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ABSTRACT

Let G be a split finite group of Lie type defined over Fq, where q = pe is a prime power and p

is not a very bad prime for G. Let U be a Sylow p-subgroup of G. In this thesis, we provide

a full parametrization of the set Irr(U) of irreducible characters of U when G is of rank 5 or

less. In particular, for every character � 2 Irr(U) we determine an abelian subquotient of U

such that � is obtained by an inflation, followed by an induction of a linear character of this

subquotient.

The characters are given in most cases as the output of an algorithm that has been

implemented in the computer system GAP, whose validity is proved in this thesis using

classical results in representation theory and properties of the root system associated to

G. We also develop a method to determine a parametrization of the remaining irreducible

characters, which applies for every split finite group of Lie type of rank at most 5, and lays

the groundwork to provide such a parametrization in rank 6 and higher.
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INTRODUCTION

A problem of major interest in representation theory of finite groups is to determine the

irreducible characters of finite groups of Lie type. These groups form, in a sense, most of the

finite nonabelian simple groups, as we know from the classification of finite simple groups

[GLS1].

Let p be a prime, and let G be a finite group of Lie type defined over the field Fq with

q elements, where q = pe for some e 2 Z�1. The groundbreaking methods introduced by

Deligne and Lusztig in [DL76], involving geometric methods and `-adic cohomology, provided

a general procedure for constructing ordinary irreducible characters of G. A system for

computing and processing the generic character table of G is developed in [CHEVIE], using

the computer algebra system GAP3 [GAP3]. In particular, character tables of finite groups

of Lie type of low rank are completely determined in this way.

The problem of studying modular irreducible characters, that is, characters over a field of

positive characteristic, is in general wide open. Motivation for the research in this thesis is the

representation theory of G in non-defining characteristic ` 6= p. The standard approach for

its study is by determining the decomposition numbers of irreducible ordinary characters into

irreducible Brauer characters. The case of defining characteristic generally comes down to

the representation theory of the underlying algebraic group, and involves di↵erent methods;

we do not consider this case in this thesis.

A successful approach to the representation theory of G in non-defining characteristics is
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by inducing ordinary characters of certain classes of subgroups; this gives projective charac-

ters of G. In [GH97], decomposition numbers are determined for all classical types assuming

that ` is a linear prime for G, that is, both ` and the order of q modulo ` are odd. The main

idea is to use Harish-Chandra induction of characters of proper Levi subgroups of G. The

induction of another type of characters, namely generalized Gelfand-Graev characters arising

from unipotent subgroups of G, is of major importance in the more recent works [DM15] and

[DM16]. In these works decomposition numbers are obtained, respectively, when ` | q + 1

and ` is a good prime for G, and when ` | q2 + 1 up to few unknowns in types 2E6(q2) and

F4(q) (one also has to assume that p is a good prime for G of types Cr, r  4 or F4).

The methods in [DM15] and [DM16] provide us with motivation to study the irreducible

characters of a maximal unipotent subgroup of G, namely a Sylow p-subgroup U of G. The

character theory of U is also used in [HN14], where decomposition numbers of groups of Lie

types B3 and C3 are obtained via ordinary irreducible characters of parabolic subgroups; for

example, see [Him11] and [HH13] for similar applications of the character theory of parabolic

subgroups to the modular representation theory of G in certain low rank cases.

Independently of the above, the problem of studying the irreducible characters and con-

jugacy classes of U has attracted a lot of interest for many years, with motivation going back

to the work of Higman in the 1960s, and significant progress by several authors, especially

in the last decade.

Before we go into more detail on this, we fix some more notation. We often write U(G)

for the fixed Sylow p-subgroup U of the finite group of Lie type G. If G is of type Yr, with

r the rank of G, then we also write UYr(q), or more simply UY
r

for U(G). We denote by

Irr(U) the set of irreducible characters of U . We denote by k(U) (respectively k(U,D)) the

number of elements of Irr(U) (respectively the number of elements of Irr(U) of degree D).

By �+ we denote the subset of positive roots of the root system � associated to G.

There are several open problems about the representation theory of U . In fact, for G
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of a fixed type, a generic expression for k(U) as a function of q is not known in general; it

appears to be a very di�cult problem to obtain such an expression. A conjecture attributed

to Higman, see for example [Hig60], states that k(UA
r

) can be expressed as a polynomial in

q with integer coe�cients for every r � 1. Lehrer then conjectured in [Leh74] that every

character degree in UA
r

is a power of q, and that k(UA
r

, qd) can be expressed as a polynomial

in q with integer coe�cients for every d � 0. Finally, Isaacs conjectured in [Is07] that the

expressions of such polynomials k(UA
r

, qd) in v := q�1 should have non-negative coe�cients.

Although the last statement was proven to hold for r  12 [AVL03], and for every d  8

[Mar11], the above conjectures are still open. The recent works [HP11] and [PS15] suggest

that they might not hold. These conjectures naturally generalize to all classical types.

The focus of this thesis is to describe in more detail the set Irr(U). A parametrization of

Irr(U) is already known in literature for U = UA
r

and r  12 [Ev11], and U = UD4 [HLM11].

Moreover, the minimal degree almost faithful irreducible characters are parametrized for

every type and rank when G is split and p is not a very bad prime for G in [HLM15].

The main goal of this thesis is to develop a method towards a complete parametrization

of Irr(U), when G is a split finite group of Lie type and p is not a very bad prime for G.

This is achieved in this work when the rank of G is 5 or less. The main result of this thesis

is the following theorem.

Theorem A. Let G be one of the groups B4(q),B5(q),C4(q),C5(q) and F4(q) for p 6= 2, and

D4(q),D5(q) for every p. The irreducible characters of U(G) are completely parametrized in

Tables D.1 to D.7. Moreover, each character � 2 Irr(U(G)) can be obtained as an inflation,

followed by an induction of a linear character of a certain subquotient of U(G) that can be

determined from the information in Appendix D.

Part of this result is contained in [GLMP15], where the parametrization as in Theorem

A is obtained when G is of rank at most 4. The methods in this work develop those used

in [HLM11] and [HLM15], and make significant further progress. From now on, we assume
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that G is split and p is not a very bad prime for G. We develop an algorithm, namely

Algorithm 2.6, which works by a successive reduction of characters to smaller subquotients

of U . Such subquotients are associated to certain pairs of subsets of �+, called cores, which

we define below. The irreducible characters of U are then obtained by a process of inflation

and induction from these subquotients. The reduction is similar to the one used in [Ev11]

for the parametrization in type Ar.

The algorithm yields a parametrization of nearly the entire set Irr(U) for G of rank less

than or equal to 6, namely of all characters that arise from abelian cores, as explained later.

In principle, this algorithm also works for rank 7 and higher, but the output would contain

a very large number of nonabelian cores, and the situation is much more complicated to

analyse.

We have implemented Algorithm 2.6 in the computer algebra system GAP3 by using

CHEVIE [CHEVIE]. This immediately determines a parametrization of irreducible charac-

ters for types considered in Theorem A arising from abelian cores, which are collected in

plain font in Appendix D. On the other hand, Table 2.2 gives a measure of the elements of

Irr(U) which are not immediately parametrized by the algorithm. These are dealt with via

an ad-hoc study, which we explain later. Labels for irreducible characters obtained in this

way are collected in bold font in Appendix D.

The approach used in [HLM11], [HLM15] and this work is built on partitioning the

irreducible characters of U in terms of the root subgroups that lie in their centre, but not

in their kernel. Consequently, there are similarities to the theory of supercharacters, which

were first studied for G of type Ar by André, see for example [An01]. This theory was fully

developed by Diaconis and Isaacs in [DI08]. Subsequently it was applied to the characters

of U for G of types Br, Cr and Dr by André and Neto in [AN09].

We now go in more detail about the methods applied in our reduction. For ↵ 2 �+, we

denote by X↵ the corresponding root subgroup of U . In the algorithm we consider certain
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subquotients of U , which we refer to as quattern groups. A pattern subgroup of U is a

subgroup that is a product of root subgroups, and a quattern group is a quotient of a pattern

subgroup by a normal pattern subgroup. We refer to Section 1.3 for a precise definition. A

quattern group is determined by a subset S of �+ and denoted by XS . Let Z be a subset of

{↵ 2 S | X↵ ✓ Z(XS)}, where Z(XS) is the centre of XS . We define

Irr(XS)Z = {� 2 Irr(XS) | X↵ 6✓ ker� for all ↵ 2 Z}.

At each stage of the algorithm, we are considering a pair (S,Z) as above. We attempt

to apply one of two possible types of reductions to reduce (S,Z) to one or two pairs such

that the irreducible characters in Irr(XS)Z are in bijection with those irreducible characters

corresponding to the pairs we have obtained in the reduction.

The first reduction is based on the elementary but powerful character theoretic result

[HLM15, Lemma 2.1], which we refer to as the reduction lemma. In Lemma 2.1, we state

and prove a specific version of this lemma, which is the basis of the reduction. This lemma

shows that under certain conditions (which are straightforward to check) we can replace

(S,Z) with (S 0,Z), where S 0 contains two fewer roots than S, and we have a bijection

between Irr(XS)Z and Irr(XS0)Z .

The second reduction is more elementary and used when it is not possible to apply the

first reduction. For this we choose a root ↵ such that ↵ 62 Z, but X↵ ✓ Z(XS). Then

(S,Z) is replaced with the two pairs (S \ {↵},Z) and (S,Z [ {↵}). The justification of this

reduction is that Irr(XS)Z can be partitioned into the characters for which X↵ is contained

in the kernel, namely Irr(XS\{↵})Z , and the characters for which X↵ is not contained in the

kernel, namely Irr(XS)Z[{↵}.

We first partition the characters in terms of the root subgroups that lie in their kernel, and

then apply the reductions to each part of this partition. After we have successively applied
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these reductions as many times as possible, we are left with a set {(S1,Z1), . . . , (Sm,Zm)}

for some m 2 Z�1 such that Irr(U) is in bijection with the disjoint union

mG

i=1

Irr(XS
i

)Z
i

.

We refer to the pairs (Si,Zi) as cores. In many cases we have that XS
i

is abelian, in

which case it is trivial to determine Irr(XS
i

)Z
i

. Correspondingly, the character labels as in

Appendix D are given by the roots contained in Zi and Si \ Zi. These labels are described

in more detail in Section 2.4.

The more interesting cases are where the XS
i

are not abelian. We refer to these as

nonabelian cores. In these cases, there is still some work required to determine Irr(XS
i

)Z
i

.

Our approach to study nonabelian cores builds on work in [LM15], where certain nonabelian

cores in types D4, E6 and E8 were already studied. The complication in these cases is that

although some version of the reduction lemma can be applied, as explained in Section 3.2, we

reduce to a subquotient which is not a quattern group. Therefore we cannot apply Algorithm

2.6.

The analysis of nonabelian cores often gives irreducible characters of U whose degrees

are not powers of q when p is a bad prime. We recall the results of major relevance about

degrees of irreducible characters of U . By studying “strong subgroups” of algebra groups, it

was proven in [Is95] that every character degree in UA
r

is a power of q, proving one of the

conjectures stated by Lehrer in [Leh74]. This result was later proven to hold, with similar

methods, in types Br, Cr and Dr if and only if p 6= 2 [San03]. Examples of characters of

degree q7/3 in UE6(3e) and q16/5 in UE8(5e) are obtained in [LM15], by inflating a family

of characters from a quattern group of U . Finally, via the analysis outlined in the proof

of [HH09, Theorem 5.2], we get an irreducible character of degree q/2 (respectively q/3) in

Irr(UG2(2e)) (respectively Irr(UG2(3e))) by looking at the character table of a Borel subgroup
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in [EY86] (respectively [Eno76]).

The typical situation that we get for G up to rank 5 for nonabelian cores is dealt with

by applying the argument in Section 3.1, that is, by studying the representation theory of

certain 3-dimensional groups over Fq that naturally appear in our new reduction process. In

some of these cases, the behavior of good and bad primes is completely di↵erent. On the one

hand, in the case of good primes we always obtain characters of degree qd for some d � 0.

This is proved for almost all split finite groups of Lie type, as stated in Theorem B later. In

fact, we know this is true for all split finite groups of Lie type when p � h, where h is the

Coxeter number of G; this is proved in [GMR15] by using the Kirillov orbit method. On the

other hand, in the case of bad primes the analysis of these 3-dimensional groups often yields

character degrees of the form qd/p for some d � 1.

For the study of Irr(XS
i

)Z
i

when XS
i

is not abelian, one has to go in detail into several

computations, for example when computing orbits of characters by conjugation. The last

two chapters of this work are devoted to expanding the computations and parametrizing

Irr(XS
i

)Z
i

in these cases. We again obtain such characters as an inflation, followed by an

induction from a certain abelian subquotient of U , but now this subquotient is often not a

quattern group. This completes the parametrization of Irr(U(G)) stated in Theorem A.

We now point out some consequences of such parametrization. Firstly, we can now

complete the state of the art for character degrees in exceptional types for bad primes. By

inflation of characters, looking at suitable subgraphs of Dynkin diagrams, we easily see that

the results in types D4 for p = 2, E6 for p = 3 and E8 for p = 5 imply that for G of

types E6,E7 and E8 and p a bad prime for G, there exists � 2 Irr(U) and some d 2 Z such

that �(1) = qd/p for every power q of p. Moreover, we find in Section 4.3 some irreducible

characters of UF4(3e) of degree q4/3. These results, together with [Is95], [San03], [HLM11]

and other results in this thesis, allow us to state the following theorem.

Theorem B. Let G be a split finite group of Lie type over Fq.
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(i) If p is a bad prime for G, then there exists � 2 Irr(U(G)) and some d � 1 such that

�(1) = qd/p for every power q of p.

(ii) If p is at least the Coxeter number of G, or if p is a good prime and G is not E6(q),

E7(q) or E8(q), then the degree of every irreducible character of U(G) is a power of q.

As a second consequence of the parametrization, we obtain more information about the

number of characters of a fixed degree. The work in [GMR15] determines expressions of

k(U(G), D) as polynomials in v = q � 1 with nonnegative coe�cients for every G of rank

at most 8, except E8. These are proved to be valid when p is at least the Coxeter number

of G, as the Kirillov method for adjoint orbits is applied. The work in this thesis extends

the validity of such expressions to every good prime p when the rank of G is at most 5.

Moreover, in contrast with the previous result, we find that the expression of k(UF4(q), q4)

as a polynomial in v when q = 3e does not have integer coe�cients, as we note from Table

4.3.

This work provides multiple directions for future work. The first one is about an appli-

cation to the modular representation theory of G previously mentioned, namely to obtain

decomposition numbers for G of type F4. In [DM16], decomposition numbers for F4(q) are

obtained when p is a good prime, and even then not all decomposition numbers are de-

termined. By inducing characters of Irr(UF4) obtained in this work, one hopes to get new

decomposition numbers for F4(q) when p � 3, on the one hand providing brand new results

for p = 3, and on the other hand filling the gaps in the case where p � 5.

The parametrization of Irr(U) is one of the key steps for the construction of the generic

character table of U . Thanks to the results in [GR09] and [GMR14], the generic conjugacy

classes of U have been parametrized when p is a good prime for G of rank at most 7, except

E7. These have also been determined in [BG14] for bad primes when G is a group of rank at

most 4, except F4. We already have examples of computations of generic character tables,
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namely the recent work in [GLM15], which builds on such a parametrization of conjugacy

classes, and on the parametrization of Irr(UD4) obtained in [HLM11]. The size of UD4 allows

to complete a case-by-case check with a limited use of computer algebra. A future approach

for constructing other generic character tables, for example for UF4(q) when p � 5, aims

on the one hand to generalize the methods used in [GLM15], and on the other hand to

implement an algorithm in CHEVIE or MAGMA that allows us to deal with several easy

cases at once, similarly to what is done in Algorithm 2.6 for the parametrization of Irr(U).

We also aim to develop methods to get a parametrization of conjugacy classes of UF4(3e) and

possibly also in higher rank groups. This would allow us to construct generic character tables

in the case of bad primes, taking advantage of the parametrization of irreducible characters

provided in this work.

The reason why we stick with the assumption of p not very bad, is that we are allowed

to use the “dictionary” provided in Section 1.3 between subgroups (respectively subquo-

tients) of U and patterns (respectively quatterns) in �+. Removing this assumption on p,

a weaker version of Proposition 2.1 and Algorithm 2.6 could be formulated. This has par-

tially been developed in [Fal16], and is a work in progress. Such achievement would lead

to a parametrization of Irr(U) for types B3,C3,B4,C4 and F4 when p = 2, towards the

determination of missing decomposition numbers for G in these cases.

The advantage of working with split finite groups of Lie type is that we can describe

the structure of certain subquotients of U in terms of the root subgroups they contain. In

the case of a twisted group, the construction of root subgroups is more complicated; the

algorithm presented in this work does not yet cover these cases. Nevertheless, a complete

parametrization of the irreducible characters of a Sylow p-subgroup of 3D4(q3) is obtained in

[Le13] by taking advantage of such a construction of root subgroups. Another direction for

future research is to take advantage of the computational methods presented in this work

and of the construction in [Le13] to obtain irreducible characters of Sylow p-subgroups of
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other twisted finite groups of Lie type, as for example 2E6(q2), for which some decomposition

numbers have not yet been determined.

Lastly, we mention the problem of determining a parametrization for the elements of

Irr(U) in rank 6 and higher. On the one hand, we would like to classify simultaneously

nonabelian cores with a similar structure, with methods similar to that outlined in Section

5.1. This would be useful especially in type E6, where quattern groups arising from non-

abelian cores are not as big as in other rank 6 types, but occur frequently; this is a work

in progress [GLMP16]. On the other hand, we want to implement in CHEVIE or MAGMA

a program to analyse a fixed nonabelian core, that is, to get the ad-hoc examination in

Chapter 4 and Chapter 5 to be performed by a machine. For example, in each of types B6

and C6 a nonabelian core gives rise to a quattern group of order q43. We do not yet know a

parametrization of the irreducible characters arising from these cores.

This thesis is structured as follows. In Chapter 1 we present the main background results

about finite groups of Lie type and the character theory of finite groups, and we introduce

the notions of quatterns and quattern groups, stating their properties. In Chapter 2 we

develop and formally state the algorithm that allows us to parametrize Irr(U) up to the

study of nonabelian cores. We outline a method to analyse nonabelian cores in Chapter 3.

This is applied in the next two chapters to parametrize Irr(U) when the rank of G is at most

5, namely in Chapter 4 for G of rank 4, and in Chapter 5 for G of rank 5. In Chapter 5 we

also discuss how one might be able to proceed in higher rank cases. In the appendices we

collect basic notation and we give the explicit parametrization of the characters.
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CHAPTER 1

PRELIMINARIES AND BACKGROUND RESULTS

We present in this chapter the basic results and notation on which the thesis relies. We

recall in Section 1.1 some properties of linear algebraic groups, which allow us to define split

finite groups of Lie type and root data. In Section 1.2, we state the main results of character

theory that are used in the subsequent chapters. We end with Section 1.3, recalling the

notions of patterns and antichains for a root system, and introducing quatterns.

1.1 Finite groups of Lie type and root data

We recall in this section the definition of finite groups of Lie type, root systems and their

properties, and we mention the basic results that lead to the classification of root data and

split finite groups of Lie type. The main references we use are [DM] and [MT].

Let p be a prime, and let q = pe be a prime power for some e 2 Z�1. We denote by

k = Fp the algebraic closure of the finite field Fp with p elements.

We denote by G a linear algebraic group over k, that is, a group which is also an a�ne

algebraic variety, such that multiplication and inversion are morphisms of varieties. A ho-

momorphism of linear algebraic groups is a group homomorphism which is also a morphism

of algebraic varieties. For G,G0 linear algebraic groups, let Hom(G,G0) be the set of ho-
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momorphisms from G to G0. If � 2 Hom(G,G0), we have that the kernel of � is a closed

subgroup of G. In fact, ker� is in turn an algebraic group, as is every closed subgroup of

G. As in [MT, Theorem 1.7], there exists an n � 1 such that G is isomorphic to a closed

subgroup of the group GLn(k) of invertible n⇥ n matrices over k.

We say that G is connected if it cannot be decomposed as a disjoint union of proper closed

subsets. We call by G� the connected component of G containing the identity element. We

have that G� is in turn an algebraic group, and a normal subgroup in G.

We recall the right (respectively left) conjugation action of G on itself by gh := h�1gh

(respectively hg := hgh�1) for g, h 2 G. Let H be a closed subgroup of G. We denote by

CG(H) the centralizer of H in G, and by NG(H) the normalizer of H in G.

Let us denote by Gm the algebraic group (k⇥, ⇤), where k⇥ := k \ {0}. A torus is

an algebraic group isomorphic to Gs
m for some s 2 Z�1. Let X(T) = Hom(T,Gm) be

the character group of T. We have that X(T) is isomorphic to Zs, since the elements of

X(T) are of the form (t1, . . . , ts) 7! ta11 · · · tass for a1, . . . , as 2 Z. The cocharacter group

Y (T) = Hom(Gm,T) is also isomorphic to Zs; in particular, the element t 7! (ta1 , . . . , tas) of

Y (T), for a1, . . . , as 2 Z, is mapped to (a1, . . . , as) 2 Zs. We note that for every � 2 Y (T)

and � 2 X(T), there exists c�,� 2 Z such that � � �(x) = xc
�,� for every x 2 k⇥. Let us put

h�, �i := c�,� . As in [MT, Proposition 3.6] the map defined by

h , i : X(T)⇥ Y (T) �! Z

(�, �) 7! h�, �i,

is a perfect pairing, that is, group homomorphisms fromX(T) to Z are of the form � 7! h�, �i

for some � 2 Y (T) and vice versa, inducing a duality between X(T) and Y (T).

We denote by R(G) the solvable radical of G, that is, the maximal closed connected

solvable normal subgroup of G. Moreover, Ru(G) denotes the unipotent radical of G, which
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is the maximal closed connected unipotent normal subgroup of G. We call G simple if

G 6= 1, and G has no nontrivial proper closed connected normal subgroups. We say that G

is semisimple if it is connected and R(G) = 1, and that G is reductive if Ru(G) = 1.

From now on, we assume that G is a connected reductive algebraic group. By [MT,

Theorem 8.21, Corollary 8.22], we have that

G = Z(G)G1 · · ·Gm

for some m � 1, where Z(G) is the centre of G, and G1, . . . ,Gm are simple algebraic groups,

such that Gi \Gj ✓ Z(G) for every 1  i < j  m.

We denote by B a Borel subgroup of G, namely a maximal closed connected solvable

subgroup of G. As in [MT, Theorem 6.4, Corollary 6.5], all Borel subgroups are conjugate

in G, and all maximal tori are conjugate in G. From now on, we fix a maximal torus T and

a Borel subgroup B, such that T ✓ B. Let U := Ru(B) denote the unipotent radical of B.

Then we have that B = TU, and NG(U) = B.

The following definition is of major importance in this work.

Definition 1.1 ([DM], Definition 0.25; [MT], Definition 9.1). Let V be a real vector space,

and let V ⇤ be its dual, with duality map h , i. A root system � in V is a subset of V such

that

(i) � is finite and spans V , and 0 /2 �,

(ii) If ↵, c↵ 2 � for c 2 R, then c 2 {±1},

(iii) for every ↵ 2 V , there exists ↵̌ 2 V ⇤, with h↵, ↵̌i = 2, such that the reflection

s↵ : V �! V

x 7! x� hx, ↵̌i↵

13



stabilizes �, and

(iv) for every ↵, � 2 �, we have h�, ↵̌i 2 Z.

There exists a scalar product ( , ) on V which is invariant by s↵ for every ↵ 2 �. We can

then identify V with its dual by ↵̌ 7! 2↵/(↵,↵). We say that � is irreducible if we cannot

decompose it as a union of two orthogonal subsets with respect to the scalar product defined

on V .

The following result provides us with a very important example of a root system. We

refer to [DM, Theorem 0.31] and [MT, Definition 8.1]. We have that

� := {↵ 2 X(T) | CG((ker↵)
�) ) T}

is a root system in the subspace of X(T)⌦Z R it generates, with duality h , i. Moreover, by

[MT, Proposition 9.11], we have that �̌ ✓ Y (T) is a root system in the subspace it generates

in Y (T) ⌦Z R. We recall that X(T) ⌦Z R ⇠= R� if G is semisimple. There is an obvious

notion of isomorphism of root systems, that is, a map that preserves the properties stated

in Definition 1.1.

We denote by (X, , Y,  ̌) a root datum as in [MT, Definition 9.10], that is, X and Y

are free abelian groups of finite rank in perfect pairing, which induces a duality between the

associated root systems  and  ̌. We can associate a root datum to G via the previously

chosen torus T ✓ G, namely the quadruple (X(T),�, Y (T), �̌). There is a natural notion of

isomorphism of root data.

By [MT, Proposition 9.4], we can always pick a basis ⇧ = {↵1, . . . ,↵r} ✓ � for �, that

is, a basis of the vector space generated by �, such that every ↵ 2 � can be written as

↵ = c1↵1 + · · ·+ cr↵r for some c1, . . . , cr 2 Z, with either ci � 0 for all i = 1, . . . , r or ci  0

for all i = 1, . . . , r. In the former case, we say that ↵ is a positive root, and a negative root

in the latter. We denote by �+ (respectively ��) the set of positive (respectively negative)
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roots in �. Then we have that � = �+ t ��. The number r is called the rank of � (or

of G). Fixed ↵ 2 �+, with ↵ = c1↵1 + · · · + cr↵r, the height of ↵ is the positive number

c1 + · · ·+ cr. As in [MT, Proposition 13.10], there exists a unique positive root of maximal

height, which we denote by ↵0. We call ↵0 the highest root of �.

We obtain a classification of irreducible root systems via graphs called Dynkin diagrams,

which are collected in Figure 1.1. More precisely, the statement is as follows.

Theorem 1.2 ([Hum], Theorem 11.4). Let � be an irreducible root system of rank r. Then

the Dynkin diagram associated to � is one of the following,

Ar (r � 1), Br (r � 2), Cr (r � 2), D4 (r � 4), Er (r = 6, 7, 8), F4, G2.

Correspondingly, we say that � (or G) is of type Ar,Br, . . . ,G2. We recall some properties

of a root system that can be deduced by looking at its Dynkin diagram; we refer to [Hum,

Chapter 11] for a more complete overview. The number r of nodes of a Dynkin diagram is

the rank of the corresponding root system. The numbering of the nodes determines a choice

for the simple roots. A root system is irreducible if and only if the corresponding Dynkin

diagram is connected. Moreover, two root systems are isomorphic if and only if they have

the same Dynkin diagram.

By studying root data, we also obtain a classification of semisimple algebraic groups,

namely [MT, Theorem 9.13], as follows.

Theorem 1.3. Let G and G0 be semisimple algebraic groups. Then G is isomorphic to G0

if and only if the associated root data are isomorphic. Moreover, for each root datum there

exists a semisimple algebraic group G which realizes it. In particular, G is simple if and only

if its root system is irreducible.

For every ↵ 2 �+, there exist a subgroup U↵ of U and an isomorphism x↵ : k ! U↵,
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Ar
↵1 ↵2 ↵3 ↵r�1 ↵r

Br
↵1 ↵2 ↵3 ↵r�1 ↵r

Cr
↵1 ↵2 ↵3 ↵r�1 ↵r

Dr

↵1

↵2

↵3 ↵4 ↵r�1 ↵r

F4
↵1 ↵2 ↵3 ↵4

G2
↵1 ↵2

E6
↵1

↵2

↵3 ↵4 ↵5 ↵6

E7
↵1

↵2

↵3 ↵4 ↵5 ↵6 ↵7

E8
↵1

↵2

↵3 ↵4 ↵5 ↵6 ↵7 ↵8

Figure 1.1: The Dynkin diagrams. Simple roots are labelled as in CHEVIE.
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such that

U =
Y

↵2�+

U↵,

and for every t 2 T and c 2 k, we have tx↵(c) = x↵(↵(t)c). The subgroups of U of the form

U↵ for ↵ 2 �+ are called root subgroups, and the elements of the form x↵(c) of U↵ for c 2 k

are called root elements. For every ↵, � 2 �+, we have

[U↵,U�] ✓
Y

i,j2Z�1|i↵+j�2�+

Ui↵+j�.

We have a Frobenius field automorphism Fq : k ! k, defined by Fq(x) = xq. The field of

fixed points of k under Fq is Fq. In order to extend this notion to G, we shall assume that G

is defined over Fq, that is, it is defined as an algebraic variety by a set I of polynomials with

coe�cients in Fq. We refer to [MT, Section 21.1] for this construction. The automorphism

Fq of Fq acts on the polynomials that define I by acting on their coe�cients, thus it leaves

I invariant. Thus Fq also acts on G, set of common zeroes of I. The corresponding map

F : G ! G obtained via the action of Fq is called a Frobenius morphism of G with respect

to I. In particular, for a linear embedding ' : G ! GLn(k), we have that ' � F = Fq � ',

where on the right hand side of this equality Fq : GLn(k) ! GLn(k) is such that (Fq(a))i,j =

Fq(ai,j) = aqi,j.

We say that F : G ! G is a Steinberg morphism if Fm is a Frobenius morphism for some

m � 1. We are now ready to introduce the class of groups of major importance in this work.

The following definition is as stated in [MT, Definition 21.6]; there might be some ambiguity

in literature.

Definition 1.4. We say that G is a finite group of Lie type if there exists a connected

reductive linear algebraic group G defined over Fq, and a Steinberg morphism F defined on

G, such that G = GF is the set of fixed points of G under F .
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As a consequence of the Lang-Steinberg theorem [MT, Theorem 21.7], we can always

choose a maximal torus T and a Borel subgroup B of a connected reductive algebraic group

G defined over Fq endowed with a Steinberg morphism F , such that T ✓ B, and both T

and B are F -stable. From now on, we assume that G is a split finite group of Lie type, that

is, G is a finite group of Lie type, and there exists an F -stable maximal torus T of G such

that F (t) = tq for every t 2 T. Moreover, we fix a choice of B Borel subgroup and T ✓ B

maximal torus, such that F (T) = T and F (B) = B.

We write B = BF , and we get B = TU , with T = TF and U = UF . Then U is a Sylow

p-subgroup of G. We also denote this choice of Sylow p-subgroup in G by U(G). Since G is

split, by [MT, Section 23.2] the isomorphisms of the form x↵ : k ! U↵ for every ↵ 2 � can

be chosen such that they restrict to isomorphisms x↵|F
q

: Fq ! X↵, where

X↵ := UF
↵ = {x↵(t) | t 2 Fq} ⇠= Fq.

By abuse of notation, we also denote by x↵ its restriction to Fq. We fix such a choice of x↵,

for every ↵ 2 �. The notion of root elements and root subgroups also makes sense in U .

A presentation for U is given by the following commutator relations, also called Chevalley

relations,

[x↵(s), x�(r)] =
Y

i,j2Z|i↵+j�2�+

xi↵+j�(c
↵,�
i,j (�r)isj) (1.1.1)

for every r, s 2 Fq, for ↵, � 2 �+ and some c↵,�i,j 2 Z \ {0} called Lie structure constants. As

proved in [Car, Section 5.2], the parametrizations of the root subgroups can be chosen so

that the structure constants c↵,�i,j are always ±1, ±2, ±3, where ±2 occurs only for G of type

Br, Cr, F4 and G2, and ±3 only occurs for G of type G2. Moreover, the structure constants

are uniquely determined up to a fixed choice of signs for extraspecial pairs, as defined in

[Car, Section 4.2]. Our fixed choice of signs for the groups of our interest is determined
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in Appendix B, according to the choice recorded in the computer algebra system MAGMA

[MAGMA].

Let us decompose the highest root ↵0 of � as

↵0 = a1↵1 + · · ·+ ar↵r,

where ↵1, . . . ,↵r are the simple roots of �, and a1, . . . , ar 2 Z�1. We say that p is a bad

prime for � if p divides some ai for i 2 {1, . . . , r}. The prime p is said to be very bad for � if

a constant c↵,�i,j in the Chevalley relations of U is equal to p for some ↵, � 2 �+ and i, j > 0.

For example, p = 2 is a bad prime for a root system of type D4, since the highest root is

↵1 + ↵2 + 2↵3 + ↵4, but in this case c↵,�i,j 2 {±1} for every ↵, � 2 �+ and i, j � 0, therefore

2 is not a very bad prime for D4. The notation is consistent, in the sense that a very bad

prime is a bad prime. When p is not a bad prime for �, we say that it is a good prime for �.

The bad primes are recorded in Table 1.1; the bold font is used when the prime is very bad.

Ar Br Cr Dr E6 E7 E8 F4 G2

none 2 2 2 2, 3 2, 3 2, 3, 5 2, 3 2,3

Table 1.1: The bad and very bad primes in every root system.

We have a standard (strict) partial order on � defined by ↵ < � if � � ↵ is a sum of

positive roots. We call two roots ↵, � comparable if ↵  � or �  ↵, and incomparable

otherwise. In general, it is not true that if � < �, then � � � is a positive root, as we see

for example by choosing � = ↵2 and � = ↵1 + ↵2 + ↵3 in type A3. However, we have the

following result.

Proposition 1.5. Let ↵, � 2 �+, such that ↵ < �. Then there exist ✏1, . . . , ✏n 2 ⇧, such

that

� � ↵ = ✏1 + · · ·+ ✏n,
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and each partial sum ↵ + ✏1 + · · ·+ ✏i for i = 1, . . . , n is an element of �+.

Proof. For every ↵, � 2 �+ with ↵ < �, we can decompose � � ↵ = ⌫1 + · · · + ⌫n, for not

necessarily distinct elements ⌫1, . . . , ⌫n 2 ⇧. We prove the claim by induction on n, the case

n = 1 being trivial. Let then ↵, � 2 �+. Let us denote by (�1, �2) the scalar product of

�1, �2 2 �+. We have that

0 < (� � ↵, � � ↵) = (� � ↵,
nX

i=1

⌫i) =
nX

i=1

(�, ⌫i)� (↵, ⌫i),

with ⌫1, . . . , ⌫n as above. Then there exists at least one i 2 {1, . . . , n} such that (�, ⌫i) > 0

or (↵, ⌫i) < 0.

Let us suppose that (�, ⌫i) > 0. By [Hum, 9.4], we have that � � ⌫i 2 �+. We then put

✏n := ⌫i. By the inductive hypothesis, we have

(� � ✏n)� ↵ = ✏1 + · · ·+ ✏n�1

for ✏1, . . . , ✏n�1, such that ↵ + ✏1 + · · · + ✏i 2 �+ for i = 1, . . . , n� 1, but of course we have

that ↵ + ✏1 + · · ·+ ✏n = � is also a positive root. This proves the claim in this case.

Let us now assume (↵, ⌫i) < 0. Then in this case ↵ + ⌫i 2 �+ by [Hum, 9.4]. We put

✏1 := ⌫i. Then by induction we get

� � (↵ + ✏1) = ✏2 + · · ·+ ✏n,

with ↵ + ✏1 + (✏2 + · · · + ✏i) 2 �+ for every i = 2, . . . , n. The claim also follows in this

case.

We let N = |�+|. We fix an enumeration of �+ = {↵1, . . . ,↵N} with ⇧ = {↵1, . . . ,↵r},

such that i < j whenever ↵i < ↵j. We abbreviate and write Xi for X↵
i

and xi for x↵
i

. Each
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element of U can be written uniquely in the form u = x1(s1)x2(s2) · · · xN(sN), where si 2 Fq

for all i = 1, . . . , N . In particular, the groups X1, . . . , XN generate U , and |U | = qN .

To finish, we state a simplified version of [MT, Theorem 22.5] about the classification

of split finite groups of Lie type, similar to Theorem 1.3 in the case of semisimple algebraic

groups.

Theorem 1.6. Two split finite groups of Lie type G = GF and G0 = G0F 0
defined over Fq are

isomorphic if and only if the root data corresponding to G and G0 are isomorphic. Moreover,

for a fixed prime power q and a root datum, there exists a unique split finite group of Lie

type G = GF , such that G is associated to this root datum.

1.2 Character theory of finite groups

We now recall some basic results about character theory of finite groups, from basic defini-

tions about representations to Cli↵ord theory and some of its deep consequences. Our main

reference is [Is].

Let G be a finite group. We denote the right (respectively left) conjugation action by

gh := h�1gh (respectively hg := hgh�1) for g, h 2 G. We denote by Z(G) the centre of G,

that is, the normal subgroup of G that consists of all elements z 2 G such that zg = z for

every g 2 G. We denote by CG the group algebra of G over C, where the elements are formal

sums of terms of the form agg, with ag 2 C and g 2 G, and the operations are defined by

 
X

g2G

agg

!
+

 
X

g2G

bgg

!
:=
X

g2G

(ag + bg)g,

 
X

g2G

agg

! 
X

g2G

bgg

!
:=

X

g,g02G

(agbg0)(gg
0),

where ag + bg and agbg0 are standard operations in C, and gg0 is the multiplication in G.

An ordinary representation of G is a group homomorphism ⇢ : G ! GL(V ), where V

is a finite dimensional vector space over C. We can make V into an CG-module by setting
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g.v := ⇢(g)(v) for every g 2 G, and extending linearly to CG. We say that ⇢ is an irreducible

representation if the corresponding CG-module V is irreducible, that is, if it contains no

proper nontrivial CG-submodules.

The ordinary character � a↵orded by the representation ⇢ of G is the map from G to

C defined by �(g) = Tr(⇢(g)), where Tr : GL(V ) ! C is the matrix trace map. The value

�(1) = dimV is called the degree of �. We say that ⇢ is a linear representation if dim(V ) = 1.

The corresponding character is called a linear character.

Let z̄ denote the complex conjugate of z 2 C. The following inner product is defined for

characters �, of G,

h�, i = 1

|G|
X

g2G

�(g) (g).

We say that a character � of G is irreducible if it is a↵orded by an irreducible representation.

A character � of G is irreducible if and only if h�,�i = 1.

Let us call Irr(G) = {�1, . . . ,�s} the set of all irreducible characters of G. Then Irr(G)

is an orthogonal set with respect to h , i, that is, h�i,�ji is equal to 1 if i = j, and is 0

otherwise. Moreover, for every character � of G, we have � = a1�1 + · · · + as�s, where

ai = h�,�ii. In other words, the set of characters of G is exactly

Z�0 Irr(G) := {a1�1 + · · ·+ as�s | �1, . . . ,�s 2 Irr(G), a1, . . . , as 2 Z�0}.

The number h�,�ii is called the multiplicity of �i in �, and we say that �i is an irreducible

constituent of � if h�,�ii 6= 0. We write 1G for the trivial character of G, such that 1G(g) = 1

for every g 2 G. Of course, 1G is an irreducible character, as is any linear character of G.

If N E G is a normal subgroup of a finite group G, then we can define the inflation map

InfGN : Z�0Irr(G/N) �! Z�0Irr(G), InfGN(�)(g) := �(gN),
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which is injective and preserves the degree. Moreover, the image of Irr(G/N) via inflation

is contained in Irr(G). Omitting N , we sometimes write �̃, or also � by abuse of notation,

in place of InfGN(�). Moreover, if H is a subgroup of G, we have an induction map

IndG
H : Z�0Irr(H) �! Z�0Irr(G), IndG

H( )(g) :=
1

|H|
X

x2G:
gx2H

 (gx).

One easily verifies that IndG
H( )(1) =  (1)|G|/|H|. We sometimes write  G in place of

IndG
H( ). For a character � 2 Irr(G), we have a restriction map

ResGH : Z�0Irr(G) �! Z�0Irr(H), ResGH(�)(h) := �(h).

We often write �|H instead of ResGH . We recall that Frobenius reciprocity for a character �

of G and a character  of H states that

hResGH(�), i = h�, IndG
H( )i.

Moreover, we recall that if N E G, then we have

1GN =
X

�2Irr(G/N)

�(1)�̃. (1.2.1)

For a character ⌘ 2 Irr(H), we denote

Irr(G | ⌘) := {� 2 Irr(G) | h�, ⌘Gi 6= 0} = {� 2 Irr(G) | h�|H , ⌘i 6= 0}.

For a character � 2 Irr(G), we define

ker(�) = {g 2 G | �(g) = �(1)},
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the kernel of �, and we define

Z(�) = {g 2 G | |�(g)| = �(1)},

the centre of �. The reason for the names lies in the fact that if ⇢ is the representation

corresponding to �, then ker� = ker ⇢, and Z(�) is the subgroup of elements in G such that

⇢(g) = ⇣g · id for some ⇣g 2 C, that is, ⇢(g) 2 Z(⇢(G)).

Given g 2 G, a normal subgroup N of G and an irreducible character  of N , we write

g for the character of N defined by g (x) =  (xg) for every x 2 N . This is in turn an

irreducible character of N . This naturally defines an action of G on Irr(N).

We define the tensor product of �1,�2 2 Irr(G) by (�1 ⌦ �2)(g) = �1(g)�2(g). The

following property, namely [Is, Problem 5.3], follows by direct computations.

Lemma 1.7. Let H be a subgroup of G, let � be a character of Irr(G) and let  be a character

of Irr(H). Then

(�|H ⌦  )G = �⌦  G.

The following commutativity property of induction and inflation will be used several

times later.

Lemma 1.8. Let N  H  G, with N E G, and let  2 Irr(H/N). Then we have

InfGG/N IndG/N
H/N  = IndG

H InfHH/N  . (1.2.2)

Proof. Let g 2 G. We have that

(IndG
H InfHH/N  )(g) =

1

|H|
X

x2G:
gx2H

InfHH/N  (g
x) =

1

|H|
X

x2G:
gx2H

 (gxN)
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=
|N |
|H|

X

xN2G/N :
gxN2H/N

 (gxN) = IndG/N
H/N  (gN) = (InfGG/N IndG/N

H/N  )(g).

Since g is arbitrary in G, the claim follows.

We recall some classical results that link the representation theory of G with the repre-

sentation theory of some normal subgroup N of G. A result of major importance for the

development of our work is Cli↵ord’s theorem, as in [Is, Theorem 6.2].

Theorem 1.9 (Cli↵ord’s theorem). Let N E G. Let � 2 Irr(G) and ⌘ 2 Irr(N) be such that

� 2 Irr(G | ⌘). Let {⌘1, ⌘2, . . . , ⌘s}, with ⌘1 = ⌘, be the distinct G-conjugates of ⌘. Then we

have that �|N = t
Ps

i=1 ⌘i, with t = h�|N , ⌘i.

We also recall one of the main consequences of Cli↵ord’s theorem, which is used in the

sequel.

Theorem 1.10 ([Is], Theorem 6.11(b)). Let N E G. Let ⌘ 2 Irr(N), and let

IG(⌘) = {g 2 G | g⌘ = ⌘}

be the inertia group of ⌘ in G. Then induction gives a bijection between Irr(IG(⌘) | ⌘) and

Irr(G | ⌘).

We state the following result, which we use in the sequel.

Proposition 1.11. Let T be a normal subgroup of G, and let Z be a subgroup of Z(G) such

that Z \ T = 1. Let � 2 Irr(Z), and let �̃ denote its inflation to ZT . Then we have

(i) �G =
P

�2Irr(G|�) �(1)�.

(ii) T ✓ ker(�) for every � 2 Irr(G | �̃).
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(iii) Let us identify Z as a subgroup of G/T . Then the inflation map

Irr(G/T | �) �! Irr(G | �̃) (1.2.3)

is a bijection.

Proof. Of course, since � 2 Irr(Z), then �g = � for every g 2 G. Thus if � 2 Irr(G | �),

by Cli↵ord’s theorem we have that �|Z = c� for some integer c. Now evaluating at 1 gives

c = c�(1) = �|Z(1) = �(1). Then by Frobenius reciprocity we have that

�(1) = h�|Z ,�i = h�,�Gi.

Since � was arbitrary in Irr(G | �), this proves (i).

Now let t 2 T . Since T is normal in G, we have

�̃G(t) =
1

|ZT |
X

x2G:
tx2ZT

�̃(tx) =
1

|ZT |
X

x2G

�̃(tx) =
|G|
|ZT | = �̃G(1).

Then T ✓ ker(�̃G), hence T ✓ ker(�) for every � summand of �̃G. This proves (ii).

Finally, for � 2 Irr(G | �) the map

�̂ : G/T �! C, �̂(gT ) = �(g),

is well-defined by (ii), and one easily checks that the function

 : Irr(G | �̃) ! Irr(G/T | �)

� 7! �̂

is an inverse to InfGT , proving (iii).
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The next lemma is key to developing Algorithm 2.6 in the sequel. This result was proved

in [HLM15, Lemma 2.1] and we refer to it as the reduction lemma. We note that a similar

result in the context of algebra groups was previously proved by Evseev in [Ev11, Lemma

2.1].

Lemma 1.12 (Reduction lemma). Let G be a finite group, let H  G and let X be a

transversal of H in G. Suppose that Y and Z are subgroups of H, and � is an irreducible

character of Z, such that

(i) Z ✓ Z(G),

(ii) Y E H,

(iii) Z \ Y = 1,

(iv) ZY E G,

(v) for the inflation �̃ 2 Irr(ZY ) of �, we have that x1�̃ 6= x2�̃ for all x1, x2 2 X with

x1 6= x2.

Then we have a bijection

 : Irr(H/Y | �) ! Irr(G | �) \ Irr(G | 1Y )

� 7! �̃G

given by inflating over Y , then inducing from H to G.

Moreover, if |X| = |Y |, then Irr(G | �) \ Irr(G | 1Y ) = Irr(G | �).

Proof. We have that g 2 IG(�̃) if and only if g�̃(yz) = �̃(yz) for all y 2 Y and z 2 Z. Let

then y 2 Y and z 2 Z. Then for every h 2 H, we have that

h�̃(yz) = �̃(yhzh) = �̃(yh)�̃(z) = �̃(z) = �̃(yz),
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where we used the fact that Y is normalized by H, and �̃ is trivial on Y . Then we have that

H ✓ IG(�̃), and in fact H = IG(�̃) by (v). By Theorem 1.10, this implies that the induction

map is a bijection between Irr(H | �̃) and Irr(G | �̃). By part (iii) of Proposition 1.11, the

inflation map is a bijection between Irr(H | �̃) and Irr(H/Y | �).

Let us now prove that

Irr(G | �̃) = Irr(G | �) \ Irr(G | 1Y ).

For Irr(G | �̃) ✓ Irr(G | �)\ Irr(G | 1Y ), it is enough to prove, by Frobenius reciprocity, that

�Y Z = �̃+  1 and 1Y Z
Y = �̃+  2

for some characters  1, 2 of Y Z. The second equality follows from Equation (1.2.1). For

the first one, by Lemma 1.7 and Equation (1.2.1) we note that

�Y Z = (�̃|Z)Y Z = (�̃|Z ⌦ 1Z)
Y Z = �̃⌦ 1Y Z

Z = �̃+
X

�2Irr(Y ):
� 6=1

Y

�̃⌦ �̃.

Then the first inclusion is proved.

Now let � 2 Irr(G | �) \ Irr(G | 1Y ). Then we decompose

�|Y Z =
mX

i=1

µi ⌦ �i

for some m � 1, and not necessarily distinct µi 2 Irr(Y ) and �i 2 Irr(Z) for i = 1, . . . ,m.

Since Y Z E G, by Cli↵ord’s theorem we have that the µi⌦�i’s lie in a single G-orbit. Since

� 2 Irr(G | �), we have that �i = � for some i 2 {1, . . . ,m}. But then since � 2 Irr(Z) and

Z ✓ Z(G), we have that �i = � for all i = 1, . . . ,m. Also, since � 2 Irr(G | 1Y ), we have

that µi = 1Y for some i 2 {1, . . . ,m}. This proves Irr(G | �) \ Irr(G | 1Y ) ✓ Irr(G | �̃).
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Combining this with what previously obtained, we finally get that

IndG
H InfHH/Y : Irr(H/Y | �) �! Irr(G | �) \ Irr(G | 1Y )

is a bijective map. This proves the first claim.

Assume now |X| = |Y | = m. Let X = {x1, . . . , xm}. Then by assumption (v) we have

that �̃x1 , . . . , �̃xm are di↵erent irreducible characters that restrict to �, that is, by Frobenius

reciprocity, h�Y Z , �̃xii 6= 0 for i = 1, . . . ,m. Then since |X| = |Y | = �Y Z(1), we have that

�̃x1 , . . . , �̃xm are all irreducible components of �Y Z . In fact, by part (i) of Proposition 1.11,

we have that

�Y Z =
X

 2Irr(Y Z|�)

 (1) =
mX

i=1

�̃xi ,

in particular �Y Z = �̃ + ' for ' some character of Y Z with h', �̃i = 0. The second claim

follows.

We end this section by studying in detail the behavior of the elements of Irr(Fq), where

q = pe is as in Section 1.1, and (Fq,+) is regarded as an abelian group. Denote now by

Tr : Fq ! Fp the field trace map, that is,

Tr(t) = t+ tp + · · ·+ tp
e�1

for every t 2 Fq, and define � : Fq ! C⇥ by �(t) = e
i2⇡Tr(t)

p for t 2 Fq, so that � is a

nontrivial ordinary character of the additive group Fq. For a 2 Fq, we define �a 2 Irr(Fq) by

�a(t) = �(at). It is easy to see that �a 6= �b if a and b are distinct in Fq. Therefore we get

Irr(Fq) = {�a | a 2 Fq}.

For a fixed m 2 Z�1, it is straightforward to see that �(a1s1 + · · ·+ amsm) = 1 for every

s1, . . . , sm 2 Fq holds if and only if a1 = · · · = am = 0. Moreover, since the map sending t to

tp is an automorphism in Fq, we have that the equality �(atp) = 1 for every t 2 Fq holds if
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and only if a = 0.

The next lemma is of major importance for the analysis in Chapter 3.

Lemma 1.13. For a fixed a 2 F⇥
q , let Ta = {tp � ap�1t | t 2 Fq}. Then

a�p Ta = ker(�).

Proof. We have that

a�p Ta = {a�p(tp � ap�1t) | t 2 Fq} = {
�
a�1t

�p � a�1t | t 2 Fq} = {up � u | u 2 Fq}.

Now, we also have that

Tr(tp � t) = Tr(tp)� Tr(t) = Tr(t)� Tr(t) = 0,

therefore

{tp � t | t 2 Fq} ✓ {t 2 Fq | Tr(t) = 0} = ker(�),

and all those sets have same cardinality q/p, therefore ker(�) = {tp�t | t 2 Fq} = a�p Ta.

1.3 Pattern and quattern groups and antichains

In this section, we recall the notion of patterns and pattern groups, and then introduce quat-

terns and quattern groups. These objects were studied deeply in [HLM15]. The advantage

of working with patterns and quatterns is that these provide a natural “dictionary” between

subsets of positive roots and the structure of certain subquotients of the Sylow p-subgroup

U of G. By working in �+, we then consider groups of fixed type and rank for every q simul-

taneously. We end this section by recalling the notion of antichains; these are in bijection
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with the normal subsets of �+, as explained later.

Definition 1.14. A subset P of �+ is said to be a pattern (or closed) if for ↵, � 2 P , we

have that ↵ + � 2 P whenever ↵ + � 2 �+.

Under the assumption that P ✓ �+ is closed, we can associate to P a subgroup XP of

U .

Proposition 1.15. Let P = {�1, . . . , �m} be a pattern. Then

XP := X�1 . . . X�
m

is a subgroup of U .

Proof. We prove this by induction on the cardinality of a pattern. Without loss of generality,

we can assume that �1 = ↵i1 , . . . , �m = ↵i
m

, such that 1  j < k  m implies ij < ik. Then

it is easy to see that P 0 := P \{�1} is also a pattern, and XP 0 is a subgroup by the inductive

hypothesis. Let us define

x�1,...,�m(t1, . . . , tm) = x�1(t1) · · · x�m(tm),

For t, s 2 Fm
q , let us put x(t) = x�1,...,�m(t1, . . . , tm), and let us put

x0(t, s) = x�2,...,�m(t2, . . . , tm)x�m,...,�2(�sm, . . . ,�s2).

Notice that x0(t, s) 2 XP 0 . Then we have that

x(t)x(s)�1 = x�1,...,�m(t1, . . . , tm)x�m,...,�1(�sm, . . . ,�s1)

= x�1(t1 � s1)x
0(t, s) [x0(t, s), x�1(�s1)] .
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By Equation (1.1.1), we have that [x0(t, s), x�1(�s1)] 2 XP 0 . The claim follows.

We can then just write

XP =
Y

↵2P

X↵,

and we call XP the pattern subgroup corresponding to the pattern P . In general, it is not

true that if �1, . . . , �m 2 �+ and X�1 · · ·X�
m

is a subgroup of U , then {�1, . . . , �m} is a

pattern. In fact, let us consider U(B2(2e)). Let ↵1 2 �+ be the long simple root, and let

↵2 2 �+ be the short simple root. In this case, we have that [x↵2(s), x↵1+↵2(t)] = 0 for

every s, t 2 Fq, and of course it is still true that ↵1 + 2↵2 2 �+. Therefore, X↵2X↵1+↵2 is a

subgroup of U(B2(q)), without {↵2,↵1 + ↵2} being a pattern.

