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ABSTRACT

Let G be a split finite group of Lie type defined over IF,, where ¢ = p® is a prime power and p
is not a very bad prime for G. Let U be a Sylow p-subgroup of GG. In this thesis, we provide
a full parametrization of the set Irr(U) of irreducible characters of U when G is of rank 5 or
less. In particular, for every character y € Irr(U) we determine an abelian subquotient of U
such that y is obtained by an inflation, followed by an induction of a linear character of this
subquotient.

The characters are given in most cases as the output of an algorithm that has been
implemented in the computer system GAP, whose validity is proved in this thesis using
classical results in representation theory and properties of the root system associated to
G. We also develop a method to determine a parametrization of the remaining irreducible
characters, which applies for every split finite group of Lie type of rank at most 5, and lays

the groundwork to provide such a parametrization in rank 6 and higher.
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INTRODUCTION

A problem of major interest in representation theory of finite groups is to determine the
irreducible characters of finite groups of Lie type. These groups form, in a sense, most of the
finite nonabelian simple groups, as we know from the classification of finite simple groups
[GLS1].

Let p be a prime, and let G be a finite group of Lie type defined over the field F, with
q elements, where ¢ = p°® for some e € Z>;. The groundbreaking methods introduced by
Deligne and Lusztig in [DL76], involving geometric methods and ¢-adic cohomology, provided
a general procedure for constructing ordinary irreducible characters of G. A system for
computing and processing the generic character table of G is developed in [CHEVIE], using
the computer algebra system GAP3 [GAP3]. In particular, character tables of finite groups
of Lie type of low rank are completely determined in this way.

The problem of studying modular irreducible characters, that is, characters over a field of
positive characteristic, is in general wide open. Motivation for the research in this thesis is the
representation theory of GG in non-defining characteristic £ # p. The standard approach for
its study is by determining the decomposition numbers of irreducible ordinary characters into
irreducible Brauer characters. The case of defining characteristic generally comes down to
the representation theory of the underlying algebraic group, and involves different methods;
we do not consider this case in this thesis.

A successful approach to the representation theory of G in non-defining characteristics is



by inducing ordinary characters of certain classes of subgroups; this gives projective charac-
ters of G. In [GHI7|, decomposition numbers are determined for all classical types assuming
that ¢ is a linear prime for GG, that is, both ¢ and the order of ¢ modulo ¢ are odd. The main
idea is to use Harish-Chandra induction of characters of proper Levi subgroups of G. The
induction of another type of characters, namely generalized Gelfand-Graev characters arising
from unipotent subgroups of G, is of major importance in the more recent works [DM15] and
[DM16]. In these works decomposition numbers are obtained, respectively, when ¢ | ¢ + 1
and / is a good prime for G, and when ¢ | ¢> + 1 up to few unknowns in types ?Eg(¢*) and
F4(q) (one also has to assume that p is a good prime for G of types C,, r < 4 or Fy).

The methods in [DM15] and [DM16] provide us with motivation to study the irreducible
characters of a maximal unipotent subgroup of G, namely a Sylow p-subgroup U of G. The
character theory of U is also used in [HN14], where decomposition numbers of groups of Lie
types B3 and C3 are obtained via ordinary irreducible characters of parabolic subgroups; for
example, see [Him11] and [HH13] for similar applications of the character theory of parabolic
subgroups to the modular representation theory of G in certain low rank cases.

Independently of the above, the problem of studying the irreducible characters and con-
jugacy classes of U has attracted a lot of interest for many years, with motivation going back
to the work of Higman in the 1960s, and significant progress by several authors, especially
in the last decade.

Before we go into more detail on this, we fix some more notation. We often write U(G)
for the fixed Sylow p-subgroup U of the finite group of Lie type G. If G is of type Y,., with
r the rank of G, then we also write UY,(gq), or more simply Uy, for U(G). We denote by
Irr(U) the set of irreducible characters of U. We denote by k(U) (respectively k(U, D)) the
number of elements of Irr(U) (respectively the number of elements of Irr(U) of degree D).
By ®* we denote the subset of positive roots of the root system ® associated to G.

There are several open problems about the representation theory of U. In fact, for G



of a fixed type, a generic expression for k(U) as a function of ¢ is not known in general; it
appears to be a very difficult problem to obtain such an expression. A conjecture attributed
to Higman, see for example [Hig60], states that k(U,,) can be expressed as a polynomial in
q with integer coefficients for every r > 1. Lehrer then conjectured in [Leh74] that every
character degree in Uy, is a power of ¢, and that k(Uy,, ¢?) can be expressed as a polynomial
in ¢ with integer coefficients for every d > 0. Finally, Isaacs conjectured in [Is07] that the
expressions of such polynomials k(Uy, , ¢%) in v := ¢— 1 should have non-negative coefficients.
Although the last statement was proven to hold for » < 12 [AVLO03], and for every d < 8
[Mar11], the above conjectures are still open. The recent works [HP11] and [PS15] suggest
that they might not hold. These conjectures naturally generalize to all classical types.

The focus of this thesis is to describe in more detail the set Irr(U). A parametrization of
Irr(U) is already known in literature for U = Uy, and r < 12 [Ev1l], and U = Up, [HLM11].
Moreover, the minimal degree almost faithful irreducible characters are parametrized for
every type and rank when G is split and p is not a very bad prime for G in [HLM15].

The main goal of this thesis is to develop a method towards a complete parametrization
of Irr(U), when G is a split finite group of Lie type and p is not a very bad prime for G.
This is achieved in this work when the rank of GG is 5 or less. The main result of this thesis

is the following theorem.

Theorem A. Let G be one of the groups B4(q), Bs(q), C4(q), Cs(q) and Fy(q) for p # 2, and
Dy(q),Ds(q) for every p. The irreducible characters of U(G) are completely parametrized in
Tables D.1 to D.7. Moreover, each character x € Irr(U(G)) can be obtained as an inflation,
followed by an induction of a linear character of a certain subquotient of U(G) that can be

determined from the information in Appendiz D.

Part of this result is contained in [GLMP15], where the parametrization as in Theorem
A is obtained when G is of rank at most 4. The methods in this work develop those used

in [HLM11] and [HLM15], and make significant further progress. From now on, we assume
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that G is split and p is not a very bad prime for G. We develop an algorithm, namely
Algorithm 2.6, which works by a successive reduction of characters to smaller subquotients
of U. Such subquotients are associated to certain pairs of subsets of ®*, called cores, which
we define below. The irreducible characters of U are then obtained by a process of inflation
and induction from these subquotients. The reduction is similar to the one used in [Ev11]
for the parametrization in type A,.

The algorithm yields a parametrization of nearly the entire set Irr(U) for G of rank less
than or equal to 6, namely of all characters that arise from abelian cores, as explained later.
In principle, this algorithm also works for rank 7 and higher, but the output would contain
a very large number of nonabelian cores, and the situation is much more complicated to
analyse.

We have implemented Algorithm 2.6 in the computer algebra system GAP3 by using
CHEVIE [CHEVIE]. This immediately determines a parametrization of irreducible charac-
ters for types considered in Theorem A arising from abelian cores, which are collected in
plain font in Appendix D. On the other hand, Table 2.2 gives a measure of the elements of
Irr(U) which are not immediately parametrized by the algorithm. These are dealt with via
an ad-hoc study, which we explain later. Labels for irreducible characters obtained in this
way are collected in bold font in Appendix D.

The approach used in [HLM11], [HLM15] and this work is built on partitioning the
irreducible characters of U in terms of the root subgroups that lie in their centre, but not
in their kernel. Consequently, there are similarities to the theory of supercharacters, which
were first studied for G of type A, by André, see for example [An01]. This theory was fully
developed by Diaconis and Isaacs in [DI08]|. Subsequently it was applied to the characters
of U for G of types B,, C, and D, by André and Neto in [AN09].

We now go in more detail about the methods applied in our reduction. For a@ € &%, we

denote by X, the corresponding root subgroup of U. In the algorithm we consider certain



subquotients of U, which we refer to as quattern groups. A pattern subgroup of U is a
subgroup that is a product of root subgroups, and a quattern group is a quotient of a pattern
subgroup by a normal pattern subgroup. We refer to Section 1.3 for a precise definition. A
quattern group is determined by a subset S of ®* and denoted by Xs. Let Z be a subset of
{a €S| X, C Z(Xs)}, where Z(Xs) is the centre of Xg. We define

Irr(Xs)z = {x € Irr(Xs) | Xo € ker x for all a € Z}.

At each stage of the algorithm, we are considering a pair (S, Z) as above. We attempt
to apply one of two possible types of reductions to reduce (S, Z) to one or two pairs such
that the irreducible characters in Irr(Xg)z are in bijection with those irreducible characters
corresponding to the pairs we have obtained in the reduction.

The first reduction is based on the elementary but powerful character theoretic result
[HLM15, Lemma 2.1], which we refer to as the reduction lemma. In Lemma 2.1, we state
and prove a specific version of this lemma, which is the basis of the reduction. This lemma
shows that under certain conditions (which are straightforward to check) we can replace
(S, 2) with (8§, Z), where &’ contains two fewer roots than S, and we have a bijection
between Irr(Xs)z and Irr(Xgs/)z.

The second reduction is more elementary and used when it is not possible to apply the
first reduction. For this we choose a root a such that o € Z, but X, C Z(Xs). Then
(S, Z) is replaced with the two pairs (S \ {a}, Z) and (S, ZU{a}). The justification of this
reduction is that Irr(Xg)z can be partitioned into the characters for which X, is contained
in the kernel, namely Irr(Xs\(a})z, and the characters for which X, is not contained in the
kernel, namely Irr(Xs)zuga)-

We first partition the characters in terms of the root subgroups that lie in their kernel, and

then apply the reductions to each part of this partition. After we have successively applied



these reductions as many times as possible, we are left with a set {(S1, Z21),...,(Sm, Zm)}

for some m € Z> such that Irr(U) is in bijection with the disjoint union

|_| Irr(Xs,)z,-
i=1

We refer to the pairs (S;, Z;) as cores. In many cases we have that Xg, is abelian, in
which case it is trivial to determine Irr(Xg,)z,. Correspondingly, the character labels as in
Appendix D are given by the roots contained in Z; and S; \ Z;. These labels are described
in more detail in Section 2.4.

The more interesting cases are where the Xgs are not abelian. We refer to these as
nonabelian cores. In these cases, there is still some work required to determine Irr(Xsg,)z,.
Our approach to study nonabelian cores builds on work in [LM15], where certain nonabelian
cores in types Dy, Eg and Eg were already studied. The complication in these cases is that
although some version of the reduction lemma can be applied, as explained in Section 3.2, we
reduce to a subquotient which is not a quattern group. Therefore we cannot apply Algorithm
2.6.

The analysis of nonabelian cores often gives irreducible characters of U whose degrees
are not powers of ¢ when p is a bad prime. We recall the results of major relevance about
degrees of irreducible characters of U. By studying “strong subgroups” of algebra groups, it
was proven in [Is95] that every character degree in Uy, is a power of ¢, proving one of the
conjectures stated by Lehrer in [Leh74]. This result was later proven to hold, with similar
methods, in types B,, C, and D, if and only if p # 2 [San03]. Examples of characters of
degree ¢"/3 in UEg(3°) and ¢'9/5 in UEg(5°) are obtained in [LM15], by inflating a family
of characters from a quattern group of U. Finally, via the analysis outlined in the proof
of [HH09, Theorem 5.2], we get an irreducible character of degree ¢/2 (respectively ¢/3) in

Irr(UG2(29)) (respectively Irr(UGo(3¢))) by looking at the character table of a Borel subgroup



in [EY86] (respectively [Eno76]).

The typical situation that we get for G up to rank 5 for nonabelian cores is dealt with
by applying the argument in Section 3.1, that is, by studying the representation theory of
certain 3-dimensional groups over IF, that naturally appear in our new reduction process. In
some of these cases, the behavior of good and bad primes is completely different. On the one
hand, in the case of good primes we always obtain characters of degree ¢ for some d > 0.
This is proved for almost all split finite groups of Lie type, as stated in Theorem B later. In
fact, we know this is true for all split finite groups of Lie type when p > h, where h is the
Coxeter number of G; this is proved in [GMR15] by using the Kirillov orbit method. On the
other hand, in the case of bad primes the analysis of these 3-dimensional groups often yields
character degrees of the form ¢?/p for some d > 1.

For the study of Irr(Xg,)z when Xg, is not abelian, one has to go in detail into several
computations, for example when computing orbits of characters by conjugation. The last
two chapters of this work are devoted to expanding the computations and parametrizing
Irr(Xs,)z in these cases. We again obtain such characters as an inflation, followed by an
induction from a certain abelian subquotient of U, but now this subquotient is often not a
quattern group. This completes the parametrization of Irr(U(G)) stated in Theorem A.

We now point out some consequences of such parametrization. Firstly, we can now
complete the state of the art for character degrees in exceptional types for bad primes. By
inflation of characters, looking at suitable subgraphs of Dynkin diagrams, we easily see that
the results in types Dy for p = 2, Eg for p = 3 and Eg for p = 5 imply that for G of
types Eg, E7 and Eg and p a bad prime for G, there exists x € Irr(U) and some d € Z such
that x(1) = ¢¢/p for every power ¢ of p. Moreover, we find in Section 4.3 some irreducible
characters of UF4(3¢) of degree q*/3. These results, together with [Is95], [San03], [HLM11]

and other results in this thesis, allow us to state the following theorem.

Theorem B. Let G be a split finite group of Lie type over IF,.

7



(i) If p is a bad prime for G, then there exists x € Irr(U(G)) and some d > 1 such that

x(1) = ¢/p for every power q of p.

(i) If p is at least the Cozeter number of G, or if p is a good prime and G is not Eg(q),

Ez(q) or Es(q), then the degree of every irreducible character of U(G) is a power of q.

As a second consequence of the parametrization, we obtain more information about the
number of characters of a fixed degree. The work in [GMRI15] determines expressions of
k(U(G), D) as polynomials in v = ¢ — 1 with nonnegative coefficients for every G of rank
at most 8, except Eg. These are proved to be valid when p is at least the Coxeter number
of GG, as the Kirillov method for adjoint orbits is applied. The work in this thesis extends
the validity of such expressions to every good prime p when the rank of G is at most 5.
Moreover, in contrast with the previous result, we find that the expression of k(UF4(q), ¢*)
as a polynomial in v when ¢ = 3¢ does not have integer coefficients, as we note from Table
4.3.

This work provides multiple directions for future work. The first one is about an appli-
cation to the modular representation theory of G' previously mentioned, namely to obtain
decomposition numbers for G of type Fy. In [DM16], decomposition numbers for Fy(q) are
obtained when p is a good prime, and even then not all decomposition numbers are de-
termined. By inducing characters of Irr(Ug,) obtained in this work, one hopes to get new
decomposition numbers for F4(q) when p > 3, on the one hand providing brand new results
for p = 3, and on the other hand filling the gaps in the case where p > 5.

The parametrization of Irr(U) is one of the key steps for the construction of the generic
character table of U. Thanks to the results in [GR09] and [GMR14], the generic conjugacy
classes of U have been parametrized when p is a good prime for G of rank at most 7, except
E;. These have also been determined in [BG14] for bad primes when G is a group of rank at

most 4, except Fy. We already have examples of computations of generic character tables,



namely the recent work in [GLM15], which builds on such a parametrization of conjugacy
classes, and on the parametrization of Irr(Up,) obtained in [HLM11]. The size of Up, allows
to complete a case-by-case check with a limited use of computer algebra. A future approach
for constructing other generic character tables, for example for UF,(q) when p > 5, aims
on the one hand to generalize the methods used in [GLM15], and on the other hand to
implement an algorithm in CHEVIE or MAGMA that allows us to deal with several easy
cases at once, similarly to what is done in Algorithm 2.6 for the parametrization of Irr(U).
We also aim to develop methods to get a parametrization of conjugacy classes of UF,(3¢) and
possibly also in higher rank groups. This would allow us to construct generic character tables
in the case of bad primes, taking advantage of the parametrization of irreducible characters
provided in this work.

The reason why we stick with the assumption of p not very bad, is that we are allowed
to use the “dictionary” provided in Section 1.3 between subgroups (respectively subquo-
tients) of U and patterns (respectively quatterns) in ®*. Removing this assumption on p,
a weaker version of Proposition 2.1 and Algorithm 2.6 could be formulated. This has par-
tially been developed in [Fall6], and is a work in progress. Such achievement would lead
to a parametrization of Irr(U) for types Bjs, Cs, By, C4 and Fy when p = 2, towards the
determination of missing decomposition numbers for G in these cases.

The advantage of working with split finite groups of Lie type is that we can describe
the structure of certain subquotients of U in terms of the root subgroups they contain. In
the case of a twisted group, the construction of root subgroups is more complicated; the
algorithm presented in this work does not yet cover these cases. Nevertheless, a complete
parametrization of the irreducible characters of a Sylow p-subgroup of 3D4(¢?) is obtained in
[Lel3] by taking advantage of such a construction of root subgroups. Another direction for
future research is to take advantage of the computational methods presented in this work

and of the construction in [Lel3] to obtain irreducible characters of Sylow p-subgroups of



other twisted finite groups of Lie type, as for example ?Eg(¢?), for which some decomposition
numbers have not yet been determined.

Lastly, we mention the problem of determining a parametrization for the elements of
Irr(U) in rank 6 and higher. On the one hand, we would like to classify simultaneously
nonabelian cores with a similar structure, with methods similar to that outlined in Section
5.1. This would be useful especially in type Eg, where quattern groups arising from non-
abelian cores are not as big as in other rank 6 types, but occur frequently; this is a work
in progress [GLMP16]. On the other hand, we want to implement in CHEVIE or MAGMA
a program to analyse a fixed nonabelian core, that is, to get the ad-hoc examination in
Chapter 4 and Chapter 5 to be performed by a machine. For example, in each of types Bg
and Cg a nonabelian core gives rise to a quattern group of order ¢**. We do not yet know a
parametrization of the irreducible characters arising from these cores.

This thesis is structured as follows. In Chapter 1 we present the main background results
about finite groups of Lie type and the character theory of finite groups, and we introduce
the notions of quatterns and quattern groups, stating their properties. In Chapter 2 we
develop and formally state the algorithm that allows us to parametrize Irr(U) up to the
study of nonabelian cores. We outline a method to analyse nonabelian cores in Chapter 3.
This is applied in the next two chapters to parametrize Irr(U) when the rank of G is at most
5, namely in Chapter 4 for GG of rank 4, and in Chapter 5 for G of rank 5. In Chapter 5 we
also discuss how one might be able to proceed in higher rank cases. In the appendices we

collect basic notation and we give the explicit parametrization of the characters.
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CHAPTER 1

PRELIMINARIES AND BACKGROUND RESULTS

We present in this chapter the basic results and notation on which the thesis relies. We
recall in Section 1.1 some properties of linear algebraic groups, which allow us to define split
finite groups of Lie type and root data. In Section 1.2, we state the main results of character
theory that are used in the subsequent chapters. We end with Section 1.3, recalling the

notions of patterns and antichains for a root system, and introducing quatterns.

1.1 Finite groups of Lie type and root data

We recall in this section the definition of finite groups of Lie type, root systems and their
properties, and we mention the basic results that lead to the classification of root data and
split finite groups of Lie type. The main references we use are [DM] and [MT].

Let p be a prime, and let ¢ = p°® be a prime power for some e € Z>,. We denote by
k =T, the algebraic closure of the finite field F, with p elements.

We denote by G a linear algebraic group over k, that is, a group which is also an affine
algebraic variety, such that multiplication and inversion are morphisms of varieties. A ho-
momorphism of linear algebraic groups is a group homomorphism which is also a morphism

of algebraic varieties. For G, G’ linear algebraic groups, let Hom(G,G’) be the set of ho-
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momorphisms from G to G'. If ¢ € Hom(G,G’), we have that the kernel of ¢ is a closed
subgroup of G. In fact, ker ¢ is in turn an algebraic group, as is every closed subgroup of
G. As in [MT, Theorem 1.7], there exists an n > 1 such that G is isomorphic to a closed
subgroup of the group GL, (k) of invertible n x n matrices over k.

We say that G is connected if it cannot be decomposed as a disjoint union of proper closed
subsets. We call by G° the connected component of G containing the identity element. We
have that G° is in turn an algebraic group, and a normal subgroup in G.

We recall the right (respectively left) conjugation action of G on itself by ¢g" := h=tgh
(respectively "g := hgh™!) for g,h € G. Let H be a closed subgroup of G. We denote by
Cg(H) the centralizer of H in G, and by Ng(H) the normalizer of H in G.

Let us denote by G,, the algebraic group (k*,x), where k* := k \ {0}. A torus is
an algebraic group isomorphic to G2, for some s € Zs;. Let X(T) = Hom(T,G,,) be
the character group of T. We have that X (T) is isomorphic to Z?®, since the elements of
X(T) are of the form (t1,...,ts) — t{*---t% for a1,...,a5s € Z. The cocharacter group
Y (T) = Hom(G,,, T) is also isomorphic to Z?%; in particular, the element ¢ — (t**,... t%) of
Y (T), for ay,...,as € Z, is mapped to (ai,...,as) € Z°. We note that for every v € Y (T)
and x € X(T), there exists ¢, € Z such that y o y(z) = 2% for every x € k*. Let us put

(X,7) = ¢y~ Asin [MT, Proposition 3.6] the map defined by

(,): X(T)xY(T) — Z
() = 06,
is a perfect pairing, that is, group homomorphisms from X (T) to Z are of the form x — (x, )
for some v € Y(T) and vice versa, inducing a duality between X(T) and Y (T).

We denote by R(G) the solvable radical of G, that is, the maximal closed connected

solvable normal subgroup of G. Moreover, R,(G) denotes the unipotent radical of G, which
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is the maximal closed connected unipotent normal subgroup of G. We call G simple if
G # 1, and G has no nontrivial proper closed connected normal subgroups. We say that G
is semisimple if it is connected and R(G) = 1, and that G is reductive if R,(G) = 1.

From now on, we assume that G is a connected reductive algebraic group. By [MT,

Theorem 8.21, Corollary 8.22], we have that

G=2(G)G; G

for some m > 1, where Z(G) is the centre of G, and Gy, ..., G,, are simple algebraic groups,
such that G;NG; C Z(G) for every 1 <i < j <m.

We denote by B a Borel subgroup of GG, namely a maximal closed connected solvable
subgroup of G. As in [MT, Theorem 6.4, Corollary 6.5], all Borel subgroups are conjugate
in G, and all maximal tori are conjugate in G. From now on, we fix a maximal torus T and
a Borel subgroup B, such that T C B. Let U := R,(B) denote the unipotent radical of B.
Then we have that B = TU, and Ng(U) = B.

The following definition is of major importance in this work.

Definition 1.1 ([DM], Definition 0.25; [MT], Definition 9.1). Let V' be a real vector space,
and let V* be its dual, with duality map (,). A root system ® in V is a subset of V such

that
(i) @ is finite and spans V', and 0 ¢ ®,
(ii) If o,ca € ® for ¢ € R, then ¢ € {£1},
(iii) for every o € V, there exists & € V*, with (o, &) = 2, such that the reflection
S$q:V —V

r—r—{(x,d)a
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stabilizes @, and
(iv) for every «, 8 € ®, we have (8, a) € Z.

There exists a scalar product ( , ) on V which is invariant by s, for every o € ®. We can
then identify V' with its dual by & — 2a/(«, «). We say that ® is irreducible if we cannot
decompose it as a union of two orthogonal subsets with respect to the scalar product defined
on V.

The following result provides us with a very important example of a root system. We

refer to [DM, Theorem 0.31] and [MT, Definition 8.1]. We have that

& :={a € X(T) | Cg((kera)®) 2 T}

is a root system in the subspace of X (T) ®z R it generates, with duality (,). Moreover, by
[MT, Proposition 9.11], we have that & C Y (T) is a root system in the subspace it generates
in Y(T) ®z R. We recall that X(T) ®; R = R® if G is semisimple. There is an obvious
notion of isomorphism of root systems, that is, a map that preserves the properties stated
in Definition 1.1.

We denote by (X, ¥,Y,¥) a root datum as in [MT, Definition 9.10], that is, X and Y
are free abelian groups of finite rank in perfect pairing, which induces a duality between the
associated root systems U and . We can associate a root datum to G via the previously
chosen torus T C G, namely the quadruple (X (T), ®, Y (T), ®). There is a natural notion of
isomorphism of root data.

By [MT, Proposition 9.4], we can always pick a basis I1 = {ay,...,a,} C & for ®, that
is, a basis of the vector space generated by ®, such that every a € ® can be written as
a=coay+ -+ cap for some ¢, ..., ¢ € Z, with either ¢; > O foralli=1,....,ror¢; <0
for all © = 1,...,r. In the former case, we say that « is a positive root, and a negative root

in the latter. We denote by ®* (respectively ®~) the set of positive (respectively negative)
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roots in ®. Then we have that ® = & U ®~. The number r is called the rank of ® (or
of G). Fixed a« € &t with a = ;a1 + -+ - + ¢, the height of « is the positive number
¢+ -+ ¢ Asin [MT, Proposition 13.10], there exists a unique positive root of maximal
height, which we denote by ay. We call oy the highest root of ®.

We obtain a classification of irreducible root systems via graphs called Dynkin diagrams,

which are collected in Figure 1.1. More precisely, the statement is as follows.

Theorem 1.2 ([Hum], Theorem 11.4). Let ® be an irreducible root system of rank r. Then

the Dynkin diagram associated to ® is one of the following,

A.(r>1), B.(r>2), C.(r>2), Dy(r>4), E.(r=6,7,8), Fs, Go.

Correspondingly, we say that ® (or G) is of type A, B,, ..., Ga. We recall some properties
of a root system that can be deduced by looking at its Dynkin diagram; we refer to [Hum,
Chapter 11] for a more complete overview. The number r of nodes of a Dynkin diagram is
the rank of the corresponding root system. The numbering of the nodes determines a choice
for the simple roots. A root system is irreducible if and only if the corresponding Dynkin
diagram is connected. Moreover, two root systems are isomorphic if and only if they have
the same Dynkin diagram.

By studying root data, we also obtain a classification of semisimple algebraic groups,

namely [MT, Theorem 9.13], as follows.

Theorem 1.3. Let G and G’ be semisimple algebraic groups. Then G is isomorphic to G’
if and only if the associated root data are isomorphic. Moreover, for each root datum there
exists a semisimple algebraic group G which realizes it. In particular, G is simple if and only

if its root system is irreducible.

For every a € ®*, there exist a subgroup U, of U and an isomorphism z, : & — U,,
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Figure 1.1: The Dynkin diagrams. Simple roots are labelled as in CHEVIE.
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such that

U= [] U..

aedt
and for every t € T and ¢ € k, we have ‘z,(c) = z,(a(t)c). The subgroups of U of the form
U, for o € &+ are called root subgroups, and the elements of the form z,(c) of U, for ¢ € k

are called root elements. For every «, 5 € ®*, we have

[Ua, Ug] € H Uiatjs-
i,j€L>1 iatjBedt

We have a Frobenius field automorphism F;, : k — k, defined by F,(z) = 29. The field of
fixed points of k£ under F} is F,. In order to extend this notion to G, we shall assume that G
is defined over F,, that is, it is defined as an algebraic variety by a set I of polynomials with
coefficients in F,. We refer to [MT, Section 21.1] for this construction. The automorphism
F, of F, acts on the polynomials that define I by acting on their coefficients, thus it leaves
I invariant. Thus £ also acts on G, set of common zeroes of I. The corresponding map
F : G — G obtained via the action of Fj is called a Frobenius morphism of G with respect
to I. In particular, for a linear embedding ¢ : G — GL,(k), we have that p o F' = F, 0 ¢,
where on the right hand side of this equality F, : GL, (k) — GL, (k) is such that (F,(a));; =
Fylaij) = ai;.

We say that F': G — G is a Steinberg morphism if F™ is a Frobenius morphism for some
m > 1. We are now ready to introduce the class of groups of major importance in this work.

The following definition is as stated in [MT, Definition 21.6]; there might be some ambiguity

in literature.

Definition 1.4. We say that G is a finite group of Lie type if there exists a connected
reductive linear algebraic group G defined over F,, and a Steinberg morphism F' defined on

G, such that G = G is the set of fixed points of G under F.
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As a consequence of the Lang-Steinberg theorem [MT, Theorem 21.7], we can always
choose a maximal torus T and a Borel subgroup B of a connected reductive algebraic group
G defined over F, endowed with a Steinberg morphism F, such that T C B, and both T
and B are F-stable. From now on, we assume that G is a split finite group of Lie type, that
is, G is a finite group of Lie type, and there exists an F-stable maximal torus T of G such
that F'(t) = t? for every t € T. Moreover, we fix a choice of B Borel subgroup and T C B
maximal torus, such that F(T) =T and F(B) = B.

We write B = BY, and we get B = TU, with T' = TF and U = U”. Then U is a Sylow
p-subgroup of G. We also denote this choice of Sylow p-subgroup in G by U(G). Since G is
split, by [MT, Section 23.2] the isomorphisms of the form z, : k — U, for every a € ® can

be chosen such that they restrict to isomorphisms x|, : F; — X, where
X, =0 ={2,(t) |t €F,} =F,.

By abuse of notation, we also denote by z,, its restriction to IF,. We fix such a choice of z,,
for every a € . The notion of root elements and root subgroups also makes sense in U.
A presentation for U is given by the following commutator relations, also called Chevalley

relations,

wals)ws] = J]  @arss(e (=r)'s) (1.1.1)

i,j€ZL|ia+jpBedt
for every r,s € F,, for o, 8 € & and some cioff € Z\ {0} called Lie structure constants. As
proved in [Car, Section 5.2], the parametrizations of the root subgroups can be chosen so
that the structure constants czf are always +1, 2, £3, where £2 occurs only for G of type
B,, C,, F4 and Gy, and £3 only occurs for G of type G,. Moreover, the structure constants
are uniquely determined up to a fixed choice of signs for extraspecial pairs, as defined in

[Car, Section 4.2]. Our fixed choice of signs for the groups of our interest is determined
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in Appendix B, according to the choice recorded in the computer algebra system MAGMA
IMAGMA].

Let us decompose the highest root oy of ¢ as
Oy = a1 _|_ e _|_ arar,

where aq, ..., a, are the simple roots of ®, and ay,...,a, € Z>;. We say that p is a bad
prime for ® if p divides some a; for i € {1,...,r}. The prime p is said to be very bad for ® if
a constant cz}-ﬁ in the Chevalley relations of U is equal to p for some «, 5 € ®* and 4,5 > 0.
For example, p = 2 is a bad prime for a root system of type Dy, since the highest root is
a1 + ag + 2a3 + ay, but in this case cg}ﬁ € {£1} for every o, f € & and 4,5 > 0, therefore
2 is not a very bad prime for D4. The notation is consistent, in the sense that a very bad
prime is a bad prime. When p is not a bad prime for ®, we say that it is a good prime for ®.

The bad primes are recorded in Table 1.1; the bold font is used when the prime is very bad.

A, B.|C,|D,|FEs | By | Eg Fy, | Gy

none | 2 |2 |2 2,312,312,3,5(12,3|2,3

Table 1.1: The bad and very bad primes in every root system.

We have a standard (strict) partial order on ® defined by o < g if f — a is a sum of
positive roots. We call two roots «, 3 comparable if a <  or B < «, and incomparable
otherwise. In general, it is not true that if g < v, then v — /3 is a positive root, as we see
for example by choosing = ap and v = a3 + as + a3 in type A3. However, we have the

following result.

Proposition 1.5. Let o, € ®F, such that o < . Then there exist €q,..., €, € I, such
that

B—a=e++e,

19



and each partial sum o+ e, +---+ ¢ fori=1,...,n is an element of ®.

Proof. For every a, 8 € & with o < 3, we can decompose 8 — a = vy + -+ + v, for not
necessarily distinct elements vy, ..., 1, € II. We prove the claim by induction on n, the case
n = 1 being trivial. Let then «, 8 € ®T. Let us denote by (5, 52) the scalar product of

B, By € ®. We have that

n n

0<(f-af-a)= (5—04,2%‘):Z(ﬁa%)—(a»%‘)»

=1 i=1

with vy,...,v, as above. Then there exists at least one i € {1,...,n} such that (5,1;) >0
or (a,v;) <0.
Let us suppose that (3,v;) > 0. By [Hum, 9.4], we have that § — v; € ®T. We then put

€, := ;. By the inductive hypothesis, we have
(B—€)—a=€e+ - +ep1

for €1,...,€y,—1, such that a +¢;, +---+¢ € ® fori =1,...,n — 1, but of course we have
that o + ¢ + -+ 4+ €, = (3 is also a positive root. This proves the claim in this case.
Let us now assume (a, ;) < 0. Then in this case a + v; € @ by [Hum, 9.4]. We put

€1 := v;. Then by induction we get
B—(a+e)=€e+- - +en,

with a + € + (e + -+ ¢) € ®F for every i = 2,...,n. The claim also follows in this

case. ]

We let N = |®1|. We fix an enumeration of ®* = {ay,...,ax} with II = {ay,...,a,},

such that ¢ < j whenever o; < a;. We abbreviate and write X; for X,, and z; for z,,. Each
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element of U can be written uniquely in the form u = z1(s1)z2(s2) - - - zn(sn), where s; € F,
for alli =1,..., N. In particular, the groups Xi, ..., Xy generate U, and |U| = ¢.

To finish, we state a simplified version of [MT, Theorem 22.5] about the classification
of split finite groups of Lie type, similar to Theorem 1.3 in the case of semisimple algebraic

groups.

Theorem 1.6. Two split finite groups of Lie type G = G and G' = G'" defined over F, are
isomorphic if and only if the root data corresponding to G and G’ are isomorphic. Moreover,
for a fized prime power q and a root datum, there exists a unique split finite group of Lie

type G = G*', such that G is associated to this root datum.

1.2 Character theory of finite groups

We now recall some basic results about character theory of finite groups, from basic defini-
tions about representations to Clifford theory and some of its deep consequences. Our main
reference is [Is].

Let G be a finite group. We denote the right (respectively left) conjugation action by
g" := h7lgh (respectively "g := hgh™1) for g,h € G. We denote by Z(G) the centre of G,
that is, the normal subgroup of G that consists of all elements z € G such that 29 = z for
every g € G. We denote by CG the group algebra of G over C, where the elements are formal

sums of terms of the form a,g, with a, € C and g € G, and the operations are defined by

(Z %9) + (Z bgg) = (a,+by)g. <Z %9) (Z bgg> = > (aghy)(99"),

geG geG geG geG 9eG 9,9'€G

where a, + b, and ay4b, are standard operations in C, and gg’ is the multiplication in G.
An ordinary representation of G is a group homomorphism p : G — GL(V), where V

is a finite dimensional vector space over C. We can make V into an CG-module by setting
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g.v:= p(g)(v) for every g € G, and extending linearly to CG. We say that p is an irreducible
representation if the corresponding CG-module V is irreducible, that is, if it contains no
proper nontrivial CG-submodules.

The ordinary character x afforded by the representation p of G is the map from G to
C defined by x(g) = Tr(p(g)), where Tr : GL(V) — C is the matrix trace map. The value
X(1) = dim V' is called the degree of x. We say that p is a linear representation if dim(V') = 1.
The corresponding character is called a linear character.

Let z denote the complex conjugate of z € C. The following inner product is defined for

characters y, ¥ of G,

1 -
0 ) = > x(9)d(g).

gea@
We say that a character y of G is irreducible if it is afforded by an irreducible representation.
A character x of G is irreducible if and only if (x, x) = 1.
Let us call Irr(G) = {x1,..., xs} the set of all irreducible characters of G. Then Irr(G)
is an orthogonal set with respect to (, ), that is, (x;, x;) is equal to 1 if i = j, and is 0
otherwise. Moreover, for every character y of GG, we have x = a;x1 + -+ + asxs, Where

a; = (X, xi). In other words, the set of characters of G is exactly
ZsoIrr(G) = {aix1 + -+ asxs | X15--+,Xs € rt(G), ay, ..., a5 € Z>o}.

The number (y, x;) is called the multiplicity of x; in x, and we say that x; is an #rreducible
constituent of x if (x, x;) # 0. We write 1¢ for the trivial character of G, such that 15(g) =1
for every g € G. Of course, 14 is an irreducible character, as is any linear character of G.

If N < G is a normal subgroup of a finite group G, then we can define the inflation map

Inf§ : Zoltr(G/N) — Zsolrr(G), — InfF(x)(9) = x(gN),
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which is injective and preserves the degree. Moreover, the image of Irr(G/N) via inflation
is contained in Irr(G). Omitting N, we sometimes write y, or also y by abuse of notation,

in place of Inf?v(x). Moreover, if H is a subgroup of G, we have an induction map

1
nd$ : Zsolrr(H) — Zsolrr(G),  Ind%(y)(g) := ] > w(gh).

zeG:
g*eH

One easily verifies that Ind%(¢)(1) = ¢(1)|G|/|H|. We sometimes write ¢/ in place of

Ind%(+). For a character x € Irr(G), we have a restriction map
Res% : Zsoltr(G) — Zsolrr(H), Res% (x)(h) := x(h).

We often write x|y instead of Resg. We recall that Frobenius reciprocity for a character x

of G and a character ¢ of H states that

(Resf;(x), ) = (x,IndF (¢)).

Moreover, we recall that if N < @&, then we have

5= > x(x (1.2.1)

x€Irr(G/N)

For a character n € Irr(H), we denote

Irr(G | n) == {x € Ir(G) | {x,n“) # 0} = {x € Irr(G) | {x|u,m) # O}.

For a character x € Irr(G), we define

ker(x) = {g € G | x(g9) = x(1)},
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the kernel of x, and we define

Z(x) ={9€ G| Ix(9)]=x1)},

the centre of x. The reason for the names lies in the fact that if p is the representation
corresponding to y, then ker y = ker p, and Z(x) is the subgroup of elements in G such that
p(g) = ¢, - id for some (, € C, that is, p(g) € Z(p(G)).

Given g € (¢, a normal subgroup N of G and an irreducible character v of N, we write
91) for the character of N defined by 94 (x) = 1 (29) for every x € N. This is in turn an
irreducible character of N. This naturally defines an action of G on Irr(V).

We define the tensor product of x1,x2 € Irt(G) by (x1 ® x2)(9) = x1(9)x2(g). The

following property, namely [Is, Problem 5.3], follows by direct computations.

Lemma 1.7. Let H be a subgroup of G, let x be a character of Irr(G) and let 1) be a character
of rr(H). Then

(Xl @ ¢)% = x @y,

The following commutativity property of induction and inflation will be used several

times later.

Lemma 1.8. Let N < H < G, with N < G, and let v» € Irr(H/N). Then we have
Infg, Indf}) & = Ind§ Inff] v, (1.2.2)
Proof. Let g € G. We have that

1 1
(Indf; Inff,y ¥)(g) = T Z Inff y ¢(g") = 1] Z Y(g*N)

zeG: zeG:
g*eH g*eH
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N
— IN] Z Y(g*N) = Indg%"é/i(gN) = (Infg/N Indfl% ¥)(9)-

|H’ xNeG/N:
g*NeH/N

Since g is arbitrary in G, the claim follows. O]

We recall some classical results that link the representation theory of G' with the repre-
sentation theory of some normal subgroup N of G. A result of major importance for the

development of our work is Clifford’s theorem, as in [Is, Theorem 6.2].

Theorem 1.9 (Clifford’s theorem). Let N < G. Let x € Irr(G) and n € Irr(N) be such that
X € Irr(G | ). Let {n1,m2,...,ns}, with g = n, be the distinct G-conjugates of n. Then we

have that x|y =t ;_, i, with t = (x|n,n).

We also recall one of the main consequences of Clifford’s theorem, which is used in the

sequel.

Theorem 1.10 ([Is], Theorem 6.11(b)). Let N < G. Let n € Irr(N), and let

Ia(n) ={9 € G| n=n}
be the inertia group of n in G. Then induction gives a bijection between Irr(Ig(n) | n) and
Irr(G | n).
We state the following result, which we use in the sequel.

Proposition 1.11. Let T' be a normal subgroup of G, and let Z be a subgroup of Z(G) such

that ZNT = 1. Let A\ € Irr(Z), and let X denote its inflation to ZT. Then we have

(Z) )\G = erlrr(GM) X(l)x

(ii) T C ker(x) for every x € Irr(G' | \).
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(iii) Let us identify Z as a subgroup of G/T. Then the inflation map
Irr(G/T | \) — Irr(G | A) (1.2.3)

s a bijection.

Proof. Of course, since A € Irr(Z), then A9 = X for every g € G. Thus if y € Irr(G | N),
by Clifford’s theorem we have that x|z = ¢ for some integer c. Now evaluating at 1 gives

c¢=cA(1) = x|z(1) = x(1). Then by Frobenius reciprocity we have that

x(1) = (X2, A) = (x, A9).

Since x was arbitrary in Irr(G | M), this proves (i).

