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Abstract

To maintain the quality of a product or to improve the reliability of a process, all indus-

tries need to monitor several parameters about their production process. Control charts

are some visualization tools for monitoring processes statistically. They have been in

use in the manufacturing processes for a quite long time, but all of them were based

on either a single characteristic of the process or they used several different charts for

different characteristics ignoring the dependence between the characteristics. With the

ease of computing power and advances in technology, it is now easier to monitor several

characteristics at the same time and to include their interdependencies as well. In this

work, we propose a few control charting schemes to monitor several characteristics of a

process at the same time and to detect when it goes out of control. Our objective is to

reduce the false alarms (the scheme detects a problem when actually there is none) as

well as to quickly detect the correct out-of-control situation. The novelty of the proposed

schemes are that they do not depend on commonly assumed Normal distribution of the

process variables and is applicable for a much wider range of data distributions.

At first, we make a detailed literature review of some univariate and multivariate con-

trol charts. We perform a comparison study of the commonly used multivariate control

charts when the underlying distribution is not normal and show that they perform poorly

giving a very high false alarm rate. Next we propose some nonparametric multivariate

control charts based on the lengths of the multivariate rank vectors. The ideas are sim-
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ilar to the ones proposed by Liu (1995), however, we show that our proposed methods

are computationally simpler in any dimension and we study their performance through

simulations and real data examples.

We propose some more multivariate versions of Shewhert type, CUSUM and EWMA

control charts based on spatial sign vectors and signed rank vectors. We briefly discuss

the issue of affine invariance and study the performance of the proposed charts through

simulations. We also discuss several design parameters in the construction of these charts.

None of the proposed charts depend on the assumption of underlying distribution or

estimation of distributional parameters.
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Chapter 1

Introduction

1.1 Statistical Quality Control

Today maintaining quality of a product or service is paramount to any organisation pro-

viding that service or making that product and to achieve that goal statistical process

control procedures have a very important role to play. Some of these procedures continu-

ously monitor a process characteristic and produces some out of control signal when the

variability in the process goes beyond the acceptable limits. One of the most widely used

procedure is a control chart, which was first proposed by Dr. Walter Shewhart in 1924.

Control charts gained popularity during the World War II to maintain the quality of am-

munitions and other war related products. After that, its uses declined for a while. But

these procedures again gained popularity in Japan and other countries in developing new

technologies, and by the new millennium, everyone realised the importance of controlling

the quality of processes using statistical techniques.

There are two main causes of variation in a process. The natural factors in the

process which occur randomly are referred to as the common causes of variation. The

common causes are considered as chance causes and are unavoidable. The special cause of

variation considered as an assignable and identified cause of variation. The special causes

1



of variation should be discarded. The process that is operating with only common causes

of variation present is said to be in statistical control. The special or abnormal cause of

variability may sometimes be present in the output of a process. Some of the sources of

this abnormal variation in the process are: improperly adjusted machines, operator errors

and defective raw materials Kruger and Xie (2012). Control charts are visual tools which

aid to detect when the processes are out-of-control. We may describe here an example

from Montgomery (2009), which deals with the manufacturing of automotive engine piston

rings, where the outside diameter of the ring is an important quality characteristic. The

process can be controlled at the mean ring diameter of 74 mm, and standard deviation of

0.01 mm. A basic control chart for average ring diameter provides a central line at 74mm

and the upper and lower control limits at 74.0135 and 73.9865 respectively. At every half

hour a random sample of 5 rings is taken. The average ring diameter of the sample, X̄ is

computed and plotted on the chart. If all of the points fall within the control limits, we

can say that the process is in statistical control. However, if an observation falls outside

the control limits, we say that the process is out of control.

The univariate statistical process control charts can be defined as a monitor for one

variable or quality characteristic of a process. It is important to detect the shifts in the

location parameter of the univariate quality characteristic as quickly as possible. Some of

the most popular univariate control charts for monitoring means of the process variable

are univariate Shewhart X̄-charts, the exponentially weighted moving average (EWMA)

charts and the cumulative sum (CUSUM) control charts Ryan (1989). The Shewhart

chart can be quick to detect large shifts in the process mean. However, the EWMA and

CUSUM control charts are more effective in detecting small shifts in the process mean

than Shewhart control chart.

The main feature of any control chart is that, it contains a central line that represent

the target value and two other critical values, namely, the upper control limit (UCL) and

2



the lower control limit(LCL). These control limits are chosen to determine if all of the

sample points are within the lower and upper control limits and the process will be in-

control. Figure 1.1 is a simple example of a control chart where the process is in-control.

On the other hand, if a few of the sample points are plotted outside the UCL or LCL, it

means that the process is out of control and there may be some special cause of variation.

As an example, the control chart in Figure 1.2 shows that the process is moving away

from its in-control state near time point 15 but then going back to the in-control state

near time point 16. This suggests that we need to investigate and find a corrective action.
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Figure 1.1: Control chart – the process is in control
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Figure 1.2: Control chart – the process is out of control

1.1.1 Some Definitions

Here we define some of the terminologies which will used through out this thesis.

Definition 1.1.1 A Process: A process is a way to take input(materials) from a provider,

transform them and obtain output (products) and offer this to a customer. The process is

involved in production and quality control relevant areas.

Definition 1.1.2 Signal: The signal indicate the processes have most likely changed and

there is a shift in the process characteristic which is being measured.
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Definition 1.1.3 In control: The process is said to be in control if the variation in the

process characteristic is only due to common chance causes.

Definition 1.1.4 Out-of-control: The process is said to be out of control if it is not

producing according to specifications and the variations are due to special or assignable

causes.

Definition 1.1.5 False alarm: The control procedure indicates an out-of-control signal

when the process is in-control.

Definition 1.1.6 Phase I: Phase I of the monitoring scheme is used to check retrospec-

tively whether the reference or historical data is in-control or not.

Definition 1.1.7 Phase II: Phase II of the monitoring scheme is used to check whether

the future observations are still in-control or not with control limits obtained from in-

control Phase I data.

Definition 1.1.8 Spherical distribution: A random vector X has a distribution spher-

ical symmetric about µ if rotation of X a round µ dose not change the distribution

X − µ = A(X − µ), where A is a orthogonal d× d matrix.

Definition 1.1.9 Elliptical distribution: A random vector X has a distribution ellipti-

cal symmetric with parameter µ and Σ if it is an afinally equivariant to that of a spherically

symmetric random vector X, Y = ATX, where Σ = ATA, with rank(Σ) = k ≤ d.

Definition 1.1.10 Run length: The number of samples taken from the process before a

control chart produces an out-of-control signal.

Definition 1.1.11 Average Run Length (ARL): The expected number of samples re-

quired for the control chart to produce a signal that the process is out of control, is called

5



the Average Run Length (ARL). It is a major criterion for measuring the performance of

a control chart Chang and Wu (2011). A control chart is said to be good when it has a

large ARL with the process in-control. On the other hand, it will have a small ARL when

the process is out-of-control, ARL=1/P(A point fall outside the control limits).

1.2 Review of Some Control Charts

1.2.1 Shewhart Charts

Most of the theoretical work for Shewhart control charts were developed in 1920s (Oak-

land, 1996). The basic idea is based on central limit theorem. If we take a sample of size

n, from a population with a mean µ and a standard deviation σ, then as n increases, the

distribution of sample mean, x̄ approaches a normal distribution with a mean µ and a

standard deviation of σ/
√
n. In Shewhart control chart we plot the sample mean against

the sample number. The control limits will decide whether the process is in-control or

out-of-control. Suppose X is a sample statistic, and that the mean of X is µx and the

standard deviation of X is σx. Then the control limits for univariate Shewhart control

charts are given as follows:

UCL = µx +Kσx CL = µx and LCL = µx −Kσx

whereK is the distance between the control limits and the central line, defined in standard

deviation units. For the control statistic, sample mean, x̄, the standard deviation of the

sample mean depends on sample of size n: σx̄ = σ√
n
. When the process is in-control, we

know that with probability (1 − α), the sample mean x̄ will lie between µ − Zα/2σx̄ and

µ + Zα/2σx̄, where Zα/2 is the 1 − α/2-th quantile of the standard normal distribution.

Thus, the constant K in the control limits is determined by α. These models are called

K-sigma control limits. Determination of the control limits are equivalent to setting up
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the critical region in a test of hypothesis problem, where α is the level of significance or

the probability of type I error.

In Figure 1.3, we present an univariate Shewhart chart for simulated observations

from univariate normal distribution with mean equal to 74 and standard deviation equal

to 0.01 (Montgomery, 2009). The sample sizes are n = 5 and thus the standard deviation

of the sample mean, X̄,is σx̄ = σ/
√
n = 0.01/

√
n = 0.0045. Therefore, when the process

is in control with µ = 74, we may assume that X̄ is distributed approximately as normal.

Consequently, the upper and lower control limits will be given by

UCL = 74 + 3(0.0045) = 74.0135 and LCL = 74− 3(0.0045) = 73.9865.

In this example, we have used K = 3 to construct the 3-sigma control limits and that

gives α = 0.0027. Clearly, Figure 1.3 shows that all points fall within the control limits,

which mean that the process is in control.

The choice of sample size is important for such control charts and the convergence to

the normal distribution depends on the process. If we have m samples, each containing

n observations for the characteristic, that means the sample averages are x̄1, x̄2, . . . , x̄m.

Therefore, we can estimate µ, from the process average X̄ = (x̄1 + x̄2 + · · · + x̄m)/m.

The advantage of the Shewhart’s technique lies in its ability to separate between special

causes of variation and common cause of variation. This lead to a possible diagnosis

and correction of many production problems. It often brings substantial improvements in

product quality and reduction of variation and rework Leavenworth and Grant (1976).

1.2.2 Cumulative Sum (CUSUM) Control Charts

The univariate cumulative sum control scheme (CUSUM) were first proposed by Page

(1954), and have been studied by many authors including Ewan (1963); Page (1963);

Johnson (1961); Brook and Evans (1972); Lucas (1985); Chatterjee and Qiu (2009); Yang
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Figure 1.3: Univariate Shewhart control chart for a simulated data from univariate normal
distribution.

and Cheng (2011). The biggest drawback of the Shewhart control chart is its inability

to detect small shifts in the location parameter of the process characteristic. On the

contrary, the cumultaivr sum control charts are quite sensitive to small shifts in location

and detects them quite quickly. Another advantage with CUSUM charts are that they

detect a systematic shift in the process mean over a period of time. There are two major

disadvantages of the CUSUM control charts. Firstly, they are quite slow to discover large

process shift. Secondly, they are not efficient to test historical data. The cumulative sum

control chart directly incorporates current and previous information of sample values of
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the process by plotting the cumulative sums of the variation of the sample values from a

target value (Montgomery, 2009). For individual sample size n ≥ 1, the cumulative sum

control chart plots the points

Sm =
m∑
i=1

(x̄i − µ0), (1.1)

against m where x̄i represent the sample mean of the i-th sample, and µ0 represents the

target value for the process mean.

If the process remains in control at the target value µ0, the cumulative sum Sm is

a random walk with mean zero and if the mean shifts to some other value µ1 > µ0, a

positive drift will increase the cumulative sum. If the mean shifts downward to some

µ2 < µ0 then a negative drift in the cumulative sum will improve. If we observe change in

the trend of the CUSUM values, it indicates that the process mean is drifting away from

the target value (Oakland, 1996).

Runger and Testik (2004) proposed extensions to one-sided univariate CUSUM proce-

dures based on Page (1954) using a sequential probability ratio test argument. Consider

the testing of hypothesis problem H0 : µ = µ0 against H1 : µ = µ1. Assuming that the

data is coming from a normal distribution, the sequential probability ratio test at time

m reject H0 when the log-likelihood ratio is greater than a constant c1, and fails to reject

H0 if it is less than a constant c0. The log-likelihood ratio is given by

` =
m∑
i=1

log
f(xi, µ1)

f(xi, µ0)
=

m∑
i=1

log
f(xi, µ0 + δ)

f(xi, µ0)
= − 1

2σ2

m∑
i=1

(xi − µ0 − δ)2 − (xi − µ0)2

= − 1

2σ2

m∑
i=1

((xi − µ0)− δ)2 − (xi − µ0)2 =
δ

σ

m∑
i=1

σ−1(xi − µ0 −
δ

2
).

Then, the CUSUM procedure is to produce an out-of-control signal if

δ

σ

m∑
i=1

σ−1(xi − µ0 −
δ

2
) > c1 (1.2)
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Then, an one-sided procedure will produce an out-of control signal if

Sm = max
δ

σ
[Sm−1 + σ−1(xi − µ0 −

δ

2
), 0] > c (1.3)

(for details see Runger and Testik (2004)). The two-sided procedure can be developed as

to produce an out-of-control signal when

S+
m = max(S+

m−1 + σ−1(xi − µ0 −
δ

2
), 0) > H (1.4)

or

S−m = max(S−m−1 + σ−1(µ0 − xi −
δ

2
), 0) > H (1.5)

where S+
0 = S−0 = 0, and H is a suitably chosen cut-off. The value of H depends on δ

and the k-sigma limit we would like to construct.
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Figure 1.4: An example CUSUM control chart
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For illustration we consider the following example with 20 data points

324.925, 324.675, 324.725, 324.350, 325.350, 325.225, 324.125, 324.525, 325.225, 324.600,

324.625, 325.150, 328.325, 327.250, 327.825, 328.500, 326.675, 327.775, 326.875, 328.350

which are each the average of samples of size 4 taken from a process that has an estimated

mean of 325. Based on process data, the process standard deviation is 1.27 and therefore

the sample means have a standard deviation of 1.27/
√

4 = 0.635. Figure 1.4 shows a

CUSUM control chart for this data with δ = 1.0 and a 3-sigma limit is considered. We

observe that the last few points are beyond the control limits and an increasing trend in

the chart indicating a systematic positive drift in the process.

1.2.3 EWMA control Charts

There is another approach to detect smaller shifts in the process variable mean remedying

the problem of the Shewhart’s chart. Consider samples with size n, we can define at the

m-th stage a moving average of lag t as

Sm = (X̄m + X̄m−1 + · · ·+ X̄m−t+1)/t. (1.6)

This is an unbiased estimator of µ and the variance is given by

V (Sm) =
1

t2

m∑
i=m−t+1

V (X̄i) =
σ2

nt
(1.7)

which is smaller than the variance of X̄m used in the Shewhart’s chart. If we construct a

control chart based on the moving averages Sm, the 3-sigma control limits will be given

by

UCL = µ+
3σ√
nt

and LCL = µ− 3σ√
nt
. (1.8)
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Extending the idea, Roberts (1959) proposed an exponentially weighted moving aver-

age (EWMA)

Zm = rX̄m + (1− r)Zm−1 (1.9)

where Zm represents a weighted average of all previous sample means, 0 < r ≤ 1 is a

tuning constant, and the starting value is Z0 = µ. As a result, the upper and lower control

limits are

UCL = µ+ 3σ

√
r

(2− r)n
and LCL = µ− 3σ

√
r

(2− r)n
. (1.10)

The control chart using Zm as the plotting statistic is known as the exponentially

weighted moving average (EWMA) charts. The choice of the weighting factor r makes

the chart sensitive to a small or gradual drift in the process. The value of r determines

how the older data affects the control statistic. If r = 1, it reduces to the Shewhart’s

control chart and thus a large value of r gives more weight to the recent samples and a

small value of r gives more weight to past samples. The value of r is usually taken to be

in the interval (0.2, 0.3) (Hunter, 1986). However, this choice is arbitrary and Lucas and

Saccucci (1990) provided some tables to help users to choose the value of r.

Consider the following data consisting of 20 points.

52.0, 47.0, 53.0, 49.3, 50.1, 47.0, 51.0, 50.1, 51.2, 50.5,

49.6, 47.6, 49.9, 51.3, 47.8, 51.2, 52.6, 52.4, 53.6, 52.1

Here the target mean is 50 and the process standard deviation from the historical data

is 2.0539. We plot an EWMA control chart for this data in Figure 1.5 with r = 0.2.

The crosses in the plot indicates the raw data. We observe that the process is in control

whereas raw data points are outside the control limits.
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Figure 1.5: An example EWMA control chart

1.2.4 Nonparametric Control Charts

All previous control charting schemes often require the assumption of normality of the

data, which may be inflexible to validate in application. Such charts are optimal and

most efficient when the underlying distribution is normal. However, it may not be easy

to detect a change in the quality of a manufactured product if the underlying distribution

deviates slightly from normal distribution. The performance of such charts are affected

significantly. To overcome this problem, many people tried to construct control charts

that do not require any specific parametric distribution assumption including Liu (1995);

Chakraborti and van de Wiel (2008); Bakir (2012); Ross and Adams (2012); Zou and

Tsung (2011). These control chart are generally known as nonparametric or distribution

free control charts.

