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Abstract 

Current regulatory risk assessment strategies have several limitations, such as linking 

subcellular changes to higher-level biological effects, and an improved knowledge-based 

approach is needed. Ecotoxicogenomic techniques have been proposed as having the 

potential to overcome the current limitations, providing greater mechanistic information for 

ecotoxicological testing. In this thesis, metabolomics is explored as a novel method for 

toxicity testing using Daphnia magna. Initially I evaluated the potential application of Fourier 

transform ion cyclotron resonance mass spectrometry (FT-ICR MS) based metabolomics for 

use in regulatory toxicity testing. Subsequently, I aimed to use this approach to discriminate 

between toxicant modes of action (MOA) and to link toxicant induced metabolic effects to 

reduced reproductive output in D. magna. FT-ICR MS metabolomics was determined to be a 

feasible approach for toxicity testing of both whole-organism homogenates and haemolymph 

of D. magna. It is capable of discriminating between life-stages of D. magna as well as 

determining toxicant-induced metabolic effects. Highly predictive multivariate classification 

models were capable of significantly discriminating between four different toxicant MOAs; 

achievable in both haemolymph and whole-organism extracts, with the latter being the more 

information-rich sample type. Multivariate regression models were predictive of reduced 

reproductive output in D. magna following toxicant exposure, and determined that a 

metabolic biomarker signature was significantly able to predict the reproductive output of D. 

magna. Ultimately this research has concluded that an FT-ICR MS metabolomics approach for 

use in regulatory toxicity testing using Daphnia magna is both viable and can provide 

valuable information. 
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General Introduction 
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1.1 Introduction 

The impact of both natural and anthropogenic stressors on ecosystem health is an 

international issue. Linking the adverse effects of these impacts in individual animals to their 

ecosystem-level consequences is a key challenge in regulatory risk assessment (Moore et al. 

2004). Section 1.2 provides an introduction to the current regulatory testing practices for 

assessing ecosystem health and the limitations of these approaches, particularly their high 

cost, the lack of confidence in extrapolating from the individual to higher levels of biological 

organisation, and their inability to provide information on modes of toxicity. The relatively 

recent emergence of ecotoxicogenomics (transcriptomics, proteomics and metabolomics) 

has considerable potential for addressing these issues and providing a better mechanistic 

understanding of the ecotoxicology of known and emerging toxicants (Snape et al. 2004). The 

application of ecotoxicogenomics in relation to regulatory toxicity testing is discussed in 

Section 1.3. This thesis focuses on one particular area of ecotoxicogenomics; metabolomics, 

which provides a relatively non-targeted assessment of toxicity, measuring potentially 

several hundred metabolites and multiple pathways in a single experiment. An overview of 

metabolomics and its potential for use in regulatory toxicity testing is given in Section 1.4, 

with particular focus on using metabolomics as a high-throughput screening tool for 

prioritisation of chemicals in a tiered testing approach. In this thesis, the metabolomics 

approach is being applied to Daphnia magna, a freshwater invertebrate with many attributes 

that make it an ideal test organism; these are discussed in Section 1.5. As such, this species is 

used extensively in current regulatory ecotoxicological testing and has great potential as a 

test organism for ecotoxicogenomic investigations. The small sample size afforded by using 
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Daphnia as a test organism brings with it further challenges and the correct analysis platform 

needs to be utilised to maximise the potential of using metabolomics for regulatory toxicity 

testing. Section 1.6 details the various platforms available and highlights direct infusion mass 

spectrometry as being the most appropriate tool for sensitive, accurate and high-throughput 

analysis of such small samples. The various approaches to the statistical analysis, both 

multivariate and univariate, of metabolomics data used in this thesis are discussed in Section 

1.7, with the selection of which approach to use dependent on the overall objective of the 

study.  The aims of this research are outlined in Section 1.8. 

 

1.2 Ecotoxicology and selection of test species  

Until recently, risk assessment procedures have been directed towards the protection of 

human health. Now it is widely acknowledged that such procedures must also ensure the 

protection of the complex biotic communities in natural ecosystems (Moore et al. 2004). 

Ecotoxicology is the integration of ecology and toxicology (Chapman 2002) typically defined 

as the study of the effects of anthropogenic toxicants on ecological systems (Truhaut 1977). 

The basic test principles of ecotoxicology come from toxicology with experimental studies 

resulting in dose response relationships and the estimation of effect concentrations (Van 

Straalen 2003). The influence of ecology can be seen in the design of these tests where 

environmentally relevant exposure concentrations need to be employed and tested on 

ecologically relevant test species (Chapman 2002).  

In terms of ecological risk assessment the ideal would be to test millions of organisms across 

all environments that may become exposed to the chemical being assessed (Breitholtz et al. 
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2006). Since this is an impossibility, and in order to make more accurate predictions on 

toxicity and inform subsequent regulations on chemical use and disposal, the species 

selected for testing should be the equivalent of a keystone species for the trophic level being 

assessed (Chapman 2002). The Organisation for Economic Cooperation and Development 

(OECD) have defined a series of toxicity tests for ecological risk assessment utilising several 

different keystone species’ of plant and animal of both aquatic and terrestrial origin. These 

include plants and animals such as algae, Daphnia, earthworms, bees, fish and birds; the 

OECD recommended species for aquatic toxicity tests are listed as part of Table 1.1. There is 

now a need to balance the growing requirement for ecotoxicity data with animal welfare, 

maximising the knowledge output from limited testing with lower vertebrates in order to 

help reduce the future level of vertebrate use in routine ecotoxicity testing (Snape et al. 

2004). Furthermore, one of the major objectives of the registration, evaluation, authorisation 

and restriction of chemicals (REACH), a recent European Union directive, is to reduce all 

vertebrate testing in regulatory risk assessment (REACH 2006). The need for the reduction in 

vertebrate testing helped direct the selection of Daphnia magna as the test organism for this 

research, a keystone invertebrate species in the freshwater ecosystem, discussed in Section 

1.5. 

 

1.2.1 Current approaches in regulatory ecotoxicological testing 

The ultimate aim of ecological risk assessment is to provide sufficient information for 

decision-making with the purpose of protecting the environment from unwanted effects of 

chemicals (Breitholtz et al. 2006). Society is faced with the enormous task to assess 
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numerous chemicals and complex chemical mixtures while protecting many different species 

in, and the diversity of, ecosystems (Escher and Hermens 2002). The need for improved 

safety data from ecological risk assessments is continually increasing; the effects of new and 

existing chemicals along with the threat of emerging pollutants, such as human and 

veterinary pharmaceuticals, are all increasing demand for regulatory testing for ecological 

effects (Ankley 2008). In Europe, REACH was introduced in June 2007 to redress the 

differences between the assessment and regulation of new and existing chemicals and to 

facilitate the replacement of existing dangerous chemicals with improved new ones (REACH 

2006). The Chemical Acts, introduced in Europe at the start of the 1980s, required all 

manufacturers of chemicals that entered the market from 1981 to release information on 

their potential risks to both human health and the environment, however the testing 

strategies employed were inflexible and tended to relate to production volume rather than 

the risk of the chemical (Ahlers et al. 2008). With REACH, the responsibility for chemical 

testing was passed to industry rather than the authorities, with the overall scope of REACH 

being to ensure a high level of protection to human health and the environment whilst 

enhancing competitiveness and innovation in the market (REACH 2006). Both new and 

existing chemicals are subject to the testing requirements detailed in REACH and minimum 

regulatory data requirements must be reached, however the system is flexible in substituting 

standard tests for equivalent information and a weight of evidence based approach, allowing 

the use of all information while providing common standards for risk assessment (Ahlers et 

al. 2008). In the United States over 80,000 chemicals are currently listed in the Toxic 

Substances Control Act (TSCA) Inventory and the majority of them have not undergone 
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extensive toxicological testing. The US Environmental Protection Agency (US-EPA) now needs 

to make decisions regarding these chemicals such as prioritisation either for further testing 

or the decision that no further testing is required (US-EPA 2004). Currently, chemical 

prioritization may be determined by several factors including production volume, exposure 

information, persistence, and consideration of quantitative structure-activity relationships 

(QSARs) where the assumption is that similar molecules will have similar activities (US-EPA 

2004). The decision as to whether the substance in question requires further evaluation or 

not can be considered as the first level in a tiered-testing system. The higher tiers then use a 

suite of standardised toxicity testing strategies for assessing the potential hazards of 

chemicals that may enter the environment. These can generally be split into two main types 

of test; acute (short-term) or chronic (long-term). The OECD provides guidelines for both 

acute and chronic tests designed to be relevant to various ecosystems; Table 1.1 summarises 

those tests used for assessing the threat to aquatic ecosystems. These conventional 

approaches for assessing the toxicity of chemicals utilise endpoints such as mortality, 

reproductive dysfunction, impaired growth and behavioural effects (Ankley 2008; De Coen 

and Janssen 2003). 
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Table 1.1 Summary of the OECD guidelines for toxicity testing in aquatic environments; highlighting the recommended test species and a brief 

outline of the aims and endpoints of each test (OECD 2009). 

 

Guideline Recommended test species Summary of test 

Test No. 201: Alga, Growth 

Inhibition Test 

Green alga: Pseudokirchneriella subcapitata,, 

Desmodesmus subspicatus 

Diatom: Navicula pelliculosa 

Cyanobacteria: Anabaena flos-aquae, 

Synechococcus leopoliensis 

To determine the effects of a substance on the growth of 

freshwater microalgae and/or cyanobacteria. Typically a 

72 h acute toxicity test. 

Test No. 202: Daphnia sp. 

Acute Immobilisation Test 

Daphnia magna (preferred) 

Other Daphnia species can be used 

To determine the concentration of substance at which 

50% (EC50) of Daphnia neonates (<24 h old) become 

immobilized. Typically a 24-48 h acute toxicity test. 

Test No. 203: Fish, Acute 

Toxicity Test 

Danio rerio – zebrafish 

Pimephales promelas – fathead minnow 

Cyprinus carpio – common carp 

Oryzias latipes – Japanese medaka 

Poecilia reticulata – guppy 

Lepomis macrochirus – bluegill 

Oncorhynchus mykiss – rainbow trout 

To determine the concentration of substance at which 

50% (LC50) of fish will die. Typically a 96 h acute toxicity 

test with mortality levels recorded at 24, 48, 72 and 96 h. 

Test No. 204: Fish, 

Prolonged Toxicity Test: 14-

Day Study 

As for guideline No 203 To determine lethal, other observed effects (e.g. 

behavioural) and no effect levels at set time points 

through the duration of this test. Typically a 14 day 

chronic study, although can be extended. 

Test No. 210: Fish, Early-

Life Stage Toxicity Test 

Danio rerio – zebrafish 

Pimephales promelas – fathead minnow 

Oryzias latipes – Japanese medaka 

Oncorhynchus mykiss – rainbow trout 

Cyprinodon varieqatus - Sheepshead minnow 

To determine the lethal and sub-lethal effects of chemicals 

on the early life stages of the species tested. Parameters 

measured include; fish weight and length, as well as the 

observations of abnormal appearance, abnormal 

behaviour, hatching and survival Typically a chronic test, 

begun by placing fertilised eggs in the test chambers and is 

continued at least until all the control fish are free-feeding 
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Test No. 211: Daphnia 

magna Reproduction Test 

Daphnia magna To determine the effects of a test substance on the 

reproductive capability of Daphnia magna. Mortality of 

parents and number of living offspring per brood should 

be reported. Typically a chronic toxicity test of 21 d 

duration 

Test No. 212: Fish, Short-

term Toxicity Test on 

Embryo and Sac-Fry Stages 

Danio rerio – zebrafish 

Pimephales promelas – fathead minnow 

Cyprinus carpio – common carp 

Oryzias latipes – Japanese medaka 

Oncorhynchus mykiss – rainbow trout 

To determine lethal and sublethal effects of test substance 

on embryo and sac fry stages of fish, mortality and 

parameters such as abnormal growth should be reported. 

Typically an acute toxicity test beginning with the fertilised 

egg and terminated at sac fry stage.  

Test No. 215: Fish, Juvenile 

Growth Test 

 

Oncorhynchus mykiss – rainbow trout To determine the effects of prolonged exposure of 

juvenile fish to test substance, reportable parameters 

include fish weight at end of test and observation of 

growth or behavioural abnormalities. Typically a chronic 

toxicity test lasting 28 days 

Test No. 229: Fish Short 

Term Reproduction Assay 

and 

Test No. 230: 21-day Fish 

Assay: A Short-Term 

Screening for Oestrogenic 

and Androgenic Activity, 

and Aromatase Inhibition 

Danio rerio – zebrafish 

Pimephales promelas – fathead minnow 

Oryzias latipes – Japanese medaka 

 

To determine the endocrine activity of the test substance. 

Measurement of vitellogenin and secondary sex 

characteristics are used as biomarkers for endocrine 

disruption, monitoring of fecundity throughout the test is 

reported and gonads are preserved for histopathology. 

Typically a chronic test of 21 days performed using pairs of 

sexually mature males and spawning females. 



 - 9 - 

1.2.2 Limitations of current strategies 

Whilst the highest credibility in ecotoxicological testing will be derived from tests which 

measure mortality and reproductive or growth effects, as these can more easily be predictive 

of population effects (Chapman 2002), these whole organism exposures are expensive in 

terms of both time and resources, particularly when moving from acute to chronic tests 

(Ankley 2008). The bias in toxicity databases for acute data (typically lethality tests) reflects 

this and any extrapolations to chronic endpoints are not as reliable as the data generated 

from the time and resource expensive chronic toxicity tests. Therefore extrapolations 

frequently add uncertainty to any toxicity assessment (Preston 2002). This trend for acute 

toxicity testing offers little more than a means of ranking and comparing the toxicity of 

substances (Moore et al. 2004) and is of little use to ecotoxicologists and risk assessors 

(Preston 2002). Furthermore, these methods do not take into account any sublethal effects 

of exposure and whilst stress-induced changes at the population, community and ecosystem 

levels are the primary concern, they are generally too complex and far removed from the 

causative events to be of much use in developing tools for the early detection and prediction 

of the consequences of exposure (Moore et al. 2004). Over the past few decades biomarker 

techniques have become more popular in ecotoxicology, specifically looking for biochemical, 

physiological or histological indicators of exposure to toxic chemicals and substantial efforts 

have been made to try to incorporate them into ecological risk assessment (De Coen and 

Janssen 2003; Forbes et al. 2006). Biomarkers can be considered as measures of the initial 

changes caused by toxic exposure starting at the subcellular level (e.g. interference with 

molecular pathways) and ultimately leading to adverse effects at higher levels of biological 
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organization (De Coen and Janssen 2003). In principle, these early warning biomarkers should 

be capable of predicting reduced performance, impending pathology and damage to health 

(Moore et al. 2004). Hence biomarkers should be able to identify those organisms that have 

been, or are being, exposed to certain chemicals or that those organisms are suffering, or will 

suffer, future impairments of ecological relevance (Forbes et al. 2006). In fact there has been 

some success in the use of biomarkers in regulatory ecotoxicology, the discovery that 

tributyltin (TBT) causes imposex in gastropod molluscs has led to legislation banning the use 

of this substance as the active ingredient in anti-biofouling paints, with imposex now being 

used as the biomarker for organotin (in particular TBT) exposure (Evans and Nicholson 2000; 

Forbes et al. 2006). One of the best known biomarkers is the significant elevation of 

vitellogenin caused by exposure to estrogenic compounds which were discovered to be the 

causal agents of intersex (feminisation of male fish) in UK wild fish populations (Jobling et al. 

1998). The success of this biomarker in determining exposure to endocrine disrupting 

chemicals has meant that it has been adopted into some regulatory ecotoxicological studies, 

such as the OECD tests 229 and 230 (Table 1.1 (OECD 2009)) which aim to determine if the 

test substance has endocrine disrupting properties. However, whilst the use of sublethal 

endpoints, such as biomarkers of toxicity, have increased our ability to detect stress 

responses at low toxicant concentrations (Preston 2002) they have failed to demonstrate 

their usefulness, especially in predicting population to ecosystem level effects, as indicated 

by their minimal incorporation into national and international risk assessment protocols 

(Forbes et al. 2006). Indeed, even the vitellogenin biomarker of exposure to endocrine 
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disrupting chemicals is only recommended as a “signpost” in ecological risk assessment for 

directing chronic exposure studies (Hutchinson et al. 2006). 

One of the greatest limitations of all of these testing strategies is that they are restricted to 

looking only at whole organism effects or changes in single biochemicals and subsequently 

provide no detailed data about the underlying biochemical mechanisms of toxicity (Snape et 

al. 2004; US-EPA 2004). Knowledge of mode of action (MOA) is fundamental to improve the 

scientific basis of risk assessment (Breitholtz et al. 2006), it will improve our understanding of 

the effects of pollutants on ecosystems and also be useful in setting up predictive models and 

avoiding pitfalls in applied ecological risk assessment of chemicals (Escher and Hermens 

2002). However, with the current strategies, hypotheses need to be made on the mode of 

action (MOA) of the test substance to decide which tests may be applicable; at present 

QSARs typically tend to be used to do this (Escher and Hermens 2002; Moore et al. 2004). 

Testing costs will become enormous, particularly if there is a time limit on completion as 

there is for REACH, where approximately 30,000 existing chemicals need to be registered by 

2018 (Ahlers et al. 2008), so a better knowledge-based approach is needed (US-EPA 2004). 

Ecological testing and screening programs need to be more thorough, less costly and able to 

be implemented rapidly and the incorporation of the omics into regulatory toxicity 

assessment could provide an answer (Ankley 2008). 

 

1.3 The potential of omics in regulatory ecotoxicological testing 

Toxicogenomics is the study of the global response of a genome to a chemical and has three 

distinct categories: transcriptomics (mRNA expression), proteomics (protein expression) and 
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metabolomics (metabolite profiling) (Ankley 2008). When these methods are applied to 

ecotoxicology this can then be termed as ecotoxicogenomics (Snape et al. 2004).  Rapid 

advances in ecotoxicogenomics may have significant implications for risk assessment and 

regulatory decision making (US-EPA 2004), particularly as screens for regulatory decision 

making such as prioritisation in first tier testing (Ankley 2008). The US-EPA Genomics White 

Paper (US-EPA 2004) has evaluated these technologies as having great promise to provide 

more mechanistic, molecular-based data for risk-based prioritization of stressors. Thus 

offering more efficient, potentially high throughput, and low cost alternatives to the tests 

EPA currently relies on for prioritization. The most significant impact of ecotoxicogenomics 

on ecological risk assessment would be better definition of MOAs allowing for enhanced 

resource utilisation and reduced uncertainty in regulatory decision making (Ankley 2008). 

Knowledge of the MOA increases confidence in extrapolating toxicity data between species 

(Bundy et al. 2009). It should be noted that ecotoxicogenomics will not fundamentally alter 

the risk assessment process, but is expected to serve as a more powerful tool for evaluating 

the exposure to and effects of environmental stressors (US-EPA 2004). The application of 

transcriptomic, proteomic and metabolomic technologies allows the expression profile of 

hundreds to many thousands of genes, gene products and metabolites to be generated 

simultaneously, providing for the first time a broad impression of how organisms or cells 

respond to a given stimulus (Snape et al. 2004). This type of data may allow for the 

development of gene, protein, or metabolite profiles that can advance the screening of 

individual chemicals and allow faster and more accurate categorization into defined classes 

according to their MOA (US-EPA 2004). The inability of current strategies to elucidate MOA of 
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toxicants is one of the greatest limitations; therefore exploration of omics techniques that 

have this capability is essential for the future of regulatory toxicity testing. Moreover, basal 

cellular structures and functions measured by omics technologies are highly conserved 

biological entities; therefore, a large number of toxic effects that target these basal functions 

are universal in all organisms and target tissues allowing for cross-species extrapolation 

(Escher and Hermens 2002), another process in which there is little confidence when using 

the current approaches. Metabolomics in particular closely reflects the actual cellular 

environment (Schmidt 2004).  

 

1.4 Metabolomics  

Metabolomics is the study of endogenous, low molecular weight metabolites and can be 

used to examine biological systems at several levels, including cellular, tissue, organ, or even 

whole organism (Lin et al. 2006; Viant 2007). The metabolome, describes the composition of 

these low molecular weight metabolites at the time of sampling, and includes compounds 

such as lipids, sugars, and amino acids that can provide important clues about the individual’s 

health and a functional measure of cellular status at that moment in time (Lin et al. 2006; 

Schmidt 2004). One of the greatest advantages of metabolomics is that the metabolome is 

often the first to respond to anthropogenic stressors, where in some cases no changes in the 

transcriptome and proteome occur (Viant 2007). Metabolomics investigations can be 

designed as targeted studies looking for specific metabolite changes, although this requires 

some prior knowledge on the metabolic action of whatever toxicant is being tested. An 

alternative metabolomic approach is where the global metabolome is analysed, although 
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constrained by the efficiency and sensitivity of the techniques used to extract and detect the 

metabolites. This method is a relatively non-targeted approach where there is little, if any, 

prior selection of which metabolic components to measure, thus, a similar study design can 

be used in both a screening mode and one of mechanistic exploration (Keun 2006) This 

research aims to investigate the use of both targeted and global metabolomics approaches 

for both of these applications and thus assess its future potential in first-tier regulatory 

ecotoxicological testing. 

 

1.4.1 Metabolomics in ecotoxicology 

To date metabolomics has had its greatest impact in the pharmaceutical industry, particularly 

in preclinical toxicology, and is now recognised as an independent and widely used technique 

for evaluating the toxicity of drug-candidate compounds (Nicholson et al. 2002; Robertson 

2005; Robertson et al. 2007). However, the application of metabolomics in assessing 

environmental health is still in its infancy (Lin et al. 2006; Schmidt 2004). In the broader 

scope of environmental research, metabolomics has been applied in several areas. One area 

is in determining responses to environmental stressors such as temperature in a variety of 

organisms including arabidopsis (Kaplan et al. 2004), fruit flies (Malmendal et al. 2006) and 

fish (Turner et al. 2007; Viant et al. 2003b). Another area is disease monitoring, where 

metabolomics has been successfully utilised to characterise liver tumours in the flatfish 

Limanda limanda (Southam et al. 2008; Stentiford et al. 2005) and withering syndrome in red 

abalone (Haliotis rufescens) (Viant et al. 2003a).  
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In ecotoxicology, metabolomics can be used to characterize and understand the metabolic or 

biochemical responses of an organism to toxicant exposure and such information is of 

particular value for the risk assessment of chemicals in the environment (Lin et al. 2006). 

Recently there have been numerous studies applying metabolomic techniques to this area of 

research. In the terrestrial ecosystem there have been a few ecotoxicological metabolomics 

studies that use vertebrate test organisms. Griffin et al. (Griffin et al. 2001) used 

metabolomics to determine the effects of arsenic exposure on the renal tissue of the bank 

vole (Clethrionomys glareolus) and wood mouse (Apodemus sylvaticus) reporting that 

metabolic changes in the bank vole following arsenic exposure could be linked to the 

observed tissue damage; no effects were seen in the wood mouse. Earthworms have been 

widely used for studying environmental pollution and toxicity and have been employed in 

several ecotoxicological metabolomics studies (Bundy et al. 2009). The earthworm Eisenia 

foetida is the standard terrestrial invertebrate for toxicity testing and McKelvie et al. 

(McKelvie et al. 2009) determined significant metabolic changes in this species after 

exposure to dichlorodiphenyltrichloroethane (DDT) and endosulfan, highlighting alanine as a 

potential biomarker in this instance. Bundy et al. (Bundy et al. 2002) found toxicant induced 

metabolic changes in the earthworm, Eisenia veneta, exposed to three different xenobiotic 

compounds (4-fluoroaniline, 3,5-difluoroaniline and 2-fluoro-4-methylaniline). Jones et al. 

(Jones et al. 2008) determined alterations to the normal metabolic profiles of the 

earthworm, Lumbricus rubellus, following exposure to pyrene, a polyaromatic hydrocarbon, 

and Bundy et al. (Bundy et al. 2007) determined a metabolic effect correlated to zinc 

exposure in this species, from multiple geographical sites. 
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In the aquatic environment metabolomics has been used to study of the toxic effects of 

pesticides, endocrine disrupting compounds and other xenobiotics on fish of differing life 

stages (Bundy et al. 2009). The metabolic effects of ethinylestradiol, a synthetic estrogen, 

exposure have been reported for several fish species (Ekman et al. 2008; Katsiadaki et al. 

2009; Samuelsson et al. 2006) with responses in context with previous knowledge of the 

effects of estrogens on fish. The effects of pesticides on the metabolomes of various fish 

species have also been studied (Viant et al. 2005; Viant et al. 2006a; Viant et al. 2006b). To 

date there has been a single reported study using metabolomics in algae investigating the 

effects of the phytotoxin, prometryn, to a unicellular green alga (Kluender et al. 2009). Table 

1.2 presents a summary of the key findings from these investigations, providing information 

on the species being investigated along with the type of tissue or biofluid analysed, the 

metabolomics analysis platform utilised and the data analysis approaches. These studies 

serve to highlight the potential of metabolomics for use in regulatory screening and potential 

biomarker discovery as in each case a toxicant induced metabolic effect could be 

determined. Yet, despite D. magna being one of the most widely utilised aquatic test species, 

no metabolomics studies have been reported, a knowledge gap that this research aims to 

redress. 
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Table 1.2 Summary of previously reported studies utilising metabolomics techniques in ecotoxicological studies of aquatic organisms. 

Species and sample 

type 

Toxicant 

exposure 

Metabolomics 

analysis platform 

Data 

analysis 

approaches 

Key metabolomics findings Reference 

Fathead minnow  

(Pimephales promelas) 

 

Liver tissue 

17α-

ethynylestradiol 

(EE2) 

 

10 or 100 ngL
-1

 

 

8 day exposure 

with 8 day 

depuration 

1
H NMR 

spectroscopy 

(800 MHz) 

PCA 

 

PLS-DA 

 

 

Determined a greater impact on 

exposed male fish, with metabolic 

profiles resembling those of 

female fish. 

Biochemical changes in male livers 

included metabolites involved in 

energetics, hepatotoxicity and 

potentially vitellogenin synthesis. 

Response trajectories revealed 

males could compensate during 

exposure and partially recover 

following depuration 

Ekman et 

al., 2008 

Three-spine 

Stickleback 

(Gasterosteus 

aculeatus) 

 

Liver tissue 

Ethinyl-estradiol 

(EE2) 

 

0.1- 100 ngL
-1

 

 

4 day exposure  

1
H NMR 

spectroscopy 

(500 MHz) 

PCA 

 

ANOVA 

Determined a weak dose-

response relationship. 

Possible decrease in glutamate 

and alanine although not 

statistically significant. 

Katsiadaki 

et al., 2009 

Rainbow trout 

(Oncorhynchus mykiss) 

 

Blood plasma and 

plasma lipid extracts 

17α-

ethynilestradiol 

(EE2) 

 

0.87 or 10 ngL
-1

 

 

2 week exposure  

1
H NMR 

spectroscopy 

(600 MHz) 

PCA 

 

PLS-DA 

 

 

Determined minor toxicant 

induced changes between control 

and high dose. 

Specific metabolite changes were 

increased phospholipids and 

decreased alanine and 

choloesterol levels. 

Samuelsson 

et al., 2006 
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Japanese Medaka 

(Oryzias latipes) 

 

Embryos 

Dinoseb 

 

50 or 75 ppb 

 

14, 62 and 110 h 

exposures 

1
H NMR 

spectroscopy 

(500 MHz) 

 
13

P NMR 

spectroscopy 

(200 MHz) 

 

HPLC-UV 

PCA 

 

ANOVA 

 

 

Determined a significant dose 

response effect and toxicant 

induced metabolic changes 

correlated with reduced growth 

and abnormal development. 

Specifically, significant decreases 

were found in the levels of ATP, 

phosphocreatine, alanine and 

tyrosine, as well as an increase in 

lactate. 

Viant et al., 

2006a 

Chinook salmon 

(Oncorhynchus 

tshawytscha) 

 

Eggs and alevins 

Dinoseb, Diazinon 

and Esfenvalerate 

 

Varying 

concentrations 

(ppb) 

 

96 h exposure  

1
H NMR 

spectroscopy 

(500 MHz) 

 

HPLC-UV 

PCA 

 

ANOVA 

 

 

Revealed both dose-dependent 

and MOA specific metabolic 

changes induced by exposure to 

all three pesticides 

Viant et al., 

2006b 

Japanese Medaka 

(Oryzias latipes) 

 

Embryos 

Trichloroethylene 

 

0-175 mgL
-1

 

 

7 day exposure  

1
H NMR 

spectroscopy 

(500 MHz) 

PCA 

 

ANOVA 

 

 

Determined metabolic 

pertubations at all exposure levels 

and PCA revealed a dose-response 

relationship and indicated an 

energetic cost to TCE exposure. 

Viant et al., 

2005 

Unicellular green alga 

(Scenedesmus 

vacuolatus) 

 

Hydrophilic and 

lipophillic extracts 

prometryn 

 

0.1 µmolL
-1

 

 

0-14 h exposure 

time course 

GC-MS PCA 

 

 

 

Determined a clear toxicant 

induced effect. 

