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Abstract 

Medical tests are essential for patient care. Evidence-based assessment of the relative 

accuracy of competing diagnostic tests informs clinical and policy decision making. This 

thesis addresses questions centred on assessing the reliability and transparency of evidence 

from systematic reviews and meta-analyses of comparative test accuracy, including validity of 

meta-analytic methods. 

 

Case studies were used to highlight key methodological issues, and provided rationale and 

context for the thesis. Published systematic reviews of multiple tests were identified and used 

to provide a descriptive survey of recent practice. Availability of comparative accuracy 

studies and differences between meta-analyses of direct (head-to-head) and indirect (between-

study) comparisons were assessed. Comparative meta-analysis methods were reviewed and 

those deemed statistically robust were empirically evaluated. Using simulation, performance 

of hierarchical methods for meta-analysis of a single test was investigated in challenging 

scenarios (e.g. few studies or sparse data) and implications for test comparisons were 

considered.  

 

Poor statistical methods and incomplete reporting threatens the reliability of comparative 

reviews. Differences exist between direct and indirect comparisons but direct comparisons 

were seldom feasible because comparative studies were unavailable. Furthermore, 

inappropriate use of meta-analytic methods generated misleading results and conclusions. 

Therefore, recommendations for use of valid methods and a reporting checklist were 

developed. 
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1 INTRODUCTION  
 

A paper based partly on the content of this chapter has been published. 
Citation: Takwoingi Y, Riley R, Deeks J. Meta-analyses of diagnostic accuracy studies in 
mental health. Evidence Based Mental Health 2015; 18:103-109. 
 

 

1.1 Test evaluation and thesis overview   

Medical tests are necessary to resolve uncertainty about the health status of an individual. A 

clinically effective test should reduce ambiguity in clinical decision making, lead to prompt 

and appropriate intervention, and ultimately improve patient outcomes. For example, 

tuberculosis (TB) was declared a global emergency by the World Health Organization (WHO) 

in 1993.1 The spread of HIV and the emergence of multidrug-resistant TB (MDR-TB) have 

worsened the impact of TB in terms of morbidity and mortality.2 As such rapid diagnosis of 

MDR-TB is a global priority for TB control. The WHO recommends the use of the Xpert® 

MTB/RIF system as the initial diagnostic test in individuals suspected of having MDR-TB or 

HIV-associated TB.3 The information obtained from the test enables quicker decisions about 

treatment and infection control compared to culture.4 Since testing is pivotal to health care, 

tests should only be recommended for routine clinical use based on evidence of their clinical 

performance (i.e. diagnostic accuracy) and clinical effectiveness (i.e. benefits and harms) 

derived from relevant, high quality primary studies and systematic reviews. Well conducted 

systematic reviews of relevant, high quality primary research studies are generally considered 

to be the highest level of evidence.5  

 

Diagnostic accuracy is the ability of a test to correctly identify or exclude a target condition. 

A systematic review of diagnostic test accuracy (DTA) aims to identify and summarise 
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evidence from multiple studies addressing the same question, including an assessment of the 

quality and consistency of the evidence. The review may include a meta-analysis by applying 

statistical methods to combine the results of multiple studies. A DTA review may summarise 

the accuracy of one or more tests individually or compare their accuracy in a meta-analysis. 

This thesis focuses primarily on improving comparisons of test accuracy in systematic 

reviews and meta-analyses to ensure valid methods are used in identifying the most accurate 

test(s) from a number of competing tests. Comparative accuracy is an area of increasing 

importance and relevance to health technology assessment. This will be discussed further in 

sections 1.5 and 1.6. 

 

This chapter provides the background and foundation for the work in the remainder of the 

thesis. In particular, it gives an understanding of key concepts, demonstrates the role of 

diagnostic accuracy within the wider context of test evaluation, and then defines the scope of 

the thesis questions in more detail. The first part of this chapter is designed to promote 

awareness of the complexities of test evaluation.  Sufficient detail is given about test types to 

enable an understanding of the characteristics of the systematic reviews described in the 

thesis. The second part focuses on the role of test accuracy, analysis of primary studies of a 

single test and their synthesis in systematic reviews. The rationale for systematic reviews and 

the common meta-analytic methods for pooling test accuracy studies, which will be evaluated 

in later chapters, are introduced. Finally, the third part deals with test comparisons, including 

study design, roles of tests within a diagnostic pathway and the challenges in assessing 

comparative accuracy in systematic reviews and meta-analyses. In addition, justification for 

the questions considered in subsequent chapters is summarised. 
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For simplicity, the term patient will be used throughout the thesis instead of participant. The 

only exception will be where specific reference is made to individuals suspected of a 

particular target condition that is clearly not a disease e.g. screening pregnant women for fetal 

aneuploidy.  The terms target condition and disease will be used interchangeably as 

appropriate. 

 

1.1.1 Types of medical tests   

There is a wide range of test types. Tests may be performed outside a living body (in vitro 

diagnostics) or directly applied on or inside the body (in vivo diagnostics). Some tests are 

specific for a particular target condition or group of related conditions (e.g. amniocentesis for 

detection of fetal aneuploidy), while other tests may be used for a number of diseases (e.g. 

CA-125, a biomarker for certain types of cancers). Tests may be as simple as individual 

elements of clinical/physical examination and history taking or highly sophisticated 

technological devices. Information from two or more tests may be combined to derive 

multivariable diagnostic models, clinical prediction rules or algorithms e.g. Alvarado score 

for diagnosis of appendicitis.6 Several test types will appear in examples and the cohorts of 

systematic reviews used in this thesis. The wide range of test types leads to different types of 

data and measures for quantifying test accuracy which in turn have implications for meta-

analytic methods. The next section provides a synopsis of test evaluation, a necessary 

precursor for placing diagnostic accuracy into context. 

   

1.1.2 Phases of test evaluation  

The process of test evaluation is multifaceted and challenging, requiring a clear definition of 

the intended use and role of a test for a specific population within the context of a clinical 
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pathway. Since test evaluation is multifaceted, evaluation cannot be accomplished in a single 

study but requires a sequence of studies that address different aspects of test performance. The 

studies are often undertaken in an order which reflects increasing expense, embedding the 

tests deeper in clinical pathways, and an appreciation of the resource implications of 

implementation in clinical practice.  

 

Various frameworks have been developed for the process of test evaluation, sometimes 

designed for specific test types such as laboratory tests,7 genetic tests,8 biomarkers9 and 

imaging tests.10 Lijmer et al systematically reviewed the literature on schemes for the 

evaluation of medical tests and identified 19 schemes published between 1978 and 2007.11 

Each scheme consists of between four and seven phases. The six common phases and research 

questions they address are summarised in Table 1.1. At the lowest level of the hierarchy is the 

evaluation of technical performance and at the highest level is societal efficacy expressed in 

terms of resource use and societal benefits. 
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Table 1.1| Phases of test evaluation 
 Phase Type of research question 

Analytical performance Does the test give usable information (reliable and 
reproducible)? 

Diagnostic accuracy How well does the test distinguish between diseased and non-
diseased individuals? 

Phase I Do test results in patients with the target condition differ 
from those in healthy people? 

Phase II Are patients with certain test results more likely to have the 
target condition than patients with other test results? 

Phase III Does the test result distinguish between patients with and 
without the target condition in a clinically relevant 
population? 

Diagnostic thinking Does the test change diagnostic reasoning and decisions? 

Therapeutic efficacy Does the test change patient management? 

Clinical effectiveness Do patients who undergo the test have better clinical 
outcomes than those who were not tested? 

Societal efficacy Is the test resource-efficient and beneficial for society? 

This summary was derived from Lijmer et al.11 The diagnostic accuracy phase shows the 
multiphase model proposed by Sackett and Haynes.12  
 

Lijmer et al concluded that test evaluation is most likely a cyclic and repetitive process rather 

than a stepwise linear one.11 More recently, Horvath et al9 proposed a dynamic cycle driven 

by the clinical pathway as shown in Figure 1.1.  The cycle consists of five components related 

to the phases in Table 1.1—analytical performance, clinical performance (diagnostic 

accuracy), clinical effectiveness, cost effectiveness and broader impact (societal efficacy). 

Cost effectiveness is frequently assessed along with clinical effectiveness and is termed 

societal efficacy when costs are considered from a societal perspective.  
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Figure 1.1| Framework for the evaluation of in vitro medical tests  
This cyclical approach to test evaluation is driven by the clinical pathway and shows the 
dynamic inter-relationship between the different components of the process. The original 
purpose and role of the test can be redefined if an alternative use for the test becomes apparent 
during the evaluation process.9 This new role for the test will inform the design of subsequent 
evaluations. (Adapted from Horvath et al 20149) 
 

As mentioned earlier in section 1.1, the value of a test ultimately depends on its clinical 

effectiveness, i.e., effect on patient outcomes. Test accuracy can potentially be linked to the 

accuracy of clinical decision making through the downstream consequences of true positive, 

false positive, false negative and true negative test results, but benefits and harms to patients 

may also be driven by other factors too. According to Ferrante di Ruffano et al13, testing 

represents the first step of a test-plus-treatment pathway and changes to components of this 

pathway following the introduction of a new test could trigger changes in health outcomes. 

They identified several mechanisms which they summarised under direct effects of testing, 

changes to diagnostic and treatment decisions or timeframes, and alteration of patient and 

clinician perceptions.  
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Following the overview of the test evaluation process, the remaining sections of this chapter 

will now focus on diagnostic accuracy. First single test evaluations will be considered and 

then test comparisons. 

  

1.2 Role of test accuracy   

Assessment of diagnostic accuracy is an integral part of test evaluation as shown in Table 1.1. 

Diagnostic accuracy describes the ability of a test to classify individuals, typically simplified 

into a dichotomy by applying a criteria (referred to as thresholds, cut-offs or cut-points) to 

define test negatives and test positives. Several authors have proposed multiple phases in the 

evaluation of diagnostic accuracy to distinguish between early assessment of test performance 

(i.e. proof-of-concept or exploratory studies) in a population of known cases and non-cases 

(case control study), and later assessment in a representative population in an appropriate 

clinical setting (prospective cross-sectional study of suspected cases).12,14-16  

 

Test accuracy is estimated by comparing results of an index test (a new or existing test of 

interest) with a reference standard, sometimes known as a ‘gold’ standard, as shown in Table 

1.2. The reference standard is used to verify the presence or absence of the target condition, 

and may be a single test or a combination of tests and clinical information not routinely 

available in practice.  
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Table 1.2| Cross classification of index test and reference standard results 
 Reference standard 

positive 
Reference standard 

negative 
Total 

Index test positive a (true positives) b (false positives) a + b (test positives) 

Index test negative c (false negatives) d (true negatives) b + d (test negatives) 

Total a + c  
(disease positives) 

b + d  
(disease negatives) 

a + b + c + d  
(study total) 

 

In the United Kingdom, the National Institute for Health and Care Excellence (NICE) 

recommend that evidence for the appraisal of diagnostic technologies should normally 

incorporate evidence on the accuracy of the diagnostic technology.17 According to the 

Australian Medical Services Advisory Committee (MSAC) guideline, in the absence of RCTs 

of test effectiveness, i.e. direct evidence, linked evidence can be used to infer test 

effectiveness when the transferability of results between studies of test accuracy and studies 

of treatment effectiveness can be reasonably justified.18 Also, European Medicines Agency 

(EMA) guidance recommends that where it is already known that intervention following the 

use of a diagnostic test leads to a clinical benefit, there is no need to repeat this proof for 

every subsequent diagnostic test in the same setting. However, evidence of an adequate 

reasoning that a clinical benefit is expected should be provided.19 

 
Assessment of diagnostic accuracy has limitations. Improved test accuracy does not guarantee 

better clinical outcomes, does not convey decisions made based on test results, and the link 

between test accuracy and patient outcomes is complex. Lord et al20 suggested a framework to 

help decide whether a new diagnostic test can be adopted based only on evidence of test 

accuracy or if studies of clinical effectiveness are needed. The test-treatment randomized 

controlled trial (RCT) is regarded as the ideal study design for evaluating clinical 

effectiveness or impact on patient outcomes.21 In this design, patients are randomized between 
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new and existing tests, followed by appropriate management or intervention based on test 

results, and finally patient outcomes are measured and assessed. However, the cost and 

duration of test-treatment RCTs often make them unrealistic, and so they are rare.22 An 

alternative is to assess health outcomes using decision analysis (or the MSAC linked evidence 

approach18) to model the consequences of testing and alternative management strategies. This 

will be discussed briefly in section 1.5. 

 

1.3 Analysis of primary studies of a single test   

In the following subsections, types of data and summary measures that can be used to 

determine diagnostic accuracy are described. Several measures used in primary studies are 

also used in meta-analysis to quantify test accuracy. Therefore, an introduction to the 

commonly used measures provides useful background prior to discussing meta-analytic 

models in section 1.4 and other chapters of the thesis.  

 

1.3.1 Types of data  

The diversity of test type leads to different types of data for computing test accuracy. Data 

may be nominal (binary), ordinal (ordered categories), discrete (count) or continuous. 

Standard methods for computing test accuracy demand binary classification of the results of 

the index test and the reference standard (Table 1.2). As such for non-binary data, thresholds 

are needed to dichotomise the data. The threshold may be an explicit numeric value or may be 

implicit based on subjective visual interpretation or judgement.  
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1.3.2 Types of measures   

Several measures are used to quantify test accuracy. These may be paired measures or single 

indicators of test performance. Where a test is measured on a continuum, paired measures 

relate to test performance conditional on a particular threshold. Some single measures are also 

threshold specific while others are global, assessing performance across all possible 

thresholds. The different types of measures are explained below. 

 

1.3.2.1 Paired measures of test accuracy 

Paired measures—sensitivity and specificity, positive and negative predictive values, and 

positive and negative likelihood ratios (LR+ and LR–)—are typically used to quantify test 

performance because of the need to distinguish between the presence and absence of the 

target condition. Sensitivity and specificity are the most commonly reported measures. 

Sensitivity is the probability that those with the target condition are correctly identified as 

having the condition (i.e. P[𝑌𝑌 = 1|𝐷𝐷 = 1]), while specificity is the probability that those 

without the target condition are correctly identified as not having the condition (i.e. P[𝑌𝑌 =

0|𝐷𝐷 = 0]). D and Y are binary variables that denote disease status and test result respectively. 

Sensitivity is also known as the true positive rate (TPR), true positive fraction (TPF) or 

detection rate, and specificity as the true negative rate (TNR) or true negative fraction (TNF). 

The false positive rate (FPR) or false positive fraction (FPF), 1–specificity, is sometimes used 

instead of specificity.  

 

Figure 1.2 (panels A to E) show the effect of varying test threshold on sensitivity and 

specificity. For a test where disease increases the value of a biomarker, as the threshold 

decreases, sensitivity increases while specificity decreases, and vice versa. This trade-off 
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between sensitivity and specificity across thresholds is graphically depicted in a receiver 

operating characteristic (ROC) plot as shown in Figure 1.2 (panel F).  

 
Figure 1.2| Relationship between sensitivity, specificity and test positivity threshold 
FN = false negative; FP = false positive; TN = true negative; TP = true positive. 
(Adapted from Macaskill et al 201023) 

A

 

B

 

C

 

D

 

E
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Traditionally, the ROC plot is a plot of sensitivity against 1-specificity. However, as in Figure 

1.2 (panel F), it is possible to plot sensitivity against specificity by reversing the labelling of 

the specificity axis. The position of the ROC curve depends on the discriminatory ability of 

the test which is illustrated as the degree of overlap of the distributions of test measurements 

for the diseased and non-diseased groups (Figure 1.2 panels A to E); the more accurate the 

test is, the closer the curve to the upper left hand corner of the ROC plot. The ROC curve can 

also be used to evaluate the discriminative ability of multivariable diagnostic and prognostic 

models.24  

 

1.3.2.2 Single and global measures of test accuracy 

As alluded to earlier, some single measures of test accuracy can be regarded as global 

measures of accuracy because they assess test performance across all possible thresholds. This 

includes the diagnostic odds ratio (DOR) and the area under the curve (AUC). Other single 

measures like Youden’s index (sensitivity + specificity–1) and probability of a correct result 

(also known as accuracy) are threshold specific. Single measures are not always relevant in 

clinical practice because there is no information on the error rates in the diseased (false 

positives) and non-diseased groups (false positives). These error rates are important for 

judging the extent and likely impact of downstream consequences.25  

 

Due to its relevance for meta-analysis as will be shown in section 1.4, only the DOR is 

described here. The DOR is defined as the ratio of the odds of positivity in those who have 

the target condition relative to the odds of positivity in those without the condition.26 
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Therefore, a test with high TPR and low FPR will have a high DOR. The DOR is calculated 

as  

DOR =  TP×TN
FP×FN

 , 

where TP, TN, FP, and FN are the number of true positives, true negatives, false positives and 

false negatives. The DOR can also be expressed in terms of sensitivity and specificity, or 

likelihood ratios as follows:  

DOR = 
sensitivity

1−sensitivity
1−specificity
specificity

= LR+
LR−

 . 

 

The ROC curves shown in Figure 1.3 are all symmetrical about the line of symmetry 

(sensitivity is equal to specificity at each point on this line). An ROC curve is symmetric 

when the test results for the diseased and non‐diseased groups have logistic distributions with 

equal variances. When the variances are unequal, the ROC curve is asymmetric (Figure 1.4). 

Symmetric ROC curves that arise from bilogistic distributions can be summarised by a 

constant DOR as shown for each of the six curves in Figure 1.3. In contrast, asymmetric ROC 

curves cannot be summarised by a single DOR because the DOR varies with change in 

threshold (Figure 1.4 panel B). 

 

The DOR can be a useful measure when comparing tests, particularly if there is interest is in 

global performance and no preference for either superior sensitivity or specificity. ROC 

curves can also be used to compare tests. Such comparisons account for the difference in test 

accuracy across the range of possible thresholds for each of the tests. 
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Figure 1.3| Relationship between diagnostic odds ratios and symmetric ROC curves 
DOR = diagnostic odds ratio. 
Six symmetric ROC curves are shown on the figure. Each point on a curve corresponds to the 
common diagnostic odds ratio shown on the curve. Sensitivity is equal to specificity at each 
point on the line of symmetry (downward diagonal).  
(Adapted from Macaskill et al 201023) 
 

(A) Bilogistic distributions of non-
diseased and diseased groups 

 

(B) Asymmetric ROC curve 

 
Figure 1.4| Relationship between diagnostic odds ratios and asymmetric ROC curves 
DOR = diagnostic odds ratio.  
(Adapted from Macaskill et al 201023) 
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1.4 Research synthesis and methods for meta-analysis of a single test  

Systematic reviews and meta-analyses of test accuracy studies summarise the available 

evidence on the accuracy of a test for a given question. Their rate of publication has risen 

considerably since the 1990s.27 Many test accuracy studies are small,28 and even when studies 

are large, the number of cases may be small due to low prevalence of the target condition. A 

meta-analysis is an efficient approach for pooling the results of these studies to obtain more 

precise estimates of test performance. The extent of heterogeneity can be quantified in a meta-

analysis and formal investigations of potential sources of heterogeneity may also be 

performed in order to explain why results differ between studies. 

 

Test accuracy reviews can be used to inform evidence based clinical practice guidelines and 

health care policy,29,30 and are also useful for identifying research gaps. It is also important for 

the findings of a new study to be appraised within the context of relevant existing evidence. 

According to Mulrow,  

"the hundreds of hours spent conducting a scientific study ultimately contributes only a piece 
of an enormous puzzle. The value of any single study is derived from how it fits with and 
expands previous work, as well as from the study's intrinsic properties. Through systematic 
review the puzzle's intricacies may be disentangled".31  
  

The methodology underpinning reviews has an impact on their validity, and several stages of 

the process for DTA reviews present greater challenges than reviews of interventions. These 

include study identification, methodological quality appraisal of studies and meta-analysis.32 

Recognising the complexity of DTA reviews, the Cochrane Collaboration—the world’s 

largest producer of systematic reviews—delayed introducing this review type into the 

Cochrane Library until there was sufficient development and understanding of methodology 

to support their implementation and production. The first Cochrane DTA review was 
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published in 2008, 12 years after the formal registration of the Cochrane Screening and 

Diagnostic Test Methods Group.32  

 

Methods for conducting test accuracy meta-analyses have evolved over the last two decades.32 

A number of approaches have been used ranging from simple univariate pooling methods to 

highly sophisticated hierarchical methods that include information from multiple thresholds 

used in each study. These hierarchical methods are more complex than those routinely used 

for synthesising the effects of interventions. The thesis focuses on methods applicable in the 

common situation where a single 2x2 table of the results of an index test cross classified with 

a reference standard is available, or can be derived for each study included in the analysis. 

The issue of heterogeneity is briefly introduced below before describing the commonly used 

meta-analytic methods.  

 

1.4.1 Heterogeneity  

It is the norm to observe heterogeneity in test accuracy between studies that is much more 

than would be expected from within-study sampling error alone. Measures of test accuracy 

are not fixed properties of a test and are not usually transferable across different populations 

and settings.33 Other factors such as threshold, characteristics of the test and its conduct 

(including skill and experience of assessors or practitioners), and definition of the target 

condition may also affect test performance. The spectrum of disease in a population is 

dependent on prevalence, disease severity, clinical setting and prior testing. While all 

measures are susceptible to disease spectrum, measures such as predictive values are directly 

affected by prevalence.34 
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1.4.2 Univariate pooling methods  

Univariate fixed effect or random effects meta-analytic methods pool sensitivity and 

specificity separately, ignoring any correlation that may exist between the two measures. 

Fixed effect models assume homogeneity while random effects models enable the possibility 

of variability in test accuracy beyond sampling error alone by allowing each study to have its 

own test accuracy, i.e., the model includes a between-study variance component 𝜏𝜏2 or σ2. 

Although 𝜏𝜏2 is a generally used notation in traditional random effects models, σ2 is used 

throughout the thesis for consistency with the notation of the bivariate model that will be 

described in section 1.4.4.1. Heterogeneity in test accuracy is expected and so fixed effect 

models that estimate the underlying common test accuracy are inappropriate and random 

effects models are recommended.23,35  

    

If the observed logit sensitivity and logit specificity from the ith study are �̂�𝜇𝐴𝐴𝐴𝐴 and �̂�𝜇𝐵𝐵𝐴𝐴 

respectively, then the general random effects model for sensitivity and specificity can be 

specified as  

�̂�𝜇𝐴𝐴𝐴𝐴~𝑁𝑁(𝜇𝜇𝐴𝐴𝐴𝐴, 𝑠𝑠𝐴𝐴𝐴𝐴2 ), �̂�𝜇𝐵𝐵𝐴𝐴~𝑁𝑁(𝜇𝜇𝐵𝐵𝐴𝐴, 𝑠𝑠𝐵𝐵𝐴𝐴2 );      

𝜇𝜇𝐴𝐴𝐴𝐴~𝑁𝑁(𝜇𝜇𝐴𝐴, σ𝐴𝐴2), 𝜇𝜇𝐵𝐵𝐴𝐴~𝑁𝑁(𝜇𝜇𝐵𝐵, σ𝐵𝐵2 ),     (1.1) 

where 𝜇𝜇𝐴𝐴𝐴𝐴 and 𝜇𝜇𝐵𝐵𝐴𝐴 are the true underlying estimates of logit sensitivity and logit specificity, 

and 𝑠𝑠𝐴𝐴𝐴𝐴2  and 𝑠𝑠𝐵𝐵𝐴𝐴2  their variances for the ith study (i = 1, 2, …, n). 𝜇𝜇𝐴𝐴 and 𝜇𝜇𝐵𝐵 represent the 

average logit sensitivity and logit specificity, and σ𝐴𝐴2 and σ𝐵𝐵2  their variances which quantify 

the degree of heterogeneity between studies. Ideally, a binomial likelihood should be used to 

model within-study variability but the normal approximation shown in equation (1.1) is 

commonly used in practice.  
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The simplest and most commonly used random effects method is the DerSimonian and Laird 

approach which uses a normal distribution to model within-study variability and a moments 

estimator for the between-study variance. Logit transformed sensitivity or specificity and the 

within-study variance is undefined when there are zero cells in a study’s two by two table 

(Table 1.2). A continuity correction (typically 0.5) is applied, leading to a downward bias in 

test accuracy.36  

 

1.4.3 Summary receiver operating characteristic regression   

The summary receiver operating characteristic (SROC) curve approach, developed by Moses 

et al,37 accounts for potential heterogeneity in threshold. It uses a logistic transformation of the 

true positive and false positive rates and linear regression to model the relationship between 

test accuracy, D, and the proportion test positive (related to threshold), S.  

𝐷𝐷𝐴𝐴 = 𝑎𝑎 + 𝑏𝑏𝑆𝑆𝐴𝐴 + 𝑒𝑒𝐴𝐴        (1.2) 

with 

  𝑒𝑒𝐴𝐴~𝑁𝑁(0,𝜎𝜎2) 

where a is the intercept, 𝑏𝑏 is the regression coefficient for S, and 𝑒𝑒𝐴𝐴 is the random error. From 

each study i, 𝐷𝐷𝐴𝐴 and 𝑆𝑆𝐴𝐴 are computed as 

𝐷𝐷𝐴𝐴 = ln � TPR𝑖𝑖
1−TPR𝑖𝑖

� − ln � FPR𝑖𝑖
1−FPR𝑖𝑖

�     (1.3)  

and 

𝑆𝑆𝐴𝐴 = ln � TPR𝑖𝑖
1−TPR𝑖𝑖

�+ ln � FPR𝑖𝑖
1−FPR𝑖𝑖

� .     (1.4) 

The difference in the logits, D, is the log of the diagnostic odds ratio. S increases as the 

proportion of true and false positives increase, and is therefore considered a proxy for 

threshold. If accuracy does not depend on threshold, i.e. b = 0, the SROC curve is symmetric 

and can be described by a constant DOR given by the exponent of the intercept a.  
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A single summary estimate of sensitivity and specificity cannot be obtained from the Moses 

model. In computing the model variables D and S, both of which are functions of sensitivity 

and specificity, information is lost on the observed estimates of sensitivity and specificity 

from each study. However, the expected sensitivity for a given value of specificity can be 

estimated by  

 E(sensitivity) = �1 + 1
exp (𝑎𝑎 (1−𝑏𝑏)⁄ )

× �1−specificity
specificity

�
1+𝑏𝑏
1−𝑏𝑏�

−1

 , (1.5) 

where a is the intercept and b is the slope from the regression equation in (1.2). 

 

The AUC and Q* are sometimes used to quantify the SROC curve. The AUC is a global 

measure of test accuracy with values ranging between 0 and 1. The AUC can be calculated as  

   AUC = ∫
exp� 𝑎𝑎

1−𝑏𝑏��
𝑥𝑥

1−𝑥𝑥�
(1+𝑏𝑏) (1−𝑏𝑏)⁄

1+exp� 𝑎𝑎
1−𝑏𝑏��

𝑥𝑥
1−𝑥𝑥�

(1+𝑏𝑏) (1−𝑏𝑏)⁄
1
0  d𝑥𝑥 ,    (1.6) 

where x is FPR. There is no closed form for the integral in (1.6) and so the AUC is obtained 

numerically.38 For symmetric SROC curves, the AUC can be expressed in terms of the DOR 

as  

  AUC = 
DOR

(DOR−1)2
 [(DOR − 1) − lnDOR] .    (1.7) 

The usefulness of the AUC is limited because certain regions of ROC space may lack data 

and so the SROC curve extends beyond the range of the data. In addition, SROC curves with 

the same AUC may have different symmetry properties. As the AUC does not provide 

information on sensitivity and specificity, it is not possible to assess test accuracy at different 

thresholds, and the consequences of test errors cannot be inferred at any threshold.  
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Moses et al proposed the Q* as an alternative to the AUC.37 The Q* statistic is the point on 

the SROC curve where sensitivity is equal to specificity, i.e. the intersection of the curve and 

the line of symmetry. The line of symmetry is the negative diagonal and sensitivity = 

specificity at every point on the line. Q* can be computed as  

  Q∗ = 
1

1+𝑒𝑒−𝑎𝑎 2 ⁄  .       (1.8) 

Based on equation 1.4, it can be deduced that S = 0 at Q*. The use of Q* is not recommended 

as it can be misleading if SROC curves are asymmetric, or study points lie away from the line 

of symmetry.  

 

The SROC model is usually fitted using unweighted least squares linear regression, or 

weighted by study size or the inverse of the variance of D. The SROC approach is a fixed 

effect method in which variation is attributed solely to threshold effect (and sampling error if 

study estimates are weighted). The approach has methodological limitations which lead to 

inaccurate standard errors, thus rendering formal statistical inference invalid.39,40 Similar to 

the DerSimonian and Laird approach, zero cell corrections may be required.  

 

1.4.4 Hierarchical models 

Hierarchical models (also known as mixed or multilevel models) take into account correlation 

between sensitivity and specificity across studies while also allowing for variation in test 

performance between studies through the inclusion of random effects. The bivariate model41 

and the hierarchical summary receiver operating characteristic (HSROC) model42 are the two 

main approaches recommended for meta-analysis when a sensitivity and specificity pair is 

available for each study.23,35,43 The two approaches differ in parameterizations, but the models 
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are mathematically equivalent when no covariates are included.44 The choice of approach is 

often determined by variation in the thresholds reported in the included studies and the focus 

of inference—a summary point (summary sensitivity and specificity) or a SROC curve. Due 

to their shared statistical properties, SROC curves can be computed from bivariate models and 

average operating points from HSROC models, so the choice of model when there is only a 

single test is academic.23,44,45 However, when there are comparisons between tests or 

subgroups, the choice of model is important as will be explained in section 1.5.4 and 

illustrated in section 2.3.2 using three case studies. 

 

For the summary sensitivity and specificity of a test to have a clinically meaningful 

interpretation, the analysis should be based on data at a given threshold. For the estimation of 

a SROC curve, data from all studies, regardless of threshold, can be included but only one 

threshold per study is selected for inclusion in the analysis. Methods have been proposed 

which allow inclusion of data from multiple thresholds per study,46-48 but these are rarely used 

in practice due to their complexity and limitations.49 A SROC plot of sensitivity against 

specificity is usually used to display the results of the included studies as points in ROC 

space. The plot can also show meta-analytic summaries such as SROC curves or summary 

points with corresponding confidence and/or prediction regions to illustrate uncertainty and 

heterogeneity, respectively (see Figure 1.5 and Figure 1.6). 

 

Both classical and Bayesian hierarchical methods are available but the latter is rarely used by 

meta-analysts.27 Furthermore, many test accuracy meta-analyses include small numbers of 

studies and so prior distributions required by Bayesian methods are likely to be influential. 

Consequently, empirically based prior distributions for variances and correlations are needed 
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to inform the use of Bayesian models. Such empirical work has been done for binary 

outcomes for treatment effects50 but identifying suitable priors for test accuracy requires 

investigation.51 Therefore to be of practical relevance to most meta-analysts, the thesis 

focuses on methods within the classical framework. 

 

1.4.4.1 Bivariate random effects model 

van Houwelingen et al52 proposed a bivariate approach to meta-analysis that was adapted by 

Reitsma et al41 for test accuracy meta-analysis. This bivariate model is a linear mixed model 

with two levels corresponding to within (level one) and between (level two) study variability. 

Level one is based on an approximate normal distribution for the observed logit sensitivity 

(�̂�𝜇𝐴𝐴𝐴𝐴) and logit specificity (�̂�𝜇𝐵𝐵𝐴𝐴) of study i, given as 
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𝑠𝑠𝐴𝐴𝐴𝐴2 0
0 𝑠𝑠𝐵𝐵𝐴𝐴2

�,   (1.9) 

where 𝑠𝑠𝐴𝐴𝐴𝐴2  and 𝑠𝑠𝐵𝐵𝐴𝐴2  are the observed variances of the estimated logit transformed sensitivity and 

specificity. At level two, the model enables joint analysis of the logit sensitivities and logit 

specificities by combining two correlated normal distributions and takes the form, 
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2 σ𝐴𝐴𝐵𝐵

σ𝐴𝐴𝐵𝐵 σ𝐵𝐵2
� .   (1.10) 

The model assumes a bivariate normal distribution with mean 𝜇𝜇𝐴𝐴 and variance σ𝐴𝐴2 for the logit 

sensitivities, mean 𝜇𝜇𝐵𝐵 and variance σ𝐵𝐵2   for the logit specificities, and σ𝐴𝐴𝐵𝐵 the covariance 

between 𝜇𝜇𝐴𝐴𝐴𝐴 and 𝜇𝜇𝐵𝐵𝐴𝐴 across studies. Instead of the covariance, the model can be parameterized 

using the between-study correlation, 𝜌𝜌𝐴𝐴𝐵𝐵. Therefore, the basic bivariate model has the 

following five parameters: 𝜇𝜇𝐴𝐴, 𝜇𝜇𝐵𝐵 , σ𝐴𝐴2, σ𝐵𝐵2 , and σ𝐴𝐴𝐵𝐵  (or 𝜌𝜌𝐴𝐴𝐵𝐵).  

 



Chapter 1: Introduction 

23 
 

Chu and colleagues53,54 have shown that a binomial likelihood should be used for modelling 

within-study variability (especially when data are sparse) as follows: 

𝑦𝑦𝐴𝐴𝐴𝐴~Binomial�𝑛𝑛𝐴𝐴𝐴𝐴,𝑔𝑔−1(𝜇𝜇𝐴𝐴𝐴𝐴)�, 𝑦𝑦𝐵𝐵𝐴𝐴~Binomial�𝑛𝑛𝐵𝐵𝐴𝐴,𝑔𝑔−1(𝜇𝜇𝐵𝐵𝐴𝐴)�, (1.11) 

where 𝑦𝑦𝐴𝐴𝐴𝐴 and 𝑦𝑦𝐵𝐵𝐴𝐴 represent the number of true positives and true negatives, 𝑛𝑛𝐴𝐴𝐴𝐴 and 𝑛𝑛𝐵𝐵𝐴𝐴 the 

number of diseased and non-diseased subjects, and 𝑔𝑔−1(𝜇𝜇𝐴𝐴𝐴𝐴) and 𝑔𝑔−1(𝜇𝜇𝐵𝐵𝐴𝐴) the sensitivity and 

specificity in the ith study. The logit link 𝑔𝑔(. ) is commonly used but other link functions can 

be applied.40,54 The random effects in this generalized linear mixed model also follow a 

bivariate normal distribution as in (1.10).  

 

If this bivariate model is simplified by assuming the covariance or correlation is zero (i.e. an 

independent variance-covariance structure), the model reduces to two univariate random 

effects logistic regression models for sensitivity and specificity as follows: 
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� .   (1.12) 

 

Bivariate meta-analysis of likelihood ratios and predictive values are alternatives to bivariate 

meta-analysis of sensitivity and specificity. Zwinderman and Bossuyt55 have highlighted the 

difficulty in bivariate meta-analysis of likelihood ratios. Leeflang et al34 stated the main 

disadvantage of their proposed meta-analysis of predictive values as the interpretation of the 

results and translation into practice. The effect of prevalence is also likely to be greater on 

predictive values than on sensitivity and specificity. For these reasons, and because sensitivity 

and specificity are the test accuracy measures most commonly used in meta-analyses,27 only 

methods for synthesis of sensitivities and specificities are considered in this thesis. Other 
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measures such as likelihood ratios can be derived from functions of the parameters of 

bivariate or HSROC models. 

 

As an illustration of application of the bivariate model, Figure 1.5 shows an average operating 

point (summary sensitivity and specificity) for the mood disorder questionnaire (MDQ) for 

detection of bipolar disorder in mental health centre settings.56 The summary point is 

surrounded by a 95% confidence region and 95% prediction region. The meta-analysis 

included only studies that used a common threshold of 7. Due to this restriction, only 19 of 

the 30 eligible studies were included in the meta-analysis. 

 

 
Figure 1.5| SROC plot of the MDQ at a common threshold of 7 for detection of bipolar 
disorder in mental health centre settings  
Each study point was scaled according to the precision of sensitivity and specificity in the 
study; the greater the height or width of a study point relative to other study points, the greater 
the precision of the study’s estimated sensitivity or specificity respectively. The solid circle 
(summary point) represents the summary estimate of sensitivity and specificity for the mood 
disorder questionnaire (MDQ). The summary point is surrounded by a dotted line 
representing the 95% confidence region and a dashed line representing the 95% prediction 
region (the region within which one is 95% certain the results of a new study will lie). 
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1.4.4.2 Hierarchical summary receiver operating characteristic model 

The Rutter and Gatsonis HSROC model42 represents a general framework for meta-analysis 

of test accuracy studies and can be viewed as an extension of the Moses SROC approach in 

which the TPR and FPR for each study is modelled directly.57 The HSROC model is a 

nonlinear generalized mixed model in which the number of test positives from the ith study, 

yij, is assumed to follow a binomial distribution  

𝑦𝑦𝐴𝐴𝑖𝑖~Binomial�𝑛𝑛𝐴𝐴𝑖𝑖 ,𝜋𝜋𝐴𝐴𝑖𝑖� . 

For the non-diseased group j = 0 and for the diseased group j =1, and 𝑛𝑛𝐴𝐴𝑖𝑖 is the number in 

group j. The probability of a positive test result in group j is modelled as 

  logit�𝜋𝜋𝐴𝐴𝑖𝑖� = �𝜃𝜃𝐴𝐴 + 𝛼𝛼𝐴𝐴𝑑𝑑𝑑𝑑𝑠𝑠𝐴𝐴𝑖𝑖�𝑒𝑒𝑥𝑥𝑒𝑒�−β𝑑𝑑𝑑𝑑𝑠𝑠𝐴𝐴𝑖𝑖�,    (1.13)  

where 𝜋𝜋𝐴𝐴𝑖𝑖 is the proportion of test positives, true or false positives depending on disease 

status. Disease status is represented by 𝑑𝑑𝑑𝑑𝑠𝑠𝐴𝐴𝑖𝑖 which is coded –0.5 for the non-diseased group 

and 0.5 for the diseased group in the ith study. The implicit threshold 𝜃𝜃𝐴𝐴 (threshold parameter 

or positivity criteria) and diagnostic accuracy 𝛼𝛼𝐴𝐴 (accuracy parameter which is the log of 

DOR) for each study are modelled as random effects with independent normal distributions 

𝜃𝜃𝐴𝐴~𝑁𝑁�Θ,𝜎𝜎𝜃𝜃2� and 𝛼𝛼𝐴𝐴~𝑁𝑁( Λ,𝜎𝜎𝛼𝛼2) respectively.  

 

The parameter 𝜃𝜃𝐴𝐴 (equivalent to 𝑆𝑆𝐴𝐴 2⁄  in the Moses SROC model) estimates the average log 

odds of a positive test result for the diseased and non-diseased groups at the threshold for a 

positive test result in the study.57 The model also includes a shape or scale parameter β which 

enables asymmetry in the SROC curve by allowing accuracy to vary with implicit threshold 

(i.e. allowing true positive and false positive fractions to increase at different rates as 

𝜃𝜃𝐴𝐴 increases). Therefore, the SROC curve is symmetric if β = 0 or asymmetric if β ≠ 0. Each 

study contributes a single point in ROC space and so the estimation of β requires information 
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from all studies included in the meta-analysis. Thus β is modelled as a fixed effect. The 

HSROC model has the following five parameters: Λ, Θ, β, σ𝛼𝛼2  and σ𝜃𝜃2 . The model reduces to a 

fixed effect model if  σ𝛼𝛼2 = 0 and σ𝜃𝜃2 = 0.  

 

Other specifications for SROC curves based on functions of the bivariate model have been 

proposed39,58 but the focus in this thesis is only on the more established and commonly used 

Rutter and Gatsonis HSROC model. Figure 1.6 shows the SROC curve for the MDQ 

estimated from an HSROC model. The curve was drawn within the range of specificities 

(0.47 to 1.00) from the 30 included studies to avoid extrapolating beyond the data. Given the 

relationship between the bivariate and HSROC model mentioned earlier,44 it is possible to 

estimate an average operating point on the SROC curve by performing another HSROC 

analysis for studies that report data at a common threshold, similar to that shown in Figure 

1.5. 
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Figure 1.6| SROC plot of the MDQ at different thresholds for detection of bipolar 
disorder in mental health centre settings 
Each study point was scaled according to the precision of sensitivity and specificity in the 
study. The summary curve was drawn restricted to the range of specificities (0.47 to 1.00) 
from the 30 studies included in the evaluation of the mood disorder questionnaire (MDQ). 
 

1.5 Comparisons of two or more tests    

This thesis focused on the comparison of test accuracy for two or more tests when evidence 

from multiple primary studies is available. Ideally in primary studies, the diagnostic accuracy 

of competing alternative tests should be compared in the same study population. Such head-

to-head evaluations may compare tests to identify the best performing test(s) or assess the 

incremental gain in accuracy of a combination of tests relative to the performance of one of 

the component tests.59  

 

Historically, test evaluations have focused on the accuracy of a single test without making 

comparisons with alternative tests that can be used at the same point in the diagnostic 

pathway.60 The lack of regard for comparative evidence is exemplified by separate 
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publications of tests evaluated in the same study. For example, Grandjean et al conducted a 

large multicentre study to assess the accuracy of short femur and nuchal fold measurement in 

the second trimester of pregnancy for detection of trisomy 21 (Down’s syndrome).61,62 

However, results were published separately for the two ultrasonographic markers. The 

prevalence of such publications in the literature is unknown. Single test evaluations clearly 

have a place in the early evaluation of the diagnostic accuracy of a test (as indicated in Table 

1.1), and can be useful in identifying its potential role and usefulness. However, the clinical 

relevance of such evaluations is questionable when alternative tests are available, and the 

position of a test in the clinical pathway and its superiority in terms of clinical performance is 

uncertain. 

 

Well-designed comparative studies are invaluable for clinical decision making because they 

can facilitate evaluation of new tests against existing testing pathways and guide test 

selection. These studies enable unbiased comparisons and increase confidence in the validity 

of the evidence. Evidence from studies of comparative accuracy can also be used in decision 

modelling to infer the relative effectiveness of tests when direct evidence from RCTs of test 

effectiveness is unavailable.63 Modelling can help in understanding the expected benefits, 

risks, and costs of implementing newer tests, by considering improvements in accuracy as 

well as potential shifts in the disease spectrum for positive diagnoses.64 While modelling is 

promising, it is subject to limitations such as poor data and non-transferability of test 

performance and/or therapeutic efficacy, and validity of modelling assumptions. Modelling is 

beyond the scope of this thesis. 
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In the following subsections, roles of tests within diagnostic pathways and their importance in 

designing comparative accuracy studies are illustrated. Study designs are discussed in detail, 

including the merits and limitations of each type of design. The analysis of comparative 

accuracy studies is also considered in terms of measures used to express relative accuracy. 

 

1.5.1 Diagnostic pathways 

Diagnostic or clinical pathways are used to guide evidence-based healthcare and should be at 

the core of test evaluation as illustrated in Figure 1.1. A new test may replace an existing one 

(replacement), be used before the existing test (triage) or after the existing test (add-on) as 

shown in Figure 1.7.60 The test may be simultaneously assessed for more than one of these 

roles.  

 

 
Figure 1.7| Roles of tests in diagnostic pathways   
(Adapted from Bossuyt et al 200660) 
 

The intended role of a test within a diagnostic pathway is important because it provides a 

framework for assessing test accuracy and guides study design, including the choice of a 

comparator. For example, consider CT and ultrasound for diagnosis of acute appendicitis in 
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children without classic signs and symptoms of appendicitis. If ultrasound is the initial 

imaging modality and standard of care (comparator), the intended role of CT should inform 

study design—CT and ultrasound applied to all children in the study or CT applied after a 

negative or inconclusive ultrasound such as in the study by Garcia Peña et al.65 The former 

design can be used to address a replacement or add-on question but the latter can only be used 

to address an add-on question. Alternatively, children may be randomized to receive 

ultrasound or CT to address a replacement question, or randomized to receive ultrasound or 

ultrasound followed by CT to address an add-on question (as well as a replacement question if 

randomization is ignored) such as in the study by Kaiser et al.66 Nevertheless, it is unlikely 

that CT can replace ultrasound because of the potential risks associated with use of contrast 

media, ionizing radiation exposure and cost. According to the American College of 

Radiology, US is the preferred initial examination in children because it is nearly as accurate 

as CT in this population and avoids use of ionizing radiation.67 Since CT is potentially more 

accurate and harmful, there is no role for CT as a triage test in this diagnostic pathway. 

 

The role of several existing tests at different points in the diagnostic pathway may also be 

evaluated. For example, recommended tests for diagnosis of common bile duct stones are 

liver function tests (e.g. alkaline phosphatase, bilirubin), abdominal ultrasound, endoscopic 

ultrasound (EUS), magnetic resonance cholangiopancreatography (MRCP), endoscopic 

retrograde cholangiopancreatography (ERCP), and intraoperative cholangiography (IOC).68-70  

Figure 1.8 shows a potential diagnostic pathway for diagnosis of common bile duct stones. 

People at risk or suspected of having common bile duct stones initially undergo liver function 

tests and abdominal ultrasound. Usually both tests are used as triage tests before patients are 

subjected to further tests such as MRCP or EUS in the next step of the pathway. Therefore, 
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MRCP and EUS may be regarded as add-on tests in patients with positive abdominal 

ultrasound or liver function tests. If positive, the tests are followed by ERCP or IOC. In this 

scenario, MRCP and EUS may be regarded as triage tests. ERCP and IOC are the final 

diagnostic tests prior to therapeutic intervention. In general, patients with negative test results 

at a point in the pathway do not undergo further testing. The sequence of tests is a logical 

order that reflects increasing access, cost and invasiveness of the tests. 

 

 
Figure 1.8| Simplified illustration of the role of existing tests in the diagnostic pathway 
for common bile duct stones  
ERCP = endoscopic retrogade cholangiopancreatography; EUS = endoscopic ultrasound;  
IOC = intraoperative cholangiography; LFTs = liver function tests; MRCP = magnetic 
resonance cholangiopancreatography.  
(Adapted from Gurusamy et al 201568) 
 

1.5.2 Study designs for test comparisons 

There is no standard terminology for different types of test accuracy studies. In this thesis, the 

term ‘non-comparative’ is used to describe a primary study that evaluated a single test 

(uncontrolled study) or only one of the tests being evaluated in a systematic review, and 
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‘comparative’ to describe a study that evaluated and compared at least two of the tests in the 

same population. A number of study designs, varying in methodological rigour, are used for 

comparison of test accuracy as illustrated in Figure 1.9. Generally, there are two comparative 

study designs—within-subject and between-subject designs. 

 

 
Figure 1.9| Study designs for comparing test accuracy 
White boxes represent less methodologically robust designs. 
 

Robust comparative studies of diagnostic test accuracy use either a within-subject multiple 

test (sometimes called "paired" or "crossover") design, in which all patients undergo all tests, 

together with a reference standard, or, more rarely, a between-subject randomized (unpaired 

or parallel group) design in which all patients undergo the reference standard test but are 

randomly assigned to have only one of the other tests (Figure 1.10).43,71 Such designs ensure 

validity by comparing like-with-like (either within patients or between randomized groups), 

thus avoiding confounding by factors such as population characteristics and study methods. 
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Figure 1.10| Robust study designs for comparing test accuracy 
In (A) all patients undergo all index tests while in (B) patients are randomly assigned to only 
one of the index tests. In both (A) and (B), all patients receive the reference standard. Both 
designs are valid. (Adapted from Takwoingi et al 201371) 
 

In the following subsections, examples from the literature on imaging for diagnosis of 

appendicitis are used to illustrate the designs shown in Figure 1.9 and Figure 1.10. 

 

1.5.2.1 Within-subject design 

In a within-subject design, all patients undergo all tests and so each patient is their own 

control. Such designs are potentially resource efficient depending on the extent to which the 

tests are conditionally dependent. The design minimises between-subject variability and also 

allows estimation of the accuracy of combinations of tests. The sequence of testing may be 

(A) Within-subject multiple test design 

 

(B) Between-subject randomized design 
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randomized to avoid bias.72  Table 1.3 shows the joint classification of the results of a paired 

comparison. 

 

Table 1.3| Joint classification of paired index tests and reference standard results 
 Reference standard positive Reference standard negative 

 Test A 
positive 

Test A 
negative 

Total Test A 
positive 

Test A 
negative 

Total 

Test B 
positive 𝑦𝑦11𝐷𝐷  𝑦𝑦01𝐷𝐷  𝑛𝑛B1𝐷𝐷  𝑦𝑦11𝐷𝐷

�  𝑦𝑦01𝐷𝐷
�  𝑛𝑛B1𝐷𝐷

�  

Test B 
negative 𝑦𝑦10𝐷𝐷  𝑦𝑦00𝐷𝐷  𝑛𝑛B0𝐷𝐷  𝑦𝑦10𝐷𝐷

�  𝑦𝑦00𝐷𝐷
�  𝑛𝑛B0𝐷𝐷

�  

Total 𝑛𝑛A1𝐷𝐷  𝑛𝑛A0𝐷𝐷  𝑛𝑛1 𝑛𝑛A1𝐷𝐷
�  𝑛𝑛A0𝐷𝐷

�  𝑛𝑛0 

 

For two tests labelled A and B in Table 1.3, 𝑦𝑦11𝐷𝐷  is the number of patients with the target 

condition for whom both tests are positive; 𝑦𝑦00𝐷𝐷  is the number of patients with the target 

condition for whom both tests are negative; 𝑦𝑦10𝐷𝐷  is the number of patients with the target 

condition for whom test A is positive but test B is negative; and 𝑦𝑦01𝐷𝐷  is the number of patients 

with the target condition for whom test B is positive but test A is negative. For those without 

the target condition, the counts 𝑦𝑦11𝐷𝐷� , 𝑦𝑦00𝐷𝐷� , 𝑦𝑦10𝐷𝐷�  and 𝑦𝑦01𝐷𝐷�  can be interpreted in a similar manner. 

 

For tests A and B, 𝑛𝑛A1𝐷𝐷  and 𝑛𝑛B1𝐷𝐷  are the numbers of true positives; 𝑛𝑛A0𝐷𝐷
�

 and 𝑛𝑛B0𝐷𝐷
�  are the numbers 

of true negatives; 𝑛𝑛A0𝐷𝐷  and 𝑛𝑛B0𝐷𝐷  are the numbers of false negatives; and 𝑛𝑛A1𝐷𝐷
�  and 𝑛𝑛B1𝐷𝐷

�  are the 

numbers of false positives. If 𝑛𝑛1 and 𝑛𝑛0 represent the number of individuals with and without 

disease respectively, then the sensitivity and specificity of the two tests can be estimated from 

the marginal frequencies as follows: 

Sensitivity(A) = 𝑛𝑛A1
𝐷𝐷 𝑛𝑛1⁄ ; Specificity(A) = 𝑛𝑛A0

𝐷𝐷� 𝑛𝑛0�      

Sensitivity(B) = 𝑛𝑛B1
𝐷𝐷 𝑛𝑛1⁄ ; Specificity(B) = 𝑛𝑛B0

𝐷𝐷� 𝑛𝑛0�  .     
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Although a table of the joint classification of the results of two tests against those of the 

reference standard is potentially useful, studies do not often present results in this format but 

rather give a separate 2x2 table comparing each test with the reference standard. For example, 

although Poortman et al73 and Pickuth et al74 both compared ultrasound and CT for diagnosis 

of acute appendicitis by applying both tests to all patients, it was only possible to obtain a 

separate 2x2 table for each test compared with the reference standard from the results 

reported. 

 

Notwithstanding the advantages of a within-subject design, such a comparative study may be 

unethical if the burden of testing is unacceptable due to the invasive nature or risk of 

complications associated with the tests.72,75 Also, if one test adversely affects the performance 

or application of another test—akin to carryover effects in crossover trials of therapeutic 

effectiveness—a within-subject design will be inappropriate. The design is also inappropriate 

if there is potential for disease progression during the interval between administering the tests, 

or if multiple testing is likely to delay initiation of therapy. Since within-subject test 

comparison designs can be likened to crossover therapeutic trials, the same principles of good 

study design for trials apply.75 

 

1.5.2.2 Between-subject design   

In a between-subject design, the allocation of tests to patients should ideally be randomized. 

Principles of good design for RCTs of therapeutics, also suggested in the preceding section, 

can be applied.75 The randomized design is a valid alternative in situations where a paired 

design is inappropriate for reasons such as those stated above. A disadvantage of this design is 

that a larger sample is typically required and test combinations cannot be explored unless 
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patients receive all tests in one of the arms of the study. For example, Kaiser et al66 compared 

the accuracy of ultrasound alone and abdominal CT performed in addition to ultrasound for 

diagnosis of childhood appendicitis by randomly allocating children to one of the two arms. 

The authors presented the results of this comparison as well as the joint classification of 

results from the arm that received both tests.  

 

Patients may also be allocated to groups by using stratified randomization. Stratified 

randomization is a two-stage procedure in which patients are first grouped into strata, 

according to clinical features that may influence the outcome, and then followed by 

randomization within each stratum.76 Tsai et al77 evaluated ultrasound and CT by 

prospectively stratifying patients to CT or ultrasound based on body mass index (BMI ≥ 30 

had CT and BMI < 30 had ultrasound). The objective was to determine if stratifying patients 

improved the accuracy of each modality because choice of ultrasound or CT may depend on 

body habitus. Clearly, the design of this study cannot answer the research question. 

 

Although non-randomized studies are prone to bias, the randomized design is seldom used 

and non-randomized studies, prospectively or historically controlled, are more common. For 

example, in a study by Sivit et al78, the decision to give a patient ultrasound, CT, or both was 

based on the clinical judgment of the referring surgeon or emergency department physician. 

In contrast, Lowe et al79 compared both tests by evaluating CT in a prospective cohort but 

ultrasound was assessed using a historical cohort that was retrospectively identified from 

computerized hospital records.  
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1.5.3 Analysis of test comparisons in primary studies 

In comparative test accuracy studies, absolute differences can be computed for sensitivity and 

specificity whilst relative differences can be computed for most of the measures discussed in 

section 1.3.2.80 Assuming the newer or experimental test is test A and the older test or 

standard practice is test B, then the absolute difference in sensitivity and specificity can be 

written as:  

Absolute difference in sensitivity =  𝑠𝑠𝑒𝑒𝑛𝑛𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑠𝑠𝑦𝑦(𝐴𝐴) − 𝑠𝑠𝑒𝑒𝑛𝑛𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑠𝑠𝑦𝑦(𝐵𝐵) 

Absolute difference in specificity = 𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑠𝑠𝑦𝑦(𝐴𝐴) − 𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑠𝑠𝑦𝑦(𝐵𝐵). 

The relative probabilities can be written as: 

Relative sensitivity = 𝑠𝑠𝑒𝑒𝑛𝑛𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑠𝑠𝑦𝑦(𝐴𝐴) 𝑠𝑠𝑒𝑒𝑛𝑛𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑠𝑠𝑦𝑦(𝐵𝐵)⁄  

Relative specificity =  𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑠𝑠𝑦𝑦(𝐴𝐴) 𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑠𝑠𝑦𝑦(𝐵𝐵)⁄ , 

and the odds ratios as 

Odds ratio (true positive) =  
𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝑠𝑠(𝐴𝐴)

1−𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝑠𝑠(𝐴𝐴)
𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝑠𝑠(𝐵𝐵)

1−𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝑠𝑠(𝐵𝐵)
�  

Odds ratio (true negative) = 𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝑠𝑠(𝐴𝐴)
1−𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝑠𝑠(𝐴𝐴)

𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝑠𝑠(𝐵𝐵)
1−𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝑠𝑠(𝐵𝐵)
�  . 

 

It should be noted that these odds ratios are not equivalent to the DOR. Here the ratios 

compare the same measure (sensitivity or specificity) for one test to that of another test while 

the DOR compares two groups (diseased and non-diseased) for one test. The DORs of two 

tests can be compared and expressed as the relative DOR (rDOR). If logistic regression 

models are used to compare the sensitivity and specificity of multiple tests, odds ratios are the 

natural output. Nevertheless, absolute differences and relative probabilities are more familiar 

quantities and are straightforward to interpret. Odds ratios do not have an intuitive 

interpretation. The approximate relationship between odds ratios and relative risks that is 
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exploited in epidemiology when events are rare81 is invalid in test research because events 

(i.e. true positives or true negatives) are common. 

 

The remainder of this chapter is devoted to comparative systematic reviews and meta-

analyses, and the rationale for the research undertaken in this thesis. 

 

1.5.4 Meta-analysis of test comparisons 

Regression-based meta-analytic methods such as those described in section 1.4.3 (Moses 

SROC model) and section 1.4.4 (hierarchical models) are straightforward to extend to 

investigate association between test performance and potential sources of heterogeneity; study 

level explanatory variables or covariates are added as indicator (dummy) variables to a 

regression equation.37,41,42 This meta-regression approach can also be used to compare test 

accuracy by using test type as the covariate. For example if there are N tests, N–1 indicator 

variables which take the value zero or one are added to the model. Thus the effect of test type 

on model parameters can be estimated; the regression coefficients estimate the performance of 

one test relative to that of the test used as the reference category (note this test is not the 

reference standard but another index test or comparator test) for the test type covariate.  

 

The meta-regression approach is flexible, allowing the comparison of multiple tests; test 

comparisons are not limited to a pair of tests as will be illustrated using case studies in section 

2.3.1. Since hierarchical models are recommended for meta-analysis of test accuracy,23,35,43,44 

only hierarchical meta-regression methods are discussed in the next two sections. Methods 

based on the Moses SROC approach, and other methods identified from the searches 

described in Chapter 3 will be examined in Chapters 6 and 7.  
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Test comparisons based on hierarchical models may be a comparison of summary points 

and/or SROC curves as will be shown using two examples in section 2.3.1.3. The choice of 

summary points or curves should ideally be driven by the research question (i.e. focus of 

inference on points or curves) but is sometimes influenced by the nature of the available data 

(availability of data at a common cut-off or only across mixed cut-offs) and its effect on the 

interpretation of summary findings, software capability, and expertise of the team. In section 

1.5.4.1, the comparison of summary points using a bivariate model is explained while section 

1.5.4.2 details the comparison of summary curves using a HSROC model. Bivariate and 

HSROC meta-regression models do not fully account for dependence between tests in studies 

where two or more tests were compared within the same patients (i.e. within-subject design). 

This issue is addressed in section 2.3.4.2 and also in Chapter 6. 

 

1.5.4.1 Bivariate random effects meta-regression model for comparing test accuracy 

The approach outlined here follows from the bivariate model summarised in section 1.4.4.1 

(see equations 1.10 and 1.11). A covariate for test type, t, can be used in a bivariate model to 

investigate whether the expected sensitivity and specificity differs between the tests. If t is 

indexed by k, the two levels of the bivariate model can be expressed as follows:  

Level 1: Within-study likelihood 

𝑦𝑦𝐴𝐴𝐴𝐴𝐴𝐴~Binomial�𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴,𝑔𝑔−1(𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴)�, 𝑦𝑦𝐵𝐵𝐴𝐴𝐴𝐴~Binomial�𝑛𝑛𝐵𝐵𝐴𝐴𝐴𝐴,𝑔𝑔−1(𝜇𝜇𝐵𝐵𝐴𝐴𝐴𝐴)�, (1.14) 

where 𝑦𝑦𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑦𝑦𝐵𝐵𝐴𝐴𝐴𝐴 represent the number of true positives and true negatives, 𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑛𝑛𝐵𝐵𝐴𝐴𝐴𝐴 

the number of diseased and non-diseased subjects, and 𝑔𝑔−1(𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴) and 𝑔𝑔−1(𝜇𝜇𝐵𝐵𝐴𝐴𝐴𝐴) the 

sensitivity and specificity for the kth test within the ith study. The logit link, 𝑔𝑔(. ), is often 

used. 
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Level 2: between-study likelihood 
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where Aiµ and Biμ are the logit sensitivity and logit specificity for each test within the ith 

study and tk represents the study level covariate for test type. For simplicity, assume a binary 

covariate distinguishing between two index tests, i.e. k = 1, 2. As such t is an indicator 

variable for test type coded 0 for the index test used as the reference category (i.e. t = 0 if k = 

1), and 1 for the second index test (i.e. t = 1 if k = 2), then Aµ estimates the expected logit 

sensitivity for index test 1 and AA v+µ  estimates the expected logit sensitivity for index test 2. 

Thus, ( )Avexp gives the estimated odds ratio for the sensitivity of test 2 relative to that of test 

1. The same applies to specificity where Bµ is the expected logit specificity for test 1 and 

BB v+µ  estimates the expected logit specificity for test 2. The variances are σ𝐴𝐴2 and σ𝐵𝐵2   for the 

logit sensitivities (𝜇𝜇𝐴𝐴𝐴𝐴1 and 𝜇𝜇𝐴𝐴𝐴𝐴2) and logit specificities (𝜇𝜇𝐵𝐵𝐴𝐴1 and 𝜇𝜇𝐵𝐵𝐴𝐴2), and σ𝐴𝐴𝐵𝐵2  is the 

covariance between the logits across studies. 

 

The model can be further extended by including additional terms to allow for unequal 

variances of the random effects for logit sensitivity and specificity between tests. Thus, the 

covariance matrix in (1.15) can also depend on test type as follows:  
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Bivariate meta-regression models will be applied to case studies in Chapter 2 to illustrate 

comparison of summary points between tests. 
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1.5.4.2 HSROC meta-regression model for comparing test accuracy 

HSROC meta-regression models—extensions of the HSROC model in (1.13) described in 

section 1.4.4.2—can be used to assess the effect of test type on the accuracy, threshold and/or 

shape parameters. Assuming t is an indicator variable for test type and 𝛾𝛾, 𝜆𝜆, and δ are 

estimated as a fixed effect, the model can be written as 

 logit�𝜋𝜋𝐴𝐴𝑖𝑖� = �(𝜃𝜃𝐴𝐴 + 𝛾𝛾𝑠𝑠𝐴𝐴) + (𝛼𝛼𝐴𝐴 + 𝜉𝜉𝑠𝑠𝐴𝐴)𝑑𝑑𝑑𝑑𝑠𝑠𝐴𝐴𝑖𝑖� 𝑒𝑒𝑥𝑥𝑒𝑒�−(β + δ𝑠𝑠𝐴𝐴)𝑑𝑑𝑑𝑑𝑠𝑠𝐴𝐴𝑖𝑖�, (1.17)  

and the distributions of the random effects for threshold and accuracy as 

𝜃𝜃𝐴𝐴~𝑁𝑁�Θ,𝜎𝜎𝜃𝜃2� and 𝛼𝛼𝐴𝐴~𝑁𝑁( Λ,𝜎𝜎𝛼𝛼2) .      (1.18) 

In this model, 𝛾𝛾 assesses whether the underlying threshold differ between tests,  𝜉𝜉 assesses 

whether test accuracy differ between tests, and δ assesses whether the shape of the curves 

differ by test. The HSROC model defines test accuracy in terms of the DOR (see section 

1.4.4.2). Therefore, if the summary curves being compared are symmetrical (i.e. β and δ are 

equal to zero) or the curves are assumed to have the same shape (i.e. δ = 0), then the ratio of 

two DORs or rDOR (exponent of 𝜉𝜉) provides a summary estimate of the relative accuracy of 

two tests. For two index tests, where test 1 is the referent test, an rDOR greater than one 

indicates that test 2 is superior to test 1; an rDOR less than one indicate that test 1 is superior 

to test 2.  

 

However, if each SROC curve is allowed to have its own shape and there is evidence of a 

difference in shape between tests, then the rDOR cannot be used quantify relative test 

accuracy because accuracy varies with threshold. To numerically express test performance 

based on the estimated SROC curves, the expected logit sensitivity at one or more values of 

specificity (e.g. median and interquartile range derived from the included studies for each test) 

can be estimated using the following equations for test 1 and test 2: 
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logit(sensitivity 1) = [Λ × exp(−0.5β) + logit(1 − specificity) × exp (−β)] 

logit(sensitivity 2) = �(Λ + γ) × exp�−0.5(β + δ)� + logit(1 − specificity) ×

exp (−(β + δ))� .                (1.19) 

 

Similar to the bivariate model, the variance parameters of the HSROC model can be allowed 

to differ between tests. Allowing the difference in threshold and accuracy between tests to 

vary gives  

 logit�𝜋𝜋𝐴𝐴𝑖𝑖� = �(𝜃𝜃𝐴𝐴 + 𝛾𝛾𝐴𝐴𝑠𝑠𝐴𝐴) + (𝛼𝛼𝐴𝐴 + 𝜉𝜉𝐴𝐴𝑠𝑠𝐴𝐴)𝑑𝑑𝑑𝑑𝑠𝑠𝐴𝐴𝑖𝑖� 𝑒𝑒𝑥𝑥𝑒𝑒�−(β+ δ𝑠𝑠𝐴𝐴)𝑑𝑑𝑑𝑑𝑠𝑠𝐴𝐴𝑖𝑖� (1.20)  

�𝜃𝜃𝐴𝐴𝛾𝛾𝐴𝐴
�~𝑁𝑁��𝚯𝚯𝚪𝚪� ,�

σθ2 σθσγ
σθσγ σγ2

� � and �
𝛼𝛼𝐴𝐴
𝜉𝜉𝐴𝐴 �~𝑁𝑁��𝚲𝚲𝚵𝚵� ,�

σα2 σασξ
σασξ σξ

2 � �. (1.21) 

Correlation is assumed between the random effects for accuracy (𝛼𝛼𝐴𝐴 and 𝜉𝜉𝐴𝐴) and between the 

random effects for threshold ( 𝜃𝜃𝐴𝐴  and 𝛾𝛾𝐴𝐴). σασξ is the covariance between the random effects 

for accuracy and σθσγ is the covariance between the random effects for threshold. The 

variances of the random effects for the referent test (t = 0) are σα2  and σθ2 for accuracy and 

threshold. The variances of the random effects for the index test (t = 1) can be obtained using 

the expression for the variance of a sum which is σα2 + σξ
2 + 2σασξ for accuracy, and   

σθ2 + σγ2 + 2σθσγ for threshold. 

 

HSROC meta-regression models will be applied to case studies in Chapter 2 to illustrate the 

comparison of summary curves between tests, including the impact of assumptions about the 

shape of the curves and the impact of assumptions about the variances of the random effects. 
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1.5.4.3 Relationship between bivariate and HSROC meta-regression models 

As highlighted in section 1.4.4, the bivariate and HSROC models are closely related and are 

mathematically equivalent when no covariates are included .44 This relationship is exploited 

when simplifying hierarchical models for meta-analysis of a single test in section 8.2. Harbord 

et al44 also showed that a bivariate model in which one or more covariates affect both 

sensitivity and specificity is equivalent to an HSROC model in which the same covariates are 

allowed to affect both the accuracy and threshold parameters. Therefore, if covariate terms for 

test type are added to the accuracy and threshold parameters of the HSROC model but a 

common underlying shape is assumed, the model is akin to a bivariate model where the 

covariate affects both sensitivity and specificity. In both models, the covariance matrix of the 

random effects does not depend on test type. 