However, the converse of Proposition 1.15 does hold when p is not a very bad prime for

G.

Proposition 1.16. Assume that p is not a very bad prime for G. If ↵, � 2 �+, then

[X↵, X�] =
Y

i,j>0|i↵+j�2�+

Xi↵+j�.

We refer to [HLM15, Lemma 3.5] for the proof of the result. The inclusion “✓” follows

from Equation (1.1.1). The other inclusion follows from a straightforward case-by-case check,

and that is where the hypothesis of p being not very bad is crucial. The following is the

announced consequence of Proposition 1.16.

Corollary 1.17. Let P ✓ �+, and assume that p is not a very bad prime for G. Then

P := {�1, . . . , �s} ✓ �+ is a pattern if and only if XP is a subgroup.

We now introduce the notion of normality in patterns.

Definition 1.18. Let P be a pattern. We say that a subset K is normal in P , and we write

K E P , if for every ↵ 2 P and every � 2 K, we have that ↵ + � 2 K whenever ↵ + � 2 �+.
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We would like to associate a normal subgroup of XP to a normal subset of P . In general,

even without the assumption on p being not very bad, by Equation (1.1.1) we have that

K E P implies XK E XP . If p is not a very bad prime, then we also get the converse of this.

Proposition 1.19. Let P be a pattern, and let K ✓ P. Assume that p is not a very bad

prime for U . Then K E P if and only if XK E XP

Proof. We just need to prove that XK E XP implies K E P . Assume that XK E XP ,

and that ↵ 2 P and � 2 K are such that ↵ + � 2 �+. By Proposition 1.16, we have that

X↵+� ✓ [X↵, X�]. Of course [X↵, X�] ✓ [X↵, XK], and by normality of XK in XP we have

[X↵, XK] ✓ XK. This implies X↵+� ✓ XK, which by definition of XK gives ↵ + � 2 K, as

required.

The case U(B2(2e)) again provides a counterexample to the fact that if K ✓ P with P

a pattern, then XK E XP implies K E P . It is easy to check that X↵1+↵2 is normal in

U(B2(q)), but of course {↵1 + ↵2} is not a normal subset of �+.

From now on, we assume that p is not a very bad prime for G, that is, p 6= 2 in types

Br, Cr and F4, and p 6= 2, 3 in type G2. We are now ready to define quatterns.

Definition 1.20. We say that a subset of �+ of the form S := P \K, with P a pattern and

K normal in P , is a quattern with respect to P and K.

The explanation of this name is to remind that these sets correspond to suitable quotients

of some subgroups of U . In fact, we define

XS = XP\K = XP/XK,

which we call a quattern group corresponding to S. Although the definition of XS depends

on P and K, the quattern group XS just depends on S up to isomorphism. In fact, it is

easy to check that if P 0 is another pattern with K0 E P 0, such that P 0 \ K0 = S, then we
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have that XP/XK. ⇠= XP 0/XK0 . There is then no ambiguity in the notation XS . We often

write S = P \ K for a quattern, where we are implicitly assuming that P and K are such a

choice. Given ↵ 2 S, by a mild abuse of notation we identify X↵ with its image in XS for

the remainder of this work.

Let S ✓ �+ be a quattern and let XS be the corresponding quattern group. We define

Z(S) = {� 2 S | � + ↵ /2 S for all ↵ 2 S}

the set of central roots with respect to S. In fact, using the commutator relations and the

assumption that p is not very bad for G, it can be shown, as in [HLM15, Lemma 3.8], that

Z(XS) = XZ(S).

Similarly, we define

D(S) = {� 2 Z(S) | ↵ + � 6= � for all ↵, � 2 S}.

We call D(S) the set of direct product roots corresponding to S. By the commutator relations

and Proposition 1.16, we have thatXD(S) is a normal subgroup ofXS isomorphic to the direct

product of its root subgroups. Moreover, S \ D(S) is a quattern, and XS\D(S) is centralized

by XD(S). So we have

XS = XS\D(S) ⇥XD(S).

Let S be a quattern and let Z ✓ Z(S). We define

Irr(XS)Z = {� 2 Irr(XS) | X↵ 6✓ ker(�) for all ↵ 2 Z}. (1.3.1)

These sets of irreducible characters are very important to developing Algorithm 2.6 presented

34



in the next chapter.

We now introduce some key objects for our study.

Definition 1.21. A subset ⌃ of �+ is called an antichain if for all ↵, � 2 ⌃ with ↵ 6= �, we

have ↵ 6< � and � 6< ↵, i.e. ↵ and � are incomparable in the partial order defined on �+.

We have the following result, also presented in [CP02, Section 4].

Proposition 1.22. The antichains in �+ are in bijection with the normal subsets of �+.

Proof. Let ⌃ 2 �+ an antichain. We define

K⌃ = {� 2 �+ | � ⇥ � for all � 2 ⌃}. (1.3.2)

Let ↵ 2 �+ and � 2 K⌃, and assume that ↵ + � 2 �+. We cannot have ↵ + �  � for some

� 2 ⌃, since in this case we would have �  �, which contradicts the fact that � 2 K⌃. Then

↵ + � 2 K⌃, that is, K⌃ is a normal subset of �+.

Conversely, let K E �+. We define

⌃K = {� 2 �+ \ K | � ⇥ ↵ for all ↵ 2 �+ \ (K [ {�})}.

By definition, ⌃K is an antichain.

Let ⌘ 2 K. If ⌘  � for some � 2 �+, then either ⌘ = � or, by Proposition 1.5, we can

write

� � ⌘ = ✏1 + · · ·+ ✏m

for some m � 1, with ✏i 2 ⇧ and ⌘ + ✏1 + · · · + ✏i 2 �+ for every i = 1, . . . ,m, and this

implies � 2 K. Then we have ⌘ ⇥ � for every � 2 ⌃K, that is, K ✓ K⌃K . Finally, let � 2 �+,

such that � ⇥ � for every � maximal element in �+ \ K. Then we have � 2 K. This implies
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K⌃K ✓ K, then K = K⌃K . It is then easy to see that ⌃K⌃ = ⌃. This means that K 7! ⌃K

and ⌃ 7! K⌃ are inverse maps, which give the desired bijection.

For an antichain ⌃ in �+, we define the quattern S⌃ = �+ \ K⌃, for K⌃ as defined in

Equation (1.3.2). Then it is an easy consequence of the definitions that Z(S⌃) = ⌃.

We recall that the number of antichains has been determined in each type and rank,

for example in [FR05, Theorem 5.1]. Moreover, it is straightforward to get an algorithm to

determine all antichains in a root system of small rank. In particular, we have done this in

GAP3 [GAP3] using the package CHEVIE [CHEVIE] for every group of Lie type examined

in this thesis. All the antichains in these cases are given by the indices of the families of

characters in the first column of the tables in Appendix D.

Ar Br, Cr Dr E6 E7 E8 F4 G2
1

r+2

�
2r+2
r+1

� �
2r
r

�
3r�2
r

�
2r�2
r�1

�
833 4160 25080 105 8

Table 1.2: The number of antichains in a root system.

Now let � 2 Irr(U). We define R(�) = {↵ 2 �+ | X↵ ✓ ker�}. If we let � 2 R(�) and

⇢ be the representation corresponding to �, then ⇢(x�(t)) = 1 for every t 2 Fq. Let now

↵ 2 �+ be such that ↵ + � 2 �+. By Proposition 1.16, for every t 2 Fq we have that

x↵+�(t) =
mY

i=1

[x↵(si), x�(ti)]

for some m � 1 and s1, . . . , sm, t1 . . . , tm 2 Fq, so that

⇢(x↵+�(t)) = ⇢

 
mY

i=1

[x↵(si), x�(ti)]

!
=

mY

i=1

[⇢(x↵(si)), ⇢(x�(ti))] = 1.

Therefore, we have that ⇢(x↵+�(t)) = 1 for every t 2 Fq. This means that R(�) is a normal

subset of �+. In particular, ⌃R(�) is an antichain in �+.
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Finally, we provide the partition of Irr(U) into families of irreducible characters parametrized

by antichains. For an antichain ⌃ 2 �+, we define Irr(U)⌃ = {� 2 Irr(U) | ⌃R(�) = ⌃}.

Then we have the partition

Irr(U) =
G

⌃

Irr(U)⌃,

where the union is taken over all antichains ⌃ in �+. Moreover, we have that any character in

Irr(U)⌃ is the inflation of an irreducible character in Irr(XS⌃)⌃, namely obtained by inflating

over XK⌃ .
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CHAPTER 2

PARAMETRIZING Irr(U) UP TO NONABELIAN
CORES

The goal of this chapter is to develop an algorithm, namely Algorithm 2.6, in order to get a

generic parametrization of a large part of the irreducible characters of a Sylow p-subgroup

U of a split finite group of Lie type G defined over Fq, where q = pe and p is not a very bad

prime for U . We do this via successive reductions to smaller subquotients of U corresponding

to quatterns in �+. The irreducible characters parametrized in this way arise from abelian

cores, as explained in the sequel. The focus of the following chapters is to deal with the cases

we are left with, namely nonabelian cores.

We go in more detail into the structure of this chapter. In Section 2.1, we prove some

preliminary results that determine the reductions of the algorithm. We give an idea of how

the algorithm works in Section 2.2 through an example in type F4, while in Section 2.3 we give

a formal outline of it. Every character arising from an abelian core is given by an inflation

followed by an induction of a linear character of an abelian quattern group, as explained in

Section 2.4. To finish, we present the output of the algorithm in Section 2.5. The whole of

Irr(U) is parametrized in this way when the rank of G is at most 3 or G = C4(q), as well as

“most” of the characters from Irr(U) for G of rank at most 5.

38



2.1 Lemmas required for the algorithm

Let S = P \K be a quattern in �+ as in Definition 1.20, and let Z ✓ Z(S) be a subset of its

set of central roots. We fix some notation for inflation and induction of characters, that we

frequently use in the sequel. Let S 0 = P 0 \ K0 be another quattern, and let  be a character

of XS0 . If P 0 = P and K0 ◆ K, then we let L = K0 \ K and we write InfL  for the inflation

of  from XS0 to XS ; in case L = {↵} has one element, we write Inf↵  = InfL  . If K0 = K

and P 0 ✓ P , then we let T = P \ P 0 and we write IndT  for  XS ; in case T = {↵} has one

element, we write Ind↵  = IndT  .

The following result, which is part of our reduction procedure, is a consequence of the

reduction lemma, that is, Lemma 1.12. It provides us with a natural method to reduce our

investigation from Irr(XS)Z , defined in Equation (1.3.1), to Irr(XS0)Z , where S 0 contains

two fewer roots than S, and Z ✓ Z(S 0). In this lemma, we have S 0 = S \ {�, �}, where

� and � are positive roots satisfying certain assumptions. We can transfer this information

to determine the behavior of the corresponding root subgroups as explained in Section 1.3.

In particular, we immediately check that assumptions (i) to (iv) of the reduction lemma are

satisfied by Y := X�, X := X� and Z := X�+� in XS . With some more work, we show that

with such a choice of Y and X assumption (v) is also satisfied.

Lemma 2.1. Let S = P \K be a quattern, let Z ✓ Z(S) and let � 2 Z. Suppose that there

exist �, � 2 S \ {�}, with �+ � = �, such that for all ↵,↵0 2 S we have ↵+↵0 6= �, and that

for all ↵ 2 S \ {�} we have � + ↵ 62 S. Let P 0 = P \ {�} and K0 = K [ {�}. Then we have

that S 0 = P 0 \ K0 is a quattern with XS0 ⇠= XP 0/XK0, and we have a bijection

Irr(XS0)Z ! Irr(XS)Z

� 7! Ind� Inf� �
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by inflating over X� and inducing to XS over X�.

Proof. Let ↵,↵0 2 P 0. If ↵ 2 K or ↵0 2 K, then it cannot be that ↵ + ↵0 = �, since in

that case we would get � 2 K, a contradiction with � 2 S. If ↵,↵0 2 S 0, by assumption the

equality ↵ + ↵0 = � cannot hold as well. Since P 0 = S 0 [K, this proves that P 0 is closed.

Let now ↵ 2 P 0, and ↵0 2 K0. If ↵0 2 K, then ↵ + ↵0 2 K0 whenever ↵ + ↵0 2 �+, since

K E P . Otherwise, ↵0 = �, and by assumption ↵+� /2 S since ↵ 6= �, therefore if ↵+� 2 �+

then ↵ + � 2 K0. Therefore K0 E P 0, and S 0 = P 0 \ K0 is a quattern.

Let us put G = XS , Z = X�, H = XS\{�}, X = X� and Y = X�. It is immediate to

check that conditions (i) and (iii) of the reduction lemma hold. By assumption, for every

↵ 2 S \ {�}, Equation (1.1.1) implies [X↵, X�] = 1 in G, hence (ii) also holds. On the other

hand, we have [X�, X�] ✓ Z, therefore (iv) is satisfied.

We are left to prove (v). Let � 2 Irr(Z), such that �(x�(s)) = �(as) for some a 2 F⇥
q ,

and let us define �̃ = Inf� �. Then for s1, s2 2 Fq, we have

x
�

(s1)�̃ = x
�

(s2)�̃ =) �̃([x�(s1), x�(t)]) = �̃([x�(s2), x�(t)]) for all t 2 Fq.

For i = 1, 2, we have that [x�(si), x�(t)] 2 Z, hence �̃([x�(si), x�(t)]) = �([x�(si), x�(t)]),

and by Equation (1.1.1) we have [x�(si), x�(t)] = x�(c
�,�
1,1sit), with c�,�1,1 6= 0, since p does not

divide c�,�1,1 . Then

x
�

(s1)�̃ = x
�

(s2)�̃ =) �(ac�,�1,1t(s1 � s2)) = 1 for every t 2 Fq. (2.1.1)

As remarked at the end of Section 1.2, this implies that s1 = s2. Then (v) is also satisfied,

and of course |X| = |Y | = q, so the lemma follows.

An application of the lemma in the following example gives the main idea of the “Type

R” reduction, later described in Algorithm 2.6.
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Example 2.2. Let U = UA2 . Lemma 2.1 easily applies to give a parametrization of Irr(U)

for every prime p. Let us first consider Irr(U)Z with Z = {↵3}. It is clear that Lemma 2.1

applies with S = �+, � = ↵3, � = ↵2 and � = ↵1. Notice that S 0 = {�} = Z, therefore

Irr(XS0)Z = {�a3 : X3 ! C | a3 2 F⇥
q and �a3(x3(t)) = �(a3t) for all t 2 Fq} =: Irr(X3)

⇥.

Then we have a bijection

Irr(X3)
⇥ ! Irr(XS)Z

�a3 7! Ind↵1 Inf↵2 �
a3 =: �a3 .

The set C1 := {�a3 | a3 2 F⇥
q } consists of q � 1 irreducible characters of U of degree q.

We notice that the linear characters are obtained by inflating the irreducible characters

of U/[U,U ] ⇠= X1 ⇥X2 over X3, that is, they are given by the set

C2 := {�b1,b2 | b1, b2 2 Fq},

with �b1,b2 = Inf↵3 �b1,b2 , and �b1,b2 2 Irr(X1 ⇥X2) is such that

�b1,b2(x1(t1)x2(t2)) = �(b1t1 + b2t2) for every t1, t2 2 Fq.

Finally, we note that

Irr(U) = C1 t C2,

therefore our parametrization is complete.

Remark 2.3. The assumption of Y and X consisting each of just one root subgroup is crucial

in the proof of Lemma 2.1. In fact, we will see in Chapters 4 and 5 several examples where

Y and X are products of two or more root subgroups and satisfy assumptions (i)–(iv) of the
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reduction lemma, but in these cases Equation (2.1.1) gives rise to a system of linear equations

with nontrivial space of solutions. Correspondingly, assumption (v) of the reduction lemma

is not satisfied with this choice of Y and X. We would need to apply the reduction lemma by

choosing a subgroup Ỹ of Y and a subset X̃ of X which are not products of root subgroups.

Our second lemma is an immediate consequence of the definitions.

Lemma 2.4. Let S = P \ K be a quattern and ↵ 2 Z(S). Let S \ {↵} := P \ (K [ ↵) be

regarded as a quattern. Then there is a bijection Irr(XS) ! Irr(XS){↵} t Irr(XS\{↵}).

Proof. Let us put

C1 := {� 2 Irr(XS) | X↵ * ker(�)} and C2 := {� 2 Irr(XS) | X↵ ✓ ker(�)}.

We have that C1 = Irr(XS){↵}. If S = P \ K, then certainly K [ {↵} E P since ↵ 2 Z(S),

then S \ {↵} is a well-defined quattern. We then observe that every � 2 C2 can be written

as � = � � ⇡, where ⇡ is the projection from XS to XS\{↵} and � 2 Irr(XS\{↵}), and in fact

the map � 7! � is a bijection from C2 to Irr(XS\{↵}).

Noting that Irr(XS) = C1 t C2, we conclude that the map

 : Irr(XS) ! Irr(XS){↵} t Irr(XS\{↵})

� 7!

8
>><

>>:

� if � 2 C1

� if � 2 C2

is the desired bijection.
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2.2 An example of the algorithm

The algorithm which will be defined in Section 2.3 is based on a reduction procedure, by

checking at each step, for a given quattern, if Lemma 2.1 or Lemma 2.4 can be applied for

a certain choice of roots. Before we give a formal outline of the algorithm, we illustrate how

it works in more detail in a particular case. We refer to Table A.4 for the root numbering in

type F4.

Example 2.5. Let U = UF4 . We want to compute Irr(U)⌃, where ⌃ = {↵12}. We let S =

S⌃ = �+ \ K⌃, where K⌃ is as defined in Equation (1.3.2), so S = {↵1, . . . ,↵8}[ {↵10,↵12}.

Also we let Z = ⌃ = {↵12}. So we want to compute Irr(XS)Z .

Let us define

(�1, �1) = (↵1,↵10), (�2, �2) = (↵4,↵8), (�3, �3) = (↵5,↵7), (�4, �4) = (↵2,↵3).

An application of Lemma 2.1 for (�, �) = (�1, �1) gives a bijection

Irr(XS1)Z ! Irr(XS)Z

� 7! Ind�1 Inf�1 �

where S1 = S \ {�1, �1}. Two further applications of Lemma 2.1 for (�, �) = (�i, �i), i = 2, 3

give bijections

Irr(XS2)Z ! Irr(XS1)Z

� 7! Ind�2 Inf�2 �

where S2 = S1 \ {�2, �2}, and
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Irr(XS3)Z ! Irr(XS2)Z

� 7! Ind�3 Inf�3 �

with S3 = S2 \ {�3, �3}. We record the sets A = {�1, �2, �3} and L = {�1, �2, �3} to remind

us which reductions were performed. We also define K = K⌃ [ L. These three reductions

are all instances of TYPE R reductions (the capitalized R stands for “reduction lemma”) in

Algorithm 2.6 in Section 2.3.

Now we can see that ↵12 2 D(S3), so that XS3 ⇠= XS3\{↵12} ⇥ X12. In particular, this

means there is no possibility to apply Lemma 2.1 with � 2 Z = {↵12}.

We find that Z(S3) \ D(S3) = {↵6}. We can apply Lemma 2.4 to obtain a bijection

Irr(XS3)Z ! Irr(XS3)Z[{↵6} t Irr(XS3\{↵6})Z

� 7!

8
>><

>>:

� if X6 * ker�

� if X6 ✓ ker�,

where � = � � ⇡ and ⇡ is the projection from XS3 to XS3\{↵6}. We now split the two cases

and consider them in turn. We note that this is an example of a TYPE S reduction (the

capitalized S stands for “split”) as defined in our algorithm in Section 2.3.

First we consider

Irr(XS3)Z3 ,

where S3 = {↵2,↵3,↵6,↵12} and Z3 = {↵6,↵12}. Lemma 2.1 applies with (�, �) = (�4, �4)

and � = ↵6. We then get a bijection

Irr(XS4)Z3 ! Irr(XS3)Z3
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� 7! Ind�4 Inf�4 �

where S4 = S3 \ {↵2,↵3} = {↵6,↵12}. This is another reduction of TYPE R as defined in

Section 2.3. We record this reduction by adjoining ↵2 to A to obtain A0 = {↵1,↵4,↵5,↵2}

and adjoining ↵3 to L to obtain L0 = {↵10,↵8,↵7,↵3}. Moreover, we put K0 = K⌃ [ L0.

We note thatXS4 = X6⇥X12, so we can parametrize Irr(XS4)Z3 as {�a6,a12 | a6, a12 2 F⇥
q },

where �a6,a12(xi(t)) = �(ait) for i = 6, 12. Through the bijections given by Lemma 2.1, we

obtain characters of U forming part of Irr(U)⌃ by a process of successive inflation and

induction of the characters �a6,a12 . These characters are

�a6,a12 = InfK⌃ Ind
↵1 Inf↵10 Ind

↵4 Inf↵8 Ind
↵5 Inf↵7 Ind

↵2 Inf↵3 �
a6,a12 .

However, it turns out that these characters can be obtained by a single inflation and then

induction, thanks to Theorem 2.11 proved in Section 2.4, and we have

�a6,a12 = IndA0
InfK0 �a6,a12 .

The characters �a6,a12 have degree q4.

Next we move on to consider the characters in Irr(XS5)Z where S5 = S3 \ {↵6} =

{↵2,↵3,↵12}, and Z = {↵12}. We record that we have put ↵6 in the kernel by adjoining it

to K to obtain K00 = K [ {↵6}. We see that XS5 is abelian, so that

Irr(XS5) = {�a12b2,b3
| a12 2 F⇥

q , b2, b3 2 Fq},

where �a12b2,b3
(xi(t)) = �(bit) for i = 2, 3, and �a12b2,b3

(x12(t)) = �(a12t).

Now through the bijections previously obtained in Lemma 2.1, we obtain characters �a12
b2,b3

of U forming part of Irr(U)⌃ from the characters �a12b2,b3
by a process of successive inflation
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↵1 ↵2 ↵3 ↵4

↵5 ↵6 ↵7

↵8 ↵10

↵12

↵2 ↵3

��HH↵6

↵12

↵12

↵2 ↵3

↵6

Figure 2.1: A pictorial representation of the calculation of the characters in Irr(U){↵12} for
G of type F4.

and induction. We have

�a12
b2,b3

= InfK⌃ Ind
↵1 Inf↵10 Ind

↵4 Inf↵8 Ind
↵5 Inf↵7 Inf↵6 �

a12
b2,b3

,

and note that by using Theorem 2.11, we can write these characters as

�a12
b2,b3

= IndA InfK00 �a6,a12 .

These characters have degree q3.

Putting this together, we have that

Irr(U){↵12} = {�a6,a12 | a6, a12 2 F⇥
q } t {�a12

b2,b3
| b2, b3 2 Fq, a12 2 F⇥

q }.

Therefore, Irr(U){↵12} consists of:

• (q � 1)2 characters of degree q4, and

• q2(q � 1) characters of degree q3.
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We illustrate in Figure 2.1 how we have calculated these characters. The vertices in

the picture are the roots involved in the quatterns that we study. The partial order on �+

naturally gives them a poset structure; we join the vertices accordingly. The roots in a circle

are in the set Z; the roots in a straight box are in L and the roots in a dotted box are in A.

A cross on ↵6 means that the corresponding root subgroup is in the kernel of the character

examined at that stage.

2.3 A formal outline of the algorithm

We now describe the algorithm, which is used to calculate Irr(U)⌃ for each antichain ⌃ in

�+. We explain the algorithm below, which is written in a sort of pseudocode; the comments

in italics aim to make it easier to understand.

Algorithm 2.6. Reduction procedure for Irr(U)⌃

INPUT:

• �+ = {↵1, . . . ,↵N}, the set of positive roots of a root system with a fixed enumeration

such that i  j whenever ↵i  ↵j.

• ⌃, an antichain in �+.

VARIABLES:

• S ✓ �+ is a quattern.

• Z is a subset of Z(S).

• A ✓ �+ keeps a record of the roots � used in a TYPE R reduction.
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• L ✓ �+ keeps a record of the roots � used in a TYPE R reduction.

• K ✓ �+ keeps a record of the roots indexing root subgroups in the quotient of the

associated quattern group.

• S is a stack of tuples of the form (S,Z,A,L,K) as above to be considered later in the

algorithm.

• O = (O1,O2) is the output. Each of O1 and O2 is a set consisting of tuples of the form

(S,Z,A,L,K) as above corresponding to abelian and nonabelian cores respectively, as

defined later and described in the algorithm.

INITIALIZATION:

• K := K⌃.

• S := �+ \ K⌃.

• Z := ⌃.

• A := ?.

• L := ?.

• S := ?.

• O := (?,?).

During the algorithm we consider Irr(XS)Z , going into four subroutines called “ABELIAN

CORE”, “TYPE R”, “TYPE S” and “NONABELIAN CORE”.

ABELIAN CORE.

if S = Z(S) then

Adjoin (S,Z,A,L,K) to O1.
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In this case XS is abelian and we can parametrize the characters in Irr(XS)Z .

if S = ? then

Finish and output O.

In this case we have no more characters to consider, so we are done.

else

Remove the tuple at the top of the stack S and replace (S,Z,A,L,K) with it, and

go to ABELIAN CORE.

end if

else

Go to TYPE R.

end if

TYPE R.

Look for pairs (�, �) = (↵i,↵j) that satisfy the conditions of Lemma 2.1 for some � 2 Z.

if such a pair (↵i,↵j) exists then

Choose the pair with j maximal, and update the variables as follows.

• S := S \ {↵i,↵j}.

• A := A [ {↵i}.

• L := L [ {↵j}.

• K := K [ {↵j}.

We are replacing S with S 0 as in Lemma 2.1, and recording this in A, L and K.

Go to ABELIAN CORE.

else

Go to TYPE S.

end if
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TYPE S.

if Z(S) \ (Z [D(S)) 6= ? then

Let i be maximal such that ↵i 2 Z(S) \ (Z [D(S)), and update as follows.

• We add (S \ {↵i},Z,A,L,K [ {↵i}) at the top of the stack, that is, we put

S := S [ {(S \ {↵i},Z,A,L,K [ {↵i})}.

• We update Z := Z [ {↵i}.

Here we are using Lemma 2.4. We first add (S \ {↵i},Z,A,L,K[ {↵i}) to the stack to

be considered later, recording that Xi is in the kernel of these characters by adding ↵i

to K. Then we replace (S,Z,A,L,K) with (S,Z [ {↵i},A,L,K) for the current run.

Go to ABELIAN CORE.

else

Go to NONABELIAN CORE

end if

NONABELIAN CORE.

Adjoin (S,Z,A,L,K) to O2.

We are no longer able to apply reductions of TYPE R or of TYPE S, and XS is not abelian,

so the algorithm gives up, and this case is output as a nonabelian core as discussed further

later.

if S = ? then

Output O and finish.

In this case we have no more characters to consider, so we are done.

else

Remove the tuple at the top of the stack S and replace (S,Z,A,L,K) with it, and go

to ABELIAN CORE.

end if
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Let us explain the conventions for reduction types. We recall from Section 2.2 that the

letter R in the TYPE R reduction corresponds to “reduction lemma”, to record when Lemma

2.1 is applied. The letter S in the TYPE S reduction stands for “split”, and this records

instead the iteration at which we have the branching determined in Lemma 2.4. We notice

that at any stage, it takes a finite number of iterations to either remove one or more roots

from S, or add one root to Z. Then we see that this algorithm does in turn terminate in a

finite number of steps.

We move on to discuss how we interpret the output. We begin by defining what we mean

by a core, which is an element of the output of our algorithm.

Definition 2.7. Let us suppose that Algorithm 2.6 has run with input (�+,⌃) and given

output O.

• An element (S,Z,A,L,K) of O1 is called an abelian core for Irr(U)⌃.

• An element (S,Z,A,L,K) of O2 is called a nonabelian core for Irr(U)⌃.

In the rest of Chapter 2, we discuss how we can determine the characters in Irr(U)⌃

corresponding to a core C = (S,Z,A,L,K) in O1 [ O2. In particular, when C 2 O1 is

an abelian core, we give a complete description of the irreducible characters, however for

nonabelian cores there is more work required. Before we move onto this, we require some

more notation.

We obtain C through a sequence of reductions of TYPE R and of TYPE S applied in

Algorithm 2.6. So we consider the sequence of reductions where in each one either:

• a pair of roots � and � is taken from S in a TYPE R reduction, and � is added to A

and � is added to L and K; or

• a root � is taken from S and added to K.
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We let ` = `C be the number of these reductions, and define the sequence T (C) = (t1, . . . , t`),

where ti = R if the ith reduction is a TYPE R reduction and ti = S if the ith reduction

is a TYPE S reduction. We let I(R,C) be the set of i such that ti = R and I(S,C) be

the set of i such that ti = S. For i 2 I(R,C) we write (�i, �i) for the pair of roots used

in the TYPE R reduction, and for i 2 I(S,C), we write �i for the root added to K in the

TYPE S reduction. Thus we have A = {�i | i 2 I(R,C)}, L = {�i | i 2 I(R,C)} and

K \ K⌃ = L [ {�i | i 2 I(S,C)}.

2.4 Compacting sequences of inflations and inductions

This section is of major importance in order to understand how the parametrization of

“most” irreducible characters in Irr(U) follows from Algorithm 2.6. The reductions are all

of types R and S; as a consequence, we obtain the characters of Irr(U)⌃ corresponding to

some antichain ⌃ as a sequence of inflations and inductions from a character corresponding

to a core. The main goal is to show that this corresponds to a single inflation, followed by

a single induction of such a character.

We first prove the character-theoretical results that we need for this. Let us suppose

that C = (S,Z,A,L,K) is a core corresponding to an antichain ⌃, and that �i, �i and �i

correspond to type R and type S reductions respectively, as in Section 2.3. We define the

subsets P0,P1, . . . ,P` and K0,K1, . . . ,K` of �+ recursively by

P0 = �+ and K0 = K⌃;

P i =

8
>><

>>:

P i�1 \ {�i} if ti = R

P i�1 if ti = S
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Ki =

8
>><

>>:

Ki�1 [ {�i} if ti = R

Ki�1 [ {�i} if ti = S

We have the following lemma about these sets.

Lemma 2.8. For each i, j = 0, 1, . . . , ` with i  j, we have that Pj is a closed set, and Ki

is normal in Pj. In particular, S i,j = Pj \ Ki are quatterns.

Proof. Of course, P0 = �+ is closed. Let us assume that P i�1 is closed. If P i = P i�1,

then there is nothing to prove. Let then P i = P i�1 \ {�i}. For ↵,↵0 2 P i, it cannot be that

↵+↵0 = �i by construction of P i. Also, by inductive assumption, we have that ↵+↵0 2 P i�1

if ↵ + ↵0 is a positive root. This implies ↵ + ↵0 2 P i or ↵ + ↵0 /2 �+, that is, P i is closed.

To prove that Ki is normal in Pj for i  j, it is enough to prove that Ki is normal in P i,

since Ki ✓ Pj ✓ P i. Let ↵ 2 P i and ⌘ 2 Ki. Recall that ⌘ 2 K⌃ or ⌘ is of the form �k or

�k as above for some k  i. If ⌘ 2 K⌃, then since K⌃ E �+ we have that ↵ + ⌘ 2 K⌃ ✓ Ki

whenever ↵ + ⌘ 2 �+. If ⌘ = �k for some k  i, then ⌘ is a central root in Sk�1,k�1 ◆ S i,i,

therefore since ↵ 2 P i we have that ↵ + ⌘ 2 Kk�1 ✓ Ki or ↵ + ⌘ /2 �+. If ⌘ = �k, then we

notice that �k /2 Pk, thus �k /2 P i, therefore if ↵ 2 P i then ↵ + ⌘ 2 Kk�1 or ↵ + ⌘ /2 �+.

This implies that Ki is normal in P i.

For i = 0, . . . , `, we define S i := S i,i. Then we have that S0 = �+ \⌃, and S` = S. Now

let  2 Irr(XS). We define characters  i 2 Irr(XSi) for i = `, ` � 1, . . . , 1, 0 recursively by

the following sequence of inflations and inductions.

 ` =  

 i�1 =

8
>><

>>:

Ind�i Inf�
i

 i if ti = R

Inf�
i

 i if ti = S
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Finally, we let  = InfK⌃  0 2 Irr(U). In the statement of the following proposition about

sequences of inflations and inductions, we use the notation

Ai = {�j | j � i}, Li = {�j | j � i} and Ki = {�j | j � i}.

Proposition 2.9. For every i = 1, . . . , `, we have that

⇣
Ind

XSi�1

XSi�1,i
Inf

XSi�1,i

XSi

⌘
· · ·
⇣
Ind

XS`�1

XS`�1,`
Inf

XS`�1,`

XS

⌘
= IndA

i InfL
i

[K
i

as maps from Z�0 Irr(XS) to Z�0 Irr(XSi�1). In particular, the image of Irr(XS) under

IndA
i InfL

i

[K
i

lies in Irr(XSi�1), and

 i�1 = IndA
i InfL

i

[K
i

 .

Proof. We prove this by reverse induction on i, the case of i = ` being trivial.

The inductive step boils down to showing the following claim for i < `,

⇣
Ind

XSi�1

XSi�1,i
Inf

XSi�1,i

XSi

⌘ �
IndA

i+1 InfL
i+1[Ki+1

�
= IndA

i InfL
i

[K
i

.

Let us assume that S i is constructed from S i�1 by a type R reduction. Then we have that

P i = P i�1 \ {�i} and Ki = Ki�1 [ {�i}. The claim in this case is equivalent to

�
Ind�i Inf�

i

� �
IndA

i+1 InfL
i+1[Ki+1

�
= IndA

i InfL
i

[K
i

.

Let us put

N := X�
i

, H := XSi�1,` , G := XSi�1,i .

It is clear that N  H  G, and N E G. Then Lemma 1.8 applies, and we get
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Inf�
i

IndA
i+1 = IndA

i+1 Inf�
i

.

Therefore we get

�
Ind�i Inf�

i

� �
IndA

i+1 InfL
i+1[Ki+1

�
= Ind�i

�
Inf�

i

IndA
i+1
�
InfL

i+1[Ki+1

= Ind�i
�
IndA

i+1 Inf�
i

�
InfL

i+1[Ki+1

=
�
Ind�i IndA

i+1
� �

Inf�
i

InfL
i+1[Ki+1

�

= IndA
i InfL

i

[K
i

,

as required.

In the case when a type S reduction occurs, we have P i = P i�1 and Ki = Ki�1 [ {�i},

and the claim is equivalent to prove

Inf�
i

�
IndA

i+1 InfL
i+1[Ki+1

�
= IndA

i InfL
i

[K
i

.

Now if we put

N := X�
i

, H := XSi�1,` , G := XSi�1,i ,

then again Lemma 1.8 applies. We get

Inf�
i

IndA
i+1 = IndA

i+1 Inf�
i

.

A computation as above yields

Inf�
i

�
IndA

i+1 InfL
i+1[Ki+1

�
=
�
Inf�

i

IndA
i+1
�
InfL

i+1[Ki+1

=
�
IndA

i+1 Inf�
i

�
InfL

i+1[Ki+1

= IndA
i+1
�
Inf�

i

InfL
i+1[Ki+1

�
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= IndA
i InfL

i

[K
i

,

which proves the claim.

We can finally obtain any  arising from ⌃ by the above construction as an inflation,

followed by an induction of a character of XS .

Corollary 2.10. Let  2 Irr(XS) and  as above. We have that

 = IndA InfK[K⌃  .

Proof. By Lemma 2.8 and Proposition 2.9 substituting i = 1, we have that

 0 = IndA InfK  .

Lemma 1.8 applies to the groups

N := XK⌃ , H := XP` , G := U,

We then have

InfK⌃(Ind
A InfK) = (InfK⌃ Ind

A) InfK

= (IndA InfK⌃) InfK

= IndA(InfK⌃ InfK)

= IndA InfK[K⌃ ,

therefore

 = InfK⌃(Ind
A InfK  ) = IndA InfK[K⌃  ,
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as claimed.

We now distinguish two cases, according to the output of Algorithm 2.6. Suppose that

C = (S,Z,A,L,K) 2 O1 is an abelian core. We let Z = {↵i1 , . . . ,↵i
m

} and S \ Z =

{↵j1 , . . . ,↵j
n

}. Then we have

Irr(XS)Z = {�ab | a = (ai1 , . . . , aim) 2 (F⇥
q )

m, b = (bj1 , . . . , bjn) 2 Fn
q },

where �ab is defined by

�ab (x↵i

k

(t)) = �(ai
k

t) and �ab (x↵j

h

(t)) = �(bj
h

t)

for every k = 1, . . . ,m and h = 1, . . . , n. We define �a
b = �ab and

Irr(U)C = {�a
b | a = (ai1 , . . . , aim) 2 (F⇥

q )
m, b = (bj1 , . . . , bjn) 2 Fn

q }.

Through the bijections given by Lemmas 2.1 and 2.4, this is precisely the set of characters

in Irr(U)⌃ corresponding to C.

We move on to consider a nonabelian core C = (S,Z,A,L,K) 2 O2. In this case XS is

not abelian, so we do not immediately have a parametrization of Irr(XS)Z , and it is necessary

for us to determine a parametrization by hand. We suppose this has been done and we have

Irr(XS)Z = { c | c 2 JC},

where JC is some indexing set. We define �c =  c and

Irr(U)C = {�c | c 2 JC}.
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The aim of Chapters 3, 4 and 5 of this thesis is to develop a method for determining the set

JC for split finite groups of Lie type of rank at most 5.

In principle, the characters �a
b and �c of U are defined as potentially very long sequences of

inflations and inductions. But Proposition 2.9 and Corollary 2.10 applied to S`,S`�1, . . . ,S0

and then �+ allow us to express �a
b and �c as a single inflation, followed by just one induction

of the corresponding character of XS` = XS .

We summarize the discussion of this section in the following theorem.

Theorem 2.11. Let C 2 (S,Z,A,L,K) be a core.

(a) Suppose that C 2 O1 is abelian, and let �a
b 2 Irr(U)C be defined as above. Then

�a
b = IndA InfK �

a
b .

In particular, �a
b is induced from a linear character of XS[K.

(b) Suppose that C 2 O2 is nonabelian, and let �c 2 Irr(U)C be defined as above. Then

�c = IndA InfK  c.

From the comments given within Algorithm 2.6 and the discussion above, we deduce the

following theorem regarding the validity of our algorithm.

Theorem 2.12. Suppose that Algorithm 2.6 has run with input (�+,⌃) and given output

O = (O1,O2). Then we have

Irr(U)⌃ =
G

C2O1

Irr(U)C t
G

C2O2

Irr(U)C.

Remark 2.13. We make a slight abuse in the notation �a
b . In fact, each ai and bj is supposed

to record not just a value in F⇥
q and Fq respectively, but also i and j, so that �a

b should
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strictly read �
((i1,a

i1 ),...,(im,a
i

m

))

((j1,b
j1 ),...,(jn,bjn ))

, for corresponding choices of i1, . . . , im and j1, . . . , jn indexing

positive roots.

Remark 2.14. The choice of total order on �+ = {↵1, . . . ,↵N} has a significant e↵ect on how

the algorithm runs, as this is used to determine which reductions to make when there may

be a choice. The resulting parametrization of Irr(U)⌃ consequently depends on this choice

of enumeration.

2.5 Results of the algorithm and parametrization of

Irr(UC4)

We have implemented Algorithm 2.6 in the algebra system GAP3, using the CHEVIE pack-

age. The algorithm requires us to just work with �+ and the GAP commands for root

systems allow us to do this. We use the enumeration of �+ as given in CHEVIE.

We have run the GAP program for G of rank less than or equal to 7. We present its output

in Table 2.2, including the number of nonabelian cores. For G of rank 3 or less, or G of type

C4, there are no nonabelian cores; the algorithm provides straight away a parametrization

of Irr(U) in these cases. The parametrization of Irr(UC4) is provided in Table D.2.

For every split finite group of Lie type G, we denote by k(U,D) the number of irreducible

characters of U = U(G) of degree D. The expressions for k(U,D) are given as polynomials

in v := q � 1 in [GMR15] for every character degree D and every split finite group of Lie

type of rank 8 or less, except E8. These are given for p � h by the number of coadjoint

orbits, computed in [GMR15] via the Kirillov orbit method.

Our methods allow in principle to compute k(U,D) for every p which is not a very bad

prime for G. The expressions we obtain for k(UC4 , D) for every D agree with, hence extend,

the ones previously obtained for p � h where h is the Coxeter number of C4, namely h = 8.

We collect in Table 2.1 the numbers k(UC4 , D) for every q and p 6= 2. We notice that D is
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always a power of q.

D k(UC4 , D)

1 v4 + 4v3 + 6v2 + 4v + 1

q v5 + 6v4 + 13v3 + 12v2 + 4v

q2 2v5 + 11v4 + 20v3 + 14v2 + 3v

q3 v6 + 6v5 + 17v4 + 24v3 + 14v2 + 3v

q4 2v5 + 9v4 + 15v3 + 9v2 + v

q5 3v4 + 8v3 + 6v2 + v

q6 v4 + 4v3 + 3v2

Table 2.1: Numbers of irreducible characters of UC4 of fixed degree, for v = q� 1 and p 6= 2.

For other split finite groups of Lie type of rank 4 or 5, the algorithm does not provide

a full parametrization of Irr(U). Nevertheless, we obtain labels for characters arising from

abelian cores, collected in plain font in Appendix D. In this sense, we say that we get

the parametrization of “most” of Irr(U), namely up to irreducible characters arising from

nonabelian cores. For the types B4 and D4 there is one nonabelian core each, and in type

F4 we find six nonabelian cores. These will be dealt with in Chapter 4, via the analysis

presented in Chapter 3. A parametrization of Irr(U) in these cases is collected in Tables D.1,

D.3 and D.4 respectively.

For G of type B5, C5 and D5 there are 10, 1 and 7 nonabelian cores respectively. The

analysis in Chapter 3, along with a method to deal with several nonabelian cores at the same

time described in Section 5.1, will lead us to obtain a full parametrization of Irr(U) in these

cases. This is given in Chapter 5; we refer to Tables D.5, D.6 and D.7 for character labels.

We currently do not have a method to study all of the nonabelian cores of any group of rank

6 or higher; this is a topic for further research.

We note that the parametrization of irreducible characters for UB3 can be read o↵ from

that for UB4 , as UB3 is a quotient of UB4 . Similarly, the parametrization of irreducible
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Type Antichains Abelian cores Nonabelian cores Running time

B4 70 80 1 (1.23%) T ⌧ 1 sec
C4 70 90 0 (0%) T ⌧ 1 sec
D4 50 52 1 (1.88%) T ⌧ 1 sec
F4 105 177 6 (3.28%) T ⇠ 1 sec
B5 252 358 10 (2.72%) T ⇠ 3 sec
C5 252 417 1 (0.24%) T ⇠ 3 sec
D5 182 214 7 (3.17%) T ⇠ 1 sec
B6 924 1842 95 (4.90%) T ⇠ 30 sec
C6 924 2254 22 (0.97%) T ⇠ 30 sec
D6 672 991 55 (5.26%) T ⇠ 10 sec
E6 833 1656 156 (8.61%) T ⇠ 30 sec
B7 3432 11240 969 (7.94%) T ⇠ 7 min
C7 3432 14216 294 (2.03%) T ⇠ 7 min
D7 2508 5479 531 (8.84%) T ⇠ 2.5 min
E7 4160 33594 7798 (18.84%) T ⇠ 45 min

Table 2.2: Results of Algorithm 2.6 in types Br,Cr and Dr, r = 4, 5, 6, 7 and F4, Ei, i = 6, 7.

characters of UC3 can be read o↵ from that for UC4 . We remark, on the one hand, that our

parametrization of Irr(UD4) agrees with the one determined in [HLM11]. On the other hand,

similar parametrizations of Irr(UB4), Irr(UC4) and Irr(UF4) do not seem to be given explicitly

in previous literature, as well as parametrizations of Irr(UB5), Irr(UC5) and Irr(UD5).
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CHAPTER 3

A METHOD FOR ANALYSING NONABELIAN
CORES

In this chapter we explain the methods employed to analyse the nonabelian cores arising from

our analysis in Chapter 2. Our approach is based on a direct examination of these cases.

It is helpful for us to first deal with certain 3-dimensional groups over Fq that frequently

appear in our analysis; this is developed in Section 3.1. We then outline in Section 3.2 our

general methods for dealing with nonabelian cores.

We remark that we do not assert that these methods are guaranteed to work for every

nonabelian core. Nevertheless, we will see in Chapters 4 and 5 that this is enough to

complete the parametrization of Irr(U) for every split finite group of Lie type of rank at

most 5. Moreover, the methods outlined in this chapter lay the groundwork towards a

parametrization of Irr(U) in higher ranks.
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3.1 Some 3-dimensional groups

Let f : Fq ⇥ Fq ! Fq be an Fp-bilinear map, which we assume to be surjective. We define

the group V = Vf to be generated by subgroups

X1 = {x1(t) | t 2 Fq} ⇠= Fq, X2 = {x2(t) | t 2 Fq} ⇠= Fq, Z = {z(t) | t 2 Fq} ⇠= Fq,

subject to Z ✓ Z(V ), and

[x1(s), x2(t)] = z(f(s, t)).

In particular, throughout this section, X1 will not denote the root subgroup X↵1 , similarly

for X2.

Since Z is central in V , we have that X2Z is a subgroup of V . By definition of V , we

have that [X1, X2Z] ✓ X2Z, therefore X1X2Z is also a subgroup, which implies V = X1X2Z.

The assumption of f being surjective implies that [V, V ] = Z.

The focus of this section is on constructing the irreducible characters of V . Let us fix

a 2 F⇥
q . We define the linear character �a 2 Irr(Z) by �a(z(t)) = �(at). We define

X 0
1 = {x1(s) 2 X1 | Tr(af(s, t)) = 0 for all t 2 Fq}

and

X 0
2 = {x2(t) 2 X2 | Tr(af(s, t)) = 0 for all s 2 Fq}.

Note that in general X 0
1 and X 0

2 may depend on a.

We first note that the linear characters of V are given by inflating over Z the characters

of V/Z ⇠= X1 ⇥X2. For b1, b2 2 Fq, we define �b1,b2 2 Irr(V ) by
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�b1,b2(x1(s1)x2(s2)z(t)) = �(b1s1 + b2s2)

for every s1, s2, t 2 Fq, thus there are q2 linear characters of V of the form {�b1,b2 | b1, b2 2 Fq}.

We now analyse the characters in Irr(V | �a) for a 2 F⇥
q using the reduction lemma, that

is, Lemma 1.12. The map

B : Fq ⇥ Fq ! Fp

(s, t) 7! Tr(f(s, t))

is Fp-bilinear. For i = 1, 2, let Vi be the image of X 0
i under the natural isomorphism Xi

⇠= Fq.

Then V1, V2 are Fp-subspaces of Fq, and the bilinear form B induces a non-degenerate bilinear

form

B̄ : (Fq/V1)⇥ (Fq/V2) ! Fp,

hence

dimF
p

(Fq/V1) = dimF
p

(Fq/V2),

which implies |X 0
1| = |X 0

2|. Thus for i = 1, 2 we can choose a complement X̃i of X 0
i in Xi,

such that |X̃1| = |X̃2|.

Now by Lemma 1.12 (with X = X̃1 and Y = Ỹ1), we see that the map

Irr(X 0
1X2Z/(X̃2 ker�

a) | �a) ! Irr(V | �a)

 7! IndV
X0

1X2Z
Inf

X0
1X2Z

X0
1X2Z/(X̃2 ker�a)

 

is a bijection.

Finally, we observe that X 0
1X2Z/(X̃2 ker�a) is abelian, so Irr(X 0

1X2Z/X̃2 | �a) is in
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bijection with Irr(X 0
1 ⇥X 0

2). We then get

Irr(V | �a) = {IndV
X0

1X2Z
Inf

X0
1X2Z

X0
1X2Z/(X̃2 ker�a)

 |  2 Irr(X 0
1 ⇥X 0

2)},

with each  2 Irr(X 0
1 ⇥X 0

2) linear. Since

Irr(V ) = {�b1,b2 | b1, b2 2 Fq} t
G

a2F⇥
q

Irr(V | �a),

this completes our general description of Irr(V ).

We are going to examine in more detail Irr(Vf ) for certain choices of f . We first recall

the following general result. Let Vf be as defined above, and let ' be an automorphism of

Fq regarded as an abelian group. We write Vf = {x1(s)x2(t)z(u) | s, t, u 2 Fq}, and since

' � f is surjective it makes sense to define V'�f = {x0
1(s)x

0
2(t)z

0(u) | s, t, u 2 Fq} similarly.

Suppose that there exists a group homomorphism  : Vf ! V'�f such that  (x1(s)) = x0
1(s)

and  (x2(t)) = x0
2(t) for all s, t,2 Fq. For every u 2 Fq, we can write u = f(s, t) for some

s, t 2 Fq. We then get

 (z(u)) =  (z(f(s, t))) =  ([x1(s), x2(t)]) = [ (x1(s)), (x2(t))])

= [x0
1(s), x

0
2(t)] = z0(' � f(s, t)) = z0('(f(s, t))) = z0('(u)).

Then for such a group homomorphism  we have  (z(u)) = z0('(u)) for every u 2 Fq. But

now it is immediate to check that a map  defined as

 (x1(s)) = x0
1(s),  (x2(t)) = x0

2(t),  (z(u)) = z0('(u))

for every s, t, u 2 Fq defines a group homomorphism, and in fact this is a group isomorphism

since ' is an automorphism of Fq as an abelian group. Then Vf
⇠= V'�f . In particular, we
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get that Vf
⇠= Vcf for every c 2 F⇥

q .

To finish, we determine Vf explicitly for some choices of f . For f(s, t) = st, we have that

Vf is isomorphic to UA2 . Clearly we get X 0
1 = Y 0

1 = 1, and then

Irr(V ) = {�b1,b2 | b1, b2 2 Fq} [ {�a | a 2 F⇥
q },

where �a = IndV
X2Z

InfX2Z
Z �a. For f(s, t) = spt or f(s, t) = (sp � ds)t where d 2 F⇥

q is not a

(p� 1)th power, applying the argument of Lemma 1.13, we have that

Im af \ kerTr = ?, that is, for every s, t 2 Fq, Tr(af(s, t)) = 0 implies af(s, t) = 0.

Again, we see that X 0
1 = Y 0

1 = 1, and Irr(V ) is given as above. In these three cases, we get

• q � 1 characters of degree q, and

• q2 linear characters.

The case of major interest to us here is f(s, t) = (sp � ds)t where d 2 F⇥
q is a (p� 1)-th

power, say d = ep�1. Then by using Lemma 1.13, we find that

X 0
1 = {x1(s) | sp � ep�1s = 0} = {x1(s) | s 2 eFp}

and

X 0
2 = {x2(t) | Tr(atTe) = 0} = {x2(t) | t 2 (e�p/a)Fp}.

Now for c1, c2 2 Fp we define the characters �ac1,c2 2 Irr(X 0
1X2Z/(X̃2 ker�a)) by

�ac1,c2(x1(es1)x2((e
�p/a)s2)z(t)) = �(c1s1 + c2s2 + at)
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for every s1, s2 2 Fp and t 2 Fq. Then we have

Irr(V ) = {�b1,b2 | b1, b2 2 Fq} [ {�a
c1,c2

| a 2 F⇥
q , c1, c2 2 Fp},

where �a
c1,c2

= IndV
X0

1X2Z
Inf

X0
1X2Z

X0
1X2Z/(X̃2 ker�a)

�ac1,c2 . In this case, we get

• p2(q � 1) characters of degree q/p, and

• q2 linear characters.

3.2 Adapting the reduction lemma for nonabelian cores

Let C = (S,Z,A,L,K) be a nonabelian core. The set S is a quattern corresponding to

the pattern �+ \ A and its normal subset K. Further, we have Z = Z(S) \ D(S) as C is

a nonabelian core, and we let Z = {↵i1 , . . . ,↵i
m

}. For each a = (ai1 , . . . , aim) 2 (F⇥
q )

m, we

define the map µ = µa : XZ ! Fq by µ(xi
h

(t)) = ai
h

t for h = 1, . . . ,m. Then

� = �a = � � µa : XZ �! C⇥

is a linear character of XZ .

We give a method to analyse the characters in Irr(XS | �). We note that the nature of

the resulting parametrization and construction of the characters may depend on the choice

of a, and we see instances of this dependence in most examples in Section 4.3. Further we

remark that we do not assert that this method is guaranteed to work for every nonabelian

core, though it does apply for all the cores that we consider in Chapters 4 and 5.