Metabolite changes suggest an 

impairment of energy metabolism 

and carbohydrate synthesis and 

an activation of catbolic processes 

Kluender et 

al., 2009 
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In mammalian toxicology, metabolomic studies have typically analysed biofluids such as 

blood, plasma or urine (Lindon et al. 2000). Biofluids are attractive to study as they represent 

a single largely cell-free compartment within an organism, quite different from the 

complexity of whole organism homogenates, and yet their composition is intimately linked to 

the cellular (dys)function of the organs which they perfuse. The use of biofluids could provide 

a unique insight into toxicant effect, particularly in those organisms that are too small in size 

for individual organ sampling, such as Daphnia, or when the mode of toxicity is unknown and 

therefore the target organ cannot be known ahead of time. Nevertheless, few ecotoxicology 

studies, particularly the investigation of terrestrial and aquatic invertebrates, have exploited 

the benefits of biofluids. Bundy et al. (Bundy et al. 2001) identified potential biomarkers of 3-

fluoro-4-nitrophenol toxicity in the coelomic fluid of earthworms (Eisenia veneta) using 

nuclear magnetic resonance (NMR) spectroscopy based metabolomics. Phalaraksh et al. 

(Phalaraksh et al. 1999) used a similar technique to detect and quantify 19 endogenous 

metabolites in haemolymph from larval stages of the tobacco hornworm (Manduca sexta), 

and in a subsequent study determined changes in these metabolites during hornworm 

development (Phalaraksh et al. 2008). An investigative study into withering syndrome in red 

abalone (Haliotis rufescens) revealed metabolic biomarkers in haemolymph that could 

distinguish healthy, stunted and diseased animals (Viant et al. 2003a). With a demonstrated 

potential to provide biochemical insight into invertebrate responses to toxicant exposure, 

larval development and disease, together with the advantages of analyzing biofluids 

discussed above, metabolomics studies of haemolymph from D. magna are clearly warranted 

as a potentially powerful approach for toxicity testing. Therefore, the feasibility of using D. 
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magna haemolymph for metabolomics toxicity studies and its capability in discriminating 

toxic MOAs is investigated in this thesis. 

It has been recognized for some time that metabolomics has enormous potential to identify 

novel biomarkers of toxicity, with arguably the most important endpoint being in elucidating 

a mode of toxicity (Robertson 2005). This has been successfully demonstrated by The 

Consortium on Metabonomic Toxicology (COMET) (Lindon et al. 2005) which built a database 

of the urinary metabolic responses of rats to 80 model toxicants and then confirmed the 

ability of these responses to predict the main organ of toxicity, either liver or kidney (Ebbels 

et al. 2007). In ecotoxicology, few studies have been published that have addressed the 

question of whether chemicals with differing MOAs can be discriminated. In a study of the 

earthworm, Lumbricus rubellus, reported by Guo et al. (Guo et al. 2009), a multiple toxicant 

study using cadmium chloride, atrazine and fluoranthene, confirmed that the metabolic 

responses to sub-lethal doses of these toxicants can be distinguished, consistent with their 

distinct MOAs. In the aquatic environment metabolomics has also successfully been used to 

determine the exposure effects of three pesticides to Chinook salmon (Oncorhynchus 

tshawytscha) eggs and alevins, reporting both dose-dependent and MOA specific changes to 

the metabolome induced by these toxicants (Viant et al. 2006b). Clearly more 

ecotoxicological studies are needed to investigate the capability of metabolomics in 

distinguishing toxicant MOA, not least in ecologically relevant species such as D. magna. 

Consequently, this research contains an investigation into the capability of metabolomics in 

discriminating toxicant MOAs in D. magna. 
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Following the recent success in applying metabolomics to ecotoxicological testing it is 

believed that metabolomics will have an important future role in ecological risk assessment, 

but exactly how this will be achieved is currently being debated (Ankley 2008). The most 

likely applications include: (i) as a screening tool within a tiered testing hierarchy, specifically 

as an early screening tool for chemicals that might cause adverse chronic effects and thus 

prioritization for more extensive testing; and (ii) as a tool to elucidate the MOA of a toxicant, 

at the metabolic level, as part of a comprehensive risk assessment (Bundy et al. 2009). The 

huge potential for utilising metabolomic techniques in regulatory toxicity testing is the main 

driving force behind this research and as such the overall aim of this thesis is to develop and 

apply metabolomics to toxicity testing in Daphnia magna, the OECD recommended 

freshwater invertebrate test species.  

 

1.5 Daphnia magna 

Given that invertebrates account for at least 95% of all known animal species and are critical 

to ecosystem structure and function (Verslycke et al. 2007), an ideal test organism for 

freshwater ecosystems is Daphnia magna, commonly known as the water flea (Figure 1.1). 

Daphnia magna are small (typically < 3 mm), freshwater filter-feeding crustaceans and can 

be found in almost any permanent body of water (LeBlanc 2007; Tatarazako and Oda 2007). 

They occupy a key position in the aquatic food web; they are highly abundant grazers of 

phytoplankton and provide a crucial link between primary and secondary production by 

being a major dietary component of fish and invertebrate predators (Dodson and Hanazato 

1995; Martin-Creuzburg et al. 2007; Tatarazako and Oda 2007). Since Daphnia are such a 
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critical species in the aquatic food web any adverse effects on this species could cause 

community or ecosystem-level responses (Flaherty and Dodson 2005) making them model 

representatives of the zooplankton for any form of ecological testing (Dodson and Hanazato 

1995). 

Its small size, high fecundity and short lifecycle makes D. magna the ideal test species for 

laboratory controlled experiments of environmental stressors as they are easy to culture and 

their reproductive strategy (parthenogenesis) reduces biological variability (Barata et al. 

2005). Parthenogenetic reproduction, where females asexually produce genetically identical 

female offspring, is a system which allows rapid expansion of daphnid populations in times of 

resource abundance and it is known that daphnids can switch to a sexual mode of 

reproduction in response to environmental stress (Olmstead and Leblanc 2002; Tatarazako 

and Oda 2007) (Figure 1.2). Occurrences such as reduced day length, decreased food 

availability, temperature changes and toxicant exposure can all cause daphnids to undergo a 

period of sexual reproduction generating dormant, resting eggs encased in a protective 

ephippium, which will then hatch when conditions become more favourable; this allows the 

species to survive in a habitat that may become inhospitable (Olmstead and Leblanc 2002, 

2003). Typically this is an overwintering strategy, although these dormant eggs can remain 

viable for decades (Brendonck and De Meester 2003). 
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Figure 1.1 Images of (a) an adult female daphnid and (b) neonates from the Daphnia culture 

maintained at the University of Birmingham 

(b) 
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Figure 1.2 Graphical representation of parthenogenetic reproductive lifecycle of Daphnia magna. In 

favourable conditions Daphnia reproduce by cyclic parthenogenesis releasing genetically identical 

offspring.  Under adverse conditions females release broods of males and sexually receptive females 

allowing for sexual reproduction, producing dormant eggs that will hatch when conditions return to 

normal. 
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1.5.1 Daphnia magna and regulatory toxicity testing 

Water fleas have a long history in aquatic toxicity testing; they are known to be quite 

sensitive to many chemicals (Tatarazako and Oda 2007) and with their ease of handling in the 

laboratory, several methods using D. magna exist for regulatory toxicity testing (Tatarazako 

and Oda 2007). D. magna is the recommended test species for the OECD (OECD 1998, 2004) 

in their chemical testing guidelines and the current ecotoxicological requirements of directive 

79/831/EEC for all new industrial chemicals are that acute toxicity tests must be carried out 

using fish and Daphnia (Sandbacka et al. 2000). It is an extensively used test species that has 

been found to be markedly more sensitive to a larger variety of stressors in toxicity tests than 

fish (Martins et al. 2007; Sandbacka et al. 2000) and has been used to evaluate the toxicity of 

many toxicants including heavy metals (Arambasic et al. 1995; Knops et al. 2001; Smolders et 

al. 2005) and pharmaceuticals (Flaherty and Dodson 2005). However, the majority of studies 

use the standard endpoints of acute and chronic toxicity discussed earlier and to date 

relatively few studies have been reported that utilise D. magna with ecotoxicogenomic 

approaches. 

 

1.5.2 Daphnia magna and ecotoxicogenomics 

Of the few studies reported that have utilised ecotoxicogenomic techniques with D. magna 

all of them have used transcriptomics, employing DNA microarrays to characterise changes in 

gene expression following exposure of D. magna to toxicants. Poynton et al. (Poynton et al. 

2007) used a custom cDNA microarray to identify distinct expression profiles of D. magna in 

response to sublethal exposures of copper, cadmium and zinc, which supported the known 
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MOAs of these toxicants. Further microarray studies investigating the effects of short-term 

cadmium exposure on D. magna have also determined cadmium induced changes in gene 

expression and that these changes could potentially be linked to altered population growth 

rate (Connon et al. 2008; Soetaert et al. 2007b). Watanabe et al. (Watanabe et al. 2007) 

exposed D. magna to several different compounds finding chemical-specific patterns of gene 

expression which indicated that Daphnia DNA microarrays could be used for classification of 

toxicants. Other transcriptomic studies into the effects of ibuprofen (pharmaceutical) 

(Heckmann et al. 2008), propiconazole (pesticide) (Soetaert et al. 2006) and fenarimol 

(fungicide) (Soetaert et al. 2007a) on D. magna have all reported toxicant induced changes in 

gene expression profiles. In general, the goals were to reveal insight into the MOA, to 

discover biomarkers for hazard characterisation, and to classify toxicants using characteristic 

profiles of gene expression. Collectively these studies illustrate the emerging value of 

ecotoxicogenomics for toxicity testing and risk assessment and it is surprising that despite 

the importance of Daphnia in the freshwater ecosystem and the numerous advantages of 

ecotoxicogenomics techniques over standard test methods that so few studies have been 

reported. What’s more, given the importance of the metabolome, it’s even more surprising 

that at the beginning this research and at the time of writing this thesis no metabolomics 

studies (aside from those at the University of Birmingham) using D. magna had been 

reported.  
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1.6 Metabolomics analysis platforms  

The key requirement in metabolomics is for analytical methods that can provide 

comprehensive metabolite profiles from complex biological samples (Lenz and Wilson 2007) 

and any technique capable of generating comprehensive metabolite measurements could, in 

theory, be used (Robertson 2005). Lenz and Wilson (Lenz and Wilson 2007) list criteria for the 

ideal analytical platform as needing to be: able to be performed directly on the samples, i.e. 

without the need for sample pre-processing; should be high-throughput and unbiased in 

respect to metabolite class; would be both highly and equally sensitive to all components in 

the samples; needs to be robust and reproducible with a wide dynamic range; and all this 

should be combined with enough information to allow the identification of key metabolites 

following post analysis multivariate statistics. In reality there is not a platform currently 

available that can provide all of these properties and there is a trade-off between 

technologies and objectives (Figure 1.3). Reproducibility is one of the key attributes required, 

therefore, the most useful techniques should be highly reproducible, this can be affected by 

variation introduced by sample preparation and analysis techniques so the platform used 

must generate data where this introduced variation is less than that found in the normal 

population of interest thus ensuring any significant metabolic changes are due to the 

biological status of the organism (Keun 2006; Robertson et al. 2007).  
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Figure 1.3 The trade-off between analytical platforms and the objectives of metabolomics, adapted 

from Dunn et al. (Dunn et al. 2005) 
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A successful metabolomics study should result in a high quality data set reflecting a 

biochemical snapshot of the state of an organism through its endogenous metabolites 

(Robertson et al. 2007); dependent on the objective of the study, it need not be a completely 

resolved and assigned survey of composition (Keun 2006).  In fact, this is the simplest way to 

treat metabolomics data, producing a metabolic fingerprint that reflects the changes in 

metabolites without necessarily identifying the components that are changing (Robertson et 

al. 2007) allowing for rapid, high-throughput, unbiased sample analysis that can be used for 

screening purposes comparing and discriminating between samples of different biological 

status or origin (Dunn and Ellis 2005; Lin et al. 2006). The ultimate goal is to identify 

discriminating metabolites and a more powerful interpretation of metabolomics data is 

metabolic profiling, where a comprehensive (although this can be a targeted approach 

looking for pre-selected metabolites), and hopefully quantitative, list of metabolites can be 

identified in order to gain mechanistic information of biological processes and determine 

potential biomarkers of toxicity and disease (Dettmer et al. 2007; Lin et al. 2006; Robertson 

et al. 2007). Since this research aims to utilise metabolomics for both toxicity screening 

purposes and to elucidate information on modes of toxic action then a platform that can 

produce information for both applications is required. There are relatively few techniques 

capable of providing this required level of detail and currently the two most widely used 

platforms for metabolomics analysis are nuclear magnetic resonance (NMR) spectroscopy 

and mass spectrometry (MS) based methods, not least because both these techniques are 

able to detect a wide range of metabolites and provide a wealth of metabolic information 
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with relatively high reproducibility and sensitivity (Lin et al. 2006; Miller 2007; Robertson et 

al. 2007). 

 

1.6.1 NMR spectroscopy 

High-resolution (field strengths of 400MHz and higher) NMR spectroscopy has historically 

been the platform of choice for metabolomics studies; it is a cost-effective, robust and highly 

reproducible technique that can quantitatively report on a few to several tens of compounds 

in a single measurement with little or no sample preparation (Keun et al. 2002; Lenz and 

Wilson 2007). NMR works on the principle that certain atomic nuclei have the property of 

spin and magnetic moment; exposure to a strong magnetic field leads to splitting of their 

energy levels and absorption of radio frequency radiation that can be correlated with 

molecular structure (Skoog et al. 1998). Individual signals are dispersed dependent on the 

chemical environment of the source nuclei making NMR spectra rich in structural information 

and there are NMR visible isotopes for most chemical elements including 
1
H, 

13
C, 

31
P and 

15
N 

(Keun 2006).  To date the most commonly used technique for generating metabolic profiles is 

1
H NMR since hydrogen atoms are ubiquitous in organic molecules making this approach 

non-biased to particular metabolites, and with a natural abundance of 99.98% gives the 

highest relative sensitivity of all naturally occurring spin-active nuclei (Dunn and Ellis 2005; 

Keun 2006; Lenz and Wilson 2007). For these reasons 
1
H NMR has become, and likely will 

continue to be, one of the primary choices in analytical platforms for metabolomics studies 

despite the fact that it is a relatively insensitive technique (Robertson et al. 2007). However, 

this lack of sensitivity means NMR requires larger sample sizes in order for metabolites of 
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interest to be within its limits of detection so is not the most appropriate tool for use with 

small organisms such as D. magna. 

 

1.6.2 Mass Spectrometry 

The major advantage of mass spectrometry techniques over NMR as a means of metabolic 

profiling is its vastly greater sensitivity (Keun 2006). MS platforms are able to achieve low 

detection limits enabling the detection of low abundance metabolites that are beyond the 

capabilities of NMR (Dettmer et al. 2007), and as such is the platform of choice for 

metabolomics studies that utilise small sample sizes and complex matrices (Brown et al. 

2005). These attributes mean that MS technologies are the more appropriate choice of 

analytical platform for this research into metabolomics toxicity testing of D. magna, a small 

freshwater invertebrate. MS operates by separation and detection of ions according to their 

mass to charge (m/z) ratio and has the ability to provide rapid, sensitive and selective 

qualitative and quantitative analyses with the potential to identify metabolites (Dunn and 

Ellis 2005).  

MS is often employed using front-end separation techniques such as gas chromatography 

(GC-MS) and liquid chromatography (LC-MS) (Robertson et al. 2007 1056) to enable better 

metabolite separation (and consequently identification and quantification) (Dunn et al. 

2005). GC-MS detects volatile, low molecular weight metabolites by first separating them by 

GC then detecting the eluting compounds traditionally using electron-impact mass 

spectrometers, although the majority of metabolites, such as sugars and amino acids, need 

to be made volatile and thermally stable prior to analysis and such sample preparation can 



 - 32 - 

introduce variability (Dunn and Ellis 2005; Lenz and Wilson 2007). LC-MS is simpler in terms 

of sample preparation as it does not require sample volatility; LC is the separation technique 

typically followed by electrospray ionisation (ESI) of the sample for MS detection (Dunn and 

Ellis 2005). However, metabolite detection by a mass spectrometer using ESI is limited by the 

ability of the metabolites to be ionised. Despite the benefits for metabolite identification, the 

use of hyphenated MS techniques increases preparation and analysis time per sample, 

making this a less cost effective technique particularly in terms of a high-throughput 

screening tool. Since one of the main objectives of this research is to evaluate the potential 

of using metabolomics as a potential first-tier screening tool for regulatory toxicity testing 

then a high-throughput method is an essential, thus making hyphenated MS techniques 

unsuitable for this purpose.  

Direct injection mass spectrometry (DIMS) has been proposed as the answer to this problem; 

here crude samples are injected directly in to the ESI source of a mass spectrometer with no 

prior separation method, resulting in a mass spectrum representative of the composition of 

the sample being analysed (Lenz and Wilson 2007). This is a high-throughput approach with 

samples processed in typically a few minutes, the short analysis time potentially increasing 

sample reproducibility and improving the accuracy of subsequent data analysis (Dettmer et 

al. 2007). As with LC-MS, the ability of metabolites to be ionised determines the proportion 

of the metabolome that can be detected, but ESI can be conducted in both positive and 

negative ion modes to obtain the most comprehensive profile possible (Dunn and Ellis 2005; 

Lenz and Wilson 2007). Alongside this, ion suppression, which occurs when all components of 

the sample are introduced simultaneously into the ionisation source, has been greatly 
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decreased by the introduction of nano-electrospray ionisation (nESI) which reduces the flow 

rate at which the sample enters the ionisation source (Dettmer et al. 2007), though it should 

be noted that this does not completely remove the issue of ion suppression. The drawback 

with ESI techniques, however, is that metabolite identification is more time intensive; 

tandem MS (MS/MS) can be employed where fragmentation of molecular ions allows 

structural identification of metabolites from interpretation of fragment ions and 

fragmentation patterns (Dunn and Ellis 2005), yet this reduces the capability of DIMS to be 

useful as a high-throughput method. The use of high resolution instruments which allow 

accurate mass determination and are capable of fully resolving detected peaks for accurate 

calculation of their empirical formula can overcome this problem (Dunn and Ellis 2005; Keun 

2006). Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) is one of 

the few techniques capable of the necessary mass resolution and accuracy required for this 

(Dunn et al. 2005).  

 

1.6.3 FT-ICR MS 

FT-ICR MS is a DIMS technique ideal for high-throughput analysis of complex mixtures; its 

performance characteristics include ultra-high mass resolution (values over 1,000,000 are 

possible but routinely 100,000), and high mass accuracy with average errors generally < 1 

ppm (Brown et al. 2005; Dunn and Ellis 2005). Mass accuracy is simply the difference 

between the theoretical and measured mass of any peak relative to the theoretical mass of 

that peak. Mass resolution refers to the resolution of a single peak, expressed as the m/z 

value of that peak divided by the width of that peak at half its height, meaning that peaks 
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differing by the mass resolution yield distinguishable peaks (Breitling et al. 2006). In basic 

terms, this means that with a mass resolution of 1,000,000 the m/z value of an individual 

peak can be given to six decimal places, and peaks separated by this mass can be 

distinguished by the instrument. It should be noted that the higher the resolution, the larger 

the data files that subsequently need to be analysed (Breitling et al. 2006). This high-

resolving power reduces the need for time consuming and costly chromatographic 

separations prior to MS analysis (Brown et al. 2005) and in principle would allow the 

resolution of millions of peaks, although the dynamic range of the instruments can prevent 

such performance (Breitling et al. 2006). Until recently the maximum reported dynamic 

range of FT-ICR MS platforms was 10,000, meaning components < 0.01% abundant, 

compared to the most abundant components, will not be observed (Brown et al. 2005). 

Southam et al. (Southam et al. 2007) developed an analysis method which increases dynamic 

range (to 16,000) whilst achieving a high mass accuracy (0.18 ppm). This approach collects 

multiple, narrow, overlapping spectra (termed windows), the windows are analysed by single 

ion monitoring (SIM) and then “stitched” together to form a complete “SIM-stitched” 

spectrum with a greater dynamic range, enabling the detection of both low and highly 

abundant metabolites. The high mass accuracy capabilities of FT-ICR MS means that 

metabolites can often be putatively identified by determining their elemental composition, 

i.e. CcHhNnOoPpSs (Brown et al. 2005; Dettmer et al. 2007). If only the most common 

biological elements are permitted (carbon, hydrogen, oxygen, nitrogen, sulfur, and 

phosphate), only a finite number of combinations of atoms will give a match to an observed 

mass with a given degree of accuracy, although for larger molecules more alternatives 
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become chemically possible (Breitling et al. 2006).  FT-ICR MS, and other high resolution MS 

platforms, have an important future in high-throughput metabolomics investigations (Dunn 

and Ellis 2005). FT-ICR MS is the analytical platform that has been selected for use in this 

research, coupled with the SIM stitching approach developed by Southam et al. (Southam et 

al. 2007), to maximise its potential in metabolite detection and therefore its ability to 

determine toxicant induced effects on the daphnid metabolome. 

 

1.7 Metabolomics data analysis 

Metabolomics data is intrinsically multivariate so typically necessitates multivariate analysis. 

The statistical tools chosen for metabolomics data analysis need to be selected according to 

the objectives of the study (Dettmer et al. 2007). If the aim of the study is sample 

classification (e.g. can control samples be distinguished from exposed samples) unsupervised 

methods such as principal components analysis (PCA) can be used (Dettmer et al. 2007). PCA 

has been widely used in metabolomics studies; it allows inherent clustering behaviour of 

samples to be ascertained with no a priori knowledge of sample class (Coen et al. 2008). 

Given that PCA does not use class information in construction of the model, it just attempts 

to describe the overall variation in the data (Wise et al. 2006). PCA breaks down the data into 

scores and loadings, scores reflect the relationship between individual samples whereas 

loadings indicate the relationships between the variables (peaks) (Robertson 2005; Wise et 

al. 2006).  Principal components (PCs) describe decreasing amounts of variance in the data; 

that is PC1 accounts for the greatest variance, followed by PC2 then PC3 and so on 

(Robertson 2005). The number of PCs included in the PCA model is dependent on how best 
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to represent the variance in the dataset.  All PC analyses use score plots (typically PC1 against 

PC2) to visually determine if there are any natural clusters (Robertson et al. 2007); these 

clusters allow for rapid identification of similar and dissimilar samples, indicating a common 

effect or mechanism (Keun 2006). Whilst scores plots visually highlight the similarities and 

differences between individual samples they give no mechanistic insight into their molecular 

basis (Robertson 2005).  

If the aim of the study is to discover characteristic biomarkers between groups (e.g. peaks 

that distinguish between exposed and control groups), supervised classification methods 

such as partial least squares discriminant analysis (PLS-DA) can also be used (Dettmer et al. 

2007). PLS-DA uses prior knowledge of sample class to maximise separation and derive 

predictive models based on the original data (Nicholson et al. 2002) and hence can be used 

to determine variables that directly discriminate between classes (Wise et al. 2006). Latent 

variables (LVs), which are similar to the PCs obtained from PCA, can be depicted as scores 

plots with LV1 representing the highest variation that discriminates between the sample 

classes, and the PLS-DA weightings (akin to PCA loadings) can be used as a feature selection 

tool for identifying discriminating peaks (Baldovin et al. 1996). As this is a supervised analysis, 

specifically looking for differences between the sample classes, the model must be cross-

validated in order to prevent over-fitting of the data and allow accurate prediction of sample 

class. Cross-validation eliminates one or more samples (forming the test set) from the data, 

building the predictive model with the remaining samples (the training set), this model is 

then used for the classification of the samples in the test set; with the predictive capability of 

the model assessed by determining a classification error rate using the difference between 
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the true and predicted values of the test set (Baldovin et al. 1996). Alongside the cross 

validation, it is recommended that permutation testing is also performed. Here the data is 

randomly permuted, mixing up the class labels, which should then create models with a 

much higher classification error rate than the true models (i.e. those built using the correctly 

labelled data) and thus giving confidence in the predictive capabilities of the true models, if 

indeed they are robust. Examination of the loadings or weightings data can then determine 

which peaks are responsible for any separation seen in the scores plots but it is important 

not to interpret these as having any univariate significance (Robertson et al. 2007).  

However, although metabolomics is in its nature multivariate, it is possible to utilise 

univariate analysis with the right approaches. Standard statistical p-tests (e.g. ANOVA, t-test) 

can be used to screen for peaks that change significantly, although due to the large size of 

the datasets generated by metabolomics, the measurement of multiple variables will induce 

a large number of false positives (Robertson et al. 2007). This means that when using a 

significance value of 0.05 that chance alone means 5% of peaks could be wrongly assigned as 

changing significantly (Benjamini and Hochberg 1995; Robertson et al. 2007). This false 

discovery rate (FDR) needs to be accounted for, which can be achieved by calculating a 

corrected significance level as described in Benjamini and Hochberg (Benjamini and 

Hochberg 1995). For an FDR of 5% the following calculation: 0.05 × (p-value of the peak/total 

number of peaks), creates an adjusted p-value; the peak is still considered to be changing 

significantly if the original p-value is smaller than the FDR adjusted p-value. Both multivariate 

classification techniques and FDR-corrected univariate statistics are employed in this thesis. 
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Finally, if the aim of the study is to relate the metabolic data to another set of measured 

variables (e.g. reproductive output) then multivariate regression analysis can be employed 

(Wise et al. 2006). Partial least squares regression (PLS-R) can be used to analyse 

metabolomics data, whilst simultaneously modelling another response variable; the 

metabolomics data are classed as predictors whereas the other measured variable(s) are 

classed as responses (Wold et al. 2001). PLS-R attempts to find factors that both capture the 

variance in the metabolomics data and achieve correlation with the response variable (Wise 

et al. 2006). Again, cross validation needs to be employed as with PLS-DA to prevent over-

fitting of the data (Wold et al. 2001). The quality of the regression model can be assessed 

after cross validation by comparing the measured and predicted values of the response 

variable (e.g. reproductive output); this generates an R
2
 value that is indicative of how well 

the model might predict the response variable of unknown samples (Wise et al. 2006; Wold 

et al. 2001). To determine which metabolites are correlated to (i.e. predictive of) changes in 

the response variable a regression vector can be generated, and the highlighted metabolites 

can then, in theory, be putatively identified (Wise et al. 2006). Multiregression analyses are 

also employed in this thesis, for discovering molecular markers that are predictive of D. 

magna reproductive fitness 
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1.8 Research aims 

Overall, the primary objective of this thesis research is to evaluate the potential of FT-ICR 

mass spectrometry based metabolomics for use in first-tier, regulatory toxicity testing using 

Daphnia magna; the specific aims of my research are: 

 

1. To optimise an FT-ICR mass spectrometry based metabolomics approach using whole 

organism homogenates of D. magna and to validate the technique using copper as a 

model toxicant. 

 

2. To optimise an FT-ICR mass spectrometry based metabolomics approach using D. magna 

haemolymph and to validate the technique using cadmium as a model toxicant. 

 

3. To develop robust multivariate models that can discriminate toxicant modes of action in 

D. magna acute toxicity tests, utilising four model toxicants, and to evaluate whether the 

haemolymph or whole organism metabolome is better at discriminating toxicant mode of 

action. 

 

4.  To discover metabolic markers in individual D. magna exposed to model toxicants that 

are predictive of higher level biological effects, specifically reproductive output. 

 

These aims are addressed in Chapters 3, 4, 5 and 6 respectively. 
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CHAPTER TWO: 

Materials and Methods 
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2.1 Culturing of Daphnia magna 

In accordance with OECD guidelines (OECD 1998, 2004), D. magna were cultured at a density 

of 20 animals per 1200 mL media (OECD-recommended ISO test media for exposures, 

including 0.002 mgL
-1

 sodium selenite; Table 2.1) in a 16:8 hr light:dark photoperiod and 

temperature of 20 ± 1ºC. Media was renewed twice weekly and supplemented with an 

organic seaweed extract: Marinure (Wilfrid-Smith Limited, Oakley Hay, UK). Cultures were 

fed on suspensions of unicellular green alga, Chlorella vulgaris, and supplemented by a daily 

amount of dried bakers yeast (Sigma-Aldrich, UK), described below. All cultures were 

initiated using third or fourth brood neonates aged <24 h old. Original animals were obtained 

from the University of Reading, having originated from the National Institute for Applied 

Chemical Research (IRCHA), France, and categorised as IRCHA Clone Type 5. 

 

2.1.1 Preparation of nutritional supplement Marinure 

To obtain a stock solution of Marinure, approximately 12 mL of Marinure was added to 1 L of 

deionised water and shaken vigorously until fully dissolved. A 1:10 dilution of this stock 

should measure an optical density of 0.800 ± 5% at 400nm; either more water or Marinure is 

added to the stock solution until this OD (1:10) is achieved. The prepared stock solution is 

then used in the culturing of D. magna and was replaced every 6 months. Marinure was 

supplemented with each media renewal in an age-dependent amount (3 mL <7 days old, 4 

mL >7 days old). 
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2.1.2 Culture of Chlorella vulgaris algal stock 

Chlorella vulgaris was cultured in Bolds Basal Medium (BBM) in an aerated system under 

photosynthetic light. A minimum of two C. vulgaris stocks were active at any time. BBM was 

prepared as detailed in Table 2.2, and autoclaved prior to use. Algal suspensions were 

alternately removed from these stock vessels in order to prepare as food for the daphnid 

cultures and the volume taken replenished with BBM. 

