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Abstract 

Knowledge acquisition is an important area of artificial intelligence. Inductive learning is 

an efficient and simple method to acquire knowledge from large amounts of information. 

By automating knowledge acquisition, inductive learning can be expected to clear a major 

bottleneck in the building of expert systems. 

This study begins with a survey of machine learning. The survey reveals that although 

inductive learning performs reasonably well in many applications, there are still a number 

of improvements to be made to the existing inductive learning algorithms. One of the 

improvements needed is the development of better methods for selecting relevant 

attributes, selecting seed examples, correcting errors or dealing with missing information. 

The RULES family of algorithms is reviewed in this work and the drawback of the 

variation in their generalisation performance is investigated. This results in a new data 

ordering method (DOM) for the RULES family of inductive learning algorithms. Dom is 

based on the selection of the most representative example; the method has been tested as a 

pre-processing stage for many data sets and has shown promising results. 

Another difficulty faced is the growing size of training data sets, which results in long 

algorithm execution times and less compact generated rules. In this study a new data 

sorting method (DSM) is developed for ordering the whole data set and reducing the 

training time. This is based on selecting relevant attributes and best possible examples to 

represent a data set. The enhanced method was also used as a pre-processing step for the 

RULES family. 

Finally, the order in which the raw data is introduced to the RULES family algorithms 

considerably affects the accuracy of the generated rules. This work presents a new data 

grouping method (DGM) to solve this problem, which is based on clustering. This method, in 

the form of an algorithm, is integrated into a data mining tool and applied to a real project; as 
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a result, better variation in the classification percentage and a lower number of rules formed 

has been achieved. 
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Chapter 1: Introduction 

1.1 Background 

For a machine to behave like a human, it requires the capacity to learn. Humans’ capacity to 

learn has enabled the human population to interact with the real world and carry out various 

everyday tasks and routines. Humans have to learn how to undertake tasks and resolve 

problems since no one is born with pre-programmed solutions to all possible problems. 

Learning from experience and observation is one of the most significant features of the 

human learning process and is the best method of successfully acquiring and gaining 

knowledge. Nowadays, information systems can capture, record and store increasingly huge 

volumes of data on a daily basis. Data mining and machine learning techniques can be 

deployed to extract previously unknown and potentially useful knowledge from historical 

data. The knowledge can then be used by a decision maker or any other user to make 

informed decisions. 

Data mining, also known as Knowledge Discovery in Databases (KDD), relates to the 

nontrivial extraction of implicit, previously unknown and potentially useful information from 

data stored in databases. Recent advances in the information technology industry have given 

organisations the ability to capture record and store vast quantities of data. As a result, an 

increase in the volume of such data diminishes the human understanding of it, and we 

become unaware of the hidden information lying within the data. The hidden information 

often becomes potentially useful when made explicit and taken advantage of. 

A number of researchers have carried out extensive studies on machine learning for the past 

few decades. The aim of this study was to automate the process of knowledge acquisition by 

constructing expert systems. The emergence of data mining, with the application of 
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algorithms for machine learning, led to a demand for algorithms that can effectively deal with 

large amounts of data. Machine learning as a process can automate the overall routine 

methods and procedures of inductive learning, while using coded observations from a data 

base that is previously stored, and without interacting directly with environment. 

There are two main tasks that are commonly associated with machine learning methods: 

classification and clustering. The presence of an expert in a learning system is useful, and 

often required, when inducing classifiers from training data. Trained classifiers are deployed 

to arrange new objects into specified classes. A well-known method, Rule induction, is 

frequently used to generate classifiers. The knowledge depicted as rules is easily understood 

and can be verified by users without any difficulty. Moreover, the rules created through the 

learning process can be used directly in knowledge-based systems. On the contrary, data 

clustering is often deployed to find natural groups and to identify interesting distributions and 

patterns within the data. Clustering techniques encompass various algorithms and methods 

for grouping objects into clusters based on their similarities and dissimilarities. The end result 

of a clustering process is a scheme that allows data to be grouped in a data set, or a 

suggestion about regularities or dependencies in the data. Taking these characteristics into 

account, clustering is deployed as a pre-processing technique in this study. Representative 

training sets can be established by distributing portions of the data sets into homogeneous 

clusters prior to picking out typical examples from each cluster. For instance, the 

representatives for these clusters can be discovered by utilising the k-means algorithm, 

incremental k-means algorithm and fuzzy c-means algorithm. 
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1.2 Research Objectives 

The main aim of this study was to develop flexible management strategies for machine 

learning and data mining techniques to improve their performance. To achieve this aim, the 

following objectives were addressed: 

 To minimize the number of training rule-sets generated. (Objective 1.) 

 To develop new data pre-processing techniques, focusing on feature selection and reduce 

the training time while handling large numbers of input data.  (Objective 2.) 

 To develop a pre-processing method that would improve the generalisation capability and 

achieve higher classification accuracy by using data clustering techniques.  (Objective 3.) 

 

1.3 Outline of the thesis 

The thesis is organised into three sections. The first section is a literature review (Chapter 2). 

The second section (Chapters 3 and 4) describes methods for pre-processing training 

examples. Finally, section three (Chapter 5) describes the clustering methods used for 

improving the output of inductive learning algorithms. These sections are followed by the 

conclusions (Chapter 6). 

Chapter 2 reviews the current literature on Data Mining and Machine Learning. The chapter 

presents a critical review of the data mining process, induction and clustering concepts, and 

data engineering.   

Chapters 3 study the RULES family of inductive learning algorithms. It starts with a review 

of all of the RULES family members highlighting the benefits and limitations of each. The 

chapter then presents a new data ordering method (DOM) for pre-processing the training 
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examples. The method consists of three main steps: (i) calculating the entropy for a sub 

group; (ii) aggregating the entropy for each example; (iii) reordering examples according to 

their entropies. 

Chapter 4 discusses feature selection. The chapter briefly reviews different related feature 

selection topics  described in the literature. It then focuses on a new strategy for managing 

training data. This data pre-processing strategy is called the data sorting method (DSM), 

which also has other improved capabilities. DSM comprises three tasks: (i) changing the 

order of training objects, (ii) changing the order of training attributes, and (iii) changing the 

order of the training data set after each rule is produced. 

Chapter 5 provides details of clustering methods for improving the output of inductive 

learning algorithms. The section focuses on enhancements aimed at improving the data 

grouping method (DGM). The work is based on an initial clustering stage followed by the 

ranking of the data in each cluster by a special density measure that considers the distribution 

of the patterns in the pattern space. This is similar to the formation of the rule sets formed by 

the Rules Family algorithms. 

Chapter 6 concludes the study by outlining the main themes of the study and the main 

contributions together with suggestions for future research. 
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Chapter 2: Literature Review 

2.1 Machine Learning and Data Mining 

Artificial Intelligence (AI) research has long been aimed at the creation of machine 

intelligence. The objective is to develop a machine which acts like a human, requiring the 

machine to have the capacity to learn. The process of learning involves acquiring knowledge 

through study or through experience. It also involves committing information to memory, and 

receiving and responding to instructions. Another method of learning is to become aware of 

information through observation (Witten and Frank, 2005).  

This chapter first presents a general overview of the learning process, specifically machine 

learning and data mining. Inductive learning is then discussed, along with its principles, 

types, categories, algorithms and software. 

 

2.1.1 Machine Learning 

Over the past few decades machine learning has been studied intensely by various 

researchers. For this research, the researcher aimed to automate the process of acquisition of 

knowledge by constructing expert systems. The development of data mining as an application 

which makes use of machine learning led to a need for algorithms that can handle large 

amounts of data efficiently. Machine learning is a process that can automate the overall 

system of inductive learning, while using coded observations from a stored data base so that 

direct interaction with the environment is not required. Aronis and Provost (1997) propose 

machine learning as a technical basis for the data mining process. They describe machine 

learning as an important practical consideration with a justified existence in various fields. 
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For example, data in large databases may be stored and regenerated for reusable purposes 

instead of being used for learning. Bay (2000) stated that machine learning can allow 

individuals to gain knowledge about a particular topic by studying or experiencing it. Aha et 

al. (1991) Showed that machine learning is the modification of behavioural tendencies in 

response to individual experiences. 

Machine learning is the scientific process that deals with the programming of systems to 

enable them to learn from experiences and improve automatically (An and Cercone 1999). 

Machine learning does not refer to “learning by heart”, but rather to the recognition of 

complex patterns in data, to enable subsequent intelligent decisions to be made. The main 

difficulty in this approach is how to describe the set of all possible decisions that can be made 

based on the inputs. To overcome this weakness, algorithms based on computational and 

statistical principles have been developed by various researchers to enable the discovery of 

knowledge regarding specific data (Bayardo ,1998). Wagstaff (2012) said that the machine 

learning research field includes various distinct approaches. These include logic, probability 

theory, searching, reinforcement learning, control theory and statistics. These methods were 

developed for various applications such as forecasting, data mining, robotics, expert systems 

and pattern recognition. According to Aronis and Provost (1997) various computer 

algorithms are studied in machine learning to enable a goal to be achieved. For instance a 

goal may be to make accurate predictions, to effectively complete a task, or to behave 

intelligently. Aha et al. (1991) suggested that learning should be based on observations or on 

data mining. Generally machine learning is the process that enables a machine to perform 

better in the future based on knowledge of past experiences. The main focus of machine 

learning research is the development of automatic methods that can enhance the ability of 

machines to learn from past experiences (Aha et al., 1991). The main aim of machine 

learning is to develop learning algorithms that can enable machines to assimilate information 
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and enhance their working capabilities without the assistance of a human being. Wagstaff 

(2012) defined machine learning as a sub-area of artificial intelligence. It is not possible to 

build a system that can facilitate intelligence and vision without the use of a learning process. 

Wagstaff (2012) suggest that building such a system is very difficult. Wagstaff (2012) further 

stated that we cannot deem a system to be intelligent if it is not capable of learning, as 

learning is the main criterion for intelligence. 

According to Bay (2000), machine learning research interacts with other fields such as 

physics, computer science, and especially statistics. The principle goal of machine learning is 

to develop algorithms that have practical value, and these algorithms must be efficient so that 

they can enhance a machine’s capabilities by enabling it to learn from previous experiences 

(Barber, 2012). The data required by learning algorithms has its own importance, as it is 

essential for learning algorithms to adapt based on previous experiences. Wagstaff (2012) 

stated that machine learning is a system that identifies different patterns automatically from 

data or past experiences. Bay (2000) said that machine learning is being used in diverse fields 

such as spam filters, internet searches, recommender systems, fraud detection, credit scoring, 

ad placement, stock trading and drug designing.  

Machine learning requires learning algorithms that can be easily applied to solve different 

problems. Figure 2.1 shows a typical machine learning problem model. 
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Figure 2.1: The Machine Learning framework. 

 

Wagstaff (2012) described three basic components that can help an individual to select an 

appropriate learning algorithm for a particular job, as there are thousands of algorithms, with 

thousands more being publisher every year (Wagstaff, 2012). These three basic components 

are representation, evaluation and optimisation. i.e: 

 

Learning = representation+ evaluation+ optimisation.        (2.1) 

 

Bishop (2006) claimed that a classifier should represent formal language that can be 

understood by the computer. It is necessary to acknowledge to the appropriate representation 

of the inputs (which features are to be used). The evaluation component is also known as the 

objective function. It differentiates good classifiers from bad classifiers. Bay (2000) said that 

the selection of the best optimisation technique is necessary for the efficiency of the learner. 

This also helps to determine the produced classifier.  
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A machine learning task is shown in Figure 2.2. The figure shows a collection of two 

dimensional data. Different cluster colours represent different class labels. In this figure a 

classification is dividing the boundary between the different class of clusters. 

 

  

Figure 2.2: Example of a Linear Decision Boundary. 

 

2.1.2 Data mining 

Cabena et al. (1997) defined data mining as the process of extracting previously unknown, 

valid and actionable information from large data sets and then using the information to make 

crucial business decisions. 

According to Berry and Linnoff (2004), data mining is the process in which predictive 

information from large databases is extracted. It is an advanced technique enabling 

businesses to emphasise the most important information within their data warehouses. 

Bramer (2007) stated that data mining is a tool that predicts future behaviours and trends. A 
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data mining tool may help businesses to find answers to the most time consuming and 

difficult questions of the organisation. In order to enhance the value of existing information 

sources, businesses can rapidly implement data mining techniques, further helping them to 

integrate new systems and products. Calderon et al. (2003) explained data warehouses as 

platforms that contain all the data of the organisation under one place, and in a centralised 

form for the deployment to users. This can help business organisations to accomplish all tasks 

from simple reporting to complicated analysis, support decisions and the attainment of 

objectives. Han and Kamber (2006) described data warehouses as the depository of 

information that business organisations require if they are to succeed in the information age. 

Larose (2004) stated that the data warehouse is the most powerful strategic tool for 

businesses in the information age. It helps business organisations to compete across time it 

also helps business organisations in developing strategies to evaluate the strategic insights of 

employees of the organisation in various fields.  

Markov and Larose (2007) said that data mining is a process that analyses the activities of 

business organisations historically, stores statistical data in a warehouse, and reveals hidden 

patterns and trends. Business organisations use different data mining techniques for 

performing different tasks of the business. For example, market analysis may be used for 

identification of new product bundles and prevention of reduction in customers. In today’s 

competitive business environment, organisations are collecting raw data about their 

customers at an unprecedented and increasing rate. An example of this is Walmart, which is 

now processing more than 20 million point of sale transactions every day (Alexander, 2008). 

The customers’ information is stored in the company’s centralised database, but it is useless 

without data mining software that can extract and analyse the relevant information. Data 

mining benefits Walmart in various ways, such as determination of sales trends, development 

of marketing campaigns, and prediction customer loyalty. Data mining processes use 
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information from previous experiences to prove a solution to a present problem or to evaluate 

a situation (Witten and Frank, 2005). According to Witten and Frank (2005) OLAP (online 

analytical processing) enables individuals to analyse data from various perspectives by 

discovering correlations between customers of the business. The main steps of the data 

mining process are (i) input of data, (ii) pre-processing, (iii) analysis and (iv) validation 

(Witten and Frank, 2005). Wang (1999) claimed that data mining methods could be applied 

to the analysis of process systems, and that the results could be used for tasks such as process 

design, process improvement, process monitoring and operator training. 

Piatetsky-Shapiro et al. (1996) stated that applications for data mining techniques have 

ranged from law enforcement to radio astronomy. Medical applications such as 

lymphography, breast cancer, primary tumour and thyroid (Quinlan, 1987; Quinlan, 1988; 

Michalski et al., 1996). Other applications include marketing (Thorpe et al., 1989), finance 

(Selby and Porter, 1988), banking (Carter and Catlett, 1987), soil classification (Dale et al., 

1989), military decision making (Lirov et al., 1989), the space shuttle (Modesitt, 1987) and 

others. Most applications use data mining for classification and prediction. 

 

2.2 Inductive Learning methods 

Inductive learning is a learning method to explore historical observations and extract a 

limited number of general principles. Rather than simply remembering all experiences, 

human intelligence uses inductive learning to deal with the rapid increase of information 

brought about by the information age. That is to say, the experts can predict what will happen 

in the future and adopt appropriate behaviour on the basis of learned principles. 
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The main purpose of inductive learning is to execute a process to separate new knowledge. 

This process is autonomous, of the form given to the information input. The first task in the 

formation of knowledge through inductive learning is the collection of representative 

examples of expert decisions. 

According to Bigot (2002) inductive learning is the process of learning in which a general 

rule is induced by the system from a group of observed events. Bigot (2002) further stated 

that inductive learning involves classification of a particular input and the name of the group 

in which that input belongs. Classification is of great importance in various problem solving 

tasks. Blake and Merz (1998) said that an inductive learning system should involve its own 

group descriptions. Burdick et al. (2001) stated that it is the task to be performed that 

determines the class definitions. According to Agarwal and Srikant (1994), an inductive 

learning algorithm has three main components: representation, search, and evaluation. 

Agarwal et al. (1993) described the representation component as a formal language used to 

describe concepts, while the results of an inductive learning algorithm are statements 

presented in this formal language. According to Kung (2014), the search component is the 

process in which the concept description is searched by the learning algorithm in a space 

containing the descriptions arising from the representation process. Sajja and Akerkar (2012) 

stated that the evaluation component is a process in which and individual proceeds with the 

measurement of quality. The evaluation process guides the search process and helps in 

determining when to stop searching. Kersting (2006) stated that evaluation procedures are 

used for two main purposes. According to Bigot (2002) inductive learning has two main 

categories, known as decision tree induction and rule induction. The single conjunctive rule 

algorithm is a machine algorithm also known as inductive learning. The main purpose of 

inductive learning is to produce a group of rules that capture all the knowledge (generalised) 

within a set of data. In inductive learning, a classifier is based on the use of rules to test 
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instances that are triggered by matching features of the left hand side rule. There are various 

forms of rules that can be ordered. According to Kersting (2006), the ordered rule 

conflagrates the classification outcome and stops the progress of the overall classification 

process. Many researchers have studied inductive learning over the past 10 years (Sajja and 

Akerkar 2012). According to Bigot (2002), induction is the process that moves the focus from 

specific to general. It is the process of generalising a description of a procedure obtained from 

observed data. The main purpose of inductive learning is to execute an amalgamation of new 

knowledge where this knowledge is different from the input information. Kung (2014) stated 

that a researcher can form knowledge base for inductive learning by gathering a group of 

representative examples regarding expert decisions. It was further explained that every 

example relates to a class and can be described by its number of attributes. An inductive 

learning process attempts to search for a method that can classify an example. This method 

can be further expressed as the function of different attributes which explain the training 

examples. This process can also be used for classification of previous cases. 

Inductive learning attempts to find the underlying concepts within a data set. Concepts can be 

represented in different ways, for instance first-order logic, decision trees and neural network 

weights. Several learning systems have been developed, including neural networks, decision 

trees, rule induction programs and Bayesian networks. In this section, decision tree 

algorithms and rule induction algorithms are reviewed, since they are directly linked to this 

work. 

Inductive learning creates a set of decision rules or a decision tree from training examples 

with known classification. Holland et al. [1986] stated that knowledge representation could 

either be rule-based or use decision trees. Based on this assumption, these two types of 

induction will be discussed in this study. 
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2.2.1 Decision Tree-based Algorithms. 

As discussed above, classification is the most popular and well-known technique for data 

mining. Its industrial applications include pattern recognition, imaging and fault detection. 

Braha (2001) stated that almost all current approaches to categorisation use some knowledge 

of the overall data set. A decision tree is an algorithm consisting of internal nodes, roots 

which are labelled specific questions, and arches that correspond to possible answers to these 

questions (Cervone et al., 2001). In decision tree analysis, each tree node corresponds to a 

prophecy of a solution to a particular problem. Monostori (2002) remarked upon the 

popularity of the decision tree algorithm, and proposed the use of  leaf nodes to indicate the 

class to which the corresponding tuple belongs. According to Pham et al. (2002) the decision 

tree algorithm assumes that all the entries are linked with each other. Pham et al. (2002) 

suggest that the decision tree algorithm does not reflect upon both horizontal and vertical 

interactions, even though both of these interactions are common in learning processes. 

Instead, the authors propose IBSEAD to support decision tree algorithms by filling this gap. 

It was further explained that IBSEAD is comprehensive, providing a clearer and more precise 

picture than its precursors. IBSEAD is a program that can answer the problems of a question 

while accumulating awareness and perception in machines. That is something that decision 

tree algorithms fail to include. IBSEAD is a program that contains entities as individuals with 

a common goal, rather than representing them as groups. This structure mimics the true 

observed in almost every dynamic and living environment. One example is the situation 

where a robot is tasked with boarding a railway train. To do so it must interact with people, 

either in groups or individually. This situation contains many unknown entities that are not 

possible for the robot to see, even though their effects can be felt by the robot. Composite 

situations like this can be handled by IBSEAD, but not by decision tree algorithms, or by any 
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other algorithm. According to Cervone et al. (2001), the IBSEAD program is comprehensive 

and can be used more deeply and more easily than other hierarchical structures based on 

decision tree algorithms. It was further explained that the aptitude of algorithms to execute 

higher levels of human awareness and knowledge are not credible, and that IBSEAD can help 

in this regard. Cervone et al. (2001) described numerous algorithms that can be employed for 

constructing decision trees, with the most popular among them being CART and ID3 

(Quinlan, 1986). ID3 (Iterative Dichotomiser), C4.5 (Quinlan, 1993) and C5.0 (Rulequest 

Research, 2001) are all algorithms classified as divide and surmount inductive systems. 

Cervone et al. (2001) further explained that the knowledge provoked by these algorithms can 

be used to represent decision trees. Every internal node of a decision tree represents a test of 

its characteristics, while every branch of the decision tree represents the possible results of 

the test. 

 The common mode of action for making decision trees for a training data set T is to start 

from a single root node and operate recursively. This procedure was used in extensive 

experiments regarding induction, with separate implementations of concept learning systems 

(Hunt et al., 1966).  

The general procedure is as follows: 

 If T satisfies a particular stopping criterion, the node is defined as a leaf, and is 

labelled with the most frequent class in the set. 

 If the stopping criterion is not satisfied then a decision is made on an attribute, 

selected by a specific heuristic measure, to partition T into subsets of objects, Ti. The 

procedure is then repeated on these new subsets. 

 If T contains objects of a single class, the procedure stops. 
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To avoid over-fitting in the presence of noise, the procedure can be terminated earlier by 

applying pruning techniques. The heuristic measure plays a major role in deciding the quality 

of the formed decision tree. It also assists in the formation procedure by selecting the attribute 

upon which to divide a node, the divided values of the selected attribute, and the number of 

divided branches. 

The decision tree forming procedure utilises the divide-and-conquer approach. After each 

decision, the training set is divided into subsets. Each subset is “conquered” separately from 

other subsets in any level. With this strategy, the complexity of the procedure is rapidly 

reduced. Another advantage of the method is that it allows easy understanding and 

explanation by providing visualisation for users. 

The divide-and-conquer approach has a number of deficiencies. A similar sub-tree may exist 

many times. The attribute approach of a decision tree is also unsuitable for data with a large 

number of missing values, such as medical data sets. For such data sets, the incorrect 

evaluation made on an attribute can mislead the learning process. 

 

2.2.1.1 ID3 group (all ID group) 

All ID group is a decision tree system that utilises the information gain standard in order to 

split the nodes of a decision tree. Gained information is then ‘entropy-measured’ in order to 

distinguish the impurities while collecting examples from the data set. This process is 

explained in more detail below. For a sample data set, S, the entropy is defined as:  
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Let a test T with B outcomes separate the data set S into further sub-groups defined as S1, S2, 

S3, S4 and so on. The total entropy of the separated data set can then be represented by the 

weighted entropy of the subsets, as given below. The number of instances within Si and S are 

[Si] and [S] respectively. The information that is gained by separation of the data sets of test T  

is given by:  

 

 TandSEntropyEntropySTSGain ),(     (2.3) 

 

In the above equation, gain (S, T) represents the expected reduction in the entropy after the 

separation of the data sets into exclusive sub-sets on the basis of test T. Braha (2001) stated 

that the gain standard selects the most appropriate test to minimise the information. 

According to Monostori (2002), ID3 selects the nodes for the growth of the decision tree in 

accordance with the entropies or information contents of the selected data set. The use of the 

entropies helps in finding solutions to the problem by providing coherent and effectual ways 

to construct the decision tree.  

 

2.2.1.2 CART  

Cervone et al. (2001) described CART, a binary decision tree algorithm that is expansively 

used. Table 2.1 shows a training data set while Figure 2.3 shows the decision tree developed 

from the data in the table.  
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Table 2.1: Training set for the weather problem (Witten and Frank, 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: The resultant data set in Table 2.1 represented as a decision tree. 

 

Cervone et al. (2001) explained that an insignificant characteristic Ai can have all the possible 

values (Ai, n), i.e. ci1, ci2, ci3, ci4, etc. Within Ai there are different branches that are invented 

by internal nodes. To assess the continuous characteristics of Ai, a binary test should be 

No Outlook  Temperature  Humidity Windy Play 

1 sunny hot high false no 

2 sunny hot high false no 

3 overcast hot high false yes 

4 rainy mild high false yes 

5 rainy cool normal false yes 

6 rainy cool normal true no 

7 overcast cool normal true yes 

8 sunny mild high false no 

9 sunny cool normal false yes 

10 rainy mild normal false yes 

11 sunny mild normal true yes 

12 overcast mild high true yes 

13 overcast hot normal false yes 

14 rainy mild high true no 

 

Humidity Windy

Yes No Yes

Sunny Rainy

Normal High

No

True False

Outlook

Overcast

Yes
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carried out on each branch, Ai and ci. A second branch corresponding to Ai > ci is an entrance 

to the sphere of Ai. Every leaf node represents the classification that should be assigned to an 

example. Cervone et al. (2001) stated that a separate path from the root of the decision tree to 

its leaf node is identified on the basis of the characteristics of the example in order to classify 

that example. The classes of a leaf node represent the predicted class of the example. It was 

further explained that the evaluation function that is used for partitioning in CART is known 

as the Gini Index: 
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Wu et al. (2007) said that decision trees are generated in a hierarchical manner from the 

training data. The first stage of the decision tree is assigned to the examples of the data set. If 

all the examples are of the same class then there is no need of partitions, as the solution is 

complete, but if the examples relate to different groups then there is a need to test those 

examples in order to split up the decision tree. Cervone et al. (2001) elaborate that CART is a 

form of classification and regression, also known as HODA (Hierarchical Optimal 

Discriminant Analysis). CART is a generalisation of optimal discriminant analysis. It is used 

to identify the statistical mode with the maximum accuracy of predicting the value of a 

dependent variable in a data set containing both continuous and categorical variables. CART 

is a learning technique that is non parametric and produces classification or regression of 

decision trees on the basis of the dependent variable categorically, numerically or 

respectively (Han, 2001). Decision trees can be formed by collecting rules on the basis of the 

variables in the sample data set. In CART, rules for the values are selected on the basis of 

dependent variables so that the best split can be achieved in differentiation of observations. 
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Han (2001) further explained that after selecting the rule and splitting the nodes of a tree, the 

same process is applied to the related sub-nodes. It was further explained that the splitting 

process is completed after the detection of the nodes. Every branch of the decision tree ends 

at a terminal node and each and every observation falls into a single terminal node.  

