16.0mm 

 
Purple response 

 
9.480GHz 

 
17.0mm 

Table 6.7 The corresponding parameters for passband tuning with notch falling outside the 
passband 

 
Figure 6.14 Centre frequency tuning with notch falling outside passband 

Four S21s with different centre frequencies are given; the green S11 is given for reference. 

Because the notch falls outside the passband, there are only two reflection zeros on the 

passband. The average mid-band insertion loss is 0.9dB.  

8.9 9 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10
-35

-30

-25

-20

-15

-10

-5

0

Frequency in GHz

S
-p

a
ra

m
e
te

rs
 i
n
 d

B



163 
 

 Passband Bandwidth Tuning 6.3.2.3

Two set of S-parameters with different bandwidth are given in Figure 6.15. During the tuning, 

the centre frequency is kept near 9.21GHz, with fr3 and fr4 fixed. The notch falls outside the 

passband. The relevant tuning parameters are given in Table 6.8. 

 Passband 
bandwidth 

 
wr1=wr2 

 
wr12 

 
fr1= fr2 

 
fr3= fr4 

 
Red response 

 
116MHz 

 
14.0mm 

 
11.0mm 

 
13.0mm 

 
 

5.0mm 
 

Blue response 
 

236MHz 
 

 
15.5mm 

 
12.5mm 

 
16.0mm 

Table 6.8 The corresponding parameters for passband bandwidth tuning 

 
Figure 6.15 Passband bandwidth tuning 

The passband bandwidth tuning is realised by tuning the QeS, QeL and M1,2. This is physically 

achieved by adjusting the position of the three coupling tuners. fr1 and fr2 are tuned to 

compensate the frequency shift caused by the moving of coupling tuners. The average mid-

band insertion loss is 0.6dB for blue response and 1.1dB for red response.  
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 Notch Position Tuning with Fixed Passband Centre Frequency 6.3.2.4

Four S21s with varying notch positions are given in Figure 6.16. They have same bandwidth, 

which is 255MHz. The notch position tuning only involves fr3 and fr4. The relevant tuning 

parameters are given in Table 6.9. 

 Notch 
position 

 
wr1=wr2 

 
wr12 

 
fr1= fr2 

 
fr3= fr4 

 
Red response 

 
9.061GHz 

 
 
 
 
 

15.5mm 

 
 
 
 
 

12.5mm 

 
 
 
 
 

15.0mm 

 
12.0mm 

 
Green response  

 
9.154GHz 

 

 
13.0mm 

 
Blue response 

 
9.234GHz 

 

 
14.0mm 

 
Purple response 

 
9.310GHz 

 
15.0mm 

Table 6.9 The corresponding parameters for notch tuning with fixed centre frequency 

 
Figure 6.16 Notch position tuning with fixed centre frequency 

During the tuning, the centre frequency and bandwidth do not change. The average mid-band 

insertion loss is 0.8dB. 

8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10
-35

-30

-25

-20

-15

-10

-5

0

Frequency in GHz

S
-p

a
ra

m
e
te

rs
 i
n
 d

B

 

 

S21 Red

S21 Green

S21 Blue

S21 Purple

S11 Blue



165 
 

 Multi-Notch Realisation 6.3.2.5

Two set of S-parameters are given in Figure 6.17. As the frequencies of two bandstop 

resonators are tuned away from each other, the single notch splits into two separate ones. The 

two notches are individually controlled by fr3 and fr4. The centre frequency and bandwidth 

remain unchanged during the tuning. The relevant parameters are given in Table 6.10. 

 Notch 
position(s) 

 
wr1=wr2 

 
wr12 

 
fr1= fr2 

 
fr3 

 
fr4 

 
Red response 

 
8.946GHz 

 
 

15.5mm 

 
 

12.0mm 

 
 

10.0mm 

 
10.5mm 

 
Blue response 

8.902GHz 
& 

8.985GHz 

 
10.0mm 

 
11.0mm 

Table 6.10 The corresponding parameters for multi-notch realisation 

 
Figure 6.17 Multi-notch realisation 

For the red response with single notch, the notch width is 40MHz; for the blue response, the 

two notches each have a width of 20MHz. The mid-band insertion loss is 1.5dB. The 

measured result confirms that, the total width of the two split notches is equal to the width of 

the single notch.  
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 CONCLUSION AND FUTURE WORK CHAPTER 7 
 

7.1 Conclusion 

The thesis investigates the design techniques of multi-passband filters and tunable filters. 

Both of them become more and more important in nowadays wireless communication 

industry, as they not only satisfy multi-functional applications, but also reduce the size and 

mass of the communication system.  

A generalised analytical synthesis technique for multi-passband filter has been presented in 

Chapter 3. Starting with inline topologies, the generalised synthesis technique manages to 

produce multi-passband filters with Chebyshev response; examples of dual-passband, triple-

passband and five-passband filters are presented. In order to increase the frequency 

selectivity, a topology with cross coupling is investigated; the design example of a 20th order 

five-passband filter with quasi-elliptic response is presented. The lowpass to multi-passband 

frequency transformation is the key in the synthesis procedure. If the de-normalised response 

has M passbands, there will be in total M pairs of interim parameters ωoi, bi (i=1,2,…,M), 

which define the frequency transformation. The synthesis technique offer a way to 

analytically derive these M pairs of interim parameters directly from M pairs of passband 

limits ωLi, ωHi (i=1,2,…,M). As long as the passband limits are known, the frequency 

transformation is determined. Physically, the lowpass to multi-passband frequency 

transformation is realised by the so called multi-passband resonator sections. Once the 

lowpass prototype is determined, each individual passband shape of the multi-passband filter 

is determined. Besides S-parameters, this synthesis technique also gives analytical solutions 

of the design parameters, including the coupling matrix and external Q-factors. They can be 
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analytically derived once the passband specification and the lowpass prototype are given. The 

synthesis details, relevant equations and expressions are presented in Chapter 3.  

Following the synthesis technique, the implementations of the multi-passband filter are 

presented in Chapter 4. Two selected filter design examples are implemented in the form of 

rectangular waveguide. They are the 10th order five-passband filter with Chebyshev response 

and the 20th order five-passband filter with quasi-elliptic response. One thing that should be 

bear in mind is that, this synthesis technique is not limited to rectangular waveguide, but 

applies to all kinds of coupled resonator circuits. In Chapter 4, the fundamental knowledge 

and design technique of rectangular waveguide circuit are reviewed first; the relationships 

between rectangular waveguide circuit components (cavity resonator and iris) and the design 

parameters are given. A set of coupling matrix and external Q-factors can be interpreted into 

the topology of rectangular waveguide circuit. The individually obtained dimensions of each 

component are used as the initial value, and further overall structure optimisation is employed 

to match the desired filter specifications more accurately. Both the implementations of the 

10th order filter and the 20th order filter follow this procedure. In general, the measured S-

parameters show good agreements with the simulated ones. 

Tunable bandpass filters are investigated in Chapter 5. A new coupling tuning structure based 

on rectangular waveguide is presented. In order to realise the tuning in the coupling 

coefficient, it physically changes the dimensions of the discontinuities between two adjacent 

cavity resonators in a rectangular waveguide filter. It can also be used for tuning the external 

Q-factors. However, due to the gap between the coupling tuner and the filter main body, 

radiation loss becomes an issue which reduces the unloaded Q-factor, and causes high 

insertion loss. To solve this problem, chokes are introduced. It increases the unloaded Q-

factor by 103 times compared to the situation without chokes. The value of radiation Q-factor 

for a tunable resonator with chokes is therefore above 106. A 3rd order fully tunable bandpass 
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filter is presented at the end of this chapter. The measured results show good agreements with 

the simulated ones. The filter has its maximum bandwidth tuning range at 9.5GHz, the 

corresponding FBW changes from 0.9% to 3.8%. Besides, it also offers a 400MHz tuning 

range for centre frequency, when the couplings are fixed. 

The design of tunable notch filter is presented in Chapter 6. The topology of the tunable 

notch filter is based on the dual-passband filter topology. For such a topology, the frequencies 

of bandstop resonators control the position of the notch, and the frequencies of bandpass 

resonators control the centre frequency of the passband. Each tuning parameter in this filter 

controls one kind of filter specification. This feature makes the filter easy to tune. A 4th order 

tunable notch filter is given as an example to illustrate the design. It achieves tuning 

flexibilities in centre frequency, notch position and passband width. The filter is successfully 

implemented in rectangular waveguide.  

7.2 Future work 

At current stage, the generalised synthesis technique for multi-passband filter is a pure 

analytical approach. This means though the results can be efficiently obtained from the 

relevant expressions, they have to follow certain rules. For example, the multi-passband filter 

obtained from the analytical synthesis technique has the same in-band and out-of-band 

response for every passband. It is not possible to make passband 1 having a 2nd order 

Chebyshev response, while making passband 2 having a 4th order quasi-elliptic response. 

However, such case might be solved by combining the analytical approach with optimisation 

methods. Such hybrid algorithm may use the analytical synthesis technique to obtain a set of 

good starting values and then use certain optimisation method to get a more flexible solution. 

Besides, the matrix rotation and reduction technique may also be combined with the current 

analytical synthesis technique, as for some cases, the synthesised filter topologies might be 

difficult to realise in real circuit.  
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Since the tunable filters are currently tuned by hand, the accuracy is limited. This can be 

improved by integrating step motor driving system, which offers more precisely control of 

tuners. Furthermore, based on such driving system, it might be possible to control the filter 

through a programmable chip. By uploading the measured results and the corresponding 

tuning parameters into the chip in advance, the filter may tune itself automatically once the 

desired specifications are provided. 
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Appendix I: Quasi-Elliptic Response Obtained by 
Coupling Matrix Optimisation 
The quasi-elliptic response discussed here is produced by a cascade quadruplet (CQ) structure 

which has 4 resonators. The topology is given in Figure I.1. The dashed line stands for cross 

coupling between resonator 1 and 4, while the solid lines stand for the direct couplings. 

Resonator 1 and 4 connect to the two ports. 

1 4

2 3

Port 2Port 1

 

Figure I.1 The topology of the CQ structure 

1. The flowchart of coupling matrix optimisation  

In order to give a straight forward explanation on coupling matrix optimisation, a flowchart 

that describes the full optimisation process is given below in Figure I.2. Generally, there are 

two key elements in this optimisation method. They are the starting values and the cost 

function. Given the starting values, the coupling matrix [M] and external Q-factor Qe can be 

initialised. The cost function (CF) is evaluated within every iteration. As long as CF satisfies 

the pre-set stopping conditions, the optimisation stops. If CF manages to converge before 

reaching the maximum iteration times, the valid result is obtained. This optimisation method 

is programmable in MATLAB. The algorithm is based on the default MATLAB function 

fmincon, which is a powerful tool for searching local optimum. 
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CF    tolorance

Begin with the 
starting value

Generate the 
initial [M] and 

Qe

Evaluate
 cost function CF

Generating new 
values of [M] and 

Qe

Return Current 
[M] and Qe

Yes

No
Reaching maximum 

iteration times?

