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Abstract 

The work outlined in this thesis focuses on the development and fabrication 

of metasurfaces for manipulating electromagnetic waves, with the potential for 

applications in imaging and holography.  

Metasurfaces are the Two-Dimensional counterpart of metamaterials, which 

are artificial materials used to invoke electromagnetic phenomena, not readily found 

in nature, through the use of periodic arrays of subwavelength ‘meta-atoms’. 

Although they are a new and developing field, they have already secured a foothold 

as a meaningful and worthwhile focus of research, due to their straight-forward means 

of investigating fundamental physics, both theoretically and experimentally - owing 

to the simplicity of fabrication - whilst also being of great benefit to the realisation 

of novel optical technologies for real-world purposes. The main objective for the 

complete manipulation of light is being able to control, preferably simultaneously, 

the polarisation state, the amplitude, and the phase of electromagnetic waves. The 

work carried out in this thesis aims to satisfy these criteria, with a primary focus on 

the use of Geometric phase, or Pancharatnam-Berry phase. The first-principles 

designs are then used to realise proof-of-concept devices, capable of Circular 

Conversion Dichroism; broadband simultaneous control of phase and amplitude; and 

a high-efficiency, broadband, high-resolution hologram in the visible-to-infrared. 
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Introduction and Review 

 Motivation 

The field of optics is, and always will be, at the forefront of technology and 

developments in science and scientific endeavour – that is, at least until the point 

where “evolution” (natural or otherwise) surpasses our physical method, or indeed 

requirement, of ‘seeing’ – because, as humans we require light to see and what we 

can see, we can comprehend. Dating back to the dawn of civilisation, optical trickery 

and fascinations have been a key spoke in the wheel of scientific and economic 

development: starting with the study of the motions of the moon and stars in the 

night sky [1,2]; to the shiny appeal of gold, silver and precious stones as decoration 

and currency (which, not surprisingly, is still the case in this day and age) [3]; the 

use of small metal particles for use in ornamental glasses, of which the renowned 

Lycurgus Cup [4,5] (Figure 1.1a) and stained glass windows [6,7] (Figure 1.1b) 

are key examples; and the development of glass lenses to examine worlds beyond the  
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capability of our eyes alone – telescopes for seeing distant objects and microscopes 

for seeing the otherwise invisible objects too small to see, both developed around the 

same time in which Snell’s Law was proposed [10,11]. In the last century or two, 

sight helped yield two of the (arguably) most important theories of our time, the first 

of which is the Special Theory of Relativity [12], which had its beginnings in the 16-

year old mind of Albert Einstein as he pondered what it would be like to chase a 

beam of light [13], and the second of which was The Theory of Evolution by Natural 

Selection, where Charles Darwin found inspiration in the slight differences he saw in 

the markings of birds amidst travels in the Galapagos Islands [14].  

Advancements in understanding light as an electromagnetic wave allowed the 

development of numerous modern day conveniences we take for granted, such as 

electricity, radio transmission, and lasers, where more recently things such as wireless 

 

Figure 1.1: The “Lycurgus Cup” and “Christ of Wissembourg” 

stained glass 

(a) Arguably the first commercial use of nanotechnology and plasmonics, the 

Lycurgus Cup (4th Century AD) makes use of small particles of gold to 

produce a red colour upon illumination from within [4,5,8]. (b) Stained glass 

window, named “Christ of Wissembourg”, from 11th Century [9]. 
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internet, full colour flatscreen displays, holography, and light emitting diodes have 

proven invaluable to society. One of the more notable turning points in the 

investigation of electromagnetism was the theoretical accumulation of the links 

between the charge density and current through a wire to the associated magnetic 

and electric fields (and also the link between the magnetic and electric fields for a 

wave propagating in free space) by James Clerk Maxwell in 1865 [15]; this is 

nowadays termed as classical electromagnetism or classical electrodynamics. 

Following this, work carried out by Jagadis Chunder Bose aided in the study of 

polarisation effects, whereby metal foil films were placed between the pages of a book 

and a linear polarisation effect observed [16] (where even a book without the foil 

showed this same effect, although less pronounced). He also experimented on twisted 

jute bundles, which he found to rotate the polarisation of light – this is now known 

as optical activity – the mechanism is that the twisted bundles represented an 

artificial 3D-chiral structure. Many natural substances exhibit a similar effect, such 

as sugar solution in water, due to the fact that such molecules exist as two mirror 

images of each other called stereoisomers. The term for D-glucose is actually dextrose, 

which is in relation to the fact that this particular handedness of glucose rotates 

linearly polarised light to the right (dexter) side. Interestingly, these solutions also 

impart different absorptions of Left and Right circular polarisations of light, which 

is referred to as Circular Dichroism and is a widely used technique to establish the 

handedness of biological and naturally occurring compounds. By examining the 
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transmittances of both left and right circular polarisations, it is possible to distinguish 

the handedness of the compound. This is vitally important for some pharmaceutical 

products, as the biological function can depend upon the handedness. This was the 

case in the “Thalidomide Tragedy” due to the fact that one of the enantiomers of 

this chiral molecule caused birth-defects whilst the other was effectively used to 

alleviate morning sickness [17]. 

The advent of wireless technology is perhaps the single-most important turning 

point in the development of modern day communications. Many of these advances 

are primarily due to the expansive research carried out on the use of antennas for 

transmission and detection of electromagnetic waves. Seminal work carried out in the 

late 19th century, following the theoretical framework laid down by Maxwell, led to 

Hertz constructing a rudimentary version of wireless transmission with the use of a 

capacitor and a primitive version of a dipole antenna [18,19]. Following this, Marconi 

(beating Tesla, who is now equally accredited and given just as much, if not more, 

recognition) demonstrated the transmission of radio-signals over the Atlantic Ocean, 

which is essentially the birth of global communications; this led to the emergence of 

the study of electromagnetism that it is today. Many of these applications, although 

military in origin, have paved the way towards what we now refer to as 

metamaterials, through the periodic structuring of resonant structures to control the 

selection of frequencies of electromagnetic waves [20–23].  
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One of the fall-backs for many of these works, though, is the fact that they are 

primarily bulky, due to their reliance upon naturally occurring materials (glasses, 

crystals), and have little tunability to work at optical wavelengths, where the antenna 

sizes are required to be smaller than the width of a human hair, and also at Terahertz 

wavelengths where the lack of sensing and emitting THz devices are scarce. Due to 

the recent advancement in fabrication techniques and nanoscience this can be 

overcome, with an astounding acceleration in the fields of nanoscience and 

metamaterials occurring in the past decade; as with many fields of science and 

technology, scaling down the size of a device is preferable for both cost and 

applicability, and the fact that a lot can be done with a ‘surface’. 

 Metamaterials & Metasurfaces 

As with all fields of science, there was not one defining moment where a new 

and emerging field sprang into existence – this is also the case for metamaterials, 

which has been reliant upon the ever increasing bank of research and knowledge 

accumulated in the past 100 years or so. As mentioned previously, the emergence of 

wireless communication led to the study of antennas for emitting and detecting 

electromagnetic signals. Scaling these antennae down to sizes smaller than the 

wavelength of the light we are interested in as well as arranging them periodically 

has great advantages over isolated antennas, such as scalability, efficiency, and 

simplification of the underlying physical modelling. 
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Natural optical devices are used to control the wavefront of light through means 

of polarisation, phase, and amplitude modification. In classical optics, using naturally 

occurring materials, the behaviour of the light is determined by the subwavelength 

structuring (namely the atoms or molecules) composing the medium. Many effects 

can arise including refraction, reflection, and diffraction, where the phase, 

polarisation, and directionality of propagation can be controlled by the refractive 

index of the media. However, the properties of naturally occurring materials are 

typically limited to small deviations in such optical manipulations.  

Metamaterials (where meta means ‘beyond’) are essentially man-made devices 

used to behave similarly to naturally occurring media and to control the wavefront 

of light (or generally any type of wave-like phenomenon) through means of user-

defined constituent ‘atoms’ – where an ‘atom’, or meta-atom, implies that the 

element is smaller than the wavelength of interest, such that an averaged effect is 

encountered and the light does not see the small deviations of the meta-atom 

structure; the scattering and interference of such waves are then homogeneously 

applied and an effective resultant wave is recovered. Such works have led to the 

development of negative refractive index materials [24–27], zero-index [28–30], 

invisibility cloaking [31–33], and sub-diffraction imaging [34–36] – all of which would 

be impossible to achieve using the optical properties of naturally occurring materials. 

However, regardless of the fascinating and novel physical phenomena provided by 
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such metamaterials, the bulky volumetric arrangement has many fabrication 

difficulties preventing the direct availability to making useful devices. 

 In more recent years, a keen interest has been bestowed upon 2D planar 

metamaterials, namely metasurfaces, due to the fact that they can provide similar 

phenomena as metamaterials, except that they are only a fraction of a wavelength 

thin, are much easier to fabricate, theoretically more trivial to realise, and the 

associated losses are negligible. Many optical devices have been realised using 

metasurfaces, most of which use abrupt phase changes to engineer the wavefront of 

light.  

 One of the most intriguing pieces of research was that carried out by Hasman 

[37–39] in using the concept of Geometric phase (or Pancharatnam-Berry phase) – 

which is the wavelength-insensitive phase modification of a transmitted wave 

dependent only upon the polarisation states traversed on the Poincaré sphere (this is 

covered in greater detail in Chapter 2, section 2.4). These works operated to produce 

a spatially varying phase modification of incident light through a simple means of 

rotating the planar optical elements, which in this case were subwavelength gratings. 

Their use of the spatially-variant phase control using Geometric phase was seminal 

work, where previous uses of geometric phase had been time-variant (and spatially-

invariant, i.e. laterally isotropic media), such that the phase of the light was altered 

after completing a cyclic path around the Poincaré sphere by means of propagating 



Chapter 1 Introduction and Review 8 

8 

 

through optical devices (polarisers). This work was a key step on the ladder towards 

the development of what we now refer to as metasurfaces. 

 Some years later, the concept of laterally abrupt phase-changes utilising 

metasurfaces allowed a generalisation of Snell’s law by incorporating a phase gradient 

term, which was carried out by Capasso in [40]. This work used geometrically varying 

V-shaped antennas arranged such that the individual phase of each one was 

periodically increasing by a small amount. This resulted in the negative refraction of 

light at an interface, work which had only been previously realised using 

metamaterials. Following this work, and combining the functionality of geometric 

phase, rather than antenna geometry, and phase-gradient metasurfaces, a plasmonic 

flat lens was realised by Chen [41] which operated in the visible spectrum. This made 

use of circular polarisation conversion, which traces out pole-to-pole arcs on the 

Poincaré sphere, and results in a phase modification of the wavefront to obtain both 

concave and convex lens functionality. It is known that dielectric media have 

negligible absorption losses; to this end, and following on from the work carried out 

on geometric-phase controlled lenses using metal nanostructures, a silicon nanofin 

phase-gradient was proposed by Crozier [42] as a means of distinguishing the 

handedness of incident circularly polarised light by diffracting the opposite 

handednesses into different angles, which made use of the fact that left and right 

circularly polarised light undergoes equal and opposite geometric phase 
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accumulations after interacting with a phase-gradient metasurface. In doing so, it 

was realised that high-efficiency metasurfaces can be realised and can behave in 

similar ways to those demonstrated using resonant metal structures.  

 From these works, it is understood that combining the functionality of 

geometric-phase along with metallic antennae and dielectric structures are a profound 

means of achieving many desirable optical phenomena, and have resulted in the 

potential real-world applications of lensing, beam-steering, beam-shaping, and 

holography; this forms the basis of this thesis, where silicon geometric-phase 

structures, phase gradient metallic antennae, and high-efficiency broadband 

holography devices are realised, all of which are dependent upon the phase-

modification of the transmitted wavefront by the transverse spatially-variant abrupt 

phase changes (and dynamic time-variant smooth phase changes) as carried out in 

the seminal works explained above. 

 Thesis Plan and Overview 

The field of research involved with electromagnetism is staggering. A 

particularly fresh and attractive topic during the past 15 years or so is that of 

metamaterials. This thesis aims to investigate planar metamaterials, namely 

metasurfaces, with potential applications for practical devices due to their 

compactness and novel properties.  
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Chapter 2 describes the theoretical and mathematical framework required in 

the development and understanding of metasurfaces. The classical optical physics 

required for the understanding of electromagnetic waves is discussed, including 

refraction, polarisation and Jones matrix formalism, which leads on to the function 

of media in the modification of light, with a focus on Fresnel’s equations for a three-

layer medium and anisotropy of crystals resulting in polarisation modifications. 

Structured subwavelength gratings are shown to exhibit similar, yet more pronounced 

effects to those of natural birefringent crystals. The concept of collective electron 

oscillations, termed plasmons, are shown to be applicable to resonant structures. 

Finally, the concept of geometric-phase is presented, where the phase of light is 

altered upon polarisation cycling, and this is applied to space-variant surface 

conditions to modify the phase of the wavefront.  

Chapter 3 covers the experimental techniques used to fabricate and characterise 

metasurfaces. Some of these techniques include substrate cleaning and preparation, 

photoresist spincoating, photolithography, and development of these resists. We then 

move on to explain the process of reactive ion etching, which is a dry etch technique 

used to fabricate deep structures on a substrate (typically silicon), where the well-

known Bosch process for very deep etching is covered. Next, metal deposition and 

lift-off process is explained, which is the method of manufacturing very small metallic 

structures atop a substrate. The final section of this chapter covers the 
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characterisation techniques used to retrieve both topographic and optical data for 

the sample. Optical microscopy and electron beam lithography are used to examine 

the sample, whilst surface profilometry is used to provide dimensional analysis of the 

sample structures. Terahertz optical examination is performed by a THz TDS system, 

where a basic explanation is provided. 

Chapter 4 provides the theoretical and experimental verification of a monolithic 

silicon herringbone device, which was used to generate a strong circular conversion 

dichroism effect at 1THz. Subwavelength gratings were used to provide polarisation 

flipping between circularly polarised light, and arranged into a herringbone type 

pattern to incorporate geometric-phase. One of the angled sets of gratings were 

elevated to provide a fixed offset dynamic phase, whereby interference effects between 

the geometric and dynamic phases induce either destructive or unaffected 

interferences for opposite polarisation of CP light. A performance of 80% was 

theoretically realised, whilst the performance of the fabricated sample was reduced 

to 60% due to fabrication errors. 

In Chapter 5 I discuss the development of a broadband metasurface array, 

composed of split ring resonators (SRRs), which are used to provide a simultaneous 

control of phase and amplitude of 1THz light to achieve complete control of the 

intensities of diffractive orders. A linear polarisation basis was used, where the SRRs 

had combined functionalities from rod-type antennas, to control amplitude dependent 
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upon orientation angle, and SRR-antenna geometry to control phase. Arrays of SRRs 

with smoothly varying amplitudes and phases were configured such that far-field 

diffraction orders were arbitrarily controlled. This also performed in a broadband 

manner. 

In Chapter 6 I cover the development of high-efficiency polarisation conversion 

reflectarrays, which use the principle of geometric-phase and dynamic phase to result 

in dispersionless broadband operation. These elements were then utilised to form a 

holographic far-field image, capable of a window efficiency of 80%, and a zero-order 

of less than 5%.  

Chapter 7 gives a summary of the previous chapters in this thesis, which 

touches on the key points acquired for each chapter. I then move on to describe how 

these metasurface designs covered in Chapters 4-6 could be utilised to provide 

polarisation sensing, or colour holography devices. 
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Fundamental Concepts and Background 

This chapter aims to provide the basis for the development of metasurfaces, or 

planar metamaterials, and the underlying mathematics used to describe the effects 

they exhibit. The majority of work undertaken in this thesis has a focus on wavefront 

modification of plane monochromatic waves owing to phase and polarisation control, 

with particular focus on the benefits imparted from geometric control by utilising  

Pancharatnam-Berry phase, which arises from the combination of the in-plane 

rotation angles of the metasurface antennas (or structures) along with circularly 

polarised light conversion. Additionally, interference effects between geometric and 

dynamic phases, where dynamic phase control is dependent on propagation depth, 

plays a role in the modification of the total phase of the wavefront. 
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 Electromagnetism Basics 

 Maxwell’s Equations 

Light propagating in any arbitrary isotropic medium can be fully described by 

the collection of equations known as Maxwell’s Equations, linking the electric and 

magnetic field disturbances, as given below: 

with J being the current density, ρ being the charge density, and where the electric 

field E, electric displacement D, magnetic field H, and the magnetic flux density B 

can be described by the following relationships, known as the constitutive equations: 

� � ��   (2.5) 

� � ��  (2.6) 

with the terms �, � representing the electric permittivity and magnetic permeability, 

respectively. These are described by � � ���	 and � � ���	; where �	 is the 

permittivity of vacuum (or free-space) equal to 8.85  10����/�, �	 is the 

permeability of vacuum (or free-space) equal to 4�  10���/�, and ��,	�� are the 

relative permittivity and permeability, respectively, of the medium. In (naturally-

occurring) non-magnetic media, �� � 1. Now, by utilising the vector triple-product 

 M4: � ∙ � � 0 (2.4) 

M3: � ∙ � � � (2.3) 

M1: �  � � 	� ���  (2.1) 

M2: �  � �	J	! ���  (2.2) 



Chapter 2 Fundamental Concepts and Background 15 

15 

 

rule for the curl of the curl, "	  #"	  	$% � "#" ∙ $% � "�$, we apply the del 

operator, ", to Equation 2.1 (M1), which gives us: 

"  #"  �% � "#" ∙ �% � "�� � 	"  &� ��� ' � � �#"�%�   (2.7) 

Now, in the absence of any free charges, ρ=0, and in the absence of any currents, 

 ( � 0. We know from equation 2.6 that � = ��, and when �� = 1 this gives us 

� = �	�, which we then substitute above into equation 2.7, to give us: 

" × #" × �% = − �#"×�%
� = −�	 �#"×�%

�     (2.8) 

An alternative way of writing M2 (equation 2.2) is by incorporating the constitutive 

equation for D and realising that J=0: 

" × � =  ( + ��
� = 0 + ���	 ��

�       (2.9) 

By substituting equation 2.9 into 2.8 we now have that: 

" × #" × �% = −�	 �#"×�%
� = −�	 �&)*)+,�,-'

� = −�	���	 �.�
� .    (2.10) 

If we then look back and use the expanded form of equation 2.7, realising that the 

term in " ∙ � = 0 due to the absence of free charges (from M3) we can now have 

that: 

−"�� = −�	���	 �.�
� .     (2.11) 

This can be rewritten as: 

"�� = /.
0.

�.�
� . = �

1.
�.�
� .     (2.12) 
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which is known as the characteristic Wave Equation of light in a medium, where we 

label 2 = 1 3�	�	⁄ = 3 × 106ms��, which is the speed of light in a vacuum, and 9 =
√��, which is the refractive index of the medium – a reminder is that the relationship 

between the velocity of a wave in a medium and in a vacuum is given by 2 = 9;<;, 

with = indicating the medium. In the case of the light being in a vacuum, the value 

of �� = 1 and the wave equation in 2.12 reverts back to that for a vacuum with the 

speed of light simply being 2. 

 Propagation and Polarisation 

By examining the expression for the wave equation of the electric field in a 

medium, we can see that the solution that the E-field must take will be both 

dependent upon time and position. Additionally, by instead taking the curl of 

equation 2.2 (M2) we obtain the wave equation for the H-field in a medium [43]. 

This therefore implies that there exists a relationship between the E-field and the H-

field of an electromagnetic wave, which is implied through the Maxwell’s Equations 

themselves. Therefore, we can instead modify the wave equation in 2.12 to be general, 

and given as: 

 "�> = /.
0.

�.>
� . = �

1.
�.>
� .     (2.13) 

There must exist a solution for > which satisfies the above equation, and the simplest 

solutions are trigonometric functions: 
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>#?, A% =  B	 sin#E ∙ ? − FG%    (2.14) 

Or a more general way to write this is as an exponential, using Euler’s Theorem: 

>#?, A% =  B	H;#E∙?�I %    (2.15) 

which is the equation for a plane harmonic wave of light, where B	 is the maximum 

amplitude of the wave, k is the wavevector (defined as J = 2� L⁄ , L is the wavelength 

of light), r is the position vector (? = MNOP + QNOR + SNOT with the terms in NOU 

representing the unit vector in the x,y,z directions respectively), F is the angular 

frequency of the wave (F = 2� V⁄ , where V is the frequency of the wave), and t is 

time.  

Let us now perform some operations on the equation >#?, A% to help provide 

some insight as to the transversality of the electric and magnetic fields of a 

propagating electromagnetic wave. Now, by taking the time derivative, W WG⁄ , of 

>#?, A%, we extract the term – =F to give us: 

�>#?,A%
� =  �

� [B	H;#E∙?�I %] =  −=FB	H;#E∙?�I % = −=F>#?, A% (2.16) 

In a similar fashion, we can perform the del operation, ", to extract the term =E, 

which gives us: 

 ">#?, A% = "B0H=#E∙?−FG% = =EB0H=#E∙?−FG% = =E>#?, A%  (2.17) 
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From these operations it can be implied that W WG⁄ → −=F and " → i\. Now, 

upon revisiting the Maxwell equations (M1-M4), for charge free and current free 

media, we then obtain the following relationships: 

E × ] =  F� = F��     (2.18a) 

E × ^ =  −F� = −F��    (2.18b) 

E ∙ _ = εE ∙ � = a     (2.18c) 

E ∙ � = μE ∙ � = a     (2.18d) 

It is clear that the above results show that (E,D), (H,B), and k are all mutually 

orthogonal to each other and exist in the three orthogonal directions simultaneously. 

This implies that the electric and magnetic fields are perpendicular to each other, 

and both of these are perpendicular to the direction of travel represented by the 

wavevector k. This also implies that electromagnetic waves are transverse to the 

direction of travel, and cannot be longitudinal.  

When dealing with cross products relating to electric and magnetic fields and 

the wavevector k, a critical concept is that of the Poynting vector, which is given by  

c = � × �     (2.19) 

and has the explicit definition of being the directional energy flux, or rate of 

electromagnetic energy transfer per unit area, which acts in the direction of 
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propagation of the oscillating wave and is in the same direction as the wavevector k 

(in isotropic media).  

 For the case of plane harmonic waves, represented by E and H fields, with 

the same form as that in equation 2.15, we can obtain the Poynting vector value for 

S as being: 

c = � × � =  �a × �a cos�#E ∙ ? − FG%   (2.20) 

where we have taken the real part of equation 2.15 to give us cosines; one issue arises 

– the cosine-squared function is oscillatory in amplitude, where a maximum of 1 and 

a minimum of 0 occurs for each cycle of 2π, which means that the value of S is 

constantly changing from a maximum to a minimum value. Now, the average value 

of a cosine is equal to 0, but cosine squared has an average value of ½. Therefore, we 

can conclude that the average value of the Poynting vector, 〈c〉, is given as: 

〈c〉 � ���a  �a     (2.21) 

and the average magnitude of the Poynting vector is simply ½E0H0, which is 

equivalent to intensity being the square of the electric field amplitude. 

 If we imagine a wave travelling in the z -axis direction, we intuitively ascertain 

that the electric and magnetic field vectors must lie perpendicular to the direction of 

travel, and so lie in the x-y plane. These two field vectors must also be orthogonal to 

each other. However, there is no constraint that either of these fields must be aligned 
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with the x or y axes, and can exist along any vector lying in the x-y plane, providing 

that they remain perpendicular, and in turn define the polarisation of the 

electromagnetic wave. It is typical in optics to label the direction of the polarisation 

as being parallel to that of the electric field vector E. Taking the general form of an 

electromagnetic wave in Equation 2.15, and providing that the maximum amplitude 

of the electromagnetic wave is constant (U0 = E0 = const), we label this wave as 

being linearly polarised due to the fact that the electric field vector simply traces out 

a straight line as it propagates through space, when looking along the direction of 

propagation. Even though the electric field vector itself oscillates periodically, the 

amplitude of this wave at any point in time will always exist on a straight line 

between the two maximum points of amplitude ±E0. A diagram of this is shown in 

Figure 2.1a.  

 Now, let us consider the case where two coherent linearly polarised waves 

travel in the same direction (along the z direction), albeit orthogonal to each other. 

If they are in phase, the resultant electric field vector would simply be the vector 

sum of the individual polarisation vector, due to the principle of superposition, and 

thus would be 45° to either of the polarised waves. This is apparent by writing 

Wave 1 - �h#?, A% �  Ĥjk	 sin#JS � FG%   (2.22a) 

Wave 2 - �l#?, A% �  Ĥmk	 sin#JS � FG%   (2.22b) 

TOTAL:  � �  �h + �l = #Ĥj + Ĥm%k	 sin#JS � FG%  (2.22c) 
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Now, if we propose that one of the waves is out of phase with the other, by a factor 

of π/2, which corresponds to turning the sine function into a cosine, we have 

� � 	�h ! �l � Ĥjk	 sin#JS � FG% !	 Ĥmk	 cos#JS � FG%  (2.23) 

This is still a valid solution of the wave equation 2.12, and corresponds to the 

resultant vector of the polarisation tracing a circle as it propagates along z – this 

wave will trace out the circle with a frequency of ω. Depending upon the sign of the 

phase, and whether one of these linear polarisations leads or lags the other, it can 

lead to the revolution of the resultant vector having a certain handedness – we refer 

to these as being either Left or Right circularly polarised light (LCP or RCP), as 

shown in Figure 2.1b. There can be two ‘stances’ when describing the handedness 

 

Figure 2.1: Visualisation of both Linearly (a) and Circularly (b) 

polarised light (images from [43]) 

(a) For a linearly polarised wave, the electric field vector traces out a straight 

line between the maximum amplitude values as it propagates through space, 

where the magnetic field H is always perpendicular to the electric field E. (b) 

a circularly polarised wave is the vector sum of two orthogonal linearly 

polarised waves of equal amplitude, except where one of these waves is π/2 

out of phase with the other. Thus, the tip of the resultant vector field traces 

out a circle as it propagates in space. 

k k 
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of a CP wave – either by looking at the rotation direction of the incoming wave or 

looking at the wave when it is outgoing. For this thesis, I shall use the latter, and 

describe a right handed wave as that which circulates in a clockwise direction when 

propagating away from me (where ‘I’ am the source).  

 The general solution to the superposition of two linearly polarised waves 

occurs for those which have arbitrary phases and differing amplitudes. This is a 

similar case to the circularly polarised light, except that now the resultant vector 

may not trace out a circular path, but an elliptical one instead. A diagram illustrating 

this is shown in Figure 2.2. The equation governing elliptically polarised light, 

without proof [44], is given by: 

no.n+o. ! np.n+p. � 2 non+o
npn+p cosq � sin� q   (2.24) 

 which is also known as the polarisation ellipse, where x and y correspond to the 

orthogonal electric field vector directions, the ‘0’ subscript represents the maximum 

amplitude, and q � qm � qj is the difference between the phases of the x and y 

polarised fields. It is apparent that if the phase difference q � 0, then equation 2.24 

simply reduces to kj = km  n+on+p which is simply linearly polarised light with the 

resultant vector being rotated by some angle depending on the fraction of the 

maximum amplitudes. And additionally, if k	j = k	m then the above reduces to 

linearly polarised light at an angle of 45°. If we keep k	j = k	m and instead now 

choose q = � 2⁄ , equation 2.24 reduces to kj� + km� = k	j�  which is simply the equation  
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of a circle with radius of k	j, i.e. circularly polarised light. In the context of this 

thesis, elliptically polarised light will not be examined due to the metasurfaces 

covered later on operating only in either a linear (for Chapter 5) or circular (for 

Chapters 4 and 6) basis. 

 Jones Matrix Formalism 

Suppose we have two linearly polarised plane waves propagating along the z-

axis given by  

kj#S, G% =  k	jH;#rs�I tuo%   (2.25a) 

km#S, G% =  k	mH;#rs�I tup%   (2.25b) 

 

Figure 2.2: Visualisation of elliptically polarised light 

(image from [43]) 

The ellipses are traced out due to the differing amplitudes and phases of the 

two electric (and magnetic) field vectors in their corresponding orthogonal 

directions. 

k 
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We can ignore the propagator (JS − FG), and then write the equations in a 2 × 1 

column matrix for E, which is given as: 

� =  vkjkmw = xk	jH;uo
k	mH;upy   (2.26) 

This is known as the Jones Vector representation of an electromagnetic wave, and is 

the general form for (elliptically) polarised light. It is custom to normalise the Jones 

Vector against its intensity, such that the intensity, I, is given by z = �{�, where 

the complex transpose of E is given as �{ = #kj∗ km∗%, therefore, it is given that  

�{� = z =   kj∗kj + km∗km   (2.27) 

And consequently, this then gives us 

kj∗kj + km∗km =  k	j� + k	m� = 1 = k	�  (2.28) 

where it is chosen that the total electric field amplitude squared, k	�, is normalised 

to be equal to unity (as is the intensity). For light polarised in only the x-axis, we 

have from Equation 2.28 that k	j� = 1 (as k	m = 0% and therefore the Jones vector 

for x-polarised light (linearly polarised in the x-direction) is given by: 

� =  &kj0 ' = &10'    (2.29a) 

In a similar sense, for y-polarised light, we have: 

� =  v 0kmw = &01'    (2.29b) 

and for light polarised at ±45° we have: 
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� = �
√� & 1±1'     (2.29c) 

where the root factor of 2 comes from the fact that kj = ±km and using Equation 

2.27 gives  ⇒  2k	j� = 1. Similarly, we can show the Jones vectors for right or left 

circularly polarised light, given as  

RIGHT:  � = �
√� & 1+='     (2.30a) 

LEFT:  � = �
√� & 1−='     (2.30b) 

where the +/- signs arise from the phase difference between the two linear 

polarisations as q = qm − qj = ± � 2⁄ , and therefore HM�#=q% = HM�#±= � 2⁄ % = ±=. 
 Now, if we assume that these Jones vectors are passed through an optical 

element, such as a polariser or a wave-plate, and that the emergent transmitted Jones 

vector is simply a linear relation to the incident Jones vector, we have: 

kj� = �jjkj + �jmkm     (2.31a) 

km� = �mjkj + �mmkm     (2.31b) 

These can be rewritten in the Jones vector form, except now we have a matrix 

composed of the �;� terms: 

xkj�� 
km�� y = v�jj �jm�mj �mmw xkj;/

km;/y     (2.32) 

The 2 × 2 matrix is termed the Jones matrix and is very useful for the later works 
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on metasurfaces, as this shows us that not only can a polarisation be transmitted 

through an element with the same polarisation but can also induce a polarisation 

that is orthogonal to it. It is worth noting that the subscripts of the Jones matrix 

components have an intrinsic relationship between the incident and transmitted 

polarisation; we have that the ij in �;� correspond to (i – Transmitted, j – Incident) 

polarisation. Thus, as an example, �mj is the conversion efficiency (of an optical 

device) between x-incidence and y-transmitted, and these Jones matrix components 

can be assumed to be the Transmission coefficients of a device.  

 As an analogy, it can be assumed that when working in the circular 

polarisation basis, equation 2.32 is changed to give: 

vk��� 
k��� w = v��� ������ ��� w xk�;/

k�;/y    (2.33) 

However, it is sometimes experimentally complex and difficult to have both a 

circularly polarised input and measurable output, as more optical devices will be 

necessary (and it is not possible to measure circular polarisation directly using a 

detector). From [45] we can deduce the circular transmission coefficients in 2.33 

simply from first obtaining the linear transmission components, where we have the 

following relationships: 

��� = ��jj + �mm + =#�jm − �mj%� 2⁄     (2.34a) 

��� = ��jj − �mm − =#�jm + �mj%� 2⁄     (2.34b) 
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��� = ��jj − �mm + =#�jm + �mj%� 2⁄     (2.34c) 

��� = ��jj + �mm − =#�jm − �mj%� 2⁄     (2.34d) 

Therefore, if we know the linear transmission coefficients of a device, we can predict 

what the operation of the device will be in a circular basis. This type of 

transformation is carried out for both experimental and simulation results.  