 

2.1.3 Preparation of Chlorella vulgaris algal feed 

A known volume of C. vulgaris was taken from one of the main culture vessels, in order to 

obtain the correct density of algae for the daphnids the OD (1:10) at 440nm required is 

0.800. The algae was spun at 3000 rpm for 30 min at room temperature, the supernatant 

discarded and the algae resuspended in the calculated volume of deionised water to achieve 

the required density: 

 

Resuspension volume = (measured OD (1:10) × volume of algae) / 0.800 

 

Algal feed suspensions were stored at 4 °C and kept for a maximum of two weeks before 

replacing with a fresh suspension. D. magna were fed daily with varying volumes of algae 

depending on age: <2 days old: 1 mL; 3-7 days old: 1.5 mL; >7 days old: 2 mL per culture 

vessel. 
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2.1.4 Preparation of Baker’s Yeast 

10 mg of dried baker’s yeast was added to 100 mL of distilled water and dissolved using a 

magnetic stirrer. This was stored at 4 °C and replaced every two weeks. A volume of 0.5 mL 

per culture vessel was added daily to the daphnids. 

 

 

 

 

 

 

Table 2.1 Media for Daphnia magna culturing and exposure, modified from OECD guidelines (OECD 

1998, 2004). 

 

Stock solutions 

Substance Concentration 

To prepare media add the 

following volumes of stock 

solutions to 1 litre water * 

Calcium chloride 

CaCl2·2H2O 
11.76 gL

-1
 25 mL 

Magnesium sulphate 

MgSO4·7H2O 
4.93 gL

-1
 25 mL 

Sodium bicarbonate 

NaHCO3 
2.59 gL

-1
 25 mL 

Potassium chloride 

KCl 
0.23 gL

-1
 25 mL 

Sodium selenite 

Na2SeO3 
40 μgmL

-1
 50 μL 

* Water of suitable purity with conductivity not exceeding 10 μScm
-1
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 Table 2.2 Bolds Basal Medium (BBM) for culturing of Chlorella vulgaris. 

 

Stock solutions 

Substance Weight Volume  

Volume required to 

make up 1 litre BBM * 

di-potassium hydrogen  

orthophosphate 

(K2HPO4) 

1.875 g 250 mL 10 mL 

Potassium di-hydrogen 

orthophosphate 

(KH2PO4) 

4.375 g 250 mL 10 mL 

Magnesium sulphate 

(MgSO4.7H2O) 
1.875 g 250 mL 10 mL 

Sodium Nitrate 

(NaNO3) 
6.250 g 250 mL 10 mL 

Calcium chloride 

(CaCl2.2H2O) 
0.625 g 250 mL 10 mL 

Sodium Chloride 

(NaCl) 
0.625 g 250 mL 10 mL 

EDTA tetrasodium salt 

(EDTA - Na4) + 

Potassium hydroxide 

(KOH) 

5.000 g 

 

3.100 g 

100 mL 1 mL 

Ferrous sulphate 

(FeSO47H2O) 

Sulphuric acid conc. 

(H2SO4) 

0.498 g 

 

0.1 mL 

100 mL 1 mL 

Boric acid 

(H3BO3) 
1.142 g 100 mL 1 mL 

Zinc sulphate 

(ZnSO4.7H2O) 
0.353 25 mL 0.1 mL 

Manganese chloride 

(MnCl2.4H2O) 
0.058 25 mL 0.1 mL 

Copper sulphate 

(CuSO4.5H2O) 
0.063 25 mL 0.1 mL 

Cobaltous nitrate 

(Co(NO3)2.6H2O) 
0.020 25 mL 0.1 mL 

Sodium molybdate 

(Na2MoO4.2H2O) 
0.048 25 mL 0.1 mL 

* After making up to 1 litre with deionised water pH must be 6.7 ± 0.3 
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2.2 Toxicity exposures and animal capture 

Exposure to toxicants is described for each individual study in each Chapter. Capture of 

animals following exposures was dependent on the sample type to be analysed. For those 

experiments where whole organism homogenates were to be analysed capture of exposed 

animals was via filtration through a fine mesh gauze and then quickly transferred into a 

Precellys™ homogenisation tube containing ceramic beads (CK14; Stretton Scientific Ltd, UK), 

immediately frozen in liquid nitrogen, and transferred to storage at -80 °C prior to metabolite 

extraction (Section 2.3.1). This whole process took ca. 30-45 s per sample. Capture of 

exposed animals where haemolymph samples were to be analysed involved the immediate 

extraction of the haemolymph at the end of the exposure period; this is as detailed in Section 

2.3.2. 

 

2.3 Metabolite extraction 

2.3.1 Whole organism homogenates 

Metabolites were extracted from whole D. magna using the two step 

methanol:water:chloroform (2:2:1.8 final solvent ratio) protocol as described previously (Wu 

et al. 2008). Since the D. magna samples were of such low mass some modifications were 

made; all samples were assumed to weigh 10 mg wet mass and solvent volumes were 

increased.  Each sample was homogenised in 320 μL methanol and 128 μL water (both HPLC 

grade) using a Precellys-24 ceramic bead-based homogeniser (Stretton Scientific Ltd, UK). 

Samples were then transferred to 1.8 mL glass vials before adding 320 μL chloroform 

(pesticide analysis grade) and 160 μL water, keeping the final solvent ratio as previously 



 - 46 - 

described (Bligh and Dyer 1959; Wu et al. 2008). The biphasic mixture was centrifuged 

(1,500-g) and the upper (polar) and lower (non-polar) fractions were removed, each split into 

two equal volumes, and aliquotted into two 1.5 mL microcentrifuge tubes (polar fraction) 

and two 1.8 mL glass vials (non-polar fraction). Samples were then dried in a centrifugal 

concentrator (Thermo Savant, Holbrook, NY, USA) and stored at -80° C until FT-ICR analysis. 

For each individual experiment an “extract blank” was also prepared using identical methods 

except that no biological material was added to the solvents. 

 

2.3.2 Haemolymph  

Extraction of haemolymph from individual adult daphnids was as described in Mucklow and 

Ebert (Mucklow and Ebert 2003). Immediately following the end of exposure, each daphnid 

was placed on a clean microscope slide, rinsed with deionised water to remove any algae, 

then carefully blotted dry. Next the haemolymph of the daphnid was sampled by pricking the 

carapace close to the heart with a 21 gauge needle and collecting approximately 1 μL of the 

haemolymph that immediately seeped out using a micropipette (Mucklow and Ebert 2003). 

The haemolymph sample was immediately transferred to a microcentrifuge tube and stored 

at -80° C until metabolite extraction. Metabolite extraction occurred the evening prior to FT-

ICR analysis. Due to the very small volume of haemolymph obtained only negative ion mass 

spectrometry analysis could be undertaken, so metabolite extraction was by the addition of 

30 μL 80:20 methanol:water (both HPLC grade) containing 20 mM ammonium acetate to the 

sample and allowing for precipitation of proteins in the solvent overnight at -20° C. As for the 
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whole organism homogenate samples, for every study an extract blank was also prepared 

with no addition of haemolymph. 

 

2.4 FT-ICR mass spectrometry 

Dried polar extracts from the whole organism homogenate samples were resuspended in 30 

μL 80:20 methanol:water (both HPLC grade) containing 0.25% formic acid for positive ion 

analysis, or in 30 μL 80:20 methanol:water containing 20 mM ammonium acetate for 

negative ion analysis. The non-polar extracts were not used in this research. The 

haemolymph samples were simply removed from the -20° C freezer on the day of analysis 

following overnight metabolite extraction (Section 2.3.2). All samples were then centrifuged 

at 5,000g for 10 minutes and 5 μL aliquots of each sample were loaded into a 96-well plate in 

triplicate, covered with 20 μm easy-pierce heat-sealing foil and sealed using a Thermo-sealer 

(Agbene, Epsom, UK). Samples were analyzed using a hybrid 7-T Fourier transform ion 

cyclotron resonance mass spectrometer (LTQ FT, Thermo Scientific, Bremen, Germany) 

equipped with a chip-based direct infusion nanoelectrospray ionisation assembly (Triversa, 

Advion Biosciences, Ithaca, NY). Nanoelectrospray conditions comprised of a 200 nL/min flow 

rate, 0.3 psi backing pressure, and +1.7 or -1.7 kV electrospray voltage (for positive and 

negative ion analysis, respectively), controlled by ChipSoft software (version 8.1.0, Advion 

Biosciences). Samples were analysed in triplicate using the SIM-stitching FT-ICR method from 

m/z 70 to 500, as reported previously (Southam et al. 2007). Parameters included an 

automatic gain control setting of 1 x 10
5
 (to control the number of ions entering the FT-ICR 

detection cell) and a mass resolution of 100,000, and data was recorded for 5.5 min per 
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replicate analysis using Xcalibur software (version 2.0, Thermo Scientific). The “extract 

blanks” were also analysed in triplicate using identical methods. 

 

2.5 Data pre-processing 

Transient data from the FT-ICR detector (i.e., in the time-domain) were processed as 

described previously (Southam et al. 2007), including averaging of transients, Hanning 

apodisation, zero filling once, and application of a fast Fourier transformation, all using 

custom-written code in MATLAB (version 7, The MathWorks). Next, the SIM-stitching 

algorithm was applied (version 2.10, custom-written MATLAB code; (Southam et al. 2007)), 

which stitched together multiple SIM windows, rejected all peaks with a signal-to-noise ratio 

(SNR) below 3.5, and then internally calibrated each mass spectrum using a pre-defined 

calibrant list of known metabolites, listed in Tables 2.3 (haemolymph) and 2.4 (whole 

organism homogenates). At this stage of processing each replicate analysis (i.e., of a total of 

three per biological sample) consisted of a single list of peaks characterised by specific m/z 

and intensity values. A novel two-stage peak filtering algorithm was then applied to the 

dataset (Payne et al. 2009). The first stage, referred to as the “replicate filter”, retained only 

those peaks which appeared in at least 2 out of the 3 technical replicate mass spectra to help 

reject noise. Peaks were considered to arise from the same metabolite if they occurred 

within a 1.5 ppm spread along the m/z axis. This generated a single peak list per biological 

sample. Next, peaks in these lists that also occurred in the “extract blank” mass spectrum 

were either removed or retained if they were more intense in the “extract blank” versus 

biological sample dependent on a pre-defined ratio. The second stage of the peak filtering 
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algorithm, termed the “sample filter”, was used to further eliminate noise from the spectra 

and also to reduce the problem of missing values. Using the peak lists from the replicate filter 

(one per biological sample), the sample filter retained only those peaks which appeared in a 

defined percentage of the biological samples in the dataset (e.g., in at least 50% of all 

samples), using a defined (e.g. 2 ppm) spread along the m/z axis for defining unique peaks. 

This results in a matrix of peak intensities, where each row corresponds to a unique sample 

and each column to a unique peak, thus allowing for data comparison and the discovery of 

differentially expressed metabolites (Dettmer et al. 2007).  

Inevitably the matrix resulting from the two-stage peak filtering algorithm has entities 

missing due to peaks only needing to be present in a pre-defined percentage of samples 

(typically 50%). Therefore a similar strategy as Sangster et al. (Sangster et al. 2007) was 

employed to replace the missing values by re-examining the original spectral data and 

selecting features (typically below the initial SNR threshold of 3.5) that occurred at the 

location of each missing peak. To minimise the impact of the variability of high intensity 

peaks, data normalisation and transformation was employed (Dettmer et al. 2007). Spectra 

were normalised using probabilistic quotient normalisation (PQN) where all peaks are 

individually assessed, allocated a normalisation scaling factor, and the median scaling factor 

is then used to normalise the entire spectra thus avoiding the use of highly variable peaks 

(Dieterle et al. 2006). Transformation of the data is intended to reduce the intrinsic variability 

of high intensity peaks relative to low intensity ones (Dettmer et al. 2007). Technical 

variation caused by sample preparation and detection means that the absolute intensity 

changes of highly abundant peaks are larger than those of lower abundance peaks and are 
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hence seen as more important in subsequent multivariate statistical analysis. Here we used a 

generalised-log (g-log) transformation to stabilise (i.e. “normalise”) technical variance across 

the peaks by reducing the intensity of highly abundant peaks and increasing the intensity of 

lower abundance peaks, effectively evening out technical variation across the samples and 

preventing highly abundant peaks from dominating any multivariate analysis (Parsons et al. 

2007). The g-log transformation parameter, λ, was optimised using six technical replicate 

mass spectra of one biological sample (six adults individually extracted and then pooled to 

obtain enough biological material) in order to estimate technical variance and select an 

appropriate λ value for both positive and negative ion analysis (Parsons et al. 2007). The λ 

values calculated and used in this thesis were 5.8365 × 10
-9

 for positive ion data and 7.3097 × 

10
-11

 for negative ion data. All of these data pre-processing steps result in the production of a 

final processed data matrix that can be used for statistical analysis. 

 



 - 51 - 

Table 2.3 The empirical formula, ion form (i.e. molecular ion or adduct), and exact mass of each 

internal calibrant used to calibrate the negative ion (23 peaks) SIM-stitched spectra of D. magna 

haemolymph extracts. 

 

Empirical formula Ion form Theoretical exact mass (Da) 

C3H7NO2 [M-H]
-
 88.04040 

C3H6O3 [M-H]
-
 89.02442 

CH2O2 [M+Ac]
-
 105.01933 

C2H4O2 [M+Ac]
-
 119.03498 

C5H10N2O3 [M-H]
-
 145.06187 

C6H9N3O2 [M-H]
-
 154.06220 

C9H11NO2 [M-H]
-
 164.07170 

C6H12O6 [M-H]
-
 179.05611 

C11H12N2O2 [M-H]
-
 203.08260 

C9H11NO3 [M+
35

Cl]
-
 216.04330 

C6H12O6 [M+Ac]
-
 239.07724 

C16H32O2 [M-H]
-
 255.23295 

C9H12N2O6 [M+
35

Cl]
-
 279.03894 

C10H13N5O4 [M+
35

Cl]
-
 302.06616 

C18H35NO [M+
35

Cl]
-
 316.24127 

C18H35NO [M+
37

Cl]
-
 318.23832 

C18H35NO [M+Ac]
-
 340.28572 

C22H43NO [M+
35

Cl]
-
 372.30387 

C22H43NO [M+
37

Cl]
-
 374.30092 

C22H43NO [M+Ac]
-
 396.34832 

C22H26O6 [M+
35

Cl]
-
 421.14234 

C22H26O6 [M+
37

Cl]
-
 423.13939 

C22H26O6 [M+Ac]
-
 445.18679 
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Table 2.4 The empirical formula, ion form (i.e. molecular ion or adduct), and exact mass of each 

internal calibrant used to calibrate the positive (27 peaks) and negative ion (22 peaks) SIM-stitched 

spectra of D. magna whole organism homogenate extracts. 

 

Empirical formula Ion form Theoretical exact mass (Da) 

Positive ion 

C3H7NO2 [M+H]
+
 90.05495 

C5H9NO2 [M+H]
+
 116.07060 

C5H11NO2 [M+H]
+
 118.08625 

C6H13NO2 [M+H]
+
 132.10190 

C5H10N2O3 [M+H]
+
 147.07642 

C6H14N2O2 [M+H]
+
 147.11280 

C5H9NO4 [M+H]
+
 148.06043 

C5H11NO2S [M+H]
+
 150.05833 

C6H13NO2 [M+Na]
+
 154.08384 

C6H9N3O2 [M+H]
+
 156.07675 

C9H11NO2 [M+H]
+
 166.08625 

C6H14N4O2 [M+H]
+
 175.11895 

C9H11NO3 [M+H]
+
 182.08117 

C11H12N2O2 [M+H]
+
 205.09715 

C12H24O3 [M+H]
+
 217.17982 

C12H24O3 [M+Na]
+
 239.16177 

C12H24O3 [M+
39

K]
+
 255.13570 

C18H36O2 [M+H]
+
 284.29479 

C18H36O2 [M+Na]
+
 306.27674 

C12H22O11 [M+Na]
+
 365.10543 

C22H26O6 [M+H]
+
 387.18021 

C24H38O4 [M+H]
+
 391.28429 

C22H26O6 [M+Na]
+
 409.16216 
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C24H38O4 [M+Na]
+
 413.26623 

C22H26O6 [M+
39

K]
+
 425.13609 

C24H38O4 [M+
39

K]
+
 429.24017 

C24H47NO7 [M+Na]
+
 484.32447 

Negative ion 

CH2O2 [M+
35

Cl]
-
 80.97488 

C3H7NO2 [M-H]
-
 88.04040 

C3H6O3 [M-H]
-
 89.02442 

CH2O2 [M+Ac]
-
 105.01933 

C2H4O2 [M+Ac]
-
 119.03498 

C5H10N2O3 [M-H]
-
 145.06187 

C5H9NO4 [M-H]
-
 146.04588 

C6H12O6 [M-H]
-
 179.05611 

C11H12N2O2 [M-H]
-
 203.08260 

C6H12O6 [M+Ac]
-
 239.07724 

C16H32O2 [M-H]
-
 255.23295 

C10H13N5O4 [M+
35

Cl]
-
 302.06616 

C8H20NO6P [M+Ac]
-
 316.11668 

C18H35NO [M+
35

Cl]
-
 316.24127 

C18H35NO [M+
37

Cl]
-
 318.23832 

C18H35NO [M+Ac]
-
 340.28572 

C22H43NO [M+
35

Cl]
-
 372.30387 

C22H43NO [M+
37

Cl]
-
 374.30092 

C22H43NO [M+Ac]
-
 396.34832 

C22H26O6 [M+
35

Cl]
-
 421.14234 

C22H26O6 [M+
37

Cl]
-
 423.13939 

C22H26O6 [M+Ac]
-
 445.18679 
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2.6 Putative identification of empirical formulae and metabolites 

Between zero and many potential empirical formulae (CCHHNNOOPPSS) were calculated for 

each of the experimentally detected peaks in the data matrix described above. This was 

achieved using a custom-written elemental composition calculator (Weber and Viant 

submitted) in which the number of occurrences of each element were restricted as follows: 

12
C = 0-34, 

1
H = 0-72, 

14
N = 0-15, 

16
O = 0-19, 

31
P = 0-4 and 

32
S = 0-3 (Kind and Fiehn 2007). In 

addition, since the observed peaks correspond to charged molecular ions or adducts of the 

neutral metabolites, the masses of the seven most common positive or negative ion adducts 

were effectively added to the elemental composition calculator. In practice, the calculation 

was conducted seven times for each positive ion peak (i.e. allowing for [M-e]
+
, [M+H]

+
, 

[M+Na]
+
, [M+

39
K]

+
, [M+

41
K]

+
, [M+2Na-H]

+
, [M+2

39
K-H]

+
) or seven times for each negative ion 

peak (i.e. allowing for [M+e]
-
, [M-H]

-
, [M+

35
Cl]

-
, [M+

37
Cl]

-
, [M+Na-2H]

-
, [M+

39
K-2H]

-
, [M+Ac]

-
, 

where Ac=acetate). Only those empirical formulae with an absolute mass error of <0.75 ppm 

were recorded, and then all potential formulae were filtered using four heuristic rules 

reported by Kind and Fiehn (Kind and Fiehn 2007), specifically: (1) restricted number of 

atoms per element, (2) Lewis and Senior rules, (3) H/C ratio, and (4) elemental ratio of N, O, 

P, and S versus C. Note that these rules were applied to the neutral metabolites following 

subtraction of the adduct; e.g. applied to [C5H9NO2] not to [C5H9NO2+Na]
+
. In some cases, the 

13
C isotope of CCHHNNOOPPSS was identified, allowing the approximate determination of the 

number of carbon atoms in the molecule based upon the intensity ratio of the 
12

C and 
13

C 

peaks. 
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The putative metabolite identity of each of the observed peaks was determined based upon 

accurate mass measurements, which was achieved using custom-written script (in Python 

and MySQL; by Ralf Weber, Centre for Systems Biology, University of Birmingham) and the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) database (Kanehisa et al. 2006). First the 

KEGG LIGAND database was downloaded and the exact mass of each entry was re-calculated 

based on the associated empirical formula; this served to increase the mass accuracy to 6 

decimal places. Then the exact mass of each entry (neutral compound) was modified to allow 

for the formation of all 14 adduct ions listed above. For example, the database record 

glucose (KEGG ID C00031, m/z 180.063390) was extended by different adduct masses such as 

m/z 203.052611 for [glucose+Na]
+
, m/z 215.032792 for [glucose+

35
Cl]

-
, etc. Next the m/z 

values of all the experimentally observed peaks were compared to the modified KEGG data 

and matches with an absolute mass error of <0.75 ppm. 

 

2.7 Statistical analysis 

2.7.1 Multivariate statistics 

For all multivariate statistics the metabolic data matrix used had previously been normalised 

and g-log transformed. PCA and PLS-DA were both employed in this thesis as multivariate 

classification techniques, using the PLS_Toolbox (v 4.21) in Matlab (Eigenvector Research, 

USA). PCA was used as an unbiased analysis to visually depict whether there was any 

separation between sample classes in each study. The number of PCs included in each model 

typically accounted for at least 60% of the total variance of the dataset. Scores plots were 

generated depicting two PCs plotted against each other (typically PC1 against PC2) allowing 
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rapid identification of clusters that indicate inherent similarities within the samples 

(Nicholson et al. 2002).  

PLS-DA was used to maximise separation and derive predictive models based on the original 

data (Nicholson et al. 2002). A Y matrix was constructed containing sample class information, 

consisting of one variable for each class in the model, a value of 1 if the sample belongs to a 

class, or 0 if not (Coen et al. 2008; Keun 2006). By regressing against the Y matrix, latent 

variables (LVs) can be derived that separate the classes (Keun 2006). Cross-validation was 

employed to test the stability of the model (Rubingh et al. 2006) using a method known as 

venetian blinds. Here a pre-defined number of samples (square root of the total number of 

samples) were left out when building the model and then used to generate a classification 

error rate for each sample class. To determine the robustness of the predictive models, 

random permutations of the class labels (n=1000) were used to generate a mean permuted 

classification error for comparison with the real classification error. The number of LVs used 

in the model accounted for at least 50% of the total variation, and the scores plots (typically 

LV1 against LV2) allowed visualisation of similarities and differences between samples. 

Weightings data was used as a feature selection tool, in order to elucidate those peaks that 

discriminated between sample classes (Baldovin et al. 1996). For one investigation a 

multivariate regression technique, PLS-R, was used to link changes in reproductive output to 

metabolic changes and this is detailed in Chapter 6. 
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2.7.2 Univariate Statistics 

The metabolomics data used for univariate statistical analysis were normalised but not g-log 

transformed. For each dataset either a Student’s t-test or ANOVA, depending on the number 

of sample classes in the study, were applied to determine if any peaks were changing 

significantly. Due to the large number of tests being carried out a FDR of 5% was utilised to 

correct for any false positive results (Benjamini and Hochberg 1995). Following this the fold 

changes (between control and exposed groups) of these putatively identified significant 

peaks were calculated. 
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CHAPTER THREE: 

Optimisation and validation of FT-ICR MS based 

metabolomics using whole organism homogenates of 

Daphnia magna
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approach to toxicity testing in Daphnia magna: Application of high throughput FT-ICR mass spectrometry 
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3.1 Introduction 

Currently there is a surge of interest in developing toxicogenomic techniques, including 

transcriptomics, proteomics and metabolomics, to advance the screening of individual 

chemicals, allowing more rapid and accurate categorisation into defined classes according to 

their MOA, and thereby help to prioritise chemicals for further evaluation (Benson et al. 

2007; US-EPA 2004). Furthermore, within the framework of tiered toxicity testing, 

toxicogenomic techniques may better direct the focus of resources within the higher tier 

tests (Ankley 2008).  

As discussed in Chapter 1, Daphnia magna is a keystone species in the freshwater ecosystem 

that is extensively used as a toxicity test species and recently, several toxicogenomic studies 

of this species have been reported (Connon et al. 2008; Heckmann et al. 2008; Poynton et al. 

2007; Soetaert et al. 2007a; Soetaert et al. 2007b; Watanabe et al. 2007). Although 

metabolomics is also recognised to be a powerful tool for investigating toxicity (Coen et al. 

2008; Nicholson et al. 2002; Robosky et al. 2002), including in the field of aquatic toxicology 

(Ekman et al. 2008; Viant 2007; Viant et al. 2005; Viant et al. 2006b), no metabolomics 

studies of utilising D. magna have been reported. 

This Chapter describes the application of FT-ICR MS based metabolomics for assessing toxic 

responses in D. magna. Specifically, the approach is a nESI DIMS technique that utilises the 

SIM spectral stitching method, which has been shown to detect over 3000 peaks in a liver 

extract of dab (Limanda limanda), a marine flatfish (Southam et al. 2007). FT-ICR is widely 

accepted to be one of the most powerful tools for the analysis of complex mixtures of 
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metabolites since it offers the highest mass accuracy and resolution of all mass 

spectrometers (Breitling et al. 2006; Breitling et al. 2008; Brown et al. 2005; Han et al. 2008). 

Here the effectiveness of DI FT-ICR MS metabolomics for toxicity testing in D. magna is 

evaluated. The initial aim was to optimise the daphnid biomass to extract and analyse by 

nanoelectrospray MS in order to detect a large number of metabolites with high 

reproducibility. This was optimised for both neonatal and adult D. magna since both life 

stages are used in OECD toxicity testing (OECD 1998, 2004). The second aim was to validate 

the metabolomics approach using copper as a model toxicant in an OECD 24-h acute toxicity 

test. The overall goal was to conduct the first steps in evaluating the effectiveness of high 

throughput, ultrahigh resolution mass spectrometry based metabolomics as a tool for 

screening and prioritising chemicals within tiered risk assessment. 

 

3.2 Materials and Methods 

3.2.1 Biomass optimisation study 

To determine the optimal biomass of D. magna for FT-ICR mass spectrometry, varying 

numbers of adults (1, 2 and 5 animals) and neonates (10, 20 and 50) were analysed (n=3 

replicates per group size). All animals were obtained from the D. magna culture, adults aged 

14 days, and third brood neonates < 24 h old. Animals were captured and flash frozen as 

described in Chapter 2 and samples were stored at -80°C prior to metabolite extraction. The 

aim was to determine what biomass of D. magna was required to generate high quality mass 

spectra with a large number of peaks and low technical variation (i.e., high reproducibility) 

across the three replicate analyses of each biological sample. 
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3.2.2 Copper toxicity testing 

To determine the appropriate copper concentrations for the acute toxicity study, an initial 

range-finding experiment was performed. Groups of 30 neonates (<24 h old) in 250 mL of 

clean media were exposed to increasing concentrations of CuSO4·5H20 (calculated as Cu
2+

 

ions) for 24 h. Nominal concentrations of 0, 5, 10, 25, 50, 75 and 100 μgL
-1

 were used (n=5 

test beakers per concentration). No food or supplements were provided during this exposure 

and any mortality after 24 h was recorded.  

Subsequently, a more extensive acute copper exposure study was undertaken. Groups of 30 

neonates (<24 h old) in 250 mL of clean media were exposed to nominal copper 

concentrations of 0, 5, 10, 25 and 50 μgL
-1

 for 24 h (n=6 per concentration). During the 

method optimisation studies it was discovered that the number of animals analysed by FT-

ICR per exposure beaker must be kept constant (refer to Section 3.3.1). Since dead animals 

were not retained on the mesh gauze during filtering and therefore were not analysed, it was 

necessary to set up an additional exposure beaker for the highest concentration group (50 

μgL
-1

) to guarantee that at final sampling each of the six replicates comprised of 30 live 

neonates. Animals were captured and stored as described in Chapter 2. 

 

3.2.3 Metabolite extraction and FT-ICR mass spectrometry 

Metabolites were extracted from whole D. magna using the two-step 

methanol:water:chloroform protocol as detailed in Chapter 2. The dried polar extracts were 

resuspended in 30 μl of 80:20 methanol:water with the addition of either 0.25% formic acid 

for positive ion analysis or 20mM ammonium acetate for negative ion MS analysis. All 
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biological samples and extract blanks were analysed in triplicate in each ionisation mode by 

DI FT-ICR MS, utilising the SIM-stitching method, as described in Section 2.4. 

 

3.2.4 Data processing and peak identification 

The positive and negative ion MS data were treated as two separate datasets. As described in 

Section 2.5, data was processed, missing values filled in and then normalised and the g-log 

parameter applied. For the two stage filtering algorithm, the sample filter parameters 

consisted of peaks being retained if they occurred in 50% of all spectra using a 2 ppm spread 

along the m/z axis; i.e., the sample filter was applied across the entire dataset in an unbiased 

manner. Peaks that occurred in the extract blank were retained only if they were at least 

twice as intense in biological samples. Putative identification of peaks was as detailed in 

Section 2.6 

 

3.2.5 Statistical analysis 

Unsupervised multivariate analyses (PCA) were used to assess the metabolic similarities and 

differences between samples, and supervised analyses (PLS-DA) with cross validation (in a 

leave-5-out approach) were used to identify those peaks that tended to discriminate groups. 