Return [M] and Qe 
with lowest CF

Yes

No

End with 
valid result

Optimisation 
succeed

Fail to 
converge

End without 
valid result

 

Figure I.2 The flowchart of coupling matrix optimisation method 

2. Starting values and Cost function 

Optimisation can produce good solutions which meet general design specifications in most 

cases. From the technical perspective, the optimisation can be categorised into two types, 

which are global optimisation and local optimisation. Both use specific algorithms to get the 

desired solution. Usually, the local optimisation is faster, but may only work well when good 

starting values are given; otherwise, the optimal solution may not be found. The global 

optimisation is more useful when good starting values are not known; but it may take longer 

time to find the solution.  
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Since the optimisation method used here is local optimisation, for the same optimisation 

algorithm, two different sets of starting value may lead to two completely different results. 

Therefore, a good set of starting value is critical to the optimisation. Here, the [M] and Qe of 

the standard 4th order lowpass prototype Chebyshev filter are used as the starting value. They 

are sufficient for the optimisation algorithm to find the optimal solution. The 4th order 

lowpass prototype quasi-elliptic response given in Figure I.3 is an example that obtained from 

such starting values. 

Cost function is introduced to quantify the error between the result in current iteration and the 

expected goal. Sampling points are the positions where the error is measured. In this case, 

there are in total 11 sampling points. They are marked in Figure I.3. The 5 red inverted 

triangles in the middle mark the 3 reflection poles (RPs) and the 2 band limits (BLs). The 4 

red triangles at the bottom mark the 4 reflection zeros (RZs). The 2 green squares at the 

bottom mark the 2 transmission zeros (TZs).  

 
Figure I.3 A lowpass prototype quasi-elliptic response and sampling points for cost function 

 

-5 -4 -3 -2 -1 0 1 2 3 4 5
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Frequency in Hz

S
-p

a
ra

m
e
te

r 
in

 d
B

 

 

S11

S21

RZs

RPs & BLs

TZs



174 
 

The cost function CF is given as, 

2 1 2

11 11 11 21
1 1 1 1

( ) ( ) ( ) ( )
n n

i RZi i BLi i RPi i TZi
i i i i

CF RZw S BLw S RL RPw S RL TZw S


   

            

(I-1) 

where the RZwi, BLwi, RPwi and TZwi are the weights of each term; ΩRZi, ΩBLi, ΩRPi and ΩTZi 

are the positions of the sampling points; n is the order of the filter; RL is the return loss level.  

The optimisation is implemented in MATLAB, and for convenience, only the final results are 

given. The four RZs are placed at ±0.9397, ±0.4226; the two TZs are placed at ±1.6; the three 

RPs are at 0, ±0.7457; the two BLs are at ±1; the n is 4; the RL is 20dB. The optimised 

coupling matrix and external Q-factors for the 4th order lowpass prototype quasi-elliptic filter 

are given in (I-2), 

  

0 0.8306 0 0.2963
0.8306 0 0.8145 0

0 0.8145 0 0.8306
0.2963 0 0.8306 0

M

 
 
 
 
 
 

,   

QeS =QeL =0.9670 

 
(I-2) 
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Appendix II: Topology Selection for Tunable Notch 
Filter 
It is not possible to investigate all multi-passband filters one by one; however, the filters with 

the same type of multi-passband resonator section share similar characteristics. Therefore, 

only selected examples are discussed here. In order to figure out what topologies are more 

suitable to be used in tunable notch filters design, some comparisons and discussions are 

given. 

Two 6th order triple-passband topologies are used here as the representatives. They represent 

two types of filters; one is with parallel coupled resonator sections, the other one is with non-

parallel coupled resonator sections. The two filters have different characteristics, and their 

characteristics apply to the two types of filters they represent.   

The tunable notch filters achieve flexibility in three aspects, which are notch positions tuning, 

centre frequency tuning and bandwidth tuning. The discussion on topology selection is based 

on a comparative approach. It figures out how much affection will be made to the design 

parameters (coupling matrix and external Q-factors) of each filter, if the filter specifications 

change. A reference example is given first in Section 1, together with the relevant filter 

specifications and design parameters, which will be used as are reference to compare with 

other examples. With different filter specifications, we can have different design parameters 

and responses which correspond to the specification. The comparisons show the changes in 

the corresponding design parameters. The synthesis method used here is the analytical 

synthesis method proposed in Chapter 3.  

1. The Reference Example 

Below are the topologies of the two 6th order tunable notch filters; both produce triple-

passband responses. All couplings and resonator frequencies are tunable. 
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1 2

3

Port 1 Port 2
Qe1 Qe2M1,2

M2,4

4

M1,3

5

M4,6

6

M3,5

(a)

1 2

3

Port 1 Port 2
Qe1 Qe2M1,2

M2,4

4

M1,3

5

M2,6

6

M1,5

(b)  
Figure II.1 The topologies of two 6th order tunable notch filters. (a) based on series coupled 
resonator section, (b) based on parallel coupled resonator section 

 

The one shown in Figure II.1(a) is formed of series coupled resonator sections, while the 

right one is built up by parallel coupled resonator sections. The red arrows indicate the tuning 

abilities in resonator frequencies while the blue arrows mean the tuning abilities in couplings. 

The reference response is given in Figure II.2, which has two notches evenly placed on the 

passband. With the same filter specifications, both filters can generate this response, but the 

relevant design parameters are different. 

 
Figure II.2 The reference response 
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The filter specifications and corresponding design parameters are given in Table II.1. The 

two filters share the same specifications, but have different design parameters. 

Filter specifications 

Centre frequency Notch 
positions 

Passband width 

9.00GHz 8.83GHz, 
9.17GHz 

1GHz 

Design parameters (filter with series coupled sections) 

Coupling matrix External Q-
factor 

Resonator 
frequency 

0 0033 0 1665 0 0327 0 0 0
0 1665 0 0033 0 0 0327 0 0
0 0327 0 0 0018 0 0 0405 0

0 0 0327 0 0 0018 0 0 0405
0 0 0 0405 0 0 0012 0
0 0 0 0 0405 0 0 0012

. . .
. . .
. . .

. . .
. .

. .

 
 

 
 
 

 
 
  
 

 

6.637 1&2: 
8.99GHz 

 
3&4: 

8.99GHz 
 

5&6: 
9.01GHz 

Design parameters (filter with parallel coupled sections) 

Coupling matrix External Q-
factor 

Resonator 
frequency 

0 0033 0 1665 0 0236 0 0 0227 0
0 1665 0 0033 0 0 0236 0 0 0227
0 0236 0 0 0409 0 0 0

0 0 0236 0 0 0409 0 0
0 0227 0 0 0 0 0403 0

0 0 0227 0 0 0 0 0403

. . . .
. . . .
. .

. .
. .

. .

 
 

 
 
 

 
 
  
 

 

6.637 1&2: 
8.99GHz 

 
3&4: 

8.83GHz 
 

5&6: 
9.17GHz 

Table II.1 The filter specifications and design parameters of the reference response shown in 
Figure II.2 

 

From the table above, it can be found that for the filter with parallel coupled resonator 

sections, its notch positions are directly determined by the frequencies of the bandstop 

resonators (resonator 3&4, 5&6); but this feature does not apply to the filter with series 

coupled resonator sections. 
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2. Notch Position Tuning 

The notch position tuning is discussed in this section. Only the notch positions are tuned, 

while all other filter specifications remain the same as the reference example shown in 

Section 1. Four examples are given; all of them are compared with the reference given in 

Section 1. The changes in design parameters are labelled in blue, if the change is smaller than 

10%; it is labelled in red, if the change is more than 10%.  

2.1 Example 1: Only one notch tuned 

In this example, only one notch is tuned from its original position, the other one remains 

unchanged. Figure II.3 shows the response. The relevant filter specifications and design 

parameters are given in Table II.2. 

 
Figure II.3 The response of the 6th order tunable notch filter for example 1 

Filter specifications 

Centre frequency Notch 
positions 

Passband width 

9.00GHz 9.00GHz, 
9.17GHz 

1GHz 
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Design parameters (filter with series coupled sections) 

Coupling matrix External Q-
factor 

Resonator 
frequency 

0 0336
0 0336

0 0336 0 0199
0 03

0 0195
0 0195

0 0033 0 1665 0 0 0
0 1665 0 0033 0 0 0

0 0 0
0 0 0
0 0 0 0
0 0 0 0

0 0195
0 01

36 0 0199
0 0210

095 0210

.
.

. .
. .

.

.

.

.

.

.

.

.

.

.
 
 

 
 
 
 
 
  
 

 

6.637 1&2: 
8.99GHz 

 
3&4: 

9.09GHz 
 

5&6: 
9.10GHz 

Design parameters (filter with parallel coupled sections) 

Coupling matrix External Q-
factor 

Resonator 
frequency 

0 0033 0 1665 0 0
0 1665 0 0033 0 0

0 0 0 0

0 0241 0 0234
0 0241 0 0234

0 0241 0 0010
0 0241 0 0010

0 0234
0 0234

0 0 0 0
0 0 0 0 0403 0

0 0 0 0 0 0403

. .
. .

. .
. .

.

.

.

.
. .

.
.

 
 

 
 
 
 
 
  
 

 

6.637 1&2: 
8.99GHz 

 
3&4: 

9.00GHz 
 

5&6: 
9.17GHz 

Table II.2 The filter specifications and design parameters of the response for example 1 

2.2 Example 2: Two notches close to passband centre 

 
Figure II.4 The response of the 6th order tunable notch filter for example 2 
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Filter specifications 
Centre frequency Notch 

positions 
Passband width 

9.00GHz 8.93GHz, 
9.07GHz 

1GHz 

Design parameters (filter with series coupled sections) 
Coupling matrix External Q-

factor 
Resonator 
frequency 

0 0348
0 0348

0 0348 0 0166
0 0348 0 0

0 0033 0 1665 0 0 0
0 166

166
0 01

5 0 0033 0 0 0
0 0 0

0 0 0
0 0 0 0
0 0 0

66
0

0 0000
0 0000

0 0002
0 000201 6 06

.
.

. .
. .

.
.

. .
. .

.
.

.
.