 Fresnel’s Equations 

As we saw at the start of this Chapter, the propagation of light at an arbitrary 

incident angle when encountering a boundary between two media of differing indices 

of refraction is governed by Snell’s Law. This law works relatively well for unpolarised 

light, where it is understood that some of the light is refracted at an angle 

proportional to the sin��  ratio of the refractive indices of the two media whilst the 

remaining light is reflected at an angle equal to that of the incident light. However, 

one problem that arises with this description is when the incident light is polarised; 

two special cases arise when the electric field vector (polarisation) is either parallel 

to the boundary (perpendicular to the plane of incidence), or parallel to the plane of 

incidence (with a magnetic field parallel to the boundary) – these two cases are 

referred to as Transverse Electric (electric field parallel to boundary) and Transverse 

Magnetic (magnetic field parallel to boundary) polarisations, termed TE and TM 

modes/polarised light. By employing boundary conditions at the interface between 
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two media, we state that both the transverse electric and transverse magnetic 

fields must be continuous (derived from Ampère’s Law). Combining this criteria 

with Equations 2.18a-d, we then obtain equations for both TE and TM polarisations 

(known alternatively as ‘s’ and ‘p’ polarisations, respectively, where s stands for 

‘senkrecht’, meaning perpendicular in German, and p stands for parallel – these 

definitions now refer instead to the plane of incidence, rather than the boundary, for 

the polarisation direction) for a wave incident onto a boundary between medium 1 

and 2 at an incident angle of �� and transmitted angle of ��. For TE, we have: 

k; + k� = k      (2.35a) 

−�; cos �� ! �� cos �� � �� cos ��    (2.35b) 

�J;k; cos �� ! J�k� cos �� � �J k cos ��    (2.35c) 

And for TM polarisation we have: 

�; � �� � �      (2.36a) 

J;k; � J�k� � J k      (2.36b) 

k; cos �� ! k� cos �� � k cos ��    (2.36c) 

Now, if we declare that the reflection amplitude is simply the ratio between the 

reflected and incident electric field amplitudes k�/k;, and the transmission amplitude 

as being the ratio between the transmitted and incident amplitudes k /k;, we can 

rearrange the above equations to obtain the reflection and transmission amplitudes 
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for TE and TM polarised waves, respectively. For TE (subscript s), using equations 

2.35a,c, and eliminating k , we obtain: 

�� � n*n� � /� ������/. ����./� �����t/. ����.    (2.37a) 

G� � n-n� � �/� �����/� �����t/. ����.    (2.37b) 

And for TM (subscript p): 

�� � n*n� � /. ������/� ����./� ����.t/. �����    (2.38a) 

G� � n-n� � �/� �����/. �����t/� ����.    (2.38b) 

We define the reflectance as being the fraction of incident energy reflected and is the 

modulus-squared value of the reflection coefficients as follows: 

�� � |��|� � �n*n���n
�

     (2.39a) 

�� � ����� � �n*n����
�

     (2.39b) 

An interesting case is when the incident angle is 0 (normal incidence) and then the 

transmitted angle will also be 0, then the reflectance reduces to: 

� � �� � �� � �/��/./�t/.� 
�
    (2.40) 

If we take the example of light incident from air to glass (using 9����� = 1.5), we get 

that � = 0.04.  



Chapter 2 Fundamental Concepts and Background 30 

30 

 

Now, for the transmittance, it should be slightly modified due to the fact that there 

must be a conservation of energy (if the media are non-absorbing, then R+T=1) and 

the light transmitted will travel at a different velocity depending on the refractive 

indices: 

�� = /. ��� �./� ��� �� |G�|� = /. ��� �./� ��� �� �n-n���n
�

   (2.41a) 

�� = /. ��� �./� ��� �� �G��� = /. ��� �./� ��� �� �n-n����
�

   (2.41b) 

Again, a special case is for normal incidence where the angles are 0, and therefore 

the result for the transmittance is: 

� = �� = �� = /./� � �/�/�t/.� 
� = �/�/.#/�t/.%.   (2.42) 

If we choose the case for light being transmitted from air to glass (n=1.5), then we 

have that: � = 6 6.25 = 0.96⁄ , which satisfies the energy conservation of T+R=1 for 

R=0.04, as calculated from equation 2.40. 

 In the modelling of metasurfaces, it is common for the system to be composed 

of three distinct layers (such as air/metasurface/substrate, with corresponding 

refractive indices n1, n2, n3). It can be given [46], without derivation here, that the 

Fresnel equations are modified for a three-layer system to: 

� = ��.t�.� ¡.�¢
�t��.�.� ¡.�¢    (2.43a) 

G =  �. .� ¡�¢
�t��.�.� ¡.�¢    (2.43b) 
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Where £ = �¤¥
¦ 9� cos �� (d is the thickness of the middle layer/metasurface layer 

with corresponding refractive index 9�, �� is the refracted angle between medium 1 

and 2), �;� is simply the normal two-layer Fresnel equation for reflection and can 

exist as two forms, due to the incident polarisation being either TE or TM, where 

the same occurs for G;�. A simplification of this is for normal incidence, and so  

£ � �¤¥¦ 9�, �;� � #9; � 9�% #9; ! 9�%⁄  and G;� � #29; #9; ! 9�%⁄ , whilst equations 2.43 

are unchanged. 

  



Chapter 2 Fundamental Concepts and Background 32 

32 

 

 Birefringence and Anisotropy 

Up until now, we have dealt with refractive indices as being a constant value 

suitable for describing media, regardless of the direction or frequency of light 

propagating through them. In reality, however, most media are dispersive, 

anisotropic, and possibly inhomogeneous. Generally, the most interesting of these 

media will be ordered crystals, where the anisotropy is typically referred to as 

birefringence whereby light experiences two different refractive indices, corresponding 

to the extraordinary axis and the ordinary axis (which would be for two of the 

possible three orthogonal axes).  

To be able to explain the effect of this, we will refer back to Maxwell’s equations 

2.5-2.8, except now we replace D with � � �	� ! §, where P is the polarisability 

related to the volume density of electric dipoles, and replacing B with � � �	� ! ¨, 

where M is the magnetisation related to the volume density of magnetic dipoles. We 

can relate the polarisability P to the electric field E by: 

§ � �	© �     (2.44) 

where ©  is called the electric susceptibility and is related to the relative permittivity 

©  � �� � 1. Therefore, we can use this information to give the new definition of D 

as: 

� = �	� ! § = �	� ! �	© � = �	#1 ! © %� = �	���  (2.45) 
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this returns us back to the generic definition of the displacement current as given 

earlier in this chapter. It is this susceptibility which governs the anisotropy of a 

crystal, and in general is a tensor and not a scalar, which leads to: 

§ = �	ª�     (2.46) 

and in vector/matrix form, is given as: 

«¬j¬m¬s = �	 ®©�� 0 00 ©�� 00 0 ©¯¯
° «kjkmks

   (2.47) 

Where the off-diagonal elements of the tensor are zero due to the crystal being treated 

here as linear, uniform, lossless, and non-optically active. We saw earlier in this 

chapter that the refractive index of a medium is related to its relative permittivity 

by 9 = √��. As we know that �� = 1 ! ©, we can then assign three refractive indices 

to the crystal, corresponding to the three orthogonal direction, as: 

9� = √��� = 31 ! ©��    (2.48a) 

9� = √��� = 31 ! ©��    (2.48b) 

9¯ = 3��¯ = 31 ! ©¯¯    (2.48c) 

where these refractive indices are along the three principle axes. Now, if we apply 

different constraints to the values of the tensor elements, we can classify media that 

we may come across. In the case of isotropic media, such as air or vacuum, all of the 

tensor elements ©;� are equal, and as an example the tensor ª is given below as: 



Chapter 2 Fundamental Concepts and Background 34 

34 

 

ª = ®± 0 00 ± 00 0 ±°     (2.49) 

with ©�� = ©�� = ©¯¯ = ±, and 9� = 9� = 9¯ = √1 + ±, where ± is simply a constant. 

A more special case exists where two of the tensor elements are equal and one differs, 

given as: 

ª = ®± 0 00 ± 00 0 ²°     (2.50) 

with ©�� = ©�� = ±, ©¯¯ = ², where the refractive indices for ©�� and ©�� are referred 

to as being along the ordinary optical axes, for which 9³ = 9� = 9� = √1 + ±, and 

the refractive index for ©¯¯ as being along the extraordinary optical axis, for which  

9n = 9¯ = √1 + ², (noticing the subscripts ‘O’ and ‘E’ for the refractive indices 

corresponding to ‘ordinary’ and ‘extraordinary’, respectively). This specific 

configuration is present in what is called a uniaxial crystal. However, there is no 

constraint as to which of the optical axis, O or E, has the greater value of refractive 

index. The typical labelling is that when 9³ < 9n it is termed a positive uniaxial 

crystal, whilst the opposite, for 9³ > 9n, is termed a negative uniaxial crystal. Table 

2.1 below gives some refractive index values for both positive and negative uniaxial 

crystals. An alternative name for these crystals is birefringent. It is noticeable from 

the last column in the table that there is a finite value of the difference between the 

refractive indices in the ordinary and extraordinary axis directions. If we imagine a 

linearly polarised beam of light travelling perpendicular to both of these axis (so  
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along one of the two ordinary axes) and the polarisation is along 45°, then we can 

intuitively deduce that a phase delay will occur between the vertical and horizontal 

resolved polarisation components due to the difference in refractive indices along the 

optical axes. This phenomenon of birefringent crystals can be exploited to make many 

devices, such as wave-plates, used to alter the polarisation state of incident light after 

being transmitted. A further distance travelled by a polarised light beam through 

such a crystal will result in an increased phase difference, which is governed by the 

equation: 

∆·¸m/�¹;0 = Δ9n�³J»    (2.51) 

where we refer to the phase difference ∆· as being dynamic, Δ9n�³ = nn − 9³ is the 

refractive index difference between the extraordinary and ordinary optical axis, J =
2� L⁄  is the wavevector of the incident light, and » is simply the distance or thickness 

Table 2.1:  Refractive index values of Uniaxial media (λ=590nm) 

Material ¼� ¼½ ∆¼ = ¼� � ¼½ 

Calcite (−) 1.4864 1.6584 −0.172 

Tourmaline (−) 1.638 1.669 −0.031 

Beryl (−) 1.557 1.602 −0.045 

Quartz (+) 1.5534 1.5443 +0.009 

Ice (+) 1.313 1.309 +0.004 

Rutile (TiO2) (+) 2.903 2.616 +0.287 
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of the crystal through which the light traverses. For example, if we wish to construct 

a half-wave plate (phase difference of π), which converts the handedness of an incident 

circular polarisation into the opposite one, using calcite, we have: 

 » = ∆¾¿pÀÁÂ�ÃÄ/Å¡Ær � ¤	.���#�¤ ¦%⁄ � ¦�	.��� Ç 3L   (2.52) 

which implies that the thickness of the calcite must be 3 times larger than the free-

space wavelength of the circularly polarised light we wish to flip; As the refractive 

index difference occurs at 590nm, this gives a distance of » Ç 1.7��. This result 

means that the calcite crystal must be much larger than the wavelength we are 

interested in, and the fact we require very high-quality calcite crystals for use in 

optical experiments means they are very expensive and hard to come by. 

Additionally, as the crystals are undoubtedly dispersive, and so have wavelength-

dependent refractive indices, a specific wave plate will only work for the wavelength 

it is fabricated for, making their usefulness deteriorate.  

 Form Birefringence and Subwavelength Gratings 

As mentioned previously, we can construct useful devices using birefringent 

crystals. However, due to the fact they are larger than the wavelength in question; 

must be of a high-quality and therefore expensive; and only have limited use due to 

the constraint of the thickness-dependent phase and small refractive index 

differences; it is difficult to combine them with useful devices. One way around this 
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issue is to construct periodic gratings of alternating media to generate form 

birefringence. This is very desirable as the materials required need not even be 

birefringent themselves (or only very weakly birefringent) and so normal isotropic 

dielectric media can be used, which means they are much cheaper and more available 

than the high quality birefringent crystal devices. Instead of using alternating media, 

it is more easily obtainable in using a single dielectric medium and simply etching a 

periodic grating structure into it, such that the alternation is between air and 

dielectric (providing the refractive index of the dielectric is larger than air). One 

constraint is that the gratings are subwavelength, such that the periodicity is 

‘averaged’ by the waves of incident light and is termed effective medium theory 

(EMT). The benefit of having these gratings subwavelength is that the roughness of 

the grating is seen as ‘smooth’ by the light, and so is treated as a continuous and 

homogeneous medium. Additionally, the differences between the refractive indices of 

the extraordinary and ordinary axes of such a subwavelength grating (SWG) can be 

much larger than naturally occurring birefringent media, and therefore exhibit much 

more pronounced optical effects. 

A schematic diagram of a subwavelength grating is shown below in Figure 2.3. 

We assume that the periodicity of the grating must satisfy the following grating 

equation: 

Λ ≤ ¦/¿�ËÌ     (2.53) 
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in order for the grating to be homogeneous to the incident light (and therefore 

subwavelength) and assuming that the light is normally incident. In a similar 

expression as for the phase accumulation of light through a birefringent crystal in 

equation 2.51, the equation governing the phase for an SWG is given as: 

∆Φ�n���#L% � &�¤Î¦ ' Δ9Ï��¹#L%   (2.54) 

where the phase ∆Φ	 is now dependent on the polarisation directions being TE and 

TM (analogous to the extraordinary and ordinary directions in crystals), h is simply 

 

Figure 2.3: Basic diagram of a subwavelength grating 

A subwavelength grating made from a dielectric substrate of refractive index 9ÐÐ whilst the grooves consist of air (9Ð). The filling factor is F, corresponding 

to the ratio of width of substrate to air, with a periodicity of	Λ. The depth of 

the gratings is given by h. The directions of the polarisations are chosen as 

TE being parallel to the gratings whilst TM is perpendicular to the gratings. 
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the depth of the gratings, and Δ9Ï��¹#L% � 9�n#L% � 9��#L% is the difference 

between the refractive indices of the grating in the TE and TM directions.  

If we wish to obtain these refractive indices, we must first derive the 

expressions for the dielectric constants in the TE and TM directions of the grating. 

We know from the start of this chapter that � � ��, but because the dielectric 

constant depends on the polarisation direction for the grating we instead use the 

average D and E fields, to give us: 

� ÏÏ ≅ �ÁÒË�ÁÒË     (2.55) 

where we treat the dielectric constant as being an effective constant as it depends on 

the approximation of the D and E fields being averaged over a grating period. We 

also know from the start of this chapter that the constraints of the electric field 

polarisations are such that the components of the E field parallel to a boundary are 

continuous, and the D field components perpendicular to a boundary are continuous.  

 Firstly, we will look at the case for TE polarised light, where the electric field 

is parallel to the gratings as shown in Figure 2.3. We know that the parallel 

component of an electric field is continuous across a boundary (which, in this case is 

the grating tooth and air gap between). As such, we can assume that the TE polarised 

electric field is simply ��1  as it is the same both in the grating and in the air gap. 

Now, if we use equation 2.5, we have two equations for the D field in the two regions: 
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�Ð � �Ð�Ð � �Ð��1      (2.56a) 

�ÐÐ � �ÐÐ�ÐÐ � �ÐÐ��1     (2.56b) 

Because the averaged D field is not continuous across the boundary, we must 

calculate the weighted average of the parallel D field components within each region 

of the grating. This is carried out by using the fill factor F and the grating periodicity 

Λ to give us: 

��1  � ÓÔ�Õt#Ô�ÖÔ%�ÕÕÔ     (2.57) 

Which then simplifies to: 

��1  � ��Ð ! #1 � F%�ÐÐ    (2.58) 

However, we have already calculated the expressions for the D fields in regions 1 (I) 

and 2 (II) in equations 2.56a,b, which we can then substitute into equation 2.58 to 

give us: 

��1  � ��Ð��1  ! #1 � F%�ÐÐ��1     (2.59) 

If we look back at equation 2.55, the effective dielectric constant is defined as the 

ratio between the averaged D and E fields in the grating. We achieve this by dividing 

both sides of equation 2.59 through by ��1 , to give us: 

�ÁÒË�ÁÒË ≅ � ÏÏ � ��n � ��Ð ! #1 � F%�ÐÐ   (2.60) 
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This result is the effective medium approximation for the dielectric constant of a 

subwavelength grating for TE polarised light. In a similar fashion as above, we can 

derive the effective dielectric constant for a grating using TM polarised light instead. 

The difference in this case is that now the electric field is perpendicular to the 

gratings, and we then have to use the fact that the perpendicular D field is continuous 

across a boundary as opposed to the E field. This leads to the perpendicular D field 

occurring in the two regions as being ��1 , and so we can use equation 2.5 to give 

us the equations of the electric field within the two regions as: 

�Ð � �Õ)Õ � �ÁÒË)Õ      (2.61a) 

�ÐÐ � �ÕÕ)ÕÕ � �ÁÒË)ÕÕ      (2.61b) 

In a similar fashion as before, we must also calculate the weighted average of the 

perpendicular electric field in the grating, which again involves the use of the fill 

factor F and the grating period Λ. The equation is then identical to that for ��1  in 

equation 2.57 except we switch around the D’s and E’s, to give us: 

��1  � ��Ð ! #1 � F%�ÐÐ    (2.62) 

Now, by substitution of the individual electric field expressions in regions 1 and 2, 

from equations 2.61a,b, into equation 2.62, we obtain: 

��1  � � �ÁÒË)Õ ! #1 � F% �ÁÒË)ÕÕ     (2.63) 

Dividing both sides through by ��1  then gives us: 
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�ÁÒË�ÁÒË ≅ �)ËØØ � �)ÙÚ � � �)Õ ! #1 � F% �)ÕÕ   (2.64) 

With a bit of tidying, we then have the effective dielectric constant of a 

subwavelength grating for TM polarised light as being: 

����� � ��Ð�� ! #1 � F%�ÐÐ��    (2.65) 

We know from earlier in the chapter than 9 � √��, so we can then obtain the effective 

refractive indices for TE and TM polarisations by taking the square root of equations 

2.60 and 2.65 to give us: 

9�n � 3�9Ð� ! #1 � �%9ÐÐ�     (2.66a) 

9�� � �
Û ÜÀÕ.		t		#�¡Ü%ÀÕÕ.

	     (2.66b) 

where F is simply the filling factor (the ratio between width of the grating teeth and 

gap) and 9Ð, 9ÐÐ are the refractive indices of the air and substrate, respectively.  

As an example, with reference to the application of SWGs in Chapter 4, we 

have a substrate of silicon (9ÐÐ � 9ÝÞ � 3.418) and use a wavelength of 300μm 

(corresponding to a frequency of 1THz). Putting these values into equation 2.53 gives 

us a periodicity of 87.7μm, and so with the constraint that the periodicity must be 

less than this value a grating period of 86μm was chosen. Keeping the filling fraction 

as 0.5 for ease of use, we obtain values for the refractive indices parallel and 

perpendicular to the grating, with 9�n = 2.52 and 9�� = 1.36, and an index 
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difference of Δ9Ï��¹ = 1.16, which is approximately ~7 times the refractive index 

difference for calcite (albeit at a different wavelength). Again, if we choose a value 

of phase such that the SWG functions as a half-wave plate (∆Φ = �), then putting 

this value and the value for Δ9Ï��¹ into equation 2.54 we obtain a grating depth, h, 

of: 

ℎ = ¦
�à

∆áÙÅ¡ÙÚ
Ä/Øâ*Â

= ¦
�×�.�ã ≈ 0.4L   (2.67) 

and using our previous choice of wavelength of 300μm we have ℎ ≈ 129��. It is clear 

that such a grating does indeed function in the subwavelength regime, and therefore 

can be treated as an effective homogeneous medium.  
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 Excitations at Metal-Dielectric boundaries 

 Dispersion 

If we refer back to section 2.1, we have the modified macroscopic Maxwell 

Equations. Now, considering the case for nonmagnetic, electrically-neutral media, we 

can set the magnetisation M and free charge density ρ to zero. The general wave 

equation which governs the Maxwell equations containing terms of polarisation P 

and current density J is then given by: 

"�� ! �
0.

�.�
� . = ��	

�.§
� . � �	

�	(� 	   (2.68) 

 

where the terms on the right hand side are of great importance. The term in P relates 

to the polarisation charges in a medium, whilst the term in J relates to the conduction 

charges in a medium. In non-conducting media, it is the polarisation term P which 

is dominant, and plays a key role in the explanation of physical properties such as 

dispersion and absorption, whilst for conducting media it is now the current density 

J which is the dominant factor, and explains the high absorption and large opacity 

of metals. 

 We now look more closely at dielectric media, which are nonconducting. In 

these, electrons are not free but bound to the constituent atoms of the medium 

without preferential direction (isotropic), such as glass. If we assume that each of 

these bound electrons, with a charge of -e, can be displaced from its equilibrium 
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position by a distance r, then the resulting macroscopic polarisation, given by P, for 

such a medium is simply: 

§ = �äH?     (2.69) 

with N is the electron density (number of electrons per unit volume). If we now 

assume that the displacement of these electrons is driven by an external (static) field 

E, then the force equation is given by: 

�H� = å?     (2.59) 

(where K is the force constant) and substituting equation 2.59 into 2.58, we obtain 

the static polarisation: 

§ = æ .
ç      (2.60) 

This expression is only valid for static electric fields, however, so for an electric field 

which varies in time we must modify equation 2.59 to give the differential equation 

of motion as: 

�H� = � ¥.?¥ . ! �è ¥?¥ ! å?    (2.61) 

where the term in �è corresponds to a frictional-damping force, which is related to 

the velocity of the electrons and arises from electron-ion collisions. If we now assume 

that the applied electric field is harmonic and oscillates in time with a form H�;I  
then by employing the simplification of derivatives in equations 2.22, we simply 

extract the term in ω and equation 2.61 reduces to: 
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�H� = #��F� � =F�è ! å%?    (2.62) 

Substituting this into the original expression for polarisation in equation 2.58, we 

have: 

§ = æ . ¹éI+.�I.�;Iê�     (2.63) 

where we have set F	 = 3ë �⁄ , which is the effective frequency of the electrons that 

are bound. Equation 2.63 is simply analogous to the equation for a driven harmonic 

oscillator, for which the solution is described by a Lorentzian resonance, and therefore 

the result will provide some type of resonance condition corresponding to the intrinsic 

resonance frequency F	 – this is intuitive from the bound electrons being elastically 

driven about an equilibrium point.  

 If we now substitute equation 2.63 back into the wave equation in 2.57, and 

removing the term in J due to the medium being dielectric, we can then see that a 

solution of this is: 

� = 	�aH;#rì s�I %    (2.64) 

and substitution of this into the wave equation yields us with an expression for the 

wavevector Jì: 
Jì� = I.

0. &1 ! æ .
¹)+ ∙ �I+.�I.�;Iê'   (2.65) 

The presence of i in the denominator implies that Jì is a complex function, and can 

be represented by  
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Jì = J′ ! =J′′     (2.66) 

and is directly translatable to writing a complex refractive index: 

9î = 9 ! =ï     (2.67) 

where we use that Jì = 9îF/2. This gives us a general expression for the oscillating 

harmonic electric field in 2.64 as: 

� = 	�aH;#rðs�I %H�rððs    (2.68) 

Where the exp(�J��S) term implies that the wave is physically decaying in amplitude 

with increasing distance into the medium, and is explained through the process of 

absorption of the applied electromagnetic wave.   

 Plasmons 

 Bulk Plasmons 

We now look at a similar case for metals, where now it is the J term which 

dominates, and we can ignore the polarisation P. In a similar manner, we derive the 

differential equation of motion for the conduction electrons as: 

�H� = ¹ñ ò ! � ¥ò¥      (2.69) 

where the velocity of the electron is v. The new frictional constant is given by m/τ, 

and relates to the static conductivity (where the static conductivity is σ in J = σE). 

We set the current density as J = �äHò, and consequently can present equation 2.69 
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in terms of J rather than ò. Solving this J formalism of equation 2.69 for a static 

electric field (and therefore, a static J from J = σE; hence, no term in dJ/dt), we 

obtain the expression: 

J= æ .

¹ ó�      (2.70) 

thereby giving us ô = (äH2/�)ó. If we now presume that both the electric field (and 

current density) have harmonic time dependence of H�;I , then we arrive at the result 

(without explicit derivation) that: 

J= õ
��;Iñ �     (2.71) 

Again, substituting this into the general wave equation in 2.57, we obtain a complex 

solution for Jì given by: 

Jì � ≈ =F�	ô     (2.72) 

(where we have assumed an approximation for dealing with very low frequencies). In 

its complex form, we have Jì = (1 ! =%3F�	ô 2⁄ , and the real and imaginary parts of 

Jì are equal, such that J� ≈ J�� ≈ 3F�	ô 2⁄ . (Similarly, for the complex refractive 

index 9î we have 9 ≈ ï ≈ 3ô 2F�	⁄ .) We now introduce the concept of the skin depth, 

which is defined as £ = 1 J�� =⁄ 32 F�	ô⁄ = 3L	 2��	ô⁄ , where L	 is simply the free 

space wavelength of the incident electric field. For a high conductivity, which infers 

a good conductor, we obtain a high absorbance, J��, such that the inverse leads to a 
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small skin depth £; this result is concurrent with the everyday intuitive experience 

of metals being highly opaque. 

 If we don’t assume the approximation for low frequencies (in equation 2.72), 

and using the relationship Jì = 9îF/2, we express the complex squared refractive index 

as: 

9î� = �̃ = 1 � I÷.
I.t;Iê     (2.73) 

This is a very important result, namely the dielectric function of a metal, and is well 

known as the Drude Model, which relates the complex permittivity of a medium to 

its plasma frequency, F�, and its damping, è, dependent upon the frequency of the 

incident light (where  è = ó��, and F� = 3äH� ��	⁄ = 3�	ôè2� is the intrinsic 

plasma frequency of the medium). The plasma frequency is the term used to describe 

the free conduction electrons as being akin to a plasma. For realistic modelling of 

metals, such as gold and silver (widely used in plasmonic systems) the Drude model 

must be modified to: 

�̃ = �ø � I÷.
I.t;Iê     (2.74) 

where the term in �ø is a constant, akin to a ‘bias’, depending on the metal 

investigated, in order to provide the correct offset; this is due to the highly polarised 

environment of the bound electrons P (which was previously neglected).  
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If we continue looking at ideal metals (i.e. no term in �ø) and for large 

frequencies, for which the damping term is negligible such that F ≫ è, then we can 

simplify equation 2.73 to being: 

� = 1 � I÷.
I.       (2.75) 

due to the fact that the term in =Fè will be negligibly small compared to F� (where 

we omit the tilde to signify that the quantities are no longer complex). Using the 

knowledge that we can relate J, 9, and � as being: 

 J� = /.I.
0. = )I.

0.      (2.76) 

and substitution of 2.75 into 2.76, we obtain the dispersion relation of such a bulk 

metal, at large frequencies, giving us: 

F� = F�� ! 2�J�     (2.77) 

We can intuitively see that the relationship between F and J is offset by the term in 

F�, and by plotting a graph of F F�⁄  against 2J F�⁄ , as shown below in Figure 2.4, 

it is clear that there are no propagating electromagnetic waves inside a metal for F <
F� which confirms the phenomenon of metals being opaque for low frequencies. An 

important conclusion can be shown for the case where F = F� such that �úF�û = 0 

for equation 2.75.  As derived in  [47]  there will then exist a solution to the wave- 

equation for which the vector product ü ∙ � ≠ 0 (where this dot product is typically 

zero for transverse electromagnetic waves), and is satisfied by  �#ü, F) = 0. This is



Chapter 2 Fundamental Concepts and Background 51 

51 

 

equivalent to the existence of a longitudinal mode for the collective free electron 

plasma resonance, which have quantised modes referred to as Bulk Plasmons. These 

modes are longitudinal, and hence cannot couple to incident transverse 

electromagnetic waves, as illustrated by the fact that the metal dispersion curve in 

Figure 2.4 never crosses the dispersion for electromagnetic waves in free space (light 

line). For the sake of this thesis, bulk plasmons will not be explained in any greater 

depth; the reader can find further information on these in [47].  

 
Figure 2.4: Dispersion relation of metals with a free-electron 

gas/plasma described by the Drude Model [47] 

The relationship between	F and 	J as given in Eq. 2.77 - It is not possible for 

electromagnetic waves to propagate through a metal in the frequency regime 

of	F < F�, therefore implying strong opacity and reflection at the metal 

surface for low frequencies. Additionally, because the dispersion curve and 

light line do not cross, it is not possible to directly couple propagating 

electromagnetic radiation to excite a Bulk Plasmon. 
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  Surface Plasmon Polaritons 

We now investigate the phenomenon of a Surface Plasmon, or Surface 

Plasmon Polariton (SPP), which is a mode that arises when the k-vector is matched 

on the boundary between a metal and dielectric, and a propagating surface wave is 

produced. Using Maxwell’s equations from earlier in the chapter, and equating 

boundary conditions between a dielectric and metal (such that the tangential 

components of E and H are continuous and equal), we arrive at the dispersion 

relation (without rigorous derivation, further details can be found in [47]) between 

the permittivities of the metal/dielectric and the wavevector parallel to the boundary 

as: 

r�)� ! r.). = 0      (2.78) 

where the terms in J; (i=1,2 corresponding to either media) correspond to the 

wavevector perpendicular to the 2D metal-dielectric boundary, and is the real 

physical decay of the electromagnetic wave away from the boundary. Now, an 

additional equation linking the wavevectors and permittivities is obtained from the 

wave equation in both the metal and dielectric medium, which gives us: 

J;� = Jj� � J	��;     (2.79) 

where we label Jj as being the wavevector parallel to the boundary (so in-plane) and 

J	 = F 2⁄  is the wavevector of the impinging free-space wave. Upon combining 
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equations 2.78 and 2.79 (and with a lengthy algebraic derivation), we obtain the 

dispersion relation of a surface plasmon polariton as given below: 

Jj = J	þ )Â)�)Ât)�
     (2.80) 

where we now use the subscripts m and d to signify the metal and dielectric 

permittivities respectively. We can obtain the associated surface plasmon wavelength 

by using L�� = 2� Jj⁄ . This result is only valid for light which is TM polarised; SPP’s 

can only be excited by TM polarisation and not TE polarisation, due to the fact that 

TM polarisation has a component of its electric field parallel to a component of the 

incident k-vector (both of these components are tangent to the boundary) allowing 

longitudinal wave excitation where k ∙ å ≠ 0, and also has a component 

perpendicular to the boundary between the metal and dielectric –which is necessary 

for the excitation of charges having fields extending into either media – and thus 

supply the necessary dispersion conditions to excite a plasmon. The dispersion curve, 

F vs Jj, for an SPP is given below in Figure 2.5. For small frequencies, 

corresponding to small Jj, the dispersion curve is relatively linear. However, for much 

larger values of Jj the response is asymptotic; this result is achieved by substitution 

of equation 2.75 into 2.80, and by setting the dielectric medium to have a refractive 

index of n=1 (hence, �¥ = 1) we see that the dispersion  

tends to F = F� √2⁄  (where more generally it is given as F = F� 31 ! �¥⁄ ). This is 

shown by the blue dotted line in Figure 2.5. 
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 It can be seen from Figure 2.5 that the SPP dispersion does not cross the light 

line for air/vacuum (given by the black dashed line). This infers that it is not possible 

to directly couple free space light into a metal to excite an SPP. To this end, we 

must use a dielectric with a refractive index greater than 1 in order to provide the 

necessary matching conditions between the wavevectors along the boundary, as 

demonstrated by the red dashed line corresponding to the modification of incident 

light when a dielectric of glass is used next to the metal. This is the typical method  

 
Figure 2.5: Dispersion curves of both bulk and surface 

plasmon polariton modes (figure modified from [47]) 

The dispersion for bulk, given in equation 2.77, is above the light line, whilst 

the surface plasmon polariton dispersion, given in equation 2.80, lies below 

the light line. This SPP dispersion is relatively linear at small frequencies 

(small Jj), whilst at much larger Jj tends to the asymptote of F� √2⁄  (given 

by the dotted blue line). It is forbidden to couple free space light into a bulk 

plasmon; however, it is possible to couple light into an SPP due to the fact 

that we can obtain a ‘crossing’ point for a modified light line. This is achieved 

by using a dielectric with an �¥ µ 1 (such as glass), where the red dashed line 

signifies the modification of propagating light and the allowed coupling. 
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used to investigate SPPs directly, for which the most popular setup is that of the 

Kretschmann configuration [48], where a thin metal film is deposited onto a glass 

prism, and the dispersion relation plotted dependent upon the angle of incidence 

(which in turn affects the amount of light with wavevector parallel to the boundary). 