Now let t € T'. Since T' is normal in GG, we have

“(t) ’ZT‘ZMI—MT’ZA#”— :X()

zeG
tIEZT

Then T C ker(A%), hence T C ker(y) for every y summand of A%. This proves (ii).

Finally, for y € Irr(G | A) the map
X:G/T—C, X(9T) = x(9),
is well-defined by (ii), and one easily checks that the function

U Ir(G | N) = Ir(G/T | \)

~

X=X

is an inverse to Inf%, proving (ii). O
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The next lemma is key to developing Algorithm 2.6 in the sequel. This result was proved
in [HLM15, Lemma 2.1] and we refer to it as the reduction lemma. We note that a similar

result in the context of algebra groups was previously proved by Evseev in [Ev1l, Lemma

2.1].

Lemma 1.12 (Reduction lemma). Let G be a finite group, let H < G and let X be a
transversal of H in G. Suppose that Y and Z are subgroups of H, and X is an irreducible

character of Z, such that
(i) Z < Z(G),
(1)) Y < H,
(iii) ZNY =1,
(v) ZY <G,

(v) for the inflation X € Irr(ZY) of A\, we have that “)\ £ 2N\ for all 11,29 € X with

T 7é Z9.

Then we have a bijection

U:Irr(H/Y | A) = Irr(G | A) NIrr(G | 1y)

x = X°

giwen by inflating over Y, then inducing from H to G.
Moreover, if | X| = |Y|, then Irr(G | \) NTrr(G | 1y) = Irr(G | N).

Proof. We have that ¢ € [G(S\) if and only if 95\(yz) = X(yz) forall y € Y and z € Z. Let

then y € Y and 2z € Z. Then for every h € H, we have that

"Myz) = My"2") = Ay")A(z) = A(2) = Myz),
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where we used the fact that Y is normalized by H, and X is trivial on Y. Then we have that
H C Ig()), and in fact H = I5(\) by (v). By Theorem 1.10, this implies that the induction
map is a bijection between Irr(H | X) and Irr(G | A). By part (iii) of Proposition 1.11, the
inflation map is a bijection between Irr(H | ) and Irr(H/Y | \).

Let us now prove that
Irr(G | A) = Irr(G | \) NI (G | 1y).
For Irr(G | A) C Irr(G | \)NIrr(G | 1y), it is enough to prove, by Frobenius reciprocity, that
N2 =X+ and 172 =X+,

for some characters 11,19 of YZ. The second equality follows from Equation (1.2.1). For

the first one, by Lemma 1.7 and Equation (1.2.1) we note that

N = ()7 = (e L) he =it Y dex
x€Irr(Y):
x#ly

Then the first inclusion is proved.

Now let x € Irr(G | A) NIrr(G | 1y). Then we decompose

Xlyz = Z,ui XN

i=1

for some m > 1, and not necessarily distinct p; € Irr(Y) and A; € Irr(Z) for i = 1,...,m.
Since Y Z < G, by Clifford’s theorem we have that the u; ® A;’s lie in a single G-orbit. Since
X € Irr(G | A), we have that A\; = A for some ¢ € {1,...,m}. But then since A € Irr(Z) and
Z C Z(G), we have that \; = A for all i = 1,...,m. Also, since x € Irr(G | 1y), we have

that y; = 1y for some 7 € {1,...,m}. This proves Irr(G | \) NIrr(G | 1y) C Irr(G | A).

28



Combining this with what previously obtained, we finally get that

Ind% Infg/y cIr(H/Y | A) — Ire(G | A) N Ier(G | 1y)

is a bijective map. This proves the first claim.

Assume now |X| = |Y| = m. Let X = {x1,...,z,}. Then by assumption (v) we have
that :\xl, e ,:\xm are different irreducible characters that restrict to A, that is, by Frobenius
reciprocity, (\YZ, X%) # 0 for i = 1,...,m. Then since |X| = |Y| = AY4(1), we have that
At A" are all irreducible components of A\YZ. In fact, by part (i) of Proposition 1.11,

we have that

VI- Y = Yan
Yelrr(YZ|N) i=1
in particular \YZ = X 4 ¢ for ¢ some character of Y'Z with (¢, 5\> = 0. The second claim
follows. O

We end this section by studying in detail the behavior of the elements of Irr(F,), where
= p° is as in Section 1.1, and (F,, +) is regarded as an abelian group. Denote now by

Tr : F, — I, the field trace map, that is,

-1

Te(t) =t + 1P 4 -+t

32w Tr(t)

for every t € F,, and define ¢ : F, — C* by ¢(t) = e ¢ for t € F,, so that ¢ is a
nontrivial ordinary character of the additive group F,. For a € F,, we define ¢, € Irr(F,) by
¢a(t) = ¢(at). It is easy to see that ¢, # ¢ if @ and b are distinct in F,. Therefore we get
Irr(F,) = {¢a | a € F,}.

For a fixed m € Z>1, it is straightforward to see that ¢(a;s; + -+ + @ Sm) = 1 for every
S1,...,5m € Fg holds if and only if a; = - -+ = a,,, = 0. Moreover, since the map sending ¢ to

t? is an automorphism in I, we have that the equality ¢(at?) = 1 for every ¢ € F, holds if
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and only if a = 0.

The next lemma is of major importance for the analysis in Chapter 3.

Lemma 1.13. For a fivzed a € FY, let T, = {t’ — a?~'t | t € F,}. Then
a PT, = ker(¢).
Proof. We have that
aPT,={a P’ —a"'t) [teF} ={(a ') —a 't |t €F} = {u’ —u|u€eF,}
Now, we also have that
Tr(t? —t) = Tr(t?) — Tr(t) = Tr(t) — Tr(t) =0,

therefore

{tr —t|telF,} C{telF,|Te(t) =0} = ker(¢),

and all those sets have same cardinality ¢/p, therefore ker(¢) = {t*—t |t € F,} =a?T,. O

1.3 Pattern and quattern groups and antichains

In this section, we recall the notion of patterns and pattern groups, and then introduce quat-
terns and quattern groups. These objects were studied deeply in [HLM15]. The advantage
of working with patterns and quatterns is that these provide a natural “dictionary” between
subsets of positive roots and the structure of certain subquotients of the Sylow p-subgroup
U of G. By working in ®*, we then consider groups of fixed type and rank for every ¢ simul-

taneously. We end this section by recalling the notion of antichains; these are in bijection
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with the normal subsets of ®*, as explained later.

Definition 1.14. A subset P of ®* is said to be a pattern (or closed) if for o, 5 € P, we

have that a + 3 € P whenever a + 3 € ®T.

Under the assumption that P C & is closed, we can associate to P a subgroup Xp of

U.

Proposition 1.15. Let P = {f1,...,Bm} be a pattern. Then

Xp I:Xﬁl...Xg

m

s a subgroup of U.

Proof. We prove this by induction on the cardinality of a pattern. Without loss of generality,
we can assume that 3, = o, ..., Bm = o,,, such that 1 < j <k < m implies i; < 7. Then
it is easy to see that P’ := P\ {5} is also a pattern, and Xp: is a subgroup by the inductive

hypothesis. Let us define

Tp1,....0m (th s 7tm) = Tpy (tl) “ LB, (tm)a

For t,s € I, let us put 2(t) = 2g,, .3, (t1,. .., tm), and let us put

x,(§7 §> - xﬂg,...,,@m (t27 s 7tm>xﬁm,“.,ﬁ2(_8m7 ER) _82)'

Notice that 2/(t,s) € Xp,. Then we have that

m(t)x@)_l =28, B (s t) Ty (— Sy ooy —51)

= Tp; (tl - Sl)ZL‘/(Z, §) [J’J(L §)7 :1351(—81)] :
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By Equation (1.1.1), we have that [2/(f,s), 25 (—s1)] € Xp/. The claim follows. O

We can then just write

Xp =[] Xa.

aceP

and we call Xp the pattern subgroup corresponding to the pattern P. In general, it is not
true that if 51,...,5, € ®* and Xp --- Xp, is a subgroup of U, then {fi,...,0,} is a
pattern. In fact, let us consider U(B2(2°)). Let oy € @t be the long simple root, and let
ay € ®T be the short simple root. In this case, we have that [z4,(5), Ta,1a,(t)] = 0 for
every s,t € I, and of course it is still true that ay + 2ay € ®*. Therefore, X,,Xo, ta, IS &
subgroup of U(Baz(q)), without {as, a1 + as} being a pattern.

However, the converse of Proposition 1.15 does hold when p is not a very bad prime for

G.

Proposition 1.16. Assume that p is not a very bad prime for G. If a, 8 € 7, then

[Xa, Xg| = [T Xais

i,j>0lia+jBedT

We refer to [HLM15, Lemma 3.5] for the proof of the result. The inclusion “C” follows
from Equation (1.1.1). The other inclusion follows from a straightforward case-by-case check,
and that is where the hypothesis of p being not very bad is crucial. The following is the

announced consequence of Proposition 1.16.

Corollary 1.17. Let P C &, and assume that p is not a very bad prime for G. Then

P :={pf,...,0s} C P is a pattern if and only if Xp is a subgroup.
We now introduce the notion of normality in patterns.

Definition 1.18. Let P be a pattern. We say that a subset K is normal in P, and we write

I <P, if for every a € P and every § € K, we have that a + 6 € K whenever a +§ € 7.
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We would like to associate a normal subgroup of Xp to a normal subset of P. In general,
even without the assumption on p being not very bad, by Equation (1.1.1) we have that

K <P implies X < Xp. If p is not a very bad prime, then we also get the converse of this.

Proposition 1.19. Let P be a pattern, and let K C P. Assume that p is not a very bad
prime for U. Then I QP if and only if Xx < Xp

Proof. We just need to prove that Xx < Xp implies < P. Assume that X < Xp,
and that o € P and § € K are such that o + 0 € ®*. By Proposition 1.16, we have that
Xots C [Xa, Xs]. Of course [X,, Xs5] C [Xa, Xk|, and by normality of Xk in Xp we have
[Xa, Xx] € Xi. This implies X,15 € Xy, which by definition of Xy gives a + 4§ € K, as

required. O

The case U(B2(2°)) again provides a counterexample to the fact that if £ C P with P
a pattern, then X < Xp implies £ J P. It is easy to check that X, 14, is normal in
U(Ba(q)), but of course {a; + as} is not a normal subset of ®.

From now on, we assume that p is not a very bad prime for G, that is, p # 2 in types

B,, C, and Fy4, and p # 2,3 in type Gs. We are now ready to define quatterns.

Definition 1.20. We say that a subset of ®* of the form S := P\ K, with P a pattern and

K normal in P, is a quattern with respect to P and K.

The explanation of this name is to remind that these sets correspond to suitable quotients

of some subgroups of U. In fact, we define

Xs = Xp\x = Xp/ Xk,

which we call a quattern group corresponding to §. Although the definition of Xs depends
on P and I, the quattern group Xs just depends on S up to isomorphism. In fact, it is

easy to check that if P’ is another pattern with K" < P’, such that P’ \ K’ = S, then we
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have that Xp/Xx. = Xp// X, There is then no ambiguity in the notation Xs. We often
write S = P \ K for a quattern, where we are implicitly assuming that P and K are such a
choice. Given oo € 8, by a mild abuse of notation we identify X, with its image in Xgs for
the remainder of this work.

Let S € 1 be a quattern and let Xs be the corresponding quattern group. We define

ZS)={reS|y+a¢SforalacS}

the set of central roots with respect to §. In fact, using the commutator relations and the

assumption that p is not very bad for G, it can be shown, as in [HLM15, Lemma 3.8], that

Z(Xs) = Xz(s)-

Similarly, we define

DS)={v€ Z2(S)|a+p #~forall o,f €S}

We call D(S) the set of direct product roots corresponding to S. By the commutator relations
and Proposition 1.16, we have that Xp(s) is a normal subgroup of Xs isomorphic to the direct
product of its root subgroups. Moreover, S \ D(S) is a quattern, and Xg\p(s) is centralized
by Xp(s). So we have

Xs = Xs\p(s) X Xp(s)-

Let S be a quattern and let Z C Z(S). We define

Irr(Xs)z = {x € Irr(Xs) | Xo € ker(x) for all « € Z}. (1.3.1)

These sets of irreducible characters are very important to developing Algorithm 2.6 presented
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in the next chapter.

We now introduce some key objects for our study.

Definition 1.21. A subset ¥ of &7 is called an antichain if for all a, 8 € ¥ with o # 3, we

have a < 8 and 8 £ a, i.e. @ and (8 are incomparable in the partial order defined on ®7.
We have the following result, also presented in [CP02, Section 4].
Proposition 1.22. The antichains in ®* are in bijection with the normal subsets of ®+.

Proof. Let ¥ € &1 an antichain. We define

Ke={8€® |8 £yforalyeX} (1.3.2)

Let « € T and ¢ € Ky, and assume that o + 0 € . We cannot have o + 6 < v for some
~v € X, since in this case we would have § < ~, which contradicts the fact that 0 € Ky. Then
a+ 6 € Ky, that is, Ky, is a normal subset of ®+.

Conversely, let I < 1. We define

Sk={7ed " \K|yLaforallaec d"\ (KU{y})}.

By definition, Yk is an antichain.
Let n € K. If n < for some § € ®T, then either n = § or, by Proposition 1.5, we can
write

d—n=ea+ - +e€n

for some m > 1, with ¢, € T and n+¢; + -+ +¢ € ®F for every i = 1,...,m, and this
implies § € K. Then we have n £ v for every v € Iy, that is, £ C Ky,.. Finally, let 8 € &+,

such that 3 £ + for every v maximal element in ®* \ K. Then we have 8 € K. This implies
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Ks. € K, then £ = Ky,.. It is then easy to see that Y, = X. This means that I — X

and ¥ — Ky are inverse maps, which give the desired bijection. O]

For an antichain ¥ in ®*, we define the quattern Sy, = & \ Ky, for Ky as defined in
Equation (1.3.2). Then it is an easy consequence of the definitions that Z(Sg) = X.

We recall that the number of antichains has been determined in each type and rank,
for example in [FRO05, Theorem 5.1]. Moreover, it is straightforward to get an algorithm to
determine all antichains in a root system of small rank. In particular, we have done this in
GAP3 [GAP3] using the package CHEVIE [CHEVIE] for every group of Lie type examined
in this thesis. All the antichains in these cases are given by the indices of the families of

characters in the first column of the tables in Appendix D.

A, B,.,C. | D, Es | E; Fy F, |Gy
T [ P22 833 4160 | 25080 | 105 | 8

Table 1.2: The number of antichains in a root system.

Now let x € Irr(U). We define R(x) = {a € &t | X, C ker x}. If we let 6 € R(x) and
p be the representation corresponding to x, then p(zs(t)) = 1 for every t € F,. Let now

a € ®* be such that a + 0 € ®*. By Proposition 1.16, for every ¢ € F, we have that

Taps(t) = H[xa(si), 5 ()]

for some m > 1 and sq,...,5m,,t1...,t, € Fy, so that

p(Tars(t)) = p (H[xa(si),m(ti)]) = H[p(fva(si)), ples(t))] = 1.

i=1

Therefore, we have that p(z,4s(t)) = 1 for every ¢t € F,. This means that R(y) is a normal

subset of ®*. In particular, ¥g(,) is an antichain in ®*.
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Finally, we provide the partition of Irr(U) into families of irreducible characters parametrized
by antichains. For an antichain ¥ € &%, we define Irr(U)y, = {x € Irr(U) | Xr¢) = X}

Then we have the partition

Irr(U) = |_| Irr(U)s,

where the union is taken over all antichains 3 in ®*. Moreover, we have that any character in
Irr(U)y is the inflation of an irreducible character in Irr(Xs,,)s, namely obtained by inflating

over Xy, .
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CHAPTER 2

PARAMETRIZING Irr(U) UP TO NONABELIAN
CORES

The goal of this chapter is to develop an algorithm, namely Algorithm 2.6, in order to get a
generic parametrization of a large part of the irreducible characters of a Sylow p-subgroup
U of a split finite group of Lie type G defined over [F;, where ¢ = p® and p is not a very bad
prime for U. We do this via successive reductions to smaller subquotients of U corresponding
to quatterns in ®*. The irreducible characters parametrized in this way arise from abelian
cores, as explained in the sequel. The focus of the following chapters is to deal with the cases
we are left with, namely nonabelian cores.

We go in more detail into the structure of this chapter. In Section 2.1, we prove some
preliminary results that determine the reductions of the algorithm. We give an idea of how
the algorithm works in Section 2.2 through an example in type F4, while in Section 2.3 we give
a formal outline of it. Every character arising from an abelian core is given by an inflation
followed by an induction of a linear character of an abelian quattern group, as explained in
Section 2.4. To finish, we present the output of the algorithm in Section 2.5. The whole of
Irr(U) is parametrized in this way when the rank of G is at most 3 or G = Cy(q), as well as

“most” of the characters from Irr(U) for G of rank at most 5.
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2.1 Lemmas required for the algorithm

Let S = P\ K be a quattern in ®* as in Definition 1.20, and let Z C Z(S) be a subset of its
set of central roots. We fix some notation for inflation and induction of characters, that we
frequently use in the sequel. Let &’ = P’ \ K’ be another quattern, and let ¢ be a character
of Xg. f PP =P and K' 2O K, then we let £ =K'\ K and we write Inf. v for the inflation
of ¢ from Xg to Xs; in case £ = {a} has one element, we write Inf, ¢ = Inf 9. If K' =K
and P’ C P, then we let 7 = P\ P’ and we write Ind” 1 for ¢)Xs; in case T = {a} has one
element, we write Ind® ) = Ind” ¢.

The following result, which is part of our reduction procedure, is a consequence of the
reduction lemma, that is, Lemma 1.12. It provides us with a natural method to reduce our
investigation from Irr(Xgs)z, defined in Equation (1.3.1), to Irr(Xs/)z, where &’ contains
two fewer roots than S, and Z C Z(&’). In this lemma, we have &' = S\ {6, 8}, where
0 and [ are positive roots satisfying certain assumptions. We can transfer this information
to determine the behavior of the corresponding root subgroups as explained in Section 1.3.
In particular, we immediately check that assumptions (i) to (iv) of the reduction lemma are
satisfied by Y := X5, X := X3 and Z := X;,5 in Xs. With some more work, we show that

with such a choice of Y and X assumption (v) is also satisfied.

Lemma 2.1. Let S = P\ K be a quattern, let Z C Z(S) and let v € Z. Suppose that there
exist 0,3 € S\ {7}, with 6 + 8 ==, such that for all o,/ € S we have o+ o' # (3, and that
for alla € S\ {p} we have 6 +a ¢ S. Let P’ =P\ {8} and K' = K U {0}. Then we have

that 8" = P'\ K' is a quattern with Xs = Xp: /Xy, and we have a bijection

Irr(Xs)z — Irr(Xs) 2z

x — Ind? Infs y
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by inflating over X5 and inducing to Xs over Xg.

Proof. Let o,/ € P'. If « € K or o € K, then it cannot be that o + o = 3, since in
that case we would get 5 € K, a contradiction with § € S. If o,/ € §’, by assumption the
equality o + o/ = f cannot hold as well. Since P’ = 8" U IC, this proves that P’ is closed.

Let now e € P’, and o/ € K'. If o/ € K, then o + o € K’ whenever a + o/ € 7, since
I <4 P. Otherwise, o/ = ¢, and by assumption a+9 ¢ S since « # 3, therefore if «+0 € T
then o+ € K'. Therefore K" AP’ and &’ = P’ \ K’ is a quattern.

Let us put G = X5, Z = X, H = X551, X = Xgand Y = X;. It is immediate to
check that conditions (i) and (iii) of the reduction lemma hold. By assumption, for every
a € §\ {#}, Equation (1.1.1) implies [X,, Xs] = 1 in G, hence (ii) also holds. On the other
hand, we have [Xj, X5] C Z, therefore (iv) is satisfied.

We are left to prove (v). Let A € Irr(Z), such that A\(z,(s)) = ¢(as) for some a € Fy,

and let us define A\ = Infs . Then for 51,89 € Fy, we have
wals1) ) = 28(52) | — i([xﬁ(sl),x(;(t)]) = 5\([335(32)@5(75)]) for all t € F,.

For i = 1,2, we have that [z5(s;), z5(t)] € Z, hence A[zs(s:), z5(t)]) = M[za(si), z5(t)]),

and by Equation (1.1.1) we have [z(s;), z5(t)] = xw(cfy’fsit), with Cf:f # 0, since p does not

divide cff . Then
zols1) ) = @) )\ — d)(ac’f”ft(sl — 8y)) =1 for every t € F,. (2.1.1)

As remarked at the end of Section 1.2, this implies that s; = s5. Then (v) is also satisfied,

and of course | X| = |Y| = ¢, so the lemma follows. O

An application of the lemma in the following example gives the main idea of the “Type

R” reduction, later described in Algorithm 2.6.
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Ezample 2.2. Let U = U,,. Lemma 2.1 easily applies to give a parametrization of Irr(U)
for every prime p. Let us first consider Irr(U)z with Z = {a3}. It is clear that Lemma 2.1

applies with § = &1, v = a3, 6 = ap and § = ay. Notice that S’ = {7} = Z, therefore

Irr(Xs)z = {A\?: X3 = Claz € F and \*(x3(t)) = ¢(ast) for all t € F,} =: Irr(X3) ™.

Then we have a bijection

Irr(X35)* — Irr(Xs) 2

A% = Ind™ Inf,, A* =: x*.

The set Cy := {x* | a3 € F} consists of ¢ — 1 irreducible characters of U of degree g.
We notice that the linear characters are obtained by inflating the irreducible characters

of U/[U,U] = X, x Xy over X3, that is, they are given by the set

Cy = {Xbl,b2 | b1, b2 € Fq}?

with xp, 0, = Infoy Ao, by, and Ay, 5, € Irr(X; x X3) is such that

/\b1,b2 ($1<t1)l‘2(t2)) = gb(bltl —+ bgtg) for every ti,t9 € ]Fq.

Finally, we note that
Irr(U) = C, U Cy,

therefore our parametrization is complete.

Remark 2.3. The assumption of Y and X consisting each of just one root subgroup is crucial
in the proof of Lemma 2.1. In fact, we will see in Chapters 4 and 5 several examples where

Y and X are products of two or more root subgroups and satisfy assumptions (i)—(iv) of the
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reduction lemma, but in these cases Equation (2.1.1) gives rise to a system of linear equations
with nontrivial space of solutions. Correspondingly, assumption (v) of the reduction lemma
is not satisfied with this choice of Y and X. We would need to apply the reduction lemma by

choosing a subgroup Y of Y and a subset X of X which are not products of root subgroups.

Our second lemma is an immediate consequence of the definitions.

Lemma 2.4. Let S = P\ K be a quattern and o € Z(S). Let S\ {a} =P\ (KU «a) be

regarded as a quattern. Then there is a bijection Irr(Xs) — Irr(Xs) oy U Irr(Xs\(a})-

Proof. Let us put

Ci:={x € r(Xs) | Xo € ker(x)} and Cy:={x € Irr(Xs) | X, C ker(x)}.

We have that C; = Irr(Xs)ay. If S = P\ K, then certainly U {a} J P since a € Z(S),
then S\ {a} is a well-defined quattern. We then observe that every x € Cy can be written
as x = x o m, where 7 is the projection from Xs to Xg\ (o} and X € Irr(Xs\(a}), and in fact
the map x — X is a bijection from Cy to Irr(Xs\(a})-

Noting that Irr(Xs) = C; U Ca, we conclude that the map

U - Irr(Xs) — Irr(Xs) oy U Trr(Xs (o))

x ifxyeC
X —

X if x ey

is the desired bijection. O
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2.2 An example of the algorithm

The algorithm which will be defined in Section 2.3 is based on a reduction procedure, by
checking at each step, for a given quattern, if Lemma 2.1 or Lemma 2.4 can be applied for
a certain choice of roots. Before we give a formal outline of the algorithm, we illustrate how
it works in more detail in a particular case. We refer to Table A.4 for the root numbering in
type Fy.

Ezxample 2.5. Let U = Uy,. We want to compute Irr(U)y, where ¥ = {ai2}. We let S =
Sy, = &\ Ky, where Ky is as defined in Equation (1.3.2), so § = {ay, ..., as} U{aig, a12}.
Also we let Z =¥ = {ay2}. So we want to compute Irr(Xg)z.

Let us define

(51,51) = (04170610), (52,52) = (0447048)7 (53,53) = (045,047)7 (54,54) = (0627043)~

An application of Lemma 2.1 for (3,d) = (1,01) gives a bijection

Irr(Xs1)z — Ir(Xs) 2

x — Ind” Infs, x

where S' = S\ {B1,01}. Two further applications of Lemma 2.1 for (3,6) = (8;,8;), 1 = 2,3

give bijections

Irr(Xs2)z — Iir(Xs1) 2

x — Ind” Infs, x

where §% = S'\ {3, 02}, and
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II‘I‘(XSS)Z — II‘I‘(X52)Z

x — Ind” Infs, x

with 8% = 82\ {33, d3}. We record the sets A = {1, Ba, B3} and L = {41, d,83} to remind
us which reductions were performed. We also define K = Ky U L. These three reductions
are all instances of TYPE R reductions (the capitalized R stands for “reduction lemma”) in
Algorithm 2.6 in Section 2.3.

Now we can see that ajp € D(S?), so that Xgs = Xgs\ (a1, X X12. In particular, this
means there is no possibility to apply Lemma 2.1 with v € Z = {a;5}.

We find that Z(83) \ D(S?) = {as}. We can apply Lemma 2.4 to obtain a bijection

Irr(Xss)z = Irr(Xss) z0fa6) U I (Xs3\ (01 ) 2

x if Xg € kerx
X —

X if Xg C kery,

where x = X o7 and 7 is the projection from Xgs to Xgs\(as1. We now split the two cases
and consider them in turn. We note that this is an example of a TYPE S reduction (the
capitalized S stands for “split”) as defined in our algorithm in Section 2.3.

First we consider

III(X53)23,

where 8% = {a, a3, a5, a1} and Z3 = {ag, a2}, Lemma 2.1 applies with (3,8) = (84, 64)

and v = ag. We then get a bijection

II“I“(XS4)23 — II“I“(XSa)ZB

44



x — Ind” Infs, x

where 8* = 83\ {ag, a3} = {ag, a12}. This is another reduction of TYPE R as defined in
Section 2.3. We record this reduction by adjoining asy to A to obtain A" = {1, oy, a5, s}
and adjoining a3 to £ to obtain £' = {ayo, as, az, az}. Moreover, we put K' = Ky U L.

We note that Xss = Xgx X12, so we can parametrize Irr(Xgss) zs as {\0"2 | a6, a12 € F},
where A2 (x;(t)) = ¢(a;t) for i = 6,12. Through the bijections given by Lemma 2.1, we
obtain characters of U forming part of Irr(U)y by a process of successive inflation and

induction of the characters A\%-%2_ These characters are

X" = Infi,, Ind** Inf,,,, Ind** Inf,,, Ind*® Inf,, Ind*? Inf,, A?**2.

However, it turns out that these characters can be obtained by a single inflation and then

induction, thanks to Theorem 2.11 proved in Section 2.4, and we have

X042 = Ind? Infg, A%0-%2,

The characters %2 have degree ¢*.
Next we move on to consider the characters in Irr(Xgs)z where S = 8%\ {ag} =
{ag, as,aip}, and Z = {ay2}. We record that we have put ag in the kernel by adjoining it

to K to obtain K" = KL U {ag}. We see that Xgs is abelian, so that

Il"r(Xss) = {)\221,263 ’ a2 € F;,bg, bg € Fq},

where A% (2:(t)) = ¢(bit) for i = 2,3, and A} (712(t)) = ¢(arat).

Now through the bijections previously obtained in Lemma 2.1, we obtain characters x;13,

of U forming part of Irr(U)s from the characters Ay by a process of successive inflation
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Figure 2.1: A pictorial representation of the calculation of the characters in Irr(U)q,,y for
G of type Fy.

and induction. We have

Xith, = Infic, Ind™ Info,, Ind** Inf,, Ind* Info, Infa, A%,
and note that by using Theorem 2.11, we can write these characters as

‘A' b
XZ;QI)?) = Ind Inflc// )\CLG alQ.

These characters have degree ¢.

Putting this together, we have that
II"I"(U){au} = {X%’aw ‘ Qg, Q12 € F;} L {XZ;?I;;; | bg, b € Fq, a1o € ]F;}

Therefore, Irr(U){a,,} consists of:
e (q — 1)? characters of degree ¢*, and

e ¢*(q — 1) characters of degree ¢>.
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We illustrate in Figure 2.1 how we have calculated these characters. The vertices in
the picture are the roots involved in the quatterns that we study. The partial order on ®*
naturally gives them a poset structure; we join the vertices accordingly. The roots in a circle
are in the set Z; the roots in a straight box are in £ and the roots in a dotted box are in A.
A cross on ag means that the corresponding root subgroup is in the kernel of the character

examined at that stage.

2.3 A formal outline of the algorithm

We now describe the algorithm, which is used to calculate Irr(U)y for each antichain ¥ in
®*. We explain the algorithm below, which is written in a sort of pseudocode; the comments

in italics aim to make it easier to understand.

Algorithm 2.6. Reduction procedure for Irr(U)s

INPUT:

o &7 ={ay,...,an}, the set of positive roots of a root system with a fixed enumeration

such that ¢ < 7 whenever o; < o;.

e Y, an antichain in &7,

VARIABLES:
e S C dt is a quattern.
e Z is a subset of Z(S).

e A C ®t keeps a record of the roots 3 used in a TYPE R reduction.
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L C & keeps a record of the roots § used in a TYPE R reduction.

e K C ®* keeps a record of the roots indexing root subgroups in the quotient of the

associated quattern group.

S is a stack of tuples of the form (S, Z, A, £, K) as above to be considered later in the

algorithm.

O = (D1, 9,) is the output. Each of 97 and O, is a set consisting of tuples of the form
(S, 2, A, L,K) as above corresponding to abelian and nonabelian cores respectively, as

defined later and described in the algorithm.

INITTALIZATION:
o C:=Ks.
e §$:=d"\ Ks.
e Z:=X
o A:=0
o L =0
e 5:=0
e O:=(9,9).

During the algorithm we consider Irr(Xs)z, going into four subroutines called “ABELIAN
CORE”, “TYPE R”, “TYPE S§” and “NONABELIAN CORE".

ABELIAN CORE.
if S = Z(S) then
Adjoin (S, Z, A, L,K) to O;.
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In this case Xs is abelian and we can parametrize the characters in Irr(Xgs)z.
if 6 = g then

Finish and output O.

In this case we have no more characters to consider, so we are done.

else

Remove the tuple at the top of the stack & and replace (S, Z, A, £, K) with it, and
go to ABELIAN CORE.
end if
else
Go to TYPE R.
end if

TYPE R.

Look for pairs (,0) = (o, ;) that satisfy the conditions of Lemma 2.1 for some v € Z.
if such a pair (o, o) exists then

Choose the pair with j maximal, and update the variables as follows.
o S:=85\{w, 04}

o A:=AU{a}.

o L:=LU{a;}.

o K:=KuU{g}.

We are replacing S with 8" as in Lemma 2.1, and recording this in A, £ and K.
Go to ABELIAN CORE.

else
Go to TYPE S.
end if
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TYPE S.

if Z(S)\(ZUD(S)) # & then
Let ¢ be maximal such that a; € Z(S) \ (2 UD(S)), and update as follows.

e We add (S\{w},Z, A L K U{«w;}) at the top of the stack, that is, we put
S =6U{(S\{u},Z ALKU{x})}.

e We update Z := ZU{a;}.

Here we are using Lemma 2.4. We first add (S\{«;}, 2, A, L, KU{w;}) to the stack to
be considered later, recording that X; is in the kernel of these characters by adding «;
to K. Then we replace (S, Z, A, L, K) with (S, ZU{w;}, A, L,K) for the current run.
Go to ABELIAN CORE.

else
Go to NONABELIAN CORE

end if

NONABELIAN CORE.
Adjoin (S, Z, A, L,K) to Os.
We are no longer able to apply reductions of TYPE R or of TYPE S, and Xs is not abelian,
so the algorithm gives up, and this case is output as a nonabelian core as discussed further
later.
if © = o then
Output O and finish.
In this case we have no more characters to consider, so we are done.
else
Remove the tuple at the top of the stack & and replace (S, Z, A, £, K) with it, and go
to ABELIAN CORE.
end if
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Let us explain the conventions for reduction types. We recall from Section 2.2 that the
letter R in the TYPE R reduction corresponds to “reduction lemma”, to record when Lemma
2.1 is applied. The letter S in the TYPE S reduction stands for “split”, and this records
instead the iteration at which we have the branching determined in Lemma 2.4. We notice
that at any stage, it takes a finite number of iterations to either remove one or more roots
from S, or add one root to Z. Then we see that this algorithm does in turn terminate in a
finite number of steps.

We move on to discuss how we interpret the output. We begin by defining what we mean

by a core, which is an element of the output of our algorithm.

Definition 2.7. Let us suppose that Algorithm 2.6 has run with input (®*,3) and given

output 9.
e An element (S, Z, A, L,K) of O is called an abelian core for Irr(U)sx.
e An clement (S, Z, A, L,K) of O is called a nonabelian core for Irr(U)y.

In the rest of Chapter 2, we discuss how we can determine the characters in Irr(U)x
corresponding to a core € = (S, 2, A, L,K) in O; U O,y. In particular, when € € 9 is
an abelian core, we give a complete description of the irreducible characters, however for
nonabelian cores there is more work required. Before we move onto this, we require some
more notation.

We obtain € through a sequence of reductions of TYPE R and of TYPE S applied in

Algorithm 2.6. So we consider the sequence of reductions where in each one either:

e a pair of roots 5 and ¢ is taken from S in a TYPE R reduction, and ( is added to A

and 0 is added to £ and K; or

e a root 7 is taken from S and added to K.
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We let ¢ = l¢ be the number of these reductions, and define the sequence T'(€) = (¢4, ..., 1),
where t; = R if the ith reduction is a TYPE R reduction and ¢; = S if the ith reduction
is a TYPE S reduction. We let I(R,€) be the set of i such that ¢; = R and I(S, &) be
the set of ¢ such that t; = S. For i € I(R,€) we write (f;,0;) for the pair of roots used
in the TYPE R reduction, and for i € I(S, ), we write 7; for the root added to K in the
TYPE S reduction. Thus we have A = {3; | i € I(R,€)}, L = {6; | i € I(R,€)} and
K\Kg=LU{v|iel(S )}

2.4 Compacting sequences of inflations and inductions

This section is of major importance in order to understand how the parametrization of
“most” irreducible characters in Irr(U) follows from Algorithm 2.6. The reductions are all
of types R and S; as a consequence, we obtain the characters of Irr(U)y corresponding to
some antichain > as a sequence of inflations and inductions from a character corresponding
to a core. The main goal is to show that this corresponds to a single inflation, followed by
a single induction of such a character.

We first prove the character-theoretical results that we need for this. Let us suppose
that € = (S, 2, A, L,K) is a core corresponding to an antichain 3, and that (;,d; and ~;
correspond to type R and type S reductions respectively, as in Section 2.3. We define the

subsets P°, P, ..., P and K° K', ..., K of ®* recursively by
PO =t and K° = Ky;

PIN{B} ifti=R

Pi_l if t@ - S
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‘ Ki-tu{s} ift; =R
Ki =

We have the following lemma about these sets.

Lemma 2.8. For eachi,j = 0,1,...,0 with i < j, we have that P’ is a closed set, and K'

is normal in P7. In particular, 8% = P\ K' are quatterns.

Proof. Of course, P° = &7 is closed. Let us assume that P! is closed. If P = Pi~1,
then there is nothing to prove. Let then P = P!\ {§;}. For o, o’ € P, it cannot be that
a+a’ = B; by construction of P¢. Also, by inductive assumption, we have that a+ao’ € P!
if @ + o is a positive root. This implies a + o/ € P’ or a + o' ¢ ®T, that is, P’ is closed.
To prove that K° is normal in P? for 7 < j, it is enough to prove that K° is normal in P,
since K! C P? C Pi. Let o € P* and n € K'. Recall that n € Ky; or 7 is of the form v, or
i as above for some k < i. If n € Ky, then since Ky < &+ we have that o +n € Ky C K!
whenever o +n € ®F. If n = 4, for some k < 7, then 7 is a central root in S¥=1F-1 O §i,
therefore since o € P we have that o +n € K¥"1 C Kl or a +1n ¢ ®*. If n = 5, then we
notice that B, ¢ PF, thus B, ¢ P?, therefore if « € P! then a +n € KFLor a+n ¢ &,

This implies that X! is normal in P?. O

For i =0, .../, we define S' := S*. Then we have that S” = &+ \ X, and §* = S. Now
let ¢ € Irr(Xs). We define characters v; € Irr(Xg:) for i = £, —1,...,1,0 recursively by

the following sequence of inflations and inductions.

W:@/)

_ Ind” Infs, ¢, ift; =R
Y = o
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Finally, we let 1) = Infx_ ¥, € Irr(U). In the statement of the following proposition about

sequences of inflations and inductions, we use the notation

Ai={Bjlj=>i}, Li={]j>i} and K;={y|Jj=>i}.
Proposition 2.9. For everyi=1,...,¢, we have that

(Indﬁjj:;i Infﬁijl*i) - (Indiiﬁjl Infﬁg“u) — Ind™ Inf,, .,

as maps from Zsolrr(Xs) to Zsolrr(Xgsi-1). In particular, the image of Irr(Xs) under

Ind* Infr.uk, lies in Irr(Xgi-1), and

;= Ind Inf k. 1.

Proof. We prove this by reverse induction on ¢, the case of i = ¢ being trivial.

The inductive step boils down to showing the following claim for ¢ < ¢,
Indys ™! Infis ") (Ind*+! Inf = Ind* Inf
Ny, Mg, ( I n ﬁi+1U’Ci+1) = nlz;uK; -

Let us assume that S? is constructed from S~ ! by a type R reduction. Then we have that

Pt =P\ {B'} and K" = K1 U {6'}. The claim in this case is equivalent to
(Ind® Infs,) (Ind™+ Infz, ok, ) = Ind™ Infz,ux, -

Let us put
N = Xgi, H = Xsi—l,é, G := XSFM.

It is clear that N < H < G, and N < G. Then Lemma 1.8 applies, and we get
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Infs, Ind” 4+t = Ind™+ Inf;, .

Therefore we get

(Indﬁ" Infgi) (IndA“rl Infﬁi+1ujci+1) = Ind?% (Inf(;i IndA"“) Infr, . uc

i+1

— Ind% (Ind“‘li+1 Inf(;i) Infr, ok,

= (Ind” Ind4+*) (Infs Inf,. WK1
4 it +

= Ind* Inf LUK 5

as required.
In the case when a type S reduction occurs, we have P! = P! and K! = K71 U {~'},

and the claim is equivalent to prove
Inf,, (Ind+ Infg,, k,,,) = Ind™ Inf -

Now if we put

N =X

Vi

H = XSi—l,z, G = Xsi—l,i,

then again Lemma 1.8 applies. We get
Inf,, Ind**+ = Ind*+' Inf., .
A computation as above yields

Inf., (Ind“““rl Inf£i+1U/Ci+1) = (Inf% IndAM) Infz, ok
_ (Ind.AH—l Inf%) Inng_luch_l

— TndAi+t (Inf,ﬁ Infgi+1ulci+1)
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= Ind*™ Inf LUK 5

which proves the claim. O

We can finally obtain any ¢ arising from ¥ by the above construction as an inflation,

followed by an induction of a character of Xg.

Corollary 2.10. Let ¢ € Irr(Xs) and 1 as above. We have that

E = IIldA IanCUICg 1p

Proof. By Lemma 2.8 and Proposition 2.9 substituting ¢ = 1, we have that

1y = Ind? Infc 1.

Lemma 1.8 applies to the groups

N = Xk, H = Xpe, G:

I
S

We then have

Infi, (Ind* Infx) = (Infx, Ind*) Infic
— (Ind” Infi, ) Infx
— Ind*(Infy, Infx)

= Ind* Infxyk,.,

therefore

¥ = Infi, (Ind* Inf ¢) = Ind* Infieue, ¥,
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as claimed. O

We now distinguish two cases, according to the output of Algorithm 2.6. Suppose that
¢ =(S2,ALK) € O is an abelian core. We let Z2 = {a;,...,q;, } and S\ Z =

{aj,,...,a;, }. Then we have
Irr(Xs)z = {Ay | a = (ai,. .., a,) € F)", b= (bj,,...,b;,) € F},
where \; is defined by
Ny (Tay, (1)) = Plait)  and  Nj(za,, (1) = &(bj,t)
forevery k=1,...,mand h =1,...,n. We define Xﬁzk_iand
n(U)e = (¢ |a= (an.....a1,) € ()b = (by......by,) €FY}.

Through the bijections given by Lemmas 2.1 and 2.4, this is precisely the set of characters
in Irr(U)y corresponding to €.