To determine if any peaks were changing significantly, univariate analyses were employed 

(ANOVA across the 5 dose groups) with FDR <0.05. 
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3.3 Results and Discussion 

3.3.1 Biomass optimisation study 

The initial aim was to determine what biomass of D. magna was required to generate high 

quality mass spectra with a large number of peaks and low technical variation (i.e., high 

reproducibility) across the three replicate analyses of each biological sample. The dry mass of 

a single neonate (7.46 ± 0.27 µg) and adult D. magna (301 ± 18 µg) were determined. The 

group sizes of 10, 20 and 50 neonates and 1, 2 and 5 adults therefore corresponded to dry 

masses of 74.6, 149, 373, 301, 602 and 1505 μg, respectively. An FT-ICR analysis (in positive 

ion mode only) of these 6 group sizes, with n=3 replicate samples per group size was 

conducted. The mass spectra were processed using a 2 out of 3 replicate filter (for the 3 

technical replicates per biological sample) followed by a sample filter that retained only 

those peaks that occurred in at least 66% of the samples (for each group size independently) 

generating a single peak list for each group. Representative FT-ICR mass spectra of the polar 

extracts from whole D. magna neonates, in positive and negative ion modes, are shown in 

Figure 3.1a and b respectively.  
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Figure 3.1 Representative FT-ICR mass spectra of whole-organism extracts of the water flea, D. 

magna (30 neonates, <24 h old): (a) SIM-stitched positive ion spectrum, in centroid mode, between 

m/z 70 and 500, and (b) corresponding negative ion spectrum of the same sample. These spectra 

were normalized to the largest peak (corresponding to 100% intensity). The insets show the mass 

range between m/z 465 and 470 using a 400-fold zoom on the intensity axis. 
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A software tool was developed (by Olga Hrydziuszko, Centre for Systems Biology, University 

of Birmingham) to visualise which peaks were common (or not) across the extract blank and 

multiple biological mass spectra using the peak lists generated from the sample filter (Figure 

3.2a). The peaks in the extract blank likely include contaminants from the air and compounds 

such as plasticisers that may leach from the plastic sample preparation tubes.  

From Figure 3.2a it is evident that the majority of peaks occurring in the extract blank 

spectrum were suppressed as soon as biological metabolites from the daphnid extracts were 

present and able to compete for charge during nanoelectrospray ionisation. This is a clear 

demonstration of the finite dynamic range of the mass spectrometric detector.  

Further examination of Figure 3.2a shows that as the biomass increased, up to a maximum of 

5 pooled adults in a single extract, additional unique peaks were detected but at the expense 

of losing some peaks detected in the lower mass groups. To summarise this more clearly, 

Figure 3.2b shows the total peak count for each group size (with all extract blank peaks 

removed), as well as a measure of spectral reproducibility.  
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Figure 3.2 Summary of peaks detected in positive ion FT-ICR mass spectra of D. magna extracts in the 

biomass optimisation study. (a) Graphical depiction of the occurrence of each of the >6000 unique 

peaks that were detected by the FT-ICR analyses, i.e., whether the peaks occurred in the extract blank 

only (peaks 0 to ca. 2000 on the x-axis), in the extract blank and biological samples, or in the 

biological samples only. The shading is used to highlight which peaks are common to which samples. 

Peaks depicted in this figure are those which were present after a sample filter of 66%. (b) Total 

number of peaks detected in the six group sizes (with all blank peaks removed as described in main 

text). The secondary y-axis summarises the technical variability associated with each of the group 

sizes, specifically the mean ± standard deviation, across the 3 biological replicates per group, of the 

median spectral RSD values (the calculation of RSD values is described in main text). 
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The reproducibility was determined by first calculating the relative standard deviations 

(RSDs) of the intensities of all the peaks that appeared in 3 out of 3 technical replicates per 

sample. The median RSD value was then used to represent the reproducibility for that mass 

spectrum, a parameter recently proposed as a valuable benchmark in metabolomics (Parsons 

et al. 2009). Figure 3.2b shows the mean of the 3 median RSD values (one RSD value per 

biological replicate). Considering the total peak counts, group sizes of 10 and 20 pooled 

neonates resulted in an apparent reduction in the number of peaks detected, whereas 50 

neonates and 1, 2 or 5 adults yielded greater and more consistent numbers of peaks. The 

spectral reproducibility appeared largely independent of biomass analysed, with a single 10-

neonate sample and 2-adult sample having unusually poor reproducibility, generating large 

error bars. 

The biomass optimisation data was further analysed using PCA to visualise any metabolic 

differences between the 10, 20 and 50 neonate and 1, 2 and 5 adult group sizes. The scores 

plot (Figure 3.3) highlights three significant points. First, the three biological replicates per 

group size are relatively well clustered, as would be anticipated, providing a degree of 

validation to the FT-ICR metabolomics data acquisition and processing strategies. Second, 

there is separation of the neonatal and adult D. magna along the PC1-PC3 axis (t-test on PC1-

PC3 scores, p=5.95×10
-9

), which is not surprising given the difference in developmental 

stages. This separation could also be affected by the gut contents of the adult daphnids at 

the time of sampling, whereas the neonates were not exposed to food prior to sampling. 

Third, and most importantly, the separation along PC1 (which accounts for 41% of the 

variance in the dataset) correlates well with the mass of D. magna that was extracted and 



 - 68 - 

analysed. For example, 10 neonates (74.6 μg) have the largest PC1 score, the approximately 

equivalent masses of 50 neonates (373 μg) and 1 adult (301 μg) both have a PC1 score close 

to zero, and 5 adults (1505 μg) have the most negative PC1 score. The separation along PC1 is 

a highly statistically significant (ANOVA, p=1.66×10
-11

, followed by a Tukey-Kramer post-hoc 

test that revealed significant differences between all combinations of the six group sizes 

except between 1 adult and 50 neonates, and between 10 and 20 neonates). This clearly 

illustrates that varying the biomass induces a noticeable change in the FT-ICR metabolic 

profile, as suggested by Figure 3.2a, and highlights the critical need to standardise the 

biomass per sample within a metabolomics study. 

 

 

 

 
 

Figure 3.3 PCA scores plot from analysis of the positive ion FT-ICR mass spectra from the D. magna 

biomass optimisation study. Polar extracts from varying numbers of animals were analysed, each in 

triplicate: 10 neonates (∇), 20 neonates (□), 50 neonates (○), 1 adult (▼), 2 adults (■), and 5 adults 

(●). 
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Considering all these results it was concluded that a D. magna sample of dry mass ca. 300 μg 

can be extracted and analysed in triplicate, yielding high quality spectra with a large number 

of peaks and low technical variation.  

However, a practical requirement for high throughput toxicity testing is to minimise the 

number of animals per exposure group, in order to minimise the culture volumes and total 

number of daphnids required. Therefore all subsequent studies using D. magna neonates 

were conducted using 30 animals per sample and those studies using D. magna adults were 

conducted using a single individual per sample. 

 

3.3.2 Acute copper range-finding study 

An acute 24-h toxicity test of D. magna neonates (<24 h old) to increasing concentrations of 

copper was conducted in order to select appropriate exposure concentrations for the 

subsequent metabolomics study. The onset of mortality occurred at 50 μgL
-1

 enabling an LC50 

of between 50 and 75 µgL
-1

 to be determined (Figure 3.4). In order to minimise lethality, 50 

μgL
-1

 was selected as the highest dose for the metabolomics study. 
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Figure 3.4 Dose-mortality relationship determined from an acute exposure of <24-h old D. magna 

neonates to waterborne copper. Data shows nominal metal concentrations. 
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3.3.3 Acute copper toxicity metabolomics study 

Based upon the range-finding study, doses of 0, 5, 10, 25 and 50 µgL
-1

 were selected (n = 6 

beakers, each containing 30 neonates, per dose). Additionally, since it was demonstrated in 

Section 3.3.1 that samples analysed by FT-ICR should have a similar biomass, an additional 

exposure beaker was added for the highest dose group so that there were sufficient animals 

for 30 live D. magna per sample. After 24 h, 7% mortality was observed at 50 µgL
-1

 (the dead 

animals were discarded, replaced with similarly-exposed live ones, and samples rapidly 

frozen) while no mortality was observed at 25 µgL
-1

 or below. FT-ICR analysis was conducted 

on all 30 samples, in positive and negative ion modes, and the spectra were processed as 

described. The total number of peaks comprised 1848 for positive ion and 3599 for negative 

ion mode (Table 3.1), giving a total of 5447 peaks.  

 

 

 Table 3.1 Summary of the total number of peaks in positive and negative ion datasets of D. magna 

neonate extracts, and the number of those peaks that could be assigned empirical formulae and 

putative metabolite identities. 

 
 a
 Following removal of assignments in which the match was a non-endogenous metabolite such as a 

drug, plasticiser or pesticide. 

Number of peaks Negative ion Positive ion Total 

Total (after replicate & sample filters) 3599 1848 5447 

Assigned to ≥1 empirical formulae 3290 1478 4768 

Assigned to unique empirical formula 231 675 906 

Assigned to ≥1 KEGG LIGAND ID 
a
 734 283 1017 
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PCA was then used to visualise any metabolic differences between the FT-ICR metabolic 

profiles of control and exposed animals. The PC scores plots for negative (Figure 3.5a) and 

positive (Figure 3.5b) ion data were consistent, both showing the 0, 5 and 10 µgL
-1

 exposed 

D. magna tending to cluster together, while the 25 and 50 µgL
-1

 groups occurred at higher PC 

scores. One sample did not fit this trend (sample 24, 5 µgL
-1

 group), which was evident in 

both the positive and negative ion analyses. The overall differences between the metabolic 

profiles were confirmed to be significant via ANOVAs of the PC scores. Specifically, significant 

separation of exposure groups occurred along PC1 (p=8.94×10
-3

) and PC1+PC2 (p=7.76×10
-6

) 

for the negative ion data (Figure 3.5a), and along PC2 (p=3.08×10
-2

) and PC2+PC3 (p=9.06×10
-

4
) for the positive ion data (Figure 3.5b). Subsequent post-hoc tests (Tukey-Kramer) 

performed on both the negative (PC1+PC2) and positive (PC2+PC3) ion data identified that 

there was a significant difference between the 0, 5 and 10 µgL
-1

 doses compared to the 25 

and 50 µgL
-1

 doses, but no significant differences within these two groupings. 
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Figure 3.5 PCA scores plots from analysis of (a) negative ion, and (b) positive ion FT-ICR mass spectra 

of whole organism extracts of D. magna neonates that were exposed to a series of copper 

concentrations: 0 (▼), 5 (●), 10 (■), 25 (○) and 50 (□) µgL
-1

. Both scores plots show a dose-dependent 

metabolic response to copper along the diagonal axis, from the bottom left to top right. Sample 24 

consistently appears as an outlier in both datasets. 
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The next step was to discover which peaks were responsible for the separation in 

multivariate space. Therefore, based upon the results of the post-hoc tests, the treatments 

were reclassified: the 0, 5 and 10 µgL
-1

 treatments termed as “no effect” and the 25 and 50 

µgL
-1

 treatments termed as “effect”, then conducted PLS-DA on this 2-class dataset (n=18 

and 12 in “no effect” and “effect” classes, respectively). This strategy was used since the 

existing 5-class dataset, with n=6 per class, would be highly susceptible to over-fitting in a 

supervised analysis. Even with sample sizes of n=18 and 12 there is the potential for over-

fitting. As expected, the separation of the “no effect” and “effect” classes in the PLS scores 

plots (Figure 3.6) improved upon the PCA results, though this alone provides relatively little 

new information (Westerhuis et al. 2008). However, the PLS models were internally cross-

validated, achieving classification error rates of 6.94% and 2.78% for positive and negative 

ion data, respectively. Furthermore, when the class labels were randomly permuted the 

classification error rates increased to between 40 and 65%, giving us still greater confidence 

in the real PLS models. Note that the aim was not so much to build predictive models of 

copper toxicity, but rather to use PLS as a feature selection tool to find those peaks that 

distinguished the “no effect” and “effect” classes (Baldovin et al. 1996).  
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Figure 3.6 PLS-DA scores plots from analysis of (a) negative ion, and (b) positive ion FT-ICR mass 

spectra of whole organism extracts of D. magna neonates that were exposed to a series of copper 

concentrations. Based upon statistically significant findings from unsupervised PCA of the same data, 

the 5 concentration groups were re-categorised as either “no effect” (▼; 0, 5 and 10 µgL
-1

) or “effect” 

(∇; 25 and 50 µgL
-1

). Both scores plots show a dose-dependent metabolic response to copper along 

the LV1+LV2 diagonal axis, and the cross-validated PLS models yielded classification error rates of 

6.94% and 2.78% for positive and negative ion data, respectively. Sample 24 consistently appears as 

an outlier in both datasets. 
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Next the absolute values of the LV1 weightings were ranked for both the positive ion and 

negative ion analyses. In addition, to check that these top weighted peaks did in fact change 

intensity in response to copper toxicity, all 1848 peaks in the positive ion dataset and 3599 

peaks in the negative ion data were examined using univariate statistics. Ten of the top 12 

LV1 weightings from the positive ion dataset corresponded to peaks that changed 

significantly with copper exposure. Similarly, for the negative ion data, 10 of the top 16 LV1 

weightings were significant. The top weighted peaks that were also significant (with 

FDR<0.05) are listed in Table 3.2, for positive and negative ion data, along with their 

associated p-value and fold-change between the control (0 µgL
-1

) and highest dose (50 µgL
-1

) 

groups. To justify the use of these supervised analyses in this study, even when some 

separation of classes was evident in the unsupervised PCA, we compared the peaks with the 

top LV weightings with those with the top PC loadings (from the PLS-DA and PCA models 

described above, respectively). Table 3.3 shows that the two approaches found similar peaks 

for the negative ion data, but that this was not the case for the positive ion data for which 

the PLS-DA found many more highly ranked significant peaks. 
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Table 3.2 Summary of the top weighted peaks following PLS-DA for both positive and negative ion analyses of D. magna neonate extracts 

exposed to copper. 

 

 

Observed 

peak (m/z) 

p-value
 a

 

 

Fold 

change
 b

 

No. of C 

atoms 

Potential 

empirical 

formulae 

Absolute 

mass 

error 

(ppm) 

Ion form 

Putative 

metabolite 

identification 

Positive ion 

398.37427 1.41×10
-5

 6.843 27.0±5.1 C23H47N3O2 0.418 [M+H]
+
 M1 (

12
C) 

399.37761 3.45×10
-5

 6.640 27.0±5.1 C23H47N3O2 0.106 [M+H]
+
 M1 (

13
C) 

275.06259 5.66×10
-6

 0.236 - C10H17N2OP3 0.230 [M+H]
+
 ? 

    C5H14N8OS 0.671 [M+
41

K]
+
  

    C10H10N6O 0.674 [M+2Na-H]
+
  

182.08119 2.86×10
-7

 0.393 9.3±0.5 C9H11NO3 0.108 [M+H]
+
 tyrosine (

12
C) 

463.35321 1.33×10
-3

 0.573 25.7±3.0 C23H50N3O4P 0.294 [M-e]
+
 M2 (

12
C) 

    C27H46N2O4 0.379 [M+H]
+
  

188.17572 1.72×10
-5

 2.948 - C9H21N3O 0.098 [M+H]
+
 

N-acetyl-

spermidine 

183.08454 4.29×10
-7

 0.412 - C9H11NO3 0.160 [M+H]
+
 tyrosine (

13
C) 
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293.07333 1.03×10
-5

 0.235 - C10H19N2O2P3 0.381 [M+H]
+
 ? 

    C11H13N6PS 0.169 [M+H]
+
  

    C5H15N6O5P 0.165 [M+Na]
+
  

    C12H20N2P2 0.012 [M+
39

K]
+
  

    C10H12N6O2 0.035 [M+2Na-H]
+
  

447.35868 2.82×10
-3

 0.598 24.2±3.2 C23H50N3O3P 0.556 [M-e]
+
 M3 (

12
C) 

    C24H49N4P 0.280 [M+Na]
+
  

182.07968 6.73×10
-5

 0.425 - no matches - - ? 

Negative ion 

245.08530 1.90×10
-9

 0.079  C9H17N3OP2 0.259 [M+e]
-
 ? 

    C11H18O4S 0.023 [M-H]
-
  

    C9H14O2S 0.023 [M+Ac]
-
  

479.17125 5.97×10
-4

 0.089 29.4±17.3 
31 possibilities

 

c
 

- - ? 

238.10012 3.27×10
-6

 0.143 10.7±0.7 no matches - - M4 (
13

C) 

237.09675 4.06×10
-6

 0.139 10.7±0.7 no matches - - M4 (
12

C) 

237.10765 3.75×10
-6

 0.136 - C7H17N4O3P 0.538 [M+e]
-
 M5 (

13
C) 

237.10520 3.44×10
-6

 0.140 16.4±11.8 C9H21NO2P2 0.437 [M+e]
-
 ? 

    C10H15N5S 0.698 [M+e]
-
  

    C14H18O 0.141 [M+
35

Cl]
-
  

    C15H20 0.394 [M+
39

K-2H]
-
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441.14374 1.12×10
-4

 0.130 - 
30 possibilities

 

c
 

- - ? 

309.03351 5.10×10
-4

 0.145 - 7 possibilities
 c
 - - ? 

293.05961 1.22×10
-3

 0.146 - C11H21NP2S2 0.026 [M+e]
-
 ? 

    C19H7N3O 0.510 [M+e]
-
  

    C15H11N4OP 0.555 [M-H]
-
  

    C9H8N10 0.620 [M+
37

Cl]
-
  

    C9H21O5PS 0.704 [M+Na-2H]
-
  

236.10430 6.09×10
-6

 0.161 - C7H17N4O3P 0.329 [M+e]
-
 M5 (

12
C) 

a 
Determined from ANOVA of peak intensities across all 5 dose groups (0, 5, 10, 25 and 50 µgL

-1
 copper). 

b 
Fold change between the control (0 µgL

-1
) to highest dose (50 µgL

-1
) groups. 

c 
Not listed explicitly because of limited space. 
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Table 3.3 Comparison of the PLS weightings and the PCA loadings from the multivariate analyses of 

the copper toxicity study, including the univariate ANOVA results. (a) Negative ion data, showing that 

the peaks associated with the top PLS and PCA loadings are similar (i.e. they have similar ranking and 

also a similar number of peaks that are significant based upon univariate statistical tests with FDR 

correction). (b) Positive ion data, showing that the peaks associated with the top PLS and PCA 

loadings are quite different, with most of the peaks in the top PLS weightings being significant and 

most of the peaks in the top PCA loadings being non–significant. Shading denotes those peaks that 

were significantly different across the 5 dose groups, determined from ANOVA of peak intensities 

following FDR correction at <0.05. 

 

(a) Negative ion data 

 

 

p value 
LV1 weightings 

from PLS-DA 
 

PC1+PC2 loadings 

from PCA 
p value  

0.0000 245.08530  387.01969 0.2574 

0.0006 479.17125  306.07654 0.1132 

0.1325 371.17447  371.17447 0.1325 

0.0063 426.18041  245.08530 0.0000 

0.0293 471.21002  426.18041 0.0063 

0.0000 238.10012  479.17125 0.0006 

0.0000 237.09675  367.20618 0.3602 

0.0000 237.10765  441.14374 0.0001 

0.0000 237.10520  238.10012 0.0000 

0.2574 387.01969  237.09675 0.0000 

0.0105 333.07832  237.10520 0.0000 

0.1132 306.07654  237.10765 0.0000 

0.0001 441.14374  328.05862 0.1392 

0.0005 309.03351  409.13340 0.0060 

0.0012 293.05961  355.2425 0.3229 

0.0000 236.10430  236.10430 0.0000 
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0.0000 236.10037  236.10037 0.0000 

0.0000 235.10091  353.22679 0.3651 

0.0130 415.08111  235.10091 0.0000 

0.0070 431.19424  411.27537 0.4845 

 

(b) Positive ion data 

 

 

p value 
LV1 weightings 

from PLS-DA 
 

PC2+PC3 loadings 

from PCA 
p value 

0.0000 398.37427  398.37427 0.0000 

0.0270 160.18087  424.27344 0.2899 

0.0040 281.07949  160.18087 0.0270 

0.0000 399.37761  177.13463 0.6523 

0.0000 275.06259  456.26349 0.1399 

0.0000 182.08119  319.25921 0.0379 

0.0013 463.35321  399.37761 0.0000 

0.0000 188.17572  470.31513 0.2435 

0.0000 183.08454  182.08119 0.0000 

0.0000 293.07333  425.27693 0.2800 

0.0028 447.35868  281.07949 0.0040 

0.0001 182.07968  412.23729 0.2540 

0.0010 464.35647  421.33996 0.8899 

0.0324 490.27992  329.18200 0.0000 

0.0001 343.04971  183.08454 0.0000 

0.0009 307.08869  421.33250 0.6533 

0.4345 366.22711  422.34338 0.8603 

0.0075 88.07569  487.32685 0.0918 

0.0011 463.22226  441.30886 0.9582 

0.9139 322.23670  209.97431 0.2254 
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3.3.4 Identification of empirical formulae and metabolites 

One of the greatest challenges in metabolomics is the annotation of the thousands of peaks 

detected, in particular for non-mammalian species for which novel metabolites may occur 

(Ankley 2008). Here employed two strategies were employed: first, the assignment of 

empirical formulae to the peaks using an elemental composition calculator with appropriate 

constraints. The number of matches per peak ranged from zero to many potential formulae, 

summarised in Table 3.1. The second strategy utilised the high mass accuracy of the FT-ICR 

measurements to match the observed m/z values of the peaks to putative metabolite 

identities in a modified KEGG LIGAND database, as described in Section 2.6. Note that none 

of the metabolite assignments reported in this study can be regarded as unambiguous since 

they depend only on accurate mass and therefore do not fulfil the Metabolomics Standards 

Initiative criteria for metabolite identification (Sumner et al. 2007). Table 3.1 summarises the 

number of metabolites that have been putatively identified in D. magna extracts, and all 

1017 of these assignments are listed on the Supplementary Information CD (Tables SI1 and 

SI2). 

The same two strategies were employed to identify the top weighted peaks from the PLS 

models, listed in Table 3.2. In addition, in cases where carbon isotope patterns were 

detected, the 
12

C/
13

C ratio was used to calculate the approximate number of carbon atoms in 

the metabolite. Seventeen of the top 20 significant peaks could be assigned one or more 

empirical formulae. The 3 remaining “no matches” likely arise due to the presence of 

isotopes (not included in our elemental composition calculator) or alternative adducts (not 

included in our algorithm). Putatively identified metabolites included tyrosine (
12

C and 
13

C 
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isotopes) and N-acetylspermidine, and a further five unidentified metabolites with 
12

C and 

13
C peaks were detected, labelled M1-M5 (note that for two of these metabolites the 

13
C 

isotopes were outside of the top weighted peaks). What is particularly reassuring is the 

consistency between the isotope pairs; e.g., the 
12

C and 
13

C isotopes of tyrosine show 0.393- 

and 0.412-fold changes following copper exposure, with associated p-values of 3×10
-7

 and 

4×10
-7

. Furthermore the number of carbon atoms derived from the 
12

C/
13

C intensity ratio is 

9.3 ± 0.5, consistent with the actual empirical formula of C9H11NO3. 

Having putatively identified tyrosine as undergoing a highly significant decrease in 

concentration in response to copper toxicity, attention was then focussed on the other 

amino acids. Table 3.4 lists those amino acids that also changed concentration significantly 

following copper exposure (with FDR<0.05). Again, the fold-changes and associated p-values 

for the multiple observations of each metabolite are consistent; e.g., arginine is detected as 

four positively charged and four negatively charged ions, arising from various combinations 

of adducts and 
13

C isotopes, with fold changes between 0.367 to 0.697 and with 7 of the 8 p-

values statistically significant. The consistency across the positive and negative ion data is 

particularly reassuring since these datasets were acquired independently, i.e., the final stages 

of sample preparation, FT-ICR data collection and all stages of spectral processing including 

the two-stage peak filtering, normalisation and glog transformation were conducted 

separately for positive and negative ion data. What is also noteworthy is that the mean of the 

absolute mass error for the 57 peaks in Table 3.4 is only 0.10 ppm, and the maximum error is 

0.40 ppm, which is consistent with earlier studies on liver extracts (rms error of 0.18 ppm, 

and maximum error of 0.48 ppm; (Southam et al. 2007). The results presented here clearly 
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show a significant decrease in the concentrations of several amino acids. In addition a search 

was made for the classic biomarker of heavy metal induced oxidative stress, glutathione 

(Gaetke and Chow 2003; Stohs and Bagchi 1995), as well as a recently reported analogue of 

this tri-peptide called ophthalmic acid, which is an alternative marker of oxidative stress 

(Soga et al. 2006). Peaks corresponding to their empirical formulae were detected, with GSH 

showing a large but non-significant >10-fold depletion after 50 μgL
-1

 copper exposure, and 

opthalmic acid showing a statistically significant 1.5-fold depletion in the high dose group 

versus controls. 
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Table 3.4 Summary of significantly changing amino acids as well as key metabolic indicators of 

oxidative stress in D. magna neonates following exposure to copper. 

 

Empirical 

formula 

Putative 

metabolite 

identification 

Ion form 

Absolute 

mass error 

(ppm) 

Fold 

change
 a

 
p-value 

b
 

Amino acids      

C4H9NO3 Threonine [M+H]
+
 0.007 0.629 7.51×10

-5
(*) 

C5H9NO2 Proline [M+H]
+
 0.047 0.759 5.21×10

-5
(*) 

  [M-H]
-
 0.114 0.689 9.51×10

-2
(*) 

C5H9NO4 Glutamic acid [M+H]
+
 0.042 0.787 8.51×10

-2
 

  [M+Na]
+
 0.050 0.775 1.97×10

-1
 

  [M+
39

K]
+
 0.090 0.611 1.56×10

-2
 

  [M-H]
-
 0.012 0.646 8.19×10

-3
 

  [M(
13

C)-H]
-
 0.352 0.841 3.61×10

-2
 

  [M+
35

Cl]
-
 0.056 0.544 1.04×10

-3
 (*) 

C5H11NO2S Methionine [M+H]
+
 0.043 0.570 1.76×10

-4
 (*) 

  [M+Na]
+
 0.006 0.694 1.49×10

-1
 

  [M-H]
-
 0.030 0.497 5.84×10

-5
(*) 

C6H9N3O2 Histidine [M+H]
+
 0.240 0.801 1.58×10

-1
 

  [M+Na]
+
 0.184 0.807 8.44×10

-2
 

  [M+
39

K]
+
 0.131 0.636 1.23×10

-1
 

  [M-H]
-
 0.068 0.584 4.55×10

-3
 (*) 

  [M+
35

Cl]
-
 0.045 0.288 1.74×10

-4
 (*) 

C6H13NO2 Leucine/Isoleucine [M+H]
+
 0.036 0.673 2.11×10

-3
 (*) 

  [M+Na]
+
 0.061 0.806 1.69×10

-1
 

  [M+
39

K]
+
 0.014 0.634 5.28×10

-3
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C6H14N2O2 Lysine [M+H]
+
 0.110 0.588 7.76×10

-4
 (*) 

  [M(
13

C)+H]
+
 0.228 0.666 1.76×10

-2
 

  [M+Na]
+
 0.009 0.671 2.17×10

-1
 

  [M+
39

K]
+
 0.072 0.645 7.07×10

-2
 

  [M-H]
-
 0.012 0.586 5.00×10

-3
 

  [M+
35

Cl]
-
 0.109 0.336 1.95×10

-3
 (*) 

  [M+Ac]
-
 0.092 0.717 8.13×10

-3
 

C6H14N4O2 Arginine [M+H]
+
 0.104 0.591 9.28×10

-6
(*) 

  [M(
13

C)+H]
+
 0.010 0.575 3.70×10

-6
(*) 

  [M+Na]
+
 0.271 0.697 7.98×10

-3
 

  [M+
39

K]
+
 0.398 0.478 1.16×10

-3
 (*) 

  [M-H]
-
 0.002 0.578 6.20×10

-5
(*) 

  [M+
35

Cl]
-
 0.106 0.385 5.80×10

-4
 (*) 

  [M(
13

C)+
 35

Cl]
-
 0.053 0.390 2.66×10

-8
(*) 

  [M+
37

Cl]
-
 0.058 0.367 5.33×10

-4
 (*) 

C9H11NO2 Phenylalanine [M+H]
+
 0.092 0.502 4.73×10

-4
 (*) 

  [M(
13

C)+H]
+
 0.208 0.531 1.55×10

-3
 (*) 

  [M+Na]
+
 0.103 0.497 9.44×10

-4
 (*) 

  [M+K]
+
 0.061 0.445 5.10×10

-5
(*) 

  [M-H]
 -
 0.045 0.445 2.06×10

-4
 (*) 

  [M+
35

Cl]
 -
 0.003 0.431 1.49×10

-2
 

C9H11NO3 Tyrosine [M+H]
 +

 0.114 0.393 2.86×10
-7

(*) 

  [M(
13

C)+H]
+
 0.160 0.412 4.29×10

-7
(*) 

  [M+Na]
 +

 0.275 0.570 4.90×10
-2

 

  [M+K]
 +

 0.309 0.558 8.34×10
-3

 

  [M-H]
 -
 0.016 0.348 6.85×10

-5
(*) 

  [M(
13

C)-H]
 -
 0.040 0.369 1.10×10

-5
(*) 

  [M+Ac]
 -
 0.014 0.350 1.68×10

-4
 (*) 
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C11H12N2O2 Tryptophan [M+H]
 +

 0.018 0.521 1.08×10
-5

(*) 

  [M(
13

C)+H]
+
 0.212 0.538 2.63×10

-5
(*) 

  [M+Na]
 +

 0.139 0.584 1.61×10
-3

 (*) 

  [M-H]
-
 0.041 0.410 2.24×10

-6
(*) 

  [M(
13

C)-H]
 -
 0.302 0.668 2.99×10

-3
 (*) 

  [M+Ac]
 -
 0.034 0.590 6.87×10

-4
(*) 

Biomarkers of oxidative stress     

C10H17N3O6S Glutathione [M-H]
 -
 0.029 0.079 1.13×10

-1
 

C11H19N3O6 Opthalmic acid [M-H]
-
 0.141 0.652 9.26×10

-3
 

  [M+H]
+
 0.384 0.701 2.86×10

-5
(*) 

a 
Fold change between the control (0 µgL

-1
) to highest dose (50 µgL

-1
) groups. 

b 
Determined from ANOVA of peak intensities across all 5 dose groups (0, 5, 10, 25 and 50 µgL

-1
 

copper). 

