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Abstract

Mass spectrometry imaging (MSI) enables two- and three-dimensional overviews of

hundreds of unlabelled molecular species including drugs, metabolites, lipids and proteins

in complex samples such as intact tissue. Mining and interpreting such complex datasets

manually is a tedious, laborious and error prone task. In this research, a new extensible

software platform is presented, suitable for spectral preprocessing, multivariate analy-

sis and visualisation of large MSI datasets. New solutions for data conversion and the

benefits of the new software for review of data generated using a variety of MS imaging

modalities using several major vendors instruments is illustrated. Principal component

analysis (PCA), in combination with data binning or other reduction algorithms, has been

widely used in the unsupervised processing of MSI data and as a dimensionality reduction

method prior to clustering and spatial segmentation. Standard implementations of PCA

require the entire dataset to be stored in memory, necessitating a compromise between the

number of pixels and the number of peaks to include. In this research a new method which

has no limitation on the number of pixels and allows an increased number of peaks to be

retained is developed and validated against the MATLAB (The MathWorks Inc., Natick,

Massachusetts) implementation of PCA (princomp). Application of k-means clustering to

the reduced data was used for segmentation of a rat brain dataset. Correlation analysis

was then used to identify ions associated with selected clusters. Hierarchical composi-

tion of data has been shown as an efficient method of capturing the information present

within images in other fields. An adaptation of these ideas to MSI data is described and

used to identify ions associated with specific spatial distributions present within the rat

brain data, which were not elucidated using PCA or correlation analysis. The research

presented in this thesis has resulted in new recommendations for presentation of MS im-

ages. The way in which imaging data are presented can have a significant impact on the

perceived structure, especially when using false colour to display images. This is of great



significance in MSI as the majority of data analysis and interpretation is performed by

manual inspection of significant ion images. An evaluation of the perceptual linearity of

the colour schemes used within the literature revealed that over 40% of surveyed publica-

tions used colour schemes which can result in an actively misleading representation of the

data. Several suggestions for superior presentation of MS imaging data to avoid unnec-

essary visual artefacts are described. Finally, the software and algorithms presented were

used to analyse MSI data from a traumatic brain injury model. Manual exploration and

use of multivariate analysis methods such as PCA did not reveal any differences between

the injured hemisphere of the brain and the control hemisphere, however the hierarchi-

cal composition algorithms identified multiple ion images which appear elevated in the

injured hemisphere.
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CHAPTER 1

INTRODUCTION

Mass spectrometry (MS) is an analytical technique which measures the mass-to-charge

ratio (m/z ) of gas phase ions which have been extracted from a sample. Mass spectrom-

eters consist of an ion source, one or more mass analysers and a detector. The specific

configuration used in a given mass spectrometer often tailors the instrument to certain

analytical tasks. MS has a wide list of detectable analytes (such as elements [1], drugs

[2, 3], metabolites [2, 3], lipids [4, 5], peptides [6] and proteins [7]) in a vast array of

applications (such as surface analysis [8], biomedical research [9], clinical analysis [10],

drug discovery [11] and genomics [12]).

The resulting data consists of pairs of values, m/z and a measure of ion intensity,

which are plotted against one another (x- and y-axis respectively) for display purposes

and form a mass spectrum. The units along the x-axis are often displayed as daltons

(Da), referring to the unified atomic mass unit, however this is only appropriate when

either all detected ions are singly charged, z = 1, or the m/z of each ion in the spectrum

has been multiplied the ion’s charge state. In the case where mass is measured in atomic

mass units and charge is measured in elementary charge units, the Thompson (Th) unit

has been proposed [13]. However this has not been widely accepted or adopted. Generally

the x-axis is labelled with the dimensionless abbreviation m/z [14].

The underlying physics of the measure of ion intensity is dependent on the detector

used. The intensity is often reported in various ways, such as the number of ions or
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ion counts (with arbitrary units) or as a relative intensity or relative abundance (as a

percentage of the largest intensity in the spectrum).

1.1 Ion Sources

The purpose of the ion source is to generate gas phase ions from the sample of interest.

Two major properties are used to describe an ionisation method. The first being whether

it is hard, resulting in the breaking of chemical bonds to form ions, or soft, where in-

tact molecules are ionised. The second is whether ionisation occurs under vacuum or at

atmospheric pressure, where ions are formed outside of the mass spectrometer.

An example of a hard ionisation method performed under vacuum is inductively cou-

pled plasma mass spectrometry (ICP-MS) where an inductively coupled plasma is used to

ionise the elements constituting a sample. An ambient, soft ionisation method is electro-

spray ionisation (ESI) where a voltage is applied to a liquid producing multiply charged

ions [15]. A soft technique which can be performed either under vacuum or in ambient

conditions is laser desorption/ionisation (LDI) where a laser is used to desorb and ionise

molecules.

Extensions to these methods exist often to enable different classes of molecules to be

detected, for example desorption electrospray ionisation (DESI) extends ESI to a surface

analysis technique. In DESI, charged solvent droplets are sprayed at the sample to achieve

both ejection and ionisation of intact molecules from the surface.

1.1.1 Matrix assisted laser desorption/ionisation

Matrix assisted laser desorption/ionisation (MALDI) is an extension of LDI and was the

ionisation technique used to collect the majority of the data presented within this thesis.

In MALDI, a matrix molecule (typically a low molecular weight organic acid) is mixed

with, or deposited on top of, the sample causing co-crystallisation of the analyte and

matrix molecules. A laser is then used to irradiate the matrix-analyte crystals, causing
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an ablation event to desorb and ionise intact molecules. A significant benefit of MALDI

when compared to other ionisation techniques is the ability to desorb and ionise a vast

array of analyte classes in their singly charged state across a large mass range, ranging

from drugs, through lipids and peptides, up to proteins.

The choice of matrix is often based on empirical evidence due to the complex mech-

anisms of ion formation. Although studies have been conducted to attempt to elucidate

the ion formation process, it is still not fully understood [16, 17].

Ideal matrix compounds have strong optical absorption at the wavelength of the laser

used and are often acidic, acting as a proton source to aid ionisation. The ideal matrix

choice for a given experiment is also dependent on the analyte of interest, with certain

matrices proving better at desorbing and ionising select molecular classes. For example,

2,5-dihydroxybenzoic acid (DHB) is often used for lipids, sinapinic acid (SA) is more com-

monly used for the detection of proteins and α-Cyano-4-hydroxycinnamic acid (CHCA)

is frequently used for drugs and peptides.

The choice of matrix also influences the extent of metastable fragmentation [18].

Metastable fragmentation is a process where an ion with sufficient energy, after leaving

the sample and entering the mass analyser(s) but before reaching the detector, fragments.

Metastable fragmentation is not apparent in a linear instrument due to the parent and

fragment moving with the same velocity, whereas a reflectron separates the parent and

fragment ions [18].

Although MALDI is often cited as being a label free technique, in practice this comes

with a caveat. While true that there is no requirement to specifically label molecules prior

to analysis, the choice of both matrix and solvent system greatly impacts the capability

to detect certain analyte types.
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Figure 1.1: Overview of the sample preparation and analysis process for MALDI mass
spectrometry imaging. Reproduced from [19]

1.2 Mass Spectrometry Imaging

Although some literature refers to this topic as “imaging mass spectrometry” (IMS), this

acronym can easily be confused with ion-mobility spectrometry and so the term “mass

spectrometry imaging” (MSI) will be used throughout. MSI is a technique where a sample

is interrogated at spatially resolved locations resulting in a mass spectrum per location.

The spatial distribution of ions can then be visualised by plotting the intensity detected

at each spatial location. An overview of the typical MALDI MSI workflow is given in

Figure 1.1 with steps I-IV discussed in Section 1.2.1 and step V discussed in Sections

1.6 and 1.7. An overview of the style of data produced in a MSI experiment is shown in

Figure 1.2.
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Figure 1.2: An overview of MSI data, where a spectrum is acquired at every discrete
spatial location and an ion image is generated by plotting the intensity of a given peak
at each spatial location to which a false colour scheme is often applied.
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1.2.1 Sample Preparation

Sample preparation for most MSI techniques involves mounting a thin tissue section (10-20

µm) onto a substrate (which could be glass, ITO coated glass or stainless steel depending

on the ionisation technique and instrument used). In the case of biological samples these

could be either fresh frozen or fixed prior to sectioning [4, 20]. For techniques such as

DESI, liquid extraction surface analysis (LESA) and secondary ion mass spectrometry

(SIMS) imaging this is all the preparation required.

In the case of MALDI MSI, as when performing standard MALDI MS, a matrix must

be applied to the sample. The ideal matrix application method will deposit a given volume

of matrix homogeneously over the sample. The cheapest and easiest method is to use an

artistic airbrush to coat the sample [21]. However, the homogeneity of the deposited layer

is heavily dependent on the user. To remove the human error from this, a number of

dedicated robotic sprayers have been developed [22] as well as modified inkjet printers

[23]. When high spatial resolution is critical, sublimation has been shown to result in the

smallest crystal size [24].

1.2.2 Spatial Resolution

Spatial resolution is heavily dependent on the ionisation method used. In the case of

MALDI the limit is dependent the focusing capabilities of the laser and the matrix crystal

size, in SIMS the focusing of the ion beam, in DESI the tip-to-surface distance, nebuli-

sation gas pressure, solvent flow rate and solvent composition all affect the footprint of

the solvent spray [25] and in LESA the microjunction size. Every reduction in pixel size

comes at a cost of sensitivity and so there is often a trade off to be made between pixel

size and sensitivity, with sensitivity being the major limiting factor.

In MALDI MSI, the size of the crystals formed plays a large role in the limit of

spatial resolution that can be achieved. Crystals must be smaller than the pixel size or an

inaccurate representation of the spatial distribution will be acquired. The matrix choice
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and application method employed both affect the size of crystals formed [26].

It is often possible to increase the spatial resolution in MALDI MSI by employing

‘oversampling’ whereby pixels are overlapped with one another and at each pixel the sam-

ple is exhausted in the analysis process before moving onto the next pixel [27]. This means

that signal is only detected from remains of the sample in the non-overlapping region. As

the minimum movement of a stage is often smaller than the probe size, oversampling can

provide significant spatial resolution improvements. Oversampling has been employed in

other techniques such as DESI, however as the sample is not wholly consumed at each

pixel location, signal is detected from a wider region than the specified pixel size.

1.3 Mass analysers

The purpose of a mass analyser is to separate ions in the gas-phase according to their

mass-to-charge ratio. The choice of mass analyser usually involves consideration of speed,

sensitivity, mass range, and mass resolving power with no one mass analyser optimal for

all situations.

1.3.1 Mass Resolution and Resolving Power

When discussing the performance of mass spectrometers it is important to include in-

formation about the mass resolving power. The precise definition is one of the most

confusing subjects of terminology used in mass spectrometry [28]. The IUPAC definition

has evolved over time. Initially two separate methods of determining resolving power were

presented, the first measured from a single peak consisting of single-charged ions of mass

m, the second defined in terms of overlap between two peaks [29].

Later, ‘resolution’ was introduced and adopted the definition previously assigned to

resolving power [30]. Mass resolving power was then defined as the ability to distinguish

between ions differing in the quotient m/z by a small increment, characterised by giving

the peak width expressed as a function of mass for fifty and five percent of the maximum
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Figure 1.3: Two methods for determining mass resolution of a mass spectrometer, the 10
percent valley definition and the peak width definition.

peak height [30].

Most recently, resolving power has been defined as the measure of the ability to provide

a specified value of mass resolution. Resolution has been defined as the observed m/z

divided by the smallest difference ∆(m/z) for two ions that can be separated, as given

in Equation 1.1, with the requirement that the procedure by which ∆(m/z) was defined

and measured, and the m/z value at which the measurement was made must be reported

[31].

R =
(m/z)

∆(m/z)
(1.1)

Two methods for determining the resolution are provided, the 10 percent valley defini-

tion and the peak width definition shown diagrammatically in Figure 1.3. The 10 percent

valley definition is the value of Equation 1.1 for two peaks of equal (or near equal) height

at m/z and m/z + ∆(m/z) that are separated by a valley which at its minima is 10%

of the lower peak height. The peak width definition is the value of Equation 1.1, where

∆(m/z) is the width of a single peak of a singly charged ion at a specified fraction (0.5,

5 or 50%) of the peak height. It is not always possible to find a pair of peaks matching

the necessary criteria for the 10 percent valley definition and so all resolving power and

resolution values calculated and quoted within this thesis use the peak width definition

at 50%.
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1.3.2 Quadrupole

Quadrupole mass analysers consist of four (or six, or eight, in the case of the hexapole

and octupoles respectively) perfectly parallel cylindrical, or preferably hyperbolic, rods

to which potentials are applied [28]. The oscillating electric field separates ions based on

the stability of their trajectories through the mass analyser.

These can be operated in two modes, radio frequency (RF) only and as a mass filter.

When operating in RF only mode, ions with a mass higher than a limit defined by the

value of the RF voltage have a stable trajectory and thus the quadrupole acts as an ion

guide. Higher masses suffer from lower transmission due to poorer focusing, the efficiency

of which is inversely proportional to m/z . When operating as a mass filter a direct current

(DC) voltage is applied with the RF voltage which causes ions which do not have a certain

m/z (determined by the voltages applied) to have an unstable trajectory and so will not

reach the detector.

Quadrupoles have superior power to focus ions towards the axis of the ion guide due to

the shape of the potential well and thus have better transmission efficiency than the other

multipoles. However, octupoles have a wider mass range for simultaneous transmission of

ions than quadrupoles.

Multiple quadrupoles can be included in tandem, with quadrupole mass spectrometers

stylised with Q and RF only quadrupoles with q. The instrument used to collect the

majority of the data presented within this thesis, the QSTAR XL (AB SCIEX), is a

QqTOF instrument. This consists of q0, an RF only mode quadrupole which focuses

and transfers ions into the high vacuum region, Q1, which operates in RF only mode

to transmit ions unless tandem MS is being performed where a resolving DC voltage is

applied for mass resolving mode, q2 which is housed inside the collision cell and operates

in RF mode at all times and then a time-of-flight tube (discussed in Section 1.3.3) [32].
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Figure 1.4: QSTAR XL ion path chamber. Reproduced from [32]

1.3.3 Time-of-flight (TOF)

In time-of-flight (TOF) mass analysers, ions are accelerated by an electric field and sub-

sequently separated by their velocities as they traverse a fixed length flight tube. The

relationship between time taken to reach the detector and m/z is given in Equation 1.3.

t2 =
m

z

(
L2

2eVs

)
(1.2)

m/z = t2
(
2eVs

L2

)
(1.3)

where t is time taken, L is the length of the flight tube, e is the elementary charge

and Vs is the voltage applied.

The inclusion of a reflectron, an electrostatic reflector, increases the flight path and

therefore the resolution through increased separation of ions. However the more beneficial

feature is the correction of the spread of kinetic energies that ions of the same m/z have

when leaving the source, further improving the resolution [28]. The disadvantage of
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including a reflectron is the reduction in sensitivity while also introducing a mass range

limitation.

1.4 Data Formats

Software for visualising and processing MS and MSI data was originally limited to the

software supplied by the corresponding instrument vendor. As each MS instrument vendor

also has their own independent and incompatible data format, it is not possible to use

a competing vendor’s software to process or analyse data. This has implications when

trying to compare data acquired on different instruments and also when sharing data

with either collaborators or the community, by submitting to data repositories or as

supplementary information alongside published articles. Vendor’s formats are largely

proprietary, eliminating them from consideration as a standard for sharing data as it

would be difficult, if not impossible, to develop tools such as converters, data viewers

and parsers without either full details of the format or support from the vendors. Open

formats, on the other hand, enable anyone to develop software capable of reading the data.

This therefore increases the amount of software available for processing data, removing the

need to ensure that all collaborators have the same, often commercial and prohibitively

expensive, software to view the data. Further, with the move towards standards on the

reportable information, such as minimum information about a proteomics experiment

(MIAPE) [33], it is important that shareable data formats cater for such details.

The simplest open format solution is to use human readable text (ASCII), however

in situations where large arrays of number are stored, such as in mass spectrometry,

it becomes impractical due to the inflated data size, in some cases an 18x increase in

size when compared with the vendor’s format [34]. The early open formats, JCAMP-

DX (originally designed for infrared (IR) spectrometry but later adapted for MS [35]),

netCDF and ANDI-MS suffered from low uptake due to being variably implemented,

difficult to validate as well as relying on complex and rigid dictionaries which are not only
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difficult to keep up to date but also prevent inclusion of vital features such as tandem

mass spectrometry (MS/MS) scans [34, 36].

The next era of open formats (mzXML [34] and mzData [37, 38]) were developed si-

multaneously and independently, but had many similarities in their implementation. Both

formats are open, vendor-neutral, capable of storing metadata, and store all information

using XML. As XML is intended to be human readable, all of the data must be stored

as text, reintroducing the inflated data size issues associated with ASCII. The solution

to this was to store the binary data in Base64, while keeping the metadata in human

readable XML. This results in a 33% increase in data size compared with binary storage,

but a reduction of 325% when compared to using human readable plain text. To facilitate

uptake, basic software tools were released as open source alongside the description of the

mzXML format, including converters for native MS formats, parsers and data viewers

[34].

Although mzXML and mzData are very similar in the handling of the data, they

differ on their design philosophy of flexibility. mzData was designed to be extensible and

flexible due to the inclusion of the external controlled vocabulary, whereas mzXML has a

strict schema with information being described in enumerated attributes [39]. The strict

schema simplifies software implementations and allows existing XML validators to be used

to validate the format, whereas mzData requires custom validators due to the controlled

vocabulary. However, this simplified implementation comes at a cost, as any alteration

to the schema requires an update of any supporting software to be able to handle the

new version of the format whereas mzData allows alterations of the controlled vocabulary

without requiring additional software updates.

The existence of two similar formats that attempt to achieve the same goal caused

unnecessary confusion within the community while also increasing the amount of work

required of software developers by requiring support for both formats. This prompted

the designers of mzData and mzXML, along with instrument vendors, researchers and

software developers, to work together to develop a single, unified format for MS data,
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mzML [39, 36]. The mzML standard aimed to combine the best features of mzXML

and mzData while resolving the difference in flexibility design philosophies. This was

achieved by retaining the controlled vocabulary for greater flexibility from mzData and

the indexing mechanism from mzXML for enabling fast, random access to specific spectra

without needing to read the entire file.

The release of the description of the mzML format also included validation tools, which

considered the controlled vocabulary to ensure consistent use of the format, better support

for selected reaction monitoring data and immediately available converters, which greatly

increased adoption of the format [36]. It also included the option for spectrum-wise and

whole file gzip compression to combat large file sizes. The framework for testing, as well

as providing a reference implementation, has been supplied by the ProteoWizard software

project [40].

Other formats include AnIML, which aims to be a format capable of handling any

analytical data however it was first introduced in 2004 and has yet to have an agreed

upon and published requirements specification, preventing uptake. The AnIML format

does offer some benefits over existing formats, such as inclusion of an audit trail to log

descriptions of any changes to the document [41].

Despite the advances made in the MS community for open standardisation, the MSI

community largely ignored the proposed formats. Although the standards developed for

MS are capable of storing MSI data, it is generally infeasible in practice. The primary

reason for this is the lack of pixel coordinate information being incorporated in a given

spectrum’s metadata. Without such information, MSI software would require the user to

provide additional input to be able to arrange the spectra in the correct spatial location

to generate ion images. A further significant reason is that imaging data is typically

large (easily capable of exceeding 10s of GB for a single image) and so the 33% increased

size caused by the use of Base64 encoding makes a significant difference in both storage

requirements and data access times. Although the mzML standard enables random access

at the spectral level, it does not allow random access at the m/z , or image, level which
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can increase image generation times.

With the adaptation of the MRI data evaluation software package BioMap (Novartis)

[42] to MSI, Analyze 7.5 [43] quickly became the de facto open standard for MSI data.

The Analyze 7.5 format was not specifically designed for MSI data, and instead was

developed to be a common format for multi-modality imaging data. Because of this, it

does not contain the capability to contain any metadata for the instrumentation used or

data analysis performed meaning that it cannot conform to the MIAPE standard.

Römpp et al. [44] and Schramm et al. [45] designed the imzML standard to provide

a means for the flexible and efficient exchange of MSI data between different instruments

and analysis software. A single dataset stored in the imzML format consists of two files,

one an XML file (containing all of the metadata relating to the imaging experiment) and

the other a binary file (containing all of the spectral data). The flexibility is achieved

from the use of the XML file, which essentially the same as the mzML format, only with

additional controlled vocabulary (CV) parameters which cater for the imaging related

attributes (such as pixel coordinate and spatial resolution). The efficiency is achieved

through the use of the binary storage of the spectral data, reducing the size of the stored

data by 33% when compared to mzML. Further, because the format is based on mzML it

has the capability to conform to the MIAPE (as well as the proposed MSI MIAPE [46])

standard.

As the introduction of mzXML and mzML had previously highlighted, the inclusion

of open source tools for converting, parsing, validating and visualising data in the new

format greatly increased uptake as it reduced the amount of time required to implement

or incorporate the new format. With the release of imzML, freely available visualisation

software (DatacubeExplorer [47] and a modified version of BioMAP [42] to include an

imzML parser) and a single converter (for Thermo Scientific RAW to imzML) were made

available. None of these tools were made available as open source and the provision of a

converter for only a single instrument vendor’s format excluded users of other instruments

and so initial uptake of the format was slow. Also, no validators were released with
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imzML, the rationale being that the XML part of the format can be validated using the

existing mzML validators. However, these validators do not take into account the extra

CV parameters that are required to describe a valid imaging dataset and so only the

structure could be fully validated, not the content.

As the imzML format and tools supporting it have matured, imzML has become

accepted as the community standard for sharing MSI data. This has prompted instrument

vendors (such as Thermo, Bruker and Waters) to support the format through export

functions in their software, easing the initial difficulty in converting data to the open

format. Additionally, the acceptance of imzML as a community standard has enabled

important community driven projects, such as the release of benchmark datasets [48],

development of metabolic atlases [49] and multicenter studies [50].

1.5 MSI Data Analysis Software

Each MSI instrument vendor supplies software for processing and visualising the data ac-

quired on their instruments. A list of all of the preprocessing methods that are supported

in each vendor’s software is given in Table 1.1. As discussed in Section 1.4, each vendor

has their own proprietary data storage format which is the only format that can be read

into their software. This means that data acquired on a QSTAR XL (AB SCIEX) cannot

be processed using Bruker’s flexImaging. This prevents truly comparing data from multi-

ple instruments using these software packages alone and limits the processing algorithms

to those implemented within the instrument manufacturers software.