More information on surface plasmon polariton coupling and experimental procedures 

can be found in references [47–50]. 

 Localised Surface Plasmon Resonance 

We have investigated the phenomenon of surface plasmon polaritons, which are 

propagating collective oscillations of the electrons at the boundary between a 

dielectric and metal. In this regime, it is assumed that the boundary is that between 

semi-infinite bulk media; however, this does not hold true when we deal with metallic 

particles which are sub-wavelength in size. This is due to the fact that for such 

particles, much smaller in comparison to the wavelength, upon illumination of an 

oscillating harmonic electromagnetic wave the phase is considered to be constant over 

the particle. This is referred to as the quasi-static approximation and we can assume 

that the particle is in a static electric field. 

In the simplest case, we deal with isotropic and homogeneous sub-wavelength 

spherical nanoparticles, having a radius of ±  (where ± ≪ L) and relative permittivity 

of ��, which are placed into a static electric field and surrounding medium of 
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permittivity �¥. One can then solve for the electric dipole moment of such a particle, 

as outlined in [47], yielding: 

� = 4��¥�	±¯ )Á�)�)Át�)��     (2.81) 

If we use the fact that the dipole moment can be expressed as � = �¥�	��, we 

describe the term � as being the polarisability of the sphere, given by 

� = 4�±¯ )Á�)�
)Át�)�     (2.82) 

It can be realised that when the denominator of equation 2.82 tends to zero the value 

of the polarisability �, and hence the dipole moment �, tends to infinity; this 

corresponds to a strong absorption of the incident electromagnetic radiation and 

results in a resonance condition. This is explained in a similar means to the case for 

surface plasmon resonance, except that now the localised collection of the free 

electrons are affected by the (mostly curved) geometry of such small structures; this 

allows direct excitation of the electrons about the fixed ionic cores without the special 

requirement for wavevector matching as for SPPs. We term these local oscillations 

as Localised Surface Plasmons (LSPs). The condition for resonance is satisfied when 

�HY��Z = �2�¥ and the denominator tends to zero (or in the case for real metals, 

when this value is a minimum). This is called the Fröhlich condition, and upon 

equating the permittivities with that for a metal described by equation 2.75 we obtain 

that the resonance frequency of an LSP is F = F� √3⁄  where the surrounding 

dielectric media is chosen to be vacuum/air (�¥ = 1). Another noticeable observation 
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from the Fröhlich condition of �HY��Z = �2�¥ and also equation 2.75, is that the 

dielectric medium in which the small nanoparticle is present has a strong influence 

upon its resonance frequency; an increase in the dielectric constant (or alternatively 

the refractive index) will lead to a red-shift of the LSP resonant frequency (red-shift 

implies an increase in wavelength, decrease in frequency). This is a profound result 

and is the reason that LSP systems have great applicability for sensing refractive 

index changes of the surrounding media. Additionally, in the derivation leading to 

equation 2.81 (from [47]) it can be seen that the electric field is simply the negative 

gradient of the potential. This infers that the electric field is also resonantly 

dependent upon the Fröhlich condition and therefore results in strong electric field 

enhancement within and outside the subwavelength particle, which also has 

interesting applications. 

In the case for most metamaterials and plasmonics applications, spherical 

particles are rarely used due to their symmetric, and therefore isotropic, response to 

incident light and are undesirable as most metamaterials often rely on polarisation 

induced phase and amplitude effects. Instead, we look at the case for subwavelength 

ellipsoidal particles that have three distinct axis dimensions, which we can label ±j, 

±m, ±s along the x-, y-, and z-axis directions, respectively. The modification of the 

nanoparticle geometry leads to a change of the polarisability [51] to: 

�; = 4�±�±�±¯
)(I)�)�

¯)�t¯��()(I)�)�)   (2.83) 
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The substrate = corresponds to the specific ellipsoid axis (= = 1,2,3 or x,y,z), �¥ is the 

dielectric constant of the surrounding media, �(F) is the frequency dependent 

dielectric function of the particle (presumed metallic; previously labelled �� for when 

the particle only had size a), and �; is a geometrical factor used to describe the 

fraction of a principal axis compared to the other two, such that: 

�; = ���.��
� � ¥�

ú��
.t�û Ï(�)

ø
	     (2.84) 

where � is simply a dummy variable, where we have: 

V(�) = 3(±�
� ! �)(±�

� ! �)(±¯
� ! �)    (2.85) 

∑�; = 1     (2.86) 

For the case of a sphere, we see that �� = �� = �¯ = 1 3é , and ±� = ±� = ±¯ = ±, 

which results in equation 2.83 simplifying to that of 2.82, due to the polarisabilities 

�� = �� = �¯ = �. 

Another notable difference between these subwavelength particles, exhibiting 

localised electron responses, and bulk surface modes is the fact that these particles 

also exhibit resonantly enhanced scattering (and absorption) properties. From the 

polarisability, we can obtain the scattering and absorption cross-sections, 
�0� and 


���, respectively, given by the following equations (for spherical particles): 


�0� = r�
ã¤ |�|� = 6¤

¯ J�±ã  )Á�)�
)Át�)��

�
    (2.87) 
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���

= J z�|�| = 4�J±¯  )Á�)�
)Át�)��    (2.88) 

Due to the fact that the cross sections are dependent upon the size of the particles, 

±, arising from the polarisability, and the fact that they are very small (such that 

± ≪ L) we can deduce that the absorption (scaling with ±¯) is dominant over the 

scattering (scaling with ±ã). It is apparent that the absorption cross section presents 

the relationship 
�Á��

r = 
��� L ∝ ±¯, and therefore the resonance wavelength of a 

nanoparticle is determined by its size and thus will red-shift for increasing particle 

sizes. In the case for ellipsoidal particles, the equations 2.87 and 2.88 are modified 

only through their polarisability. Interestingly, there then exist three distinct 

equations each for the absorption and scattering cross sections (due to � → �;), which 

leads to a splitting of the resonance and in turn implies different resonant frequency 

conditions for each axis. However, it is still a constraint that the particle dimensions 

are subwavelength (±�, ±�, ±¯ ≪ L). This shows promise for light which is normally 

incident onto such an ellipsoid, where the direction of the polarisation (and also the 

frequency) determines which of the resonances will be excited – many applications of 

such multi-resonance structures have been realised, with a large focus upon nanorods 

for geometric phase metasurfaces, as explained in the next section.  
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 Geometric Phase 

 Poincaré Sphere 

We saw at the start of this chapter that light can have well defined 

directionality of its orthogonal fields, namely polarisation. In this, we derived the 

general formula for polarisation as being akin to that of the equation for an ellipse, 

and so it is termed the polarisation ellipse. It is all well and good to use mathematical 

models to describe the polarisation of light, but of course with many things it is much 

better to be able to visualise such polarisation states. 

In the late 19th century, Henri Poincaré developed a concept for which any 

polarisation of light can be represented geometrically on the surface of a sphere, 

termed the Poincaré Sphere. A schematic representation of this is shown below in 

Figure 2.6. The north and south poles correspond to Circularly polarised light, the 

equator corresponds to linearly polarised light (with x and y polarisations situated 

opposite) and any point between the poles and equator correspond to elliptically 

polarised light.  

This visualisation is particularly useful when dealing with optical devices, for 

which a wave propagates through any number of these – each altering the polarisation 

state – and therefore traces out a path on the Poincaré sphere. For small changes of 

polarisation, the points situated on the sphere will remain close. If a beam of light 

experiences a change in polarisation state, then, because each point corresponds to a 
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state, an arc or path between two points implies a continuous polarisation state 

evolution and is considered to be slowly-varying and hence adiabatic. 

The Poincaré sphere is closely linked to the Jones vector/matrix formalism: 

because the Poincaré sphere is a 3D object, yet Jones vectors are 2D, the 

correspondence is because the surface of the Poincaré sphere is the only place that a 

polarisation state is defined – a state cannot exist within the sphere – and therefore 

the 2D surface of the Poincaré sphere is described well by Jones vectors.  

 Pancharatnam-Berry Phase 

Along with typical and well-understood methods used to control the phase, 

amplitude, and polarisation of light, one such fundamental property related to the 

polarisation state and phase of light was discovered in the 1950’s by Pancharatnam 

 

Figure 2.6: Visual illustration of the Poincaré Sphere for 

representing polarisation states of light [52] 
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[53]. This remarkable work summarised that the cyclic path taken around the 

Poincaré sphere by a polarised light beam, upon undergoing changes in its 

polarisation and returning to the original polarisation state, has an associated phase-

change, which, surprisingly, is not zero but is in fact equal to half of the area enclosed 

by this cyclic-path, namely the solid-angle. This seminal work was further expanded 

to a quantum mechanical description by Michael Berry [54] which showed that this 

associated optical phase accumulation is analogous to the Aharonov-Bohm effect [55] 

experienced by electron beams which ‘sense’ the magnetic vector potential when 

passing through two slits separated by a solenoid – even when there exists no net 

magnetic field outside of this solenoid – and is proportional to the magnetic flux 

enclosed. These two concepts are grouped together, known as either Geometric phase 

or Pancharatnam-Berry phase effects, due to the frequency-independent and 

geometric nature of the phases involved and the similarity between the works by 

Pancharatnam and Berry, respectively. In the context of this thesis, where the 

phenomena and operation of metasurfaces are described using a classical formalism, 

I will not cover the quantum description of Berry Phase in relation to the geometrical 

phase (which is necessary for the description of quantum mechanical phenomena, 

such as the Aharonov-Bohm effect), and will instead explain the result of 

Pancharatnam in terms of classical geometry and Jones matrix representations of 

polarisation; a very insightful review letter by Michael Berry on the result of 

Pancharatnam and the relation to quantum mechanical systems can be found in [56]. 
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The seminal work published by Pancharatnam in 1956 [53] uncovered an 

amazing link between the polarisation state of light and the resultant phase 

accumulation. This explained that the phase acquired by a cyclic change of 

polarisation state of a light beam (where cyclic implies that the start and finish 

‘states’ are the same polarisation) is not zero, and cannot be cancelled out through 

means of gauge-transformations. If this cyclic path was chosen to be that of a geodesic 

triangle upon the Poincaré sphere, with the initial and final polarisation states being 

on the ‘North-pole’ corresponding to RCP (or LCP, depending on convention), and 

the other two states being elsewhere (but not overlapping) then the difference of the 

phase induced in the final polarisation state compared to the initial phase is given in 

terms of half of the solid angle of the triangle, namely the area, which is simply: 

·���ð = H�;����.      (2.89) 

with the subscripts = = (�,�,
,�′) in ·; and Ω; corresponding to the states of the 

polarisation (with states � and �′ being the same state, albeit with a phase difference) 

such that ·���ð implies the phase difference between states A and A′  (which are the 

same polarisation state) and Ω��� is the solid angle/area of the spherical triangle 

with vertices of states A � B � C � A′. From this, we can see that the only term 

which ‘matters’ is the term in Ω��� and so we can define the phase factor as being 

Ω��� 2é , which is the actual solid angle divided by two. 
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This result arises from the fact that the surface of the Poincaré sphere is indeed 

curved and not flat, and leads to a modification of a polarisation vector after 

traversing along a closed path such that the polarisation state is the same but has 

undergone a phase modification: One intuitive explanation of the factor of ½ for the 

phase is due to the fact that the real space angle θ corresponds to an angle of 2θ on 

the Poincaré sphere. If we refer back to Figure 2.6 we see that the north and south 

poles correspond to Right and Left circular polarisation states, respectively. These 

form an orthonormal set, as we consider Right and Left polarisations as being 

orthogonal to each other, and it is therefore intuitive to use these states as the basis 

for which to describe all other polarisation states. We can describe an arbitrary 

superposed wave, with equal amplitudes in the Right and Left bases, as [57]: 

� = cos &�
�' Ĥ� ! sin &�

�' H;¾Ĥ�   (2.90) 

Where Ĥ; corresponds to the basis vector (Right or Left), and �, · are the polar 

coordinates of a sphere. We can see that this is true if we choose some angles and 

investigate the corresponding polarisation state: if we use � = 0, then equation 2.90 

amounts to � = Ĥ�, which is simply the state of the north pole being RCP; for � = � 

equation 2.90 amounts to � = Ĥ� (where we ignore the term in · as this is only 

important for comparing the phase difference between the right and left states); � =

�/2 conforms to the equator of the Poincaré sphere, corresponding to linear 

polarisations, where · = 0, � correspond to x- and y- polarised light, respectively, 
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and confirms the fact that linearly polarised light is simply a superposition of 

orthogonally circularly polarised light states with different phases (and vice versa); 

and lastly, for arbitrary �, · (not on the poles or equator) it corresponds to elliptically 

polarised light.  

 A question we must ask ourselves, as did Pancharatnam, was “how do we 

define if two beams of light in different polarisation states are in phase with one 

another?” We know, of course, that when two beams are in phase in the same 

polarisation state they result in an interference maximum. Similarly, Pancharatnam 

defined that two beams in different states should be interfered and are said to be in 

phase when the resultant signal is the maximum. This definition is termed the 

“Pancharatnam Connection” (by Berry in [54]), and is represented by the equation: 

(�� ! ��)∗ ∙ (�� ! ��) = 2 ! 2�H(��
∗ ∙ ��)  (2.91) 

where the terms in �; are identical to the equation given in equation 2.90, except 

that now we must introduce a phase difference between the states 1 and 2, given by 

H�;� (with � simply being a phase value between – � and !�); we then express these 

states as: 

�� = cos &��
� ' Ĥ� ! sin &��

� ' H;¾� Ĥ�    (2.92a) 

�� = cos &�.
� ' Ĥ� ! sin &�.

� ' H;¾. Ĥ�� H�;�   (2.92b) 
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We must introduce orthonormality conditions for the basis vectors Ĥ�, Ĥ�, to satisfy 

the following: 

Ĥ�
∗ ∙ Ĥ� = Ĥ�

∗ ∙ Ĥ� = 1    (2.93a) 

Ĥ�∗ ∙ Ĥ� = Ĥ�
∗ ∙ Ĥ� = 0    (2.93b) 

Upon examination of equation 2.91, it is clear that the dot product between ��
∗ and 

�� may have terms which are imaginary (for an arbitrary state) and may also have 

the special case of being equal to zero. Due to this, we must also impose the following 

lemma such that the ‘in-phase’ explanation by Pancharatnam holds true, where we 

require: 

�H(��
∗ ∙ ��) > 0     (2.94a) 

z�(��
∗ ∙ ��) = 0     (2.94b) 

Upon substitution of equations 2.92 into the above constraint equations, we obtain 

two unique solutions for the phase difference �. 

 We show how this is beneficial, and indeed the key result of Pancharatnam, 

by presenting three polarisation states A, B, C. We impose that state B is in phase 

with A, state C is in phase with B, and a state, identical in polarisation to A, labelled 

A’ is in phase with C; however, this argument is dependent upon the fact that state 

C need not be in phase with A, but instead A’ – therefore, state A and A’, although 

occupying the same ‘point’ on the Poincaré sphere (and hence being identical states), 

are not in phase with each other. These three states trace the outline of a triangle on 
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the Poincaré sphere surface (also called a geodesic triangle). For simplicity, without 

loss of generality, we can choose that state A corresponds to the north-pole of the 

Poincaré sphere, namely RCP. We choose state B to coincide with a state on the 

prime meridian geodesic line of longitude (where the prime meridian is for azimuthal 

angle · = 0, and we set this coinciding with x-polarised light on the equator) with 

some angle � = ��, and a phase retardation compared to state A being H�;��. State 

C is then an arbitrary state, given by angles � = ��, · = ·�, and phase retardation 

compared to state B (which itself is with respect to state A) as being H�;(��t��). As 

was said before, state C is in phase with state A’ and not state A, where we assign  

the phase difference of state A’ compared to state A as being H�;��ð . These three 

equations are represented in Figure 2.7 and are then given as the following:  

�$ = Ĥ�     (2.95a) 

�� = cos &��
� ' Ĥ� ! sin &��

� ' H;(¾��	)Ĥ�� H�;��  (2.95b) 

� = cos &��
� ' Ĥ� ! sin &��

� ' H;¾� Ĥ�� H�;(��t��)  (2.95c) 

�$ð = H�;�$ð Ĥ�    (2.95d) 

We now substitute concurrent pairs of these (AB, BC, CA’) into the constraint 

equations given in equations 2.94a,b, and we obtain the following final result (for 

BC) as being: 

tan �� = tan ��ð = �Þ#¾� �Þ#&$�. ' �Þ#&$�. '
���&$�. ' ���&$�. 't��� ¾� �Þ#&$�. ' �Þ#&$�. '

  (2.96) 
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where we have labelled the phase term of �� = ��ð from the previous explanation of  

state C being in phase with state A’. This result tells us that the phase redardation 

��ð, which is the phase accumulated from the cyclic polarisation state evolution from 

A to A’, is directly proportional to the angles subtended by the three polarisation 

states A,B, and C. However, we cannot directly assume this is correct and equal to 

the area of this triangle. There is a fundamentally derived equation to obtain the 

area of such a spherical triangle in terms of unit vectors centred at the centre of a 

sphere of unit radius, given by [58]: 

tan(Ω 2⁄ ) = |%∙&×'|
�t&∙'t'∙%t%∙&    (2.97) 

 

Figure 2.7: Three distinct polarisation states A,B,C on the  

Poincaré sphere (image from [57]) 
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Where Ω is the area of the spherical triangle (or the “spherical excess”), and %, &, ' 

are the unit vectors from the centre of the sphere to the triangle vertices, given by 

% = (0,0,1) , & = (sin �� , 0, cos ��), ' = (sin �� cos ·� , sin �� sin ·� , cos ��). 

Substitution of these vectors into equation 2.97 yields: 

tan(Ω 2⁄ ) = �Þ#¾� �Þ#�� �Þ#��
(�t��� ��)(�t��� ��)t��� ¾� �Þ#�� �Þ#��

  (2.98) 

It can then be proved that we then have that Ω 2⁄ = ��ð, by some mathematical 

trickery and trigonometric/algebraic juggling (as advised in ref [57]) by multiplying 

both the numerator and denominator of equation 2.96 by 4 cos &��
� ' cos &��

� ' to 

convert the half-angles to whole angles. Many experimental works on this have 

proven it to be true [53,59,60] and is accounted for in setups where time-variant 

systems make use of many polarisers. 

 One small disadvantage of these optical setups to achieve Pancharatnam’s 

geometric phase is that they (typically) involve the use of polarisers to produce such 

a cyclic path on the Poincaré sphere, and therefore involve large experimental setups. 

These setups are space-invariant, and depend upon the propagation of the light 

beams through optical elements to invoke a polarisation state change. In the works 

by Hasman [37–39,60–63], though, a planar approach is utilised to control the local 

polarisation state of a beam when encountering a transversely inhomogeneous surface 

composed of polarising elements. These works make use of the fact that such a device, 

which is spatially-varying in-plane, induces local polarisation elements to perturb the 
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wavefront of the light. Such an effect occurs when an incident CP wave encounters 

the optical elements, rotated at some angle with respect to the linear basis, that 

behave as linear polarisers and thus have corresponding polarisation states lying on 

the equator (linear polarisation). These beams can then either be transmitted with 

the same CP handedness, or be flipped to the opposite handedness. It is those that 

are flipped which obtain a geometric phase of the form: 

· = ±2�      (2.99) 

Where the � in this equation is simply the difference in the rotation angle between 

the linearly polarising elements of the inhomogeneous planar device (metasurface) 

with respect to a chosen linear basis (normally the x-axis), and the +/- signs are due 

to the fact that the incident light can be either Right or Left polarised, respectively; 

one handedness will result in an opposite sign of the acquired phase compared to the 

orthogonal handedness - This can be shown in Figure 2.8 (from [64]). The geometric 

phase arises from the fact that the incident CP light, upon encountering such angled 

linearly polarising elements, will traverse different paths on the Poincaré sphere (as 

shown by the paths �( and �) in Figure 2.9) and arrive at the opposite handedness of 

light, thus creating a closed path and producing a phase difference equivalent to 

twice the angular difference between the elements. It still holds, as with the classical 

description of the Pancharatnam phase, that the phase is equal to half of the area 

enclosed on the Poincaré sphere. As a trivial example, if we have two optical  
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elements, with an angle of � = � 4⁄  between them, then for an incident CP light 

beam we will have a phase difference of · = ±2� = ±2(� 4⁄  ) = ± � 2⁄ ; as a simple 

affirmation of this result, we can fix one of these elements as x-polarised on the 

equator, and the other will be shifted along the equator by � 2⁄  (corresponding to 

45° polarised). We know that the area of a sphere (of unit radius) is simply 4�, so a 

quarter of this is simply �, which, when using the result of Pancharatnam, gives us 

 

Figure 2.8: Representation of Geometric (Pancharatnam) 

phase introduced for space-varying angled elements [64] 

The optical elements have differing angles, and so act as mini linear 

polarising elements, thus providing inhomogeneity in the transverse 

(in-plane) directions. These elements result in a geometric phase 

acquisition due to the fact that CP light will traverse different paths 

on the Poincaré sphere, resulting in a geometric phase equal to twice 

the angular difference between the polarising elements. Equivalently, 

the phase is still exactly half of the area of the closed loop on the 

Poincaré sphere.  
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a phase of half of this area i.e. · = ±Ω 2⁄ = ±π 2⁄ , as calculated above. This 

surprisingly simple, yet powerful method, of acquiring phase has been utilised in 

many devices, especially in the developing field of metasurfaces [41,65–69], as all that 

is required to modify the phase of a wavefront is a simple rotation of the optical 

elements (e.g. rod antennas). This method of acquiring phase is dispersionless, and 

does not rely on the need for complex fabrication techniques. 
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 Generalised Law of Refraction 

One of the first optical problems encountered in the development of 

electromagnetism was that of the refraction of light at the boundary from one 

medium to another. The earliest recorded quantitative description of this 

phenomenon dates back to the 2nd century A.D. by the mathematician Claudius 

Ptolemy [70]. However, it wasn’t until the 17th century that the well-established and 

renowned “Snell’s Law” was officially discovered by Willebrord van Roijen Snell, 

which relates the angles of incidence and transmission of a beam of light with the 

refractive indices of the medium, and is given by:  

9� +=9 �� = 9� +=9 ��     (2.100) 

where subscripts 1,2 correspond to the incident and transmitted media. Although 

this equation was attributed credit to Snell, it was independently discovered by 

Descartes at around the same time (and the equation is thus alternatively known as 

Snell-Descartes Law). However, the physical interpretations of Descartes were not 

correct, and it was this that made Pierre de Fermat snub his reasoning and to derive 

this from first principles, using his idea that light is a wave and travels from one 

point to another by taking the least optical path [40,71]. By using the relationship 

that the speed of light in a vacuum compared with in a medium is related to the 

refractive index of the medium by 2 = 9;,;, it can be derived using Fermat’s principle 

to obtain Snell’s Law from geometries of triangles (shown below in Figure 2.9). 
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However, it was mentioned in Chapter 1 that recently seminal work carried out by 

Capasso [40] yielded anomalous refraction and reflection of light by the application 

of abrupt phase changes on the interface between two dielectric media. This was 

coined as the Generalised Snell’s Law, due to the fact that it included a term to 

describe the linear phase progression along an interface and that the traditional 

Snell’s law could be retrieved by simply setting this phase term to zero. 

Fermat’s principle additionally states that two (or any arbitrary number of) 

paths traversed by light, which lie an infinitesimal distance away from the actual 

path taken by light, between two media are equal in phase and constructively 

interfere. Shown in Figure 2.9 is a schematic which illustrates two paths taken by 

light travelling from point A to point B when crossing an interface between mediums 

1 and 2 (with refractive indices of ni and nt, respectively). If we treat the light as 

having a wavevector (in vacuum) of J	 then the wavevectors within medium 1 and 

2 are J	9; and J	9 , respectively. Traditionally, Snell’s law deals with isotropic media 

where the crossing point on the boundary between two media is identical in phase 

wherever a light ray crosses. However, we now have the capability to engineer abrupt 

phase changes on a boundary using metasurfaces which involve ultrathin antennas. 

This allows us to tailor the phase accumulated by light as a function of position, as 

is shown in Figure 2.9 by paths 1 and 2, which pass through points on the interface 

and acquiring phases of  q and q ! »q, respectively. These points are infinitesimally  
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separated by a distance of dx. We see that Path 1 differs to Path 2 by the extra 

distances H and L travelled in media 1 and 2, respectively, where S and D correspond 

to a fixed distance travelled by the wave in media 1 and 2, respectively. Therefore, 

the only terms which contribute to differences in phase travelled by light along Paths 

1 and 2 are H, L, q and q ! »q.  

We can calculate L trivially from using dx and the incident angle �; to give: 

� = sin �;  »M      (2.101) 

 

Figure 2.9: Geometric representation of Fermat’s ‘Principle 

of Least Optical Path’ for deriving Generalised Snell’s Law 

Light is proposed to travel the least optical path between the points A and 

B, where the . The beam of light must traverse the boundary between these 

two points at some crossing location O, which is allowed to move, such that 

the minimised time is least when utilising the differing velocities and distances 

travelled by the light rays. 
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Calculating H is a little more cumbersome – we see that the distances y and r are 

simply given as:  

Q = D cos �       (2.102) 

� = . sin �       (2.103) 

And therefore by using Pythagoras’ Theorem we have the following equation: 

(� ! .)� = (»M ! �)� ! (Q)�    (2.104) 

Where by substitution of y and r from equations 2.102-3 into the above gives us: 

(� ! .)� = (»M ! . sin � )� ! (D cos � )�    (2.105) 

�   �� ! .� ! 2�. = »M� ! .� sin� � ! 2. sin � »M ! D� cos� �      (2.106) 

We know that dx is infinitesimal, and therefore so is H (from the figure) so we can 

remove the squared terms in these two. Collecting like terms then gives us: 

.� ! 2�. = .� ! 2. sin � »M   (2.107) 

→           � = sin � »M    (2.108) 

It is known that the phase of a wave can be obtained by multiplying it’s wavevector 

by the distance traversed, which we now carry out (including the abrupt phase 

accumulations dependent on the crossing points of Path 1 and 2), and setting the 

total phase of each path as being equal due to the constraints of Fermat’s principle: 

Path 1    /J	9; ! q ! J	9 sin � »M ! .J	9   (2.109) 

Path 2  =  /J	9; ! J	9;  sin �; »M ! q ! »q ! .J	9     
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We can cancel like terms on both sides of the equation to give: 

J	9 sin � »M = J	9;  sin �; »M ! »q   (2.110) 

And with some shuffling, we then obtain the Generalised Snell’s Law as being: 

9 sin � � 9; sin �; = �
r+

¥u
¥j       (2.111a) 

9 sin � � 9; sin �; =  ¦
¥j

¥u
�¤   (2.111b) 

Where the left hand side is identical to the Classical Snell’s law, whilst the right hand 

side tells us that if the abrupt phase changes linearly with position along a boundary 

then an anomalously refracted beam will be produced. As a simple example of this, let 

us assume that light with a wavelength of λ is normally incident onto a phase gradient 

interface with a spacing of »M = L/8 and an abrupt phase shift of »q = �/4, then equation 

2.111b will simply reduce to: 

sin � =  �
/-

¦
(¦/6)

(¤/�)
�¤ = �

/-
∙ 8 ∙ �

6 = �
/-

   (2.112) 

If we assume that the substrate with refractive index of 9  is simply glass with an index 

of 1.5, then we find that the refracted angle of the normally incident light due to a phase 

gradient along the boundary is: 

� = sin�� & �
�.0' ≅ 42°    (2.113) 

This result is very profound, due to the fact that simply by controlling the abrupt phase 

discontinuities on the interface between two media we can tailor the angle of the refracted 
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beam which differs from that of the classical law of refraction (Snell’s law). We can 

then generalise this to control the abrupt phase in a non-linear way, which allows 

applications such as lensing, holography, and beam-shaping to be carried out. As a final 

note, if we look back at the Generalised Snell’s law (or Generalised Law of Refraction) in 

equation 2.111 and assume that there does not exist any abrupt phase changes in a 

system, such that 
¥u
¥j = 0, then the equation simply reduces back to the form of:  

9 sin � � 9;sin �; = 0    (2.114) 

which is just the classical Snell’s law of refraction between two isotropic media of 

refractive indices 9; and 9 . 
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Experimental Techniques 

In this chapter, I shall discuss the methods undertaken for fabricating and 

characterising the metasurfaces developed in later chapters of this thesis. The first 

part of this chapter (3.1) covers Fabrication, where topics such as photolithography, 

plasma etching, and metal evaporation will be explained. The second part of the 

chapter (3.2) touches on the methods of characterising the fabricated samples, such 

as surface structure and topography, through methods including optical microscopy 

and surface profilometry. The optical properties of Terahertz devices are probed using 

a Terahertz Time Domain Spectroscopy (THz-TDS) system, able to angularly resolve 

the refracted beams metamaterial samples and characterise the linearly polarised 

Jones Matrix components, which in turn can be used to retrieve the circularly 

polarised Jones Matrix information. 
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 Fabrication 

Fabricating metasurfaces involves a variety of techniques and methods. This 

section aims to explain some of these techniques, which were used to fabricate the 

metasurfaces detailed in the proceeding chapters of this thesis.  

 Sample Preparation 

An important step in the fabrication of samples is correct preparation of the 

substrate, and making sure that it is as clean as possible before anything else is done 

with it. A dirty substrate will not give the necessary accuracy of feature sizes and 

dimensions due to the sensitive nature of processes that take place; An example is 

the spinning of a photoresist on a silicon wafer, in which debris or impurities on the 

surface will cause unwanted ‘streaks’ and thickness variations of the resist leading to 

issues when patterning and developing. The following paragraph outlines the typical 

cleaning routine carried out for a silicon wafer substrate, although this can be applied 

to glass substrates also.  