The setting throughout this section is as follows. We define V = XS/ kerµ, and we let

Z = XZ/ kerµ. Since kerµ ✓ ker�, we have that � factors through Z and we also write

� for this character of Z. Then we have a bijection between Irr(V | �) and Irr(XS | �) by
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inflating over kerµ, and we work in Irr(V | �) rather than in Irr(XS | �). Given ↵ 2 S \ Z

we identify X↵ with its image in V .

We aim to find subsets I and J of S \ Z such that the following hold.

• |I| = |J |,

• H = XS\(I[Z)Z is a subgroup of V ,

• Y = XJ  Z(H), and

• Y Z is a normal subgroup of V .

We note that this implies that

• X = XI is a transversal of H in V .

Under these assumptions, we notice that the following property holds, namely

for every ↵ 2 J and � 2 S, we have that 2↵ + � /2 S. (3.2.1)

In fact, if ↵ 2 J and � 2 S, we have ↵ + � 2 S \ I since Y Z E V . If ↵ + � 2 Z, then it is

clear that 2↵+� /2 S. Otherwise, ↵+� 2 S \ (I [Z), and since Y  Z(H) then 2↵+� /2 S

in this case as well.

We would like to apply the reduction lemma in this case. Conditions (i)–(iv) do hold,

but condition (v) may not be satisfied, so we aim to adapt the situation slightly.

We consider the inflation µ̂ of µ to Y Z and let �̂ = � � µ̂ be the inflation of � to Y Z.

For v 2 V , we consider the map  v : Y ! Fq given by  v(y) = µ̂([v, y]). For v 2 V and

y1, y2 2 Y , we have that

µ̂([v, y1y2]) = µ̂([v, y2][v, y1]
y2) = µ̂([v, y2][v, y1]) = µ̂([v, y1][v, y2]) = µ̂([v, y1]) + µ̂([v, y2]),
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where we used the facts that Y Z is abelian and that [V, Y ] ✓ Y Z, since Y Z EV . Moreover,

if S = {�1, . . . , �m} and J = {↵1, . . . ,↵k}, then by what is observed in (3.2.1) we have that

[x�1(s1) · · ·x�m(sm), x↵1(t1) · · ·x↵k(tk)] =
Y

i1,...,im>0, j=1,...,k:
i1�1+···+im�m+↵j2�+

xi1�1+···+im�m+↵j (d
�1,...,�m,↵j

i1,...,im,j s

i1
1 · · · simm tj)

for some d
�1,...,�m,↵

j

i1,...,im,j 2 Z. We see by the right hand side of the above equality that this

expression is linear in t1, . . . , tk once we apply µ̂. Therefore  v is Fq-linear, that is,  v

belongs to the dual space Y ⇤ = Hom(Y,Fq) of Y . We let

Y 0 =
\

v2V

ker( v) = {y 2 Y | vµ̂(y) = µ̂(y) for all v 2 V }.

Then Y 0 is an Fq-subspace of Y ⇠= F|J |
q . Also, we define

H̃ = StabV (µ̂) = {v 2 V | vµ̂ = µ̂}.

Then H̃ is a subgroup of V and H̃ = X 0H for X 0 = {x 2 X | xµ̂ = µ̂}.

To prove that X 0 and Y 0 have the same cardinality we assume, for the rest of this chapter,

that

W := { v | v 2 V } is an Fq-subspace of Y ⇤.

This condition is easily checked to hold for all nonabelian cores that we examine when G is

of rank 5 or less, by looking at the form of Equation (3.2.3) defined below in each of these

cases.

Lemma 3.1. |X 0| = |Y 0|.

Proof. We have that the annihilator AnnY (W ) of W is Y 0 by definition. Hence we have

dimY = dimY 0 + dimW , that is, |Y |/|Y 0| = |W |.
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Now let us call µ̂V the V -orbit of µ̂ in Hom(Y Z,Fq). For v, v0 2 V we have that

 v =  v0 () µ̂([v, y]) = µ̂([v0, y]) for all y 2 Y () µ̂(yv) = µ̂(yv
0
) for all y 2 Y,

then the map

µ̂V �! W

µ̂v 7!  v

is well-defined and injective. It is clear that it is also surjective. Therefore, we have |W | =

|µ̂V |. Now by the orbit-stabilizer theorem [Is2, Theorem 1.4], we have that

|µ̂V | = |V |/StabV (µ̂) = |V |/|H̃| = |X|/|X 0|.

Combining the above equalities, we get

|Y |/|Y 0| = |W | = |µ̂V | = |X|/|X 0|.

Since |Y | = |X|, the claim follows.

Moreover, we have the following property about X 0.

Lemma 3.2. Let x 2 X be such that x�̂ = �̂. Then x 2 X 0.

Proof. We show that for such x we have xµ̂ = µ̂. The hypothesis is equivalent to

� � xµ̂ = � � µ̂, that is, � � (xµ̂� µ̂) = 1. (3.2.2)

For y 2 Y and z 2 Z, we have
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xµ̂(yz) = µ̂(yxzx) = xµ̂(y) + µ̂(z) = µ̂([y, x]) + µ(z) = � x(y) + µ(z),

then by what observed in (3.2.1), the same argument used to prove that  v is Fq-linear

applies to prove that xµ̂ is Fq-linear. Hence xµ̂� µ̂ is also Fq-linear. Therefore the image of

xµ̂ � µ̂ is either 0 or Fq. But if it were Fq, then Equation (3.2.2) would imply �(c) = 1 for

every c 2 Fq, which is a contradiction. Then we have xµ̂ = µ̂, that is, x 2 X 0.

We write I = {↵i1 , · · · ,↵i
m

} and J = {↵j1 , · · · ,↵j
m

}, such that i1  · · ·  im and

j1  · · ·  jm. In general, Y 0 and X 0 can be determined by the following equation,

µ̂([x↵
j1
(sj1) · · · x↵

j

m

(sj
m

), x↵
i1
(ti1) · · · x↵

i

m

(ti
m

)]) = 0. (3.2.3)

We note that as the map  x for x 2 X is Fq-linear, the left hand side of Equation (3.2.3) is

linear in sj1 , . . . , sjm . Therefore, the values of sj1 , . . . , sjm such that Equation (3.2.3) holds

for every ti1 , . . . , tim form an Fq-subspace of Y , which determines Y 0.

Under an additional assumption on Y , we are able to apply the reduction lemma in the

following proposition. We define H̄ to be the preimage of H̃ in XS .

Proposition 3.3. Suppose that there exists a subgroup Ỹ of Y such that Y = Y 0 ⇥ Ỹ and

[X, Ỹ ] ✓ Ỹ Z. Then we have a bijection

Irr(H̃/Ỹ | �) ! Irr(V | �)

� 7! IndV
H̃
InfH̃

H̃/Ỹ
�

Consequently we have a bijection

Irr(H̃/Ỹ | �) ! Irr(XS | �)

� 7! IndXS
H̄

InfH̄
H̃/Ỹ

�

71



Proof. We want to check that H̃, X̃, Ỹ and Z satisfy all the assumptions of the reduction

lemma as subgroups of V with respect to � 2 Irr(Z). Clearly we have that Z  Z(V ) and

Ỹ \Z = 1. By assumption, we have that X normalizes Ỹ Z, and we have that H centralizes

Ỹ Z, so Ỹ Z E V . Since Ỹ  Y  Z(H), we have that Ỹ is normalized by H. Moreover, if

x0 2 X 0 and y 2 Y , by definition of X 0 we have that

µ̂(y�1yx
0
) = µ̂(y�1) + µ̂(yx

0
) = 0,

and since ker µ̂ = Y kerµ we have that X 0 normalizes Y . Along with the assumption that

[X, Ỹ ] ✓ Ỹ Z, we deduce that X 0 normalizes Ỹ . Hence Ỹ E H̃.

Now we are left to check condition (v) of the reduction lemma. We write �̃ 2 Irr(Ỹ Z)

for the inflation of � to Ỹ Z, and note that �̃ = �̂|Ỹ Z . Let X̃ be a transversal of H̃ in V .

Assume that x̃1�̃ = x̃2�̃ for x̃1, x̃2 2 X̃. Let y 2 Y and z 2 Z and write y = y0ỹ, where

y0 2 Y 0 and ỹ 2 Ỹ . We have

x̃1�̂(y0ỹz) = �̂(y0x̃1)�̃(ỹx̃1)�(z)

= �̂(y0)(x̃1�̃)(ỹ)�(z)

= �̂(y0x̃2)(x̃2�̃)(ỹ)�(z)

= �̂(y0x̃2)�̂(ỹx̃2)�(z)

= x̃2�̂(y0ỹz).

In the above sequence of equalities we use that �̂(y0x̃1) = �̂(y0) = �̂(y0x̃2) by definition of Y 0,

that ỹx̃1 , ỹx̃2 2 Ỹ Z since [X, Ỹ ] ✓ Ỹ Z, and that x̃1�̃ = x̃2�̃ by assumption. Hence we have

x̃1x̃
�1
2 �̂ = �̂. By Lemma 3.2, this implies x̃1x̃

�1
2 2 X 0 and thus x̃1 = x̃2 as X̃ is a transversal

of H̃ in V . By Lemma 3.1, we have that |X 0| = |Y 0|. We can then apply the reduction

lemma to deduce the first bijection of the claim.
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Now we notice that the assumptions of Lemma 1.8 apply with N = kerµ, H = H̄ and

G = XS . Then we have

InfXS
V IndV

H̃
= IndXS

H̄
InfH̄

H̃
,

which yields the second bijection in the claim.

Remark 3.4. Let us suppose that [X, Y ] ✓ Z. Then we may take an arbitrary complement

Ỹ of Y 0 in Y , and the assumption [X, Ỹ ] ✓ Ỹ Z in Proposition 3.3 is obviously satisfied.

If we assume that Y 0 is central in H̃/Ỹ , then we can extend � 2 Irr(Z) to Y 0. This is

very useful to apply again the reduction lemma in H̃/Ỹ with respect to such an extension

of �, as we will see in type D4 in Section 4.2 and in type F4 in Section 4.3.

Remark 3.5. Suppose that Proposition 3.3 applies and let  2 Irr(H̃/Ỹ | �). Then we have

that IndXS
H̄

InfH̄
H̃/Ỹ

 2 Irr(XS), and

 = IndU
XS[K

InfXS[K
XS

IndXS
H̄

InfH̄
H̃/Ỹ

 2 Irr(U)C

by Theorem 2.11. Since XK E U , we have that H̄XK is a subgroup of XS[K, and of course

XK E H̄XK. Then XK, H̄XK and XS[K play the roles of N , H and G respectively as defined

in Lemma 1.8. We can change the order of inflation and induction accordingly, and we get

 = IndU
H̄XK

InfH̄XK
H̃/Ỹ

 .

In Chapters 4 and 5, we apply this argument (sometimes iteratively) to show that each

irreducible character considered there can be obtained as an induced character of a linear

character.

A particular case in which Proposition 3.3 applies repeatedly occurs in the sequel. Sup-

pose that Y 0 = 1 for all choices of �, and Y is normal in H̄. We have H̄/Y = XS\(I[J ).
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Defining

 = IndA[I InfK[J  

for  2 Irr(XS\(I[J ))Z sets up a bijection from Irr(XS\(I[J ))Z to Irr(U)C.
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CHAPTER 4

PARAMETRIZATION OF Irr(U) IN RANK 4

In this chapter we apply the technique presented in Chapter 3 to split finite groups of

Lie type of rank 4 in order to determine the irreducible characters of U . This technique,

together with some more computations detailed here, allows us to give a full parametrization

of Irr(U) in all these cases. We remark that for each of the types B4 and D4 we have just

one nonabelian core, and for type F4 we have six nonabelian cores. The rest of this chapter

is split into sections according to the examination of such nonabelian cores. For each core

C = (S,Z,A,L,K) examined in Chapters 4 and 5, we give explicitly S, Z, A and L; we

note that K can then easily be determined.

The nonabelian core of UB4 is dealt with in Section 4.1. Under the assumption p � 3,

it is easy to understand the behavior of such a core. There is some more work to do for

the nonabelian core of UD4 when p = 2; the analysis of this core is contained in Section 4.2.

We recall that this case has already been discussed in [HLM11], and analysed with similar

methods. Finally, we will be able to deal with all six nonabelian cores in type F4; this is done

in Section 4.3. We remark the di↵erent behavior of the prime p = 3 in the parametrization

of Irr(UF4); in particular, this shows up in the investigation of the fifth core of F4 examined

in this chapter.
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4.1 Parametrization of Irr(UB4)

We denote the only nonabelian core of B4 by CB4 . We describe in this section the representa-

tion theory of the corresponding quattern group. We can then complete the parametrization

of Irr(UB4), given in Table D.1. In particular, we can determine the expressions of the num-

bers of irreducible characters of UB4 of a fixed degree as polynomials in v := q � 1. These

are collected in Table 4.1.

D k(UB4 , D)

1 v4 + 4v3 + 6v2 + 4v + 1

q 3v4 + 10v3 + 11v2 + 4v

q2 v6 + 6v5 + 16v4 + 23v3 + 15v2 + 3v

q3 2v5 + 10v4 + 18v3 + 13v2 + 3v

q4 2v5 + 11v4 + 19v3 + 11v2 + v

q5 v5 + 6v4 + 11v3 + 6v2 + v

q6 v4 + 3v3 + 2v2

Table 4.1: Numbers of irreducible characters of UB4 of fixed degree, for v = q� 1 and p 6= 2.

The core CB4 occurs for ⌃ = {↵13,↵14}. Correspondingly, we have

• S = {↵2,↵3,↵4,↵6,↵7,↵8,↵10,↵11,↵13,↵14},

• Z = {↵10,↵13,↵14},

• A = {↵1,↵5} and

• L = {↵9,↵12}.

We see that the method of Section 3.2 applies, by taking

• Y = XJ , where J = {↵6,↵7,↵11},
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↵14

↵10 ↵13

↵2

↵4

↵8

↵6

↵7

↵11

↵3

Figure 4.1: A picture representing the configuration of CB4 .

• X = XI , where I = {↵2,↵4,↵8}, then

• H = X3Y Z.

We explain in this discussion the meaning of Figure 4.1 and of the following pictures that

represent the structure of a fixed nonabelian core, and how to take advantage of them to find

candidates for X and Y in our analysis. The vertices of the graph are labelled by roots in

S. We join two roots ↵, � 2 S with � 2 S if ↵+ � = �; when a vertex has degree at least 3,

the relations between roots collected in Appendix B determine how to relate multiple edges

from a vertex. The roots in Z are in circles.

We now determine the roots in J and I, which are in straight and dashed boxes in Figure

4.1. For our choice of Y , we decide to put the highest root of S \ Z in J . We will see that

this choice works to find suitable X and Y in most of the nonabelian cores examined in this

work; in the other cases, as in the case of the core C6 in F4, this will work by adding the

highest root of S \ Z to I instead. We then put ↵11 in J in this case. We notice that

↵2 + ↵11 = ↵13 2 Z and ↵4 + ↵11 = ↵14 2 Z,
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then we put ↵2 and ↵4 in I. Moreover, we have that

↵2 + ↵7 = ↵10 2 Z and ↵4 + ↵6 = ↵10 2 Z,

and we put ↵6 and ↵7 in J . Finally, we notice that

↵6 + ↵8 = ↵13 2 Z and ↵7 + ↵8 = ↵14 2 Z,

and we add ↵8 to I. Along with the other three relations in S, namely

↵2 + ↵3 = ↵6, ↵3 + ↵4 = ↵7 and ↵3 + ↵8 = ↵11,

we now easily check that assumptions (i)–(iv) of the reduction lemma do hold with Y = XJ

and X = XI , where J = {↵6,↵7,↵11} and I = {↵2,↵4,↵8}.

Let us examine Equation (3.2.3) in this case. It gives

s6(a10t2 + a14t8) + s7(�a10t4 � a13t8) + s11(�a13t2 � a14t4) = 0.

The prime p is not very bad for B4, hence p 6= 2. In this case, the above equation is satisfied

for every s6, s7, s11 2 Fq if and only if t2 = t4 = t8 = 0, and vice versa. This means that we

get Y 0 = 1, and that Y is normal in H̄. Moreover, we have that H̄/Y ⇠= X3XZ is abelian.

For b3 2 Fq we denote by �a10,a13,a14b3
2 Irr(XS\(I[J ))Z the linear character as in Section

2.4. Then the assumption of Remark 3.5 holds. Hence we obtain

Irr(U)CB4 = {�a10,a13,a14
b3

| a10, a13, a14 2 F⇥
q , b3 2 Fq},

where �a10,a13,a14
b3

= IndA[I InfK[J �
a10,a13,a14
b3

. The family Irr(U)CB4 consists of q(q � 1)3

characters of degree q5.
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4.2 Parametrization of Irr(UD4)

We have only one nonabelian core in type D4, which we denote by CD4 . The examination of

this core allows us to complete the parametrization of Irr(UD4); this is given in Table D.3.

The parametrization of Irr(UD4) was already given in [HLM11], and the one provided here

agrees with it. We provide in Table 4.2 the number of irreducible characters of every fixed

degree in UD4(q) for every p, expressed as a polynomial in v = q � 1. We notice that such

expressions are uniform for p � 3, but the di↵erent behavior of the core CD4 for p = 2 yields

in this case a di↵erent formula for k(UD4(q), q4), as well as irreducible characters of degree

q3/2.

D k(UD4 , D)

1 v4 + 4v3 + 6v2 + 4v + 1

q v5 + 5v4 + 10v3 + 9v2 + 3v

q2 3v4 + 9v3 + 9v2 + 3v

q3/2
0, if p � 3

4v4, if p = 2

q3
v5 + 5v4 + 10v3 + 7v2 + v, if p � 3

v5 + 4v4 + 10v3 + 7v2 + v, if p = 2

q4 v4 + 3v3 + 3v2 + v

Table 4.2: Numbers of irreducible characters of UD4 of fixed degree, for v = q � 1.

The core CD4 occurs for ⌃ = {↵8,↵9,↵10}, and we have that

• S = {↵1, . . . ,↵10},

• Z = ⌃ = {↵8,↵9,↵10},

• A = ? and

• L = ?.
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↵10

↵8 ↵9

↵1

↵2

↵4

↵5

↵6

↵7

↵3

Figure 4.2: A picture representing the configuration of CD4 .

Using the method of Section 3.2, we take

• Y = XJ , where J = {↵5,↵6,↵7},

• X = XI , where I = {↵1,↵2,↵4}, then

• H = X3Y Z.

In this case Equation (3.2.3) is

s5(a8t2 + a9t4) + s6(a8t1 + a10t4) + s7(�a9t1 � a10t2) = 0.

Let p � 3. Then we get that Y 0 = 1, and that Y is normal in H̄. Furthermore,

H̄/Y ⇠= X3XZ is abelian. For b3 2 Fq we let �a8,a9,a10b3
2 Irr(XS\(I[J ))Z be the linear

character as in the notation of Section 2.4. Then as explained in Remark 3.5 we obtain

Irr(U)p�3
CD4

= {�a8,a9,a10
b3

| a8, a9, a10 2 F⇥
q , b3 2 Fq},

where �a8,a9,a10
b3

= IndA[I InfK[J �
a8,a9,a10
b3

. We have that Irr(U)p�3
CD4

is a family of q(q � 1)3

characters of degree q3.
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Now suppose p = 2. In this case, we have that X 0 = {x1,2,4(t) | t 2 Fq} and Y 0 =

{x5,6,7(s) | s 2 Fq}, where

x1,2,4(t) = x1(a10t)x2(a9t)x4(a8t), and

x5,6,7(s) = x5(a10s)x6(a9s)x7(a8s).

We can take Ỹ = X6X7, and we have H̃/Ỹ = X3X
0Y Z/Ỹ . By Proposition 3.3, we have

that Irr(V | �) is in bijection with Irr(H̃/Ỹ | �).

Let us then consider Irr(H̃/Ỹ | �). We note that Y 0 lies in the centre of H̃/Ỹ . For every

a5,6,7 2 Fq, we let µa5,6,7 : Y 0Z ! Fq be the extension of µ to Y 0Z with µa5,6,7(x5,6,7(t)) =

a5,6,7t, and we let �a5,6,7 be defined by �a5,6,7 = � � µa5,6,7 Then we have that Irr(H̃/Ỹ | �) is

the disjoint union of Irr(H̃/Ỹ | �a5,6,7) over a5,6,7 2 F⇥
q , along with Irr(H̃/Y | �).

A computation in H̃/Ỹ gives

[x3(t), x1,2,4(s)] = x5(a10st)x6(a9st)x7(a8st)x8(a9a10s
2t)x9(a8a10s

2t)x10(a8a9s
2t)

= x5,6,7(st)x8(a9a10s
2t)x9(a8a10s

2t)x10(a8a9s
2t).

Applying µa5,6,7 to this equality, we get

µa5,6,7([x3(t), x1,2,4(s)]) = t(3a8a9a10s
2 + a5,6,7s) = t(a8a9a10s

2 + a5,6,7s).

We notice that the quotient H̃/(Ỹ kerµa5,6,7) = X3X
0Y Z/(Ỹ kerµa5,6,7) is isomorphic to the

three-dimensional group Vf , where

f(s, t) = t(a8a9a10s
2 + a5,6,7s)

is as defined at the end of Section 3.1. We have that Irr(H̃/Ỹ | �a5,6,7) is in bijection with
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Irr(H̃/(Ỹ kerµa5,6,7) | �a5,6,7). Then we can analyse the latter as explained in Section 3.1.

Let a5,6,7 6= 0. We let

W1 := {x1,2,4(a5,6,7s/a8a9a10) | s 2 F2}, W2 := {x3(a8a9a10t/a
2
5,6,7) | t 2 F2}.

We define the characters �
a5,6,7,a8,a9,a10
c1,2,4,c3 for c1,2,4, c3 2 F2 of W1W2Y Z/(Ỹ ker�a5,6,7,a8,a9,a10) as

discussed at the end of Section 3.1. Then we get the family of characters

Irr(U)1,p=2
CD4

= {�a5,6,7,a8,a9,a10
c1,2,4,c3

| a5,6,7, a8, a9, a10 2 F⇥
q , c1,2,4, c3 2 F2},

where

�a5,6,7,a8,a9,a10
c1,2,4,c3

= IndU
X0W2Y XZXK

InfX
0W2Y XZXK

W1W2Y Z/(Ỹ ker�a5,6,7,a8,a9,a10 )
�a5,6,7,a8,a9,a10c1,2,4,c3

.

We have that Irr(U)1,p=2
CD4

consists of 4(q � 1)4 characters of degree q3/2.

Finally, let a5,6,7 = 0. We analyse in this case the set Irr(H̃/Y | �) by using the arguments

for the three-dimensional group Vf where f(s, t) = a8a9a10s
2t. Therefore, we get the family

of characters

Irr(U)2,p=2
CD4

= {�a8,a9,a10 | a8, a9, a10 2 F⇥
q },

where

�a8,a9,a10 = IndU
X0Y XZXK

InfX
0Y XZXK

Z �a8,a9,a10 .

We have that Irr(U)2,p=2
CD4

consists of (q � 1)3 characters of degree q3.

We are done also with the case p = 2, since

Irr(U)p=2
CD4

= Irr(U)1,p=2
CD4

[ Irr(U)2,p=2
CD4

.
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4.3 Parametrization of Irr(UF4)

Below we consider the remaining nonabelian cores in U = UF4 . We denote these cores by

C1, C2, C3, C4, C5 and C6. For each of them, we analyse Irr(XS)Z before explaining how this

parametrizes Irr(U)Ci for i = 1, . . . , 6 and how these characters can be obtained by inducing

linear characters using Proposition 3.3 and Remark 3.5. We notice that if C = (S,Z,A,L,K)

and C0 = (S 0,Z 0,A0,L0,K0) are cores of UF4 , then (|S|, |Z|) 6= (|S 0|, |Z 0|). In particular, XS

is not isomorphic to XS0 .

After the study of C1, . . . ,C6, we can finally describe in detail the set Irr(UF4). The

parametrization of the irreducible characters is given in Table D.4. On the one hand, the

expressions of numbers of irreducible characters of fixed degrees of UF4 for p � 5, collected

in Table 4.3, are uniform as polynomials in v = q � 1. On the other hand, as in the case of

UD4(2e), we note from Table 4.3 the di↵erence between the expressions as polynomials in

v = q�1 of the numbers k(UF4(pe), D) for p � 5 and the ones of the numbers k(UF4(3e), D);

in particular, the expression of k(UF4(q), q4) does not have integer coe�cients for p = 3. In

this case we also get some irreducible characters of degree q4/3. The di↵erent behavior of

p = 3 with respect to every p � 5 shows up in the study of the cores C4, C5 and C6.

The nonabelian core C1. This core occurs for ⌃ = {↵22}. In this case, we have

• S = {↵1,↵2,↵5,↵9,↵11,↵14,↵16,↵18,↵20,↵22},

• Z = {↵14,↵20,↵22},

• A = {↵3,↵4,↵6,↵7,↵10,↵13} and

• L = {↵8,↵12,↵15,↵17,↵19,↵21}.

We follow the discussion in Section 3.2. We have

• Y = XJ , where J = {↵5,↵11,↵18},
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D k(UF4 , D)

1 v4 + 4v3 + 6v2 + 4v + 1

q v5 + 6v4 + 13v3 + 12v2 + 4v

q2 v6 + 7v5 + 20v4 + 28v3 + 18v2 + 4v

q3 4v5 + 20v4 + 33v3 + 21v2 + 4v

q4/3
0, if p � 5

9v4/2, if p = 3

q4
v8 + 8v7 + 28v6 + 58v5 + 79v4 + 66v3 + 24v2 + 2v, if p � 5

v8 + 8v7 + 28v6 + 59v5 + 161v4/2 + 67v3 + 24v2 + 2v, if p = 3

q5
v7 + 7v6 + 22v5 + 39v4 + 37v3 + 15v2 + 2v, if p � 5

v7 + 7v6 + 23v5 + 41v4 + 37v3 + 15v2 + 2v, if p = 3

q6
2v6 + 14v5 + 36v4 + 40v3 + 17v2 + 2v, if p � 5

2v6 + 14v5 + 36v4 + 39v3 + 17v2 + 2v, if p = 3

q7 2v6 + 13v5 + 32v4 + 34v3 + 13v2 + 2v

q8 4v5 + 15v4 + 19v3 + 8v2

q9 v5 + 7v4 + 11v3 + 5v2

q10 v4 + 3v3 + v2

Table 4.3: Numbers of irreducible characters of UF4 of fixed degree, for v = q� 1 and p 6= 2.

• X = XI , where I = {↵2,↵9,↵16}, then

• H = X1Y Z.

Equation (3.2.3) now yields

s5(�a14t9 � a20t16) + s11(�a14t2 + a22t16) + s18(�a20t2 + a22t9) = 0.

We recall that p 6= 2 since p is not a very bad prime for F4. We then easily get Y 0 = X 0 = 1,

and Y is normal in H̄. Moreover, we have that H̄/Y ⇠= X1XZ is abelian.

For b1 2 Fq we denote by �a14,a20,a22b1
2 Irr(XS\(I[J ))Z the linear character as defined in
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↵22

↵14 ↵20

↵2

↵9

↵16

↵5

↵11

↵18

↵1

Figure 4.3: A picture representing the configuration of C1 of F4.

Section 2.4. The conditions of Remark 3.5 are then satisfied. Hence we obtain

Irr(U)CB4 = {�a14,a20,a22
b1

| a14, a20, a22 2 F⇥
q , b1 2 Fq},

where �a14,a20,a22
b1

= IndA[I InfK[J �
a14,a20,a22
b1

. The family Irr(U)C1 consists of q(q � 1)3 char-

acters of degree q9.

The nonabelian core C2. This core occurs for ⌃ = {↵11,↵13}, and we have

• S = {↵1,↵2,↵4,↵5,↵6,↵7,↵9,↵10,↵11,↵13},

• Z = {↵5,↵10,↵11,↵13},

• A = {↵3} and

• L = {↵8}.

Using the method of Section 3.2, we take

• Y = XJ , where J = {↵2,↵6,↵9},

• X = XI , where I = {↵1,↵4,↵7} and then we have that
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↵13

↵11

↵1

↵5

↵2 ↵9

↵10

↵7 ↵4

↵6

Figure 4.4: A picture representing the configuration of C2 of F4.

• H = Y Z.

In this case Equation (3.2.3) is

s2(�a5t1 + a10t7) + s6(a10t4 � a13t7) + s9(�a11t1 + a13t4) = 0.

For a11 6= a5a
2
13/a

2
10, we have Y

0 = 1 and Y is normal in H̄. Then as explained in Remark

3.5 we get the family of characters

Irr(U)1C2 = {�a5,a10,a⇤11,a13 | a5, a10, a⇤11, a13 2 F⇥
q , a

⇤
11 6= a5(a13/a10)

2} ✓ Irr(U)C2 ,

where

�a5,a10,a⇤11,a13 = IndA[I InfK[J �
a5,a10,a⇤11,a13 .

We have that Irr(U)1C2 consists of (q � 1)3(q � 2) characters of degree q4.

For a11 = a5a
2
13/a

2
10, we have X 0 = X1,4,7 = {x1,4,7(t) | t 2 Fq} and Y 0 = X2,6,9 =

{x2,6,9(s) | s 2 Fq}, where

x1,4,7(t) = x1(a
2
10t)x4(a5a13t)x7(a5a10t) and x2,6,9(s) = x2(a

2
13s)x6(a10a13s)x9(�a210s).
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We can take any complement of Y 0 in Y , and we choose Ỹ = X2X9. Then we have H̃/Ỹ =

X 0Y 0Z, which is abelian. We denote by �a5,a10,a13 the character �a5,a10,a11,a13 with a11 =

a5a
2
13/a

2
10. For b1,4,7, b2,6,9 2 Fq, we define �a5,a10,a13b1,4,7,b2,6,9

2 Irr(X 0Y 0Z) by extending �a5,a10,a13 ,

and setting �a5,a10,a13b1,4,7,b2,6,9
(x1,4,7(t)) = �(b1,4,7t) and �a5,a10,a13b1,4,7,b2,6,9

(x2,6,9(t)) = �(b2,6,9t) for every

t 2 Fq. Then as explained in Remark 3.5 we get the family of characters

Irr(U)2C2 = {�a5,a10,a13
b1,4,7,b2,6,9

| a5, a10, a13 2 F⇥
q , b1,4,7, b2,6,9 2 Fq},

where

�a5,a10,a13
b1,4,7,b2,6,9

= IndU
H̄XK

InfH̄XK
H̃/Ỹ

�a5,a10,a13b1,4,7,b2,6,9
.

We have that Irr(U)2C2 consists of q2(q � 1)3 characters of degree q3.

We have that Irr(U)C2 = Irr(U)1C2 [ Irr(U)2C2 and this gives all the irreducible characters

corresponding to C2.

The nonabelian core C3. This core occurs for ⌃ = {↵12,↵16}, and we have

• S = {↵1,↵2,↵3,↵5,↵6,↵7,↵8,↵9,↵10,↵12,↵16},

• Z = {↵8,↵9,↵12,↵16},

• A = {↵4} and

• L = {↵13}.

Using the method of Section 3.2, we take

• Y = XJ , where J = {↵5,↵6,↵10},

• X = XI , where I = {↵1,↵3,↵7} and then we have that

• H = X2Y Z.
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Figure 4.5: A picture representing the configuration of C3 of F4.

In this case Equation (3.2.3) is

s5(a8t3 + a12t7) + s6(�a8t1 � 2a9t3) + s10(�a12t1 + 2a16t7) = 0.

For a16 6= a9a
2
12/a

2
8, we have Y 0 = 1 and Y is normal in H̄. Further, H̄/Y = X2XZ , so

as explained in Remark 3.5 we get the family of characters

Irr(U)1C3 = {�a8,a9,a12,a⇤16
b2

| a8, a9, a12, a⇤16 2 F⇥
q , a

⇤
16 6= a9(a12/a8)

2, b2 2 Fq} ✓ Irr(U)C3 ,

where

�
a8,a9,a12,a⇤16
b2

= IndA[I InfK[J �
a8,a9,a12,a⇤16
b2

,

and �
a8,a9,a12,a⇤16
b2

2 Irr(H̄/Y ) is defined in the usual way. We have that Irr(U)1C3 consists of

q(q � 1)3(q � 2) characters of degree q4.

For a16 = a9a
2
12/a

2
8, we have X

0 = {x1,3,7(t) | t 2 Fq} and Y 0 = {x5,6,10(s) | s 2 Fq}, where

x1,3,7(t) = x1(2a9a12t)x3(�a8a12t)x7(a
2
8t) and x5,6,10(s) = x5(2a9a12s)x6(a8a12s)x10(�a28s).
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We can take any complement of Y 0 in Y and we choose Ỹ = X5X10. Then we have

H̃/Ỹ = X2X
0Y Z/Ỹ and Y 0 ✓ Z(H̃/Ỹ ). From now on, we denote by �a8,a9,a12 the char-

acter �a8,a9,a12,a16 with a16 = a9a
2
12/a

2
8.

A computation in H̃/Ỹ gives

[x2(s), x1,3,7(t)] = x5,6,10(�st).

Therefore, H̃/Ỹ is the direct product of Z and X2X
0Y/Ỹ . Further X2X

0Y/Ỹ is isomorphic

to the three-dimensional group Vf for f(s, t) = �st from Section 3.1.

We label the linear characters of X2X
0Y/Ỹ by �b2,b1,3,7 . By tensoring these characters

with �a8,a9,a12 and then applying IndU
H̄XK

InfH̄XK
H̃/Ỹ

we obtain the family of characters

Irr(U)2C3 = {�a8,a9,a12
b2,b1,3,7

| a8, a9, a12 2 F⇥
q , b2, b1,3,7 2 Fq},

which consists of q2(q � 1)3 characters of degree q3.

Let a5,6,10 2 F⇥
q . We write �a8,a9,a12,a5,6,10 for the linear character of Y 0Z defined by

extending �a8,a9,a12 to Y 0 in the usual way. By applying IndU
X0Y XZXK

InfX
0Y XZXK

Y Z/Ỹ
to these

linear characters we obtain the family of characters

Irr(U)3C3 = {�a8,a9,a12,a5,6,10 | a8, a9, a12, a5,6,10 2 F⇥
q },

which consists of (q � 1)4 characters of degree q4.

We have Irr(U)C3 = Irr(U)1C3 [ Irr(U)2C3 [ Irr(U)3C3 and this gives all the irreducible char-

acters corresponding to C3.

The nonabelian core C4. This core occurs for ⌃ = {↵14,↵15}, and we have

• S = {↵2,↵4,↵6,↵7,↵8,↵10,↵11,↵14,↵15},
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Figure 4.6: A picture representing the configuration of C4 of F4.

• Z = {↵10,↵14,↵15},

• A = {↵1,↵3,↵5} and

• L = {↵9,↵12,↵13}.

Using the method of Section 3.2, we take

• Y = XJ , where J = {↵6,↵7,↵11},

• X = XI , where I = {↵2,↵4,↵8} and then we have that

• H = Y Z.

In this case Equation (3.2.3) is

s6(a10t4 + 2a14t8) + s7(�a10t2 + a15t8) + s11(�a14t2 + a15t4) = 0.

For p � 5, we have Y 0 = 1 and Y is normal in H̄. So as explained in Remark 3.5 we

obtain

Irr(U)p�5
C4 = {�a10,a14,a15 | a10, a14, a15 2 F⇥

q }
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by applying IndA[I InfK[J to the characters in Irr(XS\(I[J ))Z . We have that Irr(U)p�5
C4

consists of (q � 1)3 characters of degree q6.

Now suppose p = 3. We have X 0 = {x2,4,8(t) | t 2 Fq} and Y 0 = {x6,7,11(s) | s 2 Fq},

where

x2,4,8(t) = x2(a15t)x4(a14t)x8(a10t) and x6,7,11(s) = x6(a15s)x7(a14s)x11(�a10s).

We can take Ỹ = X6X11, and we have that H̃/Ỹ ⇠= X 0Y 0Z is abelian. This yields

Irr(U)p=3
C4 = {�a10,a14,a15

b2,4,8,b6,7,11
| a10, a14, a15 2 F⇥

q , b2,4,8, b6,7,11 2 Fq},

where these characters are obtained by applying IndUH̄XK
InfH̄XK

H̃/Ỹ
to the linear characters

�a10,a14,a15b2,4,8,b6,7,11
of H̃/Ỹ , which are labelled in the usual way. We have that Irr(U)p=3

C4 consists of

q2(q � 1)3 characters of degree q5.

The nonabelian core C5. This core occurs for ⌃ = {↵11,↵12,↵13}, and we have

• S = {↵1, . . . ,↵13},

• Z = ⌃ = {↵11,↵12,↵13},

• A = ? and

• L = ?.

Using the method of Section 3.2, we take

• Y = XJ , where J = {↵5,↵8,↵9,↵10},

• X = XI , where I = {↵1,↵3,↵4,↵7} and then we have that

• H = X2X6Y Z.
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In this case, Equation (3.2.3) is

s5(�a11t
2
3+a12t7)+s8(�2a11t3+a12t4)+s9(�a11t1+a13t4)+s10(�a12t1�a13t3) = 0. (4.3.1)

Let p � 5. We want to compute X 0. By choosing s5 = 0, we must have, for every

s8, s9, s10 in Fq,

s8(�2a11t3 + a12t4) + s9(�a11t1 + a13t4) + s10(�a12t1 � a13t3) = 0. (4.3.2)

This yields a linear system of equations in t1, t3, t4 given by setting each expression in the

brackets equal to zero. The determinant of the associated matrix is 3a11a12a13 6= 0. There-

fore, this implies t1 = t3 = t4 = 0. Equation (4.3.1) then becomes a12s5t7 = 0 in this case,

which of course holds for every s5 2 Fq if and only if t7 = 0. Hence X 0 = 1.

We also have that Y 0 = 1. Namely, we can rewrite Equation (4.3.1) as

t1(�a11s9 � a12s10) + t4(a12s8 + a13s9) + t7(a12s5)� 2a11s8t3 � a13s10t3 � a11s5t
2
3 = 0.

For this equality to be satisfied for every t1, t3, t4, t7 2 Fq, we notice first that s5 = 0 by

choosing t1 = t3 = t4 = 0 and t7 = 1. Then we can rewrite the above equation as

t1(�a11s9 � a12s10) + t4(a12s8 + a13s9) + t3(�2a11s8 � a13s10) = 0. (4.3.3)

This gives rise to a system of equations in s8, s9, s10, and the determinant of the associated

matrix is again 3a11a12a13 6= 0. Hence s8 = s9 = s10 = 0, and Y 0 = 1.

Then X 0 = Y 0 = 1, and Y is normal in H̄. Also we have H̄/Y ⇠= X2X6XZ is abelian. For

b2, b6 2 Fq we let �
a11,a12,a13
b2,b6

2 Irr(XS\(I[J ))Z be the linear character with the usual notation.
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Then as explained in Remark 3.5 we obtain

Irr(U)p�5
C5 = {�a11,a12,a13

b2,b6
| a11, a12, a13 2 F⇥

q , b2, b6 2 Fq},

where �a11,a12,a13
b2,b6

= IndA[I InfK[J �
a11,a12,a13
b2,b6

. We have that Irr(U)p�5
C5 is a family of q2(q�1)3

characters of degree q4.

Now suppose p = 3. To compute X 0 (respectively Y 0), we see by Equation (4.3.1) that

we get a system of linear equations as in Equation (4.3.2) (respectively Equation (4.3.3)) in

t1, t3, t4 (respectively s8, s9, s10), but now this gives a nontrivial space of solutions. In fact,

we notice that 3a11a12a13 = 0 in this case. Correspondingly, we get X 0 = {x1,3,4,7(t) | t 2 Fq}

and Y 0 = {x8,9,10(s) | s 2 Fq}, where

x1,3,4,7(t) = x1(a13t)x3(�a12t)x4(a11t)x7(�a11a12t
2) and

x8,9,10(s) = x8(a13s)x9(�a12s)x10(a11s).

We can take Ỹ = X5X8X9, and we have H̃/Ỹ = X2X6X
0Y Z/Ỹ . By Proposition 3.3, we

have that Irr(V | �) is in bijection with Irr(H̃/Ỹ | �).

We continue by considering Irr(H̃/Ỹ | �) and note that Y 0 lies in the centre of H̃/Ỹ . For

a8,9,10 2 F⇥
q , we let �a8,9,10 be the extension of � to Y 0Z with �a8,9,10(x8,9,10(t)) = �(a8,9,10t)

for every t 2 Fq. Then Irr(H̃/Ỹ | �) decomposes as the union of Irr(H̃/Ỹ | �a8,9,10) over

a8,9,10 2 F⇥
q along with Irr(H̃/Y | �).

A computation in H̃/Ỹ gives

[x6(s), x1,3,4,7(t)] = x8,9,10(st).

By Lemma 1.12, we have that Irr(H̃/Ỹ | �a8,9,10) is in bijection with Irr(X2Y Z/Ỹ | �a8,9,10).

Further, we have that X2Y Z/Ỹ ⇠= X2Y
0Z is abelian, and we label the linear characters in
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Irr(X2Y Z/Ỹ | �a8,9,10) as �a11,a12,a13,a8,9,10b2
in the usual way. This gives the family of characters

Irr(U)1,p=3
C5

= {�a11,a12,a13,a8,9,10
b2

| a11, a12, a13, a8,9,10 2 F⇥
q , b2 2 Fq},

where by Remark 3.5 we have �
a11,a12,a13,a8,9,10
b2

= IndU
X2X0Y XZXK

InfX2X0Y XZXK
X2Y Z/Ỹ

�
a11,a12,a13,a8,9,10
b2

.

We have that Irr(U)1,p=3
C5 consists of q(q � 1)4 irreducible characters of degree q4.

It remains to consider Irr(H̃/Y | �). We have H̃/Y = X2X
0X6Y Z/Y and X6 is central

in H̃/Y . For a6 2 F⇥
q , we let µa6 : X6Z ! Fq be the extension of µ : Z ! Fq to X6 defined

as usual, and �a6 2 Irr(X6Z) be such that �a6 = � � µa6 . Then Irr(H̃/Y | �) decomposes as

the union of Irr(H̃/Y | �a6) over a6 2 F⇥
q along with Irr(H̃/X6Y | �).

A computation in H̃/Y gives

[x2(t), x1,3,4,7(s)] = x6(�a12st)x11(a
2
12a13s

3t).

We note that the quotient H̃/(Y kerµa6) = X2X
0X6Y Z/(Y kerµa6) is isomorphic to the

three-dimensional group Vf where f(s, t) = a12t(a11a12a13s3� a6s) is as given in Section 3.1,

and we have that Irr(H̃/Y | �a6) is in bijection with Irr(H̃/(Y kerµa6) | �a6). Thus we can

apply the analysis of Irr(Vf ) in Section 3.1. We let d = a6/a11a12a13.

Suppose first that d is a square in Fq. In this case we write a1,6 for a6, and we define

e 2 Fq such that e2 = d. We let

W1 = {x1,3,4,7(es) | s 2 F3} and W2 = {x2((e
�2/a11a

2
12a13)t) | t 2 F3},

and we define �
a11,a12,a13,a1,6
c1,3,4,7,c2 for c1,3,4,7, c2 2 F3 of W1W2X6Y Z/(Y ker�a11,a12,a13,a1,6) as in

Section 3.1. Then we get the family of characters

Irr(U)2,1,p=3
C5 = {�a11,a12,a13,a1,6

c1,3,4,7,c2
| a11, a12, a13 2 F⇥

q , a1,6 2 a11a12a13Sq, c1,3,4,7, c2 2 F3},
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where

�a11,a12,a13,a1,6
c1,3,4,7,c2

= IndU
X0W2X6Y XZXK

InfX
0W2X6Y XZXK

W1W2X6Y Z/(Y ker�a11,a12,a13,a1,6 ) �
a11,a12,a13,a1,6
c1,3,4,7,c2

and Sq denotes the set of nonzero squares in Fq. We have that Irr(U)2,1,p=3
C5 consists of

9(q � 1)4/2 characters of degree q4/3.

Suppose now that d is a nonsquare in Fq. In this case we write a2,6 for a6. We write

�a11,a12,a13,a2,6 for the linear characters of X6Y Z/(Y ker�a11,a12,a13,a2,6) in the usual notation.

As explained in Section 3.1, we get in this case the family of characters

Irr(U)2,2,p=3
C5 = {�a11,a12,a13,a2,6 | a2,6 2 F⇥

q \ (a11a12a13Sq), a11, a12, a13 2 F⇥
q },

where

�a11,a12,a13,a2,6 = IndU
X0X6Y XZXK

InfX
0X6Y XZXK

X6Y Z/(Y ker�a11,a12,a13,a2,6 ) �
a11,a12,a13,a2,6 ,

and Sq is as defined above. We have that Irr(U)2,2,p=3
C5 consists of (q � 1)4/2 characters of

degree q4.

Similarly, we can analyse Irr(H̃/X6Y | �) using the arguments for the three-dimensional

group Vf where f(s, t) = a11a
2
12a13s

3t. Therefore, we get the family of characters

Irr(U)3,p=3
C5 = {�a11,a12,a13 | a11, a12, a13 2 F⇥

q },

where the characters are given by

�a11,a12,a13 = IndU
X0X6Y XZXK

InfX
0X6Y XZXK

X6Y Z/X6Y
�a11,a12,a13 .

We have that Irr(U)3,p=3
C5 consists of (q � 1)3 characters of degree q4.
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Putting this together we obtain

Irr(U)p=3
C5 = Irr(U)1,p=3

C5 [ Irr(U)2,1,p=3
C5 [ Irr(U)2,2,p=3

C5 [ Irr(U)3,p=3
C5 .

The nonabelian core C6. This core occurs for ⌃ = {↵12,↵13,↵14}, and we have

• S = {↵1,↵3,↵4,↵5,↵6,↵7,↵8,↵9,↵10,↵12,↵13,↵14},

• Z = ⌃ = {↵12,↵13,↵14},

• A = {↵2} and

• L = {↵11}.

Using the method of Section 3.2, we take

• Y = XJ , where J = {↵1,↵7,↵8,↵9},

• X = XI , where I = {↵4,↵5,↵6,↵10} and then we have that

• H = X3Y Z.

In this case Equation (3.2.3) is

s1(�a14t
2
4 + a12t10) + s7(�a12t5 + a13t6) + s8(a12t4 � 2a14t6) + s9(a13t4 + a14t5) = 0.

The computations in order to determine X 0 and Y 0 in this case are very similar to the

ones detailed in the case of core C5. For p � 5, we have that Y 0 = 1, and Y is normal in H̄.

Also we have H̄/Y ⇠= X3XZ is abelian. For b3 2 Fq we let �a12,a13,a14b3
2 Irr(XS\(I[J ))Z be

the linear character with the usual notation. Then we obtain

Irr(U)p�5
C6 = {�a12,a13,a14

b3
| a12, a13, a14 2 F⇥

q , b3 2 Fq},
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where �a12,a13,a14
b3

= IndA[I InfK[J �
a12,a13,a14
b3

. We have that Irr(U)p�5
C6 is a family of q(q� 1)3

characters of degree q5.

Now suppose p = 3. We have X 0 = {x4,5,6,10(t) | t 2 Fq} and Y 0 = {x7,8,9(s) | s 2 Fq},

where

x4,5,6,10 = x4(�a14t)x5(a13t)x6(a12t)x10(a12a14t
2) and x7,8,9 = x7(a14s)x8(�a13s)x9(a12s).

We can take Ỹ = X1X7X8, and we have H̃/Ỹ = X3X
0Y Z/Ỹ . By Proposition 3.3, we have

that Irr(V | �) is in bijection with Irr(H̃/Ỹ | �).

A computation in H̃/Ỹ gives

[x3(s), x4,5,6,10(t)] = x7,8,9(�st).

We notice that H̃/Ỹ is the direct product of Z and the group X3X
0Y/Ỹ ⇠= X3X

0Y 0, which

is 3-dimensional. Then the analysis in Section 3.1 applies with f(s, t) = �st.

We label the linear characters of X3X
0Y/Ỹ by �b3,b4,5,6,10 . By tensoring these characters

with �a12,a13,a14 and then applying IndU
H̄XK

InfH̄XK
H̃/Ỹ

we obtain the family of characters

Irr(U)1,p=3
C6 = {�a12,a13,a14

b3,b4,5,6,10
| a12, a13, a14 2 F⇥

q , b3, b4,5,6,10 2 Fq},

which consists of q2(q � 1)3 characters of degree q4.

Let us fix a7,8,9 2 F⇥
q . We write �a12,a13,a14,a7,8,9 for the linear character of Y 0Z defined in

the usual way. By applying IndU
X0Y XZXK

InfX
0Y XZXK

Y Z/Ỹ
to these linear characters we obtain the

family of characters

Irr(U)2,p=3
C6 = {�a12,a13,a14a7,8,9 | a12, a13, a14, a7,8,9 2 F⇥

q },
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which consists of (q � 1)4 characters of degree q5.

We have Irr(U)p=3
C6 = Irr(U)1,p=3

C6 [ Irr(U)2,p=3
C6 .
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CHAPTER 5

PARAMETRIZATION OF Irr(U) IN RANK 5 AND
HIGHER

In this last chapter, we generalize the ideas of the previous chapters to get a parametrization

of the irreducible characters of a Sylow p-subgroup U of a split finite group of Lie type G

of rank 5. As we see in Table 2.2, the total number of nonabelian cores in this case gets

higher, so we would like to develop a method to deal with larger classes of nonabelian cores

with a similar structure. For example, we observe that the cores CB4 , CD4 and the core C4

of F4 studied in Chapter 4 have a similar behavior, and in fact they can be simultaneously

investigated, as we explain in Section 5.1. In order to do this, we define a triple of invariants

associated to a nonabelian core.

Definition 5.1. Let C = (S,Z,A,L,K) be a nonabelian core. We say that C is a (z,m, c)-

core if

• |Z \ D(S)| = z,

• |S \ D(S)| = m, and

• there are c triples (i, j, k), with i < j and ↵i,↵j,↵k 2 S, such that ↵i + ↵j = ↵k.

Section 5.1 contains the main original feature of this chapter, that is, to prove that the

(3, 10, 9)-cores that occur in B5,C5 and D5 can be studied simultaneously. In fact, the study
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of these cores turns out to be very similar to the study of CD4 in Section 4.2. We apply

this result, along with the analysis in Chapter 3, to parametrize Irr(U) for G of type B5,

C5 and D5 in Sections 5.2, 5.3 and 5.4 respectively. Finally, we collect in Section 5.5 all

triples (z,m, c) for nonabelian cores in rank 6, and some remarks towards a parametrization

of Irr(U) in ranks higher than 5.

5.1 (3, 10, 9)-cores in rank 5 or less

In this section, C = (S,Z,A,L,K) denotes a (3, 10, 9)-core such that S = {�1, . . . , �10} and

Z = {�8, �9, �10}, and the relations between roots of S, for each 1  i < j  10, are

�i + �j = �k if and only if (i, j, k) 2 T for some k 2 {1, . . . , 10},

where

T = {(1, 3, 5), (1, 6, 8), (1, 7, 9), (2, 3, 6), (2, 5, 8), (2, 7, 10), (3, 4, 7), (4, 5, 9), (4, 6, 10)}.

Notice that D(S) = ?. The configuration is then as in Figure 5.1, with notation for

pictures as explained in Section 4.1. Furthermore, we assume that

[x�
i

(ti), x�
j

(tj)] = x�
k

(✏i,jtitj), (5.1.1)

where if i < j, then ✏i,j 2 {±1} if (i, j, k) 2 T for some k, and ✏i,j = 0 if (i, j, k) /2 T for any

k. For the relations in the case i > j, we recall that ✏i,j = �✏j,i.

Remark 5.2. By studying C, we can completely determine the irreducible characters of U

arising from every (3, 10, 9)-core for G of rank at most 5. In fact, let C0 = (S 0,Z 0,A0,L0,K0)
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Figure 5.1: A picture representing the (3, 10, 9)-core C.

be an arbitrary (3, 10, 9)-core in this case. Then we have that

Irr(XS0)Z0 = Irr(XS0\D(S0))Z0\D(S0) ⇥ Irr(XD(S0))Z0\D(S0),

and we can check, using CHEVIE, that

C := (S 0 \ D(S 0),Z 0 \ D(S 0),A0,L0,K0)

has the same structure as C. We can determine character labels for Irr(U)C through the

procedure described in Section 2.4. Assume that the irreducible characters of Irr(U)C are

labelled as �a
b for a 2 (F⇥

q )
k and b 2 Fh

q for some h, k � 0. Then the labels for the irreducible

characters in Irr(U)C0 are of the form �a,a0

b,b0
, where

a0 = (a0i1 , . . . , a
0
i
k

0 ) 2 (F⇥
q )

k0 and b0 = (b0j1 , . . . , b
0
j
h

0 ) 2 Fh0

q ,

where the indices are determined by

D(S 0) \ Z 0 = {↵i1 , . . . ,↵i
k

0} and D(S 0) \ Z 0 = {↵j1 , . . . ,↵j
h

0}.
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The goal of this section is to prove that even without knowing the exact value of the

constants ✏i,j 2 {±1} for (i, j, k) 2 T previously defined, we can still determine the repre-

sentation theory of XS in a uniform way. The following result allows us to determine some

dependence among the ✏i,j’s.