Prior to the introduction to imzML, the only freely available, vendor independent

MSI software was BioMAP [42]. A significant limitation of BioMAP in the processing of

large MSI data is the limit to the number of m/z channels that can be loaded for any

dataset (32768, due to the number format used). Since the advent of imzML, a wide

number of third party software packages have been developed and released as open source

(MSiReader [51], Cardinal [52] and OmniSpect [53]), freely available (OpenMSI [54] and
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DataCubeExplorer [47]), restricted to collaborators (Mirion [55]) or sold (SCiLS Lab [56],

MALDIVision [57] and Quantinetix [58]). The preprocessing methods available in each

of these (except MALDIVision and Quantinetix) are presented in Table 1.2. As most

of these packages support imzML (with the exception of OpenMSI [54] and SCiLS Lab

[56]) it is now possible to process data from any instrument that has a corresponding

imzML converter, while simultaneously increasing the preprocessing methods available to

the analyst through the choice of software. The drawback that still remains is that these

software packages do not export processed data or partial results to a format readable

by other software packages, meaning that all desired functionality must be included in a

single software package.

1.6 Preprocessing Mass Spectrometry Imaging Data

Preprocessing is the most important step in the analysis of MSI data and is often the most

overlooked. Any errors that are produced during this stage propagate through the entire

analysis and can affect the appearance of a given ion’s distribution as well as multivariate

and clustering results in the final stage. A major problem is that there is no consensus

on which methods are the most appropriate and this isn’t helped by instrument vendors

providing different algorithms for each stage, without a single common algorithm between

them (see Table 1.1).

Coombes et al. [72] describe a model of a spectrum using Equation 1.4.

f(t) = B(t) +N ∗ S(t) + ϵ(t) (1.4)

where f(t) is the observed signal, B(t) is the baseline, S(t) is the true signal, N is a

normalisation factor and ϵ(t) is the noise. Preprocessing methods aim to correct one or

more of these artefacts and are used in combination to reveal the true signal.
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1.6.1 Dead-time Correction

In the MCP detector installed in the QSTAR XL, any impact event that is detected at

> 100 mV is counted as an ion [32]. Following this, there is a period of time (on the

order of several nanoseconds) where any further impact events are not recorded, this is

the ‘dead-time’ of the detector. Intense peaks become distorted by a reduction in the

right side of the peak, shifting the centroid to the left (lower m/z) of the real value and

suppressing the peak height. A number of publications have focused on tackling this issue

in SIMS [73, 74, 75], however this issue is not isolated to SIMS and affects any instrument

that utilises an multi-channel plate (MCP) as the detector.

To reduce the effects of dead-time, the detector in the QSTAR XL contains four

collection anodes which are connected to independent time-to-digital converters (TDC).

Thus, approximately a quarter of the ions will strike each anode, reducing the probability

that an ion impact event will occur during a period of dead-time [76].

1.6.2 Smoothing

Smoothing is applied to mass spectra in order to compensate for small fluctuations (noise)

in the signal (ϵ(t) in Equation 1.4). A comprehensive review of smoothing algorithms

applied to mass spectrometry is provided by Yang et al. [77].

To calculate the new value of a data point in the smoothed spectrum, window based

smoothing algorithms consider k data points either side, forming a ‘window’ of size (2k+

1). All smoothing algorithms presented below are window based. The general form of

weighted window based smoothing is given in Equation 1.5. The simplest is the moving

mean where wi = 1 for all i.

y[n] =
1

2k + 1

k∑
i=−k

wix[n− i] (1.5)

where x is the spectrum, k is the window size and w is the weights vector to be applied.

In Gaussian smoothing, shown in Equation 1.6, the weights to be applied across a
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window are calculated from a Gaussian function.

y(t) =

∫ ∞
−∞

x(τ)
1

σ
√
2π

exp−
(t−τ)2

2σ2 dτ (1.6)

where σ is the standard deviation of the Gaussian function.

Savitzky-Golay smoothing filters, shown in Equation 1.7, remove noise from the signal

while retaining peak shape and height by local least-squares polynomial approximation

[78]. These properties make Savitzky-Golay smoothing extremely attractive and has made

it the most widely used smoothing algorithm in Analytical Chemistry [79, 80].

y[n] =
k∑

i=−k

h0,ix[n− i] (1.7)

where h0,i are elements of H which has size (N + 1) by (2k + 1) and is calculated by

H = (ATA)−1AT (1.8)

where the matrix A of size (2k + 1) by (N + 1) consists of the elements

αn,i = ni (1.9)

where −k ≤ n ≤ k and i = 0, 1, ..., N .

1.6.3 Baseline Correction

The ‘baseline’ refers to an elevated intensity in one or more m/z regions that is not

attributable to a resolvable ion peak. There is no agreed consensus as to the cause of the

baseline artefact, however common theories include detector overload events and chemical

noise from matrix fragmentation.

An estimate of the baseline is calculated and then subtracted from the spectrum using

Equation 1.10.
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y[n] = x[n]−B[n] (1.10)

As with smoothing, multiple methods exist for baseline correction but limited discus-

sion on which is appropriate in any given situation is present within the literature.

A simple estimate for the baseline is to calculate the minimum value within a window

(similar to the window based smoothing algorithms presented previously), occasionally

called the local minimum, as shown in Equation 1.11.

B[n] = min({x[n− k], x[n− (k − 1)], ..., x[n], ..., x[n+ (k − 1)], x[n+ k]}) (1.11)

The minimum function can be replaced with other functions such as the median, which

provides an estimate of the baseline at the level of the noise, shown in Equation 1.12.

B[n] = median({x[n− k], x[n− (k − 1)], ..., x[n], ..., x[n+ (k − 1)], x[n+ k]}) (1.12)

A more sophisticated method for determining the baseline is the TopHat method,

which estimates the baseline from the mathematical morphology operations erosion fol-

lowed by dilation (the combination of which is called opening) as shown in Equation 1.13.

When applied to one dimensional signals, such as a spectrum, erosion is equivalent to the

local minimum (shown in Equation 1.11) and dilation is equivalent to the local maximum.

B = x ◦ S = (x⊖ S)⊕ S (1.13)

where ◦ denotes the mathematical morphology operation opening, ⊖ denotes erosion,

⊕ denotes dilation and S is the structuring element, a vector where every value is 1 and

its length is the window size.
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1.6.4 Normalisation

Normalisation methods aim to remove spectrum-to-spectrum variability within a given

image to reveal a more accurate representation of the underlying distribution of ions. A

thorough investigation into commonly employed normalisation techniques was conducted

by Deininger et al. [81]. These methods are also used to attempt to provide a quantitative

value for the amount of a given ion at a given location, often in the form of a concentration.

In reality however, these are only determining the amount detected at a given location

due to the complexity of the sampling process and the possibility of interfering matrix

effects. Normalisation coefficients, f , are calculated individually for each spectrum and

are applied using Equation 1.14.

y[n] =
1

f(x)
x[n] (1.14)

The most widely used normalisation method is total ion current (TIC) normalisation,

also called Manhattan norm or ℓ1-norm, where each spectrum is normalised to the sum

of all counts within the spectrum given in Equation 1.15 where p = 1. Euclidean normal-

isation, or ℓ2-norm, is given by Equation 1.15 where p = 2. In the case where p → ∞,

Equation 1.15 approaches the maximum norm, or the ℓ∞-norm.

f(x) =

(
N∑

n=0

|x[n]|p
) 1

p

(1.15)

Median normalisation, given in Equation 1.16, provides an approximate normalisation

to the baseline of the spectrum. Median normalisation is robust to the effects of prepro-

cessing methods such as smoothing [81]. Haqqani et al. used median normalisation to

correct run-to-run variation in LC-MS label free proteomics [82]. In this study, only the

peptides which were matched between all samples were considered and each spectrum was

normalised to the ratio of the median intensity of the matched peptides in all runs to the

median intensity of the matched peptides within the current spectrum.
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f(x) = median(x) (1.16)

Noise level normalisation, shown in Equation 1.18, builds on median normalisation to

determine an estimate of the noise present within the data [81].

x′i = xi − xi−1 (1.17)

f(x) = median(|x′ −median(x′)|) (1.18)

One normalisation method that is common to the majority of the commercial tools

presented in Table 1.1 is ‘mass window’, given in Equation 1.19. The choice of which

mass window(s) to normalise to depends on the experiment at hand, but is often used

in MALDI to normalise to matrix peaks [83] or a deuterated analogue of a molecule of

interest [84].

f(x) =
∑
m∈M

x[m] (1.19)

where M is a vector containing the indices of the mass window(s).

Källback et al. compared the use of normalisation approaches for the quantification of

different concentrations of imipramine (0-16 pmol) deposited onto a rat lung section [85].

In this study the normalisation to imipramine-D3 (which was mixed with the MALDI

matrix and applied to the sample) produced the best r-squared value (0.985) implying

that this resulted in the closest to linear response between concentration and detected ion

intensity. When performing logarithmic regression on the same data, RMS normalisation

provided the best fit, with a correlation coefficient of 0.937.
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1.6.5 Peak Detection

The aim of peak detection is to determine the location, height and widths of peaks (cor-

responding to ideally one, but often more than one, ion) within a mass spectrum. There

are a wide variety of peak detection methods presented within the literature and within

available software (see Tables 1.1 and 1.2 for a selection). The main reason that so many

exist is that the described method incorporates one or more preprocessing methods (such

as smoothing or baseline correction) as well as the peak detection step, and so in reality

they are preprocessing workflows rather than unique peak detection methods.

In the case of the peak detection methods supplied in the vendor’s software (and

closed source software in general), without an accompanying document or publication

that describes the details, it is impossible to replicate the results on data acquired on

different instruments. As these methods determine which features are or are not recorded

in the reduced dataset, this has a significant impact on the results of any subsequent

processing such as multivariate analysis (MVA).

The principal peak detection method involves calculating the first derivative of the

spectrum and looking for positive-to-negative zero-crossing points, which indicate the

gradient was previously positive and then negative, corresponding to local maxima. The

presence of noise in the data will increase the number of local maxima and thus increase

the number of ‘peaks’ detected by this method. Applying smoothing methods prior to

this gradient based peak detection method removes these false positives. The benefits of

this method is that it doesn’t require any prior knowledge to determine the peaks within

the data.

A related method moves from left to right across the whole spectrum looking for a

positive gradient change (or more simply, a change in intensity) exceeding a threshold to

denote the start of a peak and then the inverse to signify the peak end point. The peak

apex can then be identified as the maximum value within the calculated peak window.
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Peak Filtering

With the peak detection methods described above, small fluctuations will remain in the

data and so it is common to provide some limitations on the peaks that are retained.

This can be in the form of a SNR threshold (with different methods of calculating it

[77]), an intensity threshold, slopes of peaks, local maximum, shape ration, ridge lines,

model-based criterion, peak width, or any combination of the above. The suitability of

each of these restrictions depends on the peak detection method used.

Another method of peak filtering is to select a limited number of peaks, typically the

x most intense [86]. This number is often a round number (e.g. 100), selected arbitrarily

by the user, ensuring that it will produce data small enough for subsequent processing.

This then will produce a determinable reduced data set size, allowing the user to ensure

that the data is of a suitable size for subsequent processing, however the disadvantage is

that the number of expected peaks is required to be known in advance. This is often not

the case in exploratory MSI experiments. Furthermore, the most intense peaks can often

be uninteresting (for example, the matrix peaks in some MALDI experiments) in terms of

biological variance and so if the number of peaks chosen to be retained is chosen too low

then the informative peaks may be omitted. Similarly if the number of retained peaks

is selected to be an overestimate of the ‘useful’ peaks within the data then noise will be

retained which could have a detrimental effect on further analysis.

1.7 Dimensionality Reduction

MSI experiments can produce extremely large datasets, for example a 4 cm× 4 cmMALDI

target plate imaged at a resolution of 100 µm results in 160k pixels and if 100 kB per

spectrum is assumed (6400 m/z-intensity pairs) then the dataset would be approximately

15.26 GB. Imaging the same area at high resolution (10 µm)[87] would result in over

16M pixels, and a potential raw data size of approximately 1.49 TB (1529 GB). Several

applications require imaging to be performed on even larger sample areas, such as whole
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animal sections [7, 2, 88] or 3D volumes [89, 90, 91, 92, 93, 94, 95, 96, 97].

The data size of a single spectrum is dependent on the mass resolving power of the

instrument and the mass range of interest. Instruments such as the MALDI-FTICR can

have mass resolutions of orders of magnitude greater than that of MALDI-TOF instru-

ments and so when acquiring data over the same m/z range, can produce significantly

more data [3, 98, 99]. A common way to reduce the size of data stored per spectrum is

to store the data as m/z-intensity pairs rather than storing a value at every possible m/z

location to reduce the amount of redundancy. This then introduces a further variable

which determines the size of a single spectrum, the number of species detected (which

is, in turn, a function of the sample type, the ionisation efficiency and/or the degree of

fragmentation).

The problem with large secondary ion mass spectrometry (SIMS) datasets has been

tackled by compressing the data to ensure that it fits in RAM [100, 101], but data size

limits will continue to exist for algorithms which cannot utilise such compression and will

again become problematic as improvements in imaging technology further increase the

data size. Alternative data reduction strategies aim to isolate only peaks of interest and

eliminate noise to reduce the amount of uninformative data used in further analysis [77,

86]. However, hundreds or thousands of peaks can be detected, and so further reduction

is often necessary. Principal component analysis (PCA) is a mathematical technique that

can be used to solve this problem by reducing dimensionality while retaining variance

within the data [102].

When performing PCA via conventional means, the following steps are typically fol-

lowed. (i) The dataset (N pixels, M peak intensities) is read into RAM as an N ×M

matrix. (ii) The mean spectrum (over the whole dataset) is subtracted from each spec-

trum in the dataset. (iii) Singular value decomposition (SVD) of the data matrix is then

performed to determine eigenvalues and eigenvectors (also referred to as the loadings or

coefficients in PCA). (iv) The data are then projected onto the space defined by the eigen-

vectors to determine the scores. This is exactly how the often used implementation of
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PCA princomp (as supplied by MATLAB Statistics Toolbox) is performed. Implementa-

tions like these require the data matrix, along with multiple additional variables which

are the same size as the data matrix, to be stored simultaneously in RAM in order to

perform the full calculation. The finite size of RAM can easily be exceeded by the size of

MALDI MSI datasets and this implementation severely restricts the size of the dataset

that can be processed.

The memory limit can be reached through having a large number of peaks, a large

number of pixels, or both and so a tradeoff has to be made that is dependent on the

amount of RAM available for analysis [103]. Reducing the m/z dimension is commonly

achieved through binning, however peak detection and alignment is a much more robust

method of avoiding the loss of information while reducing the data [94]. Dependent on

the size of the data, further reduction can be necessary prior to multivariate analysis, and

so methods of selectively discarding peaks and pixels have also been developed [104, 86].

This reduces both spectral (potentially merging peaks) and spatial (potentially merging

features) resolution to a point which may be deemed unacceptable [105]. An alternative

method to solve the memory issues implicit in PCA is to utilise sparse matrix storage

[103]. However, it is entirely possible that a data set in sparse matrix form is still too

large to be stored in RAM and so in these cases some form of data reduction will still be

required prior to the sparse storage such as removing intensity values below a user-defined

threshold or performing binning spectrally or both spatially and spectrally.

All of these data reduction methods do provide a useful temporary solution, but as

the move is made towards high resolution 3D data sets the problem will again return

and so algorithms that are explicitly designed to handle large datasets will become more

desirable. The importance of memory optimised algorithms applied to MSI data has been

commented upon by Alexandrov and Kobarg [106].

Clustering techniques are becoming an invaluable tool in the processing and interpre-

tation of MSI data sets and have been the focus of many recent articles [107, 102, 106, 97].

PCA has been shown to be a useful technique prior to clustering due to the reduced di-
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mensionality and noise suppression [107, 102], however if meaningful peaks are discarded

during the data reduction step prior to PCA then the clustering process may provide

suboptimal results. In the case of MALDI MSI the largest variance is typically between

matrix and analyte regions which will therefore be represented in the first few principal

components. If data reduction techniques have been used to remove the matrix pixels

and peaks then this will no longer be the case and the first few principal components

will instead describe the largest variance within the analyte. PCA is also commonly

employed as an unsupervised technique to objectively determine trends within the data

[108, 109, 110, 111, 112, 113], which again may result in suboptimal results if the initial

data is incomplete. This use of PCA is often considered to be controversial due to the

inability to relate negative principal component loading values to experimental m/z sig-

nals and so other multivariate analysis techniques such as probabilistic latent semantic

analysis (pLSA) and non-negative matrix factorisation (NNMF) have been applied to MSI

data [105].

1.8 Parallelisation

As Section 1.6 described, preprocessing is an important part of any mass spectrometry

imaging processing workflow. Each spectrum within a given imaging dataset is processed

using the same set of operations to remove experimental noise and artefacts. This is typ-

ically performed by sequentially applying each operation on each spectrum. However, as

the processing of each spectrum is an isolated event, there is no requirement for sequential

processing and so the processing can be parallelised.

1.8.1 CPU Architecture

The central processing unit (CPU) is designed to work well with a vast array of applica-

tions. With the introduction of dual-, quad- and hexa-core processors it is now possible to

perform 2, 4 or 6 separate instructions simultaneously. As each core acts independently
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it is possible to perform a different action or process on each core. This is called multiple

instruction, multiple data (MIMD).

1.8.2 GPU Architecture

Graphics processing units (GPUs) on the other hand can be comprised of hundreds of

cores, operating under single instruction, multiple data (SIMD), where the same action

is performed on multiple pieces of data. This limits the algorithms that are applicable to

general purpose computation on graphics processing units (GPGPU) to those that require

the same operation performed on large amounts of data. As the same preprocessing

workflow is applied to every spectrum, this maps well to MSI preprocessing.

1.8.3 Things to consider when comparing CPU and GPU

Care should be taken when comparing performance times of CPU and GPU, with con-

sideration of the CPU and GPU used, how heavily optimised each implementation is and

the GPU memory transfer time [114]. Single precision (32-bit) operations are often at

least twice as fast as double precision (64-bit) operations [115] and so both algorithms

should make use of the same number format for a fair comparison.

The choice of CPU and GPU is of great importance, as the comparison of a high end

GPU to a mobile CPU is suboptimal because they are designed for completely different

purposes and therefore have different considerations for their operating power and thermal

envelope [114].

It is important to include data transfer times to and from the GPU as it can contribute

a significant amount of time to the total processing time. In some cases, this can exceed

the amount of time required for execution of the CPU algorithm making the GPU im-

plementation prohibitively costly regardless of the speedup achieved in algorithm design

and optimisation. Omitting this value artificially inflates the speedup achieved because

in practice the data still needs to be transferred to utilise GPGPU.
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1.8.4 GPGPU in MS(I)

GPGPU has been employed in MS to provide 8-26 fold speed improvement to MS library

searching [116], metabolomic fingerprinting [117] and peptide scoring [118]. The most

significant published speed increase through the use of GPGPU is 200x when performing

feature detection in proteomics data [119]. However, as with many comparisons, this is

slightly overestimated, as it comes from comparing 2 GPUs to a single CPU and does not

make clear whether the CPU code was multithreaded.

Kobarg et al. [120] developed a GPU implementation of a wavelet transform for pre-

processing MALDI MSI data. This resulted in a ≈180x speed increase when compared

to a CPU implementation, reducing the processing time for their test dataset from sev-

eral hours to several minutes which is approaching the limits posed by clinical routine

requirements.

Jones et al. [121] performed preprocessing, peak detection and reduction to a datacube

using CPU based methods before transferring the reduced data to the GPU to perform

PCA, NMF and pLSA. The speed increases achieved for NMF ranged from 1.5x to 13.2x

depending on how well the number of pixels and the number of peaks retained mapped

to the number of cores and memory available on the GPU.

1.9 Introduction to this Thesis

This chapter has provided an introduction to mass spectrometry imaging, data formats,

visualisation and analysis software as well as preprocessing and multivariate analysis tech-

niques used. The remainder of the thesis is split into six further chapters which focus

on efficient methods for handling the extremely large datasets that are being routinely

collected as part of MSI studies and methods for exploring, investigating and displaying

the information captured within.

In Chapter 2 software for the conversion of MSI data acquired on any mass spectrom-

eter to the open imzML format is presented. Extensible software for the visualisation,
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preprocessing and multivariate analysis of spectral imaging data is also presented, with

an investigation into the effects of preprocessing methods on MSI data.

Memory efficient methods for generating ion images, preprocessing entire datasets

and performing PCA without requiring the whole dataset to be loaded into memory are

presented in Chapter 3. These methods enable even the largest MSI data to be processed

using a standard computer while also increasing the number of features, or peaks, retained

in the analysis.

In Chapter 4, two algorithms for determining a hierarchical composition, one spatially

and one spectrally, of MSI data are presented. These methods are then used to provide

greater insight into the composition of a sample when compared to PCA used in isolation.

The way in which imaging data are presented can have a significant impact on the

perceived structure, especially when using false colour to display images. This is of great

significance in MSI as the majority of data analysis and interpretation is performed by

manual inspection of significant ion images. In Chapter 5 the different colour schemes

used to present MSI data within the literature are surveyed and applied to the same ion

image, highlighting the effect this has on subsequent interpretation of the data. A means

for evaluating the perceptual linearity of a given colour scheme is presented and used to

evaluate the colour schemes found within the literature.

The software and algorithms developed and presented throughout the thesis were

used to analyse data acquired from traumatic brain injury models, the results of which

are presented in Chapter 6. This experiment consisted of four MS images which required

processing together, resulting in a large combined dataset. Memory efficient methods

from Chapter 3 were employed to enable processing and dimensionality reduction of the

data. The hierarchical methods presented in Chapter 4 were then used on the reduced

data to identify trends within the data.

Finally, Chapter 7 provides discussion on potential future direction for the work pre-

sented in each chapter of this thesis.
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1.9.1 Publications Arising from this Thesis

• The imzML converter presented in Chapter 2 has been published as: Alan M Race,

Iain B Styles and Josephine Bunch. Inclusive sharing of mass spectrometry imaging

data requires a converter for all. Journal of Proteomics, 75 (16), 5111-5112, 2012.

• The memory efficient principal component analysis algorithm presented in Chapter

3 has been published as: Alan M Race, Rory T Steven, Andrew D Palmer, Iain B

Styles and Josephine Bunch. Memory efficient principal component analysis for the

dimensionality reduction of large mass spectrometry imaging data sets. Analytical

Chemistry, 85 (15), 7146-7153, 2013.

• The work presented in Chapter 5 has been published as: Alan M Race and Josephine

Bunch. Optimisation of colour schemes to accurately display mass spectrome-

try imaging data based on human colour perception. Analytical and Bioanalytical

Chemistry, 407 (8), 2047-2054, 2015.
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CHAPTER 2

UNIVERSAL DATA CONVERSION AND
ANALYSIS SOFTWARE

2.1 Introduction

This chapter presents software tools for the conversion and analysis of mass spectrometry

imaging data acquired on any instrument. These tools are then used to investigate the

effects of preprocessing methods on imaging data. Parallelisation of a common baseline

correction technique, TopHat, is evaluated by comparing two different implementation

algorithms on multiple hardware configurations.

2.2 Data Formats for MSI

Converters translate data stored using a certain specification (a format) into another.

Tools exist for the conversion of most mass spectrometry formats to mzML. To compli-

ment this work rather than repeat it, imzMLConverter was designed to use mzML as an

intermediary format between the proprietary vendor’s formats and imzML, the interface

of which is shown in Figure 2.1. This relies on tools such as msconvert (part of Prote-

oWizard [40]), which can convert data from all major instrument vendor’s proprietary

formats to mzML.

