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ABSTRACT

The work presented in the present thesis investigated the neural, behavioural and genetic 

markers that may be associated with the manifestation of behavioural problems during the 

early years of life. Across four different empirical studies, and by incorporating, behavioural, 

neurophysiological and genetic investigations, it was demonstrated that: (1) there are 

neurophysiological signatures that may be associated with the manifestation of behavioural 

problems early in life; (2) common genetic variations that determine serotonin variability are 

strongly associated with affectivity-related patterns of frontal brain activation; and that (3) 

normal genetic variations that modulate serotonin availability and neuroplasticity are each

associated with affectivity-related patterns of visual scanning behaviours in response to faces 

and aversive scenes. Taken together, the results illustrate the existence of robust neural, 

genetic and behavioural markers that may be associated with the manifestation of behavioural 

problems in early childhood and prompt further investigation of the area by generating novel 

hypotheses.   Together, the empirical findings of the thesis provide a first stage contribution to 

the complex mechanisms that may yield risk and resilience for behavioural problems during 

the early years of life by generating a more comprehensive insight on the field of affectivity.
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Η κραυγή που γροικάς δεν είναι δική σου. Δε μιλάς εσύ. Μιλούν αρίφνητοι πρόγονοι με το 
στόμα σου. Δεν πεθυμάς εσύ. Πεθυμούν αρίφνητες γενιές απόγονοι με την καρδιά σου. 

Νίκος Καζαντζάκης, Ασκητική

The cry is not yours. It is not you talking, but innumerable ancestors talking with your mouth. 
It is not you who desire, but innumerable generations of descendants longing with your heart.

Nikos Kazantzakis, Spiritual Exercises

(Trans. Kimon Friar)
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CHAPTER 1

Early childhood and vulnerability for 

behavioural problems: an introduction

1.1. Preface

The chapter provides an overview of the thesis’ empirical studies, providing a rationale for the 

ensuing work. Moreover, a review of concepts, models, and research relevant to the empirical 

work described in this thesis is illustrated. Existing empirical evidence that investigates the 

complex gene by environment interactions on the development of early behavioural problems, 

along with the relevant models, are then reviewed. This chapter also comprises an 

introduction on the role of multivariable investigations and their importance on the field of 

early behavioural problems. Finally, the key areas for further investigation are highlighted. 
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1.2.   Thesis Overview

The present thesis starts with a broad introduction of the main definitions in the field of risk 

and resilience, the genetic and environmental influences of behaviour, and the existing models 

that account for gene by environment interactions, which may predict behavioural outcomes. 

Continuing with this, Chapter 2 begins with an overview of the available research, models and 

methods used to investigate the development of emotion regulation in typical and atypical 

development, including the role of frontal EEG as a neurophysiological index of early 

affectivity. To continue, the first empirical study utilizes frontal EEG in order to derive 

measures of frontal activation that are believed to be reliable indexes of early behavioural 

problems. Taking into account previous evidence that has highlighted the existence of strong 

association between negativity patterns of frontal Electroencephalogram (EEG) asymmetry, 

and the manifestation of behavioural problems in young children, the study sought to further 

delineate the nature of frontal EEG patterns of early affectivity, to replicate the most reliable 

current knowledge, and also through the utilization of a novel experimental design to provide 

new insights in the field. 

In Chapter 3 the same EEG investigation and experiment is utilized using a larger sample and 

age range of children. Through the incorporation of genetic investigations, neurobiological 

mechanisms are unveiled, which may account as an influence of frontal brain-based patterns 

that are associated with negative affectivity, or patterns that relate to positive affectivity. The 

main aim of this study is to reveal the putative role of common genetic variations that 

determine serotonin availability in influencing the positivity versus negativity patterns of 

frontal EEG activation during early childhood. To date, there have been no direct 
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investigations on the role of serotonin availability in modulating the long-standing index of 

early affectivity, frontal EEG asymmetries, in early childhood. 

Chapter 4 starts with a critical overview of various neurophysiological and behavioural 

methods, and the relevant theoretical concepts that have been used to measure emotional 

reactivity in child, adolescent, and adult literature. Furthermore, aiming to further delineate 

the genetic influences of early reactivity in a group of young children, eye-tracking 

technology is employed, where eye gazes towards angry, happy, and neutral facial 

expressions are recorded by employing a novel paradigm. Through the investigation of the 

neuropsychological, behavioural and genetic correlates (i.e., neuroplasticity, serotonin genetic 

variations) of visual scanning of emotional facial expressions and facial features, new insights 

will be provided on the individual role of candidate genes on behavioural traits that relate to 

early reactivity. 

In the last empirical study of the thesis (Chapter 5), taking into account the important role of 

early atypicalities on the processing of affective stimuli, the genetic underpinnings of 

preferential looking behavioursare investigated in response to aversive versus positive scenes, 

in a the same group of young children tested in Chapter 4. The main aim of the study is to 

investigate the role of a common genetic variation that determines serotonin availability in 

modulating looking behaviours in response to different types of threatening stimuli in early 

childhood. 
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Chapter 6 summarizes the main findings of the present thesis and brings together the 

contributions of the substantive chapters to the neural, behavioural and genetic mechanisms 

that are present during early childhood and may account as markers associated with putative

vulnerability constructs of better and worse psychological outcomes later in life.

Collectively, the outcomes of the investigations can provide novel insights into the complex 

constructs of early affectivity, and may further contribute into explaining the interindividual 

differences associated with psychological difficulties and problems. To this end, the 

overreaching aim of the present thesis is to critically approach the current understanding of 

the nature of early affectivity, and the ensuing work will act as a springboard for the 

development of novel hypotheses, as well as theoretical and early therapeutic models in the 

near future, targeting the most vulnerable individuals.  
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1.3. Investigating early behavioural problems

1.3.1. Definition of Risk and Resilience

The term ‘risk’ describes a range of variables that may increase an individual’s likelihood of 

psychological problems, or increase their vulnerability to negative outcomes in their lifespan 

(Goyos, 1997). Some individuals may be better at managing environmental stressors, 

probably due to the availability of a repertoire of disposition resources and copying styles. In 

line with this concept, resilience has been previously defined as an individual’s capacity to 

effectively recover, adapt, and remain unaffected when exposed in adverse environmental 

conditions (Masten, Best, & Garmezy, 1990). Moreover, the umbrella term ‘resilience’ has 

also been used to describe the environmental and genetic influences that may act as protective 

factors against psychopathology (e.g., Werner & Smith, 1992). Risk variables may include 

variables that reside within the individual (e.g., temperament, neurophysiology) and variables 

that come from an individual’s external environment (e.g., poverty, nurturing environment).

Interestingly, early work mainly focused in investigating children who were believed to be at 

increased environmental or genetic risk for the development of neuropsychiatric problems. 

However, these studies provided evidence to suggest great variability among children at the 

same level of risk, which suggested the existence of resilience markers (e.g. environment, 

genes) against psychological maladjustment, which resulted in the development of the risk-

resilience model. Nowadays, research in risk and resilience represents a broader systems 

transformation in child psychology and developmental science (e.g., Lerner, Easterbrooks, & 

Mistry, 2012; see also Masten, 2014) and psychopathology (Cicchetti, 2013a). 
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The risk and resilience model has emerged simultaneously with the establishment of the 

developmental psychopathology field, since both aim to explore the development of human 

behaviour (Cicchetti, 2006; Masten, 2007). The term developmental psychopathology 

describes the study of the development of psychological disorders through the life course 

(Cicchetti, 1989) and has a particular focus on the investigation of the complex interplay 

between socio-emotional and biological underpinnings in both typical and atypical 

development across the life span (Cicchetti, 1993; Cicchetti & Toth, 1998; Rutter & Sroufe, 

2000; Sameroff, 2000). A more recent definition described the field of developmental 

psychopathology as the extensive study of the human behavioural health and adaptation, in 

the context where the individual lives, by adopting a constant developmental perspective 

(Masten, 2006). 

1.3.2. Environmental Influences for Behavioural Problems

The investigation of the early environmental influences that may contribute to the 

manifestation of behavioural problems in young children is a core area of research on the 

scientific field of developmental psychology. The most prominent environmental factors that 

have been considered as potential influences of psychological maladaptation include the broad 

family environment (e.g., mother-child interactions; Du Rocher, Schudlich & Cummings, 

2007; Elgar, Mills, McGrath, Waschbusch & Brownridge, 2007), and the contextual factors 

where the child grows up (e.g., early adversity, poverty; see Lukkes et al., 2009). These 

factors have been widely documented as having a critical influence on the establishment of 

temperamental styles to produce certain patterns of adaptive or maladaptive behaviour early 
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in life (Rubin, Hymel, Mills & Rose-Krasnor, 1991).

1.3.3. Genetic influences for behavioural problems

Advancements in the field of molecular genetics have confirmed the existence of gene-

mediated influences of psychopathology, and human behaviour in general (e.g., Caspi et al.,

2002, 2003; Cicchetti & Blender, 2004; Kaufman et al., 2004). Aiming to uncover the 

heritability of psychiatric disorders and behavioural problems, during the last four decades, 

traditional research has focused on investigating the interplay between heritability and 

experience in shaping social and emotional functioning (e.g. for a review see Kendler & 

Baker, 2007). More specifically, linkage analysis studies have been testing the associations 

between genetic polymorphic markers and the presence of psychiatric disorders within 

families, with the strongest correlations to be believed to be associated more with the disease. 

However, linkage studies have shown to be unsuccessful in identifying strong associations 

between underlying genetic effects for most complex diseases (for a review see Merinkangas 

& Risch, 2003). Moreover, a candidate gene approach has also emerged, aiming to investigate 

the role of common genetic variations that involved in the neural circuits of emotion 

regulation and affectivity which may interact with environmental stressors to predict 

behavioural reactivity, and vulnerability versus resilience for affective disorders (Canli et al.,

2006; Caspi & Moffitt, 2006; Canli & Lesch, 2007). 

In addition to linkage and candidate gene studies, Genome Wide Association Studies (GWAS) 

have been widely used as a more powerful research approach. GWAS is an examination of a 

range of common genetic variants in large populations of individual to see if any variant is 

associated with a trait. Interestingly, GWAS studies have provided numerous replication 

findings that were not evident in candidate gene studies, providing support for the existence of 
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strong genetic associations with psychiatric disorders (for a review see Collins & Sullivan, 

2013). 

It is widely known that Deoxyribonucleic acid, or DNA, is contained in all known living 

organisms, with the four DNA nucleobases [the purine bases adenine (A) and guanine (G), 

and the pyrimidines thymine (T) and cytosine (C)] being responsible for the encoding of 

genetic information. When a single nucleotide in the genome differs between members of a 

biological species, or paired chromosomes in an individual, then a DNA sequence, or Single 

Nucleotide Polymorphism (SNP) is occurring. The majority of the functional studies 

available, however, have examined the function of SNPs in coding regions (for a review see 

Ng & Henikoff, 2003), due to their importance of such regions in influencing phenotype by 

altering the encoded proteins that associated with each gene region. However, although there 

are studies with SNPs in the non-coding regions of genes suggesting their involvement in the 

transcriptome (for a review see Ng & Henikoff, 2003), their exact function is not yet known. 

In addition to SNPs, Variable Number Tandem Repeats (VNTR) have also widely investigated 

for their role in predicting behavioural outcomes. VNTRs are widely used as markers in 

linkage analysis since they have polymorphic nature, and each of those consists of multiple 

copies of short repeated DNA sequences that vary from individual to individual (e.g., 

Brookes, 2013).

From a psychological perspective, research evidence suggests that variation in candidate 

genes are responsible for variations on human phenotype, by influencing vulnerability of 

certain disorders, and therefore may assist in facilitating early diagnosis, prevention and 

ideally treatment of various psychopathologies (Saxena, 2007). However, the importance and 
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size of the effects of individual genetic variation in moderating or mediating human behaviour 

is still debatable. More specifically, a factor may account as a mediator variable when 

accounting for the relationship between the predictor and the outcome, which may be a 

behavioural or neurobiological variable. Conversely, a variable can be accounted as moderator 

when it is represented as an interaction between a major predictor and another variable with 

specific properties (e.g., a subpopulation). This is particularly important for candidate gene 

studies, where there is a likelihood that a single gene may explain a range of behavioural 

phenotypes, which limits the possibility for the existence of neurobiological explanations of 

specific traits (for a critical discussion see Munafo, 2006).

In addition to the individual genetic contributions in behavioural diversity, during recent 

years, the investigation of the cross-over interactions between, genes, brain, and behaviour 

has also emerged. Interestingly, Cicchetti (1990) as part of his early observations, stressed that 

the field of developmental psychopathology needs to adopt a multidisciplinary approach in 

order to unveil the complex interplay underlying adaptation and maladaptation, as well as to 

influence prevention and early intervention for psychopathology. In the following section, I 

provide an overview of the various models, methods and problems that exist when conducting 

multivariate investigations of human behaviour and the importance of such investigations in 

delineating the nature of psychological affectivity early in life. 
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1.4. Investigating Gene × Environment interactions

From a historical perspective, the genetic and environmental influences of human behaviour 

have been studied in isolation from one another, due to methodological differences adopted 

from the two fields (for a critical review see Dick, 2011). Originally the concept of genetic 

predisposition was evident in the field of medical sciences, where a specific genetic profile 

was associated with a disease phenotype at the genetic level. However, studies with 

monozygotic twins have underlined the role of environmental influences (e.g., microbes) on 

the cause of diseases, such as autoimmune or inflammatory diseases (Bach, 2005). In line 

with this, in recent years the limited progress in the genetics of common diseases has been 

acknowledged (Buchanan, Weiss, & Fullerton, 2006) which is overly expected to help in 

identifying the genetic background of diseases and develop early prognosis. In the field of 

psychology and psychiatry, due to the increasing evidence suggesting the involvement of 

environmental influences in the genetic vulnerability for behavioural and psychiatric 

problems empirical studies have started to integrate different variables coming from the 

human organism (e.g., genetic mechanisms) and from the individual’s external environment 

(e.g., poverty, parental behaviour) under the same investigation, aiming to explain variation in 

human behaviour (Gottlieb, 1992). More specifically, Gottlied (1992) defined the complex 

interplay between genotype (i.e., normal genetic variations among individuals of the same 

species), phenotype (i.e., variations on behavioural traits) and environment as not 

predetermined, and therefore may bi-directionally influence the human behaviour over the 

course of development with cross over interactions between the human genome and the 

environment (Gottlieb, 1992).
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In the field of developmental psychopathology, aiming to investigate both affected 

populations, as well individuals at increased vulnerability for various psychopathologies, 

early work in the field did not adopt a specific theoretical consideration to account for all the 

observed individual differences (Rutter  & Sroufe,  2000), instead, knowledge came from 

different disciplines was integrated on the same framework by employing multiple levels of 

analysis (Cicchetti &  Blender, 2004;  Cicchetti &  Dawson,  2002). To this end, the Gene × 

Environment (G×E) interaction model was generated, with the main argument being that 

individuals are not passively affected by the influences of their environment, but they 

generate themselves their experiences in a constantly changing world (Cummings, DeArth-

Pendley, Du Rocher, Schudlich, & Smith, 2000). G×E interactions occur when an individual’s 

positive or negative affective response to an environmental stressor depends on the 

individual’s resilient or vulnerable genetic make-up (Caspi & Moffitt, 2006; for a review see 

Duncan & Keller, 2011). Depending on the environmental adversity, individuals vary in their 

degree of genetic predisposition, and may react differently. For instance, previous research 

reported that maltreated children whose genetic make-up predisposes them to negative 

affectivity and aggression (i.e., variations in the MAO-A gene), were more likely to exhibit 

antisocial behaviour and develop conduct disorder (see Caspi et al., 2002). 

Moreover, compared to G×E interactions, G×E correlations (rGE) reflect genetic influences 

when individuals are exposed to specific environmental conditions. rGEs have originally been 

conceptualized by behavioural geneticists who observed that genetic influences impacting on 

specific environments may make these environments heritable themselves (Kendler & Eaves, 

1986; for a review see Jaffe & Price, 2007). For example, a genetic predisposition for stress 

reactivity may be mediated by life events or personality traits that may strengthen the 
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environmental influence (Moffitt et al., 2006). Therefore, interactions, or correlations (for a 

critical review see Dick, 2011; Moffitt, Caspi & Rutter, 2006), between genes and 

environmental influences may impact upon an individual’s daily functioning and well-being.  

Nowadays, it is generally accepted that neuropsychiatric disorders are the result of the 

interplay between genetic and environmental factors. In addition, the gradual unveiling of the 

dynamic interplay between early life experiences and brain functional development the recent 

years (Black, Jones, Nelson & Greenough, 1998; Greenough, Black & Wallace, 1987) has 

influenced the development of new theoretical concepts to interpret diversity in 

neurophysiology and affectivity. Therefore, the alongside investigation of genes, brain and 

behaviour early in life may provide a conclusive answer regarding the risk and resilience for 

the development of affective disorders.

1.4.1. From Genotype to Endophenotype

During the last three decades a distinct line of research has started to investigate the 

neurophysiological underpinnings of behavioural manifestation aiming to bridge the gap 

between the behavioural manifestation of a psychopathology and the genotypic variations that 

mediates this manifestation (for a review see Heatherton, 2011). The previously defined term 

of ‘endophenotype’ describes a range of internal processes of the human organism that 

include physiological, biochemical and psychological components of reactivity (Gottesman & 

Shields, 1973; Gottesman & Gould, 2003). In the field of psychiatric genetics, the term 

endophenotype is defined by the presence of specific criteria, such as to be heritable, to be 

associated with a psychiatric disorder, or to be present when the disorder is not present (i.e. 
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state independent), and to be reported in higher prevalence in healthy family members of 

affected individuals compared to the general healthy population (Gottesman & Gould, 2003; 

for a review see Flint & Munafo, 2007).

Aiming to derive a direct insight on the neurobiological basis of affective disorders, 

technological advancements in recent years in the field assisted in the increasing evidence to 

report insights of the human endophenotype, especially the human brain (e.g., Amso & Casey, 

2006; Ciaranello et al., 1995). The recruitment of such cutting-edge techniques to measure the 

neurobiology of human affectivity has provided valuable scientific knowledge on the structure 

and function of the human brain, such as knowing about brain connectivity and distinguishing 

white and grey matter, as well as measure changes in brain cells, such as function of 

neurotransmitter receptors (e.g., Thomas, 2003). Among the most widely used methods is the 

Positron Emission Tomography (PET), functional Magnetic Resonance Imaging (fMRI), 

Electroencephalography (EEG), as well as functional Near-infrared Spectroscopy (fNIRS), 

which led to a significant increase in knowledgeabout how the human brain interprets 

experience.

In addition to the studies examining brain development and reactivity, psychology and 

psychiatry research has also started to employ technologies that allow the measurement of eye 

movements to derive an endophenotypic index of psychological reactivity across various 

populations (for a review see Flint & Munafo, 2007). Most notably, cognitive models of 

depression have previously highlighted that biased processing of emotional information may 

contribute significantly on the manifestation of the depressive symptomatology (Teasdale &

Barnard, 1993; Williams, Watts, MacLeod & Mathews, 1997). Thus, atypical attenuation to an 
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environmental stressor may relate to an individual’s inability to control the arousal resulted by 

the stressor, and therefore lead to difficulties with emotion regulation (Joormann & Gotlib,

2007). To this end, the employment of eye-tracking technologies to measure eye movements 

has gradually become a valuable method in psychology and psychiatry to understand the 

mechanisms of visual processing (for a review see Weierich, Treat, & Hollingworth, 2008). 

Taken together, the gradual unveiling of the existence of complex mechanisms that may 

influence human development and behaviour had as a result the generation of multiple 

theoretical accounts for the explanation of the complex interplay between genes, brain and 

behaviour.

1.4.1.1. Models of G×E Interactions

Vulnerability is a term that describes the increased likelihood for being affected from negative 

environmental influences that may place an individual in higher risk for developing a trait. 

However, this only highlights the negative side of an individual’s plasticity in response to the 

environmental influence. For instance, a “vulnerable” child may benefit disproportionately 

from positive environmental influences that may suggest the need to generate more neutral 

concepts to describe such as susceptibility or plasticity (see also Pluess, 2015). The diathesis-

stress model supports the existence of a dual-mode interaction between pre-existing 

neurobiological vulnerability and negative life experiences that may produce negative 

behavioural outcomes (Alloy, Hartlage & Abramson, 1988). More specifically, the diathesis-

stress model describes the biological variables as fixed risk factors that under specific 

negative environmental interactions can reliably predict per se negative outcomes (see Figure 

1.1). This model has been widely tested and supported in both clinical and healthy 
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populations (e.g., Shell et al., 2014). Conversely, the differential susceptibility framework 

proposes a more conclusive framework by introducing the concepts of sensitivity (Boyce & 

Ellis, 2005; Belsky & Pluess, 2009) and susceptibility factors (Belsky, Bakermans-

Kranenburg & van Izendoorn, 2007) to describe complex interactions among different 

variables. More specifically, the differential susceptibility model has proposed the 

independence of the behavioural outcome from the biology-mediated susceptibility factors, 

allowing for cross-over interactions between biological and environmental factors. 

The development of the differential susceptibility model may represent the gradual 

understanding on the field of psychology and psychiatry, that there are no single causal risk 

factors that may lead to psychological maladjustment, as well as that not all the individuals 

that carrying a potential risk factor will ultimately manifest the negative outcome in their later 

life (e.g., Cicchetti & Rizley, 1981; Kraemer, Stice, Kazdin, Offord & Kupfer, 2001; Luthar, 

Cicchetti & Becker, 2000). This novel insight in the field moves forward from the traditional

conceptualization of the risk factors as static through the development (Kraemer et al., 1997), 

and suggest a dynamic interplay among different susceptibility mechanisms through the 

course of development (e.g., Cicchetti, 1999; Cicchetti & Lynch, 1993).

As shown in Figure 1.2, a putative genetic vulnerability component (e.g. low serotonin 

concentrations) may lead to positive outcomes when followed by positive experience (e.g. 

caring nurturing environment). Moreover, the bright side of the susceptibility has been 

previously described on the Vantage Sensitivity framework (Pluess & Belsky, 2013). More 

specifically, it has been previously suggested that individuals may also vary in their responses 

to exclusively positive environments, which may be due toa range of endogenous variables, 
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including their genetic make-up (for a recent discussion see Pluess, 2015). Furthermore, the 

neurosensitivity hypothesis suggests that there are different factors involved in environmental 

sensitivity that may include genetic, psychological and physiological factors (Belsky & 

Pluess, 2009). Taken together, the existence of multiple neurobiological mechanisms that may 

infer vulnerability versus protection for psychological problems may involve the contribution 

of mechanisms that reside within the individual, acting as internal mechanisms of 

environmental sensitivity (e.g., brain function and structures), also referred to as endo-

environmental influences (e.g. Schmidt, Fox, Perez-Edgar & Hamer, 2009). To this end, the 

observed physiological and behavioural reactivity outputs may result from the interaction 

between direct and indirect effects of genetic and environmental influences (for a review see 

Pluess, 2015).
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Figure 1.1. Graphical display of the Diathesis-stress model showing a unidirectional 
prediction of the interplay between neurobiological factors, experience and behavioural 
outcomes. As illustrated below, a negative biological predisposition can only predict negative
outcomes.
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Figure 1.2. Graphical display of the Differential Susceptibility model showing a bidirectional 
prediction of the interplay between neurobiological factors, experience and behavioural 
outcome. As illustrated below, a negative biological predisposition can predict positive 
outcomes under favourable environmental conditions.

1.4.2. Measuring G×E in Early Childhood

There is increasing evidence to suggest that normal genetic variations and environmental 

influences may interact to predict not only vulnerability for psychopathological problems but 

also protection against them. In line with this claim, it has been previously suggested that 

genes are continuously interacting with the environment to determine positive or negative 

behavioural outcomes (Fox et al., 2005; Segalowitz & Schmidt, 2008). In line with this 
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notion, research evidence coming from studies on brain functioning and studies on the genetic 

underpinnings of human behaviour have been synthesised in recent years, to unveil the 

genetic influences of brain development and functioning in both children and adults. The 

development of this approach, widely known as neuroimaging genetics approach, investigates 

how genetic information is linked to individual variation in brain functioning, especially in 

neural networks and regions that are critical for psychological maladjustment (Meyer-

Lindenberg, 2010; Hariri, Drabant & Weinberger, 2006). 

In neuroimaging genetics studies, the utilization of neuroimaging techniques, such as fMRI 

and EEG, provide a neurofunctional phenotype, which is compared to genotype to derive the 

neurobiological basis of human behaviour. Therefore, through the employment of these 

methods the genetic influences of human brain functioning may be more accurately and 

reliably observed (Meyer-Lindenberg & Tost, 2012). There is now a decade of neuroimaging 

genetics research in both clinical studies with adults (e.g., Tan et al., 2007), healthy adults 

(e.g., Papousek et al., 2013), and children (Wiggins et al., 2012), suggesting that the 

increasing incorporation of new sources of biological information coming from both brain 

structures and the human genome opens up the possibility for the establishment of this field as 

a prominent translational enterprise to influence the development of cutting-edge therapeutic 

approaches (Meyer-Lindenberg & Tost, 2012). Interestingly, the investigation of the interplay 

between the environment, the genome and brain functioning in children, may help to go a step 

further in understanding the aetiopathogenesis of specific developmental disorders (Moffitt, 

2005). 

1.4.2.1. Principles and problems in G×E research
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A main challenge in research, which is linking genetic profile, brain functioning and 

behavioural outcomes, is the fact that human brain is a complex system, which is dynamically 

changing, especially in the developing brain. This complex process of ontogenetic 

development is a barrier on the overwhelming plans to use the genome aiming to uncover the 

specific function of genetic mechanisms (for a review see Casey, Soliman, Bath & Glatt, 

2010; Karminoff-Smith, 2009). Moreover, neuroimaging genetics studies have low

replicability rate which may be due to the fact that genetic risk for a specific disorder may be 

distributed across multiple genetic variants which may make observations with single genetic 

variants difficult to replicate (for a review see Casey, Soliman, Bath & Glatt, 2010; de 

Zubicaray et al., 2008; Hariri et al., 2002).