 

2.2.1.3 C4.5 and C5.0 (all C groups) 

C4.5 is an extension to ID3 and is also an important decision tree algorithm. This algorithm 

utilises the gain ratio standard as it has a strong bias in favour of the characteristic tested 

along with various variables. In order to reduce the bias in the gain ratio standard, the split 

information standard is employed via the following equation: 
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According to Lavrač et al. (2004), a split information standard can be observed by choosing 

the given characteristic as a test. However, this technique reduces the choice of 

characteristics with various values. The given ratio then provides:  
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The gain ratio calculation for a supposed characteristic test is comparatively undemanding. 

For continuous characteristics, the number of possible values in a subset interlinked with the 
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internal node is determined. After this, all the possible splits on a continuous characteristic 

are examined effectively. The split that has the tendency to maximise the gain ratio method is 

then chosen as the entrance. As discussed previously, the decision tree has the potential to 

provide an over fitted solution as it contains components that are accurate to noise and can 

easily present the training data. To overcome this situation, the C4.5 algorithm employs the 

pruning method to simplify the overall tree while eliminating sub-trees that are too specific. 

The pruning method can be performed by examining sub-trees which can then be replaced 

with one of its branches, if it does not demean the precision of the sub-tree.  

According to Lavrač et al. (2004), the C5.0 algorithm is a decision tree process that is widely 

used in machine learning. After the development of C4.5, the C5.0 algorithm was developed 

to respond to noise and to easily locate the missing data in data sets. This algorithm provides 

boosting (Giudici, 2003). A large decision tree can be difficult to handle or read with other 

algorithms, but C5.0 can easily handle large data sets. While employing C5.0, an individual 

can easily understand a large decision tree as C5.0 views large decision trees as a group of 

rules. C5.0 solves the over fitting problems and reduces errors in pruning techniques. C5.0 

can easily predict the characteristics that are relevant to the classification process. This 

technique of predicting the relevant characteristics in the classification process is known as 

Winnowing, and it is useful in dealing with high-dimensional data sets. In the C5.0 algorithm 

the input is the example data, target or attributes, while the output is the decision tree, which 

is constructed by use of training data sets.  The decision tree classifies the data accurately and 

handles both continuous and discrete characteristics. According to Witten and Frank (2000), 

C5.0 is more efficient than C4.5. It is more accurate and its rule sets have lower error rates, 

though both of these methods can have similar accuracy rates. 
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2.2.2 Rule-based Algorithms  

According to Giudici (2003), the rule-based induction method is one of the most important 

machines learning techniques as it can express the regularities regarding rules that are 

frequently hidden in the data. It is the most fundamental tool in the data mining process. 

Generally rules are expressions of the form:  

if (characteristic 1 is equal to value 1) and (characteristic 2 is equal to value 2) and 

(characteristic n is equal to value n) then (decision will be equal to value).  

Witten and Frank (2000) stated that some rule induction systems provoke more complex 

rules, in which the characteristic values are expressed by the contradiction of some other 

values or by a value of the overall subset of the characteristic domain. It was further 

explained that the data by which the rules are provoked are generally presented in a form 

similar to a table that shows different cases (rows) against the variables (characteristics and 

decisions). Lavrač et al. (2004) said that the rule induction belongs to supervised learning, 

and all of it cases are pre-classified by experts. In simple words the decision values are 

assigned by the experts in this process. Lavrač et al. (2004) further elaborated that the 

characteristics represent independent values, while the decisions represent the dependent 

variables. The covering method represents classification of knowledge in the form of a set of 

rules which represent or give a description of each class. There are a number of covering 

method algorithms that are widely used, such as CN2 (Clark and Niblett, 1989; Clark and 

Boswell, 1991), RIPPER (Cohen, 1995) or AQ (Michalski, 1969). The most common 

versions are AQ19 (Michalski and Kaufman, 2001) and Rules Family (Pham et al., 1995). 

Covering method algorithms deduce rules from a training set of examples, making use of the 

same general procedure as used for the first time in the AQ algorithm.  
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This procedure makes use of the following search process to produce the rules for each class 

in the training set T:  

While the Stopping Criterion is not satisfied: 

 Form a new rule to cover examples belonging to a target class employing the Rule 

Forming Process; 

 Add this rule to the Rule Set; 

 Remove all examples from T which are covered by this new rule. 

 Stop the procedure when there are no more classes to classify. 

This process is further explained by applying it to the training set of weather problem in 

Table 2.1 (Witten and Frank, 2005) to determine the decision of the player to play or not to 

play golf, based on the weather conditions. Each row of the Table 2.1 represents an instance, 

and the whole table represents the training data set. Each instance contains the values of 

different characteristics and it also shows the values of the equivalent classifications.  

A possible classification set that can be derived from the Table 2.1 is as follows. The table 

has four variables, two of which can take three values, while the other two can take two 

values. As a result, 36 possible combinations (3 x 3 x 2 x 2 = 36) are created. Out of these 

combinations, 14 are present in the set of input examples. From the information described 

above, the set of rules shown in Figure 2.4 defined as a decision list. 
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IF Outlook = sunny AND Humidity = high Play = No 

IF Outlook = rainy AND Windy = true Play = No 

IF Outlook = overcast Play = Yes 

IF Humidity = normal Play = Yes 

IF none of the above Play = Yes 

Figure 2.4: The resultant data set in Table 2.1 represented as a decision list. 

The rules that have been described so far have the ability to make a prediction on how the 

examples can be classified in terms of whether to play or not to play. These rules are 

acknowledged as classification rules. 

 

2.2.2.1 AQ  

AQ is a rule induction algorithm which was developed by Michalski, et al. in 1970’s. Various 

algorithms based on this have been developed by other people. In AQ, A is the set of all the 

characteristics A1, A2, A3 … An. Wojtusiak et al. (2006) stated that the seed is a member of a 

concept, which is an positive case. A selector is an expression relating to a variable that is a 

characteristic or a decision regarding the value of a variable such as a contradiction of values. 

The main inspiration of the AQ algorithm is the generation of cover for every concept while 

calculating stars and choosing single complexes for the cover from those stars. According to 

Cervone et al. (2010) an AQ algorithm requires the calculation of conjuncts of incomplete 

stars.  

In worst cases, the complexity of time in this calculation is O (nm), where n is the number of 

characteristics that are being used and m is the number of cases. The developers of the AQ 
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algorithm suggested the use of the MAXSTAR parameter as a tool for reducing 

computational complexity. They believed that the set computed by the conjunction of 

incomplete stars can be reduced in size if it has a greater number of members than 

MAXSTAR. However, this also reduces the quality of the results of this algorithm. 

 

2.3 Clustering  

Data clustering is also known as unsupervised learning, which can be defined as dividing a 

set of data into various homogeneous clusters. Clustering algorithms help to allocate the large 

number of data points into a smaller number of groups. The reason for assigning data points 

into groups is to combine data points which have similar properties, while separating data 

points that are dissimilar. Clustering forms a part of active research in various fields such as 

machine learning, statistics, data mining and pattern recognition. Pham and Afify (2007) 

described clustering as an important technique relating to data exploration. Clustering 

includes various applications in diverse areas of engineering including manufacturing, system 

design, engineering design, production planning, quality assurance, modelling, control, and 

monitoring. Mirkin (2005) stated that engineering analysis, grouping of web pages market 

segmentation, scientific analysis and information retrieval are all included in the applications 

of clustering. Clustering can also be very useful in exploratory analysis and data cleaning. 

According to Wu (2012), in the case of identifying pattern classes, clustering can be used as 

pre-processing step for supervised classification. Wagstaff et al. (2001) said that 

representation of data puts clustering in a historical perspective that relates to statistics, 

numerical analysis and mathematics. Teknomo (2007) said that clusters respond to hidden 

patterns; the search for clusters is unsupervised learning, and the results represent the 

concepts of the data. 
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Figure 2.5: A classification of the main clustering techniques. (Pham and Afify, 2007) 

 

2.3.1 Hierarchical methods 

According to Rokach and Maimon (2010), hierarchical clustering, also called Hierarchical 

cluster analysis (HCA ), develops a hierarchy of clusters. Ferreira and Hitchcock (2011) said 

that hierarchical methods generate a nested sequence of 1 to N clusters for a data set of size 

N. Rani and Rohil (2013) stated that this method groups points of data into a tree of clusters 

having one cluster at each root of that tree. Rani and Rohil (2013) further defined this tree of 

clusters as a dendrogram. Murtagh and Contreras (2011) described a tree of clusters as a tree 

containing different data points, with one cluster at each of its roots. At the roots of each 
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cluster there are various leaves. There are N clusters, and each cluster contains one data point. 

According to Halkidi et al. (2001), there are two approaches to the hierarchical method: the 

agglomerative approach and the divisive approach. Rokach and Maimon (2010) explained the 

agglomerative approach as one that operates in a bottom up manner while performing a series 

of agglomerations of small clusters where each cluster has a single data point. Rani and Rohil 

(2013) said that the agglomerative approach combines these small clusters to form different 

larger clusters. According to Halkidi et al. (2001), there are three methods that can be used to 

elaborate the distance between two or more clusters. These are: centroid based, single link 

and group average. According to Madhulatah (2012), the centroid based method calculates 

the contrast between the center of two clusters. The single link method calculates the shortest 

distance between two points of data, while the group average method calculates the distance 

between all pairs of data points in different clusters.  

 

BIRCH   

BIRCH is the acronym for Balanced Iterative Reducing and Clustering using Hierarchies. 

According to Halkidi et al. (2001), BIRCH is a multi-phased clustering algorithm in which 

large groups of data sets are clustered without being affected by the available memory of the 

computer. Rani and Rohil (2013) said that BIRCH utilises a data structure known as CF tree 

(clustering feature tree) which sums all the data points before the application of the 

hierarchical clustering algorithm. Halkidi et al. (2001) elaborated that clustering can be 

executed quickly with the help of a CF tree. There are two types of node in a CF tree: internal 

nodes and leaf nodes. Rokach and Maimon (2010) explained that every leaf node carries 

almost A entries and each entry relates to a cluster which can be represented as a tuple: 
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where nj the number of data points in a cluster, j, and i is the index of the data point within 

cluster j. These tuples can also be regarded as features extracted from different data points in 

sub-clusters. According to Murtagh and Contreras (2011), BIRCH is a reliable method that 

can effectively handle noise. On the other hand, CF nodes in a CF tree do not handle a large 

number of data points because of their size.  

 

CURE 

CURE is an acronym for Clustering Using REpresentatives. According to Rani and Rohil 

(2013), it is a clustering algorithm that merges the hierarchical and sampling clustering 

approaches through a new distance approach. According to Madhulatah (2012), the CURE 

method uses the different scattered points of a cluster to represent it and to capture its shape. 

Halkidi et al. (2001) said that representative points are shrunk towards the centre of their 

cluster to avoid the noisy points before the computation of two clusters. According to 

Madhulatah (2012), CURE measures distance on the basis of the two closest points collected 

from the representatives of two different clusters. 

 

2.3.2 Density-based method 

The density based method is a clustering method in which dense regions of data points which 

are separated by low density regions are clustered (Jiharabadkar and Kulkarni, 2009). Yin et 

al. (2007) said the density method is less sensitive, but that different clusters of arbitrary 
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shapes can be discovered by adopting this approach. According to Shah et al. (2012) there are 

three major algorithms which employ the density method: DBSCAN, OPTICA and 

DENCLUE.  

 

DBSCAN 

DBSCAN is the acronym for Density-Based Spatial Clustering of Applications with Noise. 

DBSCAN is an example of a density based algorithm (Jiang et al., 2010), which includes the 

two parameters, Eps and MinPts. Eps is a specific radius while MinPts is a certain number of 

data points.  Chen et al. (2013) said that a specific radius must have a certain number of data 

points. According to Cao et al. (2006), there are many steps of DBSCAN and every step 

builds up a cluster. Yin et al. (2007) stated that the algorithm in this method does not relate to 

any other cluster previously discovered. According to Jiharabadkar and kulkarni (2009), 

DBSCAN handles a large amount of data and its processing order does not affect the shape of 

the cluster. Cao et al. (2006) elaborated that the main disadvantage of DBSCAN is that it is 

difficult to establish Eps and MinPts, and the result is very sensitive for these two parameters. 

Cao et al. (2006) mentioned that a further drawback of DBSCAN is that it cannot handle data 

that contains clusters with diverse densities. 

 

OPTICS 

OPTICS is the acronym for Ordering Points To Identify the Clustering Structure. According 

to Yin et al. (2007) the reason for proposing the OPTICS method was the sensitivity of 

DBSCAN. As described previously, DBSCAN is sensitive to the input parameters (Eps and 

MinPts) so it was proposed to order data points to identify the clustering structure. This 
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would overcome the weakness of DBSCAN. According to Jiharabadkar and kulkarni (2009), 

the OPTICS method is a clustering method that calculates enlarged cluster ordering for 

automatic cluster analysis. Jiang et al. (2010) said that OPTICS requires input parameters just 

like DBSCAN, but that this method produces clustering results for a single pair of parameter 

values. Shah et al. (2012) said that values of both parameters can be computed and visualised 

easily and effectively by adopting this method of clustering. However, a limitation of 

OPTICS is that it cannot handle high-dimensional data (Yin et al., 2007). 

 

DENCLUE 

DENCLUE is the acronym for DENsity- based CLUstEring. According to Yin et al. (2007), 

the DENCLUE method of clustering is used for handling high dimensional data. Jiang et al. 

(2010) further elaborated that in this method the overall density of a cluster is analysed based 

on the influence of the data points in the cluster. This method measures the effects of data 

points on their surroundings. Shah et al. (2012) said that the DENCLUE method is adopted in 

order to efficiently compute the effects of influence functions. Jiang et al. (2010) said that 

this method of clustering helps with the mathematical identification of clusters by finding 

local maxima of the density function. According to Shah et al. (2012) the major advantage of 

the DENCLUE method is that it is resistant to noise and can handle large groups of clusters. 

According to Yin et al. (2007), this is an effective method compared to the other density-

based algorithms. Nevertheless, for this method the clustering parameters should be carefully 

selected as they can influence the quality of the results. 
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2.3.3 Grid-based methods 

According to Park and Lee (2004), the grid based method indirectly constructs different 

summaries of data. This method constructs a summary of an attribute space. According to 

Rama et al. (2010), each attribute space is divided into predetermined cells, forming a grid 

structure through which all the clustering functions are performed. Madhulatha (2012) was of 

the view that grid-based methods handle outliers well. Ansari et al. (2013) stated that this 

method of clustering is ineffective because of the increased number of dimensions. In this 

method the number of dimensions is increased because summarised information is used. 

 

STING 

STING is the acronym for STatistical INformation Grid. Park and Lee (2004) said that a 

statistical information grid (STING) is an approach that is used for spatial data mining. Park 

and Lee (2004) stated that in this approach a spatial area is divided into numerous rectangular 

cells that form a hierarchical structure. Park and Lee (2004) said that in this method statistical 

values such as the mean, minimum and maximum are pre-computed and stored in each grid 

cell. This process uses a top down approach to work through the hierarchical structure. The 

relevancy of each and every cell is examined by the algorithm (Madhulatha, 2012). 

According to Ansari et al. (2013), relevancy is the proportion of data points in a cell that 

satisfy the conditions of the query. The STRING process examines each and every level of 

hierarchical structure starting from its top. It is a fast and effective approach that allows the 

user to efficiently retrieve data from different cells. 
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Wave Cluster 

Wave cluster is the acronym for wavelet based clustering. Rama et al. (2010) explained that 

this approach is a multi-resolution algorithm in which data points are clustered by a wavelet 

transform method. According to Shehada et al. (2012), the wavelet transform method 

processes signals and then decomposes them into various frequency sub-bands. Chang et al. 

(2009) said that the wave cluster method relates to data points of multi-dimensional signals. 

Park and Lee (2004) said that the signal processing method is adopted to discover the high 

and low frequency components of multi-dimensional signals that represent a feature space. 

Rama et al. (2010) said that this method used to detect the clusters within different grids. 

Ansari et al. (2013) stated that this method evaluates the results in multi-resolution clusters 

from different scales by applying wavelet transforms multiple times. According to Chang et 

al. (2009), the wave cluster method is insensitive and efficient when it comes to the 

processing of data, and it helps to find clusters of arbitrary shape with complex structure. 

This approach also handles outliers well. Park and Lee (2004) said that this approach cannot 

be applied to low dimensional data. 

 

CLIQUE 

According to Chang et al. (2009), clustering of high dimensional space is an approach that 

allows user to cluster high dimensional data space. In this approach, sub-spaces of a high-

dimensional data space are automatically identified by the algorithm. Ansari et al. (2013) 

stated that the CLIQUE approach allows a user to efficiently cluster data points from an 

original space. Shehada et al. (2012) said that this method partitions a data space into 

rectangular units that do not overlap with each other, and that this method also discovers the 

number of points in a cell. The dense rectangular units are then further examined by 
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employing a depth algorithm to determine the clusters. Ansari et al. (2013) said that this 

clustering of high-dimensional space is an approach that is sensitive to the input of data 

points. This method is a simple, but the accuracy of the results may be degraded by using this 

approach. 

 

2.3.4 Other approaches of clustering 

While some of the most renowned and commonly used methods of clustering have been 

discussed in the earlier sections, this section will present some alternative approaches, 

including: 

• Fuzzy clustering  

• NN (natural network) based clustering  

• GAs (genetic algorithms) etc. 

• MAXNET clustering 

Fuzzy clustering was described at the International Federation of Classification Societies 

Conference (2004) as setting clustering algorithms while incorporating an element of 

uncertainty into the process. The reason that fuzzy clustering is gaining the attention of the 

practitioners is the fact that the traditional clustering algorithms generally end up providing 

non-overlapping clusters which means that data points clearly belong, or do not belong, to a 

given cluster. Fuzzy clustering, on the other hand involves algorithms that provide the margin 

of association or degree of attachment of a data point to a cluster. This means that an 

uncertainty element is imbedded, such that a data point does not need to be described as 
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either belonging to a cluster or not, and the degree of relation is best suited to resolving the 

uncertainty aspect. FCM is the most commonly applied algorithm for fuzzy clustering. 

The element of learning ability in the clustering techniques is what makes the foundation of 

natural networks (NNs). Use NNs, in particular artificial NNs, has increased considerably 

over the last decade, as has its application throughout the engineering disciplines. Prominent 

examples of NNs are self-organising maps (i.e. SOM) and adaptive resonance theory (ART). 

NNs like SOMs have two layers referred to as input and output layers, where neurons of the 

input layer are connected to those of the output. Networks learn to recognise the patterns in 

the input layer to adjust the output accordingly. ART 1 had been launched for the purpose of 

clustering binary inputs while ART 2 was further advanced for perpetual inputs. Use of the 

fuzzy method in ART made it possible to respond to both binary and continuous input values. 

An advantage of NNs is their increasing use and applicability across the board, but a 

disadvantage is the need to gather suitable patterns.  

Genetic algorithms (Gas) operate on the principle of evolution, and they tend to search for the 

best available option from the population. Various GAs have been developed for solving 

clustering problems in industry. A GA system comprises a solution, i.e. typical, valid data 

bifurcations and the cluster centroids. They are represented by bit strings. Finding the 

appropriate solution is initiated by populating the solutions, and if the problem is not resolved 

then new solutions with operations comparative to the existing solutions are developed. If the 

solution is achieved as desired then it becomes part of the population for the subsequent 

stages. 

MAXNET is a self-organising neural network model that calculates the highest number of n 

given values. Self-organisation implies that despite the cluster having no prior supervisory 

information, it still learns from the input and to order the neurons correspondingly. It could be 
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ascertained that self-organisation operates on similar principles of sensory paths as those of 

human visual system. In this case, self-organisation is regarded as a useful ordering of the 

neurons in the brain. For ‘ordering’ that does not need the neurons to be physically moved, a 

commonly known self-organising neural network model is referred as feature maps 

(Kohonen, 1989). 

MAXNET is a recurrent network. It has a single layer of n nodes (Figure 2.6) which compete 

to ascertain the node with the maximum initial value. Each node is adjoined to all other nodes 

embodying itself. The network executes an iterative process whereby each node gets 

inhibitory inputs from other nodes through lateral (intra-layer) associations. All the nodes 

update their output in the meantime (in parallel) [Mehrotra et al., 1997; Datta et al., 2000]. 

 

Figure 2.6: MAXNET architecture (Datta et al., 2000). 

Thus MAXNET allows the parallel computation of the maximum value from a given set of 

values, where every computation is local to each node rather than being controlled by a 

central processor. It can be seen that the number of iterations to select the winning node does 

not depend on the number of data points, n. 
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2.4 Data engineering  

According to Chan et al. (2009), data engineering is the multi-corrective practice that is used 

in engineering computer software and computing systems to help the user by extracting 

information via data analysis. Chan et al. (2009) said that data engineering generates data in 

various ways. Data engineering employs different techniques for analysing data, including 

machine learning, pattern recognition. It also uses various techniques (optimisation, 

visualisation, prototyping, knowledge elicitation and different database systems) for efficient 

extraction of data. The main objective of data engineering is to generate additional data from 

the available data and in doing so to understand the overall process that is being investigated. 

The main characteristic of data engineering is the procedure of analysing data and creating 

new tools for a specific task.  

 

2.4.1 Data Pre-processing  

According to Axelson (2012) data pre-processing is an essential step in the data mining 

process. Han et al. (2011) stated that the phrase “Garbage in and Garbage out” is 

predominantly applicable to machine learning and data mining processes. He further 

explained that data collection techniques are mostly controlled by the users which gather 

incomplete values and unfeasible data combinations. Axelson (2012) stated that if the data is 

not being carefully analysed then it might corrupt the results. Therefore, the the 

representation of quality data is the most important step and should be carefully executed 

before analysing the data for a particular task. Han et al. (2011) stated that if inappropriate 

and unnecessary data is collected by the user then this will affect the overall process and will 
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make it difficult for the user to discover knowledge about a particular task. Data pre-

processing contains transformation, normalisation, data ordering, data selection and data 

cleaning.  

 

2.4.2 Data Noise  

According to Zhou et al. (2007), data noise relates to the meaningless data that has no value 

to the user and is unnecessary for the user. Noisy data is also known as corrupt data. Zhou et 

al. (2007) explained missing data as the data that is construed correctly by machines like 

unstructured data in the form of text. Noisy data can be defined as data that is received, stored 

and changed, so that it cannot be used by any other the program except the original program 

that created it. Data noise causes many different problems for users and it unreasonably 

increases the storage space that is required for the task. It also strongly hinders the results of 

the data mining process. Zhou et al. (2007) stated that data noise can cause programming 

errors, hardware failures and many other problems, and makes it difficult for the user to 

efficiently complete a task. 

This section will discuss the problems of data noise might pose for the rules family building 

procedure that has been described earlier? 
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Figure 2.7: Training data containing noise (Bigot, 2002). 

 

Taking into consideration the small training set for the weather problem shown in Table 2.1, 

the assumption is that the attribute ‘Outlook’ of example 1 is ‘Overcast’ and that this has 

been recorded incorrectly. Examples 1 and 3 will belong to different classes but then have 

identical descriptions and as a result the attributes for this training set become inadequate. 

Furthermore, if the ‘Windy’ attribute of example 4 is corrupted to true then the attributes will 

become inadequate because the example would then contradict example 14. Finally, the first 

training set can be considered by the simple rule set of Figure 2.3, comprising of 5 rules, has 

been produced by both RULES-3 Plus and RULES-5 Plus. Considering that the class of 

example 3 were corrupted to ‘No’, an appropriate rule for this corrupted training set would 

now have to give an explanation for the special case of example 3. More rules are produced 

for both RULES-3 Plus and RULES-5 Plus as they produce 9 rules and 7 rules precisely in 

the given order.  