There are three different ways that mzML file(s) can be generated from imaging data,
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Figure 2.1: imzMLConverter 1.1.1 graphical user interface.

which depend on both the instrument and the imaging parameters used to acquire the

data. The first is a mzML file for every row within the image. This option occurs when

images are acquired in raster mode, where the sample holder is moved under the sampling

probe continuously for each row and pixels are spectra are acquired at fixed time intervals,

such as in desorption electrospray ionisation (DESI) and raster mode MALDI. The second

is a single mzML file which contains all of the spectra that make up the MS image. The

final way is for each spectrum in the image to be stored in its own mzML file. Options in

imzMLConverter exist for each of these situations by selecting the ‘File organisation’ to

be ‘Row per file’, ‘Image per file’ and ‘Spectrum per file’ respectively.

The final piece of information required to be able to reconstruct an image from the

mzML file(s), is the relative spatial location for each of the spectra. In the case of raster

mode imaging where the the imaged area was rectangular, this is trivial and the image

dimensions can be automatically detected from the mzML files (number of pixels in x is

the number of spectra in each mzML file and the number of pixels in y is the number

of mzML files). It is equally trivial when a spot mode image has been acquired over

a rectangular area, however the user must define the image dimensions. However, it

is becoming increasingly common for instruments to allow the user to select arbitrarily
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shaped regions of interest to acquire data from. Two such instruments that allow this are

the ultrafleXtreme (Bruker Daltonics) and the Synapt G2S (Waters). The pixel location

for each spectrum in an image acquired on an ultrafleXtreme can be determined from the

meta information stored in the mzML file, where each spectrum has an associated name

with the format of ‘0 R00X170Y127’ (for region of interest 00, x coordinate 170 and y

coordinate 127). Setting up an imaging experiment on the Synapt G2S produces a ‘*.pat’

file, an XML based file containing the start and end coordinate of each row of the image

and the pixel size. This information can then be used to assign a spatial location to each

spectrum in the image.

2.2.1 Compression

One feature of the mzML specification that is omitted from all other available imzML

exports or converters is the use of compression. One of the main benefits cited for the

use of imzML over other open formats such as mzML is the disk space savings. As shown

in Table 2.1, imzML only beats compressed mzML when it too is compressed. The use

of compression makes the format more usable for its other major goal, data sharing. The

reduction in disk space saves costs in both data storage and data transfer, especially when

considering transfer across a network such as the Internet. The optimal choice between

compressed or uncompressed data depends on the storage medium and processor used.

A solid state disk (SSD) is sufficiently fast in returning data that it would be slower to

read a smaller amount of data and decompress than it could be to read the uncompressed

data. This is also true for HDDs arranged in RAID configurations, as demonstrated in

Figure 2.2. As the transfer time of the storage medium used increases, the benefit of using

compressed data begins to outweigh uncompressed in both size and response time, as is

shown in the random access, uncompressed data stored on a hard disk drive in Figure 2.2.
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Raw Data
Format

Raw Size
mzML
Size

Compressed
mzML Size

imzML
Size

Compressed
imzML Size

SCIEX (*.wiff) 773 MB 11.50 GB 5.04 GB 8.67 GB 3.80 GB
Waters (*.raw) 3.13 GB 8.38 GB 1.93 GB 6.30 GB 1.46 GB

Table 2.1: Data size of typical MS image as acquired from a QSTAR XL (SCIEX, *.wiff)
and a Synapt G2 (Waters, *.raw) in the corresponding proprietary format as well as the
open formats mzML and imzML (both with and without compression).

Figure 2.2: Data access times averaged over accessing 1000 spectra either randomly or se-
quentially from the SCIEX dataset from Table 2.1 stored in compressed and uncompressed
imzML. Data stored on either hard disk drive (HDD), redundant array of independent
disks (RAID) or solid state disk (SSD). HDD used was 5400 RPM. RAID consisted of
two 7200 RPM HDD. SSD was 6 Gbps.
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2.2.2 Handling Multiple Spectra per Pixel

Liquid extraction surface analysis (LESA) is a powerful technique capable of analysing

complex samples without the need for any sample preparation. The process involves a

small (on the order of 1 µL) amount of solvent being aspirated into a pipette tip. The

pipette is then positioned at the location of interest, a droplet of solvent is formed on

the tip of the pipette and brought into contact with the sample forming a microjunction

to extract material from the sample. The droplet is then retracted into the pipette and

subsequent electospray ionisation (ESI) mass spectrometry is performed using a mass

analyser of choice. Commercial robots for automating the process have been developed,

which provide the opportunity to sample at spatially resolved locations, resulting in an

image.

When acquiring LESA imaging data on an Orbitrap there are two ways to set up

an experiment. One is to acquire all data within the same file resulting in a single

chromatogram for the whole imaging experiment, the other is to acquire each injection

(and thus each pixel) in separate files. In both cases, a single pixel is comprised of

multiple spectra each from an individual scan. Currently no tool exists for generating

ion images from these data. To be able to do that the individual scans from each pixel

must be combined together (either by summing or by taking the mean) and subsequently

converted to imzML.

A tool developed in MATLAB for performing this on an image acquired in a single

chromatogram is shown in Figure 2.3. The pixels can be identified as the ‘peaks’ that

are present within the chromatogram (a series of scans where ions were detected) and

the baseline is the time between pixels (corresponding to the time where the robot is

collecting the solvent and sampling). Due to slight differences in the time taken by the

robotic sampler to move to the required position and perform the analysis for each spatial

location, no constant pixel offset can be determined which prevents easily determining the

the start and end point of each pixel. Assuming that the total ion current in the analyte

spectra is sufficiently higher than that of the blank spectra inbetween acquisitions, the
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Figure 2.3: Tool for generating single pixel spectra by summing or averaging multiple
scans acquired from multiple LESA injections stored in a single chromatogram. 1) Chro-
matogram. 2) Spectrum at the currently marked point in the chromatogram. 3) List of
manually entered pixel start and end times. 4) Options for combining spectra to form a
pixel.

pixels can be automatically detected by thresholding the chromatogram at just above the

baseline level. In some analyses the microjunction can fail resulting in no solvent being

sprayed and therefore no signal detected above the background. If this occurs then the

user must manually select the start and end point of the pixel.

Once each pixel has been assigned all of the associated scans, the scans must be

combined into a single spectrum by either calculating the mean or sum. To be able to do

this, the spectra must have the same m/z axis. The reasoning and methods for achieving

this are discussed in detail in Section 2.5.1. Scans are combined into a single spectrum

by first applying the chosen method for ensuring a consistent m/z axis to each and then
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calculating the mean. This spectrum is then written to an mzML file. The process is

repeated for all pixels, updating the mzML file with each addition. The resulting mzML

file can then be converted to imzML using imzMLConverter as described in Section 2.2

and further processed in any compatible MSI software.

2.3 Combining Datasets

The ability to combine multiple datasets acquired separately but which together form a

single experiment is extremely powerful. Consider the case presented in [4] where different

sample preparation methods are being compared but the data were collected as separate

mass spectrometry images. To compare these data the analyst would have to load an

image, perform any preprocessing necessary, search for an ion image of interest, then

repeat for any other dataset being compared. Then the analyst would have to ensure

that the intensity scales that the images were presented on were comparable prior to

any interpretation. This is a laborious and time consuming process and would have to

be repeated for each ion image that was investigated. While this is manageable for an

experiment only consisting of two MS images, when trying to perform this on 14 serial

sections, such as the data presented in [21], it becomes infeasible.

A feature included within imzMLConverter is the ability to tile and combine multiple

imzML files together into a single imzML file, as shown in Figure 2.4, where two separate

MSI datasets of sagittal sections of rat brain with different sample preparation methods

applied (described in detail in [4]) are tiled horizontally. This then enables the analyst to

rapidly compare the spatial distributions and relative abundances of ions in the visuali-

sation software of their choice without needing to open multiple datasets and manually

ensure colour schemes and intensity ranges of each ion image generated for each dataset

are comparable.
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Figure 2.4: Replication of Figure 2a from [4], generated by combining two separate imzML
files together and then generating two ion images (PC 32:0 [M+K]+ m/z 772 top row and
PC 32:0 [M+Na]+ m/z 756 bottom row).

2.4 Software for analysing MSI Data

SpectralAnalysis was developed in MATLAB, using imzMLConverter as a parser for han-

dling of imzML data, as a universal visualisation and analysis tool for mass spectrometry

imaging data, the interface of which is shown in Figure 2.5. The rest of the chapter dis-

cusses algorithms which have been implemented into SpectralAnalysis to provide a single

analysis tool for MSI data which is capable of not only reading in the data, but visual-

isation, exploration, preprocessing and multivariate analysis. Such a wide collection of

capabilities does not currently exist in any currently available software, where there is a

limitation on the instruments supported [56], no preprocessing methods are available [47]

or no multivariate analysis algorithms are implemented [51].

2.5 Preprocessing

The purpose of preprocessing is to remove artefacts introduced during the data acquisition

stage, to make spectra comparable to one another and to improve the efficacy of peak

detection routines. The common preprocessing methods applied in mass spectrometry are
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Figure 2.5: Screenshot of SpectralAnalysis interface. 1) Postprocessing options, discussed
in Section 2.7. 2) List of previously generated ion images. 3) Current ion image being
displayed, with options to generate from a previously saved list or overlay, discussed in
Section 5.3.2. 4) List of created regions of interest. 5) List of generated spectra, with
options to overlay. 6) Current spectrum view, with peak detection turned on labelling
the top 10 intensity peaks out of the 2033 detected, discussed in Section 1.6.5. 7) Pre-
processing workflow applied to every spectrum, discussed in Section 1.6.
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smoothing, baseline correction, normalisation and peak detection. Here we also include

commentary on an additional step which is not often discussed, methods for ensuring a

consistent m/z axis across a dataset.

The order in which the preprocessing methods are applied has an effect on the resulting

data. The widely accepted order for preprocessing is smoothing or denoising followed by

baseline correction prior to peak detection [69, 122, 86]. Noise reduction or removal

methods such as baseline correction and smoothing aim to improve the peak detection

method of choice. In some cases, such as wavelet based techniques, they are implicitly

performed.

2.5.1 Ensuring a consistent m/z axis

When comparing, averaging or otherwise mathematically manipulating two or more spec-

tra it is important that they are represented by the same number of m/z bins with the

same m/z intervals. This is a common requirement in data reduction routines, where

one or more summary spectra, such as the mean spectrum, are used for feature detection

[123, 86] or peak alignment [106]. This also has the benefit of enabling spectra to be

directly stored as a matrix (a 2D matrix as required for many post processing techniques

such as PCA or a 3D ‘datacube’ for efficient image generation and manipulation).

Some mass spectrometers store the entire raw data for every spectrum and so this then

becomes an optional data size and/or noise reduction step. Generally, however, the raw

data is stored in sparse form as (m/z, intensity) pairs with zero intensity values omitted,

to reduce the size of the data without loss of information. In some cases, zero values

either side of recorded value sequences are also stored to remove visualisation artefacts

present when they are omitted show in Figure 2.6a. If the data were to remain in sparse

form, any window based function (discussed in more detail below) would corrupt the data

(as these assume consistent intervals) shown in Figure 2.6.
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Figure 2.6: Spectrum displayed in sparse format (a), where peak shapes are distorted
and artificial baseline is displayed but is not part of the data, which is then corrupted
through application of window based smoothing (b). Spectrum displayed with zero values
replaced (c) and correctly smoothed (d).
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Rebinning

The simplest way to both remove sparsity and to ensure a common axis for all spectra is

to generate a new m/z axis with equally spaced m/z values, as shown in Algorithm 2.1.

To then project any spectrum onto the new axis, data points that fall between adjacent

m/z values on the new axis are summed together to provide an intensity for that interval

(commonly called a bin) in the new spectrum, as shown in Algorithm 2.2. The result of

this applied with varying bin sizes is shown in Figure 2.7. The bin size chosen can have a

number of effects on the data. Selecting a large bin size results in significant denoising but

at the cost of broadening the peak width and distorting the peak shape, as demonstrated

in Figure 2.7b. Selecting a bin size that is smaller than the sampling frequency of the

instrument can result in artefacts such as the introduction of zero values as shown in

Figure 2.7d. In this example, the rebinning has essentially split the original peak into

three peaks and depending on the subsequent preprocessing methods chosen this could

either be rectified or exacerbated resulting in the detection or artificial peaks.

Algorithm 2.1. Rebinning: generate new axis

Require: Minimum, mmin, and maximum, mmax, m/z values for new m/z axis
Require: Bin size ∆m
1: Generate new m/z axis Mrebin ← {mmin,mmin +∆m,mmin + 2∆m, ...,mmax}

Algorithm 2.2. Rebinning: apply new axis

Require: Spectrum S with m/z axis M
Require: New m/z axis Mrebin

1: j ← 0
2: h← ∆m/2
3: Create new spectrum S′ to have same size as Mrebin

4: for i← 0 to |S| − 1 do
5: if M(i) < mmin then
6: continue
7: end if
8: if M(i) > mmax then
9: break
10: end if
11: t1 ←M(i)− h
12: t2 ←M(i) + h
13: while j < |Mrebin| and Mrebin(j) < t1 do
14: j ← j + 1
15: end while
16: if j < |Mrebin| and Mrebin(j) < t2 then
17: S′(j)← S′(j) + S(i)
18: end if
19: end for
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Figure 2.7: The effects of different bin sizes applied to the peak at m/z 826 in a single
spectrum. The recorded data from the mass spectrometer shown as blue circles. Red line
shows the standard representation of a mass spectrum (linear interpolation between each
data point as a guide for the eye) with a) the raw data b) data binned at 0.1 m/z c) data
binned at 0.023 m/z d) data binned at 0.01 m/z.

Interpolated Rebinning

The next method again generates an axis with equally spacedm/z values (using Algorithm

2.1), however instead of summing data points that fall within the bins, interpolation is

performed. Multiple interpolation methods exist, the effects of which are demonstrated

in Figure 2.8. Quadratic interpolation distorts the signal severely, especially in the case

where ∆m is smaller than the detector sampling intervals (in this example when ∆m =

0.01), and so is inappropriate for this style of data due to the heavily modified peak shape.

The differences between the spectra acquired using the other interpolation methods are

more subtle.

This method has a number of advantages over the simple method above, at the slight

cost of computation speed. The peak heights in the new spectrum are more comparable

to that of the raw spectrum, which may be important for quantification studies. Also,

the dropping to zero and splitting of peaks artefact is no longer present in the smallest

bin size and instead the new spectra now closely match the the raw data.

The caveat of this method is that if the input data does not accurately capture the

shape of all peaks within the spectrum then this distortion will remain in subsequent

processing. Consider the spectrum presented in Figure 2.6a where peak shapes are dis-

torted and an artificial baseline is present due to the sparse representation of the data.

Performing interpolated rebinning on this data will not remove the artefacts, but instead

will capture them in the output spectrum. These will then remain in subsequent process-
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Figure 2.8: The effects of different interpolation methods (row 1 - nearest neighbour, row
2 - zero order spline, row 3 - linear, row 4 quadratic spline and row 5 cubic spline) with
different bin sizes (column 1 ∆m = 0.1 m/z, column 2 ∆m = 0.023 m/z and column 3
∆m = 0.01 m/z).
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ing causing erroneous results. Some data are stored as ‘semi-sparse’ where 0 values are

placed either side of a series of non-zero values to correct for the visualisation artefacts

presented in Figure 2.6. Interpolated rebinning will perform as desired in such situations.

Rebin in the detector domain

The drawback of both of methods described above is that this linear rebinning in m/z is

not representative of how the data are acquired, and so a bin size that may be appropriate

in the high m/z region may be too large in the low m/z region. This can be seen when

comparing the peak at m/z 104 to the peak at m/z 826 in Figure 2.8. Instead of equally

spaced bins in m/z, an axis can be generated with equally spaced bins in the domain of

the detector (time in the case of TOF instruments) and then be transformed into the m/z

domain (by a quadratic relationship for converting time to m/z).

To reconstruct the spectrum exactly as it was acquired, the detector sampling intervals

must be know or be calculated from the data as shown in Algorithm 2.3 for TOF data.

This is achieved by first converting the m/z axis into time using the relationship given

in Equation 1.3. Then the difference between the time points is calculated. These values

should all be multiples of the detector sampling interval, as shown in Figure 2.9b. Due

to slight rounding errors, the selection of the minimum time interval is not sufficient, so

the modal interval is taken as the sampling interval. The calculated intervals can then be

used to create a global axis for a given imaging experiment using Algorithm 2.4.

Algorithm 2.3. Calculate detector sampling interval for QSTAR from spectrum

Require: m/z axis M
1: T ←

√
M

2: ∆T ← T (1, ..., |T |)− T (0, ..., |T | − 1)
3: ∆T ′ ← {}
4: for each ∆t in ∆T do
5: if ∆t < 3

2
min∆T then

6: Insert ∆t into ∆T ′

7: end if
8: end for
9: δ ← mode{∆T ′}
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Algorithm 2.4. Generate new axis for QSTAR

Require: Minimum, mmin, and maximum, mmax, m/z values for new m/z axis
Require: Detector sampling interval δ
1: tmin ←

√
mmin

2: tmax ←
√
mmax

3: Generate time axis T ← {tmin, tmin + δ,mmin + 2δ, ..., tmax}
4: Mqstar ← T 2

Set union of all m/z bins

In some cases the detector sampling interval is not constant, shown in Figure 2.9f, and so

the above method is not appropriate. A universally applicable method for determining an

m/z applicable for every spectrum being considered is to perform the set union on each

m/z axis in the dataset, as shown in Algorithm 2.5. To generate a complete m/z axis using

this method something, be it actual signal or noise, must be detected at every possible

m/z bin in at least one spectrum in the image, which becomes increasingly likely as the

image size increases. This method does not rely on interpolation and so ensures that the

data is exactly as it was when it was recorded. There are two potential drawbacks to this

method, it requires processing every spectrum within the entire dataset, which can be

slow for large images, and does not ensure any consistency in the spacing of the m/z bins

which has implications on subsequent window based preprocessing methods. The later

drawback is exacerbated if the assumption that something is detected in every possible

m/z bin is not met.

Algorithm 2.5. Set union of all m/z bins

1: Mg ← {}
2: for each spectrum S in dataset do
3: Get m/z axis M for current spectrum S
4: Mg ←Mg ∪M
5: end for

Ensure constant number of bins per peak

It is a well observed phenomenon that peaks broaden as a function of increasing m/z. In

TOF instruments this is partially related to the quadratic relationship between time and

m/z, however even when rebinning is performed in the detector domain, the number of

bins that a peak spans increases with m/z. For example, consider the data presented in
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Figure 2.9: Comparison of the detector sampling in QSTAR XL (top row) and Synapt
(bottom row) where a) and d) show difference in m/z between adjacent data points
recorded in a single spectrum, b) and e) show the differences converted to the time domain
and c) and f) show a zoomed in view of the smallest series of time differences.

Figure 2.8, the peak at 104 spans 14 recorded m/z bins whereas the peak at 826 spans 31

m/z bins. This can have a dramatic effect on window based algorithms (discussed in more

detail below), so to prevent this another option is to generate an m/z axis that ensures

the same number of bins span a peak at any given m/z. Interpolation, using the new axis,

is then performed on each spectrum, with the same caveat described in the ‘Interpolated

Rebinning’ section.

The ideal approach for ensuring a consistent m/z axis when additional window based

preprocessing is required would first to be to rebin in the detector domain, to ensure that

all zero values are replaced correctly and no artefacts will propagate, and then to ensure

each peak spans a constant number of bins, to ensure that subsequent preprocessing is

applicable across the whole mass range. In practice however, this can be costly in terms of

both computational time and memory and so may not be applicable in certain workflows.

2.5.2 Smoothing

Smoothing aims to remove small, local, fluctuations in intensity, often caused by noise,

that prevent peak detection algorithms from functioning optimally. The de facto standard
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Figure 2.10: Demonstration of the effects of Savitzky-Golay smoothing (window size 15)
applied to data on data rebinning in the detector domain (left) and data interpolated to
ensure a peak spans approximately 30 mass bins across the whole mass range (right).

smoothing method used is Savitzky-Golay due to its intensity preserving properties [78].

This, along with other commonly used methods such as moving average and Gaussian,

are window based techniques, meaning that they consider a set number of data points at

once, the ‘window’, to generate a single data point in the resulting data. The window is

then ‘slid’ along the data to the next point where a new window is considered.

An appropriate window size for window based smoothing methods should ideally be

proportional to the number of data points across a peak. As discussed above, the number

of points that a peak spans increases with m/z. For example when linearly interpolating

with m/z bin size of 0.023, there are 4 points for the peak at m/z 104, but 16 for the peak

at m/z 826. When rebinning based on the detector domain, the peaks at 104 and 826

span 14 and 31 m/z bins respectively. Proportionally, the peaks are more similar when

the detector based m/z axis is used as opposed to the linear in m/z binning, but there is

still a discrepancy in the number of data points per peak. This means that an optimal

window size for smoothing at one m/z will cause peak broadening (potentially causing

removal or merging of shouldered peaks) at a lower m/z and will have reduced efficacy at

a higher m/z, as shown in Figure 2.10a.

This can be remedied in two ways. Firstly, the window based methods could be applied

with different window sizes, proportional to the number of data points per peak, across the

entire mass range. However, this requires adaptation of all window based preprocessing

methods to include this functionality.
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A more efficient option is to instead generate an m/z axis consisting of m/z bins that

reflect the changing peak width such that when a spectrum is projected onto the new axis

all peaks are represented by a constant number of data points. The results of applying

Savitzky-Golay smoothing to a detector based m/z axis and a constant number of data

points per peak m/z axis are shown in Figure 2.10. When the detector based m/z axis is

used, the chosen window size for the smoothing function is appropriate for the peak at

m/z 826, but causes peak broadening and a reduction in the height of the peak at 104,

whereas when the same number of data points span both peaks, neither peak is broadened

and the heights are retained, minus noise. The FWHM of the peak at m/z 104 in Figure

2.10a is 0.03, compared to 0.02 in Figure 2.10b which is equivalent to the mass resolving

power being reduced to 3500 from 5200 (calculated at m/z 104.08537).

2.5.3 Baseline Correction

Baseline correction aims to remove an experimental artefact often attributed to chemical

noise to aide peak detection and increase comparability between spectra. The effect is

more pronounced when acquiring data over a large mass range and is a common feature in

protein imaging. The type, or lack thereof, of baseline present in the data is dependent on

the both the instrument and experimental parameters, such as the mass resolving power,

mass range, the laser power (inducing and subsequently increasing fragmentation), the

analyte and the matrix used.