We move on to consider a nonabelian core € = (S, 2, A, L, K) € O,. In this case Xg is
not abelian, so we do not immediately have a parametrization of Irr(Xs) z, and it is necessary

for us to determine a parametrization by hand. We suppose this has been done and we have

Irr(Xs)z = {¢. | c € Je},

where J is some indexing set. We define y, = 1. and

II"I"(U)Q = {XQ | [AS J@}
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The aim of Chapters 3, 4 and 5 of this thesis is to develop a method for determining the set
Je¢ for split finite groups of Lie type of rank at most 5.

In principle, the characters Xi and x. of U are defined as potentially very long sequences of
inflations and inductions. But Proposition 2.9 and Corollary 2.10 applied to S*, 8!, ..., S°
and then @ allow us to express Xﬁ and . as a single inflation, followed by just one induction
of the corresponding character of Xg = Xg.

We summarize the discussion of this section in the following theorem.

Theorem 2.11. Let € € (S, 2, A, L,K) be a core.

(a) Suppose that € € Oy is abelian, and let x;, € Irr(U)e be defined as above. Then
Xy = IndA Infy Ay-

In particular, Xﬁ 18 induced from a linear character of Xsur.

(b) Suppose that € € D4 is nonabelian, and let x. € Irr(U)e be defined as above. Then

Xe = Ind? Infx 9.

From the comments given within Algorithm 2.6 and the discussion above, we deduce the

following theorem regarding the validity of our algorithm.

Theorem 2.12. Suppose that Algorithm 2.6 has run with input (T, %) and given output
O = (91,9). Then we have

Irr(U)s = |_| Irr(U)e U |_| Irr(U)e.

ceDq ¢ceOy

Remark 2.13. We make a slight abuse in the notation Xﬁ- In fact, each a; and b; is supposed

to record not just a value in F; and F, respectively, but also ¢ and j, so that Xi should
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(11,a41 ) 5oy (BmsQigy,

strictly read XE(m bis Yo G )))), for corresponding choices of iy, ..., 4, and j1, ..., J, indexing
RIS b

positive roots.

Remark 2.14. The choice of total order on ®* = {ay,...,ayx} has a significant effect on how

the algorithm runs, as this is used to determine which reductions to make when there may
be a choice. The resulting parametrization of Irr(U)s, consequently depends on this choice

of enumeration.

2.5 Results of the algorithm and parametrization of
Irr(Ucg,)

We have implemented Algorithm 2.6 in the algebra system GAP3, using the CHEVIE pack-
age. The algorithm requires us to just work with ®* and the GAP commands for root
systems allow us to do this. We use the enumeration of &1 as given in CHEVIE.

We have run the GAP program for G of rank less than or equal to 7. We present its output
in Table 2.2, including the number of nonabelian cores. For GG of rank 3 or less, or G of type
Cy4, there are no nonabelian cores; the algorithm provides straight away a parametrization
of Irr(U) in these cases. The parametrization of Irr(Ug,) is provided in Table D.2.

For every split finite group of Lie type G, we denote by k(U, D) the number of irreducible
characters of U = U(G) of degree D. The expressions for k(U, D) are given as polynomials
in v := ¢ — 1 in [GMR15] for every character degree D and every split finite group of Lie
type of rank 8 or less, except Eg. These are given for p > h by the number of coadjoint
orbits, computed in [GMR15] via the Kirillov orbit method.

Our methods allow in principle to compute k(U, D) for every p which is not a very bad
prime for G. The expressions we obtain for k(Ug,, D) for every D agree with, hence extend,
the ones previously obtained for p > h where h is the Coxeter number of C4, namely h = 8.

We collect in Table 2.1 the numbers k(Ug,, D) for every ¢ and p # 2. We notice that D is
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always a power of q.

D /{?(UC4,D)
1 | vt 4403 + 602 +4v+1

10 4+ 60 + 1303 + 1202 + 4o
21 20% + 110* + 2002 + 1402 + 3v

3108 + 605 + 170t 4 2403 + 1402 + 3v

5| vt 4+ 83 +6v2+ v

q
q
q
g | 205 + vt + 1503 + ? + v
q
q

61 vt + 403 + 302

Table 2.1: Numbers of irreducible characters of Ug, of fixed degree, for v = ¢ —1 and p # 2.

For other split finite groups of Lie type of rank 4 or 5, the algorithm does not provide
a full parametrization of Irr(U). Nevertheless, we obtain labels for characters arising from
abelian cores, collected in plain font in Appendix D. In this sense, we say that we get
the parametrization of “most” of Irr(U), namely up to irreducible characters arising from
nonabelian cores. For the types B4 and D, there is one nonabelian core each, and in type
F4 we find six nonabelian cores. These will be dealt with in Chapter 4, via the analysis
presented in Chapter 3. A parametrization of Irr(U) in these cases is collected in Tables D.1,
D.3 and D.4 respectively.

For G of type Bs, Cs and Dj there are 10, 1 and 7 nonabelian cores respectively. The
analysis in Chapter 3, along with a method to deal with several nonabelian cores at the same
time described in Section 5.1, will lead us to obtain a full parametrization of Irr(U) in these
cases. This is given in Chapter 5; we refer to Tables D.5, D.6 and D.7 for character labels.
We currently do not have a method to study all of the nonabelian cores of any group of rank
6 or higher; this is a topic for further research.

We note that the parametrization of irreducible characters for Ug, can be read off from

that for Ug,, as Up, is a quotient of Ugp,. Similarly, the parametrization of irreducible
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’ Type ‘ Antichains ‘ Abelian cores ‘ Nonabelian cores ‘ Running time

B, 70 80 1 (1.23%) T < 1 sec
C, 70 90 0 (0%) T < 1 sec
D, 50 52 1 (1.88%) T < 1 sec
Fy 105 177 6 (3.28%) T ~ 1 sec
By | 252 353 10 (2.72%) T ~ 3 scc
Cs 252 417 1 (0.24%) T ~ 3 sec
Ds 182 214 7 (3.17%) T ~ 1 sec
Bg 924 1842 95 (4.90%) T ~ 30 sec
Cs 924 2254 22 (0.97%) T ~ 30 sec
D¢ 672 991 55 (5.26%) T ~ 10 sec
E, | 833 1656 156 (8.61%) T ~ 30 sec
B, | 3432 11240 969 (7.94%) T ~ 7 min
C; | 3432 14216 294 (2.03%) T ~ 7 min
Dy 2508 5479 531 (8.84%) T ~ 2.5 min
E, | 4160 33594 7798 (18.84%) | T ~ 45 min

Table 2.2: Results of Algorithm 2.6 in types B,., C, and D,, r =4,5,6,7 and Fy, E;, : = 6, 7.

characters of Ug, can be read off from that for Ug,. We remark, on the one hand, that our
parametrization of Irr(Up,) agrees with the one determined in [HLM11]. On the other hand,
similar parametrizations of Irr(Usg, ), Irr(Ug,) and Irr(Ug,) do not seem to be given explicitly

in previous literature, as well as parametrizations of Irr(Ug, ), Irr(Ug,) and Irr(Up,).
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CHAPTER 3

A METHOD FOR ANALYSING NONABELIAN
CORES

In this chapter we explain the methods employed to analyse the nonabelian cores arising from
our analysis in Chapter 2. Our approach is based on a direct examination of these cases.
It is helpful for us to first deal with certain 3-dimensional groups over I, that frequently
appear in our analysis; this is developed in Section 3.1. We then outline in Section 3.2 our
general methods for dealing with nonabelian cores.

We remark that we do not assert that these methods are guaranteed to work for every
nonabelian core. Nevertheless, we will see in Chapters 4 and 5 that this is enough to
complete the parametrization of Irr(U) for every split finite group of Lie type of rank at
most 5. Moreover, the methods outlined in this chapter lay the groundwork towards a

parametrization of Irr(U) in higher ranks.
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3.1 Some 3-dimensional groups

Let f : F, x F, = F, be an Fp-bilinear map, which we assume to be surjective. We define

the group V' = V} to be generated by subgroups
Xi=A{mi(t) [t eF} =Fy,  Xo={aa(t) [t €F} =F,, Z={z2(t) [t €F} =F,

subject to Z C Z(V'), and
[21(5), 2a(1)] = 2(f(5,1))-

In particular, throughout this section, X; will not denote the root subgroup X,,, similarly
for Xs.

Since Z is central in V|, we have that XyZ is a subgroup of V. By definition of V', we
have that [ X, XoZ] C X3 Z, therefore X; X7 is also a subgroup, which implies V' = X; X5 7.
The assumption of f being surjective implies that [V, V] = Z.

The focus of this section is on constructing the irreducible characters of V. Let us fix

a € FX. We define the linear character \* € Irr(Z) by A\*(2(t)) = ¢(at). We define
X1 ={z1(s) € X1 | Tr(af(s,t)) =0 for all t € F,}

and

X5 ={x2(t) € Xo | Tr(af(s,t)) =0 for all s € F,}.

Note that in general X| and X/ may depend on a.
We first note that the linear characters of V' are given by inflating over Z the characters

of V/Z = X x Xs. For by, by € F,, we define xp, 5, € Irr(V) by
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X b (21(51)T2(52)2(t)) = @(brs1 + basa)

for every sy, s2,t € F,, thus there are ¢? linear characters of V of the form {x4, s, | b1, b2 € F,}.
We now analyse the characters in Irr(V | A?) for a € F using the reduction lemma, that

is, Lemma 1.12. The map

B:F,xF,>F,

(s,t) — Tr(f(s,t))

is F,-bilinear. For i = 1,2, let V; be the image of X/ under the natural isomorphism X; = F,.

Then Vi, V5 are Fp-subspaces of IF;, and the bilinear form B induces a non-degenerate bilinear

form
B (Fy/V) x (Fy/Vs) = .
hence
dimg,, (F,/V1) = dimg, (F,/V2),
which implies |X/| = |X4|. Thus for i = 1,2 we can choose a complement X; of X/ in X,

such that |X;| = | Xs|.

Now by Lemma 1.12 (with X = X; and Y = ¥}), we see that the map

Irr( X! X, Z/(Xoker M%) | A%) — Trr(V | A?)

X|X2Z

v
¥ Indy o,z Ity ey ¥

is a bijection.

Finally, we observe that X|X,7Z/(X;ker \%) is abelian, so Irr(X!X,Z/X, | A%) is in
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bijection with Irr(X] x X7). We then get

X{X2Z

Ire(V | A*) = {IndY, v, e AT K Irr(X] x X))},

with each 1 € Irr(X] x XY) linear. Since

Irr(V) = {Xp, 0, | b1, b2 € F b U | | Ter(V | A%,
a€F}
this completes our general description of Irr(V).

We are going to examine in more detail Irr(Vy) for certain choices of f. We first recall
the following general result. Let V; be as defined above, and let ¢ be an automorphism of
[F, regarded as an abelian group. We write V; = {z1(s)xa(t)2(u) | s,t,u € F,}, and since
@ o f is surjective it makes sense to define Vo = {2} (s)x5(¢)2'(u) | s,t,u € F,} similarly.
Suppose that there exists a group homomorphism ¥ : V; — V,,o¢ such that W(x;(s)) = 2 (s)
and W(xq(t)) = x4(¢) for all s,t, € F,. For every u € F,, we can write u = f(s,t) for some

s,t € F,. We then get

U(z(u) = W(z(f(s,1)) = W([z1(s), 22(t)]) = [V(21(s)), ¥(z2(1))])
= [1(s), 25 (1)] = 2'(p 0 (s, 1)) = 2'(p(f(s,1))) = 2'(p(w))-

Then for such a group homomorphism ¥ we have ¥(z(u)) = 2/(¢(u)) for every v € F,. But

now it is immediate to check that a map W defined as

for every s,t,u € F, defines a group homomorphism, and in fact this is a group isomorphism

since ¢ is an automorphism of F, as an abelian group. Then Vy = V,.¢. In particular, we
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get that Vy =V for every ¢ € F.
To finish, we determine V; explicitly for some choices of f. For f(s,t) = st, we have that

V} is isomorphic to Uy,. Clearly we get X{ = Y] =1, and then
II‘I‘(V) = {Xb1,b2 | b1, by € Fq} U {Xa ‘ a < F;},

where x® = IndY, , Inf}*? X\®. For f(s,t) = sPt or f(s,t) = (s? — ds)t where d € Fx is not a

(p — 1)th power, applying the argument of Lemma 1.13, we have that
Imaf NkerTr = @, that is, for every s,t € F,, Tr(af(s,t)) = 0 implies af(s,t) = 0.

Again, we see that X{ =Y/ =1, and Irr(V) is given as above. In these three cases, we get

e g — 1 characters of degree ¢, and

e ¢? linear characters.

The case of major interest to us here is f(s,t) = (s? — ds)t where d € F* is a (p — 1)-th

power, say d = eP~1. Then by using Lemma 1.13, we find that
X{ = {,Tl(S) | sP — ep—ls — 0} = {xl(s) I s € G]Fp}

and

Xy ={w2(t) | Tr(atTe) = 0} = {x2(t) |t € (e77/a)F,}.
Now for ¢, ¢y € F,, we define the characters A% . € Trr(X| X57/ (X, ker %)) by

C1,C2

ey (z1(esy)xa((e7P/a)se)z(t)) = ¢d(c181 + case + at)
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for every s1, s, € IF, and t € F,. Then we have

Irr(V) = {Xp1p, | b1, b2 € IFq} U {Xgl,cz |a € F;,Ch@ € IFp},

X| X7 \@
)

X Xa.2/(Xa Ker A0) er.ca” In this case, we get

where xg, ., = Ind}fq x,z Inf

e p?(q — 1) characters of degree ¢/p, and

e ¢? linear characters.

3.2 Adapting the reduction lemma for nonabelian cores

Let € = (S, 2, A,L,K) be a nonabelian core. The set S is a quattern corresponding to
the pattern ®* \ A and its normal subset . Further, we have Z = Z(S) \ D(S) as € is
a nonabelian core, and we let Z = {«a;,,...,q;, }. For each a = (a,...,a;,) € ()™, we

q

define the map p = p®: Xz — F, by p(z;,(t)) = a;,t for h=1,...,m. Then
A=XN=¢opu*: Xz — C~

is a linear character of X z.

We give a method to analyse the characters in Irr(Xs | A). We note that the nature of
the resulting parametrization and construction of the characters may depend on the choice
of a, and we see instances of this dependence in most examples in Section 4.3. Further we
remark that we do not assert that this method is guaranteed to work for every nonabelian
core, though it does apply for all the cores that we consider in Chapters 4 and 5.

The setting throughout this section is as follows. We define V' = X/ ker p, and we let
Z = Xz/kerp. Since ker i C ker A\, we have that A factors through Z and we also write

A for this character of Z. Then we have a bijection between Irr(V | A) and Irr(Xs | A) by
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inflating over ker p1, and we work in Irr(V | A) rather than in Irr(Xs | A). Given a € S\ Z
we identify X, with its image in V.
We aim to find subsets Z and J of S\ Z such that the following hold.

o [Z]=1J1,
o H = Xg\(zuz)Z is a subgroup of V,
e Y =X;<Z(H), and
e Y 7 is a normal subgroup of V.
We note that this implies that
e X = X7 is a transversal of H in V.

Under these assumptions, we notice that the following property holds, namely

for every o € J and § € S, we have that 2o+ ¢ S. (3.2.1)

In fact, if « € J and € S, we have a + € S\ I since YZ V. lf a4+ 5 € Z, then it is
clear that 2a+ 0 ¢ S. Otherwise, a+ 5 € S\ (ZUZ), and since Y < Z(H) then 2a+5 ¢ S
in this case as well.

We would like to apply the reduction lemma in this case. Conditions (i)—(iv) do hold,
but condition (v) may not be satisfied, so we aim to adapt the situation slightly.

We consider the inflation i of p to Y Z and let A=¢o it be the inflation of A to Y Z.
For v € V, we consider the map ¢, : Y — F, given by ¢,(y) = ([v,y]). For v € V and

Y1,Y2 € Y, we have that

ﬂ([U7y1y2]) = /:L([’U, y2][1}’y1]y2) = ﬂ([v7 yQ][Ua yl]) = ﬂ([vvyl][v7y2]> = ﬂ([U, yl]) + :&([U7y2])7
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where we used the facts that Y'Z is abelian and that [V, Y] C Y Z, since Y Z QV. Moreover,
ifS={p,...,6m} and J = {ay,...,ar}, then by what is observed in (3.2.1) we have that

B, Bm,0 i i
[-’L'ﬂ1 (51) T, (Sm)7 Lo, (tl) Loy (tk)] = H Tiy By oo B+t (dill ..... im’jay 8111 . S%"’tj)
i1yt >0, j=1,... k:
$181++im B +a; €BT