The first step in cleaning a silicon wafer is using a nitrogen gun to remove 

visible dust and stray debris or particles on the surface, for obvious reasons. Once 

this is done, the wafer is placed into a glass beaker containing acetone, which is 

widely used for laboratory cleaning due to it being a good solvent and relatively safe, 

and then placed into an Ultrasonic Bath, shown in Figure 3.1, below. Acetone is used 
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as a solvent to dissolve and lift organic residues present on the surface, e.g. 

fingerprints, whilst the ultrasonic bath helps to speed up this process by agitation; 

this is typically carried out for 10 minutes. The wafer is then removed from the 

acetone and cleaned with De-Ionised (DI) water for at least 1 minute, and  is placed 

into a glass beaker with Isopropyl Alcohol (IPA) to remove any chemical residues 

left on the wafer surface from the acetone. Again, the beaker with IPA is placed into 

an ultrasonic bath for approximately 10 minutes, and then rinsed off with DI water 

for at least 1 minute. The wafer is then blown dry of water droplets with the nitrogen 

gun and placed onto a hotplate (see Figure 3.1, above) at a temperature of 120°C, 

which aids to completely evaporate any adsorbed water on the wafer surface. Finally, 

the wafer is removed from the hotplate, and then allowed to cool to room temperature 

before storing in a suitably sized wafer-carrier, and is then ready for fabrication.  

 

Figure 3.1: Overview of Hot-plate, Spin-coater and 

Ultrasonic Bath. 

The photo shows from left-to-right, respectively, the Hot-plate, the Spin-

Coater, and the Ultrasonic Bath, used in the preparation of samples for 

fabrication.  
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The prior routine is the typical process used when the quality of the sample 

surface is necessary for micron sized feature fabrication. However, if one wishes to 

achieve nanometre resolution features, or removing a particularly resilient resist, we 

must perform an additional cleaning process with so-called Piranha solution. This 

solution is a mixture of Sulphuric Acid (H2SO4) and Hydrogen Peroxide (H2O2), which 

undergoes an exothermic reaction when combined. This mixture is very strongly 

oxidising, and in conjunction with the exothermic nature, in which temperatures can 

exceed 100°C, it is extremely efficient at removing organic matter from substrate 

surfaces. Equal parts of H2SO4 and H2O2 are normally used, although different 

percentages are sometimes required for tough-to-remove organic matter (such as the 

photoresist SU8, which is covered later). Firstly, a small measure of sulphuric acid is 

added to a glass beaker (large enough to accommodate the aforementioned clean 

wafer), which for a 4” wafer is typically approximately 50ml. Then, making sure to 

use a separate measuring beaker, an equal amount of hydrogen peroxide is slowly 

added to the sulphuric acid. If this is done too quickly, there is a possible risk of 

explosion, due to the volatility of the (exothermic) chemical process and the sharp 

increase in temperature; the mixture is always made by adding the H2O2 to the H2SO4 

and never the other way around. Once all of the H2O2 is added to the H2SO4, a 

stopwatch is set to a time of 10 minutes, as a benchmark for the cleaning process, 

and the clean wafer carefully submerged. During the cleaning process, fuming may 

occur and so is carried out in a suitably well-ventilated fume-cupboard to prevent 
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hazardous gases being inhaled. Additionally, the process is carried out whilst wearing 

protective gear, including a double-layer of acrylic gloves and protective eye goggles. 

Once the wafer has undergone the 10 minutes of cleaning it is rinsed under DI water 

for at least 2 minutes to remove any piranha solution which may still be present. 

The wafer is then blown dry using a nitrogen gun, and baked on the hot plate to 

remove adsorbed water. 

 Photolithography 

Once we have our cleaned substrate, we can then perform the next step of 

fabrication, which for many cases is that of photolithography. Photolithography is a 

very useful fabrication technique whereby a ‘top-down’ approach to achieving 

micrometre (and larger) feature sizes on a substrate can be carried out quickly and 

in parallel. This is done by: coating a substrate with a light-sensitive polymeric 

solution called Photoresist; covering this with a patterned hard-mask; then exposing 

all of this with a light source (typically UV light) which causes a chemical reaction 

in the photoresist to take place. Upon developing, the photoresist is then 

characterised for the mask-pattern with only the desired patterned areas remaining 

and the rest of the photoresist being dissolved in the solution. This is carried out to 

either have the photoresist itself as the desired structure, or to partially protect the 

substrate surface to then lead on to (dry) etching or for lift off processes. A schematic 

diagram of this process is shown in Figure 3.2a, below. 
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Figure 3.2: Schematic of Photolithographic process 

(a)  A substrate which has been spun-coated with photoresist is exposed to 

UV light with a patterned-mask defining the desired exposure selectivity. 

Upon developing, a direct image of the mask is uncovered in the photoresist. 

(b) Dependent upon the type of resist used (either positive or negative tone) 

the resultant developed pattern can either exhibit a direct or inverse image 

of the mask.  

Photoresist is a light-sensitive polymeric solution, which undergoes a chemical 

reaction upon illumination of UV light. It consists of a mixture of photoactive 

monomers/polymers, solvent, sensitiser, and possible other additives. The polymers 

either polymerise, to form larger cross-linked molecules, or undergo chain-scission 

upon illumination of light; the solvent is used to allow spin-coating; and the sensitiser 

is to control the photoactivity of the polymer. Photoresists can either be Positive or 

Negative tone, where positive implies that the exposed areas become more soluble in 

a developer, whilst negative tone resists have their exposed areas become less soluble 

in a developer and remain after development (an example of both types of resist is 
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shown in Figure 3.2b). The photoresist is applied to the surface of the substrate 

(typically a clean, flat wafer) through the use of spin-coating. This is where the 

sample is affixed to a spin-coating machine, (as shown below in Figure 3.3) which is 

programmed to rotate at very high speeds (of the order of 100-4000 revolutions per 

minute), and pouring on a small amount of photoresist which then spreads evenly 

across the sample to create a flat uniform area. This is necessary to allow good 

contact to be made with a hard-mask. The spin-coating typically takes only a few 

minutes or less to perform, with cycles in the speed and acceleration taking place 

(increasing in speed, from low to high) to assure uniform spreading. The fastest of 

the spin speeds in these cycles determines the thickness of the resist, with higher 

speeds resulting in a thinner resist, and slower speeds resulting in a thicker resist; 

this is due to the centripetal force of the rotating substrate causing the liquid resist 

 

Figure 3.3: Close-up view of the SpincoaterTM  P6700 system 

The spin-coating system accommodates both 4” wafers and smaller substrates, 

with a built in vacuum suction feature to keep the substrate affixed whilst 

spinning.  
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on top to be forced outwards. Once the resist has been spun onto the substrate, it is 

then transferred to a hotplate to encourage evaporation of the solvent and a stronger 

adhesion to the substrate. This causes a solidification of the resist, which would 

otherwise be problematic for contact with the photomask if it were still viscous.  

Following the spin-coating, the resist is then required to be exposed to UV light 

in order to make it selectively-soluble, and have a desired pattern. This is done with 

the use of a photomask, which is inserted into a photomask aligner, as shown in Figure 

3.4. The photomask was designed through the use of AutocadTM software, where the 

exact dimensions and features can be accurately controlled. This design is then saved 

and sent for fabrication at an external company. A photomask typically consists of 

a thick, flat quartz square with the desired pattern printed onto one side using 

chromium.  Feature   sizes  can  be  as  small  as  2μm,   which   nears   the   limit  

Table 3.1:  The Procedure for Processing of SPR220-7.0 Photoresist 

Process Type RPM 
Spin Time 

(seconds) 

Ramp Time 

(seconds) 

Cycle 1 500 15 4 

Cycle 2 2500 45 5 

Prebake 105°C for 90 seconds 

Exposure 20 seconds @ 365nm (~300mJ/cm2) 

Development Agitation in MF-26A solution for ~ 2 minutes 
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of optical focussing where smaller feature sizes would cause diffraction effects. The 

mask aligner used was a Karl Suss MJB-3 Mask-Aligner, which operates at a 

wavelength of 365-405nm. The mask is affixed to the maskholder with the use of a 

vacuum seal (underside of the black platform circled in Figure 3.4 and inset), which 

surrounds the aperture used for exposing the sample beneath. Since the exposure 

aperture of the maskholder is of a finite size (the aperture is circular with a diameter 

of 40mm, as shown in the inset of Figure 3.4), it is required that the mask be designed  

in such a way that the desired pattern be contained within the area of this aperture.  

Figure 3.4: Photograph of the Karl Suss MJB-3 Mask Aligner 

The mask-aligner accommodates 100mm (4”) masks and has an exposure 

aperture of 40mm (labelled 1, inset), where the desired patterned region on 

the mask can be positioned. A sample of 30mm or smaller is placed beneath 

this aperture (on the red platform, inset 2), in contact with the mask, and is 

exposed to 365nm UV light. The inset shows where the mask and sample are 

placed, along with adjustment knobs. 
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Due to this, and the limited movement of the mask whilst fitted to the maskholder, 

it was required that the mask have 5 accessible regions – an example of a photomask 

with 5 regions, of different designs, is shown in Figure 3.5. These regions were all 

accessible through careful positioning of the mask to make sure the selected region 

was centred over the aperture, which involved rotating and translating the mask on 

the maskholder stage. When a region was selected and centred over the aperture the 

vacuum was activated such that the vacuum seal affixed the mask to the maskholder 

and rendered it unmovable. This is a necessity for photolithography, when even a  

 

Figure 3.5: Photograph of a photomask designed for use 

with the Karl Suss MJB-3 Mask Aligner 

This is a typical chrome-plated quartz mask used for photolithography in the 

MJB-3 mask-aligner. The mask size is 4”, and the 5 regions are approximately 

1 square-inch each. Only one side is coated with chromium to define the 

pattern. Inset: a close-up of patterned-region of the mask. 
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slight movement may cause misaligning the sample with the mask pattern, especially 

when dealing with the smallest feature sizes of a few micrometres. The maskholder 

could then be inverted and fixed back into the stage.  

Samples to be exposed were placed on the slide-able red stage situated beneath 

the maskholder (and mask), as shown by the inset of Figure 3.4, and then raised to 

provide hard-contact with the chrome-side of the mask. Exposure of the samples 

takes place using contact mode (where the surface of the photoresist is brought very 

close and touching the mask), as this is the best means of achieving small feature 

sizes due to less optical scattering distance. Exposure times can vary for each resist, 

and indeed for different mask aligners, but for the MJB-3 system it was of the order 

of 30 seconds or less. Following exposure, it was crucial to leave the sample to ‘rest’ 

for an hour or so prior to developing to allow the photoactive chemistry to take place.  

Once the sample had been given adequate resting time after exposure, it could 

then be developed. This took place in a fume cupboard, due to the presence of toxic 

chemicals used for development and to prevent the inhalation of any gases that may 

have been produced. A glass beaker large enough to accommodate the sample was 

partly filled with the requisite developer, of at least 5mm depth, and the sample 

submerged. A steady agitation was carried out to encourage solubility of the exposed 

resist, by swirling the developer in a circular manner. Utilising this method normally 

resulted in complete solubility within 2 minutes, where the resist was seen to dissolve 
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by a clouding effect and the absence of clouding signalling the end of development. 

The sample was then removed from the solution and rinsed under DI water for 1 

minute, before being gently dried with a nitrogen gun.  

 RIE (Plasma) Etching 

Etching of a substrate typically follows photolithography, whereby the 

previously exposed photoresist has uncovered areas allowing access to the substrate 

beneath; this in turn can allow a direct transferral of the photoresist pattern into the 

actual substrate. One such method of etching is Reactive Ion Etching (RIE), or 

simply plasma etching (for ease of narrative), where chemically-reactive gaseous ions 

are used to bombard the substrate surface and carry material away. This process is 

highly anisotropic, and is used to produce very high-aspect ratio features in a 

substrate, with steep sidewalls. The mechanism behind RIE can either be due to 

physical bombardment of the high-energy plasma ions; chemical reactivity of the ions 

at the substrate surface; or a combination of these two, which is often the case; an 

overview of these processes are shown in Figure 3.7.   

A typical RIE system (for explanatory purposes, here is referenced an STS ICP 

etcher [72]) is composed of a vacuum chamber, into which a sample can be placed on 

an electrically-isolated platform near the bottom. Inlets near the top of the system 

allow entry of the gases used to produce the plasma, whilst an outlet situated near 

the bottom allows evacuation of the heavier volatile reactants by a vacuum pump 
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(seen in Figure 3.6). The plasma is generated by Inductive Coupling of radio-

frequency magnetic fields generated from electrodes, referred to as the RF Matching 

Unit (shown in Figure 3.6) which operate at a frequency of 13.56MHz, and the strong 

oscillating magnetic field generated from the current through the wires is used to 

provide the energy for ionisation of the gases. In the case of ICP there are two RF 

matching  units used;  one  of  the  units  is  solenoidal  and  situated  close  to the

 

Figure 3.6: Schematic and photograph of an STS ICP 

DRIE etcher [72] 
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gas inlets to induce a plasma, whilst the second is situated orthogonally to this and 

is utilised to drag the plasma ions towards the sample stage by providing a negative 

bias on the sample platform. This is achieved from the freely-moving electrons which 

strike the sample platter causing a build-up of negative charge and results in a large 

negative bias voltage. Because the plasma is then deficient of electrons, the overall 

charge of the bulk plasma becomes slightly positive (due to the population of positive 

ions exceeding those of the electrons), whereby a drifting of these positive ions 

towards the negatively charged platter occurs, and bombard the sample. As a note, 

because the force of the magnetic field on the charged particles depends on the charge 

and mass, the larger positive ions move relatively little compared to the much lighter 

electrons which is why these electrons are drawn out of the main body of the plasma 

to be carried away by the biased platter. Additionally, the sample platter can be 

cooled if necessary to provide extra control over etching rates. 

One of the most beneficial aspects of RIE is the means to achieve a very highly 

anisotropic etch process due to the acceleration of the positive ions arising from the 

DC bias of the sample platter. This allows very high aspect ratio structures to be 

fabricated on a sample, otherwise unachievable with chemical etch processes which 

typically produce isotropic etch profiles. The amount of gas, and which gas (or gases, 

commonly) to use, depends on the etch process needed, of which there are two 

commonly used processes: mixed etch, or Bosch Process [73] etching. Whilst both of 
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these processes can achieve high aspect ratio structures, it is the Bosch process, also 

termed Deep Reactive Ion Etching (DRIE), which yields the best results. The 

majority of work carried out on etching is done so on silicon, as it is a vital material 

used in the semiconductor industry where feature sizes and controllability of 

fabrication processes are essential. Of the gases used to etch silicon, the two most 

commonly used are Sulphur Hexafluoride (SF6) and Octafluorocyclobutane (C4F8), 

along with Oxygen (O2) as an additive gas. Because the work outlined in this thesis 

has research relating to the fabrication of (and due to the expansive research and 

technological applications of) silicon, the chemical processes described for these 

particular gases will be in the case for etching of silicon.  

It is noticeable that the gases used are fluorine based with large numbers of 

fluorine atoms forming the molecules, due to the fact that there exists a chemical 

reactivity between silicon and fluorine radicals. The typical result of creating a 

plasma from a fluorinated gas is that there will exist a distribution of ions, consisting 

of free fluorine radicals, electrons, and heavier fluorine-carrier ions (e.g. SFx , where 

M ≤ 5). It is the free fluorine radicals which cause the chemical etching process, by 

adsorbing to the silicon and undergoing the following dominant reaction: 

/= ! 4� = /=�� 

where the /=�� reactant then desorbs from the surface and is carried away via the 

vacuum pump in a process similar to that shown in Figure 3.7. Additionally, the 
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heavier fluorine-carrier ions may bombard the silicon substrate to cause physical 

sputtering of silicon atoms by means of kinetic energy transfer (shown in Figure 3.7 

also). An increase in the density, or amount, of the SF6 present in the chamber will 

yield a higher concentration of free fluorine radicals (and also positively charged 

carrier ions) which would result in an increased etch rate of the silicon substrate. In 

a similar fashion, altering the power of the RF matching units and/or the bias voltage 

applied to the sample platter would result in the etch rate being altered.  

 One issue that may arise when using an etchant gas is the undesirable lateral 

 
Figure 3.7: Schematic representation of the etching 

methods present in a RIE process [74] 

The ions present in the main chamber of a RIE system can etch the substrate 

through two mechanism: the first is by adsorption of the light radicals 

(typically fluorine), which then undergo a chemical reaction with the 

substrate, and the reactant product is desorbed from the surface; the second 

is by physical bombardment of the heavy ions (which have been stripped of 

the lighter radical) which transfer some of their kinetic energy to result in 

sputtering of the surface atoms. Image from [74]. 
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etching of the substrate, due to the isotropic component of the etch process from the 

spontaneous etching of fluorine radicals with silicon. Even with the processing 

parameters at our disposal, there may not exist a combination which allows full 

controllability over the anisotropy of the etch process. This is where we can utilise 

other gases to inhibit the effect of the SF6 etchant gas – the two most commonly 

used gases for this are Oxygen (O2) [74] and Octafluorocyclobutane (C4F8) [75] (or 

both combined) as mentioned previously. Firstly, oxygen is used as an inhibitor due 

to the fact that it binds strongly with silicon to form silicon dioxide (SiO2) – this 

silicon dioxide forms a protective layer preventing a chemical reaction with the free 

fluoride radicals, and only by physical sputtering of these surface SiO2 adsorbents will 

the bulk silicon then be exposed. This inhibition is useful because it prevents the 

spontaneous etching of the silicon. Only the physical sputtering by ion bombardment 

can remove the oxygen adsorbents, and because this bombardment is highly direction 

(in the vertical direction because of the negative platter bias) the chemical reaction 

process for etching only occurs where physical bombardment has occurred – thus, a 

level of anisotropy is achieved. With an increasing etch depth, the oxygen passivates 

the sidewalls, which again can only be removed by ion sputtering, and so the 

anisotropy is self-sustaining, where an example of the high-level of anisotropy of 

oxygen as a passivation gas is shown in Figure 3.8. However, it should be noted 

that this process of oxygen passivation works best at lower temperatures (well below 

0°C), which is beyond the scope of the work carried out in this thesis. As a note, 
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oxygen plasma is also used to clean samples which may have organic compounds 

present as the typical reactions yield carbon monoxide (CO2) and thus desorbs from 

the surface. This procedure is typically used following the development of a 

photoresist and prior to metal-deposition (as described in the proceeding sub-section 

‘3.1.4 Metal-Deposition’) so that any remaining resist after development and cleaning 

process is removed and the deposited metal can then have the best surface adhesion. 

Because oxygen does not readily etch silicon it is safe to do this process, provided 

the ion energy and power  

is low enough not to cause substantial physical sputtering but high enough to remove 

any carbon based residues, and without the worry of the exposed silicon areas being 

 

Figure 3.8: DRIE etch profile of silicon with SF6 when using Oxygen 

as a passivation/inhibitor gas to obtain vertical sidewalls [74] 
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etched to a different depth to the resist-covered areas.   

Due to the necessity for low temperatures when using oxygen as a passivation 

gas, it will not be the primary means of achieving anisotropic etch profiles and instead 

will only be used in small amounts alongside the fluorocarbon Octafluorocyclobutane 

(C4F8). This gas is used to passivate the surface of the substrate with a ‘Teflon’-like 

polymer layer [75–78], which performs in a similar manner to the oxygen passivation. 

This prevents the free fluorine radicals from spontaneously reacting with the silicon 

surface and only physical sputtering of the C4F8 molecules allow access for reactive 

etching. The benefit of using C4F8 is that it can be used at room temperature and 

the fact that it develops a thin film over the substrate, which would yield better 

 
Figure 3.9: Schematic representation of the Bosch Process for 

achieving DRIE [76] 

The well-known Bosch process [73] works by a cyclic etch-passivation process, 

where the first step deposits a thin film of C4F8 followed by an etch step using  

SF6. The undulations of the sidewall are due to the isotropic nature of  SF6 

when etching, and the fact that C4F8 is primarily directional and so the base 

of the etched trench will have a thicker layer of  C4F8 than the sidewalls.  
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uniformity compared to oxygen (which doesn’t form a film but is scattered around).  

As mentioned previously, when using SF6 and C4F8, there are two primary 

etch processes that can be used, which are either mixed etch or Bosch Process. Mixed 

etch processing is where both SF6 and C4F8 are added to the RIE chamber at the 

same time and a subtle balance between the amounts of these two is required to 

obtain anisotropic etching – if too much C4F8 is used then the SF6 won’t be able to 

etch the silicon at a fast enough rate, whereas if too little C4F8 is used then the etching 

will be much less anisotropic. Unwanted interplay between the plasma products from 

these two compounds may also occur. A more preferable method is the Bosch process, 

which is a well-established patented two-step process developed by Robert Bosch 

GmbH [73] as shown in Figure 3.9, where passivation by C4F8 is carried out for the 

first step, followed by etching using SF6 for the second step; this is then cycled for a 

set number of times to obtain a desired etch depth. Each step can be controlled 

separately, and so provides  a good controllability, where step times, gas flow-rates, 

platter bias, and RF matching power can all be altered. Firstly, a step for C4F8 

passivation is carried out, where it forms a thin layer across the surface of the 

patterned photoresist and substrate – some will coat the side of the photoresist where 

voids are present. Next, the C4F8 input is stopped and SF6 allowed into the chamber 

where physical sputtering of the base of the patterned voids takes place, leading to 

the substrate being exposed to fluorine radicals which can chemically react and lead  
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to etching. It should be noted that the physical sputtering may also remove the 

sidewall coverage of the C4F8 and hence isotropic etching by the fluorine radicals 

occurs, which gives a scalloped profile; this is especially apparent when these two 

steps (passivation/etch) steps are cycled. This scalloping can be seen below in Figure 

3.10a) and undulates down the sidewall with each concurrent two-step cycle. Even 

though the platter is biased, and the majority of ions vertically accelerated, some of 

these will be incident upon the sample at some angle. However, with increasing etch-

depth, and therefore aspect ratio, these ions can only reach the bottom of the trench 

if they have smaller and smaller incident angles as otherwise they would strike the 

sidewalls before reaching the base. This is apparent in Figure 3.10b where a 

narrowing of the trench occurs as it gets deeper. Additionally, the fluorine radicals 

which make it to the bottom of the trench may undergo a reaction, but the desorbed 

etch product may not be able to leave the trench with the incoming flux of ions.  

Table 3.2:  Typical Bosch Process used for DRIE of Silicon 

Process Type Cycle time SF6 C4F8 O2 

Passivate 5s 0 sccm 100 sccm 0 sccm 

Etch 8s 130 sccm 0 sccm 13 sccm 

Etch depth ~30μm 

Total time 9min 58 secs (46 cycles) 

Etch rate ~50 nm s-1 
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There will therefore exist a maximum etch depth that can occur before the continual 

narrowing leads to a finite trench width and etching will no longer occur. A typical 

recipe and process for deep etching of silicon (30μm) using the Bosch Process is shown 

in Table 3.2 (to produce the herringbone structure shown in the next chapter for ).  

One issue that can occur is when the photoresist is not fully removed and 

small amounts remain on the sample needing to be etched: these remnants can then 

act like ‘mini-etch-masks’ causing unwanted and spurious spikes or ‘grassing’ to occur 

which will degrade the performance of devices (as occurred for the removal of SU8-

 

Figure 3.10: Scalloping effect of the sidewalls in the Bosch Process 

[79] and the narrowing of the trench with increasing depth [74] 

(a) The ‘undulating’ scalloping effect due to step-cycling between passivating 

and etching for the sidewall profile when using the Bosch Process [79]. (b) 

When very high aspect ratio structures are required the etch mechanics of the 

ions and desorbed products come into play, due to the fact that those entering 

or leaving at smaller projectile angles are successful at reaching (or leaving) 

the base of the trench, whilst those with larger angles will strike the sides. 

This is more pronounced near the top of the trench, as witnessed by the much 

larger scalloping effect [74]. 
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2000 resist in Chapter 4 for the fabricated herringbone structure in ). The same thing 

can also occur for when very deep trenches are etched and the volatile products can 

no longer escape the vertical ascent which will result in re-deposition and act like 

miniature masks. Care should be taken to avoid these issues from occurring, and for 

etching parameters to be carefully chosen. 

 Metal-Deposition and Lift-off Process 

An alternative route which can occur after photolithography is that of Metal-

Deposition, rather than etching of the substrate. This infers a direct hard-mask of 

metal to fill the voids present in the developed photoresist. Depending upon the tone 

of the photoresist, the metal patterning can be either the inverse pattern (for positive 

resist) or the replica pattern (for negative resist) of the photomask used in the mask 

aligner. Such a procedure is typically used for performing lift-off process, where the 

metallic structures that remain are the desired outcome or device, such as for 

plasmonic antennae or Split Ring Resonators [80]. However, the metal structure can 

also be used as a hard-mask to protect areas from DRIE. The metallic ‘caps’ may 

also be functional or simply provide greater resistance to the DRIE process to obtain 

massively-deep etches. Two types of metal deposition procedures are regularly 

available – either through Thermal Evaporation, with a small amount of low 

melting-point metal, or Sputter Coating, from a metal source.  

Thermal Evaporation of a metal is carried out through means of locally heating 
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a small amount of metal to temperatures high enough to cause melting, whereby 

energetic atoms of this metal then escape and condense on cold surfaces undergoing 

solidification. Metals used for evaporating in this process are those which usually 

have low melting points, such as Gold or Silver – this is due to the method in which 

thermal evaporation is carried out. A small ‘boat’ (or crucible), consisting of a strip 

or wire of high melting point metal e.g. Tungsten, is used to contain the evaporant 

metal; the boat is shaped to have a small hemispherical indent in the middle into 

which small amounts of the evaporant metal can be placed. This boat is connected 

into an electrical circuit, via terminals at each end, which allows a current to pass 

through the metal. It is known that for a thinner wire the resistance increases, and 

in turn the Joule Heating increases. The heating of the boat can thus be controlled 

by altering the current supplied through the terminals into which it is connected, 

whereby a larger current will result in a larger heating effect. So as not to damage 

the boat used to contain the evaporant metals the current should not be increased 

too greatly; this infers the necessity of using a high-melting point metal for the boat 

such that it too doesn’t evaporate with the softer low-melting point metal. The 

sample needing to be coated is typically placed directly above the evaporating metal 

source. A schematic diagram of a thermal evaporator system is shown below in 

Figure 3.11a and a photograph of a BOC Edwards Auto 500 evaporator system is 

shown in Figure 3.11b.  
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The vacuum chamber is normally pumped down to as best a pressure as 

possible. This is typically of the order of ~10-6 mbar, but it is common practice to 

leave the system pumping down overnight (after inserting the sample and source 

 

 

Figure 3.11: (a) Schematic Diagram of a Thermal Evaporator 

System and the (b) BOC Edwards Auto 500 Evaporator system 

(a) A sample is affixed to the water-cooled sample holder. Current is applied 

to terminals which are connected by the crucible containing the evaporant 

metal. The crucible is heated, and a shutter used to allow the evaporated 

metal to strike the sample. The thickness of the metal layer is monitored by 

a quartz crystal monitor close to the sample. (b) BOC Edwards evaporator 

system, with the vacuum-chamber on the top-left (with the circular window). 
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metal) in which the pressure can then reach its best value, which is preferably ~10-7 

mbar. When heating the source metal, it is best to maintain the current at low values 

first in order to desorb any contaminants which may be present in the crucible and 

also adsorbed to the metal; these may include gases and water vapour. When doing 

this, it is crucial that the shutter is closed (as shown in Figure 3.11) which is used to 

prevent thermal evaporants from striking the sample. It can be assumed that 

contaminants are being desorbed by keeping an eye on the chamber pressure – an 

increase in the pressure from the inactive pressure indicates that gases are being 

desorbed from the crucible. Once the pressure then starts decreasing, it can be 

inferred that most of the contaminants have been successfully removed from the 

crucible and metal source, although it is good practice to continue slowly increasing 

the current and monitoring the increase/decrease pattern. 

Once the metal is ready to be evaporated, it will be heated up to the point at 

which melting occurs and a bright glow observed through the window aperture (seen 

in Figure 3.11b). The shutter can then be opened and the evaporating metal 

allowed to travel towards the sample. As the temperature will be very high, the 

sample holder is water-cooled to maintain the sample at a constant temperature; high 

temperatures may damage or warp the photoresist present on the substrate so cooling 

is necessary. In order to know the thickness of the layer deposited on the sample, 

there is a quartz-oscillator monitor near to where the sample-holder is situated which 
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measures the deposition rate and can therefore deduce the total thickness of metal 

deposited on the sample as being approximately equal to the amount deposited on 

the quartz. From actual experimental verification, the quartz monitor can be 

calibrated to give the best accuracy for layer thickness. To produce a nice uniform 

layer of gold, the current is maintained low enough that the evaporation rate is 

between 0.04-0.10nm s-1, as if the rate is too high then clustering may occur and the 

deposited metal layer will have an increased roughness. However, different metals 

(e.g. silver) may require different evaporation rates to this, for various reasons. Once 

the desired thickness is achieved, the shutter is closed to prevent any more deposition 

and the current source slowly decreased to zero. The vacuum chamber is then purged 

of any remnant gases present for approximately 15 minutes (and for the sample and 

sample holder to be cooled) before the sample is removed.  

Once the sample has been coated with the desired metal, and the patterned 

voids in the photoresist filled with this metal, we can then perform lift-off process of 

the resist to leave behind only the metallic structures on the substrate. An image of 

a gold SRR array, for application in the work carried out in Chapter 5, which was 

performed by lift-off, is shown in Figure 3.12. Lift-off process takes place by 

submerging the metal-coated sample in a solvent, which is typically acetone or IPA  
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as most photoresists are soluble in either of these cleaning solvents. In much the same 

way as development, the samples are agitated in the solvent, sometimes with the aid 

of an ultrasonic bath, to aid in the removal of the photoresist and metal which sits 

atop the resist. However, because the metal films are sometimes quite thick, it may 

be necessary to leave the samples submerged in a solvent overnight to minimise 

damage to the structures by too much agitation. When making structures using soft 

metals, such as gold, it is sometimes preferable to first deposit a very thin layer (~10-

20nm) of a stronger metal, such as titanium or chromium, which helps to aid in the 

adhesion of the gold structures to the surface and minimise damage or removal of 

these when performing agitation.  

 

Figure 3.12: Optical Microscopy image of gold SRR’s 

fabricated using lift-off process 

Split-ring Resonator structures deposited on a silicon substrate performed by 

deposition of gold (200nm thick) onto a pre-patterned, developed photoresist, 

and subsequent lift-off processing in acetone solution.  
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 Characterisation 

In order to examine the samples which are fabricated for both quality control and 

optical data acquisition, we must characterise them with a number of experimental 

methods. This section aims to explain some of these systems and how they help to 

investigate the samples which are fabricated. As most of the fabrication, which was 

carried out by myself, in this thesis is using photolithography – and thus micron scale 

structures – only a very brief coverage of Scanning Electron Microscopy and optical 

bench setups (where data acquisition and optical characterisation was obtained by 

more specialised colleagues) will be given, but are included in this section for 

completeness. 

 Optical Microscopy 

Arguably the earliest, and still one of the most useful, methods of characterising 

small scale objects is optical microscopy. It is a corner-stone of fabrication, especially 

so for micron-sized structures, which are too small to see with the eye alone. In the 

case of photolithography, optical microscopy helps to position the samples relative 

to the mask. This is crucial in the case for alignment between a pre-existing pattern 

on the sample and a secondary pattern on the mask, as was the case for the work 

carried out in Chapter 4.  