(*) Significant following FDR correction at <0.05 
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3.3.5 Biochemical interpretation 

Copper is an essential trace element for D. magna, at low levels it is likely to be utilised for 

normal biochemical processes, with toxicity occurring only at higher concentrations. 

Although normally bound to proteins, copper may be released and become free to catalyse 

the formation of highly reactive hydroxyl radicals and initiate oxidative damage or interfere 

with important cellular events (Bopp et al. 2008; Gaetke and Chow 2003; Linder and Hazegh-

Azam 1996). Copper induced cellular toxicity is thought to be caused by the participation of 

copper ions in the formation of reactive oxygen species (ROS) (Gaetke and Chow 2003; Stohs 

and Bagchi 1995). The protective effect of GSH has been attributed to its ability to stabilise 

copper in its Cu
2+

 oxidised state, preventing redox cycling and the generation of free radicals 

(Stohs and Bagchi 1995). This is consistent with our observed >10-fold decrease in GSH 

concentration at the highest exposure dose, an effect that has also been observed in a 

copper toxicity study on rats (Gaetke and Chow 2003). Consequently, this could explain the 

observed significant reduction in the GSH analogue, ophthalmic acid, as it is speculated to act 

in the role of GSH for some cellular functions following the depletion of GSH due to oxidative 

stress (Soga et al. 2006). In addition to ROS depleting antioxidants such as GSH, they will also 

oxidise amino acids. The amino acids listed in Table 2, that significantly decreased 

concentration at the highest copper dose, are among those listed as most susceptible to 

oxidation (Berlett and Stadtman 1997). A further reason for the observed decrease in amino 

acids is likely because of a general depletion of the amino acid pool in response to induction 

of defence and repair mechanisms, such as the synthesis of stress proteins and DNA repair 

enzymes (Knops et al. 2001; Smolders et al. 2005). A previously reported metabolomics study 
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using earthworms (Lumbricus rubellus) exposed to copper determined a decrease (at 10 and 

40mgKg
-1

 of copper) in several of the amino acids that were found to decrease in this 

investigation, including leucine/isoleucine, phenylalanine, tyrosine and tryptophan (Bundy et 

al. 2008). Bundy et al. (Bundy et al. 2008) also determined changes to the levels of several 

nucleosides following exposure, including a decrease in adenosine and uridine at 

concentrations of 10mgKg
-1

, putative identifications of these metabolites (in various ion 

forms) in our investigation has also found fold changes of ca. 0.4-0.6 in both of these 

metabolites. Though generally these are not significant, the deprotonated form of uridine 

was determined to be a significant fold change and these findings indicate that copper 

exposure may cause a metabolic perubation to the nucleuotide sugar metabolism pathway. 

The significant increase in N-acetylspermidine in response to copper exposure was 

unexpected and this observation has not previously been reported. However, a viable 

rationalisation of this discovery can be proposed. Polyamines, including spermidine, are small 

abundant molecules found ubiquitously in all living organisms (Coffino and Poznanski 1991). 

In mammalian cells they are thought to have several roles in cell growth and differentiation, 

and the intracellular concentrations of these polycations are highly regulated (Casero and 

Pegg 1993). Spermidine/spermine N-acetyltransferase (SSAT) is the rate limiting enzyme in 

the degradation of intracellular polyamines, forming N-acetylspermidine/spermine (Casero 

and Pegg 1993). This enzyme’s activity is known to increase in response to numerous toxic 

stimuli, including radical-producing agents such as paraquat (Casero and Pegg 1993). 

Furthermore, mouse liver cells exposed to free radical inducing lipopolysaccharides exhibited 

an increase in N-acetylspermidine, presumably as a result of increased SSAT activity 
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(Sugimoto et al. 1991). We hypothesise that the known induction of ROS due to copper 

exposure also increases the activity of SSAT in D. magna, resulting in the observed increase in 

N-acetylspermidine.  

 

The biochemical interpretation of particular aspects of our metabolomics data has identified 

metabolic changes that are consistent with previously known responses of organisms to 

copper exposure; note that a comprehensive biochemical analysis of this data was not the 

primary aim of the study. However, the ability to determine these metabolic changes has 

huge potential in the future of ecotoxicogenomics research, especially as sequencing of the 

genome of D. magna is now underway (Colbourne et al. 2005). This interpretation provides 

some validation for the first application of the SIM-stitching FT-ICR method in a 

metabolomics study. Furthermore, the approach has uncovered a potentially novel marker 

for copper toxicity in N-acetylspermidine. This highlights the potential of FT-ICR mass 

spectrometry for metabolic biomarker discovery, and as a tool for providing detailed 

mechanistic insight into the MOA of toxicants, discussed further below. 

 

3.3.6 Applicability of SIM-stitching DI FT-ICR for metabolomics 

Measuring a complete cellular or organismal metabolome is impossible to achieve with 

current technologies as many metabolites occur at low concentration. However, mass 

spectrometry remains the technology of choice for the measurement of metabolites at small 

sample sizes in complex matrices (Brown et al. 2005). FT-ICR mass spectrometry currently 

provides the highest resolving power and mass accuracy of all commercial mass 
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spectrometers which, in theory, should enable the detection and identification of a large 

number of metabolites even when a complex mixture is directly infused into the ion source. 

This removes the need for time consuming chromatographic separation prior to ionisation 

and produces a multivariate dataset with extremely high reproducibility along the 

independent axis (i.e., m/z), and is increasingly being used in metabolomics (Breitling et al. 

2006; Breitling et al. 2008; Brown et al. 2005; Dunn 2008; Southam et al. 2007; Takahashi et 

al. 2008). Furthermore, Han et al. (Han et al. 2008) have recently demonstrated that 

ultrahigh-field FT-ICR mass spectrometry shows great promise for quantitative metabolomics 

and reported that comparable quantitation accuracies were achieved by DI FT-ICR and 

LC/MS, however the former analysis consumed much less sample and was significantly 

faster. A potential disadvantage of FT-ICR mass spectrometry is that in order to achieve a 

high dynamic range, and detect both low and high concentration metabolites, the necessarily 

high number of ions within the ICR detector cell will undergo space-charge interactions which 

reduces the mass accuracy (Zhang et al. 2005). However, this problem can be solved with a 

SIM-stitching approach, which has been demonstrated to yield a rms mass error of only 0.18 

ppm and a dynamic range of 16,000 (Southam et al. 2007). These values should be 

contrasted with more “traditional” DI FT-ICR mass spectrometry metabolomics approaches, 

for example Han et al. (Han et al. 2008) reported a mass error of ≤1 ppm and a dynamic 

range of 750, and also with other FT mass spectrometry analysers such as the LTQ Orbitrap, 

where a mass accuracy of between 0.48 to 5 ppm and a dynamic range of 5000 have been 

reported (Makarov et al. 2006; Olsen et al. 2005). Furthermore, the SIM-stitching approach, 

after a two-stage peak filtering algorithm to remove noise, yielded a total of 5447 peaks from 
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D. magna extracts (positive and negative ion modes combined). This is surprisingly large 

considering that the extracts are directly infused and are therefore susceptible to ion 

suppression. In fact this value greatly exceeds other FT-ICR mass spectrometry metabolomic 

studies, such as by Takahashi et al. (Takahashi et al. 2008) where only 220 ions were 

detected using negative ion mode, 72 of which were assigned to candidate metabolites, and 

by Han et al. (Han et al. 2008) who reported 570 metabolite features, 250 of which could be 

assigned a rational empirical formula and 100 given a possible metabolite identification. 

Collectively, these results highlight the excellent sensitivity, mass accuracy and dynamic 

range of the SIM-stitching DI FT-ICR method for metabolomics. 

 

3.4 Conclusion 

In this study we have optimised and then confirmed the effectiveness of SIM-stitching DI FT-

ICR mass spectrometry metabolomics for toxicity testing in D. magna. It has been 

demonstrated that the approach is sensitive by detecting more than 5000 peaks, as 

described above. In addition the approach has high resolution, not only from a spectral 

perspective of narrow peak widths but also in terms of the processing of the m/z 

measurements; i.e., each peak is treated as unique, which avoids the problem of “binning” 

multiple peaks into the same variable prior to statistical analysis. Of course each peak could 

still comprise of more than one metabolite as isomers will not be separated by the DI FT-ICR 

approach. This is also the first successful application of the g-log transform to mass 

spectrometry data. These results confirm that the entire approach, including the toxicity 

testing, metabolite extraction, mass spectrometric analysis and spectral processing, has 
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sufficient reproducibility (both technical and biological) to allow the classification of different 

life stages of D. magna as well as the classification of differing degrees of copper toxicity. 

Furthermore, all aspects of the approach are highly scalable which would enable screening of 

multiple chemicals with high sample throughput. This is particularly true of the culturing and 

toxicity testing components since D. magna are easy to culture and have a short generation 

time, and therefore it is rapid and low cost to generate the single adult or 30 neonates 

required per sample. Based upon the copper toxicity results, we conclude that the 

combination of toxicity testing, DI FT-ICR mass spectrometry and multivariate classification 

methods is ideal for high throughput first-tier screening of chemicals in D. magna. 

Furthermore, this combination of methods coupled with a more detailed and unbiased 

investigation of the metabolic mechanism of toxicity will be of particular value for a more 

comprehensive chemical risk assessment. 

Having confirmed in this investigation that using FT-ICR MS, coupled with the SIM-stitching 

approach, is an effective method of high-throughput toxicity testing; I next evaluate the 

feasibility of utilising this approach with D. magna haemolymph. 
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Technology: Poynton, H. C.; Taylor, N. S.; Hicks, J.; Colson, K.; Chan, S.; Clark, C.; Scanlan, L.; Louginov, A. V.; 

Vulpe, C.; Viant, M. R. Integration of metabolomics and transcriptomic signatures offers a coordinated model of 

cadmium toxicity in Daphnia magna. 
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4.1 Introduction 

Metabolomics is increasingly becoming a valuable tool in molecular and eco-toxicology 

(Bundy et al. 2009; Coen et al. 2008; Viant 2007, 2008). The measurement of the small 

molecule compounds in a biological sample enables a non-biased investigation into the 

metabolic responses to toxic stress. As previously stated, given the importance of Daphnia 

magna in the freshwater ecosystem and its widespread use as a test organism, no 

metabolomics studies have been conducted that utilise this species. The findings from the 

studies discussed in Chapter 3 have determined that FT-ICR MS-based metabolomics studies 

using D. magna are a viable tool for high-throughput toxicity testing and thus further studies 

are required to realise the full potential of this technique.  

Metabolomics studies in mammalian toxicology often use biofluids such as blood, plasma and 

urine to detect significant metabolic responses to toxicants. In biofluids, metabolites are in 

dynamic equilibrium with those inside cells and tissues and, consequently, abnormal cellular 

processes in tissues of the whole organism following toxicant exposure will be reflected in 

altered biofluid compositions (Lindon et al. 2000). Consequently the use of biofluids could 

provide a “cleaner” biological sample for detecting significant metabolic changes when 

compared to whole organism homogenates that could mask subtle toxicant induced effects. 

In environmental metabolomics, in particular in terrestrial and aquatic invertebrates, few 

studies have taken advantage of the benefits of using biofluids. As detailed in Chapter 1, 

there have been two studies reported using the haemolymph of the tobacco hornworm 

(Manduca sexta) (Phalaraksh et al. 1999; Phalaraksh et al. 2008), one using the coelomic fluid 

of the earthworm (Eisenia veneta) (Bundy et al. 2001), and one utilising the haemolymph of 
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red abalone (Haliotis rufescens) (Viant et al. 2003a). All four of these studies, and the 

majority of mammalian biofluid metabolomics investigations (Lindon et al. 2000), use NMR 

spectroscopy based metabolomics. However, if the ultimate aim of metabolomics is to detect 

every small-molecule metabolite and xenobiotic in a biofluid, then MS has a huge advantage 

in terms of sensitivity over NMR spectroscopy (Griffin 2003), and this technique has yet to be 

exploited in ecotoxicological metabolomic investigations. 

Since our previous work (Chapter 3) has shown whole organism homogenates of D. magna to 

be compatible with FT-ICR MS-based metabolomics, the first objective of this study was to 

assess the feasibility of sampling ca. 1 μL of haemolymph from individual adult D. magna and 

then measuring high quality metabolic fingerprints from small pools of these samples using 

this same technique. Following this, the second objective was to apply these metabolomic 

investigations of haemolymph to examine the toxicity of the model toxicant, cadmium, to D. 

magna. These metabolomics studies were done in conjunction with transcriptomic studies 

on additional D. magna samples, conducted by Dr Helen Poynton (National exposure 

Research Laboratory, US-EPA, Cincinnati, USA), allowing a combined omics investigation into 

the toxicity of cadmium to D. magna. 

 

4.2 Materials and Methods 

4.2.1 Daphnia magna exposures and haemolymph extraction 

The exposure of D. magna to cadmium and the subsequent haemolymph extraction was 

carried out at UC Berkeley, California, USA. Briefly, adult daphnids (10-14 d old, immediately 

after release of second brood) were exposed to 18 μgL
-1

 of cadmium sulfate for 24 h. This 
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corresponded to 10% of the LC50, a previously determined sublethal concentration of 

cadmium that resulted in impaired reproduction in chronic exposures (Poynton et al. 2008). 

A zero concentration control was performed alongside each cadmium exposure. Following 

exposure, haemolymph was extracted as described in Mucklow and Ebert (Mucklow and 

Ebert 2003) by pricking the heart of the Daphnia and collecting ca. 1 µL of haemolymph from 

the body cavity. Haemolymph was then rapidly frozen in liquid nitrogen and stored at -80 °C, 

including during shipping to our laboratory at Birmingham. 

 

4.2.2 FT-ICR MS metabolomics 

4.2.2.1 Initial haemolymph study 

A total of 20 cadmium exposed haemolymph samples and 19 control haemolymph samples 

from D. magna were delivered to Birmingham University on dry ice; these were then stored 

at -80 °C prior to extraction analysis. To determine the feasibility of using FT-ICR based 

metabolomics for analysing Daphnia haemolymph it was decided that 3 individual samples 

would be pooled for an initial MS investigation in order to obtain sufficient material for 

analysis. At this stage two cadmium exposed samples and one control sample (total of ca. 3 

μL) were pooled; metabolite extraction (with corresponding extract blank), FT-ICR analysis 

and data processing were all as described in Chapter 2. 

 

4.2.2.2 Cadmium toxicity study 

Since the initial haemolymph study proved successful (see Section 4.3.1) the remaining 

haemolymph samples (18 cadmium exposed and 18 control) were pooled as 3 haemolymph 
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samples per biological replicate, resulting in 6 biological replicates per group; again an 

extract blank was also prepared. Metabolites were extracted by methanol precipitation as 

described in Section 2.3.2. FT-ICR MS analysis (negative ion), data processing and metabolite 

identification were all as detailed in Chapter 2. The data pre-processing parameters consisted 

of a 2 out of 3 replicate filter, a sample filter retaining peaks that occurred in at least 50% of 

all samples using a 1.8ppm spread along the m/z axis for defining unique peaks, and blank 

peaks were retained only if twice as intense in the biological sample. PCA was used to assess 

metabolic similarities and differences between the samples while univariate statistics 

(Student’s t-test across the 2 groups) were used to examine the significance of these 

metabolic changes, with p-values adjusted for a False Discovery Rate (FDR) of 5% (Benjamini 

and Hochberg 1995). 

 

4.2.3 Transcriptomics (conducted by Dr Helen Poynton, US-EPA) 

For the transcriptomic analysis 6 replicate exposures, each containing 12 individual adult D. 

magna, were conducted. These analyses were performed on a different batch of exposed 

daphnids to the metabolomics investigation, and used whole organism samples rather than 

haemolymph. RNA was extracted from each of the 12 daphnids and pooled resulting in 6 

biological replicates. In brief, the extracted RNA was labelled and hybridised to a custom 44k 

D. magna array (eArray AMADID# 020720; Agilent Technologies, Santa Clara, CA). The arrays 

were scanned and the resulting data analysed to determine any differentially expressed 

genes. Quantitative Reverse Transcription PCR (q-RT-PCR) of five genes was used to confirm 

differential expression. 
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4.3 Results and Discussion 

4.3.1 Initial metabolomics study 

The initial aim was to determine if high quality mass spectra, distinguishable from blank 

samples, could be achieved from the pooled haemolymph of 3 individual adult daphnids; i.e. 

3 μL of haemolymph. An FT-ICR MS analysis was conducted on this sample and on the 

corresponding extract blank in triplicate and the data was SIM-stitched and subjected to a 

two out of three replicate filter giving a single peak list each for the haemolymph sample and 

the extract blank. A representative mass spectrum of D. magna haemolymph is shown in 

Figure 4.1. The peak lists generated from the replicate filter were then compared using a 

visualization software tool (see Section 3.3.1) to compare the commonality of the peaks 

between the haemolymph sample and the extract blank (Figure 4.2). As with the whole 

organism D. magna samples in Chapter 3, the presence of biological material competing for 

charge during nano-electrospray ionisation causes suppression of the peaks in the “blank” 

revealing over 2000 peaks unique to D. magna haemolymph. There is clearly an overlap of 

ca. 1000 peaks between the sample and the extract blank, however, further investigation of 

these common peaks revealed that over 50% were at least twice as intense in the 

haemolymph sample and would be classed as biological peaks in a FT-ICR MS metabolomics 

study. It was therefore determined that 3 μL of D. magna haemolymph could produce 

distinguishable, high quality mass spectra using FT-ICR MS and would be suitable for a 

metabolomics study into cadmium toxicity. 
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Figure 4.1 A representative FT-ICR mass spectra of pooled haemolymph extracts of the water flea, D. 

magna: a SIM-stitched spectrum, in centroid mode, between m/z 70 and 500. This spectrum was 

normalised to the largest peak (corresponding to 100% intensity). 
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Figure 4.2 Graphical depiction of the peaks detected in an FT-ICR mass spectrum of pooled D. magna 

haemolymph extracts. Shows the occurrence of each of the >5000 unique peaks that were detected 

by the FT-ICR analyses, i.e., whether the peaks occurred in the extract blank only (blue), in the extract 

blank and the haemolypmh sample (green), or in the haemolymph sample only (red). The peaks 

depicted in this figure are those which were present following a 2 out of 3 replicate filter. 
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4.3.2 Metabolomics cadmium toxicity study 

FT-ICR MS was conducted in negative ion mode (as described in Chapter 2) and detected a 

large number of signals in D. magna haemolymph arising from ionised, low molecular weight 

metabolites including various ion forms (e.g. deprotonated metabolites, chlorine adducts, 

etc) and naturally occurring isotopes. The signals detected are summarised in Table 4.1, with 

the findings comparable to the reported signals found in the negative ion dataset of D. 

magna whole organism homogenates (see Chapter 3). Here the haemolymph dataset 

comprised of 3921 peaks and 883 of these could be putatively assigned one or more 

metabolite name, similar to the 3599 peaks found in the whole organism homogenates 

where 734 peaks could be putatively assigned one or more metabolite name. 

 

 

 

 

Table 4.1 Summary of the total number of peaks in the dataset of D. magna haemolymph extracts, 

and the number of those peaks that could be assigned empirical formulae and putative metabolite 

identities. 

 

 

 

 

 

 

 

 
a 
Following removal of assignments in which the match was a non-endogenous metabolite such as a 

drug, plasticiser or pesticide. 
 

Number of peaks 

Total (after replicate & sample filters) 3921 

Assigned to ≥1 empirical formulae 3583 

Assigned to unique empirical formula 245 

Assigned to ≥1 KEGG LIGAND ID 
a
 883 
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PCA was used to visualise any differences between the control and exposed samples and the 

PCA scores plot (Figure 4.3) shows a clear separation between the two groups, indicative of a 

cadmium induced metabolic response. This separation was confirmed to be significant 

following a t-test of the PC scores, specifically along the PC1 axis (p=3.19×10
-3

) and the 

PC1+PC2 axis (p=2.24×10
-3

). The samples in the control group are more tightly clustered 

relative to the cadmium exposed samples which show considerable metabolic variability. 

 

 

 
Figure 4.3 PCA scores plot from analysis of FT-ICR mass spectra of haemolymph extracts of D. magna: 

control (○) and cadmium exposed (■). The scores plot shows a cadmium induced metabolic response 

along the PC1 axis and the diagonal axis from bottom left to top right (PC1+PC2). 
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Univariate analysis of the 3921 peaks detected by FT-ICR MS revealed that 126 of these 

peaks (representing 3.2% of the total peaks) changed significantly following exposure of D. 

magna to cadmium (at FDR <0.05). Putative identifications of several of these metabolites 

are listed in Table 4.2 where it can be seen that metabolites were often detected as 
12

C and 

13
C containing forms, enabling the calculation of the number of carbon atoms in the 

metabolite from the 
12

C/
13

C intensity ratio. Alongside this, the consistency of the fold 

changes and associated p-values for the various adducts and isotope forms of each 

metabolite provide increased confidence in the identification of the empirical formulae. It 

should be noted that the mean mass error of the peaks identified in Table 4.2 is 0.34 ppm 

with the maximum error at 0.94 ppm. These values are higher than those found in the D. 

magna whole organism study, where the mean mass error was only 0.10 ppm (see Chapter 

3) but still depict the high mass accuracy found in FT-ICR MS studies (Brown et al. 2005). A 

selected region of a representative FT-ICR mass spectrum of D. magna haemolymph (m/z 220 

265-295, equivalent to ca. 7% of the total spectrum) is shown in Figure 4.4, and includes 

signals from three putatively identified metabolites, inosine (C10H12N4O5), uridine (C9H12N2O6) 

and palmitic acid (C16H32O2), all of which change concentration significantly in response to 

cadmium exposure as indicated in the inset bar charts. These results from the FT-ICR MS 

metabolomics investigation successfully achieved the objective of determining a toxicant 

induced effect in the haemolymph of D. magna following exposure to cadmium. 
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Table 4.2 Summary of peaks detected by FT-ICR MS that change significantly upon cadmium exposure for which putative metabolite names 

could be assigned. 

 

 

Observed 

peak 

(m/z) 

Theoretical 

exact mass 

(m/z) 

Empirical formula 

Putative 

metabolite 

identification 

Ion form 

Number 

of C 

atoms 

Absolute 

mass error 

(ppm) 

Fold 

change
 a

 
p-value 

b
 

148.04377 148.043774 C5H11NO2S Methionine [M-H]
-
 - 0.031 0.345 1.22×10

-3
(*) 

154.06219 154.0622 C6H9N3O2 Histidine [M-H]
-
 5±1 0.069 0.471 6.21×10

-5
 (*) 

155.06555 155.0656 C6H9N3O2 Histidine [M(
13

C)-H]
-
 5±1 0.326 0.512 1.45×10

-4
 (*) 

164.07169 164.071703 C9H11NO2 Phenylalanine [M-H]
 -
 11±2 0.077 0.479 8.31×10

-4
 (*) 

165.07503 165.075103 C9H11NO2 Phenylalanine [M(
13

C)-H]
-
 11±2 0.440 0.617 1.66×10

-2
  

173.10437 173.1044 C6H14N4O2 Arginine [M-H]
-
 - 0.171 0.246 3.29×10

-7
(*) 

203.0826 203.082602 C11H12N2O2 Tryptophan [M-H]
-
 13±4 0.008 0.411 1.79×10

-5
(*) 

204.08597 204.086002 C11H12N2O2 Tryptophan [M(
13

C)-H]
-
 13±4 0.155 0.534 5.50×10

-3
 

207.11574 207.1157316 C10H20O2 Decanoic acid [M+
35

Cl]
-
 - 0.041 0.606 3.79×10

-5
(*) 

209.0811 209.081078 C6H14N4O2 Arginine [M+
35

Cl]
-
 - 0.107 0.537 5.21×10

-5
(*) 

211.07811 211.078128 C6H14N4O2 Arginine [M+
37

Cl]
-
 - 0.083 0.428 1.04×10

-5
(*) 

220.09391 220.0938956 C7H15N3O5 

1-Guanidino-

1-deoxy-

scyllo-inositol 

[M-H]
 -
 - 0.065 2.372 5.12×10

-4
(*) 
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243.06231 243.06226 C9H12N2O6 Uridine [M-H]
 -
 - 0.199 0.407 6.20×10

-5
(*) 

255.23295 255.232954 C16H32O2 Palmitic acid [M-H]
-
 - 0.017 0.558 1.14×10

-2
 

267.07355 267.073493 C10H12N4O5 Inosine [M-H]
-
 11±1 0.207 0.460 4.66×10

-5
(*) 

 267.0736346 C11H19O3P c [M+
37

Cl]
-
 11±1 0.317   

268.07696 268.076893 C10H12N4O5 Inosine [M(
13

C)-H]
-
 11±1 0.248 0.518 1.92×10

-4
 (*) 

 268.0771256 C10H17NO5 c [M+
37

Cl]
-
 - 0.618   

 268.0770346 C11H19O3P c [M(
13

C)+
37

Cl]
-
 11±1 0.279   

279.0392 279.038938 C9H12N2O6 Uridine [M+
35

Cl]
-
 8±1 0.939 0.386 7.85×10

-6
(*) 

280.0425 280.042338 C9H12N2O6 Uridine [M(
13

C )+
35

Cl]
-
 8±1 0.058 0.422 7.56×10

-5
(*) 

281.03622 281.035988 C9H12N2O6 Uridine [M+
37

Cl]
-
 - 0.825 0.428 1.04×10

-5
(*) 

 281.0362756 C10H12N4O2P2 c [M-H]
-
 - 0.198   

 281.0363376 C11H6N8S c [M-H]
-
 - 0.418   

 281.0364156 C11H19P3 c [M+
37

Cl]
-
 - 0.696   

291.20989 291.209633 C16H32O2 Palmitic acid [M+
35

Cl]
-
 19±6 0.884 0.388 1.29×10

-3
(*) 

292.2132 292.213033 C16H32O2 Palmitic acid [M(
13

C )+
35

Cl]
-
 19±6 0.573 0.451 1.12×10

-3
(*) 

293.20691 293.206683 C16H32O2 Palmitic acid [M+
37

Cl]
-
 21±7 0.776 0.426 1.30×10

-3
(*) 

294.21024 294.210083 C16H32O2 Palmitic acid [M(
13

C )+
37

Cl]
-
 21±7 0.535 0.488 2.11×10

-3
 

 294.2104586 C16H30N3P c [M-H]
-
 - 0.743   
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305.04741 305.047221 C10H12N4O5 Inosine [M+
37

Cl]
-
 - 0.614 0.434 3.19×10

-5
(*) 

 305.0474016 C6H14N2O12 c [M-H]
-
 - 0.028   

 305.0475086 C11H12N6OP2 c [M-H]
-
 - 0.323   

 
a 
Fold change between the control and cadmium exposed groups. 

b 
Determined from t-test of peak intensities across control and cadmium exposed groups 

c 
No metabolite name in KEGG matching this formula 

(*) Significant following FDR correction at <0.05 
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Figure 4.4 Section of a representative negative ion FT-ICR mass spectrum of D. magna haemolymph 

highlighting the putatively identified signals from inosine (I), uridine (U) and palmitic acid (PA), each 

detected as various adduct forms and naturally-occurring isotopes. Inset bar charts show the levels of 

these significantly effected metabolites in control versus cadmium exposed daphnids. Error bars 

represent the standard deviation. 
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4.3.3 Key findings from transcriptomic cadmium toxicity study 

The transcriptomic studies and subsequent analysis were performed by Dr Helen Poynton 

(US-EPA National Exposure Laboratory) and the key findings from this work are as follows. 

Affected genes included those involved in digestion, immune function, xenobiotic 

metabolism and growth and development; with the microarray and q-RT-PCR results being 

strongly correlated. Specifically; there was an up-regulation of genes involved in embryonic 

development (2.9 to 4.5-fold increases), including vitellogenin and egg-shell proteins; a 

down-regulation of carboxypeptidase A (an enzyme involved in protein digestion; 2-fold 

decrease); these changes in gene expression are linked to the metabolomics data and are 

discussed in the next Section. An up-regulation in oxidative stress response genes (2.2 to 2.6-

fold increases), including cytochrome P450, glutathione-S-transferase (GST) and 

metallothionein (MT); and an up-regulation of cuticle proteins (up to 3.7-fold increases) were 

also determined from the transcriptomic analysis. 

 

4.3.4 Relevance of findings to cadmium toxicity 

As this was a combined omics study into the toxicity of cadmium to D. magna, the key 

findings from both the metabolomics and transcriptomic studies have been integrated into 

Figure 4.5 giving an overview of the physiological processes affected by cadmium exposure. 

