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ABSTRACT

In this thesis we employ the method of asymptotic coordinate expansions in time and

space to determine the detailed structure of the solution to linearised dambreak problem

at the initial stage, in the far fields and at large time. We consider the situation where

an inclined dam separates a horizontal layer of incompressible and inviscid fluid from a

shallower horizontal layer of the fluid. The fluid is initially at rest and sits on a horizontal,

impermeable base, and is bounded above by a free surface. We consider the linearised

dambreak problem, which corresponds to a dam with a small step height and slope. We

formulate the problem for the free surface and fluid velocity potential, to which the exact

solution is found via the theory of complex Fourier transforms. This gives the free surface

and fluid velocity potential in complex Fourier integral form. We examine the detailed

asymptotic form of the exact solution for the free surface at the initial stage, in the

far field and at large time via estimating the complex Fourier integral. The asymptotic

approximations are then compared to a numerical evaluation of the exact solution for the

free surface. We also consider the case where the free surface is described by the linearised

shallow water theory, and the results are compared to the full linearised theory.
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CHAPTER 1

INTRODUCTION

1.1 The Dambreak Problem

A dam is a barrier that separates two horizontal layers of fluid from each other. Often,

a dam is a man made structure that is used to hold a body of water in place, forming

a reservoir or lake, which can then be used to support local communities. Dams can

be used in order to supply water to local communities, or act as a flood defence. They

can also be used to supply water for farmland (irrigation) and to allow hydro-power

electricity, for further examples, see [3]. However, given that dams are as tall as 300m in

the case of the Nurek dam in Tajikistan [4], a failure would cause catastrophic flooding

and environmental damage. Largely regarded as the worst dam failure in history, the

Banqiao Dam in China failed due to severe weather conditions in 1975. From [5], it is

reported that 26,000 people died from the initial floods which then increased to around

220,000 deaths due to the subsequent environmental damage. There are other causes for a

dam failing, for example poor design or wear, and so with dams being built throughout the

world, and such catastrophic consequences possible in the event of a failure, the possible

outcomes of a dam failure need to be analysed.

The problem of a dam failure is modelled mathematically as the classical dambreak

problem. It is used to model the situation where a mass of fluid, lying on a impermeable

bed, is held in place by a solid boundary (a dam) so that there is a change in the fluid
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surface elevation across the dam site. The dam breaks at an initial time and the aim is

to determine the behaviour of the subsequent flow; that is, to determine the fluid velocity

field and, in particular, the free surface behaviour. To this end we must formulate and

analyse the mathematical statement that describes the dambreak flow. The dambreak flow

is formulated mathematically by the conservation of mass and momentum equations for

the fluid flow, together with appropriate boundary and initial conditions. This leads to a

nonlinear problem to solve; it is therefore convenient to make some reasonable assumptions

to reduce the difficulty in solving the dambreak problem. As this is a water wave problem,

the viscous effects are ignored and the fluid is assumed to be incompressible. It is also

assumed that the dam disappears instantly at the initial time. These assumptions are

standard in dambreak problems, see for example [38], [27], [11], [39], [6], [17], [9], [8].

The dambreak problem is, in essence, a model of a gravitationally driven flow, so the

model can be adapted to model other flows of this kind. Flows caused by landslides or

avalanches can be modelled by modifying the dambreak problems, see [16]. This link with

other flow problems underlines the importance of studying the behaviour of a dambreak

flow.

1.2 Literature Review

The majority of work on the dambreak problem employs from the outset the shallow

water approximation, see for example [35], [34], [38], [40], [39], [41], [17], [9], [10], [43],

[42]. This assumes that the fluid pressure is hydrostatic on the basis that the vertical

acceleration of the fluid has a negligible effect on the pressure. By integrating the equation

for conservation of mass and horizontal momentum over the fluid thickness and then

applying the hydrostatic pressure assumption, we obtain the shallow water equations.

These approximate the horizontal fluid velocity and the free surface. A detailed derivation

is given in [15], (p.22). Furthermore, assuming that the horizontal component of velocity

and the surface elevation are small, the shallow water equations can be linearised and
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combined to give the linear wave equation as the governing partial differential equation

for the free surface evolution (see [15], p.24).

In the classical text on the theory of water waves by Stoker, [15] (Chapter 10 p.308),

the shallow water equations are used to model the case of a two-dimensional dambreak

problem, where a mass of fluid, initially at rest, sits on a flat impermeable bed, and is

held in place by a piston so that there is a constant fluid depth (which extends infinitely

far in the horizontal direction) on one side of the piston, and there is zero fluid depth on

the other side of the piston. The piston is pulled away from the fluid so that a depression

wave is caused. In particular, the case where the piston is pulled away impulsively was

considered in detail. This corresponds to a dambreak problem where the dam disappears

instantly. The problem was solved by the method of characteristics so that the surface

elevation and horizontal component of fluid velocity were determined. It was found that

the wavefront is tangent to the dry bed and the fluid surface forms a parabola in the region

between the wave front and where the fluid remains undisturbed. Interestingly, it was

found that the depth of the fluid at the initial site of the piston is always four-ninths of

the initial depth of the undisturbed fluid. However, the author did note that the shallow

water theory is most likely to be inaccurate during the early stages after the dambreak.

The shallow water theory developed in [15] has since been used in many other situa-

tions, for example a dambreak problem on a bed with a step, [8], for arbitrary slopes of

the bed, [6], dambreaks over a bed with a drop, [9], and for the modified shallow water

equations over a dry bed, [10].

Numerical approaches have also been adopted to gain insight into dambreak flows. In

[7], the shallow water equations were approximated numerically to predict the potential

damage caused by a dambreak on the village Tribalj in Croatia, and their results were

used in the urban planning of the flood risk areas. Many other numerical approaches in

the shallow water theory have been developed, see for example [22], [34], [35], [36], [37].

Closely related to the work presented in this thesis is the asymptotic analysis developed

in [1] to approximate the free surface of a dambreak flow, when the free surface evolution
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is governed by the KdV equation. The KdV equation is obtained when dispersive effects

are incorporated into the shallow water theory, a derivation of which is given in [2] (p.

460). In [1], the method of matched asymptotic expansions was used to approximate the

large time development of the KdV equation.

All the work referenced above is fundamentally based upon the shallow water approx-

imation. In terms of the dambreak problem, the relevance of the nonlinear shallow water

equations was investigated in [13]. Here, the authors compared Navier-Stokes simula-

tions with an analytical solution and numerical approximations of the nonlinear shallow

water equations, with a dry bed downstream from the dam. The authors found that

the Navier-Stokes simulations do not predict the parabolic behaviour in the free surface,

as predicted by the analytical solution to the nonlinear shallow water equations. Their

graphs, which depict the free surface behaviour for a small time, also suggests a differ-

ence in the wavefront structure between the two simulations. The nonlinear shallow water

equations show the wave front being tangent to the bed, in agreement with [15]. However,

the Navier-Stokes simulations show something of a bore at the wavefront in the initial

stage, which smooths out over time. The authors also noted that experimental data from

the initial stages of dambreak, [20], also differs from the predictions of the shallow water

equations. Thus, there is a case to address these discrepancies by performing an analysis

of the dambreak problem formulated from the full water wave equations. Henceforth we

will refer to this as the full dambreak problem. Among the most notable works on the full

dambreak problem is that of Pohle, [14], and Stoker, [15] (Chapter 12). In, [15] (Chapter

12), the full dambreak problem was considered, and an approximate solution was con-

structed during the initial stages after the break. The equations of motion were assumed

to have power series solutions in time, t, for the pressure and the particle displacement,

and each were solved up to O (t2) as t → 0, but it was noted by the author that these

solutions become singular at the point where the dam meets the bed (at the wave front).

As far as we are aware, this is the first work that constructs the solution at the initial

stage of the full dambreak problem in this way. Hunt, [17] and [18], also constructed an
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asymptotic approximation to the full dambreak problem as t→ 0; however there appears

to be little subsequent work on the full dambreak problem using this technique. This was

also noted in [11], where it is reported that ’there are very few asymptotic analyses of the

dambreak problem’.

One paper which does take this approach, and is closely related to this thesis, is that

by Korobkin and Yilmaz, [11]. The authors consider the case where a vertical dam sits

on a horizontal bed and separates a layer of fluid, which extends horizontally to infinity,

from a region where there is no fluid. The authors construct a small time approximation

to this dambreak problem by assuming a solution to the fluid velocity potential and the

free surface in a series expansion in the time variable. The problem is solved at each order

and a second order outer solution is obtained. This outer solution is singular at the point

where the dam meets the bed, (at the wave front) due to logarithmic singularities, which is

the same point where the series solution in Stoker’s work, [15], became singular. In [15],

the author said of this singular point that "there would be turbulence and continuous

breaking at the front of the wave anyway so that any solution ignoring these factors

would be unrealistic for that part of the flow.". The authors in [11] however do construct

a leading order approximation in an inner region around this singular point. The authors

show that the outer and inner region solutions asymptotically match according to Van

Dyke’s matching principle [12], and that the inner region solution describes a jet formation

that moves along the dry bed. This result is in agreement with the two-fluid Navier-Stokes

simulations in [13], which also suggests a jet formation propagating along the bed, and

the experimental data [20] which shows a jet formation propagating at the wave front.

Korobkin has also used the method of matched asymptotic expansions to approximate the

initial stage of free surface flows in other related problems; a dambreak problem where a

dam separates two immiscible fluids, [27] and the situation where a horizontal flat plate,

[28], and a floating wedge, [29], enter a body of liquid. Other free surface flows have been

considered in this manner to determine the initial stage development. The situation where

a vertical plate accelerates uniformly into a strip of inviscid and incompressible fluid is
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investigated by Needham and King, [23], where the formation of a rising jet on the plate

is found during the initial stages of the free surface flow. The method is also applied to

the situation where a vertical plate and an inclined plate are initially at rest and then

move impulsively with constant velocity into a strip of inviscid and incompressible fluid,

[24] and [25], where again the formation of a rising jet on the plate is found during the

initial stages. The work in [25] is then extended by Needham, [26], to approximate the

large time development of the free surface.

1.3 Thesis Overview

In this thesis, we consider a linearised two-dimensional full dambreak problem. We begin

by formulating the linearised full dambreak problem, to which we apply the complex

Fourier transform to obtain the exact solution for the fluid velocity potential and free

surface in Fourier integral form. Uniform asymptotic approximations to the free surface

is then obtained in detail for small time, in the far fields and for large time. As a

supplement, the exact free surface solution is also computed numerically, with suitable

error bounds, and the numerical solutions are then used to compare with the asymptotic

forms in the small and large time limits. The numerical solutions also provide a (error

controlled) link between the asymptotic form for small time and the asymptotic form

for large time. In addition, we write down (trivially) the free surface solution to the

corresponding linearised shallow water dambreak problem. We are then able to compare

this directly with the asymptotic forms of the exact free surface solution to the linearised

full dambreak problem in both the small and large time limits. We also make a comparison

with the numerical solution of the linearised full dambreak problem.

In Chapter 2, we introduce and formulate the full dambreak problem. Here, we con-

sider a two-dimensional dambreak problem, where the dam is inclined, and the fluid is

initially at rest and at distinct constant depths either side of the dam. The fluid lies on a

horizontal impermeable base and is bounded above by a free surface, as shown in Figure

6



(2.1). We assume that the dam disappears instantly at the initial time and there is a

subsequent flow. Our aim is to determine the solution for the free surface and the fluid

velocity field of the fluid. We begin by formulating the dambreak problem for an incom-

pressible and inviscid fluid. The fluid velocity field is governed by the conservation of mass

(continuity equation) and conservation of momentum (Euler equations). The only force

driving the flow is gravity, so that, as the fluid is initially at rest, the fluid velocity field is

subsequently irrotational. This allows the introduction of a velocity potential, from which

we obtain the governing equation for the velocity potential as Laplace’s equation, with

appropriate initial conditions and boundary conditions. We then non-dimensionalise this

nonlinear problem with respect to the initial depth of the fluid layer forward of the dam.

This nonlinear problem depends upon two parameters, the dimensionless step length and

step height of the dam.

In Chapter 3, we consider the situation where the dam has a small dimensionless

step height and an O(1) step length. In this situation the full dambreak problem may be

linearised to obtain the linearised full dambreak problem. We then apply complex Fourier

transforms to the linearised full dambreak problem. Once the transformed problem is

solved we apply the inverse Fourier transform to obtain exact solutions for the free surface

and fluid velocity potential to the linearised dambreak problem in integral forms. At this

point we turn our attention to the detailed structure of the solution for the free surface.

In Chapter 4, we construct a uniform asymptotic approximation to the free surface

during the initial stages of the dambreak flow as time t → 0+. Expanding the integrand

as t→ 0+, the free surface solution emerges as an asymptotic series in t. It becomes clear

from this expansion that the asymptotic structure is made up of five distinct asymptotic

regions. There are two inner regions, which are small regions around the initial corners of

the free surface, and there are three outer regions away from the initial corners. We first

determine the asymptotic development of the free surface up to O (t2) in the outer regions,

and then in the inner regions. We demonstrate that Van Dyke’s asymptotic matching

principle [12] is satisfied accordingly. The results reveal an O (t2) evolution of the free
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surface in the outer regions, and an O (t2 log t) evolution in each of the inner regions,

where we uncover incipient jet formation and collapse. A qualitative sketch and graphs

depicting the short time behaviour of the free surface are given, and the solution exhibits

behaviour which accords with that reported in [11], where jet formation is observed in a

similar problem. This also agrees with the experimental data in [20], in which the authors

describe incipient jet formation in the free surface at the wavefront.

In Chapter 5, we construct a uniform asymptotic approximation to the free surface in

the far fields, as |x| → ∞. This is achieved via a detailed application of the method of

steepest descents. It is established that the asymptotic approximation in the far fields,

as |x| → ∞, consists of three distinct asymptotic regions, namely t = o(1), t = O(1)

and t = [o(1)]−1 as |x| → ∞. The asymptotic development is derived in each region,

and it is verified that asymptotic matching is satisfied between each region according to

Van Dyke’s principle [12]. It is established that the free surface differs from the initial

conditions by an exponentially small order in x, as |x| → ∞ in the far fields.

In Chapter 6, we construct a uniform asymptotic approximation to the free surface

for large time, as t → ∞. The detailed structure consists of five distinct asymptotic

regions, three outer regions and two inner regions. We find an outer region where the

free surface oscillates, and this region connects to two inner regions where the free surface

is described by Airy functions and their integrals. Each inner region then connects to a

corresponding outer region which extends into the far field. In these outer regions the free

surface differs from the initial conditions by an exponentially small order in t, as t→∞.

It is also verified that asymptotic matching is satisfied between each region according to

Van Dyke’s principle [12]. A sketch detailing the asymptotic structure of the free surface

at a large time is given and graphs of the free surface are also presented.

In Chapter 7, we give a detailed summary of the exact solution and the asymptotic

approximations obtained in Chapters 3-6. Sketches and graphs are given to illustrate the

detailed free surface structure for t→ 0 and t→∞.

In Chapter 8, we perform a numerical evaluation of the exact free surface solution
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obtained in Chapter 3. We employ Simpson’s rule and give a precise error bound. The

numerical evaluation is performed for various times and graphs for each time are shown.

Comparisons are made with the asymptotic approximations, and excellent agreement is

observed.

In Chapter 9, we consider the problem where the free surface, with the same initial

conditions as in Chapter 3, is governed by the linear wave equation associated with the

linearised shallow water theory. The problem is solved by D’Alembert’s general solution,

and graphs are given for various times. Sketches of the solution are given and illustrate

the free surface behaviour for t → 0+ and t → ∞. A detailed comparison is then

made between the solution to the linearised shallow water theory, and the solution to the

linearised full theory. This involves comparisons, in particular, as t→ 0+ and as t→∞.

Finally it is instructive to compare the results in this thesis to experimental studies

performed on dambreak problems. The dambreak problem has been analysed experimen-

tally a number of times, however no experiments have so far been found that have exactly

the same initial fluid displacement as considered in this thesis. Most relevant to this thesis

is the experimental study by Stansby, Chegini and Barnes, [20]. Here, the authors set

up a flume with a horizontal base, and had a metal plate acting a a dam. Here water

was initially at rest, at different depths, either side of the dam, and the dam was then

rapidly drawn vertically upwards out of the water via a pulley. The subsequent flow was

visualised by a laser light sheet and recorded on video camera. In the short time they

observed a jet formation at the base of the dam. This is very similar behaviour to that

which is predicted in this thesis, where after a short time the asymptotic and numerical

approximations show an incipient jet formation and collapse in the free surface in regions

around the initial corners of the free surface. The authors also compared their experi-

mental results to analytical results of the nonlinear shallow water equations. Here, the

authors found that the experimental and analytical results had a close agreement after

a certain period of time, however there was more significant difference between the two

during the initial stages after the dambreak. We find similar behaviour in this thesis
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where the full linearised theory and the linearised shallow water theory, as both t → 0+

and t→∞, agree at leading order in all outer asymptotic regions, but may differ at O(1)

in thin inner regions located at the upstream and downstream transition waterfronts.
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CHAPTER 2

FORMULATION OF THE DAMBREAK PROBLEM

Throughout this thesis we consider a fluid which is incompressible and inviscid. Further,

the only external force acting on the fluid is gravity. Specifically, we consider the situation

when a body of fluid is initially at rest above an impermeable rigid and horizontal bound-

ary, and is bounded above by a free surface, which initially is stationary, and represents a

transition from one uniform depth to another uniform depth. The initial displacement of

the free surface varies only in one horizontal space dimension. This problem is generally

referred to as the two-dimensional dambreak problem. The spatial domain is specified by

the Cartesian coordinate system (x, z), with z meaning distance vertically upwards and

x meaning distance horizontally, whilst t ≥ 0 represents time. A fixed position in the

spatial domain will be denoted as r = (x, z) = xi + zk, where i = (1, 0) and k = (0, 1)

represent unit vectors in the x and z directions respectively. The velocity field of the fluid

is denoted as u = (u(x, z, t), w(x, z, t)) = u(x, z, t)i + w(x, z, t)k, the free surface of the

fluid is located at z = η(x, t) and the impermeable base is set at z = −h0. The region

occupied by the fluid at time t ≥ 0 will be denoted as D(t), where

D(t) = {(x, z) : (x, z) ∈ R× (−h0, η(x, t))},

with the closure of the region denoted D̄(t), where

D̄(t) = {(x, z) : (x, z) ∈ R× [−h0, η(x, t)]}.
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D(0) = D0

z = αh0

z = −h0

z = 0

z = −αh0

l0
x+ αh0z

x

x = 0 x = l0

Figure 2.1: Initial displacement of the fluid layer.

The initial region occupied by the fluid, as illustrated in Figure (2.1), is denoted as

D(0) = D0, with closure D̄(0) = D̄0. The initial displacement of the free surface is given

as

z = η(x, 0) = η0(x) =


0 when x ≥ l0,

− αh0

l0
x+ αh0 when 0 < x < l0,

αh0 when x ≤ 0,

(2.1)

with l0 > 0 and α ≥ 0.

As the fluid is initially at rest, it follows from Kelvin’s Circulation Theorem that the

fluid velocity field is irrotational for all t ≥ 0. We can now introduce a fluid velocity

potential φ = φ(x, z, t), so that u = ∇φ. The initial velocity field at t = 0 is u = ∇φ = 0.

Therefore the initial velocity potential may be taken as

φ(x, z, 0) = 0, (x, z) ∈ D̄0. (2.2)

The fluid is released from rest in its initial configuration and the subsequent fluid velocity

field, u, must satisfy the continuity equation,

∇ · u = 0, (x, z) ∈ D(t), t > 0,
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which, in terms of the fluid velocity potential becomes

∇2φ = 0, (x, z) ∈ D(t), t > 0, (2.3)

which is the governing equation for the fluid velocity potential. The fluid pressure field,

p = p(x, z, t) (relative to atmospheric pressure pA), is then given by the unsteady Bernoulli

equation,

φt +
1

2
|∇φ|2 +

p

ρ
+ gz = 0, with (x, z) ∈ D(t), t > 0. (2.4)

We now consider boundary conditions on the free surface z = η(x, t). The fluid pressure

on the free surface is p(x, η(x, t), t) = 0, which, via the Bernoulli equation (2.4) gives the

boundary condition,

φt +
1

2
|∇φ|2 + gη = 0, on z = η(x, t), (x, t) ∈ R× R+, (2.5)

which is the dynamic free surface boundary condition. In addition, we require that the

normal fluid velocity at the free surface is equal to the normal displacement velocity of

the free surface. This gives,

ηt = φz − ηxφx, on z = η(x, t), (x, t) ∈ R× R+, (2.6)

which is the kinematic free surface boundary condition. There is also the boundary

condition on the impermeable boundary, where there is zero normal fluid velocity at the

boundary, that is

∇φ · k = 0, at z = −h0, (x, t) ∈ R× R+. (2.7)

The far field boundary conditions on the free surface are
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η(x, t)→


0, as x→∞ with t ≥ 0,

αh0, as x→ −∞ with t ≥ 0.

(2.8)

The fluid starts from rest, therefore the far field conditions for the velocity potential are

|∇φ| → 0, as |x| → ∞ uniformly in D̄(t), t ≥ 0. On using (2.5) this may be written as

φt(x, z, t)→


0, as x→∞ with (z, t) ∈ [−h0, 0]× [0,∞),

− gαh0, as x→ −∞ with (z, t) ∈ [−h0, αh0]× [0,∞),

which leads to

φ(x, z, t)→


C+, as x→∞ with (z, t) ∈ [−h0, 0]× [0,∞),

− gαh0t+ C−, as x→ −∞ with (z, t) ∈ [−h0, αh0]× [0,∞),

where C+, C− ∈ R are constants. Initial condition (2.2) then requires C+ = C− = 0 to

give the far field conditions for φ as

φ(x, z, t)→


0, as x→∞ (z, t) ∈ [−h0, 0]× [0,∞),

− gαh0t, as x→ −∞ (z, t) ∈ [−h0, αh0]× [0,∞).

(2.9)

The dambreak problem is governed by (2.3) with the conditions (2.1), (2.2), (2.5), (2.6),

(2.7), (2.8) and (2.9). Regularity conditions on φ and η require the following;

φ(x, z, t) ∈ C(D̄∞) ∩ C1,1,1(D∞ ∪ ∂D∞) ∩ C2,2,0(D∞),

η(x, t) ∈ C(R× [0,∞)) ∩ C1,1(R× (0,∞)),

with

D∞ = {(x, z, t) : (x, z) ∈ D(t), t ∈ (0,∞)} ,

∂D∞ =
{

(x, z, t) : (x, z) ∈ D̄(t)\D(t), t ∈ (0,∞)
}
.
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The problem is non-dimensionalised with respect to the depth scale, h0, so that the step

length l0 can be written as l0 = βh0 with the parameter β(> 0) ∈ R. The following scales

are used to non-dimensionalise the problem, namely,

x = x′h0, z = z′h0, η = η′h0, φ = φ′h0

√
gh0, t = t′

√
h0

g
, (2.10)

where the dashes represent the dimensionless variables. Substituting (2.10) into the di-

mensional problem we obtain the dimensionless dambreak problem given below:

∇2φ = 0 for (x, z) ∈ D(t), t > 0. (2.11)

∇φ · k = 0 at z = −1, with (x, t) ∈ R× R+. (2.12)

ηt + ηxφx − φz = 0 at z = η(x, t), (x, t) ∈ R× R+. (2.13)

φt +
1

2

(
φ2
x + φ2

z

)
+ η = 0 at z = η(x, t), (x, t) ∈ R× R+. (2.14)

φ(x, z, t)→ 0 as x→∞ uniformly in D̄(t) with t ≥ 0. (2.15)

φ(x, z, t)→ −αt as x→ −∞ uniformly in D̄(t) with t ≥ 0. (2.16)

η(x, t)→


0 as x→∞ with t ≥ 0,

α as x→ −∞ with t ≥ 0.
(2.17)

φ(x, z, 0) = 0 for (x, z) ∈ D̄(0). (2.18)

η(x, 0) = η0(x) for x ∈ R, (2.19)

where

η0(x) =



0 when x ≥ β,

α

(
1− 1

β
x

)
when 0 < x < β,

α when x ≤ 0,
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together with the regularity conditions,

φ(x, z, t) ∈ C(D̄∞) ∩ C1,1,1(D∞ ∪ ∂D∞) ∩ C2,2,0(D∞),

η(x, t) ∈ C(R× [0,∞)) ∩ C1,1(R× (0,∞)).

We now address problem (2.11)-(2.19). We will refer to problem (2.11)-(2.19) as [IBVP].

We begin by considering a linearised form of [IBVP].
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CHAPTER 3

THE LINEARISED DAMBREAK PROBLEM

In this chapter we consider a linearised form of [IBVP], which corresponds to a dam

with a small step height and slope. To this end, we introduce appropriate scalings for

φ(x, z, t) and η(x, t) from which we formulate the linearised dambreak problem. Applying

the Fourier transform to our linearised problem, we obtain exact solutions for the scaled

fluid velocity potential φ̄(x, z, t) and scaled free surface displacement η̄(x, t).

3.1 Formulation of the Linearised Problem

Consider [IBVP] for a small step height and slope, that is for 0 ≤ α� 1 and β =O(1) as

α→ 0. In the case that α = 0 the solution to [IBVP] is

φ(x, z, t) = 0, for (x, z) ∈ D̄(t), t ≥ 0.

η(x, t) = 0, x ∈ R, t ≥ 0.

For 0 < α� 1, we write

φ = αφ̄, η = αη̄, (3.1)

with φ̄, η̄ = O(1) as α→ 0. On substituting (3.1) into [IBVP], and neglecting terms
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of O(α2), we obtain the following linearised dambreak problem, namely

∇2φ̄ = 0 for (x, z, t) ∈ R× (−1, 0)× R+. (3.2)

φ̄z = 0 at z = −1, with (x, t) ∈ R× R+. (3.3)

η̄t − φ̄z = 0 at z = 0, with (x, t) ∈ R× R+. (3.4)

φ̄t + η̄ = 0 at z = 0, with (x, t) ∈ R× R+. (3.5)

φ̄(x, z, t)→ 0 as x→∞ uniformly for z ∈ [−1, 0], t ≥ 0. (3.6)

φ̄(x, z, t)→ −t as x→ −∞ uniformly for z ∈ [−1, 0], t ≥ 0. (3.7)

η̄(x, t)→


0 as x→∞ t ≥ 0,

1 as x→ −∞ t ≥ 0,
(3.8)

with the initial conditions

φ̄(x, z, 0) = 0 for (x, z) ∈ R× [−1, 0], (3.9)

η̄(x, 0) = η̄0(x) for x ∈ R, (3.10)

where

η̄0(x) =


0, x ≥ β,

1

β
(β − x) , 0 < x < β,

1, x ≤ 0.

The following regularity conditions on φ̄ and η̄ are also required:

φ̄ ∈ C(R× [−1, 0]× R̄+)∩C1,1,1(R× [−1, 0]×R+)∩C2,2,0(R× (−1, 0)×R+), (3.11)

η̄ ∈ C(R× R̄+) ∩ C1,1(R× R+). (3.12)
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We will refer to the linearised problem (3.2)-(3.12) as [LIBVP].

It is our intention to address the solution to [LIBVP] via the theory of complex Fourier

transforms. To this end, we anticipate that the far field boundary conditions (3.6), (3.7)

and (3.8) are achieved through terms exponentially small in x as |x| → ∞. That is, we

have

η̄(x, t) ∼


O(exp(−λ+x)) as x→∞, t ≥ 0,

1 +O(exp(λ−x)) as x→ −∞, t ≥ 0.

(3.13)

φ̄(x, z, t) ∼


O(exp(−λ+x)) as x→∞ uniformly for z ∈ [−1, 0], t ≥ 0,

− t+O(exp(λ−x)) as x→ −∞ uniformly for z ∈ [−1, 0], t ≥ 0.

(3.14)

where λ+, λ− are constants.

3.2 Exact Solution to the Linearised Problem

Now let φ̄ : D̄∞ → R and η̄ : R×[0,∞)→ R be a solution to [LIBVP]. Then the regularity

conditions (3.11), (3.12) and the decay estimates (3.13), (3.14) allow us to introduce the

Fourier transforms

η̂(k, t) =

∫ ∞
−∞

η̄(x, t) exp(ikx) dx, (k, t) ∈ D × R̄+,

φ̂(k, z, t) =

∫ ∞
−∞

φ̄(x, z, t) exp(ikx) dx, (k, z, t) ∈ D × [−1, 0]× R̄+,

where D ⊂ C is the strip D = {k = σ + iτ : σ ∈ (−∞,∞), τ ∈ (−λ+, 0)}. Via the

regularity conditions (3.11) and (3.12), together with the far field boundary conditions

(3.13) and (3.14), it follows that η̂ : D × R̄+ → C is such that η̂ ∈ C(D × R̄+) and is

analytic in k for all (k, t) ∈ D × R̄+. Similarly, φ̂ : D × [−1, 0] × R̄+ → C is such that

φ̂ ∈ C(D× [−1, 0]×R+) and is analytic in k for all (k, z, t) ∈ D× [−1, 0]× R̄+. Applying

the Fourier transform to [LIBVP] we arrive at the following problem for the transformed
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variables η̂ and φ̂, namely,

φ̂zz − k2φ̂ = 0, (k, z, t) ∈ D × (−1, 0)× R+. (3.15)

φ̂z = 0 at z = −1 for (k, t) ∈ D × R+. (3.16)

η̂t − φ̂z = 0 at z = 0 for (k, t) ∈ D × R+. (3.17)

φ̂t + η̂ = 0 at z = 0 for (k, t) ∈ D × R+. (3.18)

φ̂(k, z, 0) = 0, (k, z) ∈ D × [−1, 0]. (3.19)

η̂(k, 0) =
1

βk2
(1− exp(ikβ), k ∈ D, (3.20)

whilst the far field conditions, (3.13) and (3.14), require η̂ and φ̂ to be analytic in k, for

k ∈ D. From (3.15) we have

φ̂(k, z, t) = A(k, t) cosh k(z+ 1) +B(k, t) sinh k(z+ 1), (k, z, t) ∈ D× [−1, 0]× R̄+,

with A(k, t), B(k, t) arbitrary functions of (k, t) ∈ D × R̄+. Applying (3.16) we obtain

B(k, t) = 0 and hence

φ̂(k, z, t) = A(k, t) cosh k(z + 1), (k, z, t) ∈ D × [−1, 0]× R̄+. (3.21)

Now (3.17) and (3.18) require

η̂t − kA(k, t) sinh k = 0,

At cosh k + η̂ = 0,

for (k, t) ∈ D × R̄+, subject to the initial conditions from (3.19) and (3.20),

A(k, 0) = 0,
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η̂(k, 0) =
1

βk2
(1− exp(ikβ),

for k ∈ D. These give us

A(k, t) = −(1− exp(ikβ)) sin(γ(k)t)

βk2γ(k) cosh k

η̂(k, t) =
(1− exp(iβk))

βk2
cos(γ(k)t)

 (k, t) ∈ D × R̄+, (3.22)

with γ2(k) = k tanh k. Finally we obtain, via (3.21) and (3.22),

φ̂(k, z, t) = −(1− exp(ikβ)) sin(γ(k)t)

βk2γ(k) cosh k
cosh k(z + 1), (k, z, t) ∈ D × [−1, 0]× R̄+.

To preserve analyticity of η̂ and φ̂ for k ∈ D it is required that γ(k) is also analytic in D.

Thus we must have λ+ = π
2
and set γ(k) = (k tanh k)

1
2 with branch-cuts in the k-plane,

as shown in Figure (3.1), and arg(γ(k)) = 0 for k ∈ R+. We observe that γ(k) is analytic

in the cut k-plane, and,

γ2(−k) = γ2(k)

Re(k)

Im(k)

k = iπ
2

k = −iπ
2

D

Branch cut for γ(k)

Branch cut for γ(k)

arg(γ(k)) = 0

Figure 3.1: Cut k-plane.
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throughout the k-plane, whilst

γ(−k) = −γ(k) (3.23)

throughout the cut k-plane. Also,

γ(k) = k +O(k3) as k → 0 (3.24)

and

γ(k) ∼


k

1
2 as |k| → ∞ on Re(k) > 0,

− (−k)
1
2 as |k| → ∞ on Re(k) < 0,

(3.25)

with the principal branch of the square root implied. In addition γ2(k) has simple poles

at k = ±kn with

kn = i

(
n− 1

2

)
π, n = 1, 2, . . .

and

Res(γ2(k), kn) = i

(
n− 1

2

)
π, n = 1, 2, . . . ,

Res(γ2(k),−kn) = −i
(
n− 1

2

)
π, n = 1, 2, . . . .

