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ABSTRACT 

This thesis investigated the effects of daily changes in exposure (delta) and short-term 

exposure patterns on the relationship between air pollution and health in time series 

studies. Using data from London and Hong Kong, delta was defined as the difference in 

particulate matter (PM10) concentration between successive days. Short-term exposure 

pattern series were defined based on number of peaks in PM10 within rolling weekly 

blocks. 

The mathematical equivalence of identifiable models for delta with conventional 

distributed lag model was derived and alternative model specifications were proposed. 

Measurement error and missing data exhibited more impact on delta than the absolute 

metrics in simulation studies. Evidence of association for delta PM10 with mortality was 

found only in Hong Kong which attenuated towards the null with more rigorous 

adjustment for weather. 

The pattern analysis approach hypothesized, in addition to amount (dose) and duration of 

exposure, epidemiological studies ought to take patterns of exposure into account. 

However, convincing evidence was not found for the effect of short-term exposure patterns 

on mortality risk estimates both in London and Hong Kong. Refining the definition of 

exposure patterns and methodological improvements including analysing data from 

multiple cities are highly recommended in related studies in the future. 
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1.1. Background 

Air pollution has now become the largest environmental risk factor for global mortality. 

According to the World Health Organization (WHO), a staggering 3.7 million premature 

deaths in 2012 may be attributed to ambient air pollution around the world (WHO, 2014). 

This appears to be much larger than previously estimated figures (WHO, 2011). In the 

United Kingdom (UK) some 8100 deaths per year are estimated to be brought forward due 

particulate matter (PM) pollution alone and corresponding estimates for other pollutants 

only emphasize the importance of air pollution monitoring and control policies (COMEAP, 

1998). 

Consequently guidelines for air quality standards have been produced by international, 

regional and national authorities to minimize the burden of environmental health effects 

posed by different pollutants. These guidelines have also been updated from time to time in 

line with respective evidence indicating that even lower levels of some pollutants might 

have noticeable health effects (WHO, 2006, Anderson, 2009, WHO, 2013). Such progress 

is a result of improved understanding and advances in research methods over the last few 

decades. 

Before the complex and diverse studies applied in the field today, there were some 

historical air pollution episodes in Europe and the United States (US) that marked the 

beginning of epidemiological investigation on health effects of air pollution; these have 

eventually led to the development of air quality related policy. The commonly cited 

episodes include Meuse Valley, Belgium (60 deaths, 1930), Donora, Pennsylvania (20 

deaths, 1948) and the London fog (4000 deaths, 1952) the latter being the most 

catastrophic (Nemery et al., 2001, Brimblecombe, 1987, Anderson, 1999). Epidemiologists 
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and statisticians during those days depicted relationships between air pollution and health 

variables by simple graphical methods or comparison of mortality rates between different 

time periods (Carracedo-Martínez et al., 2010). 

Since then a good number observational and experimental studies have been conducted 

taking advantage of advances in epidemiological and statistical methods. They investigated 

both acute and chronic effects of air pollution on human health providing evidence for 

decision making regarding air quality issues. These methodological developments include 

time series, cohort, case-crossover and panel study designs and have hugely benefited from 

improved computational capacity overtime (Dominici et al., 2003b, Rückerl et al., 2011). 

More recently, time series studies appear to be frequently used due to their relative ease 

and low cost (Anderson, 2009, Katsouyanni et al., 2009, Touloumi et al., 2004, Schwartz et 

al., 1996, Bhaskaran et al., 2013). The analytic methods to account for confounders that 

vary with time such as seasonality, long-term time trends and weather in time series studies 

have also undergone substantial improvement. Poisson generalized additive models 

(GAM) or generalized linear models (GLM) with smoothing functions for modelling 

nonlinear relationships of time and weather variables have become the standard in time 

series studies (Katsouyanni et al., 2009). A general form of such a model can be given as  

        𝐿𝑜𝑔(𝜇𝑡) = 𝐿𝑜𝑔[𝐸(𝑌𝑡)] = 𝛽0 + 𝛽𝑃𝑡−𝑙 + ∑ 𝑓𝑖
𝑘
𝑖=1 (𝑋𝑡𝑖)                               (1.1) 

 

where 𝑌𝑡 is the observed count of the relevant health outcome with expected count 𝜇𝑡, 

effect estimate  β represents the change in the logarithm of the population average health 

outcome (e.g. mortality or hospital admission counts) per unit change in pollutant 𝑃 at lag 𝑙 

(𝑃𝑡−𝑙) and 𝑓𝑖 represent a smooth function of covariate 𝑋𝑖 to be included in the model 
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(Touloumi et al., 2006, Dominici, 2004). The model in 1.1 can easily be extended by 

adding more terms; for example we can incorporate indicator variables to account for day 

of the week effect and influenza epidemics as well as consider distributed lags in the 

model. 

1.2. Rationale for the delta study 

Time series studies of air pollution exposure and health outcomes such as mortality or 

hospital admissions as in model 1.1 above usually use simple day-to-day analyses 

sometimes with lagged approaches extending over some days or even weeks. However, 

from time to time alternative metrics for environmental exposures such as air pollution and 

temperature have been investigated based on different averaging times of exposure (Bell et 

al., 2005, Ostro et al., 2001, Delfino et al., 2002, Nastos et al., 2006, Darrow et al., 2011, 

Yang et al., 2012). This is an important issue as air quality guidelines are health based and 

if effect sizes are less accurate using current metrics then this would have a considerable 

influence on policy generation with respect to air quality. For example, Yang et al. (2012) 

compared three temporal metrics for ozone and reported stronger associations with 

mortality for maximum 8-hour average and 1-hour maximum concentrations than with 24-

hour average concentrations. Conversely, Darrow et al. (2011) compared six different 

temporal metrics for four pollutants and concluded that similar results were obtained using 

the different metrics with few exceptions and favoured application of the present metrics 

used in setting air pollution guidelines by the US Environmental Protection Agency (EPA). 

More formally, the purpose of exploring alternative metrics in such studies is to identify a 

biologically more relevant exposure measure which in turn could provide better risk 

estimates (Birnbaum, 2010, Darrow et al., 2011). Most of the metrics compared so far have 
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reflected mainly differences in averaging times or temporal variability, but differences in 

air pollution concentrations over successive days rather than or in addition to absolute 

concentrations could also be related to health outcomes. Conventional time series studies 

tell us the risk of death on any day with absolute levels of pollution concentration, say 

x+10 μg/m
3
, is y% greater than on a day with pollution concentration of x μg/m

3
. That is, 

there is no necessity for a temporal link between the two days; they can be consecutive 

days or many days apart. However, increases in pollution level over a short period of time 

may have larger health impact than a similar increase over a longer or extended period of 

time; i.e., sudden changes may result in more adverse effects than gradual changes from 

toxicology or physiology points of view. 

This is an attractive argument biologically as the human body often  responds to a change 

in stimulus or to the rate of change of stimulus; a good example is the way in which 

cutaneous pain receptors respond to stimulation (Burgess and Perl, 1967). However, there 

is to date very little published work using changes or rate of changes in exposure as 

alternative metrics in time series studies of air pollution, though a few studies have applied 

the change metrics for temperature (Guo et al., 2011, Nastos et al., 2006, Lin et al., 2013, 

Kim et al., 2014). 

This approach to exposure metrics in the air pollution field had been proposed in a 

commentary before where the need to investigate for the effect of relative changes was 

pointed out (Ayres, 2007). It had also been highlighted that during the 1952 and 1990 air 

pollution episodes in London pollution levels were similar in relative terms but much 

lower during 1990 in absolute terms (Anderson, 2009). In an interesting article published 

recently in Science Dominici et al. (2014) asked “would a reduction in PM2.5 from 12 to 10 
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μg/m
3
 produce the same health benefits as a reduction from 14 to 12 μg/m

3
)?” suggesting 

the need to investigate whether the same change in pollution from different baselines could 

have differential health effects. Hence one of the aims of this thesis was to explore the use 

of changes or rate of changes (delta exposures) in air pollution concentrations over 

successive days in time series studies of air pollution and health. This approach is referred 

to as the ‘delta time series study’ and is the topic of Chapter 3 and Chapter 4. However, 

while useful to study the effects of changes or rate of changes over a period of one day, 

such method may not be sufficient to examine the health effects of the dynamics or 

changes in air pollution levels over a period of more than one day but essentially small 

number of days. In order to study the effect of air pollution exposure patterns over small 

number of days, a method which involves identifying specific patterns in pollution 

exposure over a period of one week was proposed. The aim here was to compare the 

various pollution exposure patterns within a relatively short period of time with respect to 

the subsequent health effects. This approach is referred to as ‘delta pattern analysis’ and is 

the topic of Chapter 5. 

1.3. Aims and objectives 

The general aim of this thesis was to examine the association between air pollution and 

acute health effects taking into account changes in pollution concentrations between 

successive days as well as short-term exposure patterns over a period of one week. 

The objective of the first part of the thesis (Chapter 2) was to provide an overview of 

methods in relation to the study of the health effects of air pollution. 
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The objective of the second part of the analysis (Chapter 3), ‘delta time series 

methodological issues’, was to examine statistical modelling and related issues in the delta 

time series approach. 

The objective of the third part of the analysis (Chapter 4) was to present empirical results 

from application of delta time series approach for PM10 exposure and compare results 

using data from two different cities, London and Hong Kong. 

The objective of the fourth part of the analysis (Chapter 5), ‘delta pattern analysis’, was to 

evaluate the effect of accounting for different PM10 pollution exposure patterns within one 

week window period on mortality risk estimates associated with air pollution. 

Finally Chapter 6 presents an overall summary, discussion on potential limitations of the 

study, possible areas of focus for future work and concluding remarks. 

1.4. Application of results 

If there is evidence of effect from the delta time series and/or delta pattern analysis 

approaches, then further investigations could look into how to use the results to inform 

mechanistic explanations for the relationship between air pollution and adverse health 

effects. Moreover, it could be expected that, such results would influence the risk estimates 

of acute health effects of air pollution which are used for setting standards. The methods 

developed may also be applied in similar biomedical research where data from a time 

series are analysed. 

To sum up, this thesis presents methodological work proposing alternative ways of 

incorporating the short-term dynamics of exposures in order to evaluate their effect on 

health risk estimation in air pollution studies. This is demonstrated using data on daily 
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PM10 concentration and daily mortality from London and Hong Kong. If the results 

between the two cities were in agreement, then the observed association would be less 

likely to have occurred by chance. On the other hand, if the results were different, then it 

would be likely that the underlying differences in the characteristics of the cities could 

have influenced the health risk estimates. Some of the factors which could lead to such 

differential effects include weather, background average daily air pollution concentration, 

socio-economic and demographic patterns. A summary of such characteristics for London 

and Hong Kong extracted from Wong et al. (2002) is provided in Tables 1.1 and 1.2 of 

Appendix A. 
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Some important tools for the study of air pollution and health are presented in this chapter. 

The topics covered include basic definitions, criteria pollutants, air quality guidelines and 

monitoring, outline of commonly studied health effects and an overview of 

epidemiological and statistical methodologies in air pollution studies. Finally, issues 

related to exposure metrics, multi-pollutant models, bias from ecologic design and 

measurement error in air pollution studies are outlined. Some references (literature) for 

further discussion on each section are provided as relevant. 

2.1. Air pollution  

In simple terms air pollution refers to the presence of higher levels of any substance than 

there should normally be in the indoor or outdoor environment. More formally, air 

pollution refers to the presence of certain gaseous or particulate compounds above a certain 

level specified in the international or national air quality guidelines which are set up to 

lessen public health risk. This is not the same as contamination which is merely the 

presence of chemicals with no known environmental harm (Harrison, 2001). 

2.1.1. Major pollutants and sources  

The major pollutants listed out in the UK’s Air Quality Strategy document published in 

2007 included particulate matter (PM) with aerodynamic diameter of less than 10 (PM10) 

and 2.5 (PM2.5) µm, Oxides of nitrogen (NOX), Ozone (O3), Sulphur dioxide (SO2), Carbon 

monoxide (CO), Lead (Pb), Polycyclic aromatic hydrocarbons (PAHs), Benzene, 1,3-

butadiene and Ammonia (Defra, 2007). Similarly the US EPA refers to the first six as 

‘criteria’ pollutants to be included in their National Ambient Air Quality Standards (United 

States Environmental Protection Agency). This selection is primarily based on the 

significance of adverse effect to public health posed by each of the pollutants. 
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Air pollution may occur due to natural causes such as wild fires and volcanic eruptions but 

anthropogenic sources are the main target of air pollution control policies. Emissions from 

motor vehicles and the combustion of fossil fuels by industries and power stations 

contribute a large proportion to ambient air pollution from human activities. Burning of 

solid fuels (mostly in the form of biomass) is the major source for indoor pollutants and of 

particular concern in developing countries (Wilkinson et al., 2009, Kurmi et al., 2012). 

2.1.2. Monitoring and standards 

In general, air quality measurements are taken across several sites in both rural and urban 

areas particularly in the developed world. These monitoring sites provide relatively high 

frequency background air pollution concentrations on an hourly or sub hourly basis. For 

example, the UK Automatic Urban and Rural Network (AURN) comprises of a total of 

178 monitoring sites which produce measurements of several pollutants as frequently as 

every quarter of an hour (Defra, 2014). In air pollution studies, temporal averages from one 

or more monitoring stations are usually considered to represent daily exposure 

concentrations. Another way to assign exposure levels at a specific location and time 

involves building models which take into account various spatial and temporal factors such 

as traffic density and weather. Land use regression (LUR) models are very popular in this 

regard (Jerrett et al., 2005, Hoek et al., 2008). Recently, organizations such as the 

European Space Agency and the National Aeronautics and Space Administration (NASA) 

have been working to provide complementary air pollution data at finer spatial resolutions 

in ‘near-real time’ for some pollutants using satellite measurements (Duncan et al., 2014, 

van Donkelaar et al., 2010). 
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In order to protect human health international and national authorities set standards for air 

quality. Monitoring bodies use these standards to control for concentration levels of the 

major pollutants in the ambient air from their monitoring sites. Table 2.1 shows a general 

WHO guideline for five major pollutants (WHO, 2006). 

Table 2.1: Worldwide guidelines for major pollutants in µg/m 
3
 (WHO 2005) 

 
Pollutant  

Mean concentration 

Annual  24-hour  8-hour  1-hour  10-minute  

PM2.5 10 25 - - - 

PM10 20 50 - - - 

O3 - - 100 - - 

NO2 40 - - 200 - 

SO2 - 20 - - 500 

CO
§ 

- - 10 30 - 

§Based on WHO guidelines published in 2000 (WHO 2000) 

A recent WHO project, “Review of evidence on health aspects of air pollution – REVIHAAP”, 

reviewed the accumulating air pollution epidemiology literature; the review concluded 

supporting the scientific basis of the 2005 WHO guidelines as well as confirming the benefit of 

revising the guideline (WHO, 2013). It should, however, be noted that there are variations in 

guidelines (Table 2.2) based on country (Boyd, 2006) or approaches used to set the 

standards (Maynard RL, personal communication). 
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Table 2.2: Regional comparison of air quality standards and guidelines  

 
Pollutant WHO  EU Australia US Canada 

Ozone 8 hour, ppb 50 60 80 80 65 

Fine particulate 24 hour,  µg/m
3
 25 50 25 65 30 

Sulphur dioxide 24 hour, ppb 8 48 80 140 115 

Nitrogen dioxide Annual, ppb 21 21 30 53 53 

Carbon monoxide 8 hour, ppm 9 9 9 9 13 

Source: Boyd DR, The Air We Breathe: An International Comparison of Air Quality Standards and Guidelines, 2006. 

2.2. Health effects of air pollution  

In earlier studies, it was thought that adverse health effects of air pollution were primarily 

associated with respiratory problems for example bronchitis (Committee on the Medical 

Effects of Air Pollutants, 2006). This was because the mechanism by which air pollution 

harms human health was not intuitive for other important health effects such as 

cardiovascular diseases (Anderson, 2009). Eventually, studies begun to propose potential 

mechanisms and showed evidence particularly for cardiovascular related mortality and 

morbidity (Seaton et al., 1995, Poloniecki et al., 1997, Seaton et al., 1999, Pope, 2000). A 

number of possible biological mechanisms have been proposed to explain how exposure to 

air pollution results in adverse health outcomes; the ‘oxidative stress’ and the 

‘multifactorial’ concepts are two explanations among others and details can be found 

elsewhere (Ayres et al., 2010, Anderson, 2009). 

Air pollution is associated with both acute and chronic health effects. Acute effects are due 

to variations in air pollution exposure over a relatively shorter time scale (hours to days of 

exposure). They include transient physiological changes in the respiratory functions (which 

are reversible), asthma attacks, hospital admissions and mortality mainly due to respiratory 

and cardiovascular causes (Harrison, 2001, Walters et al., 1994, Katsouyanni et al., 1997). 

Chronic effects are due to cumulative exposure to air pollution over a longer time scale 
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(years of exposure). Associations that have been reported include lung cancer, reduced 

lung growth or function and mortality (Dockery et al., 1993, Pope et al., 2002, Elliott et al., 

2007, Committee on the Medical Effects of Air Pollutants, 2009). Estimating the total 

public health burden of disease related to air pollution has been a challenging task but 

methodological improvements have continued (COMEAP, 1998, Cohen et al., 2005, 

Burnett et al., 2014). 

2.3. Statistical and epidemiological methods 

Both experimental and observational studies have been applied to investigate the 

association between air pollution and human health. Experiments can be conducted in vitro 

to expose tissues or using controlled chambers to expose human subjects to a potential 

toxicant for a short period of time usually for a couple of hours (Harrison, 2001, Ayres et 

al., 2010). The outcomes of interest could be disease symptoms or biomarker responses 

(McCreanor et al., 2007, Bleck et al., 2010, HEI Review Panel on Ultrafine Particles, 

2013). Experimental studies could provide insights into mechanistic relationships and 

short-term exposure effects in specified subpopulations of interest. It is, however, not 

practical to examine longer term exposure effects and is difficult to simulate real world 

exposure patterns in most settings. Reports from experimental studies on health effects of 

air pollution have not always been consistent (Cassee et al., 2013, HEI Review Panel on 

Ultrafine Particles, 2013). 

As controlled random allocation of realistic levels air pollution exposure is not feasible in 

experimental investigations, the so called ‘natural’ or ‘quasi’ experiments have been 

exploited. In a natural or quasi experimental study, an intervention or policy beyond the 

investigator’s control produces variation in exposure levels and the ensuing difference in 
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health outcomes are examined (Craig et al., 2012). There are a limited number of such 

interventions which have been used in quasi-experimental studies including the closure of 

a steel mill in Utah (1986), coal bans in Dublin (1990), restriction on sulphur content of 

fuel in Hong Kong (1990), the congestion charging scheme in London (2003) and the strict 

air pollution regulations by the Chinese government for the Beijing Olympic (2008). These 

studies have demonstrated convincing evidence on the health benefits of a reduction in air 

pollution concentrations (Pope, 1989, Clancy et al., 2002, Hedley et al., 2002, Tonne et al., 

2008, He et al., 2015). 

Epidemiologic (observational) studies, on the other hand, are extensively used to examine 

both short-term (hours to days of exposure) and long-term (years of exposure) health 

effects of air pollution. In subsequent sections, some of the epidemiologic study methods 

are outlined for both short-term (including episode, case-crossover, time series and panel 

studies) and long-term (including cohort and cross-sectional studies) effects. More 

emphasis is put on the time series study design as the thesis is based on application of this 

method. Therefore, relatively extensive details are provided on historical development of 

the method from applications in econometrics to environmental epidemiology, relevant 

model specification issues and estimation of parameters. 

2.3.1. Short-term effects 

2.3.1.1. Episode studies 

According to Anderson (1999) an air pollution episode is ‘a short-term increase in ambient 

air pollution which is greater than would be normally expected as part of day-to-day 

variation’; such episodes could result in large increases in morbidity and mortality and 

sometimes are considered as ‘environmental disasters’. These studies rely on comparison 
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of health outcomes prior, during and after the occurrence of an air pollution episode (Pope, 

2000). Thus a key element in the analysis of effects of episodes is to define a method for 

determining a control exposure period in order to estimate the occurrence of adverse health 

effects of interest in the absence of an air pollution episode. This will then be compared 

with the health effect estimates during the episode so that the relative increase will be 

evaluated. Some of the control methods that have been used include: period just before the 

episode, equivalent dates in adjacent years, post episode period and geographical control 

populations (Anderson, 1999). 

While air pollution episode studies tend to have less rigour for confounding control and 

limited power to detect effects, historical episodes have demonstrated remarkably that air 

pollution at extreme levels can lead to substantial increases in mortality and morbidity 

(Anderson, 1999, Pope, 2000). The air pollution episodes in Meuse Valley, Belgium (about 

60 deaths, 1930), Donora, Pennsylvania (about 18 deaths, 1948) and the London fog (about 

4000 deaths, 1952) have played an important role in explaining short-term health effects of 

air pollution and for the subsequent public attention drawn towards air quality issues 

(Firket, 1936, Schrenk, 1950, Brimblecombe, 1987, Anderson, 1999). Other noticeable 

episodes have occurred later but with comparatively lower magnitude in most cases 

(Wichmann et al., 1989, Hoek and Brunekreef, 1993, Anderson et al., 1995). 

Recently, air pollution episodes related to anthropogenic sources are less common but 

occasional episodes from natural causes such as dust storms pose risk to public health. 

Such episodes have occurred in several parts of the world including Australia (Merrifield 

et al., 2013), Asia (Higashisaka et al., 2014), Europe (Mallone et al., 2011) and North 
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America (Grineski et al., 2011) which are geographically prone to dust storms or whenever 

dust is carried into by strong wind. 

2.3.1.2. Case-crossover studies 

The case-crossover design was introduced by Maclure (1991) and has been widely applied 

in air pollution studies (Lee and Schwartz, 1999, Sunyer et al., 2000, Pope et al., 2006, 

Bedada et al., 2012, Bhaskaran et al., 2011, Maclure, 1991). It is particularly useful for 

estimating the risk of a rare acute outcome associated with short-term exposure, such as air 

pollution. In case-crossover design each case acts as their own control and like case-control 

studies (Breslow and Day, 1980) the distribution of exposure is compared between ‘cases’ 

and ‘controls’. That is, exposure at the time just prior to the event (case or index time) is 

compared with a set of ‘control’ or ‘referent’ times that represent the expected distribution 

of exposure for non-event follow-up times. The design helps primarily to control 

confounding by subject-specific factors which do not change overtime such as ethnicity 

and gender. 

However, ability to control for time-dependent variables depends on the method used for 

selection of referent times (Janes et al., 2005). For example, Bateson and Schwartz 

suggested that confounding of exposure by seasonal patterns could be controlled by design 

in the case-crossover approach by choosing control days close to event days (Bateson and 

Schwartz, 1999, Bateson and Schwartz, 2001). Yet, Janes et al (2005) recommend the 

time-stratified case-crossover design for avoiding time–trend bias and potential gain in 

power. In this design, referent days can be restricted to the same weekday, month and year 

as the event day (Janes et al., 2005). The case-crossover analysis is carried out using 

conditional logistic regression providing odds ratios (ORs) as effect estimates. The design 
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had been questioned on the grounds of efficiency and difficulty to easily allow for over-

dispersion but some of these issues have been addressed exploiting its equivalence with 

time series method (Armstrong and Gasparrini, 2011, Lu et al., 2008). 

2.3.1.3. Panel studies 

In a panel study design, data are collected repeatedly on a cohort of individuals over 

multiple occasions. The design is particularly useful when interest is to examine changes in 

repeated measurements of the outcome over time in relation to exposure. It has been used 

in air pollution studies mainly to assess effect acute air pollution exposure on various 

morbidity outcomes (Roemer et al., 1998, Huang et al., 2012). Data from panel studies are 

usually analysed using multi-level regression (mixed model) approach when the response 

is Gaussian. Other alternative statistical models for analysis of such data include 

generalized estimating equations (GEE), generalized linear mixed models (GLMM) and 

generalized additive mixed models (GAMM) (Liang and Zeger, 1986, Breslow and 

Clayton, 1993, Lin and Zhang, 1999). The latter is useful to model data with a multi-level 

or spatial structure allowing incorporation of flexible non-linear relationships for some 

covariates as necessary. 

2.3.1.4. Time series studies 

A- Background to time series analysis 

A time series is a sequence of observations or measurements taken over time. Each 

measurement or observation in the series could be an accumulation of a quantity 

continuously for a given duration. Examples include daily rainfall and electrocardiogram 

(ECG) traces from a patient. Alternatively, in a discrete time series observations are made 

at distinct, usually regular, time intervals. The time intervals could be relatively short (e.g. 
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magnetic resonance imaging (MRI) scans of the brain every second) or relatively long (e.g. 

daily exchange rates between Pound Sterling and US dollar). 

In general, observations in a time series tend to show serial dependence over time which is 

sometimes referred to as autocorrelation or serial correlation. Basic statistical methods are 

not suited for the analysis of such data. This is because the methods fundamentally assume 

observations in a set of data are realizations of mutually independent random variables 

(Diggle, 1990, Zeger et al., 2006). Time series analysis is the methodology that deals with 

the complexity induced by the serial correlation in a systematic way. 

Time series analysis methods for biomedical data were historically developed from 

applications in econometrics where the main focus was forecasting future values of 

quantities, for example annual gross domestic product (GDP) of a country or daily returns 

from an asset such as stocks. The two common features in a time series data are trend and 

seasonality. The former refers to the long-term tendency to increase or decrease over time. 

The latter refers to the systematic or periodic shorter term patterns, for example variations 

within the course of each year in an air pollution time series. Time series analysis methods 

usually aim to filter out these features in subsequent models for forecasting and estimation 

of parameters of interest. By filtering out the trend and seasonality attributes from the data 

one hopes to obtain a stationary series, a series where the mean is constant over time and 

the autocovariance between any two time points does not depend on the actual time points 

but rather the time lag between them (Diggle, 1990). 