The nonparametric methods have a few assumptions, and does not require large sam-

ples. For this reason the nonparametric methods have great utility in quality control,

because in most cases there would be a lack of information and the underlying process
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distribution is not known, as well as data measured on a non normal distribution.

Chakraborti and van de Wiel (2008) proposed a phase II Shewhart type control chart

based on reference data from phase I and the well known Mann-Whitney statistic. Let

X = (X1, ..., Xm) be the historical reference data obtained from an in-control process.

Let Y = (Y1, ..., Yn) denotes an arbitrary test sample of size n. To test whether the

distribution of the test data Y is stochastically greater than the reference in-control data

X, we can write the Mann-Whitney statistic as

Mxy =
m∑
i=1

n∑
j=1

I(Xi < Yj) (1.11)

where I(Xi < Yj) is the indicator function for {Xi < Yj}. The large values of the statistic

Mxy indicates a positive drift in the process. In contrast, the small values indicate a

negative drift. A control chart based on this Mann-Whitney statistic produces an out-of-

control signal for the h-th test sample if

Mh
XY < Lmn or Mh

XY > Umn (1.12)

where Mh
XY is the statistic for the h-th sample and Lmn and Umn are the lower and upper

control limits, respectively, obtained from the distribution of Mann-Whitney test statistic.

This is a Shewhart type control chart as the control statistic computed at the h-th

sample depends on the h-th sample only. Bakir (2012) proposed a similar Shewhart type

control chart based on Kolmogorov-Smirnov statistic as well.

Ross and Adams (2012) presented two nonparametric control charts based on Kolmogorov-

Smirnov and Cramer Von Mises test statistics. These can detect any changes in the process

distribution during Phase II monitoring. The proposed charts are based on adapting the

change-point model. The main idea is to detect a change point in a fixed number of

observations. It divides the observations into two parts by using the test hypothesis for
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continuous distributions. The null hypothesis is that there is no change point and all

observations are having the same distribution. The alternative hypothesis is, that there

exists a single change point in the second part of the observations. We can write theses

hypothesis as

H0 : Xi ∼ F0 for i = 1, . . . , t against H1 : X1, . . . , Xk ∼ F0, Xk+1, . . . , Xt ∼ F1.

(1.13)

The first of the two proposed charts uses the Cramer-von-Mises statistic and the second

one is based on the Kolmogorov-Smirnov statistic. Both of them depend on the empirical

distribution functions of the observation before and after the change point. Define S1 =

{X1, . . . , Xk} and S2 = {Xk+1, . . . , Xt} and their empirical distribution functions as

F̂S1(x) =
1

k

k∑
i=1

I(Xi ≤ x) (1.14)

and

F̂S2(x) =
1

t− k

t∑
i=k+1

I(Xi ≤ x) (1.15)

Now we can define the Kolmogorov-Smirnov statistic as

Dk,t = sup
x
|F̂S1(x)− F̂S2(x)|. (1.16)

We reject H0 when Dk,t > hk,t, which means that there is no change in the distribution

function.

We can also define the Cramer-Von-Mises statistic as

Wk,t =
t∑
i=1

|F̂S1(Xi)− F̂S2(Xi)|2. (1.17)
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We reject the null hypothesis if Wk,t > hk,t for a suitable cut-off hk,t. Observe that

E(Wk,t) =
t+ 1

6t

and

V ar(Wk,t) =
(t+ 1)[(1− 3/4k)t2 + (1− k)t− k]

45t2(t− k)

Then we can define a standardized statistic as

Wt = max
k

Wk,t − E(Wk,t)√
V ar(Wk,t)

, 1 < k < t. (1.18)

Also, if Wt > ht for a suitable ht, we reject the null hypothesis and conclude that some

point of data had a change point. In addition, if Wt < ht, in this case we do not reject

the null hypothesis, which means, no change occurred. The value of ht will depend on

the choice of process design parameters.

1.3 Multivariate Control Charts

With the advancement of technology, it became easier to record several characteristics

or variables of a process and it is becoming increasingly important to monitor several

process variables together to control the quality characteristic of a process. The ap-

plications of statistical process control methods moved beyond the manufacturing into

engineering, medicine, epidemiology, environmental science, biology, genetics, finance and

even law enforcements and athletics (Stoumbos et al., 2000). Although one can use sep-

arate univariate control charts to monitor the process characteristics individually, they

do not capture the dependence structure of the variables among themselves. At statis-

tical procedure which captures this dependence structure is likely to be more sensitive

to the deviation of the process from the target parameters. Hawkins (1991) suggested
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using a single control chart takes care of the correlations among the process variables.

The first attempt to construct a truly multivariate control chart is by Hotelling (1947),

who constructed a Shewhart type control chart based on multivariate T 2 statistic with

applications in air samples from the bomb sights. Alt (1985) discussed the application of

Hotelling’s T 2 in control charts in detail and the survey article by Jackson (1985)) men-

tioned several modifications of the distribution theory of this control statistic for Phase II

control charts. Alwan (1986) proposed a CUSUM control chart based on the T 2 statistic.

Crosier (1988) suggested a CUSUM of T (COT) instead of T 2. He also proposed

another multivariate CUSUM chart based on the idea of the T 2 statistic for Phase I control

charts suing the observations directly to construct the CUSUM statistic instead of T 2. We

will review these proposed methods later in detail. In a different approach, Woodall and

Ncube (1985) proposed a multivariate CUSUM control chart based on individual CUSUM

control chart for the process variables. It produces a out-of-control signal whenever one

of the univariate charts are out-of-control. The biggest advantage of this chart is its

interpretability and one can identify the variable causing the out of control signal quite

easily. However, it suffers from the drawback that it does not take into account the

correlation structure of the variables and perform poorly when there is high correlation

among the process variables. Although they discussed their control chart in the context of

location shift only, it can be extended easily to scale shifts as discussed by Hawkins (1981).

Exponentially weighted moving average control charts were extended to the multivariate

case by Lowry et al. (1992) for phase I and phase II process control. Recently, Zhang

et al. (2010) proposed a multivariate control chart extending the exponentially weighted

moving average with the likelihood ratios.

All of the above multivariate control chart procedures are heavily dependent on the as-

sumption of multivariate normal distribution for the underlying distribution of the process

variable. However, the performance of this charts suffers heavily if the distribution shifts
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a little from normality. Liu (1995) proposed a few distribution free control charts based

on the notions of multivariate data depths. While the proposals are quite attractive, they

suffer heavily due to computational complexities of the depth functions beyond dimension

2 and that makes the proposed scheme a little impractical. Liu and Tang (1996) discussed

the use of simulation and bootstrap methods in determining the process control limits.

Abu-Shawiesh and Abdullah (2001) introduced a new robust Shewhart-type control chart

for monitoring the location of a bivariate process using HodgesâĂŞLehmann estimators.

Qiu and Hawkins (2001, 2003) introduced a nonparametric CUSUM procedure for

multivariate process control based on the ranks within the measurement components and

also on the ranking between the measurement components and their in-control location

parameter. Thissen et al. (2005) used mixture modeling for process monitoring in case of

non-normality. Chakraborti et al. (2001) noted that, although multivariate process control

problems are important, multivariate non-parametric statistical process techniques are not

sufficiently well developed. Bersimis et al. (2007) presented a recent literature review on

multivariate process control techniques.

In this PhD thesis, our objective is to fill the void in the literature by constructing

a fee multivariate control chart procedures using notions of multivariate sign and rank

functions. While the proposed methods do not depend on the assumption of multivariate

normality, they are also computationally simple, making the proposed schemes attractive.

We discuss the performance of the proposed methods using average run length for in-

control and out-of-control processes.

1.4 Outline of The Thesis

In Chapter 2, we present a detailed review of Shewhart type multivariate control charts

based on Hotelling’s T 2 statistic, multivariate CUSUM control charts as proposed by

Crosier (1988) and distribution free control charts proposed by Liu (1995). Apart from
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some theoretical details of these charts, we present performance studies with simulations.

In Chapter 3, we use the notion of spatial signs and and spatial ranks to extend the

multivariate control charts proposed by Liu (1995). We present theoretical results to

determine the control limits and perform a finite sample simulation to study the average

run lengths of the proposed schemes.

In Chapter 4, we proposed Shewhart type multivariate control charts based on spatial

sign and signed rank statistic. It is well known that spatial sign statistic is not invariant

under affine transformations of the data and that makes the proposed schemes to perform

poorly in the presence of high correlations among the process variables. We briefly discuss

the issue of affine invariance and proposed some affine invariant modifications of those

control charts. Again we present the performance of the proposed control charts through

finite sample simulations.

In Chapter 5, some extensions of multivariate CUSUM control charts are proposed

using multivariate sign and signed rank statistics. We derived the control limits of the

proposed charts using simulations. The average run lengths of the proposed schemes

under different distributional assumptions are studied using simulated data.

In Chapter 6, we propose a multivariate extension of the exponentially weighted mov-

ing average (EWMA) control charts based on some multivariate notions of sign vector and

signed rank vectors and in Chapter 7 we present some concluding remarks and directions

for further research.
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Chapter 2

Review of Some Multivariate

Control Charts

2.1 Hotelling’s T 2 Chart

Assume that, the vector of process variables, X follows a d-dimensional normal distri-

bution with mean vector µ0 and the covariance matrix Σ, when the process is in-control

and when the process is out-of-control the mean vector is given by µ 6= µ0. We assume

for the time being that there is no change in the covariance matrix Σ. Hotelling (1947)

proposed the first multivariate control chart based on T 2 statistic. An observation Xn,

at the n-th stage, is said to be out of control if

Tn =
√

(Xn − µ0)>Σ−1(Xn − µ0) > SCL

where SCL is the control limit.

It is easy to observe that when the process is in-control, the statistic T 2
n has a χ2 distri-

bution with d degrees of freedom, and when the process is out-of-control, its distribution
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is a non-central χ2 with d degrees of freedom and non-centrality parameter

δ =
√

(µ− µ0)>Σ−1(µ− µ0).

We can decide on the control limit SCL by fixing our in-control average run length

(ARL) of the chart, that is, the expected number of sample required to produce an out-of-

control signal, when the process is actually in-control. This is also known as signal for the

false alarm. We would like the in-control ARL to be as large as possible and out-of-control

ARL to be as low as possible. But similar to the hypothesis testing problems with Type

I and Type II errors, we cannot achieve both the goals togethers. If we take SCL2 to be

χ2
d,1−α, the 100(1−α)-th percentile of the χ2 distribution with d degrees of freedom, then

the in-control ARL would be 1/α.

In Figure 2.1 we present the ARL curves for the multivariate T 2-charts as a function

of δ for d = 2, 5, 10 and 20, with ARL in the vertical axes and non-centrality parameter

in the horizontal axis. To obtain the ARL for δ > 0, we simulate observations from d-

variate normal distribution with mean vector µ having the first element as δ and all other

elements as 0. The covariance matrix Σ is taken to be the d-dimensional identity matrix

Id. We report the average run lengths in 1000 simulations before an out of control signal

is produced. The in-control ARLs in 2.1(a) and (b) are 200 and 500 respectively. Thus,

the SCLs are the square roots of the 99.5 and 99.8 percentiles of the χ2 distribution with

d degrees of freedom. In both of these cases it can be seen that these charts are quite

good in detecting large shifts in the location vector µ. However, for smaller shifts, even

with δ = 1, the average run lengths are quite high.

One practical problem with multivariate T 2 statistic based control charts is their lack

of robustness. If the underlying distribution deviates slightly from the normal distribution,

the performance of these charts are affected significantly. For instance, we can observe
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Figure 2.1: ARL curves for multivariate T 2-charts when the underlying distribution is
multivariate normal for in-control ARL (a) 200 and (b) 500 respectively for dimension
d = 2, 5, 10 and 20 and non-centrality parameter δ.

their behaviour for multivariate Laplace and t distribution, where they are defined as

follows:

Multivariate Laplace Distribution: The probability density function is given by

f(x;µ,Σ) ∝ 1

|Σ|1/2
exp{−

√
(x− µ)>Σ−1(x− µ)}, (2.1)

Multivariate t Distribution: The probability density function is given by,

f(x;µ,Σ) =
Γ(ν+d

2
)

Γ(ν
2
)νd/2πd/2|Σ|1/2[1 + 1

d
(x− µ)>Σ−1(x− µ)](ν+d)/2

(2.2)

where µ is a d vector, and Σ is a d × d scale matrix, and ν is the degree of freedom,
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Figure 2.2: ARL curves for multivariate T 2-charts when the underlying distribution is
multivariate Laplace with the same upper control limits as in Figure 2.1(a) and (b) re-
spectively for dimension d and non-centrality parameter δ.

x ∈ Rd.

To illustrate, we present ARL curves of the multivariate T 2-charts when the underlying

distribution is multivariate Laplace in Figure 2.2 and multivariate t distribution with 3

degrees of freedom in Figure 2.3 with location vector µ and scale matrix Σ as described

in the normal case. It can be observed that in both of these cases they fail to maintain

the in-control ARL as it is much smaller than 1/α with the same control limit and the

false alarm rate will be quite high.

If at every stage of sampling, if we select a sample of size n, instead of a single
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Figure 2.3: ARL curves for multivariate T 2-charts when the underlying distribution is
multivariate Student’s t distribution with 3 degrees of freedom with the same upper
control limits as in Figure 2.1(a) and (b) respectively for dimension d and non-centrality
parameter δ.

observation Xm, then the T 2 statistic changes to

T 2
m = m(X̄m − µ0)>Σ−1(X̄m − µ0)

where X̄m is the sample mean vector of the m-th sample. Since the distribution of T 2
m is

χ2 with d degrees of freedom when the process is in control, we can use the same control

limit. Even if the underlying distribution is not multivariate normal, by multivariate

central limit theorem , the distribution of T 2
m will be approximately χ2 distribution with

d degrees of freedom for large values of m and the control charts perform better.

In Phase II control charts, let X̄m and Sm represents the sample mean vector and
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sample covariance matrix of the m-th sample of size m, and also let ¯̄X and S̄ denotes the

average of X̄m and Sm respectively, then we define

T 2 = m(X̄m − ¯̄X)>S̄−1(X̄m − ¯̄X)

which has a d(m+ 1)(n+ 1)/(mn−m− d+ 1)Fd,mn−m−d+1 distribution if the process is

in-control. The control limit SCL is calculated accordingly.

Note that, this multivariate control chart does not have a lower control limit as T 2 ≥ 0

and values close to 0 show conformity with the process specification.

2.2 Multivariate CUSUM Charts

In the context of univariate process control, Tukey (1986) commented that detecting a

shift of 5 standard deviations is nearly trivial, whereas detecting a shift of 0.05 standard

deviations is nearly impossible. Cumulative sum (CUSUM) control charts are developed

for the univariate schemes to detect smaller shifts and the CUSUM charts designed to

detect 1 standard deviation shift are widely used in practice. To extend the univariate

CUSUM procedures, Woodall and Ncube (1985) proposed using d univariate CUSUM

charts simultaneously and evaluate their performance together. However this proposal

ignores the dependence structure of the process variables and the average run length of

the control scheme heavily depends on the direction of shift if the process variables do not

have identical standard deviations. While using principal components instead of original

variables resolves the dependence structure problem, it alleviates the dependence of ARL

on the direction of the shift. So there is a need to consider some CUSUM schemes which

are truly multivariate in nature.

Crosier (1988) proposed the most immediate way of extending a multivariate Shewhart

type T 2-chart to a CUSUM procedure, which is to form a cumulative sum of the statistics

25



for Tn, n ≥ 1. We will refer this as cumulative sum of T (COT) chart. Define S0 = 0 and

Sn = max{0, Sn−1 + Tn − k} (2.3)

for some k ≥ 0 where T 2
m is the Hotelling T 2 statistic for the n-th sample. It will produce

an out of control signal whenever Sn > h, for some control limit h. The constants k and h

are determined to achieve a fixed in-control ARL and to make the chart most efficient to

detect a specified shift in δ, the non-centrality parameter defined in the previous section.