 
 

 
 
 
 
 
  
 

 

6.637 1&2: 
8.99GHz 

 
3&4: 

9.00GHz 
 

5&6: 
9.00GHz 

Design parameters (filter with parallel coupled sections) 
Coupling matrix External Q-

factor 
Resonator 
frequency 

0 0033 0 1665 0 0
0 1665 0 0033 0 0

0 0 0 0

0 0247 0 0245
0 0247 0 0245

0 0247 0 0165
0 0247 0 0160 0 0 0

0 0 0 0
5

0 0245 0 0166
0 0245 0 00 0 0 0 166

. .
. .

. .
. .
. .

. .
. .

. .

 
 

 
 
 
 
 
  
 





 

6.637 1&2: 
8.99GHz 

 
3&4: 

8.93GHz 
 

5&6: 
9.07GHz 

Table II.3 The filter specifications and design parameters of the response for example 2 

2.3 Example 3: Two notches close to passband edge 

 
Figure II.5 The response of the 6th order tunable notch filter for example 3 
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Filter specifications 
Centre frequency Notch 

positions 
Passband width 

9.00GHz 8.63GHz, 
9.37GHz 

1GHz 

Design parameters (filter with series coupled sections) 
Coupling matrix External Q-

factor 
Resonator 
frequency 

0 0217
0 0217

0 0217 0 0874
0 02

0 0033 0 1665 0 0 0
0 1665 0 0033 0 0 0

0 0 0
0 0 0

0 0095
0 0095

00 0 0 0
0 0 0

17 0 0874
0 0874

0 00874
0057

0 0057

.
.

. .
. .

.
.

.
.

. .

.

. .

.

 
 

 
 
 
 
 
  
 




 

6.637 1&2: 
8.99GHz 

 
3&4: 

8.96GHz 
 

5&6: 
9.03GHz 

Design parameters (filter with parallel coupled sections) 
Coupling matrix External Q-

factor 
Resonator 
frequency 

0 0033 0 1665 0 0
0 1665 0 0033 0 0

0 0 0 0

0 0216 0 0204
0 0216 0 0204

0 0216 0 0896
0 0216 0 0890 0 0 0

0 0 0 0
6

0 0204 0 0859
0 0204 0 00 0 0 0 859

. .
. .

. .
. .
. .

. .
. .

. .

 
 

 
 
 
 
 
  
 




 

6.637 1&2: 
8.99GHz 

 
3&4: 

8.63GHz 
 

5&6: 
9.37GHz 

Table II.4 The filter specifications and design parameters of the response for example 3 

2.4 Example 4: Two notches close to passband edge at the same side 

 
Figure II.6 The response of the 6th order tunable notch filter for example 4 
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Filter specifications 

Centre frequency Notch 
positions 

Passband width 

9.00GHz 9.23GHz, 
9.37GHz 

1GHz 

Design parameters (filter with series coupled sections) 

Coupling matrix External Q-
factor 

Resonator 
frequency 

0 0248
0 0248

0 0248 0 0162
0 0248 0 0

0 0033 0 1665 0 0 0
0 166

162
0 01

5 0 0033 0 0 0
0 0 0

0 0 0
0 0 0 0
0 0 0

62
0

0 0669
0 0669

0 0715
0 071501 2 06

.
.

. .
. .

.
.

. .
. .

.
.

.
.

 
 

 
 
 
 
 
  
 

 

6.637 1&2: 
8.99GHz 

 
3&4: 

9.30GHz 
 

5&6: 
9.33GHz 

Design parameters (filter with parallel coupled sections) 

Coupling matrix External Q-
factor 

Resonator 
frequency 

0 0033 0 1665 0 0
0 1665 0 0033 0 0

0 0 0 0

0 0221 0 0209
0 0221 0 0209

0 0221 0 0528
0 0221 0 0528

0 0209 0 0856
0 0209

0 0 0 0
0 0 0 0

0 0 0 0 08560

. .
. .

. .
. .

. .
. .

. .
. .

 
 

 
 
 
 
 
  
 

 

6.637 1&2: 
8.99GHz 

 
3&4: 

9.23GHz 
 

5&6: 
9.37GHz 

Table II.5 The filter specifications and couplings of the response for example 4 

2.5 Discussion on Notch Position Tuning  

For the filters with series coupled resonator sections, the characteristics are concluded as 

follow: 

 The notch positions are not solely determined by the resonant frequencies of the 

bandstop resonators; but are controlled by both inter-resonator couplings and resonant 

frequencies of the bandstop resonators. Even if there is only one notch being tuned, all 

inter-resonator couplings and resonant frequencies of bandstop resonators will change. 
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 Inter-resonator couplings change significantly during the notch position tuning.  The 

maximum changes for 1,3M  and 2,4M  are 34%; the maximum changes for 3,5M  and 

4,6M  are 116% (example 3). 

 The bandpass resonators and the couplings between not change during notch position 

tuning. 

For the filters with parallel coupled resonator sections, the characteristics are: 

 Although the inter-resonator couplings change along with the notch position tuning, 

the changes are less than 10% in these examples.  

 The frequencies of bandstop resonators are exactly the positions of the notches. 

3. Passband Centre Frequency Tuning 

In this section, only the centre frequency is tuned. All other specifications remain the same as 

the reference example in Section 1. Two examples are given below.  

3.1 Example 5: Passband Tuned Down 

 
Figure II.7 The response of the 6th order tunable notch filter for example 5 
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Filter specifications 
Centre frequency Notch 

positions 
Passband width 

8.80GHz 8.83GHz, 
9.17GHz 

1GHz 

Design parameters (filter with series coupled sections) 
Coupling matrix External Q-

factor 
Resonator 
frequency 

0 0290
0 0290

0 0290 0 0366
0 0290 0 0

0 0083 0 1707
0 1707 0 0083

0 0297
0

0 0 0
0 0 0

0 0 0
0 0 0 366
0 0 0

0297
0 0646

0 0
031 07

0 036 6460 0 0 06
0

.
.

. .
. .

.

. .
. .

.
.

.
. .

 
 
 







 
 
 
  
 

 

6.474 1&2: 
8.76GHz 

 
3&4: 

8.93GHz 
 

5&6: 
9.09GHz 

Design parameters (filter with parallel coupled sections) 
Coupling matrix External Q-

factor 
Resonator 
frequency 

0 0
0 0

0 0 0 0

0 0083 0 1707 0 0245 0 0207
0 1707 0 0083 0 0245 0 0207
0 0245 0 0065

0 0245 0 0065
0 0207 0 0877

0 020

0 0 0 0
0 0 0 0

0 0 07 0 08770

. . . .
. . . .
. .

. .
. .

. .

 
 
 
 
 
 
 
 











 

6.474 1&2: 
8.76GHz 

 
3&4: 

8.83GHz 
 

5&6: 
9.17GHz 

Table II.6 The filter specifications and couplings of the response for example 5 

3.2 Example 6: Passband Tuned Up 

 
Figure II.8 The response of the 6th order tunable notch filter for example 6 

7.5 8 8.5 9 9.5 10 10.5
-35

-30

-25

-20

-15

-10

-5

0

Frequency in GHz

S
-p

a
ra

m
e
te

r 
in

 d
B

 

 

S11

S21



185 
 

Filter specifications 

Centre frequency Notch 
positions 

Passband width 

9.20GHz 8.83GHz, 
9.17GHz 

1GHz 

Design parameters (filter with series coupled sections) 

Coupling matrix External Q-
factor 

Resonator 
frequency 

0 0286
0 0286

0 0286 0 0379
0 0286 0 0379

0 0379
0 0379

0 0 0
0 0 0

0 0 0
0 0

0 0018 0 1624
0 1624 0 0018

0 0318
0 0318

0 0617
0 0

0
0 0 0 0
0 0 0 70 61

. .

. .
.

.
. .

.
. .

.

.

.
.

.

 
 
 
 
 
 
 
 









  

 

6.802 1&2: 
9.21GHz 

 
3&4: 

9.06GHz 
 

5&6: 
8.92GHz 

Design parameters (filter with parallel coupled sections) 

Coupling matrix External Q-
factor 

Resonator 
frequency 

0 0018 0 1624 0 0213 0 0236
0 1624 0 0018 0 0213 0 0236
0 0213 0 0875

0

0 0
0 0

0 0 0 0
0 0 00213 0 0875

0 0236 0
0

0 0 0 0
0 0 0 0

0060
0 0236 0 0060

. . . .

. . . .

. .
. .

. .
. .







 
 
 
 
 
 
 
 

 


 

6.802 1&2: 
9.21GHz 

 
3&4: 

8.83GHz 
 

5&6: 
9.17GHz 

Table II.7 The filter specifications and couplings of the response for example 6 

3.3 Discussion on Passband Centre Frequency Tuning 

The characteristics of the filters with series coupled resonator sections can be concluded as 

follow: 

 The passband frequencies are not solely determined by the resonant frequencies of the 

bandpass resonators; but are determined by both inter-resonator couplings and 

resonant frequencies of all resonators.  

 Although the positions of the notches are fixed during centre frequency tuning, the 

resonant frequencies of the bandstop resonators change. 
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 The maximum change in coupling between bandpass resonator 1,2M  is 2.4%, the 

maximum change in external Q-factor is 2.6%. They are not sensitive to the centre 

frequency tuning. 

For the filters with parallel coupled resonator sections, its characteristics are concluded as 

follow: 

 As long as the notch positions are fixed, the frequencies of bandstop resonators not 

change during the centre frequency tuning. 

 The inter-resonator couplings are not sensitive to centre frequency tuning. 

 

4. Passband Bandwidth Tuning 

In this section, only the passband bandwidth is tuned. All other specifications remain the 

same as the reference given in Section 1.  

4.1 Example 7: Passband Tuned Wider 

 
Figure II.9 The response of the 6th order tunable notch filter for example 7 

7.5 8 8.5 9 9.5 10 10.5
-35

-30

-25

-20

-15

-10

-5

0

Frequency in GHz

S
-p

a
ra

m
e
te

r 
in

 d
B

 

 

S11

S21



187 
 

Filter specifications 
Centre frequency Notch 

positions 
Passband width 

9.00GHz 8.83GHz, 
9.17GHz 

2GHz 

Design parameters (filter with series coupled sections) 
Coupling matrix External Q-

factor 
Resonator 
frequency 

0 3532 0 0490
0 3532 0 0490
0 0490

0 04

0 0130
0 0130

0 0013 0 0395
0 0013 0 0395

0 0395 0 0012

0 0 0
0 0 0

0 0 0
0 0 0
0 0 0 0
0 0 0395 0 0010

0

20 0

9

.
.

. .
. .

. .
. .

. .
. .
.

.