The fact that different styles of baseline can occur is largely omitted from the literature,

with methods often being presented as suitable for all spectra acquired using a given ion

source. Any direct comparison of baseline correction methods without taking into account

the style of baseline it was developed for is therefore unfair. Probably the most common

style of baseline in the proteomics community is a monotonically decreasing baseline,

caused by the combination of low mass resolving power and the increased number of ions

detected at the low mass range (commonly referred to as chemical noise, encompassing

the matrix related ions, less desirable biological molecules and associated fragmentation).
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Multiple methods for correcting for this have been proposed, most notably the convex hull

method, which is featured within flexAnalysis (Bruker Daltonics). This method works well

for the monotonically decreasing (or increasing, although this is not a style of baseline

observed in MS) case, however if the sign of the gradient of the baseline alters more than

once then sections of the baseline will not be removed. To get around this issue, Coombes

et al. [124] proposed a monotone local minimum, whereby the minimum intensity within

a user defined window is taken as the baseline at that point in the spectrum.

Extending upon this idea, the TopHat baseline correction removes the assumption that

the baseline correction is monotonically decreasing and instead performs the mathematical

morphological opening operation on the spectrum (with a user defined structuring element

width, ideally the width of the broadest peak to avoid removing signal). This method

will essentially set all regions of the spectra that are larger than the structuring element

width to zero. This can potentially result in amplifying noise in comparison to the reduced

signal, thus reducing the apparent SNR of certain peaks.

A final option included within SpectralAnalysis, that is not necessarily a baseline cor-

rection method in the sense that it removes chemical noise, is the removal of negative

values is included as an optional compensation for artefacts introduced in other prepro-

cessing methods such as cubic interpolated rebinning and Savitzky-Golay smoothing.

2.5.4 Normalisation

Normalisation is a relatively controversial topic in mass spectrometry imaging with a

significant amount of debate still ongoing. A detailed review of common normalisation

methods is provided by Deininger et al. [81]. Since then an additional method for nor-

malisation has been proposed by Fonville et al. [104]. A visual comparison of these

normalisation methods applied to a sagittal section of rodent brain is shown in Figure

2.11.

In the raw image there are quite apparent experimental artefacts in the form of criss-

cross patterns. These patterns are removed in all methods except median normalisation,
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Figure 2.11: Comparison of normalisation techniques applied to the same ion image (m/z
810 in a sagittal section of formalin fixed rat brain [4]).
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which normalises to an approximate measure of the intensity of the baseline. In this

dataset there is no baseline, resulting in a similar median value for every pixel (which in

this case becomes a measure of noise rather than the baseline, and is approximately 2).

In extremely sparse datasets, the median will be 0, causing a divide by 0, and as such is

an inappropriate normalisation method for such data.

The other normalisation methods make assumptions about the nature of the data. In

MALDI MSI, normalising to matrix peaks assumes that the matrix sound be constant

across the image and so by normalising to the matrix peaks the aim is to compensate for

any heterogeneity of the matrix distribution. When considering only matrix regions, the

sum of all detected matrix ions (fragments, clusters and adducts) could potentially provide

a good normalisation factor. However, once an analyte is incorporated suppression effects

can cause ions to be detected differently, or not at all, and so this method becomes less

suitable. As this relies on the matrix peaks this method is only applicable to MALDI data,

however the matrix peaks could be replaced with other experimental constants prevalent

in other techniques such as solvent peaks in DESI or LESA, however with similar caveats.

The TIC (and similarly the L2) normalisation method makes the assumption that at

every pixel location the same number of ions should be detected. In homogeneous single

compound samples this would hold true, however any form of heterogeneity renders this

assumption inappropriate. It could be argued that within a given area there is only a

given amount of charge present required for the formation of ions and so despite the

heterogeneity this method is applicable. Due to varying proton affinities of molecules

present, suppression effects and reactions that may occur within the plume (for example

charge transfer or metastable fragmentation) this assumption is unlikely to hold true.

Fonville et al. [104] attempts to provide a more robust method of normalisation that does

not suffer from the issues listed above, by only considering signal from the analyte when

constructing the scaling factor for each pixel. However, considering the heterogeneity

within the analyte this is still not an ideal solution.
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Figure 2.12: Screenshot of the real time update of preprocessing effects. 1) Raw spectrum
(‘Before’) overlayed with the preprocessed spectrum (‘After’). 2) Preprocessing method’s
parameters. Changing these values updates the ‘After’ spectrum so their effect is visu-
alised in real time.

2.5.5 Tailoring preprocessing to data

As has been discussed and demonstrated previously, the suitability of certain preprocess-

ing methods largely depends on the nature of the data to be analysed. To increase the

compatibility with a larger number of instruments, the preprocessing methods included

in each vendor’s software (and discussed above) are included in SpectralAnalysis. Taking

this a step further and allowing the effects of the preprocessing methods to be visualised

in real time, enables the user to select appropriate methods and associated parameters

for removing experimental artefacts and noise, removing the ‘black box’ nature of many

software packages. The interface for performing this is shown in Figure 2.13.

Furthermore, it is possible to create a custom ‘preprocessing workflow’ that includes

one or more preprocessing methods to be applied in a user specified order. This not only

gives the user great flexibility over the transformations applied to each spectrum, but also

enables the recreation of previously published routines such as LIMPIC [69] as well as
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Figure 2.13: Screenshot of the workflow generation. 1) Spectrum prior to any prepro-
cessing applied. 2) Spectrum after full preprocessing workflow applied. 3) Preprocessing
workflow, a list of methods and parameters in a set order. 4)

in-house workflows. This allows rapid evaluation and incorporation of newly developed

preprocessing workflows without the need for additional software and could provide a

route for methods to be published alongside articles or submitted as part of the review

process.

2.5.6 Image Generation and the Effect of Preprocessing on Im-
age Quality

Multiple methods for generating ion images are implemented within mass spectrometry

imaging software. The results of applying these different methods are shown in Figure

2.14. When ion images are generated without the application of any preprocessing, the

resulting images are more noisy and the different methods have greater variation. Through

applying preprocessing to each of the spectra, the apparent differences are lessened and

only relative intensity differences remain. A difference between methods that extract a

single value compared to those that sum over a mass range is still evident. This is likely
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Figure 2.14: Comparison of ion images generated with various methods with and without
preprocessing applied. a) Extract values at specific m/z location determined from total
spectrum. b) Maximum in m/z range. c) Integrate over m/z range. d) Maximum in
fitted function (Gaussian function used). e) Integrate over fitted function (Gaussian
used). Row 1) Raw data shown in blue trace. Extracted value(s) shown in pink. Fitted
function shown in green trace. Row 2) Generated ion images from raw data in Row 1).
Row 3) Preprocessed data shown in blue trace. Extracted value(s) shown in pink. Fitted
function shown in green trace. Row 4) Generated ion images from raw data in Row 3).

due to the effect illustrated in Figure 2.15 where the distribution of intensities on the left

side of the peak is different to that of the right side, potentially due to unresolved ions

having different spatial distributions.

2.6 Speeding up Preprocessing through the use of

GPGPU

General purpose computation on graphical processing units (GPGPU) can provide sig-

nificant speed improvements for highly parallelisable problems. Processing of mass spec-

trometry data falls in this category due to the requirement of performing exactly the

same baseline correction, smoothing and peak detection on each spectrum in the dataset.
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Figure 2.15: Comparison of ion images generated by summing values a) highlighted in
green and c) highlighted in blue.

Figure 2.16: a) 3.40 GHz Intel i7-2600 running Windows 7 with an NVIDIA Quadro 2000.
Transfer adds 20-30ms. b) 2.40 GHz Intel Xeon E5645 running Linux with an NVIDIA
Tesla C2070. Transfer adds 20-40ms.

To demonstrate the speed improvements achievable the Top-Hat algorithm for baseline

correction was implemented using the Herk-Gil-Werman (HGW) algorithm [125] for both

CPU and GPU. Two iterations of Savitzky-Golay (with a fixed window size of 5) were

applied to a dataset (500 pixels and 20714 m/z channels) followed by baseline correction

using the Top-Hat algorithm (with varying structuring element widths) on two different

hardware configurations.

As would be expected, the näıve and HGW implementations executed on a slower clock

speed CPU results in worse performance, but still the HGW implementation outperforms

the näıve in both cases. Again, when comparing GPU implementations, the higher per-

formance GPU (double precision floating point performance, Tesla C2070 515 GFlops vs

Quadro 2000 240 GFlops; cores, Tesla C2070 448 vs Quadro 2000 192) outperforms the

lower performance GPU. However, interestingly, the relationship between the näıve and

the HGW implementations differ between the two GPUs. When using the Quadro 2000
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and the structuring element is less than 50, the näıve implementation performs as well

as or outperforms the HGW implementation, after which point the HGW implementa-

tion remains constant time and successively outperforms the näıve implementation. This

switch over point takes longer to reach when using the Tesla C2070 (structuring element

size of approximately 150) due to the higher number of cores available. As the optimal

structuring element size is related to the width of the largest peak within the data, values

of above 150 are unlikely to be required whereas it is possible that values of greater than

50 will be needed. Thus, depending on the hardware available, and the problem at hand,

the optimal implementation may differ.

The most beneficial way to reduce the processing time is to utilise different imple-

mentations based on the parameters used for each processing method and the size of the

data that is to be processed. Speed improvements are also dependent on the hardware

available and should be optimised and selected on a per computer basis and then applied

to all subsequent processing.

2.7 Multivariate Analysis

Once peaks have been detected, the data can be reduced down to a ‘datacube’ [86]. As

hundreds or thousands of peaks are routinely identified for a single dataset, manual inves-

tigation to determine trends within the data is laborious and impractical. Multivariate

analysis techniques have been shown to be a powerful tool for aiding interpretation of

these complex datasets. Despite this, very few freely available software packages include

such techniques and those that do only include one or two [54, 52]. The efficacy of any

single technique used in isolation has recently been brought into question [126].

To address this, SpectralAnalysis includes principal component analysis (PCA), non-

negative matrix factorisation (NMF), maximum autocorrelation factor (MAF) [127] and

probabilistic latent semantic analysis (PLSA) [128]. Selected factors from each of the

techniques applied to a MALDI MS image of a sagittal section of rat brain [4] are shown
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Figure 2.17: Selected factors from principal component analysis (PCA), non-negative ma-
trix factorisation (NMF), maximum autocorrelation factor (MAF) [127] and probabilistic
latent semantic analysis (PLSA) [128] applied to a MALDI MS image of a sagittal section
of rat brain [4].
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in Figure 2.17. The first factor from each technique was selected as the factor that showed

a difference between the matrix region and the tissue region. The resulting spectral profiles

in PCA, NMF and pLSA are relatively similar, showing the contribution of the matrix

peaks. The second factor in PCA and MAF and the second and third factor in NMF

and pLSA were selected to show differentiation between grey and white matter. The final

factor in PCA, MAF and pLSA was selected to highlight the hippocampus region. The

hippocampus region in the MAF factor has significant contrast, whereas it could easily be

missed in the PCA and pLSA and wasn’t present at all in any NMF factor. This further

emphasises the power of employing multiple techniques to analyse MSI data.

2.8 Extensibility

SpectralAnalysis was developed with extensibility in mind, providing a platform for vi-

sualisation and processing that it is simple to include additional data format readers,

preprocessing, multivariate analysis and clustering algorithms without the requirement

of developing any user interface or data visualisation code. A block diagram visualising

the core components that can be extended is shown in Figure 2.18. A ‘Parser’ handles

the reading of a given file format, for example imzML, to get meta information such as

the image dimensions (width, height, depth) and whether the data is stored in sparse

format or dense (to determine the need to ensure a consistent m/z axis as discussed in

Section 2.5.1) as well as to read parts of the data from disk. Extension of this allows data

in different formats (such as older MSI formats like Analyze 7.5) as well as file formats

associated with other imaging modalities, as discussed in Section 2.9. The ‘DataRepre-

sentation’ determines how the data is to be handled, either in memory or left on disk

(discussed in Chapter 3), and could be extended to include additional capabilities such as

a hybrid of the two (cached data in memory, majority remain on disk). ‘Preprocessing’

and associated subcomponents include all of the features discussed in Section 1.6 and

can be extended to include methods or algorithms that are currently omitted or to de-
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velop new algorithms and make use of the real-time visualisation of its effects on spectral

data. ‘Postprocessing’ includes all multivariate analysis techniques shown in 2.7 and can

be extended to include additional algorithms. This provides a platform for rapid testing

of algorithms at every stage of the analysis process on multiple modality datasets with

instant visualisation of the results.

Figure 2.18: Block diagram describing the software interaction. Easily extensible sections
are ‘Parser’, ‘Preprocessing’ and ‘Postprocessing’.

2.9 Multimodality Data

It is becoming increasingly desirable to incorporate multiple additional techniques into

the analysis of mass spectrometry imaging data. This can range from simply including

histology images to determine co-localisation with anatomy, through inclusion of addi-

tional MSI data (either from the same instrument or a complementary one) [129], to the

inclusion of other spectral imaging modalities such as Raman [130]. To cater for this

scenario, SpectralAnalysis was written in such a way that enables any spectral data to

rapidly be incorporated, allowing any of the core functionality (such as preprocessing and

multivariate analysis, discussed below) to be performed without alteration. A selection

of data from different modalities processed using SpectralAnalysis is given in Figure 2.19.
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Figure 2.19: Demonstration of different imaging modality data processed using Spectral-
Analysis. In the MALDI TOF/TOF and Raman data every pixel consisted of a spectrum
with the same length and channel labels as every other pixel in the dataset (referred to
as ‘continuous’ in the imzML specification). The LESA ESI Orbitrap, DESI Orbitrap,
MALDI QTOF and SIMS data were stored in sparse format and so each spectrum was
stored as m/z, intensity pairs resulting in different length spectra at each pixel (referred
to as ‘processed’ in the imzML specification, despite the data being raw data).

Although some preprocessing techniques are only suitable for specific styles of data, the

end goal largely remains the same and the majority of algorithms for smoothing, baseline

correction and peak detection included are technique independent providing a powerful

platform for multimodality processing, investigation and visualisation.

2.10 Analysing Subsets of Large Datasets

As instruments develop and increase both the mass resolution and the lateral resolution,

the data size is rapidly increasing, with raw data easily capable of exceeding 10s to 100s

of GB for a single MSI dataset. Furthermore, the move towards clinical applications

with increasing cohort and sample numbers, with replicates, is significantly increasing

this challenge. The vast majority of MSI software loads the data to be processed into

RAM before any visualisation or analysis can be performed. This then introduces a

restriction on the size of the data that can be processed based on the hardware of the
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computer being used, and as the data size is rapidly outpacing the hardware specifications

this is becoming an increasing problem and may render some software/hardware/data

combinations unusable.

This problem has been addressed previously by enabling the ability to load and analyse

a subsection of the dataset, limiting the number of pixels, the mass range, or both [47, 55].

SpectralAnalysis also includes this option and expands upon it by allowing the user to

select an arbitrarily shaped region of interest as well as an optional mass range limit to

be loaded into memory, the interface for this is shown in Figure 2.20. In order to do

this the axis must be consistent and so any of the techniques discussed in Section 2.5.1

can be employed to ensure this, where in some cases the parameters can be specified to

also contribute to the reduction of data (such as rebinning) at the cost of potentially

discarding information.

2.11 Conclusions

SpectralAnalysis provides a unique, and currently the most exhaustive, collection of algo-

rithms for preprocessing and subsequent multivariate analysis of spectral imaging data.

This, combined with the flexibility of the extensibility to include additional algorithms,

results in a platform suitable for comparisons of preprocessing methods on MSI data

acquired on any instrument.

Due to the capability of handling multiple spectral imaging modalities, each of which

capture different information about the sample, SpectralAnalysis would be an excellent

platform on which to develop and integrate image fusion techniques, such as those used

in satellite imagery. Image fusion aims to combine data from multiple sources to gain

information that was not present in each source in isolation. For example, the combination

of a high spatial resolution, panchromatic image with a multispectral, but low spatial

resolution image resulting in a high spatial multispectral image. This could be developed

and applied to MSI to combine, for example, the high spatial resolution of SIMS data
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Figure 2.20: Interface presented when opening a dataset in SpectralAnalysis providing
the user with options for how to handle large data. 1) Option between loading the data
into memory or leaving the data on disk and using memory efficient methods (discussed
in Chapter 3). 2) Limit the spectral domain. 3) Select a region of interest to load data
within only that area. 4) Ensure consistent m/z axis to enable loading the data into
memory and for optional data size reduction as discussed in Section 2.5.1.
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with the high mass range of MALDI data.
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CHAPTER 3

MEMORY EFFICIENT DATA HANDLING AND
ANALYSIS

3.1 Introduction

The size of a single mass spectrometry image is rapidly increasing. Datasets can easily

reach 100s GB, which far exceeds the available RAM in a typical computer. This presents

the analyst with only one option if they wish to analyse their data, they must reduce the

data such that it fits within memory while also ensuring sufficient free memory remaining

to perform any subsequent analysis. This can be achieved through one or more of the

methods discussed in Section 2.10, however these either limit the analyst’s view of the

dataset as a whole or discard data (and potentially analytically useful information) which

can be detrimental to the analysis. This issue of datasize is compounded when multiple

MS images are combined as in Section 2.3, requiring the analyst to compromise even

further to be able to visualise the data. This chapter describes memory efficient methods

that enable datasets vastly exceeding the size of the available RAM to be visualised,

preprocessed and analysed using multivariate analysis.
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3.2 Memory Efficient Ion Image Generation

Generation of individual ion images does not require the whole dataset to be loaded into

memory. Instead only the data points that fall within the peak boundaries (mmin and

mmax) are required so that one of the methods described in Section 2.5.6 can be applied.

This can also be taken a step further, and since the calculation of an intensity at a

given pixel is completely independent of all other pixels, only one spectrum is required

in memory at a given point in time. This significantly reduces the amount of memory

required, as a single spectrum ranges from 100s kB to 1-2 MB, compared to the 10s of

GBs for the whole dataset. In many cases it is desirable to preprocess the data prior to ion

image generation. The algorithm presented in Algorithm 3.1 presents a memory efficient

method of generating ion images from preprocessed data. Each spectrum is loaded in

sequentially, preprocessed and then the data points within peak limits are extracted and

an intensity is generated based on the image generation method of choice. The spectrum

can then be removed from memory before the next is loaded in. This reduces the amount

of memory required to the size of a single spectrum, plus the size of the ion image(s) to

be generated, which is orders of magnitude smaller than the whole data, allowing TBs of

data to be visualised on even the most memory constrained systems.

Algorithm 3.1. Memory Efficient Ion Image Generation
Require: Peak limits mmin and mmax

Require: Preprocessing workflow W ← {w1(S), ..., wn(S)} containing n preprocessing methods from Section 1.6
Require: Image generation method G(S,mmin,mmax) from Section 2.5.6
1: I ← {}
2: for each spectrum index i in dataset do
3: Read in spectrum Si from disk
4: for each preprocessing method w in W do
5: Si ← w(Si)
6: end for
7: Get spatial location of spectrum from header information (x, y, z)
8: I(x, y, z)← G(Si,mmin,mmax)
9: end for
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3.3 Memory Efficient Spectral Representation Gen-

eration

Peak detection is often performed on spectral representations of the data [86]. As above,

these only require a single spectrum to be loaded into memory at once and can be gener-

ated in a memory efficient manner using Algorithm 3.4. It is possible to generate multiple

representations at once, requiring only a single pass through of the data, by including ad-

ditional update methods after line 8 of Algorithm 3.4. This provides a memory efficient

method of generating all spectral representation proposed by McDonnell et al. [86] for

optimal peak detection in a given dataset.

Algorithm 3.2. Ut(SR, S) Update method for total/mean spectrum generation

Require: |SR| = |S|
1: for each index i in SR do
2: SR(i)← SR(i) + S(i)
3: end for

Algorithm 3.3. Ub(SR, S) Update method for basepeak spectrum generation

Require: |SR| = |S|
1: for each index i in SR do
2: SR(i)← max(SR(i), S(i))
3: end for

Algorithm 3.4. Memory Efficient Spectral Representation Generation

Require: Preprocessing workflow W ← {w1(S), ..., wn(S)} containing n preprocessing methods from Section 1.6
Require: Spectral representation update method U(SR, S) from Algorithm 3.2 or 3.3
1: SR ← {}
2: n← 0
3: for each spectrum index i in dataset do
4: Read in spectrum Si from disk
5: for each preprocessing method w in W do
6: Si ← w(Si)
7: end for
8: SR ← U(SR, Si)
9: n← n+ 1
10: end for
11: If mean spectrum required, SR ← SR/n

3.4 Memory Efficient Datacube Generation

By combining the above methods it is possible to reduce the MS image to a ‘datacube’ in

a memory efficient manner, using Algorithm 3.5. In this case, only a single spectrum and
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the datacube is required to be in memory at any one point in time. This allows reduction

of data to peak lists without a limitation applied to the number of peaks retained.

Algorithm 3.5. Memory Efficient Datacube Generation

Require: Preprocessing workflow W ← {w1(S), ..., wn(S)} containing n preprocessing methods from Section 1.6
Require: Image generation method G(S,mmin,mmax) from Section 2.5.6
1: Calculate spectral representation SR using Algorithm 3.4
2: Peak pick on SR using chosen method from Section 1.6.5 to get m/z limits Mmin and Mmax

3: D ← {}
4: for each spectrum index i in dataset do
5: Read in spectrum Si from disk
6: for each preprocessing method w in W do
7: Si ← w(Si)
8: end for
9: for each peak index j in Mmin do
10: D(i, j)← G(Si,Mmin(j),Mmax(j))
11: end for
12: end for

The algorithm as it is presented reduces and loads the data into memory, however this

can also be used to write the reduced data to disk by altering line 10 in Algorithm 3.5 to

be a disk write instead of a matrix update. In this case only a single spectrum is required

to be in memory, making this process feasible on memory constrained systems where

the datacube is larger than that of the RAM. The methods for handling large datasets

described in Section 2.10 can then be employed to visualise portions of the data.

3.5 Memory Efficient Principal Component Analysis

It is not always the case that data reduced to a datacube is small enough to fit into RAM

while also leaving enough memory to perform multivariate analysis, using a technique such

a principal component analysis (PCA). One option, described in Section 2.10, is to load

only part of the dataset and perform PCA, however this relies on a priori knowledge that

may not exist and limits the analyst’s understanding of the data to the portion loaded.

A method for performing PCA on large databases, where it is frequently impossible

to load an entire dataset due to memory limitations, has been previously been reported

[131]. The method is based on the formation of two “summarisation” matrices
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L =
N∑
i=1

x(i) (3.1)

Q =
N∑
i=1

x(i)(x(i))T (3.2)

where the column vector x(i) is the ith data entry and the sums are over the N entries

in the dataset. From the summarisation matrices, the covariance matrix can be computed

as

Σ =
1

N
Q− 1

N2
LLT . (3.3)

The important feature of this formulation is that the summarisation matrices can be

formed incrementally and require only one data point to be in memory. This can readily

be adapted to MSI data, where the summarisation matrices can be formed incrementally

from each spectrum, corresponding to a pixel (or voxel), shown in full detail in Algorithm

3.6 and diagrammatically in Figure 3.1. This is especially advantageous for datasets con-

taining large numbers of pixels. Note that the full covariance matrix must be constructed

and very high-dimensional datasets may still prove to be intractable. For this reason, we

employ peak detection methods in order to reduce the dimensionality of the data.