Another issue concerning candidate gene studies is the ancestry effects on the frequency of 

the polymorphic alleles; also known as stratification effects. For instance, studies have 

reported that the frequency of the E4 allele of the Apolipoprotein E (APOE) ranges from 5% 

in populations in Taiwan and Sardinia but has a high frequency of 40% in Pygmies (e.g., 

Corbo & Scacchi, 1999). Therefore, an allele with low frequency in a population is difficult to 

interpret, but also to replicate in other population, which makes the importance of controlling 

participants’ ancestry imperative (for a review see Casey, Soliman, Bath & Glatt, 2010). 

Current and future investigations are vital to control the factor of ancestry variations that will 

allow higher replication validity of the studies in the field (for a recent protocol review see 

Culverhouse et al., 2013).

In addition to unveiling the normal genetic variations that may infer susceptibility for better 

and for worse outcomes, it is important to underline the issues of missing heritability (Maher, 
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2008) in the fight of tackling affective disorders. Advancements in GWAS have provided 

influential evidence on some of the genetic mechanisms that drive neuropsychiatric disorders 

(e.g., O’donavan et al., 2008). However, for other disorders, the particular genetic 

contributions remain largely unknown (Moskvina et al., 2009), which is referred as missing 

heritability. To this end, G×Estudies are believed to be an important contributor towards 

unveiling missing heritability. More specifically, it is believed that the discovering of the 

environmental contributions that may affect only a subgroup of individuals with specific 

genetic profile, may allow the unveiling of the particular components of a complex mixture of 

effects (Thomas, 2010), such as the effects of air pollution (Hunter, 2005). Moreover, research 

has suggested that the clear understanding of the replication problems in GWA studies, may 

help in identifying real homogeneity among individuals, and therefore increase understanding 

of disease complexity (Greene, Penrod, Williams & Moore, 2009; Ioannidis, 2007). This later 

contribution of G×E, when applied using risk prediction models, will have an important 

implication in the field of public health, as well in advancements in personalised medicine 

(Thomas, 2010).
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CHAPTER 2

The relationship of frontal EEG asymmetries 

and behavioural problems in early childhood

2.1. Preface

The chapter provides an overview of the current knowledge on the development of early 

behavioural problems in typical and atypical development, which includes the contribution 

and variability of several markers for affective disorders, as observed in early childhood. 

Empirical research as well as methodological considerations delineating the measuring of 

behavioural problems in early childhood is summarized, providing a rationale to the ensuing 

empirical work. In the prospective empirical study the neurophysiological constructs 

associated with early behavioural problems are investigated, by recording the rates of 

behavioural problems from parent reports, as well as by indexes of early affectivity as 

recorded from a novel EEG paradigm. The study aims to replicate previous knowledge on the 

development of early behavioural problems, as well generate new insights in the field. 
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2.2. Background and Rationale

2.2.1. Introduction

Over the last three decades there has been great interest in the investigation of why some 

people appear to be predisposed in different forms of psychopathologies where others are not. 

Self-regulation, which broadly refers to an individual’s ability to modulate an affective or 

behavioural response (Blair & Diamond, 2008; Kopp, 1982), is believed to have a critical 

contribution to the development of early behavioural problems and, ultimately, to the 

development of psychopathological problems. To this end, the aspects of human behaviour 

that relate to the development of behavioural problems have been previously investigated, in 

both infancy and childhood, as vulnerability factors for developmental psychopathology. 

Although there is a plethora of research on the field, where several theoretical models and 

methodologies have been developed, to date, there is not a single conclusive account available 

to explain the individual differences that may shape the manifestation of affective problems. A 

study in this area can provide important information on the particular brain and behaviour 

associations, and aid a better understanding of the early behavioural constructs of affective 

disorders.

2.2.2. Development, personality, and behavioural problems

2.2.2.1. Classification of behavioural problems

With regards to the early manifestation of problematic behaviours, there are typically two 

broad domains of childhood maladjustment that are investigated in the field of developmental 

science; internalizing and externalizing problems. Internalizing problems are broadly defined 
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as inner-directed problems that include distressful and over controlled behaviours, such as 

sorrow, fear, guilt and worry (Achenbach & McConaughy, 1992) typically conceptualized in 

child, adolescent and adult literature as core components of psychopathology (e.g., Fonseca & 

Perrin, 2001). More specifically, internalizing problems include behaviours such as 

withdrawal, anxiety and depression problems, and inhibition that affecting an individual’s 

internal psychological environment (Campbell et al., 2000). Conversely, externalizing 

problems are described as a range of overt problems that mainly include aggressive, 

impulsive, and hyperactive behaviours (Hinshaw, 2002) and relate to a child’s negative 

response to the external environment (Campbell, Shaw, & Gilliom, 2000; Eisenberg et al.,

2001). Externalizing problems have been previously documented as major risk factors for 

later juvenile delinquency, criminal behaviour and violence (Betz, 1995; Farrington, 1989; 

Moffitt, 1993). It is now widely accepted that externalizing problems in toddlerhood and early 

childhood can be utilized as robust predictors of psychological maladjustment in the later 

school-age years (Campbell, Shaw & Gilliom, 2000). However, the dichotomic classification 

between these two clusters of behavioural problems is not exclusive. For example, a child’s 

internalizing behaviour may have a negative impact on other individuals in the environment 

(e.g., siblings). In a similar vein, a child who exhibits externalizing behaviour may also have 

internalizing problems, with substantial comorbidity to have been reported previously for the 

two clusters of problems (Hinshaw, 2002). 

The early establishment of cognitive-affective balance between approach and withdraw-

related behaviours may have a critical contribution to an individual’s affective management in 

response to challenging situations. For instance, cognitive emotion regulation strategies may 

aid an individual in handling emotional arousal and effectively keeping control of 
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environmental stressors (Thompson, 1991). This highlights the importance to delineate the 

complex behavioural processes that may exacerbate early onset behavioural problems.

2.2.2.2. Measuring behavioural problems in early childhood

In order to understand the particular constructs of the development of early behavioural 

problems, previous and current research has been employing standardised parent-rated 

questionnaires to measure early affectivity and behavioural traits (for a review see 

McClelland & Cameron, 2012). In addition, EEG has been widely used as a complementary 

method to provide a direct index of endophenotypic variation of early manifestation of 

behavioural problems in children. In the following section, I examine the key issues 

surrounding the neurophysiological basis of early manifestation of behavioural problems, as 

well as the various methods of measuring the endophenotype of early affectivity mechanisms 

via these neural pathways. 

2.2.3. Developmental cognitive neuroscience of behavioural problems

Currently, it is widely accepted that the frontal lobes of the brain are critically involved in 

humans’ ability to regulate their emotions. Lateral hemispheric activation, or lateralization, is 

describing the differing activation of the right and left hemisphere, depending on the cognitive 

processes that an individual is undergoing. Research evidence has showed lateralization over 

the left prefrontal cortex (PFC) to mediate approach-related behaviours and positive 

affectivity, while right frontal hemispheric lateralization to mediate withdraw-related 

behaviours and negative affectivity (Davidson, 1993; Fox, 1991). In a similar vein, research 
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into the neural origins of asymmetric electrocortical activity suggests that measures of frontal 

asymmetry (difference between relative right and left frontal activation; alpha power) reflect 

activity mainly over the dorsolateral prefrontal cortex, or DLPFC2 (Pizzagalli, Sherwood, 

Henriques & Davidson, 2005).  

Emerging literature demonstrates that the DLPFC region is involved in a range of cognitive 

activities, such as working memory, decision-making and planning abilities (e.g., Bardey, 

Krueger & Grafman, 2009; Fan, McCandliss, Fossella, Flombaum & Posner, 2005; Murray & 

Ranganath, 2007). In addition, fMRI studies have shown that DLPFC is linked with child and 

adolescent behavioural problems, with aggressive behaviours being associated with a reduced 

activation over the DLPFC region, which suggests the existence of a brain-mediated 

mechanism of impaired regulation of anger-related emotional impulses (for a review see van 

Goozen et al., 2007). Research has shown that alpha activation acts as an inhibition 

contributor, therefore lower frontal asymmetry rates represent relatively less compared to 

right frontal cortical activation (Towerns & Allen, 2009). Studies investigating the role of 

frontal lobe asymmetries suggest that frontal EEG may reflect a reliable index of affectivity. 

More specifically, a synchronous activity of frontal EEG oscillations is seen as an indication 

of the underlying activation over subcortical neural structures (Shagass, 1972). This 

assumption is further supported by studies employing fMRI and Positron Emission 

Tomography (PET) that have shown a decrease in cortical blood flow when alpha power was 

increasing with increasing alpha power (Cook et al., 1998; Goldman et al., 2000).  

                                                            
2 DLPFC region is located in the middle frontal gyrus of the human brain (i.e., Brodmann's areas 9 and 46; 
Miller & Cummings, 2007). 
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Recent studies with children have confirmed the utilization of EEG as an index of affectivity. 

More specifically, in a study with children aged  6–13 who had mothers reporting a history of 

depression was found that children of depressed mothers with relatively less left frontal 

asymmetry (more right asymmetry) during the processing of emotional films but not in rest 

when compared to children with non-depressed mothers (Lopez-Duran,  Nusslock,  George  & 

Kovacs, 2012). These findings agree with a line of research suggesting that individual 

differences in frontal EEG asymmetry are more pronounced when individuals are processing 

tasks with emotional component, as opposed to during rest (for a recent review see Allen & 

Reznik, 2015).

Furthermore, although there are now more than three decades of research investigating the 

association between individual differences in frontal EEG asymmetry and behavioural 

affectivity (for recent reviews see Gander & Buchheim, 2015; Harmon-Jones, Gable & 

Peterson, 2010) there is discrepancy in the literature regarding whether frontal EEG represents 

a disorder-specific endophenotype or not. Moreover, studies with children have shown 

associations between internalizing problems and greater relative right asymmetry, as well as 

externalizing problems and greater left asymmetry (e.g., Gatzke-Kopp, Jetha, & Segalowitz, 

2014; Smith & Bell, 2010). Other studies have reported the opposite (Baving, Laucht, & 

Schmidt, 2002; Santesso, Reker, Schmidt, & Segalowitz, 2006) or did not find significant 

frontal EEG and behaviour associations (Fox, Schmidt, Calkins, Rubin, & Coplan, 1996; 

Theall-Honey & Schmidt, 2006). Interestingly, a recent meta-analysis found that psychosocial 

risk factors, but not early behavioural problems, were associated with the presence of greater 

right frontal asymmetry in studies with infants and children (Peltola et al., 2014). However, 

although this study did not report publication bias, the effects reported were relatively 
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underpowered. The documented inconsistencies in the literature may be due to 

methodological or sample-related issues, such as a small sample, heterogenity (Coan & Allen, 

2004) or comorbidity (e.g., Heller & Nitschke, 1998) of the studied clinical groups, gender 

effects affecting EEG asymmetry, or may be a result of the behavioural measures used across 

different studies (for a review see Thibodeau, Jorgensen & Kim, 2006). To this end, to date, 

there is not an available developmental model of frontal EEG asymmetry to account for early 

reactivity and psychopathology. Future studies in this area of inquiry will be needed to 

delineate the nature of frontal EEG asymmetry and it will need to be determined whether it 

can be utilised as a reliable index or biomarker for affectivity.

2.2.3.1. Characteristics of frontal EEG asymmetry

The most widely investigated and reliable correlate of frontal activity is found in the frontal 

asymmetry difference score, which reflects the difference between homologous measures of 

EEG alpha power measured over left and right frontal electrode sites (i.e., Allen & Kline, 

2004; Coan & Allen, 2004; Davidson, 2004). Frontal EEG asymmetry in adults is represented 

with changes in electrocortical activity over the prefrontal cortex, with a frequency of 8 to 13 

Hertz (Hz), and is also known as alpha power. Alpha power has been documented to be 

present during attentive and awake states, but is significantly suppressed when the individual 

performs a cognitive task (Schaul, 1998). In general, studies agree on the exact Hz band 

boundaries of alpha power, where in infants and children the boundaries of corresponding 

bands appear to be lower, compared to adults. There is now more than three decades of 

research in frontal EEG asymmetries, in a variety of populations, with the majority of the 

available evidence strongly supporting the existence of a reliable neural signature, which 
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reflects positive and negative affectivity (Davidson et al., 1990; for a review see Harmon-

Jones, Gable & Peterson, 2010). At large, more right frontal asymmetry has been associated 

with withdraw-related behaviours and negative affectivity, whereas more left asymmetry has 

been associated with approach-related behaviours and positive affectivity (Davidson, 2004).  

An important characteristic of alpha power is that it is inversely proportional to cortical 

activation (Coan & Allen, 2003; Davidson, Jackson & Kalin, 2000; Schaul, 1998). For 

example, a decrease in alpha power in the EEG recorded from the left side of the scalp, 

relative to power in the right side, represents increased activation in the left frontal region or 

‘left frontal asymmetry’. Conversely, a decrease in alpha power over right frontal region 

reflects an increased activation in the right frontal region, or ‘right frontal asymmetry’.  As 

will be reviewed later, currently, frontal EEG activation and asymmetry remains a useful 

measure to explain interindividual differences in emotional reactivity (e.g., Allen & Kline, 

2004; Goodman et al., 2013; Jackson et al., 2003), especially concerning the early 

identification of vulnerability patterns that may place an individual in higher risk for negative 

affectivity.

2.2.3.2. Theories of frontal EEG activation

During the last three decades, there have been three main contextual and theoretical concepts 

that have been developed in relation to frontal EEG asymmetry and behavioural problems (for 

a review see Harmon-Jones, Gable & Peterson, 2010). First, a proportion of research has 

emerged; focusing on the role of the affective valence of the environmental cues in 

influencing positive and negative affectivity patterns of frontal EEG activation (e.g., Kop et 
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al., 2011; Schmidt, Fox, Schulkin & Gold, 1999; Theall-Honey & Schmidt, 2006). More 

specifically, based in this line of research, individuals exhibiting a relatively greater right 

frontal asymmetry have increased affectivity in response to negative environmental cues, but 

also limited affective response to positive stimuli, whereas individuals with left asymmetry 

are biased towards positive stimuli (e.g., Tomarken, Davidson, Wheeler, & Doss, 1992). This 

evidence supports the notion that EEG asymmetry may be indicative of the moderation of 

individual differences in response to identical emotional stimuli (see also Coan & Allen, 

2004). This line of research agrees with neuroimaging studies that suggest an involvement of 

prefrontal systems with reactivity in response to emotional information (Ochsner et al., 2009), 

with recent evidence suggesting a specific sensitivity of these neural structures in emotional 

information, which requires social interpretation (Sakaki, Niki, & Mather, 2012). 

In addition, the concepts of motivational direction (i.e., approach versus withdrawal), as well 

as the behavioural activation (i.e., activation versus inhibition), have also emerged. More 

specifically, frontal EEG asymmetries have been originally interpreted within the approach-

withdrawal framework (e.g., Davidson, 1993; Tomarken & Keener, 1998). This line of 

research has originally emerged from studies with infants and children, initially introduced by 

the work of Fox and Davidson, who investigated the involvement of approach and withdrawal 

tendencies and behaviours in shaping infants' emotional development and regulation (Fox & 

Davidson, 1984). More specifically, in this line of research, left frontal EEG asymmetry is 

associated with approach-related behaviours and positive affectivity (Pizzagalli, Sherwood, 

Henriques, & Davidson, 2005), whereas right asymmetry with withdrawal tendencies and 

negative affectivity (Sutton & Davidson, 1997). Interestingly, research studies that accounted 

for the differentiation of valence and approach-withdrawal motivation, show that only 
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approach and withdraw tendencies are evident, as lateralization over the frontal and prefrontal 

brain areas (Berkman & Lieberman, 2010; Carver & Harmon-Jones, 2009).

Regarding the activation versus inhibition concept of frontal EEG asymmetries, behavioural 

activation system (BAS) has been proposed to be responsive to reward-related stimuli of the 

environment, by eliciting responses of positive emotionality (Gray & McNaughton, 1996) and 

leading to active approach-related behaviours. On the other hand, the behavioural inhibition 

system (BIS) has been proposed to respond to punishment-related stimuli as well as novel and 

fearful stimuli, producing negative responses (Gray & McNaughton, 1996; for a review see 

also Briesemeister, Tamm, Heine, & Jacobs, 2013). However, is important to highlight that the 

BIS/BAS system is theoretically parsimonious, for which, to date, there is very limited 

empirical evaluation of its significance. Therefore, further research is required to delineate the 

significance of these theoretical concepts in justifying the validity of frontal EEG activity as 

an indicator of emotion dysregulation.

2.2.3.3. Alpha EEG asymmetries and psychopathology 

In studies with clinical populations, a typical finding is that relatively greater right hemisphere 

activation is found in individuals diagnosed with depressive and anxiety disorders, compared 

to controls (Baving, Laucht & Schmidt, 2003; Blackhart, Minnix & Kline, 2006; Thibodeau, 

Jorgensen & Kim, 2006). Interestingly, numerous studies have highlighted greater right 

frontal activation as a putative marker of an individual’s affective dysregulation, which may 

infer vulnerability to developing depression (Coan & Allen, 2003; Dawson et al., 1995; 

Nusslok et al., 2011; Tomarken, Dichter, Garber & Simien, 2004). On the other hand, 
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although more left asymmetry has been associated with reduced symptoms of depression 

(Deslandes et al., 2008), research has suggested a link between left asymmetry and the 

presence of externalizing problems in healthy adults (Stewart, Levin- Silton, Sass, Heller & 

Miller, 2008). However, findings for externalizing symptoms have been less consistent 

(Baving et al., 2003; Santesso et al., 2006).

Aiming to provide a greater specification on how frontal EEG asymmetry moderates 

outcomes of psychopathology, two main theoretical hypotheses for the role of EEG 

asymmetry have been developed: (i) EEG asymmetry as a state marker; and (ii) EEG 

asymmetry as a trait marker. More specifically, based on the first account, also known as the 

capability model, individual differences in frontal EEG activation may be more proactively 

emerging due to interaction between the emotional demands of a specific situation with the 

individual’s capacity to respond emotionally in the same context (Coan, Allen, & McKnight, 

2006). These effects may be expressed as a function of right or left frontal EEG asymmetry 

and may be utilized as an index of an individual’s vulnerability for the development of 

affective psychopathology (Coan & Allen, 2004; Feng et al., 2012). For instance, a study has 

shown that frontal EEG asymmetry during a session with fear induction was a better predictor 

of greater right asymmetry (negativity) compared to baseline (Coan, Allen, & McKnight, 

2006). Therefore, the context where affectivity is measured may be an important link between 

affective responsivity and frontal EEG activation. 

On the other hand, a significant amount of research has utilized frontal EEG as a trait marker 

or frontal EEG, to describe the automatic behavioural frontal activation due to emotional 

arousal, which is independent to the nature of the state-dependent emotional arousal (e.g., for 
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a review see Coan & Allen, 2004). More specifically, based on this line of research, greater 

right frontal EEG activity has been associated with a disposition for withdraw-related 

behaviours, where relatively greater left asymmetry with disposition for approach-related 

behaviours (e.g., Coan & Allen, 2004; Harmon-Jones & Allen, 1997; Hugdahl & Davidson, 

2003; Schmidt & Fox, 1998). 

However, the disposition and capability model are not mutually exclusive from one another 

and it has been suggested that frontal EEG may reflect both a context-specific emotional 

demand, but also the regulatory abilities of the individual in response to the emotional 

demand (Coan et al., 2006). To avoid this conflict it has been previously suggested that the 

most reliable practice for the field would be to consider both the state and trait indices of 

frontal EEG asymmetry (Jackson et al., 2003; Theall-Honey & Schmidt, 2006). 

2.2.3.4. Development, Frontal EEG, and early behavioural problems

In typically developing children, the ability to regulate emotions partially relates to the 

inhibition abilities (e.g., Jahromi & Stifter, 2008; Murray & Kochanska, 2002) that are largely 

managed by the frontal lobe (Stuss & Knight, 2002). Interestingly, early accounts suggested 

associations between patterns of frontal EEG asymmetry and children’s levels of internalizing 

and externalizing behaviours that are present as early as toddlerhood (Calkins & Dedmon, 

2000; Feng et al., 2008; Fox 1991; 1994; Smith & Bell, 2010). More specifically, early 

observations based on the approach-withdrawal model, have suggested greater right frontal 

asymmetry to be associated with internalizing problems, and greater left frontal asymmetry to 

be associated with a lack of ability to control approach behaviours, which might lead to 
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externalizing behaviours (Davidson, 1993; Fox, 1991). Furthermore, children who have been 

reported to have high levels of frontal EEG stability across their development, starting from 

infancy, have been found to manifest both higher internalizing and externalizing problems in 

childhood (for a review see Smith & Bell, 2010). In research with adults has been found 

moderate long-term stability in frontal EEG asymmetry (Vuga et al., 2006; Hagemann et al.,

2002; Tomarken et al., 1992). However, recent meta-analysis studies on the predictive validity 

of stable EEG asymmetry across different time points of development was estimated to be 

low to moderate during childhood (Vuga et al., 2008), as well as in adults (Vuga et al., 2006). 

There are several factors that may influence the stability of frontal EEG asymmetry, including 

gender differences, which may impact upon neural structures, handedness, as well as the 

history of traumatic life events or parental depression (e.g., Negri-Cesi et al., 2004). 

Moreover, methodological factors may have an impact on the stability results, where studies 

with children between 0-3 years of age have studied small groups, and therefore potential 

gender effects might be understudied due to statistical power confounds (Jones et al., 1997; 

Fox et al., 1992). However, other studies suggest that the stability of frontal EEG asymmetry 

among youngsters may be influenced by neural developmental pathways during early critical 

periods (e.g., Kanemura et al., 2003). Therefore, this evidence may provide support for the 

hypothesis that EEG can be utilised as trait susceptibility marker early in life, which may be 

independent of a disorder-specific phenotype (see also Vuga et al., 2008). To this end, the use 

of frontal EEG in developmental science may account as a reliable index for unveiling 

associations with behaviour, but such associations may fluctuate during development, where 

critical neurophysiological changes can occur. Further longitudinal studies in the field are 

required to delineate this area.  
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In addition to the approach-withdrawal model of frontal EEG, other studies have adopted an 

alternative approach to determine the predictive validity of greater right or left asymmetry, 

mainly because of the inconsistencies in the literature on defining the constructs of 

internalizing/externalizing behaviours. Most notably, as a recent account suggests, aggressive 

behaviour in children may not always be associated with approach-related behaviours, 

especially when the expression of anger is impossible or socially inappropriate, where 

individuals may inhibit, instead to express their anger (Kelley, Hortensius & Harmon-Jones,

2013). To this end, right asymmetry has also been conceptualized as a predictor of negative 

affectivity that may include both inner-directed behaviours such as anxiety but also 

externalizing behaviours, such as anger. In line with this claim, Baving and colleagues (2003) 

found that children with higher reported externalizing behaviours exhibited significantly 

greater right frontal EEG activity at rest, compared to children with less externalizing 

problems. 

In line with this later negative versus positive affectivity concept of frontal EEG asymmetries, 

a study has underlined the putative moderating role of additional temperamental 

characteristics in modulating frontal asymmetries. It was shown that shy children are more 

likely to exhibit internalizing problems when displaying a right frontal brain asymmetry, 

whereas in highly sociable children, the same pattern of frontal activation externalizing 

problems were found (Santesso et al., 2006). In a similar vein, Fox et al. (1996) reported that 

children who have been reported to have higher rates of externalizing problems exhibited 

relatively greater right frontal asymmetry, compared to children who exhibited relatively 

greater left frontal asymmetry. This was interpreted in a cognitive capability basis, where it 

was proposed that the availability of a broad range of cognitive capabilities that are modulated 



    The relationship of frontal EEG asymmetries and behavioural problems in early childhood

51

by the frontal lobe (i.e., language skills, analytic-based strategies, decision making 

techniques) could potentially determine the frontal asymmetries. Taken together, it is believed 

that children high in approach behaviours may be more likely to develop problems with 

aggression because of a possible inability to control the negative emotions associated with 

their approach behaviours, and more specifically their aggressive-related behaviours (Smith & 

Bell, 2010).



    The relationship of frontal EEG asymmetries and behavioural problems in early childhood

52

2.3. The current study

The current study investigates the role of state versus trait characteristics in frontal EEG 

asymmetry and its associations with early manifestation of behavioural problems by placing 

participants into two state contexts:  social video watching and non-social video watching.  

More specifically, in addition to the utilization of frontal EEG as an index of affectivity in 

typically developing children, and children with affective traits, frontal EEG has also been 

utilized in studies with children with Autism Spectrum Disorders (ASD), which is a 

neurodevelopmental disorder characterised by profound social deficits. Extensive, robust 

evidence has shown that social stimuli are of critical value and importance for humans from 

birth through the lifespan (for a review see Grossmann & Johnson, 2007; Ronald, Happe, & 

Plomin, 2005).  Influenced by the social motivation theory of autism, it has been previously 

suggested that early impairments in social attention might lead to deficits in social learning, 

and that the resulting imbalance in attending to social (e.g. people speaking) versus non-social 

stimuli (e.g. dynamic toys) may further disrupt social cognitive development (e.g., Dawson et 

al., 1995; Schultz, 2005). Interestingly, several studies have reported atypicalities in visual 

processing of both social and non-social stimuli in infants in high-risk for ASD (Elsabbagh & 

Johnson, 2007; McCleery, Allman, Carver & Dobkins, 2007; McCleery, Akshoomoff, 

Dobkins & Carver, 2009; Dawson et al., 1995). However, is now widely accepted that 

activation of frontal lobe is not ASD-specific (Burnette et al., 2011) with increasing scientific 

consensus to report that EEG asymmetry is independent of clinical status and can serve as a 

trait marker of susceptibility for affectivity (Gotlib, 1998).  Further investigation of the effects 

of social versus non-social information processing in patterns of frontal EEG activation is 

required, in order to delineate the nature and manifestation of these early traits. 
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2.3.1. Aim 1: To examine the effect of processing social versus non-social information on 
frontal EEG activation in early childhood.