 

1.5.4.4 Assessment of statistical significance of differences in test performance 

The statistical significance of differences in test performance can be assessed using Wald tests 

or likelihood ratio tests.23 Likelihood ratio tests compare models with and without covariate 

terms. The likelihood ratio chi‐squared statistic is the difference in the ‐2Log likelihood when 

a covariate is added or removed from a model. The degrees of freedom used along with the 

chi-squared statistic to obtain a P value is the difference in the number of parameters fitted in 

the two models being compared. For example, the fit of the bivariate model with and without 

the additional parameters Av  and Bv  can be used to assess whether sensitivity and/or 

specificity differ between tests. Likelihood ratio tests can also be used to assess the 

significance of additional variance terms for the random effects parameters in either the 

bivariate or HSROC model to determine whether assumption of common variances is justified 

or separate variances for each test is needed. It should be noted that as the models become 
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increasingly complex, the number of additional parameters to estimate increases, and can be 

difficult to fit especially when there are few studies. 

 

1.6 Challenges in assessing comparative accuracy in systematic reviews 

While systematic reviews have generally focussed on the evaluation of the accuracy of a 

single test, reviews comparing the accuracy of two or more tests are increasingly being 

published. For comparing health care interventions, properly conducted RCTs are regarded as 

the most valid source of evidence of comparative effectiveness, although in their absence 

studies with non-randomized designs may also be considered.82-85 Both RCTs and systematic 

reviews of RCTs are available to guide intervention selection for many conditions. However, 

clinical investigators and funders do not seem to have demanded similarly rigorous standards 

in the creation of reliable evidence for selecting diagnostic tests.  

 

Systematic reviews of comparative accuracy often undertake separate meta-analyses for each 

test, and then compare their results as shown in Figure 1.11 (panel A). Comparing separate 

meta-analyses of each test can be likened to making comparisons of single arms of RCTs of 

interventions, or between case series.86 This indirect between-study (uncontrolled) test 

comparison uses a different set of studies for each test and so does not ensure like-with-like 

comparisons; the difference in accuracy is prone to confounding due to differences in patient 

groups and study methods. 
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Figure 1.11| Approaches for comparing test accuracy 
Systematic reviews of comparative accuracy often undertake separate meta-analyses for each 
test and then compare their results as shown in (A) using one study for each test. The second 
figure (B) shows a direct comparison using a comparative study (comparison within patients 
or between randomized groups). 
 

Although direct comparisons based on only comparative studies are likely to ensure an 

unbiased comparison and enhance validity (Figure 1.11 panel B), such analyses may not 

always be feasible due to limited availability of comparative studies. 71,87 For example, four 

modalities—duplex ultrasonography (DUS), computed tomography angiography (CTA), 

magnetic resonance angiography (MRA), and digital subtraction angiography (DSA)—are 

used to image steno-occlusions in lower limb peripheral arterial disease  (PAD). In routine 

clinical practice, DSA is not used as an alternative to DUS, CTA or MRA, but is the reference 

standard used to determine the diagnostic accuracy of the other three modalities. For certain 

clinical questions, a reference standard may also be the alternative test used in practice, i.e., 

also a comparator test. Consequently, the reference standard is sometimes incorrectly referred 

to as the comparator.  

(A) Indirect (between-study) comparison 

 

(B) Direct (head-to-head) comparison 
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DUS, CTA and MRA have specific benefits and limitations but the clinical indications for 

CTA are very similar to those of MRA.88 Nonetheless, no study has directly compared the 

diagnostic accuracy of MRA and CTA.89 In a systematic review of the diagnostic accuracy of 

CTA, MRA and DUS that included 58 studies, Collins et al90 only found two studies that 

compared MRA and DUS in the same study population. One of the two studies performed all 

tests in all patients while the other study only performed MRA in a subset of patients. The 

authors concluded that MRA has better overall diagnostic accuracy than CTA or DUS.  

 

An indirect comparison uses all eligible studies that have evaluated at least one of the tests of 

interest thus maximizing use of the available data (Figure 1.12). Therefore, an indirect test 

comparison can be regarded as a mixed test comparison when both comparative and non-

comparative studies of one or more tests are included (i.e. direct and indirect comparisons are 

combined). However, a distinction is not usually made between both approaches and they are 

simply termed indirect comparisons. This is unlike indirect comparisons and mixed treatment 

comparisons (or network meta-analyses) of interventions where there is a clear distinction 

between the two methods of obtaining indirect evidence of treatment effectiveness.91-93 

Furthermore, unlike indirect comparisons of interventions, these naïve indirect test 

comparisons do not use a common control to adjust for differences in average test positivity 

(outcome) rates between studies.  
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Figure 1.12| Types of test comparisons in a comparative accuracy meta-analysis 
For simplicity, a pairwise comparison is shown but a test comparison may include more than 
two tests. The mixed test comparison includes head-to-head studies of both index tests as well 
as evaluations of either of the two tests. The mixed test comparison is also an indirect 
comparison. 
 

The high degree of heterogeneity in estimates of sensitivity and specificity commonly 

observed in meta-analyses of test accuracy94 raises concern that decisions based on the results 

of comparisons made between meta-analyses may be unreliable because the likelihood of 

confounding is high. The likely magnitude of any bias is unknown, but if substantial, robustly 

designed comparative test accuracy studies (see Figure 1.10) should be more routinely 

undertaken and preferred for evidence to guide test selection. Therefore, the availability of 

comparative studies and the feasibility of direct comparisons warrant investigation given the 
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potential value of comparative accuracy reviews as a surrogate in the absence of direct 

evidence about test effectiveness. 

 

There is also concern that suboptimal methods are being used to estimate test accuracy and to 

make conclusions about the superiority of one test compared to another. Hierarchical meta-

analytic methods have been increasingly adopted over time, but their use still remains 

limited.27 In contrast to meta-analyses of interventions, recommended methods may 

sometimes be impractical due to the limited number of included studies compared to the 

complexity of the methods. It is unclear whether simpler methods can be an appropriate 

alternative in such situations. Therefore meta-analytic methods for valid comparisons of tests 

are needed to avoid misleading conclusions and recommendations.  

 

1.7 Research questions and thesis outline 

1.7.1 Research questions  

Given the challenges and uncertainties highlighted above, the primary aim of this thesis is to 

assess the reliability and transparency of evidence derived from systematic reviews and meta-

analyses of comparative accuracy, including the validity of the meta-analytic methods used to 

synthesise the evidence. To achieve this objective, the following research questions will be 

addressed: 

1. How have comparisons of test accuracy been performed and reported in published 

systematic reviews and meta-analyses? What are the statistical methods used and are the 

methods and findings well reported? 
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2. How feasible are direct comparisons (i.e. how often are comparative studies available)? 

Are meta-analyses of comparative test accuracy studies more reliable than meta-

analyses of non-comparative studies?  

3. How should meta-analyses be undertaken to compare test accuracy  

a. when both tests are evaluated in different sets of studies (indirect uncontrolled 

comparisons);  

b. when studies directly compare both tests (head-to-head comparisons);  

c. when there is a mixture of non-comparative and comparative studies (mixed 

comparison); 

d. when there are more than two tests (multiple test comparison)? 

Do methods give the same results in each of the situations above?  

4. How should meta-analyses be undertaken when there are few studies or sparse data? 

 

1.7.2 Thesis outline  

Chapter 2 introduces several examples of published systematic reviews comparing the 

accuracy of two or more tests. These examples are from some of the reviews the author has 

worked on in the past five years during the course of this PhD research. This chapter aims to 

highlight key methodological issues by providing practical demonstrations using real life case 

studies. The chapter also shows how the problems were addressed in the reviews and 

underscores the need for research undertaken in Chapters 4 to 8.  

 

Chapter 3 focuses on the search methods for identifying systematic reviews that assessed the 

accuracy of at least two tests, and the methods for comparative meta-analysis investigated in 

the thesis. Thus the aim of this chapter is to collate the data sources and search strategies used 
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to obtain methods and materials for the thesis. The chapter also contains the search results for 

the primary cohort of reviews from which the subset of reviews used in chapters 4 to 6 were 

derived by applying eligibility criteria relevant to the objectives of each chapter.  

 

Chapter 4 provides an overview of data synthesis methods in published reviews that assessed 

at least two tests. The aim of the chapter is to provide a descriptive survey of recent practice, 

and to identify shortcomings in methods and reporting with a view to making 

recommendations for improvements. Recent reviews selected from the primary cohort of 

reviews identified in Chapter 3 are examined in detail, and their general, methodological and 

reporting characteristics are summarised. The chapter describes how reviews handled test 

comparisons in terms of the strategies (indirect and/or direct comparisons) and meta-analytic 

methods used, presentation of results, and how review findings were interpreted in the context 

of the strength of the evidence. Examples of good practice are identified to aid future review 

authors in preparing these reviews. 

 

Chapter 5 describes the assessment of the availability of comparative test accuracy studies, 

and compares meta-analyses of comparative studies (direct comparisons) and meta-analyses 

of non-comparative studies (indirect comparisons). This chapter aims to determine the 

existence and magnitude of discrepancies between meta-analyses of direct and indirect 

comparisons, and to provide empirical evidence of the importance of comparative accuracy 

studies. The meta-analyses used in this empirical evaluation are derived from the cohort of 

reviews identified in Chapter 3. 
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Chapter 6 considers methods for comparative meta-analysis that were identified from searches 

reported in Chapter 3. Chapter 6 aims to describe the properties of the methods such as model 

specification, modelling assumptions, and the advantages and limitations of each method. 

This methodological review will provide an overview of the available comparative meta-

analysis methods and will gaps where appropriate methods are lacking. 

 

In Chapter 7, the performance of methods identified in Chapter 6 that are deemed to be 

methodological rigorous or are frequently used in practice will be empirically evaluated by 

using a subset of the reviews identified in Chapter 3. The evaluation includes investigating the 

impact of alternative methods and modelling assumptions on conclusions in order to identify 

the most appropriate methods and to provide practical guidance for meta-analysts. 

 

Chapter 8 investigates the performance of hierarchical meta-analytic methods in situations 

with few studies or sparse data for a single index test. This is a common problem faced by 

meta-analysts and the aim of this chapter is to identify situations where complex hierarchical 

methods are likely to give model fitting problems and misleading results, and to suggest 

simpler appropriate meta-analytic methods. The meta-analyses in two reviews are used as 

motivating examples and simulation is used to generate datasets that reflect realistic scenarios 

for meta-analyses of test accuracy studies. The performance of seven hierarchical models 

incorporating increasing simplifications is investigated and the chapter concludes with 

recommendations for practice.  

 

Although the main emphasis of this thesis is on test comparisons, the simulation study only 

considers the meta-analysis of a single test. This comprehensive simulation has wide 
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implications and is a necessary preliminary step for establishing the validity of simpler 

models in the context of the evaluation of a single test prior to considering applications to test 

comparisons. This is also important because a comparative meta-analysis is not always 

possible with few studies of one or more of the tests being compared. As such separate meta-

analyses may be required for some tests in addition to the comparative meta-analysis of tests 

with sufficient data. The chapter includes a section on how the results may be generalised to 

test comparisons.  

 

Chapter 9 concludes the thesis by summarising the key findings from Chapters 2 to 8. The 

chapter draws together the various issues addressed in the thesis and seeks to provide a 

coherent summary of both the problems raised and the recommendations that were developed 

based on the thesis findings. The chapter also offers suggestions for future research, and the 

overall limitations and conclusions of the thesis.
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2 METHODOLOGICAL CHALLENGES IN META-ANALYSES OF 
TEST COMPARISONS  
 

A paper based partly on the content of this chapter has been published. 
Citation: Takwoingi Y, Riley R, Deeks J. Meta-analyses of diagnostic accuracy studies in 
mental health. Evidence Based Mental Health 2015; 18:103-109. 
 

 

2.1 Introduction 

The challenges in assessing comparative accuracy in systematic reviews were introduced in 

the previous chapter. Planning and conducting comparative analyses is more complex than the 

analysis of a single test. Comparative meta-analyses require careful consideration of several 

methodological issues such as test selection strategy (i.e. which tests should be compared) if a 

plethora of tests is included in a review; test comparison strategy (direct, indirect or both); 

choice of hierarchical model to use (estimation of summary points or curves); and modelling 

assumptions such as whether the variance parameters for random effects should be allowed to 

depend on test type.  

 

The effect of different modelling assumptions on meta-analytic findings and conclusions 

about the relative accuracy of tests has not been investigated previously. Therefore, using 

seven published systematic reviews56,68-70,95-97 of five target conditions—Plasmodium 

falciparum malaria, Plasmodium vivax or non-falciparum malaria, bipolar disorder, Down’s 

syndrome and common bile duct stones— this chapter describes applications of meta-analysis 

to test comparisons. The seven reviews were chosen to exemplify key methodological issues 

that will be examined further in chapters 4 to 8.  
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Only data and information relevant for context, and the analyses required for highlighting the 

methodological issues are given in this chapter. Although the author conducted the statistical 

analyses reported in the reviews, each review was a collective effort with other individuals 

providing methodological and clinical expertise. An overview of each case study is provided 

in section 2.2. This includes a description of the target condition, review rationale and 

objectives, index tests, and reference standard(s). In section 2.3 each issue is illustrated using 

one or more case studies. Section 2.4 concludes the chapter with a summary of the issues 

raised and sets out the rationale for subsequent chapters. 

 

2.2 Synopsis of case studies 

A brief evidence profile of each review is given in Table 2.1. Each target condition and the 

reviews used as case studies are summarised in the subsections below. The two malaria 

reviews differ only in terms of the target condition and so both reviews are described in the 

same section (section 2.2.1) to avoid duplication. 
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2.2.1 Rapid diagnostic tests for uncomplicated malaria in endemic countries 

Malaria is a life-threatening infectious disease caused by the parasitic protozoan Plasmodium. 

P. falciparum and P. vivax are the two most common species infecting humans. 

Approximately 40% of the world's population is at risk for P. vivax malaria, although 

infection with P. falciparum is associated with the highest mortality among persons with 

malaria.98 Resistance to chloroquine and other antimalarials is more likely for P. falciparum 

than other Plasmodium species, and species identification is important to select appropriate 

treatment.99 Immunochromatographic rapid diagnostic tests (RDTs) are alternatives to 

microscopic diagnosis which is current practice and the reference standard. Timely, high 

quality microscopy (by examination of thick and thin blood films) may be unavailable in 

resource-poor settings and remote areas, but RDTs offer potential benefits through extension 

of rapid diagnosis to such areas. 

 

RDTs use different types of antibody or antibody combinations to detect Plasmodium 

antigens (Table 2.2). Some antibodies aim to detect a particular species while others are pan-

malarial aiming to detect all Plasmodium species. Pan-specific RDTs distinguish P. 

falciparum (or mixed) infections from infections with only non-falciparum species; 

differentiation between non-falciparum species (P. vivax from Plasmodium ovale and 

Plasmodium malariae) is not possible. More recently developed, vivax-specific RDTs can 

detect P. vivax mono-infection or co-infection.99  

 

A single review evaluating RDTs for detecting all species of malaria in people living in 

malaria endemic areas with symptoms of malaria was planned. However, it became apparent 

during the systematic review process that such a publication would be very large and so the 
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review was split into two reviews to enhance readability.95,96 One review assessed the 

accuracy of RDTs for detecting P. falciparum95 while the other review assessed P. vivax and 

non-falciparum.96 The P. falciparum review included 74 unique studies evaluating one or 

more RDTs in a consecutive series of patients, or a randomly selected series of patients.  

Seven studies reported multiple cohorts within a study and presented data separately for each 

different population, giving a total of 85 study cohorts. The non-falciparum review included 

37 unique studies of a similar design as stated above for the P. falciparum review. One of the 

studies included 10 separate cohorts and another study included two cohorts. Altogether, there 

were 47 study cohorts. In both reviews, a few studies assessed the accuracy of RDTs using 

polymerase chain reaction (PCR) as the reference standard, as well as assessing RDTs against 

microscopy. Only evaluations using microscopy as the reference standard were considered in 

this thesis. 

 

Table 2.2| Types of rapid diagnostic tests for detecting malaria 

RDT RDT target antigen 

Type 1 HRP-2 (P. falciparum specific) 

Type 2 HRP-2 (P. falciparum specific) and aldolase (pan-specific) 

Type 3 HRP-2 (P. falciparum specific) and pLDH (pan-specific) 

Type 4 pLDH (P. falciparum specific) and pLDH (pan-specific) 

Type 5 pLDH (P. falciparum specific) and pLDH (P. vivax specific) 

Type 6 HRP-2 (P. falciparum specific), pLDH (pan-specific) and pLDH (P. vivax specific) 

Type 7 Aldolase (pan-specific) 

HRP-2 = histidine-rich protein-2; pLDH = plasmodium lactate dehydrogenase; RDT = rapid 
diagnostic test. 
RDTs use different types of antibody or antibody combinations to detect Plasmodium 
antigens. (Adapted from Abba et al 201195) 
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2.2.2 Screening tests for bipolar spectrum disorders 

Bipolar disorder is a complex chronic condition characterized by periods of mania and 

depression. Bipolar spectrum disorders are frequently under recognized and/or misdiagnosed 

in various settings leading to a long delay in diagnosis from the initiation of affective 

symptoms.100,101 The use of self-report screening instruments for bipolar disorder that are both 

time- and cost-effective may aid in timely diagnosis. The review compared the diagnostic 

accuracy of three screening questionnaires—the bipolar spectrum diagnostic scale (BSDS), 

the hypomania checklist (HCL-32) and the mood disorder questionnaire (MDQ).56  

 

Based on the Diagnostic and Statistical Manual of Mental Disorders 4th Edition (DSM-IV) 

criteria, the reference standards used were the Structured Clinical Interview (SCID), Mini-

International Neuropsychiatric Interview (MINI), Schedules for Clinical Assessment in 

Neuropsychiatry (SCAN), and Schedule for Affective Disorders and Schizophrenia (SADS). 

Fifty three studies conducted in different settings (mental health care and primary care/general 

population) in general adult psychiatric populations were included. Three target conditions 

were considered; defined as bipolar disorder in general (i.e. any type of bipolar disorder), 

bipolar disorder type II (BD-II) and bipolar disorder not otherwise specified (BD-NOS). 

Separate analyses were conducted for each setting and target condition.  

 

2.2.3 Diagnostic tests for common bile duct stones 

Biliary stones are conglomerates of precipitated bile salts that form in the gallbladder or the 

common bile duct. The term ’gallstones’ generally refer to the stones in the gallbladder while 

’common bile duct stones’ refer to stones in the common bile duct. Acute cholangitis is a 
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dangerous complication of common bile duct stones, caused by an ascending bacterial 

infection of the common bile duct and the biliary tree along with biliary obstruction.  

 

As described earlier in section 1.1.2 (also see Figure 1.8), tests recommended for diagnosis of 

common bile duct stones include laboratory liver function tests (LFTs) and imaging tests such 

as abdominal ultrasound, EUS, MRCP, ERCP and IOC.68-70 Of these tests, IOC can only be 

done during an operation because the test requires surgical cannulation of the common bile 

duct during cholecystectomy. The other tests may be used preoperatively or postoperatively. 

The reference standards used were surgical or endoscopic exploration or extraction of stones 

if present, or symptom-free follow up for at least six months in those with a negative index 

test result. 

 

Since the six index tests are likely to be used at different points in the diagnostic pathway as 

illustrated in Figure 1.8, three reviews were performed to compare the accuracy of the pair of 

tests used at each point in the pathway. Five studies were included in the ultrasound versus 

LFTs review,68 18 studies in the EUS versus MRCP review,69 and 10 studies in the ERCP 

versus IOC review.70 

 

2.2.4 Antenatal screening for Down’s syndrome 

Down's syndrome, also known as Down's or Trisomy 21 (T21), is a genetic disorder due to 

having three, rather than two, copies of chromosome 21. The condition is characterised by 

significant physical and mental health problems, and disabilities. As there is no cure for 

Down’s, antenatal diagnosis allows for preparation for the birth and subsequent care of a baby 

with Down’s, or for the offer of a termination of pregnancy. The most accurate tests for 
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Down’s involve testing fluid from around the baby (amniocentesis) or tissue from the 

placenta (chorionic villus sampling (CVS)) for the abnormal chromosomes associated with 

Down’s. However, both tests are invasive and associated with a risk of miscarriage and are 

not suitable for routine screening of pregnant women. Instead, non-invasive tests based on 

serum, urine or ultrasound markers measured in the first and/or second trimester of 

pregnancy, can be used to identify ‘high risk’ women to be referred for definitive invasive 

testing. Older women are known to have a higher chance of carrying a baby with Down’s 

syndrome,102 and so risk calculations are often based on combinations of the screening tests 

and maternal age. 

 

 A review identifying all screening tests for Down's syndrome used in clinical practice, or 

evaluated in a research setting was planned. The aim was to identify the most accurate test(s) 

available, and to provide clinicians, policy makers and women with robust and balanced 

evidence on which to base decisions about interpreting test results and implementing 

screening policies to triage the use of invasive diagnostic testing. Subsequently, the review 

became a suite of five reviews based on a single generic protocol.103 This was done to allow 

for greater ease of reading and accessibility of data, and also to allow the reader to focus on 

separate groups of tests. An overview review comparing the best tests for antenatal Down's 

syndrome screening from amongst commonly used strategies and the best tests from each 

review was planned.  

 

In this chapter, only the review of serum screening tests used in the first trimester of 

pregnancy (up to 14 weeks' gestation) is considered.97 The review assessed the following 18 

individual markers; a disintegrin and metalloprotease 12 (ADAM12), alpha-fetoprotein 
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(AFP), inhibin, pregnancy associated plasma protein A (PAPP-A), invasive trophoblast 

antigen (ITA), free beta human chorionic gonadotrophin (βhCG), placental growth factor 

(PlGF), Schwangerschafts protein 1 (SP1), total hCG, progesterone, unconjugated estriol 

(uE3), growth hormone binding protein (GHBP), placental growth hormone (PGH), 

hyperglycosylated hCG, proform of eosinophil major basic protein (ProMBP), human 

placental lactogen (hPL), free alpha human chorionic gonadotrophin (αhCG), and free ßhCG 

to AFP ratio. These markers can be used individually, in combination with maternal age, and 

also in combination with each other. Twelve different cut-offs were used. Altogether, 78 test 

strategies were assessed in 56 included studies.  

 

2.2.5 Overview of analysis methods 

Comparative meta-analyses were conducted using the meta-regression approach described in 

section 1.5.4.1 for bivariate models and section 1.5.4.2 for HSROC models. The effect of the 

covariate terms for test type on the parameters of the bivariate or HSROC model was 

investigated. Details of the meta-analysis of each case study will be given as appropriate in 

later sections. 

 

The hierarchical models were fitted using the NLMIXED procedure in the SAS software, 

version 9.2 (SAS Institute, Cary, North Carolina); the SAS macro (MetaDAS) which is a 

wrapper for NLMIXED developed by the author;104 or the xtmelogit command in Stata 

versions 10 to 13 (Stata-Corp, College Station, Texas, USA). The NLMIXED procedure fits 

nonlinear and generalized linear mixed models while the xtmelogit command can only fit 

linear mixed effects logistic regression models. Stata does not have a command for fitting 

nonlinear models and so the HSROC models were always fitted in SAS while the bivariate 
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models were fitted using either Stata or SAS. Irrespective of the model fitted or the software 

program used, adaptive Gaussian quadrature was used for the maximum likelihood 

estimation. The default optimization technique in each software program was used—a quasi-

Newton technique in SAS and a Newton-Raphson technique in Stata. The distribution of the 

random effects was always assumed to be normally distributed because both Stata and SAS 

do not have options for alternative distributions.  

 

When the HSROC model was used and asymmetric curves were fitted, estimates of 

sensitivities were obtained from the curves at fixed values of specificity by using equation 

1.19 and the ESTIMATE statement in NLMIXED. The ESTIMATE statement computes 

additional estimates as a function of parameter values and produces standard errors and 

confidence intervals using the delta method. Likelihood ratio tests were used to assess the fit 

of alternative models as described earlier (section 1.5.4.4). Individual study estimates of 

sensitivity and specificity were presented in forest plots and/or SROC plots. Review Manager 

version 5 (The Nordic Cochrane Centre, The Cochrane Collaboration, 2014) was used to 

produce all forest plots and some of the SROC plots. 

 

2.3 Methodological issues 

The case studies focus on the following methodological questions: 

1. What test comparisons should be performed? 

2. Are meta-analytic methods that compare both SROC curves and points needed? 

3. Should a common shape be assumed for the SROC curves across tests? 

4. Is the assumption of equal variances across tests appropriate? 

5. Is meta-analysis of test comparisons feasible with limited data? 
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These questions represent key issues that may be encountered when performing a comparative 

meta-analysis. Each question will be considered in turn and illustrated using at least one of the 

reviews summarised above. 

 

2.3.1 What test comparisons should be performed? 

Test comparisons are not limited to a pair of tests. Therefore, the number of tests assessed in a 

comparative review can be overwhelming, and a decision needs to be made about the tests to 

include in a meta-analysis, and whether more than one meta-analysis is needed. The approach 

adopted in the Down’s review is used to illustrate test selection from a multitude of tests 

(section 2.3.1.1), and the P. falciparum review is used to demonstrate an approach for 

structuring test comparisons (section 2.3.1.2). The availability of comparative studies and the 

feasibility of direct comparisons are considered collectively across the seven reviews (section 

2.3.1.3). 

 

2.3.1.1 Selecting tests and studies to include in a comparative meta-analysis 

Example: First trimester serum tests for Down's syndrome screening 

Due to the large number of test strategies in the Down’s review (total of 78), test strategies 

were selected for further investigation if they were evaluated in four or more studies or, if 

there were two or three studies, but individual study results indicated performance was likely 

to be superior to a sensitivity of 70% and specificity of 90%.97 A sensitivity of 70% was 

chosen because tests used in practice were known to be at least 70% sensitive and a test that 

performed worse than this would be unacceptable. A specificity of 90% (i.e. FPR = 10%) was 

chosen because a test with poorer specificity would lead to more women being incorrectly 

offered invasive testing which carries a risk of miscarriage—national screening policy 
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required tests to have a maximum 5% FPR. Six test strategies were evaluated by at least four 

studies and three test strategies were evaluated by two or three studies but had sensitivity 

greater than 70% at a 5% FPR. Therefore, these nine test strategies were selected for the main 

test comparison. This test comparison will be considered further in section 2.3.1.3. 

 

2.3.1.2 Structuring test comparisons 

Example: Rapid diagnostic tests for uncomplicated Plasmodium falciparum malaria 

In order to provide a coherent description of the studies that contributed to each analysis, the 

results were structured by grouping studies according to their commercial brand within test 

type and then within antibody type (Figure 2.1).95 As such, the test comparisons and 

corresponding meta-analyses in this review were viewed as a hierarchy.  

 

At the lowest level, commercial brands were compared within test types (Types 1, 2, 3, 4, 5 

and 6; see Table 2.2). At the next level, test types were compared. Primary studies reported 

data according to commercial brands and so where more than one brand of the same test type 

was reported, one brand was selected at random to avoid bias due to inclusion of the same 

patients more than once in the analysis.  The highest level comparison compared tests 

according to antibody type. Each antibody type was formed by grouping test types into the 

two groups: Types 1, 2, 3 and 6 were classified as HRP-2 antibody-based tests while Types 4 

and 5 were classified as pLDH antibody-based tests.  The analytical strategy thus compared 

the test accuracy of commercial brands within each test type before making comparisons 

between test types, and then between antibody types.  
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Figure 2.1| Hierarchy of rapid diagnostic tests evaluated against microscopy 
The brand box is blank for Type 6 RDTs because none of the studies evaluated Type 6 RDTs 
against microscopy. 
 

There is reasonable justification for the grouping described above. Evidence about relative 

test performance, in addition to other factors such as local malaria epidemiology and 

resources, can be used to inform decision making for procurement of RDTs. The Plasmodium 

species to be detected is an important consideration in choosing an RDT (see Table 2.2) and 

so knowledge of differences in accuracy between HRP-2 based tests and pLDH based tests, 

and the types within each antibody group, is useful for guiding test selection. HRP-2 based 
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tests are more temperature stable than pLDH based tests and so in environments with 

uncontrolled temperature, the choice of which type or brand of HRP-2 tests to use is of 

practical importance. Over 120 RDTs are commercially available from over 60 companies.105 

Differences in test performance may occur between different brands of RDTs within the same 

type due to differences in format (e.g. cassettes, dipsticks and cards) and ease of use. There 

are also differences in cost, and cassette format RDTs tend to be more expensive than dipstick 

RDTs although they are simpler to use.106 Therefore, information about the relative accuracy 

of different brands within a type is essential for evaluating cost effectiveness. 

 

The issues of selecting tests and studies, and structuring test comparisons were used to 

highlight the complexity of test comparisons and decisions that may need to be made before a 

comparative meta-analysis can be performed.  Careful planning is required prior to 

conducting meta-analysis because decisions made at the planning stage will influence the 

complexity of the models to be fitted. For instance, if there are many tests in the meta-

analysis, it may not be possible to assess the effect of test type on certain model parameters 

leading to modelling assumptions that may be untenable as will be shown later in sections 

2.3.3 and 2.3.4. In Chapter 4, the characteristics of comparative reviews will be examined 

using a cohort of reviews.  

 

2.3.1.3 Availability of comparative studies and feasibility of direct comparisons 

A systematic review may include indirect, direct or both types of comparisons (Figure 1.12). 

In each of the seven reviews, the number of comparative studies was small (see Table 2.1). Of 

the seven reviews, both types of analyses were performed in three reviews56,95,97 while only an 

indirect comparison was possible in three reviews.69,70,96 The remaining review included only 
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five studies, one of which was comparative.68 Therefore, a formal comparison in a meta-

analysis was not possible but a narrative summary was provided. Where both comparative and 

non-comparative studies were included in a review, the indirect comparison was performed as 

the main analysis and a direct comparison as secondary analysis. For a review that included 

more than two tests, a direct comparison was done separately for each pair of tests with 

sufficient data (pairwise comparison).  

 

For the Down’s review, the main analysis was an indirect comparison of the nine selected test 

strategies (see section 2.3.1.1). This test comparison included all 22 studies with relevant data, 

and was followed by pairwise direct comparisons using only studies that compared tests 

within the same participants. Although a separate model was used for each pairwise 

comparison, the comparisons are summarised in the network plot (Figure 2.2) to show the 

evidence base for direct comparisons, as well as indirect comparisons where there was a 

common comparator.  Only 13 of the 22 studies were included in the plot. The remaining nine 

studies only evaluated one of the nine test strategies and so were not included in any of the 

pairwise direct comparisons.  Thus direct comparisons did not make full use of the available 

data. Both the nodes and edges in Figure 2.2 are weighted according to the number of studies 

that evaluated each direct comparison. The size of the nodes indicates that the maternal age, 

PAPP-A, and free βhCG test strategy was the most frequent comparator across studies. 
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Figure 2.2| Comparison of the nine selected first trimester serum test strategies 
n = number of studies that compared a particular test to other tests in the network. 
The network plot shows the direct comparisons and only indirect comparisons where there 
was a common comparator. 
 

Results for all possible pairwise comparisons of the nine strategies are shown as a half‐matrix 

in Table 2.3. Altogether, 36 pairwise comparisons were possible but no comparative study 

was available for13 comparisons while 19 included only one or two studies. 

 

Age, ADAM 12, PAPP-A, free ßhCG (n=2)

Age, PAPP-A (n=5)

Age, PAPP-A, free ßhCG (n=10)

Age, PAPP-A, free ßhCG, AFP (n=2)

Age, PlGF, PAPP-A, free ßhCG (n=2)

Age, free ßhCG (n=6)

Age, free ßhCG, AFP (n=3)

Free ßhCG (n=3)

PAPP-A (n=4)
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Figure 2.3 illustrates a comparison of summary points using the P. falciparum malaria 

review.95 The indirect comparison shown in panel A included 75 HRP-2 based studies and 19 

pLDH based studies. Of these, nine studies compared both tests in the same patients and were 

included in the direct comparison shown in panel B. Table 2.4 gives the summary sensitivities 

and specificities from the direct and indirect comparisons. Both sets of results consistently 

shows that HRP-2 based tests were more sensitive than pLDH based tests, and pLDH based 

tests were more specific than HRP-2 based tests. However, the results of the direct 

comparison are less precise than the indirect comparison due to the limited number of studies.  

 

A. Indirect comparison 

 

B. Direct comparison 

 
Figure 2.3| Comparison of summary points on SROC plots 
HRP-2= histidine-rich protein-2; pLDH= plasmodium lactate dehydrogenase. 
For each test on a SROC plot, each symbol represents the pair of sensitivity and specificity 
from a study. The size of each symbol was scaled according to the precision of sensitivity and 
specificity in the study. The solid circles (summary points) represent the summary estimates 
of sensitivity and specificity for each test. Each summary point is surrounded by a dotted line 
representing the 95% confidence region and a dashed line representing the 95% prediction 
region (the region within which one is 95% certain the results of a new study will lie). The 
indirect comparison included all studies that evaluated any of the tests while the direct 
comparison included only studies that compared both tests in the same patients. 
(Adapted from Abba et al 201195)  
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Table 2.4| Summary estimates from direct and indirect comparisons of HRP-2 based 
RDTs versus pLDH based RDTs for P falciparum malaria 

 Number 
of studies 

Number 
of patients 

Number 
of cases 

Sensitivity 
(95% CI) 

Specificity 
(95% CI)  

Test* 

 Indirect comparison 
   

 

HRP-2 
based RDTs 

75 43,307 12,857 95.0 (93.5–96.2) 95.2 (93.4–96.6)  

pLDH based 
RDTs 

19 14,787 4,674 93.2 (88.0–96.2) 98.5 (96.7–99.4)  

Ratio 
(95%CI); P-
value 

   0.98 (0.94–1.02); 
P = 0.34 

1.03 (1.02–1.05); 
P <0.001 

P = 0.01 

Direct comparison 
HRP-2 
based RDTs 

9 10,626 3,672 95.6 (90.0–98.1) 95.8 (84.7–98.9)  

pLDH based 
RDTs 

9 10,623 3,672 94.8 (84.1–98.2) 98.1 (87.8–99.7)  

Ratio 
(95%CI); P-
value 

   0.99 (0.94–1.04); 
P = 0.60 

1.02 (0.98–1.07); 
P = 0.22 

P = 0.35 

*Statistical significance of the difference in test performance was assessed using a likelihood 
ratio test comparing models with and without covariate terms for test type.  
Sensitivity and specificity are presented as percentages. 
(Adapted from Abba et al 201195) 
 

Figure 2.4 illustrates a comparison of SROC curves using the bipolar disorder review.56 The 

indirect comparison (panel A) included the 44 studies that evaluated the diagnostic accuracy 

of the MDQ (30 studies), the BSDS (8 studies) and the HCL-32 (17 studies) for detection of 

any type of bipolar disorder in a mental setting while the direct comparison of the MDQ and 

HCL-32 included only eight studies (panel B). Three studies directly compared the BSDS and 

MDQ. No study directly compared the HCL-32 and BSDS in a mental health setting. 
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A. Indirect comparison 

 

B. Direct comparison 

 
Figure 2.4| Comparison of summary curves on SROC plots 
BSDS= bipolar spectrum diagnostic scale; HCL-32= hypomanic checklist; MDQ= mood 
disorder questionnaire. 
For each test on a SROC plot, each symbol represents the pair of sensitivity and specificity 
from a study. The size of each symbol was scaled according to the precision of sensitivity and 
specificity in the study. Each summary curve was drawn restricted to the range of specificities 
from included studies that evaluated the test. The indirect comparison included all studies that 
evaluated any of the tests while the direct comparison included only studies that compared 
both tests in the same patients. 
(Adapted from Carvalho et 201456) 
 

For diagnosis of common bile duct stones, only an indirect comparison was possible in the 

ERCP versus IOC review. Five studies evaluated each test. For the comparison of EUS and 

MRCP, 11 studies evaluated EUS alone, five studies evaluated MRCP alone, and two studies 

evaluated both tests. For diagnosis of non-falciparum malaria, only an indirect comparison of 

28 studies (38 study cohorts) of types 2, 3, and 4 RDTs was performed. Five of the 28 studies 

directly compared tests but meta-analyses restricted to direct comparisons were not possible 

because three studies compared type 2 and 3 RDTs, one study compared type 2 and 4 RDTs, 

and one study compared type 3 and 4 RDTs. In the whole review, only seven of the 37 studies 

(47 study cohorts) evaluated more than one RDT brand; one compared four brands, three 

compared three brands and three compared two brands. 
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The various examples illustrated in this section show the paucity of comparative evidence and 

even when comparative studies were available, meta-analysis based solely on comparative 

studies was not always feasible because of limited data. Therefore, the systematic reviews 

mainly relied on indirect comparisons for making inferences about the relative accuracy of 

competing tests. The availability of comparative studies will be extensively investigated in 

Chapter 5 in order to provide empirical evidence of the importance of comparative accuracy 

studies. Furthermore, an empirical assessment of the impact of study design on summary 

estimates of test performance will be conducted to determine the existence and magnitude of 

differences between meta-analyses of direct and indirect comparisons.  

 

2.3.2 Are meta-analytic methods that compare both SROC curves and points needed? 

Test comparisons may be based on a comparison of summary points and/or SROC curves as 

shown in section 2.3.1.3. In the following examples, the choice was influenced by the 

research question and available data. 

 

2.3.2.1 Summary points only 

Example: Rapid diagnostic tests for uncomplicated non-falciparum malaria 

RDTs give a binary test result based on a colour change (visible test line) on a strip to indicate 

the presence of antigens produced by malaria parasites in the blood of infected individuals. 

This is a binary outcome, therefore it is reasonable to focus on the estimation of summary 

sensitivities and specificities (summary points). Also, because a common threshold for the 

judgement of a colour change is assumed, the summary estimates are meaningful and 

clinically applicable. Overall accuracy (measured by the DOR) is not of interest here because 

consequences for missed malaria cases outweigh those for false positives.  
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A bivariate model that included a covariate for test type was used to investigate the 

association of test type with sensitivity and specificity (equations 1.14 and 1.15 in section 

1.5.4.1). The bivariate model was chosen because it directly models sensitivity and specificity 

unlike the HSROC model. Figure 2.5 shows the summary points for the three RDT types on a 

SROC plot. Each summary point is surrounded by a 95% confidence region to show the 

uncertainty around the point estimate, as well as a 95% prediction region to visually illustrate 

the extent of between-study heterogeneity for each test. 

 

 
Figure 2.5| SROC plot of rapid diagnostic tests for non-falciparum malaria 
The solid circles are the summary estimates of sensitivity and specificity for each RDT type, 
and are shown with a 95% confidence region (dotted line) and a 95% prediction region 
(dashed line) around each summary point. The summary point for Type 2 and the 95% 
confidence region for Type 3 are not visible because Type 2 and Type 3 have identical 
summary estimates and 95% confidence regions but their 95% prediction regions differ. The 
size of the symbols for study specific estimates was shrunken to make the summary points 
visible. (Adapted from Abba et al 201496) 
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2.3.2.2 Summary points at fixed specificity 

Example: First trimester serum tests for Down's syndrome screening 

Although studies reported results at different thresholds, it is common in this clinical field for 

studies to report sensitivity (detection rate) at a fixed specificity (usually a 5% FPR). The 

chosen FPR level is determined as the FPR deemed acceptable in a particular screening 

programme. Since all specificities are the same value, there is no need to account for 

correlation between sensitivity and specificity across studies in a hierarchical meta-analytic 

model. The main meta-analysis comparing test accuracy included only studies that used a 5% 

FPR threshold. A univariate random effects logistic regression model (a bivariate model 

reduced to two univariate models as explained in section 1.4.4.1) that allowed for a separate 

variance term for the random effects of logit sensitivity for each test was used.97 Equation 

1.16  was simplified to a univariate model as  

( ) ( )( )2,~ AkkAAAik tvN σµµ +        (2.1) 

where Aikµ is the logit sensitivity for the kth test within the ith study; tk represents the kth test; 

Aµ estimates the expected logit sensitivity for the index test used as the reference category 

(referent test and not reference standard), kAA tv+µ estimates the expected logit sensitivity for 

the kth test, and σ𝐴𝐴𝐴𝐴
2  is the variance of logit sensitivity for the kth test. 

 

Based on all available data for the nine test combinations described above, Figure 2.6 shows 

the point estimates, including confidence intervals, of detection rates for a 5% FPR. For 

example, the plot shows that for the double test with a marker combination of free βhCG, 

AFP and maternal age (labelled G), the estimated detection rate at a 5% FPR was 49% (95% 

CI 39% to 60%) based on data from three studies with 157 affected cases out of 2,992 

participants. The test combinations in Figure 2.6 were ordered according to decreasing 
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detection rates. The single test strategies with and without maternal age (PAPP-A alone; free 

βhCG alone, PAPP-A and maternal age, and free βhCG and maternal age) have the worst 

performance, whereas, the triple test strategies (ADAM 12, PAPP-A, free βhCG and maternal 

age; PAPP-A, free βhCG, AFP and maternal age) have the highest performance.  

 

 
Figure 2.6| Sensitivity (detection rate) at a 5% false positive rate for the 9 selected test 
strategies 
Sensitivity is presented as percentages. Each circle represents the summary sensitivity for a 
test strategy and the size of each circle is proportional to the number of Down's cases. The 
estimates are shown with 95% confidence intervals. The test strategies are ordered on the plot 
according to decreasing detection rate. The number of studies, cases and women included for 
each test strategy are shown on the horizontal axis. A=Age, PlGF, PAPP-A and free ßhCG; 
B=Age, PAPP-A, free ßhCG and AFP; C=Age, ADAM 12, PAPP-A and free ßhCG; D=Age, 
PAPP-A and free ßhCG ; E=Age, PAPP-A; F=PAPP-A; G=Age, free ßhCG and AFP ; 
H=Age, free ßhCG; I=Free ßhCG. 
(Adapted from Alldred et al 201597) 
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2.3.2.3 Summary curves and points 

Example: Screening tests for bipolar disorder– detection of any type of bipolar disorder in 

mental health centre settings 

The total score range from 0–25 points for the BSDS, 0–15 points for the MDQ and 0–32 

points for the HCL-32. The cut-off recommended by the developers of each of the screening 

instruments is 7 for the MDQ,107 13 for the BSDS,108 and 14 for the HCL-32.109 However, 

studies used different cut-offs to define a positive screen for each instrument (Figure 2.7).  
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Figure 2.7| Forest plot of screening tests for detection of any type of bipolar disorder 
(BD type I, BD type II or BD NOS) in mental health centre settings 
FN = false negative; FP = false positive; TN = true negative; TP = true positive. 
The plot shows study specific estimates of sensitivity and specificity (with 95% confidence 
intervals) at a specific cut-off. The studies are ordered according to cut-off and sensitivity.  
(Adapted from Carvalho et al 201556) 
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The diagnostic accuracy of the MDQ, the BSDS and the HCL-32 was compared using a 

HSROC meta-regression model to assess the effect of test type on accuracy, threshold and/or 

shape parameters of the model (see equations 1.17 and 1.18 in section 1.5.4.2).56 The indirect 

comparison included 44 studies (Figure 2.7). Based on the relationship between the HSROC 

and bivariate meta-regression models (section 1.5.4.3), summary points were also estimated 

by applying the HSROC model to only studies that used the recommended cut-off for each 

instrument. The summary estimates are shown in Table 2.5.  

 

Table 2.5| Accuracy of the BSDS, HCL-32 and MDQ for detection of any type of bipolar 
disorder in mental health centre settings 

Instrument Cut-off N Cases Patients Sensitivity 
(95% CI) 

Specificity 
(95% CI) 

BSDS 13 3 474 559 68.8 (63.3–73.7) 85.9 (73.9–92.9) 

HCL-32 14 9 1,845 4,807 81.2 (76.7–85.0) 66.7 (46.7–81.9) 

MDQ 7 19 969 3,220 65.0 (56.8–72.4) 78.8 (72.5–84.0) 

Sensitivity and specificity are presented as percentages. Summary sensitivity and specificity 
are shown for each instrument at the recommended cut-off. 
(Adapted from Carvalho et al 201556) 
 

This example clearly shows that test comparisons may be based on a comparison of summary 

points and SROC curves in the same review. The feasibility of both types of analyses will 

depend on the data available and whether common cut-offs are used in practice. In the bipolar 

disorder review, the choice of a common cut-off was based on recommended cut-offs but may 

be data driven in other scenarios. Although summary points can be estimated for each test at 

each threshold for which data are available, ranking of the sensitivities and/or specificities of 

the tests will not be consistent across thresholds if accuracy depends on threshold. In such 

situations, a comparison of SROC curves is more appropriate if the curve for each test is 

allowed to have its own shape (equation 1.17), thus enabling accuracy to depend on threshold 
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and the crossing of curves. This is evident in Figure 2.4 (panel A) which shows that the 

SROC curves for the three tests cross, indicating no test is consistently more accurate than 

any of the others and relative accuracy depends on threshold. This analysis is discussed 

further in section 2.3.3.1 while Chapter 4 focuses on identifying synthesis methods and test 

comparison approaches that have been used in recent systematic reviews. 

 

2.3.3 Should a common shape be assumed for SROC curves across tests? 

The indirect comparisons performed for detection of any type of bipolar disorder and 

detection of bipolar disorder type II are considered here.  

 

2.3.3.1 Different asymmetric SROC curves 

Example: Screening tests for bipolar disorder – detection of any type of bipolar disorder in 

mental health centre settings 

Using the HSROC model, preliminary assessment of each test separately indicated that the 

curve for each test may have a different shape. A significant association between test accuracy 

and threshold, indicated by the shape parameter (β), was found for the HCL-32 (P <0.001) but 

not for the BSDS (P = 0.24) and MDQ (P = 0.75). Although the Moses SROC regression 

framework suffers from methodological problems as noted earlier in section 1.4.3, it is a 

useful way to graphically explore the relationship between accuracy and threshold. Thus, D 

was plotted against S for each test to visually characterize how test accuracy, measured by the 

diagnostic log odds ratio (D), varies with S, a proxy of the positivity threshold across studies 

(see section 1.4.3 for computation of D and S which are the outcome and explanatory 

variables of the Moses SROC model). For a study with a zero cell, 0.5 was added to each cell 

of the 2x2 table for the study.  
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Figure 2.8 shows the unweighted regression lines of D on S—each test has a different slope, 

i.e., test accuracy depends on threshold. For the MDQ, D increased as S increased while for 

the HCL-32 and the BSDS, D decreased as S increased. Since the slope of the MDQ appears 

to be different to that of the BSDS and HCL-32 and the lines cross, the shape of the SROC 

curve will not be the same for the three tests. The HCL-32 study highlighted in yellow is 

potentially an influential study. This study had the highest DOR of 108 for the HCL-32; the 

DOR for the remaining 16 studies ranged between 2 and 30.  There may also be an influential 

BSDS study (highlighted in blue). The study had a DOR of 92 while the DORs for the 

remaining seven BSDS studies were between 4 and 19. 

 

 
Figure 2.8| Scatterplot of D (log odds ratio) against S (implicit threshold) for the BSDS, 
HCL-32 and MDQ 
An unweighted regression line was fitted for each instrument. The studies highlighted in 
yellow and blue are potentially influential studies for HCL-32 and BSDS respectively. 
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When the three tests were compared in a HSROC model, the ‐2Log likelihood for the model 

that included covariate terms for shape, accuracy and threshold was 814.8 while that of the 

model that included covariate terms for only accuracy and threshold was 827.2. The 

difference in ‐2Log likelihood between the two models was 12.4 (2 degrees of freedom, P = 

0.002).Therefore, there was evidence that the shape of the SROC curves differed. Figure 2.4 

(panel A) shows that the SROC curves for the three instruments cross, a pattern that is 

consistent with the regression lines shown in Figure 2.8. Since the curves are asymmetric and 

do not have a common shape, the relative accuracy of the instruments varies with cut-off and 

the rDOR cannot be used to quantify relative accuracy. The BSDS curve is consistently above 

the MDQ curve in the region containing most of the observed data. The HCL-32 curve is 

above the MDQ and BSDS curve at higher values of specificity, but the curve then crosses 

both the MDQ and the BSDS curves and accuracy is lower at lower values of specificity.  

This is also evident in Table 2.6, which shows the sensitivities estimated from the curves at 

quartiles of the observed specificities in the included studies.  

 

Table 2.6| Comparison of the accuracy of BSDS, HCL-32 and MDQ for detection of any 
type of bipolar disorder in mental health centre settings 

Fixed value of specificity  Instrument Estimated sensitivity (95% CI)  
61 BSDS 86 (74–93) 

HCL-32 82 (78–85) 
MDQ 83 (76–89) 

77 BSDS 78 (69–85) 
HCL-32 78 (73–82) 
MDQ 70 (64–77) 

85 BSDS 71 (62–79) 

HCL-32 74 (68–80) 

MDQ 58 (50–66) 

Sensitivity and specificity are presented as percentages. The sensitivities were estimated from 
the SROC curves at quartiles of the observed specificity in the included studies.  
(Adapted from Carvalho et al 201556) 
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In a sensitivity analysis, the two outliers highlighted in Figure 2.8 were excluded from the 

analysis to assess their impact on conclusions about the shape of the SROC curves.  To begin, 

an analysis was performed separately for the BSDS and HCL-32 to assess the impact on each 

test individually. For the BSDS, the estimated β (standard error) was 0.47 (0.40) when all 

eight studies were included in the analysis, but it was -0.093 (0.31) when the outlier was 

excluded (Table 2.7). There was a notable change in the magnitude of the variance 

parameters, especially the variance of the random effects for accuracy. Similar to the main 

analysis, there was no statistical evidence of asymmetry in the SROC curve based on the 

change in -2Log likelihood of models with and without β (P = 1.0). Although there was a 

difference in the magnitude of the estimated shape parameter, the shape of the SROC curve 

for the BSDS does not appear to be dependent on presence or absence of the outlier.  

 

Table 2.7| Parameter estimates for asymmetric and symmetric HSROC models for the 
BSDS with and without an outlier 

Parameter BSDS all studies BSDS outlier excluded 

 Asymmetric Symmetric Asymmetric Symmetric 

Accuracy 2.52 2.54 2.19 2.20 

Threshold 0.083 -0.178 -0.075 -0.038 

Shape 0.47 0 -0.093 0 

Variance (accuracy) 0.44 0.47 0.058 0.072 

Variance (threshold) 0.34 0.37 0.31 0.30 

BSDS = bipolar spectrum disorder scale 
For a symmetric SROC curve model, the shape parameter was excluded, i.e., assumed to be 
zero. The variance parameters are for the random effects for accuracy and threshold. 
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For the HCL-32, β (standard error) was estimated as 1.33 (0.28) when all 17 studies were 

included in the analysis, but it was 0.85 (0.01) when the outlier was excluded. Similar to the 

main analysis, statistical evidence of asymmetry in the SROC curve was observed in the 

sensitivity analysis (P = 0.01). The effect of assuming symmetry of the SROC curve by 

removing the shape parameter is clearly shown in Table 2.8. When the two outliers were 

excluded and the meta-regression models comparing the three instruments were refitted, the 

difference in -2Log likelihood (777.7–771.0) of models with and without covariate terms for 

β was 6.0 (2 degrees of freedom, P = 0.05). There was still evidence that the shape of the 

SROC curves differed. Thus, the analysis that included all studies was considered robust.  

 

Table 2.8| Parameter estimates for asymmetric and symmetric HSROC models for the 
HCL-32 with and without an outlier 

Parameter HCL-32 all studies HCL-32 outlier excluded 

 Asymmetric Symmetric Asymmetric Symmetric 

Accuracy 3.10 2.17 2.54 1.96 

Threshold 1.21 0.44 0.98 0.55 

Shape 1.33 0 0.85 0 

Variance (accuracy) 0.071 0.65 0.049 0.21 

Variance (threshold) 0.26 0.48 0.16 0.23 

HCL-32 = hypomania checklist 
For a symmetric SROC curve model, the shape parameter was excluded, i.e., assumed to be 
zero. The variance parameters are for the random effects for accuracy and threshold. 
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2.3.3.2 Common asymmetric SROC curves 

Example: Screening tests for bipolar disorder – detection of bipolar disorder type II in mental 

health centre settings 

Seventeen studies evaluated the BSDS (three studies), HCL-32 (five studies) and MDQ (11 

studies) for detection of BD type II (Figure 2.9). Due to limited data for estimation of the 

shape of each SROC curve, the SROC curves of the three tests were assumed to have the 

same shape and rDORs were calculated as a summary of the relative accuracy of two 

screening instruments.  

 

 
Figure 2.9| Forest plot of BSDS, HCL-32 and MDQ for detection of bipolar disorder 
type II in mental health centre settings 
FN = false negative; FP = false positive; TN = true negative; TP = true positive. 
The studies are ordered according to cut-off and study name.  
(Adapted from Carvalho et al 201556) 
 

Figure 2.10 presents the SROC curves for the three instruments. The BSDS was not 

significantly more accurate than the MDQ with an rDOR (95% CI) of 1.7 (0.8 to 3.8, P = 
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0.19). However, there was evidence that the accuracy of the HCL-32 was superior to that of 

the MDQ with an rDOR of 2.0 (1.1 to 3.4, P = 0.018). It should be noted that although the 

three BSDS studies are close together in ROC space, the studies used different cut-offs. A 

curve plotted within the limited range of the specificities of the three studies (68% to 70%) 

was barely visible and so the range was extended slightly beyond the data (66% to 73%) to 

make the curve more visible. An alternative approach could be to exclude the BSDS from the 

test comparison due to limited data. 

 

 
Figure 2.10| Summary ROC plot of the BSDS, HCL-32 and MDQ for detection of 
bipolar disorder type II in mental health centre settings 
For each test, each symbol represents the pair of sensitivity and specificity from a study. The 
size of the symbols is scaled according to the sample size of the study. Plotted curves are 
restricted to the range of specificity for each instrument. 
(Adapted from Carvalho et al 201556) 
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Models that allow for different assumptions about the shape of SROC curves will be 

empirically assessed in Chapter 7 to assess the effect of assuming a common underlying shape 

for the SROC curves of different tests on relative test performance.  

 

2.3.4 Is the assumption of equal variances across tests appropriate?  

Hierarchical meta-analytic models include study-specific random effects to account for 

between-study heterogeneity (see section 1.4.4 and 1.5.4). In a comparative meta-analysis, 

equality of variance parameters is often assumed for different tests whilst allowing other 

model parameters to depend on each test (see equations 1.14 and 1.15 for the bivariate model, 

and equations 1.17 and 1.18 for the HSROC model).23 This assumption is not always justified. 

The objective of this example is to demonstrate discrepancy in summary accuracy measures 

when differences in heterogeneity exist between studies of different tests and equal variances 

are assumed across tests. In addition, the impact of the approach used to deal with inclusion of 

comparative studies in the meta-analysis is shown. 

 

2.3.4.1 Exploring equality of variance parameters across tests  

Example: Rapid diagnostic tests for uncomplicated P. falciparum malaria 

Figure 2.11 shows a SROC plot and a plot of D versus S. The scatter of points on both plots 

suggests that the 65 study cohorts that evaluated Type 1 RDTs are more heterogeneous than 

the 16 that assessed Type 4 RDTs. A separate meta-analysis of each test also indicated 

variances may differ between both tests. 

  



Chapter 2: Methodological challenges in meta-analyses of test comparisons 
 

88 
 

(A) SROC plot of Type 1 and Type 4 RDTs 
 

 

(B) D versus S plot for Type 1 and Type 4 
RDTs 

 
Figure 2.11| Comparison of heterogeneity in test performance for Type 1 and Type 4 
rapid diagnostic tests 
 

Type 1 and Type 4 RDTs were compared by including parameters in the HSROC model to 

allow each RDT type to have a different threshold, accuracy and SROC curve shape.95 The 

impact on the variability of random effects of accuracy and threshold was also investigated. 

For Model 1, variances of the random effects were assumed equal for the two test types, i.e., 

no dependence on test type (equation 1.17 in section 1.5.4.2). For the alternative model, 

Model 2, the variances were allowed to depend on test type (equation 1.20). The two models 

were compared using likelihood ratio tests. Summary sensitivities and specificities were 

derived from the models.  

 

The regression equations, distribution of the random effects (equations 1.17, 1.18, 1.20 and 

1.21 in section 1.5.4.2), and excerpts of the syntax of the analyses done using SAS Proc 

NLMIXED are shown in Box 2.1 for the two models. Only the relevant SAS statements 

where the models differ are shown. See Appendix A.1 for the full SAS program.  
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Box 2.1| SAS Proc NLMIXED code for each model  

 
Only the relevant statements where the models differ are shown. 
 

In the NLMIXED code above, the parms statement defines the model parameters with their 

starting values, logitp specifies the regression equation, and ut and ua are the random effects 

for threshold and accuracy respectively. The variable dis is the disease indicator which takes 

the value 0.5 if diseased and -0.5 if non-diseased, and t4 is a dummy variable which takes the 

Model 1 
Regression equation: same shape for the SROC curves of both tests 
 logit�𝜋𝜋𝐴𝐴𝑖𝑖� = �(𝜃𝜃𝐴𝐴 + 𝛾𝛾𝑠𝑠𝐴𝐴) + (𝛼𝛼𝐴𝐴 + 𝜉𝜉𝑠𝑠𝐴𝐴)𝑑𝑑𝑑𝑑𝑠𝑠𝐴𝐴𝑖𝑖� 𝑒𝑒𝑥𝑥𝑒𝑒�−β𝑑𝑑𝑑𝑑𝑠𝑠𝐴𝐴𝑖𝑖�   

Distribution of the random effects for threshold and accuracy: equal variances for both 
tests 

𝜃𝜃𝐴𝐴~𝑁𝑁�Θ,𝜎𝜎𝜃𝜃2� and 𝛼𝛼𝐴𝐴~𝑁𝑁(Λ,𝜎𝜎𝛼𝛼2)  
    

SAS syntax 
parms alpha=5 theta=1 beta=1 s2ua=2 s2ut=1 alpha_t4=1 theta_t4=0 covt=0 cova=0;

 

logitp= ((theta+ut)+(theta_t4)*t4+(alpha+ua)+(alpha_t4)*t4)*dis) *exp(-

(beta)*dis);
 

random ut ua ~ normal([0,0],[s2ut,0,s2ua]) subject=study_id out=randeffects;
 

 
 

Model 2 
Regression equation: same shape for the SROC curves of both tests 
 logit�𝜋𝜋𝐴𝐴𝑖𝑖� = �(𝜃𝜃𝐴𝐴 + 𝛾𝛾𝐴𝐴𝑠𝑠𝐴𝐴) + (𝛼𝛼𝐴𝐴 + 𝜉𝜉𝐴𝐴𝑠𝑠𝐴𝐴)𝑑𝑑𝑑𝑑𝑠𝑠𝐴𝐴𝑖𝑖� 𝑒𝑒𝑥𝑥𝑒𝑒�−β𝑑𝑑𝑑𝑑𝑠𝑠𝐴𝐴𝑖𝑖�   

Distribution of the random effects for threshold and accuracy: separate variances for 
each test 

�𝜃𝜃𝐴𝐴𝛾𝛾𝐴𝐴
�~𝑁𝑁��𝚯𝚯𝚪𝚪� ,�

σθ2 σθσγ
σθσγ σγ2

� � and �
𝛼𝛼𝐴𝐴
𝜉𝜉𝐴𝐴 �~𝑁𝑁��𝚲𝚲𝚵𝚵� ,�

σα2 σασξ
σασξ σξ

2 � � 

SAS syntax 
parms alpha=5 theta=1 beta=1 s2ua=2 s2ut=1 alpha_t4=1 theta_t4=0 s2ua4=1 s2ut4=1 

covt=0 cova=0;
 

logitp= ((theta+ut)+(theta_t4+ut4)*t4 +((alpha+ua)+(alpha_t4+ua4)*t4)*dis)*exp(-

(beta)*dis);
 

random ut ua ut4 ua4 ~ 

normal([0,0,0,0],[s2ut,0,s2ua,covt,0,s2ut4,0,cova,0,s2ua4]) subject=study_id 

out=randeffects;
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value 1 for Type 4 and 0 for Type 1. The random statement specifies the random effects 

which are assumed to be independent and normally distributed. The variance parameters for 

the random effects for accuracy and threshold are s2ua and s2ut, respectively. The covariance 

parameters for the random effects are covt and cova for accuracy and threshold. NLMIXED 

assumes that a new realization of the random effects occurs whenever the value of the 

variable identifying each study (subject=study_id) in the dataset changes from the previous 

one. Therefore, the dataset was sorted by study_id and the variable for test type before 

running NLMIXED. The code for Model 2 includes two additional random effects ua4 and 

ut4 in the model equation and random statement, with variance parameters s2ua4 and s2ut4. 

 

Model 2 had a better fit (‐2Log likelihood = 1092.4) than Model 1 (‐2Log likelihood = 

1152.4), with strong statistical evidence (chi‐square = 60.0, 2 degrees of freedom, P <0.0001) 

of a difference in variances of the random effects between the two test types. The sensitivity 

of Type 4 RDTs derived from the model with equal variances (Model 1) did not reflect the 

data, and differed from that of the model with separate variances (Model 2) by 5.5% (Table 

2.9). The difference in sensitivity between Type 1 and Type 4 RDTs was statistically 

significant (P <0.001) in Model 1 but not in Model 2 (P = 0.20). Between models, little or no 

difference in specificities for either test type was observed. This case study shows that 

assuming common variances across tests may give biased estimates, invalid precision and 

misleading conclusions. In this case, more complex and appropriate assumptions about the 

variance parameters led to more conservative differences. Using one of the cohorts of reviews 

identified in Chapter 3, other examples will be examined in Chapter 7 to determine the 

feasibility of such complex analyses, and the validity of the common practice of assuming 

equal variances across tests.
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2.3.4.2 Approaches for dealing with comparative studies in a comparative meta-analysis 

The approach for handling studies that report the accuracy of more than one test in a 

comparative meta-analysis may affect the estimation of variance parameters and standard 

errors. In one approach, coined here as the between-study comparative approach, comparative 

studies are regarded as different studies in the analysis and so test results are analysed 

between-study at level two of the hierarchical model. This can be written as  
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where Aikµ and Bikμ are the logit sensitivity and logit specificity for the kth test in the ith study; 

tik is the kth test in the ith study; Aµ and Bμ  estimate the expected logit sensitivity and logit 

specificity for the index test used as the reference category, ikAA tv+µ and ikBB tvμ +  estimate 

the expected logit sensitivity and logit specificity of the kth test. The variances are 

σ𝐴𝐴2 and σ𝐵𝐵2   for the logit sensitivities and logit specificities, and σ𝐴𝐴𝐵𝐵2  is the covariance between 

the logits across studies. Each test result from a comparative study is treated as if obtained 

from a different study and so this approach is not recommended if the number of comparative 

studies is large because it can lead to inappropriate standard errors.23  

 

A second approach, coined here as the within-study comparative approach, takes each 

comparative study into account by analysing test results within the study at level two of the 

hierarchical model. This is the model expressed in equation (1.15), written as 
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where Aiµ and Biμ are the logit sensitivity and logit specificity for each test within the ith 

study and tk represents the study level covariate for test type. This approach was used for all 
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the case studies in this thesis. The approach does not account for correlation between test 

results in studies that used a paired design but rather implies independence or a randomized 

design. This is a conservative approach.  Nevertheless, as previously noted in section 1.5.2.1, 

studies do not often present the paired results of tests cross classified within the diseased and 

non-diseased groups. 

 

The effect of a between-study approach on the variance parameters and summary sensitivities 

and specificities of Type 1 and Type 4 RDTs was investigated. Of the 74 study cohorts (65 for 

Type 1 and 16 for Type 4) in the meta-analysis, seven were comparative studies. For the 

within-study approach (Model 1 and Model 2 in the previous section), studies were sorted 

first by study identifier and then by test type but for the between-study approach, studies were 

sorted first by test type and then by study identifier.  The meta-analyses performed for Model 

1 was subsequently repeated to obtain the results shown for Model 3 in Table 2.9. The results 

from Model 3 were similar to those from Model 1. This finding is likely due to the small 

number of comparative studies in the meta-analysis. The extent to which results will vary 

with number of comparative studies is unknown. The impact of adopting a between-study or 

within-study approach will be investigated further in Chapter 7.  

 

2.3.5 Is comparative meta-analysis feasible with few studies or sparse data?  

Model estimation problems, such as unreliable parameter estimates or lack of model 

convergence, can occur in hierarchical meta-analytic models with small number of studies or 

sparse data. Sparse data typically arise in meta-analysis of very accurate tests where most of 

the studies have little or no test errors in the diseased (false negatives) and/or non-diseased 

(false positives) groups. This may be likened to multivariate meta-analysis of correlated rare 
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events in intervention reviews. In sparse data situations where a large proportion of studies 

have 100% sensitivity and/or specificity as shown in Figure 2.12, or when studies are few, the 

variance-covariance parameters are often on the boundary of the parameter space.110,111 The 

maximum likelihood estimate on the boundary will have at least one of the variances in an 

HSROC model equal to zero or the correlation parameter in a bivariate model equal to +1 or  

–1. Model estimation problems will be discussed in more detail later on in the thesis when 

meta-analysis of few studies and sparse data is investigated in a simulation study in Chapter 8.  

 

It is apparent from all the examples in this chapter that comparative studies tend to be few. 

Also, one test may have been evaluated less often than others. As such a direct comparison is 

likely to include few studies, or an indirect comparison may include few studies of one or 

more of the tests. Regardless of the type of test comparison, there is no recommended 

minimum number of studies for each test in a comparative meta-analysis. Given the potential 

number of parameters that can be included in such an analysis, careful consideration should 

be given to the feasibility of an analysis as well as the degree of model complexity. 