 
 
 
 











 
 
  
 

 

3.129 1&2: 
8.94GHz 

 
3&4: 

8.99GHz 
 

5&6: 
9.01GHz 

Design parameters (filter with parallel coupled sections) 
Coupling matrix External Q-

factor 
Resonator 
frequency 

0 0
0 0

0 0 0 0

0 0130 0 0258 0 0249
0 0130 0 0258 0 0249

0 0258 0 0396
0 00 0 0 0

0 0
258 0 03

0 0
0 0 0 0

96
0 0249 0 0394

0 0249

0 3535
0 35

4

5

0 0 9

3

3

. . .
. . .

. .
. .

. .

.
.

. .

 
 
 
 
 








 
 
  
 

 

3.129 1&2: 
8.94GHz 

 
3&4: 

8.83GHz 
 

5&6: 
9.17GHz 

Table II.8 The filter specifications and couplings of the response for example 7 

4.2 Example 8: Passband Tuned Narrower 

 
Figure II.10 The response of the 6th order tunable notch filter for example 8 
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Filter specifications 

Centre frequency Notch 
positions 

Passband width 

9.00GHz 8.83GHz, 
9.17GHz 

0.6GHz 

Design parameters (filter with series coupled sections) 

Coupling matrix External Q-
factor 

Resonator 
frequency 

0 0924 0 0211
0 0924 0 0211
0 0211

0 02

0 0011
0 0011

0 0021 0 0421
0 0021 0 0421

0 0421 0 0013

0 0 0
0 0 0

0 0 0
0 0 0
0 0 0 0
0 0 0421 0 0010

1

30 0

1

.
.

. .
. .

. .
. .

. .
. .
.

.

 
 
 
 











 
 
  
 

 

11.960 1&2: 
9.00GHz 

 
3&4: 

8.99GHz 
 

5&6: 
9.01GHz 

Design parameters (filter with parallel coupled sections) 

Coupling matrix External Q-
factor 

Resonator 
frequency 

0 0
0 0

0 0 0 0

0 0011 0 0214 0 0207
0 0011 0 0214 0 0207

0 0214 0 0412
0 00 0 0 0

0 0
214 0 04

0 0
0 0 0 0

12
0 0207 0 0399

0 0207

0 0924
0 09

9

4

0 0 9

2

3

. . .
. . .

. .
. .

. .

.
.

. .

 
 
 
 
 








 
 
  
 

 

11.960 1&2: 
9.00GHz 

 
3&4: 

8.83GHz 
 

5&6: 
9.17GHz 

Table II.9 The filter specifications and couplings of the response for example 8 

4.3 Discussion on Passband Bandwidth Tuning 

The characteristics for the filter with series coupled resonator sections can be concluded as 

follow: 

 The passband bandwidth are primarily determined by the coupling between bandpass 

resonators 1,2M , the external Q-factors and the couplings between bandpass 

resonators and bandstop resonators 1,3M , 2,4M .  

 During the passband width tuning, the frequencies of resonators change as well. 
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 The couplings between bandstop resonators 3,5M , 4,6M  and the resonant frequencies 

of all resonators are not sensitive to the passband width tuning. 

For the filter with parallel coupled resonator sections: 

 The coupling between bandpass resonators 1,2M  and the external Q-factors are the 

dominant factors that determine the passband bandwidth; other parameters are not 

sensitive to the passband bandwidth tuning. 

 The frequencies of resonators are not sensitive to the passband bandwidth tuning. 

 The inter-resonator couplings between bandpass resonators and bandstop resonators

1,3M , 2,4M , 1,5M and 2,6M  are not sensitive to passband bandwidth tuning.  

5. Conclusion 

Given the comparisons and discussions above, it is quite obvious that the topology with 

parallel coupled resonator sections is more practical for a tunable filter, because the tuning 

parameters have more independence. This feature allows each tuning parameter controls one 

kind of filter specification, which significantly simplifies the tuning procedure. 
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Appendix III: The Comparison on S-Parameters 
Plotted from Two Different Approaches 
The analytical synthesis technique generates S-parameters and design parameters (coupling 

matrix, external Q-factor, etc.) through separate routines; the S-parameters are plotted from 

(2-32) using Cameron’s characteristic polynomials [1], rather than directly plotted from (2-28) 

using the design parameters. Hence, for analytical synthesis technique, the S-parameters 

cannot be directly controlled by the design parameters. In order to control S-parameters by 

the design parameters, the S-parameters should be plotted using (2-28). However, the 

accuracy of S-parameters directly plotted from design parameters may depends on the FBW 

[2]. A comparison is carried out in the following sections to investigate the difference 

between the S-parameters plotted from the two different approaches. 

The topology shown in Figure III.1 is used as an example in this section. 

                    

1 2

3 4

Port 2Port 1

 

Figure III.1 A 4th order notch filter 

1. Lowpass to Bandpass Frequency Transformation  

The frequency transformation here is the conventional lowpass to bandpass frequency 

transformation discussed in Chapter 2. However, the lowpass response here refers to a 

lowpass notch response, rather than a prototype Chebyshev or Butterworth response which is 

synthesised from the transfer function.  The frequency transformation is illustrated below, 
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   ωL1             ωo ωH1   ωL2     ωH2

|S21|

Frequency
ω Domain

|S21|

Frequency
Ω Domain

   ΩL1              0  ΩH1   ΩL2      ΩH2

Lowpass to bandpass 
frequency 

transformation

 

Figure III.2 A schematic of the proposed lowpass to bandpass frequency transformation 

where ΩLi and ΩHi (i=1,2) are the passband limits for the lowpass response in Ω domain. In 

the de-normalised  domain, ωLi and ωHi (i=1,2) are the de-normalised passband limits; ωo is 

the passband centre frequency. 

The corresponding lowpass to bandpass frequency transformation is, 

 2 1( )
2

o oH L

oBW
 

 

  
    

 
 (III-1) 

 
in which BW is calculated by  

 2 1H LBW     (III-2) 
 

In the case of 1 1L    and 2 1H  , it will be a lowpass prototype response, which 

simplifies (III-1) as, 

 
1o o o

o oBW FBW
   

   

   
       

   
 (III-3) 

 
It should be noticed that only two parameters are required to fully define this frequency 

transformation, which are the centre frequency ωo and fractional bandwidth FBW.  

The lowpass prototype notch response and the corresponding normalised design parameters 

are obtained using the approach given below. 
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2. The Lowpass Prototype Notch Response and The Corresponding Normalised 

Design Parameters 

The lowpass prototype notch response is plotted directly from corresponding normalised 

design parameters (normalised coupling matrix, external Q-factors). The normalised design 

parameters are produced from a set of de-normalised design parameters that are obtained by 

the analytical synthesis technique. Because the frequency transformation involves narrow-

band approximation ( / 1o   ), the responses and design parameters are more accurate in 

narrow-band cases. Therefore, the lowpass prototype notch response and the normalised 

design parameters are generated from a de-normalised with very narrow band (FBW = 

0.01%). 

2.1 A de-normalised narrow-band Notch Response and The Corresponding Design 

Parameters (ω Domain) 

Figure III.3 shows a narrow-band notch response plotted from the analytical synthesis 

technique, the corresponding filter specifications and design parameters are presented in 

Table III.1. 
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Figure III.3 The de-normalised notch response (FBW=0.01%) 

The above response is in the de-normalised frequency domain (ω domain), with 1 9.9995L 

GHz and 2 10.0005H  GHz. By applying (2-16), the centre frequency ωo and fractional 

bandwidth FBW can be calculated as 10.00000GHz and an FBW of 0.010% (accurate up to 

five decimal places). The filter specifications and corresponding design parameters are listed 

below. 

Filter specifications (ω domain) 

Centre frequency Notch position Passband width Notch width 
10.00000GHz 10.00023GHz 0.00100GHz 0.00005GHz 

Design parameters (ω domain) 

Coupling matrix External Q-factor Resonator frequency 

4

0 0237 1 5790 0 1969 0
1 5790 0 0237 0 0 1969

10
0 1969 0 0 4737 0

0 0 1969 0 0 4737

. . .
. . .
. .

. .



 
 

 
 
 
 

 

36 9982 10.   1&2: 
10.00000GHz 

 
3&4: 

10.00023GHz 

Table III.1 The filter specifications and design parameters (FBW=0.01%) 
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2.2 The Lowpass Prototype Notch Response and The Corresponding Normalised 

Design Parameters (Ω domain) 

The normalised design parameters are obtained from the de-normalised design parameters in 

Table III.1 by using (2-24); the results are shown below, 

Normalised Filter specifications (Ω domain) 

Centre frequency Notch position Passband width Notch width 
0Hz 0.4737Hz 2.0000Hz 0.1000Hz 

Normalised Design parameters (Ω domain) 

Coupling matrix External Q-factor Resonator frequency 
0 0237 1 5790 0 1969 0

1 5790 0 0237 0 0 1969
0 1969 0 0 4737 0

0 0 1969 0 0 4737

. . .
. . .
. .

. .

 
 

 
 
 
 

 

0.6998 1&2: 
-0.0237Hz 

 
3&4: 

0.4737Hz 

Table III.2 The normalised filter specifications and design 

 

The lowpass notch response below is plotted directly from the above normalised design 

parameters using the lowpass to bandpass frequency transformation given in (III-1).  

 
Figure III.4 The normalised notch response 
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It can be seen from Figure III.4 that 1L  is -1.0000, 2H  is 1.0000. The values are accurate 

up to four decimal places, which indicate that this can be considered as a standard lowpass 

prototype notch response. 

3. Comparison 1  (ωL1=9.500 GHz, ωH2=10.500 GHz) 

In this section, the de-normalised responses plotted from the two different approaches are 

presented and compared. The passband limits are set as 9.500 GHz and 10.500GHz. The ωo 

and FBW can be calculated as 9.987 GHz and 10.0%, respectively.  

3.1 The Responses Plotted from Analytical Synthesis 

Below is the response plotted from the analytical synthesis technique; the corresponding filter 

specifications and design parameters are shown in Table III.3.  

 
Figure III.5 The de-normalised notch response from analytical synthesis (FBW=10.0%) 

Desired Filter specifications (ω domain) 

Centre frequency Notch position Passband width Notch width 
9.987GHz 10.234GHz 1.000GHz 0.050GHz 

Actual Filter specifications (ω domain) 
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Centre frequency Notch position Passband width Notch width 
9.987GHz 10.234GHz 1.000GHz 0.050GHz 

Design parameters (ω domain) 

Coupling matrix External Q-factor Resonator frequency 
0 0024 0 1583 0 0192 0

0 1583 0 0024 0 0 0192
0 0192 0 0 0494 0

0 0 0192 0 0 0494

. . .
. . .
. .

. .