We observe that η̂(k, t) and φ̂(k, z, t) are analytic for k ∈ D as required, each having a

simple pole at k = 0 in the cut k-plane. Moreover

η̂(k, t) = − i
k

+O(1) as k → 0, (3.26)

φ̂(k, z, t) = −it
k

+O(1) as k → 0. (3.27)
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Also, for k ∈ D,

η̂(k, t) = O

(
1

|k|2

)
, as |k| → ∞, (3.28)

φ̂(k, t) = O

(
exp(|k|z)

|k| 52

)
, as |k| → ∞. (3.29)

We can now apply the Fourier Inversion Theorem to recover η̄(x, t) and φ̄(x, z, t) as

η̄(x, t) =
1

2πβ

∫
C

1

k2
(1− exp(iβk)) cos(γ(k)t) exp(−ixk) dk,

φ̄(x, z, t) = − 1

2πβ

∫
C

(1− exp(iβk)) sin(γ(k)t)
cosh k(z + 1)

γ(k)k2 cosh k
exp(−ixk) dk,

where C is any continuous and piecewise smooth contour in D from Re(k) = −∞ to

Re(k) = +∞. An application of the Cauchy Residue Theorem with the estimates (3.28)

and (3.29) allows us to choose C as the real k-axis, indented below the origin by a semi-

circle of radius 0 < δ � 1, which we denote as Cδ , as shown in Figure (3.2). Thus

η̄(x, t) =
1

2πβ

∫
Cδ

1

k2
(1− exp(iβk)) cos(γ(k)t) exp(−ixk) dk, (x, t) ∈ R× R̄+, (3.30)

φ̄(x, z, t) = − 1

2πβ

∫
Cδ

(1− exp(iβk)) sin(γ(k)t)
cosh k(z + 1)

γ(k)k2 cosh k
exp(−ixk) dk, (3.31)

with (x, z, t) ∈ R× [−1, 0]× R̄+.

We note that standard uniform convergence results, together with estimates (3.26)

and (3.27) and integration by parts, establish that η̄ and φ̄ given in (3.30) and (3.31)

satisfy the regularity requirements (3.11) and (3.12).

In what follows it is convenient to write

η̄(x, t) =
1

2πβ
(I(x, t)− I(x− β, t)) , (x, t) ∈ R× R̄+ (3.32)
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Re(k)

Im(k)

Cδ

k = iπ
2

k = −iπ
2

k = δk = −δ

D

Branch cut for γ(k)

Branch cut for γ(k)

Figure 3.2: Contour Cδ in the k-plane.

with

I(x, t) =

∫
Cδ

1

k2
cos(γ(k)t) exp(−ikx) dk, (x, t) ∈ R× R̄+ (3.33)

which has regularity I ∈ C(R× R̄+) ∩ C1,1(R× R+). Moreover, we have

I(−x, t) = −
∫
C−
δ

1

k2
cos(γ(k)t) exp(−ikx) dk, (x, t) ∈ R× R̄+

with C−δ shown in Figure (3.3). Thus

I(x, t)− I(−x, t) =

∫
Cδ

1

k2
cos(γ(k)t) exp(−ikx) dk+

∫
C−
δ

1

k2
cos(γ(k)t) exp(−ikx) dk

with (x, t) ∈ R× R̄+. An application of the Cauchy Residue Theorem then gives

I(−x, t) = I(x, t)− 2πx ∀(x, t) ∈ R× R̄+. (3.34)

Similarly, we write
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Re(k)

Im(k)

C−δ

k = iπ
2

k = −iπ
2

k = δk = −δ
D

Branch cut for γ(k)

Branch cut for γ(k)

Figure 3.3: Contour C−δ in the k-plane.

φ̄(x, z, t) =
1

2πβ
(J(x− β, z, t)− J(x, z, t)) , (x, z, t) ∈ R× [−1, 0]× R̄+

with

J(x, z, t) =

∫
Cδ

cosh k(z + 1) sin(γ(k)t)

γ(k)k2 cosh k
exp(−ikx) dk, (x, z, t) ∈ R× [−1, 0]× R̄+

and which has regularity J(x, z, t) ∈ C(R × [−1, 0] × R̄+) ∩ C1,1,1(R × [−1, 0] × R+) ∩

C2,2,0(R× (−1, 0)× R+). It is also readily established that

J(−x, z, t) = J(x, z, t)− 2πxt, ∀(x, z, t) ∈ R× [−1, 0]× R̄+.

We now investigate the coordinate expansions for η̄(x, t) as given by (3.30) in the cases

(a) t→ 0 uniformly for x ∈ [−X,X], X ≥ 0.

(b) |x| → ∞ uniformly for t ∈ [0, T ], T ≥ 0.

(c) t→∞ uniformly for x ∈ R.
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CHAPTER 4

COORDINATE EXPANSIONS FOR η̄(x, t) AS t→ 0

In this chapter we consider the free surface displacement η̄(x, t), as given by (3.30), for

x ∈ R as t → 0. We begin by approximating I(x, t) in (3.33) as t → 0 when x ≥ 0, and

then construct the approximation to η̄(x, t), for x ∈ R as t→ 0, via (3.32) and (3.34). We

obtain an approximation to η̄(x, t) for x ∈ R as t → 0 which consists of an outer region

and two inner regions, which are O (t2) neighbourhoods of the corners in the initial data,

at x = 0 and x = β. The inner regions show incipient jet formation near x = β and

incipient collapse near x = 0.

4.1 Outer Region Coordinate Expansion for I(x, t) as
t→ 0

Consider I(x, t), as given in (3.33), as t→ 0, when x ≥ 0. First write,

I(x, t) =

∫
C
θ(t)
δ

1

k2
cos(γ(k)t) exp(−ikx) dk +

∫ ∞
θ(t)

1

k2
cos(γ(k)t) exp(−ikx) dk

+

∫ −θ(t)
−∞

1

k2
cos(γ(k)t) exp(−ikx) dk,

(4.1)

where θ(t) → ∞ as t → 0, and θ(t) = o (t−2) as t → 0. Here Cθ(t)
δ is that part of the

contour Cδ between k = −θ(t) and k = θ(t), as shown in Figure (4.1). It is straightforward

to estimate, when x > 0, that,
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Re(k)

Im(k)

C
θ(t)
δ

k = −θ(t) k = θ(t)

Branch cut for γ(k)

Branch cut for γ(k)

k = −iπ
2

k = iπ
2

Figure 4.1: Contour Cθ(t)
δ in the k-plane.

∫
C
θ(t)
δ

1

k2
cos(γ(k)t) exp(−ikx) dk = a0(x) + t2a1(x) +O

(
1

xθ(t)2
,
t2

xθ(t)
, θ(t)t4

)
(4.2)

as t → 0, where a0(x) and a1(x), for x ∈ R+, are given by (4.6) and (4.7). In addition,

we have, after an integration by parts, when x > 0, that,

∣∣∣∣∫ ∞
θ(t)

1

k2
cos(γ(k)t) exp(−ikx) dk

∣∣∣∣ ,
∣∣∣∣∣
∫ −θ(t)
−∞

1

k2
cos(γ(k)t) exp(−ikx) dk

∣∣∣∣∣ ≤ 2

xθ(t)2
(4.3)

as t→ 0. For any ε > 0, we may take θ(t) = t−2+ε, after which (4.1)-(4.3) gives,

I(x, t) = a0(x) + t2a1(x) +O

(
t4−2ε

x
,
t4−ε

x
, t2+ε

)
(4.4)

as t→ 0 with x > 0. Clearly, the approximation in (4.4) fails when x = O (t2) as t→ 0.

Thus, we have from (4.4),

I(x, t) = a0(x) + t2a1(x) + o(t2) (4.5)

as t→ 0 uniformly for x ∈ R̄+\[0,∆(t)), where ∆(t) = O(t2) as t→ 0. Here

a0(x) =

∫
Cδ

1

k2
exp(−ikx) dk, x ∈ R+, (4.6)
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a1(x) = −1

2

∫
Cδ

tanh k

k
exp(−ikx) dk, x ∈ R+. (4.7)

We observe that a0, a1 ∈ C1 (R+) via integration by parts and uniform convergence results.

We now obtain explicit expressions for a0(x) and a1(x) for x ∈ R+. We begin with a0(x)

for x ∈ R+.

Consider the integral in (4.6). To evaluate this integral, we integrate around the

contour shown in Figure (4.2). The integrand in (4.6) is analytic in the region enclosed

by CR
δ ∪ CR. Hence via the Cauchy Residue Theorem,

∫
CRδ

exp(−ikx)

k2
dk +

∫
CR

exp(−ikx)

k2
dk = 0. (4.8)

On CR, k can be written as

k = R cos θ + iR sin θ for θ ∈ [−π, 0],

so that

∫
CR

exp(−ikx)

k2
dk = −

∫ 0

θ=−π

R(− sin θ + i cos θ)

R2(cos θ + i sin θ)2
exp(−ixR(cos θ + i sin θ)) dθ.

Taking the absolute value gives

∣∣∣∣∫
CR

exp(−ikx)

k2
dk

∣∣∣∣ ≤ ∫ 0

θ=−π

1

R
exp(xR sin θ) dθ.

Re(k)

Im(k)

CR

CR
δ

−R R

Figure 4.2: Contour CR
δ ∪ CR in the k plane.
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Since x > 0, then 0 < exp(xR sin θ) ≤ 1, and so

∣∣∣∣∫
CR

exp(−ikx)

k2
dk

∣∣∣∣ ≤ ∫ 0

θ=−π

1

R
dθ

=
π

R
→ 0 as R→∞.

Therefore, letting R→∞ in (4.8) we obtain

a0(x) =

∫
Cδ

exp(−ikx)

k2
dk = 0, x ∈ R+. (4.9)

We now consider a1(x) for x ∈ R+. Since x > 0 we can again perform the integration in

(4.7) via integrating around the contour shown in Figure (4.2) now with R = RN = Nπ

for N = 1, 2, .... The integrand is analytic inside CRN
δ ∪ CRN , except for simple poles at

k = kn = −i
(
n− 1

2

)
π for n = 1, 2, .., N . The Cauchy Residue Theorem gives

∫
C
RN
δ

f(k, x) dk +

∫
CRN

f(k, x) dk = −2πi
N∑
n=1

Res (f(k, x); kn),

where

f(k, x) =
tanh k

k
exp(−ikx), (k, x) ∈ C\

{
±i
(
n− 1

2

)
π, n ∈ N

}
× R+.

We have

Res(f(k, x); kn) =
2i exp(−(n− 1

2
)πx)

(2n− 1)π

and so,

∫
C
RN
δ

f(k, x) dk +

∫
CRN

f(k, x) dk = 4
N∑
n=1

exp(−(n− 1
2
)πx)

2n− 1
. (4.10)

On CRN , we again write
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k = RN cos θ + iRN sin θ for θ ∈ [−π, 0],

so that the integral along CRN becomes

∫
CRN

f(k, x) dk = −
∫ 0

θ=−π
f(R(cos θ + i sin θ), x)R(− sin θ + i cos θ) dθ.

Taking the absolute value and observing that | tanh k| ≤ 2 for k ∈ CRN gives

∣∣∣∣∣
∫
CRN

f(k, x) dk

∣∣∣∣∣ ≤
∫ 0

θ=−π
2 exp(xRN sin θ) dθ, x > 0, N ∈ N. (4.11)

We have that sin θ ≤ h(θ) for θ ∈ [−π, 0] where

h(θ) =


θ

π
, θ ∈

[
−π

2
, 0
]
,

− θ

π
− 1, θ ∈

[
−π,−π

2

]
,

so that

∫ 0

θ=−π
2 exp(xRN sin θ) dθ ≤

∫ −π
2

θ=−π
2 exp

(
xRN

(
− θ
π
− 1

))
dθ

+

∫ 0

θ=−π
2

2 exp

(
xRN

θ

π

)
dθ

(4.12)

with x ∈ R+, N ∈ N. It follows from (4.12) that

∫ 0

θ=−π
2 exp(xRN sin θ) dθ ≤ 4π

xRN

, x ∈ R+, N ∈ N. (4.13)

Hence, via (4.11) and (4.13),

∫
CRN

f(k, x) dk → 0 as N →∞ with x ∈ R+.

Thus from (4.10) we have
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∫
Cδ

f(k, x) dk = 4
∞∑
n=1

exp(−(n− 1
2
)πx)

(2n− 1)
, x ∈ R+,

and so

a1(x) = −2
∞∑
n=1

exp(−(n− 1
2
)πx)

(2n− 1)
, x ∈ R+.

It is now instructive to consider the sum

∞∑
n=1

1

(2n− 1)
exp

(
−
(
n− 1

2

)
πx

)
=
∞∑
r=1

1

r
exp

(
−π

2
rx
)
−
∞∑
r=1

1

2r
exp (−πrx)

= S1(x)− 1

2
S2(x), x ∈ R+.

Both S1(x) and S2(x) define continuous and continuously differentiable functions for

x ∈ R+, and may be differentiated term by term. Hence

S ′1(x) = −π
2

∞∑
r=1

exp
(
−π

2
x
)r
, S ′2(x) = −π

∞∑
r=1

exp (−πx)r , x ∈ R+.

However both are geometric series, so can be written in closed form as

S ′1(x) = −
π exp(−π

2
x)

2(1− exp(−π
2
x))

, S ′2(x) = − π exp(−πx)

1− exp(−πx)
, x ∈ R+,

which can be integrated to give

S1(x) = − log
(

1− exp
(
−π

2
x
))

+C1, S2(x) = − log (1− exp (−πx))+C2, x ∈ R+,

with constants C1, C2 ∈ R. However, S1(x), S2(x) → 0 as x → ∞, which requires that

C1 = C2 = 0. Hence we have

S1(x) = − log
(

1− exp
(
−π

2
x
))

, S2(x) = − log (1− exp (−πx)) , x ∈ R+.

This leads to the result

31



∞∑
n=1

1

(2n− 1)
exp

(
−
(
n− 1

2

)
πx

)
=

1

2
log

(
(1− exp (−πx))(
1− exp

(
−π

2
x
))2

)
, x ∈ R+,

and so we have

a1(x) = log
(

tanh
π

4
x
)
, x ∈ R+. (4.14)

It follows that,

a1(x) =


log

π

4
x+O(x2) as x→ 0,

− 2 exp
(
−π

2
x
)

+O

(
exp

(
−3π

2
x

))
as x→∞.

(4.15)

We now have, via (4.5), (4.9) and (4.14), that

I(x, t) = t2 log
(

tanh
π

4
x
)

+ o(t2) (4.16)

as t→ 0, uniformly for x ∈ R̄+\[0,∆(t)). In particular, via (4.15) and (4.16), we have

I(x, t) = t2
(

log
π

4
x+O(x2)

)
+ o(t2)

as t→ 0 with t2 � x� 1 (recalling that ∆(t) = O (t2) as t→ 0+) whilst,

I(x, t) = t2
(
−2 exp

(
−π

2
x
)

+O

(
exp

(
−3π

2
x

)))
+ o(t2) (4.17)

as t→ 0 with x� 1.

Now from (3.32) and (3.34) we may write

η̄(x, t) =



1

2πβ
(I(x, t)− I(x− β, t)) , (x, t) ∈ [β,∞)× R̄+,

1

2πβ
(2π(β − x) + I(x, t)− I(β − x, t)) , (x, t) ∈ (0, β)× R̄+,

1

2πβ
(2πβ + I(−x, t)− I(β − x, t)) , (x, t) ∈ (−∞, 0]× R̄+.
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It follows from (4.16) that,

η̄(x, t) =



t2

2πβ
log

(
tanh π

4
x

tanh π
4
(x− β)

)
+ o(t2), as t→ 0 with

x ∈ [β + ∆(t),∞),

1

β
(β − x) +

t2

2πβ
log

(
tanh π

4
x

tanh π
4
(β − x)

)
+ o(t2), as t→ 0 with

x ∈ [∆(t), β −∆(t)],

1 +
t2

2πβ
log

(
tanh π

4
(−x)

tanh π
4
(β − x)

)
+ o(t2), as t→ 0 with

x ∈ (−∞,−∆(t)].

(4.18)

It is instructive to examine the function

F (x) = log

(∣∣∣∣ tanh π
4
x

tanh π
4
(x− β)

∣∣∣∣) , x ∈ R\{0, β}.

As expected, F ∈ C1 (R\{0, β}). In addition we have

F (x) =


− log(x− β) + log

(
4

π
tanh

π

4
β

)
+O((x− β)2) as x→ β+,

− log(β − x) + log

(
4

π
tanh

π

4
β

)
+O((x− β)2) as x→ β−,

whilst

F (x) =


log x− log

(
4

π
tanh

π

4
β

)
+O(x2) as x→ 0+,

log(−x)− log

(
4

π
tanh

π

4
β

)
+O(x2) as x→ 0−,

and
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F (x) =


2
(

exp
(π

2
β
)
− 1
)

exp
(
−π

2
x
)

+O

(
exp

(
−3π

2
x

))
as x→∞,

2
(

exp
(
−π

2
β
)
− 1
)

exp
(π

2
x
)

+O

(
exp

(
3π

2
x

))
as x→ −∞.

Also, F (x) has exactly one zero, at x = 1
2
β, and F (x) is positive and monotone decreasing

in x > β, monotone increasing in 0 < x < β, and negative and monotone decreasing in

x < 0. A graph of F (x) for β = 1 is given in Figure (4.3). We can now write,

η̄(x, t) = η0(x) +
t2

2πβ
log

(∣∣∣∣ tanh π
4
x

tanh π
4
(x− β)

∣∣∣∣)+ o(t2), as t→ 0

with x ∈ (−∞,−∆(t)] ∪ [∆(t), β −∆(t)] ∪ [β + ∆(t),∞), and ∆(t) = O(t2) as t→ 0.

Figure 4.3: The graph of F (x) with β = 1.

4.2 Inner Region Coordinate Expansion for I(x, t) as
t→ 0

We now examine I(x, t) for x ∈ [0,∆(t)). We write x = Xt2 with X ≥ 0 and X = O(1)

as t→ 0 and write I(Xt2, t) = Î(X, t). The integral (3.33) then becomes

Î(X, t) =

∫
Cδ

1

k2
cos(γ(k)t) exp(−ikXt2) dk, X, t ≥ 0.
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We now write this as

Î(X, t) =

∫
Cδ

1

k2
(cos(γ(k)t)− 1) exp(−ikXt2) dk+

∫
Cδ

1

k2
exp(−it2kX) dk, X, t ≥ 0.

Via (4.9) we have that

∫
Cδ

1

k2
exp(−it2kX) dk = 0, X, t ≥ 0,

and so

Î(X, t) =

∫
Cδ

1

k2
(cos(γ(k)t)− 1) exp(−ikXt2) dk X, t ≥ 0.

The singularity of the integrand at k = 0 is removable, and so, via the Cauchy Residue

Theorem, we may deform the contour Cδ onto the real k-axis. Thus

Î(X, t) =

∫ ∞
−∞

1

k2
(cos(γ(k)t)− 1) exp(−ikXt2) dk X, t ≥ 0. (4.19)

The integrand may be expanded about t = 0 in an asymptotic form provided that

|k| � 1
t2
. Thus we introduce δ(t) such that t2 � δ(t)� 1 as t→ 0, after which we write

(4.19) as

Î(X, t) =

∫ − 1
δ(t)

−∞

1

k2
(cos(γ(k)t)− 1) exp(−ikXt2) dk

+

∫ 1
δ(t)

− 1
δ(t)

1

k2
(cos(γ(k)t)− 1) exp(−ikXt2) dk

+

∫ ∞
1
δ(t)

1

k2
(cos(γ(k)t)− 1) exp(−ikXt2) dk, X, t ≥ 0.

This may be simplified to obtain,

Î(X, t) = 2b1(X, t) + 2b2(X, t), X, t ≥ 0, (4.20)
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where

b1(X, t) =

∫ 1
δ(t)

0

1

k2
(cos(γ(k)t)− 1) cos(kXt2) dk, X, t ≥ 0, (4.21)

b2(X, t) =

∫ ∞
1
δ(t)

1

k2
(cos(γ(k)t)− 1) cos(kXt2) dk, X, t ≥ 0. (4.22)

We first consider b2(x, t) as t→ 0 with X(≥ 0) = O(1). We observe that,

γ(k) = k
1
2 +O

(
k

1
2 exp(−2k)

)
, as k →∞.

Now, in (4.22), k ≥ δ(t)−1 � 1 as t → 0. Thus, over the range of integration in (4.22),

we have,

cos(γ(k)t)− 1 =
(

cos
(
k

1
2 t
)
− 1
)

+O

(
t

δ(t)
1
2

exp

(
− 2

δ(t)

))

as t→ 0 uniformly for k ∈ [δ(t)−1,∞). Therefore we have,

b2(X, t) =

∫ ∞
1
δ(t)

1

k2

(
cos(k

1
2 t)− 1

)
cos(kXt2) dk +O

(
tδ(t)

1
2 exp

(
− 2

δ(t)

))
, (4.23)

as t→ 0 with X(≥ 0) = O(1). We next make the substitution s = t2k in the integral in

(4.23), which becomes

∫ ∞
1
δ(t)

1

k2

(
cos(k

1
2 t)− 1

)
cos(kXt2) dk = t2

∫ ∞
t2

δ(t)

1

s2

(
cos(s

1
2 )− 1

)
cos(Xs) ds, X ≥ 0.

(4.24)

We recall that t2δ(t)−1 � 1 as t→ 0, whilst

cos(s
1
2 )− 1

s2
= − 1

2s
+

1

24
+O(s), as s→ 0. (4.25)

With this in mind, we write,
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∫ ∞
t2

δ(t)

1

s2

(
cos(s

1
2 )− 1

)
cos(Xs) ds =

∫ 1

t2

δ(t)

1

s2

(
cos(s

1
2 )− 1

)
cos(Xs) ds

+

∫ ∞
1

1

s2

(
cos(s

1
2 )− 1

)
cos(Xs) ds.

(4.26)

We now write,

∫ 1

t2

δ(t)

1

s2

(
cos(s

1
2 )− 1

)
cos(Xs) ds

=

∫ 1

t2

δ(t)

(
1

s2

(
cos(s

1
2 )− 1

)
cos(Xs) +

1

2s

)
ds−

∫ 1

t2

δ(t)

1

2s
ds

=

∫ 1

t2

δ(t)

(
1

s2

(
cos(s

1
2 )− 1

)
cos(Xs) +

1

2s

)
ds+ log

(
t

δ(t)
1
2

)
.

(4.27)

We observe that

∫ 1

t2

δ(t)

(
1

s2

(
cos(s

1
2 )− 1

)
cos(Xs) +

1

2s

)
ds =

∫ 1

t2

δ(t)

h(s) cos(Xs) ds

+

∫ 1

t2

δ(t)

1

2s
(1− cos (Xs)) ds.

(4.28)

where

h(s) =


1

2s

(
1 +

2

s

(
cos
(
s

1
2

)
− 1
))

, s > 0,

1

24
, s = 0.

(4.29)

and we note that h ∈ C1(R̄+). It now follows from (4.28) that,

∫ 1

t2

δ(t)

(
1

s2

(
cos(s

1
2 )− 1

)
cos(Xs) +

1

2s

)
ds

=

{∫ 1

0

h(s) cos(Xs) ds+

∫ 1

0

1

2s
(1− cos (Xs)) ds.

}
+O

(
t2

δ(t)

) (4.30)

as t→ 0 with X(≥ 0) = O(1). Thus, via (4.24)-(4.30), we have,
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∫ ∞
1
δ(t)

1

k2

(
cos(k

1
2 t)− 1

)
cos(kXt2) dk

= t2

[
log

(
t

δ(t)
1
2

)
+ (F1(X) + F2(X) + F3(X)) +O

(
t2

δ(t)

)]
,

(4.31)

as t→ 0 with X(≥ 0) = O(1), where F1, F2, F3 ∈ C1
(
R̄+
)
, and

F1(X) =

∫ ∞
1

1

s2

(
cos(s

1
2 )− 1

)
cos(Xs) ds, (4.32)

F2(X) =

∫ 1

0

1

2s
(1− cos (Xs)) ds, (4.33)

F3(X) =

∫ 1

0

h(s) cos(Xs) ds, (4.34)

in X ≥ 0. It should be noted that we may re-write F2(X) in the form

F2(X) =

∫ X

0

1

2u
(1− cos (u)) du, (4.35)

in X ≥ 0, which will be of use at a later stage.

Next we consider the forms of F1(X), F2(X) and F3(X) as X → 0+ and X → ∞

respectively. We address F1(X) first. It is convenient to write

F1(X) =

∫ ∞
1

1

s2
cos(s

1
2 ) cos(Xs) ds−

∫ ∞
1

1

s2
cos(Xs) ds (4.36)

in X ≥ 0. We now consider the limit X → 0+ in (4.36). Beginning with the second

integral in (4.36), we write

∫ ∞
1

1

s2
cos(Xs) ds = X

∫ ∞
X

1

u2
cosu du

= X

(∫ ∞
X

1

u2
(cosu− 1) du+

∫ ∞
X

1

u2
du

)

= 1−
(∫ ∞

0

1− cosu

u2
du

)
X +O(X2) as X → 0+.
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However, it is readily established, via contour integration, that

∫ ∞
0

1− cosu

u2
du =

1

2
π.

Therefore,

∫ ∞
1

1

s2
cos(Xs) ds = 1− 1

2
πX +O(X2) as X → 0+. (4.37)

Next we consider the first integral in (4.36). We write

∫ ∞
1

1

s2
cos(s

1
2 ) cos(Xs) ds =

∫ ∞
1

1

s2
cos(s

1
2 (cos(Xs)− 1) ds+

∫ ∞
1

1

s2
cos(s

1
2 ) ds

= X

∫ ∞
X

1

u2
cos

(
1√
X
u

1
2

)
(cosu− 1) du+ c1,

(4.38)

where we have set u = Xs, with

c1 =

∫ ∞
1

1

s2
cos(s

1
2 ) ds = 0.036242 . . . .

Now,

∫ ∞
X

1

u2
cos

(
1√
X
u

1
2

)
(cosu− 1) du =

∫ ∞
0

1

u2
cos

(
1√
X
u

1
2

)
(cosu− 1) du

−
∫ X

0

1

u2
cos

(
1√
X
u

1
2

)
(cosu− 1) du

=

∫ ∞
0

1

u2
cos

(
1√
X
u

1
2

)
(cosu− 1) du+O(X)

(4.39)

as X → 0+. In addition, an integration by parts establishes that,

∫ ∞
0

1

u2
cos

(
1√
X
u

1
2

)
(cosu− 1) du = o(

√
X), as X → 0+. (4.40)
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It then follows from (4.39) and (4.40) that

∫ ∞
X

1

u2
cos

(
1√
X
u

1
2

)
(cosu− 1) du = o(

√
X), as X → 0+. (4.41)

Therefore, via (4.38) and (4.41),

∫ ∞
1

1

s2
cos(s

1
2 ) cos(Xs) ds = c1 + o(X

3
2 ), as X → 0+. (4.42)

Finally, we have, via (4.36), (4.37) and (4.42), that

F1(X) = (c1 − 1) +
1

2
πX + o

(
X

3
2

)
as X → 0+. (4.43)

Next we consider F1(X), given in (4.32), as X →∞. It is convenient to introduce

g(s) =
1

s2

(
cos(s

1
2 )− 1

)
, s ≥ 1, (4.44)

and observe that g ∈ C∞ ([1,∞)). Now, via (4.32) and (4.44) we write

F1(X) =

∫ ∞
1

g(s) cos(Xs) ds

=

[
g(s)

sin(Xs)

X

]∞
1

− 1

X

∫ ∞
1

g′(s) sin(Xs) ds

= −g(1)
sinX

X
− 1

X

[
−g′(s)cos(Xs)

X

]∞
1

+
1

X2

∫ ∞
1

g′′(s) cos(Xs) ds

= −g(1)
sinX

X
− g′(1)

cosX

X2
+ o

(
1

X2

)
as X →∞,

via the Riemann Lebesgue Lemma. From (4.44) we have,

g(1) = cos(1)− 1

g′(1) = −1

2
sin(1)− 2 (cos(1)− 1)
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Hence,

F1(X) = (1− cos(1))
sinX

X
+

(
1

2
sin(1)− 2 (1− cos(1))

)
cosX

X2
+o

(
1

X2

)
, as X →∞.

(4.45)

We now address F2(X), given in (4.35). We begin by examining F2(X) as X → 0+. It

follows from (4.35) that

F2(X) =
1

2

∫ X

0

(
1

2
u− 1

24
u3 +O(u5)

)
du, X ≥ 0.

Hence,

F2(X) =
1

8
X2 +O

(
X4
)
, as X → 0+. (4.46)

Next we consider F2(X) as X →∞. We write,

F2(X) =

∫ 1

0

1− cosu

2u
du+

∫ X

1

1− cosu

2u
du

=

∫ 1

0

1− cosu

2u
du+

1

2
logX − 1

2

{∫ ∞
1

cosu

u
du−

∫ ∞
X

cosu

u
du

}
, X ≥ 0.

Hence,

F2(X) =
1

2
logX + c2 −

sinX

2X
+

cosX

2X2
+O

(
1

X3

)
, as X →∞ (4.47)

with

c2 =

∫ 1

0

1− cosu

2u
du−

∫ ∞
1

cosu

2u
du = 0.288608 . . . . (4.48)

We now address F3(X), given in (4.34), as X → 0+. It follows from (4.34) that
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F3(X) =

∫ 1

0

h(s)

(
1− 1

2
X2s2 +O

(
X4s4

))
ds as X → 0+.

Hence

F3(X) = c3 − d3X
2 +O

(
X4
)

as X → 0+, (4.49)

with

c3 =

∫ 1

0

h(s) ds = 0.040980 . . .

and

d3 =
1

2

∫ 1

0

h(s)s2 ds = 0.006773 . . . .

We now address F3(X) as X →∞. We write, via integration by parts in (4.34),

F3(X) =

[
h(s)

sin(Xs)

X

]1

0

− 1

X

∫ 1

0

h′(s) sin(Xs) ds

= h(1)
sinX

X
− 1

X2
[−h′(s) cos(Xs)]

1
0 −

1

X2

∫ 1

0

h′′(s) cos(Xs) ds

= h(1)
sinX

X
+

1

X2
(h′(1) cos(X)− h′(0)) + o

(
1

X2

)
as X →∞

via the Riemann Lebesgue Lemma. From (4.29) we have,

h(1) = cos(1)− 1

2
,

h′(1) =
3

2
− 1

2
sin(1)− 2 cos(1),

h′(0) = − 1

720
.

Hence
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F3(X) =

(
cos(1)− 1

2

)
sinX

X
+

1

X2

((
3

2
− 1

2
sin(1)− 2 cos(1)

)
cos(X) +

1

720

)
+o

(
1

X2

)
(4.50)

as X →∞. We now have, via (4.22), (4.23) and (4.31), that

b2(X, t) = t2

(
log

(
t

δ(t)
1
2

)
+ (F1(X) + F2(X) + F3(X))

)
+ o(t2) (4.51)

as t→ 0 with X(≥ 0) = O(1).

We now turn our attention to b1(X, t), given in (4.21), as t→ 0 with X(≥ 0) = O(1).

Since t2 � δ(t)� 1 as t→ 0, over the range of integration in (4.21)

cos
(
kXt2

)
= 1 +O

(
t4δ(t)−2

)
as t→ 0 with X(≥ 0) = O(1).

In addition, we have, over the range of integration,

cos γ(k)t = 1− 1

2
γ2(k)t2 +O

(
t4δ(t)−2

)
as t→ 0.

Thus we have,

b1(X, t) = −1

2
t2
∫ 1

δ(t)

0

tanh k

k
dk + o(t2)

as t→ 0 with X(≥ 0) = O(1). We now write

∫ 1
δ(t)

0

tanh k

k
dk =

∫ 1

0

tanh k

k
dk +

∫ 1
δ(t)

1

tanh k

k
dk

=

∫ 1

0

tanh k

k
dk +

∫ 1
δ(t)

1

tanh k − 1

k
dk +

∫ 1
δ(t)

1

1

k
dk

=

∫ 1

0

tanh k

k
dk +

∫ 1
δ(t)

1

tanh k − 1

k
dk + log

1

δ(t)
.

Thus,
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b1(X, t) = −1

2
t2
(

log

(
1

δ(t)

)
+ c4

)
+ o(t2). (4.52)

as t→ 0 with X(≥ 0) = O(1), and,

c4 =

∫ 1

0

tanh k

k
dk +

∫ ∞
1

tanh k − 1

k
dk = 0.818780 . . . . (4.53)

Finally, via (4.20), (4.21), (4.22), (4.51) and (4.52), we have

Î(X, t) = 2t2
(

log t+ F1(X) + F2(X) + F3(X)− 1

2
c4

)
+ o(t2)

as t → 0 with X(≥ 0) = O(1). We note, that when 0 ≤ X � 1, then, via (4.43), (4.46)

and (4.49), we have

Î(X, t) = 2t2
(

log t+

(
c1 + c3 −

1

2
c4 − 1

)
+

1

2
πX + o

(
X

3
2

))
+ o(t2) as t→ 0,

whilst, when X � 1, via (4.45), (4.47) and (4.50), we have,

Î(X, t) = 2t2
(

log t+
1

2
logX +

(
c2 −

1

2
c4

)
+O

(
1

X2

))
+ o(t2) as t→ 0.