In univariate time series analysis, the auto regressive integrated moving average (ARIMA) 

model as introduced in Box and Jenkins is more common (Box and Jenkins, 1970). An 
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ARIMA model is a generalization of the ARMA model where differencing the series 

becomes an essential aspect, i.e., taking the difference between observations at different 

lags in order to achieve a stationary series. The vector autoregressive moving average 

(VARMA) and vector autoregressive (VAR) models are applied to fit multivariate time 

series models investigating relationships between two or more variables of interest 

(Reinsel, 1993, Lütkepohl, 1993, Johansen, 1995). Bayesian time series models have also 

become popular in forecasting applications as they allow integrating uncertainty in model 

parameters in a more flexible way (Pole et al., 1994). Another important extension to the 

Box-Jenkins approach (linear) is the development of non-linear time series models (Tong, 

2002). Machine learning or statistical learning techniques have also been applied in time 

series forecasting. Classification and regression trees (CART) and nearest-neighbour 

classifiers are examples of machine learning applications where the data determine the 

form of the predictive relationship in the series unlike simple regression methods where the 

form is somehow pre specified (Hastie et al., 2009). 

B- Time series in air pollution and health studies 

In the previous section, some key methods and related references have been outlined in 

relation to one of the objectives of time series analysis which is forecasting. These methods 

have been widely applied in econometrics, finance, meteorology and engineering. 

Application of time series methods in the study of the health effects of air pollution is 

relatively recent. However, the primary interest here is parameter estimation in order to 

describe relationships between variables (rather than forecasting future values). In earlier 

air pollution studies, investigators were limited to explaining relationships between air 

pollution and health by simple graphical methods or comparison of mortality rates at 

different time periods for example before and during an air pollution episode (Carracedo-
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Martínez et al., 2010). The marked health effects during severe episodes like the 1952 

London fog alerted authorities and led to routine collection of data on pollutants (Black 

Smoke and SO2) and health outcomes (daily counts of mortality and hospital admissions) 

for monitoring purposes (Anderson, 1999). As the routine data accumulated over time and 

computational capacity to implement complex statistical models improved, time series 

regression methods became extensively entertained in air pollution studies. By the early 

1990s time series studies started to dominate the air pollution epidemiology literature as 

making use of routinely collected monitoring data provided a cheaper alternative 

(Schwartz et al., 1996, Touloumi et al., 2004, Katsouyanni et al., 2009, Anderson, 2009). 

Time series methods can also provide considerable power for detecting short-term health 

effects of air pollution. The power depends on the length of the series and average number 

of daily events as the method evaluates associations between daily variations in number of 

health events and daily variations in air pollution exposure (Bhaskaran et al., 2013, 

Winquist et al., 2012). Time series regression is a frequently applied method in estimating 

such short-term effects and a brief account of the methodology is outlined below based on 

daily mortality as the outcome and daily air pollution level as the exposure. 

Outcome distribution 

Daily mortality counts are the most commonly studied health outcomes in air pollution 

studies (Anderson, 2009, Rückerl et al., 2011). The daily counts are small relative to the 

general population. The Poisson process could represent the underlying generating 

mechanism for the daily counts. For a Poisson model with expected daily mortality counts 

µ, the probability of y daily counts is given by 
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with variance of Y equal to its expected value, µ. 

An important assumption in a Poisson model such as given in (2.1) is the underlying 

mortality rate or risk is constant (i.e., staionarity of the series). However for the daily 

mortality series, the expected value µ may appear to vary with time due to time varying 

predictors of mortality in addition to the main exposure interest, air pollution 

concentrations. Long-term time trends, seasonality, weather, calendar days and epidemics 

like influenza are some examples that could affect the expected daily mortality counts with 

time. It is worth noting that while other individual risk factors such as smoking and diet 

can affect mortality in general, their effect on the expected daily mortality counts (µ) is 

assumed to be negligible. This is fair because the model is set up in such a way that the 

unit of analysis is based on days and the distribution of such individual factors does not 

change much from one day to another. To reiterate, controlling for factors that change with 

time is more important under the proposed model. 

Relative risk model 

Given that the outcome of interest is daily mortality count with the above mentioned 

properties, a Poisson regression model would be appropriate to study their association with 

daily air pollution concentrations taking into account potential time varying confounders. 

Such a relative risk model can be represented in the generalized linear models (GLM) 

(McCullagh and Nelder, 1989) framework for exponential family distribution as follows: 
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Response distribution: )Poisson(~ ttY  ,   ttYE )(                                       (2.2) 

Linear predictor: tpptt XX   ...110  

Link function: tt  )log(  

where Yt is mortality count on day t, µt expected number counts on day t, Xt1,…,Xtp are time 

varying predictors of mortality counts, β1,…, βp are unknown coefficients of the predictors. 

Daily mortality counts and air pollution series exhibit serial dependence due to seasonality, 

weather and long-term time trends. Data are in general available for some of the potential 

confounders including temperature, relative humidity and epidemics such as influenza 

which can be adjusted for directly in the above model. But control of seasonality and long-

term trends requires indirect strategies that involve adjusting for the time itself. Methods 

based on stratifying by time and fitting periodic functions using sine and cosine functions 

of time itself can be considered to capture seasonal patterns but may not be adequate 

(Bhaskaran et al., 2013). A more common strategy in the literature is to use a smooth 

function of time in the model (Dominici, 2004, Peng et al., 2006, Touloumi et al., 2006). 

Thus the linear predictor in the above model can be extended as follows: 

);(...)log( 110  tfXX tpptt                                                           (2.3) 

where f is a smooth function of time and λ is the smoothing parameter which controls how 

rough or smooth f should be. 

Smoothing functions 

The smooth function f is usually represented using flexible regression splines such as 

penalized splines. This representation of the linear predictor by adding smooth terms leads 

to what is known as generalized additive modelling (GAM) (Hastie and Tibshirani, 1990). 
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GAMs are sometimes referred to as semi-parametric models because they allow to 

incorporate both strictly parametric specification for some covariates as well as a more 

flexible specification (using smooth functions) with no detailed parametric representation 

for other covariates (Wood, 2006, Peng and Dominici, 2008). In general, flexibility is 

achieved by fitting spline functions of time by dividing the time period into subintervals 

and fitting, usually, a cubic polynomial in each interval. The resulting curves are then 

joined smoothly at the end of each subinterval (which is known as a knot). When both the 

smoothing function (f ) and its second derivative are continuous over the entire series and f  

is restricted to be linear at both extremes of the series, then f is referred to as ‘natural cubic 

spline’. The smoothness of a natural spline depends on the number knots (or alternatively 

on the number of df allowed for f ); larger knots result in rough or ‘wiggly’ fit and fewer 

knots result in a smoother fit. 

Another common alternative method of smoothing is a penalized regression spline. This 

method is based on a compromise between minimizing both bias and variance. This is 

aimed to be achieved by adding a roughness penalty term to the usual residual sum of 

squares minimization (least squares) objective. That is, the aim is shifted towards 

minimizing the penalised sum of squares 
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for any twice differentiable function f on the interval [a, b] and a smoothing parameter λ. 
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Other smoothing methods that have been considered in the literature include locally 

weighted regression smoothing (lowess), kernel smoothing and moving average (median) 

smoothing but will not be explored further here (Speckman, 1988, Schwartz et al., 1996, 

Wong et al., 2002). 

Parameter estimation  

Literature that provide detailed derivation of parameter estimates for model (2.3) can be 

found elsewhere (Dominici et al., 2004, Wood, 2006, Peng et al., 2006) and an example 

taken from Peng et al. (2006) is attached in Appendix B. The derivation, which uses 

iteratively reweighted least squares (IRLS) method, is given for both natural splines (NS) 

and penalised splines (PS) smoothing approaches. Sensitivity analyses have shown that the 

amount of smoothing would have more consequences on the resulting model fit than the 

method of smoothing used, for example NS versus PS (Katsouyanni et al., 2009, Touloumi 

et al., 2006). Thus choosing the smoothing parameter requires considerable attention and 

there are two general approaches to this problem. The first, including generalized cross 

validation (GCV) and Akaike information criteria (AIC) values (Akaike, 1974), is a data 

driven approach (Schwartz et al., 1996, Wood, 2006). A second approach is to use a 

specific df based on a priori information on biological grounds or previous studies 

(Schwartz et al., 1996, Katsouyanni et al., 2009). 

Other model extensions 

For the Poisson regression model given in (2.3) above, an important assumption is equality 

of the variance and the mean. But in practice the variance could be greater than the 

theoretical value implied by the estimated mean for count data. Overdispersion is the term 

used to refer to this phenomenon and its presence in the data may result in smaller model 
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based estimates for variances (standard errors). A common (quasi-likelihood) approach to 

deal with overdispersion is to rescale the standard errors using for example a scale 

parameter estimated by dividing the Pearson chi-square statistic with the residual df 

(McCullagh and Nelder, 1989). Another approach would be to use a more suitable 

distribution than the Poisson, for example, the Negative binomial distribution (Zewotir and 

Ramroop, 2009, Hammami et al., 2013). For daily mortality count data, some authors have 

reported that overdispersion is modest (Jordan et al., 1997, Peng and Dominici, 2008). 

Air pollution on a single day could be related to health on a concurrent or a lagged day as 

well as distributed over a number of days. Thus the single lag model representation in 

model (2.3) can be extended to include distributed lags of interest. The distributed lag 

models have also been used as a method to support the argument against the ‘harvesting 

only’ effect of air pollution (Bell et al., 2004). Under the harvesting (mortality 

displacement) theory, only a group of very frail individuals’ mortality is associated with air 

pollution. In other words air pollution studies are picking up signals from the frail persons 

who would have died in a few days’ time anyway (Zeger et al., 1999). In the second Air 

Pollution and Health: A European Approach (APHEA 2) study investigators used a 

distributed lag model (of up to 40 days delay) for examining association of mortality and 

PM10 and argued that short-term air pollution effects are not principally due to harvesting 

only (Zanobetti et al., 2002). 

Modern time series studies are based on data from several locations, for example, cities, 

countries or regions. Compared to single location studies, multi-location studies increase 

power for detection of air pollution effects across locations. They also allow assessment of 

heterogeneity in a formal way. While theoretically conceivable to specify a single multi-

http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0CEMQFjAD&url=http%3A%2F%2Fjournals.lww.com%2Fepidem%2Ffulltext%2F2006%2F11001%2Faphea_project__air_pollution_and_health__a.3.aspx&ei=WLi2VOj8HIfl7Aalu4DYBA&usg=AFQjCNGnZeGnkD_qj7xxmfrhDfrNdtcZLg&bvm=bv.83640239,d.d24
http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0CEMQFjAD&url=http%3A%2F%2Fjournals.lww.com%2Fepidem%2Ffulltext%2F2006%2F11001%2Faphea_project__air_pollution_and_health__a.3.aspx&ei=WLi2VOj8HIfl7Aalu4DYBA&usg=AFQjCNGnZeGnkD_qj7xxmfrhDfrNdtcZLg&bvm=bv.83640239,d.d24
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level model for data with such structure, in practice it is avoided. Instead multi-location 

time series studies apply a two-stage approach; first relative risk estimates are obtained 

using models such as presented in (2.3) above for each location and the individual 

estimates are then combined using meta-regression techniques (Katsouyanni et al., 1997, 

Touloumi et al., 2004). Two-stage Bayesian hierarchical modelling framework has also 

been successfully applied for combining estimates across locations in air pollution studies 

(Dominici et al., 2000a, Huang et al., 2005, Katsouyanni et al., 2009). This approach 

allows investigation of posterior estimates for the true location specific relative risks. 

Assessing the posterior distribution of the between-location variance also helps to better 

understand the level of heterogeneity compared to a point estimate of the variance. 

Posterior distributions can be estimated using Markov chain Monte Carlo (MCMC) 

methods (Tierney, 1994, Gilks et al., 1996, Peng and Dominici, 2008). 

After fitting any statistical model, checking the model in light of the underlying 

assumptions is the next important step. Plots for residual and fitted values over time are 

useful diagnostic tools. These are helpful for checking outliers, temporal patterns that 

remain in the model and to compare models which better pick up seasonal patterns 

(Schwartz et al., 1996, Bhaskaran et al., 2013). Model checking becomes even more 

crucial for time series models in air pollution studies as there are several decisions to be 

made with respect to selection of the method and amount of smoothing, lag choice and 

confounder model to name but a few. In general, whether or not such decisions have 

considerable influence on relative risk estimates should always be checked in sensitivity 

analyses (Bhaskaran et al., 2013, Katsouyanni et al., 2009, Schwartz et al., 1996). 
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Implementation 

Time series studies are one of the most frequently applied methods in the study of short-

term health effects of air pollution and subsequent setting of air quality standards 

(Anderson et al., 2007, Bhaskaran et al., 2013, Bell et al., 2004). They have been 

implemented using GLMs with parametric splines, for example, natural cubic splines 

(Katsouyanni et al., 2009) or GAMs with non-parametric splines, for example, smoothing 

splines (Dominici et al., 2003b). The models are based on linear (with no threshold 

assumption) as this has been shown to be the case for particulate matter pollution effects 

(Schwartz et al., 2001, Samoli et al., 2005, Anderson, 2009, Vedal et al., 2003). 

A number of statistical software programmes can fit both the GLMs and GAMs but the R 

software seems the most popular in air pollution studies. The GAM package by Hastie and 

the MGCV package by Wood are two of the commonly used packages to fit GAMs in the 

R environment (Hastie, 2013, Wood, 2014). 

The Air Pollution and Health: A European and North American Approach (APHENA) 

study can be considered as one of the ‘state-of-the-art’ time series studies (Katsouyanni et 

al., 2009). This international study presented rich data from several cities in Europe and 

North America. It also provided a methodological guideline based on several sensitivity 

analyses and experiences of experts from the two continents. Hence, the time series 

methodology in this thesis is mostly adapted from the APHENA study protocol with 

additional sensitivity analyses as deemed necessary. 
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2.3.2. Long-term effects  

2.3.2.1. Cohort studies 

In a cohort study a group of individuals with some shared characteristics or experience are 

identified and each cohort member followed up over a period of time or until an event of 

interest (e.g. mortality or morbidity) occurs. Then the rate of occurrence of the event is 

compared between groups of cohort members classified by different exposure levels (e.g. 

exposed versus unexposed or for a unit increase in average exposure concentration). When 

data are collected in this way (prospectively) after the study has been set up, it is referred 

to as a prospective cohort study. Alternatively retrospective cohort studies can be set up 

using pre-existing data on events and exposure which had been collected over a certain 

period of time in the past. 

The health effects of long-term air pollution exposure are usually investigated in cohort 

studies. Although the aim of conducting cohort studies is to estimate long-term effects, this 

is not necessarily discernible from those of short-term effects. That is health outcomes 

observed in a cohort study may be due to chronic as well as acute exposures combined 

(Dockery et al., 1993, Künzli et al., 2001, Krewski et al., 2005). The outcome of interest 

could be similar to those studied in short-term effects (all-cause or cause specific mortality 

and/or morbidity). However, exposure is assigned based on some cumulative measure (e.g. 

annual average concentrations) and ensuring exposure variation heavily relies on 

variability between different locations, i.e., spatial variability. The common statistical tool 

used to analyse air pollution cohort studies is the Cox proportional hazards model (Cox, 

1972). In addition to estimating long-term effects, such modelling approach allows control 

for potential confounding by individual level factors including but not limited to smoking, 

demographic and socio-economic variables. 
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Some cohort studies in the US and UK have found comparable associations between 

particulate matter pollution and adverse health effects. Earlier, the Harvard Six Cities study 

reported the adjusted rate ratio between the most and least polluted cities for fine particles 

as 1.26 (95% CI: 1.08, 1.47) for all-cause mortality (Dockery et al., 1993). And later, the 

American Cancer Society (ACS) study reported an adjusted relative risk ratio of 1.17 (95% 

CI: 1.09, 1.26) for the same outcome and exposure (Pope et al., 1995); an extended 

reanalysis of the ACS has been published in 2009 providing consistent evidence on the 

adverse health effects of fine particles (Krewski et al., 2009). A study on an English and 

Welsh cohort also reported an adjusted hazard ratio (HR) for all-cause mortality of 1.20 

(95% CI: 1.04, 1.38) for a 10 µg/m
3
 increase in PM2.5 (Tonne and Wilkinson, 2013). In 

relation to air pollution associated morbidity outcomes, a large English cohort study 

reported an adjusted hazard ratio of 1.06 (95% CI: 1.01–1.11) for incidence of heart failure 

per an interquartile range change in PM10 (Atkinson et al., 2013). The study did not find 

evidence of association for other cardiovascular outcomes in contrast to some previous 

studies (Miller et al., 2007, Puett et al., 2009). 

2.3.2.2. Cross-sectional studies 

Cross-sectional study designs have also been used to study long-term effects in earlier 

(Pope, 2000) as well as more recent (Elliott et al., 2007, Forbes et al., 2009, Berhane et al., 

2011) air pollution studies. Briefly, a cross-sectional study can be applied for example to 

compare annual mortality rates (adjusted say for age and sex) between different locations 

based on their annual mean air pollution levels; this is easily facilitated by fitting 

regression models. 
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2.4. Other common issues in air pollution studies  

A detailed discussion on important methodological issues in the study of health effects of 

air pollution was provided by Berhane et al. (2004) albeit in the context of long-term 

effects. Most of the issues raised, however, apply to short-term health effect studies and 

still remain active areas of research. In relation to the issues of exposure metrics for 

particulate matter pollution, the aim is to find a biologically relevant metrics and this has 

been looked at in two ways. One focused on investigation of various temporal averaging 

times (Darrow et al., 2011) while another explored specific components and their source 

apportionment (e.g. primary versus non-primary) in terms of their relative importance in 

predicting health outcomes (Atkinson et al., 2014). 

The development of multi-pollutant approach may facilitate determination of the relative 

importance of pollutants or sources and estimation of the overall health effects in relation 

to a complex pollutant mixture. This in turn is hoped to shape regulation policies into a 

multi-pollutant framework where standards for several pollutants could be set 

simultaneously (Dominici et al., 2010). However, fitting multi-pollutant models poses 

challenges because of non-trivial amount of correlation between pollutants, potential 

interaction between them and the relatively small health effects that need to be detected to 

name but a few (Tolbert et al., 2007). Despite this, health effects of particulate pollution 

have been shown to persist in multi-pollutant models although with reduced effect 

estimates and at times weaker evidence compared to single pollutant models (Le Tertre et 

al., 2002, Samet et al., 2000, Tolbert et al., 2007, Bhaskaran et al., 2011). Recent studies 

have been developing a more comprehensive approach to multi-pollutant metrics, where a 

summary reflecting the composition and relative importance of the pollution mixture can 
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be used in epidemiological models (Oakes et al., 2014, Sun et al., 2013, Vedal and 

Kaufman, 2011). 

Ecological bias is another common issue related to the design of epidemiological time 

series studies. This can be regarded as the bias due to differences in regression lines 

between models based on daily aggregated data and that of individual data from which the 

aggregated data was compiled (Berhane et al., 2004). The impact of such ecological bias 

on risk estimates has been shown to be negligible at least for particulate pollution in the 

presence of reasonable spatial homogeneity among monitors from which air pollution 

exposure measurements were taken (Shaddick et al., 2013). 

Another recurring issue in epidemiological studies of the health effects of air pollution is 

exposure measurement error. In general classical measurement error results in biased 

(towards the null) effect estimates in regression while such bias is not expected for 

Berkson type error (Armstrong, 1998). Uncertainty is inevitable with regard to how well 

daily air pollution measurements represent the mean daily exposure for a given population 

or over a given geographical location and effect of measurement error has been a subject of 

considerable research (Zeger et al., 2000, Dominici et al., 2000b, Sheppard et al., 2005, 

Goldman et al., 2011, Szpiro and Paciorek, 2013, Dionisio et al., 2014). Studies have 

suggested that measurement error in air pollution attenuates health effect estimates 

particularly for data from a single monitoring station; however such attenuation tends to be 

little if any as the number of monitoring stations (to calculate average exposure) over the 

geographical region of interest increases (Sheppard et al., 2005, Butland et al., 2013). 
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2.5. Summary 

Following marked air pollution episodes such as the 1952 London smog, earlier episode 

studies provided compelling evidence for a causal link between air pollution and mortality 

and morbidity with larger effect sizes. Such a large effect was observed at very high levels 

of pollution, i.e., higher doses. More recently, evidence from time series studies and case-

crossover studies indicate significant albeit small adverse health effects at the current 

relatively much lower pollution levels, i.e., lower doses. Together, the studies and 

associated results so far reflect two important aspects of exposure: the amount (dose) of 

exposure and the duration of exposure. This thesis hypothesised that, in addition to the 

amount (dose) and the duration of exposure, the pattern in which exposure was 

experienced and/or the rate at which exposure dose was changing could be important in 

determining health effects. Subsequent chapters present some theoretical and empirical 

results based on investigation of the proposed hypothesis in the context of time series 

modelling framework. 
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3.1. Exposure metrics in air pollution studies 

In environmental epidemiology, exposure metrics simply refers to the summary variable 

used to characterise exposure for a certain pollutant. Various temporal metrics have been 

considered in epidemiologic time series studies of air pollution and acute health effects. 

These metrics in most cases are averages calculated over some relevant time period 

presumed to be related with the health effect of interest. Suppose  nxxxxX ,...,, 321  

represent n measurements taken in a day and assume they are given in ascending order 

with minimum and maximum at x1 and xn respectively. For example, if air pollution is 

measured every quarter of an hour in a city background monitor then there will be 

n=24x4=96 measurements per day. Thus, a typical approach to calculate an exposure 

metrics on day t would be to take the average of the measurements throughout the day as: 

           
n

x

X

n

i

i

t


 1  

                                                  (3.1) 

Particulate matter pollution is an example represented by such daily (24-hour) average 

metrics. For other pollutants, running mean concentrations are preferred than the daily (24-

hour) average exposure. Carbon monoxide and ozone metrics, for example, are based on 

daily 8 hour running means (Defra, 2007). It is then usually hypothesized that variability in 

exposure concentrations across days (Xt) may be important to explain the variations in 

daily health outcomes. Beyond such standards, some studies have considered sub daily 

temporal metrics for the criteria air pollutants and investigated the effects of hourly 

variations in exposure (Bhaskaran et al., 2011). The selection of the best exposure metrics 

for a pollutant mainly depends on its biological relevance and good representation of 

average population exposure; i.e., more strongly correlated with average population 

exposure compared to other metrics (Birnbaum, 2010, Darrow et al., 2011). 
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In addition to daily variations in absolute concentrations, variations in daily changes in 

exposure concentrations between successive days had also been proposed to have potential 

effects on health (Ayres, 2007). This hypothesis is primarily based on biological grounds 

that physiological systems respond to changes or rate of changes of a stimulus. It has been 

investigated in a time series study of temperature and mortality (Guo et al., 2011) and 

cross-sectional study of temperature and asthma admissions (Nastos et al., 2006) elsewhere 

and Chapter 4 will examine this for particulate pollution. The present chapter provides an 

overview of some statistical modelling and other issues related to using the change or rate 

of change metrics for PM10 in time series modelling context which have not been 

addressed previously. This will be supplemented by three simulation studies in relation to 

the main topics covered in the chapter, namely investigation of measurement error, 

comparison of models based on alternative change metrics and the impact of missing data 

handling methods on properties of risk estimates. 

3.2. Definition and properties of the change metrics 

3.2.1. Definition 

The change metric, delta PM10 (ΔPM10), was defined as the change in mean absolute PM10 

concentrations between successive days as shown in equation 3.2. 

1ttt PPP                                                        (3.2) 

where Pt and Pt-1 represent PM10 concentrations on day t and previous day t-1 respectively. 

3.2.2. Measurement error and statistical properties 

Measurement errors are commonly classified in the environmental epidemiology literature 

as classical and Berkson types (Zeger et al., 2000). Measurement error in air pollution can 

arise due to, for example, imprecision of measuring devices and location of monitoring 
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stations.  Risk estimates will be affected differently depending on the error type present 

(Goldman et al., 2011). In classical type error the individual measurements vary around the 

true exposure with expectation equal to the true value. In Berkson type error a group of 

subjects is assigned the same average (proxy) value and true exposures vary around this 

proxy with expectation equal to this group value (Armstrong, 1998). Exposure 

measurement error (for continuous variables) or misclassification (for categorical 

variables) has been shown to result in biased risk estimates if classical type and reduced 

power whether classical or Berkson in epidemiological studies (Armstrong, 1998, Sorahan 

and Gilthorpe, 1994, Goldman et al., 2011, Butland et al., 2013). Zeger et al. (2000) argued 

that air pollution measurements could be prone to mixture of both classical and Berkson 

errors with the latter being predominant.  

This section demonstrates the impact of pure classical measurement error on the mean and 

variance properties of the absolute and delta PM10 metrics. Such comparison would be 

useful for example if the delta metrics were to be considered as an alternative to the 

absolute metrics. 

Errors in exposure measurements may comprise random as well as systematic component 

as shown below in equations 3.3 and 3.4 respectively: 

 trueobserved PP                                              (3.3) 

 ++= trueobserved PP                                              (3.4) 

where Pobserved is the observed exposure with some measurement error   or  + , Ptrue is 

the true exposure and θ is the amount of systematic error; and the true exposure is 
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uncorrelated with the random error   and ),0(~ 2

 N  under the classical measurement 

error framework. 

Systematic errors, in general, bias the expected value but do not affect variance estimate of 

measurements. In the case of this study, unlike the absolute metrics, systematic error would 

have no influence on the expectation of delta as the bias cancels out when differences 

between consecutive absolute concentrations are taken. On the other hand, one would 

expect the variance of delta to depend on the first-order autocorrelation of the “true” 

absolute metric series irrespective of whether systematic and/or random measurement error 

present. This is because delta is defined as the difference between two random variables 

namely lag 0 and lag 1 of pollution exposure. These properties are summarised in Table 

3.1 using notations P=Pobserved and P
*
=Ptrue for observed and true ambient air pollution 

concentrations respectively. 

Table 3.1: Properties of absolute and delta metrics in the presence of random and   

                 systematic error 

Model Expected value Variance 

 

Absolute metrics 

1. += *PP  )(P(P) *EE =  )()(P(P) * VVV +=  

2.  ++= *PP  += )(P(P) *EE  )()(P(P) * VVV +=  

Delta metrics on day t  (for both 1 and 2) 

)-()P-(PP 1-

*

1-

*

ttttt +=  0)P-(P)P( *

1-

*

t  ttEE  )-()P-(P)P( 1-

*

1-

*

t tttt VVV +=  
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And the first-order autocorrelation )1(  can be calculated as  

)0(
)1(

)1(


   

where ))](P))((P[()1( **

1

**

tttt EPEPE    is the first-order auto-covariance and 

]))(P[()0( 2**

tt EPE   is the variance. 