Lemma 5.3. Let �i, �j, �k 2 S. Then

(i) [x�
i

(ti), x�
j

(tj)] = [x�
j

(tj), x�
i

(�ti)].

(ii) [[x�
i

(ti), x�
j

(�tj)], x�
k

(tk)][[x�
j

(tj), x�
k

(�tk)], x�
i

(ti)][[x�
k

(tk), x�
i

(�ti)], x�
j

(tj)] = 1.

Proof. Using Equation (5.1.1), we get

[x�
i

(ti), x�
j

(tj)] = x�
k

(✏i,jtitj) = x�
k

(�✏j,ititj) = [x�
j

(tj), x�
i

(�ti)],

which proves (i).

For (ii), we recall the Hall–Witt identity [Is2, Section 4B], valid for every group G and

every x, y, z 2 G,

[[x, y�1], z]y[[y, z�1], x]z[[z, x�1], y]x = 1.

Now we just put x = x�
i

(ti), y = x�
j

(tj) and z = x�
k

(tk), and the claim follows by observing

that [[XS , XS ], XS ] ✓ Z(XS).

In order to be precise for our further computations, we need to determine how to write

✏2,5, ✏4,5, ✏4,6 as functions of ✏1,3, ✏1,6, ✏1,7, ✏2,3, ✏2,7 and ✏3,4. We repeatedly use Lemma 5.3(i)

in the following computations. We get

[x�2(t2), x�5(t5)] = [x�5(t5), x�2(�t2)]

= [[x�1(t5), x�3(✏1,3)], x�2(�t2)]

= [[x�3(✏1,3), x�2(t2)], x�1(t5)]
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= [x�6(�✏1,3✏2,3t2), x�1(t5)]

= x�8(✏1,3✏2,3✏1,6t2t5),

where between lines 2 and 3 we used Lemma 5.3(ii), along with the fact that X�
i

and X�
j

centralize each other if i, j 2 {1, 2, 4}. Then ✏2,5 = ✏1,3✏2,3✏1,6. Similarly, we have

[x�4(t4), x�5(t5)] = [x�5(t5), x�4(�t4)]

= [[x�1(t5), x�3(✏1,3)], x�4(�t4)]

= [[x�3(✏1,3), x�4(t4)], x�1(t5)]

= [x�7(✏1,3✏3,4t4), x�1(t5)]

= x�9(�✏1,3✏3,4✏1,7t4t6),

that means ✏4,5 = �✏1,3✏3,4✏1,7, and

[x�4(t4), x�6(t6)] = [x�6(t6), x�4(�t4)]

= [[x�2(t6), x�3(✏2,3)], x�4(�t4)]

= [[x�3(✏2,3), x�4(t4)], x�2(t6)]

= [x�7(✏2,3✏3,4t4), x�2(t6)]

= x�10(�✏2,3✏3,4✏2,7t4t6),

which finally gives ✏4,6 = �✏2,3✏3,4✏2,7. We are ready to prove what was previously claimed.

Proposition 5.4. Let C = (S,Z,A,L,K) be as above, and let us define j1, . . . , j10 such that

�i = ↵j
i

, for i = 1, . . . , 10. Let I = {j1, j2, j4}, J = {j5, j6, j7} and X = XI, Y = XJ , and

let H = X�3Y XZ .

• If p � 3, then we have that
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Irr(XS)
p�3
Z = {�a

j8 ,aj9 ,aj10
b
j3

| aj8 , aj9 , aj10 2 F⇥
q , bj3 2 Fq},

where

�
a
j8 ,aj9 ,aj10

b
j3

= IndA[I InfK[J �
a
j8 ,aj9 ,aj10

b
j3

,

and �
a
j8 ,aj9 ,aj10

b
j3

2 Irr(X�3Z) is as in the notation of Section 2.4.

• If p = 2, then we have

Irr(XS)
p=2
Z = Irr(XS)

1,p=2
Z [ Irr(XS)

2,p=2
Z ,

for

Irr(XS)
1,p=2
Z = {�a

j5,j6,j7 ,aj8 ,aj9 ,aj10
c
j1,j2,j4 ,cj3

| aj5,j6,j7 , aj8 , aj9 , aj10 2 F⇥
q , cj1,j2,j4 , cj3 2 F2},

and

Irr(XS)
2,p=2
Z = {�a

j8 ,aj9 ,aj10 | aj8 , aj9 , aj10 2 F⇥
q },

where

�
a
j5,j6,j7 ,aj8 ,aj9 ,aj10

c
j1,j2,j4 ,cj3

= IndU
X0W2Y XZXK

InfX
0W2Y XZXK

W1W2Y Z/(Ỹ ker�
a

j5,j6,j7
,a

j8
,a

j9
,a

j10 )
�
a
j5,j6,j7 ,aj8 ,aj9 ,aj10

c
j1,j2,j4 ,cj3

,

and

�a
j8 ,aj9 ,aj10 = IndU

X0Y XZXK
InfX

0Y XZXK
Z �aj8 ,aj9 ,aj10 ,

for X 0 = {x�1,�2,�4(t) | t 2 Fq} and Y 0 = {x�5,�6,�7(s) | s 2 Fq}, with

x�1,�2,�4(t) = x�1(aj10t)x�2(aj9t)x�4(aj8t), x�5,�6,�7(s) = x�5(aj10s)x�6(aj9s)x�7(aj8s)
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and Ỹ = X�6X�7, Z = XZ/ ker(µa
j8 ,aj9 ,a10), and

W1 = {1, x�1,�2,�4(aj5,j6,j7/aj8aj9aj10)}, W2 = {1, x�3(aj8aj9aj10/a2j5,j6,j7)},

with the usual notation for �
a
j5,j6,j7 ,aj8 ,aj9 ,aj10

c
j1,j2,j4 ,cj3

2 Irr(W1W2Y Z/(Ỹ ker�aj5,j6,j7 ,aj8 ,aj9 ,aj10 )),

µa
j8 ,aj9 ,aj10 : Z ! Fq and �aj8 ,aj9 ,aj10 2 Irr(Z).

Proof. Let � = �aj8 ,aj9 ,aj10 be such that �(x�
i

(t)) = �(aj
i

t), for i = 8, 9, 10. We want to

apply the reduction lemma with Y and X as previously stated. Then we only need to check

assumption (v). Expanding

[x�1(t1)x�2(t2)x�4(t4), x�5(s5)x�6(s6)x�7(s7)] = 1,

we get

x�8(✏1,6s6t1 + ✏2,5s5t2)x�9(✏1,7s7t1 + ✏4,5s5t4)x�10(✏2,7s7t2 + ✏4,6s6t4) = 1.

By applying µ, this gives

s5(✏2,5aj8t2 + ✏4,5aj9t4) + s6(✏1,6aj8t1 + ✏4,6aj10t4) + s7(✏1,7aj9t1 + ✏2,7aj10t2) = 0.

Let us find X 0 and Y 0 as defined in Section 3.2. In order to find X 0, we want the above

equation to be satisfied for all s5, s6, s7 2 Fq. The linear system of equations in the t1, t2, t4

and associated matrix are

8
>>>>>><

>>>>>>:

✏2,5aj8t2 + ✏4,5aj9t4 = 0

✏1,6aj8t1 + ✏4,6aj10t4 = 0

✏1,7aj9t1 + ✏2,7aj10t2 = 0

and M =

0

BBBB@

0 ✏2,5aj8 ✏4,5aj9

✏1,6aj8 0 ✏4,6aj10

✏1,7aj9 ✏2,7aj10 0

1

CCCCA
.
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By using the expressions for ✏2,5, ✏4,5 and ✏4,6 previously obtained, one gets

detM = (✏1,6✏2,7✏4,5 + ✏1,7✏2,5✏4,6)aj8aj9aj10 = �2✏1,3✏1,6✏1,7✏2,7✏3,4aj8aj9aj10 .

Let p 6= 2. Then clearly detM 6= 0 and X 0 = 1. Similarly, we can check that Y 0 = 1.

Therefore, the reduction lemma applies. Repeating the discussion as in CD4 in Section 4.2

with �i in place of ↵i for i = 1, . . . , 10, we get the claim for p 6= 2.

Now if p = 2, then ✏i,j = 1 for every i and j with (i, j, k) 2 T . The claim now again

follows from the computations in the case of CD4 .

An important consequence of Proposition 5.4 is that we can also parametrize (3, 9, 6)-

cores that arise from (3, 10, 9)-cores with the same structure as C by removing �3 from S.

We state the result in the case when no roots in the corresponding quattern are in direct

product; the argument in Remark 5.2 applies to generalize the result to every (3, 9, 6)-core

arising from a (3, 10, 9)-core with the same structure as the core C0 defined in the remark,

by removing the root that plays the role of �3 in C0.

Proposition 5.5. Let C = (S,Z,A,L,K) be a (3, 10, 9)-core as above, and let us suppose

that D = (S 0,Z,A,L,K) is a (3, 9, 6)-core such that S 0 = S \ {�3}.

• If p � 3, then we have that

Irr(XS0)p�3
Z = {�a

j8 ,aj9 ,aj10 | aj8 , aj9 , aj10 2 F⇥
q },

where

�a
j8 ,aj9 ,aj10 = IndA[I InfK[J �

a
j8 ,aj9 ,aj10 ,

and I, J are as in Proposition 5.4, and �aj8 ,aj9 ,aj10 2 Irr(Z) is as in the notation of

Section 2.4.
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• If p = 2, then we have

Irr(XS0)2,p=2
Z = {�a

j8 ,aj9 ,aj10
b
j1,j2,j4 ,bj5,j6,j7

| aj8 , aj9 , aj10 2 F⇥
q , bj1,j2,j4 , bj5,j6,j7 2 Fq},

where

�
a
j8 ,aj9 ,aj10

b
j1,j2,j4 ,bj5,j6,j7

= IndU
X0Y XZXK

InfX
0Y XZXK

X0Y 0Z �
a
j8 ,aj9 ,aj10

b
j1,j2,j4 ,bj5,j6,j7

,

and X, Y , X 0, Y 0 and Z are as in Proposition 5.4, and �
a
j8 ,aj9 ,aj10

b
j1,j2,j4 ,bj5,j6,j7

2 Irr(X 0Y 0Z)

is defined as usual.

The proof of this result follows by applying the reduction lemma to XS inflating over Y

and inducing over X in the case p � 3, and inflating over Ỹ = X�6X�7 and inducing over any

transversal X̃ of X 0 if p = 2. The claim then immediately follows from the computations in

Proposition 5.4.

5.2 Parametrization of Irr(UB5)

In the case of type B5 we get 10 nonabelian cores, as we see from Table 2.2. Namely, we

have eight (3, 10, 9)-cores, one (3, 9, 6)-core, and one (5, 16, 16)-core. The (3, 10, 9)-cores and

the (3, 9, 6)-core are of the form considered in Section 5.1; we can then determine at once

the parametrization of the irreducible characters arising from these classes of cores. The

(5, 16, 16)-core is dealt with via the method outlined in Section 3.2.

The study of these cores allows us to complete the parametrization of Irr(UB5). The

labels for irreducible characters can be found in Table D.5. As a consequence, we obtain the

formulas for k(UB5(q), q
d) for d � 0 as polynomials in v. They are collected in Table 5.1.

The eight (3, 10, 9)-cores. We collect in Table C.1 the relevant information for the (3, 10, 9)-

cores in type B5, which we call CB5
1 , . . . ,CB5

8 . From Table C.1, we see that no commutator

107



D k(UB5 , D)

1 v5 + 5v4 + 10v3 + 10v2 + 5v + 1

q 4v5 + 17v4 + 27v3 + 19v2 + 5v

q2 v7 + 8v6 + 29v5 + 56v4 + 56v3 + 26v2 + 4v

q3 2v7 + 15v6 + 49v5 + 83v4 + 72v3 + 29v2 + 4v

q4 v8 + 9v7 + 37v6 + 87v5 + 119v4 + 87v3 + 29v2 + 3v

q5 3v7 + 23v6 + 70v5 + 105v4 + 77v3 + 24v2 + 2v

q6 9v6 + 48v5 + 90v4 + 71v3 + 21v2 + v

q7 v8 + 8v7 + 31v6 + 73v5 + 96v4 + 57v3 + 11v2 + v

q8 v7 + 7v6 + 23v5 + 37v4 + 26v3 + 7v2

q9 2v6 + 10v5 + 19v4 + 14v3 + 3v2

q10 v5 + 3v4 + 3v3 + v2

Table 5.1: Numbers of irreducible characters of UB5 of fixed degree, for v = q� 1 and p 6= 2.

relations [xi(ti), xj(tj)] = xk(±2titj) are involved. Therefore Proposition 5.4 applies. Labels

for irreducible characters are obtained as in the statement of Proposition 5.4; these are

collected in bold font in Table D.5.

The (3, 9, 6)-core. This core, which we denote by CB5
0 , occurs for ⌃ = {↵17,↵21}, and we

have

• S = {↵2,↵7,↵9,↵10,↵13,↵14,↵16,↵17,↵21} [D(S),

• Z = {↵16,↵17,↵21} [D(S),

• A = {↵1,↵3,↵5,↵6} and

• L = {↵4,↵11,↵18,↵19},

and D(S) = {↵8}. We see that S \ D(S) is contained in the quattern corresponding to CB5
2

or CB5
3 , namely by removing the root ↵3, playing the role of �3 in Proposition 5.5. Therefore,
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Proposition 5.5 applies. The corresponding family of characters is given in bold font in Table

D.5.

The (5, 16, 16)-core. In order to study this core we apply the analysis outlined in Section 3.2.

Since this is a distinguished nonabelian core of B5, we call it CB5 . It occurs for ⌃ = {↵17,↵21},

and we have

• S = {↵2,↵3,↵4,↵6,↵7,↵8,↵9,↵10,↵11,↵12,↵13,↵14,↵15,↵16,↵17,↵21},

• Z = {↵12,↵15,↵16,↵17,↵21},

• A = {↵1,↵5} and

• L = {↵18,↵19}.

We take

• Y = XJ , where J = {↵7,↵8,↵11,↵13,↵14},

• X = XI , where I = {↵2,↵4,↵6,↵9,↵10} and then we have that

• H = X3Y Z.

In this case Equation (3.2.3) is

s7(�a12t4 � a16t9 � a17t10) + s8(a12t2 + a15t6) + s11(�a15t4 � 2a17t6)

+ s13(a16t2 + a21t10) + s14(�a17t2 � a21t9) = 0.

Let a21 6= a16(a15/a12)2. We have that Y 0 = 1 and Y is normal in H̄. Moreover,

H̄/Y = X3XZ . As explained in Remark 3.5, we get the family of characters

Irr(U)1CB5 = {�a12,a15,a16,a17,a⇤21
b3

| a12, a15, a16, a17, a⇤21 2 F⇥
q , a21 6= a16(a15/a12)

2, b3 2 Fq},
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where

�
a12,a15,a16,a17,a⇤21
b3

= IndA[I InfK[J �
a12,a15,a16,a17,a⇤21
b3

,

and �
a12,a15,a16,a17,a⇤21
b3

2 Irr(H̄/Y ) is defined in the usual way. We have that Irr(U)1
CB5

consists

of q(q � 1)4(q � 2) characters of degree q7.

Assume now that a21 = a16(a15/a12)2. We have X 0 = {x2,4,6,9,10(t) | t 2 Fq} and Y 0 =

{x7,8,11,13,14(s) | s 2 Fq}, where

x2,4,6,9,10(t) = x2(�a215a21t)x4(�2a12a17a21t)x6(a12a15a21t)x9(a
2
15a17t)x10(a

2
15a16t),

and

x7,8,11,13,14(s) = x7(�a215a21s)x8(2a12a17a21s)x11(a12a15a21s)x13(�a215a17s)x14(a
2
15a16s).

We can take any complement of Y 0 in Y , for example we fix Ỹ = X7X8X11X13. Then we

have H̃/Ỹ = X3X
0Y Z/Ỹ and Y 0 ✓ Z(H̃/Ỹ ). From now on, we denote by �a12,a15,a16,a17 the

character �a12,a15,a16,a17,a21 of Irr(Z) such that a21 = a16(a15/a12)2.

A computation in H̃/Ỹ gives

[x3(s), x2,4,6,9,10(t)] = x7,8,11,13,14(st).

The subquotient H̃/Ỹ can then be decomposed as a direct product of Z with the subquotient

X3X
0Y/Ỹ , which is isomorphic to the three-dimensional group Vf for f(s, t) = st as defined

in Section 3.1.

We label the linear characters of X1X
0Y/Ỹ by �b3,b2,4,6,9,10 . By tensoring these characters

with �a12,a15,a16,a17 , and then applying IndU
H̄XK

InfH̄XK
H̃/Ỹ

we obtain the family of characters

Irr(U)2CB5 = {�a12,a15,a16,a17
b3,b2,4,6,9,10

| a12, a15, a16, a17 2 F⇥
q , b3, b2,4,6,9,10 2 Fq},
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which consists of q2(q � 1)4 characters of degree q6.

We write �a12,a15,a16,a17,a7,8,11,13,14 for the linear character of Y 0Z defined by extending

�a12,a15,a16,a17 to Y 0 nontrivially in the usual way. We apply IndU
X0Y XZXK

InfX
0Y XZXK

Y 0Z to these

linear characters, and we finally obtain the family

Irr(U)3CB5 = {�a12,a15,a16,a17,a7,8,11,13,14 | a12, a15, a16, a17, a7,8,11,13,14 2 F⇥
q },

which consists of (q � 1)5 characters of degree q7.

We have Irr(U)CB5 = Irr(U)1
CB5

[ Irr(U)2
CB5

[ Irr(U)3
CB5

and this gives all the irreducible

characters corresponding to CB5 .

5.3 Parametrization of Irr(UC5)

We get only one nonabelian core in type C5, which we denote by CC5 . This is a (3, 8, 6)-

core, which is studied by applying the method outlined in Section 3.2. We obtain the

missing character labels arising from the antichain ⌃ = {↵13,↵22}. This completes the

parametrization of Irr(UC5). The labels for irreducible characters are collected in Table D.6.

The expressions of k(UC5 , q
d) for d = 0, . . . , 10 as polynomials in v are collected in Table 5.2.

The (3, 8, 6)-core. This core occurs for ⌃ = {↵13,↵22}, and we have

• S = {↵1,↵2,↵6,↵7,↵10,↵11,↵14,↵17} [D(S),

• Z = {↵10,↵14,↵17} [D1(S),

• A = {↵3,↵4,↵8,↵12} and

• L = {↵9,↵15,↵18,↵20},

with D(S) = D1(S) tD2(S), for D1(S) = {↵13,↵22} and D2(S) = {↵5}. We take
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D k(UC5 , D)

1 v5 + 5v4 + 10v3 + 10v2 + 5v + 1

q v6 + 8v5 + 23v4 + 31v3 + 20v2 + 5v

q2 v7 + 8v6 + 29v5 + 55v4 + 54v3 + 25v2 + 4v

q3 v7 + 12v6 + 48v5 + 88v4 + 78v3 + 31v2 + 4v

q4 v8 + 9v7 + 38v6 + 91v5 + 123v4 + 86v3 + 27v2 + 3v

q5 3v7 + 24v6 + 74v5 + 110v4 + 80v3 + 25v2 + 2v

q6 v8 + 8v7 + 32v6 + 78v5 + 105v4 + 69v3 + 18v2 + v

q7 2v7 + 14v6 + 44v5 + 68v4 + 46v3 + 12v2 + v

q8 3v6 + 17v5 + 34v4 + 26v3 + 7v2

q9 4v5 + 14v4 + 14v3 + 4v2

q10 v5 + 5v4 + 6v3 + v2

Table 5.2: Numbers of irreducible characters of UC5 of fixed degree, for v = q� 1 and p 6= 2.

↵14

↵7

↵17

↵11

↵2

↵10

↵6↵1

Figure 5.2: A picture representing the configuration of CC5 .

• Y = XJ , where J = {↵6,↵11},

• X = XI , where I = {↵2,↵7} and then we have that

• H = X1Y Z.

Equation (3.2.3) now gives

s6(�2a10t2 � a14t7) + s11(�a14t2 � 2a17t7) = 0.
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Let a17 6= a214/(4a10). We have Y 0 = 1 and Y E H̄. Moreover, H̄/Y = X1XZ . Tensoring

with characters in XD(S) and applying Remark 3.5, we get the family of characters

Irr(U)1CC5 = {�a10,a13,a14,a⇤17,a22
b1,b5

| a10, a13, a14, a⇤17, a22 2 F⇥
q , a17 6= a214/(4a10), b1, b5 2 Fq}

of Irr(U)CC5 , where

�
a10,a13,a14,a⇤17,a22
b1,b5

= IndA[I InfK[J (�
a10,a14,a⇤17
b1

⌦ �a13,a22b5
),

and �
a10,a14,a⇤17
b1

2 Irr(H̄/Y ) and �a13,a22b5
2 Irr(XD(S))D1(S) are defined in the usual way. We

have that Irr(U)1
CC5

consists of q2(q � 1)4(q � 2) characters of degree q6.

We now examine the case a17 = a214/(4a10). Here we have that X 0 = {x2,7(t) | t 2 Fq}

and Y 0 = {x6,11(s) | s 2 Fq}, where

x2,7(t) = x2(a14t)x7(�2a10t) and x6,11(s) = x6(a14s)x11(�2a10s).

We can take Ỹ = X6 as a complement for Y 0 in Y . This gives H̃/Ỹ = X1X
0Y ZXD(S)/Ỹ

and Y 0 ✓ Z(H̃/Ỹ ). We denote by �a10,a14 the character �a10,a14,a17 2 Irr(Z) such that

a17 = a214/(4a10).

A computation in H̃/Ỹ gives

[x1(s), x2,7(t)] = x6,11(�st).

We then get H̃/Ỹ as the direct product of the three subgroups Z, X1X
0Y/Ỹ and XD(S).

Moreover, X1X
0Y/Ỹ is isomorphic to the three-dimensional group Vf for f(s, t) = �st as in

Section 3.1.
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We label the linear characters of X1X
0Y/Ỹ by �b1,b2,7 . By tensoring these characters with

�a10,a14 2 Irr(Z) and �a13,a22b5
2 Irr(XD(S))D1(S), and then applying IndU

H̄XK
InfH̄XK

H̃/Ỹ
we obtain

the family of characters

Irr(U)2C3 = {�a10,a13,a14,a22
b1,b5,b2,7

| a10, a13, a14, a22 2 F⇥
q , b1, b5, b2,7 2 Fq},

which consists of q3(q � 1)4 characters of degree q5.

Let us fix a6,11 2 F⇥
q . We write �a10,a14,a6,11 for the linear character of Y 0Z defined in the

usual way. If we apply IndU
X0Y XZXK

InfX
0Y XZXK

Y 0Z to the characters �a10,a14,a6,11 ⌦ �a13,a22b5
, for

a13, a22 2 F⇥
q and b5 2 Fq, we obtain the family

Irr(U)3C3 = {�a10,a13,a14,a22,a6,11
b5

| a10, a13, a14, a22, a6,11 2 F⇥
q , b5 2 Fq},

which consists of q(q � 1)5 characters of degree q6.

We have Irr(U)CC5 = Irr(U)1
CC5

[ Irr(U)2
CC5

[ Irr(U)3
CC5

, which gives all the irreducible

characters corresponding to CC5 .

5.4 Parametrization of Irr(UD5)

We get 7 nonabelian cores in type D5, namely six (3, 10, 9)-cores and one (3, 9, 6)-core. As in

the case of type B5, these cores are of the form considered in Section 5.1. We now proceed to

investigate them, so we can fully parametrize Irr(UD5). The labels for irreducible characters

are collected in Table D.7. We obtain new formulas for k(UD5(q), D) when q = 2e, for

D = 1, q, . . . , q8 and D = q3/2, . . . , q7/2, which are collected in Table 5.3 along with each

k(UD5(q), qd) for p � 3.

The six (3, 10, 9)-cores. We label these cores as CD5
1 , . . . ,CD5

6 . As in the case of type B5,
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D k(UD5(q), D)
1 v5 + 5v4 + 10v3 + 10v2 + 5v + 1
q v6 + 7v5 + 19v4 + 25v3 + 16v2 + 4v
q2 2v6 + 14v5 + 35v4 + 40v3 + 21v2 + 4v

q3/2
0, if p � 3
4v5 + 4v4, if p = 2

q3
v7 + 8v6 + 29v5 + 54v4 + 50v3 + 21v2 + 3v, if p � 3
v7 + 8v6 + 28v5 + 53v4 + 50v3 + 21v2 + 3v, if p = 2

q4/2
0, if p � 3
4v5 + 4v4, if p = 2

q4
2v6 + 17v5 + 42v4 + 42v3 + 17v2 + 2v, if p � 3
3v6 + 18v5 + 42v4 + 42v3 + 17v2 + 2v, if p = 2

q5/2
0, if p � 3
4v5 + 4v4, if p = 2

q5
v7 + 8v6 + 29v5 + 53v4 + 43v3 + 14v2 + v, if p � 3
v7 + 8v6 + 28v5 + 51v4 + 43v3 + 14v2 + v, if p = 2

q6/2
0, if p � 3
4v5 + 4v4, if p = 2

q6
v6 + 7v5 + 18v4 + 18v3 + 7v2 + v, if p � 3
v6 + 6v5 + 17v4 + 18v3 + 7v2 + v, if p = 2

q7/2
0, if p � 3
4v4, if p = 2

q7
2v5 + 8v4 + 10v3 + 3v2, if p � 3
2v5 + 7v4 + 10v3 + 3v2, if p = 2

q8 v4 + 2v3 + v2

Table 5.3: Numbers of irreducible characters of UD5(q) of fixed degree, v = q � 1.

we collect in Table C.2 the relevant information for them. We are in a simply laced case, so

each of the constants c↵,�i,j as in Equation (1.1.1) is either 1 or �1. The analysis in Section

5.1 then also applies in this case. The corresponding labels for irreducible characters can be

found in Table D.7; they are collected in bold font.

The (3, 9, 6)-core. We denote by CD5
0 the unique (3, 9, 6)-core in D5. It occurs for ⌃ =

{↵10,↵15,↵16}, and we have

• S = {↵1,↵2,↵6,↵7,↵9,↵10,↵13,↵15,↵16} [D(S),
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• Z = {↵10,↵15,↵16} [D(S),

• A = {↵3,↵5} and

• L = {↵4,↵11},

and D(S) = {↵8}. We note that S \ D(S) lies into the quattern corresponding to CD5
3 by

removing the root ↵3, which plays the role of the root �3 in Proposition 5.5. As done in the

case of type B5, Proposition 5.5 applies. As usual, the labels for the characters corresponding

to CD5
0 are given in bold font in Table D.7.

5.5 Towards a parametrization of Irr(UY
r

) for r � 6

For types up to rank 7, we can determine all triples (z,m, c) associated to cores. We collect

the numbers of (z,m, c)-cores in types B6,C6,D6 and E6 in Table 5.4. We omit all triples

(z,m, c) in rank 7. We just mention that in type B7 (respectively C7, D7, E7) there are 65

(respectively 49, 36, 382) di↵erent triples of the form (z,m, c) associated to cores. We observe

that many cores in rank 6, in fact most of them, are (3, 10, 9)-cores and (3, 9, 6)-cores.

By using CHEVIE, it is easy to check that all (3, 10, 9)-cores and all (3, 9, 6)-cores up

to rank 6 are of the same form as the ones considered in Section 5.1; in particular, each

(3, 9, 6)-core derives from a (3, 10, 9)-core in the sense of Proposition 5.5. Using Remark 5.2

and Propositions 5.4 and 5.5, we completely determine the representation theory in these

cases.

However, one has to deal with the other cases. On the one hand, although most non-

abelian cores can be dealt with on a case-by-case check, one should formulate a more general

method that can be applied, or even implemented in CHEVIE or MAGMA, for a given class

of nonabelian cores. On the other hand, it is still not known, through the methods outlined

so far, how to parametrize the irreducible characters arising from each of the (4, 24, 23)-cores
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B6 C6 D6 E6

(z,m, c) # (z,m, c) # (z,m, c) # (z,m, c) #
(2, 8, 7) 1 (3, 7, 4) 1 (3, 9, 6) 11 (3, 9, 6) 31
(3, 9, 6) 14 (3, 8, 6) 9 (3, 10, 9) 39 (3, 10, 9) 88
(3, 10, 9) 64 (3, 10, 9) 1 (4, 18, 18) 1 (4, 8, 4) 13
(4, 8, 4) 1 (3, 15, 22) 1 (4, 21, 28) 1 (5, 10, 5) 1
(4, 18, 18) 1 (4, 11, 9) 1 (4, 24, 43) 1 (5, 12, 8) 2
(4, 21, 28) 1 (4, 11, 10) 1 (5, 18, 18) 1 (5, 15, 11) 3
(4, 24, 43) 1 (5, 10, 5) 1 (6, 19, 20) 1 (5, 20, 25) 1
(5, 15, 11) 1 (5, 12, 10) 1 (5, 21, 30) 1
(5, 16, 16) 8 (5, 18, 19) 1 (6, 12, 6) 5
(5, 18, 18) 1 (5, 21, 24) 1 (6, 13, 7) 1
(5, 21, 25) 1 (6, 12, 6) 1 (6, 14, 8) 3
(6, 19, 20) 1 (6, 13, 7) 1 (6, 15, 12) 2

(6, 16, 10) 1 (6, 16, 12) 1
(6, 19, 19) 1 (6, 17, 17) 1

(7, 15, 9) 3

Table 5.4: The numbers of (z,m, c)-cores in rank 6.

that appear in types B6 and D6. These look to be the most complicated nonabelian cores to

examine up to rank 6.

The reason for this, which points us to the first problem to consider in future research,

is the following. Let C be a (z,m, c)-core. Then the analysis outlined in previous chapters

provides a method for applying the reduction lemma in a quattern group, except for finding a

choice of X and Y as in the statement. For small values of c, it is easy to produce candidates

for X = XI and Y = XJ as explained in the case of CB4 in Section 4.1, namely by drawing a

picture corresponding to the structure of S, and then setting � 2 J for a suitable � 2 S \ Z

and adding roots to J and I by following successive neighbors of � via edges corresponding

to relations of the form ↵+� = �, with ↵, � 2 S and � 2 Z. Then our programs in CHEVIE

and MAGMA can easily check whether assumptions (i) to (iv) of the reduction lemma are

satisfied in this case. However, for a more complicated structure of S it is in general di�cult

to produce such candidates X and Y . A priori, checking all possibilities for X and Y is
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not e�cient, even for (4, 24, 43)-cores. Moreover, if c is big enough, then the size of X and

Y might be small in comparison to m, and we would have to apply this argument several

times, as we get smaller subquotients.

The second problem for future research is the following. In the case of (3, 10, 9)-cores in

rank 6 or less, by applying the argument in Proposition 5.4 we can deal with all (z,m, c)-

cores simultaneously. While this is true for (3, 9, 6)-cores arising from such (3, 10, 9)-cores,

this is not true for all (3, 9, 6)-cores in general, as the following example in a simply laced

type in rank 7 points out.

Example 5.6. We get the following nonabelian core in type E7. It occurs for ⌃ = {↵47,↵49},

and we have

• S = {↵1,↵5,↵14,↵17,↵20,↵21,↵22,↵26,↵37} [D(S),

• Z = {↵21,↵26,↵37} [D1(S),

• A = {↵2,↵3,↵6,↵7,↵8,↵10,↵12,↵13,↵15,↵24,↵29,↵31,↵35,↵36} and

• L = {↵18,↵19,↵23,↵25,↵27,↵28,↵30,↵34,↵39,↵40,↵41,↵42,↵44,↵45},

with D(S) = D1(S) tD2(S), for D1(S) = {↵33,↵47,↵49} and D2(S) = {↵4,↵9}. We take

• Y = XJ , where J = {↵5,↵17,↵22},

• X = XI , where I = {↵1,↵14,↵20} and then we have that

• H = Y Z.

Equation (3.2.3) yields

s5(�a21t14 � a26t20) + s17(�a21t1 � a37t20) + s22(�a26t1 + a37t14) = 0.

In this case, we see that for every choice of p we get
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X 0 = {x1,14,20(t) | t 2 Fq} and Y 0 = {x5,17,22(s) | s 2 Fq},

where

x1,14,20(t) = x1(a37t)x14(a26t)x20(�a21t) and x5,17,22(t) = x5(a37s)x17(�a26s)x22(a21s).

This case is then di↵erent from the ones described in Section 5.1.

Of course, the core in Example 5.6 is not contained in any of the (3, 10, 9)-cores examined

in Section 5.1. We would like to determine the numbers of classes of (z,m, c)-cores, fixed z,

m and c, that could be dealt with simultaneously.

Finally, a more ambitious problem for future research is towards type E8. This case does

not appear in Table 2.2, and in fact it is not yet even known how many cores we get in

this type, since the program we have used for this work does not terminate in a reasonable

time. With some amount of computational work, we can improve our program by detecting

whether a quattern appearing in our analysis occurs in a proper irreducible subsystem of

E8, storing that information and using later the data collected for other types to determine

the corresponding representation theory. Provided we manage to do this, the two research

problems previously pointed out have of course to be overcome as well, in order to have a

full parametrization of Irr(UE8). Progress in these three directions would determine a large

amount of useful information towards a determination of Irr(UE8).
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APPENDIX A

ROOT LABELLING

Height Roots

1 ↵1 = 1 0 0 0 ↵2 = 0 1 0 0 ↵3 = 0 0 1 0 ↵4 = 0 0 0 1

2 ↵5 = 1 1 0 0 ↵6 = 0 1 1 0 ↵7 = 0 0 1 1
3 ↵8 = 2 1 0 0 ↵9 = 1 1 1 0 ↵10 = 0 1 1 1
4 ↵11 = 2 1 1 0 ↵12 = 1 1 1 1
5 ↵13 = 2 2 1 0 ↵14 = 2 1 1 1
6 ↵15 = 2 2 1 1
7 ↵16 = 2 2 2 1

Table A.1: Positive roots in a root system of type B4.

Height Roots

1 ↵1 = 1 0 0 0 ↵2 = 0 1 0 0 ↵3 = 0 0 1 0 ↵4 = 0 0 0 1

2 ↵5 = 1 1 0 0 ↵6 = 0 1 1 0 ↵7 = 0 0 1 1
3 ↵8 = 1 2 0 0 ↵9 = 1 1 1 0 ↵10 = 0 1 1 1
4 ↵11 = 1 2 1 0 ↵12 = 1 1 1 1
5 ↵13 = 1 2 2 0 ↵14 = 1 2 1 1
6 ↵15 = 1 2 2 1
7 ↵16 = 1 2 2 2

Table A.2: Positive roots in a root system of type C4.

120



Height Roots

1 ↵1 =
1

0 0
0

↵2 =
0

0 0
1

↵3 =
0

1 0
0

↵4 =
0

0 1
0

2 ↵5 =
1

1 0
0

↵6 =
0

1 0
1

↵7 =
0

1 1
0

3 ↵8 =
1

1 0
1

↵9 =
1

1 1
0

↵10 =
0

1 1
1

4 ↵11 =
1

1 1
1

5 ↵12 =
1

2 1
1

Table A.3: Positive roots in a root system of type D4.

Height Roots

1 ↵1 = 1 0 0 0 ↵2 = 0 1 0 0 ↵3 = 0 0 1 0 ↵4 = 0 0 0 1

2 ↵5 = 1 1 0 0 ↵6 = 0 1 1 0 ↵7 = 0 0 1 1
3 ↵8 = 1 1 1 0 ↵9 = 0 1 2 0 ↵10 = 0 1 1 1
4 ↵11 = 1 1 2 0 ↵12 = 1 1 1 1 ↵13 = 0 1 2 1
5 ↵14 = 1 2 2 0 ↵15 = 1 1 2 1 ↵16 = 0 1 2 2
6 ↵17 = 1 2 2 1 ↵18 = 1 1 2 2
7 ↵19 = 1 2 3 1 ↵20 = 1 2 2 2
8 ↵21 = 1 2 3 2
9 ↵22 = 1 2 4 2
10 ↵23 = 1 3 4 2
11 ↵24 = 2 3 4 2

Table A.4: Positive roots in a root system of type F4.

Height Roots

1 ↵1 ↵2 ↵3 ↵4 ↵5

2 ↵6 = 1 1 0 0 0 ↵7 = 0 1 1 0 0 ↵8 = 0 0 1 1 0 ↵9 = 0 0 0 1 1
3 ↵10 = 2 1 0 0 0 ↵11 = 1 1 1 0 0 ↵12 = 0 1 1 1 0 ↵13 = 0 0 1 1 1
4 ↵14 = 2 1 1 0 0 ↵15 = 1 1 1 1 0 ↵16 = 0 1 1 1 1
5 ↵17 = 2 2 1 0 0 ↵18 = 2 1 1 1 0 ↵19 = 1 1 1 1 1
6 ↵20 = 2 2 1 1 0 ↵21 = 2 1 1 1 1
7 ↵22 = 2 2 2 1 0 ↵23 = 2 2 1 1 1
8 ↵24 = 2 2 2 1 1
9 ↵25 = 2 2 2 2 1

Table A.5: Positive roots in a root system of type B5.
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Height Roots

1 ↵1 ↵2 ↵3 ↵4 ↵5

2 ↵6 = 1 1 0 0 0 ↵7 = 0 1 1 0 0 ↵8 = 0 0 1 1 0 ↵9 = 0 0 0 1 1
3 ↵10 = 1 2 0 0 0 ↵11 = 1 1 1 0 0 ↵12 = 0 1 1 1 0 ↵13 = 0 0 1 1 1
4 ↵14 = 1 2 1 0 0 ↵15 = 1 1 1 1 0 ↵16 = 0 1 1 1 1
5 ↵17 = 1 2 2 0 0 ↵18 = 1 2 1 1 0 ↵19 = 1 1 1 1 1
6 ↵20 = 1 2 2 1 0 ↵21 = 1 2 1 1 1
7 ↵22 = 1 2 2 2 0 ↵23 = 1 2 2 1 1
8 ↵24 = 1 2 2 2 1
9 ↵25 = 1 2 2 2 2

Table A.6: Positive roots in a root system of type C5.

Height Roots

1 ↵1 ↵2 ↵3 ↵4 ↵5

2 ↵6 =
1

1 0 0
0

↵7 =
0

1 0 0
1

↵8 =
0

1 1 0
0

↵9 =
0

0 1 1
0

3 ↵10 =
1

1 0 0
1

↵11 =
1

1 1 0
0

↵12 =
0

1 1 0
1

↵13 =
0

1 1 1
0

4 ↵14 =
1

1 1 0
1

↵15 =
1

1 1 1
0

↵16 =
0

1 1 1
1

5 ↵17 =
1

2 1 0
1

↵18 =
1

1 1 1
1

6 ↵19 =
1

2 1 1
1

7 ↵20 =
1

2 2 1
1

Table A.7: Positive roots in a root system of type D5.
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APPENDIX B

COMMUTATOR RELATIONS

[x1(s), x2(r)] = x5(�rs)x8(rs2) [x1(s), x5(r)] = x8(2rs)
[x1(s), x6(r)] = x9(�rs)x11(rs2) [x1(s), x9(r)] = x11(2rs)
[x1(s), x10(r)] = x12(�rs)x14(rs2) [x1(s), x12(r)] = x14(2rs)
[x2(s), x3(r)] = x6(�rs) [x2(s), x7(r)] = x10(�rs)
[x2(s), x11(r)] = x13(rs) [x2(s), x14(r)] = x15(rs)
[x3(s), x4(r)] = x7(�rs) [x3(s), x5(r)] = x9(rs)x13(�r2s)
[x3(s), x8(r)] = x11(rs) [x3(s), x15(r)] = x16(rs)
[x4(s), x6(r)] = x10(rs) [x4(s), x9(r)] = x12(rs)x16(�r2s)
[x4(s), x11(r)] = x14(rs) [x4(s), x13(r)] = x15(rs)
[x5(s), x7(r)] = x12(�rs)x15(rs2) [x5(s), x9(r)] = x13(2rs)
[x5(s), x12(r)] = x15(2rs) [x6(s), x8(r)] = x13(�rs)
[x6(s), x14(r)] = x16(rs) [x7(s), x8(r)] = x14(rs)
[x7(s), x13(r)] = x16(�rs) [x8(s), x10(r)] = x15(rs)
[x9(s), x12(r)] = x16(2rs) [x10(s), x11(r)] = x16(�rs)

Table B.1: Commutator relations for U for G of type B4.
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[x1(s), x2(r)] = x5(�rs)x8(r2s) [x1(s), x6(r)] = x9(�rs)x13(r2s)
[x1(s), x10(r)] = x12(�rs)x16(r2s) [x2(s), x3(r)] = x6(�rs)
[x2(s), x5(r)] = x8(2rs) [x2(s), x7(r)] = x10(�rs)
[x2(s), x9(r)] = x11(rs) [x2(s), x12(r)] = x14(rs)
[x3(s), x4(r)] = x7(�rs) [x3(s), x5(r)] = x9(rs)
[x3(s), x8(r)] = x11(rs)x13(�rs2) [x3(s), x11(r)] = x13(2rs)
[x3(s), x14(r)] = x15(rs) [x4(s), x6(r)] = x10(rs)
[x4(s), x9(r)] = x12(rs) [x4(s), x11(r)] = x14(rs)
[x4(s), x13(r)] = x15(rs)x16(�rs2) [x4(s), x15(r)] = x16(2rs)
[x5(s), x6(r)] = x11(�rs) [x5(s), x7(r)] = x12(�rs)
[x5(s), x10(r)] = x14(�rs) [x6(s), x9(r)] = x13(2rs)
[x6(s), x12(r)] = x15(rs) [x7(s), x8(r)] = x14(rs)x16(�rs2)
[x7(s), x11(r)] = x15(rs) [x7(s), x14(r)] = x16(2rs)
[x9(s), x10(r)] = x15(�rs) [x10(s), x12(r)] = x16(2rs)

Table B.2: Commutator relations for U for G of type C4.

[x1(s), x3(r)] = x5(rs) [x1(s), x6(r)] = x8(�rs)
[x1(s), x7(r)] = x9(rs) [x1(s), x10(r)] = x11(�rs)
[x2(s), x3(r)] = x6(rs) [x2(s), x5(r)] = x8(�rs)
[x2(s), x7(r)] = x10(rs) [x2(s), x9(r)] = x11(�rs)
[x3(s), x4(r)] = x7(rs) [x3(s), x11(r)] = x12(�rs)
[x4(s), x5(r)] = x9(�rs) [x4(s), x6(r)] = x10(�rs)
[x4(s), x8(r)] = x11(�rs) [x5(s), x10(r)] = x12(�rs)
[x6(s), x9(r)] = x12(�rs) [x7(s), x8(r)] = x12(rs)

Table B.3: Commutator relations for U for G of type D4.
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[x1(s), x2(r)] = x5(rs) [x1(s), x6(r)] = x8(rs)x14(�r2s)
[x1(s), x9(r)] = x11(rs) [x1(s), x10(r)] = x12(rs)x20(r2s)
[x1(s), x13(r)] = x15(rs)x22(r2s) [x1(s), x16(r)] = x18(rs)
[x1(s), x23(r)] = x24(rs) [x2(s), x3(r)] = x6(rs)x9(�r2s)
[x2(s), x7(r)] = x10(rs)x16(r2s) [x2(s), x11(r)] = x14(rs)
[x2(s), x15(r)] = x17(rs)x24(r2s) [x2(s), x18(r)] = x20(rs)
[x2(s), x22(r)] = x23(rs) [x3(s), x4(r)] = x7(rs)
[x3(s), x5(r)] = x8(�rs)x11(rs2) [x3(s), x6(r)] = x9(2rs)
[x3(s), x8(r)] = x11(2rs) [x3(s), x10(r)] = x13(rs)
[x3(s), x12(r)] = x15(rs) [x3(s), x17(r)] = x19(rs)
[x3(s), x20(r)] = x21(rs)x22(�rs2) [x3(s), x21(r)] = x22(2rs)
[x4(s), x6(r)] = x10(�rs) [x4(s), x8(r)] = x12(�rs)
[x4(s), x9(r)] = x13(�rs)x16(rs2) [x4(s), x11(r)] = x15(�rs)x18(rs2)
[x4(s), x13(r)] = x16(2rs) [x4(s), x14(r)] = x17(�rs)x20(rs2)
[x4(s), x15(r)] = x18(2rs) [x4(s), x17(r)] = x20(2rs)
[x4(s), x19(r)] = x21(rs) [x5(s), x7(r)] = x12(rs)x18(r2s)
[x5(s), x9(r)] = x14(�rs) [x5(s), x13(r)] = x17(�rs)x23(�r2s)
[x5(s), x16(r)] = x20(�rs) [x5(s), x22(r)] = x24(rs)
[x6(s), x7(r)] = x13(�rs) [x6(s), x8(r)] = x14(2rs)
[x6(s), x12(r)] = x17(rs) [x6(s), x15(r)] = x19(�rs)
[x6(s), x18(r)] = x21(�rs)x23(rs2) [x6(s), x21(r)] = x23(2rs)
[x7(s), x8(r)] = x15(rs) [x7(s), x10(r)] = x16(�2rs)
[x7(s), x12(r)] = x18(�2rs) [x7(s), x14(r)] = x19(�rs)x22(rs2)
[x7(s), x17(r)] = x21(rs) [x7(s), x19(r)] = x22(2rs)
[x8(s), x10(r)] = x17(�rs) [x8(s), x13(r)] = x19(rs)
[x8(s), x16(r)] = x21(rs)x24(�rs2) [x8(s), x21(r)] = x24(2rs)
[x9(s), x12(r)] = x19(rs)x24(�r2s) [x9(s), x18(r)] = x22(�rs)
[x9(s), x20(r)] = x23(�rs) [x10(s), x11(r)] = x19(rs)x23(�rs2)
[x10(s), x12(r)] = x20(�2rs) [x10(s), x15(r)] = x21(�rs)
[x10(s), x19(r)] = x23(2rs) [x11(s), x16(r)] = x22(rs)
[x11(s), x20(r)] = x24(�rs) [x12(s), x13(r)] = x21(rs)
[x12(s), x19(r)] = x24(2rs) [x13(s), x15(r)] = x22(�2rs)
[x13(s), x17(r)] = x23(�2rs) [x14(s), x16(r)] = x23(rs)
[x14(s), x18(r)] = x24(rs) [x15(s), x17(r)] = x24(�2rs)

Table B.4: Commutator relations for U for G of type F4.
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[x1(s), x2(r)] = x6(�rs)x10(rs2) [x1(s), x6(r)] = x10(2rs)
[x1(s), x7(r)] = x11(�rs)x14(rs2) [x1(s), x11(r)] = x14(2rs)
[x1(s), x12(r)] = x15(�rs)x18(rs2) [x1(s), x15(r)] = x18(2rs)
[x1(s), x16(r)] = x19(�rs)x21(rs2) [x1(s), x19(r)] = x21(2rs)
[x2(s), x3(r)] = x7(�rs) [x2(s), x8(r)] = x12(�rs)
[x2(s), x13(r)] = x16(�rs) [x2(s), x14(r)] = x17(rs)
[x2(s), x18(r)] = x20(rs) [x2(s), x21(r)] = x23(rs)
[x3(s), x4(r)] = x8(�rs) [x3(s), x6(r)] = x11(rs)x17(�r2s)
[x3(s), x9(r)] = x13(�rs) [x3(s), x10(r)] = x14(rs)
[x3(s), x20(r)] = x22(rs) [x3(s), x23(r)] = x24(rs)
[x4(s), x5(r)] = x9(�rs) [x4(s), x7(r)] = x12(rs)
[x4(s), x11(r)] = x15(rs)x22(�r2s) [x4(s), x14(r)] = x18(rs)
[x4(s), x17(r)] = x20(rs) [x4(s), x24(r)] = x25(rs)
[x5(s), x8(r)] = x13(rs) [x5(s), x12(r)] = x16(rs)
[x5(s), x15(r)] = x19(rs)x25(�r2s) [x5(s), x18(r)] = x21(rs)
[x5(s), x20(r)] = x23(rs) [x5(s), x22(r)] = x24(rs)
[x6(s), x8(r)] = x15(�rs)x20(rs2) [x6(s), x11(r)] = x17(2rs)
[x6(s), x13(r)] = x19(�rs)x23(rs2) [x6(s), x15(r)] = x20(2rs)
[x6(s), x19(r)] = x23(2rs) [x7(s), x9(r)] = x16(�rs)
[x7(s), x10(r)] = x17(�rs) [x7(s), x18(r)] = x22(rs)
[x7(s), x21(r)] = x24(rs) [x8(s), x10(r)] = x18(rs)
[x8(s), x17(r)] = x22(�rs) [x8(s), x23(r)] = x25(rs)
[x9(s), x11(r)] = x19(rs)x24(�r2s) [x9(s), x14(r)] = x21(rs)
[x9(s), x17(r)] = x23(rs) [x9(s), x22(r)] = x25(�rs)
[x10(s), x12(r)] = x20(rs) [x10(s), x13(r)] = x21(�rs)
[x10(s), x16(r)] = x23(rs) [x11(s), x15(r)] = x22(2rs)
[x11(s), x19(r)] = x24(2rs) [x12(s), x14(r)] = x22(�rs)
[x12(s), x21(r)] = x25(rs) [x13(s), x17(r)] = x24(�rs)
[x13(s), x20(r)] = x25(�rs) [x14(s), x16(r)] = x24(rs)
[x15(s), x19(r)] = x25(2rs) [x16(s), x18(r)] = x25(�rs)

Table B.5: Commutator relations for U for G of type B5.
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[x1(s), x2(r)] = x6(�rs)x10(r2s) [x1(s), x7(r)] = x11(�rs)x17(r2s)
[x1(s), x12(r)] = x15(�rs)x22(r2s) [x1(s), x16(r)] = x19(�rs)x25(r2s)
[x2(s), x3(r)] = x7(�rs) [x2(s), x6(r)] = x10(2rs)
[x2(s), x8(r)] = x12(�rs) [x2(s), x11(r)] = x14(rs)
[x2(s), x13(r)] = x16(�rs) [x2(s), x15(r)] = x18(rs)
[x2(s), x19(r)] = x21(rs) [x3(s), x4(r)] = x8(�rs)
[x3(s), x6(r)] = x11(rs) [x3(s), x9(r)] = x13(�rs)
[x3(s), x10(r)] = x14(rs)x17(�rs2) [x3(s), x14(r)] = x17(2rs)
[x3(s), x18(r)] = x20(rs) [x3(s), x21(r)] = x23(rs)
[x4(s), x5(r)] = x9(�rs) [x4(s), x7(r)] = x12(rs)
[x4(s), x11(r)] = x15(rs) [x4(s), x14(r)] = x18(rs)
[x4(s), x17(r)] = x20(rs)x22(�rs2) [x4(s), x20(r)] = x22(2rs)
[x4(s), x23(r)] = x24(rs) [x5(s), x8(r)] = x13(rs)
[x5(s), x12(r)] = x16(rs) [x5(s), x15(r)] = x19(rs)
[x5(s), x18(r)] = x21(rs) [x5(s), x20(r)] = x23(rs)
[x5(s), x22(r)] = x24(rs)x25(�rs2) [x5(s), x24(r)] = x25(2rs)
[x6(s), x7(r)] = x14(�rs) [x6(s), x8(r)] = x15(�rs)
[x6(s), x12(r)] = x18(�rs) [x6(s), x13(r)] = x19(�rs)
[x6(s), x16(r)] = x21(�rs) [x7(s), x9(r)] = x16(�rs)
[x7(s), x11(r)] = x17(2rs) [x7(s), x15(r)] = x20(rs)
[x7(s), x19(r)] = x23(rs) [x8(s), x10(r)] = x18(rs)x22(�rs2)
[x8(s), x14(r)] = x20(rs) [x8(s), x18(r)] = x22(2rs)
[x8(s), x21(r)] = x24(rs) [x9(s), x11(r)] = x19(rs)
[x9(s), x14(r)] = x21(rs) [x9(s), x17(r)] = x23(rs)x25(�rs2)
[x9(s), x20(r)] = x24(rs) [x9(s), x23(r)] = x25(2rs)
[x10(s), x13(r)] = x21(�rs)x25(r2s) [x11(s), x12(r)] = x20(�rs)
[x11(s), x16(r)] = x23(�rs) [x12(s), x15(r)] = x22(2rs)
[x12(s), x19(r)] = x24(rs) [x13(s), x14(r)] = x23(rs)
[x13(s), x18(r)] = x24(rs) [x13(s), x21(r)] = x25(2rs)
[x15(s), x16(r)] = x24(�rs) [x16(s), x19(r)] = x25(2rs)

Table B.6: Commutator relations for U for G of type C5.
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APPENDIX C

NONABELIAN CORES IN TYPES B5 AND D5

We provide relevant information about each (3, 10, 9)-core of the form C = (S,Z,A,L,K)

in types B5 and D5. We recall that the argument in Proposition 5.4 applies in these cases

to give the corresponding irreducible characters of U . We define

I⌃ := {i 2 {1, . . . , |�+|} | ↵i 2 ⌃},

and similarly we define IS\D(S), IZ , ID(S), IA and IL. Moreover, I and J are defined as in

Proposition 5.4.