In addition, it follows from (3.34) that,

Î(X, t) = 2t2
(

log t+ F1(−X) + F2(−X) + F3(−X) + πX − 1

2
c4

)
+ o(t2) (4.54)

as t → 0 with X(≤ 0) = O(1). It should be noted, via (4.43), (4.46),(4.49), and (4.54)

that Î(X, t) is continuous with continuous derivative ÎX(X, t) for −∞ < X < ∞. In

particular, when 0 ≤ (−X)� 1 we have, via (4.43), (4.46), (4.49), and (4.54),

Î(X, t) = 2t2
(

log t+

(
c1 + c3 −

1

2
c4 − 1

)
+

1

2
πX + o

(
(−X)

3
2

))
as t→ 0,

whilst, when (−X)� 1 we have, via (4.45), (4.47), (4.50), and (4.54),
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Î(X, t) = 2t2
(

log t+ πX +
1

2
log(−X) +

(
c2 −

1

2
c4

)
+O

(
1

X2

))
+o(t2), as t→ 0.

Graphs of F1(X), F2(X) and F3(X) (computed numerically from (4.32), (4.33) and (4.34)

via Simpson’s method) are given in Figures (4.4)-(4.12).

Figure 4.4: The graph of F1(X). Figure 4.5: The graph of F1(X) with
asymptotic approximation (−−) (4.43)
for X � 1.

Figure 4.6: The graph of F1(X) with
asymptotic approximation (−−) (4.45)
for X � 1.

Figure 4.7: The graph of F2(X).
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Figure 4.8: The graph of F2(X), with
asymptotic approximation (−−) (4.46)
for X � 1.

Figure 4.9: The graph of F2(X), with
asymptotic approximation (−−) (4.47)
for X � 1.

Figure 4.10: The graph of F3(X). Figure 4.11: The graph of F3(X) with
asymptotic approximation (−−) (4.49)
for X � 1.

Figure 4.12: The graph of F3(X), with asymptotic approximation (−−) (4.50) for X � 1.
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It is now convenient to write

Î(X, t) = 2t2 (log t+H(X)) + o(t2) (4.55)

as t→ 0 with X = O(1). Here

H(X) =


F1(X) + F2(X) + F3(X)− 1

2
c4, X ≥ 0

F1(−X) + F2(−X) + F3(−X) + πX − 1

2
c4, X < 0,

(4.56)

and graphs of H(X) for −∞ < X <∞ are given in Figures (4.13)-(4.16). We note that

H ′(0) = 1
2
π, and, via (4.43), (4.45), (4.46), (4.47), (4.49), (4.50), (4.56) and (4.59), that

H(X) =

(
c1 + c3 −

1

2
c4 − 1

)
+

1

2
πX + o

(
|X|

3
2

)

as X → 0, whilst,

H(X) =


1

2
log
(π

4
X
)

+O

(
1

X2

)
as X → +∞,

πX +
1

2
log
(
−π

4
X
)

+O

(
1

X2

)
as X → −∞.

It is worth recapping here that we have constructed a two region asymptotic expansion

Figure 4.13: The graph of H(X). Figure 4.14: The graph of H(X),
with asymptotic approximation (−−) from
(4.43), (4.46), (4.49) and (4.56) for |X| � 1.
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Figure 4.15: The graph of H(X), with
asymptotic approximation (−−) from
(4.45), (4.47), (4.50) and (4.56) for
(−X)� 1.

Figure 4.16: The graph of H(X), with
asymptotic approximation (−−) from
(4.45), (4.47), (4.50) and (4.56) forX � 1.

for I(x, t) in x ≥ 0 as t→ 0. We have, via (4.16) and (4.55),

Region I, x(> 0) ≥ O(1) as t→ 0,

I(x, t) = t2 log
(

tanh
π

4
x
)

+ o(t2) (4.57)

as t→ 0, with x(> 0) = O(1).

Region II, x(≥ 0) = O(t2) as t→ 0.

I(x, t) = Î(X, t) = 2t2 (log t+H(X)) + o(t2) (4.58)

as t→ 0, with X = x
t2

(≥ 0) = O(1).

The structure of I(x, t) in x ≤ 0 as t→ 0 follows from (3.34). We note that the asymptotic

expansion (4.57) in region I (as x→ 0) and the asymptotic expansion (4.58) in region II

(as X → ∞) asymptotically match, according to the asymptotic matching principal of

Van Dyke [12] (Chapter 5, page 90, equation (5.23)), provided

c4 = 2c2 − log
π

4
, (4.59)
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which is readily verified numerically (via (4.48) and (4.53)). We note that Van Dyke did

allude to the fact that this matching principle provides matching in case where the limit

principle [12] (Chapter 5, page 90, equation (5.22)) gives only a trivial result, as it does

in our case (4.59).

4.3 Coordinate Expansion for η̄(x, t) as t→ 0

We are now in a position to construct the asymptotic form for η̄(x, t) as t → 0 when

x = O(t2) and when x = β + O(t2). When x = β + O (t2) we write x = β + X̄t2, with

X̄ = O(1) as t→ 0. We then obtain via (3.32), (4.57) and (4.58),

η̄(X̄, t) =
t2

πβ

(
− log t−H(X̄) +

1

2
log
(

tanh
π

4
β
))

+ o(t2) (4.60)

as t → 0 with X̄ = O(1). Similarly, when x = O(t2), we write x = Xt2, with X = O(1)

as t→ 0. We then obtain via (3.32), (3.34), (4.57) and (4.58),

η̄(X, t) = 1 +
t2

πβ

(
log t+H(X)− πX − 1

2
log
(

tanh
π

4
β
))

+ o(t2) (4.61)

as t→ 0 with X = O(1).

We have now completed the detailed asymptotic structure of η̄(x, t) as t→ 0. This has

involved three distinct asymptotic regions as follows: x ∈ R\{N0(t) ∪ Nβ(t)}, x ∈ N0(t)

and x ∈ Nβ(t). Here N0(t) and Nβ(t) are O(t2) neighbourhoods of the points x = 0 and

x = β respectively. Finally, via (4.18), (4.32), (4.33), (4.34), (4.56), (4.57), (4.58), (4.60),

and (4.61), we have

Inner Region A, x ∈ N0(t) as t→ 0.

In inner region A,

η̄(X, t) = 1 +
t2

πβ

(
log t+H(X)− πX − 1

2
log
(

tanh
π

4
β
))

+ o(t2) (4.62)
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for X = O(1) as t→ 0 , with x = t2X.

Inner Region B, x ∈ Nβ(t) as t→ 0.

In inner region B,

η̄(X̄, t) =
t2

πβ

(
− log t−H(X̄) +

1

2
log
(

tanh
π

4
β
))

+ o(t2) (4.63)

for X̄ = O(1) as t→ 0 , with x = β + X̄t2.

Outer Region, x ∈ R\{N0(t) ∪Nβ(t)} as t→ 0.

In the outer region,

η̄(x, t) =



t2

2πβ
log

(
tanh π

4
x

tanh π
4
(x− β)

)
+ o(t2), as t→ 0 with

x ∈ [β,∞)\Nβ(t),

1

β
(β − x) +

t2

2πβ
log

(
tanh π

4
x

tanh π
4
(β − x)

)
+ o(t2), as t→ 0 with

x ∈ [0, β]\{N0(t) ∪Nβ(t)},

1 +
t2

2πβ
log

(
tanh π

4
(−x)

tanh π
4
(β − x)

)
+ o(t2), as t→ 0 with

x ∈ (−∞, 0]\N0(t).

(4.64)

An illustration of the asymptotic structure for η̄(x, t) as t→ 0, with x ∈ R, is shown

in Figure (4.17). Graphs of η̄(X, t) in inner region A and in inner region B, for t ∈ [0, 0.1],

are shown in Figure (4.18). In Figures (4.17) and (4.18) we note that close to the initial

corners at x = β and x = 0, the structure of η̄(x, t) as t → 0 shows incipient localised

jet formation close to x = β (in inner region B) and incipient localised collapse close to

x = 0 (in inner region A).

50



x

η̄(x, t)

O (t2)

O (t2)

O (t2)

O (t2)

O (t2)

O (t2)

O (t2)
1

1 + t2

πβ
log t

− t2

πβ
log t

x = 0 x = β

incipient collapse

incipient jet

Figure 4.17: A sketch for the asymptotic structure of η̄(x, t) as t→ 0.

Figure 4.18: Graphs of η̄(x, t) in inner region A and inner region B with t ∈ [0, 0.1],
illustrating the incipient localised collapse and jet structure respectively.
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CHAPTER 5

COORDINATE EXPANSIONS FOR η̄(x, t) AS |x| → ∞

In this chapter we consider η̄(x, t), as given by (3.30), in the far fields as |x| → ∞ for

t = O(1). We begin by approximating I(x, t) in (3.33) as x → ∞ with t = O(1), and

we find the approximation has three distinct asymptotic regions as x → ∞. We then

construct the approximation to η̄(x, t), for t = O(1) as |x| → ∞, via (3.32) and (3.34).

5.1 Coordinate Expansion for I(x, t) as |x| → ∞

We examine I(x, t), as given in (3.33) as x → ∞ with t = O(1). We first integrate the

integrand in (3.33) around the contour CΣ, shown in Figure (5.1), where CΣ = CΣ
δ ∪L1 ∪

L2 ∪ Cε ∪ L3 with Cε having radius 0 < ε < π
2
. The integrand in (3.33) is analytic in the

region enclosed by CΣ, (noting that the branch-cut for γ(k), is removable, since cos is an

even function). Hence, via the Cauchy Residue Theorem,

∫
CΣ

1

k2
cos(γ(k)t) exp(−ikx) dk = 0, (x, t) ∈ R+ × R+. (5.1)

Consider the integral along L1. Set

IL1(x, t) =

∫
L1

1

k2
cos(γ(k)t) exp(−ikx) dk, (x, t) ∈ R+ × R+. (5.2)

On L1, k can be written as
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Re(k)

CΣ
δ

Cε

k = −iπ
2

k = Σk = δk = −δk = −Σ

k = −iπ

L1

L2

L3

Im(k)

Figure 5.1: The contour CΣ in the k-plane.

k = Σ + iτ with −π ≤ τ ≤ 0, (5.3)

so that

γ2(k) = (Σ + iτ) +O(Σ exp(−2Σ)) as Σ→∞ uniformly for τ ∈ [−π, 0],

from which

γ(k) = Σ
1
2 + i

τΣ−
1
2

2
+O

(
Σ−

3
2

)
as Σ→∞ uniformly for τ ∈ [−π, 0]. (5.4)

It follows from (5.4) that

|cos(γ(k)t)| ≤ 1

2
exp

(
−tτ

2
Σ−

1
2

)
+

1

2
exp

(
tτ

2
Σ−

1
2

)
≤ 2, (5.5)

as Σ→∞ uniformly for τ ∈ [−π, 0], whilst it is readily verified that, on L1,

|exp(−ikx)| = |exp(−iΣx) exp(τx)| ≤ 1, as Σ→∞ uniformly for τ ∈ [−π, 0] (5.6)
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and

1

k2
=

1

Σ2
+O

(
1

Σ3

)
≤ 2

Σ2
, as Σ→∞ uniformly for τ ∈ [−π, 0]. (5.7)

Thus, via (5.3), (5.5), (5.6) and (5.7), we have

∣∣∣∣∫
L1

1

k2
cos(γ(k)t) exp(−ikx) dk

∣∣∣∣ ≤ ∫ 0

−π

4

Σ2
dτ =

4π

Σ2
→ 0, as Σ→∞. (5.8)

Hence, via (5.2) and (5.8),

IL1(x, t) =

∫
L1

1

k2
cos(γ(k)t) exp(−ikx) dk → 0, as Σ→∞ with (x, t) ∈ R+ × R+.

(5.9)

Similarly, on L3, we have that

IL3(x, t) =

∫
L3

1

k2
cos(γ(k)t) exp(−ikx) dk → 0, as Σ→∞ with (x, t) ∈ R+ × R+.

(5.10)

Now consider the integral along L2. Set

IL2(x, t) =

∫
L2

1

k2
cos (γ(k)t) exp(−ikx) dk, (x, t) ∈ R+ × R+. (5.11)

On L2, we write

k = σ − iπ with σ ∈ [−Σ,Σ], (5.12)

so that,

γ(σ − iπ) = (σ − iπ)
1
2 (tanhσ)

1
2 , σ ∈ [−Σ,Σ]. (5.13)
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To obtain the correct branches for the square roots in (5.13) we introduce branch cuts

in the σ-plane for (σ − iπ)
1
2 and (tanhσ)

1
2 , as shown in Figures (5.2) and (5.3), with

arg
(

(σ − iπ)
1
2

)
= 0 on σ = k+ iπ when k > 0, and arg

(
(tanhσ)

1
2

)
= 0 with σ > 0. We

observe that

(tanhσ)
1
2 =


1 +O(exp(−2σ)) as σ →∞,

−i+O(exp(2σ)) as σ → −∞,

and

(σ − iπ)
1
2 =


σ

1
2

(
1− i π

2σ

)
+O

(
σ−

3
2

)
as σ →∞,

(−i)(−σ)
1
2

(
1− i π

2σ

)
+O

(
(−σ)−

3
2

)
as σ → −∞,

which gives, from (5.13),

γ(σ − iπ) =


σ

1
2

(
1− i π

2σ

)
+O

(
σ−

3
2

)
as σ →∞,

− (−σ)
1
2

(
1− i π

2σ

)
+O

(
(−σ)−

3
2

)
as σ → −∞.

σ = iπ

Branch cut for (σ − iπ)
1
2

arg
(

(σ − iπ)
1
2

)
= 0

Re(σ)

Im(σ)

Figure 5.2: The σ-plane for (σ − iπ)
1
2 .

σ = −iπ
2

Branch cut for (tanhσ)
1
2

Branch cut for (tanhσ)
1
2

arg
(

(tanhσ)
1
2

)
= 0

Re(σ)

Im(σ)

Figure 5.3: The σ-plane for (tanhσ)
1
2 .
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It now follows from (5.11) and (5.12) that

IL2(x, t) = −
∫ Σ

−Σ

1

(σ − iπ)2
cos(γ(σ − iπ)t) exp(−i(σ − iπ)x) dσ. (5.14)

From (5.1) we have

∫
CΣ
δ

1

k2
cos(γ(k)t) exp(−ikx) dk =− IL1(x, t)− IL2(x, t)− IL3(x, t)

−
∫
Cε

1

k2
cos(γ(k)t) exp(−ikx) dk

(5.15)

for any Σ > 0 and (x, t) ∈ R+ × R+. Now let Σ → ∞ in (5.15), then via (3.33), (5.9),

(5.10) and (5.14), we have

I(x, t) =−
∫
Cε

1

k2
cos(γ(k)t) exp(−ikx) dk

+

∫ ∞
−∞

1

(σ − iπ)2
cos(γ(σ − iπ)t) exp(−i(σ − iπ)x) dσ

(5.16)

for (x, t) ∈ R+ × R+. We now estimate the second term on the right hand side of (5.16).

We have,

∣∣∣∣∫ ∞
−∞

1

(σ − iπ)2
cos(γ(σ − iπ)t) exp(−i(σ − iπ)x) dσ

∣∣∣∣
≤ exp(−πx)

2

∫ ∞
−∞

1

(σ2 + π2)
(|exp(iγ(σ − iπ)t)|+ |exp(−iγ(σ − iπ)t)|) dσ.

(5.17)

In order to find a bound for (5.17) we establish bounds for each of the exponential terms.

First consider |exp(iγ(σ − iπ)t)| for σ ∈ R. It follows from (5.13) that

|Im(γ(σ − iπ))| ≤ π
√

2
(
σ + (σ2 + π2)

1
2

) 1
2

for σ ∈ R.

Thus,
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|Im(γ(σ − iπ))| ≤
√
π

2
for σ ∈ R. (5.18)

Therefore, we have

|exp (iγ(σ − iπ)t))| = exp (−Im(γ(σ − iπ))t)

≤ exp

(√
π

2
t

) (5.19)

for σ ∈ R, via (5.18). Similarly,

|exp (−iγ(σ − iπ)t))| ≤ exp

(√
π

2
t

)
(5.20)

for σ ∈ R. Thus, via (5.17) (5.19) and (5.20) we now have

∣∣∣∣∫ ∞
−∞

1

(σ − iπ)2
cos(γ(σ − iπ)t) exp(−i(σ − iπ)x) dσ

∣∣∣∣
≤ exp(−πx) exp

(√
π

2
t

)∫ ∞
−∞

1

σ2 + π2
dσ, (x, t) ∈ R+ × R+.

(5.21)

It is readily established that

∫ ∞
−∞

1

σ2 + π2
dσ = 1,

and so, via (5.21), we have

∣∣∣∣∫ ∞
−∞

1

(σ − iπ)2
cos(γ(σ − iπ)t) exp(−i(σ − iπ)x) dσ

∣∣∣∣
≤ exp(−πx) exp

(√
π

2
t

)
, (x, t) ∈ R+ × R+.

It now follows from (5.16) that

I(x, t) = −
∫
Cε

1

k2
cos(γ(k)t) exp(−ikx) dk +R(x, t), for (x, t) ∈ R+ × R+, (5.22)
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with

|R(x, t)| ≤ exp

(
−πx+

√
π

2
t

)
, for (x, t) ∈ R+ × R+. (5.23)

Now consider the integral around Cε in (5.22). Let

ICε(x, t) =

∫
Cε

1

k2
cos (γ(k)t) exp(−ikx) dk, (x, t) ∈ R+ × R+. (5.24)

On Cε we write

k = −iπ
2

+ k̄, with
∣∣k̄∣∣ = ε, (5.25)

and we will work in the k̄-plane, as shown in Figure (5.4). In a neighbourhood of k̄ = 0

we have, via Laurent’s theorem,

γ2
(
k̄
)

= −i π
2k̄

(
1 +

2i

π
k̄ +

1

3
k̄2 +

2i

3π
k̄3 +O

(
k̄4
))

.

We need to correctly choose the square root for γ(k̄). Recalling the k-plane, see Figure

arg(k̄) = 0

arg(γ(k̄)) = 0

Branch cut for γ(k̄)

Branch cut for γ(k̄)

k̄ = iπ

k̄ = iπ
2

Im(k̄)

Re(k̄)

Figure 5.4: Cut k̄-plane.
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(3.1), we have defined arg(k) such that

arg(k) = 0, when k ∈ R+,

arg(k) = −π
2
, when k = iτ , τ ∈

(
−π

2
, 0
)
,

which leads to

arg(γ(k)) = 0 on k ∈ R+,

arg(γ(k)) = −π
2

on k = iτ , τ ∈
(
−π

2
, 0
)
.

(5.26)

Consider k = iτ , for τ ∈
(
−π

2
, 0
)
. Then via (5.26), we have

γ(k) = −i |γ(k)|

in the k-plane. Hence, in the k̄-plane, we must have γ
(
k̄
)

= −i
∣∣γ (k̄)∣∣ when arg

(
k̄
)

= π
2
.

Hence, we define k̄
1
2 to be real and positive with k̄ > 0, and with a branch-cut along the

negative imaginary k̄-axis. With this definition, we then have,

γ
(
k̄
)

=

√
π

2
exp

(
−iπ

4

) 1

k̄
1
2

(
1 +

2i

π
k̄ +

1

3
k̄2 +

2i

3π
k̄3 +O

(
k̄4
)) 1

2

as k̄ → 0. (5.27)

As k̄ → 0, we may further expand (5.27) to obtain

γ
(
k̄
)

=

√
π

2
exp

(
−iπ

4

) 1

k̄
1
2

(
1 +

i

π
k̄ +

1

2

(
1

3
+

1

π2

)
k̄2 +O

(
k̄3
))

as k̄ → 0.

Moving into the k̄-plane, via (5.24) and (5.25), we obtain

ICε(x, t) = −4 exp
(
−π

2
x
)∫

Cε

1(
π + 2ik̄

)2 cos
(
γ
(
k̄
)
t
)

exp
(
−ik̄x

)
dk̄ (5.28)

where now Cε is the circle of radius ε centred at the origin of the k̄-plane. We wish to

estimate (5.28) as x→∞ with t = O(1). To facilitate this, we now set
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ε = x−
2
3

in (5.28), after which we have,

ICε(x, t) = −4 exp
(
−π

2
x
)∫

C
x
− 2

3

1(
π + 2ik̄

)2 cos
((
γ
(
k̄
)
t
)

exp
(
−k̄x

))
dk̄

 (5.29)

for x ∈
((

2
π

) 3
2 ,∞

)
and t ≥ 0, recalling that 0 < ε < 1

2
π. We now write (5.29) as,

ICε(x, t) =− 2 exp
(
−π

2
x
)∫

C
x
− 2

3

1(
π + 2ik̄

)2 exp
(
i
(
γ
(
k̄
)
t− k̄x

))
dk̄

+

∫
C
x
− 2

3

1(
π + 2ik̄

)2 exp
(
−i
(
γ
(
k̄
)
t+ k̄x

))
dk̄

 ,

(5.30)

noting that the branch cuts for γ
(
k̄
)
on the imaginary k̄ axis must now be restored in

each separate integrand. It is now convenient to make the substitution

s = x
2
3 k̄

in the integrals in (5.30), which becomes

ICε(x, t) =− 2

x
2
3

exp
(
−π

2
x
)∫

C1

1(
π + 2ix−

2
3 s
)2 exp

(
i
(
γ
(
x−

2
3 s
)
t− x

1
3 s
))

ds

+

∫
C1

1(
π + 2ix−

2
3 s
)2 exp

(
−i
(
γ
(
x−

2
3 s
)
t+ x

1
3 s
))

ds


(5.31)

for x ∈
((

2
π

) 3
2 ,∞

)
and t ≥ 0. On the contour C1, we have |s| = 1, and we may expand

as follows,
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(
π + 2ix−

2
3 s
)−2

=
1

π2

(
1− i 4

π
x−

2
3 s+O

(
x−

4
3 s2
))

, (5.32)

exp
(
i
(
γ
(
x−

2
3 s
)
t− x

1
3 s
))

= exp

(
i

(
t

√
π

2
e−i

π
4

(
x

1
3 s−

1
2 +

i

π
x−

1
3 s

1
2 +O

(
x−1s

3
2

))
− x

1
3 s

))

= exp

(
i

(√
π

2
e−i

π
4 t

(
x

1
3 s−

1
2 +

i

π
x−

1
3 s

1
2

)
− x

1
3 s

))(
1 +O

(
tx−1s

3
2

))
,

(5.33)

exp
(
−i
(
γ
(
x−

2
3 s
)
t+ x

1
3 s
))

= exp

(
−i
(
t

√
π

2
e−i

π
4

(
x

1
3 s−

1
2 +

i

π
x−

1
3 s

1
2 +O

(
x−1s

3
2

))
+ x

1
3 s

))

= exp

(
−i
(√

π

2
e−i

π
4 t

(
x

1
3 s−

1
2 +

i

π
x−

1
3 s

1
2

)
+ x

1
3 s

))(
1 +O

(
tx−1s

3
2

))
(5.34)

as x→∞ with t ≥ 0 and |s| = 1. Writing (5.32), (5.33) and (5.34) in (5.31) leads to

ICε(x, t) = − 2

π2x
2
3

exp
(
−π

2
x
)
×

(∫
C1

exp

(
i

(√
π

2
e−i

π
4 t

(
x

1
3 s−

1
2 +

i

π
x−

1
3 s

1
2

)
− x

1
3 s

))

×

(
1 +O

(
s

x
2
3

+
ts

3
2

x

))
ds+

∫
C1

exp

(
−i
(√

π

2
e−i

π
4 t

(
x

1
3 s−

1
2 +

i

π
x−

1
3 s

1
2

)
+ x

1
3 s

))

×

(
1 +O

(
s

x
2
3

+
ts

3
2

x

))
ds

)
,

as x→∞ with t = O(1). Hence,

ICε(x, t) =− 4

π2x
2
3

exp
(
−π

2
x
)∫

C1

cos

(√
π

2
e−i

π
4 t

(
x

1
3 s−

1
2 +

i

π
x−

1
3 s

1
2

))
exp

(
−ix

1
3 s
)
ds

+O

(
1

x
2
3

exp
(
−π

2
x
)∫

C1

(
s

x
2
3

+
ts

3
2

x

)
cos

(√
π

2
e−i

π
4 t

(
x

1
3 s−

1
2 +

i

π
x−

1
3 s

1
2

))

× exp
(
−ix

1
3 s
)
ds

)

as x→∞ with t = O(1). Thus we have
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ICε(x, t) = − 4

π2x
2
3

exp
(
−π

2
x
)
Ĩ(x, t)

(
1 +O

(
1

x
2
3

+
t

x

))
(5.35)

as x→∞ with t = O(1). Here

Ĩ(x, t) =

∫
C1

cos

(√
π

2
e−i

π
4 t

(
x

1
3 s−

1
2 +

i

π
x−

1
3 s

1
2

))
exp

(
−ix

1
3 s
)
ds (5.36)

for x > 0 and t ≥ 0. We now observe that the integrand in (5.36) is analytic for s ∈ C\{0}

(with an essential singularity at s = 0). Thus, via Cauchy’s Theorem, we can deform the

contour in (5.36) from C1 onto CR, with

R =
1

2
π

1
3 t

2
3 .

We then have,

Ĩ(x,R) =

∫
CR

cos

(
2e−i

π
4R

3
2

(
x

1
3 s−

1
2 +

i

π
x−

1
3 s

1
2

))
exp

(
−ix

1
3 s
)
ds

for x > 0 and R ≥ 0, which we may write as

Ĩ(x,R) =
1

2

∫
CR

exp
(
ix

1
3 f̄1(s)

)
ds+

1

2

∫
CR

exp
(
−ix

1
3 f̄2(s)

)
ds (5.37)

for x > 0 and R ≥ 0, with

f̄1(s) = 2 exp
(
−iπ

4

)
R

3
2

(
s−

1
2 +

i

π
x−

2
3 s

1
2

)
− s

f̄2(s) = 2 exp
(
−iπ

4

)
R

3
2

(
s−

1
2 +

i

π
x−

2
3 s

1
2

)
+ s,

recalling that the branch-cut in each of the integrands in (5.37), along the negative imag-

inary s-axis, must be restored (with s
1
2 real and positive on the positive real s-axis). We

now make the substitution s = Rw in (5.37) to obtain
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Ĩ(x, τ) =
π

1
3

4

(
x

1
4 τ
) 2

3

∫
C1

g1(w, τ) exp

(
i
(
xτ

4
3

) 1
2
f̂1(w)

)
dw

+
π

1
3

4

(
x

1
4 τ
) 2

3

∫
C1

g2(w, τ) exp

(
−i
(
xτ

4
3

) 1
2
f̂2(w)

)
dw

for x > 0, τ ≥ 0, where now,

f̂1(w) =
π

1
3

2

(
2 exp

(
−iπ

4

)
w−

1
2 − w

)

f̂2(w) =
π

1
3

2

(
2 exp

(
−iπ

4

)
w−

1
2 + w

)
and

g1(w, τ) = exp

(
− 1

2π
1
3

exp
(
−iπ

4

)
τ

4
3w

1
2

)

g2(w, τ) = exp

(
1

2π
1
3

exp
(
−iπ

4

)
τ

4
3w

1
2

)
with

τ = x−
1
4 t.

We can now write,

Ĩ(x, t) =
π

1
3

4
t

2
3

(
F1

((
t

x
1
4

)
,
(
x

1
2 t
) 2

3

)
+ F2

((
t

x
1
4

)
,
(
x

1
2 t
) 2

3

))

for x > 0, t ≥ 0, with,

F1(T,X) =

∫
C1

g1(w, T ) exp
(
iXf̂1(w)

)
dw (5.38)

F2(T,X) =

∫
C1

g2(w, T ) exp
(
−iXf̂2(w)

)
dw (5.39)

for X,T ≥ 0. On C1, we write
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w = exp(iθ) with −π
2
≤ θ ≤ 3π

2
,

which conforms with the branch-cut along θ = −π
2
. We may then write (5.38) and (5.39)

as,

F1(T,X) = i

∫ 3π
2

−π
2

g1(θ, T ) exp
(
iXf̂1(θ)

)
exp(iθ) dθ (5.40)

F2(T,X) = i

∫ 3π
2

−π
2

g2(θ, T ) exp
(
−iXf̂2(θ)

)
exp(iθ) dθ (5.41)

for X,T ≥ 0, where

g1(θ, T ) = exp

(
− 1

2π
1
3

exp

(
−i
(
π

4
− θ

2

))
T

4
3

)
(5.42)

g2(θ, T ) = exp

(
1

2π
1
3

exp

(
−i
(
π

4
− θ

2

))
T

4
3

)
(5.43)

and

f̂1(θ) =
π

1
3

2

(
2 exp

(
−i
(
π

4
+
θ

2

))
− exp(iθ)

)
(5.44)

f̂2(θ) =
π

1
3

2

(
2 exp

(
−i
(
π

4
+
θ

2

))
+ exp(iθ)

)
(5.45)

Finally, setting

θ = θ̄ − π

2

in (5.40)-(5.45), we obtain,

Ĩ(x, t) =
π

1
3

4
t

2
3

(
F1

((
t

x
1
4

)
,
(
x

1
2 t
) 2

3

)
+ F2

((
t

x
1
4

)
,
(
x

1
2 t
) 2

3

))
(5.46)

for x > 0, t ≥ 0 where
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F1(T,X) =

∫ 2π

0

g1(θ̄, T ) exp
(
iXf̂1(θ̄)

)
exp(iθ̄) dθ̄ (5.47)

F2(T,X) =

∫ 2π

0

g2(θ̄, T ) exp
(
−iXf̂2(θ̄)

)
exp(iθ̄) dθ̄ (5.48)

for X,T ≥ 0, with

g1(θ̄, T ) = exp

(
i

2π
1
3

exp

(
i
θ̄

2

)
T

4
3

)
(5.49)

g2(θ̄, T ) = exp

(
− i

2π
1
3

exp

(
i
θ̄

2

)
T

4
3

)
, (5.50)

and

f̂1(θ̄) =
π

1
3

2

(
2 exp

(
−i θ̄

2

)
+ i exp(iθ̄)

)
(5.51)

f̂2(θ̄) =
π

1
3

2

(
2 exp

(
−i θ̄

2

)
− i exp(iθ̄)

)
. (5.52)

It is now instructive at this stage to verify that Ĩ(x, t), x > 0, t ≥ 0, is real valued. It is

sufficient to show that F1(T,X) and F2(T,X) are real valued for X,T ≥ 0. To this end

we write, via (5.47), (5.49) and (5.51),

F1(T,X) =

∫ 2π

0

<(T,X, θ̄) dθ̄ + i

∫ 2π

0

=(T,X, θ̄) dθ̄ (5.53)

for X,T ≥ 0, where

<(T,X, θ̄) = exp

(
−Xπ

1
3

2
cos θ̄ −

(
1

2π
1
3

T
4
3 −Xπ

1
3

)
sin

θ̄

2

)

× cos

((
1

2π
1
3

T
4
3 +Xπ

1
3

)
cos

θ̄

2
+ θ̄

)
,

=(T,X, θ̄) = exp

(
−Xπ

1
3

2
cos θ̄ −

(
1

2π
1
3

T
4
3 −Xπ

1
3

)
sin

θ̄

2

)

× sin

((
1

2π
1
3

T
4
3 +Xπ

1
3

)
cos

θ̄

2
+ θ̄

)
.
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It can be verified that

=(T,X, 2π − θ̄) = −=(T,X, θ̄)

for X,T ≥ 0, and so we write the second integral on the right-hand side of (5.53) as

∫ 2π

0

=(T,X, θ̄) dθ̄ =

∫ π

0

=(T,X, θ̄) dθ̄ +

∫ 2π

π

=(T,X, θ̄) dθ̄ (5.54)

for X,T ≥ 0. Setting θ̄ = 2π − ¯̄θ in the second integral on the right-hand side of (5.54)

we have

∫ 2π

0

=(T,X, θ̄) dθ̄ =

∫ π

0

=(T,X, θ̄) dθ̄ −
∫ 0

π

=
(
T,X, 2π − ¯̄θ

)
d ¯̄θ

=

∫ π

0

=(T,X, θ̄) dθ̄ −
∫ π

0

=
(
T,X, ¯̄θ

)
d ¯̄θ

= 0

Thus, via (5.53) and (5.54), we have that F1(T,X) is real valued for X,T ≥ 0. Similarly,

F2(T,X) is real valued for X,T ≥ 0, hence, via (5.46), Ĩ(x, t) is real valued for x > 0 and

t ≥ 0.

An examination of (5.46) reveals that Ĩ(x, t) has three distinct asymptotic forms as

x→∞ with t ≥ 0, namely

Region I: t = O
(
x−

1
2

)
as x→∞.

Region II: t = O (1) as x→∞.

Region III: t = O
(
x

1
4

)
as x→∞.