for some dfl bebmts e 7 We see by the right hand side of the above equality that this

~~~~~ Tm»]

expression is linear in ¢q,...,¢; once we apply fi. Therefore 1, is [F-linear, that is, 1,

belongs to the dual space Y* = Hom(Y,F,) of Y. We let

Y' = m ker(v,) ={y € Y | “a(y) = iu(y) for all v € V'}.

veV

Then Y’ is an [ -subspace of ¥ = Iquj'. Also, we define
H = Staby(2) = {veV | %= p}.

Then H is a subgroup of V and H = X'H for X' = {z € X | *fi = ji}.
To prove that X’ and Y’ have the same cardinality we assume, for the rest of this chapter,
that

W = {4, | v € V'} is an F -subspace of Y.

This condition is easily checked to hold for all nonabelian cores that we examine when G is
of rank 5 or less, by looking at the form of Equation (3.2.3) defined below in each of these

cases.
Lemma 3.1. | X'| = |Y'].

Proof. We have that the annihilator Anny (W) of W is Y’ by definition. Hence we have

dimY = dim Y’ + dim W, that is, |Y|/|Y’| = |[W].
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Now let us call 2" the V-orbit of fi in Hom(Y Z,F,). For v, € V we have that

Vy = Yy <= (([v,y]) = a([v',y]) for all y € Y < a(y") = ﬂ(y”,) for all y €Y,

then the map

o o— W

1" =ty

is well-defined and injective. It is clear that it is also surjective. Therefore, we have |W| =

|1V']. Now by the orbit-stabilizer theorem [Is2, Theorem 1.4], we have that

|2V| = |V|/Staby (i) = |V|/|H| = |X]|/|X].

Combining the above equalities, we get

YI/IY'| = W|=|a"| = |X[/1X'].

Since |Y| = | X], the claim follows. O
Moreover, we have the following property about X”.
Lemma 3.2. Let © € X be such that “\ = \. Then z € X'.

Proof. We show that for such = we have *fi = fi. The hypothesis is equivalent to

$poi=g¢of, thatis, dpo (“f— ) =1. (3.2.2)

For y € Y and z € Z, we have
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“i(yz) = p(y ") =" y) + (z) = 1lly, 7)) + p(z) = = (y) + u(z2),

then by what observed in (3.2.1), the same argument used to prove that 1, is F,-linear
applies to prove that “/i is F -linear. Hence *fi — i is also [F-linear. Therefore the image of
T[r — f1 is either 0 or F,. But if it were F,, then Equation (3.2.2) would imply ¢(c) = 1 for

every ¢ € IF,, which is a contradiction. Then we have *fi = [, that is, z € X'. O]

We write Z = {ay,, - ,q;,} and J = {ay,, -+, ¢, }, such that i3 < --- < 4, and

g1 < -+ < Jm. In general, Y’ and X’ can be determined by the following equation,

[y, (352) T (850): Ty () -+ T, (12,)]) = 0. (3.2.3)

We note that as the map v, for x € X is F,-linear, the left hand side of Equation (3.2.3) is
linear in sj,,...,s;, . Therefore, the values of s;,,...,s;, such that Equation (3.2.3) holds
for every t;,,...,t;, form an F -subspace of Y, which determines Y.

Under an additional assumption on Y, we are able to apply the reduction lemma in the

following proposition. We define H to be the preimage of H in Xg.

Proposition 3.3. Suppose that there exists a subgroup Y of Y such that Y =Y’ x Y and
[X,Y] C YZ. Then we have a bijection

Ier(H/Y | A) — Ire(V | A)

a

X — Indl‘g Ian/f, X

Consequently we have a bijection

Irr(H/Y | \) — Irr(Xs | \)

H

X — Indgs Ian/f/ X
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Proof. We want to check that H,X,Y and Z satisfy all the assumptions of the reduction
lemma as subgroups of V' with respect to A € Irr(Z). Clearly we have that Z < Z(V') and
Y NZ = 1. By assumption, we have that X normalizes Y Z, and we have that H centralizes
YZ,s0YZ V. Since Y <Y < Z(H), we have that Y is normalized by H. Moreover, if

' € X" and y € Y, by definition of X’ we have that

and since ker i = Y ker 1 we have that X’ normalizes Y. Along with the assumption that
(X, f/] C Y Z, we deduce that X’ normalizes Y. Hence Y < H.

Now we are left to check condition (v) of the reduction lemma. We write A € Irr(Y 2)
for the inflation of A to Y Z, and note that A = X!yz. Let X be a transversal of H in V.
Assume that ©' X\ = #) for #;,7 € X. Let y € Y and z € Z and write y = ¢/, where

y €Y’ and § € Y. We have

In the above sequence of equalities we use that A(y/®1) = A(y') = A(y'*) by definition of Y7,
that §™, 7™ € YZ since [X,Y] C YZ, and that '\ = #) by assumption. Hence we have
#1% "\ = \. By Lemma 3.2, this implies 717, € X’ and thus &, = i» as X is a transversal
of H in V. By Lemma 3.1, we have that |X’| = |Y’|. We can then apply the reduction

lemma to deduce the first bijection of the claim.
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Now we notice that the assumptions of Lemma 1.8 apply with N = ker u, H = H and
G = Xs. Then we have

Inf;s Ind¥, = Ind¥s Inf,
which yields the second bijection in the claim. O]

Remark 3.4. Let us suppose that [X,Y] C Z. Then we may take an arbitrary complement

Y of Y/ in Y, and the assumption (X, }7] C Y Z in Proposition 3.3 is obviously satisfied.

If we assume that Y” is central in H/Y, then we can extend A € Irr(Z) to Y. This is
very useful to apply again the reduction lemma in H / Y with respect to such an extension

of A\, as we will see in type Dy in Section 4.2 and in type F4 in Section 4.3.
Remark 3.5. Suppose that Proposition 3.3 applies and let ¢ € Irr(H/Y | A). Then we have

that Ind}y® Infff - ¢ € Trr(Xs), and

¢ =Ind%, Infﬁi“’c Indg‘S Infg/f, Y € Irr(U)e

by Theorem 2.11. Since Xx < U, we have that H Xx is a subgroup of Xs i, and of course
Xy < HX . Then Xy, HXx and Xg_ ik play the roles of N, H and G respectively as defined
in Lemma 1.8. We can change the order of inflation and induction accordingly, and we get
- U HX
¢ =Indgy, Ian/{’/C .
In Chapters 4 and 5, we apply this argument (sometimes iteratively) to show that each
irreducible character considered there can be obtained as an induced character of a linear
character.

A particular case in which Proposition 3.3 applies repeatedly occurs in the sequel. Sup-

pose that Y’ = 1 for all choices of A\, and Y is normal in H. We have H/Y = Xg\(zus).
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Defining
P = Ind Y Infiey s 0

for ¢ € Irr(Xs\(zu7)) z sets up a bijection from Irr(Xs\(zu7))z to Irr(U)e.
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CHAPTER 4

PARAMETRIZATION OF Irr(U) IN RANK 4

In this chapter we apply the technique presented in Chapter 3 to split finite groups of
Lie type of rank 4 in order to determine the irreducible characters of U. This technique,
together with some more computations detailed here, allows us to give a full parametrization
of Irr(U) in all these cases. We remark that for each of the types B, and Dy we have just
one nonabelian core, and for type F, we have six nonabelian cores. The rest of this chapter
is split into sections according to the examination of such nonabelian cores. For each core
¢ =(S,2,A, L K) examined in Chapters 4 and 5, we give explicitly S, Z, A and L; we
note that I can then easily be determined.

The nonabelian core of Ug, is dealt with in Section 4.1. Under the assumption p > 3,
it is easy to understand the behavior of such a core. There is some more work to do for
the nonabelian core of Up, when p = 2; the analysis of this core is contained in Section 4.2.
We recall that this case has already been discussed in [HLM11], and analysed with similar
methods. Finally, we will be able to deal with all six nonabelian cores in type Fy; this is done
in Section 4.3. We remark the different behavior of the prime p = 3 in the parametrization
of Irr(Ug, ); in particular, this shows up in the investigation of the fifth core of F, examined

in this chapter.
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4.1 Parametrization of Irr(Ug,)

We denote the only nonabelian core of By by €54, We describe in this section the representa-
tion theory of the corresponding quattern group. We can then complete the parametrization
of Irr(Ug, ), given in Table D.1. In particular, we can determine the expressions of the num-
bers of irreducible characters of Ug, of a fixed degree as polynomials in v := ¢ — 1. These

are collected in Table 4.1.

D /{?(UB4,D)
1 | v 4403 4+ 602 +4v+1

3vt + 1003 4+ 11?2 + 4v

q

¢* | v8 + 605 + 16v* + 2303 + 1502 4 3v
¢ | 205 + 10v* + 1803 + 13v?% + v

gt | 205 + 110t + 1903 + 1102 + o
q
q

Sl d +6vt+ 1103 + 602 + v

6 vt + 303 + 202

Table 4.1: Numbers of irreducible characters of Ug, of fixed degree, for v = ¢—1 and p # 2.

The core €84 occurs for ¥ = {3, a4 }. Correspondingly, we have
e S= {CY27OZ3, Oy, O, 7, g, (10, V11, 13, 0414},

o Z = {ai, 13, 014},

o A={ay,a5} and

o L ={ag,ais}.

We see that the method of Section 3.2 applies, by taking

o Y = X, where J = {ag, a7, a1},
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Figure 4.1: A picture representing the configuration of €54,
e X = X7, where Z = {ag, ay, ag}, then
o H=X3YZ.

We explain in this discussion the meaning of Figure 4.1 and of the following pictures that
represent the structure of a fixed nonabelian core, and how to take advantage of them to find
candidates for X and Y in our analysis. The vertices of the graph are labelled by roots in
S. We join two roots a, f € S with v € § if a + 8 = 7; when a vertex has degree at least 3,
the relations between roots collected in Appendix B determine how to relate multiple edges
from a vertex. The roots in Z are in circles.

We now determine the roots in J and Z, which are in straight and dashed boxes in Figure
4.1. For our choice of Y, we decide to put the highest root of S\ Z in J. We will see that
this choice works to find suitable X and Y in most of the nonabelian cores examined in this
work; in the other cases, as in the case of the core €% in F,, this will work by adding the

highest root of S\ Z to Z instead. We then put «y; in J in this case. We notice that

ay+app=a3€Z and  agtan =o€ Z,
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then we put as and ay in Z. Moreover, we have that
ayt+ar=aip€Z and ag4+ag=a € Z,
and we put ag and a7 in J. Finally, we notice that
agt+ag=a;3€Z and art+ag=ay € Z,
and we add ag to Z. Along with the other three relations in S, namely
a9 + a3 = g, as+ay=a; and a3+ ag = agq,

we now easily check that assumptions (i)—(iv) of the reduction lemma do hold with Y = X 7
and X = Xz, where J = {ag, a7, 11} and Z = {aa, ay, ag}.

Let us examine Equation (3.2.3) in this case. It gives
se(aiota + aats) + sr(—aiots — asts) + s11(—aists — araty) = 0.

The prime p is not very bad for By, hence p # 2. In this case, the above equation is satisfied

for every sg, 57,511 € Fy if and only if ¢, = 4 = tg = 0, and vice versa. This means that we

get Y/ =1, and that Y is normal in H. Moreover, we have that H/Y = X3Xz is abelian.
For by € F, we denote by A\;1**** € Irr(Xs\(zug))z the linear character as in Section

2.4. Then the assumption of Remark 3.5 holds. Hence we obtain
Irr(U)ens = {x3, "™ | @10, ans, ara € T b3 € Fy},

where ;@ = Ind*Y Infic, s Ap 0@t The family Irr(U)gs, consists of (g — 1)

characters of degree ¢°.
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4.2 Parametrization of Irr(Up,)

We have only one nonabelian core in type Dy, which we denote by €P4. The examination of
this core allows us to complete the parametrization of Irr(Up,); this is given in Table D.3.
The parametrization of Irr(Up,) was already given in [HLM11], and the one provided here
agrees with it. We provide in Table 4.2 the number of irreducible characters of every fixed
degree in UDy(q) for every p, expressed as a polynomial in v = ¢ — 1. We notice that such
expressions are uniform for p > 3, but the different behavior of the core €P* for p = 2 yields

in this case a different formula for k(UDy4(q), ¢*), as well as irreducible characters of degree

/2.

D k(Up,, D)
1 vt 4+ 403 + 602 +4v + 1

q v® + 5v* + 100° + 902 + 3v

q> 3vt 4+ 9v3 + 9% + v

72 0, ifp>3

dt) ifp=2
X 02 4+ vt + 1003 + T2 + v, if p>3
q

v° + vt +100° + Tv* + v, if p=2

qt v+ 303 + 3% + o

Table 4.2: Numbers of irreducible characters of Up, of fixed degree, for v =¢q — 1.

The core €P4 occurs for ¥ = {ag, ag, @10}, and we have that
e S={ay,...,a},

o Z =3 ={ag,ag,a10},

e A= and

o L—=0.
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Figure 4.2: A picture representing the configuration of €P+.

Using the method of Section 3.2, we take
e Y = X, where J = {as, ag, ar},
e X = X7, where Z = {ay, ag, as}, then
e H=X3YZ.

In this case Equation (3.2.3) is
s5(asta + aots) + s¢(asts + aiots) + s7(—agts — asptz) = 0.

Let p > 3. Then we get that Y’/ = 1, and that Y is normal in H. Furthermore,
H/Y = X3X;z is abelian. For by € F, we let A 10 € Tir(Xs\(zugy)z be the linear
character as in the notation of Section 2.4. Then as explained in Remark 3.5 we obtain

p>3 __ a8,a9,a10 X
Irr(U)€D4 = ng ’ as, g, A1 G]Fq,bg EIFq},

where x>0 = Ind*Y Infcy s A #410. We have that Irr(U)P5? is a family of ¢(q — 1)

¢Ps

characters of degree ¢>.
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Now suppose p = 2. In this case, we have that X' = {z124(t) | t € F,} and Y’ =

{z567(s) | s € F,}, where
1’172’4(75) = Il(a10t>I2(a9t)$4(CLgt>, and

T56.7(8) = x5(ai9s)xe(ags)rr(ags).

We can take Y = XX, and we have ]:I/Y/ = XgX/YZ/Y/. By Proposition 3.3, we have
that Irr(V | A) is in bijection with Irr(H /Y | A).

Let us then consider Irr(H/Y | A). We note that Y lies in the centre of H/Y . For every
aser € Fy, we let pu®7 : Y'Z — F, be the extension of p to Y'Z with p%57(x567(t)) =
ase,7t, and we let \%56.7 be defined by A*67 = ¢ o ju,, .. Then we have that Irr(H/Y | \) is
the disjoint union of Irr(H /Y | A7) over a7 € Fx, along with Irr(H/Y | \).

A computation in H/Y gives

[23(t), 71.2.4(5)] = 5(a10st)z6(agst)wr(agst)rs(agaios’)re(agaos®t)rio(agagst)

= x576,7(st)x8(agaloth)ajg(a8a1032t)x10(a8a952t).
Applying %67 to this equality, we get
,ua5’6’7([$3(t), IL‘17274(8>]) = t(3a8a9a1032 + a57677s) = t(a8a9a1082 + CL5’677S).

We notice that the quotient H /(Y ker u%67) = X3 X'Y Z/(Y ker p®7) is isomorphic to the

three-dimensional group Vy, where
f(S, t) = t(a8a9a1052 + a5,6,75)

is as defined at the end of Section 3.1. We have that Irr(H /Y | A%67) is in bijection with
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Trr(H /(Y ker u%67) | A%67). Then we can analyse the latter as explained in Section 3.1.

Let a5 67 # 0. We let
Wi = {r124(as 6,75/ asagarg) | s € Fa}, Wy = {$3(a8a9alot/a§,6,7) |t € Fa}.

a, ,a8,a9,a ¥,
We define the characters Ae)5 s ° for ¢194,c3 € Fy of WiWoY Z /(Y ker \%:6.7:08:09,010) a3

discussed at the end of Section 3.1. Then we get the family of characters

Lp=2 __ as,6,7,08,09,010 X
IYY(U)¢D4 = {XCLM,Cg | as.6,7, as, ag, ajp € Fq ,C124,C3 € Fa},

where

X'WoY XzXk 195,6,7,08,09,010

Xa5,6,77a87a9: .
Wi WY Z/(Y ker \%5,6,7:98:49:10) “'c1,2.4,¢3

aio __ U
€1,2,4,C3 - IndX/WQYXzXK In

We have that Irr(U)15=? consists of 4(q — 1)* characters of degree ¢%/2.

¢Dy

Finally, let a5 67 = 0. We analyse in this case the set Irr(H/Y | A) by using the arguments
for the three-dimensional group V; where f(s,t) = agagaios’t. Therefore, we get the family

of characters

Ir(U)2h % = {x*™° | ag, ag, azo € Fot

eDs

where

asg,ag, Inf)Z(/YXinc )48:09,010

alg __ U
X = IndX’YXZXK

We have that Irr(U)%27% consists of (¢ — 1)? characters of degree ¢3.

¢D4

We are done also with the case p = 2, since

Irr (U052 = Ter(U) b2 U e (U) 282

¢Dy ¢Dyq ¢Dy
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4.3 Parametrization of Iir(Uy,)

Below we consider the remaining nonabelian cores in U = Up,. We denote these cores by
¢l ¢ @3 ¢ € and €8 For each of them, we analyse Irr(Xs)z before explaining how this
parametrizes Irr(U)g: for i = 1,...,6 and how these characters can be obtained by inducing
linear characters using Proposition 3.3 and Remark 3.5. We notice that if € = (S, Z, A, £, K)
and ¢ = (8", 2", A, L', K') are cores of Ug,, then (|S|,|Z]) # (|S'],|2']). In particular, Xg
is not isomorphic to Xg.

After the study of €',... €% we can finally describe in detail the set Irr(Ug,). The
parametrization of the irreducible characters is given in Table D.4. On the one hand, the
expressions of numbers of irreducible characters of fixed degrees of Uy, for p > 5, collected
in Table 4.3, are uniform as polynomials in v = ¢ — 1. On the other hand, as in the case of
UD,4(2¢), we note from Table 4.3 the difference between the expressions as polynomials in
v = ¢—1 of the numbers k(UF4(p®), D) for p > 5 and the ones of the numbers k(UF,(3¢), D);
in particular, the expression of k(UF4(q), ¢*) does not have integer coefficients for p = 3. In
this case we also get some irreducible characters of degree ¢*/3. The different behavior of

p = 3 with respect to every p > 5 shows up in the study of the cores €*, ¢® and €.

The nonabelian core €'. This core occurs for 3 = {ag}. In this case, we have
e S= {061,Oéz, 0457049,0411,04147041670418,042070422}7
o Z = {aqy, ag, a2},
o A= {0437044,@&04770410,0413} and
o L= {0487051270515704177051970421}-
We follow the discussion in Section 3.2. We have

e Y = X, where J = {as, a11, 213},
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k(Ug,, D)

vt 4+ 403 + 602 +4v + 1

V5 4+ 60 + 1303 + 1202 + 4o

08+ Tv° 4+ 200% + 2803 + 18v% + 4v

4v° + 200* 4+ 3303 + 2102 + 4w

0, if p>5
91/2, ifp=3

18 4 807 + 280° + 580° 4 79v* + 6603 + 2402 + v, if p > 5
08 + 807 + 280 + 590° + 1610v* /2 + 67v% + 2402 + 20, if p=3

v 4 Tv8 + 220° + 390v* 4 3703 + 1502 + 20, if p>5
v 4 Tv8 + 230° + 41v* 4 3703 + 1502 + 20, if p =3

200 + 140° 4 36v* + 4003 + 1702 4+ 2v, ifp>5
200 + 1405 + 36v* + 3903 + 1702 + 20, if p=3

208 + 1305 4+ 320 + 3403 + 1302 + 20

4v° 4+ 150* 4+ 190° + 8v?

v® + Tot + 1103 + 502

QR R

vt + 30 + 02

Table 4.3:

Numbers of irreducible characters of U, of fixed degree, for v = ¢ —1 and p # 2.

o X = Xz, where 7 = {CKQ, (g, 0416}7 then

o H=XYZ.

Equation (3.2.3) now yields

S5(—a1ate — agotis) + s11(—a1ats + asntis) + s1s(—asots + agete) = 0.

We recall that p # 2 since p is not a very bad prime for Fy. We then easily get Y’ = X' =1,

and Y is normal in H. Moreover, we have that F[/Y & X, Xz is abelian.

For b; € F, we denote by A\;******* € Irr(Xs\(zuz))z the linear character as defined in
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Figure 4.3: A picture representing the configuration of €* of Fj.

Section 2.4. The conditions of Remark 3.5 are then satisfied. Hence we obtain

II‘I‘(U)¢34 _ {X2114,a20,a22 ‘ 14, Aog, A22 € F;, by € ]Fq},

14,020,022

7T al4,a a . .
= Ku 2 . ¢l — _
where X! IndY Infy Ay 020922 - The family Irr(U)er consists of ¢(¢ — 1) char

acters of degree ¢°.

The nonabelian core €2. This core occurs for ¥ = {aq;, a3}, and we have
o S= {a17a2, 064,045,046,CY77<19,0410,041170413},
° Z = {045,(110,@11,(113}7
o A={a3} and
o L ={ag}.
Using the method of Section 3.2, we take
o Y = X7 where J = {ag, ag, a9},
e X = X7, where Z = {a1, a4, a7} and then we have that
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Figure 4.4: A picture representing the configuration of €2 of F.
e H=YZ.

In this case Equation (3.2.3) is
so(—asty + aroty) + se(arots — arsty) + so(—ants + aists) = 0.

For ay; # asals /a3y, we have Y’ = 1 and Y is normal in H. Then as explained in Remark

3.5 we get the family of characters
1 (U)ge = {0 | a5 ay, a5y, ar3 € Fy.an # as(a13/a10)*} C Trr(U) ez,

where

* I *
Xas,alo,au,aw — IndAU IanCUJ \45:410,011,013

We have that Irr(U)¢. consists of (¢ — 1)*(q — 2) characters of degree ¢*.

For ajlr = a5a%3/a%0, we have X' = X1’4’7 = {1’13174’7(75) | t e Fq} and Y/ = X269 =

IAg]

{z269(s) | s € F;}, where

r147(t) = x1(afot)m(a5a13t)x7(a5a10t) and Z269(s) = xQ(afgs)xﬁ(aloalgs)xg(—afos).
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We can take any complement of Y’ in Y, and we choose Y = X,Xy. Then we have ﬁ/ff =

X'Y'Z, which is abelian. We denote by A%@10:413 the character \%-%10-%11813 with q;; =

asaiy/aiy. For bygz,bage € Fy, we define \J>"19% e Trr(X'Y'Z) by extending \%:®10:15,

b1,4,7,b2,6,9

and setting )\Zi;a;?é;f:g(ZL’L477<2§)) = gf)(bl74’7t) and )\as,alo,als (I2’6’9(t)) — ¢(b276’9t) for every

b1,4,7,b2,6,9

t € F,. Then as explained in Remark 3.5 we get the family of characters

Irr(U)ga = {x;> %% | as, axo, ar3 € Fr 147, 0269 € Fyl,

b1,4,7,b2,6,9

where

a5,a10,013

_ U HXc yas5,a10,013
Xb1,4,77b2,6,9 - IndHX}c Inf A

H/Y “bia7,b269°

We have that Irr(U)Z, consists of ¢*(¢ — 1)® characters of degree ¢°.

We have that Irr(U)ez = Irr(U)ge U Irr(U)32 and this gives all the irreducible characters

corresponding to €2,

The nonabelian core €. This core occurs for 3 = {a1s, a1}, and we have
o S = {1,303 05 06, 07,08, a9, 010, 12, Q16 },
° Z = {@8,0497041270416}7
e A={ay} and
o L ={a3}.
Using the method of Section 3.2, we take
o Y =X, where J = {as, ag, a1p},
o X = X7, where 7 = {a1, a3, ar} and then we have that

o H=X,YZ.
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@16 12

Figure 4.5: A picture representing the configuration of €* of F,.

In this case Equation (3.2.3) is
55(a8t3 + a12t7) + 86(—&8t1 — 2a9t3) -+ 510(—a12t1 + 2&16t7) = 0

For a4 # aga?,/a2, we have Y/ = 1 and Y is normal in H. Further, H/Y = X, Xz, so
12/ a3

as explained in Remark 3.5 we get the family of characters
Irr(U) gs = XZf’ag’m’a% | ag, ag, a12,ats € By ajg # ag(arz/as)?, by € Fy} C Irr(U)gs,

where

as,a9,a12,alg AUT as,a9,a12,a7g
Xb, = Ind Infieug Ay, ,

and )\Zj’ag’ama% € Irr(H/Y) is defined in the usual way. We have that Irr(U)%; consists of
q(q — 1)3(q — 2) characters of degree ¢*.

For a1 = agaiy/aZ, we have X' = {x137(t) |t € F,} and Y’ = {x5610(5) | s € F,}, where

1'1,377(15) = .CCl(2&9&12t>$3(—G,galzt)l'7(a§t) and .1'5’6710(3’) = 1'5(2@9&128)1’6(ag(llgs)iﬁlo(—agS).
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We can take any complement of Y’ in YV and we choose Y = X;Xj0. Then we have
H)Y = XoX'YZ/)Y and Y’ C Z(H/Y). From now on, we denote by \*%@12 the char-
acter \%9:012:016 with a5 = agal,/a.

A computation in H/Y gives

[ZEQ(S), $1’377<t)] = $576710(—8t).

Therefore, H/Y is the direct product of Z and X,X'Y/Y. Further X, X'Y/Y is isomorphic
to the three-dimensional group Vj for f(s,t) = —st from Section 3.1.
We label the linear characters of X, X'Y/Y by Xbab1s7- By tensoring these characters

fHXx

with \%®9%2 and then applying ImdUHX)C In arv

we obtain the family of characters

Irr(U)fzg = {XGB’ag’m | as, ag, ais € F;, ba,bi37 € Fq}7

b2,b1,3,7

which consists of ¢%(q — 1)® characters of degree ¢>.
Let asg10 € Fy. We write \®%®9%12:95610 for the linear character of Y'Z defined by

extending A*%:%2 to Y’ in the usual way. By applying Ind)U(,YXZ Xy Inf;(/Z);éZX’C to these

linear characters we obtain the family of characters
3 ag,a9,a12,a5,6, X
II‘I‘(U)@ = {X 8,49,812,85,6,10 | as, ag, 12, 5610 € Fq },

which consists of (¢ — 1)* characters of degree ¢*.
We have Irr(U)gs = Irr(U) g U Trr(U)32s U Irr(U)3; and this gives all the irreducible char-

acters corresponding to €3,

The nonabelian core €. This core occurs for ¥ = {a14, 15}, and we have

o S= {04270447 O, (7, Qig, 10, 0411,041470415},
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Figure 4.6: A picture representing the configuration of €* of Fj.
o Z = {ag, 014,15},
o A={w, a3 a5} and
o L ={ag,ais,a13}.
Using the method of Section 3.2, we take
e Y = X, where J = {ag, a7, a11},
o X = X7, where 7 = {as, a4, ag} and then we have that
e H=YZ.

In this case Equation (3.2.3) is
se(aiots + 2a14ts) + s7(—ajote + aists) + s11(—arats + arsty) = 0.

For p > 5, we have Y/ = 1 and Y is normal in H. So as explained in Remark 3.5 we

obtain

Il"l"(U)Ié4Z5 — {Xa10,a14,a15 | a9, 14, G5 € ]F;}
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by applying Ind*“Z Infx; to the characters in Irr(Xs\(zuzy)z. We have that Irr(U)ZéfE’

consists of (¢ — 1)? characters of degree ¢°.

Now suppose p = 3. We have X' = {z345(t) | t € F,} and Y' = {z711(s) | s € F,},

where

$27478(t) = xg(a15t)a:4(a14t)x8(a10t) and IL‘677’11(8) = 1]6(CL15S)I7(CL14S>ZE11(—alos).
We can take Y = XsX11, and we have that ]:I/f/ >~ X'Y'Z is abelian. This yields

p=3 _ a10,014,015 X
Irr(U)ya ™ = {Xbm’s,bﬁ,m | @10, a14, 015 € B by ag, be 711 € Fy},

where these characters are obtained by applying IndUHX’C Infgilf to the linear characters

>\a107a14:a15

bans by Of H/Y , which are labelled in the usual way. We have that Irr(U )ng consists of

q*(q — 1)3 characters of degree ¢°.

The nonabelian core €°. This core occurs for ¥ = {aq1, a1, a1z}, and we have
e S={ay,...,a3},
e Z=3Y= {CV11, CY1270413}7
e A=y and
e L=0.
Using the method of Section 3.2, we take
e Y = X7 where J = {as, ag, ag, a1p},
e X = X7, where Z = {a1, a3, ay, a7} and then we have that

e H= XQXGYZ
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In this case, Equation (3.2.3) is

35(—a11t§ +a12t7) +38(—2a11t3 —l—a12t4) + 59(—a11t1 +6L13t4) +510(—a12t1 — a13t3) = 0 (431)

Let p > 5. We want to compute X’. By choosing s5 = 0, we must have, for every

S8, 89, S10 111 an

88(—26L11t3 + a12t4) + 59(—a11t1 + a13t4) + 510(—(112151 — CL13t3) = 0 (432)

This yields a linear system of equations in ti,t3,t4 given by setting each expression in the
brackets equal to zero. The determinant of the associated matrix is 3aj1a12a13 # 0. There-
fore, this implies t; = t3 = t; = 0. Equation (4.3.1) then becomes aj2s5t7 = 0 in this case,
which of course holds for every s; € F, if and only if ¢ = 0. Hence X’ = 1.

We also have that Y’ = 1. Namely, we can rewrite Equation (4.3.1) as

t1(—a1159 — a12510) + ta(a128s + a13S9) + t7(a1285) — 2a115st3 — ai3Siots — C11155153 =0.

For this equality to be satisfied for every ¢i,t3,%4,t; € F,, we notice first that s; = 0 by

choosing t; =t3 =t, =0 and t; = 1. Then we can rewrite the above equation as

t1(—a1189 — a12510) + ta(a12ss + a1389) + t3(—2a115s — a13519) = 0. (4.3.3)

This gives rise to a system of equations in sg, Sg, s19, and the determinant of the associated
matrix is again 3ajia2a13 # 0. Hence sg = s9g = s10 =0, and Y/ = 1.
Then X’ =Y’ =1, and Y is normal in H. Also we have F_I/Y >~ Xy XXz is abelian. For

by, bg € F, we let )\Z;b’g”’a”' € Irr(Xs\(zuz))z be the linear character with the usual notation.
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Then as explained in Remark 3.5 we obtain

>5 K K
III"(U)I&)— _ {XZH a12,a13 | a1, a12, 13 € F;,bg, be € Fq},

2,b6

where x4 = Ind*“% Infy N 242 We have that IIT(U)Ié525 is a family of ¢*(q—1)3
characters of degree ¢*.

Now suppose p = 3. To compute X’ (respectively Y'), we see by Equation (4.3.1) that
we get a system of linear equations as in Equation (4.3.2) (respectively Equation (4.3.3)) in
t1,ts3,t4 (respectively sg, So, s109), but now this gives a nontrivial space of solutions. In fact,

we notice that 3a;1a12a13 = 0 in this case. Correspondingly, we get X' = {z1347(t) |t € F,}

and Y’ = {xg910(s) | s € F,}, where
$1,374’7(t) = xl(algt)x3(—algt)x4(aut)x7(—a11a12t2) and

$8,9,10(8) = $8(a138)$9(—a128)$10(a118)'

We can take Y = X5X3Xg, and we have fI/Y/ = X2X6X’YZ/1~/. By Proposition 3.3, we
have that Irr(V | A) is in bijection with Irr(H /Y | A).

We continue by considering Irr(H /Y | A) and note that Y” lies in the centre of H/Y . For
agg10 € Fy, we let \%910 be the extension of A to Y'Z with A%910(xg910(t)) = ¢(asg,10t)
for every t € F,. Then Irr(H/Y | A) decomposes as the union of Irr(H/Y | \®910) over
agg,10 € F along with Irr(ﬁ/Y | A).

A computation in H/Y gives

[26(5), 1,3.4,7(t)] = @s0,10(51).

By Lemma 1.12, we have that Irr(H /Y | \%210) is in bijection with Irr(X,Y Z/Y | Aeso.10),

Further, we have that X,Y 7/ y XoY'Z is abelian, and we label the linear characters in
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Irr(XoY Z)Y | A89.10) as Ay, 2S99 i the usual way. This gives the family of characters

1,p=3 a11,012,013,08,9,10 X
Irr(U)% = Xb, | a11, a12, a13, ag910 € Fq by € Fy},
a11,a12,013,08,9,10 __ U XoX'Y Xz X |011,012,013,08,9,10
where by Remark 3.5 we have x,, = Ind, x1yx.x, Infx2yz/§7 b, .

We have that Irr(U) 7~ consists of ¢(¢ — 1)* irreducible characters of degree ¢*.

It remains to consider Irr(H/Y | A). We have H/Y = X,X'XsY Z/Y and Xg is central
in ]:I/Y For ag € IF;, we let u% : X¢Z — F, be the extension of y1: Z — F, to Xg defined
as usual, and A% € Irr(XsZ) be such that A% = ¢ o u%. Then Irr(H/Y | ) decomposes as
the union of Irr(H /Y | A%) over ag € Fx along with Irr(H /XY | \).

A computation in H/Y gives

[1]2(t)7 171,374’7(S)] = $6<—a128t)l‘11(a%2a1383t>.

We note that the quotient H /(Y ker u%) = XoX'XgY Z/(Y ker %) is isomorphic to the