Seen in Figure 3.13 is a photograph taken through the eyepiece of an optical 
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microscope whilst performing a photolithography alignment – the image shown is of 

the herringbone pattern on the photomask. The smallest feature sizes on the mask 

were of the order of ~10μm and so diffraction wasn’t an issue for visible light, 

therefore all of the features could be resolved with great detail. Microscopy was also 

very useful for examining the final production of lift-off processed samples, and to 

check for any damaged or ‘loose’ structures that would have occurred in process (as 

seen in Figure 3.12). 

 

Figure 3.13: Photograph taken performing Optical 

microscopy of the herringbone pattern on a photomask 

200μm 
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 Scanning Electron Microscopy 

When dealing with structures much smaller than the wavelength of visible light, 

we can no longer rely on optical microscopy due to severe diffraction effects occurring 

which causes a loss of resolution. Hence, we can no longer resolve the structure or 

quality of these objects whilst using optical methods. A preferable means of viewing 

such small scale structures is by using a Scanning Electron Microscope (SEM). 

Typically used to image conductive surfaces (due to the fact they consist of free 

electrons) a beam of focussed electrons, incident onto the sample, are scanned across 

and the deflected or excitation-ejected electrons are examined by a detector to 

provide details of the surface morphology. A schematic diagram of an SEM is shown 

below in Figure 3.14.  

An SEM consists of a vacuum chamber into which samples to be examined are 

loaded. The electron source is typically a Tungsten filament which has a very sharp 

tip, through which a high voltage – and ultimately a potential difference great enough 

to overcome the free space impedance – is supplied. Vacuum pressures are preferably 

as low as possible to prevent oxidation of the tungsten tip, and to allow a mean-free-

path as large as possible for the emitted electrons. Through various lenses, the 

electrons are focussed to point on the surface of the sample. These electrons, upon 

passing through these magnetic lenses, are accelerated to thousands of volts, whereby 

the impact with the surface will cause loss of kinetic energy and the re-emission of 
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secondary electrons, which are collected by a detector. Due to the fact that the 

surface of the sample is probed through electronic interactions, and not light- 

 

Figure 3.14: Schematic diagram and photograph of a 

Scanning Electron Microscope  
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focussing, the resolution is much greater than that possible for visible light and can 

be used to image features as small as 10nm.  

In addition to being used to image surfaces, an SEM system can also be used 

to fabricate structures through Electron-Beam Lithography (EBL), which acts in a 

similar manner to that of photolithography where an e-beam sensitive resist is 

patterned. However, this is a slow process compared to photolithography (which 

allows a parallel exposure of the whole resist at once when covered with a suitable 

mask) as each structure has to be exposed step-by-step as a bottom-up approach, 

rather than top-down. Regardless, EBL still remains as one of the most useful and 

widely used means of fabricating nano-sized patterns to date. 

 Surface Profilometry 

In order to measure the heights and widths of fabricated structures, it was 

necessary to make use of a surface profilometer. The system used was a Dektak3 ST 

profilometer as seen in Figure 3.15. A surface profilometer works by gently 

‘scratching’ the surface of the sample with a stylus, and variations in the height of 

the stylus whilst scanning the sample are converted to signals allowing the user to 

graphically see the surface profile. In order to locate the specific topography or feature 

on the sample that is wished to be examined, a microscopic camera contained within 

the system relays the image to a screen. An example of this imaging and the resultant 

graphical profile is shown in Figure 3.16, where the sample scanned is of a RIE  
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herringbone pattern as used in Chapter 4. The inset of the lower image of Figure 

3.16 (in the yellow circle) shows the details of the parameters used to obtain the 

surface profile. The length of the scan (indicated by the red arrow on the top image) 

can be chosen by the user, as well as the scan time, stylus force, data resolution, 

desired height range, and the predicted ‘step’ profile (as shown by “hills and valleys”). 

These make the surface profilometer a very useful piece of equipment for 

characterising samples, and is essential for measuring, for example, the thickness of 

a photoresist, the lateral distance and height of etched features on a silicon substrate, 

or the thickness of deposited metal structures – which is very helpful for calibrating 

the equipment used for metal evaporation (as explained in Section 3.1.4). The vertical 

resolution of the stylus can be as low as 1nm (realistically) whilst the lateral 

resolution is somewhat lower due to the finite sharpness of the stylus tip – if the 

lateral distance between features is too small, the stylus tip cannot get to the bottom 

of the gap before the increasing stylus-radius contacts the corners of the structures.  

 

Figure 3.15: Dektak3 ST Surface Profilometer 
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Figure 3.16: Camera image and corresponding surface 

profile of a section of etched herringbone pattern 

Top: the stylus makes contact with the surface and follows the red arrow. 

Bottom: the vertical deviations of the stylus when moving across the sample 

are relayed to a computer and the graphical profile is plotted, where two 

moveable selection regions allow normalisation of the height and ultimately 

the differences in height between high and low regions of the profile. 
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This is especially noticeable when the aspect ratio of the features are very high (i.e. 

the vertical height is much greater than the lateral width). The dimensions of features 

are determined by the control of two variable width cursor regions. These regions are 

used to take averages of the profiles contained within their edges, and so can be used 

to normalise the base flatness (by having both of these regions only selecting distant 

‘low’ areas), and then the difference in heights between the low and high regions can 

be deduced based on this normalisation. 

 Terahertz Time Domain Spectroscopy (THz-TDS) 

Terahertz technologies are much sought after during recent years due to the 

lack of natural (and also engineered) means of generating and detecting this frequency 

range of light. Many natural phenomena have subtle terahertz resonances occurring, 

and so it is difficult to investigate these processes without the necessary equipment 

to probe. The so-called “Terahertz Gap” [81] has inspired the aim to rectify this issue 

and to develop devices which can perform equally as well as the counterpart devices 

in the various other frequency regimes of light – such as the plethora of developed 

technologies in optical, microwave, and X-ray frequencies.  

Many of the metasurfaces designed to work at Terahertz frequencies rely on 

characterisation with Terahertz Time-Domain Spectroscopy (THz-TDS) systems, 

where a MenloSystems THz-TDS system [82] was used for obtaining the data for the 

work carried out in this thesis – a schematic diagram of the experimental setup is  
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shown in Figure 3.17. The basic operation of a THz-TDS system is given for the 

case of a THz wave being transmitted through a phase gradient metasurface which 

refracts the incident beam into anomalous orders [83] which is related to the work 

carried out in Chapter 5. A Femtosecond laser is pulsed onto a pair of 

Photoconductive Antennas (PCAs), sat atop a semiconductor, whereby a bias voltage 

is continuously applied to these PCAs to provide a potential difference in the gap 

between them. When the laser pulse hits this gap the energy provided allows the 

combination of an electron and a hole, and a Terahertz wave is emitted upon 

relaxation of this electron-hole pair. This initial femtosecond pulse is split and the 

probe beam passed along a variable path. The PCA emitter is placed at the focal 

 

Figure 3.17: Schematic diagram of a THz-TDS 

experimental setup (Image from [83]) 

A typical Terahertz Time-domain Spectrometer (THz-TDS) experimental 

setup for measuring transmitted THz signals through a metasurface sample, 

where the THz beam is refracted according to the Generalised Snell’s Law. 
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point of a parabolic mirror, such that the THz beam emitted is then reflected as a 

parallel beam (seen in Figure 3.17) towards the sample. Following the mirror, an 

aperture is used to define the beam size for improving the spatial frequency resolution 

(in the case for Figure 3.17 the aperture size was 1.0cm in diameter). This beam is 

then incident onto the sample, where the desired optical effect occurs. After 

interaction with the sample, the THz beam will be deflected into some arbitrary 

angle: to detect this, another PCA device, termed the receiver, is fixed to an arm 

attached to a rotatable stage capable of angularly resolving the refracted beam. In 

addition, the sample itself is mounted on a smaller rotatable stage atop this larger 

stage so that non-normal incident beam angles can be investigated. Prior to this PCA 

receiver is a wire-grid polariser, capable of filtering the linear polarisation component 

of the refracted beam. Finally, both this THz beam and the initial femtosecond probe-

pulse arrive at the receiver. The probe-beam will charge the surface of the 

semiconductor under-layer of the PCA, whilst the electric field of the THz beam will 

induce a current – the strength of this current will be proportional to the amplitude 

of the time dependent THz beam, and thus we can deduce the THz beam signal after 

it has interacted with the sample by taking a Fourier Transform with respect to a 

reference sample (usually bare substrate material). This Fourier Transform will give 

us the frequency response of such a THz metasurface. Additionally, we can insert 

wire-grid polarisers before the sample, and after the parabolic mirror, to excite the 

metasurface sample with a required linear polarisation. Another wire-grid polariser 
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is placed with the original polariser after the sample so that we have the capability 

to measure the linear Jones Matrix components of the metasurface, as shown in 

Figure 3.18, which in turns enables us to investigate the circular polarisation basis 

Jones matrix components. The 1st and 4th polarisers are oriented in the same 

alignment to provide signal normalisation, whilst the 2nd and 3rd polarisers are freely 

rotated, as shown, to enable the independent incidence and transmitted x and y 

polarisations to be measured. In conclusion, the THz-TDS system, in conjunction 

with the four polariser arrangement, is a useful tool for investigating the frequency 

responses of metamaterials whilst being able to distinguish the linear polarisation 

components necessary to formulate the Jones Matrix of the metamaterial device. 

 

 

Figure 3.18: Schematic diagram of a THz-TDS 

experimental setup (Image from [84]) 

The four wire-grid polariser configuration to provide capability of measuring 

the Jones Matrix components for linearly polarised light. These components 

can then be extrapolated to obtain the Jones matrix components for circularly 

polarised light. 
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Silicon Herringbone Metasurface 

for Giant Chiroptical Response of 

Terahertz Light 

Manipulating the polarisation of light is crucial for holographic and imaging 

applications. One such aspect in particular is controlling the orthogonal circular 

polarisations of light separately, such that there is an asymmetry between these when 

transmitted through a device. However, all present methods of achieving this rely on 

lossy and complex multilayer structures to achieve a high selectability of cross-

polarisation conversion [85,86]. This work proposes a monolithic silicon herringbone 

metasurface to realise a strong cross-polarisation conversion for circularly polarised 

light, with TRL exceeding 80%, whilst prohibiting the inverse cross-polarisation for 

TLR. The device is purely dielectric, so has negligible losses, and relies on the 

combination of geometric-phase in conjunction with subwavelength gratings to 

invoke both angular disparity and form-birefringence, which leads to a preferential 

cross-polarisation transmission arising from interference effects. The design is robust 
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and not overly sensitive to fabrication errors, whilst also exhibiting a broadband 

operation in the Terahertz regime. 

In this chapter, I shall discuss the development of this dielectric silicon-based 

metasurface used to achieve an asymmetry in the conversion efficiencies between 

incident and transmitted circularly polarised (CP) light in the frequency regime of 

1THz. Form-birefringent subwavelength gratings (SWGs) were proposed to act as 

half-wave plates, for CP handedness switching, and then arranged in a 45° 

herringbone pattern to provide the necessary geometric phase of ±π/2 to induce an 

asymmetry in the transmitted efficiencies of the converted CPs. A final addition of 

a dielectric spacer for one of the two angled SWGs was incorporated to provide a 

dynamic phase of +π/2 such that the final total phase values are either 0 or π for 

the flipped transmissions from left or right incident CPs, respectively. The result 

obtained surpasses previously reported efficiencies for Circular Conversion 

Dichroism, where a potentially obtainable conversion of 80% from left to right CP 

light is achieved.  

Theoretical framework, analytical modelling, numerical simulations, sample 

fabrication/imaging/integrity, and data analysis were performed and carried out 

entirely by myself, with assistance and guidance from Prof. Shuang Zhang for the 

theoretical and analytical work, whilst optical characterisation and data acquisition 

were carried out independently by Dr. Teun-Teun Kim and Xueqian Zhang. 
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 Motivation 

The need for on-chip and integrated optical devices is ever growing due to the 

wide range of technologies now utilising light for various applications, where more 

efficient and faster data capabilities are necessary to progress. Typical methods of 

utilising light is achieved with rather dated and bulky technologies, which, although 

very capable and suitable, aren’t desirable due to a number of reasons, such as high 

cost, large and bulky size, low efficiency, and the magnitude to which the phenomena 

can be achieved, due to natural materials normally only exhibiting small optical 

effects.  

Metamaterials have been a promising and effective contribution to the fields of 

optics and electromagnetism, where they provide a robust and tailorable means of 

controlling optical phenomena to a much greater degree than naturally occurring 

materials [24–36]. However, the fact that Metamaterials are still a bulk arrangement 

of periodic structures is an issue for scalability and compactness, meaning that such 

devices have not been adapted for practical applications. More recently has been the 

investigation into monolayer (2D) metamaterials, namely Metasurfaces [40–42,65–

69]. These have the benefit of being more easily fabricated, have smaller associated 

losses, and, more importantly, can be better incorporated into real-world 

applications. This is, of course, very beneficial to the aforementioned necessity for 

technologies requiring integrated optical devices.  
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High-efficiency has been realised for a variety of metasurface applications 

[69,87–90], but most of these devices are typically symmetric in operation such that 

the desired optical effect yields the same transmitted efficiency for orthogonal circular 

polarisations of incident light. In certain cases this is not desirable, especially when 

a particular handedness of light is preferable over another; The cuticles of beetles 

have been shown to reflect mostly Left circularly polarised light [91,92], and many 

sensitive drugs or molecules which have different enantiomeric forms may provide 

different biological functions (as is the case for Thalidomide, mentioned in Chapter 

1). These enantiomers exhibit different transmission efficiencies depending upon the 

handedness of the incident light and therefore it is important to be able to distinguish 

between them. One well established technique of characterising such chiral samples 

is through the use of Circular Dichroism, which looks at the difference between the 

amount of Left and Right circularly polarised light transmitted through the sample. 

This is a well-established technique and used in many fields to examine the chirality 

of samples. However, it usually only examines the total transmittances for opposite 

CP incidences without caring about conversion between the two.  

When examining the Jones matrix for circularly polarised light (Chapter 2, 

equation 2.33), we see that the off-diagonal terms correspond to cross-polarisation 

conversion. Until only recently, it was not realised how these components of the 

Jones matrix could be accessed – 3D chiral structures, typically the case for many of 
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the naturally occurring handed materials (sugar, proteins, etc.) exhibit circular 

dichroism and optical activity yet give equal contributions of cross-polarisation, 

corresponding to equal off-diagonal terms ��� = ���. It was the seminal works on 2D 

planar chiral structures [93,94] which realised that these structures are 

phenomenologically and symmetrically different to 3D chiral structures. In the case 

for 3D chirality, the response for polarised light is the same from forward and 

backward directions – this can be understood when looking at a wound spring, and 

realising that it will have an intrinsic ‘twist’ (either clockwise or anti-clockwise) 

regardless of whether it is looked at from the front or back. However, for 2D chiral 

structures (like a spiral) the image is reversed when viewed from different directions, 

and so will result in a different polarisation response compared to 3D structures. 

These structures can access the off diagonal terms of the circular Jones matrix, for 

which a disparity is apparent between cross-polarisation terms such that ��� ≠ ���, 

yet the diagonal terms are equal. In an analogous labelling for 3D chiral structures 

exhibiting Circular Dichroism, the effect exhibited by 2D chiral structures is labelled 

Circular Conversion Dichroism (CCD) [86,95–98] or (Circular) Asymmetric 

Transmission (CAT or AT) [85,86,96,97,99–111]. There are mixed views on this 

terminology, with the former being more accurate a description but with the latter 

having more uses in the literature; the issue lies with the fact that Asymmetric 

Transmission has meaning in different areas of science and implies that forward and 

backward propagation are not reciprocal.  
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In many cases, both terms are used by the same author; a great deal of research 

upon this effect has been carried out by Eric Plum [97,100,103,112,113], where his 

thesis referred to it as Circular Conversion Dichroism whilst most of his publications 

referred to it as Asymmetric Transmission. For the sake of confusion, I shall refer to 

the effect as Circular Conversion Dichroism (CCD). In the early work by Zheludev 

[95] an anisotropic lossy planar-chiral ‘fish-scale’ structure was investigated and 

shown to exhibit CCD in the microwave region; this was attributed to the ‘twist’ of 

the fish-scale, and given a twist vector W which followed the well-known ‘cork-screw’ 

law (as explained in [95]). This work was then scaled down to work in the visible 

spectrum [99] and exhibited the same effect. Many such works on 2D chiral structures 

have taken place since this work [85,96–114] at many different frequency ranges, 

including Infrared (IR) [85,96,108], Terahertz [112], and microwave [86,95]. However, 

for most of these realisations of achieving CCD, the responses are usually very small 

with a cross-polarisation difference (termed as being equal to the difference between 

the modulus-squared off-diagonal Jones matrix components) of only 0.25 or less.  

Recent methods have aimed to improve on this low conversion difference by 

utilising layered metasurfaces [85,86] in which CCD differences of 0.5 and upwards 

were achieved. However, these devices have very complex designs, involving time-

consuming optimisations of layer-to-layer distance and impedance matching, not to 

mention fabrication complexity. In addition, these devices are all composed of metal 



Chapter 4 Silicon Herringbone Metasurface 124 

124 

 

and rely on the process of impedance effects due to current flows within the structures 

owing to the incident handedness of CP light. This means of achieving CCD is 

complex and cannot be easily derived analytically, and the fact that they are all 

composed of metals leads to significant and unavoidable losses (of the order of 37% 

in [85]). To this end, it is proposed to achieve CCD using dielectric materials, such 

that losses are negligible, and that the device relies on interference effects between 

phases rather than impedance matching.  

 Theoretical Framework 

 Achieving Circular Conversion Dichroism 

It is a well-established process of using half-wave plates to fully convert the 

handedness of CP light to the opposite handedness or to rotate the polarisation angle 

of a linearly polarised wave (with respect to the optical axis of the wave plate). These 

devices rely on the optical effect of birefringence to induce a phase delay between 

light polarisations travelling along its principle axes (more information on 

birefringence is given in Chapter 2). High quality half-wave plates (and indeed the 

majority of other wave plates) are typically manufactured using naturally occurring 

birefringent crystals, such as calcite. However, as was explained in Chapter 2, these 

naturally occurring crystals are typically expensive, requiring high-quality crystal 

structuring, and the refractive index difference requires that the thickness of these 

crystals are much larger than a single wavelength of light.  
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It is well studied that Subwavelength Gratings (SWGs) can be used to exhibit 

birefringence, through the application of effective medium theory. These 

Subwavelength Gratings are typically fabricated from a dielectric or semi-conductor 

substrate which would normally allow light of the desired wavelength to be 

transmitted without any manipulation (or absorption). However, when deep periodic 

gratings are etched into the substrate, the light experiences different refractive 

indices depending on whether the polarisation is parallel (TE) or perpendicular (TM) 

to the grating stripes and is essentially equivalent to the case for natural birefringent 

media. A schematic diagram of a subwavelength grating is given in Chapter 2, Figure 

2.3). If we refer back to equation 2.53, we have that 

2 ≤ ¦
/¿�ËÌ

     (4.1) 

which governs the periodicity of the SWG dependent upon the wavelength of interest 

and the refractive index of the substrate at this wavelength. For silicon (intrinsic, Ω 

= 10kOhm), at a wavelength of 300μm (which corresponds to 1THz) and a 

corresponding refractive index of 3.418, we obtain a grating periodicity of 2 = 86��. 

This periodicity is also ideally suitable for fabrication using photolithographic 

methods. The frequency of 1THz is chosen due to the demand for devices in this 

frequency regime, and the fact that no high-efficiency CCD devices have been 

understood at this frequency.  

 To calculate the depth of the gratings required such that there exists a half-
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wave plate functionality, providing a phase-difference of π, we refer back to equations 

2.54-2.67, which gives us: 

ℎ = ¦
�à

∆áÙÅ¡ÙÚ
Ä/Øâ*Â

= ¦¤
�¤×�.�ã ≈ 0.4L    (4.2) 

and as we have chosen a wavelength of 300μm we obtain ℎ = 129��. Such a grating 

works to convert incident circularly polarised light into the opposite handedness, 

with an equal response for both handedness’. However, this cannot achieve CCD 

alone as the conversion between opposite handedness’ of CP light is equal whereas 

we require a disparity in this conversion. We propose that the disparity be invoked 

through the use of geometric (Pancharatnam-Berry) phase, from the angular 

orientation of space-variant SWGs, similar to the work in [38,115]. If we choose a 

periodically repeating angular-orientation of � = 45° between subsequent gratings, 

such that a zig-zag or herringbone pattern is produced, then from [38,41,68,115] we 

have that the phase is equivalent to Φ = ±2� = ±90° = ± � 2⁄ , where the + sign 

corresponds to ��� (RCP incidence to LCP transmission) and the – sign corresponds 

to ��� (LCP incidence to RCP transmission). Now, if a dielectric step of a specific 

thickness is added beneath one of these paired, angled SWGs, we can supply an 

additional dynamic phase term of ! � 2⁄ . This will result in an interference of the 

phases supplied by the geometric and dynamic phases, given by: 

Φ = ·¸m/�¹;0 ± ·3 �¹  �;0 =  ¤
� ± ¤

�    (4.3) 
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Thus, the resultant phases can only be Φ = π, 0, corresponding to destructive 

interference (for RCP incidence), which is akin to a reflective dielectric mirror, or 

complete transmission (for LCP incidence), which is akin to an anti-reflection (AR) 

coating, respectively. A schematic diagram of the proposed Silicon herringbone 

structure is shown in Figure 4.2a, and the functionality of the interference is shown 

in Figure 4.2c,d. To calculate the thickness of the step beneath one of the SWGs, 

we simply use a modified version of equation 2.54: 

Δ·¸m/�¹;0 =  Δ94;��;�(2�» L⁄ )    (4.4) 

where Δ·¸m/�¹;0 is set to �/2 and Δ94;��;� = 94; � 9�;� = 2.418. This gives us a step 

thickness, » = 31��. We can assume that the SWGs are simply birefringent crystals, 

and so the analogous representation is shown in Figure 4.2b.  

Due to the complexity of such a device, where there are multiple layers and 

multiple mechanisms of phase accumulations (both dynamic/propagative and 

geometric), it is non-trivial to derive the theoretical foundation of what occurs for 

the reflected light. It would be very intuitive to derive the equations for anti-

reflection for such a device, as the form-birefringent gratings can essentially be 

viewed as an anti-reflection coating between the air and bulk silicon. However, anti-

reflection is typically best understood when dealing with linearly polarised light 

incident upon an isotropic AR layer – in this system, we are dealing with CP light 

incident upon birefringent gratings (and so switch the handedness of CP light passing  
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through) that do not have an easily defined refractive index, which are angled at 45° 
to provide a handedness dependent phase, as well as having them staggered by a 

specific thickness of silicon to provide a phase delay between these angled gratings 

(the boundary between these steps and the gratings would cause a phase change of 

� for any CP wave that is reflected, which is well known in itself to switch CP 

handedness [116], but would also then undergo yet another switching of handedness 

once passing back through the half-wave plate grating). Therefore, trying to calculate 

the anti-reflection response of CP light passing through birefringent, staggered, 

geometrically angled gratings, which all contribute phase terms to the light upon 

both forward and backward wave propagation, and also including CP handedness 

switching due to reflections from the many layers, is indeed beyond the capability of 

this investigation. However, we can imagine a system for where the gratings are not 

angled at 45° (so no ± ¤� geometric phase) and are not staggered (so no ! ¤� dynamic 

 

Figure 4.1: Reflectivity of Form-Birefringent Gratings 

without angular disparity and without silicon step  
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phase). Then we are dealing with the relatively simple case where we can investigate 

the anti-reflection responses of light which is linearly polarised either parallel (9�n =
2.52) or perpendicular (9�� = 1.36) to the gratings. Using the Fresnel equations 

2.37-2.43 for reflectivity from a three layer system, and for form-birefringent gratings 

of depth ℎ = 129�� in a frequency range of 0-2THz, we obtain the reflection 

responses for both TE and TM polarised light as shown in Figure 4.1. We see that 

there are three prominent anti-reflection responses around the operation wavelength 

of 1THz, occurring at 0.69THz (TE), 1.15THz (TE), and 1.28THz (TM). Because 

the refractive indices of the form birefringent grating, namely 9�n and 9��, are 

dispersionless due to only being dependent upon the filling factor and refractive 

indices of the air and silicon substrate (given by equations 2.66a,b), we can ascertain 

that the device has broadband capabilities. We know that a circularly polarised wave 

is simply the superposition of two linearly polarised waves (with a quarter-wave 

delay) and so we can therefore deduce that a CP wave incident onto such a grating 

will experience an averaging of the anti-reflection responses, where the average of the 

above three listed frequencies are: 

	.ã5�6st �.�0�6st�.�6�6s
¯ = 1.04��S   (4.5) 

Although this is an improvised calculation, CP light in conjunction with the 

broadband half-wave plate grating will undoubtedly introduce a non-negligible anti-

reflection response which can contribute to the high CCD efficiency of this device. 
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Figure 4.2: Computer generated visualisations of the 

Herringbone device 

(a) Graphical model of the herringbone device, where α is half of the angle 

between the gratings (α=θ/2=22.5°), d is the step invoking the +π/2 dynamic 

phase, h is the grating depth, Λ is the grating periodicity, and W is the unit 

cell width. (b) Model showing the analogous structure for achieving CCD 

with birefringent crystals, rather than SWGs. (c) The case for destructive 

interference between the phases, with an incident polarisation of RCP (blue 

helix). (d) The case for complete transmission due to cancelling out of the 

phases, with an incident polarisation of LCP (red spiral). 
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 Analytical Modelling using Fresnel’s Equations 

To further support our theoretical predictions, a simplified analytical model 

based on Fresnel’s equations for transmittance was employed. A linear formulation 

of circularly polarised light was used in the form of Ĥ� = �
√� úĤj ! =Ĥmû and Ĥ� =

�
√� úĤj � =Ĥmû, where Ĥ� , Ĥ� correspond to the Right and Left circular polarisation 

unit-vectors, respectively, and Ĥj , Ĥm correspond to the x and y linear polarisation 

unit-vectors, respectively. The system was considered to have three-layers, as shown 

in Figure 4.3, with layer 1 being air, layer 2 being an SWG, and layer 3 being bulk 

silicon. Each layer had corresponding values of the refractive index n, with layer 1 

having 9� = 9�;� = 1, layer 3 having 9¯ = 94; = 3.418, and layer 2 having two 

refractive indices, due to the anisotropy of the gratings as described by equations 

2.55a (TE) and 2.55b (TM) (in chapter 2), with 9�j � 9�n � 2.55 and 9�m � 9�� �
1.36. From this, we used the Fresnel equation for a three-layer system as: 

G;Ï� � �  �.� .�� ¡�7
�t��.��.�� ¡.�7     (4.6)  

 

Figure 4.3: Simple schematic of the three-layer system 

	nî�899 
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which is simply the same as equation 2.43b, except now the subscript ‘i’ corresponds 

to either x or  y unit vectors, due to the anisotropy of the refractive index 9�;. From 

this, we have:  

G��� = 29� (9� ! 9�;)⁄      (4.7a) 

G�¯� = 29�; (9�; ! 9¯)⁄       (4.7b) 

���� = (9� � 9�;) (9� ! 9�;)⁄     (4.7c) 

��¯� = (9�; � 9¯) (9�; ! 9¯)⁄         (4.7d) 

q; = �¤¥
¦ 9�;          (4.7e) 

where d is the thickness of the SWG (129μm). A detailed derivation is given in 

Appendix A, where we now show that – absent of any dynamic or geometric phases 

– the values of the transmission coefficients for a single SWG in terms of the Fresnel 

equation in equation 4.3 are (and omitting the fres superscript): 

G�� = �
� (Gj ! Gm )     (4.8a) 

G��
 = �

� (Gj � Gm )     (4.8b) 

G��
 = �

� (Gj ! Gm )     (4.8c) 

G��
 = �

� (Gj � Gm )     (4.8d) 

Now, if we assume that the second SWG is simply identical to the first, albeit with 

multiplicative terms incorporating the phase information, where the dynamic phase 
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is H;u¿pÀ = H;Ä/:�¡��*(�¤¥ ¦⁄ ) = H;(/��/�).;�
<  and the geometric phase is simply 

H;u=ËâÂ = H±;;. , where the ± corresponds to the incident light being RCP or LCP, 

respectively. Now, if we have the second SWG transmission coefficients as: 

G̃��
 = G��

 × H;u¿pÀ = G��
 H;(/��/�).;�

<      (4.9a) 

G̃��
 = G��

 × H;u¿pÀ × H;u=ËâÂ = G��
 H;Y(/��/�).;�

< �;
.Z   (4.9b) 

G̃��
 = G��

 × H;u¿pÀ=G��
 H;(/��/�).;�

<       (4.9c) 

G̃��
 = G��

 × H;u¿pÀ × H;u=ËâÂ = G��
 H;Y(/��/�).;�

< t;
.Z   (4.9d) 

where only the terms in RL and LR have the geometric phase factor due to the 

constraint of Pancharatnam-Berry phase only providing a geometric phase 

contribution for conversion between CP handedness’. Now, we calculate the total 

contribution of each SWG by summing together equations 4.4 and 4.5, whilst keeping 

the corresponding components together, where we have: 

G��
�³��� = �

� (G̃��
 ! G��

 )    (4.10a) 

G��
�³��� = �

� (G̃��
 ! G��

 )    (4.10b) 

G��
�³��� = �

� (G̃��
 ! G��

 )    (4.10c) 

G��
�³��� = �

� (G̃��
 ! G��

 )    (4.10d) 

Finally, we convert these Jones matrix components into transmittances (energy 

fractions) by utilising equation 2.41 from Chapter 2, giving us the general form: 

 � = /�
/�

�G;�
�³���

           (4.11) 
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Because 9� = 1 for air, and substituting the expressions from equations 4.9 and 4.10 

into equation 4.11, we obtain the generalised analytical equation providing us with 

the transmission coefficients, or Transmittances, for any combination of incident and 

transmitted CP light as: 

�;� = 9¯ ��
� G;��1 + H;úu¿pÀtu=ËâÂû���    (4.12) 

Using this equation, a frequency dependent response was calculated using Matlab, 

with the transmitted intensities shown below in Figure 4.4a. An obvious difference 

can be seen between the four curves, with the most pronounced occurring between 

the cross-polarisation curves. As expected, when light is incident with left circular 

polarisation almost all of the light is converted into right circularly polarised 

transmitted (���, red solid curve) whilst for right incidence the converted output for 

left transmission is negligible. A maximum transmittance of over 80% occurs at 

1.1THz for ��� whilst a minimum of ~0% at 1.1THz occurs for ���, which is very 

close to the designed frequency of 1.0THz.  