We consider the approximation of Ĩ(x, t) in each region in turn.
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5.1.1 Coordinate Expansion for Ĩ(x, t) with t = O
(
x−

1
2

)
as |x| → ∞

In Region I we introduce the scaled coordinate t̃ = x
1
2 t, so that t̃ = O(1) as x → ∞ in

Region I. We then have, via (5.46),

Ĩ(x, t̃) =
π

1
3

4

t̃
2
3

x
1
3

(
F1

(
t̃

x
3
4

, t̃
2
3

)
+ F2

(
t̃

x
3
4

, t̃
2
3

))
(5.55)

for x > 0, t̃ ≥ 0. We now estimate (5.55) with t̃ = O(1) as x → ∞. This requires

estimates of F1(T,X) and F2(T,X) with X = O(1) as T → 0. We obtain directly from

(5.47)-(5.52),

F1(T,X) = H1(X)
(

1 +O
(
T

4
3

))
(5.56)

F2(T,X) = H2(X)
(

1 +O
(
T

4
3

))
(5.57)

with X = O(1) as T → 0, where

H1(X) =

∫ 2π

0

exp
(
iXf̂1(θ̄)

)
exp(iθ̄) dθ̄ (5.58)

H2(X) =

∫ 2π

0

exp
(
−iXf̂2(θ̄)

)
exp(iθ̄) dθ̄ (5.59)

for X ≥ 0. Graphs of the numerical calculations of H1(X) and H2(X), for X ≥ 0, are

given in Figures (5.5) and (5.6). It is useful, at this stage, to obtain the approximate forms

for both H1(X) and H2(X) for 0 ≤ X � 1 and X � 1 respectively. For 0 ≤ X � 1, we

have from (5.58) and (5.59) that

H1(X) =

∫ 2π

0

(
1 + iXf̂1(θ̄)− 1

2
X2f̂ 2

1 (θ̄)− i1
6
Xf̂ 3

1 (θ̄) +
1

24
X4f̂ 4

1 (θ̄)

+i
1

120
X5f̂ 5

1 (θ̄) +O(X6)

)
exp(iθ̄) dθ̄

and
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Figure 5.5: Graph of H1(X), X ≥ 0. Figure 5.6: Graph of H2(X), X ≥ 0.

H2(X) =

∫ 2π

0

(
1− iXf̂2(θ̄)− 1

2
X2f̂ 2

2 (θ̄) + i
1

6
Xf̂ 3

2 (θ̄) +
1

24
X4f̂ 4

2 (θ̄)

−i 1

120
X5f̂ 5

2 (θ̄) +O(X6)

)
exp(iθ̄) dθ̄

for 0 ≤ X � 1, from which, via (5.51) and (5.52), we find

H1(X) +H2(X) = −
∫ 2π

0

π
2
3X2 +O

(
X5)

)
dθ̄

= −2π
5
3X2 +O

(
X5
) (5.60)

for 0 ≤ X � 1. The graph of (5.60) with the numerical calculation for H1(X) + H2(X)

is shown in Figure (5.7).

For X � 1, H1(X) and H2(X) are both steepest descent type integrals. Thus we

write, from (5.51), (5.52), (5.58) and (5.59),

H1(X) =

∫ 2π

0

exp

(
π

1
3

2
X
(
Re1(θ̄)− iIm1(θ̄)

))
exp(iθ̄) dθ̄ (5.61)

and

H2(X) =

∫ 2π

0

exp

(
π

1
3

2
X
(
Re2(θ̄)− iIm2(θ̄)

))
exp(iθ̄) dθ̄ (5.62)

for X ≥ 0, with
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Figure 5.7: The graph of H1(X) + H2(X), with asymptotic approximation (−−) from
(5.60), for 0 ≤ X � 1.

Re1(θ̄) = 2 sin

(
θ̄

2

)
− cos(θ̄),

Re2(θ̄) = −2 sin

(
θ̄

2

)
− cos(θ̄),

and

Im1(θ̄) = 2 cos

(
θ̄

2

)
− sin(θ̄),

Im2(θ̄) = 2 cos

(
θ̄

2

)
+ sin(θ̄),

Graphs of Re2(θ̄) and Im2(θ̄) are shown in Figures (5.8) and (5.9) respectively, and it is

readily verified that max
θ̄∈[0,2π]

(
Re2(θ̄)

)
= −1. Thus we have from (5.62),

|H2(X)| ≤ 2π exp

(
−π

1
3

2
X

)
(5.63)

for X ≥ 0. Graphs of Re1(θ̄) and Im1(θ̄) are shown in Figures (5.10) and (5.11) respec-

tively, and it is readily verified that max
θ̄∈[0,2π]

(
Re1(θ̄)

)
= 3 at θ̄ = π, and Im1(θ̄) is stationary

at θ̄ = π. Thus, we anticipate that H1(X) will be dominated in a small neighbourhood

of θ̄ = π for X � 1. It is therefore convenient to write
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Figure 5.8: Graph of Re2(θ̄). Figure 5.9: Graph of Im2(θ̄).

Figure 5.10: Graph of Re1(θ̄). Figure 5.11: Graph of Im1(θ̄).

θ̃ = π + θ̄

in (5.61), to obtain

H1(X) = −
∫ π

−π
exp

(
π

1
3

2
X
(
Re1(θ̃ + π)− iIm1(θ̃ + π)

))
exp(iθ̃) dθ̃ (5.64)

for X ≥ 0, so that H1(X) is dominated in a small neighbourhood of θ̃ = 0 for X � 1.

For θ̃ � 1 we have

Re1(θ̃ + π) = 3− 3

4
θ̃2 +

3

64
θ̃4 +O

(
θ̃6
)

(5.65)

Im1(θ̃ + π) = −1

8
θ̃3 +

1

128
θ̃5 +O

(
θ̃7
)
. (5.66)

We now apply the method of steepest descent to approximate H1(X), where the leading
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order behaviour of H1(X) is obtained by estimating (5.64) in a small neighbourhood of

θ̃ = 0. Thus, via (5.64)-(5.66), and using the substitution

u2 =
3π

1
3

8
Xθ̃2

we may approximate H1(X), with X � 1, as

H1(X) = − 2
√

2
√

3π
1
6

X−
1
2 exp

(
3π

1
3

2
X

)∫ ∞
−∞

exp(−u2)

(
1 +O

(
u4

X

))
du

Thus we obtain the approximation,

H1(X) = −2
√

2π
1
3

√
3

X−
1
2 exp

(
3π

1
3

2
X

)(
1 +O

(
1

X

))
(5.67)

for X � 1. It then follows, via (5.63) and (5.67), that

H1(X) +H2(X) = −2
√

2π
1
3

√
3

X−
1
2 exp

(
3π

1
3

2
X

)(
1 +O

(
1

X

))
(5.68)

for X � 1. The graph of (5.68) with the numerical calculation for H1(X) + H2(X) is

shown in Figure (5.12), and the graph of the ratio between the numerical calculation and

the asymptotic approximation (5.68) shown in Figure (5.13). On returning to (5.55), with

(5.56) and (5.57), we have,

Ĩ(x, t̃) =
π

1
3

4

t̃
2
3

x
1
3

(
H1

(
t̃

2
3

)
+H2

(
t̃

2
3

))(
1 +O

(
t̃

4
3

x

))
(5.69)

with t̃ = O(1) as x→∞. In addition, via (5.60) and (5.68),

Ĩ(x, t̃) = −1

2
π2 t̃

2

x
1
3

(
1 +O

(
t̃2
))(

1 +O

(
t̃

4
3

x

))

for 0 ≤ t̃� 1 as x→∞, and
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Figure 5.12: The graph of H1(X) +
H2(X), with asymptotic approximation
(−−) from (5.68), for X � 1.

Figure 5.13: Graph of the ratio be-
tween the numerical approximation for
H1(X) +H2(X) and the asymptotic ap-
proximation from (5.68).

Ĩ(x, t̃) = − π
2
3

√
6

t̃
1
3

x
1
3

exp

(
3π

1
3

2
t̃

2
3

)(
1 +O

(
1

t̃
2
3

))(
1 +O

(
t̃

4
3

x

))

for t̃� 1 as x→∞.

5.1.2 Coordinate Expansion for Ĩ(x, t) with t ≥ O(1) as |x| → ∞

In Region II we have t = O(1) as x → ∞. This requires estimates of F1(T,X) and

F2(T,X) with 0 < T � 1 and X � 1. Following (5.56), (5.57), (5.63) and (5.67), we

have,

F1(T,X) + F2(T,X) = −2
√

2π
1
3

√
3

X−
1
2 exp

(
3π

1
3

2
X

)(
1 +O

(
1

X

))(
1 +O

(
T

4
3

))
(5.70)

with 0 < T � 1 and X � 1. It then follows from (5.46) and (5.70), that

Ĩ(x, t) = − π
2
3

√
6

t
1
3

x
1
6

exp

(
3π

1
3

2
x

1
3 t

2
3

)(
1 +O

(
1

x
1
3 t

2
3

))(
1 +O

(
t

4
3

x
1
3

))
(5.71)

with t = O(1) as x→∞.

In Region III we introduce the scaled coordinate t̂ = x−
1
4 t, so that t̂ = O(1) as x→∞
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in this region. We then have, via (5.46),

Ĩ(x, t̂) =
π

1
3

4
x

1
6 t̂

2
3

(
F1

(
t̂,
(
x

3
4 t̂
) 2

3

)
+ F2

(
t̂,
(
x

3
4 t̂
) 2

3

))
(5.72)

for x > 0, t̂ ≥ 0. We now estimate (5.72) with t̂ = O(1) as x → ∞. This requires

estimates of F1(T,X) and F2(T,X) with T = O(1) and X � 1. It is readily verified from

(5.50) and (5.52), that

∣∣exp
(
iXf2(θ̄)

)∣∣ ≤ exp

(
−π

1
3

2
X

)
(5.73)

for θ̄ ∈ [0, 2π] with X ≥ 0, and

∣∣g2(θ̄, T )
∣∣ ≤ exp

(
1

2π
1
3

T
4
3

)
(5.74)

for θ̄ ∈ [0, 2π] with T ≥ 0. Thus, via (5.48), (5.73) and (5.74) we have

|F2(T,X)| ≤ 2π exp

(
1

2π
1
3

T
4
3

)
exp

(
−π

1
3

2
X

)
(5.75)

for T,X ≥ 0. For T = O(1) and X � 1, F1(T,X) is a steepest descent type integral,

and will be dominated in a small neighbourhood of θ̄ = π for X � 1. It is therefore

convenient to write

θ̄ = θ̂ + π

in (5.47) to obtain

F1(T,X) = −
∫ π

−π
g1

(
θ̂ + π, T

)
exp

(
iXf̂1

(
θ̂ + π

))
exp

(
iθ̂
)
dθ̂

for T,X ≥ 0, with
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g1(θ̂ + π, T ) = exp

(
− 1

2π
1
3

exp

(
i
θ̂

2

)
T

4
3

)
and

f̂1(θ̂ + π) =
π

1
3

2

(
−2i exp

(
−i θ̂

2

)
− i exp(iθ̂)

)

so that F1(T,X) is dominated in a small region about θ̂ = 0 for X � 1. For θ̂ � 1, we

have

g1(θ̂ + π, T ) = exp

(
− T

4
3

2π
1
3

(
1 + i

θ̂

2
− θ̂2

8
+O

(
θ̂3
)))

(5.76)

exp
(
iXf̂1

(
θ̂ + π

))
= exp

(
π

1
3

2
X

(
3− 3

4
θ̂2 +O

(
θ̂3
)))

. (5.77)

We now apply the method of steepest descent to approximate F1(T,X) for T = O(1) and

X � 1. Thus, via (5.76), (5.77) and using the substitution

u2 =
3π

1
3

8
Xθ̂2

we may approximate F1(T,X), with T = O(1) and X � 1, as

F1(T,X) =− 2
√

2
√

3π
1
6

X−
1
2 exp

(
− T

4
3

2π
1
3

)
exp

(
3π

1
3

2
X

)(
1 +O

(
T

4
3

X

))(
1 +O

(
1

X
1
2

))

×
∫ ∞
−∞

exp
(
−iλu− u2

)
du

(5.78)

where

λ =
T

4
3

√
6πX

.

Using the substitution
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w = u+ i
λ

2

in (5.78) we obtain

F1(T,X) =− 2
√

2
√

3π
1
6

X−
1
2 exp

(
− T

4
3

2π
1
3

)
exp

(
3π

1
3

2
X − T

8
3

24πX

)(
1 +O

(
T

4
3

X

))

×
(

1 +O

(
1

X
1
2

))∫ ∞+iλ
2

−∞+iλ
2

exp
(
−w2

)
dw,

and an application of the Cauchy residue theorem establishes that

∫ ∞+iλ
2

−∞+iλ
2

exp
(
−w2

)
dw =

√
π.

Thus, we obtain the approximation

F1(T,X) =− 2
√

2π
1
3

√
3

X−
1
2 exp

(
− T

4
3

2π
1
3

)
exp

(
3π

1
3

2
X

(
1 +

T
8
3

36π
4
3X2

))

×

(
1 +O

(
T

4
3

X

))(
1 +O

(
1

X
1
2

)) (5.79)

for T = O(1) and X � 1. It then follows, via (5.75) and (5.79), that

F1(T,X) + F2(T,X) =− 2
√

2π
1
3

√
3

X−
1
2 exp

(
− T

4
3

2π
1
3

)
exp

(
3π

1
3

2
X

(
1 +

T
8
3

36π
4
3X2

))

×

(
1 +O

(
T

4
3

X

))(
1 +O

(
1

X
1
2

))
(5.80)

for T = O(1) and X � 1. On returning to (5.72), with (5.80), we finally have that,

Ĩ(x, t̂) =− π
2
3

√
6

t̂
1
3

x
1
12

exp

(
− t̂

4
3

2π
1
3

)
exp

(
3π

1
3

2
x

1
2 t̂

2
3

(
1 +

t̂
4
3

36π
4
3x

))
(

1 +O

(
t̂

2
3

x
1
2

))(
1 +O

(
1

t̂
1
3x

1
4

)) (5.81)
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with t̂ = O(1) as x → ∞. It is instructive to observe that (5.81) remains a uniform

approximation for O(1) ≤ t̃ < O
(
x

3
4

)
as x→∞.

5.1.3 Coordinate Expansion for I(x, t) as |x| → ∞

We can now obtain the corresponding approximation for I(x, t), via (5.22), (5.23) (5.24),

(5.35), (5.69), (5.71) and (5.81). We obtain:

Region I, 0 ≤ t ≤ O
(
x−

1
2

)
as x→∞. We have,

I(x, t̃) =
1

π
5
3

t̃
2
3

x
exp

(
−1

2
πx

)(
H1

(
t̃

2
3

)
+H2

(
t̃

2
3

))(
1 +O

(
t̃

4
3

x
+

1

x
2
3

+
t̃

x
3
2

))

+O

(
exp

(
−πx

(
1− 1√

2π

t̃

x
3
2

))) (5.82)

with t̃
(

= x
1
2 t
)

= O(1) as x→∞. We also have, via (5.60), (5.63) and (5.67), that,

H1

(
t̃

2
3

)
+H2

(
t̃

2
3

)
= −2π

5
3 t̃

4
3 +O

(
t̃

10
3

)
(5.83)

with 0 < t̃� 1, whilst,

H1

(
t̃

2
3

)
= −2

√
2π

1
3

√
3

1

t̃
1
3

exp

(
3π

1
3

2
t̃

2
3

)(
1 +O

(
1

t̃
2
3

))
(5.84)

H2

(
t̃

2
3

)
≤ O

(
exp

(
−π

1
3

2
t̃

2
3

))
(5.85)

with t̃� 1.
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Region II, O(1) ≤ t < O
(
x

1
4

)
as x→∞. We have,

I(x, t) =− 4
√

6π
4
3

t
1
3

x
5
6

exp

(
−π

2
x

(
1− 3

π
2
3

t
2
3

x
2
3

))(
1 +O

(
1

x
1
3 t

2
3

+
t

4
3

x
1
3

+
1

x
2
3

+
t

x

))

+O

(
exp

(
−πx

(
1− 1√

2π

t

x

)))
(5.86)

with t = O(1) as x→∞.

Region III, O
(
x

1
4

)
≤ t < O(x) as x→∞. We have,

I(x, t̂) =− 4
√

6π
4
3

t̂
1
3

x
3
4

exp

(
−π

2
x

(
1− 3

π
2
3

t̂
2
3

x
1
2

+
1

π
4
3

t̂
4
3

x
− 1

12π2

t̂2

x
3
2

))

×

(
1 +O

(
1

x
2
3

+
t̂

x
3
4

+
t̂

1
3

x
1
4

+
1

t̂
2
3x

1
2

))
+O

(
exp

(
−πx

(
1− 1√

2π

t̂

x
3
4

)))
(5.87)

with t̂
(

= x−
1
4 t
)

= O(1) as x→∞.

It is clear that asymptotic matching between each region is satisfied, and it can also be

verified that the approximation in Region I asymptotically matches at the leading order

with the approximation to I(x, t), for t→ 0 with x� 1, in (4.17).

5.2 Coordinate Expansion for η̄(x, t) as |x| → ∞

We can now construct the approximation for η̄(x, t) in each region. We have, via (3.32)

and (3.34),

η̄(x, t) =
1

2πβ
(I(x, t)− I(x− β, t)) (5.88)
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for x ≥ 0, t ≥ 0, and

η̄(x, t) =
1

2πβ
(2πβ + I(−x, t)− I(β − x, t)) (5.89)

for x ≤ 0, t ≥ 0. In order to construct η̄(x, t) we must first consider the approximation

for I(x − β, t) in each region. In Region I, the approximation of I(x − β, t) requires the

scaled coordinate t̃′ = (x− β)
1
2 t as x→∞, from which we have t̃′ = t̃

(
1− β

x

) 1
2 . Thus, in

Region I we have

η̄(x, t̃) =
1

2πβ

(
I(x, t̃)− I

(
x− β, t̃

(
1− β

x

) 1
2

))
(5.90)

with t̃
(

= x
1
2 t
)

= O(1) as x→∞. Similarly, in Region III the approximation of I(x−β, t)

requires the scaled coordinate t̂′ = (x − β)−
1
4 t as x → ∞, from which we have t̂′ =

t̂
(
1− β

x

)− 1
4 . Thus, in Region III we have

η̄(x, t̂) =
1

2πβ

(
I(x, t̂)− I

(
x− β, t̂

(
1− β

x

)− 1
4

))
(5.91)

with t̂
(

= x−
1
4 t
)

= O(1) as x→∞. Thus, via (5.82), (5.86), (5.87), (5.88), (5.89), (5.90)

and (5.91), we have the approximation for η̄(x, t) in the following regions,

Region I+, 0 ≤ t ≤ O
(
x−

1
2

)
as x→ +∞. We have,

η̄(x, t̃) =
1

2πβ

(
1

π
5
3

t̃
2
3

x
exp

(
−1

2
πx

))(
H1

(
t̃

2
3

)
+H2

(
t̃

2
3

)

− exp

(
1

2
πβ

)(
H1

(
t̃

2
3

(
1− β

x

) 1
3

)
+H2

(
t̃

2
3

(
1− β

x

) 1
3

)))

×

(
1 +O

(
t̃

4
3

x
+

1

x
2
3

+
t̃

x
3
2

))
+O

(
exp

(
−πx

(
1− 1√

2π

t̃

x
3
2

)))

78



with t̃ = x
1
2 t = O(1) as x→∞, and the approximations for H1

(
t̃

2
3

)
and H2

(
t̃

2
3

)
given

in (5.83), (5.84) and (5.85).

Region II+, O(1) ≤ t < O
(
x

1
4

)
as x→ +∞. We have,

η̄(x, t) =
1

2πβ

(
exp

(π
2
β
)
− 1
)( 4
√

6π
4
3

t
1
3

x
5
6

exp

(
−π

2
x

(
1− 3

π
2
3

t
2
3

x
2
3

)))

×

(
1 +O

(
1

x
1
3 t

2
3

+
t

4
3

x
1
3

+
1

x
2
3

+
t

x
+
t

2
3

x
2
3

))
+O

(
exp

(
−πx

(
1− 1√

2π

t

x

)))

with t = O(1) as x→∞.

Region III+, O
(
x

1
4

)
≤ t < O(x) as x→ +∞. We have,

η̄(x, t̂) =
1

2πβ

(
exp

(π
2
β
)
− 1
)( 4
√

6π
4
3

t̂
1
3

x
3
4

exp

(
−π

2
x

(
1− 3

π
2
3

t̂
2
3

x
1
2

+
1

π
4
3

t̂
4
3

x

− 1

12π2

t̂2

x
3
2

)))
×

(
1 +O

(
1

x
2
3

+
t̂

x
3
4

+
t̂

2
3

x
1
2

+
1

t̂
1
3x

1
4

+
t̂

4
3

x
+
t̂2

x
3
2

))

+O

(
exp

(
−πx

(
1− 1√

2π

t̂

x
3
4

)))
(5.92)

with t̂
(

= x−
1
4 t
)

= O(1) as x→∞.

Region I−, 0 ≤ t ≤ O
(

(−x)−
1
2

)
as x→ −∞. We have,

η̄(x, t̃) =1 +
1

2πβ

(
1

π
5
3

t̃
2
3

(−x)
exp

(
1

2
πx

))(
H1

(
t̃

2
3

)
+H2

(
t̃

2
3

)

− exp

(
−1

2
πβ

)(
H1

(
t̃

2
3

(
1− β

x

) 1
3

)
+H2

(
t̃

2
3

(
1− β

x

) 1
3

)))

×

(
1 +O

(
t̃

4
3

(−x)
+

1

(−x)
2
3

+
t̃

(−x)
3
2

))
+O

(
exp

(
πx

(
1− 1√

2π

t̃

(−x)
3
2

)))

79



with t̃
(

= (−x)
1
2 t
)

= O(1) as x→ −∞, with the approximations forH1

(
t̃

2
3

)
andH2

(
t̃

2
3

)
given in (5.83), (5.84) and (5.85).

Region II−, O(1) ≤ t < O
(
x

1
4

)
as x→ −∞. We have,

η̄(x, t) =1− 1

2πβ

(
1− exp

(
−π

2
β
))( 4

√
6π

4
3

t
1
3

(−x)
5
6

exp

(
π

2
x

(
1− 3

π
2
3

t
2
3

(−x)
2
3

)))

×

(
1 +O

(
1

(−x)
1
3 t

2
3

+
t

4
3

(−x)
1
3

+
1

(−x)
2
3

+
t

(−x)
+

t
2
3

(−x)
2
3

))

+O

(
exp

(
πx

(
1− 1√

2π

t

(−x)

)))

with t = O(1) as x→ −∞.

Region III−, O
(
x

1
4

)
≤ t < O(x) as x→ −∞. We have,

η̄(x, t̂) =1− 1

2πβ

(
1− exp

(
−π

2
β
))( 4

√
6π

4
3

t̂
1
3

(−x)
3
4

exp

(
π

2
x

(
1− 3

π
2
3

t̂
2
3

(−x)
1
2

+
1

π
4
3

t̂
4
3

(−x)

− 1

12π2

t̂2

(−x)
3
2

)))
×

(
1 +O

(
1

(−x)
2
3

+
t̂

(−x)
3
4

+
t̂

2
3

(−x)
1
2

+
1

t̂
1
3 (−x)

1
4

+
t̂

4
3

(−x)

+
t̂2

(−x)
3
2

))
+O

(
exp

(
πx

(
1− 1√

2π

t̂

(−x)
3
4

)))
(5.93)

with t̂
(

= (−x)−
1
4 t
)

= O(1) as x→ −∞.

We now move onto consider coordinate expansions for η̄(x, t) as t→∞.
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CHAPTER 6

COORDINATE EXPANSIONS FOR η̄(x, t) AS t→∞

In this chapter we consider η̄(x, t), as given in (3.30), as t→∞ with x ∈ R. The natural

spatial coordinate as t → ∞ is y = (x
t
). We now construct an approximation to η̄(y, t)

as t → ∞, uniformly for y ∈ R. We find that the approximation consists of four outer

regions, two of which exhibit oscillatory behaviour and two that show an exponentially

small disturbance in the far field conditions. We then find inner region approximations for

η̄(y, t),which connect the oscillatory regions to the exponentially decaying regions, which

are in terms of Airy functions and their integrals and connect the oscillatory regions to

the exponentially decaying regions.

6.1 Outer Region Coordinate Expansion for η̄(x, t) as
t→∞

We examine η̄(x, t), as given in (3.30), as t→∞ with x ∈ R. We first approximate η̄(x, t)

for x = O(t) as t→∞. Introducing y = x
t
, we write via (3.30),

η̄(y, t) =
1

2πβ

∫
Cδ

f(k) cos (γ(k)t) exp (−ikty) dk− i

2π

∫
Cδ

1

k
cos (γ(k)t) exp (−ikty) dk

(6.1)

for (y, t) ∈ R× R+, where
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f(k) =
1

k2
(1− exp (iβk)) + i

β

k

with k ∈ C, and the contour Cδ shown in Figure (6.1), where Cδ = L1 ∪L2 ∪Cδ. We now

consider the first integral on the right-hand-side of (6.1). Observing that f(k) is entire,

Cauchy’s Theorem gives

∫
Cδ

f(k) cos (γ(k)t) exp (−ikty) dk =

∫ ∞
−∞

f(k) cos (γ(k)t) exp (−ikty) dk

=
1

2

∫ ∞
−∞

f(k) exp (it (γ(k)− ky)) dk

+
1

2

∫ ∞
−∞

f(k) exp (−it (γ(k) + ky)) dk

(6.2)

with (y, t) ∈ R×R+. We now consider the second integral on the right-hand-side of (6.1).

Along L1 and L2 we have −∞ < k ≤ −δ and δ ≤ k <∞ respectively, and on Cδ we may

write

k = δ exp (iθ) ,

for θ ∈ [−π, 0], so that, with 0 < δ � 1, we have

Re(k)

Im(k)

Cδ

k = iπ
2

k = −iπ
2

k = δk = −δL1 L2

Branch cut for γ(k)

Branch cut for γ(k)

Figure 6.1: Contour Cδ in the complex k-plane.
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∫
Cδ

1

k
cos (γ(k)t) exp (−ikty) dk =

∫ −δ
−∞

1

k
cos (γ(k)t) exp (−ikty) dk

+

∫ ∞
δ

1

k
cos (γ(k)t) exp (−ikty) dk

+ i

∫ 0

−π
(1 +O (δ)) dθ

with (y, t) ∈ R× R+. Thus,

∫
Cδ

1

k
cos (γ(k)t) exp (−ikty) dk = iπ− 2i

∫ ∞
δ

1

k
cos (γ(k)t) sin (kty) dk+O (δ) (6.3)

for (y, t) ∈ R × R+. Now, the left hand side of (6.3) is independent of 0 < δ < π
2
(via

Cauchy’s Theorem) and so, after using the identity

2 cos (γ(k)t) sin (kty) = sin t (γ(k) + ky)− sin t (γ(k)− ky) ,

and taking δ → 0 on the right hand side of (6.3), we obtain

∫
Cδ

1

k
cos (γ(k)t) exp (−ikty) dk =iπ + i

∫ ∞
0

1

k
sin t (γ(k)− ky) dk

− i
∫ ∞

0

1

k
sin t (γ(k) + ky) dk

(6.4)

for (y, t) ∈ R× R+. Finally, via (6.1), (6.2) and (6.4), we have

η̄(y, t) =
1

2
+

1

4πβ
(J+(y, t) + J−(y, t)) +

1

2π
(F (y, t)− F (−y, t)) (6.5)

for (y, t) ∈ R× R+, where

J+(y, t) =

∫ ∞
−∞

f(k) exp (it (γ(k)− ky)) dk, (6.6)

J−(y, t) =

∫ ∞
−∞

f(k) exp (−it (γ(k) + ky)) dk, (6.7)
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F (y, t) =

∫ ∞
0

1

k
sin t (γ(k)− ky) dk, (6.8)

and

f(k) =
1

k2
(1− exp (iβk)) + i

β

k
(6.9)

for k ∈ C, which is entire. The integrals in (6.6)-(6.8) are now in a suitable form to be

estimated.

6.2 Outer Region Coordinate Expansions for J+(y, t)

and J−(y, t) as t→∞

We first consider J+(y, t) in (6.6) as t→∞ with y = O(1). We observe that J+(y, t) is in

the form of a stationary phase integral. There are three distinct asymptotic regions for

J+(y, t) as t→∞, namely.

Region I: o(1) < y < 1− o(1) as t→∞,

Region II: y < −o(1) as t→∞,

Region III: y > 1 + o(1) as t→∞.

We consider the approximation of J+(y, t) in each region in turn. We begin in Region I.

The phase becomes stationary in (6.6) at those values k ∈ R when

γ′(k) = y. (6.10)

Recall that
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γ(k) = (k tanh k)
1
2 (6.11)

for −∞ < k <∞, with the branch defined so that

γ(−k) = −γ(k)

with k > 0. Graphs of γ(k) and γ′(k) are given in Figures (6.2) and (6.3). It follows from

(6.10) that J+(y, t) has exactly two points of stationary phase when o(1) < y < 1− o(1),

and we denote these points to be at

k = ±ks(y) (6.12)

for o(1) < y < 1−o(1), where ks(y) > 0. At this stage it is useful to examine the structure

of ks(y). As y → 1−, we have ks(y)→ 0. Thus, via (6.10), we may write

γ′(0) + γ′′(0)ks(y) +
1

2
γ′′′(0)ks(y)2 +O

(
ks(y)4

)
= y

as y → 1−. Hence

ks(y) =
√

2(1− y)
1
2 +O

(
(1− y)

3
2

)
(6.13)

as y → 1−, where γ′′′(0) = −1. As y → 0+, we have ks(y)→∞. Thus, via (6.11) we have

Figure 6.2: The graph of γ(k). Figure 6.3: The graph of γ′(k).
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γ′(ks(y)) =
1

2
ks(y)−

1
2 +O

(
ks(y)

1
2 exp (−2ks(y))

)
(6.14)

as y → 0+. Hence

ks(y) =
1

4y2
+O

(
1

y4
exp

(
−1

2y2

))
(6.15)

as y → 0+. Using (6.13) and (6.15), and observing that ks(y) is decreasing with y ∈ (0, 1),

we give a sketch of ks(y) in Figure (6.4). It is therefore convenient to write (6.6) as

J+(y, t) = K1(y, t) +K2(y, t) (6.16)

where

K1(y, t) =

∫ 0

−∞
f(k) exp (it (γ(k)− ky)) dk, (6.17)

K2(y, t) =

∫ ∞
0

f(k) exp (it (γ(k)− ky)) dk,

and each integral has one point of stationary phase. We first consider K2(y, t). The

y

ks(y)

y = 1

Figure 6.4: A sketch of ks(y) for y ∈ (0, 1).
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phase is stationary at k = ks(y), so we may approximate K2(y, t) as

K2(y, t) = exp (−itks(y)y)

∫ δ(t)

−δ(t)
f(w+ ks(y)) exp (it (γ(w + ks(y))− wy)) dw (6.18)

for o(1) < y < 1 − o(1) as t → ∞, where δ(t) = o(1) as t → ∞ and we have used the

substitution w = k − ks(y). For |w| � 1 we have

f(w + ks(y)) = f(ks(y)) + f ′(ks(y))w +
1

2
f ′′(ks(y))w2 +O

(
f ′′′(ks(y))w3

)
γ(w + ks(y)) = γ(ks(y)) + γ′(ks(y))w +

1

2
γ′′(ks(y))w2 +O

(
γ′′′(ks(y))w3

)
from which (6.18) becomes

K2(y, t) v f(ks(y)) exp (−it (ks(y)y − γ(ks(y))))

∫ δ(t)

−δ(t)
exp

(
i
t

2
γ′′(ks(y))w2

)
dw (6.19)

for o(1) < y < 1− o(1) as t→∞. As γ′′(k) < 0 for k > 0, and γ′′(−k) = −γ′′(k), we use

the substitution

u2 =
t

2
γ′′(−ks(y))w2 (6.20)

in (6.19) to obtain, on taking δ(t) = t−
2
5 ,

K2(y, t) v f(ks(y)) exp (−it (ks(y)y − γ(ks(y))))

√
2

tγ′′(−ks(y))

∫ ∞
−∞

exp
(
−iu2

)
du

for o(1) < y < 1−o(1) as t→∞. Via contour integration and an application of Cauchy’s

Theorem it may be established that

∫ ∞
−∞

exp
(
−iu2

)
=
√
π exp

(
−iπ

4

)
(6.21)

and so
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K2(y, t) v

√
2π

tγ′′(−ks(y))
f(ks(y)) exp

(
−i
(
t (ks(y)y − γ(ks(y))) +

π

4

))
(6.22)

for o(1) < y < 1− o(1) as t→∞. Similarly, we may approximate (6.17) as

K1(y, t) v

√
2π

tγ′′(−ks(y))
f(−ks(y)) exp

(
i
(
t (ks(y)y − γ(ks(y))) +

π

4

))
(6.23)

for o(1) < y < 1 − o(1) as t → ∞. Therefore, via (6.9), (6.16), (6.22) and (6.23), we

obtain

J+(y, t) v

√
2π

tγ′′(−ks(y))

(
2β

ks(y)
sin
(π

4
+ tks(y) (y − c(ks(y)))

)

+
2

ks(y)2

(
cos
(π

4
+ tks(y) (y − c(ks(y)))

)
− cos

(π
4
− βks(y) + tks(y) (y − c(ks(y)))

)))
(6.24)

for o(1) < y < 1− o(1) as t→∞, where

c(k) =
γ(k)

k

for k ≥ 0. It is now instructive to consider the forms of (6.24) when 0 < y � 1 and

0 < 1− y � 1. These are readily obtained, via (6.11), (6.13) and (6.14), as

J+(y, t) v
8
√
πy

1
2

t
1
2

(
β sin

(
π

4
− t

4y

)
+ 4y2

(
cos

(
π

4
− t

4y

)
− cos

(
π

4
− β

4y2
− t

4y

)))
(6.25)

with 0 < y � 1 as t→∞, and

J+(y, t) v
2

1
4β2
√
π

t
1
2 (1− y)

1
4

cos

(
π

4
− 2
√

2

3
t(1− y)

3
2

)
(6.26)

with 0 < (1− y)� 1 as t→∞.
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We now consider the approximation of J+(y, t) in Region III. Via (6.6), we write

J+(y, t) =

∫ ∞
−∞

f(k) exp (itg(k, y))) dk, (6.27)

where

g(k, y) = γ(k)− yk (6.28)

for y > 1 with t ∈ R+. With y > 1, (6.27) is a steepest descents integral as t → ∞. In

particular, g(k, y) becomes stationary in (6.27) at those values k = iτ , with τ ∈
(
−π

2
, π

2

)
,

when

gk(iτ, y) = 0. (6.29)

It follows from (6.28) and (6.29) that for y > 1, g(k, y) has two stationary points on

k = iτ , with τ ∈
(
−π

2
, π

2

)
, and we denote these points as

k = ±iτs(y) (6.30)

where τs(y) ∈
(
0, π

2

)
for y > 1. A graph of τs(y) is given in Figure (6.5). Setting k = σ+iτ ,

Figure 6.5: The graph of τs(y) for y > 1, with the asymptotic approximations (−−) from
(6.57).
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with σ, τ ∈ R, we may write (6.28) as

g(k, y) = γ(k)− yk = u(k, y) + iv(k, y), (6.31)

with y > 1, where u(k, y) and v(k, y) denote the real and imaginary parts of g(k, y)

respectively. Via (3.23), (3.24), (3.25) and (6.31), we may determine the qualitative

behaviour of the level curves for u(k, y) and v(k, y), and sketches of these level curves are

given in Figures (6.7) and (6.6) respectively, where the arrows point in the direction of

increasing v(k, y) and u(k, y). We observe that the level curve D, in Figure (6.7), is the

path of steepest descent for g(k, y) in (6.27). Thus we will deform the contour in (6.27)

onto the steepest descent contour D. On D, k = kd(σ) = σ + iτd(σ), with τd(0) = −τs(y)

and τd(−σ) = τd(σ), where τd(σ) is monotone decreasing for σ ≥ 0. Moreover,

τd(σ) v −2y2σ2 as |σ| → ∞ (6.32)

We now consider the contour CL = [−L,L] ∪ L1 ∪ L2 ∪DL,where L1 and L2 are arcs on

the circle |k| = L, and DL is a finite section of D, as shown in Figure (6.8). The points

k = k1 = σ1 + iτ1 and k = k2 = σ2 + iτ2 are the intersection points of L1 and L2 with DL

respectively. With L� 1, we have, via (6.32), that

σ1 =
L

1
2

√
2y

(
1− 1

8y2L
+O

(
1

y4L2

))
(6.33)

τ1 = −L
(

1− 1

4y2L
+O

(
1

y4L2

))
(6.34)

as L→∞. With θL being the angle shown in Figure (6.8), we also have from (6.33) and

(6.34) that

θL =
π

2
− 1
√

2yL
1
2

+O

(
1

y3L
3
2

)
(6.35)
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as L→∞. Now, via Cauchy’s Theorem, we have

∫
CL

f(k) exp (itg(k, y)) dk = 0, (6.36)

where

σ

τ

τ = τs(y)

τ = π
2

τ = π

Branch cut for g(k, y)

τ = −τs(y)

τ = −π
2

τ = −π

Branch cut for g(k, y)

Figure 6.6: Level curves for v(k, y) in (6.31) in the cut k-plane, with y > 1.
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f(k) =
1

k2
(1− exp (iβk)) + i

β

k
(6.37)

and

g(k, y) = γ(k)− yk = u(k, y) + iv(k, y), (6.38)

for y > 1 with t ∈ R+. Therefore

σ

τ

τ = π
2

τ = −π
2

τ = τs(y)

τ = −τs(y)

Branch cut for g(k, y)

Branch cut for g(k, y)

D

Figure 6.7: Level curves for u(k, y) in (6.31) in the cut k-plane, with y > 1.