 
 

 
 
 
 

 

6.981 1&2: 
9.975GHz 

 
3&4: 

10.234GHz 

Table III.3 The corresponding filter specifications and design parameters of the response 

There are two sets of filter specifications in the above table, which are desired filter 

specification and actual filter specification. The former one is the specification used to 

generate the response and the design parameters; while the latter one is the specification that 

read from the response. Because the analytical synthesis technique generates the S-

parameters from the passband limits, these two sets of filter specifications are identical. 

3.2 The Responses Plotted from Design Parameters 

Figure III.6 and Table III.4 show the response and corresponding design parameters obtained 

from the lowpass prototype shown in Section 2.2. 

 
Figure III.6 The de-normalised notch response plotted from design parameters (FBW=10.0%) 
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Desired Filter specifications (ω domain) 

Centre frequency Notch position Passband width Notch width 
9.987GHz 10.234GHz 1.000GHz 0.050GHz 

Actual Filter specifications (ω domain) 

Centre frequency Notch position Passband width Notch width 
9.987GHz 10.227GHz 1.000GHz 0.051GHz 

Design parameters (ω domain) 

Coupling matrix External Q-factor Resonator frequency 
0 0024 0 1581 0 0197 0
0 1581 0 0024 0 0 0197
0 0197 0 0 0474 0

0 0 0197 0 0 0474

. . .
. . .
. .

. .

 
 

 
 
 
 

 

6.989 1&2: 
9.975GHz 

 
3&4: 

10.227GHz 

Table III.4 The corresponding filter specifications and design parameters  
 

It can be read from Figure III.6 that the passband limits 1L  and 2H  are 9.500GHz and 

10.500GHz, respectively, which satisfy the proposed passband limits. However, the notch 

position is 0.010GHz lower than the proposed frequency, while the notch width is 0.001GHz 

wider than the proposed notch width. 

3.3 The Comparison 

For easier comparison, Figure III.7 displays the notch responses plotted from the two 

different approaches on the same graph. 
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Figure III.7 The comparison of de-normalised notch responses from the two approaches 
(FBW=10.0%), (a) full-scale response, (b) extended partial response for passband 

 

The S-parameters plotted from the analytical synthesis satisfy the desired passband 

specifications more accurately; while the S-parameters from the design parameters is slightly 

distorted. In general, the two set of design parameters are very close; the maximum error 

between them is only 2.5%. 

8 8.5 9 9.5 10 10.5 11 11.5 12
-35

-30

-25

-20

-15

-10

-5

0

Frequency in GHz
(a)

S
-p

a
ra

m
e
te

r 
in

 d
B

 

 

S21 Coupling Matrix

S11 Coupling Matrix

S21 Analytical Synthesis

S11 Analytical Synthesis

9.5 9.6 9.7 9.8 9.9 10 10.1 10.2 10.3 10.4 10.5
-35

-30

-25

-20

-15

-10

-5

0

Frequency in GHz
(b)

S
-p

a
ra

m
e
te

r 
in

 d
B

 

 

S21 Coupling Matrix

S11 Coupling Matrix

S21 Analytical Synthesis

S11 Analytical Synthesis



199 
 

4. Comparison 2 (ωL1=7.500 GHz, ωH2=12.500 GHz) 

In this section, the comparison goes to the case of having a ωo of 9.682GHz and an FBW of 

51.6%. The analysis follows the same procedure as the previous section. 

4.1 The Responses Plotted from Analytical Synthesis 

Figure III.8 shows the response plotted from the analytical synthesis technique; the 

corresponding filter specifications and design parameters are shown in Table III.5.  

 
Figure III.8 The de-normalised notch response from analytical synthesis (FBW=51.6%) 

Desired Filter specifications (ω domain) 

Centre frequency Notch position Passband width Notch width 
9.682GHz 11.195GHz 5.000GHz 0.250GHz 

Actual Filter specifications (ω domain) 

Centre frequency Notch position Passband width Notch width 
9.682GHz 11.195GHz 5.000GHz 0.250GHz 

Design parameters (ω domain) 

Coupling matrix External Q-factor Resonator frequency 
0 0127 0 8206 0 0889 0

0 8206 0 0127 0 0 0889
0 0889 0 0 2913 0

0 0 0889 0 0 2913
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 
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1.347 1&2: 
9.621GHz 

 
3&4: 

11.195GHz 

Table III.5 The corresponding filter specifications and design parameters (FBW=51.6%) 

The S-parameters satisfy the desired passband specifications accurately. 
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4.2 The Response Plotted from Design Parameters 

The responses and design parameters given in Figure III.9 and Table III.6 are obtained from 

the lowpass prototype shown in Section 2.2. 

 
Figure III.9 The de-normalised notch response directly from design parameters (FBW=51.6%) 

Desired Filter specifications (ω domain) 

Centre frequency Notch position Passband width Notch width 
9.682GHz 11.195GHz 5.000GHz 0.250GHz 

Actual Filter specifications (ω domain) 

Centre frequency Notch position Passband width Notch width 
9.682GHz 10.938GHz 5.000GHz 0.278GHz 

Design parameters (ω domain) 

Coupling matrix External Q-factor Resonator frequency 
0 0122 0 8154 0 1017 0

0 8154 0 0122 0 0 1017
0 1017 0 0 2446 0

0 0 1017 0 0 2446
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 
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1.355 1&2: 
9.624GHz 

 
3&4: 

10.938GHz 

Table III.6 The corresponding filter specifications and design parameters of the response 
(FBW=51.6%) 
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The S-parameters in Figure III.9 satisfies the proposed passband limits. However, the notch 

position is 0.257GHz lower, while the width is 0.028GHz wider than the proposed 

specifications. 

4.3 The Comparison 

The two responses plotted from the two approaches display together on Figure III.10; (a) is 

the full-scale response; (b) is the extended partial response on the passband area. 
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Figure III.10 The comparison of de-normalised notch responses from the two approaches 
(FBW=51.6%), (a) full-scale response, (b) partial response near centre frequency 

It can be seen from Figure III.10 that, the S-parameters plotted from design parameters has a 

larger distortion compared to the previous case with an FBW of 10.0%; besides the distortion, 

the notch positions and notch width also has a larger mismatch against the proposed 

specifications, but the centre frequency and the FBW still match the proposed specifications 

accurately. The maximum error for the design parameters increases to 14.4 %, compared to 

2.5% of the previous case. 

5. Discussion 

The S-parameters and design parameters obtained from analytical synthesis technique 

satisfies the desired passband specifications accurately regardless of the FBW. For the S-

parameters plotted from design parameters, the distortion is an inevitable issue, as it involves 

narrow-band approximation, which satisfies the following condition,  

 / 1o    (III-4) 
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This indicates that the S-parameters are more accurate when they are closer to the centre 

frequency. This explains why the example with a larger FBW has a more serious distortion 

than the example with a smaller FBW. 

The tunable notch filter discussed in this thesis is a narrow-band case. Therefore, the response 

and design parameters that obtained from lowpass prototype are still valid for the filter design.  

Reference: 

1. Cameron, R.J., R. Mansour, and C.M. Kudsia, Microwave Filters for Communication 
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Abstract: 

This paper looks at a new design method for resonator-based multi-passband filters. The technique 
is able to design an arbitrary number of passbands. The design procedure is based on calculating 
the coupling matrix for a particular topology of coupled resonators. The physical design 
parameters, such as the centre frequency of each resonator, the coupling between resonators and 
the external Q-factors can all be analytically synthesised from the filter specifications. In the paper 
we will show designs for both Chebyshev and quasi-elliptic multi-passband filters. Theoretically, 
this method can produce any number of passbands where each band shares the same shape.  

Two simulated and one measured example of filters designed through this method are given; the 
three examples are: (1) A 10th order uneven bandwidth five-passband filter with Chebyshev 
response; (2) A 20th order uneven bandwidth five-passband filter with quasi-elliptic response; (3) 
Measured results from a 4th order dual-passband waveguide resonator based filter. 

I. INTRODUCTION  

Conventionally, the low-pass prototype Chebyshev response can be mapped into a higher 
frequency band with the well-known frequency transformation technique. This can be done 
using [3]. 

 
0 0

0

= B( )=
BW
 

 
 

 
 

   

Equation 1 

where   is the frequency variable for de-normalised response;   is the normalised frequency 

variable for low-pass prototype response; 0 is the centre frequency of the de-normalised 

passband; BW is the bandwidth of the passband (equal ripple bandwidth for Chebyshev 
response). Figure 3.1 gives a illustrative view of the de-normalised procedure based on (2-1). In 

the figure, L and H are the lower and higher band limits for de-normalised passband, 

respectively. 

|S21|

-1        0        1         Frequency
  Ω Domain

                    

|S21|

ωL          ω0        ωH         Frequency
                   ω Domain

Bandwidth
(BW)

B(ω)

 

Figure 1. The conventional de-normalised procedure for bandpass filter 

Now, let us consider a situation, by applying a new frequency transformation formula M( ) , 

the low-pass prototype response can be mapped into multiple higher frequency bands in the de-

normalised procedure. Figure 3.2 gives an illustrative view of this procedure, showing Li and

Hi  (i=1,2,3,…,M) are the band limits for ith passband on the de-normalised response. 
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M(ω)
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 Figure 2. The de-normalised procedure for multi-passband filter 

This paper aims to present the multi-passband filter synthesis technique step by step. A new 
generalised approach of multi-passband filter design is given. It allows the number of passband 
and the bandwidth of each individual passband to be set as an arbitrary value. With given band 
limits of each passband, and specifications of the low-pass prototype response, a multi-
passband response can be generated with coupling matrix and external Q-factors synthesised at 
the same time. Some design examples of multi-passband filters with corresponding frequency 
transformation formulas which are based on this approach are presented. 

 

II. GENERALISED MULTI-PASSBAND RESONATOR SECTIONS 

The synthesis techniques for multi-passband filter will be discussed from the topology point of 
view. Before that, the concept of multi-passband resonator sections is introduced. They are 
called multi-passband resonator sections, since the resonators in each section are coupled by 
inverters. Basically, the multi-passband resonator section can be categorised into three types 
which are shown in Figure 3. For the first type, all bandstop resonators are directly connected to 
the bandpass resonator; it is named as parallel coupled resonator section. For the second type, 
the bandstop resonators have an inline layout and only one bandstop resonator is directly 
connected to the bandpass resonator; it is named as series coupled resonator section. The third 
one is the mixed coupled resonator section which contains both parallel and series couple 
resonator at the same time. The bigger circles represent bandpass resonators; the smaller 
circles represent bandstop resonators; the solid lines stand for couplings between resonators; 
the dashed lines mean some unshown re-occurring parts. 