 
Figure 2.12| Forest plot of endoscopic retrograde cholangiopancreatography (ERCP) 
and intraoperative cholangiography (IOC) for diagnosis of common bile duct stones 
Studies are ordered by sensitivity and study identifier.  
(Adapted from Gurusamy et al 201570) 
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2.3.5.1 Simplifying variance-covariance matrices   

Example: ERCP versus IOC for common bile duct stones 

Five studies assessed ERCP and five assessed IOC. None of the studies were comparative. In 

preliminary analyses, a separate bivariate model was fitted for each test using the Stata 

xtmelogit command. When the covariance matrix for the random effects for logit sensitivity 

and logit specificity was unstructured (Model A)—i.e. no constraints imposed so that the 

variances and covariance were uniquely estimated as in equation 1.8—the variances were 

poorly estimated, especially the variance parameter for the logit sensitivity of IOC. The forest 

plot (Figure 2.12) shows that most of the IOC studies had a sensitivity of 100% while most of 

the ERCP studies had a specificity of 100%. It is unsurprising that the variances were poorly 

estimated given the small number of studies and sparse data. 

 

Alternative models were investigated as shown in Table 2.10. In Model B, the exchangeable 

covariance structure estimated a common variance and a covariance for the random effects of 

the logit sensitivity and logit specificity of each test. The independent covariance structure 

used in Model C estimated distinct variances for the random effects of the logit sensitivities 

and logit specificities of both tests but the covariances were assumed to be zero. Model D 

included only one variance parameter per test; one for the random effects of the logit 

sensitivity of ERCP and one for the random effects of the logit specificity of IOC. Therefore, 

no covariances were estimated in Model D.  
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An indirect comparison of ERCP and IOC was subsequently performed using a bivariate 

meta-regression model. Based on results of the preliminary analyses shown in Table 2.10, an 

exchangeable covariance structure was assumed for the variances of the random effects and 

the variance-covariance matrix was allowed to depend on test type. This implies that the 

variance of the random effects for logit sensitivity is the same as that of the logit specificity of 

each test. Likelihood ratio tests were used to compare the fit of different models. To check the 

robustness of the assumptions about the variances of the random effects, the estimates of 

sensitivity and specificity were also compared between models. The Stata program for fitting 

all the models is included in Appendix A.2.  

 

The analytical approach adopted here was based on the reasoning that it is inappropriate to 

overfit models by estimating too many parameters from few studies, and to simplify models 

when parameter estimates cannot be reliably estimated. The importance of choosing an 

appropriate model will be demonstrated through a simulation study in Chapter 8. The 

simulation study addresses meta-analysis of a single test. However, the results will be 

generalised to test comparisons, informed by results in Chapter 7 from empirical evaluations 

of test comparisons with few studies or sparse data due to highly accurate tests. 

 

2.4 Summary 

The seven reviews highlighted the complexity of systematic reviews and meta-analyses of test 

comparisons. Review complexity increases with increasing number of tests, target conditions, 

and/or target populations within a single review. Therefore a strategy is needed for structuring 

the analyses and presenting the review to enable clarity for readers. Although the reviews 
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addressed different target conditions and test types, a common issue was the scarcity of well-

designed comparative studies. Therefore an indirect comparison was the main analysis in the 

six reviews where a comparative meta-analysis was performed. In the remaining review 

comparing ultrasound and LFTs, only a meta-analysis of ultrasound was possible. Using the 

cohorts of reviews identified in the next chapter, these and other issues will be investigated 

further in chapters 4 and 5.  

 

Only hierarchical (bivariate or HSROC) meta-regression models were used for meta-analyses 

in all examples.  The models that were applied varied in complexity from models that 

assumed a simpler variance-covariance structure to a more complex unstructured one that was 

also allowed to depend on test type. The importance of allowing for asymmetry in the SROC 

curves, and the need for methods that enable estimation of summary points and/or curves was 

also demonstrated. It is clear that the available data is likely to drive the choice of a meta-

analytic method. This makes pre-specification of a method in a systematic review protocol 

challenging if little is known about the clinical question and literature. The nuances of this 

meta-regression approach will be examined in Chapter 7.  

 

The use of a within-study or between-study approach for including comparative studies in a 

meta-analysis was also highlighted. This is a potentially important but little known issue. 

Where applicable, the impact of the approaches will be evaluated in Chapter 7 using meta-

analytic models that do not directly account for comparative data, and the findings will be 

compared with those of models that explicitly account for comparative data if such models are 

identified from the searches reported in Chapter 3. The performance of all the methods 

identified will be empirically assessed using a cohort of reviews.  



Chapter 2: Methodological challenges in meta-analyses of test comparisons 
 

99 
 

 

Sparse data due to frequent zero cells in 2x2 tables and small numbers of studies are not 

limited to meta-analysis of a single test as shown by the review of ERCP versus IOC. 

Simplifying hierarchical models seemed to be a reasonable approach to avoid estimating too 

many model parameters from very little data. Although the simulation study in Chapter 8 

focuses on meta-analyses of a single test, the findings may be applicable to comparative meta-

analyses in certain situations and will be discussed in the chapter. 

 

The challenging issues discussed in this chapter were discovered while doing the reviews, and 

solutions were developed based on theoretical and pragmatic reasoning due to lack of 

evidence based guidance.  The analytical approaches used in completing the reviews were 

based on what were thought to be statistical best practice. Therefore, the rest of the thesis will 

seek to understand whether the issues are common and to identify approaches other 

researchers have used (Chapter 4) and available comparative meta-analysis methods (Chapter 

6), and through empirical studies (Chapters 5 and 7) and simulation (Chapter 8) contribute to 

the evidence base to support reviewers and meta-analysts tackling these and similar problems 

in the future.  
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3 IDENTIFYING SYSTEMATIC REVIEWS AND META-
ANALYTIC METHODS FOR TEST COMPARISONS   

 

 

3.1 Introduction 

The aims of this chapter are to identify systematic reviews that evaluated at least two index 

tests and articles which describe meta-analytic methods for comparing test accuracy. The 

reviews are used in Chapter 4 to provide an overview of data synthesis methods and reporting 

of test comparisons in published reviews, and in Chapter 5 to determine if discrepancies exist 

between meta-analyses of direct and indirect comparisons. The meta-analytic methods 

identified in this chapter are described in Chapter 6, and their performance is empirically 

assessed in Chapter 7 using a subset of the reviews.  

 

In section 3.2, terminology for different types of test accuracy reviews is defined, and the 

search strategy and selection process for identification of the cohort of reviews for the thesis 

is described. Section 3.3 details the methods for identification of meta-analytic methods for 

test comparisons. The results of both searches are presented in sections 3.4 and 3.5 for the 

cohort of reviews and meta-analytic methods, respectively. The final section, section 3.6, 

summarises the results and the strengths and limitations of the searches.  

 

3.2 Identification of systematic reviews 

To provide empirical data and to find suitable motivating datasets for Chapters 4, 5 and 7 of 

this thesis, it was necessary to search for systematic reviews that assessed the accuracy of two 

or more tests. Comparative studies included in these reviews also need to be identified in 

order to determine their availability and thus gain an appreciation of the evidence base for test 



Chapter 3: Identification of systematic reviews and meta-analytic methods 

101 
 

comparisons. The availability of comparative studies is considered in Chapter 5 and so the 

identification of these studies from a review cohort will be deferred to that chapter. 

 

3.2.1 Terminology 

There is no standard terminology for different types of diagnostic test accuracy systematic 

reviews. The term comparative accuracy review is used in this thesis to describe a review that 

met at least one of the following four criteria: (1) clear objective to compare the accuracy of at 

least two tests; (2) selected only comparative studies; (3) performed statistical analyses 

comparing the accuracy of all or at least a pair of tests; or (4) performed a direct (head-to-

head) comparison of two tests. Reviews that assessed two or more tests but did not meet any 

of the four criteria were termed a multiple test review. Multiple test reviews have a wide 

focus, aiming to summarise the accuracy of different tests for the same target condition. Such 

reviews assess each test individually without making formal comparisons between tests and 

often involve a large number of tests such as signs and symptoms from clinical examination. 

An example is a review on tests that can be performed or are accessible in primary care for 

diagnosis of inflammatory bowel disease.112 The review included 24 studies on 50 tests. The 

tests included (1) signs and symptoms (including alarm symptoms), individual or in 

combination (including symptom-based classification systems); (2) blood and faecal tests; and 

(3) abdominal ultrasonography. Multiple test reviews may be likened to reviews of 

interventions that include multiple pairwise comparisons without a network meta-analysis to 

formally compare and rank the effectiveness of the interventions. In Chapter 4, characteristics 

will be presented separately for comparative and multiple test reviews. 
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3.2.2 Data sources and searches   

Systematic reviews of test accuracy were identified in the Database of Abstracts of Reviews 

of Effects (DARE) and the Cochrane Database of Systematic Reviews (CDSR issue 11, 

2012). DARE is regarded as the most comprehensive source of systematic reviews  and was 

produced by the Centre for Reviews and Dissemination (CRD) between 1994 and March 

2015. DARE is based on extensive searches of a wide range of databases and grey literature, 

and contains over 13,000 critically appraised abstracts.113 Reviews undergo quality appraisal 

before inclusion in DARE, and they must meet the first 3 criteria and at least 4 criteria in total 

from the following list: 

1. Were inclusion/exclusion criteria reported?  

2. Was the search adequate? 

3. Were the included studies synthesised? 

4. Was the quality of the included studies assessed?  

5. Are sufficient details about the individual included studies presented?  

 

Reviews published between 1994 and 2002 were identified from previous projects.94,114 The 

CRD’s in-house content management system (CMS) was used to identify reviews published 

between January 2003 and October 2012 that had a structured abstract. A CRD database 

production manager performed the search in the CMS by searching the fields for record type 

(diagnostic review or not), publication status (fully published with a structured abstract or 

provisionally published without an abstract), and record date (1st January 2003 to 31st October 

2012). The search results were provided in a tagged text file for import into an EndNote 

(reference management software) library. An EndNote filter for DARE records was also 

provided by the CRD to enable the import.  
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Although DARE contains details of all Cochrane reviews, structured abstracts were not 

prepared for Cochrane reviews by the CRD hence the need to search the CDSR separately. 

The CDSR is a limited resource because the Cochrane Library only began publishing 

Cochrane DTA reviews in 2008.32 At the time of the search in October 2012, the CDSR 

contained eight Cochrane DTA reviews and so the records were easily identified. The records 

obtained from the CDSR were exported as a text file and imported into the same EndNote 

library containing the DARE results. All searches were performed without restrictions on 

language of publication, test type, purpose of the test (for example, screening, staging, 

diagnosis, etc.), setting, or disease area.  

 

3.2.3 Selection of reviews 

Abstracts were screened to identify potentially relevant reviews before retrieval of full text 

articles. Reviews were selected for inclusion in stages according to the objectives of the 

thesis. For the first stage, the screening form in Appendix B.1 was used to select reviews for 

inclusion in the overall cohort for the thesis. The following criteria were applied: 

1. Evaluated the diagnostic accuracy of at least two tests 

2. Included at least one meta-analysis 

3. Full text article could be retrieved 

4. Data available on studies included for the evaluation of each test to enable assessment 

of study design 

In the next stage, additional criteria were applied to select reviews for the review of reviews 

presented in Chapter 4 and for each of the two empirical projects considered in chapters 5 and 

7. The eligibility criteria for each cohort are reported separately below.  For each cohort, a 
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random subset of half the reviews judged to be eligible was double checked by a second 

researcher to confirm eligibility. 

 

3.2.3.1 Eligibility criteria for review cohort for chapter 4 

The focus of Chapter 4 is to summarise the characteristics of statistical methods and their 

reporting, including the presentation of test accuracy estimates from the included studies and 

pooled estimates from meta-analyses. Key advances in methodology for DTA reviews 

(including literature searching, quality assessment and meta-analysis) were published between 

1993 and 2005.32 For this reason, and to make allowance for dissemination of methods, 

selection was limited to a five-year period from January 2008 to October 2012. Thus 

systematic reviews that were likely to reflect current practice were considered in the review of 

reviews in Chapter 4. 

 

3.2.3.2 Eligibility criteria for review cohort for chapter 5 

Chapter 5 focuses on the assessment of the availability of comparative studies and 

investigation of differences between meta-analyses of direct and indirect comparisons. Where 

there were multiple reviews of the same tests for the same target condition in the same 

population, only the most recent review was included in the cohort of reviews. This was done 

to avoid double counting comparative studies and to limit overlap of similar pairs of meta-

analyses in the comparison of meta-analyses of non-comparative studies with those of 

comparative studies. Where more than two tests were evaluated in a review, each possible 

paired comparison of tests was considered separately. 
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3.2.3.3 Eligibility criteria for review cohort for chapter 7 

The focus of Chapter 7 is on the empirical assessment of meta-analytic methods for test 

comparisons. Only reviews that evaluated two tests were considered. Pairwise comparisons 

can also be made using reviews with more than two tests but the restriction was imposed to 

make the project manageable. In addition to the number of tests, the reviews had to provide 

2x2 data for each test evaluated in the included studies or data that enabled their derivation. 

 

3.3 Identification of methods for meta-analysis of comparative accuracy  

3.3.1 Data sources and searches   

Diagnostic research literature is poorly indexed and difficult to locate. Therefore searches of 

electronic bibliographic databases such as MEDLINE and EMBASE were considered an 

inefficient way to identify papers on methods for comparative meta-analysis. Instead, two 

systematic review methodology databases—the Cochrane Methodology Register (CMR) and 

the US Agency for Healthcare Research and Quality (AHRQ) Effective Healthcare Program’s 

Scientific Resource Center (SRC) Methods Library—were searched.  

 

Both the CMR and SRC databases contain published and unpublished (conference abstracts) 

literature collated from systematic literature searches using electronic sources and hand 

searching. In addition, the CMR includes book chapters and reports of ongoing 

methodological research.115 The CMR is one of the databases available in The Cochrane 

Library. However, the database is no longer being updated; the last submission was in July 

2012 with data from 1985 to March 2012.116 The CMR is a comprehensive database that 

predates the SRC Methods Library, and has an archive of 15,764 records.117 The rationale for 

considering unpublished literature was so that authors could be contacted if an abstract was 
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found to be potentially relevant. The CMR contains only articles related to systematic review 

methodology while in addition the SRC Methods Library contains articles related to 

comparative effectiveness research methodology. Searching the SRC Methods Library as an 

adjunct to the CMR enabled identification of articles published since the last update of the 

CMR and articles missed in the CMR.   

 

The CMR was searched on 24 July 2014 via the Cochrane Library 2014 (Issue 7).  Following 

advice from an information specialist who contributed to the production of the CMR, the 

‘Advanced Search’ functionality on the Cochrane Library was used with the search limited to 

‘Keywords’. The combination of the keywords “diagnostic test accuracy” AND “meta-

analysis” was used to identify records that had been coded specifically as methods papers on 

diagnostic test accuracy meta-analysis. The list of results from the CMR was obtained by 

selecting the ‘Methods Studies’ option. Using the terms “diagnostic test” and “meta-analysis”, 

the SRC Methods Library was searched in-house by an SRC research librarian on 31 July 

2014. The search results were provided in a .ris file for upload into an EndNote library 

bibliographic database. 

 

To augment the database searches, methodological experts and research groups known to 

have an interest in meta-analytic methods for test accuracy were contacted regarding ongoing 

work or papers in press. A similar approach had been used successfully to identify additional 

literature for a methodology review.114 A database of published and unpublished 

methodological studies was thus assembled from a variety of sources. Additionally, the 

methods section of systematic reviews identified in section 3.5 for the cohort of reviews 
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assessed in Chapter 4 will be examined for novel methods or modifications of existing 

methods. 

 

3.3.2 Selection of methodology studies   

After removal of duplicates, titles and abstracts identified by the search were screened to 

identify potentially relevant studies. Papers were initially selected for inclusion if they 

proposed a novel method for meta-analysis of diagnostic accuracy. Papers that extended, 

evaluated or explained the properties of an existing method were also considered. Following 

this initial assessment, full text reports were retrieved for further assessment of eligibility. In 

this second and final stage, only papers that considered a method for comparative meta-

analysis were included. The selection process was not verified by a second researcher because 

it was obvious whether or not a paper described a meta-analytic method for test comparisons. 

 

3.4 Search results for systematic reviews   

The flow of reviews through the screening process and reasons for exclusion are shown in 

Figure 3.1. The searches identified 1023 reviews, of which 914 evaluated test accuracy and 

466 (51%) included results for two or more tests. Of these, 286 met the main inclusion 

criteria. Due to the search period for the reviews, only one of the reviews95 described in 

Chapter 2 was part of this cohort. For the Chapter 4 cohort, 130 reviews published between 

2008 and 2012 were identified. For 38 of the 286 reviews, there was a more recent review on 

the same review question and so the cohort for Chapter 5 included 248 reviews. In 101 of the 

286 reviews, only two tests were evaluated. These reviews formed the cohort for Chapter 7. 

Additional selection criteria and the characteristics of the final cohort used for each 

assessment are described within the relevant chapter. 
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Figure 3.1| Flowchart of selection of systematic reviews 
Several reviews were eligible for inclusion in more than one cohort and so the three cohorts 
do not sum up to 286. 
(Adapted from Takwoingi et al 201371) 
 

 

Excluded because reviews of a single test (n = 448) 

 

 

Diagnostic reviews with 
structured abstract in DARE, 

1994 to October 2012  
(n = 1016) 

Reviews excluded (n = 152) 
No meta-analysis: 130 
Full text not available: 20 
No studies found: 2 

 

Excluded because not test accuracy review (n = 109) 

Cochrane diagnostic test accuracy 
reviews in Issue 11, 2012  

(n = 7) 

Excluded because no data to assess study design (n = 28) 

 

Full text reviews 
retrieved for initial 
assessment of study 
design (n = 314) 

Reviews that 
evaluated two or 
more tests identified 
(n = 466) 
 

Reviews where 
comparative and/ or 
non-comparative 
studies were eligible 
(n = 286) 

Chapter 4 cohort 
Reviews published 
between 2008 and 
2012 (n = 130) 

Chapter 5 cohort 
Reviews unique in terms of tests 
for the same target condition in 
the same population (n = 248) 

Chapter 7 cohort  
Reviews that 
evaluated only 
two tests (n = 101) 
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3.5 Search results for meta-analytic methods  

The flow of articles through the screening process and reasons for exclusion are shown in 

Figure 3.2. The searches identified 395 unique titles and abstracts, of which 48 appeared to be 

about meta-analytic methods for test accuracy. Of the 48 papers, 11 presented a method for 

comparative meta-analysis. Three of the 11 papers explained or adapted an existing method 

while the remaining eight were original papers. Contact with methodological experts at the 

Universities of Amsterdam, Sydney, Düsseldorf, Minnesota, and Brown University yielded 

two conference papers, a PhD thesis and one manuscript under peer review. The manuscript 

was excluded because it was shared confidentially, and was yet to be published as at 22 July 

2015 when data extraction began. Two relevant papers were identified from the thesis. Both 

papers were systematic reviews with a detailed account of the novel approach that was used 

for comparative meta-analysis. Altogether, 13 papers and two presentations describing 13 

methods were included.  
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Figure 3.2| Flowchart of selection of reports of meta-analytic methods 
 

 

Duplicates excluded (n = 80) 

Scientific Resource Center 
Methods Library 

(n = 339) 

Excluded (n = 347) 
Abstract unavailable: 8 
Not diagnostic accuracy: 70 
Methods for primary studies of 
diagnostic accuracy: 163 
Methods for systematic reviews but not 
meta-analytic method: 106 

 

Cochrane Methodology Register, 
Cochrane Library 2014 (Issue 7) 

(n = 136) 

Meta-analysis of a single test (n = 37) 

 

Full text retrieved for 
assessment (n = 48) 
 

Contact with methodological experts 
Meta-analysis of 
comparative accuracy 
(n = 11 [9 methods]) 

Titles and abstracts 
screened (n = 395) 
 

Papers with methods for comparative 
meta-analysis (n = 13 [11 methods]) 

 Conference presentations 
(n = 2 [2 methods]) 

Systematic reviews with novel 
methods identified from a PhD 
thesis (n = 2 [2 methods]) 

Papers with methods for comparative 
meta-analysis (n = 15 [13 methods]) 
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3.6 Discussion  

3.6.1 Summary of findings   

The search identified 466 systematic reviews that evaluated at least two tests. Only two 

reviews were empty, i.e., no studies were included and a meta-analysis was not included in 

many reviews (130/466, 28%). Altogether, 269 of the 286 reviews that met the main inclusion 

criteria were included across the three cohorts for Chapters 4, 5 and 7. The reviews will be 

used to provide an overview of current practice in Chapter 4, and for empirical evaluations in 

chapters 5 and 7. The characteristics of the reviews in each cohort will be presented in each 

chapter. 

 

Nine meta-analytic methods for test comparisons were identified from the 395 titles and 

abstracts screened during the search for methods papers. These methods as well as the four 

identified from other sources will be examined in detail in Chapter 6. 

 

3.6.2 Strengths and limitations   

Using DARE facilitated the identification of a large number of DTA reviews across a wide 

range of clinical topics and test types. Some reviews may have been missed but the number of 

reviews identified is likely to ensure qualitative saturation of the various issues and current 

standards that will be explored in later chapters. Identifying method papers is not trivial 

because of the lack of standard terminology. Using the CMR and the SRC Methods Library 

enabled a focused and resource-efficient search. Contacting methodological experts proved 

useful in identifying ongoing work as well as any relevant published work that may have been 

missed, thus providing reassurance that the search was comprehensive and no relevant paper 

was missed. Unlike the systematic reviews, the method papers were not double checked 
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because it was obvious that excluded papers described methods for meta-analysis of a single 

test. 

 

3.6.3 Conclusions   

The large number of included reviews will facilitate a detailed examination of the issues 

addressed in the thesis, including the empirical evaluation of the performance of the meta-

analytic methods. 
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4 REVIEW OF PUBLISHED SYSTEMATIC REVIEWS OF 
COMPARATIVE TEST ACCURACY 

  

 

4.1 Introduction 

Test evaluation is often limited to the assessment of test accuracy. Therefore, it is vital that in 

the rapidly expanding evidence base, systematic reviews and meta-analyses that compare the 

accuracy of two or more tests are conducted appropriately to avoid misleading conclusions 

and recommendations. Furthermore, it is essential that the reviews are well reported to 

facilitate transparency and credibility. To the author’s knowledge, a comprehensive overview 

of data synthesis methods and presentation of results in reviews of comparative accuracy has 

not been undertaken.  

 

Using reviews identified in Chapter 3, the overarching aims of this chapter is to assess current 

usage of data synthesis methods in reviews that evaluated at least two tests; to examine 

reporting characteristics of the methods and findings in order to highlight deficiencies and 

good practice; and to propose recommendations for improving the reporting of future reviews. 

Specifically, this survey of recent reviews aimed to address the following research questions: 

1. What summary measures are used in DTA systematic reviews?  How often are 

alternatives to sensitivity/specificity used, and what are the alternatives? 

2. Do DTA reviews plan to use comparative studies when they are available?  What 

strategies are used to support best use of available evidence? 

3. Do reviews use statistical methods which account for correlated bivariate data, and 

both within- and between-study heterogeneity?  If not, what methods are used and 

what limitations do they have? 
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4. Do reviews use statistical methods that estimate differences between tests and evaluate 

statistical significance?  If not what methods are used? 

5. Do reviews investigate heterogeneity? 

6. Do reviews report: 

a. Objectives for a comparative question; 

b. Types of studies used for test comparisons ; 

c. Strategy used for comparing tests; 

d. Statistical methods; 

e. Study characteristics; 

f. Study findings; 

g. Limitations of using indirect comparisons? 

 

Several guidelines exist for the conduct of systematic reviews of test accuracy including the 

Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy.118 In contrast, 

there is no specific guideline for reporting DTA reviews and meta-analyses. While the 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist 

designed for systematic reviews of interventions119 can be used, it is inadequate for DTA 

reviews, especially those that compare test accuracy given the complexities illustrated in 

Chapter 2. Extensions to the PRISMA statement have been developed or suggested for other 

types of reviews and meta-analyses such as individual patient data (PRISMA-IPD),120 adverse 

events (PRISMA harms),121,122 overviews,123 and network meta-analysis.93,124  Similarly, an 

extension for DTA reviews (PRISMA-DTA) needs to be developed.  
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The chapter is structured as follows. In section 4.2, the methods for data extraction from the 

cohort of reviews identified in section 3.4 are described. The section also describes the 

methods for data analysis. The methodological and reporting characteristics of the reviews are 

summarised in section 4.3.  In section 4.4 the findings are discussed and recommendations for 

reporting the statistical methods and results of comparative accuracy reviews are suggested.  

 

4.2 Methods 

4.2.1 Review selection and data extraction 

Reviews published between 2008 and 2012 were selected from the overall cohort identified in 

section 3.4 (see also Figure 3.1). Full text reports and supplementary files of eligible reviews 

were read in full. Test comparisons were considered irrespective of whether or not a meta-

analytic model was applied to the comparison to estimate differences in test performance. A 

comparative meta-analysis was considered to have been feasible in a review if there were at 

least five studies for at least two of the tests evaluated in the review. This choice is informed 

by the fact that there are five parameters in the hierarchical models recommended for meta-

analysis of a single test (see section 1.4.4)44 and convergence problems can occur when few 

studies are available. 

 

To address the questions posed in the introduction (section 4.1), data were extracted from 

each review in the cohort using the form in Appendix B.2. Broadly, information on general 

characteristics, statistical methods and reporting were collected as outlined in Table 4.1. Data 

extraction of a random subset of half of the reviews was done by a second assessor for data 

checking.  
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Table 4.1| Summary of information extracted from review cohort 
Item Description 
General characteristics* 
Target condition The disease or condition of interest. A review may include 

multiple target conditions or different sub types. 
Tests evaluated Number and type of tests evaluated 
Publication details Type of publication and year of publication 
Statistical methods  
Summary statistics Measures of test performance such as sensitivity and specificity, 

likelihood ratios, DOR, AUC, etc. Several summary statistics can 
be used to quantify test accuracy as previously summarised in 
section 1.3.2. These statistics may be single or paired measures. 
For the purpose of this study, a pair such as sensitivity and 
specificity was considered a single measure if one or both were 
reported. 

Test comparison 
strategy 

Test comparisons (direct or indirect) were examined irrespective 
of whether or not a meta-analytic model was applied to the 
comparison. 

Meta-analytical 
methods 

Methods used for meta-analysis. This includes methods that may 
have been used for the analysis of each test separately as well as 
methods used to compare test accuracy (comparative meta-
analysis methods).Also includes methods for investigating 
variation in test performance between studies. 

Reporting  
Role of test(s) Proposed role of the test(s) within a diagnostic pathway as 

replacement, triage or add on (see section 1.5.1). 
Study characteristics Reported in text or in tables 
Study type 
(comparative or non-
comparative) 

Reported in text or flow diagrams. The design of the studies in a 
review is important for assessing the strength of the evidence 

Limitations of indirect 
comparisons 

Only applicable for reviews that include indirect comparisons. 
Caveats about the quality and strength of the evidence may be 
given in the discussion and conclusions of reviews. 

*Since these reviews are mainly a subset of a larger cohort that will be described in Chapter 5, 
general characteristics will not be presented in this chapter to avoid duplication. 
 

4.2.2 Data analysis 

Since this is a qualitative review of current analysis and reporting characteristics, descriptive 

statistics were computed. Categorical variables were summarised using frequencies and 

percentages, and continuous variables were summarised using the median, range and 



Chapter 4: Review of systematic reviews of comparative test accuracy 

117 
 

interquartile range. Reviews were broadly categorised into two types based on the definition 

described in section 3.2.1—comparative (a comparative objective was explicitly stated or 

inferred because only comparative studies were included or direct comparisons were done) 

and multiple test reviews. Multiple test reviews lack a comparative objective and assess each 

test individually without formally comparing tests. Comparative reviews were subdivided into 

two groups—those with and without statistical analyses for comparing test accuracy. As such 

all the reviews were categorised into three groups. All data analyses and graphs of the 

distribution of continuous variable were done using STATA SE version 13.0 (Stata-Corp, 

College Station, Texas, USA). 

 

4.3 Results 

Of the 286 reviews in the overall cohort for the thesis, 130 were published between 2008 and 

2012 (Figure 3.1). It became apparent during review of the full text and data extraction that 

three reviews were ineligible and so they were excluded. One of the three reviews compared 

populations rather than tests, and the other two reviews combined data from both tests 

together as a single test in the meta-analysis. Therefore, 127 reviews were included in this 

study. Based on the terminology defined in section 3.2.1, there were 80 comparative reviews 

and 47 multiple test reviews (Figure 4.1). Of the 80 comparative reviews, 53 (66%) formally 

compared test accuracy.  
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Figure 4.1| Cohort of reviews included in the review of reviews  
*The 80 comparative accuracy reviews met at least one of the following four criteria: (1) clear 
objective to compare the accuracy of at least two tests; (2) selected only comparative studies; 
(3) performed statistical analyses comparing the accuracy of all or at least a pair of tests; or 
(4) performed a direct (head-to-head) comparison of two tests.  
 

4.3.1 General characteristics 

The 127 reviews were published in 74 different journals. Most of the reviews (93/127, 73%) 

were in specialist medical journals while there were 23 (18%) in general medical journals, six 

(5%) technology assessment reports and five (4%) Cochrane reviews. Characteristics of the 

127 reviews are briefly summarised in Table 4.2. Over half of the reviews (54%) assessed the 

accuracy of two or three tests.  

  

 

127 reviews included 
 

Reviews excluded (n=3) 
Compared populations and not index tests:  1 
Combined both tests as a single index test: 2 

 

Reviews where 
comparative and/ or 
non-comparative studies 
were eligible and were 
published between 2008 
and 2012 (n = 130) 

80 comparative reviews* 
• Comparative objective explicitly stated (n = 70) 
• Study selection limited to comparative studies (n = 16) 
• Compared test accuracy within a meta-analysis or 

between meta-analyses (n = 53) 
• Performed a direct comparison (n = 38) 

47 multiple tests reviews 
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Table 4.2| Descriptive characteristics of 127 reviews of comparative accuracy and 
multiple tests 
Characteristic Comparative reviews  Multiple 

test  
reviews 

Total 
Statistical analyses to 
compare test accuracy 
Yes No or 

unclear1 

Number of reviews2 53 (42) 29 (23) 45 (35) 127 (100) 
Year of publication     
2008 14 (26) 11 (38) 13 (29) 38 (30) 
2009 6 (11) 10 (34) 8 (18 24 (19) 
2010 16 (30) 4 (14) 11 (24) 31 (24) 
2011 13 (25) 3 (10) 7 (16) 23 (18) 
20123 4 (8) 1 (3) 6 (13) 11 (9) 
Number of tests evaluated      

2 20 (38) 14 (48) 12 (27) 46 (36) 
3 12 (23) 6 (21) 4 (9) 22 (17) 
4 8 (15) 3 (10) 4 (9) 15 (12) 
≥5  13 (25) 6 (21) 25 (56) 44 (35) 

Clinical topic (according to ICD-10 
Version: 2015) 

    

Circulatory system 9 (17) 5 (17) 5 (11) 19 (15) 
Digestive system 3 (6) 1 (3) 8 (18) 12 (9) 
Infectious and parasitic diseases 3 (6) 4 (14) 9 (20) 16 (13) 
Injury, poisoning and certain other 
consequences of external causes 

2 (4) 1 (3) 2 (4) 5 (4) 

Mental and behavioural disorders 2 (4) 1 (3) 3 (7) 6 (5) 
Musculoskeletal system and 
connective tissue 

1 (2) 1 (3) 4 (9) 6 (5) 

Neoplasms 28 (53) 12 (41) 7 (16) 47 (37) 
Other ICD-10 codes4 5 (9) 4 (14) 7 (16) 16 (13) 

Type of tests evaluated     
Biopsy 0 1 (3) 0 1 (1) 
Clinical and physical examination 5 (9) 3 (10) 15 (33) 23 (18) 
Device 1 (2) 0 0 1 (1) 
Imaging  32 (60) 13 (45) 9 (20) 54 (43) 
Laboratory  8 (15) 8 (28) 12 (27) 28 (22) 
RDT or POCT 1 (2) 0 4 (9) 5 (4) 
Self-administered questionnaire 1 (2) 1 (3) 0 2 (2) 
Combinations of any of the above5 5 (9) 3 (10) 5 (11) 13 (10) 

ICD-10 = International Classification of Diseases, Tenth Revision; RDT = Rapid diagnostic 
test; POCT = Point of care test. 
1In 3 reviews, it was unclear whether a statistical comparison of test accuracy was done. 
2Numbers in parentheses are row percentages. 
3Includes only studies published up to October 2012. 
4Includes 8 ICD-10 codes with fewer than 5 reviews across the three groups. 
5Tests evaluated in a review were not of the same type.  
Numbers in parentheses are column percentages unless otherwise stated. Percentages may not 
add up to 100% because of rounding. 
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The reviews covered a broad array of target conditions (categorised under15 different ICD-10 

codes, see Table 4.2) and test types (including clinical signs and symptoms). Neoplasms were 

the most often assessed target condition (37%), and imaging tests were the most frequently 

assessed type of test (43%). Primary studies included in a review often evaluated only one of 

the tests of interest for that review (i.e. non-comparative). The median (interquartile range) 

number of comparative and non-comparative studies included per review were 6 (3 to 11) and 

14 (3 to 24), respectively. 

 

4.3.2 Statistical characteristics 

4.3.2.1 Summary measures of test performance 

Table 4.3 shows that most reviews (75%) used two or more different measures with 

sensitivity and specificity being the most commonly used metric (93%). Other measures such 

as the DOR (43%) and likelihood ratios (52%) are frequently used unlike predictive values 

(11%). The area under the curve or Q* were used to quantify the SROC curve in 34 (27%) 

and 19 (15%) reviews respectively; both measures were used in 12 reviews. Amongst the 53 

reviews that formally compared test accuracy, 18 (34%) reviews used relative measures to 

summarise differences in accuracy.  

 

4.3.2.2 Test comparison strategy and use of comparative studies 

Sixteen (13%) reviews restricted study selection and test comparisons to comparative studies 

while the other 111 (87%) reviews included any study type (Table 4.3). A qualitative or 

quantitative test comparison was not done in 40 (32%) reviews; these were all multiple test 

reviews. In 22 reviews (17%), both direct and indirect comparisons were performed with the 

direct comparisons performed as secondary analyses using pairs of tests for which data were 
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available. Direct comparisons were not performed in 49 (39%) reviews even though 

comparative studies were available in 40 of the reviews and qualitative or quantitative 

syntheses would have been possible.  

 

Table 4.3| Outcome measures and test comparison strategy in the reviews 
Characteristic  Comparative reviews Multiple 

test 
reviews 

Total 
 Statistical analyses to 

compare test accuracy 
Yes No or 

unclear 

Number of reviews* 53 (42) 29 (23) 45 (35) 127 (100) 
Number of summary measures used     

1  12 (23) 9 (31) 11 (24) 32 (25) 
2 15 (28) 4 (14) 20 (44) 39 (31) 
3 17 (32) 6 (21) 9 (20) 32 (25) 
≥4 9 (17) 10 (34) 5 (11) 24 (19)   

Summary measures used†     
Area under the curve 11 (21) 13 (45) 10 (22) 34 (27) 
Diagnostic odds ratio 29 (55) 14 (48) 12 (27) 55 (43) 
Likelihood ratios 19 (36) 17 (59) 30 (67) 66 (52) 
Predictive values 6 (11) 3 (10) 5 (11) 14 (11) 
Q* statistic 12 (23) 5 (17) 2 (4) 19 (15) 
Sensitivity and specificity 52 (98) 25 (86) 41 (91) 118 (93) 
Other 2 (4) 2 (7) 1 (2) 5 (4) 

Relative measures used to summarise 
differences in test accuracy 

18 (34) 0 0 18 (14) 

Study type     
Comparative only 8 (15) 8 (28) 0 16 (13) 
Any study type 45 (85) 21 (72) 45 (100) 111 (87) 

Test comparison strategy     
Both direct and indirect comparison  17 (32) 5 (17) 0 22 (17) 
Direct comparison only 8 (15) 8 (28) 0 16 (13) 
Indirect comparison only – comparative 
studies available 

26 (49) 10 (34) 4 (9) 40 (32) 

Indirect comparison only – no 
comparative studies available 

2 (4) 6 (21) 1 (2) 9 (7) 

None 0 0 40 (89) 40 (32) 
*Numbers in parentheses are row percentages. 
†For each summary statistic, the number in parentheses is the percentage that reported the 
statistic out of the total number of reviews in the group. Most reviews (75%) reported 
multiple statistics and so the total does not add up to 100%. 
Paired measures such as sensitivity and specificity were considered a single measure if one or 
both were reported. Numbers in parentheses are column percentages. Percentages may not 
add up to 100% because of rounding. 
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4.3.2.3 Methods for meta-analysis of a single test 

Almost all of the reviews (124/127, 98%) specified the method used for meta-analysis (Table 

4.4). Hierarchical models were used for meta-analysis of individual tests in 46 (36%) reviews, 

either alone (26 reviews used the bivariate model and 11 used the HSROC model), in 

combination with each other (one review) or other meta-analytic methods (eight reviews). The 

Moses SROC regression approach was frequently used (42/127, 33%); it was used alone in 

five (4%) reviews, in combination with bivariate and univariate models in one review (1%) or 

with univariate models in 36 (28%) reviews in order to obtain summary sensitivity and 

specificity, likelihood ratios and/or diagnostic odds ratios. Univariate random effects or fixed 

effect models were also commonly used alone; three (2%) reviews used univariate logistic 

regression but the majority, 29 (19%) reviews, used traditional univariate models. Other 

methods were used in the remaining eight (6%) reviews. Of the eight reviews, two used a 

simple pooling method by summing up the true positives, false positives, false negatives and 

true negatives across studies, and then computed sensitivity and specificity using the totals. 
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Table 4.4| Meta-analysis methods used in the reviews 
Characteristic  Comparative reviews Multiple 

test 
reviews 

Total 
 Statistical analyses to 

compare test accuracy 
Yes No or 

unclear 

Number of reviews* 53 (42) 29 (23) 45 (35) 127 (100) 
Hierarchical meta-analytic model used     

Yes 25 (47) 5 (17) 16 (36) 46 (36) 
No 28 (53) 22 (76) 28 (62) 78 (61) 
Method not specified 0  2 (7) 1 (2) 3 (2) 

Meta-analytic method     
Bivariate model 11 (21) 5 (17) 10 (22) 26 (20) 
HSROC model 10 (19) 0 1 (2) 11 (9) 
Bivariate and HSROC models 1 (2) 0 0 1 (1) 
Bivariate model, Moses SROC regression 
and univariate random effects model  

0 0 1 (2) 1 (1) 

Bivariate model and univariate methods 2 (4) 0 3 (7) 5 (4) 
HSROC model and univariate methods 1 (2) 0 1 (2) 2 (2) 
Moses SROC regression 1 (2) 2 (7) 2 (4) 5 (4) 
Moses SROC regression and univariate 
fixed effect or random effects model 

16 (30) 11 (38) 9 (20) 36 (28) 

Univariate fixed effect or random effects 
logistic regression 

1 (2) 1 (3) 1 (2) 3 (2) 

Univariate fixed effect model 1 (2) 3 (10) 3 (7) 7 (6) 
Univariate random effects model 2 (4) 2 (7) 12 (27) 16 (13) 
Univariate fixed effect and random 
effects models 

3 (6) 3 (10) 0 6 (5) 

ANCOVA 2 (4) 0 0 2 (2) 
Simple pooling 1 (2) 0 1 (2) 2 (2) 
Weighted mean difference 1 (2) 0 0 1 (1) 
Method not specified 0 2 (7) 1 (2) 3 (2) 

*Numbers in parentheses are row percentages. 
Numbers in parentheses are column percentages unless otherwise stated. Percentages may not 
add up to 100% because of rounding.  
 

4.3.2.4 Methods for comparative meta-analysis 

Comparative meta-analyses were considered feasible (see criteria in section 4.2.1) in 102 

(80%) reviews but such analyses were performed in 50 (49%) of these reviews (Table 4.5). 

Novel methods or modifications of existing methods were not found. Broadly classified, three 

methods were used in the 53 comparative reviews (listed in Appendix B.3) that statistically 

compared test accuracy: (1) naïve comparison (19/53, 36%) which refers to a comparison 

where a statistical test, e.g. a Z-test, was used to compare summary estimates from separate 
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meta-analysis of one test with summary estimates from the meta-analysis of another test; (2) 

univariate pooling of differences in sensitivity and specificity, or pooling of differences in the 

diagnostic odds ratio (6/53, 11%); and (3) meta-regression by adding test type as a covariate 

to a meta-analytic model (23/53, 44%). For the remaining 5 (9%) reviews, the method used 

was unclear. Naïve comparisons were done using the Z-test in 15 of the 19 reviews (79%), 

and the remaining four reviews performed one of the following: paired t-test, unpaired t-test, 

chi-squared test, or comparison of Q* statistics and their standard errors.  

 

Of the 23 reviews that used a meta-analytic meta-regression approach, 18 (78%) used a 

bivariate or HSROC model. The remaining five reviews used analysis of covariance 

(ANCOVA), Moses SROC or logistic regression (Table 4.5). Of the 29 comparative reviews 

that did not formally compare tests, three (10%) determined the statistical significance of 

differences in test accuracy based on whether or not confidence intervals overlapped, nine 

(31%) narratively compared tests, 14 (48%) did not perform a comparison and three (10%) 

were unclear. Forty-two reviews (33%) included studies that reported test accuracy at 

different thresholds (the number and set of thresholds reported differed between studies). Of 

these, 13 reviews formally compared tests and 6 (46%) of them accounted for multiple 

thresholds in the analysis. 
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Table 4.5| Test comparison strategy and comparative meta-analysis methods  
Characteristic  Comparative reviews Multiple 

test 
reviews 

Total 
 Statistical analyses to 

compare test accuracy 
Yes No or 

unclear 

Number of reviews* 53 (42) 29 (23) 45 (35) 127 (100) 
Test comparison feasible 50 (94) 25 (86) 27 (60) 102 (80) 
Test comparison method     

Meta-regression – hierarchical model 18 (34) 0 0 18 (14) 
Meta-regression – SROC regression 2 (4) 0 0 2 (2) 
Meta-regression – ANCOVA 2 (4) 0 0 2 (2) 
Meta-regression – logistic regression 1 (2) 0 0 1 (1) 
Univariate pooling of difference in 
sensitivity and specificity or DORs 

6 (11) 0 0 6 (5) 

Naïve (comparison of pooled estimates 
from separate meta-analyses) 

 0 0  

Z-test 15 (28) 0 0 15 (12) 
Paired t-test 1 (2) 0 0 1 (1) 
Unpaired t-test 1 (2) 0 0 1 (1) 
Chi-squared test 1 (2) 0 0 1 (1) 
Comparison of Q* and their SEs 1 (2) 0 0 1 (1) 

Overlapping confidence intervals 0 3 (10) 0 3 (2) 
Narrative 0 9 (31) 4 (9) 13 (10) 
None 0 14 (48) 40 (89) 54 (43) 
Unclear 5 (9) 3 (10) 1 (2) 9 (7) 

Multiple thresholds included 13 (25) 12 (41) 17 (38) 42 (33) 
If multiple thresholds included, were they 
accounted for in the comparative meta-
analysis (meta-analysis at each threshold or 
fitted appropriate model) 

    

Yes 6 (46) 0 0 6 (46) 
No 4 (31) 0 0 4 (31) 
Unclear 3 (23) 0 0 3 (23) 

*Numbers in parentheses are row percentages. 
Numbers in parentheses are column percentages unless otherwise stated. Percentages may not 
add up to 100% because of rounding. 
 

4.3.2.5 Investigations of heterogeneity 

Investigations of heterogeneity were performed in 67 (53%) reviews, of which 24 (36%) used 

meta-regression, 35 (52%) used subgroup analyses, and 8 (12%) used both methods (Table 

4.6). These analyses were performed for individual tests. Amongst the 53 comparative 

reviews that statistically compared test accuracy, 33 (62%) investigated heterogeneity. Of 

these 33 reviews, five (15%) assessed the effect of potential confounders on relative accuracy. 
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Four of the five reviews used subgroup analyses where test comparisons were made within 

each subgroup, while the remaining review used a Bayesian bivariate meta- regression. One 

of the 33 reviews planned an investigation of heterogeneity on relative accuracy but there was 

insufficient data for the analyses. 

 

Table 4.6| Investigations of heterogeneity in the reviews 
Characteristic  Comparative reviews Multiple 

test 
reviews 

Total 
 Statistical analyses to 

compare test accuracy 
Yes No or 

unclear 

Number of reviews* 53 (42) 29 (23) 45 (35) 127 (100) 
Formal investigation performed      

Yes – meta-regression and subgroup 
analyses 

5 (9) 1 (3) 2 (4) 8 (6) 

Yes – meta-regression 15 (28) 5 (17) 4 (9) 24 (19) 
Yes – subgroup analyses 13 (25) 8 (28) 14 (31) 35 (28) 
No – limited data 8 (15) 2 (7) 1 (2) 11 (9) 
No – only tested for heterogeneity 3 (6) 8 (28) 16 (36) 27 (21) 
No – nothing reported 7 (13) 5 (17) 8 (18) 20 (16) 
Unclear 2 (4) 0 0 2 (2) 

If yes above, was effect on relative accuracy 
also investigated? 

    

Yes 5 (15) 0 0 5 (15) 
No 21 (64) 0 0 21 (64) 
Planned but no data 1 (3) 0 0 1 (3) 
Unclear 6 (18) 0 0 6 (18) 

*Numbers in parentheses are row percentages. 
Numbers in parentheses are column percentages unless otherwise stated. Percentages may not 
add up to 100% because of rounding. 
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4.3.3 Presentation and reporting 

Although there is no dedicated guideline for reporting DTA reviews and meta-analyses, 13 

reviews (10%) used a reporting guideline (Table 4.7). Five reviews used PRISMA; four used 

QUOROM (Quality of Reporting of Meta-analyses), the precursor to PRISMA; one used both 

QUOROM and PRISMA; one used both STARD (Standards for the Reporting of Diagnostic 

accuracy) and MOOSE (Meta-analysis of Observational Studies in Epidemiology); and the 

remaining two stated they followed recommendations of the Cochrane DTA working Group. 

 

4.3.3.1 Summary of reporting quality 

Figure 4.2 shows the grid of results for 10 characteristics (derived from Table 4.7) reported in 

each of the 127 reviews, sorted within each of the three review groups by year of publication 

and the total number of missing (unreported or unclear) items in a review. The figure clearly 

shows that the reporting of several items—in particular the role of the index tests, test 

comparison strategy and limitations of indirect comparisons—was deficient in many reviews.  

All multiple test reviews did not state a clear comparative objective (this was one of the four 

criteria used for classifying the reviews as outlined in section 3.2.1).  
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Item Description 
1 Clear comparative objective  
2 Role of tests  
3 Flow diagram  
4 Comparative studies identified 
5 Study characteristics 

6 
Individual study results – either 
2x2 data or estimates of any 
accuracy measure 

7 Test comparison strategy 

8 Meta-analytic method for test 
comparison 

9 Forest plot or SROC plot 
presented 

10 Limitations of indirect 
comparisons 

Figure 4.2| Reporting characteristics of 127 reviews 
A– Comparative reviews with statistical analyses performed to compare accuracy; B – 
Comparative reviews without statistical analyses to compare accuracy; C – Multiple test 
reviews. The coloured cells in each row illustrate the reporting of the 10 items in each review. 
The box to the right of the figure gives the description of the reporting items. Reviews were 
ordered by year of publication and the number of missing items within each of the three 
review categories A to C. Each review category is separated by a purple strip. 
 

4.3.3.2 Review objectives and role of the index tests 

A comparative objective was explicitly stated in 70 (55%) reviews (Table 4.7). It was possible 

to deduce the role of the tests in 57 (45%) reviews as add on, triage and/or replacement for an 

existing test. For 28 of the 57 (49%) reviews, the role was explicitly stated while for the 

remaining 29 (51%) reviews, the role had to be deduced using implicit information in the 

background and discussion sections of the reviews. 
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0 4 00 0 0 0 4 00 3 0 0 4 0 30 0 0 0 4 00 0 0 0 4 0

0 0 3 4 0 30 43 0 0 30 0 0 3 0 0 4 0 00 0 0 0 00 0 3 0 0 3 4 0 3X0 4 0
0 0 0 000 0 0 0 4 00 0 0 0 4 0 0
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Item reported in a review 

 Yes 
 No 
 Unclear 
 Not applicable – no statistical comparison 
 Not applicable – only comparative studies 
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4.3.3.3 Study identification and characteristics 

A flow diagram illustrating the selection of studies was not presented in 41 (32%) reviews 

(Table 4.7). In 61 (48%) reviews, a flow diagram was presented without the number of studies 

per test while 25 (20%) reviews presented a comprehensive flow diagram with the number of 

studies per test. Of these 25 reviews, the flow diagrams in five reviews125-129 were good 

examples. These flow diagrams clearly showed the number of studies included in the analysis 

of each test, and also indicated the number of comparative studies available. Of the 99 

reviews that had at least one comparative study, 50 (51%) reviews did not identify the 

comparative studies. Most of the reviews (92%) reported study characteristics though the 

detail reported varied. 
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Table 4.7| Reporting and presentation characteristics of the reviews 
Characteristic Comparative reviews  Multiple 

test  
reviews 

Total 
Statistical analyses to 
compare test accuracy 

Yes No or 
unclear 

Number of reviews* 53 (42) 29 (23) 45 (35) 127 (100) 
Reporting guideline used 2 (4) 5 (17) 6 (13) 13 (10) 
Clear comparative objective stated 45 (85) 25 (86) 0 70 (55) 
Role of the tests     

Add-on 6 (11) 3 (10) 2 (4) 11 (9) 
Replacement 8 (15) 6 (21) 6 (13) 20 (16) 
Triage 4 (8) 1 (3) 11 (24) 16 (13) 
Any two of the above 4 (8) 4 (14) 2 (4) 10 (8) 
Unclear 31 (58) 15 (52) 24 (53) 70 (55) 

Flow diagram presented     
Yes – included number of studies per test 11 (21) 6 (21) 8 (18) 25 (20) 
Yes – excluded number of studies per test 21 (40) 12 (41) 28 (62) 61 (48) 
No 21 (40) 11 (38) 9 (20) 41 (32) 

Comparative studies identified     
Yes 31 (58) 9 (31) 9 (20) 49 (39) 
No 16 (30) 7 (24) 27 (60) 50 (39) 
No comparative studies in review 6 (11) 13 (45) 9 (20) 28 (22) 

Study characteristics presented 48 (91) 26 (90) 43 (96) 117  (92) 
Test comparison strategy     

Yes 19 (36) 2 (7) 1 (2) 22 (17) 
No 32 (60) 20 (69) 44 (98) 96 (76) 
No but only comparative studies included 2 (4) 7 (24) 0 9 (7) 

Meta-analytic method for test comparison     
Yes 48 (91) NA NA 48 (91) 
Unclear 5 (9) NA NA 5 (9) 

2x2 data for each study 30 (57) 10 (34) 14 (31) 54 (43) 
Individual study estimates of test accuracy 46 (87) 25 (86) 36 (80) 107 (84) 
Forest plot(s) 30 (57) 19 (66) 16 (36) 65 (51) 
SROC plot      

SROC plot comparing summary points or 
curves for 2 or more tests 

19 (36) 7 (26) 2 (4) 28 (22) 

Separate SROC plot per test 17 (32) 11 (38) 19 (42) 47 (37) 
No SROC plot 17 (32) 11 (38) 24 (53) 52 (41) 

Limitations of indirect comparison 
acknowledged 

    

Yes 13 (25) 3 (10) 2 (4) 18 (14) 
No 30 (57) 15 (52) 43 (96) 88 (69) 
No but only comparative studies included 10 (19) 11 (38) 0 21 (17) 

NA = not applicable. 
*Numbers in parentheses are row percentages. 
Numbers in parentheses are column percentages unless otherwise stated. Percentages may not 
add up to 100% because of rounding. 
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4.3.3.4 Strategy for comparing test accuracy 

Seventy three comparative reviews included both comparative and non-comparative studies 

and 21 (29%) reviews stated their strategy for comparing tests, i.e., direct and/or indirect 

comparisons. Of the 21 reviews, 19 (90%) formally compared test accuracy (Table 4.7). 

 

4.3.3.5 Review findings and limitations 

Results from individual studies and meta-analyses 

Four (3%) reviews reported 2x2 data only, 57 (45%) reviews reported test accuracy estimates 

only, and 50 (39%) reviews reported both. The accuracy estimates or 2x2 data were reported 

in tables (43 reviews) or on forest plots (64 reviews). One review presented a forest plot but 

no study results were shown. Therefore, a total of 65 (51%) reviews presented forest plots 

(Table 4.7). Forest plots were more commonly presented in both types of comparative reviews 

(57% and 66%) than in multiple test reviews (36%). A SROC plot showing results for two or 

more tests was presented in 28 (22%) reviews, 47 (37%) reviews presented each test on a 

separate SROC plot, and the remaining 52 (41%) reviews did not present a SROC plot. Two 

multiple test reviews and seven comparative reviews without a formal test comparison 

presented a SROC plot showing a test comparison. 

 

Limitations of indirect comparisons 

Twenty one (17%) reviews restricted inclusion to comparative studies (Table 4.7). Of the 

remaining 106 reviews that included any study type, 18 (17%) acknowledged the limitations 

of indirect comparisons. Furthermore, 9 of these 18 reviews also recommended that future 

primary studies should directly compare the performance of tests within the same patient 

population.  

 



Chapter 4: Review of systematic reviews of comparative test accuracy 

132 
 

4.4 Discussion 

4.4.1 Principal findings 

The findings of this “review of reviews” show variation in methods and reporting of 

systematic reviews of comparative accuracy and multiple tests. The findings are discussed in 

relation to the questions posed in the introduction (section 4.1). 

 

4.4.1.1 What summary measures are used? 

Several outcome measures can be used to quantify test accuracy. Many reviews (75%) used 

two or more different measures with sensitivity and specificity being the most commonly 

used and predictive values the least used metric. The probability that the test will give the 

correct diagnosis, i.e. predictive values, is generally of clinical interest and may be more 

intuitive to decision makers.130 However, the poor usage of predictive values may be due to 

their dependence on the prevalence of the target condition which may differ substantially 

between studies and so raises issues about transferability. There is increasing recognition that 

the effect of prevalence is not limited to predictive values.130,131 Due to clinical variability 

(such as spectrum effects, referral filters or reader expectation) and other mechanisms, 

prevalence can affect measures such as sensitivity and specificity.132 The Q* statistic—the 

point on the SROC curve where sensitivity is equal to specificity—is not recommended for 

use in DTA reviews because it can be misleading (see section 1.4.3), yet it was sometimes 

used to quantify the Moses SROC curve. Relative measures of test performance are not 

frequently used to express differences in test performance. Amongst reviews that formally 

compared test accuracy, about a third used relative measures. 
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4.4.1.2 What strategies are used to compare tests? 

For reasons highlighted in section 1.5, comparative studies are ideal for comparing test 

accuracy. In brief, such designs ensure validity by comparing like-with-like thus avoiding 

confounding. Although some reviews restricted study selection to comparative studies (direct 

comparisons), the majority (87%) included any study type (indirect comparisons). This is 

likely due to scarcity of comparative studies. The availability of comparative studies will be 

assessed in the next chapter. It is worth noting that most (81%) of the 16 reviews with only 

direct comparisons evaluated two tests. Direct comparisons were also performed in some 

reviews that performed indirect comparisons as the main analysis, thus making use of all the 

available evidence as well as comparing the consistency of indirect and direct evidence. 

 

4.4.1.3 Do reviews use robust meta-analysis methods? 

As explained in section 1.4.4.2, hierarchical models which account for between-study 

correlation in sensitivity and specificity while also allowing for variability within and between 

studies are recommended for meta-analysis of test accuracy studies.23,43 The use of these 

methods was limited. The most commonly used approach was a combination of traditional 

univariate methods (see section 1.4.2) and the Moses SROC regression. Both approaches 

require the use of a continuity correction if there are zeros in the 2x2 table of any included 

study thus leading to a downward bias in test accuracy. Traditional univariate methods also 

have the disadvantage that they ignore potential correlation between sensitivity and 

specificity. While the Moses SROC regression approach estimates the underlying SROC 

curve by modelling the trade-off between sensitivity and specificity,37,133 it has 

methodological limitations which lead to inaccurate standard errors and invalid statistical 

inference.39,40 The Moses method does not give summary estimates of sensitivity and 
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specificity which may explain why it was seldom used alone but was used in conjunction with 

traditional univariate methods to obtain summary sensitivity and specificity.  

 

4.4.1.4 Do reviews use robust comparative meta-analysis methods? 

Formal test comparisons were not always done even when comparative meta-analyses were 

deemed feasible; such reviews relied on informal inferences. The reason may be lack of 

familiarity with methods and/or the capability to perform such analyses. Comparative meta-

analyses using hierarchical methods may be based on a comparison of summary points and/or 

SROC curves. The estimation of SROC curves allows data from studies that have used 

different thresholds to define test positivity. Of the reviews that formally compared tests using 

studies that reported test accuracy at different thresholds, only about half of them accounted 

for multiple thresholds in the analysis. The other reviews presented summary sensitivities and 

specificities which do not have clinically meaningful interpretation because the analyses were 

not based on data at a given threshold. 

 

4.4.1.5 Do reviews appropriately investigate heterogeneity? 

Heterogeneity is often observed in test accuracy reviews and differences between tests may be 

confounded by differences in study characteristics. Reviews commonly investigated 

heterogeneity using meta-regression or subgroup analyses. The analyses were often done 

separately for each test with sufficient data rather than examining the effect jointly on all tests 

in a comparison; the latter was rarely possible due to limited data. Given the preponderance of 

indirect comparisons, adjusting for potential confounders is unlikely to be feasible in most 

situations. In a case study using individual patient data, differences between direct and 
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indirect comparisons persisted, even after adjusting for differences in threshold, reference 

standard and patient characteristics.134 

 

4.4.1.6 Are reviews reported appropriately? 

Complete and transparent reporting is essential for understanding and judging the validity of a 

review. Clear review objectives aid study selection, provide a template for devising an 

analysis plan, and facilitate appropriate interpretation of the review findings but a comparative 

objective was not explicitly stated in many (45%) reviews. Additionally, the role of the index 

tests in the diagnostic pathway was ambiguous in many reviews. Although it was expected 

that this would be poorly reported, the extent was not anticipated.  

 

Distinguishing between the different types of studies that contribute to different analyses in a 

review enhances clarity and facilitates judgements about the source of the evidence but half of 

the reviews failed to identify which of the studies were comparative. To aid understanding of 

the review methods and interpretation of findings, the strategy (direct comparisons, indirect 

comparisons or both) adopted for test comparisons should be clearly specified in addition to 

the methods for meta-analysis. However, many reviews did not specify test comparison 

strategies. Except for three reviews, the methods used for meta-analysis of individual tests 

were specified. Most reviews also indicated the methods used for comparative meta-analysis 

although the clarity of reporting varied. Adequate reporting is essential to enable appraisal of 

the validity of the methods used. 

 

The applicability of the findings of a review to the review question depends on characteristics 

of the included studies135 but reviews did not always report study characteristics. Furthermore, 



Chapter 4: Review of systematic reviews of comparative test accuracy 

136 
 

the level of detail provided by reviews that reported study characteristics varied considerably 

between reviews. Reviews usually reported study specific estimates of test performance either 

in tables or in forest plots. In addition to forest plots, reviews may include SROC plots which 

show SROC curves or summary points with corresponding confidence and/or prediction 

regions. Ideally, results from a test comparison should be shown on a single SROC plot (for 

examples, see Figure 2.3 and Figure 2.4) instead of showing the results for each test on a 

separate SROC plot. For reviews that included SROC plots, it was more common to present 

each test on a separate SROC plot rather than compare tests on one plot. Interestingly, two 

multiple test reviews and seven comparative reviews without a formal test comparison 

presented a SROC plot showing a test comparison. This justifies the inclusion of such reviews 

in this methodological review instead of including only reviews that formally compared tests 

or clearly defined a comparative objective.  

 

There are several potential sources of bias and variation in test accuracy studies,136-138 and 

review findings must be interpreted in the context of the quality and the strength of the 

evidence. It is possible that results of direct comparisons may not be consistent with those or 

indirect comparisons but reviews seldom acknowledged the limitations of indirect 

comparisons. In Chapter 5, meta-analyses of direct and indirect comparisons will be 

investigated to determine the existence and magnitude of differences in estimates of test 

performance between both types of test comparisons.  

 

4.4.2 Comparison with other studies 

Published methodological reviews have focused primarily on systematic reviews of a single 

test,27,139 specific clinical area140,141 or specific methodological issue.94,142,143 Mallett et al 
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assessed reviews of diagnostic tests in cancer published between 1990 and 2003.140 They 

included 89 reviews, 25 of which were assessed in detail. The authors concluded that the 

reliability and relevance of the reviews was compromised by poor reporting and review 

methods. Cruciani et al assessed 55 meta-analyses in infectious diseases and also reported 

problems in the conduct and reporting of DTA reviews.141  

 

Dahabreh et al conducted a comprehensive overview of DTA reviews published between 

1987 and 2009.27 Of the 760 included reviews, 396 (52%) evaluated a single test and 364 

(48%) evaluated two or more tests. Statistical comparative analyses were reported in 131/364 

reviews (36%), with no change over time in the proportion of reviews reporting comparative 

analyses of at least two index tests. Thirty three of the 131 (25%) reviews performed direct 

comparisons while the remaining performed indirect comparisons. Similarly, in the present 

study, 42% of reviews included statistical comparative analyses while 15% of these restricted 

analyses to direct comparisons and 32% performed both direct and indirect comparisons. 

 

4.4.3 Implications for research and practice 

Long-term RCTs of test-plus-treatment strategies are advocated for evaluating the benefits of 

a new test relative to current best practice but such RCTs are not always feasible, available or 

necessary.20,21 Since these RCTs are rare,22 comparative accuracy reviews are a useful 

surrogate for guiding test selection and decision making. Complete and unambiguous 

reporting facilitates critical appraisal of the evidence which is vital since comparative reviews 

commonly rely on indirect comparisons. While several items of the PRISMA checklist are 

relevant for DTA reviews, the challenges of a DTA review require a dedicated reporting 

guideline or extension to the PRISMA statement; extensions have been developed for other 
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review types (see section 4.1).93,120,121,123,124 As such PRISMA-DTA is now being 

developed144 and the results of this study will be used to inform special guidance provided for 

comparative DTA reviews. 

 

In the interim, based on findings from the reviews and methodological recommendations in 

the Cochrane Handbook118 and published literature,32,43,60 seven reporting criteria were 

devised. They are (1) role of the tests in the diagnostic pathway; (2) identification of studies 

for each test; (3) test comparison strategy; (4) meta-analytic method; (5) study characteristics; 

(6) presentation of study estimates of test performance and graphical summaries; and (7) 

limitations of indirect comparisons (if such comparisons were performed).  The rationale and 

explanation for the criteria are summarised in Box 4.1. There is some repetition from contents 

of this and earlier chapters because the set of criteria was designed for use outwith the thesis. 

These criteria can be used by authors for reporting comparative DTA reviews, and by peer 

reviewers and journal editors to appraise the reviews.  
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Box 4.1| Criteria for reporting test comparisons in systematic reviews of test accuracy 
Item Description Rationale and explanation 

1 Role of tests in 
diagnostic 
pathway 

Test evaluation requires a clear objective and definition of the intended 
use and role of a test within the context of a clinical pathway for a specific 
population with the target condition. The intended role of a test guides 
formulation of the review question and provides a framework for 
assessing test accuracy, including the choice of a comparator(s) and 
selection of studies. The role of a test is therefore important for 
understanding the context in which the tests will be used and the 
interpretation of the meta-analytic findings. The existing diagnostic 
pathway and the current or proposed role of the index test(s) in the 
pathway should be described. A new test may replace an existing one 
(replacement), be used before the existing test (triage) or after the existing 
test (add-on).60  

2 Identification 
of included 
studies for 
each test 

Review complexity increases with increasing number of tests, target 
conditions, uses and/or target populations within a single review. 
Therefore, distinguishing between the different groups of studies that 
contribute to different analyses in the review enhances clarity. The 
PRISMA flow diagram can be extended to show the number of included 
studies for each test or group of tests if inclusion is not limited to 
comparative studies. The detail shown—individual tests or groups of tests, 
settings and populations—will depend on the volume of information and 
the ability of the review team to neatly summarise the information. If such 
a comprehensive flow diagram is not feasible, the studies contributing to 
the assessment of each test should be clearly identified in the manuscript 
in some other way. The source of the evidence should be declared by 
stating types of included studies and studies contributing direct evidence 
should also be clearly identified in the review.  

3 Test 
comparison 
strategy 

Comparative studies are ideal but they are scarce.71 An indirect between-
study (uncontrolled) test comparison uses a different set of studies for 
each test and so does not ensure like-with-like comparisons; the difference 
in accuracy is prone to confounding due to differences in patient groups 
and study methods.  Although direct comparisons based on only 
comparative studies are likely to ensure an unbiased comparison and 
enhance validity, such analyses may not always be feasible due to limited 
availability of comparative studies. Conversely, an indirect comparison 
uses all eligible studies that have evaluated at least one of the tests of 
interest thus maximising use of the available data. If study selection is not 
limited to comparative studies and comparative studies are available, a 
direct comparison should be considered in addition to an indirect 
comparison. The direct comparison may be narrative or quantitative 
depending on the availability of comparative studies. 

4 Meta-analytic 
methods 

Hierarchical models which account for between-study correlation in 
sensitivity and specificity while also allowing for variability within and 
between studies are recommended for meta-analysis of test accuracy 
studies.23,43 The two main hierarchical models are the bivariate and the 
hierarchical summary receiver characteristic operating (HSROC) models 
which focus on the estimation of summary points (summary sensitivities 
and specificities) and SROC curves respectively.41,42 For the summary 
point of a test to have a clinically meaningful interpretation, the analysis 
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Item Description Rationale and explanation 

should be based on data at a given threshold. For the estimation of a 
SROC curve, data from all studies, regardless of threshold, can be 
included.  As such test comparisons may be based on a comparison of 
summary points and/or SROC curves. For the estimation of a SROC 
curve, one threshold per study is selected for inclusion in the analysis. If 
multiple cut-offs were considered, the description of methods should 
include how the cut-offs were selected and handled in the analyses.  
Methods have been proposed which allow inclusion of data from multiple 
thresholds for each study but these are rarely used in practice due to their 
complexity and limitations. Also, the methods have not been applied to 
test comparisons. 