Figure 2.8 and Figure 2.9 demonstrate results which highlight two problems: errors in the 

training set (i) may lead to rulesets of spurious complexity, or (ii) may cause the attributes to 

become inadequate. 
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IF Outlook = sunny AND Humidity = high   Play = No 

IF Temperature = hot AND Humidity = high   Play = No 

IF Outlook = rainy AND Temperature = mild AND Windy = false   Play = Yes 

IF Humidity = normal AND Windy = false   Play = Yes 

IF Outlook = rainy AND Humidity = normal AND Windy = true   Play = No 

IF Outlook = overcast AND Humidity = normal   Play = Yes 

IF Outlook = sunny AND Humidity = normal   Play = Yes 

IF Outlook = overcast AND Windy = true   Play = Yes 

IF Outlook = rainy AND Temperature = mild AND Windy = true   Play = No 

 

Figure 2.8: The rule set produced by RULES-3 Plus over a noise class in example 3. 

 

 

IF Outlook = sunny AND Humidity = high   Play = No 

IF Outlook = overcast AND Temperature = hot AND Humidity = high   Play = No 

IF Outlook = rainy AND Windy = false   Play = Yes 

IF Outlook = rainy AND Windy = true   Play = No 

IF Outlook = overcast AND Humidity = normal Play = Yes 

IF Outlook = sunny AND Humidity = normal Play = Yes 

IF Outlook = overcast AND Temperature = mild   Play = Yes 

 

Figure 2.9: The ruleset produced by RILES-5 Plus over a noise class in example 3. 
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2.4.3 Missing data  

According to Han et al. (2011), missing data is an empty cell in a table representing a data 

set.  

 

Figure 2.10: Data set including missing data. 

 

Han et al. (2011) further stated that there are numerous ways that concealed values can occur 

in a data set. The most common prospect is that someone intentionally enters false values into 

the data set. On the other hand, default values can also become a concealed source of missing 

data. For example if an online form has the default gender as male and the default country as 

United Kingdom then if a person filling in the form does not want to share their identity or 

personal information it may lead to the missing values being disguised as default values. 

Klösgen et al. (2002) stated that the most vital source of missing data is the lack of standard 

missing data representation. It was further explained that even a single file might have 

multiple codes representing the same missing data. Every organisation has its own approach 

to the representation of the data that leads to disguised missing data, and organisations can 
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reduce the fake entries in data sets by developing a standard approach for the representation 

of such data. 

 

2.5 Present Progress in Machine Learning Research 

Bell (2014) states that the research upon machine learning is making considerable progress in 

many directions. This section of the thesis will evaluate two core directions and also current 

problems will be discussed in this section. The two directions that will be discussed in this 

section are selling up of the machine scale and learning multiple methods.  

 

2.5.1 Scaling up Machine Learning Algorithms 

The core research area concerns to the techniques for scaling up of the machine learning 

algorithms so that they can process the large amount of data sets efficiently, while developing 

best possible models from them. Brownlee (2013) stated that the recent emergence in the data 

mining process as the major application for the machine learning has significantly increased 

the overall need of the algorithms to handle complex and large amount of data sets that are 

currently beyond their scope. Brownlee (2013) further stated that the data mining process 

includes the data sets having millions of training examples and also hundreds and thousands 

of attributes and classes. Barber (2012) stated that currently these processes represent the 

databases containing data in gigabytes or even terabytes. So the development of effective and 

suitable applications for handling such data has been increased among researchers.  

Busse (2005) stated that there are numerous approaches that are presented or implemented by 

the experts for scaling up of the machine learning algorithms and one of the most effective 

and straight forward application is to produce more efficient algorithms so that the overall 
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efficiency of the existing algorithms can be enhanced. In regards to this approach Flach 

(2012) stated that it includes a wide range of algorithm design techniques so that the overall 

representation and search can be optimised and also to find the approximate rather than exact 

solutions. According to Koyu & Deshpande (2014) another common approach for scaling up 

of the machine language is to partition the data while avoiding the need to run the algorithms 

in very large scale data sets. In this regard Barber (2012) and Bell (2014) stated that this 

approach has proved to be advantageous for scaling up of the machine learning as it includes 

the process of breaking the data sets in to further subsets, while considering one or more 

subsets and also by combining the results. According to Freitas (2002) the partitioning of the 

data helps in avoiding or reducing the memory management problems that occurs when an 

algorithm attempts to process huge data sets from the main memory. In this regard Murphy 

(2012) further stated that an approach orthogonal to the selection of the examples from the 

subsets helps with the selection of the relevant features upon which there is a need to focus. 

Mohri et al (2012) states that for focusing on the specific details the application of the 

inductive learning techniques for handling of the large data sets has now been reviewed by 

most of the experts and the issues and techniques are being discussed generalised to other 

machine learning techniques.  

Maimon and Rokach (2006) stated that the decision tree algorithm has been improved for 

handling of the large data sets efficiently and also allot of new algorithms have been 

proposed by the experts during last few years. In 1991 Catlett has proposed two methods in 

order to improve the time utilised while developing the classifier. The first method that was 

proposed by Catlett uses data sampling at each node of the decision tree and the second 

method that was proposed focuses on discretised continuous attributes. In this regard Sra et al 

(2012) stated that these two methods have significantly reduced the overall time for the 

development of the classifier but on the other hand these methods have reduced the overall 
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accuracy of the classification. Furthermore Catlett has only considered the data sets that may 

fit in the main computer memory. While on the other hand, Maimon and Rokach (2007) 

stated that these methods have significantly helped in enabling overall classification of the 

large data sets. In regards to the incremental learning methods Mohri et al (2012) stated that 

incremental learning methods are the methods in which the data is classified into batches and 

the cumulative cost of classification of the data may sometimes exceed the overall cost of 

classifying the overall training sets at once. Perner (2009) stated that the decision tree 

classifier is known as SLIQ that uses the novel techniques for the pre sorting purposes, MDL 

based pruning and breadth first growth in order to improve the overall learning time of the 

classifier without compromising with its accuracy. As this classifier uses the memory resident 

data structure that scales with the size of the training set and SLIQ has the upper limit on 

various examples that it can process. Maimon and Rokach (2006) stated that in 1996 Shafer 

et al has presented an classification algorithm that is known as SPRINT and in an efficient 

algorithm that helps with the removal of the memory restrictions that further restricts the 

existing decision tree algorithms while exhibiting the same excellent behaviour as SLIQ. 

Maimon and Rokach (2006) further stated that the SPRINT algorithm significantly helps with 

the classification of the large data sets and it also can be easy and efficiently parallelised. 

However there are some disadvantages of SPRINT algorithm as well such as it uses the data 

structures known as attribute lists which is an costly method and includes the potential 

tripling of the overall size of data set. Maimon and Rokach (2006) further stated that just like 

C4.5 both SPRINT and SLIQ are the two staged algorithms that include the development and 

the pruning phases. He further stated that the development of the decision tree in two distinct 

phases can be tricky and complex which can result into the substantial amount of waste effort 

as the first phase requires the development of an entire sub tree which is then pruned in the 

next phase.  
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According to Perner (2009) PUBLIC is also a decision tree classifier that significantly 

integrates the overall pruning process into the development phase rather than performing 

them one after another. Bell (2014) stated that the integrated approach for the PUBLIC 

algorithm can significantly enhance the overall performance in comparison to the traditional 

classifiers like SPRINT. According to Maimon and Rokach (2006) in 1998  Gehrke has 

proposed and Rainforest which is an framework for the development of a fast and effective 

algorithms for developing the decision trees that can efficiently be adjusted to the amount of 

the available memory. Maimon and Rokach (2006) further stated that after Gehrke in 2998 

Morimoto has also developed algorithms for the development of the decision tress for 

categorising the attributes with large domains. The overall aim behind development of this 

algorithm was to enhance the overall quality of the resulting tree. There are various other rule 

induction algorithms associated with the decision tree algorithm that can significantly help 

with the scaling of the large data sets. Maimon and Rokach (2006) further stated that IREP 

was the rule that was developed in 1994 which was a rule learning algorithm that has the 

potential to handle the complex and noisy data efficiently. Maimon and Rokach (2006) 

further stated that the core reason behind the efficiency of this rules was that it utilises the 

technique that is known as incremental reduced error pruning. In this regard Perner (2009) 

stated that this technique helps in pruning each and every rule immediately after its 

introduction rather than pruning after generating all of the rules. This process further 

increases the overall speed of the induction process as the pruned rules helps with the 

removal of the larger subsets. However, the overall accuracy of the class depiction in this 

algorithm is lower in comparison to that of C4.5. 

According to Maimon and Rokach (2007) in 1995 Cohen has detailed some modifications in 

IREP in order to improve the overall accuracy of its results and this process included the rule 

evaluation criterion, posting processing optimisation operation, stopping criterion and 
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production of an algorithm named RIPPER. Maimon and Rokach (2007) further states that 

RIPPER algorithm is compatible with the rues of C4.5 in regards to the error rates and it also 

helps in maintaining the overall efficiency of the IREP. Barber (2012) also stated that 

RIPPER algorithm supports the missing characteristics, multiple classes and Continuous 

variables which further make it applicable to a wide range of benchmark problems.  

 

2.5.2 Learning Multiple Models 

The second active area of concern for this research is the particular method for improvement 

of the overall accuracy of the results in the supervised learning. Freitas (2002) states that the 

term multiple methods is also known as ensemble of classifiers and it is generally used for 

identification of the sets of classifiers and their individual decisions are combined with the 

classification of the new examples. Freitas (2002) further stated that multiple methods are 

more accurate in comparison to the individual classifiers and it also has substantial theoretical 

foundation. In this regard Murphy (2012) stated that an ensemble is more accurate in 

comparison to its component classifiers only of the individual classifier is diverse and 

accurate. While on the other hand Sra et al (2012) explained accurate classifier as the 

classifier that performs better than a random guessing. Sra et al (2012) further stated that two 

classifiers can be regarded as the diverse classifiers only of they make different data points or 

different errors.  

Bell (2014) stated that there are numerous methods that have been proposed by the experts 

for obtaining the multiple classifiers while using the same learning algorithm. He further 

stated that most of the methods were manipulating the training sets so that the multiple 

hypotheses can be generated. Sra et al (2012) stated that in these methods the learning 

algorithms runs multiple times and each time it utilised diverse distribution of the training 
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instances. Sra et al (2012) further stated that this technique performs better with the unstable 

learning algorithms. He further explained unstable algorithms as the algorithms in which the 

output classifier endure some major changes in response to the small changes in the training 

data. Maimon & Rokach (2007) stated that there is another classifier that is constructed from 

the learned classifiers by a weighted voting scheme through which each and every component 

of the classifier contributes to the final classification having a different strength on the basis 

of its accuracy on the training instances that was trained with boosting and bagging which is 

further dependent upon the instability of the boosted learning system. Maimon and Rokach 

(2006) stated that another technique for carrying out the ensemble of the classifiers which is 

to manipulate the set of classes in the training sets that are given in the learning algorithms. 

Maimon and Rokach (2006) further stated that in 1995 Bakiri and Dietterich has introduced 

an technique named error correcting output coding which is an efficient technique that helps 

in handling multi class problems while solving the multiple two class problems. Maimon and 

Rokach (2006) further states that ECOC technique represents the classes having the set of 

output bits and in this technique each and every bit encodes an binary classification function 

that further corresponds with an unique partition of the classes. In this regard Flach (2012) 

states that the algorithm that utilises ECOC technique can learn the function in 

correspondence to each and every bit and all of the functions are then combined in order to 

generate the class predictions.  

Koyu and Deshpande (2014) stated that ECOC technique helps in generating the ensembles 

while using the single learning algorithm and there are also some other techniques that can 

help with the production of the ensemble while combining the classifier developed through 

different learning algorithm. He further stated that the diversity is implied when different 

learning algorithms are combined. So they just need to be checked for their accuracy while 
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employing some of the weighted combination and this technique for development of the 

ensembles has been proved to be advantageous in most of the applications. 
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2.6 Summary 

This chapter reviewed the history of machine learning and data mining. It has covered the 

evolution of learning, with an in-depth look at the developments in the processes of machine 

learning and data mining.  

The chapter initially inspected the fundamental ideas behind inductive learning algorithms 

recounted the two main types of algorithm that are readily obtainable. Furthermore several 

examples of each type of algorithm have been outlined, and an overview of clustering 

algorithms from a data mining perspective has been presented.  

Finally the chapter discussed the issue of data quality during data pre-processing. Problems 

with data quality, such as erroneous data, missing values and mislabelled instances were 

outlined with the examples of these problems being reviewed and also in this chapter the 

recent directions of the machine learning research were presented. 
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Chapter 3: An experimental evaluation of using seed 

examples in rule learning 

 

3.1 Preliminaries 

It is essential to gain adequate knowledge of a domain to enable the construction of a useful 

knowledge base for an expert system. Owing to the sudden increase in the amount of data 

that can now be contained in data storage devices, this operation has shown to be a 

bottleneck. This issue is tackled by deploying the automatic knowledge acquisition 

techniques (Pham, 1999). 

Automatic techniques for knowledge acquisition include inductive learning, decision trees 

and the extraction of knowledge in the form of IF–THEN rules. An inductive learning 

program normally needs an input as a set of examples. Each example is distinguished by the 

values of several attributes, and the class to which it belongs. One approach to inductive 

learning is through an operation known as ‘in ‘divide-and-conquer’, attributes are chosen 

according to some strategy (e.g., to increase to the greatest possible amount, or the degree of 

information gain) to separate the primary example set into subsets. The inductive learning 

program then generates a decision tree that accurately classifies the given example set. The 

tree represents the knowledge extracted from the distinct examples in the data set. This can be 

successively deployed to deal with situations not covered by the example set (Pham and 

Pham, 1999).  

ID3 (Quinlan, 1986) and C4.5 (Quinlan, 1993) are commonly used algorithms based on 

divide-and-conquer. As a means to produce decision trees that infer well the information 



68 

 

content of the example set, these algorithms initially compute the entropy of each attribute 

and the entropy of the entire data set. Knowledge gain is calculated with reference to each 

attribute. The attribute with the minimum gain is chosen as the base of the tree. Every branch 

emanating from the root describes a subset of examples that deviate from the parent subset. A 

similar procedure is iterated for all the subsets up to the point when all subsets have zero 

entropy. For C4.5 and ID3, it is a tedious task to construct a new decision tree at each phase 

and divide the examples into the various subsets connected to the branches of the newly 

produced tree. The ‘covering approach’ (Pham and Pham, 1999) uses the inductive learning 

program to seek groups of attributes uniquely shared by examples in given classes, and forms 

rules with the IF part as conjunctions of those attributes and the THEN part as the classes. 

The program removes the accurately classified examples from those being examined, and 

halts when rules have been generated to classify all the examples in the given set. This 

‘Separate-and-Conquer’  learning rule can be separated into two main stages: in the initial 

stage, a single rule is  learned from the data; in the second stage all the (positive) examples 

covered by the learned rule are taken away from the training set. The next single rule is 

learned from the remaining examples. The two stages are iterated as long as (positive) 

examples are left uncovered in the training set. This ascertains that each positive example is 

covered by a minimum of one rule (completeness) and every negative example is excluded 

(consistency). This approach is employed by the AQ algorithm and the RULES family 

algorithm (Aksoy, 2008), which will be described in Section 3.2. 
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3.2 RULES family  

The RULES family of extraction systems is a series of versions of algorithms for automatic 

knowledge acquisition from examples. The RULES family of inductive learning algorithms 

follows the rule-based approach to inductive learning. The RULES family that was developed 

by previous researchers in the author’s group is specifically described in this section.  

 

3.2.1 RULES-1 

RULES-1 is an algorithm which was developed by Pham and Aksoy, and is an abbreviation 

of (RULE Extraction System-1) Pham and Aksoy (1995a). This algorithm is used for 

extraction of classification rules for the collection of objects that belongs to the given set of 

classes. The algorithm uses a rule searching technique and a simple metric function that 

assesses the generality and accuracy of the rule. According to Aksoy (2008) an object is a 

fixed set of characteristics having its own possible values. For example, weather and 

temperature are attributes which have values such as sunny, rainy, and snowy, and high, 

average, and low, respectively. Na represents the number of characteristics then a rule may 

encompass. A rule therefore has between 1 and Na conditions which must have different 

values. Freitas (2002) explained that if the rule contains more than one condition then the 

combination of values is permitted so that all the characteristics can be different. The major 

drawback of RULES-1 is that it requires a long training time, especially when dealing with 

the problems that have a large number of characteristics and values. This is because RULES-

1 employs an array of values for all the unclassified examples for a given iteration in order to 

extract the rules. In the worst cases the rule extraction time is over. Another drawback of 

RULES-1 is the selection of a large number of rules; this is because it has less control over 
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the training data. Freitas (2002) stated that RULES-1 is incapable of handling incomplete 

examples and numerical values. 
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Figure 3.1: The flow chart for RULES-1 Pham and Aksoy (1995a). 
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3.2.2 RULES-2 

To improve upon RULES-1, Pham and Aksoy (1993) developed RULES-2. The structuring 

procedure of RULES-2 is same as in RULES-1. The major difference between these two 

rules is that RULE 2 uses values from unclassified examples for the development of rules and 

for classification of the examples, instead of using unclassified examples from each iteration. 

Aksoy (2008) stated that RULES-2 is more efficient than RULES-1, and that its algorithm 

requires a smaller number of rule selection operations in the induction process. This 

algorithm controls the upper limit of the rules that are required for the extraction process, as it 

deals with only one unclassified example in each iteration. Zaki and Meira (2014) stated that 

RULES-2 allows a minimum limit to be set for the extraction of the rule which is 1. 

RULES-2 automatically shuns irrelevant conditions and no additional step is required by this 

algorithm during the induction process. RULES-2 easily handles incomplete data, which 

further differentiates it from RULES-1. During the induction process, incomplete values are 

ignored by this algorithm without any interference in the operation of the algorithm. Aksoy 

(2008) said that RULES-2 can easily handle characteristics with numerical values by 

quantising them. This is the main reason for the importance of RULES-2 in engineering 

applications. 

 

3.2.3 RULES-3 

According to Mathkour (2010), RULES-3 is the third version of the RULES family of 

automatic extraction systems, and it retains all the advantageous features of its predecessors. 

Aksoy (2008) stated that RULES-3 has two main features that differentiate it from the 

previous RULES algorithms. The first is that it provides the user with the option to adjust the 

accuracy of the extracted rules, and the second is that it generates condensed sets with more 
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general rules. Mathkour (2010) stated that RULES-3 specifies the minimum number of 

conditions required for the rule. By doing so the user can develop a more accurate set of rules 

and can also reduce the number of searching operations that are required to discover the rule 

set for data with various characteristics. OUTPUT: Long term memory, Short term memory, 

and updated frequency distribution of training examples and updated range of values required 

for numerical characteristics. Figure 3.2 shows the flow chart for RULES-3. 

 

Figure 3.2: The flow chart of RULES-3 Pham and Aksoy (1995b). 



74 

 

3.2.4 RULES-3 Plus  

Pham and Dimov (1997) further improved RULES 3 to create RULES-3 Plus, which includes 

two more important features. Aksoy (2008) said that RULES-3 Plus employs a more efficient 

rule searching technique and uses a simple metric for categorisation and selection of 

candidate rules based on their accuracy. 

Rules are formed by selecting those with the maximum “H measure”, defined in Equation 

3.1, which evaluates the information content of the expressions during the rule forming 

process (Clark and Niblett, 1989).  
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where E
c  

is the number of examples covered by the rule (the total number of examples 

classified, correctly or incorrectly), E is the total number of examples, Ei
c  

is the number of 

examples covered by the expression and belonging to target class i (the number of examples 

correctly classified) and Ei is the sum of examples in the training set which is a part of target 

class i. 

The computation of the H measure is dependent on the following three parameters: 

 The number of examples in the training set; 

 The number of examples classified, either correctly or incorrectly, by the rule; 

 The number of correctly classified examples covered by the rule. 
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Pham and Dimov (1997) further explained RULES-3 Plus as the algorithm that includes a set 

of attributes and values that are formed by using attribute-value pairs used in the example that 

is under consideration. 

 

3.2.4.1 Rule forming Procedure  

To form a rule, RULES-3 Plus performs a general-to-specific beam search for the most 

general and consistent rule. It starts with the most general rule and gradually specialises it, 

considering only conditions extractable from the selected seed example. The aim of 

specialisation is to construct a rule that covers the seed example and as many positive 

examples as possible while excluding all negative examples. The result is a rule that is as 

consistent and as general as possible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Illustration of Beam Search for the first example in Table 2.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   No 

( ?,?,?,?) 

The most general Rule 

General 

To 

Specific 

Ordering 

       (Sunny, Hot, High, False) 
 

The most specific Rule 

(Sunny, Hot, High,?)         (Sunny, Hot,?, False) 
 

    (Sunny,? , High, False)           (?, Hot, High, False) 
 

(?,?, High, False) (?, Hot,?, False)       (?, Hot, High,?) (Sunny, Hot,?,?) (Sunny,?, High,?) (Sunny,?,? False) 

(Sunny,?,?,?) (?, Hot,?,?) (?,?, High,?) (?,?,?, False) 
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Figure 3.4 presents a summary of the rule forming procedure for RULES-3 Plus. Despite its 

simplicity, RULES-3 Plus achieves a considerable high level of performance in several 

engineering applications Aksoy (2005). These include the recognition of design form features 

in CAD models for computer aided process planning (Pham and Dimov, 1998), the mapping 

of manufacturing information to design features (Pham and Dimov, 1998) and the 

classification of defects in automated visual inspection (Jennings, 1996).  

 

3.2.4.2 The specialisation Procedure 

The specialisation process in RULES-3 Plus can result in the following three conclusions: 

 There are no rules that remain unchanged. All rules in PRSET are specialised further 

by rerunning the same process. 

 Only one rule remains unchanged. The rule is added to the rule set and the search 

stops. 

 More than one rule remains unchanged. The rule with the maximum value for the H 

measure is added to the rule set and the search stops. 
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Figure 3.4: A pseudo-code description of RULES-3 Plus (Pham and Dimov, 1997b). 

 

 

Step-1.    Quantise attributes that have numerical values  

Step-2.     Select an unclassified example and form array SETAV  

Step-3.     Initialise arrays PRSET and T_PRSET (PRSET and T_PRSET will consist of   

  PRSETm  expressions with null conditions and zero H measures) and    

  set 0COn .   

Step-4.     IF  aCO nn                                                                                 

 THEN 1 coCO nn     and set 0m ; 

  ELSE the example itself is taken as a rule and goes to Step 7. 

Step-5.            DO                                                                                                  

  1 mm ; 

Form an array of expressions (T_EXP). The elements of this array are combinations of 

expression m in PRSET with conditions from SETAV that differ from the conditions 

already included in the expression m (the number of elements in T_ EXP 

is: COa nn  . Set k = 1; 

                      DO                                                                            

1 kk ; 

Compute the H measure of expression k in T_ EXP; 

IF its H measure is higher than the H measure of any 

expression in T_PRSET 

THEN replace the expression having the lowest H measure with expression k; 

WHILE  COa nnk  ; 

Discard the array T_EXP; 

  WHILE  PRSETmm    

Step-6.  IF there are consistent expressions in T_PRSET                               

  THEN choose as a rule the expression that has the highest H measure and discard the  

  others; mark the examples covered by this rule as classified; 

go to Step 7; 

 ELSE copy T_PRSET into PRSET; 

initialise T_PRSET and go to Step 4 

Step-7.           IF there are no more unclassified examples 

 THEN STOP; 

 ELSE go to Step 2. 
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3.2.5 RULES-4 

According to Zaki and Meira (2014) RULES-4 is the first incremental learning algorithm of 

the family that has the capability to refine and update its knowledge according to new 

examples. RULE 4 uses the same procedure for forming rules as in RULES-3 Plus. Pham and 

Dimov (1997) explained the incremental procedure of RULES-4 as:  

 INPUT: Long term memory, short term memory, frequency distribution of training 

examples, and the range of values required for numerical characterisations. 

 OUTPUT: Long term memory, short term memory, an updated frequency distribution 

of training examples, and an updated range of values required for numerical 

characteristics. 

In step one of the process RULES-4 updates the frequency distribution of the training 

examples. In step two it tests the range of numerical characteristics, and if it is not in range 

then it updates the range of the characteristics. In step three it tests the classification of rules 

in the long term memory. In step four it prunes the long term memory by removing the rules, 

and in the last step it tests the limit of pre-specified examples and replaces the examples 

accordingly. The pre-specified level discussed in step 4 is known as the noise threshold, and 

can be defined by the following equation:  
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where NL represents the pre-specified level of noise. If the accuracy of the measure, A, for 

the rule is less than the threshold, T, then it will be automatically removed from the long term 

memory.  

Figure A1 in Appendix A shows the main steps in RULES-4. The extraction of rules for a 

process planning expert system has been used to illustrate the operation of RULES-4 by 

Pham and Dimov (1997a). 

 

3.2.6 RULES-5 

According to Aksoy (2008), RULES-5 was developed to overcome the deficits of RULES-3 

Plus, as this algorithm uses different methods for handling continuous characteristics. This 

algorithm does not require quantisation for processing the numerical values of the 

characteristics. Pham and Bigot (2003) explained RULES-5 as the process of selecting and 

handling continuous characteristics, which is the main procedure that is employed. Pham and 

Bigot (2003) said that RULES-5 measures the distance between the examples. Supposing E1 

and E2 are the examples, then it can be elaborated by the following equation: 
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where C
represents the number of continuous attributes while d

represents the number 

of discrete characteristics. 
i

EV 1  represents the ith attributes in example E1, while 
i

EV 2  

represents the ith attributes of example E2. iVmax
 represents the maximum value of the ith 
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continuous attribute, 
iVmin  represents the minimum value of the ith continuous attribute and 

d_distance is defined for every discrete attribute by applying the following rule: 

If  
i

EV 1  = 
i

EV 2  then d_distance will be equal to zero, otherwise it will be equal to one. 