The first aim of the present study is to explore the association between affective patterns of 

frontal EEG activation in response to the social and non-social conditions. More specifically, 

it is expected that the previously documented associations between withdraw-related patterns 

of frontal EEG activation will be dependent on whether children watch social versus non-

social videos (state utilization of frontal EEG).  In the case that the condition will not have an 

effect on frontal EEG activation would mean that the social versus non-social state cannot 

have an effect to positive/approach versus negative/withdraw-related patterns of reactivity and 

therefore frontal EEG will be utilized as a trait marker. 

2.3.2. Aim 2: To examine frontal EEG measures of behavioural problems in early 
childhood 

The second aim of the study is to investigate associations between the presence of elevated 

rates of externalizing and internalizing problems and state-dependent frontal EEG activation. 

It is expected that the present study will provide further insight into the differential activation 

of frontal lobe in response to social versus non-social stimuli and early affective problems in 

young children. In the case of the null effect of viewing social versus non-social videos on the 

patterns of frontal EEG activation, it would mean that alternative trait-specific pathways may 

drive elevated rates of behavioural problems early in life, which may be independent of 

viewing videos with social versus non-social component. Moreover, if contrary to the field’s 

expectations there are not evident associations between rates of behavioural problems and 

state or trait patterns of frontal EEG, it may suggest that frontal EEG may not be a reliable 
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index of affectivity early in life.

2.3.4. Hypotheses

There are two main hypotheses that are tested as part of the second aim of the study. Based on 

the previous EEG evidence in adults, which suggests an association between greater right 

frontal hemisphere activation in individuals with depressive and anxiety disorders compared 

to controls (Baving et al., 2003; Blackhart et al., 2006; Thibodeau et al., 2006), it is 

hypothesised that negativity-related patterns of greater right asymmetry during social 

processing will relate to elevated anxiety/depressive rates in young children. More 

specifically, it is hypothesised that children with elevated rates of anxiety/depressive problems 

will exhibit negativity-related patterns of frontal EEG activation as a way of inhibiting the 

arousal that the social demands of the stimuli may provoke. 

Moreover, it is hypothesised that higher rates of aggression problems will be also related to 

higher right EEG asymmetry during the processing of social information. Taking into account 

previous evidence, which highlights an association between social competences, aggressive 

behaviour, and frontal asymmetries (Santesso et al., 2006), the present study seeks to 

investigate the social influence of these associations by employing a novel EEG paradigm. 

More specifically, it is hypothesised that children with elevated aggressive behaviour will 

present a negative pattern in response to social stimuli; probably due to an inability to control 

the negative emotions associated with their approach behaviours in particular anger (Smith & 

Bell, 2010).



    The relationship of frontal EEG asymmetries and behavioural problems in early childhood

55

2.4. Methods and Materials

2.4.1. Participants

A total of 52 children aged between 3 ½ and 5 years contributed to this study (Mean age in 

months = 54.78, SD = 8.18; males n = 23). Participants were recruited through a local 

community research participation advertisement/outreach program as part of an on-going 

procedure at the Infant and Child Laboratory, at the University of Birmingham. The sample 

size was calculated on the basis of the study’s hypotheses. Power analysis suggested that the 

sample size required to achieve a power of 1-β = 0.90 for the one-sided chi-square test at 

significance level α = 0.050 requires at least 36 participants. The parents or guardians/carers 

of all participants reported that the child had no history of a neurological or psychiatric 

disorder and that they had normal or corrected to normal vision. Exclusion criterion included 

if participants scored below a certain range (IQ < 75) on the British Ability Scales (BAS-II; 

Elliot, Smith & McCulloch, 1996), a standardised assessment of intelligence/developmental 

age. All participants had English as their first language. Outside of these limitations described 

above, participants were not excluded from participation based on their ethnicity or gender.  

In general, these characteristics were represented in the participant population in the same 

manner as they are represented in the greater Birmingham / West Midlands region, or the UK 

more generally. Families who expressed interest in the study were screened in an initial 

telephone contact, where the child's age, diagnostic history, and English language criteria 

were confirmed. If these criteria were met, a laboratory intake appointment was arranged. 

Families who met study acceptance criteria were provided with compensation of £10 towards 

their travel expenses.
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2.4.2. Data collection procedures

Written informed consent was gained from parents prior to the initial assessments. Ethical 

consent was gained from the University of Birmingham Ethical Committee. Children were 

told that they were going to watch a range of interesting videos on a computer screen and that 

if they remain still they will get a gift at the end. The vast majority of the assessments took 

place in one laboratory visit.

2.4.2.1. Behavioural Measures

As part of the study, measures of rates of autism symptomatology and cognitive development 

were undertaken. For the assessment of rates of autism symptomatology, the Social 

Communication Questionnaire˗Lifetime Edition was completed by parents (SCQ; Rutter,

Bailey & Lord, 2003). SCQ is a valid and well standardised screening assessment, completed 

by a parent or other primary caregiver, and is based on the Autism Screening Questionnaire 

(Berument, Rutter, Lord, Pickles & Bailey, 1999).  In the SCQ’s Lifetime Form there are 40 

yes/ no questions that aim to measure aspects of the child's developmental history. A total 

score is provided after the administration that is interpreted based on the measure’s cut off 

criteria1. The cut-off score indicates that a child may have an Autism Spectrum Disorder 

(ASD) and suggests that further clinical assessments may need to be conducted. SCQ has 

reported to have good psychometric properties with the reliability coefficient for the total 

scale to be reported a = .90, suggesting excellent internal consistency (Berument et al., 1999).  

                                                            
1  The SCQ provides a total score between 0-39; the first question that relates to current language abilities is not 
calculated for the extraction of the total score. The cut-off score for ASD is ≥15, thus scores of 15 and above 
were considered as clinically significant through the thesis’s studies.
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In the original standardisation, all items to total score correlations were reported to be in the 

range of r =.26 ˗ .73, where 23 items out of 39 to be over r = .50 (Berument et al., 1999). 

For the assessment of children’s cognitive ability the BAS-II, Early Years was employed 

(Elliot et al., 1996). BAS-II is an age-standardized cognitive ability test, normed in UK 

children between 2:6 and 7:11 years of age. BAS-II has three main subscales that are used to 

assess the most significant aspects of development, following particular scoring procedures: 

verbal reasoning, non-verbal reasoning and spatial abilities3. The assessment of the BAS-II 

scales is estimated to take 40 minutes, on average, to complete. This was in line with the 

study requirements to minimise burden of the participants and with the overall time the 

experimenter had available to allocate for cognitive assessment during the 2-hour laboratory 

visit.

2.4.2.2. Measure of behavioural problems

For the assessment of children’s rates of behavioural problems, the Child Behavioural 

Checklist was filled by parents (CBCL; Achenbach & Rescorla, 2001). CBCL includes two 

different versions: the early years version (for children between 1½ - 5 years of age) and the 

school age version (children and adolescents aged 6–18 years). The CBCL 1½ -5 is an 

empirically based checklist that is filled in by parents, and includes 99 items that describe 

areas of behavioural, emotional, and social problems that characterize preschool children. 

Items are on a 3-point scale ranging from not true to very true/often true, including open-

ended items for the description of additional problems. The scale has two main sub-scales, 

                                                            
3  Mean age standardised t-score values for BAS subscales have a mean of 100 and a standard deviation of 
15.The scores of each ability cluster are combined to give an overall General Conceptual Ability (GCA) which is 
equivalent to IQ score.
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which are structurally independent from each other (Achenbach & Rescorla, 2001), that map 

externalizing and internalizing problems (see Appendix 2.1 for items included in each 

subscale). Higher total scores in each sub-scale or in each behavioural problems category 

suggest the existence of more problematic behaviours. Using the scales raw scores age-

adjusted t-scores (M = 50, SD = 10) can be extracted providing a similar measure for all 

scales. However, as the authors highlight, the use of raw scores as opposed to t-scores is 

encouraged for statistical analyses due to effects of data truncation. CBCL has reported to 

have good psychometric properties and has a robust procedure for classifying behavioural 

problems in each sub domain4. Parents were provided with introductory information as well 

as detailed instructions on how to complete the scale forms, whilst their child completed other 

assessments. 

2.4.2.3. Electrophysiological Recordings

After taking consent from parents, parent and child were escorted in a sound-attenuated, 

dimly lit room and the stimuli were presented on a 17-inch computer monitor. The child was 

asked to sit in a comfortable chair facing the monitor, located approximately 70 cm away.  

Subjects were instructed to refrain from movement and were monitored for eye and head 

movements via a video camera. When possible, the parent was seated in an adjoining room, 

out of the child’s line of vision. Also children were monitored for alertness and attention to 

the videos during EEG collection to provide a record of potential movement artefact.

                                                            
4   CBCL 1½-5 has reported to have good internal consistency ranging from a = 0.89-0.95, test- retest reliabilities 
range from r = 0.87 to 0.95, and inter-rater reliabilities of k = 0.48-0.67 (Achenbach & Rescorla, 2001). There is 
one set of norms provided for the CBCL 1 ½ -5. Symptomatology that is the "Clinically significant" is defined 
by t-scores ≥ 64, where the "Borderline" classification ranges from 60 to 63 (Achenbach & Rescorla, 2001).
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EEG data were collected while children watched videos of social stimuli (adults speaking 

nursery rhymes) and non-social stimuli (dynamic computer-generated objects moving with 

contingent sounds). Similar stimuli have previously been used in infant and child EEG studies 

on temperament and emotion regulation (Hane & Fox, 2006; Marshall, Bar-Haim & Fox

2002). The videos were in Windows Media Video format and were recorded using a digital 

camera with a resolution of 720 × 576 colour pixels and with a frame rate of 25 frames /s, and 

therefore subtended a visual angle of 22.6° horizontal by 13.5° vertical. The following 

parameters were used for all of the video recordings: data rate of 768 kbps, total bit rate of 89 

kbps, frame rate of 25 frames/sec, audio bit rate of 128 kbps, stereo audio samples rate of 44 

kHz. Videos were presented with an average volume of 68 dB recorded at the child’s head, 

using 2.1 Hz audio speakers.

Figure 2.1. Example stimuli frames extracted from the video clips for the social (right frame) 
and the non-social (left frame) experimental conditions.
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All video clips lasted a total duration of 30 seconds. Each condition lasted 6 minutes in total, 

with 20 different videos presented in each condition (see Figure 2.1 for examples). Social and 

Non-social conditions were counterbalanced between participants, and each video was played 

once during the experiment, giving a total of 12 minutes data collection (6 minutes social 

videos, 6 minutes non-social videos).
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2.5. Analysis

2.5.1. Analyses of Behavioural data

For the measures of cognitive abilities (BAS-II), mean standardized IQ-scores were assessed.  

All children in this study had CBCL t-scores of less than 60 (below subclinical threshold). 

Raw scores from the two CBCL clusters of behavioural problems (i.e. internalizing and 

externalizing problems) were used for statistical analysis following the authors’ guidelines 

(Achenbach & Rescorla, 2001, p. 89). Autism symptomatology (SCQ) mean sum scores were 

calculated on the basis of raw scores. All children had an SCQ mean sum score of 12 or less.

2.5.2. EEG Recordings and Analyses

EEG was recorded continuously using a 128-channel Hydrocel Geodesic Sensor Net 

(HCGSN; Electrical Geodesics, Inc., Eugene, Oregon), referenced to a single vertex electrode, 

Cz (sample rate = 500 Hz), using Net Station 4.3 data acquisition software. The stimuli were 

presented using E-Prime 2.0 software (Psychology Software Tools Inc., Sharpsburg, PA, 

USA).

EEG recordings were processed offline using Net station 4.5.1 software. The data were 

filtered offline with a high pass filter at a cut off frequency of = 0.1 Hz, and with a 50Hz 

Notch filter, prior to processing. Each data file was processed with a clinical segmentation 

tool that segregated the EEG according to condition. Consistent with previous frontal EEG 

asymmetry research, after the overall inspection of the recording, where bad electrodes were 



    The relationship of frontal EEG asymmetries and behavioural problems in early childhood

62

identified, portions of data containing artefacts, including eye blinks, and participant 

movement were manually identified and removed for each condition separately (e.g., Forbes 

et al., 2008; Smit, Posthuma, Boomsma & de Geus, 2007). During this procedure, up to 12 

bad electrodes were identified per participant, and the data from bad channels were replaced 

using a spherical spline interpolation algorithm (Srinivasan et al., 1996). Similarly to 

previously published research using the same EEG system that was utilized in the current 

experiment, the algorithms used are effective at replacing data in up to 10% of EEG electrode 

channels (e.g., Oberman, Hubbard, McCleery et al., 2005; Oberman, McCleery et al., 2007), 

which would be 12 electrodes out of the 128 utilized in the current experiment. Therefore, 

segments with more than 12 bad channels were eliminated from further analysis. In the case 

of a considerable proportion of bad channels was located in the areas of interest (more than 3), 

the segment was also eliminated from further analysis. However, no participant had more than 

three bad electrodes in the areas of interest, and therefore no participant partial or entire EEG 

data was excluded based on this criterion, or due to poor EEG data. The remaining artefact-

free only data were combined for each condition and participant and average referenced. To 

assess EEG Power Spectral Density asymmetry, the EEG data were exported in RAW format 

for use in a purpose-built MATLAB-based program for data analysis. The MATLAB Version 

7.1.0 program split the EEG data into one second epochs. Fast Fourier Transforms (FFTs) 

were then calculated for each epoch using a 500 ms window with 60% overlap. Power 

Spectral Density (PSD) in the alpha band was logged and averaged across epochs for each 

electrode group, in preparation for statistical analyses. Based on inspection of the power 

distribution at the mid-frontal sites and previous developmental findings (Marshall, Bar-

Haim, & Fox, 2002), the alpha band was defined as 7-11 Hz for the 3 ½- to 5-year-old 

participants of the study. The research assistants who analysed the EEG data were 
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systematically trained and blind to any participant details.

Clusters of left/right hemisphere electrodes (six on each hemisphere) corresponded to 

positions F3 (electrode number 24) and F4 (electrode number 124) on the EGI index of 

coordinates, as well as additional clusters of left/right hemisphere electrodes (6 left and 6 

right) over the positions F1 (electrode number 22) and F2 (electrode number 9; equivalent to 

the international 10-10 EEG coordinate system; see Luu, & Ferree. 2000; see Figure 2.2). In 

accordance with long-standing practice, frontal asymmetry was computed as the power in the 

right hemisphere minus the power in the left hemisphere, which indexes the relative activation 

of left (over right) mid-frontal sites (Davidson et al. 2000; Coan & Allen, 2003). Thus, a 

negative asymmetry index score represents right EEG frontal alpha asymmetry (increased 

activity in the right frontal region), while a positive index score represents the left EEG 

frontal alpha asymmetry (increased activity in the left frontal region).

2.5.3. Statistical Analyses

Descriptive statistics were conducted in order to describe the sample’s demographic 

information, such as gender, age and distribution of cognitive abilities. Raw data from the 

behavioural and cognitive scales were examined for normality using skewness tests and 

Kolmogorov–Smirnov test. CBCL subscales did not meet criteria for normal distributions 

(Kolmogorov-Smirnov test p < 0.05). Therefore, to further examine possible correlations 

between age, gender, IQ and scores on the behavioural measures, Spearman’s Rho non-

parametric correlation coefficients tests were also performed. Further correlation analyses 

were conducted to investigate possible correlations between raw EEG data and asymmetry 
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ratios for each condition and hemisphere in the two regions of interest (separately but also 

averaged across the regions), with participants’ age and gender (Spearman’s Rho correlations
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Figure 2.2. Electrode layout of left/right hemisphere electrodes over areas F3-F4 (right) and F1-F2 (left). Data collected using 
Geodesic Sensor Net Hydrocell 128-channel the paediatric medium, large and adult small sizes, based on standard sizing procedures 
for head circumference (Electrical Geodesics: Eugene, OR).
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Kolmogorov-Smirnov test p < 0.05), as well as with participants overall IQ score (Pearson 

correlation; Kolmogorov-Smirnov test p > 0.05). In order to examine differences in frontal 

EEG asymmetry in responses to social and non-social videos, a three way analyses of 

variance (ANOVAs) with Condition (Social, Non-social), Hemisphere (Left, Right) and 

region (F3-F4; F1-F2) as within factors and gender as between factor were performed.  For 

the ANOVAs, the PSD values were studied.

Moreover, in line with the study’s first hypothesis, correlation analyses between PSD 

values/asymmetry ratios and rates of anxiety/depressive problems were also conducted. 

Furthermore, backward elimination regression analysis was utilized to assess the specificity of 

the anxiety/depressive rates to predict alpha raw PSD power and EEG asymmetry scores 

above and beyond participants’ age, gender and IQ. The above analyses were repeated 

separately to test the study’s second hypothesis regarding the PSD/asymmetry values and 

aggression problems. Compared to other regression methods, such as multiple regression, 

where a clear prediction of the effect of each variable is available, in the current study there 

was not a clear prediction from the literature on the potential effect and its size of each of the 

examined demographic characteristics. Similar analytical practice has been employed in 

previous studies with children with roughly the same sample size (e.g., Butler, Rizzi & 

Handwerger, 1996) Therefore, taken the exploratory nature of this later analysis the backward 

elimination regression analyses was deemed as the most suitable, to measure the predictive 

validity of the rates of behavioural problems above and beyond other demographic 

characteristics in predicting frontal EEG asymmetry patterns, as the least significant variables 

are eliminated from the model in an iterative process. The statistical software package SPSS 

20.0 was used for all the analyses.
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2.6. Results 

2.6.1. Demographic Characteristics

Participants included 52 children (males n = 29) between 3 ½ and 5 years of age. Tables 2.1 

and 2.2 demonstrate participants’ main demographic characteristics, such as gender, age and 

age equivalent cognitive abilities. Pearson’s correlation analyses showed no significant 

correlations between age or gender and participants’ cognitive development rates or early 

behavioural problems. Further Spearman’s Rho correlation showed a significant correlation 

between attention problems and higher autism symptoms (r = .370, p = .007), as well as

Table 2.1. Participants’ Demographic characteristics.

N 52

Gender % Male (n)
% Female (n)

55.8 (29)
   44.2 (23)

Handedness % Right
% Left

78.8
21.2

SCQ
Total Score

Mean (SD)
Range

4.53 (3.25)
      0-12

BAS-II4

Total Score
% Below Av.
% Average

% Above Av.
% High

3.8
65.4
25.0
5.8

a strong correlation between internalizing and externalizing problems (r = .350, p = 0.11). Co-

occurrence between internalizing and externalizing clusters has originally reported on the 

                                                            
4 Based on the BAS-II standardisation the following GCA-based classifications of ability (IQ equivalent) are 
applied though the Thesis: Low: 70-79; Below Average: 80-89; Average: 90-109; Above Average: 110-119; 
High: 120-129; Very High: 130 and above.  
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CBCL scales standardisation (Achenbach & Recorla, 2001) as well as in a range of other 

developmental studies (e.g., Card & Little, 2006; Marsee & Frick, 2007; Dietz, Jennings, 

Kelley & Marshal, 2009). According to Achenbach and Rescorla (2001), even though these 

behaviours may co-occur, some children primarily exhibit internalizing while others primarily 

exhibit externalizing problems. Finally, correlation analyses revealed significant negative 

correlations between age and right frontal EEG activation during social (r = -.429, p = .001) 

and non-social processing (r = -.437, p = .001), but also on left frontal activation during social 

processing (r = -.425, p = .002). 

Table 2.2. Participants’ IQ and developmental ages.

Chronological Age*

         
         Overall Ability**

           Verbal Ability

           Non-verbal Ability

Developmental Age5

         Developmental Verbal
         Ability

           Developmental Non
         Verbal Ability

Mean (SD)
Range

Mean (SD)
Range

                   Mean (SD)
Range

Mean (SD)
Range

Mean (SD)
Range 

Mean (SD)
Range

Mean (SD)
Range

56.7 (8.1)
44-71

105.6 (8.7)
84-123

101.2 (11.4)
69-121

108.8 (10.8)
90-123

      58.1(9.8)
42.5-82.5

55.7 (11.3)
36.5-87.5

61.1 (13.0)
35-91

* Age data presented in months
**Overall ability is calculated from the overall BAS-II total score and Verbal and Non-verbal ability form the 
BAS-II clusters of abilities. Values represent GCA.

                                                            
5 Through the thesis developmental ages are assessed through the BAS-II standardised tables of age-equivalent 
scores. Moreover the developmental verbal and non-verbal ability is assessed using each sub-scale’s specified 
standardised tables of age-equivalent scores.
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2.6.2. Behavioural problems and EEG alpha activation/asymmetries 

A three-way analyses of variance (ANOVA) with Condition (Social, Non-social), Hemisphere 

(Left, Right) and Region (F3-F4; F1-F2) as within factors, and Gender as between factor

revealed a significant main effect of Region [(F(1,50) = 26.54 , ηp
2 = .347,  p < .001)] (see 

Table 2.3 and Table 2.4), as well as a two-way Hemisphere  by  Condition interaction effect 

[F (1, 50) = 4.15 , ηp
2 = .077,   p =.047)], where relatively higher activation was evident for 

the left hemisphere during the social processing, which was associated with positivity during 

social processing (see Table 2.3 and 2.4; see also Appendix 2.2 for histograms of individual 

PSD data). 

In addition, a significant two-way Gender by Region interaction was evident [F(1, 50) = 4.39,  

ηp
2 = .081, p = .041)],  where females exhibited more activation over the F3-F4 areas, 

represented with lower alpha power (M = 1.20, SD = 0.03) compared to males (M = 1.38, SD 

= 0.02). To further evaluate the two-way Gender by Region effect the activation across the 

two hemispheres and conditions was averaged for each region. However, a t-test for the F3-F4 

areas (PSD) data normally distributed; Kolmogorov-Smirnov test p > 0.05) did not confirm a 

significant difference between males and females [t(50) = -9.13,  p = .366)]. Similarly, when 

conducting a Mann-Whitney U test for the data from the F1-F2 areas (PSD data not normally 

distributed; Kolmogorov-Smirnov test p < 0.05), no effect of gender in region activation was 

evident (U = .319.00, p = .789)]. It is possible that gender effects may be involved in 

neurophysiological signatures of frontal EEG indexes of affectivity early in life. This 

hypothesis requires further investigation.
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Table 2.3. Alpha power as recorded in each region, per hemisphere and condition. Lower 
alpha power over the right hemisphere is observed for the F1-F2 areas during the non-social 
condition.

Social Non-social
Right Left Right Left

Alpha Power* Mean (SD) Mean (SD)

F3-F4 1.35 (0.80) 1.30 (0.70) 1.29 (0.72) 1.26 (0.65)

F1-F2 1.02 (0.86) 1.00 (0.78) 0.91 (0.70) 0.94 (0.70)

Total 1.10 (0.64) 1.10 (0.67) 1.15 (0.71) 1.18 (0.79)

* Alpha power = ln [7–11 Hz] power spectral density (μV2/Hz)

Regarding the first hypothesis of the study aiming to unveil whether frontal EEG activation 

will be dependent upon the viewing of social versus non-social videos (state utilization of 

EEG), the null effect of the Condition suggests that frontal EEG is not specific to the viewing 

of this type of videos and therefore may be utilised as a trait measure of affectivity. 

Furthermore, to determine if parent reports of children’s rates of behavioural problems were 

related to EEG alpha activation, and taking into account the null main effect of the Condition 

on the original ANOVA analysis, PSD values were averaged across the two conditions for left 

and right hemisphere, and across the two regions of interest (normally distributed; 

Kolmogorov-Smirnov p > 0.05). The resulted average left and right PSD activation was also 

computed for the F3-F4 and F1-F2 areas separately, and both met normal distribution criteria 

(Kolmogorov-Smirnov p > 0.05), therefore Spearman’s Rho correlation analyses were 

conducted, in the first instance, to investigate possible correlations between frontal EEG 

activation and CBCL scores. To investigate the study’s two hypotheses, this was done 

separately for the anxiety/depressive and aggressive behaviour. 
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Table 2.4. Results of the repeated measures ANOVA with condition and hemisphere and 
region as within factors, and gender as between factor. Significant differences (p < 0.05) are 
highlighted in bold.

Effect F df P value

Hemisphere .426 1.000 .517

Condition 2.19 1.000 .144

Region 26.5 1.000 .001

Region * Gender

Hemisphere * Condition 

4.39

4.15

1.000

1.000

.041

.047

As shown in Table 2.5, a negative correlation between rates of anxiety/depressive problems 

and higher right (r = -.344, p = .012) but also left (r = -.294, p = .034) PSD activation across 

the two regions was evident. However, correlation analyses for each region separately 

revealed that higher rates of anxiety/depressive behaviour correlated with bilateral activation 

on the F1-F2 areas, whereas rates of anxiety/depressive problems was evident only for the 

right F3-F4 region (see Table 2.5). Complementary analyses using the rates from the broader 

internalizing CBCL subscale as predictor of EEG activation did not provide any significant 

correlation with any of the above frontal EEG variables. Additional Spearman’s Rho 

correlation analyses did not show significant correlations between higher rates of 

anxiety/depressive problems and asymmetry ratios (see Table 2.6).