5 Study 
characteristics 

Relevant characteristics for each included study should be provided. This 
may be summarised in a table and should include elements of study design 
if eligibility was not restricted to specific design features. Heterogeneity is 
often observed in test accuracy reviews and differences between tests may 
be confounded by differences in study characteristics. Confounders can 
potentially be adjusted for in indirect test comparisons, though this is 
likely to be unachievable due to small number of studies and/or 
incomplete information on confounders. The effect of factors that may 
explain variation in test performance is typically assessed separately for 
each test.  

6 Study 
estimates of 
test 
performance 
and graphical 
summaries 
(forest plot or 
SROC plot) 

It is desirable to report 2x2 data (number of true positives, false positives, 
false negatives and true negatives) and summary statistics of test 
performance from each included study. This may be done graphically (e.g. 
forest plots) or in tables. Such summaries of the data will inform the 
reader about the degree to which study specific estimates deviate from the 
overall summaries, as well as the size and precision of each study. It is 
plausible that study results for one test may be more consistent or precise 
than those of another test in an indirect comparison. In addition to forest 
plots, reviews may include SROC plots. A SROC plot of sensitivity 
against specificity displays the results of the included studies as points in 
ROC space. The plot can also show meta-analytic summaries such as 
SROC curves or summary points (summary sensitivities and specificities) 
with corresponding confidence and/or prediction regions to illustrate 
uncertainty and heterogeneity, respectively. Ideally, results from a test 
comparison should be shown on a single SROC plot instead of showing 
the results for each test on a separate SROC plot. Furthermore, for 
pairwise direct comparisons, the pair of points representing the results of 
the two tests from each study can be identified on the plot by adding a 
connecting line between the points. 

7 Limitations of 
the evidence 
from indirect 
comparisons 

This is only applicable for reviews that include indirect comparisons. Be 
clear about the quality and strength of the evidence when interpreting the 
results, including limitations of including non-comparative studies in a test 
comparison. The results of indirect comparisons should be carefully 
interpreted taking into account the possibility that differences in test 
performance may be confounded by clinical and/or methodological 
factors. This is essential because it is seldom feasible to assess the effect 
of potential confounders on relative accuracy. 

Box 4.1 continued… 
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It should be emphasised that other aspects relevant to all DTA reviews such the index tests, 

reference standards and target conditions, should also be clearly described. Space constraint in 

journals may limit proper reporting but may be a minor issue because many journals accept 

online supplementary materials. It was noted that 56 (44%) reviews used appendices or online 

supplementary files to provide additional data and information. Based on recommendations in 

the Cochrane Handbook,118 five comparative reviews103,129,145-147 were judged exemplary in 

methods used for test comparisons. In addition to the suggested criteria in Box 4.1, these 

reviews can serve as examples of good practice to guide authors. A summary of the features 

of the reviews is given in Appendix B.4. Two of the exemplar reviews were among the five 

Cochrane reviews included. 

 

4.4.4 Strengths and limitations 

The work was undertaken without a formal power calculation to determine the number of 

reviews to assess. Although a method for sample size estimation for meta-epidemiological 

studies was recently proposed,148 this applies to trials of interventions and the assumptions of 

the method may not be tenable for test accuracy studies and meta-analyses. Furthermore, this 

descriptive survey aimed to provide an understanding of the methodological and reporting 

characteristics of the reviews and statistical testing was not done—frequencies and 

percentages were presented to summarise the characteristics of the reviews.   

 

Although the search was limited to DARE, for a review to be included in DARE it must meet 

certain quality criteria.113 As such the quality of the literature may be even poorer than has 

been shown using a large sample of reviews published in a wide range of journals. The 

reviews assessed a variety of test types for different uses and target conditions. The 
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classification of reviews was inclusive such that reviews were considered irrespective of 

whether or not tests were formally compared. Thus a broad perspective of the literature was 

gained and the generalisability of the findings was increased; the author believes this 

comprehensive overview adequately reflects practice.  

 

In addition to documenting the characteristics of the reviews, examples of good practice in 

terms of methods and reporting were highlighted. Review authors can use these reviews as a 

guide. Only a list of items considered relevant when reporting comparative reviews was 

developed to supplement items applicable to any DTA review. These generic criteria have not 

been stated in this chapter and the reader should consult the Cochrane Handbook118 for further 

information. This study was limited to analysis methods and strategies for test comparisons 

though various stages of the conduct of a systematic review can affect its results and 

conclusions. For instance, this review of reviews did not consider quality assessment of 

comparative studies. There are special issues to consider in these studies which are worthy of 

investigation but are beyond the scope of this thesis. Therefore, the list of reporting items 

suggested for comparative reviews in this chapter is a "starting point" rather than the "finished 

checklist". 

 

A limitation of this study is the lack of standard terminology for study designs in test accuracy 

research. To keep the review broad, any review that assessed more than one test was included 

even if a comparative objective was not stated or tests were not compared in a meta-analysis. 

Unexpectedly, two multiple test reviews and seven comparative reviews without a formal test 

comparison presented a SROC plot showing a test comparison. This finding provides support 

for the decision to include such reviews. Second, assessment of the role of the tests in a 
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review was sometimes subjective and relied on the judgement of the assessor. Therefore, 

reporting was judged in terms of whether or not the role was stated rather than the quality of 

the description provided. Any uncertainty in a judgement was discussed with supervisors 

before making a final decision. 

 

4.4.5 Conclusions 

Sometimes a choice needs to be made between alternative tests that can be used at the same 

point in the diagnostic pathway, which can be informed by a systematic review of the 

comparative accuracy of the tests. The complexities inherent in comparative reviews make 

clear reporting a necessity. This review of reviews has highlighted deficiencies in the methods 

and reporting of comparative reviews, and identified examples of good practice. Comparative 

accuracy reviews can inform decisions about test selection but suboptimal conduct and 

reporting will compromise their validity and relevance, and contribute to research waste. To 

improve quality and transparency, and to increase confidence in decision making informed by 

these reviews, a reporting guideline for test accuracy reviews that includes considerations for 

comparative accuracy is essential. Improved reporting is urgent because of the increasing 

prevalence of test accuracy reviews and their role in health technology assessment and clinical 

guideline development.  

 

In the next chapter, meta-analyses based on direct and indirect comparisons will be examined 

to determine the magnitude of differences between the two types of analyses and the 

implications of such differences on review conclusions. In Chapter 7, comparative meta-

analysis methods identified from the search for methods described in Chapter 3 will be 
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assessed to determine if different methods give different estimates and lead to different 

conclusions.  
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5 EMPIRICAL EVIDENCE OF THE IMPORTANCE OF 
COMPARATIVE STUDIES OF DIAGNOSTIC TEST 
ACCURACY 

  

A paper based on the content of this chapter has been published. 
Citation: Takwoingi Y, Leeflang MM, Deeks JJ. Empirical evidence of the importance of 
comparative studies of diagnostic test accuracy. Annals of Internal Medicine 
2013;158(7):544-54. 
 

 

5.1 Introduction 

Systematic reviews of comparative accuracy may undertake meta-analyses by including all 

available studies (indirect comparison) or by restricting the analyses to only comparative 

studies (direct comparison) as previously described in section 1.6 and illustrated in Figure 

1.11. In Chapter 2, seven case studies highlighted the potential scarcity of comparative 

accuracy studies and so indirect comparisons were the main or only analyses performed in the 

reviews. The findings of the review of reviews in Chapter 4 further showed that such indirect 

comparisons were indeed the major source of evidence on the comparative accuracy of many 

tests used in practice.  

 

Chapter 4 also characterised statistical methods and reporting in published comparative or 

multiple test reviews to provide an understanding of the current state of the literature on 

which evidence of comparative test accuracy is based. In this chapter an empirical study is 

presented to build on the review by investigating the robustness of indirect comparisons in 

regard to potential bias due to confounding. Based on logical reasoning, direct comparisons 

are less likely to be prone to bias due to confounding because comparative studies compare 

test accuracy within the same population using either within- or between-subject randomized 
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designs. Moreover, because heterogeneity is the norm in test accuracy reviews, such 

comparative accuracy studies should provide the most reliable evidence on relative test 

performance. Since true relative accuracy is unknown, the term bias will be used in this 

chapter to simply refer to differences or discrepancies between estimates from direct and 

indirect comparisons.  

 

The aim of this empirical study is to assess the availability of comparative studies of test 

accuracy and to assess the validity of indirect test comparisons by comparing summary 

indirect estimates of comparative accuracy derived from non-comparative studies with 

summary direct estimates from comparative studies. In particular, it was a concern that 

indirect comparisons were biased towards favouring the newer or experimental test rather 

than the older test or current practice. There may be optimism bias in early studies of the 

accuracy of a single test due to involvement of industry and test developers; use of poor study 

methods; and/or evaluation in less challenging situations such as in populations which may be 

unrepresentative of clinical practice. 

 

Unlike adjusted indirect comparisons of interventions, indirect test comparisons do not use a 

common comparator. These indirect test comparisons are analogous to naïve or unadjusted 

indirect comparisons of interventions where the results of individual arms of RCTs are 

compared. For interventions, the simplest form of an adjusted indirect comparison involves 

three interventions where two interventions of interest (e.g. A and B) have been compared in 

an RCT to a common comparator (e.g. C which could be a standard intervention or 

placebo).149 Randomization is preserved by deriving the comparison A versus B from the A 

versus C and B versus C comparisons. However, primary studies of test accuracy often assess 



Chapter 5: Empirical evidence of the importance of comparative accuracy studies 

147 
 

the performance of one test at a time and so the simplest form of an indirect test comparison 

involves two tests (e.g. A and B) without a loop of evidence. An adjusted indirect test 

comparison is plausible if a common comparator is available.  

 

Therefore, to avoid confusion or ambiguity that may arise from the normal usage of the terms 

direct and indirect comparisons to refer to different types of meta-analyses (see further 

explanation in section 1.6), in this chapter meta-analyses of comparative studies are regarded 

as direct comparisons and meta-analyses restricted to non-comparative studies (i.e. studies 

that evaluated a single test or evaluated only one of the tests of interest) as indirect 

comparisons. This distinction also makes it possible to perform one meta-analysis for each 

test comparison dataset to investigate the effect of study type on test accuracy (i.e. a meta-

regression). The terms direct and indirect comparisons will only be used where necessary. 

 

The outline of this chapter is as follows. In section 5.2, the methods for review selection, data 

extraction and data synthesis are described. Results of the assessment of the availability of 

comparative studies, comparison of meta-analytic findings obtained from comparative and 

non-comparative studies, and analysis of the direction of differences between them are 

reported in section 5.3. In section 5.4 the findings are discussed, including the implications for 

research and practice.  

 

5.2 Methods 

5.2.1 Review selection and data extraction 

Reviews were selected for inclusion in this study in two stages from the overall cohort of 

reviews identified in section 3.4 based on the two aims of this chapter. In the first stage, for 
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assessment of the availability of comparative primary studies within each review, the 

eligibility of a review was assessed, first on the basis of the abstract, then confirmed by 

review of the full publication. Inclusion decisions that remained uncertain were resolved by 

discussion with supervisors. Possible comparative studies were identified by checking 

citations in each review. For pragmatic reasons and because the purpose is merely to gauge 

the availability of comparative studies, a comparative design was presumed if two tests shared 

the same citation in a review. If citations differed but shared authors and were published 

within a year, the citations were assessed further by reviewing full text papers to confirm 

study design.  

 

In the second stage, for the meta-analytic investigation, only reviews identified in the first 

stage that had both comparative and non-comparative primary studies were considered. 

Reviews that 1) included at least three comparative studies; 2) included at least seven non-

comparative studies (with a minimum of two studies for each test); and 3) provided data to 

reconstruct 2×2 tables were eligible for inclusion. The aforementioned minimum study 

numbers were chosen to ensure adequate data to achieve convergence of the meta-analytic 

models. Unlike in the first stage, the full text of all primary comparative studies included in 

each review identified in this stage was assessed for confirmation of study design; if uncertain 

the supervisors were consulted and a final decision reached upon consensus. Some seemingly 

comparative studies compared the accuracy of two tests between non-randomly allocated 

groups and thus were judged to be prone to selection bias. For example, some studies based 

the allocation of the tests on clinical signs and symptoms. Therefore these studies were 

classified as non-comparative. Only randomized and paired (within person) comparisons were 

regarded as comparative designs because these studies are more likely to make fair 
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comparisons. The effect of this study design classification was assessed in a sensitivity 

analysis. 

 

Data were abstracted from the full text of included reviews. A random subset containing half 

the reviews was double checked by a second researcher to confirm consistency. The target 

condition, patient population, tests evaluated, purpose of the tests, and reference standard 

were recorded for each review. In addition, for the subset of reviews included in the meta-

analytic stage, the numbers of true positive, false positive, false negative, and true negative 

results (or summary statistics that allowed their derivation) and the analytic strategy by which 

tests were compared were also extracted. 

 

5.2.2 Data synthesis and analysis 

The analyses were undertaken in four parts. First, differences between comparative and non-

comparative studies in comparisons of overall accuracy (measured as diagnostic odds ratios) 

were assessed within each meta-analysis by investigating the interaction between accuracy 

and study type. Second, the magnitude of the difference between summary estimates obtained 

from comparative and non-comparative studies were considered in terms of absolute 

differences in sensitivity and specificity using the subset of meta-analyses where primary 

studies shared common thresholds. Third, differences in estimates from non-comparative 

studies and comparative studies were pooled across all the meta-analyses to investigate 

whether differences occurred more often than can be expected by chance. Fourth, an 

assessment was undertaken to determine whether there was evidence of a common direction 

to the differences.  
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5.2.2.1 Estimation of differences in comparative accuracy for each test comparison 

HSROC models42,57 were used to summarize the accuracy of each test and to compare the 

accuracy of the pair of tests in each meta-analysis. A separate model was fitted for each of the 

pairwise comparisons. The HSROC model was chosen to enable meta-analyses of all datasets 

irrespective of whether studies used different or common thresholds. The HSROC model uses 

study specific estimates of the true positive rate (sensitivity) and the false positive rate (1–

specificity) to estimate a SROC curve. The accuracy parameter estimates the expected 

log DOR (for further details of the HSROC model, see sections 1.4.4.2). The HSROC 

analyses were performed using the SAS NLMIXED procedure. 

 

The initial HSROC model fitted to each meta-analytic dataset compared SROC curves of tests 

by allowing studies using different test thresholds to be included in the same meta-analysis. 

The HSROC meta-regression model with an indicator variable for test type, t, that affects the 

accuracy (𝛼𝛼), threshold (𝜃𝜃) and shape (β) parameters can be written as 

 logit�𝜋𝜋𝐴𝐴𝑖𝑖� = �(𝜃𝜃𝐴𝐴 + 𝛾𝛾𝑠𝑠𝐴𝐴) + (𝛼𝛼𝐴𝐴 + 𝜉𝜉𝑠𝑠𝐴𝐴)𝑑𝑑𝑑𝑑𝑠𝑠𝐴𝐴𝑖𝑖� 𝑒𝑒𝑥𝑥𝑒𝑒�−(β + δ𝑠𝑠𝐴𝐴)𝑑𝑑𝑑𝑑𝑠𝑠𝐴𝐴𝑖𝑖� . (5.1)  

In this model, 𝛾𝛾 assesses whether the underlying threshold differ between tests,  𝜉𝜉 assesses 

whether test accuracy differ between tests, and δ assesses whether the shape of the curves 

differ by test. 

 

Comparative studies were accounted for in the HSROC model by clustering data for both tests 

within each study as outlined in sections 2.3.4.2. The HSROC model in (5.1) was extended to 

assess the effect of study type on comparative accuracy by including an additional covariate 

to indicate study type (non-comparative or comparative). Thus two covariates, one indicating 

test type (test A or test B) and the other indicating study type were included in the HSROC 
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model. In this model, the test type covariate was used to estimate differences in the accuracy 

and threshold parameters, but the underlying shape of the SROC curve and the variances of 

the random effects for threshold and accuracy were assumed to be common to both tests. The 

study type covariate was used to estimate differences in accuracy only. These constraints were 

imposed to reduce the risk of convergence problems that occur when undertaking test 

accuracy meta-analyses with small numbers of studies. It also simplifies interpretation as 

where SROC curves have a common asymmetric shape (as described in section 1.5.4.2 and 

exemplified in section 2.3.3.2), the relative accuracy of tests is constant at all thresholds. This 

assumption is commonly made for trials of treatments in a network meta-analysis, where 

every source of direct evidence is assumed to have the same heterogeneity variance, implying 

a single heterogeneity variance for the entire network.150 

 

The difference in test performance between the two tests (relative accuracy) was quantified as 

the rDOR (see section 1.5.4.2). A term for the interaction between test type and study type 

was included in the model to assess whether the rDOR was associated with study type. This 

model can be written as  

 logit�𝜋𝜋𝐴𝐴𝑖𝑖� = �(𝜃𝜃𝐴𝐴 + 𝛾𝛾𝑠𝑠𝐴𝐴) + (𝛼𝛼𝐴𝐴 + 𝜉𝜉1𝑠𝑠𝐴𝐴 + 𝜉𝜉2𝑧𝑧𝐴𝐴 + 𝜉𝜉3𝑠𝑠𝐴𝐴𝑧𝑧𝐴𝐴)𝑑𝑑𝑑𝑑𝑠𝑠𝐴𝐴𝑖𝑖� 𝑒𝑒𝑥𝑥𝑒𝑒�−β𝑑𝑑𝑑𝑑𝑠𝑠𝐴𝐴𝑖𝑖�,     (5.2)  

where z is an indicator variable for study type that takes the value 0 for comparative studies 

and 1 for non-comparative studies. The exponent of the coefficient 𝜉𝜉3 of the interaction term 

tizi gave the difference in comparative accuracy due to difference in study type, the ratio of the 

rDOR. A ratio of rDORs equal to one indicates no difference in estimates between the two 

study types; values that differed from one indicate a difference, with the direction dependent 

on whether the rDORs were greater than or less than one. 
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Assessment of assumption of equal variances of random effects 

For each meta-analysis, study estimates of sensitivity and specificity were plotted in ROC 

space to observe whether there were marked differences in heterogeneity between studies for 

the two tests in order to check whether the assumption of equal variances of random effects 

for the two tests was appropriate. Where possible, alternative models were fitted and model fit 

was assessed by using likelihood ratio tests to compare nested models, i.e., model with and 

without a different shape for SROC curves of the two tests, and model with and without 

distinct variance parameters for the random effects (for further details, see section 1.5.4.4). 

Estimates of the DORs, rDORs, and ratios of rDORs were also compared between the 

alternative models to assess whether conclusions were robust to the assumptions. 

 

5.2.2.2 Differences in terms of sensitivity and specificity 

Since meaningful estimates of differences in average sensitivity and specificity should be 

obtained only when studies share a common test threshold23 as explained in section 1.4.4, a 

subset of meta-analyses was identified in which common or consistent thresholds for each of 

the two tests had been used. Differences in sensitivity and specificity between tests were 

estimated from HSROC models by using the ESTIMATE statement in the NLMIXED 

procedure. As shown by Harbord et al,44 the mean logit sensitivity and mean logit specificity 

can be obtained from parameters of the HSROC model as follows:  

𝜇𝜇𝐴𝐴 = exp �− β
2
� �Θ + Λ

2
�, 𝜇𝜇𝐵𝐵 = −exp �β

2
� �Θ − Λ

2
� .   (5.3) 

Based on (5.3) differences in summary sensitivity and summary specificity between tests were 

computed using these equations for non-comparative studies 

∆𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝑠𝑠 = �
exp �𝑒𝑒−0.5β�Θ + γ + 0.5(Λ + ξ1 + ξ2 + ξ3)��

1 + exp �𝑒𝑒−0.5β�Θ + γ + 0.5(Λ + ξ1 + ξ2 + ξ3)��
−

exp �𝑒𝑒−0.5β�Θ + 0.5(Λ + ξ2 + ξ3)��

1 + exp �𝑒𝑒−0.5β�Θ + 0.5(Λ + ξ2 + ξ3)��
� 
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∆𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝑠𝑠= �
exp �−𝑒𝑒0.5β�Θ + γ − 0.5(Λ + ξ1 + ξ2 + ξ3)��

1 + exp �−𝑒𝑒0.5β�Θ + γ − 0.5(Λ + ξ1 + ξ2 + ξ3)��
−

exp �−𝑒𝑒0.5β�Θ − 0.5(Λ + ξ2 + ξ3)��

1 + exp �−𝑒𝑒0.5β�Θ − 0.5(Λ + ξ2 + ξ3)��
� 

and these equations for comparative studies 

∆𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝑠𝑠 = �
exp �𝑒𝑒−0.5β�Θ + γ + 0.5(Λ + ξ1)��

1 + exp �𝑒𝑒−0.5β�Θ + γ + 0.5(Λ + ξ1)��
−

exp �𝑒𝑒−0.5β(Θ + 0.5Λ)�

1 + exp�𝑒𝑒−0.5β(Θ + 0.5Λ)�
� 

∆𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝑠𝑠= �
exp �−𝑒𝑒0.5β�Θ + γ − 0.5(Λ + ξ1)��

1 + exp �−𝑒𝑒0.5β�Θ + γ − 0.5(Λ + ξ1)��
−

exp �−𝑒𝑒0.5β(Θ − 0.5Λ)�

1 + exp�−𝑒𝑒0.5β(Θ − 0.5Λ)�
� 

in the ESTIMATE statement. Estimates derived from non-comparative studies were then 

compared with those from comparative studies. 

 

5.2.2.3 Assessment of differences in comparative accuracy across meta-analyses 

To assess whether differences in estimates from non-comparative studies and comparative 

studies were greater than expected by chance across all the meta-analyses, the estimated ratios 

of rDORs were plotted against the inverse of their standard errors in a one-sided contour-

enhanced funnel plot, marked with a contour line corresponding to statistical significance at 

the 5% level.151 In this analysis, the ordering of the two tests was chosen such that all ratios 

were greater than one. The observed proportion significant at the 5% level was compared with 

the expected value of 5% by using a binomial test. 

 

5.2.2.4 Assessment of direction of differences between study type  

To test the directional hypothesis concerning differences between summary estimates derived 

from comparative and non-comparative studies favouring newer test technologies, it was 

necessary to first order the tests in each comparison. The experimental or "newer" test was 

identified as test A, and current practice or the "older" test was identified as test B. These 

definitions were based on information about the roles of the test reported in the review, 
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supplemented by clinical opinion where unclear. When clear categorization could not be 

achieved, comparisons were excluded from the directional analysis. The average difference in 

estimates from non-comparative studies versus those from comparative studies across the 

topics was computed by a second-level meta-analysis (meta-meta-analysis) of ratios of rDORs 

(on the log scale) by using an inverse variance weighted model with the estimate of 

heterogeneity obtained via the DerSimonian and Laird method of moments. This meta-

analysis assumes independence of the ratios of rDORs. The assumption may have been 

violated because some reviews contributed multiple pairwise test comparisons and may have 

had some studies in common. As such, a sensitivity analysis was conducted where the meta-

meta-analysis included one test comparison selected at random such that each review 

contributed only one estimate of the ratio of rDORs. The assessment of differences in 

comparative accuracy across meta-analyses and the directional analyses were performed using 

version 11 of the Stata software. 

 

5.3 Results 

Of the 286 reviews included in the cohort for the thesis, 248 met the inclusion criteria for the 

assessment of availability of comparative studies (see section 3.4 and Figure 3.1). 

 

5.3.1 Availability of studies with comparative designs 

Of the 248 reviews, 177 (71%) included both comparative and non-comparative studies, 28 

(11%) included only comparative studies, and 43 (17%) found no comparative studies. 

Generally, characteristics were similar across the three groups of review (Table 5.1). The 248 

reviews contained 6915 studies: 2113 (31%) comparative and 4802 (69%) non-comparative. 

Median (interquartile range) numbers of comparative and non-comparative studies per review 
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were 6 (2 to 11) and 14 (4 to 28), respectively. The clinical purpose of most tests evaluated in 

the reviews was diagnosis (87%). Imaging methods were the most common test type (40%). 

Cancers were the most frequently evaluated target conditions (27%), especially neoplasms of 

the breast, lung, colon, liver, and skin. 
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Table 5.1| Characteristics of reviews included in the assessment of availability of 
comparative studies 

 Type of included studies  
Characteristic  Comparative  Non-

comparative 
Both Total 

Number of reviews 28 (11) 43 (17) 177 (71) 248 
Number of test accuracy studies in reviews      

Median (range) 11 (3–32) 23 (7–98) 23 (4–162) 22 (3–162) 
Interquartile range 6–15 15–35 13–40 13–35 

Number of tests evaluated      
2 19 (68) 19 (44) 45 (25) 83 (33) 
3 3 (11) 12 (28) 31 (18) 46 (19) 
4 3 (11) 3 (7) 21 (12) 27 (11) 
≥5  3 (11) 9 (21) 80 (45) 92 (37) 

Clinical topic (according to ICD-10 Version: 
2010) 

    

Circulatory system 2 (7) 11 (26) 32 (18) 45 (18) 
Digestive system 2 (7) 2 (5) 18 (10) 22 (9) 
External causes of morbidity and 
mortality (Complications of medical and 
surgical care) 

0  4 (9) 6 (3) 10 (4) 

Genitourinary system 3 (11) 1 (2) 6 (3) 10 (4) 
Infectious and parasitic diseases 5 (18) 8 (19) 18 (10) 31 (13) 
Injury, poisoning and certain other 
consequences of external causes 

2 (7) 2 (5) 6 (3) 10 (4) 

Musculoskeletal system and connective 
tissue 

1 (4) 1 (2) 11 (6) 13 (5) 

Neoplasms 9 (32) 8 (19) 50 (28) 67 (27) 
Other ICD-10 codes* 4 (14) 6 (14) 30 (17) 40 (16) 

Type of tests evaluated     
Biopsy 0 1 (2) 2 (1) 3 (1) 
Clinical and physical examination 2 (7) 6 (14) 31 (18) 39 (16) 
Drug 1 (4) 0 1 (0.6) 2 (0.8) 
Imaging  9 (32) 21 (49) 70 (40) 100 (40) 
Laboratory  9 (32) 11 (26) 41 (23) 61 (25) 
RDT or POCT 0 1 (2) 5 (3) 6 (2) 
Self administered† 2 (7) 1 (2) 2 (1) 5 (2) 
Combinations of any of the above‡ 5 (18) 2 (5) 25 (14) 32 (13) 

Clinical purpose of the tests     
Diagnostic 23 (82) 37 (86) 156 (88) 216 (87) 
Diagnosis and staging 0 1 (2) 0 1 (0.4) 
Monitoring 1 (4) 0 2 (1) 3 (1) 
Prognostic/prediction 1 (4) 1 (2) 4 (2) 6 (2) 
Screening 3 (11) 2 (5) 6 (3) 11 (4) 
Staging 0 2 (5) 9 (5) 11 (4) 

Type of publication     
Cochrane review 1 (4) 0 4 (2) 5 (2) 
General medical journal 5 (18) 8 (19) 48 (27) 61 (25) 
Specialist medical journal 22 (79) 34 (79) 113 (64) 169 (68) 
Technology assessment report 0  1 (2) 12 (7) 13 (5) 

ICD-10 = International Classification of Diseases, Tenth Revision; RDT = Rapid diagnostic 
test; POCT = Point of care test. 
* Includes 11 ICD-10 codes that had fewer than 10 reviews across the 3 groups. 
† Includes questionnaires and home testing kits. 
‡Tests evaluated in a review were not of the same type.  
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Numbers in parentheses are column percentages unless otherwise stated. Percentages may not 
add up to 100% because of rounding. 
(Adapted from Takwoingi et al 201371) 
 

5.3.2 Characteristics of reviews included in comparison of meta-analytic findings 

Forty two reviews initially appeared eligible for the meta-analyses comparing summary 

estimates from different study types (Figure 5.1), but after checking the design of comparative 

and possibly comparative studies from full-text reports, only 39 were confirmed eligible. 

Twelve seemingly comparative studies in the reviews were reclassified as non-comparative 

because allocation of patients to tests was non-random; after this reclassification, three 

reviews no longer met the requirement of having at least three comparative studies, which 

reduced the total number of eligible reviews from 42 to 39.  

 

Evaluation of the full text of 13 possibly comparative studies that shared authors but had 

different citations found two additional comparative studies (the other 11 evaluated only one 

of the two tests). In the end, the 39 selected reviews contributed 55 pairwise test comparisons. 

A meta-analysis was performed separately for each test comparison. The 55 meta-analyses 

contained 1138 studies. Of these studies, 283 (25%) were comparative; one comparative study 

used a randomized design while the remaining 282 used a within-subject paired design. Table 

5.2 shows the characteristics of the 39 reviews95,103,147,152-187 and test comparisons within 

them.
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Figure 5.1| Flowchart of review and meta-analysis selection 
DARE = Database of Abstracts of Reviews of Effects; rDOR = relative diagnostic odds 
ratio. 
(Adapted from Takwoingi et al 201371) 

 

 

Reviews met initial 
inclusion criteria for 
meta-analytic stage (n 
= 42 [58 pairwise 
comparisons]) 

Full analysis 
Reviews for 
estimation of ratio 
of rDORs (n = 36 
[52 meta-analyses]) 

Full text of citations of 
potentially comparative studies 
retrieved for confirmation of 
study design (n = 309) 

Reviews included (n = 
39 [55 pairwise 
comparisons and meta-
analyses]) 

Comparative 
accuracy studies  
(n = 286) 

Reviews excluded after confirmation of study design 
because each contained fewer than the minimum of 3 (n = 
3 [with a total of 3 comparative studies]) 

Common threshold subset 
Reviews for estimation of 
absolute differences in 
sensitivity and specificity 
(n = 27 [33 meta-analyses]) 

Directional bias hypothesis 
Reviews with confidence in 
order of test A and test B for 
estimation of pooled ratio of 
rDORs (n = 21 [27 meta-
analyses]) 

Reviews excluded (n = 206) 
• Only comparative studies included: 28 
• Only non-comparative studies included: 43 
• Adequate number of non-comparative  studies but 

fewer than 3 comparative studies: 59 
• Adequate number of comparative studies but fewer 

than 2 non-comparative studies  for one or both tests 
in the test comparison: 48 

• Adequate number of comparative and non-
comparative studies but 2x2 table not  
reproducible: 28 

Comparisons excluded because meta-
analysis models did not converge (n = 3) 

Eligible reviews for 
assessment of 
availability of 
comparative studies 
stage (n = 248) 
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Six reviews147,152,169,176,180,185 included only prospective studies. Few reviews (23%) used the 

same reference standard in all included studies to verify disease status. Eleven 

reviews95,103,147,152,157,163,167-170,180 performed a meta-analysis restricted to comparative studies 

(or summarised the studies in a narrative) in addition to a primary meta-analysis based on all 

studies. The remaining 28 reviews did not directly compare tests or compared tests mixing 

together both comparative and non-comparative studies. 

 

5.3.3 Evidence of difference in meta-analyses of comparative and non-comparative 

studies 

The findings were based on 52 meta-analyses (derived from studies in 36 reviews) because 

analyses of the HSROC model failed to converge for three174-176 of the 55 meta-analyses. 

Figure 5.2 shows ratios of rDORs comparing meta-analytic estimates from non-comparative 

studies with estimates from comparative studies. Ten (19%) meta-analyses showed qualitative 

changes: the estimates from non-comparative studies ranking the two tests in a comparison in 

the opposite order of those of comparative studies. Twenty-five (48%) meta-analyses 

produced more than a two-fold difference in rDOR between results from the two study types, 

with as much as a 10-fold difference in four meta-analyses.  
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Figure 5.2| Ratio of relative diagnostic odds ratios (with 95% confidence intervals) 
A = test A; AFP = alpha-fetoprotein; anti-CCP = anti-cyclic citrullinated peptide; B = test B; 
ßhCG = beta human chorionic gonadotrophin; BNP = B-type natriuretic peptide; BS = bone 
scintigraphy; BTA = bladder tumour antigen; CA 125 = cancer antigen 125; CEA = 
carcinoembryonic antigen; CEUS = contrast enhanced ultrasound; CXR = chest X-ray; CK = 
creatinine kinase; CK-MB = creatine kinase-MB; CT = computed tomography; CYFRA 21-1 
= Cytokeratin fragment 19; DOR = diagnostic odds ratio; DST = dexamethasone suppression 
test; DUS = Doppler ultrasound; ECG = electrocardiogram; ECHO = echocardiography; 
ELFA = enzyme-linked fluorescent assay; ELISA = enzyme-linked immunosorbent assay; 
EmA = IgA antiendomysial antibodies; EUS = endoscopic ultrasonography; FDG-PET = 
fluorine18 fluorodeoxyglucose positron emission tomography; FISH = fluorescence in situ 
hybridisation; FS = femur shortening; GDS15 = geriatric depression scale (15-item 
questionnaire); GDS30 =  geriatric depression scale (30-item questionnaire); hCG = human 
chorionic gonadotrophin; HS = humerus shortening; IgA-tTG = IgA antitissue 
transglutaminase antibodies; IgM RF = rheumatoid factor (Immunoglobulin M subtype); LE = 
leukocyte esterase; MA = maternal age; MPI = myocardial perfusion imaging; MR = 

                                    Diagnostic odds ratio (DOR) 
                                            Non-comparative  Comparative 
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8
118
38
218
62
142
8
247
26
25
133
5
18
23
52
8405

13
105
19
9
721
23
30
24
32
543
762

25
16
17
7
60
432
74

1
16
22
1
4
19
22

A

621
38
26
26
5
15
15
39
8
6

34
2
30
4
154
32
39
7
163
22
24
18
3
9
17
6
1274

5
15
4
5
29
6
9
8
20
23
237

39
24
22
8
86
1282
101

5
30
298
8
7
32
36

B

0.236
0.082
0.037
0.001
0.107
0.029
0.007
0.016
0.593
0.441

0.016
0.325
0.077
0.902
<0.001
0.363
0.985
0.015
0.021
0.224
0.057
0.430
0.754
<0.001
0.025
0.303
0.070

0.104
0.336
0.397
0.534
0.549
0.206
0.213
0.794
0.583
0.052
0.437

0.223
0.005
0.331
0.425
0.689
0.787
0.827

0.412
0.730
0.042
0.146
0.818
0.465
0.310

P-value

2.19 (0.60, 8.01)
1.59 (0.94, 2.69)
0.49 (0.25, 0.96)
0.39 (0.22, 0.69)
0.20 (0.03, 1.42)
6.24 (1.21, 32.24)
5.05 (1.55, 16.51)
12.14 (1.61, 91.70)
1.27 (0.53, 3.08)
0.65 (0.22, 1.94)

3.83 (1.29, 11.38)
1.50 (0.67, 3.33)
2.63 (0.90, 7.66)
1.13 (0.15, 8.48)
106.06 (10.75, 1046.53)
2.24 (0.39, 12.72)
1.02 (0.12, 8.89)
3.67 (1.29, 10.45)
218.19 (2.28, 20885.24)
1.53 (0.77, 3.04)
3.35 (0.96, 11.62)
1.76 (0.43, 7.18)
1.66 (0.07, 39.73)
5.00 (2.02, 12.36)
4.12 (1.19, 14.18)
1.81 (0.59, 5.57)
196.81 (0.65, 59653.99)

0.56 (0.28, 1.12)
0.34 (0.04, 3.10)
0.59 (0.17, 2.02)
0.73 (0.27, 1.99)
0.30 (0.01, 15.70)
0.51 (0.18, 1.45)
0.59 (0.26, 1.36)
0.82 (0.18, 3.66)
0.65 (0.14, 3.04)
0.18 (0.03, 1.01)
0.33 (0.02, 5.52)

0.31 (0.05, 2.07)
0.15 (0.04, 0.56)
0.60 (0.21, 1.69)
0.76 (0.39, 1.49)
0.69 (0.11, 4.29)
0.74 (0.08, 6.78)
0.86 (0.23, 3.23)

1.36 (0.65, 2.86)
1.19 (0.45, 3.13)
9.13 (1.08, 77.16)
4.70 (0.58, 37.96)
1.13 (0.40, 3.20)
1.52 (0.50, 4.62)
1.49 (0.69, 3.21)

Ratio of rDORs (95% CI)

  
10.008 0.04 0.2 1 5 25 125

Ratio of relative diagnostic odds ratios
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magnetic resonance; MRI = magnetic resonance imaging; NFT = nuchal fold translucency; 
NMP22 = nuclear matrix protein; NT-proBNP = N-terminal pro-B-type natriuretic peptide; 
PET = positron emission tomography; PET-CT = positron emission tomography/computed 
tomography; QCSC = quantitative catheter segment culture; RDT = rapid diagnostic test; ; 
rDOR = relative diagnostic odds ratio; RUT = rapid urease test; SE = stress 
echocardiography; SPECT = single photon emission computed tomography; SQCSC = semi-
quantitative catheter segment culture; UBT = urea breath test; uE3 = unconjugated oestriol; 
UFC = urinary free cortisol; US = ultrasound; USS = duplex ultrasound. 
Test comparisons are grouped according to meta-analytic findings—whether rDOR was 
greater than or less than 1 and ratio of rDOR was greater than or less than 1, or whether non-
comparative studies ranked tests in opposite order of the comparative studies. The P value is 
the probability of a ratio of rDORs at least as extreme as the observed ratio, assuming no 
difference in comparative accuracy between non-comparative and comparative studies. The 
numbers in parentheses in the first column are the reference citations for the reviews from 
which the meta-analysis was obtained.  
(Adapted from Takwoingi et al 201371) 
 

In the one-sided contour-enhanced funnel plot (Figure 5.3), 13 points were observed to the 

right of the 5% contour line indicating statistically significant differences between estimates 

from comparative and non-comparative studies. This observed proportion (13/52, 25%) was 

higher than the 5% expected by chance (P <0.001). It should be noted that points from the 

same review, i.e. reviews that contributed multiple pairwise test comparisons, are likely to be 

correlated. Therefore, in a sensitivity analysis, one point was randomly selected from each 

review. This analysis included 36 instead of 52 points (see Appendix C.1). Eight of the 36 

points (22%) were above the contour line. The observed proportion was also higher than the 

5% expected by chance (P < 0.001). 

 

It was possible to classify tests as newer or older in 27 of the 52 meta-analyses, allowing 

investigation of direction of the differences. The pooled estimate of the ratios of rDORs was 

1.15 (95% CI 0.81 to 1.64), a difference that was not statistically significant (P = 0.4). In 

sensitivity analysis where only one randomly chosen estimate was included per review, the 
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pooled estimate of the ratios of rDORs from the 21 meta-analyses was 1.07 (95% CI 0.69 to 

1.65; P = 0.8). 

 

 
Figure 5.3| One-sided contour-enhanced funnel plot of the ratio of relative diagnostic 
odds ratio 
By chance, assuming comparative and non-comparative studies give the same summary 
estimates, 5% of the points would be expected to lie above the contour line indicating 
statistical significance at the 5% level. Order of tests was chosen such that ratios were greater 
than one. 
(Adapted from Takwoingi et al 201371) 
 

Thirty-two of the 52 meta-analyses evaluated tests at a common threshold that allowed 

computation of average sensitivities and specificities. Figure 5.4 shows the magnitude of the 

differences in sensitivities and specificities between tests from using non-comparative studies 

compared with comparative studies.  
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Six meta-analyses showed discrepancies in estimates of differences in sensitivity between 

comparative and non-comparative studies that were greater than 10%, and four showed 

discrepancies in differences in specificity greater than 10%. For sensitivity, differences were 

in opposing directions in seven (22%) meta-analyses and similarly for specificity in five 

(16%) meta-analyses.  For example, in the comparison of endoscopic ultrasonography (EUS) 

and fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) for 

esophageal cancer,168 the non-comparative studies gave a difference in summary sensitivity of 

4% (95% CI −11% to 20%), suggesting that EUS was marginally more sensitive than FDG-

PET, whereas the comparative studies gave a difference in sensitivity of −14% (95% CI 

−29% to 1%), suggesting that FDG-PET was much more sensitive than EUS. Similarly, for 

differences in the summary specificities, the non-comparative studies gave a difference of 

17% (95% CI 2% to 32%), suggesting that EUS was much more specific than FDG-PET, 

whereas the comparative studies gave a difference of −3% (95% CI −15% to 10%), 

suggesting that FDG-PET was marginally more specific than EUS. 
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Figure 5.4| Absolute differences in sensitivity and specificity between tests (with 95% 
confidence intervals) 
BS = bone scintigraphy; BTA = bladder tumour antigen; CEUS = contrast enhanced 
ultrasound; CXR = chest X-ray; CT = computed tomography; DUS = Doppler ultrasound; 
ECG = electrocardiogram; ECHO = echocardiography; EUS = endoscopic ultrasonography; 
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FDG-PET = fluorine18 fluorodeoxyglucose positron emission tomography; FS = femur 
shortening; HS = humerus shortening; LE = leukocyte esterase; MPI = myocardial perfusion 
imaging; MR = magnetic resonance; MRI = magnetic resonance imaging; NFT = nuchal fold 
translucency; PET = positron emission tomography; PET-CT = positron emission 
tomography/computed tomography; QCSC = quantitative catheter segment culture; RDT = 
rapid diagnostic test; RUT = rapid urease test; SE = stress echocardiography; SPECT = single 
photon emission computed tomography; SQCSC = semi-quantitative catheter segment 
culture; UBT = urea breath test; US = ultrasound; USS = duplex ultrasound 
The numbers in parentheses in the first column are the reference citations for the reviews from 
which the meta-analysis was obtained.  
(Adapted from Takwoingi et al 201371) 
 

5.4 Discussion 

This study and the review of reviews (Chapter 4) have shown that it is common practice for 

systematic reviews that compare the accuracy of two or more tests to include different sets of 

studies for each test (i.e. non-comparative studies) due to paucity of comparative studies. 

There was evidence that meta-analyses of non-comparative studies are likely to yield 

summary estimates that significantly differ from those of comparative studies that use a 

within-subject multiple test or between-subject randomized design. There was no evidence of 

a systematic direction in the differences but several examples were identified in which the 

difference was of a magnitude likely to lead to an effect on policy and practice. 

 

5.4.1 Possible explanations 

Differences in estimates between the two study types could have arisen for two reasons. First, 

studies of one test may systematically differ from those of the other test, in delivery of the 

index tests, patient characteristics or study methods, which may lead to bias in indirect 

estimates of comparative accuracy. For example, in a review comparing multislice computed 

tomography and magnetic resonance imaging for ruling out coronary artery disease, Schuetz 

and colleagues147 reported that although almost all computed tomographic studies evaluated 

all coronary artery segments, most of the magnetic resonance imaging studies evaluated only 
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proximal vessels or segments. Through such a mechanism, meta-analysis of non-comparative 

studies would confound the estimate of comparative accuracy, with effects introduced by 

differences in the vessels imaged. This was interpreted as evidence of a greater risk of bias in 

meta-analysis of non-comparative studies, explained through lack of like-with-like 

comparisons, leading to interpretation of the difference between comparative and non-

comparative studies as indicating bias in the non-comparative studies. 

 

Second, because this study itself was observational, it is possible that systematic differences 

between non-comparative studies and comparative studies may partially explain the observed 

differences in some reviews. For instance, in a comparison of rheumatoid factor with anti–

cyclic citrullinated peptide antibody for diagnosis of rheumatoid arthritis, non-comparative 

studies were more likely to be published before 2000, and earlier studies tended to report 

higher sensitivity and specificity for rheumatoid factor than studies published later.170 It is 

thus impossible to interpret the evidence shown in this study as being conclusive about bias in 

non-comparative studies. 

 

Biases may be present in direct and indirect comparisons. In the absence of knowledge about 

true estimates of comparative accuracy for a specific test comparison, one cannot say with 

certainty whether direct and/or indirect comparisons are biased; other factors may distort the 

true difference between tests rather than systematic errors in study design and conduct. If 

there is a lack of comparability between studies of different tests in an indirect comparison, 

the comparison will suffer from biases due to confounding. Consequently, the validity of an 

indirect comparison relies on the different sets of studies for each test being similar, on 

average, in factors that may affect test accuracy. Empirical evidence about potential sources 
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of bias in comparative accuracy studies is lacking. Nonetheless, one may argue that because 

comparative studies compare test accuracy within the same study population, the risk of bias 

would be lower than can be expected when comparisons are made between studies 

particularly when heterogeneity is present.  

 

Others have noted that studies of new tests reported high sensitivities and specificities 

significantly more often than did studies of existing tests.188 but here there was no clear 

evidence of a direction in the differences observed in the main analysis in this empirical 

study. This was contradicted by the sensitivity analysis which gave a larger and significant 

difference, favouring the newer test relative to the older test or current practice. Song and 

colleagues189 also observed no directional bias in treatment effects in indirect comparisons of 

interventions. Given the difference in conclusions between the main and sensitivity analyses 

reported here, it is difficult to make a firm conclusion about a systematic direction to the 

effect across studies. Therefore, a future update of this empirical study should explore this 

issue further. 

 

5.4.2 Comparison with existing evidence 

This is the first study to provide empirical evidence across multiple topics of the effect of 

using non-comparative studies on meta-analytic estimates of comparative test accuracy. 

Previous empirical research has focused on the effect of features of the design, execution, 

analysis, and reporting of test accuracy studies on estimates of performance for a single 

test.136-138,190 The potential for bias in estimates from meta-analysis that rely on non-

comparative studies has been argued from a theoretical viewpoint only in guidance, such as 

that from the Cochrane Collaboration's Diagnostic Test Accuracy initiative23 and the 
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Australian Medical Services Advisory Committee.18 This study provides empirical evidence 

in support. 

 

5.4.3 Implications for research and practice 

The findings have important implications for the design of future primary studies of test 

accuracy, for systematic reviews and meta-analyses that compare the accuracy of tests, and 

also for clinical practice. 

 

Besides the view that comparative studies are likely to be less prone to bias, comparative 

studies also allow assessment of consistency in the direction of the difference in accuracy, 

enable comparison of cases of uninterpretable or indeterminate results between tests, and can 

be used to explore and develop test combinations for improving diagnostic accuracy. Given 

the merits of comparative test accuracy studies, they deserve more appreciation by clinical 

investigators, researchers, and grant-awarding organizations funding test research. 

 

Although there were some good examples in which review authors were explicit about the 

type of studies they used to provide evidence for the superior accuracy of one or more tests 

over other tests, it was not possible to assess the type of studies included in 28 reviews 

because only summary results were presented for each test and authors did not report on the 

type of studies included. When all eligible studies that have evaluated at least one of the tests 

of interest are included in a comparative meta-analysis, identification of the comparative 

studies in the review and investigation of the effect of study type on results is recommended. 

Journal editors can facilitate the implementation of appropriate reporting (as suggested in 

section 4.4) by requiring review authors to present a clear analytic strategy for comparing 
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tests and to identify the type of evidence included. As the demand for evidence-based 

diagnosis grows, test accuracy reviews will increasingly be commissioned by health 

technology agencies and guideline developers. The number of reviews being published has 

increased tremendously, from fewer than 10 per year in the early 1990s to almost 100 per year 

in recent years.27 

 

For clinicians, the results warrant caution in interpreting the results of meta-analyses 

comparing tests. The highest level of evidence in such a case would be a well conducted 

meta-analysis that contains only high quality studies that evaluated both (or all) tests against 

the same reference standard, providing that these studies include studies done in a setting and 

patient spectrum similar to one's own. In addition, meta-analyses that contain both 

comparative and non-comparative studies may be valuable, especially if they show that the 

estimates from the non-comparative studies do not differ from the estimates in the 

comparative studies. If such analyses are not provided, or if a meta-analyses only contains 

non-comparative studies, then the results need to be used with caution. 

 

5.4.4 Strengths and limitations 

For pragmatic reasons, study design was not confirmed for all primary studies included in the 

assessment of the availability of comparative studies. This limitation may have under- or 

overestimated the number of comparative studies. The margin of error is unknown but 

unlikely to overturn conclusions given the aim was to assess the availability of comparative 

studies and not to provide a definitive estimate of the number in the literature. Related to this 

is the classification of studies as non-comparative. The term non-comparative was carefully 

chosen to reflect the notion that a primary accuracy study may have assessed one or more 
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tests but if only one of the tests is relevant to a comparative review question, then it is not a 

(head-to-head) comparative study. Therefore, the term also captures studies of a single test. 

This is contrary to an intervention review where non-comparative RCTs can be included in an 

indirect comparison or mixed treatment comparison if there is a common comparator. 

 

This study was based on an extensive database of systematic reviews of diagnostic tests but 

due to the low availability of comparative studies, the number of test comparisons for the 

meta-analytic stage was limited. In making best use of the available data, multiple 

comparisons from the same reviews were selected, which may have been correlated in their 

findings. Addition of further evidence as more comparisons appear over time will increase the 

robustness of the findings and should be undertaken. 

 

Although comparative studies are advocated, study design alone will not lead to valid 

estimates of comparative accuracy because other aspects of study methods and conduct can 

also affect test performance. It is worth noting that comparative studies can also be prone to 

bias. Studies that created groups by using non-random allocation are at risk for confounding. 

Only 10 studies of this design were found, and results were not sensitive to the categorization 

of these studies. Other threats to the validity of multiple test comparative studies exist. In 

clinical care, patients whose test results are uninformative often undergo further testing—if a 

multiple test study is created by identifying such patients, its results are unlikely to be 

generalisable. A further requirement is that the tests are used in a standard way and are 

independent. If, for example, one test alters the condition of the patient (for example, through 

injecting a contrast dye), or if the result of one imaging test is interpreted with knowledge of 
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the other, then the results of the test comparison may be biased. The possibility of these 

limitations was not assessed in this study. 

 

The existence of bias due to study type cannot be proven in a meta-epidemiologic study of 

this nature, and it is acknowledged that findings could be attributable to other differences in 

study or patient characteristics that were not investigated because of data limitations and the 

widely recognized issue of poor reporting of test accuracy studies. However, this further 

strengthens the argument for comparing tests within the same population and study. 

 

5.4.5 Conclusions 

Between meta-analysis comparison of tests based on non-comparative studies may currently 

be the major source of evidence available to guide decision making for many tests, but the 

results should be interpreted with caution because variation in patient groups, study design, 

reference standard, and other sources can confound differences in test performance. 

Comparative accuracy evidence obtained from robustly designed comparative studies should 

be regarded as representing a higher level of evidence. When alternative tests exist, important 

comparative questions that reflect the clinical context in which the tests will be used should be 

addressed in designing future test accuracy studies. Where possible, analyses limited to 

comparative studies should also be conducted and reported along with the analysis of all 

studies in systematic reviews.  
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6 METHODOLOGICAL REVIEW OF STATISTICAL METHODS 
FOR COMPARATIVE META-ANALYSIS 

 

 

6.1 Introduction 

Hierarchical meta-regression models (see section 1.5.4) are recommended by Cochrane for 

comparative meta-analysis.23,43 The HSROC model42 was published in 2001 and the bivariate 

model adapted for test accuracy meta-analysis by Reitsma et al41 was published in 2005. The 

current version of the statistical analysis chapter of the Cochrane Handbook for Systematic 

Reviews of Diagnostic Accuracy23 was published in 2010. Scientific literature is not static and 

there have been methodological advances since publication of the two models and the 

handbook. The literature on methods for meta-analysis of a single test has been 

prominent,36,40,49,191-199 and little is known about available methods for comparative meta-

analysis.  

 

The issues discussed thus far in this thesis would suggest that different methods for 

comparative meta-analyses may be needed depending on the type of test comparison (direct or 

indirect), type of data (e.g. common or mixed thresholds), and availability of studies. 

Therefore, the aims of this chapter are to identify methods for comparative meta-analysis and 

to characterise the methods, including hierarchical meta-regression models and any extensions 

of the models. The specification (including notation and any underlying assumptions), 

strengths and weaknesses, and software requirements of each approach will be examined in 

order to provide an overview of the available methods. In Chapter 7, relevant methods will 

then be empirically assessed in order to provide practical guidance for meta-analysts and 

evidence based recommendations in an update of the Cochrane handbook mentioned above. 
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The outline of this chapter is as follows. In section 6.2, methods for selection and data 

extraction of the meta-analytic methods identified from the search results reported in section 

3.5 are outlined. In section 6.3, the meta-analytic methods are explained and only illustrated 

with an example if required for highlighting the impact of modelling choices within a 

particular method. Section 6.4 concludes the chapter by summarising the characteristics of the 

methods, including their strengths and limitations. 

 

6.2 Identification of comparative meta-analysis methods 

Published and unpublished papers and presentations describing meta-analytic methods for 

comparing test accuracy were identified as outlined in section 3.3. Based on knowledge of 

previous and current methodological developments in comparative meta-analysis, methods 

that specifically address simultaneous comparisons of several tests, as illustrated in the 

network plot shown in Figure 2.2, were likely to be non-existent or developed within a 

Bayesian framework. Although the thesis emphasises methods implemented within a 

frequentist framework, Bayesian methods that are identified will be summarised in order to 

provide a comprehensive overview of all available methods. However, Bayesian methods will 

not be empirically evaluated as already explained in section 1.4. The following data were 

extracted from each methods paper or presentation: publication details, underlying principles 

and assumptions, and model specification. To gauge the popularity of the methods, the 

number of citations per year was obtained for each paper from Scopus®, the largest abstract 

and citation database of peer-reviewed literature.200  

 



Chapter 6: Methodological review of comparative meta-analysis methods  

179 
 

6.3 Statistical methods for comparative meta-analysis of test accuracy 

Thirteen papers and two presentations describing 13 methods were identified from the 

searches (see section 3.5 for full results of the search) and are summarised in Table 6.1. Two 

of the 13 papers were systematic reviews. No additional novel methods were identified in the 

53 reviews that statistically compared test accuracy (see Appendix B.3) that were described in 

section 4.3.2.4. Sensitivity and specificity or the DOR were the outcome measures used in 

most (nine out of 13) of the methods.  
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Table 6.1| Meta-analytic methods for comparing test accuracy 
 
 

Reference Citations 
in Scopus 

Method Test accuracy 
measure 

1 Moses et al 199337  775 Comparison of Q* Q* 

 Littenberg and 
Moses 1993133 

283   

2 Hasselblad and 
Hedges 1995201 

260 Standardized distance 
between the means of   
two populations 

Effectiveness 
measure (d) 
proportional to 
log DOR 

3 Rutter and Gatsonis 
200142 

289 HSROC meta-regression DOR 

4 Kowalski et al 
2001202* 

7 Generalized estimating 
equation  

Sensitivity and 
specificity 

5 Lijmer et al 2002203 232 Moses SROC meta-
regression 

DOR 

6 Worster et al 2002204 56 General linear mixed model Likelihood 
ratios 

7 Suzuki et al 2004205 38 Conditional relative odds 
ratio 

DOR 

8 Siadaty and Shu 
2004206 

12 Proportional odds ratio DOR 

9 Siadaty et al 2004207 14 Repeated measures modelling DOR 
10 Reitsma et al 200541 634 Bivariate meta-regression Sensitivity and 

specificity 

 Hamza et al 2009208 1   
11 Trikalinos et al 

2014209  
0 Bivariate analysis of paired 

data 
Sensitivity and 
specificity 

12 Cheng et al 2013210† N/A Network meta-analysis Sensitivity and 
specificity 

13 Verde 2013† N/A Bivariate analysis of paired 
data 

Sensitivity and 
specificity 

N/A = not applicable because they are unpublished. 
*This systematic review was also identified as part of the cohort of reviews for the empirical 
evaluation in this chapter. 
†Conference presentation 
Thirteen papers and two conference presentations describing 13 methods are listed according 
to year of publication. Citations were not applicable for presentations. 
 

The number of citations for each paper was obtained from Scopus on 8th January2016. The 

Moses SROC model,37 first published in 1993, is the earliest of the methods while extensions 

of hierarchical models are the most recent. The number of citations per year from 1993 to 
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2015 is shown in Figure 6.1 for the three most popular models—the Moses SROC model, 

bivariate model and HSROC model—and are based solely on the original papers that 

proposed each method. The citations are not specific to systematic reviews (comparative or 

single test reviews) but also include methodology papers, and other article types. Nonetheless, 

growing popularity of hierarchical models can be inferred from Figure 6.1. In particular, 

citations of the Reitsma et al41 paper, the first paper to adapt the bivariate model to test 

accuracy meta-analysis, has grown rapidly since its publication in 2005 even though the 

specification of the binomial likelihood for modelling within-study variability that was later 

suggested by Chu and colleagues53,54 is preferred (see section 1.4.4.1). 

 

 
Figure 6.1| Number of citations per year for original publications of the Moses model, 
bivariate model and HSROC model for test accuracy meta-analysis  
Number of citations for each paper was obtained from Scopus on 08/01/2016. 
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The 13 comparative meta-analysis methods are discussed below. Methods that do not account 

for correlated data arising from paired test results are the focus of sections 6.3.1 to 6.3.3, 

while in section 6.3.4, methods that specifically address correlated data are considered. 

 

6.3.1 Methods for comparing summary points  

Meta-analysis of treatment effects is based on pooling statistics (e.g. risk ratio) which contrast 

outcomes between two groups— typically experimental and control. On the contrary, DTA 

meta-analysis pool statistics (e.g. sensitivity and specificity) which summarise outcomes in a 

single group—those receiving the index test—without contrasting that value with a 

comparator. In this section, methods that focus on estimating summary points such as 

summary sensitivities, specificities and likelihood ratios from a comparative meta-analysis are 

described. 

 

6.3.1.1 General linear mixed model for comparing likelihood ratios 

A linear mixed model approach for pooling likelihood ratios was described in a systematic 

review comparing the accuracy of non-contrast helical CT (NHCT) and intravenous 

pyelography (IVP) for diagnosis of acute urolithiasis.204 In the review, Worster et al first 

computed likelihood ratios for each study and then estimated 95% CIs using the method of 

Simel et al.211 The LR+ and LR– for a single study can be calculated as  

LR+ = sensitivity
1−specificity

 , 

and  

LR– = 1−sensitivity
specificity

 . 
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Simel et al,211 showed that likelihood ratios are algebraically identical to relative risk ratios 

and so variances of log likelihood ratios can be approximated as follows:  

var(logLR+) = 1−sensitivity
TP

+ specificity
FP

 

var(logLR–) = sensitivity
FN

+ 1−specificity
TN

 , 

where TP, FP, FN and TN are the number of true positives, false positives, false negatives and 

true negatives. From the equations given above, it is apparent that computations of likelihood 

ratios and their variances require a continuity correction if the cells of any of the 2x2 tables 

contains zero. Following computation of likelihood ratios and their variances for each 

individual study, the likelihood ratios were then log-transformed and a general linear model 

with test type (NHCT or IVP) as a fixed effect and study as a random factor was applied to 

pool LR+ and LR– separately. The dependent variable (log LR+ or log LR–) was weighted by 

the inverse of its variance as suggested by Deeks.212 The software package used was not 

stated.  

 

Zwinderman and Bossuyt55 have shown that univariate (fixed or random effects) meta-

analysis or bivariate meta-analysis of likelihood ratios using a bivariate normal distribution, 

can give nonsensical results due to a mis-specified statistical model. In an illustration, they 

show that a pooled LR+ and 1/LR– of 1.34 and 0.94 correspond to a sensitivity of –0.31 and 

specificity of +1.23. Therefore, simple univariate or bivariate meta-analysis of log 

transformed likelihood ratios is discouraged. Consequently, comparative meta-analysis of 

likelihood ratios will not be discussed further in this thesis. As already noted in section 

1.4.4.1, if likelihood ratios are of interest, they should be derived from the parameters of a 

bivariate model. 
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6.3.1.2 Bivariate meta-regression of sensitivity and specificity 

The bivariate model focuses on estimation of summary sensitivities and specificities as 

previously detailed in sections 1.4.4.1and 1.5.4.1. Bivariate meta-regression models were 

explained in section 1.5.4.1, applied to examples in Chapter 2, and used in seven (10%) of the 

reviews identified in Chapter 4 (see list in Appendix B.3).  

 

The within-study likelihood for a bivariate model with a covariate for test type, t (indexed by 

k), can be written as  

𝑦𝑦𝐴𝐴𝐴𝐴𝐴𝐴~Binomial�𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴,𝑔𝑔−1(𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴)�, 𝑦𝑦𝐵𝐵𝐴𝐴𝐴𝐴~Binomial�𝑛𝑛𝐵𝐵𝐴𝐴𝐴𝐴,𝑔𝑔−1(𝜇𝜇𝐵𝐵𝐴𝐴𝐴𝐴)�, (6.1) 

where 𝑦𝑦𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑦𝑦𝐵𝐵𝐴𝐴𝐴𝐴 represent the number of true positives and true negatives, 𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑛𝑛𝐵𝐵𝐴𝐴𝐴𝐴 

the number of diseased and non-diseased subjects, and 𝑔𝑔−1(𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴) and 𝑔𝑔−1(𝜇𝜇𝐵𝐵𝐴𝐴𝐴𝐴) the 

sensitivity and specificity for the kth test from the ith study. The logit link 𝑔𝑔(. ) is commonly 

used.40 A bivariate normal distribution is used for modelling between-study variation. 

Assuming common variances between tests, this is written as 
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,    (6.2) 

where Aµ estimates the expected logit sensitivity for the referent test (note not the reference 

standard but a comparator) and kAA tv+µ estimates the expected logit sensitivity for the kth 

test. Thus, ( )Avexp  gives the estimated odds ratio for the sensitivity of the kth test relative to 

that of the referent test. The same applies to specificity where Bµ is the expected logit 

specificity for the referent test and kBB tv+µ  estimates the expected logit specificity for the 

kth test. The variances are σ𝐴𝐴2 and σ𝐵𝐵2   for the logit sensitivities and logit specificities, and σ𝐴𝐴𝐵𝐵 
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is the covariance between the logits across studies. The model that allows for separate 

variances for each test can be written as  

  

























+
+









2

2

,~
BkABk

ABkAk

kBB

kAA

Bik

Aik

tv
tv

N
σσ
σσ

µ
µ

µ
µ

.    (6.3) 

where σ𝐴𝐴𝐴𝐴2  and σ𝐵𝐵𝐴𝐴2  are the variances for the logit sensitivities and logit specificities for the kth 

test, and σ𝐴𝐴𝐵𝐵𝐴𝐴  is the covariance between the logits across studies evaluating the test. 

 

Based on the author’s experience of reviewing the literature, the variance-covariance structure 

in equation 6.3 is typically modelled assuming independence between tests because most 

comparative meta-analyses are based on indirect comparisons with few or no comparative 

studies. For two tests, this can be expressed as  

�

𝜇𝜇𝐴𝐴𝐴𝐴1
𝜇𝜇𝐴𝐴𝐴𝐴2
𝜇𝜇𝐵𝐵𝐴𝐴1
𝜇𝜇𝐵𝐵𝐴𝐴2

�~𝑁𝑁��
𝛍𝛍𝐀𝐀
𝛍𝛍𝐁𝐁� ,𝚺𝚺 � with 𝚺𝚺 =

⎣
⎢
⎢
⎢
⎢
⎡σA1

2 0 σA1B1 0
σA22 0 σA2B2

σB12 0
σB22

⎦
⎥
⎥
⎥
⎥
⎤

  (6.4) 

The means 𝛍𝛍𝐀𝐀= �
𝜇𝜇𝐴𝐴1
𝜇𝜇𝐴𝐴2� and 𝛍𝛍𝐁𝐁= �

𝜇𝜇𝐵𝐵1
𝜇𝜇𝐵𝐵2� are column vectors of the means of logit sensitivities 

and logit specificities for the two tests. For direct comparisons, the bivariate model can allow 

for correlation in test performance between tests by estimating all between-study and between 

test variability using the following unstructured variance-covariance matrix: 

�

𝜇𝜇𝐴𝐴𝐴𝐴1
𝜇𝜇𝐴𝐴𝐴𝐴2
𝜇𝜇𝐵𝐵𝐴𝐴1
𝜇𝜇𝐵𝐵𝐴𝐴2

�~𝑁𝑁��
𝛍𝛍𝐀𝐀
𝛍𝛍𝐁𝐁� ,𝚺𝚺 � with 𝚺𝚺 =

⎣
⎢
⎢
⎢
⎢
⎡σA1

2 σA1A2 σA1B1 σA1B2
σA22 σA2B1 σA2B2

σB12 σB1B2
σB22

⎦
⎥
⎥
⎥
⎥
⎤

 , (6.5) 

Note that potential within-study correlation between tests is not taken into account—requires 

individual patient data or aggregate data in the form shown in Table 1.3 which is seldom 
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reported in primary studies. This is also a common issue for multivariate meta-analysis of 

multiple outcomes where the within-study correlations needed to fit the multivariate model 

are unavailable from primary studies.213 According to Riley et al,the within-study correlation 

is most influential in a multivariate meta-analysis when the within-study variation is large 

relative to the between-study variation in the underlying true study values, and the converse is 

true for the between-study correlation.214 An example of a network meta-analysis of multiple 

outcomes showed changes in the ranking of treatments due to accounting for correlation 

between multiple outcomes.215 The impact of ignoring within-study correlation on joint 

inferences about differences in test performance is yet to be shown in empirical or simulation 

studies for test comparisons. There may be biological/clinical justification for other variants 

of (6.5), such as assuming no correlation between the sensitivity of one test and the specificity 

of another test (i.e. ρA1B2 = 0 and ρA2B1= 0), but is beyond the scope of this thesis. 

Comparative meta-analysis methods that explicitly account for paired data are described in 

section 6.3.4. 

 

Since equations 6.2 and 6.4 were used to model between-study variability in comparative 

meta-analyses presented so far in this thesis, it is worth examining bivariate models with 

different parameterisations of the covariance matrix as expressed in equations 6.2, 6.4 and 

6.5. The example used below was chosen because it included a good number (13) of paired 

accuracy studies for illustrating the potential effect of the three covariance structures on 

findings. The review by Kittler et al216 is a direct comparison of dermoscopy versus 

inspection by the unaided eye (i.e. clinical inspection without dermoscopy) for detection of 

melanoma. Figure 6.2 shows the estimates of sensitivity and specificity for each pair of tests 

from each of the 13 included studies.  
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Figure 6.2| SROC plot of dermoscopy and unaided eye for diagnosis of melanoma 
Point estimates for dermoscopy and unaided eye from the same study are connected by a 
dotted line. Each study point was scaled by the sample sizes for diseased and non-diseased 
groups to reflect precision of the sensitivity and specificity estimates. 
 