σ

τ

τ = −π
2

τ = −τs(y)

Branch cut for g(k, y)

DL

L1L2

L−L
θL

k = k1k = k2

Figure 6.8: Contour CL.
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∫
CL

f(k) exp (itg(k, y)) dk =

∫ L

−L
f(k) exp (itg(k, y)) dk +

∫
L1

f(k) exp (itg(k, y)) dk

+

∫
DL

f(k) exp (itg(k, y)) dk +

∫
L2

f(k) exp (itg(k, y)) dk

= 0

(6.39)

for y > 1 with t ∈ R+. We now consider the integral along L1 in (6.39). Set

JL1(y, t) =

∫
L1

f(k) exp (itg(k, y)) dk, (6.40)

for y > 1 with t ∈ R+. On L1 we write

k = L (cos θ + i sin θ) (6.41)

for θ ∈ [−θL, 0]. Via (6.35), (6.37), (6.38), (6.40) and (6.41) we have

|JL1(y, t)| ≤
∫ 0

−π
2

(
1

L
(1 + exp (−βL sin θ)) + β

)
exp

(
t

(
yL sin θ − 2L

1
2 sin

θ

2

))
dθ

(6.42)

for y > 1 with t ∈ R+. It is readily established that

∫ 0

−π
2

exp

(
t

(
yL sin θ − 2L

1
2 sin

θ

2

))
dθ ≤ 16

L
(6.43)

and

∫ 0

−π
2

exp

(
t

(
yL sin θ − 2L

1
2 sin

θ

2

)
− βL sin θ

)
dθ ≤ 16

L
(6.44)

for y > 1 with t > β + 1 and L sufficiently large. Thus, via (6.42), (6.43) and (6.44), we

have
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JL1(y, t) =

∫
L1

f(k) exp (itg(k, y)) dk → 0 as L→∞ (6.45)

for y > 1 with t > β + 1. Similarly, for the integral along L2 in (6.39), we have

JL2(y, t) =

∫
L2

f(k) exp (itg(k, y)) dk → 0 as L→∞ (6.46)

for y > 1 with t > β + 1. It now follows from (6.27), (6.39), (6.45) and (6.46) that, on

letting L→∞, we have

J+(y, t) = −
∫
D

f(k) exp (itg(k, y)) dk (6.47)

for y > 1 with t > β + 1, whilst f(k) and g(k, y) are given by (6.37) and (6.38), where

u(k, y) and v(k, y) are the real and imaginary parts of g(k, y) respectively, and we recall

that

u(k) = 0 on D. (6.48)

The level curve D is the path of steepest descent for g(k, y) in (6.38), and it is observed

from Figure (6.7) that v(k, y) attains its unique minimum on D at k = −iτs(y). We can

now estimate (6.47) via the method of steepest descents. Accordingly, we first write, on

the contour D close to k = −iτs(y),

k = kd(σ) = σ + iτd(σ) = σ − iτs(y) +O
(
σ2
)

(6.49)

as σ → 0. from which we approximate (6.47), via (6.38) and (6.49), as

J+(y, t) v
∫ δ(t)

−δ(t)
f(σ − iτs(y)) exp (−tv(σ − iτs(y), y)) dσ (6.50)

for y > 1 + o(1) as t→∞ with δ(t) = O
(
t−

2
5

)
as t→∞. As σ → 0 we have
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f(σ − iτs(y)) = − 1

τs(y)2
(1− exp (βτs(y)))− β

τs(y)
+O(σ) (6.51)

and

v(σ − iτs(y), y) = v(−iτs(y), y) +
1

2
vkk(−iτs(y))σ2 +O

(
σ3
)

(6.52)

where

v(−iτs(y), y) = −(τs(y) tan(τs(y)))
1
2 + yτs(y) (6.53)

vkk(−iτs(y)) =− 1

4
(τs(y) tan(τs(y)))−

3
2

(
tan(τs(y)) + τs(y) sec(τs(y))2

)2

+ (τs(y) tan(τs(y)))−
1
2 (1 + τs(y) tan(τs(y))) sec(τs(y))2

(6.54)

with τs(y) ∈
(
0, π

2

)
. Graphs of v(−iτs(y), y) and vkk(−iτs(y)) for y > 1 are shown in Fig-

ures (6.9) and (6.10) respectively. We observe that v(−iτs(y), y) > 0 and vkk(−iτs(y)) > 0

as expected. Thus, via (6.50), (6.51) and (6.52), we have

J+(y, t) v exp (−tv(−iτs(y), y))

∫ δ(t)

−δ(t)

(
− 1

τs(y)2
(1− exp (βτs(y)))− β

τs(y)
+O(σ)

)

× exp

(
−1

2
tvkk(−iτs(y))σ2 +O

(
tσ3
))

dσ

(6.55)

for y > 1 + o(1) as t→∞. We use the substitution

u2 =
1

2
tvkk(−iτs(y))σ2

in (6.55) to obtain, on setting δ(t) = t−
2
5 ,

J+(y, t) v exp (−tv(−iτs(y), y))

(
− 1

τs(y)2
(1− exp (βτs(y)))− β

τs(y)

)

×

√
2

tvkk(−iτs(y))

∫ ∞
−∞

exp
(
−u2

)
du
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Figure 6.9: The graph of v(−iτs(y), y)
for y > 1 with the asymptotic approx-
imations (−−) from (6.58).

Figure 6.10: The graph of vkk(−iτs(y))
for y > 1.

Figure 6.11: The graph of vkk(−iτs(y))
for y > 1 with the asymptotic approxi-
mation (−−) from (6.59) as y → 1+.

Figure 6.12: Graph of the ratio between
vkk(−iτs(y)) and the asymptotic form
from (6.59) as y →∞.

for y > 1 + o(1) as t→∞. Finally we have the approximation

J+(y, t) v

√
2π

tvkk(−iτs(y))

(
− β

τs(y)
− 1

τs(y)2
(1− exp (βτs(y)))

)
exp (−tv(−iτs(y), y))

(6.56)

for y > 1 + o(1) as t→∞, with τs(y) ∈
(
0, π

2

)
and where v(−iτs(y), y) and vkk(−iτs(y))

are given in (6.53) and (6.54) respectively. It is instructive in analysing (6.56) to have

the asymptotic forms for τs(y), v(−iτs(y), y) and vkk(−iτs(y)) as y → 1+ and as y →∞.

From (6.29), (6.30), (6.53) and (6.54) we obtain, after some calculation,
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τs(y) =


√

2(y − 1)
1
2 − 19

√
2

36
(y − 1)

3
2 +O

(
(y − 1)

5
2

)
as y → 1+,

π

2
− π

1
3

2y
2
3

+O

(
1

y
4
3

)
as y →∞.

(6.57)

v (−iτs(y), y) =


2
√

2

3
(y − 1)

3
2 +O

(
(y − 1)

5
2

)
as y → 1+,

π

2
y − 3π

1
3

2
y

1
3 +

1

2π
1
3y

1
3

+O

(
1

y

)
as y →∞.

(6.58)

vkk (−iτs(y)) =


√

2(y − 1)
1
2 +O

(
(y − 1)

3
2

)
as y → 1+,

3

π
1
3

y
5
3 +O (y) as y →∞.

(6.59)

The asymptotic forms (6.57) and (6.58) are included as dashed lines in Figures (6.5) and

(6.9) respectively, the asymptotic form (6.59) as y → 1+ is included as a dashed line in

Figure (6.11) and the graph of the ratio between vkk (−iτs(y)) and the asymptotic form

(6.59) as y →∞ is shown in Figure (6.12). It is again instructive to examine the form of

(6.56) for 0 < y − 1� 1 and for y � 1. From (6.56), (6.57), (6.58) and (6.59) we obtain

J+(y, t) v
2

3
2

√
3π

1
3 t

1
2y

5
6

(
β +

2

π

(
exp

(π
2
β
)
− 1
))

exp

(
−π

2
t

(
y − 3

π
2
3

y
1
3

))
(6.60)

with y � 1 as t→∞, and,

J+(y, t) v

√
πβ2

2
3
4 t

1
2 (y − 1)

1
4

exp

(
−2
√

2

3
t(y − 1)

3
2

)
(6.61)

with 0 < (y − 1)� 1 as t→∞.

We now consider the approximation of J+(y, t) in Region II. Via (6.6) we have

J+(y, t) =

∫ ∞
−∞

f(k) exp (itg(k, y))) dk, (6.62)

where

g(k, y) = γ(k)− yk (6.63)
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for y < 0 with t ∈ R+. Setting k = σ + iτ , with σ, τ ∈ R, we may write (6.63) as

g(k, y) = γ(k)− yk = u(k, y) + iv(k, y),

with y < 0, where u(k, y) and v(k, y) denote the real and imaginary parts of g(k, y)

respectively. Via (3.23), (3.24), (3.25) and (6.63), we may determine the qualitative

behaviour of the level curves of v(k, y), and a sketch of these level curves is given in

Figure (6.15), where the arrows point in the direction of increasing u(k, y). We will

deform the contour in (6.62) onto the contour E shown in Figure (6.15), on which we

write v(k, y) = C(y)(> 0). On E, k = ke(σ) = σ + iτe(σ), with τe(−σ) = τe(σ), where

τe(σ) is monotone increasing for σ ≥ 0. Moreover,

τe(σ)→ −C(y)

y
as |σ| → ∞. (6.64)

for y < 0. Graphs of C(y) and y−1C(y) are given in Figures (6.13) and (6.14), and it is

established numerically that C(y) > 0 for y < 0, C(y) is monotone decreasing for y < 0,

and

C(0) = 0.70324 . . . (6.65)

with,

Figure 6.13: The graph of C(y) with y < 0. Figure 6.14: The graph of C(y)
y

with y < 0.
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C(y) v −π
2
y (6.66)

as y → −∞. We now consider the contour DM = [−M,M ] ∪M1 ∪M2 ∪ EM , where M1

andM2 are arcs on the circle |k| = M , and EM is a finite section of E, as shown in Figure

(6.16). The points k = p1 = σp1 + iτp1 , and k = p2 = σp2 + iτp2 are the intersection points

σ

τ

τ = π
2

τ = π E

E

E

E

Branch cut for g(k, y)

τ = −π
2

τ = −π

Branch cut for g(k, y)

Figure 6.15: Level curves for v(k, y) in the cut k-plane, with y < 0.

σ

τ

θM
M−M

M1M2
EM

s1s2

p1p2

τ = π
2

Branch cut for g(k, y)

Figure 6.16: Contour DM .
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ofM1 andM2 with EM respectively. The points k = s1 = σs1 +iτs1 and k = s2 = σs2 +iτs2

are the stationary points of g(k, y) on the level curve E. We have, via (6.64), that

σp1 = M

(
1− C(y)2

2y2M2
+O

(
C(y)4

y4M4

))
(6.67)

τp1 = −C(y)

y
+O

(
C(y)2

y2M2

)
(6.68)

as M → ∞. With θM being the angle shown in Figure (6.16), we also have from (6.67)

and (6.68) that

θM = −C(y)

yM
+O

(
C(y)2

y2M2

)
(6.69)

as M →∞. Now, via Cauchy’s Theorem, we have

∫
DM

f(k) exp (itg(k, y)) dk = 0,

where

f(k) =
1

k2
(1− exp (iβk)) + i

β

k
(6.70)

and

g(k, y) = γ(k)− yk = u(k, y) + iv(k, y), (6.71)

for y < 0 with t ∈ R+. Therefore

∫
EM

f(k) exp (itg(k, y)) dk =

∫ M

−M
f(k) exp (itg(k, y)) dk +

∫
M1

f(k) exp (itg(k, y)) dk

+

∫
EM

f(k) exp (itg(k, y)) dk +

∫
M2

f(k) exp (itg(k, y)) dk

= 0 (6.72)
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for y < 0 with t ∈ R+. We consider the integral along M1 in (6.72). Set

JM1(y, t) =

∫
M1

f(k) exp(itg(k, y)) dk, (6.73)

for y < 0 with t ∈ R+. On M1 we write

k = M(cos θ + i sin θ) (6.74)

for θ ∈ [0, θM ]. Via (6.70), (6.71), (6.73) and (6.74), we have

|JM1(y, t)| ≤
∫ θM

θ=0

(
1

M
(1 + exp (−βM sin θ) + β)

)

× exp

(
−1

2
t

(
M

1
2 sin

θ

2
−My sin θ

))
dθ

(6.75)

for y < 0 with t ∈ R+. It is readily established, via (6.69), that

∫ θM

θ=0

exp

(
−1

2
t

(
M

1
2 sin

θ

2
−My sin θ

))
dθ ≤ C(y)

(−y)M
(6.76)

and

∫ θM

θ=0

exp

(
−1

2
t

(
M

1
2 sin

θ

2
−My sin θ

)
− βM sin θ

)
dθ ≤ C(y)

(−y)M
(6.77)

for y < 0 with t ∈ R+ as M →∞. Thus, via (6.75), (6.76) and (6.77), we have

JM1(y, t) =

∫
M1

f(k) exp (itg(k, y)) dk → 0 as M →∞ (6.78)

for y < 0 with t ∈ R+. Similarly, for the integral along M2 in (6.72), we have

JM2(y, t) =

∫
M2

f(k) exp (itg(k, y)) dk → 0 as M →∞ (6.79)

for y < 0 with t ∈ R+. It now follows from (6.62), (6.72), (6.78) and (6.79) that, on
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letting M →∞, we have

J+(y, t) = −
∫
E

f(k) exp (itg(k, y)) dk (6.80)

for y < 0 with t ∈ R+, where f(k) and g(k, y) are given by (6.70) and (6.71). Recall that

on the contour E we have

g(k, y) = u(k, y) + iC(y) (6.81)

so that, via (6.80) and (6.81), we have

J+(y, t) = − exp(−tC(y))

∫
E

f(k) exp (itu(k, y)) dk (6.82)

for y < 0 with t ∈ R+. In approximating J+(y, t), as t → ∞, in (6.82), it is necessary

to write the contour E as E = E1 ∪ E∆ ∪ E2, where Re(k) ∈ (−∞,−∆(t)) on E1,

Re(k) ∈ [−∆(t),∆(t)] on E∆ and Re(k) ∈ (∆(t),∞) on E2, with ∆(t) = 2 + t, as shown

in Figure (6.17), so that

σ

τ

E∆

E2

E1

s1s2 k = ∆(t) + iτ
k = −∆(t) + iτ

τ = π
2

σ = ∆(t)σ = −∆(t)

Branch cut for g(k, y)

Figure 6.17: Contour E.
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J+(y, t) =− exp(−tC(y))

(∫
E1

f(k) exp (itu(k, y)) dk +

∫
E∆

f(k) exp (itu(k, y)) dk

+

∫
E2

f(k) exp (itu(k, y)) dk

)
(6.83)

for y < 0 with t ∈ R+. The points k = s1 and k = s2, shown in Figure (6.17), are the

stationary points of u(k, y) on the contour E. Setting k = σ(y) + iτ(y) at the stationary

point k = s1, we may determine the position of the stationary point of u(k, y) for y < 0, via

(6.71). Graphs of σ(y) and τ(y) at k = s1, for y < 0, are given in Figures (6.18) and (6.19)

respectively. It is clear from Figures (6.18) and (6.19) that, for y < 0, since ∆(t) > 2,

the stationary points k = s1 and k = s2 are on the contour E∆. We now consider the

approximation of the integral along E∆ in (6.83). It follows from the Riemann-Lebesgue

lemma that

∫
E∆

f(k) exp (itu(k, y)) dk → 0 (6.84)

for y < 0 as t→∞. We now consider the approximation on E1 in (6.83). We may write,

via (6.68), with t sufficiently large,

k v σ − iC(y)

y
(6.85)

Figure 6.18: The graph of σ(y) at k = s1

with y < 0.
Figure 6.19: The graph of τ(y) at k = s1

with y < 0.
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on E1 with y < 0 and σ ∈ (∆(t),∞). Thus, via (3.25), (6.71) and (6.85), for t sufficiently

large,

u(k, y) v σ
1
2 − σy (6.86)

on E1 with y < 0 and σ ∈ (∆(t),∞). It then follows, via (6.70), (6.85) and (6.86), that

∫
E1

f(k) exp (itu(k, y)) dk v
∫ ∞
σ=∆(t)

(
1

σ2

(
1− exp

(
βC(y)

y
+ iβσ

))
+ i

β

σ

)

× exp
(
it
(
σ

1
2 − σy

))
dσ

for y < −o(1) as t→∞. Upon making the substitution

u = σ
1
2 − σy (6.87)

in the right-hand-side of (6.87), we obtain

∫
E1

f(k) exp (itu(k, y)) dk v −1

y

∫ ∞
∆(t)

1
2−y∆(t)

(
y2

u2

(
1− exp

(
βC(y)

y
− iβu

y

))
+ i

βy

u

)

× exp (itu) du

(6.88)

for y < −o(1) as t → ∞. An integration by parts on the right-hand side of (6.88)

establishes that

∫
E1

f(k) exp (itu(k, y)) dk = O

(
1

(−y)t2

)
(6.89)

for y < −o(1) as t→∞. Similarly, for the integral on E2 in (6.83) it may be established

that

∫
E2

f(k) exp (itu(k, y)) dk = O

(
1

(−y)t2

)
(6.90)

104



for y < −o(1) as t→∞. Therefore, we have, via (6.83), (6.84), (6.89) and (6.90), that

J+(y, t) = o (exp (−tC(y))) (6.91)

for y < −o(1) as t → ∞. This completes the approximation of J+(y, t) in Region I,

Region II and Region III.

Similarly, we may approximate J−(y, t) in (6.7). In this case there are three distinct

asymptotic regions to consider, namely,

Region I′: −1 + o(1) < y < −o(1) as t→∞,

Region II′: y > o(1) as t→∞,

Region III′: y < −1− o(1) as t→∞.

In Region I′ we obtain,

J−(y, t) v

√
2π

tγ′′(−ks(−y))

(
2β

ks(−y)
sin
(
−π

4
+ tks(−y) (y + c(ks(−y)))

)

+
2

ks(−y)2

(
cos
(
−π

4
+ tks(−y) (y + c(ks(−y)))

)
− cos

(
−π

4
− βks(−y) + tks(−y) (y + c(ks(−y)))

)))
(6.92)

with −1 + o(1) < y < −o(1) as t→∞, where

c(k) =
γ(k)

k
,

for k ≥ 0, and k = ±ks(y) are the points where the phase becomes stationary in (6.7),

with
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ks(−y) =
√

2(1 + y)
1
2 +O

(
(1 + y)

3
2

)
(6.93)

as y → −1+, and

ks(−y) =
1

4y2
+O

(
1

y4
exp

(
−1

2y2

))
(6.94)

as y → 0−. Then, via (6.92), (6.93) and (6.94) we have,

J−(y, t) v− 8
√
π(−y)

1
2

t
1
2

(
β sin

(
π

4
+

t

4y

)
− 4y2

(
cos

(
π

4
+
t

y

)

− cos

(
π

4
+

β

4y2
+

t

4y

))) (6.95)

with 0 < (−y)� 1 as t→∞, and

J−(y, t) v
2

1
4β2
√
π

t
1
2 (1 + y)

1
4

cos

(
π

4
− 2
√

2

3
t(1 + y)

3
2

)
(6.96)

with 0 < (1 + y)� 1 as t→∞. In Region III′ we obtain,

J−(y, t) v

√
2π

tvkk(−iτs(−y))

(
β

τs(−y)
− 1

τs(−y)2
(1− exp (−βτs(−y)))

)

× exp (tv(−iτs(−y), y))

(6.97)

for y < −1− o(1) as t→∞, where k = ±iτs(−y) are the stationary points of γ(k) + ky

in (6.7), and v(k) = Im (γ(k) + ky)), with v(−iτs(−y), y) < 0 and vkk(−iτs(−y)) < 0 for

y < −1. Also,

J−(y, t) v
2

3
2

√
3π

1
3 t

1
2 (−y)

5
6

(
β +

2

π

(
exp

(
−π

2
β
)
− 1
))

exp

(
−π

2
t

(
(−y)− 3

π
2
3

(−y)
1
3

))
(6.98)

with (−y)� 1 as t→∞, and,
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J−(y, t) v −
√
πβ2

2
3
4 t

1
2 (−(y + 1))

1
4

exp

(
−2
√

2

3
t(−(y + 1))

3
2

)
(6.99)

with 0 < (−(y + 1))� 1 as t→∞. Finally, in Region II′ we obtain,

J−(y, t) = o (exp (tC(−y))) (6.100)

for y > o(1) as t→∞, where C(−y) < 0 for y > 0, with

C(−y) v −π
2
y

as y →∞, and

C(0) = −0.70324 . . . .

6.3 Outer Region Coordinate Expansions for F (y, t) as
t→∞

We now approximate F (y, t), as given in (6.8), in Region I, Region II and Region III. We

begin in Region I, where we write, via (6.8) and (6.12),

F (y, t) =

∫ δ(t)

0

1

k
sin t (γ(k)− ky) dk +

∫ 1
2
ks(y)

δ(t)

1

k
sin t (γ(k)− ky) dk

+

∫ ∞
1
2
ks(y)

1

k
sin t (γ(k)− ky) dk

(6.101)

for 0 < y < 1 and t ∈ R+, where δ(t) = o(1) as t→∞ and k = ±ks(y) are the stationary

points of γ(k)− ky. We consider the first integral on the right-hand-side of (6.101). Set

F1(y, t) =

∫ δ(t)

0

1

k
sin t (γ(k)− ky) dk (6.102)

for 0 < y < 1 and t ∈ R+, with δ(t) = o(1) as t→∞. Recall that
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γ(k) = (k tanh k)
1
2 (6.103)

for −∞ < k < ∞, so that, via (6.102) and (6.103), and on taking δ(t) = o
(
t−

1
3

)
as

t→∞, we have

F1(y, t) =

∫ δ(t)

0

1

k
sin (t (1− y) k) dk− t

6

∫ δ(t)

0

k2 cos (t (1− y) k) dk+O
(
tδ(t)5

)
(6.104)

for 0 < y < 1 as t→∞. Upon making the substitution

w = t(1− y)k (6.105)

in (6.104), and taking tδ(t)→∞ as t→∞, we obtain

F1(y, t) =

∫ ∞
0

sinw

w
dw −

∫ ∞
t(1−y)δ(t)

sinw

w
dw

− 1

6t2(1− y)3

∫ t(1−y)δ(t)

0

w2 cosw dw +O
(
tδ(t)5

) (6.106)

for 0 < y < 1 as t→∞. Integration by parts and using the result

∫ ∞
0

sinw

w
dw =

π

2
(6.107)

we finally have

F1(y, t) =
π

2
− cos (tδ(t)(1− y))

tδ(t)(1− y)
+O

(
δ(t)2

(1− y)
+

1

t2δ(t)2(1− y)2
+ tδ(t)5

)
(6.108)

for 0 < y < 1 with δ(t) = o
(
t−

1
3

)
and tδ(t)→∞ as t→∞. We now consider the second

integral on the right-hand-side of (6.101). Set

F2(y, t) =

∫ 1
2
ks(y)

δ(t)

1

k
sin t (γ(k)− ky) dk (6.109)

for 0 < y < 1 and t ∈ R+, where k = ks(y) is a stationary point of γ(k) − ky. It is
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convenient to write (6.109) as

F2(y, t) =
1

t

∫ 1
2
ks(y)

δ(t)

t (γ′(k)− y)

k (γ′(k)− y)
sin t (γ(k)− ky) dk (6.110)

for 0 < y < 1 and t ∈ R+. After an integration by parts in (6.110) we obtain

F2(y, t) =
cos (tδ(t)(1− y))

tδ(t)(1− y)
− 1

t

∫ 1
2
ks(y)

δ(t)

(
1

k2 (γ′(k)− y)
+

γ′′(k)

k (γ′(k)− y)2

)

× cos t (γ(k)− ky) dk +O

(
δ(t)2

(1− y)
+

1

t

) (6.111)

for 0 < y < 1 as t→∞. By successive integration by parts in (6.111), we observe that

F2(y, t) =
cos (tδ(t)(1− y))

tδ(t)(1− y)
+O

(
1

t
+

δ(t)2

(1− y)
+

1

t2δ(t)2(1− y)2

)
(6.112)

for 0 < y < 1 with δ(t) = o
(
t−

1
3

)
and tδ(t)→∞ as t→∞. We now consider the third

integral on the right-hand-side of (6.101). Set

F3(y, t) =

∫ ∞
1
2
ks(y)

1

k
sin t (γ(k)− ky) dk (6.113)

for 0 < y < 1 and t ∈ R+. It is convenient to write (6.113) as

F3(y, t) =
1

2i

∫ ∞
1
2
ks(y)

1

k
exp (it (γ(k)− ky)) dk − 1

2i

∫ ∞
1
2
ks(y)

1

k
exp (−it (γ(k)− ky)) dk

(6.114)

for 0 < y < 1 and t ∈ R+, and we consider each integral in turn. We consider the first

integral on the right-hand-side of (6.114). Set

F+(y, t) =

∫ ∞
1
2
ks(y)

1

k
exp (it (γ(k)− ky)) (6.115)

for 0 < y < 1 and t ∈ R+. The phase is stationary at k = ks(y), so we may approximate

F+(y, t) as
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F+(y, t) v
1

ks(y)
exp (it (γ (ks(y))− yks(y)))

∫ ε(t)

−ε(t)
exp

(
i
1

2
t
(
γ′′(ks(y))u2

))
du (6.116)

for o(1) < y < 1 − o(1) as t → ∞, with ε(t) = o
(
t−

1
3

)
as t → ∞, and we have used the

substitution u = k − ks(y). As γ′′(k) < 0 for k > 0, and γ′′(−k) = −γ′′(k), we use the

substitution

u2 =
1

2
tγ′′(−ks(y))w2

in (6.116) to obtain, on taking ε(t) = t−
2
5 ,

F+(y, t) v
1

ks(y)

√
2

tγ′′(−ks(y))
exp (it (γ (ks(y))− yks(y)))

∫ ∞
−∞

exp
(
−iw2

)
dw

for o(1) < y < 1− o(1) as t→∞. Using the result in (6.21) we have

F+(y, t) v
1

ks(y)

√
2π

tγ′′(−ks(y))
exp

(
i
(
t (γ (ks(y))− yks(y))− π

4

))
(6.117)

for o(1) < y < 1− o(1) as t→∞. Similarly, for the second integral in (6.114) we have

F−(y, t) =

∫ ∞
1
2
ks(y)

1

k
exp (it (γ(k)− ky))

v
1

ks(y)

√
2π

tγ′′(−ks(y))
exp

(
−i
(
t (γ (ks(y))− yks(y))− π

4

)) (6.118)

for o(1) < y < 1 − o(1) as t → ∞. Hence, via (6.114), (6.115), (6.117) and (6.118), we

obtain

F3(y, t) v − 1

ks(y)

√
2π

tγ′′(−ks(y))
sin
(π

4
+ tks(y) (y − c(ks(y)))

)
(6.119)

for o(1) < y < 1− o(1) as t→∞, where

c(k) =
γ(k)

k
(6.120)
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for k ≥ 0. Finally, via (6.101), (6.102), (6.108), (6.109), (6.112), (6.113) and (6.119), we

have

F (y, t) v
π

2
− 1

ks(y)

√
2π

tγ′′(−ks(y))
sin
(π

4
+ tks(y) (y − c(ks(y)))

)
(6.121)

for o(1) < y < 1 − o(1) as t → ∞. It is now instructive to consider the form of (6.121)

when o(1) < y � 1 and o(1) < 1− y � 1. We have, via (6.13) and (6.15), that

ks(y) =
√

2(1− y)
1
2 +O

(
(1− y)

3
2

)
(6.122)

as y → 1−, and

ks(y) =
1

4y2
+O

(
1

y4
exp

(
−1

2y2

))
(6.123)

as y → 0+. Thus, via (3.24), (3.25), (6.120), (6.121), (6.122) and (6.123), it is readily

established that

F (y, t) v
π

2
− 4π

1
2y

1
2

t
1
2

sin

(
π

4
− t

4y

)
(6.124)

when o(1) < y � 1 as t→∞, and

F (y, t) v
π

2
− π

1
2

2
1
4 t

1
2 (1− y)

3
4

sin

(
π

4
− 2
√

2

3
t(1− y)

3
2

)
(6.125)

when o(1) < (1− y)� 1 as t→∞.