To further investigate the specificity of children’s early anxiety/depressive behaviour in 

predicting frontal activation and asymmetry, backward elimination regression analyses were 

conducted in which parent report of behavioural problems, age, gender and IQ were entered 

as predictors of EEG asymmetry and activation. This analysis was conducted separately for 
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the average raw PSD activation and average asymmetry ratios for both regions, but also for 

each region separately. As illustrated in Table 2.7, higher rates of anxiety/depressive problems 

uniquely predicted greater right frontal PSD activation over the F1-F2 areas at the last model 

of the regression analysis [F(1,51) = 5.50, adjusted R2 = .081,  p = .023] and the model was 

accounting for approximately 8% of the variance in the sample. In addition, higher rates of 

anxiety/depressive problems significantly predicted greater right frontal activation over the 

F3-F4 areas on the last model of backward elimination regression [F(2,51) = 8.06, adjusted R2

= .217, p = .044]. However, within the same model age was also significantly predictive of 

right frontal activation (b = -.404, p = .002), which suggests a strong association between 

maturation and trajectories of frontal activation. In addition, although further regression 

analyses showed that higher rates of anxiety/depressive problems were predictive of 

asymmetry when averaged across regions [F(1,51) = 4.68 , adjusted R2 = .067, p = .036], 

separate analysis for each region showed that only activation over the F3-F4 areas was 

predicted from elevations on anxiety/depressive rates [F(1,51) = 5.42 , adjusted R2 = .066, p = 

.037] above and beyond age, gender and IQ. Overall, this model was significant accounting 

for 7% of the variance in the population (see Table 2.7).

Regarding the second hypothesis of the study, correlation analyses did not reveal any 

significant effect with the PSD values. However, when complementary Spearman’s Rho 

correlation analyses were conducted with the asymmetry ratios collapsed across the two 

regions (Table 2.6; see also Appendix 2.3 for scatter plots), it was shown that higher rates of 

aggressive behaviour was correlated with relatively higher right asymmetry (r = -.293, p = 

0.35). Moreover, separate analysis for each region’s asymmetry ratios suggested that only the 

F3-F4 areas significantly correlated with the presence of higher aggressive behaviour (r = -

.322, p =.020). Interestingly, when the rates coming from the externalizing subscale were 
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Table 2.5. Results from Pearson’s correlation coefficients between anxiety/depressive rates 
and PSD activation. Significant differences (p < 0.05) are highlighted in bold.

Effect Pearson’s Correlations P value

Attention problems × SCQ .370 .007

Internalizing × Externalizing

Average Right PSD ×
A/D*

Average Left PSD ×
A/D

.350

-.344**

-.294

.011

.012

.034

Right PSD (F3-F4) ×
A/D

Left PSD (F3-F4) ×
A/D 

-.291

-.254

.037

.070

Right PSD (F1-F2) ×
A/D 

Left PSD (F1-F2) ×
A/D 

-.315

-.330

.023

.017

*Anxiety-Depressive Problems

**Negative correlations suggest the existence of significant correlations between elevated behavioural 
problems and lower alpha in the regions of interest (higher frontal activation) and vise versa.

entered as predictor, the same pattern of correlation was evident for the F3-F4 asymmetry 

ratios (r = -.297, p = .033) but not for the F1-F2 areas asymmetry ratios (r = -.122, p = .388). 

No further correlations between asymmetry and other measures were evident. 
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Table 2.6. Results from Spearman’s Rho correlation coefficients between anxiety/depression 
and aggression rates and asymmetry ratios. Significant differences (p < 0.05) are highlighted 
in bold. 

Effect Spearman’s Rho P value
Average Asymmetry ×

A/D*

Average Asymmetry ×
Aggressive problems

Asymmetry (F3-F4) ×
A/D

Asymmetry (F1-F2) ×
A/D

-.230**

-.293

-.125

-.259

.101

.035

.376

.063

Asymmetry (F3-F4) ×
Aggressive  problems

Asymmetry (F1-F2) ×
Aggressive problems

-.322

-.108

.020

.447

*Anxiety-Depressive Problems

**Negative correlations suggest the existence of significant correlations between elevated behavioural 
problems and more negative values of asymmetry in the region of interest (right frontal activation) and vise 
versa.

Furthermore, backward elimination regression revealed that higher aggression rates predicted 

higher right asymmetry over the F3-F4 areas [F(1,51) = 8.1,  adjusted R2 = .122, p = .006] 

above and beyond age, gender and IQ (Table 2.7 and Figure 2.3). Overall, this model was 

significant accounting for 12% of the variance in anxiety/depression rates. 
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Table 2.7. Summary of results of backward elimination regression analysis with average 
asymmetry ratios as the dependent variable and Pout < 0.10 as the removal criterion. 
Significant effects of the predictors (p < 0.05) are highlighted in bold.

Anxiety/Depression Aggressive Problems
Betaa P

value
Adjusted 

R2 6
Beta P 

value
Adjusted 

R2

Average 
Asymmetry

-.292   .036 .067 -.206 .143 .000

Asymmetry 
(F3-F4)

-.290 .037 .066 -.374 .006 .122

Asymmetry 
(F1-F2)

-.215 .132 .027 -.030 .842 -.043

Average 
Right PSD 

(F3-F4)

-.117 .044 .217b -115 .388 .158

Average 
Left PSD 
(F3-F4)

-.189 .132 .225 .000   .999 .169

Average 
Right PSD

(F1-F2)

-.315 .023     .081 -.065 .656     -.032

Average 
Left PSD
(F1-F2)

-.249   .075     .043 -.044 .766 -.025

a Beta standardised coefficients 

b Values presented at final regression model where anxiety depressive rates accounted as a predictor of PSD. 
However, age revealed to be a better predictor (b = -.404, p = .002) of PSD here.

                                                            
6   The adjusted R2 informs about the percentage of variation explained by only those independent variables that 
truly affect the dependent variable and penalizes for adding independent variable(s) that do not belong in the 
model.
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Figure 2.3. Scatter plot illustrating the association between alpha F3-F4 asymmetry and (a) 
aggression as well as (b) anxiety-depression problems. Negative values on Alpha-band 
asymmetry represent greater right frontal asymmetry.
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2.7. Discussion 

The primary aim of the present study was to examine the associations between frontal EEG 

asymmetry and the manifestation of early rates of behavioural problems in a group of 

typically developing young children. The difference of relatively greater frontal brain 

activation in response to social and non-social videos across two frontal regions in early 

childhood relative to the presence of early behavioural problems was explored. The two main 

hypotheses of the study were partially supported. More specifically, associations between 

negativity-related patterns of frontal EEG activation and rates of early behavioural problems 

were evident, which was not associated with the viewing of social versus non-social videos. 

To this end, the study provided evidence for a trait utilization of frontal EEG.

In line with the first hypothesis of the study, an association between trait frontal activation and 

rates of anxiety/depressive problems was evident. Regarding the asymmetry ratios, the study 

showed that only greater right asymmetry over the F1-F2 areas was uniquely predicted by 

elevated rates of anxiety/depression problems. Moreover, although A/D rates found to be 

significant predictors of frontal activation over the F3-F4 areas, age has been shown to be a 

better predictor of activation in the specific region. Therefore, the study may suggest that 

maturational processes may also modulate the activation over the frontal region and be 

involved in each individual’s rates of behavioural problems. This area of inquiry requires 

further investigation.

Moreover, consistent with previous evidence with older children and the second hypothesis of 

the study, the findings support the existence of an association between relatively greater right 
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frontal activation at rest and the presence of increased rates of aggressive behaviour in early 

childhood (Baving et al., 2003; Santesso et al., 2006). More specifically, the study showed 

that elevated rates of aggression problems were uniquely predictive of greater right 

asymmetry over the F3-F4 areas, above and beyond age, gender and IQ. This pattern of 

results may suggest that children high in approach behaviours may be more likely to develop 

problems with impulsivity and aggression because of a possible inability to control the 

negative emotions associated with their approach behaviours, specifically anger (Smith & 

Bell, 2010). 

The present study, suggest that early in life some neurophysiological patterns may exist that 

may link to affective traits and contribute towards understanding early affectivity. More 

specifically, the study suggests the existence of some degree of brain-behaviour associations 

early in life, which is independent of viewing social versus non-social videos, suggesting a 

trait utilization of EEG. Given that the present investigation studied a healthy young group of 

children, previous evidence that suggested a role of viewing social versus non-social videos in 

brain activation of atypical populations, such as children with autism, may relate to a 

disorder-specific response to social and non-social information. This hypothesis requires 

further investigation in studies that recruit both typically and atypically developing 

populations.

Limitations

The associations between rates of behavioural problems and frontal EEG activation that 

reported in the present study explain a small variance of the sample. However, the 

documented small representation of the findings in the present study is equivalent to other 
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studies examining individual differences in brain-behaviour mechanisms in typically 

developing children (e.g., Harmon-Jones & Allen, 1997). Although the pattern of findings 

suggest the existence of an association between greater right asymmetry and negative 

affectivity, expressed as elevated rates of internalizing/externalizing behaviours is consistent 

with part of the literature (Baving et al., 2003; Santesso et al., 2006), the particular role of 

frontal EEG asymmetries in predicting early affective problems requires further investigation.  

Moreover, as discussed in the introduction section, there is inconsistency in the field on the 

frontal EEG-behavioural affectivity associations, where contrary to the present study’s 

findings, there is a considerable line of research to suggest that a link between left asymmetry 

and the presence of externalizing problems in healthy adults (Stewart, Levin- Silton, Sass, 

Heller & Miller, 2008), although these findings are less consistent compared to the evidence 

on the internalizing behaviours (Baving et al., 2003; Santesso et al., 2006). To this end, based 

on the study’s results, although the utilisation of frontal EEG have been widely used as a 

valuable method to index affectivity in various population, there is not yet clear the extent of 

the validity of this technique as a biomarker of behavioural affectivity. As Saby and Marshall 

(2012) highlight, there is currently very limited knowledge on the ontogenic nature of frontal 

EEG asymmetry and the individual differences observed. Moreover, to date, there is no 

available developmental account for frontal asymmetry to explain the individual differences 

observed and their importance in early affectivity and later manifestation of behavioural 

problems. This area of inquiry requires further investigation.

Moreover, a number of methodological issues may also account for the findings of the present 

study. In contrast to previous studies that utilized EEG as an index of temperament and used a 
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similar, but more ecological valid social stimuli (Hane & Fox, 2006; Marshall et al., 2002), 

the present study did not provide significant effect of the type of videos viewed on the 

modulation of frontal EEG activation. This pattern of findings is in favour of the literature 

suggesting a reliable trait, instead of state, utilization of frontal EEG activation. However, it is 

worth highlighting the evidence supporting that an EEG procedure itself can be experienced 

as an affective situation for some individuals that may influence brain asymmetries 

accordingly (Blackhart et al., 2006). To this end, children’s patterns of brain activation that 

relate with negative and positive affectivity may be influenced by minimum environmental 

stimulation, compared to adults. 

Furthermore, it is known that resting EEG effects and associations are strongest with eyes 

closed and a proportion of EEG studies employ this kind of baseline resting state condition, 

which helps drawing better comparisons and conclusion across conditions. However, the fact 

that children as young as 4 years old experience difficulties sitting with their eyes closed 

during the EEG assessment, the employment of a baseline condition would potentially result 

in increased risk for data loss, as well as in a final sample consisting by a group of children 

with specific abilities.  Moreover, alternative reasons to explain the null effect of the social 

non-social videos in frontal brain activation may relate to the information included in the 

videos that may elicit more eye movement artefacts or activate more memories that may 

interfere with the passive viewing of videos. Moreover, it is possible the information included 

on the videos to elicit specific memories in children that may impact upon frontal EEG 

activation. These cognitive processes have not been controlled here for their role in mediating 

frontal EEG activation; therefore the role of other cognitive processes in frontal EEG 

activation during the processing of social versus non-social information requires further 

research. 
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Interestingly, in a recent meta-analysis Peltola et al. (2014) was not confirmed the previously 

documented association between greater left asymmetry and externalizing problems and right 

with externalizing. Interestingly, the study suggested that outcome measure employed in the 

majority of these studies, including the Child Behavior Checklist (CBCL) may also contribute 

on the absence of strong effects using subdomains of internalizing symptoms, i.e. emotional 

reactivity, anxiety/depression, somatic complaints, and withdrawal that are of different nature 

of approach and withdraw motivation. Therefore, future studies need to be explicit and 

specific on which aspects of internalizing symptoms are investigating in relation to frontal 

EEG asymmetry (Peltola et al., 2014). In addition, other recent accounts have suggested that 

the observed inconsistency among these later studies may be due to the variation in the 

analytical procedures of EEG data (Keil et al., 2014). 

In conclusion, taken that the present findings explain limited variations in the studied sample, 

it is vital that there is an investigation of the genetic underpinnings that may account for 

individual differences in affective brain activation during these critical periods of 

development. These genetic mechanisms may interact with temperament and pre-existing 

endophenotypic markers of frontal lobe activation and may result in mechanistic relationships 

of plasticity for behavioural problems.
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CHAPTER 3

Variation in 5-HTTLPR Short/Long genotype 

modulates frontal EEG asymmetries in young 

children

3.1. Preface

In the previous chapter, research investigating the neurophysiological signatures of the 

development of behavioural problems was reviewed. A number of areas for future research on 

the manifestation of early behavioural problems were identified. This included a pressing need 

for the further delineation of the neurobiological underpinnings of the development of affective 

problems in early childhood. The present chapter extends the already presented empirical 

research, by reporting data from a broader age range of children, aiming to assess gene-

mediated mechanisms of early affective behaviours. By keeping the previously used EEG 

methodology constant and through the employment of genetic investigations, which will allow 

comparison between different genotype groups, it is anticipated that novel insights on the 

neurobiological basis of early affectivity will be generated.
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3.2. Introduction

3.2.1. Background and Rationale

There has been increasing interest in recent years in the examination of G×E interactions in 

the context of developmental susceptibility for psychiatric outcomes in humans. Based on the 

Differential Susceptibility hypothesis, individuals are differentially affected by experiences or 

qualities of the environment that they are exposed to over the course of development, due to 

pre-existing heightened biological sensitivity factors (e.g., Belsky et al., 2007; Belsky, 1997). 

The differential susceptibility hypothesis extends the description of individual and biological 

variables as fixed risk factors (e.g. Diathesis/Stress model), byadopting the concepts of 

sensitivity (Boyce & Ellis, 2005; Belsky & Pluess, 2009) and susceptibility factors (Belsky et 

al., 2007) to describe complex developmental interactions among them. More specifically, the 

evolution-inspired theory ofdifferential susceptibility has proposed the independence of the 

behavioural outcome from the biology-mediated susceptibility factors, allowing for cross-over 

interactions between biological and environmental factors. Based on the evolutionary roots of 

the differential susceptibility model, and in light of uncertain future developmental 

environments during rearing, natural selection has made the human organism maintain genes 

that can be adaptable in both conditional but also alternative developmental strategies (see 

Ellis et al., 2011). The differential susceptibility model has been extensively useful to date in 

evaluating the differing susceptibility constructs and their interactions, which may lead to 

vulnerability or resilience for affective problems and disorders, and has been confirmed from 

various studies as a reliable concept for studying individual differences (e.g., Roth & Fonagy, 

2005). 
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On the other hand, the diathesis-stress model suggests that there is a two-level interaction 

between heightened biological sensitivity and environmental influences that may be 

responsible for negative outcomes in an individual’s life (Alloy, Hartlage & Abramson, 

1988). More specifically, the diathesis-stress model highlights that the early influences of 

adverse experiences, such as parenting style, in an individual’s environment may interact with 

the vulnerable make-up of an individual (i.e. diatheses) that may place him or her at increased 

risk for maladaptive behavioural outcomes. Based on this model, the amount of a diathesis or 

vulnerability in an individual is disproportional to the stress required to trigger certain 

maladaptive behaviours. For instance, the more an individual has a genetic make-up that 

predisposes him/her to affective disorders, the less environmental influence is required from 

the environment for the affective behaviour to be evident. 

Studies supporting the diathesis-stress model have identified several potential diatheses that 

an individual may have, such as temperament as well as genetic polymorphisms, such as the 

Short allele of the serotonin transporter gene (e.g., Roisman, Newman, Fraley, Haltigan, 

Groh, & Haydon, 2012). In contrary, the differential susceptibility model points out that many 

of these putative vulnerability factors not only link to maladaptation when interacting with 

adverse environmental conditions, but also may infer increased probability for positive 

adaptation in the face of positive environmental experience (Belsky & Pluess, 2009).  

Therefore, the latest model suggests that these factors may be better conceptualised as 

plasticity factors, instead of per-se vulnerability factors (Belsky, 1997).

During the past two decades, the majority of the studies in the field of differential 

susceptibility have mainly utilized longitudinal observations to measure behavioural and 

genetic interactions that may predict affective outcomes (for a review see van IJzendoorn,  
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Belsky, & Bakermans-Kranenburg, 2012). However, in a recent re-conceptualization of the 

differential susceptibility model Belsky and Hartman (2014) paid extra focus on the 

importance of exo-environmental influences (beyond the individual’s choice) in shaping 

behavioural outcomes. More specifically, the authors suggested that because environmental 

experiences is a matter ofindividual preference, rather than external assignment, the 

previously documented gene-environment interactions in observational data, may in fact be 

gene-environment correlations (Belsky & Hartman, 2014; see also Section 1.2). In addition, 

recent developments in the field have begun to redefine ‘environment’ as not only a range of 

factors originating from the external environment (Caspiet al., 2002, 2003; Fox et al., 2005; 

Rutter, Moffitt & Caspi, 2006), but also factors arising from the individual’s endogenous 

environment (i.e., brain functioning), which are considered to play an equally important 

influence in human behaviour (Schmidt, Fox, Perez-Edgar & Hamer, 2009). Together, the 

field of differential susceptibility has gradually started to expand from the observational 

methods to the investigation of the complex neurobiological constructs that may relate to 

affectivity aiming to derive a more direct picture for the mechanistic relationships and 

interactions between genes, brain and behaviour. 

3.2.1.1.5-HTTLPR genotype as an early susceptibility marker

With regard to genetically-mediated risk markers for psychological problems, a great deal of 

attention has been drawn to the hypothesis that brain mechanisms involved in the 

manifestation of various psychopathologies may be mediated by complex interactions 

associated with otherwise normal variations in genes that code for neurotransmitter systems, 

neurotrophic factors, or neural plasticity (e.g., Duman, Heninger& Nestle, 1997, Manji, 

Drevets & Charney, 2001, Nestler et al., 2002). One of the most commonly studied of these is 



Variation in 5-HTTLPR Short/Long genotype modulates frontal EEG asymmetries in young children

86

the 5-HTTLPR polymorphism, which is a degenerate repeat polymorphism in the promoter 

region of the serotonin transporter gene (5-HTT). This region is characterized by pairs of 

Short (S) and Long (L) alleles (i.e., Short/Short, Short/Long, Long/Long; Lesch et al., 1996).  

Although the Long and Short polymorphisms produce the same protein, the Short allele has 

been associated with an approximately three times lower basal activity than the Long allele 

(Hariri et al., 2002; Lesch et al., 1996).

Early accounts based on the diathesis-stress model (see also Section 1.3.1.1) observed that the 

presence of one (Caspi et al., 2003) or two (Pluess, Belsky, Way & Taylor, 2010) copies of 

the Short 5-HTTLPR allele werea significant moderator of depressogenic effects that resulted 

from the exposure to stressful events. Recent evidence has suggested that youth with at least 

one Long allele manifest behavioural resilience against affective disorders, whereas youth 

homozygous for the 5-HTTLPR Short allele appear to be more susceptible to psychological 

problems (Bogdan, Agrawal, Gaffrey, Tillman & Luby, 2014; Hankin et al., 2011). 

Interestingly, compared to the evidence that support the diathesis-stress model that highlights 

serotonin Short allele as vulnerability allele (Burmeister et al., 2008; Rutter, 2006), other 

studies that are supporting the differential susceptibility hypothesis holdthat the serotonin-

transporter gene does not only increase vulnerability to contextual risk, but under positive 

environmental influences is associated with disproportionate positive response, that may 

suggest that the Short allele can be seen as plasticity gene (Belsky et al., 2009; Belsky &

Pluess, 2009).

However, compared to the considerable inconsistency in studies with adults suggesting an 

association between the promoter region of the serotonin transporter gene and depression 

vulnerability (Caspi et al., 2010; Munafo et al., 2009; Risch et al., 2009; Uher & McGuffin, 
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2010; for a meta-analysis see also Karg, Burmeister, Shedden & Sen, 2011; but see also Risch

et al., 2009), evidence arising from studies with young populations are much more consistent 

(for reviews see Brown & Harris, 2008; Karg et al., 2011; Uher & McGuffin, 2008, 2010). 

Serotonin affects neural circuits that reach maturation during the late adolescent years 

(Kobiella et al., 2011; Lenroot & Giedd, 2006). Therefore, the more consistent findings 

among studies with young populations may be explained by the vulnerability of the neural 

regions that undergo maturational procedures early in life (Sibille & Lewis, 2006).

In addition to the evidence suggesting behavioural associations with variations on the 5-

HTTLPR genotype in children, adolescents and adults, a recent meta-analysis also supported 

the hypothesis that individuals carrying the less efficient Short allele of the 5-HTTLPR, 

compared to individuals homozygous for the Long allele, exhibit an atypical 

neurophysiological pattern of higher amygdala reactivity when exposed to negative or 

arousing environmental conditions (Munafo et al., 2009; Murphy et al., 2013; Walsh et 

al.,2012). This line of evidence is consistent with that coming from studies with adults 

reporting that individuals homozygous for the Short 5-HTTLPR allele exhibit reduced gray 

matter volume in both the amygdala and the perigenual cingulate cortex (Pezawas et al.,

2005). Taken together, these findings suggest that the presence of one or two copies of the 

Short allele may be associated with increased vulnerability for psychopathology, following 

exposure to a negative life event, perhaps as a result of an atypical amygdala-cingulate 

system.

Interestingly, there is research to suggest that the serotonin transporter genotype may have a 

critical impact early in life which reflects an effect on the maturation trajectories of neural 

networks that link to the risk for the manifestation of depressive psychopathology (Parsey et 
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al., 2006). In line with this evidence, research suggests that carriers of the Short allele, who 

have been exposed to childhood maltreatment, have manifested increased stress sensitivity in 

later life (Stein et al., 2007). It is now widely documented that early adversities may have a 

more profound impact upon an individual’s brain development, personality and emotional 

sensitivity that stressful life events alone might have (e.g., Stevens et al., 2009). This evidence 

highlights the possibility that carriers of the Short allele may be at greater risk for developing 

psychiatric disorders when exposed to early adverse life experience. 

Interestingly, there is considerable proportion of studies examining the effects of the 5-

HTTLPR polymorphism that provided support for the differential susceptibility hypothesis. 

More specifically, there is evidence to suggest that 5-HTTLPR Short allele carriers have the 

worst outcomes when exposed to adverse environmental conditions, but the best outcomes in 

supporting environments (Belsky et al., 2009; Belsky & Pluess, 2009). In a similar vein, 

studies have shown that 5-HTTLPR Short allele and positive parenting has interacted to 

predict positive affectivity in middle childhood years and early adolescence, suggesting that 

children with such plastic genetic make-up were more likely to respond positively to positive 

parenting compared to the carriers of two copies of the Long 5-HTTLPR allele (Hankin et al.,

2011). Interestingly, the vantage sensitivity that is linked to the 5-HTTLPR Short allele is also 

evident with studies with adults (e.g. Pluess, Belsky, Way & Taylor, 2010), with evidence to 

suggest a link between the experience of positive life events and lower rates of neuroticism.

Taken together, there is now a plethora of evidence to suggest that the serotonergic system 

plays a critical role in brain development, synaptic plasticity and neurogenesis, with evidence 

to suggest an important influence of 5-HTTLPR polymorphism upon adult (Pezawas et al.,

2005; Hariri & Holmes, 2006) as well as child and adolescent brain structure (Wiggins et al.,
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2012). Therefore it is likely that an individual’s vulnerability versus resilience for affective 

disorders, such as depression to depend on the combination of childhood and adult life 

experiences (see also Grabe et al., 2012).

3.2.1.2. Frontal EEG asymmetries as an early vulnerability marker

Simultaneous to research on normal variation in 5-HTTLPR as a genetic risk marker for later 

psychopathology, frontal EEG asymmetry has similarly been evaluated as a putative marker 

for endogenous risk versus resilience for affective disorders (e.g., Schmidt et al., 2009; for a 

recent discussion see Schmidt & Moscovic, 2013). Lateralized differences in electro-cortical 

activity recorded over the dorsolateral prefrontal cortex, with a frequency of 8 to 13 Hz, or 

‘alpha band activity’, haveshown to be heightened during attentive and awake states, but 

suppressed when an individual performs a cognitive task (Schaul, 1998; see also Section 

2.2.1). There is now more than two decades of research using the frontal EEG activation and 

asymmetry measure as an index of affectivity in a variety of populations (for recent reviews 

see Gander & Buchheim, 2015; Harmon-Jones, Gable & Peterson, 2010; see also Section 

2.2.1), with results that strongly support the hypothesis that this neural measure reflects 

cognitive and behavioural tendencies towards approach versus withdrawal (Davidson et al.,

1990). Specifically, right frontal asymmetry has been associated with withdraw-related 

behaviours and negative affectivity, whereas approach-related behaviours and positive 

affectivity have been associated with more left frontal asymmetry (Davidson, 2000; see also 

Section 2.2.3).
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Despite the clear similarities and overlap in the areas of 5-HTTLPR and EEG research, there 

is currently very limited research on the putative relationship between the 5-HTTLPR 

genotypes and frontal EEG activation and asymmetry. 