The slight mismatch can be attributed to the fact that because the 

herringbone metasurface layer is approximated as an SWG from the effective medium 

theory, the intuitive ‘single-pass’ theoretical foundation does not take interfacial 

aspects of the complete structure into consideration (and so impedance matching 

between layers of differing refractive index should be considered); therefore, Fabry-
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Pérot resonance effects resulting from the reflectance terms in the denominator of 

equation 4.3 lead to the analytical transmittances differing from the simple ‘phase-

only’ predictions of equation 4.1, where this reasoning can also be applied to explain 

why the maximum value of ��� is not 100%. Additionally, the basis of the structure 

is using form-birefringence to design half-wave plate gratings; the effective medium 

approach used is simplified and only first order. Works on higher order effective 

medium theory have been produced [117], which would improve the functionality 

and accuracy of the device. However, it is beyond the capability of this project to  

 

Figure 4.4: Analytical and Simulated frequency dependent 

transmittances of the silicon herringbone structure 

(a) Analytically modelled transmittance curves using a simplified Fresnel 

based treatment of a 3-layer system. (b) Numerical simulation modelled 

transmittance curves using CST Microwave Studio. 
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incorporate such a complex analytical representation of the effective medium theory, 

and the fact that the first order effective medium theory is widely accepted and 

acceptable for use in developing form-birefringent gratings. Irrespective of this 

oversight, the curves displayed in a show a good intuitive representation of the 

theoretical soundness, where the terms in ��� and ��� are also negligible at the 

resonance frequency of interest, as expected.  

An important note is that the total energy of the system must be conserved, 

and so we must examine the separate intensity pathways from Left or Right incident 

CP light, separately. We have that: 

G� =  G�� !  G��        (4.13a) 

G� =  G�� !  G��      (4.13b) 

where the left hand side subscript of equations 4.13a,b correspond to the incident 

CP handedness. Using the above equations to evaluate Figure 4.4a, we have that 

G� ≈ 0.05 and G�  ≈ 0.85. For true energy conservation, and assuming that all of the 

light is transmitted (with no reflections or absorption), we should ideally have that 

G� =  G� = 1.0. This is clearly not the case, and because the analytical calculations 

use lossless refractive index parameters, we must assume that 0.95 (95%) of the light 

from an RCP wave (G�) is reflected, which corresponds to equation 4.3 yielding a � 

total phase, namely destructive interference, whilst only 0.15 (15%) of the light for 

LCP incidence is reflected, which corresponds to equation 4.3 yielding a total phase 
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of 0, namely an anti-reflection response. It would be beneficial to analytically derive 

the reflection response to compare to the curves for transmission shown in  

Figure 4.4a. However, for practicality, reflection measurements are difficult due to 

not being able to both excite and detect the reflected light at normal incidence – the 

incident and reflected light will have to be at some oblique angle. This will degrade 

the performance of such a device and will not operate as expected, as the boundary 

conditions defining the form birefringence are now dealing with non-normal TE and 

TM modes for circularly polarised light, and that the propagation distance through 

the active structures will not correspond to the calculated and required phases. For 

this reason, reflection will not be investigated in this project, either analytically, 

through simulation, or experimentally. Additionally, the majority of works carried 

out in this field are only interested in the transmission response, and not the 

reflection, (asymmetric transmission rather than asymmetric reflection) most 

probably due to the aforementioned experimental issues.  

 Computer Simulations 

In order to reinforce the theoretical reasoning and functionality of our device, 

3D Finite-Difference Time Domain (FDTD) simulations were carried out using the 

commercially available CST Microwave Studio software package. The structure was 

modelled using periodic boundary conditions, and a linearly polarised plane-wave 

incident from the substrate side. The results of the circular transmission components 
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are shown in Figure 4.4b. All linear transmittance results exceeded unity in the 

simulation; this arose from the herringbone metasurfaces having a higher 

transmissivity compared to bulk silicon (which was automatically taken as reference 

in the model from the plane wave being incident at the vacuum-silicon boundary). 

Because of this, all of the simulated results were multiplied by a normalisation factor 

(calculated from the Fresnel equations for 2-layer transmittance) of 


 = 349�9� (9� ! 9�)�⁄ = 0.84, where 9� = 1 is the refractive index of air and 

9� = 3.418 is the refractive index of silicon; this reduced all transmittances to below 

unity as necessary. These linear results were then converted into circular 

transmittances using the equations given in 2.34, Chapter 2. 

As can be seen, the results show a very good correspondence to those for the 

analytical model, especially apparent for TRL exceeding a transmittance of 80%, and 

also show a clear difference between the cross-polarisation components of TRL and 

TLR. To date, this is the highest efficiency achievable for a handedness-sensitive 

circular polarisation converter for transmission which simultaneously exhibits CCD 

effects in a broadband frequency range. One discrepancy that is worth noting is that 

the device can no longer be considered as subwavelength for frequencies much larger 

than the operational frequency of ~1THz, and would result in diffraction occurring 

causing spurious interference effects. Similarly, for frequencies much lower than the 

operational frequency, corresponding to wavelengths larger than 300μm, it can no 



Chapter 4 Silicon Herringbone Metasurface 139 

139 

 

longer be assumed that the light is confined and localised within an individual SWG 

and hence may not provide the necessary dynamic phase as portrayed in  

Figure 4.2c,d. 

As mentioned in the previous section, we must consider the total energy 

contributed to the system. From the simulated curves, we have (from equations 

4.13a,b) at the highest transmission of TRL (which occurs at ~1.05THz) that  

G� ≈ 0.30, implying 70% of the light is reflected at this frequency when the incident 

light is RCP, whilst G� ≈ 0.90, implying that only 10% of the light is reflected when 

the incident light is LCP. It is worth noting that the broadband nature of this device 

is due to the dispersionless operation of the refractive indices of the SWG’s, in 

conjunction with the dispersionless nature of the Geometric phase imparted from the 

45° angular disparity between the gratings which always provides the same phase 

additions regardless of the frequency. The phase provided by the silicon step is 

periodic with wavelength, and so can be treated as quasi-broadband. The limiting 

factors in the design which degrade the broadband operation are that the gratings 

are a finite depth and width, which means that for frequencies much different to 

1THz the half waveplate functionality is no longer apparent, whilst the 

subwavelength approximation also breaks down for large frequencies. Even so, the 

device is very broadband, giving a TRL full-width at half-maximum (FWHM) of 

approximately 0.87THz with a central frequency of 1.05THz.  
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 Fabrication and Experimental Results 

To experimentally verify our theoretical reasoning, the structure shown in 

Figure 4.2a was fabricated by conventional photolithography and plasma etching 

using a two-step pattern process as outlined in Chapter 3 of this thesis. Firstly, 

Intrinsic silicon wafers (525μm thickness, 100mm diameter) were spin-coated with 

~8μm thickness of SPR-220 7.0 and then exposed to UV-light (Karl Suss MJB-3 

Mask Aligner) with a photomask stripe pattern of period W = 208μm (shown in 

Figure 4.2a). After developing in a TMAH (Tetramethylammonium Hydroxide)  

based solution the sample was then Deep Reactive Ion Etched (DRIE) to a depth of 

~31μm, using an alternating etch/passivate (CF4/C4F8) Bosch-process, in an STS 

Multiplex ICP DRIE Etcher. Next, the sample was then cleaned to remove the 

SPR220-7.0 and a ~50μm layer of SU8-2050 was spun-coat on top of the etched 

silicon stripe pattern. Transparency of the SU8 allowed visible alignment of the 

second ‘herringbone’ mask-pattern to be exposed and overlaid on the stripes below. 

The sample was developed in a PGMEA (Propylene glycol methyl ether acetate) 

based solution and then etched to a depth of ~129μm; the SU8 is removed from the 

sample by use of Piranha solution (H202:H2SO4) due to its very high durability and 

resistance to chemicals. The complete fabricated device is shown in Figure 4.5, 

imaged using a Scanning Electron Microscope (SEM). It is apparent that grassing on 

the lower step edges, to which the incomplete removal of the SU8 resist is accredited.  
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If small remnants of SU8 remain prior to plasma etching, these will act as small 

micromasks causing long, thin, grass-like features to be formed. However, due to the 

high-durability of SU8, it is very difficult to fully remove all traces of it. For future 

samples, it is advisable to perform oxygen ashing (oxygen plasma etching) of the 

sample prior to silicon etching to fully remove all organic compounds present on the 

surface.  

Figure 4.5: SEM Image of etched Silicon Herringbone 

metasurface 

The intrinsic silicon wafer was fabricated according to the processes governed 

in Chapter 2, involving a 2-step fabrication process to combine two structures 

together as given in Figure 4.2. Significant grassing and roughness occurred, 

to which the SU8 photoresist is accredited the cause, arising from incomplete 

development whereby small remnants of this SU8 resist will act as micromasks 

causing long, thin structures to the be etched beneath. 
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To characterise and obtain the transmission data for our device, a fiber-based 

Terahertz Time-Domain Spectroscopy (THz-TDS) system is used to measure linear 

Jones matrix components (�jj, �mm, �jm, �mj% of the herringbone structure at normal 

incidence for a frequency range of 0.2 - 2.0 THz. The results for the experimental 

data characterisation are shown in Figure 4.6, where the reference of the data was 

taken as a blank piece of intrinsic silicon. It is clear from Figure 4.6 that there is 

indeed an asymmetry between the ��� (red) and ��� (blue) components as expected. 

At the operational frequency of 1THz there is an extinction ratio of nearly 4:1 

between ��� and ���, with the maximum value of ~60% transmittance occurring at 

fmax=0.9THz for ���. Furthermore, ��� shows a broadband operation, spanning a 

frequency range of ∆f = 0.47THz (centred at fmax=0.9THz) which exceeds a 

transmittance of 40%, and a FWHM of 0.75THz (again, centred at 0.9THz). 

Figure 4.6: The Experimentally obtained transmittance data 

for the fabricated silicon herringbone device 

Experimentally obtained transmittance curves using THz-TDS system. 
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 In addition, ��� has a consistently higher response  than  that of  ���  which 

typically only shows a transmittance of ~25% or less over the frequency spectrum of 

interest. Although the device shows strong chiral response, namely CCD effect, it 

does not perfectly compare to the theoretical and simulated results. This is in main 

part due to fabrication errors; alignment between the stripe and herringbone mask 

patterns will undoubtedly result in the degree of structure-chirality to lessen, 

affecting the geometric phase contribution. Also, a bottleneck could occur for both 

UV resist exposure of the SU8 at the bottom of the 30μm trenches, and also DRIE 

due to the lack of radicals able to escape from the very deep trenches. This is evident 

from the ‘grassing’ effect seen in Fig. 4.5 inset, whereby etch products re-settle where 

they act as ‘micro masks’ and protect the silicon below from being etched, although 

this grassing can be primarily attributed to the difficulty in removing the SU8 resist 

situated at the bottom of the trenches, which could similarly act as ‘micro masks’ in 

the DRIE process. Regardless of these difficulties, the device still exhibits the same 

responses as the theoretical results, showing that this method of achieving a chiral 

response using dielectric materials is robust and not overly sensitive to fabrication 

errors. Due to the limited availability of the fabrication facilities used by myself, it 

was not possible to fabricate a perfect sample corresponding to Figure 4.2a – it is 

hoped that this can be carried out in the near future and to compare results for a 

more well-matched device. 
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Examining the total energy of the system, we have from equations 4.13a,b at 

0.9THz that G� ≈ 0.60 (with G�� ≈ 0.20 and G�� ≈ 0.40), meaning 40% of the light 

is reflected for an incident handedness of RCP, and G� ≈ 0.83 (with G�� ≈ 0.60 and 

G�� ≈ 0.23), meaning that only 17% of the LCP light is reflected. It is clear that  

G� > G� but not as large as the difference experienced for both the theoretical and 

simulated results. However, it is the cross polarisation difference between G�� and G�� 

which is much larger (G�� is three times larger than G��) and of more importance in 

the operation of this device. 
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 Conclusion 

In conclusion, we have demonstrated and fabricated a functional monolithic 

dielectric device to achieve a strong asymmetry between the orthogonal circular 

polarisations of transmitted light, which provides a very high broadband capability 

and transmittance of one cross-polarisation whilst prohibiting the opposite one. The 

broadband capability stems from the dispersionless nature of both the Geometric 

phase and the effective medium dependent refractive indices, perpendicular and 

parallel to the gratings. The limiting factors to the broadband capability are due to 

the dynamic phases due to the specific depth of the gratings and silicon step, which 

are designed to work at 1THz, and the periodicity of the gratings no longer being 

sub-wavelength for frequencies much higher than 1THz. Impressively, the 

herringbone metasurface not only provides a simulated cross-polarisation 

transmittance of 0.8 for TRL, and 0.6 for the fabricated device, but also has a greater 

transmittance than pure silicon alone or any other similar works carried out using 

planar or multi-layered metasurfaces to achieve a chiral response, namely the 

Circular Conversion Dichroism. The high efficiency of the light transmitted for LCP 

is attributed to an anti-reflection type effect, whilst the inhibition of RCP light is 

believed to be due to destructive interference and behaviour akin to a dielectric 

mirror as deduced by the small amount of transmitted light – the ‘missing’ light is 

considered to be reflected, as material losses are believed to be negligibly small. 
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However, such reflected light is not directly observed due to the complexity in the 

experimental setup which would be required, and the fact that the light would need 

to be incident at oblique angles which would affect the desired functionality of the 

device. Improvements to the design of the device can be realised by using the higher-

order effective medium theory (compared to the first order used here) and by a 

systematic sweeping of the structure parameters used in the simulation to optimise 

the CCD effect. This can pass onto the fabricated device, where sample fidelity and 

quality could be improved by using better photolithography equipment, for 

alignment issues, and a tailoring of the DRIE process to make sure the sidewalls of 

the gratings are parallel and to prevent the bottleneck which may introduce the 

grassing seen at the base of the trenches. 

Due to the lack of metallic structures, losses are negligible and the application 

of subwavelength gratings in conjunction with a geometric phase provides a robust 

and facile means of achieving such Circular Conversion Dichroism functionality, 

which may provide a preferable route for cheaper and more efficient applications for 

optical computing, image processing, or biological characterisation, where the 

demand for high-efficiency circular polarisation disparities is crucial. 

 



 

147 

 

  

Broadband Metasurface with 

Simultaneous Control of Phase 

and Amplitude 

Electromagnetic waves have a range of controllable degrees of freedom, such as 

polarisation, phase, amplitude, and frequency. These degrees of freedom have been 

utilised to achieve a multitude of applications, from simple lenses to 3D-holography. 

However, it can be argued that the ultimate aspects for control are those of amplitude 

and phase (whilst operating for a range of frequencies) as polarisation essentially 

yields a change in either amplitude or phase. Here, this work aims to simultaneously 

achieve control of both phase and amplitude, whilst operating under a broadband 

frequency range in the Terahertz (THz) regime. The working principle is dependent 

upon two types of antenna – Split Ring resonators (SRR’s) can control the phase of 

an incident linearly polarised (LP) wave by adjustment of its geometry, whilst rod 

antennas can control amplitude by a simple rotation of the angle between its long 



Chapter 5 Simultaneous Control of Phase & Amplitude  148 

148 

 

axis and the incident LP wave. The combination of these two types of antenna yield 

SRR’s that utilise geometry to control phase, and the rotation angle between the 

symmetry line of the SRR and the incident LP wave to control the amplitude. These 

two degrees of freedom can be controlled in a smooth fashion, and the working 

principle is applied to create diffraction gratings capable of displaying, one, two, or 

three diffraction order configurations, although any arbitrary number of orders can 

be chosen. Even though the SRR’s are designed to operate at a specific design 

frequency, the results clearly display broadband activity owing to the interplay 

between the C-antenna symmetric and anti-symmetric modes - this allows a 

robustness and tolerance to fabrication errors.  

~~~ 

This chapter includes passages from the publication “L. Liu, X. Zhang, M. 

Kenney et al, Broadband Metasurfaces with Simultaneous Control of Phase and 

Amplitude, Adv. Mater. 26, 5031-5036 (2014)” [118], which was a collaborative effort, 

involving myself as a main contributing author. My primary contribution to this 

project was fabrication of the metasurface samples, with assistance from L. Liu and 

N. Xu. Simulations and Theory were performed by L. Liu, experimental design and 

measurements were carried out by X. Zhang and X. Su, and Prof. S. Zhang helped 

to devise and oversee all aspects of the project. 

~~~ 
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 Motivation 

Metamaterials, an artificial arrangement of periodic subwavelength optical 

elements, have continuously attracted a great deal of attention due to their unusual 

and controllable properties. These metamaterials can be utilised for controlling the 

propagation of light, with notable examples including negative and zero refraction 

[24–30], sub-diffraction imaging [34–36], and invisibility cloaking [31–33]. Regardless 

of the fact that metamaterials have been successful in paving the way for an array 

of novel potential applications and fundamental physics, it is still a big challenge 

devising metamaterials for real-world applications — this is primarily due to their 

bulky stature, materials losses, and issues with fabrication. Seeing as metamaterials 

are bulk arrangements, it is difficult to overcome these problems. Most metamaterials 

are composed of metals, which have significant ohmic losses attributed at optical 

frequencies. The three-dimensional arrangement also requires precise alignment 

between layers, which is challenging even with the most state-of-the-art fabrication 

facilities.  

During the past decade or so, metasurfaces, which are the two-dimensional 

counterpart of metamaterials and consisting of a monolayer of resonant structures, 

are capable of controlling the wavefront of light; they can therefore be used to serve 

as an alternative approach to overcome the issues associated with volumetric 

metamaterials, due to the much more straightforward fabrication procedures and 
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smaller losses, and can lead the way to bridging the gap between fundamental 

research and useful, practical applications [40,41,65,67–69,83,87–89,119–137]. The 

complex and time-consuming alignment and fabrication procedures necessary for 

bulk metamaterials is not required, whilst the optical losses associated with these are 

negligible for metasurfaces as they consist of structures typically only a fraction of 

the thickness of the wavelength of light being investigated. Despite being at its 

infancy, metasurfaces have shown great promise for novel applications, as shown by 

numerous devices, such as high resolution three-dimensional metasurface holograms 

[65,126–129], high efficiency [69,87–89] and switchable surface plasmon couplers 

[67,125], ultrathin flat lens [41,123,124], and various other functional interfaces 

[83,130–138].  

Of the majority of metasurfaces realised thus far, most only seem able to control 

the phase profile of the transmitted light – to completely manipulate the propagation 

of light, however, requires both phase and amplitude to be controlled simultaneously. 

This is especially crucial in applications such as holography, laser beam shaping, and 

generation of complex wave fields, where the manipulation of both of these degrees 

of freedom is required to produce high quality holographic or far-field images. Due 

to this, previous attempts have already been made to achieve simultaneity of phase 

and amplitude control with metasurfaces which use the antenna geometry to do so 

[128–130]. In [130], a detour phase scheme was used to realise complete control of 
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the phase and amplitude, where the pixel size of the diffractive surface is much 

greater than the wavelength of the light in question; this, however, is undesirable for 

device applications gearing towards small form-factors. More applicable work was 

carried out in [128], where a single layer metasurface, using subwavelength pixels, 

was used to engineer both phase and amplitude. However, the design of this work is 

complicated due to the fact that each pixel requires a different geometry to achieve 

arbitrary phase and amplitude, which limited the selection of phase and amplitude 

to only a few discrete levels. This is due to the fact that each combination of phase 

and amplitude corresponds to a different geometric antenna design, which in turn 

reduces the applicability of this design scheme as a suitable device as both fabrication 

and computation of arbitrary pixels is too complex to be readily utilised. 

Additionally, because it is necessary to manufacture each pixel individually, 

corresponding to a set value amplitude and phase, it would be difficult to make such 

a device have broadband frequency operation. 

Here, a robust and facile approach is employed for achieving simultaneous 

phase and amplitude manipulation in a single layer metasurface over a broadband 

frequency range in the terahertz regime. Compared to previous approaches for similar 

works, this metasurface design uniquely combines a number of important merits – 

subwavelength pixel size for continuous wavefront manipulation, easy fabrication, 

robust and broadband control of both the phase and amplitude, and finally that the 
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amplitude, as well as the phase, can be engineered precisely and continuously with  

very little modification to the pixel geometry.  

 Background Theory 

The design of the broadband metasurface relies on the combination of two types 

of metasurfaces, with different functionalities: a metasurface for phase control, 

determined by the geometrical configuration of each antenna; and a metasurface for 

amplitude control, which is realised by manipulation of the angular orientation. The 

first type of metasurface (for phase control) consists of an array of C-shaped Split 

Ring Resonators, referred to as C-antennas, where each of these have a carefully 

designed geometry. This metasurface operates for linear incident polarisation and 

under a cross-polarisation scheme, where the phase is robustly controlled dependent 

upon the antenna geometry – namely the radius, arm width and the open angle – 

via a transmitted beam which is orthogonal to the incident beam. A schematic 

representation of this first type of metasurface is shown in Figure 5.1a. These C-

shaped antennas work similarly to the widely adopted V-shaped antennas [40,119] 

but are smaller for the equivalent resonance frequency, and so can be more 

subwavelength. The line of symmetry of each antenna lies along either +45° or -45° 

in order to maximise the conversion between incident and transmitted orthogonal 

polarisations in the horizontal and vertical directions. 



Chapter 5 Simultaneous Control of Phase & Amplitude  153 

153 

 

The metasurface of the second type, for amplitude control, consists of an array 

of rod-antennas, all with the same dimensions, but varying orientation angles with 

respect to the horizontal axis. Interestingly, there exists a duality between the phase 

and amplitude control in this type of metasurface — namely, this metasurface 

operates as a phase plate for a circularly polarised incident beam, or as an amplitude 

plate for incident linearly polarised light (which we utilise in this work). This 

metasurface is shown in Figure 5.1b. Under linearly polarised illumination, the 

scattering amplitude of the cross-polarisation is controlled smoothly by the 

orientation angle of each rod-antenna [40]. This same configuration — utilising the 

orientation angle of the rod-antenna array — can also be employed for controlling 

 

Figure 5.1: Design concept of metasurfaces with simultaneous 

phase and amplitude control [118] 

(a) C-shaped antenna array with differing geometrical parameters for the 

phase control of linear polarisation conversion. (b) Rod antenna array with 

differing orientations for amplitude control of linear polarisation conversion. 

This type of metasurface has a duality between phase and amplitude, where 

phase is controlled for an incident circularly polarised beam. (c) C-shaped 

antenna array, using the same geometrical parameters as those in ‘(a)’ but 

combined with the differing angular orientations used in ‘(b)’ to give control 

of both phase and amplitude for linear polarisation conversion.  
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the phase of the scattering wave for incident circularly polarised light, as 

demonstrated in the work carried out by Huang et al [68].  

Combining the design concepts of these two types of metasurfaces provides a 

metasurface consisting of C-shaped antennas, which can simultaneously control 

phase and amplitude depending upon their orientation angle and geometry, 

respectively, as shown in Figure 5.1c. This allows us to construct an almost 

arbitrary complex transmission, or reflection, coefficient distribution at the interface 

simply by arranging the previously well studied C- and/or V-shaped antennas in 

varying orientation angles, without having to specially design a new antenna for each 

combination of phase and amplitude. Thus, this approach provides a facile and 

robust way to obtain a metasurface which allows simultaneous phase control and a 

continuously tuneable amplitude profile, greatly facilitating the step towards 

complete control of light propagation.  

To implement this approach for simultaneous control of phase and amplitude, 

we design a metasurface consisting of C-shaped antennas, as shown in Figure 5.2a. 

When a linearly polarised plane wave is incident onto a C-shaped antenna the 

symmetric kì� and anti-symmetric kì��  modes contribute to an orthogonally polarised 

output wave, whose phase and amplitude can be engineered by adjusting the 

geometric parameters of the antenna [40,83] (see Figure 5.2 for details of the 

parameters).  
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When an x-polarised wave kìj;  is incident onto a C-shaped antenna with its symmetry 

axis oriented along an arbitrary direction forming an angle θ with the x-axis (as 

 

Figure 5.2: Angular dependence of phase and geometrical 

dependence of amplitude of a C-Shaped antenna [83,118] 

(a) A schematic of the C-shaped antenna, with opening angle α, radius r, 

width ω, and orientation angle θ with respect to the x-axis. The red and blue 

curved arrows around the C-antenna represent the symmetric mode kì�	or the 

anti-symmetric mode kì��	 of the antenna, respectively. The vector arrows, 

inset, represent the polarisation direction required to excite the (b) symmetric kì�	(red) or (c) anti-symmetric kì��	(blue) modes of the antenna, and the (d) 

black arrow kìj;  is the actual incident polarisation for the desired cross-

polarisation effect, which corresponds to a vector sum of the symmetric and 

anti-symmetric modes kì�� giving rise to the cross polarisation transmission. 

The broadband nature of a C-antenna is due to the excitation of all three 

resonances (both kì� and kì�� modes) which combine to yield a broad response 

as shown in (d) which spans from 0.4-1.0THz. Additionally, it is seen that 

the amplitude is more or less constant for this broadband response. 
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shown in the inset of Figure 5.2a, above), the resultant y-polarised scattered field kìm� 
can be written as [83]: 

E@A� = ��E@BÞ sin(2θ) úΑ�eÞEF ! ΑG�eÞEHFû = E@BÞAeÞE   (5.1) 

where I�, I�� and q�, q�� denote the scattered amplitude and phase from the 

symmetric and anti-symmetric modes (respectively) when the symmetry axis of the 

structure is along θ	= 45°, and	A and q denote the overall scattered amplitude and 

phase, respectively. It is seen in Figure 5.2b that the symmetric mode kì� has a 

resonance at 0.8THz when the polarisation is along the symmetry axis of the C-

antenna. Similarly, when the polarisation is orthogonal to the symmetry axis, shown 

in Figure 5.2c, two anti-symmetric modes kì�� are excited with resonances occurring 

at 0.35THz and 1.02THz for the dipole and multipole responses, respectively. 

According to Equation 5.1, for a fixed antenna design, the amplitude of kìm� is solely 

determined by the orientation angle θ, and when the symmetry axis of the antenna 

is along θ = 45° the amplitude of kìm� reaches the maximum value. The accumulation 

of all of these responses for kì� and kì�� –at 0.35THz, 0.8THz and 1.02THz – yields a 

highly broadband response when the incident polarisation kìj;  is along the x-axis, and 

can be shown in Figure 5.2d. This is owing to the fact that a polarisation incident 

in the x-axis causes an excitation of all three modes simultaneously, leading to a 

broad overlap between them. The cross-polarised output wave kìm� can be seen to 

operate at a relatively constant amplitude between 0.4-1.0THz, which is the physical  
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interpretation behind the broadband capability of this device, as realised later in the 

chapter. Conversely, when altering the orientation angle of an antenna between 0° 

and +90° the phase of the scattered wave is not affected at all, whereas shifting the 

angle to go below the x-axis, where the angle θ is between -90° and 0°, simply yields 

an additional phase shift of π.  

 

Figure 5.3: Simulated transmission amplitude and phase 

response of a fixed-geometry C-shaped antenna array [118] 

and varying-geometry C-antennas [83] 

(a) The transmitted cross-polarised amplitude (blue solid circles) and phase 

(black solid triangles) profiles of an array (unit cell 80μm in both x- and y-

directions) of C-shaped antennas with fixed geometry (r, α ) = (34μm, 11°) and 

θ varying from -90° to +90° at 0.63THz. The amplitude profile follows a |sin#2�)| dependence (blue solid line), whereas the phase profile remains 

constant apart from a phase jump of π when the angle increases past θ = 0°. 
(b) Simulated variation of the cross-polarised transmission amplitude and (c) 

cross-polarised transmission phase, when the C-antenna radius, r, and 

opening-angle, α, are varied from 20-35μm and 0-180°, respectively.  
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 The simulated amplitude and phase variations of a C-shaped antenna at 

different orientation angles from -90° to 90° at a frequency of 0.63THz are shown in 

Figure 5.3a, where the amplitude varies as |sin(2θ)| whilst the phase remains 

constant (due to the fixing of the geometric parameters to r = 34μm and α = 11°)  in 

two separate angular ranges of -90° to 0° and 0° to +90° — only an abrupt change 

of π at θ = 0° occurs. This abrupt phase change of π can be viewed as us flipping the 

C-antenna about the x-axis, which then causes the kì� and kì�� excitation polarisations 

to switch places (from inset of Fig.2a). In essence, y � -y, and so the output cross-

polarised signal in the y-axis will be a half-wavelength out of phase compared to the 

original case. Hence, the orientation angle θ serves as an important parameter used 

to control the amplitude of a scattered wave without the need to resort to designing 

new antenna geometry. Figure 5.3b shows the cross-polarised transmission 

amplitude when the C-antenna radius, r, is varied from 20μm to 35μm and the 

opening-angle, α, is varied from 0° to 180°, respectively, whilst Figure 5.3c shows 

the cross-polarised transmission phase when the C-antenna has r and α varied by the 

same values as for the amplitude. The variation of the amplitude and phase responses 

due to the variation of the C-antenna geometric parameters are explained by the 

near-field interactions between the two arm ‘ends’ (either side of the gap) [133] – by 

altering the distance between the arm ‘ends’, and similarly the length/circumference 

of each C-antenna, these interactions will in turn affect the scattering and absorption 
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cross sections (namely, extinction) of each C-antenna, which results in a change in 

the amplitude and phase responses at resonance.  

This approach for realising metasurfaces with simultaneous control of phase 

and amplitude is applied to the design of terahertz metasurface gratings which can 

arbitrarily control the diffraction orders for a linearly polarised incident beam. In 

general, to generate a grating having desired diffraction order amplitudes Am, the 

transmission through the grating is expressed as, 

t(x) = A#x% expYiϕ(x)Z =  ∑ AOexp #−i2mπx d)⁄O    (5.2) 

where d is the grating periodicity and m is an integer denoting the diffraction order. 

Achieving a single diffraction order (m = -1) requires that the transmission function 

is simply a linear phase gradient along the x direction whilst maintaining a uniform 

amplitude. This is referred to as anomalous refraction and is the outcome of the 

result for the Generalised Snell’s Law as derived in Chapter 2, which has been realised 

previously using metasurface phase gradients [40,119]. However, because the 

amplitude is a function of x, the amplitude and phase need to be carefully controlled 

when wishing to generate multiple diffraction orders as the transmission also varies 

with position.  
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 Sample Design 

Three metasurface designs were proposed to generate different numbers of diffraction 

orders, and are shown in Figure 5.4 below. For the sake of this project, three 

diffraction order combinations were chosen: m=-1; m=-1,-3; and m=-1,-2,-3. For the 

first design, where we choose just one diffraction order, we have (from equation 5.2): 

t�(x) = A�exp (i2πx d)⁄     (5.3) 

We can choose that A� = 1, and indeed for all three designed diffraction gratings, to 

normalise all of the amplitudes such that they are equal. The grating periodicity d 

is simply the number of unit cells in one grating period multiplied by the size of one 

unit cell. For all of the figures shown in Figure 5.4, we have a unit cell size of 80μm. 