3.5.1 Description of the algorithm

With reference to Figure 3.1 and Algorithm 3.6, the algorithm can be decomposed into

the following steps:

Determine peak list (lines 1-2): The preprocessing workflow, W , was comprised

of rebinning in the detector domain (Section 2.5.1) and Savitzky-Golay smoothing (with

window size 25). Peak picking was performed using the gradient method (Section 1.6.5)

on the basepeak spectrum (Algorithm 3.3).
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Read in spectrum (lines 7, 24): Spectra, consisting of (m/z, intensity) pairs, were

accessed sequentially from the binary portion of the imzML format and loaded into RAM.

Pre-process spectrum (lines 8-14, 25-31): After loading, spectra were prepro-

cessed using the workflow W described above. Each peak in the spectrum was reduced

to a single intensity value, using the image generation method, G, extract value at peak

apex as described in Section 2.5.6.

Update summarisation matrices (lines 15-16): The summarisation matrices are

updated with the current peak reduced spectrum Sp

L← L+ Sp (3.4)

Q← Q+ SpS
T
p (3.5)

Calculate Σ (line 19): Once the summarisation matrices have been updated with

all spectra, the covariance matrix can be computed as

Σ← 1

N
Q− 1

N2
LLT (3.6)

Eigendecomposition of Σ (lines 20-21): Eigendecomposition was performed by

first reducing the covariance matrix to a tridiagonal matrix followed by QR decomposition

of the tridiagonal matrix to calculate the eigenvalues and eigenvectors.

UΛUT = Σ (3.7)

where U contains the eigenvectors (also referred to as the loadings or coefficients in

PCA) and the diagonal of Σ contains the eigenvalues.

Calculate Scores (line 32): The scores of the data points against the principal

components are computed point-by-point (only one spectrum is required in memory). The

score of the spectrum from pixel i against principal component j is computed as
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P (i, j)← (Sp −
L

N
)TUj (3.8)

where Uj is the j
th column of U (the jth principal component) and L/N is subtracted

in order to mean-centre the data. Score images can then be generated for a principal

component of choice by arranging the score values in the same two dimensional grid as

the spectra were collected.

In certain cases, it may be necessary to construct the correlation matrix instead of the

covariance matrix. This is necessary in cases where the variables are on different scales and

so is not generally applicable for MSI data, but may be useful for liquid chromatography

ion mobility spectrometry-mass spectrometry (LC-IMS-MS) data where elution time, drift

time and m/z are on different axes [132]. The correlation matrix ρ can be formed as

ρ = Σ ◦ 1

σσT
(3.9)

where ◦ denotes the element-wise (Hadamard) product of the matrices and σ =
√

diag (Σ)

is a vector containing the standard deviation of each dimension (peak). Overwriting the

covariance matrix with the correlation matrix will ensure that no extra memory is required

and then the subsequent steps of eigendecomposition of ρ (UΣUT = ρ) and scoring can

be followed as described previously, with Equation 3.8 replaced by

P (i, j)←
[(

Sp −
L

N

)
◦ 1
σ

]T
Uj (3.10)

3.5.2 Numerical Optimisations

Whilst this method does not require the whole dataset to be loaded simultaneously, the

full covariance matrix (M ×M , where M is the number of peaks) must be formed. This

limits the dimensionality (number of peaks) that can be processed. However, there are

several numerical optimisations that can be made in order to increase this limit. In the
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Algorithm 3.6. Memory Efficient PCA

Require: Preprocessing workflow W ← {w1(S), ..., wn(S)} containing n preprocessing methods from Section 1.6
Require: Image generation method G(S,mmin,mmax) from Section 2.5.6
Require: Number of components to generate c
1: Calculate spectral representation SR using Algorithm 3.4
2: Peak pick on SR using chosen method from Section 1.6.5 to get m/z limits Mmin and Mmax

3: L← 0
4: Q← 0
5: N ← 0
6: for each spectrum index i in dataset do
7: Read in spectrum Si from disk
8: for each preprocessing method w in W do
9: Si ← w(Si)
10: end for
11: Sp ← {}
12: for each peak index j in Mmin do
13: Sp(j)← G(Si,Mmin(j),Mmax(j))
14: end for
15: Update summarisation matrix L using Equation 3.4
16: Update summarisation matrix Q using Equation 3.5
17: N ← N + 1
18: end for
19: Calculate covariance matrix Σ using Equation 3.6
20: Reduce Σ to tridiagonal matrix
21: Perform QR decomposition of tridiagonal matrix resulting in eigenvalues Λ and eigenvectors U
22: P ← {}
23: for each spectrum index i in dataset do
24: Read in spectrum Si from disk
25: for each preprocessing method w in W do
26: Si ← w(Si)
27: end for
28: Sp ← {}
29: for each peak index j in Mmin do
30: Sp(j)← G(Si,Mmin(j),Mmax(j))
31: end for
32: Update row i of scores matrix P using Equation 3.8
33: end for
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Figure 3.1: Workflow for memory efficient principal component analysis, only requiring a
single spectrum plus the summarisation matrices in RAM at any single point in time.

computation of Q, the product SpS
T
p is symmetric and hence Q is also symmetric and one

need only compute and store the upper triangular part of Q. The formation of both SpS
T
p

and LLT can be performed element-by-element, updating the relevant variable (Q and

Σ respectively), removing the need to allocate any extra memory for storing temporary

variables the same size as the covariance matrix. Furthermore, the covariance matrix

can be computed “in-place” of Q to further reduce the memory requirements. With the

covariance matrix stored in packed triangular form, the necessary eigendecomposition can

be performed first by tridiagonalisation, and then decomposing with optimised numerical

methods from LAPACK designed for this case [133]. It is also possible to discard latter

columns of U once the number of principal components (P ) to retain has been determined,

reducing U from M ×M to M × P .
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Figure 3.2: Data sizes that princomp (MATLAB Statistics Toolbox version 7.12.0.635)
can process using 8 GB RAM shown as the area under the curve, demonstrating the
compromise between either number of pixels (or samples) or peaks retained in the mass
spectrometry data reduction step. All combinations of number of peaks and pixels shown
can be processed with the new workflow.

3.5.3 Memory usage comparisons with current methods

The maximum size of data that could be processed with princomp was determined by

selecting a value for the number of peaks, M , and then iteratively altering the number of

pixels, N , (using binary search) to produce a random data matrix of size N×M and then

performing princomp on the matrix. If this resulted in an ‘Out of Memory’ error then the

number of pixels was reduced, otherwise the number of pixels was increased. When the

maximum number of pixels was determined for a specific number of peaks, the number

of peaks was altered and the process was repeated. The results of this from a computer

with 8 GB RAM are presented in Figure 3.2.

Assuming a large, high resolution image (of 32M pixels [121]) is to be processed using

princomp, only 8 peaks could be retained. With such small numbers of peaks, it is feasible

to examine all ion images manually and there is no longer any requirement to reduce the

dimensionality prior to further analysis. Furthermore, and more importantly, reducing

a complex dataset to a small number of peaks will likely discard a significant amount

of informative data. For data sizes which exceed the memory limit, the data must be

reduced prior to PCA by discarding some information, introducing a compromise between

the number of pixels and the number of peaks to retain, and is often remedied through the

use of data reduction techniques that discard peaks, pixels or both [86, 104]. Discarding

pixels generally requires some form of prior knowledge about the dataset, specifically

which pixels are relevant. This has the opportunity to introduce analyst bias if the

pixel selection method requires user input to aid the generation of a mask to separate

matrix related pixels and sample related pixels. Discarding peaks is a much more widely

accepted form of data reduction, but dependent on the method used it can introduce the
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same disadvantages as discarding pixels. However, it should be noted that if uninteresting

or uninformative peaks and pixels can be discarded in an unbiased and correct way then

the results of PCA will provide much more insightful information on the nature of the

variations in the data and potentially reveal variation that was previously masked by the

uninformative differences.

An alternative method to reduce the amount of memory required by the PCA algo-

rithm is to use the NIPALS implementation of PCA [134]. This algorithm iteratively

calculates the principal components in order of largest variance explained and so only

the required principal components can be calculated, reducing computation time and

memory requirements. However, the requirement to store the data matrix as well as the

residual matrix (which is the same size as the data matrix) in memory means that for

large datasets this method will still be prohibitive and the proposed method will still out

perform NIPALS in terms of memory savings.

3.5.4 Verification

To verify that the new workflow produced the same results as simply using princomp a

dataset with a sufficiently small number of pixels and detected peaks was chosen, and the

coefficients and scores produced were compared. The difference between the two result-

ing coefficient matrices is on the order of 10−6 (10−4%). The matrix Q (Equation 3.2)

summarises XXT , where X is the data matrix [131] and any differences between these

two matrices propagate through the algorithm. Such small differences do not significantly

affect any of the observed results; the correlation between any principal component’s coef-

ficients calculated by the two methods is 1, therefore they describe identical distributions.

A visual comparison of score images produced using both methods is shown in Figure 3.3

with the memory requirements at each step of the process shown in Table 3.1. Although

the memory sizes included in Table 3.1 focus on the most common case where the number

of pixels is larger than the number of peaks, memory savings will still be achieved in

the inverse case but will be less significant. For a system with 8 GB RAM, a dataset
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Figure 3.3: Comparison of principal component score images of a MALDI MS image of
a single rat brain section using princomp (a, b) and the memory efficient PCA method
(c, d). a) and c) show principal component 5 (demonstrating a significant amount of
variance between grey and white matter regions) and b) and d) show principal compo-
nent 19 (demonstrating that information is still contained in high principal components).
Score images produced with either method are identical, independent of which principal
component is calculated.

with 100000 pixels and assuming the first 50 principal components will be calculated, the

maximum number of peaks that can be included in the proposed workflow is greater than

26000. This is in contrast to the maximum of 2666 peaks included when using princomp

shown in Figure 3.2.

Verification on large data sets was performed by simulating a full 3D MALDI MSI

experiment by replicating the single section data used previously. Binning the data at 0.2

m/z, the standard bin width used in BIOMAP (Novartis), resulted in 4751 bins (31 kB

per spectrum) and a data size of 744 MB (for 20535 pixels). Only two full slices of this

size could be retained and processed using princomp and 8 GB of RAM. Assuming 12

µm sagittal sections are taken of a rat brain of size 2cm x 1cm, the distance between the

two full sections would be 325 µm, over which distance the internal structure can change
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Step princomp Memory Proposed Method Memory
(MB) (MB)

1) Data matrix (N ×M) 2288.82 x(i) (M × 1) 0.02
L (M × 1) 0.02
Q ([M(M + 1)/2]× 1) 34.34

2) Data matrix (N ×M) 2288.82 L (M × 1) 0.02
Mean centred data (N ×M) 2288.82 Σ ([M(M + 1)/2]× 1) 34.34

3) Data matrix (N ×M) 2288.82 L (M × 1) 0.02
Mean centred data (N ×M) 2288.82 Σ ([M(M + 1)/2]× 1) 34.34
U (N ×M) 2288.82 U (M ×M) 68.66
S (M ×M) 68.66 Λ (M × 1) 0.02
V (M ×M) 68.66 Working ([4M − 4]× 1) 0.09

4) Data matrix (N ×M) 2288.82 L (M × 1) 0.02
Mean centred data (N ×M) 2288.82 Σ ([M(M + 1)/2]× 1) 34.34
U (N ×M) 2288.82 U (M ×M) 68.66
S (M × 1) 0.02 Λ (M × 1) 0.02
V (M ×M) 68.66 Scores (N × P ) 38.15
Scores (N ×M) 2288.82

Max. RAM Usage (MB) 9223.96 Max. RAM Usage (MB) 141.18

Step princomp Proposed Method
1) Read dataset into RAM ‘Read in spectrum’

Pre-process and reduce if necessary ‘Pre-process spectrum’
‘Update summarisation matrices’

2) Mean center data matrix ‘Calculate Σ’
3) SVD of data matrix ‘Eigendecomposition of Σ’
4) Data matrix projected using eigenvectors ‘Calculate Scores’

Table 3.1: Memory size requirements and the corresponding intermediate variable sizes
at each step of the principal component analysis algorithm using N (number of pixels) =
100000, M (number of peaks) = 3000 and assuming P (principal components to calculate)
= 50 (assuming 99% variance is explained in the first 50 principal components, however
commonly fewer principal components are required in practice). Steps 1-4) for princomp
correspond to steps i-iv) as described in the introduction and are summarised in the lower
table. Steps 1-4) for the proposed method refer to the named algorithm steps described
Section 3.5.1.
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significantly. Using the method of selecting informative peaks by Fonville et al. [104] to

reduce the number of bins (which results in 564 informative bins at 4 kB per spectrum

and 88 MB per slice), 23 sections would be able to be processed, with 30 µm between

each section. Clearly acquiring data with higher lateral, axial or mass resolution would

increase the data size, regardless of applying peak picking or not, and therefore decrease

the number of sections possible while increasing the distance between sections. However

use of the proposed method would enable the entire brain to be processed at any lateral or

axial resolution, either with or without discarding peaks detected on either binned or raw

data acquired using a QSTAR XL or QSTAR Elite over the mass range of m/z 50-1000,

shown in Figure 3.4.

3.5.5 Application to real world data

Following verification, the new methodology was applied to a dataset containing multiple

serial sections taken from a single mouse brain which was too large to be handled with

princomp [21]. The new methodology was used to reduce the 3D dataset without the

requirement of discarding peaks or pixels. Clustering was then performed, using the k-

means algorithm (k = 7, selected as optimal [135] from k = 2...10 shown in Figure 3.5),

on the reduced dataset, revealing 3 clusters on the tissue region and 4 clusters describing

the matrix region. Prior to visualisation image registration was performed on ion images

of m/z 826 using StackReg as part of the Fiji package [136] which was modified to enable

exportation of the calculated affine transform. The affine transform was then imported

into MATLAB and applied to all image stacks prior to visualisation. All 3D data were

visualised using vol3d v2 [137]. All three clusters in the tissue region are visualised in

Figure 3.6, highlighting white matter in yellow (including the corpus callosum and arbor

vitae), grey matter (including the cerebral cortex) in blue and a tissue edge region in red.

Molecules which correlate with each cluster were determined by calculating the Pearson

product-moment correlation coefficient (given in Equation 3.11) between every image

produced at each m/z bin in the raw data and a binary image of the cluster of interest
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Figure 3.4: Simulated 3D MALDI MSI data of a 2 cm x 1 cm rat brain through repetition
of a single 12 µm section image and the corresponding first principal component score
image when using princomp (top) and the proposed method (bottom). Column 1 shows
the maximum number of sections (2 sections) that could be retained if the data was
binned at 0.2 m/z (4751 bins), the standard bin width used in BIOMAP (Novartis),
and then analysed with princomp with 8 GB RAM. Distance between sections would be
325 µm. Column 2 shows the maximum number of sections (23 sections) that could be
retained if informative peaks were extracted [104] (564 extracted m/z bins) prior to PCA
using princomp. Distance between sections would be 30 µm. Column 3 shows the PCA
results if the entire brain was sectioned and analysed (83 sections) and informative peaks
were extracted [104]. The red cross indicates princomp failed due to memory limitations.
Column 4 shows the PCA results if the entire brain was sectioned and analysed (83
sections) and all detected peaks (3834 detected peaks) were retained when determined
from the entire data set.
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Figure 3.5: k-means applied to PC 1-40 scores of serial mouse brain sections with varying
values for k = 2...10.

[97]. The distribution of the highest correlating molecules with each cluster, tentatively

identified as PC 36:1 [26] for the white matter (yellow) cluster, PC 32:0 [26] for the grey

matter (blue) cluster and haem [88] for the tissue edge (red) cluster, in both 2D and 3D

are shown in Figure 3.7.

ρij =
Σij√
ΣiiΣjj

(3.11)

The selection of only informative m/z bins [104] would have reduced the data set

sufficiently to be analysed with princomp. Clustering with k-means (k = 3) on the reduced

dataset produced the same clusters as shown in Figure 3.6, however a review of the peak

lists showed that m/z 616 was discarded by this reduction method. This peak was actually

found to contribute significantly to the red cluster in Figure 3.6. Examination of ion

images of this peak showed that it was found predominantly in a region in which commonly

detected endogenous species were observed to be of unusually low ion counts. This regional

suppression is likely to have been caused by contamination with blood, during either the

organ excision, or sectioning/mounting procedures. The noisy background resulted in

this peak being discarded. This observation would have been difficult to make without an
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unsupervised tool such as PCA (specifically one which can handle retention of the entire

peak list), requiring manual inspection of every possible ion image and comparing to the

reduced dataset while considering the anatomy of the sample.

The benefits of applying clustering algorithms to a large (50 GB) 3D kidney dataset

have been described recently [97]. The described data contained a very large (512495)

number of pixels and so peak picking was performed prior to clustering to reduce the

data sufficiently, which involved discarding peaks if they appeared in less than 1% of the

spectra. An alternative method of data reduction would be to use the method presented

here, which can cope with arbitrarily many pixels, to reduce the entire dataset of 7677 m/z

bins to a small number of principal components that explain at least 99% of the variance.

This would reduce the chance of discarding informative peaks that are only present in a

small, localised feature that is smaller than 1% of the image size (5124 pixels). As such,

this work provides new ways to evaluate the effects, suitability and robustness of peak

picking on larger datasets.

Spatial binning [103] may be a useful tool for the reduction in memory requirement (as

well as enhancing imaging signal-to-noise and increasing contrast) however this comes at a

cost of spatial detail. For cases where spatial binning is performed solely for the benefit of

memory reduction the method proposed here will prove valuable. A recent article stated

that the choice to only retain 650 m/z bins was “a pragmatic desire to use manageable

covariance matrices”[138], however the method presented here has demonstrated that

covariance matrices far exceeding 650 m/z bins can be handled with ease, and use of

the proposed method would enable handling of the entire 11280 processed m/z bins.

Binning in the m/z domain combined with a sparse data matrix representation in order

to compute PCA on a 3D ToFSIMS dataset was recently described [89]. In order to

preserve the sparsity, and therefore the memory reduction achieved, mean centering and

scaling were omitted, however the work presented here does not require the entire dataset

to be stored in RAM and so mean centering and scaling can be applied if required.

The iterative accessing and processing of the data increases the computation time
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Figure 3.6: 3D representation of on tissue clusters determined with k-means (k=7) applied
to a MALDI mass spectrometry image of 12 serial sections of mouse brain after being
reduced by PCA (with 99.14% of the variance retained in 40 principal components).

Figure 3.7: (a-c) Selected ion images which correlate highly with each on tissue cluster
distribution determined from k-means of serial sections, shown in 2D representation. (d-f)
3D representations of ion images where the alpha channel (transparency) is proportional
to the intensity. (a,d) m/z 826 (PC 36:1 [M+K]+). (b,e) m/z 734 (PC 32:0 [M+H]+).
(c,f) m/z 616 (haem [M+H]+).
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required to process each dataset when compared with methods which retain the entire

dataset in RAM, like princomp. However, if the dataset has already been pre-processed

and reduced to peak lists, either through using automatic data reduction methods de-

scribed by [86] and [104] or by manually selecting known peaks [139], then the amount of

processing required is reduced by eliminating the ‘Pre-process spectrum’ steps from the

workflow shown in Figure 3.1. For small MSI datasets, where the number of pixels and

detected/retained peaks falls below the curve in Figure 3.2, standard implementations of

PCA will outperform (in terms of speed) the approach described here. As a comparison,

the time required to load, pre-process and perform princomp on the single rat brain im-

age (shown in Figure 3.3) was 5.7 minutes whereas the time required to perform the new

methodology was 13.2 minutes. The reason that the time is doubled is due to the require-

ment to read in and process the data a second time to calculate the scores. Eliminating

the pre-processing step reduced the time to 2.7 minutes and 8.2 minutes for princomp and

the proposed method respectively. Processing time for the 3D dataset using the proposed

method was 24 minutes. Even if the processing time is lengthened, as the size of the

data increases (in both the number of pixels and in mass resolution) the need for data

processing routines that can handle increased data sizes becomes more apparent. Fur-

thermore, general purpose programming on graphical processing units (GPGPU) could

be employed to reduce the time taken as the generation of the summarisation matrices is

highly parallelisable [121].

This method inherently provides the ability to compute the covariance and correlation

matrices in a more memory efficient way, enabling rapid determination of co-localised

m/z peaks on larger data sets than previously reported [140]. This type of investigation

requires prior knowledge of anm/z of interest and so would be beneficial in pharmaceutical

studies where the m/z of the drug is known and molecules, such as metabolites, which

co-localise with the drug are of specific interest.

Despite this article being focused solely on MSI data, the method presented here can

be applied to any analytical technique that has sufficiently large data such that memory
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limitations have become problematic.

3.5.6 Memory Efficient Scaling

The results of PCA are extremely sensitive to the type of scaling (or lack thereof) applied

to the data [141]. Tyler et al. [141] proposed 4 different scaling methods, auto-scaling

(each peak divided by its standard deviation), root mean scaling (each peak divided by

the root mean of its intensities across the image), filter scaling (dividing each peak by the

standard deviation of a set number of pixels near that peak, excluding pixels that have

zero counts) and shift variance scaling (dividing each peak by its standard deviation in

the shift matrix where the shift matrix is calculated by subtracting X from a copy of itself

which has been shifted by one pixel vertically and/or horizontally). Of these, auto-scaling,

root mean scaling and shift variance scaling can be implemented in a memory efficient

manner through the use of iteratively generated means as demonstrated in Algorithm

3.7. This method only requires a single spectrum, plus the scaling spectrum, to be stored

within memory at any one time.

Algorithm 3.7. Memory Efficient Scaling Generation

Require: Preprocessing workflow W ← {w1(S), ..., wn(S)} containing n preprocessing methods from Section 1.6
Require: Image generation method G(S,mmin,mmax) from Section 2.5.6
1: Calculate spectral representation SR using Algorithm 3.4
2: Peak pick on SR using chosen method from Section 1.6.5 to get m/z limits Mmin and Mmax

3: N ← 0
4: M ← 0
5: M ′ ← 0
6: for each spectrum index i in dataset do
7: Read in spectrum Si from disk
8: for each preprocessing method w in W do
9: Si ← w(Si)
10: end for
11: if Shift variance scaling then
12: Read in and preprocess spectrum as above for the spectrum that is horizontally and/or vertically shifted S′

i
13: Si ← Si − S′

i
14: end if
15: N ← N + 1
16: δ ← Si −M
17: M ←M + δ

N
18: M ′ ←M ′ + δ(Si −M)
19: end for
20: if Auto-scaling or shift variance scaling then

21: scaling ←
√

M′
(n−1)

22: elseRoot mean scaling
23: scaling ←

√
M

24: end if
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3.6 Conclusions

Data processing is an essential and extremely challenging aspect of mass spectrometry

imaging research. The highly multivariate nature of the technique poses challenges in both

the limits of data size and the ease of information extraction from imaging experiments.