We can define h as the decision interval or the specific control limits and k as the reference

number. Crosier (1988) discussed in detail on the choice of k and h for different values of

δ and also discussed about setting some different initial value to S0 from 0.
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Figure 2.4: ARL curves for multivariate COT control charts when the underlying dis-
tribution is multivariate normal for in-control ARL (a) 200 and (b) 500 respectively for
dimension d and non-centrality parameter δ.
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In Figure 2.4, we present the ARL curves when the underlying distribution is multi-

variate normal for d = 2, 5, 10 and 20. Here the values of h and k are as given in Crosier

(1988) to detect any shift in the mean vector producing δ = 1 and in-control ARL of

200 and 500 respectively. The ARL decreases when delta increases. These curves indicate

that COT control charts produce better detection of small shifts compared to multivariate

Shewhart-type T 2-charts.
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Figure 2.5: ARL curves for multivariate COT control charts when the underlying distri-
bution is multivariate Laplace with the same upper control limit as in Figure 2.4(a) and
(b) respectively for dimension d and non-centrality parameter δ.

The ARL curves for the multivariate COT scheme are presented in Figures 2.5 and 2.6,

when the underlying distributions are multivariate Laplace and Student’s t distribution

with 3 degrees of freedom, respectively. The same phenomenon is observed, as before, that

they fail to even attain the intended in-control average run lengths and thus producing a
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Figure 2.6: ARL curves for multivariate COT control charts when the underlying distribu-
tion is multivariate Student’s t distribution with 3 degrees of freedom with the same upper
control limit as in Figure 2.4(a) and (b) respectively for dimension d and non-centrality
parameter δ.

large false alarm rates.

Instead of working with a CUSUM of T -statistics, Crosier (1988) proposed a fully

vector-valued multivariate CUSUM scheme. Define

Cn = [(Sn−1 +Xn − µ0)>Σ−1(Sn−1 +Xn − µ0)]1/2,

and

Sn =

 0 if Cn ≤ k

(Sn−1 +Xn − µ0)(1− k/Cn) if Cn > k,
(2.4)
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where S0 = 0 and k > 0. Let

Yn = {S>nΣ−1Sn}1/2. (2.5)

An out of control signal is produced when Yn > h, for some control limit h. We have

seen earlier that the average run lengths of the multivariate T 2-chart and COT chart

depend on the location vector µ and the scale matrix Σ only through the non-centrality

parameter δ as they are solely based on the Hotelling’s T 2 statistics. However, it is not

obvious that the distribution of Yn defined above depends on µ and Σ only through δ.

Healy (1987) provided a detailed proof on this dependence.
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Figure 2.7: ARL curves for multivariate CUSUM control charts when the underlying
distribution is multivariate normal for in-control ARL (a) 200 and (b) 500 respectively
for dimension d and non-centrality parameter δ.

In Figure 2.7, we present the ARL curves for the proposed multivariate CUSUM charts
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for underlying normally distributed process variables. They indicate a quicker detection of

smaller shifts compared to both multivariate T 2-charts and COT charts. Determination of

the constants h and k is straightforward. To detect a shift of the noncentrality parameter

δ, one can choose k = δ/2. In our examples, we design the charts to detect a shift of

δ = 1 most efficiently and hence we choose k = 0.5. The values of h to achieve in-control

ARLs of 200 and 500 are given in Crosier (1988) for this particular choice of k.
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Figure 2.8: ARL curves for multivariate CUSUM control charts when the underlying
distribution is multivariate Laplace with the same upper control limit as in Figure 2.7(a)
and (b) respectively for dimension d and non-centrality parameter δ.

In Figures 2.8 and 2.9, we present the ARL curves for the above CUSUM control

charting scheme when the underlying distributions are multivariate Laplace and Student’s

t distribution with 3 degrees of freedom. One can observe the same phenomenon as before

that they fail to even attain the intended in-control average run lengths and thus producing
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Figure 2.9: ARL curves for multivariate CUSUM control charts when the underlying
distribution is multivariate Student’s t distribution with 3 degrees of freedom with the
same upper control limit as in Figure 2.7(a) and (b) respectively for dimension d and
non-centrality parameter δ.

a large false alarm rates. This shows that the design of these schemes depend heavily on

the assumption of multivariate normality of the underlying process variables.

In a different development, Hawkins (1991) tried to find test statistics that are more

powerful than T 2 for non-normal distributions and have better interpretation. This proce-

dure depends on the residuals from the regression equation of each variable on all others.

Suppose X = (X1, ..., Xd)
> ∼ Nd(µ,Σ), and the process is in control when µ = µ0

and Σ = Σ0. Let Zj represent the residual obtained from the linear regression of the

j-th variable, Xj on other variables X1, . . . , Xj−1, Xj+1, . . . , Xd. Suppose, this scaler Zj

has been rescaled to have unit variance. Then the regression residual vector is given by

Z = A(X − µ0) = [diag(Σ−1
0 )]−1/2Σ−1

0 (X − µ0), where A = [diag(Σ−1
0 )]−1/2Σ−1

0 . Us-
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ing these residuals, he proposed two overall group diagnostics to detect out-of-control

processes. The first proposal is :

MCZ = max(max(L+
ni,−L−ni))

where L+
ni = max(0, L+

n−1,i +Zni−K), L−ni = min(0, L−n−1,i +Zni +K), and L+
0,i = L−0,i, for

i = 1, . . . , d, Zni is the i-th component of Zn, the residual vector at the n-th stage and k

is a constant.

The second proposal is:

ZNO =
d∑
i=1

(L+
ni + L−ni)

2.

The form of ZNO represents the Euclidean norm of the resultant vector of the CUSUM

for upward and for downward shift in mean. If the CUSUMs exceed the decision interval

h, it produces an out of control signal. The value of h is found from univariate CUSUM

chart because it is dependent on a signal random variable that follows the standard normal

distribution.

2.3 Control Charts Based on Data Depth

Over the last two decades, the data depth functions have become useful tools to construct

non-parametric methods for multivariate data. Zuo and Serfling (2000) discussed several

notions of data depth, which can be used to construct outward ordering of the sample

points. Liu (1995) proposed a few control charts based on these notions of data depths,

which do not depend on the assumption of multivariate normality for the underlying

process variables. There are several types of data depth functions. For example, Maha-

lanobis’s depth, Tukey depth, Simplicial depth and Majority depth, which are defined as

follows:

Mahalanobis depth (MDF ): Mahalanobis (1936) proposed the Mahalanobis distance
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between a vector x = (x1, . . . , xd)
> and the mean vector µF = (µ1, . . . , µd)

> as

d2(x,µF ) = (x− µF )>Σ−1
F (x− µF ), (2.6)

where Σ−1
F is the covariance matrix. Liu and Singh (1993) defined Mahalanobis depth as

MDF (x) = [1 + d2(x,µF )]−1. (2.7)

The sample version of MDF is obtained by replacing µF and ΣF by their estimates, the

sample mean X̄ and sample covariance matrix S

MDF (x) = [1 + (x− X̄)>S−1(x− X̄)]−1. (2.8)

Simplicial depth (SD): (Liu, 1988) Let X1, . . . ,Xd+1 be identical and independently

distributed with distribution function F . The Simplicial depth at point x ∈ Rd is defined

as

SD(F ;x) = PF (x ∈ S{X1, . . . ,Xd+1}) (2.9)

where S{X1, . . . ,Xd+1} is a d-dimensional simplex. The sample version is defined as

SD(Fn;x) =

(
n

d+ 1

) ∑
1≤i1≤···≤id+1≤n

I(x ∈ S{X i1 , . . . ,X id+1
}) (2.10)

where

I(x ∈ S{X i1 , . . . ,X id+1
}) =

 1 if x ∈ S{X i1 , . . . ,X id+1
}

0 otherwise
(2.11)

where X1, . . . ,Xn is a random sample from F .

Majority depth (MjD): (Liu and Singh, 1993) SupposeX1, . . . , Xd is a random sample
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from F , and H(X1, . . . ,Xd) denotes a unique hyperplane passing through these points.

A point x ∈ Rd is in the major side if the half-space containing x has probability greater

than or equal to 1/2, and a depth function can be defined as

MjD(F,x) = PF{(X1, . . . ,Xd) : x is in a major side}. (2.12)

The sample version of MjD(F,x) is MjD(Fn,x) by replacing F by Fn. For d = 1, we

have

MjD(F, x) =
1

2
+ min{F (x), 1− F (x−)}.

Tukey’s depth (TD): (Tukey, 1975) The Tukey’s depth or the halfspace depth of a point

x ∈ Rd is defined as

TD(F ;x) = inf
ψ
F (ψ) (2.13)

where ψ is a closed half space containing x. The sample version of Tukey’s depth is

defined by changing F to Fn. For d = 1, it equals TD(F ;x) = min{F (x), 1− F (−x)}.

Liu (1995) proposed a few control charts based on these notions of data depths, which

do not depend on the assumption of multivariate normality for the underlying process

variable. Let us consider G be the distribution of the process vector when the process is

in-control and DG(y) denotes the depth of a point y ∈ Rd with respect to G. Define

rG(y) = P{DG(Y ) ≤ DG(y)|Y ∼ G}. (2.14)

If the depth function DG is unavailable, we can use the historical data Y 1,Y ]2, . . . ,Y m to

construct the empirical c.d.f. Gm and the empirical version of the depth function DGm(·)

and define

rGm(y) = #{Y j|DGm(Y j) ≤ DGm(y), j = 1, . . . ,m}/m. (2.15)
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The r chart proposed by Liu (1995) is a plot of rGm(X i) against the index i. It can

be shown that the distribution of rGm(X i) converges to a U(0, 1) distribution when the

process is in-control and hence we can take the central line as CL = 0.5 and set a lower

control limit of α to achieve an in-control ARL of 1/α.
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Figure 2.10: A r chart based on data depth for a sample from multivariate normal distri-
bution

To illustrate how it works, we simulate a sample Y 1, . . . ,Y m with m = 1000 from

a standard bivariate normal distribution to create our historical in-control data set. We

simulateX1, . . . ,X50 also from the same bivariate standard normal distribution, however,

we simulate X51, . . . ,X100 from a bivariate normal distribution with mean vector (2, 2)

and the covariance matrix  4 0

0 4

 .

In Figure 2.10, we make a r chart for this example data and observe that it detects the

shift in location and the scale quite effectively. We have considered α = 0.005 here. In
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this example, we have used the simplicial depth function introduced by Liu (1988).

To improve on the performance, Liu (1995) proposed another control chart called

Q-chart. Let Fn denote the empirical distribution of the sample {X1, . . . ,Xn}. Then

define

Q(Gm, Fn) =
1

n

n∑
i=1

rGm(X i). (2.16)

We consider the data from the process in batches or subsamples. Let us assume that each

subsample has a size n. A Q chart plots Q(Gm, F
j
n) against the index j, where F j

n is the

empirical distribution of the X is in the j-th subsample. Liu (1995) also showed that the

Q chart should have a central line, CL = 0.5 and a lower control limit of

LCL = (n!α)1/n/n

for small values of α giving an in-control ARL of 1/α.
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Figure 2.11: A Q chart based on data depth for a sample from multivariate normal
distribution
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In Figure 2.11, we present a Q chart for the same example data used in Figure 2.10

with a subsample size of n = 5. We can see that it prevents early out-of-control signals

when the data is in-control.
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Figure 2.12: A S-chart based on data depth for a sample from multivariate normal dis-
tribution.

Extending the idea of an univariate CUSUM control charts, Liu (1995) proposed an-

other kind of control chart called S-chart. Define

Sn(G) =
n∑
i=1

[rG(Xi)−
1

2
] (2.17)

and

Sn(Gm) =
n∑
i=1

[rGm(Xi)−
1

2
] (2.18)

If we know the distributionG, a S-chart plots Sn(G) against n. By a simple application

of central limit theorem, it can be shown that this S-chart has the lower control limit

−(zα(n/12)1/2) where zα/2 is the 1−α/2-th quantile of the standard normal distribution.
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When the distribution G is unknown, we plot Sn(Gm) against n and the lower control

limit is given by −[zα

√
n2[( 1

m
+ 1

n
)]/12]. The central line in both of this charts are 0.

In Figure 2.12, we present a S-chart for the same example data used in Figure 2.10.

We can see that it prevents early out-of-control signals when the data is in-control.

Though the construction of the r, Q and S charts based on data depth do not depend

on multivariate normality, computation of depth function is usually computationally very

intensive for d > 2 and for that reason it has a very limited use in practice.
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Chapter 3

Multivariate Rank Based Control

Charts

3.1 Definition and Basic Properties:

We generalize the univariate sign function sign(x) = x/|x|, for x 6= 0 to a multivariate

notion of sign vector by defining

Sign(x) =


x
‖x‖ for x 6= 0

0 for x = 0

where ‖x‖ =
√
x2

1 + · · ·+ x2
d for x = (x1, . . . , xd)

> ∈ Rd. Note that this multivariate

notion of sign vector is nothing but the unit direction vector of x and was used in the

literature to construct various statistics based on signs (for detail see, (Oja, 1999)).

Similarly, we define a multivariate version of the rank vector by

Rank(x) =
1

n

n∑
i=1

Sign(x−X i)

where x ∈ Rd and X1, . . . ,Xn ∈ Rd is a random sample with a common distribution
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function F . Guha (2012) observed that

1. ‖Rank(x)‖ < 1 for all x ∈ Rd.

2. Rank(x) = 0 implies that x is the spatial median of the d-dimensional data

X1, . . . ,Xn.

3. Smaller values of ‖Rank(x)‖ implies that x is more central to the data cloud and

larger values of ‖Rank(x)‖ indicates that x is more extreme. Moreover the direction

of the vector Rank(x) suggests the direction in which x is extreme compared to the

data cloud.

4. Following Koltchinskii (1997), EF (Rank(x)) is a 1-1 function of the multivariate

distribution function F .

We can also note that Rank(x) is the inverse function of the multivariate geometric

quantile function (Chaudhuri, 1996) Q(u) in the sense that Rank(x) = u implies that

Q(u) = x and vice-versa. If we define a measure of outlyingness by ‖Rank(x‖, then

it is easy to verify that this measure of outlyingness is invariant under orthogonal and

homogeneous scale transformations (see Serfling (2004), for some related discussion). A

population version of that outlyingness function can be defined as

RG(x) = ‖EG(Rank(x)‖ =

∥∥∥∥EG( x−X
‖x−X‖

)∥∥∥∥
where the vector X has a distribution G.

In this section, we propose some control charts following the ideas of Liu (1995) based

on multivariate ranks.
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3.2 The r-Charts

We propose a new Shewhart type multivariate control chart using this definition of mul-

tivariate rank function and the r chart proposed by Liu (1995). Given a historical data

Y 1, . . . ,Y m when the process is in-control, we define

RGm(x) = ‖RankGm(x)‖ =

∥∥∥∥∥ 1

m

m∑
i=1

x− Y i

‖x− Y i‖

∥∥∥∥∥ (3.1)

and

rGm(x) = #{Y j|RGm(Y j) ≤ RGm(x), j = 1, . . . ,m}/m. (3.2)

We state the following result on the distribution of rG(X) when the process is in-

control.

Theorem 3.2.1 Assume that a d-dimensional random vector X has a conntinuous dis-

tribution function G. Let U(0, 1) denotes an uniform distribution on (0,1). Let rG(x) =

P (RG(X) ≤ RG(x)). If the multivariate rank function of x (RG(x)) has a continuous

distribution, then

(i) rG(X) is distributed uniformly on (0,1).

(ii) rGm(X) converges in distribution to U(0, 1) as m→∞.

Proof. The proof of (i) is trivial as G is assumed to have a continuous multivariate dis-

tribution, RG(X) will also have a univariate continuous distribution and rG(x) is the

distribution function of RG(X). To prove (ii), note that

sup
x∈Rd

|rGm(x)− rG(x)| → 0 a.s. as m→∞

by Lemma 2 of Makinde and Chakraborty (2015). �
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We plot rGm(X i) against the index i to construct an r chart. We can use the cen-

tral line to be CL = 0.5 and the chart will signal a process to be out-of-control when

rGm(X i) > 1− α so that the in-control ARL is 1/α.
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Figure 3.1: A r chart based on multivariate ranks for a sample from multivariate normal
distribution

To illustrate how it works, we simulate a sample Y 1, . . . ,Y m with m = 1000 from

a standard bivariate normal distribution to create our historical in-control data set. We

simulateX1, . . . ,X50 also from the same bivariate standard normal distribution, however,

we simulate X51, . . . ,X100 from a bivariate normal distribution with mean vector (2, 2)

and the covariance matrix  4 0

0 4

 .