The results above imply that application of the delta metrics as well as interpretation of 

risk estimates from it should be looked at cautiously in light of the potential effect of 

measurement error. These theoretical arguments are also supported by an empirical study 

using simulation and the results are presented in Appendix C (Simulation study I). 

This section merely raised the issue of measurement error in the context of application of 

the delta metrics and highlighted the potential impact on the descriptive properties of the 

metrics. A full treatment of the issue would extend the present analysis by adding 

autocorrelation in the errors, including classical and Berkson type errors with the ensuing 

implications on properties of risk estimates and study power as well as developing 

appropriate adjustment methods where bias is detected. 

3.3. Patterns, correlations and interpretation for delta and absolute metrics  

3.3.1. Differences in patterns and correlations 

As the new delta metrics are defined based on simple algebraic subtraction of consecutive 

pollutant values, it might give the impression that both the original and new metrics should 

have similar patterns over time. This may not be the case, however, as the two quantities 

differ in how they represent exposure. To make this point clearer, 24 daily observations for 

pollution levels (say for PM) were generated and the corresponding delta PM values were 

calculated. The data were simulated artificially so that they represent the possible pattern 
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combinations in a series. The patterns of absolute and delta PM measures are explored 

under four scenarios (over a period of time): 

A. increasing PM levels (increment not constant from day to day) 

B. decreasing PM levels (decline not constant from day to day) 

C. constant increment of PM from day to day over a period of time 

D. constant decline from day to day over a period of time 

In order to understand the similarities and/or differences between the patterns of the 

absolute and delta metrics, it will be useful to explore through each of the above four cases 

by plotting the data series. The ranges for the four cases A, B, C and D can be seen by 

referring to Figure 3.1 below. The correlation between PM and delta PM was not strong at 

0.29 (Table 3.3). In all cases, declines in absolute PM from one day to the next are marked 

by corresponding negative delta PM values. 

Case A: Delta PM values indicated changing patterns (increments and decrements) 

although the absolute PM levels were consistently increasing over the given period. 

Case B: Delta PM values showed increasing patterns although the absolute PM levels were 

declining consistently over the given period. 

Case C: Absolute PM levels were set to increase by a fixed amount (10 units) from day to 

day which resulted in constant delta PM values. 

Case D: Absolute PM levels were set to decrease by a fixed amount (10 units) from day to 

day which again resulted in constant delta PM values albeit negative. 
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It is clear (from simple observation of Figure 3.1 above for example) that delta PM should 

not be expected to show similar patterns with the absolute PM measurements. Perhaps they 

are measuring different aspects of exposure to PM pollution. This could be explained by 

using some analogy between the definitions of delta and velocity. Velocity is defined as 

the rate of change of displacement (V=S2-S1/T2-T1 where V is velocity S, is displacement 

and T is time) while delta in our case is the change in pollution level per day. If we 

consider the change in time as one unit in the former case, then it is clear that delta and 

absolute measurements differ in similar way velocities and displacements differ. Hence, 

delta could be defined as the rate of change of pollution exposure per day. 

Figure 3.1: Possible pattern relationships between PM and delta PM for   

                   simulated data 
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3.3.2. Interpretation 

Risk estimates for the absolute metrics from a time series analysis are usually reported as 

percentage increases in adverse health outcome of interest per unit increase in pollution 

concentration. On the other hand, the corresponding risk estimates for delta should be 

interpreted as percentage increases in health risk per unit increase in the change or rate of 

change of pollution. The fact that delta can potentially measure something the absolute 

metric doesn’t is discussed using Figure 3.2. Consider two exposure scenarios where 

pollution increased from 2 to 12 μg/m
3 

in one day (illustrated as exposure pattern 1) and 

over six days by 2 μg/m
3
 each day (illustrated as exposure pattern 2). A conventional time 

series model based on absolute metrics relates both scenarios with the same relative risk, 

i.e., the relative risk per 10 μg/m
3
 (12-2=10 μg/m

3
) remains the same. The corresponding 

rates of changes were 10 and 2 μg/m
3
 per day under exposure patterns 1 and 2 respectively. 

Thus supplementing the conventional metric based model with delta could help to assess 

the possible health effects of such changes or rate of changes in air pollution. 
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Figure 3.2: Exposure pattern scenarios over the course of six days  
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3.4. Modelling options for delta and the identification problem 

Often the short-term health effects of absolute PM10 are studied using a Poisson 

generalized additive model (GAM) in the time series framework; for some health outcome 

Y and pollutant P at single lag l on day t, such model can be given as 




 
k

1i

tiitt )(XfP)]Log[E(Y l                                                                    (3.5) 

where fi(Xti) represent smooth functions of confounders (Xti), α is the intercept and β is the 

log relative risk of the outcome per unit increase in P (Hastie and Tibshirani, 1986, 

Dominici et al., 2002, Katsouyanni et al., 2009). 

Hence, an intuitive model to study the effect of change controlling for absolute measure 

from which the change was calculated would be:  

...PPP t

0

31-t

0

2t

0

1t                                                     (3.6) 

where )]Log[E(Y t=t , 
1ttt PPP  , t=2, 3, 4..., N and ignoring intercepts and 

confounders. 

Nevertheless, Pt , Pt-1 and ΔPt are in general collinear and the model is non-identifiable; 

despite being intuitive to specify it appears to be an overparmetrised one. In a non-

identifiable model, different model structures result in equivalent observations. According 

to Casella and Berger “a parameter θ for a family of distributions { }  :)|(  ∈xf  is 

identifiable if distinct values of θ correspond to distinct pdfs. That is, if '≠ , then 

)|( xf  is not the same function of x as )|( 'xf ” (Casella and Berger, 2002). The parameter 

θ in this definition can also be a vector (of parameters). 

http://en.wikipedia.org/wiki/Parametrization
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Expanding and rearranging model 3.6 as shown below indicates it can equivalently be 

modelled using only two parameters say 
1

 and 
2  implying redundancy of the third 

coefficient 0

3 . 

...PP=    

...P)-(P)(=    

...)P-(PPP=    

...PPP

1-t2t1

1-t

0'

3

0

2t

0

3

0

1

1-tt
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31-t
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2t

0

1

t

0

31-t

0

2t

0
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3.5. Simple identifiable models for delta 

Depending on the aim of the study model 3.5 can be adapted to model effect of the change 

metrics as follows: 

...Pt += t
                                                        (3.7) 

...PP t

'

2t

'

1 ++= t
                                                        (3.8) 

 ...PP 1-t

''

2t

''

1 ++=  t
                                                        (3.9) 

 ...P)2)PP(( t

'''

21-tt

'''

1 +++= t
                                                         (3.10) 

where )]Log[E(Y t=t , 
1ttt PPP  , t=2,3,...,N and ignoring intercepts and confounders. 

These specifications can be obtained by constraining model 3.6 such that 00

2

0

1 ==   for 

(3.7), 00

2   for (3.8), 00

1   for (3.9) and 0

2

0

1    for (3.10). 

The first model 3.7 can be used to study the single effect of delta without controlling for 

any absolute metric. Models 3.8, 3.9 and 3.10 can be used to study the effect of delta that is 

in addition to the current, lagged and average exposures respectively. 
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3.6. Implications of delta models in time series context 

Although models 3.7-3.10 above enable estimation of delta effects, models 3.8-3.10 are 

apparently equivalent. The merit of these models thus relies on their convenience for 

biological interpretation rather than mathematical novelty. The latter is not an added value 

of the delta models because all their parameters can be obtained from a conventional 

unconstrained distributed lag (UDL) model as described in the next section. 

3.6.1. Equivalence of the delta models with UDL model 

Let Pt represent pollution on day t, Pt-1 pollution on the previous day and Yt the count on 

day t for the health outcome of interest. A conventional unconstrained distributed lag 

(UDL) model with lags 0 and 1 for the pollutant P (ignoring terms not in Pt or Pt-1) can be 

specified as  

...PP 1-t2t1t ++=                                                                                            (3.11)  

Now the delta models given above in 3.8-3.10 can be expanded as follows (ignoring terms 

not in Pt, Pt-1 or ∆Pt): 
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for (3.10) 

Therefore equivalence of models 3.8, 3.9 and 3.10 with 3.11 can then be established if  

)(= and  = '
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                             (3.14) 

 

3.6.2. Equivalence between delta models 

Equivalence between models that include delta in addition to the absolute metrics at lags 0, 

1, and their average (i.e., average of lags 0-1) easily follows from rearranging 3.12, 3.13 

and 3.14 shown above. 

There are of course other potential models (other than 3.7-3.10) that could be considered 

but these were proposed on the grounds of model parsimony and ease of interpretation. 

Potential alternative specifications for delta and their implications are discussed in the next 

section supplemented by a simulation study when relevant. 
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3.7. Alternative specifications for identifiable delta models 

In section 3.5 above simple models to assess the relationship between the change metrics 

and a health outcome of interest were proposed. And in section 3.6 it was established that 

the conventional UDL model and those models involving delta in addition to lags 0, 1 or 

average of lags 0 and 1 are basically equivalent. A few further options could however be 

explored in order to obtain alternative delta metrics which can perhaps break such 

equivalence and hence achieve distinct delta models that could provide relatively better 

description of the data. Some alternative specifications for delta which can help to achieve 

this objective include  

1. substituting delta  with its absolute value 

2. setting negative delta values to 0, i.e., taking maximum(delta, 0) 

3. using a relative measure of delta instead of the absolute delta  

in the models proposed previously (3.8-3.10) or adding these alternative delta metrics in 

model (3.11). Hence, the resulting models can be summarised as shown below in 3.15-

3.18. 

...|P|PP t

)1(

31t

)1(

2t

)1(

1t +++=  -
                            (3.15) 

...|P|P t

)2(

21t

)2(

1t ++=  -
                            (3.16) 

...)0,P(P t

)3(

21t

)3(

1t ++= Max-                              (3.17) 

...PP t

)4(

21t

)4(

1t ++= R-                              (3.18) 

where )]Log[E(Y t=t , |P| t is the absolute value of delta, )0,P( tMax is the maximum of 

delta and zero and 
tPR  (relative delta) measures the relative change in pollution and was 

defined as: 
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1t

t
t P

P
P




R  

                                       (3.19) 

The above metrics and related models could then be appraised based on description of (a) 

ease of interpretation of parameter estimates (b) how well they represent the pattern of or 

correlate with the original change metrics (c) likely degree of collinearity and model 

parsimony (d) relative model fit. 

a) Ease of interpretation 

Although the absolute value and maximum metrics are mathematically fine to work with, 

they are less intuitive to interpret in comparison to delta. Unlike delta, they are restricted to 

non-negative values and relative risks always relate to a unit increase between two days 

having non-negative values for the change metrics. This is, however, not an issue for the 

relative delta metrics in model 3.18 which retains the sign of the original change metrics. 

b) Correlation with the original change metrics 

The artificially generated data presented in section 3.3.1 were used again to visually 

investigate possible relationships between patterns of delta and the three alternative metrics 

proposed. Figure 3.3 shows that not all delta patterns are reflected by the absolute and 

maximum metrics when delta is less than zero while the relative delta seems to perform 

comparatively better in capturing those patterns. 
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c) Model parsimony and collinearity 

Some degree of collinearity is expected in all the models as delta is correlated with the 

absolute metrics (Table 3.2). Yet, compared to models with two metrics, collinearity has 

more substantial implication in the three metrics model. The worst case scenario in this 

regard occurred when modelling Pt,. Pt-1 and ΔPt as shown in 3.6 where one of the three 

parameters was effectively redundant (due to perfect multi-collinearity). The degree of 

collinearity for this as well as for other combinations of absolute and delta metrics can be 

investigated using the variance inflation factor (VIF) and condition number. Table 3.2 

Figure 3.3: Comparison of the patterns of alternative metrics for identifiable delta models 
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shows models for the various metrics combinations are within the rule of thumb cut off (10 

for example) for both VIF and condition number (Chen et al., 2003) except for model 3.6 

which included lag 0, lag 1 and delta. 

Table 3.2: Simple collinearity diagnostics between combinations of PM10    

                  and alternative delta metrics for simulated data 

Variable VIF Sqrt (VIF) Tolerance R
2
 

Condition 

number 

PM10 -2.55e+15 − ≈0
§ 1.0000 

− Lag1 PM10 -2.55e+15 − ≈0 1.0000 
∆PM10 -8.83e+14 − ≈0 1.0000 
      
PM10 3.25 1.80 0.3076 0.6924 

3.5736 Lag1 PM10 3.60 1.90 0.2779 0.7221 
|∆PM10| 1.20 1.10 0.8335 0.1665 
      
PM10 3.17 1.78 0.3159 0.6841 

3.2510 
Lag1 PM10 3.17 1.78 0.3159 0.6841 
      
Lag1 PM10 1.17 1.08 0.8560 0.1440 

1.4911 
|∆PM10| 1.17 1.08 0.8560 0.1440 
      
Lag1 PM10 1.12 1.06 0.8967 0.1033 

1.3955 
R∆PM10 1.12 1.06 0.8967 0.1033 
      
Lag1 PM10 1.09 1.05 0.9136 0.0864 

1.3538 
∆PM10 1.09 1.05 0.9136 0.0864 
      
Lag1 PM10 1.01 1.01 0.9884 0.0116 

1.1144 
Max (∆PM10, 0) 1.01 1.01 0.9884 0.0116 

§
Approximately zero but with negative sign 

 

Although replacing ΔPt in 3.6 with its absolute value |ΔPt | led to an identifiable model as 

shown in 3.15, it would still be the least favoured compared to the rest two metric models 

due to the relatively stronger correlation present between |∆PM10| and lag 1 PM10 (Table 

3.3) as well as if model parsimony is to be considered. 
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Table 3.3: Correlation between PM10 and alternative delta metrics§ for simulated data 

 ∆PM10 |∆PM10| Max (∆PM10, 0) R∆PM10 PM10 

∆PM10 1 
   

 

|∆PM10| -0.25 1 
  

 

Max (∆PM10, 0) 0.88 0.24 1   

R∆PM10 0.92 -0.14 0.85 1  

PM10 0.29 0.23 0.41 0.22 1 

Lag1 PM10 -0.29 0.38 -0.12 -0.32 0.83 
§
All metrics measured in μg/m3 except relative delta which has no unit 

 

d) Model fit 

Finally, daily time series data from Hong Kong spanning the period 2002-2008 were used 

in order to determine the best fitting model among the proposed alternatives. That is, 

whether any of the alternative delta metrics presented in 3.15-3.18 fitted the data better 

than the relatively simpler delta models in 3.9 or 3.11 was checked in Poisson generalized 

additive models controlling for temperature, time trends and seasonality. The outcome of 

interest here was non-accidental mortality and relative risks, standard errors and AIC 

values were estimated for each of the models fitted. Descriptive statistics of the PM10 

metrics investigated for the Hong Kong data are given in Table 3.4 and a summary of the 

results from the fitted GAM models is presented in Table 3.5. Compared to the reference 

model 3.11, model 3.16 was the most inferior with change in AIC about 2.2. Nevertheless, 

the difference in AIC values among the remaining models was not remarkable (change in 

AIC ranging between -1.6 and 0.5). A further simulation study based on the same data 

provided more or less similar conclusions (more details on the simulation procedure and 

results in Appendix C, Simulation study II). 
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Overall, based on the descriptive and empirical comparisons (a)-(d) above, the relative 

delta may be preferable among the proposed alternative metrics in similar time series 

studies where the aim is investigating health effects of changes or rate of changes in 

exposure. This not only helps to get around the model identfiability problem but also 

amends the problem of equal weighting given to different baseline absolute pollution 

concentrations. For example, changes from 30 to 60 units and 40 to 70 units will both have 

a delta value of 30 units. However, in relative terms the rate of change compares as 100% 

versus 57%. In addition, the relative delta measure is fairly intuitive to interpret, showed 

very strong correlation with delta and provided reasonably similar model fit compared to 

other alternative metric models. 

 

Table 3.4: Summary of PM10 and delta metrics for Hong Kong (2002-2008) 

Metric
§ Mean (SD) Minimum Maximum Median IQR 

PM10 54.5 (28.7) 12.0 208.0 48.6 41.6 (30.7, 72.3) 

∆PM10 -0.04 (20.4) -125.4 115.2 0.1 19.0 (-9.5, 9.5) 

|∆PM10| 14.1 (14.7) 0.003 125.4 9.5 16.8 (3.5, 20.3) 

Max (∆PM10, 0) 7.0 (12.6) 0.0 115.2 0.1 9.5 (0.0, 9.5) 

R∆PM10 0.06 (0.4) -0.9 3.1 0.003 0.4 (-0.2, 0.2) 
§
All metrics measured in μg/m3 except relative delta which has no unit   
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Table 3.5: Model comparison for various delta metrics based on AIC values with log RR (SE) estimates for non-accidental  

                 mortality per IQR increase in respective metric for Hong Kong 

Model 

 
Change 
in AIC

§ 
Lag1 PM10 

 

ΔPM10 

 

Abs(ΔPM10) 

 

Max(ΔPM10, 0) 

 

RΔPM10 

 

3.11 Reference 0.01271 (0.00466) -- -- -- -- 

3.9 0.0 0.02401 (0.00412) 0.00516 (0.00213) -- -- -- 

3.15 0.5 0.01166 (0.00472) -- 0.00295 (0.00269) -- -- 

3.16 2.2 0.01699 (0.00398) -- 0.00413 (0.00264) -- -- 

3.17 -1.6 0.02102 (0.00374) -- -- 0.00418 (0.00158) -- 

3.18 0.0 0.02292 (0.00397) -- -- -- 0.0052 (0.0022) 
§
Calculated by subtracting AIC value of the reference model (3.11) from each model’s respective AIC 
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3.8. Handling missing data in delta metrics 

Analysis in the presence of non-trivial amount of missing data generally leads to reduction 

in power and precision and may result in biased estimates (Little and Rubin, 2002, 

Carpenter and Kenward, 2008, Janssen et al., 2010, Jackson et al., 2010). In time series 

studies of air pollution and health, the exposure data quite often come with some level of 

missing measurements. Thus, investigators attempt to impute the missing data according to 

some procedure and imputation methods continue to be an active research area in air 

pollution epidemiology (Katsouyanni et al., 2001, Plaia and Bondì, 2006, Junger and 

Ponce de Leon, 2015). However, when the missing rate in a data set is small, air pollution 

studies tend to carry out the analysis on the observed data set excluding missing 

measurements (Touloumi et al., 2004, Bhaskaran et al., 2011). 

In the context of delta metrics, the number of missing values could reach up to double as 

much as those for absolute metric in a specific data set. Let NA and ND represent number of 

missing observations for the absolute and delta metrics respectively, then ND is always 

greater than or equal to NA (that is ND ≥NA, and maximum of ND=2NA). Hence, imputation 

of missing absolute concentration values will become a more crucial step for analysis 

involving the delta metrics than the absolute metrics. 

Thus, a simulation study was conducted in order to compare two missing data handling 

methods namely excluding versus imputing missing observations. The imputation 

procedure that was considered for this analysis was taken from the APHENA study 

(Katsouyanni et al., 2009). The method computes missing data taking into account 

temporal and spatial averages (if data from a number of monitoring stations are available). 
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The simulation was based on daily time series data from Hong Kong which had complete 

PM10 measurements for the period 2002-2008 (2557 days). Using this data, first the 

following model was fitted: 




 
k

i

tiitt )(XfPβαP
1

1 )Log(]Log[                                                             (3.20) 

where t is day of observation, Log(Pt) and Log(Pt-1) represent PM10 concentrations at lags 0 

and 1 respectively on the log scale, α is the intercept, β is the regression coefficient, fi(Xti) 

represent smooth functions of confounders (Xti) which included temperature with 3 degrees 

of freedom (df), long-term time trends and seasonality with 4 df per year.  

Then, model predicted mean for PM10 on each day and the corresponding standard 

deviation of residuals were computed. Next, PM10 data series was generated from a log-

normal distribution based on the model predicted mean and standard deviation for the first 

monitoring station. Data for six additional monitoring stations were also generated in order 

to conform to the APHENA imputation method and one of the six stations was set to have 

larger average pollution. The procedure was repeated 1000 times and hence obtaining 1000 

time series data sets (each 2557 days long) for seven monitoring stations. After this, 

missing rates of 3%, 5%, 10%, 30% and 50% were randomly introduced to each simulated 

data set for the first monitoring station while the missing rate for the rest six stations was 

kept at 3%. A second data series was then created for the first monitoring station by 

replacing the missing observations based on the APHENA imputation method which uses 

temporal and spatial averages from the other six stations. Finally, Poisson GAM model 

(equation 3.21 below) was fitted to each data set from the first station to estimate 

coefficients for lag 1 and delta PM10 after excluding the missing data as well as using the 
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imputed data set (more details on the simulation procedure in Appendix C, Simulation 

study III).  




 
k

1i

tii1t2t1t )(XfPP)]Log[E(Y                                                                 (3.21)             

where t is day of observation, ΔPt and Pt-1 represent delta and lag 1 PM10 concentrations 

respectively, α is the intercept, β1 and β2 are the regression coefficients and fi(Xti) represent 

smooth functions of confounders (Xti) which include temperature with 3 degrees of 

freedom (df), long-term time trends and seasonality with 8 df per year and day of the week.  

The results from each model (β1 and β2) were saved and summarised using their average, 

SD, bias, relative bias, MSE and relative efficiency. The corresponding estimates from 

Hong Kong which had complete PM10 data were assumed as the “true” values for 

calculating bias. The aim again was to investigate the extent of missing data which could 

lead to potentially large bias and compare the performance of the APHENA imputation 

method against excluding missing data. 

A summary of the results from this simulation study is presented in Table 3.6. When the 

missing rate was small (≤10% for example), excluding missing observations had little 

impact on mean square error (MSE) estimates for both lag 1 and delta PM10 coefficients. 

The MSE estimates almost doubled as the proportion of missing data increased, for 

example, from 10% to 30%. This was driven mainly by increases in the variance of 

coefficients as the respective increase in bias was relatively small. 

Likewise, the MSE for the imputation based estimates was little affected by small 

proportion of missing data (≤10% for example) while higher rates led to increased MSE 

estimates. However, unlike the analysis excluding missing data, the increase in MSE was 
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mainly driven by larger bias in coefficient estimates while the increase in variance was 

relatively small. 

Comparison of the two methods for handling missing data, excluding versus imputation, 

shows that there is substantial gain in relative efficiency using the imputation approach 

(see Table 3.6 and Figure 3.4). This is true for each rate of missing data considered in the 

simulation study. 
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Table 3.6: Comparison of missing data handling methods in a simulation study for estimating log RRs per IQR increase for Lag1 PM10    

                and Delta PM10 

                                       Parameters  

 Lag 1 PM10  (“true” value=0.020363) Delta PM10 (“true” value=0.004210) 

 Missing rate (%) 

 3 5 10 30 50 3 5 10 30 50 

A) Excluding missing (Ex)  

Ex



  0.020396 0.020272 0.020366 0.019952 0.019748 0.004222 0.004178 0.004219 0.004126 0.004114 

Bias 0.000033 -0.000092 0.000002 -0.000412 -0.000616 0.000012 -0.000032 0.000009 -0.000085 -0.000096 

Relative bias 0.001622 -0.004510 0.000101 -0.020225 -0.030226 0.002840 -0.007610 0.002096 -0.020080 -0.022830 

SD 0.004493 0.004568 0.004975 0.006863 0.010608 0.001650 0.001713 0.001833 0.002467 0.003731 

MSE 0.000020 0.000021 0.000025 0.000047 0.000113 0.000003 0.000003 0.000003 0.000006 0.000014 

B) APHENA imputed (Ap) 

     

Ap



  0.020678 0.020781 0.021288 0.023344 0.026120 0.004281 0.004291 0.004404 0.004822 0.005368 

Bias 0.000314 0.000418 0.000924 0.002981 0.005757 0.000071 0.000081 0.000193 0.000611 0.001158 

Relative bias 0.015426 0.020519 0.045381 0.146371 0.282709 0.016770 0.019210 0.045895 0.145145 0.274987 

SD 0.004288 0.004273 0.004315 0.004177 0.004222 0.001585 0.001602 0.001608 0.001633 0.001740 

MSE 0.000018 0.000018 0.000019 0.000026 0.000051 0.000003 0.000003 0.000003 0.000003 0.000004 

Relative efficiency 
        

)()(


ApEx MSEMSE   1.092043 1.132763 1.270871 1.794950 2.215162 1.082175 1.141285 1.280182 2.004307 3.188856 
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Figure 3.4: Relative efficiency (RE) of estimates for coefficients of Lag 1 and                 

                   delta PM10 excluding versus imputing missing data.      

                   RE=MSE[excluding]/MSE[imputing]  
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3.9. Summary and conclusion 

In this chapter some issues in relation to the properties and modelling of the change 

metrics (delta) for PM10 were discussed. It was highlighted using a simulation study that 

measurement error could have more severe impact on the delta metrics than the absolute 

metrics as reflected by larger variance of the former with increasing measurement error. 

The mathematical equivalence of potential identifiable models for delta with UDL model 

was shown and alternative identifiable models for delta were proposed. The alternative 

metrics were compared based on description of their properties in relation to the original 

change metrics as well as the relative model fit using a simulation study. The comparison 

indicated that the relative delta metrics would be preferred among the alternatives for delta 

in the evaluation of effects of changes or rate of changes. Finally, the impact of missing 

data was investigated using simulation. In particular, analysis excluding missing data and 

imputation based on the APHENA study procedure (Katsouyanni et al., 2009) were 

compared. The results showed that the relative efficiency of the imputation was much 

better than analysis excluding the missing observations. Therefore, imputation of missing 

data should be an important step particularly for models using the delta metrics. 
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4. CHANGES IN AIR POLLUTION BETWEEN SUCCESSIVE DAYS 

AND MORTALITY: A TIME SERIES STUDY 
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4.1. Introduction 

Time series studies of short-term exposure to ambient air pollution have reported adverse 

associations with health including death and emergency admission to hospital (Anderson et 

al., 2007, Wong et al., 2002, Schwartz, 1994, Bell et al., 2013). Such studies correlate daily 

concentrations of pollution with daily counts of health events. A variety of daily metrics to 

characterise pollutant exposure including 24-hour averages and maximum hourly 

concentrations (Bell et al., 2005, Ostro et al., 2001, Delfino et al., 2002) have been 

investigated as well as the possibility that pollutant exposure has a concurrent or a delayed 

effect on health, by studying exposures lagged by one or more days (Katsouyanni et al., 

1996, Hoek et al., 2001, Janssen et al., 2013). Others have considered combinations of 

these lagged measures assuming unconstrained or constrained distributed lag models 

(Schwartz, 2000a, Braga et al., 2001, Samoli et al., 2013). The purpose of exploring 

alternative pollutant metrics in such studies is to identify the most relevant exposure 

measure so that risk estimates are correctly quantified (Birnbaum, 2010, Darrow et al., 

2011). 