3.2.2. Neuroimaging genetics and psychopathology

Recent advancements on the field of psychology, psychiatry and neuroscience have started to 

adopt the main principles of neuroimaging genetics research (see Section 1.2.2) aiming to 

unveil the mechanism that may influence vulnerability for affective disorders. Most notably, 

in a recent fMRI study, Wiggins et al. (2012) investigated and reported the moderating effects 

of 5-HTTLPR genotype on children’s and adolescents’ connectivity of the right superior 

medial frontal cortex during rest. Moreover, although the existence of increasing evidence to 

suggest the distinct involvement of both frontal EEG activation and 5-HTTLPR variations in 

modulating affectivity, to date there is very limited evidence on the role of serotonin 

availability in frontal activation in both adults and children. Only the results of one recent 

EEG study with healthy adults suggested that S/S homozygotesexhibit a pattern of more 

withdrawal/right frontal asymmetry in response to negative emotion cues, compared with 

carriers of the Long allele (Papousek et al., 2013). However, unlike the vast majority of EEG 

asymmetry research, which has focused on the right asymmetry as a trait (versus state) 

marker, this study reported that effects were only evident when participants were exposed to a 

video containing traumatic content, and not during the observation of a neutral visual display 

(Papousek et al., 2013). Similarly, an additional study reported an impact of 5-HTTLPR Short 

allele in frontal activation over the areas F1/F2 when interacted with the presence of Major 

Depressive Disorder (Bismark et al., 2010).  Similarly, inthe same study, subjects 

homozygous for the serotonin HTR1A susceptibility allele had significantly greater relative 
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right frontal activity at sites F7/F8, F5/F6, and F1/F2, when compared to subjects with at least 

one resilience-related allele. Moreover, fMRI studies have previously shown that variation in 

the serotonin transporter has been previously associated with inter-individual differences in 

vPFC and amygdala activation (Hariri et al., 2002; Heinz et al., 2007).

In addition to the serotonergic effects of early affectivity, and subsequently the effects on 

functional brain development and function, further polymorphisms on the dopaminergic 

system have also been associated with early affectivity, as well with the presence of affective 

disorders in the later life. Most notably, Catechol-O-m ethyltransferease (COMT) is an 

enzyme that is involved withdopamine degradation (Lachman et al., 1996) and its genetic 

variations, where the best-studied Val158Met has reported to modulate dopamine signalling in 

the frontal lobes, with an intermediate effect in executive cognitive functions (Bruderet al,.

2005). Specifically, the Met variant appears to be three to four times less active than the Val 

variant, resulting in less efficient breaking down of dopamine in the prefrontal cortex (e.g., 

Lachman et al., 1996; Shehzad, DeYoung, Kang, Grigorenk & Gray, 2012; Tunbridge, 

Harrison & Weinberger, 2006). Consistent with this assumption, different studies have 

reported strong associations between the Val158Met and specific neuropsychiatric disorders, 

such as schizophrenia (Caspi et al., 2005) and autism (James et al., 2006) or in placing an 

individual at higher risk for psychopathology when faced with life stressors (Evans et al.,

2009). In regards to the neurophysiological involvement of the Val158Met polymorphism, 

evidence suggest the expression of the polymorphism in the amygdala (Herrmann et al., 

2009), an area of the brain important for socio-emotional functioning.
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While recent findings provide evidence for the existence of putative pathways in genetic and 

brain processes that may relate to differential vulnerability for affective and other disorders 

(Bismark et al., 2010; Papousek et al., 2013); the particular mechanisms via which these 

genetic and environmental factors function and interact remain largely unknown. Given the 

developmental nature of existing models of risk/resilience for childhood, adolescent, and adult 

onset psychopathology (for a discussion see Belsky & Pluess, 2009), studying relationships 

between different susceptibility factors in children is critical to furthering our understanding 

of the developmental pathways to the manifestation of affective disorders. However, direct 

studies involving children as participants are notably absent from the extant literature. 

Moreover, although twin and family studies have reported a high heritability estimates of up 

to 90 % of the neurophysiological pattern of EEG activation (Anokhin, Heath & Myers, 2006; 

Gao, Tuvblad, Raine, Lozano & Baker, 2009; Smit, Posthuma, Boomsma & de Geus, 2007), 

to date there is very limited research in delineating the genetic underpinnings of frontal lobe 

activation. 



Variation in 5-HTTLPR Short/Long genotype modulates frontal EEG asymmetries in young children

93

3.2. The current study

Previous studies have documented 5-HTTLPR as a genetic risk variant that contributes to 

variability in outcomes of psychopathology. In order to investigate whether normal genetic 

variations on the 5-HTTLPR polymorphism and frontal EEG asymmetry are associated with 

one another, the present study seeks to investigate frontal EEG hemispheric asymmetries in 

relation to 5-HTTLPR genotyping in 4- to 6-year old children. 

3.3.1. Aim 1: To examine EEG measures of behavioural problems in early childhood

Taking into account that the EEG methodology employed here is the same with the one in

Chapter 2, and taking into consideration the considerable overlap between the samples of the 

present and the study post-posed (i.e., 68.5 %)7, here there is expected a difference in 

children’s responses on the two experimental conditions to be evident. To this end, the age 

range of the sample is further extended here to include 6 year olds; aiming to provide new 

putative associations between developmental trajectories of early behavioural problems and 

frontal EEG activity in response to social and non-social videos. Compared withthe sample 

investigated in Chapter 2, where the vast majority of the children consisted of children in their 

early fourth year of life, the present study examines the putative maturational effects, as 

resulted from an individual’s environmental adjustments (school transition; change on the 

societal inhibition expectances from older children) as a factor that may contribute 

significantly on this area of inquiry. 

                                                            
7The present study employed only a subset from the sample used in the previous study. This was done for two 
main reasons : (a) the study in Chapter 2 was conducted 6 months apart from the current study and (b) for the 
study in  Chapter 2 was employed a more diverse sample of children from various ethnic backgrounds and 
therefore more representative of the wider community. Taken the ancestry constrains associated with the conduct 
of genetic studies, the unavailability of some of the families to return to the laboratory when invited to 
participate, and the need to extend the sample size the samples between the two studies overlaps by 68.5 %.
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3.3.2. Aim 2: To examine 5-HTTLPR effects on frontal EEG asymmetries during early 
childhood

Individual variations in both 5-HTTLPR genotype and frontal EEG hemispheric asymmetry 

have been highlighted in previous research as separate susceptibility markers for better and 

worse outcomes later in life.  A second aim of the present study is to investigate for the first 

time the inter-individual variability as determined by the 5-HTTLPR genotype on the 

activation of frontal lobe in children between 4 and 6 years of age. The first aim of the present 

study is to explore the association between affective patterns of frontal EEG activation in 

response to the social and non-social conditions. More specifically, 5-HTTLPR by frontal 

EEG associations will be dependent on viewing videos of social versus non-social 

components (state utilization of frontal EEG). 

3.3.3. Hypotheses

There are two main hypotheses that are tested in the present study. The study employs a larger 

sample of children with a wider age range of children, compared with the sample investigated 

in the previous study (Chapter 2). To this end, the study sought to further investigate the 

potential involvement of the processing of social versus non-social information in frontal 

EEG activation and the presence of early behavioural problems. Although, the results of the 

previous study show no effect of condition on the reported brain-behaviour associations, the 

present study aims to examine the putative maturational effects as a factor that may contribute

to this area of enquiry. Previous evidence has highlighted the existence of an association 

between relatively greater right frontal activation at rest and the presence of increased rates of 

aggressive behaviour in early childhood (Baving et al., 2003; Santesso et al., 2006). More 



Variation in 5-HTTLPR Short/Long genotype modulates frontal EEG asymmetries in young children

95

specifically, it is hypothesised that children with elevated aggressive behaviour will present a 

state-specific negative pattern of frontal brain activation during the processing of social 

information, probably because of an inability to control the negative emotions associated with 

their aggressive behaviour (Smith & Bell, 2010). Moreover, a range of studies have reported 

atypicalities in visual processing of both social and non-social stimuli in infants in high-risk 

for ASD (Elsabbagh & Johnson, 2007; McCleery, Allman, Carver & Dobkins, 2007;

McCleery, Akshoomoff, Dobkins & Carver, 2009; Dawson et al., 1995). However, it is now 

increasingly accepted that individual differences in EEG asymmetry is independent of clinical 

status, and can serve as a trait marker for behavioural problems (Gotlib, 1998). More 

specifically, it is expected that the negativity-related patterns of greater right frontal EEG 

activation will be dependent on whether children watch social versus non-social videos (state 

utilization of frontal EEG). In the case that the video watching will not have an effect on 

frontal EEG activation, it would mean that the social versus non-social state cannot have an 

effect to positive versus withdraw-related patterns of frontal brain activation, and therefore 

frontal EEG will be utilized as a trait marker.

Secondly, it is hypothesised that there is a selective relationship between the 5-HTTLPR and 

state-dependent (social versus non-social videos) frontal EEG asymmetry, with the presence 

of two copies of the short allele to be associated with a negative pattern of relatively greater 

right frontal asymmetry during social but not non-social processing. Extensive, robust 

evidence has shown that social stimuli are of critical value and importance for humans, from 

birth through the full life span (for a review, see Grossmann & Johnson, 2007; Ronald, Happe

& Plomin, 2005). Moreover, there is evidence that reported the moderating effects of 5-

HTTLPR genotype on children’s and adolescents’ connectivity of the right superior medial 
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frontal cortex during rest (Wiggins et al., 2012) as well as a pattern of more withdrawal/right 

frontal asymmetry in response to negative emotion cues in healthy adults carrying two copies 

of the Short allele (Papousek et al., 2013). Thus, if frontal EEG asymmetry associations with 

genotype vary according to social versus non-social video context, then this will suggest that 

the relationships observed are state dependent. Alternatively, if frontal EEG asymmetry 

associations with genotype are robust to the social versus non-social video context, then this 

will suggest that the relationships observed are trait dependent.
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3.4. Methods and Materials

The known as candidate gene approach has emerged aiming to investigate the role of common 

genetic variations that involved in the neural circuits of emotion regulation and affectivity, 

which may interact with environmental stressors to predict behavioural reactivity, and 

vulnerability versus resilience for affective disorders (Canli et al., 2006; Caspi & Moffitt, 

2006; Canli & Lesch, 2007). However, it is worth noting that replication–related problems do 

exist in candidate gene studies (e.g. Gillespie, Whitfield, Williams, Heath, & Martin, 2005; 

Surtees et al., 2006) that may contribute toslowing down the delineation of the biological 

underpinnings of human affectivity.

In the current study, was conducted a focused, hypothesis-driven examination of the 

relationship of variation in genotype on a genetic polymorphism (5-HTTLPR) and a 

particular, pre-determined marker of neural functioning (frontal EEG asymmetry). This 

research design and method represents a recently established approach to understanding 

genetic mediation of brain mechanisms that may shape human behaviour (e.g. Deary, Penke

& Johnson, 2010). 

3.4.1. Participants

The study’s sample size (N= 70) was calculated on the basis of the study’s hypotheses. Power 

analysis suggested that the sample size required to achieve a power of 1-β = 0.90 for the 

ANOVA test at significance level α = 0.050 requires at least 33 participants. In this regard, 

the current study utilizes a larger sample relative to most previous neuroimaging genetic 
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studies with children and adolescents that employed fMRI (Stollstorff et al., 2010; Wiggins et 

al., 2012) or EEG/ERP (Althaus et al., 2009; Beroletti, Zanoni, Giorda & Battaglia, 2012). 

A total of 70 children aged between 4 and 6 years contributed to this study (Mean age in 

months = 60.8, SD = 11.6; males n = 38). Participants were recruited through a local 

community research participation advertisement/outreach program,as part of the on-going 

procedure at the Infant and Child Laboratory at University of Birmingham. The parents or 

guardians of all participants reported that the child had no history of a neurological or 

psychiatric disorder, and that they had normal or corrected to normal vision. Exclusion 

criterion included if participants scored below a certain range (IQ < 75) based on the BAS-II 

(Elliot et al., 1996), a standardised assessment of intelligence/developmental age. Finally, 

because genes vary by ancestry (e.g., Freedman et al., 2004), all children in the sample were 

from Caucasian/White British ancestry. In addition, all participants had English as their first 

language. Informed consent was obtained from the parents/guardians of all participants prior 

to participation in the study in accordance with an ethical protocol approved by the University 

ethical committee.

In the current study, EEG alpha was recorder power over left and right prefrontal cortex (F1-

F2, F3-F4) while children watched videos with social stimuli (adults speaking nursery 

rhymes) and non-social stimuli (dynamic computer-generated objects moving with contingent 

sounds). 

3.4.2. Data collection procedures
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See Section 2.4.2.

3.4.2.1.Behavioural Measures

See Section 2.4.2.1. 

3.4.2.2. Measure of behavioural problems

For the assessment of children’s rates of behavioural problems the CBCL scales (Achenbach 

& Rescorla, 2001) were completed by parents. CBCL includes two different versions: the 

early years version (for children between 1½ - 5 years of age) and the school age version 

(children and adolescents aged 6–18 years). Both the early years and school age versions were 

used inthe present study. Details on the CBCL 1½ -5checklist are provided in Section 2.4.2.2 

and Appendix 2.1. The CBCL 6-18 years version has 113 items, and although it describes the 

same aspects of behaviour as in the early years version, the content of some items varies, 

aiming to capture developmental changes and behaviours that are unique to each age. It has 

been reported that the CBCL 6-18 version has good psychometric properties8 and has a robust 

procedure for classifying behavioural problems in each subdomain. Both versions’ items are 

on a three-point scale, ranging from not true to very true/often true, including open-ended 

items for describing additional problems. The scale has two main sub-scales that are 

structurally independent from each other (Achenbach & Rescorla, 2001), whichmap 

externalizing and internalizing problems (see Table 2.1). Despite these differences, previous 

studies with children have reported the findings of the two broad sub-scales of the behaviours 

                                                            
8 CBCL 6-18 scale has been reported to have high test-retest reliabilities (r = 0.73-0.94), good internal 
consistency reliabilities (a=0.63-0.97), as well as good inter-rater reliabilities (k = 0.57 - 0.88) based on the 
original standardisation data (Achenbach & Rescorla, 2001).
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coming from the two different versions (e.g., Stanger, Ryan, Hongyun & Budney, 2011). 

Inthe present study, parents completed the age-appropriate version of the scale.

3.4.2.3. Electrophysiological Recordings

See Section 2.4.2.3. 

3.4.2.4. DNA Preparation

Genomic DNA was extracted from saliva samples using the Oragene OG-500 self-collection 

kit (Oragene, DNA Genotek Inc., Canada), according to the manufacturer’s recommendations. 

DNA concentrations ranged from 65-962 ng/ul and the 260/280 ratio was between 1.8 and 2 

for all samples. Genotyping results were successfully obtained for all 70 subjects.  
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3.5. Analysis

3.5.1. Analysis of Behavioural data

The CBCL 1½ -5 and 6-18 versions provides raw values that can be converted to age-adjusted 

t-scores if needed. All children in this study had t-scores of less than 60. Raw scores from the 

two clusters of behavioural problems (i.e., internalizing and externalizing problems) were 

used for statistical analysis following the authors’ guidelines (Achenbach & Rescorla, 2001, p. 

89). Higher total scores in each CBCL subscale suggest the existence of more problematic 

behaviours. Autism symptomatology (SCQ) mean sum scores were calculated on the basis of 

raw scores. For the measures of cognitive abilities (BAS-II), mean standardized IQ-scores 

were assessed.

3.5.2. EEG Recordings and Analyses

All the EEG recording and analyses procedures that conducted in the present study were the 

same as for the study presented in Chapter 2 (see Section 2.5.2). Moreover, in the current 

study aiming to further investigate if the 5-HTTLPR genotype effects were specific to the 

frontal region, additional clusters of electrodes over the P3 (electrode number 52) and P4 

(electrode number 92) parietal areas were selected for analyses. 

3.5.3. Analysis of Genetic Material

3.5.3.1. 5-HTTLPR Genotyping

Direct bidirectional sequencing was used to genotype the 5-HTTLPR polymorphism. The 
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region containing the 43bp insertion polymorphism was amplified using primers described 

(Huet al., 2006) producing a 528bp amplification product from the L allele and a 485bp 

product from the S allele. Polymerase Chain Reaction (PCR) was performed using Megamix 

PCR solution (supplied by Microzone UK Ltd) in a total volume of 25ul, containing 25pmol 

of each primer and 3ul of betaine. An initial denaturation step at 95ºC for 5 minutes was 

followed by 30 cycles of PCR (95ºC 1 minute, 58ºC 1 minute, 72ºC 1 minute) and then a final 

extension at 72ºC for 10 minutes. PCR products were purified using Exonuclease I and 

Shrimp Alkaline Phosphatase (according to manufacturer’s instructions). 10ul sequencing 

reactions were generated containing 0.25ul BigDye Terminator (v3.1, Applied Biosystems), 

1.9ul molecular grade water, 3pmol of forward or reverse primer and 1ul purified HTTLPR 

PCR amplicon (diluted 1 in 2). Cycle conditions for sequencing included an initial 

denaturation step at 95ºC for 5 minutes followed by 30 cycles of (95ºC 30 seconds, 50ºC 10 

seconds, 60ºC 4 minutes) and reaction products were purified using CleanSEQ® beads 

(Agencourt) in a 1:1 ratio as described by the manufacturer. Products were re-suspended in 

70ul molecular grade water and analysed on a 3730 Genetic Analyser (Applied Biosystems).

Allele frequencies across participants for the 5-HTTLPR was n = 59 (42.1 %) for the Short 

allele and n = 81 (57.9%) for the Long allele. Different genotype classifications were used 

inthe present study with three [S/S (N = 13), L/S (N = 33), L/L (N = 24)], as well as with two 

groups of participants: one with homozygous for the Long allele (L/L; N = 24) and one with 

heterozygotes and homozygous for the low uptake Short allele (S/S, S/L; N = 46). 5-HTTLPR 

genotype frequencies were in Hardy-Weinberg Equilibrium [x2(1) = .077, p = .780], as 

calculated with a reliable online tool that can be found 

here:http://www.tufts.edu/~mcourt01/Documents/Court%20lab%20%20HW%20calculator.xl

s . In follow up analyses, taking into account the variation in group classification in 5-
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HTTLPR studies (e.g., the S/L group being classified differently in different studies; see for 

example Hariri et al., 2002; Lee & Ham, 2008) and aiming to provide a greater theoretical 

precision to the moderating effects of 5-HTTLPR gene variation (Walsh et al., 2012), S/L 

participants were excluded, and compared the two groups of homozygotes [i.e., S/S (N = 13), 

L/L (N = 24)].

3.5.3.2.   COMT Val158Met Genotyping

Direct bidirectional sequencing was used to genotype the single nucleotide polymorphism 

within the COMT gene (rs4680). PCR primers were designed to flank the polymorphism 

producing a 250bp amplification product. Sequences of the primers are as follows: forward 

GGGCCTACTGTGGCTACTCA and reverse GGGTTTTCAGTGAACGTGGT. PCR was 

performed using Megamix PCR solution (supplied by Microzone UK Ltd) in a total volume 

of 25ul containing 25pmol of each primer. An initial denaturation step at 95ºC for 5 minutes 

was followed by 30 cycles of PCR (95ºC 1 minute, 58ºC 1 minute, 72ºC 1 minute) and then a 

final extension at 72ºC for 10 minutes. PCR products were purified and sequenced as 

described above for 5-HTTLPR genotyping.

Allele frequencies for the COMT Val158Met was n = 71 (50.7 %) for the Val allele and n = 69 

(49.3 %) for Met allele. Following a similar strategy with the 5-HTTLPR genotype grouping, 

a classification with three genotypes  was employed [M/M (N = 14), V/M (N = 41),V/V (N = 

15)], as well as by including the homozygous participants for the more active Val allele (V/V; 

N = 15) in one group in the sample compared to a group of heterozygotes and homozygotes 

of the low uptake allele (M/M, M/V; N = 55). COMT Val158Met genotype frequencies where 

in Hardy-Weinberg equilibrium [x2 (1) = 2.06, p = .150] as measured from the same tool used 
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for the 5-HTTLPR genotype.  Consequently, in aiming to provide a greater theoretical 

precision to the moderating effects of the COMT Val158Met gene variation in follow up 

analyses, heterozygous participants were excluded to compare the two homozygous groups 

[i.e., Val/Val (N = 15); Met/Met (N = 14)].

3.5.3. Statistical Analyses

Descriptive statistics were conducted in order to describe the sample’s demographic 

characteristics such as, gender, age, and distribution of cognitive abilities. Raw data from the 

behavioural and cognitive scales were examined for normality using Kolmogorov–Smirnov 

tests. CBCL subscales did not meet criteria for normal distributions (Kolmogorov–Smirnov, p

< 0.05). Therefore, to further examine possible correlations between age, developmental age, 

gender, IQ and behavioural scores, Spearman’s Rho non-parametric correlations coefficients 

tests also performed. Further correlation analyses conducted to investigate possible correlation 

between Raw EEG recording and asymmetry ratios, with participants’ demographic 

characteristics. In addition, Spearman’s Rho correlations were conducted between the two 

clusters of internalizing and externalizing problems and the PSD and ratio values from the 

EEG data for each condition and hemisphere separately.

Pearson correlation analyses were conducted to determine if a correlation among demographic 

characteristics or cognitive performance and genotype group was evident. Further one-way 

ANOVAs were conducted to investigate possible correlations between 5-HTTLPR or COMT 

Val158Met genotypes and demographic, cognitive development rates and affective problems in 

the sample. Moreover, correlation analyses between asymmetry group (left versus right
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asymmetry) and demographic characteristics were also conducted. 

Furthermore, to examine if the artefact-free EEG data was systematically differ among the 5-

HTTLPR and COMT Val158Met genotype groups, separate one-way ANOVAs were 

conducted. Furthermore, to assess if excessive frontal or parietal artefact (i.e., number of bad 

electrodes in the areas of interest) systematically differ among the three 5-HTTLPR and 

COMT Val158Met genotypes, additional one-way ANOVAs were conducted.

In order to examine differences in frontal EEG activation in multiple frontal sites in response 

to social and non-social stimuli, a three-way ANOVA with Condition (Social, Non-social), 

Hemisphere (Left, Right) and region (F3-F4; F1-F2) as within factors and gender (female, 

male) and 5-HTTLPR genotype (S/S versus L/S versus L/L) as between-groups factors was 

conducted. Repetition of the same analyses with different genotype classification (i.e., L/L 

versus S/-) was also conducted. For the initial analysis, the PSD were studied. As a control 

analyses, to investigate whether the 5-HTTLPR genotype effects are specific to the frontal 

region we also conducted a two-way ANOVA with Condition (Social, Non-social) and 

Hemisphere (Left, Right) using PSD data from parietal regions (i.e., P3-P4).Then the initial 

omnibus ANOVA was followed up with analysis of EEG asymmetry scores, by conducting 

post-hoc tests for each SNP using an average asymmetry ratio for each participant.  When the 

data did not satisfied Kolmogorov-Smirnov tests for normality, Mann-Whitney U or Kruskal-

Wallis tests were performed, instead of t-tests. In order to evaluate the specificity of the 5-

HTTLPR effect, this same analysis process was repeated with equivalent COMT Val158Met 

polymorphism classifications (i.e., M/M versus M/V versus V/V; M/- versus V/V) as a control 

analysis. The statistical software package SPSS 20.0 was used for all the analyses.
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3.6. Results

3.6.1. Demographic Characteristics

Participants included 70 children (males n = 38) between 4 and 6 years of age. Tables 3.1 and 

3.2 demonstrate the participants’ main demographic characteristics, such as, gender, age, and 

cognitive abilities. One-way ANOVAs showed no significant correlations between 5-

HTTLPR or COMT Val158Met Genotypes and demographic and cognitive characteristics (see 

Appendix 3.1). Similarly, One-way ANOVAs showed no significant correlations between 5-

HTTLPR or COMT Val158Met Genotypes and rates of affective problems. Moreover, 

Asymmetry groups did not differ in demographic characteristics. 

Table 3.1. Sample size and demographic characteristics of sample.

N 70

Gender % Male (N)
% Female (N)

55.8 (29)
     44.2 (23)

Handedness % Right (N)
% Left (N)

82.9 (58)
17.1 (12)

SCQ total score Mean (SD)
Range

4.25 (3.13)
         0-12

BAS-II
Total Score

% Below Av.
% Average

% Above Av.
% High

2.9
67.1
22.9
7.1

Furthermore, Spearman’s Rho correlation showed asignificant positive correlation between 

rates of internalizing and externalizing problems (r = .350, p = 0.11). Co-occurrence between 

internalizing and externalizing clusters has originally been reported on the CBCL scales 

original standardisation (Achenbach & Recorla, 2001) as well as in a range of other studies 
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(e.g., Card & Little, 2006; Marsee & Frick, 2007; Dietz, Jennings, Kelley & Marshal, 2009). 

No further correlations between demographic characteristics and behavioural scores were 

evident.

Table 3.2. Participants General and Age equivalent cognitive ability.

Chronological Age*

   Overall Ability**

     Verbal Ability

     Non-verbal Ability

Developmental Age*

    Developmental Verbal
    Ability 

      Developmental Non
      Verbal Ability

Mean (SD)
Range

Mean (SD)
Range

Mean (SD)
Range

Mean (SD)
Range

Mean (SD)
Range

Mean (SD)
Range

Mean (SD)
Range

     60.8 (11.6)
      48-82

   105.8 (8.6)
      84-127

101.6(13.3)
58-127

109.5 (12.9)
86-144

64.2 (12.9)
          42-89

621.7(14.9)
         38-96

66.9(15.0)
        42-96

*Age data presented in months
**Overall ability is calculated from the overall BAS-II total score and Verbal and Non-verbal ability form the 
BAS-II clusters of abilities. Values represent GCA.