 

3.2.6.1 Rule forming Procedure   

The initial step in this process is that of selecting of a seed example (SE), which is the 

example that is used to generate a new rule. In RULES-5, the first example in the list of 

training examples that is not covered by the previously created rules is normally the seed 

example. The second step adopts a specific search process that creates a consistent and 

general rule that covers SE. The most significant characteristic of this search is that the 

numerical ranges of the attributes are automatically created during the process of forming 

rules. That is to say, they are not pre-discretised. The result is a rule, R, where all numerical 

conditions take the form min max

i i i

R RV A V   (excluding the edges). These conditions can cover 

large areas in the example space. Therefore, as the third and final step, the algorithm deploys 

a post-processing method that reduces the coverage of some of the numerical attribute 

conditions to cover the examples in T only. All numerical conditions will take the form 

min max

i i i

R RV A V  . This prevents the coverage of ‘unknown’ areas and lowers the possibility 

of having overlapping rules. 
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The complete rule forming process of RULES-5 can be summarised as follows: 

 

 

 

 

 

 

 

 

 

For more details on RULES-5 Plus, see Figure A2: RULES-5 Plus forming procedure (Bigot 

2002). 

 

3.2.6.2 The Specialisation Procedure 

As already seen, RULES-5 creates a set of rules whose coverage is limited to the training 

examples only. Hence, when a set of rules is used as a classification model, there are three 

possible outcomes: 

 Only one rule covers the example. The example belongs to the class of the covering 

rule. 

 More than one rule covers the example. The rule with the highest H measure is used 

to classify the example. 

 No rules cover the example. The rule ‘closest’ to the example in the attribute space is 

employed to classify it. To find the ‘closest’ rule, the distance between a rule R and an 

example E is defined as follows:  

 

WHILE there is an example in T not covered by any rule in the rule set formed so far, DO 

• Select one of these uncovered examples as a seed example (SE) 

• Form the all-inclusive rule covering SE: (IF no condition THEN class is class of SE) 

WHILE this rule covers example not belonging to class of SE, DO 

• Append a condition to it that excludes the closest example to SE that does not belong to class of 

SE. 

END 

• Add this rule to the rule set; 

END 
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R/EDistance  _ tan _ tan
c d

c dis ce d dis ce      (3.4) 

 

An example to illustrate the operation of the RULES-5 algorithm can be found in Pham et al. 

(2003).  

 

3.2.7 RULES-6 

RULES-6 (Pham and Afify, 2005) is an improved version of the RULES-3 Plus algorithm. 

The innovation in RULES-6 is that it has the ability to handle noise in the data, which is 

achieved by employing a search method that tolerates inconsistency in the rule specialisation 

process. This makes the rule sets extracted by RULES-6 both more accurate and substantially 

simpler than those produced using RULES-3 Plus (Afify, 2004). RULES-6 also employs 

appropriate search-space pruning rules to avoid useless specialisations and to terminate the 

search during rule construction. This substantially increases the efficiency of the learning 

process. Secondly, RULES-6 adopts a very simple criterion for evaluating the quality of 

rules, and a robust method for handling attributes with continuous values, further improving 

the performance of the algorithm. Moreover like its predecessors in the RULES family, 

RULES-6 extracts rules by processing one example at a time (Afify, 2004). The algorithm 

first selects a seed example; the first example in the training set not covered by previously 

created rules, and then calls the Induce-One-Rule procedure to extract a rule that covers that 

example. Following this, all covered examples are marked, the learned rule is added to the 

rule set, and the process is repeated until all examples in the training set have been covered. 

The Induce-One-Rule procedure searches for rules by carrying out a pruned general-to-
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specific search. The search aims to generate rules which cover as many examples as possible 

from the target class and as few examples as possible from the other classes, while ensuring 

that the seed example remains covered. As a consequence, simpler rules that are not 

consistent, but are more accurate for unseen data, can be learned. This contrasts with the rule 

forming procedure of RULES-3 Plus, which restricts its search to only those rules that are 

completely consistent with the training data, leading to overfitting if the data is noisy.  

A beam search is employed to find the best rule. This is done by using two rule lists named 

PartialRules and NewPartialRules. PartialRules, which is the same size as the beam width W, 

stores the W best partial rules during the specialisation process (Afify, 2004). Only the rules 

in this list are considered. 

 

 
 

 

Figure 3.5: A pseudo-code description of RULES-6 (Afify, 2004). 
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3.2.8 Conclusions about the RULES family 

RULES-3 Plus, RULES-5 and RULES-6 are members of the RULES family of simple 

inductive learning algorithms. They have been used successfully in many engineering 

applications. RULES-5 employs a more efficient rule forming technique and a more 

advanced method of dealing with continuous attributes. RULES-3 Plus requires modification 

in order to be a practical tool for problems involving large data sets. RULES-6 employs a fast 

and noise-tolerant search method for extracting IF-THEN rules from examples.  

An inductive learning algorithm usually demands a set of examples as an input. These 

examples result in the formulation of a specific rule. Distinct sequences of seed examples that 

can result in separate and distinct rule sets. Generally, the RULES family algorithms do not 

follow any guidelines for any of the instances of selecting seed examples. During the 

systematic series of continuous actions used to select objects in the training set, the algorithm 

relies entirely on a random method. In theory, a compromise between the accuracy and 

generality is required, and attained, throughout the duration of the evaluation procedure. This 

results in a rule that extends over many positive examples while at the same time covering a 

limited number of negative examples (as few as possible). Generally, a trade-off between the 

conditions of accuracy and generality is achieved by deploying evaluation methods. 

Simplicity is a third condition that can be taken into account as it aims to obtain rule sets that 

are small and easy to comprehend.  

Nevertheless, there are a number of research topics in inductive learning that require further 

investigation. One such topic includes the input training data set, which has the capacity to 

greatly affect the learning process. This chapter, and the following two, will focus on 

discovering new ways to pre-process training data prior to inputting it into inductive 

algorithms. 
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This study is focused particularly on the RULES family of algorithms, owing to the fact that 

the research was primarily built and conducted based on this family. Efforts have previously 

been made to improve RULES-3 Plus, as shown earlier by the RULES-5 and RULES-6 

algorithms. The ideas presented in these two algorithms can also be combined to form a 

significant improvement on the RULES-3 Plus algorithm. RULES-3 Plus does not always 

select the best rule during the specialisation process, because it relies more on the consistency 

than the heuristic measure. RULE-5 and RULES-6 deal with this case by steering the search 

space and in some cases the consistency measure is not taken into account. The strained 

compromise between the consistency and heuristic measure leads to the formulated rules 

being either more accurate or more general. 

Therefore, development of an improved technique for ranking the data is required to 

overcome this before they are introduced to RULES family inductive learning algorithm. A 

suitable buffer strategy could also be used to seed candidate rules and hence improve the 

quality of the formed rule sets.  

 

3.3 Preprocessing of data   

Although numerous methods of data pre-processing have been developed, it remains an 

active area of research due to the huge amount of inconsistent or dirty data and the 

complexity of the problem. 

There are a number of existing data pre-processing techniques. Before using an inductive 

learning algorithm, pre-processing of data is often required, for instance to select relevant 

attributes, correct errors or deal with missing information. Here, a new pre-processing 

technique is introduced in an attempt to create a sequence of seed examples that leads to the 

best achievable rule set (Pham and Dimov, 1997). 
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3.3.1 Definition of the algorithm 

The RULES family of algorithms deploys a search strategy based on the selection of seed 

examples. Each time a seed example is chosen it can result in the formation of a specific 

series of seed examples, which can produce different rule sets. In the current RULES family 

versions, there are no guidelines on the selection of seed examples. The first example to be 

selected is one that remains uncovered and is located in the training set In this manner, the 

rule set produced becomes dependent on the storage of the examples. In the suggested 

algorithm, the selection of seed examples is carried by employing two parameters known as 

knowledge measurement and ranking.  

Knowledge measurement is inversely proportional to probability. For example, if the 

probability for output x  is )(xp , then the knowledge measurement, )(xI , for the same output 

is denoted with Equation 3.5 (Pham, Bigot and Dimov , 2006). 
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Hence, the entropy of any event x  with number of variables, n, can be calculated by 

Equations 3.6 to 3.8.  
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In the above equations, any base can be used for the logarithmic functions. However, base 2 

has been commonly used in the literature. In this case, bits (binary digits) may be used as the 

unit of knowledge measurement and entropy (Blake and Merz, 1998). 

The multiplication of the entropy of an attribute with the number of items the attribute gives 

the reformulated entropy, as shown in Equation 3.9: 

 

( ) ( )i i iREntropy A E A xn                 (3.9) 

 

Here Ai denotes the ith attribute, and ni denotes the number of items in the ith attribute.                                  

Entropy is computed as follows 
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where )(SEntropy is the entropy of S relative to c class classification, S is a set of objects 

containing representatives of more than one class, ip is the proportion of S belonging to class 

i , and Log2 is the base 2 logarithm. A base 2 logarithm has been used in this equation 

because entropy is a measure of the expected encoding length measured in bits. The target 

attribute can take on c possible values so the entropy can be as large as Log2 c. 
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3.3.2 The algorithm 

The proposed method aims at assessing the levels of precedence for each example in order to 

obtain ranks. It relies on the calculation of the entropy (Equation 3.10) of each attribute-value 

pair, which can then be used to assess the sum of the entropies 𝐼𝑆𝐸,𝑖 of each attribute-value pair 

in each example by using Equation 3.11: 

 

 𝐼𝑆𝐸,𝑖 = ∑ (𝐸𝑗)
𝑚

𝑗=1
  (3.11) 

 

where m is the number of attributes in the ith example and (𝐸𝑗) is the entropy for the jth 

attribute-value pair in the ith example. Thus, each example is given a level of precedence. 

The most significant seed examples (lowest 𝐼𝑆𝐸,𝑖  measure) are considered at the beginning of 

the rule forming process. The less significant seed examples from the example set are either 

considered at the final stage of the rule forming process or neglected completely. In this way, 

it is expected that more general rules can be generated. In a broad sense entropy is defined as 

the disorder of a given system. 

The data ordering method proposed in this work is shown in Figure 3.6. During the pre-

processing stage the entropy is first calculated (Equation 3.10). The output is the entropy 

value for all attributes. Secondly, the sum of entropies for each example (𝐼𝑆𝐸) is calculated 

using Equation 3.11. Thirdly a ranking process orders the data by arranging the sequence of 

the seed example to select the most representative example. At the processing stage, an 

ordered data set is obtained and used for the training process in one of the RULES family of 

algorithms. A Rule Set is then created. 

 

 

 



89 

 

 

 

 

 

 

Figure 3.6: Data Ordering Method (DOM). 
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3.4. Ranking. 

Using the Weather Problem in Table 2.1, the attribute-value pair is calculated for each 

example. 

For the first example:- 

For (sunny), 𝐸𝑂𝑢𝑡𝑙𝑜𝑜𝑘,𝑆𝑢𝑛𝑛𝑦(2,3) = 0.972 bits 

For (overcast), 𝐸𝑂𝑢𝑡𝑙𝑜𝑜𝑘,𝑂𝑣𝑒𝑟𝑐𝑎𝑠𝑡(4,0) = 0 bit 

For (rain), 𝐸𝑂𝑢𝑡𝑙𝑜𝑜𝑘,𝑅𝑎𝑖𝑛𝑦(3,2) = 0.972 bit  

The other examples are shown in the Table 2.1 

 

 

 

 

 

 

 

At this stage examples are ranked and the new data in Table 2.1 are used for each example to 

calculate 𝐼𝑆𝐸 by using Equation (3.11). 

For instance:   

 877.3,,,,1,  FalseWindHoteTemperaturHighHumiditySunnyOutlookse EEEEI  

And similarly: 

877.32, seI  

Table 3.1: Entropies of attributes values. 

 

Attribute Value 
Entropy 

(bit) 

Outlook 

Sunny 0.972 

Rainy 0.972 

Overcast 0.00 

Humidity 
High 0.986 

Normal 0.811 

Windy 
False 0.919 

True 0.972 

Temp 

Hot 1.00 

Cool 0.920 

Mild 0.811 
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The value of 𝐼𝑆𝐸 is calculated in a similar manner for all examples and sorted from lower to 

higher. 

The rules obtained by the RULES-5 Plus algorithm with data ordering method were produced 

using entropy values as shown in Figure 3.7. 

IF Outlook = sunny AND Humidity = high   Play = No 

IF Outlook = overcast   Play = Yes  

IF Outlook = rainy AND Windy = true   Play = No 

IF Outlook = rainy AND Windy = false   Play = Yes 

IF Outlook = sunny AND Humidity = normal   Play = Yes 

 

Figure 3.7: Generated rules for the set of examples given in Table 3.2 

 

In particular, the examples with lower  𝐼𝑆𝐸,𝑖 were of higher precedence and were presented at 

the beginning of the inductive learning process. The second rule obtained, as shown in Figure 

3.7, covers more examples than the other rules (4 examples out of 14 with entropy value 0.00 

bit). However, the examples with high sum of entropies were of lower precedence, and as a 

consequence were presented at the end of the learning process. None of the rules include the 

attribute Temperature with value Hot, which is associated with the highest entropy, of value 1 

bit. 
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3.4.1 Illustrative example of DOM 

Figure 3.7 (a) shows 2D data belonging to 7 separable classes. In the training stage of an 

inductive learning algorithm it is desirable to generate classification rules that are as accurate 

and compact as possible. For this example the latest version of the algorithms belonging to 

the RULES family was used. The latest version is RULES-5 Plus, which presents several 

improvements over the older algorithms in the RULES family. 

When the data was presented in a random order to the RULES-5 Plus algorithm, 10 rules 

were created as shown in Figure 3.7 (b). The RULES family algorithms use the seed example 

(SE) method, where conditions are formed based only on the attribute-value pairs of the 

selected seed example (data). It can be seen that even in this simple example the random 

order has affected the RULES-5 Plus algorithm (RULES-3 Plus for this same example 

generated 17 rules) due to the SE method. Three more rules were created, R2, R5, and R8, 

which are irrelevant or redundant in this case since these rules are completely contained by 

rules R7, R10, and R9 respectively. 

Using the DOM as its initial stage, RULES-5 Plus generated 7 rules as shown in Figure 3.7 

(c). The rules obtained in this case are what one would expect in a 7-class problem where 

each class is separable from the others. Another point of note is the order in which the rules 

where formed. In Figure 3.7 (c) it is clear that the more separate and simple rules are formed 

first, that is R1, R2, and R3. On the other hand, these rules in Figure 3.7 (b) correspond to R3, 

R4, and R9 respectively. 
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Figure 3.7: Example of random presentation of the data in the training process of the RULES-

5 Plus algorithm and ordered presentation of the data using the DOM. (a) data belonging to 7 

separate classes; (b) rules formed in the training process with random presentation of the 

data; (c) rules formed in the training process with ordered presentation of the data. 

(a) 

 

(b) 

 

(c) 
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3.5 Experiments 

The Method proposed in this work was tested using 21 benchmark data sets (alarm problem, 

car, chess, haberman, hayes, glass, heart disease, heartr, hepatitis, mass, monk1, monk2, 

monk3, mushroom, pima, post-operative, shuttle, statlog (A.C.A.), statlog (H), tic-tac-toe, 

voting, weather) from the UCI Machine Learning Repository (Blake and Merz 1998). A list 

with this data set describing the number of attributes, classes are shown in table 3.2. 

To measure how sensible the rule generation process (training stage) is to different orders of 

pattern presentations, 3 random ordered presentations of the training data sets were used in 

the Rules family algorithms and compared to the performance obtained by the method. The 

Rules family algorithms that were used in this experiment were RULES-3 Plus, RULES-5 

and RULES-5 Plus (without pruning). 

All tests were conducted on an Intel Pentium 2.0 GHz Dual-Core computer with 2 GB of 

RAM and Windows XP operating system. 
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Table 3.2: Description of the benchmark data sets. 
 

 

 

no 

 

data set attributes classes #examples    

1 AlarmProblem 03 02 8 

2 Car 06 02 1728 

3 Chess 06 02 28056 

4 Haberman 03 02 306 

5 Hayes 05 02 160 

6 Heart Disease 75 02 303 

7 Heart 13 02 270 

8 Hepatitis 19 02 155 

9 Mass 06 02 961 

10 Monk1 07 02 432 

11 Monk2 07 02 432 

12 Monk3 07 02 432 

13 Mushroom 22 02 8124 

14 pima 08 02 768 

15 post-operative 08 02 90 

16 Shuttle 06 02 15 

17 Statlog(A.C.A.) 14 02 690 

18 Statlog (H.) 13 02 270 

19 Tic-Tac-Toe 09 02 958 

20 Voting 16 02 435 

21 Weather 04 02 14 
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3.6 Results and Discussions  

To assess the effect of different seed example orders on the created rule sets, five different 

orderings were tested. These were: (i) RULES-3 Plus (Pham and Dimov, 1997), (ii) RULES-

5 Plus (Pham, Bigot and Dimov, 2004) and (iii) RULES-5 (Pham, Bigot and Dimov, 2003). 

The first ordering under test was the original default one given in the data set repository. The 

second ordering tested was the one proposed in the previous section. Three more random 

orders were created to appropriately evaluate the quality of this new ordering method. The 

size of the models has been used as the only performance indicator in this study. Future 

studies will include a validation of the generated models using a distinct testing set. 

Table 3.3 displays the highest number of deviations in the number of rules generated by each 

algorithm when the 5 different ordering systems are applied to each data set.  

The results show that the ordering of seed examples has a measurable effect on the number of 

rules created by the three algorithms, with a variation in the number of rules of up to 26.32% 

(13 rules), 39.92% (24 rules) and 57.25% (75 rules)  for RULES-5 Plus, RULES-5 and 

RULES-3 Plus respectively.  
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Table 3.3: Deviations in number of rules created. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Maximum difference  

in number of rules created 
 
 

 
Maximum deviation (%)  

in number of rules created 
 
 

Data Set RULES5Plus RULES5 RULES3Plus RULES5Plus RULES5 RULES3Plus 

AlarmProblem 0 0 0 0.00 0.00 0.00 

car 0 0 4 0.00 0.00 0.02 

chess 6 24 75 14.29 36.92 57.25 

haberman 6 9 0 7.89 10.34 0.00 

Hayes 4 5 2 13.79 14.29 5.26 

Heart Disease 5 15 13 9.09 16.30 9.42 

Heart 4 6 4 21.05 27.27 17.39 

Hepatitis 2 7 2 12.50 21.88 5.88 

Mass 13 13 3 8.07 6.91 2.38 

Monk1 0 0 3 0.00 0.00 7.14 

Monk2 0 0 0 0.00 0.00 0.00 

Monk3 0 0 0 0.00 0.00 0.00 

Mushroom 5 4 4 26.32 18.18 18.18 

pima 10 22 10 11.24 13.58 3.40 

post-operative 6 9 2 16.67 22.50 5.13 

Shuttle 0 0 0 0.00 0.00 0.00 

Statlog (A.C.A.) 6 12 17 9.84 12.24 9.19 

Statlog (H.) 2 7 9 7.41 15.22 12.33 

Tic-Tac-Toe 2 4 11 8.33 13.79 29.73 

Voting 2 4 6 6.67 11.11 16.22 

weather 1 1 1 16.67 16.67 16.67 

Maximum 13.00 24.00 38.00 26.32 36.92 57.25 

Average 2.31 4.44 5.19 5.93 8.04 6.74 
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Table 3.4: The results obtained using the 3 algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Average deviations(%)  
from average number of rules,  
obtained with the 3 algorithms 

 

Data Set 
Average 
No Rules 

 Original 
Order 

DOM 
 Random   
Order 1 

 Random   
Order 2 

 Random   
Order 3 

Alarm Problem 4.00 0.00 0.00 0.00 0.00 0.00 

car 185.53 0.25 -0.47 0.25 0.25 -0.29 

chess 56.87 23.68 8.44 -14.42 -13.25 -4.45 

haberman 65.53 0.20 2.75 0.71 0.20 -3.87 

Hayes 31.80 -3.56 3.77 -1.47 -1.47 2.73 

Heart Disease 89.27 0.07 -1.42 -1.42 -1.79 4.56 

Heart 19.47 6.16 -14.38 2.74 2.74 2.74 

Hepatitis 25.13 7.43 -1.86 -1.86 -1.86 -1.86 

Mass 153.73 2.34 1.69 -1.56 -0.69 -1.78 

Monk1 22.87 0.58 -2.33 2.04 2.04 -2.33 

Monk2 302.67 0.00 0.00 0.00 0.00 0.00 

Monk3 218.33 0.00 0.00 0.00 0.00 0.00 

Mushroom 19.47 -2.40 -14.38 2.74 6.16 7.88 

pima 173.87 3.91 -1.07 -1.27 -2.99 1.42 

post-operative 34.87 8.03 -3.44 -1.53 -1.53 -1.53 

Shuttle 10.00 0.00 0.00 0.00 0.00 0.00 

Statlog (A.C.A.) 108.00 1.54 -1.23 -0.93 -0.31 0.93 

Statlog (H.) 45.07 -3.85 0.59 -0.15 6.51 -3.11 

Tic-Tac-Toe 27.47 3.16 3.16 -10.19 0.73 3.16 

Voting 32.53 -0.61 4.51 4.51 -4.71 -3.69 

weather 5.60 -10.71 -10.71 7.14 7.14 7.14 

Average  
Deviation 

1.13% -0.82% -0.46% -0.09% 0.24% 

% of Best Result 21.88% 34.38% 21.88% 25.00% 25.00% 

% of Worst Result 25.00% 12.50% 12.50% 9.38% 12.50% 
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Table 3.4 shows the average deviation in the number of rules created from the total average 

obtained when applying the various algorithms. 

The results obtained show that on average, there is no significant difference between the three 

random orders. The original order appears to give slightly worse results (an average increase 

of 1.13 % in the average number of rules). The average deviations among the data sets reveal 

that the new ordering method (DOM) gives the best results (lowest number of rules) for 34.38 

% of the 21 data sets. This can be compared with 21.88 % and 23.61 % for the original order 

and the 3 random orders respectively). This is highlighted in bold in Table 3.4. 

It should be noted that a large part of the processing time used for the proposed data ordering 

method is spent on assessing entropy values for each attribute-value pair used by Equation 

3.10 in each seed example. This information could be passed on to the covering algorithms, 

as they use this information in the rule forming process to evaluate each created rule. Thus 

the computational effort used by this ordering method more efficient. As mentioned 

previously, the aim of rule pruning is to reduce the number of generated rules without 

reducing the test set accuracy. The results given in the previous section show that addressing 

the algorithm and the proposed data ordering method produces a much smaller set of rules. 

Moreover, the processing time for the majority of data sets could be improved by combining 

the two algorithms.  
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3.7 Summary  

In this chapter, the RULES family was fully reviewed and a new data ordering method was 

proposed (DOM) for the inductive learning algorithm of the RULES family. The purpose of 

this new technique is to reduce the number of rules generated by random and inefficient 

presentation order of the training patterns. The method consists of 3 main steps: firstly, the 

entropy is calculated for each of the attribute-value pairs; secondly, the seed example entropy 

values are calculated by adding all the entropy values to each example; and finally, examples 

are reordered according to their entropy values. 

The training is carried out on 21 data sets and the results show that the performance of the 

new method, in most cases, was better than random presentation order and the original 

algorithm.     
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Chapter 4: Improved data ordering method with 

new management strategy for rule induction systems 

4.1 Preliminaries 

Automated data mining or learning disclosure systems can be used to extract principles from 

databases. Recently the use of data mining has gained significant interest. Scientists have 

created and connected various machine learning strategies to extract information from large 

databases and to learn rules for master frameworks. The areas of data mining and machine 

learning converge, as they both have a similar initial functionality of first removing obscure 

information from databases. 

Sorting is one of the most important problems in computer science. It is a well-studied area 

and there are many good algorithms that can be used for sorting. Most sorting calculations 

work by comparing the information that is to be sorted. Large pieces of information or large 

amounts of data are sorted by taking into account just a sample of the information. The 

sample of information used to focus the sorting request is known as the key. Sorting 

calculations are normally judged by their effectiveness. In sorting applications, effectiveness 

refers to the algorithmic productivity. The extent of the information developed is vast, and for 

the most part reflects the quantity of components to sort. The majority of the calculations 

being used have an algorithmic effectiveness of either 𝑂(𝑛2) or 𝑂(𝑛 × 𝑙𝑜𝑔(𝑛)). While 

several types of calculation can have the same productivity, they don't necessarily perform at 

the same speed on the same amount of data. To begin with, calculations must be judged in 

light of their productivity for a normal case, the best case, and the most pessimistic scenario. 