Time series studies in environmental epidemiology quantify the change in risk of a health 

outcome associated with a given increment in pollutant exposure; the interpretations of 

such risk estimates do not necessarily take account of the temporal order of the exposures 

or the change or rate of change of the pollutant concentrations on a day-to-day basis. The 

latter may be biologically relevant since the human body often responds to a change or to 

the rate of change of a stimulus; a good example being the way in which cutaneous pain 

receptors respond to stimulation (Burgess and Perl, 1967). It is thus hypothesised that 

differences, absolute or relative, in air pollution concentrations across successive days may 
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be a useful exposure metric for exploring short-term health effects of air pollution. That is, 

an increase of 10 μg/m
3
, for example, in pollutant concentrations occurring between one 

day and the next would have a greater impact on health than the same increment occurring 

gradually over a number of days. This hypothesis, the delta hypothesis, has been proposed 

before (Ayres, 2007) and is yet to be evaluated in air pollution epidemiology although its 

equivalent has been examined in time series studies of temperature (Guo et al., 2011, 

Nastos et al., 2006, Lin et al., 2013, Ebi et al., 2004, Kyobutungi et al., 2005, Kim et al., 

2014). In a similar argument, Dominici et al. have recently called for investigation of 

whether or not the health benefits of reducing air pollution say from “14 to 12” μg/m
3 

and 

“12 to 10” μg/m
3 

would be the same (Dominici et al., 2014). Hence, this study investigated 

the association of changes between successive daily measurements of PM10 and daily 

mortality in London and Hong Kong. It is argued that if results from both cities (which 

have different weather, air pollution profile, lifestyle,  health indicators, etc.) were in 

agreement, then associations observed if any could potentially be considered causal (Wong 

et al., 2002). 
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4.2. Methods 

4.2.1. Data 

Detailed description of the data and sources for London and Hong Kong are provided 

elsewhere (Atkinson et al., 2010, Wong et al., 2008). Briefly, for London daily 24-hour 

average concentrations of PM10 measured at an urban background monitoring station 

(North Kensington) were obtained from the United Kingdom air quality archive (UK-AIR) 

managed by the Department for Environment, Food and Rural Affairs (DEFRA). 

Corresponding measures of daily average temperature were obtained from the British 

Atmospheric Data Centre. Daily mortality data for all non-accidental, cardiovascular and 

respiratory causes were obtained from the Office for National Statistics (ONS) and the 

daily data covered the period 1
st
 January 2000 to 31

st
 December 2005.  

Similarly, for Hong Kong PM10 concentrations (24-hour average) and weather data were 

obtained from the Environmental Protection Department, Hong Kong. Daily mortality data 

for all non-accidental, cardiovascular and respiratory causes were obtained from the 

Census and Statistics Department, Hong Kong. The daily data were collected for the period 

1
st
 January 2002 to 31

st
 December 2008. 

4.2.2. Defining “delta” 

A new metric, delta PM10 (ΔPt), was defined as the change in mean absolute PM10 

concentrations (referred to as just PM10) between consecutive days (equation 4.1 below).  

1ttt P-PP                                                           (4.1) 
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The change relative to the absolute concentration was also quantified defining a second 

metric, relative delta PM10 (RΔPt) by dividing the value of delta PM10 by the lag 1 PM10 

concentration (equation 4.2 below). 

1t

t
t P

P
P




R  

                                                        (4.2) 

where Pt and Pt-1 represent PM10 concentrations on day t and previous day t-1 respectively. 

4.2.3. Statistical methods 

The proposed delta metrics are based on simple algebraic manipulation of the existing 

absolute PM10 measures. Thus, conventional Poisson generalized additive models (GAMs) 

were applied to study their association with daily mortality counts. A generic form of such 

models for health outcome Y and pollutant P at single lag l on day t can be given as 

follows: 




 
k

1i

tiitt )(XfP)]Log[E(Y l                                                                    (4.3)             

where fi(Xti) represent smooth functions of confounders (Xti) which include temperature 

with 3 degrees of freedom (df), long-term time trends and seasonality with 8 df per year 

and day of the week (Hastie and Tibshirani, 1986, Dominici et al., 2002, Katsouyanni et 

al., 2009). Based on this the following two time series models were proposed to evaluate 

the health effects of air pollution under a change paradigm for exposure metrics: 

...P)]Log[E(Y tt    delta effect only   (4.4) 

...PP)]Log[E(Y 1t

'

2t

'

1t  
 additional effect to the lagged value  (4.5) 

where ΔPt is as defined in equation (4.1) above, t=2, 3, 4..., N and ignoring intercepts and 

confounders. 
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However, after algebraic analysis as shown in Chapter 3, model (4.5) appears to be 

equivalent with the conventional unconstrained distributed lag 1 model: 

...PP)]Log[E(Y 1t2t1t                                                                               (4.6 ) 

 

This means that given the parameters of one of the models (4.5) or (4.6), one can easily 

compute the parameters of the other model, i.e., they are alternative parameterisations but 

with possibly different interpretations. The merit of the delta metrics lies in the 

convenience to directly evaluate responses to changes in exposure between consecutive 

days. In fact, the models remain equivalent if Pt-1 in (4.5) was replaced with either Pt or 

  2PP 1tt  . 

Models (4.4-4.5) were fitted to both delta and relative delta PM10 but algebraic equivalence 

of models (4.5) with (4.6) could be established only for delta PM10. For comparison 

purposes, a conventional lag 1 model (4.7) below was also fitted: 

...P)]Log[E(Y 1t

'

1t                                                                                        (4.7) 

 

Although the approach for this analysis was guided by an a priori specified protocol which 

was mostly based on the APHENA study (Katsouyanni et al., 2009), it is always important 

to check whether the results would be affected by alternative specifications (Bhaskaran et 

al., 2013). Therefore, associations of the three exposure metrics (absolute PM10, delta and 

relative delta PM10) with mortality were explored at single lags of 0-6 and averages of lags 

0-1, 0-2, ..., 0-6  in order to assess the sensitivity of results to lag choice. In addition, 

whether a non-linear modelling approach could better describe associations of the delta 

metrics with mortality was examined (both on a continuous scale as well as after 

categorising delta into three groups). Interaction effects of the delta metrics (delta and 
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relative delta PM10) with that of absolute PM10 at lag 1 were also checked. Furthermore, 

the impact of restricting the analysis to days with positive deltas only was investigated; the 

aim here was assessing the effect of sampling based on days with air pollution increases as 

intuitively only pollution increases are expected to have effect on health. Finally, 

sensitivity of results to choice of df for smoothing time and temperature was checked over 

the range 2-14 dfs. Residual plots were used to check for any remaining patterns in the data 

and other model anomalies. Model comparisons were based on AIC values. All analyses 

were performed using the R statistical package (R Core Team, 2012). Results are presented 

as percentage changes in mortality for an interquartile range (IQR) increase in PM10 metric 

unless otherwise stated and all hypotheses tests are based on 5% significance level. 

4.2.4. Summary of study protocol 

This section outlines briefly the health outcomes, exposure variables and different aspects 

of the modelling approach in the study. The latter involved a priori specification of 

smoothing parameters for the GAMs and the determination of confounders to be included. 

This was guided by the literature and the final study protocol described below was taken 

mostly from the APHENA study (Katsouyanni et al., 2009) which can be regarded as one 

of the most credible time series studies of air pollution and health. 

4.2.4.1. Outcome and exposure 

Mortality: Daily counts of deaths for people who resided and died in London and Hong 

Kong of non-accidental (ICD-10 Chapters A–R), cardiovascular (ICD-10 Chapter I) and 

respiratory (ICD-10 Chapter J) causes for all ages. For Hong Kong, ICD-9 codes 001–799, 

390–459 and 460–519 were also included for non-accidental, cardiovascular and 

respiratory mortality respectively. 
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Exposure: Absolute PM10 (24-hour average) and corresponding delta PM10 and relative 

delta PM10 were the exposures of interest. The definition for the delta metrics is as given in 

equations (4.1) and (4.2) above. 

4.2.4.2. Model specification 

Exposure lags: Models are based on lag 0 for delta PM10 and lag 1 for absolute PM10 as 

these are commonly used exposure lags in the literature (Katsouyanni et al., 2009, Guo et 

al., 2011). 

Smoothing: Smoothing splines were applied for fitting smooth functions of calendar time 

and temperature. 

Missing values: Missing data could have more serious implication in the delta than 

conventional models as the number of missing observations could easily double in the 

delta approach. This is because our new metrics depend on the differences of exposure 

between successive days. Hence, missing data for PM10 were handled by adapting the 

APHENA (Katsouyanni et al., 2009) protocol as detailed below. A missing observation on 

day i of year k from monitoring station j was replaced by a weighted average of the values 

of the other monitoring stations as follows: 

 
kjkkiijk xxxx .... /ˆ                                                                              (4.8) 

where kix .  is the mean value on day i of year k among all monitors reporting, jkx.  is the 

mean value for monitor j in year k and kx..  is the overall mean level in year k. 
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Degrees of freedom for seasonality: The use of 8 df per year has been adopted in this time 

series study. 

Covariates in the model: A smooth term for lag 0 temperature with 3 df was included and 

dummy variables were entered to control for day of the week effects. Models were not 

controlled for influenza and relative humidity; the effect of the latter was however 

investigated in a sensitivity analysis. 

4.2.4.3. Non-linear exposure-response relationships 

GAMs were fitted with smoothed delta and relative delta PM10 for 2-14 df in order to 

assess whether such models provided a better fit than the linear approach. 

4.2.4.4. Categorised delta metrics 

Each delta metric was grouped into 3 categories. Delta PM10 values were categorised as 

<0, 0-10 and ≥10 μg/m
3
 and relative delta PM10 values as <0, 0-0.1 and ≥0.1. 
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4.3. Results 

4.3.1. Summary for the time series data 

Table 4.1 presents some descriptive statistics for daily mortality, PM10, delta PM10 and 

relative delta PM10 concentrations. PM10 concentrations in Hong Kong were more than 

double those in London; the median (IQR) levels were 23 (18.7, 29.8) and 48.6 (30.7, 72.3) 

μg/m
3
 for London and Hong Kong respectively. The corresponding delta PM10 and relative 

delta PM10 concentrations were 0.7 (-4.9, 5.4) μg/m
3 

and 0.03
 
(-0.19, 0.25) for London and 

0.11 (-9.48, 9.5) μg/m
3 

and 0.003 (-0.17, 0.22) for Hong Kong respectively. Daily 

mortality rates were in general lower in Hong Kong; the median daily number of deaths 

from non-accidental, cardiovascular and respiratory causes was 145, 54 and 22 in London 

and 95, 26 and 18 in Hong Kong respectively. Compared to the warm season (April-

September), mortality and pollution concentrations were somewhat higher for the cold 

season (October-March) in both cities. There were 65 missing observations (about 3%) for 

PM10 in London which were imputed according to the procedure described in the study 

protocol above (equation 4.8). 

A strong seasonal pattern with slightly declining trend was observed for mortality in both 

cities over the respective study periods while such a trend was less obvious for the three 

exposure metrics considered for PM10 in this study (Figure 4.1). 
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Table 4.1: Summary of number of daily deaths and PM10 metrics for London (2000-2005) and Hong Kong (2002-2008) 

Variable 

Full data By season
a
, Mean (SD)  

Mean (SD) Minimum Maximum Median IQR (25
th

, 75
th

 Percentiles) Cold Warm 

London 

Daily mortality 

Non-accidental  147.3 (22) 96 302 145 26 (133, 159) 157.6 (22.1) 137.1 (16.5) 

Cardiovascular 54.6 (10.4) 27 116 54 13 (48, 61) 58.7 (9.9) 50.5 (9.1) 

Respiratory 23.1 (9.9) 6 139 22 10 (17, 27) 27 (11.6) 19.3 (5.7) 

Daily pollutant metrics and weather 

PM10 (μg/m
3
) 25.7 (10.7) 5.8 98.1 23 11.1 (18.7, 29.8) 26 (11.1) 25.5 (10.2) 

Delta PM10 (μg/m
3
) 0.02 (9.5) -63.3 43.9 0.7 10.3 (-4.9, 5.4) 0.03 (10.2) -0.01 (8.6) 

Relative delta PM10
b 0.06 (0.37) -0.82 2.5 0.03 0.4 (-0.2, 0.3) 0.1 (0.4) 0.05 (0.3) 

Temperature (°C) 12.4(5.4) -0.2 29.3 12.1 8.1 (8.4, 16.5) 8.6 (3.7) 16.1 (4.1) 

Dew point (°C) 6.8 (4.8) -6.5 18 7 6.9 (3.4, 10.3) 4.3 (4.1) 9.2(4.1) 

Hong Kong 

Daily mortality 

Non-accidental  96 (14.7) 55 161 95 19 (86, 105) 100.7 (15.7) 91.2 (11.9) 

Cardiovascular 26.6 (6.7) 7 56 26 9 (22, 31) 29.1 (7) 24.1 (5.4) 

Respiratory 18.4 (5.8) 5 52 18 8 (14, 22) 19.5 (6.2) 17.4 (5.3) 

Daily pollutant metrics and weather 

PM10 (μg/m
3
) 54.5 (28.7) 12 208 48.6 41.6 (30.7, 72.3) 68.1 (27) 40.8 (23.3) 

Delta PM10 (μg/m
3
) -0.04 (20.4) -125.4 115.2 0.11 18.9 (-9.48, 9.5) -0.1 (22.4) 0.1 (18.2) 

Relative delta PM10 0.06 (0.4) -0.87 3.1 0.003 0.4 (-0.2, 0.22) 0.1 (0.4) 0.1 (0.4) 

Temperature (°C) 23.51 (5) 8.2 31.8 24.9 8.2 (19.5, 27.7) 19.9 (4.1) 27.1 (2.5) 

Humidity (%) 78.1 (10.2) 31 98 79 12 (73, 85) 74.8 (11.6) 81.4 (7.2) 
aSeason:  Warm (April-September), Cold (October-March) 
bRelative delta has no unit   
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Figure 4.1: Patterns of PM10 (μg/m
3
), Delta PM10 (μg/m

3
), Relative delta PM10 and          

                   non-accidental mortality 

 

 

 

            London      ----Hong Kong 
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Table 4.2 and Figure 4.2 display the correlations between the three PM10 metrics. There 

was a strong correlation between delta and relative delta measures; the Spearman 

correlation coefficient was 0.98 in London and 0.97 in Hong Kong. However, both showed 

moderate negative correlations with absolute PM10 at lag 1 with coefficient -0.4 for 

London and -0.3 for Hong Kong (Table 4.2). Autocorrelation and partial autocorrelation 

functions for all variables as well as the respective cross-correlations are presented in 

appendix D, Figure 4.9, Figure 4.10 and Figure 4.11. 

Table 4.2: Spearman correlation coefficient for non-accidental mortality and the  

                  various PM10 metrics 

 

Non-

accidental 

mortality 

PM10 Lag1 PM10 ΔPM10 RΔPM10 Temperature 

London 

      PM10(μg/m
3
) 0.15 

     Lag1 PM10(μg/m
3
) 0.18 0.52 

    ΔPM10(μg/m
3
) -0.01 0.49 -0.4 

   RΔPM10
§ -0.02 0.48 -0.44 0.98 

  Temperature (°C) -0.5 0.11 0.14 -0.03 -0.04 
 Dew point (°C) -0.41 0.04 0.14 -0.11 -0.11 0.89 

Hong Kong 

      PM10(μg/m
3
) 0.24 

     Lag1 PM10(μg/m
3
) 0.24 0.79 

    ΔPM10(μg/m
3
) -0.003 0.29 -0.3 

   RΔPM10 -0.003 0.29 -0.31 0.97 
  Temperature (°C) -0.44 -0.47 -0.48 0.01 0.01 

 Humidity (%) -0.1 -0.5 -0.4 -0.14 -0.14 0.12 
§Relative delta has no unit 
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Figure 4.2: Scatter plots showing correlation between PM10 (μg/m
3
), Delta (μg/m

3
) and   

                    Relative delta 
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4.3.2. Non-accidental mortality 

Table 4.3 presents the percentage increase in mortality for an IQR increase in the 

respective PM10 metric. In Hong Kong, the conventional lag 1 PM10 metric showed 

significant association with non-accidental mortality as expected with percentage increase 

of 1.97 (95% CI: 1.23, 2.73). However, there was little evidence of association for delta 

and relative delta PM10 in the single metric models with percentage increases in mortality 

of -0.04 (95% CI: -0.41, 0.33) and 0.04 (95% CI: -0.35, 0.43) respectively. Likewise, in 

London the conventional lag 1 PM10 metric showed significant association with non-

accidental mortality with percentage increase 0.91 (95% CI: 0.50, 1.32). However, the 

associations for delta -0.59 (95% CI: -1.01, -0.16) and relative delta -0.59 (95% CI: -1.01, -

0.16) appeared to be negative.  

In Hong Kong, after controlling for lag 1 PM10, estimates for percentage increase in 

mortality for an IQR increase in delta and relative delta PM10 were similar: 0.51 (95% CI: 

0.1, 0.92) and 0.51 (95% CI: 0.09, 0.93) respectively. Lag 1 PM10 effects themselves 

increased from 1.97 (95% CI: 1.23, 2.73) to 2.44 (95% CI: 1.61, 3.28) and 2.31 (95% CI: 

1.48, 3.15) after controlling for delta and relative delta respectively. However, these 

associations were not seen in the London data. 

4.3.3. Cardiovascular mortality 

For both cities there was no evidence of association for delta and relative delta PM10 with 

cardiovascular mortality in the single metric models (Table 4.3). After controlling for lag 1 

PM10, the percentage increases in cardiovascular mortality for an IQR increase in delta and 

relative delta PM10 were similar in Hong Kong at 1.12 (95% CI: 0.3, 1.95) and 1.18 (95% 

CI: 0.37, 2.0) respectively. Lag 1 PM10 effects increased from 2.36 (95% CI: 0.95, 3.79) to 
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3.43 (95% CI: 1.84, 5.04) and 3.21 (95% CI: 1.71, 4.74) after controlling for delta and 

relative delta respectively. Nevertheless, these associations were not present in the London 

data (Table 4.3). 

4.3.4. Respiratory mortality 

In general, there was little evidence of association for delta and relative delta PM10 with 

respiratory mortality both in the single metric models and after controlling for lag 1 PM10 

for both cities (Table 4.3). The exception was where a negative association appeared in 

London for delta PM10 with an estimated percentage increase of -1.26 (95% CI: -2.28, -

0.23). 
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Table 4.3: Percentage increase (95% CI) in mortality per IQR increase in PM10 metric by cause of death 

London Non-accidental Cardiovascular Respiratory 

Conventional  metrics (PM10, μg/m
3
) 

Lag1 PM10  0.91(0.5, 1.32) 0.81(0.13, 1.48) 1.63(0.55, 2.73) 

Delta metrics (ΔPM10, μg/m
3
) 

ΔPM10 -0.54(-0.93, -0.15) -0.14(-0.78, 0.5) -1.26(-2.28, -0.23) 

Lag1 PM10 +ΔPM10 0.83(0.37, 1.3) + -0.14(-0.58, 0.3) 0.98(0.22, 1.74) + 0.32(-0.41, 1.06) 1.29(0.05, 2.54) + -0.65(-1.82, 0.55) 

Relative delta metrics (RΔPM10, no units) 

RΔPM10 -0.59(-1.01, -0.16) -0.31(-1.01, 0.4) -1.03(-2.14, 0.1) 

Lag1 PM10 + RΔPM10 0.82(0.37, 1.27) + -0.21(-0.68, 0.26) 0.84(0.11, 1.58) + 0.08(-0.69, 0.85) 1.48(0.28, 2.69) + -0.35(-1.59, 0.91) 

Hong Kong    

Conventional  metrics (PM10, μg/m
3
) 

Lag1 PM10  1.97(1.23, 2.73) 2.36(0.95, 3.79) 0.88(-0.92, 2.7) 

Delta metrics (ΔPM10, μg/m
3
) 

ΔPM10 -0.04(-0.41, 0.33) 0.36(-0.34, 1.07) -0.34(-1.22, 0.55) 

Lag1 PM10 +ΔPM10 2.44(1.61, 3.28) + 0.51(0.1, 0.92) 3.43(1.84, 5.04) + 1.12(0.3, 1.95) 0.67(-1.44, 2.82) + -0.17(-1.2, 0.87) 

Relative delta metrics (RΔPM10, no units) 

RΔPM10 0.04(-0.35, 0.43) 0.52(-0.24, 1.29) -0.55(-1.48, 0.39) 

Lag1 PM10 + RΔPM10 2.31(1.48, 3.15) + 0.51(0.09, 0.93) 3.21(1.71, 4.74) + 1.18(0.37, 2) 0.5(-1.45, 2.49) + -0.44(-1.45, 0.58) 
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4.3.5. Sensitivity to the choice of lag 

Figure 4.3 below shows the percentage increase estimates for all the three metrics for each 

of the single lags 0-6 and the corresponding average lags (from 0-1 to 0-6 days). In 

general, there were considerable and consistent effects for the conventional PM10 metric at 

various lags and for all the mortality outcomes in both cities (although some lags, for 

example, lags 5 and 6, did not show significant association and percentage increase 

estimates were elevated in average lag models with increasing lag number). With respect to 

the delta metrics, there was similarity in terms of effect of delta and relative delta PM10 on 

mortality in the single lag and average lag models. In most cases, there was little evidence 

of association of the delta metrics with mortality at the various lags considered. The 

exceptions include delta and relative delta PM10 for non-accidental mortality at lag 0, delta 

PM10 for respiratory mortality at lag 0 and average of lags 0-1 in London and for averaging 

over longer lags in Hong Kong. 
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Figure 4.3: Association of PM10 metrics for single and average lags (from 0-1 to 0-6   

                   days) with mortality 
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4.3.6. Non-linear relationship for single lag models  

Potential non-linear relationships were examined using GAM models with 2-14 df for delta 

and relative delta metrics in the study (Appendix D: Figures 4.9 and 4.10 for London and 

Figures 4.11 and 4.12 for Hong Kong). These non-linear models did not provide any 

material improvement over their linear counterparts based on AIC values (Appendix D: 

Table 4.7). A further sensitivity analysis was conducted by restricting the data to days with 

positive deltas only (i.e., for days with air pollution increases as intuitively only pollution 

increases are expected to have an effect). Overall, conclusions were similar to those based 

on the full dataset. For example, the exposure-response relationship using GAMs with 3 df 

smooth for the absolute and delta PM10 metrics are presented in Appendix D: Figures 4.13 

(full data set) and 4.14 (positive deltas only) for London and Figures 4.15 (full data set) 

and 4.16 (positive deltas only) for Hong Kong. 

4.3.7. Categorised delta metrics 

Categorization of the delta metrics did not provide any clear insights with respect to 

associations with mortality for any of the causes. For London, percentage increase 

estimates for both delta and relative delta were not significant compared to the respective 

reference categories (Table 4.4). In Hong Kong, some differences were observed for non-

accidental and cardiovascular mortality but not for respiratory mortality (Table 4.4). 