Core I⌃ IS\D(S) IZ ID(S) IA IL I J
CB5
1 {17, 18} {2, 3, 4, 7, 8, 10, 12, 14, 17, 18} {12, 17, 18} ? {1, 6} {11, 15} {2, 4, 10} {7, 8, 14}

CB5
2 {17, 21} {2, 3, 7, 9, 10, 13, 14, 16, 17, 21} {15, 16, 17, 21} {15} {1, 4, 5, 6} {8, 11, 18, 19} {2, 9, 10} {7, 13, 14}

CB5
3 {17, 21} {2, 3, 7, 9, 10, 13, 14, 16, 17, 21} {16, 17, 21} {4} {1, 5, 6} {11, 18, 19} {2, 9, 10} {7, 13, 14}

CB5
4 {20, 21} {2, 5, 8, 10, 12, 13, 16, 18, 20, 21} {16, 20, 21} {3, 11} {1, 4, 6, 9} {14, 15, 17, 19} {2, 5, 10} {12, 13, 18}

CB5
5 {21, 22} {4, 5, 7, 9, 12, 14, 16, 18, 21, 22} {16, 21, 22} {2, 6} {1, 3, 8, 11, 13} {10, 15, 17, 19, 20} {5, 7, 14} {9, 12, 18}

CB5
6 {22, 23} {3, 4, 5, 8, 9, 13, 17, 20, 22, 23} {13, 22, 23} {1} {2, 6, 7, 10, 11, 12} {14, 15, 16, 18, 19, 21} {3, 5, 17} {8, 9, 20}

CB5
7 {5, 17, 18} {2, 3, 4, 7, 8, 10, 12, 14, 17, 18} {5, 12, 17, 18} {5} {1, 6} {11, 15} {2, 4, 10} {7, 8, 14}

CB5
8 {17, 18, 19} {2, 3, 4, 7, 8, 10, 12, 14, 17, 18} {12, 17, 18, 19} {19} {1, 5, 6, 9} {11, 13, 15, 16} {2, 4, 10} {7, 8, 14}

Figure C.1: The (3, 10, 9)-cores of UB5 .
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Core I⌃ IS\D(S) IZ ID(S) IA IL I J

CD5
1 {17, 18} {3, 4, 5, 8, 9, 10, 13, 14, 17, 18} {13, 17, 18} ? {1, 2, 6, 7} {11, 12, 15, 16} {3, 5, 10} {8, 9, 14}

CD5
2 {10, 11, 12} {1, 2, 3, 4, 6, 7, 8, 10, 11, 12} {10, 11, 12} ? ? ? {1, 2, 4} {6, 7, 8}

CD5
3 {10, 15, 16} {1, 2, 3, 6, 7, 9, 10, 13, 15, 16} {10, 15, 16} {4} {5} {11} {1, 2, 9} {6, 7, 13}

CD5
4 {14, 15, 16} {1, 2, 5, 8, 11, 12, 13, 14, 15, 16} {14, 15, 16} {3} {4, 9} {6, 10} {1, 2, 5} {11, 12, 13}

CD5
5 {15, 16, 17} {4, 5, 6, 7, 9, 11, 12, 15, 16, 17} {15, 16, 17} {2} {3, 8, 13} {1, 10, 14} {5, 6, 7} {9, 11, 12}

CD5
6 {5, 10, 11, 12} {1, 2, 3, 4, 6, 7, 8, 10, 11, 12} {5, 10, 11, 12} {5} ? ? {1, 2, 4} {6, 7, 8}

Figure C.2: The (3, 10, 9)-cores of UD5 .
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APPENDIX D

PARAMETRIZATION OF CHARACTERS

We now present the parametrization of the irreducible characters of U when G is a split

finite group of Lie type B4, C4, D4, F4, B5, C5 or D5 and p is not a very bad prime for U ,

that is, p 6= 2 in all types except D4 and D5.

The notation in the tables is as follows. The first column corresponds to the families of

the form F⌃, where F⌃ is the family of irreducible characters of U arising from an antichain

⌃. The second column contains character labels for the families determined in the previous

chapters. For a fixed core (S,Z,A,L,K), we define

IA = {i 2 {1, . . . , |�+|} | ↵i 2 A},

and define IL similarly. In case of nonabelian cores, II and IJ are also defined in the same

fashion. The third column contains IA and IL. We note that K can be determined from

A, L and the labels of the characters. For the abelian cores, we recall that the irreducible

characters are obtained by applying IndA InfK to the linear characters in Irr(XS)Z . We use

the bold font to identify nonabelian cores. In these cases, we also use the second column to

give any relation between the indices and the third column to give some information on the

construction of these characters. In the case where we have Y 0 = 1 and Y is normal in H̄,
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we give II and IJ in the third column, as in this case the irreducible characters are given

by applying IndA[I InfK[J to linear characters in Irr(XS\(I[J ))Z . In other cases, we refer

the reader to the relevant parts of Chapters 4 and 5. Finally, the fourth column records the

number of irreducible characters in a family corresponding to some character labels, and the

fifth column records their degree.
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Parametrization of the irreducible characters of UB4

F � I Number Degree

Flin �b1,b2,b3,b4
q

4 1

F5 �

a5
IA = {1}, IL = {2}, q � 1 q

F6 �

a6
IA = {2}, IL = {3}, q � 1 q

F7 �

a7
IA = {3}, IL = {4}, q � 1 q

F8 �

a8
b2

IA = {1}, IL = {5}, q(q � 1) q

F9 �

a9
b2

IA = {1, 3}, IL = {5, 6}, q(q � 1) q

2

F10 �

a10
b3

IA = {2, 4}, IL = {6, 7}, q(q � 1) q

2

F11 �

a11
b2,b5,b6

IA = {1, 3}, IL = {8, 9}, q

3(q � 1) q

2

F12 �

a6,a12
IA = {1, 3, 4, 7}, (q � 1)2 q

4

IL = {2, 5, 9, 10},

�

a12
b2,b3

IA = {1, 4, 7}, IL = {5, 9, 10}, q

2(q � 1) q

3

F13 �

a13
b1,b3

IA = {2, 5, 6}, IL = {8, 9, 11}, q

2(q � 1) q

3

F14 �

a9,a14
b2,b6,b10

IA = {1, 3, 4, 7}, q

3(q � 1)2 q

4

IL = {5, 8, 11, 12},

�

a6,a14
b5,b10

IA = {1, 3, 4, 7}, q

2(q � 1)2 q

4

IL = {2, 8, 11, 12},

�

a14
b2,b3,b5,b10

IA = {1, 4, 7}, IL = {8, 11, 12}, q

4(q � 1) q

3

F15 �

a11,a15
b3,b6,b7

IA = {1, 2, 4, 5, 8}, q

3(q � 1)2 q

5

IL = {9, 10, 12, 13, 14},

�

a9,a15
b3,b7

IA = {1, 2, 4, 5, 8}, q

2(q � 1)2 q

5

IL = {6, 10, 12, 13, 14},

�

a15
b1,b3,b6,b7

IA = {2, 4, 5, 8}, q

4(q � 1) q

4

IL = {10, 12, 13, 14},

F16 �

a8,a16
b2,b4

IA = {1, 3, 6, 7, 9, 10}, q

2(q � 1)2 q

6

IL = {5, 11, 12, 13, 14, 15},

�

a5,a16
b4

IA = {2, 3, 6, 7, 9, 10}, q(q � 1)2 q

6

IL = {1, 11, 12, 13, 14, 15},

�

a16
b1,b2,b4

IA = {3, 6, 7, 9, 10}, q

3(q � 1) q

5

IL = {11, 12, 13, 14, 15},

F1,6 �

a1,a6
IA = {2}, IL = {3}, (q � 1)2 q

F1,7 �

a1,a7
IA = {3}, IL = {4}, (q � 1)2 q

F1,10 �

a1,a10
b3

IA = {2, 4}, IL = {6, 7}, q(q � 1)2 q

2

F2,7 �

a2,a7
IA = {3}, IL = {4}, (q � 1)2 q

F3,5 �

a3,a5
IA = {1}, IL = {2}, (q � 1)2 q

F3,8 �

a3,a8
b2

IA = {1}, IL = {5}, q(q � 1)2 q

F4,5 �

a4,a5
IA = {1}, IL = {2}, (q � 1)2 q

F4,6 �

a4,a6
IA = {2}, IL = {3}, (q � 1)2 q

F4,8 �

a4,a8
b2

IA = {1}, IL = {5}, q(q � 1)2 q

F4,9 �

a4,a9
b2

IA = {1, 3}, IL = {5, 6}, q(q � 1)2 q

2

F4,11 �

a4,a11
b2,b5,b6

IA = {1, 3}, IL = {8, 9}, q

3(q � 1)2 q

2

F4,13 �

a4,a13
b1,b3

IA = {2, 5, 6}, IL = {8, 9, 11}, q

2(q � 1)2 q

3

F5,6 �

a5,a6
b3

IA = {1}, IL = {2}, q(q � 1)2 q

F5,7 �

a5,a7
IA = {1, 3}, IL = {2, 4}, (q � 1)2 q

2

F5,10 �

a5,a10
b1,b3

IA = {2, 4}, IL = {6, 7}, q

2(q � 1)2 q

2

F6,7 �

a6,a7
b4

IA = {2}, IL = {3}, q(q � 1)2 q

F6,8 �

a6,a8
IA = {1, 3}, IL = {2, 5}, (q � 1)2 q

2

F7,8 �

a7,a8
b2

IA = {1, 4}, IL = {3, 5}, q(q � 1)2 q

2
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F � I Number Degree

F7,9 �

a7,a9
b2,b4

IA = {1, 3}, IL = {5, 6}, q

2(q � 1)2 q

2

F7,11 �

a7,a11
b2,b4,b5,b6

IA = {1, 3}, IL = {8, 9}, q

4(q � 1)2 q

2

F7,13 �

a7,a13
b1

IA = {2, 4, 5, 6}, q(q � 1)2 q

4

IL = {3, 8, 9, 11},

F8,9 �

a8,a9
b2

IA = {1, 3}, IL = {5, 6}, q(q � 1)2 q

2

F8,10 �

a8,a10
b3

IA = {1, 2, 4}, IL = {5, 6, 7}, q(q � 1)2 q

3

F8,12 �

a6,a8,a12
IA = {1, 3, 4, 7}, (q � 1)3 q

4

IL = {2, 5, 9, 10},

�

a8,a12
b2,b3

IA = {1, 4, 7}, IL = {5, 9, 10}, q

2(q � 1)2 q

3

F9,10 �

a9,a10
b4

IA = {2, 3, 6}, IL = {1, 5, 7}, q(q � 1)2 q

3

F10,11 �

a10,a11
b5

IA = {1, 2, 3, 4}, q(q � 1)2 q

4

IL = {6, 7, 8, 9},

F10,13 �

a7,a10,a13
b1

IA = {2, 4, 5, 6}, q(q � 1)3 q

4

IL = {3, 8, 9, 11},

�

a10,a13
b1,b3,b4

IA = {2, 5, 6}, IL = {8, 9, 11}, q

3(q � 1)2 q

3

F11,12 �

a11,a12
b2,b6

IA = {1, 3, 4, 7}, q

2(q � 1)2 q

4

IL = {5, 8, 9, 10},

F12,13 �

a12,a13
b3

IA = {1, 2, 4, 5, 6}, q(q � 1)2 q

5

IL = {7, 8, 9, 10, 11},

F13,14 �

a10,a13,a14
b3

�

a10,a13,a14
b3

�

a10,a13,a14
b3

IA = {1, 5}, II = {2, 4, 8},IA = {1, 5}, II = {2, 4, 8},
IA = {1, 5}, II = {2, 4, 8}, q(q � 1)3q(q � 1)3

q(q � 1)3 q

5
q

5
q

5

IL = {9, 12}, IJ = {6, 7, 11}.IL = {9, 12}, IJ = {6, 7, 11}.
IL = {9, 12}, IJ = {6, 7, 11}.

�

a7,a13,a14
IA = {1, 4, 5, 8, 11}, (q � 1)3 q

5

IL = {2, 3, 6, 9, 12},

�

a13,a14
b3,b4

IA = {1, 5, 8, 11}, q

2(q � 1)2 q

4

IL = {2, 6, 9, 12},

F1,2,7 �

a1,a2,a7
IA = {3}, IL = {4}, (q � 1)3 q

F1,4,6 �

a1,a4,a6
IA = {2}, IL = {3}, (q � 1)3 q

F1,6,7 �

a1,a6,a7
b4

IA = {2}, IL = {3}, q(q � 1)3 q

F3,4,5 �

a3,a4,a5
IA = {1}, IL = {2}, (q � 1)3 q

F3,4,8 �

a3,a4,a8
b2

IA = {1}, IL = {5}, q(q � 1)3 q

F4,5,6 �

a4,a5,a6
b3

IA = {1}, IL = {2}, q(q � 1)3 q

F4,6,8 �

a4,a6,a8
IA = {1, 3}, IL = {2, 5}, (q � 1)3 q

2

F4,8,9 �

a4,a8,a9
b2

IA = {1, 3}, IL = {5, 6}, q(q � 1)3 q

2

F5,6,7 �

a5,a6,a7
IA = {1, 3}, IL = {2, 4}, (q � 1)3 q

2

F6,7,8 �

a6,a7,a8
b4

IA = {1, 3}, IL = {2, 5}, q(q � 1)3 q

2

F7,8,9 �

a7,a8,a9
b2,b4

IA = {1, 3}, IL = {5, 6}, q

2(q � 1)3 q

2

F8,9,10 �

a8,a9,a10
b4

IA = {2, 5, 6}, IL = {1, 3, 7}, q(q � 1)3 q

3

Table D.1: The parametrization of the irreducible characters of UB4(q), where q = pe and
p � 3.
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Parametrization of the irreducible characters of UC4

F � I Number Degree

Flin �b1,b2,b3,b4
q

4 1

F5 �

a5
IA = {1}, IL = {2}, q � 1 q

F6 �

a6
IA = {2}, IL = {3}, q � 1 q

F7 �

a7
IA = {3}, IL = {4}, q � 1 q

F8 �

a8
b1

IA = {2}, IL = {5}, q(q � 1) q

F9 �

a9
b2

IA = {1, 3}, IL = {5, 6}, q(q � 1) q

2

F10 �

a10
b3

IA = {2, 4}, IL = {6, 7}, q(q � 1) q

2

F11 �

a11
b1

IA = {2, 3, 6}, IL = {5, 8, 9}, q(q � 1) q

3

F12 �

a6,a12
IA = {1, 3, 4, 7}, (q � 1)2 q

4

IL = {2, 5, 9, 10},

�

a12
b2,b3

IA = {1, 4, 7}, IL = {5, 9, 10}, q

2(q � 1) q

3

F13 �

a8,a13
b1

IA = {2, 3, 6}, IL = {5, 9, 11}, q(q � 1)2 q

3

�

a5,a13
IA = {2, 3, 6}, IL = {1, 9, 11}, (q � 1)2 q

3

�

a13
b1,b2

IA = {3, 6}, IL = {9, 11}, q

2(q � 1) q

2

F14 �

a9,a14
b3

IA = {1, 2, 4, 5, 7}, q(q � 1)2 q

5

IL = {6, 8, 10, 11, 12},

�

a14
b1,b3,b6

IA = {2, 4, 5, 7}, q

3(q � 1) q

4

IL = {8, 10, 11, 12},

F15 �

a8,a15
b1

IA = {2, 3, 4, 6, 7, 10}, q(q � 1)2 q

6

IL = {5, 9, 11, 12, 13, 14},

�

a5,a15
IA = {2, 3, 4, 6, 7, 10}, (q � 1)2 q

6

IL = {1, 9, 11, 12, 13, 14},

�

a15
b1,b2

IA = {3, 4, 6, 7, 10}, q

2(q � 1) q

5

IL = {9, 11, 12, 13, 14},

F16 �

a8,a13,a16
b1

IA = {2, 3, 4, 6, 7, 10}, q(q � 1)3 q

6

IL = {5, 9, 11, 12, 14, 15},

�

a5,a13,a16
IA = {2, 3, 4, 6, 7, 10}, (q � 1)3 q

6

IL = {1, 9, 11, 12, 14, 15},

�

a13,a16
b1,b2

IA = {3, 4, 6, 7, 10}, q

2(q � 1)2 q

5

IL = {9, 11, 12, 14, 15},

�

a11,a16
b1

IA = {2, 3, 4, 6, 7, 10}, q(q � 1)2 q

6

IL = {5, 8, 9, 12, 14, 15},

�

a8,a9,a16
b3

IA = {1, 4, 5, 7, 10}, q(q � 1)3 q

5

IL = {2, 6, 12, 14, 15},

�

a8,a16
b1,b3,b6

IA = {2, 4, 7, 10}, q

3(q � 1)2 q

4

IL = {5, 12, 14, 15},

�

a9,a16
b2

IA = {1, 3, 4, 7, 10}, q(q � 1)2 q

5

IL = {5, 6, 12, 14, 15},

�

a6,a16
b1,b5

IA = {2, 4, 7, 10}, q

2(q � 1)2 q

4

IL = {3, 12, 14, 15},

�

a5,a16
b3

IA = {2, 4, 7, 10}, q(q � 1)2 q

4

IL = {1, 12, 14, 15},

�

a16
b1,b2,b3

IA = {4, 7, 10}, IL = {12, 14, 15}, q

3(q � 1) q

3

F1,6 �

a1,a6
IA = {2}, IL = {3}, (q � 1)2 q

F1,7 �

a1,a7
IA = {3}, IL = {4}, (q � 1)2 q

F1,10 �

a1,a10
b3

IA = {2, 4}, IL = {6, 7}, q(q � 1)2 q

2

F2,7 �

a2,a7
IA = {3}, IL = {4}, (q � 1)2 q
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F3,5 �

a3,a5
IA = {1}, IL = {2}, (q � 1)2 q

F3,8 �

a3,a8
b1

IA = {2}, IL = {5}, q(q � 1)2 q

F4,5 �

a4,a5
IA = {1}, IL = {2}, (q � 1)2 q

F4,6 �

a4,a6
IA = {2}, IL = {3}, (q � 1)2 q

F4,8 �

a4,a8
b1

IA = {2}, IL = {5}, q(q � 1)2 q

F4,9 �

a4,a9
b2

IA = {1, 3}, IL = {5, 6}, q(q � 1)2 q

2

F4,11 �

a4,a11
b1

IA = {2, 3, 6}, IL = {5, 8, 9}, q(q � 1)2 q

3

F4,13 �

a4,a8,a13
b1

IA = {2, 3, 6}, IL = {5, 9, 11}, q(q � 1)3 q

3

�

a4,a5,a13
IA = {2, 3, 6}, IL = {1, 9, 11}, (q � 1)3 q

3

�

a4,a13
b1,b2

IA = {3, 6}, IL = {9, 11}, q

2(q � 1)2 q

2

F5,6 �

a5,a6
b3

IA = {1}, IL = {2}, q(q � 1)2 q

F5,7 �

a5,a7
IA = {1, 3}, IL = {2, 4}, (q � 1)2 q

2

F5,10 �

a5,a10
b1,b3

IA = {2, 4}, IL = {6, 7}, q

2(q � 1)2 q

2

F6,7 �

a6,a7
b4

IA = {2}, IL = {3}, q(q � 1)2 q

F6,8 �

a6,a8
b1,b3

IA = {2}, IL = {5}, q

2(q � 1)2 q

F7,8 �

a7,a8
b1

IA = {2, 4}, IL = {3, 5}, q(q � 1)2 q

2

F7,9 �

a7,a9
b2,b4

IA = {1, 3}, IL = {5, 6}, q

2(q � 1)2 q

2

F7,11 �

a7,a11
b1,b4

IA = {2, 3, 6}, IL = {5, 8, 9}, q

2(q � 1)2 q

3

F7,13 �

a7,a8,a13
b1,b4

IA = {2, 3, 6}, IL = {5, 9, 11}, q

2(q � 1)3 q

3

�

a5,a7,a13
b4

IA = {2, 3, 6}, IL = {1, 9, 11}, q(q � 1)3 q

3

�

a7,a13
b1,b2,b4

IA = {3, 6}, IL = {9, 11}, q

3(q � 1)2 q

2

F8,9 �

a8,a9
b3

IA = {1, 5}, IL = {2, 6}, q(q � 1)2 q

2

F8,10 �

a8,a10
b1,b3,b7

IA = {2, 4}, IL = {5, 6}, q

3(q � 1)2 q

2

F8,12 �

a6,a8,a12
IA = {1, 3, 4, 5}, (q � 1)3 q

4

IL = {2, 7, 9, 10},

�

a8,a12
b2,b3

IA = {1, 4, 5}, IL = {7, 9, 10}, q

2(q � 1)2 q

3

F9,10 �

a9,a10
b4

IA = {2, 3, 6}, IL = {1, 5, 7}, q(q � 1)2 q

3

F10,11 �

a10,a11
b1,b4,b7

IA = {2, 3, 6}, IL = {5, 8, 9}, q

3(q � 1)2 q

3

F10,13 �

a10,a13
b1,b4,b5,b8

IA = {2, 3, 6}, IL = {7, 9, 11}, q

4(q � 1)2 q

3

F11,12 �

a11,a12
b4,b7

IA = {1, 3, 5, 9}, q

2(q � 1)2 q

4

IL = {2, 6, 8, 10},

F12,13 �

a12,a13
b2,b4,b8

IA = {1, 3, 5, 9}, q

3(q � 1)2 q

4

IL = {6, 7, 10, 11},

F13,14 �

a13,a14
b1,b4

IA = {2, 5, 6, 8, 11}, q

2(q � 1)2 q

5

IL = {3, 7, 9, 10, 12},

F1,2,7 �

a1,a2,a7
IA = {3}, IL = {4}, (q � 1)3 q

F1,4,6 �

a1,a4,a6
IA = {2}, IL = {3}, (q � 1)3 q

F1,6,7 �

a1,a6,a7
b4

IA = {2}, IL = {3}, q(q � 1)3 q

F3,4,5 �

a3,a4,a5
IA = {1}, IL = {2}, (q � 1)3 q

F3,4,8 �

a3,a4,a8
b1

IA = {2}, IL = {5}, q(q � 1)3 q

F4,5,6 �

a4,a5,a6
b3

IA = {1}, IL = {2}, q(q � 1)3 q

F4,6,8 �

a4,a6,a8
b1,b3

IA = {2}, IL = {5}, q

2(q � 1)3 q

F4,8,9 �

a4,a8,a9
b3

IA = {1, 5}, IL = {2, 6}, q(q � 1)3 q

2

F5,6,7 �

a5,a6,a7
IA = {1, 3}, IL = {2, 4}, (q � 1)3 q

2

F6,7,8 �

a6,a7,a8
b1

IA = {2, 4}, IL = {3, 5}, q(q � 1)3 q

2

F7,8,9 �

a7,a8,a9
IA = {1, 4, 5}, IL = {2, 3, 6}, (q � 1)3 q

3

F8,9,10 �

a8,a9,a10
b4

IA = {2, 3, 6}, IL = {1, 5, 7}, q(q � 1)3 q

3

Table D.2: The parametrization of the irreducible characters of UC4(q), where q = pe and
p � 3.
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Parametrization of the irreducible characters of UD4

F � I Number Degree

Flin �b1,b2,b3,b4
q

4 1

F5 �

a5
IA = {1}, IL = {3}, q � 1 q

F6 �

a6
IA = {2}, IL = {3}, q � 1 q

F7 �

a7
IA = {3}, IL = {4}, q � 1 q

F8 �

a8
b3

IA = {1, 2}, IL = {5, 6}, q(q � 1) q

2

F9 �

a9
b3

IA = {1, 4}, IL = {5, 7}, q(q � 1) q

2

F10 �

a10
b3

IA = {2, 4}, IL = {6, 7}, q(q � 1) q

2

F11 �

a11
b3,b5,b6,b7

IA = {1, 2, 4}, IL = {8, 9, 10}, q

4(q � 1) q

3

F12 �

a12
b1,b2,b4

IA = {3, 5, 6, 7}, q

3(q � 1) q

4

IL = {8, 9, 10, 11},

F1,6 �

a1,a6
IA = {2}, IL = {3}, (q � 1)2 q

F1,7 �

a1,a7
IA = {3}, IL = {4}, (q � 1)2 q

F1,10 �

a1,a10
b3

IA = {2, 4}, IL = {6, 7}, q(q � 1)2 q

2

F2,5 �

a2,a5
IA = {1}, IL = {3}, (q � 1)2 q

F2,7 �

a2,a7
IA = {3}, IL = {4}, (q � 1)2 q

F2,9 �

a2,a9
b3

IA = {1, 4}, IL = {5, 7}, q(q � 1)2 q

2

F4,5 �

a4,a5
IA = {1}, IL = {3}, (q � 1)2 q

F4,6 �

a4,a6
IA = {2}, IL = {3}, (q � 1)2 q

F4,8 �

a4,a8
b3

IA = {1, 2}, IL = {5, 6}, q(q � 1)2 q

2

F5,6 �

a5,a6
b2

IA = {1}, IL = {3}, q(q � 1)2 q

F5,7 �

a5,a7
b4

IA = {1}, IL = {3}, q(q � 1)2 q

F5,10 �

a5,a10
IA = {2, 3, 4}, IL = {1, 6, 7}, (q � 1)2 q

3

F6,7 �

a6,a7
b4

IA = {2}, IL = {3}, q(q � 1)2 q

F6,9 �

a6,a9
IA = {1, 3, 4}, IL = {2, 5, 7}, (q � 1)2 q

3

F7,8 �

a7,a8
IA = {1, 2, 4}, IL = {3, 5, 6}, (q � 1)2 q

3

F8,9 �

a7,a8,a9
IA = {1, 4, 5}, IL = {2, 3, 6}, (q � 1)3 q

3

�

a8,a9
b3,b4

IA = {1, 5}, IL = {2, 6}, q

2(q � 1)2 q

2

F8,10 �

a7,a8,a10
IA = {1, 3, 5}, IL = {2, 4, 6}, (q � 1)3 q

3

�

a8,a10
b3,b4

IA = {1, 5}, IL = {2, 6}, q

2(q � 1)2 q

2

F9,10 �

a6,a9,a10
IA = {1, 2, 5}, IL = {3, 4, 7}, (q � 1)3 q

3

�

a9,a10
b2,b3

IA = {1, 5}, IL = {4, 7}, q

2(q � 1)2 q

2

F1,2,7 �

a1,a2,a7
IA = {3}, IL = {4}, (q � 1)3 q

F1,4,6 �

a1,a4,a6
IA = {2}, IL = {3}, (q � 1)3 q

F1,6,7 �

a1,a6,a7
b4

IA = {2}, IL = {3}, q(q � 1)3 q

F2,4,5 �

a2,a4,a5
IA = {1}, IL = {3}, (q � 1)3 q

F2,5,7 �

a2,a5,a7
b4

IA = {1}, IL = {3}, q(q � 1)3 q

F4,5,6 �

a4,a5,a6
b2

IA = {1}, IL = {3}, q(q � 1)3 q

F5,6,7 �

a5,a6,a7
b2,b4

IA = {1}, IL = {3}, q

2(q � 1)3 q

Fp�3p�3p�3
8,9,10 �

a8,a9,a10
b3

�

a8,a9,a10
b3

�

a8,a9,a10
b3

II = {1, 2, 4}II = {1, 2, 4}
II = {1, 2, 4} q(q � 1)3q(q � 1)3

q(q � 1)3 q

3
q

3
q

3

IJ = {5, 6, 7}IJ = {5, 6, 7}
IJ = {5, 6, 7}

Fp=2p=2p=2
8,9,10 �

a8,a9,a10
�

a8,a9,a10
�

a8,a9,a10
See CD4

in Section 4.2 (q � 1)3(q � 1)3(q � 1)3 q

3
q

3
q

3

�

a5,6,7,a8,a9,a10
c1,2,4,c3

�

a5,6,7,a8,a9,a10
c1,2,4,c3�

a5,6,7,a8,a9,a10
c1,2,4,c3

4(q � 1)44(q � 1)44(q � 1)4 q

3
/2q

3
/2

q

3
/2

Table D.3: The parametrization of the irreducible characters of UD4(q) for every q = pe.



Parametrization of the irreducible characters of UF4

F � I Number Degree

Flin �b1,b2,b3,b4
q

4 1

F5 �

a5
IA = {1}, IL = {2}, q � 1 q

1

F6 �

a6
IA = {2}, IL = {3}, q � 1 q

1

F7 �

a7
IA = {3}, IL = {4}, q � 1 q

1

F8 �

a8
b2

IA = {1, 3}, IL = {5, 6}, q(q � 1) q

2

F9 �

a9
b2

IA = {3}, IL = {6}, q(q � 1) q

1

F10 �

a10
b3

IA = {2, 4}, IL = {6, 7}, q(q � 1) q

2

F11 �

a11
b2,b5,b6

IA = {1, 3}, IL = {8, 9}, q

3(q � 1) q

2

F12 �

a6,a12
IA = {1, 3, 4, 7}, (q � 1)2 q

4

IL = {2, 5, 8, 10},

�

a12
b2,b3

IA = {1, 4, 7}, IL = {5, 8, 10}, q

2(q � 1) q

3

F13 �

a13
b2

IA = {3, 4, 7}, IL = {6, 9, 10}, q(q � 1) q

3

F14 �

a14
b1,b3

IA = {2, 5, 6}, IL = {8, 9, 11}, q

2(q � 1) q

3

F15 �

a15
b2,b5,b6,b9,b10

IA = {1, 3, 4, 7}, q

5(q � 1) q

4

IL = {8, 11, 12, 13},

F16 �

a9,a16
b2

IA = {3, 4, 7}, IL = {6, 10, 13}, q(q � 1)2 q

3

�

a6,a16
IA = {3, 4, 7}, IL = {2, 10, 13}, (q � 1)2 q

3

�

a16
b2,b3

IA = {4, 7}, IL = {10, 13}, q

2(q � 1) q

2

F17 �

a11,a17
b3,b7

IA = {1, 2, 4, 5, 6, 8}, q

2(q � 1)2 q

6

IL = {9, 10, 12, 13, 14, 15},

�

a17
b1,b3,b7,b9

IA = {2, 4, 5, 6, 8}, q

4(q � 1) q

5

IL = {10, 12, 13, 14, 15},

F18 �

a11,a18
b2,b5,b6,b9,b10,b13

IA = {1, 3, 4, 7}, q

6(q � 1)2 q

4

IL = {8, 12, 15, 16},

�

a13,a18
b2,b5,b6,b8,b9

IA = {1, 3, 4, 7}, q

5(q � 1)2 q

4

IL = {10, 12, 15, 16},

�

a8,a18
b2,b6,b9,b10

IA = {1, 3, 4, 7}, q

4(q � 1)2 q

4

IL = {5, 12, 15, 16},

�

a9,a18
b2,b5,b10

IA = {1, 3, 4, 7}, q

3(q � 1)2 q

4

IL = {6, 12, 15, 16},

�

a6,a18
b5,b10

IA = {1, 3, 4, 7}, q

2(q � 1)2 q

4

IL = {2, 12, 15, 16},

�

a18
b2,b3,b5,b10

IA = {1, 4, 7}, IL = {12, 15, 16}, q

4(q � 1) q

3

F19 �

a5,a19
b4

IA = {2, 3, 6, 7, 8, 9, 10}, q(q � 1)2 q

7

IL = {1, 11, 12, 13, 14, 15, 17},

�

a19
b1,b2,b4

IA = {3, 6, 7, 8, 9, 10}, q

3(q � 1) q

6

IL = {11, 12, 13, 14, 15, 17},

F20 �

a9,a14,a15,a20
b11

IA = {1, 2, 3, 4, 5, 8, 12}, q(q � 1)4 q

7

IL = {6, 7, 10, 13, 16, 17, 18},

�

a14,a15,a20
b3,b6,b11

IA = {1, 2, 4, 5, 8, 12}, q

3(q � 1)3 q

6

IL = {7, 10, 13, 16, 17, 18},

�

a11,a13,a14,a20
IA = {1, 2, 3, 4, 5, 6, 10}, (q � 1)4 q

7

IL = {7, 8, 9, 12, 16, 17, 18},

�

a13,a14,a20
b1,b3,b8,b9

IA = {2, 4, 5, 6, 10}, q

4(q � 1)3 q

5
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F � I Number Degree

IL = {7, 12, 16, 17, 18},

�

a11,a14,a20
b3,b7

IA = {1, 2, 4, 5, 8, 10}, q

2(q � 1)3 q

6

IL = {6, 9, 12, 16, 17, 18},

�

a14,a20
b1,b3,b7,b9

IA = {2, 4, 5, 6, 10}, q

4(q � 1)2 q

5

IL = {8, 12, 16, 17, 18},

�

a9,a15,a20
b11

IA = {1, 2, 3, 4, 5, 8, 12}, q(q � 1)3 q

7

IL = {6, 7, 10, 13, 16, 17, 18},

�

a15,a20
b3,b6,b11

IA = {1, 2, 4, 5, 8, 12}, q

3(q � 1)2 q

6

IL = {7, 10, 13, 16, 17, 18},

�

a11,a13,a20
IA = {1, 2, 3, 4, 5, 6, 10}, (q � 1)3 q

7

IL = {7, 8, 9, 12, 16, 17, 18},

�

a13,a20
b1,b3,b8,b9

IA = {2, 4, 5, 6, 10}, q

4(q � 1)2 q

5

IL = {7, 12, 16, 17, 18},

�

a11,a20
b6,b7

IA = {1, 2, 3, 4, 5, 10}, q

2(q � 1)2 q

6

IL = {8, 9, 12, 16, 17, 18},

�

a9,a20
b1,b7,b8

IA = {2, 4, 5, 6, 10}, q

3(q � 1)2 q

5

IL = {3, 12, 16, 17, 18},

�

a8,a20
b3,b7

IA = {1, 2, 4, 5, 10}, q

2(q � 1)2 q

5

IL = {6, 12, 16, 17, 18},

�

a20
b1,b3,b6,b7

IA = {2, 4, 5, 10}, q

4(q � 1) q

4

IL = {12, 16, 17, 18},

F21 �

a14,a21
b1

IA = {2, 3, 4, 5, 6, 7, 8, 10, 13}, q(q � 1)2 q

9

IL = {9, 11, 12, 15, 16, 17, 18, 19, 20},

�

a11,a21
b2,b5

IA = {1, 3, 4, 6, 7, 8, 10, 13}, q

2(q � 1)2 q

8

IL = {9, 12, 15, 16, 17, 18, 19, 20},

�

a5,a21
b9

IA = {2, 3, 4, 6, 7, 8, 10, 13}, q(q � 1)2 q

8

IL = {1, 12, 15, 16, 17, 18, 19, 20},

�

a21
b1,b2,b9

IA = {3, 4, 6, 7, 8, 10, 13}, q

3(q � 1) q

7

IL = {12, 15, 16, 17, 18, 19, 20},

F22 �

a14,a20,a22
b1

�

a14,a20,a22
b1

�

a14,a20,a22
b1

IA = {3, 4, 6, 7, 10, 13}, II = {2, 9, 16}.IA = {3, 4, 6, 7, 10, 13}, II = {2, 9, 16}.
IA = {3, 4, 6, 7, 10, 13}, II = {2, 9, 16}. q(q � 1)3q(q � 1)3

q(q � 1)3 q

9
q

9
q

9

IL = {8, 12, 15, 17, 19, 21}, IJ = {5, 11, 18},IL = {8, 12, 15, 17, 19, 21}, IJ = {5, 11, 18},
IL = {8, 12, 15, 17, 19, 21}, IJ = {5, 11, 18},

�

a8,a20,a22
b2,b5

IA = {1, 3, 4, 7, 10, 13, 16, 18}, q

2(q � 1)3 q

8

IL = {6, 9, 11, 12, 15, 17, 19, 21},

�

a5,a20,a22
b6

IA = {2, 3, 4, 7, 10, 13, 16, 18}, q(q � 1)3 q

8

IL = {1, 9, 11, 12, 15, 17, 19, 21},

�

a20,a22
b1,b2,b6

IA = {3, 4, 7, 10, 13, 16, 18}, q

3(q � 1)2 q

7

IL = {9, 11, 12, 15, 17, 19, 21},

�

a17,a22
b1

IA = {2, 3, 4, 6, 7, 9, 10, 11, 13}, q(q � 1)2 q

9

IL = {5, 8, 12, 14, 15, 16, 18, 19, 21},

�

a12,a14,a22
b2,b4,b5

IA = {1, 3, 7, 8, 9, 11, 13}, q

3(q � 1)3 q

7

IL = {6, 10, 15, 16, 18, 19, 21},

�

a5,a14,a22
b4,b10

IA = {2, 3, 6, 7, 9, 11, 13}, q

2(q � 1)3 q

7

IL = {1, 8, 15, 16, 18, 19, 21},

�

a14,a22
b1,b2,b4,b10

IA = {3, 6, 7, 9, 11, 13}, q

4(q � 1)2 q

6

IL = {8, 15, 16, 18, 19, 21},

�

a12,a22
b2,b5,b6

IA = {1, 3, 4, 7, 9, 11, 13}, q

3(q � 1)2 q

7

IL = {8, 10, 15, 16, 18, 19, 21},

�

a5,a10,a22
b8

IA = {2, 3, 6, 7, 9, 11, 13}, q(q � 1)3 q

7

IL = {1, 4, 15, 16, 18, 19, 21},

�

a10,a22
b1,b2,b8

IA = {3, 6, 7, 9, 11, 13}, q

3(q � 1)2 q

6

IL = {4, 15, 16, 18, 19, 21},
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�

a8,a22
b2,b4,b5

IA = {1, 3, 7, 9, 11, 13}, q

3(q � 1)2 q

6

IL = {6, 15, 16, 18, 19, 21},

�

a5,a22
b4,b6

IA = {2, 3, 7, 9, 11, 13}, q

2(q � 1)2 q

6

IL = {1, 15, 16, 18, 19, 21},

�

a22
b1,b2,b4,b6

IA = {3, 7, 9, 11, 13}, q

4(q � 1) q

5

IL = {15, 16, 18, 19, 21},

F23 �

a11,a18,a23
b1,b5

IA = {2, 3, 4, 6, 7, 9, 10, 13, 16}, q

2(q � 1)3 q

9

IL = {8, 12, 14, 15, 17, 19, 20, 21, 22},

�

a8,a18,a23
b1

IA = {2, 3, 4, 6, 7, 9, 10, 13, 16}, q(q � 1)3 q

9

IL = {5, 12, 14, 15, 17, 19, 20, 21, 22},

�

a18,a23
b1,b3,b5

IA = {2, 4, 6, 7, 9, 10, 13, 16}, q

3(q � 1)2 q

8

IL = {12, 14, 15, 17, 19, 20, 21, 22},

�

a15,a23
b1,b5

IA = {2, 3, 4, 6, 7, 9, 10, 13, 16}, q

2(q � 1)2 q

9

IL = {8, 11, 12, 14, 17, 19, 20, 21, 22},

�

a11,a12,a23
b1,b4

IA = {2, 5, 6, 8, 9, 10, 13, 16}, q

2(q � 1)3 q

8

IL = {3, 7, 14, 17, 19, 20, 21, 22},

�

a11,a23
b1,b4,b5,b7

IA = {2, 3, 6, 9, 10, 13, 16}, q

4(q � 1)2 q

7

IL = {8, 14, 17, 19, 20, 21, 22},

�

a12,a23
b1,b3

IA = {2, 4, 6, 7, 9, 10, 13, 16}, q

2(q � 1)2 q

8

IL = {5, 8, 14, 17, 19, 20, 21, 22},

�

a8,a23
b1,b4,b7

IA = {2, 3, 6, 9, 10, 13, 16}, q

3(q � 1)2 q

7

IL = {5, 14, 17, 19, 20, 21, 22},

�

a7,a23
b1,b5

IA = {2, 4, 6, 9, 10, 13, 16}, q

2(q � 1)2 q

7

IL = {3, 14, 17, 19, 20, 21, 22},

�

a23
b1,b3,b4,b5

IA = {2, 6, 9, 10, 13, 16}, q

4(q � 1) q

6

IL = {14, 17, 19, 20, 21, 22},

F24 �

a9,a16,a24
b2

IA = {1, 3, 4, 5, 7, 8, 11, 12, 14, 15}, q(q � 1)3 q

10

IL = {6, 10, 13, 17, 18, 19, 20, 21, 22, 23},

�

a6,a16,a24
IA = {1, 3, 4, 5, 7, 8, 11, 12, 14, 15}, (q � 1)3 q

10

IL = {2, 10, 13, 17, 18, 19, 20, 21, 22, 23},

�

a16,a24
b2,b3

IA = {1, 4, 5, 7, 8, 11, 12, 14, 15}, q

2(q � 1)2 q

9

IL = {10, 13, 17, 18, 19, 20, 21, 22, 23},

�

a13,a24
b2

IA = {1, 3, 4, 5, 7, 8, 11, 12, 14, 15}, q(q � 1)2 q

10

IL = {6, 9, 10, 17, 18, 19, 20, 21, 22, 23},

�

a10,a24
b3,b9

IA = {1, 2, 5, 6, 8, 11, 12, 14, 15}, q

2(q � 1)2 q

9

IL = {4, 7, 17, 18, 19, 20, 21, 22, 23},

�

a9,a24
b2,b4,b7

IA = {1, 3, 5, 8, 11, 12, 14, 15}, q

3(q � 1)2 q

8

IL = {6, 17, 18, 19, 20, 21, 22, 23},

�

a6,a24
b4,b7

IA = {1, 3, 5, 8, 11, 12, 14, 15}, q

2(q � 1)2 q

8

IL = {2, 17, 18, 19, 20, 21, 22, 23},

�

a7,a24
b2

IA = {1, 4, 5, 8, 11, 12, 14, 15}, q(q � 1)2 q

8

IL = {3, 17, 18, 19, 20, 21, 22, 23},

�

a24
b2,b3,b4

IA = {1, 5, 8, 11, 12, 14, 15}, q

3(q � 1) q

7

IL = {17, 18, 19, 20, 21, 22, 23},

F1,6 �

a1,a6
IA = {2}, IL = {3}, (q � 1)2 q

1

F1,7 �

a1,a7
IA = {3}, IL = {4}, (q � 1)2 q

1

F1,9 �

a1,a9
b2

IA = {3}, IL = {6}, q(q � 1)2 q

1

F1,10 �

a1,a10
b3

IA = {2, 4}, IL = {6, 7}, q(q � 1)2 q

2

F1,13 �

a1,a13
b2

IA = {3, 4, 7}, IL = {6, 9, 10}, q(q � 1)2 q

3

F1,16 �

a1,a9,a16
b2

IA = {3, 4, 7}, IL = {6, 10, 13}, q(q � 1)3 q

3

�

a1,a6,a16
IA = {3, 4, 7}, IL = {2, 10, 13}, (q � 1)3 q

3
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�

a1,a16
b2,b3

IA = {4, 7}, IL = {10, 13}, q

2(q � 1)2 q

2

F2,7 �

a2,a7
IA = {3}, IL = {4}, (q � 1)2 q

1

F3,5 �

a3,a5
IA = {1}, IL = {2}, (q � 1)2 q

1

F4,5 �

a4,a5
IA = {1}, IL = {2}, (q � 1)2 q

1

F4,6 �

a4,a6
IA = {2}, IL = {3}, (q � 1)2 q

1

F4,8 �

a4,a8
b2

IA = {1, 3}, IL = {5, 6}, q(q � 1)2 q

2

F4,9 �

a4,a9
b2

IA = {3}, IL = {6}, q(q � 1)2 q

1

F4,11 �

a4,a11
b2,b5,b6

IA = {1, 3}, IL = {8, 9}, q

3(q � 1)2 q

2

F4,14 �

a4,a14
b1,b3

IA = {2, 5, 6}, IL = {8, 9, 11}, q

2(q � 1)2 q

3

F5,6 �

a5,a6
b3

IA = {1}, IL = {2}, q(q � 1)2 q

1

F5,7 �

a5,a7
IA = {1, 3}, IL = {2, 4}, (q � 1)2 q

2

F5,9 �

a5,a9
IA = {2, 3}, IL = {1, 6}, (q � 1)2 q

2

F5,10 �

a5,a10
b1,b3

IA = {2, 4}, IL = {6, 7}, q

2(q � 1)2 q

2

F5,13 �

a5,a13
IA = {2, 3, 4, 7}, (q � 1)2 q

4

IL = {1, 6, 9, 10},

F5,16 �

a5,a9,a16
IA = {2, 3, 4, 7}, (q � 1)3 q

4

IL = {1, 6, 10, 13},

�

a5,a16
b3,b6

IA = {2, 4, 7}, IL = {1, 10, 13}, q

2(q � 1)2 q

3

F6,7 �

a6,a7
b4

IA = {2}, IL = {3}, q(q � 1)2 q

1

F7,8 �

a7,a8
b2,b4

IA = {1, 3}, IL = {5, 6}, q

2(q � 1)2 q

2

F7,9 �

a7,a9
b2,b4

IA = {3}, IL = {6}, q

2(q � 1)2 q

1

F7,11 �

a7,a11
b2,b4,b5,b6

IA = {1, 3}, IL = {8, 9}, q

4(q � 1)2 q

2

F7,14 �

a7,a14
b1

IA = {2, 4, 5, 6}, q(q � 1)2 q

4

IL = {3, 8, 9, 11},

F8,9 �

a8,a9
b2

IA = {1, 3}, IL = {5, 6}, q(q � 1)2 q

2

F8,10 �

a8,a10
b4

IA = {2, 3, 6}, IL = {1, 5, 7}, q(q � 1)2 q

3

F8,13 �

a5,a8,a13
IA = {2, 3, 4, 6}, (q � 1)3 q

4

IL = {1, 7, 9, 10},

�

a8,a13
b1,b2

IA = {3, 4, 6}, IL = {7, 9, 10}, q

2(q � 1)2 q

3

F8,16 �

a8,a16
b2,b9

IA = {1, 3, 4, 7}, q

2(q � 1)2 q

4

IL = {5, 6, 10, 13},

F9,10 �

a9,a10
b4

IA = {2, 6}, IL = {3, 7}, q(q � 1)2 q

2

F9,12 �

a9,a12
b2

IA = {1, 3, 4, 7}, q(q � 1)2 q

4

IL = {5, 6, 8, 10},

F10,11 �

a10,a11
b5

IA = {1, 2, 3, 4}, q(q � 1)2 q

4

IL = {6, 7, 8, 9},

F10,14 �

a7,a10,a14
b1

IA = {2, 4, 5, 6}, q(q � 1)3 q

4

IL = {3, 8, 9, 11},

�

a10,a14
b1,b3,b4

IA = {2, 5, 6}, IL = {8, 9, 11}, q

3(q � 1)2 q

3

F11,12 �

a10,a11,a12
b2

IA = {1, 3, 4, 7}, q(q � 1)3 q

4

IL = {5, 6, 8, 9},

�

a6,a11,a12
IA = {1, 3, 5, 8}, (q � 1)3 q

4

IL = {2, 4, 7, 9},

�

a11,a12
b2,b3

IA = {1, 5, 8}, IL = {4, 7, 9}, q

2(q � 1)2 q

3

F11,13 �

a5,a10,a⇤
11,a13

�

a5,a10,a⇤
11,a13

�

a5,a10,a⇤
11,a13

IA = {3}, II = {1, 4, 7},IA = {3}, II = {1, 4, 7},
IA = {3}, II = {1, 4, 7}, (q � 1)3(q � 2)(q � 1)3(q � 2)(q � 1)3(q � 2) q

4
q

4
q

4

(a⇤
11 6= a5a

2
13/a

2
10) IL = {8}, IJ = {2, 6, 9}.IL = {8}, IJ = {2, 6, 9}.

IL = {8}, IJ = {2, 6, 9}.