We have considered α = 0.005 here. A r chart based on multivariate ranks is presented

in Figure 3.1. It shows a similar behaviour as 2.10.
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3.3 The Q-Charts

If we have a sample of size n in every run instead of a single observation, we can modify

the proposed r chart. Let us define

Q(G,Fn) =
1

n

n∑
i=1

rG(X i) (3.3)

and

Q(Gm, Fn) =
1

n

n∑
i=1

rGm(X i) (3.4)

where rGm(x) is as defined before.

Theorem 3.3.1 Assume that the conditions in Theorem 3.2.1 hold. Then

(i)
√
n[Q(G,Fn)− 1

2
] =
√
n[ 1

n

∑n
i=1 rG(Xi)− 1

2
] converges in distribution to N(0, 1/(12))

as n→∞.

(ii) [Q(Gm, Fn) − 1
2
] = [ 1

n

∑n
i=1 rGm(Xi) − 1

2
] converges in distribution to N{0, 1/(12)},

as min(m,n)→∞.

Proof. Proof of (i) is a straightforward application of central limit theorem. For (ii),

observe that
√
m(Q(Gm, Fn) − Q(G,Fn)) converges in distribution to N(0, 1/12) and

√
n(Q(G,Fn − 1/2) converges in distribution to N(0, 1/12) by (i) as min(m,n) → ∞.

Also observe that (Q(Gm, Fn)− 1/2) = (Q(Gm, Fn)−Q(G,Fn)) + (Q(G,Fn)− 1/2). �

Let the j-th sample be (Xj
1, . . . ,X

j
n) and its distribution function is denoted by F j

n,

then we propose a Q-chart by plotting Q(G,F j
n) against j if the in-control distribution G

is known and Q(Gm, F
j
n) against the index j if G is unknown and it is estimated by the

historical data with empirical distribution function Gm. For both of them, the central

line is CL = 0.5. For large values of m and n, the upper control limit, UCL, for the first
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Figure 3.2: A Q chart based on multivariate ranks for a sample from multivariate normal
distribution

one is given by 0.5 + zα/
√

12n and for the second one it should be

UCL = 0.5 + zα

√
1

12

(
1

m
+

1

n

)

where zα is the 100(1− α)-th percentile of the standard normal distribution.

For small values of n, we consider the exact distribution of Q(G,Fn).

Theorem 3.3.2 The upper control limit of the control chart of Q(G,F j
n) against j is

given by 1− (n!α)1/n/n for α ≤ 1/n!

Before we prove the theorem, we state a result from Feller (1971) on the distribution

function of sum of uniform random variables.

Proposition 3.3.1 Let U1, . . . , Un be n i.i.d. uniformly distributed random variables over

the interval (0, 1). Let Hn(t) denotes the distribution function of
∑n

i=1 Ui, that is Hn(t) =
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P (
∑n

i=1 Ui ≤ t). Then for each n = 0, 1, 2, . . ., Hn(t) = 0 for t ≤ 0 and

Hn(t) =
1

n!

n∑
k=0

(−1)k
(
n

k

)
(t− k)n+

where

(x)n+ =

 0 if x ≤ 0

xn otherwise.

Proof of Theorem 3.3.2. Note that, 1−Q(G,Fn) can be viewed as an average of U(0, 1)

random variables and we need to find a number `α such that P (1−Q(G,Fn) ≤ `α) = α

and consequently Hn(n`α) = α. Therefore, for α ≤ 1/n!,

1

n!
(n`α)n = α

gives `α = (n!α)1/n/n. Hence the UCL for the chart based on Q(G,Fn) is given by

UCL = 1− (n!α)1/n

n
.

As an illustration of the proposed Q-chart, we use the same simulated data from

Figure 3.1 with a sample size of n = 5 and use an upper control limit of 1 − (n!α)1/n/n

for α ≤ 1/n! with α = 0.005. The in-control ARL for such a chart will be 1/α. A Q chart

is presented in Figure 3.2. It shows a similar behaviour as 2.11.

3.4 The S-Chart

A natural extension of the univariate CUSUM control chart would be to plot Sn(G) or

Sn(Gm) defined by

Sn(G) =
n∑
i=1

[rG(X i)−
1

2
]
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and

Sn(Gm) =
n∑
i=1

[rGm(X i)−
1

2
].

Note that Sn(G) = n(Q(G,Fn − 0.5) and Sn(Gm, Fn) = n(Q(Gm, Fn) − 0.5) and we can

almost immediately derive the following result from Theorem 3.3.1.

Theorem 3.4.1 Under the assumptions of Theorem 3.3.1, we have the following:

(i) Sn(G) converges in distribution to N(0, n/12) as n→∞.

(ii) Sn(Gm) converges in distribution to N(0, n2(1/m+ 1/n)/12) as min(m,n)→∞.

0 20 40 60 80 100

0
5

10
15

20

Index

S
G

Figure 3.3: A S chart based on multivariate ranks for a sample from multivariate normal
distribution

The above Theorem implies that to attain an average run length of 1/α, the upper

control limit for the chart based on Sn(G) should be zα
√
n/12 and that for the chart

based on Sn(Gm) should be zα
√
n2[(1/m) + (1/n)]/12 for sufficiently large values of m

and n. Observe that the upper control limit is not a straight line rather a curve of order
√
n. We illustrate this chart in Figure 3.3 with the same simulated data as in Figure 3.1.
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Now note that as the chart goes up very fast, we may like to look into a standardised

version of this S-chart for plotting by defining

S∗n(G) = Sn(G)/
√
n/12

or

S∗n(Gm) = Sn(Gm)/
√
n2[(1/m) + (1/n)]/12

and then we can use the upper control limit of UCL = zα and a central line CL = 0.

The standardized version of the S-chart is illustrated in Figure 3.4.
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Figure 3.4: A S∗ chart based on multivariate ranks for a sample from multivariate normal
distribution

3.5 Average Run Lengths of the Proposed Charts

In this section we study the performance of the proposed r-chart based on multivariate

ranks through average run lengths. We consider α = 0.005 so that theoretical average

run lengths of the proposed scheme should be 200 when the process is in-control. We
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simulate from multivariate normal, Laplace and t distribution with 3 degrees of freedom

as defined before for dimensions d = 2, 3, 5, and 10. The location vector µ is taken as a

d-dimensional vector with the first element to be δ and all other elements to be 0. The

scale matrix Σ = Id the d× d identity matrix. In Figure 3.5, we present the average run

lengths obtained from 1000 simulations against δ.

We observe that the performance of the r-chart is the best when the underlying distri-

bution is multivariate normal. However, for multivariate Laplace and t distribution, they

fail to detect small shifts in the location for higher dimensional data efficiently. Though

their performance is still better than the T 2-chart discussed earlier.

Next we study the performance of the proposed Q-chart based on multivariate ranks

through average run lengths. We consider α = 0.005 so that the theoretical average

run lengths of the proposed scheme should be 200 when the process is in-control. We

simulate from multivariate normal, Laplace and t distribution with 3 degrees of freedom

as defined before for dimensions d = 2, 5, 10 and 20. The location vector µ is taken as a

d-dimensional vector with the first element to be δ and all other elements to be 0. The

scale matrix Σ = Id, the d × d identity matrix. The sub-sample size is n = 5. In Figure

3.6, we present the average run lengths obtained from 1000 simulations against δ.

We observe a similar behaviour as in Figure 3.5.

In Figure 3.7, we present ARL curves for S-charts when α = 0.005 thus the in control

ARL is 200 for multivariate normal distribution with the same simulation setting as above

for dimension d = 2, 5, 10 and 20. In Figure 3.8, we present the ARL curve for multivariate

Laplace distribution with dimension d = 2 only.

Next we present a small simulation study on the average run length of the proposed r

and Q-charts for bivariate normal distribution, when the scale matrix is not an identity
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Figure 3.5: ARL curves for r-charts based on multivariate ranks when the distribution of
the process variables are (a) normal , (b) Laplace, and (c) t distributions with in-control
ARL 200 for dimensions d = 2, 3, 5 and 10.
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Figure 3.6: ARL curves for multivariate Q-charts based on multivariate ranks when the
distribution of the process variable are (a) normal , (b) Laplace, and (c) t distributions
for in-control ARL 200 for dimensions d = 2, 5, 10, 20.
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Figure 3.7: ARL curve for multivariate S-charts based on ranks when the distribution
of the process variable is a normal distribution for in-control ARL 200 for dimension
d = 2, 5, 10 and 20 and non-centrality parameter δ.

matrix. We consider

Σ =

 1 ρ

ρ 1


for ρ = 0.0, 0.5, 0.8 and 0.9. The ARL curve for the r-chart is presented in Figure 3.9 and

that for the Q-chart is presented in Figure 3.10. We observe that for different values of

ρ, the ARL curves are different. This is due to the fact that multivariate rank functions

defined in this chapter are not invariant under affine transformations. We discuss more

about affine invariance and invariant versions of multivariate rank functions in the next

Chapter.

Observe that, the r, Q and S-charts can be computed for any dimension unlike the

multivariate control charts proposed by Liu (1995). The computational ease of the charts

makes these proposals attractive. However, we need to investigate further to decide on

the control limits for smaller values of n as we have seen that the proposed charts do not

perform very well with the upper control limit based on asymptotic results, especially for

non-normal distributions.
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Figure 3.8: ARL curve for multivariate S-charts based on ranks when the distribution of
the process variable is a Laplace distribution for in-control ARL 200 for dimension d = 2.

3.6 Real Data Examples

In this example we considered a real data which originated from a process capability study

for turning aluminium pins. This data was obtained from a manufacturing process which

recorded 6 measurements for each of the 70 observations (Fuchs and Kenett, 1998). The

manufacturing process of turning aluminium pins is often monitored by a quality engineer.

The first three measurements are diameter measurements on three different locations on

the main part of the pin. The fourth measurement represented a diameter measurement

at the cap. The last two are the lengths measurements, with the cap and without it. We

considered the first 30 observations as the historical in-control data, which is presented

in Table 3.1. To illustrate our proposed control charts, we have used the following 40

observations in Table 3.2.

In Figure 3.11, we have made an r-chart with these 40 new observations.We observe

that 9 observations are beyond the control limit, namely, the observation numbers 10,
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Figure 3.9: ARL curves for multivariate r-charts based on multivariate ranks when the
distribution of the process variable is bivariate normal distributions with correlation ρ for
in-control ARL 200.

17, 18, 19, 22, 23, 25, 31, and 36. Here we have taken the upper control limit to be

UCL = 0.995. In Figure 3.12, we produce a Q-chart by taking subsamples of size n = 4.

It shows that the subsample number 3, 4, 5 and 6 are beyond the control limit. The upper

control limit for the Q chart is 1 − (4!0.005)0.25/4 = 0.8529. In Figure 3.13, we produce

the S-chart with upper control limit given by z0.005

√
k/12 for the k the observation. We

observe that at 10th observation, it crosses the upper control limit and stays above as

univariate CUSUM charts usually do.

3.7 Concluding Remarks

In practice, the assumption of normality of the data may be often required for more tra-

ditional techniques that may be hard to justify in practice (Chakraborty and Chaudhuri,

1999). In many applications, the assumption of normality (or some other specified dis-

tribution) of data may be violated that affects significantly on the performance of the

control chart. Liu (1995) was among the first few to propose a control chart which does

not depend on the assumption of normality. Though the properties of the proposed con-

trol charts are quite attractive due to their distribution-free nature, they did not provide
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Figure 3.10: ARL curves for multivariate Q-charts based on multivariate ranks when the
distribution of the process variable is bivariate normal distributions with correlation ρ for
in-control ARL 200.

any theoretical or simulation results on average run lengths of the proposed methods for

their out-of-control behaviours. Most of the depth functions (e.g. simplicial, half-space or

majority depth) are computationally intensive and nearly impossible to compute exactly

for dimensions greater than 2. Therefore, these control charts based on data depths have

limited use and infeasible for processes with more than 2 process variables.

In this chapter, we considered a notion of multivariate rank function, popularly known

as spatial ranks, which retain some important features of the univariate rank function and

computationally very simple with time complexity of O(n) for any dimension d ≥ 2. We

propose some control charts following the idea of Liu (1995) using the distribution of the

lengths of the multivariate rank vectors. It can be shown that the r-chart proposed in

here is equivalent to the Hotelling’s T 2 chart when the distribution is multivariate normal

and also it is equivalent to the T 2 chart with optimal control limits if the underlying

distribution is spherically symmetric. Therefore, this is an optimal control chart in terms

of out-of-control ARL whenever the distribution is spherically symmetric and the shift

occurs only in the location vector. We have also discussed some extensions of the r-chart

to Q-chart and S-chart, where S-charts are analogous to CUSUM charts and detects small
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Figure 3.11: r-chart for the Aluminium pin data.

shifts better than r-charts.

A major inadequacy of the proposed multivariate rank function is that it is invari-

ant under orthogonal transformations but not under general nonsingular transformations,

which makes the proposed control charts optimal only for spherically symmetric distribu-

tions, that is, they are optimal only when the scatter matrix (or, the covariance matrix) Σ

associated with the distribution is λId for some constant λ. To resolve this issue, we can

use affine invariant multivariate ranks as discussed in Chakraborty (2001). The optimal

behaviour of the proposed control charts as discussed above then extends to the ellipti-

cally symmetric distributions or when Σ is a general non-singular positive definite matrix.

It still retains the computational simplicity with only added complexity of computing an

estimate of the scatter matrix Σ, if that is unknown. All of our theoretical results and

simulations show that the proposed procedures are very promising in terms of compu-

tational simplicity in high dimensions as well as performance in detecting out-of-control

signals.
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Figure 3.12: Q-chart for the Aluminium pin data.
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Figure 3.13: S-chart for the Aluminium pin data.
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Table 3.1: Historical Data for Aluminium Pins

1 2 3 4 5 6
1 9.99 9.97 9.96 14.97 49.89 60.02
2 9.96 9.96 9.95 14.94 49.84 60.02
3 9.97 9.96 9.95 14.95 49.85 60.00
4 10.00 9.99 9.99 14.99 49.89 60.06
5 10.00 9.99 9.99 14.99 49.91 60.09
6 9.99 9.99 9.98 14.99 49.91 60.08
7 10.00 9.99 9.99 14.98 49.91 60.08
8 10.00 9.99 9.99 14.99 49.89 60.09
9 9.96 9.95 9.95 14.95 50.00 60.15
10 9.99 9.98 9.98 14.99 49.86 60.06
11 10.00 9.99 9.98 14.99 49.94 60.08
12 10.00 9.99 9.99 14.99 49.92 60.05
13 9.97 9.96 9.96 14.96 49.90 60.02
14 9.97 9.96 9.96 14.96 49.91 60.02
15 9.97 9.97 9.96 14.97 49.90 60.01
16 9.97 9.97 9.96 14.97 49.89 60.04
17 9.98 9.97 9.96 14.96 50.01 60.13
18 9.98 9.97 9.97 14.96 49.93 60.06
19 9.98 9.98 9.97 14.98 49.93 60.02
20 9.98 9.97 9.97 14.97 49.94 60.06
21 9.98 9.97 9.97 14.97 49.93 60.06
22 9.98 9.97 9.97 14.97 49.91 60.02
23 9.98 9.97 9.96 14.98 49.92 60.06
24 10.00 9.99 9.98 14.98 49.88 60.00
25 9.99 9.99 9.99 14.98 49.91 60.04
26 10.00 9.99 9.99 14.99 49.85 60.01
27 10.00 10.00 9.99 14.99 49.91 60.05
28 10.00 9.99 9.99 15.00 49.92 60.04
29 10.00 9.99 9.99 14.99 49.89 60.01
30 10.00 10.00 9.99 14.99 49.88 60.00
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Table 3.2: New Data on Aluminium Pins