However, the focus of this discussion is on the findings of the metabolomics investigation 

into the effects of cadmium on the daphnid haemolymph metabolome, summarised in Table 

4.2. 
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Figure 4.5 Summary model of sub-lethal cadmium toxicity in D. magna. Processes, metabolites and 

genes affected by cadmium exposure are shown in red (increases) or green (decreases). Those 

revealed in this study shown in plain text, those found in other studies are italicised. Decrease in 

feeding rate and digestive enzyme activity was shown by De Coen and Janssen (1998) (De Coen and 

Janssen 1998), while decreases in digestive enzyme expression level were described by Poynton et al. 

(Poynton et al. 2007). Decreases in protein and lipid reserves were described by Soetaert et al. 

(Soetaert et al. 2007b). 
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Cadmium is a toxic non-essential metal with no reported biological function (Connon et al. 

2008). It is known to cause oxidative tissue damage, increased lipid peroxidation and DNA 

damage (Stohs and Bagchi 1995) and has been reported to significantly decrease survival, 

growth and reproduction in D. magna (Smolders et al. 2005). The significant decrease in 

several amino acids is comparable to the findings from the whole organism study into copper 

toxicity (Chapter 3) and could again be a consequence of depletion of the amino acid pool 

following induction of defence and repair mechanisms in response to cadmium stress 

(Smolders et al. 2005). Interestingly, all the amino acids found to be changing significantly are 

essential amino acids (methionine, histidine, phenylalanine, arginine and tryptophan) and are 

therefore only obtainable via absorption from food. This suggests that an effect on food 

uptake or digestive capabilities could account for these changes in metabolite concentration. 

Following exposure of D. magna to cadmium, De Coen and Janssen (De Coen and Janssen 

1998) observed a drastic reduction in ingestion activity and an initial reduction of digestive 

enzyme activity which then recovered. Another study by De Coen and Janssen (De Coen and 

Janssen 1997a) found an increase in digestive enzyme activity of D. magna in response to 

cadmium stress, and a transcriptomic investigation by Soetaert et al. (Soetaert et al. 2007b) 

determined an up-regulation of genes involved in digestive processes. It is likely that a 

decrease in essential amino acids is the result of reduced feeding capability and an increase 

in digestive enzyme activity is reflecting an increased efficiency in food assimilation to 

compensate for reduced food intake (De Coen and Janssen 1997b) and the increased energy 

demand required for dealing with the toxicant (Connon et al. 2008). These responses would 
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all contribute to a depleted pool of amino acids that the daphnids are unable to replenish 

due to inhibition of feeding activity. 

Another reason for the significant decrease in phenylalanine could be due to its role in 

catecholamine synthesis. Phenylalanine can be converted to tyrosine, a precursor for 

catecholamines, in particular dopamine, which has been shown to be increased in aquatic 

invertebrates in response to stress (Lansing et al. 1993). The present transcriptomic study 

found an increase in tyrosine hydroxylase (TYH). This enzyme catalyses the initial step in the 

conversion of tyrosine into dopamine, suggesting the decrease in the metabolite 

phenylalanine could also be due to it being shuttled into the synthesis of dopamine. 

As with the decrease in essential amino acids, the reduction in food intake could also explain 

the significant decrease in two putatively identified fatty acids, palmitic acid and decanoic 

acid, found in the haemolymph of cadmium exposed D. magna. A decrease in feeding rate 

could cause decreased absorption of fatty acids, and with previous transcriptomic studies 

reporting down-regulation of fatty acid binding proteins and reduced lipid reserves (Poynton 

et al. 2007; Soetaert et al. 2007b) this could contribute to decreased levels of fatty acids in 

the haemolymph. 

The metabolomics investigation also determined a significant decrease in two nucleosides, 

uridine and inosine, in the haemolymph of D. magna in response to cadmium exposure. 

Uridine is a pyrimidine nucleoside found in RNA and is a precursor for the pyrimidine 

nucleosides in DNA, while inosine is a precursor for the purine ribonucleotides. The up-

regulation of genes involved in embryonic development in this present study would explain 
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the decrease in these nucleosides as they are utilised for the synthesis of nucleotides 

required for embryonic growth.  

 

4.4 Conclusion 

This study has demonstrated for the first time the feasibility of FT-ICR MS metabolomics on 

small volumes of D. magna haemolymph, showing that it is a sensitive approach, detecting 

thousands of unique signals. We have reported that significant cadmium induced toxic 

effects can be determined using the haemolymph metabolome of D. magna, specifically 

decreases in amino acids, fatty acids and nucleic acids. The concurrent transcriptomic study 

has enabled us to integrate both metabolomics and transcriptomic signatures into a model of 

cadmium toxicity, where a depletion of both lipid and protein reserves would likely result in 

decreased fitness and survival during prolonged exposure. 

Having confirmed here that FT-ICR MS analysis of haemolymph is a feasible approach for 

determining toxicant induced effects in D. magna; I next evaluate the capabilities of both 

haemolymph and whole organism homogenates of D. magna in discriminating between 

toxicant MOAs. 
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5.1 Introduction 

A battery of standardised toxicity testing strategies exists for assessing the potential hazards 

of chemicals that may enter the environment; these and their limitations are discussed in 

Chapter 1. The potential role and importance of metabolomics in toxicity testing and 

ecological risk assessment is currently being evaluated (Ankley 2008), for example as a tool to 

discover the mode(s) of action (MOA) of toxicants at a metabolic level (Bundy et al. 2009). 

Such an application would exploit several of the strengths of metabolomics, including its 

ability to characterise multiple metabolic pathways simultaneously and in a relatively rapid 

and non-targeted manner. After having catalogued a library of sub-lethal metabolic 

responses to a series of defined MOAs, this approach could be used as a discovery tool for 

identifying the MOA of a new drug or emerging environmental contaminant, (Edwards and 

Preston 2008) with subsequent use in screening and/or prioritisation of chemicals in risk 

assessment. However, for this to be achieved it is first necessary to confirm that different 

chemical MOAs do indeed elicit specific and distinct metabolic response profiles that can 

predict toxicity (Guo et al. 2009). As detailed in Section 1.4.1, this has been achieved in 

mammalian toxicology by the COMET group (Ebbels et al. 2007; Lindon et al. 2005) and yet 

there remain relatively few studies published that have applied metabolomics to investigate 

the specificity of toxicant MOAs in ecotoxicology (Guo et al. 2009; McKelvie et al. 2009; Viant 

et al. 2006b). Furthermore, all such studies to date have utilised NMR based metabolomics 

only. FT-ICR MS provides ca. 10 times greater coverage of the metabolome than that 

achieved using standard NMR approaches. Building on the findings from our previous work 

(Chapters 3 and 4), which established FT-ICR MS based metabolomics as an effective 
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technique for assessing toxicity in both the whole-organism and haemolymph metabolome 

of D. magna; the main objective of this investigation is to develop robust multivariate models 

to predict toxicant MOA using FT-ICR MS metabolomics data derived from D. magna toxicity 

tests. These investigations are focussed on four model toxicants: cadmium (Cd; an inducer of 

oxidative stress; (Stohs and Bagchi 1995)), fenvalerate (induces hyper-excitation through 

prolonged opening of sodium channels; (Ray and Fry 2006)), 2,4-dinitrophenol (DNP; an 

uncoupler of oxidative phosphorylation; (Drysdale and Cohn 1958)) and propranolol (a non-

selective β-blocker; (Huggett et al. 2002)). The first aim was to attempt to detect metabolic 

responses, following acute exposures to each toxicant, in both the whole organism 

metabolome (derived from homogenate of an individual daphnid) and the haemolymph 

metabolome (sampled from an individual animal). The second aim was to determine if the 

four different MOAs could be distinguished based upon the measured metabolic responses, 

using supervised multivariate modelling coupled to robust cross-validation and permutation 

testing. The final aim was to determine whether the metabolome of haemolymph or of 

whole organism homogenates was the more discriminatory of toxicant MOA.  

 

5.2 Materials and Methods 

5.2.1 Optimisation of FT-ICR MS analysis of individual daphnid haemolymph 

Since the studies detailed in Chapter 4 utilised pooled haemolymph samples, the first stage 

of this investigation was to determine if FT-ICR MS of haemolymph from an individual 

daphnid was feasible. Haemolymph and metabolite extraction from individual daphnids was 

as detailed in Section 2.3.2 with varying resuspension volumes of 16, 20 and 30 µL (n=5 
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daphnids per resuspension volume) of 80:20 methanol:water containing 20 mM ammonium 

acetate. FT-ICR MS analysis in negative ion mode and data processing were conducted on all 

samples (Sections 2.4 and 2.5 respectively) and the results assessed to determine the optimal 

resuspension volume for an individual daphnid haemolymph sample. 

 

5.2.2 Determination of sub-lethal concentrations  

To determine the appropriate sub-lethal concentrations for each of the four toxicants 

(cadmium, 2,4-dinitrophenol, fenvalerate and propranolol; all Sigma Aldrich, UK), initial 24 h 

acute toxicity studies were carried out. Groups of 30 neonates (< 24-h old), in 250 mL of 

clean media were exposed to a range of concentrations of one of the toxicants (0-1000 μgL
-1

 

Cd; 0-20 mgL
-1

 DNP; 0-20 μgL
-1

 fenvalerate and 0-24 mgL
-1

 propranolol), with n=3 exposure 

vessels per concentration. All toxicants were solubilised in deionised water with the 

exception of fenvalerate, which used dimethyl sulfoxide (DMSO) as a solvent (0.00001%) with 

a corresponding solvent control. No food or supplements were provided during this exposure 

and any mortality after 24 h was recorded. PROBIT analysis (SPSS v16, SPSSInc, Chicago) was 

used to establish the neonatal LC50 for each of the four toxicants.  

 

5.2.3 Adult Daphnia magna acute toxicity studies 

The nominal exposure concentration for each of the four toxicants was standardised to 10% 

of the calculated neonatal LC50 to ensure that any metabolic effects were sublethal. This 

approach also effectively normalised the exposure concentration to a defined biological 

effect. The nominal concentrations were 71 μgL
-1

 cadmium (measured as Cd
2+

 ions), 1.5 mgL
-1
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DNP, 0.6 μgL
-1

 fenvalerate (0.00001% DMSO) and 1.4 mgL
-1

 propranolol. For all toxicity 

exposures, third brood neonates were obtained and cultured as normal until 14 days of age, 

and then individual daphnids were transferred to 250 mL of clean media and exposed to the 

relevant toxicant for 24 h. Four sample groups were used for each toxicant: control (n=10 

individuals) and toxicant-exposed (n=10) for whole organism sampling, and control (n=10) 

and toxicant-exposed (n=10) for haemolymph sampling. Again, no food or supplements were 

provided during the exposures.  

 

5.2.4 Animal capture and metabolite extraction 

Following 24 hours of exposure, daphnids were captured and metabolites extracted using 

one of two methods (Sections 2.2 and 2.3). For whole organism homogenate studies, 

daphnids were captured by filtration through a fine mesh gauze, transferred rapidly to a 

Precellys™ homogenisation tube, flash frozen in liquid nitrogen, and then stored at -80°C 

until metabolite extraction. Metabolite extraction used the two-step 

methanol:chloroform:water protocol detailed in Section 2.3.1, including the preparation of 

an extract blank. For haemolymph studies, animals were transferred onto clean microscope 

slides, carefully blotted dry and approximately 1 μL of haemolymph was extracted by piercing 

the carapace close to the heart using a 21 gauge needle and collecting the haemolymph 

using a micropipette as described by Mucklow and Ebert (Mucklow and Ebert 2003). Each 

haemolymph sample was place in an individual Eppendorf™ tube and again stored at -80°C. 

Metabolites from the haemolymph samples were extracted and an extract blank prepared, 

as described in Section 2.3.2. The evening prior to FT-ICR MS analysis, each ca. 1 μL 
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haemolymph sample was diluted with 30 μL of 80:20 methanol:water containing 20 mM 

ammonium acetate, vortexed, and stored at -20°C overnight to facilitate protein 

precipitation. 

 

5.2.5 FT-ICR MS, data processing and metabolite identification 

On the day of FT-ICR analysis, one aliquot of each of the dried polar extracts from the whole 

daphnid extractions was resuspended in 30 μL 80:20 methanol:water containing 20 mM 

ammonium acetate. The protein-precipitated haemolymph samples were used directly. All 

biological samples and extract blanks were then prepared, analysed in triplicate, in negative 

ion mode, by DI FT-ICR MS, utilising the SIM-stitching method, as described in Section 2.4. 

Mass spectra were processed as detailed in Section 2.5; the sample filter set to retain only 

those peaks that occurred in at least 50% of all samples using a 1.8ppm spread along the m/z 

axis for defining unique peaks, and blank peaks were retained only if twice as intense in the 

biological sample.  

For the individual analyses of each of the four toxicants, mass spectral processing was 

applied to each of the whole organism homogenate datasets and to each of the haemolymph 

datasets, resulting in eight data matrices in total (each comprising n=10 controls and n=10 

exposed). For the analysis of all toxicants together, mass spectra were reprocessed (as stated 

above, except that in this case all peaks in the “extract blank” were removed from the 

biological samples) to obtain one whole organism homogenate dataset and one haemolymph 

dataset (each comprising n=30 controls, n=10 solvent controls, and n=10 exposed to each of 

the four toxicants). Subsequently, every matrix was further processed by the addition of 
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missing values, normalised and g-log transformed (transformation parameter λ=7.31×10
-11

) 

as detailed in Section 2.5. Putative identification of peaks was as described in Section 2.6, 

which consequently enabled the identification of peaks directly related to the parent 

toxicants, which were subsequently removed from the datasets prior to statistical analysis. 

 

5.2.6 Statistical analysis 

To assess the effects of each individual toxicant on both the whole organism and 

haemolymph metabolomes of D. magna, eight principal components analyses (PCA) were 

conducted on the processed data matrices (Section 2.7.1). The significance of separation 

between the control and exposed classes – along the first several principal components (PCs) 

– was evaluated via t-tests of the PC scores. Univariate statistical tests (t-tests; Section 2.7.2) 

were used to determine if individual peaks (i.e. metabolites) changed significantly between 

control and exposed classes. 

To distinguish between the four toxicant MOAs, in both whole organism and haemolymph 

metabolome datasets, two partial least squares discriminant analyses (PLS-DA) were 

conducted (Section 2.7.1). Here, internal cross validation and permutation testing were 

employed, as described below, to calculate robust classification error rates associated with 

the prediction of toxicant MOAs. Results are presented as “balanced” error rates, i.e. the 

average of false positive and false negative error rates (Fleuret 2004). First the number of 

latent variables (LVs) for each PLS model (i.e. whole organism and haemolymph) was chosen 

to minimise the classification errors. Then the following strategy was employed: an optimal 

PLS-DA model was built and internally cross validated (venetian blinds with 8 splits) to yield 
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the “optimal model” classification error rate (derived from repeating the internal cross-

validation process 1000 times) for each class: control, solvent control, Cd, DNP, fenvalerate 

and propranolol. Next, to evaluate the statistical significance of these error rates (i.e. to 

ensure that the optimal model was not over-fitting the dataset) the class labels were 

randomly permuted and another PLS-DA model was built. Internal cross validation was used 

to calculate a “permuted” classification error rate (for control, solvent control, Cd, DNP, 

fenvalerate and propranolol classes); this permutation and model building process was 

repeated 1000 times. Statistical significance, for the prediction of each class, could then be 

assessed by comparing the optimal model classification error rate to the null distribution of 

permuted error rates (Westerhuis et al. 2008). Specifically the number of instances for which 

the permuted classification error rate was less than the optimal model error rate was 

determined and then divided by the total number of permutations (1000), generating a p-

value, with p<0.05 indicating that the metabolic profile associated with that toxicant MOA 

could be discriminated from all other metabolic profiles. 

 

5.3 Results and Discussion 

5.3.1 Optimisation of FT-ICR MS analysis of individual daphnid haemolymph 

FT-ICR analysis of samples resuspended in both 16 and 20 µL of MS solvent only enabled 

each of the samples to be run in duplicate rather than triplicate, potentially due to 

disturbance of particulates in the sample when loading the samples causing poor spray 

stability. The samples resuspended in 30 µL of MS solvent were all successfully analysed in 

triplicate, allowing data processing to be performed as detailed in Section 2.5. Furthermore 



 - 122 - 

this achieved high quality mass spectra detecting ca. 2500 signals, therefore 30 µL of MS 

solvent was determined to be sufficient for this approach and utilised for all FT-ICR MS 

analysis of individual daphnid haemolymph samples. 

 

5.3.2 Determination of sublethal concentrations 

Preliminary acute toxicity tests were conducted in order to determine the D. magna neonatal 

lethality concentrations for each of the four toxicants. The objective of these preliminary 

exposures was to facilitate the selection of an exposure concentration for the acute toxicity 

studies of the adult daphnids that would not induce any mortality, thus ensuring that any 

observed metabolic effect was sublethal.  The incidence of neonate mortality during these 

exposures is summarised in Table 5.1, with the calculated neonatal LC50 for each of the 

toxicants listed in Table 5.2. The nominal exposure concentrations selected for the acute 

toxicity studies using adult D. magna were 10% of the neonatal LC50 for each toxicant. 
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Table 5.1 Results from 24 hr D. magna neonate acute toxicity study summarising the mean mortality 

rate for each nominal concentration (n=3). 

 

Toxicant Nominal concentrations Mean mortality rate (%) 

Cadmium chloride * 0 μg/L 0 

 200 μg/L 0 

 400 μg/L 0 

 600 μg/L 25 

 800 μg/L 33 

 1000 μg/L 52 

Fenvalerate ** 0 μg/L 0 

 2 μg/L 2 

 4 μg/L 18 

 6 μg/L 47 

 8 μg/L 73 

 10 μg/L 93 

DNP 0 mg/L 0 

 5 mg/L 0 

 10 mg/L 5.5 

 12.5 mg/L 12 

 15 mg/L 33 

 17.5 mg/L 87 

 20 mg/L 100 

Propranolol 0 mg/L 0 

 5 mg/L 2 

 10 mg/L 18 

 15 mg/L 33 

 18 mg/L 80 

 21 mg/L 92 

 24 mg/L 100 

* Calculated at Cd
2+

 ions 

** All concentrations using 0.00001% DMSO as solvent 
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Table 5.2 Calculated LC50 values from 24 hr neonate exposures using PROBIT analysis 

 

Toxicant LC50 

Cadmium chloride * 713.6 ± 154 μg/L 

Fenvalerate 5.9 ± 0.5 μg/L 

DNP 14.9 ± 2.9 mg/L 

Propranolol 13.8 ± 2.4 mg/L 

* Calculated at Cd
2+

 ions 

 

 

 

 

 

 

5.3.3 Effects of individual toxicants on whole organism and haemolymph metabolomes 

The first aim of this study was to utilise the mass spectrometry-based metabolomics 

approach to attempt to detect metabolic responses to acute toxicity, in both the whole 

organism and haemolymph metabolomes of individual adult daphnids. Exposure to 10% of 

the concentration of the neonatal LC50 did not cause lethality for all four toxicants tested, 

confirming that these studies evaluated sub-lethal metabolic responses in adult daphnids. FT-

ICR mass spectrometry of whole organism extracts and haemolymph resulted in high quality 

metabolite profiles with a mean of 3094 signals detected in haemolymph and 4134 signals in 

the whole organism extracts. Putative identification of peaks following spectral processing 

identified any peaks that directly related to the parent toxicants, these are shown in Table 

5.3, and were subsequently removed from the datasets at this stage; prior to statistical 

analysis. 
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Table 5.3 Peaks identified in the FT-ICR mass spectra that directly related to parent toxicants. These 

were subsequently removed from the metabolic datasets prior to statistical analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PCA was used to visualise the metabolic differences between control and toxicant-exposed 

samples (Figure 5.1). The scores plots show clear metabolic effects due to Cd, DNP, 

fenvalerate and propranolol exposures, for both the whole organism and haemolymph 

datasets. These effects were evaluated statistically by testing the significance of the 

separation between each toxicant class and its corresponding control, along the PC1, PC2, 

PC3 and PC4 axes (these PCs accounted for ≥60% of the total variance in each dataset; Table 

5.4). All four toxicants induced a significant metabolic perturbation in both the haemolymph 

and whole organism homogenates (all p<0.0125, Bonferroni-corrected for multiple testing), 

with Cd inducing the largest effect, along PC1, in both sample types. 

Haemolymph 
Whole organism 

homogenates 

[Dinitrophenol-H]
-
 [Dinitrophenol-H]

-
 

[Dinitrophenol(
13

C)-H]
-
  [Dinitrophenol

 
(
13

C)-H]
-
  

[Propranolol+ 
35

Cl]
- 
  

[Propranolol(
13

C)+ 
35

Cl]
-
  

[Propranolol+ 
37

Cl]
-
  

[Propranolol(
13

C)+ 
37

Cl]
-
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To determine the number of peaks that changed intensity significantly in response to each 

toxicant (and their proportion relative to the total number of peaks detected), Student’s t-

tests were applied between control (n=10) and exposed (n=10) samples (adjusted for 

FDR<5%; Table 5.5). Consistent with the PCA results, the greatest number of (and relative 

proportion of) significant peaks occurred in response to Cd, totalling ca. 600 for both 

haemolymph and whole organism homogenates. For the other three toxicants, however, the 

proportion of significantly changing peaks was much higher in the whole organism 

homogenates (from 5-13%) than in the haemolymph samples (<1% for all three toxicants). 

This provides the first evidence that the whole organism metabolome’s response to a 

toxicant is typically more extensive (and potentially contains more information) compared to 

the response of the haemolymph.  
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Figure 5.1 PCA scores plots from analysis of FT-ICR mass spectra of D. magna (a) haemolymph and (b) whole 

organism homogenates following Cd exposure (control ●, exposed Δ), (c) haemolymph and (d) whole 

organism homogenates following DNP exposure (control ●, exposed ◊), (e) haemolymph and (f) whole 

organism homogenates following fenvalerate exposure (control ■, exposed □), and (g) haemolymph and (h) 

whole organism homogenates following propranolol exposure (control ●, exposed ○). All plots show PC1 

against the (next) most significant PC axis and all show a toxicant induced metabolic response. 
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Table 5.4 Summary of p-values from Student’s t-tests of PC scores between control (n=10) and 

exposed (n=10) samples, for Cd, DNP, fenvalerate and propranolol (see Figure 1). Data are presented 

for both haemolymph and whole organism homogenates of D. magna. 

 

Haemolymph 

Principal 

component 

Cd DNP Fenvalerate Propranolol 

PC1 2.12 × 10
-6 

(*) 0.25 0.06 6.20 × 10
-3 

(*) 

PC2 0.04
 
 0.04

 
 0.55 0.72 

PC3 0.66 7.66 × 10
-3 

(*) 4.32 × 10
-6 

(*) 0.12 

PC4 0.75 0.17 0.75 0.06 

Whole organism homogenates 

Principal 

component 

Cd DNP Fenvalerate Propranolol 

PC1 3.29 × 10
-5 

(*) 1.41 × 10
-4 

(*) 0.02
 
 6.49 × 10

-3 
(*) 

PC2 0.04
 
 0.32 1.29 × 10

-3 
(*) 3.63 × 10

-3 
(*) 

PC3 0.23 9.45 × 10
-3 

(*) 0.67 0.74 

PC4 0.89 0.81 0.40 0.16 

* indicates significance at the Bonferroni-corrected p-value<0.0125 
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Table 5.5 Number of peaks that significantly changed concentration (FDR<0.05, relative to controls) 

and their proportion relative to the total number of peaks detected, following exposure to cadmium, 

DNP, fenvalerate and propranolol. Data are presented for both haemolymph and whole organism 

homogenates of D. magna. 

 

Haemolymph 

 Cd DNP Fenvalerate Propranolol 

Number of 

significant 

peaks 

618 9 31 10 

Proportion of 

significant 

peaks (%) 

21 0.3 0.8 0.4 

Whole organism homogenates 

 Cd DNP Fenvalerate Propranolol 

Number of 

significant 

peaks 

660 544 398 232 

Proportion of 

significant 

peaks (%) 

14 13 12 5 
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While an extensive biochemical interpretation of the effects of each toxicant is not an 

objective of this study, it is however valuable to confirm that some of the putatively 

identified metabolites that change concentration are consistent with MOAs reported in the 

literature. For example, focusing on the more extensive responses within the whole organism 

homogenates, the uncoupler of oxidative phosphorylation (DNP) significantly induced 

anticipated changes to the invertebrate phosphagen system, specifically arginine (p=0.0032) 

and phosphoarginine (p=0.0112) (Uda et al. 2006). This response is comparable to a previous 

metabolomics investigation into the responses of Japanese Medaka embryos to Dinoseb 

(another herbicide that is known to uncouple oxidative phosphorylation), where the levels of 

phosphocreatine (part of the vertebrate phosphagen system) were significantly changed 

following exposure (Viant et al. 2006a). The study by Viant et al. (Viant et al. 2006a) also 

found altered levels of ATP as a further indicator of disruption to energy metabolism, 

however, in this current investigation ATP falls outside of the m/z range analysed so could 

not be detected. Another study using rat hepatocytes exposed to Dinoseb (Palmeira et al. 

1994) found a depletion of cellular glutathione, this depletion was proposed to initiate the 

process of cell death. While not a significant change, a depletion of glutathione (0.6 fold 

change) was also putatively identified in this investigation following DNP exposure. Cd 

exposure, unlike the previous metabolomics study of copper toxicity in D. magna (Chapter 3), 

did not induce oxidative stress in the form of glutathione depletion. However, consistent 

with the reported toxicity of a low concentration of Cd (6 μg/L) to D. magna, in which Krebs 

cycle enzymes were disturbed (Connon et al. 2008), we detected a significant increase in 

isocitrate. Previously, Cd has been shown to inhibit the enzyme isocitrate dehydrogenase in 
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an aquatic invertebrate (Ivanina et al. 2008). From a comparison with the significant changes 

found following Cd exposure in the investigation detailed in Chapter 4, it can be determined 

that some of the changes putatively identified, specifically decreases in arginine, methionine, 

histidine and phenylalanine could also be putatively identified in this investigation. However, 

it needs to be noted that none of these changes are significant and the average fold change 

for all these metabolites is small (0.8), but could be a further indication of the initial stages of 

Cd toxicity causing depletion of amino acids for defence and repair mechanisms. Fenvalerate, 

although unrelated to its action as a neurotoxin, has also been found to reduce Krebs cycle 

enzyme activity, disrupting primary metabolism in catfish (Tripathi and Verma 2004). In D. 

magna it reduced feeding rate and growth (Reynaldi et al. 2006), and a metabolomics study 

into esfenvalerate toxicity to Chinook salmon (Viant et al. 2006b) found decreased levels of 

ATP and phosphocreatine, all consistent with a perturbation to energy metabolism. Our 

observations support this, with 1.7- and 1.8-fold increases in AMP (p=0.1010) and ADP 

(p=0.0850) respectively, as well as a 2.2-fold increase in phosphoarginine (p=0.0087). 

Propranolol is a non-selective β–adrenergic receptor blocker that is used to treat 

hypertension (Sui et al. 2007). The metabolic effects of this drug in non-target organisms are 

less well understood, potentially due to the lack of β–adrenergic receptors in cladocerans 

(Stanley et al. 2006). The metabolic rate of D. magna was found to decrease in response to 

acute metroprolol exposure (another β–adrenergic receptor blocker) thought to be a 

consequence of reduced heart rate (Dzialowski et al. 2006). Whilst not significant, small 

increases (1.2-2 fold changes) in the levels of many amino acids putatively identified in this 

investigation following acute propranolol exposure could be a build up of these metabolites 
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due a reduced metabolic rate meaning they are not utilised for general metabolic processes. 

Propranolol exposure to D. magna has also been reported to cause membrane 

destabilisation (Huggett et al. 2002), while mussels exhibited an increase in lipid peroxidation 

(Sole et al. 2010), however, the lipophilic metabolites were not analysed in the current study, 

hampering the comparison of our data with the published literature. Future analysis of the 

non-polar fractions would also be particularly advantageous in the case of the potential 

disruption to energy metabolism indicated by DNP and fenvalerate exposure, as Daphnia are 

known to store energy in the form of triglyceride droplets (Tessier and Goulden 1982). 