We have presented a means of handling the complete data without discarding potentially

useful information. These methods will become increasingly important as efforts towards

complete and unsupervised review of large 3D image datasets continues. The memory ef-

ficient workflow described here provides, for the first time, a means of performing PCA on

extremely large MS image data. The methods also allow for a comparison of data reduc-

tion techniques and a means of comparing discarded (or retained) peaks with a complete

list. This will facilitate ongoing efforts in data reduction tools. Although the methods

here can be performed on complete data, data reduction may still prove important in

increasing throughput, where smaller sets can be processed in significantly shorter time

frames. Speed of data processing remains an ongoing challenge and current bottle neck

in the adoption of this technique in clinical settings. The methods described here will

ensure a robust selection of data in such instances, increasing the likelihood of MALDI

MSI being adopted in clinical laboratories.
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CHAPTER 4

HIERARCHICAL COMPOSITION OF MSI DATA

4.1 Introduction

The ability to determine structure within a mass spectrometry image and to be able to

relate that to a priori knowledge such as histology, labelled atlases, molecular databases

and previously acquired data is becoming increasingly important as mass spectrometry

imaging moves closer to the clinic.

A similar challenge exists in computer vision, where automatic recognition of objects

and their corresponding category is desired. This can be achieved by having a huge

library of categorised images (sometimes referred to as a dictionary) and then matching

each of these to the image to identify the most likely match. However this is extremely

inefficient in terms of both storage of the image library as well as computationally in

the matching process. A more efficient approach has been proposed where each object

is learnt as a hierarchy of smaller parts which may be shared across multiple objects

[142]. This approach significantly reduces the size of library of objects as each higher

level can be stored as a series of references to each of the parts in the lower levels that

combine together to produce the high level object. The matching process is also more

computationally efficient, as the search space can be systematically reduced through the

removal of branches containing parts that do not match.

Although this technique has not yet been applied to mass spectrometry imaging,
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there exist features within the data that make this an attractive option to pursue. The

hierarchical nature and shared parts maps well to mass spectrometry imaging data. For

example, a hierarchy could be used to represent the way in which a given molecule is

detected, with the intact molecule at the root of the hierarchy, then adducts, clusters

and fragments forming the branches on the next level, repeating down the hierarchy for

subsequently smaller fragments. While these features of the data could be considered

redundant in that they represent the same molecule detected in different states, they

have been shown to aid identification [143, 26]. As MSI data is essentially a series of ion

images, many of which show similar or partially similar spatial distributions, the shared

parts data representation used in computer vision could capture this redundancy well.

A further benefit is that compositional hierarchies provide an efficient way to represent

relationships between multiple objects in a system and can be generated in an unsuper-

vised and incremental manner. Unsupervised methods of analysis are generally preferred

in MSI due to the large amount of data generated in a single experiment. Once generated,

hierarchical representations enable fast indexing and matching of features in unseen data

sets which would provide a rapid way to summarise and annotate new data based on

previous observations.

This chapter presents algorithms that generate compositional hierarchies from mass

spectrometry imaging data, which specifically take into account the additional m/z di-

mension of the data. In the computer vision literature the parts are generated through

the use of edge detection and are built bottom up, however in MSI there is not just a

single image that is being processed and so edge detection would need to be performed

on every ion image for a direct application of those methods. It is therefore proposed

that the spatial parts are learnt in a top down approach, by segmenting each level based

on the spectral dimension resulting in a spatial hierarchy. A bottom-up approach is also

presented, where ion image groups are sequentially combined to form larger groups, form-

ing a spectral hierarchy potentially capturing isotopic patterns, adducts, clusters and

fragments.
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4.2 Generation of a Spatial Hierarchy

A MS image of mouse brain [21] was reduced to a data matrix, D (pixels x peaks; 7378

x 2892), using the memory efficient methods described in Section 3.4 where peaks were

detected using the gradient method (threshold of 5) on the total spectrum generated

using dual pass SavitzkyGolay smoothing (window size = 9). A spatial hierarchy was

then generated using Algorithm 4.1. The highest intensity peak in the data is grouped

with all other peaks that have a correlation value higher than a user defined threshold (in

this case 0.8). Then, the average ion image from all members of the group is calculated

and is separated into two clusters using k-means. The data is then split based on the

clusters and the process repeated on each subset of the data. If a cluster is smaller than

a user defined threshold or a previously processed cluster has a similar distribution (as

determined by Equation 4.3) then the hierarchy generation ends for that branch. Then

the next highest remaining peak in the total spectrum is determined and the grouping

and hierarchy generation is repeated.

This bears some similarity to an already well established method of generating a spatial

hierarchy, bisecting k-means, where at each iteration the data is clustered into two groups

and then split accordingly [144]. However in the proposed method multiple branches can

be generated at each point in the hierarchy, rather than only two, which are identified

based on unique spatial distributions, rather than differing spectral profiles.

Σij =
1

n

∑
(Di − µi)(Dj − µj) (4.1)

where Σ is the covariance matrix, D is the datacube, Di is the i
th ion image in D and

µi is the mean intensity of ion image Di.

ρij =
Σij√
ΣiiΣjj

(4.2)

where ρ is the Pearson product-moment correlation coefficient matrix, discussed pre-

viously in Chapter 3.
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s(m1,m2) = |
∑

m1 ∧m2| −max
(∑

m1,
∑

m2

)
| (4.3)

where m1 and m2 are binary images, ∧ is binary AND operation and s is a measure

of the difference in the number of pixels with the value of 1 in either m1 or m2.

Algorithm 4.1. Generation of a Spatial Hierarchy

1: Reduce data to datacube D
2: M ← {}
3:
4: function GenerateNextLevel(D,M, ρt, t)
5: Calculate correlation matrix ρ using Equation 4.2
6: Calculate total spectrum T from D
7: Sort T in descending order of intensity to produce indices list I
8: G← {}
9: while I¬{} do
10: Create group g from all members of I that have correlation > ρt
11: Insert g into G
12: Remove members in g from I
13: end while
14: for each g in G do
15: Calculate mean ion image m of all members in g using D
16: Cluster m into 2 clusters c1 and c2 using k-means
17: if |c1| > t then
18: if c1 not in M and no member m of M has score s(c1,m) < t from Equation 4.3 then
19: Insert c1 into M
20: Extract members of c1 in D into D′

21: G′ ← GenerateNextLevel(D′,M, ρt, t)
22: Associate next level in hierarchy G′ with g
23: end if
24: end if
25: Repeat above for c2
26: end for
27: return G,M
28: end function

4.2.1 Results and Discussion

The mean ion image and spectrum for each of the 11 groups generated at the first level

of the hierarchy are shown in Figure 4.1. This identifies unique spatial distributions and

corresponding spectra that can be related to experimental artefacts (the matrix region

in group 1 and the halo effect in group 8) and anatomy of the sample (white matter in

group 9) and also the unknown clustered region from Chapter 3. In Chapter 3, m/z 616

(tentatively identified as heam) was identified as a significant contributing factor to this

region. This was achieved by performing Pearson’s correlation on the cluster distribution

and every ion image within the data to identify ions with a high correlation value, which
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implies co-localisation with the cluster. The first level hierarchy provides an identical

result, with the two members of group 11 being m/z 616 its isotope m/z 617.

The restriction on groups to have at least two member peaks prevents noise being

factored into the hierarchy and generating hundreds of groups with only a single ion

image. This can further be justified by the fact that any detected ion should have a

corresponding isotope peak separated by a nominal mass unit. In some cases the isotope

peak may have a different spatial distribution due to unresolved ions, however due to the

fact that adducts and fragments are included too it is unlikely that any one ion image

will have a truly unique spatial distribution in a given dataset.

The next level of the hierarchy and selected accompanying k-means cluster results

used to split the previous level’s data are shown in Figure 4.2. The splitting of group 11

only resulted in one cluster that was larger than the threshold (set at 10 pixels), which

was associated with everything but the region of interest. However, at level 2 of the

hierarchy the same spatial distribution has been identified in group 17 and when k-means

is applied to this mean ion image two clusters greater than threshold are generated, one

that co-localised with the region to be identified from Chapter 3 and another with the

rest of the tissue region. This is due to the fact that as the levels increase the data being

processed is getting smaller and more refined (i.e. just the on tissue pixels in level 2

compared to the whole image in level 1) so small features become larger proportionally

resulting in better clustering results.

The groups shown in level 1 in Figure 4.2 show the global, unique, spatial distributions

present within the data. As the input data is limited to just the on tissue pixels for the

next level of the hierarchy, more unique spatial distributions are identified. This provides

a rapid overview of the data and can easily be correlated with histology or labelled atlases

to provide annotations for the data.

Once a hierarchy has been generated, it is possible to query which groups contain an

ion of interest, to determine which other ions co-localise with it. This is demonstrated by

selecting a group from levels 1-3 that contains m/z 616 as identified in the exploratory
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Figure 4.1: Level 1 hierarchy
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Figure 4.2: First 3 levels of the hierarchy generated using Algorithm 4.1. Masks used to
split the data shown in grey. Mean ion image of each group shown at each level of the
hierarchy.

analysis in Chapter 3, shown in Figure 4.3. As discussed previously, level 1 produced the

same result as performing Pearson’s correlation on the entire data, however the groups

on levels 2 and 3 identify significantly more peaks that co-localise with this region. These

additional ion images were missed previously due to background noise within the matrix

region (possibly caused by unresolved matrix peaks) lowering the calculated correlation

value.

The method proposed here provides a rapid overview of spatial distributions present

within the data (from both the mean ion image of each group and the masks generated

from these) and route to determine a series of ion images that co-localise with an ion of

interest.

4.3 Generation of a Spectral Hierarchy

The spatial hierarchy generated previously can successfully describe and summarise a

given dataset, but is unique to the input data and so cannot be applied to subsequent

data easily. To be able to apply to another MS image, either the new image needs to
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Figure 4.3: Total spectrum and mean ion image (left) from a group from the first three
levels of the hierarchy that contains the ion m/z 616. Ion images of each member of
each group (right) where the level 1 group contains 2 members, level 2 group contains 13
members and the level 3 group contains 14 members.
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be registered to the original image to allow direct comparison or each generated part (or

mask) must be scaled, rotated and translated across the corresponding mean ion image

of the group to determine if a match is found. This would be computationally prohibitive

and thus limits the usefulness of this approach [142]. Furthermore, this would not cater

for the case where a tissue section has been torn or otherwise deformed as part of the

sectioning and thaw mounting process, as the shape of the feature represented by a given

mask may have been significantly altered through this process.

A more beneficial scenario would be to determine a hierarchy that corresponds to the

detection states of a given molecule, and then the application of that hierarchy to another

dataset would produce a metric to determine the probability that that molecule was also

detected in the same states in the new dataset. This would enable rapid evaluation of a

library of hierarchies to summarise a dataset, making evaluation and interpretation much

simpler for the analyst.

Algorithm 4.2. Generation of a Spectral Hierarchy

1: Reduce data to datacube D
2: Variance scale D
3: Assign each ion image in D to its own group g0
4: G0 ← {}
5: Insert all g0 into G0

6: Calculate correlation matrix ρ using Equation 4.2
7: G1 ← {}
8: for each g0 in G0 do
9: Pair g0 with highest correlating group in G0 to form g1
10: Insert g1 into G1

11: end for
12: l← 1
13: while |Gl| > 1 do
14: Gl+1 ← {}
15: for each gl in Gl do
16: maxicc ← 0
17: maxg ← {}
18: for each g in G0...l−1 do
19: g′ ← g ∪ gl
20: Calculate ICC for g′ using ICC(C,1) from Equation 4.4
21: if ICC > maxicc then
22: maxicc ← ICC
23: maxg ← g′

24: end if
25: end for
26: Insert maxg into Gl+1

27: end for
28: l← l+ 1
29: end while

A spectral hierarchy using the same reduced MS image generated in Section 4.2 was

generated using Algorithm 4.2. In contrast to the spatial hierarchy, the spectral hierarchy
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is generated bottom up, starting with each individual ion image forming its own unique

group and as the level in the hierarchy increases groups are made by combining each group

from the previous level with the group from any lower level that results in a supergroup

with the highest correlation. Pearson’s correlation can be used, as before, to compare two

ion images, however is not suitable as a metric when comparing groups consisting of three

or more members.

Intraclass correlation coefficients (ICC) are used to assess the consistency, or the con-

formity, of measurements of the same quantity made by multiple observers [145]. There-

fore, it provides a good metric for use to determine the likelihood that a given set of

observations (in this case ion images) have similar spatial distributions, implying they

represent the same feature. The equation for calculating ICC(C,1) is given in Equation

4.4, where MSR is the mean square for rows (in this case a row consists of the intensities

for a given pixel in each ion image), MSE is the mean square error and k is the number

of ion images. The models used to construct ICCs assume equal variance [146]. Any

two given ion images are unlikely to have equal variance due to variations in signal in-

tensity. For example, naturally occurring isotopes of a given molecule will have identical

spatial distributions but the peak magnitudes will have a ratio determined by the natural

abundance of constituent isotopic elements, resulting in different variance. To correct for

this, each ion image must be variance scaled such that the variance image is 1 prior to

hierarchy generation.

ICC(C, 1) =
MSR −MSE

MSR + (k − 1)MSE

(4.4)

The algorithm presented in Algorithm 4.2 generates a single hierarchy for the entire

dataset. The hierarchy can then be pruned at a user defined ICC threshold, resulting in

a series of smaller hierarchies which then forms a library representing a dataset. A more

efficient implementation, at the cost of generating the global hierarchy, is to include a
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constraint on the generation of a group for the current level of the hierarchy and only

generate if maxicc is greater than a user defined threshold. An example of one such small

hierarchy is shown in Figure 4.4.

4.3.1 Applying Spectral Hierarchy to Additional Datasets

As the generated hierarchy does not contain any spatial information, no image registration

is required to be able to apply the same hierarchy to an additional dataset. However, to

produce accurate results the same ion image must be being considered and compared

in each dataset. Due to slight drift in the instrument over time, poor calibration or

an artefact of preprocessing methods any two spectra of the same analyte (even when

acquired sequentially on the same instrument) may not be truly aligned and so may

result in mismatched or unmatched peaks when a direct comparison is performed.

The equation for mass resolving power is given as

R =
m

∆m
(4.5)

Rearranging this equation allows the calculation of a mass tolerance (∆m) at a given

m/z for an instrument with a given mass resolving power results in

∆m =
m

R
(4.6)

Mass resolving power can be used as a tolerance limit to match peaks between two

datasets. Assuming that both datasets are properly calibrated, if two detected peaks, one

from each dataset, fall within the mass tolerance of the instrument used then they can

be safely matched together because if they had been detected within the same spectrum

then they would be unresolvable.
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Algorithm 4.3. Applying Spectral Compositional Hierarchy To New Data

1: Generate hierarchy for datacube D using Algorithm 4.2
2: Reduce new dataset to datacube D′

3: P ← {}
4: for each detected peak p in D do
5: Calculate ∆m for p using Equation 4.6
6: Find peak p′ from D′ that has smallest difference to p
7: If (p− p′) < ∆m insert peak pair (p, p′) into P
8: end for
9: for each entry in P that contains a non-unique peak do
10: Remove non-unique entry from P based on lowest co-probability value using Equation 4.8
11: end for
12: Reduce D and D′ to Dr and D′

r respectively based on peak pairing entries in P
13: Create group g′ by extracting members of hierarchy H from D′

r
14: Calculate ICC of group g′ using ICC(C,1) from [146]

Co-probability

In some rare cases this matching produces multiple pairings containing the same peak

from the second dataset. Unless drastically different mass resolution instruments were

used, it is unlikely that all of the peaks in the second dataset correspond to the same ions

detected as a single peak in the first dataset. To determine which of the peaks in the

second dataset is more likely to correspond to the peak in the first dataset, a metric of

co-probability is proposed in Equation 4.8.

c =
1∑N

i=1 f(I, i)

N∑
i=1

f(I, i)f(J, i) (4.7)

f(I, i) =


1, if Ii > t

0, otherwise

(4.8)

This determines a measure of similarity, c, between two images (I and J which each

have N pixels) as the number of pixels that are above threshold, t, at the same location in

both ion images as a fraction of the maximum number of pixels that are above threshold in

either image. Co-probability can be used in two ways. Consider the simple case where the

two datasets to compare are already registered and so the pixels in each image correspond

to comparable anatomy. Co-probability can then be directly applied to the ion image from

each image to compared. In the more complex, and also more common, case the analyte
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position within the images may be at slightly different angles, relative locations or scales

making the direct application inappropriate. In this case, a co-probability ‘spectrum’ can

be generated for each dataset by calculating the co-probability between the ion image

to match and all others within the data. If these spectra are similar then it implies

that similar peaks have similar relative distributions within the individual datasets. This

provides a way to determine the likelihood that a peak pairing is appropriate between

unregistered datasets, avoiding the difficult challenge of automated image registration.

Hierarchy Application to Real World Data

Hierarchies were generated using Algorithm 4.2 on one section from a series of 14 se-

rial sections of mouse brain [21]. The generated hierarchies were then applied to data

acquired on the adjacent section and ICC values were calculated at each level of the hi-

erarchy, shown in Figure 4.4. The resulting correlation values are comparable for every

group, implying that the ion images selected have similar spatial distributions within their

respective datasets. It should be noted that this does not ensure that the spatial distri-

butions are identical in both datasets, only that the ion images that form the hierarchy

correlate with one another in each of the two datasets separately.

This was then taken a step further and applied to a MS image of rat brain acquired

using a different matrix (CHCA instead of para-nitroaniline) [4]. Again, comparable

correlation values are produced. This shows that the generated hierarchies are useful

for determining whether a given set of biologically relevant ions are present and have

similar spatial distributions regardless of the matrix used. When applying the hierarchies

that represented ions corresponding to para-nitroaniline to the CHCA dataset then either

peaks were missing (determined from the lack of a peak pairing) preventing the hierarchy

from being applied or the resulting ICC values differed significantly indicating that the

detected peaks were not representing the same structure in the second dataset.

The final dataset that this hierarchy was applied to was an MS image of formalin

fixed rat brain acquired with CHCA [4]. The application of the same hierarchy resulted
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Figure 4.4: Selected level 4 hierarchy generated from a section of mouse brain acquired
with para-nitroaniline [21], shown left. Ion images are shown at the leaf nodes and cor-
relation values are shown at all parent nodes. This hierarchy was then applied to each of
the additional data sets, serial section acquired in the same manner [21], section of rat
brain acquired using CHCA [4] and a section of formalin fixed rat brain acquired using
CHCA [4].

in a significantly different ICC value at level 4, shown in Figure 4.4. The lower value

is a result of a different spatial distribution of m/z 854.6 when compared with other ion

images within the hierarchy. This identifies that there is something different about one

of the branches of the hierarchy, indicating that there is something different about the

collected data. Although this method does not elucidate the underlying difference, in this

case it is likely due to changing adduct formation due to the formalin fixation process

resulting in the detection of different ions in different relative abundances.

The hierarchy’s mean spectra (discounting pixels which have an intensity of 0 for a

given peak) for each of the datasets are shown in Figure 4.5. The first three spectra are

comparably similar in their relative abundances of each of the ions contributing to the

hierarchy, however significant differences are observed in the spectrum associated with the

formalin fixed tissue. When looking at the ion images alone, it was not obvious that there

was any difference for the first 4 ion images (m/z 795.5, 766.5, 838.6 and 866.6) as the

correlation values and spatial distributions were similar to the other datasets. However,

the spectral profile show significant differences, with a shift in the basepeak from m/z

854.6 (unidentified in [4]) to m/z 838.6 (identified as PC 38:1 + Na in [4]). This further
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Figure 4.5: Spectral profile of the hierarchy defined in Figure 4.4 for a) a section of mouse
brain acquired with para-nitroaniline [21], b) serial section to a), c) section of rat brain
acquired using CHCA [4] and d) section of formalin fixed rat brain acquired using CHCA
[4]. The spectral profile is calculated by determining the mean non-zero ion intensity for
all pixels. Spectra a-c) all have very similar spectral profiles, whereas d) has a clearly
different profile, indicating that the hierarchy does not fit this data set.

Figure 4.6: Improved signal-to-noise image of the spatial distribution represented by the
hierarchy in Figure 4.4 for a) a section of mouse brain acquired with para-nitroaniline [21],
b) serial section to a), c) section of rat brain acquired using CHCA [4]. The section of
formalin fixed rat brain acquired using CHCA [4] was not included as it was determined
that the hierarchy was not applicable.

shows a difference between the first three datasets and the formalin fixed dataset.

As hierarchies are generated from ion images that have the same spatial distribu-

tion, summing together the individual ion images results in a distribution map that has

increased signal-to-noise (SNR) when compared to any one individual ion image alone,

shown in Figure 4.6. This was not performed on the formalin fixed dataset, as the corre-

lation values and spectral profiles were inconsistent and so summing these images would

be inappropriate.

4.4 Conclusions

All algorithms proposed here rely on having a pre-generated datacube in memory. The

spatial hierarchy could make use of memory efficient methods for the creation of the cor-
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relation matrix at each level of the hierarchy. This would increase the number of pixels

that could be included in the analysis at the cost of computational speed. As the current

implementation requires at least 5 minutes to generate up to the third level of the hierar-

chy, the additional overhead introduced through the disk access of the memory efficient

methods described in Chapter 3 would be prohibitively high. As each node of the hierar-

chy can be processed independently of all other nodes, it would be possible to parallelise

the hierarchy generation using multithreaded or distributed computing implementations.

The use of distributed computing with a distributed file system would help mitigate the

performance hit attributable to the memory efficient routines, potentially making them

useful in their application to the spatial hierarchy generation algorithm presented here.
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CHAPTER 5

OPTIMISING COLOUR SCHEMES FOR HUMAN
COLOUR PERCEPTION

5.1 Introduction

The typical presentation of mass spectrometry imaging data is in the form of an ion image

which can be generated by integrating over a given peak (or m/z range) in every pixel

within the image. This produces a 2D spatial distribution of the selected ion, assuming

well resolved peaks.

Data visualisation is defined as the process of generation and presentation of a visual

representation of data [147]. This is vitally important in MSI, as conclusions are drawn

based on the relative intensities of perceived structure(s) present within ion image(s). The

intensity scale dictates the relative measured concentration of a given analyte which, as

stated above, can span many orders of magnitude presenting a difficult visualisation task.

Due to the large amount of information present in a single MSI data set, presentation

of multiple ion images at once is often desirable to determine co-localisation of molecules.

This is typically presented as RGB composite images, where each colour channel (red,

green and blue) is assigned to a different ion image, with the resulting colours indicating

pixel-wise proportional contributions of each analyte.

The style and colour selection used for display has a dramatic effect on the perceived

structure within the data [148]. Different aspects of the colour signal communicate dif-
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ferent characteristics of the data, and to properly take this into account when defining

a colour scheme requires knowledge of physical and psychological properties of colour

[148]. To reduce the impact of this, visualisation software typically include multiple colour

schemes, with one selected as the default, and rely on the user to select the most appro-

priate. However, users tend to select visually appealing, vibrant colour schemes such as

the “rainbow” colour scheme over more appropriate, ‘dull and ugly’, colour schemes [147].

The rainbow colour scheme, as its name suggests, is based on the visible wavelengths

of the electromagnetic spectrum, which in theory seems like a sensible phenomenon to

base a colour scheme on. However, multiple articles over the past few decades have il-

lustrated reasons why it should not be used and the ways it can be actively misleading

[148, 149, 150, 151].