1 2 3 4 5 6
1 10.00 9.99 9.99 14.99 49.92 60.03
2 10.00 9.99 9.99 15.00 49.93 60.03
3 10.00 10.00 9.99 14.99 49.91 60.02
4 10.00 9.99 9.99 14.99 49.92 60.02
5 10.00 9.99 9.99 14.99 49.92 60.00
6 10.00 10.00 9.99 15.00 49.94 60.05
7 10.00 9.99 9.99 15.00 49.89 59.98
8 10.00 10.00 9.99 14.99 49.93 60.01
9 10.00 10.00 9.99 14.99 49.94 60.02
10 10.00 10.00 9.99 15.00 49.86 59.96
11 10.00 9.99 9.99 14.99 49.90 59.97
12 10.00 10.00 10.00 14.99 49.92 60.00
13 10.00 10.00 9.99 14.98 49.91 60.00
14 10.00 10.00 10.00 15.00 49.93 59.98
15 10.00 9.99 9.98 14.98 49.90 59.99
16 9.99 9.99 9.99 14.99 49.88 59.98
17 10.01 10.01 10.01 15.01 49.87 59.97
18 10.00 10.00 9.99 14.99 49.81 59.91
19 10.01 10.00 10.00 15.01 50.07 60.13
20 10.01 10.00 10.00 15.00 49.93 60.00
21 10.00 10.00 10.00 14.99 49.90 59.96
22 10.01 10.01 10.01 15.00 49.85 59.93
23 10.00 9.99 9.99 15.00 49.83 59.98
24 10.01 10.01 10.00 14.99 49.90 59.98
25 10.01 10.01 10.00 15.00 49.87 59.96
26 10.00 9.99 9.99 15.00 49.87 60.02
27 9.99 9.99 9.99 14.98 49.92 60.03
28 9.99 9.98 9.98 14.99 49.93 60.03
29 9.99 9.99 9.98 14.99 49.89 60.01
30 10.00 10.00 9.99 14.99 49.89 60.01
31 9.99 9.99 9.99 15.00 50.04 60.15
32 10.00 10.00 10.00 14.99 49.84 60.03
33 10.00 10.00 9.99 14.99 49.89 60.01
34 10.00 9.99 9.99 15.00 49.88 60.01
35 10.00 10.00 9.99 14.99 49.90 60.04
36 9.90 9.89 9.91 14.88 49.99 60.14
37 10.00 9.99 9.99 15.00 49.91 60.04
38 9.99 9.99 9.99 14.98 49.92 60.04
39 10.01 10.01 10.00 15.00 49.88 60.00
40 10.00 9.99 9.99 14.99 49.95 60.01
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Chapter 4

Shewhart Type Charts Based on

Multivariate Signs

4.1 Introduction

Consider a process with d process variables, which have a joint d-dimensional distribution

F with location parameter µ ∈ Rd and the d× d scale matrix Σ. If the second moments

exist, Σ may be a scalar multiple of the covariance matrix. Let us assume that the in-

control values of the parameters are µ = µ0 and Σ = Σ0, where both are known in Phase-I

control charts. Then as we discussed earlier, a Shewhart type multivariate control chart

can be defined using the Hotelling’s T 2 statistic

T 2 = n(X̄ − µ0)>Σ−1
0 (X̄ − µ0)

where X̄ is the sample mean based on a sampleX1, . . . ,Xn of size n from the distribution

F . If F is multivariate normal and the process is in-control, T 2 has an χ2 distribution

with d degrees of freedom and if the process mean shifts to µ1 6= µ0, but Σ0 remains

the covariance matrix, then T 2 will have a non-central χ2 distribution with d degrees of

freedom and non-centrality parameter δ2 = (µ1−µ0)>Σ−1
0 (µ1−µ0). In most applications,
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however, Σ0 will be unknown and needs to be estimated by the sample covariance matrix

S and the statistic will be defined by

T 2 = n(X̄ − µ0)>S−1(X̄ − µ0).

Under multivariate normality, the statistic (n−d)T 2/(d(n−1)) will have a F distribution

with d and n − d degrees of freedom. However, when the underlying distribution of the

process variables is not multivariate normal, we may not have a simple exact distribution

for the T 2 statistic. For large sample size n, T 2 will have a χ2 distribution with d degrees of

freedom, if we assume that the second moments of F exist. But we have seen in Chapter

2 that the performance of control charts based on T 2 for non-normal distributions is

poor. Moreover the assumption of existence of second moments may not be valid for the

process variables. In this chapter, we consider some control charts based on multivariate

sign vectors defined earlier.

4.2 Multivariate Signs

The multivariate sign vector was defined in Chapter 3 as

Sign(x) =


x
‖x‖ for x 6= 0

0 for x = 0

where ‖x‖ =
√
x2

1 + · · ·+ x2
d for x = (x1, . . . , xd)

> ∈ Rd. Note that this is nothing but

the direction vector of x. Now for the target location vector µ0, we may define the average

direction a sample of size n compared to µ0 as

Sn =
1

n

n∑
i=1

Sign(X i − µ0).
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Let

Cn =
1

n

n∑
i=1

Sign(X i − µ0){Sign(X i − µ0)}>.

Then we define a statistic similar to the T 2 statistics as

Wn = nS>nC
−1
n Sn.

It is easy to observe that Wn will have a χ2 distribution with d degrees of freedom as

n→∞ (Chaudhuri, 1992). If we define the upper control limit to be χ2
d,α, the (1− α)-th

quantile of the Chi-squared distribution with d degrees of freedom, then the control chart

based on Wn will have an average run length of 1/α for large values of n.
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Figure 4.1: A Shewhart type control chart based on multivariate sign statistic.

To illustrate the proposed control chart based on the statisticWn, we present an exam-

ple with 100 simulated sample of size n = 15 each from the bivariate normal distribution

with covariance matrix Σ = I2. The first 50 samples are with mean (0, 0)> and the last 50
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samples are with mean (2, 0). Figure 4.1 shows that the proposed chart detects the shift in

location quite easily for this example. The upper control limit UCL = χ2
2,0.005 = 10.5966.
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Figure 4.2: Average Runlengths of the control chart based on multivariate sign statistic
for bivariate normal distribution with different values of the correlation coefficient ρ.

In Figure 4.2 we present average run lengths of the proposed control chart when the

underlying distribution is bivariate normal with mean vector µ = (µ1, µ2)> and covariance

matrix Σ such that

Σ =

 1 ρ

ρ 1

 and δ2 = µ>Σ−1µ.

We choose ρ = 0.0, 0.5, 0.8, and 0.9. Here the sample size n = 15 and the simulation

size is 1000 for computing the average run lengths. Observe that for small values of δ,

the average run lengths are different for different values of ρ, which is due to the fact

that the sign statistic is not invariant under non-singular transformations of the data. We

would to like to note here that the average sign vector Sn is equivariant under orthogonal
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transformation, that is,

Sn(AX1, . . . ,AXn) = ASn(X1, . . . ,Xn)

where A is any orthogonal matrix. Hence the statistic Wn is invariant under orthogonal

transformations, that is

Wn(AX1, . . . ,AXn) = Wn(X1, . . . ,Xn).

However, Sn is not equivariant under arbitrary non-singular transformation, that is the

above relation does not hold when A is any arbitrary non-singular matrix. This is a major

drawback behind using this sign statistic to construct a control chart.

4.3 Affine Invariant Multivariate Signs

Following Chakraborty et al. (1998), we define an affine invariant version of the multivari-

ate sign statistic. Let X1, . . . ,Xn be independent and identically distributed d-variate

random vectors. Let β = {i0, i1, . . . , id} be a subset of d + 1 indices of {1, 2, .., n} and

define the d×d matrix X(β) with columnsX i1−X i0 , . . . ,X id−X i0 . Define multivariate

sign statistic as

S(β)
n =

1

n

n∑
i=1

{X(β)}−1(X i − µ0)

‖{X(β)}−1(X i − µ0)‖
. (4.1)

This sign statistic actually calculates the average direction of the data vectors in a

transformed space determined by coordinate axes X i1 −X i0 , . . . ,X id −X i0 . Note that

for any nonsingular d × d matrix A and a d-dimensional vector b, if we transform the

observations X i to Y i = AX i + b, the location parameter µ0 transforms to Aµ0 + b.

The transformation matrix X(β) is transformed to AX(β) and S(β)
n remains invariant,
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that is

S(β)
n (Y 1, . . . ,Y n) = S(β)

n (X1, . . . ,Xn).

Let us now define

C(β)
n =

1

n

n∑
i=1

{X(β)}−1(X i − µ0)(X i − µ0)>{X(β)>}−1

‖{X(β)}−1(X i − µ0)‖2
.

Then define the control statistic

W (β)
n = n{S(β)

n }>{C(β)
n }−1{S(β)

n }.

Now it is easy to observe that the statistic is invariant under affine transformations.

Chakraborty et al. (1998) used the statistic W (β)
n to construct a test for the location

vector in a multivariate one-sample problem. If the process is in-control, that is the

underlying distribution of the process variables has location vector µ0, the large sample

distribution of the statistic W (β)
n is chi-squared with d degrees of freedom (Theorem 2.2

Chakraborty et al., 1998). So to achieve an in-control ARL of 1/α, we set the upper

control limit as χ2
α,d, (1− α)-th quantile of the chi-squared distribution with d degrees of

freedom.

4.4 Selection of β

We observe that the construction of the control statistic depends on the choice of the

transformation matrix X(β) or the set of indices β. The small sample performance as

well as the behaviour of the statistic when the process is out of control depends heavily

on the choice of the transformation matrix. So a natural question arises at this point is

how to select β. We will try to provide a solution to that next.

Let g(x) denotes the elliptically symmetric density {det(Σ)}−1/2f(x>Σ−1x), where
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Σ is a d × d positive definite matrix and f(x>x) is a continuous spherically symmetric

density around the origin Rd. TheX i’s are assumed to be i.i.d. observations with common

elliptically symmetric density g(x−µ), where µ ∈ Rd is the location of elliptic symmetry

of the distribution.

Theorem 4.4.1 If the process is in-control, that is, µ = µ0, the large sample distri-

bution of W (β)
n is chi-squared distribution with d degrees of freedom. If the process is

out-of-control, that is, µ 6= µ0, we further assume that log f is twice differentiable almost

everywhere (w.r.t. Lebesgue measure) on Rd, then the conditional limiting distribution of
√
nS(β)

n is normal with mean vector Λ1(f,Σ−1/2δ,Σ−1/2X(β)) that depends on f , Σ−1/2δ

and Σ−1/2X(β), where δ = µ−µ0. The limiting covariance matrix is Ψ1(Σ−1/2X(β)) that

depends on Σ−1/2X(β). Also, the limiting conditional distribution of the control statistic

W
(β)
n is a non-central chi-squared distribution with d degrees of freedom and the limiting

average run length monotonically decreases with the non-centrality parameter

φ1(f,Σ−1/2δ,Σ−1/2X(β)) =

[Λ1(f,Σ−1/2δ,Σ−1/2X(β))]>[Ψ1(Σ−1/2X(β))]−1[Λ1(f,Σ−1/2δ,Σ−1/2X(β))],

where φ1 is such that for any f , δ and Σ and any two invertible matrices A and B, we

have φ1(f,Σ−1/2δ,Σ−1/2A) ≥ φ1(f,Σ−1/2δ,Σ−1/2B) whenever B>Σ−1B = λId for some

λ > 0.

Theorem 4.4.1 follows immediately from Theorem 2.2 of Chakraborty et al. (1998).

The main implication of the above theorem is that if we wish to minimize the average

run length of the proposed chart for µ 6= µ0, the optimal choice of X(β) is obtained if

{X(β)}>Σ−1X(β) = λId for some λ > 0. For this optimal choice of the transformation

matrix, X(β), the non-centrality parameter becomes c1(f)δ>Σ−1δ, where the constant

c1(f) depends on the spherically symmetric density f only.
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In practice, Σ is unknown and we need to have a consistent estimator, Σ̂ of Σ and

we make the matrix {X(β)}>Σ̂−1X(β) as close as possible to a diagonal matrix with all

diagonal entries equal. Define

v(β) =
trace[{X(β)}>Σ−1X(β)]/d

{det[{X(β)}>Σ−1X(β)]}1/d
.

Note that v(β) is the ration of the arithmetic and geometric mean of the eigenvalues of

the matrix {X(β)}>Σ−1X(β) and hence

v(β) ≥ 1.

v(β) = 1 implies all eigenvalues are equal and the matrix is a diagonal matrix with all

diagonal entries equal. Thus to choose the optimal subset β, we minimize v(β) over all

subset of observations of size d + 1. For practical implementation, we may stop once

v(β) is sufficiently close to 1. The consistent estimator Σ̂ can be taken to be the sample

variance-covariance matrix if the second moments exist or the MCD estimate of Σ as

proposed by Rousseeuw and Leroy (1987). If we denote the choice of β by β̂ which is

obtained by minimizing v(β), then by Theorem 3.3 of Chakraborty (2001), v(β̂) converges

in probability to 1 as n→∞ and the matrix X(β̂){X(β̂)}> converges in probability to a

scalar multiple of Σ. For the rest of the thesis, we will omit the notation β̂ to avoid the

notational complexities and β will denote the optimal choice as discussed in this section.

4.5 Multivariate Signed Ranks

Generalizing univariate Wilcoxon’s signed rank statistic to an affine invariant version of

multivariate signed rank, we define the spatial signed-rank function as

Qn(x) =
1

2n

n∑
i=1

[
{X(β)}−1(x−X i)

‖{X(β)}−1(x−X i)‖
+
{X(β)}−1(x+X i − 2µ0)

‖{X(β)}−1(x+X i − 2µ0)‖

]
.
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Note that Qn(x) is the affine invariant spatial rank of (x − µ0) with respect to X1 −

µ0, . . . ,Xn − µ0 and their reflections µ0 −X1, . . . ,µ0 −Xn (Möttönen and Oja, 1995).

Define the statistic based on spatial signed rank function as

Rn =
1

n

n∑
i=1

Qn(X i).

Note that, it can be written in the form of a V-statistic [Serfling (1980), Chapter 5.1.2]

as follows:

Rn =
1

2n2

∑
i

∑
j

{X(β)}−1(X i +Xj − 2µ0)

‖{X(β)}−1(X i +Xj − 2µ0)‖
,

and thus when the process is in-control, that is, the location vector µ = µ0,
√
nRn is

asymptotically normally distributed with mean vector 0 and a variance covariance matrix

depending on the distribution F . To construct a distribution free control chart, define

Dn =
1

n

n∑
i=1

Qn(X i){Qn(X i)}>

and the control statistic

Yn = nR>nD
−1
n Rn.

Following Möttönen et al. (1997), the asymptotic distribution of the statistic Yn is a

chi-squared distribution with d degrees of freedom when µ = µ0.

To illustrate the proposed control chart based on the statistic Yn, we present an exam-

ple with 100 simulated sample of size n = 15 each from the bivariate normal distribution

with covariance matrix Σ = I2. The first 50 samples are with mean (0, 0)> and the last 50

samples are with mean (2, 0). Figure 4.3 shows that the proposed chart detects the shift in

location quite easily for this example. The upper control limit UCL = χ2
2,0.005 = 10.5966.

If the process is out-of-control, that is µ 6= µ0, the statistic Yn will have a large sam-

ple distribution of non-central chi-squared with d degrees of freedom and non-centrality
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Figure 4.3: A Shewhart type control chart based on multivariate signed rank statistic.

parameter φ2(f,Σ−1/2δ,Σ−1/2X(β)), which depends on the spherically symmetric density

f , the scale matrix Σ, the shift δ = µ−µ0 and the transformation matrix X(β) through

Σ−1/2δ and Σ−1/2X(β). If we select the transformation matrix X(β) in the way described

in the previous section, the non-centrality parameter becomes c2(f)δ>Σ−1δ, for the op-

timal choice of β and c2(f) is a constant, which depends on the spherically symmetric

density f only.

4.6 Performance Study Through Simulations

In this Section, we study the average run lengths of the proposed control charts through

simulations. We have considered multivariate normal, Laplace and t distribution with 3

degrees of freedom. For all of these distributions, the location vector is taken to be µ,

whose first element is δ and all other elements are 0, and the scale matrix Σ is taken to be

the d dimensional identity matrix Id. When the process is in-control, the location vector
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µ is the vector of all zeros that is, δ = 0. The simulation size is 1000.

Table 4.1: Average run length comparisons of the control charts based on multivariate
signs for different sample sizes for normal distribution.

d n δ
0.0 0.1 0.2 0.5 1.0

2 10 6506.841 4268.670 2198.432 421.762 43.854
20 394.581 251.673 127.921 13.284 1.732
30 294.998 177.699 62.760 5.529 1.109
50 259.290 111.367 34.787 2.150 1.003
100 216.338 55.936 10.530 1.125 1.000

3 10 10806.069 8918.407 4889.837 806.761 88.846
20 589.596 438.372 230.449 23.692 2.446
30 372.276 234.015 93.671 7.143 1.186
50 279.326 131.079 40.723 2.653 1.002
100 224.678 69.784 12.948 1.164 1.000

5 10 14868.694 11360.185 6078.859 772.952 50.214
20 3376.237 2306.215 1034.472 119.680 7.531
30 692.013 501.990 216.290 16.642 1.472
50 359.373 216.412 67.665 3.647 1.017
100 265.213 97.691 19.229 1.252 1.000

First we consider the control chart based on multivariate sign statistic. We should note

that the upper control limit of the control chart is based on the asymptotic distribution of

the control statistic. To study the performance of the proposed chart for finite samples, we

present some simulation studies in Tables 4.1, 4.2 and 4.3, which present the average run

lengths of the control charts for different sample sizes and dimension. The large sample

in-control average run length of these charts are 200, that is, the upper control limit is

taken to be χ2
d,0.005. We observe that for small sample sizes, the in-control ARL is very

large compared to 200, however, that slowly converges to 200 as the sample size increases.