We now consider the approximation of F (y, t) in Region III. Via (6.8) we may write

F (y, t) =

∫ δ(t)

0

1

k
sin t(γ(k)− ky) dk +

∫ 1
2
τs(y)

δ(t)

1

k
sin t(γ(k)− ky) dk

+

∫ ∞
1
2
τs(y)

1

k
sin t(γ(k)− ky) dk

(6.126)
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for y > 1 with t ∈ R+, where k = ±iτs(y) are the stationary points of γ(k)−ky on k = iτ ,

as given in (6.30), and δ(t) = o(1) as t → ∞. Following the methodology approach in

(6.102)-(6.112) it is established that

∫ δ(t)

0

1

k
sin t(γ(k)− ky) dk +

∫ 1
2
τs(y)

δ(t)

1

k
sin t(γ(k)− ky) dk = −π

2
+O

(
1

t

)
(6.127)

for y > 1 + o(1) with δ(t) = o
(
t−

1
3

)
as t → ∞. We now consider the third integral on

the right-hand-side of (6.126). Set

F4(y, t) =

∫ ∞
1
2
τs(y)

1

k
sin t(γ(k)− ky) dk

=
1

2i
(F+τs(y, t)− F−τs(y, t))

(6.128)

for y > 1 with t ∈ R+, where

F+τs(y, t) =

∫ ∞
1
2
τs(y)

1

k
exp (it(γ(k)− ky)) dk (6.129)

and

F−τs(y, t) =

∫ ∞
1
2
τs(y)

1

k
exp (−it(γ(k)− ky)) dk (6.130)

We will first consider the approximation of F+τs(y, t). Setting k = σ+ iτ , with σ ≥ 0 and

τ ∈ R, we may write

γ(k)− ky = u(k, y) + iv(k, y) (6.131)

with y > 1. Using (6.31) and Figure (6.7) we have the qualitative behaviour of the level

curves of u(k, y), for σ > 0, as shown in Figure (6.20), where the arrows point in the

direction of increasing v(k, y). We observe that the level curve D− is the path of steepest

descent for γ(k) − ky in (6.129). Thus we will deform the contour in (6.129) onto the

steepest descent contour D−.
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σ

τ

τ = π
2

τ = −π
2

τ = τs(y)

τ = −τs(y)

Branch cut for γ(k)− ky

Branch cut for γ(k)− ky

D−

D+

Figure 6.20: Level curves for u(k, y) in (6.131) in the cut k-plane, with y > 1.

σ

τ

τ = −π
2

Branch cut for γ(k)− ky

DL−

D1 L1

D2

σ = 1
2
τs(y)

τ = −1
2
τs(y)

τ = −τs(y)

L
θL

k = k1

Figure 6.21: Contour CL− .
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On D−, k = kd−(σ) = σ + iτd−(σ), with τd−(0) = −τs(y). We now consider the contour

CL− =
[

1
2
τs(y), L

]
∪ L1 ∪DL− ∪D2 ∪D1, where L1 and D2 are arcs on the circle |k| = L

and |k| = 1
2
τs(y) respectively, and DL− is a finite section of D−, as shown in Figure (6.21).

The point k = k1 = σ1 + iτ1 is the intersection point of L1 with DL− , and we recall, via

(6.33), (6.34) and (6.35), that

σ1 =
L

1
2

√
2y

(
1− 1

8y2L
+O

(
1

y4L2

))
,

τ1 = −L
(

1− 1

4y2L
+O

(
1

y4L2

))
,

θL =
π

2
− 1
√

2yL
1
2

+O

(
1

y3L
3
2

)
(6.132)

as L→∞, with θL being the angle shown in Figure (6.21). Now, via Cauchy’s theorem,

we have

∫
CL−

1

k
exp (it (γ(k)− ky)) dk = 0

for y > 1 with t ∈ R+. Therefore

∫
CL−

1

k
exp (it (γ(k)− ky)) dk

=

∫ L

1
2
τs(y)

1

k
exp (it (γ(k)− ky)) dk +

∫
L1

1

k
exp (it (γ(k)− ky)) dk

+

∫
DL−

1

k
exp (it (γ(k)− ky)) dk +

∫
Lτs

1

k
exp (it (γ(k)− ky)) dk

+

∫
L 1

2 τs

1

k
exp (it (γ(k)− ky)) dk

= 0

(6.133)

for y > 1 with t ∈ R+. We now consider the integral along L1 in (6.133). Set
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FL1(y, t) =

∫
L1

1

k
exp (it (γ(k)− ky)) dk (6.134)

for y > 1 with t ∈ R+. On L1 we write

k = L(cos θ + i sin θ) (6.135)

for θ ∈ [−θL, 0]. Via (3.25), (6.132), (6.134) and (6.135) we have

|FL1(y, t)| ≤
∫ 0

θ=−π
2

exp

(
t

(
yL sin θ − 2L

1
2 sin

θ

2

))
dθ (6.136)

Thus, via (6.43) and (6.136), we have

FL1(y, t) =

∫
L1

1

k
exp (it (γ(k)− ky)) dk → 0 (6.137)

as L→∞, for y > 1 with t ∈ R+. It now follows from (6.129), (6.133) and (6.137) that,

on letting L→∞, we have

F+τs(y, t) =−
∫
D−

1

k
exp (it (γ(k)− ky)) dk −

∫
D1

1

k
exp (it (γ(k)− ky)) dk

−
∫
D2

1

k
exp (it (γ(k)− ky)) dk

(6.138)

for y > 1 with t ∈ R+. We now consider the integral along D1 in (6.138). Set

FD1(y, t) =

∫
D1

1

k
exp (it (γ(k)− ky)) dk (6.139)

for y > 1 with t ∈ R+. On D1 we write

k =
1

2
τs(y) exp(iθ) (6.140)

for θ ∈
[
−π

2
, 0
]
. Via (6.139) and (6.140) we have
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FD1(y, t) = i

∫ 0

θ=−π
2

exp

(
it

(
γ

(
1

2
τs(y) exp(iθ)

)
− 1

2
τs(y)y exp(iθ)

))
dθ (6.141)

for y > 1 with t ∈ R+. On integrating by parts in (6.141) we observe that

FD1(y, t) = O

(
1

t

)
(6.142)

for y > 1 + o(1) as t→∞. We next consider the integral along D2 in (6.138). Set

FD2(y, t) =

∫
D2

1

k
exp (it (γ(k)− ky)) dk (6.143)

for y > 1 with t ∈ R+. On D2 we write

k = iτ (6.144)

for τ ∈
[
−τs(y),−1

2
τs(y)

]
. Via (6.143) and (6.144) we have

FD2(y, t) = −
∫ τs(y)

τ= 1
2
τs(y)

1

τ
exp (−it (γ(iτ)− iτy)) dτ (6.145)

for y > 1 with t ∈ R+. We now consider the integral along D− in (6.138). Set

FD−(y, t) =

∫
D−

1

k
exp (it (γ(k)− ky)) dk (6.146)

for y > 1 with t ∈ R+. Via (6.131) and recalling that u(k, y) = 0 on D−, we have

γ(k) − ky = iv(k, y) on D−. The level curve D− is the path of steepest descent for

γ(k) − ky in (6.146), and we observe from Figure (6.21) that v(k, y) attains its unique

minimum on D− at k = −iτs(y). We can now estimate (6.146) via the method of steepest

descents. We write on the contour D−, close to k = −iτs(y),

k = σ − iτs(y) +O
(
σ2
)

(6.147)
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as σ → 0, from which we approximate (6.146), via (6.147), as

FD−(y, t) v
exp (−tv(−iτs(y), y))

iτs(y)

∫ ε(t)

0

exp

(
−1

2
tvkk (−iτs(y))σ2

)
dσ (6.148)

for y > 1 + o(1) as t → ∞ with ε(t) = O
(
t−

2
5

)
as t → ∞, where v(−iτs(y), y) and

vkk(−iτs(y)) are given in (6.53) and (6.54) and in Figures (6.9) and (6.10) respectively.

Upon making the substitution

u2 =
1

2
tvkk(−iτs(y))σ2

in (6.148) and setting ε(t) = t−
2
5 we obtain

FD−(y, t) v
1

iτs(y)

√
2

tvkk(−iτs(y))
exp (−tv(−iτs(y), y))

∫ ∞
0

exp(−u2) du (6.149)

for y > 1 + o(1) as t→∞. Using the result

∫ ∞
0

exp
(
−u2

)
du =

√
π

2

in (6.149) we have

FD−(y, t) v
1

iτs(y)

√
π

2tvkk(−iτs(y))
exp (−tv(−iτs(y), y)) (6.150)

for y > 1 + o(1) as t→∞. Thus, via (6.138), (6.142), (6.145) and (6.150), we have

F+τs(y, t) v
i

τs(y)

√
π

2tvkk(−iτs(y))
exp (−tv(−iτs(y), y))

+

∫ τs(y)

τ= 1
2
τs(y)

1

τ
exp (−it (γ(iτ)− iτy)) dτ +O

(
1

t

) (6.151)

for y > 1 + o(1) as t→∞. Similarly, we may approximate F−τs(y, t) given in (6.130) as
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F−τs(y, t) v−
i

τs(y)

√
π

2tvkk(−iτs(y))
exp (−tv(−iτs(y), y))

+

∫ τs(y)

τ= 1
2
τs(y)

1

τ
exp (−it (γ(iτ)− iτy)) dτ +O

(
1

t

) (6.152)

for y > 1 + o(1) as t→∞. Thus via (6.128), (6.151) and (6.152) we have

∫ ∞
1
2
τs(y)

1

k
sin t(γ(k)− ky) dk v

1

τs(y)

√
π

2tvkk(−iτs(y))
exp (−tv(−iτs(y), y)) (6.153)

for y > 1 + o(1) as t→∞. Finally, we have, via (6.126), (6.127) and (6.153),

F (y, t) v −π
2

+
1

τs(y)

√
π

2tvkk(−iτs(y))
exp (−tv(−iτs(y), y)) (6.154)

for y > 1+o(1) as t→∞. It is instructive to examine the form of (6.154) for 0 < y−1� 1

and for y � 1. From (6.57), (6.58) and (6.59) we obtain

F (y, t) v −π
2

+

√
2

√
3π

1
3 t

1
2y

5
6

exp

(
−π

2
t

(
y − 3

π
2
3

y
1
3 +

1

π
4
3y

1
3

))
(6.155)

with y � 1 as t→∞, and,

F (y, t) v −π
2

+

√
π

2
5
4 t

1
2 (y − 1)

3
4

exp

(
−2
√

2

3
t(y − 1)

3
2

)
(6.156)

for 0 < (y − 1)� 1 as t→∞.

We now consider the approximation of F (y, t) in Region II. Via (6.8) we may write

F (y, t) =

∫ δ(t)

0

1

k
sin t(γ(k)−ky) dk+

∫ 1
2

δ(t)

1

k
sin t(γ(k)−ky) dk+

∫ ∞
1
2

1

k
sin t(γ(k)−ky) dk

(6.157)

for y < 0 with t ∈ R+, where δ(t) = o(1) as t → ∞. Following the approach in (6.102)-

(6.112) it is established that
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∫ δ(t)

0

1

k
sin t(γ(k)− ky) dk +

∫ 1
2

δ(t)

1

k
sin t(γ(k)− ky) dk =

π

2
+O

(
1

t

)
(6.158)

for y < −o(1) with δ(t) = o
(
t−

1
3

)
as t→∞. We now consider the third integral on the

right-hand-side of (6.158). Set

F5(y, t) =

∫ ∞
1
2

1

k
sin t(γ(k)− ky) dk

=
1

2i
(F5+(y, t)− F5−(y, t))

(6.159)

for y < 0 with t ∈ R+, where

F5+(y, t) =

∫ ∞
1
2

1

k
exp (i (t(γ(k)− ky))) dk (6.160)

and

F5−(y, t) =

∫ ∞
1
2

1

k
exp (−i (t(γ(k)− ky))) dk (6.161)

We will first consider the approximation of F5+(y, t). Setting k = σ + iτ , with σ ≥ 0 and

τ ∈ R, we may write

γ(k)− ky = u(k, y) + iv(k, y) (6.162)

with y < 0. Via (6.162) and Figure (6.15) we have the qualitative behaviour of the level

curves of v(k, y) for σ > 0, as shown in Figure (6.22), where the arrows point in the

direction of increasing u(k, y). We will deform the contour in (6.160) onto the contour

E+ shown in Figure (6.22), on which we write v(k, y) = C(y)(> 0). On E+ we have

k = σ + iτe+(σ), where τe+(σ) is monotone increasing for σ ≥ 0. We recall, via (6.64),

(6.65) and (6.66), that

τe+(σ)→ −C(y)

y
as σ →∞.
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σ

τ

τ = π
2

τ = π E+

E+

E−

E−

Branch cut for γ(k)− ky

τ = −π
2

τ = −π

Branch cut for γ(k)− ky

Figure 6.22: Level curves for v(k, y), in (6.162), in the cut k-plane, with y < 0.

σ

τ

τ = π
2

σ = Mσ = 1
2

τ = 1
2

τ = τC(y)

E1

E2

M1

p

EM+

EM+

θM

Branch cut for γ(k)− ky

Figure 6.23: Contour DM+.
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and

C(0) = 0.70324 . . .

with,

C(y) v −π
2
y

as y → −∞. Graphs of C(y) and y−1C(y) are given in Figures (6.13) and (6.14) respec-

tively. We now consider the contour DM+ =
[

1
2
,M
]
∪M1 ∪ EM+ ∪ E1 ∪ E2, where M1 is

an arc on the circle |k| = M , E2 is an arc on the circle |k| = 1
2
and EM+ is a finite section

of E+ as shown in Figure (6.23). The point k = iτC(y) is the intersection point of EM+

with E1, where τC(y) is monotone decreasing for y < 0 and it is established numerically

that 1
2
< τC(y) <

π
2
for y < 0, and a graph of τC(y) is given in Figure (6.24). The point

k = p = σp+ iτp is the intersection point ofM1 with EM+, and we recall, via (6.67), (6.68)

and (6.69), that

σp = M

(
1− C(y)2

2y2M2
+O

(
C(y)4

y4M4

))
,

τp = −C(y)

y
+O

(
C(y)2

y2M2

)
,

Figure 6.24: The graph of τC(y) for y < 0.
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θM = −C(y)

yM
+O

(
C(y)2

y2M2

)
asM →∞, with θM being the angle shown in Figure (6.23). Now, via Cauchy’s Theorem,

we have

∫
DM+

1

k
exp (it (γ(k)− ky)) dk = 0

for y < 0 with t ∈ R+. Therefore,

∫
DM+

1

k
exp (it (γ(k)− ky)) dk

=

∫ M

1
2

1

k
exp (it (γ(k)− ky)) dk +

∫
M1

1

k
exp (it (γ(k)− ky)) dk

+

∫
EM+

1

k
exp (it (γ(k)− ky)) dk +

∫
E1

1

k
exp (it (γ(k)− ky)) dk

+

∫
E2

1

k
exp (it (γ(k)− ky)) dk

= 0

(6.163)

for y < 0 with t ∈ R+. We now consider the integral along M1 in (6.163). Set

FM1(y, t) =

∫
M1

1

k
exp (it (γ(k)− ky)) dk (6.164)

for y < 0 with t ∈ R+. On M1 we write

k = M(cos θ + i sin θ) (6.165)

for θ ∈ [0, θM ]. Via (6.76), (6.164) and (6.165), we have

FM1(y, t) ≤
∫ θM

θ=0

exp

(
−1

2
t

(
M

1
2 sin

θ

2
−My sin θ

))
dθ

≤ C(y)

(−y)M

(6.166)
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for y < 0 with t ∈ R+ as M → ∞. It now follows from (6.163) and (6.166) that, on

letting M →∞, we have

F5+(y, t) =−
∫
E+

1

k
exp (it (γ(k)− ky)) dk −

∫
E1

1

k
exp (it (γ(k)− ky)) dk

−
∫
E2

1

k
exp (it (γ(k)− ky)) dk

(6.167)

for y < 0 with t ∈ R+. We now consider the integral along E1 in (6.167). Set

FE1(y, t) =

∫
E1

1

k
exp (it (γ(k)− ky)) dk (6.168)

for y < 0 with t ∈ R+. On E1 we write

k = iτ (6.169)

for τ ∈
[

1
2
, τC(y)

]
. Via (6.168) and (6.169) we have

FE1(y, t) = −
∫ τC(y)

1
2

1

τ
exp (it (γ(iτ)− iτy)) dτ (6.170)

for y < 0 with t ∈ R+. We next consider the integral along E2 in (6.167). Set

FE2(y, t) =

∫
E2

1

k
exp (it (γ(k)− ky)) dk (6.171)

for y < 0 with t ∈ R+. On E2 we write

k =
1

2
exp (iθ) (6.172)

for θ ∈
[
0, π

2

]
. Via (6.171) and (6.172), we have

FE2(y, t) = −i
∫ π

2

θ=0

exp

(
it

(
γ

(
1

2
exp (iθ)

)
− 1

2
y exp (iθ)

))
dθ (6.173)
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for y < 0 with t ∈ R+. On integrating by parts in (6.173) we observe that

FE2(y, t) = O

(
1

t

)
(6.174)

for y < −o(1) as t→∞. We now consider the integral along E+ in (6.167). Set

FE+(y, t) =

∫
E+

1

k
exp (it (γ(k)− ky)) dk (6.175)

for y < 0 with t ∈ R+. Recall that on the contour E+ we have

γ(k)− ky = u(k, y) + iC(y) (6.176)

so that, via (6.175) and (6.176), we have

FE+(y, t) = exp(−tC(y))

∫
E+

1

k
exp(itu(k, y)) dk (6.177)

for y < 0 with t ∈ R+. In approximating FE+(y, t), as t → ∞, in (6.177), it is necessary

to write the contour E+ as E+ = E∆ ∪ E3, where Re(k) ∈ [0,∆(t)] on E∆ and

Re(k) ∈ (∆(t),∞) on E3, with ∆(t) = t+ 2, as shown in Figure (6.25), so that

σ

τ

σ = ∆(t)

τ = π
2

τ = τC(y)

E∆

E3

k = ∆(t) + iτ
s

Branch cut for γ(k)− ky

Figure 6.25: Contour E+.
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FE+(y, t) = exp(−tC(y))

(∫
E∆

1

k
exp(itu(k, y)) dk +

∫
E3

1

k
exp(itu(k, y)) dk

)
(6.178)

for y < 0 with t ∈ R+. The point k = s shown in Figure (6.25) is the stationary point of

u(k, y) on the contour E+. Setting k = σ(y)+ iτ(y) at the stationary point k = s, we may

determine the position of the stationary point of u(k, y), for y < 0 via (6.176). Graphs

of σ(y) and τ(y) at k = s1 for y < 0, are given in Figures (6.18) and (6.19) respectively.

It is clear from Figures (6.18) and (6.19) that, for y < 0, since ∆(t) > 2, the stationary

point k = s1 is on the contour E∆. We now consider the integral along E∆ in (6.178). It

follows from the Riemann-Lebesgue lemma that

∫
E∆

1

k
exp(itu(k, y)) dk → 0 (6.179)

for y < −o(1) as t→∞. We now consider the integral on E3 in (6.178). We may write,

via (6.68), with t sufficiently large,

k v σ − iC(y)

y
(6.180)

on E3 with y < 0 and σ ∈ (∆(t),∞). Thus, via (3.25), (6.176) and (6.180), for t sufficiently

large,

u(k, y) v σ
1
2 − σy (6.181)

on E3 with y < 0 and σ ∈ (∆(t),∞). It then follows, via (6.180) and (6.181), that

∫
E3

1

k
exp(itu(k, y)) dk v

∫ ∞
σ=∆(t)

1

σ
exp

(
it
(
σ

1
2 − yσ

))
dσ (6.182)

for y < −o(1) as t→∞. Upon making the substitution

u = σ
1
2 − σy
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in the right-hand-side of (6.182), we obtain

∫
E3

1

k
exp(itu(k, y)) dk v

∫ ∞
σ=∆(t)

1
2−y∆(t)

1

u
exp (itu) du (6.183)

for y < −o(1) as t → ∞. An integration by parts on the right-hand-side of (6.183)

establishes that

∫
E3

1

k
exp(itu(k, y)) dk = O

(
1

(−y)t2

)
(6.184)

for y < −o(1) as t→∞. It now follows from (6.178), (6.179) and (6.184), that

FE+(y, t) = o (exp(−tC(y)) (6.185)

for y < −o(1) as t→∞. Therefore, via (6.167), (6.170), (6.174) and (6.185) that

F5+(y, t) =

∫ τC(y)

1
2

1

τ
exp (it (γ(iτ)− iτy)) dτ +O

(
1

t

)
+ o (exp(−tC(y)) (6.186)

for y < −o(1) as t→∞. Similarly, we may approximate F5−(y, t) in (6.161) as

F5−(y, t) =

∫ τC(y)

1
2

1

τ
exp (it (γ(iτ)− iτy)) dτ +O

(
1

t

)
+ o (exp(−tC(y)) (6.187)

for y < −o(1) as t→∞. Thus, via (6.159), (6.186) and (6.187), we have

F5(y, t) = O

(
1

t

)
+ o (exp(−tC(y)) (6.188)

for y < −o(1) as t→∞. Finally, via (6.157), (6.158), (6.159) and (6.188), we have

F (y, t) =
π

2
+ o (exp(−tC(y)) (6.189)

for y < −o(1) as t→∞.
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6.4 Outer Region Coordinate Expansions for η̄(y, t) as
t→∞.

We can now construct the approximation for η̄(y, t) in each region. We have, via (6.5),

η̄(y, t) =
1

2
+

1

4πβ
(J+(y, t) + J−(y, t)) +

1

2π
(F (y, t)− F (−y, t)) (6.190)

for (y, t) ∈ R × R+. Thus, via (6.24), (6.25), (6.26), (6.56), (6.60), (6.61), (6.91), (6.92),

(6.95), (6.96), (6.97), (6.98), (6.99), (6.100), (6.121), (6.124), (6.125), (6.154), (6.155),

(6.156), (6.189) and (6.190) we have the following approximation for η̄(y, t) in the following

regions,

Region I+: o(1) < y
(
= x

t

)
< 1− o(1) as t→∞. We have,

η̄(y, t) v
1

2
+

1

β
√

2πtγ′′(−ks(y))ks(y)2

(
cos
(π

4
+ tks(y) (y − c(ks(y)))

)
− cos

(π
4
− βks(y) + tks(y) (y − c(ks(y)))

)))
as t→∞,

(6.191)

with

c(k) =
γ(k)

k
(6.192)

and k = ks(y) is the positive stationary point of γ(k)− yk when o(1) < y < 1− o(1). In

particular,

η̄(y, t) v
1

2
+

8y
5
2

βπ
1
2 t

1
2

(
cos

(
π

4
− t

4y

)
− cos

(
π

4
− β

4y2
− t

4y

))
(6.193)

when 0 < y � 1 as t→∞, and

127



η̄(y, t) v
1

2
− 1

2
5
4π

1
2 t

1
2

(
1

(1− y)
3
4

sin

(
π

4
− 2
√

2

3
t(1− y)

3
2

)

− β
√

2(1− y)
1
4

cos

(
π

4
− 2
√

2

3
t(1− y)

3
2

)) (6.194)

when 0 < (1− y)� 1 as t→∞.

Region II+: y
(
= x

t

)
> 1 + o(1) as t→∞. We have,

η̄(y, t) v
1

2β
√

2πtvkk(−iτs(y))τs(y)2
(exp (βτs(y))− 1) exp (−tv (−iτs(y), y)) as t→∞,

(6.195)

where k = ±iτs(y) (with τs(y) > 0) are the stationary points of γ(k)−yk when y > 1+o(1).

In particular,

η̄(y, t) v
1

2
9
4π

1
2 t

1
2

(
1

(y − 1)
3
4

+
β

√
2(y − 1)

1
4

)
exp

(
−2
√

2

3
t(y − 1)

3
2

)
(6.196)

when 0 < (y − 1)� 1 as t→∞, and

η̄(y, t) v
1

2πβ

(
exp

(π
2
β
)
− 1
)( 4
√

6π
4
3 t

1
2y

5
6

)
exp

(
−π

2
t

(
y − 3

π
2
3

y
1
3

))
(6.197)

when y � 1 as t → ∞, and it is readily verified that (5.92) and (6.197) asymptotically

match according to the asymptotic matching principal of Van Dyke [12].

Region I−: −1 + o(1) < y
(
= x

t

)
< −o(1) as t→∞. We have,

η̄(y, t) v
1

2
+

1

β
√

2πtγ′′(−ks(−y))ks(−y)2

(
cos
(
−π

4
+ tks(−y) (y + c(ks(−y)))

)
− cos

(
−π

4
− βks(−y) + tks(−y) (y + c(ks(−y)))

)))
as t→∞,

(6.198)

with
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c(k) =
γ(k)

k
(6.199)

where k = ks(−y) is the positive stationary point of γ(k)+yk when−1+o(1) < y < −o(1).

In particular,

η̄(y, t) v
1

2
+

8(−y)
5
2

βπ
1
2 t

1
2

(
cos

(
π

4
+

t

4y

)
− cos

(
π

4
+

β

4y2
+

t

4y

))
(6.200)

when 0 < (−y)� 1 as t→∞, and

η̄(y, t) v
1

2
+

1

2
5
4π

1
2 t

1
2

(
1

(1 + y)
3
4

sin

(
π

4
− 2
√

2

3
t(1 + y)

3
2

)

+
β

√
2(1 + y)

1
4

cos

(
π

4
− 2
√

2

3
t(1 + y)

3
2

)) (6.201)

when 0 < (1 + y)� 1 as t→∞.

Region II−: y
(
= x

t

)
< −1− o(1) as t→∞. We have,

η̄(y, t) v 1− 1

2β
√

2πtvkk(−iτs(−y))τs(−y)2
(1− exp (βτs(−y))) exp (−tv (−iτs(−y), y)) ,

(6.202)

as t→∞, where k = ±iτs(−y) (with τs(−y) > 0) are the stationary points of γ(k) + yk

when y < −1− o(1). In particular,

η̄(y, t) v 1− 1

2
9
4π

1
2 t

1
2

(
1

(−(y + 1))
3
4

− β
√

2(−(y + 1))
1
4

)
exp

(
−2
√

2

3
t(−(y + 1))

3
2

)
(6.203)

when 0 < (−(y + 1))� 1 as t→∞, and

η̄(y, t) v 1− 1

2πβ

(
1− exp

(
−π

2
β
))( 4

√
6π

4
3 t

1
2 (−y)

5
6

)
exp

(
π

2
t

(
y − 3

π
2
3

y
1
3

))
(6.204)
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when (−y)� 1 as t→∞, and it is readily verified that (5.93) and (6.204) asymptotically

match according to the asymptotic matching principal of Van Dyke [12].

Graphs of η̄(y, t) in each region (as determined from (6.191)-(6.204)) are given in

Figures (6.26)-(6.38), where we have set t = 10 and β = 1.

Figure 6.26: The graph of η̄(y, 10) in Re-
gion I+, (6.191).

Figure 6.27: The graph of η̄(y, 10) in
Region I+, (6.191), with asymptotic ap-
proximation (−−), (6.193).

Figure 6.28: The graph of η̄(y, 10) in
Region I+, (6.191), with asymptotic ap-
proximation (−−), (6.194).

Figure 6.29: The graph of η̄(y, 10) in Re-
gion II+, (6.195).
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Figure 6.30: The graph of η̄(y, 10) in Re-
gion II+, (6.195), with asymptotic ap-
proximation (−−), (6.196).

Figure 6.31: The graph of η̄(y, 10) in Re-
gion II+, (6.195), with asymptotic ap-
proximation (−−), (6.197).

Figure 6.32: The graph of η̄(y, 10) in Re-
gion I−, (6.198).

Figure 6.33: The graph of η̄(y, 10) in
Region I−, (6.198), with asymptotic ap-
proximation (−−), (6.200).

Figure 6.34: The graph of η̄(y, 10) in
Region I−, (6.198), with asymptotic ap-
proximation (−−), (6.201).

Figure 6.35: The graph of η̄(y, 10) in Re-
gion II−, (6.202).
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Figure 6.36: The graph of η̄(y, 10) in Re-
gion II−, (6.202), with asymptotic ap-
proximation (−−), (6.203).

Figure 6.37: The graph of η̄(y, 10) in Re-
gion II−, (6.202), with asymptotic ap-
proximation (−−), (6.204).

Figure 6.38: The graph of η̄(y, 10).

6.5 Inner Region Coordinate Expansions for J+(y, t) and
J−(y, t) as t→∞.

We now consider J+(y, t) in (6.6) with y = 1 +O
(
t−

2
3

)
as t→∞, which we refer to as

Region Î+: y = 1±O
(
t−

2
3

)
as t→∞.

We write y = 1 + Y t−
2
3 with Y = O(1) as t→∞. We now have, via (6.6),

J+(Y, t) =

∫ ∞
−∞

f(k) exp
(
it
(
γ(k)− k(1 + Y t−

2
3 )
))

dk (6.205)
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which we wish to estimate for Y = O(1) as t→∞, where

f(k) =
1

k2
(1− exp (iβk)) + i

β

k

for k ∈ C, which is entire. We first consider the approximation of J+(Y, t) in (6.205)

for Y = O(1)(< 0) as t → ∞. For Y < 0, the phase becomes stationary in (6.205) at

k = ±ks(Y, t), where ks(Y, t) > 0, and, via (6.13), we have

ks(Y, t) =

√
2(−Y )

1
2

t
1
3

+O

(
(−Y )

3
2

t

)
(6.206)

for Y = O(1)(< 0) as t→∞. Thus we may approximate J+(Y, t) as

J+(Y, t) v
∫ 0

−ks(Y,t)−δ(t)
f(k) exp

(
it
(
γ(k)− k(1 + Y t−

2
3 )
))

dk

+

∫ ks(Y,t)+δ(t)

0

f(k) exp
(
it
(
γ(k)− k(1 + Y t−

2
3 )
))

dk

(6.207)

for Y = O(1)(< 0) as t→∞, where δ(t) = o(1) as t→∞. For |k| � 1 we have

f(k) =
β2

2
+O(k) (6.208)

and

γ(k)− k
(

1 + Y t−
2
3

)
= −1

6
k3 − Y t−

2
3k +O

(
k5
)

so that, as ks(Y, t) + δ(t) = o(1) as t→∞, (6.207) becomes

J+(Y, t) v β2

∫ ks(Y,t)+δ(t)

0

cos t

(
1

6
k3 + Y t−

2
3k +O

(
k5
))

dk (6.209)

for Y = O(1)(< 0) as t→∞. Upon making the substitution

133



v =
k

ks(Y, t)
− 1

in (6.209) we obtain, via (6.206), and on taking δ(t) = t−
1
4 ,

J+(Y, t) v

√
2β2(−Y )

1
2

t
1
3

∫ ∞
v=−1

cos

((
2

1
3 (−Y )

) 3
2

(
1

3
v3 + v2 − 2

3

))
dv (6.210)

for Y = O(1)(< 0) as t → ∞. The integral in (6.210) is now in the form of an Airy

function, [31] (Chapter 9, page 196). Hence we may write

J+(Y, t) v
2

1
3πβ2

t
1
3

Ai
(

2
1
3Y
)

(6.211)

for Y = O(1)(< 0) as t→∞. We now consider the estimation of J+(Y, t) for Y = O(1)(>

0) as t→∞. For Y > 0 the phase becomes stationary in (6.205) at k = ±iτs(Y, t), where

τs(Y, t) > 0, and, via (6.57), we have

τs(Y, t) =

√
2Y

1
2

t
1
3

+O

(
Y

3
2

t

)

for Y = O(1)(> 0) as t→∞. Thus we will deform the contour in (6.205) onto the steepest

descent contour D, as shown in Figure (6.7). Following the approach in (6.36)-(6.50), we

may approximate J+(Y, t) as

J+(Y, t) v
∫ δ(t)

σ=−δ(t)
f(σ − iτs(Y, t))

× exp
(
it
(
γ(σ − iτs(Y, t))− (σ − iτs(Y, t))

(
1 + Y t−

2
3

)))
dσ

(6.212)

for Y > 0 as t → ∞, where we have let k = σ − iτs(Y, t), with σ ∈ (−δ(t), δ(t)), on the

contour D close to k = −iτs(Y, t), and δ(t) = o(1) as t→∞. For |σ| � 1 we have

γ(σ−iτs(Y, t))−(σ − iτs(Y, t))
(

1 + Y t−
2
3

)
= −1

6
σ3+

1√
2
iY

1
2 t−

1
3σ2+

2
√

2

3
iY

3
2 t−1+O

(
σ5
)

(6.213)
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so that, via (6.208) and (6.213), (6.212) becomes

J+(Y, t) v
β2

2
exp

(
−2
√

2

3
Y

3
2

)∫ δ(t)

σ=−δ(t)
exp

(
−1

6
itσ3 − 1√

2
Y

1
2 t

2
3σ2 +O

(
tσ5
))

dσ

(6.214)

for Y > 0 as t→∞. Making the substitution

u =
t

1
3

2
1
3

σ

in (6.214) we have, on taking δ(t) = t−
1
4 ,

J+(Y, t) v
2

1
3β2

t
1
3

exp

(
−2
√

2

3
Y

3
2

)∫ ∞
u=0

exp

(
−
(

2
1
2Y
) 1

3
u2

)
cos

(
1

3
u3

)
du (6.215)

for Y = O(1)(> 0) as t → ∞. The integral in (6.215) is now in the form of an Airy

function, [31] (Chapter 9, page 196). Hence we may write

J+(Y, t) v
2

1
3πβ2

t
1
3

Ai
(

2
1
3Y
)

(6.216)

for Y = O(1)(> 0) as t→∞. Thus, via (6.211) and (6.216), we have

J+(Y, t) v
2

1
3πβ2

t
1
3

Ai
(

2
1
3Y
)

(6.217)

for Y = O(1) as t→∞. In particular, we have, by [31] (Chapter 9, page 198),

J+(Y, t) v
2

1
4

√
πβ2

t
1
3 (−Y )

1
4

cos

(
π

4
− 2
√

2

3
(−Y )

3
2

)
(6.218)

for (−Y )� 1 as t→∞, and

J+(Y, t) v

√
πβ2

2
3
4 t

1
3Y

1
4

exp

(
−2
√

2

3
Y

3
2

)
(6.219)
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for Y � 1 as t → ∞. It is readily established that (6.218) and (6.219) asymptotically

match accordingly with (6.26) (as Y → −∞) and (6.61) (as Y → +∞) respectively.