(a) (b) (c)  

Figure 3. Different kind of multi-passband resonator sections: (a) parallel, (b) series, (c) mixed 

The multi-passband filters we discussed here are built up with these sections. For each section, 
there is only one bandpass resonator, but the number of bandstop resonator is not limited. 
Within one particular multi-passband filter, all the sections share the same topology; the 
repeating sections are connected through the bandpass resonators. It is actually the multi-
passband resonator section that ultimately determines the frequency transformation formula 
and the multi-passband response in this multi-passband synthesis technique [4]. 
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A. PARALLEL COUPLED RESONATOR SECTION 

Figure 4 shows a generalised multi-passband filter which is built up by parallel coupled 
resonator sections. Resonator 1 to n are the bandpass resonators. For example, if these n 
bandpass resonators generate an nth order Chebyshev response, then each passband of this 
multi-passband filter will have the same nth order Chebyshev response.  

1 2 nPort 1 Port 2

Parallel coupled resonator sections

1st section 2nd section nth section

kp1,2 kpj,j+1

 

Figure 4. The topology of a generalised multi-passband filter which is built up by parallel 
coupled resonator sections. The bigger circles represent bandpass resonators; the smaller 
circles represent bandstop resonators. 

The couplings in between bandpass resonators 1pj , jk 
 (j=1,2,…,n-1) can be calculated by [4], 

 
1

1
1

j , j
pj , j

J
k

b


  ,            1
1

1
j , j

j j , j

J
g g






(j=1,2,…,n-1) Equation 2  

in which , 1j jJ   (j=1,2,…,n-1) are the values of J-inverters of low-pass prototype filter. In the case 

of filter with Chebyshev response, they can be obtained from standard Chebyshev filter 

synthesis procedure that are calculated from g-values in Equation 2; 1b  is the susceptance slope 

parameter of the resonators whose centre frequency is 1o  which can be calculated from [5], in 

which Ci and Li are the equivalent capacitance and inductance of ith resonator. 

 i oi ib C  ,           oi
i i

1
L C

 


         (i=1,2,3,…,M) Equation 3  

Figure 5 presents a detailed picture of the 1st section of the multi-passband filter that is shown 
in Figure 4. The multi-passband filter is made up of n sections like this. It shows a generalised 
topology of a single parallel coupled resonator section. M is the number of resonators in one 
parallel coupled resonator section. M could be any positive integers. In each resonator section, 
the bandpass resonator is directly coupled to M-1 bandstop resonators. So there will be M n  

resonators in total for the multi-passband filter. oi  and ib (i=1,2,3,…,M) are the centre 

frequency and susceptance slope parameter for the ith resonator, respectively. When i=1, the 
resonator is a bandpass resonator; when i=2,3,…,M, the resonator is a bandstop resonator. All 
the n sections which are shown in Figure 4 share the same layout and parameters. 
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Resonator number (M-1)×n+1, 
centre frequency ω0M, 

susceptance slope para bM 

1, ω01, b1 1, ω01, b1 

n+1, ω02, b2 

2n+1, ω03, b3 

4n+1, ω05, b5 

3n+1, ω04, b4 

ks1,2ks1,2

ks1,3

ks1,4

ks1,5

ks1,M-1

Figure 5. 1st parallel coupled resonator section (n is the order of the each passband, M is the 
total number of passbands 

The couplings between the bandpass resonator and all bandstop resonators are calculated by 

 
 

1
1

1
s ,i

i

k
b b




(i=2,3,…,M-1) Equation 4 

The above equation together with the frequency transformation PM ( )  for the multi-

passband filter with such parallel coupled resonator sections is based on [4] but generalised, 

 

 
 

 
Equation 5 

By applying Equation 5, the prototype bandpass response can be mapped into M different 

frequency bands. Figure 6 gives an illustrative view of this procedure, in which Li  and Hi

(i=1,2,…,M) are the lower and higher passband limits for Band i (i=1,2,…,M), respectively. What 
should be noticed is that, for the multi-passband filter built up with this parallel coupled 

resonator sections, the centre frequencies of bandstop resonators oi  (i=2,3,…,M) are also the 

frequencies of transmission zeros between each band. There are M bands in total for this multi-
passband filter. 

  ωL1  ωH1   ωL2    ωH2   ωL3   ωH3   ωL4  ωH4  ωL5    ωH5                                                      ωLM    ωHM

|S21|

Frequency
ω Domain

-1      0      1 

|S21|

Frequency
Ω Domain

MP(ω)

Band 1 Band 2 Band MBand 3 Band 4 Band 5

ωo2 ωo3 ωo4 ωo5 ωoMωo6

Figure 6. A schematic S21 for multi-passband synthesis technique with parallel coupled 
resonator section 

It should be noted that filter with this topology could have a large number of couplings to each 
passband resonator, which may be difficult for practical implementation. 
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         
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B. SERIES COUPLED RESOANTOR SECTION 

The topology of a generalised multi-passband filter based on series coupled resonator sections 
is shown in Figure 3.26. Again, the resonators from 1 to n are the bandpass resonators. These 
bandpass resonators determine the shape of each passband for this multi-passband filter. 

1Port 1 Port 2

Series coupled resonator sections

1st section 2nd section nth section

kp1,2 kpj,j+12 n

 

Figure 7. The topology of a generalised multi-passband filter which is built up by series coupled 
resonator sections. The bigger circles represent bandpass resonators; the smaller circles 
represent bandstop resonators. 

Figure 3.27 shows the detailed layout of the 1st section in Figure 3.26. Similar to the previous 
parallel case, there are also n repeating sections in one multi-passband filter. Each section 

contains one bandpass resonator which resonates at 1o  and M-1 bandstop resonators resonate 

at oi (i=2,3,…,M). There are M n  resonators in this multi-passband filter, as well. 

1, ω01, b1 

ks1,2ks1,2

ks2,3

ksM-2,M-1

ksi,i+1

n+1, ω02, b2 

2n+1, ω03, b3 

Resonator number (M-1)×n+1, 
centre frequency ω0M, 

susceptance slope para bM 

(M-2)×n+1, ω0M-1, bM-1 

 

Figure 8.  1st series coupled resonator section (n is the order of the each passband, M is the total 
number of passbands) 

 

 



210 
 

The couplings between the resonators in one section are defined by, 

The frequency transformation SM ( )  for this series coupled resonator section based multi-

passband filter is generalised from [6], 

 

 
 

 
Equation 7  

The illustrative procedure of this multi-passband de-normalising process carried out by 
Equation 7 is shown in Figure 3.28. 

  ωL1   ωH1  ωL2    ωH2   ωL3  ωH3                                   ωLM-1  ωHM-1  ωLM   ωHM

|S21|

Frequency
ω Domain

-1      0      1 

|S21|

Frequency
Ω Domain

MS(ω)

Band 1 Band 2 Band MBand 3 Band M-1

Figure 9. Schematic S21 for multi-passband synthesis technique with series coupled resonator 
section 

There are M passbands in total for this multi-passband filter as well. But it should be noticed 

that, compared to the parallel coupled resonator section based topology, oi  (i=2,3,…,M) are not 

the transmission zeros between each band anymore; they only act as the centre frequencies of 
the ith (i=2,3,…,M) resonator. 

 

C. MIXED COUPLED RESONATOR SECTION ― AN EXAMPLE FOR FIVE-PASSBAND 
RESPONSE 

Figure 3.29 shows a generalised multi-passband filter made up of mixed coupled resonator 
sections which includes both parallel and series coupled resonator structures. Resonator 1 to 
resonator n are still bandpass resonators, which determine the passband shape in the de-
normalised multi-passband response. 
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 (i=1,2,…,M-2) Equation 6 
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1Port 1 Port 2

Mixed coupled resonator sections

1st section 2nd section nth section

kp1,2 kpj,j+12 n

 

Figure 10. The topology of a generalised multi-passband filter which is built up by mixed 
coupled resonator sections. The bigger circles represent bandpass resonators; the smaller 
circles represent bandstop resonators. 

Because of the complex in parameter naming, an intuitive example topology of a single mixed 

coupled resonator section is given in Figure 11, rather than a generalised topology. But it still 

gives a good indication of the structure.  

1, ω01, b1 

ks1,2ks1,2

ks2,3

ks1,4

ks4,5

n+1, ω02, b2 

2n+1, ω03, b3 

4n+1, ω05, b5 

3n+1, ω04, b4 

 

Figure 11. An example of mixed coupled resonator section (for five-passband response) 

In Figure 11, resonator 1 is the bandpass resonator; all the other four resonators are bandstop 

resonators. Two bandstop resonators (resonator n+1 and resonator 3n+1) are directly 

connected to the bandpass resonator; while the other two bandstop resonators (resonator 2n+1 

and resonator 4n+1) are connected to the adjacent bandstop resonators. The inter resonator 

coupling in this mixed coupled section can be calculated using Equation 4 and Equation 6. With 

this particular kind of mixed couple resonator section, a five-passband filter is given as an 

example. The frequency transformation for this five-passband filter is 
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Equation 8 

The corresponding frequency transformation procedure is presented in Figure 3.31. 

Figure 12. Schematic S21 for five-passband synthesis technique with mixed coupled resonator 
section 

Specified examples are given in next section to validate the general theory of multi-passband 
filter synthesis technique which is proposed here. 

III. SIMULATED AND MEASURED MULTI-PASSBAND FILTER EXAMPLES 

To validate the synthesis technique, two examples of five-passband filters with simulated 
results are given. In addition, one example of dual-passband filters with measured result is 
given. The first is a 10th order uneven bandwidth five-passband filter with Chebyshev response 
(simulated). This is followed by another more complex example of a 20th order uneven 
bandwidth five-passband filter with quasi-elliptic response (simulated); this shows the 
flexibility of the synthesis technique. A fabricated 4th order dual-passband filter with Chebyshev 
response (measured) is given at the end of the paper. 

A. EXAMPLE 1: A 10TH ORDER UNEVEN BANDWIDTH FIVE-PASSBAND FILTER WITH 
CHEBYSHEV RESPONSE (SIMULATED RESULT) 

 

Figure 13 shows a 10th order five-passband filter which is built up with the mixed coupled 
resonator sections shown in Figure 11. 
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ks2,3 ks2,3

QeS QeL

ks4,5 ks4,5

ks1,4 ks1,4

 

Figure 13. The topology of a 10th order five-passband filter (each passband has a 2nd order 
Chebyshev response) 
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The frequency transformation in (3-44) maps Li  and Hi  (i=1,2,3,4,5) on the de-normalised 

frequency domain to -1 and 1 on normalised frequency domain (see Figure 3.31),  this process 
can be interpreted as, 

 

 

Equation 9 

let 

  
Equation 10 

Now,  Li  and Hi  (i=1,2,3,4,5) are the zeros of VF( ) , while VF( )  can also be expressed in 

terms of polynomial as,  

 
Equation 11 

ZF( )  and PF( )  are the numerator and denominator of the VF( ) , respectively. As 

shown in (3-48), they are expressed in terms of polynomials; iz  (i=0,1,…,9) are the normalised 

coefficients of ZF( ) ; ip  (i=0,1,…,9) are the coefficients of PF( ) . 