Some calculations (for example ‘quick sort’) perform particularly well for some inputs, yet 

provide bad results for others. These algorithms offer efficiency and simplicity while bearing 



102 

 

in mind minimisation of memory use and other factors. There has been a growing interest of 

late in improving sorting algorithms to improve performance by enhancing data locality 

(LaMarca and Ladner, 1997; Jim'enez-Gonz'alez, et al., 2003; Wang and Mendel, 1991). 

As noted in chapter 3, feature selection refers to the selection of a useful feature subset for a 

learning task by reordering a data set. Many data mining algorithms, such as inductive 

learning, clustering, and association rule discovery, can benefit from feature selection 

techniques. However, this chapter focuses on selecting features for learning classifiers. 

This chapter introduces a new data sorting method, the method developed for inductive 

learning (DSM). DSM orders the data set by using the entropy value, which is not used in the 

RULES family algorithms, to give a top priority to the Examples and Attributes with higher 

importance. This results in generate more compact and more accurate rule sets. 

 

4.2 Performance Improving Techniques   

Performance improving techniques help to pinpoint execution issues in a framework. This 

includes recognising data bottlenecks and resolving them. It is prescribed that progressions 

should be made to a framework when it has been confirmed that there is a bottleneck. 

Execution change, by its definition, is iterative. Thus, evacuating the first bottleneck may not 

quickly introduce execution change, on the grounds that another bottleneck may be 

uncovered. Likewise, at times, if serialisation leads to a more inefficient system, then 

performance could decline. With the use of improvement techniques and optimisation 

methods, applications can be repaired and made adaptable. Execution issues by and large 

result from either an absence of throughput, inadmissible client/system reaction time, or both. 
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The issue may be restricted between application modules, or it may be for the whole 

framework.  

These basic achievement elements are better characterised by observing genuine business 

objectives rather than framework measurements. The main aim is to dispense with any 

bottlenecks that corrupt execution. These bottlenecks could be brought about by wasteful 

utilisation of resources. Since every single imparted asset is constrained, the objective of 

improvement methodology is to augment the business operations with proficient utilisation of 

resources. This methodology is iterative and it is unavoidable that a few examinations will be 

conducted that have little effect on the execution of the framework. It requires analysis and 

experience to build up the essential abilities to precisely pinpoint discriminating constraints 

and bottlenecks. 

In order to enhance the performance techniques of the algorithm or application it is important 

to gain a full understanding of working framework, database, and application measurements 

when the execution is both good and bad. This system recognises the greatest bottleneck and 

uses a target method to deal with execution change. The emphasis is on making huge 

execution enhancements by expanding application effectiveness and wiping out asset 

deficiencies and bottlenecks. In this procedure, it is foreseen that negligible execution 

additions are produced using resource tuning, and extensive increases are produced by 

secluding application inefficiencies.  

The steps associated with this describe how an execution designer may search for system 

constraints without utilising programmed analytic highlights. These steps are proposed as a 

rule for the manual methodology. This examination accepts measurements for both the 

working framework and the database that has been assembled.  
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If the system efficiency is not achieved despite improving and introducing new rules then the 

application is most likely not coded or outlined ideally, and it will not be satisfactory in 

certain circumstances.  

In the scenario when the CPU usage is more than 40 %, then an in depth analysis is 

conducted on the working framework for system exchanges and the paging, swapping, or 

methodology is adapted.  

The data sorting methodology was evaluated and assessed based upon: 

 Performance efficiency 

 Implementation methods 

 Complexity of the code and application 

 

As discussed in previous chapters, it was suggested that the learning mechanism was 

proposed through techniques such as decision trees and production rules. Several conditions 

play an important role in any learning algorithm: 

 It must be defined with respect to the same set of relevant attributes.  

 It must be disjoint in example space.  

 It must have uniform distributions (Kibler and Aha, 1987). 

 

Generally, the availability of good sources of samples has a significant value in 

accomplishing an execution that satisfies all the requests and prerequisites of a machine 

learning system.  

Amsterdam (1988) showed that reordering the training samples provides a better efficiency 

than being fed with an abundance of examples from a teacher. 
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Certain calculations, for example AQ and the RULES family, have all the samples promptly 

available from the earliest starting point of adapting. It is highly valuable to force a 

satisfactory request on the preparation cases. This is considerably more noteworthy when an 

incremental learning calculation is used.  

It is essential to obtain adequate space information in order to have the capacity to construct a 

helpful learning base for an expert system. Due to an increase in the volume of information, 

this methodology has resulted in a bottleneck. Programmed information securing procedures 

have been created to handle this issue. Inductive learning, or the extraction of information in 

the form of IF-THEN statements or decision trees, is a programmed procedure for secure 

learning. An inductive learning program typically requires information to be an arrangement 

of illustrations. Every illustration is described by the estimations of various sets of ordered 

data, and the class to which it belongs. One way to deal with inductive learning is through a 

procedure whereby data orders are chosen according to a method which separates the first 

case set into subsets. The inductive learning system then manufactures a decision tree that 

effectively groups the given illustration set. The tree accumulates the learning from the 

particular samples in the set. This can be used to handle circumstances that are not secured by 

the sample set. Additional information is established from the base tress. Each branch 

originating from a root is used to characterise a subset of cases that are incoherent from other 

subsets. The same method is applied to all the subsets until they all have zero entropy. In 

another methodology, the inductive learning system determines gatherings of traits imparted 

by illustrations in given classes. It structures rules, with the IF part as conjunctions of those 

traits.  

In summary, example illustration based on entropy weights is significant for yielding a 

satisfactory performance. The next section will briefly describe the effect of reordering the 

examples after each rule is generated. 
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4.3 The entropy of attributes  

A quantitative measure of information or data based upon the probability can be described as 

entropy. To mathematically define entropy, one must assume that the system state S has a 

probability distribution P(S) which determines whether the system is in state S. Then the 

variety which is assumed to be V can be used to define entropy E, as shown in Equation 4.1: 

 





Ss

sPsPPE )(log).()(         (4.1) 

  

If the probability of a certain state occurring is more than that presumed for the other states, 

then the entropy E can be said to reach its maximum value. E communicates the instability of 

the framework's state. E can be equivalent to 0 if the likelihood of a certain state is 1 and the 

likelihood of every other state is 0. Once all things are considered, there is maximal assurance 

(complete data) regarding the state that the framework is in. Limitation is characterised as 

that which diminishes vulnerability, that is, the distinction of a position in between maximal 

and genuine instability. This distinction can likewise be deciphered in an alternate manner, as 

data, and verifiably E was presented by Shannon as a measure of the limit for data 

transmission along a correspondence channel. In reality, in the event that some data is 

collected about the condition of the framework, then this will decrease the vulnerability of the 

framework's state, by diminishing the likelihood of various states. The data collected from a 

perception is equivalent to the extent to which instability is decreased: 

 

( ) ( )Information E before E after         (4.2) 

    

Information theory introduces the concept of entropy. Information is directly proportional to 
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entropy, meaning that if there is more information content then entropy will increase. Entropy 

is used to rank attributes in terms of the reduction in the uncertainty of the class label. The 

class entropy is a weighted average over all the possibilities. The entropy measures and 

calculates the information gain, reflecting the quality of an attribute as the branching 

attribute. The knowledge representation system can be defined as: 

 

𝐽 = (𝑈, 𝐶 ∪ 𝐷).       (4.3) 

 

This is expressed using a data set with a discrete-valued condition and discrete-valued 

decision attributes, where: 

 Set of data samples 𝑈 = (𝑢1, 𝑢2, … … , 𝑢𝑠), 

Set of condition attributes 𝐶 = (𝑐1, 𝑐2, … … , 𝑐𝑛), and  

Single element set 𝐷 = {𝑑}. 

D can take on m distinct values, that is di(for i=1, …, m). If si is the sample numbers of U in class 

di, then the expected entropy (I) that can classify a given sample is given by: 

 

𝐼(𝑆1,…,𝑆𝑚
) = − ∑ 𝑝𝑖 log2 𝑝𝑖

𝑚
𝑖=1  ,        (4.4) 

 

where pi is the probability that an arbitrary sample belongs to class si, and m is the sample 

number. The entropy of attribute A, takes values of {𝑎1, 𝑎2, … , 𝑎𝑣}, with v distinct values. 

Attribute A can be used to partition U into v subsets from the class s as {𝑆1, 𝑆2, … , 𝑆𝑣} for 

Si(j=1,…,v). These subsets contain the samples in U that have value aj of A. Sij is the number of 

samples in class di. The Sj subset will yield the entropy of attribute A as: 

 

𝐸(𝐴) = ∑
𝑆1𝑗+⋯+𝑆𝑚𝑗

𝑆
𝐼(𝑆1𝑗,…,𝑆𝑚𝑗

)  𝑣
𝑗=1        (4.5)  
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The term 
𝑆1𝑗+⋯+𝑆𝑚𝑗

𝑆
, which acts as the weight of the jth subset, is the number of samples in 

the subset divided by the total number of samples. When the entropy value is small, the purity 

value of the subset partitions is greater. The attribute with the largest entropy is normally 

selected as the attribute that branches off. 

 

4.4 RULES-F, a fuzzy inductive learning algorithm 

This section presents a technique that allows a covering algorithm to generate fuzzy rules. 

This technique is especially adapted to algorithms based on the structure of RULES-5. 

RULES-5 iteratively applies a specific rule-forming process in order to create a complete rule 

set covering all examples. Three particular steps of this process are of interest to the 

development of RULES-F (Pham et al., 2006). 

Generation of fuzzy rules is based upon representing a decision tree in form of multiple 

dimensions. Every cell in the network is known as a fuzzy subspace and represents a rule 

when connected with a specific result. Various studies have been performed to improve this 

methodology. Fuzzy logic models have been heavily deployed in automatic knowledge 

acquisition to build expert systems. Fuzzy logic models can handle vagueness and uncertainty 

and they possess similarities to some aspects of human reasoning, by dealing with numerical 

outputs without the need for sophisticated mathematics (Pham, et al., 2006). Using fuzzy 

logic, one can generate fuzzy rules based on a decision table which takes the form of a 

multidimensional matrix. This matrix has one dimension per attribute with each cell 

representing a fuzzy subspace. When the total number of attributes increases, this method of 

generating fuzzy rules becomes impractical. The process can be automated by using a list of 

training examples, T in place of the expert knowledge. To do this, a well-known method by 
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Wang and Mendel (1991) is employed to predefine fuzzy membership functions and to split 

the increased attribute space into fuzzy regions A fuzzy rule is thereby generated for each 

example, and the rule is stored in a decision table. As many more rules are able to be 

generated and stored due to growing memory, it becomes difficult to select the best rule. 

Frequencies in each fuzzy domain are therefore defined to identify the true rule (Pham, et al., 

2006). Many more methods have been proposed to handle the generation of fuzzy rules, but 

as Hong and Lee (1996) noted, the equal and fixed partitions of the fuzzy membership 

function that is created makes it difficult to automate fuzzy rule generation. Adapting 

inductive learning techniques for numerical attribute discretisation have been proposed by 

several writers (Pham et al., 2006) to provide a solution to the problem of automating 

membership function design.  

From inductive learning techniques emerges the field of fuzzy rule induction, where each 

fuzzy rule is created from a set of training examples, T. In the training set of examples, each 

example, E, is described by the output value, 𝑉𝑜𝑢𝑡  of E, and a vector of m attributes, A.  

Thus,  

 

𝐸 = (𝐴1 = 𝑉𝐸
1, … , 𝐴𝑖 = 𝑉𝐸

𝑖 , … , 𝐴𝑚 = 𝑉𝐸
𝑚 , 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑉𝐸

𝑜𝑢𝑡),    (4.6) 

 

If R is a fuzzy rule, then it has a number of fuzzy conditions (Cond of R) on each of the m 

input attributes, and a fuzzy output set (F
out

 of R). This can be expressed as: 

𝐶𝑜𝑛𝑑𝑅
1 ^ … ^𝐶𝑜𝑛𝑑𝑅

𝑖 ^ … ^𝐶𝑜𝑛𝑑𝑅
𝑚 ⟹ 𝐹𝑅

𝑜𝑢𝑡. For RULES-F, the triangular form is used to 

facilitate computation instead of using different shapes used for the fuzzy sets 𝐹𝑅
𝑖  of the i

th 

attribute. This fuzzy set for numerical values can be defined as Tr(a,b,c), where a and c are 
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the base corners of the triangle as shown in Figure 4.1, and b is the apex of the same triangle. 

Once the output can be predicated using a fuzzy rule, we can directly compare this method to 

inductive learning. For every fuzzy rule, R, an example, E, will have a particular ‘degree of 

match’, (𝜇_𝑟𝑢𝑙𝑒𝑅(𝐸)), so an evaluation can be conducted to find out how likely a rule is to 

predict the output value of an example. 

ba b

µ

 

Figure 4.4: Triangular fuzzy set (Pham, et al., 2006). 

In RULES-F, the method adopted to evaluate the ‘degree of match’ of an example to each 

rule is to use all membership degrees. Therefore the ‘degree of match’ can be calculated as: 

 

(𝜇_𝑟𝑢𝑙𝑒𝑅(𝐸)) = ∏ (𝜇𝐹𝑅
𝑖 (𝑉𝐸

𝑖))𝑚
𝑖=1 ,        (4.7) 

 

where 𝜇𝐹𝑅
𝑖 (𝑉𝐸

𝑖) is the membership degree of each attribute, 𝑉𝐸
𝑖 . This can be used to determine 

the class of a new example after a complete model (a set of rules) has been created from the 

set of training examples (T). Concentrating on the numerical output, most applications require 

defuzzification which is a process of converting to a single numerical value. For RULES-F a 

weighted-average method is adopted to achieve a defuzzified output: 
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𝑜𝑢𝑡𝑝𝑢𝑡 =
∑ [𝜇_𝑟𝑢𝑙𝑒𝑅(𝐸).𝐶𝑅

𝑜𝑢𝑡]𝑟
𝑅=1

∑ 𝜇_𝑟𝑢𝑙𝑒𝑅(𝐸)𝑟
𝑅=1

,                       (4.8) 

 

where r is the total number of rules generated, E is the new example, and 𝐶𝑅
𝑜𝑢𝑡 is the centre of 

the output fuzzy rule set R. 

In covering algorithms, a seed example (SE) is selected to help in the generation of a new 

rule. This SE, for instance in RULES-5, is the first in the list of training examples that has not 

been covered by other previously created rules. This allows the creation of a consistent and 

general rule covering SE by employing a specific search process. 

The output, 𝐶𝑅
𝑜𝑢𝑡, is numerical and that every output value has to be fuzzified to determine 

the output fuzzy set before the rules are created. Therefore, the number is split into a fixed 

number of membership functions (Nf) that the user determines. The higher the Nf, the more 

accurate the created rule set.  
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4.5 The Data Sorting Method (DSM) Algorithm 

There exist various data sorting algorithms, such as: Selection Sort, Insertion Sort, Bubble 

Sort, Quick Sort, Merge Sort, and Shell Sort, which are all commonly used for data sorting. 

Given here the complete rule forming process of DSM that can be summarised as follows, 

where T is the set of training examples: 

 

 

 

 

 

 

 

 

 

Figure 4.5: Data sorting method algorithm(DSM). 

 

 

 

 

 

 

While there is an example in T not covered by any rule, DO 

 Compute  the Entropy of Attributes 

 Sort them from low to high 

 While the Attributes sub group exist 

 Compute the Entropy of each sub group 

 Compute examples total Entropy value (aggregated Entropy of each row) 

 END 

 Sort all rows (examples) from low to high based on aggregated value 

 Generate a rule using the RULES F algorithm 

 Delete the row and smaller examples covered by this rule 

END  
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4.6 Illustrative Problem  

When using entropy values, rules are induced according to the values with higher knowledge 

gain by calculating the attributes and entropies of the values. The highly disordered and less 

important attributes for the example set are either taken into account slightly or ignored 

completely. Attributes are included in the rules in accordance with their level of importance. 

General rules can therefore be created by following this method. Entropy is broadly defined 

as the disorder of a given system. It is an important physical concept for which many 

disciplines have developed distinct entropy functions. Examples include thermodynamic 

entropy and topological entropy. As the disorder of a given system becomes greater, any 

increasing function can be regarded as the entropy function. 

To illustrate the operation of the DSM method that was selected, the algorithm was applied to 

the weather problem in Table 2.1. A step by step execution of DSM using this data set is 

provided in Figure 4.3. For this simple data set, 5 epochs are required to complete the 

START PHASE and only one division of a rule is carried out. The resultant rule set after this 

phase consists of 5 rules present in their conditional part. The resultant rule set is the most 

general rule set for this data. 
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Figure 4.6: A step by step execution of DSM for the training set in Table 2.1. 

Start Phase: Initialise the rule set, RS. 

Processing of data set: 

Compute and sort the entropy of Attributes 

Processing of data set: 

Compute and sort the entropy of Examples 

Iteration 1: 

Processing of Example 1:  

 RS = {} 

There is no rule yet to classify Example 1. 

Processing of Example 1:  

 RS = {} 

No rule can classify Example 1. 

Processing of Example 1: 

 RS = {Rule1} 

Grate Rule1: Outlook = overcast   Play = Yes 

 Rule1 classified examples 1, 2, 3, 4                                                                                                                

Delete examples covered by such rule and go to Phase 1 

Iteration 2: 

Processing of Example1:              

 RS = {Rule1} 

There is no rule yet to classify Example 1. 

Processing of Example 1:  

RS = {Rule1, Rule2} 

  Grate Rule2: IF Humidity = high AND Outlook = sunny   Play=No   

Rule2 classified examples 1, 2, 9      

  Delete examples covered by such rule and go to Phase 1 

Iteration 3:              

Processing of Example 1:  

 RS = {Rule1, Rule2} 

There is no rule yet to classify Example 1. 

Processing of Example 1:  

 RS = {Rule1, Rule2, Rule3} 

Grate Rule3 IF Outlook=rainy AND Windy=false   Play= Yes          

  Rule3 classified examples 3, 4, 6 

Delete examples covered by such rule and go to Phase 1 

Iteration 4: 

 Processing of Example 1:  

RS = {Rule1, Rule2, Rule3} 

No rule can classify Example 1. 

Processing of Example 1:  

RS = {Rule1, Rule2, Rule3, Rule4} 

Grate Rule4: IF Outlook=sunny AND Humidity=normal   Play=Yes 

Rule4 classified examples 1, 2 

Delete examples covered by such rule and go to Phase 1   

Iteration 5: 

Processing of Example 1:  

RS = {Rule1, Rule2, Rule3, Rule4} 

There is no rule yet to classify Example 1. 

Processing of Example 1:  

RS = {Rule1, Rule2, Rule3, Rule4, Rule5} 

Grate Rule5: IF Outlook=rainy AND Windy=true   Play=No 
Rule5 classified examples 1, 2 

Delete examples covered by such rule and go to Phase 1 
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4.6.1 Changing the order of data training set, first iteration 

To illustrate the idea, of the set of 14 objects in the weather problem (Table 2.1), 9 are of 

class Yes and 5 are of class No. 

The attributes and their potential values are given below: 

Attributes    Values 

𝐴1 = (Outlook)    Sunny, Overcast, Rainy 

𝐴2 = (Temperature)    Hot, Mild, Cool 

𝐴3 = (Humidity)   High, Normal  

𝐴4 = (Windy)     False, True 

 

The entropy is calculated for each attribute and value by using Equation 4.1: 

• The first attribute, outlook, can take the values {sunny, overcast, rain}. The entropy for 

each value of the attribute will be calculated. 

Five of the 14 objects have the first value (sunny). Of these, two are from class Yes, and three 

are from class No. 

For (sunny), 𝐸𝑂𝑢𝑡𝑙𝑜𝑜𝑘,𝑆𝑢𝑛𝑛𝑦(2,3) = 0.972 bits 

And similarly 

For (overcast), 𝐸𝑂𝑢𝑡𝑙𝑜𝑜𝑘,𝑂𝑣𝑒𝑟𝑐𝑎𝑠𝑡(4,0) = 0 bit       

For (rain), 𝐸𝑂𝑢𝑡𝑙𝑜𝑜𝑘,𝑅𝑎𝑖𝑛𝑦(3,2) = 0.972 bit      

  

From the above calculations, the entropy for attribute, Outlook, is calculated as: 

𝐸𝑂𝑢𝑡𝑙𝑜𝑜𝑘 =
5

14
× 𝐸𝑂𝑢𝑡𝑙𝑜𝑜𝑘,𝑆𝑢𝑛𝑛𝑦 +

4

14
× 𝐸𝑂𝑢𝑡𝑙𝑜𝑜𝑘,𝑂𝑣𝑒𝑟𝑐𝑎𝑠𝑡 +

5

14
× 𝐸𝑂𝑢𝑡𝑙𝑜𝑜𝑘,𝑅𝑎𝑖𝑛𝑦  

𝐸𝑂𝑢𝑡𝑙𝑜𝑜𝑘 = 0.694 bits 

• The second attribute, Temperature, takes the values {hot, mild and cool}, and the entropy 

for each value of the attribute will be calculated below. 
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Four of the 14 objects have the first value (hot), two of them from class Yes and two from 

class No. 

For (hot), 𝐸𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,𝐻𝑜𝑡(2,2) = 1 bit        

And similarly 

For (mild), 𝐸𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,𝑀𝑖𝑙𝑑(4,2) = 0.920 bit       

For (cool), 𝐸𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,𝐶𝑜𝑜𝑙(3,1) = 0.811 bit       

From the above calculations, the entropy for the attribute, Temperature, is found as: 

𝐸𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 =
4

14
× 𝐸𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,𝐻𝑜𝑡 +

6

14
× 𝐸𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,𝑀𝑖𝑙𝑑 +

4

14
× 𝐸𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,𝐶𝑜𝑜𝑙 

𝐸𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 0.913 bits 

 

• The third attribute, Humidity, can take the values {high, normal}, and the entropy for each 

value of the attribute will be calculated below.  

Five of the 14 objects have the first value (high), three of them from class Yes and four from 

class No. 

For (high), 𝐸𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦,𝐻𝑖𝑔ℎ(3,4) = 0.986 bit       

And similarly 

For (normal), 𝐸𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦,𝑁𝑜𝑟𝑚𝑎𝑙(6,1) = 0.593 bit       

From the above calculations, it follows that the entropy for the Humidity attribute is given by: 

𝐸𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 =
7

14
×  𝐸𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦,𝐻𝑖𝑔ℎ +

7

14
× 𝐸𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦,𝑁𝑜𝑟𝑚𝑎𝑙  

𝐸𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 = 0.790 𝑏𝑖𝑡𝑠 

• The fourth attribute, Windy, takes values {false, true}, and the entropy for each value of the 

attribute will be calculated below.  

Five of the 14 objects have the first value (false), six of them from class Yes and three from 

class No. 

For (false), 𝐸𝑊𝑖𝑛𝑑𝑦,𝐹𝑎𝑙𝑠𝑒(6,3) = 0.919 bit        
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And similarly 

For (true), 𝐸𝑊𝑖𝑛𝑑𝑦,𝑇𝑟𝑢𝑒(3,2) = 0.972 bit  

From the above calculations, the entropy for attribute, Windy, is calculated as: 

𝐸𝑊𝑖𝑛𝑑𝑦 =
9

14
×  𝐸𝑊𝑖𝑛𝑑𝑦,𝐹𝑎𝑙𝑠𝑒 +

5

14
× 𝐸𝑊𝑖𝑛𝑑𝑦,𝑇𝑟𝑢𝑒 

𝐸𝑊𝑖𝑛𝑑𝑦 = 0.938 bits 

 

The following is an Example of the data sorting mothed. For the data set given in Table 2.1, 

there are four attributes: Outlook, Temperature, Humidity, and Windy.  

DSM hence carries out three (the number of attributes minus 1) partitioning loops on the data 

set. 

At Level = 0, the rule matrix (RM) contains all the 14 examples in Table 2.1. 

Using these 14 examples, the Level 1 entropy for each attribute is given below using the 

formulas in equation (2.9). 

𝐸𝑂𝑢𝑡𝑙𝑜𝑜𝑘 = 0.694 bits      

𝐸𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 0.913 bits 

𝐸𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 = 0.790 𝑏𝑖𝑡𝑠 

𝐸𝑊𝑖𝑛𝑑𝑦 = 0.938 bits 

From these entropy values, Outlook appears to have the lowest entropy, and therefore is the 

highest relevant attribute. 

Using these 4 Attribute entropy values, the Level 2 attributes are sorted by their value from 

smallest to largest. 

𝐸𝑂𝑢𝑡𝑙𝑜𝑜𝑘 = 0.694 bits 

𝐸𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 = 0.790 𝑏𝑖𝑡𝑠 

𝐸𝑊𝑖𝑛𝑑𝑦 = 0.938 bits 

𝐸𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 0.913 bits 
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Using these 4 Attribute entropy values and 14 attributes sub group value, the training data set 

is reordered as shown in Table 4.2. 

 

 

 

 

 

 

 

 

 

 

 

4.6.2 Changing the order of data training set after the rule 

produced 

The rule obtained by RULES-F with the data sorting method was produced using the 

reordered set of training data. 

The first iteration ends here and the rule is obtained as: 

 

Table 4.1: Entropies of attributes and values in first iteration. 