three-dimensional group V; where f(s,t) = aiat(ai1a12a135> — ags) is as given in Section 3.1,
and we have that Irr(H/Y | A%) is in bijection with Irr(H /(Y ker u%) | A%). Thus we can
apply the analysis of Irr(V}) in Section 3.1. We let d = ag/a11a12a13.

Suppose first that d is a square in F,. In this case we write a;¢4 for ag, and we define

e € F, such that €2 =d. We let
W1 = {ZL‘1737477(€S> | S € IF3} and W2 = {JZQ((G_Q/CLHCL%QCng)t) | t e F3}7

ai1,a12,a13,a1, .
and we define ¢,y 20, for ¢1347,c0 € Fy of WiWoXgY Z/(Y ker \*11:#12:413:016 ) a5 in

Section 3.1. Then we get the family of characters

2,1,p=3 _ a11,a12,013,41,6 X
ITT(U>¢5 = {Xc1,3,4,7,02 | a1, @12, a13 € ]Fq .16 € 110120135y, 1,347, C2 € F3},
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where

a11,a12,013,a1,6 — [pdY Ian'WzXaYXzX;c )\011,012,013,01,6
XC1,3,4,7,C2 X'WaXeY Xz Xk WiWaXeY Z/(Y ker \*11:012:013:91,6) “\ey 3 4 7,2

2,1,p=3

o5 consists of

and S, denotes the set of nonzero squares in F,. We have that Irr(U)
9(q — 1)*/2 characters of degree ¢*/3.
Suppose now that d is a nonsquare in F,. In this case we write ag¢ for ag. We write

A1,812,018,02.6 for the linear characters of XgY Z/(Y ker \11:912:418:626) ipy the usual notation.

As explained in Section 3.1, we get in this case the family of characters
II“I“(U)i’sZ’ng = {xmrm2ana2s | gy 6 € B\ (a110120139,), @11, @12, a13 € T},

where

X' XY X2zX
Xall70«1270«1370/2,6 _ Inf 6Y XzXK ))\a11,a12,a13,a2,6’

Ind¥
X'XeY Xz Xk XeY Z/(Y ker \*11°912:918:92,6

and S, is as defined above. We have that Irr(U)2"~" consists of (¢ — 1)*/2 characters of
degree ¢*.
Similarly, we can analyse Irr(H /XY | A) using the arguments for the three-dimensional

group Vy where f(s,t) = ajjaiyai3s’t. Therefore, we get the family of characters
II‘I‘(U);;)’;?ZB = {Xa11,a12,a13 ‘ a11,Q12,a13 € ]F;},

where the characters are given by

X'XeY XzX
Xa11,a12,a13 — Inf 6 ZAK )\all,a12ya13.

U
Indyxoyx 2 xe by y7 oy

We have that Irr(U )‘;”523 consists of (¢ — 1)3 characters of degree ¢*.
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Putting this together we obtain

II"I"(U)@?S = Imr(U)é’sp:3 U Irr(U)i},l’p:g U Irr(U)i},z’p:g U Irr(U)?é’f:?’.

The nonabelian core €°. This core occurs for ¥ = {a19, a3, a14}, and we have
e S= {0417043, Oy, 05, O, Oi7, O, Og, (10, (12, Oé13,0z14},

o Z=2%="{am, 3, q14},

A ={as} and

L ={a}.

Using the method of Section 3.2, we take
o YV = X, where J = {ay, a7, a5, a9},
e X = X7, where Z = {ay, a5, ag, @19} and then we have that
e H=X3YZ.

In this case Equation (3.2.3) is

s1(—aut] + aatio) + s7(—aiats + aists) + ss(aats — 2anats) + so(aizts + ants) = 0.

The computations in order to determine X’ and Y in this case are very similar to the
ones detailed in the case of core €°. For p > 5, we have that Y’ = 1, and Y is normal in H.
Also we have H/Y = X3Xz is abelian. For b3 € F, we let A e Irr( X\ zugy) 2 be

the linear character with the usual notation. Then we obtain

II"I"(U)Zé625 = {nglz,am,au | ai2,013, Q14 c IF;(, b3 € ]Fq},
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where ! “*"" = IndY Infy s Ay We have that Irr(U)7é625 is a family of (¢ — 1)*
characters of degree ¢°.
Now suppose p = 3. We have X' = {z45610(t) | t € F,} and Y’ = {z759(s) | s € F,},

where

T456,10 = I4(—a14t)$5(Cllst)%(a12t)$10(a12a14t2) and x789 = x7(a148)rs(—a135)T9(a125).

We can take Y = X; X7 X5, and we have ]:I/Y/ = X;;X’YZ/Y/. By Proposition 3.3, we have
that Irr(V | A) is in bijection with Irr(H /Y | A).

A computation in H/Y gives

[#3(5), Za56,10(t)] = 789(—5t).

We notice that H / Y is the direct product of Z and the group X3X'Y/Y = X3X'Y’, which
is 3-dimensional. Then the analysis in Section 3.1 applies with f(s,t) = —st.
We label the linear characters of X3X'Y/Y by Xbs,bas10- DBy tensoring these characters

FHXx

with A*12:413:%414 and then applying Ind%X}C In arp

we obtain the family of characters

1p=3 _ a12,a13,a14 X
Irr(U)gs ™ = {Xbyp1smmg | 012,013,014 € Fy' b3, basei0 € Fo},

which consists of ¢?(q — 1)? characters of degree ¢*.
Let us fix argg € F'. We write A"12:713:014:97589 for the linear character of Y'Z defined in
the usual way. By applying Ind%.y- XXk Inf})fgézx’c to these linear characters we obtain the

family of characters

2,p=3
II"I"(U)QGP _ {Xa12,a13,a14a7,8,9 12, A13,A14, A7 8.9 € F;},
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which consists of (¢ — 1)* characters of degree ¢°.

We have I1r1r(U)1é6:3 = Irr(U)é’g’:3 U Irr(U)i’Gp:?’.
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CHAPTER 5

PARAMETRIZATION OF Irr(U) IN RANK 5 AND
HIGHER

In this last chapter, we generalize the ideas of the previous chapters to get a parametrization
of the irreducible characters of a Sylow p-subgroup U of a split finite group of Lie type G
of rank 5. As we see in Table 2.2, the total number of nonabelian cores in this case gets
higher, so we would like to develop a method to deal with larger classes of nonabelian cores
with a similar structure. For example, we observe that the cores ¢B4, ¢P+ and the core ¢*
of F, studied in Chapter 4 have a similar behavior, and in fact they can be simultaneously
investigated, as we explain in Section 5.1. In order to do this, we define a triple of invariants

associated to a nonabelian core.

Definition 5.1. Let € = (S, Z, A, £, K) be a nonabelian core. We say that € is a (z,m, ¢)-

core if
. 12\ D) =2,
e |[S\D(S)| =m, and
e there are c triples (4, j, k), with ¢ < j and «;, a;;, oy, € S, such that a; + a; = ay.

Section 5.1 contains the main original feature of this chapter, that is, to prove that the

(3,10, 9)-cores that occur in Bs, C5 and D5 can be studied simultaneously. In fact, the study
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of these cores turns out to be very similar to the study of €P* in Section 4.2. We apply
this result, along with the analysis in Chapter 3, to parametrize Irr(U) for G of type Bs,
Cs and D5 in Sections 5.2, 5.3 and 5.4 respectively. Finally, we collect in Section 5.5 all
triples (z,m, ¢) for nonabelian cores in rank 6, and some remarks towards a parametrization

of Irr(U) in ranks higher than 5.

5.1 (3,10,9)-cores in rank 5 or less

In this section, € = (S, Z, A, L, K) denotes a (3, 10,9)-core such that S = {f,..., S0} and

Z = {Ps, B9, S0}, and the relations between roots of S, for each 1 < i < j < 10, are
Bi + B; = By if and only if (4,7, k) € T for some k € {1,...,10},
where
T =1{(1,3,5),(1,6,8),(1,7,9),(2,3,6),(2,5,8),(2,7,10),(3,4,7), (4,5,9), (4,6,10) }.

Notice that D(S) = @. The configuration is then as in Figure 5.1, with notation for

pictures as explained in Section 4.1. Furthermore, we assume that

(2. (1), w5, (1;)] = wp (i stil;), (5.1.1)

where if i < j, then ¢;; € {£1}if (¢,4,k) € T for some k, and ¢;; = 0 if (4,7, k) ¢ T for any

k. For the relations in the case i > j, we recall that €; ; = —¢;;.

Remark 5.2. By studying €, we can completely determine the irreducible characters of U

arising from every (3,10, 9)-core for G of rank at most 5. In fact, let ¢ = (§", 2", A', L', K')
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Figure 5.1: A picture representing the (3,10, 9)-core €.

be an arbitrary (3,10, 9)-core in this case. Then we have that

II‘I‘(XS/)Z/ = Irr(XS’\D(S’))Z’\D(S’) X Irr(XD(S’))Z’ﬂD(S’)7

and we can check, using CHEVIE, that

¢:=(S'\D(S),Z\D(S), A, L K

has the same structure as €. We can determine character labels for Irr(U)g through the

procedure described in Section 2.4. Assume that the irreducible characters of Irr(U)z are

labelled as x; for a € (qu)k and b € FZ for some h, k > 0. Then the labels for the irreducible

&
/

a /
Wy » Where

characters in Irr(U)e are of the form x

d=(d,....d )e(E) and b=

i1 > Vg q

where the indices are determined by

SRR

h/
v; )R,

) Int

DS)NZ ={ai,...,05,} and DS\ 2 ={aj,...,q;,}.
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The goal of this section is to prove that even without knowing the exact value of the
constants €, ; € {£1} for (i,5,k) € T previously defined, we can still determine the repre-
sentation theory of Xs in a uniform way. The following result allows us to determine some

dependence among the ¢; ;’s.

Lemma 5.3. Let 3;,3;, 8k € S. Then

(i) [z, (t:), 2, (t5)] = [w5,(t5), T, (—1i)].
(i) ([, (t:i), zp,(—t5)]s 2o, (E) [, (85), 2 (—tw)], s, (E)][[s, (k) 26, (—ti)], s, ()] = 1.

Proof. Using Equation (5.1.1), we get

[2,(t:), g, (t5)] = wp, (€ijtit;) = zp, (—€jitit;) = [x5; (), x5, (—1i)],

which proves (i).
For (ii), we recall the Hall-Witt identity [Is2, Section 4B], valid for every group G and

every x,y,z € G,

[,y 2 [y, 27, 2z, 27 )" = L

Now we just put « = xg,(%;), y = 2p,(t;) and z = x5, (), and the claim follows by observing

that [[XS,Xs],Xs] g Z(Xs) ]

In order to be precise for our further computations, we need to determine how to write
€25, €15, €46 as functions of €1 3, €16, €17, €23, €27 and €3 4. We repeatedly use Lemma 5.3(i)

in the following computations. We get

[xﬁ2 (tQ))xﬁs (t5)] = [$55(t5),$52(—t2)]
= [[xﬁl (t5)7 L83 (61,3)]7 LBy (_tQ)]
= [z, (e13), ma, (t2)], w5, (15)]
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= [wg,(—e€1,3€23L2), 75, (5)]

= 2, (€1,362,3€16tat5),

where between lines 2 and 3 we used Lemma 5.3(ii), along with the fact that X, and Xp,

centralize each other if 4,5 € {1,2,4}. Then €35 = €1 3€23¢1 6. Similarly, we have

[28,(t4), 85 (15)] = w5 (t5), 23, (—1a)]
= [[zs, (), 25, (€1,8)], 5, (—1a)]
= [lzas(e13), 2, (ta)], w3, (15)]
= [ws:(e13€34t4), 75, (15)]

= $5g(—€1,3€3,461,7t4t6),

that means €45 = —€1,3€34€1.7, and

26, (ta), 25 (t6)] = [55(t6), Tp, (—ta)]
= (25, (t6), 255 (€2,3)], 25, (—1a)]
= ([, (e2,3), 25, (ta)], 5, (t6)]
= [z, (e2,3€3,414), 73, ()]

= Ty <_6273637462,7t4t6)>

which finally gives €46 = —€2 3€34€27. We are ready to prove what was previously claimed.

Proposition 5.4. Let € = (S, 2, A, L,K) be as above, and let us define ji, ..., jio such that
ﬁi = Oéji, fO?”i = 1, ey ]_0 LetI = {jl,jg,j4}, j = {j57j6,j7} cmd X = XI, Y = Xj, and
let H = X5,YXz.

o Ifp >3, then we have that
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p>3 __ @jg+%59,%10 X
Irr(XS)Z - {ij3 Ajg, Ujg, Ajyg € Fq ) bjs S Fq}v

where

Ajg G 0 Ajg Qg 0
X ag 492010 _ IndAUI Inf}CuJ g 49 %10

bjg bjs )

and )\ij’a”’ajm € Irr(Xp,Z) is as in the notation of Section 2.4.

If p =2, then we have
Irr(Xg)%:2 = IH(XS)IZLP:2 U Irr(XS)épﬂ,

for

Lp=2 _ ¢, %i5.96.d7:%8 %59 %10 o e 0. X 0 A
Irr<XS)Z = {ch1,j2,j4’cj3 Ajs o571 Ajgs Ajgs Ajio € IE‘q » Gt jiajar Cis € FZ}’

and
2.p=2 _ [, aj5,0jg,a; X
Irr(XS)Z - {X 8TVOTI0 | gy Qg Ay € ]Fq }7
where
Ajs,56,37 %58 Xig %10 — IndU Ian’W2YXzX}c Aajsyja,jwajgvajgraho
chl,j27j47c]'3 X'WoY XzXx W1W2yz/(f/kerA“j5,j6,j7’aj8’ajg’“j1o) Cj1,32,34:653 )

and

i s X'YX=2X i s
Xa]gﬂ]gﬂﬂO = Indg](’YXZX;C IIle ZAK )\ajg,ajg,aho,

for X' ={wp,5,8,(t) [ t € Fg} and Y' = {zp, g;,6,(5) | s € Fy}, with

LB1,B2,B4 (t) - $51(aj10t)l‘52 (ajgt)xﬁzx (ajst)v T 35,B6,87 (3) = Tgg (aﬁos)xﬁa (ajgs)xﬁ7(aj83)
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and Y = XpeXpr, Z = Xz/ker(u®s99410)  and

Wy = {1’ L B1,82,84 (aj57j67j7/aj8aj9aj10)}7 Wy = {L L3 (ajsajgajlo/a§5,j6,j7)}a

with the usual notation for \e2>3697098%99: %10 & Trp (W WoY Z /(Y ker A%sdorir s %o %o ) ),

Cj1,32:34°C53

ps%9:%0 2 7 — B and A\%s%9:%10 € Irr(Z).

Proof. Let A = A%s%9%10 be such that A(zg,(t)) = ¢(a;t), for i = 8,9,10. We want to
apply the reduction lemma with Y and X as previously stated. Then we only need to check

assumption (v). Expanding
[, (81) 23, (E2) 25, (L), 235 (85) 265 (56 )48, (s7)] = 1,
we get
2 (€1,656t1 + €2,555t2) T3, (€1,75781 + €4,555t4) T3, (€2,757t2 + €4656t4) = 1.
By applying u, this gives
S5(€2,5a5t2 + €15050t1) + Se(€1,6aj5t1 + €4,6aj,0ta) + s7(€17aj,t1 + €27a4,,t2) = 0.

Let us find X’ and Y’ as defined in Section 3.2. In order to find X’, we want the above
equation to be satisfied for all ss, sg, s7 € IF;. The linear system of equations in the 1,2, %4

and associated matrix are

)
€o 5.t €rsa:.ty =0
2,5058%2 + 4,5jo 4 0 €255 €455
€1,60j5t1 + €4,6,,t4 =0 and M = | ¢ ga;, 0 €4,60410
. €170 €27, O
| €170t + €2,705,0t2 = 0 e e
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By using the expressions for €y 5, €45 and €46 previously obtained, one gets
det M = (€1 6€2,7€45 + €1,7€2,564,6) Qs Qo Ujrg = —2€1,3€1,661,7€2,7€3.40Ljs Uiy Uiy -

Let p # 2. Then clearly det M # 0 and X’ = 1. Similarly, we can check that Y’ = 1.
Therefore, the reduction lemma applies. Repeating the discussion as in ¢€P4 in Section 4.2
with 3; in place of «; for i = 1,...,10, we get the claim for p # 2.

Now if p = 2, then ¢;; = 1 for every ¢ and j with (¢,7,k) € 7. The claim now again

follows from the computations in the case of ¢P4. n

An important consequence of Proposition 5.4 is that we can also parametrize (3,9, 6)-
cores that arise from (3,10, 9)-cores with the same structure as € by removing f; from S.
We state the result in the case when no roots in the corresponding quattern are in direct
product; the argument in Remark 5.2 applies to generalize the result to every (3,9, 6)-core
arising from a (3,10, 9)-core with the same structure as the core € defined in the remark,

by removing the root that plays the role of 35 in €.

Proposition 5.5. Let € = (S, 2, A, L,K) be a (3,10,9)-core as above, and let us suppose
that ® = (8", 2, A, L,K) is a (3,9,6)-core such that S = S\ {Bs}.

e [fp >3, then we have that
Irr(XS’)Z,'Zg = {Xajgﬂjg?ajm Ajs, Ajg s Ajyg € F;}v

where

Xajsvajgﬂho — Ind‘AUI IanCUJ >\aj8’aj9’a1107

and I, J are as in Proposition 5.4, and \%s%9s%10 € Irr(Z) is as in the notation of

Section 2.J.
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e [fp=2, then we have

2,p=2 Ajg+%59-%510 . . . X b L
Irr(Xs)z" = by iniabisssain | Css Qior Ajro € Fa bi1zas Vis.oir € Fols
where
Ajg Q59,51 I U X/YXZX}C Ajg 59,0510
= Ind Inf A
ijpjz 7j4vbj57j67j7 X'Y Xz Xk X'Y'z bj1’j2,j47bj5’j6,j7 ’

and X, Y, X', Y and Z are as in Proposition 5.4, and )\st’%’agw . € Irr(X'Y'Z)

31,92,34°%75,76:7

is defined as usual.

The proof of this result follows by applying the reduction lemma to Xs inflating over Y
and inducing over X in the case p > 3, and inflating over Y = X 3:X 3, and inducing over any
transversal X of X’ if p = 2. The claim then immediately follows from the computations in

Proposition 5.4.

5.2 Parametrization of Irr(Usg,)

In the case of type Bs we get 10 nonabelian cores, as we see from Table 2.2. Namely, we
have eight (3,10, 9)-cores, one (3,9, 6)-core, and one (5, 16, 16)-core. The (3,10, 9)-cores and
the (3,9,6)-core are of the form considered in Section 5.1; we can then determine at once
the parametrization of the irreducible characters arising from these classes of cores. The
(5,16, 16)-core is dealt with via the method outlined in Section 3.2.

The study of these cores allows us to complete the parametrization of Irr(Ug,). The
labels for irreducible characters can be found in Table D.5. As a consequence, we obtain the

formulas for k(Ug.(q),¢?) for d > 0 as polynomials in v. They are collected in Table 5.1.

The eight (3, 10,9)-cores. We collect in Table C.1 the relevant information for the (3, 10, 9)-

cores in type Bjs, which we call C]I?"”, cee 655. From Table C.1, we see that no commutator
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D | k(Us,. D)

v° + 50t + 100% 4 100 + 50 + 1

40° + 17v* + 2703 + 1902 + 5o

07 + 808 + 290° + 560 + 560° + 2602 + 4v

207 + 150° + 4905 + 83v* + 7203 + 2902 + 4v

08 4+ 907 + 3708 + 87v° + 1190 + 87v3 + 2902 + v
30T + 2300 + 7005 + 1050* + 7T + 2402 + 2v
900 + 48v° + 90v* + T1v3 + 210v* + v

v® 4+ 807 + 310 + 730° + 960! + 5703 + 110 + v
v+ T8 + 230° + 37Tv* + 2603 + To?

205 + 1005 + 190t + 1403 + 302

v® + 3vt + 303 + 02

—_

[\

w

i

ot

=]

-3

[ed]

©

QR NRNRNR R (R

=
=]

Table 5.1: Numbers of irreducible characters of U, of fixed degree, for v = ¢—1 and p # 2.

relations [x;(t;), x;(t;)] = zx(£2t;t;) are involved. Therefore Proposition 5.4 applies. Labels
for irreducible characters are obtained as in the statement of Proposition 5.4; these are

collected in bold font in Table D.5.

The (3,9,6)-core. This core, which we denote by COBS, occurs for ¥ = {ay7, a9}, and we

have

S = {CY27047a g, (10, 13, 0414,041670117,@21} U D(S)7

o Z = {ays, 17,091} UD(S),
o A= {(]{1,0[3,(1/57066} and
o L ={ay, o1, 18,019},

and D(S) = {ag}. We see that S\ D(S) is contained in the quattern corresponding to €5°

or €?5, namely by removing the root ag, playing the role of 5 in Proposition 5.5. Therefore,
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Proposition 5.5 applies. The corresponding family of characters is given in bold font in Table

D.5.

The (5, 16, 16)-core. In order to study this core we apply the analysis outlined in Section 3.2.
Since this is a distinguished nonabelian core of Bs, we call it €55, Tt occurs for ¥ = {ay7, as },

and we have

8 = {062, Qg3, Oy, Og, Q7, g, (g, (10, (11, (12, (13, (14, (15, D16, (17, 0521},

Z = {&12,(115,0416,0417,@21};

A ={a, a5} and

L ={ag, 19}

We take
e Y = X7, where J = {az, as, aq1, 013, a4},
o X = X7, where Z = {as, ay, ag, g, 19} and then we have that
e H=X3YZ.

In this case Equation (3.2.3) is

s7(—ayaty — argty — arrtio) + Ss(aiate + aists) + S11(—aists — 2a17ts)

+ s13(a1eta + aaitio) + S1a(—ar7ts — agite) = 0.

Let ay # aiglais/an)?>. We have that Y/ = 1 and Y is normal in H. Moreover,

H/Y = X3Xz. As explained in Remark 3.5, we get the family of characters
Irr(U) gny = {XZQQ’M’MG’GN’% | @12, a5, ars, arr, a3y € B an # arg(a1s/a12)’, by € Fy},
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where

G12,015,016,017,051 AUT 012,015,016,017,03
by = Ind Infry s b ,

and AZ;Q’GIS’GIG’QI7’(1§1 € Irr(H/Y') is defined in the usual way. We have that Irr(U) s, consists
of q(q¢ — 1)*(q — 2) characters of degree ¢".
Assume now that as; = aig(ais/ain)*. We have X' = {2246910(t) | t € F,} and Y’ =

{z7s1113.14(5) | s € F,}, where
T2.4,69,10(t) = T2(—ai5a01t) T4 (—2a10a17091) 76 (a12a15091 ) T (aT5a178) T10(aT50161),

and

$7,8,11,13,14(S) = x7(—af5a218)x8(2a12a17a213)x11(a12a15a21S)xlg(—a%5a173)x14(af5a163).

We can take any complement of Y’ in Y, for example we fix Y = X7;XsX11X13. Then we
have H/Y = X3X'YZ/Y and Y’ C Z(H/Y). From now on, we denote by A%12:#15:#16:417 the
character \%12:415:016:017:921 of Trr(Z) such that as; = ai6(ays/ais)?.

A computation in H/Y gives

[23(5), T24,6.910(t)] = T7.811,1314(51).

The subquotient H / Y can then be decomposed as a direct product of Z with the subquotient
X3X'Y/Y, which is isomorphic to the three-dimensional group V; for f(s,t) = st as defined
in Section 3.1.

We label the linear characters of X; X'Y/Y by Xbs,baa6010- By tensoring these characters

XK

with \%12:¢15,016:417 " and then applying Ind%x,c In v

we obtain the family of characters

2 _ 12,015,216,317 X
Irr<U)¢B5 - {Xb37b2,4,6,9,10 ’ 0/127 0/15, a167 a17 e ]Fq ) b37 b274,679,10 6 Fq}:
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which consists of ¢?(q — 1)* characters of degree ¢°.
We write \12:015:016:017:07.811.13.14 for the linear character of Y'Z defined by extending
A\12:015,016,017 to Y/ pontrivially in the usual way. We apply Ind¥. XXk Infif,/ZXZX’C to these

linear characters, and we finally obtain the family

3 _ a12,a15,016,817,47,8,11,13,14 X
Irr(U)ges = {x | @12, a1s, a16, a7, azg 11,1314 € Fy },

which consists of (¢ — 1) characters of degree ¢”.
We have Irr(U)gss = Irr(U) gp, U Irr(U) 3, U Irr(U)35, and this gives all the irreducible

characters corresponding to €Ps.

5.3 Parametrization of Irr(Uc,)

We get only one nonabelian core in type Cs, which we denote by €. This is a (3,8, 6)-
core, which is studied by applying the method outlined in Section 3.2. We obtain the
missing character labels arising from the antichain ¥ = {aj3, as}. This completes the
parametrization of Irr(Ug, ). The labels for irreducible characters are collected in Table D.6.

The expressions of k(Ug,,q%) for d =0, ..., 10 as polynomials in v are collected in Table 5.2.

The (3,8,6)-core. This core occurs for ¥ = {ay3, a}, and we have

S = {a1, a9, ag, a7, 19, 11, 14, 17} U D(S),

Z = {0, a4, a17} U Dy (S),

A= {0437 Oy, g, 0412} and

L = {ay, a5, s, agf,

with D(S) = D1(S) U Dy(S), for D1(S) = {aus, az} and Dy(S) = {as}. We take
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D | k(Ug,, D)
v® + 50t 4+ 1003 + 100? + 50 + 1

—_

08 + 8v® 4+ 23v* + 3103 + 200% + v

[\

V7 4 808 + 2905 + 550 + 5403 + 2502 + 4v

w

T+ 1205 + 480° + 88v* 4 78v3 + 31v? + 4w

i

8 + 907 + 3808 + 910° + 123v* + 86v° + 2702 + v
307 + 2405 4+ T4v® + 1100* + 8003 + 25v% + 2v
v® + 8v7 4 3208 + 780 + 1050v* + 6903 + 18v% + v

ot

=]

-3

207 + 1405 + 4405 4 68v* + 4603 + 1202 + v
308 + 17v° + 34v? + 2603 + Tv?

405 + 140v* + 1403 + 402

v° + 50t + 60° + 0?

[ed]

©
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Table 5.2: Numbers of irreducible characters of Ug, of fixed degree, for v = ¢ —1 and p # 2.

Figure 5.2: A picture representing the configuration of €%5.

e Y = X, where J = {ag, a11},
e X = X7, where Z = {as, a7} and then we have that

e H=XYZ.

Equation (3.2.3) now gives

se(—2a10t2 — aiaty) + s11(—arata — 2a17t7) = 0.

112



Let ay7 # a2,/(4a10). We have Y/ =1 and Y < H. Moreover, H/Y = X, Xz. Tensoring

with characters in Xp(s) and applying Remark 3.5, we get the family of characters
Irr(U)éc5 = {lelf’b’gl?”am’a%a” | @10, a13, 14,37, a2 € B a1y # a3,/ (4ay), b1, bs € F,}
of Irr(U)¢cs, where
XZ;?Z)’:B’M“’”T?’“” — Ind*? Inf;cuj()\zlw’m’a’{? ® A,

and )\leo’m’aT7 € Irr(H/Y) and A\;'*** € Irr(Xp(s))p,(s) are defined in the usual way. We

have that Irr(U)L.. consists of ¢*(q — 1)*(¢ — 2) characters of degree ¢°.

¢Cs

We now examine the case a;; = al,/(4a19). Here we have that X' = {zo7(t) | t € F,}

and Y’ = {z11(s) | s € F,}, where
Ta7(t) = xa(aat)r7(—2a10t)  and  x611(s) = xe(a145)r11(—2a10s).

We can take Y = X; as a complement for Y’ in Y. This gives H/Y = XlX’YZXD(S)/f/
and Y' C Z(H/Y). We denote by A%t the character \*0*447 ¢ Irr(Z) such that

ary = aiy/(4ar).

A computation in H/Y gives

[1(5), x27(t)] = e 11(—5t).

We then get H /f/ as the direct product of the three subgroups Z, X; X'Y/ Y and Xp(s)-
Moreover, X; XY/ Y is isomorphic to the three-dimensional group Vy for f(s,t) = —st as in

Section 3.1.
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We label the linear characters of X; X'Y/Y by Xby,boo- BY tensoring these characters with

Xk

iy we obtain

Anons ¢ rr(Z) and Ay € Trr(Xp(s))p, s), and then applying IndUHX}C In
the family of characters

2 a10,a13,814,022 %
II‘I‘(U)@ = {Xbl,b5,b2,7 | a9, A13, @14, A2 € Fq , b1, bs, b2,7 € Fq},

which consists of ¢*(q — 1)* characters of degree ¢°.
Let us fix ag 11 € IF;. We write \*10:914:96.11 for the linear character of Y’Z defined in the
usual way. If we apply Ind%,y x_ x, Inf, Y X2%K to the characters #0406t A2 for

a13, Ao € ]F; and bs; € F;, we obtain the family
3 a10,013,014,022,06,11 X
Irr(U)gs = Xbs | @10, @13, a1a, a2z, G611 € Fq ;b5 € Byl

which consists of (¢ — 1)® characters of degree ¢°.
We have Irr(U)ges = Irr(U)ke, U Irr(U)2., U Irr(U)3c., which gives all the irreducible

¢Cs ¢Cs ¢Cs

characters corresponding to €©5.

5.4 Parametrization of Irr(Up,)

We get 7 nonabelian cores in type D5, namely six (3, 10, 9)-cores and one (3,9, 6)-core. As in
the case of type Bj, these cores are of the form considered in Section 5.1. We now proceed to
investigate them, so we can fully parametrize Irr(Up, ). The labels for irreducible characters
are collected in Table D.7. We obtain new formulas for k(UDj;(q), D) when ¢ = 2¢, for
D=1,q,...,¢ and D = ¢3/2,...,4"/2, which are collected in Table 5.3 along with each
k(UDs(q), ¢%) for p > 3.

The six (3,10,9)-cores. We label these cores as Q:]ff’, ce Q:6D5. As in the case of type Bs,
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1 v° + 5t 4+ 100° + 100% + 5o + 1

q V8 + Tv° + 190* + 2503 + 1602 + 4o
q° 20° + 140° 4 35v* + 400 + 210v% + 4v
q

0, if p>3

4% 4 4ot ifp=2

3 0"+ 80° + 290° + 54vt + 5003 + 210 + 3v, if p >3
o7 + 808 + 280 + 53t + 5003 + 21v? + 3v, if p=2
0, ifp>3

4 ) el

q'/2 405 + 4t ifp=2

4 200 + 170° 4 420% + 420° + 170* 4 20, ifp >3

T | 306 1 180° + 4201 + 4203 + 1T0? + 2v, ifp =2

0, ifp>3

5 ’ =

T/2 | b 4 a0, it p—2

5 0"+ 80° + 290° + 53vt + 4303 + 140 + v, ifp >3
07+ 808 + 280 + 51v* + 4303 + 1402 + v, if p=2
0. ifp>3

6 ’ =

/2 40° + 4o, if p=2

6 V0 4 700 + 18v* + 1803 4+ Tv? + v, if p > 3

9 V0 4 60° + 170 + 1803 + T2 + v, ifp=2
0, ifp>3

7 ’ =

q'/2 vt ifp=2

. 20° + 8vt 4+ 1003 + 302, if p > 3
20° + Tvt 4+ 1003 + 30?, if p =2
7 v 4 203 + 0?

Table 5.3: Numbers of irreducible characters of UDj5(q) of fixed degree, v = ¢ — 1.

we collect in Table C.2 the relevant information for them. We are in a simply laced case, so

each of the constants cfff as in Equation (1.1.1) is either 1 or —1. The analysis in Section

5.1 then also applies in this case. The corresponding labels for irreducible characters can be

found in Table D.7; they are collected in bold font.

The (3,9,6)-core. We denote by €5° the unique (3,9,6)-core in Ds. It occurs for ¥ =

{10, 15, 16}, and we have

o S={aq,as, ag 07,00, 19, 13, 15, 16} U D(S),
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o Z = {15,016} UD(S),
Y A = {05370[5} and
o L ={ay, o},

and D(S) = {ag}. We note that S\ D(S) lies into the quattern corresponding to €5° by
removing the root a3, which plays the role of the root 83 in Proposition 5.5. As done in the
case of type By, Proposition 5.5 applies. As usual, the labels for the characters corresponding

to €5° are given in bold font in Table D.7.

5.5 Towards a parametrization of Irr(Uy,) for r > 6

For types up to rank 7, we can determine all triples (z,m, ¢) associated to cores. We collect
the numbers of (z,m, c)-cores in types Bg, Cg, Dg and Eg in Table 5.4. We omit all triples
(z,m,c) in rank 7. We just mention that in type B; (respectively C7, D7, E7) there are 65
(respectively 49, 36, 382) different triples of the form (z, m, ¢) associated to cores. We observe
that many cores in rank 6, in fact most of them, are (3,10, 9)-cores and (3,9, 6)-cores.

By using CHEVIE, it is easy to check that all (3,10,9)-cores and all (3,9, 6)-cores up
to rank 6 are of the same form as the ones considered in Section 5.1; in particular, each
(3,9, 6)-core derives from a (3,10, 9)-core in the sense of Proposition 5.5. Using Remark 5.2
and Propositions 5.4 and 5.5, we completely determine the representation theory in these

cases.

However, one has to deal with the other cases. On the one hand, although most non-
abelian cores can be dealt with on a case-by-case check, one should formulate a more general
method that can be applied, or even implemented in CHEVIE or MAGMA, for a given class
of nonabelian cores. On the other hand, it is still not known, through the methods outlined

so far, how to parametrize the irreducible characters arising from each of the (4, 24, 23)-cores
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B6 C6 D6 E@
(2,m,c) | # (zsm,c) [# | | (zmc) | # (z.m.c) | #
2,8,7) | 1 3,74 |1 (3,9,6) | 11 (3,9,6) |31
(3,9,6) | 14 (3,8,6) | 9 (3,10,9) [ 39| [ (3,10,9) |88
(3,10,9) [ 64| [ (3,10,9) | 1| | (4,18,18) | 1 (4,8,4) [13
4,84 [ 1] [(3,15,22) | 1 | [(4,21,28) [ 1 (5,10,5) | 1
(4,18,18) | 1 (4,11,9) [ 1| [(4,24,43) | 1 (5,12,8) | 2
(4,21,28) [ 1 | [(411,10) [ 1 | [ (5,18,18) | 1 | | (5,15,11) | 3
(4,24,43) | 1 (5,10,5) | 1| [(6,19,20) | 1 | [(5,20,25) | 1
(5,15,11) | 1 | [ (5,12,10) | 1 (5,21,30) | 1
(5,16,16) | 8 | | (5,18,19) | 1 (6,12,6) | 5
(5,18,18) | 1 | [ (5,21,24) | 1 (6,13,7) | 1
(5,21,25) | 1 (6,12,6) | 1 (6,14,8) | 3
(6,19,20) | 1 (6,13,7) | 1 (6,15,12) | 2
(6,16,10) | 1 (6,16,12) | 1
(6,19,19) | 1 (6,17,17) | 1
(7,15,9) | 3

Table 5.4: The numbers of (z,m, ¢)-cores in rank 6.

that appear in types Bg and Dg. These look to be the most complicated nonabelian cores to
examine up to rank 6.

The reason for this, which points us to the first problem to consider in future research,
is the following. Let € be a (z,m, c)-core. Then the analysis outlined in previous chapters
provides a method for applying the reduction lemma in a quattern group, except for finding a
choice of X and Y as in the statement. For small values of ¢, it is easy to produce candidates
for X = Xz and Y = X ; as explained in the case of €54 in Section 4.1, namely by drawing a
picture corresponding to the structure of S, and then setting § € J for a suitable 6 € S\ Z