The performances are comparable for all three distributions indicating the distribution

free nature of the multivariate sign based control statistic.

Next, we present ARL curves for the proposed control chart based on multivariate
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Figure 4.4: ARL curves for control chart based on multivariate signs when the distribution
of the process variables are (a) normal , (b) Laplace, and (c) t distributions with in-control
ARL 200 for dimension d = 2, sample size n = 15.
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Figure 4.5: ARL curves for control chart based on multivariate signs when the distribution
of the process variables are (a) normal , (b) Laplace, and (c) t distributions with in-control
ARL 200 for dimension d = 2, sample size n = 50.
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Table 4.2: Average run length comparisons of the control charts based on multivariate
signs for different sample sizes for Laplace distribution.

d n δ
0.0 0.1 0.2 0.5 1.0

2 10 6321.941 5250.247 2671.932 552.867 84.670
20 417.180 303.755 178.154 30.321 4.237
30 281.740 204.406 100.676 12.848 1.991
50 240.584 140.747 52.823 5.172 1.158
100 221.350 86.398 20.409 1.817 1.002

3 10 10656.036 9190.211 7484.067 2450.889 476.826
20 604.912 546.422 379.290 99.594 13.268
30 361.631 322.274 205.148 34.255 4.194
50 273.061 188.867 103.142 11.952 1.641
100 221.482 130.415 44.182 3.261 1.030

5 10 15015.211 14175.920 11491.703 4668.530 974.680
20 3263.290 2894.315 2481.027 899.455 148.573
30 684.103 643.854 513.994 160.042 21.535
50 385.757 316.153 216.626 46.741 4.962
100 256.928 201.439 107.582 11.445 1.358

signs in Figure 4.4 and 4.5 with in-control ARL 200 and dimension d = 2 for sample sizes

n = 15 and 50. We observe that for all three distributions, the proposed chart is good

in detecting large shifts and its behaviour is very similar to the multivariate Shewhart

type control chart based on T 2. As we have observed earlier that they fail to attain the

in-control ARL of 200 due to the small sample size.

Now we consider the control chart based on multivariate signed rank statistic. We

should note that the upper control limit of the control chart is based on the asymptotic

distribution of the control statistic. To study the performance of the proposed chart for

finite samples, we present some simulation studies in Tables 4.4, 4.5 and 4.6, which present

the average run lengths of the control charts for different sample sizes and dimension.

The large sample in-control average run length of these charts are 200, that is, the upper

control limit is taken to be χ2
d,0.005. We observe that for small sample sizes, the in-control
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Table 4.3: Average run length comparisons of the control charts based on multivariate
signs for different sample sizes for t distribution with 3 degrees of freedom.

d n δ
0.0 0.1 0.2 0.5 1.0

2 10 6671.345 4672.954 2367.570 240.127 34.189
20 402.280 279.389 143.506 17.688 2.505
30 282.559 175.377 83.291 7.478 1.338
30 282.559 175.377 83.291 7.478 1.338
50 236.062 124.305 38.793 2.980 1.024
100 219.345 66.180 13.863 1.245 1.000

3 10 10934.092 8633.842 5337.985 1037.985 117.232
20 591.546 435.390 258.884 34.864 3.665
30 366.525 253.831 114.498 10.103 1.551
50 279.133 149.588 48.628 3.539 1.047
100 238.345 79.189 17.669 1.331 1.000

5 10 15078.739 11085.290 6878.782 972.865 80.316
20 3093.862 2496.209 1284.969 171.754 13.601
30 727.364 504.221 253.292 24.169 2.241
50 364.768 227.059 84.109 5.167 1.076
100 271.926 107.970 24.291 1.566 1.000

ARL is very large compared to 200, however, that slowly converges to 200 as the sample

size increases. The performances are comparable for all three distributions indicating the

distribution free nature of the multivariate signed rank based control statistic.

In Figures 4.6 and 4.7, we present ARL curves for the proposed control chart based on

multivariate signed ranks with in-control ARL 200 and dimension d = 2 for sample sizes

n = 15 and 50. We observe that for all three distributions, the proposed chart is good

in detecting large shifts and its behaviour is very similar to the multivariate Shewhart

type control chart based on T 2. As we have observed earlier that they fail to attain the

in-control ARL of 200 due to the small sample size.
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Figure 4.6: ARL curves for control chart based on multivariate signed ranks when the
distribution of the process variables are (a) normal , (b) Laplace, and (c) t distributions
with in-control ARL 200 for dimension d = 2, sample size n = 15.
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Figure 4.7: ARL curves for control chart based on multivariate signs when the distribution
of the process variables are (a) normal , (b) Laplace, and (c) t distributions with in-control
ARL 200 for dimension d = 2, sample size n = 50.
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Table 4.4: Average run length comparisons of the control charts based on multivariate
signed ranks for different sample sizes for normal distribution.

d n δ
0.0 0.1 0.2 0.5 1.0

2 20 561.646 345.323 154.593 13.898 1.611
30 325.862 187.705 62.518 4.662 1.069
50 282.118 111.254 26.224 1.800 1.000
100 225.409 49.196 8.149 1.065 1.000

3 20 1027.371 691.027 340.631 31.885 2.533
30 457.962 271.159 108.029 7.393 1.142
50 301.106 146.573 37.929 2.283 1.001
100 234.632 66.845 11.879 1.090 1.000

5 20 6941.433 5020.804 2165.903 236.959 15.432
30 834.313 605.514 257.055 17.806 1.572
50 403.584 233.175 67.178 3.264 1.008
100 280.856 93.924 16.656 1.179 1.000

4.7 Concluding Remarks

In this Chapter, we have proposed two multivariate Shewhart type control charts based

on multivariate sign vectors and signed ranks. Note that, for phase I control charts, we

assume that the target location vector µ0 is known and the scale matrix Σ is also known.

In such a situation, we do not need to worry about affine invariance. If X is elliptically

symmetric with scale (or, scatter) matrix Σ about µ0, then Σ−1/2(X −µ0) is spherically

symmetric about 0. Thus if we know Σ and µ0, we can transform the observations

accordingly to have spherical symmetry and the non-invariant versions of multivariate

sign and signed ranks will work with less computational complexity.

We also note that if the random vector X is spherically symmetric about µ0, the

sign vector (X − µ0)/‖X − µ0‖ is uniformly distributed over the d-dimensional unit

sphere. Thus, the sign statistic Sn, which is an average of such uniformly distributed

random vectors, becomes distribution free when the process is in-control. We do not need
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Table 4.5: Average run length comparisons of the control charts based on multivariate
signed ranks for different sample sizes for Laplace distribution.

d n δ
0.0 0.1 0.2 0.5 1.0

2 20 630.941 454.212 267.688 45.096 5.248
30 350.548 261.282 131.642 15.844 2.121
50 257.197 164.291 59.562 5.866 1.177
100 235.423 103.541 25.989 2.014 1.004

3 20 1156.574 1020.460 703.892 171.548 19.659
30 469.069 397.777 250.303 44.154 4.780
50 301.235 232.561 120.022 14.884 1.776
100 247.797 140.854 50.334 3.910 1.041

5 20 7858.754 7625.387 6080.594 2143.015 379.533
30 988.461 912.023 705.649 215.363 28.746
50 432.388 385.723 258.028 53.416 5.559
100 279.847 215.802 118.096 12.533 1.484

any large sample approximation for the distribution free nature of our proposed control

statistic and that makes it quite useful for a large number of distributions. Similarly,

signed ranks are also distribution free when the process is in-control. In practice, it may

be useful to obtain the upper control limits of the proposed charts for finite small samples

using simulations or other numerical methods and we do not have to rely on asymptotic

distributions.

The affine invariant procedures suggested in this Chapter are useful for Phase II con-

trol charts or even for Phase I control charts where we know the target location vector µ0,

but the scale matrix Σ is unknown. We must admit that finding out the optimal transfor-

mation matrix X(β) is computationally intensive and for higher dimensions it may take a

huge amount of time. For faster computational algorithms, one may see Chakraborty and

Chaudhuri (2008). However, for an affine invariant version of the control statistic, there

is an easy alternative. We may consider any consistent estimate Σ̂ of Σ. For example, a

sample variance covariance matrix if the second moments exist or minimum covariance
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Table 4.6: Average run length comparisons of the control charts based on multivariate
signed ranks for different sample sizes for t distribution with 3 degrees of freedom.

d n δ
0.0 0.1 0.2 0.5 1.0

2 20 612.789 415.654 207.848 24.137 3.036
30 349.023 219.758 91.742 8.627 1.469
50 275.530 135.984 41.056 3.073 1.037
100 235.981 70.055 15.354 1.354 1.000

3 20 1129.102 916.146 467.576 56.020 5.145
30 469.421 329.589 158.369 13.782 1.704
50 313.192 179.256 60.029 4.275 1.084
100 248.034 88.947 19.048 1.415 1.000

5 20 9127.768 6073.142 3359.564 458.021 34.343
30 1098.144 774.117 397.974 35.967 2.919
50 438.816 277.704 110.215 6.246 1.152
100 275.436 127.288 30.188 1.717 1.001

determinant estimator (Rousseeuw and Van-Driessen, 1999) can be used and observations

can be transformed using Σ̂−1/2. In this approach, the individual sign vectors or the statis-

tics Sn and Rn are not invariant under affine transformations, but the control statistics

Wn and Yn are affine invariant. The transformation approach described in this Chapter

are quite useful for general purpose as it produces affine invariant versions of multivariate

signs and multivariate ranks.

The proposed control chart methods utilizes the idea behind the tests of location for

a multivariate one sample problem. Their construction is similar to the Shewhart chart,

which uses only the current sample and no past history of the process. As expected these

procedures are good in detecting large shifts in the location, however, they cannot detect

small shifts efficiently.
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Chapter 5

Multivariate CUSUM Control

Charts

5.1 Introduction

We have already mentioned that Shewhart type control charts as presented in Chapter 4,

are not efficient in detecting small shifts in the location parameter. We know that univari-

ate cumulative sum (CUSUM) control charts efficiently detects small shifts in the location

parameter with a target in-control ARL. We can also design an univariate CUSUM control

chart which is optimal in detecting a specified amount of shift. For univariate CUSUM

control charts to detect shifts in the process means, the control statistics after the j-th

sample is drawn is given by Tj = max(0, Tj−1 + (Xj − µ0) − kσ), where µ0 is the mean

of the process variable when the process is in-control, σ2 is the variance of the process

variable Xj, T0 = 0 and k > 0. The idea is to shrink the cumulative sum Tj−1 + (Xj−µ0)

towards the origin by k standard deviations. If we wish to extend the similar definition

to the multivariate case, there are some problems in choosing a vector valued k and also

maximum is not uniquely defined. Crosier (1988) defined a multivariate CUSUM scheme

by shrinking the vector T j−1 + (Xj − µ0) towards the origin in the same direction and
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the shrinking is determined by covariance matrix Σ and a scalar parameter k. We have

discussed the multivariate CUSUM scheme proposed by Crosier (1988) in detail in Chap-

ter 2. We have observed that while the proposed scheme performs quite well in detecting

small shifts in the process mean when the underlying distribution is multivariate normal,

it behaves poorly when the underlying distribution deviate from normality. In this chap-

ter, we propose two CUSUM control charts based on the notions of multivariate sign and

signed ranks introduced in the previous chapter.

5.2 Multivariate CUSUM Charts Based on Sign Vec-

tors

In the monitoring of sample processes, let us assume that every sample has size n. We

consider a Phase I control chart, where the in-control location parameter µ0 is known.

Let the j-th sample beX1,j, . . . ,Xn,j. Then the sign statistic for the j-th sample is given

by

Sj,n =
1

n

n∑
i=1

X i,j − µ0

‖X i,j − µ0‖
.

Let

Σ1 = E

[{
X i,j − µ0

‖X i,j − µ0‖

}{
X i,j − µ0

‖X i,j − µ0‖

}>]
.

Then define a multivariate CUSUM control scheme as follows:

• Let T 0 = 0 and k > 0 is a predetermined constant.

• At the j-th stage, define Cj =
√
n(T j−1 + Sj,n)>Σ−1

1 (T j−1 + Sj,n).

• Define

T j =

 0 if Cj ≤ k

(T j−1 + Sj,n)(1− k/Cj) if Cj > k.
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• Define Yj = nT>j Σ−1
1 T j. The process is said to be out of control if Yj > H for some

H > 0.

Note that, Cj is the length of the cumulative sum of the sign vectors standardised by

the scale matrix and when it is less than a threshold parameter k, we renew the cumulative

sum to the zero vector and Yj = (Cj−k)2 after the last renewal. So k acts as an shrinkage

parameter as well which shirks the the standardised length of the cusum vector towards

zero. Larger values of k will shrink more and that will not be efficient to detect small

shifts. On the other hand, small values of k will not shrink much and that will help to

detect small shifts in the location efficiently.

To illustrate the proposed multivariate CUSUM control chart based on the statistic Yj,

we present an example with 100 simulated sample of size n = 15 each from the bivariate

normal distribution with covariance matrix Σ = I2. The first 50 samples are with mean

(0, 0)> and the last 50 samples are with mean (1.0, 0)>. We have taken k = 0.5. Figure

5.1 shows that the proposed control statistic increases sharply when the process becomes

out of control.

If the underlying distribution of the process vector is spherically symmetric around µ0,

the sign vectors (X i,j − µ0)/‖X i,j − µ0‖ are uniformly distributed over the unit sphere

and do not depend on the actual distribution F . The covariance matrix of the sign vector

is given by Σ1 = (1/d)Id. If the underlying distribution is elliptically symmetric around

µ0 with a known scale matrix Σ, we can transform the vector of process variables by

Σ−1/2 and then the underlying distribution of the transformed vector becomes spherically

symmetric and we can use the above procedure with Σ1 = (1/d)Id.

An important task in designing this multivariate CUSUM control chart is determining

the control limit H, which depends on the parameter k and the required in-control average

run length of the proposed chart. As we have noted earlier that proposed scheme is

distribution-free for elliptically symmetric distributions, we perform a small simulation
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Figure 5.1: An example CUSUM control chart based on multivariate sign statistic.

study to determine the value of H for different dimensions d and parameter k. Figure 5.2

shows the average run lengths against control limit H, when the data is simulated from

the multivariate normal distribution with in-control mean of the process as the zero vector

and the covariance matrix Id. We observe that the value of the control limits decreases

with increase in the parameter k.

From Figure 5.2, we summarise the control limits of the proposed CUSUM control

chart in Table 5.1 when the average run lengths are 200 and 500. Using these control

limits, we present a simulation study of average run lengths of the proposed CUSUM

control chart for multivariate normal, Laplace and t distribution with 3 degrees of freedom

in Figures 5.3, 5.4, 5.5. For all of these distributions, the location vector is taken to be µ,

whose first element is δ and all other elements are 0, and the scale matrix Σ is taken to be
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Figure 5.2: Simulated average run length (ARL) of the proposed chart when the process
is in-control against control limit H for different dimensions d and the parameter k for
elliptically symmetric distributions.

the d dimensional identity matrix Id. When the process is in-control, we have δ = 0. The

simulation size is 1000. The control limits, H for different dimensions and different values
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Table 5.1: Simulated values of the cutoff H for multivariate sign CUSUM charts with
average run lengths 200 and 500 for different dimensions

ARL = 200 ARL = 500
k k

d 0.5 1.0 1.2 0.5 1.0 1.2
2 26.25 3.2 0.75 37.0 4.2 0.95
3 43.25 8.0 3.6 60.0 10.6 4.6
4 63.25 13.8 7.4 86.0 17.6 9.2
5 83.75 20.8 12.0 112.5 25.7 14.7

of k are shown in the Figures. We observe that the same control limit maintains the

in-control ARL of 200 for all of these spherically symmetric distributions, thus showing

the robust nature of the proposed procedure. We observe that for smaller values of k, the

charts detect the small shifts in location quickly and for larger values they detect larger

shifts efficiently. We also observe from the plots that the behaviour of the average run

length for different dimensions are very similar for multivariate normal and t distribution

when the process is out of control. However, the average run lengths for multivariate

Laplace distribution are slightly higher for higher dimensions when the process is out of

control.