Overall, compared to models based on the continuous scale delta metrics, categorized delta 

metrics did not provide material improvement on model fit based on AIC values 

(Appendix D: Table 4.7). 
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Table 4.4: Percentage increase (95% CI) in mortality after categorizing the delta   

                 metrics 

Variable
§ Group Non-accidental Cardiovascular Respiratory 

London 

∆PM10 <0 Reference Reference Reference 

 0-10 0.28(-0.52, 1.08) 0.90(-0.42, 2.24) 0.81(-1.33, 3.00) 

 ≥10 -0.85(-2.04, 0.35) 0.28(-1.68, 2.29) -1.32(-4.45, 1.90) 

Lag1 PM10 - 0.08(0.04, 0.12) 0.09(0.02, 0.15) 0.16(0.05, 0.26) 

R∆PM10 <0 Reference Reference Reference 

 0-0.1 -0.09(-1.22, 1.06) 0.69(-1.18, 2.59) 1.56(-1.50, 4.72) 

 ≥0.1 0.07(-0.74, 0.89) 0.79(-0.55, 2.15) -0.08(-2.24, 2.12) 

Lag1 PM10 - 0.08(0.04, 0.12) 0.09(0.02, 0.15) 0.15(0.04, 0.25) 

Hong Kong 

∆PM10 <0 Reference Reference Reference 

 

0-10 0.79 (-0.24, 1.82) 2.11 (0.12, 4.14) 0.74 (-1.65, 3.19) 

 

≥10 1.31 (0.27, 2.37) 3.37 (1.33, 5.46) -2.14 (-4.49, 0.27) 

Lag1 PM10 - 0.05 (0.04, 0.07) 0.08 (0.04, 0.11) 0.03 (-0.02, 0.07) 

R∆PM10 <0 Reference Reference Reference 

 
0-0.1 1.02 (-0.23, 2.29) 1.09 (-1.3, 3.54) 0.78 (-2.12, 3.76) 

 
≥0.1 1.06 (0.12, 2) 3.44 (1.61, 5.31) -1.3 (-3.43, 0.87) 

Lag1 PM10 - 0.05 (0.04, 0.07) 0.08 (0.04, 0.11) 0.02 (-0.02, 0.07) 
§PM10 and ∆PM10 measured in μg/m3 while R∆PM10 has no unit 

 

4.3.8. Interaction 

In general, there was no evidence of an interaction effect of delta and conventional metrics 

(lag 1 PM10) on mortality from all causes as well as from specific causes in both London 

and Hong Kong (Table 4.5). This is without reading too much into the apparently 

borderline significant results for non-accidental and cardiovascular mortality in London for 

which the interaction term was very small. 
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Table 4.5: Interaction effects of delta and absolute metrics on mortality
a
 

Variable
b Non-accidental Cardiovascular Respiratory 

London    

Lag1 PM10 0.08 (0.04, 0.13) 0.1 (0.03, 0.17) 0.12 (0.004, 0.23) 

∆PM10 -0.09 (-0.18, -0.002) -0.1 (-0.24, 0.05) -0.1 (-0.33, 0.14) 

∆PM10*Lag1 PM10 0.002 (0, 0.004) 0.004 (0, 0.01) 0.001 (-0.01, 0.01) 

Lag1 PM10 0.08 (0.03, 0.12) 0.09 (0.02, 0.16) 0.12 (0.003, 0.23) 

R∆PM10 -0.73 (-2.87, 1.41) -1.95 (-5.48, 1.58) 2.09 (-3.56, 7.73) 

R∆PM10*Lag1 PM10 0.01 (-0.08, 0.1) 0.1 (-0.04, 0.24) -0.14 (-0.37, 0.1) 

Hong Kong    

Lag1 PM10 0.06 (0.04, 0.08) 0.08 (0.04, 0.12) 0.04 (-0.004, 0.09) 

∆PM10 0.04 (-0.003, 0.09) 0.08 (-0.01, 0.17) -0.05 (-0.16, 0.06) 

∆PM10*Lag1 PM10 -0.0002 (-0.001, 0.0003) -0.0003 (-0.001, 0.001) 0.001 (-0.0004, 0.002) 

Lag1 PM10 0.06 (0.04, 0.08) 0.08 (0.04, 0.12) 0.04 (-0.01, 0.08) 

R∆PM10 0.52 (-1.53, 2.58) 1.67 (-2.29, 5.63) -2.42 (-7.22, 2.38) 

R∆PM10*Lag1 PM10 0.02 (-0.02, 0.06) 0.03 (-0.05, 0.11) 0.05 (-0.05, 0.15) 
aResults are provided as100*Log RR 
bPM10 and ∆PM10 measured in μg/m3 while R∆PM10 has no unit 

 

4.3.9. Sensitivity to df choice for time, temperature and relative humidity 

In London, percentage increase estimates for delta PM10 both with and without controlling 

for lag 1 PM10 appeared to converge after approximately 4 df smoothing for temperature 

(Figure 4.4, first panel). For calendar time, such convergence was less obvious over the 

range of 2-14 dfs investigated (Figure 4.4, second panel). However, overall conclusions are 

more or less similar at least qualitatively with that of a priori chosen dfs (3 df for 

temperature and 8 df per year for calendar time). Furthermore, adjusting for relative 

humidity had little impact on estimated percentage increases in mortality and this appeared 

to be true irrespective of the amount of smoothing (df) used for relative humidity (Figure 

4.4, third panel). 
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In Hong Kong, the amount of smoothing for calendar time appeared to matter more than 

that of temperature (Figure 4.5, first and second panels). Moreover, controlling for relative 

humidity tended to attenuate relative risk estimates towards the null (Figure 4.5, third 

Figure 4.4: Percentage increase (with 95% CI) in non-accidental mortality per IQR  

                   increase in delta PM10 controlling for temperature, calendar time and 

                   relative humidity (RH) at 2-14 df, London 
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panel). However, similar to London, relative risk estimates were not affected much by the 

amount of smoothing for relative humidity. 

 

 

 

Figure 4.5: Percentage increase (with 95% CI) in non-accidental mortality per IQR  

                   increase in delta PM10 controlling for temperature, calendar time and  

                   relative humidity (RH) at 2-14 df, Hong Kong 
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As shown in Figure 4.6, there were a few extreme observations in London mainly during 

August 2003. These excessive mortality counts were probably the consequence of the 

extreme temperature during the 2003 heat wave episode in London (Kovats et al., 2006).  

Excluding those outlying data points from the models substantially attenuated risk 

estimates towards the null as presented in Table 4.6. Moreover, the conventional lag 1 

PM10 metrics was no longer significantly associated with cardiovascular and respiratory 

mortality after removing the outliers. Otherwise, in terms of statistical significance, the 

results were not much different qualitatively from those based on the full data set. Hence, 

the overall conclusions from this study will be based on analyses on the full dataset. 
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Figure 4.6: Residuals and q-q plots before and after excluding outliers, London 
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For the Hong Kong data set, there were no such obvious outlying observations in both 

models with and without controlling for relative humidity (Figure 4.7). 
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Figure 4.7: Residuals and q-q plots before and after controlling for RH, Hong Kong 
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Table 4.6: Percentage increase (95% CI) in mortality per IQR increase in PM10 metric by cause of death after excluding outliers in London 

London Non-accidental Cardiovascular Respiratory 

Conventional  metrics (PM10, μg/m
3
) 

Lag1 PM10  0.54(0 .13, 0.95) 0.36(-0.31, 1.03) 0.94(-0.14, 2.03) 

Delta metrics (ΔPM10, μg/m
3
) 

ΔPM10 -0.47(-0.86, -0.08) -0.07(-0.71, 0.57) -1.08(-2.10, -0.05) 

Lag1 PM10 +ΔPM10 0.39(-0.08, 0.85) + -0.29(-0.73, 0.16) 0.43(-0.33, 1.2) + 0.14(-0.59, 0.87) 0.49(-0.75, 1.75)+-0.85(-2.03, 0.35) 

Relative delta metrics (RΔPM10, no units) 

RΔPM10 -0.54(-0.96, -0.12) -0.25(-0.94, 0.45) -0.90(-2.0, 0.22) 

Lag1 PM10 + RΔPM10 0.38(-0.07, 0.84)+ -0.36(-0.83, 0.11) 0.31(-0.13, 0.77)+ -0.11(-0.88, 0.67) 0.69(-0.51, 1.91)+-0.58 (-1.82, 0.67) 
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It was reported above that both delta and relative delta showed negative associations with 

cause-specific mortality in single metric models. Some of those associations became 

positive after adjusting for lag 1 PM10 particularly in Hong Kong. Figure 4.8 below 

illustrates the interrelationship between mortality and the various PM10 metrics. For both 

London and Hong Kong, delta showed negative correlation with lag 1 PM10 and mortality 

which themselves were positively correlated. This could be a possible reason for the 

observed difference in the coefficients of delta before and after adjusting for lag 1 PM10. 
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Figure 4.8: Schematics for interrelationships between non-accidental mortality, delta, 

                    lag 0 and lag 1 PM10 using pairwise correlation coefficients 
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4.4. Discussion 

This study proposed two alternative metrics for PM10 based on changes of the 24 hour 

mean concentrations over successive days. The first, delta PM10, is merely the difference in 

absolute PM10 concentrations between successive days whereas the second, relative delta 

PM10, is computed by dividing delta PM10 on a given day by the respective lag 1 PM10 

concentration. Consequently, it is equally valid to refer to both these change metrics (delta) 

as rate of change metrics since they measure the extent of changes in pollution 

concentrations over a period of one day. 

In theory, the delta approach to exposure metrics could help to directly evaluate the effect 

of change or rate of change in pollution over a period of one day in time series models. 

This is not the same as the conventional metric models where risk estimates are per unit 

increase in the exposure between any two days in the series whereas risk estimates from 

the delta metrics are per unit increase in the change or the rate of change in exposure (from 

one day to the next). Hence, the interpretation of delta parameters is different from those of 

absolute metric parameters in time series models. Though the interpretations are not 

equivalent, the parameter estimates for the delta PM10 models can be computed directly 

from the conventional unconstrained distributed lag model parameters (of lags 0 and 1). 

In this study, the conventional PM10 metrics at lag 1 showed consistent positive association 

with mortality in both Hong Kong and London (except for respiratory deaths in Hong 

Kong) which is in agreement with previous time series studies (Katsouyanni et al., 2009, 

Peng et al., 2006, Samet et al., 2000). Contrary to the proposed hypothesis (a priori 

expectation) both delta and relative delta showed negative associations with cause-specific 

mortality particularly in single metric models. This could be due to a relatively stronger 
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negative correlation of delta and relative delta with lag 1 PM10 which is positively related 

with mortality, i.e., the relationship could have been confounded by lag 1 as illustrated in 

Figure 4.8. In addition to attenuation of risk estimates, presence of measurement error in a 

covariate may also transfer part or all of the effect to another correlated covariate in the 

model if the latter had much lower measurement error (Zidek et al., 1996, Zeger et al., 

2000, Thomas, 2014). 

There have been very few studies investigating associations of daily changes in exposure 

with health outcomes of interest and none have considered PM10 pollution exposure. For 

example, Guo et al. (2011) and Nastos et al. (2006) studied daily changes in temperature in 

relation to daily mortality series and childhood asthma admissions respectively. The latter 

applied Pearson’s χ
2
 test and multivariate methods after categorizing the daily changes into 

quintiles and reported that overall such metrics did not show any association except for 

changes in minimum temperature. On the other hand, Guo et al. (2011) used the change 

metrics in time series models and considered delta both on a continuous scale as well as 

after categorizing into three groups. They reported significant associations of large changes 

(whether negative or positive) with increased mortality. 

Unlike the results from temperature studies, this study suggested that illustrating delta 

effects would be more complex in time series studies of air pollution where only increases 

are expected to have an adverse effect in a linear fashion (Katsouyanni et al., 2009, Samet 

et al., 2000, Le Tertre et al., 2002, Dominici et al., 2003b). For temperature, J-, U-, or V-

shaped relationships have been reported (Armstrong, 2006, Braga et al., 2002, Armstrong 

et al., 2011) and, as shown by Guo et al. (2011), both negative and positive extremes in 

delta metrics could be related to health outcomes in a consistent direction. However, 
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relative delta measures were not considered in previous studies. For example, a change 

from 10 to 20 units (100% change) would be considered the same as a change from 40 to 

50 units (25% change); in addition, the equivalence of delta models with conventional 

unconstrained distributed lag models was not recognised. 

The findings from this study (which did not suggest much effect of daily changes on their 

own) could give an impression of agreement with previous studies which analysed 

exposure at various time scales and reported stronger effects for long-term exposures than 

for short-term exposures like delta (Dominici et al., 2003a, Schwartz, 2000b, Valari et al., 

2011). Nevertheless, such comparisons cannot be considered direct and could be 

inappropriate due to the different approaches used in exposure classification. While the 

delta metrics could provide a convenient interpretation biologically, the inconsistency of 

results between London and Hong Kong is not straightforward to explain. It could perhaps 

be related to the difference in average baseline PM10 concentrations (26 μg/m
3
 in London 

and 54 μg/m
3
 in Hong Kong). The more pronounced delta effect observed in Hong Kong 

could be indicating that large increases in delta PM10 would have severe impact on daily 

mortality as the average PM10 concentration in Hong Kong was more than double 

compared to London over the respective study periods. 

Limitations of the absolute metrics are expected to be more or less reflected on delta. 

Issues like exposure measurement error could have more impact on delta than the absolute 

metrics as variability in delta could generally be larger as shown in Chapter 3. The 

estimates for the delta metrics were also less precise and were inconsistent between 

London and Hong Kong. In addition, only PM10 exposures were investigated using data 

from two cities and rate of changes over a period of one day. Future studies could extend 
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the time period for rate of change measures and include other air pollutants, preferably 

using a multi-city framework. 

Overall, there was some evidence for an effect of the delta metrics when used together with 

lag 1 PM10 in Hong Kong though this was much less convincing for London; also 

controlling for delta, in general, resulted in increased lag 1 PM10 effect estimates with 

some exceptions for London and respiratory mortality. If these associations could be 

shown consistently in further studies, this would support the hypothesis based on 

biological precedent that changes or rate of changes in exposure are important in 

determining the effect of particulate pollution on health; and that this can be explored by 

using the delta approach. This in turn could influence air quality guidelines as controlling 

for rate of changes of pollution would become important. However, the delta metrics alone 

does not seem to explain variations in mortality sufficiently. 
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5. THE EFFECT OF SHORT-TERM EXPOSURE PATTERNS ON 

THE RELATIONSHIP BETWEEN AIR POLLUTION AND 

MORTALITY IN TIME SERIES STUDIES 
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5.1. Introduction 

Several epidemiologic studies have demonstrated convincing evidence of the adverse 

health effects of air pollution mainly from cardiovascular and respiratory causes (Atkinson 

et al., 1999, Samet et al., 2000, Anderson et al., 2007, Katsouyanni et al., 2009). Most of 

the evidence on short-term effects of air pollution comes from studies using times series 

models (Anderson et al., 2001, Bell et al., 2004). Such studies model the relationship 

between daily pollutant concentrations and the daily number of health events in a study 

population. Without any loss of generality consider daily mortality and PM10. Both 

measures are time series, being measured daily over the years. Deaths exhibit serial 

dependence arising from time dependent risk factors such as weather and seasonality. 

Pollution measures are usually serially correlated because of factors related to the sources 

and weather. 

Conventional epidemiologic time series studies do not utilize the serial dependence in the 

model specification. Indeed, the goal is usually to control for seasonality to remove serial 

correlation in the health time series. The resulting regression model relates risk of death to 

PM10 concentration on a log scale. So, for example, when a 10 μg/m
3
 increment in PM10 is 

associated with a 1% increase in mortality (RR=1.01) the interpretation will be as follows: 

on a day when the PM10 concentration is, say 12 μg/m
3
, the risk of death is increased by 

1% compared to a day when the concentration is 2 μg/m
3
. There is no requirement for the 

two days to be sequential, i.e., the relationship ignores time sequence. 
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Now consider the following two exposure pattern scenarios: 

I) on day i-5 PM10 was 2 μg/m
3
. On day i-4 PM10 was 12 μg/m

3
 and remained 

constant (at 12 μg/m
3
) on days i-3 to i (Exposure pattern 1, Figure 5.1a). 

II) on day i-5 PM10 was 2 μg/m
3
. On day i PM10 was 12 μg/m

3
. Assume the 

pollution increased by 2 μg/m
3
 per day over the five days (Exposure pattern 2, 

Figure 5.1a). 

 

           

                                                                                              

             

0

2

4

6

8

10

12

i-5 i-4 i-3 i-2 i-1 i

Exposure pattern 1

Exposure pattern 2

0

2

4

6

8

10

12

i-5 i-4 i-3 i-2 i-1 i

Exposure pattern 2

Exposure pattern 3

Figure 5.1: Exposure pattern scenarios over the course of six days with a) unequal  
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A conventional time series study cannot answer the question ‘would the health effects of 

the changes in PM10 (from 2 to 12 μg/m
3
) for the two scenarios presented in Figure 5.1a 

(one incremental over a period of five days and the other all in one go over one day) be the 

same?’ as it cannot differentiate the two exposure patterns. 

However, the comparison of the two scenarios as framed above is arguably unfair since the 

cumulative exposures were not the same. Perhaps a better comparison would be as 

presented in Figure 5.1b (where the cumulative exposure under the two scenarios is the 

same, i.e., 2+4+6+8+10+12=42 μg/m
3
). 

The aim of this study was thus to investigate the impact of accounting for such short-term 

patterns of air pollution exposure on mortality risk estimates in time series studies. 
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5.2. Methods 

5.2.1. Data 

The same data sets as described in Chapter 4 from London (2000-2005) and Hong Kong 

(2002-2008) were analysed for this study. In brief, daily data on 24-hour average 

concentrations of PM10, weather and mortality from respiratory (ICD-10 Chapter J), 

cardiovascular (ICD-10 Chapter I) and all non-accidental (ICD-10 Chapters A–R) causes 

were collected from both cities. Further detailed description of the data collection for 

London (Atkinson et al., 2010) and Hong Kong (Wong et al., 2002) can be found 

elsewhere. 

5.2.2. Defining exposure patterns 

First ‘delta PM10’ values were computed as the change in mean absolute PM10 

concentrations between consecutive days as described in Chapter 4. Then three ways of 

defining and searching specific exposure patterns were proposed. Figure 5.2 would be 

useful to guide the characterization of patterns in this manner (an example with reference 

to this Figure is provided in the next section). The definitions were based on the following 

characteristics of exposure patterns within a given (short) period of time: 

1. Number of peaks for PM10 

2. Number of positive values of delta PM10 

3. Number of peaks for delta PM10 

For this study one week period was used as the definitive study window. Two approaches 

were considered to explore PM10―mortality relationships taking into account these 

exposure patterns. 
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The first approach involved grouping the data into blocks of non-overlapping weeks 

starting on the 1
st
 day of the time series and then identification of specific patterns within 

each week and corresponding mortality measures. This process transformed the daily time 

series to weekly aggregated data series and was mainly used for exploratory analysis 

(referred to as the weekly approach). 

The second approach, which is the primary aim of this analysis, involved identifying 

similar exposure patterns as above except that it generated pattern data for blocks of seven 

days starting with each day rather than considering sequential non-overlapping seven day 

periods (referred to as the daily approach). This generated much more data and did not 

impose artificial decisions on the starting point for the analysis. 

5.2.3. Pattern identification 

5.2.3.1. The weekly approach 

This approach is summarised as follows for each of the three cases (for which an example 

is given using Figure 5.2 below). 

Case 1-The number of peaks of PM10 in each block; the range for the number of peaks of 

PM10 will be between 0 and 3. 

Case 2-The number of positive delta PM10 values in each block; the range for the number 

of positive delta values will be between 0 and 7. 

Case 3-The number of peaks of delta PM10 in each block; the range for the number of delta 

peaks will be between 0 and 3. 
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Data were grouped into sequential blocks of seven days starting on the 1
st
 day of the data 

series. Then exposure patterns were identified for each of the three cases by counting the 

number of occurrences within each block. For example, in the hypothetical data presented 

in Figure 5.2, there was only one peak for PM10, one positive delta PM10 (i.e., one increase 

in PM10) and two peaks for delta PM10 over the six day period window. This corresponds to 

exposure pattern 3 in Figure 5.1b presented above. 
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5.2.3.2. The daily approach 

For the daily approach, the above procedure was extended by identifying the pattern data 

for each block in the same way, but specifying the definition of a block as the seven day 

period starting on each day of the time series in turn. 

5.2.3.3. Outcome measure 

For both approaches mortality at the end of each block (the day following each seven day 

window) was used as the outcome measure. 

5.2.4. Additional sensitivity analyses 

a) Tolerance for pattern search 

The above procedure for pattern identification was set up based on simple comparison of 

three data points for detection of each peak or based on the criteria delta>0 for number of 

positive delta with no minimum criteria on the magnitude of differences. Thus, a 

supplementary sensitivity analysis was conducted by searching patterns in the same way as 

described above, but with a tolerance of one standard deviation for each comparison in 

searching peaks for PM10 and delta. For number of positive delta this would count patterns 

with delta>SD rather than delta>0. 

b) Cumulative exposure effect 

A further sensitivity analysis was also performed using the average of the cumulative PM10 

concentrations over the previous week (i.e., for lags 0-6) instead of lag 1 PM10. The aim of 

this analysis was to check whether any observed pattern effects were artefacts of the 

cumulative exposure over the week on which patterns were defined. 
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5.2.5. Statistical analysis 

Poisson generalized additive models (GAMs) were used to examine whether the defined 

exposure patterns could influence pollution―mortality relationships. Models were 

adjusted for potential confounding by temperature, long-term time trends and seasonality 

and day of the week effects (Dominici et al., 2002, Hastie and Tibshirani, 1986, 

Katsouyanni et al., 2009). 

More specifically, the interaction between PM10 at lag 1 and the three exposure patterns 

was modelled using model 5.1 as given below: 




 
k

i

tiitttt )(XfPEEβPα
1

11t )*()]Log[E(Y                                          (5.1) 

where t is day of observation,Y is mortality count, Pt-1 is PM10 at lag 1, E is exposure 

pattern (categorical variable), E*P interaction terms for exposure pattern and PM10 at lag 1, 

α is the intercept, β is log relative risk (RR) associated with PM10 at lag 1, λ and θ are 

vectors of coefficients for categories of E and E*P respectively, fi(Xti) represent smooth 

functions of confounders (Xti) which included temperature with 3 degrees of freedom (df), 

long-term time trends and seasonality with 8 df per year and day of the week. Choice of 

modelling approach and smoothing parameters is mostly guided by the APHENA study 

protocol as detailed in Chapter 4 (Katsouyanni et al., 2009). Stratified relative risks were 

calculated from model (5.1) using daily patterns data (daily patterns approach) whereas the 

weekly pattern data were used for descriptive purposes only. All the analyses were 

performed using the R statistical package (R Core Team, 2012). 
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5.3. Results 

Detailed descriptive statistics for the data sets used for this study can be found in Chapter 

4. In brief, PM10 data were acquired for a total of 2192 days (delta PM10 values on 2191 

days) in London and 2557 days (delta PM10 values on 2556 days) in Hong Kong over the 

study period of six and seven years respectively. For the daily exposure pattern data, the 

total number of days was further reduced from 2191 to 2184 in London and from 2556 to 

2549 in Hong Kong as the first daily pattern observation was only available on the ninth 

day; in other words the first seven observations were omitted. The median absolute PM10 

and delta PM10 concentrations were 23 μg/m
3
 and 0.7 μg/m

3
 in London and 48.6 μg/m

3
 and 

0.11 μg/m
3
 in Hong Kong respectively. The medians for daily number of mortality counts 

from non-accidental, cardiovascular and respiratory causes were 145, 54 and 22 

respectively in London while rates were lower in Hong Kong with corresponding daily 

mortality of 95, 26 and 18 (Chapter 4, Table 4.1). There was a moderate correlation (0.49 

in London and 0.29 in Hong Kong) between delta and absolute PM10 measurements 

(Chapter 4, Table 4.2). 

5.3.1. Weekly pattern analysis 

A summary of the weekly pattern data is given in Table 5.1. For London, the daily time 

series data resulted in 312 non-overlapping blocks used for exploring the weekly patterns. 

For absolute PM10, one peak (50.6%) and two peaks (42.6%) per week were most 

common, whereas for delta, two peaks were most common (61.9%) followed by single 

peak (32.1%). About 71% of the blocks had three or four number of positive deltas per 

week with four positives the most frequent (40.7%). The average mortality per pattern 

level was highest (162) for three peaks per week for absolute PM10 peaks, being lower for 



103 

 

weeks with fewer peaks. Such a trend was not seen for delta peaks and the number of 

positive delta values. The highest average mortality was observed for the lowest categories 

(0 for number of delta peaks and 1 for number of positives delta); nevertheless these 

categories occurred rarely (Table 5.1). 

Table 5.1: Pattern frequency and mortality§ measures per each pattern level for   

                  weekly pattern data 

 London Hong Kong 

Pattern  

metric 

Frequency 

(%) 

Total 

mortality 

Mortality per 

frequency 

Frequency 

(%) 

Total 

mortality 

Mortality 

per 

frequency 

PM10 peaks 
   

   

0 11 (3.5) 1516 138 22 (6) 2152 98 

1 158 (50.6) 22575 143 205 (56.3) 19654 96 

2 133 (42.6) 18939 142 125 (34.3) 12330 97 

3 10 (3.2) 1623 162 12 (3.3) 1177 98 

Delta peaks 
   

   

0 3 (1) 453 151 9 (2.5) 844 94 

1 100 (32.1) 14347 143 134 (36.8) 12826 96 

2 193 (61.9) 27593 143 200 (54.9) 19560 98 

3 16 (5.1) 2260 141 21 (5.8) 2083 99 

Number of  positive delta      

1 1 (0.3) 155 155 9 (2.5) 875 97 

2 32 (10.3) 4486 140 52 (14.3) 4976 96 

3 92 (29.5) 12835 140 121 (33.2) 11670 96 

4 127 (40.7) 18520 146 115 (31.6) 11244 98 

5 50 (16) 7192 144 58 (15.9) 5620 97 

6 10 (3.2) 1465 147 9 (2.5) 928 103 
§
Based on daily non-accidental mortality on the day just after the end of the exposure week for pattern identification 

 

In Hong Kong the time series data resulted in 364 non-overlapping blocks of weeks and 

the distribution of pattern data was more or less similar to that of London. However, there 

was less variation in average mortality per pattern level and the highest mortality, 103, was 

observed for the six positive deltas per week group (Table 5.1). In both cities, the average 

mortality per pattern level showed an increasing trend with increasing pattern levels except 

for delta PM10 in London (Figure 5.3). 
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5.3.2. Daily rolling pattern analysis 

5.3.2.1.  PM10 peaks 

The distribution of daily patterns and corresponding mortality measures are summarised in 

Table 5.2. In London, weeks with a single absolute PM10 peak were most common (54.3%) 

followed by two peaks per week (38.6%). Average mortality per pattern level was highest 

for three peaks per week compared to weeks with fewer peaks. There was no variation in 

average mortality for weeks with peaks between zero and two. In Hong Kong, PM10 peaks 

had similar distribution with that of London (single and double peaks per week were about 

55.1% and 34.6% respectively) but showed little variation in average mortality between 

pattern levels (Table 5.2). 