Bivariate models that assume equal variances across tests (Model 1, equation 6.2), and 

unequal variances without dependence (Model 2, equation 6.4), and with dependence (Model 

3, equation 6.5) between tests were fitted to the data using maximum likelihood estimation as 

described in section 2.2.5. Based on the likelihood ratio test comparing Model 2 and Model 3, 

there was statistical evidence of a difference in model fit (P < 0.0001). Parameter and 

summary estimates from the three models are presented in Table 6.2. As the magnitude of 

correlation is more readily interpreted by readers, correlations are presented instead of 

covariances. 
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Table 6.2| Parameter and summary estimates from bivariate models with increasing 
complexity of the variance-covariance structure 
Estimate Model 

(1) Equal 
variances across 
tests 

(2) Unequal 
variances without 
dependence 
between tests 

(3) Unequal 
variances with 
dependence 
between tests 

Model parameter 
σA2  0.312   
σB2  1.393   
ρAB 0.053   
σA12   0.339 0.387 
σA22   0.308 0.319 
σB12   3.366 2.873 
σB22   1.075 1.015 
ρA1B1  0.530 0.456 
ρA2B2  -0.244 -0.175 
ρA1A2   0.775 
ρA1B2   0.446 
ρA2B1   -0.187 
ρB1B2   0.994 
Summary estimate (95% CI) 
Sensitivity of dermoscopy 0.86 (0.80, 0.90) 0.86 (0.80, 0.90) 0.85 (0.79, 0.90) 
Specificity of dermoscopy 0.92 (0.85, 0.96) 0.93 (0.82, 0.97) 0.92 (0.82, 0.97) 
Sensitivity of unaided eye 0.73 (0.65, 0.80) 0.74 (0.66, 0.81) 0.74 (0.66, 0.81) 
Specificity of unaided eye 0.85 (0.74, 0.92) 0.86 (0.77, 0.92) 0.85 (0.76, 0.91) 
Relative sensitivity 1.16 (1.08, 1.26) 1.16 (1.03, 1.30) 1.15 (1.05, 1.25) 
Relative specificity 1.08 (1.03, 1.14) 1.08 (0.96, 1.21) 1.08 (1.05, 1.11) 

σA2  = variance of logit sensitivity across both tests; σA12  = variance of logit sensitivity for 
dermoscopy; σA22  = variance of logit sensitivity for unaided eye; σB2  = variance of logit 
specificity across both tests; σB12  = variance of logit specificity for dermoscopy; σB22  = 
variance of logit specificity for unaided eye; ρAB = correlation of logit sensitivity and logit 
specificity across both tests; ρA1B1 = correlation of logit sensitivity and logit specificity for 
dermoscopy; ρA1A2 = correlation of logit sensitivities for dermoscopy and unaided eye; ρA1B2 
= correlation of logit sensitivity for dermoscopy and logit specificity for unaided eye; ρA2B1 = 
correlation of logit sensitivity for unaided eye and logit specificity for dermoscopy; ρA2B2= 
correlation of logit sensitivity and logit specificity for unaided eye; ρB1B2 = correlation of 
logit specificities for dermoscopy and unaided eye. 
 

Comparing Models 2 and 3 to Model 1, it is apparent that variances of the random effects for 

the logit sensitivities and the logit specificities, as well as the correlation between the logits, 

differed between dermoscopy (test 1) and unaided eye (test 2). It is not unreasonable to expect 
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positive dependence between the logit sensitivities and between the logit specificities of two 

tests while negative dependence can be expected between the logit sensitivities and logit 

specificities due to threshold effects. However, heterogeneity can distort the relationships. 

Also, as mentioned earlier, one can speculate that between-study correlations may be mis-

specified because within-study correlations of test results in paired studies are ignored. This 

cannot be verified without individual patient data or within-study correlations from primary 

studies. 

 

The summary estimates and their 95% CIs from the three models were similar except for 

relative specificity. In contrast to the other two models, the difference in specificity derived 

from Model 2 was not statistically significant. The example illustrates that different models 

may give similar estimates of summary sensitivities and specificities yet lead to different 

conclusions about relative accuracy. This finding is similar to those of the case study 

presented in section 2.3.4.1.  Other examples will be investigated in the empirical evaluation 

of comparative meta-analyses methods in Chapter 7 to determine if such findings are 

common. 

 

6.3.2 Methods for comparing SROC curves 

The two methods that compare SROC curves are the Moses SROC regression and the 

HSROC model. Both models were introduced in section 1.4 for analysis of a single test.  

 

6.3.2.1 Moses SROC approach 

The DOR, AUC and Q* have been used to compare test accuracy in the Moses SROC 

approach as observed in Chapter 4. The AUC or Q*of two tests can be compared using a z-
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test.37 The AUC will not be discussed further in this thesis due to the limitations outlined in 

section 1.4.3. The Q* statistic and other test comparison approaches that use a z-test or t-test 

to compare a test accuracy measure will be examined briefly in section 6.3.3. As observed in 

Chapter 4 (section 4.3.2.3), the Moses SROC approach is still a commonly used meta-analytic 

method, either alone or in conjunction with other methods, even though it has important 

methodological limitations noted in section 1.4.3. Regardless of its popularity for meta-

analysis of a single test, only two of the 53 reviews listed in Appendix B.3 used a Moses 

SROC meta-regression model to compare tests. Given the prevalence of the Moses SROC 

approach in published reviews and the lack of empirical or simulation studies of the 

performance of the Moses SROC meta-regression approach for comparing tests, the meta-

regression approach is discussed extensively below.  

 

Moses SROC meta-regression 

The meta-regression approach proposed by Moses et al37 for investigating heterogeneity was 

adapted for test comparisons by using a covariate for test type to investigate effect of test type 

on diagnostic accuracy (log DOR).203,217,218 The regression equation in (1.2) can be extended 

to include an indicator variable for test type (k). The model becomes 

  𝐷𝐷𝐴𝐴 = 𝑎𝑎 + 𝑏𝑏0𝑆𝑆𝐴𝐴 + 𝑏𝑏1𝑘𝑘𝐴𝐴 + 𝑒𝑒𝐴𝐴       (6.6) 

with 

  𝑒𝑒𝐴𝐴~𝑁𝑁(0,𝜎𝜎2). 

The intercept is a, 𝑏𝑏0 and 𝑏𝑏1 are the regression coefficients for S and k, and 𝑒𝑒𝐴𝐴 is the random 

error. Recall D (difference in the logits) is the natural log of the DOR and S (sum of the logits) 

is a proxy for threshold computed as follows for the ith study: 

𝐷𝐷𝐴𝐴 = ln � TPR𝑖𝑖
1−TPR𝑖𝑖

� − ln � FPR𝑖𝑖
1−FPR𝑖𝑖

�      
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𝑆𝑆𝐴𝐴 = ln � TPR𝑖𝑖
1−TPR𝑖𝑖

�+ ln � FPR𝑖𝑖
1−FPR𝑖𝑖

� .      

The meta-regression model specified in (6.6) assumes the shape of the SROC curve does not 

differ between tests and represents parallel lines with common slope 𝑏𝑏0 in the (S, D) space. 

Thus 𝑏𝑏1, the coefficient of k estimates the difference in the log DOR between two tests 

(vertical distance between the two regression lines) and the exponent of 𝑏𝑏1 is the relative 

DOR. Moses et al suggested that if 𝑏𝑏 = 0 in separate models (equation 1.2) for each test, then 

a t-test can be applied to compare values of D for two tests.37 This eliminates 𝑏𝑏1𝑆𝑆 in (6.6) and 

equates to  

  𝐷𝐷𝐴𝐴 = 𝑎𝑎 + 𝑏𝑏1𝑘𝑘𝐴𝐴 + 𝑒𝑒𝐴𝐴,       (6.7) 

for an unpaired t-test.  

 

The model in (6.6) can be extended to include an interaction term (𝑘𝑘𝑆𝑆) that allows the shape 

of the SROC curve to differ between tests as follows:  

  𝐷𝐷𝐴𝐴 = 𝑎𝑎 + 𝑏𝑏0𝑆𝑆𝐴𝐴 + 𝑏𝑏1𝑘𝑘𝐴𝐴 + 𝑏𝑏2𝑘𝑘𝐴𝐴𝑆𝑆𝐴𝐴 + 𝑒𝑒𝐴𝐴 .    (6.8) 

In this interaction model, the regression lines are no longer parallel and relative accuracy 

depends on threshold (S).  

 

The Moses model is generally implemented using simple (weighted or unweighted) linear 

regression and so the model can be fiited using any statistical package. The weight for each 

study i in an inverse variance weighted SROC regression, 𝑤𝑤𝐴𝐴, is computed as 1 v𝐴𝐴�  where  

v𝐴𝐴 = 1
TP𝑖𝑖

+ 1
FP𝑖𝑖

+ 1
FN𝑖𝑖

+ 1
TN𝑖𝑖

. 

The variance (similar to computation of D and S) is undefined if any of the four cells of the 

2x2 table is zero. 
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To illustrate the impact of weighting the regression analyses as well as assumptions about the 

shape of the SROC curves (equations 6.6 and 6.8) on findings, a review that compared the 

performance of rapid enzyme-linked immunosorbent assay (ELISA) and standard 

radioimmunosorbent assay (RIA) tests for diagnosis of congestive heart failure219 was chosen. 

The forest plot of the data in Figure 6.3 shows that four studies had a zero cell and so a 

continuity correction of 0.5 was added to the cells of the 2x2 table for each study included in 

the meta-analysis as is typically done in practice.  

 

 
Figure 6.3| Forest plot of RIA and ELISA for diagnosis of congestive heart failure 
DOR = diagnostic odds ratio; ELISA = enzyme-linked immunosorbent assay; RIA = 
radioimmunosorbent assay.  
Studies were ordered on the plot according to cut-off and DOR.  The Hobbs 2002 study 
included four different non-overlapping population cohorts and results were given separately 
for each cohort hence the study names with suffixes a to d. Data were extracted from Battaglia 
et al.219 
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Assuming the same shape for the SROC curves of both tests (equation 6.6), Figure 6.4 shows 

the unweighted regression lines of D on S for both tests in panel A and the corresponding 

SROC curves in panel B. The SROC curves were produced by applying equation 1.5 (see 

section 1.4.3) to the range of specificities for each test.  
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Shape of summary curves do not differ between tests 
(A) D versus S plot 

 

(B) SROC plot 

 
 

Shape of SROC curves differ between tests 
(C) D versus S plot 

 

(D) SROC plot 

 
Figure 6.4| Comparison of summary curves from Moses SROC meta-regression models 
ELISA = enzyme-linked immunosorbent assay (blue triangles and line with long dashes); RIA 
= radioimmunosorbent assay (black circles and line with short dashes).  
The models were fitted using unweighted linear regression and the regression equation is 
shown on the D versus S plot for each of the two models. The regression equation for the 
plots in panels A and B does not include the interaction term (kS), i.e. assumes same shape 
across tests, while the regression equation for the plots in panels C and D include the 
interaction term thus allowing shape to differ by test. 
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The unweighted regression gave an rDOR of 2.69 (95% CI 0.82 to 8.87; P = 0.098) meaning 

the DOR of the ELISA test was 2.69 times higher than that of the RIA test. For the weighted 

analysis (Table 6.3), the rDOR was 3.03 (1.50 to 6.12; P = 0.004). In this example, the 

difference in diagnostic accuracy from unweighted and weighted regression differed in  

magnitude and statistical significance.   

 

A limitation of the unweighted analysis is that equal weight is given to all studies thus 

ignoring the precision of each included study. If there is much greater between-study 

variability relative to within-study variability, the unweighted analysis approximates a 

random effects model because the weights of the studies in the latter will be dominated by the 

between-study variance and so studies are weighted relatively more equally.37,57,217  In 

contrast, an analysis weighted by the inverse of the variance of the DOR accounts for the 

precision of each study but may be biased.217 It is known that for high DORs, such as is 

frequently encountered in test accuracy meta-analysis where the DOR is much larger than 1, 

the standard error of the DOR is correlated with the DOR.220 For example, in Figure 6.3, the 

DORs (standard error) for Hobbs 2002a and Hutcheon 2002 are 31.4 (1.47) and 8.0 (0.52). 

Hutcheon 2002 had lower test performance and greater weight (3.66) in the meta-analysis 

compared to the weight (0.46) for Hobbs 2002a even though both studies have similar sample 

sizes (299 and 297 respectively). Greater weight is given to studies that report poorer test 

accuracy (because cells have similar counts) compared to those reporting higher test accuracy 

(i.e. lower false negative and/or false positive counts) even if studies have similar sample 

sizes.  
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Table 6.3| Comparison of unweighted and weighted Moses SROC meta-regression 
models 

 
Parameter 

Unweighted regression 
Estimate (95% CI); P value 

Weighted regression 
Estimate (95% CI); P value 

Summary curves do not differ between tests (𝐷𝐷 = 𝑎𝑎 + 𝑏𝑏0𝑆𝑆 + 𝑏𝑏1𝑘𝑘) 

𝑎𝑎 3.154 (2.295, 4.013) 2.889 (2.324, 3.455) 

𝑏𝑏0 -0.358 (-0.741, 0.025); P = 0.065 -0.441 (-0.832, -0.050); P = 0.029 

𝑏𝑏1 0.991 (-0.202, 2.183); P = 0.098 1.108 (0.405, 1.811); P = 0.004 

Summary curves differ between tests (𝐷𝐷 = 𝑎𝑎 + 𝑏𝑏0𝑆𝑆 + 𝑏𝑏1𝑘𝑘 + 𝑏𝑏2𝑘𝑘𝑆𝑆) 

𝑎𝑎 2.749 (1.699, 3.799) 2.713 (2.061, 3.365) 

𝑏𝑏0 0.034 (-0.679, 0.748); P = 0.921 -0.202 (-0.792, 0.388); P = 0.481 

𝑏𝑏1 1.564 (0.095, 3.033); P = 0.038 1.437 (0.508, 2.367); P = 0.004 

𝑏𝑏2 -0.543 (-1.383, 0.296); P = 0.191 -0.424 (-1.209, 0.362); P = 0.272 

a is the intercept, 𝑏𝑏0 and 𝑏𝑏1 are the regression coefficients for S and k, and 𝑏𝑏2 is the 
coeffieient of the interaction term (kS) in the models.  
 

For the model that allowed the shape of the SROC curves to differ by test (equation 6.8), the 

plots are shown in panels C and D of Figure 6.4. The parameter estimates from the 

unweighted and weighted analyses are presented in Table 6.3. From both analyses, it can be 

seen that the interaction between the shape of the curve and test type (𝑏𝑏2) was not statistically 

significant and so the same shape can be assumed for both tests. A weighted interaction model 

was used by de Vries et al218 to compare the accuracy of duplex and colour-guided duplex 

ultrasonography for peripheral arterial disease. Similar to the results above, they found that 

the slopes of the two regression lines were nearly identical and so the interaction term was 

removed from their final model. Issues regarding weighting and assumptions about the shape 

of SROC curves will be investigated further using an empirical cohort in Chapter 7. 
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6.3.2.2 HSROC meta-regression 

The HSROC model also defines test accuracy in terms of the DOR. HSROC meta-regression 

models were explained in section 1.5.4.2 and extensively illustrated in Chapter 2 using the 

bipolar disorder example described in section 2.2.2. Of the 53 reviews listed in Appendix B.3, 

10 (19%) used a HSROC meta-regression model. HSROC meta-regression models were also 

used in Chapter 5 to compare summary estimates from meta-analyses of direct and indirect 

comparisons. In the HSROC model, the number of test positives from the ith study, yij, is 

assumed to follow a binomial distribution  

𝑦𝑦𝐴𝐴𝑖𝑖~Binomial�𝑛𝑛𝐴𝐴𝑖𝑖 ,𝜋𝜋𝐴𝐴𝑖𝑖� . 

For the non-diseased group j = 0 and for the diseased group j =1, and 𝑛𝑛𝐴𝐴𝑖𝑖 is the number in 

group j. The model incorporating an indicator variable for test type, t, can be written as 

 logit�𝜋𝜋𝐴𝐴𝑖𝑖� = �(𝜃𝜃𝐴𝐴 + 𝛾𝛾𝑠𝑠𝐴𝐴) + (𝛼𝛼𝐴𝐴 + 𝜉𝜉𝑠𝑠𝐴𝐴)𝑑𝑑𝑑𝑑𝑠𝑠𝐴𝐴𝑖𝑖� 𝑒𝑒𝑥𝑥𝑒𝑒�−(β + δ𝑠𝑠𝐴𝐴)𝑑𝑑𝑑𝑑𝑠𝑠𝐴𝐴𝑖𝑖�, (6.9)  

where 𝜋𝜋𝐴𝐴𝑖𝑖 is the probability of a positive result, and 𝑑𝑑𝑑𝑑𝑠𝑠𝐴𝐴𝑖𝑖 is coded –0.5 for j = 0 and 0.5 for j 

= 1. The model includes β the shape parameter. 𝜃𝜃 is the threshold parameter and 𝛼𝛼 is the 

accuracy parameter and both parameters are modelled as random effects with independent 

normal distributions as follows: 

𝜃𝜃𝐴𝐴~𝑁𝑁�Θ,𝜎𝜎𝜃𝜃2� and 𝛼𝛼𝐴𝐴~𝑁𝑁( Λ,𝜎𝜎𝛼𝛼2).      (6.10) 

In this model, 𝛾𝛾 assesses the difference in the underlying threshold between tests,  𝜉𝜉 assesses 

the difference in test accuracy, and δ assesses the difference in shape of the curves. If a 

common shape is assumed (see example in section 2.3.3 ), equation 6.9 reduces to 

 logit�𝜋𝜋𝐴𝐴𝑖𝑖� = �(𝜃𝜃𝐴𝐴 + 𝛾𝛾𝑠𝑠𝐴𝐴) + (𝛼𝛼𝐴𝐴 + 𝜉𝜉𝑠𝑠𝐴𝐴)𝑑𝑑𝑑𝑑𝑠𝑠𝐴𝐴𝑖𝑖� 𝑒𝑒𝑥𝑥𝑒𝑒�−β𝑑𝑑𝑑𝑑𝑠𝑠𝐴𝐴𝑖𝑖�,   (6.11)  
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Models that make different assumptions about the shape of the SROC curves between tests 

will be empirically assessed and compared with the Moses SROC meta-regression models 

described in section 6.3.2.1.  

 

If differences in accuracy and threshold are modelled as random effects, the model specified 

in (6.9) and (6.10) becomes 

 logit�𝜋𝜋𝐴𝐴𝑖𝑖� = �(𝜃𝜃𝐴𝐴 + 𝛾𝛾𝐴𝐴𝑠𝑠𝐴𝐴) + (𝛼𝛼𝐴𝐴 + 𝜉𝜉𝐴𝐴𝑠𝑠𝐴𝐴)𝑑𝑑𝑑𝑑𝑠𝑠𝐴𝐴𝑖𝑖� 𝑒𝑒𝑥𝑥𝑒𝑒�−(β+ δ𝑠𝑠𝐴𝐴)𝑑𝑑𝑑𝑑𝑠𝑠𝐴𝐴𝑖𝑖�, (6.12)  

and 

𝜃𝜃𝐴𝐴~𝑁𝑁�Θ,𝜎𝜎𝜃𝜃2�, 𝛾𝛾𝐴𝐴~𝑁𝑁�Γ,𝜎𝜎𝛾𝛾2�, 𝛼𝛼𝐴𝐴~𝑁𝑁( Λ,𝜎𝜎𝛼𝛼2), and 𝜉𝜉𝐴𝐴~𝑁𝑁�Ξ,𝜎𝜎𝜉𝜉
2� .  (6.13) 

In the HSROC framework, the random effects for accuracy and threshold are modelled using 

independent normal distributions.  For two tests, if all the variances in equation 6.13 are 

assumed to be independent., this can be written as  

�

𝜃𝜃𝐴𝐴
𝛾𝛾𝐴𝐴
𝛼𝛼𝐴𝐴
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⎝
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�
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𝚪𝚪
𝚲𝚲
𝚵𝚵

� , 𝚺𝚺 

⎠

⎟
⎞

 with 𝚺𝚺 =

⎣
⎢
⎢
⎢
⎢
⎡σθ

2 0 0 0
σγ2 0 0

σα2 0
σξ
2

⎦
⎥
⎥
⎥
⎥
⎤

 .           (6.14) 

However, assuming that the covariances between σθ2 and σγ2, and between σα2  and σξ
2 are zero 

forces the variances for the index test to be larger than those of the comparator test. Therefore, 

covariance terms are needed between the random effects for accuracy (i.e. 𝛼𝛼𝐴𝐴 and 𝜉𝜉𝐴𝐴) and 

between the random effects for threshold (i.e. 𝜃𝜃𝐴𝐴  and 𝛾𝛾𝐴𝐴) such that for two tests 

�

𝜃𝜃𝐴𝐴
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�~𝑁𝑁

⎝

⎜
⎛
�

𝚯𝚯
𝚪𝚪
𝚲𝚲
𝚵𝚵

� , 𝚺𝚺 

⎠

⎟
⎞

 with 𝚺𝚺 =

⎣
⎢
⎢
⎢
⎢
⎡σθ
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⎥
⎥
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⎥
⎤

 .           (6.15) 
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To illustrate the different covariance structures represented by equations 6.10 (Model 1), 6.14 

(Model 2) and 6.15 (Model 3), HSROC models were fitted to the Kittler et al216 example used 

in section 6.3.1.2 to illustrate different parameterisations of the covariance matrix for the 

bivariate model. However, the algorithm used for fitting the HSROC model failed to converge 

for the more complex parameterisation expressed in equation 6.15. Since estimation of σγ2 was 

truncated at zero, Model 3 was then simplified so that both tests had the same variance for 

threshold but unequal variances were allowed for accuracy. The results are given in Table 6.4 

for the three models. Overall, there were small differences between point estimates and 

summary estimates from the models. The confidence intervals from Model 1 were the 

narrowest. In all models, there was a significant difference in the sensitivity of the two tests, 

though the difference was 5% higher in Model 2 and Model 3 compared to Model 1. 
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Table 6.4| Parameter and summary estimates from HSROC models with increasing 
complexity of the variance-covariance structure 
Estimate Model  

(1) Equal 
variances across 
tests 

(2) Unequal 
variances without 
dependence 
between tests 

(3) Unequal 
variances with 
dependence 
between tests 
(accuracy only) 

Model parameter (95% CI)*  
Alpha for dermoscopy 4.80 (3.44, 6.16) 4.58 (3.13, 6.03) 4.27 (3.05, 5.50) 
Theta for dermoscopy 1.19 (0.10, 2.28) 0.94 (-0.46, 2.34) 0.48 (-0.58, 1.54) 
Beta for dermoscopy  1.43 (0.61, 2.25) 1.21 (0.07, 2.36) 0.80 (-0.10, 1.70) 
Alpha for unaided eye 2.68 (1.89, 3.46) 2.70 (1.88, 3.51) 2.72 (1.97, 3.47) 
Theta for unaided eye -0.03 (-0.68, 0.62) -0.10 (-0.80, 0.60) -0.17 (-0.82, 0.48) 
Beta for unaided eye 0.47 (-0.28, 1.23) 0.38 (-0.43, 1.19)  0.28 (-0.45, 1.02) 
σα2  1.26 1.28 1.09 
σθ2 0.33 0.34 0.35 
σξ
2 – 0.18 0.50 

σγ2 – 0† – 
σθσγ – – – 
σασξ – – 0.52 
Summary estimate (95% CI)  
Sensitivity of dermoscopy‡ 0.86 (0.77, 0.92) 0.84 (0.76, 0.90) 0.83 (0.70, 0.92) 
Sensitivity of unaided eye‡ 0.76 (0.63, 0.86) 0.72 (0.56, 0.83) 0.72 (0.57, 0.83) 
Relative sensitivity 1.12 (1.00,1.26) 1.17 (1.02, 1.36) 1.17 (1.04, 1.31) 

σ𝛼𝛼2  = variance of accuracy; σ𝜃𝜃2  = variance of threshold; σξ
2 = variance of difference in 

accuracy; σγ2 = variance of difference in threshold; σασξ = covariance for accuracy; σθσγ = 
covariance for threshold. 
*Confidence intervals are not given for the variance parameters because they may be 
unreliable due to the assumption of normality.  
†Estimation truncated at the lower boundary of zero. 
‡Estimated at a fixed specificity using the median specificity of 0.94 for dermoscopy and 0.87 
for unaided eye obtained from the included studies. 
 

HSROC models are non-linear generalized mixed models and the range of software for fitting 

such models is limited; HSROC models are usually fitted using WinBUGS or SAS Proc 

NLMIXED. Throughout this thesis, HSROC models were fitted using SAS. 
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6.3.3 Methods comparing pooled estimates between meta-analyses 

Methods that use a statistical test—such as a z-test or t-test—to compare summary estimates 

of any test accuracy measure obtained from separate meta-analysis of each test are discussed 

in this section.  

 

6.3.3.1 Comparison of Q* 

Assuming two tests are independent, Moses et al proposed a ‘global’ comparison of 

diagnostic accuracy by comparing values of Q* using a z-test.37 Recall from section 1.4.3 that 

Q* is the point on the SROC curve where sensitivity = specificity. Thus, Q* represents the 

diagnostic threshold at which the probability of a correct diagnosis is constant for all subjects 

and is a point of ‘indifference’ between false positive and false negative test errors.38 The Q* 

statistic is a function of the intercept of the regression line and does not depend on the slope 

as given by 

 Q∗ = 
1

1+𝑒𝑒−𝑎𝑎 2 ⁄  .       (6.16) 

As shown by Moses et al37, the standard error (SE) of Q* is given by 

SE(Q∗) = SE(𝑎𝑎)

8�cosh(𝑎𝑎 4⁄ )�
2

 
 . 

Equation 6.16 implies that all SROC curves with a certain value of a pass through the same 

Q* point irrespective of their value of b. Therefore, Q* is of limited use because SROC curves 

with different shapes can have the same Q* value. In addition, as highlighted earlier in section 

1.4.3, Q* may not be located within the region of the observed data. To compare the accuracy 

of two tests using Q*, an approximate z statistic is given by 

𝑧𝑧 = Q1∗−Q2∗

��SE12(Q1∗ )+SE22(Q2∗ )�
 .      (6.17) 
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Moses et al suggested that if the number of studies is large, e.g. at least 10 studies, a normal 

distribution can be used as an approximation to the sampling distribution of this statistic in 

order to obtain a P value.  

 

6.3.3.2 Comparison of effectiveness measure 

Hasselblad and Hedges proposed an effectiveness measure, d, that is proportional to the log 

DOR.201 Their approach makes two key assumptions: (1) that underlying distributions of 

continuous measurements are logistic and (2) have equal variances (see section 1.3.2.2). 

Using the counts of the 2x2 table, di can be estimated for the ith study as follows: 

𝑑𝑑𝐴𝐴 = √3
𝜋𝜋

[ln(TP𝐴𝐴) + ln(FP𝐴𝐴) − ln(FN𝐴𝐴) − ln (TN𝐴𝐴)]    (6.18) 

The variance of di is given by 

   var(𝑑𝑑𝐴𝐴) = 3 � 1
TP𝑖𝑖

+ 1
FP𝑖𝑖

+ 1
FN𝑖𝑖

+ 1
TN𝑖𝑖

� /𝜋𝜋2.    (6.19) 

From equations (6.18) and (6.19), it is clear that a continuity correction will be needed if any 

of the cells of the 2x2 table is zero. In a meta-analysis, d can be pooled using an inverse 

variance weighted fixed effect model or the DerSimonian and Laird random effects approach. 

This can be implemented in any statistical package. 

 

To compare two tests with pooled effectiveness estimate �̂�𝑑1 and variance var��̂�𝑑1� for one test, 

and �̂�𝑑1 and var��̂�𝑑2� for the other test, the z statistic is 

𝑧𝑧 = 𝑑𝑑�1−𝑑𝑑�2

�var�𝑑𝑑�1�+var�𝑑𝑑�2�
 .      (6.20) 

The difference in average effectiveness and its 95% confidence interval is given by 

  �̂�𝑑1 − �̂�𝑑2 ± 1.96�var��̂�𝑑1� + var��̂�𝑑2� .     
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6.3.4 Methods for comparative meta-analysis of correlated (paired) data  

Contrary to the standard comparative meta-analysis methods that assume independence 

between test results from the same individuals (paired data), the comparative meta-analysis 

methods discussed in this section explicitly account for correlated multivariate data structures. 

Methods based on odds ratios or directly on sensitivity and specificity have been proposed as 

described below.  

 

6.3.4.1 Conditional relative odds ratio method 

Suzuki et al proposed the conditional relative odds ratio (CROR) as a measure of relative test 

performance conditioned on counts of discordant test results.205 The CROR approach requires 

tables of the joint classification of the results of two tests against those of the reference 

standard (see Table 1.3). The CROR only requires the number of discordant test results in the 

diseased group and in the non-diseased group. This is illustrated in Table 6.5 using similar 

notation as in Table 1.3.  

 

Table 6.5| Discordant test results in the diseased and non-diseased groups for study i 
 Reference standard positive Reference standard negative 

 Test 1 positive Test 1 negative Test 1 positive Test 1 negative 

Test 2 positive  𝑦𝑦𝐴𝐴,01𝐷𝐷   𝑦𝑦𝐴𝐴,01𝐷𝐷�  

Test 2 negative 𝑦𝑦𝐴𝐴,10𝐷𝐷   𝑦𝑦𝐴𝐴,10𝐷𝐷�   

 

The odds ratio in study i comparing test A and B in the diseased group is given by 

OR𝐴𝐴(diseased) = 𝑦𝑦𝑑𝑑,10
𝐷𝐷 /𝑦𝑦𝑑𝑑,01

𝐷𝐷 , 

and in the non-diseased group by 
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  OR𝐴𝐴(non−diseased) = 𝑦𝑦𝑑𝑑,10
𝐷𝐷� /𝑦𝑦𝑑𝑑,01

𝐷𝐷�  . 

Note that OR𝐴𝐴(diseased) and OR𝐴𝐴(non−diseased) are measures similar to odds ratios from a 

matched case control or cohort study. The ratio of these two ORs is the CROR which 

represents the relative accuracy of test A and test B conditioned on discordant test results. 

This can be written as 

CROR𝐴𝐴 = 
OR𝑖𝑖(diseased)

OR𝑖𝑖(non−diseased)
=

𝑦𝑦𝑑𝑑,10
𝐷𝐷 /𝑦𝑦𝑑𝑑,01

𝐷𝐷

𝑦𝑦𝑑𝑑,10
𝐷𝐷� /𝑦𝑦𝑑𝑑,01

𝐷𝐷�  ,      (6.21) 

and the variance as 

var(CROR) =  
1
𝑦𝑦𝑑𝑑,10
𝐷𝐷 + 1

𝑦𝑦𝑑𝑑,01
𝐷𝐷 + 1

𝑦𝑦𝑑𝑑,10
𝐷𝐷� + 1

𝑦𝑦𝑑𝑑,01
𝐷𝐷�  . 

After obtaining the CROR and its variance from each study, the estimates are then pooled 

using traditional univariate methods.  

 

Since the CROR approach only requires discordant results, the true diagnosis of concordant 

results in a primary study is not needed. However, the use of only discordant results has 

limitations. The number of individuals with discordant test results tends to be small and so the 

standard error of the CROR may be large. Also, it may not be possible to construct Table 6.5 

for several studies, therefore limiting the number of studies included in the meta-analysis.  

 

6.3.4.2 Generalized estimating equation modelling of sensitivity and specificity 

Kowalski et al used generalized estimating equations (GEEs) to compare the accuracy of 

enzyme immunosorbent assays (EIAs) used in HIV antibody testing.202 The primary aim of 

this systematic review was to estimate the relative test performance of test kits from different 

manufacturers applied to the same serum samples in each included study. The marginal 

(population average) model, models the averaged result for each study, and allows for missing 
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data if all studies do not evaluate all tests. The approach assumes a fixed threshold across 

studies and so sensitivity and specificity were analysed separately. However, test threshold 

will often vary across studies thus inducing correlation between sensitivity and specificity in 

addition to heterogeneity. Although this approach accounts for pairing of test results, it fails to 

account for between-study heterogeneity and potential correlation between sensitivity and 

specificity across studies. This approach will not be discussed further because some of the 

other more sophisticated models described later in this section were implemented using 

GEEs. 

 

6.3.4.3 Repeated measures modelling of diagnostic odds ratios 

An extension to the Moses SROC model to account for dependencies between tests was 

proposed by Siadaty et al.207 The results of tests applied to the same participants in a study 

were regarded as a cluster of repeated measurements that are potentially correlated and so 

statistical methods for repeated measurements were applied. The proposed marginal model is 

written as  

  logit(𝜋𝜋𝐴𝐴𝐴𝐴) = 𝛽𝛽0 + 𝛽𝛽1𝐷𝐷𝐴𝐴 + 𝛽𝛽2𝑇𝑇𝐴𝐴𝐴𝐴 + 𝛽𝛽3𝐷𝐷𝐴𝐴𝑇𝑇𝐴𝐴𝐴𝐴 + 𝑒𝑒𝐴𝐴𝐴𝐴,     (6.22)  

with 

  𝑒𝑒𝐴𝐴𝐴𝐴~𝑁𝑁(0,𝜎𝜎2). 

 

𝜋𝜋𝐴𝐴𝐴𝐴 is the probability of a positive test result for the kth test from the ith study and 𝑒𝑒𝐴𝐴𝐴𝐴 is the 

random error for each test within each study. Disease status,D𝐴𝐴, is an indicator variable which 

is coded 0 for the non-diseased and 1 for the diseased group. T is a categorical variable for test 

type and is represented by indicator variables (𝑇𝑇𝐴𝐴𝐴𝐴) in the model. Therefore, regression 
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coefficients 𝛽𝛽2 and 𝛽𝛽3 are vectors of coefficients. For the comparison of two tests, 𝛽𝛽3 is the 

log of the ratio of the two DORs from the two tests. 

 

The method was developed for data grouped at the study level but can be modified to expand 

each 2x2 table to the original sample size such that the units of analysis are individuals and 

not studies. Whilst this approach enables a simple transition from aggregated data to 

individual patient data, it does not account for between-study variability. The marginal 

logistic regression was fitted using SAS Proc GENMOD. 

 

6.3.4.4 Proportional odds ratio model 

The proportional odds ratio (POR) regression model proposed by Siadaty and Shu allows 

each test in a test comparison to have its own trend of odds ratios across studies and the trends 

of two tests are assumed to be proportional to each other, the "proportional odds ratio" 

assumption.206 The model assumes a binomial distribution, accounts for correlated test results 

and allows for missing data if all studies do not evaluate all tests. Using the odds ratio as the 

measure of test performance, the proportional odds ratio model can be written as 

  logit(𝜋𝜋𝐴𝐴𝐴𝐴) = 𝛽𝛽0 + 𝛽𝛽1𝐷𝐷𝐴𝐴 + 𝛽𝛽2𝑃𝑃𝐴𝐴𝐴𝐴 + 𝛽𝛽3𝐷𝐷𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴 + 𝛽𝛽4𝑇𝑇𝐴𝐴𝐴𝐴 + 𝛽𝛽5𝐷𝐷𝐴𝐴𝑇𝑇𝐴𝐴𝐴𝐴 + 𝑒𝑒𝐴𝐴𝐴𝐴 , (6.23)  

with 

  𝑒𝑒𝐴𝐴𝐴𝐴~𝑁𝑁(0,𝜎𝜎2). 

 

𝜋𝜋𝐴𝐴𝐴𝐴 is the probability of a positive test result for the kth test from the ith study and 𝑒𝑒𝐴𝐴𝐴𝐴 is the 

random error for each test within each study. Disease status, D𝐴𝐴, is coded 0 for the non-

diseased and 1 for the diseased group.  T and P are categorical variables for test type and 

study and are represented by indicator variables, 𝑃𝑃𝐴𝐴𝐴𝐴 and 𝑇𝑇𝐴𝐴𝐴𝐴, in the model. Therefore, 
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regression coefficients 𝛽𝛽2, 𝛽𝛽3, 𝛽𝛽4 and 𝛽𝛽5 are all vectors of coefficients when there are more 

two tests and more than two studies. The average log DOR is given by 𝛽𝛽1 and components of 

𝛽𝛽5 estimate the deviation of the log DOR of each test from the average log DOR. Similar to 

the previous model, the POR model was also fitted using Proc GENMOD. 

 

The POR model (equation 6.23) assumes that the SROC curves for the tests have the same 

shape with the difference between the curves being their position in ROC space. This 

assumption can be relaxed by using a nonlinear mixed effects model in which study is 

modelled as random effects and random interaction effects are included for the interaction of 

study with disease, and interaction of study with disease and test. However, the authors note 

that analyses of such models will have difficulty converging, especially for datasets where 

there are many studies that evaluated only one or a small number of the tests. 

 

6.3.4.5 Bayesian hierarchical models for joint meta-analysis of paired data 

Trikalinos et al extended the bivariate model (equation 6.4) to enable joint meta-analysis of 

studies comparing multiple index tests using within-subject study designs.209 The model, 

implemented within a Bayesian framework, accounts for the relationship between sensitivities 

and specificities across two or more tests, and also captures information on the concordance 

between two tests in those with and without disease by incorporating the ‘joint true positive 

rate’ (JTPR), and ‘joint false positive rate’ (JFPR). The JTPR is the probability of positive test 

results for both tests in the diseased group while the JFPR is the probability of positive test 

results for both tests in the non-diseased group. From Table 6.6, the JTPR = π𝐴𝐴,11D
 and the 

JFPR = π𝐴𝐴,11 
D� . Thus, the approach considers the joint probability of two tests in addition to the 

marginal probabilities of each test. 
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Table 6.6| Probability of each combination of test results for two tests in study i 
 Reference standard positive Reference standard negative 

 Test 1 positive Test 1 negative Test 1 positive Test 1 negative 

Test 2 positive π𝐴𝐴,11D
 π𝐴𝐴,01D  π𝐴𝐴,11D�  π𝐴𝐴,01D�  

Test 2 negative π𝐴𝐴,10D  π𝐴𝐴,00D  π𝐴𝐴,10D�  π𝐴𝐴,00D�  

π indicates probability of positive and negative test results in those with (D) and without 
disease (D�). 0 denotes negative test results and 1 denotes positive test results. 
 

Analogous to the binomial likelihood used in the bivariate model (see equation 1.11), the 

multinomial distribution can be used to model the cross-classification of the results of two or 

more tests within each study.209 Table 6.7 shows the cross-classified results for two tests in 

study i. These are the observed counts of concordant (𝑦𝑦𝐴𝐴,00𝐷𝐷  and 𝑦𝑦𝐴𝐴,11𝐷𝐷 ) and discordant (𝑦𝑦𝐴𝐴,01𝐷𝐷  and 

𝑦𝑦𝐴𝐴,10𝐷𝐷 ) test results in the diseased group, and the observed counts of concordant (𝑦𝑦𝐴𝐴,00𝐷𝐷�  and 𝑦𝑦𝐴𝐴,11𝐷𝐷� ) 

and discordant (𝑦𝑦𝐴𝐴,01𝐷𝐷�  and 𝑦𝑦𝐴𝐴,10𝐷𝐷� ) test results in the non-diseased group. Trikalinos et al209 

modelled the column vector of counts 

 𝐲𝐲𝐷𝐷 =

⎝

⎜
⎛
𝑦𝑦𝐴𝐴,00𝐷𝐷

𝑦𝑦𝐴𝐴,01𝐷𝐷

𝑦𝑦𝐴𝐴,10𝐷𝐷

𝑦𝑦𝐴𝐴,11𝐷𝐷
⎠

⎟
⎞

 and 𝐲𝐲𝐷𝐷� =

⎝

⎜⎜
⎛
𝑦𝑦𝐴𝐴,00𝐷𝐷�

𝑦𝑦𝐴𝐴,01𝐷𝐷�

𝑦𝑦𝐴𝐴,10𝐷𝐷�

𝑦𝑦𝐴𝐴,11𝐷𝐷� ⎠

⎟⎟
⎞

 

in the diseased and non-diseased groups using conditionally independent multinomial 

distributions as follows: 

  𝐲𝐲𝐷𝐷~𝑀𝑀(N𝐴𝐴
𝐷𝐷 ,𝛑𝛑𝐴𝐴𝐷𝐷)       (6.24) 

  𝐲𝐲𝐷𝐷�~𝑀𝑀�N𝐴𝐴
𝐷𝐷� ,π𝐴𝐴𝐷𝐷

��       (6.25) 
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where N𝐴𝐴
𝐷𝐷 and N𝐴𝐴

𝐷𝐷�are the total number in the diseased and non-diseased groups, and π𝐴𝐴𝐷𝐷 =

�π𝐴𝐴,00D ,π𝐴𝐴,01D ,π𝐴𝐴,10D ,π𝐴𝐴,11D �
′
 and 𝛑𝛑𝐴𝐴𝐷𝐷

� = �π𝐴𝐴,00D� ,π𝐴𝐴,01D� ,π𝐴𝐴,10D� ,π𝐴𝐴,11D� �
′
are vectors of the probabilities in 

Table 6.6. 

 

Table 6.7| Observed counts of test results cross-classified for two tests in study i 
 Reference standard positive Reference standard negative 

 Test 1 positive Test 1 negative Test 1 positive Test 1 negative 

Test 2 positive 𝑦𝑦𝐴𝐴,11𝐷𝐷
 𝑦𝑦𝐴𝐴,01𝐷𝐷  𝑦𝑦𝐴𝐴,11𝐷𝐷�  𝑦𝑦𝐴𝐴,01𝐷𝐷�  

Test 2 negative 𝑦𝑦𝐴𝐴,10𝐷𝐷  𝑦𝑦𝐴𝐴,00𝐷𝐷  𝑦𝑦𝐴𝐴,10𝐷𝐷�  𝑦𝑦𝐴𝐴,00𝐷𝐷�  

0 = negative test result; 1 = positive test result; D = diseased; D� = non-diseased. 
 

The joint distribution of the random effects for the logit transformed TPRs, FPRs, JTPR, and 

JFPR is modelled using a six-dimensional normal distribution analogous to equation 6.4 if an 

unstructured variance-covariance matrix is used. The authors expressed the model in terms of 

logit TPR and logit FPR instead of logit sensitivity (𝜇𝜇𝐴𝐴) and logit specificity (𝜇𝜇𝐵𝐵) used for 

expressing bivariate models in this thesis. For consistency with the notation in the thesis, the 

distribution is modelled in terms of 𝜇𝜇𝐴𝐴 and 𝜇𝜇𝐵𝐵, and written as  

⎣
⎢
⎢
⎢
⎢
⎡
𝜇𝜇𝐴𝐴𝐴𝐴1
𝜇𝜇𝐴𝐴𝐴𝐴2
𝜇𝜇𝐴𝐴𝐴𝐴∗
𝜇𝜇𝐵𝐵𝐴𝐴1
𝜇𝜇𝐵𝐵𝐴𝐴2
𝜇𝜇𝐵𝐵𝐴𝐴∗⎦

⎥
⎥
⎥
⎥
⎤

~𝑁𝑁��
𝛍𝛍𝐀𝐀
𝛍𝛍𝐁𝐁� ,𝚺𝚺 � with =

⎣
⎢
⎢
⎢
⎢
⎢
⎡σA1

2 σA1A2 σA1A∗ σA1B1 σA1B2 σA1B∗
σA22 σA2A∗ σA2B1 σA2B2 σA2B∗

σA∗2 σA∗B1 σA∗B2 σA∗B∗
σB12 σB1B2 σB1B∗

σB22 σB2B∗
σB∗2 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 ,          (6.26) 

where 𝜇𝜇𝐴𝐴𝐴𝐴1, 𝜇𝜇𝐴𝐴𝐴𝐴2, 𝜇𝜇𝐵𝐵𝐴𝐴1 and 𝜇𝜇𝐵𝐵𝐴𝐴2 are the logit sensitivities and logit specificities for test 1 and 

test 2, and 𝜇𝜇𝐴𝐴𝐴𝐴∗ and 𝜇𝜇𝐵𝐵𝐴𝐴∗ are the logit JTPR and logit JTNR (joint true negative rate) in the ith 

study. The means 𝛍𝛍𝐀𝐀= �
𝜇𝜇𝐴𝐴1
𝜇𝜇𝐴𝐴2
𝜇𝜇𝐴𝐴∗

� and 𝛍𝛍𝐁𝐁= �
𝜇𝜇𝐵𝐵1
𝜇𝜇𝐵𝐵2
𝜇𝜇𝐵𝐵∗

� are column vectors of the overall means of the 

logit sensitivities (𝜇𝜇𝐴𝐴1 and 𝜇𝜇𝐴𝐴2), logit specificities (𝜇𝜇𝐵𝐵1 and 𝜇𝜇𝐵𝐵2), logit JTPR (𝜇𝜇𝐴𝐴∗) and logit 
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FPR (𝜇𝜇𝐵𝐵∗) for the two tests. 𝚺𝚺 is an unstructured between-study covariance matrix with 21 

parameters. The six diagonal elements (σA12 , σA22 ,σA∗2 , σB12 , σB22  and σB∗2 ) are the variances 

while the 15 off diagonal elements are the covariances. Structure can be imposed by setting 

equal variances and covariances between tests and so reduce the number of parameters to12. 

The structured variance-covariance matrix can be written as 

𝚺𝚺𝒔𝒔 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡σA

2 σAA σAA∗ σAB σAB σAB∗
σA2 σAA∗ σAB σAB σAB∗

σA∗2 σA∗B σA∗B σA∗B∗
σB2 σBB σBB∗

σB2 σBB∗
σB∗2 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 .           (6.27) 

 

The Trikalinos et al model can be extended to more than two tests. However, the number of 

model parameters grows rapidly with each additional test. For k tests, the model requires a 

total of 2k+1–2k–1 parameters assuming the unstructured covariance matrix in (6.26). For 

example, for three, four and five tests, this equates to 119, 495 and 2015 parameters. 

Therefore, due to the large number of parameters, numerical difficulties will be encountered 

in both unstructured and structured parameterizations.209,221 While this model may in theory 

offer better statistical properties than bivariate and HSROC models that ignore within-study 

correlation, it clearly comes at a price; simplifications such as using a multivariate normal 

approximation to model within-study variation instead of the correct multinomial distribution 

are likely to be needed. 

 

The model is applicable when a substantial number of studies report data on the cross 

classification of results from several tests, and for meta-analyses in which estimation of 

summary points is appropriate due to common thresholds. There is a common perception 
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among diagnostic test researchers that most comparative accuracy studies that use a within-

subject design do not typically report the cross classification of test results as in Table 1.3 and 

Table 6.7. If this is true, then the value of this approach is limited. In their application of the 

model to an example—accuracy of two second trimester ultrasound markers (shortened femur 

and shortened humerus) for Down syndrome screening—the payoff of multivariate analyses 

was modest. Differences in the summary estimates and credible intervals from separate meta-

analyses for each test and joint meta-analyses were very small (Table 6.8). On the other hand, 

larger differences in estimates of comparative accuracy were observed due to the joint meta-

analysis using all the information in the cross tabulation of test results, thus giving smaller 

standard deviations than from separate meta-analyses.209 

 

Verde 2013 proposed a new Bayesian hierarchical model for meta-analysis of paired data in 

which the observed rates are modelled as the marginal results of unobserved rates, thus 

enabling direct comparison between tests.222 Since the model does not rely on the availability 

of joint classification of test results, it appears to overcome the limitation of the Trikalinos et 

al209 approach. However, the Verde model is yet to be published and further details are 

unavailable. Cheng et al have developed a Bayesian network meta-analysis approach for 

pooling data from direct and indirect test comparisons,210 but their work is also yet to be 

published. 
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6.4 Summary of comparative meta-analysis methods 

A range of methods, varying in complexity and methodological rigour, are available for 

comparative meta-analysis. Key characteristics of the methods are summarised in Table 6.9. 

Some methods synthesise studies in one step in a model while others use a two stage 

approach, first estimating new measures or variables before the actual meta-analysis. Of all 

the methods, only hierarchical models (including Bayesian extensions for modelling 

correlated data) explicitly account for both within and between-study variability, while also 

accounting for the bivariate and logistic (no continuity correction required) nature of the data. 

Frequentist based methods which directly model correlated data, such as the CROR or POR 

approaches, fail to address between-study variability. In contrast, a Bayesian bivariate model 

extension for modelling correlated data proposed by Trikalinos et al209 is promising but data 

availability and modelling assumptions/complexities are likely to compromise its use. 

 

For bivariate and HSROC models, different parameterisations of the covariance matrix are 

possible. In practice, it is often assumed that the variances of the respective model parameters 

are identical across tests, i.e. differences in parameter estimates are modelled as fixed effect. 

A similar assumption is commonly made about between-study variances for treatment effects 

in multiple treatment comparisons (network meta-analysis). While this assumption has the 

advantage of simplifying estimation of the models and may be appropriate for treatment 

effects, it is unlikely to be generalisable for test comparisons. The assumption will be 

evaluated and discussed further in Chapter 7. 



 

21
4 

 T
ab

le
 6

.9
| S

um
m

ar
y 

of
 c

om
pa

ra
tiv

e 
m

et
a-

an
al

ys
is

 m
et

ho
ds

 
M

et
ho

d 
 

C
ha

ra
ct

er
is

tic
 

M
od

el
s 

pa
ire

d 
da

ta
 

O
ne

 
st

ag
e 

an
al

ys
is

 

R
eg

re
ss

io
n 

m
od

el
 

A
vo

id
s 

co
nt

in
ui

ty
 

co
rr

ec
tio

n 
 

C
re

di
bl

y 
ac

co
un

ts
 fo

r 
w

ith
in

-
st

ud
y 

va
ria

bi
lit

y1  

A
cc

ou
nt

s f
or

 
be

tw
ee

n-
st

ud
y 

va
ria

bi
lit

y 
th

ou
gh

 
in

cl
us

io
n 

of
 

ra
nd

om
 e

ff
ec

ts
 

A
cc

ou
nt

s 
fo

r 
bi

va
ria

te
 

da
ta

2   

Ex
te

nd
s 

to
 m

or
e 

th
an

 tw
o 

te
st

s 

C
om

pa
ris

on
 o

f Q
* 

N
o 

N
o 

N
o 

N
o 

N
o 

N
o 

Y
es

 
N

o 
C

om
pa

ris
on

 o
f e

ff
ec

tiv
en

es
s 

m
ea

su
re

 
N

o 
N

o 
N

o 
N

o 
N

o 
 

N
o 

 
Y

es
  

N
o 

 

Li
ne

ar
 m

ix
ed

 m
od

el
 fo

r L
R

s 
N

o 
N

o 
Y

es
 

N
o 

N
o 

Y
es

 
N

o 
Y

es
 

M
os

es
 S

R
O

C
 re

gr
es

si
on

3 
N

o 
N

o 
Y

es
 

N
o 

N
o 

 
N

o 
 

Y
es

 
Y

es
  

B
iv

ar
ia

te
 m

et
a-

re
gr

es
si

on
 

N
o 

Y
es

 
Y

es
 

Y
es

 
Y

es
 

Y
es

 
Y

es
 

Y
es

 
H

SR
O

C
 m

et
a-

re
gr

es
si

on
 

N
o 

Y
es

 
Y

es
 

Y
es

 
Y

es
 

Y
es

 
Y

es
 

Y
es

 
C

on
di

tio
na

l  
re

la
tiv

e 
od

ds
 

ra
tio

 a
pp

ro
ac

h 
Y

es
 

N
o 

N
o 

N
o 

N
o 

N
o 

 
Y

es
 

N
o 

 

G
EE

 m
od

el
lin

g 
of

 se
ns

iti
vi

ty
 

an
d 

sp
ec

ifi
ci

ty
 

Y
es

 
Y

es
 

Y
es

 
Y

es
 

Y
es

 
N

o 
 

Y
es

 
Y

es
 

R
ep

ea
te

d 
m

ea
su

re
s 

Y
es

 
Y

es
 

Y
es

 
Y

es
 

Y
es

 
N

o 
 

Y
es

 
Y

es
 

Pr
op

or
tio

na
l o

dd
s r

at
io

 m
od

el
 

Y
es

 
Y

es
 

Y
es

 
Y

es
 

Y
es

 
N

o 
 

Y
es

 
Y

es
 

B
ay

es
ia

n 
m

od
el

s f
or

 jo
in

t 
m

et
a-

an
al

ys
is

 o
f p

ai
re

d 
da

ta
4 

Y
es

 
Y

es
 

Y
es

 
Y

es
 

Y
es

 
Y

es
 

Y
es

 
Y

es
 

1 Ex
pl

ic
itl

y 
m

od
el

s w
ith

in
-s

tu
dy

 v
ar

ia
bi

lit
y 

us
in

g 
a 

bi
no

m
ia

l l
ik

el
ih

oo
d 

to
 m

od
el

 p
ro

po
rti

on
s o

r a
pp

ro
xi

m
at

es
 w

ith
in

-s
tu

dy
 v

ar
ia

bi
lit

y 
us

in
g 

a 
no

rm
al

 d
is

tri
bu

tio
n.

 
2 

M
et

ho
ds

 th
at

 e
ith

er
 c

on
si

de
re

d 
se

ns
iti

vi
ty

 a
nd

 sp
ec

ifi
ci

ty
 jo

in
tly

 o
r u

se
d 

th
e 

di
ag

no
st

ic
 o

dd
s r

at
io

 o
r a

 v
ar

ia
nt

 o
f i

t a
s t

he
 o

ut
co

m
e 

m
ea

su
re

 
w

er
e 

de
em

ed
 to

 a
cc

ou
nt

 fo
r t

he
 b

iv
ar

ia
te

 n
at

ur
e 

of
 te

st
 a

cc
ur

ac
y 

da
ta

. 
3 Th

e 
m

et
a-

re
gr

es
si

on
 a

pp
ro

ac
h 

fo
r c

om
pa

rin
g 

te
st

s w
as

 n
ot

 p
ro

po
se

d 
in

 th
e 

pa
pe

r b
y 

M
os

es
 e

t a
l 1

99
3 

bu
t t

he
 m

et
a-

re
gr

es
si

on
 a

pp
ro

ac
h 

su
gg

es
te

d 
in

 th
e 

pa
pe

r f
or

 in
ve

st
ig

at
in

g 
he

te
ro

ge
ne

ity
 w

as
 la

te
r a

do
pt

ed
 fo

r t
es

t c
om

pa
ris

on
s. 

4 R
ef

er
s t

o 
th

e 
th

re
e 

B
ay

es
ia

n 
m

od
el

s b
y 

Tr
ik

al
in

os
 e

t a
l 2

01
4,

20
9  C

he
ng

 e
t a

l 2
01

321
0  a

nd
 V

er
de

 2
01

322
2 . 



Chapter 6: Methodological review of comparative meta-analysis methods  
 

215 
 

Almost all the methods can be extended to include more than two tests in a meta-analysis.  

The comparisons between different tests constitute a network (see Figure 2.2) that can enable 

inferences about the relative merits of tests that have not been compared directly. Appropriate 

methodology has been developed for combining the data from a network of RCTs, allowing 

the incorporation of evidence from all direct and indirect comparisons toward estimating 

summary treatment effects.91,223,224 The basic network meta-analysis approach cannot be 

directly applied to test accuracy studies because test accuracy is not normally reported using a 

single measure of effect but rather two correlated measures such as sensitivity and specificity 

to quantify test performance in the diseased and non-diseased groups respectively.  Also, 

unlike RCTs where the relative treatment effects of comparator interventions is summarised 

in meta-analysis using statistics such as relative risks and odds ratios, the sensitivity and 

specificity of each test are usually the measures meta-analysed and not relative sensitivity and 

relative specificity. Cheng et al210 have generalised the Trikalinos et al209 approach to network 

meta-analysis but the work is yet to be published. 

 

Given the number of published papers and those in progress, it seems the development of 

comparative meta-analysis methods is an area of active research. Recent advances have been 

in Bayesian methods but given the poor uptake of Bayesian methods for meta-analysis of a 

single test, it remains to be seen if Bayesian comparative meta-analysis methods will be used 

in practice. Methods that use a frequentist approach can be fitted in standard statistical 

packages and accessibility to appropriate software is likely to drive their use. In the next 

chapter, the performance of robust or frequently used frequentist based methods described in 

this chapter will be explored in detail. 
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6.5 Conclusions 

Various comparative meta-analysis methods are available but few of them take into account 

the potential for correlation between sensitivity and specificity, in addition to explicit 

modelling of within- and between-study variability. In particular, none of the frequentist 

approaches designed to fully account for paired data meet all of these requirements. 

Consequently, use of such methods should be discouraged. Rigorous and more integrated 

approaches to comparative meta-analysis are evolving, especially within the Bayesian 

framework, but bivariate and HSROC meta-regression models are currently the most 

sophisticated and theoretically sound approach in use.  

 

Though the limitations of the Moses SROC method for basic meta-analysis are well 

documented in the literature, the simplicity of the approach probably explains its continued 

popularity. The approach is likely to give erroneous standard errors and misleading 

conclusions, and so should not be used for making formal inferences about relative test 

performance. The extent to which results from Moses SROC meta-regression deviate from 

those of hierarchical models and the impact on conclusions will be thoroughly investigated in 

the next chapter.
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7 EMPIRICAL ASSESSMENT OF COMPARATIVE META-
ANALYSIS METHODS 

 

 

7.1 Introduction 

The case studies in Chapter 2 raised the prospect that assumptions made in fitting hierarchical 

meta-regression models, such as assuming a common shape for SROC curves (section 2.3.3) 

or common variances across tests (section 2.3.4) may threaten the validity of review 

conclusions. The complexity of models and/or the number of test comparisons in relation to 

the number of studies available (sections 2.3.1 and 2.3.5) also pose a challenge. However, 

there is a lack of evidence based guidance on meta-analysis of test comparisons. Therefore, 

the aim of this chapter is to empirically investigate the validity of assumptions commonly 

made when comparing test accuracy in hierarchical meta-regression models, and to examine 

the impact of alternative comparative meta-analytic models on findings. Given the scope of 

the challenges illustrated in Chapter 2, understanding the properties of common and novel 

methods when assessing two tests is an essential precursor to undertaking more complex 

evaluations involving more than two tests. Therefore, this empirical assessment is limited 

to meta-analyses comparing the diagnostic accuracy of two tests. 

 

To help the reader navigate this chapter, the chapter is divided into three parts. Part I (sections 

7.2 and 7.3) describes the methods and dataset used for the empirical study; Part II (sections 

7.4 and 7.5) gives the results of the investigation of modelling assumptions used in 

hierarchical models; and Part III (sections 7.6 to 7.8) gives the results of the assessment of the 

impact of different modelling complexity and comparative meta-analysis models on findings, 

and concludes the chapter with a discussion. A more detailed outline for this chapter is as 
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follows. In section 7.2, methods for selection of systematic reviews identified from the search 

results in section 3.4 and data extraction are outlined. Data analysis methods for the empirical 

evaluation of the most commonly used or promising comparative meta-analytic methods 

described in Chapter 6 are also detailed in this section. Characteristics of the review cohort 

are described in section 7.3. In section 7.4, results of the investigation of modelling 

assumptions based on separate meta-analyses of tests in each test comparison are presented, 

and key findings are summarised in section 7.5. Section 7.6 builds on the previous two 

sections by addressing the impact of different modelling complexity on relative test 

performance. In section 7.7, different comparative meta-analysis methods are compared. 

Finally, section 7.8 concludes the chapter with a discussion of the findings, and gives 

recommendations for appropriate use of comparative meta-analysis methods. 

 

To avoid repetition detailed research questions will be specified at the beginning of Part 

II and Part III. 
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PART I: METHODS AND DESCRIPTION OF EMPIRICAL DATA 

The first part of this chapter (sections 7.2 and 7.3) describes the methods for selecting 

systematic reviews from the cohort identified in Chapter 3; methods for extracting data from 

the reviews; data analysis methods used for investigating modelling assumptions and for 

comparing the findings of different comparative meta-analysis methods; and characteristics of 

the reviews selected. Therefore, Part I is a description of the methodology and dataset used for 

the empirical study. 

 

7.2 Methods 

7.2.1 Selection of systematic reviews and data extraction 

From the cohort of 101 systematic reviews identified in section 3.4, reviews were selected if 

they provided sufficient data to enable derivation of the number of true positives, false 

positives, false negatives and true negatives from each study included a meta-analysis. For 

reviews with data for multiple units of analysis, e.g. lesion-based and patient-based data, 

patient level data was selected. If a review stratified analyses by population, setting, target 

condition, etc., only the dataset for the main analysis was selected. Where it was not possible 

to make this judgement, the stratum containing the largest number of studies was selected. As 

such only one pairwise test comparison was selected per review.  

 

For each review, primary studies that only reported sensitivity or specificity (data for one half 

of the 2×2 table), or had no cases were excluded from the meta-analysis. For studies with 

discrepancies in the 2×2 data, full text papers were retrieved for verification of the data.  

Information about target condition, index tests, unit of analysis, and thresholds were extracted 

from the reviews. The introduction/background and discussion sections of each paper were 
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examined in order to identify the index ("newer") test and comparator (current practice or the 

"older" test). If it was not possible to make this distinction, either explicitly or by inference 

from the available information, an arbitrary choice was made. The test comparison in each 

meta-analysis was classified as direct or indirect depending on the type of primary studies 

included. Data extraction was done only by the author. To check for errors in the 2x2 data 

extracted, forest plots containing the 2x2 data as well as the corresponding sensitivities and 

specificities were produced using Review Manager version 5 (The Nordic Cochrane Centre, 

The Cochrane Collaboration, 2014) and compared with the sensitivities and specificities 

reported in the original review.   

 

7.2.2 Selection of comparative meta-analysis models 

Of the comparative meta-analysis methods described in section 6.3, only those that were: (1) 

commonly used methods for synthesising studies in a regression model; or (2) theoretically 

rigorous approaches that model the bivariate nature of test accuracy data while also 

accounting for within- and between-study variability were considered. With the exception of 

Bayesian models for joint meta-analysis of paired data, only three models—Moses SROC, 

bivariate and HSROC meta-regression models—meet one or both requirements. Empirical 

evaluations of meta-analysis of a single test have suggested that results are often similar 

between univariate and bivariate meta-analyses.36,225 Since univariate random effects logistic 

regression models for sensitivity and specificity represent a special case obtained by 

simplifying the covariance structure of bivariate models (i.e. zero covariance model, see 

equation 1.12), univariate models were also included in the empirical evaluation. The Moses 

model in (6.7) simply averages the log DORs, and so only Moses SROC meta-regression 
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models without interaction (equation 6.6) and with interaction (equation 6.8) terms, using 

unweighted and weighted analyses, were assessed.  

 

7.2.3 Data analysis 

All test comparisons were meta-analysed using methods for comparing points and curves, 

irrespective of whether common or mixed thresholds were used in the included studies. In an 

empirical investigation such as this, the aim is not to estimate summary estimates that will be 

interpreted and translated into clinical practice, but merely for highlighting differences 

between different models. Therefore, to enable the use of all the available datasets, the 

distinction between common and mixed thresholds was ignored. 

 

A two-stage approach was used to assess modelling assumptions commonly used in 

hierarchical models; first by preliminary assessments of test comparisons using separate meta-

analysis of each test in a test comparison and second by investigation in comparative meta-

analyses. This was appropriate because commonly used comparative meta-analysis methods 

assume independence between test results from the same individuals in comparative accuracy 

studies with a paired design.  

 

7.2.3.1 Assessment of modelling assumptions using separate meta-analyses of two tests in 
test comparisons   

Preliminary analyses were undertaken using bivariate and HSROC models for meta-analyses 

of each test in a test comparison. The two models were fitted for each test in order to explore 

estimation issues specific to a particular model, e.g. shape in the HSROC model and 

correlation in the bivariate model, as well as exploring the relationship between the two 

models in situations where one of the models may be unstable but the other is stable. 
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Thorough investigation and meta-analysis of each test was undertaken prior to comparative 

meta-analyses in order to (1) gain insight into model stability and potential model fitting 

problems that may be encountered with increased model complexity when test comparisons 

are made under various modelling assumptions; (2) to assess heterogeneity in the performance 

of each test; and (3) to investigate the shape of each SROC curve. The methods used are 

described below. 

 

Assessment of model stability 

Estimation of the variances of the random effects can be problematic when the estimates are 

zero or close to zero. A small number of studies may lead to unreliable estimation of the 

correlation (ρ) between sensitivity and specificity across studies and the variances of the 

random effects in a bivariate model. Based on the examples in Chapter 2, the cohort of 

reviews in Chapter 5 and a systematic overview,27 it is common for meta-analyses of test 

accuracy to only include a small number of studies. Sparse data also poses another challenge 

as highlighted in section 2.3.5.1.  For similar reasons, the shape parameter (β) and variances 

in a HSROC model may be poorly estimated. 

 

To explore the robustness of ρ in a bivariate model, univariate random effects logistic 

regression models were used to pool sensitivity and specificity by specifying an independent 

variance-covariance structure (i.e. ρ = 0) for a bivariate model (equation 1.12). For brevity, 

throughout the rest of this chapter, univariate random effects logistic regression models will 

be referred to simply as univariate models. The effect of removing ρ on estimates of variances 

of the random effects and standard errors of mean logit sensitivities and mean logit 

specificities is of interest. To investigate estimation of the shape parameter (β), estimates of β 
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from HSROC models were compared with those derived using functions of the bivariate 

model parameters. According to Harbord et al,44 β is determined solely by the ratio of the 

variances of logit sensitivity and logit specificity in the bivariate model as follows:  

β = log(σB σA⁄ ) . 

Given this relationship, it can be argued that if estimates of β from the two models disagree, 

then poor estimation of the variances in a bivariate model or poor estimation of β in an 

HSROC model can be inferred, depending on which of the two models is considered to be 

valid based on criteria outlined in section 7.2.3.3.  

 

Assessment of heterogeneity 

Graphical plots are a useful tool for visual exploration of heterogeneity, and so for each test 

comparison, study specific estimates of sensitivity and specificity were plotted in ROC space 

to illustrate the spread of study results for the tests. The extent of heterogeneity in a random 

effects meta-analysis is quantified by the variances of the random effects. It is plausible that 

the extent of heterogeneity may differ between tests, thus, the assumption of common 

variances (i.e. variances of the random effects do not depend on test type) in hierarchical 

meta-regression models may be untenable as illustrated earlier in section 2.3.4.1. In that 

example, initial meta-analysis of each test indicated variances may differ between both tests. 

Therefore, variances of the random effects obtained from meta-analyses of individual tests 

were compared for each pair of test in a test comparison to determine their similarity.  This 

was examined graphically across test comparisons by plotting the variance estimates for an 

index test against those of the corresponding comparator test. 
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Assessment of shape of SROC curves 

Estimation of SROC curves using the HSROC model allowed investigation of the shape of 

SROC curves for individual tests prior to exploring assumptions of a common asymmetric 

shape for SROC curves in test comparisons. For each pair of tests in a test comparison, 

estimates of β (shape parameter) from separate meta-analyses of the tests were graphically 

compared to assess their similarity. For each test, the 95% confidence interval of β was 

examined to explore uncertainty in the estimation of β. Since the number of studies for each 

test in a test comparison may differ, uncertainty in the estimation of β was also investigated 

by using scatter plots to examine the effect of the number of studies included in a meta-

analysis on the magnitude of β and its standard error. A second meta-analysis in which 

symmetry of the SROC curve was assumed by removing β from the HSROC model, i.e. 

constraining β to zero, was performed for each test. Likelihood ratio tests were used to assess 

whether the observed difference in the fit of HSROC models with and without β was 

statistically significant. 