�

a5,a10,a13
b1,4,7,b2,6,9

�

a5,a10,a13
b1,4,7,b2,6,9

�

a5,a10,a13
b1,4,7,b2,6,9

See C2
in Section 4.3 q

2(q � 1)3q

2(q � 1)3
q

2(q � 1)3 q

3
q

3
q

3

�

a10,a11,a13
IA = {1, 4, 7, 8}, (q � 1)3 q

4

IL = {2, 3, 6, 9},

�

a5,a11,a13
IA = {1, 4, 6, 8}, (q � 1)3 q

4

140



F � I Number Degree

IL = {2, 3, 7, 9},

�

a11,a13
b1,b2

IA = {4, 6, 8}, IL = {3, 7, 9}, q

2(q � 1)2 q

3

F11,16 �

a11,a16
b2,b5,b6

IA = {1, 3, 4, 7}, q

3(q � 1)2 q

4

IL = {8, 9, 10, 13},

F12,13 �

a9,a12,a13
b2

IA = {1, 5, 6, 8}, q(q � 1)3 q

4

IL = {3, 4, 7, 10},

�

a6,a12,a13
IA = {1, 2, 5, 8}, (q � 1)3 q

4

IL = {3, 4, 7, 10},

�

a12,a13
b2,b3

IA = {1, 5, 8}, IL = {4, 7, 10}. q

2(q � 1)2 q

3

F12,14 �

a7,a12,a14
IA = {1, 2, 4, 5, 8}, (q � 1)3 q

5

IL = {3, 6, 9, 10, 11},

�

a12,a14
b3,b4

IA = {1, 2, 5, 8}, q

2(q � 1)2 q

4

IL = {6, 9, 10, 11},

F12,16 �

a8,a9,a12,a⇤
16

b2
�

a8,a9,a12,a⇤
16

b2
�

a8,a9,a12,a⇤
16

b2
IA = {4}, II = {1, 3, 7}IA = {4}, II = {1, 3, 7}
IA = {4}, II = {1, 3, 7} q(q � 1)3(q � 2)q(q � 1)3(q � 2)

q(q � 1)3(q � 2) q

4
q

4
q

4

(a⇤
16 6= a9a

2
12/a

2
8) IL = {13}, IJ = {5, 6, 10}IL = {13}, IJ = {5, 6, 10}

IL = {13}, IJ = {5, 6, 10}

�

a8,a9,a12,a5,6,10
�

a8,a9,a12,a5,6,10
�

a8,a9,a12,a5,6,10
See C3

in Section 4.3 (q � 1)4(q � 1)4(q � 1)4 q

4
q

4
q

4

�

a8,a9,a12
b2,b1,3,7

�

a8,a9,a12
b2,b1,3,7

�

a8,a9,a12
b2,b1,3,7

See C3
in Section 4.3 q

2(q � 1)3q

2(q � 1)3
q

2(q � 1)3 q

3
q

3
q

3

�

a8,a12,a16
b2

IA = {1, 3, 4, 7}, q(q � 1)3 q

4

IL = {5, 6, 10, 13},

�

a9,a12,a16
b2

IA = {1, 3, 4, 7}, q(q � 1)3 q

4

IL = {5, 6, 10, 13},

�

a6,a12,a16
IA = {1, 3, 4, 7}, (q � 1)3 q

4

IL = {2, 5, 10, 13},

�

a12,a16
b2,b3

IA = {1, 4, 7}, IL = {5, 10, 13}, q

2(q � 1)2 q

3

F13,14 �

a13,a14
b1,b4,b7

IA = {2, 3, 6, 9}, q

3(q � 1)2 q

4

IL = {5, 8, 10, 11},

Fp�5p�5p�5
14,15 �

a10,a14,a15
�

a10,a14,a15
�

a10,a14,a15
IA = {1, 3, 5}, II = {2, 4, 8}IA = {1, 3, 5}, II = {2, 4, 8}
IA = {1, 3, 5}, II = {2, 4, 8} (q � 1)3(q � 1)3(q � 1)3 q

6
q

6
q

6

IL = {9, 12, 13}, IJ = {6, 7, 11}IL = {9, 12, 13}, IJ = {6, 7, 11}
IL = {9, 12, 13}, IJ = {6, 7, 11}

�

a14,a15
b4,b7

IA = {1, 3, 5, 8, 11}, q

2(q � 1)2 q

5

IL = {2, 6, 9, 12, 13},

Fp=3p=3p=3
14,15 �

a10,a14,a15
b2,4,8,b6,7,11

�

a10,a14,a15
b2,4,8,b6,7,11

�

a10,a14,a15
b2,4,8,b6,7,11

See C4
in Section 4.3 q

2(q � 1)3q

2(q � 1)3
q

2(q � 1)3 q

5
q

5
q

5

�

a14,a15
b4,b7

IA = {1, 3, 5, 8, 11}, q

2(q � 1)2 q

5

IL = {2, 6, 9, 12, 13},

F14,16 �

a14,a16
b1,b3

IA = {2, 4, 5, 6, 7}, q

2(q � 1)2 q

5

IL = {8, 9, 10, 11, 13},

F14,18 �

a13,a14,a18
IA = {1, 2, 3, 4, 5, 6, 7}, (q � 1)3 q

7

IL = {8, 9, 10, 11, 12, 15, 16},

�

a14,a18
b3,b10

IA = {1, 2, 4, 5, 6, 7}, q

2(q � 1)2 q

6

IL = {8, 9, 11, 12, 15, 16},

F15,16 �

a15,a16
b2,b5,b6,b9,b10

IA = {1, 3, 4, 7}, q

5(q � 1)2 q

4

IL = {8, 11, 12, 13},

F16,17 �

a11,a16,a17
IA = {1, 2, 3, 4, 5, 6, 10}, (q � 1)3 q

7

IL = {7, 8, 9, 12, 13, 14, 15},

�

a16,a17
b1,b3,b8,b9

IA = {2, 4, 5, 6, 10}, q

4(q � 1)2 q

5

IL = {7, 12, 13, 14, 15},

F16,19 �

a5,a16,a19
b4

IA = {2, 3, 6, 7, 9, 10, 13}, q(q � 1)3 q

7

IL = {1, 8, 11, 12, 14, 15, 17},

�

a16,a19
b1,b2,b4

IA = {3, 6, 7, 9, 10, 13}, q

3(q � 1)2 q

6

IL = {8, 11, 12, 14, 15, 17},

F17,18 �

a9,a17,a18
b11

IA = {1, 2, 3, 4, 5, 8, 12}, q(q � 1)3 q

7
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IL = {6, 7, 10, 13, 14, 15, 16},

�

a17,a18
b3,b6,b11

IA = {1, 2, 4, 5, 8, 12}, q

3(q � 1)2 q

6

IL = {7, 10, 13, 14, 15, 16},

F18,19 �

a18,a19
b2,b4,b5

IA = {1, 3, 7, 8, 9, 11, 15}, q

3(q � 1)2 q

7

IL = {6, 10, 12, 13, 14, 16, 17},

F19,20 �

a19,a20
b1,b4

IA = {2, 5, 6, 8, 9, 10, 14, 17}, q

2(q � 1)2 q

8

IL = {3, 7, 11, 12, 13, 15, 16, 18},

F1,2,7 �

a1,a2,a7
IA = {3}, IL = {4}, (q � 1)3 q

1

F1,4,6 �

a1,a4,a6
IA = {2}, IL = {3}, (q � 1)3 q

1

F1,4,9 �

a1,a4,a9
b2

IA = {3}, IL = {6}, q(q � 1)3 q

1

F1,6,7 �

a1,a6,a7
b4

IA = {2}, IL = {3}, q(q � 1)3 q

1

F1,7,9 �

a1,a7,a9
b2,b4

IA = {3}, IL = {6}, q

2(q � 1)3 q

1

F1,9,10 �

a1,a9,a10
b4

IA = {2, 6}, IL = {3, 7}, q(q � 1)3 q

2

F3,4,5 �

a3,a4,a5
IA = {1}, IL = {2}, (q � 1)3 q

1

F4,5,6 �

a4,a5,a6
b3

IA = {1}, IL = {2}, q(q � 1)3 q

1

F4,5,9 �

a4,a5,a9
IA = {2, 3}, IL = {1, 6}, (q � 1)3 q

2

F4,8,9 �

a4,a8,a9
b2

IA = {1, 3}, IL = {5, 6}, q(q � 1)3 q

2

F5,6,7 �

a5,a6,a7
IA = {1, 3}, IL = {2, 4}, (q � 1)3 q

2

F5,7,9 �

a5,a7,a9
b4

IA = {2, 3}, IL = {1, 6}, q(q � 1)3 q

2

F5,9,10 �

a5,a9,a10
b1,b4

IA = {2, 6}, IL = {3, 7}, q

2(q � 1)3 q

2

F7,8,9 �

a7,a8,a9
b2,b4

IA = {1, 3}, IL = {5, 6}, q

2(q � 1)3 q

2

F8,9,10 �

a8,a9,a10
b4

IA = {2, 3, 6}, IL = {1, 5, 7}, q(q � 1)3 q

3

Fp�5p�5p�5
11,12,13 �

a11,a12,a13
b2,b6

�

a11,a12,a13
b2,b6

�

a11,a12,a13
b2,b6

II = {1, 3, 4, 7}II = {1, 3, 4, 7}
II = {1, 3, 4, 7} q

2(q � 1)3q

2(q � 1)3
q

2(q � 1)3 q

4
q

4
q

4

IJ = {5, 8, 9, 10}IJ = {5, 8, 9, 10}
IJ = {5, 8, 9, 10}

Fp=3p=3p=3
11,12,13 �

a11,a12,a13,a8,9,10
b2

�

a11,a12,a13,a8,9,10
b2

�

a11,a12,a13,a8,9,10
b2

See C5
in Section 4.3 q(q � 1)4q(q � 1)4

q(q � 1)4 q

4
q

4
q

4

�

a11,a12,a13,a2,6
�

a11,a12,a13,a2,6
�

a11,a12,a13,a2,6
See C5

in Section 4.3 (q � 1)4/2(q � 1)4/2(q � 1)4/2 q

4
q

4
q

4

�

a11,a12,a13
�

a11,a12,a13
�

a11,a12,a13
See C5

in Section 4.3 (q � 1)3(q � 1)3(q � 1)3 q

4
q

4
q

4

�

a11,a12,a13,a1,6
c1,3,4,7,c2

�

a11,a12,a13,a1,6
c1,3,4,7,c2�

a11,a12,a13,a1,6
c1,3,4,7,c2

See C5
in Section 4.3 9(q � 1)4/29(q � 1)4/29(q � 1)4/2 q

4
/3q

4
/3

q

4
/3

F11,12,16 �

a11,a12,a16
b2,b5,b6

IA = {1, 3, 4, 7}, q

3(q � 1)3 q

4

IL = {8, 9, 10, 13},

Fp�5p�5p�5
12,13,14 �

a12,a13,a14
b3

�

a12,a13,a14
b3

�

a12,a13,a14
b3

IA = {2}, II = {4, 5, 6, 10}IA = {2}, II = {4, 5, 6, 10}
IA = {2}, II = {4, 5, 6, 10} q(q � 1)3q(q � 1)3

q(q � 1)3 q

5
q

5
q

5

IL = {11}, IJ = {1, 7, 8, 9}IL = {11}, IJ = {1, 7, 8, 9}
IL = {11}, IJ = {1, 7, 8, 9}

Fp=3p=3p=3
12,13,14 �

a12,a13,a14,a7,8,9
�

a12,a13,a14,a7,8,9
�

a12,a13,a14,a7,8,9
See C6

in Section 4.3 (q � 1)4(q � 1)4(q � 1)4 q

5
q

5
q

5

�

a12,a13,a14
b3,b4,5,6,10

�

a12,a13,a14
b3,b4,5,6,10

�

a12,a13,a14
b3,b4,5,6,10

See C6
in Section 4.3 q

2(q � 1)3q

2(q � 1)3
q

2(q � 1)3 q

4
q

4
q

4

F12,14,16 �

a12,a14,a16
b1,b3

IA = {2, 4, 5, 6, 10}, q

2(q � 1)3 q

5

IL = {7, 8, 9, 11, 13},

F14,15,16 �

a14,a15,a16
b4

IA = {3, 6, 7, 9, 11, 13}, q(q � 1)3 q

6

IL = {1, 2, 5, 8, 10, 12},

Table D.4: The parametrization of the irreducible characters of UF4(q), where q = pe and
p � 3.
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Parametrization of the irreducible characters of UB5

F � I Number Degree

Flin �b1,b2,b3,b4,b5
q

5 1

F6 �

a6
IA = {1}, IL = {2} q � 1 q

F7 �

a7
IA = {2}, IL = {3} q � 1 q

F8 �

a8
IA = {3}, IL = {4} q � 1 q

F9 �

a9
IA = {4}, IL = {5} q � 1 q

F10 �

a10
b2

IA = {1}, IL = {6} q(q � 1) q

F11 �

a11
b2

IA = {1, 3}, IL = {6, 7} q(q � 1) q

2

F12 �

a12
b3

IA = {2, 4}, IL = {7, 8} q(q � 1) q

2

F13 �

a13
b4

IA = {3, 5}, IL = {8, 9} q(q � 1) q

2

F14 �

a14
b2,b6,b7

IA = {1, 3}, IL = {10, 11} q

3(q � 1) q

2

F15 �

a7,a15
IA = {1, 3, 4, 8} (q � 1)2 q

4

IL = {2, 6, 11, 12}

�

a15
b2,b3

IA = {1, 4, 8}, IL = {6, 11, 12} q

2(q � 1) q

3

F16 �

a8,a16
IA = {2, 4, 5, 9} (q � 1)2 q

4

IL = {3, 7, 12, 13}

�

a16
b3,b4

IA = {2, 5, 9}, IL = {7, 12, 13} q

2(q � 1) q

3

F17 �

a17
b1,b3

IA = {2, 6, 7}, IL = {10, 11, 14} q

2(q � 1) q

3

F18 �

a11,a18
b2,b7,b12

IA = {1, 3, 4, 8} q

3(q � 1)2 q

4

IL = {6, 10, 14, 15}

�

a7,a18
b6,b12

IA = {1, 3, 4, 8} q

2(q � 1)2 q

4

IL = {2, 10, 14, 15}

�

a18
b2,b3,b6,b12

IA = {1, 4, 8}, IL = {10, 14, 15} q

4(q � 1) q

3

F19 �

a12,a19
b3

IA = {1, 2, 4, 5, 6, 9} q(q � 1)2 q

6

IL = {7, 8, 11, 13, 15, 16}

�

a8,a19
b2,b7

IA = {1, 3, 5, 6, 9} q

2(q � 1)2 q

5

IL = {4, 11, 13, 15, 16}

�

a7,a19
b4

IA = {1, 3, 5, 6, 9} q(q � 1)2 q

5

IL = {2, 11, 13, 15, 16}

�

a19
b2,b3,b4

IA = {1, 5, 6, 9} q

3(q � 1) q

4

IL = {11, 13, 15, 16}

F20 �

a14,a20
b3,b7,b8

IA = {1, 2, 4, 6, 10} q

3(q � 1)2 q

5

IL = {11, 12, 15, 17, 18}

�

a11,a20
b3,b8

IA = {1, 2, 4, 6, 10} q

2(q � 1)2 q

5

IL = {7, 12, 15, 17, 18}

�

a20
b1,b3,b7,b8

IA = {2, 4, 6, 10} q

4(q � 1) q

4

IL = {12, 15, 17, 18}

F21 �

a7,a15,a21
b12,b16

IA = {1, 3, 4, 5, 8, 9, 13} q

2(q � 1)3 q

7

IL = {2, 6, 10, 11, 14, 18, 19}

�

a15,a21
b2,b3,b12,b16

IA = {1, 4, 5, 8, 9, 13} q

4(q � 1)2 q

6

IL = {6, 10, 11, 14, 18, 19}

�

a11,a12,a21
b16

IA = {1, 2, 3, 4, 5, 9, 13} q(q � 1)3 q

7

IL = {6, 7, 8, 10, 14, 18, 19}

�

a11,a21
b2,b4,b7,b8,b16

IA = {1, 3, 5, 9, 13} q

5(q � 1)2 q

5

IL = {6, 10, 14, 18, 19}

�

a12,a21
b3,b6,b16

IA = {1, 2, 4, 5, 9, 13} q

3(q � 1)2 q

6

IL = {7, 8, 10, 14, 18, 19}

�

a7,a21
b4,b6,b8,b16

IA = {1, 3, 5, 9, 13} q

4(q � 1)2 q

5

IL = {2, 10, 14, 18, 19}
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F � I Number Degree

�

a8,a21
b2,b6,b16

IA = {1, 4, 5, 9, 13} q

3(q � 1)2 q

5

IL = {3, 10, 14, 18, 19}

�

a21
b2,b3,b4,b6,b16

IA = {1, 5, 9, 13} q

5(q � 1) q

4

IL = {10, 14, 18, 19}

F22 �

a10,a22
b2,b4

IA = {1, 3, 7, 8, 11, 12} q

2(q � 1)2 q

6

IL = {6, 14, 15, 17, 18, 20}

�

a6,a22
b4

IA = {2, 3, 7, 8, 11, 12} q(q � 1)2 q

6

IL = {1, 14, 15, 17, 18, 20}

�

a22
b1,b2,b4

IA = {3, 7, 8, 11, 12} q

3(q � 1) q

5

IL = {14, 15, 17, 18, 20}

F23 �

a18,a23
b3,b7,b8,b11,b12,b13

IA = {1, 2, 4, 5, 6, 9, 10} q

6(q � 1)2 q

7

IL = {14, 15, 16, 17, 19, 20, 21}

�

a14,a15,a23
b3,b7,b8,b13

IA = {1, 2, 4, 5, 6, 9, 10} q

4(q � 1)3 q

7

IL = {11, 12, 16, 17, 19, 20, 21}

�

a12,a14,a23
b3,b8,b13

IA = {1, 2, 4, 5, 6, 9, 10} q

3(q � 1)3 q

7

IL = {7, 11, 16, 17, 19, 20, 21}

�

a8,a14,a23
b7,b13

IA = {1, 2, 4, 5, 6, 9, 10} q

2(q � 1)3 q

7

IL = {3, 11, 16, 17, 19, 20, 21}

�

a14,a23
b3,b4,b7,b13

IA = {1, 2, 5, 6, 9, 10} q

4(q � 1)2 q

6

IL = {11, 16, 17, 19, 20, 21}

�

a15,a23
b3,b7,b8,b13

IA = {1, 2, 4, 5, 6, 9, 10} q

4(q � 1)2 q

7

IL = {11, 12, 16, 17, 19, 20, 21}

�

a8,a11,a23
b12,b13

IA = {2, 4, 5, 6, 7, 9, 10} q

2(q � 1)3 q

7

IL = {1, 3, 16, 17, 19, 20, 21}

�

a11,a23
b3,b4,b12,b13

IA = {2, 5, 6, 7, 9, 10} q

4(q � 1)2 q

6

IL = {1, 16, 17, 19, 20, 21}

�

a12,a23
b1,b3,b8,b13

IA = {2, 4, 5, 6, 9, 10} q

4(q � 1)2 q

6

IL = {7, 16, 17, 19, 20, 21}

�

a8,a23
b1,b7,b13

IA = {2, 4, 5, 6, 9, 10} q

3(q � 1)2 q

6

IL = {3, 16, 17, 19, 20, 21}

�

a23
b1,b3,b4,b7,b13

IA = {2, 5, 6, 9, 10} q

5(q � 1) q

5

IL = {16, 17, 19, 20, 21}

F24 �

a20,a24
b1,b4,b8,b9

IA = {2, 3, 5, 6, 7, 11, 12, 14, 17} q

4(q � 1)2 q

9

IL = {10, 13, 15, 16, 18, 19, 21, 22, 23}

�

a18,a24
b2,b4,b6,b9,b12

IA = {1, 3, 5, 7, 8, 11, 14, 17} q

5(q � 1)2 q

8

IL = {10, 13, 15, 16, 19, 21, 22, 23}

�

a15,a24
b2,b4,b9,b10

IA = {1, 3, 5, 7, 8, 11, 14, 17} q

4(q � 1)2 q

8

IL = {6, 12, 13, 16, 19, 21, 22, 23}

�

a10,a12,a24
b4,b9

IA = {1, 2, 3, 5, 7, 11, 14, 17} q

2(q � 1)3 q

8

IL = {6, 8, 13, 16, 19, 21, 22, 23}

�

a12,a24
b1,b4,b6,b9

IA = {2, 3, 5, 7, 11, 14, 17} q

4(q � 1)2 q

7

IL = {8, 13, 16, 19, 21, 22, 23}

�

a10,a24
b2,b4,b8,b9

IA = {1, 3, 5, 7, 11, 14, 17} q

4(q � 1)2 q

7

IL = {6, 13, 16, 19, 21, 22, 23}

�

a6,a24
b4,b8,b9

IA = {2, 3, 5, 7, 11, 14, 17} q

3(q � 1)2 q

7

IL = {1, 13, 16, 19, 21, 22, 23}

�

a24
b1,b2,b4,b8,b9

IA = {3, 5, 7, 11, 14, 17} q

5(q � 1) q

6

IL = {13, 16, 19, 21, 22, 23}

F25 �

a17,a25
b1,b3,b5

IA = {2, 4, 6, 7, 8, 9, 12, 13, 15, 16} q

3(q � 1)2 q

10

IL = {10, 11, 14, 18, 19, 20, . . . , 24}

�

a14,a25
b2,b5,b6,b7

IA = {1, 3, 4, 8, 9, 12, 13, 15, 16} q

4(q � 1)2 q

9
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F � I Number Degree

IL = {10, 11, 18, 19, 20, . . . , 24}

�

a10,a11,a25
b2,b5

IA = {1, 3, 4, 8, 9, 12, 13, 15, 16} q

2(q � 1)3 q

9

IL = {6, 7, 18, 19, 20, 21, 22, 23, 24}

�

a7,a10,a25
b5

IA = {1, 3, 4, 8, 9, 12, 13, 15, 16} q(q � 1)3 q

9

IL = {2, 6, 18, 19, 20, 21, 22, 23, 24}

�

a10,a25
b2,b3,b5

IA = {1, 4, 8, 9, 12, 13, 15, 16} q

3(q � 1)2 q

8

IL = {6, 18, 19, 20, 21, 22, 23, 24}

�

a11,a25
b2,b5

IA = {1, 3, 4, 8, 9, 12, 13, 15, 16} q

2(q � 1)2 q

9

IL = {6, 7, 18, 19, 20, 21, 22, 23, 24}

�

a6,a25
b3,b5,b7

IA = {2, 4, 8, 9, 12, 13, 15, 16} q

3(q � 1)2 q

8

IL = {1, 18, 19, 20, 21, 22, 23, 24}

�

a7,a25
b1,b5

IA = {3, 4, 8, 9, 12, 13, 15, 16} q

2(q � 1)2 q

8

IL = {2, 18, 19, 20, 21, 22, 23, 24}

�

a25
b1,b2,b3,b5

IA = {4, 8, 9, 12, 13, 15, 16} q

4(q � 1) q

7

IL = {18, 19, 20, 21, 22, 23, 24}

F1,7 �

a1,a7
IA = {2}, IL = {3} (q � 1)2 q

F1,8 �

a1,a8
IA = {3}, IL = {4} (q � 1)2 q

F1,9 �

a1,a9
IA = {4}, IL = {5} (q � 1)2 q

F1,12 �

a1,a12
b3

IA = {2, 4}, IL = {7, 8} q(q � 1)2 q

2

F1,13 �

a1,a13
b4

IA = {3, 5}, IL = {8, 9} q(q � 1)2 q

2

F1,16 �

a1,a8,a16
IA = {2, 4, 5, 9} (q � 1)3 q

4

IL = {3, 7, 12, 13}

�

a1,a16
b3,b4

IA = {2, 5, 9}, IL = {7, 12, 13} q

2(q � 1)2 q

3

F2,8 �

a2,a8
IA = {3}, IL = {4} (q � 1)2 q

F2,9 �

a2,a9
IA = {4}, IL = {5} (q � 1)2 q

F2,13 �

a2,a13
b4

IA = {3, 5}, IL = {8, 9} q(q � 1)2 q

2

F3,6 �

a3,a6
IA = {1}, IL = {2} (q � 1)2 q

F3,9 �

a3,a9
IA = {4}, IL = {5} (q � 1)2 q

F3,10 �

a3,a10
b2

IA = {1}, IL = {6} q(q � 1)2 q

F4,6 �

a4,a6
IA = {1}, IL = {2} (q � 1)2 q

F4,7 �

a4,a7
IA = {2}, IL = {3} (q � 1)2 q

F4,10 �

a4,a10
b2

IA = {1}, IL = {6} q(q � 1)2 q

F4,11 �

a4,a11
b2

IA = {1, 3}, IL = {6, 7} q(q � 1)2 q

2

F4,14 �

a4,a14
b2,b6,b7

IA = {1, 3}, IL = {10, 11} q

3(q � 1)2 q

2

F4,17 �

a4,a17
b1,b3

IA = {2, 6, 7}, IL = {10, 11, 14} q

2(q � 1)2 q

3

F5,6 �

a5,a6
IA = {1}, IL = {2} (q � 1)2 q

F5,7 �

a5,a7
IA = {2}, IL = {3} (q � 1)2 q

F5,8 �

a5,a8
IA = {3}, IL = {4} (q � 1)2 q

F5,10 �

a5,a10
b2

IA = {1}, IL = {6} q(q � 1)2 q

F5,11 �

a5,a11
b2

IA = {1, 3}, IL = {6, 7} q(q � 1)2 q

2

F5,12 �

a5,a12
b3

IA = {2, 4}, IL = {7, 8} q(q � 1)2 q

2

F5,14 �

a5,a14
b2,b6,b7

IA = {1, 3}, IL = {10, 11} q

3(q � 1)2 q

2

F5,15 �

a5,a7,a15
IA = {1, 3, 4, 8} (q � 1)3 q

4

IL = {2, 6, 11, 12}

�

a5,a15
b2,b3

IA = {1, 4, 8}, IL = {6, 11, 12} q

2(q � 1)2 q

3

F5,17 �

a5,a17
b1,b3

IA = {2, 6, 7}, IL = {10, 11, 14} q

2(q � 1)2 q

3

F5,18 �

a5,a11,a18
b2,b7,b12

IA = {1, 3, 4, 8} q

3(q � 1)3 q

4

IL = {6, 10, 14, 15}

�

a5,a7,a18
b6,b12

IA = {1, 3, 4, 8} q

2(q � 1)3 q

4

IL = {2, 10, 14, 15}
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�

a5,a18
b2,b3,b6,b12

IA = {1, 4, 8}, IL = {10, 14, 15} q

4(q � 1)2 q

3

F5,20 �

a5,a14,a20
b3,b7,b8

IA = {1, 2, 4, 6, 10} q

3(q � 1)3 q

5

IL = {11, 12, 15, 17, 18}

�

a5,a11,a20
b3,b8

IA = {1, 2, 4, 6, 10} q

2(q � 1)3 q

5

IL = {7, 12, 15, 17, 18}

�

a5,a20
b1,b3,b7,b8

IA = {2, 4, 6, 10} q

4(q � 1)2 q

4

IL = {12, 15, 17, 18}

F5,22 �

a5,a10,a22
b2,b4

IA = {1, 3, 7, 8, 11, 12} q

2(q � 1)3 q

6

IL = {6, 14, 15, 17, 18, 20}

�

a5,a6,a22
b4

IA = {2, 3, 7, 8, 11, 12} q(q � 1)3 q

6

IL = {1, 14, 15, 17, 18, 20}

�

a5,a22
b1,b2,b4

IA = {3, 7, 8, 11, 12} q

3(q � 1)2 q

5

IL = {14, 15, 17, 18, 20}

F6,7 �

a6,a7
b3

IA = {1}, IL = {2} q(q � 1)2 q

F6,8 �

a6,a8
IA = {1, 3}, IL = {2, 4} (q � 1)2 q

2

F6,9 �

a6,a9
IA = {1, 4}, IL = {2, 5} (q � 1)2 q

2

F6,12 �

a6,a12
b1,b3

IA = {2, 4}, IL = {7, 8} q

2(q � 1)2 q

2

F6,13 �

a6,a13
b4

IA = {2, 3, 5}, IL = {1, 8, 9} q(q � 1)2 q

3

F6,16 �

a6,a8,a16
b1

IA = {2, 4, 5, 9} q(q � 1)3 q

4

IL = {3, 7, 12, 13}

�

a6,a16
b1,b3,b4

IA = {2, 5, 9}, IL = {7, 12, 13} q

3(q � 1)2 q

3

F7,8 �

a7,a8
b4

IA = {2}, IL = {3} q(q � 1)2 q

F7,9 �

a7,a9
IA = {2, 4}, IL = {3, 5} (q � 1)2 q

2

F7,10 �

a7,a10
IA = {1, 3}, IL = {2, 6} (q � 1)2 q

2

F7,13 �

a7,a13
b2,b4

IA = {3, 5}, IL = {8, 9} q

2(q � 1)2 q

2

F8,9 �

a8,a9
b5

IA = {3}, IL = {4} q(q � 1)2 q

F8,10 �

a8,a10
b2

IA = {1, 4}, IL = {3, 6} q(q � 1)2 q

2

F8,11 �

a8,a11
b2,b4

IA = {1, 3}, IL = {6, 7} q

2(q � 1)2 q

2

F8,14 �

a8,a14
b2,b4,b6,b7

IA = {1, 3}, IL = {10, 11} q

4(q � 1)2 q

2

F8,17 �

a8,a17
b1

IA = {2, 4, 6, 7} q(q � 1)2 q

4

IL = {3, 10, 11, 14}

F9,10 �

a9,a10
b2

IA = {1, 5}, IL = {4, 6} q(q � 1)2 q

2

F9,11 �

a9,a11
b2

IA = {1, 3, 5}, IL = {4, 6, 7} q(q � 1)2 q

3

F9,12 �

a9,a12
b3,b5

IA = {2, 4}, IL = {7, 8} q

2(q � 1)2 q

2

F9,14 �

a9,a14
b2,b6,b7

IA = {1, 3, 5}, IL = {4, 10, 11} q

3(q � 1)2 q

3

F9,15 �

a7,a9,a15
b5

IA = {1, 3, 4, 8} q(q � 1)3 q

4

IL = {2, 6, 11, 12}

�

a9,a15
b2,b3,b5

IA = {1, 4, 8}, IL = {6, 11, 12} q

3(q � 1)2 q

3

F9,17 �

a9,a17
b1,b3

IA = {2, 5, 6, 7} q

2(q � 1)2 q

4

IL = {4, 10, 11, 14}

F9,18 �

a9,a11,a18
b2,b5,b7,b12

IA = {1, 3, 4, 8} q

4(q � 1)3 q

4

IL = {6, 10, 14, 15}

�

a7,a9,a18
b5,b6,b12

IA = {1, 3, 4, 8} q

3(q � 1)3 q

4

IL = {2, 10, 14, 15}

�

a9,a18
b2,b3,b5,b6,b12

IA = {1, 4, 8}, IL = {10, 14, 15} q

5(q � 1)2 q

3

F9,20 �

a9,a14,a20
b3,b5,b7,b8

IA = {1, 2, 4, 6, 10} q

4(q � 1)3 q

5

IL = {11, 12, 15, 17, 18}

�

a9,a11,a20
b3,b5,b8

IA = {1, 2, 4, 6, 10} q

3(q � 1)3 q

5

IL = {7, 12, 15, 17, 18}

�

a9,a20
b1,b3,b5,b7,b8

IA = {2, 4, 6, 10} q

5(q � 1)2 q

4
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IL = {12, 15, 17, 18}

F9,22 �

a9,a10,a22
b2

IA = {1, 3, 5, 7, 8, 11, 12} q(q � 1)3 q

7

IL = {4, 6, 14, 15, 17, 18, 20}

�

a6,a9,a22
IA = {2, 3, 5, 7, 8, 11, 12} (q � 1)3 q

7

IL = {1, 4, 14, 15, 17, 18, 20}

�

a9,a22
b1,b2

IA = {3, 5, 7, 8, 11, 12} q

2(q � 1)2 q

6

IL = {4, 14, 15, 17, 18, 20}

F10,11 �

a10,a11
b2

IA = {1, 3}, IL = {6, 7} q(q � 1)2 q

2

F10,12 �

a10,a12
b3

IA = {1, 2, 4}, IL = {6, 7, 8} q(q � 1)2 q

3

F10,13 �

a10,a13
b2,b4

IA = {1, 3, 5}, IL = {6, 8, 9} q

2(q � 1)2 q

3

F10,15 �

a7,a10,a15
IA = {1, 3, 4, 8} (q � 1)3 q

4

IL = {2, 6, 11, 12}

�

a10,a15
b2,b3

IA = {1, 4, 8}, IL = {6, 11, 12} q

2(q � 1)2 q

3

F10,16 �

a8,a10,a16
IA = {1, 2, 4, 5, 9} (q � 1)3 q

5

IL = {3, 6, 7, 12, 13}

�

a10,a16
b3,b4

IA = {1, 2, 5, 9} q

2(q � 1)2 q

4

IL = {6, 7, 12, 13}

F10,19 �

a10,a12,a19
b3

IA = {1, 2, 4, 5, 6, 9} q(q � 1)3 q

6

IL = {7, 8, 11, 13, 15, 16}

�

a8,a10,a19
b2,b7

IA = {1, 3, 5, 6, 9} q

2(q � 1)3 q

5

IL = {4, 11, 13, 15, 16}

�

a7,a10,a19
b4

IA = {1, 3, 5, 6, 9} q(q � 1)3 q

5

IL = {2, 11, 13, 15, 16}

�

a10,a19
b2,b3,b4

IA = {1, 5, 6, 9} q

3(q � 1)2 q

4

IL = {11, 13, 15, 16}

F11,12 �

a11,a12
b4

IA = {2, 3, 7}, IL = {1, 6, 8} q(q � 1)2 q

3

F11,13 �

a11,a13
b2,b4,b9

IA = {1, 3, 5}, IL = {6, 7, 8} q

3(q � 1)2 q

3

F11,16 �

a11,a16
b1,b4,b8

IA = {2, 3, 5, 7} q

3(q � 1)2 q

4

IL = {6, 9, 12, 13}

F12,13 �

a12,a13
b5

IA = {3, 4, 8}, IL = {2, 7, 9} q(q � 1)2 q

3

F12,14 �

a12,a14
b6

IA = {1, 2, 3, 4} q(q � 1)2 q

4

IL = {7, 8, 10, 11}

F12,17 �

a8,a12,a17
b1

IA = {2, 4, 6, 7} q(q � 1)3 q

4

IL = {3, 10, 11, 14}

�

a12,a17
b1,b3,b4

IA = {2, 6, 7}, IL = {10, 11, 14} q

3(q � 1)2 q

3

F13,14 �

a13,a14
b2,b4,b6,b7,b9

IA = {1, 3, 5}, IL = {8, 10, 11} q

5(q � 1)2 q

3

F13,15 �

a13,a15
b2,b5,b7

IA = {1, 3, 4, 8} q

3(q � 1)2 q

4

IL = {6, 9, 11, 12}

F13,17 �

a13,a17
b1,b4

IA = {2, 3, 5, 6, 7} q

2(q � 1)2 q

5

IL = {8, 9, 10, 11, 14}

F13,18 �

a13,a18
b2,b5,b6,b7,b11,b12

IA = {1, 3, 4, 8} q

6(q � 1)2 q

4

IL = {9, 10, 14, 15}

F13,20 �

a13,a14,a20
b7

IA = {1, 2, 3, 4, 5, 6, 10} q(q � 1)3 q

7

IL = {8, 9, 11, 12, 15, 17, 18}

�

a11,a13,a20
IA = {1, 2, 3, 4, 5, 6, 10} (q � 1)3 q

7

IL = {7, 8, 9, 12, 15, 17, 18}

�

a13,a20
b1,b7

IA = {2, 3, 4, 5, 6, 10} q

2(q � 1)2 q

6

IL = {8, 9, 12, 15, 17, 18}

F13,22 �

a9,a10,a13,a22
b2

IA = {1, 3, 5, 7, 8, 11, 12} q(q � 1)4 q

7

IL = {4, 6, 14, 15, 17, 18, 20}
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�

a10,a13,a22
b2,b4,b5

IA = {1, 3, 7, 8, 11, 12} q

3(q � 1)3 q

6

IL = {6, 14, 15, 17, 18, 20}

�

a6,a9,a13,a22
IA = {2, 3, 5, 7, 8, 11, 12} (q � 1)4 q

7

IL = {1, 4, 14, 15, 17, 18, 20}

�

a9,a13,a22
b1,b2

IA = {3, 5, 7, 8, 11, 12} q

2(q � 1)3 q

6

IL = {4, 14, 15, 17, 18, 20}

�

a6,a13,a22
b4,b5

IA = {2, 3, 7, 8, 11, 12} q

2(q � 1)3 q

6

IL = {1, 14, 15, 17, 18, 20}

�

a13,a22
b1,b2,b4,b5

IA = {3, 7, 8, 11, 12} q

4(q � 1)2 q

5

IL = {14, 15, 17, 18, 20}

F14,15 �

a14,a15
b2,b7

IA = {1, 3, 4, 8} q

2(q � 1)2 q

4

IL = {6, 10, 11, 12}

F14,16 �

a14,a16
b4,b6,b8

IA = {1, 2, 3, 5, 9} q

3(q � 1)2 q

5

IL = {7, 10, 11, 12, 13}

F14,19 �

a12,a14,a19
IA = {1, 2, 3, 4, 5, 6, 9} (q � 1)3 q

7

IL = {7, 8, 10, 11, 13, 15, 16}

�

a14,a19
b2,b4,b7,b8

IA = {1, 3, 5, 6, 9} q

4(q � 1)2 q

5

IL = {10, 11, 13, 15, 16}

F15,16 �

a15,a16
b3,b5

IA = {2, 4, 8, 9, 12} q

2(q � 1)2 q

5

IL = {1, 6, 7, 11, 13}

F15,17 �

a15,a17
b3

IA = {1, 2, 4, 6, 7} q(q � 1)2 q

5

IL = {8, 10, 11, 12, 14}

F16,17 �

a13,a16,a17
b1,b4,b8

IA = {2, 3, 5, 6, 7} q

3(q � 1)3 q

5

IL = {9, 10, 11, 12, 14}

�

a8,a16,a17
b1,b9

IA = {2, 4, 5, 6, 7} q

2(q � 1)3 q

5

IL = {3, 10, 11, 12, 14}

�

a16,a17
b1,b3,b4,b9

IA = {2, 5, 6, 7} q

4(q � 1)2 q

4

IL = {10, 11, 12, 14}

F16,18 �

a11,a16,a18
IA = {1, 2, 3, 4, 5, 8, 9} (q � 1)3 q

7

IL = {6, 7, 10, 12, 13, 14, 15}

�

a16,a18
b3,b6

IA = {1, 2, 4, 5, 8, 9} q

2(q � 1)2 q

6

IL = {7, 10, 12, 13, 14, 15}

F16,20 �

a14,a16,a20
b8,b13

IA = {1, 2, 4, 5, 6, 9, 10} q

2(q � 1)3 q

7

IL = {3, 7, 11, 12, 15, 17, 18}

�

a11,a13,a16,a20
IA = {2, 3, 4, 5, 6, 7, 12} (q � 1)4 q

7

IL = {1, 8, 9, 10, 15, 17, 18}

�

a11,a16,a20
b3,b5,b8,b9

IA = {2, 4, 6, 7, 12} q

4(q � 1)3 q

5

IL = {1, 10, 15, 17, 18}

�

a13,a16,a20
b1,b3

IA = {2, 4, 5, 6, 9, 12} q

2(q � 1)3 q

6

IL = {7, 8, 10, 15, 17, 18}

�

a16,a20
b1,b3,b5,b8

IA = {2, 4, 6, 9, 12} q

4(q � 1)2 q

5

IL = {7, 10, 15, 17, 18}

F16,22 �

a9,a10,a16,a22
IA = {1, 2, 3, 5, 7, 8, 11, 12} (q � 1)4 q

8

IL = {4, 6, 13, 14, 15, 17, 18, 20}

�

a10,a16,a22
b4,b5

IA = {1, 2, 3, 7, 8, 11, 12} q

2(q � 1)3 q

7

IL = {6, 13, 14, 15, 17, 18, 20}

�

a9,a16,a22
b1,b6

IA = {2, 3, 5, 7, 8, 11, 12} q

2(q � 1)3 q

7

IL = {4, 13, 14, 15, 17, 18, 20}

�

a16,a22
b1,b4,b5,b6

IA = {2, 3, 7, 8, 11, 12} q

4(q � 1)2 q

6

IL = {13, 14, 15, 17, 18, 20}

F17,18 �

a8,a17,a18
IA = {1, 4, 6, 10, 14} (q � 1)3 q

5
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IL = {2, 3, 7, 11, 15}

�

a17,a18
b3,b4

IA = {1, 6, 10, 14} q

2(q � 1)2 q

4

IL = {2, 7, 11, 15}

�

a12,a17,a18
b3

�

a12,a17,a18
b3

�

a12,a17,a18
b3

IA = {1, 6}, II = {2, 4, 10}.IA = {1, 6}, II = {2, 4, 10}.
IA = {1, 6}, II = {2, 4, 10}. q(q � 1)3q(q � 1)3

q(q � 1)3 q

5
q

5
q

5

IL = {11, 15}, IJ = {7, 8, 14},IL = {11, 15}, IJ = {7, 8, 14},
IL = {11, 15}, IJ = {7, 8, 14},

F17,19 �

a8,a17,a19
b12

IA = {1, 2, 4, 5, 6, 7, 9} q(q � 1)3 q

7

IL = {3, 10, 11, 13, 14, 15, 16}

�

a17,a19
b3,b4,b12

IA = {1, 2, 5, 6, 7, 9} q

3(q � 1)2 q

6

IL = {10, 11, 13, 14, 15, 16}

F17,21 �

a12,a16,a17,a21
b3

IA = {1, 2, 4, 5, 6, 9, 10} q(q � 1)4 q

7

IL = {7, 8, 11, 13, 14, 18, 19}

�

a12,a15,a17,a21
b3

IA = {1, 2, 4, 5, 6, 10, 14} q(q � 1)4 q

7

IL = {7, 8, 9, 11, 13, 18, 19}

�

a7,a15,a17,a21
IA = {1, 3, 4, 5, 6, 10, 14} (q � 1)4 q

7

IL = {2, 8, 9, 11, 13, 18, 19}

�

a15,a17,a21
b2,b3

IA = {1, 4, 5, 6, 10, 14} q

2(q � 1)3 q

6

IL = {8, 9, 11, 13, 18, 19}

�

a12,a17,a21
b3

IA = {1, 2, 4, 5, 6, 10, 14} q(q � 1)3 q

7

IL = {7, 8, 9, 11, 13, 18, 19}

�

a7,a17,a21
b4,b8

IA = {1, 3, 5, 6, 10, 14} q

2(q � 1)3 q

6

IL = {2, 9, 11, 13, 18, 19}

�

a8,a17,a21
b2

IA = {1, 4, 5, 6, 10, 14} q(q � 1)3 q

6

IL = {3, 9, 11, 13, 18, 19}

�

a17,a21
b2,b3,b4

IA = {1, 5, 6, 10, 14} q

3(q � 1)2 q

5

IL = {9, 11, 13, 18, 19}

�

a15,a16,a17,a21
b3

�

a15,a16,a17,a21
b3

�

a15,a16,a17,a21
b3

IA = {1, 4, 5, 6}, II = {2, 9, 10}.IA = {1, 4, 5, 6}, II = {2, 9, 10}.
IA = {1, 4, 5, 6}, II = {2, 9, 10}. q(q � 1)4q(q � 1)4

q(q � 1)4 q

7
q

7
q

7

IL = {8, 11, 18, 19}, IJ = {7, 13, 14},IL = {8, 11, 18, 19}, IJ = {7, 13, 14},
IL = {8, 11, 18, 19}, IJ = {7, 13, 14},

�

a8,a16,a17,a21
�

a8,a16,a17,a21
�

a8,a16,a17,a21
IA = {1, 3, 5, 6}, II = {2, 9, 10}.IA = {1, 3, 5, 6}, II = {2, 9, 10}.
IA = {1, 3, 5, 6}, II = {2, 9, 10}. (q � 1)4(q � 1)4(q � 1)4 q

7
q

7
q

7

IL = {4, 11, 18, 19}, IJ = {7, 13, 14},IL = {4, 11, 18, 19}, IJ = {7, 13, 14},
IL = {4, 11, 18, 19}, IJ = {7, 13, 14},

�

a16,a17,a21
b3,b4

�

a16,a17,a21
b3,b4

�

a16,a17,a21
b3,b4

IA = {1, 5, 6}, II = {2, 9, 10}.IA = {1, 5, 6}, II = {2, 9, 10}.
IA = {1, 5, 6}, II = {2, 9, 10}. q

2(q � 1)3q

2(q � 1)3
q

2(q � 1)3 q

6
q

6
q

6

IL = {11, 18, 19}, IJ = {7, 13, 14},IL = {11, 18, 19}, IJ = {7, 13, 14},
IL = {11, 18, 19}, IJ = {7, 13, 14},

�

a12,a15,a16,a17,a⇤
21

b3
�

a12,a15,a16,a17,a⇤
21

b3
�

a12,a15,a16,a17,a⇤
21

b3
IA = {1, 5}, II = {2, 4, 6, 9, 10}IA = {1, 5}, II = {2, 4, 6, 9, 10}
IA = {1, 5}, II = {2, 4, 6, 9, 10} q(q � 1)4(q � 2)q(q � 1)4(q � 2)

q(q � 1)4(q � 2) q

7
q

7
q

7

(a⇤
21 6= a16(a15/a12)

2) IL = {18, 19}, IJ = {7, 8, 11, 13, 14}IL = {18, 19}, IJ = {7, 8, 11, 13, 14}
IL = {18, 19}, IJ = {7, 8, 11, 13, 14}

�

a12,a15,a16,a17,a7,...,14
�

a12,a15,a16,a17,a7,...,14
�

a12,a15,a16,a17,a7,...,14
See CB5

in Section 5.2 (q � 1)5(q � 1)5(q � 1)5 q

7
q

7
q

7

�

a12,a15,a16,a17
b3,b2,4,6,9,10

�

a12,a15,a16,a17
b3,b2,4,6,9,10

�

a12,a15,a16,a17
b3,b2,4,6,9,10

See CB5
in Section 5.2 q

2(q � 1)4q

2(q � 1)4
q

2(q � 1)4 q

6
q

6
q

6

F18,19 �

a7,a18,a19
b12

IA = {1, 3, 4, 5, 6, 8, 9} q(q � 1)3 q

7

IL = {2, 10, 11, 13, 14, 15, 16}

�

a18,a19
b2,b3,b12

IA = {1, 4, 5, 6, 8, 9} q

3(q � 1)2 q

6

IL = {10, 11, 13, 14, 15, 16}

F19,20 �

a19,a20
b3,b7,b8,b14

IA = {1, 2, 4, 5, 6, 9, 10} q

4(q � 1)2 q

7

IL = {11, 12, 13, 15, 16, 17, 18}

F19,22 �

a19,a22
b2,b4,b10

IA = {1, 3, 5, 6, 7, 8, 11, 12} q

3(q � 1)2 q

8

IL = {9, 13, 14, 15, 16, 17, 18, 20}

F20,21 �

a7,a16,a20,a21
b8,b11,b13

IA = {1, 2, 4, 5, 6, 9, 10} q

3(q � 1)4 q

7

IL = {3, 12, 14, 15, 17, 18, 19}

�

a13,a20,a21
b3,b7,b11

IA = {1, 2, 4, 5, 6, 9, 10} q

3(q � 1)3 q

7

IL = {8, 12, 14, 15, 17, 18, 19}

�

a7,a20,a21
b8,b11

IA = {1, 3, 4, 6, 9, 10, 18} q

2(q � 1)3 q

7

IL = {2, 5, 12, 14, 15, 17, 19}

�

a20,a21
b2,b3,b8,b11

IA = {1, 4, 6, 9, 10, 18} q

4(q � 1)2 q

6

IL = {5, 12, 14, 15, 17, 19}
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�

a16,a20,a21
b3,b8,b11

�

a16,a20,a21
b3,b8,b11

�

a16,a20,a21
b3,b8,b11

IA = {1, 4, 6, 9},IA = {1, 4, 6, 9},
IA = {1, 4, 6, 9}, q

3(q � 1)3q

3(q � 1)3
q

3(q � 1)3 q

7
q

7
q

7

IL = {14, 15, 17, 19},IL = {14, 15, 17, 19},
IL = {14, 15, 17, 19},

II = {2, 5, 10}, IJ = {12, 13, 18}II = {2, 5, 10}, IJ = {12, 13, 18}
II = {2, 5, 10}, IJ = {12, 13, 18}

F21,22 �

a9,a21,a22
b2,b6

IA = {1, 3, 5, 8, 11, 13, 14, 18} q

2(q � 1)3 q

8

IL = {4, 7, 10, 12, 15, 17, 19, 20}

�

a21,a22
b2,b4,b5,b6

IA = {1, 3, 8, 11, 13, 14, 18} q

4(q � 1)2 q

7

IL = {7, 10, 12, 15, 17, 19, 20}

�

a16,a21,a22
b2,b4,b6

�

a16,a21,a22
b2,b4,b6

�

a16,a21,a22
b2,b4,b6

IA = {1, 3, 8, 11, 13},IA = {1, 3, 8, 11, 13},
IA = {1, 3, 8, 11, 13}, q

3(q � 1)3q

3(q � 1)3
q

3(q � 1)3 q

8
q

8
q

8

IL = {10, 15, 17, 19, 20},IL = {10, 15, 17, 19, 20},
IL = {10, 15, 17, 19, 20},

II = {5, 7, 14}, IJ = {9, 12, 18}II = {5, 7, 14}, IJ = {9, 12, 18}
II = {5, 7, 14}, IJ = {9, 12, 18}

F22,23 �

a9,a22,a23
b1

IA = {2, 5, 6, 7, 10, 11, 12, 17, 20} q(q � 1)3 q

9

IL = {3, 4, 8, 14, 15, 16, 18, 19, 21}

�

a22,a23
b1,b4,b5

IA = {2, 6, 7, 10, 11, 12, 17, 20} q

3(q � 1)2 q

8

IL = {3, 8, 14, 15, 16, 18, 19, 21}

�

a13,a22,a23
b1,b4

�

a13,a22,a23
b1,b4

�

a13,a22,a23
b1,b4

IA = {2, 6, 7, 10, 11, 12},IA = {2, 6, 7, 10, 11, 12},
IA = {2, 6, 7, 10, 11, 12}, q

2(q � 1)3q

2(q � 1)3
q

2(q � 1)3 q

9
q

9
q

9

IL = {14, 15, 16, 18, 19, 21},IL = {14, 15, 16, 18, 19, 21},
IL = {14, 15, 16, 18, 19, 21},

II = {3, 5, 17}, IJ = {8, 9, 20}II = {3, 5, 17}, IJ = {8, 9, 20}
II = {3, 5, 17}, IJ = {8, 9, 20}

F1,2,8 �

a1,a2,a8
IA = {3}, IL = {4} (q � 1)3 q

F1,2,9 �

a1,a2,a9
IA = {4}, IL = {5} (q � 1)3 q

F1,2,13 �

a1,a2,a13
b4

IA = {3, 5}, IL = {8, 9} q(q � 1)3 q

2

F1,3,9 �

a1,a3,a9
IA = {4}, IL = {5} (q � 1)3 q

F1,4,7 �

a1,a4,a7
IA = {2}, IL = {3} (q � 1)3 q

F1,5,7 �

a1,a5,a7
IA = {2}, IL = {3} (q � 1)3 q

F1,5,8 �

a1,a5,a8
IA = {3}, IL = {4} (q � 1)3 q

F1,5,12 �

a1,a5,a12
b3

IA = {2, 4}, IL = {7, 8} q(q � 1)3 q

2

F1,7,8 �

a1,a7,a8
b4

IA = {2}, IL = {3} q(q � 1)3 q

F1,7,9 �

a1,a7,a9
IA = {2, 4}, IL = {3, 5} (q � 1)3 q

2

F1,7,13 �

a1,a7,a13
b2,b4

IA = {3, 5}, IL = {8, 9} q

2(q � 1)3 q

2

F1,8,9 �

a1,a8,a9
b5

IA = {3}, IL = {4} q(q � 1)3 q

F1,9,12 �

a1,a9,a12
b3,b5

IA = {2, 4}, IL = {7, 8} q

2(q � 1)3 q

2

F1,12,13 �

a1,a12,a13
b5

IA = {3, 4, 8}, IL = {2, 7, 9} q(q � 1)3 q

3

F2,3,9 �

a2,a3,a9
IA = {4}, IL = {5} (q � 1)3 q

F2,5,8 �

a2,a5,a8
IA = {3}, IL = {4} (q � 1)3 q

F2,8,9 �

a2,a8,a9
b5

IA = {3}, IL = {4} q(q � 1)3 q

F3,4,6 �

a3,a4,a6
IA = {1}, IL = {2} (q � 1)3 q

F3,4,10 �

a3,a4,a10
b2

IA = {1}, IL = {6} q(q � 1)3 q

F3,5,6 �

a3,a5,a6
IA = {1}, IL = {2} (q � 1)3 q

F3,5,10 �

a3,a5,a10
b2

IA = {1}, IL = {6} q(q � 1)3 q

F3,6,9 �

a3,a6,a9
IA = {1, 4}, IL = {2, 5} (q � 1)3 q

2

F3,9,10 �

a3,a9,a10
b2

IA = {1, 5}, IL = {4, 6} q(q � 1)3 q

2

F4,5,6 �

a4,a5,a6
IA = {1}, IL = {2} (q � 1)3 q

F4,5,7 �

a4,a5,a7
IA = {2}, IL = {3} (q � 1)3 q

F4,5,10 �

a4,a5,a10
b2

IA = {1}, IL = {6} q(q � 1)3 q

F4,5,11 �

a4,a5,a11
b2

IA = {1, 3}, IL = {6, 7} q(q � 1)3 q

2

F4,5,14 �

a4,a5,a14
b2,b6,b7

IA = {1, 3}, IL = {10, 11} q

3(q � 1)3 q

2

F4,5,17 �

a4,a5,a17
b1,b3

IA = {2, 6, 7}, IL = {10, 11, 14} q

2(q � 1)3 q

3

F4,6,7 �

a4,a6,a7
b3

IA = {1}, IL = {2} q(q � 1)3 q

F4,7,10 �

a4,a7,a10
IA = {1, 3}, IL = {2, 6} (q � 1)3 q

2

F4,10,11 �

a4,a10,a11
b2

IA = {1, 3}, IL = {6, 7} q(q � 1)3 q

2
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F5,6,7 �

a5,a6,a7
b3

IA = {1}, IL = {2} q(q � 1)3 q

F5,6,8 �

a5,a6,a8
IA = {1, 3}, IL = {2, 4} (q � 1)3 q

2

F5,6,12 �

a5,a6,a12
b1,b3

IA = {2, 4}, IL = {7, 8} q

2(q � 1)3 q

2

F5,7,8 �

a5,a7,a8
b4

IA = {2}, IL = {3} q(q � 1)3 q

F5,7,10 �

a5,a7,a10
IA = {1, 3}, IL = {2, 6} (q � 1)3 q

2

F5,8,10 �

a5,a8,a10
b2

IA = {1, 4}, IL = {3, 6} q(q � 1)3 q

2

F5,8,11 �

a5,a8,a11
b2,b4

IA = {1, 3}, IL = {6, 7} q

2(q � 1)3 q

2

F5,8,14 �

a5,a8,a14
b2,b4,b6,b7

IA = {1, 3}, IL = {10, 11} q

4(q � 1)3 q

2

F5,8,17 �

a5,a8,a17
b1

IA = {2, 4, 6, 7} q(q � 1)3 q

4

IL = {3, 10, 11, 14}

F5,10,11 �

a5,a10,a11
b2

IA = {1, 3}, IL = {6, 7} q(q � 1)3 q

2

F5,10,12 �

a5,a10,a12
b3

IA = {1, 2, 4}, IL = {6, 7, 8} q(q � 1)3 q

3

F5,10,15 �

a5,a7,a10,a15
IA = {1, 3, 4, 8} (q � 1)4 q

4

IL = {2, 6, 11, 12}

�

a5,a10,a15
b2,b3

IA = {1, 4, 8}, IL = {6, 11, 12} q

2(q � 1)3 q

3

F5,11,12 �

a5,a11,a12
b4

IA = {2, 3, 7}, IL = {1, 6, 8} q(q � 1)3 q

3

F5,12,14 �

a5,a12,a14
b6

IA = {1, 2, 3, 4} q(q � 1)3 q

4

IL = {7, 8, 10, 11}

F5,12,17 �

a5,a8,a12,a17
b1

IA = {2, 4, 6, 7} q(q � 1)4 q

4

IL = {3, 10, 11, 14}

�

a5,a12,a17
b1,b3,b4

IA = {2, 6, 7}, IL = {10, 11, 14} q

3(q � 1)3 q

3

F5,14,15 �

a5,a14,a15
b2,b7

IA = {1, 3, 4, 8} q

2(q � 1)3 q

4

IL = {6, 10, 11, 12}

F5,15,17 �

a5,a15,a17
b3

IA = {1, 2, 4, 6, 7} q(q � 1)3 q

5

IL = {8, 10, 11, 12, 14}

F5,17,18 �

a5,a8,a17,a18
IA = {1, 4, 6, 10, 14} (q � 1)4 q

5

IL = {2, 3, 7, 11, 15}

�

a5,a17,a18
b3,b4

IA = {1, 6, 10, 14} q

2(q � 1)3 q

4

IL = {2, 7, 11, 15}

�

a5,a12,a17,a18
b3

�

a5,a12,a17,a18
b3

�

a5,a12,a17,a18
b3

IA = {1, 6}, II = {2, 4, 10}.IA = {1, 6}, II = {2, 4, 10}.
IA = {1, 6}, II = {2, 4, 10}. q(q � 1)4q(q � 1)4