 

Attribute 
Entropy 

(bit) 
Value 

Entropy 

(bit) 

Gain 

Ratio 

Outlook 0.694 

Sunny 0.972 

0.156 Rainy 0.972 

Overcast 0.00 

Temp 0.913 

Hot 1.00 

0.550 Cool 0.920 

Mild 0.811 

Humidity 0.790 
High 0.986 

0.151 
Normal 0.811 

Windy 0.938 
False 0.919 

0.051 
True 0.972 

 

 

 

Table 4.2: Reordered data set in first iteration. 

 

 

 

No Outlook Humidity Temperature Windy Play 

1 overcast normal cool true yes 

2 overcast normal hot false yes 

3 overcast high mild true yes 

4 overcast high hot false yes 

5 rainy normal cool false yes 

6 sunny normal cool false yes 

7 rainy normal cool true no 

8 rainy normal mild false yes 

9 sunny normal mild true yes 

10 rainy high mild false yes 

11 sunny high mild false no 

12 rainy high mild true no 

13 sunny high hot false no 

14 sunny high hot false no 
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IF Outlook = overcast   Play = Yes  

Examples 1, 2, 3, 4 covered by this rule are then deleted, and the new data set is reordered 

both in terms of the attributes and the examples for the second iteration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.6.3 Changing the order of data training set, second iteration 

To illustrate the process, a set of objects in a new weather problem (Table 4.3) is used. Of the 

10 objects, 5 are of class Yes and 5 are of class No. 

The attributes and their values are given below:- 

Attributes    Values 

𝐴1 = (Outlook)    Sunny, Rainy 

𝐴2 = (Temperature)    Hot, Mild, Cool 

𝐴3 = (Humidity)   High, Normal  

𝐴4 = (Windy)     False, True 

The first attribute, outlook takes values of {sunny, rain}, the entropy for each value of the 

attribute will be calculated below. 

Five of the 10 objects have the first value (sunny), two of them from class Yes and three from 

class No. 

Table 4.3: Training data set after first iteration. 

No Outlook  Temperature  Humidity Windy Play 

1 sunny hot high false no 

2 sunny hot high false no 

3 rainy mild high false yes 

4 rainy cool normal false yes 

5 rainy cool normal true no 

6 sunny mild high false no 

7 sunny cool normal false yes 

8 rainy mild normal false yes 

9 sunny mild normal true yes 

10 rainy mild high true no 
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For (sunny), 𝐸𝑂𝑢𝑡𝑙𝑜𝑜𝑘,𝑆𝑢𝑛𝑛𝑦(2,3) = 0.972 bits 

And similarly 

For (rain), 𝐸𝑂𝑢𝑡𝑙𝑜𝑜𝑘,𝑅𝑎𝑖𝑛𝑦(3,2) = 0.972 bit      

From the above calculations, the entropy for attribute, Outlook, is calculated as: 

𝐸𝑂𝑢𝑡𝑙𝑜𝑜𝑘 =
5

10
× 𝐸𝑂𝑢𝑡𝑙𝑜𝑜𝑘,𝑆𝑢𝑛𝑛𝑦 +

5

10
× 𝐸𝑂𝑢𝑡𝑙𝑜𝑜𝑘,𝑅𝑎𝑖𝑛𝑦 

𝐸𝑂𝑢𝑡𝑙𝑜𝑜𝑘 = 0.972 bits 

• The second attribute, Temperature, has values {hot, mild and cool}. The entropy for each 

value of each attribute will be calculated here. 

Two of the 10 objects have the first value (hot), none of them from class Yes and two from 

class No. 

For (hot), 𝐸𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,𝐻𝑜𝑡(0,2) = 0 bits         

And similarly 

For (mild), 𝐸𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,𝑀𝑖𝑙𝑑(3,2) = 0.972 bits       

For (cool), 𝐸𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,𝐶𝑜𝑜𝑙(2,1) = 0.916 bit       

From the above calculations, the entropy for attribute, Temperature, is found as: 

𝐸𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 =
2

10
× 𝐸𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,𝐻𝑜𝑡 +

5

10
× 𝐸𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,𝑀𝑖𝑙𝑑 +

3

10
× 𝐸𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,𝐶𝑜𝑜𝑙 

𝐸𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 0.760 bits 

• The third attribute, Humidity, has values {high, normal}, and the entropy for each value of 

the attribute will be calculated here.  

Five of the 10 objects have the first value (high), one of them from class Yes and four from 

class No. 

For (high), 𝐸𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦,𝐻𝑖𝑔ℎ(1,4) = 0.721 bit       

And similarly 

For (normal), 𝐸𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦,𝑁𝑜𝑟𝑚𝑎𝑙(4,1) = 0.721 bit       
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From the above calculations, it follows that the entropy for the attribute, Humidity, turns out 

to be: 

𝐸𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 =
5

10
×  𝐸𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦,𝐻𝑖𝑔ℎ +

5

10
× 𝐸𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦,𝑁𝑜𝑟𝑚𝑎𝑙  

𝐸𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 = 0.721 bits 

• The fourth attribute, Windy, has values of {false, true}, and the entropy for each value of the 

attribute will be calculated below.  

Seven of the 10 objects have the first value (false), four of them from class Yes and three 

from class No. 

For (false), 𝐸𝑊𝑖𝑛𝑑𝑦,𝐹𝑎𝑙𝑠𝑒(3,4) = 0.985 bit        

And similarly 

For (true), 𝐸𝑊𝑖𝑛𝑑𝑦,𝑇𝑟𝑢𝑒(1,2) = 0.994 bit  

From the above calculations, the entropy for attribute, Windy, is calculated as: 

𝐸𝑊𝑖𝑛𝑑𝑦 =
7

10
×  𝐸𝑊𝑖𝑛𝑑𝑦,𝐹𝑎𝑙𝑠𝑒 +

3

10
× 𝐸𝑊𝑖𝑛𝑑𝑦,𝑇𝑟𝑢𝑒 

𝐸𝑊𝑖𝑛𝑑𝑦 =  0.994 bits 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using these 4 Attribute entropy values and 10 attributes sub group value, the training data set 

is reordered as shown in Table 4.5. 

Table 4.4: Entropies of attributes and values in second iteration. 

 

Attribute Entropy (bit) 

 

Values 
 

Entropy (bit) 

Outlook 0.971 
Sunny 0.972 

Rainy 0.972 

Temperature  0.760 

Hot 0.00 

Cool 0.916 

Mild 0.971 

Humidity 0.721 
High 0.721 

Normal 0.721 

Windy 0.994 
False 0.985 

True 0.916 
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4.6.4 Changing the order of training data set after the rule is 

produced 

The rule obtained by RULES-F with the data sorting method was produced using a reordered 

set of training data: 

IF Outlook = overcast   Play = Yes  

IF Humidity = high AND Outlook = sunny   Play = No 

Delete examples 1, 2, 9 covered by this rule. 

The rule is obtained, and the data has to be reordered in terms of both the attributes and the 

examples. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.5: Reordered data set in second iteration.   
 

 

 

 

No Humidity Temperature  Outlook  Windy Play 

1 high hot sunny false no 

2 high hot sunny false no 

3 normal cool rainy true no 

4 normal mild sunny true yes 

5 high mild rainy true no 

6 normal cool rainy false yes 

7 normal cool sunny false yes 

8 high mild rainy false yes 

9 high mild sunny false no 

10 normal mild rainy false yes 

Table 4.6: Training data set after second iteration.   
 

 

 

 

No Humidity Temperature  Outlook  Windy Play 

1 normal cool rainy true no 

2 normal mild sunny true yes 

3 high mild rainy true no 

4 normal cool rainy false yes 

5 normal cool sunny false yes 

6 high mild rainy false yes 

7 normal mild rainy false yes 
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4.6.5 Changing the order of training data set on the third iteration 

To illustrate the process, the set of objects in the new weather problem in (Table 4.6) are 

considered. Of the 7 objects, 5 are of class Yes and 2 are of class No. 

The attributes and their values are given below:- 

Attributes    Values 

𝐴1= (Humidity)   High, Normal  

𝐴2 = (Temperature)    Mild, Cool 

𝐴3= (Outlook)     Sunny, Rainy 

𝐴4 = (Windy)     False, True 

• First the Humidity attribute, which can take the values {high, normal}, the entropy for each 

value of the attribute can be calculated.  

Two of the 7 objects have the first value (high), one of them from class Yes and one from 

class No. 

For (high), 𝐸𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦,𝐻𝑖𝑔ℎ(1,1) = 1 bit       

And similarly 

For (normal), 𝐸𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦,𝑁𝑜𝑟𝑚𝑎𝑙(4,1) =  0.721 bit       

From the above calculations, it follows that the entropy for attribute, Humidity, turns out to 

be: 

𝐸𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 =
2

7
×  𝐸𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦,𝐻𝑖𝑔ℎ +

5

7
× 𝐸𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦,𝑁𝑜𝑟𝑚𝑎𝑙  

𝐸𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 = 0.920 bits 

• The second attribute, Temperature, has values {cool, mild}, and the entropy for each value 

of the attribute will hence be calculated here. 
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Three of the 7 objects have the first value (cool), two of them from class Yes and one from 

class No. 

For (cool), 𝐸𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,𝐶𝑜𝑜𝑙(2,1) = 0.967 bit       

And similarly 

For (mild), 𝐸𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,𝑀𝑖𝑙𝑑(3,1) = 0.527 bits       

From the above calculations, the entropy for attribute, Temperature, is found as: 

𝐸𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 =
3

7
× 𝐸𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,𝐶𝑜𝑜𝑙  +

4

7
× 𝐸𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,𝑀𝑖𝑙𝑑 

𝐸𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 0.715 bits 

• The third attribute, outlook, can have values {sunny, rain}. The entropy for each value of 

the attribute will be calculated here. 

Five of the 7 objects have the first value (Rainy), three of them from class Yes and two from 

class No. 

For (rain), 𝐸𝑂𝑢𝑡𝑙𝑜𝑜𝑘,𝑅𝑎𝑖𝑛𝑦(3,2) = 0.971 bit      

And similarly 

For (sunny), 𝐸𝑂𝑢𝑡𝑙𝑜𝑜𝑘,𝑆𝑢𝑛𝑛𝑦(2,0) = 0 bits 

From the above calculations, the entropy for attribute, Outlook, is calculated as: 

𝐸𝑂𝑢𝑡𝑙𝑜𝑜𝑘 =
5

7
× 𝐸𝑂𝑢𝑡𝑙𝑜𝑜𝑘,𝑅𝑎𝑖𝑛𝑦 +

2

7
× 𝐸𝑂𝑢𝑡𝑙𝑜𝑜𝑘,𝑆𝑢𝑛𝑛𝑦 

𝐸𝑂𝑢𝑡𝑙𝑜𝑜𝑘 = 0.693 bits 

 

• The fourth attribute, Windy, takes values {false, true}, and the entropy for each value of 

each attribute will be calculated below.  

Seven of the 7 objects have the first value (false), four of them from class Yes and three from 

class No. 

For (true), 𝐸𝑊𝑖𝑛𝑑𝑦,𝑇𝑟𝑢𝑒(1,2) = 0.967 bit  

For (false), 𝐸𝑊𝑖𝑛𝑑𝑦,𝐹𝑎𝑙𝑠𝑒(4,0) = 0.860 bit        
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And similarly 

From the above calculations, the entropy for attribute, Windy, is calculated as: 

𝐸𝑊𝑖𝑛𝑑𝑦 =
4

7
×  𝐸𝑊𝑖𝑛𝑑𝑦,𝐹𝑎𝑙𝑠𝑒 +

3

7
× 𝐸𝑊𝑖𝑛𝑑𝑦,𝑇𝑟𝑢𝑒 

𝐸𝑊𝑖𝑛𝑑𝑦 = 0.905 bits 

Using these 4 Attribute entropy values, the attributes are sorted by their value as shown in 

Table 4.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using these 4 Attribute entropy values and 7 attributes sub group value, the training data set 

is reordered as shown in Table 4.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.8: Reordered data set in third iteration.   

 

 

No Outlook  Temperature  Windy Humidity Play 

1 sunny mild true normal yes 

2 sunny cool false normal yes 

3 rainy mild false normal yes 

4 rainy mild false high yes 

5 rainy mild true high no 

6 rainy cool false normal yes 

7 rainy cool true normal no 

Table 4.7: Entropies of attributes and values in third iteration. 

 

Attribute Entropy (bit) 

 

Values 
 

Entropy (bit) 

Outlook 0.693 
Sunny 0.000 

Rainy 0.971 

Temperature  0.715 

Hot 0.00 

Cool 0.967 

Mild 0.527 

Humidity 0.920 
High 1.000 

Normal 0.721 

Windy 0.905 
False 0.860 

True 0.967 
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4.6.6 Changing the order of data training set after the rule 

produced 

The rule obtained by RULES-F with the data sorting method was produced using a reordered 

set of training data: 

IF Outlook = overcast   Play = Yes  

IF Humidity = high AND Outlook = sunny   Play = No 

IF Outlook = rainy AND Windy = false   Play = Yes 

Delete examples 3, 4, and 6 covered by this rule. 

 

 

 

 

 

 

 

 

And similarly: 

IF Outlook = overcast   Play = Yes  

IF Humidity = high AND Outlook = sunny   Play = No 

IF Outlook = rainy AND Windy = false   Play = Yes 

IF Outlook = sunny AND Humidity = normal    Play = Yes  

IF Outlook = rainy AND Windy = true   Play = No 

The rules are obtained. There are NO remaining unclassified examples in the example set and 

the procedure terminates at this point. 

 

Table 4.9: Training data set after third iteration. 

 

 

 

 

No Outlook  Temperature  Windy Humidity Play 

1 sunny mild true normal yes 

2 sunny cool false normal yes 

3 rainy mild true high no 

4 rainy cool true normal no 
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4.7 The Data Sorting Method (DSM) 

Chapter 3 introduced a data ordering method, a technique that orders the training data. In this 

chapter, improvements to the Data Ordering Mothed (in Chapter 3) are discussed and their 

implementation in a new version of the DSM, is described. This DSM can reorder attributes 

and give priority to the one with higher knowledge values. To facilitate the processing of 

attributes by DSM, modifications are introduced to the rule representation scheme. A new 

procedure is proposed for selecting an attribute to give more general and compact rules. The 

entropy for each attribute is calculated, and they are ranked from small to large or from left to 

right. 

 

 
 

 

 

 

Figure 4.4: RULES-F algorithm with proposed Data Sorting Method. 
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4.8 Experiments  

The ordering (DSM) techniques suggested in this chapter have been tested thoroughly on a 

population of 14 datasets, all of which have been downloaded from the repository of machine 

learning databases held at the University of California at Irvine (UCI) (Blake and Merz, 1998). 

These datasets come from a variety of domains and have been summarised in Table 4.10. The 

only sampled dataset used in this study is the Weather problem, with 14 instances. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.10: Summary of data sets used in experiments. 

 

No 

 

Data Set Attributes Classes #Examples    

1 Tic-Tac-Toe 09 02 958 

2 Weather 04 02 14 

3 Car 06 02 1728 

4 Haberman 03 02 306 

5 
Chess 

06 02 28056 

6 Zoo 17 07 101 

7 Post-operative 08 02 90 

8 Dermatology 33 06 366 

9 Heart 13 02 270 

10 Monk1 07 02 432 

11 Monk2 07 02 432 

12 Balance-scale 04 03 625 

13 
Contracpetive 09 03 1473 

14 
king-rook-vs-king 

06 18 28056 
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4.9 Results and Discussions 

Six different orderings were used (Original, Data Ordering Method (DOM), Data Sorting 

Method (DSM), Random1, Random2 and Random3) to measure the effect of the order of SE 

on the rule sets created using RULES-3 Plus and RULES-F. 

The results from different pruning scales show that the choice of ordering method has a 

measurable effect on the number of rule sets created by the two algorithms. For example, 

with pruning at 70 %, the  percentage difference in number of rules is up to 19.30 % and 

13.80 % for RULES-F and RULES-3 Plus respectively. 

Table 4.12 displays the highest number of deviations in the number of rules generated by 

each algorithm when the six different ordering systems are applied to each data set.  
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Table 4.11: Average number of rules created using six orderings on two algorithms (with 

pruning 90 %). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Average deviation in number of  rules created 

No Data set RULES-F RULES-3 Plus 

 

1 
Tic-Tac-Toe 2 9 

2 Weather Problem 1 1 

3 Car 1 4 

4 Haberman 13 7 

5 Chess 14 73 

6 Zoo 2 0 

7 Post-Operative 5 5 

8 Dermatology 7 5 

9 Heart 2 4 

10 Monk1 0 7 

11 Monk2 13 50 

12 Balance-scale 11 0 

13 Contraceptive 125 0 

14 King-rook-vs-king 844 1617 

Maximum 844 1617 

Average 74.214 127.285 
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Table 4.12: Average number of rules created using six orderings. 

  

Average Number of Rules 

  Data set Original  DOM DSM Random1 Random2 Random3 

1 Tic-Tac-Toe 24.5 21.5 20 19 20 23.5 

2 Weather Problem 5 5.5 6 5.5 5.5 5.5 

3 Car 248 246.5 247 246.5 247 246 

4 Haberman 154 148.5 150.5 150.5 150.5 145.5 

5 Chess 71.5 42.5 39.5 46.5 38.5 38 

6 Zoo 25 25 25 25 25 25.5 

7 Post-Operative 36.5 36.5 37.5 34.5 34.5 34.5 

8 Dermatology 39 39 38.5 42 36.5 39 

9 Heart 12 13.5 13.5 11.5 11.5 11.5 

10 Monk1 25.5 22 25 27 27 27.5 

11 Monk2 154.5 157.5 152 145.5 152 155.5 

12 Balance-scale 175.5 179.5 176.5 171.5 172 172.5 

13 Contraceptive 735 706.5 720.5 720.5 735 714 

14 King-rook-vs-king 14662 14151.5 14122 14666 14695 14715 

 

From Table 4.12 above, six ordering methods were on the data from two algorithms, RULES-

F and RULES-3 Plus. Using the original ordering implies that there is no order applied to the 

data. Meanwhile, DOM is a data ordering method created as shown in Chapter 3, and DSM is 

a data sorting method created in Section 4.7. Random 1, random 2 and random 3 all are 

applied to the data randomly using the two algorithms.  

When six varieties of varying ordering are applied, different numbers of rules are created by 

the algorithms. For the example of tic-tac-toe, the rules generated are stated above.  

Rules are generated with high confidence, and each rule generated is defined as a binary 

partition of the item set. As per the above results table, the rules generated from a frequent 

item set were low, hence decreasing the computational cost. It can be observed that the set of 

rules generated from the same set of items has more support than a set of rules generated 

from different item sets. 
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It can be safely concluded that the example used to the ordering, in this case tic-tac-toe, has 

close to no effect on the number of rules generated by the algorithms. Overall there is very 

little distinction between the results acquired. It can also be concluded that the order of the 

originally produced results that the worst order to use. However, when looking in more detail 

at the normal deviations among the information sets, the new requesting technique appears to 

be exceptionally encouraging as it gives the best results. It ought to be specified that a large 

portion of the handling time used for the proposed information requesting strategy is spent on 

surveying entropy values. This is done for each characteristic worth pair that is utilised by the 

mathematical statement 1, as a part of each case. The data gathered from assessing and 

evaluating the generated rules can be further used in covering algorithms. Therefore the cost 

incurred in computing the rules is not expensive and the sampling data can be pre-processed.  
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Table 4.13: The results obtained using 2 algorithms with pruning required 70 %. 

 RULES F RULES3Plus 

No Data set Ordering No of Rules Classified  No of Rules Classified 

 

1 

 

Tic-Tac-Toe 

Original  12 100 37 100 

DOM 10 100 33 100 

DSM 12 100 28 100 

Random1 12 100 26 100 

Random2 13 100 27 100 

Random3 12 100 35 100 

2 Weather Problem 

Original  5 100 5 100 

DOM 5 100 6 100 

DSM 6 100 6 100 

Random1 6 100 5 100 

Random2 6 100 5 100 

Random3 6 100 5 100 

3 Car 

Original  246 100 250 100 

DOM 246 100 247 100 

DSM 246 100 248 100 

Random1 246 100 247 100 

Random2 246 100 248 100 

Random3 246 100 246 100 

4 Haberman 

Original  128 93.791 180 96.732 

DOM 116 92.157 181 96.732 

DSM 120 92.810 181 97.059 

Random1 120 92.810 181 96.732 

Random2 120 92.810 181 96.732 

Random3 109 91.830 182 97.831 

5 Chess 

Original  12 93.586 131 100 

DOM 23 96.996 62 100 

DSM 21 98.310 58 100 

Random1 29 98.404 64 100 

Random2 18 97.121 59 100 

Random3 13 97.278 63 100 

6 Zoo 

Original  10 100 40 100 

DOM 10 100 40 100 

DSM 10 100 40 100 

Random1 10 100 40 100 

Random2 10 100 40 100 

Random3 11 100 40. 100 

7 Post-Operative 

Original  35 93.333 38 93.333 

DOM 30 92.222 43 92.222 

DSM 34 93.211 41 93.211 

Random1 29 92.222 40 92.222 
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Random2 29 92.222 40 92.222 

Random3 29 92.222 40 92.222 

8 Dermatology 

Original  26 98.907 52 100 

DOM 25 99.453 53 100 

DSM 19 95.902 58 100 

Random1 31 99.727 53 100 

Random2 24 98.901 49 100 

Random3 27 100 51 100 

9 Heart 

Original  1 91.979 23 95.722 

DOM 1 91.979 26 95.722 

DSM 1 91.979 26 95.722 

Random1 1 91.979 22 95.722 

Random2 1 91.979 22 95.722 

Random3 1 91.979 22 95.722 

10 Monk1 

Original  10 99.769 41 100 

DOM 10 99.769 34 100 

DSM 10 99.769 40 100 

Random1 10 99.769 44 100 

Random2 10 99.769 44 100 

Random3 10 99.769 45 100 

11 Monk2 

Original  36 76.157 273 100 

DOM 29 74.306 286 100 

DSM 44 70.602 260 100 

Random1 26 70.602 265 100 

Random2 38 74.537 266 100 

Random3 43 76.852 268 100 

12 Balanc-scale 

Original  48 84.642 303 100 

DOM 56 86.561 303 100 

DSM 50 85.446 303 100 

Random1 40 82.880 303 100 

Random2 41 83.044 303 100 

Random3 42 84.325 303 100 

13 Contracpetive 

Original  588 91.174 882 95.180 

DOM 569 90.495 844 95.316 

DSM 590 91.242 851 95.441 

Random1 565 90.970 876 95.384 

Random2 575 91.581 895 95.311 

Random3 549 90292 879 95384 

14 king-rook-vs-king 

Original  8543 89.85328 20781 100 

DOM 7148 87.872 21155 100 

DSM 7160 89.675 21084 100 

Random1 7188 88.975 22144 100 

Random2 7189 88.869 22201 100 

Random3 7163 88.868 22267 100 

 

Percentage difference% 

 

19.35074 13.80411 
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Table 4.14: The results obtained using 2 algorithms with pruning required 75 %. 

 RULES F RULES3Plus 

No Data set Ordering No of Rules Classified  No of Rules Classified 

 

1 
Tic-Tac-Toe 

Original  17 99.26931 37 100 

DOM 17 99.164925 33 100 

DSM 16 99.164925 28 100 

Random1 17 99.164925 30 100 

Random2 16 99.164925 30 100 

Random3 16 99.164925 29 100 

2 Weather Problem 

Original  5 100 5 100 

DOM 5 100 6 100 

DSM 6 100 6 100 

Random1 6 100 6 100 

Random2 6 100 6 100 

Random3 6 100 6 100 

3 Car 

Original  246 100 250 100 

DOM 246 100 247 100 

DSM 246 100 248 100 

Random1 246 100 247 100 

Random2 246 100 248 100 

Random3 246 100 246 100 

4 Haberman 

Original  128 93.790848 180 96.732025 

DOM 116 92.15686 181 96.732025 

DSM 120 92.810455 181 97.058823 

Random1 120 92.810455 181 96.732025 

Random2 120 92.810455 181 96.732025 

Random3 109 91.830063 182 97.058823 

5 Chess 

Original  12 93.585732 131 100 

DOM 23 96.996246 62 100 

DSM 21 98.310387 58 100 

Random1 29 98.404259 64 100 

Random2 18 97.121399 59 100 

Random3   63 100 

6 Zoo Original  10 100 40 100 
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DOM 10 100 40 100 

DSM 10 100 40 100 

Random1 11 100 40 100 

Random2 11 100 40 100 

Random3 11 100 40 100 

7 Post-Operative 

Original  35 93.333336 38 93.333336 

DOM 32 92.222221 43 92.222221 

DSM 34 93.333336 43 93.333336 

Random1 29 92.222221 40 92.222221 

Random2 29 92.222221 40 92.222221 

Random3 29 92.222221 40 92.222221 

8 Dermatology 

Original  28 99.180328 52 100 

DOM 27 99.726776 53 100 

DSM 26 99.453552 58 100 

Random1 30 100 50 100 

Random2 28 98.907104 44 100 

Random3 32 99.726776 48 100 

9 Heart 

Original  1 91.978607 23 95.721924 

DOM 1 91.978607 26 95.721924 

DSM 1 91.978607 26 95.721924 

Random1 1 91.978607 23 95.721924 

Random2 1 91.978607 22 97.326202 

Random3 1 91.978607 22 97.326202 

10 Monk1 

Original  10 99.768517 41 100 

DOM 10 99.768517 34 100 

DSM 10 99.768517 40 100 

Random1 10 99.768517 44 100 

Random2 10 99.768517 44 100 

Random3 10 99.768517 41 100 

11 Monk2 

Original  36 76.15741 273 100 

DOM 29 74.305557 286 100 

DSM 44 77.314812 260 100 

Random1 26 70.601852 265 100 

Random2 38 74.537041 266 100 

Random3 43 76.851852 268 100 

12 Balanc-scale Original  62 88.639999 303 100 
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DOM 81 90.879997 303 100 

DSM 72 89.919998 303 100 

Random1 58 88.480003 303 100 

Random2 64 88.959999 303 100 

Random3 63 88.800003 303 100 

13 Contracpetive 

Original  630 93.143242 882 95.179909 

DOM 640 93.822128 844 95.315681 

DSM 636 93.346909 851 95.044128 

Random1 618 93.279022 879 95.179909 

Random2 612 92.735916 878 95.247795 

Random3 626 93.686356 892 95.383568 

14 king-rook-vs-king 

Original  11446 93.580696 20781 100 

DOM 10690 91.705872 21155 100 

DSM 10796 92.026665 21084 100 

Random1 10712 92.308243 22197 100 

Random2 10763 92.322495 22209 100 

Random3 10726 92.372398 22322 100 

 

Percentage difference% 

 

15.805808 13.904885 
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Table 4.15: The results obtained using 2 algorithms with pruning required 80 %. 