Figure 5.3: Short-term exposure patterns and average non-accidental mortality per   

                   pattern frequency based on weekly pattern data (A) Number of PM10 peaks  

                  (B) Number of delta peaks (C) Number of positive delta 
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Table 5.2: Summary of pattern frequency and mortality
§
 per each pattern level for daily   

                  pattern data 

  
Non-accidental Cardiovascular Respiratory 

Pattern 

metric 

Frequency 

(%) 

Total 

mortality 

Mortality/ 

frequency 

Total 

mortality 

Mortality/ 

frequency 

Total 

mortality 

Mortality/ 

frequency 

PM10 peaks                                           London 

0 109 (5.0) 16069 147 5959 55 2320 21 

1 1185 (54.3) 173539 147 64391 54 26572 22 

2 844 (38.6) 124072 147 46043 55 19744 23 

3 46 (2.1) 7020 153 2608 57 1163 25 

Delta peaks 

0 24 (1.1) 3517 147 1368 57 480 20 

1 833 (38.1) 122560 147 45575 55 18957 23 

2 1234 (56.5) 180858 147 67020 54 28110 23 

3 93 (4.3) 13765 148 5038 54 2252 24 

Number of positive delta 

0 1 (0.05) 172 172 72 72 32 32 

1 12 (0.6) 1660 138 592 49 246 21 

2 206 (9.4) 29185 142 10721 52 4422 22 

3 669 (30.6) 96880 145 35989 54 14981 23 

4 865 (39.6) 128564 149 47696 55 20097 23 

5 369 (16.9) 55109 149 20534 56 8623 23 

6 62 (2.8) 9130 147 3397 55 1398 23 

PM10 peaks                                            Hong Kong 

0 221 (8.7) 21301 96 6016 27 4065 18 

1 1404 (55.1) 133462 95 36986 26 25253 18 

2 881 (34.6) 85489 97 23546 27 16781 19 

3 43 (1.7) 4219 98 1197 28 830 19 

Delta peaks 

0 51 (2.0) 4777 94 1297 25 905 18 

1 990 (38.8) 94036 95 25985 26 17757 18 

2 1402 (55.0) 135251 96 37535 27 26199 19 

3 106 (4.2) 10407 98 2928 28 2068 20 

Number of positive delta 

0 3 (0.1) 299 100 79 26 61 20 

1 53 (2.1) 5091 96 1427 27 1010 19 

2 361 (14.2) 33533 93 9200 25 6291 17 

3 887 (34.8) 85214 96 23568 27 16495 19 

4 782 (30.7) 75526 97 20848 27 14509 19 

5 384 (15.1) 37148 97 10448 27 7134 19 

6 76 (3.0) 7378 97 2113 28 1368 18 

7 3 (0.1) 282 94 62 21 61 20 
§Based on daily cause specific mortality on the day just after the end of the exposure week for pattern identification 
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In London, mortality risk from each cause was highest for the 3 peaks per week group. The 

percentage increases per 10 μg/m
3
 increase in PM10 at lag 1 were 6.46 (95% CI: 3.55, 9.45) 

for non-accidental, 7.65 (95% CI: 2.86, 12.65) for cardiovascular and 9.95 (95% CI: 1.70, 

18.86) for respiratory mortality. These were much larger compared to the estimates without 

adjusting for any patterns; 0.82 (95% CI: 0.45, 1.18) for non-accidental, 0.73 (95% CI: 

0.12, 1.33) for cardiovascular and 1.47 (95% CI: 0.49, 2.46) for respiratory mortality 

(Table 5.3). There was an increasing  tendency of the relative risk with increasing number 

of PM10 peaks per week (Figure 5.4). However, similar effects were not replicated for 

Hong Kong in terms of statistical significance. Yet, the percentage increase estimates in 

the three peaks per week group 0.74 (95% CI: -0.47, 1.97) and 2.05 (95% CI: -0.69, 4.86) 

for non-accidental and respiratory mortality were still considerably greater than the 

corresponding conventional estimates, 0.47 (95% CI: 0.29, 0.64) and 0.32 (95% CI: -0.09, 

0.73) respectively. 

5.3.2.2. Delta PM10 peaks 

In London, double peaks per week were most common (56.5%) followed by a single peak 

per week (38.1%). The average mortality per pattern level was more or less the same 

(between 147 and 148) at all levels of delta peaks (Table 5.2). Hong Kong had comparable 

distribution of delta peaks with London; double (55.0%) and single (38.8%) peaks per 

week were most common. Average mortality per pattern level for delta peaks was also 

comparable with that of PM10 peaks and did not seem to vary hugely between levels of 

delta peaks (Table 5.2). 
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In London, the highest mortality risk was for the three delta peaks per week group similar 

to the observation for absolute PM10 peaks. For three delta peaks per week group, the 

percentage changes in non-accidental, cardiovascular and respiratory mortality per 10 

μg/m
3
 increase in PM10 at lag 1 were 2.28 (95% CI: 0.81, 3.78), 1.88 (95% CI: -0.55, 4.38) 

and 5.95 (95% CI: 1.82, 10.25) respectively. These were also greater than the respective 

percentage increase estimates obtained without adjusting for delta peaks (Table 5.3, Figure 

5.4). However, such relationships with delta peaks were not seen in Hong Kong (Table 5.3, 

Figure 5.4). 
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Table 5.3: Stratified percentage increases (95% CI) in mortality per 10 μg/m
3 
increase  

                  in PM10  

Pattern Non-accidental  Cardiovascular Respiratory 

London 

PM10 peaks  

0 0.57 (-0.59, 1.75) 0.24 (-1.65, 2.18) 1.89 (-1.25, 5.13) 

1 0.35 (-0.11, 0.81) 0.11 (-0.65, 0.87) 0.7 (-0.53, 1.95) 

2 1.73 (1.05, 2.41) 2.01 (0.89, 3.14) 3.69 (1.84, 5.56) 

3 6.46 (3.55, 9.45) 7.65 (2.86, 12.65) 9.95 (1.7, 18.86) 

Delta peaks 

0 1.55 (-0.81, 3.96) 2.8 (-1.15, 6.92) 1.16 (-4.94, 7.65) 

1 0.81 (0.25, 1.38) 1.2 (0.27, 2.14) 0.47 (-1.03, 1.99) 

2 0.71 (0.23, 1.2) 0.22 (-0.56, 1.01) 1.98 (0.69, 3.29) 

3 2.28 (0.81, 3.78) 1.88 (-0.55, 4.38) 5.95 (1.82, 10.25) 

Number of positive delta  

0-2 0.42 (-1.46, 2.33) -1.95 (-4.94, 1.14) 3.25 (-1.97, 8.74) 

3 -0.19 (-1.1, 0.74) -0.4 (-1.9, 1.12) 0.78 (-1.63, 3.25) 

4 1.81 (1.21, 2.41) 1.73 (0.75, 2.72) 3.87 (2.24, 5.53) 

5-6 1.81 (1.17, 2.45) 1.73 (0.68, 2.79) 3.87 (2.13, 5.64) 

Unadjusted 

 
0.82 (0.45, 1.18) 0.73 (0.12, 1.33) 1.47 (0.49, 2.46) 

Hong Kong 

PM10 peaks  

0 0.41 (0.03, 0.8) 0.83 (0.08, 1.58) -0.28 (-1.17, 0.61) 

1 0.48 (0.26, 0.7) 0.35 (-0.07, 0.77) 0.67 (0.16, 1.18) 

2 0.42 (0.11, 0.73) 0.52 (-0.07, 1.12) 0.03 (-0.69, 0.76) 

3 0.74 (-0.47, 1.97) -0.03 (-2.31, 2.3) 2.05 (-0.69, 4.86) 

Delta peaks 

0 0.01 (-0.73, 0.75) 0.32 (-1.1, 1.77) -1.51 (-3.22, 0.23) 

1 0.5 (0.26, 0.74) 0.66 (0.19, 1.12) 0.62 (0.05, 1.18) 

2 0.46 (0.24, 0.69) 0.48 (0.04, 0.92) 0.35 (-0.18, 0.88) 

3 0.43 (-0.28, 1.14) 0.58 (-0.78, 1.95) -1.11 (-2.71, 0.52) 

Number of positive delta  

0-2 0.26 (-0.22, 0.75) 0.34 (-0.6, 1.29) 0.1 (-1.04, 1.24) 

3 0.52 (0.23, 0.82) 0.49 (-0.08, 1.06) 0.71 (0.02, 1.4) 

4 0.21 (-0.08, 0.51) -0.05 (-0.61, 0.51) 0.27 (-0.41, 0.95) 

5-6 0.42 (0.09, 0.74) 0.67 (0.05, 1.29) -0.3 (-1.04, 0.45) 

Unadjusted 

 
0.47 (0.29, 0.64) 0.57 (0.23, 0.9) 0.32 (-0.09, 0.73) 
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5.3.2.3. Number of positive delta values 

In London, about 71% of the weeks had three or four positive deltas with four positives the 

most frequent (nearly 40%). The highest mortality count per pattern frequency (172 

deaths) was observed for weeks in which the number of positive delta values was zero but 

this occurred only once. If we disregarded this observation, then there would be more or 

less increasing trend of mortality counts as the number of positive deltas increased (Table 

5.2). Likewise, three (34.8%) and four (30.7%) positive deltas were more common in Hong 

Kong.  Compared to London, average mortality per pattern varied little in Hong Kong and 

the highest average mortality per pattern observed for zero positive deltas which occurred 

very rarely (Table 5.2). 

Like the previous two pattern metrics, weeks with larger number of positive deltas (greater 

than or equal to four positive deltas per week) resulted in higher mortality risk estimates in 

London. For the group with more five or more positive deltas, the percentage changes in 

non-accidental, cardiovascular and respiratory mortality per 10 μg/m
3
 increase in PM10 at 

lag 1 were 1.81 (95% CI: 1.17 to 2.45), 1.73 (95% CI: 0.68 to 2.79) and 3.87 (95% CI: 

2.13 to 5.64) respectively. Again, these were greater than the respective unadjusted 

estimates (Table 5.3, Figure 5.4). Such effect of number of positive deltas on relative risk 

estimates was not apparent for Hong Kong (Table 5.3, Figure 5.4). 
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Figure 5.4: Percentage increases in mortality per 10 μg/m
3 

increase in PM10 stratified by exposure patterns (A) Unadjusted for any    

                   pattern (B) Number of positive delta (C) Number of PM10 peaks and (D) Number of delta peaks    
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Table 5.4 presents estimates for percentage increases in mortality from each cause per 10 

μg/m
3
 increase in lag 1 PM10 after adjusting for relative humidity in Hong Kong. Overall, 

the additional control for relative humidity attenuated effect estimates but resulted in little 

change with respect to significance of pattern effects. The attenuation of excess risk 

estimate was also observed for the unadjusted model. 

Table 5.4: Stratified percentage increases (95% CI) in mortality per 10 μg/m
3 
increase   

                  in PM10 after additional control for RH in Hong Kong 

Pattern Non-accidental  Cardiovascular Respiratory 

PM10 peaks  

0 0.34 (-0.05, 0.73) 0.71 (-0.04, 1.46) -0.32 (-1.21, 0.57) 

1 0.34 (0.11, 0.57) 0.12 (-0.31, 0.56) 0.57 (0.04, 1.1) 

2 0.26 (-0.06, 0.58) 0.26 (-0.35, 0.88) -0.11 (-0.85, 0.63) 

3 0.55 (-0.67, 1.78) -0.37 (-2.65, 1.97) 1.92 (-0.83, 4.74) 

Delta peaks 

0 -0.02 (-0.76, 0.72) 0.26 (-1.17, 1.71) -1.46 (-3.17, 0.28) 

1 0.39 (0.14, 0.63) 0.47 (0, 0.95) 0.53 (-0.04, 1.11) 

2 0.31 (0.07, 0.55) 0.23 (-0.23, 0.69) 0.22 (-0.33, 0.77) 

3 0.26 (-0.45, 0.98) 0.31 (-1.05, 1.69) -1.28 (-2.89, 0.36) 

Number of positive delta  

0-2 0.16 (-0.33, 0.65) 0.17 (-0.77, 1.13) 0.01 (-1.13, 1.16) 

3 0.39 (0.09, 0.69) 0.29 (-0.29, 0.87) 0.58 (-0.12, 1.29) 

4 0.08 (-0.22, 0.37) -0.27 (-0.84, 0.3) 0.17 (-0.52, 0.87) 

5-6 0.3 (-0.02, 0.63) 0.49 (-0.13, 1.12) -0.36 (-1.12, 0.39) 

Unadjusted 

 
0.33 (0.15, 0.51) 0.35 (0, 0.71) 0.21 (-0.23, 0.64) 

 

5.3.3. Exposure-response relationship in pattern analysis models 

Figure 5.5 shows the exposure-response relationship between non-accidental mortality and 

PM10 at lag 1 stratified by number of PM10 peaks as well as for the model not adjusted for 

any pattern. In London, the highest responses appear to be driven by weeks with two or 

three peaks while the unadjusted model seems to reflect responses only for weeks with 

zero or one peak in PM10. However, for Hong Kong the unadjusted and stratified responses 

were fairly similar. 
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Figure 5.5: Exposure-response relationship between non accidental mortality and   

                  PM10 at lag 1 stratified by number of PM10 peaks 
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5.3.4. Average cumulative exposure 

The estimates for the percentage increase in mortality related to the average cumulative 

PM10 concentration for lags 0-6 are presented in Table 5.5. Compared to estimates for lag 1 

PM10, the estimates for average cumulative PM10 effects were generally elevated for both 

London and Hong Kong. The elevation in excess risk estimates was observed in both 

unadjusted and pattern adjusted models. Nevertheless, the overall qualitative conclusions 

were little affected whether lag 1 or average cumulative was used as the PM10 metric (i.e., 

in terms of the relationship between PM10 and mortality taking into account each of the 

three exposure patterns). There was also a remarkable increasing trend of excess mortality 

risk estimates with increasing number of positive deltas, PM10 peaks and delta peaks in 

London but not in Hong Kong (Figure 5.6). 
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Table 5.5: Stratified percentage increases (95% CI) in mortality per 10 μg/m
3 
increase   

                  in average cumulative PM10 exposure (lags 0-6) 

Pattern Non-accidental  Cardiovascular Respiratory 

London 

PM10 peaks  

0 0.72 (-1.64, 3.15) 1.18 (-2.71, 5.22) 3.58 (-2.83, 10.42) 

1 0.37 (-0.36, 1.12) 0.34 (-0.88, 1.57) 0.53 (-1.41, 2.51) 

2 1.82 (0.93, 2.71) 2.56 (1.1, 4.04) 5.09 (2.66, 7.58) 

3 6.89 (3.53, 10.36) 9.01 (3.42, 14.89) 7.99 (-1.16, 17.98) 

Delta peaks 

0 2.42 (-1.43, 6.41) 5.51 (-1.09, 12.55) -0.11 (-9.84, 10.67) 

1 0.51 (-0.41, 1.43) 1.07 (-0.45, 2.61) 0.37 (-2.05, 2.85) 

2 1.18 (0.46, 1.91) 1.31 (0.12, 2.5) 3.41 (1.46, 5.39) 

3 3.39 (1.06, 5.78) 3.92 (0.1, 7.88) 9.6 (3.01, 16.6) 

Number of positive delta  

0-2 1.05 (-1.06, 3.21) 0.44 (-2.98, 3.99) 6.05 (0.45, 11.95) 

3 -0.72 (-1.86, 0.44) -0.22 (-2.11, 1.7) -0.65 (-3.65, 2.43) 

4 2.19 (1.33, 3.06) 2.46 (1.04, 3.9) 5.37 (2.98, 7.8) 

5-6 2.19 (1.12, 3.28) 2.46 (0.69, 4.27) 5.37 (2.46, 8.36) 

Unadjusted 

 
1.04 (0.45, 1.62) 1.37 (0.43, 2.32) 2.59 (1.05, 4.15) 

Hong Kong 

PM10 peaks  

0 0.8 (0.11, 1.5) 1.43 (0.11, 2.78) -0.12 (-1.7, 1.49) 

1 0.96 (0.64, 1.28) 0.89 (0.27, 1.5) 1.55 (0.81, 2.31) 

2 0.74 (0.36, 1.12) 1.18 (0.45, 1.92) 1.05 (0.16, 1.95) 

3 0.98 (-0.38, 2.35) 0.14 (-2.39, 2.73) 2.89 (-0.24, 6.12) 

Delta peaks 

0 -0.53 (-2.06, 1.03) -1.42 (-4.32, 1.56) -0.66 (-4.27, 3.09) 

1 0.9 (0.53, 1.26) 1.22 (0.51, 1.93) 1.29 (0.43, 2.16) 

2 0.87 (0.54, 1.19) 0.94 (0.32, 1.56) 1.37 (0.63, 2.12) 

3 0.95 (0.08, 1.83) 0.74 (-0.91, 2.42) -0.28 (-2.26, 1.74) 

Number of positive delta  

0-2 0.78 (0.25, 1.32) 1.22 (0.2, 2.26) 0.97 (-0.27, 2.23) 

3 1.03 (0.64, 1.43) 1 (0.25, 1.76) 1.96 (1.03, 2.89) 

4 0.57 (0.18, 0.96) 0.28 (-0.47, 1.03) 1 (0.09, 1.92) 

5-6 0.57 (0.09, 1.05) 0.28 (-0.63, 1.2) 1 (-0.12, 2.13) 

Unadjusted 

 0.87 (0.59, 1.15) 1.01 (0.47, 1.55) 1.25 (0.6, 1.92) 
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Figure 5.6: Percentage increases in mortality per 10 μg/m
3 

increase in average cumulative PM10 (lags0-6) stratified by exposure patterns   

                  (A) Unadjusted for any pattern (B) Number of positive delta ( C) Number of PM10 peaks and (D) Number of delta peaks    
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5.3.5. Other cut offs for pattern definition 

Both summary of pattern distribution and related excess risk estimates for patterns defined 

with one standard deviation (SD) tolerance are presented in Table 5.6. Compared to the 

original definition, the results based on one SD tolerance did not have three PM10 peaks per 

week as well as greater than four positive deltas in both cities. Furthermore, the frequency 

of some pattern levels was severely diminished. For example, the frequency of two PM10 

peaks decreased from 38.6% and 34.6% to 0.5% in London and Hong Kong respectively 

(Table 5.2 and Table 5.6). 

In London, single peaks for PM10, double peaks for delta and four positive deltas per week 

resulted in much greater percentage increase in mortality from each cause compared to the 

corresponding unadjusted estimates. The percentage increase (95% CI) in non-accidental, 

cardiovascular and respiratory mortality per 10 μg/m
3
 increase in PM10 at lag 1 were 3.07 

(2.18, 3.97), 4.23 (2.74, 5.74) and 4.7 (2.25, 7.2) respectively for single PM10 peaks, 4.68 

(3.37, 6), 4.33 (2.21, 6.49) and 8.47 (4.82, 12.25) respectively for two delta peaks and 3.0 

(1.13, 4.9), 3.43 (0.33, 6.62) and 5.4 (0.39, 10.66) respectively for four positive deltas per 

week. Such large effects were not observed in Hong Kong (Table 5.6). 
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Table 5.6: Summary of pattern distribution and related percentage increase in  

                 mortality per10 μg/m
3
 increase in lag1 PM10 based on pattern definition   

                 with  ±SD tolerance 

Pattern Frequency (%) 
Percentage increase (95 % CI) 

Non-accidental Cardiovascular Respiratory 

PM10 peaks                                               London 

0 1869 (85.6) 0.43 (0.04, 0.83) 0.12 (-0.52, 0.76) 1 (-0.04, 2.06) 

1 305 (14) 3.07 (2.18, 3.97) 4.23 (2.74, 5.74) 4.7 (2.25, 7.2) 

2 10 (0.5) 0.87 (-3.63, 5.57) -1.1 (-8.3, 6.67) -0.84 (-12.51, 12.4) 

Delta peaks 

0 1314 (60.2) 0.39 (-0.09, 0.88) 0.28 (-0.52, 1.09) 0.67 (-0.63, 1.98) 

1 735 (33.7) 0.79 (0.24, 1.34) 0.75 (-0.16, 1.67) 1.47 (-0.02, 2.98) 

2 130 (6) 4.68 (3.37, 6) 4.33 (2.21, 6.49) 8.47 (4.82, 12.25) 

3 5 (0.2) -1.7 (-12.03, 9.83) -3.28 (-18.93, 15.4) 6.43 (-18.36, 38.75) 

Number of positive delta    

0 859 (39.3) 0.97 (-0.07, 2.02) 1.66 (-0.06, 3.41) 0.54 (-2.23, 3.38) 

1 871 (39.9) 0.92 (0.28, 1.57) 0.61 (-0.45, 1.67) 1.9 (0.19, 3.65) 

2 378 (17.3) 0.49 (-0.19, 1.17) -0.33 (-1.43, 0.79) 0.69 (-1.07, 2.48) 

3 62 (2.8) 1.96 (0.78, 3.15) 2.21 (0.27, 4.19) 3.67 (0.5, 6.94) 

4 14 (0.6) 3.0 (1.13, 4.9) 3.43 (0.33, 6.62) 5.4 (0.39, 10.66) 

 PM10 peaks                                              Hong Kong 

0 2256 (88.5) 0.44 (0.25, 0.62) 0.61 (0.25, 0.96) 0.23 (-0.2, 0.66) 

1 281 (11.0) 0.59 (0.16, 1.03) 0.26 (-0.56, 1.1) 0.98 (-0.05, 2.02) 

2 13 (0.5) 1.28 (-1.58, 4.23) -0.41 (-5.59, 5.06) -3.09 (-9.34, 3.6) 

Delta peaks 

0 1619 (63.5) 0.4 (0.19, 0.62) 0.65 (0.24, 1.06) 0.29 (-0.21, 0.79) 

1 769 (30.2) 0.52 (0.24, 0.8) 0.44 (-0.1, 0.97) 0.43 (-0.22, 1.08) 

2 157 (6.1) 0.61 (0, 1.22) 0.32 (-0.84, 1.48) 0.02 (-1.39, 1.45) 

3 4 (0.2) 4.47 (-0.67, 9.88) 4.77 (-4.79, 15.28) 3.57 (-8.14, 16.77) 

Number of positive delta    

0 1023 (40.1) 0.19 (-0.22, 0.62) 0.54 (-0.27, 1.35) -0.18 (-1.15, 0.81) 

1 1012 (39.7) 0.57 (0.29, 0.84) 0.59 (0.06, 1.12) 0.74 (0.09, 1.39) 

2 415 (16.3) 0.34 (0, 0.68) 0.3 (-0.36, 0.96) 0.2 (-0.6, 1.01) 

3 86 (3.4) -0.03 (-0.65, 0.58) 0.61 (-0.57, 1.81) -1.6 (-3.02, -0.16) 

4 13 (0.5) 0.78 (-0.86, 2.45) -1.32 (-4.37, 1.82) -0.42 (-4.16, 3.46) 
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Results based on further grouping of each pattern metric (defined using one SD tolerance) 

into binary categories are presented in Table 5.7. In London, weeks with 1-2 PM10 peaks 

were associated with 2.99 (95% CI: 2.12, 3.86), 4.02 (95% CI: 2.58, 5.47) and 4.47 (95% 

CI: 2.12, 6.88) percent increases in non-accidental, cardiovascular and respiratory 

mortality per 10 μg/m
3
 increase in PM10 at lag 1 respectively. Likewise, 1-3 delta peaks per 

week were associated with 1.42 (95% CI: 0.91, 1.93), 1.35 (95% CI: 0.51, 2.2) and 2.61 

(95% CI: 1.24, 4.01) percent increases in non-accidental, cardiovascular and respiratory 

mortality per 10 μg/m
3
 increase in PM10 at lag 1 respectively. Positive deltas (weeks with 

3-4 number of positive deltas) were also associated with relatively larger mortality risks 

with percentage increases of 2.42 (95% CI: 1.41, 3.44), 2.82 (95% CI: 1.15, 4.52) and 4.18 

(95% CI: 1.41, 7.03) for non-accidental, cardiovascular and respiratory mortality 

respectively. In general, these large effects were not replicated for Hong Kong. 
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Table 5.7: Summary of pattern distribution based on binary categories and related  

                 percentage increase in mortality per 10 μg/m
3
 increase in lag1 PM10 

Pattern
§ 

Frequency 

(%) 

Excess risk (95 % CI) 

Non-accidental Cardiovascular Respiratory 

PM10 peaks                                        London 

0 1869 (85.6) 0.43 (0.04, 0.83) 0.12 (-0.53, 0.76) 1 (-0.04, 2.06) 

1-2 315 (14.0) 2.99 (2.12, 3.86) 4.02 (2.58, 5.47) 4.47 (2.12, 6.88) 

Delta peaks     

0 1314 (60.2) 0.38 (-0.11, 0.86) 0.26 (-0.53, 1.07) 0.64 (-0.65, 1.94) 

1-3 870 (39.8) 1.42 (0.91, 1.93) 1.35 (0.51, 2.2) 2.61 (1.24, 4.01) 

Number of positive delta    

0-2 2108 (96.5) 0.55 (0.15, 0.96) 0.24 (-0.43, 0.91) 0.96 (-0.12, 2.05) 

3-4 76 (3.5) 2.42 (1.41, 3.44) 2.82 (1.15, 4.52) 4.18 (1.41, 7.03) 

PM10 peaks                                       Hong Kong 

0 2256 (88.5) 0.44 (0.25, 0.62) 0.61 (0.25, 0.96) 0.22 (-0.2, 0.65) 

1-2 293 (11.5) 0.62 (0.19, 1.04) 0.23 (-0.56, 1.04) 0.93 (-0.05, 1.92) 

Delta peaks     

0 1619 (63.5) 0.41 (0.19, 0.62) 0.65 (0.24, 1.07) 0.29 (-0.21, 0.8) 

1-3 930 (36.5) 0.53 (0.28, 0.79) 0.44 (-0.05, 0.92) 0.33 (-0.26, 0.93) 

Number of positive delta    

0-2 2450 (96.1) 0.47 (0.28, 0.66) 0.46 (0.1, 0.82) 0.51 (0.07, 0.95) 

3-4 99 (3.9) 0.03 (-0.55, 0.62) 0.33 (-0.78, 1.47) -1.42 (-2.75, -0.08) 
§Pattern definition with ±SD tolerance 

 

5.3.6. Model diagnostics 

Figure 5.7 shows residuals over time and q-q plots for non-accidental mortality based on 

the models fitted for each pattern model, namely number of positive delta, number of PM10 

peaks and number of delta peaks as well as for the unadjusted model. Any clear model 

anomaly is not apparent for Hong Kong but a few extreme observations are noticed for 

London particularly clustered towards the end of 2003. 
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Figure 5.7: Residuals and Q-Q plots for unadjusted and pattern adjusted models for non-accidental mortality and lag 1 PM10  

                   A) Unadjusted for any pattern B) Number of positive delta C) Number of PM10 peaks D) Number of delta peaks  
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The percentage increase estimates for mortality from each cause after excluding the six 

outlying observations in London are presented in Table 5.8 and in Figure 5.8. It appeared 

that excluding the six observations attenuated most risk estimates towards the null and 

largely with no significant association between mortality and PM10 after taking exposure 

patterns into account. This was also true for the conventional estimates which did not 

adjust for any patterns. However, for non-accidental mortality the association remained 

significant even after excluding outlying data points; the percentage increase per 10 μg/m
3
 

increase in PM10 at lag 1 was 0.49 (0.13, 0.86) and much lower compared to the estimate 

based on the full data set which was 0.82 (0.45, 1.18) as shown in Table 5.8 and Table 5.3. 

The residuals from the models based on the data excluding the outliers did not show any 

obvious model anomaly (Figure 5.9). Hence, the overall conclusions of this study will be 

based on the final analyses which did not include the outlying observations.  