q(q � 1)4 q

5
q

5
q

5

IL = {11, 15}, IJ = {7, 8, 14},IL = {11, 15}, IJ = {7, 8, 14},
IL = {11, 15}, IJ = {7, 8, 14},

F6,7,8 �

a6,a7,a8
IA = {1, 3}, IL = {2, 4} (q � 1)3 q

2

F6,7,9 �

a6,a7,a9
b3

IA = {1, 4}, IL = {2, 5} q(q � 1)3 q

2

F6,7,13 �

a6,a7,a13
b4

IA = {2, 3, 5}, IL = {1, 8, 9} q(q � 1)3 q

3

F6,8,9 �

a6,a8,a9
b5

IA = {1, 3}, IL = {2, 4} q(q � 1)3 q

2

F6,9,12 �

a6,a9,a12
b1,b3,b5

IA = {2, 4}, IL = {7, 8} q

3(q � 1)3 q

2

F6,12,13 �

a6,a12,a13
IA = {1, 3, 4, 8} (q � 1)3 q

4

IL = {2, 5, 7, 9}

F7,8,9 �

a7,a8,a9
IA = {2, 4}, IL = {3, 5} (q � 1)3 q

2

F7,8,10 �

a7,a8,a10
b4

IA = {1, 3}, IL = {2, 6} q(q � 1)3 q

2

F7,9,10 �

a7,a9,a10
IA = {1, 3, 5}, IL = {2, 4, 6} (q � 1)3 q

3

F7,10,13 �

a7,a10,a13
b2,b4

IA = {1, 3, 5}, IL = {6, 8, 9} q

2(q � 1)3 q

3

F8,9,10 �

a8,a9,a10
b2,b5

IA = {1, 4}, IL = {3, 6} q

2(q � 1)3 q

2

F8,9,11 �

a8,a9,a11
b2

IA = {1, 3, 5}, IL = {4, 6, 7} q(q � 1)3 q

3

F8,9,14 �

a8,a9,a14
b2,b6,b7

IA = {1, 3, 5}, IL = {4, 10, 11} q

3(q � 1)3 q

3

F8,9,17 �

a8,a9,a17
b1,b5

IA = {2, 4, 6, 7} q

2(q � 1)3 q

4

IL = {3, 10, 11, 14}

F8,10,11 �

a8,a10,a11
b2,b4

IA = {1, 3}, IL = {6, 7} q

2(q � 1)3 q

2

F9,10,11 �

a9,a10,a11
b2

IA = {1, 3, 5}, IL = {4, 6, 7} q(q � 1)3 q

3
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F9,10,12 �

a9,a10,a12
b3,b5

IA = {1, 2, 4}, IL = {6, 7, 8} q

2(q � 1)3 q

3

F9,10,15 �

a7,a9,a10,a15
b5

IA = {1, 3, 4, 8} q(q � 1)4 q

4

IL = {2, 6, 11, 12}

�

a9,a10,a15
b2,b3,b5

IA = {1, 4, 8}, IL = {6, 11, 12} q

3(q � 1)3 q

3

F9,11,12 �

a9,a11,a12
IA = {2, 3, 5, 7} (q � 1)3 q

4

IL = {1, 4, 6, 8}

F9,12,14 �

a9,a12,a14
b5,b6

IA = {1, 2, 3, 4} q

2(q � 1)3 q

4

IL = {7, 8, 10, 11}

F9,12,17 �

a9,a12,a17
b1,b3,b8

IA = {2, 4, 6, 7} q

3(q � 1)3 q

4

IL = {5, 10, 11, 14}

F9,14,15 �

a9,a14,a15
b2,b5,b7

IA = {1, 3, 4, 8} q

3(q � 1)3 q

4

IL = {6, 10, 11, 12}

F9,15,17 �

a9,a15,a17
b3,b5

IA = {1, 2, 4, 6, 7} q

2(q � 1)3 q

5

IL = {8, 10, 11, 12, 14}

F9,17,18 �

a9,a17,a18
b3,b8,b12

IA = {1, 2, 4, 6, 10} q

3(q � 1)3 q

5

IL = {5, 7, 11, 14, 15}

F10,11,12 �

a10,a11,a12
b4

IA = {2, 6, 7}, IL = {1, 3, 8} q(q � 1)3 q

3

F10,11,13 �

a10,a11,a13
b2,b4,b9

IA = {1, 3, 5}, IL = {6, 7, 8} q

3(q � 1)3 q

3

F10,11,16 �

a8,a10,a11,a16
IA = {2, 4, 5, 6, 7} (q � 1)4 q

5

IL = {1, 3, 9, 12, 13}

�

a10,a11,a16
b3,b4

IA = {2, 5, 6, 7} q

2(q � 1)3 q

4

IL = {1, 9, 12, 13}

F10,12,13 �

a10,a12,a13
b5

IA = {1, 3, 4, 8} q(q � 1)3 q

4

IL = {2, 6, 7, 9}

F10,13,15 �

a10,a13,a15
b2,b5,b7

IA = {1, 3, 4, 8} q

3(q � 1)3 q

4

IL = {6, 9, 11, 12}

F10,15,16 �

a10,a15,a16
b3,b5

IA = {2, 4, 6, 9, 12} q

2(q � 1)3 q

5

IL = {1, 7, 8, 11, 13}

F11,12,13 �

a9,a11,a12,a13
IA = {1, 2, 4, 6} (q � 1)4 q

4

IL = {3, 5, 7, 8}

�

a11,a12,a13
b4,b5

IA = {1, 2, 6}, IL = {3, 7, 8} q

2(q � 1)3 q

3

F12,13,14 �

a12,a13,a14
b5,b6,b9

IA = {1, 3, 4, 8} q

3(q � 1)3 q

4

IL = {2, 7, 10, 11}

F12,13,17 �

a12,a13,a17
b1,b4

IA = {2, 3, 5, 6, 7} q

2(q � 1)3 q

5

IL = {8, 9, 10, 11, 14}

F13,14,15 �

a13,a14,a15
b2,b5,b7,b9

IA = {1, 3, 4, 8} q

4(q � 1)3 q

4

IL = {6, 10, 11, 12}

F13,15,17 �

a13,a15,a17
b5

IA = {1, 2, 3, 7, 8, 11} q(q � 1)3 q

6

IL = {4, 6, 9, 10, 12, 14}

F13,17,18 �

a13,a17,a18
b4,b12

IA = {1, 3, 6, 7, 8, 14} q

2(q � 1)3 q

6

IL = {2, 5, 9, 10, 11, 15}

F14,15,16 �

a14,a15,a16
b5

IA = {2, 3, 7, 8, 11, 12} q(q � 1)3 q

6

IL = {1, 4, 6, 9, 10, 13}

F15,16,17 �

a13,a15,a16,a17
b5

IA = {2, 3, 7, 8, 11, 12} q(q � 1)4 q

6

IL = {1, 4, 6, 9, 10, 14}

�

a15,a16,a17
b3,b5,b9

IA = {2, 4, 6, 7, 12} q

3(q � 1)3 q

5

IL = {1, 8, 10, 11, 14}

F16,17,18 �

a16,a17,a18
b3

IA = {1, 2, 4, 5, 6, 9, 10} q(q � 1)3 q

7

IL = {7, 8, 11, 12, 13, 14, 15}

F17,18,19 �

a8,a17,a18,a19
IA = {1, 4, 5, 6, 9, 10, 14} (q � 1)4 q

7
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IL = {2, 3, 7, 11, 13, 15, 16}

�

a17,a18,a19
b3,b4

IA = {1, 5, 6, 9, 10, 14} q

2(q � 1)3 q

6

IL = {2, 7, 11, 13, 15, 16}

�

a12,a17,a18,a19
b3

�

a12,a17,a18,a19
b3

�

a12,a17,a18,a19
b3

IA = {1, 5, 6, 9},IA = {1, 5, 6, 9},
IA = {1, 5, 6, 9}, q(q � 1)4q(q � 1)4

q(q � 1)4 q

7
q

7
q

7

IL = {11, 13, 15, 16},IL = {11, 13, 15, 16},
IL = {11, 13, 15, 16},

II = {2, 4, 10}, IJ = {7, 8, 14}II = {2, 4, 10}, IJ = {7, 8, 14}
II = {2, 4, 10}, IJ = {7, 8, 14}

F1,2,3,9 �

a1,a2,a3,a9
IA = {4}, IL = {5} (q � 1)4 q

F1,2,5,8 �

a1,a2,a5,a8
IA = {3}, IL = {4} (q � 1)4 q

F1,2,8,9 �

a1,a2,a8,a9
b5

IA = {3}, IL = {4} q(q � 1)4 q

F1,4,5,7 �

a1,a4,a5,a7
IA = {2}, IL = {3} (q � 1)4 q

F1,5,7,8 �

a1,a5,a7,a8
b4

IA = {2}, IL = {3} q(q � 1)4 q

F1,7,8,9 �

a1,a7,a8,a9
IA = {2, 4}, IL = {3, 5} (q � 1)4 q

2

F3,4,5,6 �

a3,a4,a5,a6
IA = {1}, IL = {2} (q � 1)4 q

F3,4,5,10 �

a3,a4,a5,a10
b2

IA = {1}, IL = {6} q(q � 1)4 q

F4,5,6,7 �

a4,a5,a6,a7
b3

IA = {1}, IL = {2} q(q � 1)4 q

F4,5,7,10 �

a4,a5,a7,a10
IA = {1, 3}, IL = {2, 6} (q � 1)4 q

2

F4,5,10,11 �

a4,a5,a10,a11
b2

IA = {1, 3}, IL = {6, 7} q(q � 1)4 q

2

F5,6,7,8 �

a5,a6,a7,a8
IA = {1, 3}, IL = {2, 4} (q � 1)4 q

2

F5,7,8,10 �

a5,a7,a8,a10
b4

IA = {1, 3}, IL = {2, 6} q(q � 1)4 q

2

F5,8,10,11 �

a5,a8,a10,a11
b2,b4

IA = {1, 3}, IL = {6, 7} q

2(q � 1)4 q

2

F5,10,11,12 �

a5,a10,a11,a12
b4

IA = {2, 6, 7}, IL = {1, 3, 8} q(q � 1)4 q

3

F6,7,8,9 �

a6,a7,a8,a9
b5

IA = {1, 3}, IL = {2, 4} q(q � 1)4 q

2

F7,8,9,10 �

a7,a8,a9,a10
IA = {1, 3, 5}, IL = {2, 4, 6} (q � 1)4 q

3

F8,9,10,11 �

a8,a9,a10,a11
b2

IA = {1, 3, 5}, IL = {4, 6, 7} q(q � 1)4 q

3

F9,10,11,12 �

a9,a10,a11,a12
IA = {2, 5, 6, 7} (q � 1)4 q

4

IL = {1, 3, 4, 8}

F10,11,12,13 �

a10,a11,a12,a13
b5

IA = {1, 3, 4, 8} q(q � 1)4 q

4

IL = {2, 6, 7, 9}

Table D.5: The parametrization of the irreducible characters of UB5(q), where q = pe and
p � 3.
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Parametrization of the irreducible characters of UC5

F � I Number Degree

Flin �b1,b2,b3,b4,b5
q

5 1

F6 �

a6
IA = {1}, IL = {2} q � 1 q

F7 �

a7
IA = {2}, IL = {3} q � 1 q

F8 �

a8
IA = {3}, IL = {4} q � 1 q

F9 �

a9
IA = {4}, IL = {5} q � 1 q

F10 �

a10
b1

IA = {2}, IL = {6} q(q � 1) q

F11 �

a11
b2

IA = {1, 3}, IL = {6, 7} q(q � 1) q

2

F12 �

a12
b3

IA = {2, 4}, IL = {7, 8} q(q � 1) q

2

F13 �

a13
b4

IA = {3, 5}, IL = {8, 9} q(q � 1) q

2

F14 �

a14
b1

IA = {2, 3, 7}, IL = {6, 10, 11} q(q � 1) q

3

F15 �

a7,a15
IA = {1, 3, 4, 8} (q � 1)2 q

4

IL = {2, 6, 11, 12}

�

a15
b2,b3

IA = {1, 4, 8}, IL = {6, 11, 12} q

2(q � 1) q

3

F16 �

a8,a16
IA = {2, 4, 5, 9} (q � 1)2 q

4

IL = {3, 7, 12, 13}

�

a16
b3,b4

IA = {2, 5, 9}, IL = {7, 12, 13} q

2(q � 1) q

3

F17 �

a10,a17
b1

IA = {2, 3, 7}, IL = {6, 11, 14} q(q � 1)2 q

3

�

a6,a17
IA = {2, 3, 7}, IL = {1, 11, 14} (q � 1)2 q

3

�

a17
b1,b2

IA = {3, 7}, IL = {11, 14} q

2(q � 1) q

2

F18 �

a11,a18
b3

IA = {1, 2, 4, 6, 8} q(q � 1)2 q

5

IL = {7, 10, 12, 14, 15}

�

a18
b1,b3,b7

IA = {2, 4, 6, 8} q

3(q � 1) q

4

IL = {10, 12, 14, 15}

F19 �

a12,a19
b3

IA = {1, 2, 4, 5, 6, 9} q(q � 1)2 q

6

IL = {7, 8, 11, 13, 15, 16}

�

a8,a19
b2,b7

IA = {1, 3, 5, 6, 9} q

2(q � 1)2 q

5

IL = {4, 11, 13, 15, 16}

�

a7,a19
b4

IA = {1, 3, 5, 6, 9} q(q � 1)2 q

5

IL = {2, 11, 13, 15, 16}

�

a19
b2,b3,b4

IA = {1, 5, 6, 9} q

3(q � 1) q

4

IL = {11, 13, 15, 16}

F20 �

a10,a20
b1

IA = {2, 3, 4, 7, 8, 12} q(q � 1)2 q

6

IL = {6, 11, 14, 15, 17, 18}

�

a6,a20
IA = {2, 3, 4, 7, 8, 12} (q � 1)2 q

6

IL = {1, 11, 14, 15, 17, 18}

�

a20
b1,b2

IA = {3, 4, 7, 8, 12} q

2(q � 1) q

5

IL = {11, 14, 15, 17, 18}

F21 �

a15,a21
b3,b7,b8

IA = {1, 2, 4, 5, 6, 9, 13} q

3(q � 1)2 q

7

IL = {10, 11, 12, 14, 16, 18, 19}

�

a8,a11,a21
b12

IA = {2, 4, 5, 6, 7, 9, 13} q(q � 1)3 q

7

IL = {1, 3, 10, 14, 16, 18, 19}

�

a11,a21
b3,b4,b12

IA = {2, 5, 6, 7, 9, 13} q

3(q � 1)2 q

6

IL = {1, 10, 14, 16, 18, 19}

�

a12,a21
b1,b3,b8

IA = {2, 4, 5, 6, 9, 13} q

3(q � 1)2 q

6

IL = {7, 10, 14, 16, 18, 19}

�

a8,a21
b1,b7

IA = {2, 4, 5, 6, 9, 13} q

2(q � 1)2 q

6

IL = {3, 10, 14, 16, 18, 19}

�

a21
b1,b3,b4,b7

IA = {2, 5, 6, 9, 13} q

4(q � 1) q

5
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IL = {10, 14, 16, 18, 19}

F22 �

a10,a17,a22
b1

IA = {2, 3, 4, 7, 8, 12} q(q � 1)3 q

6

IL = {6, 11, 14, 15, 18, 20}

�

a6,a17,a22
IA = {2, 3, 4, 7, 8, 12} (q � 1)3 q

6

IL = {1, 11, 14, 15, 18, 20}

�

a17,a22
b1,b2

IA = {3, 4, 7, 8, 12} q

2(q � 1)2 q

5

IL = {11, 14, 15, 18, 20}

�

a14,a22
b1

IA = {2, 3, 4, 7, 8, 12} q(q � 1)2 q

6

IL = {6, 10, 11, 15, 18, 20}

�

a10,a11,a22
b3

IA = {1, 4, 6, 8, 12} q(q � 1)3 q

5

IL = {2, 7, 15, 18, 20}

�

a10,a22
b1,b3,b7

IA = {2, 4, 8, 12} q

3(q � 1)2 q

4

IL = {6, 15, 18, 20}

�

a11,a22
b2

IA = {1, 3, 4, 8, 12} q(q � 1)2 q

5

IL = {6, 7, 15, 18, 20}

�

a7,a22
b1,b6

IA = {2, 4, 8, 12} q

2(q � 1)2 q

4

IL = {3, 15, 18, 20}

�

a6,a22
b3

IA = {2, 4, 8, 12} q(q � 1)2 q

4

IL = {1, 15, 18, 20}

�

a22
b1,b2,b3

IA = {4, 8, 12}, IL = {15, 18, 20} q

3(q � 1) q

3

F23 �

a18,a23
b1,b4

IA = {2, 3, 5, 6, 7, 8, 9, 11, 14} q

2(q � 1)2 q

9

IL = {10, 12, 13, 15, 16, 17, 19, 20, 21}

�

a15,a23
b2,b4,b10

IA = {1, 3, 5, 6, 7, 9, 11, 14} q

3(q � 1)2 q

8

IL = {8, 12, 13, 16, 17, 19, 20, 21}

�

a12,a23
b1,b4,b6,b10

IA = {2, 3, 5, 7, 9, 11, 14} q

4(q � 1)2 q

7

IL = {8, 13, 16, 17, 19, 20, 21}

�

a10,a23
b1,b4,b8

IA = {2, 3, 5, 7, 9, 11, 14} q

3(q � 1)2 q

7

IL = {6, 13, 16, 17, 19, 20, 21}

�

a6,a23
b4,b8

IA = {2, 3, 5, 7, 9, 11, 14} q

2(q � 1)2 q

7

IL = {1, 13, 16, 17, 19, 20, 21}

�

a23
b1,b2,b4,b8

IA = {3, 5, 7, 9, 11, 14} q

4(q � 1) q

6

IL = {13, 16, 17, 19, 20, 21}

F24 �

a10,a17,a24
b1

IA = {2, 3, 4, 5, 7, 8, 9, 12, 13, 16} q(q � 1)3 q

10

IL = {6, 11, 14, 15, 18, 19, 20, 21, 22, 23}

�

a6,a17,a24
IA = {2, 3, 4, 5, 7, 8, 9, 12, 13, 16} (q � 1)3 q

10

IL = {1, 11, 14, 15, 18, 19, 20, 21, 22, 23}

�

a17,a24
b1,b2

IA = {3, 4, 5, 7, 8, 9, 12, 13, 16} q

2(q � 1)2 q

9

IL = {11, 14, 15, 18, 19, 20, 21, 22, 23}

�

a14,a24
b1

IA = {2, 3, 4, 5, 7, 8, 9, 12, 13, 16} q(q � 1)2 q

10

IL = {6, 10, 11, 15, 18, 19, 20, 21, 22, 23}

�

a10,a11,a24
b3

IA = {1, 4, 5, 6, 8, 9, 12, 13, 16} q(q � 1)3 q

9

IL = {2, 7, 15, 18, 19, 20, 21, 22, 23}

�

a10,a24
b1,b3,b7

IA = {2, 4, 5, 8, 9, 12, 13, 16} q

3(q � 1)2 q

8

IL = {6, 15, 18, 19, 20, 21, 22, 23}

�

a11,a24
b2

IA = {1, 3, 4, 5, 8, 9, 12, 13, 16} q(q � 1)2 q

9

IL = {6, 7, 15, 18, 19, 20, 21, 22, 23}

�

a7,a24
b1,b6

IA = {2, 4, 5, 8, 9, 12, 13, 16} q

2(q � 1)2 q

8

IL = {3, 15, 18, 19, 20, 21, 22, 23}

�

a6,a24
b3

IA = {2, 4, 5, 8, 9, 12, 13, 16} q(q � 1)2 q

8

IL = {1, 15, 18, 19, 20, 21, 22, 23}

�

a24
b1,b2,b3

IA = {4, 5, 8, 9, 12, 13, 16} q

3(q � 1) q

7
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IL = {15, 18, 19, 20, 21, 22, 23}

F25 �

a10,a17,a22,a25
b1

IA = {2, 3, 4, 5, 7, 8, 9, 12, 13, 16} q(q � 1)4 q

10

IL = {6, 11, 14, 15, 18, 19, 20, 21, 23, 24}

�

a6,a17,a22,a25
IA = {2, 3, 4, 5, 7, 8, 9, 12, 13, 16} (q � 1)4 q

10

IL = {1, 11, 14, 15, 18, 19, 20, 21, 23, 24}

�

a17,a22,a25
b1,b2

IA = {3, 4, 5, 7, 8, 9, 12, 13, 16} q

2(q � 1)3 q

9

IL = {11, 14, 15, 18, 19, 20, 21, 23, 24}

�

a14,a22,a25
b1

IA = {2, 3, 4, 5, 7, 8, 9, 12, 13, 16} q(q � 1)3 q

10

IL = {6, 10, 11, 15, 18, 19, 20, 21, 23, 24}

�

a11,a22,a25
b2,b10

IA = {1, 4, 5, 6, 8, 9, 12, 13, 16} q

2(q � 1)3 q

9

IL = {3, 7, 15, 18, 19, 20, 21, 23, 24}

�

a10,a22,a25
b1,b3,b7

IA = {2, 4, 5, 8, 9, 12, 13, 16} q

3(q � 1)3 q

8

IL = {6, 15, 18, 19, 20, 21, 23, 24}

�

a7,a22,a25
b1,b6

IA = {2, 4, 5, 8, 9, 12, 13, 16} q

2(q � 1)3 q

8

IL = {3, 15, 18, 19, 20, 21, 23, 24}

�

a6,a22,a25
b3

IA = {2, 4, 5, 8, 9, 12, 13, 16} q(q � 1)3 q

8

IL = {1, 15, 18, 19, 20, 21, 23, 24}

�

a22,a25
b1,b2,b3

IA = {4, 5, 8, 9, 12, 13, 16} q

3(q � 1)2 q

7

IL = {15, 18, 19, 20, 21, 23, 24}

�

a10,a20,a25
b1

IA = {2, 3, 4, 5, 7, 8, 9, 12, 13, 16} q(q � 1)3 q

10

IL = {6, 11, 14, 15, 17, 18, 19, 21, 23, 24}

�

a6,a20,a25
IA = {2, 3, 4, 5, 7, 8, 9, 12, 13, 16} (q � 1)3 q

10

IL = {1, 11, 14, 15, 17, 18, 19, 21, 23, 24}

�

a20,a25
b1,b2

IA = {3, 4, 5, 7, 8, 9, 12, 13, 16} q

2(q � 1)2 q

9

IL = {11, 14, 15, 17, 18, 19, 21, 23, 24}

�

a17,a18,a25
b1,b4

IA = {2, 5, 6, 7, 9, 10, 13, 14, 16} q

2(q � 1)3 q

9

IL = {3, 8, 11, 12, 15, 19, 21, 23, 24}

�

a15,a17,a25
b2,b4,b10

IA = {1, 3, 5, 6, 9, 11, 13, 16} q

3(q � 1)3 q

8

IL = {7, 8, 12, 14, 19, 21, 23, 24}

�

a12,a17,a25
b1,b4,b6,b10

IA = {2, 3, 5, 7, 9, 13, 16} q

4(q � 1)3 q

7

IL = {8, 11, 14, 19, 21, 23, 24}

�

a10,a17,a25
b1,b4,b8

IA = {2, 3, 5, 7, 9, 13, 16} q

3(q � 1)3 q

7

IL = {6, 11, 14, 19, 21, 23, 24}

�

a6,a17,a25
b4,b8

IA = {2, 3, 5, 7, 9, 13, 16} q

2(q � 1)3 q

7

IL = {1, 11, 14, 19, 21, 23, 24}

�

a17,a25
b1,b2,b4,b8

IA = {3, 5, 7, 9, 13, 16} q

4(q � 1)2 q

6

IL = {11, 14, 19, 21, 23, 24}

�

a11,a18,a25
b3

IA = {1, 2, 4, 5, 6, 8, 9, 13, 16} q(q � 1)3 q

9

IL = {7, 10, 12, 14, 15, 19, 21, 23, 24}

�

a18,a25
b1,b3,b7

IA = {2, 4, 5, 6, 8, 9, 13, 16} q

3(q � 1)2 q

8

IL = {10, 12, 14, 15, 19, 21, 23, 24}

�

a14,a15,a25
b2,b7

IA = {1, 3, 5, 6, 9, 11, 13, 16} q

2(q � 1)3 q

8

IL = {4, 8, 10, 12, 19, 21, 23, 24}

�

a7,a15,a25
b10

IA = {1, 3, 5, 6, 9, 11, 13, 16} q(q � 1)3 q

8

IL = {2, 4, 8, 12, 19, 21, 23, 24}

�

a15,a25
b2,b3,b10

IA = {1, 5, 6, 9, 11, 13, 16} q

3(q � 1)2 q

7

IL = {4, 8, 12, 19, 21, 23, 24}

�

a14,a25
b1,b4,b8,b12

IA = {2, 3, 5, 7, 9, 13, 16} q

4(q � 1)2 q

7

IL = {6, 10, 11, 19, 21, 23, 24}

�

a11,a12,a25
b4,b10

IA = {2, 3, 5, 7, 9, 13, 16} q

2(q � 1)3 q

7

IL = {1, 6, 8, 19, 21, 23, 24}
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�

a8,a10,a11,a25
IA = {1, 4, 5, 6, 9, 13, 16} (q � 1)4 q

7

IL = {2, 3, 7, 19, 21, 23, 24}

�

a10,a11,a25
b3,b4

IA = {1, 5, 6, 9, 13, 16} q

2(q � 1)3 q

6

IL = {2, 7, 19, 21, 23, 24}

�

a11,a25
b2,b4,b8

IA = {1, 3, 5, 9, 13, 16} q

3(q � 1)2 q

6

IL = {6, 7, 19, 21, 23, 24}

�

a12,a25
b1,b3,b6,b10

IA = {2, 4, 5, 9, 13, 16} q

4(q � 1)2 q

6

IL = {7, 8, 19, 21, 23, 24}

�

a8,a10,a25
b1,b7

IA = {2, 4, 5, 9, 13, 16} q

2(q � 1)3 q

6

IL = {3, 6, 19, 21, 23, 24}

�

a10,a25
b1,b3,b4,b7

IA = {2, 5, 9, 13, 16} q

4(q � 1)2 q

5

IL = {6, 19, 21, 23, 24}

�

a6,a7,a8,a25
IA = {2, 3, 5, 9, 13, 16} (q � 1)4 q

6

IL = {1, 4, 19, 21, 23, 24}

�

a7,a8,a25
b1,b2

IA = {3, 5, 9, 13, 16} q

2(q � 1)3 q

5

IL = {4, 19, 21, 23, 24}

�

a7,a25
b1,b4,b6

IA = {2, 5, 9, 13, 16} q

3(q � 1)2 q

5

IL = {3, 19, 21, 23, 24}

�

a6,a8,a25
IA = {2, 4, 5, 9, 13, 16} (q � 1)3 q

6

IL = {1, 3, 19, 21, 23, 24}

�

a8,a25
b1,b2

IA = {4, 5, 9, 13, 16} q

2(q � 1)2 q

5

IL = {3, 19, 21, 23, 24}

�

a6,a25
b3,b4

IA = {2, 5, 9, 13, 16} q

2(q � 1)2 q

5

IL = {1, 19, 21, 23, 24}

�

a25
b1,b2,b3,b4

IA = {5, 9, 13, 16} q

4(q � 1) q

4

IL = {19, 21, 23, 24}

F1,7 �

a1,a7
IA = {2}, IL = {3} (q � 1)2 q

F1,8 �

a1,a8
IA = {3}, IL = {4} (q � 1)2 q

F1,9 �

a1,a9
IA = {4}, IL = {5} (q � 1)2 q

F1,12 �

a1,a12
b3

IA = {2, 4}, IL = {7, 8} q(q � 1)2 q

2

F1,13 �

a1,a13
b4

IA = {3, 5}, IL = {8, 9} q(q � 1)2 q

2

F1,16 �

a1,a8,a16
IA = {2, 4, 5, 9} (q � 1)3 q

4

IL = {3, 7, 12, 13}

�

a1,a16
b3,b4

IA = {2, 5, 9}, IL = {7, 12, 13} q

2(q � 1)2 q

3

F2,8 �

a2,a8
IA = {3}, IL = {4} (q � 1)2 q

F2,9 �

a2,a9
IA = {4}, IL = {5} (q � 1)2 q

F2,13 �

a2,a13
b4

IA = {3, 5}, IL = {8, 9} q(q � 1)2 q

2

F3,6 �

a3,a6
IA = {1}, IL = {2} (q � 1)2 q

F3,9 �

a3,a9
IA = {4}, IL = {5} (q � 1)2 q

F3,10 �

a3,a10
b1

IA = {2}, IL = {6} q(q � 1)2 q

F4,6 �

a4,a6
IA = {1}, IL = {2} (q � 1)2 q

F4,7 �

a4,a7
IA = {2}, IL = {3} (q � 1)2 q

F4,10 �

a4,a10
b1

IA = {2}, IL = {6} q(q � 1)2 q

F4,11 �

a4,a11
b2

IA = {1, 3}, IL = {6, 7} q(q � 1)2 q

2

F4,14 �

a4,a14
b1

IA = {2, 3, 7}, IL = {6, 10, 11} q(q � 1)2 q

3

F4,17 �

a4,a10,a17
b1

IA = {2, 3, 7}, IL = {6, 11, 14} q(q � 1)3 q

3

�

a4,a6,a17
IA = {2, 3, 7}, IL = {1, 11, 14} (q � 1)3 q

3

�

a4,a17
b1,b2

IA = {3, 7}, IL = {11, 14} q

2(q � 1)2 q

2

F5,6 �

a5,a6
IA = {1}, IL = {2} (q � 1)2 q

F5,7 �

a5,a7
IA = {2}, IL = {3} (q � 1)2 q
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F5,8 �

a5,a8
IA = {3}, IL = {4} (q � 1)2 q

F5,10 �

a5,a10
b1

IA = {2}, IL = {6} q(q � 1)2 q

F5,11 �

a5,a11
b2

IA = {1, 3}, IL = {6, 7} q(q � 1)2 q

2

F5,12 �

a5,a12
b3

IA = {2, 4}, IL = {7, 8} q(q � 1)2 q

2

F5,14 �

a5,a14
b1

IA = {2, 3, 7}, IL = {6, 10, 11} q(q � 1)2 q

3

F5,15 �

a5,a7,a15
IA = {1, 3, 4, 8} (q � 1)3 q

4

IL = {2, 6, 11, 12}

�

a5,a15
b2,b3

IA = {1, 4, 8}, IL = {6, 11, 12} q

2(q � 1)2 q

3

F5,17 �

a5,a10,a17
b1

IA = {2, 3, 7}, IL = {6, 11, 14} q(q � 1)3 q

3

�

a5,a6,a17
IA = {2, 3, 7}, IL = {1, 11, 14} (q � 1)3 q

3

�

a5,a17
b1,b2

IA = {3, 7}, IL = {11, 14} q

2(q � 1)2 q

2

F5,18 �

a5,a11,a18
b3

IA = {1, 2, 4, 6, 8} q(q � 1)3 q

5

IL = {7, 10, 12, 14, 15}

�

a5,a18
b1,b3,b7

IA = {2, 4, 6, 8} q

3(q � 1)2 q

4

IL = {10, 12, 14, 15}

F5,20 �

a5,a10,a20
b1

IA = {2, 3, 4, 7, 8, 12} q(q � 1)3 q

6

IL = {6, 11, 14, 15, 17, 18}

�

a5,a6,a20
IA = {2, 3, 4, 7, 8, 12} (q � 1)3 q

6

IL = {1, 11, 14, 15, 17, 18}

�

a5,a20
b1,b2

IA = {3, 4, 7, 8, 12} q

2(q � 1)2 q

5

IL = {11, 14, 15, 17, 18}

F5,22 �

a5,a10,a17,a22
b1

IA = {2, 3, 4, 7, 8, 12} q(q � 1)4 q

6

IL = {6, 11, 14, 15, 18, 20}

�

a5,a6,a17,a22
IA = {2, 3, 4, 7, 8, 12} (q � 1)4 q

6

IL = {1, 11, 14, 15, 18, 20}

�

a5,a17,a22
b1,b2

IA = {3, 4, 7, 8, 12} q

2(q � 1)3 q

5

IL = {11, 14, 15, 18, 20}

�

a5,a14,a22
b1

IA = {2, 3, 4, 7, 8, 12} q(q � 1)3 q

6

IL = {6, 10, 11, 15, 18, 20}

�

a5,a11,a22
b2,b10

IA = {1, 4, 6, 8, 12} q

2(q � 1)3 q

5

IL = {3, 7, 15, 18, 20}

�

a5,a10,a22
b1,b3,b7

IA = {2, 4, 8, 12} q

3(q � 1)3 q

4

IL = {6, 15, 18, 20}

�

a5,a6,a22
b3,b7

IA = {2, 4, 8, 12} q

2(q � 1)3 q

4

IL = {1, 15, 18, 20}

�

a5,a7,a22
b1

IA = {3, 4, 8, 12} q(q � 1)3 q

4

IL = {2, 15, 18, 20}

�

a5,a22
b1,b2,b3

IA = {4, 8, 12}, IL = {15, 18, 20} q

3(q � 1)2 q

3

F6,7 �

a6,a7
b3

IA = {1}, IL = {2} q(q � 1)2 q

F6,8 �

a6,a8
IA = {1, 3}, IL = {2, 4} (q � 1)2 q

2

F6,9 �

a6,a9
IA = {1, 4}, IL = {2, 5} (q � 1)2 q

2

F6,12 �

a6,a12
b1,b3

IA = {2, 4}, IL = {7, 8} q

2(q � 1)2 q

2

F6,13 �

a6,a13
b4

IA = {2, 3, 5}, IL = {1, 8, 9} q(q � 1)2 q

3

F6,16 �

a6,a8,a16
b1

IA = {2, 4, 5, 9} q(q � 1)3 q

4

IL = {3, 7, 12, 13}

�

a6,a16
b1,b3,b4

IA = {2, 5, 9}, IL = {7, 12, 13} q

3(q � 1)2 q

3

F7,8 �

a7,a8
b4

IA = {2}, IL = {3} q(q � 1)2 q

F7,9 �

a7,a9
IA = {2, 4}, IL = {3, 5} (q � 1)2 q

2

F7,10 �

a7,a10
b1,b3

IA = {2}, IL = {6} q

2(q � 1)2 q

F7,13 �

a7,a13
b2,b4

IA = {3, 5}, IL = {8, 9} q

2(q � 1)2 q

2
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F8,9 �

a8,a9
b5

IA = {3}, IL = {4} q(q � 1)2 q

F8,10 �

a8,a10
b1

IA = {2, 4}, IL = {3, 6} q(q � 1)2 q

2

F8,11 �

a8,a11
b2,b4

IA = {1, 3}, IL = {6, 7} q

2(q � 1)2 q

2

F8,14 �

a8,a14
b1,b4

IA = {2, 3, 7}, IL = {6, 10, 11} q

2(q � 1)2 q

3

F8,17 �

a8,a10,a17
b1,b4

IA = {2, 3, 7}, IL = {6, 11, 14} q

2(q � 1)3 q

3

�

a6,a8,a17
b4

IA = {2, 3, 7}, IL = {1, 11, 14} q(q � 1)3 q

3

�

a8,a17
b1,b2,b4

IA = {3, 7}, IL = {11, 14} q

3(q � 1)2 q

2

F9,10 �

a9,a10
b1

IA = {2, 5}, IL = {4, 6} q(q � 1)2 q

2

F9,11 �

a9,a11
b2

IA = {1, 3, 5}, IL = {4, 6, 7} q(q � 1)2 q

3

F9,12 �

a9,a12
b3,b5

IA = {2, 4}, IL = {7, 8} q

2(q � 1)2 q

2

F9,14 �

a9,a14
b1

IA = {2, 3, 5, 7} q(q � 1)2 q

4

IL = {4, 6, 10, 11}

F9,15 �

a7,a9,a15
b5

IA = {1, 3, 4, 8} q(q � 1)3 q

4

IL = {2, 6, 11, 12}

�

a9,a15
b2,b3,b5

IA = {1, 4, 8}, IL = {6, 11, 12} q

3(q � 1)2 q

3

F9,17 �

a9,a10,a17
b1

IA = {2, 3, 5, 7} q(q � 1)3 q

4

IL = {4, 6, 11, 14}

�

a6,a9,a17
IA = {2, 3, 5, 7} (q � 1)3 q

4

IL = {1, 4, 11, 14}

�

a9,a17
b1,b2

IA = {3, 5, 7}, IL = {4, 11, 14} q

2(q � 1)2 q

3

F9,18 �

a9,a11,a18
b3,b5

IA = {1, 2, 4, 6, 8} q

2(q � 1)3 q

5

IL = {7, 10, 12, 14, 15}

�

a9,a18
b1,b3,b5,b7

IA = {2, 4, 6, 8} q

4(q � 1)2 q

4

IL = {10, 12, 14, 15}

F9,20 �

a9,a10,a20
b1,b5

IA = {2, 3, 4, 7, 8, 12} q

2(q � 1)3 q

6

IL = {6, 11, 14, 15, 17, 18}

�

a6,a9,a20
b5

IA = {2, 3, 4, 7, 8, 12} q(q � 1)3 q

6

IL = {1, 11, 14, 15, 17, 18}

�

a9,a20
b1,b2,b5

IA = {3, 4, 7, 8, 12} q

3(q � 1)2 q

5

IL = {11, 14, 15, 17, 18}

F9,22 �

a9,a10,a17,a22
b1,b5

IA = {2, 3, 4, 7, 8, 12} q

2(q � 1)4 q

6

IL = {6, 11, 14, 15, 18, 20}

�

a6,a9,a17,a22
b5

IA = {2, 3, 4, 7, 8, 12} q(q � 1)4 q

6

IL = {1, 11, 14, 15, 18, 20}

�

a9,a17,a22
b1,b2,b5

IA = {3, 4, 7, 8, 12} q

3(q � 1)3 q

5

IL = {11, 14, 15, 18, 20}

�

a9,a14,a22
b1,b5

IA = {2, 3, 4, 7, 8, 12} q

2(q � 1)3 q

6

IL = {6, 10, 11, 15, 18, 20}

�

a9,a11,a22
b2,b5,b10

IA = {1, 4, 6, 8, 12} q

3(q � 1)3 q

5

IL = {3, 7, 15, 18, 20}

�

a9,a10,a22
b1,b3,b5,b7

IA = {2, 4, 8, 12} q

4(q � 1)3 q

4

IL = {6, 15, 18, 20}

�

a6,a9,a22
b3,b5,b7

IA = {2, 4, 8, 12} q

3(q � 1)3 q

4

IL = {1, 15, 18, 20}

�

a7,a9,a22
b1,b5

IA = {3, 4, 8, 12} q

2(q � 1)3 q

4

IL = {2, 15, 18, 20}

�

a9,a22
b1,b2,b3,b5

IA = {4, 8, 12}, IL = {15, 18, 20} q

4(q � 1)2 q

3

F10,11 �

a10,a11
b3

IA = {1, 6}, IL = {2, 7} q(q � 1)2 q

2

F10,12 �

a10,a12
b1,b3,b8

IA = {2, 4}, IL = {6, 7} q

3(q � 1)2 q

2

F10,13 �

a10,a13
b1,b4

IA = {2, 3, 5}, IL = {6, 8, 9} q

2(q � 1)2 q

3
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F10,15 �

a7,a10,a15
IA = {1, 3, 4, 6} (q � 1)3 q

4

IL = {2, 8, 11, 12}

�

a10,a15
b2,b3

IA = {1, 4, 6}, IL = {8, 11, 12} q

2(q � 1)2 q

3

F10,16 �

a8,a10,a16
b1,b6

IA = {2, 4, 5, 9} q

2(q � 1)3 q

4

IL = {3, 7, 12, 13}

�

a10,a16
b1,b3,b4,b6

IA = {2, 5, 9}, IL = {7, 12, 13} q

4(q � 1)2 q

3

F10,19 �

a10,a12,a19
b3

IA = {1, 2, 4, 5, 6, 9} q(q � 1)3 q

6

IL = {7, 8, 11, 13, 15, 16}

�

a8,a10,a19
b2,b7

IA = {1, 3, 5, 6, 9} q

2(q � 1)3 q

5

IL = {4, 11, 13, 15, 16}

�

a7,a10,a19
b4

IA = {1, 3, 5, 6, 9} q(q � 1)3 q

5

IL = {2, 11, 13, 15, 16}

�

a10,a19
b2,b3,b4

IA = {1, 5, 6, 9} q

3(q � 1)2 q

4

IL = {11, 13, 15, 16}

F11,12 �

a11,a12
b4

IA = {2, 3, 7}, IL = {1, 6, 8} q(q � 1)2 q

3

F11,13 �

a11,a13
b2,b4,b9

IA = {1, 3, 5}, IL = {6, 7, 8} q

3(q � 1)2 q

3

F11,16 �

a11,a16
b1,b4,b8

IA = {2, 3, 5, 7} q

3(q � 1)2 q

4

IL = {6, 9, 12, 13}

F12,13 �

a12,a13
b5

IA = {3, 4, 8}, IL = {2, 7, 9} q(q � 1)2 q

3

F12,14 �

a12,a14
b1,b4,b8

IA = {2, 3, 7}, IL = {6, 10, 11} q

3(q � 1)2 q

3

F12,17 �

a12,a17
b1,b4,b6,b10

IA = {2, 3, 7}, IL = {8, 11, 14} q

4(q � 1)2 q

3

F13,14 �

a13,a14
b1,b4,b9

IA = {2, 3, 5, 7} q

3(q � 1)2 q

4

IL = {6, 8, 10, 11}

F13,15 �

a13,a15
b2,b5,b7

IA = {1, 3, 4, 8} q

3(q � 1)2 q

4

IL = {6, 9, 11, 12}

F13,17 �

a10,a13,a17
b1,b4,b9

IA = {2, 3, 5, 7} q

3(q � 1)3 q

4

IL = {6, 8, 11, 14}

�

a6,a13,a17
b4,b9

IA = {2, 3, 5, 7} q

2(q � 1)3 q

4

IL = {1, 8, 11, 14}

�

a13,a17
b1,b2,b4,b9

IA = {3, 5, 7}, IL = {8, 11, 14} q

4(q � 1)2 q

3

F13,18 �

a11,a13,a18
b5

IA = {1, 2, 3, 4, 6, 8} q(q � 1)3 q

6

IL = {7, 9, 10, 12, 14, 15}

�

a13,a18
b1,b5,b7

IA = {2, 3, 4, 6, 8} q

3(q � 1)2 q

5

IL = {9, 10, 12, 14, 15}

F13,20 �

a10,a13,a20
b1,b5,b9

IA = {2, 3, 4, 7, 8, 12} q

3(q � 1)3 q

6

IL = {6, 11, 14, 15, 17, 18}

�

a6,a13,a20
b5,b9

IA = {2, 3, 4, 7, 8, 12} q

2(q � 1)3 q

6

IL = {1, 11, 14, 15, 17, 18}

�

a13,a20
b1,b2,b5,b9

IA = {3, 4, 7, 8, 12} q

4(q � 1)2 q

5

IL = {11, 14, 15, 17, 18}

F13,22 �

a13,a14,a17,a22
b1,b5

IA = {2, 3, 4, 7, 8, 12} q

2(q � 1)4 q

6

IL = {6, 9, 11, 15, 18, 20}

�

a10,a13,a17,a22
b1,b5

IA = {2, 3, 4, 7, 8, 12} q

2(q � 1)4 q

6

IL = {6, 9, 11, 15, 18, 20}

�

a6,a13,a17,a22
b5

IA = {2, 3, 4, 7, 8, 12} q(q � 1)4 q

6

IL = {1, 9, 11, 15, 18, 20}

�

a13,a17,a22
b1,b2,b5

IA = {3, 4, 7, 8, 12} q

3(q � 1)3 q

5

IL = {9, 11, 15, 18, 20}

�

a13,a14,a22
b1,b5,b10

IA = {2, 3, 4, 7, 8, 12} q

3(q � 1)3 q

6

IL = {6, 9, 11, 15, 18, 20}
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�

a10,a11,a13,a22
b5

IA = {1, 2, 3, 4, 8, 12} q(q � 1)4 q

6

IL = {6, 7, 9, 15, 18, 20}

�

a11,a13,a22
b2,b5,b6

IA = {1, 3, 4, 8, 12} q

3(q � 1)3 q

5

IL = {7, 9, 15, 18, 20}

�

a10,a13,a22
b1,b5,b7

IA = {2, 3, 4, 8, 12} q

3(q � 1)3 q

5

IL = {6, 9, 15, 18, 20}

�

a6,a13,a22
b5,b7

IA = {2, 3, 4, 8, 12} q

2(q � 1)3 q

5

IL = {1, 9, 15, 18, 20}

�

a13,a22
b1,b2,b5,b7

IA = {3, 4, 8, 12} q

4(q � 1)2 q

4

IL = {9, 15, 18, 20}

�

a10,a13,a14,a⇤
17,a22

b1,b5
�

a10,a13,a14,a⇤
17,a22

b1,b5
�

a10,a13,a14,a⇤
17,a22

b1,b5
IA = {3, 4, 8, 12}, II = {2, 7}IA = {3, 4, 8, 12}, II = {2, 7}
IA = {3, 4, 8, 12}, II = {2, 7} q