 RULES F RULES3Plus 

No Data set Ordering No of Rules Classified  No of Rules Classified 

 

1 

 

Weather Problem 

Original  5 100 5 100 

DOM 5 100 6 100 

DSM 6 100 6 100 

Random1 5 100 6 100 

Random2 5 100 5 100 

Random3 5 100 5 100 

2 Tic-Tac-Toe 

Original  22 100 37 100 

DOM 22 100 33 100 

DSM 22 100 28 100 

Random1 23 100 35 100 

Random2 22 100 27 100 

Random3 22 100 28 100 

3 Car 

Original  246 100 250 100 

DOM 246 100 247 100 

DSM 246 100 248 100 

Random1 246 100 247 100 

Random2 246 100 248 100 

Random3 246 100 246 100 

4 Haberman 

Original  128 93.790848 180 96.732025 

DOM 116 92.15686 181 96.732025 

DSM 120 92.810455 181 97.058823 

Random1 120 92.810455 181 96.732025 

Random2 120 92.810455 181 96.732025 

Random3 109 91.830063 182 97.058823 

5 Chess 

Original  12 93.585732 131 100 

DOM 23 96.996246 62 100 

DSM 21 98.310387 58 100 

Random1 29 98.404259 64 100 

Random2 18 97.121399 59 100 

Random3 13 97.277847 63 100 

6 Zoo Original  10 100 40 100 
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DOM 10 100 40 100 

DSM 10 100 40 100 

Random1 10 100 40 100 

Random2 10 100 40 100 

Random3 11 100 40 100 

7 Post-Operative 

Original  35 93.333336 38 93.333336 

DOM 32 92.222221 43 92.222221 

DSM 34 93.333336 43 93.333336 

Random1 29 92.222221 40 92.222221 

Random2 29 92.222221 40 92.222221 

Random3 29 92.222221 40 92.222221 

8 Dermatology 

Original  29 100 52 100 

DOM 28 100 53 100 

DSM 30 100 58 100 

Random1 33 100 48 100 

Random2 29 99.726776 48 100 

Random3 29 100 52 100 

9 Heart 

Original  1 91.978607 23 95.721924 

DOM 1 91.978607 26 95.721924 

DSM 1 91.978607 26 95.721924 

Random1 2 92.513367 24 95.721924 

Random2 1 91.978607 21 97.326202 

Random3 1 91.978607 21 97.326202 

10 Monk1 

Original  10 99.768517 41 100 

DOM 10 99.768517 34 100 

DSM 10 99.768517 40 100 

Random1 10 99.768517 42 100 

Random2 10 99.768517 42 100 

Random3 10 99.768517 42 100 

11 Monk2 

Original  112 87.037041 273 100 

DOM 120 88.425926 286 100 

DSM 133 91.203705 260 100 

Random1 107 83.796295 262 100 

Random2 108 84.722221 264 100 

Random3 110 85.416664 263 100 

12 Balanc-scale Original  118 94.239998 303 100 
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DOM 131 97.120003 303 100 

DSM 134 96.959999 303 100 

Random1 117 95.199997 303 100 

Random2 119 95.199997 303 100 

Random3 122 96.160004 303 100 

13 Contracpetive 

Original  630 93.143242 882 95.179909 

DOM 640 93.822128 844 95.315681 

DSM 636 93.346909 851 95.044128 

Random1 618 93.279022 879 95.179909 

Random2 612 92.735916 878 95.247795 

Random3 626 93.686356 892 95.383568 

14 king-rook-vs-king 

Original  14846 95.865439 20781 100 

DOM 12301 92.964256 21155 100 

DSM 12399 94.136891 21084 100 

Random1 12412 94.314699 22233 100 

Random2 12765 94.437829 22245 100 

Random3 12755 94.296438 22265 100 

 

Percentage difference% 

 

17.11552 13.60019 
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Table 4.16: The results obtained using 2 algorithms with pruning required 85 %. 

 RULES F RULES3Plus 

No Data set Ordering No of Rules Classified  No of Rules Classified 

 

1 

 

Weather Problem 

Original  5 100 5 100 

DOM 5 100 6 100 

DSM 6 100 6 100 

Random1 6 100 6 100 

Random2 6 100 6 100 

Random3 6 100 6 100 

2 Tic-Tac-Toe 

Original  22 100 37 100 

DOM 22 100 33 100 

DSM 22 100 28 100 

Random1 24 100 34 100 

Random2 22 100 29 100 

Random3 23 100 29 100 

3 Car 

Original  246 100 250 100 

DOM 246 100 247 100 

DSM 246 100 248 100 

Random1 246 100 248 100 

Random2 246 100 249 100 

Random3 246 100 248 100 

4 Haberman 

Original  179 96.732025 180 96.732025 

DOM 179 96.732025 181 96.732025 

DSM 180 97.058823 181 97.058823 

Random1 178 97.058823 181 97.058823 

Random2 171 97.058823 181 97.058823 

Random3 176 97.058823 182 97.058823 

5 Chess 

Original  12 93.585732 131 100 

DOM 23 96.996246 62 100 

DSM 21 98.310387 58 100 

Random1 29 98.404259 64 100 

Random2 18 97.121399 59 100 

Random3 13 97.277847 63 100 

6 Zoo Original  10 100 40 100 
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DOM 10 100 40 100 

DSM 10 100 40 100 

Random1 10 100 40 100 

Random2 10 100 40 100 

Random3 11 100 40 100 

7 Post-Operative 

Original  35 93.333336 38 93.333336 

DOM 32 92.222221 43 92.222221 

DSM 34 93.333336 43 93.333336 

Random1 32 93.333336 42 93.333336 

Random2 32 93.333336 42 93.333336 

Random3 32 93.333336 42 93.333336 

8 Dermatology 

Original  28 100 52 100 

DOM 27 99.726776 53 100 

DSM 28 100 58 100 

Random1 27 100 52 100 

Random2 27 98.907104 54 100 

Random3 29 99.726776 49 100 

9 Heart 

Original  1 91.978607 23 95.721924 

DOM 1 91.978607 26 95.721924 

DSM 1 91.978607 26 95.721924 

Random1 1 91.978607 21 95.721924 

Random2 1 91.978607 21 95.721924 

Random3 1 91.978607 23 95.721924 

10 Monk1 

Original  10 99.768517 41 100 

DOM 10 99.768517 34 100 

DSM 10 99.768517 40 100 

Random1 10 99.768517 42 100 

Random2 10 99.768517 42 100 

Random3 10 99.768517 46 100 

11 Monk2 

Original  139 91.203705 273 100 

DOM 147 93.055557 286 100 

DSM 166 96.759262 260 100 

Random1 148 93.055557 262 100 

Random2 143 91.898148 263 100 

Random3 142 91.435188 263 100 

12 Balanc-scale Original  167 97.440002 303 100 
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DOM 175 98.400002 303 100 

DSM 170 97.760002 303 100 

Random1 162 96.480003 303 100 

Random2 162 96.959999 303 100 

Random3 160 96 303 100 

13 Contracpetive 

Original  670 94.704681 882 95.179909 

DOM 679 94.976242 844 95.315681 

DSM 685 95.112015 851 95.044128 

Random1 664 95.044128 903 95.247795 

Random2 674 94.908348 877 95.247795 

Random3 670 95.044128 890 95.179909 

14 king-rook-vs-king 

Original  18520 97.786936 20781 100 

DOM 18482 97.786936 21155 100 

DSM 18475 97.786936 21084 100 

Random1 18530 97.786936 22279 100 

Random2 18528 97.786936 22240 100 

Random3 18536 97.786936 22262 100 

 

Percentage difference% 

 

10.10078 13.84475 
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Table 4.17: The results obtained using 2 algorithms with Pruning required 90 %. 

 RULES F RULES3Plus 

No Data set Ordering No of Rules Classified  No of Rules Classified 

 

1 

 

Weather Problem 

Original  5 100 5 100 

DOM 5 100 6 100 

DSM 5 100 6 100 

Random1 5 100 5 100 

Random2 5 100 5 100 

Random3 6 100 5 100 

2 Tic-Tac-Toe 

Original  22 100 37 100 

DOM 22 100 33 100 

DSM 22 100 28 100 

Random1 24 100 34 100 

Random2 22 100 29 100 

Random3 23 100 29 100 

3 Car 

Original  246 100 250 100 

DOM 242 100 247 100 

DSM 246 100 248 100 

Random1 246 100 250 100 

Random2 248 100 247 100 

Random3 248 100 250 100 

4 Haberman 

Original  179 96 180 96 

DOM 179 97 181 96 

DSM 170 97 181 97 

Random1 178 97 181 97 

Random2 179 97 181 97 

Random3 182 97 182 97 

5 Chess 

Original  22 93.585 131 100 

DOM 23 96.996 62 100 

DSM 20 98.310 58 100 

Random1 29 98.404 64 100 

Random2 18 97.112 59 100 

Random3 23 97.277 63 100 

6 Zoo 

Original  10 100 40 100 

DOM 10 100 40 100 

DSM 10 100 40 100 

Random1 11 100 40 100 

Random2 11 100 40 100 

Random3 11 100 40 100 

7 Post-Operative 
Original  35 92.333 38 93.333 

DOM 32 93.345 43 92.221 
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DSM 30 93.333 43 93.33 

Random1 32 93.333 42 93.333 

Random2 32 93.333 42 93.333 

Random3 32 93.333 42 93.333 

8 Dermatology 

Original  29 100 52 100 

DOM 28 100 51 100 

DSM 28 100 50 100 

Random1 33 100 54 100 

Random2 29 99.726 54 100 

Random3 30 100 52 100 

9 Heart 

Original  1 91.978 23 95.721 

DOM 1 91.978 26 95.721 

DSM 1 91.978 26 95.721 

Random1 2 94.652 23 97.326 

Random2 2 94.652 23 97.326 

Random3 2 94.652 23 97.326 

10 Monk1 

Original  10 99.768517 41 100 

DOM 10 99.768517 34 100 

DSM 10 99.768517 40 100 

Random1 10 99.768517 44 100 

Random2 10 99.768517 44 100 

Random3 10 99.768517 41 100 

11 Monk2 

Original  36 76.15741 273 100 

DOM 29 74.305557 286 100 

DSM 44 77.314812 260 100 

Random1 26 70.601852 265 100 

Random2 38 74.537041 266 100 

Random3 43 76.851852 268 100 

12 Balanc-scale 

Original  198 99.040 303 100 

DOM 197 99.040 303 100 

DSM 195 99.040 303 100 

Random1 198 99.040 303 100 

Random2 198 99.040 303 100 

Random3 197 99.040 303 100 

13 Contracpetive 

Original  687 95.180 882 95.180 

DOM 688 95.441 844 95.31 

DSM 679 95.441 851 95.044 

Random1 673 95.180 888 95.180 

Random2 687 95.441 874 95.316 

Random3 688 95.180 870 95.180 

14 king-rook-vs-king 

Original  18308 99.889 20781 100 

DOM 19028 99.889 21155 100 

DSM 18002 99.889 20084 100 

Random1 19107 99.889 22279 100 
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Random2 19109 99.889 22240 100 

Random3 19002 99.889 22262 100 

 

Percentage difference% 

 

12.14003 10.31401 
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Table 4.18: The results obtained using 2 algorithms with pruning required 95 %. 

 RULES F RULES3Plus 

No Data set Ordering No of Rules Classified  No of Rules Classified 

 

1 

 

Weather Problem 

Original 
5 100 5 100 

DOM 
5 100 6 100 

DSM 
6 100 6 100 

Random1 
5 100 5 100 

Random2 
5 100 5 100 

Random3 
5 100 5 100 

2 Tic-Tac-Toe 

Original 
22 100 37 100 

DOM 
22 100 33 100 

DSM 
22 100 28 100 

Random1 
24 100 34 100 

Random2 
22 100 29 100 

Random3 
23 100 29 100 

3 Car 

Original  
246 100 250 100 

DOM 
246 100 247 100 

DSM 
246 100 248 100 

Random1 
246 100 251 100 

Random2 
246 100 250 100 

Random3 
246 100 246 100 

4 Haberman 

Original  
179 96.73203 180 96.73203 

DOM 
179 96.73203 181 96.73203 

DSM 
180 97.05882 181 97.05882 

Random1 
178 97.05882 181 97.05882 

Random2 
171 97.05882 181 97.05882 

Random3 
176 97.05882 182 97.05882 

5 Chess 

Original  
12 93.58573 131 100 

DOM 
23 96.99625 62 100 

DSM 
21 98.31039 58 100 
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Random1 
29 98.40426 64 100 

Random2 
18 97.1214 59 100 

Random3 
13 97.27785 63 100 

6 Zoo 

Original  
10 100 40 100 

DOM 
10 100 40 100 

DSM 
10 100 40 100 

Random1 
10 100 40 100 

Random2 
10 100 40 100 

Random3 
10 100 40 100 

7 Post-Operative 

Original  
35 93.33334 38 93.33334 

DOM 
32 92.22222 43 92.22222 

DSM 
34 93.33334 43 93.33334 

Random1 
32 93.33334 40 93.33334 

Random2 
34 92.22222 39 92.22222 

Random3 
34 92.22222 39 92.22222 

8 Dermatology 

Original  
29 100 52 100 

DOM 
28 100 53 100 

DSM 
30 100 58 100 

Random1 
33 100 50 100 

Random2 
28 100 52 100 

Random3 
32 100 50 100 

9 Heart 

Original  
13 94.11765 23 95.72192 

DOM 
14 94.6524 26 95.72192 

DSM 
12 94.6524 26 95.72192 

Random1 
15 97.3262 21 97.3262 

Random2 
15 97.3262 21 97.3262 

Random3 
3 91.97861 23 95.72192 

10 Monk1 

Original  
10 99.76852 41 100 

DOM 
10 99.76852 34 100 

DSM 
10 99.76852 40 100 

Random1 
10 99.76852 39 100 

Random2 
10 99.76852 39 100 
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Random3 
10 99.76852 39 100 

11 Monk2 

Original  
254 100 273 100 

DOM 
254 100 286 100 

DSM 
254 100 260 100 

Random1 
254 100 265 100 

Random2 
254 100 270 100 

Random3 
254 100 262 100 

12 Balanc-scale 

Original  
230 99.04 303 100 

DOM 
235 99.04 303 100 

DSM 
234 99.04 303 100 

Random1 
231 99.04 303 100 

Random2 
229 99.04 303 100 

Random3 
230 99.04 303 100 

13 Contracpetive 

Original  
677 95.04413 882 95.17991 

DOM 
686 95.17991 844 95.31568 

DSM 
688 95.04413 851 95.04413 

Random1 
679 95.04413 888 95.17991 

Random2 
673 95.17991 874 95.31568 

Random3 
687 95.04413 870 95.17991 

14 king-rook-vs-king 

Original  
19230 99.9893 20781 100 

DOM 
19228 99.9893 21155 100 

DSM 
19226 99.9893 21084 100 

Random1 
19238 99.9893 22374 100 

Random2 
19237 99.9893 22279 100 

Random3 
19246 99.9893 22290 100 

 

Percentage difference% 

 

14.08436 13.04984 
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Table 4.19: The results obtained using 2 algorithms with pruning required 100 %. 

 RULES F RULES3Plus 

No Data set Ordering No of Rules Classified  No of Rules Classified 

 

1 

 

Weather Problem 

Original  5 100 5 100 

DOM 5 100 6 100 

DSM 6 100 6 100 

Random1 5 100 5 100 

Random2 5 100 5 100 

Random3 5 100 5 100 

2 Tic-Tac-Toe 

Original  22 100 37 100 

DOM 22 100 33 100 

DSM 22 100 28 100 

Random1 24 100 34 100 

Random2 22 100 29 100 

Random3 23 100 29 100 

3 Car 

Original  246 100 250 100 

DOM 246 100 247 100 

DSM 246 100 245 100 

Random1 246 100 246 100 

Random2 246 100 247 100 

Random3 246 100 249 100 

4 Haberman 

Original  179 96.732025 180 96.732025 

DOM 173 97.058823 180 97.058823 

DSM 179 97.058823 177 96.732025 

Random1 178 97.058823 181 97.058823 

Random2 175 97.058823 182 97.058823 

Random3 175 97.058823 182 97.058823 

5 Chess 

Original  39 100 131 100 

DOM 40 100 95 100 

DSM 37 100 90 100 

Random1 38 100 58 100 

Random2 37 100 58 100 

Random3 40 100 63 100 

6 Zoo Original  37 100 58 100 
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DOM 40 100 63 100 

DSM 37 100 58 100 

Random1 40 100 63 100 

Random2 37 100 58 100 

Random3 40 100 63 100 

7 Post-Operative 

Original  36 93.333336 38 93.333336 

DOM 34 92.222221 43 92.222221 

DSM 32 93.333336 40 93.333336 

Random1 32 92.222221 39 92.222221 

Random2 32 92.222221 39 92.222221 

Random3 32 92.222221 39 92.222221 

8 Dermatology 

Original  29 100 52 100 

DOM 28 100 53 100 

DSM 28 100 52 100 

Random1 30 100 49 100 

Random2 31 100 52 100 

Random3 31 100 46 100 

9 Heart 

Original  19 95.721924 23 95.721924 

DOM 18 95.721924 26 95.721924 

DSM 18 95.721924 24 95.721924 

Random1 18 97.326202 25 97.326202 

Random2 18 97.326202 25 97.326202 

Random3 17 97.326202 21 97.326202 

10 Monk1 

Original  29 100 41 100 

DOM 29 100 34 100 

DSM 29 100 40 100 

Random1 29 100 41 100 

Random2 29 100 41 100 

Random3 29 100 41 100 

11 Monk2 

Original  254 100 273 100 

DOM 254 100 254 100 

DSM 254 100 250 100 

Random1 254 100 267 100 

Random2 254 100 265 100 

Random3 254 100 260 100 

12 Balanc-scale Original  303 100 303 100 
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DOM 303 100 303 100 

DSM 303 100 303 100 

Random1 303 100 303 100 

Random2 303 100 303 100 

Random3 303 100 303 100 

13 Contracpetive 

Original  686 95.179909 882 95.179909 

DOM 695 95.315681 844 95.315681 

DSM 684 95.315681 841 95.044128 

Random1 679 94.908348 883 94.908348 

Random2 686 95.315681 873 95.315681 

Random3 685 95.247795 894 95.247795 

14 king-rook-vs-king 

Original  19241 100 20781 100 

DOM 19243 100 21155 100 

DSM 19238 100 21064 100 

Random1 19247 100 22310 100 

Random2 19260 100 22306 100 

Random3 19252 100 22278 100 

 

Percentage difference% 

 

6.160704 13.30783 
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4.10 Summary 

The order of input training examples in an inductive learning algorithm can have a significant 

impact on the overall performance such as the number of rules, compactness of rules, 

accuracy and time consumption. For these reasons, a method of ordering the training data set 

during the rule learning process was developed.  

The new method overcomes the problem of generating compact rules when training the data 

set rather than generating a lower number of rules from the initial example set. This compact 

rule must always be at the beginning of the training procedure. This data pre-processing DSM 

comprises three tasks: (i) changing the order of training objects, (ii) changing the order of 

training attributes, and (iii) changing the order of the training data set after each rule is 

produced. 

The result obtained after applying the new DSM method was superior to that produced by the 

original inductive learning algorithm of the RULES family. 
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Chapter 5: Clustering Techniques for Input Data 

Selection. 

 

5.1 Preliminary 

An automatic technique for knowledge acquisition is known as inductive learning. It involves 

the extraction of knowledge in the form of IF–THEN rules (or an equivalent decision tree). A 

set of examples is normally required as an input by an inductive learning program. Every 

example is defined by the values of a number of attributes and the class to which it belongs. 

A number of inductive learning programs have been developed. Some of the more well-

known programs include: ID3 (Quinlan, 1983), a divide-and-conquer program; and AQ 

(Michalski, 1990), a program based on the simple inductive learning algorithms belonging to 

the RULES (RULE Extraction System) family developed by Pham and Aksoy (Pham and 

Aksoy, 1993; Pham and Aksoy, 1995). 

A disadvantage of the RULES Family of algorithms is that they generalise the power of the 

rules formulated during the training process, which then affects the presentation order of the 

patterns utilised in the process. Random presentation orders of the training data can give forth 

different outcomes, which may be inaccurate or inefficient. 

In other classification methods, such as Simpson’s Fuzzy Min-Max Neural Networks 

(Simpson, 1992), the presentation order of the training patterns has also proved to be a 

deficiency. To rectify this issue two new training algorithms have been suggested for this 

type of neural network by Rizzi et al. (2002). Generally, a number of ART-type architectures 

have been subject to this deficiency (Carpenter et al., 1992). 
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A data grouping method (DGM) is proposed in this chapter as a means to minimise the 

variability of the generalisation of the RULES family algorithms owing to different 

presentation orders of the data in the training process. The DGM is based on a primary 

clustering stage followed by the ranking of each data point in each cluster. This is achieved 

by a particular density measure that takes into account the distribution of the patterns in the 

pattern space, in the same manner as the rule sets created by the RULES family algorithms. 

This chapter has been structures as follows:  

Section 5.2: The clustering techniques used by the DGM are specified. 

Section 5.3: The density measure used to rank the data is presented.  

Section 5.4: The Data Grouping Method (DGM) is introduced. 

Section 5.5: Experiments are applied. 

Section 5.6: Results and discussions of the DGM are presented. 

Section 5.7: A summary is given. 
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5.2 Clustering Techniques 

According to Teknomo (2007), clustering is the division of data into groups. or clusters, of 

similar objects. It was further said that if the data is represented by a small number of clusters 

then fine detail may be lost but simplification can be attained. Kanugo et al. (2002) said that 

different clustering techniques can be used to group the data and represent it by its clusters. 

These techniques have been discussed in detail in Chapter 2 of this thesis. Figure 5.1 details 

the clustering technique that has been used in this work. 

 

 

 

 

 

 

 

Figure 5.1: Data clustering as a pre-processing method. 

  

2.2.1 K-means clustering Algorithm 

The K-means clustering algorithm searches for a way to divide a set of data into sub-sets so 

that points within a given subset bear a degree of similarity to one another whilst being 

markedly different from members of other subsets (Teknomo, 2007; Jang, 1997). Such 

subsets are generally known as clusters. 
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Kanugo et al. (2002) said that the K-means algorithm is the most common and effective tool 

for clustering that is used in various scientific applications. According to Wagstaff et al. 

(2001), the ‘k’ in the k-means algorithm represents the number of clusters in a data set and 

‘means’ represents the average location of all the elements of that specific cluster. This 

algorithm is employed to find patterns similar to a certain cluster, and is regarded as a quick 

and effective method. Teknomo (2007) said that the square error standard is used by the k-

means algorithm for reassessment of a sample from one cluster to another cluster, which 

further helps in decreasing the total square errors by the users. Kanugo et al. (2002) stated 

that this algorithm is simple and easy to execute and its results are effective compared to 

other methods. According to Teknomo (2007) there are several different methods that can be 

used for calculation of initial points of data.  These include: Corner, Bins, Centroid, Spread 

and PCA. explained the corner method as one in which all the values of a data set are 

represented by -1 or 1. Teknomo (2007) further said that this method is not effective, as the 

initial points of data lies on the boundaries of data. According to Teknomo (2007), the bins 

method covers entire data sets and picks out random points of data from a bit after dividing 

the data space into bins. Teknomo (2007) explained the centroid method as a method that 

selects all the starting clusters that are close to the centroid of the data sets. Clusters are 

calculated by the accumulation of random perturbation into the centroid of the data set that is 

being clustered. In the spread method the centres of clusters are randomly distributed in order 

to cover the intact space. According to Wagstaff et al. (2001), PCA is a method that projects 

data points into the space of principle components. In this method the centre of a cluster is 

calculated by determining the clusters obtained through one dimensional space. 
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Figure 5.2: the results of the k-means algorithm for a two-cluster data set with (a) k = 1, (b) k 

= 2, (c) k = 3, where (*) denotes the locations of the converged the seed example (SE) or the 

cluster centres. 