 

7.2.3.2 Assessment of impact of different modelling assumptions on relative test 
performance 

Comparative meta-analyses were performed for each test comparison by using bivariate and 

HSROC meta-regression models. Issues that were illustrated in Chapter 2 were investigated 

as follows. 

 

Dealing with comparative studies in a comparative meta-analysis 

Two approaches for handling comparative studies in a comparative meta-analysis were 

discussed in section 2.3.4.2. One approach—the between-study comparative approach— 

ignores the clustering of test results within comparative studies while the other approach—the 
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within-study comparative approach—takes each comparative study into account. The effect of 

a between-study approach was investigated in bivariate models (using equations 6.1 and 6.2) 

by giving each study and test combination a unique identifier. This variable was then used to 

determine the clusters for estimation of the random effects instead of the study identifier used 

for the within-study approach. These models were compared with bivariate models that used a 

within-study approach. The within-study approach was used for all other comparative meta-

analyses performed using bivariate or HSROC models in the rest of the thesis.  

 

Testing for differences in variances of random effects 

Assumptions about the variances of the random effects were investigated in bivariate models 

by fitting the models specified in equations 6.2 (Model 1) and 6.4 (Model 2). The statistical 

significance of different covariance structures was assessed using likelihood ratio tests to 

compare models that assumed common variances across tests and those that allowed 

variances to vary by test. Univariate models were also used to examine assumptions about the 

variances of the random effects. The covariance structure in HSROC models can also be 

investigated but such analyses were considered unnecessary given the close relationship 

between bivariate and HSROC models, and because the bivariate model directly models 

sensitivity and specificity which are often the quantities of interest to meta-analysts and 

clinicians instead of DORs.  

 

Additional analyses restricted to direct comparisons were conducted if paired data were 

available for at least 10 studies in a test comparison. Three bivariate models were fitted to 

each direct comparison using the different covariance structures represented by equations 6.2 

(Model 1), 6.4 (Model 2) and 6.5 (Model 3). The minimum number of studies was selected 



Chapter 7: Empirical assessment of comparative meta-analysis methods  

226 
 

based on the number of parameters to be estimated and to facilitate convergence. A larger 

number of studies should be preferred because there are 14 parameters in (6.5) but the limit of 

10 was chosen to allow investigation of any numerical issues. 

 

Testing for differences in shape of SROC curves 

For methods that compare SROC curves, assumptions about the shape of the SROC curves 

were explored by fitting models that assumed a common shape and those that allowed for 

differences in shape between tests (i.e. equations 6.6 and 6.8 for Moses models, and equations 

6.9 to 6.11 for HSROC models). Association between shape and test type was statistically 

assessed using likelihood ratio tests to compare models with and without covariate terms for 

shape. 

 

7.2.3.3 Comparison of meta-analytic models 

Bivariate and HSROC meta-regression models were considered the benchmark against which 

to compare the performance of univariate and Moses SROC meta-regression models 

respectively. This is because hierarchical models are statistically rigorous—argued from a 

theoretical viewpoint23,35,44 and demonstrated in simulation studies of their application in the 

meta-analysis of single tests.53,54,226 To illustrate differences between models, univariate 

models were compared against bivariate models; weighted Moses SROC models against 

unweighted models; and Moses SROC models against HSROC models.  

 

7.2.3.4 Model fitting and estimation of summary estimates 

Hierarchical models were fitted in SAS and Stata using maximum likelihood estimation, via 

adaptive Gaussian quadrature as described in section 2.2.5. Bivariate models were fitted using 
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the xtmelogit command in Stata. If the analysis of a model failed to converge, the number of 

quadrature points was increased from five to 10. If the analysis still failed to converge, the 

user-written program gllamm227 was used. Prior to version 10 of Stata, gllamm was the only 

option for fitting generalized linear mixed models. Based on the author’s experience, gllamm 

appears to be better at obtaining feasible starting values for the likelihood estimation than 

xtmelogit.  However, xtmelogit was preferred to gllamm for several reasons. First, because 

gllamm is a user-written program in a Stata ado file, it is slower to run than the in-built 

xtmelogit command. Second, gllamm has no option for displaying the gradient vector in the 

iteration log. Third, it is not possible to fit bivariate models with the covariance structure in 

(6.4) using gllamm. For bivariate and univariate models, differences in diagnostic accuracy 

between tests were presented as relative sensitivity and relative specificity.  

 

HSROC models were fitted using the NLMIXED procedure in SAS. A negative variance 

component is an underestimate of a small or zero variance component.228 To prevent 

estimation of such negative variances, boundary constraints (σ2 ≥ 0) were specified for the 

variances of the random effects in the HSROC model (σ𝛼𝛼2  and σ𝜃𝜃2). A bivariate or HSROC 

model may satisfy a convergence criterion but may be unstable or have missing standard 

errors due to issues with model identifiability. Therefore, for an analysis to be deemed valid, 

the convergence criterion had to be met, and the analysis had to give standard errors along 

with gradient values close to zero for all model parameters. If boundary constraints were 

triggered for variance parameters of the HSROC model, there was no requirement for small 

gradient values or standard errors since estimation of these parameters would be truncated. 
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If a common shape was assumed for SROC curves, the rDOR was used to quantify 

differences in DORs by taking the exponent of the difference in accuracy (𝜉𝜉 in equation 6.11). 

For HSROC models that allowed β to differ by test (equation 6.9), relative sensitivity was 

computed by using the ESTIMATE statement described earlier in section 2.2.5. Relative 

sensitivity was derived from estimates of sensitivities at the median specificity values 

obtained from the included studies for each test. The log of relative sensitivity was computed 

by taking the difference between the estimated summary sensitivities on the log scale 

[log(sensitivity of index test) - log(sensitivity of comparator)] to ensure appropriate 

estimation of standard errors using the delta method. The sensitivity of each test was 

computed using equation 1.19.   

 

Weighted and unweighted Moses SROC regression models were fitted using the regress 

command in Stata. If a common shape was assumed for SROC curves, the rDOR was used to 

quantify differences in DORs by taking the exponent of the regression coefficient 𝑏𝑏1 in 

equation 6.6. For the Moses model that included the kS interaction term (equation 6.8), 

relative sensitivity was estimated using equation 1.5 and the nlcom command in Stata post-

estimation of the regression model.  The nlcom command uses nonlinear combinations of the 

parameter estimates to compute point estimates and standard errors are also computed using 

the delta method.  

 

7.2.3.5 Assessment of performance of different models 

The performance of different models in Part III (same comparative meta-analysis method but 

under different modelling assumptions or different comparative meta-analysis methods) was 

assessed by examining estimates of measures of relative test performance (rDOR, relative 
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sensitivity and relative specificity) and their standard errors. Performance was assessed using 

the following four criteria. 

1. Difference in magnitude of relative test performance computed as ratio of rDORs, or 

ratio of relative sensitivities and ratio of relative specificities. 

2. Difference in precision of measures of relative test performance computed as a ratio of 

standard errors. 

3. Change in statistical significance at the 5% level determined by assessing whether or 

not the confidence intervals for rDORs, or relative sensitivities and relative 

specificities include 1.  

4. Change in direction of effect, i.e., qualitative change where the ranking of a pair of 

tests in terms of superior sensitivity or specificity was inconsistent between two 

different models. 

Across the cohort of meta-analyses, descriptive statistics were computed to summarise how 

often differences occurred. Where applicable, the statistical significance of differences in the 

fit of two models was assessed using likelihood ratio tests. 

 

7.3 Description of cohort of systematic reviews 

Characteristics of the 57 reviews and test comparisons included in this cohort are summarised 

in Table 7.1. Further details are provided in Appendix D.1. Complete 2x2 data were not 

available for 30 primary studies in nine of the 57 reviews. These studies were excluded and so 

the number of studies presented for each test in Table 7.1 is the number of studies with 

complete 2x2 tables.  
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Table 7.1| Characteristics of empirical dataset 
ID Reference Type of test 

comparison 
NIC

1 NI
2 NC

3 NT
4 Unit of 

analysis 
Thresholds5 

1 Alkhayal 2007152 Indirect 3 25 25 47 Patient No 
2 Arbyn 2004229 Direct only 4 4 4 4 Patient No 
3 Bafounta 2001230 Direct only 8 8 8 8 Lesion Yes 
4 Basaran 2009231 Indirect 0 4 3 7 Patient No 
5 Battaglia 2006219 Indirect 0 6 13 19 Patient Yes 
6 Birim  2005232 Direct only 17 17 17 17 Patient No 
7 Brazzelli 2009233 Direct only 7 7 7 7 Patient No 
8 Carlson 1994234 Indirect 0 7 3 10 Patient No  
9 Cavallazzi 2008235 Indirect 1 3 5 7 Patient Yes 
10 de Vries 1996218 Indirect 0 6 8 14 Segment Yes  
11 Deville  2000236 Indirect 6 6 11 11 Patient Yes 
12 Dong 2008237 Indirect 1 8 21 28 Patient No 
13 Dong  2009238 Indirect 0 4 14 18 Patient No 
14 Doria 2006239 Indirect 5 8 23 26 Patient No 
15 Ewald 2008125 Direct only 7 7 7 7 Patient Yes 
16 Fleischmann 1998157 Indirect 6 27 23 44 Patient Yes  
17 Gisbert 2006240 Indirect 9 16 9 16 Patient No 
18 Gould 2003241 Indirect 24 33 24 33 Patient No 
19 Granader 2008242 Direct only 4 4 4 4 Lesion Yes  
20 Gu 2007160 Indirect 8 12 15 19 Patient Yes 
21 Hamon 2007243 Indirect 0 12 17 29 Patient No 
22 Hayashino 2005244 Indirect 2 9 5 12 Patient Yes 
23 Hodgkinson 2011245 Indirect 1 7 3 9 Patient No 
24 Hovels 2008246 Indirect 3 10 17 24 Patient No 
25 Karger 2007247 Indirect 5 6 5 6 Patient No 
26 Kearon 1998248 Indirect 1 18 6 23 Patient No 
27 Kittler 2002216 Direct only 13 13 13 13 Image 

/Patient 
Yes 

28 Koumans 1998249 Indirect 0 10 3 13 Patient No 
29 Kriston 2008250 Direct only 5 5 5 5 Patient Yes 
30 Ledro-Cano 2007251 Direct only 7 7 7 7 Patient No 
31 Lewis  2006252 Direct only 34 34 34 34 Patient No 
32 Lewis  2010253 Direct only 11 11 11 11 Patient No 
33 Mahajan 2010163 Indirect 6 14 15 23 Patient No 
34 Mirza 2010165 Indirect 5 7 21 23 Patient No 
35 Mitchell 2010166 Indirect 4 10 7 13 Patient Yes 
36 Ngamruengphong 2010168 Indirect 3 7 15 19 Patient No 
37 Nishimura 2007170 Indirect 28 37 50 59 Patient Yes 
38 Olatidoye 1998254 Indirect 2 12 9 19 Patient Yes 
39 Roos 2007255 Direct only 27 27 27 27 Patient Yes 
40 Schuetz 2010147 Indirect 5 89 19 103 Patient No 
41 Schuifj 2006256 Indirect 1 24 28 51 Segment No 
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ID Reference Type of test 
comparison 

NIC
1 NI

2 NC
3 NT

4 Unit of 
analysis 

Thresholds5 

42 Shie 2008257 Direct only 4 4 4 4 Lesion No 
43 Smith 2011177 Indirect 4 15 8 19 Hips No 
44 Sun 2011258 Direct only 14 14 14 14 Biopsy No 
45 Tan 2002259 Indirect 2 12 15 25 Artery No 
46 Terasawa 2004180 Indirect 4 12 14 22 Patient No 
47 van Randen 2008260 Direct only 6 6 6 6 Patient No 
48 Verma 2006261 Direct only 5 5 5 5 Patient No 
49 Vestergaard 2008262 Direct only 9 9 9 9 Lesion Yes  
50 Visser 2000263 Indirect 0 10 21 31 Segment No 
51 Wang 2005264 Direct only 6 6 6 6 Patient No 
52 Wiese 2000265 Indirect 7 7 30 30 Patient No 
53 Wijnberger 2001266 Direct only 6 6 6 6 Patient Yes 
54 Worster 2002204 Direct only 4 4 4 4 Patient No 
55 Xu 2011186 Indirect 3 7 8 12 Patient No 
56 Yang 2009267 Direct only 12 12 12 12 Patient Yes 
57 Zhu 2010268 Direct only 7 7 7 7 Patient No 

1NIC = Number of studies comparing index test and comparator (i.e. comparative studies). 
2NI = Index test – experimental or newer test. 
3NC = Comparator – current practice or older test. 
4NT = Total number of studies 
5Whether or not thresholds were used to determine test positivity.  
ID uniquely identifies each test comparison. The table was sorted according to ID. 
 

The SROC plots for the 57 test comparisons were grouped into three figures (Figure 7.1, 

Figure 7.2 and Figure 7.3) for ease of viewing each plot. The number on each plot is a unique 

identifier for each test comparison and corresponds to the ID column in Table 7.1.  The test 

comparisons will be referred to using these IDs in the rest of the chapter. When reference is 

made to the meta-analysis of one of the tests in a test comparison, the index test or comparator 

will be identified along with the test comparison ID. Figure 7.1 shows test comparisons that 

included studies with different thresholds while Figure 7.2 and Figure 7.3 show test 

comparisons involving studies that used common thresholds. The latter were presented on two 

figures because of the number of datasets.  

Table 7.1 continued… 
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7.3.1 Types of test comparisons 

Twenty two (39%) reviews restricted test comparison to direct comparisons while the 

remaining 35 (61%) reviews performed indirect comparisons (Table 7.1). Of the 35 indirect 

comparisons, eight (23%) had no comparative studies and 27 (77%) included between one 

and 28 comparative studies. The total number of studies in the test comparisons ranged 

between six and 103. The distribution of the number of studies for the index test and 

comparator in the test comparisons is shown in Figure 7.4. The median (interquartile range) 

number of studies for the index and comparator tests were 8 (6 to 13) and 10 (6 to 17). 

Nineteen (33%) test comparisons included studies with different numeric thresholds or 

different non-numeric criteria to determine test positivity.  

 

 
Figure 7.4| Distribution of number of primary studies for the index and comparator 
tests in the test comparisons 
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The distribution of the number of studies with zeros in any of the cells of the 2x2 tables in the 
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number of studies with zero cells was 4 (2 to 7). In four test comparisons, there were no zero 

cells in any of the included studies while there were 39 studies with zero cells in one test 

comparison. This means that for the empirical evaluation of Moses SROC meta-regression, 

zero cell corrections will be applied in 53 of the 57 (93%) comparative meta-analyses.  

 

 
Figure 7.5| Number of studies with zero cells in each test comparison 
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PART II: ASSESSMENT OF MODELLING ASSUMPTIONS IN 
HIERARCHICAL MODELS 

In the second part of this chapter, results of the data analysis methods described in section 

7.2.3 for investigating modelling assumptions commonly made in bivariate and HSROC 

models are described. In section 7.4, results are presented for the analyses based on separate 

meta-analyses of tests in each test comparison. The analyses explored the reliability of the 

models, as well as the potential for similarity of variances of random effects and shape of 

SROC curves between tests in test comparisons. These preliminary analyses addressed the 

following questions that were relevant to methodological issues raised in Chapter 2: 

1. How valid is the estimation of parameters in hierarchical models? 

a. Did analyses of hierarchical models converge?  

b. Is the correlation parameter in the bivariate model reliably estimated?  

c. If estimated reliably, is the correlation parameter important for valid estimation 

of variances and standard errors of the estimates of the mean logit sensitivity 

and logit specificity?  

d. Is the shape parameter in the HSROC model reliably estimated? 

2. Is heterogeneity in test performance similar between tests in test comparisons? 

3. Is the shape of SROC curves similar between tests in test comparisons? 

Part II concludes in section 7.5 with a summary of the findings. 

 

7.4 Assessment of modelling assumptions based on separate meta-analyses of 
tests in test comparisons 

The number of studies in the 114 meta-analyses (separate meta-analyses of two tests from 57 

test comparisons) ranged between 3 and 89 (Figure 7.6). More than half of the meta-analyses 
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(60/114, 53%) had less than 10 studies, 36 (32%) had between 10 and 20 studies, and the 

remaining 18 (16%) had more than 20 studies. 

 

 
Figure 7.6| Distribution of number of studies in each meta-analysis of a single test 
 

7.4.1 Are hierarchical models stable in meta-analyses of individual tests? 

7.4.1.1 Did bivariate and HSROC models converge? 

Using the bivariate model, the 114 meta-analyses converged though two meta-analyses 

required the use of gllamm instead of xtmelogit. The estimates appeared to be valid based on 

the criteria defined in section 7.2.3.3. For the HSROC model, optimization failed to complete 

for one meta-analysis and so 113 meta-analyses satisfied the NLMIXED convergence criteria. 

However, in five of the 113 meta-analyses, standard errors were missing for all parameters or 

were extremely large. The parameter estimates for the five meta-analyses are shown in Table 
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7.2. The table also shows that gradient values for the parameters were close to zero except for 

variance parameters where boundary constraints were activated. These five meta-analyses 

were different to the two that were difficult to fit using xtmelogit.  

 

Table 7.2| Parameter estimates from unstable HSROC models 
Parameter Estimate Standard error 95% confidence interval Gradient 

Basaran 2009 (ID 4) – index test (4 MRI studies) 
Λ 6.25 122 -233 to 246 3.58E-8 
Θ 0.99 193 -378 to 380 -3.71E-8 
β 1.57 124 -241 to 244 2.26E-8 
σ𝛼𝛼2  0 – – 0.468849 
σ𝜃𝜃2  0 – – 0.876607 

Brazzelli 2009 (ID 7) – index test (7 CT studies) 
Λ 10.5 823 -1605 to 1626 0.000016 
Θ -6.05 409 -809 to 797 0.000033 
β 1.21 41.1 -79.4 to 81.8 0.000608 
σ𝛼𝛼2  0.21 – – -0.000030 
σ𝜃𝜃2  4.56 – – -0.000130 

Hayashino 2005 (ID 22) – comparator (5 ventilation perfusion scanning studies) 
Λ 0.76 – – 0.000031 
Θ -1.28 – – -0.000010 
β 1.57 – – 0.000042 
σ𝛼𝛼2  0 – – 11.60103 
σ𝜃𝜃2  0 – – 44.21522 

Koumans 1998 (ID 28) – comparator (3 nuclei acid amplification (LCR) studies) 
Λ 7.57 28.0 -47.4 to 62.6 -2.77E-7 
Θ 0.97 54.8 -107 to 108 8.54E-7 
β 0.68 28.9 -56.1 to 57.5 -1.35E-6 
σ𝛼𝛼2  0 – – 0.173067 
σ𝜃𝜃2  0 – – 6.763934 

Worster 2002 (ID 54) – index test (4 non-contrast helical CT studies) 
Λ 7.23 – – 3.11E-7 
Θ -0.59 – – 8.94E-8 
β -0.19 – – 2.22E-8 
σ𝛼𝛼2  0 – – 0.217482 
σ𝜃𝜃2  0 – – 0.834333 

– indicates no estimate available. 
Each ID uniquely identifies a test comparison dataset. See Figure 7.1, Figure 7.2 and Figure 
7.3 for SROC plots that correspond to the IDs. Λ, Θ, β, σ𝛼𝛼2  and σ𝜃𝜃2  are the five parameters of 
the HSROC model representing accuracy, threshold, shape of the SROC curve, and variances 
of the random effects for accuracy and threshold. Where σ𝛼𝛼2  and σ𝜃𝜃2  are zero, boundary 
constraints (σ𝛼𝛼2≥0 and σ𝜃𝜃2 ≥ 0) were activated. Forest plots of study specific estimates of 
sensitivity and specificity are presented in Appendix D.2 for the five tests. 
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Forest plots of the data for each of the five meta-analyses and the one that did not converge 

are shown in Appendix D.2.  A common observation across the six datasets was that the 

number of studies was small and/or data were sparse due to studies with 100% sensitivity 

and/or specificity. In one meta-analysis for ID 7 (also see Figure 7.2), all studies of the 

comparator (CT) had a specificity of 100% with sensitivities between 11% and 75%.  

 

7.4.1.2 Is the correlation parameter in the bivariate model reliably estimated? 

For eight of the 57 pairs of tests, ρ was estimated as +1 or –1 for both tests. Figure 7.7 shows 

that estimates of ρ were rarely similar for a pair of tests, with very few points lying close to 

the diagonal. Furthermore, negative estimates of correlation occurred more frequently for the 

index tests (43/57, 75%) than for the comparator tests (29/57, 51%). In most (80/114, 70%) 

meta-analyses, ρ was estimated within the boundary of the parameter space (above –1 and 

below +1). For the remaining 34 (30%) meta-analyses, ρ was estimated as +1 or –1; estimates 

of –1 occurred more frequently (22/34, 65%). 
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Figure 7.7| Estimates of the correlation parameter from meta-analyses of individual tests 
in 57 test comparisons 
If the correlation between the logits of sensitivity and specificity for the index and comparator 
tests in the test comparisons were similar, then the points should lie along or close to the 
dashed diagonal line. 
 

7.4.1.3 Is the correlation parameter needed for valid estimation of variances and standard 
errors? 

The variance of logit specificity from one univariate meta-analysis was extremely high, 60.6, 

while the corresponding variance from the bivariate meta-analysis was 1.05. Since this was 

the meta-analysis of CT, mentioned earlier, where all studies had 100% specificity, this result 

is clearly invalid and so was not used in the comparison of the two models to avoid skewing 

the results. Point estimates of the variances of the random effects of the logits from univariate 

and bivariate models were thus compared for 113 meta-analyses (Figure 7.8). Variance 

estimates from univariate and bivariate models were fairly similar (especially for variances of 

logit specificities). Using univariate models as the reference category, the median 

(interquartile range) of differences between the variance estimates from both models were 
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0.012 (-0.005 to 0.073) and 0.004 (-0.003 to 0.035) for logit sensitivity and logit specificity 

respectively. For the subset of 34 meta-analyses where the correlation was +1 or –1, the 

median (interquartile range) of the differences were 0.070 (0.016 to 0.142) and 0.021 (0.003 

to 0.063) for logit sensitivity and logit specificity respectively. The higher estimates observed 

in this subset is likely due to poor estimation of correlation as +1 or –1 in the bivariate 

models. 

 

 
Figure 7.8| Comparison of estimates of variances from bivariate and univariate meta-
analyses  
If estimates from both meta-analyses were similar, the black dots would lie along or close to 
the dashed diagonal line. In panel A, the three points circled in red have the largest difference 
between both models.  
 

The three points circled in red in Figure 7.8 (panel A) have the largest absolute difference in 

variance estimates for logit sensitivity. These three meta-analyses had less than 10 studies. Of 

the three meta-analyses, variances of logit sensitivity were higher in bivariate compared to 

univariate models for two meta-analyses and the correlation from the bivariate models was 
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+1. For the third meta-analysis where the variance of logit sensitivity was lower in the 

bivariate compared to the univariate model, the correlation was –0.66. The meta-analysis with 

the largest difference (3.34) had only 20 diseased patients (Figure 7.9) and the sensitivity of 

abdominal US (index test) for screening for ovarian cancer was 100% in six of the seven 

studies (see also SROC plot 8 in Figure 7.2).   

 

 
Figure 7.9| Forest plot of sensitivity and specificity for the dataset with the largest 
difference between univariate and bivariate meta-analyses  
Data taken from Carlson et al.234 
 

Estimates of the standard errors of mean logit sensitivities and specificities were also 

compared as shown in Figure 7.10. Estimates of the standard errors of both logit sensitivity 

and logit specificity from univariate models were often (76/113, 67%) smaller than those from 

bivariate models though the absolute differences tended to be small. The median (interquartile 

range) of the differences between the estimates were 0.001 (-0.001 to 0.024) and 0.001 

(-0.001 to 0.009) for logit sensitivity and logit specificity respectively. For the subset of 34 

meta-analyses where the correlation was +1 or –1, the median (interquartile range) of the 

differences were 0.020 (0.002 to 0.059) and 0.005 (0.000 to 0.026) for logit sensitivity and 

logit specificity respectively. In panel A, the point circled in red was the largest difference 

(0.497) between both models and is from meta-analysis of the index test in test comparison 8 

(see SROC plot in Figure 7.2). In panel B, the point circled in red was the largest difference 
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(-1.43) on the plot and is from meta-analysis of the comparator for ID 52 (see SROC plot in 

Figure 7.3).  

 

 
Figure 7.10| Comparison of estimates of standard errors of mean logit sensitivities and 
mean logit specificities from univariate and bivariate meta-analyses 
SE = standard error. 
If estimates from both meta-analyses were similar, the black dots would lie along or close to 
the dashed diagonal line. In panels A and B, the points circled in red show the largest absolute 
difference between both models on the plots.  
 

7.4.1.4 Is the shape parameter in the HSROC model reliably estimated? 

Estimates of β from HSROC models were compared with those derived using functions of the 

bivariate model parameters as shown in Figure 7.11. The scatterplot shows that most of the 

estimates (108/113, 96%) lie on or close to the dashed diagonal line. This indicates that 

estimates of β from HSROC models and those derived from functions of bivariate model 

parameters were similar. The five points circled in red are the five pairs of estimates that 

differ substantially between both models. The five estimates from HSROC models were from 
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the models that converged but gave unreliable estimates (see Table 7.2); the corresponding 

bivariate models appeared to give reliable estimates. 

 

 
Figure 7.11| Comparison of estimates of beta from HSROC models with estimates 
derived from bivariate models 
The five pairs of estimates that do not agree (circled in red) correspond to the five meta-
analyses where the HSROC model converged but gave unreliable estimates. For these five 
meta-analyses, the bivariate model appeared to give reliable estimates. 
 

The effect of the number of studies in a meta-analysis on the estimation of β was explored 

using scatterplots of estimates of β and its standard error against the number of studies in each 

meta-analysis as illustrated in Figure 7.12. The two plots included the 108 meta-analyses 

where the HSROC models were considered valid. The magnitude of β appears to decrease as 

the number of studies increased (panel A). The relationship between the standard error of β 

and the number of studies is evident with increased precision as the number of studies 
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increased (panel B). As shown by the blue circles in each plot, there were 16 meta-analyses 

where there was statistical evidence that β differed from zero.  

 

 
Figure 7.12| Estimates of beta and its standard error against number of studies in each 
meta-analysis 
The plots show only the 108 meta-analyses where the HSROC model converged and gave 
reliable estimates. The blue solid circles represent meta-analyses where there was statistical 
evidence (at the 5% significance level) that the shape of the SROC curve was asymmetric (i.e. 
accuracy depends on threshold); the black circles represent meta-analyses where there was no 
statistical evidence of asymmetry in the SROC curve. On each plot, the two points surrounded 
by a red circle have extremely large values for beta and their standard errors. 
 

Estimates of β were also plotted with their 95% confidence intervals for each of the 108 meta-

analyses as shown in Figure 7.13. The three vertical dashed lines delineate four sections 

according to number of included studies; sections A, B, C and D include meta-analyses with ≤ 

5 studies, 6 to 10 studies, 11 to 20 studies, and >20 studies respectively. As the number of 

studies increased, confidence intervals became narrower but there were three notable 

exceptions in section C. These three meta-analyses (index tests in test comparisons 21, 45 and 
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46) each included 12 studies. Uncertainty in the estimation of beta may be partly due to little 

or no heterogeneity in threshold (Figure 7.14).  

 

 
Figure 7.13| Estimates of beta and their 95% confidence intervals from HSROC models 
Each blue dot represents the point estimate of beta and is drawn with its 95% confidence 
interval. Estimates of beta from the 108 meta-analyses are ranked on the plot according to the 
number of included studies and the standard error of beta. The three vertical dashed lines 
delineate four sections based on the number of included studies in the meta-analyses; sections 
A, B, C and D include meta-analyses with ≤ 5 studies, 6 to 10 studies, 11 to 20 studies, and 
>20 studies respectively.  
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Figure 7.14| SROC plots of three meta-analyses with 12 included studies and substantial 
uncertainty in estimation of beta  
 

7.4.2 Is heterogeneity in test performance similar between tests in test comparisons? 

Scatterplots of the 57 test comparisons shown in Figure 7.1, Figure 7.2 and Figure 7.3 often 

indicated heterogeneity in test performance. Sometimes, strong heterogeneity in sensitivity 

but homogeneity in specificity (e.g. ID 55 in Figure 7.3), or vice versa was observed (e.g. ID 

21 in Figure 7.2). Differences in patterns of heterogeneity between tests in a comparison were 

also observed. For example, ID 46 in Figure 7.3 shows homogeneity in sensitivities and 

specificities of the index test but heterogeneity in both measures for the comparator. For each 

pair of tests in a test comparison, estimates of the variances of the random effects for logit 

sensitivities and logit specificities were obtained from a separate bivariate model for each test 

and compared as shown in Figure 7.15 (panels A and B). The plots indicate that the variances 

for both tests in a test comparison sometimes differed substantially, even in meta-analyses of 

tests from a direct comparison. The differences may be due to chance. Therefore, the 

magnitude and importance of these differences will be explored in comparative meta-analyses 

in section 7.6.2 by using bivariate meta-regression models.  
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Figure 7.15| Variance estimates for random effects for logit sensitivity and logit 
specificity from meta-analysis of each test in the test comparisons 
A scatterplot comparing the variances of the random effects for logit sensitivity from a 
bivariate model fitted to each test in a test comparison is shown in (A). A similar plot is 
shown for variances of logit specificity in (B). Each plot shows results from 114 meta-
analyses for 57 pairs of tests. The black solid circles represent estimates from meta-analyses 
of direct comparisons (i.e. all studies evaluated both tests) while the blue hollow circles 
represent indirect comparisons.  
 

Estimates of the variances for accuracy and threshold from the HSROC model were also 

examined. In 36 of the 108 (33%) meta-analyses, boundary constraints were activated for 

variances of the accuracy or threshold parameters, i.e., estimation truncated at zero. Similar to 

the findings for the bivariate model, the plots indicate that the variances for both tests in a test 

comparison sometimes differ (Figure 7.16).  
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Figure 7.16| Variance estimates for random effects for accuracy and threshold from 
meta-analysis of each test in the test comparisons 
A scatterplot comparing the variances of the random effects for accuracy from an HSROC 
model fitted to each test in a test comparison is shown in (A). A similar plot is shown for 
variances of threshold in (B). The black solid circles represent estimates from meta-analyses 
of direct comparisons (i.e. all studies evaluated both tests) while the blue hollow circles 
represent indirect comparisons. Of the 108 meta-analyses with no convergence issues, results 
were available for 52 pairs of tests and so the plot shows results from 104 meta-analyses.  
 

7.4.3 Is the shape of SROC curves similar between tests in test comparisons? 

For each test comparison, the estimate of β for the index test was compared with that of the 

comparator test. Figure 7.17 shows that β often differs between tests but it cannot be inferred 

from the plot whether these are likely to be important differences or not. Section 7.6.3 will 

address this further where the shape parameter will be investigated in comparative meta-

analyses by using HSROC meta-regression models.  
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Figure 7.17| Estimates of beta (shape parameter) from separate meta-analyses of pairs of 
tests in 52 test comparisons 
The plot shows 52 pairs of tests because the HSROC model did not converge or estimates 
were unreliable for one or both tests in five test comparisons. If the SROC curves of both tests 
in the test comparisons have similar shape, then the black dots should lie along or close to the 
dashed diagonal line.  
 

7.5 Summary of assessment of modelling assumptions in hierarchical models 

Problematic datasets which gave unreliable estimates either had a small number of studies 

and/or sparse data due to studies with 100% sensitivity and/or specificity. In one particular 

meta-analysis, the seven studies all had a specificity of 100% with sensitivities between 11% 

and 75%. In the original review, the authors pooled sensitivities and specificities separately 

using a random effects model  for sensitivity and a fixed effect model for specificity.233 

Methods for meta-analysis with sparse data (where non-convergence is most likely to occur) 

will be fully investigated in a simulation study in Chapter 8. 
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Estimates of the correlation and variance parameters for pairs of tests were seldom similar 

which raised doubts about the assumption of equal variances in comparative meta-analyses. 

This will be investigated in section 7.6. In about a third of the meta-analyses, the correlation 

of the logits was estimated on the boundary of the parameter space as +1 or –1. In the 

remaining meta-analyses, estimates of the correlation were predominantly negative. A 

negative correlation can be expected across studies due to trade‐off in sensitivity and 

specificity as threshold varies across studies. However, due to other sources of heterogeneity 

besides threshold, such as the factors stated in section 1.4.1, positive estimates can occur. 

There was limited effect on estimates of the variances or standard errors of both logit 

sensitivity and logit specificity when the bivariate model was reduced to two separate 

univariate models for sensitivity and specificity. This implies minimal impact of using a 

bivariate structure to model the data which may provide a solution to non-convergence when 

data are sparse. The impact of univariate and bivariate meta-regression models on findings 

will be examined in section 7.7.  

 

There was substantial uncertainty in estimates of the shape parameter when there were few 

studies or little or no heterogeneity in threshold. The shape of SROC curves often differed 

between tests with the magnitude of the shape parameter decreasing as the number of studies 

increased. This implies that strong asymmetry in meta-analyses with few studies is likely to 

be a chance finding. In a few (14%) meta-analyses, there was statistical evidence of 

asymmetry of the SROC curve. Therefore, assuming symmetry of SROC curves by 

eliminating the shape parameter may be appropriate especially when there are few studies, 

and substantial uncertainty in its estimation and/or variances of the random effects. This will 

also be investigated further in the simulation study in Chapter 8. 
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Having examined different modelling assumptions, it is clear that findings may differ 

depending on the assumptions used. Therefore, the validity of assumptions should be 

investigated if data permits. Assuming the same asymmetry for SROC curves in HSROC 

meta-regression models may have less of an impact on relative test performance compared to 

assumptions about covariance structures in bivariate models. This hypothesis will be explored 

in Part III. 
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PART III: IMPACT OF DIFFERENT MODELS ON FINDINGS 

The third and final part of this chapter builds on the findings in Part II by exploring the extent 

to which different hierarchical meta-regression models agree or disagree under the two key 

modelling assumptions—same variances and same shape across tests—that were extensively 

explored earlier in Part II. The impact of clustering test results within comparative studies and 

the impact of using a bivariate structure (by comparing univariate and bivariate meta-

regression models) will also be investigated. Part III also considers Moses SROC meta-

regression by comparing findings from unweighted and weighted analyses that assume a 

common shape or allow shape of SROC curves to differ by test. In addition, Moses and 

HSROC meta-regression models will be compared. As such Part III details the impact of 

different models on findings. Specifically, the six questions addressed were: 

I. Is there a difference between the findings from meta-analyses in which test results are 

clustered within comparative studies in bivariate meta-regression models and findings 

from meta-analyses that ignore such clustering? 

II. Are there important differences between findings from bivariate meta-regression 

models that assume common variances across tests and those which allow variances to 

differ by test? 

III. Should shape of SROC curves differ in HSROC meta-regression models or can a 

common shape be assumed without impact on relative test performance? 

IV. Are the findings from univariate meta-regression models similar to those from 

bivariate meta-regression models? 

V. How comparable are findings from unweighted and weighted Moses SROC meta-

regression models if shape is assumed to be common or allowed to differ by test? 
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VI. Do results differ between HSROC and Moses SROC meta-regression models if shape 

is assumed to be common or allowed to differ by test? 

 

The impact of different modelling complexity on findings from hierarchical meta-regression 

models are presented in section 7.6 (questions 1 to 3) while the performance of different 

comparative meta-analysis models are presented in section 7.7 (questions 4 to 6).  

 

7.6 Impact of different modelling complexity on findings 

7.6.1 Do test results need to be clustered within comparative studies in bivariate 
meta-regression models?  

The within-study and between-study approaches are the same when there are no comparative 

studies in a test comparison. Therefore, the seven test comparisons that contained only non-

comparative studies (IDs 4, 5, 10, 13, 21, 28 and 50) were excluded from these analyses. For 

IDs 8 and 51, the models failed to converge. Of the remaining 48 test comparisons, one (ID 7) 

did not converge for the within-study approach while 9 (IDs 11, 16, 19, 23, 25, 32, 48, 53 and 

55) did not converge for the between-study approach (Figure 7.19). Therefore, the two models 

were compared using estimates from 38 test comparisons of which 16 (42%) were direct 

comparisons. 

 

Using the between-study approach as the reference category, Figure 7.18 shows ratios of the 

relative sensitivities and relative specificities (panel A) and ratios of their standard errors from 

the two models (panel B). For eight (21%) test comparisons, there was more than a 10% 

difference in relative sensitivities (IDs 20, 24, 36, 42 and 52) or relative specificities (IDs 29, 

33 and 44). On average, the magnitude of differences in the point estimates (panel A) were 

negligible with a median (interquartile range) of 1.00 (0.98 to 1.02) for ratio of relative 
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sensitivities and 1.00 (0.99 to 1.02) for ratio of relative specificities. However, estimates from 

the within-study approach were on average more precise than those from the between-study 

approach (panel B); median (interquartile range) ratios of the standard errors of log relative 

sensitivities and log relative specificities were 0.74 (0.54 to 0.90) and 0.69 (0.43 to 0.78. 

 

  
Differences in magnitude of point estimates 
expressed as ratios of relative sensitivities and ratios 
of relative specificities 

Differences in precision expressed as ratios of 
standard errors of log relative sensitivities and log 
relative specificities 

Figure 7.18| Differences in estimates from bivariate meta-regression models with and 
without clustering of test results in comparative studies  
Panel A shows the ratios of the relative sensitivities and relative specificities between the 
within-study and between-study approaches. The between-study approach was used as the 
reference category. Relative sensitivities and relative specificities were estimated on the log 
scale and so Panel B shows the ratios of the standard errors of the log relative sensitivities and 
log relative specificities. 
 

Figure 7.19 shows changes in the statistical significance of 16 out of 38 (42%) test 

comparisons (IDs 29, 31, 42, 43, 52 and 57 for relative sensitivity and IDs 2, 3, 15, 27, 35, 38, 

41, 45, 47, 49 and 57 for relative specificity). Of the 16 test comparisons, 10 (63%) were 

direct comparisons. A few qualitative differences were observed in relative sensitivity (IDs 

20, 24 and 38) or in relative specificity (IDs 33 and 41).  
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7.6.2 Is it important to allow variances to differ by test in bivariate meta-regression 
models? 

7.6.2.1 All types of test comparisons 

For the comparison of bivariate models that assumed common variances for the random 

effects of the logits (Model 1), and bivariate models that allowed for unequal variances with 

independence between tests (Model 2), only one of the two models converged for six test 

comparisons (IDs 2, 11, 19, 23, 42 and 51). For two test comparison (IDs 7 and 8) neither of 

the two models converged (Figure 7.21). Thus, results from both models were compared for 

49 test comparisons using the common variance model as the reference category. 

 

Although there were 11 test comparisons with more than a 10% difference in relative 

sensitivity (IDs 20, 22, 24, 36 and 52) and/or relative specificity (IDs 29, 33, 35, 36, 43, 44 

and 49), differences between both models were often small (Figure 7.20 panel A). Across all 

49 test comparisons, the median (interquartile range) ratios of relative sensitivities and 

relative specificities were 1.00 (0.99 to 1.01) and 1.00 (0.98 to 1.01). In contrast, there were 

marked differences in precision of the estimates (Figure 7.20 panel B). One test comparison 

(ID 49) was excluded from the plot in panel B because the ratio was too large (10.3) and made 

the plot visually unhelpful. The standard errors were on average higher for models with 

unequal variances compared to models with equal variances with median (interquartile range) 

of 1.37 (1.09 to 1.77) and 1.39 (1.15 to 2.05) for ratios of standard errors of log relative 

sensitivities and log relative specificities. See Appendix D.3 for full results, including 

estimates of the variances.  
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Differences in magnitude of point estimates 
expressed as ratios of relative sensitivities and ratios 
of relative specificities 

Differences in precision expressed as ratios of 
standard errors of log relative sensitivities and log 
relative specificities 

Figure 7.20| Differences in estimates from bivariate meta-regression models with equal 
and unequal variances  
Panel A shows the ratios of the relative sensitivities and relative specificities between models 
with unequal variances and those with equal variances (reference category). Relative 
sensitivities and relative specificities were estimated on the log scale and so Panel B shows 
the ratios of the standard errors of the log relative sensitivities and log relative specificities. 
 

For 21 (43%) of the 49 test comparisons, likelihood ratio tests indicated statistically 

significant (P ≤ 0.05) differences in model fit (see red asterisks on Figure 7.21). Fifteen (31%) 

test comparisons had a change in the statistical significance of relative sensitivity (IDs 3, 13, 

31, 43, 49 and 52) or relative specificity (IDs 15, 26, 27, 35, 38, 41, 45, 47 and 53) while four 

(8%) had a change in both measures (IDs 25, 32, 46 and 57).  Qualitative differences were 

observed for 11 (22%) test comparisons (IDs 20, 21, 24, 45, 55 for relative sensitivity and IDs 

1, 33, 35, 39, 41 and 56 for relative specificity).  
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7.6.2.2 Direct comparisons only 

Nine of the 57 (16%) test comparisons each had at least 10 paired comparative studies and so 

direct comparisons were also performed. A model with unequal variances that allowed for 

correlation between tests (Model 3) was compared to the other two models investigated in 

section 7.6.2.1. For seven of the eight test comparisons where all three models converged, 

there was little or no difference in the point estimates of relative sensitivity and relative 

specificity between models (Figure 7.22 and Appendix D.4). However, precision of the 

estimates differed between the models with Model 2 having the least precision. The relative 

specificities of ID 44 and ID 27 had the largest difference in point estimates and precision 

respectively. For ID 27, the relative specificities for Models 1, 2, and 3 were 1.08 (1.03 to 

1.14), 1.08 (0.96 to 1.21) and 1.08 (1.05 to 1.11), showing a significant difference in Models 

1 and 3 but not in Model 2.  This review was the example used in section 6.3.1.2 and the 

variances and correlations for the three models were presented in Table 6.2.  

 

For IDs 31 and 32, though numerical differences were very small, statistical significance 

changed as a consequence of narrower confidence intervals for Model 1. Since relative 

sensitivity and relative specificity are functions of the pooled estimates, accounting for study 

level correlation between tests implicitly by assuming common variances as in Model 1 or 

explicitly by allowing for unequal variances and dependence between tests as in Model 3, led 

to more precise estimates. There was one (ID 56) test comparison with a qualitative change in 

relative specificity.  
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7.6.3 Is it important to allow shape of SROC curves to differ between tests in HSROC 
meta-regression models? 

HSROC models that assumed a common shape for SROC curves of both tests and HSROC 

models that allowed the SROC curve for each test to have its own shape were assessed. For 

four (IDs 4, 7, 31 and 52) of the 57 test comparisons, both models did not converge and only 

the common shape model converged for ID 29. However, five of the test comparisons (IDs 

23, 43, 47, 51 and 54) had estimates with extremely wide and potentially unreliable 

confidence intervals, and so were excluded from further analyses to avoid misleading 

conclusions (see estimates in Appendix D.5). Thus, results from both models were compared 

for 47 test comparisons with the common shape model used as the reference category. 

 

There were four test comparisons (IDs 8, 11, 42 and 44) with more than a 10% difference 

between the point estimates from both models (Figure 7.23 panel A). Across test 

comparisons, the median (interquartile range) ratio of relative sensitivities was 1.00 (0.98 to 

1.01). One test comparison (ID 25) was excluded from the plot in panel B because the ratio of 

the standard errors was too large (4.42) There were differences in precision of the estimates 

though, on average, differences were small (Figure 7.23 panel B). The median (interquartile 

range) ratio of the standard errors of log relative sensitivities was 1.00 (0.93 to 1.10). Figure 

7.24 shows the estimates of relative sensitivities computed for both models and the 16 (34%) 

test comparisons where likelihood ratio tests indicated statistical evidence (P≤ 0.05) of a 

difference in the shape of the SROC curves (see full results in Appendix D.5). There was a 

change in the statistical significance of the relative sensitivity of two test comparisons (IDs 5 

and 25), and for one test comparison (ID 42), the ranking of tests altered between models. 
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Figure 7.23| Differences in estimates from HSROC meta-regression models with 
common and different shape for SROC curves 
Panel A shows the ratios of the relative sensitivities between both models with the common 
shape model as the reference category. Relative sensitivities were estimated on the log scale 
and so Panel B shows the ratios of the standard errors of the log relative sensitivities. 
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Figure 7.24| Comparison of relative sensitivity from HSROC meta-regression models 
with common and different shape between tests for SROC curves 
The plot shows relative sensitivities derived from HSROC models that assumed the same 
shape for SROC curves of both tests (black triangles), and HSROC models that allowed the 
SROC curve for each test to have its own shape (blue circles). The estimates were computed 
at the median value of the specificities for each test in a test comparison. For five of the 57 
test comparisons, one or both models did not converge. For five test comparisons, the 
confidence intervals were extremely wide and so the estimates were excluded from the plot 
and comparisons of both models. The red asterisks identify the 16 test comparisons where 
likelihood ratio tests indicated the differences between both models were statistically 
significant (P ≤ 0.05). The dashed line is the line of no difference in sensitivity between the 
index and comparator tests in a test comparison.  
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7.7 Performance of different comparative meta-analysis methods 

In Part II, removal of the correlation parameter from the bivariate model for meta-analysis of 

a single test (i.e. simplifying the bivariate model to two separate univariate models for 

sensitivity and specificity) was shown to have minimal effect on estimates of the variances or 

means and standard errors of both logit sensitivity and logit specificity. The findings from 

univariate and bivariate meta-regression models were compared to determine if the same was 

true for test comparisons. The results are presented in section 7.7.1. Section 7.7.2 compares 

findings from different Moses SROC meta-regression models while sections 7.7.3 and  7.7.4 

compare findings from HSROC and Moses SROC meta-regression models. 

 

7.7.1 Comparison of bivariate and univariate meta-regression  

Estimates of relative sensitivity and relative specificity were obtained from univariate and 

bivariate models assuming equal variances across tests and also from models that allowed 

variances to differ by test (i.e. unequal variances). Due to similarity of the results of these two 

comparisons of bivariate and univariate models, only the comparison of models with unequal 

variances is presented in this section. For results from univariate and bivariate models that 

assumed variances were equal across tests in a test comparison, see the figure in Appendix 

D.6. Three test comparisons (IDs 7, 34 and 52) did not converge for the univariate model and 

seven (IDs 2, 7, 8, 11, 19, 23 and 42) did not converge for the bivariate model. Both models 

converged for 48 test comparisons and the univariate model was used as the reference 

category in comparisons of the two models.  

 

Differences in relative sensitivity and relative specificity between both models were 

negligible (Figure 7.25 panel A and Appendix D.7). Across the 48 test comparisons, the 
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median (interquartile range) ratios of relative sensitivities and relative specificities were 1.00 

(1.00 to 1.01) and 1.00 (1.00 to 1.00). Similarly, there were negligible differences in the 

precision of the estimates (Figure 7.25 panel B and Figure 7.26). Although standard errors for 

log relative sensitivities and log relative specificities tended to be higher for estimates from 

bivariate models relative to those from univariate models, the median (interquartile range) 

ratios of standard errors for log relative sensitivities and log relative specificities were 1.00 

(1.00 to 1.05) and 1.00 (1.00 to 1.01).  

 

  
Differences in magnitude of point estimates expressed as 
ratios of relative sensitivities and ratios of relative 
specificities 

Differences in precision expressed as ratios of standard 
errors of log relative sensitivities and log relative 
specificities 

Figure 7.25| Differences in estimates from bivariate and univariate meta-regression 
models with unequal variances  
Panel A shows the ratios of the relative sensitivities and relative specificities between both 
models with the univariate model as the reference category. Relative sensitivities and relative 
specificities were estimated on the log scale and so Panel B shows the ratios of the standard 
errors of log relative sensitivities and log relative specificities. 
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Estimates for the variance and correlation parameters from the models are given in Appendix 

D.8. In 20 of the 48 (42%) test comparisons, correlation of the logits was estimated as +1 or –

1 for at least one of the tests (see test comparisons marked with an asterisk on Figure 7.26). In 

this subset, the median (interquartile range) ratios of relative sensitivities and relative 

specificities were 1.00 (1.00 to 1.01) and 1.00 (1.00 to 1.00). The corresponding median 

(interquartile range) ratios of standard errors for log relative sensitivities and log relative 

specificities were 0.99 (1.03 to 1.07) and 0.99 (1.00 to 1.01). Results from the subset of test 

comparisons were similar to those from the whole cohort. 

 

Table 7.3 shows the eight test comparisons (IDs 1, 15, 18, 20, 29, 30, 33 and 44) where 

likelihood ratio tests indicated a statistically significant difference in model fit between 

univariate and bivariate models (see Appendix D.7 for full results). Figure 7.26 shows one 

change in the statistical significance of relative sensitivity (ID 33) and one qualitative change 

in relative sensitivity (ID 15). 

 

Table 7.3| Bivariate and univariate (unequal variance) models with statistically 
significant differences in model fit  

ID Bivariate model  Univariate model P value* 
Relative 

sensitivity  
(95% CI) 

Relative 
specificity  
(95% CI) 

 Relative 
sensitivity  
(95% CI) 

Relative 
specificity  
(95% CI) 

1 1.11 (1.04–1.18) 1.00 (0.97–1.02)  1.11 (1.04–1.18) 1.00 (0.97–1.02) 0.05 
15 1.01 (0.89–1.13) 0.92 (0.81–1.03)  0.99 (0.88–1.12) 0.92 (0.82–1.03) 0.01 
18 1.43 (1.19–1.74) 1.13 (1.03–1.24)  1.42 (1.19–1.71) 1.12 (1.03–1.23) <0.0001 
20 1.24 (0.91–1.69) 0.96 (0.87–1.05)  1.24 (0.91–1.69) 0.96 (0.87–1.05) 0.01 
29 1.21 (1.12–1.31) 0.77 (0.65–0.92)  1.20 (1.12–1.28) 0.77 (0.64–0.91) 0.02 
30 1.10 (0.95–1.26) 1.00 (0.93–1.07)  1.10 (0.95–1.28) 1.01 (0.94–1.09) 0.02 
33 1.14 (1.02–1.26) 0.79 (0.57–1.10)  1.11 (0.99–1.24) 0.78 (0.56–1.09) 0.01 
44 2.49 (1.71–3.64) 0.69 (0.54–0.87)  2.49 (1.70–3.65) 0.69 (0.54–0.87) 0.001 

*P value from likelihood ratio tests comparing both models.  
Univariate models were estimated by assuming an independent variance-covariance structure, 
i.e. correlation of the logits = 0. 
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7.7.2 Comparison of unweighted and weighted Moses SROC meta-regression 

7.7.2.1 Same shape assumed for SROC curves 

The rDORs from unweighted and weighted Moses SROC analyses in which the shape of the 

SROC curves were assumed to be the same for both tests, were compared using estimates 

from the weighted analyses as the reference category. There were large differences between 

estimates of rDORs from both analyses with more than a two-fold difference for eight (14%) 

test comparisons (IDs 7, 9, 19, 24, 28, 34, 42 and 54) (see Appendix D.9 for full results). On 

average, the unweighted analyses gave higher rDORs relative to those from weighted analyses 

(Figure 7.27 panel A). The median (interquartile range) ratio of rDORs was 1.14 (0.88 to 

1.52). Similarly, unweighted analyses gave higher standard errors for log rDORs compared to 

weighted analyses (Figure 7.27 panel B); the median (interquartile range) ratio of standard 

errors for log rDORs was 1.16 (1.00 to 1.34).  

 

     
Figure 7.27| Differences in estimates from unweighted and weighted Moses SROC meta-
regression (same shape) models  
Panel A shows the ratios of the relative diagnostic odds ratios (rDORs) between both models 
with the weighted analysis as the reference category. Panel B shows the ratios of the standard 
errors of the log of the rDORs. 

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

R
at

io
 o

f r
el

at
iv

e 
di

ag
no

st
ic

 o
dd

s 
ra

tio
s

A

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R
at

io
 o

f s
ta

nd
ar

d 
er

ro
rs

 o
f l

og
 rD

O
R

s

B



Chapter 7: Empirical assessment of comparative meta-analysis methods  
 

271 
 

For eight (14%) test comparisons, the statistical significance of the rDORs differed between 

models as shown in Figure 7.28. Qualitative differences were observed for three test 

comparisons (IDs 8, 9 and 11). 

 

  
Figure 7.28| Comparison of unweighted and weighted Moses SROC meta-regression 
(same shape) models 
The graph (plotted on the log scale) shows estimates of the ratio of diagnostic odds ratios 
from both models for each test comparison. The dashed line is the line of no difference in test 
accuracy between the index and comparator tests in a test comparison. The red asterisks 
identify the eight test comparisons where there was a change in statistical significance 
between the models. 
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7.7.2.2 Different shape for SROC curves 

Unweighted and weighted meta-analyses in which the shape of SROC curves was allowed to 

differ by test were also performed. For nine test comparisons (IDs 4, 7, 22, 25, 31, 43, 47, 52 

and 54), the relative sensitivities obtained from one or both of the analyses had exceptionally 

wide confidence intervals (see Appendix D.9) which may indicate poor estimation. In 

addition, relative sensitivities and their 95% CIs were not estimable for two test comparisons–

ID 25 for the unweighted analysis and ID 28 for the weighted analysis. Therefore, the results 

from both models were compared for 47 test comparisons.  

 

Unlike the comparison of rDORs from common shape models, the unweighted analyses for 

different shape models tended to give lower relative sensitivities compared to those from 

weighted analyses (Figure 7.29 panel A). The median (interquartile range) ratio of relative 

sensitivities was 0.95 (0.90 to 1.03). The unweighted analyses gave higher standard errors for 

the log relative sensitivities compared to those from weighted analyses (Figure 7.29 panel B); 

the median (interquartile range) ratio of standard errors was 1.09 (0.76 to 1.85).  
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Figure 7.29| Differences in estimates from unweighted and weighted Moses SROC 
(different shape) meta-regression models  
Panel A shows the ratios of the relative sensitivities between both models with the weighted 
analysis as the reference category. Panel B shows the ratios of the standard errors of the log of 
the relative sensitivities. 
 

Figure 7.30 only shows results for 38 of the 47 test comparisons because the confidence limits 

for nine test comparisons (IDs 3, 11, 19, 24, 26, 35, 44, 51 and 57) were too large and made 

other estimates on the plot less visible. For nine (19%) of the 47 test comparisons, the 

statistical significance of the relative sensitivities differed between models as shown on 

Figure 7.30. There were qualitative differences for 10 test comparisons but the confidence 

intervals for relative sensitivities were often very wide (Table 7.4).  
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Figure 7.30| Comparison of unweighted and weighted Moses SROC meta-regression 
(different shape) models 
The graph shows estimates of relative sensitivity from both models for each test comparison. 
The estimates were computed at the median value of the specificities for each test in a test 
comparison. The dashed line is the line of no difference in test accuracy between the index 
and comparator tests in a test comparison. The red asterisks identify the nine test comparisons 
where there was a change in statistical significance between the models. The plot shows 
results for 38 of the 47 test comparisons because the confidence limits for nine test 
comparisons were too large and made the plot uninformative. 
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Table 7.4| Qualitative differences between unweighted and weighted Moses SROC meta-
regression models (shape allowed to differ by test) 

ID 
Relative sensitivity (95% CI) 

Unweighted Weighted 
3 0.82 (0.12–5.57) 1.11 (0.68–1.82) 
5 0.94 (0.68–1.31) 1.00 (0.84–1.20) 
11 0.37 (0.03–5.24) 1.06 (0.79–1.42) 
21 0.94 (0.69–1.29) 1.01 (0.74–1.38) 
24 1.07 (0.02–55.7) 0.40 (0.01–11.1) 
27 0.82 (0.41–1.63) 1.07 (0.78–1.47) 
30 1.00 (0.37–2.65) 1.08 (0.79–1.47) 
38 0.87 (0.50–1.51) 1.09 (0.62–1.93) 
46 0.79 (0.24–2.65) 1.20 (0.73–2.00) 
53 1.06 (0.61–1.83) 0.76 (0.22–2.62) 

Relative sensitivity was computed using sensitivities estimated at the median value of 
specificity for each of the tests in a test comparison. 
 

7.7.3 Comparison of HSROC and unweighted Moses SROC meta-regression 

7.7.3.1 Same shape assumed for SROC curves 

The HSROC model did not converge for ID 7. For IDs 19 and 29, estimates of rDORs from 

HSROC models were extremely large (2938 and 40438 respectively) and so they were 

excluded from comparisons of the two models. For the remaining 54 test comparisons, there 

were large differences between rDORs from the two models with more than a two-fold 

difference for 12 (22%) test comparisons (see Appendix D.10). HSROC models tended to 

give higher rDORs compared to Moses models (Figure 7.31 panel A), with median 

(interquartile range) ratio of rDORs of 1.11 (0.82 to 1.50). Estimates from HSROC models 

were more precise than those from Moses models (Figure 7.31 panel B); the median 

(interquartile range) ratio of standard errors for log rDORs was 0.89 (0.66 to 1.09). For 11 

(20%) test comparisons, the statistical significance of the rDORs differed between models as 

shown in Figure 7.32. Qualitative changes were observed for six test comparisons (IDs 4, 8, 9, 

11, 35 and 36). 
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Figure 7.31| Differences in estimates from HSROC and unweighted Moses SROC meta-
regression (same shape) models  
Panel A shows the ratios of the relative diagnostic odds ratios (rDORs) between both models 
with the unweighted Moses SROC model as the reference category. Panel B shows the ratios 
of the standard errors of the log of the rDORs. 
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Figure 7.32| Comparison of unweighted Moses SROC and HSROC meta-regression 
(same shape) models 
The graph (plotted on the log scale) shows estimates of the ratio of diagnostic odds ratios 
from both models for each of the test comparisons. The HSROC model did not converge for 
ID 7. For IDs 19 and 29, the rDORs from HSROC models were extremely large and so they 
were excluded from the plot to enhance visibility of other estimates. The dashed line is the 
line of no difference in test accuracy between the index and comparator tests in a test 
comparison. The red asterisks identify the 11 test comparisons where there was a change in 
statistical significance between the models.  
 

7.7.3.2 Different shape for SROC curves 

The HSROC model did not converge for five test comparisons (IDs 4, 7, 29. 31 and 52) and 

relative sensitivity was not estimable from the Moses model for ID 25. For three (IDs 22, 43 

and 47) test comparisons, relative sensitivity was poorly estimated in one or both models (see 
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sensitivities from HSROC models were on average slightly lower than those from Moses 

models (Figure 7.33 panel A). The median (interquartile range) ratio of relative sensitivities 

was 0.98 (0.93 to 1.11). Estimates from HSROC models were considerably more precise than 

those from Moses models (Figure 7.33 panel B); the median (interquartile range) ratio of 

standard errors for log relative sensitivities was 0.37 (0.15 to 0.77).  

 

      
Figure 7.33| Differences in estimates from HSROC and unweighted Moses SROC 
(different shape) meta-regression models  
Panel A shows the ratios of the relative sensitivities between both models with the 
unweighted analysis as the reference category. Panel B shows the ratios of the standard errors 
of the log of the relative sensitivities. 
 

Estimates of relative sensitivities with their 95% CIs are shown in Figure 7.34 for both 

models. Five test comparisons (IDs 23, 24, 26, 51 and 54) were excluded from the plot 

because the estimates and/or confidence limits from one or both models were extremely large 

(see Appendix D.10). For 17 (35%) test comparisons, the statistical significance of the rDORs 

differed between models as shown in Figure 7.34. There were qualitative changes for 14 

(29%) test comparisons (Table 7.5).  
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Figure 7.34| Comparison of unweighted Moses SROC and HSROC meta-regression 
models 
The graph shows estimates of relative sensitivity for HSROC and Moses models that allowed 
the shape of the curves to differ. The estimates were computed at the median value of the 
specificities for each test in a test comparison. For five test comparisons, estimates were too 
large for inclusion on the plot. The dashed line on each plot is the line of no difference in test 
performance between the index and comparator tests. The red asterisks identify the 17 test 
comparisons where there was a change in statistical significance between the models. 
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Table 7.5| Qualitative differences between HSROC and unweighted Moses SROC meta-
regression models (shape allowed to differ by test) 

ID 
Relative sensitivity (95% CI) 

Unweighted Moses 
model HSROC model 

3 0.82 (0.12–5.57) 1.12 (1.02–1.22) 
5 0.94 (0.68–1.31) 1.05 (0.98–1.13) 
15 1.16 (1.06–1.27) 0.97 (0.80–1.16) 
21 0.94 (0.69–1.29) 1.02 (0.98–1.06) 
26 0.79 (0.06–11.2) 1.09 (0.90–1.32) 
27 0.82 (0.41–1.63) 1.12 (1.00–1.26) 
28 1.02 (0.93–1.12) 0.98 (0.88–1.10) 
35 0.45 (0.04–5.75) 1.04 (0.94–1.15) 
37 1.26 (0.93–1.72) 0.97 (0.89–1.06) 
41 0.96 (0.50–1.85) 1.06 (0.96–1.18) 
45 0.98 (0.69–1.39) 1.03 (0.98–1.10) 
46 0.79 (0.24–2.65) 1.16 (1.03–1.31) 
54 0.99 (0.00–204) 1.02 (0.04–26.5) 
57 0.43 (0.03–6.05) 1.11 (0.90–1.37) 
Relative sensitivity was computed using sensitivities estimated at the median value of 
specificity for each of the tests in a test comparison. 
 

7.7.4 Comparison of HSROC and weighted Moses SROC meta-regression 

Both Moses et al37 and Irwig et al217 recommended unweighted regression (see section 

6.3.2.1). In section 7.7.2 (comparison of weighted and unweighted Moses models), the cost of 

no weighting in common shape Moses models was an average increase in rDORs with a 

decrease in precision. For different shape models, on average, there was a decrease in relative 

sensitivities and their precision. Since unweighted versus weighted Moses models, and 

HSROC versus unweighted Moses models have been dealt with in detail in the two preceding 

sections, for completeness, this section briefly considers HSROC versus weighted Moses 

models. 
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7.7.4.1 Same shape assumed for SROC curves 

Using the same 54 test comparisons as in section 7.7.3.1, on average, common shape HSROC 

models gave higher rDORs (Figure 7.35 panel A) and slightly more precise estimates (Figure 

7.35 panel B) in comparison to weighted Moses models. The median (interquartile range) 

ratio of rDORs and ratio of standard errors for log rDORs were 1.28 (0.92 to 1.67) and 0.96 

(0.74 to 1.29).  

 

   
Figure 7.35| Differences in estimates from HSROC and weighted Moses SROC meta-
regression (same shape) models  
Panel A shows the ratios of the relative diagnostic odds ratios (rDORs) between both models 
with the weighted Moses SROC model as the reference category. Panel B shows the ratios of 
the standard errors of the log of the rDORs. 
 

7.7.4.2 Different shape for SROC curves 

In addition to the five HSROC models that did not converge (see section 7.7.3.2), relative 

sensitivity was not estimable or was poorly estimated in HSROC or weighted Moses models 

for four (IDs 23, 28, 47 and 54) test comparisons (see Appendices D.9 and D.10). Across the 

remaining 48 test comparisons, the median (interquartile range) ratio of relative sensitivities 
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and ratio of standard errors for log relative sensitivities were 1.00 (0.88 to 1.07) and 0.39 

(0.16 to 0.70). These results were similar to those from the comparison of HSROC and 

unweighted Moses models (see section 7.7.3.2). 

 

   
Figure 7.36| Differences in estimates from HSROC and weighted Moses SROC meta-
regression (different shape) models  
Panel A shows the ratios of the relative sensitivities between both models with the weighted 
Moses SROC model as the reference category. Panel B shows the ratios of the standard errors 
of the log of the relative sensitivities. 
 

7.8 Discussion 

7.8.1 Summary of findings 

7.8.1.1 Modelling assumptions in hierarchical models 

The two-stage approach used to analyse each test comparisons provided insight into the 

appropriateness of modelling assumptions. The first stage enabled assessments using meta-

analyses of single tests while the second stage allowed for comparisons of relative test 

performance. In hierarchical meta-regression models, quantitative (magnitude, precision and 

statistical significance) and qualitative (ranking of test performance) differences in relative 
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test performance occurred with different modelling assumptions. The higher convergence 

failure rate observed with the between-study approach for dealing with comparative studies 

relative to the within-study approach can be attributed to more realizations of the random 

effects; each test result from a comparative study is treated as if obtained from a different 

study. Thus, the standard errors from the between-study approach are incorrect and the 

within-study approach should always be used. The within-study approach gave more precise 

estimates compared to those from the between-study approach.  

 

Assumptions of equal variances have the advantage of simplifying estimation of hierarchical 

models. This may not always be appropriate, leading to incorrect standard errors and 

misleading inferences. For almost half (43%) of the 49 test comparisons where both bivariate 

models—equal variances and unequal variances with independence between tests—

converged, there was statistical evidence of differences in model fit between the models. 

Although numerical differences between point estimates were on average very small, there 

were differences in precision and the ranking of tests.  

 

Similarly, for the subset of direct comparisons, there were little or no differences in the point 

estimates of relative sensitivity and relative specificity between the three models fitted. 

However, precision of the estimates differed and models with equal variances tended to agree 

with more complex models that take into account correlation between tests at study level. 

Given the complexity of the latter and the paucity of comparative studies, assumption of equal 

variances may be a suitable simplification but requires further investigation because there 

were few direct comparisons with sufficient data for the analyses. 
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The degree to which variances differ between tests in a test comparison may depend on the 

number and sample size of included studies, type of comparison (direct or indirect) or the type 

of tests. For example, comparing CT and US for diagnosis of acute appendicitis (ID 46), the 

between-study variability in the performance of US appeared greater compared to that of CT. 

In separate meta-analysis of CT and US, the variance of the random effects for logit 

sensitivity and logit specificity, and the correlation were 0.016, 0.007 and +1 for CT, and 

0.698, 0.921 and -0.034 for US. Differences in variation may be due to US being operator 

dependent while CT is not. If this explains the difference in variability, then the difference is 

likely to persist even if the meta-analysis is restricted to direct comparisons of US and CT. 