Note that, if the scale matrix Σ is unknown when the underlying distribution is ellipti-

cally symmetric, we may replace Σ by any consistent estimator. For example, if the second

moment exists, we may use the sample variance covariance matrix S as an estimator of Σ

or we may use minimum covariance determinant estimator proposed by Rousseeuw and

Van-Driessen (1999), which is a robust estimator of Σ. If the distribution is not elliptically

symmetric, we do not usually have a simplified form for the matrix Σ1 and that needs to

be estimated either from the in-control data, or we may replace Σ1 in the above scheme
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Figure 5.3: ARL curves for CUSUM control charts based on multivariate signs when the
distribution of the process variables are multivariate normal with in-control ARL 200.

by its consistent estimator for the j-th sample

Vj =
1

n

n∑
i=1

{
X i,j − µ0

‖X i,j − µ0‖

}{
X i,j − µ0

‖X i,j − µ0‖

}>
.

For small n, the performance of the proposed scheme may be affected due to this estima-

tion.
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Figure 5.4: ARL curves for CUSUM control charts based on multivariate signs when the
distribution of the process variables are multivariate Laplace with in-control ARL 200.

5.3 Multivariate CUSUMControl Charts Based on Signed

Rank

Let the j-th sample be denoted by X1,j . . . ,Xn,j. Then we define the multivariate signed

rank of a vector x ∈ Rd with respect to this sample is

Qj,n(x) =
1

2n

n∑
i=1

{
x−X i,j

‖x−X i,j‖
+

x+X i,j − 2µ0

‖x+X i,j − 2µ0‖

}
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Figure 5.5: ARL curves for CUSUM control charts based on multivariate signs when the
distribution of the process variables are multivariate t with 3 degrees of freedom with
in-control ARL 200.

where µ0 is the location vector when the process is in-control. We define the average

signed rank of the j-th sample as

Rj,n =
1

n

n∑
i=1

Qj,n(X i,j) =
1

2n2

n∑
i=1

n∑
l=1

X i,j +X l,j − 2µ0

‖X i,j +X l,j − 2µ0‖
.
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Now based on the signed rank statistics, we define a multivariate CUSUM control charting

scheme as follows:

• Let T 0 = 0 and k > 0 is a predetermined constant.

• Define a d× d matrix Bj as

Bj =
1

nj

j∑
l=1

n∑
i=1

Ql,n(X i,l){Ql,n(X i,l)}>.

• At the j-th stage, define Cj =
√
n(T j−1 +Rj,n)>B−1

j (T j−1 +Rj,n).

• Define

T j =

 0 if Cj ≤ k

(T j−1 +Rj,n)(1− k/Cj) if Cj > k.

• Define Zj = nT>j B
−1
j T j. The process is said to be out of control if Zj > H for some

H > 0.

To determine the control limit H for the above multivariate control chart based on

signed rank vectors, we run a small simulation study with for n = 15 and when the

underlying in-control distribution of the process variables vector is multivariate normal

with mean as the zero vector and the covariance matrix Σ = Id. Figure 5.6 presents

the average run lengths against the control limit H for different dimension d and the

parameter k. We summarise the control limits H for different dimensions to obtain

average run lengths of 200 and 500 when the process is in control in Table 5.2. We again

observe that the control limits increase with the dimension, but decrease with increasing

values of the parameter k.

With the control limits obtained in Table 5.2, we present a simulation study of average

run lengths of the proposed CUSUM control chart with multivariate signed rank vectors
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Figure 5.6: Simulated average run length (ARL) of the proposed chart when the process
is in-control against control limit H for different dimensions d and the parameter k for
elliptically symmetric distributions.

for multivariate normal, Laplace and t distribution with 3 degrees of freedom in Figures

5.7, 5.8, 5.9. For all of these distributions, the location vector is taken to be µ, whose
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Table 5.2: Simulated values of the cutoff H for multivariate signed rank CUSUM charts
with average run lengths 200 and 500 for different dimensions

ARL = 200 ARL = 500
k k

d 0.5 1.0 1.2 0.5 1.0 1.2
2 29.5 8.3 5.4 42.25 11.45 7.4
3 47.0 13.2 8.6 64.5 17.6 11.6
4 65.5 19.2 13.0 90.0 24.9 16.6
5 86.5 25.9 17.2 117.25 33.3 22.3

first element is δ and all other elements are 0, and the scale matrix Σ is taken to be

the d dimensional identity matrix Id. When the process is in-control, we have δ = 0.

The simulation size is 1000 and the sample size n = 15. The control limits, H for

different dimensions and different values of k are shown in the Figures. We observe that

the same control limit maintains the in-control ARL of 200 for all of these spherically

symmetric distributions, thus showing the robust nature of the proposed procedure. We

observe that for smaller values of k, the charts detect the small shifts in location quickly

and for larger values they detect larger shifts efficiently. We also observe from the plots

that the behaviour of the average run length for different dimensions are very similar for

multivariate normal and t distribution when the process is out of control. However, the

average run lengths for multivariate Laplace distribution are slightly higher for higher

dimensions when the process is out of control.

5.4 Concluding Remarks

We have proposed two multivariate CUSUM control charts based on multivariate sign

vectors and signed rank vectors. From the simulations studies of the average run lengths,

we observe that both of these charts are quite efficient in detecting a small shift in location.

The parameter k shrinks the multivariate CUSUM statistic towards the origin and hence
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Figure 5.7: ARL curves for CUSUM control charts based on multivariate signed ranks
when the distribution of the process variables are multivariate normal with in-control
ARL 200.

determines the shift at which the chart is optimal. As a further study, we need to look

into the theoretical relation between the parameter k and the location shift δ. That
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Figure 5.8: ARL curves for CUSUM control charts based on multivariate signed ranks
when the distribution of the process variables are multivariate Laplace with in-control
ARL 200.

result will provide a better understanding on the selection of k. The determination of the

control limit H is based on simulations in our study. Though we observe that the control
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Figure 5.9: ARL curves for CUSUM control charts based on multivariate signed ranks
when the distribution of the process variables are multivariate t with 3 degrees of freedom
with in-control ARL 200.

limit thus obtained provides adequate results in our simulation studies, we still need to

establish some theoretical results in determining the value of H.

93



In univariate CUSUM control charts, V-masks are used to make the charts more

efficient in determining the small shifts quickly. We can construct similar V-masks for

multivariate CUSUM control charts too, but we omit that construction in the present

discussion and limit ourselves to the basic construction of a multivariate CUSUM chart.

As we have seen before, multivariate CUSUM charts are not uniquely defined and there

is a scope to explore other extensions of multivariate CUSUM charts as well.
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Chapter 6

Exponentially Weighted Moving

Average Control Charts

6.1 Introduction

The control chart based on exponentially weighted moving averages (EWMA) was defined

at first by Roberts (1959) as Z0 = θ0,

Zk = rX̄k + (1− r)Zk−1, k > 0 (6.1)

where θ0 is the target location of the process variable when the process is in-control. Zk

represents a weighted average of all previous sample means and is located a fraction of

smoothing parameter 0 < r < 1 of the distance from Zk−1 to X̄k on their connecting

straight line, 0 < r < 1 is some constant, and X̄k is the average of the k-th sample for

k = 1, 2, . . .. It can be written as

Zk = (1− r)2Zk−2 + r(1− r)X̄k−1 + rX̄k

= (1− r)kθ0 +
k∑
i=1

r(1− r)k−iX̄i
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or, equivalently,

(Zt − θ0) =
k∑
i=1

r(1− r)k−i(X̄i − θ0).

It can be seen easily that the expected value of Zk equals θ0, while the expected values

of the X̄k’s are all same as θ0 if the process is in-control.

Following the above representation we can write the standard deviation of Zk as

σZk
=

√
r

2− r
[1− (1− r)2k]σX̄ , (6.2)

where σX̄ is standard deviation of the sample averages X̄’s. As k →∞, the limiting value

of the above standard deviation can be written as

σZ =

√
r

2− r
σX̄ .

Roberts (1959) suggested control limits of µ0 ± 3σZ .

Lowry et al. (1992) proposed a multivariate version of the EWMA control chart as

a generalization of the univariate EWMA chart, which is sensitive in detecting a small

shift in process mean. Let X̄k be the sample mean of the d-dimensional k-th sample,

{Xk1, . . . ,Xkn}, then define a d-dimensional vector

vk = (1− r)vk−1 + rX̄k.

Let ΣX̄ be the covariance matrix of the k-th sample mean X̄k, then define the control

statistic

T 2
k =

2− r
r
vTkΣ−1

X̄
vk.

Here r ∈ (0, 1) is a smoothing parameter and the process is said to be out-of-control if

T 2
k > H, for some H, which is determined by the in-control ARL of the process.
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Table 6.1: ARL Values for MEWMA Charts for Bivariate Normal Distribution

r
0.2 0.4 0.6 0.8

δ H 9.65 10.29 10.53 10.58
0.0 205.94 191.82 193.29 195.81
0.1 177.17 182.42 185.05 183.41
0.5 33.22 50.83 72.59 96.01
1.0 10.25 13.42 19.16 26.98
1.5 5.49 5.62 7.30 10.07
2.0 3.78 3.57 3.81 4.90

We can observe that T 2
k converges in distribution to a chi-squared distribution with

d degrees of freedom as k → ∞. We can use the control limit H to be χ2
d,α, the (1 −

α)-th quantile of the chi-squared distribution with d degrees of freedom. However, the

performance of the proposed chart may not be optimal for small values of k. Lowry et al.

(1992) obtained some values of H using simulations to attain an average run length of

200 when the process is in-control and has a bivariate normal distribution. In Table 6.1,

we present some ARL values of the proposed chart using simulation size of 1000 from

bivariate normal distribution with in-control mean vector to be the zero vector and the

covariance matrix Σ is the identity matrix. When the process is out-of-control, the mean

vector shifts to a vector whose first element is δ and rest of the elements are zero. We

sample only one observation at every time point. Figure 6.1 shows detailed ARL curves

for different values of r for the bivariate normal distribution. We can observe that this

chart is quite efficient in detecting small shifts in the location vector. We also observe

that smaller values of r are useful in detecting very small shifts whereas a bit larger values

are better for detecting larger shifts. The choice of the smoothing parameter r depends

on at what shift we want to design our control chart to be optimal. For a good discussion

and some optimal values of r, see Lowry et al. (1992).

The control limits H were obtained for multivariate normal distributions, however,
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Figure 6.1: Average run lengths of multivariate EWMA control charts for bivariate normal
distribution.

as with other procedures discussed before, the multivariate EWMA control charts break

down when the in-control distribution departs from multivariate normality. In Figure 6.2,

we present ARL curves in the similar setting with r = 0.1 for multivariate normal, Laplace

and t distribution with 3 degrees of freedom in differen dimensions. The control limits,

H, are determined using simulations for the multivariate normal distributions to attain

an in-control ARL of 200. We observe that the ARL curves for the multivariate normal

distributions are quite nice and as expected. However, the control charts with the same

control limits even fail to attain the in-control ARL of 200 for multivariate Laplace and t

distributions. This illustrates a lack of robustness of the multivariate EWMA chart based

on sample averages. In this Chapter, we proposed two multivariate control charts based

multivariate sign vectors and signed rank vectors and illustrate their distribution-free

nature when the process variables have an elliptically symmetric distribution.
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Figure 6.2: ARL curves for multivariate EWMA chart when the distribution of the process
variable are (a) normal (b) Laplace, and (c) t distributions for dimensions d = 2, 3, 4, 5, 10,
and 20.

6.2 EWMA Charts Based on Sign Vectors

In this section we define a new exponentially weighted moving average control chart based

on multivariate sign vectors defined earlier. Suppose that in-control location vector θ0 is

known. At each time point, we sample n observations and the k-th sample is denoted by

{Xk1, . . . ,Xkn}. Then we propose a multivariate EWMA chart as follows:

• Define a d-dimensional vector S0 = 0.
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• After the k-th sample {Xk1, . . . ,Xkn} is observed, define

Sk = (1− r)Sk−1 + r
1

n

n∑
i=1

Sign(Xki − θ0)

= (1− r)Sk−1 +
r

n

n∑
i=1

Xki − θ0

‖Xki − θ0‖

where r ∈ (0, 1) is a smoothing parameter.

• Define a d× d matrix as

Ck =
1

nk

k∑
j=1

n∑
i=1

Sign(Xji − θ0){Sign(Xji − θ0)}>

=
1

nk

k∑
j=1

n∑
i=1

(Xji − θ0)(Xji − θ0)>

‖Xji − θ0‖2
.

• The control statistic is defined as Yk = [(2− r)n/r]S>kC−1
k Sk.

• The process is said to be out-of-control if Yk > H, where H is a predetermined

constant to attain an acceptable in-control ARL.

Theorem 6.2.1 LetXji for i = 1, . . . , n and j = 1, . . . , k are independent and identically

distributed with a d-dimensional distribution F . Then the variance-covariance matrix of

the vector Sk, defined above, is given by

r(1− (1− r)2k)

(2− r)n
Σ1

where

Σ1 = E

[
(X − θ0)(X − θ0)>

‖X − θ0‖2

]
X having the distribution F . As k →∞, Var(Sk) converges to {r/((2− r)n)}Σ1.
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Proof. Let Zk be the average sign vector for the k-th sample, that is,

Zk =
1

n

n∑
i=1

Xki − θ0

‖Xki − θ0‖
.

Then Sk can be written as

Sk = (1− r)Sk=1 + rZk

= (1− r)2Sk−2 + r(1− r)Zk−1 + rZk

=
k∑
j=1

r(1− r)k−jZj

Therefore,

Var(Sk) =
k∑
j=1

r2(1− r)2(k−j)Var(Zj)

=
r(1− (1− r)2k)

2− r
Var(Z1)

=
r(1− (1− r)2k)

(2− r)n
Σ1.

As k →∞, Var(Sk) converges to {r/((2− r)n)}Σ1. �

Note that if F is a spherically symmetric distribution around θ0, then Σ1 = (1/d)Id

and the variance covariance matrix of Sk is given by

r(1− (1− r)2k)

(2− r)nd
Id (6.3)

and asymptotically,
r

(2− r)nd
Id. (6.4)
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Therefore, when the in-control distribution of the process variables are spherically sym-

metric around θ0, we can define a simplified EWMA control chart statistic as

Y ∗k =
(2− r)nd

r
S>k Sk,

which will have a chi-squared distribution with d degrees of freedom as k → ∞. Note

that, the distribution of (Xji − θ0)/‖Xji − θ0‖ is uniform over the d-dimensional unit

sphere and does not depend on the distribution of Xji. Thus, the statistic Yk or Y ∗k are

distribution-free even in finite samples.

If the observations are from elliptically symmetric distributions with a known scale

matrix Σ, we can transform the vector of process variables by Σ−1/2 to have spherically

symmetric distributions and again use the control statistic Y ∗k as discussed above with

the transformed variables. However, if the scale matrix Σ is unknown or the underlying

distribution is not elliptically symmetric, Σ1 may not be known or may not have a simple

form as above. In such a situation, we plug in a consistent estimator, Ck, of Σ1 based

on all n× k observations obtained until the k-th sample to construct the control statistic

Yk. Thus in the construction of our proposed EWMA chart, we do not need to make any

specific distributional assumptions other than some regularity conditions for the large

sample results to hold. It is easy to observe that, as k → ∞, Yk converges to a chi-

squared distribution with d degrees of freedom and we can use a large sample upper

control limit of UCL = χ2
d,α to have an in-control ARL of 1/α.

To illustrate the proposed control chart based on the statistic Yk, we present an exam-

ple with 100 simulated sample of size n = 15 each from the bivariate normal distribution

with covariance matrix Σ = I2. The first 50 samples are with mean (0, 0)> and the last

50 samples are with mean (0.5, 0)>. We have taken r = 0.2. Figure 6.3 shows that the

proposed chart detects this small shift in location quite easily for this example. The upper
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control limit is taken as UCL = χ2
2,0.005 = 10.5966.
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Figure 6.3: An example EWMA control chart based on multivariate sign statistic.