and adding roots to J and Z by following successive neighbors of ¢ via edges corresponding
to relations of the form a+ /3 = v, with o, § € S and v € Z. Then our programs in CHEVIE
and MAGMA can easily check whether assumptions (i) to (iv) of the reduction lemma are
satisfied in this case. However, for a more complicated structure of S it is in general difficult

to produce such candidates X and Y. A priori, checking all possibilities for X and Y is
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not efficient, even for (4,24, 43)-cores. Moreover, if ¢ is big enough, then the size of X and
Y might be small in comparison to m, and we would have to apply this argument several
times, as we get smaller subquotients.

The second problem for future research is the following. In the case of (3,10, 9)-cores in
rank 6 or less, by applying the argument in Proposition 5.4 we can deal with all (z,m, c)-
cores simultaneously. While this is true for (3,9, 6)-cores arising from such (3,10, 9)-cores,
this is not true for all (3,9, 6)-cores in general, as the following example in a simply laced

type in rank 7 points out.

Ezample 5.6. We get the following nonabelian core in type E7. It occurs for 3 = {ay7, aug},

and we have
o S = {ay,as, 04, a7, Q, a1, Qg (g, 37} U D(S),
o Z = {an, agg, agr} UD(S),
o A= {ay, a3, a6,ar, ag, aig, 12, Q13, A5, A4, Qag, A31, U35, A6+ and
o L = {aug, a9, g3, Qg5 Qay, Qrog, (30, (34, (i39, QU0 Ql41, (g2, Ciad, Olgs
with D(S) = D1(S) U Dy(S), for D1(S) = {ass, aur, aue} and Do(S) = {au, ag}. We take
o YV = X, where J = {as, a7, as },
e X = X7, where Z = {a1, 14, 90} and then we have that
e H=YZ.

Equation (3.2.3) yields

s5(—ag1t14 — azetoo) + s17(—a21t1 — azrteo) + sa2(—azeti + agrtia) = 0.

In this case, we see that for every choice of p we get
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X/ = {131714720@) | t e ]Fq} and Y/ = {I5717,22(S) ‘ s € Fq},

where

T11420(t) = @1(asrt)r14(aget)v20(—ait) and x5 17,20(t) = x5(asrs)ri7(—ages)ra2(a s).

This case is then different from the ones described in Section 5.1.

Of course, the core in Example 5.6 is not contained in any of the (3, 10, 9)-cores examined
in Section 5.1. We would like to determine the numbers of classes of (z, m, ¢)-cores, fixed z,
m and ¢, that could be dealt with simultaneously.

Finally, a more ambitious problem for future research is towards type Eg. This case does
not appear in Table 2.2, and in fact it is not yet even known how many cores we get in
this type, since the program we have used for this work does not terminate in a reasonable
time. With some amount of computational work, we can improve our program by detecting
whether a quattern appearing in our analysis occurs in a proper irreducible subsystem of
Eg, storing that information and using later the data collected for other types to determine
the corresponding representation theory. Provided we manage to do this, the two research
problems previously pointed out have of course to be overcome as well, in order to have a
full parametrization of Irr(Ug,). Progress in these three directions would determine a large

amount of useful information towards a determination of Irr(Ugy).
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APPENDIX A

ROOT LABELLING

Height Roots

1 ap=1 0 0 0| aa=01 0 0| az=0 01 0 |ag=0 0 0 1
2 as=1 1 0 0| a=0 11 0] ar=0 011

3 ag=2 1 0 0| ag=1 1 1 0 |apg=0 1 1 1

4 0411:2 1 1 0 0412—1 1 1 1

5 a13:2 2 1 0 a14:2 1 11

6 a15:2 2 1 1

7 ag=2 2 2 1

Table A.1: Positive roots in a root system of type By.

Height Roots

1 ap=1 0 0 0| aa=01 0 0| az=0 01 0 |ag=0 0 0 1
2 as=1 1 0 0| as=0 11 0| ar=0 011

3 agzl 2 00 a9:1 1 1 0 0510:() 1 1 1

4 0411:1 21 0 0412:1 1 1 1

5 a13:1 2 2 0 a14:1 2 1 1

6 0515:1 2 21

7 ag=1 2 2 2

Table A.2: Positive roots in a root system of type Cjy.

120




—
o
o o
Il
<
3
o — —
— — —
ool o —
I [ I
™ ~ S
zl < S 3
o
S
RO o —
(@) — —
O | )
I I I
N © (@2}
3 3 3
o o o — —
o — — — [\l
—_. ol o —_ = =
I [ [ I I
— 0 o0 - N
3 3 3 g g
+~
=
.Wbl ™~ o <t 0
T

Table A.3: Positive roots in a root system of type Dy.
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Table A.4: Positive roots in a root system of type Fj.
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Table A.5: Positive roots in a root system of type Bs.
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Qa5
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Table A.6: Positive roots in a root system of type Cs.
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Table A.7: Positive roots in a root system of type Ds.
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APPENDIX B
COMMUTATOR RELATIONS
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ons for U for G of type Dy.
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Table B.5: Commutator relations for U for G of type Bs.
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Table B.6: Commutator relations for U for G of type Cs.
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APPENDIX C

NONABELIAN CORES IN TYPES Bs AND D5

We provide relevant information about each (3,10, 9)-core of the form € = (S, 2, A, L, K)

in types Bs and Ds. We recall that the argument in Proposition 5.4 applies in these cases

to give the corresponding irreducible characters of U. We define

[E ::{ie{l,...,@*]}\ozieil},

and similarly we define Is\p(s), Iz, Ip(s), 14 and Iz. Moreover, Z and J are defined as in

Proposition 5.4.

Core [Z 15\/[)(5) [Z ]D(S) [.A IL A J

e | {1718} | {2,3,4,7,8,10,12,14,17,18} | {12,17,18} Z] {1,6} {11, 15} {2,410} | {7.8,14}

e | {1721} | {2,3,7,9,10,13,14,16,17,21} | {15,16,17,21} | {15} {1,4,5,6} {8,11,18,19} {2,9,10} | {7,13,14}
e {1721} | {2,3,7,9,10,13,14,16,17,21} | {16,17,21} {1} {1,5,6} {11,18,19} {2,9,10} | {7.13,14}
¢ | {20,21} |{2,538,10,12,13,16,18,20,21} | {16,20,21} |{3,11} {1,4,6,9} {14,15,17,19} {2,5,10} | {12,13,18}
e {21,22} | {4,5,7,9,12,14,16,18,21,22} | {16,21,22} | {2,6} | {1,3,8,11,13} {10,15,17,19,20} | {5,7,14} | {9,12,18}
e | {22,23} {3,4,5,8,9, 13,17, 20, 22, 23} {13,22,23} {1} [{2,6,7,10,11,12} | {14,15,16,18,19,21} | {3.5,17} | {8,9,20}

e | {5,17,18} | {2.3,4,7,8,10,12,14,17,18} | {5,12,17,18} | {5} {1,6} {11, 15} {2,410} | {7.8,14}

¢ [{17,18,19} | {2,3,4,7,8,10,12,14,17,18} | {12,17,18,19} | {19} {1,5,6,9} {11,13,15, 16} {2,410} | {7,814}

Figure C.1: The (3,10, 9)-cores of Usg,.
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Core

Iy Is\p(s) Iz Ips) I I z J
eDs {17,18} {3,4,5,8,9,10,13,14,17,18} | {13,17,18} | o |{1,2,6,7} | {11,12,15,16} | {3,5,10} | {8,9,14}
e | {10,11,12} | {1,2,3,4,6,7,8,10,11,12} | {10,11,12} | @ & @ {1,2,4} | {6,7,8}
e | {10,15,16} | {1,2,3,6,7,9,10,13,15,16} | {10,15,16} | {4} {5} {11} {1,2,9} | {6,7,13}
s | {14,15,16} | {1,2,5,8,11,12,13,14,15,16} | {14,15,16} | {3} {4,9} {6,10} {1,2,5} | {11,12,13}
e | {15,16,17} | {4,5,6,7,9,11,12,15,16,17} | {15,16,17} | {2} | {3,8,13} | {1,10,14} {5,6,7} | {9,11,12}
e | {5,10,11,12} | {1,2,3,4,6,7,8,10,11,12} | {5,10,11,12} | {5} @ @ {1,2,4} | {6,7,8}

Figure C.2: The (3,10, 9)-cores of Up,.
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APPENDIX D

PARAMETRIZATION OF CHARACTERS

We now present the parametrization of the irreducible characters of U when G is a split
finite group of Lie type By, Cy4, Dy, Fy, Bs, C5 or D5 and p is not a very bad prime for U,
that is, p # 2 in all types except D4 and Ds.

The notation in the tables is as follows. The first column corresponds to the families of
the form Fy, where Fy is the family of irreducible characters of U arising from an antichain
Y. The second column contains character labels for the families determined in the previous

chapters. For a fixed core (S, Z, A, L, K), we define
Li={ie{l,.. |0} e A,

and define I similarly. In case of nonabelian cores, I7 and I; are also defined in the same
fashion. The third column contains I4 and I;. We note that I can be determined from
A, £ and the labels of the characters. For the abelian cores, we recall that the irreducible
characters are obtained by applying Ind* Inf,c to the linear characters in Irr(Xs)z. We use
the bold font to identify nonabelian cores. In these cases, we also use the second column to
give any relation between the indices and the third column to give some information on the

construction of these characters. In the case where we have Y’ = 1 and Y is normal in H,
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we give I7 and [7 in the third column, as in this case the irreducible characters are given
by applying Ind“Z Infx; to linear characters in Irr(Xs\(zug))z. In other cases, we refer
the reader to the relevant parts of Chapters 4 and 5. Finally, the fourth column records the
number of irreducible characters in a family corresponding to some character labels, and the

fiftth column records their degree.
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Parametrization

of the irreducible characters of Ug,

’ F ‘ X ‘ I Number ‘ Degree ‘
Flin Xb1,bo,b3,by qa* 1
Fs X5 Ta={1}, I ={2}, q—1 q
Fe x“6 Ia={2}, Ip = {3}, qg—1 q
Fr X7 Ia ={3}, Iz = {4}, q—1 q
Fs X0 I4 ={1}, Iz = {5}, q(g—1) q
Fo Xy Ta={1,3}, Iz = {5,6}, a(g—1) qa®
Fio X5 Iq={2,4}, I ={6,7}, q(g—1) qa®
F11 Xbalbs b Iq=1{1,3}, Iz = {8,9}, a®@-1) | ¢
Fiz2 x %6912 ITa=1{1,3,4,7}, (a—1)? q*

Iy ={2,5,9,10},
Xpa s Ta={1,4,7}, I = {5,9,10}, a*(g—1) '
Fis X1 Ip=1{2,5,6},Ir=1{89,11}, | ¢*(a—1) | ¢
Fia ng,‘:;im Ip={1,3,4,7}, @ -1)?% | ¢*
Iy ={5,8,11,12},
Xoo ook Ta=1{1,3,4,7}, a?(g-1)? | ¢*
Ip ={2,8,11,12},
Xoahabmbrg | 1A= {147} I ={8,11,12}, | ¢*(a— 1) 'S
Fis Xoa b b Ta=1{1,2,4,58}, ®g-1?% | ¢°
Iy = {9,10,12,13, 14},
b Iq=1{1,2,4,5,8}, a®(g-1?% | ¢°
Iy = {6,10,12,13, 14},
Xo1 g bg b Iq=1{2,4,5,8}, a*(a—1) q*
Iy ={10,12,13,14},
Fie g;‘”l‘jjﬁ T4 ={1,3,6,7,9,10}, ?(g—1)2 | ¢°
Iy = {5,11,12,13, 14, 15},
X;‘j’“w Ia={2,3,6,7,9,10}, q(q —1)? q°
Iy ={1,11,12,13, 14, 15},
Xp1 g 04 T4 ={3,6,7,9,10}, a®(g—1) a°
Iy = {11,12,13,14,15},
Fi.6 X196 Ia={2}, Io = {3}, (a—1)2 q
Fi,7 X197 Ta={3}, I = {4}, (a—1)? q
F1.10 xpa 10 Ia={2,4}, Ip = {6,7}, ala—1)?% | ¢?
Fa,7 X297 Ta={3}, I = {4}, (a—1)? q
73,5 X395 ITp={1}, Iz = {2}, (q—1)2 q
Fa,8 xpo "8 Ta = {1}, I = {5}, a@a-1° |4
Fa, X495 ITa={1}, I = {2}, (q—1)2 q
Fae x4 %6 ITq={2}, Io = {3}, (a—1)2 q
Fag xpa*® Ta={1}, I = {5}, a(a—1)? q
Fa,0 a0 Ia={1,3}, I = {5,6}, ala—1?* | ¢
Fa 11 b be b Ia=1{1,3} Iz ={8,9}, (g -1)? | ¢
Fais b b I4=1{2,56} Io={809,11}, a?(g-1?% | ¢
Fs.6 b0 Iq = {1}, Iz = {2}, q(q —1)? q
Fs,7 x%5°%7 Tq={1,3}, I = {2,4}, (a—1)2 q°
Fs5,10 'Zf,’,‘f:o Ia=A2,4}, Iz ={6,7}, (g -1 | ¢°
Fe,7 xpo " Ta={2}, I = {3}, a(a—1)? q
Fe,8 X698 Iq={1,3}, I ={2,5}, (¢ —1)2 2
Fr.8 Xpr 8 Ta={1,4}, Iz = {3,5}, ala—1)? qa®
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F X I Number ‘ Degree ‘

Fr.,9 Xoa by Ta={1,3}, Iz = {5,6}, (¢ -2 | ¢
Froa1 xﬁ;’fﬁmbﬁ Ia={1,3}, I ={8,9}, a*(a-1)? | ¢
Fr.18 xpy 18 T4 ={2,4,5,6}, ala—1)?% | ¢*
Iy = {3,8,9,11},
Fs8,9 XZS’GQ Ia={1,3}, Iz ={5,6}, a(g—1)? 'S
Fsao | xp2 010 Ta={1,2,4}, Iz = {5,6,7}, a@-1% | ¢
Fs,12 x648-912 Ia={1,3,4,7}, (¢ —1)3 q*
Iz ={2,5,9,10},
528,’;;12 ITp={1,4,7}, I ={5,9,10}, a?(g-1?% | ¢*
F9.,10 Xy 410 Iq={2,3,6}, Iz ={1,5,7}, a(g—1)? a3
Froa1 | xpa0*t Ta={1,2,3,4} aa -1 | ¢*
Ip ={6,7,8,9},
F10,13 X:171<110wa13 Ia={2,4,5,6}, q(qg—1)3 q*
Iy ={3,8,9,11},
X1 pa s Ta=1{2,56} I ={809,11}, @ -1?% | &
Fi1,12 321,11,’:12 Ia={1,3,4,7}, (e -1 | ¢*
Iy ={5,8,9,10},
F12,13 ngm,am In={1,2,4,5,6}, a(q —1)? q°
Iy ={7,8,9,10,11},
F13,14 X:;o.am,ﬂu I, ={1,5}, Iz = {2,4,8}, a(g—1)3 q°
Iz ={9,12}, I = {6,7,11}.
Xx47:913,914 I ={1,4,5,8,11}, (¢ —1)3 q°
Ip =1{2,3,6,9,12},
Z;?,;ZM I, ={1,58,11}, ?qg-1)2 | ¢
Iy ={2,6,9,12},
F1,2,7 x%1-92,97 I = {3}, Ip = {4}, (q—1)* q
F1,a.6 x%1:%4:96 Ia={2}, I = {3}, (a—1)3 q
F1,6,7 X:i’aa’w I ={2}, Ip = {3}, a(qg—1)3 q
F3,4,5 X345 ITa={1}, Iz = {2}, (a—1)3 q
F3,4,8 Xpo e Iq={1}, Iz = {5}, q(qg —1)3 q
Fas.6 X 40000 Ia={1}, 1o = {2}, a(g —1)3 q
Fa,6,8 x“4-%6:98 Ia={1,3}, I ={2,5}, (g—1)°% q°
Fas0 Xpa 1810 I ={1,3}, Iz = {5,6}, ala—1)% | ¢?
F5,6,7 X5°96:47 Ia={1,3}, Ip ={2,4}, (g—1)°% q°
F6,7,8 X0 0Tee Ia=1{1,3} Iz ={2,5}, a(qg —1)3 q?
F1.,8,9 xfj;’;f’“g Ia={1,3}, Iz ={5,6}, a?(g—1)°% | ¢°
F8,9,10 ng’ag’am Ia=1{2,56}, Io={1,3,7}, q(qg—1)3 7*

Table D.1: The parametrization of the irreducible characters of UB4(q), where ¢ = p® and
p = 3.
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Parametrization of the irreducible

characters

of Uc4

’ F ‘ X ‘ I Number Degree ‘
4
Flin Xby,bo,b3,by q 1
Fs x5 Ia={1}, Ip ={2}, qg—1 q
Fe X6 Ia={2}, Io = {3}, qg—1 q
Fr x7 Tq={3}, Iz = {4}, qg-—1 q
Fs X0 T4 ={2}, Io = {5}, q(g—1) q
Fo xp2 T4 ={1,3}, Iz = {5,6}, q(g—1) a?
Fio Xy 10 Ia={2,4}, Ip = {6,7}, q(q —1) qa?
Fi1 Xpit T4 ={2,3,6}, Iz = {5,8,9}, q(q—1) '
Fi2 X612 Ia={1,3,4,7}, (q—1)? q*
Iz ={2,5,9,10},
) ,
Xpad. Ig={1,4,7}, Iz = {5,9,10}, ?@-1) | ¢
Fis xpp 413 Ia4={2,3,6}, Ip = {5,9,11}, qg-1)? | ¢
X513 Ia={2,8,6}, Iz ={1,9,11}, (a—1)2 @
2 2
X1y Ia={3,6}, Ir = {9,11}, ®(g—1) q
F1a b 4 Ta=1{1,2,4,57}, d@-12 | &
I, = {6,8,10,11, 12},
4
Xglléhsﬂbs Ia=1{2,4,57} Ag-1) q
I, = {8,10,11,12},
Fis by Ia=1{2,34,6,7,10}, a@-1?% | ¢°
Iy ={5,9,11,12,13, 14},
X45:415 Iq={2,3,4,6,7,10}, (a—1)2 8
Ip ={1,9,11,12,13,14},
. 5
Xp1 %y Ia={3,4,6,7,10}, ®(g—1) q°
Ip ={9,11,12,13,14},
Fie Xpp M13016 | T4 ={2,3,4,6,7, 10}, a(@—1)3 | ¢°
Ip ={5,9,11,12,14,15},
x@5°918:916 | 4 ={2,3,4,6,7, 10}, (a—1)3 a8
Ip ={1,9,11,12,14,15},
b1 s 1O Iq=1{3,4,6,7,10}, ?a—-1?% | ¢°
Ip ={9,11,12, 14,15},
all,a 2
by I ={2,3,4,6,7,10}, q(g—1) q°
Iy = {5,8,9,12,14, 15},
ng’ag’am Iq={1,4,5,7,10}, q(g—1)3 a°
I, ={2,6,12,14, 15},
5 2 4
by b tbe Ta={2,4,7,10}, P@-1% | q
Iy = {5,12,14,15},
Xpo 16 Iq=1{1,3,4,7,10}, aa-1)?2 | ¢°
Iy = {5,6,12,14,15},
Zf:;ﬁ I =1{2,4,7,10}, ?a—-1?% | ¢*
Iy ={3,12,14,15},
5 2 4
b 16 Tq={2,4,7,10}, ala—1) a
Ip ={1,12,14,15},
a 3 3
Xy by ba Ia={4,7,10}, Ip = {12,14,15}, | ¢’(¢ — 1) q
Fi,6 X176 I ={2}, Ip ={3}, (q—1)? q
Fi7 X217 Ia={3}, I; = {4}, (q—1)2 q
F1,10 xp 1410 Iq={2,4}, Iz ={6,7}, a@—12 | ¢*
Far X227 Iq={3}, Iz = {4}, (q—1)2 q
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F X I Number ‘ Degree ‘

F3,5 x?8%5 Tq={1}, I ={2}, (q —1)? q
F3,8 x> 8 ITa={2}, Iz = {5}, q(qg—1)? q
Fa5 x4 %5 Tq={1}, I ={2}, (g —1)? q
Fa,6 X496 Ia={2}, I ={3}, (q—1)2 q
Fas Xy Ix =12}, Iz = {5}, aa—1)2 | q
Fao xpa' 0 Ia=1{1,3}, Iz = {5,6}, q(a—1)? a®
Faa1 p M Ia=1{2,3,6} Iz = {589}, a@-1% | 4°
Faas | x| Tx={2,3,6), Ir = {5,9,11}, aa=1% | ¢
x%4%5:913 ITa=1{23,6}, Ip={1,9,11}, (a—1)3 @
Xt g T4 ={3,6}, Ip = {9,11}, ?a—-1?% | ¢
Fs.6 X0 Iq={1}, Iz = {2}, q(qg—1)? q
Fs,7 X527 Ia={1,3}, Ip ={2,4}, (q —1)2 q?
F5,10 X2 pal Ta={2,4}, Iz = {6,7}, ?a-1?% | ¢*
Fe.7 x, 87 Ia=1{2}, Iz = {3}, a@—1% | ¢
Fe,8 x5S o Ia={2}, Iz = {5}, ?g-1?% | ¢
Fr.8 Xy 8 Ta={24}, Iz ={3,5}, a(qa—1)? a®
Fr,9 Xoa b Ta={1,3}, Iz = {5,6}, ?a—1% | ¢
Frar | gl it la=1{2,3,6}, Iz = {58,9}, ?a-1% | ¢°
Fr.13 o o8 T4 ={2,3,6}, Iz = {5,9,11}, ?a—1)% | 3
po T8 T4 ={2,3,6}, I ={1,9,11}, q(qg—1)3 7
Xt bah s Ta={3,6}, Ic ={9,11}, ?a-1?% | ¢
Fg.9 X0 ITa={1,5}, I ={2,6}, a(qa—1)? a®
Fg,10 X2 s Ta={2,4}, Iz = {5,6}, FCES
Fs8,12 X698 212 Ia=1{1,3,4,5}, (¢g—1)3 q*
Iy ={2,7,9,10},
XZZS,’;ZH Ip={1,4,5}, Ip ={7,9,10}, ?a—1?% | ¢
Fo.10 X 10 ITa=1{2,3,6}, I ={1,57}, a(qg —1)? a®
F1o0,11 lel?b’ilbi Ia={2,3,6}, I = {5,8,9}, @@-12 | ¢
F10.18 | Xpi oy b g | 14 =1{2,3,6}, Ir = {7,9,11}, a'a-1% | &°
F11,12 Zi}g:m Iq=1{1,3,5,9}, ?a—1)?% | ¢*
Iz ={2,6,8,10},
F12,13 Xgé?bfﬁlb?é Iq=1{1,3,5,9}, (g —1)? q*
Iy ={6,7,10,11},
F13,14 lel?bfm Ia={2,56,8,11}, ?a—-1?% | ¢°
Ip ={3,7,9,10,12},
Fi,2,7 x*192:97 I ={3}, Ir = {4}, (¢—1)3 q
Fi,4.6 x1?4,96 Ia=A{2}, 1. =13}, (g—1)3 q
F1,6,7 xZi’%’” Ia={2}, I ={3}, q(g—1)3 q
F3,4,5 X344-45 Ia={1}, Iz = {2}, (a—1)° q
F3,4,8 XZ?’M’QB Ia={2}, I ={5}, q(g—1)3 q
Fa5.6 X:f’as’% Ta={1}, Ip ={2}, q(g—1)3 q
Fa.6,8 XZ:L;:G’GS Ia=A{2}, Iz = {5}, ?@-13% | ¢
Fag,9 Xpa 180 Ia={1,5}, I = {2,6}, q(g— 1) q2
F5,6,7 X5°%6:47 Ia={1,3}, Ip ={2,4}, (a—1)3 q?
Fe.7.8 Xy Tes ITa=1{24} Iz ={3,5}, q(g—1)3 q?
F7,8,9 X7 8:49 Ip={1,4,5}, Ip ={2,3,6}, (q—1)3 '
F8,9,10 X:f’ag’alo Ia={23,6}, I ={1,5,7}, q(qg—1)3 ¢

Table D.2: The parametrization of the irreducible characters of UC,(q), where ¢ = p® and

> 3.
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Parametrization of the irreducible characters of Up,

l F ‘ X ‘ I Number ‘ Degree ‘
Flin Xbq,bg,bg,by q* 1
Fs x5 Ia={1}, Io = {3}, q—1 q
Fe X6 I ={2}, Io = {3}, qg—1 q
Fr X7 I ={3}, Ip = {4}, qg—1 q
Fs Xoo Ia={1,2}, Iz = {5,6}, q(g—1) a?
Fo Xoo Ia={1,4}, Iz = {5,7}, q(g—1) a?
F1o0 x,‘j;‘) Ia=A2,4}, Ip ={6,7}, q(q—1) a®
Fi1 ngl,lb;,bﬁ,w Ia={1,2,4}, I = {8,9,10}, | ¢*(g — 1) q>
Fi2 X1 %0 b4 Ix=13,5,6,7}, Ba—-1) | q*

I, = {8,9,10,11},

F1,6 X196 I =12}, Ip = {3}, (g —1)2 q
Fi,7 x*1 a7 Iq={3}, I = {4}, (¢ —1)? q
F1,10 xgi’am Iq={2,4}, I ={6,7}, a(qg—1)? q?
Fa5 x42°%5 I ={1}, Io = {3}, (g —1)2 q
Fa7 x42:97 Ia={3}, Io = {4}, (¢ —1)? q
F2,9 Z,f’ag Ia={1,4}, I ={5,7}, a(qg—1)2 q?
Fas X495 Ia={1}, I = {3}, (¢ —1)? q
Fa6 X426 Ia =12}, I = {3}, (g —1)2 q
Fas Xy "8 Ia={1,2}, Iz = {5,6}, ala—1)% | ¢?
T5,6 b " Ta={1} I ={3}, a@-1% |4
Fs,7 o7 Ia={1}, I = {3}, q(qg —1)? q
F5,10 x45:910 Ia=1{2,3,4}, I ={1,6,7}, (¢ —1)? ¢
Fe,7 xpo " Iq =12}, Iz = {3}, q(qg —1)? q
Fe6,9 X649 Iqa={1,34}, I ={2,5,7}, | (¢—1)° qa®
Fr.8 x7°%8 Ix={1,2,4}, I = {3,5,6}, (g—1)2 'S
F8,9 x47:48:99 Iq={1,4,5}, I ={2,3,6}, (a—1)3 '
Zf,’;f Ia={1,5}, I ={2,6}, ?@-1?2 | ¢

F8,10 x7-98:910 Iq={1,3,5}, Ir = {2,4,6}, (g—1)3 '
Xpo pa? Ta={1,5}, Iz ={2,6}, ?a-1?% | ¢*

Fo,10 x@6°79:410 Iag={1,2,5}, I ={3,4,7}, (g—1)3 '
be ba” Ia={1,5}, Iz = {4,7}, *g-1)?% | ¢

F1,2,7 X1 2:97 I ={3}, Ip = {4}, (g—1)3 q
F1,46 x*1:44:%6 Ia={2}, I = {3}, (¢—1)3 q
Fi,6,7 Xy, M0 Iq={2}, Ir = {3}, q(g —1)® q
F2.4.5 x2:%4:%5 Ia={1}, I = {3}, (¢g—1)3 q
Fa,5,7 xp2 40T Iq={1}, Iz = {3}, q(qg —1)® q
Fas,6 XZ;L’%’% Iq={1}, Iz = {3}, q(qg —1)3 q
Fs.6,7 b bl T Iq={1}, Ip = {3}, @-1)°% | ¢
}—5?9?10 X:g,ag,alo Iz = {1’2’4} ‘I(G - 1)3 43

Iz = {5,6,7}
f§,=9?10 x%8:29:210 See ¢P4 in Section 4.2 (g—1)3 F'id
Xerares o0 ag—1* | o3/2

Table D.3: The parametrization of the irreducible characters of UD,4(q) for every ¢ = p°.
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Parametrization of the

irreducible characters of Uy,

F ‘ X ‘ I Number Degree ‘
4
Flin Xbq,bg,bg,by q 1
Fs x5 Ia={1}, Io ={2}, qg-—1 qt
Fe x“6 Iaq={2}, Iz = {3}, qg—1 qt
Fr X7 I ={3}, I = {4}, qg—1 qt
78 XZQB Ia={1,3} Iz ={5,6}, q(qg—1) e
1
Fo Xoo Ia = {3}, Ip = {6}, q(g—1) q
2
F1o0 Xpa" I ={2,4}, I = {6,7}, q(qg—1) q
L 3 2
F11 Xpabs be Ia={1,3}, Ir = {8,9}, *(g—1) q
Fiz X612 Ia={1,3,4,7}, (a —1)? q*
Iz ={2,5,8,10},
X2l Iq={1,4,7}, Iz = {5,8,10}, a®(qg—1) '
Fis Xpa? I ={3,4,7}, Iz ={6,9,10}, q(g—1) 'S
2
Fia Xpih Ig={2,5,6}, Iz ={8,9,11}, a®(g—1) '
5 4
F1s Xpa % b6 1bg b10 Ta={1,3,4,7} a’(g—1) q
Iy = {8,11,12,13},
Fie Xpy 16 Ia={3,4,7}, Iz = {6,10,13}, q(g —1)? '
X616 Ia={3,4,7}, I ={2,10,13}, (a—1)? 7
Xpa s Ia={4,7}, Iz = {10,13}, a®(qg—1) qa®
Fi7 Xpalon T Ia={1,2,4,5,6,8}, a®(q—1)2 q°
Iy = {9,10,12,13, 14,15},
4 5
Xo1 g b7 be Ia={2,4,5,6,8}, ¢*(g—1) q
I, = {10,12,13, 14,15},
a ,a 6 2 4
Fis Xpy oy g 1bg s b10sb13 Iq=1{1,3,4,7}, q°(qg—1) q
Iy = {8,12,15,16},
a13,a1g — 5. _ 1\2 4
by ,bs,bg,bg,bg Ia={1,3,4,7} q°(q —1) q
I, = {10,12,15,16},
ag,a1g _ 4. 1y2 4
bg,bg,bg,b10 In={1,3,4,7}, q" (g —1) q
Iy = {5,12,15,16},
B 3 2 4
be e 10 Ia=1{1,3,4,7}, (g —1) q
Iy = {6,12,15,16},
o8 Ig={1,3,4,7} a®(g—1)? q*
b5,b10 ?
Iy ={2,12,15,16},
a18 — — 4 _ 3
Xbg,ba,bs.b1q Ia={1,4,7} Ip ={12,15,16}, q* (g — 1) q
Fio by T4 =1{2,36,7,8,9,10}, alq — 1)2 a
Iy ={1,11,12,13,14,15,17},
3 6
Xo1 % b, Ia ={3,6,7,8,9,10}, (g—1) q
Iy = {11,12,13,14,15,17},
F20 ppy S0 Ia=1{1,2,3,4,5,8,12}, alg - 1)* qa
I, = {6,7,10,13,16, 17,18},
Xpa ot 20 Ia=1{1,2,4,538,12}, a®(@—1)° a8
Iy ={7,10,13,16,17,18},
X#11,413:414,420 I =1{1,2,3,4,5,6,10}, (a—1)* q’
I, ={7,8,9,12,16,17, 18},
5 B 4 3 5
X S 420 I4={2,4,5,6,10}, qa*(g—1) q
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F X I Number Degree ‘
Iy ={7,12,16,17,18},
xggl,lzf:m’am T4 =1{1,2,4,5,8,10}, a®(q— 1) q°
Is ={6,9,12,16,17, 18},
a ,a 4 2 5
Xp1 s b Ia={2,4,5,6,10}, q*(g—1) q°
Ip = {8,12,16,17, 18},
PO Iy =1{1.2,3,4,58,12}, a(a - 1)? 7’
I, ={6,7,10,13,16,17, 18},
Xba hg iy Ia={1,2,4,58,12}, (g-1)? a°
I, =4{7,10,13,16,17,18},
x#11,413,420 Ia=1{1,2,3,4,5,6,10}, (a—1)3 q”
I, =47,8,9,12,16,17,18},
b1 e a o Ia =1{2,4,5,6,10}, q*(q—1)? a°
Iz ={7,12,16,17,18},
5 2 2
Xpglon 20 Ta={1,2,3,4,5,10}, a*(a—1) a°
Iy = {8, 9,12,16,17, 18},
foffjbg Ia=1{2,4,5,6,10}, a3(qg—1)2 q°
I, =4{3,12,16,17,18},
b b2? Ia=1{1,2,4,5,10}, a®(a—1)? a°
Iz = {6,12,16,17,18},
4 4
Xo2 % 06,07 Ia=1{2,4,5,10}, qa*(g—1) q
I, = {12,16,17,18},
Fau gyt I4=1{23,4,56,78,10,13}, q(g —1)2 q°
Ip = {9, 11,12,15,16,17,18,19, 20},
Xpg tpn 2t I4=1{1,3,4,6,7,8,10,13}, a?(g—1)? q®
I, = {9,12,15,16,17, 18,19, 20},
P Ia=1{2,3,4,6,7,8,10,13}, a(qg—1)2 ¢®
Iy ={1,12,15,16,17, 18,19, 20},
X2 b I4=1{3,4,6,7,8,10,13}, a*(qg—1) q”
Ip ={12,15,16,17,18,19,20},
Fao xp 20022 I4={3,4,6,7,10,13}, Iz = {2,9,16}. a(g —1)3 q°
Ip = {8,12,15,17,19,21}, I; = {5,11,18},
5 s 2 é
b bel 42 Ia=1{1,3,4,7,10,13,16,18}, *(q—1)3 <
Iy = {6,9,11,12,15,17,19, 21},
by 12022 Ia=1{2,3,4,7,10,13,16, 18}, a(g —1)3 q®
Iy ={1,9,11,12,15,17,19, 21},
Xy 200532 Ia ={3,4,7,10,13,16, 18}, a*(qa—1)2 q’
Iy ={9,11,12,15,17,19,21},
5 2
Xp, 7% I4=1{2,3,4,6,7,9,10,11,13}, q(qg—1) q°
Ip = {5,8,12,14,15,16, 18,19, 21},
Xoy g 22 Ia={1,3,7,8,9,11,13}, (g — 1) q’
Iy = {6,10,15,16,18,19,21},
Xpo 2z Ia4=1{2,3,6,7,9,11,13}, a%(q — 1) q7
Iy ={1,8,15,16,18,19,21},
5 4 2
Xor oy e sb10 Ia={3,6,7,9,11,13}, a*(a-1) a°
I, = {8,15,16,18,19,21},
Xoy e i Iq={1,3,4,7,9,11,13}, a*(g—1)? q’
Iy = {8,10,15,16,18,19,21},
Xpo 1022 I4=1{2,3,6,7,9,11,13}, q(g—1)% q"
Iy ={1,4,15,16,18,19,21},
5 2
I I4={3,6,7,9,11,13}, a*(g—1) a8
I, = {4,15,16,18,19,21},
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ngsffis Ia={1,3,7,9,11,13}, ¢3(q —1)2 q°
I, ={6,15,16,18,19,21},
Zz';;? Ia ={2,3,7,9,11,13}, q?(q — 1)2 q°
I, ={1,15,16,18, 19,21},
ngyzb27b4,b6 Iq={3,7,9,11,13}, (g —1) '
I, = {15,16,18,19,21},
Fas Xgll}b':m'“% T4 ={2,3,4,6,7,9,10,13,16}, q?(q —1)3 q°
I, = {8,12, 14,15, 17,19, 20, 21, 22},
Xl‘jf’als’“% I ={2,3,4,6,7,9,10,13,16}, q(qg —1)3 q°
Iy = {5,12,14, 15,17, 19, 20, 21, 22},
Xo1 a0 Ia=1{2,4,6,7,9,10,13,16}, *(g —1)? q®
Iy ={12,14,15,17,19, 20, 21, 22},
211?1;523 I ={2,3,4,6,7,9,10,13,16}, q*(q —1)2 q°
I, = {8,11,12, 14,17, 19,20, 21, 22},
511}5:12"123 Ia={2,5,6,8,9,10,13,16}, ¢%(q —1)3 q®
Iy = {3,7,14,17,19, 20, 21, 22},
:11,15:»%35,% I4=1{2,3,6,9,10,13,16}, q*(qg —1)2 q"
I, = {8,14,17,19, 20, 21,22},
X;jll?b':% Ia ={2,4,6,7,9,10,13, 16}, q?(q —1)2 8
Iy ={5,8,14,17,19,20, 21, 22},
gf::f% Ia={2,3,6,9,10,13,16}, ¢3(q —1)2 q7
I, = {5,14,17,19, 20, 21, 22},
517;;523 Ia ={2,4,6,9,10,13,16}, q%(q —1)2 q7
Iy = {3,14,17,19, 20, 21, 22},
X;jlz?bavbzpbs I4 ={2,6,9,10,13, 16}, q*(q—1) q°
I, = {14,17,19,20, 21, 22},
Foa Z;"“lﬁ*“u Ia=1{1,3,4,5,7,8,11,12,14, 15}, q(qg — 1) 10
I, = {6,10,13,17, 18,19, 20, 21, 22, 23},
x@6:916:a24 T4 ={1,3,4,5,7,8 11,12, 14,15}, (@ —1) o
I, ={2,10,13,17,18,19, 20, 21, 22, 23},
ngl?b';M Iq={1,4,5,7,8,11,12,14, 15}, q?(q — 1)2 q°
I, = {10,13,17, 18,19, 20, 21, 22, 23},
xg1s a2 Ix={1,3,4,5,7,8,11,12, 14,15}, a(q — 1)? o
I, ={6,9,10,17,18, 19, 20, 21, 22, 23},
XZ;?J;M I =1{1,2,5,6,8,11,12,14,15}, a*(qg—1)? °
Iy ={4,7,17,18,19, 20, 21, 22, 23},
229:5541,7 Ia={1,3,5,8,11,12,14,15}, (g —1)2 q°
I, = {6,17,18,19, 20, 21, 22, 23},
527’5724 T4 ={1,3,5,8,11,12, 14,15}, ¢%(q —1)2 q®
I ={2,17,18,19, 20, 21, 22, 23},
2'27'“24 T4 ={1,4,5,8,11,12,14,15}, q(q—1)? q®
Iy = {3,17,18,19, 20, 21, 22, 23},
ngflb?,ybzl Iq={1,5,8,11,12,14, 15}, (g —-1) q”
I, = {17,18,19, 20, 21, 22, 23},
Fi.6 X416 Ia={2}, Io = {3}, (q—1)? q'
F1,7 X417 Ia={3}, Ip = {4}, (a—1)2 q'
Fi0 Xpa 0 Ia={3}, I = {6}, q(g—1)? q*
F1,10 X;;l'aw Ia={2,4}, I ={6,7}, q(qg —1)2 ¢>
F1,13 xgg"”f’ Ia=1{3,4,7}, Io ={6,9,10}, q(qg —1)? 7
Fi,16 by 106 Ta={3,47} Iz = {6,10,13}, a(a=1)° @
x@1:%6:916 Ia ={3,4,7}, I; ={2,10,13}, (¢ —1)3 q°

139



F X I Number Degree ‘
ba b’ I ={4,7}, Iz ={10,13}, a®(q—1)? a®
Fa,7 x%2:%7 Ia = {3}, Io = {4}, (q —1)2 q!
F3.5 X395 Ia={1}, Io = {2}, (g —1)? q'
Fas X475 Ia={1}, Ip = {2}, (q—1)2 q*
Fa,6 X426 ITq={2}, Ic = {3}, (q—1)2 q'
Fas xpa 8 Ia={1,3}, I = {5,6}, q(qg—1)% e
Fao Xpa' 0 Iq={3}, Iz = {6}, q(q—1)? qt
Faa1 Z;L:;:}bﬁ Ia={1,3}, Iz ={8,9}, a®(g—1)? 'S
Fa,1a Xpilpat Ia={2,5,6}, Iz = {8,9,11}, a*(¢ - 1? @
Fs.6 o6 Ia={1}, Ip = {2}, q(qg—1)? q*
Fs,7 X547 Ia={1,3}, Ip ={2,4}, (q—1)2 q?
Fs,9 X599 Ia =123} I ={1,6}, (¢ - 1)? a®
Fs,10 Xp2 ba? Ta={2,4}, Iz ={6,7}, a®(a—1)? a®
F5,13 X513 Ia=1{2,3,4,7}, (¢—1)2 q*
I, ={1,6,9,10},
Fs5,16 x@5:%9:716 Ia=1{2,3,4,7}, (g—1)3 q*
Ip ={1,6,10,13},
Z;:’:gﬁlﬁ T4 ={2,4,7}, Iz = {1,10,13}, q%(q —1)2 7>
Fe,7 Xy 7 Ia={2}, Iz = {3}, q(g —1)? qt
Fr.8 Xpa oo Ia={1,3}, Iz = {5,6}, a®(g—1)2 q?
Fr.9 Z;’;f Ia ={3}, Iz = {6}, a®(g—1)? q'
Fra1 b A b Ta={1,3} Ic = {89}, a*(a - 1)° 7
Fr,14 XZZ'QM I ={2,4,5,6}, q(qg—1)? q*
Ip = {3,8,9,11},
Fs.0 S Ix={1.3}, Iz = {5,6}, aa —1)? (s
F8,10 ng’alo Ia=1{2,3,6}, I ={1,5,7}, q(g —1)? 7
Fg8,13 x@5:98:913 Ia=1{2,3,4,6}, (g—1)3 q*
Iy ={1,7,9,10},
byl Ta={3,4,6}. Iz = {7,9,10}, g -1)?° @
F8,16 XZ;’;;G Ip={1,3,4,7}, a*(¢ —1)? a*
I; = {5,6,10,13},
F9,10 ng’aw Ia=A2,6}, Iz ={3,7}, a(a—1)? 'S
Fo,12 Z;”an Ia={1,3,4,7}, q(qg — 1) q*
Iy ={5,6,8,10},
F10,11 Xgéo’au Iq=1{1,2,3,4}, q(qg—1)2 qt
Ip ={6,7,8,9},
F10,14 :17'&10'&14 Iq={2,4,5,6}, a(a—1)3 q*
Iy ={3,8,9,11},
X Oy Iq=1{2,56} I = {8,911}, a3(qg—1)2 'S
F11,12 x‘;:,m'““’“lz ITa=1{1,3,4,7}, q(qg— 1) q*
I, = {5,6,8,9},
X 60115912 T4 ={1,3,5,8}, (a—1)3 q*
Iy ={2,4,7,9},
521}5;12 Ia={1,528} I ={4,7,9}, a®(qg—1)2 'S
F11,13 Xa5,a10,a;1,a13 I4={3}, Iz ={1,4,7}, (@a—-13(q-2) q*
(afy # asaiz/aio) Ip={8}, 17 ={2,6,9}.
X:f,:}[?l’):,lg,g See ¢2 in Section 4.3 qz(q - 1)3 q3
X410:911,913 Ia={1,4,7,8}, (¢ —1)3 q*
Iy ={2,3,6,9},
x@5:a11.a13 T4 ={1,4,6,8}, (q—1)% qa*
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Iy ={2,3,7,9},
Xpr g P I =1{4,6,8}, Ir = {3,7,9}, a®(q—1)? e
F11,16 Z;}b]:}bz Ip={1,3,4,7}, a3 —1)2 q*
Ip ={8,9,10,13},
Fi12,13 Xpy t12L8 Ia={1,56,8}, a(g - 1)® qa*
I, = {3,4,7,10},
% 6:212,013 Ia={1,2,5,8}, (¢—1)3 a*
Iy = {3,4,7,10},
Xipa g Ta={1,538}, Iz = {4,7,10}. a*(a — 1)? @’
Fi12,14 x*7-412:914 Ia=1{1,2,4,5,8}, (g —1)° q°
Iy ={3,6,9,10,11},
XpaZoy T4 =1{1,2,5,8}, a®(q—1)? q*
I; ={6,9,10,11},
Fiz,16 p329:12:200 Ia={4}, Iz = {1,3,7} aa-1%q-2) | ¢*
(afg # agafy/af) Ig = {13}, 17 = {5,6,10}
x8:%9912,95,6,10 See ¢3 in Section 4.3 (g—1)*4 q*
:28,’:19’;_1’2 See ¢ in Section 4.3 q%(g —1)3 q3
by 12010 Ia=1{1,3,4,7}, q(g—1)3 q*
Iy = {5,6,10,13},
xﬁg’“”'“m Ip={1,3,4,7}, q(g—1)3 q*
I; = {5,6,10,13},
x*6:912:416 ITp={1,3,4,7}, (g —1)* q*
Ip ={2,5,10,13},
Zzlfb’:l@ Ia ={1,4,7}, I = {5,10,13}, q%(q —1)2 7>
F13,14 Xp1 5 o Ia={2,3,6,9} (g-1)? !
Iy ={5,8,10,11},
FZ3s Xx10:914:215 I4={1,3,5}, Iz = {2,4,8} (a-1)? a°
Ip ={9,12,13}, I; = {6,7,11}
Xpi et Ta={1,358,11}, a*(a—1)° a®
Iy ={2,6,9,12,13},
‘7:{::;_5 X:;&’;l,té?.,lf'u See ¢4 in Section 4.3 q2(q - 1)3 Pl
Xppor t® Ia=1{1,3,58,11}, a?(g—1)2 q°
I ={2,6,9,12,13},
Fi4,16 leflb';w I ={2,4,5,6,7}, a®(a—1)? a°
Ip = {8,9,10,11,13},
F14,18 x*13%14,918 Ia=1{1,23,4,5,6,7}, (¢g—1)3 q7
Iy ={8,9,10,11,12, 15,16},
Xgéf*b‘folg T4 ={1,2,4,5,6,7}, q%(q —1)2 q°
Iy ={8,9,11,12,15,16},
F15,16 b e s b b10 ITa=1{1,3,4,7}, a°(q—1)? qa*
Iy = {8,11,12,13},
Fie,17 x?11:016:017 Ia={1,23,4,56,10}, (¢—1)° qa’
Iy ={7,8,9,12,13, 14, 15},
Xp1 % o b Ia=1{2,4,5,6,10}, qt(a—1)? a°
Iy ={7,12,13,14, 15},
F16,19 :f*“w"’w I4 =1{2,3,6,7,9,10,13}, q(qg—1)°3 q”
Iy ={1,8,11,12,14, 15,17},
Xgll?é;,lbi Iq={3,6,7,9,10,13}, (g —1)2 ¢
Iy ={8,11,12,14, 15,17},
F17,18 Zfl’a”’“lg Tq=1{1,2,3,4,5,8,12}, a(a—1)3 q’

141



F X I Number Degree ‘

I; = {6,7,10,13,14, 15,16},
XZ,;Z,’;}},SM Iq=1{1,2,4,5,8,12}, (g —1)? q°

Iz = {7,10,13, 14, 15, 16},

Fis,19 g;g;:}b% T4 ={1,3,7,8,9,11,15}, (g —1)2 q’
I, ={6,10,12,13,14,16,17},

F1e,20 b1y 20 I4=1{2,5,6,8,9,10,14,17}, ¢%(q — 1)? ¢®
Iy ={3,7,11,12,13, 15, 16, 18},

F1,2,7 X1 2,07 Ia={3}, Iz = {4}, (a— 1) q'

F1,4,6 X 12496 Ia={2}, Ip = {3}, (a—1)3 q*

F1,4.9 by 0 T4 ={3}, Io = {6}, q(g—1)3 qt

Fi,6,7 X, t00T Ta={2}, I = {3}, q(qa—1)3 q'

F1,7,9 XZ;,';Z'QQ Ia = {3}, Ip = {6}, a®(a— 1) q'

F1,9,10 Zi'ag’aw Ip={2,6}, Ip ={3,7}, q(qg—1)3 ¢

F3,4,5 X345 Tq={1}, I ={2}, (a—1)3 q'

Fas.6 Zf'as’ae Ia={1}, Iz = {2}, q(g—1)3 q*

Fa,5,9 X 404549 Ia ={2,3}, Ip ={1,6}, (q—1)% qa®

Fa,8,9 by "810 Ta={1,3}, Iz = {5,6}, a(g —1)° @

F5,6,7 X567 Ia ={1,3}, I ={2,4}, (a—1)% q?

F5,7,9 Zf'a%ag Ia={2,3}, I ={1,6}, q(qg—1)3 q2

Fs.9,10 Xp2 10 Ia={2,6}, Iz = {3,7}, q*(g — 1) q?