In order to evaluate colour schemes effectively, it is important to consider colour spaces,

human vision and how they relate to one another. The two major photoreceptor cells

found in the retina are rods and cones. Rods are extremely sensitive, capable of func-

tioning at low light levels, and are responsible for scotopic vision (vision in low light

conditions), but do not provide any colour differentiation. Cones are responsible for

colour vision, with three different types present in a normal eye (S, M and L correspond-

ing to short, medium and long wavelength peak sensitivities respectively). There are

substantially fewer S cones than there are M or L cones in the eye. Human perception is

less sensitive to changes in hue than luminance [147], with high spatial frequencies being

perceived through changes in luminance [149].

Various colour spaces have been defined for different purposes. For a more detailed

review and description see [152]. Here the focus will be on RGB, as this colour space

maps to electronics, and CIELAB, due to its relation to human visual perception.

RGB is a device-dependent colour space based in the human perception of colours, with

each channel roughly corresponding to the region of the visible spectrum that the L, M and

S cones, respectively, are sensitive to. Disadvantages of the RGB colour space include its

psychological non-intuitivity and the perceptual non-uniformity (low correlation between
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the Euclidean distance in the RGB space and the perceived difference in colour) [152].

Despite these issues, RGB is the most commonly used colour space for defining colours

as it maps directly to electronic displays.

The main goal of the CIELAB colour space was to provide a perceptually equal space,

resulting in Euclidean distances between colours in this space correlating strongly with

human visual perception [152]. In this space the three axes correspond to lightness (L),

the position between red and green (A, where positive values indicate red and negative

values indicate green) and the position between yellow and blue (B, where positive values

indicate yellow and negative values indicate blue).

This chapter reviews colour schemes that are used in MSI literature, relating them to

human vision and perception while also highlighting any artefacts that can be introduced.

Recommendations are made for rules to follow in the selection of colours schemes in

order to avoid introducing unnecessary artefacts and to produce perceptually accurate

representations of data.

5.2 Methods

MALDI MSI data of a 12 µm sagittal section of mouse brain, which was coated with

15 mL of 10 mg mL−1 CHCA via airspray, were acquired using a QSTAR XL (AB

Sciex) in positive mode over the range m/z 50-1000. The dataset used is available from

www.imzMLConverter.co.uk. Data were converted from mzML to imzML using imzML-

Converter and subsequent processing was performed using SpectralAnalysis as described

in Chapter 2.

A common m/z axis was calculated for the dataset, as described in Section 2.5.1. Each

spectrum was smoothed with a dual pass Savitzky-Golay (window size of 9 bins) filter and

summed together to generate the total spectrum. Peak detection was performed on the

total spectrum using a gradient method, as described in Section 1.6.5. The intensity of

each peak was extracted from each spectrum in turn to generate a datacube and output
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to imzML.

Memory efficient principal component analysis was performed as described in Chapter

3, with the preprocessing workflow as described above.

Dichromacy simulations were performed using the Vischeck ImageJ plugin [153].

Articles were selected by searching Google Scholar for three keywords (mass spec-

trometry imaging). Articles primarily consisting of reprinted figures, such as reviews,

and articles containing no ion images were omitted. The first 100 articles meeting these

criteria were selected. Articles from the current year were also selected, using the same

criteria as above except with the limitation that the year in the search was set to 2014.

The first 20 articles meeting these criteria were selected. A complete list of the 120 articles

evaluated, and which colour scheme(s) were present in each, is included in Table 5.1.

5.3 Results and Discussion

A colour scheme is a series of colours defined in a chosen colour space (typically RGB) that

have a corresponding value such that each value within the data can be replaced with, or

mapped to, its assigned colour for display. Accurate representation of the structure in the

data largely depends on the type of data being visualised and no colour scheme is ideal in

all situations. Types of data can be broadly classified as either nominal, ordinal, interval

and ratio. Rough guidelines for each type of data have been discussed elsewhere [148].

This chapter expands on these within the context of MSI data visualisation scenarios.

5.3.1 Ion Images

Ion images are the most commonly displayed form of data within MSI literature, mapping

the intensity of a selected ion at every spatial location within the acquired image region.

After evaluating 120 MSI articles, it was found that over 30 different colour schemes were

used, with some articles containing up to 8 unique colour schemes [7]. A selection of the

colour schemes present in the literature were applied to the same unnormalised ion image
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Figure 5.1: m/z 826 with highlighted arbor vitae (red) and cerebellar cortex (cyan).

(mouse cerebellum, m/z 826 with values spanning 0-100 counts) and shown in Figure

5.2. As stated by Rogowitz et al. [148], how data are visually represented can greatly

influence the perception of the structure within the data. This is especially evident when

comparing Figure 5.2a with Figure 5.2o, q and r (at least one of which is present in 34 of

the reviewed articles), where contrast is lost between the arbor vitae and the cerebellar

cortex (shown labelled in Figure 5.1).

The simplest, most common (appearing in 40 of the surveyed articles), and previously

cheapest to publish colour scheme is grayscale (see Figure 5.2a). The benefit of grayscale

is that it is a simple task to perceptually order shades of gray based on their lightness,

allowing intuitive interpretation of the data. However this comes with a caveat; human

perception of brightness is affected by the brightness of surrounding regions [147, 265].

More generally, the perceived appearance of a colour is affected by its surroundings, most

notably when they are complementary colours. This effect is referred to as simultaneous

contrast.

A grayscale colour scheme, or any colour scheme which only varies luminance, cannot

accurately communicate gradual changes (low spatial frequency) in structures present

within the data [148]. The number of shades of gray that can be reliably distinguished is

dependent on the luminance of the display device used, essentially limiting the number

of unique values that can be displayed in a given image [266]. The addition of colour,

therefore, is beneficial as it increases the dynamic range of a colour scheme [147].

The most frequently used colour scheme group is the rainbow, or rainbow based, colour
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Figure 5.2: Visualisation of the same data (unnormalised m/z 826 from the cerebellum
region of a mouse brain) using colour schemes found in MSI literature. Intensity spans
from 0 to 100 counts. a) grayscale b) red c) green d) blue e) green to white f) cyan to
white g) blue to white h) red to white i) pink to white j) copper to white k) hot l) pink
hot m) green to yellow n) cyan to magenta to yellow o) double scale (blue to green, red
to yellow) p) temperature based q-t) rainbow based.
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Colour scheme Reference Count
a) [154][155][156][157][158][159][160][161][162][163] 40

[164][3][95][165][166][24][167][168][169][170]
[171][172][173][174][175][176][177][178][179][180]
[181][182][6][183][109][184][185][186][187][188]

Inverse of a) [189][190] 2
b) [154][129][19][191][7][192][193][194][195][196] 23

[197][198][179][180][181][182][199][200][185][186]
[187][201][202]

c) [203][154][160][204][129][205][7][192][193][206] 27
[195][196][197][207][198][179][181][180][182][199]

[200][185][186][187][201][202][208]
d) [203][19][7][193][194][206][198][6][199][200] 13

[185][187] [208]
Other single colour [172][19][209][160][204][194][206][207][198][210] 15

[183][199][200][186][202]
e) [211][212] 2
f) [173][212] 2
g) [211][213][198] 3
h) [212] 1
i) [214] 1
Other single colour to white [173][182] 2
White to colour [215][216] 2
j) [217][161][198][214] 4
k) [206][218][219] 3
l) 0
Other black-colour-colour [220][221][222][203][154][164][223] 7
m) [224] 1
Other colour-colour [172][95][225][226][164] 5
n) [157][227][228][229][230][231] 6
o) [232] 1
p) [233][234][235][201] 4
q) [23][227][236][211][237][165][233][129][167][7] 21

[238][207][198][180][239][240][241][242][243][244]
[245]

r) [246][247][248][249][250][169][251][193][197][252] 12
[253][201]

s) [254][207] 2
t) [255][256][19][257][166][258][197][180][252][259] 15

[260][186][202][261][262]
Other rainbow [263][264][244][201] 4
Other [183][187] 2

Unique single colour 65
Unique single colour to white 11
Unique rainbow 48

Table 5.1: Colour scheme descriptions (letters correspond to the colour scheme displayed
at the corresponding location in Figure 5.2) and the articles which used them.110



schemes (Figure 5.2q-t) featuring in 48 articles. These colour schemes are so called due to

their basis in the colours of each wavelength in the visible portion of the electromagnetic

spectrum. There are significant disadvantages with using rainbow colour schemes, which

can result in an actively misleading representation of the data [149]. These are excellently

demonstrated by Borland et al. [149], but will be summarised here. Firstly, there is

no perceptual ordering, with experiments showing that people will order rainbow colours

in numerous ways [147]. This results in confusion due to the fact that greater-than

and less-then relationships are not immediately obvious and must be inferred through

memory (error-prone) or consulting a legend (needless distraction). Next, as large regions

of the rainbow colour scheme are isoluminant, small detail and sharp features that fall

within these regions are obscured. This is evident in Figure 5.2q, where it is difficult,

if not impossible, to distinguish between the lower regions of the arbor vitae and the

cerebellar cortex. Finally, artefacts are introduced in the form of apparent bands of

data resulting from sharp transitions between hues when in reality there are only small

differences between the values. This is particularly evident on the tissue boundary in

Figure 5.2s. Although this is an artefact of all of the rainbow colour schemes, it is most

notable in Figure 5.2s due to the fact that over 50% of the colour scheme is varying shades

of red and the remainder includes 6 colour changes.

A further issue with rainbow colour schemes is that perceptual changes in the colours

are not uniform, with changes appearing faster in cyan and yellow when compared with

green (shown in 5.2q). This further complicates the interpretation of the value of specific

colours and can cause false contrast. Attention is drawn to the yellow areas due to their

brightness, not necessarily because they are the most important [148].

The most common oversight when considering colours to use when presenting scientific

data is the resulting perception by individuals with colour deficient vision [150]. Colour

vision deficiency (CVD) refers to the decreased ability, or inability, to see colour and affects

8% of men and 0.5% of women [267]. Anomalous trichromacy, the most common form of

CVD, results in one type of cone having a sensitivity shift to one end or the other of the
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Figure 5.3: Deuteranope simulation of colour schemes found in MSI literature, shown in
Figure 5.2. The same colour appears at different values along the colour scale in panels
(o-t), rendering it impossible to accurately interpret the data from the visualisation alone.

visible spectrum [268]. Dichromats lack either the L (protanopes), M (deuteranopes) or S

(tritanopes) cones, resulting in dichromatic vision. The most severe, and also extremely

rare, form of CVD is monochromacy, complete colour blindness.

Simulating deuteranopia, where the M (medium wavelength, roughly centred around

green light) cones are absent, for Figure 5.2 further shows the unsuitability of rainbow or

rainbow based colour schemes as multiple values are mapped to the same colour. This is

especially evident in Figure 5.3t, with the appearance of slight holes in the white matter

region of the tissue (dark yellow in Figure 5.3t), as the high intensity pink pixels instead

appear as a blue colour, indicating low intensity. This renders the data impossible to

accurately interpret for any deuteranope. Similar effects are observed with other forms of

dichromacy (shown in Figures 5.4 and 5.5).
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Figure 5.4: Protanope simulation of Figure 5.2.

113



Figure 5.5: Tritanope simulation of Figure 5.2.
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The frequency of occurrence of the rainbow based colour schemes, despite their well

documented flaws, is likely due to the fact that these colour schemes are often used

as default in instrument vendor’s software (Figure 5.2t flexImaging (Bruker) and other

rainbow, similar to Figure 5.2q, not shown ImageQuest (Thermo Scientific)), in vendor

neutral software (Figure 5.2r MATLAB (MathWorks), MSiReader [51], omniSpect [53])

and in commercial software (Figure 5.2r SCiLS Lab (SCiLS GmbH)).

The next most frequently used set of colour schemes is the linear red, green and blue,

shown in Figure 5.2b-d respectively, at least one of which appears in 31 of the reviewed

articles. These are often presented as a precursor to display of an RGB composite image

portraying the spatial distribution of three ions within a single image (discussed in Section

5.3.2). Although the same data is shown, the apparent contrast and brightness is much

lower in the blue colour scheme than it is in the green. The distance between colours in the

CIELAB space should correspond to perceived changes in colour, however the Euclidean

distance was found to have flaws, namely poor performance in the blue region [269]. The

CIEDE2000 distance metric was developed to address these issues and provide distances

that correlated more closely to human perception. Using CIEDE2000, as implemented

by [270], it is possible to determine the distance between the colours representing the

minimum and maximum within a colour scheme, where the distance between black and

white is 100 and the smallest perceivable difference is approximately 1 [271]. Assuming

a colour scheme defined by a straight line in the CIE space, a smaller distance between

minimum and maximum results in less perceivable colour changes throughout the colour

scheme. Calculating this for the linear forms of Figure 5.2b,c and d) results in a ∆E00

of 51.34, 87.80 and 38.45 respectively. As the distance between the black and blue is

significantly smaller than the distance between black and green, there are a reduced

number of perceptually distinct colours within the blue colour scheme when compared

with the green. So, although unintentional, more detail is apparent in whichever ion

image is assigned to the green channel.

Calculating the distance between each subsequent colour in each colour scheme pro-
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Figure 5.6: Distance between consecutive colours in each colour scheme shown in Figure
5.2 using the CIEDE2000 distance metric, as described in the main manuscript. Each
x-axis denotes the index in the colour scheme. All y-axes denote the distance and are
limited between 0 and 15, with two data points exceeding this range. The first two values
for plot s) are 39.74 and 35.26 respectively.

vides an easy way to evaluate its perceptual linearity. Plots for each of the colour schemes

presented in Figure 5.2 are provided in Figure 5.6. Perceptually linear colour schemes have

constant distances across the entire range, with the colour scheme in Figure 5.2m being

the closest to achieving this. The colour schemes shown in Figure 5.2o, 5.2p (which is the

default colour scheme in HDImaging (Waters)) and the rainbow colour schemes (Figure

5.2q-t) show the least linearity.

The application of the colour scheme presented in Figure 5.2n gives the false illusion

that there is a tear or part of the tissue missing because parts of the tissue have the same

colour as the background.

The presentation of the data using the colour scheme in Figure 5.2o shows significant
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contrast between the grey and white matter regions of the tissue due to the change in

colour from green to orange. However, this is an artificial sharp boundary introduced at

the 50% intensity mark, where values within the 50-55 intensity count range have 2-5x

the contrast (according to ∆E00, see the central peak in 5.6o) when compared with other

same size ranges. In the CVD simulation (shown in Figure 5.3o) the previously significant

contrast between white and grey matter is lost.

As the magnitude is important in the display and interpretation of ion images, equal

increases in ion intensity should appear as steps of equal perceived magnitude in the

visualisation. Monotonic increase of luminance and saturation have both individually

been shown to result in perceived monotonic increase of magnitude [148]. Use of both is

necessary to provide a suitable colour scheme, as luminance is important for conveying

high spatial frequency information, while hue and saturation convey low spatial frequency

structures [148].

By defining colour schemes in the CIELAB space it is much easier to ensure that

changes in colour correspond to perceived changes in magnitude. A colour scheme which

follows the rules above (monotonic luminance and changing hue) but is defined in the RGB

colour space is shown in Figure 5.7b. As shown in Figure 5.7a, the lightness monotonically

increases, however final quarter of the colour scheme covers just 5% of the lightness range,

resulting in low contrast for values between 75% and 100%. It is difficult to differentiate

regions when luminance is equal, even with large chromatic differences [272]. Linearising

the lightness increases contrast in this range as shown in Figure 5.7. This improved

contrast over small intensity changes is progressively important to distinguish different

intensities as the range of values displayed increase in orders of magnitude.

5.3.2 Overlapping Data

It is occasionally beneficial in MSI to overlay data, such as an ion image and a photograph

or a corresponding histological image to determine co-localisation of features between the

two imaging modalities. This is is done by presenting the ion image as a transparent layer
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Figure 5.7: Same image displayed with a monotonically (but not linearly) increasing
lightness colour scheme and the linearised lightness form. a) Lightness plot for the non-
linear lightness colour scheme. b) Non-linear lightness colour scheme. c) Linear lightness
colour scheme. d) Lightness plot for linear colour scheme.

over the optical image. However, there are perceptual pitfalls in this approach whereby

the contents of the layers can interfere with one another, sometimes to the extent that it

is impossible to determine which layer a given object belongs to [272]. For example, if a

translucent green object is placed over a blue and a pink object (such as in the case of

H&E stain images) the expectation is that the objects would maintain their colour, but

with a green tint. This is the case for the blue objects, however the pink objects now

appear orange (see Figure 5.8). In order to minimise interference, maximal separation

in colour, texture, motion, and stereoscopic depth is required [272]. In the case of MSI

the simplest solution is to ensure that the colour scheme(s) selected do not contain any

duplicate colours. For example, overlaying an ion image with the rainbow colour scheme

in Figure 5.2t onto a H&E stain image would contain duplicate colours, blue, pink, and

white, making it difficult to determine which colour belongs to which layer.

Composite images are frequently employed in MSI publications (29 out of the 120

surveyed) to show distributions of multiple ions within the same image. A full list of all

composite combinations and accompanying references is included in Table 5.2. Two colour

composites are primarily (in 14 articles) displayed using the red and green channels. This

has severe implications for any reader who suffers from either protanopia or deuteranopia

as the two ions will be difficult, if not impossible, to separate. Safer options for displaying

two colour composites are to use green-magenta or blue-yellow.

Display of three colour composites using RGB were found in 12 articles. Such images

can be used to determine co-localisation of three ions of interest. This can be a powerful
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Figure 5.8: Hematoxylin and eosin stain with green and blue box overlays.

Composite Reference Count
Red-Green [154][157][227][256][190][180][182][230][239][155] 15

[167][192][179][181][259]
Red-Blue [157][230][167][195][176] 5
Green-Blue [230][239][176] 3
Red-Green-Blue [203][157][228][19][257][7][230][239][167][193] 12

[235][219]
Blue-Yellow [195][176] 2
Other 2 colour composite [259] 1
Other 3 colour composite [207][200] 2
4 colour composite [198][199] 2
8 colour composite [7] 1

Total 43
Unique 29

Table 5.2: The different colours used to display composite images of two or more ion
images.
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Figure 5.9: Composite RGB images of m/z 713, 826 and 844 where a) R is m/z 713, G is
m/z 826 and B is m/z 844 b) R is m/z 713, G is m/z 844 and B is m/z 826 c) R is m/z
826, G is m/z 713 and B is m/z 844 d) R is m/z 826, G is m/z 844 and B is m/z 713 e) R
is m/z 844, G is m/z 713 and B is m/z 844 f) R is m/z 844, G is m/z 826 and B is m/z
713.

tool for interpreting data, for example visualising the distribution of a drug compared

to anatomy. The order in which the ion images are selected for the red (R), green (G)

and blue (B) channels can impact the perceived importance of certain regions due to

the brightness of the green channel compared with the red and blue, as is evident in

the bright green regions in Figure 5.9. The chosen channel assignment also affects the

perceived structure of the data for people with CVD as colours become indistinguishable,

shown in Figure 5.10. Unfortunately, there is no simple solution that would result in a

representation of the data that could be readily visualised without artefact by everyone.

Care should be taken when representing data in this manner by confirming that the order

in which the ion images are assigned to colour channels does not significantly alter the

interpretation of the data. To ensure that the data is also interpretable to people with

CVD, each ion image should be reproduced alongside the three colour composite.

120



Figure 5.10: Deuteranope simulation of Figure 5.9.

5.3.3 Multivariate Analysis Images

In some cases the data to be displayed has both a positive and a negative component,

such is the case in principal component analysis (PCA) score images. PCA is an unsuper-

vised multivariate analysis technique which transforms a set of observations into a set of

orthogonal variables, called principal components, as described in more detail in Section

3.5.

Once the principal components have been determined, the original data is projected

into the new principal component space. These projected data are referred to as the

scores. There are most commonly displayed by plotting one principal component against

another to determine separation (or lack thereof) of different data categories. By retaining

the original spatial position of each data point, it is possible to generate score images for

individual principal components by assigning each pixel the score of the corresponding

data point.

Only two of the reviewed articles contained PCA score images, one using the rainbow

colour scheme from Figure 5.2r [180] and the other using the hot colour scheme shown in

Figure 5.2k [222]. The drawback with using such schemes, apart from the reasons listed
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Figure 5.11: Principal component 2 score image displayed using a) rainbow colour scheme
shown in Figure 5.2r, b) hot colour scheme shown in Figure 5.2k, c) diverging colour
scheme with black at 0 and d) diverging colour scheme with white at 0.

previously, is that it becomes a colour matching exercise to determine which values are

positive and which are negative. In such situations, the use of a diverging colour scheme

centred around zero can provide a much more intuitive and informative representation of

the data, as has been shown previously for SIMS data [273]. It is immediately evident

which regions of the image have a positive value and which are negative in Figure 5.11c-d.

These can either be centred around black as in Figure 5.11c, or around white as in Figure

5.11d (in which case it is useful to use the Msh colour space to avoid Mach band artefacts

[147]).

This representation is also applicable for other multivariate analysis techniques that

have both a positive and negative component (such as MAF). Other algorithms, such as

NMF and pLSA, do not have a negative component and instead can be represented on a

single colour scale in the same way ion images are.
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5.3.4 Segmentation Images

Segmentation images are often employed as either region labels (based on histology) or

clustering results. These are generally a form of nominal data as there is no order to

the labels or clusters. Ideally objects should be distinguishably different, but without

perceptual ordering [148]. Care should be taken when selecting colours for this task,

as certain colour combinations can result in over or underestimating the comparative

areas [274]. In general, more pastel colours result in more accurate perception of area

coverage. A further consideration should be to ensure that the colours chosen are safe

for people with CVD, otherwise multiple clusters or segments may be indistinguishable.

This becomes increasingly difficult as the number of unique groups to display increases.

A useful resource for selecting colours that take into account these effects is ColorBrewer

[275].

5.4 Conclusions

The use of CVD simulation tools, such as Vischeck (http://www.vischeck.com/), is a

simple and easy way to ensure that figures are suitable for a wider audience. Abandoning

rainbow or rainbow based colour schemes and instead using perceptually linear colour

schemes, which make use of as much of the lightness range as possible, for display of ion

images allows intuitive interpretation of the underlying data. The use of the CIEDE2000

distance metric provides a simple way to determine the perceptual linearity of any given

colour scheme.

In MS imaging the intensity indicates the relative measured concentration of a given

analyte and this chapter has illustrated how apparent structure within an image differs

according to the colour scale selected. For unambiguous understanding of analyte con-

centration additional experiments to achieve absolute quantitation should be performed

alongside imaging experiments.

It is proposed that the community should strive to use perceptually linear colour
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schemes, which denote the minimum and maximum values that the colour scheme spans,

wherever possible when presenting MSI imaging data. In cases where a different colour

scheme is used or where the colour scheme is adjusted for specific emphasis, the same data,

but displayed with a perceptually linear scheme, should be included in the supplementary

information to provide the reader with a better overview of the data as a whole and to

ensure that the article is accessible to a wider audience, including people with CVD.