By using (3-44), (3-47) and (3-48), iz  (i=0,1,…,9) can be obtained in terms of  oi and ib  

(i=1,2,3,4,5). Meanwhile, Li  and Hi  (i=1,2,3,4,5) are the zeros of VF( ) . Therefore, iz  

(i=0,1,…,9) can also be obtained in terms of Li  and Hi  (i=1,2,3,4,5) from the equation below,  

 

  Equation 12 

A 10th order equation set which only contains oi , ib , Li and Hi (i=1,2,3,4,5) has been 

established. Therefore, oi  and ib  (i=1,2,3,4,5) can be derived with given Li and Hi

(i=1,2,3,4,5). Hence, the five-passband frequency transformation in (3-44) is fully defined.  

 

A numerical example is given below. This example is based on the topology shown in Figure 13. 
The passband limits and corresponding design parameters are given in Table 3.7. The design 
parameters are obtained from passband limits by using the theory proposed above. 
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Passband limits Design parameters  

ωL1=9.20 GHz ωo1=9.94 GHz 

ωH1=9.29 GHz ωo2=9.59 GHz 

ωL2=9.41 GHz ωo3=9.43 GHz 

ωH2=9.67 GHz ωo4=10.35 GHz 

ωL3=9.80 GHz ωo5=10.43 GHz 

ωH3=10.17 GHz b1=9.22 

ωL4=10.25 GHz b2=51.88 

ωH4=10.48 GHz b3=12.16 

ωL5=10.57 GHz b4=78.94 

ωH5=10.70 GHz b5=13.30 

Table 1. The passband limits and design parameters for five-passband filter 

The corresponding coupling matrix is defined below, 

 

11 1 2 1 2 1 4

1 2 2 2 1 2 1 4
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2 3 5 5
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Equation 13 

The non-diagonal elements in the matrix (inter-resonator couplings) can be calculated using 
Equation 2, Equation 3 and Equation 6; the diagonal elements (self-couplings) can be calculated 
with the following equation, in which f0i is the resonant frequency of ith resonator, f0 is the centre 
frequency of the filter. 

 
0 0
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0 0
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i i
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 Equation 14 

The external Q-factors can be calculated from, 
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For this example, the coupling matrix and external Q-factors are calculated below, 

 

0 0020 0 1803 0 0457 0 0 0 0 0371 0 0 0
0 1803 0 0020 0 0 0457 0 0 0 0 0371 0 0
0 0457 0 0 0737 0 0 0398 0 0 0 0 0

0 0 0457 0 0 0737 0 0 0398 0 0 0 0
0 0 0 0398 0 0 1074 0 0 0 0 0
0 0 0 0 0398 0 0 1074 0 0 0 0

0 0371 0 0 0 0 0 0 0788 0 0 0309 0
0 0 0371 0 0 0 0 0 0 078

. . . .
. . . .
. . .

. . .
. .

M
. .

. . .
. .














8 0 0 0309
0 0 0 0 0 0 0 0309 0 0 0943 0
0 0 0 0 0 0 0 0 0309 0 0 0943

.
. .

. .
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 
 
 
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 
 
 

 

6 13eS eLQ Q .   

The circuit below is a waveguide implementation of the discussed 10th order five-passband filter 
with Chebyshev response simulated in CST microwave studio [7]. More details of how to use 
coupling matrix to generate such a waveguide filter is given in [8]. 

 

Figure 14. Waveguide implementation of 10th order five-passband filter (Chebyshev); the blue 
solid represents the air filling of the waveguide which is surrounded by perfect electric 
conductor. The red plane is the input port; the output port is placed at the other end. 

The simulated S21 and S11 together with the calculated S11 are plotted in Figure 15. The 
simulated results show a good agreement with the calculated one. 

Figure 15. The S-parameter of a 10th order even bandwidth five-passband filter with Chebyshev response 
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(Passband 1: 9.20 ~ 9.29 GHz, Passband 2: 9.41 ~ 9.67 GHz, Passband 3: 9.80 ~ 10.17 GHz, Passband 4: 
10.25 ~ 10.48 GHz, Passband 5: 10.57 ~ 10.70 GHz) 

B. EXAMPLE 2: A 20TH ORDER UNEVEN BANDWIDTH FIVE-PASSBAND FILTER WITH 
QUASI-ELLIPTIC RESPONSE (SIMULATED RESULT) 

This example is based on a 20th order five-passband filter topology shown in Figure 16. The five 
passbands are same as that in Example A, i.e. the design parameters are same as well (refer to 
Table 3.7). The difference is that in this example, each passband has a 4th order quasi-elliptic 
response with 20dB maximum return loss.  

 

Figure 16. The topology of a 20th order five-passband filter (each passband has a 4th order quasi-
elliptic response) 

The corresponding coupling matrix can be calculated using Equation 2, Equation 3, Equation 6  
and Equation 14. The external Q-factors can be obtained from Equation 15. The results are 
shown below, 

 

0.0020 0.0901 0 0.0321 0.0457 0 0 0 0 0 0 0 0.0371 0 0 0 0 0 0 0
0.0901 0.0020 0.0883 0 0 0.0457 0 0 0 0 0 0 0 0.0371 0 0 0 0 0 0

0 0.0883 0.0020 0.0901 0 0 0.0457 0 0 0 0 0 0 0 0.0371 0 0 0 0 0
0.0321 0 0.0901 0.0020 0 0 0 0.0457 0 0 0 0 0 0 0 0.0371 0 0 0 0

0.0457 0 0 0 0.

M
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
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



0737 0 0 0 0.0398 0 0 0 0 0 0 0 0 0 0 0
0 0.0457 0 0 0 0.0737 0 0 0 0.0398 0 0 0 0 0 0 0 0 0 0
0 0 0.0457 0 0 0 0.0737 0 0 0 0.0398 0 0 0 0 0 0 0 0 0
0 0 0 0.0457 0 0 0 0.0737 0 0 0 0.0398 0 0 0 0 0 0 0 0
0 0 0 0 0.0398 0 0 0 0.1074 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.0398 0 0 0 0.1074 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0
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0.0371 0 0 0 0 0 0 0 0 0 0 0 0.0788 0 0 0 0.0309 0 0 0
0 0.0371 0 0 0 0 0 0 0 0 0 0 0 0.0788 0 0 0 0.0309 0 0
0 0 0.0371 0 0 0 0 0 0 0 0 0 0 0 0.0788 0 0 0 0.0309 0
0 0 0 0.0371 0 0 0 0 0 0 0 0 0 0 0 0.0788 0 0 0 0.0309
0 0 0 0
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 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

8.92eS eLQ Q   

The component shown in Figure 17 is a simulated waveguide implementation of the 20th order 
five-passband filter with quasi-elliptic response. 
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Figure 17. Waveguide implementation of 20th order five-passband filter (quasi-elliptic); the blue 
solid represents the air filling of the waveguide which is surrounded by perfect electric 
conductor. The red plane is the input port; the output port is placed at the other end.  

The simulated S21 and S11 together with the calculated S11 are plotted in Figure 3.35, 

  

Figure 18. The S-parameter of a 20th order uneven bandwidth five-passband filter with quasi-
elliptic response (Passband 1: 9.20 ~ 9.29 GHz, Passband 2: 9.41 ~ 9.67 GHz, Passband 3: 9.80 ~ 
10.17 GHz, Passband 4: 10.25 ~ 10.48 GHz, Passband 5: 10.57 ~ 10.70 GHz) 

The mismatch of S-parameter in the CST simulation is mainly due to the physical limitations of 
the waveguide circuit. As one resonator is coupled to up to 4 neighbour resonators at the same 
time, uncontrolled cross-couplings between non adjacent resonators may occur. Further works 
will improve the results. The uncontrolled cross-couplings might be further attenuated by re-
arranging the circuit layout.  

C. EXAMPLE 3: A 4TH ORDER UNEVEN BANDWIDTH DUAL-PASSBAND FILTER WITH 
CHEBYSHEV RESPONSE (MEASURED RESULT) 

The 4th order dual-passband filter has a following topology; the corresponding frequency 
transformation is given in Equation 16. This example has two uneven passbands (refer to Table 
2). Each passband has a 2nd order Chebyshev response with 20dB maximum return loss.  
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Figure 19. The topology of a 4th order dual-passband filter 
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 1  Equation 
16 

The passband limits and corresponding design parameters are given in Table 2. 

Passband limits Design parameters  

ωL1=8.65 GHz ωo1=8.74 GHz 

ωH1=8.78 GHz ωo2=8.81 GHz 

ωL2=8.82 GHz b1=54.61 

ωH2=8.85 GHz b2=291.7 

Table 2. The filter specifications and design parameters for dual-passband filter 

The corresponding coupling matrix and external Q-factors can be calculated using Equation 2, 
Equation 3, Equation 14 and Equation 15; the results are given below, 

 

0.0023 0.0304 0.0079 0
0.0304 0.0023 0 0.0079
0.0079 0 0.0137 0

0 0.0079 0 0.0137

M

 
 

 
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 
 

 

36.30eS eLQ Q   

Below is the structure of this 4th order filter which produces a dual-passband response; each 
passband has a 2nd order Chebyshev response. 

 

Figure 20. Waveguide implementation of 4th order five-passband filter (Chebyshev); the blue 
solid represents the air filling of the waveguide which is surrounded by perfect electric 
conductor. The red plane is the input port; the output port is placed at the other end. 
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The filter is designed based on the passbands specification shown in Table 2; the measured and 
calculated S-parameters are plotted below in Figure 21. 

  

Figure 21. The S-parameter of a 4th order uneven bandwidth dual-passband filter with 
Chebyshev response (Passband 1: 8.65~ 8.78 GHz, Passband 2: 8.82 ~ 8.85 GHz) 

The passband insertion loss is about 1.5dB. It is mainly due to the conductor loss by aluminium 
and non-perfect construction. Further works on fine tuning may improve the results. 

IV. CONCLUSION 

This paper has proposed a generalised analytical synthesis method for multi-passband filter 
design. The multi-passband resonator section is the key building block for the multi-passband 
filter discussed here; within one filter, there is only one kind of multi-passband resonator 
section. For one multi-passband resonator section, there is a unique frequency transformation 
corresponding to it. The multi-passband response is obtained by applying the frequency 
transformation to a low-pass prototype response. The number of the resonator in one multi-
passband resonator section is the number of the passbands; the number of the re-occurring 
multi-passband resonator section determines the order of the response for each passband.  