Now we present a study on the average run lengths of the proposed control charts

through simulations. We have considered multivariate normal, Laplace and t distribution

with 3 degrees of freedom. For all of these distributions, the location vector is taken to

be θ, whose first element is δ and all other elements are 0, and the scale matrix Σ is

taken to be the d dimensional identity matrix Id. When the process is in-control, the

location vector θ is the vector of all zeros that is, δ = 0. The simulation size is 1000.

The upper control limit is taken to be χ2
d,0.005 to have an asymptotic in-control ARL of

200. The ARL curves are presented in Figures 6.4, 6.5, 6.6 for different dimensions d

and the smoothing parameter r. We observe that behaviour of the average run lengths

with the shift in location are very similar for these 3 spherically symmetric distributions,
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Figure 6.4: ARL curves for EWMA control charts based on multivariate signs when the
distribution of the process variables are multivariate normal with in-control ARL 200 and
sample size n = 15.
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Figure 6.5: ARL curves for EWMA control charts based on multivariate signs when the
distribution of the process variables are multivariate Laplace with in-control ARL 200
and sample size n = 15.
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Figure 6.6: ARL curves for EWMA control charts based on multivariate signs when the
distribution of the process variables are multivariate t with 3 degrees of freedom with
in-control ARL 200 and sample size n = 15.
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which illustrates the distribution-free nature of the proposed method. We observe that

the asymptotic upper control limit works best with r = 0.3 to attain the in-control ARL

of 200. As r decreases, the in-control ARLs increase, however, all of these figures suggest

that the proposed control charts are quite efficient in detecting small shifts in location.

6.3 EWMA Charts Based on Signed Rank Vectors

Now we consider the signed rank vectors to propose another multivariate EWMA control

chart. Suppose that in-control location vector θ0 is known. At each time point, we sample

n observations and the k-th sample is denoted by {X1,k, . . . ,X1,n}. Define the signed

rank of a vector x ∈ Rd with respect to the k-th sample as

Qn(x) =
1

2n

n∑
i=1

[
x−X i,k

‖x−X i,k‖
+

x+X i,k − 2θ0

‖x+X i,k − 2θ0‖

]
.

Then we propose a multivariate EWMA chart as follows:

• Define a d-dimensional vector R0 = 0.

• After the k-th sample {X1,k, . . . ,Xn,k} is observed, define

Rk = (1− r)Rk−1 + r
1

n

n∑
i=1

Qn(X i,k)

= (1− r)Rk−1 +
r

2n2

n∑
i=1

n∑
j=1

X i,k +Xj,k − 2θ0

‖X i,k +Xj,k − 2θ0‖

where r ∈ (0, 1) is a smoothing parameter.

• Define a d× d matrix as

Bk =
1

nk

k∑
j=1

n∑
i=1

Qn(X i,j){Qn(X i,j)}>.
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• The control statistic is defined as Wk = [(2− r)n/r]R>kB−1
k Rk.

• The process is said to be out-of-control if Wk > H, where H is a predetermined

constant to attain an acceptable in-control ARL.

Let us define the conditional expectation,

U (2)(X1) = E

[
X1 +X2 − 2θ0

‖X +X2 − 2θ0‖
|X1

]
.

Define

Σ2 = E(U (2)(X1){U (2)(X1)}>).

Then we have the following Theorem on the variance covariance matrix of the vector Rk

defined above.

Theorem 6.3.1 Let X i,j for i = 1, . . . , n and j = 1, . . . , k are independent and identi-

cally distributed with a d-dimensional distribution F . Then the variance-covariance matrix

of the vector Rk, defined above, is given by

r(1− (1− r)2k)

(2− r)n
Σ2.

As k →∞, Var(Rk) converges to {r/((2− r)n)}Σ2.

The derivation of Σ2 follows from Chaudhuri (1992) and the proof of the Theorem is

almost identical to the proof of Theorem 6.2.1. Some examples and simplified versions of

Σ2 are derived in Chaudhuri (1992), however, except for multivariate normal distributions,

derivation of Σ2 is quite complicated and we use a consistent estimator Bk of Σ2 to

construct the control statistic Wk. Following Möttönen et al. (1997), it is easy to observe

that Wk has a limiting chi-squared distribution with d degrees of freedom as k → ∞,
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when the process is in-control. Thus we can use a large sample upper control limit of

UCL = χ2
d,α to have an in-control ARL of 1/α.

To illustrate the proposed control chart based on the statisticWk, we present an exam-

ple with 100 simulated sample of size n = 15 each from the bivariate normal distribution

with covariance matrix Σ = I2. The first 50 samples are with mean (0, 0)> and the last

50 samples are with mean (0.5, 0)>. Figure 6.7 shows that the proposed chart detects this

small shift in location quite easily for this example. The upper control limit is taken as

UCL = χ2
2,0.005 = 10.5966.
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Figure 6.7: An example EWMA control chart based on multivariate signed rank statistic.

Now we present a study on the average run lengths of the proposed control charts

through simulations. We have considered multivariate normal, Laplace and t distribution

with 3 degrees of freedom. For all of these distributions, the location vector is taken to
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be θ, whose first element is δ and all other elements are 0, and the scale matrix Σ is

taken to be the d dimensional identity matrix Id. When the process is in-control, the

location vector θ is the vector of all zeros that is, δ = 0. The simulation size is 1000. The

upper control limit is taken to be χ2
d,0.005 to have an asymptotic in-control ARL of 200.

The ARL curves are presented in Figures 6.8, 6.9, 6.10 for different dimensions d and

the smoothing parameter r. We observe that the behaviour of the average run lengths

with the shift in location are very similar for these 3 spherically symmetric distributions,

which illustrates the distribution-free nature of the proposed method. We observe that

the asymptotic upper control limit works best with r = 0.3 to attain the in-control ARL

of 200. As r decreases, the in-control ARLs increase, however, all of these figures suggest

that the proposed control charts are quite efficient in detecting small shifts in location.

6.4 Concluding Remarks

In this chapter, we have proposed two multivariate EWMA control charts based on multi-

variate signs and signed rank vectors. We have already noted that if the vector of process

variables,X, is spherically symmetric about θ0, the sign vector (X−θ0)/‖X−θ0‖ is uni-

formly distributed over the d-dimensional unit sphere. Thus, the EWMA statistic based

on signed vectors, Sk, becomes distribution free when the process is in-control. We do

not need any large sample approximation for the distribution free nature of our proposed

control statistic and that makes it quite useful for a large number of distributions. Sim-

ilarly, signed ranks are also distribution free when the process is in-control. In practice,

it may be useful to obtain the upper control limits of the proposed charts for finite small

samples using simulations or other numerical methods and we do not have to rely on

asymptotic distributions. For phase I control charts, we assumed that the target location

vector θ0 is known and the scale matrix Σ is also known. If X is elliptically symmetric

with scale (or, scatter) matrix Σ about θ0, then Σ−1/2(X − θ0) is spherically symmetric
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Figure 6.8: ARL curves for EWMA control charts based on multivariate signed ranks
when the distribution of the process variables are multivariate normal with in-control
ARL 200 and sample size n = 15.
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Figure 6.9: ARL curves for EWMA control charts based on multivariate signed ranks
when the distribution of the process variables are multivariate Laplace with in-control
ARL 200 and sample size n = 15.
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Figure 6.10: ARL curves for EWMA control charts based on multivariate signed ranks
when the distribution of the process variables are multivariate t with 3 degrees of freedom
with in-control ARL 200 and sample size n = 15.
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about 0. Thus if we know Σ and θ0, we can transform the observations accordingly to

have spherical symmetry and the distribution-free nature of the statistics are preserved.

Note that the proposed multivariate sign vectors and the signed rank vectors are in-

variant under orthogonal transformations, but they are not invariant under general affine

transformations of the data. For Phase I control charts, when θ0 and Σ are known, this

lack of affine invariance does not pose any problem as we can transform the vector of pro-

cess variables by Σ−1/2 as described above. However, for Phase II control charts or when

the scale matrix Σ is unknown we need to consider affine invariant procedure to avoid the

lack of efficiency in the presence of high correlations among the process variables. Zou

and Tsung (2011) considered an affine invariant version of multivariate ranks based on

Hettmansperger and Randles (2002). However, their procedure is computationally quite

complex. We may consider the transformation retransformation approach introduced in

Chapter 4. However, we can use some simple techniques to attain affine invariance. Con-

sider any consistent estimate Σ̂ of Σ. For example, a sample variance covariance matrix

if the second moments exist or minimum covariance determinant estimator (Rousseeuw

and Van-Driessen, 1999) can be used and observations can be transformed using Σ̂−1/2.

In this approach, the individual sign vectors or the statistics Sk and Rk are not invariant

under affine transformations, but the control statistics Yk and Wk are affine invariant.

In this Chapter, we have used the upper control limit of the proposed charts based

on the limiting distributions. However, we need to consider the design aspect of these

charts in more detail and derive the control limits for different values of r for small to

finite samples. The performance of the proposed methods also depend on the sample size

n as the convergence of the estimated covariance matrices Ck and Bk depends on n. We

propose to discuss the effect of n on the choice of control limits in a more detailed future

study.
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Chapter 7

Conclusion

7.1 Concluding Remarks

Univariate control charts are simple but immensely useful statistical tool in industrial pro-

cess monitoring and quality improvement. With technological advancements, collection

and storing of large databases with several process variables have become easier over the

years, and process engineers are increasingly feeling the need to exploit the dependence

structure of the process variables to monitor the process better. For a long time, only

multivariate control chart available for this purpose was Hotelling’s T 2 chart based on

T 2 statistic. In the late 1980s and 1990s, there were some developments in multivari-

ate CUSUM and EWMA charts, which we have discussed in detail in Chapters 1 and 2.

However, all of them were based on the assumption of multivariate normality for the un-

derlying distribution of the process variables, which is usually very difficult to validate in

practice and there are many instances when one knows at the outset that the underlying

distribution differs from normal significantly. This gap in the literature creates a demand

for developing control charts which do not depend on a specific distributional assumption.

They are quite often referred as nonparametric control charts. We have also discussed

some of the nonparametric control charts in the univariate set up in Chapter 1.
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In Chapter 2, we have discussed some popular multivariate control charts in detail

and compared their performances with respect to average run lengths (ARL) for different

dimensions and multivariate distributions. In particular, we have discussed the CUSUM

control charts proposed by Crosier (1988) and EWMA control charts proposed by Lowry

et al. (1992). We have observed that they perform as intended when the distribution is

multivariate normal, but they fail even to attain the in-control ARL when the distributions

are multivariate Laplace or t, and thus they produce a large false-alarm rate. We have

chosen these multivariate distributions because their shape is very close to the multivariate

normal distribution but t distribution has a heavier tail and Laplace distribution has a

sharper peak. Failure to perform in these very normal-like distributions makes these

procedures very non-robust. Liu (1995) was among the first few to propose a control

chart, which does not depend on normality. Her proposal was based on depth functions,

simplicial depth (Liu, 1995) or half-space depths (Tukey, 1975). Though the properties of

the proposed control charts are quite attractive due to their distribution-free nature, they

did not provide any theoretical or simulation results on average run lengths of the proposed

methods for their out-of-control behaviours. Most of the depth functions (e.g. simplicial,

half-space or majority depth) are computationally intensive and nearly impossible to

compute exactly for dimensions greater than 2. Therefore, these control charts based

on data depths have limited use and infeasible for processes with more than 2 process

variables.

In this work, we consider a notion of multivariate spatial rank function (Oja, 1999),

which retains some important features of the univariate rank function and also it is com-

putationally very simple with time complexity of O(n) for any dimension d ≥ 2. We

propose a control chart following the idea of Liu (1995) using the univariate ranks of the

lengths of the multivariate rank vectors. It can be shown that the r-chart proposed in

Chapter 3 is equivalent to the Hotelling’s T 2 chart when the distribution is multivariate
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normal and also it is equivalent to the T 2 chart with optimal control limits if the under-

lying distribution is spherically symmetric. Therefore, this is an optimal control chart in

terms of out-of-control ARL whenever the distribution is spherically symmetric and the

shift occurs only in the location vector. We have also discussed some extensions of the

r-chart to Q-chart and S-chart, where S-charts are analogous to CUSUM charts and de-

tects small shifts better than r-charts. All of our theoretical results and simulations show

that the proposed procedures are very promising in terms of computational simplicity in

high dimensions as well as performance in detecting out-of-control signals.

A major inadequacy of the proposed multivariate rank function is that it is invariant

under orthogonal transformations but not invariant under general nonsingular transfor-

mations, which makes the proposed control charts optimal only for spherically symmetric

distributions, that is, they are optimal only when the scatter matrix (or, the covariance

matrix) Σ associated with the distribution is λId for some constant λ. To resolve this

issue, one can use affine invariant multivariate ranks as discussed in Chakraborty (2001).

The optimal behaviour of the proposed control charts as discussed above then extends

to the elliptically symmetric distributions or when Σ is a general non-singular positive

definite matrix. It still retains the computational simplicity with only added complexity

of computing an estimate of the scatter matrix Σ, if that is unknown.

On a completely different notion, we proposed some Shewhert type multivariate con-

trol charts based on multivariate sign and signed rank vectors, which are similar to the

Hotelling’s T 2 charts. We have noted that these control charts are distribution-free when

the underlying distribution of the proposed variables are spherically symmetric. Even

when the the distribution is elliptically symmetric with known scale matrix Σ, we can

transform the observations with Σ−1/2 to make them spherically symmetric and apply our

proposed method without any modification. However, when the scale matrix Σ is not

known, we construct some affine invariant versions of multivariate signs and and signed
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ranks based on transformation re-transformation methodology proposed by Chakraborty

(2001). We have also discussed some procedures to choose the optimal data-driven trans-

formation matrix. These charts possess computational simplicity as well as large sample

properties similar to the multivariate sign and signed rank tests of location. They may

not be optimal when the distribution is normal, but they may provide very robust control

charting techniques for deviations in distributional assumptions.

Two extensions of multivariate CUSUM control charts were proposed in Chapter 5

extending the definition of a multivariate CUSUM chart as proposed by Crosier (1988).

We suggested the control limits of the proposed charts based on simulation studies and

then studied their performances for different distributions. We have observed that the

proposed charts are very robust and perform similarly across the distributions. They

detect the small shifts in location quite efficiently.

In Chapter 6, we have discussed in detail the multivariate EWMA control chart pro-

posed by Lowry et al. (1992). We have observed that while they are efficient in detecting

a small shift in location when process variables are distributed as multivariate normal,

their performance breaks down if the underlying distribution deviates from normality.

We propose two EWMA control charts based on multivariate sign and signed rank vec-

tors. We observe through simulation studies their robust behaviour under distributional

assumptions. The proposed procedures are again computationally very simple. We have

also discussed the issue of affine invariance in this context.

Overall, our objective in this work was to propose some multivariate control charts

which exploits the dependence structure of the underlying process variables but do not

depend on the assumption of multivariate normality. While the proposed charts are not

fully distribution-free, they do not depend on the specific distribution as long as the

underlying distribution is elliptically symmetric. We have constructed Shewhert-type,

CUSUM and EWMA control charts.
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7.2 Further Research

In the current work, we need to investigate in detail either theoretically or using sim-

ulations on the effect of sample sizes in determination of small sample control limits of

the proposed charts based on multivariate sign and signed rank vectors. We also need

to investigate further the effect of the smoothing parameter r on the construction of the

EWMA charts. As a simple extension, one can use different values of r for different pro-

cess variable (or, for different coordinates of the vector X). While the theoretical details

are not so difficult to work out, the practical implementation of such a choice might be

difficult.

We would also like to consider theoretical determination of the average run lengths

and their relation with the parameter k in the construction of the multivariate versions

of CUSUM control charts based on multivariate sign and signed rank vectors. To attain

better performance, V-masks are used in the construction of univariate CUSUM control

charts, and we would like to consider those options as well. The issue of affine invariance

can be dealt with similarly as we have done in Chapter 4 or 6.

We have mentioned in Chapter 1 that Kolmogorov-Smirnov test statistic and/or

Cramer-von-Mises test statistic can be used to construct nonparametric control charts for

the univariate processes. Dhar et al. (2014) proposed multivariate versions of Kolmogorov-

Smirnov and Cramer-von-Mises statistics for comparing multivariate distributions based

on multivariate ranks and quantile vectors. We can use those definitions to construct

multivariate control charts, which will be truly nonparametric in nature. Our earlier pro-

posals might be good enough to detect location shifts, but control charts based on these

statistics would be able to detect any kind of distribution shift, eg. location, scale or

both.
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