However if factors inducing variability between studies are not attributable to a test but to 

other aspects related to study design and execution, then it is possible that heterogeneity may 

be greater in indirect than in direct comparisons. This warrants further investigation in a 

future study. 

 

Although there was statistical evidence of differences in the shape of SROC curves for some 

test comparisons, there were mainly very small differences in relative test performance. The 

number of studies seems to be a driver in the estimation of the shape parameter and so the 

estimation may be unreliable when there are few studies. Of the assumptions investigated, the 

assumption of equal shape appeared to have the least effect on findings. 

 

7.8.1.2 Comparisons of univariate and bivariate models 

Comparing bivariate and univariate models, irrespective of the covariance structure used to 

model the random effects of logit sensitivity and logit specificity, there were little or no 

differences in relative sensitivity and relative specificity across the test comparisons. Previous 
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empirical studies of meta-analysis of single tests also found agreement between univariate and 

bivariate models.36,225 Bivariate meta-analysis of diagnostic accuracy is an application of 

multivariate meta-analysis. Findings similar to those in this study have been shown for 

treatment effects where the borrowing of strength provided by multivariate meta-analysis has 

often been found to be small.269,270 Trikalinos et al compared univariate and multivariate 

meta-analyses of treatment effects using empirical and simulation studies and found small 

numerical differences in the summary effects and their confidence intervals.271 However, 

when there are missing data for an outcome, estimates from multivariate meta-analyses have 

been shown to have better statistical properties than those from univariate meta-analyses.214  

 

In view of the findings of the present study and lack of missing data because complete data 

for both the diseased and non-diseased groups are used in test accuracy meta-analysis, some 

may infer that bivariate meta-regression is unjustified. On the contrary, bivariate analysis is 

useful because it enables estimation within a single modelling framework thus allowing for 

joint confidence and prediction regions around summary points. Notwithstanding, if 

estimation problems are encountered when fitting bivariate models, a univariate model is 

likely to be a valid alternative. 

 

7.8.1.3 Comparisons of HSROC and Moses SROC models 

Results and conclusions from weighted and unweighted Moses SROC models differed 

substantially, implying that the example illustrated in section 6.3.2.1 is not unique. For 

HSROC and unweighted Moses models which assumed a common shape for SROC curves, 

there were large differences between rDORs with more than a two-fold difference for several 

(22%) test comparisons. The ratios of rDORs were on average higher from the comparison of 
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HSROC and weighted Moses models than from the comparison of HSROC and unweighted 

Moses models. The tendency for the Moses model to underestimate accuracy can be partly 

explained by the use of zero cell corrections in a large number (53/57, 93%) of test 

comparisons. As described by Moses et al,37 in a meta-analysis where a study had a zero in 

any of the cells of the 2x2 table, a zero cell correction of 0.5 was added to the cell counts of 

all studies in the meta-analysis, including the studies without a zero cell.   

 

For HSROC and unweighted Moses models that allowed curves to differ by test, although 

differences were small on average, there were a large number (35%) of changes in statistical 

significance as well as several qualitative changes (29%). Estimates from HSROC models 

were on average considerably more precise than those from unweighted or weighted Moses 

models. In a small empirical evaluation of eight meta-analyses of single tests, Harbord et al 

also showed that SROC curves derived from Moses models can differ from those obtained 

from HSROC models.35 

 

7.8.2 Implications for research and practice  

Due to the effect of different assumptions on meta-analytic findings and conclusions shown in 

this study, meta-analysts should carefully assess modelling assumptions when fitting 

hierarchical models. These modelling assumptions are briefly mentioned in the statistical 

chapter of the Cochrane Handbook for DTA reviews23 but the advice needs to be strengthened 

in light of the new evidence. For example, there needs to be a shift in the analyses of test 

comparisons towards greater emphasis on the importance of exploring covariance structures. 
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The extent to which different assumptions can be explored will depend on the available data 

and software capability. As noted earlier in section 7.2.3.3, even different commands that 

purport to fit the same mathematical model within a software package can offer different 

options. Assessment of the models should not rely entirely on statistical tests of model fit such 

as likelihood ratio tests, but the estimates and model parameters should also be examined.  

 

For direct comparisons, findings from bivariate models with the most complex covariance 

structure which allowed for separate variances and study level correlations between tests were 

similar to those from the simplest bivariate models which assumed common variances and 

correlation across tests and studies. This implies that the simplest bivariate meta-regression 

model may be valid for direct comparisons when comparative studies are few as is often the 

case in comparative meta-analysis. Nevertheless, it should be noted that there were few direct 

comparisons for this evaluation and the approach did not model within-study correlations. 

Further evaluation is needed in a simulation study before a definitive recommendation can be 

made. 

 

Irrespective of the type of test comparison, there was evidence to suggest that univariate meta-

regression can be an alternative when bivariate meta-regression is not feasible. Although 

mentioned earlier in the chapter, it should be stressed that these univariate models use a 

binomial likelihood to model within-study variability and are not the frequently used 

traditional univariate methods that use an approximate likelihood which require continuity 

corrections. The use of univariate random effects logistic regression models may therefore be 

a sensible alternative when bivariate models fail, but this will be formally examined via a 

simulation study in Chapter 8. 
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The methodological limitations of the Moses method are well documented and were discussed 

in section 1.4.3. Taking into account the limitations as well as the obvious differences 

between estimates from Moses SROC and HSROC meta-regression, the Moses model should 

not be used for test comparisons. This recommendation extends to investigations of 

heterogeneity which are typically performed using this same meta-regression approach.  

 

7.8.3 Strengths and limitations 

To the author’s knowledge, this is the first empirical evaluation of comparative meta-analysis 

methods. The investigation not only compared the methods, but also assessed common 

assumptions made when fitting hierarchical meta-regression models. A key strength of this 

empirical evaluation is the relatively large cohort of test comparisons with a wide range of test 

types and target conditions. Therefore, the test comparisons are considered representative of 

the literature. Furthermore, there was variety in the type (comparative and non-comparative) 

and number of studies included, thus making both direct and indirect comparisons possible.  

 

The preliminary meta-analyses of single tests are an important by product of this study. These 

analyses enabled empirical investigation of the performance of hierarchical models for the 

meta-analysis of a single test. While there have been previous empirical studies, they have 

mainly focused on the bivariate model36,272-274 or included a small number of meta-

analyses.35,225 This study also appears to be the first to consider the HSROC model in great 

detail using a large cohort of meta-analyses.  
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There are limitations. First, the evaluation was limited to frequentist based methods. While all 

the methods identified in Chapter 6 may merit evaluation, only commonly used methods or 

theoretically rigorous classical methods were evaluated in order to keep the evaluation 

manageable within the scope of a thesis and relevant to most meta-analysts. Second, a 

limitation of an empirical study such as this is that true values of the estimates are unknown 

unlike in a simulation study. The simplistic philosophy adopted was to assume that where 

differences occurred, more complicated models were correct but this reasoning may not 

always be true. Third, data extraction was performed by a single person. Although data were 

subsequently double checked by the same person, the possibility of errors cannot be 

completely eliminated. Nevertheless, due to overlap with other review cohorts in the thesis 

that were randomly checked by another researcher, the risk of errors is small and unlikely to 

affect the conclusions of this study. Importantly, any errors will not affect the comparison of 

the models. Fourth, different covariance structures were not investigated for the HSROC 

model. Due to the extensive scope of the analyses in this chapter, focus was on the bivariate 

model since it is used more often than the HSROC model according to the findings in Chapter 

4 and citations of the methods presented in Chapter 6. There is no reason to doubt 

applicability of the findings of bivariate models to HSROC models. However, because 

HSROC models are non-linear generalized mixed models, models with complex covariance 

structures are likely to be more challenging to fit than bivariate models. 

 

7.8.4 Conclusions  

Since findings from Moses SROC and HSROC meta-regression differ and the Moses model 

has methodological limitations, the Moses model should not be used for making inferences 

about relative test performance. In the recommended hierarchical models, different modelling 
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assumptions can lead to different conclusions about relative test performance and so 

assumptions should be thoroughly investigated where possible. In particular, assumptions 

about the covariance structure should not be taken for granted.  

 

For estimation of SROC curves, assuming the same shape for the curves of different tests may 

be appropriate especially when there are few studies.  For estimation of summary points, 

simplifying bivariate meta-regression models to univariate models may be a valid alternative 

for comparative meta-analyses but joint inferences cannot be made about sensitivity and 

specificity or their differences. Future research should investigate these simpler models for 

comparative meta-analyses in a simulation study as the study described in the next chapter is 

limited to simpler hierarchical models for meta-analysis of a single test.
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8 PERFORMANCE OF METHODS FOR META-ANALYSIS WITH 
FEW STUDIES OR SPARSE DATA 

 

A paper based on the content of this chapter has been published. 
Citation: Takwoingi Y, Guo B, Riley R, Deeks J. Performance of methods for meta-analysis 
of diagnostic test accuracy with few studies or sparse data. Statistical Methods in Medical 
Research. Epub ahead of print June 26 2015. 
 

 

8.1 Introduction 

Hierarchical models possess theoretical advantages over simpler methods for meta-analysis of 

test accuracy studies but fitting them is not trivial as exemplified in earlier chapters. The 

models are often fitted using a frequentist approach that relies on likelihood based methods 

for the estimation of five parameters in a basic model without covariates. Solving the 

likelihood equations requires an iterative process and in certain circumstances, for instance 

when there are few studies and/or sparse data (e.g. zero cells due to perfect sensitivity and/or 

specificity) in the meta-analysis, the models either fail to converge or they converge but give 

unreliable parameter estimates (e.g. with one or more missing standard errors; see examples in 

Table 7.2). These issues are often encountered by meta-analysts36 and there is uncertainty 

about how to proceed with meta-analysis in such situations.  

 

Academic illustrations of the application of hierarchical methods have typically involved 

large meta-analyses.35,39,41,42,53,54,194,226,275 In contrast, experience of supporting Cochrane and 

non-Cochrane diagnostic test accuracy review authors, suggest that small meta-analyses or 

sparse data often occur and pose a challenge to these data hungry hierarchical models as 

shown in section 2.3.5 and Chapter 7. Others have also noted the problem of non-

convergence.39,110,192,275,276 The preliminary meta-analyses of single tests and comparative 
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meta-analyses in the preceding chapter also revealed problems with model convergence and 

stability.  

 

Despite the increasing uptake of these models, a recent survey has suggested a lack of clarity 

about recommended methods for meta-analysis and a need for guidance.276  Therefore, the 

aim of this chapter is to examine the performance of hierarchical models for meta-analysis of 

test accuracy studies with sparse data, and to provide recommendations for how to proceed in 

this situation. Sensitivity and specificity are the test accuracy measures most commonly used 

in meta-analyses,27 and so only methods for synthesis of these measures was considered.  

 

Although the issue of small number of studies or sparse data in comparative meta-analysis is 

of prime interest, as previously outlined in section 1.7.2, the scope of the simulation study in 

this thesis is limited to meta-analysis of a single test. Due to limited evidence on how well 

hierarchical models perform in meta-analysis of a single test, establishing the validity of 

simpler models for evaluation of a single test is the first step of a two-step process in terms of 

developing the evidence base. Furthermore, in situations with limited data for some tests in a 

comparative review, separate meta-analyses may be required for such tests individually, in 

addition to the comparative meta-analysis of tests with sufficient data. Also, meta-analyses of 

single tests are usually undertaken prior to comparative meta-analyses and such analyses can 

provide insight into whether or not the models will converge when they are extended to 

include a test comparison. This approach was adopted in Chapter 7 for the empirical 

evaluation of comparative meta-analysis methods. Thus, a comprehensive evaluation of issues 

in the meta-analysis of a single test is pertinent and is the challenge addressed in this chapter. 
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The understanding gained from the present study will aid the design of a future simulation 

study addressing test comparisons which is the second challenge. 

 

The outline of this chapter is as follows. Section 8.2 outlines the relationship between the 

bivariate and HSROC model parameters, and describes various simplifications of both 

models. In section 8.3 two motivating examples where the bivariate model failed to converge 

are outlined and simpler forms of the hierarchical models applied to resolve this are presented. 

In section 8.4 the simulation study is described and the results for full and simplified 

hierarchical models are presented in section 8.5. Section 8.6 considers extensions to test 

comparisons using examples. In section 8.7 the findings of the simulation are discussed and 

conclude with recommendations for selecting an appropriate meta-analytic approach in 

practice. 

 

8.2 Model parsimony 

As shown by Harbord et al,44 the five parameters of the bivariate model can be expressed in 

terms of those of the HSROC model as follows:  

𝜇𝜇𝐴𝐴 = exp �− β
2
� �Θ + Λ

2
�, 𝜇𝜇𝐵𝐵 = −exp �β

2
� �Θ − Λ

2
�   (8.1) 

σ𝐴𝐴2 = exp(−β) �σ𝜃𝜃2 + 1
4
σ𝛼𝛼2�       (8.2)  

σ𝐵𝐵2 = exp(β) �σ𝜃𝜃2 + 1
4
σ𝛼𝛼2�      (8.3) 

σ𝐴𝐴𝐵𝐵 = −�σ𝜃𝜃2 −
1
4
σ𝛼𝛼2� .      (8.4) 

 

Parameters can be removed from HSROC and bivariate models to simplify the models. Based 

on the equations above, the equivalence of simplified HSROC and bivariate models can be 
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shown. For the HSROC model, the random effect for accuracy can be dropped thus assuming 

a fixed effect for the accuracy parameter and that only the threshold parameter varies between 

studies, or vice versa. An HSROC model with σ𝛼𝛼2  =0 corresponds to a bivariate model with a 

correlation of –1, while an HSROC model with σ𝜃𝜃2  = 0 corresponds to a bivariate model with 

a correlation of +1. The HSROC framework also allows the assumption of a symmetric 

SROC curve with constant DOR by setting β = 0, which in the bivariate model corresponds to 

equal variances of logit sensitivity and logit specificity (σ𝐴𝐴2 = σ𝐵𝐵2 ).44 This model is equivalent 

to assuming an exchangeable variance-covariance structure for the bivariate model as was 

done in the example in section 2.3.5.1. If both accuracy and threshold are modelled as fixed 

effect parameters, σ𝛼𝛼2 = 0 and σ𝜃𝜃2 = 0, then based on equations 8.2, 8.3 and 8.4, σ𝐴𝐴2 = 0, 

σ𝐵𝐵2 = 0 and σ𝐴𝐴𝐵𝐵 = 0. Thus, fixed HSROC models with a symmetric or asymmetric curve are 

equivalent to simultaneously fitting two univariate fixed effect logistic regression models for 

sensitivity and specificity (see results for these models for the motivating examples in Table 

8.1). Henceforth, they are referred to as fixed effect models; the models can be considered a 

special case of the random effects models where the variances of the random effects are zero.  

 

For the bivariate model, dropping the correlation parameter or setting it equal to zero results 

in two univariate random effects logistic regression models for sensitivity and specificity. 

This model was applied to the example in section 2.3.2.2 and empirically evaluated in Chapter 

7. Recall this is a simplification of the bivariate generalized mixed model achieved by setting 

the covariance or correlation parameter to zero (see section 1.4.4.1 and equation 1.12). The 

model is also equivalent to assuming an independent variance-covariance structure.  
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The following nine models obtained by simplifying bivariate and HSROC models will be 

fitted to motivating examples in the next section. 

1. Univariate fixed effect logistic regression model – includes 𝜇𝜇𝐴𝐴 for the logit sensitivities, 

and 𝜇𝜇𝐵𝐵 for the logit specificities.  

2. Univariate random effects logistic regression model – includes 𝜇𝜇𝐴𝐴 and σ𝐴𝐴2 for the logit 

sensitivities, and 𝜇𝜇𝐵𝐵 and σ𝐵𝐵2   for the logit specificities. For brevity, from here on this 

model will be referred to simply as the univariate random effects model (UREM). 

3. Bivariate model – includes all five parameters 𝜇𝜇𝐴𝐴, σ𝐴𝐴2, 𝜇𝜇𝐵𝐵, σ𝐵𝐵2 , and the covariance 𝜎𝜎𝐴𝐴𝐵𝐵2  

(see section 1.4.4.1 and equation 1.10). 

4. Complete HSROC model – includes all five parameters Λ, Θ, β, σ𝛼𝛼2  and σ𝜃𝜃2  (see section 

1.4.4.2 and equation 1.13). 

5. Symmetric HSROC model – includes Λ, Θ, σ𝛼𝛼2  and σ𝜃𝜃2 . 

6. HSROC model with fixed threshold – includes Λ, Θ, β and σ𝛼𝛼2 . 

7. HSROC model with fixed accuracy – includes Λ, Θ, β and σ𝜃𝜃2 . 

8. HSROC model with fixed accuracy and threshold – includes Λ, Θ and β (allows for 

asymmetry in the SROC curve). 

9. Symmetric HSROC model with fixed accuracy and threshold – includes only two 

parameters Λ and Θ. 

Throughout the rest of this chapter, an HSROC model that contained all five parameters is 

referred to as a complete HSROC model. 
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8.3 Motivating examples of meta-analyses of a single test 

8.3.1 Non-contrast computed tomography for diagnosing appendicitis 

Hlibczuk et al277 reviewed the diagnostic accuracy of non-contrast CT for emergency 

department evaluation of adults with suspected appendicitis. Seven studies, evaluating 1,060 

patients of whom 389 had appendicitis, were included in the review. The prevalence of 

appendicitis in the studies ranged from 20% to 84%, with a median of 39%. The forest plot 

(Figure 8.1) shows between-study variation in the sensitivities and specificities, though 

specificity was perfect (100%) in four studies. The authors attempted to fit the bivariate model 

in SAS but the model failed to converge. 

 

8.3.2 Computed tomography for diagnosing scaphoid fractures 

Yin et al187 assessed the diagnostic accuracy of CT for diagnosing suspected scaphoid 

fractures. Six studies, evaluating 211 patients of whom 44 had a scaphoid fracture, were 

included in the review. The prevalence of scaphoid fractures in the studies ranged from 12% 

to 38%, with a median of 20%. Figure 8.1 shows the estimates of sensitivity and specificity 

with almost no between-study variation; five of the six studies reported 100% sensitivity 

while all studies reported 100% specificities. The authors pooled sensitivity, specificity, and 

the DOR using a random effects model (method not specified). 
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Figure 8.1| Forest plot of sensitivity and specificity estimates from studies included in the 
two motivating examples 
FN=false negative; FP=false positive; TN=true negative; TP=true positive.  
(Adapted from Takwoingi et al 2015278) 
 

8.3.3 Results from reanalysis of the two example datasets 

To examine the performance of different models, the two datasets were reanalysed by fitting 

univariate, bivariate and HSROC models using the SAS NLMIXED procedure. In total nine 

different versions of these models were considered (see models in section 8.2). Univariate 

random effects logistic regression models for sensitivity and specificity were simultaneously 

obtained by setting the covariance parameter in a bivariate generalized linear mixed model 

equal to zero (see equation 1.12). This is equivalent to a bivariate model with an assumed 

independent between-study variance-covariance structure. Additional summary measures 

such as likelihood ratios and DORs were produced using the ESTIMATE statement within 

NLMIXED. Despite numerous attempts with different starting values and optimization 

algorithms, the bivariate model failed to converge for both datasets. The models fitted and 

results obtained for both datasets are summarised in Table 8.1.  
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For the appendicitis dataset, the complete HSROC model successfully converged and produced 

reliable estimates only when boundary constraints (σ2 ≥ 0) were specified for σ𝛼𝛼2  and σ𝜃𝜃2 ; the 

boundary constraint for σ𝜃𝜃2  was activated (estimation truncated at zero) and the between-study 

correlation was estimated as +1. As previously mentioned in section 2.3.5, this is due to the 

maximum likelihood estimator truncating the between-study covariance matrix on the boundary 

of its parameter space.110,111  

 

Since the maximum likelihood estimation problems encountered with the bivariate model are 

most likely due to boundary estimation of the variance and/or covariance parameters, attempts 

were made to plot the profile log likelihood for the covariance parameter (maximized with 

respect to the other four parameters). It was not possible to produce a plot for the scaphoid 

fracture example because the bivariate model failed even with fixed values for the covariance. 

This is unsurprising since there was almost no between-study variation in sensitivity and 

specificity, and therefore a fixed, non-zero between-study covariance is not really meaningful.   

 

Figure 8.2 shows the profile log likelihood for the covariance parameter for the appendicitis 

example. There is very little change in the profile log likelihood and no curved maximum point as 

one would usually expect from maximum likelihood estimation. The maximum of the profile log 

likelihood was achieved at a covariance of 0.02 (dashed line). For covariances above 0.02, the 

bivariate model failed to converge or was unstable, but values between -0.05 and 0.02 appear to 

be supported by the data. The dotted line shows the value of the log likelihood for a covariance of 

zero, i.e., independence between sensitivity and specificity. The change in the log likelihood is 
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negligible, suggesting that univariate random effects logistic regression models would be 

appropriate for pooling sensitivity and specificity in this example. 

 

 
Figure 8.2| Profile log-likelihood function of the covariance parameter in the bivariate 
model applied to the appendicitis example 
(Adapted from Takwoingi et al 2015278) 
 

The two examples illustrate the problem of model convergence, poor parameter estimation and 

the need for simpler models. There were only subtle differences in summary estimates and 95% 

CI for sensitivity, specificity and the negative likelihood ratio between models fitted to the 

appendicitis dataset. In contrast, clear differences were observed for the positive likelihood ratio 

and the DOR. For example, the DORs (95% CI) for the univariate fixed effect model and the 

complete HSROC model were 471 (244 to 907) and 700 (130 to 3771). For the scaphoid fractures 

dataset, there were differences in summary estimates and 95% CI for sensitivity from the 
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univariate fixed effect model and the HSROC models with both fixed accuracy and threshold 

parameters compared to the other models. For example, the summary sensitivities (95% CI) for 

the univariate fixed effect model and the complete HSROC model were 93.2% (78.8% to 98.1%) 

and 99.1% (2.2% to 100%). These examples show that results can differ importantly between 

models. Therefore, in situations of non-convergence of the full hierarchical models, the 

identification of simpler meta-analytic methods that still give valid answers is critical.  

 

8.4 Simulation study methods 

A simulation study was conducted to compare the performance of a univariate random effects 

logistic regression model (UREM) and the HSROC model with various simplifications (by 

removing model parameters or setting them equal to zero).  Given the mathematical equivalence 

of the HSROC and bivariate models when no covariate is included,44 there was no need to 

examine the performance of both models. The HSROC model was chosen because it has greater 

flexibility for introducing model parsimony by dropping parameters than the bivariate model.44 

Since several authors53,110,226,275 have shown that approximate methods for modelling within-

study variability are biased, only methods that use a binomial likelihood were investigated. The 

specifications for the scenarios were devised to replicate realistic situations encountered in meta-

analysis of diagnostic accuracy studies. The effect of these factors was investigated: 1) number of 

studies; 2) magnitude of diagnostic accuracy (DOR); 3) prevalence of disease; 4) between-study 

variation in accuracy and threshold; and 5) asymmetry in the SROC curve. The simulation 

approach used in a previous study220 was modified to define the simulation scenarios and 

generate the simulated datasets described below.  
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8.4.1 Generation of simulated data 

Meta-analyses with different number of studies (N = 5, 10, 20) were investigated. The size of a 

study in each meta-analysis, nj, was randomly sampled from a uniform distribution, U(20,200). 

Diagnostic accuracy studies are often small in size27,28 hence the reason for varying nj between 20 

and 200. To generate individual studies for each meta-analytic dataset with an underlying 

prevalence p, individuals within a study were randomly classified as diseased or non-diseased. 

Each individual was then assigned a continuous test result value, x, which was randomly sampled 

from logistic distributions with means 𝜇𝜇1 and 𝜇𝜇2 (where 𝜇𝜇2 > 𝜇𝜇1), and standard deviations σ1 and 

σ2 for non-diseased and diseased as shown in Figure 8.3. The diagnostic threshold, t, was chosen 

as the average of the means of the two distributions, i.e., 𝑠𝑠 = (𝜇𝜇1 + 𝜇𝜇2) 2⁄ . For each study i in the 

jth meta-analysis, t was used to determine the outcome of an individual's test result; positive if 

𝑥𝑥𝐴𝐴𝑖𝑖 > 𝑠𝑠, or negative if 𝑥𝑥𝐴𝐴𝑖𝑖 ≤ 𝑠𝑠. To create the 2x2 table for each study, individuals were then 

classified as true positives, false negatives, false positives or true negatives based on test result 

and disease status.  
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Figure 8.3| Underlying bilogistic distribution of diseased and non-diseased used in the 
simulation 
FN = false negative; FP = false positive; sd = standard deviation; t = threshold; TN = true 
negative; TP = true positive 
The distribution for the non-diseased group has mean 𝜇𝜇1, and the distribution for the diseased 
group has mean 𝜇𝜇2. The distributions have the same standard deviation (σ1 = σ2 = σ) in (A) but 
the standard deviations are different (σ1 ≠ σ2) in (B). Diagnostic accuracy is the standardized 
difference in means (𝜇𝜇2 − 𝜇𝜇1 σ⁄ ). 
(Adapted from Deeks et al 2005220) 
 
 

The standardised distance between the means 𝜇𝜇1 and 𝜇𝜇2 was used to determine diagnostic 

accuracy (Figure 8.3). The DOR at t can be calculated as follows: 
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   Specificity = 
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When the distributions of test results for the diseased and non-diseased have the same standard 

deviation (σ1 = σ2 = σ) as in Figure 8.3 (A), sensitivity = specificity at t and the SROC curve 

has a symmetric shape. For scenarios with symmetric SROC curves, values of diagnostic 

accuracy that correspond to the following were investigated:  

I. 𝜇𝜇2 = 3, 𝜇𝜇1 = 1 and σ = 1. These values were chosen such that (𝜇𝜇2 − 𝜇𝜇1) σ⁄ =2 giving a log 

DOR of 3.63 (DOR = 38) and sensitivity = specificity = 0.86. 

II. 𝜇𝜇2 = 4, 𝜇𝜇1 = 1 and σ = 1. (𝜇𝜇2 − 𝜇𝜇1) σ⁄ =3 (log DOR = 5.44, DOR = 231; sensitivity = 

specificity = 0.94).  

The values are arbitrary and were chosen to represent tests with moderate (DOR = 38) and high 

(DOR = 231) accuracy. The latter is of particular interest because sparse data are more likely to 

occur when test accuracy is high. 

 

If two logistic distributions have different standard deviations (σ1 ≠ σ2) as shown in Figure 8.3 

(B), sensitivity ≠ specificity at t and the SROC curve has an asymmetric shape (also see sections 

1.3.2.2 for a discussion of the shape of ROC curves, and sections 1.4.3 and 1.4.4.2 for a 

discussion of the shape of SROC curves). For scenarios with asymmetric SROC curves where 

σ2 = 2σ1, using the same 𝜇𝜇2, 𝜇𝜇1 and σ1as in (I) and (II) above, the following values of diagnostic 

accuracy were investigated:  
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I. DOR = 15, sensitivity = 0.71 and specificity = 0.86. The same values used for 𝜇𝜇2, 𝜇𝜇1 and  

σ1 in (I) above to obtain a DOR of 38 and sensitivity = specificity = 0.86, give a DOR of 

15  and sensitivity of 0.71 based on substituting σ2 = 2 into equations 8.5 and 8.6),  

II. DOR = 59 (reduces from a DOR of 231), sensitivity = 0.80 and specificity = 0.94.  

 

To begin, zero between-study variation in both accuracy and threshold was assumed. 

Subsequently, between-study variation in diagnostic accuracy was introduced by adding a value τ 

sampled from a normal distribution with zero mean and standard deviation 0.3σ1. This value was 

added to the difference in means (𝜇𝜇2 − 𝜇𝜇1) for each study. Between-study variation in diagnostic 

threshold was introduced by also sampling from a normal distribution with the average threshold 

t as the mean and standard deviation 0.3σ1. For each scenario, 10 000 independent meta-analysis 

datasets were generated to enable precise estimation of model performance even if a large 

proportion of models fail to converge. If all 10 000 datasets for each scenario successfully 

converged, they will give a standard error of 0.0022 for the estimation of 95% confidence interval 

coverage probability.279 However if only 1000 datasets converged, the standard error will be 

0.0069. The datasets were created using Stata version 10.1.   
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Table 8.2 summarises the different scenarios investigated. The meta-analysis dataset for the base 

scenario for each DOR contained five studies with an underlying prevalence of 5% and no 

heterogeneity in accuracy or threshold. 

 

Table 8.2| Scenarios evaluated in the simulation 
Scenario Prevalence 

(%) 
DOR Heterogeneity in 

accuracy and threshold 
Asymmetry in 
SROC curve 

1–3 5 38 No No 
4–6 25 38 No No 
7–9 50 38 No No 

10–12 5 38 Yes No 
13–15 25 38 Yes No 
16–18 50 38 Yes No 
19–21 5 231 No No 
22–24 25 231 No No 
25–27 50 231 No No 
28–30 5 231 Yes No 
31–33 25 231 Yes No 
34–36 50 231 Yes No 
37–39 5 15 Yes Yes 
40–42 25 15 Yes Yes 
43–45 50 15 Yes Yes 
46–48 5 59 Yes Yes 
49–51 25 59 Yes Yes 
52–54 50 59 Yes Yes 

Each subset of 3 scenarios corresponds to 5, 10, and 20 studies. 
(Adapted from Takwoingi et al 2015278) 
 

8.4.2 Meta-analytic models fitted to each dataset 

Of the nine models in section 8.2, the following seven models were fitted to each meta-analysis 

dataset:  

1. Univariate random effects logistic regression model  

2. Complete HSROC model  
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3. Symmetric HSROC model 

4. HSROC model with fixed threshold  

5. HSROC model with fixed accuracy 

6. HSROC model with fixed accuracy and threshold  

7. Symmetric HSROC model with fixed accuracy and threshold  

 

The SAS NLMIXED procedure was used to fit the models because Stata does not have an inbuilt 

or user defined command for fitting non-linear generalized mixed models as mentioned earlier in 

section 2.2.5. Note that because of the mathematical relationship between the bivariate and 

HSROC model, it is possible in Stata to obtain estimates for the five parameters of the HSROC 

model using functions of parameters from the bivariate model fitted.44 Additional estimates were 

computed by using the ESTIMATE statement in NLMIXED. The log DOR was computed at the 

average operating point (summary sensitivity and specificity). This log DOR is exactly the same 

value as Λ if the SROC curve is symmetric.  

 

8.4.3 Facilitating convergence of hierarchical models  

To aid convergence, a wide range of starting values for model parameters was provided by 

specifying a grid of points for a grid search of starting values. A quasi-Newton optimization 

technique (the NLMIXED default) was used because it provides an appropriate balance between 

computation speed and stability [SAS Institute Inc. SAS OnlineDoc® 9.1.3. Cary, North 

Carolina, 2004]. To prevent estimation of negative variances and to reduce computational 

problems, boundary constraints (σ2 ≥ 0) were specified for the variance parameters in the models. 

To reduce the number of models that failed to converge, models were refitted by trying a new set 
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of starting values and/or changing the optimization technique to a Newton-Raphson technique. 

To obtain a new set of starting values, a model without random effects was fitted and the new 

parameter estimates were used together with the original grid of points for the variance 

parameters. Thus for some datasets, up to four attempts were made to fit a hierarchical model. 

 

8.4.4 Assessment of model convergence and stability 

As explained in section 7.2.3.4, a model that meets a convergence criterion may be unstable or 

have missing standard errors due to issues with model identifiability. Therefore, convergence was 

assessed in two stages. First, by checking whether the convergence criterion was met and also 

whether the additional estimates defined in the ESTIMATE statements were produced. Second, 

because standard errors are computed from the final Hessian matrix, eigenvalues of the Hessian 

were calculated to detect if there were problems. At a true minimum, eigenvalues will all be 

positive, i.e., positive definite. Therefore, for convergence to be deemed successful, the model 

had to meet the convergence criterion, produce additional estimates, and the Hessian had to be 

positive definite. 

 

8.4.5 Assessment of performance of meta-analytic models  

The performance of the methods was assessed by examining estimates of the following measures 

of diagnostic accuracy: log DOR, logit sensitivity and logit specificity. Estimability was 

expressed in terms of the percentage of meta-analyses that successfully converged and the 

percentage where the between-study correlation was not estimated as –1 or +1. The latter was 

computed for only the complete HSROC model. For each scenario, only results from meta-

analyses that successfully converged as defined above were used to calculate (a) the difference 
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between the average parameter estimate and the true parameter value to determine bias; (b) the 

average standard error and mean square error (MSE incorporates both bias and variability) to 

assess model accuracy; and (c) the coverage of the 95% CIs by computing the percentage of 

meta-analyses for which the true parameter value was within the 95% confidence interval. 

 

8.5 Simulation results 

Altogether 54 scenarios were explored. Only the results for the log DOR are shown in detail in 

this chapter; the results for logit sensitivity and logit specificity are only briefly mentioned and 

are also shown in appendices D.1 and D.2. Because homogeneous accuracy and threshold is the 

exception rather than the norm for meta-analysis of test accuracy studies, to illustrate key 

findings, results are presented mainly for scenarios with heterogeneity at a DOR of 231 (sparse 

data are of interest and zero false positives and/or false negatives are more likely to occur when 

diagnostic accuracy is high). 

 

8.5.1 Estimability  

Zero cells occurred frequently especially when diagnostic accuracy was high (Table 8.3). 

Convergence rates were higher for the complete HSROC model in scenarios with heterogeneity 

compared to scenarios without heterogeneity. This is likely due to the inclusion of heterogeneity 

parameters in the HSROC model that become problematic to estimate when the true 

heterogeneity is zero. Convergence increased with increasing number of studies and prevalence, 

and with decreasing diagnostic accuracy. Convergence decreased in scenarios with asymmetry in 

the SROC curve (shown in Figure 8.4 for scenarios with heterogeneity). Across scenarios, non-

convergence and problems with model identifiability were more common with the complete 
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HSROC and fixed threshold models compared to the other hierarchical models (Table 8.4); the 

symmetric fixed accuracy threshold model always converged. The complete HSROC model often 

poorly estimated the correlation between the logit transformed sensitivities and specificities as +1 

or –1 (Table 8.3); estimation as –1 occurred much more frequently than +1.  The correlation was 

more likely to be estimated more sensibly between –1 and +1 when there was heterogeneity in 

accuracy and threshold, greater prevalence of disease and more studies in a meta-analysis. 

 

 
Figure 8.4| Proportion of meta-analyses that successfully converged for the complete 
HSROC model in 36 different scenarios with heterogeneity in accuracy and threshold 
DOR=diagnostic odds ratio; N=number of studies. 
Bars are grouped according to disease prevalence of 5%, 25% and 50% for each meta-analysis 
size (5, 10 and 20 studies). DORs of 15 and 59 correspond to scenarios with asymmetric SROC 
curves. 
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8.5.2 Bias 

In the base scenario for a DOR of 231, the symmetric HSROC model gave the least 

percentage bias for the DOR (4.32%); bias was highest for the fixed threshold (37.8%) and 

fixed accuracy (36.2%) models (Table 8.4). These rankings were consistent as the number of 

studies increased. As prevalence increased, the two models (symmetric and asymmetric) with 

both accuracy and threshold as fixed effect became the least biased while the fixed accuracy 

model remained the most biased. When heterogeneity was introduced, each of the seven 

models produced the largest bias for the DOR at the lowest prevalence, though the univariate 

random effects model gave the least biased DOR (Figure 8.5). For all models, bias decreased 

as prevalence and the number of studies increased. However, the decrease in bias resulted in a 

change from overestimation to underestimation for the two fixed effect models. For bias in the 

estimates of sensitivity, the observed results were similar to those of the DOR, but the 

relationship with prevalence was reversed for bias in the estimates of specificity (appendices 

E.1 and E.2). Bias in specificity was very small compared to that of the DOR or sensitivity. 

For the three measures, in scenarios with heterogeneity and asymmetry in the SROC curve, 

bias was lower than in the corresponding symmetric model.  
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Figure 8.5| Bias in the estimated diagnostic odds ratio for 36 scenarios with 
heterogeneity in accuracy and threshold 
DOR = diagnostic odds ratio; N = number of studies; UREM = univariate random effects 
logistic regression model. 
The graphs are plotted on the log scale but show the corresponding values for the DOR. The 
blue horizontal lines correspond to the true DOR in each simulation scenario. 
  

8.5.3 Model accuracy  

A MSE of zero indicates that the model estimated the parameter of interest with perfect 

accuracy, i.e., no bias and no variability in the estimation. The MSE of the DOR was highest 

for the symmetric fixed accuracy threshold model (40.7) but lowest for the symmetric 

HSROC model (4.26) in the base scenario (Table 8.4). At higher prevalence, the two fixed 

effect models had the lowest MSE. For all models, the MSE of the DOR decreased as the 

number of studies and prevalence increased. When heterogeneity was introduced, the 

univariate random effects model had the lowest MSE at 5% prevalence but the symmetric 
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HSROC model had slightly lower MSE than the univariate random effects model at higher 

values of prevalence (see also Figure 8.6). As the number of studies and prevalence increased, 

the MSE for all models decreased and became almost identical except for those of the two 

fixed effect models. Results for sensitivity were similar to those for the DOR. The MSE for 

specificity was generally very low and increased slightly with increasing prevalence. For the 

asymmetric SROC curve scenarios, the findings for the three measures were similar to those 

of the corresponding symmetric scenarios.  

 

 
Figure 8.6| Mean square error for the estimated log diagnostic odds ratio for nine 
different scenarios with heterogeneity in accuracy and threshold and diagnostic odds 
ratio of 231 
MSE = mean square error; N = number of studies; UREM = univariate random effects logistic 
regression model. 
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8.5.4 Coverage  

For a DOR of 231, the symmetric HSROC models gave the best coverage of the 95% 

confidence intervals for estimation of the DOR (95.5%) in the base scenario (Table 8.4). With 

the exception of the symmetric fixed accuracy threshold model, all models were conservative 

as shown by coverage greater than 95%. The coverage of 88% for the symmetric fixed 

accuracy threshold model implied over-confidence in the estimates but coverage increased as 

prevalence or the number of studies increased. In contrast, introduction of heterogeneity led to 

very poor coverage for the two fixed effect models with coverage becoming lower as 

prevalence increased (Figure 8.7). The univariate random effects model and symmetric 

HSROC model often showed good coverage, although the latter tended to show under-

coverage as prevalence increased. For sensitivity, the results were comparable to those of the 

DOR. Across all models, coverage was low for specificity when there was heterogeneity 

unlike scenarios without heterogeneity. The asymmetric SROC curve scenarios produced 

similar results to the symmetric SROC curve scenarios. 
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Figure 8.7| Coverage of 95% confidence intervals for the log diagnostic odds ratio for 
nine different scenarios with heterogeneity in accuracy and threshold and a diagnostic 
odds ratio of 231 
N = number of studies; UREM = univariate random effects logistic regression model. 
The blue horizontal line corresponds to the 95% confidence interval coverage, i.e., the 
percentage of simulations for which the 95% confidence interval of the estimated summary 
log diagnostic odds ratio included the underlying value.  
 

8.5.5 Summary of simulation results and application to motivating examples  

The following key points were observed: 

• Hierarchical models are more likely to converge if there is heterogeneity in accuracy 

and threshold. 

• Convergence is also affected by number of studies, prevalence and magnitude of 

diagnostic accuracy. 
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• Correlation between sensitivity and specificity across studies is often poorly estimated 

as +1 or –1, especially when heterogeneity is zero or small, the number of studies is 

small, and the prevalence was low. 

• In the absence of heterogeneity, the two fixed effect models were the least biased with 

low MSE and good coverage properties for studies with moderate to high prevalence. 

The symmetric fixed accuracy threshold model may be of greater utility because it 

always converged. The symmetric HSROC model performed better than both fixed 

effect models when prevalence was low and there were few studies, but this finding 

was based on a convergence rate as low as 13%. 

• When heterogeneity was present, the univariate random effects logistic regression 

model and the symmetric HSROC model were often the least biased with low MSE 

and good coverage (however, there is a risk of selection bias in these results for 

scenarios with lower prevalence with smaller numbers of studies where as few as 34% 

of simulations converged). 

 

In the simulation, the fixed threshold model often gave biased and imprecise results. 

However, for the appendicitis example, the fixed threshold model gave results similar to the 

complete HSROC model. The results can be explained by the fact that the estimation of 2
θσ  

was truncated at zero in the complete model and so removing 2
θσ  from the HSROC model 

was appropriate in this example unlike in the simulation scenarios. The results in Table 8.1 

indicate that while the univariate random effects model and symmetric HSROC model appear 

to be generally applicable when there is heterogeneity, other models like the fixed threshold 

or fixed accuracy can be considered if it is apparent the variance parameter for threshold or 

accuracy cannot be estimated. 
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For the scaphoid fractures example, the results of the simulation indicate that using a 

univariate fixed effect model (including the equivalent fixed accuracy threshold and 

symmetric fixed accuracy threshold models) was valid because there was no heterogeneity in 

the specificities (all six studies reported 100% specificity) and very limited heterogeneity in 

the sensitivities (five of the studies reported 100% sensitivity). Even for the fixed effect 

models, computation of the positive likelihood ratio and DOR were problematic because of 

the perfect specificity.  

 

8.6 Application to test comparisons 

Although not discussed in Chapter 2, analyses of single tests with small number of studies 

were performed in some of the reviews. For example, the meta-analysis of Type 5 tests in the 

P. falciparum malaria review95 and the meta-analysis of the MDQ in primary care settings in 

the bipolar disorder review.56 Meta-analyses with small numbers of studies were also 

encountered in the evaluations reported in Chapter 7. Of the 114 meta-analyses of a single test 

conducted as preliminary analyses of the 57 test comparisons, 60 (53%) had less than 10 

studies. The results of this simulation study are directly applicable to all of these analyses. 

 

For comparative meta-analyses, the simulation findings can also be applied especially for 

indirect comparisons with few or no paired studies. For instance, in section 2.3.5.1, data were 

sparse and there were no comparative studies for the comparison of ERCP and IOC for 

detection of common bile duct stones. Alternative models similar to models considered in the 

simulation were applied to each test separately before a simplified model was selected for the 

test comparison. The comparative meta-analysis was performed using a bivariate model with 

an exchangeable covariance structure. This model is equivalent to a symmetric HSROC 
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model since the shape of the SROC curve depends on the ratio of the variances of the random 

effects for logit sensitivity and logit specificity (β = log(σB σA⁄ )) as shown by Harbord et 

al.44 Another situation where a simpler model is appropriate is exemplified in section 2.3.2.2. 

In this example, summary points were estimated at a 5% FPR in a univariate logistic 

regression analysis comparing nine tests in the Down’s syndrome screening review. Clearly, a 

bivariate approach and estimation of the between-study correlation is futile in such situations. 

The findings of the empirical comparison of bivariate and univariate models for test 

comparisons in Chapter 7 also support the use of simpler models. 

  

For tests based on similar biologic mechanisms, it is logical to expect test results to be 

conditionally dependent. Thus, the simulated datasets in this study may be unrepresentative 

and the impact of this dependence on simulation results may not be negligible. Conditional 

dependence may occur for test results in the non-diseased group, the diseased group or both. 

A simulation study based only on paired data with different concordance probabilities 

(𝑃𝑃(𝑌𝑌𝐴𝐴 = 1,𝑌𝑌𝐵𝐵 = 1|𝐷𝐷 = 1) and 𝑃𝑃(𝑌𝑌𝐴𝐴 = 0,𝑌𝑌𝐵𝐵 = 0|𝐷𝐷 = 0); Y=1 if test result is positive and Y 

= 0 if test result is negative) can be used to investigate the impact of correlated data on the 

performance of the models. Also, this will enable evaluation of the joint meta-analytic model 

proposed by Trikalinos et al209 (see section 6.3.4.5). For simplicity the possibility of 

asymmetry in test dependence between the diseased and non-diseased groups may be ignored. 

 

8.7 Discussion 

8.7.1 Principal findings and recommendations 

In this study meta-analyses were simulated under a number of scenarios and hierarchical 

models for meta-analysis of diagnostic accuracy studies were evaluated. The findings indicate 
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that simplifying hierarchical models is valid when there are few studies or sparse data.  

Recommendations for selecting alternative models when bivariate or HSROC models fail to 

converge or converge but give unreliable estimates, are outlined in the Box 8.1. If estimation 

of an average operating point is of interest instead of a SROC curve, a univariate logistic 

regression approach is recommended with or without random effects depending on the extent 

to which sensitivity and/or specificity vary between studies. These methods are an appropriate 

alternative for obtaining independent summaries of sensitivity and specificity with confidence 

intervals. However, joint inferences cannot be made about sensitivity and specificity through 

confidence and prediction regions around the average operating point. These regions account 

for correlation between sensitivity and specificity, and are useful for illustrating uncertainty 

around the average operating point and the extent of heterogeneity.  If interest lies in the 

estimation of a SROC curve, the symmetric HSROC model or its fixed effect equivalent 

should be considered instead. In extreme situations with no heterogeneity and sparse data, 

such as the scaphoid fractures example, even the simplest models may fail to produce usable 

summary estimates.  
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Box 8.1| Recommendations for selecting alternative models when bivariate or HSROC 
models fail* 
Plot the data 
Visual inspection of forest plots and SROC plots may help to identify whether 

heterogeneity exists. For example, one may observe complete or near complete lack of 

variability between estimates of sensitivity and/or specificity, indicating no heterogeneity in 

one or both parameters (sensitivity and/or specificity equal to 100%), or conversely wide 

variability in observed estimates (e.g. non-overlapping confidence intervals) indicating 

large heterogeneity.  

 

Analyses  
Select a simpler hierarchical fixed effect or random effects model based on inference of 

interest (summary points or SROC curve), observation from the data plot, and previous 

output from the failed bivariate or HSROC model 

Note: when prevalence is very low and the number of studies is very small, there is 

potential for bias in estimates of test performance and the results of the meta-analysis 

should be interpreted with caution.  

Heterogeneity Focus of inference 
Summary point 

(summary sensitivity and 
specificity) 

SROC curve 

Variability in sensitivity and/or 
specificity between studies 
observed on the plot  

Univariate random effects 
logistic regression models 

Symmetric HSROC 
model 

Minimal or no variability in 
sensitivity and/or specificity 
between studies observed on the 
plot 

Univariate fixed effect 
logistic regression models† 

Symmetric fixed 
accuracy and threshold 
model  

A symmetric SROC curve can be described using the diagnostic odds ratio (exponent of the 
value of the accuracy parameter).  
Section 8.4.3 contains suggestions for facilitating convergence of hierarchical models.  

*Bivariate or HSROC models either failed to converge or converged (i.e. met the convergence 
criterion) but gave unreliable estimates (e.g. with no standard errors, or dependent on starting 
values).  
† The symmetric fixed accuracy threshold model is equivalent to simultaneously fitting two 
univariate fixed effect logistic regression models for sensitivity and specificity. 
(Adapted from Takwoingi et al 2015278) 
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Given the poor performance of simpler models like the fixed accuracy and fixed threshold 

models in the simulation, meta-analysts are advised to carefully explore their data and 

visually inspect forest plots and SROC plots before undertaking meta-analyses. Such 

preliminary analyses will provide an indication of the degree of heterogeneity and the pattern 

of scatter of the study points in ROC space. These analyses and the output from unstable or 

failed models should inform the approach for simplifying hierarchical models as shown by the 

appendicitis example. Although more complex and seldom used in practice, a Bayesian 

approach is an alternative to the maximum likelihood approach. In an empirical evaluation, 

both approaches were found to be similar although Bayesian methods suggested greater 

uncertainty (wide credible intervals) around the point estimates.27  

 

8.7.2 Comparison with previous research   

A normal distribution is typically assumed for the random effects in hierarchical meta-

analytic models; violation of this assumption may contribute to non-convergence. Heavy 

tailed distributions such as t or Cauchy distributions may be used instead of a normal 

distribution,42,194 but random effects are restricted to be normally distributed in SAS 

NLMIXED and Stata. A Bayesian approach allows alternative distributions though a normal 

distribution is often assumed in practice.57 As the models are often fitted using a maximum 

likelihood approach, the objective of this study was to offer solutions within the hierarchical 

framework recommended for meta-analysis, using one of the software packages that have 

made meta-analysis of test accuracy studies more accessible to meta-analysts. A composite 

likelihood approach (implemented in R using the glmmML package) that offers some 

robustness to model misspecifications was recently proposed.280 Results from the simulation 

study where the composite likelihood method and the bivariate generalized mixed model were 
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applied to data generated from a bivariate t distribution suggested the methods were 

insensitive to the heavy tailed distribution under the logit link function. Only the logit link 

was used in all the models presented in this thesis. 

 

The simulations and application to motivating examples support and extend empirical 

evidence suggesting that univariate methods generate summary results similar to those 

derived using full hierarchical methods.35,36,225 The findings also agree with a recent 

simulation study evaluating the performance of the bivariate model.281 However, the present 

study is more comprehensive including application to real motivating examples, investigation 

of a broad array of possible models, suggestions for improving model convergence and 

guidance on how to select an appropriate model. Furthermore, no limit is prescribed on the 

number of studies required to fit a hierarchical model, rather the merit of applying a particular 

model should be carefully assessed as the motivating examples have shown. 

 

8.7.3 Strengths and limitations 

The study has some limitations. First, because of the number of scenarios investigated, it was 

not possible to fully explore the effect of heterogeneity or varying the threshold. Factors 

considered vital were addressed, and the sample size of studies in a meta-analysis was varied 

to reflect reality. According to Begg,282 the statistical properties of hierarchical models are 

likely to be most vulnerable when the number of studies is small, and also when sample sizes 

are highly variable.  

 

Second, analyses of the simulated datasets were conducted only in SAS and convergence rates 

may differ between software packages because of differences in obtaining starting values and 
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model fitting options.  Nonetheless, SAS is the software most often used to fit HSROC 

models in frequentist analyses and several options for improving convergence were explored.  

 

Third, when comparing models, analyses were not limited to datasets that converged across 

all models and there is potential for selection bias.  Estimates of model performance 

(bias/MSE/coverage) can only be interpreted with confidence when convergence has been 

achieved for a high proportion of simulations. In the tables the number that converged are 

reported along with measures of performance so that interpretation can be made with 

knowledge of convergence rates. Non-convergence occurred more frequently in challenging 

datasets where poor model performance (bias, MSE and coverage) can be expected. 

Therefore, more complex methods with poor convergence rates may be biased or give 

imprecise estimates. The performance of simpler models with better convergence rates should 

also be affected but if the models give unbiased and precise estimates, then simpler models 

are robust and applicable in such situations.  

 

Fourth, the simulation was limited to meta-analysis of a single test though the results may be 

applicable to test comparisons in certain contexts as discussed in section 8.6. Future work will 

seek to extend the simulation as suggested in that section. 

 

8.7.4 Conclusions 

In summary, random effects logistic models should be the default approach for test accuracy 

meta-analyses. Univariate random effects logistic regression models for sensitivity and 

specificity are recommended if a bivariate model fails, or a symmetric HSROC model if 

estimation of a SROC curve is required and the HSROC model fails. If homogeneity can be 
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assumed, the two models can be further simplified to their fixed effect equivalent. However, 

when prevalence is very low and the number of studies is very small, the results of any meta-

analysis should be interpreted with caution. 
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9 THESIS DISCUSSION AND CONCLUSIONS 
 

Systematic reviews and meta-analyses of diagnostic accuracy studies can provide answers to 

important clinical questions but producing the reviews is widely acknowledged to be more 

complex than reviews of interventions. With the increasing publication of DTA reviews and 

their potential impact on clinical and policy decision making, it is vital to ensure appropriate 

use of methods to avoid misleading results and conclusions. Study designs and methods 

recommended for meta-analysis of diagnostic accuracy are not as well understood as their 

equivalents for evaluations of interventions. Therefore, methods for DTA reviews addressing 

two domains— study design (type of included studies) and analysis (strategies for test 

comparisons in addition to methods for comparative meta-analysis) —were the focus of this 

thesis.  

 

The thesis addressed four main questions centred on the overarching aim of assessing the 

reliability and transparency of evidence derived from systematic reviews and meta-analyses of 

comparative accuracy, including availability and validity of meta-analytic methods. The 

evidence base for test accuracy meta-analysis has been significantly expanded, especially with 

respect to test comparisons. Research presented in this thesis has provided evidence for the 

first time about the methodological and reporting characteristics of comparative reviews; 

availability of comparative studies; differences between direct and indirect test comparisons; 

and meta-analytic methods and how they should be used to obtain reliable answers. Here, in 

this final chapter, an overview of the thesis is provided in relation to the key findings and 

implications for practice, and further research recommendations. 
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9.1 Overview of thesis 

The four main aims addressed in this thesis were to (1) investigate the methods and reporting 

of comparative reviews (Chapter 4); (2) assess availability of primary comparative accuracy 

studies and their importance in test comparisons by comparing meta-analyses of comparative 

(direct comparisons) and non-comparative (indirect comparisons) studies (Chapter 5); (3) 

identify and evaluate comparative meta-analysis methods (Chapters 6 and 7); and (4) 

determine how meta-analyses should be performed when there are few studies or sparse data 

(Chapter 8).  

 

The first two chapters of the thesis set the scene by providing background and examples of 

different clinical scenarios and important methodological issues. Specifically, Chapter 1 

explained key concepts; described various study designs for comparing test accuracy; 

introduced meta-analytic methods both for the analysis of a single test and for test 

comparisons; and defined the scope of the thesis.  

 

In Chapter 2, real life case studies were used to highlight key methodological issues across 

multiple clinical scenarios. The seven systematic reviews highlighted the complexity of test 

comparisons. A common issue was the scarcity of well-designed comparative studies and so 

meta-analyses were based mainly on indirect comparisons. Hierarchical models with different 

modelling assumptions of varying complexity were illustrated, and it was clear that 

availability of data is likely to be a driver for choosing an analytic approach. Simplifying 

hierarchical models to avoid overfitting and estimation problems seemed a realistic and 

reasonable prospect, but there was uncertainty about validity due to lack of evidence-based 

guidance. Therefore, the thesis sought to understand whether the issues were common and to 
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formulate evidence-based solutions to support reviewers and meta-analysts faced with similar 

issues in the future. 

 

In Chapter 3, the data sources and search strategies used to obtain materials for subsequent 

chapters of the thesis were described. Identification of systematic reviews and comparative 

meta-analytic methods were an essential component of the thesis that enabled two 

methodological reviews (Chapter 4 and Chapter 6) and two empirical studies (Chapter 5 and 

Chapter 7). Altogether, 269 of the 286 systematic reviews that met the main inclusion criteria 

were included across the three cohorts for Chapters 4, 5 and 7. The large number of reviews 

encompassing a diverse array of test types and clinical topics facilitated detailed examination 

of the issues addressed in the methodological review of reviews and the empirical studies. The 

empirical evaluation of meta-analytic methods in Chapter 7 then provided a foundation and 

context for the simulation study in Chapter 8. The research findings of Chapters 4 to 8 and 

their implications are summarised below. 

 

9.1.1 Are methods and reporting of comparative reviews adequate? 

To understand the current landscape for comparative accuracy reviews, a descriptive survey 

of systematic reviews of multiple tests published over a five-year period between 2008 and 

2012 was undertaken. The methodological review in Chapter 4 highlighted the common use 

of less robust methods for test comparisons and poor reporting, but examples of good practice 

were also noted. To improve quality and transparency, and to increase confidence in decision 

making informed by these reviews, the development of a reporting guideline for test accuracy 

reviews was recommended as an urgent priority. Following completion of this work, the 

author became aware of an initiative to develop a PRISMA extension for DTA reviews 
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(PRISMA-DTA) and is now a member of the advisory group.144 In the interim, the checklist 

developed and presented in Chapter 4, though focused on items of relevance to comparative 

accuracy reviews, can aid better reporting. The checklist includes a rationale for each item 

and the reasoning behind the recommendations. The findings of the survey and the checklist 

will also facilitate the development of the component of PRISMA-DTA that deals with 

comparative reviews.  

 

9.1.2 Are comparative accuracy studies essential for test comparisons? 

In chapter 5 it was shown that direct comparisons are seldom feasible in a meta-analysis 

setting due to the paucity of comparative studies. Yet evidence derived from indirect 

comparisons often differed from that derived from direct comparisons. Existence of bias in 

indirect comparisons cannot be proven in a meta-epidemiological study, but there are 

theoretical reasons why the results from the comparative studies should give reliable estimates 

of relative test performance than from indirect comparisons. Therefore, robustly designed 

studies in which all patients receive all tests or are randomly assigned to receive one or other 

of the tests should be more routinely undertaken and are preferred for evidence to guide test 

selection.  

 

There was no statistical evidence of a direction in the differences observed in the main 

analysis that included multiple estimates from some reviews. In contrast, the sensitivity 

analysis that included one estimate per review gave a larger and significant difference, 

favouring the newer test relative to the older test or current practice. Given the difference in 

conclusions between the two analyses, further investigation with a larger cohort of reviews is 

recommended in a future update of this empirical study.  
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9.1.3 What methods are available for comparative meta-analyses? 

Thirteen comparative meta-analysis methods, varying in complexity and methodological 

rigour, were identified following a thorough literature search and contact with experts. The 

methods were reviewed in Chapter 6 to highlight their advantages and limitations. Of all the 

methods, hierarchical models (both frequentist and Bayesian methods) are the most 

statistically rigorous. Methods are still evolving and so bivariate and HSROC meta-regression 

models remain the most sophisticated and theoretically sound approach in use. 

 

9.1.4 Do comparative meta-analysis methods give the same results? 

In Chapter 7, assumptions commonly made in hierarchical meta-regression models were 

investigated using an empirical cohort of 57 pairwise meta-analyses. In addition, meta-

analytic methods identified in Chapter 6 that were deemed to be methodologically robust 

and/or commonly used were also empirically evaluated. The analyses were limited to classical 

methods. In hierarchical models, numerical and qualitative differences occurred with different 

modelling assumptions. Although assumptions of equal variances have the advantage of 

simplifying estimation of hierarchical models, it was shown that the assumption is often 

unjustified. The effect of assumptions about the shape of SROC curves in HSROC meta-

regression models was less dramatic compared to assumptions about the covariance structure 

in bivariate meta-regression models. Meta-analysts are encouraged to carefully assess 

modelling assumptions when fitting these models. Univariate random effects logistic 

regression models were shown to give similar results to bivariate models for meta-analysis of 

a single test or test comparisons, implying that univariate models may be suitable alternatives 

when bivariate models are unstable or unnecessary (e.g. when all or most studies report the 
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same sensitivity or specificity). There were obvious differences between estimates from 

Moses SROC and HSROC meta-regression models. Given the known methodological 

limitations of the Moses model,39,40 it should not be used for test comparisons. The 

recommendation also applies to investigations of heterogeneity performed using this same 

meta-regression approach. 

 

9.1.5 How should meta-analyses be undertaken with few studies or sparse data? 

Meta-analyses of a single test were simulated under a number of realistic scenarios that reflect 

practice. The findings indicated that simplifying hierarchical models is valid when there are 

few studies or sparse data. Recommendations for selecting alternative models when bivariate 

or HSROC models fail were developed. Generally, univariate random effects logistic 

regression models were recommended if a bivariate model fails, or a symmetric HSROC 

model if a HSROC model fails. The findings are likely to be applicable to comparative meta-

analyses, especially for indirect comparisons with few or no paired studies. However, further 

research is needed to confirm the validity of such simplifications in comparative meta-

analyses. 

  

9.2 Validity of test comparisons    

Given the scarcity of comparative studies, differences between direct and indirect 

comparisons, use of inadequate methods and poor reporting of published reviews, as well as 

the challenges of fitting complex hierarchical models, some may argue there is little value in 

comparative accuracy reviews. On the contrary, examples of good practice were demonstrated 

and with proper guidance and tools to aid review authors, comparative reviews can be 
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improved and made fit for purpose. The reporting checklist and recommendations about meta-

analytic methods that were developed in the thesis are a useful starting point.  

 

The magnitude of the differences observed between direct and indirect comparisons suggests 

the need for review authors to carefully consider the design of studies included in comparative 

test accuracy reviews and to reflect study design weaknesses in the interpretation of their 

findings. This will enable users of reviews, especially those who rely on such evidence to 

guide clinical practice and formulate policy, to judge the reliability of the evidence. 

Inappropriate modelling assumptions used in meta-analysis also impact on estimates of test 

performance, perhaps to the same or greater degree than the issue of study design. Since direct 

comparisons often have limited data, there is a gain by borrowing information from indirect 

comparisons to allow more precise summary estimates of test performance, in addition to 

reliable estimation of correlations in the bivariate model or shape of SROC curves in the 

HSROC model, and variances in both models. However, as indirect comparisons may be 

prone to bias, any gain in information that arises by incorporating indirect information also 

increases the risk of bias. Thus, there is a potential trade-off between increased precision but 

increased bias. 

 

With few studies and large numbers of model parameters to estimate in complex models, 

model fitting is a challenge. Having shown that univariate models and symmetric HSROC 

models can give valid answers in challenging scenarios and beyond, the question then 

arises—should simpler models fitted to limited data in direct comparisons be preferred to 

more complex data hungry models fitted to more data from indirect comparisons? Moreover, 

simpler models are readily fitted using binomial within-study likelihoods while very complex 
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models may require approximations of the within-study likelihood or assumptions about the 

covariance structure.221 There is no definite universally applicable meta-analytic solution; 

each meta-analysis merits individual consideration and simpler models should be considered a 

special case.  

 

For pairwise direct test comparisons, a departure from bivariate meta-analysis and confidence 

regions offers the potential to produce forest plots of relative sensitivities and relative 

specificities that include pooled estimates such as the diamond shown on traditional forest 

plots of interventions. This is a familiar concept for meta-analysts that is not currently used in 

Cochrane DTA reviews. This is appealing but some may call for caution because the evidence 

is based entirely on an empirical evaluation. However, the cohort of reviews was large and the 

results are backed up by those from multivariate meta-analysis of interventions; a simulation 

study may only serve to confirm the findings and identify special circumstances where only a 

bivariate model is applicable. 

 

There appears to be a trade-off between study design and analysis leading to a conundrum 

with unanswered questions. The most obvious and simplest way forward is to recommend 

sensitivity analyses to check the robustness of indirect comparisons and modelling 

assumptions. When results from different analyses disagree, another dilemma ensues. The 

bottom line is to stress to investigators and funders of future test accuracy studies the value of 

asking comparative questions of clinical importance, and for journals to demand studies are 

reported in a manner that ensures they are fit for purpose and avoids research waste. After all, 

as quoted earlier in the thesis,  

“…the hundreds of hours spent conducting a scientific study ultimately contributes only a 
piece of an enormous puzzle. The value of any single study is derived from how it fits with and 
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expands previous work, as well as from the study's intrinsic properties. Through systematic 
review the puzzle's intricacies may be disentangled.”31 
 

9.3 Strengths and limitations 

The questions in this thesis were addressed using methodological reviews of systematic 

reviews and statistical methods, empirical studies and simulation. Thus, a broad range of 

research methods appropriate to each question was used to ensure rigorous and 

comprehensive evaluations, and to assure confidence in the research findings. Where 

necessary, the strengths and limitations of each piece of work were considered within the 

respective chapter but more general issues are discussed below.  

 

The review of reviews and empirical studies were based on an extensive database of 

systematic reviews of diagnostic tests. DARE is based on extensive searches of a wide array 

of databases and also includes grey literature. Further searching of other databases is unlikely 

to yield more good quality reviews or provide better coverage of clinical topics and test types. 

Thus the review of reviews (Chapter 4) and empirical research (Chapters 5 and 7) are likely to 

represent close to complete available data to answer these questions from the worldwide 

literature up to October 2012. Although only two databases were searched for the review of 

comparative meta-analysis methods, both databases combined constitute a comprehensive 

collection of methodology papers and conference abstracts relevant to healthcare. 

Furthermore, to augment the database searches, methodological experts and research groups 

known to have an interest in test accuracy meta-analysis were contacted. This proved to be a 

valuable strategy as relevant ongoing work or papers in press were identified. Thus, the work 

in this thesis represents an up-to-date synopsis of comparative meta-analysis methods. 
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On the contrary, the most recent systematic reviews in the empirical cohort were published in 

2012. The time lag reflects the duration of this PhD. It is possible for improvements in 

methods and reporting to have occurred in this period. Yet this effort appears to be the only 

methodological review of comparative reviews. The message that better reporting is needed is 

clearly of immediate relevance as evidenced by the initiation of PRISMA-DTA. This should 

enhance ongoing efforts by members of the Cochrane Screening and Diagnostic Test Methods 

Group to improve the methodological quality and reporting of DTA reviews. As more 

Cochrane reviews become available, it is expected that these reviews will serve as exemplars 

and the average quality of DTA reviews will improve. As of Issue 1 of 2016, there were 57 

full reviews (including four updates) and 95 protocols of DTA reviews published in the 

Cochrane Library.283 

 

Data extraction of the methodological and reporting characteristics of systematic reviews was 

sometimes challenging due to poor reporting and inconsistent use of terminology in test 

research. Therefore, subjective judgement was applied in disentangling the required 

information. The effect on conclusions is likely to be negligible due to a second assessor 

conducting checks of random subsets of reviews. However, a residual effect cannot be totally 

ruled out. 

 

9.4 Implications of thesis findings for scientific research and practice 

A clear framework for test comparisons is lacking in both primary and secondary test 

accuracy research and there is inadequate coverage of comparative accuracy in textbooks. To 

the author’s knowledge, the Cochrane Handbook for Systematic Reviews of Diagnostic 

Accuracy appears to be only guidance available for conducting comparative meta-analysis. 
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The handbook chapter on statistical analysis was published in 2010 and is in need of updating 

to reflect methodological developments that have occurred since its publication. If review 

authors are not well informed and are unaware of the methodological challenges and potential 

solutions, it is unsurprising to find wide variation in the conduct and reporting of DTA 

reviews.  

 

The paucity of comparative studies indicates an urgent need to educate trialists, clinical 

investigators, funders and ethics committees about the merit of such studies for obtaining 

reliable evidence about the relative performance of competing diagnostic tests. In particular 

there is a need to train statisticians in clinical trials units, many of whom have no experience 

in test research. Since RCTs of the clinical effectiveness of tests are rarely available and most 

tests are not evaluated beyond their clinical performance, standards similar to those for RCTs 

and systematic reviews of RCTs should also be applied in the evaluation of diagnostic 

accuracy. Yet there is a preponderance of single test evaluations in the literature. 