3.6.2. Behavioural problems and EEG alpha activation/asymmetries

Spearman’s Rho analyses did not reveal any significant correlation between children’s 

internalizing and externalizing scores and frontal EEG activation when using the raw PSD 

scores or the asymmetry ratios. This finding is contrary to the findings reported in the 
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previous study in Chapter 2 which employed the same behavioural and 

experimental/neurophysiological measures. However, as noted earlier (see also Footnote 7) 

the sample in the present study had a 68.5 % overlap with the sample in the study presented in 

Chapter 2.  The first investigation was conducted with younger children mainly from diverse 

ethnic background (Chapter 2), whereas only older children frontal Caucasian ancestry were

included in the present study. Moreover, compared to the previous study were detailed scales 

of symptomatology was possible to be extracted and calculated (early years CBCL was 

employed) the current analyses were based in the behavioural rates that were calculated from 

the two main sub-clusters only (i.e., internalizing and externalizing) due to the fact that both 

the two versions of early and school-age years CBCL measure was employed. Taken together 

with the fact that the sample consisted of young unaffected children, this may have 

contributed to the absence of the previously reported brain by behaviour associations.  

3.6.3. 5-HTTLPR Genotype Group Differences in Frontal Alpha Asymmetry

A one-way ANOVA showed that the time of artefact-free EEG data did not differ 

systematically among the three 5-HTTLPR genotype groups (see also Appendix 3.1; Table 

3.4) for the social [F(2) = 1.65 , p = .199] as well as for the non-social condition  [F(2) = 

0.96, p = .385]. In a similar vein, time of artefact-free EEG data did not differ systematically 

among the three COMT Val158Met genotype groups for the social [F(2) = .298 , p = .744] as 

well as for the non-social condition  [F(2) =  .426, p = .655]. Moreover, an additional one-

way ANOVA showed that the number of electrodes of interest that were marked as bad 

channels did not systematically differ among the three 5-HTTLPR genotypes for the frontal 

[F(2) = 1.74 , p = .182] and the parietal [F(2) = 0.63, p = .850] selected areas of interest. 
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Similarly, no systematic difference was observed for the COMT Val158Met genotype groups 

the frontal [F(2) = .019 , p = .981] and the parietal [F(2) = 1.39, p = .254] selected areas of 

interest.

The ANOVA revealed a main effect of Region [F(1,64) = 35.50, ηp
2 = 0.35, p< .001] and a 

two-way Hemisphere by Condition interaction[F(1,64) = 5.08, ηp
2 = .007, p< .028]. Regarding 

the between-groups effects the ANOVA revealed an additional Hemisphere and 5-HTTLPR 

genotype interaction [F(2, 64) = 5.69, ηp
2  = .151, p = .005], indicating different frontal 

activation between the three 5-HTTLPR genotype groups (see Table 3.4; Figure 3.1).  No 

further effects or interactions were observed. The same Hemisphere by 5-HTTLPR interaction 

was confirmed when repeating the ANOVA after grouping carriers of at least one Short allele 

in one group (i.e., S/- versus L/L) [F(1, 66) = 8.95, ηp
2 = .120, p = .004].No further main or 

interaction effects were evident (see also Table 3.3).

Table 3.3. Average frontal PSD activation per hemisphere, condition and frontal region.

Social Non-social

Alpha Power*
Left

Mean (SD)
Right

Mean (SD)
Left

Mean (SD)
Right

Mean (SD)

F3-F4 1.15 (0.72) 1.19 (0.78) 1.15 (0.66) 1.17 (0.72)

F1-F2 0.91 (0.73) 0.92 (0.81) 0.90 (0.64) 0.88 (0.64)

Total 1.03 (0.70) 1.05 (0.77) 1.03 (0.63) 1.03 (0.66)

* Alpha power = ln [7–11 Hz] power power spectral density (μV2/Hz)

A Kolmogorov-Smirnov test revealed that the PSD data used in this analysis, as well as the 

asymmetry ratio data were not normally distributed (Kolmogorov–Smirnov, p < 0.05), this 

analysis was followed up with complementary non-parametric tests using the left/right 

asymmetry ratios. A Kruskal-Wallis test was performed to further investigate the mean frontal 
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asymmetry score ratio differences by the Genotype (S/S versus L/L versus S/L).  This analysis 

revealed a significant effect of 5-HTTLPR genotype group on the frontal EEG asymmetry 

ratios [x2(2) = 8.65, p = .013], providing confirmatory support for the statistical interaction 

between Hemisphere and 5-HTTLPR that observed on the initial ANOVA (see Figure 3.1; 

Table 3.4). Specifically, the genotype group homozygous for the Short allele (i.e., S/S) 

manifested a frontal alpha activity more to the right, whereas a group with 5-HTTLPR L/L 

exhibited more left activation (see Table 3.4).  Similarly, a Mann-Whitney U test with the 

alternative genotype classification (S/- versus L/L) also showed significant differences among 

5-HTTLPR genotypes in predicting frontal asymmetry (U = 199.00, p = .010). 

In order to evaluate the specificity of a link between frontal EEG activation patterns and 5-

HTTLPR genotypes, the same analysis was repeated for the COMT Val158Met polymorphism. 

No significant interaction effect was observed of this genotype with frontal hemisphere 

activation [F(2, 64) = 0.85, ηp
2 = .026, p = .429] when comparing the three COMT genotypes 

(i.e., M/M versus M/V versus V/V), or for the V/V versus M/- classification [F(1, 66) = 1.06, 

ηp
2 = .016, p = .305] (see Table 3.4; Figure 3.1). 

Furthermore, in order to further investigate the specificity of the effects of 5-HTTLPR 

genotype to the frontal region, an additional two-way ANOVA with Condition (Social, Non-

social) and Hemisphere (Left, Right) using alpha band PSD data recorded over left and right 

parietal regions was conducted (i.e., P3-P4 region). The results of this ANOVA did not reveal 

any 5-HTTLPR by parietal hemisphere activation [F(1, 66) = .284, ηp
2=.004, p = .596]  or 

other main or interaction effects.
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Table 3.4. Means and standard deviations (in brackets) of the logged alpha power spectral 
density in the frontal region among 5-HTTLPR and COMT Val158Met genotype. The mean 
PSDs were consistently lower for the Short-allele carriers compared to participants 
homozygous for the Long carriers, especially over the right hemisphere, suggesting a more 
withdrawn pattern of brain activation in participants with at least one Short allele.

SNP
Social Non-Social

Left Right Left Right

5-HTTLPR
            S/S 1.05 (0.57) 0.97 (0.48) 0.92 (0.48) 1.03 (0.62)

S/L 0.99 (0.63) 1.00 (0.67) 0.97 (0.59) 0.98 (0.64)

L/L 1.08 (0.87) 1.17 (1.02) 1.10 (0.69) 1.15 (0.77)

COMT Val158Met
M/M 0.88 (0.83) 0.90 (0.90) 0.97 (0.69) 1.00 (0.65)

M/V 1.13 (0.66) 1.18 (0.76) 1.08 (0.60) 1.10 (0.66)

V/V 0.88 (0.70) 0.85 (0.66) 0.90 (0.69) 0.87 (0.66)

Taking into account the variations in the classifying methods for the 5-HTTLPR genotypes 

[e.g., in some studies the Long allele is re-categorized as an S because when it is present 

alongside the G-allele of rs25531 SNP, it behaves like the Short allele (Hu et al., 2006; 

Wendland et al., 2006; Zalsman et al., 2006), and aiming to achieve a better understanding of 

the moderating effects of 5-HTTLPR gene variation (Walsh et al., 2012), the 

heterozygotesparticipants were excluded (i.e., L/S), and the initial analysis was repeated by 

comparing the two groups of homozygotes, for the 5-HTTLPR [i.e., S/S (N = 13), L/L (N = 

24)].  
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Figure 3.1. Mean asymmetry index for 5-HTTLPR (left) and COMT (right) allelic variants. 
The data were collapsed across social/non-social condition. The frontal asymmetry was 
computed as the alpha power in the right hemisphere minus that in the left hemisphere. The 
error bars denote one standard error of the mean.

Furthermore, the same analyses was also conducted using the homozygous groups of the 

COMT Val158Met genotypes [e.g., Val/Val (N = 15) and Met/Met (N = 14)]. Kolmogorov-

Smirnov tests for these subgroups’ data revealed that the PSD and asymmetry ratio data 

metcriteria for anormal distribution (Kolmogorov–Smirnov, p > 0.05). Consistently with the 

results from the initial classification, the results of this follow-up ANOVA confirmed a two-

way interaction between 5-HTTLPR Genotype and Hemisphere [F(1, 33) = 7.99, ηp
2 = .195, p 

= .008], which was absent for the COMT Val158Met genotype [F(1, 25) = 1.16, ηp
2 = .070, p = 

.324]. Finally, consistent with the initial results, a t-test revealed a significant lower average 

frontal EEG asymmetry scores in the S/S compared to the L/L 5-HTTLPR group [t(35) = 

2.97, p =.005)].
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3.7. Discussion

The present study was designed to examine the relationship between 5-HTTLPR genotypes 

and frontal EEG activity in young children. Consistent with the study’s hypothesis, the results 

indicated that normal variation in the 5-HTTLPR genotype is associated with frontal lobe 

hemispheric activations in young children, such that children homozygous for the Short 

genotype exhibited right (negativity-related) frontal EEG hemispheric asymmetries, whereas 

those who carried the Long allele exhibited more left (positivity-related) frontal EEG 

asymmetries. The current results provide evidence for the existence of a neurobehavioural 

mechanism in individuals carrying the Short allele of the 5-HTTLPR polymorphism, which

may act as a context-specific risk factor for later psychological maladjustment and negative 

affectivity for young children. However, taken the inconsistency that is evident among 

different frontal EEG studies (e.g., Coan & Allen, 2004), the evidence suggesting a 

differential susceptibility for both positive and negative effects in carriers of the Short allele 

(Belsky & Pluess, 2009), and the absence of context-specific investigation in the present study 

the present findings can be only accounted as a first-stage contribution on the putative genetic 

effects in early brain functioning and affectivity.

An additional aim of the study was to investigate putative associations between early affective 

internalizing/externalizing problems and frontal EEG activation in response to social and non-

social videos. Somewhat inconsistent with previous research, no significant correlation 

between measures of early affectivity and trait or state-specific frontal EEG activation in 

response to social videos was evident. A possible explanation for this null effect might be the 

fact that the variation in the children of the study’s sample were in the normal range on 

internalizing and externalizing problems, with an exclusion criterion of the study to be the 

elevated behavioural problems above the subclinical threshold of the measure. Compared to 
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previous studies with youth, where significant behaviour by frontal EEG associations were 

evident in children with a particular set of symptoms or traits, such as anxiety or shyness (e.g., 

Santesso et al., 2006), the normal range of internalizing/externalizing problems of the study’s 

sample may explain the results of the study. However, it is worth mentioning at this point that 

research has shown that EEG frontal asymmetry is more directly associated with 

approach/withdrawal tendencies than with measures of internalizing/externalizing problems 

(for a review see Coan & Allen, 2003). Taken the results presented in the study of Chapter 2, 

where behavioural-brain associations were evident in younger children, but accounted for a 

small variation of the sample, future research is needed to delineate the link between early 

behavioural patterns of approach/withdraw and their putative link with internalizing and 

externalizing during the early years of life.  As in the study of Chapter 2, given that the 

present investigation studied a healthy young group of children, previous evidence that 

suggested a role of viewing social versus non-social videos in brain activation of atypical 

populations, such as children with autism, may relate to a disorder-specific response to social 

and non-social information. This hypothesis requires further investigation.

Furthermore, partially inconsistent with the hypothesis of the study there was no significant 

effect of viewing social versus non-social videos on frontal EEG activation relative to 5-

HTTLPR genotype. However, the study provided evidence for the trait utilization of frontal 

EEG and its associations with variations in the 5-HTTLPR genotype. To this end, the 

previously documented atypicalities on the processing of social and non-social information in 

young children in higher risk for ASD (Elsabbagh & Johnson, 2007; McCleery, et al., 2007;

McCleery, et al., 2009; Dawson et al., 1995), may relate to the manifestation of the social 

difficulties that primarily associated with this specific disorder. The sample of the present 

study consisted of healthy young children whodo not present a particular set of disorders that 
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may affect the way they processing social versus non-social information. Conversely, the 

findings of the study that suggest a trait utilization of EEG as a function of a genotype 

involved in serotonin availability agrees with previous research highlighting  that individual 

differences in EEG asymmetry is independent of clinical status and can serve as a trait marker 

for behavioural problems (Gotlib, 1998). Finally, other methodological aspects of the study, 

such as the nature of the stimuli used may have also contributed on the absence of the 

investigated effects (see also Section 2.7). 

The results of the study open up the possibility that one of the key mechanisms via which 

carriers of two copies of the Short 5-HTTLPR genotype generates susceptibility for later 

negative and positive affectivity is through serotonin-based mediation of right versus left 

frontal cortex activity.  This pattern of results is consistent with previous developmental 

evidence to show that carries of one (Caspi et al., 2003) or two (Pluess et al., 2010) copies of 

the Short 5-HTTLPR allele had increased depressogenic effects, compared to Long allele 

homozygotes, that resulted from the exposure to stressful events. In particular, evidence 

suggests that carriers of at least one Short allele of the 5-HTTLPR, compared to individuals 

homozygous for the Long allele, exhibit a neurophysiological pattern of higher amygdala 

reactivity when exposed to negative or arousing environmental conditions (Munafo et al.,

2009; Murphy et al., 2013; Walsh et al., 2012).Therefore, through these mechanisms and 

under disadvantageous context this genotype may predispose the individual toward the 

reductions in approach-related motivations and increased negative affectivity that are 

characteristics of individuals with more right frontal EEG asymmetries (Coan & Allen, 2003;

see also Dason et al., 1995; Nusslock et al., 2011; Tomarken et al., 2004). 
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Furthermore, based on the differential susceptibility hypothesis, carriers of at least one copy 

of the low serotonin uptake-related Short allele would be expected not only to exhibit a more 

negative response in face of adversity but also a positive response under favourite 

circumstances (e.g., Belsky & Pluess, 2009). The present findings that suggest that the

existence of an associative mechanism between the short 5-HTTLPR allele and right frontal 

asymmetry may suggest that the susceptible individuals carrying this dyad of susceptibility 

markers would be expected under adverse conditions, such as traumatic life events to be more 

vulnerable for the manifestation of maladaptive behaviours, but under positive environmental 

influences would be predicted to exhibit the better adaptation compared to individuals 

carrying the long uptake allele and exhibit relatively greater left asymmetry. This hypothesis 

requires further longitudinal investigation that will start early in life and will include the 

investigation of the environmental context that is necessary to be included on this equation.

Furthermore, the current findings suggest that carriers of two copies of the Long allele that is 

associated with high uptake of serotonin were manifesting a relatively more left frontal 

asymmetrypattern, which is associated with positive emotionality and approach-related 

behaviours. This pattern of findings is consistent with previous research that suggests that the 

presence of at least one 5-HTTLPR Long allele may serve as a protective factor against 

negative affectivity for affective psychopathologies (Bogdan et al., 2014; Hankin et al., 2011; 

Pluess et al., 2010).  However, there is evidence to suggest an association between relatively 

greater left frontal EEG asymmetry and increased rates of aggressive behaviours in children 

(e.g., Gatzke-Kopp, Jetha, & Segalowitz, 2014; Smith & Bell, 2010). To this end, the current 

aspect of findings need to be interpreted with extra caution and can only account as a first 

stage contribution on the neurobiological underpinnings of positive affectivity and protection. 

To test whether such speculation for a protection-related association between the presence of 



Variation in 5-HTTLPR Short/Long genotype modulates frontal EEG asymmetries in young children

117

two copies of the Long 5-HTTLPR allele and greater left asymmetry,it is critical for further 

studies to be conducted that will test the way in which adverse versus positive contexts may 

effect individuals with such different neurobiological profiles. 

The direction of the current results where a stable pattern of negativity of frontal EEG 

activation was evident for participants homozygous for the Short allele, is similar to that of 

previous -state dependent- EEG evidence in adults reporting an association between 

homozygocity in the Short allele and higher right frontal EEG activity in response to 

observing aversive film scenes (Papousek et al., 2013). In addition, the present finding is 

consistent with previous evidence from functional magnetic resonance imaging (fMRI) 

studies with older children reporting that the connectivity of the right superior medial frontal 

cortex during rest is particularly sensitive to 5-HTTLPR variations (Wiggins et al., 2012). The 

relationship between the serotonin transporter-linked polymorphic region (5-HTTLPR) and 

frontal activation in early childhood observed in the current study may help to bridge 

theexisting gap between the previously reported structural and functional MRI evidence on 

the effects of the 5-HTTLPR genotype and neural structures with lateralization of activity in 

the frontal lobe. This is the first study with young children to report 5-HTTLPR genotype 

effects in frontal EEG. Compared withrecent evidence in adults reporting small (Papousek et 

al., 2013) or absent effects (Bismark et al., 2010) of 5-HTTLPR in frontal EEG during rest, 

the present findings may be attributable to the fact that the current sample consists of 

unaffected young children, who are in an early developmental and neurobiological maturation 

stage of emotion regulation where, compared to adults, approach-withdraw related patterns of 

frontal brain activation may be influenced by minor environmental influences. Future cross-

sectional and longitudinal research, in which the same experimental paradigms and 

procedures are used with groups of individuals at different ages, will shed critical light on the 
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role of 5-HTTLPR genotypes in influencing state and trait indices of frontal EEG asymmetry, 

across development.

Limitations

Consistent across many neuroimaging genetic studies, one primary limitation of the present 

study is the small sample size. However, taken into account the time constrains for the 

completion of the study, as well as the restrictions associated with children’s age and ancestry, 

it is challenging to recruit a relatively large sample especially within one geographic location. 

Despite these constraints, the study was able to recruit a sample of 70 children. Furthermore, 

taken the very limited previous empirical studies on the field, the purpose of the current study 

was to examine the role of normal 5-HTTLPR genotype variations in functional brain 

activation in young children. Therefore, it was beyond the remit of the present study to 

investigate the same patterns of neurofunctional development in a group of atypically 

developing children. However, it is acknowledged that the results of the present empirical 

study can act as a springboard for future research in atypical development. In a similar vein, 

further research using a larger sample is required to further delineate the genetic factors that 

may drive the early precursors for these behaviours and the complex interactions between 

genes, brain, development, and behaviour.

In sum, the results of the current study suggest that two putative markers that relate to 

plasticity for behavioural outcomes, 5-HTTLPR genotype and frontal EEG hemispheric 

asymmetry, are related to one another during childhood. The current findings further open the 

possibility for a pathway from 5-HTTLPR-mediated differences in the availability of 

serotonin to risk versus protection against later psychological problems through frontal brain 

activity patterns that establish negativity and positivity-related cognitive-behavioural 

tendencies in childhood.
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CHAPTER 4

Genetic influences on the visual scanning of 

faces in young children

4.1. Preface

The previous chapter investigated the putative associations between frontal brain activation 

and a genotype that relates to serotonin uptake, providing evidence for mechanistic 

associations between these two independent markers that may link with plasticity for 

behavioural outcomes early in life. These research outputs may account as a first-stage 

contribution towards understanding the development of affectivity early in life. Aiming to 

further delineate the neurobiological underpinnings of early reactivity and its putative 

associations with the manifestation of problematic behaviours, the current chapter provides an 

overview of the current knowledge on the human visual scanning processes in response to 

emotional face stimuli and their relationship to human affectivity and problematic behaviours. 

To this end, in this prospective study, eye-tracking technology is employed, along with 

genetic investigations in candidate genes to investigate the neurobiological underpinnings of 

visual processing of faces in a group of typically developing young children.
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4.2. Development of Facial Emotion Recognition

Effective processing of vast amounts of the incoming information in our daily lives requires a 

range of cognitive skills, such as filtering of stimuli, timely disengagement from negative 

cues, as well alertness for best and most meaningful incoming cues to emotion (Beevers, 

Clasen, Stice & Schnyer, 2010). It has been previously suggested that cognitive processes 

involved in the modulation of visual scanning processes in response to emotions may have a 

particularly important impact on the development of early affectivity (Pine, Helfinstein, Bar-

Haim, Nelson & Fox, 2009). More specifically, there is evidence to suggest that difficulties to 

disengage from negative stimuli may also relate with emotion regulation problems (e.g., 

MacLeod, Rutherford, Campbell, Ebsworthy, & Holker, 2002). Interestingly, current models 

of emotion regulation incorporate a range of cognitive regulatory strategies that may assist 

effective emotion regulation, such as distraction of attention, selection of a specific 

environmental situation, as well as rumination (for a review see Gross et al., 2011; Gyurak, et 

al., 2011). As Gross (1998) highlights, an effective way for an individual to regulate his/her 

emotions is by shifting eye gaze to certain emotional stimuli in the environment. For instance, 

in face of a negative trigger some individuals may look away from the affective stimuli as a 

way to inhibit the arousal that the stimuli provokes to them, which may also help them to 

preserve positive emotionality  (e.g., Isaacowitz, 2005; Xing & Isaacowitz, 2006). 

In line with this concept, it has been suggested that biased processing of emotional stimuli is 

part of the intermediate phenotype for affective disorders (Hasler, Drevets & Charney, 2004), 

such as depression and anxiety (Gross & Munoz, 1995).  More specifically, there is evidence 

to suggest that atypicalities in the processing of facial emotions may relate with the increased 

manifestation of a range of social and affective symptoms (for a review see Bourke, Douglas 
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& Porter, 2010) but also cognitive deficits (Gotlib & Joormann, 2010) that are present in 

depressive symptomatology. Moreover, associated changes on the patters of processing facial 

emotions have been previously documented with effective prediction of treatment 

responsivity in major depressive disorder (Venn et al., 2005). Interestingly, a study shows that 

healthy female adults with a family history of depression as well as affected female 

participants, exhibit more problems inhibiting negative stimuli (i.e., latency of naming the 

colour of emotionally charged words) in an emotional Stroop paradigm (van Oostroom et al.,

2013), which may suggest that biases in affective processing may account as a trait 

characteristic that contributes to the onset of depressive disorders. 

There are several theoretical models that have been developed to measure reactivity in 

response to environmental stressors. It is believed that emotional stimuli in the environment 

may trigger immediate behavioural responses that can be recorded experimentally. Among the 

most widely used index to assess emotional affectivity in response to face in both child and 

adult literature, is eye movements. To this end, the employment of eye-tracking technologies 

has been shown to provide a reliable neuropsychological measure of affectivity in response to 

environmental stressors. In the following section, different models and corresponding studies 

are reviewed that have primarily employed eye-tracking techniques to measure affectivity in 

various populations.

4.2.1.   Measuring visual scanning behaviour

Over the last three decades, various theoretical concepts and experimental paradigms have 

been proposed and utilized in an effort to examine and compare visual scanning behaviour in 

anxious and healthy populations (Cisler & Koster, 2010). A typical finding in these studies is 
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that adults diagnosed with anxiety disorders exhibit a biased visual scanning tendency (often 

referred to as attentional bias) to orient toward threat-related stimuli (Bar-Haim et al., 2007; 

Armstrong, Olatunji, Sarawgi & Simmons, 2010; Buckner Maner & Schmidt, 2010; Koster, 

Verschuere, Crombez & Van Damme, 2005; Van Damme & Crombez, 2009). However, 

evidence from developmental studies has been relatively inconsistent (Mogg & Bradley, 

1998; Le Doux, 2000; for a review see Puliafico & Kendall, 2006; also see Shechner et al.,

2013). One possible explanation for this may be the fact that the effective control of visual 

processing is affected by known, but poorly understood, maturational effects in fronto-cortical 

circuits that undergo notable development during the late adolescent years (Hare, Tottenham, 

Davidson, Glover & Casey, 2005; Pessoa, 2010). 

Studies in recent years have employed eye-tracking methods as a reliable reference index of 

visual emotional preference to assess vigilance versus avoidance behaviour to emotional 

stimuli in various populations. The main aim in this area of inquiry is the investigation of the 

increase versus decrease in the orienting of visual processing, also known as vigilance-

avoidance (Mogg & Bradley, 1998), through the measurement of fixation time among 

different types of emotional stimuli (Armstrong, Olatunji, Sarawgi & Simmons, 2010; 

Weierich, Treat, & Hollingworth, 2008; for an overview see Duchowski, 2007). In eye-

tracking studies, among the most commonly used observations is the mean fixation duration, 

or dwell time, that has been used as a reliable index of individual differences in visual 

processing control (Colombo, Mitchell, Coldren & Freeseman, 1991). Compared with other 

behavioural motor-dependent tasks, that measure reaction time to detect probes (i.e., in the 

dot-probe task) or tasks that relate to colour-naming threat words (i.e., Stroop task), eye-

tracking has lower processing constraints (for a review see Puliafico & Kendall, 2006; also 

see Shechner et al., 2013) allowing the recording of fixations towards and away a stimuli in 
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ms (for a review see Bradley, Mogg, & Millar, 2000). As a result, maturational factors that 

may affect reaction time are likely to be reduced or controlled. Therefore, the employment of 

eye-tracking techniques to derive time-course of orienting biases and visual scanning 

pathways in youths may be a valuable method for the identification of early precursors that 

may relate to the manifestation of affective problems. 

At this stage, it is worth underlining that eye-tracking studies have examined additional 

patterns of eye movements over time, such as the mean proportion of fixations, number of 

fixations and average fixation duration(e.g., Gamble & Rapee, 2010; Garner et al., 2006), that 

can provide valuable information on the visual patterns of processing emotional information. 

In a similar vein, given the evidence that suggests that critical visual scanning information is 

included in segments of a second or longer (3-4 fixations in each second; Rayner, 1998), 

studies would be important to incorporate the analyses of multiple indexes on their visual 

scanning investigations 9. 