Table 5.8: Stratified percentage increases (95% CI) in mortality per 10 μg/m
3 
increase  

                  in PM10 after excluding outliers in London 

Pattern Non-accidental  Cardiovascular Respiratory 

London 

PM10 peaks  

0 0.56 (-0.6, 1.73) 0.23 (-1.67, 2.16) 1.85 (-1.25, 5.04) 

1 0.34 (-0.12, 0.8) 0.1 (-0.65, 0.86) 0.7 (-0.53, 1.93) 

2 0.66 (-0.04, 1.36) 0.74 (-0.4, 1.9) 1.55 (-0.31, 3.45) 

3 -0.47 (-3.93, 3.12) -2.32 (-7.84, 3.53) 4.91 (-4.23, 14.93) 

Delta peaks 

0 1.38 (-0.91, 3.72) 2.57 (-1.3, 6.58) 0.84 (-4.75, 6.76) 

1 0.86 (0.3, 1.43) 1.27 (0.34, 2.21) 0.52 (-0.98, 2.04) 

2 0.29 (-0.2, 0.77) -0.39 (-1.18, 0.4) 1.32 (0.03, 2.63) 

3 0.32 (-1.29, 1.96) 0.1 (-2.55, 2.82) 1.59 (-2.75, 6.12) 

Number of positive delta  

0-2 0.42 (-1.47, 2.34) -1.95 (-4.96, 1.17) 3.23 (-1.98, 8.72) 

3 -0.11 (-1.02, 0.82) -0.29 (-1.79, 1.23) 0.89 (-1.51, 3.36) 

4 0.83 (0.22, 1.45) 0.5 (-0.5, 1.5) 2.11 (0.47, 3.78) 

5-6 0.83 (0.2, 1.47) 0.5 (-0.54, 1.54) 2.11 (0.41, 3.84) 

Unadjusted 

 
0.49 (0.13, 0.86) 0.33 (-0.27, 0.93) 0.85 (-0.12, 1.83) 
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Figure 5.8: Percentage increase in mortality per 10 μg/m
3 

increase in PM10 after excluding outliers in London stratified by exposure  

                   patterns (A) Unadjusted for any pattern (B) Number of positive delta ( C) Number of PM10 peaks and (D) Number of  

                  delta peaks 
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Comparison of pattern adjusted models with the conventional unadjusted model using AIC 

for non-accidental, cardiovascular and respiratory mortality is given in the Appendix E, 

Table 5.12. Compared to the conventional unadjusted models, pattern adjusted models 

showed a better fit in London for PM10 peaks and number of positive delta whereas delta 

peaks showed inferior model fit. Adjusting for patterns didn’t provide improved model fit 

in Hong Kong. 

Figure 5.9: Residuals and Q-Q plots for unadjusted and pattern adjusted models  

                    for non-accidental mortality and lag 1 PM10 after excluding outliers  

                   in London A) Unadjusted for any pattern B) Number of positive delta  

                   C) Number of PM10 peaks D) Number of delta peaks  
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5.3.7. Exposure variability and number of peaks 

In general, weeks with higher number of PM10 peaks over a relatively longer period could 

potentially reflect relatively static or less volatile pollution concentration patterns 

compared to strictly increasing or decreasing pollution patterns. This, however, is not 

necessarily true particularly in the context of this study for which exposure patterns are 

defined over periods of weekly windows. To clarify this, consider the small data set 

presented in Table 5.9. The same set of observations, say for PM10 concentrations in 

μg/m
3
, were used to generate various pollution exposure patterns (patterns 1 to 5) and thus 

keeping the mean and variance from each scenario the same. Patterns 1 and 2 represent 

strictly increasing and decreasing pollution trends respectively and hence the number of 

peaks is zero. Patterns 3, 4 and 5 represent a week with 1, 2 and 3 PM10 peaks respectively 

(Figure 5.10). These data show that the variance or volatility can remain the same under all 

the possible exposure patterns, i.e., the variance was the same when the number of peaks 

per week ranged from zero (the minimum) to three (the maximum). 

Table 5.9: Data showing exposure patterns with various number of     

                peaks per week for the same mean and variance 

Day Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 

i-6 2 14 2 2 2 

i-5 4 12 14 12 6 

i-4 6 10 12 4 4 

i-3 8 8 10 10 10 

i-2 10 6 8 8 8 

i-1 12 4 6 6 14 

i 14 2 4 14 12 

Mean 8 8 8 8 8 

SD 4.3 4.3 4.3 4.3 4.3 

Peaks/week 0 0 1 2 3 
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Figure 5.10: Exposure patterns over a weekly window with (A) zero (B) one (C) two and  (D) three  

                   peaks for the same cumulative exposure and equal variance 
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5.4. Discussion 

The approach adopted in this study was to define some selected patterns of exposure and 

determine whether these affected the effect sizes in terms of risk of mortality during a 

given time period. The best way to address this issue would be to identify all such distinct 

exposure patterns present in a data set and check whether or not health effects vary by 

exposure pattern. However, such a blanket approach would result in too many comparisons 

and several patterns would appear only rarely (Appendix E: Tables 5.8-5.11, Figure 5.10). 

Consequently, it became necessary to resort to characterising exposure patterns by picking 

the relatively obvious features: (a) number of increases in PM10 concentration from the 

previous day over a defined period (in this case seven days), i.e., the number of positive 

delta PM10 values, (b) number of peaks for PM10 and (c) number of peaks for delta PM10 

over a seven day time period. This approach is not the same as a distributed lag analysis 

where the main aim is to study the cumulative effect of exposure over the course of several 

days. In fact, the previous example presented in Figure 5.1b clarifies this distinction by 

comparing two different exposure patterns for which the cumulative exposure over the few 

days considered was the same. The analyses based on average cumulative exposure also 

helped to highlight that any observed pattern effect would not be an artefact of variations 

in particulate pollution over the entire week on which patterns were defined. 

If the findings for exposure pattern effects were significant, then their implications with 

respect to estimation of public health risk as well as control in relation to air pollution 

would be important. The former would be affected by exposure patterns since it was 

hypothesized that larger number of peaks and positive changes per week would result in 

higher risks; for example, the larger number of PM10 peaks (≥2) occurred in about 40% of 
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the 7-day blocks in the London dataset. For the latter, again if pattern effects were 

significant, excess risk in mortality could possibly be reduced by minimizing the number 

of increases or peaks in air pollution over the given period of time, for example, through 

short-term policy interventions. Such control could be applied prospectively by forecasting 

possible exposure patterns and related health risk estimates but a better understanding of 

the meteorological factors governing the appearance of these “peaky” weeks would inform 

on how better to reduce exposures. 

The importance of considering such patterns of air pollution exposure that are relevant to 

health including number of peak exposures had been highlighted earlier (Künzli et al., 

2001) but not yet addressed in a similar epidemiological time series framework as in this 

study. Exploring the issue of exposure pattern in epidemiological studies appeared to be 

relatively more common for occupational exposure where studies examined peak exposure 

or number days with peak exposure over a given period of time in relation to health 

(Zuskin and Valic, 1973, Virji et al., 2011, Richter et al., 2012). In the air pollution 

epidemiology literature, Pope (Pope, 1989) reported substantial increase in respiratory 

hospital admissions for months with peak particulate pollution for both adults and children. 

But this cannot be compared with the current study directly as it looked at the effect of 

higher average exposures over longer time periods (a month) rather than the shorter term 

patterns such as number of peaks per week as considered in this study. 

The study findings would also be interesting from mechanistic point of view had they been 

significant. The effects of particulate pollution are believed to be mediated through the 

generation of an inflammatory response in the airways and release of pro-inflammatory 

cytokines and free radicals (Pope, 2000, Valavanidis et al., 2013). In this regard, a number 
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of human and animal laboratory studies have investigated the effects of repeated and/or 

peak exposure to certain air pollutants (Sandström et al., 1992a, Sandström et al., 1992b, 

Blomberg et al., 1999, Bardet et al., 2014, Mukae et al., 2001, Mazzoli-Rocha et al., 2014). 

Sandström et al. (1992a, 1992b) reported adverse effects on bronchoalveolar lymphocytes 

and immune defence after repeated short-term exposures to moderate concentrations of 

NO2. Blomberg et al. (1999) concluded that NO2 is a proinflammatory pollutant with 

repeated exposure after finding a significant reduction in neutrophils in the bronchial 

epithelium, with the bronchial wash and myeloperoxidase neutrophil content increasing by 

twofold and 1.5-fold respectively. 

Bardet et al. (2014) observed a decrease in the interleukin-8 (IL8) production after repeated 

exposure of epithelial cells (3 times) to formaldehyde (a gaseous indoor pollutant); no 

change was observed in markers of cell damage after single or double exposure. Likewise, 

another study on human bronchial epithelial cells has shown that the IL8 release in 

response to tumour necrosis factor-α (TNFα) at 72 hours nearly doubled when low dose 

TNFα was applied as a split dose separated by 48 hours compared to a single dose and 

nearly tripled compared to constant dose (Sapey E, personal communication). There was 

also an increase in IL8 output at a higher dose with a separated dose although the increase 

was less marked in percentage terms (Appendix E: Figure 5.11). 

Mukae et al. (2001) examined the bone marrow in relation to repeated PM10 exposure in 

their animal study reporting increased systemic inflammatory responses which they 

suppose could be related to cardiopulmonary diseases. Another animal study by Mazzoli-

Rocha et al. (2014) also reported adverse effects on pulmonarymechanics, lung histology 



129 

 

and greater macrophage inflow to the lung with repeated exposure to traffic and biomass 

particles. 

However, most of the laboratory studies understandably examined relatively higher 

concentrations of pollutants whereas ambient concentrations of PM10 considered in this 

epidemiological study were much lower. This could be a possible reason for the 

discrepancy between the laboratory studies and the present study for which the findings 

were mostly negative. 

Other studies have looked at exposure with respect to time scale decomposition with the 

aim to address the issue of “harvesting or mortality displacement” in air pollution 

epidemiology (Schimmel and Murawski, 1976, Zeger et al., 1999). The studies reported 

increased mortality risk from air pollution over medium to longer time scales than shorter 

time scales using time and frequency domain as well as wavelet analyses methods and 

concluded that not all air pollution associated mortality is due to harvesting (Dominici et 

al., 2003a, Kelsall et al., 1999, Schwartz, 2000b, Valari et al., 2011, Zeger et al., 1999). 

In the context of this study, while evidence against harvesting over a period of more than 

one week cannot be provided, any harvesting effect over a period of less than one week 

may not be consistent with the findings. This is particularly supported by the larger effects 

observed for the average cumulative exposure in comparison to lag 1 PM10 in pattern 

adjusted models. The approach in this study could, however, be explored further to 

investigate harvesting by extending the time window used for exposure pattern definition. 

Similar investigations in the future would benefit from addressing some of the limitations 

noted in the present study. Like most time series studies in air pollution epidemiology, 
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exposure measurement error could affect the risk estimates as discussed in chapter 3. The 

observed attenuation of the effect estimates towards the null after excluding some extreme 

observations in London also made interpretation of the study results complicated. This is 

because equivalent attenuation was observed for the conventional estimate (ignoring 

patterns) for which an effect would be expected. A multi-location study would highly 

desirable as it increases power and allows investigation of heterogeneity formally. Another 

limitation of the study was that definition of exposure patterns was solely based on the 

number of peaks and positive increases in pollution; the definition didn’t include 

information on the magnitude of increases or peaks in exposure. The analysis using one 

standard deviation tolerance for pattern definition helped to explore sensitivity to 

magnitude of pattern metrics and generally provided similar qualitative conclusion with 

respect to effect of patterns on mortality. However, extensions to this study could focus on 

methods of incorporating actual magnitude information as well as on extending the 

approach to examining presence of non-linear effects perhaps in a distributed lag 

framework (Gasparrini et al., 2010). The latter could be more challenging in terms of 

statistical modelling but any effect of exposure patterns in a distributed lag model would 

provide stronger evidence on the importance of such patterns. The distribution of ‘all 

possible’ exposure patterns and their relationship with mortality could also be investigated 

using larger datasets from multiple cities perhaps with differing mean daily exposures. 

In conclusion, the findings from this study suggested little effect of exposure patterns 

(represented by number of positive delta, PM10 peaks and delta peaks) on the association 

between PM10 and mortality (for all non-accidental, cardiovascular and respiratory causes). 

Refining the definition of exposure patterns and methodological improvements are highly 

recommended in related studies in the future. 
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The aim of this research was to investigate the effects of changes and exposure patterns on 

the relationship between health and air pollution. Thus, a simple change metrics (delta) 

was defined and potential alternative metrics were presented in Chapter 3. Then, delta and 

one of the alternatives proposed, relative delta, were applied in an empirical study using 

data from London and Hong Kong in Chapter 4. This approach was then extended in 

Chapter 5 by considering exposure patterns over a period of one week (as opposed to the 

delta approach which looked only at daily changes in exposure). The sections below 

present a summary of the material in each chapter, an overview of limitations of the 

research and some concluding remarks. 

6.1. Overall summary 

Methodological issues in relation to the properties and modelling of the change (delta) 

metrics for the delta time series approach were discussed in Chapter 3. It was highlighted 

that measurement error could have a more severe impact on the delta metrics than the 

absolute metrics as reflected by larger variance of the former with increasing measurement 

error. The mathematical equivalence of potential identifiable models for delta with a 

distributed lag model (of lags 0 and 1) was shown and alternative identifiable models for 

delta were proposed. The alternative metrics were compared based on description of their 

properties in relation to the original change metrics as well as their relative model fit using 

time series data from Hong Kong. The comparison indicated that the relative delta metrics 

would be preferred among the alternatives for delta in the evaluation of effects of changes 

or rate of changes. Finally, the impact of missing data was investigated using simulation. 

Particularly, analyses excluding missing data and imputation using the APHENA 

(Katsouyanni et al., 2009) study method were compared. The results showed that the 
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relative efficiency of the imputation based risk estimates was much better than analyses 

excluding the missing observations. 

The delta time series study evaluated the effect of changes or rates of changes in PM10 on 

the mortality‒PM10 relationship. Delta and relative delta were computed using data from 

London and Hong Kong. Poisson GAMs were applied to study associations of delta and 

relative delta PM10 with mortality and to examine the effect of controlling for delta metrics 

in conventional metric models, i.e., absolute PM10 at lag 1. The percentage increase in 

mortality for an interquartile range increase in delta PM10 was 0.51 (95% CI: 0.10, 0.92) 

for non-accidental and 1.12 (95% CI: 0.30, 1.95) for cardiovascular mortality after 

controlling for lag 1 PM10 in Hong Kong. Lag 1 PM10 effects increased from 1.97 (95% CI: 

1.23, 2.73) to 2.44 (95% CI: 1.61, 3.28) for non-accidental and from 2.36 (95% CI: 0.95, 

3.79) to 3.43 (95% CI: 1.84, 5.04) for cardiovascular mortality after controlling for delta 

PM10. However, similar results could not be replicated for London where the effect of both 

delta metrics was not consistent with expectations. 

The pattern analysis approach extended delta time series study by considering exposure 

patterns over longer periods (one week). Using the same data from London and Hong 

Kong, exposure patterns were defined on each day by counting number of (a) Positive 

changes (delta) in PM10 over successive days, (b) PM10 peaks and (c) Delta peaks for the 

week just before the mortality day. Again Poisson GAMs were used to study the 

mortality‒PM10 relationship taking into account exposure patterns in the previous week in 

addition to the usual confounders including time trends, seasonality, day of the week and 

temperature. In London, inclusion or exclusion of a few outlying observations had 

substantial impact on risk estimates and led to different conclusions. Mortality risk from 
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each cause was highest for the 3 peaks per week group. For example, in the 3 peaks per 

week group, the percentage increases per 10 μg/m
3
 increase in PM10 at lag 1 were 6.46 

(95% CI: 3.55, 9.45) for non-accidental, 7.65 (95% CI: 2.86, 12.65) for cardiovascular and 

9.95 (95% CI: 1.70, 18.86) for respiratory mortality based on the full data set. The results 

dramatically changed to null when outliers were excluded; the corresponding percentage 

increases were -0.47 (-3.93, 3.12) non-accidental, 2.32 (-7.84, 3.53) for cardiovascular and 

4.91 (-4.23, 14.93) for respiratory mortality. The results from the latter analyses were more 

consistent with those from Hong Kong. Yet, for Hong Kong, the percentage increase 

estimates in the three peaks per week group 0.74 (95% CI: -0.47, 1.97) and 2.05 (95% CI: -

0.69, 4.86) for non-accidental and respiratory mortality were still much greater than the 

corresponding conventional estimates, 0.47 (95% CI: 0.29, 0.64) and 0.32 (95% CI: -0.09, 

0.73) respectively. Results were qualitatively similar for the other pattern metrics. 

6.2. Limitations and further work 

Investigating whether changes or rate of changes in exposure and short-term exposure 

patterns could have an impact on the air pollution‒mortality relationship is important; this 

is because if they do then it would have implication both on policy and potential 

mechanistic explanations (Dominici et al., 2014). However, applying the change metrics 

(delta) in conventional time series models was not necessarily straightforward. First, 

evaluating the effect of delta by directly incorporating into conventional distributed lag 

(DL) model was problematic as this led to an unidentifiable model. A reasonable next step 

was to replace delta by one of the alternative metrics (absolute value, maximum or relative 

delta) as proposed in Chapter 3. Though such models could be identifiable, the concern on 

potential multicollinearity remained a drawback. Hence, the final suggestion was to 
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assume the coefficient of lag 0 in the model to be zero. It was shown, using data from 

Hong Kong, that both the former and the latter approach provided fairly comparable model 

fits based on AIC values. Although this is a reasonable approach as a first attempt to study 

delta for air pollution exposure, it could be extended and its theoretical implications 

explored further in a distributed lag modelling framework in future studies. Moreover, the 

potential effect of concurvity (Ramsay et al., 2003), the non-linear equivalent of 

multicollinearity, was not examined in this study. 

Another limitation of the delta metrics was sensitivity to the impact of measurement error; 

the results presented in Chapter 3 showed that the variance of delta gets much larger with 

increasing measurement error variance. Hence statistical power in subsequent empirical 

studies using the delta metrics could decrease with increasing measurement error. 

Furthermore, estimates for delta metrics coefficients would also be less efficient under 

substantial amount of missing data as shown in the simulation study (Chapter 3). Though 

this is in general true for any exposure metric including the absolute measurements, the 

rate of missing data is generally higher for the delta metrics than the absolute 

measurements indicating imputation should perhaps be an essential part of analyses 

involving the delta metrics. 

Working with the delta metrics appears to be relatively more convenient when applied to 

temperature exposure than air pollution. This is because both extreme increases (positive 

delta) and decreases (negative delta) in temperature are associated positively with adverse 

health effects through somewhat U shaped or similar functions (McMichael et al., 2008, 

Ma et al., 2014, Armstrong, 2006). Guo et al. (2011) and Lin et al. (2013), for example, 

have successfully showed delta effects for temperature in time series studies. On the other 



136 

 

hand, only increases in air pollution are associated positively with adverse health outcomes 

in a linear function thus making the comprehension of negative delta values less intuitive. 

Nevertheless, this does not necessarily mean modelling delta is mathematically more 

complex for air pollution exposure than for temperature. 

The empirical results from the delta time series approach using data from London and 

Hong Kong need to be interpreted with caution. Associations observed in any 

epidemiological study are generally scrutinised in light of confounding, selection and 

information bias as well as chance. On top of this, making a consistent overall conclusion 

based on this study only appeared to be difficult given lack of agreement between London 

and Hong Kong results obtained following an a priori specified study protocol. Both delta 

and relative delta showed association with mortality in Hong Kong but not in London. 

Measurement error could be one possible explanation for the lack of evidence of 

association in London as discussed previously. On the other hand, the association observed 

in Hong Kong could as well be affected by residual confounding or chance alone could be 

the explanation for the observed association though very unlikely. Given the results from 

several sensitivity analyses conducted, residual confounding seems to have played a part 

for the observed association in Hong Kong while results from London remained consistent 

in the corresponding sensitivity analyses. 

More or less similar caution applies to interpretation of the results from the pattern analysis 

approach. Ironically, remarkable pattern effects were observed in London but only due to a 

few extreme observations. Removing those outlying data points largely reduced pattern 

effects to null which was consistent with the findings in Hong Kong. Given the way 

exposure patterns were defined, perhaps potential influence of distributed lag (DL) effects 
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should be taken in to account. In order to get more insight on this issue, a sensitivity 

analysis using average cumulative PM10 exposure rather than lag 1 PM10 was conducted 

and the conclusions for both London and Hong Kong were little affected. Yet it would be 

an interesting extension to this study if pattern effects could be demonstrated in the DL 

modelling framework. A major challenge would be to find signal strong enough to be 

picked up by patterns after including DLs. 

The pattern identification procedure was based on some selected characteristics of the 

exposure patterns over rolling blocks of weeks and may not necessarily represent all 

possible patterns in the entire data set. Obtaining the distribution of all possible patterns 

requires a very large data series in order to guarantee reasonable frequency for each 

pattern. As an alternative method, future investigations could also explore potential 

application of multivariate methods like principal component analysis in order to group 

similar patterns together.  

Bias from missing data is unlikely to be a concern in both delta time series and pattern 

analysis because only London had a small proportion of missing data (about 3%) which 

was imputed using the APHENA method (Katsouyanni et al., 2009). Finally, only PM10 

was considered to develop the methodology for delta time series and pattern analysis 

approaches in the thesis. This is fairly reasonable as PM10 is a major pollutant for which 

relatively more consistent associations have been established with mortality and morbidity 

(Pope and Dockery, 2006, Bell et al., 2013, Berhane et al., 2011). Comparable results 

would probably be expected for PM2.5 due to its high degree of correlation with PM10 

(Atkinson et al., 2010) but this needs to be extended to other pollutants once the 
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methodology is well developed and some of the limitations highlighted above are 

somehow resolved. 

To sum up, this study can be a good base for a further extended research on effects of 

changes or rate of changes in exposure and patterns of exposure in order to obtain more 

robust conclusions. Based on the discussions above, taking into account the following 

issues could be beneficial in future studies: 

I. Study power and heterogeneity: Setting up a multi-location study either through 

exploring present collaborative research projects or establishing new ones in 

Europe, North America, Asia and elsewhere if possible. 

 

II. Methodological research: This can be looked at in terms of modelling and design 

aspects. Improvements on modelling issues include exploring the applicability of 

distributed lag models and developing a more comprehensive study protocol for 

multi-location studies. The set of all possible exposure patterns that could occur 

over a time period of interest may be explored in a relatively long series and needs 

to be summarised using multivariate statistical methods. On the other hand, the 

ecologic time series design can be supplemented by studies in vitro and in vivo. 

Pollutants other than PM10 can be included both in single as well as multi-pollutant 

models and PM10 exposure can also be examined with respect to toxicity of its 

components. 
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6.3. Concluding remarks 

1. The change metrics (delta) showed larger variance than the absolute metrics in the 

presence of non-trivial measurement error. Thus, the delta metrics may not be a 

suitable proxy for the absolute metrics and regression estimates could be biased (at 

least for classical error). Among the alternative metrics proposed for identifiable 

delta models, relative delta is recommended in similar studies. Although it did not 

substantially improve model fit compared to the other metrics, relative delta 

provided additional information by capturing relative changes and had the strongest 

correlation with delta. Missing rates could generally be larger for the delta than the 

absolute metrics reaching up to double in the worst case scenario. Efficiency of risk 

estimates in the presence of missing data decreased with increasing missing rate as 

shown in the simulation study. Hence imputation of missing data would be a crucial 

first step for analyses involving the delta metrics. 

 

2. Following an a priori specified study protocol for the delta time series approach, 

evidence of association for delta and relative delta PM10 with mortality was found 

in Hong Kong but not in London controlling for lag 1 PM10 in addition to the usual 

confounders. This implies while delta metrics could provide a convenient 

interpretation biologically, further investigations are needed to explore the reasons 

for geographical discrepancies in risk estimates. However, in sensitivity analysis 

with more rigorous adjustment for weather, the observed association in Hong Kong 

attenuated towards the null. The study thus reaffirms the importance of sensitivity 

analysis in time series studies of the health effects of air pollution and could be 

used as a basis to develop a more comprehensive study protocol for similar studies. 
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3. The main hypothesis in relation to the exposure pattern analysis was, in addition to 

amount (dose) and duration of exposure, epidemiological studies ought to take 

patterns of exposure into account. However, convincing evidence was not found for 

the effect of short-term exposure patterns on mortality risk estimates in London 

(after removing outliers) and Hong Kong. Refining the definition of exposure 

patterns and methodological improvements including analysis of data from multiple 

cities are highly recommended in related studies in the future. 
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APPENDIX A: Supplementary materials for Chapter 1 

Summary of background demographic, health, and environmental data for London and Hong Kong is presented below in the tables 1 and 2 

extracted from the paper by Wong et al. (2002). 

 

Table 1.1: Comparison of environmental factors of Hong Kong and London 
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Reference 

Wong C-M, Atkinson RW, Anderson HR, Anthony Johnson H, Ma S, Chau PY-K, et al. 

2002. A Tale of Two Cities: Effects of Air Pollution on Hospital Admissions in Hong 

Kong and London Compared. Environmental health perspectives 110:67-77. 

 Table 1.2: Comparison of selected health and air pollution statistics between   

                   Hong Kong and London 
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APPENDIX B: Supplementary materials for Chapter 2 

Parameter estimation  

This section presents methods for estimation of parameters (βs) as outlined in Peng et al. 

(2006). First the linear predictor given in Chapter 2 (model 2.3)  

);(...)log( 110  tfXX tpptt                                                           2.3 

where f is a smooth function of time and λ is the smoothing parameter which controls how 

rough or smooth f should be can be written using matrix notation to facilitate the 

derivation:   

 

)Poisson(μ~Y  

fX)μlog(  β                                                                                                      2.4 

where Y=Y1…Yn, f is a smooth function evaluated at t=1,…,n and X is an nx(p+1) design 

matrix containing a column of ones.  

 

For a given nxd spline basis matrix B, the model in (3) above can be written as 

 BX)μlog(  β                                                                                                  2.5  

where α is a vector of coefficients (of length d). 

 

The natural spline (NS) model is fit using iteratively reweighted least squares (IRLS) as 

follows. Suppose W is an nxn diagonal weight matrix, z is the working response from the 

last iteration of the IRLS algorithm and X
*
=[X | B] the full design matrix, then the 

parameter estimates will be  

  WzXWXX
ˆ

ˆ
*'1-**'











ns                                                                                      2.6 
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In the case of penalised splines (PS), a smoother matrix (S) for f needs to be computed 

first. For a given smoothing parameter λ and a symmetric fixed penalty matrix H, this will 

be 

  '-1' BHBB  BS                                                                                               2.7 

  

And the estimate for the coefficient will be 

                                                                      2.8 

  

 

Reference 

Peng RD, Dominici F, Louis TA. 2006. Model choice in time series studies of air pollution 

and mortality. Journal of the Royal Statistical Society: Series A (Statistics in Society) 

169(2): 179-203.    
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APPENDIX C: Supplementary materials for Chapter 3 

Methods and additional results for simulation studies  

1. Simulation study I 

1.1. Aims and objectives  

The aim of the first simulation study was to compare the statistical properties of the 

absolute and delta metrics in the presence of systematic and random measurement error. 