 

Kanugo et al. (2002) explained that the name of this algorithm represents every single k 

cluster C in terms of a mean value, for example a weighted average of its data points, also 

known as the centroid. Kanugo et al. (2002) further explained that this algorithm has a good 

sense of numerical attributes both statistically and geometrically. The number of 

discrepancies between a cluster’s centroid and its points can be expressed by the objective 

function (appropriate distance). The objective function may be based on the L
2
 norm. The 

number of squared errors between centroids and their points is equal to the total variance in 

intra clusters. 

According to Teknomo (2007), the sum of squared errors in a mixture of models can be 

rationalised by a negative of log likelihood, a technique widely used in statistics. Hence the 

k-means algorithm can be derived by employing a probabilistic approach. Teknomo (2007) 

said that by using standard cluster deviation the individual errors can be normalised by simple 

modification in the clusters. Kanugo et al. (2002) stated that there are many algebraic 
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properties of an L² norm which is based on the objective function, as it corresponds to 

pairwise errors. Kanugo et al. (2002) further explained that the L² norm corresponds to a 

pairwise error with a difference between the inter cluster and the total data variance. Hence 

the cluster can be separated by the tightness of cluster. The k-mean algorithm can be 

summarised as shown below:  

 

 

 

 

 

 

Figure 5.3: K-means clustering algorithm. 

 

By this process, the K-means algorithm improves its results by optimising the centres of the 

clusters. The K-means clustering algorithm used in this chapter (Tou and Gonzalez, 1974) is 

a method for finding K vectors µ𝑗( 𝑗 = 1,2, … . . , 𝐾) that represent an entire data set. The data 

is considered to be partitioned into K clusters, with each cluster represented by its mean 

vector and each data instance assigned to the cluster with the closest vector. 

The K-means algorithm works iteratively. At each stage, the N data examples  𝐴 = {𝑥1, . , 𝑥𝑁} 

are partitioned into K disjoint clusters 𝐴𝑗, each containing 𝑁𝑗  instances. A cost function (or an 

objective function) of dissimilarity (or distance) is defined as 

 

𝐽 = ∑ 𝐽𝑗
𝐾
𝑗=1 = ∑ (∑   ||  𝑥𝑖 − µ𝑗   ||

2

𝑥𝑖 ∊ 𝐴𝑗
)𝐾

𝑗=1 ,   (5.1) 

 

Step 1: Choose K arbitrary points for K cluster centres. 

Step 2: Assign each point in the training set to the closest cluster and update the centre 

of the cluster. 

Step 3: If the cluster set does not move the algorithm stops. Else go back to step 2. 
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where µjis the centre of the jth cluster, given by the mean of the data instances belonging to 

the cluster: 

 

µ𝑗 =
1

𝑁𝑗
 (∑ 𝑥𝑖 𝑥𝑖 ∊ 𝐴𝑗

).      (5.2) 

 

The initial partition of the data is random. The following two steps are then iterated until 

there is no further change to the cost function, J. 

1. The mean vector µ𝑗for each cluster is calculated using equation (5.2). 

2. Rearrange the clusters: each data instance 𝑥𝑖 is assigned to the jth new cluster if 𝑥𝑖 is closer 

to µ𝑗  than to other mean vectors.

 

5.3 Density Measure 

Once the input data is clustered, it is necessary to rank the clusters from the most dense to the 

least dense. In this manner the RULES algorithm yields more accurate and compact rule sets 

as it utilises more representative data in its training process. A density measure is required to 

rank the data with the following expression: 

      

𝐷𝑗 = ∑ 𝑑𝑗(𝑥𝑖)
𝑀
𝑖=1 ,                          (5.3) 

 

Where Dj is the jth pattern 𝑥𝑗 density value,  𝑥𝑖 (𝑖 = 1, … . , 𝑀) is the ith pattern belonging to 

the same cluster as 𝑥𝑗 , and 𝑑𝑗( 𝑥𝑖 ) is a distance function (dissimilarity) between 𝑥𝑗 and 𝑥𝑖 . 
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When the Euclidean distance is chosen as the dissimilarity measure, the densest pattern for a 

given cluster will be the pattern that obtains the lowest value for D. 

Due to the fact that the RULES family algorithms generate IF-THEN rules to classify data, 

the partitioning of the input data space is achieved by hyperplanes which are parallel to the 

main reference system. In many cases these hyperplanes intersect to form compact 

hyperrectangles rule sets. Given that the rules cover the patterns with hyperrectangles it is 

desirable to measure a pattern’s density level amongst the other patterns in the same cluster 

by also following a rectangular distribution. The Euclidean distance is not used as the 

dissimilarity function in this case, since the Euclidean distance describes a circular boundary, 

which is not how the patterns are classified by the RULES family of algorithms. 

To be able to measure the similarity between patterns, a fuzzy membership function is 

proposed. This membership function is a special case of the Fuzzy Hyperbox membership 

function used in the General Fuzzy Min-Max (GFMM) Neural Network for clustering and 

classification tasks presented by Gabrys and Bargiela (2000). Following Simpson (1993), let 

the jth  hyperbox fuzzy set, Bj  , be defined by the ordered set: 

 

Bj = {Ah, Vj, Wj, bj(Ah, Vj, Wj)}.  (5.4) 

 

For all ℎ = (1, … . , 𝑚), where  𝐴ℎ = (𝑎ℎ1, 𝑎ℎ2, … . . , 𝑎ℎ𝑛) ∊ 𝐼𝑛  (n -dimensional unit cube) is 

the h
th
 pattern in the data set, Vj = {Vj1, Vj2, … . . , Vjn)  is the minimum point of the jth

 
  

hyperbox point, Wj = {Wj1, Wj2, … . . , Wjn), and the membership function for the jth 

hyperbox, which is 0 ≤  bj( Ah, Vj, Wj) ≤ 1. 

The membership function measures the degree to which the h
th

 input pattern, 𝐴ℎ, falls within 

the hyperbox formed by the min point, 𝑉𝑗, and the max point, 𝑊𝑗. Gabrys and Bargiela (2000) 

defined the membership function 𝑏𝑗 as: 
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𝑏𝑗( 𝐴ℎ , 𝑉𝑗 , 𝑊𝑗) = 𝑚𝑖𝑛𝑖=1…..𝑛(𝑚𝑖𝑛 (⌊1 − 𝑓(𝑎ℎ𝑖 −  𝑤𝑗𝑖 , 𝛾)⌋, ⌊1 − 𝑓(𝑣𝑗𝑖 −  𝑎ℎ𝑖,𝛾⌋)),  (5.5) 

 

Where  f is the two-parameter ramp threshold function: 

 

𝑓(𝑥, 𝛾) = {

1       𝑖𝑓          𝑥𝛾 > 1
𝑥𝛾     𝑖𝑓   0 ≤ 𝑥𝛾 ≤ 1
𝑜       𝑖𝑓             𝑥𝛾 < 0

       (5.6) 

 

The parameter is a sensitivity parameter that regulates how fast the membership values 

decrease when an input pattern is separated from the hyperbox core. When is large, the 

fuzzy set becomes more crisp, and when is small the fuzzy set becomes less crisp. 

 

 

 

Proposed Fuzzy Membership Function: 

 

Let one consider𝑉𝑗 = 𝑊𝑗 =  𝐴𝑗 , where the jth input pattern, 𝐴𝑗 , from Equation 5.5 can be 

rewritten as:  

 

𝑏𝑗( 𝐴ℎ , 𝐴𝑗, ) = 𝑚𝑖𝑛𝑖=1…..𝑛(1 − 𝑓(|𝑎ℎ𝑖 −  𝑎𝑗𝑖 |, 𝛾))     (5.7) 

 

Now,  dj = bj in Equation 5.5 is a membership function measuring the degree of similarity 

between two patterns, thus the densest pattern for a given cluster will be the pattern that 

obtains the highest value for D. 

A two-dimensional example is shown in Figure 5.4, where it is clear that the membership 

values decrease steadily with increasing distance from the pattern being analysed, 𝐴ℎ =
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[0.5, 0.5]. The grayscale in Figure 5.4 represents the membership values, where values from 

1 to 0 are symbolised by the grey tones ranging from white to black respectively. 

 

 

Figure 5.4: 2-dimentional example of membership function used in the density function. 
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5.4 Data grouping method (DGM) 

Figure 5.5 illustrates the full scheme of the data grouping method (DGM) suggested in this 

chapter. The initial stage is to create clusters with the training data set as shown in Figure 

5.1utilising the K-means algorithm. The number of clusters is initially set to the number of 

classes for a given data set. This number is acquired by setting a suitable value of K in the K-

means algorithm. However, as will be shown later in section 5.6 Results and Discussions, it is 

more efficient to examine a higher number of clusters than the number of classes. Once the 

clusters are generated, it is imperative to rank each data point from the most dense to the least 

dense in each cluster. To achieve this, the density measure in Equation 5.3 is deployed with 

the suggested fuzzy membership function of Equation 5.7. The following phase is the data 

selection stage where one data point is selected from each cluster (taking into account its 

ranking). In the end an ordered data set is acquired and used for the training process in one of 

the RULES family algorithms. To ascertain the RULES family generalisation efficiency, a 

separate data set is used. This is known as the test set, and has been kept independent from 

the training process to enable measurement of the algorithm’s classification accuracy 

percentage. 
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Figure 5.5: The proposed enhancement method for the RULES family algorithm. 
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5.5 Experiments 

To measure how sensitive the rule generation process (training stage) is to different orders of 

pattern presentations, 30 randomly ordered presentations of the training data sets were used in 

the RULES family algorithms and compared to the performance obtained by the DGM. The 

RULES family algorithms that were used in this experiment were RULES 3 Plus (Pham and 

Dimov, 1997), RULES-5 (Pham, Bigot and Dimov, 2003) and RULES-5 Plus (Pham, Bigot 

and Dimov, 2004). 

The DGM proposed in this work was tested using 10 benchmark data sets (breast cancer, 

haberman, ionosphere, iris, wine, glass, liver, zoo, pima indian’s diabetes, tae) from the UCI 

Machine Learning Repository (Blake and Merz, 1998). A list of these data sets describing the 

number of attributes, classes and partitioning of the training and test sets is shown in Table 

5.1. 

 

 

 

 

 

 

 

 

 

Table 5.1: Description of data sets used to train and test the DGM 

 

 

 

No 

 

Data set Attributes Classes 
Training 

set   
Test set   Total   

1 Breast Cancer 30 02 313 256 569 

2 Haberman 03 02 169 137 306 

3 Ionosphere 34 02 193 158 351 

4 Iris 4 03 80 70 150 

5 Wine 13 03 98 80 178 

6 Glass 09 06 118 96 214 

7 Liver 06 02 190 155 345 

8 Zoo 16 07 56 45 101 

9 Pima 08 02 422 346 768 

10 Tae 05 03 84 67 151 
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5.6 Results and Discussions 

The results of the experiments carried out on the data sets are shown in Tables 5.2 and 5.3 for 

the RULES-3 Plus algorithm, Tables 5.4 and 5.5 for the RULES-5 algorithm, and Tables 5.6 

and 5.7 for the RULES-5 Plus algorithm. For each of the RULES family algorithms used, two 

tables presenting the DGM performance versus the performance of 30 random presentation 

orders are compared. For example, for RULES-3 Plus, Table 5.2 shows on the left side the 

worst classification percentage, the best classification percentage, and the average 

classification percentage using the test set for 30 random presentation orders of the training 

data. On the right side of the table is the classification performance obtained when the DGM 

was used on the training patterns, results using K-means (DGMK-means) clustering, as well 

as the number of clusters formed by K-means clustering technique. Table 5.3 shows the 

minimum, maximum, and most frequent rule that was obtained by the 30 random 

presentation orders of the training sets, as well as the number of rules generated by ordered 

data using the DGM. 

Table 5.2 shows that for RULES-3 Plus, the performance obtained by DGMK-means 

algorithms is higher than the average value of the classification percentage of 30 random 

presentation orders of the training set. In particular, it can be seen that for the haberman, 

ionosphere, iris, wine, liver, zoo and tae data sets, the DGMK-means results obtain the same 

value as the best case found among the random presentation orders. As see in Figure B1: 

Classification performance in the RULES-3 Plus with random and order presentation. 

Analysing Table 5.4 reveals that once again the DGMK-means, in this case of RULES-5, 

obtained a higher performance than the average value of the 30 random presentation orders of 

the training sets (and equal performance in the zoo and the iris data sets which did not present 

any variations). It is also of note that the DGMK-means with the breast cancer, haberman, 
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ionosphere, wine, glass, liver, pima Indians and the tae data set, a performance higher was 

obtained than for the best case found by the 30 random presentation orders. As see in Figure 

B4: Classification performance in the RULES-5 with random and order presentation of the 

data 

From Tables 5.2, 5.4 and 5.6, we see that the number of clusters used by the DGM is higher 

than the number of classes for each data set analysed. The reason for this is that better results 

were obtained by considering a higher number of clusters than the number of classes in each 

case. Not only in the classification performance does the random presentation of the training 

pattern generate significant variations in the results, but it is also clear from Tables 5.3, 5.5 

and 5.7 that the number of rules is strongly affected as well. 

In general terms, by studying all the tables, it was found that the random presentation order of 

the training patterns generates a variation in the classification percentage of approximately 6 

% in the test set and approximately 18 % in the number of rules formed. 
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Table 5.2: Classification performance in the RULES-3 Plus with random and ordered 

presentation. 

 

 

No 

 

    Data set 
Worst case 

% 

Best case 

% 
Average % K   DGMk-means %  

1 BreastCancer 93.75 95.31 94.66 3 94.92 

2 Haberman 48.91 75.18 63.33 3 75.18 

3 Ionosphere 87.97 91.14 89.75 3 91.18 

4 Iris 94.29 95.71 95.57 4 95.71 

5 Wine 91.25 96.25 95.00 3 96.75 

6 Glass 56.25 59.38 57.92 12 60.42 

7 Liver 58.06 60.65 59.23 7 60.60 

8 Zoo 86.67 86.67 86.67 7 86.67 

9 Pima 71.68 73.41 72.60 7 73.12 

10 Tae 46.27 47.76 46.87 3 47.76 
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Table 5.3: Number of rules formed by RULES-3 Plus with random and ordered presentation 

of the data. 

 

 

No 

 

Data set Min-rules Max-rules 
Frequent 

-rules 

DGMK-means 

-rules 

1 BreastCancer 36 44 42 43 

2 Haberman 43 43 43 43 

3 Ionosphere 41 48 45 41 

4 Iris 11 13 12 11 

5 Wine 22 27 24 25 

6 Glass 51 54 53 52 

7 Liver 80 84 84 80 

8 Zoo 7 9 8 8 

9 Pima 183 193 186 185 

10 Tae 33 34 33 33 
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Table 5.4: Classification performance of the RULES-5 algorithm with random and ordered 

presentation of the data. 

 

 

No 

 

Data Set 
Worst case 

% 
Best case % 

Average 

% 
K   

DGMk-means  

% 

1 BreastCancer 92.58 96.48 94.60 6 97.27 

2 Haberman 58.39 75.18 71.82 4 74.45 

3 Ionosphere 89.87 93.67 91.65 5 94.30 

4 Iris 95.71 95.71 95.71 3 95.71 

5 Wine 87.45 97.50 92.54 9 98.75 

6 Glass 38.54 61.48 46.98 11 50.00 

7 Liver 63.87 72.26 67.10 4 70.32 

8 Zoo 88.89 88.89 88.89 7 88.89 

9 Pima 73.12 77.17 74.94 4 77.75 

10 Tae 38.80 47.76 43.43 3 46.27 
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Table 5.5: Number of rules formed by RULES-5 with random and order presentation of the 

data. 

 

 

No 

 

Data Set Min-rules Max-rules Frequent-rules 
DGMK-means 

-rules   

1 BreastCancer 12 20 19 17 

2 Haberman 45 58 50 50 

3 Ionosphere 17 23 18 18 

4 Iris 6 10 10 7 

5 Wine 7 14 10 9 

6 Glass 29 35 33 35 

7 Liver 40 55 48 46 

8 Zoo 7 9 8 9 

9 Pima 87 120 98 86 

10 Tae 24 34 24 23 
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Table 5.6: Classification performances in the RULES-5 Plus with random and ordered 

presentation of the data. 

 

 

No 

 

Data set 
Worst 

case% 
Best case% 

Average 

% 
K 

DGMk-means 

% 

1 BreastCancer 91.80 96.09 94.13 4 94.53 

2 Haberman 60.58 74.45 71.33 3 73.72 

3 Ionosphere 87.34 94.94 92.03 5 94.30 

4 Iris 94.29 95.71 95.33 5 95.71 

5 Wine 86.25 97.50 92.54 9 98.75 

6 Glass 34.38 56.25 45.10 12 55.21 

7 Liver 64.52 72.26 67.48 7 70.32 

8 Zoo 88.89 88.89 88.89 7 88.89 

9 Pima 74.57 79.48 76.76 4 79.19 

10 Tae 40.30 74.76 42.84 3 46.27 
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Table 5.7: Number of rules formed by RULES-5 Plus with random and ordered presentation 

of the data. 

 

 
No 

 
Data Set min-rules max-rules 

frequent 

-rules 

DGMK-means 

-rules   

1 BreastCancer 3 14 7 10 

2 Haberman 24 37 32 28 

3 Ionosphere 8 18 9 11 

4 Iris 3 6 5 4 

5 Wine 6 10 7 7 

6 Glass 24 32 28 30 

7 Liver 38 47 43 40 

8 Zoo 7 8 8 8 

9 Pima 52 61 55 61 

10 Tae 22 24 24 22 
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5.7 Summary  

This chapter has presented a method for the selection of optimum examples for representing a 

data set. Clustering algorithm is presented in this chapter and one technique in particular, 

based on neural network clustering, were described. This technique groups together similar 

examples prior to selecting examples from each cluster. The DGM was tested with ten data 

sets where the performance was greater than the average classification percentage achieved 

by thirty random presentation orders of the training set.  
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Chapter 6: Conclusions and Future Work 

During the initial phase of this study, a review was conducted covering the basic topics in 

machine learning, data mining and inductive learning algorithms. The review identified a 

number of areas that required further investigation and prompted the research presented in 

this thesis. This chapter ends the thesis by summarising the main conclusions of the study and 

proposing areas that require further exploration. 

 

6.1 Conclusions 

This section will re-examine the objectives stated in Chapter 1 to show that they have all been 

met. 

The main reason for developing the data ordering methods presented in this thesis is to 

reduce the variation in the generalisation performance that can be caused by ordering the 

training pattern presentations differently. This work has focused on the pre-processing of 

data, and in particular the pre-processing steps used in the RULES family of learning 

algorithms. The data ordering method (DOM) works by sorting the examples before the rule 

is introduced into the inductive learning algorithm. It gives priority to the example with the 

highest information content. The method consists of three main steps: (i) the entropy for each 

attribute value is calculated; (ii) the entropy value for each example is calculated by adding 

all the entropy values of the associated attributes; (iii) examples are reordered according to 

their entropies. In general, the results obtained by the data ordering method gave smaller rule 

sets compared to the original ordering method and three random ordering methods 

(Objective 1). The proposed technique succeeded in improving the performance of reducing 

the number of rules created by the three algorithms. However in terms of the processing time, 
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an additional computational effort was required making the method slightly more time 

consuming.  

The fundamental rationale for the Data Sorting Method is the fact that a possible cause of 

variation is the significance of outlier data and/or data with only a minimum number of 

neighbours in the pattern’s input space. This occurs when the data is presented in the initial 

phase of the rule forming process, instead of in the final phase, causing the inductive 

algorithm to generate less compact and less accurate rule sets. For these reasons, a method of 

ordering the training data set during the rule learning process was developed; this data pre-

processing DSM comprises three tasks: (i) changing the order of training objects, (ii) 

changing the order of training attributes, and (iii) changing the order of the training data set 

after each rule is produced (Objective 2). The performance of the proposed algorithm was 

better than all other orders. The ordering method was more efficient in terms of 

computational effort and the training time was also reduced significantly. 

This work draws attention to two significant points that are deemed to be the most effective at 

measuring the quality of the algorithm. These two points include improvements in the 

number of rules created and in the classification accuracy. These terms have been used by 

Pham and Dimov (1997b) to show the quality of the RULES family algorithms. 

Clustering was introduced in order to minimise variability in the generalisation, and the 

number of rules generated by the inductive learning algorithms. From the RULES family, a 

new data grouping method known as DGM has been proposed. The DGM is comprised of 

three main steps. The initial step entails clustering with the training patterns. In this case the 

clustering technique known as the K-means algorithm and was utilised. The second step 

ranks each data point from each cluster based on its level of importance, such as its density 

value. At this stage a new density function has been suggested which considers the 
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rectangular distribution in which the algorithms in the RULES family classify patterns. The 

third step includes the selection of data from each cluster. The pattern with the maximum 

density value is selected in each iteration until all patterns are exhausted. The RULES-3 Plus 

and RULES-5 Plus algorithms from the RULES family were utilised (Objective 3). This 

method gave good performance compared to the case which had no pre-processing. In a 

number of cases the performance was greater than the average classification percentage 

achieved by thirty random presentation orders of the training set. In other cases, the DGM 

outperformed the best classification percentage found in the 30 random presentation orders, 

and in some cases it equalled the best case.  

 

6.2 Future Research Directions 

As illustrated in Chapter 2, data mining is more significant than simply applying data 

modelling algorithms to data. It is a crucial step in getting the data ready by using various 

data pre-processing techniques. These include feature selection and clustering techniques. 

Unfortunately, a lack of integrated tools and methodologies to perform these tasks still exists. 

It is therefore important that data pre-processing techniques exploit the capabilities of the 

underlying database management system, data warehouse and data engineering.  

 In Chapter 3 and Chapter 4, only the size of the models (i.e. the number of rules 

extracted) is used as a performance indicator. Future work will include validation of 

the created models using a separate test data set. 

 

 In Chapter 3 and Chapter 4, missing and numeric (as opposed to nominal) attributes 

are not handled. Applying the proposed data ordering method to domains that involve 

missing and numeric attribute values will form future work. 
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 In Chapter 3 and Chapter 4, feature selection draws particular attention to the 

selection of beneficial features from a set of original available features. Real data 

mining applications require the construction of new features from available features. 

Currently, there are no automatic or even semi-automatic tools for carrying out this 

transformation. To address this issue, tools from the fields of statistics and machine 

learning should be combined with data visualisation and domain knowledge. 

 

 The discretisation procedure deployed in the RULES family of algorithms is 

characterised by extreme simplicity, and as such the procedure is not applicable to all 

values. New discretisation procedures are required to speed up the learning process by 

permitting various quantisation levels for distinct numerical attributes incorporating 

adaptive discretisation. 

 

 The current version of the RULES family algorithm, referred to as Rule Pruning, is 

easy to use but it limits the number of attributes and examples that can be utilised. 

The latest version of RULES family, which is able to deal with any kind of data 

without restrictions, should substantially maximise the rule-generating facility. 

Moreover, working solely with nominal values unambiguously restricts the 

application for real world data. The method should therefore be stretched so that it can 

deal with both numerical attributes and nominal values. 

 

 The measure deployed in the RULES family is complicated and does not yield high 

levels of accuracy. This measure plays a significant role in rules, and as such it is 
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essential that a measure is developed which is simple, easy to comprehend and 

precisely associated with rule accuracy. 

 

 Future research will analyse in more detail the ideal number of clusters deployed by 

the clustering phase of the DGM, together with an exploration of other data selection 

procedures once the data in each cluster is ranked. Moreover, the application of this 

method should be considered in other classification systems which are sensitive to the 

presentation order of the training patterns. 

 

 The methods must be extended for handling nominal attribute values as well as 

numerical attribute values. 

 

 The clustering technique used is unable to deal with the difficulty of unknown 

attribute values frequently encountered in the real world. A more suitable clustering 

technique capable of handling unknown attributes is needed. 

 

 In Chapter 5, cross-validation could be used instead of the random splitting of 

examples between training and testing when running experiments. 
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APPENDIX A 

A PSEUDO-CODE OF THE RULES FAMILY ALGORITHM 

 

Figure A1: Incremental induction procedure in RULES-4, Pham and Dimov (1997a). 
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Figure A2: RULES-5 Plus forming procedure (Bigot 2002). 
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APPENDIX B 

 

 

 

Figure B1: Classification performance in the RULES-3 Plus with random and order 

presentation. 
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Figure B2: Number of rules formed by RULES-3 Plus with random and order presentation of 

the data. 
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Figure B3: Number of rules formed by RULES-5 with random and order presentation of the 

data. 
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Figure B4: Classification performance in the RULES-5 with random and order presentation 

of the data. 
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Figure B5: Classification performances in the RULES-5 Plus with random and order 

presentation of the data. 
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Figure B6: Number of rules formed by RULES-5 Plus with random and order presentation of 

the data. 
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