4.2.1.1. Theoretical concepts of visual scanning

Based on the negative selectivity hypothesis, it is suggested that anxious individuals exhibit a 

preferential orientation towards threatening stimuli (for a review see Ruiz-Caballero & 

Bermudez, 1997; Bradley et al., 2000). More specifically, behavioural (e.g., Vasey, Daleiden, 

Williams & Brown, 1995; Vasey, El-Hag & Daleiden, 1996; Watts & Weems, 2006) and eye-

tracking studies (Reid, Salmon & Lovibond, 2006) of anxious youth have provided support 

                                                            
9For the needs of the present study, and in line with the procedures of other eye-tracking studies with young 
populations (e.g., de Wit et al., 2008; Farzin, Rivera & Hessi, 2009), and especially to keep consistency with the 
study that employed similar paradigm on the laboratory where the present study was conducted (Crawford et al.,
2015), only overall time spent looking at emotional faces as well as on the additional regions of interest (RoIs) 
from the total dwell time have been calculated and reported.
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for the negative selectivity hypothesis, with a visual preference towards threatening stimuli to 

be evident for the affected populations, whereas other behavioural observations have reported 

a pattern of avoidance of threat in anxious youth (e.g., Mogg et al., 1997; Monk et al., 2006; 

Stirling, Eley & Clark, 2006). 

More recent accounts have suggested dual-stage processing of emotional stimuli, where 

anxious individuals are quicker in shifting their visual scanning orientation towards negatively 

valenced stimuli during early stages of processing (e.g. 0-500 ms) compared to controls, but 

in the later stages of processing (e.g. 1000-1500 ms) exhibit an avoidance pattern (Koster, De 

Raedt, Goeleven, Franck & Crombez, 2005). This model, known as the vigilance-avoidance 

model, is believed to represent the manifestation of automatic visual orienting to threat-related 

information, which is later followed by strategic avoidance of the affective stimuli, in an 

effort to suppress the negative arousal resulted from exposure to the negative stimuli (Mogg, 

Philippot & Bradley, 2004; for a recent review see Armstrong & Olatunji, 2012). A range of 

eye-tracking studies, have confirmed a vigilance-avoidance pattern of visual processing in 

adults with anxiety (Bar-Haim et al., 2007; Calvo & Avero, 2005) or anxiety traits  (Hermans, 

Vansteenwegen & Eelen,1999; Rohner, 2002), where other behavioural detection studies have 

failed to confirm such an association in anxious individuals (e.g., Bradley et al., 2000; 

Bradley, Falla & Hamilton.,1998).

Furthermore, eye-tracking studies in youth have been largely inconsistent to date. More 

specifically, in an eye-tracking study with younger children with social phobia between 5-12 

years of age, reported that vigilance versus avoidance pattern of looking angry faces was 

dependent on the degree of anxiety rates (Waters, Mogg, Bradley, & Pine, 2011). Moreover, 

other studies have reported avoidance of threat in anxious children, independently of their 
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behavioural rates (Monk et al., 2006; Stirling et al., 2006). Moreover, In-Albon et al. (2010) 

have reported that children with separation anxiety disorder, compared to controls, looked 

more at threatening/separation scenes after 1000ms of presentation, but looked away after 

3000ms of presentation. It has previously been suggested that methodological variations 

among different studies, such as samples with comorbid conditions, maturational procedures, 

and duration of stimuli presentation are potential explanations for the inconsistencies in the 

field (In-Albon et al., 2010, Puliafico & Kendall, 2006; Waters et al., 2008).

Interestingly, due to the importance of specific emotions on the facilitation of urgent 

responses in human behaviour, a line of research has been developed to explain the human 

behaviour in response to facial expressions of anger. 

4.2.2. The anger-superiority hypothesis

Due to the importance of the human face as an explicit signal to aggression and, subsequently, 

in detection of immediate social threat, the use of facial expressions of anger has become 

established in the field as a reliable index of early fear-related social affectivity. The 

corresponding ‘anger superiority hypothesis’ has thus emerged to highlight a documented 

pattern of preferential processing of angry faces versus facial expressions of other emotions 

(Hansen &Hansen, 1988; Holmes et al., 2009; Öhman, Juth & Lundqvist, 2010). 

Interestingly, the majority of the studies that have examined visual scanning of angry versus 

other emotional faces (i.e., sad) have agreed on the superiority in quicker speed of detection 

of angry faces compared to happy and neutral facial expressions (Fox & Damjanovic, 2006; 

Gilboa-Schechtman, Foa & Amir, 1999; Horstmann & Bauland, 2006; Lipp, Price & 

Tellegen, 2009; Öhman et al., 2010; Pinkham, Griffin, Baron, Sasson & Gur, 2010; Susa, 
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Pitica, Benga & Miclea, 2012). However, a smaller proportion of studies with adults have not 

confirmed systematic differences in the detection of angry compared to happy faces (e.g., 

Williams et al., 2005), or have reported inverse effects, suggesting the superiority of detection 

of happy faces (Calvo & Nummenmaa, 2008; Juth, Lundqvist, Karlsson  & Öhman, 2005; 

Öhman et al., 2010). Furthermore, it has been shown previously that individual differences in 

attention-related biases towards angry faces may contribute significantly to the maintenance 

of affective disorders.

4.2.2.1. Processing of facial expressions of aggression in affected populations

Among eye-tracking observations there is evidence to show that adults with social anxiety 

exhibit a pattern of vigilance-avoidance when scanning emotional faces, independently of the 

valence, compared to matched controls (Garner, Mogg & Bradley, 2006). In studies with 

anxious youth, behavioural studies exploring the time course of processing have shown that 

affected young individuals exhibited an increased looking preference towards angry facial 

expression during early stages of the stimulus presentation compared to non-anxious youth 

(for a review see Shechner et al., 2013). In addition, an eye-tracking study with young 

children and adolescents reported a vigilance-avoidance pattern of visual scanning of negative 

emotions independently of their anxiety symptomatology when processed emotional/neutral 

face pairs for 3s (Gamble & Rapee, 2009). Moreover, increased symptoms of social phobia 

have been found to be associated with misidentification of facial expressions of anger in 

young children (Battagglia et al., 2004). In sum, this evidence highlights that early in life 

neuropsychological patterns of affectivity may exist, that can be indexed my accessing the 

visual scanning patterns of individuals in response to environmental stressors.
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In addition to the visual scanning patterns of looking emotional faces, there is another line of 

research that has focused on the individual differences of looking facial features that are 

critical for the establishment of effective social interaction. More specifically, this literature 

investigates atypicalities on the visual scanning of features, especially the eyes and mouth 

region that is believed to represent a reliable index of social-related affectivity and withdraw-

related tendencies. 

4.2.2.2. Atypical Gaze towards Eyes and Mouth

Attending to the eyes region of faces has been highlighted as a critical component of

successful facial identification (Gold, Tadin, Cook & Blake, 2008), as well as for the 

detection and classification of another individual’s facial emotions and intentions (Baron-

Cohen, Wheelwright & Jolliffe, 1997). Healthy individuals have been observed to first fixate 

on the eyes, and to subsequently spend relatively more time looking at the eye region 

compared with the mouth region of the face (for a review see Itier & Batty, 2009). 

Interestingly, avoidance of looking the eye region of angry faces has been reported by eye-

tracking studies with adults with social anxiety (Horley, Williams, Gonsalvez & Gordon, 

2004; for a review see Crozier & Alden, 2005). However, other studies, specifically 

examining socially anxious women, have reported the inverse results (Wieser, Pauli, Alpers & 

Muhlberger, 2009). 

Interestingly, studies employing simultaneous fMRI and eye-tracking methods, reported that 

amygdala hyper-responsiveness was associated with gaze orientation toward the eye region 

when processing fearful faces (Gamer, Zurowskia & Büchela, 2010; Gamer & Buchel, 2009). 

Moreover, a line of eye-tracking research with children with autism has found that compared 
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to typical controls, children diagnosed with autism spent more time looking at the mouth 

region than the eyes during the scanning of negative only (e.g., de Wit, Falck-Ytter & von 

Hofsten, 2008). Emerging research has also highlighted atypical looking to the eye region of 

faces in individuals with Fragile X syndrome, a genetically defined neurodevelopmental 

disorder associated with social and communication impairments, and social anxiety 

(Crawford, Moss, Anderson, Oliver & McCleery, 2015; see also Farzin et al., 2009; Dalton et 

al, 2008; Holsen et al., 2008). Together, this evidence suggest a link between negative 

affectivity and looking the eyes versus mouth region of human faces, although, todate, has not 

yet been established whether these behavioural manifestations may represent disorder-specific 

phenotypes or not.

Beyond the behavioural personality characteristics that may relate to emotion regulation 

abilities, there is a line of research that has been investigating the neurobiological 

underpinning of emotion regulation and affectivity. Based on this line of research, normal 

variations in candidate genes that relate to effective emotion regulation may explain the 

individual differences observed in reactivity in response to environmental stressors, especially 

those with social significance. In the following section, the function of two genetic 

polymorphisms in relation emotion reactivity in response to facial emotions is discussed.

4.2.3. Genetics of Emotion Face Processing

4.2.3.1. Brain-derived Neurotropic Factor and Emotional Processing 

BDNF is a secreted protein present in the human brain that has been reported to mediate 

affective responses to emotional stimuli. BDNF is part of the neurotrophin growth factor 
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family and has been observed to be involved in the regulation of survival and differentiation 

of neurons, as well as synaptic plasticity (Lu, 2003).  In both developing and mature brains, 

BDNF is expressed at high levels in the Prefrontal Cortex and the hippocampus (Lu & 

Gottschalk, 2000; Pezawas et al., 2004), and acts as an important factor for the development 

and plasticity of the central nervous system (Chao, 2003; Huang & Reichardt, 2001; for a 

review see also Murray & Holmes, 2011). More specifically, BDNF has a range of diverse 

actions with evidence to illustrate its influence on axonal and dendritic remodeling (e.g., 

Yacoubian & Lo, 2000), synaptic efficacy (e.g., Kafitz et al., 1999) and synaptogenesis 

(Alsina et al., 2001). Moreover, BDNF has been shown to have vital involvement in learning 

and memory (e.g., Broad et al., 2002).

Most notably, the BDNF Single Nucleotide Polymorphism Val66Met results in a change from 

Guanine (G) to Adenine (A) at nucleotide position 196 in the protein coding sequence of the 

gene, as well as subsequent change in amino acid from valine to methionine at position 66 

(rs6265).  This leads to decreased availability of BDNF in the brain due to decreased secretion 

of the variant form of BDNF (Egan et al., 2003). In addition, there are various reports that 

suggest that Val66Met is involved in shaping the developmental trajectories of particular brain 

structures, including the hippocampus, amygdala, and anterior cingulate cortex, which have 

each been implicated in emotional regulation and affective processing (e.g., Joffe et al., 2009; 

Lang et al., 2007; Van Wingen et al., 2010). In consistent, structural and functional magnetic 

resonance imaging (MRI) studies, have shown that BDNF Val66Met Met allele was linked to 

smaller hippocampal volumes when compared to subjects homozygous for the Val allele (e.g., 

Pezawas et al., 2004), as well as with differences to hippocampal activation (e.g., Egan et al.,

2003). Similarly, in a study with adults Val/Val individuals were observed to preferentially 
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seek positive emotions (e.g. happy faces) and have stronger regional fMRI activation over the 

orbitofrontal cortex, amygdala, and hippocampus regions in response to aversive stimuli 

(Gasic et al., 2009).

Moreover, there has been increasing scientific consensus in recent years to support the 

involvement of BDNF Val66Met variants in modulating behaviour, including stress reactivity 

and depressive symptomatology. For example, the presence of the low activity Met allele of 

the Val66Met SNP has been examined for associations with affective psychopathology (Egan 

et al., 2003; Gatt et al., 2009; Xie et al., 2012), whereas individual homozygous for the Val 

allele exhibit behaviours that have been associated with protection-related mechanisms 

against forms of psychopathology (e.g., Zhang et al., 2014). Similarly, a recent study 

employing a spatial cueing task observed that Met allele carriers had greater difficulty in 

turning attention away when viewing positive cueing words, as recorded by the speed of key 

pressing, compared with Val allele homozygotes (Gong et al., 2013). This finding was 

interpreted as a practice to disengage from negative stimuli in Met allele carriers, as a way to 

reduce the arousal that the negative stimuli induced to the individual.  

Studies of children have produced results that suggest that the BDNF Met allele may act as a 

vulnerability factor for affective disorders (e.g., Beevers, Wells & McGeary, 2009), especially 

in combination with early life stressors (Gatt et al., 2009). In a recent study a gene–

environment interaction was observed, whereby children who teamed up with aggressive 

peers in childhood showed significantly increased vulnerability for becoming aggressive 

during adolescence if they were carriers of the Met allele, compared with Val homozygotes 

(Kretschmer, Vitaro & Barker, 2014). Similarly, BDNF Met allele carriers with a history of 
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childhood stressful life events have been found to reduce grey matter volume (Gerritsen et al.,

2011; Scharinger, Rabl, Sitte & Pezawas,2010) and to show greater neural responses during 

emotion-processing tasks, when compared with Val homozygotes (Montag et al., 2008; 

Schofield et al., 2009; Lau et al., 2010).

Despite these results, however, there are some controversies in the literature regarding BDNF 

Val66Met still remain (for a recent review see Groves, 2007). Most notably, there is evidence 

to suggest the existence of differential susceptibility in carriers of the low neuroplasticity Met 

allele, where institutionalised children carrying at least one copy of the low uptake BDNF Met 

allele and two copies of the low serotonin uptake 5-HTTLPR Short allele exhibited most 

indiscriminate behaviour when placed in the usual caring environment but the least 

indiscriminative in enhanced caring environment (e.g., Drury et al., 2012). To this end, 

depending on the environmental influence, some individuals may be affected 

disproportionately to both positive and negative life experiences, which may result greater 

responsivity to adversity but also to positive environmental conditions (e.g., Ellis, et al., 2011; 

see also Section 1.4.1.1).

4.2.3.2.   Serotonin Transporter and emotional processing

In addition to the role of neuroplasticity in affective response to emotional faces, associations 

between common genetic variation in the serotonin transporter gene (5-HTT) and individual 

differences in visual scanning of emotional faces also exist (e.g. Battaglia et al., 2005; Lau et 

al., 2009). 5-HTT has been documented to be involved in emotion regulation abilities, by 

influencing the availability and signalling of serotonin over the pre- and post-synaptic 

receptors that are mainly located in neurons in affective corticolimbic circuitry (for a review 
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see Hariri & Holmes, 2006; see also Section 3.2.1.1). This polymorphism is represented by 

two variants: a short (S) allele; and a long (L) allele, with the Short allele associated with 

significant decreases in serotonin reuptake (Lesch et al., 1996). In combination with the 

exposure to life-threatening situations, individuals carrying at least one copy of the Short 

allele have been reported to be at increased vulnerability for negative cognitive, behavioural, 

and neurophysiological outcomes (Caspi et al., 2003; Disner et al., 2013; Mercer et al., 2012; 

Xie et al., 2009). 

A recent meta-analysis has also shown a strong association between the Short allele and 

increased amygdala reactivity in response to angry or fearful facial expressions, suggesting a 

reliable influence of the polymorphic region on corticolimbic circuitry and subsequently in 

human emotion regulation behaviour (Munafo, Brown, & Hariri, 2008; Carver, Johnson, & 

Joormann, 2009). Interestingly, a recent eye-tracking study was shown that the low serotonin 

uptake 5-HTTLPR genotype exhibited greater accuracy of classifying emotional faces (Boll & 

Gamer, 2014). From a developmental perspective, children as young as 9 years of age 

carrying the Short 5-HTTLPR allele have been found to exhibit greater neural activation in 

response to fearful and angry faces than children homozygous for the Long allele, in various 

brain regions previously linked to attentional control in adults (Thomason et al., 2010). In line 

with this neurophysiological evidence, a range of behavioural studies in both children and 

adults have measured behavioural reaction times, and reported that the presence of two copies 

of the high activity Long 5-HTTLPR allele is associated with positive affectivity (shorter 

reaction times) toward happy facial stimuli compared with neutral facial stimuli, whereas 

carriers of the Short allele with elevated reactivity (for a review see Homberg & Lesch, 2010). 

Although, these studies are consistent with the notion that the 5-HTTLPR Short allele is 

associated with high reactivity in response to negative stimuli, there is currently limited 
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information regarding the particular characteristics and nature of the critical visual behaviours 

associated with the processing of these types of stimuli in young populations.

However, there are studies that highlight that the serotonin-transporter 5-HTTLPR 

polymorphism does not only associated with increased vulnerability to contextual risk but, 

under positive circumstances, may relate to disproportionate positive response, that may 

provide a plasticity-related function to the Short allele (Belsky et al., 2009; Belsky & Pluess, 

2009; Homberg & Lesch, 2011; see also Section 3.2.1.1). In line with this concept, there is 

evidence to support that carriers of the Short 5-HTTLPR allele have difficulty disengaging 

from both negative and positive emotional stimuli (Beevers, Wells, Ellis & McGeary, 2009; 

Beevers, Ellis, Wells & McGeary, 2010; Perez-edgar et al., 2010) which has been previously 

conceptualised as a behavioural hypervigilance pattern in this genotype group, in response to 

environmental stimuli (for a review see also Homberg & Lesch, 2011). Moreover, in 

experimental studies, it has been also reported that the Short 5-HTTLPR allele presented 

strong biases towards positive and negative emotional stimuli (Fox et al., 2011; Beevers et al.,

2009, 2010). To this end, increased sensitivity to negative stimuli to this genotype group may 

be linked to increased vulnerability for affective problems, whereas sensitivity for positive 

stimuli may potentially ameliorate risk (Belsky et al. 2005; see also Section 3.2.1). 
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4.3. The current study

The current study utilized eye-tracking technology in order to examine the potential role of 

common genetic variation in candidate genes for influencing the processing of faces in 

children aged 4 and 7 years. To this end, face stimuli expressing different emotions 

(NimStim; Tottenham et al., 2009) were presented, including aggressive, happy, and neutral 

facial expressions. Eye gaze indices of automatic visual orientation in response to different 

emotional expressions, were examined alongside normal variations in genes associated with 

neural/environmental plasticity (i.e. BDNF Val158Met) and those involved in social-emotional 

regulation (i.e. 5-HTTLPR). In addition, parent report measures of the children’s rates of early 

behavioural problems were employed in an effort to examine how early rates of affective 

problems (i.e., elevated rates of internalizing/externalizing problems; empathic abilities) may 

contribute to these affect-related behaviour patterns.  Through these methods, the current 

study aimed to provide novel insights into how genetically-mediated neural plasticity and 

socio-emotional genetic mechanisms might modulate emotional reactivity in response to 

different emotional cues. 

4.3.1. Aim 1: To examine the behavioural associations of socio-emotional abilities with 
the processing of emotional faces

The present study aims to investigate the associations between the development of early 

affective traits and the experience of positive or negative affectivity in young children. The 

study is employing eye-tracking technologies, along with ecologically valid and reliable 

parent report measures to assess children’ s early rates of affective problems. Throughout this 

investigation, is also investigated the time course of visual scanning of emotional faces by 



Genetic influences on the visual scanning of faces in young children

135

analysing data from eye gazes towards and away happy and angry faces at different time 

points. 

4.3.2. Aim 2: To investigate genetic influences on fixation patterns in response to 
emotional faces

There has been increasing scientific consensus in recent years that suggests an association 

between affective responses to emotional faces and the neurobiological underpinning of 

variations in these behaviours, as a reliable endophenotype for current or later maladaptive 

behaviour. However, to date, there has been very limited evidence on the genetic influences 

on these behaviours in children. The present study aims to further delineate the role of normal 

genetic variations on the neuroplasticity-related BDNF Val66Met SNP in modulating the 

fixation duration in response to emotional faces during early childhood. Furthermore, the role 

of the serotonin uptake 5-HTTLPR genotype on the visual scanning of emotional faces is also 

investigated.

4.3.3. Aim 3: To investigate genetic influences on fixation patterns in response to facial 
features

A supplementary aim of the study involves the investigation of the putative link between 

variations on the BDNF Val66Met and 5-HTTLPR genotype and eye gazes towards the eye 

and mouth regions of neutral faces and their corresponding associations with the early 

manifestation of social deficits and negative affectivity in general. Eye gaze in eye and mouth 

regions were calculated from relative fixation duration of looking the neutral faces. In 

addition, due to the fact that seventy out of eighty experimental trials were 
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baseline/habituation neutral face pairs, the use of these trials for these analyses were chosen as 

the most representative of the under measure eye gaze behaviour. 

4.3.4. Hypotheses

Three main hypotheses were tested as part of this study. Taking into account previous 

evidence to suggest vigilance-avoidance patterns of visual scanning of emotional information 

in young children with social phobia (In-Albon et al., 2010) it was hypothesised that 

behavioural measures of elevated rates of early behavioural problems, and more specifically 

anxiety traits, would be significantly correlated with vigilance-avoidance patterns of visual 

scanning of angry, but not happy facial expressions. 

Moreover, considering the evidence suggesting a moderating role of the BDNF Val66Met for 

emotional reactivity (Montag et al., 2008; Schofield et al., 2009; Lau et al., 2010), an 

additional hypothesis of the study was related to this genotype’s effect in modulating visual 

scanning of emotional faces. More specifically, it was hypothesised that carriers of the low 

neuroplasticity Met BDNF allele, when compared to children carrying two copies of the high 

activity Val allele, would exhibit vigilance-avoidance patterns in the time spent looking 

toward the facial expressions of anger. Furthermore, taking into account evidence suggesting 

modulation of reactivity in response to facial emotions by 5-HTTLPR genotype (Thomason et 

al., 2010), it was hypothesized that carriers of at least one low serotonin uptake 5-HTTLPR 

Short allele would similarly display vigilance–avoidance pattern in response to angry facial 

expression. 
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For the third hypothesis of the study was taken into account recent evidence that suggested the 

existence of avoidance-related patterns of attention towards the eyes in atypically developing 

populations (Crawford, et al., 2015; see also Farzin et al., 2009; Dalton et al, 2008; Holsen et 

al., 2008), and the evidence that suggest the existence of high reactivity in carriers of the 

Short 5-HTTLPR (Thomason et al., 2010) and Met- BDNF allele (e.g. Montag et al., 2008; 

Schofield et al., 2009; Lau et al., 2010). Therefore, the third hypothesis was that carriers of at 

least one 5-HTTLPR Short allele would spent significantly less time looking at the eyes 

versus the mouth region of neutral face pairs, compared with the high serotonin uptake 

Long/Long genotype. Finally, was tested the hypothesis that carriers of at least one low 

plasticity-related BDNF Met allele would similarly spent less time looking at the eyes versus 

the mouth of neutral face pairs, compared with individuals homozygous for the Val allele. 

As reviewed earlier, the stimuli durations have been previously considered as a potential 

factor accounting for these patterns of visual scanning (In-Albon et al., 2010, Puliafico & 

Kendall, 2006; Waters et al., 2008). To this end, and taken the absence of previous evidence 

from child studies directly examining these areas of inquiry, the direction of the hypotheses of 

the study was determined based on the previous studies that employed similar experimental 

design and conducted investigations with young children at the same age (e.g., Crawford, et 

al., 2015; Farzin et al., 2009).
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4.4. Methods and Materials

4.4.1. Participants

Forty-nine children from Caucasian ancestry participated in the study (24 males; 25 females; 

Mean age in months = 70.8, SD = 11.5, age range 4-7 years of age). Power analysis suggested 

that the sample size required to achieve a power of 1-β = 0.90 for the ANOVA test at 

significance level α = 0.050 requires at least 33 participants. All the children participated in 

the present study have been invited from the pool of 70 children that have participated in the 

study presented in the study presented in Chapter 3. This was done due to the study’s 

hypotheses, but also due to the prior availability of the genotype information for this sample. 

Parents or guardians of all participants reported that the child had no history of a neurological 

or psychiatric disorder and that they had normal or corrected to normal vision. Exclusion 

criterion included if participants scored below a certain range (IQ < 75) on the British Ability 

Scales II, Early years (BAS-II; Elliot, Smith, & McCulloch, 1996), a standardised assessment 

of intelligence/developmental age and abilities. No participants met this exclusion criterion 

(see Table 4.2). All participants had English as their first language. Informed written consent 

was obtained from the parents/guardians of all participants before participating in the study. In 

addition, children aged 7 provided written assent to participate in the study. Families who 

expressed interest in the study were scheduled to attend a laboratory intake appointment. 

Families were provided with compensation of £10 towards their travel expenses. Ethical 

consent was gained from the University of Birmingham Ethical Committee.

4.4.2. Data collection procedures

Children were told that they are going to see a range of interesting photos on a computer 
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screen, while a special camera recorded their eye movements. The eye-tracking and parent 

report assessments took place during one laboratory visit.

4.4.2.1. Behavioural Measures

For the assessment of children’s cognitive ability the BAS-II, Early Years was employed (see 

also Section 2.4.2.1). Taken that the children who consisted the sample have undergone a 

BAS-II assessment as part of the study presented on Chapter 3 which took place in a period 

between 6-8 months before the occurrence of the present study, the data from the initial BAS-

II assessment and the corresponding age-equivalent abilities are reported here. Although there 

is no straight forward practice in the literature about a safe minimum between assessments, 

that may vary based on individual circumstance and each child’s abilities, the decision not to 

repeat the assessment within this time window in the present study, is in line with the BAS-II 

manual’s recommendations, suggesting a gap of more than 6 months gap between repeat 

assessments (Elliot et al., 1996). This is also congruent with recent longitudinal evidence 

suggesting high stability of IQ measured at the age of 4 within shorter interval during early 

childhood (i.e., up to the age of 7; Schneider, Niklas & Schmiedeler, 2014)

4.4.2.2. Measures of behavioural problems

For the assessment of children's rates of behavioural problems the CBCL scales were used 

(Achenbach & Rescorla, 2001). Both the Early Years (for children between 1 ½ - 5 years of 

age) and School Age (children and adolescents aged 6–18 years) versions were used here (see 

Sections 2.4.2.2 and 3.4.2.2). For the assessment of autism symptomatology rates the Social 

Communication Questionnaire-Lifetime Edition was completed by parents (SCQ; Rutter et 
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al., 2003; see Section 2.4.2.1 for details on the measure). 