 

5.3.4 Multivariate models for discriminating toxicant modes of action 

The second aim was to determine if the four toxicants that induced metabolic perturbations 

were distinguishable according to their MOAs. The metabolic measurements from the 

individual acute toxicity tests were combined into two datasets (for haemolymph and whole 

organism homogenates) optimal PLS-DA models were derived, using internal cross-validation 

to assess their predictive powers. The optimal PLS models each comprised of eight LVs, based 

upon the minimisation of classification errors, and accounted for ≥50% of the total variance 

in the metabolic data. From the scores plots for haemolymph and whole organism 

homogenates (LV1 vs. LV2, Figure 5.2a and 5.2b, respectively) a clear clustering of the 

individual samples within some of the treatment classes is evident, particularly for the whole 

organism homogenates. However the greatest separation within the haemolymph and whole 

organism homogenate scores plots, though markedly more obvious for the former, is that of 

the fenvalerate exposed samples and their corresponding solvent controls away from all 
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other samples along LV1. This suggested a strong solvent effect. Therefore scores plots 

showing LV2 vs. LV3 are also plotted (Figure 2c and 2d), which again show separations 

between some of the treatment classes. Considering both scores plots for haemolymph 

(Figure 2a and 2c), only the Cd-exposed class clearly separates from all other samples, 

consistent with the results from the individual toxicant analyses. For the whole organism 

homogenates (Figure 2b and 2d), there is much more distinct clustering of samples into each 

of their individual toxicant classes. 
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Figure 5.2 PLS-DA scores plots depicting LV1 against LV2 for (a) haemolymph and (b) whole organism 

homogenates, and LV2 against LV3 for (c) haemolymph and (d) whole organism homogenates of D. 

magna exposed to each of four toxicants. Classes comprise of control (●), solvent control (■), Cd 

exposed (Δ), DNP exposed (◊), fenvalerate exposed (□) and propranolol exposed (○). For both sample 

types, the separation along LV1 is dominated by a solvent effect. 
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Visual examination of PLS-DA scores plots, however, is not a reliable method for determining 

their predictive power (Westerhuis et al. 2008), partly because a 2-dimensional plot can only 

provide a limited description of the optimal 8-dimensional models calculated here. Therefore 

robust classification error rates for each of the treatment classes (control, solvent control, 

Cd, DNP, fenvalerate and propranolol) were calculated using internal cross validation, and 

the significance of these classification errors determined via permutation testing. The 

“optimal model” classification error rates for each treatment, for both the haemolymph and 

whole organism homogenate datasets, are low, confirming the high predictivities of the 

models (Table 5.6). For both sample types, prediction of Cd-exposed samples had the lowest 

error rates (both <1%), consistent with the visual interpretation of the PLS-DA scores plots 

(Figure 5.2). The mean classification error rate (across all four toxicants and two control 

classes) for the whole organism homogenates (3.9%) is lower than that for haemolymph 

(6.9%), providing evidence that the whole organism metabolome contains a greater amount 

of metabolic information that is specific to each of the four toxicant MOAs. These error rates 

clearly demonstrate that the metabolic responses to the four toxicants can each be 

differentiated from the others and also from the control groups. To highlight the quality of 

these predictive models, both Cd- and fenvalerate-induced biomarker signatures are so 

distinct that each enables >98% of samples to be correctly predicted; and this is true for 

metabolic perturbations to both the whole organism and haemolymph metabolomes.  
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Table 5.6 “Optimal model” and “permuted” classification error rates for each of the six exposure 

classes, and their mean value, for both haemolymph and whole organism homogenates of D. magna. 

The permuted classification error rates are presented as the mean values derived from 1000 random 

permutations of the class labels. 

 

Haemolymph 

 Control Solvent 

control 

Cd DNP Fenvalerate Propranolol Mean 

Optimal 

model 

classification 

error rate (%) 

11.2 2.7 0.1 17.8 1.2 8.2 6.9 

Permuted 

classification 

error rate (%) 

51.1 50.2 50.8 50.1 50.1 50.8 50.5 

Whole organism homogenates 

 Control Solvent 

control 

Cd DNP Fenvalerate Propranolol Mean 

Optimal 

model 

classification 

error rate (%) 

4.0 0.7 0.9 7.6 1.8 8.1 3.9 

Permuted 

classification 

error rate (%) 

50.9 50.1 50.2 50.0 50.4 50.8 50.4 

For all six exposure classes, in both sample types, p-value<0.001 
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Although the classification error rates appear low, these values do not provide any measure 

of statistical significance. To assess the statistical significance of these apparently highly 

predictive multivariate models, permutation testing was conducted. One thousand random 

permutations of the class labels prior to PLS-DA analyses resulted in a distribution of 

“permuted” classification error rates for each class, the mean of each being ca. 50% (Table 

5.6). From analyses of these distributions, the significance of the power of the optimal 

models to predict each of the four toxicant MOAs and two controls classes was determined 

to be p<0.001 (i.e. none of the 1000 permuted classification error rates were less than those 

from the optimal models). 

In principle, these predictive models can now be used to classify the metabolic perturbations 

induced by a toxicant of unknown MOA as similar (or not) to that caused by an inducer of 

oxidative stress, a sodium channel activator, an uncoupler of oxidative phosphorylation, or a 

non-selective β-blocker. The actual application of such an approach to chemical toxicity 

testing would of course require the construction of a larger library of sub-lethal metabolic 

responses to a series of defined MOAs. 

 

5.3.5 Whole organism metabolome provides more discriminatory predictive models 

The final aim was to determine whether the metabolome of haemolymph or of whole 

organism homogenates was the more discriminatory of the toxicant-induced metabolic 

perturbations. The univariate and multivariate analyses presented above clearly demonstrate 

that the whole organism metabolome provides the greatest predictivity of metabolic effect. 

Specifically, considering the analysis of the effects of the individual toxicants, whole organism 
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homogenates displayed a higher percentage of significantly changing peaks (average of 11% 

of all peaks detected across the four toxicants; Table 5.5) than for haemolymph (average of 

5.6%). Furthermore, this value for haemolymph is skewed by the Cd exposure (21%), with the 

remaining three toxicants inducing an average of only 0.5% of all peaks changing 

significantly; i.e. Cd is the only toxicant to induce a major change in the haemolymph 

metabolome. Overall this provides evidence that the whole organism metabolome’s 

response to a toxicant is typically more extensive compared to the response of the 

haemolymph. Further evidence for this can be derived from the PLS-DA models, in which the 

mean classification error rate (across all four toxicants and two control classes) for the whole 

organism homogenates (3.9%) is lower than that for haemolymph (6.9%). Hence this 

confirms that the whole organism metabolome contains a greater amount of metabolic 

information that is specific to each of the four toxicant-induced perturbations. It can 

therefore be concluded that whole organism homogenates of D. magna should be employed 

in any future applications of metabolomics in aquatic toxicity testing. 

 

In addition to the evidence presented above, there are several further benefits of using 

whole organism homogenates over haemolymph. First, whole organism sampling can be 

applied across all daphnid life-stages while haemolymph can only feasibly be extracted from 

adult animals. Second, whole organism studies allow for the standardisation of the biomass 

per sample, this is an important criteria in FT-ICR mass spectrometry as highlighted by the 

studies conducted in Chapter 3, whereas the volumes of haemolymph extracted can vary 
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considerably across individuals. Finally, the extraction of haemolymph from daphnids is more 

time consuming and prone to operator error than simply flash-freezing whole animals. 

 

5.4 Conclusion 

This study represents the first reported multiple-toxicant metabolomics study in the OECD 

recommended test species, Daphnia magna. We have confirmed that a metabolic effect can 

be elucidated using both haemolymph samples and whole organism homogenates for four 

different toxicants. We have also demonstrated that individual toxicants, with differing 

MOAs can be distinguished using multivariate classification models with minimal 

classification error rates. Based upon the results of the individual acute toxicity tests and the 

combined analysis of all four toxicants, we conclude that whole organism homogenates are 

the more information-rich sample type for use in predictive toxicology. These findings 

strengthen the argument that omics approaches could become a valuable additional tool 

within toxicity testing and ecological risk assessment. Moreover, the ability to use single 

daphnids for such studies hints at the considerable future potential for causally relating 

molecular responses to internationally-recognised reproductive fitness. 

The next investigation aims to exploit this potential by evaluating the possibility of using 

metabolic data to predict changes to the reproductive output of D. magna; utilising whole 

organism homogenates of individual D. magna, identified here as the more information-rich 

and reproducible sample type. 
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CHAPTER SIX: 

Discovering metabolic markers that are predictive of 

reduced reproductive output in Daphnia magna  
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6.1 Introduction 

Over recent decades the use of biomarker techniques in ecotoxicology has become more 

popular; looking for molecular indicators of exposure to toxic chemicals that ultimately leads 

to higher level effects and are, in principle, capable of predicting reduced performance (De 

Coen and Janssen 2003; Forbes et al. 2006; Moore et al. 2004). However, despite the early 

promise of these techniques, they have done little except increase our ability to detect stress 

responses at low levels of exposure (Preston 2002), and are yet to demonstrate their 

usefulness in predicting organism fitness and subsequent population to ecosystem level 

effects (Forbes et al. 2006). Lately, the utilisation of metabolomics techniques in toxicity 

testing have had some success in overcoming the problem of elucidating toxicant MOA 

(Ebbels et al. 2007; Guo et al. 2009; Viant et al. 2006b), and the previous study (Chapter 5) 

has also shown this to be possible in Daphnia magna. However, until recently the metabolic 

pertubations determined from metabolomic investigations have also lacked the ability to 

predict whole organism fitness, such as adverse effects on growth or reproductive output. 

One metabolomics study that attempts to address this issue was reported by Hines et al. 

(Hines et al. 2010) where a measure of physiological response (scope for growth; SFG) and 

metabolic changes in the marine mussel (Mytilus edulis) following exposure to copper or 

pentachlorophenol (PCP), found metabolic signatures that were predictive of reduced fitness. 

Since D. magna is a keystone species in the freshwater aquatic food web, any adverse effects 

on this species could cause ecosystem level responses (Flaherty and Dodson 2005) and as 

such is a vital species for any investigation that can link subcellular changes to whole 

organism responses. A study reported by De Coen and Janssen (De Coen and Janssen 2003) 
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successfully attempted to link subcellular changes in D. magna to population level responses 

by measuring chronic effects after 21 d of exposure to a series of toxicants, and building 

multivariate models to predict changes in pre-defined metabolite changes measured at 96 h. 

However, unlike metabolomics investigations, which are relatively non-targeted, this study 

required the selection of short-term exposure endpoints and thus some prior knowledge of 

toxicant MOA and expected targets of toxicity. Therefore, the main objective of this study is 

to attempt to find molecular biomarkers of reduced reproductive output in D. magna, 

following toxicant exposure, using FT-ICR MS-based metabolomics (of individual D. magna 

whole-organism homogenates). These investigations used three of the model toxicants 

investigated in Chapter 5: cadmium (Cd), 2,4-dinitrophenol (DNP) and propranolol, with the 

initial aim being to induce changes in the reproductive output of D. magna following a 

standard OECD chronic exposure (OECD 1998) to varying concentrations (0.05%-10% of the 

neonatal LC50; 1% dose common to all three toxicants) of one of these toxicants. Since these 

studies were conducted on individual daphnids, both the reproductive output and the 

subsequent FT-ICR MS measurements relate to a single animal. To achieve the objective of 

biomarker discovery, the development of robust multivariate models using partial least 

squares regression (PLS-R) were employed to attempt to predict the reproductive output of 

an individual D. magna based upon its metabolic profile. 
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6.2 Materials and Methods 

6.2.1 Determination of sub-lethal concentrations 

Initial 21 d test exposures to each of the 3 toxicants were conducted to determine the 

appropriate concentrations at which the animals were likely to survive throughout the entire 

exposure period. Individual 3
rd

 brood neonates were exposed to the relevant concentration 

of toxicant in 250 mL media, exposure vessels were fed daily with Chlorella vulgaris as per 

normal culturing conditions (Section 2.1) without the addition of any supplements. Media 

and appropriate toxicant renewal occurred every 48 hours. The starting test concentration 

for each of the three toxicants was 10% of the neonatal LC50 concentration previously 

determined in Chapter 5 (n=5 exposure vessels per concentration). If mortality occurred 

within the 21 d exposure period then repeat exposures of a lesser concentrations were set 

up until a concentration was determined that allowed for survival through the entire test 

period. 

 

6.2.2 Daphnia magna chronic exposures 

Individual D. magna neonates (3
rd

 brood, <24-h old), in 250 mL media, were exposed for 21 

days to varying concentrations of one of the three toxicants tested (n=8 exposure vessels per 

concentration). Animals were fed daily with Chlorella vulgaris as per normal culturing 

conditions (Section 2.1) without the addition of any supplements, with media and toxicant 

renewal every 48 hours. Three separate chronic studies were conducted using cadmium, DNP 

or propranolol as the test chemical. Nominal concentrations were: 0, 0.35, 1.4, 3.5 and 7 μgL
-

1
 cadmium (measured as Cd

2+
 ions); 0, 0.15, 0.75 and 1.5 mgL

-1
 DNP and 0, 0.14, 0.7 and 1.4 
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mgL
-1

 propranolol. As a means of normalising to biological effect, the exposures of 7 μgL
-1

 

cadmium, 0.15 mgL
-1

 DNP and 0.14 mgL
-1

 propranolol all corresponded to 1% of the 

previously determined neonatal LC50 (Chapter 5). For each of the three chronic studies a 

further control was set up that were not exposed to any toxicants but were fed on a half 

ration of algae (termed “half-feed control”), in order to see if any of the adverse metabolic 

effects were due to a reduction in feeding. Throughout each of the 21 d studies reproductive 

output was monitored and recorded, specifically the number of offspring produced per adult 

per brood and the day on which each brood was released. Neonates were removed from the 

test beakers and discarded. Any mortality during the exposure period was also recorded. At 

the end of the 21 d test period, the now adult daphnids were captured and flash frozen as 

detailed in Section 2.2, then stored at -80°C prior to metabolite extraction. 

 

6.2.3 Metabolite extraction, FT-ICR MS, data processing and putative peak identification  

At the culmination of the 21 d exposure, daphnids were captured (Section 2.2) and 

metabolites extracted as detailed in Section 2.3.1, including the preparation of an extract 

blank. FT-ICR MS analysis in negative ion mode was performed on all biological samples and 

extract blanks as described in Section 2.4, with all samples analysed in triplicate, utilising the 

SIM-stitching approach. 

For each of the three toxicants studied (Cd, DNP and Propranolol), mass spectra were 

processed as detailed in Section 2.5; the sample filter set to retain only those peaks that 

occurred in at least 50% of all samples using a 1.8ppm spread along the m/z axis for defining 

unique peaks, and blank peaks were retained only if three times as intense in the biological 
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sample. This resulted in three separate processed data matrices, one each for Cd, DNP and 

Propranolol. Subsequently, each matrix was further processed by the addition of missing 

values, normalised and g-log transformed (transformation parameter λ=7.31×10
-11

). Putative 

identification of peaks was as described in Section 2.6, enabling the identification of peaks 

directly related to the parent toxicants, which were subsequently removed from the datasets 

prior to statistical analysis. 

 

6.2.4 Statistical analysis 

To visualise the effects of each individual toxicant on the metabolome of D. magna, PCAs 

were conducted on the processed data matrices (Section 2.7.1) to generate scores plots. 

Univariate statistical tests (t-tests; Section 2.7.2) were used to determine if individual peaks 

(i.e. metabolites) changed significantly between the control and high dose classes. The total 

number of offspring produced per individual daphnid over the duration of the 21 d study was 

used as a measure of reproductive output of D. magna. For each toxicant, Grubbs statistical 

tests were employed for each dose group to determine any outliers in the reproductive 

output data (which were subsequently removed from any further analysis) and ANOVAs 

(across all controls and dose groups) were then conducted on this data followed by a Tukey-

Kramer post-hoc test that revealed any significant differences. 

Partial least squares regression (PLS-R) was then employed for each individual toxicant to 

analyse the metabolic data, whilst simultaneously modelling the reproductive output; this 

was performed for each of the three toxicants tested. The metabolic data is used as a 

predictor for the response variable of reproductive output (Wold et al. 2001) and PLS-R 
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attempts to find factors that both capture the variance in the metabolic data and achieves 

correlation with the reproductive output (Wise et al. 2006). Cross validation (venetian blinds 

with 6 splits) was employed to prevent over-fitting of the data (Wold et al. 2001). After cross 

validation, the quality of the regression model was assessed by comparing the measured and 

predicted values of reproductive output; this generates a cross-validated R
2
 value that is 

indicative of how well the model might predict the reproductive output of unknown samples 

(Wise et al. 2006; Wold et al. 2001). Next, to evaluate the statistical significance of these 

cross-validated R
2
 values, the class labels were randomly permuted and another PLS-R model 

was built. Internal cross validation was used to calculate a “permuted” R
2
 value; this 

permutation and model building process was repeated 1000 times. Statistical significance, for 

the prediction of reproductive output, could then be assessed by comparing the actual PLS-R 

model R
2
 value to the null distribution of permuted R

2
 values (Westerhuis et al. 2008). 

Specifically the number of instances for which the permuted R
2
 values were greater than the 

actual R
2
 value was determined and then divided by the total number of permutations 

(1000), generating a p-value, with p<0.05 indicating that the metabolic profile associated 

with exposure to that toxicant was predictive of reduced reproductive output in D. magna. 

To determine which metabolites were predictive of changes in the reproductive output 

regression vectors were generated from each of the three PLS-R models; this resulted in a list 

of regression vectors (related to each of the peaks in the metabolic data) for Cd, DNP and 

propranolol. In theory, those peaks then deemed to be important predictors could be 

putatively identified (Wise et al. 2006), effectively revealing potential biomarkers of reduced 

reproductive output in D. magna. These regression vectors were subsequently ranked in 
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order of absolute value and plotted to visually assess what proportion of the total number of 

peaks dominated the PLS-R models for each toxicant. The original processed metabolic data 

matrices for each of the toxicant exposures were then restructured in order of their absolute 

regression vector values (from the highest to the lowest); this allowed further PLS-R model 

building. Specifically, multiple PLS-R models were built using the restructured data matrices; 

starting with the peak with the highest absolute regression vector value (P) then 

incorporating the next peak from this list (P+1, P+2, P+3, etc), until all of the peaks from the 

metabolic data were included in the model. This resulted in an R
2
 value for each further peak 

included in the model, ultimately generating a list of R
2
 values that corresponded to the 

number of peaks incorporated in the model. This multiple model building process was 

conducted individually for all three toxicants (Cd, DNP and propranolol), consequently 

producing a list of R
2
 values (for each peak included in the model) for each of the three 

toxicants. These R
2
 values could then be plotted and further assessed to determine the 

fewest number of peaks that needed to be included in the multi-regression analysis for each 

toxicant, in order to produce an “optimal” PLS-R model that is highly predictive of 

reproductive output. 

 

6.3 Results and discussion 

6.3.1 Chronic toxicant exposures of Daphnia magna 

The preliminary 21 d exposures of D. magna to both DNP and propranolol determined that 

10% of the neonatal LC50 (1.5 mgL
-1

 DNP and 1.4 mgL
-1

 propranolol) did not induce any 

mortality for the duration of the exposure. However, exposure to cadmium did induce 
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mortality at this concentration, with 100% survival for the duration of a chronic 21 d study 

only occurring at 1% of the neonatal LC50 (7 μgL
-1

). Subsequently these concentrations were 

used as the highest doses of each toxicant for the chronic studies. It should be noted that 

subjective observations of the animals exposed to Cd showed them to be very immobile and 

pale in colour at the end of this period. 

No mortality occurred during the 21 d exposure to propranolol. Some mortality occurred 

during the chronic exposures in both the Cd and DNP studies. Specifically, during the Cd 

exposure: 1 animal died in each of the 0 and 1.4 μgL
-1

 doses, 5 animals died at 3.5 μgL
-1

 and 3 

animals died at 7 μgL
-1

. Due to the high levels of mortality in the Cd exposure, the 3.5 and 7 

μgL
-1

 doses were subsequently grouped together as one dose for the analysis of reproductive 

output. During the DNP exposure, 1 animal died in each of the 0, 0.15 and 0.75 mgL
-1

 dose 

groups. 

 

6.3.2 Metabolic effects of toxicant exposure 

During FT-ICR MS analysis of the biological samples, it should be noted that one sample from 

the half-feed control in the propranolol exposure failed to spray. Putative identification of 

peaks following data processing allowed for the identification of two peaks ([Dinitrophenol-

H]
-
 and [Dinitrophenol

 
(
13

C)-H]
-
) in the DNP dataset that directly related to the parent 

toxicant, these were removed prior to statistical analysis. Whilst determining a toxicant 

induced metabolic effect was not an objective of this investigation, the metabolic data is 

nonetheless required for the development of the predictive models and subsequent 

biomarker discovery. Multivariate analysis (PCA) of the metabolic data for each toxicant is 
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presented in Figure 6.1. Visual interpretation of the PCA scores plots shows a clear 

separation between the different dose groups following exposure to both Cd and propranolol 

(Figure 6.1a and 6.1c respectively), indicating a toxicant induced metabolic effect. Exposure 

to DNP (Figure 6.1b) is less well separated suggesting less of a toxicant effect in this instance. 

For all three toxicant exposures the half-feed group was separated from the control and 

toxicant exposed groups confirming that none of the toxicants caused a starvation effect. 

Table 6.1 summarises the total number of peaks found in each of the three toxicant studies, 

along with the proportion of those peaks that were significant following univariate analysis 

(Student’s t-tests between control and high dose samples; adjusted for FDR<5%). Consistent 

with the PCA results, where little class separation was visible, the proportion of significant 

peaks in the DNP data is only 2.6% of the total peaks detected. The high proportion of 

significant peaks in the Cd and propranolol datasets (59 and 44% respectively) is again 

consistent with the clear separation seen in the corresponding scores plots.  
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Figure 6.1 PCA scores plot from analysis of the negative ion FT-ICR mass spectra from the D. magna 

chronic studies exposed to (a) Cd, (b) DNP and (c) Propranolol. Classes comprise of control (●), half-

feed control (○), Low dose (□), medium dose (◊) and high dose(s) (Δ).  
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Table 6.1 The total number of peaks detected and the proportion of peaks that significantly changed 

concentration (FDR<0.05) between the control and high dose groups, following chronic exposure of 

D. magna to cadmium, DNP and propranolol. 

 

 Cd DNP Propranolol 

Total Number of peaks 4056 4112 3647 

Proportion of significant peaks (%) 59 2.6 44 

 

 

 

 

 

 

 

6.3.3 Effects of chronic toxicant exposure on the reproductive output of D. magna 

The initial aim of this study was to induce a change in the reproductive output of individual 

D. magna following chronic toxicant exposure to Cd, DNP or propranolol. The reproductive 

output of D. magna was assessed in terms of the total number of offspring produced per 

individual daphnid throughout the 21 d exposure period. Figure 6.2 depicts the reproductive 

output for every surviving animal for all three toxicants (Cd, DNP and propranolol). Grubbs 

outlier tests determined that the reproductive output from two animals in the DNP exposure 

were outliers (one in the low dose group and one in the medium dose group) and these have 

subsequently been removed from the data. Visual interpretation of the plots shows a distinct 

reduction in reproductive output with increasing toxicant dose following Cd exposure (Figure 

6.2a). A clear toxicant induced effect can be seen following propranolol exposure (Figure 

6.2c) but little effect can be seen on reproductive output following exposure to DNP (Figure 

6.2b). Univariate statistical analysis (ANOVA across the dose groups) determined statistically 

significant effects on D. magna reproductive output for all three toxicants: Cd (p= 1.73 × 10
-
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20
), DNP (p= 1.49 × 10

-6
) and propranolol (p= 1.52 × 10

-15
). Subsequent Tukey-Kramer post-

hoc tests revealed that significant reproductive differences in the Cd exposed daphnids 

occurred between all dose groups except for between the half-fed and low dose group. In 

the DNP exposed daphnids the control, low and medium dose groups were significantly 

different to the half-fed and high dose groups. The reproductive output from the control 

group of daphnids in the propranolol exposure were significantly different from all other 

dose groups, with the half-fed and low dose groups also proving to be significantly different 

from the medium and high dose groups. These significant findings are consistent with the 

plots in Figure 6.2, and establish that a reduction reproductive output of the daphnids has 

been induced by each of the toxicants, with the most notable reduction occurring following 

exposure to Cd. 
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Figure 6.2 Bar charts of the reproductive output of individual D. magna following 21 d exposure to (a) 

Cd, (b) DNP and (c) Propranolol.  
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6.3.4 Development of predictive multivariate models 

The overall objective of this study was to discover metabolic biomarkers that are predictive 

of reduced reproductive output in D. magna following toxicant exposure. In order to achieve 

this, cross-validated multivariate models were developed for each of the three toxicants (Cd, 

DNP and propranolol) using PLS-R (Figure 6.3). The models were then evaluated as to how 

well they might predict the reproductive output of unknown samples. The PLS-R models 

generated high cross-validated R
2
 values for all three toxicants: Cd (4056 peaks; R

2 
= 0.822), 

DNP (4112 peaks; R
2 

= 0.768) and propranolol (3647 peaks; R
2 

= 0.735), suggesting high 

predictive capabilities of each model, consistent with the highly correlated plots depicted in 

Figure 6.3. 

To assess the statistical significance of these apparently highly predictive multivariate 

models, permutation testing was conducted. One thousand random permutations of the 

class labels prior to PLS-R analyses resulted in a distribution of “permuted” cross-validated R
2
 

values, the mean for each toxicant being ca. 0.05. From analyses of these distributions, the 

significance of the power of the actual PLS-R models to predict the reproductive output of 

individual D. magna was determined to be p<0.001 (i.e. none of the 1000 permuted cross-

validated R
2
 values were greater than those from the actual models) for all three toxicants. 

The statistical significance of these highly predictive models demonstrates that signals from 

the mass spectra of individual D. magna can be utilised to predict the reproductive output of 

daphnids exposed to toxicants of the same or similar MOA and potentially extrapolation to 

subsequent population/ecosystem effects. 
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Figure 6.3 Correlation between measured and predicted reproductive output for individual daphnids, 

the latter derived from a PLS-R model and the metabolic signatures of individual daphnids following 

exposure to (a) Cd, (b) DNP and (c) propranolol, including lines of best fit. The cross-validated R
2
 

values are 0.822 for Cd (4056 peaks), 0.768 for DNP (4112 peaks) and 0.735 for propranolol (3647 

peaks); p
 
= <0.001 in all cases. Classes comprise of control (●), half-feed control (○), Low dose (□), 

medium dose (◊) and high dose(s) (Δ). 
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6.3.4.1 Development of optimal predictive models using each toxicant 

When building PLS-R models, regression vectors are generated; the highest regression 

vectors relate to the m/z value of those peaks that are most predictive of reduced 

reproductive output of D. magna using the metabolic data. This resulted in a ranked list of 

absolute regression vectors for each toxicant (Cd, DNP and propranolol). These regression 

vectors are depicted in Figure 6.4, and clearly show that only a small proportion of the total 

numbers of peaks dominate the PLS-R models. As detailed in Section 6.2.4, these ranked 

regression vector values were then used to build multiple PLS-R models for each toxicant, 

incorporating increasing numbers of peaks. This strategy generated a list of R
2
 values for each 

toxicant; these are depicted in Figure 6.5. Consistent with the plots of regression vectors 

(Figure 6.4), it can clearly be seen only a small proportion of the total peaks are required to 

achieve a high R
2
 value, thus a highly predictive model, for all three toxicants. Forward 

selection was utilised to determine the fewest number of peaks required to build an 

“optimal” highly predictive model (i.e. generating a high R
2
 value), using a cut-off point of 

within 1% of the greatest R
2
 value generated by the multiple model building strategy. This 

determined that (in order of absolute regression vector value), the top 107 peaks from the 

Cd dataset, the top 502 peaks from the DNP dataset and the top 170 peaks from the 

propranolol dataset would build toxicant specific models that are highly predictive of 

reduced reproductive output in D. magna. The peaks determined from the forward selection 

strategy are detailed on the Supplementary Information CD (Tables SI3, SI4 and SI5 for Cd, 

DNP and propranolol respectively). The number of peaks required to build optimal predictive 

models is consistent with toxicant induced effects of reproductive output in Figure 6.2, the 
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clearest toxicant induced effect is in the Cd data (Figure 6.2a) and requires the fewest peaks 

in the optimal model, whereas the lack of toxicant induced effect in the DNP data (Figure 

6.2b) requires the largest number of peaks in the optimal model.  

Utilising the peaks from the forward selection strategy, optimal PLS-R models were then built 

(Figure 6.6). These models generated cross-validated R
2
 values of 0.937 for Cd, 0.851 for DNP 

and 0.907 for propranolol. These are all noticeably higher that the values generated from the 

original models (0.822 for Cd, 0.768 for DNP and 0.735 for propranolol) but consistent in 

their predictive capabilities, with the Cd dataset being the most predictive of reduced 

reproductive output in D. magna. It is notable that, for all three toxicants, over one hundred 

peaks are required to build the optimal, highly predictive, PLS-R models. This indicates that a 

lot of metabolic data is required to predict reduced reproductive output in D. magna. 
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Figure 6.4 Plots of the ranked absolute regression vectors generated from the building of PLS-R 

models using metabolic and reproductive output data from individual D. magna following 21 d 

exposure to (a) Cd, (b) DNP and (c) Propranolol. The inset plots are the top 500 peaks in each 

instance.
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Figure 6.5 Plots of the R

2
 values of increasing numbers of peaks (ranked by absolute regression 

vector) incorporated into the building of PLS-R models using metabolic and reproductive output data 

from individual D. magna following a 21 d exposure to (a) Cd, (b) DNP and (c) Propranolol. The inset 

plots are the first 500 peaks included in the model in each instance. This data was used in a forward 

selection strategy for building an optimal PLS-R model for each toxicant. 
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Figure 6.6 Correlation between measured and predicted reproductive output for individual daphnids, 

the latter derived from an optimal PLS-R model and the metabolic signatures of individual daphnids 

following exposure to (a) Cd, (b) DNP and (c) propranolol, including lines of best fit. The cross-

validated R
2
 values are 0.937 for Cd (107 peaks), 0.851 for DNP (502 peaks)and 0.907 for propranolol 

(170 peaks). Classes comprise of control (●), half-feed control (○), Low dose (□), medium dose (◊) and 

high dose(s) (Δ). 
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6.3.5 Discovery of biomarkers predictive of reduced reproductive output in D. magna  

One objective of this study was to find molecular biomarkers of exposure, regardless of 

toxicant MOA. Therefore, the peaks that were determined from the forward selection 

strategy for use in the optimal (but toxicant specific) PLS-R predictive models were assessed 

to establish whether there were any common peaks across the three toxicant models (Cd, 

DNP and propranolol). Putative identification of these peaks could then identify potential 

biomarkers of reduced reproductive output (Wise et al. 2006). A peak was deemed to be 

common across the datasets if it occurred within a 1 ppm error range. Figure 6.7a visually 

depicts the common peaks from the three toxicant datasets; clearly the majority of common 

peaks occur between the Cd and propranolol datasets, with less overlap with the DNP data in 

both cases and only one peak common across all three toxicants. To confirm that the 

appearance of common peaks was not purely by chance due to using a large number of 

peaks, random permutations (n=3) of the datasets were utilised to assess this (Figure 6.7b). 