We next consider J−(y, t) in (6.7) with y = −1 +O
(
t−

2
3

)
as t→∞, which we refer to as

Region Î−: y = −1±O
(
t−

2
3

)
as t→∞.

In a similar manner to above, we obtain

J−

(
Ŷ , t
)
v

2
1
3πβ2

t
1
3

Ai
(
−2

1
3 Ŷ
)

(6.220)

for Ŷ = O(1) as t→∞, with y = −1 + Ŷ t−
2
3 . In particular, we have,

J−

(
Ŷ , t
)
v

2
1
4
√
πβ2

t
1
3 Ŷ

1
4

cos

(
π

4
− 2
√

2

3
Ŷ

3
2

)
(6.221)

for Ŷ � 1 as t→∞, and

J−

(
Ŷ , t
)
v

√
πβ2

2
3
4 t

1
3 (−Ŷ )

1
4

exp

(
−2
√

2

3
(−Ŷ )

3
2

)
(6.222)

for
(
−Ŷ
)
� 1 as t → ∞, and it is readily established that (6.221)

(
as Ŷ → −∞

)
and

(6.222)
(
as Ŷ → +∞

)
asymptotically match accordingly with (6.96) and (6.99) respec-

tively.

6.6 Inner Region Coordinate Expansions for F (y, t) as
t→∞.

We now consider F (y, t) in (6.8) in Region Î+, where we write y = 1 + Y t−
2
3 . We now

have, via (6.8),
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F (Y, t) =

∫ ∞
0

1

k
sin t

(
γ(k)− k

(
1 + Y t−

2
3

))
dk (6.223)

for Y = O(1) as t → ∞. We first consider the approximation of F (Y, t) in (6.223) for

Y = O(1)(< 0) as t → ∞. For Y < 0, the phase becomes stationary in (6.223) at

k = ks(Y, t), and, via (6.13), we have

ks(Y, t) =

√
2(−Y )

1
2

t
1
3

+O

(
(−Y )

3
2

t

)

for Y = O(1)(< 0) as t→∞. Thus we may approximate F (Y, t) as

F (Y, t) v
∫ ks(Y,t)+δ(t)

0

1

k
sin t

(
γ(k)− k

(
1 + Y t−

2
3

))
dk (6.224)

for Y = O(1)(< 0) and δ(t) = o(1) as t→∞. For |k| � 1 we have

γ(k)− k
(

1− Y t−
2
3

)
= −1

6
k3 − Y t−

2
3k +O

(
k5
)

so that, as ks(Y, t) + δ(t) = o(1) as t→∞, (6.224) becomes

F (Y, t) v −
∫ ks(Y,t)+δ(t)

0

1

k
sin t

(
1

6
k3 + Y t−

2
3k +O

(
k5
))

dk (6.225)

for Y = O(1)(< 0) as t→∞. At this stage it is convenient to write

1

k
sin t

(
1

6
k3 + Y t−

2
3k +O

(
k5
))

=t
1
3

∫ Y

X=0

cos t

(
1

6
k3 +Xt−

2
3k +O

(
k5
))

dX

+
1

k
sin

(
1

6
tk3 +O

(
k5
)) (6.226)

so that, via (6.225) and (6.226), we have

F (Y, t) v− t
1
3

∫ Y

X=0

∫ ks(Y,t)+δ(t)

k=0

cos t

(
1

6
k3 +Xt−

2
3k +O

(
k5
))

dk dX

−
∫ ks(Y,t)+δ(t)

k=0

1

k
sin

(
1

6
tk3 +O

(
k5
))

dk

(6.227)
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for Y = O(1)(< 0) as t→∞. We first consider the second integral on the right-hand-side

of (6.227). Set

F̂1(Y, t) =

∫ ks(Y,t)+δ(t)

k=0

1

k
sin

(
1

6
tk3 +O

(
k5
))

dk (6.228)

for Y = O(1)(< 0) as t→∞. Upon making the substitution

u =
1

6
tk3

in (6.228), we obtain, on taking δ(t) = t−
1
4 ,

F̂1(Y, t) v
1

3

∫ ∞
0

1

u
sinu du

for Y = O(1)(< 0) as t→∞. Hence

F̂1(Y, t) v
π

6
(6.229)

for Y = O(1)(< 0) as t → ∞. We now consider the first integral on the right-hand-side

of (6.227). Set

F̂2(Y, t) =

∫ Y

X=0

∫ ks(Y,t)+δ(t)

k=0

cos t

(
1

6
k3 +Xt−

2
3k +O

(
k5
))

dk dX (6.230)

for Y = O(1)(< 0) as t→∞. Upon making the substitution

v =
k

ks(X, t)
− 1

in (6.230), we obtain, with δ(t) = t−
1
4 ,

F̂2(Y, t) v
∫ Y

X=0

√
2(−X)

1
2

t
1
3

∫ ∞
v=−1

cos

((
2

1
3 (−X)

) 3
2

(
1

3
v3 + v2 − 2

3

))
dv dX (6.231)

for Y = O(1)(< 0) as t→∞. From [31] (Chapter 9, page 196) we have
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Ai
(

2
1
3X
)

=

(
2

1
3 (−X)

) 1
2

π

∫ ∞
v=−1

cos

((
2

1
3 (−X)

) 3
2

(
1

3
v3 + v2 − 2

3

))
dv (6.232)

for X < 0. Thus, via (6.231) and (6.232), we have

F̂2(Y, t) v
2

1
3π

t
1
3

∫ Y

X=0

Ai
(

2
1
3X
)
dX (6.233)

for Y = O(1)(< 0) as t→∞. It is now convenient to make the substitution

s = 2
1
3X

in (6.233) and then use the identity

∫ 0

z=−∞
Ai(z) dz =

2

3
(6.234)

([31] (Chapter 9, page 202)), so that we finally have

F̂2(Y, t) v − 2π

3t
1
3

+
π

t
1
3

∫ 2
1
3 Y

s=−∞
Ai (s) ds (6.235)

for Y = O(1)(< 0) as t→∞. Thus, via (6.227), (6.228), (6.229), (6.230) and (6.235), we

have

F (Y, t) v
π

2
− π

∫ 2
1
3 Y

s=−∞
Ai(s) ds (6.236)

for Y = O(1)(< 0) as t→∞. We now consider the estimation of F (Y, t) for Y = O(1)(>

0) as t→∞. We first observe that

t
1
3

∫ Y

X=0

cos t
(
γ(k)− k

(
1 +Xt−

2
3

))
dX =− 1

k
sin t

(
γ(k)− k

(
1 + Y t−

2
3

))
+

1

k
sin t (γ(k)− k)

(6.237)

so that, via (6.223) and (6.237), we have
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F (Y, t) =

∫ ∞
k=0

1

k
sin t (γ(k)− k) dk

− t
1
3

∫ ∞
k=0

(∫ Y

X=0

cos t
(
γ(k)− k

(
1 +Xt−

2
3

))
dX

)
dk

(6.238)

for Y = O(1)(> 0) and as t ∈ R+. We consider the first integral on the right-hand-side

of (6.238). Set

F̂3(t) =

∫ ∞
k=0

1

k
sin t (γ(k)− k) dk (6.239)

for t ∈ R+. The phase becomes stationary in (6.239) at k = 0, so as t → ∞ we may

approximate F̂3(t) by

F̂3(t) v
∫ δ(t)

k=0

1

k
sin t (γ(k)− k) dk (6.240)

as t→∞ with δ(t) = o(1) as t→∞. For |k| � 1 we have

γ(k)− k = −1

6
k3 +O

(
k5
)

so that (6.240) becomes

F̂3(t) v −
∫ δ(t)

k=0

1

k
sin

(
1

6
tk3 +O

(
tk5
))

dk (6.241)

as t→∞. Upon making the substitution

u =
1

6
tk3

in (6.241) we obtain, on taking δ(t) = t−
1
4 ,

F̂3(t) v −1

3

∫ ∞
u=0

1

u
sinu du

as t→∞. Hence
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F̂3(t) v −π
6

(6.242)

as t→∞. We now consider the second integral on the right-hand-side of (6.238). Set

F̂4(Y, t) = t
1
3

∫ ∞
k=0

(∫ Y

X=0

cos t
(
γ(k)− k

(
1 +Xt−

2
3

))
dX

)
dk (6.243)

for Y = O(1)(> 0) with t ∈ R+. In order to estimate F̂4(Y, t) for Y = O(1)(> 0) as

t→∞ we first write

(
F̂4(Y, t)

)
R

= t
1
3

∫ R

k=0

(∫ Y

X=0

cos t
(
γ(k)− k

(
1 +Xt−

2
3

))
dX

)
dk (6.244)

for Y = O(1)(> 0) with t ∈ R+ and R > 0. Upon interchanging the order of integration

in (6.244) we may write

(
F̂4(Y, t)

)
R

= t
1
3

∫ Y

X=0

(∫ R

k=0

cos t
(
γ(k)− k

(
1 +Xt−

2
3

))
dk

)
dX

=
t

1
3

2

((
F̂+(Y, t)

)
R

+
(
F̂−(Y, t)

)
R

) (6.245)

for Y = O(1)(> 0) with t ∈ R+ and R > 0, where

(
F̂+(Y, t)

)
R

=

∫ Y

X=0

(∫ R

k=0

exp
(
it
(
γ(k)− k

(
1 +Xt−

2
3

)))
dk

)
dX (6.246)

and

(
F̂−(Y, t)

)
R

=

∫ Y

X=0

(∫ R

k=0

exp
(
−it

(
γ(k)− k

(
1 +Xt−

2
3

)))
dk

)
dX. (6.247)

We consider first (6.246). The phase becomes stationary in the inner integral in (6.246)

at k = ±iτs(X, t) for X ∈ [0, Y ] with t ∈ R+. Hence, on taking R > π
2
, we will deform

the contour of integration in the inner integral in (6.246) from k ∈ [0, R] onto the steepest

descents contour D−, shown in Figure (6.20). To achieve this we consider the contour

CR− = [0, R] ∪ D2 ∪ DR− ∪ D1, where D2 is an arc on the circle |k| = R, and DR− is a
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finite section of D−, as shown in Figure (6.39). The point k = k1 is the intersection point

of D2 and DR− , and we recall, via (6.35), that

θR =
π

2
+O

(
1

R
1
2

)

as R→∞, where θR is the angle shown in Figure (6.39). Now, via Cauchy’s theorem, we

have

∫
CR−

exp
(
it
(
γ(k)− k

(
1 +Xt−

2
3

)))
dk = 0 (6.248)

for X ∈ [0, Y ] with Y = O(1)(> 0), t ∈ R+ and R > π
2
. Therefore, via (6.248), we have

∫ Y

X=0

(∫ R

k=0

exp
(
it
(
γ(k)− k

(
1 +Xt−

2
3

)))
dk

)
dX

= −
∫ Y

X=0

(∫
D2

exp
(
it
(
γ(k)− k

(
1 +Xt−

2
3

)))
dk

)
dX

−
∫ Y

X=0

(∫
DR−

exp
(
it
(
γ(k)− k

(
1 +Xt−

2
3

)))
dk

)
dX

−
∫ Y

X=0

(∫
D1

exp
(
it
(
γ(k)− k

(
1 +Xt−

2
3

)))
dk

)
dX

(6.249)

for Y = O(1)(> 0), t ∈ R+ and R > π
2
. After a change in the order of integration, we

may follow the approach in (6.40)-(6.44) to establish that

∫ Y

X=0

(∫
D2

exp
(
it
(
γ(k)− k

(
1 +Xt−

2
3

)))
dk

)
dX = O

(
1

R

)
(6.250)

as R→∞ with Y = O(1)(> 0) and t > 1. Also, a simple substitution gives,

∫ Y

X=0

(∫
D1

exp
(
it
(
γ(k)− k

(
1 +Xt−

2
3

)))
dk

)
dX

= i

∫ Y

X=0

(∫ 0

τ=−τs(X,t)
exp

(
it
(
γ(iτ)− iτ

(
1 +Xt−

2
3

)))
dτ

)
dX

(6.251)
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τ

τ = −π
2

Branch cut for γ(k)

DR−

D2D1

τ = −τs (X, t)

R
θR

k = k1

Figure 6.39: Contour CR− .

with Y = O(1)(> 0) and t ∈ R+. Now, with Y = O(1)(> 0) and t > 1, a reversal in the

order of integration establishes that the term on the left-hand-side of (6.249) has a limit

as R→∞. Moreover, it follows from (6.250) that the first term on the right-hand-side of

(6.249) has limit zero as R→∞, whilst the last term on the right-hand-side of (6.249) is

independent of R (> π
2
). Thus we conclude that the second term on the right-hand-side

of (6.249) has a limit as R→∞. We now let R→∞ in (6.249) to obtain (using (6.246),

(6.249), (6.250) and (6.251)),

lim
R→∞

((
F̂+(Y, t)

)
R

)
=− lim

R→∞

(∫ Y

X=0

(∫
DR−

exp
(
it
(
γ(k)− k

(
1 +Xt−

2
3

)))
dk

)
dX

)

− i
∫ Y

X=0

(∫ 0

τ=−τs(X,t)
exp

(
it
(
γ(iτ)− iτ

(
1 +Xt−

2
3

)))
dτ

)
dX

(6.252)

for Y = O(1)(> 0) with t > 1. Similarly we obtain,
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lim
R→∞

((
F̂−(Y, t)

)
R

)
= − lim

R→∞

(∫ Y

X=0

(∫
DR+

exp
(
−it

(
γ(k)− k

(
1 +Xt−

2
3

)))
dk

)
dX

)

+ i

∫ Y

X=0

(∫ 0

τ=−τs(X,t)
exp

(
it
(
γ(iτ)− iτ

(
1 +Xt−

2
3

)))
dτ

)
dX

(6.253)

for Y = O(1)(> 0) and t > 1, with DR+ being the contour in the k-plane which is a

reflection of DR− in the real k-axis. It now follows from (6.243)-(6.247), with (6.252) and

(6.253), that,

F̂4(Y, t) =− 1

2
t

1
3

(
lim
R→∞

(∫ Y

X=0

(∫
DR−

exp
(
it
(
γ(k)− k

(
1 +Xt−

2
3

)))
dk

)
dX

)

+ lim
R→∞

(∫ Y

X=0

(∫
DR+

exp
(
−it

(
γ(k)− k

(
1 +Xt−

2
3

)))
dk

)
dX

))
(6.254)

for Y = O(1)(> 0) and t > 1. Now the inner integrals in (6.254), on DR− and DR+ , are

uniformly (and exponentially) convergent with respect to X ∈ [0, Y ] as R →∞. It then

follows that

lim
R→∞

(∫ Y

X=0

(∫
DR−

exp
(
it
(
γ(k)− k

(
1 +Xt−

2
3

)))
dk

)
dX

)

= −
∫ Y

X=0

(∫
D−

exp
(
it
(
γ(k)− k

(
1 +Xt−

2
3

)))
dk

)
dX

and

lim
R→∞

(∫ Y

X=0

(∫
DR+

exp
(
−it

(
γ(k)− k

(
1 +Xt−

2
3

)))
dk

)
dX

)

= −
∫ Y

X=0

(∫
D+

exp
(
−it

(
γ(k)− k

(
1 +Xt−

2
3

)))
dk

)
dX

for Y = O(1)(> 0) and t > 1. Thus,
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F̂4(Y, t) =
1

2
t

1
3

(∫ Y

X=0

(∫
D−

exp
(
it
(
γ(k)− k

(
1 +Xt−

2
3

)))
dk

)
dX

+

∫ Y

X=0

(∫
D+

exp
(
−it

(
γ(k)− k

(
1 +Xt−

2
3

)))
dk

)
dX

) (6.255)

for Y = O(1)(> 0) and t > 1. We now estimate the first integral (along D−) on the

right-hand-side of (6.255) as t → ∞ with Y = O(1)(> 0). The inner integral is in the

form of a steepest descents integral as t → ∞. Thus we estimate the inner integral near

the stationary point at k = −iτs(X, t) (with X ∈ [0, Y ]) as t→∞, where

τs(X, t) =

√
2X

1
2

t
1
3

+O

(
X

3
2

t

)
(6.256)

for X ∈ [0, Y ] as t→∞. Therefore,

∫ Y

X=0

(∫
D−

exp
(
it
(
γ(k)− k

(
1 +Xt−

2
3

)))
dk

)
dX

v
∫ Y

X=0

(∫ δ(t)

σ=0

exp
(
it
(
γ(σ − iτs(X, t))− (σ − iτs(X, t))

(
1 +Xt−

2
3

)))
dσ

)
dX

(6.257)

for Y = O(1)(> 0) as t→∞, where we have set k = σ − iτs(X, t), with σ ∈ [0, δ(t)), on

the contour D− close to k = −iτs(X, t), and δ(t) = o(1) as t→∞. For |k| � 1 we have

γ(k)− k
(

1−Xt−
2
3

)
= −1

6
k3 −Xt−

2
3k +O

(
k5
)

(6.258)

so that, via (6.256) and (6.258), (6.257) becomes

∫ Y

X=0

(∫
D−

exp
(
it
(
γ(k)− k

(
1 +Xt−

2
3

)))
dk

)
dX

v
∫ Y

X=0

exp

(
−2
√

2

3
X

3
2

)(∫ δ(t)

σ=0

exp

(
−1

6
itσ3 −

√
2

2
X

1
2 t

2
3σ2

)
dσ

)
dX

(6.259)

for Y = O(1)(> 0) as t → ∞, with δ(t) = o
(
t−

1
5

)
as t → ∞. Upon making the
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substitution

u =
t

1
3

2
1
3

σ

in (6.259), we obtain, on taking δ(t) = O
(
t−

1
4

)
∫ Y

X=0

(∫
D−

exp
(
it
(
γ(k)− k

(
1 +Xt−

2
3

)))
dk

)
dX

v
2

1
3

t
1
3

∫ Y

X=0

exp

(
−2

3

(
2

1
3X
) 3

2

)(∫ ∞
u=0

exp

(
−1

3
iu3 −

(
2

1
3X
) 1

2
u2

)
du

)
dX

(6.260)

for Y = O(1)(> 0) as t → ∞. Similarly, we may approximate the second term on the

right-hand-side of (6.255) as

∫ Y

X=0

(∫
D+

exp
(
−it

(
γ(k)− k

(
1 +Xt−

2
3

)))
dk

)
dX

v
2

1
3

t
1
3

∫ Y

X=0

exp

(
−2

3

(
2

1
3X
) 3

2

)(∫ ∞
u=0

exp

(
1

3
iu3 −

(
2

1
3X
) 1

2
u2

)
du

)
dX

(6.261)

for Y = O(1)(> 0) as t→∞. Thus, via (6.255), (6.260) and (6.261), we have

F̂4(Y, t) v 2
1
3

∫ Y

X=0

exp

(
−2

3

(
2

1
3X
) 3

2

)(∫ ∞
u=0

exp

(
−
(

2
1
3X
) 1

2
u2

)
cos

(
1

3
u3

)
du

)
dX

(6.262)

for Y = O(1)(> 0) as t → ∞. The inner integral in (6.262) is in the form of an Airy

function, [31](Chapter 9 page 196). Hence

F̂4(Y, t) v 2
1
3π

∫ Y

X=0

Ai
(

2
1
3X
)
dX (6.263)

for Y = O(1)(> 0) as t→∞. Therefore, via (6.238), (6.239), (6.242), (6.243) and (6.263),

we have
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F (Y, t) v −π
6
− 2

1
3π

∫ Y

X=0

Ai
(

2
1
3X
)
dX (6.264)

for Y = O(1)(> 0) as t→∞. It is now convenient to let

s = 2
1
3X

in (6.264) and use (6.234) so that we finally have

F (Y, t) v
π

2
− π

∫ 2
1
3 Y

s=−∞
Ai (s) ds (6.265)

for Y = O(1)(> 0) as t→∞. Thus, via (6.236) and (6.265), we have

F (Y, t) v
π

2
− π

∫ 2
1
3 Y

s=−∞
Ai (s) ds (6.266)

for Y = O(1) as t→∞. In particular, we have, by [31] (Chapter 9 page 202),

F (Y, t) v
π

2
− π

1
2

2
1
4 t

1
2 (−Y )

3
4

sin

(
π

4
− 2
√

2

3
(−Y )

3
2

)
(6.267)

for (−Y )� 1 as t→∞, and

F (Y, t) v −π
2

+
π

1
2

2
5
4Y

3
4

exp

(
−2
√

2

3
Y

3
2

)
(6.268)

for Y � 1 as t→∞. We observe that (6.267) (as Y → −∞) and (6.268) (as Y → +∞)

asymptotically match accordingly with (6.125) and (6.156) respectively.

In a similar manner we may approximate F (−y, t) in Region Î−, where y = −1+Ŷ t−
2
3 ,

as

F (Ŷ , t) v
π

2
− π

∫ −2
1
3 Ŷ

s=−∞
Ai (s) ds (6.269)

for Ŷ = O (1) as t→∞. In particular,
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F (Ŷ , t) v
π

2
−
√
π

2
1
4 Ŷ

3
4

sin

(
π

4
− 2
√

2

3
Ŷ

3
2

)
(6.270)

for Ŷ � 1 as t→∞, and

F (Ŷ , t) v −π
2

+

√
π

2
5
4

(
−Ŷ
) 3

4

exp

(
−2
√

2

3

(
−Ŷ
) 3

2

)
(6.271)

for
(
−Ŷ
)
� 1 as t→∞.

6.7 Inner Region Coordinate Expansion for η̄(y, t) as
t→∞.

We now have, via (6.5), (6.217), (6.218), (6.219), (6.220), (6.221), (6.222), (6.266), (6.267),

(6.268), (6.269), (6.270) and (6.271), the following approximations for η̄(y, t) in the fol-

lowing regions,

Region Î+: y
(
= x

t

)
= 1 + Y t−

2
3 , with Y = O(1) as t→∞. We have,

η̄ (Y, t) v
1

2

1−
∫ 2

1
3 Y

s=−∞
Ai(s) ds

+
2

1
3β

4t
1
3

Ai
(

2
1
3Y
)

(6.272)

for Y = O(1) as t→∞. In particular,

η̄ (Y, t) v
1

2
9
4
√
π

(
1

Y
3
4

+
β

√
2t

1
3Y

1
4

)
exp

(
−2
√

2

3
Y

3
2

)
(6.273)

for Y � 1 as t→∞, and

η̄ (Y, t) v
1

2
− 1

2
5
4
√
π

(
1

(−Y )
3
4

sin

(
π

4
− 2
√

2

3
(−Y )

3
2

)

− β
√

2t
1
3 (−Y )

1
4

cos

(
π

4
− 2
√

2

3
(−Y )

3
2

)) (6.274)
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for (−Y ) � 1 as t → ∞, and it is readily verified that (6.273) and (6.274) asymptoti-

cally match with (6.196) and (6.194) respectively according to the asymptotic matching

principal of Van Dyke [12].

Region Î−: y
(
= x

t

)
= −1 + Ŷ t−

2
3 , with Ŷ = O(1) as t→∞. We have,

η̄
(
Ŷ , t
)
v

1

2

1 +

∫ −2
1
3 Ŷ

s=−∞
Ai(s) ds

+
2

1
3β

4t
1
3

Ai
(
−2

1
3 Ŷ
)

(6.275)

for Ŷ = O(1) as t→∞. In particular,

η̄
(
Ŷ , t
)
v

1

2
+

1

2
5
4
√
π

(
1

Ŷ
3
4

sin

(
π

4
− 2
√

2

3
Ŷ

3
2

)
+

β
√

2t
1
3 Ŷ

1
4

cos

(
π

4
− 2
√

2

3
Ŷ

3
2

))
(6.276)

for Ŷ � 1 as t→∞, and

η̄
(
Ŷ , t
)
v 1− 1

2
9
4
√
π

 1(
−Ŷ
) 3

4

− β
√

2t
1
3

(
−Ŷ
) 1

4

 exp

(
−2
√

2

3

(
−Ŷ
) 3

2

)
(6.277)

for
(
−Ŷ
)
� 1 as t → ∞, and it is readily verified that (6.276) and (6.277) asymptoti-

cally match with (6.201) and (6.203) respectively according to the asymptotic matching

principal of Van Dyke [12].

As an illustration, graphs of η̄(y, t) in each region (as determined from (6.272)-(6.277))

are given in Figures (6.40) and (6.41), where we have set t = 300 and β = 1.
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Figure 6.40: The graph of η̄(y, 300) in
Region Î+, (6.272), (−−), and in Region
I+, (6.191) and Region II+ (6.195), (−).

Figure 6.41: The graph of η̄(y, 300) in
Region Î−, (6.275), (−−), and in Region
I−, (6.198) and Region II− (6.202), (−).
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CHAPTER 7

SUMMARY OF THE ASYMPTOTIC STRUCTURE OF
η̄(x, t) AS t→ 0 AND t→∞

In this chapter we give a summary of the exact solution for the free surface displacement

η̄(x, t) for (x, t) ∈ R × R+ and the asymptotic structure of η̄(x, t) as t → 0 and t → ∞,

as determined in Chapter 3, Chapter 4 and Chapter 6 respectively. Illustrations of the

asymptotic structure are given in each case and graphs of the approximations in each case

are also shown.

7.1 Exact Solution for η̄(x, t)

We have now completed the asymptotic structure to the free surface solution η̄(x, t) as

t→ 0 and as t→∞. We recall that the free surface displacement η̄(x, t) is given exactly

by

η̄(x, t) =
1

2πβ

∫
Cδ

1

k2
(1− exp(iβk)) cos(γ(k)t) exp(−ixk) dk, (7.1)

for (x, t) ∈ R× R̄+, where

γ(k) = (k tanh k)
1
2

and Cδ is the contour along on the real k-axis, indented below the origin by a semi-circle
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of radius 0 < δ � 1, as shown in Figure (7.1). We have investigated coordinate expansions

for η̄(x, t), as given by (7.1), and have obtained uniform asymptotic approximations for

η̄(x, t) in the limits t → 0 and t → ∞ for x ∈ R. The asymptotic structure of η̄(x, t) in

each of these cases is summarised below.

7.2 Asymptotic Structure of η̄(x, t) as t→ 0

Let N0(t) and Nβ(t) be O (t2) neighbourhoods of the points x = 0 and x = β as t → 0.

Then we have the following outer region asymptotic approximation for η̄(x, t),

Outer Region x ∈ R\{N0(t) ∪Nβ(t)} as t→ 0.

In the outer region,

η̄(x, t) =



t2

2πβ
log

(
tanh π

4
x

tanh π
4
(x− β)

)
+ o(t2), as t→ 0 with

x ∈ [β,∞)\Nβ(t),

1

β
(β − x) +

t2

2πβ
log

(
tanh π

4
x

tanh π
4
(β − x)

)
+ o(t2), as t→ 0 with

x ∈ [0, β]\{N0(t) ∪Nβ(t)},

1 +
t2

2πβ
log

(
tanh π

4
(−x)

tanh π
4
(β − x)

)
+ o(t2), as t→ 0 with

x ∈ (−∞, 0]\N0(t).

(7.2)

In particular, in the outer region we have

η̄(x, t) =
t2

2πβ

(
− log(x− β) + log

(
4

π
tanh

(π
4
β
))

+O
(
(x− β)2

))
+ o

(
t2
)

when 0 < (x− β)� 1 as t→ 0.
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Re(k)

Im(k)

Cδ

k = iπ
2

k = −iπ
2

k = δk = −δ

Branch cut for γ(k)

Branch cut for γ(k)

Figure 7.1: Contour Cδ in the k-plane.

η̄(x, t) =
1

β
(β−x)+

t2

2πβ

(
− log(β − x) + log

(
4

π
tanh

(π
4
β
))

+O
(
(x− β)2

))
+o
(
t2
)

(7.3)

when 0 < (β − x)� 1 as t→ 0.

η̄(x, t) =
1

β
(β − x) +

t2

2πβ

(
log(x)− log

(
4

π
tanh

(π
4
β
))

+O
(
x2
))

+ o
(
t2
)

when 0 < x� 1 as t→ 0.

η̄(x, t) = 1 +
t2

2πβ

(
log(−x)− log

(
4

π
tanh

(π
4
β
))

+O
(
x2
))

+ o
(
t2
)

when 0 < (−x)� 1 as t→ 0.

η̄(x, t) =
t2

2πβ

(
2
(

exp
(π

2
β
)
− 1
)

exp
(
−π

2
x
)

+O

(
exp

(
−3π

2
x

)))
+ o

(
t2
)

when x� 1 as t→ 0.
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η̄(x, t) = 1 +
t2

2πβ

(
2
(

exp
(
−π

2
β
)
− 1
)

exp
(π

2
x
)

+O

(
exp

(
3π

2
x

)))
+ o

(
t2
)

when (−x)� 1 as t→ 0.

We have the following inner region approximations for η̄(x, t):

Inner Region A x ∈ N0(t) as t→ 0.

In inner region A,

η̄(X, t) = 1 +
t2

πβ

(
log t+H(X)− πX − 1

2
log
(

tanh
π

4
β
))

+ o(t2) (7.4)

for X = O(1) as t→ 0 , with x = t2X.

Inner Region B x ∈ Nβ(t) as t→ 0.

In inner region B,

η̄(X̄, t) =
t2

πβ

(
− log t−H(X̄) +

1

2
log
(

tanh
π

4
β
))

+ o(t2) (7.5)

for X̄ = O(1) as t→ 0 , with x = β + X̄t2.

In (7.4) and (7.5)

H(X) =


F1(X) + F2(X) + F3(X)− 1

2
c4, X ≥ 0

F1(−X) + F2(−X) + F3(−X) + πX − 1

2
c4, X < 0,

with

F1(X) =

∫ ∞
s=1

1

s2

(
cos
(
s

1
2

)
− 1
)

cos (Xs) ds,
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F2(X) =

∫ 1

s=0

1

2s
(1− cos (Xs)) ds,

F3(X) =

∫ 1

s=0

h(s) cos (Xs) ds,

where

h(s) =


1

2s

(
1 +

2

s

(
cos
(
s

1
2

)
− 1
))

, s > 0,

1

24
, s = 0.

and

c4 =

∫ 1

k=0

tanh k

k
dk +

∫ ∞
k=1

tanh k − 1

k
dk = 0.818780 . . . .

In particular, in Inner Region A we have

η̄(X, t) =1 +
t2

πβ

(
log t+

(
c1 + c3 −

1

2
c4 − 1

)
− 1

2
log
(

tanh
(π

4
β
))

−1

2
πX + o

(
|X|

3
2

))
+ o

(
t2
)

when |X| � 1 as t→ 0, whilst

η̄(X, t) = 1+
t2

πβ

(
−πX + log t+

1

2
log
(π

4
X
)
− 1

2
log
(

tanh
(π

4
β
))

+O

(
1

X2

))
+o
(
t2
)

when X � 1 as t→ 0, and

η̄(X, t) = 1 +
t2

πβ

(
log t+

1

2
log
(
−π

4
X
)
− 1

2
log
(

tanh
(π

4
β
))

+O

(
1

X2

))
+ o

(
t2
)

when (−X)� 1 as t→ 0. In Inner Region B we have
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η̄(X̄, t) =
t2

πβ

(
− log t−

(
c1 + c3 −

1

2
c4 − 1

)
+

1

2
log
(

tanh
(π

4
β
))

−1

2
πX̄ + o

(
|X̄|

3
2

))
+ o

(
t2
)

when |X̄| � 1 as t→ 0, whilst

η̄(X̄, t) =
t2

πβ

(
− log t− 1

2
log
(π

4
X̄
)

+
1

2
log
(

tanh
(π

4
β
))

+O

(
1

X̄2

))
+ o

(
t2
)

when X̄ � 1 as t→ 0, and

η̄(X̄, t) =
t2

πβ

(
−πX̄ − log t− 1

2
log
(
−π

4
X̄
)

+
1

2
log
(

tanh
(π

4
β
))

+O

(
1

X̄2

))
+o
(
t2
)

when (−X̄)� 1 as t→ 0, where

c1 =

∫ ∞
1

1

s2
cos(s

1
2 ) ds = 0.036242 . . .

and

c3 =

∫ 1

0

h(s) ds = 0.040980 . . . .