Instead of proposing a single colour scheme that should be used ubiquitously, this

chapter presents a set of rules and metrics for designing and determining colour schemes

that provide an accurate presentation of imaging data that takes into consideration human

perception of colour. While the colour schemes that fit these rules may not be as visually

appealing as some, they avoid a large number of artefacts which can result in misleading

representations of data.
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CHAPTER 6

APPLICATION TO THE STUDY OF TRAUMATIC
BRAIN INJURY

6.1 Introduction

Traumatic brain injury (TBI) is a leading cause of disability and results in an estimated

average life expectancy reduction of 4 years [276]. Hankin et al. have previously used

MALDI MSI to investigate two rat brain injury models, ischemia/reperfusion and TBI

[277]. In the TBI study an increase in ceramide (d18:0/18:1) ([M+H-H2O]+ m/z 548.5)

and the sodium adduct of PC16:0/18:1 (m/z 782.6) as well as a decrease in the potassium

adduct of PC16:0/18:1 (m/z 798.6) were observed at the site of injury.

In this chapter MALDI MSI data acquired from injured rat brains from two different

mass spectrometers supplied by two different vendors is presented. Conversion and data

analysis software presented in Chapter 2 is used to process the data and perform multi-

variate analysis. The memory efficient routines presented in Chapter 3 are required due to

size of data produced when analysing four sections at once. The spatial and spectral hier-

archy generation algorithms presented in Chapter 4 are employed to determine differences

between the injured hemisphere and the control hemisphere of the injured brains.
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6.2 Materials and Methods

A cortical stab injury (6 mm long x 4 mm deep) was inflicted on the left side of three rat

brains 7 days prior to sacrifice. Full surgical procedure detail is provided in [278]. The

sham control underwent the same surgical procedure, but with no cortical stab injury.

6.2.1 Sample Preparation

12 µm coronal sections were acquired at the site of injury and mounted onto an ITO

coated glass slide for analysis on the ultrafleXtreme (Bruker Daltonics). 12 µm coronal

sections were acquired at approximately the same anatomical region (midpoint of the

brain) and mounted onto a glass slide for analysis on the Synapt G2S (Waters). Slides

were each coated with 15 mL of 20 mg mL−1 CHCA (80% MeOH with 0.1% TFA), applied

with an artist airbrush propelled by dry N2.

6.2.2 Mass Spectrometry Imaging

Data were acquired using an ultrafleXtreme (Bruker Daltonics) with 100 µm pixels with

a mass range of m/z 50-1000 (raw data size 15.7 GB with 48160 pixels) and a Synapt

G2S (Waters) with 100 µm pixels with a mass range of m/z 50-1200 (raw data size 25.6

GB with 68471 pixels).

6.2.3 Data Processing

Data acquired using an ultrafleXtreme (Bruker Daltonics) were converted to mzML using

CompassXport (Bruker Daltonics). mzML files were then converted to imzML using

imzMLConverter as described in Section 2.2 (converted data size 26.5 GB). The total

spectrum was generated using the memory efficient method presented in Chapter 3 where

the preprocessing workflow method included TIC normalisation. Peak detection was

performed using the gradient based method described in Section 1.6.5.
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Data acquired using an Synapt G2S (Waters) were converted to mzML using msconvert

as part of ProteoWizard [40]. mzML files were then converted to imzML using imzML-

Converter as described in Section 2.2 (converted data size 51.5 GB). The total spectrum

was generated using the memory efficient method presented in Chapter 3, where the

preprocessing workflow consisted of ‘set union of all m/z bins’ (Algorithm 2.5), ‘ensure

constant number of bins per peak’ (Section 2.5.1, with 30 bins per peak), Savitzky-Golay

smoothing (window size = 15, polynomial order = 2) repeated twice and ‘remove nega-

tives’ baseline correction. Peak detection was performed using the gradient based method

described in Section 1.6.5.

Memory efficient PCA and datacube reduction were performed using the Algorithms

3.6 and 3.5 presented in Chapter 3 and the preprocessing workflows described above.

NMF and PLSA were performed on the datacube in memory with k = 25.

6.2.4 Hierarchy generation

Spatial hierarchy of the data acquired using the ultrafleXtreme (Bruker Daltonics) (gener-

ated as described above) was generated using Algorithm 4.1. The spectral hierarchy was

generated from the first brain in the ultrafleXtreme (Bruker Daltonics) datacube using

Algorithm 4.2. Generated spectral hierarchies were applied to the remaining data ac-

quired using the ultrafleXtreme (Bruker Daltonics) as well as the data acquired using the

Synapt G2S (Waters) (after being reduced to a datacube, described above) as described

in Section 4.3.1.

6.3 Results and Discussion

MSI data from four rat brains, three of which were inflicted with a cortical stab injury

7 days prior to sacrifice, were acquired using an ultrafleXtreme (Bruker). Acquisition

was terminated approximately half way into the imaging experiment due to instrument

overheating. The acquisition was resumed approximately 72 hours later without the
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Figure 6.1: Diagram showing the split in acquisition for the ultrafleXtreme (Bruker Dal-
tonics) dataset. The green region denotes the area surveyed in the first acquisition. The
yellow region shows the area analysed 72 hours after the first acquisition. The red marker
shows the site of injury. a) How the data were acquired. b) The orientation of the data
presented for this chapter.

Figure 6.2: Ion images of m/z 548.5, 782.6 and 798.6 generated from the ultrafleXtreme
(Bruker Daltonics) dataset. Scale bar 2 mm.

sample being removed from vacuum. The orientation of the brain sections as they were

acquired (including the separation between the two acquisitions) and as they are presented

in this chapter are presented in Figure 6.1.

Ion images of the m/z values of interest from the study by Hankin et al. [277] are

shown in Figure 6.2. No observable increase or decrease in any of these ion images is

present at the site of injury within this dataset.

A comparison of normalisation techniques applied to m/z 820.6 is shown in Figure 6.3.

Median normalisation resulted in a number of pixels appearing as zero or low intensity

(black) on the tissue edges caused by divide by 0, as discussed in Section 2.5.4. By instead

calculating the median value of non-zero intensities in a given spectrum, the normalisa-
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tion artefact is removed. A similar effect happens when normalising to the noise level,

where the normalisation coefficient is calculated as the median absolute deviation of the

difference between adjacent intensities. Removing zero intensity values from consideration

again removes the normalisation artefact. Out of all normalisation methods applied, only

TIC normalisation revealed the location of the inflicted injury.

An RGB composite (as described in Section 5.3.2) of m/z 820, 772 and 826 is shown

in Figure 6.4. This provides a clearer view of the site of injury than a single ion image

alone. However, as discussed in Section 5.3.2, the order in which the ion images are

assigned to the red, green and blue channel affects the prominence of the injury. These

ions were selected by the laborious and time consuming process of manual inspection of

peaks that fell within the lipid region. Finding three ions, which when displayed as an

RGB composite, appear to show the location of the injury was largely due to luck.

To provide more robust and unbiased interpretation of the data, the unsupervised

methods included within SpectralAnalysis were employed to investigate whether the site

of injury could be discerned and whether there was an observable molecular difference

between the two hemispheres of the injured brains. The first five principal components

are presented in Figure 6.5. As is common in MSI, the first principal component (and

therefore the source of largest variance within the data) described the difference between

the sample and substrate. The third principal component described a difference in the

matrix region between the first and second acquisition. This indicates that different

ions were detected at the different time points. The score image and the corresponding

coefficients for PC 3 is shown in the orientation in which the data were acquired in Figure

6.6. From the coefficients it is possible to isolate ions which contribute significantly to the

different acquisitions, with m/z 212 ([M+Na]+), m/z 61 and m/z 401 ([2M+Na]+) being

predominant in the first acquisition and m/z 269 and m/z 165 in the second acquisition.

Manual inspection of the ion images of all identified m/z values revealed that these were

isolated to the matrix region, indicating that they are matrix related ions.

Selected NMF factors and PLSA latent variables which show the differentiation of the
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Figure 6.3: Comparison of normalisation techniques applied to m/z 820.6 from the ultra-
fleXtreme (Bruker Daltonics) dataset. From top to bottom: raw data, median, median
with zero values excluded, noise level, noise level with zero values excluded, RMS, TIC
and ℓ2.
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Figure 6.4: Co-localisation of m/z 820, 772 and 826 from the ultrafleXtreme (Bruker
Daltonics) dataset as an RGB composite highlighting the site of injury.

Figure 6.5: First five principal components from the Bruker dataset.
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Figure 6.6: Third principal component from the Bruker dataset.
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matrix region are presented in Figures 6.7 and 6.8 respectively. Predominant peaks in the

NMF factor describing the first acquisition are m/z 61, 401 and 212. The same peaks,

with the addition of m/z 165 were dominant in the PLSA latent variable describing the

first acquisition. For the second acquisition dominant peaks in the NMF factors were m/z

269 and 165 and in PLSA were m/z 165, 269 and 212. All three multivariate analysis

techniques highlighted similar peaks as being significant contributors to the difference in

detected matrix ions between the two acquisitions.

Despite there being a discernible spectral difference in the ions detected in the ma-

trix regions between the two acquisitions, no such difference was present in any PCA

coefficients, NMF factors or PLSA latent variables describing on tissue features. Factors

and latent variables associated with on tissue spatial distributions are presented within

Figures 6.9 and 6.10 respectively. Both methods isolate distributions that describe grey

and white matter regions of the brain without any obvious differences in the left and right

hemispheres.

As SpectralAnalysis is suitable for the analysis of data from any instrument, it was also

used for the visualisation, processing and comparison of a second MS imaging experiment

acquired using a Synapt G2S (Waters). In this experiment the brains were sectioned at

approximately the same anatomical location (the midpoint of the brain). The pixel size

and matrix choice was constant between the two imaging experiments. A comparison of

the spectral quality of each dataset is given in Figure 6.11. The higher mass resolving

power of the Synapt G2S resulted in detection of almost ten times more resolvable peaks

(18633 compared to 1935).

Factors (from NMF) and latent variables (from PLSA) associated with on tissue spa-

tial distributions in the data acquired using the Synapt G2S (Waters) are presented within

Figures 6.12 and 6.13 respectively. In comparison to the data acquired using the ultra-

fleXtreme (Bruker Daltonics), a wider variety of spatial distributions are present. In the

results of PLSA, latent variable 1 describes the ventricles, 2 describes the thalamus, 3 and

4 the corpus callosum, 5 and 6 the cortex and amygdala and 7 the internal structure in
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Figure 6.7: Selected NMF factors from the ultrafleXtreme (Bruker Daltonics) dataset
showing the differentiation in the matrix region between the two acquisitions.
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Figure 6.8: Selected PLSA latent variables from the ultrafleXtreme (Bruker Daltonics)
dataset showing the differentiation in the matrix region between the two acquisitions.

Figure 6.9: Selected NMF factors showing the differentiation in the grey and white matter
of the brain in the ultrafleXtreme (Bruker Daltonics) dataset.
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Figure 6.10: Selected PLSA latent variables showing the differentiation in the grey and
white matter of the brain in the ultrafleXtreme (Bruker Daltonics) dataset.

Figure 6.11: Comparison of the spectral quality of data acquired using an ultrafleXtreme
(Bruker) shown top and a Synapt G2S (Waters) shown bottom.
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Figure 6.12: Selected NMF factors showing different spatial distributions identified from
the data acquired using the Synapt G2S (Waters).

the hippocampus, as identified using Figure 6.14. This increased differentiation of inter-

nal structure can be attributed to both the location at which the sections were acquired

and the increased number of resolvable peaks included in the multivariate analysis. As in

the data acquired using the ultrafleXtreme (Bruker Daltonics), there was no observable

difference between the injury hemisphere and the control hemisphere revealed by any of

the applied techniques.

Application of the spatial hierarchy (described in Section 4.2) to the ultrafleXtreme

(Bruker Daltonics) dataset generated 25 level 1 groups, the mean images of which are
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Figure 6.13: Selected PLSA latent variables showing different spatial distributions iden-
tified from the data acquired using the Synapt G2S (Waters).
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Figure 6.14: Labelled coronal section of rat brain. Modified from [106].

shown in Figure 6.15. The mean ion image for group 15 appeared to show an intensity

difference between regions of the left and right hemisphere of the injured brains. Further

investigation of this group (shown in Figure 6.16) revealed ions of interest which were

detected at a higher intensity in the injured hemisphere, close to the site of injury, in the

three injured brains.

Spectral hierarchies were generated using Algorithm 4.2 from the first brain in the data

acquired using the ultrafleXtreme (Bruker Daltonics) dataset and subsequently applied

to the remaining three brains. An example hierarchy including the ion image m/z 826.6

is given in Figure 6.17. Each of the ions in the hierarchy (m/z 826.6, 827.6 and 866.7)

appear to localise primarily in the corpus callosum and the resulting correlation values

imply high correlation between the ion images in each image segment. Application of

this hierarchy to the data acquired using the Synapt G2S (Waters) dataset as a whole is

shown Figure 6.18 where the correlation between m/z 826.6 and 827.6 is 0.9907 but the

correlation between all members of the hierarchy is 0.3961. Visual inspection of the ion

images shows a similar spatial distribution between all members of the hierarchy, which

is comparable to that of the ultrafleXtreme (Bruker Daltonics) dataset. However, the low

correlation value for the hierarchy as a whole indicates that this is not the case. This low

correlation is likely caused due to the matrix region visible in m/z 866.7, possibly caused
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Figure 6.15: Level 1 hierarchy calculated from the data acquired from the ultrafleXtreme
(Bruker Daltonics) using the spatial hierarchy, Algorithm 4.1.
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Figure 6.16: Group 15 of the level 1 hierarchy calculated from the data acquired from the
ultrafleXtreme (Bruker Daltonics) using the spatial hierarchy, Algorithm 4.1.

141



Figure 6.17: Hierarchy containing m/z 826.6 generated from spectral hierarchy, Algorithm
4.2, of the injury control (left) and subsequently applied to the other brain images in the
ultrafleXtreme (Bruker Daltonics) dataset.

Figure 6.18: Hierarchy from Figure 6.17 applied to the data acquired using the Synapt
G2S (Waters).

by an unresolved matrix cluster.

A hierarchy which included m/z 204.1 (identified previously to have increased intensity

in the injured hemisphere) is shown in Figure 6.19. The hierarchy consisted of the ion

images of m/z 204.1, 162.1 and 258.0. Application of this hierarchy to the data acquired

using the Synapt G2S (Waters) is shown in Figure 6.20, with a correlation value of 0.0192

indicating that the member ion images do not have similar distributions. Visual inspection

of these show that the ion images of m/z 204.1 and 162.1 are predominantly noise and no

obvious structure is present.
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Figure 6.19: Hierarchy containing m/z 204.1 generated from spectral hierarchy, Algorithm
4.2, of the injury control (left) and subsequently applied to the other brain images in the
ultrafleXtreme (Bruker Daltonics) dataset.

Figure 6.20: Hierarchy from Figure 6.19 applied to the data acquired using the Synapt
G2S (Waters).
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6.4 Conclusions

SpectralAnalysis has successfully been used to both preprocess and perform multivari-

ate analysis on data acquired on two different instruments supplied by different mass

spectrometer vendors. The use of memory efficient PCA, NMF and PLSA identified a

difference in the detected matrix ions between the two partial acquisitions of the same

sample, started approximately 72 hours apart. These methods did not identify the site

of injury or any difference between the two brain hemispheres. Ion images which show

elevated intensities in the injured hemisphere of the brain were identified through the use

of the spatial hierarchy algorithm presented in Chapter 4.

Application of a spectral hierarchy generated from data acquired on an ultrafleXtreme

(Bruker Daltonics) was applied to data acquired using a Synapt G2S, revealing ions

with comparable spatial distributions. The ions with elevated intensity in the injured

hemisphere in the data from the ultrafleXtreme (Bruker Daltonics) were not detected in

the data acquired using the Synapt G2S (Waters), with the application of the spectral

hierarchy showing no correlation. Further work is required to identify these ions as well as

repeat experiments acquiring more data at the site of injury to confirm that the elevated

intensity is not an artefact of the original imaging experiment.
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CHAPTER 7

CONCLUSIONS AND FURTHER WORK

The research presented in this thesis has described new software for converting, processing

and visualising MSI data, the effects of preprocessing, methods for handling extremely

large datasets in a memory efficient manner, a novel method for comparing data and

learning hierarchies of parts and optimal ways of displaying the data generated by each

of these methods.

In Chapter 2 software for the conversion to the open imaging format imzML was

presented. As the size of the metadata portion of the file is proportional to the number of

spectra, this file format will become less suitable for datasets containing a large number of

pixels, such as large area SIMS images, where the metadata becomes larger than the actual

data. More efficient and customisable formats such as HDF5 are becoming increasingly

commonly used for storing large data. A combination of HDF5 and mzML, retaining

the storage efficiency of HDF5 and the metadata and capability to store MIAPE data of

mzML, is mz5 [279]. In the same way, imzML and HDF5 could be combined to develop

a new, more efficient open format for MSI data.

Also in Chapter 2, SpectralAnalysis, an extensible platform for processing, analysing

and visualising large spectral imaging data was presented. There still exist a vast number

of preprocessing methods that have been presented in the literature but are not currently

implemented. The most promising of these are wavelet based techniques such as the con-

tinuous wavelet transform (CWT). The CWT applies a wavelet function at various scales
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to transform the data into the wavelet space. This essentially performs the smoothing

and baseline correction preprocessing steps in a single process. It is also possible to detect

peaks in the wavelet space by matching ridge lines.

Only a single preprocessing method, TopHat baseline correction, was sped up using

GPGPU, however the major speed improvement was realised through the use of a more

efficient algorithm. The development of more GPGPU algorithms for preprocessing meth-

ods will mitigate the cost of the transfer time as more steps of the preprocessing worklow

could be performed on the GPU. If this is extended to the MVA and clustering algorithms

then further speed increases can be achieved as no additional data transfer is required.

Currently only three dimensional data (two spatial dimensions and a spectral dimen-

sion) is supported within SpectralAnalysis. This could be extended to a include a third

spatial dimension as would be necessary for processing multi-section MALDI data or SIMS

depth profiles. This would require the development of a means to visualise not only ion

images, but also MVA results and cluster results in 3D. This would fit easily into Spectral-

Analysis due to the extensible nature, by extending the ‘Display’ class as ‘ImageDisplay’

and ‘SpectrumDisplay’ currently do. A further dimension is that of ion mobility, where

multiple spectra per spatial location are acquired in a time resolved manner following the

manipulation of the ion plume by some means, such as a travelling wave. The process-

ing of such data requires additional algorithm development, as the peaks are no longer

detected on a one dimensional spectrum, but on a two dimensional mobility (e.g. drift

time), m/z plot. As multiple spectra are present per pixel within an image, this also

results in a significant increase in the data size.

In Chapter 3 memory efficient methods for processing and reducing data to a datacube

and performing PCA were presented. As demonstrated in Chapter 2, preprocessing of each

spectrum can be applied in parallel and so multithreading can be employed to reduce the

time cost of this method. GPGPU can also be used in combination with multithreading

to provide a further speed increase. Once the covariance matrix has been generated, it

is also possible to perform SVD on the GPU, provided the number of peaks retained is
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sufficiently small [280]. The suite of memory efficient algorithms could also be extended to

include memory efficient clustering [281] and random projection dimensionality reduction

and compression [282, 283].

In Chapter 4, two algorithms for generating hierarchical representations of MSI data

were presented. Currently all hierarchies were generated from a single data set and then

applied to additional data sets. An extension of this would be to learn additional hierar-

chies from datasets that do not conform to the current models, for example the formalin

fixed data presented in this chapter. Then, each of these generated hierarchies could be

annotated with the experimental conditions so subsequent application to new data would

rapidly determine likely conditions or analyte features. If these did not match expecta-

tions, this would indicate there was something different about the data than was expected,

forming a quality control procedure.

In Chapter 5 a means to evaluate the perceptual linearity of existing colour schemes

used to present MSI data was presented. All data presented in this chapter were 2D

datasets. The consideration of perceptual linearity is equally important in 3D datasets,

where there are additional complicating factors. Visualisation in 3D typically involves

the use of lighting and shading of the presented object(s) to give the illusion of depth,

however as these effects alter the colour, and the colour maps directly to an intensity

value on the colour scale, they are also changing the interpreted intensity.

In Chapter 6 the software and algorithms developed throughout this thesis were ap-

plied to the study of traumatic brain injury models. Manual exploration and use of

multivariate analysis methods such as PCA did not reveal any differences between the

injured hemisphere of the brain and the control hemisphere, however the hierarchical com-

position algorithms identified multiple ion images which appear elevated in the injured

hemisphere. The elevated ions were not detected in subsequent experiment performed on

a Synapt G2S. Further work is required to repeat these imaging experiments to confirm

the localisation of these ions in the injured hemisphere. MS/MS experiments could then

be performed to identify the unknown ions. As the brains were sectioned at the site of
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injury, the exact anatomical location of these sections is unknown. The method for au-

tomatic registration to the Allen brain atlas developed by Abdelmoula et al. [252] could

be used to more accurately determine the location at which the sections were acquired,

providing a means to assess the comparability of each brain section.

It is becoming an increasingly common desire to incorporate complementary data

alongside mass spectrometry imaging, either through the use of different matrices and

mass ranges to target different classes of molecule on the same sample using MALDI MSI

[284], using multiple ionisation techniques [129, 285] or incorporating multiple spectral

imaging modalities [286, 130]. The primary aim of incorporating complementary data is

to gain additional insight that was not available from either modality in isolation. One

technique for achieving this that has recently been applied to mass spectrometry imaging

is data fusion [287, 288]. As SpectralAnalysis is capable of handling data from multiple

MSI instruments as well as from different imaging modalities, it is a well suited platform

to cater to this trend. One prerequisite for advancing support for this is the development

and integration of multi-modality data registration. This could be achieved by modify-

ing a recently published automatic optical-MSI data registration workflow, making use

of other work described within this thesis and which are already integrated features in

SpectralAnalysis such as the memory efficient handling and reduction of data [252].

Even when a single mass spectrometer is used within a study, the number of datasets

being analysed together is increasing. Recently, 9 tissue sections per time point resulting

in a total of 27 sections were analysed to investigate protein digestion [289], 63 sections

from gastric cancer and 32 from breast cancer were analysed to investigate intratumour

heterogeneity [290] and 96 sections taken from 32 mice were analysed to investigate the

consequences of cortical spreading depression [291]. With the trend towards larger and

larger data, it is important that the software tools used to analyse such studies are capa-

ble of supporting such volumes of data. The work presented within this thesis provides

routines for visualising, preprocessing, reducing and performing multivariate analysis on

data of such sizes, and supports data of even greater sizes still. The integrated multi-
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variate analysis and the hierarchical composition provide complementary, powerful tools

for investigating and aiding interpretation of complex datasets such as those generated

within large cohort studies.
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[259] Karim Arafah, Rémi Longuespée, Annie Desmons, Olivier Kerdraon, Isabelle

Fournier, and Michel Salzet. Lipidomics for clinical diagnosis: dye-assisted laser

184



desorption/ionization (daldi) method for lipids detection in maldi mass spectrome-

try imaging. Omics: a journal of integrative biology, 18(8):487–498, 2014.
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Kuster, Manfred Schmitt, Michaela Aubele, Heinz Höfler, André M Deelder, Al-
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