Two simulated five-passband filters and a measured dual-passband filter are given. They are all 
designed in X-band and designed in waveguide form. To illustrate the flexibility of this synthesis 
technique, the three examples all have arbitrary uneven bandwidths; two examples have 
Chebyshev response, while the other one has quasi-elliptic response. The simulated and 
measured results show good agreements with the theoretical calculated ones. 
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 
Abstract— This paper reports a design method for a filter with 

five-passband. As an example, a rectangular waveguide filter 
with Chebyshev responses is given. The design technique is not 
limited to rectangular waveguide, but applies to all kinds of 
coupled resonator circuits. The filter has 10 resonators and 
works at X-band. The centre frequency and bandwidth of each 
passbands can be chosen arbitrarily, but every passband has a 
shape of a 2nd order Chebyshev response. The filter is 
manufactured and measured. The measured and simulated 
results show good agreement with the calculated ones, which 
verifies the proposed filter structure as well as the design 
procedure.      

Index Terms—Frequency transformation, multi-passband, 
waveguide.  
 

I. INTRODUCTION 
he design of multi-passband filters has attracted attention 
recently, as they play increasingly important roles in 

modern wireless and satellite applications. Many of the design 
approaches for multi-passband filters that are found in the 
open literature use cross-coupled topologies to generate 
transmission zeros, in order to divide the single passband into 
two bands or more; the coupling matrices are derived using a 
variety of time consuming optimization methods [1-7]. 
Recently, as reported in [8-10], dual-passband and triple-
passband filters can be synthesized using an analytical 
technique based on frequency transformations. It is well 
known that the low-pass prototype response can be mapped 
into frequency bands with the conventional lowpass to 
bandpass frequency transformation technique [11]. Similarly, 
a lowpass prototype response may be mapped into multiple 
frequency bands by applying a lowpass to multi-pass 
frequency transformation [12]. This process is achieved by the 
so-called inverter coupled resonator sections. A generalized 
synthesis technique has been discussed in [12], which can be 
used to design a filter with arbitrary number of passbands. 
What makes this technique distinct from the others is that it 
can produce an arbitrary number of asymmetrical passbands 
with control of the positions of the passband without the 
involvement of numerical optimisation [8]. In this paper, the 
design of a 10th order five-passband rectangular waveguide 
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(a)                                                        (b) 

Fig. 1.  (a) The topology of the 10th order five-passband filter, the bigger 
circles represent bandpass resonators, the smaller circles represent bandstop 
resonators, and the solid lines between circles are the direct couplings. (b) The 
physical configuration of the filter; it is the lower half from an E-plane cut. 
 
filter without cross-couplings is presented. It is the first 
demonstration of the generalized analytical synthesis 
technique discussed in [12]. The fabrication and measurement 
of the five-passband filter using such technique is given here 
for the first time. For the proposed filter, each passband has a 
shape of 2nd order Chebyshev response. All the coupling 
coefficients and external Q values can be directly synthesized 
from the 10 passband frequency limits of the 5 bands. All 
these frequency limits are chosen arbitrarily. The 
corresponding topology of the filter is given in Fig. 1(a). In 
this topology, there are 2 columns and 5 rows of resonators. 
Each column represents an inverter coupled resonator section, 
and both sections share the same topology. The topology of 
such section is determined by the frequency transformation 
which is discussed in the following paragraphs. Each section 
has 1 bandpass resonator and 4 bandstop resonators. There are 
two branches of bandstop resonators that are directly 
connected to the bandpass resonator. In each branch there are 
two bandstop resonators. The two sections are coupled 
through the bandpass resonators. Meanwhile, within each row, 
there are 2 resonators, and they all share the same resonant 
frequency ωoi (i=1,2,3,4,5), and the susceptance slope 
parameter bi (i=1,2,3,4,5). The physical waveguide 
configuration of the filter is given in Fig. 1(b). All the 
couplings in this rectangular waveguide filter are fulfilled by 
capacitive irises. The filter is symmetrical in the E-plane. Fig. 
1(b) shows the lower half of the filter (E-plane cross sectional 
view). There are 10 cavities inside the filter acting as the 10 
resonators. They are numbered in red together with the two 
ports which meet WR90 standard. The irises between the 
cavities provide the couplings between resonators. The 
cylindrical holes are for assembly screws. 

Design of A Five-Passband Rectangular 
Waveguide Filter with Chebyshev Response 
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Fig. 2.  The calculated and simulated responses of the 10th order five-passband 
filter, the passband numbers are labelled. 

II. FILTER DESIGN 
The first step is to design a 2nd order lowpass prototype 

Chebyshev filter. The design theory for such filter is described 
in [1]. The specification of the lowpass prototype response is 
given as follows: the return loss (RL) is 20dB, the two 
passband limits are at ±1, the two reflection zeros (RZs) are 
placed at ±0.7071 and the maximum return loss for passband 
is at 0. The g-values are calculated to be: g0=1, g1=0.6648, 
g2=0.5445 and g3=1.2210. Then by applying the following 
frequency transformation to the lowpass prototype response, it 
will be mapped into the five different frequency bands [12],  
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   

(1) 
An example calculated response is plotted in red in Fig. 2. 

There are in total ten passband limits for this five-passband 
response. The corresponding group delay for the calculated 
response is given in Fig. 3. It can be seen that the delay near 
the edges of the passbands is large. This is inevitable due to 
the sharp slopes of the S21 between two consecutive 
passbands. It extends into the middle of the passbands [13]. In 
order to demonstrate the flexibility of the design technique, 
the five bands are placed arbitrarily, rather than having all the 
bands sharing the same bandwidth. From low to high, they are 
at 9.20, 9.29, 9.41, 9.67, 9.80, 10.17, 10.25, 10.48, 10.57 and 
10.70 GHz. Once the passband limits are given, the resonant 
frequencies ωoi (i=1,2,3,4,5), and the susceptance slope 
parameters bi (i=1,2,3,4,5) are calculated from [12] to be: 
ωo1=9.94GHz, ωo2=9.59GHz, ωo3=9.43GHz, ωo4=10.35GHz, 
ωo5=10.43GHz, b1=9.22, b2=51.88, b3=12.16, b4=78.94, 
b5=13.30. Hence the frequency transformation (1) is fully 
defined [12]. From the equation below all the coupling 
coefficients and external Q values of this five-passband filter 
can be defined in terms of g-values (from the lowpass 
prototype), susceptance slope parameters bi and the resonant 
frequencies ωoi [12]. 

 
Fig. 3.  The group delay of the calculated response for the 10th order five-
passband filter.  
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Fig. 4.  The top picture shows the layout of the 10th order five-passband filter. 
The broad side dimension a of the cavity perpendicular to the E-plane cross 
section, therefore it is not shown in this layout. The bottom right picture is the 
assembled fabricated waveguide filter. Left is the disassembled lower half of 
the right fully assembled structure. 
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       (2) 

The filter topology (shown in Fig. 1) is fully defined. The 
results are calculated to be: M12=M21=0.1803, M13=M31=M24= 
M42=0.0457, M35=M53=M46=M64=0.0398, M17=M71=M28=M82= 
0.0371, M79=M97=M810=M108=0.0309,M11=M22=0.0037, M33= 
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Fig. 5.  The measured and simulated responses of the 10th order five-passband 
filter. The small extended picture shows the insertion loss of the filter. 

III.  TABLE I 
IV. SUMMARY OF THE WAVEGUIDE DIMENSIONS 

Label a b t l1 l2 l3 
Dimension1  22.86 10.16 2.0 29.1 29.1 23.2 

Label l4 l5 l6 l7 l8 l9 
Dimension1  23.2 23.1 23.1 19.7 19.7 18.9 

Label l10 wr1 wr2 wr12 wr13 wr35 
Dimension1  18.9 8.0 8.0 7.0 1.2 0.8 

Label wr17 wr79 wr24 wr46 wr28 wr810 
Dimension1  1.0 0.6 1.2 0.8 1.0 0.6 

1all the dimensions are in mm 
 
M44=-0.0680, M55=M66=-0.1017, M77=M88=0.0846, M99= 
M1010=0.1000, Qe=6.13. Each of these coupling values is 
interpreted into physical dimension of a basic element within a 
rectangular waveguide filter, such as the resonator length l and 
the iris width wr [14]. All the dimensions are labelled in Fig. 
4. After putting all the elements together, in order to 
accurately meet the required specification, further fine 
optimization on the structure can be done using CST [15]. The 
final optimized results simulated by CST are given in Table I. 
The corresponding simulated responses are plotted in blue in 
Fig. 2, together with the calculated ones. Excellent agreement 
is achieved between the two results. The mismatch near the 
edge of the passband region is due to the nature of the 
rectangular waveguide, as the neighboring modes are nearby. 

V. FABRICATION AND MEASUREMENT 
The filter is fabricated by a CNC milling machine using 

aluminum with an electrical conductivity of 3.56×107 S/m. In 
order to facilitate the milling by a CNC machine, the filter is 
cut through the E-plane, this means the filter will be 
assembled from the two parts. A photograph of the fully 
assembled filter and a photograph of the lower half alone are 
given in Fig. 4. The measured results are given in Fig. 5 
together with the simulated results for the purpose of 
comparison. The measured S21 achieves an average mid-band 
insertion loss above 0.1dB for all five bands. It can be seen 
from Fig. 5 that the measured responses and the simulated 
ones show excellent agreements in general. The slight 
mismatch at band 4 and band 5 is due to the fabrication errors 
in iris79 and iris810, which affect the iris width wr79 and 
wr810. The errors are about 0.12mm wider than the calculated 
widths.  

VI. CONCLUSION 
A design method using an analytical synthesis technique for 

five-passband filter has been presented. It uses a frequency 
transformation to produce five-passband response from a 
single lowpass prototype. Since this does not involve any 
numerical optimisation, it offers a very fast solution once the 
filter specification is given. The frequency transformation is 
physically realised by inverter coupled resonator section, 
which is the key building block for the filter discussed here. A 
10th order X-band five-passband filter is implemented in 
rectangular waveguide. The filter is specified to illustrate that 
the passband centre frequency and bandwidth are arbitrary 
chosen.  The measured results show good agreement with the 
calculated and simulated ones. It should be noticed that this 
design method is not limited to waveguide circuits, but applies 
to all other kinds of coupled resonator circuits. It can be used 
to design not only Chebyshev filter, but also more complicated 
ones including quasi-elliptic filters.  
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