In Figure 5.4a, we have a single diffraction order and we choose 8 pixels for one 

grating period. This therefore give us a value of d = 8	x		80μm = 640μm. We then 

substitute both A� and d into equation 5.3 to give us: 

t�#x% = exp#i2πx 640μm%⁄     (5.4) 

This equation was then used to plot both the amplitude (abs[t(x)]) and phase 

(arg[t(x)]) using the commercial software Matlab, where the solid lines in Figure 5.4a 

(and indeed all of Figure 5.4) are the output plots from Matlab. We can see for two 

diffraction orders in Figure 5.4b that the analytical equation plots (solid lines) are 

a little more complex. Due to this we chose to use 16 unit cells, rather than 8, so 

that we could have a greater granular control over the phase increments along the 
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grating. This in turn gives a value of d = 16	x		80μm = 1280μm. For the sake of 

showcasing the flexibility of these gratings, we chose to use the m=-1 and m=-3 

orders, rather than m=-1 and m=-2. As was previously stated, all of the amplitude 

coefficients were normalised to unity and so we have that A� = A¯ = 1. This then 

gives us an overall transmission response of: 

t�#x% = exp#i2πx 1280μm%⁄ + exp(i6πx 1280μm%⁄   (5.5) 

and similarly the amplitude and phase were plotted using Matlab, as shown in Figure 

5.4b (solid lines). Lastly, the grating for generating three diffraction orders, m=-1, 

m=-2, m=-3, was again generated using a value for the periodicity d = 16	x		80μm =

1280μm, where we chose to have 16 unit cells as the plots shown in Figure 5.4c 

are relatively complex and require a greater deal of control over the phase than is 

available when only using 8 unit cells. The equation used for plotting three diffraction 

orders is given as: 

t¯#x% = exp#i2πx 1280μm%⁄ + exp(i4πx 1280μm%⁄ + exp(i6πx 1280μm%⁄    (5.6) 

where we again normalise the amplitudes to unity, with A� = A� = A¯ = 1. All of 

the diffracting metasurfaces contain four different antenna geometries [83], whose 

phase evenly span from 0 to π with a phase-step of π/4, and with a flip of each 

antenna along the x-axis to introduce an additional phase shift of π (as explained 

above). These four C-antennas were carefully chosen from selecting the required 

phase values from the phase map shown in Figure 5.3c. The arm width of all four  
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Figure 5.4: Amplitude and phase profiles of the three 

diffracting metasurfaces [118] 

For each metasurface, four different geometries of C-shaped antenna are 

designed with the same w=5μm but different (r,α) = (34μm, 11°), (32.3μm, 47°), 

(34.4μm, 117°), and (29.8μm, 140°). Simulated amplitude (normalised) and 

phase profiles the x-axis for sample of (a) a single diffraction order, (b) two 

diffraction orders, (c) three diffraction orders; all at 0.63THz for y-polarised 

transmission from an x-polarised incidence. The symbols (circles/triangles) 

represent simulated results, whilst the solid lines are obtained from  

Equation 5.2-5.6 for the designed profiles. In (a), the orientations of each 

individual antenna are either +45° or -45°, whereas in (b) and (c) the 

orientations vary between these two angles due to the varying amplitude 

requirement. The antenna spacing (pixel size) was fixed as 80μm in the 

simulation. Inset: super-cell arrangements of antennae for each design.  
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C-antennas was fixed as Q = 5��, whilst the radius and open-angle were varied and 

were chosen as (r,α) = (34μm, 11°), (32.3μm, 47°), (34.4μm, 117°), and (29.8μm, 140°). 

As shown in Figure 5.4a, the super-cell of the metasurface (defined as the total length 

of the antennas which span a full phase from 0 to 2π) for generating a single 

diffraction order (m=−1st order) consists of eight antennas (seen underneath each 

figure of curves, Figure 5.4), whose symmetry axis are either along +45° or −45° to 

realise a linear phase gradient between 0 and 2π whilst maintaining a constant 

amplitude profile. The super-cells of the metasurfaces for generating two (m=−1st 

and m=−3rd) and three (m=−1st, −2nd and −3rd) diffraction orders consist of sixteen 

antennas, with the orientation of the symmetry axis of each antennas continuously 

varying between +45° or −45° to achieve the desired phase and amplitude profiles 

(Figure 5.4b, c). In all of these plots, the phase (red triangles) and amplitude (blue 

circles) profiles arising from the simulated responses of the individual C-antennas 

(with the above listed geometries) are overlaid on the analytically calculated Matlab 

curves. There appears to be a very good correspondence between both simulated and 

analytically calculated phase and amplitude responses, and so we can be confident 

that the diffraction grating arrangements shown beneath all of the figures in  

Figure 5.4 are well representative of the physically occurring diffraction orders from 

such devices.  
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 Fabrication and Experimental Results 

In order to experimentally verify our theoretical analysis, four samples (A-D) 

were fabricated. This involved the use of photolithography along with metal 

deposition and lift-off process methods, as explained in Section 3.1 of Chapter 3. 

Sample A, with an antenna spacing of 80μm (of which the super-cell size is 640μm × 

80μm), is designed to provide only a single diffraction order. Sample B and C are 

both designed for achieving two diffraction orders but using slightly different antenna 

spacings (100μm for sample B and 80μm for sample C), and sample D is designed for 

achieving three diffraction orders (using an antenna spacing of 100μm, super-cell size 

= 1600μm x 100μm). The antennas were fabricated by patterning the C-shaped 

antennas as voids into photoresist on an intrinsic silicon substrate, evaporating 

200nm of aluminium, and then performing lift-process to leave behind metallic 

 

Figure 5.5: Optical Images of diffractive metasurfaces C and D [118] 

(a,b) Top view of the fabricated aluminium metasurfaces C and D, 

respectively, where C is used for achieving two diffraction orders and D is 

used for achieving three diffraction orders. P is the pixel size, i.e. the spacing 

between adjacent antennas.  
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C-shaped antennas on the silicon substrate. Optical images of sample C and D are 

shown above in Figure 5.5 (a) and (b), respectively. 

To characterise the optical response of the metasurfaces, namely the diffraction 

orders in the range of 0.4 and 1.0THz, a fiber-based angular resolved terahertz time-

domain spectroscopy (THz-TDS) system is used. The measurements took place at 

normal incidence, and the transmitted beam was angularly resolved. (More 

information on the operation of a THz-TDS system is given in Section 3.2 of  

Chapter 3). The Terahertz transmitter and receiver were a pair of commercially 

available fiber-based terahertz photoconductive switches (Menlon System). The wave 

emitted from the transmitter was first focussed onto the sample by a dielectric lens, 

before being refocussed by an identical lens onto the receiver. Samples were placed 

in the centre of a rotational stage with the super-cell (phase gradient) direction of 

the metasurface aligned with the horizontal axis (normal to the beam) with the 

receiver attached to a swivelling metal arm attached to the centre of the rotational 

stage. This enabled the receiver to gather the signals successfully from the sample, 

regardless of the angle of the transmitted beam. The diffracted beam from the 

samples were measured by rotating the stage at a fixed incremental angle of 3° 

spanning from −90° to +90°. In order to eliminate any non-orthogonal transmission 

(seeing as the operation of the metasurface is cross-polarisation) two polarisers were 



Chapter 5 Simultaneous Control of Phase & Amplitude  166 

166 

 

employed – one before the sample, and one after – with horizontal alignment for the 

first (incidence) and vertical alignment for the second (transmission). 

The results obtained experimentally from the THz-TDS setup are shown in 

Figure 5.6a-d, where the diffraction spectra are shown in a broad angular range 

from −70° to +70° over a frequency range of 0.4 to 1.0THz. It is clearly visible in 

Sample A (Figure 5.6a) that a single diffraction order exists, which agrees with 

previous work using this same metasurface carried out by Zhang et al [83], as 

  

 

Figure 5.6: Experimental characterisation of the metasurfaces at 

normal incidence. [118] 

(a-d) Measured diffraction signals of samples A-D, respectively.  

(a) Sample A, amplitude and phase profile from Figure 4.4a, P=80μm.  

(b) Sample B, amplitude and phase profile from Figure 4.4b, P=100μm.  

(c) Sample C, amplitude and phase profile from Figure 4.4c, P=80μm.  

(d) Sample D, amplitude and phase profile from Figure 4.4d, P=100μm. The 

dashed yellow lines in the spectra represent the calculated diffraction angles. 
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required. Even though the metasurfaces were designed to operate at a frequency of 

0.63THz, it is evident from the spectra that a broadband operation exists from 0.5 

to 1.0THz, due to the excitation of both symmetric and anti-symmetric modes as 

explained previously. As predicted by the design configuration, samples B and C 

both exhibit two diffraction orders, but due to their differing pixel sizes they result 

in different diffraction angles, as seen by the mismatch between Figure 5.6 (b) and 

(c) where the curves are shifted more to lower angles in (c). Again as expected, the 

diffraction spectra of sample D show three distinct diffraction orders, as designed. 

For all of the diffractive metasurfaces, the measured diffraction angles agree well 

with the calculated values over for the whole frequency range of 0.4 to 1.0THz – the 

observed multiple diffraction orders in sample B-D confirm that the metasurfaces 

performed as required and exhibit well controlled phase and amplitude profiles. As a 

note, for samples B-D, which have more than one diffraction order, it is found that 

the intensity of the lowest diffraction order is always the strongest, even though the 

metasurfaces were designed to exhibit equal electric field amplitudes for all of the 

orders. An explanation for this is that the projection area of the antenna array along 

the propagation direction of a diffraction order differs for each; for larger diffraction 

angles, corresponding to higher diffraction orders, the area projected is smaller and 

in turn carries less energy. Additionally, because the antennae are modelled using 

normal incidence, it is less understood what occurs for the resonance behaviour at 

oblique angles of incidence, and due to reciprocity it can be inferred that this is also 
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true for oblique angles of transmission – if the electric field polarisation is not planar 

to the antenna, it would lead to a reduction of the quality of resonance compared to 

that for normal incidence and excitation from in-plane polarisation.  

 Numerical Simulations 

To further reinforce the results from both the experimental and theoretical 

calculations, and to gain a more clear insight, 3D Finite-Difference Time-Domain 

(FDTD) simulations were performed using the commercially available software CST 

Microwave Studio. The parameters of the four fabricated samples A-D were modelled 

individually, where a Terahertz beam is incident from the substrate side onto the 

 

 

Figure 5.7: Simulated electric field distributions at 0.8THz [118] 

The simulated y-polarised electric field distributions of (a-d) for Samples  

A-D, respectively, at 0.8THz. The terahertz beam is incident from the silicon 

substrate side (top-half) at normal incidence.  
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metasurfaces. The simulated electric field distributions at 0.8THz, for designated 

diffraction orders, are shown in Figure 5.7, where the displayed data is for cross-

polarisation with respect to the incident wave. 

As seen in Figure 5.7a, the simulation results shown are for fabricated 

Sample A, and a uniform transmitted anomalous wave is observed which agrees well 

with the experimental and calculated designs for a metasurface exhibiting a single 

diffraction order. Figure 5.7b, c, and d show, respectively, the simulation results 

 

 

Figure 5.8: Numerically retrieved diffraction orders from 

simulated electric field profiles. [118] 

(a-d) The diffraction order distributions calculated by Fourier Transform of 

the y-polarised electric field distribution from the FDTD simulations. The 

data was acquired from the x-axis at a distance of 900μm from the 

metasurfaces in the air side. The antenna spacing is 80μm in (a), (c) and 

100μm in (b), (d), so as to be consistent with the experimental measurement.  
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for samples B and C – metasurfaces exhibiting two diffraction orders – and sample 

D, exhibiting three diffraction orders. However, it is obvious that these plots no 

longer display an electric field profile which is comprehendible, due to the near-field 

interference of the multiple diffraction orders. In order to ascertain whether these 

metasurfaces do indeed operate correctly and exhibit multiple and well-defined 

diffraction orders, we must see the far-field distribution, which requires a Fourier 

Transform of the near-field distribution. A Fourier Transform is applied to the data 

obtained from the simulations at a distance of 900μm from the metasurfaces in the 

air-side, and these results are shown in Figure 5.8a-d. It can be seen that a single 

dominant diffraction peak occurs at m = −1 (Figure 5.8a), two dominant 

diffraction orders at m = −1 and −3 (Figure 5.8b,c) and three dominant diffra 

ction orders at m = −1, −2, and −3 (Figure 5.8d) are observed for the three 

metasurfaces, respectively (where Sample B and C, corresponding to Fig’s 5.8b and 

c, have two diffraction orders, but at different diffraction angles due to pixel size 

differences). Therefore, it is clear that the simulations do indeed provide a good 

agreement with the experimental measurements and calculated results.  
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 Conclusion 

To summarise, a design scheme for realising metasurfaces capable of controlling 

both the phase and amplitude profile has been proposed. The design of the 

metasurface is simple, robust and broadband, whilst benefitting from the freedom of 

simultaneously engineering the geometry and orientation angle of the C-shaped 

antennas comprising the metasurface. As a proof of concept, it is shown that the 

design can be applied to realise a metasurface grating capable of arbitrarily 

controlling the intensity of multiple diffraction orders. This approach can be utilised 

to engineer complex holograms, for example, with simultaneous phase and amplitude 

control, which paves the way towards high quality computer generated holography 

and the generation of arbitrarily complex optical patterns. 
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High Efficiency Broadband 

Reflective Metasurface for 

Holography Applications 

Surfaces covered by ultrathin plasmonic structures – so-called metasurfaces 

[40,88,119,121] – have recently been shown to have the capability for complete 

control of the phase of light, representing a new standard for the design and 

construction of innovative optical devices such as ultrathin flat lenses [41,123,124], 

directional couplers for surface plasmon polaritons [67,121,122,125], and wave plate 

vortex beam generation [40,139]. Of all of these types of metasurfaces, geometric 

metasurfaces – which consist of an array of metallic rod antennas with spatially 

varying orientations – have shown superior phase control due to the geometric nature 

of their phase profile [68,140]. Metasurfaces have recently been utilised for computer-

generated holograms [65,127–129,141,142], but with too low a holographic efficiency 

at visible wavelengths for practical purposes. Here, we report the design and 
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realisation of a geometric metasurface hologram reaching diffraction efficiencies of 

80% at 825nm and a broad bandwidth between 630nm and 1,050nm. A 16-level-

phase computer-generated hologram is demonstrated, and combines the advantages 

of a geometric metasurface for controlling the phase profile with reflectarrays for 

achieving high polarisation conversion efficiency. The design of the hologram 

presented here is achieved from the integration of a metal ground-plane with the 

geometric metasurface to exhibit an enhancement between the conversion efficiency 

of two orthogonal circular polarisation states – this leads to the reported high 

diffraction efficiency without the necessary complications required in other 

fabrication processes for holography production. Due to the advantages of this work, 

various practical holographic applications can be realised.  

~~~ 
This chapter includes passages from the publication “G. Zheng, H. 

Mühlenbernd, M. Kenney et al, “Metasurface Holograms reaching 80% Efficiency”, 

Nat. Nanotechnol. 10, 308-312 (2015)” [69], which was a collaborative effort, 

involving myself as a main contributing author. My primary contributions to this 

project were design, modelling, and optimisation of the multilayer reflectarray 

structure, with assistance from G. Zheng. Fabrication was performed by H. 

Mühlenbernd, and measurements were carried out by both G. Zheng and G. Li. Data 

analysis was performed by G. Zheng, G. Li, T. Zentgraf, and S. Zhang. 

~~~ 
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 Motivation 

In traditional phase-only computer-generated hologram (CGH) designs, the 

phase profile is controlled by etching different depths into a transparent dielectric 

substrate, for dynamic phase control. Due to the ease of fabrication, two-level binary 

CGHs have been widely adopted. These CGHs have a theoretical diffraction 

efficiency of only 40.5% and an unavoidable issue of twin-image generation occurs. 

One way to bypass this issue is to use multi-level-phase CGHs, which overcome the 

low efficiency and twin-image problems, but this requires expensive and complicated 

means of fabrication such as greyscale, variable-dose or multi-step lithography [143]. 

Consequently, such techniques for fabrication will incur etching errors, alignment 

errors, and resolution errors, which will undoubtedly negatively affect the 

performance, and lead to a lessening of the signal-to-noise ratio, strong zero-order 

intensity, and poor uniformity. To alleviate these issues, an effective medium 

approach has been proposed in [143], where two-level-depth subwavelength 

structures with varying cell compositions behave as effective media. In this work, 

each unit-cell consists of a tall thin pillar of dielectric media on top of a thick 

reflecting metal surface, and can be controlled (via lithography) to have differing 

lateral dimensions – the whole unit-cell can then be modelled as an effective medium, 

with thinner pillars (which are effectively devoid of dielectric) tending towards 0-

phase and thicker pillars (which introduces a larger overall effective index) to have 
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larger phase values. Because of the geometry-dependent (namely, effective index-

dependent) phase, the system can be used as a multi-level CGH. However, due to 

the small, high-aspect ratio features, the observed efficiency of this CGH when using 

three phase levels is limited to only 29% – much less than the theoretical value of 

48.5%.  

Geometric metasurfaces (GEMS) provide an alternative approach to achieving 

high-efficiency holograms without the need for complicated fabrication procedures. 

These GEMS rely on inversion of the helicity of polarisation (either transmission or 

reflection) with respect to that of the incident circularly polarised one [38,144] – this 

is equivalent to flipping the circular polarisation in transmission or maintaining the 

same circular polarisation in reflection.  In contrast, a typical polished metal mirror 

will reverse the handedness of (normal incidence) circularly polarised light upon 

reflection. A geometric phase, or Pancharatnam-Berry phase, as detailed in Chapter 

2, is acquired through the inversion of the handedness, which lead to an antenna-

orientation controlled phase; this phase does not depend on any specific antenna 

design or resonance frequency, which makes this phase acquisition technique highly 

robust against fabrication issues, material property variations, and also results in a 

broadband performance.  
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 Theory and Sample Design 

 Thus far, the performance of such GEMS devices has been severely limited in 

converting one circular polarisation into the opposite, especially so in the visible and 

near-infrared wavelengths, where the efficiency of conversion for such planar 

metasurfaces is typically less than 20% [65]. To increase the efficiency of GEMS, a 

multilayer design is utilised, which works to achieve a high polarisation conversion 

[87,145–147]. Our reflective metasurface element consists of three layers: a metal 

 

Figure 6.1: Schematic diagram of the unit-cell element used 

for high polarisation conversion [69] 

(a) A single unit-cell element of the high efficiency polarisation conversion 

metasurface. The nanorod can rotate in the x-y plane with an orientation 

angle of Φ  to create differing phase delays. The pixel are arranged with 

periods Px = 300nm and Py = 300nm. The nanorods have length L = 200nm, 

width W = 80nm, and height H = 30nm. The MgF2 and gold films have 

thickness of h1 = 90nm and h2 = 130nm, respectively. (b) Cross-section of 

the unit-cell. The gold films acts as a mirror to reflect the incident light, 

whilst the MgF2 layer acts as a Fabry-Pérot cavity to continue to re-excite 

the nanorod and generate a phase delayed output beam. 
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ground plane, a dielectric spacer later, and on top of this the layer of antennas 

forming the metasurface. A schematic diagram of this is shown in Figure 6.1; this 

element operates in such a way that the transmitted light, which has interacted with 

the nanorod antenna, is reflected back from the metal ground plane and re-excites 

the antenna in a Fabry-Pérot type mechanism with the dielectric spacer-layer acting 

as the cavity (Figure 6.1b). In terms of optical devices, it is well known that a half 

wave plate can fully convert a circularly polarised beam into the opposite handedness 

by imparting a phase delay of π between the two plane waves composing the beam, 

arising from the fast and slow axis of the wave plate. This type of device is termed 

birefringent, as detailed in Chapter 2, which is where the refractive index (or relative 

permittivity) is different along the orthogonal crystal axes. In a similar light, to 

achieve a high conversion between the orthogonal circular polarisation states, it is 

desirable that the phase difference between the reflected light, with polarisation along 

the long axis (r
l
) and the short axis (r

s
) of the nanorod antenna, is also equal to π. 

Simulated results of incident linear polarisation upon a metasurface using the high 

efficiency design, and a fixed rotation angle Φ, are shown in Figure 6.2. The 

proposed three-layer element shows excellent reflection coefficient responses 

exceeding amplitudes of 0.8 for both linear polarisations. More importantly, the phase 

plots shows that the difference between the phase responses along the long and short 

axes is to a good approximation equivalent to π, over a broad bandwidth between 
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600nm to 1000nm. Consequently, because these responses are those acquired from 

linear polarisations incident along the long and short axes of the nanorods, and the 

fact that circular polarisation is essentially a rotating electric field vector (thereby 

encapsulating all possible linear polarisation directions), it can be assumed that the 

proposed method of obtaining such a response using the three-layer high efficiency 

element is independent of the rotation angles Φ of the nanorods, and the phase 

difference of π is expected to completely flip the handedness of the incident circular 

polarisation upon reflection (thus preserving its handedness given that the 

wavevector is also reversed). This means of obtaining a complete flipping of the 

circular polarisation forms the basis of our high-efficiency GEMS, and ultimately the 

ability to obtain high-efficiency holography. A simplified model is shown in Appendix 

 

Figure 6.2: Simulated Amplitude and Phase responses of a 

metasurface array with fixed rotation angle [69] 

(a) Simulated amplitude |rl|, |rl| and (b) phase Φl , Φs (with phase difference 

∆Φls) of the reflection coefficients rl and rs , where l and s denote the long 

and short axis directions of the nanorods, respectively.  
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B, which gives the theoretical framework and more detail on explaining the high 

efficiency and broadband response of the nanorod metasurface.  

To verify the high-efficiency of maintaining the same handedness of circular 

polarisation upon reflection, numerical simulations were performed using the 

commercially available software CST Microwave Studio and are shown in Figure 

6.3. A uniform metasurface was modelled, where all of the rotation angles were fixed 

at 45° (to minimise coupling between adjacent nanorods as much as possible). The 

reflected wave contains both circular polarisation states, where one is the opposite 

handedness to that of the incident wave, and is unperturbed by the metasurface, 

whilst the other has the same handedness as the incident wave but with an additional 

phase delay of 2Φ, where Φ is the orientation angle of the nanorod antenna (in this 

case the angle is equal to 45°, thus the phase delay is equal to 90° or π/2). For the 

specific geometry as shown in Figure 6.1, for a circularly polarised wave incident at 

normal incidence, the simulation results in Figure 6.3 show that the reflectivity of 

light with the same circular polarisation (cross-polarisation in terms of the receiver) 

exceeds 80% reflectivity in a broad wavelength range between 550nm and 1,000nm, 

which covers nearly a full optical octave. Fascinatingly, even with the unavoidable 

Ohmic losses of the metals used (especially at visible and near-infrared frequencies), 

this efficiency is still astoundingly high. 
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Interestingly, the ohmic loss in this configuration is very close to that of light 

transmitted through a single metasurface layer (without the metal ground plane) 

around the resonance wavelength (800-850nm) of the antenna. Conversely, and 

desirably, the efficiency of the unwanted handedness of reflected light (co-

polarisation with respect to the receiver) is extremely low (<3%) over the same 

broadband wavelength range from 550nm to 1,000nm. As a note, optimisation of the 

high efficiency elements (including nanorod antenna and unit cell dimensions, and 

the spacer layer thickness) was carried out to obtain the best conversion efficiency 

whilst exhibiting the broadband response. 

To confirm the high efficiency of our numerical simulations we designed a 

GEMS-based CGH, as shown in Figure 6.4. The CGH was designed for circularly 

 

Figure 6.3: Simulated cross-polarisation and co-polarisation 

with normal light incidence for design in Fig. 5.1. [69] 
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polarised light at normal incidence. A design where the holographic image appears 

off axis was used to avoid overlapping of the holographic image and the zero-order 

spot. A digital image of Einstein’s portrait measuring 550 × 300 pixels and 256 

greyscale levels (see inset of Figure 6.4b) was used for the holographic target image. 

The CGH was designed to create a wide image angle of approximately 60° × 30°. 

Because of this large angular range, the Rayleigh-Sommerfeld diffraction method was 

used for simulating the holographic image [148], and the hologram was pre-

compensated to avoid pattern distortion. Additionally, a 2 × 2 periodic array of the 

complete holographic phase pattern was used (Figure 6.4c) to avoid the formation 

of laser speckles in the holographic image, where the concept of Dammann gratings 

was utilised [149] – more information as to the advantage of the 2 × 2 periodic 

arrangement over a single hologram phase pattern is provided in Appendix B, Figure 

B.3. To create a holographic image with an image pixel array number measuring m 

× n within the angular range αx × αy in the far-field, the period of the CGH 

(metasurface array) in the x and y directions can be calculated according to  

»j = �L/(2 G±9(�j 2⁄ ))     (6.1) 

»m = 9L/ú2 G±9ú�m 2⁄ ûû     (6.2) 

where the m and n correspond to the far-field (holographic) image pixel numbers. 

The number of pixels in the CGH (metasurface array) is determined by M = dx/Δp 

and N = dy/Δp, where Δp is the pixel size of the CGH in both x and y directions 

(this can be a fixed value for a square unit cell, which is true for our case). Using the 
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above structural parameters, we developed a phase-only CGH using a metasurface 

pixel dimension Δp of 300nm × 300nm and periods dx,dy of 333.3μm × 333.3μm (for 

M × N = 1111 × 1111 pixels), which was designed according to the classical 

Gerchberg-Saxton algorithm [150]. For the wavelength range in question, from  

 

Figure 6.4: Working principle and phase distribution of the 

metasurface hologram [69] 

(a) Phase delay for 16-level phase steps. On each data point is the 

corresponding nanorod orientation. (b) Illustration of the reflective nanorod-

based CGH under a circularly polarised incident beam, which is converted 

from a linearly polarised beam upon passing through a quarter wave plate 

(QWP). The reflective beam forms the holographic image in the far field. (c) 

The 16-level phase distribution with 2 × 2 periods designed to generate the 

target holographic image in the far field. (d) Enlarged phase distribution (100 

× 100 pixels) of the upper left corner of (c).  



Chapter 6  High-Efficiency Reflective Broadband Metasurface  183 

183 

 

500nm-1,000nm, we can see that the pixel (unit cell) size is at least less than half of 

the wavelength and the hologram pattern is sampled at least twice the maximum 

spatial frequency in either direction, thereby satisfying the Shannon-Nyquist 

sampling theorem [151]. Because the geometric phase delay of the metasurface is 

determined solely by the orientation of the nanorod antennas, 16 phase-levels 

(Figure 6.4a) were used to obtain the high performance from the CGH. The phase 

distribution obtained for the hologram is shown in Figure 6.4c, with a zoomed in 

section in Figure 6.4d. Simulation shows that in our optimised design with an ideal 

hologram, and neglecting optical losses, the window efficiency, which is defined as 

the ratio between the optical power projected into the image region and the input 

power, reaches 94%.  

 Fabrication and Experimental Results 

The metasurface CGH was fabricated on top of a silicon substrate following the 

design described above (Figure 6.5a). A 130nm thick gold metal ground layer was 

first evaporated onto the silicon substrate, and a 90nm thick layer of MgF2 was 

deposited on top. Standard electron beam lithography was then carried out on a 

resist to produce the CGH pattern, and a 30nm deposition of gold, followed by lift-

off processing gave us our gold metasurface CGH. To determine the conversion 

efficiency of our CGH, a linearly polarised beam from a Supercontinuum light source 

(Fianium Supercontinuum) was converted to circularly polarised light by the use of 
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a linear polariser followed by a quarter wave plate. A lens with focal length of 300mm 

was used to focus the incident beam onto the metasurface, and the reflected 

holographic image was collected by two identical condenser lenses with high 

numerical aperture (NA = 0.6) and focussed onto a power meter in the wavelength 

range: 400nm-1,1100nm. A schematic diagram of the optical setup is shown in 

Figure 6.5b. The incident beam was focussed onto the sample with a spot size of 

~300μm in diameter, which is less than the size of the 2 × 2 CGH metasurface 

pattern (666.6 × 666.6μm2). Additionally, colour filters were used to remove 

unwanted light generated by the Supercontinuum laser, and an iris was used to block 

the scattered beam from the multi-reflections between the optical interfaces. The 

incident laser was increased in wavelength from 600nm-1,100nm in steps of 25nm, 

and the corresponding holographic image output was measured. The optical 

efficiency (holographic window efficiency) was determined by subtracting the zeroth-

order signal from the image intensity (Figure 6.5c). It is found that the sample 

exhibits a high window efficiency exceeding 50% over a broad spectral range from 

630nm to 1,050nm. This reaches a maximum efficiency of 80% at a wavelength of 

825nm, whilst simultaneously giving a zeroth-order efficiency of only ~2%, which is 

the unwanted co-polarised signal that does not undergo a phase delay. As well as 

these results, we did not observe the twin image effect which occurs for traditional 

binary holograms and negatively affects the efficiency. 
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Theoretically, the simulated metasurface hologram has broader spectral 

response (Figure 6.3) than that which occurs for the measured sample. This lessening 

of the broadband efficiency may possibly arise from the fact that the simulated 

conversion efficiency is obtained for a metasurface illuminated with normally incident 

light, whereas in the experiment the holographic image from the metasurface CGH 

was projected into a broad angular range (approximately 60° × 30°). It can be 

expected that this broad-angle scattering will result in a narrower bandwidth and 

 
Figure 6.5: Scanning electron microscopy image, experimental 

optical setup and results for optical efficiency [69] 

(a) Scanning electron microscopy image of the fabricated nanorod array 

(partial view). (b) Illustration of the optical efficiency measurement setup. 

The incident circularly polarised beam is focussed on the sample and the 

diffracted light collected by a power meter. (c) Experimentally obtained 

optical efficiency for both the image and zeroth-order beam.  
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lessening of the reflected window efficiency when compared to the simulated results, 

and that the holographic metasurface contains many neighbouring antenna which 

are not of the same orientation angle – this may induce more apparent plasmonic 

coupling effects, lessening the conversion efficiency, when compared to the fixed angle 

simulated response in Figure 6.3.  