This clearly shows that no common peaks were found using the permuted data giving 

confidence in the occurrence of the common peaks in the real data and their potential to be 

biomarkers of reduced reproductive output in D. magna. 

The common peaks across two or more of the three datasets are explicitly listed in Table 6.2,  

along with the putative identification of those peaks using the modified KEGG database as 

described in Section 2.6. Further information on the significance and fold change of these 

peaks (Student’s t-tests between control and high dose samples; adjusted for FDR<5%) 

detailed in Table 6.3. There is a degree of consistency of the fold changes and significance of 

some of the peaks are detailed in Table 6.3 highlighting these peaks in particular as metabolic 
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biomarkers of reduced reproductive output, regardless of toxicant MOA. Interestingly there 

are also some inconsistencies (marked as bold in Table 6.3) which suggests that the 

predictive models are somewhat toxicant specific and the metabolic changes are related to 

the toxicant with the reduced reproductive output just well correlated rather than causally 

related.  
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Figure 6.7 Venn diagrams depicting the common peaks from (a) the optimal PLS-R models of 

individual daphnids following exposure to Cd, DNP and propranolol and (b) the mean of 3 random 

permutations of the same data. 
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Table 6.2 Summary of the common peaks the optimal PLS-R models of individual D. magna following 

exposure to cadmium, DNP and propranolol. With the putative identification of metabolites using a 

modified KEGG database. 

Cd DNP Propranolol 

Empirical formula of 

putatively identified 

metabolite 

Putative metabolite 

identification 
a
 

145.06265 145.06267    

175.02481 175.0248 175.02482 C6H8O6 Ascorbate (11) 

181.07302 181.07308  C7H10N4O2 Lathyrine  

196.04518 196.04505    

237.99488  237.9949   

251.09631  251.09627   

275.00834  275.00834   

277.2178  277.2178  M1 (
12

C) 

278.22116  278.22116  M1 (
13

C) 

295.99316  295.99326   

340.12549  340.12564   

 354.17616 354.17634   

359.22133  359.22124   

392.97009  392.96982   

400.14692  400.14709   

411.27628  411.27618   

441.17365  441.17369   

474.97352  474.97312   

475.17612  475.17586   

a
 Following removal of assignments in which the match was a non-endogenous metabolite such as a 

drug, plasticiser or pesticide. However, compounds such as secondary alkaloid metabolites and 

bacterial metabolites have not been removed and the presence of these reflects the fact that 

empirical formulae are insufficient for unambiguous metabolite identification. The number in 

parentheses represents the total number of possible metabolites that match the stated empirical 

formula. 
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Table 6.3 Summary of the common peaks the optimal PLS-R models of individual D. magna following 

exposure to cadmium, DNP and propranolol. Showing the significance and fold change values for each 

of the peaks following Student’s t-tests between control and high dose samples; adjusted for 

FDR<5%. Peaks marked in bold text show inconsistency in fold changes between toxicants. 

 

m/z Cd DNP Propranolol 

145.063 0.938 0.802 - 

175.025 0.498 0.636 0.571 

181.073 6.722 (***) 0.574 - 

196.045 2.199 0.478 - 

237.995 1.354 - 7.225 

251.096 0.503 (*) - 0.188 (***) 

275.008 0.704 - 0.298 (**) 

277.218 0.229 - 0.736 

278.221 0.260 - 0.753 

295.993 0.438 (*) - 0.383 (**) 

340.125 11.993 - 5.284 (***) 

354.176 - 0.571 0.375 

359.221 0.337 - 0.931 

392.970 0.128 (***) - 0.204 (**) 

400.147 20.737 - 7.558 (***) 

411.276 0.164 - 1.433 

441.174 0.534 - 1.011 

474.973 0.182 (***) - 0.209 (**) 

475.176 10.705 (**) - 0.625 

*** p=0.005 

** p=0.01 

* p=0.05 
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6.3.5.1 Potential biomarker of reduced reproductive output in D. magna 

Ultimately, the ideal route forward is extensive metabolite identification of the peaks that 

were utilised in the optimal PLS-R models for each of the three toxicants. A biomarker 

signature of >100 peaks rather than a single or several peaks is a more robust approach to 

relating subcellular changes to whole organism response. This would create models of 

metabolic signatures that are predictive of toxicant specific induced reduction in 

reproduction in D. magna. However, such extensive metabolite identification is extremely 

challenging and new methods are being developed to overcome this problem. Until this is 

achievable, here, we focus on the single peak that was determined to be an important 

predictor of reduced reproductive output in D. magna across all three toxicants, this has 

been putatively identified as ascorbate (Table 6.2). The fold change in this peak is also 

consistent across the three toxicants (a mean 2-fold decrease from control to high dose) 

indicating that a reduction in ascorbate could be a biomarker of exposure that is causally 

related to reduced reproductive output in D. magna, regardless of toxicant MOA. Ascorbate 

has long been associated with fertility (Loh and Wilson 1971), it is considered an essential 

biochemical for reproduction and potentially a significant factor in human fertility (Luck et al. 

1995). In the aquatic environment, ascorbate is used as a supplement in the aquaculture of 

fish as it is deemed such an important nutrient for reproductive function, a deficiency causing 

reduced gamete production and quality and thus fertility (Ciereszko and Dabrowski 1995; 

Dabrowski and Ciereszko 2001). There is evidence that ascorbate performs a protective role 

against genetic defects during gametogenesis in fish  (Dabrowski and Ciereszko 2001) and it 

has also been proposed as a biomarker of ovulation in the seabass (Dicentrarchus labrax) 
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(Guerriero et al. 1999). Similar findings have also been reported in the aquaculture of 

Penaeid shrimp, where high levels of dietary ascorbate were related to a high hatch rate of 

Fenneropenaeus indicus eggs (Wouters et al. 2001) and a diet high in ascorbate also 

increased the resistance of postlarvae shrimp (Penaeus monodon and Penaeus vannamei) to 

infection and stress (Merchie et al. 1997). The previously reported study by De Coen and 

Janssen (2003) which attempted to link early biomarkers of exposure to whole organism 

responses found that the highest contributions to the predictive models for growth and 

survival were obtained from cellular energy allocation measurements (particularly lipid 

content) and parameters related to oxidative stress (catalase and DNA damage) (De Coen 

and Janssen 2003). The lipid fractions of the samples used in this investigation were not 

analysed, however, the potential discovery of a reduction in ascorbate, combined with its 

well known anti-oxidant properties (Padayatty et al. 2003) are consistent with the 

speculation that damage caused by oxidative stress is predictive of reduced survival 

capabilities of D. magna (De Coen and Janssen 2003). 

Our findings indicate that a decrease in ascorbate levels in D. magna, could be predictive of 

reduced reproductive output as it features highly in all three optimal PLS-R models (for Cd, 

DNP and propranolol. The reported evidence of high levels of ascorbate relating to high 

levels of fertility and reproductive function gives confidence in the putative identification of 

this predictive peak as ascorbate, however, further work is required to confirm the identity of 

this peak, and indeed of the other peaks that could potentially be predictive of reduced 

reproductive output in D. magna. Techniques such as tandem MS (MS/MS) can be used, 
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allowing structural identification of metabolites from interpretation of fragment ions and 

fragmentation patterns (Dunn and Ellis 2005).  

 

6.4 Conclusion 

This study has established that metabolic signatures from individual D. magna exposed to 

toxicants can be used to develop multivariate models that are highly predictive of reduced 

reproductive output. Furthermore, it has determined that biomarkers of reduced 

reproductive output can be elucidated that are either toxicant specific (Cd, DNP or 

propranolol) or generic. One particular example from this work is the possibility that 

decreased ascorbate levels could be a generic biomarker of reduced reproductive function in 

D. magna. However, this investigation has also highlighted that a lot of metabolic data is 

required to build highly predictive models and, despite the challenge of metabolite 

identification, metabolomics studies are ideal for measuring hundreds of metabolites 

simultaneously requiring no prior knowledge of toxicant MOA. Since chronic studies are both 

resource and time expensive, methods that reduce these costs are the ultimate aim for 

ecotoxicological studies that are predictive of whole organism responses (Santojanni et al. 

1998). The greatest validation of this approach would therefore be to determine if short-

term (acute) exposure to these toxicants could establish the same metabolic pertubations 

and biomarkers of toxicity. Overall, this investigation highlighted the considerable potential 

of using non-targeted metabolomics to find measurements of subcellular responses that can 

be predictive of higher level biological responses, with subsequent implications for 

population and ecosystem dynamics. 
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CHAPTER SEVEN: 

Final Conclusions and Future Work 
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At the start of this research four aims were outlined (Section 1.8) in order to achieve the 

primary objective of this thesis in exploring the potential for FT-ICR mass spectrometry based 

metabolomics in regulatory toxicity testing using Daphnia magna. Initially the feasibility of 

using this approach with the small, freshwater invertebrate, D. magna had to be assessed 

(Chapters 3 and 4). The concept of a metabolic biomarker signature that informs upon 

toxicant MOA (Chapter 5) and on reproductive fitness (Chapter 6) was then explored, using 

different metabolite signatures for each outcome. How well these aims were addressed will 

be considered and what further work is necessary, either to entirely fulfil these aims or in 

light of the findings from each investigation. 

 

7.1 The feasibility of FT-ICR MS-based metabolomics for toxicity testing using Daphnia 

magna  

The first aim of this thesis was to optimise an FT-ICR mass spectrometry based metabolomics 

approach using whole organism homogenates of D. magna; subsequently validating this 

technique using copper as a model toxicant and assessing its feasibility for use in first-tier 

toxicity testing. 

The studies detailed in Chapter 3 are the first reported metabolomics investigations utilising 

the keystone freshwater aquatic invertebrate D. magna. The findings confirm that FT-ICR MS, 

coupled with the SIM-stitching spectral processing approach, is an effective method of 

toxicity testing using D. magna whole organism homogenates. Specifically, during the 

optimisation studies it was highlighted that this approach was a highly sensitive technique, 

detecting many thousands of signals, and was reproducible, capable of discriminating 

between different life-stages of Daphnia. A further discovery during the optimisation studies 
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was that the technique also discriminated between differing masses of biological material 

drawing an important conclusion that the amount of biological material used in this approach 

needs to be standardised for any direct comparison of the results. This finding is important 

for FT-ICR MS metabolomics studies of any biological sample. The feasibility of this approach 

for future first-tier toxicity testing was confirmed by the results from the acute copper 

toxicity tests. Here, supervised multivariate analysis (PLS-DA) enabled the classification of 

samples into differing degrees of copper toxicity, with a high degree of consistency of the 

copper induced metabolic changes between the positive and negative ion mode mass 

spectrometry measurements. Putative identification of peaks identified potential biomarkers 

of toxicity that were consistent with the known MOA of copper, including known biomarkers 

of oxidative stress such as depleted GSH and a decrease in the amino acid pool. In addition to 

this, the discovery of increased N-acetylspermidine following copper exposure as a potential 

new biomarker highlighted the potential of this approach for metabolic biomarker discovery 

and mechanistic insight into toxicant MOA. Further analysis would be required to confirm N-

acetylspermidine as a novel biomarker of copper toxicity, such as tandem MS to confirm the 

metabolic identity of this signal in the mass spectrum or targeted analysis such as HPLC on 

levels of N-acetylspermidine following copper, or indeed other heavy metals, exposures. 

These findings have validated the FT-ICR MS approach as an effective approach, ideal for high 

throughput first-tier screening of chemicals in D. magna. Future studies using other toxicants 

with well documented MOAs would add further validity to this approach. 

An area where this approach has its limitations is in the identification of metabolites. Each 

peak could comprise of more than one metabolite as structural isomers will not be separated 
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by the direct infusion FT-ICR approach and none of the metabolite assignments reported in 

this study can be regarded as unambiguous since they depend only on accurate mass. To 

overcome these issues, a hyphenated technique such as LC-MS or tandem MS could be 

employed, however, these techniques would prevent this being a high-throughput approach. 

Since the overall objective of these studies was to assess this approach for use in high-

throughput screening and prioritisation of toxicants for further testing then it can be 

concluded that the outcomes of these studies have met this aim. 

 

7.2 The FT-ICR MS-based metabolomics approach using Daphnia magna haemolymph 

Following the achievement of the first aim of optimising and validating the FT-ICR MS 

metabolomics approach for toxicity testing using whole body homogenates of D. magna the 

second aim of this thesis was to optimise the same approach using D. magna haemolymph. 

The premise for using haemolymph as a biological sample being that it could provide a 

“cleaner” biological sample for detecting significant metabolic changes when compared to 

whole organism homogenates that could mask subtle toxicant induced effects (i.e. organ or 

tissue specific effects).  The toxicant induced metabolic effects on D. magna haemolymph 

were evaluated in conjunction with the findings from a transcriptomics study of further D. 

magna whole organism samples, both using cadmium (Cd) as a model toxicant.  

The findings from the studies in Chapter 4 determined that the FT-ICR MS approach was 

feasible for use with small pools of daphnid haemolymph. Several thousand unique signals 

were detected, clearly distinguishable from an extract blank sample that contains no 

biological material. This is comparable to the signals detected by the previous studies that 
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utilised whole organism homogenates of D. magna (Chapter 3) which were concluded to be 

suitable for first-tier toxicity testing (Section 7.1). In assessing the validity of using 

haemolymph for high-throughput toxicity testing, an acute exposure using Cd as a model 

toxicant was employed. Following unsupervised multivariate analysis (PCA), the results of this 

exposure demonstrated a clear and significant Cd induced metabolic effect on the daphnid 

haemolymph samples. Univariate analysis determined which peaks were changing 

significantly due to Cd exposure and these were then putatively identified, specifically 

significant changes included decreases in amino acids, fatty acids and nucleic acids.  

The primary objective of these studies was to evaluate the use of D. magna haemolymph as a 

biological sample for high-throughput toxicity testing using FT-ICR MS-based metabolomics. 

The high quality mass spectra produced during this study, along with the significant 

metabolic changes induced by exposure to Cd, permits the conclusion that using this 

approach with small pooled samples of haemolymph is feasible for determining toxicant 

induced effects in D. magna. Consequently this determines that daphnid haemolymph could 

also be utilised for first-tier screening and prioritisation of toxicants. The second objective of 

using both metabolomic and transcriptomic investigations to examine the toxicity of Cd to D. 

magna was also achieved. A level of consistency between the findings from the two 

approaches allowed for the development of a model of Cd toxicity, where a depletion of both 

lipid and protein reserves would likely result in decreased fitness and survival during 

prolonged exposure. Again, further studies using other toxicants with well documented 

MOAs would be necessary to completely establish that the use of D. magna haemolymph is a 

viable sample type for the FT-ICR MS approach. 
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The major limitation with this investigation is the use of two different biological sample types 

between the metabolomics and transcriptomics investigation. Whereas the metabolomics 

investigation utilised haemolymph samples, the transcriptomic analyses were conducted on 

separate whole organism samples. Ideally for a direct comparison of findings, these two 

omics methods would utilise the same biological material. It is unclear from this investigation 

as to whether the use of daphnid haemolymph provides a “cleaner” biological sample for 

toxicity studies. It would therefore be beneficial to conduct a metabolomics investigation 

that utilises both whole organism homogenates and haemolymph samples of D. magna, 

which can then be used to assess which would be the better sample type to use for future 

omics approaches to toxicity testing. 

 

7.3 The discrimination of toxicant MOA via changes in the daphnid metabolome 

It has now been concluded that both whole organism homogenates and haemolymph 

samples of D. magna are both feasible sample types for use with the FT-ICR MS approach for 

high-throughput toxicity testing (Sections 7.1 and 7.2).  In order to build upon these findings, 

the third aim of this thesis was to develop robust multivariate (PLS-DA) models that can 

discriminate toxicant modes of action in D. magna acute toxicity tests, and to evaluate 

whether the haemolymph or whole organism metabolome is better at discriminating 

toxicant mode of action (Chapter 5). The model toxicants chosen for this investigation were 

cadmium (Cd; an inducer of oxidative stress), fenvalerate (induces hyper-excitation through 

prolonged opening of sodium channels), 2,4-dinitrophenol (DNP; an uncoupler of oxidative 
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phosphorylation) and propranolol (a non-selective β-blocker), and each sample related to an 

individual adult daphnid. 

To achieve this aim, it was first necessary to establish that each of these toxicants induced a 

detectable metabolic effect following an acute exposure, in both the whole organism and 

haemolymph metabolome. Unsupervised multivariate analysis confirmed that significant 

metabolic perturbations were induced by each toxicant in both sample types, the most 

notable following Cd exposure for both the whole organism homogenates and the 

haemolymph samples. Subsequent univariate analysis determined that the proportion of 

significant peaks was also greatest following Cd exposure for both sample types, although in 

general, the proportion of significant peaks was greater in the whole organism metabolome. 

With the conclusion that a significant toxicant induced effect could be determined in all 

cases, the second aim was to determine if the four different MOAs could be distinguished in 

daphnids based upon the measured metabolic responses. The development of supervised 

multivariate models, coupled to robust cross-validation and permutation testing, was 

employed to evaluate this. The models generated were highly predictive for both the whole 

organism and haemolymph metabolomes, with small classification error rates of 3.9% for the 

whole organism homogenates and 6.9% for haemolymph. The predictive power of these 

models was determined to be significant following permutation testing for both sample 

types. It can therefore be concluded that the metabolome of D. magna can be used to 

discriminate between toxicant MOA, using either whole organism homogenates or 

haemolymph samples.  
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The final aim of these investigations was to evaluate whether the metabolome of 

haemolymph or of whole organism homogenates was the more discriminatory of toxicant 

MOA. The first evidence that the whole organism metabolome’s response to a toxicant is 

typically more extensive (and potentially contains more information) compared to the 

response of the haemolymph comes from the analysis of the individual toxicants. Here the 

proportion of significantly changing peaks is greater in the whole organism metabolome, 

particularly when comparing the results from the DNP, fenvalerate and propranolol 

exposures. Secondly the development of the predictive multivariate models determined that 

the predictive capabilities of the whole organism metabolome are higher than in the 

haemolymph metabolome, highlighted by the smaller classification error rate in this case. In 

addition to the results of the experimental data, further support for using the whole 

organism metabolome is that; whole organism sampling can be applied across all daphnid 

life-stages while haemolymph can only feasibly be extracted from adult animals. Moreover, 

whole organism studies allow for the standardisation of the biomass per sample, an 

important issue highlighted in Section 7.1, whereas the volumes of haemolymph extracted 

can vary considerably across individuals with the extraction of haemolymph from daphnids 

being more time consuming and prone to error. 

The overall conclusion from these investigations is that different toxicant MOAs can be 

distinguished using highly predictive multivariate classification models, and that the whole 

organism metabolome of D. magna is the better sample type for use in predictive toxicology. 

In principle, these predictive models can now be used to classify the metabolic perturbations 

induced by a toxicant of unknown MOA as similar (or not) to that caused by an inducer of 
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oxidative stress, a sodium channel activator, an uncoupler of oxidative phosphorylation, or a 

non-selective β-blocker. Ideally, more confidence in these predictive models would come 

from having more than one toxicant in each category of MOA which should, in theory, 

produce the same metabolic perturbations to daphnids. Another consideration that needs to 

be taken into account is the degree of toxicity of similar chemicals. In this investigation the 

selection of 10% of the neonatal LC50 as the dose was intended to “normalise” the study to a 

fixed degree of biological effect. However chemicals with similar MOAs may incur toxic 

effects over differing timescales so a more robust approach would have been to design a 

dose-response study with a range of sampling time-points for a thorough comparison of 

multiple toxicant MOAs. However, constraints on both time and resources prevented such an 

exhaustive investigation in this thesis. Nevertheless, the actual application of such an 

approach to chemical toxicity testing is certainly feasible but would require the construction 

of a larger library of sub-lethal metabolic responses to a series of defined MOAs. 

 

7.4 The discovery of metabolic markers which are predictive of reduced reproductive 

output in Daphnia magna 

Subsequent to discovering that FT-ICR MS-based metabolomics can be used to discriminate 

between toxicant MOAs (Section 7.3) the final aim of this thesis was to attempt discover 

metabolic markers in individual D. magna exposed to model toxicants that are predictive of 

reproductive output, regardless of toxicant MOA (Chapter 6). This is an exceptionally 

important step in any toxicity study as previous attempts to link metabolic markers of toxicity 
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to relevant higher level biological effects have been relatively unsuccessful, yet are the 

ultimate aim in ecotoxicology (Section 1.2.2).  

The first step in achieving this final aim was to induce changes in the reproductive output of 

D. magna following a standard OECD chronic exposure to Cd, DNP or propranolol. A chronic 

21 d exposure of individual daphnids to each of these toxicants induced a significant 

reduction in the reproductive output of D. magna, successfully achieving this initial aim. FT-

ICR MS analysis of the same individual daphnids was then conducted and the metabolic data, 

coupled with the reproductive output data, was used to build multivariate (PLS-R) models 

and their ability to predict the reproductive output of unknown samples was evaluated. For 

all three toxicants significant and highly predictive PLS-R models were developed, 

demonstrating that signals from the mass spectra of individual D. magna can be utilised to 

accurately predict the reproductive output of daphnids exposed to these toxicants. To 

achieve the overall objective of biomarker discovery, regression vectors, generated from the 

PLS-R predictive models were utilised to identify those peaks that were most predictive of 

reduced reproductive output of D. magna for each toxicant. Following a forward selection 

strategy that established the fewest number of these peaks required to build an optimal (the 

most predictive) PLS-R model for each toxicant, a comparison of these selected peaks across 

all three datasets generated a list of common peaks. Putative identification of these peaks 

(based upon accurate mass measurements) could then be employed to identify biomarkers 

of toxicity that are predictive of reduced reproductive function in D. magna. The comparison 

of common peaks across all three toxicant datasets revealed only a limited number of 

potential biomarkers and only a single peak that was common to all three toxicants. This 



 - 179 - 

peak was putatively identified as ascorbate, and was found to be decreased following 

toxicant exposure. Whilst this is consistent with previous reports of the role of this 

metabolite in reproductive function, it is dangerous to assume that this single metabolite can 

act as a biomarker of reduced reproductive function in D. magna. In fact, considering that 

the optimal PLS-R models in this study required a contribution from many metabolites (over 

100 signals for each toxicant), it is highly unlikely that ascorbate alone is predictive of 

reproductive output; i.e. these findings highlight the fact that to generate highly predictive 

models, a signature of metabolic biomarkers is required rather than just a single or even a 

few measurements. This in turn highlights how a metabolomics approach is ideally suited to 

acquiring this kind of signature as one of its greatest advantages is the ability to measure 

several hundred markers simultaneously, with no prior knowledge of toxicant MOA required.  

Such studies into signatures of biomarkers would allow for the identification of the top rated 

regression vectors for each of the individual toxicants, producing a list of toxicant specific 

biomarkers for reduced reproductive output. However, as stated in Section 7.1, one of the 

limitations with metabolite identification of FT-ICR MS data is its ambiguity. With this in 

mind, future studies would require techniques such as tandem MS (MS/MS), which can 

attempt to confirm the identity of these peaks, creating a signature of biomarkers that are 

predictive of reduced reproductive output in D. magna. The ultimate validation of this 

approach would be to link acute biomarkers of exposure to reproductive output, thus 

removing the need for time and resource expensive chronic tests. Therefore, further studies 

that involve an acute exposure of D. magna to these model toxicants would be necessary to 

elucidate whether the same metabolic biomarkers of toxicity can be identified at 24 h as 
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occur after 21 d of exposure. Overall though, this investigation can conclude that multivariate 

models can be built, generating biomarkers which are predictive of reduced reproductive 

function in D. magna, even if identification of these markers requires further analysis. 

 

7.5 Future work 

Firstly it needs to be noted that all the toxicant concentrations stated in this thesis are 

nominal concentrations and the actual exposure concentrations may well be less that those 

stated, due factors such as the toxicant adhering to the glass exposure vessels. Therefore, 

any future work should incorporate the analysis of media samples to determine the exact 

toxicant concentrations. Whilst the metabolomics approach used in this thesis was relatively 

non-targeted, in effect only a proportion of the metabolome was actually investigated. In 

particular, analysis of the non-polar metabolites (i.e. lipophilic compounds) would be 

extremely beneficial for all of the investigations conducted in this thesis. Alongside this, for 

the investigations detailed in Chapters 4, 5 and 6, FT-ICR MS analysis was only conducted in 

negative ion mode so effectively only those metabolites that ionise well in this mode would 

be detected. Therefore, further analysis of the polar fractions of these samples in positive ion 

mode would also allow for a more definitive idea of how the metabolome responded in each 

investigation. Another limiting factor applied in all the investigations in this thesis is that the 

metabolome was only analysed from 70-500 m/z, this could be expanded to incorporate a 

larger m/z scale, in order to detect higher mass metabolites, such as ATP which occurs 

outside of this region and could be an important indicator of changes to energy metabolism. 

Although, this would require a longer analysis time and specifically taking into account the 
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small sample size available when using D. magna, there is a finite length of time for which 

the sample can be delivered into the mass spectrometer. These results would provide more 

insight into the biochemistry of toxicant effects in D. magna, corroborating the current 

findings and enabling further comparisons with other reported studies.  

Biochemical insight into the MOA of toxicants is highly valuable for the future of regulatory 

toxicity testing; being able to identify the target(s) of toxicity will enable confidence in the 

extrapolation of effects across species. It can be determined if the species under 

consideration is at risk by knowing these target sites, if the organism has the relevant 

receptors/pathways then it is likely to be susceptible to the toxicant, thus driving the need 

for higher level toxicity testing. As yet it is unknown whether the metabolic changes 

determined by the approach used in this thesis are the direct results of, for example, a 

toxicant induced increase or inhibition of metabolite production. To determine this, further 

experiments such as flux analysis could be utilised by radio-labelling the food source and 

investigating which metabolites have incorporated these stable isotopes, allowing for 

determining which biochemical pathways have been perturbed. Having said this, in order for 

gaining true insight into the metabolic changes, the greatest challenge that needs to be 

overcome in this approach is that of metabolite identification. Until this is achieved only 

putative identifications can be given to the signals in the mass spectra. In this approach, 

incorporation of more adducts into the empirical formula algorithm could potentially allow 

more putative identifications; specifically this could be advantageous for metal exposures 

where the metal itself could be incorporated as an additional adduct. As yet, the only way to 
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be certain of the identity of any metabolite is to employ fragmentation approaches such as 

MS/MS, which in turn reduce the capabilities of this being a high throughput technique. 

One final consideration is that all the studies in this thesis used a single strain of D. magna as 

the test organism and could be considered specific to just this particular species, or indeed 

strain. Future studies may therefore benefit from using multiple strains or species of Daphnia 

to determine if toxicant effects are generic or dependent upon the sensitivity of the target 

organism. However, even if these effects are determined to be specific to only this particular 

strain of D. magna, adverse effects caused by toxicant exposure could lead to a subsequent 

loss of genetic diversity within this species, with wider implications for future population 

dynamics in response to further stress. It should also be noted that all the metabolic 

investigations detailed in this thesis apply to strictly controlled laboratory experiments and 

do not reflect the natural environment of D. magna. Whilst this was a suitable approach for 

the objectives of this thesis in evaluating the metabolomics approach for use in toxicity 

testing and chemical screening/prioritisation, any future studies that aim to reflect potential 

effects of toxicant exposure in the natural environment need to consider fluctuating 

environmental parameters such as day length, temperature, pH and water chemistry. 

 

7.6 Final conclusions 

The driving force behind the investigations detailed in this thesis was to evaluate the 

potential of FT-ICR mass spectrometry based metabolomics for use in regulatory toxicity 

testing using Daphnia magna. Each study has appropriately addressed and met its individual 

aims (Sections 7.1 to 7.4) with a high degree of success and ultimately highlighting areas that 
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need further exploration (Section 7.5), yet outside of the scope of this thesis due to time and 

resource limitations. These investigations have determined that this novel approach to 

toxicity testing in D. magna can be used with both whole organism homogenates and 

haemolymph samples, bringing to light the advantages of using the whole organism 

metabolome. Toxicants with differing MOAs can be discriminated using this approach and 

models can be built that predict reduced reproductive function, a highly valuable advantage 

for regulatory decision making as this could prove beneficial when attempting to extrapolate 

results to predict population/ecosystem dynamics. In view of these findings it can be 

concluded that the FT-ICR mass spectrometry based metabolomics approach for use in 

regulatory toxicity testing using Daphnia magna is extremely viable. 
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