More specifically, the objective of the Monte Carlo (MC) simulation was to compare mean 

and variance properties of absolute and delta PM10 metrics for different levels of 

measurement error variance assuming observed data on PM10 (log transformed) as the 

“true” exposure. The simulation study was set up using data on PM10 from Hong Kong for 

the period 2002-2008 as the “true” exposure. The simulated data for the observed exposure 

was assumed to contain pure classical measurement error. The simulation procedure can be 

considered as a simplified version of that showed in Goldman et al. (2011) but with two 

major modifications; instead of calculating error variance, a range of values for the 

variance were assessed and no autocorrelation was assumed for errors. Daily observed 

absolute PM10 series were generated by adding random error to the “true” exposure 

assuming log-normal distribution. The results are summarised in Table 3.7 for the mean 

estimates and in Table 3.8 for the SD estimates for a range of random measurement error 

variances as well as with and without systematic error. This will support the 

theoretical/analytical results presented in Table 3.1. 
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1.2. Simulation procedures  

a) The measurement error models under random error only (3.20) and with both random 

and systematic error (3.21) together with the corresponding model for delta are given 

below. 

 trueobserved XX
  

                             3.20 

  trueobserved XX                               3.21 

1-1-

1-

--                 

-

TTT

true

T

true

T

observed

T

observed

T

observed

XX

XXX




 

                             3.22 

where Xobserved is the observed exposure with some measurement error  , Xtrue is the true 

exposure, θ is the amount of bias and T

observedX  is delta at time T; the true exposure is 

uncorrelated with   and ),0(~ 2

eN  . 

b) The measurement error variances )( 2

e  compared were 0.0001, 0.01, 0.25, 1, 2.25, 

3.61, 4 and 6.25 (hence the corresponding SDs will be 0.01, 0.1, 0.5, 1, 1.5, 1.9, 2 and 

2.5 respectively). 

c) The systematic error value (θ) was set at 3. 

d) The number of simulations performed for each scenario was 1000. 

e) Daily time series data on PM10 from Hong Kong for the period 2002-2008 were used as 

the “true” exposure after log transformation. Hence the observed data were simulated 

by adding systematic and/or random measurement error (with different levels of error 

variance) to this “true” distribution. 

f) The function rnorm() in R was used to generate each data set from a normal 

distribution (on the log scale). 

g) The results from each MC simulation were saved in a spreadsheet and summarised 

using the mean, SD, bias and relative bias. 



162 

 

h) The summary from the above step (g) was used to compare the absolute and delta 

metrics, i.e., to assess the respective bias and variance. 

 

1.3. Results 

In the absence of systematic error, the expected value (mean) estimates were little affected 

by measurement error level ( ) for both absolute and delta metrics. Introducing systematic 

error induced bias in the mean estimate for absolute metrics by the same amount as the 

systematic error, in this case by three, whereas it had no influence on the delta metrics as 

expected (Table 3.7). 

The bias in the SD estimates increased as the measurement error variance (sigma) 

increased for both the absolute and delta metrics. In agreement with the theoretical results 

presented in Table 3.1, systematic error had no influence on the SD estimates and the delta 

metrics generally had larger SD than the absolute metrics (Table 3.8). Moreover, the 

inflation of SD estimates with increasing measurement error was substantially greater for 

the delta metrics as shown in Figure 3.5. These results imply that application of the delta 

metrics as well as interpretation of risk estimates from it should be looked at cautiously in 

light of the potential effect of measurement error. 
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Table 3.7: Summary of results from simulation study for the estimate of the mean 

Metric 
Systematic 

error 
“True” 

mean 
Sigma MC mean MC bias 

MC relative 

bias
* 

PM 

0 3.8586 

0.01 3.8586 0.0000
§ 0.0000 

0.10 3.8587 0.0001 0.0000 

0.50 3.8587 0.0001 0.0000 

1.00 3.8592 0.0006 0.0001 

1.50 3.8591 0.0005 0.0001 

1.90 3.8591 0.0005 0.0001 

2.00 3.8563 -0.0023 -0.0006 

2.50 3.8578 -0.0008 -0.0002 

3 3.8586 

0.01 6.8586 3.0000 0.7775 

0.10 6.8587 3.0001 0.7775 

0.50 6.8587 3.0001 0.7775 

1.00 6.8592 3.0006 0.7776 

1.50 6.8591 3.0005 0.7776 

1.90 6.8591 3.0005 0.7776 

2.00 6.8563 2.9977 0.7769 

2.50 6.8578 2.9992 0.7773 

Delta 
 

0 -0.0005 

0.01 -0.0005 0.0000 -0.0003 

0.10 -0.0005 0.0000 0.0071 

0.50 -0.0005 0.0000 0.0079 

1.00 -0.0005 0.0000 0.0417 

1.50 -0.0005 0.0000 -0.0026 

1.90 -0.0005 0.0000 0.0782 

2.00 -0.0004 0.0000 -0.0160 

2.50 -0.0005 0.0000 0.0791 

3 -0.0005 

0.01 -0.0005 0.0000 -0.0003 

0.10 -0.0005 0.0000 0.0071 

0.50 -0.0005 0.0000 0.0079 

1.00 -0.0005 0.0000 0.0417 

1.50 -0.0005 0.0000 -0.0026 

1.90 -0.0005 0.0000 0.0782 

2.00 -0.0004 0.0000 -0.0160 

2.50 -0.0005 0.0000 0.0791 
*MC relative bias=MC bias/True value 
§Value<0.0001 
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Table 3.8: Summary of results from simulation study for the estimate of the SD 

Metric Systematic error “True” SD Sigma MC mean MC bias MC relative bias 

PM 

0 0.5356 

0.01 0.5357 0.0001 0.0002 

0.10 0.5448 0.0092 0.0172 

0.50 0.7325 0.1969 0.3675 

1.00 1.1343 0.5987 1.1177 

1.50 1.5926 1.0570 1.9734 

1.90 1.9732 1.4376 2.6839 

2.00 2.0699 1.5343 2.8645 

2.50 2.5564 2.0208 3.7728 

3 0.5356 

0.01 0.5357 0.0001 0.0002 

0.10 0.5448 0.0092 0.0172 

0.50 0.7325 0.1969 0.3675 

1.00 1.1343 0.5987 1.1177 

1.50 1.5926 1.0570 1.9734 

1.90 1.9732 1.4376 2.6839 

2.00 2.0699 1.5343 2.8645 

2.50 2.5564 2.0208 3.7728 

Delta 
 

0 0.3494 

0.01 0.3497 0.0003 0.0009 

0.10 0.3770 0.0276 0.0791 

0.50 0.7887 0.4393 1.2572 

1.00 1.4561 1.1067 3.1675 

1.50 2.1504 1.8010 5.1548 

1.90 2.7087 2.3593 6.7525 

2.00 2.8502 2.5008 7.1575 

2.50 3.5531 3.2037 9.1692 

3 0.3494 

0.01 0.3497 0.0003 0.0009 

0.10 0.3770 0.0276 0.0791 

0.50 0.7887 0.4393 1.2572 

1.00 1.4561 1.1067 3.1675 

1.50 2.1504 1.8010 5.1548 

1.90 2.7087 2.3593 6.7525 

2.00 2.8502 2.5008 7.1575 

2.50 3.5531 3.2037 9.1692 
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Figure 3.6: MC estimates of SD for “observed” PM10 and ∆PM10 data for different     

                 levels of measurement error variance; plots show kernel density on    

                   both sides of a box plot (circles at the centre of each plot are medians)  

 



166 

 

2. Simulation study II 

2.1. Aims and objectives  

The second simulation study in this thesis aimed to determine the performance of some of 

the proposed models relative to the conventional distributed lag model and check whether 

any of the alternative delta metrics in 3.15-3.18 fitted the data better than the relatively 

simpler delta model in 3.9. The results are summarised in Table 3.9. 

 

2.2. Simulation procedures  

a) The models to be compared as given in Chapter 3 included 

...PP 1-t

''

2t

''

1 ++=  t
                            (3.9) 

...PP 1-t2t1t ++=                              (3.11) 

...|P|PP t

)1(

31t

)1(

2t

)1(

1t +++=  -
                            (3.15) 

...|P|P t

)2(

21t

)2(

1t ++=  -
                            (3.16) 

...)0,P(P t

)3(

21t

)3(

1t ++= Max-                              (3.17) 

...PP t

)4(

21t

)4(

1t ++= R-                              (3.18) 

 

b) Model performance was assessed using AIC values. 

c) The number of simulations performed for each scenario was 10000. 

d) The simulation used time series data from Hong Kong for the period 2002-2008. Daily 

mortality series were generated based on predicted values from a Poisson generalized 

additive model with lag1 PM10 and delta PM10 concentrations in addition to controlling 

for temperature, day of the week, time trends and seasonality. 

e) The function rpois() in R was used to generate each data set from a Poisson 

distribution. 
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f) Similar models as in (d) above were fitted to the simulated data for each of the models 

in (a) using one of the alternative metrics for delta as appropriate. 

g) Relative risks, standard errors and AIC values for each model from each simulation 

were then saved in a spreadsheet and summarised using their average. 

h) Finally the difference in average AIC values between the reference model (3.11) and 

the remaining models was calculated. 

i) The results from (g) and (h) were tabulated and used to assess the relative performance 

among the proposed delta metrics. 
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Table 3.9: Model comparison for various delta metrics based on AIC values with log RR (SE) estimates for non-accidental  

                 mortality per IQR increase in respective metric using simulated data for  Hong Kong 

Model 

 
Change 
in AIC

§ 
Lag1 PM10 

 

ΔPM10 

 

Abs(ΔPM10) 

 

Max(ΔPM10, 0) 

 

RΔPM10 

 

3.11 Reference 0.01373 (0.00458) -- -- -- -- 

3.9 0.0 0.02579 (0.00416) 0.00551 (0.00209) -- -- -- 

3.15 1.0 0.01373 (0.00458) -- -0.00034 (0.00269) -- -- 

3.16 6.5 0.01997 (0.00416) -- 0.00101 (0.00269) -- -- 

3.17 2.0 0.02205 (0.00374) -- -- 0.00342 (0.00162) -- 

3.18 2.1 0.02415 (0.00416) -- -- -- 0.00479 (0.00220) 
§
Calculated by subtracting AIC value of the reference model (3.11) from each model’s respective AIC 
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3. Simulation study III 

3.1. Aims and objectives  

The aim of the last simulation study thesis aimed to compare two missing data handling 

methods namely excluding versus imputing missing observations. Specifically, the 

objective was to investigate the extent of missing data which could lead to potentially large 

bias and compare the performance of the APHENA imputation method against excluding 

missing data from analyses of such data. 

 

3.2. Simulation procedures  

a) In the APHENA study missing observation on day i of year k from monitoring station j 

was replaced by an average weighted by the values of the temporal average from the 

station as well as other monitoring stations as given in the study protocol (equation 4.8) 

presented in Chapter 4: 

            
kjkkiijk xxxx .... /ˆ                                                                                      

where is kix .  the mean value on day i of year k among all monitors reporting, jkx.  is the 

mean value for monitor j in year k and kx..  is the overall mean level in year k. 

b) Data were generated for a single monitoring station of interest as well as six additional 

monitors to be used for the APHENA imputation method. In addition one station was 

set to have higher average pollution levels than the rest. 

c) Each simulated data set for PM10 was generated from a log-normal distribution with 

model predicted mean and standard deviation; the model predictors used for log PM10 

were lag 1 PM10 (log scale) and smooth functions of temperature and time. 
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d) The simulation was based on daily time series data from Hong Kong for the period 

2002-2008 which had complete PM10 data. 

e) Missing rates of 3%, 5%, 10%, 30% and 50% were randomly introduced to each 

simulated data for the monitoring station of interest. 

f) For the rest six monitoring stations the proportion of missing data was set to only 3%. 

g) The number of simulations performed for each scenario was 1000. 

h) The function rnorm() in R was used to generate each data set from a normal 

distribution (on the log scale). 

i) For analyses using the imputed data sets, the missing observations in (d) above for the 

monitoring station of interest were replaced according to the procedure in (a). 

j) Poisson GAM models were fitted to each data set both before and after imputation to 

estimate RR estimates for lag 1 and delta PM10. 

k) The results from each model (RRs) were saved in a spreadsheet and summarised using 

their average, SD, bias, relative bias, MSE and relative efficiency. The RR estimates 

from Hong Kong which had complete PM10 data was assumed as the “true” value for 

calculating bias. 

 

 

 

 

 



171 

 

4. Additional results from simulation studies 

 

 

 

 

 

Figure 3.6: Boxplots for MC estimates of the mean for “observed” PM10 and     

                   ∆PM10 data at different levels of measurement error variance 
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Figure 3.7: Boxplots for MC estimates of the SD  for “observed” PM10 and     

                   ∆PM10 data at different levels of measurement error variance 
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Figure 3.8: Boxplots for model comparison of alternative delta metrics using the     

                   change in AIC relative to the UDL mode in MC simulations 
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Figure 3.9: Boxplots for MC estimates of the RR associated with lag 1 PM10 and     

                   for different rates of missing data 
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Figure 3.10: Boxplots for MC estimates of the RR associated with ∆PM10 and     

                     for different rates of missing data 
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APPENDIX D: Supplementary materials for Chapter 4 

1-Model comparison using AIC values 

 

 

 

 

Table 4.7: Comparison of model fits with the reference
§
 model by mortality causes.             

                 Change in AIC calculated by subtracting the AIC value of the respective  

                 reference model from each model under consideration 

 London  Hong Kong  

Non-linear delta models with df smoothing 

df 
change in AIC  change in AIC  

Non-

accidental 
Cardiovascular Respiratory 

Non-

accidental 
Cardiovascular Respiratory 

2 -0.43 -0.03 0.86 -0.94 0.65 0.02 

3 -0.94 0.44 0.86 -1.36 1.29 -0.64 

4 -1.47 1.07 0.61 -1.35 2.23 -1.64 

5 -1.44 1.98 0.79 -0.98 3.14 -2.41 

6 -0.88 3.10 1.48 -0.23 3.85 -2.61 

7 -0.07 4.33 2.49 0.76 4.36 -2.34 

8 0.75 5.56 3.66 1.86 4.78 -1.82 

9 1.45 6.75 4.87 2.97 5.21 -1.20 

10 2.02 7.89 6.06 4.05 5.76 -0.57 

11 2.49 9.01 7.18 5.07 6.46 0.03 

12 2.92 10.12 8.20 6.02 7.33 0.60 

13 3.36 11.24 9.13 6.93 8.35 1.16 

Models based on categorical delta 

 
-0.52 0.98 1.86 0.91 -2.04 -2.86 

§The reference model corresponds to the conventional distributed lag model as specified in Chapter 3 (model 3.11) 

2- Cross-correlations, autocorrelation (ACF) and partial autocorrelation       

functions (PACF) for all variables in London and Hong Kong time series 
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Figure 4.9: ACF and PACF for all variables in A) London and B) Hong Kong 
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Figure 4.10: Cross-correlations among all variables in London 
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Figure 4.11: Cross-correlations among all variables in Hong Kong 
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Figure 4.12: Non-linear exposure-response relationship between non-accidental mortality and Delta, London (df on each panel) 

3-Plots for non-linear exposure-response relationships 
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Figure 4.13: Non-linear exposure-response relationship between non-accidental mortality and Relative delta, London (df on each panel) 
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Figure 4.14: Non-linear exposure-response relationship between non-accidental mortality and Delta, Hong Kong (df on each panel) 



183 

 

 

 

      
 

Figure 4.15: Non-linear exposure-response relationship between non-accidental mortality and Relative delta, Hong Kong (df on each panel) 
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Figure 4.16: Non-linear exposure-response relationship between PM10 metrics and mortality for 3 df smooth, London (Full data set) 
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Figure 4.17: Non-linear exposure-response relationship between PM10 metrics and mortality for 3 df smooth, London (Positive deltas only) 
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Figure 4.18: Non-linear exposure-response relationship between PM10 metrics and mortality for 3 df smooth, Hong Kong (Full data set) 
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Figure 4.19: Non-linear exposure-response relationship between PM10 metrics and mortality for 3 df smooth, Hong Kong (for positive deltas) 
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APPENDIX E: Supplementary materials for Chapter 5  

1. More on exposure pattern definition and results 

Some of the questions the exposure pattern analysis approach could answer included   

• Which patterns were more frequent? 

• Which ones resulted in more deaths compared to others? 

• Could accounting for exposure patterns affect air pollution risk estimates? 

• Were differences if any significant? 

 

In order to answer the above questions the following three approaches can be considered 

for defining and searching exposure patterns over rolling blocks of weeks:  

1. specific patterns based on number of positive delta 

2. specific patterns based on number of peaks of delta and absolute PM10 

3. all possible patterns present in the data 

 

In Chapter 5 of the thesis approaches (1) and (2) were applied and corresponding results 

presented. And the last (3) is recommended for future pursuit using large dataset. In this 

supplementary material results found in attempt to find all possible patterns in one of the 

data sets analysed (London 2000-2005) are presented. This was achieved by identifying 

patterns based on pairwise comparison of neighbouring delta and absolute PM10 values 

within each block (result would be either of one is equal, less or greater than the other). 

The comparison was also repeated with tolerance of ±SD. An example of a sample of the 

possible patterns is illustrated below in Figure 5.10. 
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The corresponding outcome measures could be 

• Mortality at the end of each block (the next day just after the week 

window) 

• Total mortality for the whole week following the exposure week window 

• Average daily mortality for the week following the exposure week window  

The data generated in this way showed that there were 59 and 69 distinct patterns for delta 

and absolute PM10 respectively. This can be summarised with respect to patterns with 

highest frequency (table 5.8) and by those patterns which gave rise to largest mortality 

counts per pattern (table 5.9). 

  

g: greater 

l: less 

e: equal 

Figure 5.10: Sample patterns within a week block  
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Table 5.8: Summary of all distinct patterns present in the data-by most frequent 

Exposure Pattern 
Frequency 

(F) 

Total 

Mortality 

(M) 

M/F 

Weekly 

total  

M 

Weekly 

M/F 

Average 

M/Day 

Average 

Temp/F 

Delta PM10 (frequency≥10) 

28 gllglg 17 2311 136 17123 1007 144 14 

11 gglggl 16 2302 144 16876 1055 151 12 

23 glglgl 16 2260 141 16732 1046 149 11 

12 gglglg 13 1878 144 13401 1031 147 12 

21 glggll 13 1855 143 13470 1036 148 11 

20 glgglg 12 1718 143 12498 1042 149 11 

27 gllggl 12 1790 149 12589 1049 150 12 

46 lgllgl 11 1647 150 11385 1035 148 11 

13 gglgll 10 1373 137 10075 1008 144 12 

42 lglggl 10 1409 141 10311 1031 147 12 

43 lglglg 10 1409 141 10067 1007 144 14 

Absolute PM10 (frequency≥8) 

18 ggllgl 15 2093 140 15127 1008 144 14 

17 ggllgg 14 2077 148 14430 1031 147 12 

12 gglggl 12 1807 151 13345 1112 159 7 

6 ggggll 12 1671 139 12404 1034 148 10 

28 glglgl 10 1623 162 11555 1156 165 12 

24 glgggl 10 1373 137 10114 1011 144 14 

8 ggglgl 9 1375 153 9322 1036 148 11 

40 lggggl 8 1303 163 8923 1115 159 12 

41 lggglg 8 1222 153 8341 1043 149 14 

g: greater, l: less, e: equal 

Temp: Temperature 
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Table 5.9: Summary of all distinct patterns present in the data-by highest mortality 

                  (top 10 counts per pattern) 

Exposure Pattern 
Frequency 

(F) 

Total 

Mortality 

(M) 

M/F 

Weekly 

total  

M 

Weekly 

M/F 

Average 

M/Day 

Average 

Temp/F 

Delta PM10  

5 ggggll 1 210 210 1359 1359 194 2 

54 llglgl 6 1017 170 6881 1147 164 16 

9 ggglll 3 511 170 3569 1190 170 10 

45 lgllgg 2 337 168 2228 1114 159 9 

59 llllgg 1 168 168 1060 1060 151 10 

16 gglllg 4 665 166 4485 1121 160 8 

7 ggglgl 4 653 163 4220 1055 151 13 

50 llgggl 1 161 161 1080 1080 154 7 

29 gllgll 4 612 153 4167 1042 149 11 

10 glggg 1 153 153 1225 1225 175 8 

Absolute PM10  

1 egglgl 1 196 196 1215 1215 174 1 

15 ggllel 1 177 177 1172 1172 167 15 

40 lggggl 8 1303 163 8923 1115 159 40 

21 glegll 1 163 163 1123 1123 160 21 

28 glglgl 10 1623 162 11555 1156 165 28 

31 gllegg 1 162 162 1025 1025 146 31 

39 glllll 1 159 159 1163 1163 166 39 

43 lgglgg 4 632 158 4601 1150 164 43 

63 llglll 2 314 157 2261 1130 162 63 

26 glggll 4 621 155 4455 1114 159 26 

g: greater, l: less, e: equal 

Temp: Temperature 

 

 

When the pattern search was repeated with a tolerance of ±SD, the number of distinct 

patterns increased to 168 and 87 for delta and absolute PM10 as compared to the previous 

59 and 69 patterns respectively. The corresponding results are summarised with respect to 

patterns with highest frequency (table 5.10) and by those patterns which gave rise to 

largest mortality counts per pattern (table 5.11). 
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Therefore, this is not suitable for a formal statistical analysis given the number of 

comparisons possible and the small frequency of several patterns.  

Table 5.10: Summary of all distinct patterns present in the data-by most frequent and  

                   ±SD tolerance 

Exposure Pattern 
Frequency 

(F) 

Total 

Mortality 

(M) 

M/F 

Weekly 

total  

M 

Weekly 

M/F 

Average 

M/Day 

Average 

Temp/F 

  Delta PM10 (frequency≥5) 

1 eeeeee 26 3591 138 25957 998 143 13 

3 eeeeel 12 1738 145 12141 1012 145 13 

83 geeeee 10 1460 146 10335 1034 148 11 

8 eeeelg 6 863 144 6334 1056 151 10 

93 geelgl 5 869 174 6033 1207 172 7 

2 eeeeeg 5 778 156 5495 1099 157 8 

119 gleeee 5 669 134 5003 1001 143 14 

  Absolute PM10 (frequency≥5) 

1 eeeeee 114 16056 141 115463 1013 145 13 

2 eeeeeg 10 1452 145 10286 1029 147 11 

44 eleeee 9 1303 145 9453 1050 150 10 

63 geleee 9 1255 139 9145 1016 145 15 

3 eeeeel 9 1239 138 9275 1031 147 12 

7 eeeele 8 1145 143 8587 1073 153 10 

29 egeeee 8 1110 139 7740 968 138 16 

25 eeleee 7 1057 151 7451 1064 152 10 

4 eeeege 7 1024 146 7221 1032 147 13 

39 egleee 6 871 145 6390 1065 152 11 

8 eeegee 6 820 137 6191 1032 147 11 

76 leeeee 5 837 167 5570 1114 159 11 

12 eeegle 5 789 158 5528 1106 158 9 

17 eegeee 5 694 139 4612 922 132 16 

 g: greater, l: less, e: equal 

 Temp: Temperature 
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Table 5.11: Summary of all distinct patterns present in the data-by highest mortality 

                   (top 10 counts per pattern) and ±SD tolerance 

Exposure Pattern 
Frequency 

(F) 

Total 

Mortality 

(M) 

M/F 

Weekly 

total  

M 

Weekly 

M/F 

Average 

M/Day 

Average 

Temp/F 

Delta PM10  

77 elglgl 1 270 270 1468 1468 210 25 

42 egeeel 1 210 210 1359 1359 194 2 

108 ggeeee 2 396 198 2611 1306 186 9 

166 lglgel 1 194 194 1128 1128 161 8 

117 gglgel 1 189 189 1301 1301 186 3 

104 gelgel 1 185 185 1223 1223 175 6 

54 eglgee 1 183 183 1230 1230 176 5 

94 geellg 1 182 182 1134 1134 162 10 

122 gleege 1 182 182 1128 1128 161 8 

111 ggelge 1 180 180 1204 1204 172 7 

Absolute PM10  

61 gegegl 1 270 270 1468 1468 210 25 

41 eglegl 1 194 194 1128 1128 161 8 

70 ggglgl 1 192 192 1289 1289 184 2 

21 eeglee 2 363 182 2264 1132 162 9 

36 egelle 1 182 182 1134 1134 162 10 

43 egllel 1 177 177 1172 1172 167 8 

16 eeelge 3 519 173 3475 1158 165 8 

35 egelee 1 173 173 1053 1053 150 8 

71 ggleee 2 342 171 2374 1187 170 4 

68 ggeele 1 169 169 1208 1208 173 5 

g: greater, l: less, e: equal 

Temp: Temperature 
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2. Exposure patterns and responses from in vitro experiment
§
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From Sapey E, Personal communication 

Figure 5.11: Comparison of inflammatory responses (IL8) of bronchial epithelial cells      

                     72 hours after exposure to inflammatory insults (TNFα) with different  

                     patterns. Average exposures were the same under low dose scenarios  

                    and high dose scenarios compared over the 72 hour period 
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3. Model comparison using AIC values 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.12: Comparison of pattern adjusted models with the conventional unadjusted   

                    model by mortality causes. Change in AIC calculated by subtracting the 

                    AIC value of pattern adjusted model from the respective AIC value of  

                    the unadjusted model 

                    London                Hong Kong  

Pattern               change in AIC                change in AIC  

 
Non-

accidental 
Cardiovascular Respiratory 

Non-

accidental 
Cardiovascular Respiratory 

PM10 peaks 

 13.86 2.75 1.21 -8.84 -3.76 -0.39 

Delta peaks 

 -5.26 -0.97 0 -10.75 -10.92 -2.32 

Number of positive delta 

 13.46 -1.68 9.13 -2.71 -1.29 -4.66 
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