F7.8,9 Z;’;f’ag Ia={1,3} I ={5,6}, a?(g—1)% q°

F8,9,10 ng'ag’am Ia=1{2,3,6}, I ={1,5,7}, q(qg — 1) 7

FEaas | xpipa12e1s Iz = {1,3,4,7} ?a-1)3 o

Iz = {5,8,9,10}

-7:1101=,i2,13 :;1’a12’a13'a8’9’10 See ¢° in Section 4.3 q(q — 1)* q*
x%11:212,213-92,6 See ¢° in Section 4.3 (g—1)%/2 q*
Xx11:812,313 See ¢° in Section 4.3 (@-1)3 q*
x':ll’l:i’:?,’z,_}&“l’s See ¢ in Section 4.3 9(q — 1)4/2 q1/3

F11,12,16 Z;}g;}b:;’“lﬁ Ip={1,3,4,7}, (g —1)*3 q*

I, ={8,9,10,13},
FP3lana | xpiP3eu I4 =12}, Iz = {4,5,6,10} a(a—1)3 @
I, = {11}, Iy = {1,7,8,9}

]:f2=i3,14 x*12:%13,914,27,8,9 See ¢% in Section 4.3 (g—1)*4 q°
X:;?b’:??é?llé See ¢% in Section 4.3 q2(q - 1)3 q4

F12,14,16 ng?’;“’“lﬁ Ix={2,4,5,6,10}, a®(q— 1) a°

I, ={7,8,9,11,13},
F14,15,16 Zi4’a15’a16 Ia=1{3,6,7,9,11,13}, q(qg —1)3 q°
I, =41,2,5,8,10,12},

Table D.4: The parametrization of the irreducible characters of UF4(q), where ¢ = p¢ and

p>3
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Parametrization of the irreducible characters of Ug,

F ‘ X ‘ I Number Degree ‘
Flin Xby,bo,b3,bg,b5 q° 1
Fe X6 Tqa={1}, 1, ={2} g-1 q
Fr x7 Ia={2},1.={3} qg—1 q
Fs x“8 Ia={3},Ic={4} q—1 q
Fo X9 Ia={4},Ic = {5} qg—1 q
Fio Xpa? Ia={1},1; = {6} a(qg —1) q
2
F11 Xpa ! Ia={1,3}, I ={6,7} a(g —1) q
Fiz2 Xpa2 I ={2,4}, I ={7,8} a(g —1) a?
Fis Xp2 Ia={3,5},1z ={8,9} a(g —1) a?
3 2
Fia Xoabgbn Ia={1,3},Iz = {10,11} ®(g—1) q
Fis X715 Iq=1{1,3,4,8} (a—1)? qa*
Iy ={2,6,11,12}
2
Xpa s I ={1,4,8}, I, = {6,11,12} a*(g—1) a®
Fie X8 416 Ix=1{2,4,59} (a-1)? qa*
Iy ={3,7,12,13}
Xpa S Iq={2,59}, Iz ={7,12,13} a*(qg—1) a3
Fir 7, L4 ={2,6,7}, I = {10,11,14} *(a— 1) ¢
B 2 4
Fis P SR Ta={1,34,8} a*(a—1) a
Iy = {6,10,14,15}
ar,a1g — 2 _ 2 4
bg,b1o Ia={1,3,4,8} q“(q — 1) q
Iy ={2,10,14,15}
3
Xbahs b1 Ia={1,4,8}, Iy = {10,14,15} *@-1 7
Fio b2 10 T4 =1{1,2,4,5,6,9} alg —1)2 a°
Iy ={7,8,11,13,15,16}
B 2 2 5
P I4={1,3,5,6,9} a*(g—1) q®
Iy = {4,11,13,15,16}
Zz,am T4 ={1,3,5,6,9} a(g —1)? ¢
Iy ={2,11,13,15,16}
ngf’bg‘m Iq={1,56,9} a*(q—1) q*
Iy ={11,13,15,16}
’ 3 2 5
Fz20 Xpa i T4 ={1,2,4,6,10} a®(a—1) @
Iy ={11,12,15,17,18}
E;}b’g” Ia=1{1,2,4,6,10} a?(q — 1)? a°
Iy ={7,12,15,17,18}
a 4 4
Xy 2005 b7 bs T4 =1{24,6,10} a*(¢ - 1) q
Iy ={12,15,17,18}
Fo1 Xors a2t I =1{1,3,4,58,9,13} a*(q —1)° a’
Iy ={2,6,10,11,14, 18,19}
915,221 Iq={1,4,5,8,9,13 g —1)? 6
Xby b3.b12.b16 A =1{1,4,5,8,9,13} (¢ —1) q
I ={6,10,11,14,18,19}
Xpro 12 I =1{1,2,3,4,509,13} ala—1)% a’
Iy = {6,7,8,10,14,18,19}
) 2 5
Xoa g b bsb16 I =1{1,8,5,9,13} a°(qg—1) q
Iy = {6,10,14,18,19}
812,221 Iq={1,2,4,5,9,13 3(g—1)2 6
b3,bg . b16 A {1,2,4,5,9,13} 7°(q ) q
Iy ={7,8,10,14,18,19}
ar7,az1 — 4 _ 2 5
by,bg,bg,big Ia={1,3,5,9,13} q"(q—1) q
Iy ={2,10,14,18,19}
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Xos b lbrg Ia={1,4,59,13} ®(a=1)° @
Iy = {3,10,14,18,19}
a21 — 5 4
Xb5 b3.b4.bg.b16 Ip={1,5,9,13} q’(qg — 1) q
Iy = {10,14,18,19}
Faz Xpa %y 22 I =1{1,8,7,8,11,12} a?*(q — 1)? a°
Iz ={6,14,15,17,18,20}
5 2
Xpg 122 Ta={23,7811,12} ala — 1) a°
I, ={1,14,15,17,18,20}
X523, b Ia={3,7,8,11,12} a3(qa—1) a°
Iy = {14,15,17,18,20}
a18:923 — 6 2 7
Fas ba by b b1 12,0153 Iq={1,2,4,5,6,9,10} a®(a—1) q
Iy ={14,15,16,17,19,20,21}
a14,215,223 — 4 3 7
b b s Ia=1{1,2,4,56,9,10} a*(a—1) a
Iy ={11,12,16,17,19,20,21}
a s a DX 3 3 7
Xby hg brg Ta={1,2,4,5,6,9,10} CCES) a
Iy ={7,11,16,17, 19,20, 21}
28,214,923 I ={1,2,4,5,6,9,10 2(g—1)3 7
by b1y A =1{1,2,4,5,6,9,10} g (g —1) q
I, ={3,11,16,17,19, 20,21}
aiy4,a 4 2 6
Xpyibg by b1 Iq=1{1,2,5,6,9,10} a*(g—1) q
Iy ={11,16,17,19,20,21}
als,a9:" 4 2 7
Xbg bm g b1 Ta={1,2,4,5,6,9,10} at(a=1) a
Iy ={11,12,16,17,19,20,21}
ag,a11,a23 _ 2 3 7
bro.bis Iy =4{2,4,5,6,7,9,10} q“(g—1) q
Iy, ={1,3,16,17,19,20,21}
a11,923 — 4 2 6
Xbg1bg.b12,b13 I =1{2,5,6,7,9,10} (¢ —1) q
Iz ={1,16,17,19,20,21}
12,223 — 4 _ 2 6
b1,b3,bg,b13 Ia= {2,4,5,6,9,10} q*(q 1) q
Iy ={7,16,17,19,20,21}
ag,a23 _ 3 2 6
P SN I4 ={2,4,5,6,9,10} ¢3(qg—1) q
Iy ={3,16,17,19,20,21}
Xp2 g bg.byob1s Ia={2,5,6,9,10} a(qg—1) a°
Iy = {16,17,19,20,21}
Faa X2 Gk o Ia=1{2,3,56,7,11,12,14,17} a*(q - 1)? q°
I, = {10,13,15,16,18,19, 21, 22,23}
Xoa tha ot b9 b1 Ia={1,3,57,8,11,14,17} ®(a=1)° @
Iy = {10,13,15,16, 19,21, 22,23}
aj5,a9q _ 4 2 8
b2:)b4‘b9,b10 Ix ={1,3,5,7,8,11,14,17} q“(g—1) q
I;, = {6,12,13,16,19, 21, 22,23}
241?1;:12’“24 T4 ={1,2,3,57,11,14,17} (g —1)3 q®
Iy = {6,8,13,16,19, 21, 22,23}
Xo1 Zon ot b Ia=1{2,3,57,11,14,17} a'(a-1)° 'y
I, = {8,13,16,19, 21, 22,23}
aip,a 4 2 7
Xby q g bo Ta={1,3,57,11,14,17} at(a—1) a
I, = {6,13,16,19, 21, 22,23}
Zz’:ﬁ?g I =1{2,3,57,11,14,17} ¢3(g —1)? q7
Iy ={1,13,16,19,21, 22,23}
Xp 2%y b4 .bgbo Ia={3,5,7,11,14,17} -1 '
I, = {13,16,19,21, 22,23}
Fas ;‘117173”21755 Ia={2,4,6,7,8,9,12,13,15,16} (g —1)? 10
I, = {10,11,14,18,19,20,...,24}
Xoaiba s by Ia={1,3,4,8,9,12,13,15, 16} g -1)?° @
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I, ={10,11,18,19,20,...,24}
Xz;%;‘ll’“% T4 ={1,3,4,8,9,12,13,15,16} q?(q —1)3 q°
I, ={6,7,18,19,20,21, 22, 23, 24}
X;‘;’“lo’“% Iq={1,3,4,8,9,12,13,15,16} q(q —1)3 q°
I, = {2,6,18,19,20,21, 22,23, 24}
XZQIOb;IQbZ T4 ={1,4,8,9,12,13,15,16} ¢3(qg —1)? q°
I; = {6,18,19,20,21,22, 23,24}
211,925 Ia={1,3,4,8,9,12 13,15, 16} a*(g—1)? 7
I, ={6,7,18,19,20,21, 22, 23, 24}
5355251,7 T4 ={2,4,8,9,12,13,15,16} (g —1)? q8
I, = {1,18,19,20,21, 22, 23,24}
217:025 Ia ={3,4,8,9,12,13,15,16} a*(g—1)? ¢
Ip = {2,18,19,20,21, 22, 23,24}
X‘;12,5b2’b3)b5 I ={4,8,9,12,13,15,16} q*(g—1) q7
I, = {18,19,20,21,22,23,24}
Fi,7 X417 Ia={2},1, =13} (g—1)2 q
F1.,8 X198 Ia={3},I;={4} (g—1)2 q
F1,9 X129 Ia={4},1; = {5} (a—1)2 q
F112 Z;’“m ITa={2,4}, I ={7,8} a(g — 1)? qz
F1,13 Xy, 8 ITa={3,5},Ic =89} a(g —1)? q
F1,16 x41-98:916 Ip={2,4,509} (@—1)3 q*
Iy ={3,7,12,13}
5211’1‘71416 14 =1{2,59},I, ={7,12,13} q?(qg —1)? q°
F2.8 X298 Ia={3},1p={4} (g—1)2 q
F2.9 X299 Ia={4},1. = {5} (g —1)2 q
F2,13 X2 e Iq=1{3,5},1Ic=1{8,9} a(g —1)? a?
F3.6 X396 Ia={1},1;={2} (g —1)2 q
F3,9 X399 Ia={4},1. = {5} (a—1)2 q
F3,10 b 10 Ia={1},1c = {6} a(g = 1)* q
Fa,6 X496 Ia={1},1p={2} (a—1)2 q
Fa7 X497 Ta=A{2},1c = {3} (a—1)? q
Fa,10 ng’am Ia=A{1},Ip = {6} a(q —1)? q2
Fa 11 Z”;"a” Ia={1,3}1I;=1{6,7} a(g — 1)? q2
Fa,14 Xoa barby Ta={1,3},1c = {10,11} 7*(q - 1)? q3
Faar 314&17 Ix={2,6,7},1p = {10,11,14} a?*(q — 1)? q
75,6 X596 Ia={1},10 ={2} (g —1)2 q
Fs.,7 X597 Ia={2},1;={3} (a—1)2 q
F5,8 X598 Ia={3},Ip={4} (a—1)? q
Fs,10 225’“10 Ia={1},1; ={6} alg—1)? q2
Fs,11 Z;’all Ia=A1,3},1p={6,7} a(g — 1)? q2
Fs,12 :3@12 Ia={2,4},1p ={7,8} a(g — 1)? q2
Fs.,14 525:;%7 In={1,3},1, ={10,11} a3(q — 1)? q
Fs,15 X5 47:415 Ip={1,3,4,8} (g—1)3 q*
I ={2,6,11,12}
oo ba® Iq={1,4,8},1, = {6,11,12} q%(q — 1)? qi
Fs,17 Z;’{;” Ipx=A2,6,7},1p ={10,11,14} a*(qg — 1)? q4
Fs,18 ng’;ubla;s Ix={1,3,4,8} a(q - 1)® q
I, ={6,10,14, 15}
boobrg Ia={1,3,4,8} a*(g - 1)° a
Iy = {2,10, 14,15}
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B 3
P TR Ta ={1,4,8}, I = {10,14,15} g*(q - 1)? q
F5,20 be 20 I4=1{1,2,4,6,10} a®(a - 1)° 7
Iy ={11,12,15,17,18}
o5 e20 Ia=1{1,2,4,6,10} a*(q - 1) q°
Iy ={7,12,15,17,18}
B 4 2 4
b2 be by bs I ={2,4,6,10} a* (e —1) a
I, ={12,15,17,18}
Fs,22 bo 022 Ia={1,3,7,8,11,12} a*(q —1)3 qa°
Iy = {6,14,15,17, 18,20}
X5 e 22 Iy ={2,3.7.8,11,12} ala—1)° e
Iy = {1,14,15,17, 18,20}
b2 b Iq={3,7,811,12} a3(q — 1)? a°
Iy = {14,15,17,18,20}
Fe,7 fo’” Ta={1},1p={2} a(g — 1)? q
F6.,8 X628 Ia={13},1 ={2,4} (¢ —1)? s
Fo,0 X699 Ta={1,4}, I = {2,5} (a—1)? q*
Fe,12 g‘f;;’;z Ia={2,4},I0 ={7,8} a®(q — 1)? a?
F6,13 Xy 18 Iq=1{2,3,5}, Iz ={1,8,9} a(qg —1)2 '
Fe.16 Xy 8o Iq={2,4,59} a(g —1)3 a*
Ip ={3,7,12,13}
S Ta={2,5,9} Iz = {7,12,13} ®(a=1)° @
Fr,8 ZZ’“S Ia=A{2},Ip={3} a(q —1)? q
Fr9 X749 Ta={2,4}, 1z = {3,5} (¢ —1)° i
F7.10 X710 Ia={1,3}, 1 = {2,6} (¢ —1)? @
Fr,13 by Ta={3,5},1c = {8,9} ¢?(¢=1)° @
F8,0 be Iq={3}.1c ={4} a(g — 1) a
3 2 2
F8,10 xp o 410 I ={1,4}, I = {3,6} a(g —1) q
Fs,11 ba by Ia={1,3},1 ={6,7} a°(¢ - 1) @
Fs,14 b ba ba by Ia ={1,3}, I = {10,11} a'(¢ - 1)? @
Fsa7 Xpo T I ={2,4,6,7} a(g — 1)? q*
Ip = {3,10,11,14}
Fo.10 by T4 ={1,5}, Iz = {4,6} alg - 1) 7>
Fo,11 by UM 1a={1,3,5},1={4,67} a(g — 1)? @
Fo,12 b b Ta={2.4},1c = {78} a°(¢ - 1)? @
5 3 2 3
Fo,14 e, Ia=1{1,3,5}, Iz ={4,10,11} a*(q—1) q
Fo.15 Xpa 9001® Ix=1{1,3,4,8} a(g —1)3 q*
Iy, ={2,6,11,12}
b babs Ia={1,4,8}, Iz = {6,11,12} 7®(a = 1)° @
Fo,17 o Ia={2,56,7} ?(a-1)° 'S
I, = {4,10,11, 14}
5 5 4 4
Fo,18 Xbg babr by Ta={1,34,8} a*a-1?° a
I, = {6,10,14,15}
a7z,a9,a18 — 3 3 4
bs,bG:b12 T4 =A1,3,4,8} q°(qg —1) q
I = {2,10,14,15}
X batbs ba.bio T4 ={1,4,8}, Iz = {10, 14,15} a°(q — 1)? a3
B i 4 3 5
Fo,20 Xoy ba b o 14 =1{1,2,4,6,10} a*(a-1) q
Iy ={11,12,15,17,18}
Xoo e 20 Iq=1{1,2,4,6,10} a(qg —1)® a°
Iy ={7,12,15,17,18}
B 2 4
Xo b b b7 b Ia = {2,4,6,10} a®(a—1) a
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Iy ={12,15,17,18}
Fo 22 529"110’“22 Iq={1,3,57,8,11,12} q(q —1)3 q7
I, = {4,6,14,15,17, 18,20}
Xx%6:29:222 I4={2,3,5,7,8,11,12} (g —1)3 q’
Iy ={1,4,14,15,17, 18,20}
Zf;;f Iq={3,57,8,11,12} q%(q — 1)? q°
I, = {4,14,15,17, 18,20}
F10,11 xpa 01 Ia={1,3},1c = {6,7} a(g — 1)? @
F10,12 X:qmwam Ia={1,2,4},I ={6,7,8} q(q —1)2 7
F10,13 221%:13 Iq=1{1,38,5}, Iz = {6,8,9} a*(a—1)° a®
F10,15 X47:410:015 Ia={1,3,4,8} (a—1)? a*
Iy ={2,6,11,12}
Xpapa ® I ={1,4,8},1p ={6,11,12} a®(g—1)? a®
F10,16 x?8:910916 Ia=1{1,2,4,509} (g—1)3 q°
Iy ={3,6,7,12,13}
e =25 Pa-vt |
Iy ={6,7,12,13}
F10,19 ngmﬂmﬂm ITqg={1,2,4,5,6,9} a(g — 1)® q°
Iy ={7,8,11,13,15,16}
ba a0 Ia=1{1,3,56,9} a*(q —1)® a°
Ip ={4,11,13,15,16}
Xpy HrOee Ia={1,3,5,6,9} alg—1)3 q°
Iy ={2,11,13,15,16}
Xoa e s I =1{1,5,6,9} a3 (q — 1)? a*
Iy ={11,13,15,16}
F11,12 ijl’am Ix=A2,3,7},1. ={1,6,8} a(g — 1)? a®
F11,13 X:;}b’f,lgg Ia={1,3,5},1p ={6,7,8} a3(q — 1)? a®
Fi1,16 xg‘ll}g:,g‘; Ix={2,3,57} a3(q — 1)? q*
Iy ={6,9,12,13}

F12,13 532’”3 Ia={3,4,8}1Ip={2,7,9} q(g —1)? a®
F12,14 56124114 Ip={1,2,3,4} a(g — 1)? qa*
I, ={7,8,10,11}

Fi2,17 Xzf’alz’a” Ia=1{2,4,6,7} q(q —1)3 q*
Ip ={3,10,11,14}

X;l?b:lbz Iq ={2,6,7}, 1, = {10,11, 14} ¢3(q —1)2 q°
F13,14 321?5;1,1!746,1;7&9 Ia={1,3,5},1, = {8,10,11} a°(q — 1)? a*
F13,15 X:;?b’;}b‘: Iqp={1,3,4,8} a3(q — 1)? q*
Iy ={6,9,11,12}
Fis,17 211,31;:17 Iqg=12,3,5,6,7} a*(g—1)? qa
I, ={8,9,10,11,14}
F13,18 ng?gg,ll,i,b%bu,blz Ip={1,3,4,8} a(q—1)? a*
Iy = {9,10, 14,15}
F13,20 Xppdt1ane20 Ia=1{1,2,3,4,5,6,10} a(g—1)3 qa’
Iy ={8,9,11,12,15,17,18}
Xx@11,313:920 T4 ={1,2,3,4,5,6,10} (g—1)3 q7
Iy ={7,8,9,12,15,17, 18}
Xg13,220 I4=1{23,4,56, 10} (g —1)? a®
Iy ={8,9,12,15,17,18}
F13,22 X;‘;"“lo’alf"“zz Ia={1,3,5,7,8,11,12} q(q — 1)% q7
Iy ={4,6,14,15,17, 18,20}
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Xpalpiny “22 Ia={1,3,7,8,11,12} a(q —1)® a°
I, ={6,14,15,17,18,20}
X@6:%9:913,422 Iq=1{2,3,57,8,11,12} (a—1)* a’
I, ={1,4,14,15,17,18,20}
bris 2 Iy =13,5,7,8,11,12} a*(q¢—1)3 qa°
I, = {4,14,15,17, 18,20}
ag,a ,a 2
hf,b;3 22 I ={2,3,7,8,11,12} (g —1)3 q°
Iy = {1,14,15,17, 18,20}
x;‘;?g;ﬁ,bs Iy ={3,7,8,11,12} q*(qg — 1)? q°
Iy = {14,15,17,18,20}
Fia,15 X o Ta=1{1,34,8} a*(q - 1)? a*
I, = {6,10,11,12}
; 5 -
Fia,16 ba el Ix={1,23,59} a®(g—1) qa®
I ={7,10,11,12,13}
Fi1a,19 x@12:914,919 Ig={1,2,3,4,5,6,9} (g—1)3 q’
I, ={7,8,10,11,13,15,16}
a14,a 4 2 5
Xpyibg.by.bs Iq=1{1,3,56,9} a*(¢—1) q
Iy = {10,11,13,15,16}
Fi5,16 by g I4={2,4,809,12} (¢ —1)2 ¢
Iy ={1,6,7,11,13}
F1s.17 b T Ta=1{1,2,4,6,7} a(g = 1)? @
Iy = {8,10,11,12,14}
Fie,17 Xo St 7 Ia=1{2,3,586,7} (g —1)3 qa°
Iy ={9,10,11,12,14}
brbg o Ta=12,4,567} a*(a—1)° qa°
Iy ={3,10,11,12,14}
5 4 2 4
A Ta=12,5,0.7) a1 “
I = {10,11,12,14}
F16,18 x@11:416:%18 Ip=1{1,2,3,4,538,9} (@—1)3 a’
I, ={6,7,10,12,13,14,15}
ba G 18 Ia={1,2,4,5,8,9} a*(q — 1)? a°
Iy ={7,10,12,13, 14,15}
F16,20 Xpgdy a6 120 T4 =1{1,2,4,5,6,9,10} a*(q - 1) a7
Iy ={3,7,11,12,15,17,18}
x®11:413:416,920 Iq=1{2,8,4,56,7,12} (@—1)* a’
I, ={1,8,9,10,15,17,18}
X;;}A;}lﬁs’izo Ip = {2,4,6,7,12} q4(q - 1)3 q5
Iy ={1,10,15,17,18}
P 16,020 Ia=1{2,4,5,6,9,12} a*(qg —1)® qa°
Ip ={7,8,10,15,17,18}
a ,a 4 2
Xbllfibs,%%,bs Iq={2,4,6,9,12} q° (g —1) q5
Iy ={7,10,15,17,18}
Fi6,22 x#9:410:916,922 Io=1{1,2,3,57,8,11,12} (a—1)* a8
I, ={4,6,13,14,15,17,18,20}
Xogvg Ly ={1,2,3,7,8,11,12) Pla-1)° a
Iy = {6,13,14,15,17,18,20}
5 5 2
2‘191!‘:616 a2 I ={2,3,5,7,8,11,12} q*(q —1)* a’
I, = {4,13,14,15,17,18,20}
a1g,a 4 2 6
Xty 64,5556 Iqg=12,3,7,8,11,12} @ a—1) a
I; = {13,14,15,17, 18,20}
Fi17,18 x*8:417:918 I ={1,4,6,10,14} (a—1)3 q°
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Iy ={2,3,7,11,15}
Xog oy Iq=1{1,6,10,14} ¢*(a - 1)? s
Iy ={2,7,11,15}
X:;z'a17'a18 Ip= {1,6}, Iz = {2,4,10}. q(q — 1)3 q5
Ip ={11,15}, I = {7,8,14},
Fir,10 byg T Tx={1,2,4,5,6,7,9} a(q —1)° q’
Iy ={3,10,11,13, 14,15, 16}
X;;TI;:}I?H Iy =1{1,2,56,7,9} 3 (q —1)2 q°
I, = {10,11,13, 14,15, 16}
Fi7,21 E’;Z’aw‘a”’azl Ia=1{1,2,4,56,9,10} q(q — 1)* q’
Iy ={7,8,11,13,14, 18,19}
552*“15*“17’“21 T4 ={1,2,4,5,6,10,14} q(q — 1)* q7
Iy ={7,8,9,11,13,18,19}
X7:215:217,421 Iq={1,3,4,5,6,10,14} (¢ -1t q’
Iy ={2,8,9,11,13,18,19}
pisaaTea2l Ia={1,4,5,6,10, 14} a?(q — 1)° 8
Iy ={8,9,11,13,18,19}
X;;21“171‘121 T4 ={1,2,4,5,6,10,14} q(q —1)3 a’
Iy ={7,8,9,11,13,18,19}
LTzl I =1{1,3,5,6,10, 14} *(g—1)* qa°
I, ={2,9,11,13,18,19}
XZZS’GH’“M I ={1,4,5,6,10,14} a(g—1)3 q°
Iy ={3,9,11,13,18,19}
X;;Tz;;ﬁ I4 ={1,5,6,10,14} a3(q — 1)? 7
Iy ={9,11,13,18,19}
Xpy 216 Te I4=1{1,4,56}, Iz = {2,9,10}. ag—1)* a’
Ip = {8,11,18,19}, I 7 = {7,13,14},
X28:916:417,321 I4 =1{1,3,5,6}, Iz = {2,9,10}. (g—1)* q7
Iy = {4,11,18,19}, I7 = {7,13,14},
XpaG 172 I, =1{1,5,6}, Iz = {2,9,10}. ?(q-1)3 ¢°
Ip = {11,18,19}, I; = {7,13,14},
X:;2‘“15’“16"‘17'“51 I4={1,5}, Iz = {2,4,6,9,10} a(a—-1*@-2) | 47
<a§1 #* alg(a15/a12)2) I, ={18,19}, IJ = {7,8,11,13,14}
x?12:215:916:217:97,...,14 See ¢B5 in Section 5.2 (g—1)° q7
ORI fa-nt |
F1s.,10 Xpyg 1819 Ia={1,3,4,5,6,8,9} a(g = 1)° 'y
Iy ={2,10,11,13, 14,15, 16}
Xbs hgrtas I4=1{1,4,5,6,8,9} a*(q - 1)? ¢
I, = {10,11,13, 14,15, 16}
F19,20 ng?d:,zb%,b14 Iq=1{1,2,4,5,6,9,10} a'(¢ - 1)? 'y
Iy ={11,12,13,15,16, 17, 18}
Fi9,22 XZQI?I;:?I%O Iq={1,3,5,6,7,811,12} ¢3(g —1)? q8
Iy = {9,13,14,15, 16,17, 18, 20}
F20,21 br g L020,921 Ia={1,2,4,56,9,10} (g — 1)t qa’
Iy ={3,12,14,15,17,18,19}
x313,230-921 I4={1,2,4,5,6,9,10} a®(qg—1)3 qa’
Iy ={8,12,14,15,17,18,19}
a7220,021 I4={1,3,4,6,9, 10,18} a*(g—1)3 a’
Iy ={2,5,12,14,15,17,19}
X3 s b8 b1 I4 =1{1,4,6,9,10,18} a*(a - 1)? ¢
Iy = {5,12,14,15,17,19}
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Xogivgbra Ia = {1,4,6,9}, da-1?° "
I = {14,15,17,19},
Iz = {2,5,10}, I = {12,13,18}
Fa1,22 521’5621’“22 Iq={1,3,5,8,11,13, 14, 18} q%(g —1)3 q8
Iy ={4,7,10,12,15,17, 19,20}
ng}b’z’?bi,bﬁ I ={1,3,8,11,13,14,18} q*(qg —1)2 q’
Iy ={7,10,12,15,17,19,20}
X:;?l;:ils'c‘?? I4=1{1,8,8,11,13}, qs(‘l - 1)3 q8
Ip = {10, 15,17, 19, 20},
Iz = {5,7,14}, 7 = {9, 12,18}
Fa2,23 X:f’“”’“”’ Ia={2,5,6,7,10,11,12,17,20} q(q —1)3 q°
Iy ={3,4,8,14,15,16,18,19,21}
u23:938 14 ={2,6,7,10,11,12,17,20} a®(a—-1)2 a®
I, ={3,8,14,15,16,18,19,21}
lel?,,’:"’"”“” I4 = {2,6,7,10,11,12}, *(g-1)3 a®
I = {14,15,16,18,19,21},
Iz ={3,5,17},17 = {8,9,20}
Fi,2,8 x1:92,98 Iq={3},Ip={4} (a—1)°3 q
F1,2,9 x1:42:99 T4 ={4},1. = {5} (a—1)3 q
F1,2,13 x{,‘i‘“?‘“”’ Ip={3,5},Ic =189} a(q —1)3 q?
F1,3,9 x1:43:99 T4 ={4},1. = {5} (g—1)°% q
F1,4,7 x?1%4,97 Ia=1{2},Ip={3} (¢—1)3 q
F1,5,7 x419597 Ia={2},Ip={3} (¢ —1)* q
Fi1,5,8 x1:95:98 Iq={3},Ip={4} (a—1)°3 q
F1,5,12 XZ;’QS’GIQ Iq={2,4},1p ={7,8} a(qg — 1) q?
Fi,7,8 Xy, 708 Iq={2}, 10 ={3} q(g—1)3 q
Fi,7,9 x4197,99 Ia={2,4},1; = {3,5} (¢—1)* 'S
F1,7,13 521:547,&13 Ia={3,5},1p={8,9} a*(g—1)3 q?
Fi1,8,0 Xy “80%0 Iq={3}, 1 ={4} q(q —1)3 q
F1,9,12 ngl::f’alz Ia={2,4}, 1 ={7,8} a*(qg —1)® a?
F1,12,13 a,}’am’am Iq={3,4,8},Ip={2,7,9} a(qg —1)3 ¢
F2,3,9 x*2:%3,99 T4 ={4},1c = {5} (a—1)% a
F2,5,8 X 24598 Ia={3},1p={4} (g—1)3 q
F2.,8,9 xp2 80 Ta={3},1p={4} a(g—1)3 q
F3,4,6 X 34496 Ia={1},1p={2} (g—1)3 q
F3,4,10 xp2 44010 Iq={1},1 = {6} a(q —1)3 q
F3,5,6 X 34596 Ia={1},1p ={2} (g—1)3 q
F3,5,10 X2 4010 Iq={1},1 = {6} q(q —1)3 q
F3,6,9 X 34699 Ia={1,4}, I ={2,5} (g—1)3 'S
F3,9,10 X2 490010 ITa={1,5},Ic = {4,6} a(g—1)3 a?
Fa,5,6 X456 Ia={1},1p ={2} (g—1)3 q
Fas,7 x%49597 Ia={2},Ip={3} (¢ —1)* q
Fa,5,10 ng’a‘r”alo Ia=A{1},1 = {6} a(g—1)3 q
Fa,5,11 ng’as’a“ Ia={1,3},1p={6,7} a(g—1)3 a?
Fa,5,14 Z;’::’&M I ={1,3},1; ={10,11} a(q —1)* q*
Fa5.17 b T Ia={2,6,7} Iz = {10,11,14} a*(q - 1)® @
Fa6,7 xpa t60T Ig={1}, 10 ={2} q(g—1)3 q
Fa,7,10 x%497,910 Ia=1{1,3}1,={2,6} (¢—1)* 'S
Fa,10,11 xp #1041 ITa={1,3}1I;,=1{6,7} a(g — 1)® qa

2
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Fs.6,7 Xy 60T Ia={1},1.={2} a(g—1)3 q
Fs5,6,8 X 596,98 Ia={1,3},1p ={2,4} (g—1)3 qa?
F5.,6,12 X:f’::f’aw Ia={2,4}, 1, ={7,8} a*(qg —1)® a?
Fs.7.8 ng”a7’a8 Ia={2},1.={3} a(g—1)3 q
F5,7,10 X5 47:410 Ia={1,3}, 10 ={2,6} (a—1)3 'S
F5,8,10 ng”as’aw Ia={1,4},1; = {3,6} q(q —1)3 q*
Fs,8,11 S Iq=1{1,3},1 ={6,7} *(g—1)® qa?
Fs5,8,14 Xpo be et Ix={1,3},1c ={10,11} a*(g—1)3 q?
F5,8,17 Zf’as’a” Ip={2,4,6,7} a(g—1)3 qa*
I, = {3,10,11,14}
F5,10,11 Xy 1ot Iq={1,3},1c ={6,7} a(q —1)3 q?
Fs5,10,12 Zf’am’am ITq=1{1,2,4}, 12 = {6,7,8} a(g—1)3 '
F5,10,15 x#5°97:910,915 Ia=1{1,3,4,8} (a—1)* a*
Iy ={2,6,11,12}
b 02018 Iq=1{1,4,8}, 1, = {6,11,12} a?(¢ —1)® 7
Fs,11,12 X:j”au’alz Ix={2,3,7},1, ={1,6,8} a(g—1)3 a3
Fs5,12,14 x;‘g“”?‘““ Iy ={1,2,34} a(q —1)3 q*
I = {7,8,10,11}
F5,12,17 ng’as’am'an Iq={2,4,6,7} a(qg — 1)* q*
Iy = {3,10,11,14}
gf::qli’f” I4={2,6,7},I, = {10,11, 14} ¢3(q —1)3 ¢
F5,14,15 225:;1714’(115 Ip={1,3,4,8} a*(q —1)® q*
I, ={6,10,11,12}
F5,15,17 ;g’al‘r”an Iqg={1,2,4,6,7} a(g — 1)* a°
I, ={8,10,11,12, 14}
F5,17,18 x5°98,917,918 Ia=1{1,4,6,10,14} (@—1)* q°
Iy ={2,3,7,11,15}
85017018 I4 ={1,6,10,14} a*(g—1)3 *
Iy ={2,7,11,15}
X::i"au'a”'am I, =1{1,6}, Iz = {2,4,10}. a(g —1)* ¢
I, = {11,15}, Iz = {7,8,14},
Fe6,7,8 x?6:47:98 Ia={1,3},1p ={2,4} (g—1)3 qa?
Fe,7,9 xpo 470 Ta={1,4},Ic ={2,5} a(g—1)3 a?
Fe,7,13 Xyt s Ta=1{2,3,5}Ic = {1,8,9} a(g — 1)° @
F6,8,9 Xy 80 Ia={1,3}, Iz = {2,4} a(q —1)3 q*
F6,9,12 Z?:;f’},a,)m Ia={2,4}, I ={7,8} a®(g—1)3 qa?
F6,12,13 X6-912,913 Ia=1{1,3,4,8} (@—1)° q*
I, ={2,5,7,9}
F7,8,9 X“7°98:49 ITq=1{24},1 =135} (a—1)3 q?
Fr.,8,10 Xp, 810 Ia={1,3}, Iz ={2,6} a(q —1)3 a?
F7,9,10 X*7:49:410 Ta={1,3,5} Iz ={2,4,6} (¢ —1)? @
F7,10,13 Z;;’j"’m Ia={1,3,5}I;=1{6,8,9} a*(q —1)® '
F8.9,10 by 10 Ia={1,4},Ic = {3,6} 7°(g = 1)° 7
F8,9,11 X;;;,ag,au Ia={1,3,5},1p ={4,6,7} a(g—1)3 a®
F8,9,14 XEQS,’:(?,}ZM Ia={1,3,5},1p = {4,10,11} a(qg —1)® a3
F8,9,17 Zf,‘;‘f‘a” ITa=1{2,4,6,7} *(qg —1)* q*
I, ={3,10,11,14}
F8,10,11 528:;:410’“11 ITa={1,3}1I;,=1{6,7} a*(g—1)3 qa
F9,10,11 ;;;aam,au Ia={1,3,5},1p ={4,6,7} a(g—1)3 a*
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F9,10,12 XEEJ::O’GH Ia={1,2,4},1p ={6,7,8} a*(qg —1)® e
F9,10,15 Xg;’ag’aw’al‘r’ Iy ={1,3,4,8} q(q —1)* q*
Ip ={2,6,11,12}
b baba 1P Iq={1,4,8},I; = {6,11,12} (g —1)3 q*
Fo,11,12 x@9:¥11>912 Ia=1{2,3,57} (g —1)3 q*
I, ={1,4,6,8}
F9,12,14 ::::612’&14 Ix={1,2,3,4} a*(qg —1)® q*
I ={7,8,10,11}
Fo,12,17 Zf:g;i’:” Ip={2,4,6,7} a3(q —1)* q*
Ip = {5,10,11,14}
F9,14,15 229:;51%7&15 Iqp={1,3,4,8} a®(g—1)3 q*
Iy = {6,10,11,12}
F9,15,17 x;‘;’f;"”“” Ix={1,2,4,6,7} a*(qg —1)® a°
I ={8,10,11,12,14}
F9,17,18 Xg;’fsl;’lzls Ia=1{1,2,4,6,10} (g —1)3 q°
I ={5,7,11,14,15}
F10,11,12 Zioyan,am Iqa=4{2,6,7}, 10 ={1,3,8} a(qg —1)3 ¢
F10,11,13 ng?b’ilbt’am Ipx={1,3,5},1p ={6,7,8} a®(g—1)3 a®
F10,11,16 x?8:910,911,916 Ia=1{2,4,5,6,7} (g —1* q°
Ir ={1,3,9,12,13}
Xg10,211:016 I4=1{2,5,67} a*(g—1)3 a*
Ip ={1,9,12,13}
F10,12,13 aéo’am’am Iq={1,3,4,8} a(qg —1)3 q*
I, ={2,6,7,9}
F10,13,15 XZ;?,,’;}I%’QN Ix={1,3,4,8} a®(g—1)3 qa*
Iz ={6,9,11,12}
F10,15,16 E;?b’;‘””“m T4 ={2,4,6,9,12} q%(q —1)3 q°
Ip ={1,7,8,11,13}
F11,12,13 x%9:%11:¢12,413 Iq={1,2,4,6} (¢ —1* q*
Ip ={3,5,7,8}
Xpylpe 120013 1a=1{1,2,6}, I ={3,7,8} 7*(q - 1)° ¢
F12,13,14 Z;?b’g}b%’am Ip={1,3,4,8} a(qg —1)® a*
Ip ={2,7,10,11}
F12,13,17 X:11,21;2131‘117 Ip=1{2,3,56,7} q%(q —1)3 q°
I ={8,9,10,11,14}
F13,14,15 :21?1;:111,47’;;5 Ip={1,3,4,8} q*(q —1)® q*
I ={6,10,11,12}
F13,15,17 X;;S@ls«a17 Ip={1,2,3,7,8,11} a(g — 1)® qa®
Iz ={4,6,9,10,12,14}
F13,17,18 Xzi,gb’f;%als T4 ={1,3,6,7,8,14} q?(q —1)3 q°
I ={2,5,9,10,11,15}
F14,15,16 a;4,a15,a16 Ip={2,3,7,8,11,12} a(g—1)3 q°
I ={1,4,6,9,10,13}
F15,16,17 XZQS’aw’aw’a” Ix=A2,3,7,8,11,12} a(g — 1)* qa®
Iz ={1,4,6,9,10,14}
ngl?b’:,%%’a” Iqg={2,4,6,7,12} a3(q —1)® a°
I = {1,8,10,11, 14}
Fi6,17.18 Xpy 011718 Ix=1{1,2,4,5,6,9,10} a(g - 1) a’
Iy ={7,8,11,12,13,14,15}
F17,18,19 Xx?8¥17:918,919 Ia=1{1,4,5,6,9,10,14} (g —1)* qa’
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Table D.5: The parametrization of the irreducible characters of UB5(q), where ¢ = p® and

p>3

F X I Number Degree ‘
I = {2,3,7,11,13,15, 16}
X%szls’“w I4 ={1,5,6,9,10,14} q?(q —1)3 q°
I ={2,7,11,13,15, 16}
X:-;2:“17-“18:°19 I ={1,5,6,9}, alg — 1)* o7
Iz = {11,183, 15, 16},
Iz = {2,4,10}, 17 = {7,8,14}
F1,2,3,9 x112,43,99 Ia={4},1. = {5} (¢ —1)* q
F1,2,5,8 x%1-92,95,98 Ia={3},I;={4} (g —1)* q
F1,2,8,9 Z;’%’ag'ag Ia={3},Ic={4} q(g — 1)* q
F1,4,5,7 x%1-94,95,97 Ia={2},1;={3} (g —1)* q
F1,5,7,8 Zi’af”a%as Ia={2},Ip={3} q(g — 1)* q
F1,7,8,9 x%1>97,98,%9 I ={2,4}, I ={3,5} (¢ —1)* 'S
F3,4,5,6 X3°44,95,96 Ia={1},1.={2} (a—1)* q
F3,4,5,10 Xpo M4 tee10 Ia={1},1; = {6} a(q — 1)* q
Fa5.6,7 py o007 Ia={1},1p={2} q(g —1)* q
Fa,5,7,10 x%4>95,97,910 Ia={1,3},Ip=1{2,6} (g—1)* 'S
F4,5,10,11 XZ;I’QS’GIO'GH Iqo={1,3},Ip ={6,7} a(qg — 1)* q?
F5,6,7,8 x5°46,97,98 Ia={1,3},Ip=1{2,4} (g—1)* q?
F5.,7,8.10 Xy 4TS L0 T4 ={1,3},Ic ={2,6} q(g — 1)* 'S
F5,8,10,11 Zj’,‘ff’“m’““ Ia=A1,3}, 1. ={6,7} a*(g — 1)* a
F5,10,11,12 :j”aw’an’am Ix={2,6,7},1p =1{1,3,8} a(g - 1)* a®
Fe,7,8,9 ng’a%ag’ag Ia={1,3},I; ={2,4} q(q —1)* q?
F7,8,9,10 X7°8:49,410 Ia={1,3,5},Ip ={2,4,6} (g—1)* '
F8,9,10,11 ng’ag’aw’au Ia=1{1,3,5},Ip ={4,6,7} q(q —1)* 7
F9,10,11,12 x79:910,911,912 I4=1{2,56,7} (¢ — 1)t q*
I, =41,3,4,8}
F10,11,12,13 aéo’all’alz’alg Iy ={1,3,4,8} q(q —1)* q*
I, =42,6,7,9}

153



Parametrization of the irreducible characters of Uc,

F ‘ X ‘ I Number Degree ‘
Flin Xby,bo,b3,bg,bs q° 1
Fe x*6 Tqa=A{1},1p = {2} 91 q
Fr x7 Ia={2},Ip={3} g—1 q
Fs x“8 Ia={3},Ic={4} g—1 q
Fo x“9 Iq={4},1. = {5} qg—1 q
F1o0 X510 I ={2},1; ={6} a(qg —1) q
2
F11 Xpa ! Ia={1,3},Iz ={6,7} a(g —1) q
Fiz2 Xpa? Ia=A{2,4}, 1 ={7,8} a(g —1) a?
Fis Xpo Ia={3,5}, 1z ={8,9} q(g —1) qa?
Fia X1t Ia={2,3,7},Iz = {6,10,11} a(g—1) q
Fis X47%15 Iq={1,3,4,8} (a—1)? q*
Ip ={2,6,11,12}
2
X2 b Iq={1,4,8},1; ={6,11,12} a*(g—1) a®
Fie x48:%16 Ia={2,4,59} (@—1)? q*
I, ={3,7,12,13}
Xoa Iq=1{2,59} Iz ={7,12,13} a*(a—1) @
Fir Xp 0T Ia={2,3,7} 1 = {6,11,14} q(qg — 1)2 '
X46°417 Ia=12,3,7}, 1 ={1,11,14} (a—1)? 7
X1 o Ia={3,7},1c ={11,14} RC) 7
Fis Xpy 18 Ia={1,2,4,6,8} a(g — 1)? qa°
Ip ={7,10,12,14, 15}
Xo1 s b7 Ta=1{24,6,8} a*(a—1) q*
I, = {10,12,14,15}
Fie byl 1o Iq=1{1,2,4,5,6,9} a(g —1)? q°
Iy ={7,8,11,13,15,16}
b br” Ia=1{1,3,56,9} a*(qg —1)? q°
I ={4,11,13,15,16}
5 2
pTe1o Ia=1{1,3,5,6,9} alg = 1) a®
Iy ={2,11,13,15,16}
Xg;?b3,b4 Iq={1,5,6,9} a3(qa—1) q*
Iy ={11,13,15,16}
Fa20 pr0e20 I4={234,7812} alq — 1)? q°
Iy = {6,11,14,15,17,18}
£ 6320 Ia={2,3,4,7,8,12} (g —1)2 qa®
Ip ={1,11,14,15,17,18}
fo,Obz Iq=1{3,4,7,8,12} a*(a—1) a®
Iy = {11,14,15,17,18}
5 2
Fa1 XpaSoe 3t T4 ={1,2,4,56,9,13} a®(g—1) qa’
I, = {10,11,12,14,16,18,19}
by 1 Ix=1{2,4,5,6,7,9,13} a(q — 1) 4
Iz ={1,3,10,14,16, 18,19}
Xog 15q n Ia={2,5,6,7,9,13} a®(a—1)° a°
Iy ={1,10,14,16,18,19}
5 2 6
Xo: S o T4 ={2,4,56,9,13} a®(g—1) q
Iy ={7,10,14,16,18,19}
bt T4 ={2,4,5,6,9,13} a?(g—1)? q°
Is = {3,10,14,16, 18,19}
Xp2 e basbn Iq=1{2,5,6,9,13} a*(g—1) a°
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F X I Number Degree ‘
I, = {10, 14,16,18,19}
Fa2z prowaiT a2 Iq=12,3,4,7,8,12} alg—1)3 qa°
I, = {6,11,14,15, 18,20}
X36:317,322 Iap=1{2,3,4,7,8,12} (g — 1)3 q
I, ={1,11,14,15,18,20}
B 2 2
X:117b;22 I ={3,4,7,8,12} (¢ —1) q°
I, = {11,14,15,18,20}
X 140022 Ia={234,7,8,12} a(g — 1)? a8
I, ={6,10,11,15,18,20}
Xpa 011122 Iq={1,4,6,812} alg—1)% a°
Ip ={2,7,15,18,20}
B 2 4
X1 by e Ia=1{2,4,8,12} a*a—1) a
I, = {6,15,18,20}
xpa10e22 Iq=1{1,34,812} ala—1)? a®
I, ={6,7,15,18,20}
bybe T4 ={2,4,812} ?(q — 1) at
I, = {3,15,18,20}
B 2 4
by 22 T4 ={2,4,8,12} q(g — 1) q
Ip ={1,15,18,20}
ng?bgyb% T4 ={4,8,12}, I, = {15,18,20} 3(qg—1) q°
Fas X152 T4 =1{2,3,5,6,7,8,9,11,14} a?(q — 1)? ¢°
I, = {10,12,13,15, 16,17, 19,20, 21}
Xoa Ty o Ia={1,3,5,6,7,9,11,14} ®(a=1)° @
I, ={8,12,13,16,17,19, 20,21}
ayg,a 4 2 7
Xb1172b4)2b3é,b10 T4 =1{2,3,57,9,11,14} q*(q¢—1) q
I, ={8,13,16,17,19,20,21}
Xor o4 oy Ia={2,3,57,9 11,14} a®(¢ - 1)? '
I, = {6,13,16,17,19,20,21}
b b? Ia={2,3,57,9,11,14} a®(a=1)° 4
I, ={1,13,16,17,19,20,21}
a 4 6
Xb12,3b2,b4,bg T4 ={3,57,9, 11,14} q" (g — 1) q
I, = {13,16,17,19, 20,21}
Faa X l0 AT 02 Iq={2,3,4,57,8,9,12,13,16} a(g —1)® q'?
I, ={6,11,14,15,18,19, 20, 21, 22, 23}
X@6:017:024 Ia={2,3,4,57,8,9,12,13,16} (g—1)3 q'0
I, ={1,11,14,15,18,19,20, 21, 22, 23}
XpiTpy 24 Ix=1{3,4,5,7,8,9,12,13,16} a*(a - 1) @
I, = {11,14,15,18, 19, 20, 21, 22, 23}
bt T4 =1{23,4,5,7,8,9,12 13,16} aq —1)? '
I, = {6,10,11,15, 18, 19, 20, 21, 22, 23}
B e Ia=1{1,4,5,6,8,9, 12,13, 16} a(g — 1)® qa®
I ={2,7,15,18, 19,20, 21, 22, 23}
B 3 2
lo et Ia=1{2,4,538,9,12,13,16} ®@-1) @
I, = {6,15,18,19, 20, 21, 22, 23}
SRR T4 ={1,3,4,5,8,9,12, 13, 16} a(qg —1)2 a®
I, = {6,7,15,18, 19,20, 21, 22, 23}
by T4 =1{2,4,58,9,12,13,16} ?(q—1)? a®
I, ={3,15,18,19,20,21,22,23}
B 2
Xpo *%4 I4=1{2,4,5,8,9,12,13,16} ala—1) e
I, ={1,15,18,19, 20, 21, 22, 23}
X:fjlb%b% T4 ={4,5,8,9,12,13,16} (g —1) q7

155



F X I Number Degree ‘
I, = {15,18,19,20, 21, 22,23}
Fas pL0-a1T, 122,425 Ia={2,34,57,8,9,12,13,16} alq - 1)* qa*0
I, = {6,11,14,15, 18,19, 20, 21, 23, 24}
x@6:417:322,025 I4=1{2,34,57,8,912,13,16} (g—1)* 10
I, ={1,11,14,15,18,19,20, 21, 23, 24}
B B 2
Xpi Ty 221420 Ia=1{3,4,57,89,12,13,16} a*(q - 1)° q°
I, ={11,14,15,18,19, 20, 21, 23, 24}
X 41922:025 Iq=1{23,4,57,8,9,12,13,16} q(q —1)3 10
I, ={6,10,11,15,18, 19, 20, 21, 23,24}
Xpalor 22428 Ia=1{1,4,5,6,8,9,12,13,16} a*(¢ - 1)° q°
I, ={3,7,15,18, 19,20, 21, 23, 24}
xp10,922:925 I4={2,4,5,8,9,12, 13,16} q3(q —1)® ¢
I, = {6,15,18,19, 20, 21, 23, 24}
B pz02s I4=1{2,4,58,9,12,13,16} a*(a—1)° a®
I, ={3,15,18,19,20,21, 23,24}
Zg’“ﬂ’“% Ia=1{2,4,58,9,12,13,16} a(qg — 1) 8
I ={1,15,18,19, 20,21, 23,24}
5 5 2
X230 I4={4,5,8,9, 12,13, 16} Alg—1) q’
I, = {15,18,19,20,21,23,24}
5110*“20*‘125 Iq={2,3,4,57,8,9,12,13,16} q(g —1)3 q*°
I, ={6,11,14,15,17,18,19, 21,23, 24}
x@6:920:925 Iq={2,3,4,5,7,8,9,12,13,16} (g—1)3 q'°
I, ={1,11,14,15,17, 18,19, 21, 23,24}
52028 Ia=1{3,4,57,8,9,12,13,16} a*(a=1)° @
I, ={11,14,15,17,18,19,21,23,24}
B B 2
xpIT s 02 14 ={25,6,7,9, 10,13, 14,16} ¢%(qg —1)3 ¢°
I, ={3,8,11,12,15,19, 21, 23, 24}
bacbabrn I4=1{1,3,5,6,9,11,13,16} @*(¢ - 1)° a*
I, ={7,8,12,14, 19,21, 23,24}
Xor b Ia=1{2,3,5,7,9,13,16} a(a—1)° 4
I, = {8,11,14,19,21, 23,24}
Xpy oy T4 =1{2,3,57,9,13,16} a*a-1)° a’
Iy ={6,11,14,19,21,23,24}
Zf;l‘j;%“% Ia={23,57913 16} q%(q —1)3 q7
I, ={1,11,14,19,21,23,24}
SO Ta = 1,5,7,9,13,16) a0 o
I ={11,14,19,21,23,24}
Xpa 118020 I4=1{1,2,4,5,6,8,9,13,16} a(q—1)° a®
Iy ={7,10,12,14,15,19, 21, 23,24}
X1 Sy by Iq=1{2,4,5,6,8,9,13,16} a*(a - 1)° a"
I, ={10,12,14,15,19, 21, 23, 24}
basoy 020 L4 ={1,3,5,6,9,11,13,16} *(q - 1)° a°
I = {4,8,10,12, 19,21, 23,24}
by 2T T4 =1{1,356,9,11,13,16} a(q — 1) a*
Iy ={2,4,8,12,19,21, 23,24}
Xba oy 310 Ia={1,5,6,9,11,13,16} a3(q — 1)? q’
I ={4,8,12,19,21, 23,24}
Jass 4
Xor by 3 b1a I4=1{2,3,57,9,13,16} a*(a—1)? a’
Iy = {6, 10,11, 19,21, 23, 24}
211,212,925 I4=1{23,579,13, 16} q%(q —1)3 q’

Xbg b10

Iz ={1,6,8,19,21,23,24}
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X48:910,411,925 Ia={1,4,5,6,9,13,16} (g—1)* q7
Iy ={2,3,7,19,21,23,24}
XE10,011:425 I4=1{1,5609,13, 16} (g - 1) a®
Iy ={2,7,19,21,23,24}
ngl,lé:?fg Ia={1,3,5,9,13,16} q®(qg —1)2 q°
I, ={6,7,19,21,23,24}
X:f??;;?b%,bm I ={2,4,5,9,13,16} q*(q —1)? q
Iy ={7,8,19,21,23,24}
gf;g;o:azs T4 ={2,4,5,9,13,16} q?(q —1)3 q°
I; ={3,6,19,21,23,24}
b ba ba.b7 ITa=1{25,9,13, 16} g*(qa—1)* @
I, ={6,19,21,23,24}
X@6:%7:28,425 T4 ={23,5,9,13,16} (g —1)* q°
Iy ={1,4,19,21,23,24}
2177’;28'“25 T4 ={3,59,13,16} q%(q — 1)3 q°
Iy ={4,19,21,23,24}
Zf";’ff’% Ia={2,59,13,16} (g —1)? q°
I; ={3,19,21,23,24}
6:a8:a25 Ix=1{2,4,5,9,13,16} (a-1)?° a®
Iy ={1,3,19,21,23,24}
gf:l‘;% Ia={4,59,13,16} q%(q — 1)? q°
I, ={3,19,21,23,24}
Z?,’gf‘r’ T4 ={2,59,13,16} q%(q —1)2 q°
Iy ={1,19,21,23,24}
s S Iq={5,9,13,16} a*(g—1) q*
Iy ={19,21,23,24}
Fi1,7 X127 Ia=A{2},1.={3} (a—1)? q
Fis x*1:98 Ia={3},1,=1{4} (a—1)? a
F1,9 x41:99 Ip=A{4},1, = {5} (g—1)2 q
Fi1,12 XZ;’H'H Ia={2,4}, 1. ={7,8} q(q —1)? q°
F1,13 XZ}’QIB Iq={3,5}, Iz =189} q(q —1)2 a2
F116 X*1)08:016 Ia={2,4,59} (¢-1)?° 'S
Iy ={3,7,12,13}