Approximately half (49%) of the test accuracy reviews identified in Chapter 3 addressed the 

accuracy of a single test. Furthermore, about two thirds of the primary studies identified in 

Chapter 5 did not address the comparative question of the reviews. Are single test evaluations 

in primary studies or systematic reviews of any value or does the research agenda need to be 

overhauled to address comparative questions? Primary and secondary research focussed on 

the evaluation of a single test or which do not address clinically important comparative 

questions, constitute research waste and should be actively discouraged. On the other hand, 

exceptional situations can arise where a test is the first to be introduced into practice for a 

particular condition or where the appropriate comparator is unclear. In such situations, 

evaluations of a single test are justified. 
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The thesis has shown that important differences can occur between direct and indirect 

comparisons. Consequently, clinicians and policy makers need to interpret and apply the 

findings of comparative meta-analyses with caution. The highest level of evidence is a meta-

analysis of robust comparative studies provided the studies reflect the setting and patient 

spectrum of interest. If such meta-analyses are unavailable, meta-analyses that contain only 

(or mainly) non-comparative studies may still be valuable but should be used with caution due 

to the potential for confounding. As evidence accrues and comparative studies become 

available, the validity of such meta-analyses should be assessed. 

 

To facilitate the assessment of the validity of reviews, they need to be well reported. For this 

to be a reality, appropriate reporting guidelines endorsed by journal editors are needed. 

Journal editors have a role to play as gatekeepers by demanding that review authors adhere to 

such reporting guidelines. As different meta-analytic models and modelling assumptions can 

affect results and conclusions of a review, peer reviewers have a responsibility to ensure 

rigorous methods are used and that the methods are also clearly reported. Tutorial guides 

should be developed by methodologists to assist meta-analysts and authors in navigating the 

complexity of the methods. Enhancements to existing software programs and macros are also 

needed to make the methods more accessible and to encourage appropriate use. It is evident 

that good quality reviews require collective effort by methodologist, authors, editors and peer 

reviewers. This can be achieved as demonstrated by the rigorous editorial process 

implemented for Cochrane DTA reviews. The process involves clinicians and methodologists 

in order to ensure the clinical relevance and methodological rigour of the reviews. 

 



Chapter 9: Thesis discussion and conclusions 

340 
 

Interest in synthesis of systematic reviews (known as overviews or umbrella reviews) has 

grown with increasing publication of systematic reviews. While overviews have so far mainly 

focused on therapeutic interventions, DTA overviews are being funded by the NIHR with the 

intention of producing them as Cochrane DTA overviews. Yet methodological guidance for 

their production is lacking. A DTA overview may include DTA reviews that compare the 

accuracy of more than one test and/or reviews that focus on the accuracy of one test at a time. 

How these overviews differ from comparative reviews that include a large number of tests or 

from multiple test reviews is unclear. Given the complexity inherent in comparative reviews 

that has been shown in this thesis, overviews of DTA reviews should not be undertaken 

naïvely and research is needed to ensure they are a valid reflection of the body of evidence. 

 

9.5 Future research  

There is scope for future research to extend the work in this thesis and in other related areas as 

follows. 

 

9.5.1 Sources of bias and variation in comparative studies 

In stark contrast to test accuracy studies of a single test, there is no evidence about potential 

sources of bias and variation in comparative accuracy studies. This is one of the reasons that 

QUADAS-2, the quality assessment tool for DTA studies recommended by Cochrane, does 

not include criteria for assessing studies that compare multiple index tests.135 This lack of 

evidence also precluded making definitive statements about risk of bias of comparative 

studies relative to non-comparative studies in this thesis. As highlighted in Chapter 5, 

comparative accuracy studies should provide the most reliable evidence on relative test 

performance but they may not be devoid of bias. Consequently, the term bias was used 
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cautiously when investigating differences between direct and indirect comparisons. To 

provide evidence for informing risk of bias assessments as well as the design of future 

primary studies, research into potential sources of bias and variation in comparative studies is 

a priority. 

 

9.5.2 Heterogeneity in relative test performance 

Heterogeneity is expected in DTA reviews and typically higher than in intervention reviews. 

This may be partly due to estimation of point estimates of test accuracy which are proportions 

akin to absolute risks in treatment or control groups in RCTs. This could potentially make the 

estimates more heterogeneous than estimates of relative measures, in addition to differences 

in patient characteristics and other factors. In network meta-analysis, heterogeneity of the 

contrasts of treatments is typically assumed to be the same across a network. While that may 

be acceptable, it is clearly untenable for test comparisons where the random effects are on 

point estimates rather than relative estimates. Future research should seek to understand 

whether the magnitude of heterogeneity observed in conventional comparative meta-analysis 

of point estimates persist in meta-analysis of relative differences.  

 

9.5.3 Performance of comparative meta-analysis methods with few studies or sparse 
data 

The focus of the thesis was primarily on comparative meta-analysis methods and their 

performance in situations with few studies or sparse data was also of interest. However, 

because of limited evidence on the performance of hierarchical models for the meta-analysis 

of a single test, developing the evidence base in this context was a first priority for the 

simulation study described in Chapter 8. To build on the work in Chapter 8, the next 

challenge is a simulation study of test comparisons which may well yield similar conclusions 
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given the concordance of results of the empirical and simulation studies of a single test. 

However, different conclusions are plausible. In addition to issues addressed in Chapter 8, 

other issues raised in the comparative meta-analyses in Chapter 7, particularly regarding the 

intricacies of covariance structures in direct (paired data analyses) and indirect comparisons 

should be considered. Section 8.6 briefly outlined the issue of conditional dependence 

between tests that should also be considered in extending the simulation to test comparisons. 

The simulation will also have implications for investigations of heterogeneity because the 

same meta-regression approach is used for such evaluations. A question often posed by meta-

analysts and review authors is “What is the minimum number of studies needed for meta-

regression?” A simulation study can provide answers. 

 

9.5.4 Comparing test accuracy across multiple thresholds per study 

The thesis only considered methods applicable in the common situation where a single 2x2 

table is available, or can be derived for each study included in the meta-analysis. However, as 

mentioned earlier in section 1.3.1, thresholds are needed to dichotomise the data for certain 

test measurements. Thus, information from multiple thresholds is sometimes available for 

some included studies. Methods have been proposed which allow inclusion of data from 

multiple thresholds per study for a single test46-48 but these have not been applied to test 

comparisons. Since ranking of test performance is not consistent across thresholds if accuracy 

depends on threshold and selection of a single threshold to include in a meta-analysis is 

usually arbitrary or data driven, methods that allow simultaneous comparisons of tests across 

multiple thresholds should make optimal use of the available data and are worth exploring. 
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9.5.5 Evaluation of Bayesian comparative meta-analysis methods 

Bayesian comparative meta-analysis methods were not evaluated in the thesis. Since 

completing the methodological review in Chapter 6, a new Bayesian method has been 

published. 284 The model allows for the comparison of two tests using direct and indirect 

comparisons via a third test, an approach similar to mixed treatment comparison. The model 

can be extended to more than two tests and also accounts for imperfect reference standards. 

This approach and others in Chapter 6 that allow for complex modelling of different data 

structures require evaluation to assess their validity as well as their performance against 

frequentist methods.  

 

9.6 Conclusions  

The questions posed in the thesis indicated gaps in the evidence base about the characteristics 

of systematic reviews and meta-analyses that compare test accuracy, and the impact of study 

design and meta-analytic approaches on the findings of these reviews. There was wide 

variation in methods and reporting of comparative reviews, casting doubt on the utility of 

many reviews. Nonetheless, a few good examples were available. The widely held view that 

comparative accuracy studies are seldom available has been substantiated in the thesis. While 

the lack of comparative studies is a potential threat to the validity of comparative reviews as 

evidenced by differences between results from direct and indirect comparisons, methods used 

for meta-analysis also have implications for review findings. Different methods can lead to 

differences in the magnitude, precision, direction and/or importance of meta-analytic findings, 

and so choosing suitable methods and applying them appropriately is essential to avoid 

misleading conclusions. In addition, when appropriate methods are used, valid answers can 

also be obtained from the synthesis of few studies or sparse data which is not uncommon in 
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DTA meta-analysis of a single test or test comparisons. From the thesis, one can deduce that 

study design and analytic approaches are likely to have a synergistic effect on the reliability of 

comparative reviews.    

 

The findings of the thesis have important implications for the design of future primary studies 

of test accuracy, for systematic reviews and meta-analyses of test comparisons, and also for 

clinical practice. In the absence of evidence of clinical effectiveness, comparative accuracy 

provides the best available evidence for guiding test selection and decision making. Ideally 

direct comparisons should be prioritised, though the use of indirect information is the only 

option in situations where direct evidence is very limited or unavailable. The issue of test 

selection is common and critical to health technology assessment, and so it is vital that well-

designed comparative accuracy studies are available for systematic reviews and meta-analyses 

that provide evidence of comparative test accuracy. Furthermore, to prevent inappropriate 

recommendations, it is imperative that the methods underpinning the reviews are robust and 

clearly reported to avoid ambiguity and to increase confidence in the utility of comparative 

reviews. Challenges remain and methods are still evolving, but the thesis is undoubtedly a 

significant contribution to the expansion of the evidence base and a major step towards 

evidence based guidance for the conduct of comparative accuracy reviews as well as raising 

awareness of the need for better primary research.
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Appendix A Software programs  

A.1| SAS program for fitting HSROC model with common or separate 

variance parameters across tests for Type 1 and Type 4 RDTs 

A.2| Stata program for fitting the bivariate model with different covariance 

structures to ERCP versus IOC data 

Appendix B Forms, statistical methods and examples for Chapter 4 

 B.1| Screening form for reviews 

 B.2| Data extraction form for reviews 

B.3| Statistical methods used for test comparisons  

B.4| Summary of methodological and reporting characteristics of five 

exemplar comparative reviews 

Appendix C Sensitivity analysis for one-sided contour-enhanced funnel plot of the ratio 
of relative diagnostic odds ratio 

Appendix D Datasets and additional figures for Chapter 7  

D.1| Characteristics of meta-analyses for empirical evaluation of methods 

D.2| Datasets with convergence and estimation issues in HSROC models 

applied to individual tests 

D.3| Estimates for bivariate models with and without assumption of equal 

variances across tests 

D.4| Comparison of bivariate models with different covariance structures 

fitted to direct test comparisons 

D.5| Estimates of relative sensitivity from HSROC models with common 

and different shape between tests for SROC curves 
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D.6| Comparison of relative sensitivity and relative specificity from 

bivariate and univariate models with equal variances 

D.7| Estimates of relative accuracy from bivariate and univariate models 

with unequal variances 

D.8| Estimates of variance and correlation parameters from bivariate and 

univariate models with unequal variances 

D.9 | Estimates from unweighted and weighted Moses SROC meta-

regression models 

D.10| Estimates from unweighted Moses SROC and HSROC meta-

regression models 

Appendix E Additional simulation results 

E.1| Performance of all meta-analytic models in estimating sensitivity for 

scenarios with a DOR of 231 

E.2| Performance of all meta-analytic models in estimating specificity for 

scenarios with a DOR of 231  
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A.2| Stata program for fitting the bivariate model with different covariance structures to 
ERCP versus IOC data 
 
/************************************************************************* 
*            * 
* TITLE: Endoscopic retrograde cholangiopancreatography versus intraoperative  * 
*  cholangiography for diagnosis of common bile duct stones   * 
* AUTHOR:  Yemisi Takwoingi       * 
* DATE CREATED: 15/07/2014        * 
* DATE MODIFIED: 15/07/2014        * 
* PURPOSE:  Bivariate model for meta-analysis of ERCP and IOC for diagnosis of CBD * 
*  stones          * 
*            * 
*************************************************************************/ 
 
*** Read in the data from the .csv file *** 
insheet using "ERCP vs IOC for CBD stones.csv", comma clear 
 
*** Produce a summary of the dataset to check data import was ok *** 
describe  
 
*** Convert the string variable 'test' to a numeric variable named 'testtype' *** 
encode test, gen(testtype)  
 
*** List the numeric value assigned to each test *** 
label list testtype 
 
/*Set up the data 
Generate 5 new variables of type long. This is needed before reshaping the data. 
• n1 is number diseased 
• n0 is number without disease 
• true1 is number of true positives 
• true0 is the number of true negatives 
• study is the unique identifier for each study. _n will generate a sequence of numbers.*/ 
gen long n1=tp+fn 
gen long n0=fp+tn 
gen long true1=tp 
gen long true0=tn 
gen long recordid= _n 
 
*** Convert data from wide to long form *** 
reshape long n true, i(recordid) j(sens) 
 
/*** Generate a new binary variable spec of type byte that takes the value 0  
when sens=1 and vice versa ***/ 
gen byte spec=1-sens 
 
/*** Sort data to ensure studies are clustered together first by study and then  
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by values of the covariate testtype ***/ 
sort studyid testtype 
 
*** Create dummy variables for the covariate testtype *** 
gen seERCP=0 
gen spERCP=0 
gen seIOC=0 
gen spIOC=0 
replace seERCP=1 if testtype==1 & sens==1 
replace spERCP=1 if testtype==1 & spec==1 
replace seIOC=1 if testtype==2 & sens==1 
replace spIOC=1 if testtype==2 & spec==1 
             
********************** Meta-analysis of ERCP ******************************** 
 
*** Model A: unstructured variance-covariance matrix *** 
xtmelogit true sens spec if testtype==1, nocons || studyid: sens spec, nocons cov(un) /// 
binomial(n)  refineopts(iterate(3)) intpoints(5) variance  
 
*** Run again without varaince option to get the correlation *** 
xtmelogit true sens spec if testtype==1, nocons || studyid: sens spec, nocons cov(un) /// 
binomial(n)  refineopts(iterate(3)) intpoints(5)   
 
*** Model B: exchangeable variance-covariance matrix *** 
xtmelogit true sens spec if testtype==1, nocons || studyid: sens spec, nocons cov(exc) /// 
binomial(n)  refineopts(iterate(3)) intpoints(5) variance  
 
xtmelogit true sens spec if testtype==1, nocons || studyid: sens spec, nocons cov(exc) /// 
binomial(n)  refineopts(iterate(3)) intpoints(5)  
 
*** Model C: independent variance-covariance matrix *** 
xtmelogit true sens spec if testtype==1, nocons || studyid: sens spec, nocons cov(ind) /// 
binomial(n)  refineopts(iterate(3)) intpoints(5) variance  
 
xtmelogit true sens spec if testtype==1, nocons || studyid: sens spec, nocons cov(ind) /// 
binomial(n)  refineopts(iterate(3)) intpoints(5)   
 
*** Model D: fixed specificity but random effects included for sensitivity *** 
xtmelogit true sens spec if testtype==1, nocons || studyid: sens, nocons cov(ind) /// 
binomial(n)  refineopts(iterate(3)) intpoints(5) variance  
 
xtmelogit true sens spec if testtype==1, nocons || studyid: sens, nocons cov(ind) /// 
binomial(n)  refineopts(iterate(3)) intpoints(5)  
 
************************ Meta-analysis of IOC ******************************* 
 
*** Model A: unstructured variance-covariance matrix *** 
xtmelogit true sens spec if testtype==2, nocons || studyid: sens spec, nocons cov(un) /// 
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binomial(n)  refineopts(iterate(3)) intpoints(5) variance  
 
xtmelogit true sens spec if testtype==2, nocons || studyid: sens spec, nocons cov(un) /// 
binomial(n)  refineopts(iterate(3)) intpoints(5)  
 
*** Model B: exchangeable variance-covariance matrix *** 
xtmelogit true sens spec if testtype==2, nocons || studyid: sens spec, nocons cov(exc) /// 
binomial(n)  refineopts(iterate(3)) intpoints(5) variance  
 
xtmelogit true sens spec if testtype==2, nocons || studyid: sens spec, nocons cov(exc) /// 
binomial(n)  refineopts(iterate(3)) intpoints(5)   
 
*** Model C: independent variance-covariance matrix *** 
xtmelogit true sens spec if testtype==2, nocons || studyid: sens spec, nocons cov(ind) /// 
binomial(n)  refineopts(iterate(3)) intpoints(5) variance  
 
xtmelogit true sens spec if testtype==2, nocons || studyid: sens spec, nocons cov(ind) /// 
binomial(n)  refineopts(iterate(3)) intpoints(5)  
 
*** Model D: fixed sensitivity but random effects included for specificity *** 
xtmelogit true sens spec if testtype==2, nocons || studyid: spec, nocons cov(ind) /// 
binomial(n)  refineopts(iterate(3)) intpoints(5) variance  
 
xtmelogit true sens spec if testtype==2, nocons || studyid: spec, nocons cov(ind) /// 
binomial(n)  refineopts(iterate(3)) intpoints(5)  
 
 
*************************TEST COMPARISON******************************** 
 
*** Fit the model without the covariate *** 
xtmelogit true sens spec, nocons || studyid: sens spec, nocons cov(exc) /// 
binomial(n)  refineopts(iterate(3)) intpoints(5) variance nolr 
 
/*** Store the estimates of the log likelihood from the model above for doing the likeilhood 
ratio test ***/ 
estimates store A 
 
/*** Add covariate terms to the model for both logit sensitivity and logit specificity.  
This model assumes equal variances for both tests. ***/ 
xtmelogit true seERCP seIOC spERCP spIOC, nocons || studyid: sens spec, nocons /// 
cov(exc) binomial(n) refineopts(iterate(3)) intpoints(5) variance nolr 
 
estimates store B 
 
/* Perform a likelihood ratio test comparing the model (A) without covariate with the model 
(B) that includes the covariate testtype and assumes equal variances for each test. Use the 
stored values in A and B. */ 
lrtest A B 
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*** Fit model with covariate testtype and separate variances for the tests *** 
xtmelogit true seERCP seIOC spERCP spIOC, nocons || studyid: seERCP spERCP, /// 
nocons cov(exc) || study: seIOC spIOC, nocons cov(exc) binomial(n)  refineopts(iterate(3)) 
intpoints(5) variance nolr 
 
estimates store C 
 
lrtest A C 
 
/* To find the covariance between the expected (mean) logit sensitivity and expected logit 
specificity, display contents of the variance-covariance matrix: */ 
matrix list e(V)   
 
*** Estimate relative sensitivity and relative specificity *** 
nlcom log_relative_sensitivity: log(invlogit(_b[seERCP]))-log(invlogit(_b[seIOC])) 
nlcom log_relative_specificity: log(invlogit(_b[spERCP]))-log(invlogit(_b[spIOC])) 
 
*** Delete the program from Stata's memory if it exists already *** 
capture program drop renamematrix 
 
*** Rename the elements of the coefficient and variance matrices *** 
program define renamematrix, eclass 
 matrix mb = e(b) 
 matrix mv = e(V) 

matrix colnames mb = logitseERCP:_cons logitseIOC:_cons logitspERCP:_cons 
logitspIOC:_cons  
matrix colnames mv = logitseERCP:_cons logitseIOC:_cons logitspERCP:_cons 
logitspIOC:_cons  
matrix rownames mv = logitseERCP:_cons logitseIOC:_cons logitspERCP:_cons 
logitspIOC:_cons  

 ereturn post mb mv 
end 
 
*** Run the program *** 
renamematrix 
  
/*** Display summary estimates by taking the inverse logits of the  mean logit sensitivity and  
mean logit specificity for each test ***/ 
_diparm logitseERCP, label(Sensitivity ERCP) invlogit  
_diparm logitseIOC, label(Sensitivity IOC) invlogit  
_diparm logitspERCP, label(Specificity ERCP) invlogit  
_diparm logitspIOC, label(Specificity IOC) invlogit  
 
/*** Display other summary estimates derived using functions of the mean logit sensitivities 
and mean logit specificities ***/  
_diparm logitseERCP logitspERCP, label(LR+ ERCP) ci(log) function(invlogit(@1)/(1-
invlogit(@2))) derivative(exp(@2-1)*invlogit(@1)^2/invlogit(@2) exp(@2)*invlogit(@1)) 
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_diparm logitseIOC logitspIOC, label(LR+ IOC) ci(log) function(invlogit(@1)/(1-
invlogit(@2))) derivative(exp(@2-1)*invlogit(@1)^2/invlogit(@2) exp(@2)*invlogit(@1)) 
_diparm logitseERCP logitspERCP, label(LR- ERCP) ci(log) function((1-
invlogit(@1))/invlogit(@2)) derivative(exp(-@1)*invlogit(@1)^2/invlogit(@2)  exp(-@1-
@2)*invlogit(@1))   
_diparm logitseIOC logitspIOC, label(LR- IOC) ci(log) function((1-
invlogit(@1))/invlogit(@2)) derivative(exp(-@1)*invlogit(@1)^2/invlogit(@2)  exp(-@1-
@2)*invlogit(@1))  
 

*********************END******************
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Appendix B: Forms, statistical methods and examples for Chapter 4 

B.1| Screening form for reviews 
REVIEW SCREENING FORM 

 

                                                                                                                     
Date: 

 
Review ID: 
 

 
Review identifier: 
(Surname of first author + year of publication) 
 
 

1. Is it a test accuracy review? 
 

 
Yes            Unclear           No 
                                                                                                  
          
                                 Exclude     

 
2. Did the review evaluate more than one staging, 

diagnostic or screening tests (comparative review 
or multiple index tests for the same condition)? 

 

 
Yes            Unclear           No 
                                                                                                  
          
                                 Exclude     

 
3. Was a meta-analysis performed? 

 
 

 
Yes            Unclear           No 
                                                                                                  
          
                                 Exclude  

 
4. Full text of article is available? 

 
 

 
Yes            Unclear           No 
                                                                                                  
          
                                 Exclude  

 
5. Data available to assess study design 

(comparative and non-comparative)? 

 
Yes            Unclear           No 
                                                                                                  
          
                                 Exclude        

Final Decision:      Include    Exclude  
 
Reasons for exclusion to be recorded in spreadsheet: 

1. Not a test accuracy review 
2. Review of a single test   
3. Narrative synthesis 
4. Full text unavailable 
5. Unable to assess study design 
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B.2| Data extraction form for reviews 

REVIEW DATA EXTRACTION FORM 

SECTION A: GENERAL CHARACTERISTICS 

Review identifier:       

(Surname of first author & year of publication) 

Review title:  

                  

                  

Journal:   

                  

Publication type: Cochrane review   General medical   Specialist   TAR  

English language publication: Yes   No   Unclear   

Target condition(s):  

                  

ICD-10 code:  

                  

Reference standard(s):  

                  

Number of tests evaluated in the review:                    

Type of included studies:  Comparative only           Any study type    

Number of comparative studies:       Number of non-comparative studies:       

Clinical purpose of the tests: Staging   Diagnosis   Screening   Unclear   Other  

If unclear or other, please give details:  

                  

                  

Type of tests: Clinical and physical examination   Imaging   Laboratory   Unclear   Other  

If unclear or other, please give details: 
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SECTION B: STATISTICAL METHODS 

Summary measures 

Number of measures:                                                            

Summary measures used:   

Area under the curve: Yes   No   Unclear  

 Diagnostic odds ratio:  Yes   No   Unclear  

 Likelihood ratios:   Yes   No   Unclear  

 Predictive values:  Yes   No   Unclear  

 Q* statistic:   Yes   No   Unclear  

 Sensitivity and specificity:  Yes   No   Unclear  

 Other:    Yes   No   Unclear  

If unclear or other, please give details:         

      

Relative measures used to summarise differences in accuracy? Yes   No   Unclear  

Meta-analysis 

Test comparison feasible?   Yes  No    

Direct comparison done:  Yes    No   Not applicable    

(Not applicable if no comparative studies included) 

Hierarchical model used for meta-analysis?  Yes   No   Method not specified:  

Meta-analytic method used:                                                              

                                                                                                            

Test comparison method:  Meta-regression  Univariate pooling of sensitivity and specificity or DORs  

Z-test  Paired t-test   Unpaired t-test  Chi-squared test  

Comparison of Q*    Overlapping CIs   Narrative   None  

Other   Unclear    

If unclear or other, please give details:   

                                                                                                            

                                                                                                            

Multiple cut-offs used?  Yes   No    

If yes, were they accounted for in the comparative analyses? Yes   No   Unclear  

(Meta-analysis at each cut-off or fitted appropriate model) 

Investigation of heterogeneity 

Heterogeneity investigated?  Yes   No   Unclear  

If investigated, method used:  Meta-regression   Subgroup analyses   Unclear  

If unclear, please give details:  
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SECTION C: REPORTING 

Reporting guideline used?   Yes   No   Unclear  

If yes, which guideline(s)?  

                  

Review objectives and role of test in diagnostic pathway 

Clear comparative objective stated?          Yes           No    

Role of index test(s): Replacement   Triage   Add on  Unclear  

If unclear or other, please give details:  

                  

                  

Study identification and description 

Flow diagram presented?     Yes   No     

If yes, did it include number of studies per test?  Yes   No     

Were comparative studies identified?   Yes   No   Not applicable    

(Not applicable if no comparative studies included) 

Study characteristics presented?    Yes   No    

Strategy for comparing test accuracy (direct and/or indirect comparisons) 

Was the strategy reported?    Yes   No   Not applicable    

(Not applicable if only comparative studies included) 

Results of data analyses 

2x2 data available?     Yes   No     

Individual study estimates of test accuracy?   Yes   No     

Forest plot(s) presented?     Yes   No     

SROC plot(s):  Compared points or curves for at least 2 tests   Separate plot per test   None       

Discussion 

Limitations of indirect comparison acknowledged?  Yes   No   Not applicable     

(Not applicable if only comparative studies included) 

 

SECTION D: ADDITIONAL COMMENTS 
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D.4| Comparison of bivariate models with different covariance structures fitted to direct 
test comparisons 

ID Number 
of studies 

Model Relative sensitivity 
(95% CI) 

Relative specificity 
(95% CI) 

6 17 Equal  1.41 (1.26–1.57) 1.18 (1.11–1.26) 
Unequal & independent 1.38 (1.22–1.55) 1.19 (1.09–1.29) 
Unequal & correlated 1.40 (1.25–1.57) 1.19 (1.11–1.27) 

18 

 

24 

 

Equal  1.41 (1.24–1.60) 1.17 (1.10–1.23) 
Unequal & independent – – 
Unequal & correlated 1.42 (1.20–1.69) 1.15 (1.05–1.26) 

27 

 

13 

 

Equal  1.16 (1.08–1.26) 1.08 (1.03–1.14) 
Unequal & independent 1.16 (1.03–1.30) 1.08 (0.96–1.21) 
Unequal & correlated 1.15 (1.05–1.25) 1.08 (1.05–1.11) 

31 

 

11 

 

Equal  1.01 (1.00–1.02) 0.99 (0.98–0.99) 
Unequal & independent 1.01 (0.98–1.05) 0.99 (0.98–1.00 ) 
Unequal & correlated 1.01 (0.99–1.04) 0.99 (0.98–1.00) 

32 

 

18 

 

Equal  0.96 (0.92–0.99) 0.98 (0.96–1.00) 
Unequal & independent 0.97 (0.91–1.03) 0.98 (0.95–1.01) 
Unequal & correlated 0.96 (0.92–1.01) 0.98 (0.96–1.00) 

37 

 

28 

 

Equal  0.99 (0.95–1.02) 1.14 (1.10–1.19) 
Unequal & independent 0.96 (0.84–1.10) 1.14 (1.07–1.22) 
Unequal & correlated 0.96 (0.89–1.04) 1.14 (1.08–1.21) 

39 

 

27 

 

Equal  1.20 (1.13–1.28) 1.00 (0.98–1.03) 
Unequal & independent 1.19 (1.06–1.34) 0.99 (0.93–1.05) 
Unequal & correlated 1.19 (1.08–1.31) 0.99 (0.95–1.02) 

44 

 

14 

 

Equal  2.35 (1.79–3.07) 0.76 (0.69–0.84) 
Unequal & independent 2.49 (1.71–3.64) 0.69 (0.54–0.87) 
Unequal & correlated 2.42 (1.79–3.27) 0.69 (0.58–0.82) 

56 

 

12 

 

Equal  1.35 (1.22–1.49) 1.02 (0.99–1.05) 
Unequal & independent 1.35 (1.10–1.66) 0.99 (0.91–1.07) 
Unequal & correlated 1.34 (1.13–1.60) 0.99 (0.93–1.05) 

The table shows estimates from three bivariate models that assumed variances of the random 
effects for logit sensitivities and logit specificities were the same for both tests, allowed for 
unequal variances and independence between tests, and those that allowed for unequal 
variances and correlations between tests. 
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D.5| Estimates of relative sensitivity from HSROC models with common and different 
shape between tests for SROC curves 

ID Number of studies  Relative sensitivity (95% CI) at 
median specificity 

P value* 

Index Comparator Total  Common shape Different shape 
1 25 25 47  1.06 (1.01–1.13) 1.07 (1.01–1.13) 0.12 
2 4 4 4  1.25 (0.99–1.58) 1.24 (0.98–1.58) 0.76 
3 8 8 8  1.12 (1.02–1.23) 1.12 (1.02–1.22) 0.50 
5 6 13 19  1.08 (1.01–1.15) 1.05 (0.98–1.13) 0.04 
6 17 17 17  1.40 (1.21–1.62) 1.39 (1.14–1.68) 0.87 
8 7 3 10  1.23 (0.35–4.35) 1.10 (0.40–3.01) 0.20 
9 3 5 7  1.32 (0.77–2.28) 1.22 (0.89–1.68) 0.15 
10 6 8 14  1.08 (1.00–1.18) 1.08 (1.00–1.18) 0.93 
11 6 11 11  0.24 (0.14–0.39) 0.27 (0.21–0.35) 0.01 
12 8 21 28  1.07 (0.90–1.28) 1.10 (0.86–1.40) 0.13 
13 4 14 18  1.14 (0.98–1.32) 1.14 (0.98–1.33) 0.91 
14 8 23 26  1.10 (1.04–1.17) 1.08 (1.01–1.16) 0.27 
15 7 7 7  1.01 (0.91–1.13) 0.97 (0.80–1.16) <0.001 
16 27 23 44  1.01 (0.95–1.08) 1.01 (0.95–1.08) 0.59 
17 16 9 16  1.17 (1.06–1.30) 1.18 (1.09–1.27) 0.16 
18 33 24 33  1.51 (1.28–1.78) 1.45 (1.24–1.69) 0.22 
19 4 4 4  2.35 (1.30–4.24) 2.36 (1.38–4.05) 0.44 
20 12 15 19  1.07 (0.92–1.24) 1.09 (0.94–1.26) 0.01 
21 12 17 29  1.02 (0.98–1.06) 1.02 (0.98–1.06) 0.76 
22 9 5 12  2.57 (1.48–4.47) 2.41 (1.39–4.15) 0.71 
23† 7 3 9  0.97 (0.86–1.09) 2.40 (0.09–67.0) 0.02 
24 10 17 24  1.45 (0.46–4.53) 1.52 (0.47–4.94) 0.72 
25 6 5 6  1.51 (1.15–1.99) 1.40 (0.41–4.76) 0.09 
26 18 6 23  1.06 (0.93–1.20) 1.09 (0.90–1.32) 0.25 
27 13 13 13  1.14 (1.04–1.25) 1.12 (1.00–1.26) <0.001 
28 3 10 13  0.98 (0.90–1.07) 0.98 (0.88–1.10) 0.44 
29 5 5 5  1.22 (1.16–1.29) –   
30 7 7 7  1.10 (0.98–1.23) 1.10 (0.98–1.23) 0.97 
32 11 11 11  1.03 (0.91–1.17) 1.03 (0.91–1.15) 0.80 
33 14 15 23  1.14 (1.05–1.23) 1.15 (1.07–1.25) 0.002 
34 7 21 23  1.40 (1.09–1.80) 1.35 (1.08–1.68) 0.02 
35 10 7 13  1.01 (0.91–1.12) 1.04 (0.94–1.15) 0.001 
36 7 15 19  0.72 (0.46–1.13) 0.73 (0.47–1.14) 0.91 
37 37 50 59  1.01 (0.96–1.06) 0.97 (0.89–1.06) <0.001 
38 12 9 19  0.98 (0.77–1.25) 0.97 (0.76–1.25) 0.76 
39 27 27 27  1.22 (1.12–1.34) 1.22 (1.12–1.34) 1.00 
40 89 19 103  1.09 (1.01–1.16) 1.09 (1.03–1.16) 0.20 
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ID Number of studies  Relative sensitivity (95% CI) at 
median specificity 

P value* 

Index Comparator Total  Common shape Different shape 
41 24 28 51  1.04 (0.94–1.14) 1.06 (0.96–1.18) <0.001 
42 4 4 4  0.83 (0.55–1.24) 1.08 (0.85–1.38) <0.001 
43† 14 8 18  8.67 (0.71–106) 35.11 (0.20–6058) 0.19 
44 14 14 14  3.56 (2.36–5.36) 3.01 (2.21–4.10) <0.001 
45 12 15 25  1.03 (0.97–1.10) 1.03 (0.98–1.10) 0.65 
46 12 14 22  1.16 (1.03–1.31) 1.16 (1.03–1.31) 0.85 
47† 6 6 6  1.09 (0.93–1.28) 0.52 (0–29800000) 0.001 
48 5 5 5  1.14 (0.76–1.72) 1.13 (0.92–1.40) 0.28 
49 9 9 9  1.23 (1.07–1.43) 1.20 (1.04–1.40) <0.001 
50 10 21 31  1.13 (1.02–1.18) 1.11 (1.03–1.19) 0.02 
51† 6 6 6  7.96 (1.19–53.3) 5.33 (2.38–11.9) 0.47 
53 6 6 6  1.01 (0.77–1.31) 1.01 (0.79–1.30) 0.05 
54† 4 4 4  1.13 (0.08–16.1) 1.02 (0.04–26.5) 0.16 
55 7 8 12  0.89 (0.63–1.26) 0.88 (0.60–1.31) 0.91 
56 12 12 12  1.32 (1.14–1.53) 1.24 (1.05–1.46) 0.02 
57 7 7 7  1.11 (0.90–1.36) 1.11 (0.90–1.37) 0.74 

†Five test comparisons (IDs 23, 43, 47, 51 and 54) had estimates with extremely wide 
confidence intervals and were considered to be potentially unreliable. Therefore, they were 
excluded from comparisons of the common and different shape HSROC models in section 
7.6. 
 

D.5 continued… 
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D.7| Estimates of relative accuracy from bivariate and univariate models with unequal 
variances 

ID Bivariate model  Univariate model P value* 
Relative 

sensitivity  
(95% CI) 

Relative 
specificity  
(95% CI) 

 Relative 
sensitivity  
(95% CI) 

Relative 
specificity  
(95% CI) 

1 1.11 (1.04–1.18) 1.00 (0.97–1.02)  1.11 (1.04–1.18) 1.00 (0.97–1.02) 0.05 
2 – –  1.15 (1.03–1.29) 1.03 (0.82–1.29) – 
3 1.11 (1.00–1.24) 1.12 (1.01–1.25)  1.11 (1.00–1.23) 1.12 (1.01–1.25) 0.34 
4 0.94 (0.69–1.27) 1.00 (0.97–1.04)  0.94 (0.68–1.29) 1.01 (0.98–1.04) 0.68 
5 1.09 (1.02–1.17) 1.13 (0.86–1.47)  1.08 (1.01–1.16) 1.13 (0.86–1.47) 0.26 
6 1.38 (1.22–1.55) 1.19 (1.09–1.29)  1.38 (1.23–1.54) 1.19 (1.09–1.29) 0.06 
7 – –  – – – 
8 – –  1.70 (1.20–2.4) 0.95 (0.90–0.99) – 
9 1.19 (1.01–1.40) 0.71 (0.57–0.89)  1.19 (1.02–1.39) 0.71 (0.57–0.89) 0.54 

10 1.09 (1.02–1.17) 1.02 (0.99–1.05)  1.10 (1.02–1.17) 1.02 (0.99–1.05) 0.62 
11 – –  0.32 (0.25–0.42) 3.29 (2.23–4.87) – 
12 1.11 (0.89–1.37) 1.06 (0.91–1.24)  1.13 (0.96–1.34) 1.01 (0.85–1.20) 0.07 
13 1.09 (1.00–1.18) 1.08 (0.86–1.37)  1.08 (0.99–1.18) 1.09 (0.86–1.38) 0.71 
14 1.08 (1.02–1.13) 1.00 (0.98–1.03)  1.08 (1.02–1.13) 1.00 (0.98–1.03) 0.85 
15 1.01 (0.89–1.13) 0.92 (0.81–1.03)  0.99 (0.88–1.12) 0.92 (0.82–1.03) 0.01 
16 1.02 (0.97–1.07) 0.84 (0.74–0.95)  1.02 (0.97–1.07) 0.84 (0.75–0.95) 0.22 
17 1.19 (1.11–1.27) 1.02 (0.98–1.06)  1.18 (1.11–1.27) 1.02 (0.98–1.06) 0.08 
18 1.43 (1.19–1.74) 1.13 (1.03–1.24)  1.42 (1.19–1.71) 1.12 (1.03–1.23) <0.0001 
19 – –  2.41 (1.94–3.00) 0.95 (0.89–1.02) – 
20 1.24 (0.91–1.69) 0.96 (0.87–1.05)  1.24 (0.91–1.69) 0.96 (0.87–1.05) 0.01 
21 1.00 (0.97–1.03) 1.16 (1.01–1.33)  1.00 (0.97–1.03) 1.16 (1.01–1.33) 0.86 
22 2.22 (1.92–2.58) 0.99 (0.95–1.02)  2.22 (1.91–2.58) 0.99 (0.95–1.02) 0.99 
23 – –  0.88 (0.72–1.07) 1.25 (0.87–1.79) – 
24 0.87 (0.35–2.12) 0.98 (0.93–1.03)  0.95 (0.40–2.21) 0.98 (0.93–1.03) 0.06 
25 1.56 (0.87–2.78) 1.05 (0.94–1.17)  1.50 (0.89–2.54) 1.06 (0.98–1.16) 0.33 
26 1.08 (0.98–1.20) 1.06 (1.01–1.11)  1.09 (0.99–1.20) 1.06 (1.01–1.10) 0.06 
27 1.16 (1.03–1.30) 1.08 (0.96–1.21)  1.16 (1.03–1.31) 1.08 (0.97–1.21) 0.26 
28 0.98 (0.93–1.03) 1.00 (0.99–1.01)  0.97 (0.92–1.03) 1.00 (0.99–1.01) 0.67 
29 1.21 (1.12–1.31) 0.77 (0.65–0.92)  1.20 (1.12–1.28) 0.77 (0.64–0.91) 0.02 
30 1.10 (0.95–1.26) 1.00 (0.93–1.07)  1.10 (0.95–1.28) 1.01 (0.94–1.09) 0.02 
31 1.01 (0.98–1.05) 0.99 (0.98–1.00)  1.01 (0.98–1.05) 0.99 (0.98–1.00) 0.93 
32 0.97 (0.91–1.03) 0.98 (0.95–1.01)  0.97 (0.91–1.03) 0.98 (0.95–1.00) 0.55 
33 1.14 (1.02–1.26) 0.79 (0.57–1.10)  1.11 (0.99–1.24) 0.78 (0.56–1.09) 0.01 
34 1.27 (1.09–1.48) 0.94 (0.85–1.03)  – – – 
35 1.06 (0.93–1.21) 1.04 (0.90–1.20)  1.05 (0.91–1.20) 1.04 (0.90–1.2) 0.57 
36 0.98 (0.73–1.30) 1.21 (0.94–1.55)  0.99 (0.75–1.31) 1.23 (0.96–1.58) 0.23 
37 0.97 (0.87–1.09) 1.09 (1.05–1.14)  0.98 (0.87–1.09) 1.09 (1.05–1.14) 0.06 
38 1.04 (0.71–1.53) 0.92 (0.78–1.08)  1.00 (0.79–1.26) 0.92 (0.78–1.07) 0.35 
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ID Bivariate model  Univariate model P value* 
Relative 

sensitivity  
(95% CI) 

Relative 
specificity  
(95% CI) 

 Relative 
sensitivity  
(95% CI) 

Relative 
specificity  
(95% CI) 

39 1.19 (1.06–1.34) 0.99 (0.93–1.05)  1.19 (1.06–1.34) 0.99 (0.93–1.06) 0.19 
40 1.11 (1.06–1.15) 1.25 (1.08–1.45)  1.11 (1.06–1.15) 1.25 (1.08–1.44) 0.09 
41 1.15 (1.06–1.25) 1.07 (1.03–1.11)  1.15 (1.06–1.25) 1.07 (1.03–1.11) 0.88 
42 – –  0.79 (0.47–1.33) 1.13 (0.79–1.61) – 
43 1.82 (0.71–4.68) 0.83 (0.51–1.35)  1.69 (0.75–3.79) 0.79 (0.50–1.24) 0.21 
44 2.49 (1.71–3.64) 0.69 (0.54–0.87)  2.49 (1.70–3.65) 0.69 (0.54–0.87) 0.001 
45 0.99 (0.95–1.04) 1.07 (0.98–1.18)  1.00 (0.96–1.04) 1.07 (0.98–1.17) 0.52 
46 1.07 (1.00–1.15) 1.06 (0.99–1.14)  1.07 (1.00–1.15) 1.06 (0.99–1.14) 0.98 
47 1.18 (1.06–1.31) 1.08 (0.97–1.19)  1.18 (1.05–1.31) 1.07 (0.97–1.18) 0.43 
48 1.09 (0.96–1.25) 1.01 (0.92–1.11)  1.09 (0.99–1.20) 1.02 (0.93–1.13) 0.17 
49 1.19 (0.99–1.43) 1.14 (0.82–1.57)  1.23 (1.05–1.45) 1.13 (0.83–1.56) 0.11 
50 1.12 (1.06–1.17) 1.01 (0.97–1.04)  1.12 (1.07–1.17) 1.01 (0.97–1.04) 0.47 
51 5.31 (2.92–9.66) 0.93 (0.75–1.16)  5.04 (3.05–8.33) 0.94 (0.75–1.16) 0.35 
52 0.82 (0.63–1.07) 0.99 (0.97–1.01)  – – – 
53 1.02 (0.84–1.23) 1.05 (0.97–1.14)  1.02 (0.85–1.21) 1.06 (0.98–1.14) 0.61 
54 1.40 (1.13–1.73) 1.03 (0.98–1.09)  1.40 (1.13–1.73) 1.03 (0.98–1.09) 0.99 
55 1.02 (0.88–1.19) 1.01 (0.98–1.04)  1.03 (0.90–1.18) 1.01 (0.98–1.04) 0.18 
56 1.35 (1.10–1.66) 0.99 (0.91–1.07)  1.35 (1.10–1.66) 1.00 (0.91–1.09) 0.09 
57 1.14 (0.81–1.60) 1.08 (0.92–1.28)  1.12 (0.80–1.56) 1.08 (0.92–1.28) 0.69 

*P value from likelihood ratio tests comparing both models.  
– indicates missing estimates due to lack of convergence of the model.  
Univariate models were estimated by assuming an independent variance-covariance structure, 
i.e. correlation of the logits = 0. 
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D.8| Estimates of variance and correlation parameters from bivariate and univariate 
models with unequal variances 
ID Bivariate model  Univariate model 

σA12  σB12  ρA1B1 σA22  σB22  ρA2B2  σA12  σB12  σA22  σB22  
1 1.193 0.528 -0.020 0.962 0.909 0.533  1.190 0.527 0.947 0.877 
2 – – – – – –  0.176 0.158 0.050 0.159 
3 0.121 0.601 0.266 0.261 0.476 -0.651  0.109 0.604 0.258 0.474 
4 0.000 0.000 -0.777 1.610 0.466 -1.000  0.000 0.000 1.643 0.000 
5 0.433 2.946 -0.727 0.198 0.475 -0.071  0.333 2.909 0.197 0.477 
6 0.268 0.760 0.045 0.099 0.503 -1.000  0.263 0.757 0.048 0.503 
7 – – – – – –  – – – – 
8 – – – – – –  3.212 0.940 0.000 0.000 
9 0.529 0.092 0.406 0.103 0.361 1.000  0.479 0.107 0.077 0.332 
10 0.131 0.291 -0.277 0.150 0.361 -0.455  0.150 0.305 0.137 0.357 
11 – – – – – –  0.147 0.000 0.600 0.611 
12 3.369 0.631 1.000 0.433 1.626 0.158  2.113 0.612 0.448 1.625 
13 0.324 1.198 -1.000 0.740 2.374 0.128  0.000 1.329 0.770 2.370 
14 0.264 0.093 0.031 0.471 0.238 0.204  0.264 0.093 0.475 0.241 
15 0.382 0.123 -0.810 0.406 0.568 -1.000  0.297 0.121 0.381 0.533 
16 0.374 0.512 -0.375 0.284 0.570 -0.282  0.381 0.509 0.282 0.554 
17 0.530 0.915 -0.834 0.087 1.029 -0.484  0.508 0.689 0.104 1.029 
18 0.222 0.315 0.213 0.881 0.968 -1.000  0.207 0.303 0.745 0.855 
19 – – – – – –  0.000 0.722 0.000 2.305 
20 1.243 5.299 -0.780 0.452 2.010 -0.379  1.226 4.869 0.456 1.911 
21 0.044 0.101 0.924 1.427 1.224 -0.184  0.047 0.106 1.353 1.235 
22 1.037 0.587 -0.108 0.000 0.000 -0.998  1.033 0.586 0.000 0.000 
23 – – – – – –  0.870 2.324 0.164 0.060 
24 1.658 1.565 0.342 2.419 2.135 -0.798  1.376 1.425 2.403 1.826 
25 2.187 0.374 0.534 1.578 0.342 -0.787  2.026 0.308 1.343 0.086 
26 0.606 2.025 -0.068 0.301 0.235 -1.000  0.604 2.060 0.208 0.162 
27 0.339 3.366 0.530 0.308 1.075 -0.244  0.319 3.395 0.316 1.076 
28 0.471 0.415 0.500 0.000 0.000 1.000  0.404 0.412 0.000 0.000 
29 5.512 0.290 -0.653 0.137 0.461 -1.000  7.114 0.296 0.088 0.494 
30 1.687 1.471 -1.000 1.532 1.280 -1.000  1.042 0.912 1.149 0.708 
31 0.831 0.586 0.134 1.154 2.888 0.079  0.841 0.579 1.155 2.869 
32 0.745 0.193 0.492 0.508 0.348 -0.258  0.726 0.175 0.525 0.357 
33 0.116 0.291 -1.000 0.672 1.022 -0.835  0.000 0.294 1.112 1.168 
34 0.141 0.578 -1.000 1.468 2.134 0.097  – – – – 
35 0.018 0.522 0.446 0.376 0.324 -0.470  0.019 0.526 0.437 0.335 
36 2.676 1.863 -0.714 1.375 0.432 -0.203  2.852 2.173 1.376 0.424 
37 0.550 0.538 -0.377 0.572 1.095 -0.226  0.562 0.548 0.566 1.089 
38 0.189 0.346 0.216 0.301 0.815 -0.860  0.195 0.348 0.000 0.672 
39 0.464 0.695 -0.252 0.607 1.519 -0.472  0.490 0.724 0.585 1.578 
40 1.125 0.901 0.318 0.112 0.727 -0.513  1.114 0.886 0.139 0.752 
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ID Bivariate model  Univariate model 
σA12  σB12  ρA1B1 σA22  σB22  ρA2B2  σA12  σB12  σA22  σB22  

41 0.320 1.144 -0.093 0.328 0.381 -0.101  0.324 1.145 0.329 0.382 
42 – – – – – –  2.950 4.987 0.062 7.887 
43 0.731 1.514 0.089 5.695 2.097 -0.800  0.750 1.564 4.867 1.981 
44 1.509 1.010 -0.633 0.941 0.894 -0.750  1.510 1.014 0.948 0.911 
45 0.095 0.674 1.000 3.250 1.519 0.360  0.000 0.667 2.766 1.516 
46 0.016 0.007 1.000 0.698 0.920 -0.034  0.000 0.000 0.695 0.917 
47 0.569 0.053 1.000 0.051 0.305 -0.548  0.598 0.000 0.059 0.270 
48 0.464 1.466 -1.000 0.465 1.146 -1.000  0.000 1.178 0.000 1.021 
49 0.140 2.499 0.886 0.595 4.868 -0.608  0.109 2.498 0.380 4.746 
50 1.880 0.511 0.204 0.459 2.074 0.307  1.905 0.501 0.474 2.046 
51 0.052 0.127 -1.000 0.223 0.531 -1.000  0.000 0.069 0.029 0.469 
52 0.500 2.875 -0.584 0.678 7.921 0.995  – – – – 
53 0.033 1.137 -1.000 0.080 0.232 -1.000  0.000 1.206 0.000 0.227 
54 0.000 0.000 -0.451 0.374 0.002 -1.000  0.000 0.000 0.374 0.000 
55 0.549 0.152 -1.00 0.019 0.015 -1.00  0.511 0.145 0.000 0.000 
56 0.581 0.473 0.421 0.314 0.824 -0.679  0.566 0.506 0.292 0.761 
57 0.400 1.144 0.123 0.739 0.758 -0.360  0.380 1.140 0.736 0.759 

σA12  = variance of logit sensitivity for index test; σA22  = variance of logit sensitivity for 
comparator; σB12  = variance of logit specificity for index test; σB22  = variance of logit 
specificity for comparator; ρA1B1= correlation of logit sensitivity and logit specificity for 
index test; ρA2B2= correlation of logit sensitivity and logit specificity for comparator. 
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D.9 | Estimates from unweighted and weighted Moses SROC meta-regression models 

ID 
Same shape across tests 

Relative diagnostic odds ratio (95% CI) 
Different shape per test 

Relative sensitivity (95% CI) 
Unweighted Weighted Unweighted Weighted 

1 2.37 (0.92–6.07) 2.07 (0.70–6.13) 1.12 (0.93–1.35) 1.23 (0.99–1.52) 
2 2.90 (1.54–5.43) 3.65 (2.49–5.35) 1.25 (1.11–1.40) 1.24 (1.18–1.30) 
3 5.50 (1.86–16.3) 3.84 (1.68–8.79) 0.82 (0.12–5.57) 1.11 (0.68–1.82) 
4 0.87 (0.19–3.92) 0.71 (0.19–2.68) 2.08 (0–5453332)* 1.42 (0–6788074)* 
5 2.69 (0.88–8.23) 3.03 (1.57–5.85) 0.94 (0.68–1.31) 1.00 (0.84–1.20) 
6 13.3 (5.89–30.1) 9.93 (5.19–19.0) 1.49 (0.88–2.53) 1.43 (0.89–2.30) 
7 10.4 (1.97–54.8) 4.75 (1.44–15.7) 367 (0.07–1945765)* 210 (1.19–36975)* 
8 1.33 (0.01–243) 0.92 (0.00–408) 1.65 (1.22–2.23) 1.60 (1.22–2.10) 
9 1.17 (0.02–79.1) 0.50 (0.03–9.07) 1.32 (1.04–1.67) 1.34 (0.94–1.91) 
10 4.02 (1.29–12.5) 3.54 (1.40–8.94) 1.18 (1.07–1.31) 1.07 (0.59–1.96) 
11 1.13 (0.17–7.45) 0.75 (0.21–2.67) 0.37 (0.03–5.24) 1.06 (0.79–1.42) 
12 2.05 (0.36–11.7) 1.67 (0.58–4.85) 1.15 (0.77–1.71) 1.41 (1.20–1.65) 
13 4.59 (0.91–23.1) 8.69 (0.97–77.5) 1.15 (0.94–1.39) 1.25 (0.97–1.61) 
14 3.15 (1.14–8.71) 1.78 (0.61–5.22) 1.02 (0.67–1.55) 1.07 (0.62–1.86) 
15 0.61 (0.30–1.24) 0.62 (0.33–1.18) 1.16 (1.06–1.27) 1.19 (1.06–1.33) 
16 0.64 (0.39–1.06) 0.77 (0.44–1.35) 1.04 (0.96–1.13) 1.06 (0.98–1.14) 
17 8.14 (3.75–17.7) 10.2 (4.73–21.8) 1.27 (1.15–1.39) 1.27 (1.18–1.37) 
18 8.16 (4.37–15.3) 5.96 (3.80–9.34) 1.48 (0.95–2.29) 1.42 (0.95–2.11) 
19 83.4 (2.64–2633) 33.4 (5.61–199) 2.79 (1.23–6.31) 2.28 (1.43–3.63) 
20 0.92 (0.38–2.24) 0.94 (0.35–2.54) 1.44 (1.02–2.04) 1.60 (0.97–2.64) 
21 2.66 (0.88–8.05) 3.89 (1.29–11.7) 0.94 (0.69–1.29) 1.01 (0.74–1.38) 
22 3.09 (0.30–31.9) 1.89 (0.21–17.1) 0.00 (0–1.5E+28)* 0.33 (0–3.17E+11)* 
23 0.79 (0.30–2.12) 0.90 (0.39–2.05) 1.04 (1.01–1.07) 1.02 (1.00–1.03) 
24 0.88 (0.22–3.46) 0.36 (0.11–1.16) 1.07 (0.02–55.7) 0.40 (0.01–11.1) 
25 2.86 (0.48–17.2) 5.05 (1.29–19.8) – 0.46 (0–54500000)* 
26 4.22 (1.18–15.1) 3.24 (1.26–8.35) 0.79 (0.06–11.2) 0.95 (0.20–4.57) 
27 4.14 (1.29–13.3) 2.51 (0.98–6.42) 0.82 (0.41–1.63) 1.07 (0.78–1.47) 
28 0.95 (0.19–4.71) 0.40 (0.09–1.74) 1.02 (0.93–1.12) – 
29 0.51 (0.08–3.20) 0.75 (0.26–2.18) 1.23 (1.13–1.34) 1.26 (1.22–1.30) 
30 3.40 (0.93–12.5) 3.04 (0.95–9.72) 1.00 (0.37–2.65) 1.08 (0.79–1.47) 
31 0.58 (0.22–1.58) 0.95 (0.34–2.62) 110 (0.46–26502)* 1.64 (0.46–5.81) 
32 0.41 (0.13–1.27) 0.33 (0.14–0.73) 1.11 (0.98–1.25) 1.14 (0.95–1.35) 
33 1.10 (0.51–2.35) 1.93 (0.96–3.89) 1.02 (0.93–1.12) 1.10 (0.96–1.25) 
34 2.91 (0.49–17.4) 8.77 (0.97–79.6) 1.24 (0.84–1.82) 1.67 (1.17–2.38) 
35 1.40 (0.49–3.98) 1.66 (0.77–3.60) 0.45 (0.04–5.75) 0.88 (0.52–1.51) 
36 2.22 (0.59–8.32) 1.46 (0.50–4.26) 0.76 (0.26–2.24) 0.53 (0.08–3.48) 
37 2.55 (1.48–4.39) 2.90 (1.85–4.56) 1.26 (0.93–1.72) 1.37 (1.11–1.69) 
38 0.57 (0.26–1.26) 0.67 (0.32–1.44) 0.87 (0.50–1.51) 1.09 (0.62–1.93) 
39 2.63 (1.27–5.47) 2.04 (1.19–3.50) 1.35 (1.14–1.61) 1.27 (0.94–1.73) 
40 9.47 (4.55–19.7) 5.06 (2.69–9.51) 1.13 (1.05–1.22) 1.14 (1.05–1.24) 
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ID 
Same shape across tests 

Relative diagnostic odds ratio (95% CI) 
Different shape per test 

Relative sensitivity (95% CI) 
Unweighted Weighted Unweighted Weighted 

41 4.49 (2.39–8.45) 4.71 (2.70–8.21) 0.96 (0.50–1.85) 0.80 (0.29–2.16) 
42 0.69 (0.05–9.51) 0.34 (0.04–3.20) 1.10 (0.95–1.26) 1.08 (0.90–1.31) 
43 3.42 (0.73–16.1) 3.25 (0.64–16.4) 137 (1.59–11805)* 1270 (0.24–6855656)* 
44 2.01 (0.68–6.00) 1.48 (0.67–3.30) 3.15 (2.04–4.86) 2.67 (1.84–3.87) 
45 3.13 (0.83–11.8) 4.15 (1.30–13.3) 0.98 (0.69–1.39) 0.96 (0.53–1.74) 
46 4.77 (2.03–11.2) 9.42 (2.85–31.1) 0.79 (0.24–2.65) 1.20 (0.73–2.00) 
47 5.00 (1.77–14.2) 3.06 (1.07–8.75) 1.34 (1.17–1.53) 0 (0–2.96E+15)* 
48 3.33 (0.73–15.2) 2.67 (0.53–13.5) 1.13 (0.48–2.68) 1.06 (0.46–2.42) 
49 5.60 (1.73–18.1) 6.16 (1.86–20.5) 1.06 (0.89–1.28) 1.13 (0.87–1.45) 
50 7.56 (2.00–28.7) 6.66 (0.96–46.2) 1.14 (1.07–1.20) 1.21 (1.15–1.27) 
51 21.5 (4.90–94.1) 24.1 (7.45–77.6) 6.28 (3.76–10.5) 6.81 (3.66–12.7) 
52 0.19 (0.05–0.68) 0.20 (0.08–0.54) 58.0 (1.74–1929)* 18.8 (0.44–809)* 
53 2.64 (0.84–8.25) 1.57 (0.64–3.80) 1.06 (0.61–1.83) 0.76 (0.22–2.62) 
54 26.1 (3.10–220) 10.7 (1.64–70.0) 0.99 (0.00–204) 0 (0–4.36E+16)* 
55 1.28 (0.68–2.41) 1.25 (0.69–2.28) 1.11 (0.42–2.88) 1.18 (1.06–1.30) 
56 2.72 (1.05–7.08) 1.54 (0.60–3.96) 1.54 (0.93–2.56) 1.71 (1.28–2.28) 
57 2.26 (0.48–10.7) 1.64 (0.53–5.11) 0.43 (0.03–6.05) 0.74 (0.12–4.44) 

*Potentially unreliable estimates.  
– indicates the relative sensitivity and its 95% CI were not estimable using the nlcom 
command in Stata post estimation of the Moses model. Estimates in italics were those with 
more than a two-fold difference between both models. 
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D.10| Estimates from unweighted Moses SROC and HSROC meta-regression models 

ID 

Same shape across tests 
Relative diagnostic odds ratio (95% CI) 

Different shape per test 
Relative sensitivity (95% CI) 

Unweighted Moses 
model HSROC model Unweighted Moses 

model HSROC model 

1 2.37 (0.92–6.07) 2.72 (1.52–4.86) 1.12 (0.93–1.35) 1.07 (1.01–1.13) 
2 2.90 (1.54–5.43) 3.84 (2.11–6.99) 1.25 (1.11–1.40) 1.24 (0.98–1.58) 
3 5.50 (1.86–16.3) 5.22 (2.74–9.94) 0.82 (0.12–5.57) 1.12 (1.02–1.22) 
4 0.87 (0.19–3.92) 3.14 (0.02–528) 2.08 (0–5453332)*  – 
5 2.69 (0.88–8.23) 4.60 (1.67–12.7) 0.94 (0.68–1.31) 1.05 (0.98–1.13) 
6 13.3 (5.89–30.1) 18.5 (9.81–34.8) 1.49 (0.88–2.53) 1.39 (1.14–1.68) 

7 10.4 (1.97–54.8) – 
367 (0.07–
1945765)*  – 

8 1.33 (0.01–243) 0.35 (0.00–25.9) 1.65 (1.22–2.23) 1.10 (0.40–3.01) 
9 1.17 (0.02–79.1) 0.38 (0.02–9.29) 1.32 (1.04–1.67) 1.22 (0.89–1.68) 
10 4.02 (1.29–12.5) 4.08 (1.77–9.36) 1.18 (1.07–1.31) 1.08 (1.00–1.18) 
11 1.13 (0.17–7.45) 0.73 (0.06–8.65) 0.37 (0.03–5.24) 0.27 (0.21–0.35) 
12 2.05 (0.36–11.7) 3.86 (0.88–16.9) 1.15 (0.77–1.71) 1.10 (0.86–1.40) 
13 4.59 (0.91–23.1) 17.2 (0.87–342) 1.15 (0.94–1.39) 1.14 (0.98–1.33) 
14 3.15 (1.14–8.71) 4.73 (2.22–10.1) 1.02 (0.67–1.55) 1.08 (1.01–1.16) 
15 0.61 (0.30–1.24) 0.57 (0.36–0.90) 1.16 (1.06–1.27) 0.97 (0.80–1.16) 
16 0.64 (0.39–1.06) 0.59 (0.36–0.98) 1.04 (0.96–1.13) 1.01 (0.95–1.08) 
17 8.14 (3.75–17.7) 7.07 (3.03–16.5) 1.27 (1.15–1.39) 1.18 (1.09–1.27) 
18 8.16 (4.37–15.3) 9.14 (5.97–14.0) 1.48 (0.95–2.29) 1.45 (1.24–1.69) 
19 83.4 (2.64–2633) 2938 (0–3.03E+14)* 2.79 (1.23–6.31) 2.36 (1.38–4.05) 
20 0.92 (0.38–2.24) 0.47 (0.29–0.78) 1.44 (1.02–2.04) 1.09 (0.94–1.26) 
21 2.66 (0.88–8.05) 4.23 (1.08–16.5) 0.94 (0.69–1.29) 1.02 (0.98–1.06) 
22 3.09 (0.30–31.9) 4.62 (0.43–49.4) 0.00 (0–1.5E+28)* 2.41 (1.39–4.15) 
23 0.79 (0.30–2.12) 0.66 (0.32–1.34) 1.04 (1.01–1.07) 2.40 (0.09–67.0) 
24 0.88 (0.22–3.46) 0.75 (0.16–3.40) 1.07 (0.02–55.7) 1.52 (0.47–4.94) 
25 2.86 (0.48–17.2) 7.42 (4.59–12.0) – 1.40 (0.41–4.76) 
26 4.22 (1.18–15.1) 3.45 (1.16–10.2) 0.79 (0.06–11.2) 1.09 (0.90–1.32) 
27 4.14 (1.29–13.3) 4.86 (2.86–8.26) 0.82 (0.41–1.63) 1.12 (1.00–1.26) 
28 0.95 (0.19–4.71) 0.58 (0.08–4.04) 1.02 (0.93–1.12) 0.98 (0.88–1.10) 

29 0.51 (0.08–3.20) 40438 (1.94–
8.42E+8)* 1.23 (1.13–1.34)  – 

30 3.40 (0.93–12.5) 4.51 (1.33–15.3) 1.00 (0.37–2.65) 1.10 (0.98–1.23) 
31 0.58 (0.22–1.58) 0.20 (0.07–0.52) 110 (0.46–26502)*  – 
32 0.41 (0.13–1.27) 0.35 (0.19–0.64) 1.11 (0.98–1.25) 1.03 (0.91–1.15) 
33 1.10 (0.51–2.35) 3.11 (1.26–7.67) 1.02 (0.93–1.12) 1.15 (1.07–1.25) 
34 2.91 (0.49–17.4) 21.4 (3.10–148) 1.24 (0.84–1.82) 1.35 (1.08–1.68) 
35 1.40 (0.49–3.98) 0.91 (0.48–1.72) 0.45 (0.04–5.75) 1.04 (0.94–1.15) 
36 2.22 (0.59–8.32) 0.74 (0.25–2.14) 0.76 (0.26–2.24) 0.73 (0.47–1.14) 
37 2.55 (1.48–4.39) 3.34 (2.60–4.28) 1.26 (0.93–1.72) 0.97 (0.89–1.06) 
38 0.57 (0.26–1.26) 0.85 (0.43–1.69) 0.87 (0.50–1.51) 0.97 (0.76–1.25) 
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ID 

Same shape across tests 
Relative diagnostic odds ratio (95% CI) 

Different shape per test 
Relative sensitivity (95% CI) 

Unweighted Moses 
model HSROC model Unweighted Moses 

model HSROC model 

39 2.63 (1.27–5.47) 2.92 (1.90–4.49) 1.35 (1.14–1.61) 1.22 (1.12–1.34) 
40 9.47 (4.55–19.7)  10.4 (5.22–20.8) 1.13 (1.05–1.22) 1.09 (1.03–1.16) 
41 4.49 (2.39–8.45) 2.50 (1.35–4.64) 0.96 (0.50–1.85) 1.06 (0.96–1.18) 
42 0.69 (0.05–9.51) 0.25 (0.05–1.30) 1.10 (0.95–1.26) 1.08 (0.85–1.38) 
43 3.42 (0.73–16.1) 2.89 (0.49–16.9) 137 (1.59–11805)* 35.1 (0.20–6058)* 
44 2.01 (0.68–6.00) 3.19 (1.55–6.55) 3.15 (2.04–4.86) 3.01 (2.21–4.10) 
45 3.13 (0.83–11.8) 5.84 (1.30–26.3) 0.98 (0.69–1.39) 1.03 (0.98–1.10) 
46 4.77 (2.03–11.2) 10.4 (4.31–25.1) 0.79 (0.24–2.65) 1.16 (1.03–1.31) 
47 5.00 (1.77–14.2) 3.57 (1.88–6.79) 1.34 (1.17–1.53) 0.52 (0–29800000)* 
48 3.33 (0.73–15.2) 4.46 (0.94–21.1) 1.13 (0.48–2.68) 1.13 (0.92–1.40) 
49 5.60 (1.73–18.1) 7.45 (2.78–20.0) 1.06 (0.89–1.28) 1.20 (1.04–1.40) 
50 7.56 (2.00–28.7) 8.78 (2.11–36.4) 1.14 (1.07–1.20) 1.11 (1.03–1.19) 
51 21.5 (4.90–94.1) 35.6 (0.45–2841) 6.28 (3.76–10.5) 5.33 (2.38–11.9) 
52 0.19 (0.05–0.68) 0.02 (0.00–0.06) 58.0 (1.74–1929)*  – 
53 2.64 (0.84–8.25) 1.48 (0.14–15.1) 1.06 (0.61–1.83) 1.01 (0.79–1.30) 
54 26.1 (3.10–220) 23.9 (1.02–558) 0.99 (0.00–204) 1.02 (0.04–26.5) 
55 1.28 (0.68–2.41) 1.24 (0.48–3.18) 1.11 (0.42–2.88) 0.88 (0.60–1.31) 
56 2.72 (1.05–7.08) 3.34 (2.07–5.41) 1.54 (0.93–2.56) 1.24 (1.05–1.46) 
57 2.26 (0.48–10.7) 2.58 (1.66–4.00) 0.43 (0.03–6.05) 1.11 (0.90–1.37) 
*Potentially unreliable estimates.  
– indicates the HSROC model did not converge or relative sensitivity and its 95% CI were not 
estimable using the nlcom command in Stata post estimation of the Moses model. Estimates 
in italics were those with more than a two-fold difference between both models. 
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