2(q � 1)4(q � 2)q

2(q � 1)4(q � 2)
q

2(q � 1)4(q � 2) q

6
q

6
q

6

(a⇤
17 6= a

2
14/(4a10)) IL = {9, 15, 18, 20}, IJ = {6, 11}IL = {9, 15, 18, 20}, IJ = {6, 11}

IL = {9, 15, 18, 20}, IJ = {6, 11}

�

a10,a13,a14,a22,a6,11
b5

�

a10,a13,a14,a22,a6,11
b5

�

a10,a13,a14,a22,a6,11
b5

See CC5
in Section 5.3 q(q � 1)5q(q � 1)5

q(q � 1)5 q

6
q

6
q

6

�

a10,a13,a14,a22
b1,b5,b2,7

�

a10,a13,a14,a22
b1,b5,b2,7

�

a10,a13,a14,a22
b1,b5,b2,7

See CC5
in Section 5.3 q

3(q � 1)4q

3(q � 1)4
q

3(q � 1)4 q

5
q

5
q

5

F14,15 �

a14,a15
b4,b8

IA = {1, 3, 6, 11} q

2(q � 1)2 q

4

IL = {2, 7, 10, 12}

F14,16 �

a14,a16
b1,b4,b8,b9,b13

IA = {2, 3, 5, 7} q

5(q � 1)2 q

4

IL = {6, 10, 11, 12}

F14,19 �

a12,a14,a19
IA = {1, 2, 3, 4, 5, 6, 11} (q � 1)3 q

7

IL = {7, 8, 9, 10, 13, 15, 16}

�

a14,a19
b2,b4,b7,b8

IA = {1, 3, 5, 6, 11} q

4(q � 1)2 q

5

IL = {9, 10, 13, 15, 16}

F15,16 �

a15,a16
b3,b5

IA = {2, 4, 8, 9, 12} q

2(q � 1)2 q

5

IL = {1, 6, 7, 11, 13}

F15,17 �

a15,a17
b2,b4,b10

IA = {1, 3, 6, 11} q

3(q � 1)2 q

4

IL = {7, 8, 12, 14}

F16,17 �

a16,a17
b1,b4,b6,b8,b9,b10

IA = {2, 3, 5, 7} q

6(q � 1)2 q

4

IL = {11, 12, 13, 14}

F16,18 �

a11,a13,a16,a18
b1

IA = {2, 3, 4, 7, 8, 12} q(q � 1)4 q

6

IL = {5, 6, 9, 10, 14, 15}

�

a13,a16,a18
b1,b3,b6

IA = {2, 4, 8, 9, 12} q

3(q � 1)3 q

5

IL = {5, 7, 10, 14, 15}

�

a11,a16,a18
b1

IA = {2, 3, 4, 7, 8, 12} q(q � 1)3 q

6

IL = {5, 6, 9, 10, 14, 15}

�

a16,a18
b1,b3,b6

IA = {2, 4, 7, 8, 12} q

3(q � 1)2 q

5

IL = {5, 9, 10, 14, 15}

F16,20 �

a16,a20
b1,b5,b6,b9,b10

IA = {2, 3, 4, 7, 8, 12} q

5(q � 1)2 q

6

IL = {11, 13, 14, 15, 17, 18}

F16,22 �

a16,a17,a22
b1,b5,b6,b10,b11

IA = {2, 3, 4, 7, 8, 12} q

5(q � 1)3 q

6

IL = {9, 13, 14, 15, 18, 20}

�

a14,a16,a22
b1,b5,b6,b11

IA = {2, 3, 4, 7, 8, 12} q

4(q � 1)3 q

6

IL = {9, 10, 13, 15, 18, 20}

�

a11,a16,a22
b1,b5,b10

IA = {2, 3, 4, 7, 8, 12} q

3(q � 1)3 q

6

IL = {6, 9, 13, 15, 18, 20}

�

a16,a22
b1,b3,b5,b6,b10

IA = {2, 4, 7, 8, 12} q

5(q � 1)2 q

5

IL = {9, 13, 15, 18, 20}

F17,18 �

a17,a18
b1,b4

IA = {2, 6, 7, 10, 14} q

2(q � 1)2 q

5

IL = {3, 8, 11, 12, 15}

F17,19 �

a12,a17,a19
b10

IA = {1, 2, 3, 4, 5, 6, 11} q(q � 1)3 q

7

IL = {7, 8, 9, 13, 14, 15, 16}
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�

a17,a19
b2,b4,b7,b8,b10

IA = {1, 3, 5, 6, 11} q

5(q � 1)2 q

5

IL = {9, 13, 14, 15, 16}

F17,21 �

a8,a15,a17,a21
IA = {1, 2, 4, 5, 6, 10, 11, 14} (q � 1)4 q

8

IL = {3, 7, 9, 12, 13, 16, 18, 19}

�

a15,a17,a21
b3,b4

IA = {1, 2, 5, 6, 10, 11, 14} q

2(q � 1)3 q

7

IL = {7, 9, 12, 13, 16, 18, 19}

�

a8,a17,a21
b1,b12

IA = {2, 4, 5, 6, 7, 10, 14} q

2(q � 1)3 q

7

IL = {3, 9, 11, 13, 16, 18, 19}

�

a17,a21
b1,b3,b4,b12

IA = {2, 5, 6, 7, 10, 14} q

4(q � 1)2 q

6

IL = {9, 11, 13, 16, 18, 19}

F18,19 �

a7,a18,a19
b13

IA = {1, 3, 4, 6, 8, 9, 15} q(q � 1)3 q

7

IL = {2, 5, 10, 11, 12, 14, 16}

�

a18,a19
b2,b3,b13

IA = {1, 4, 6, 8, 9, 15} q

3(q � 1)2 q

6

IL = {5, 10, 11, 12, 14, 16}

F19,20 �

a19,a20
b2,b5,b9,b10

IA = {1, 3, 4, 6, 8, 11, 15} q

4(q � 1)2 q

7

IL = {7, 12, 13, 14, 16, 17, 18}

F19,22 �

a17,a19,a22
b2,b5,b7,b10

IA = {1, 3, 4, 6, 8, 11, 15} q

4(q � 1)3 q

7

IL = {9, 12, 13, 14, 16, 18, 20}

�

a14,a19,a22
b2,b5,b7

IA = {1, 3, 4, 6, 8, 11, 15} q

3(q � 1)3 q

7

IL = {9, 10, 12, 13, 16, 18, 20}

�

a7,a19,a22
b5,b10

IA = {1, 3, 4, 6, 8, 11, 15} q

2(q � 1)3 q

7

IL = {2, 9, 12, 13, 16, 18, 20}

�

a19,a22
b2,b3,b5,b10

IA = {1, 4, 6, 8, 11, 15} q

4(q � 1)2 q

6

IL = {9, 12, 13, 16, 18, 20}

F20,21 �

a20,a21
b1,b5,b9

IA = {2, 4, 6, 7, 10, 12, 14, 18} q

3(q � 1)2 q

8

IL = {3, 8, 11, 13, 15, 16, 17, 19}

F21,22 �

a17,a21,a22
b1,b3,b5

IA = {2, 4, 6, 7, 10, 12, 14, 18} q

3(q � 1)3 q

8

IL = {8, 9, 11, 13, 15, 16, 19, 20}

�

a11,a21,a22
b3,b5

IA = {1, 2, 4, 6, 10, 12, 14, 18} q

2(q � 1)3 q

8

IL = {7, 8, 9, 13, 15, 16, 19, 20}

�

a21,a22
b1,b3,b5,b7

IA = {2, 4, 6, 10, 12, 14, 18} q

4(q � 1)2 q

7

IL = {8, 9, 13, 15, 16, 19, 20}

F22,23 �

a10,a22,a23
b1,b5

IA = {2, 3, 7, 8, 11, 12, 13, 17, 20} q

2(q � 1)3 q

9

IL = {4, 6, 9, 14, 15, 16, 18, 19, 21}

�

a6,a22,a23
b5

IA = {2, 3, 7, 8, 11, 12, 13, 17, 20} q(q � 1)3 q

9

IL = {1, 4, 9, 14, 15, 16, 18, 19, 21}

�

a22,a23
b1,b2,b5

IA = {3, 7, 8, 11, 12, 13, 17, 20} q

3(q � 1)2 q

8

IL = {4, 9, 14, 15, 16, 18, 19, 21}

F1,2,8 �

a1,a2,a8
IA = {3}, IL = {4} (q � 1)3 q

F1,2,9 �

a1,a2,a9
IA = {4}, IL = {5} (q � 1)3 q

F1,2,13 �

a1,a2,a13
b4

IA = {3, 5}, IL = {8, 9} q(q � 1)3 q

2

F1,3,9 �

a1,a3,a9
IA = {4}, IL = {5} (q � 1)3 q

F1,4,7 �

a1,a4,a7
IA = {2}, IL = {3} (q � 1)3 q

F1,5,7 �

a1,a5,a7
IA = {2}, IL = {3} (q � 1)3 q

F1,5,8 �

a1,a5,a8
IA = {3}, IL = {4} (q � 1)3 q

F1,5,12 �

a1,a5,a12
b3

IA = {2, 4}, IL = {7, 8} q(q � 1)3 q

2

F1,7,8 �

a1,a7,a8
b4

IA = {2}, IL = {3} q(q � 1)3 q

F1,7,9 �

a1,a7,a9
IA = {2, 4}, IL = {3, 5} (q � 1)3 q

2

F1,7,13 �

a1,a7,a13
b2,b4

IA = {3, 5}, IL = {8, 9} q

2(q � 1)3 q

2

F1,8,9 �

a1,a8,a9
b5

IA = {3}, IL = {4} q(q � 1)3 q
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F1,9,12 �

a1,a9,a12
b3,b5

IA = {2, 4}, IL = {7, 8} q

2(q � 1)3 q

2

F1,12,13 �

a1,a12,a13
b5

IA = {3, 4, 8}, IL = {2, 7, 9} q(q � 1)3 q

3

F2,3,9 �

a2,a3,a9
IA = {4}, IL = {5} (q � 1)3 q

F2,5,8 �

a2,a5,a8
IA = {3}, IL = {4} (q � 1)3 q

F2,8,9 �

a2,a8,a9
b5

IA = {3}, IL = {4} q(q � 1)3 q

F3,4,6 �

a3,a4,a6
IA = {1}, IL = {2} (q � 1)3 q

F3,4,10 �

a3,a4,a10
b1

IA = {2}, IL = {6} q(q � 1)3 q

F3,5,6 �

a3,a5,a6
IA = {1}, IL = {2} (q � 1)3 q

F3,5,10 �

a3,a5,a10
b1

IA = {2}, IL = {6} q(q � 1)3 q

F3,6,9 �

a3,a6,a9
IA = {1, 4}, IL = {2, 5} (q � 1)3 q

2

F3,9,10 �

a3,a9,a10
b1

IA = {2, 5}, IL = {4, 6} q(q � 1)3 q

2

F4,5,6 �

a4,a5,a6
IA = {1}, IL = {2} (q � 1)3 q

F4,5,7 �

a4,a5,a7
IA = {2}, IL = {3} (q � 1)3 q

F4,5,10 �

a4,a5,a10
b1

IA = {2}, IL = {6} q(q � 1)3 q

F4,5,11 �

a4,a5,a11
b2

IA = {1, 3}, IL = {6, 7} q(q � 1)3 q

2

F4,5,14 �

a4,a5,a14
b1

IA = {2, 3, 7}, IL = {6, 10, 11} q(q � 1)3 q

3

F4,5,17 �

a4,a5,a10,a17
b1

IA = {2, 3, 7}, IL = {6, 11, 14} q(q � 1)4 q

3

�

a4,a5,a6,a17
IA = {2, 3, 7}, IL = {1, 11, 14} (q � 1)4 q

3

�

a4,a5,a17
b1,b2

IA = {3, 7}, IL = {11, 14} q

2(q � 1)3 q

2

F4,6,7 �

a4,a6,a7
b3

IA = {1}, IL = {2} q(q � 1)3 q

F4,7,10 �

a4,a7,a10
b1,b3

IA = {2}, IL = {6} q

2(q � 1)3 q

F4,10,11 �

a4,a10,a11
b3

IA = {1, 6}, IL = {2, 7} q(q � 1)3 q

2

F5,6,7 �

a5,a6,a7
b3

IA = {1}, IL = {2} q(q � 1)3 q

F5,6,8 �

a5,a6,a8
IA = {1, 3}, IL = {2, 4} (q � 1)3 q

2

F5,6,12 �

a5,a6,a12
b1,b3

IA = {2, 4}, IL = {7, 8} q

2(q � 1)3 q

2

F5,7,8 �

a5,a7,a8
b4

IA = {2}, IL = {3} q(q � 1)3 q

F5,7,10 �

a5,a7,a10
b1,b3

IA = {2}, IL = {6} q

2(q � 1)3 q

F5,8,10 �

a5,a8,a10
b1

IA = {2, 4}, IL = {3, 6} q(q � 1)3 q

2

F5,8,11 �

a5,a8,a11
b2,b4

IA = {1, 3}, IL = {6, 7} q

2(q � 1)3 q

2

F5,8,14 �

a5,a8,a14
b1,b4

IA = {2, 3, 7}, IL = {6, 10, 11} q

2(q � 1)3 q

3

F5,8,17 �

a5,a8,a10,a17
b1,b4

IA = {2, 3, 7}, IL = {6, 11, 14} q

2(q � 1)4 q

3

�

a5,a6,a8,a17
b4

IA = {2, 3, 7}, IL = {1, 11, 14} q(q � 1)4 q

3

�

a5,a8,a17
b1,b2,b4

IA = {3, 7}, IL = {11, 14} q

3(q � 1)3 q

2

F5,10,11 �

a5,a10,a11
b3

IA = {1, 6}, IL = {2, 7} q(q � 1)3 q

2

F5,10,12 �

a5,a10,a12
b1,b3,b8

IA = {2, 4}, IL = {6, 7} q

3(q � 1)3 q

2

F5,10,15 �

a5,a7,a10,a15
IA = {1, 3, 4, 6} (q � 1)4 q

4

IL = {2, 8, 11, 12}

�

a5,a10,a15
b2,b3

IA = {1, 4, 6}, IL = {8, 11, 12} q

2(q � 1)3 q

3

F5,11,12 �

a5,a11,a12
b4

IA = {2, 3, 7}, IL = {1, 6, 8} q(q � 1)3 q

3

F5,12,14 �

a5,a12,a14
b1,b4,b8

IA = {2, 3, 7}, IL = {6, 10, 11} q

3(q � 1)3 q

3

F5,12,17 �

a5,a12,a17
b1,b4,b6,b10

IA = {2, 3, 7}, IL = {8, 11, 14} q

4(q � 1)3 q

3

F5,14,15 �

a5,a14,a15
b4,b8

IA = {1, 3, 6, 11} q

2(q � 1)3 q

4

IL = {2, 7, 10, 12}

F5,15,17 �

a5,a15,a17
b2,b4,b10

IA = {1, 3, 6, 11} q

3(q � 1)3 q

4

IL = {7, 8, 12, 14}

F5,17,18 �

a5,a17,a18
b1,b4

IA = {2, 6, 7, 10, 14} q

2(q � 1)3 q

5

IL = {3, 8, 11, 12, 15}

F6,7,8 �

a6,a7,a8
IA = {1, 3}, IL = {2, 4} (q � 1)3 q

2

F6,7,9 �

a6,a7,a9
b3

IA = {1, 4}, IL = {2, 5} q(q � 1)3 q

2
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F6,7,13 �

a6,a7,a13
b4

IA = {2, 3, 5}, IL = {1, 8, 9} q(q � 1)3 q

3

F6,8,9 �

a6,a8,a9
b5

IA = {1, 3}, IL = {2, 4} q(q � 1)3 q

2

F6,9,12 �

a6,a9,a12
b1,b3,b5

IA = {2, 4}, IL = {7, 8} q

3(q � 1)3 q

2

F6,12,13 �

a6,a12,a13
IA = {1, 3, 4, 8} (q � 1)3 q

4

IL = {2, 5, 7, 9}

F7,8,9 �

a7,a8,a9
IA = {2, 4}, IL = {3, 5} (q � 1)3 q

2

F7,8,10 �

a7,a8,a10
b1

IA = {2, 4}, IL = {3, 6} q(q � 1)3 q

2

F7,9,10 �

a7,a9,a10
b1,b3

IA = {2, 5}, IL = {4, 6} q

2(q � 1)3 q

2

F7,10,13 �

a7,a10,a13
b1,b4

IA = {2, 3, 5}, IL = {6, 8, 9} q

2(q � 1)3 q

3

F8,9,10 �

a8,a9,a10
b1,b5

IA = {2, 4}, IL = {3, 6} q

2(q � 1)3 q

2

F8,9,11 �

a8,a9,a11
b2

IA = {1, 3, 5}, IL = {4, 6, 7} q(q � 1)3 q

3

F8,9,14 �

a8,a9,a14
b1

IA = {2, 3, 5, 7} q(q � 1)3 q

4

IL = {4, 6, 10, 11}

F8,9,17 �

a8,a9,a10,a17
b1

IA = {2, 3, 5, 7} q(q � 1)4 q

4

IL = {4, 6, 11, 14}

�

a6,a8,a9,a17
IA = {2, 3, 5, 7} (q � 1)4 q

4

IL = {1, 4, 11, 14}

�

a8,a9,a17
b1,b2

IA = {3, 5, 7}, IL = {4, 11, 14} q

2(q � 1)3 q

3

F8,10,11 �

a8,a10,a11
IA = {1, 4, 6}, IL = {2, 3, 7} (q � 1)3 q

3

F9,10,11 �

a9,a10,a11
b3

IA = {1, 5, 6}, IL = {2, 4, 7} q(q � 1)3 q

3

F9,10,12 �

a9,a10,a12
b1,b3,b5,b8

IA = {2, 4}, IL = {6, 7} q

4(q � 1)3 q

2

F9,10,15 �

a7,a9,a10,a15
b5

IA = {1, 3, 4, 6} q(q � 1)4 q

4

IL = {2, 8, 11, 12}

�

a9,a10,a15
b2,b3,b5

IA = {1, 4, 6}, IL = {8, 11, 12} q

3(q � 1)3 q

3

F9,11,12 �

a9,a11,a12
IA = {2, 3, 5, 7} (q � 1)3 q

4

IL = {1, 4, 6, 8}

F9,12,14 �

a9,a12,a14
b1,b8

IA = {2, 3, 5, 7} q

2(q � 1)3 q

4

IL = {4, 6, 10, 11}

F9,12,17 �

a9,a12,a17
b1,b6,b10

IA = {2, 3, 5, 7} q

3(q � 1)3 q

4

IL = {4, 8, 11, 14}

F9,14,15 �

a9,a14,a15
b8

IA = {1, 3, 5, 6, 11} q(q � 1)3 q

5

IL = {2, 4, 7, 10, 12}

F9,15,17 �

a9,a15,a17
b2,b10

IA = {1, 3, 5, 6, 11} q

2(q � 1)3 q

5

IL = {4, 7, 8, 12, 14}

F9,17,18 �

a9,a17,a18
b1

IA = {2, 5, 6, 7, 10, 14} q(q � 1)3 q

6

IL = {3, 4, 8, 11, 12, 15}

F10,11,12 �

a10,a11,a12
b4

IA = {2, 3, 7}, IL = {1, 6, 8} q(q � 1)3 q

3

F10,11,13 �

a10,a11,a13
b4

IA = {1, 2, 3, 5} q(q � 1)3 q

4

IL = {6, 7, 8, 9}

F10,11,16 �

a10,a11,a16
b1,b4,b8

IA = {2, 3, 5, 7} q

3(q � 1)3 q

4

IL = {6, 9, 12, 13}

F10,12,13 �

a10,a12,a13
b1

IA = {2, 3, 4, 5} q(q � 1)3 q

4

IL = {6, 7, 8, 9}

F10,13,15 �

a10,a13,a15
b7

IA = {1, 3, 4, 5, 6} q(q � 1)3 q

5

IL = {2, 8, 9, 11, 12}

F10,15,16 �

a10,a15,a16
b3,b5

IA = {2, 4, 8, 9, 12} q

2(q � 1)3 q

5

IL = {1, 6, 7, 11, 13}

F11,12,13 �

a9,a11,a12,a13
IA = {1, 2, 4, 6} (q � 1)4 q

4

IL = {3, 5, 7, 8}
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�

a11,a12,a13
b4,b5

IA = {1, 2, 6}, IL = {3, 7, 8} q

2(q � 1)3 q

3

F12,13,14 �

a12,a13,a14
b1,b4,b9

IA = {2, 3, 5, 7} q

3(q � 1)3 q

4

IL = {6, 8, 10, 11}

F12,13,17 �

a10,a12,a13,a17
b1,b4,b9

IA = {2, 3, 5, 7} q

3(q � 1)4 q

4

IL = {6, 8, 11, 14}

�

a9,a12,a13,a17
b1,b6

IA = {2, 3, 5, 7} q

2(q � 1)4 q

4

IL = {4, 8, 11, 14}

�

a6,a12,a13,a17
b4

IA = {2, 3, 7, 8} q(q � 1)4 q

4

IL = {1, 5, 11, 14}

�

a12,a13,a17
b1,b2,b4

IA = {3, 7, 8}, IL = {5, 11, 14} q

3(q � 1)3 q

3

F13,14,15 �

a13,a14,a15
b4,b9

IA = {1, 3, 5, 6, 11} q

2(q � 1)3 q

5

IL = {2, 7, 8, 10, 12}

F13,15,17 �

a10,a13,a15,a17
b4,b9

IA = {1, 3, 5, 6, 11} q

2(q � 1)4 q

5

IL = {2, 7, 8, 12, 14}

�

a9,a13,a15,a17
b2

IA = {1, 3, 5, 8, 11} q(q � 1)4 q

5

IL = {4, 6, 7, 12, 14}

�

a13,a15,a17
b2,b4,b5

IA = {1, 3, 8, 11} q

3(q � 1)3 q

4

IL = {6, 7, 12, 14}

F13,17,18 �

a13,a17,a18
b1,b5

IA = {2, 3, 4, 6, 7, 8} q

2(q � 1)3 q

6

IL = {9, 10, 11, 12, 14, 15}

F14,15,16 �

a14,a15,a16
b5

IA = {2, 3, 4, 6, 9, 12} q(q � 1)3 q

6

IL = {1, 7, 8, 10, 11, 13}

F15,16,17 �

a15,a16,a17
b5,b10

IA = {2, 3, 4, 7, 8, 12} q

2(q � 1)3 q

6

IL = {1, 6, 9, 11, 13, 14}

F16,17,18 �

a13,a16,a17,a18
b1,b5

IA = {2, 3, 4, 7, 8, 12} q

2(q � 1)4 q

6

IL = {6, 9, 10, 11, 14, 15}

�

a9,a16,a17,a18
b1

IA = {2, 5, 7, 10, 12, 14} q(q � 1)4 q

6

IL = {3, 4, 6, 8, 11, 15}

�

a16,a17,a18
b1,b4,b5

IA = {2, 7, 10, 12, 14} q

3(q � 1)3 q

5

IL = {3, 6, 8, 11, 15}

F17,18,19 �

a13,a17,a18,a19
b5

IA = {1, 3, 4, 6, 8, 11, 15} q(q � 1)4 q

7

IL = {2, 7, 9, 10, 12, 14, 16}

�

a9,a17,a18,a19
IA = {1, 5, 6, 10, 11, 14, 15} (q � 1)4 q

7

IL = {2, 3, 4, 7, 8, 12, 16}

�

a17,a18,a19
b4,b5

IA = {1, 6, 10, 11, 14, 15} q

2(q � 1)3 q

6

IL = {2, 3, 7, 8, 12, 16}

F1,2,3,9 �

a1,a2,a3,a9
IA = {4}, IL = {5} (q � 1)4 q

F1,2,5,8 �

a1,a2,a5,a8
IA = {3}, IL = {4} (q � 1)4 q

F1,2,8,9 �

a1,a2,a8,a9
b5

IA = {3}, IL = {4} q(q � 1)4 q

F1,4,5,7 �

a1,a4,a5,a7
IA = {2}, IL = {3} (q � 1)4 q

F1,5,7,8 �

a1,a5,a7,a8
b4

IA = {2}, IL = {3} q(q � 1)4 q

F1,7,8,9 �

a1,a7,a8,a9
IA = {2, 4}, IL = {3, 5} (q � 1)4 q

2

F3,4,5,6 �

a3,a4,a5,a6
IA = {1}, IL = {2} (q � 1)4 q

F3,4,5,10 �

a3,a4,a5,a10
b1

IA = {2}, IL = {6} q(q � 1)4 q

F4,5,6,7 �

a4,a5,a6,a7
b3

IA = {1}, IL = {2} q(q � 1)4 q

F4,5,7,10 �

a4,a5,a7,a10
b1,b3

IA = {2}, IL = {6} q

2(q � 1)4 q

F4,5,10,11 �

a4,a5,a10,a11
b3

IA = {1, 6}, IL = {2, 7} q(q � 1)4 q

2

F5,6,7,8 �

a5,a6,a7,a8
IA = {1, 3}, IL = {2, 4} (q � 1)4 q

2

F5,7,8,10 �

a5,a7,a8,a10
b1

IA = {2, 4}, IL = {3, 6} q(q � 1)4 q

2

F5,8,10,11 �

a5,a8,a10,a11
IA = {1, 4, 6}, IL = {2, 3, 7} (q � 1)4 q

3
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F5,10,11,12 �

a5,a10,a11,a12
b4

IA = {2, 3, 7}, IL = {1, 6, 8} q(q � 1)4 q

3

F6,7,8,9 �

a6,a7,a8,a9
b5

IA = {1, 3}, IL = {2, 4} q(q � 1)4 q

2

F7,8,9,10 �

a7,a8,a9,a10
b1,b5

IA = {2, 4}, IL = {3, 6} q

2(q � 1)4 q

2

F8,9,10,11 �

a8,a9,a10,a11
b5

IA = {1, 4, 6}, IL = {2, 3, 7} q(q � 1)4 q

3

F9,10,11,12 �

a9,a10,a11,a12
IA = {2, 3, 5, 7} (q � 1)4 q

4

IL = {1, 4, 6, 8}

F10,11,12,13 �

a10,a11,a12,a13
b4

IA = {2, 3, 5, 7} q(q � 1)4 q

4

IL = {1, 6, 8, 9}

Table D.6: The parametrization of the irreducible characters of UC5(q), where q = pe and
p � 3.
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Parametrization of the irreducible characters of UD5

F � I Number Degree

Flin �b1,b2,b3,b4,b5
q

5 1

F6 �

a6
IA = {1}, IL = {3} q � 1 q

F7 �

a7
IA = {2}, IL = {3} q � 1 q

F8 �

a8
IA = {3}, IL = {4} q � 1 q

F9 �

a9
IA = {4}, IL = {5} q � 1 q

F10 �

a10
b3

IA = {1, 2}, IL = {6, 7} q(q � 1) q

2

F11 �

a11
b3

IA = {1, 4}, IL = {6, 8} q(q � 1) q

2

F12 �

a12
b3

IA = {2, 4}, IL = {7, 8} q(q � 1) q

2

F13 �

a13
b4

IA = {3, 5}, IL = {8, 9} q(q � 1) q

2

F14 �

a14
b3,b6,b7,b8

IA = {1, 2, 4}, IL = {10, 11, 12} q

4(q � 1) q

3

F15 �

a8,a15
IA = {1, 4, 5, 9} (q � 1)2 q

4

IL = {3, 6, 11, 13}

�

a15
b3,b4

IA = {1, 5, 9}, IL = {6, 11, 13} q

2(q � 1) q

3

F16 �

a8,a16
IA = {2, 4, 5, 9} (q � 1)2 q

4

IL = {3, 7, 12, 13}

�

a16
b3,b4

IA = {2, 5, 9}, IL = {7, 12, 13} q

2(q � 1) q

3

F17 �

a17
b1,b2,b4

IA = {3, 6, 7, 8} q

3(q � 1) q

4

IL = {10, 11, 12, 14}

F18 �

a11,a18
b3,b7,b8,b12,b13

IA = {1, 2, 4, 5, 9} q

5(q � 1)2 q

5

IL = {6, 10, 14, 15, 16}

�

a12,a18
b3,b6,b8,b13

IA = {1, 2, 4, 5, 9} q

4(q � 1)2 q

5

IL = {7, 10, 14, 15, 16}

�

a8,a18
b6,b7,b13

IA = {1, 2, 4, 5, 9} q

3(q � 1)2 q

5

IL = {3, 10, 14, 15, 16}

�

a18
b3,b4,b6,b7,b13

IA = {1, 2, 5, 9} q

5(q � 1) q

4

IL = {10, 14, 15, 16}

F19 �

a14,a19
b4,b8,b9

IA = {1, 2, 3, 5, 6, 7, 10} q

3(q � 1)2 q

7

IL = {11, 12, 13, 15, 16, 17, 18}

�

a12,a19
b1,b4,b9,b11

IA = {3, 5, 6, 7, 8, 10} q

4(q � 1)2 q

6

IL = {2, 13, 15, 16, 17, 18}

�

a11,a19
b2,b4,b9

IA = {1, 3, 5, 6, 7, 10} q

3(q � 1)2 q

6

IL = {8, 13, 15, 16, 17, 18}

�

a19
b1,b2,b4,b8,b9

IA = {3, 5, 6, 7, 10} q

5(q � 1) q

5

IL = {13, 15, 16, 17, 18}

F20 �

a10,a20
b3,b5

IA = {1, 2, 4, 8, 9, 11, 12, 13} q

2(q � 1)2 q

8

IL = {6, 7, 14, 15, 16, 17, 18, 19}

�

a7,a20
b1,b5,b6

IA = {3, 4, 8, 9, 11, 12, 13} q

3(q � 1)2 q

7

IL = {2, 14, 15, 16, 17, 18, 19}

�

a6,a20
b2,b5

IA = {3, 4, 8, 9, 11, 12, 13} q

2(q � 1)2 q

7

IL = {1, 14, 15, 16, 17, 18, 19}

�

a20
b1,b2,b3,b5

IA = {4, 8, 9, 11, 12, 13} q

4(q � 1) q

6

IL = {14, 15, 16, 17, 18, 19}

F1,7 �

a1,a7
IA = {2}, IL = {3} (q � 1)2 q

F1,8 �

a1,a8
IA = {3}, IL = {4} (q � 1)2 q

F1,9 �

a1,a9
IA = {4}, IL = {5} (q � 1)2 q

F1,12 �

a1,a12
b3

IA = {2, 4}, IL = {7, 8} q(q � 1)2 q

2

F1,13 �

a1,a13
b4

IA = {3, 5}, IL = {8, 9} q(q � 1)2 q

2
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F1,16 �

a1,a8,a16
IA = {2, 4, 5, 9} (q � 1)3 q

4

IL = {3, 7, 12, 13}

�

a1,a16
b3,b4

IA = {2, 5, 9}, IL = {7, 12, 13} q

2(q � 1)2 q

3

F2,6 �

a2,a6
IA = {1}, IL = {3} (q � 1)2 q

F2,8 �

a2,a8
IA = {3}, IL = {4} (q � 1)2 q

F2,9 �

a2,a9
IA = {4}, IL = {5} (q � 1)2 q

F2,11 �

a2,a11
b3

IA = {1, 4}, IL = {6, 8} q(q � 1)2 q

2

F2,13 �

a2,a13
b4

IA = {3, 5}, IL = {8, 9} q(q � 1)2 q

2

F2,15 �

a2,a8,a15
IA = {1, 4, 5, 9} (q � 1)3 q

4

IL = {3, 6, 11, 13}

�

a2,a15
b3,b4

IA = {1, 5, 9}, IL = {6, 11, 13} q

2(q � 1)2 q

3

F3,9 �

a3,a9
IA = {4}, IL = {5} (q � 1)2 q

F4,6 �

a4,a6
IA = {1}, IL = {3} (q � 1)2 q

F4,7 �

a4,a7
IA = {2}, IL = {3} (q � 1)2 q

F4,10 �

a4,a10
b3

IA = {1, 2}, IL = {6, 7} q(q � 1)2 q

2

F5,6 �

a5,a6
IA = {1}, IL = {3} (q � 1)2 q

F5,7 �

a5,a7
IA = {2}, IL = {3} (q � 1)2 q

F5,8 �

a5,a8
IA = {3}, IL = {4} (q � 1)2 q

F5,10 �

a5,a10
b3

IA = {1, 2}, IL = {6, 7} q(q � 1)2 q

2

F5,11 �

a5,a11
b3

IA = {1, 4}, IL = {6, 8} q(q � 1)2 q

2

F5,12 �

a5,a12
b3

IA = {2, 4}, IL = {7, 8} q(q � 1)2 q

2

F5,14 �

a5,a14
b3,b6,b7,b8

IA = {1, 2, 4}, IL = {10, 11, 12} q

4(q � 1)2 q

3

F5,17 �

a5,a17
b1,b2,b4

IA = {3, 6, 7, 8} q

3(q � 1)2 q

4

IL = {10, 11, 12, 14}

F6,7 �

a6,a7
b2

IA = {1}, IL = {3} q(q � 1)2 q

F6,8 �

a6,a8
b4

IA = {1}, IL = {3} q(q � 1)2 q

F6,9 �

a6,a9
IA = {1, 4}, IL = {3, 5} (q � 1)2 q

2

F6,12 �

a6,a12
IA = {2, 3, 4}, IL = {1, 7, 8} (q � 1)2 q

3

F6,13 �

a6,a13
b1,b4

IA = {3, 5}, IL = {8, 9} q

2(q � 1)2 q

2

F6,16 �

a6,a16
b4,b8

IA = {2, 3, 5, 9} q

2(q � 1)2 q

4

IL = {1, 7, 12, 13}

F7,8 �

a7,a8
b4

IA = {2}, IL = {3} q(q � 1)2 q

F7,9 �

a7,a9
IA = {2, 4}, IL = {3, 5} (q � 1)2 q

2

F7,11 �

a7,a11
IA = {1, 3, 4}, IL = {2, 6, 8} (q � 1)2 q

3

F7,13 �

a7,a13
b2,b4

IA = {3, 5}, IL = {8, 9} q

2(q � 1)2 q

2

F7,15 �

a7,a15
b4,b8

IA = {1, 3, 5, 9} q

2(q � 1)2 q

4

IL = {2, 6, 11, 13}

F8,9 �

a8,a9
b5

IA = {3}, IL = {4} q(q � 1)2 q

F8,10 �

a8,a10
IA = {1, 2, 4}, IL = {3, 6, 7} (q � 1)2 q

3

F9,10 �

a9,a10
b3

IA = {1, 2, 5}, IL = {4, 6, 7} q(q � 1)2 q

3

F9,11 �

a9,a11
b3,b5

IA = {1, 4}, IL = {6, 8} q

2(q � 1)2 q

2

F9,12 �

a9,a12
b3,b5

IA = {2, 4}, IL = {7, 8} q

2(q � 1)2 q

2

F9,14 �

a9,a14
b3,b5,b6,b7,b8

IA = {1, 2, 4}, IL = {10, 11, 12} q

5(q � 1)2 q

3

F9,17 �

a9,a17
b1,b2

IA = {3, 5, 6, 7, 8} q

2(q � 1)2 q

5

IL = {4, 10, 11, 12, 14}

F10,11 �

a8,a10,a11
IA = {1, 4, 6}, IL = {2, 3, 7} (q � 1)3 q

3

�

a10,a11
b3,b4

IA = {1, 6}, IL = {2, 7} q

2(q � 1)2 q

2

F10,12 �

a8,a10,a12
IA = {1, 3, 6}, IL = {2, 4, 7} (q � 1)3 q

3

�

a10,a12
b3,b4

IA = {1, 6}, IL = {2, 7} q

2(q � 1)2 q

2

F10,13 �

a10,a13
b4

IA = {1, 2, 3, 5} q(q � 1)2 q

4
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IL = {6, 7, 8, 9}

F10,15 �

a7,a10,a15
b4,b8

IA = {1, 3, 5, 6} q

2(q � 1)3 q

4

IL = {2, 9, 11, 13}

�

a8,a10,a15
b2

IA = {1, 4, 5, 6} q(q � 1)3 q

4

IL = {3, 9, 11, 13}

�

a10,a15
b2,b3,b4

IA = {1, 5, 6}, IL = {9, 11, 13} q

3(q � 1)2 q

3

F10,16 �

a6,a10,a16
b4,b8

IA = {2, 3, 5, 7} q

2(q � 1)3 q

4

IL = {1, 9, 12, 13}

�

a8,a10,a16
b1

IA = {2, 4, 5, 7} q(q � 1)3 q

4

IL = {3, 9, 12, 13}

�

a10,a16
b1,b3,b4

IA = {2, 5, 7}, IL = {9, 12, 13} q

3(q � 1)2 q

3

F11,12 �

a7,a11,a12
IA = {1, 2, 6}, IL = {3, 4, 8} (q � 1)3 q

3

�

a11,a12
b2,b3

IA = {1, 6}, IL = {4, 8} q

2(q � 1)2 q

2

F11,13 �

a11,a13
b5

IA = {3, 4, 8}, IL = {1, 6, 9} q(q � 1)2 q

3

F11,16 �

a11,a16
b3

IA = {1, 2, 4, 5, 9} q(q � 1)2 q

5

IL = {6, 7, 8, 12, 13}

F12,13 �

a12,a13
b5

IA = {3, 4, 8}, IL = {2, 7, 9} q(q � 1)2 q

3

F12,15 �

a12,a15
b3

IA = {1, 2, 4, 5, 9} q(q � 1)2 q

5

IL = {6, 7, 8, 11, 13}

F13,14 �

a13,a14
b6,b7

IA = {1, 2, 3, 4, 5} q

2(q � 1)2 q

5

IL = {8, 9, 10, 11, 12}

F13,17 �

a9,a13,a17
b1,b2

IA = {3, 5, 6, 7, 8} q

2(q � 1)3 q

5

IL = {4, 10, 11, 12, 14}

�

a13,a17
b1,b2,b4,b5

IA = {3, 6, 7, 8} q

4(q � 1)2 q

4

IL = {10, 11, 12, 14}

F14,15 �

a13,a14,a15
b3,b7

IA = {1, 2, 4, 5, 9} q

2(q � 1)3 q

5

IL = {6, 8, 10, 11, 12}

�

a7,a14,a15
b8

IA = {1, 3, 4, 9, 11} q(q � 1)3 q

5

IL = {2, 5, 6, 10, 12}

�

a14,a15
b2,b3,b8

IA = {1, 4, 9, 11} q

3(q � 1)2 q

4

IL = {5, 6, 10, 12}

F14,16 �

a13,a14,a16
b3,b6

IA = {1, 2, 4, 5, 9} q

2(q � 1)3 q

5

IL = {7, 8, 10, 11, 12}

�

a6,a14,a16
b8

IA = {2, 3, 4, 9, 12} q(q � 1)3 q

5

IL = {1, 5, 7, 10, 11}

�

a14,a16
b1,b3,b8

IA = {2, 4, 9, 12} q

3(q � 1)2 q

4

IL = {5, 7, 10, 11}

F15,16 �

a12,a15,a16
b3

IA = {1, 6, 7, 8, 11} q(q � 1)3 q

5

IL = {2, 4, 5, 9, 13}

�

a7,a15,a16
b4,b8

IA = {1, 2, 6, 11} q

2(q � 1)3 q

4

IL = {3, 5, 9, 13}

�

a8,a15,a16
b2

IA = {1, 3, 6, 11} q(q � 1)3 q

4

IL = {4, 5, 9, 13}

�

a15,a16
b2,b3,b4

IA = {1, 6, 11}, IL = {5, 9, 13} q

3(q � 1)2 q

3

F15,17 �

a9,a15,a17
b2

IA = {1, 3, 5, 6, 8, 11} q(q � 1)3 q

6

IL = {4, 7, 10, 12, 13, 14}

�

a15,a17
b2,b4,b5

IA = {1, 3, 6, 8, 11} q

3(q � 1)2 q

5

IL = {7, 10, 12, 13, 14}

F16,17 �

a9,a16,a17
b1

IA = {2, 3, 5, 7, 8, 12} q(q � 1)3 q

6

IL = {4, 6, 10, 11, 13, 14}
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�

a16,a17
b1,b4,b5

IA = {2, 3, 7, 8, 12} q

3(q � 1)2 q

5

IL = {6, 10, 11, 13, 14}

Fp�3p�3p�3
17,18 �

a9,a17,a18
IA = {1, 2, 5, 6, 7, 10, 14} (q � 1)3 q

7

IL = {3, 4, 8, 11, 12, 15, 16}

�

a17,a18
b4,b5

IA = {1, 2, 6, 7, 10, 14} q

2(q � 1)2 q

6

IL = {3, 8, 11, 12, 15, 16}

�

a13,a17,a18
b4

�

a13,a17,a18
b4

�

a13,a17,a18
b4

IA = {1, 2, 6, 7}, II = {3, 5, 10}IA = {1, 2, 6, 7}, II = {3, 5, 10}
IA = {1, 2, 6, 7}, II = {3, 5, 10} q(q � 1)3q(q � 1)3

q(q � 1)3 q

7
q

7
q

7

IL = {11, 12, 15, 16}, IJ = {8, 9, 14}IL = {11, 12, 15, 16}, IJ = {8, 9, 14}
IL = {11, 12, 15, 16}, IJ = {8, 9, 14}

Fp=2p=2p=2
17,18 �

a9,a17,a18
IA = {1, 2, 5, 6, 7, 10, 14} (q � 1)3 q

7

IL = {3, 4, 8, 11, 12, 15, 16}

�

a17,a18
b4,b5

IA = {1, 2, 6, 7, 10, 14} q

2(q � 1)2 q

6

IL = {3, 8, 11, 12, 15, 16}

�

a13,a17,a18
�

a13,a17,a18
�

a13,a17,a18
See C

D5
1 in Section 5.4 (q � 1)3(q � 1)3(q � 1)3 q

7
q

7
q

7

�

a13,a17,a18,a8,9,14
c4,c3,5,10

�

a13,a17,a18,a8,9,14
c4,c3,5,10�

a13,a17,a18,a8,9,14
c4,c3,5,10

See C
D5
1 in Section 5.4 4(q � 1)44(q � 1)44(q � 1)4 q

7
/2q

7
/2

q

7
/2

F1,2,8 �

a1,a2,a8
IA = {3}, IL = {4} (q � 1)3 q

F1,2,9 �

a1,a2,a9
IA = {4}, IL = {5} (q � 1)3 q

F1,2,13 �

a1,a2,a13
b4

IA = {3, 5}, IL = {8, 9} q(q � 1)3 q

2

F1,3,9 �

a1,a3,a9
IA = {4}, IL = {5} (q � 1)3 q

F1,4,7 �

a1,a4,a7
IA = {2}, IL = {3} (q � 1)3 q

F1,5,7 �

a1,a5,a7
IA = {2}, IL = {3} (q � 1)3 q

F1,5,8 �

a1,a5,a8
IA = {3}, IL = {4} (q � 1)3 q

F1,5,12 �

a1,a5,a12
b3

IA = {2, 4}, IL = {7, 8} q(q � 1)3 q

2

F1,7,8 �

a1,a7,a8
b4

IA = {2}, IL = {3} q(q � 1)3 q

F1,7,9 �

a1,a7,a9
IA = {2, 4}, IL = {3, 5} (q � 1)3 q

2

F1,7,13 �

a1,a7,a13
b2,b4

IA = {3, 5}, IL = {8, 9} q

2(q � 1)3 q

2

F1,8,9 �

a1,a8,a9
b5

IA = {3}, IL = {4} q(q � 1)3 q

F1,9,12 �

a1,a9,a12
b3,b5

IA = {2, 4}, IL = {7, 8} q

2(q � 1)3 q

2

F1,12,13 �

a1,a12,a13
b5

IA = {3, 4, 8}, IL = {2, 7, 9} q(q � 1)3 q

3

F2,3,9 �

a2,a3,a9
IA = {4}, IL = {5} (q � 1)3 q

F2,4,6 �

a2,a4,a6
IA = {1}, IL = {3} (q � 1)3 q

F2,5,6 �

a2,a5,a6
IA = {1}, IL = {3} (q � 1)3 q

F2,5,8 �

a2,a5,a8
IA = {3}, IL = {4} (q � 1)3 q

F2,5,11 �

a2,a5,a11
b3

IA = {1, 4}, IL = {6, 8} q(q � 1)3 q

2

F2,6,8 �

a2,a6,a8
b4

IA = {1}, IL = {3} q(q � 1)3 q

F2,6,9 �

a2,a6,a9
IA = {1, 4}, IL = {3, 5} (q � 1)3 q

2

F2,6,13 �

a2,a6,a13
b1,b4

IA = {3, 5}, IL = {8, 9} q

2(q � 1)3 q

2

F2,8,9 �

a2,a8,a9
b5

IA = {3}, IL = {4} q(q � 1)3 q

F2,9,11 �

a2,a9,a11
b3,b5

IA = {1, 4}, IL = {6, 8} q

2(q � 1)3 q

2

F2,11,13 �

a2,a11,a13
b5

IA = {3, 4, 8}, IL = {1, 6, 9} q(q � 1)3 q

3

F4,5,6 �

a4,a5,a6
IA = {1}, IL = {3} (q � 1)3 q

F4,5,7 �

a4,a5,a7
IA = {2}, IL = {3} (q � 1)3 q

F4,5,10 �

a4,a5,a10
b3

IA = {1, 2}, IL = {6, 7} q(q � 1)3 q

2

F4,6,7 �

a4,a6,a7
b2

IA = {1}, IL = {3} q(q � 1)3 q

F5,6,7 �

a5,a6,a7
b2

IA = {1}, IL = {3} q(q � 1)3 q

F5,6,8 �

a5,a6,a8
b4

IA = {1}, IL = {3} q(q � 1)3 q

F5,6,12 �

a5,a6,a12
IA = {2, 3, 4}, IL = {1, 7, 8} (q � 1)3 q

3

F5,7,8 �

a5,a7,a8
b4

IA = {2}, IL = {3} q(q � 1)3 q

F5,7,11 �

a5,a7,a11
IA = {1, 3, 4}, IL = {2, 6, 8} (q � 1)3 q

3

F5,8,10 �

a5,a8,a10
IA = {1, 2, 4}, IL = {3, 6, 7} (q � 1)3 q

3

F5,10,11 �

a5,a8,a10,a11
IA = {1, 4, 6}, IL = {2, 3, 7} (q � 1)4 q

3
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�

a5,a10,a11
b3,b4

IA = {1, 6}, IL = {2, 7} q

2(q � 1)3 q

2

F5,10,12 �

a5,a8,a10,a12
IA = {1, 3, 6}, IL = {2, 4, 7} (q � 1)4 q

3

�

a5,a10,a12
b3,b4

IA = {1, 6}, IL = {2, 7} q

2(q � 1)3 q

2

F5,11,12 �

a5,a7,a11,a12
IA = {1, 2, 6}, IL = {3, 4, 8} (q � 1)4 q

3

�

a5,a11,a12
b2,b3

IA = {1, 6}, IL = {4, 8} q

2(q � 1)3 q

2

F6,7,8 �

a6,a7,a8
b2,b4

IA = {1}, IL = {3} q

2(q � 1)3 q

F6,7,9 �

a6,a7,a9
b2

IA = {1, 4}, IL = {3, 5} q(q � 1)3 q

2

F6,7,13 �

a6,a7,a13
b1,b2,b4

IA = {3, 5}, IL = {8, 9} q

3(q � 1)3 q

2

F6,8,9 �

a6,a8,a9
IA = {1, 4}, IL = {3, 5} (q � 1)3 q

2

F6,9,12 �

a6,a9,a12
b5

IA = {2, 3, 4}, IL = {1, 7, 8} q(q � 1)3 q

3

F6,12,13 �

a6,a12,a13
b1,b5

IA = {3, 4, 8}, IL = {2, 7, 9} q

2(q � 1)3 q

3

F7,8,9 �

a7,a8,a9
IA = {2, 4}, IL = {3, 5} (q � 1)3 q

2

F7,9,11 �

a7,a9,a11
b5

IA = {1, 3, 4}, IL = {2, 6, 8} q(q � 1)3 q

3

F7,11,13 �

a7,a11,a13
b2,b5

IA = {3, 4, 8}, IL = {1, 6, 9} q

2(q � 1)3 q

3

F8,9,10 �

a8,a9,a10
b5

IA = {1, 2, 4}, IL = {3, 6, 7} q(q � 1)3 q

3

F9,10,11 �

a9,a10,a11
b3,b8

IA = {1, 4, 6}, IL = {2, 5, 7} q

2(q � 1)3 q

3

F9,10,12 �

a9,a10,a12
b3,b8

IA = {2, 4, 7}, IL = {1, 5, 6} q

2(q � 1)3 q

3

F9,11,12 �

a7,a9,a11,a12
b5

IA = {1, 2, 6}, IL = {3, 4, 8} q(q � 1)4 q

3

�

a9,a11,a12
b2,b3,b5

IA = {1, 6}, IL = {4, 8} q

3(q � 1)3 q

2

Fp�3p�3p�3
10,11,12 �

a10,a11,a12
b3

�

a10,a11,a12
b3

�

a10,a11,a12
b3

II = {1, 2, 4}, IJ = {6, 7, 8}II = {1, 2, 4}, IJ = {6, 7, 8}
II = {1, 2, 4}, IJ = {6, 7, 8} q(q � 1)3q(q � 1)3

q(q � 1)3 q

3
q

3
q

3

Fp=2p=2p=2
10,11,12 �

a10,a11,a12
�

a10,a11,a12
�

a10,a11,a12
See C

D5
2 in Section 5.4 (q � 1)3(q � 1)3(q � 1)3 q

3
q

3
q

3

�

a10,a11,a12,a6,7,8
c3,c1,2,4

�

a10,a11,a12,a6,7,8
c3,c1,2,4�

a10,a11,a12,a6,7,8
c3,c1,2,4

See C
D5
2 in Section 5.4 4(q � 1)44(q � 1)44(q � 1)4 q

3
/2q

3
/2

q

3
/2

F10,11,13 �

a10,a11,a13
b4

IA = {1, 3, 5, 6} q(q � 1)3 q

4

IL = {2, 7, 8, 9}

F10,11,16 �

a10,a11,a16
b3

IA = {1, 2, 4, 5, 7} q(q � 1)3 q

5

IL = {6, 8, 9, 12, 13}

F10,12,13 �

a10,a12,a13
b4

IA = {2, 3, 5, 7} q(q � 1)3 q

4

IL = {1, 6, 8, 9}

F10,12,15 �

a10,a12,a15
b3

IA = {1, 2, 4, 5, 6} q(q � 1)3 q

5

IL = {7, 8, 9, 11, 13}

Fp�3p�3p�3
10,15,16 �

a10,a12,a15,a16
b3

IA = {1, 2, 4, 5, 9} q(q � 1)4 q

5

IL = {6, 7, 8, 11, 13}

�

a8,a10,a15,a16
�

a8,a10,a15,a16
�

a8,a10,a15,a16
IA = {3, 5}, II = {1, 2, 9}IA = {3, 5}, II = {1, 2, 9}
IA = {3, 5}, II = {1, 2, 9} (q � 1)4(q � 1)4(q � 1)4 q

5
q

5
q

5

IL = {4, 11}, IJ = {6, 7, 13}IL = {4, 11}, IJ = {6, 7, 13}
IL = {4, 11}, IJ = {6, 7, 13}

�

a10,a15,a16
b3,b4

�

a10,a15,a16
b3,b4

�

a10,a15,a16
b3,b4

IA = {5}, II = {1, 2, 9}IA = {5}, II = {1, 2, 9}
IA = {5}, II = {1, 2, 9} q

2(q � 1)3q

2(q � 1)3
q

2(q � 1)3 q

4
q

4
q

4

IL = {11}, IJ = {6, 7, 13}IL = {11}, IJ = {6, 7, 13}
IL = {11}, IJ = {6, 7, 13}

Fp=2p=2p=2
10,15,16 �

a10,a12,a15,a16
b3

IA = {1, 2, 4, 5, 9} q(q � 1)4 q

5

IL = {6, 7, 8, 11, 13}

�

a8,a10,a15,a16
b1,2,9,b6,7,13

�

a8,a10,a15,a16
b1,2,9,b6,7,13

�

a8,a10,a15,a16
b1,2,9,b6,7,13

See C
D5
0 in Section 5.4 q

2(q � 1)4q

2(q � 1)4
q

2(q � 1)4 q

4
q

4
q

4

�

a10,a15,a16
b4

�

a10,a15,a16
b4

�

a10,a15,a16
b4

See C
D5
3 in Section 5.4 q(q � 1)3q(q � 1)3

q(q � 1)3 q

4
q

4
q

4

�

a10,a15,a16,a6,7,13
b4,c3,c1,2,9

�

a10,a15,a16,a6,7,13
b4,c3,c1,2,9

�

a10,a15,a16,a6,7,13
b4,c3,c1,2,9

See C
D5
3 in Section 5.4 4q(q � 1)44q(q � 1)44q(q � 1)4 q

4
/2q

4
/2

q

4
/2

F11,12,13 �

a11,a12,a13
b2,b5,b7

IA = {3, 4, 8}, IL = {1, 6, 9} q

3(q � 1)3 q

3

Fp�3p�3p�3
14,15,16 �

a7,a14,a15,a16
b8,b13

IA = {1, 2, 4, 5, 9} q

2(q � 1)4 q

5

IL = {3, 6, 10, 11, 12}

�

a14,a15,a16
b3,b8

�

a14,a15,a16
b3,b8

�

a14,a15,a16
b3,b8

IA = {4, 9}, II = {1, 2, 5}IA = {4, 9}, II = {1, 2, 5}
IA = {4, 9}, II = {1, 2, 5} q

2(q � 1)3q

2(q � 1)3
q

2(q � 1)3 q

5
q

5
q

5

IL = {6, 10}, IJ = {11, 12, 13}IL = {6, 10}, IJ = {11, 12, 13}
IL = {6, 10}, IJ = {11, 12, 13}

Fp=2p=2p=2
14,15,16 �

a7,a14,a15,a16
b8,b13

IA = {1, 2, 4, 5, 9} q

2(q � 1)4 q

5

IL = {3, 6, 10, 11, 12}

�

a14,a15,a16
b3

�

a14,a15,a16
b3

�

a14,a15,a16
b3

See C
D5
4 in Section 5.4 q(q � 1)3q(q � 1)3

q(q � 1)3 q

5
q

5
q

5
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F � I Number Degree

�

a14,a15,a16,a11,12,13
b3,c8,c1,2,5

�

a14,a15,a16,a11,12,13
b3,c8,c1,2,5

�

a14,a15,a16,a11,12,13
b3,c8,c1,2,5

See C
D5
4 in Section 5.4 4q(q � 1)44q(q � 1)44q(q � 1)4 q

5
/2q

5
/2

q

5
/2

Fp�3p�3p�3
15,16,17 �

a15,a16,a17
b2,b4

�

a15,a16,a17
b2,b4

�

a15,a16,a17
b2,b4

IA = {3, 8, 13}, II = {5, 6, 7}IA = {3, 8, 13}, II = {5, 6, 7}
IA = {3, 8, 13}, II = {5, 6, 7} q

2(q � 1)3q

2(q � 1)3
q

2(q � 1)3 q

6
q

6
q

6

IL = {1, 10, 14}, IJ = {9, 11, 12}IL = {1, 10, 14}, IJ = {9, 11, 12}
IL = {1, 10, 14}, IJ = {9, 11, 12}

Fp=2p=2p=2
15,16,17 �

a15,a16,a17
b2

�

a15,a16,a17
b2

�

a15,a16,a17
b2

See C
D5
5 in Section 5.4 q(q � 1)3q(q � 1)3

q(q � 1)3 q

6
q

6
q

6

�

a15,a16,a17,a9,11,12
b2,c4,c5,6,7

�

a15,a16,a17,a9,11,12
b2,c4,c5,6,7

�

a15,a16,a17,a9,11,12
b2,c4,c5,6,7

See C
D5
5 in Section 5.4 4q(q � 1)44q(q � 1)44q(q � 1)4 q

6
/2q

6
/2

q

6
/2

F1,2,3,9 �

a1,a2,a3,a9
IA = {4}, IL = {5} (q � 1)4 q

F1,2,5,8 �

a1,a2,a5,a8
IA = {3}, IL = {4} (q � 1)4 q

F1,2,8,9 �

a1,a2,a8,a9
b5

IA = {3}, IL = {4} q(q � 1)4 q

F1,4,5,7 �

a1,a4,a5,a7
IA = {2}, IL = {3} (q � 1)4 q

F1,5,7,8 �

a1,a5,a7,a8
b4

IA = {2}, IL = {3} q(q � 1)4 q

F1,7,8,9 �

a1,a7,a8,a9
IA = {2, 4}, IL = {3, 5} (q � 1)4 q

2

F2,4,5,6 �

a2,a4,a5,a6
IA = {1}, IL = {3} (q � 1)4 q

F2,5,6,8 �

a2,a5,a6,a8
b4

IA = {1}, IL = {3} q(q � 1)4 q

F2,6,8,9 �

a2,a6,a8,a9
IA = {1, 4}, IL = {3, 5} (q � 1)4 q

2

F4,5,6,7 �

a4,a5,a6,a7
b2

IA = {1}, IL = {3} q(q � 1)4 q

F5,6,7,8 �

a5,a6,a7,a8
b2,b4

IA = {1}, IL = {3} q

2(q � 1)4 q

Fp�3p�3p�3
5,10,11,12 �

a5,a10,a11,a12
b3

�

a5,a10,a11,a12
b3

�

a5,a10,a11,a12
b3

II = {1, 2, 4}, IJ = {6, 7, 8}II = {1, 2, 4}, IJ = {6, 7, 8}
II = {1, 2, 4}, IJ = {6, 7, 8} q(q � 1)4q(q � 1)4

q(q � 1)4 q

3
q

3
q

3

Fp=2p=2p=2
5,10,11,12 �

a5,a10,a11,a12
�

a5,a10,a11,a12
�

a5,a10,a11,a12
See C

D5
6 in Section 5.4 (q � 1)4(q � 1)4(q � 1)4 q

3
q

3
q

3

�

a5,a10,a11,a12,a6,7,8
c3,c1,2,4

�

a5,a10,a11,a12,a6,7,8
c3,c1,2,4�

a5,a10,a11,a12,a6,7,8
c3,c1,2,4

See C
D5
6 in Section 5.4 4(q � 1)54(q � 1)54(q � 1)5 q

3
/2q

3
/2

q

3
/2

F6,7,8,9 �

a6,a7,a8,a9
b2

IA = {1, 4}, IL = {3, 5} q(q � 1)4 q

2

F9,10,11,12 �

a9,a10,a11,a12
b3,b8

IA = {1, 2, 4}, IL = {5, 6, 7} q

2(q � 1)4 q

3

F10,11,12,13 �

a10,a11,a12,a13
b4

IA = {3, 6, 7, 8} q(q � 1)4 q

4

IL = {1, 2, 5, 9}

Table D.7: The parametrization of the irreducible characters of UD5(q) for every q = pe.
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[GMR14] S. M. Goodwin, P. Mosch and G. Röhrle, Calculating conjugacy classes in Sylow
p-subgroups of finite Chevalley groups of rank six and seven, LMS J. Comput. Math. 17
(2014), no. 1, 109–122.

[GMR15] S. M. Goodwin, P. Mosch and G. Röhrle, On the coadjoint orbits of maximal
unipotent subgroups of reductive groups, Transformation Groups (2015), 1–28.
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