 

Figure 6.6: Simulated and optical verification of the 

holographic image at different wavelengths [69] 

(a-c) Simulated holographic image of Einstein’s portrait with an enlarged 

zoom of his face and the letter ‘M’. (d-f) Experimentally obtained images 

captured by a ‘visible’ camera in the far-field. The operating wavelength is 

633nm. (g-i) Experimentally obtained images captured by an infrared camera 

in the far-field, with an operating wavelength of 780nm.  
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Of major importance, in addition to the optical efficiency, is the quality of the 

actual holographic far-field image. Given in Figure 6.6 are the simulated (Figure 

6.6a) and experimentally (Figure 6.6b,c) obtained far-field images of the CGH 

encoded into the phase profile of the metasurface. These also include the zoomed-in 

views of Einstein’s face and the letter ‘M’, which show a very good agreement 

between simulated and experimental results. To show that the metasurface design 

used was indeed broadband in operation, we captured the far-field holographic image 

at 2 wavelengths – the first was 633nm (red), using a commercial digital camera 

(Nikon D3200) for image-capture (Figure 6.6b) and a He-Ne laser for illumination, 

and the second wavelength was 780nm (near-infrared) using a fibre-coupled diode 

laser (New Focus) for illumination and an ELOP-Contour CMOS Infrared Digital 

Camera for capture (Figure 6.6c). The diameter of the laser beam is approximately 

1.5mm, which fully covers the hologram, whilst the reflected holographic image was 

projected onto a white screen 300mm away from the metasurface sample. It is clear 

from the captured entire and zoomed-in images, especially paying close attention to 

the ‘speckles’ which form the holographic image, that the simulated and measured 

results are in very good agreement at both measured wavelengths. This demonstrates 

the high fidelity and applicability of the high-efficiency metasurface hologram design.  
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 Conclusion 

In summary, a reflective phase-only computer generated hologram based on 

geometric metasurfaces is realised with a diffraction efficiency as high as 80%, an 

extremely low zeroth-order efficiency less than 5%, and all occurring over a broad 

wavelength range in the visible to infrared. The design comprises of an ultrathin and 

uniform metasurface thickness of only 30nm, thus yielding negligible ohmic losses, 

and is compatible with scalar diffraction theory, even with subwavelength pixel sizes 

[152], which helps to greatly simplify the design of holograms. Due to the simple and 

robust phase control and its tolerance to variations in wavelength and fabrication 

errors, this geometric phase-based computer generated hologram design could 

overcome the current limitations of traditional depth-controlled holograms and could 

even find applications in field such as laser holographic keyboards, random spot 

generators for body motion, optical anti-counterfeiting and laser beam shaping. This 

approach can also be extended from phase-only to amplitude controlled holograms, 

simply by changing the size of the nanorods. One of the issues with this design, 

however, is that the mode of operation is reliant upon circularly incident polarisation, 

and thus is polarisation dependent, due to the geometric phase arising from the 

switching of the handedness between circular polarisation states – although this is 

beneficial in some sense as the initial conditions need not be so strict as to require 

special alignment of the polarisation with respect to the metasurface antenna. 
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Interestingly, though, this design can produce the twin-images which occur in 

traditional holograms simply by using linearly polarised incident light, which comes 

down to the fact that two perfectly interfering orthogonal circular polarisations result 

in a linearly polarised wave – in essence, when the sample is illuminated with linearly 

polarised light, it is then akin to being illuminated with both handedness’ of circularly 

polarised light, which results in an image for each and occurring either side of the 

zeroth-order spot. Finally, we note that such nanorod metasurfaces could be 

fabricated on a large scale and at much lower costs by nano-imprinting, thus making 

them promising candidates for large-scale holographic technology.  
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Summary and Future Research 

Applications 

 Thesis Summary 

This thesis gives an investigation into the utilisation of metasurfaces for 

manipulating the wavefront of electromagnetic waves, with a particular focus on 

Terahertz devices, holographic applications, and high-efficiency circularly polarised 

light conversion, arising from geometric-phase. Metasurfaces are a strong candidate 

for future optical technologies, due to their small-size and ease of fabrication, 

pronounced wavefront control, and negligible losses – which is a strong factor in the 

current economic drive towards sustainability and better use of energy. Additionally, 

two of the works in this thesis take place at Terahertz frequencies, for which the 

useful components and devices in this frequency regime are in short supply due to 

the lack of naturally occurring or established semiconductor devices. The key results 

of this thesis can be summarised as follows: 
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• A monolithic silicon herringbone device was proposed and experimentally 

verified to achieve a high-efficiency of Circular Conversion Dichroism (CCD) 

at 1THz. By utilising Subwavelength Gratings (SWGs), we achieved a half-

wave plate capable of fully converting the handedness of circularly polarised 

(CP) light into its orthogonal handedness; in conjunction with this, a 

geometric (Pancharatnam-Berry) phase was incorporated by a rotational 

alignment of 45° of the SWGs such that the phase of Left or Right circularly 

polarised light experienced equal and opposite phase accumulations of � 2⁄  

after traversing them. One of the two angled SWGs (per unit cell) was then 

raised with a substrate step such that a dynamic phase of +� 2⁄   was applied 

to offset the ±� 2⁄  geometric phase, leading to an interference effect yielding 

destructive interference for one handedness conversion (Right-to-Left) and 

unaltered transmission for the other conversion (Left-to-Right). Analytical 

modelling using Fresnel’s equations for a three-layer system gave good 

correspondence with FDTD simulation, and showed a conversion efficiency 

of ~80% at 1.1THz, whilst exhibiting a broadband performance, and 

prohibiting the opposite conversion pathway. Experimental verification of a 

fabricated sample gave a conversion performance exceeding ~60% at 0.9THz, 

where the mismatch between numerical and experimental results were 

attributed to the fabrication errors. 
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• A broadband Split-Ring Resonator (SRR) metasurface was proposed and 

experimentally verified to achieve the simultaneous control of both phase 

and amplitude of a wavefront at 1THz. Operating under a linear polarisation 

basis, C-shaped SRRs were proposed, utilising the behaviours of two types 

of antenna: where SRRs can be used to control the phase of scattered light 

through means of their geometries; whilst nanorod type antennas can control 

the amplitude of scattered linearly polarised light simply by varying the 

rotation angle. This resulted in SRRs which had varying angles between 

their symmetry axis and the incident light polarisation, to control the 

amplitude of scattered light; and varying geometries, to control the phase. 

As a proof of concept, these antennas were used to form a metasurface 

capable of controlling the intensities of arbitrary user-defined diffraction 

orders (up to three orders, m=-1,-2,-3), whilst exhibiting a broadband 

operation. 

 

• Finally, the realisation and demonstration of a high-efficiency cross 

polarisation reflective metasurface was utilised to provide a broadband 

hologram in the visible-IR regime with an efficiency exceeding 80%. Gold 

nanorods separated from a metallic ground plane by a specific thickness of 

dielectric material gives rise to the high-efficiency for converting one circular 

polarisation into the opposite after reflection, due to a round-trip phase 
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difference between the long and short axes of the nanorods being equivalent 

to π, thus behaving like a half-wave plate. Geometric-phase control of the 

reflected wavefront is used to control the far-field interference by means of 

a simple rotation of the nanorods within their unit-cells and thus controlling 

the phase of the wavefront. This is then extended to a proof of concept 

design for a high-efficiency hologram, capable of converting 80% of the 

incident light into the holographic image at 825nm and obtaining a 

broadband response from 630nm to 1,050nm. Losses are negligible, and 

comparable to a single layer gold metasurface, where the reflected zero-order 

beam is less than 5%. This work demonstrates the highest efficiency visible-

IR metasurface-induced holographic image to date (at the time of writing). 

The work as laid out in this thesis has two common themes interlinking all of 

the projects – namely that they all have broadband operation, and that they also 

operate under “cross-polarisation” schemes: The first can be attributed to the 

dispersionless nature of the metasurfaces, whilst the second uses the careful interplay 

between the orthogonal polarisations and phase responses of the unit cells. The 

Silicon Herringbone structure in Chapter 4 has its dispersionless attribute stemming 

from both geometric phase and effective-medium derived refractive indices of the 

form-birefringent gratings. These properties allow the desired functionalities to exist 

independent of the wavelength of the light, where the broadband performance is only 
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diminished by the finite depths of the gratings and the silicon step leading to a 

variation of the imparted dynamic phases, and the periodicity of the gratings no 

longer being subwavelength (and hence no longer described by the effective medium 

approximation) for frequencies much higher than 1THZ. The cross-polarisation is 

due to the geometric phase dependent upon the handedness of the incident circularly 

polarised light. Opposite handednesses lead to equal but opposite phases imparted 

to the transmitted light, and an extra dynamic phase term leads to destructive or 

constructive handedness dependent energy pathways, which provides the desired 

functionality of the circular conversion dichroism effect. This work utilises both 

geometric and dynamic phases simultaneously to produce an effect typically only 

produced when using lossy metallic planar metasurfaces, except that this metasurface 

is not truly planar and is completely dielectric and has negligible losses. More 

impressively is that this novel approach to producing the CCD effect surpasses the 

cross-polarisation efficiency and asymmetry from all previous works from the past 

decade or so. 

The C-antenna metasurface in Chapter 5 uses the interplay between symmetric 

and anti-symmetric resonance modes to produce the broadband capability. With the 

linearly incident polarisation parallel to the symmetry line of the C-antenna axis, a 

symmetric mode is produced at 0.8THz. When the linearly polarised incident wave 

is perpendicular to the symmetry line of the axis, two anti-symmetric modes are 
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produced at 0.35THz and 1.02THz, for the dipole and multipole resonances, 

respectively. By orienting the polarisation at 45° to either the symmetry axis or the 

‘anti-symmetry’ axis (perpendicular to the symmetry axis) of the C-antenna, it is 

obvious that all three modes, symmetric and anti-symmetric, will be excited 

simultaneously to produce a broadband response between the lowest and highest 

resonance frequency. We know that a 45° linearly polarised wave is simply the 

superposition of two orthogonally polarised waves. Using this, we can instead keep 

the polarisation fixed along the x-axis, whilst we instead rotate the C-antenna to 45°. 

It is then clear that the C-antenna will produce both x- and y- polarised transmitted 

waves. However, we choose to measure only the y-polarised wave, orthogonal to the 

input wave, to avoid interferences and to additionally utilise the rotation angle of 

the C-antenna to control the amount of light which is converted into the y-axis, 

namely the transmission amplitude. The geometry of such an antenna is then altered 

to control the phase of the output wave, independent of the angularly resolved 

amplitude control. These two degrees of freedom allow us to utilise any combination 

of phase and amplitude to develop a metasurface capable of producing three 

diffraction orders. Such a mechanism is highly useful for holography and lensing 

applications, where no previous works were capable of smoothly controlling the phase 

and amplitude simultaneously in a trivial manner. 
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The high efficiency holographic metasurface in Chapter 6 has a complex 

interplay between the Fabry-Pérot resonance, reflection phases between the long and 

short axes of the nanorod antenna, and the geometric phase of the nanorod 

orientation to produce a broadband dispersionless cross-polarised reflected beam. It 

is realised that the dispersionless operation and cross-polarisation functionality are 

intertwined, where the phase differences of the round trip reflected light parallel to 

the long and short axes are � out of phase. Such a phase difference induces a half-

wave plate functionality dependent upon the dielectric spacer between the nanorod 

and the ground-plane, which is dynamic in operation. This half-wave plate function 

produces a polarisation conversion for the incident circularly polarised light and 

therefore makes this device cross-polarisation in operation where the high-efficiency 

is accredited to the handedness switching capability. The broadband operation takes 

place between 630nm and 1,050nm due to the phase difference remaining at � 

between the long and short axis consistently. Such antennas are polarisation 

insensitive to circularly polarised light inasmuch as the in-plane orientation is 

concerned (as circularly polarised light is simply two linearly polarised waves 

superposed with a phase delay of a quarter-wave). This therefore allows us to produce 

a spatially varying geometric phase distribution which is applied to developing a high 

efficiency hologram. As it is only the cross-polarised light which undergoes the 

geometric phase accumulation, there is no interference between the incident and 

outgoing wave (the co-polarised wave has a low efficiency of 5% and is zero order) 
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and this allows us to encode nearly all of the incident energy into the holographic 

image. The only losses accounted for are ohmic due to the high plasmonic losses at 

optical frequencies. To date, at the time of writing, this method of reflective 

holography produces the highest efficiency of any metasurface hologram, whilst also 

providing a high resolution and needing very simple fabrication. 

 Future Work 

The work in this this thesis covers the development of metasurfaces using 

dielectric, metallic, and plasmonic processes. All of these have the potential for 

applications in future research. Lately, work on dielectric metasurfaces has been of 

interest due to their negligible losses as illustrated in Chapter 4. Using this 

combination of both dynamic and geometric-phases can lead to very interesting 

applications, where either of these methods of phase-control alone is not sufficient or 

unable to produce the desired effect. In a similar fashion to the work carried out in 

Chapter 6, it may be of interest to see if a metallic reflective ground-plane in 

combination with the structure in Chapter 4 could yield similar and even better 

performance at achieving high-conversion efficiency between circular polarisations. 

Or instead, combine space-varying structures utilising varying angles of SWGs to 

perform multiple polarisation processes simultaneously.  

The need for full colour devices has been crucial in the past few decades, ranging 

from TV’s to smart phones. However, all of these devices use either LCD’s or LED’s, 
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which are typically larger than the wavelength of light used, whilst subwavelength 

pixels would have better applicability to developing these devices. An important step 

on the way to achieving this is to be able to have distinct colour and to have isolated 

resonances at RGB wavelengths. A full-colour hologram may be achieved through 

the combination of Chapters 5 and 6, except in a circular polarisation basis. This 

would give the opposite functionality of the SRRs in Chapter 5, as now the rotation 

angle induces a geometric control of phase, and the nanorod geometry controls the 

amplitude response. It is known from [153] that metasurfaces sat atop a very thin 

dielectric layer deposited on a metallic ground plane leads to strong absorption of 

light. The design in Chapter 6 works to provide a very broadband spectrum of 

operation, but for isolated colours a narrow resonance is required; therefore, by subtle 

control of the dielectric thickness, a balance between complete absorption and 

broadband operation can be used to produce single resonances for three differing 

antenna designs. With a careful lateral arrangement of the three unique nanorod 

antennas, it should be possible to encode three distinct holographic phase profiles 

such that the far-field holographic image is a combination of Red, Green, and Blue 

images, leading to a full-colour holographic image. Even though this efficiency will 

be much lower than for a broadband reflective hologram, due to the absorption effect, 

it could potentially still be higher than the holograms realised so far for transmission, 

which are typically below 20% efficiency. 
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Appendix A 

Here, we show the derivation of the analytical model for the Silicon Herringbone 

device in Chapter 4. This modelling is based on traditional Fresnel equations for a 

three layer system, and includes multiplicative phase terms associated with the 

dynamic and geometric phases used to achieve Circular Conversion Dichroism.  

We first begin by expressing the system in a Circularly Polarised basis, where 

we relate the unit vectors of right and left circularly polarised light in terms of the 

linear unit vectors as being: 

Ĥ� = �√� úĤj + =Ĥmû     (A.1) 

 Ĥ� = �√� úĤj − =Ĥmû     (A.2) 

where Ĥ� , Ĥ� correspond to the Right and Left circular polarisation unit-vectors, 

respectively, and Ĥj , Ĥm correspond to the x and y linear polarisation unit-vectors, 

respectively. Following this, it is useful to then define the Transmission coefficients 

for orthogonal circular polarisations, in terms of linear transmission, as being: 

G� = �√� úGjĤj + =GmĤmû     (A.3) 
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G� = �√� úGjĤj − =GmĤmû     (A.4) 

What we need to acquire, however, is the transmission coefficients of circularly 

polarised light in terms of circularly polarised unit vectors, not linear unit vectors. 

We can obtain the expression for both Ĥj and Ĥm in terms of the circular unit vectors 

as follows: firstly, by adding together equations A.1 and A.2, we get: 

Ĥ� + Ĥ� = 1√2 úĤj + Ĥj + =Ĥm − =Ĥmû = √2Ĥj 
and subtracting A.2 from A.1 gives us: 

Ĥ� − Ĥ� = 1√2 úĤj − Ĥj + =Ĥm + =Ĥmû = =√2Ĥm 
By rearranging the above, we then obtain the linear representations of circularly 

polarised light as: 

Ĥj = �√� #Ĥ� + Ĥ�)     (A.5) 

Ĥm = �;√� #Ĥ� − Ĥ�%     (A.6) 

Because we now have these results, we can obtain the transmission coefficients for 

circularly polarised light in terms of circularly polarised unit vectors, which we obtain 

by inserting A.5 and A.6 into equations A.3 and A.4, respectively: after rearranging 

and collecting terms in (Ĥ� , Ĥ�% the equations are as follows: 

G� ≡ G�Ĥ� = �� Ĥ�úGj + Gmû + �
� Ĥ�úGj − Gmû    (A.7) 

G� ≡ G�Ĥ� = �� Ĥ�úGj − Gmû + �
� Ĥ�úGj + Gmû    (A.8) 
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These equations are the key result of this model, where the transmission of circularly 

polarised light is explained in terms of the linear transmission responses of a device. 

We can easily calculate the linear response of a structure by using the Fresnel 

equations; in the case for the silicon herringbone structure we assume a three-layer 

system, where layer 1 is air, layer 2 is the SWG metasurface pattern, and layer 3 is 

bulk silicon. Because the SWG has two distinct directions, labelled as TE (with the 

polarisation of the normally incident wave being aligned with the gratings) and TM 

(with the polarisation aligned perpendicular to the gratings), we correspondingly 

have two Fresnel equations in the TE and TM directions – we label these, arbitrarily, 

as the x and y directions for use in equations A.7 and A.8. 

Referring back to Chapter 2 (and Chapter 4), we gave the Fresnel equation 

for a three layer system as: 

G;Ï� � =  �.� .�� ¡�7
�t��.��.�� ¡.�7     (A.9) 

where the subscript ‘i’ corresponds to the linear polarisation (x or y, relating to TE 

or TM, respectively), and the terms in t, r, and q are given as: 

G��� = 29� #9� + 9�;%⁄     (A.10a) 

G�¯� = 29�; #9�; + 9¯%⁄     (A.10b) 

���� = #9� − 9�;% #9� + 9�;%⁄     (A.10c) 

��¯� = #9�; − 9¯% #9�; + 9¯%⁄    (A.10d) 
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q; = �¤¥¦ 9�;     (A.10e) 

The physical interpretation of, for example, G��� is the transmissivity between layers 

1 and 2, along the i direction (TE or TM), which is governed by the refractive indices 

of the corresponding layers. The term in 9�; is the refractive index along either the 

TE or TM directions of the SWG, which is described using effective medium theory 

from Chapter 2, using the equations: 

9�j = 9�n = 3�9Ð� + (1− �%9ÐÐ�     (A.11) 

9�m = 9�� = �
Û ÜÀÕ.  t  #�¡Ü%ÀÕÕ.

    (A.12) 

where F is the duty cycle of the grating (set as 0.5) and (9Ð , 9ÐÐ % are the refractive 

indices of air and bulk silicon (at 1THz), respectively. The calculated values for these 

refractive indices (as shown in Chapter 4) are given as 9�j = 9�n = 2.55 and 9�m =
9�� = 1.36. Using equations A.9 – A.12, we are able to calculate the transmittances 

of equations A.7 and A.8. It is clear that for either of these equations, they are 

dependent upon the unit vector Ĥ� or Ĥ�, even though the combined actual 

transmission is solely Left or Right; therefore, we can deduce that each of these 

equations corresponds to a co-polarisation and cross-polarisation term. This can 

quantitatively given as: 

G� = G�� + G��     →      G�� = �� úGj + Gmû   ,   G�� = �� úGj − Gmû  (A.13a,b) 

G� = G�� + G��     →     G�� = �� úGj + Gmû   ,   G�� = �� úGj − Gmû  (A.13c,d) 
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where we have removed the unit vectors (Ĥ� , Ĥ�% as the subscripts of G;� infer this 

information directly (e.g. LR corresponds to the conversion of incident Right to 

transmitted Left, Ĥ� → Ĥ�) due to the conversion properties of the device. The terms 

in LR and RL are therefore the cross-polarisation terms of the Jones matrix, and the 

terms in RR and LL are the co-polarisation terms. 

 We know that one unit cell of the silicon herringbone metasurface consists of 

two mirrored SWGs. Therefore, we can summate the transmission of one of these 

SWGs that is unaltered with another that has multiplicative phase terms to arrive 

at the total response of such a unit cell; the transmission coefficient for the second 

of the two SWGs is simply identical to the first, except having terms related to the 

geometric and dynamic phases. The term in dynamic phase, corresponding to a +� 2⁄  

additional phase, is simply H;u¿pÀ = H;Ä/:�¡��*#�¤¥ ¦⁄ % = H;#/��/�%.;�
< , whilst the 

geometric phase, which corresponds to either ± � 2⁄  (with ± depending upon the 

incident handedness being RCP or LCP, respectively, and only for cross-polarisation) 

or 0 (for co-polarisation), is simply  H;u=ËâÂ = H±;;. (or H±;	 = 1%. We then express 

the transmission coefficients for the second SWG as follows: 

G̃�� = G�� × H;u¿pÀ = G�� H;#/��/�%.;�
<          (A.14a) 

G̃�� = G�� × H;u¿pÀ × H;u=ËâÂ = G�� H;Y#/��/�%.;�
<

 – ;.]   (A.14b) 

G̃�� = G�� × H;u¿pÀ = G�� H;#/��/�%.;�
<         (A.14c) 

G̃�� = G�� × H;u¿pÀ × H;u=ËâÂ = G�� H;Y#/��/�%.;�
<

 t ;.]   (A.14d) 
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where the geometric phase is omitted for the co-polarisation terms (RR and LL) and 

the terms in RL and LR have either – or + geometric phase, respectively. 

We now have the both of the transmission responses for both SWGs in a unit 

cell, and so we can add together the matching terms from A.13-A.14 and divide by 

two: 

G���³��� = �� #G̃�� + G�� %     (A.15a) 

G���³��� = �� #G̃�� + G�� %     (A.15b) 

G���³��� = �� #G̃�� + G�� %     (A.15c) 

G���³��� = �� #G̃�� + G�� %     (A.15d) 

The above equations, A.15a-d, give us the total transmitted amplitude response of 

one unit cell of the silicon herringbone metasurface. A more interesting result is the 

intensity, which is the fraction of energy being transmitted; to get this, we look back 

to equation 2.41 from chapter 2, which is �;� = /�/� �G;��³���
for normal incidence. The 

equations above, A.15a-d, are then modified to give �;�, the intensity: 

�;� = 9¯ ��� G;��1+ H;úu¿pÀtu=ËâÂû���    (A.16) 

where we have set 9� = 1 for air. Using this equation, we can then numerically model 

the transmitted response of the herringbone device over a frequency range of the 

order of 1THz, shown in Chapter 4, a. 
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Appendix B 

Physical Modelling of broadband capability 

Here, a simple model based on Fresnel’s equations for a three-layer system in 

conjunction with the Lorentzian polarisability for nano-antennas is shown to provide 

the dispersionless and high efficiency conversion of circularly polarised light by the 

reflectarray developed in Chapter 6. This appendix is based on, and contains 

excerpts, from the supplementary information of reference [69]. 

Firstly, we construct a three-layer model, with a plasmonic nano-antenna layer 

(layer 2), presumed to be very thin (thickness d) and homogeneous, being sandwiched 

between layers 1 and 3. The layers have corresponding refractive indices 9�, 9�, and 

9¯, respectively. We employ the use of the three-layer Fresnel equation for 

transmission, described in Chapter 2, equation 2.43b, as: 

G;Ï� � =  �.� .�� ¡�7
�t��.��.�� ¡.�7     (B.1) 

where the terms in in t, r, and q are given in Appendix A, equations A.10a-e (taken 

from Chapter 2). We wish to express equation B.1 in a simpler form, which we can 
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achieve by taking the inverse of t, and upon expansion of the exponential terms to 

trigonometric sine and cosine terms (after some lengthy algebra), we obtain the 

following equivalent expression: 

� = G�� = �� cos q 1+ /�/�� + ;
� sin q /./� + /�/.�   (B.2) 

where q = 9�J	». Similarly, we can obtain for terms in r multiplied by inverse t as 

being: 

�G�� = �� cos q 1 − /�/��+ ;
� sin q /�/. − /./��   (B.3) 

G��� = �� cos q 1+ /�/�� + ;
� sin q /�/. + /./��   (B.4) 

��G��� = �� cos q 1 − /�/��+ ;
� sin q /�/. − /./��   (B.5) 

where we have used that t and r are the transmission and reflections coefficients 

incident from medium 1, and G� and �� are those incident from medium 3. We can 

relate the susceptibility, ©, of medium 2 to the polarisability, �, of an individual 

antenna as: 

 

Figure B.1: Simple schematic of the three-layer system 
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© = S�.¥     (B.6) 

with ±� being the unit cell size (squared) enveloping an antenna and d is the thickness 

of this layer as shown in Figure B.1. The resonance of the plasmonic antennas leads 

to the polarisability having the typical well-known Lorentzian form of: 

� ∝ − �I�I+t;ê     (B.7) 

We saw in Chapter 2 that the relative permittivity, and thus the refractive index, of 

a medium is related to its susceptibility by �� = 1 + © → 9 = √�� = 31 + © ≈ �
�þS

¥ 

where we have used the fact that if d is sufficiently thin, then the term in © will be 

much greater than 1 (due to the denominator containing d blowing up), and so we 

approximate 1 + © ≈ ©. If we now set the refractive indices of the three media as 

9� = 1 (air), 9¯ = 9� (substrate), and 9� = 9, we then modify the term for the 

inverse transmission incident from air (equation B.2) as being: 

G�� = �� cos#9J	»% Y1 + 9�] + ;
� sin#9J	»% 9 + /�/ �   (B.8) 

If we employ the small-angle approximations for sin � ≈ � and cos � ≈ 1 − �.
� , we 

then acquire: 

G�� ≈ 1
2x1 − #9J	»%�

2 y Y1 + 9�] ++ =
2 (9J	»% 9 + 9�9 � 

⇒ 1 + 9�2 − #9J	»%�Y1 + 9�]
4 + =

2 (J	»%#9� + 9�% 
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⇒ 1 + 9�2 − �J	�»Y1 + 9�]
4±� + =

2 (J	»% & �±�» + 9�' 

⇒ 1+ 9�2 − �J	�»Y1 + 9�]
4±� + =J	�2±� +

=J	»9�2  

where we can then set the terms containing d to zero (as d is very small), and we 

then obtain: 

 G = 1 &�t/�� + ;
�  r+S�. 'é     (B.9) 

We can associate the term containing the polarisability as being 

 ¬ = r+I S��. = S�0�. = − �I�I+t;ê    (B.10) 

which then modifies equation B.9 to give: 

G = 1 &�t/�� + =F¬'é     (B.11a) 

The term g is a coefficient to govern the coupling strength between the antenna and 

the incident light. We can do the same process as above for calculating the form of 

the reflection coefficient, and also the transmission and reflection coefficients from 

medium 3, to give: 

� = &��/�� − =F¬' &�t/��  +  =F¬'é    (B.11b) 

G′ = 9� &�t/��  +  =F¬'⁄      (B.11c) 

�′ = &/���� − =F¬' &�t/��  +  =F¬'é    (B.11d) 

The issue remains that we have unknown variables within the equations B.11a-d, 

namely T, è and F	. These unknown variables were obtained through the fitting of  
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the above equations to the simulated results for transmission of light incident from 

the air side onto a monolayer of antennas with a uniform orientation (fixed in-plane 

angle of rotation) sitting atop an MgF2 dielectric substrate, using Comsol software 

(not performed by myself). The results of the simulation and fitting are shown in 

Figure B.2 below, and fitting parameters resulted in T = −0.19620, è = 2� ×

6.35 × 10�� rad/s and F	 = 2� × 3.53 × 10�� rad/s. 

 The previous was simply the modelling of a monolayer of antennas sandwiched 

 

Figure B.2:  Numerical simulations and fitted data of 

transmitted amplitude and phase [67] 

 (upper) Amplitude coefficients for light transmitted from the air side onto a 

monolayer of antennas with MgF2 substrate, polarised parallel to the antennas 

long axis. (lower) the corresponding phase coefficients for the same system. 

The circles represent data points obtained numerically, whilst the solid line 

represent the fitting of equation B.11a. 
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between two bulk dielectrics (air and MgF2) and a standard Lorentzian resonance of 

said antennas. Now, we shall look at the modelling of the full reflectarray structure, 

which includes the addition of a thick metal-ground plane beneath the MgF2 layer 

which acts as a mirror for the impinging light. The reflection coefficient for this 

system (Antenna Sheet / MgF2 / Metal Ground-plane) is then given by: 

� = � +
  ð�Â �.À�U+��

��� 
ð�Â �.À�U+��

≈ � +
  ð �V

��� 
ð �V   (B.12) 

with �¹ being the complex reflection coefficient at the MgF2/Ground-plane interface 

and W = 29¯J	»¯ + ·(�¹) is the round trip phase of the MgF2 layer plus that of the 

reflection at the ground plane (9¯ is the refractive index of MgF2, »¯ is the thickness 

of the MgF2 and ·(�¹) the phase of the complex reflection coefficient �¹) where we 

have omitted the term in �¹ from the approximated equation B.12 by including it in 

the term for W. If we substitute the equations for t, r, t’, and r’ from equations B.11a-

d into equation B.12, we get: 

� = −

À�¡�

.
(I�I+t;ê)t;I��À�X�

.
(I�I+t;ê)�;I�� �V

À�X�

.
(I�I+t;ê)t;I��À�¡�

.
(I�I+t;ê)�;I�� �V  (Β.13) 

If we choose that the total round trip phase W = 2� and that the frequency of the 

light is equal to the resonance frequency F = F	, the above equation then simplifies 

to: 

� = −
�;êt;�I+�

;êt;�I+�
= −

�I+��ê

�I+�tê
    (B.14) 

This implies that at resonance, and ensuring a total round trip phase of 2�, the 
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complex reflection coefficient is negative, and implies a phase shift of � compared to 

the incident light. In turn, we only assume the light interacts with the long axis of 

the antenna at resonance and not with the short axis. For light polarised along the 

short axis, the parameter T = 0 and the phase of the reflection coefficient is 

approximately 2� which is the sum of the round trip phase (�) and the reflection 

phase at the metal ground plane (�). This is clear that if we set T = 0 in equation 

B.14, we simply obtain that R=1. Therefore, the phase difference between the long 

and short axes is equivalent to �, which is physically and phenomenologically similar 

to the case for a half wave plate. In essence, the rotation direction, namely the 

handedness, of circularly polarised light is completely reversed upon reflection from 

such a three-layer structure. 

 Following this, the broadband properties, namely the dispersionless nature, 

needs to be accounted for – this is attributed to the phase difference between the 

long and short axis phase difference being dispersionless near the resonance 

frequency. Around this resonance frequency, we can express the phase as: 

W ≈ V¾YF     (B.15) 

where �� ≈ F − F	 when near the resonance frequency, and the term in V¾ 

represents the frequency dispersion of the phase and contains the dispersion 

properties of both the round trip phase (in the MgF2 dielectric layer) and the 
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reflection phase at the metal ground-plane. Substituting this approximation for W 

into equation B.13 and expanding around YF yields: 

� = −

À�¡�

.
(ZIt;ê)t;I��À�X�

.
(ZIt;ê)�;I��(�t;ÏZI)

À�X�

.
(ZIt;ê)t;I��À�¡�

.
(ZIt;ê)�;I��(�t;ÏZI)

   (B.16) 

We can neglect the damping term in =è as it is much smaller than =FT, and also 

the terms which are quadratic in YF (as YF� will be very small) which gives us: 

� ≈ −
�I�t;ZI(�tÏI�)

�I��;ZI(��ÏI�)
    (B.17) 

We then approximate the phase of R as: 

·(�) ≈ � +
ZI(�tÏI�)�ZI(��ÏI�)

�I�
= � +

�ZIÏI�

�I�
= � + VYF = � + W   (Β.18) 

Along the short axis, the reflection phase is simply very close to W with a slight 

deviation due to the refractive index mismatch between air and MgF2 (which are 

included in the original expressions using the Fresnel equations and giving rise to 

weak Fabry-Pérot effects). Therefore, the phase difference between the long and 

short axes, at resonance, is simply �, and therefore dispersionless (as it is absent of 

terms in W) which leads to the broadband ability of the reflectarray design. 

Dammann Gratings concept for Hologram design 

This work involved the design of a far field hologram which used a 2 × 2 pattern 

array, as opposed to a 1 × 1 array. This approach is based on the concept of 

Dammann gratings [149,154], and is particularly beneficial in the reduction of laser  
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‘speckles’ [155] which form the pixels of the far-field holographic image, and therefore 

improves the image quality. To this end, the Einstein image as portrayed in Chapter 

6 was used to simulate far-field images for both a single and a 2 × 2 hologram arrays, 

and are shown in Figure B.3. Figs 6.3a,b correspond to the simulated far-field image 

when using only a single patterned array, whilst Figs 6.3c,d is the same simulated 

far-field image but with a 2 × 2 pattern array. It is obvious that for the 2 × 2 array 

a much better contrast of the pixels and definition of the image is produced, with 

 

 

Figure B.3:  Simulated Far-field images when using either 

a single or 2×2 hologram array [67] 

 (a) and (b) The simulated far-field image of Einstein and a zoomed in letter 

‘M’ whilst using  single hologram pattern array. (c) and (d) The simulated 

far-field image and a zoomed in letter ‘M’ using a 2 × 2 hologram array. It is 

clear that the 2 × 2 provides a much more uniform contrast and defined 

image, with less laser speckles. 
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much more discrete spots, whereby for a single hologram the image, especially when 

zoomed in, has obvious laser speckling and pixel brightness issues. This method of 

using 2 × 2 patterned arrays can be scaled up to N × N (N being an integer) 

patterned arrays to provide an even greater image fidelity, however this will increase 

fabrication time and require a larger laser beam spot size to cover all of these 

holograms. 
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