:;;;16 Ia=12,59}1Ip={7,12,13} a®(g—1)? @
F2,8 X298 Ia={3},Ip={4} (@—1)2 q
F2,9 X299 Ip={4},1. = {5} (a—1)? q
F2,13 XZf’alS Iq={3,5}, I =189} q(q —1)2 q>
F3,6 X396 Ia=A{1},1,={2} (g—1)2 q
F3,9 X399 Ip={4},1, ={5} (g—1)2 q
F3,10 X210 ITa={2},1. = {6} a(g —1)? q
Fa6 x¥496 Ia=A{1},1p ={2} (¢ —1)2 q
Far X497 Ia=A{2},1.={3} (g—1)2 q
Fa,10 xpp 10 ITa={2},I. = {6} a(g —1)? q
Fa11 xpy tM Ta={1,3},Ic=1{6,7} a(g - 1)? qa?
Fa,14 fo“”‘* Ip=1{2,3,7}, I, = {6,10,11} a(g —1)? '
Fanaz fo'am'“” Ia=1{2,3,7} I ={6,11,14} a(g—1)3 '
X%4:96,917 Ia={2,3,7},Ip ={1,11, 14} (g—1)3 >
bt ITa=1{37}Ic={11,14} a?*(q — 1)? qa?
Fs5,6 X596 Ia=A{1},1,={2} (g—1)2 q
Fs.,7 X547 Ia=A{2},1.={3} (g—1)2 q
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Fs5,8 X598 Ip={3},1p = {4} (a—1)? q
Fs5,10 Zf’alo Ia=A{2},1 = {6} a(g — 1)? q
Fs,11 ZQS’H'H Ip={1,3},1Ip={6,7} a(g - 1)? a?
Fs5,12 xZ;’”“” Ia={2,4}, 1, ={7,8} q(q —1)2 a2
Fs5,14 fo’al‘* Ia={2,3,7},1 = {6,10,11} a(g — 1)? ¢
F5,15 X547 415 Ta={1,3,4,8} (a-1)% a*
Iy ={2,6,11,12}
Z;ggo I ={1,4,8},I; = {6,11,12} q%(qg —1)2 q°
Fs,17 ng’aw’“” Ip={2,3,7},1 = {6,11,14} a(g — 1)® a
X 546417 Ia=A2,3,7}, 1 ={1,11, 14} (@ —1)* a®
b by Ia=A3,7},1p = {11,14} a*(a—1)? a®
Fs,18 Z;”an’als Ia=1{1,2,4,6,8} q(q —1)3 q°
Iy ={7,10,12, 14,15}
Xu2 s Ta={2,4,6,8} a*(a - 1)? at
Iy ={10,12,14,15}
Fs5,20 af’am’am Ip={2,3,4,7,8,12} alg —1)® q°
Iy ={6,11,14,15,17,18}
X@57%6:320 I ={23,4,7,8,12} (g —1)3 q°
Iy ={1,11,14,15,17,18}
p5p20 T4 ={3,4,7,8, 12} a®(g—1)? 7
I, ={11,14,15,17,18}
Fs,22 X2 10T 022 Ia={2,8,4,7812} a(q — 1)* q°
Iy ={6,11,14,15, 18,20}
X 596,417,922 Iq=1{2,3,4,7,8,12} (¢ — 1)* q°
Iy ={1,11,14,15, 18,20}
oo fa=(3,4,7,8,12} -1 @
Iy = {11,14,15, 18,20}
Zf'“l‘*'“” I ={23,4,7,8,12} q(q —1)3 q°
I, = {6,10,11,15, 18,20}
525,751101@22 I =1{1,4,6,8,12} a*(qg—1)3 7
Iy ={3,7,15, 18,20}
g Ia = (2,4,8,12} a1 a
Iy = {6,15,18,20}
23psiea T4 ={24,8, 12} a®(g—1)3 a*
I, = {1,15,18,20}
Xy T2 T4 ={3,4,8,12} q(q —1)3 q*
Iy = {2,15,18,20}
ngy’;:;?bq Ia = {4,8,12}, I, = {15,18,20} q®(qg —1)2 7>
Fe.,7 xpo " Ta={1},1; ={2} a(g - 1)? q
Fe,8 X698 Ia={1,3},1p ={2,4} (g—1)2 q?
Fe6,9 X699 Ip={1,4},1 = {2,5} (a—1)? q?
Fe,12 2167’;,:12 Ia=A2,4},1p ={7,8} a®(g—1)? a®
F6,13 xpo 1 Ix=1{2,3,5},1c ={1,8,9} a(g - 1)? e
Fe.,16 X2 8016 Ia=1{24,509} a(g—1)3 q*
Iy ={3,7,12,13}
b b Iq=1{2,59} I ={7,12,13} ®(q — 1)? 7
Fr.8 xpr 8 Ta={2},1.={3} a(g —1)? q
Fr.,9 X799 Ia={2,4}, 1 ={3,5} (a—1)? q?
F7,10 b bl ITa={2},1. = {6} a*(q — 1)? q
Fr,13 227;:413 Ia={3,5},1.={8,9} a?(q — 1)? q?
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, _ — —1)2
F8,9 XZE “9 Ia={3},1Ic={4} q(q —1) q2
2
Fs,10 X2 1o Ia={2,4},1c = {3,6} alg — 1) q2
2 2
ag,a _ _ 1 q
Fs,11 b by T4 ={1,3},Ic ={6,7} q2(,, >2 _
ag,a1q = = {6,10,11 -1 q
Fs,14 b18,b4 Ia=A2,3,7},1c={ } q2<q )3 _
ag,a10,a17 = = 11,14 -1 q
F8,17 bls,b‘lm Ia=1{2,3,7} I ={6,11,14} a“(q ; .
yoras T Iq={2,3,7}, Iz = {1,11,14} a(g—1) q
4
2 2
BT Iq={3,7} 1 ={11,14} (g —1) q
1.92.94
2 2
Fo.10 XD 10 Ia={2,5},I, = {4,6} alg —1) q3
2
Fo,11 Xpo 1 Ta={1,3,5},Ic = {4,6,7} ag— 1) ! q2
2
ag,aig — — 8 1 q
Fo,12 be be Ta={2,4},1c = {7,8} a*(q 2) :
’ = -1
Fo,14 ot Ia=1{2,3,571} alg— 1) a
Iy = {4,6,10,11}
3 4
;a9 — -1
Fo,15 XZ57 @915 Iq=1{1,3,4,8} a(q ) q
Ip ={2,6,11,12}
2 3
X2 ks Ia={1,4,8},I; = {6,11,12} a*(a—1) q
bo,b3,bs S -
s s — -1
Fo,17 ng “10-917 Iq=1{2,3,57} q(g —1) q
Iy = {4,6,11,14}
3 4
x4699,917 Ip=1{2,3,57} (g —1) q
Iy ={1,4,11,14}
2 3
i Ia={3,57} I ={4,11,14} a*(g—1) q
1:92
2 3 5
ag,a11,a18 — -1 q
Fo,18 bg’b;l Ia=1{1,2,4,6,8} q°(q — 1)
Ip = {7,10,12,14, 15}
ag,a1g Iq={2,4,6,8} q*(q —1)? a
Xby ,b3,bg,by A 4,6,
I; ={10,12,14,15}
2 3 6
s B — -1
Fo,20 by e 00 Ta=1{23475812} A CES) a
Iy ={6,11,14,15,17,18}
6
Xy 89420 Ix=1{2,3,4,7,8,12} a(g — 1)® q
b5
Iy, ={1,11,14,15,17,18}
3 2 5
27020 Iq={3,4,7,812} a*(a—1) q
by1,b2,b5
Iy = {11,14,15,17,18}
2 4 6
a9,a10,217,222 — —1 q
Fo,22 by b ITa=1{23,4,7,812} a’(qg—1)
I, ={6,11,14,15,18,20}
4 6
o917 822 Ia=12,3,4,7,8,12} alg—1) q
5
Iy ={1,11,14,15, 18,20}
3 3 5
ag,aj7,azy = 12 q°(qg—1) q
by,bo,bs Ia=1{3,4,7,8,12}
Iy = {11, 14,15, 18,20}
2 3 6
By a2 ={2,3,4,7,8,12 a*(¢—1) q
by b5 Ia={2, }
I, ={6,10,11,15,18,20}
3 3 5
ag,ay,agz = 12 q°(q — 1) q
Xbg,bg,b10 Iq=1{1,4,6,8,12}
I, ={3,7,15,18,20}
4 3 4
ag,ajg,ay = 12 q*(q¢—1) q
Xb1 (b b5.b7 fa= {24812}
I, = {6,15,18,20}
3 3 4
ag,a9,a22 ={2,4,8,12 q°(qg—1) q
Xbg,bs,by Ia=A2, }
I, ={1,15,18,20}
3 4
a7,a9,a22 I.A — {3,4,8,12} qQ(q_ 1) q
b1,b5
Iy ={2,15,18,20}
2 3
v 22 Iq={4,8,12}, 1z = {15,18,20} a*(g—1) q
by.bo,b3.by - 2
) = = -1
F10,11 ngw a1 Iqa={1,6},Ip={2,7} q(g — 1) q2
3 2
aj10,a12 _ — —1 q
F10,12 b Dot T4 ={2,4},1c = {6,7} q2(q >2 _
a10:213 — — 8.9 1 q
F10,13 Xp1 0 Ia={2,3,5} 1, ={6,8,9} a?(q¢—1)
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F10,15 X47:410:915 Ix=1{1,3,4,6} (a—1)° qa*
Iy ={2,8,11,12}
Xpapa P Ta={1,4,6}, 1 ={8,11,12} a?(q — 1)? a
Fio0,16 bebgl e Ia=1{2459} (a-1)° at
I, ={3,7,12,13}
Xo1 Sn b by Ta={2,5,9},Ip = {7,12,13} a'(¢ - 1)? @
Fi0,19 Z;O’alz’alg I4=1{1,2,4,5,6,9} q(q —1)3 q°
I, ={7,8,11,13,15,16}
It Ia=1{1,355609} (g —1)3 o
I, ={4,11,13,15,16}
by T4 =1{1,35069} ala - »? 0
Ip ={2,11,13,15,16}
a1p,a 3 2 4
by b b Ia={1,5,6,9} ®(g—1) q
Iy = {11,13,15,16}
Fi1,12 B0tz Ta=1{2,3,7}, 1z ={1,6,8} a(g — 1)? 7
Fi1,18 Xoatog b Ia={1,3,5}, I ={6,7.8} 7°(a —1)° 7
F11,16 XZII},;:};; Ia=1{2,3,57} a3(q — 1)? q*
Iy ={6,9,12,13}
F12,13 Xpa 2 13 Ta={3,4,8},Ic = {2,7,9} a(¢ - 1)* @
Fi12,14 L2 Iq=1{2,3,7}, 1 ={6,10,11} a3 (q —1)? e
B 4 2
Fiz17 Xo1 g b b10 Ia={2,3,7}, Iz = {8,11,14} a'(¢ - 1) 7
F13,14 Xlef’b’:'ylbt Ia=1{2,3,57} a3(q — 1)? q*
Iy = {6,8,10,11}
F13,15 XZ;?Z;:E; Ia={1,3,4,8} a3 (q — 1)? q*
Iy ={6,9,11,12}
Fis17 Xo1 %y 1T Iq=1{23,57} q3(q —1)® qa*
Ip = {6,8,11,14}
b by T T4 =1{2357} a*(q - 1)° q*
Iy ={1,8,11,14}
Xo1 e by b Iq={3,57}, Iz ={8,11,14} a*(qg —1)? 7
F13,18 ngl’alg”alg Ia=1{1,2,3,4,6,8} a(g—1)3 q°
Iz ={7,9,10,12,14,15}
Xo1 e Ia={23,4,6,8} a®(qg —1)? a°
Iy ={9,10,12,14,15}
F13,20 Xp; a0 Ia=1{2,3,4,7,8,12} (g —1)* q°
Iy ={6,11,14,15,17,18}
B B 2
boibg 2 Ia={2,3,4,7,812} (g - 1)° ¢
Ip ={1,11,14,15,17,18}
a sa 4 2
by by b bo Ia={34,7,8,12} q*(@—1) q°
Iy = {11,14,15,17,18}
Fis,22 pig 14,017,022 Ix=1{2,3,4,7,8,12} a*(qg —1)* a8
I, ={6,9,11,15,18,20}
211?17’:13@17’&22 Ta=42,3,4,7,8,12} a*(g — 1* q°
Is = {6,9,11,15,18,20}
Xpo 18417022 Ix=1{2,3,4,7,8,12} a(q — 1)* °
Iy ={1,9,11,15, 18,20}
biibaibs Ta=134,7,8,12} ¢*(q - 1)° 7
Ip ={9,11,15,18,20}
13,014,022 — 3 3 6
PN Ia=1{2,3,4,7,8,12} a-1) q
Is = {6,9,11,15,18,20}
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Xpg 0718022 Ta=1{1,23,4,8,12} q(q — 1)* q°
Iz ={6,7,9,15,18,20}
] il 5
X a2 Ta={1,3,4,8,12} a*(g = 1)° a®
I ={7,9,15,18,20}
Xy by Ia=1{2,3,4,812} a®(q—1)3 a®
I, ={6,9,15,18,20}
B pa 27022 Ia={2,3,4,8,12} a*(qg —1)® a°
Iz ={1,9,15,18,20}
B 4 2 4
b1 g s b Ia=1{34,8,12} a*(a—1) a
I ={9,15,18,20}
a10,213,214,a%,a:
Xoy g o HITE22 Ia=1{3,4,8,12}, Iz = {2,7} (a-1)*q-2) | ¢°
(a}, # a3,4/(4a10)) Ip = {9,15,18,20}, I; = {6,11}
:;0’013’014"122,0.6,11 See ¢C5 in Section 5.3 a(q — 1)5 ‘16
Xgll?b’;,lb:;’;l‘l’a22 See ¢€5 in Section 5.3 ¢3(g—1)* q°
B 2 2 4
F1a,15 bavs Ia=1{1,3,611} a*(a—1) a
Iy ={2,7,10,12}
Fia16 Xpr g s g b1 Ia=1{2,3,571} ®(a—1)° !
I, ={6,10,11,12}
Fia,19 x12:914,919 Iq=1{1,2,3,4,5,6,11} (¢g—1)3 q7
I ={7,8,9,10,13,15,16}
a sa 4 2
Xty b4, br,bs Ta=1{1,3,56,11} a(a—1) e
Is = {9,10,13,15,16}
Fis,16 Xpa g 16 Ix=1{2.4,8,9,12) (a—-1)? @
Iy ={1,6,7,11,13}
F15,17 x;’;?b’j}Jm Ia={1,3,6,11} a3(q — 1)? q*
Iy ={7,8,12,14}
alg,a 6 2 4
Fie.17 Xb, oy b bs 29 b10 Ia=1{23,571} ®(a—-1) q
Iy ={11,12,13,14}
Fi6,18 Xp Lo 06 a1s Ix=12,3,4,7,8,12} a(g — 1)* a8
I ={5,6,9,10,14,15}
a13,a16,a 3 3 5
p13,018:018 Iq={2,4,8,9,12} q°(q — 1) q
I, ={5,7,10,14,15}
Xy, 116 s Ta=1{23,4,7,812} a(g—1)3 q°
I ={5,6,9,10,14,15}
) ) .
X1 g Tx={2,4,7,8,12} a*(a—1) a®
Ip = {5,9,10,14,15}
F16.20 Xo1 S5e 2ot b 10 Ia={2,3,4,7,8,12} ®(a=1)° a°
Iy ={11,13,14,15,17, 18}
Fi6,22 x;’j?g:};‘fiﬁfybu Ia={2,3,4,7,8,12} a°(q —1)* q°
I, ={9,13,14,15,18,20}
Xo) o 022 Ta=1{2,3,4,7,8,12} a'(¢ - 1)° q°
I, ={9,10,13,15,18,20}
211,916,922 I ={2,34,7,8,12 3(g—1)3 6
Xb) 165510 A =12,3,4,7,8,12} q°(¢g—1) q
I, = {6,9,13,15,18,20}
alg,a 5 2 5
Xb11f5b3,2b25,b6,b10 ITa={2,4,7,8,12} @ (a—1) a
I, ={9,13,15,18,20}
Fi7.18 Xy Ty 8 T4 ={2,6,7,10,14} (¢ = 1) a°
Iy ={3,8,11,12,15}
Fi7.10 $12,917,219 Iq=1{1,2,3,4,506,11} alg—1)3 a’

b1o

I, ={7,8,9,13,14,15,16}
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Xoy T5q o b b10 Ia={1,3,56,11} ®(a-1)° @
Iy ={9,13,14, 15,16}
Fiz,21 x8:215,217,921 I ={1,2,4,5,6,10,11,14} (g —1)* 'hd
Iy ={3,7,9,12,13,16, 18,19}
by T2 I4={1,2,56,10,11,14} a*(g—1)3 a’
Iy ={7,9,12,13,16,18,19}
B g2 Ia=1{2,4,5,6,7,10,14} ?(a-1)° 4
Iy ={3,9,11,13,16,18,19}
) 4 X
Xo1 T5g b1 Ia={2,5,6,7,10,14} a(a—1)? a°
I ={9,11,13,16,18,19}
Fis,19 517&;“18’“19 T4 =1{1,3,4,6,8,9,15} q(g —1)3 q7
Iy ={2,5,10,11,12,14,16}
18,219 — 3 2 6
bahe e Ix={1,4,6,8,9,15} a*(a 1) a
Iy = {5,10,11,12, 14,16}
F19.20 Xba s by b10 Ia=1{1,3,4,6,8,11,15} at(a—1)? q’
Iy ={7,12,13,14, 16,17, 18}
Fio,22 b e brtae Ia={1,3,4,6,8,11,15} q*(q —1)® q’
Ip ={9,12,13, 14, 16, 18, 20}
Xoa e oy 422 Ia=1{1,3,4,6,8,11,15} a*(¢ - 1) ar
Iy ={9,10,12,13, 16, 18, 20}
27,219,922 Iq={1,3,4,6,8,11,15 2(g—1)3 7
be 1o A =1{1,3,4,6,8,11,15} q° (g —1) q
Iy ={2,9,12,13,16, 18,20}
ajg,a 4 2 6
Xty bg.68.b10 T4 ={1,4,6,8,11,15} a(a—1) a
Ir ={9,12,13,16, 18,20}
B 2
F20,21 Zf?b:?b; T4 ={2,4,6,7,10,12, 14,18} Bla—-1) &8
Iy ={3,8,11,13,15,16,17,19}
Fa1,22 Xo) e e 422 Ia={2,4,6,7,10,12, 14,18} (g —1)3 ¢
Iy ={8,9,11,13,15,16,19,20}
B B 2
Xog pe 2122 Ia={1,2,4,6,10,12,14,18} a*(¢ - 1) e
Iy ={7,8,9,13,15,16, 19,20}
agy,a 4 2 7
Xb12,1b3,2b25,b7 T4 ={2,4,6,10,12, 14,18} q¢*(qa—1) q
Iy ={8,9,13,15,16,19,20}
F22,23 Xp) Gs 227028 T4 =1{2,3,7,811,12,13,17,20} ?q-1)°3 @
Iy ={4,6,9,14,15,16,18,19,21}
X:g*“22*a23 I4={2,3,7,8,11,12,13,17,20} q(q — 1)3 q°
Iy ={1,4,9,14,15,16,18,19,21}
Xplhe 3 Ia={3,7,8,11,12,13,17,20} a®(¢ - 1) a®
Iy ={4,9,14,15,16,18,19,21}
F1,2,8 x“1428 Ia={3},Ip={4} (g—1)3 q
F1,2,9 x*1:92:99 Ta={4},1. = {5} (a—1)° q
F1,2,13 by s Ia={3,5},I = {8,9} a(g = 1)° 7
F1,3,9 x*1:93:99 Ta={4},1; = {5} (a—1)° q
F1,4,7 X1 ed.er Ta={2},1 ={3} (g —1)® q
F1,5.7 x1:25-97 Ia={2}, 1z ={3} (a—1)3 q
F1,5,8 X158 Ia={3},Ip={4} (g—1)3 q
F1,5,12 b 212 Ia={2,4},1c = {7,8} a(g — 1)° @
F1,7,8 Xy, “T08 Ip=A{2},1p={3} a(g—1)3 q
F1,7,9 X179 I ={2,4},I; = {3,5} (g—1)3 q?
F1,7,13 521;;27"‘13 Ia={3,5},I; = {8,9} *(g —1)® qa?
F1.8,9 Xpa “80 Ta={3},Ic={4} ala—1)% q
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F1,9,12 Z;;Sf’“” Ip={2,4},1p ={7,8} a*(qg —1)® a?
F1,12,18 Xgi’alz’alg Iq={3,4,8}, I =1{2,7,9} q(q —1)3 @
F2,3,9 X 29349 Iq={4},1 = {5} (g—1)3 q
F2.5,8 X“245°78 Ip={3},1p = {4} (g—1)3 q
F2.,8,9 XZ?’H'S'GQ Ip={3},I = {4} a(g—1)3 q
F3.4,6 X346 Ia={1},1.={2} (g—1)3 q
F3,4,10 xp2 o0 ITa={2},1; = {6} a(g—1)3 q
F3.5,6 X356 Ia={1},1;={2} (g—1)3 q
F3,5,10 Zf’as'am Ia=A{2},1;={6} q(q —1)3 q
F3,6,9 X 3:96:99 Iq={1,4},1p = {2,5} (a—1)° q?
F3,9,10 ng”ag'am Ia={2,5}, Iz ={4,6} q(q —1)3 q°
Fa,5,6 x?4:%5:96 Ia={1},1.={2} (g—1)3 q
Fa,5,7 X 49597 Ia=A{2},1;={3} (g—1)°3 q
Fa,5,10 Zf’as'aw Ip=A{2}, 1. ={6} a(g — 1)® q
Fa5,11 Z;’as'all Ia={1,3},Ip =167} q(q —1)3 q°
Fa,5,14 Xpoo e Ia={2,3,7} Iz = {6,10,11} alg — 1)° @
Fa5,17 ng’a5’a10'a17 Iqg={2,3,7},1 = {6,11,14} a(g - 1)* '
X*4:95:26:917 Iq=1{2,3,7}, Iz = {1,11,14} (g —1)* 7>
Z;‘j,?;'“” Ip={3,7},1p = {11,14} a*(qg —1)® a?
Fae,7 xpa “6007 ITa={1},1p ={2} a(g—1)3 q
Farr10 b 10 Ia={2},I; = {6} *(g —1)® q
Fa,10,11 ng’am'au Ig={1,6},1p ={2,7} a(qg —1)3 s
Fs5.,6,7 af’%'w Ia=A{1},1c={2} a(g —1)3 q
F5.6,8 X 59698 Ia={1,3},I={2,4} (g—1)3 q?
Fs5,6,12 ijgf’“” Ia=A{2,4},1p ={7,8} a®(g—1)3 a®
Fs,7.,8 Xy tT08 Iq={2},1p =13} q(q —1)3 q
Fs,7,10 ng;:g’aw Ip=A{2}, 1, ={6} a*(q —1)® q
F5.,8,10 Zf'ag'am Ia={2,4}, 1, = {3,6} a(q —1)3 q>
Fs5,8,11 Z;’j,ff’““ Ia={1,3},1Ip={6,7} a®(g—1)3 a®
F5,8,14 ij,?f'““ Ia={2,3,7},1 = {6,10,11} a*(qg —1)® 7
F5,8,17 ?f;{,’f"”o‘“” Ia=1{2,3,7},Ic ={6,11,14} q*(¢ — 1)* >
245’“6'“8’“17 Iq={2,3,7}, 1 = {1,11,14} q(qg — 1)* 7
Zf,’:;,}l” Ia=43,7}, 1, ={11,14} a3(q —1)3 q?
F5,10,11 X:;?'am'an Iqa={1,6},1p={2,7} q(qg —1)3 q?
Fs5,10,12 :15:;13;&12 ITa={2,4},1p ={6,7} a®(g—1)3 a®
F5,10,15 x@5:97:410,915 Ia=1{1,3,4,6} (g —1* q*
Ip ={2,8,11,12}
boba Ta=1{1,4,6},Ic = {8,11,12} (g — 1) @
Fs,11,12 X:j,au,am Ip=42,3,7}, 1z ={1,6,8} a(q —1)3 '
F5,12,14 :f;,f;?,;““ Iq={2,3,7},1c = {6,10,11} q3(q —1)® '
F5,12,17 ng,’fj?b’ﬁ‘flbfn Ia={2,3,7},1p = {8,11,14} a*(g—1)3 a®
F5,14,15 Zj)f;“’“ls Iy ={1,3,6,11} a*(q — 1)® q*
I, ={2,7,10,12}
F5,15,17 225”;;’5’5’1%17 Ip={1,3,6,11} a3(q —1)3 q*
I, ={7,8,12,14}
F5.17.18 By 18 Ix={2,6,7,10,14} (@ -1° @
I, ={3,8,11,12,15}
Fe,7,8 x@6:97:98 Ia={1,3} I, ={2,4} (g —1)3 q°
Fe.,7,9 Xpo tT Ta={1,4}, I ={2,5} a(g — 1)® a®
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Fe,7,13 XZf’a7'a13 Ia=1{2,3,5},Ic={1,8,9} q(q —1)3 7
Fe,8,9 ng’ag’ag Ia={1,3}, I ={2,4} q(q —1)3 a2
F6,9,12 Zf";f)},?z Ia=A{2,4}, 1, =178} (g —1)° q>
F6,12,13 x*6-912:913 I =1{1,3,4,8} (a—1)3 q*
I, ={2,5,7,9}
F7,8,9 X7°98:49 Ta={2,4},1 = {3,5} (a—1)3 q?
F7,8,10 ng’ag’aw Iqg={2,4},1 = {3,6} a(g—1)3 q?
F7,9,10 :17":29'&10 Ia=A{2,5}, 1z ={4,6} *(qg — 1)® s
F7,10,13 217,’5410'“13 Ia={2,3,5},1p = {6,8,9} a®(g—1)3 a®
F8,9,10 foj;ff’“w Ia={2,4},1 = {3,6} a*(qg —1)® a?
F8,9,11 X?S’ag’au Ia=1{1,8,5},Ip ={4,6,7} q(q —1)3 >
F8,9,14 le’ag'aM Iq={2,3,57} a(g—1)3 q*
I, ={4,6,10,11}
F8,9,17 ng’ag'alo'a” Iqp={2,3,57} a(g —1)* q*
I = {4,6,11,14}
X“6°98:99,9417 Iq={2,3,57} (g—1)* q*
Ip ={1,4,11,14}
Xpo e 7 Ia={3,57} I ={4,11,14} a®(g—1)3 °®
F8,10,11 X“8°10-911 Ia={1,4,6},I0=1{2,3,7} (a—1)3 '
F9,10,11 xp t1oet Iq={1,5,6},1p ={2,4,7} a(qg —1)3 ¢
F9,10,12 Z?:l?zl%:jf Ia={2,4},1p ={6,7} a*(g—1)3 q?
F9,10,15 Z;’H'g'aw'als Ia=1{1,3,4,6} a(g — 1)* q*
Ip ={2,8,11,12}
XZ;’;RI%':“; Iq={1,4,6},1c = {8,11,12} a®(g—1)3 @
Fo,11,12 x@9:411,912 Ia={2,3,57} (g—1)3 q*
I, ={1,4,6,8}
F9,12,14 fo;:;%am Iq={2,3,57} a®(g—1)3 q*
Ip = {4, 6,10, 11}
F9,12,17 ng:;g?b’ln;7 Iq={2,3,57} a(q —1)® q*
I, ={4,8,11,14}
F9,14,15 XZ?’QM’QIE’ Iq={1,3,56,11} q(q —1)3 q°
I, ={2,4,7,10,12}
Fo.15.17 Xog org T Ix=1{1,3,56,11} (- 1° @
I, ={4,7,8,12,14}
Fo9,17,18 ng’a”’als Ia={2,56,7,10,14} q(q —1)3 q°
I, ={3,4,8,11,12,15}
F10,11,12 Zio«lu«nz Iqa=A2,3,7} I ={1,6,8} q(q —1)3 @
F10,11,13 X:io’au’al‘o’ Iq={1,2,3,5} a(qg —1)3 q*
I, ={6,7,8,9}
F10,11,16 lef)l;:}bgaw Iq={2,3,57} a®(g—1)3 q*
Ip = {6, 9,12, 13}
F10,12,18 lew’“l""“”’ Ia=1{2,3,4,5} q(q —1)3 q*
I, ={6,7,8,9}
F10,13,15 Z;o,a13ya15 Ia={1,3,4,5,6} q(q — 1)3 (15
I, ={2,8,9,11,12}
F10,15,16 Z;?b’:w’aw Iqa={2,4,8,9,12} a®(g—1)3 a°
Ip = {1, 6,7,11, 13}
F11,12,18 x@9:411,412,913 Ia=1{1,2,4,6} (g —1* q*
I, ={3,5,7,8}
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balpg 120018 Ia={1,2,6},Ic ={3,7,8} *(g — 1)® '
Fi12,18,14 :11’217’:711%’(114 Iq=1{2,3,57} a®(q—1)3 q*
I, ={6,8,10,11}
F12,13,17 lel?l;:,llgg’al?“au T4 =A2,3,57} a®(g—1* q*
Iy ={6,8,11,14}
bybg o T Ia=1{23,57} q*(¢ —1)* q*
I; ={4,8,11,14}
Zf’alz’am'a” Iq={2,3,7,8} a(g —1)* q*
Iy ={1,5,11,14}
:11?,;:)1,)1’“17 I ={3,7,8}, I, ={5,11,14} (g —1)3 3
F13,14,15 xgi?g;“’““’ Iq={1,3,5,6,11} a®(g—1)3 a°
Iy ={2,7,8,10,12}
F13,15,17 xZ;f”;””““’“” Ia=1{1,3,5,6,11} q*(¢ — 1)* q°
Iy ={2,7,8,12,14}
Xpy H13 LS T Ta={1,3,5,8,11} (g — D* 7
Iy ={4,6,7,12,14}
Xpyiogbs T Ia=1{1,3,811} a*(q - 1)° a*
Iy ={6,7,12,14}
Fis,17,18 Xp) e 1718 Ia=1{234,6,738} a*(q - 1)° q°
Iy ={9,10,11,12, 14,15}
F14,15,16 XZ;‘I’GIS’GIG Ia=1{2,3,4,6,9,12} q(q —1)3 q°
Ip ={1,7,8,10,11,13}
F15,16,17 Z;i‘fom’a” T4 =1{2,3,4,7,8,12} (g —1)3 q°
I ={1,6,9,11,13,14}
Fi6,17,18 Xpy oy 107118 Ix=1{2,3,4,7,8,12} a*(a - 1)* a°
I, ={6,9,10,11,14,15}
ng‘alﬁ‘a”’“lg I ={2,57,10,12,14} q(q — 1)* q
I, ={3,4,6,8,11,15}
Xgllél;:}b;’“ls Ia ={2,7,10,12,14} (g —1)3 q°
Iy ={3,6,8,11,15}
F17,18,19 ngg’a”’alg’alg Ia={1,3,4,6,8,11,15} q(q —1)* q7
I ={2,7,9,10,12,14, 16}
X@9:917:418,919 T4 ={1,5,6,10,11,14,15} (g—1)* q7
Iy ={2,3,4,7,8,12,16}
ngz{;ls’alg Ia ={1,6,10,11,14,15} (g —1)3 q°
I ={2,3,7,8,12,16}
F1,2,3,9 X“1042:43:99 Ip=A{4},1, ={5} (g—1)* q
F1,2,5,8 X41:42:95,98 Ia={3},1;={4} (g —1)* q
F1,2,8,9 XZ:’HQ'ag'ag Ia={3},1c={4} q(g — 1)* q
F1,4,5,7 x41-94,95,97 Ia={2},1.={3} (¢ —1)* q
F1,5,7,8 Zi’a‘r"w'% Ia=A{2},1.={3} q(g — 1)* q
F1,7,8,9 x4147,98,99 Ia={2,4},I; = {3,5} (¢ —1)* q?
F3,4,5,6 x4894,95,96 Ia=A{1},1p={2} (g—1)* q
F3.,4,5,10 po R0 Ia={2},1; = {6} q(g —1)* q
Fa,5,6,7 Z;pasvae,w Ia=A{1},1c={2} q(g — 1)* q
Fa,5,7,10 XZ?)’:f'a%am Ia={2},Ic = {6} q*(¢ — 1)* q
Fa,5,10,11 XZ?’%’QIO'QH Iqa={1,6},1p={2,7} q(q —1)* a2
F5,6,7,8 X5°%6:47:98 Ia={1,3},1p ={2,4} (a—1)* qa?
F5,7,8,10 ng’a%ag'aw Iq={24}, 1 = {3,6} q(q —1)* a2
F5,8,10,11 x5:98:710,911 Ip={1,4,6},Ip={2,3,7} (g—1)* '
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F5,10,11,12 X:j,am,au,am Ia=1{2,3,7},Ic={1,6,8} q(q —1)* 7

F6.7,8,9 XZS’W’QB'QQ Ia={1,3},1p={2,4} a(g —1)* q?

F7,8,9,10 XZZ;;?'%’QIO Ia={2,4}, 1, = {3,6} *(g - 1)* q>

F8,9,10,11 xgj’“g'“lo’“ll I ={1,4,6},I; = {2,3,7} q(q — 1)* >

F9,10,11,12 x@9:410,411,912 Ia={2,3,57} (g —1* q*
I, ={1,4,6,8}

F10,11,12,13 Xgio,an,amaals Ip=1{2,3,571} a(g —1)* q*
I ={1,6,8,9}

Table D.6: The parametrization of the irreducible characters of UCs(q), where ¢ = p® and
p > 3.
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Parametrization

of the irreducible characters of Up,

’ F ‘ X ‘ I Number Degree ‘
=
Flin Xby,bo,b3,bg,bs q’ 1
Fe x*6 ITa={1},1Ic = {3} 9-1 q
Fr x7 Ia={2},1={3} g—1 q
Fs X8 Ia={3},Ic = {4} g—1 q
Fo x“9 I ={4},1; = {5} qg—1 q
Fio Xpa' Ia=1{1,2},1c={67} a(a — 1) s
2
Fi11 Xpa'! Ia={1,4}, I = {6,8} a(g—1) q
Fiz2 Xpa? Ia=A{2,4}, 1z ={7,8} a(g — 1) a®
Fis Xp.2 Ia={3,5} 1z ={8,9} a(g — 1) qa®
4 3
Fia Xoa e by s Iq={1,2,4}, Iz = {10,11,12} a*a—1) | q
Fis x*8:%15 Ia={1,4,509} (a—1)? q*
Ip ={3,6,11,13}
) .
Xpa s Iq={1,5,9}, 1z ={6,11,13} a?(g—-1) | ¢
Fie X816 Ia={2,4,5,9} (@ —1)? q*
I ={3,7,12,13}
Xpa 5 Ia={2,509} I ={7,12,13} a*(g—1) e
3 4
Fir X1 oo b I ={3,6,7,8} (g —1) q
I, ={10,11,12,14}
a11,218 — 5 _ 2 5
Fis b bm bk b12.b13 Iq={1,2,4,509} ®(@—-1?% | q
I, = {6,10,14, 15,16}
12,218 — 4 _ 2 5
b3,bg,bg,b13 Ia={1,2,4,59} " (¢ —1) q
I ={7,10,14,15,16}
Xo S ba s Ia={1,2,4,59} P a-1)7 | ¢°
I = {3,10,14,15,16}
alg _ 5. _ 4
Xbz.bg.bg.b7.b13 Ip=1{1,2,509} 7°(g—1) q
I, = {10, 14, 15,16}
Fie Xos a o T4 =1{1,2,8,5,6,7,10} @ -1?% | 47
Iy ={11,12,13,15,16,17,18}
412,919 I ={3,56,7,8,10 4(g—1)2 6
b1,b4,b9,b11 A {3,5,6,7,8,10} 7" (q ) q
I, ={2,13,15,16,17,18}
ba i by I4=1{1,3,56,7,10} g-12% | ¢°
Iy = {8,13,15,16,17,18}
5 5
Xo1 % ,b4.b5.b0 Ia={3,56,7,10} a°(g—1) q
I, ={13,15,16,17,18}
Fa0 ba g 20 Iq=1{1,2,4,8,9,11,12,13} *(g-1)? | &
Iy = {6,7,14,15,16,17,18,19}
by e Ix=1{3,4,8,9,11,12,13} *a-1% | o
Iy ={2,14,15,16,17,18,19}
5 2 2 7
be b’ Ta=1{34,8,9,11,12,13} @-1? | q
I, ={1,14,15,16,17,18,19}
6
s Ia={4,8,9,11,12,13} a*(a—1) q
Iy = {14,15,16,17,18,19}
Fi,7 X417 I ={2},I; ={3} (q—1)2 q
Fi8 X198 Iq={3},I;={4} (a—1)? q
F1,9 X199 Ix={4},1.={5} (q—1)? q
5 2 2
F1,12 b 12 Iq={2,4}, Iz ={7,8} q(g—1) q
F1,18 xgi’"'ls Ip={3,5},I,={8,9} q(g — 1)? q>
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F1,16 x@1:98:716 I ={2,4,5,9} (¢g—1)3 q*
Iy ={3,7,12,13}
Z;::jﬁ Ia={2,509},1p ={7,12,13} q-12 | ¢
F2,6 X296 ITp=A{1},1p={3} (a—1)? q
Fa.8 X298 Iq={3},1p = {4} (a—1)2 q
F2,9 X299 Iq={4},1 = {5} (a—1)?2 q
F2,11 xpo 1 ITa={1,4}, 1. = {6,8} alg — 1)? a®
F2,13 Zf'am Ia={3,5},I.=18,9} q(q —1)% q>
Fa2,15 x@2:98:915 Ia={1,4,59} (¢g—1)3 q*
Iy ={3,6,11,13}
222”:25 Ia={1,59},I; ={6,11,13} ?q-12 | ¢
F3,9 X349 Ip={4},1. ={5} (a—1)? q
Fa,6 X476 Ip=A{1},1, ={3} (a—1)2 q
Far X447 Iq={2},1p = {3} (a—1)?2 q
Fa10 xpa “10 Ia={1,2},1p ={6,7} a(q — 1)? q?
Fs.6 X576 Ia={1},1c = {3} (a—1)2 q
Fs,7 X577 Ip=A{2},1.={3} (a—1)?2 q
Fs5,8 X598 I ={3},1p={4} (a—1)? q
Fs,10 ng’aw Ia={1,2},Ip ={6,7} a(q —1)% ¢
F5,11 X:?'all Ip={1,4} 1, ={6,8} a(g —1)? q2
Fs,12 xp “1? ITa =124}, I ={7,8} a(g — 1)? 'S
Fs,14 Xos ba b b ITa={1,2,4} I; = {10,11,12} a*(g-1? | ¢
Fs.17 Xp by Ia=1{3,6,7,8} -1 | ¢
Iy ={10,11,12,14}
Fe,7 o7 Ia={1},Iz ={3} a(q —1)? q
Fe,8 xpo '8 Ia={1},1c = {3} q(g —1)? q
Fe6.,9 X679 Iq={1,4},10 = {3,5} (a—1)? qa®
F6,12 X612 ITq={2,3,4}, 10 ={1,7,8} (a—1)? a3
Fe,13 B ba” Ia={3,5},Iz ={8,9} Pla-12% | ¢
Fe.16 Xpo bg© Ia=1{2359} *(a-1*% | ¢*
Iy ={1,7,12,13}
Fr8 Xy, 8 ITa={2},Ic = {3} a(g —1)? q
Fr.9 X749 Ia={2,4}, 1. = {3,5} (¢ -1)? a®
Fr.11 x7°911 Iqo={1,3,4},1 = {2,6,8} (a—1)2 7
Fra3 Xpa by ITa=1{35}1I.=1{809} a?(g—1)? | ¢°
F1,15 XZZ;;;{’ Iq={1,3,59} ?(g-1? | ¢*
Iy ={2,6,11,13}
T80 Xy Ta={3},1c ={4} aa-1)° |4
F8,10 X810 Tq={1,2,4},10 ={3,6,7} (a—1)? a®
Fo,10 ng’aw Ia={1,2,5},Ip ={4,6,7} a(qg —1)% 7
Fo,11 ngfr)n Ia={1,4} 1, ={6,8} Pla-12% | ¢
Fo.12 b e Ia={2,4},1c ={7.8} q-1)° | ¢
F9,14 Xoo bebebr.bs ITa={1,2,4} Iz ={10,11,12} ®@-1? | &
Fo17 Xo) a” Ia={35,6,78} ?(a-1)? | ¢
Iy ={4,10,11,12,14}
F10,11 X 8910911 Ia={1,4,6},1p ={2,3,7} (¢—1)3 ¢
Xpaty La={16}.1c={27} P?a-1° | &
F10,12 x8910-912 Ia=A{1,3,6},Ip=1{2,4,7} (g—1)° '
Xpa oy 12 Ta={1,6},I={2,7} ?(g—1)? | ¢°
F10,13 Zio’alg Ia={1,2,3,5} q(q — 1)% q*
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Ip =1{6,7,8,9}
2 3 4
ar,a19,a1 _ 1
710,15 byl 1 Ia={1,3,5,6} ?la—1°% | g
Iy ={2,9,11,13}
4
310,015 T4 ={1,4,56} a@—1* | q
2
Iy ={3,9,11,13}
3. 1\2 3
Xoa s Ia={1,56},1 ={9,11,13} a*(g—1) q
ag,a1g,a _ 20— 1)3 4
F10.16 bobg 1O Ia=1{23,57} a’(g—1) q
Iy ={1,9,12,13}
5 3 4
Xy 06 Ta=1{2,4,571} a(g —1) q
Iy ={3,9,12,13}
0,40 Ta={2,57} Iz ={9,12,13} a-17 | ¢°
by.,b3,by
3 3
Fi1,12 x47 11,912 Ia=1{1,2,6},Ic={3,4,8} (g —1) q
2, 18\2 2
Xpalpa 2 Iqa={1,6},10 = {4,8} (g —1) q
2 3
F11,13 XZ:I’GIB Ig =1{3,4,8},Ip ={1,6,9} q(g — 1) q
2 5
Fi1,16 :;Lalfs Ip=1{1,2,4,5,9} q(q —1) q
Iy ={6,7,8,12,13}
2 3
Fi12,13 Xpa2 418 Ia={34,8},I;={2709} a(g—1) q
5 12 5
F12,15 Z;bah Tg={1,2,4,59} q(g —1) q
Iy ={6,7,8,11,13}
20 1\2 5
F13,14 Xogiog Ia=1{1,2,3,4,5} -2 | q
Iy ={8,9,10,11,12}
2 3 5
,a13,a17 _ 1
Fis17 by bg st I ={35,6,7,8} a*(g—1) q
Iy = {4,10,11,12, 14}
4 2 4
@13,a17 — -1
Xb) 1bg . by by In={3,6,7,8} (¢ —1) q
Iy ={10,11,12, 14}
a13,a14,a _ 2, 1\3 5
Fia1s Xpg g 1010 Ia=1{1,2,4,59} a?(g—1) q
Iy ={6,8,10,11,12}
5
p7 14015 Ia=1{1,3,4,9,11} a(g—1)3 q
8
Iy ={2,5,6,10,12}
3 2 4
aig,als _ 1 q
b2,b3,b\;3 ITa {1,4,9,11} 7°(q )
Iy = {5,6,10,12}
s ,a _ 2. 1\3 5
Fia,16 ngl?b:14 16 Ia=1{1,2,4,59} (¢ —1) q
Iy ={7,8,10,11,12}
poarara1e Ta={2,34,9,12} aa—1)° | ¢°
8
Iy ={1,5,7,10,11}
,a _ 3. 1\2 4
X1ty b Ta=12,4,9,12} @ (e —1) a
Iy ={5,7,10,11}
3 5
Fi1s,16 Xpg 2 O16o016 Ia={1,6,7,811} a(g —1) q
Iy ={2,4,59,13}
2 3 4
a7,a15,a16 — 1 q
by,bg Ia {1,2,6,11} q”(q )
Iy ={3,5,9,13}
3 4
Xp5 186 Ia=1{1,3,6,11} a(g —1) q
Iy ={4,5,9,13}
3 2 3
al5,a16 = I, =1{5,9,13 -1 q
Xby b ba Ia={1,6,11},1; = { } q°(q ; _
Fis,17 Xpy t1T Ia=1{1,3,56,8,11} a(g—1) q
Iy ={4,7,10,12,13,14}
3 2 5
a15,a17 — 11 g—1 q
Xby by bs Ip=1{1,3,6,811} a°( )
Iy = {7,10,12,13,14}
3 6
Fie,17 Zlgyalﬁya” Ia=1{23,57,8,12} (g —1) q
Iy = {4,6,10,11,13, 14}
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F X I Number ‘ Degree ‘
Xo1 %o Ia={2,378,12} P@-1? | &
I = {6,10,11,13, 14}
-7:{72,?3 X9:917:218 I ={1,2,5,6,7,10,14} (g —1)3 q"
Iy ={3,4,8,11,12,15,16}
;jifb':lg I4 ={1,2,6,7,10,14} ?(g—-1)2 | ¢°
I = {3,8,11,12,15,16}
x:i:”a”’als 14 ={1,2,6,7}, Iz = {8,5,10} a(g —1)3 q’
Ip = {11,12,15,16}, I = {8,9,14}
s x9:917:218 Ia=1{1,2,5,6,7,10,14} (¢—1)3 q7
I = {3,4,8,11,12,15,16}
ngb':ls I4=1{1,2,6,7,10,14} ?(g—1)2 | ¢°
Iy ={3,8,11,12,15,16}
x913:217,218 See ¢1D5 in Section 5.4 (g —1)3 q7
x;‘i?c’;,gfigls’as'g’l‘l See 611)5 in Section 5.4 4(qg — 1)4 q7/2
F1,2,8 x12:98 Ipn={3},1.={4} (¢—1)3 q
F1,2,9 x41%2,%9 Ia={4},1. = {5} (q—1)? q
F1,2,13 Zi'a%am Ia={3,5},1p ={8,9} alg — 1)® a®
F1,3,9 x4193,99 Ia=A{4},1. = {5} (q—1)? q
F1,4,7 x41%4.97 Ia={2},1.={3} (q—1)°% q
F1,5,7 X 109597 Ia={2},1,={3} (a—1)3 q
F1.,5,8 x15:98 Ipn={3},1.={4} (¢—1)3 q
F1,5,12 Z;'as'al?‘ Iq={2,4},10 ={7,8} a(q —1)3 q®
Fi,7.8 Xy, tT8 Ia={2},Ip = {3} a(q —1)3 q
F1,7,9 X179 Ip={2,4},1; ={3,5} (a—1)3 q?
F1,7,13 Xpapa 18 Ta={3,5},1c = {8,9} ?a-1)° | &
F1,8,9 Xph 8 Ia={3},1p={4} a(q —1)3 q
Fi.9.12 Xpa pe 12 ITa=1{24}, 1. ={7,8} a®(g— 1% | ¢°
F1,12,13 xgi’“”"”“ Ia=1{3,4,8},1c={2,79} a(g —1)3 '
F2,3,9 x4293:99 Ia={4},1. = {5} (q—1)? q
F2,4,6 x%2%4,%6 Ip=A{1},1.={3} (q—1)° q
F2.5.6 x%275°76 Ip={1},1,={3} (q—1)°% q
F2.5,8 X258 Ia={3},1p={4} (¢—1)3 q
Fa2,5,11 X:;‘j'as'au Ia={1,4}, 1. = {6,8} q(q —1)3 q>
F2.6,8 ng’%'as Ia=A{1},1p = {3} a(q — 1) q
F2,6,9 X 24679 Ip={1,4},1; ={3,5} (a—1)3 q?
F2,6,13 Zf::f'aw Ia={38,5},I0 ={8,9} ?(g—-1)3 | 42
F2,8,9 X2 8 Ia={3},1;={4} a(g — 1) q
F2,9,11 xZ,fj,‘ff’““ ITa={1,4},1 = {6,8} a?(g—1)*% | ¢°
F2,11,13 nyan,am Ia={3,4,8},1Ic=1{1,6,9} q(qg — 1) 7
Fa,5,6 x 449596 Iq={1},1p = {3} (a—1)* q
Fa,5,7 x4425.97 Ia=A{2},1c={3} (q—1)? q
Fa4,5,10 Z;"%’aw Iqo={1,2},Ip={6,7} a(g — 1)® a®
Fa6,7 Z;"“G"” Ip=A{1},1.={3} a(g —1)3 q
F5.6,7 XZQS'%'W Ia=A{1},1.={3} q(q —1)3 q
Fs.6,8 X2 008 Ia={1},Iz ={3} a(q —1)3 q
F5.6,12 x5:96-712 Ip=1{2,3,4}, I, ={1,7,8} (q—1)°% N
F5,7,8 ng’a%as Ia=A2},1c={3} a(q —1)% q
Fs,7,11 X597 11 ITq={1,3,4}, 10 = {2,6,8} (a—1)3 'S
Fs5.,8,10 x598:910 Iqa={1,2,4},1p ={3,6,7} (a—1)°% 'S
F5,10,11 x@5:98:910,911 Ia={1,4,6},I0 ={2,3,7} (¢g—1)* 7
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F X I Number ‘ Degree ‘
Zf,’fj”’““ Ip={1,6},1p={2,7} (g —-1)° | ¢
F5,10,12 x45:98:910,912 Iq={1,3,6},Ip ={2,4,7} (¢ —1)* 'S
b bal 12 Ia={1,6},Ic={2,7} ?(a—1)* | ¢?
Fs,11,12 X@5°47,311,912 Iq={1,2,6},1; = {3,4,8} (¢ —1)* ¢
Z;’;;“aH Ia=A{1,6},1;={4,8} a?(g— 1% | ¢°
Fe,7,8 o n, 8 Ia={1},1z = {3} ?@-13% | ¢
F6,7,9 526’@7'(19 Ia={1,4},1; = {3,5} a(g—1)3 qa®
Fe,7,13 ng::;'bils Iq={3,5},1=1{809} Ala—1)3 | ¢
F6,8,9 X 69879 ITa={1,4},1 = {3,5} (a—1)3 q?
F6,9,12 ng’ag'am Ip=4{2,3,4}, I, ={1,7,8} a(g—1)3 'S
F6,12,13 :?::512’&13 Ia={3,4,8},1,={2,79} ?(g-1)* | ¢
F7,8,9 X7798:%9 Ia=1{2,4},1 ={3,5} (a—1)3 q?
Fr,9,11 X:g'ag’au Ip=A{1,3,4}, I ={2,6,8} a(g—1)3 '
Fr,11,13 Z;:;ﬁ“'als Ia={3,4,8}, 1 ={1,6,9} a?(g—-1°% | ¢
F8,9,10 ng'ag'am Ia=A{1,2,4},I; ={3,6,7} a(g—1)3 7
F9,10,11 ZE::IO'QH Ip={1,4,6},1p ={2,5,7} ?(a-1)* |
F9,10,12 ngr':w’alz Ip=1{2,4,7}, I ={1,5,6} ?(a-1)* | ¢
F9,11,12 ng'ag’au’au Ia={1,2,6},Ip ={3,4,8} a(g — 1)* '
Xon bae 12 ITa={1,6},Ic={4,8} @ -1)* | ¢
Fo a2 Xpi0o11:212 Iz = {1,2,4},I7 = {6,7,8} aa-1° | &
}—f;il,12 x#10:911.%12 See €25 in Section 5.4 (g—1)3 e
x:;?c’;’l;,;au’asﬁ’s See (’_‘55 in Section 5.4 4(qg—1)4 q3/2
F10,11,13 X:io,an,tng Iy =1{1,3,5,6} a(g — 1)3 q*
I, ={2,7,8,9}
F10,11,16 Z;oaan,am Iqa={1,2,4,57} a(g — 1)® a°
I = {6,8,9,12,13}
F10,12,18 Xgio:a12>a13 Ia={2,3,5"7} a(q — 1) q*
I, ={1,6,8,9}
F10,12,15 :;0'%2'@15 Ia=1{1,2,4,5,6} a(qg — 1) q°
Ip ={7,8,9,11,13}
7502,135116 Xpg 012 15016 T4 ={1,2,4,509} q(g — 1)* q°
I ={6,7,8,11,13}
x%8:210:215:316 Ia={3,5}, Iz ={1,2,9} (a-1)* @
Iz ={4,11}, Iy ={6,7,13}
Xpaopg 150416 Ia={s} Iz ={1,2,9} P?@-1° | ¢
Ip ={11}, I7 = {6,7,13}
FPo 15,16 Xy 1RO Ia=11,2,4,509} ata-1* | ¢°
I ={6,7,8,11,13}
les,’za,;%;,l;’l?s See C(])DE’ in Section 5.4 P(g—1)% | ¢*
X:io,als,"'lG See 6?5 in Section 5.4 q(q — 1)3 q*
x:i?c':’lcsl’;f:’asﬁ’ls See (’_‘?5 in Section 5.4 4q9(q — 1)4 q4/2
F11,12,13 xZ;}g:’}f’““ Ia=1{3,4,8}, 1 ={1,6,9} @ -1° | &
Fff,is,m 587::11;)&15@16 Ta=1{1,2,4,59} Pla-1* | ¢
Iz = {3,6,10,11,12}
Xpa g 107716 Ia={4,9}, Iz = {1,2,5} ?@-17° | &
Ip = {6,10}, I = {11,12,13}
-7:{:215,16 ng::f;yalsyaw Ta=1{1,2,4,59} Pla-1* | ¢
I = {3,6,10,11,12}
x:;4’a15’a16 See 655 in Section 5.4 q(qg —1)3 q°
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F X I Number ‘ Degree ‘
Z;‘c’:’fl’;g’““*”’m See €75 in Section 5.4 49(a-1)* | ¢°/2
e p15,016:417 Ia4=1{3,8,13}, Iz = {5,6,7} a?(@—-1)°% | ¢°
Ie ={1,10,14}, I7 = {9,11,12}
}—f;is,17 X:215’“16’°17 See ¢5D5 in Section 5.4 q(q — 1)3 ¢
:;’5;:;1’;?:’“9‘11’12 See €5D5 in Section 5.4 4q(q — 1)4 q6/2
F1,2,3,9 x#1:92:%3,%9 Ip={4},1. ={5} (a—1)* q
F1,2,5,8 X“142%5:%8 Ia={3},1.={4} (a—1)* q
F1,2,8,9 xgg’”'“s’“g Ipo={3},I.={4} q(g — 1)* q
F1,4,5,7 X1 0495,97 Iq={2},1p ={3} (@ —1)* q
F1,5,7,8 Zi'as'a%as Ix=A{2},1.={3} q(g — 1)* q
F1,7,8,9 XL A7:98,%9 Iq={2,4},1p = {3,5} (@ —1)* q?
F2,4,5,6 x2:94:95:96 Ia=A{1},1.={3} (q—1)* q
F2.5,6,8 Zf'%’aﬁ’as Ia={1},1c = {3} q(g — 1)* q
F2,6,8,9 x2°96:98:%9 Ia={1,4},1; ={3,5} (q—1)* 'S
Fa5,6,7 by 0T Ia={1},10 =13} a(g — 1)* q
F5.6,7,8 Z;’:;f’a%as Ip=A{1},1.={3} @—-1* | ¢
FERoa1a2 | xpoHOmna2 Iz ={1,2,4}, 17 = {6,7,8} aa-1* | 4
'Fg,=12(’),11,12 x25°210:211:212 See CGDE’ in Section 5.4 (g —1)% 43
ng::;f;::ll,al%as’.”s See 6(13)5 in Section 5.4 4(q — 1)5 q3/2
Fe,7,8,9 Zg’a%as’% Ia={1,4},1; = {3,5} q(g — 1)* q?
F9.,10,11,12 237’510’““"”2 Ia=A1,2,4},1, ={5,6,7} G R
F10,11,12,13 Zio'au'am'als Ia=1{3,6,7,8} a(g — 1)* q*
I, ={1,2,5,9}

Table D.7: The parametrization of the irreducible characters of UD5(q) for every ¢ = p
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