An illustration of the asymptotic structure of η̄(x, t) as t → 0, with x ∈ R, is given

in Figure (7.2). With β = 1, graphs of η̄(x, t) against x are shown in Figure (7.3) for

t ∈ [0, 0.5]. Details close to inner regions A and B are shown in Figure (7.4). In Figure

(7.4) we note that close to the initial corners at x = β and x = 0, the structure of η̄(x, t)

as t → 0 shows incipient localised jet formation close to x = β (in inner region B) and

incipient localised collapse close to x = 0 (in inner region A).

7.3 Asymptotic Structure of η̄(x, t) as t→∞

We have the asymptotic approximation to η̄(x, t) as t→∞ in the following outer regions:
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Region II+: y
(
= x

t

)
> 1 + o(1) as t→∞. We have,

η̄(y, t) v
1

2β
√

2πtvkk(−iτs(y))τs(y)2
(exp (βτs(y))− 1) exp (−tv (−iτs(y), y)) as t→∞,

(7.6)

where k = ±iτs(y) (with τs(y) > 0) are the stationary points of γ(k)−yk when y > 1+o(1),

and v(k, y) = Im (γ(k)− ky). In particular,

η̄(y, t) v
1

2
9
4π

1
2 t

1
2

(
1

(y − 1)
3
4

+
β

√
2(y − 1)

1
4

)
exp

(
−2
√

2

3
t(y − 1)

3
2

)
(7.7)

when 0 < (y − 1)� 1 as t→∞, and

η̄(y, t) v
1

2πβ

(
exp

(π
2
β
)
− 1
)( 4
√

6π
4
3 t

1
2y

5
6

)
exp

(
−π

2
t

(
y − 3

π
2
3

y
1
3

))
(7.8)

when y � 1 as t→∞.

Region I+: o(1) < y
(
= x

t

)
< 1− o(1) as t→∞. We have,

η̄(y, t) v
1

2
+

1

β
√

2πtγ′′(−ks(y))ks(y)2

(
cos
(π

4
+ tks(y) (y − c(ks(y)))

)
− cos

(π
4
− βks(y) + tks(y) (y − c(ks(y)))

)))
as t→∞,

(7.9)

with

c(k) =
γ(k)

k
(7.10)

and k = ks(y) is the positive stationary point of γ(k)− yk when o(1) < y < 1− o(1). In

particular,

η̄(y, t) v
1

2
+

8y
5
2

βπ
1
2 t

1
2

(
cos

(
π

4
− t

4y

)
− cos

(
π

4
− β

4y2
− t

4y

))
(7.11)
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when 0 < y � 1 as t→∞, and

η̄(y, t) v
1

2
− 1

2
5
4π

1
2 t

1
2

(
1

(1− y)
3
4

sin

(
π

4
− 2
√

2

3
t(1− y)

3
2

)

− β
√

2(1− y)
1
4

cos

(
π

4
− 2
√

2

3
t(1− y)

3
2

)) (7.12)

when 0 < (1− y)� 1 as t→∞.

Region I−: −1 + o(1) < y
(
= x

t

)
< −o(1) as t→∞. We have,

η̄(y, t) v
1

2
+

1

β
√

2πtγ′′(−ks(−y))ks(−y)2

(
cos
(
−π

4
+ tks(−y) (y + c(ks(−y)))

)
− cos

(
−π

4
− βks(−y) + tks(−y) (y + c(ks(−y)))

)))
as t→∞,

(7.13)

with

c(k) =
γ(k)

k
(7.14)

where k = ks(−y) is the positive stationary point of γ(k)+yk when−1+o(1) < y < −o(1).

In particular,

η̄(y, t) v
1

2
+

8(−y)
5
2

βπ
1
2 t

1
2

(
cos

(
π

4
+

t

4y

)
− cos

(
π

4
+

β

4y2
+

t

4y

))
(7.15)

when 0 < (−y)� 1 as t→∞, and

η̄(y, t) v
1

2
+

1

2
5
4π

1
2 t

1
2

(
1

(1 + y)
3
4

sin

(
π

4
− 2
√

2

3
t(1 + y)

3
2

)

+
β

√
2(1 + y)

1
4

cos

(
π

4
− 2
√

2

3
t(1 + y)

3
2

)) (7.16)

when 0 < (1 + y)� 1 as t→∞.
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Region II−: y
(
= x

t

)
< −1− o(1) as t→∞. We have,

η̄(y, t) v 1− 1

2β
√

2πtvkk(−iτs(−y))τs(−y)2
(1− exp (βτs(−y))) exp (−tv (−iτs(−y), y)) ,

(7.17)

as t→∞, where k = ±iτs(−y) (with τs(−y) > 0) are the stationary points of γ(k) + yk

when y < −1− o(1). In particular,

η̄(y, t) v 1− 1

2
9
4π

1
2 t

1
2

(
1

(−(y + 1))
3
4

− β
√

2(−(y + 1))
1
4

)
exp

(
−2
√

2

3
t(−(y + 1))

3
2

)
(7.18)

when 0 < (−(y + 1))� 1 as t→∞, and

η̄(y, t) v 1− 1

2πβ

(
1− exp

(
−π

2
β
))( 4

√
6π

4
3 t

1
2 (−y)

5
6

)
exp

(
π

2
t

(
y − 3

π
2
3

y
1
3

))
(7.19)

when (−y)� 1 as t→∞.

We now have the asymptotic approximation to η̄(x, t) as t → ∞ in the following inner

regions:

Region Î+: y
(
= x

t

)
= 1 + Y t−

2
3 , with Y = O(1) as t→∞. We have,

η̄ (Y, t) v
1

2

1−
∫ 2

1
3 Y

s=−∞
Ai(s) ds

+
2

1
3β

4t
1
3

Ai
(

2
1
3Y
)

as t→∞. (7.20)

In particular,

η̄ (Y, t) v
1

2
9
4
√
π

(
1

Y
3
4

+
β

√
2t

1
3Y

1
4

)
exp

(
−2
√

2

3
Y

3
2

)
(7.21)

for Y � 1 as t→∞, and
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η̄ (Y, t) v
1

2
− 1

2
5
4
√
π

(
1

(−Y )
3
4

sin

(
π

4
− 2
√

2

3
(−Y )

3
2

)

− β
√

2t
1
3 (−Y )

1
4

cos

(
π

4
− 2
√

2

3
(−Y )

3
2

)) (7.22)

for (−Y )� 1 as t→∞.

Region Î−: y
(
= x

t

)
= −1 + Ŷ t−

2
3 , with Ŷ = O(1) as t→∞. We have,

η̄
(
Ŷ , t
)
v

1

2

1 +

∫ −2
1
3 Ŷ

s=−∞
Ai(s) ds

+
2

1
3β

4t
1
3

Ai
(
−2

1
3 Ŷ
)

as t→∞. (7.23)

In particular,

η̄
(
Ŷ , t
)
v

1

2
+

1

2
5
4
√
π

(
1

Ŷ
3
4

sin

(
π

4
− 2
√

2

3
Ŷ

3
2

)
+

β
√

2t
1
3 Ŷ

1
4

cos

(
π

4
− 2
√

2

3
Ŷ

3
2

))
(7.24)

for Ŷ � 1 as t→∞, and

η̄
(
Ŷ , t
)
v 1− 1

2
9
4
√
π

 1(
−Ŷ
) 3

4

− β
√

2t
1
3

(
−Ŷ
) 1

4

 exp

(
−2
√

2

3

(
−Ŷ
) 3

2

)
(7.25)

for
(
−Ŷ
)
� 1 as t→∞.

An illustration of the asymptotic structure for η̄(y, t) as t → ∞, with y ∈ R, is shown

in Figure (7.5). With β = 1, a graph of η̄(y, t) against y, with t = 70, is shown in

Figure (7.6). Details close to the inner regions Î+ and Î− are shown in Figures (7.7)-

(7.10). In Figures (7.5) and (7.6) the structure of η̄(y, t) shows oscillatory behaviour

for −1 + o(1) < y < 1 − o(1), where we note that there is a weak singularity in our

approximation to η̄(y, t) (in (7.9) and (7.13)) at y = 0. However we observe from (7.11)

and (7.15) that η̄(y, t)→ 1
2
as y → 0. This oscillatory region is connected to regions, with

y > 1 + o(1) and y < −1 − o(1), where we observe an exponentially small disturbance
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to the far field conditions. These regions are connected by localised inner regions, where

y = 1±O
(
t−

2
3

)
and y = −1±O

(
t−

2
3

)
, and graphs of these regions, as determined from

(7.20)-(7.25), are given in Figures (7.7) and (7.8) for t = 70, and in Figures (7.9) and

(7.10) for t = 300.

In the next chapter we consider the numerical evaluation of the exact form of η̄(x, t), as

given by (7.1).

x

η̄(x, t)

O (t2)

O (t2)

O (t2)

O (t2)

O (t2)

O (t2)

O (t2)
1

1 + t2

πβ
log t

− t2

πβ
log t

x = 0 x = β

incipient collapse

incipient jet

Figure 7.2: A sketch for the asymptotic structure of η̄(x, t) as t→ 0.

Figure 7.3: Graph of η̄(x, t) with β = 1 and t ∈ [0, 0.5].
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Figure 7.4: Graphs of η̄(x, t), with β = 1, in inner region A and inner region B for
t ∈ [0, 0.1], illustrating the incipient localised collapse and jet structure respectively.

y

η̄(y, t)

O
(
t−

1
2

)
O
(
t−

2
3

)

O
(
t−

2
3

)

O
(

1

t
1
2

exp
(
−2
√

2
3
t
))

O
(

1

t
1
2

exp
(
−2
√

2
3
t
))−1 0 1

0.5

1

Figure 7.5: A sketch for the asymptotic structure of η̄(y, t) as t→∞.
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Figure 7.6: Graph of η̄(y, t) for t = 70.

Figure 7.7: The graph of η̄(y, 70) in Re-
gion Î+, (7.20), (−−), in Region I+, (7.9)
and Region II+ (7.6), (−).

Figure 7.8: The graph of η̄(y, 70) in
Region Î−, (7.23), (−−), in Region I−,
(7.13) and Region II− (7.17), (−).

Figure 7.9: The graph of η̄(y, 300) in Re-
gion Î+, (7.20), (−−), in Region I+, (7.9)
and Region II+ (7.6), (−).

Figure 7.10: The graph of η̄(y, 300) in
Region Î−, (7.23), (−−), in Region I−,
(7.13) and Region II− (7.17), (−).
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CHAPTER 8

NUMERICAL EVALUATION OF THE EXACT FORM OF
η̄(X,T ).

In this chapter we give a numerical evaluation of the exact free surface solution. We

apply Simpson’s rule to η̄(x, t) and graph the numerical evaluations, which show excellent

agreement with the asymptotic structure summarised in Chapter 7.

In order to efficiently numerically evaluate η̄(x, t), we recall that

η̄(x, t) =
1

2πβ
(I(x, t)− I(x− β, t)) ,

for (x, t) ∈ R× R̄+, with

I(x, t) =

∫
Cδ

1

k2
cos(γ(k)t) exp(−ikx) dk,

and

I(−x, t) = I(x, t)− 2πx (8.1)

for (x, t) ∈ R× R̄+, where

γ(k) = (k tanh k)
1
2 .
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We will now numerically evaluate I(x, t) for (x, t) ∈ R̄+ × R̄+. For numerical evaluation,

it is convenient to use (4.19), which gives

I(x, t) = 2

∫ ∞
0

1

k2
(cos (γ(k)t)− 1) cos(kx) dk (8.2)

for (x, t) ∈ R̄+ × R̄+. η̄(x, t) can then be constructed, via (3.32) and (3.34), as

η̄(x, t) =



1

2πβ
(I(x, t)− I(x− β, t)) , for (x, t) ∈ [β,∞)× R̄+,

1

2πβ
(2π(β − x) + I(x, t)− I(β − x, t)) , for (x, t) ∈ (0, β)× R̄+,

1

2πβ
(2πβ + I(−x, t)− I(β − x, t)) , for (x, t) ∈ (−∞, 0]× R̄+,

Using (8.2), I(x, t), for (x, t) ∈ R̄+ × R̄+, is numerically evaluated using Simpson’s rule,

after which we use (8.1) to determine I(x, t) for (x, t) ∈ R×R̄+. Taking β = 1 and setting

the upper limit of integration in (8.2) to be ∆, the error, E, associated with evaluating

(8.2) via the composite Simpson’s rule, satisfies the error bound

|E| ≤ ∆5

2880m4
sup

k∈[0,∞)

∣∣f (4)(k, x, t)
∣∣ (8.3)

for each fixed x and t, (see [32], p. 211) where

f(k, x, t) =
1

k2
(cos (γ(k)t)− 1) cos(kx)

for k ∈ [0,∞) and (x, t) ∈ ×R̄+ × R̄+, with m being the number of intervals the range of

integration has been divided into, and the step length is

h =
∆

2m

A calculation of supk∈[0∞)

∣∣f (4)(k, x, t)
∣∣ gives the estimate
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sup
k∈[0,∞)

∣∣f (4)(k, x, t)
∣∣ ≤ k1t

2 + k2t
4 + k3t

6 + k4x
2t2 + k5x

4t2 + k6x
2t4 (8.4)

for all (x, t) ∈ ×R̄+ × R̄+, with ki (i = 1, . . . , 6) being positive numerical constants,

independent of x and t. It then follows from (8.3) and (8.4) that

|E| ≤ ∆5

2880m4

(
k1t

2 + k2t
4 + k3t

6 + k4x
2t2 + k5x

4t2 + k6x
2t4
)

for all (x, t) ∈ ×R̄+ × R̄+. Estimates of ki (i = 1, . . . , 6) are given by,

k1 ≤
8

5
, k2 ≤

2

3
, k3 ≤

1

30
, k4 ≤ 2, k5 ≤

1

2
, k6 ≤

1

2

In addition, the error induced by truncating the range of integration in (8.2) to [0,∆] is

given by T , where

|T | ≤ 2

∆

for all (x, t) ∈ ×R̄+× R̄+. Thus, the total error in approximating (8.2) via Simpson’s rule

is ET , where

|ET | ≤ |T |+ |E|

≤ 2

∆
+

∆h4

180

(
8

5
t2 +

2

3
t4 +

1

30
t6 + 2x2t2 +

1

2
x4t2 +

1

2
x2t4

) (8.5)

for all (x, t) ∈ ×R̄+ × R̄+. We can now control the error of the numerical approximation

to (8.2) using (8.5).

All the subsequent computations performed in this chapter have choices of h and ∆

such that |ET | ≤ 10−4 for all (x, t) ∈ R̄+× R̄+ for which the computations are performed.

All the Figures have been developed by setting a grid size small enough to give sufficiently

smooth graphs. In particular, Figures (8.4) and (8.5) have the grid step size in x set at

0.001, however this varies in each Figure. Figure (8.1) shows η̄(x, t) for t ∈ [0, 0.5], which

has excellent agreement with Figure (7.3). Inner regions A and B are shown in Figures
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(8.2) and (8.3), which have excellent agreement with Figure (7.4). Figure (8.4) shows

η̄(x, t) for t ∈ [0.6, 1.2], with Figure (8.5) showing in detail the region around x = 0.5.

Figures (8.6)-(8.9) show η̄(x, t) for t ∈ [2, 16]. Figures (8.10) and (8.13) show η̄(y, t) for

t = 32 and t = 70 respectively, where y = x
t
. Region Î+ and Region Î− (as defined in

section 7.3) for each case are shown in Figures (8.11), (8.12), (8.14) and (8.15) and we

observe excellent agreement between Figures (8.13), (8.14), (8.15) and (7.6), (7.7), (7.8).

Figure 8.1: The graph of η̄(x, t). Figure 8.2: The graph of η̄(x, t) in inner
region A.

Figure 8.3: The graph of η̄(x, t) in inner
region B.

Figure 8.4: The graph of η̄(x, t) for
t ∈ [0.6, 1.2].
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Figure 8.5: The graph of η̄(x, t) for
x ∈ [−0.5, 1.5] with t ∈ [0.6, 1.2].

Figure 8.6: The graph of η̄(x, t) for
x ∈ [−8, 8] with t = 2.

Figure 8.7: The graph of η̄(x, t) for
x ∈ [−10, 10] with t = 4.

Figure 8.8: The graph of η̄(x, t) for
x ∈ [−15, 15] with t = 8.

Figure 8.9: The graph of η̄(x, t) for
x ∈ [−25, 25] with t = 16.

Figure 8.10: The graph of η̄(y, t) for
y ∈ [−1.5, 1.5] with t = 32.
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Figure 8.11: The graph of η̄(x, t) for
t = 32 in Region Î+.

Figure 8.12: The graph of η̄(x, t) for
t = 32 in Region Î−.

Figure 8.13: The graph of η̄(y, t) for
y ∈ [−1.5, 1.5] with t = 70.

Figure 8.14: The graph of η̄(x, t) for
t = 70 in Region Î+.

Figure 8.15: The graph of η̄(x, t) for t = 70 in Region Î−.
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CHAPTER 9

COMPARISON WITH THE LINEARISED SHALLOW
WATER THEORY

In this chapter we consider the situation when the free surface displacement is modelled by

the linearised shallow water theory. The free surface is governed by the one-dimensional

wave equation, subject to initial conditions. We find the free surface solution in terms of

D’Alemberts general solution and we graph the solutions for various times. Comparisons

with results in Chapters 7 and 8 shows that the shallow water theory gives the general

shape of the free surface, whilst remaining monotone and oscillation free.

9.1 Linearised Shallow Water Theory

We now consider the case when the free surface displacement, η̄(x, t), is described by the

one-dimensional wave equation, that is

η̄tt(x, t)− η̄xx(x, t) = 0

for (x, t) ∈ R×R+, which is the governing equation for the free surface displacement for the

linearised dambreak problem according to shallow water theory. The initial displacement

of the free surface is given as
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η̄(x, 0) = η̄0(x) =


0, x ≥ β

1

β
(β − x) , 0 < x < β

1, x ≤ 0

(9.1)

and the free surface is initially at rest so we also have the initial condition

η̄t(x, 0) = 0 (9.2)

for x ∈ R. D’Alembert’s general solution, together with initial conditions (9.1) and (9.2),

then gives

η̄(x, t) =
1

2
η̄0(x− t) +

1

2
η̄0(x+ t) (9.3)

for (x, t) ∈ R × R+. With β = 1, graphs of η̄(x, t), as given in (9.3), for t ∈ [0, 1.2] are

shown in Figures (9.1) and (9.2). Graphs of η̄(x, t) for t = 2, 4, 8, 16 are shown in Figure

(9.3), and graphs of η̄(y, t), where y = x
t
, for t ∈ [5, 70] are shown in Figure (9.4)-(9.6)

respectively. Sketches of the structure of η̄(x, t) as t → 0+, and of η̄(y, t) as t → ∞, for

the linearised shallow water theory, as given by (9.3), are illustrated in Figures (9.7) and

(9.8) respectively. These are to be compared with the sketches of the structure of the

solution to the full linearised theory, as given in Figure (7.2) and Figure (7.5). In fact,

Figure 9.1: The graph of η̄(x, t) for
t ∈ [0, 0.5].

Figure 9.2: The graph of η̄(x, t) for
t ∈ [0.5, 1.2].

171



when t→ 0+ we obtain from (9.1) and (9.3),

η̄(x, t) =



0, x ≥ β + t

1

2β
(β − (x− t)) , β − t < x < β + t

1

β
(β − x) , t ≤ x ≤ β − t

1

2β
(2β − (x+ t)) , − t < x < t

1 x ≤ −t.

(9.4)

Similarly, when t→∞ we obtain from (9.1) and (9.3), on letting y = x
t
,

η̄(y, t) =



0, y ≥ β

t
+ 1

1

2β
(β − t(y − 1)) , 1 < y <

β

t
+ 1

1

2
,

β

t
− 1 ≤ y ≤ 1

1

2β
(2β − t(y + 1)) , − 1 < y <

β

t
− 1

1 y ≤ −1.

(9.5)

Figure 9.3: The graph of η̄(x, t) for
t ∈ [2, 16].

Figure 9.4: The graph of η̄(y, t) for
t ∈ [5, 70].
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Figure 9.5: The graph of η̄(y, t) for
t ∈ [5, 70] with y ∈ [−1.4,−0.5].

Figure 9.6: The graph of η̄(y, t) for
t ∈ [5, 70] with y ∈ [0.6, 1.4].

η̄(x, t)

x
x = 0x = −t x = t x = β − t x = β x = β + t

O (t)O (t)

η̄(x, t) = 1

η̄(x, t) = 1
2β

(2β − (x+ t))

η̄(x, t) = 1
β

(β − x)

η̄(x, t) = 1
2β

(β − (x− t))

η̄(x, t) = 0

Figure 9.7: A sketch for the structure of η̄(x, t) for t → 0+, given by (9.4), where the
initial free surface displacement is also shown as a dashed line.

9.2 Comparison of the Linearised Shallow Water The-
ory with the Full Linearised Theory

We now compare (9.4) with (7.2), (7.4), (7.5) and (9.5) with (7.6)-(7.25) (as illustrated

in Figures (9.7), (7.2) and Figures (9.8), (7.5)). As t → 0+, the linearised shallow water

theory reproduces the leading order behaviour shown in the full linearised theory, but

does not capture the incipient jet formation and collapse seen in the full linearised theory.
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η̄(y, t)

y
y = 0y = −1 y = 1y = β

t
− 1 y = β

t
+ 1

O
(

1
t

)
O
(

1
t

)

η̄(y, t) = 1

η̄(y, t) = 1
2β

(2β − t(y + 1))

η̄(y, t) = 1
2

η̄(y, t) = 1
2β

(β − t(y − 1))

η̄(y, t) = 0

Figure 9.8: A sketch for the structure of η̄(y, t) for t→∞ given by (9.5).

In particular, in the the inner regions of the full linearised theory, which are of thickness

O (t2), we observe incipient jet formation and collapse, and the change in the initial

displacement of the surface is O (t2 log t). This is not reproduced in the shallow water

theory, where instead we find the inner regions are of thickness O (t), and the surface

forms a linear slope, and the change in the initial displacement of the surface is O (t). In

the outer regions of the full linearised theory we observe an O (t2) change in the initial

displacement of the surface, compared to the linearised shallow water theory where there

is no change in the initial displacement of the surface. Overall, the shallow water theory

gives a good approximation to the full linearised theory as t→ 0+, with the most notable

difference being the structure of the surface in each of the inner regions. As t → ∞, the

linearised shallow water theory again reproduces the leading order behaviour shown in the

full linearised theory, but does not capture the oscillatory behaviour. In particular, in the

full linearised theory, the two outer regions, where |y| > 1 ± O
(
t−

2
3

)
, show the surface

differs from the initial conditions by an exponentially small order in t as t → ∞. In the

shallow water theory, these outer regions, where |y| ≥ 1 ± O (t−1), show no change in
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the initial conditions. Therefore, there is only an exponentially small difference between

the two approximations in these regions. In the third outer region, the full linearised

theory shows that the surface exhibits oscillatory behaviour about η̄(y, t) = 1
2
, where the

amplitude of the waves are O
(
t−

1
2

)
, whereas the linearised shallow water theory fails to

capture these oscillations, and the surface remains constant at η̄(y, t) = 1
2
. In the two

inner regions, the full linearised theory shows the connection between the oscillating and

exponentially decaying outer regions, and these inner regions are of thickness O
(
t−

2
3

)
.

The linearised shallow water theory, however, has the surface as a linear slope in both

inner regions, and the regions are of thickness O (t−1). There is an O(1) difference in the

structure of the surface in the inner regions. Overall, the linearised shallow water theory

has good agreement with the full linearised theory in the outer regions where the difference

between the two approximations becomes increasingly small as t→∞. The inner regions,

where there is an O(1) structural difference between the linearised shallow water and

the full linearised approximations, become increasingly thinner as t → ∞. Formally,

a comparison of the asymptotic approximation as t → 0+ to the full linearised theory,

((7.2), (7.4) and (7.5)), with the solution to the linearised shallow water theory, (9.4),

establishes that, with ηE(x, t) and ηSW (x, t) being the surface displacement according to

the full linearised theory and the linearised shallow water theory respectively, then as

t→ 0+

ηE(x, t)− ηSW (x, t) =


O
(
t2
)
, x ∈ (−∞,−t) ∪ (t, β − t) ∪ β + t,∞)

O (t) , x ∈ (−t, t) ∪ (β − t, β + t).

Similarly, a comparison of the asymptotic approximation as t→∞ to the full linearised

theory, ((7.6), (7.9), (7.13), (7.17), (7.20) and (7.23)), with the solution to the linearised

shallow water theory (9.5) establishes that, as t→∞,
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ηE(y, t)−ηSW (y, t) =



O

(
1

t
1
2

exp (−tv (−iτs(y), y))

)
, y ∈ (1 + ∆(t),∞)

O (1) , y ∈ (−1−∆(t),−1 + ∆(t))

∪ (1−∆(t), 1 + ∆(t))

O
(
t−

1
2

)
, y ∈ (−1 + ∆(t), 1−∆(t))

O

(
1

t
1
2

exp (−tv (−iτs(−y), y))

)
, y ∈ (−∞,−1−∆(t))

with ∆(t) = O
(
t−

2
3

)
as t→∞, and where v (−iτs(y), y) > 0 for y > 1.

9.3 Comparison of the Linearised Shallow Water The-
ory with the Numerical Approximation

Comparisons between the numerical approximation to the full linearised theory obtained

in Chapter 8 and the linearised shallow water theory are shown in Figures (9.9)-(9.18).

Graphs of η̄(x, t), computed numerically in Chapter 8, are shown with graphs of the

linearised shallow water solution given by (9.3). We observe that the linearised shallow

water solution improves as t→ 0+ and t→∞.

Figure 9.9: The graph of η̄(x, t) for
t = 0.1, computed numerically via Simp-
son’s method (−) for the full linearised
theory, and from the linearised shallow
water theory (9.3) (−−).

Figure 9.10: The graph of η̄(x, t) for
t = 0.2, computed numerically via Simp-
son’s method (−), for the full linearised
theory, and from the linearised shallow
water theory (9.3) (−−).
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Figure 9.11: The graph of η̄(x, t) for
t = 0.5, computed numerically via Simp-
son’s method (−), for the full linearised
theory, and from the linearised shallow
water theory (9.3) (−−).

Figure 9.12: The graph of η̄(x, t) for
t = 1, computed numerically via Simp-
son’s method (−), for the full linearised
theory, and from the linearised shallow
water theory (9.3) (−−).

Figure 9.13: The graph of η̄(x, t) for
t = 2, computed numerically via Simp-
son’s method (−), for the full linearised
theory, and from the linearised shallow
water theory (9.3) (−−).

Figure 9.14: The graph of η̄(x, t) for
t = 4, computed numerically via Simp-
son’s method (−), for the full linearised
theory, and from the linearised shallow
water theory (9.3) (−−).
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Figure 9.15: The graph of η̄(x, t) for
t = 8, computed numerically via Simp-
son’s method (−), for the full linearised
theory, and from the linearised shallow
water theory (9.3) (−−).

Figure 9.16: The graph of η̄(x, t) for
t = 16, computed numerically via Simp-
son’s method (−), for the full linearised
theory, and from the linearised shallow
water theory (9.3) (−−).

Figure 9.17: The graph of η̄(y, t) for
t = 32, computed numerically via Simp-
son’s method (−), for the full linearised
theory, and from the linearised shallow
water theory (9.3) (−−).

Figure 9.18: The graph of η̄(y, t) for
t = 70, computed numerically via Simp-
son’s method (−), for the full linearised
theory, and from the linearised shallow
water theory (9.3) (−−).
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CHAPTER 10

CONCLUSIONS

We have now completed the detailed structural analysis of the linearised full dambreak

problem. In this chapter we will give a review of the work completed and the results

obtained. We will then outline the further work that may be developed on this problem.

10.1 Thesis Review

In this thesis we have considered a linearised fully two-dimensional dambreak problem

where an inclined dam, with a small step height and slope, separated a horizontal layer of

incompressible and inviscid fluid from a shallower horizontal layer of the fluid. The fluid

was initially at rest on a horizontal flat, impermeable base and was bounded above by a

free surface. The aim of the thesis was to solve the full linearised problem for the free

surface and fluid velocity potential, and to obtain short time and large time asymptotic

approximations of the free surface in detail via the approximation of Fourier-type integrals

in the complex plane. Numerical approximation of the free surface for the full linearised

theory was then compared with the asymptotic approximations. These results were also

compared to the situation when the free surface was governed by the linearised shallow

water theory. It was found that the full linearised theory and the linearised shallow water

theory have good agreement in the short and large time in the outer asymptotic regions

but differ at O(1) in thin inner regions located at the upstream and downstream transition
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waterfronts.

In Chapter 2 we introduced a fluid velocity potential and formulated the nonlinear

dambreak problem via the conservation of mass and momentum with appropriate bound-

ary and initial conditions. In Chapter 3 we considered the case of a dam with a small

step height and slope resulting in the full linearised problem, which was solved via the

complex Fourier transform to give an exact solution for the fluid velocity potential and

free surface in terms of Fourier integrals in the complex plane. In Chapter 4 we obtained a

uniform asymptotic approximation to the free surface during the initial stages of the flow.

It was found that the asymptotic approximation was composed of three outer regions,

which were connected by two inner regions, these being thin regions around the initial

corners of the free surface displacement. The asymptotic approximation determined that

the change in the surface displacement from the initial conditions was of O (t2) as t→ 0 in

the outer regions, and revealed incipient jet formation and collapse in each inner region.

The asymptotic approximation agreed with an experimental study by [20] which showed

a jet formation near the initial position of the dam, and is also similar to the results in

[11] where jet formation was observed in an inner region around the point where the dam

met the base. The asymptotic approximation is also in accord with that presented by

Stoker, [15], in that the change in the surface displacement from the initial condition is

O (t2) as t → 0 in the outer regions. In Chapter 5 we obtained a uniform asymptotic

approximation to the free surface in the far field. The asymptotic approximation con-

sisted of three regions and demonstrated that the free surface in the far field only changes

from the initial displacement by an exponentially small order in x, as |x| → ∞ in the far

fields. In Chapter 6 we obtained a uniform asymptotic approximation to the free surface

for large time. The asymptotic approximation consisted of an outer region in which the

free surface exhibited algebraically decaying oscillatory behaviour. This connected to two

inner regions which were described by Airy functions and their integrals, and each of

these regions then connected to outer regions which extended into the far field, and in

these outer regions the free surface differs from the initial conditions by an exponentially
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small order in t as t → ∞. In Chapter 7 we gave a detailed summary of the uniform

asymptotic approximations to the free surface for small and large times. In Chapter 8 a

numerical approximation of the exact free surface solution was given. The exact solution

was estimated via Simpson’s rule and a precise error bound was given. The asymptotic

approximations were in excellent agreement with the numerical approximations to the free

surface for small and large times. In Chapter 9 we considered the situation where the free

surface displacement is governed by the linearised shallow water theory, with the same

initial surface displacement as the full linearised theory. The wave equation was solved

by D’Alemberts general solution, which showed that according to the linearised shallow

water theory, the free surface consisted of two travelling waves. A detailed comparison

was then made between the solution of the full linearised theory and that of the linearised

shallow water theory.

10.2 Further Work

The theory and results developed in this thesis consider the full linearised dambreak

problem, where the dam has a small step height and slope. An interesting extension to

the theory on the free surface in the full linearised full problem would be to consider when

the approximation becomes non-uniform in the parameter α. That is, include an O (α2)

correction term in (3.1) and solve up to O (α2) when we substitute (3.1) into [IBVP]

(problem (2.11)-(2.19)). The main difference in the O (α2) problem will be a change in

the free surface conditions, where some nonlinear terms will remain, therfore obtaining

an exact solution at O (α2) will be rather more difficult.

When we do not consider a linearised case of [IBVP], exact solutions to the full non-

linear theory may not be obtained. In this case asymptotic series solutions for the fluid

velocity potential and free surface can be proposed and may be substituted into the non-

linear problem and solved at each order, which is an approach taken in a number of works

in this area, for example see [11], [23], [15] (Chapter 10), [28]. It is anticipated that during
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the initial stages similar behaviour would be observed, where we find localised incipient

jet formation and collapse around the initial corners of the surface displacement. In par-

ticular, we may consider [IBVP] for a dam with a large dimensionless step length and

O(1) step height, that is, for β � 1 and α = O(1) as β →∞. It is expected that during

the initial stage the initial corners in free surface would smooth out in a similar manner

to that observed in the linearised problem. In the large time limit it is expected that the

free surface would consist of waves with wavelengths much larger than the depth of the

fluid. This corresponds to the case for the nonlinear shallow water equations so that a

comparison can again be made between the two theories. It is expected that the full non-

linear problem, [IBVP], would be much more accurate in capturing the exact behaviour

of the free surface compared to the nonlinear shallow water model.
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