4.4.2.3.   Eye-tracking assessment
Stimuli

A total of 80 trials of coloured happy-neutral, angry-neutral and neutral-neutral face pairs 

constructed the experiment. All the face stimuli were selected from the MacBrain Face 

Stimulus Set1 (Tottenham et al., 2009) and were matched in terms of gender, race and age. 

Available validity data for the MacBrain Face Stimulus Set in both children and adults have 

been reported high inter-rater agreement for the emotion that is displayed in these facial 

expressions (Tottenham et al., 2009). Pairs of faces were presented simultaneously side-by-

side, with emotional faces presented equally on the right and the left side of the screen. In 

order to determine whether increased or reduced fixation duration towards the emotional faces 

(critical trials) resulted from heightened orientation, difficulty in disengaging from emotional 

stimuli, or both, the experiment was constructed using baseline neutral-neutral face pair trials 

(baseline; N = 70), and critical trials of emotional-neutral face trails (i.e. 5 Angry-Neutral 

Pairs; 5 Happy-Neutral Pairs; N = 10). 

The experiment started with seven baseline trials (pairs of neutral-neutral faces), where at 

least four baseline trials were presented between the critical trials (pairs of emotional-neutral 

faces). Baseline and critical trials were pseudorandomly allocated across the experiment in 

line with previous behavioural studies (e.g., Arndt & Fujiwara, 2012; Crawford et al., in 

press; Mogg et al., 2004; Salemink, van den Hout & Kindt, 2007). The eye-tracking 

experiment was programmed using Experiment Builder software for EyeLink (SR research, 

Ontario, Canada). The facial stimuli consisted of 38 colour photographs of male and female 
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faces10 (1024 × 768 pixels) depicting one of three expressions (neutral, happy, and angry). 

Although some of the neutral face pairs were repeated across the experiment, the neutral face 

stimuli used during the critical trials were not used elsewhere during the experiment. 

Therefore, face familiarity did not affect face preferences during critical trials

Each trial began with a fixation point (in the shape of an animated dolphin), measuring 2.81 × 

2.08 degrees of visual angle in the middle of the screen which was displayed for 1000 ms 

(except in the case of mini calibration; see Procedure section). This was followed by a pair of 

faces presented side by side in a white background for 2500 ms. The inter trial interval was 

1000 ms (see Figure 1).  The gap between the two faces was 7.2 degrees of visual angle. Each 

stimuli pair was presented with a visual angle of 14.3 × 18.6 degrees. 

Procedure

Participants' eye movements were recorded using an Eyelink 1000 Tower Mount eye-tracking 

system and the stimuli were presented on a 19-inch CRT with a resolution of 1024 × 768 

pixels. The eye-tracker sampled eye position at 500 Hz (i.e. every 2 ms). Average spatial 

accuracy is between 0.25° and 0.5° of visual angle. Participants were seated in a dimly lit 

room, 60 cm away from the display screen and they had their head positioned against a head 

rest and their chin placed on a chinrest to minimize the possibility of movements. Viewing 

was binocular, but only data from the right eye were collected. 

                                                            
10 The MacBrain Face stimuli that used here are as follow: Angry Faces: 01F, 05F, 06F, 20M, 22M; 
Happy Faces: 08F, 11F, 12F, 24M, 26M; Neutral Faces: 02F, 03F, 07F, 09F, 10F,13F, 14F, 15F, 16F, 
17F, 18F, 19F, 21M, 23M, 25M, 28M, 29M,  30M, 31M, 32M, 33M, 34M, 35M, 36M, 37M, 38M.
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Figure 4.1. An example of the face stimuli pairs used in the eye-tracking experiment and an 
illustration of a trial structure.

               

During calibration the EyeLink recorded the eye position at 5 target locations, providing the 

required reference data for computing gaze positions to ensure a point of fixation error rate of 

less than 0.5 degrees. A mini calibration was repeated every 5 trials in order to ensure that eye 

movement data were adjusted for small-scale movement of the head. In the case of 

unsatisfactory eye-tracking, a 5-point calibration was repeated.
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4.5. Analysis

4.5.1. Analysis of Behavioural Data

The procedures for analysing the CBCL and BAS-II scores were the same as described on 

Sections 2.5.1 and 3.5.1. 

4.5.2. Reduction of Eye-tracking data

Fixations were calculated using the EyeLink online detection analysis algorithm when eye 

movement met the following four criteria: a) velocity threshold of 30 ˚/sec,  b) a motion 

threshold of .1˚,  c), a 8000 ˚/sec2 acceleration threshold,  d) and the pupil was not missing 

consecutively for three or more times from a sample 11. Trials were classified as ‘invalid’ if a 

child did not look at all at the faces during the trial. In addition, if more than 40% invalid 

trials were evident the participant’s data were excluded from further analyses. No participant 

met this exclusion criterion; therefore, all 49 participants provided valid eye-tracking data.

For analyses, each 2500 ms trial was divided into five 500 ms intervals. The relative mean 

proportions of viewing time for the angry and happy faces were then calculated for each 500 

ms time interval of watching during the critical trials. This was done by subtracting the 

overall dwell time of the neutral stimuli (for each critical trial) from the overall dwell time 

                                                            
11The EyeLink 1000 parser is available from SR Research and is designed for on-line, accurate identification of 
saccades and blinks.  The parser computes velocity and acceleration of the eye data and these are compared to 
the prespecified thresholds that ensure accuracy of the observations. More specifically, the velocity threshold is 
the velocity that an eye-movement needs to exceed in order for a saccade to be accurately detected, that is 
especially useful for the detection of small saccades. Acceleration data is noisier than velocity data, and 
thresholds of and 8000°/sec2 for cognitive research is recommended. Finally, the saccadic motion threshold is 
used to delay the onset of a saccade until the eye has moved significantly, with a threshold of 0.1° to 0.2° to be 
suggested to be sufficient for shortening saccades (SR Research).
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looking at the emotional (happy or angry) face. In addition, this was done separately for each 

subject and for each happy and angry critical trial. Average dwell time of looking for each 

emotion type (i.e., angry, happy) was later calculated for each subject. Two additional regions 

of interest (RoIs) for the eyes and mouth region were identified. For this analysis, the neutral 

only/baseline pairs were used, where the coordinates of gaze for each eye as well as the mouth 

region were identified and extracted using the EyeLink Data viewer software. The overall 

amount of time spent (in ms) looking at the eye and mouth regions was divided by the amount 

of time spent (in ms) looking at the whole neutral face. This was done separately for each 

neutral baseline trial (for the overall 2500 ms), and then averaged across the baseline trials for 

each participant.

For both of these analyses, after the subtraction positive values represented a visual 

preference for the emotionally expressive face (versus neutral) or facial feature and negative 

values represented visual patterns that relate to avoidance behaviour for the emotionally 

expressive face (versus neutral) or facial feature.

4.5.3. Analysis of Genetic Material

4.5.3.1. BDNF Genotyping

Direct bidirectional sequencing was used to genotype the single nucleotide polymorphism 

within the BDNF gene (rs6265). PCR primers were designed to flank the polymorphism 

producing a 249bp amplification product. Sequences of the primers are as follows: forward 

AAACATCCGAGGACAAGGTG and reverse AGAAGAGGAGGCTCCAAAGG. PCR was 

performed using Megamix PCR solution (supplied by Microzone UK Ltd) in a total volume 

of 25ul containing 25pmol of each primer. An initial denaturation step at 95ºC for 5 minutes 
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was followed by 30 cycles of PCR (95ºC 1 minute, 58ºC 1 minute, 72ºC 1 minute) and then a 

final extension at 72ºC for 10 minutes. PCR products were purified and sequenced as 

described for the 5-HTTLPR genotyping (see section 3.5.3.1). 

Allele frequencies for the BDNF Val66Met was n = 24 (25.5 %) for Mel alleles and n = 74 

(75.5 %) for Met alleles respectively. To this end, three genotype groups resulted; one with 

Met allele homozygotes (i.e. M/M; N = 3), heterozygotes V/M (N = 18), as well as 

homozygotes for the Val allele (i.e. V/V; N = 28). BDNF Val66Met genotype frequencies 

where in Hardy-Weinberg equilibrium [x2 (1) = .002, p = .962] as calculated with a reliable 

online tool that can be found here:

http://www.tufts.edu/~mcourt01/Documents/Court%20lab%20%20HW%20calculator.xls. 

However, taken the small sample of participants homozygous for the low activity Met allele 

(N = 3) and the previous evidence associating the presence of at least one Met activity with 

behavioural outcomes (e.g., Wichers et al., 2008) here carriers of at least one Met allele [i.e. 

Heterozygotes (Met/Val), and Homozygotes for the Met allele (Met/Met), were grouped in 

one ‘Met allele carriers’ group (i.e. M/-). Additional classifications with three genotype 

groups where also employed (i.e. V/V versus V/M versus M/M).

4.5.3.2.   5-HTTLPR Genotyping

The procedures for the 5-HTTLPR genotype preparation and DNA extraction are identical as 

presented on section 3.5.3.1). Allele frequencies across participants for 5-HTTLPR was n = 

42 (42.8 %) for Short allele and n = 56 (57.2%) for Long Allele. To this end three genotype 

groups where resulted, one with Short allele homozygotes (i.e. S/S; N = 10), heterozygotes 

L/S (N = 22), as well as homozygotes for the Long allele (i.e. L/L; N = 17). 5-HTTLPR 
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genotype frequencies where in Hardy-Weinberg equilibrium [x2 (1) = .340, p = .559] as 

calculated with a reliable online tool that can be found here: 

http://www.tufts.edu/~mcourt01/Documents/Court%20lab%20%20HW%20calculator.xls. 

Similar to the BDNF Val66Met genotype, carriers of at least one Short allele [i.e. 

Heterozygotes (S/L), and Homozygotes for the Short allele (S/S), were grouped in one ‘Short 

allele carriers’ group (i.e. S/-; N = 32) and compared with the remaining homozygous 

participants for the high serotonin uptake Long allele (L/L; N = 17). Additional classifications 

with three genotype groups where also employed (i.e. L/L versus L/S versus S/S).

4.5.4. Statistical Analysis

Preliminary Analyses

Descriptive statistics were conducted in order to describe the sample’s demographic 

characteristics such as, gender, age, and distribution of cognitive abilities. Raw data from the 

behavioural and cognitive scales were examined for normality using Kolmogorov–Smirnov 

tests. The CBCL subscales did not met criteria for normal distributions (Kolmogorov–

Smirnov, p < .005). Therefore, to further examine possible correlations between age, gender, 

IQ, and scores on the behavioural measures, Spearman’s Rho non-parametric correlations 

coefficients tests were performed. Moreover, Pearson correlation analyses were conducted to 

determine if a correlation among demographic characteristics or cognitive performance and 

genotype group was evident, and Spearman correlation analyses were conducted to 

investigate possible correlations between BDNF Val66Met and 5-HTTLPR Genotypes and 

demographic, cognitive, and rates of affective problems in the sample.
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Behavioural Ratings and Eye Gaze Patterns

The primary analysis examined whether children’s behavioural scores were correlated with 

fixation duration towards particular emotional faces at each time point, and fixation duration 

towards facial features. For the cognitive abilities (BAS-II) measures, mean standardized IQ-

scores were calculated. Furthermore, correlation analyses were conducted to investigate 

possible correlations between dwell time looking at the emotional faces and participants’ 

demographic characteristics for each emotion and face feature separately. Furthermore, in the 

case of significant correlations between scanning pathways and behavioural rates, backward 

elimination regression analysis was utilized to assess the specificity of the behavioural rates to 

predict visual scanning pathways in beyond participants’ age, gender and IQ.

Genetics and visual scanning of faces

To assess the looking preference towards and away from the emotional faces, the overall 

dwell time spent fixating on the emotional face minus the overall dwell time spent fixating on 

the accompanying neutral face was computed for 5 time intervals (dependent variables): 0-

500 ms (T1), 501-1000 ms (T2), 1001-1500 ms (T3), 1501-2000 ms (T4), and 2001-2500 ms 

(T5). A 2 (Emotion: positive vs. negative) × 5 (Time: 0-500 ms vs. 501-1000 ms vs. 1001-

1500 ms vs. 1501-2000 ms vs. 2001-2500 ms) mixed ANOVA with Gender (female, male) 

and Genotype (BDNF V/V versus M/-) as between-groups variables was conducted. The same 

analysis was repeated separately with different BDNF genotype classification (i.e. M/M 

versus M/V versus V/V), as well as with the three 5-HTTLPR genotype (S/S versus S/L 

versus L/L) as between-groups factor as a control comparison. All within subjects effects that 

violated the assumption of sphericity (Mauchly’s test of sphericity p > 0.05) were adjusted 
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using the Greenhouse-Geisser correction. To further evaluate the time course of attention, 

independent samples t-tests were conducted to determine whether there was a looking 

preference towards or away from the emotional images of a specific genotype group at any of 

the 500 ms time intervals. This was done for each SNP (BDNF Val66Met and 5-HTTLPR) and 

each facial expression (happy and angry), separately, after the initial ANOVA. When the data 

did not satisfy Kolmogorov-Smirnov tests for normality, Mann-Whitney U tests were 

performed instead of t-tests. 

Furthermore, to investigate looking preference towards the eye and mouth regions, a separate 

two-way mixed ANOVA with the repeated factor RoI (i.e., eyes, mouth) and genotype group 

(i.e. S/- versus L/L) and gender as independent factor was conducted to examine gaze 

behaviour for each face region for the baseline trials only (neutral-neutral face pairs). 

Moreover, the same analysis was repeated with the three 5-HTTLPR genotype (S/S versus 

S/L versus L/L).  Finally, as a control analysis the same analysis was repeated with two (i.e., 

M/- versus V/V) but also three BDNF genotype classification (i.e. M/M versus M/V versus 

V/V). After the omnibus ANOVA, and because eye gaze data were non normally distributed, a 

Mann-Whitney U test was conducted, to investigate the 5-HTTLPR genotype effects on the 

overall viewing time for the eyes and mouth region respectively. The statistical software 

package SPSS 20.0 was used for all the analyses.
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4.6. Results

4.6.1. Demographic Characteristics

Tables 4.1 and 4.2 present the participants’ main demographic characteristics, including 

gender, age, and cognitive ability. Correlation analyses did not reveal any significant 

correlation between demographic characteristics and behavioural measures, or correlations 

between demographics, rates of early behavioural problems and genotype. Moreover, t-tests 

showed that the two 5-HTTLPR genotype groups did not differ in terms of Age [t(47) = -.037, 

p =.971], Gender [t(47) = .994 , p =.325], IQ [t(47) = -1.17, p = .245], developmental age 

[t(47) = -.245 , p = .808], or other behavioural measures. Similarly, the two BDNF Val66Met 

genotype groups did not differ in terms of Age [t(47) =  .000, p = 1.00], Gender [t(47) = .162 , 

p = .872], IQ [t(47) = -.427, p =.671], or developmental age [t(47) = -.223, p = .824].

Table 4.1. Sample size and demographic characteristics of sample.

N 49

Gender % Male (N)
% Female (N)

48.9 (24)
   51.1 (25)

Handedness % Right(N)
% Left(N)

77.3(39)
22.7(10)

SCQ
Total Score

Mean(SD)
Range

3.63(2.77)
       0-12    

BAS-II
Total Score

%Below Av.
% Average

%Above Av.
% High

        3.8
65.4
25.0
5.8

Moreover, task engagement was calculated by subtracting the relative looking time away from 

the areas of the stimuli from the time looking the face stimuli. This analysis shows that 
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participants spent consistently more than 60% of the time looking the face stimuli [M(SD) = 

0.63 (0.24)] and a Mann-Whitney U test show that these rates did not differ between BDNF 

M/- and V/V genotypes (z = -1.37, p = .702) as well as when comparing three BDNF 

genotypes [Kruskal-Wallis test; χ2(2) = 1.941 p = .379]. In a similar vein no difference on the 

task engagement rate where evident between the two (z = -0.63, p = .950) or three 5-HTTLPR 

genotypes [χ2(2) = 1.140, p = .565].

Table 4.2. Participants’ general and age-equivalent cognitive abilities.

Chronological Age*

Overall Ability**

Verbal Ability

  Non-verbal Ability

Developmental Age*

Developmental Verbal
Ability (Months)

   Developmental Non
Verbal Ability (Months)

Mean(SD)
Range

Mean(SD)
Range

                Mean(SD)
Range

Mean(SD)
Range

Mean(SD)
Range

Mean(SD)
Range

Mean(SD)
Range

70.8 (11.5)
55-91

106.8(8.7)
86-125

103.5(13.9)
58-127

110.8(13.8)
86-144

63.9(13.1)
42-88

64.9(15.5)
35-96

66.6(15.5)
35-96

*Age data presented in months
**Overall ability is calculated from the overall BAS-II total score and Verbal and Non-verbal 
ability form the BAS-II clusters of abilities. Values represent GCA.

Correlation analyses revealed a positive correlation between externalizing problems and rates 

of autism symptomatology (r = .339, p = .017) was revealed. No further relationships of 
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participants’ demographic characteristics in cognitive development or early affective 

problems were observed.  Furthermore, Spearman’s Rho correlation showed a significant 

positive correlation between rates of internalizing and externalizing problems (r = .524, p< 

.001). Moreover, Pearson correlation analyses revealed a positive correlation between rates of 

externalizing problems and children’s age (r = -.362, p = .011).

4.6.2. Behavioural effects in Fixation Duration

Since the eye movement data varied in terms of normality across different time points of 

processing (i.e. Happy T2, T3, T4 and Angry T2, T5 were p > 0.05; Happy T1, T5 and Angry T1, 

T3, T4 were p < 0.05 in Kolmogorov-Smirnov test of normality), both parametric and non-

parametric correlation analyses were conducted with CBCL rates and looking dwell time 

spent for each time point and each type of emotion separately. A negative correlation between 

age and time spent fixating angry faces at T3 (r = -.408, p = .004), T4 (r = -.338, p = .017) and 

T5 (r = -.526, p < .004) was documented.  No further significant correlation were evident. No 

further relationships of participants’ demographic characteristics in cognitive development or 

rates of early affective problems were observed.  Finally, parametric correlation analyses with 

behavioural rates and fixation duration towards the eye (normally distributed) and non-

parametric for the mouth region (not normally distributed) did not revealed any significant 

correlation.
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4.6.3. Genotype effects in Fixation Duration for Emotional Expressions

A 2 (Emotion: positive vs. negative) by 5 (Time: 0-500 ms versus 501-1000 ms versus 1001-

1500 ms versus 1501-2000 ms versus 2001-2500 ms) mixed analysis of variance (ANOVA) 

with Gender (female, male) and Genotype (BDNF M/- versus V/V) as between-groups factors 

revealed a main effect of Emotion,  [F (1, 45) = 7.10, ηp
2 = .136, p = .011], a main effect of 

Time [F(4, 180) =  46.89, ηp
2  = .758, p < .001],  and a two-way Emotion by Time interaction 

[F(4, 180) = 13.07, ηp
2 = .535,  p  < .001]. In terms of genotype effects, a two-way Time by 

BDNF Genotype [F(4, 180) =  4.01, ηp
2  = .082,  p = .004], as well as a three-way Emotion by 

Time by BDNF genotype interaction [F(4, 45) = 3.52, ηp
2 = .073, p = .009],  were evident (see 

also Appendix 4.1. for scatter plots of dwell data). No further interaction effects were 

observed.  Repetition of the same analysis when comparing three BDNF genotype groups 

(i.e., V/V versus M/V versus M/M) also revealed a significant Time by BDNF Genotype [F(4, 

172) =  2.18, ηp
2  = .092,  p = .031], as well as a three-way Emotion by Time by BDNF 

genotype interaction [F(8, 172) = 2.55, ηp
2 = .106, p = .012; see Appendix 4.2.]. The omnibus 

ANOVA was repeated with the 5-HTTLPR genotype (i.e. L/L versus S/-) as a between factor. 

Contrary to the BDNF genotype effects, this analysis did not revealed any significant Time by 

5-HTTLPR Genotype [F(4, 180) =  2.55, ηp
2 = .017, p = .537], or a three-way Emotion by 

Time by 5-HTTLPR genotype interaction [F(4, 180) =.152, ηp
2 = .003, p = .962; see Table 

4.3], or any other interaction effect. Similarly, when comparing three 5-HTTLPR genotype 

groups (L/L versus S/L versus S/S) no significant Time by 5-HTTLPR Genotype [F(8, 172) =  

.787, ηp
2 = .035, p = .615], or a three-way Emotion by Time by 5-HTTLPR genotype 

interaction [F(8, 172) =.471, ηp
2 = .021, p = .876] was evident (see Appendix 4.2). No further 

effects were detected from this analysis.
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To further delineate the observed Time by BDNF genotype effect, the dwell time at each of 

the five time points was averaged across the two emotions. A Kolmogorov-Smirnov test of 

normality showed that the averaged data at each time point were normally distributed (p >

.005) therefore t-tests were conducted at each time point of visual scanning averaged across 

the two emotions. This analysis revealed a significant difference between the two genotype 

groups (i.e. M/- versus V/V) on the time spent looking at emotional stimuli during T4 [t(47) = 

-.205, p < 0.05)]. Moreover, to delineate the three-way Emotion by Time by BDNF 

interaction, follow up analyses were conducted to determine whether there was a preference 

towards or away each emotion at each of the time intervals.  Due to the fact a Kolmogorov-

Smirnov test revealed that the relative viewing time between stimuli in specific time points 

were normally distributed (e.g. Happy T2, T3, T4 and Angry T2, T5 where p > 0.05, where 

Happy T1, T5 and Angry T1, T3, T4 where p < 0.05 in Kolmogorov-Smirnov test of normality), 

this analysis was followed up with complementary parametric and non-parametric analyses at 

each Time Point separately.

For the time points with not-normally distributed data, a Mann Whitney-U test revealed a 

significant difference between the two BDNF genotypes in the dwell time towards the facial 

expressions of Anger at T4 (U = 157.00, p = .010; see Figure 4.2 and Table 4.3). Similarly, a 

Kruskal-Wallis test with the three BDNF genotype groups (M/M versus M/V versus V/V) 

also revealed a significant difference between genotype groups on the dwell time spent 

fixating the angry face during 1501-2000 ms [x2(2) = 8.50, p = .028)]. Moreover, for the 

normally distributed time points a t-test for T5 was shown that the carriers of the low 

neuroplasticity Met allele spent significantly less time looking at the angry faces [t(47) = -

2.10, p = .041], which was absent for the happy faces. In contrast, carriers of two copies of the 
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Val allele exhibited an increase in time looking to the angry faces. Conversely, a one-way 

ANOVA with three BDNF genotype groups did not revealed any significant difference on the 

time spent fixating angry faces during 2001-2500 ms [ F(2) = 2.20, p = .122], suggesting that 

the presence of one low neuroplasticity Met allele moderate visual scanning of angry faces 

when contrasted to the high uptake Val/Val group (see Appendix 4.2).

Table 4.3. Relative dwell time in ms and standard deviations (in brackets) viewing angry and 
happy faces in different genotype groups, showing an aggression-specific vigilance-avoidance 
patterns of attention allocation in the Met/- genotype group.

Time Interval
BDNF 5-HTTLPR

M/-
(N=21)

V/V
(N=28)

S/-
(N=32)

L/L
(N=17)

Facial expressions of 
Anger
T1 -8

(49)
-7

(49)
-3                      

(45)
-16
(55)

T2 220
(138)

134
(168)

175                  
(156)

164 
(173)

T3 292
(331)

438
(233)

399                     
(252)

332
(343)

T4 258
(312)

465
(237)

410                    
(259)

314                
(336)

T5 46
(242)

191
(236)

147                      
(236)                  

94
(270)

Facial expressions of 
Happiness
T1 45

(181)
18

(63)
14                        

(51)
60

(204)
T2 162

(291)
174

(175)
154 

(193)                   
196 

(290)
T3 181

(338)
199

(218)
172                      

(204)
228

(376)
T4 107

(306)
135

(251)
116                      

(243)
136

(331)
T5 44

(231)
23

(181)
31                        

(136)                   
33

(294)
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Figure 4.2. BDNF genotype differences in fixation duration to facial expressions of Anger 
(left) and Happiness (right) relative to the neutral face. Carriers of at least one Met allele, are 
initially fixating more the angry faces, but later spent significantly less time looking the angry 
faces. Subsequently V/V participants look less at angry faces early but later, looked more at 
the affective faces. The error bars denote one standard error of the mean.

Figure 4.3. 5-HTTLPR genotype differences in fixation duration to facial expressions of 
Anger (left) and Happiness (right) relative to the neutral face. Genotype groups are not 
differing at any Time point across the two types of emotional faces. The error bars denote one 
standard error of the mean.
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4.6.4. Genotype effects on atypical gaze patterns

A two-way mixed ANOVA with the repeated factor RoI (eyes, mouth) and genotype group 

(S/- versus L/L) and gender as independent factors, examined gaze behaviour for each face 

region on the baseline trials, which showed a significant main effect of RoI for the face areas 

of interest [F(1,45) = 126.11,  ηp
2  = .737, p < .001], whereby children spent more time 

looking the eye region of the neutral faces (see Table 4.4). Moreover, a significant interaction 

between RoI and 5-HTTLPR genotype group was evident [F(1,45) = 7.25, ηp
2  = .139, p = 

.010]. Repetition of the initial analysis with three 5-HTTLPR genotype groups also revealed a 

significant two-way genotype by region interaction [F(1,43) = 3.57, ηp
2  = .143, p = .037]. 

Repetition of the same analyses with the BDNF Val66Met genotype group (V/V, M/-) and 

gender as independent factors, did not revealed a significant interaction between RoI when 

comparing two [F(1,45) = 0.74, ηp
2  = .016,  p = .393] or three [F(1,43) = .396, ηp

2  = .018, p = 

.396] BDNF genotype groups (see Appendix 4.3).

To further examine the 5-HTTLPR genotype effects observed in the ANOVA, and given that 

the data for the eyes region met normal distribution criteria (Kolmogorov-Smirnov test p> 

0.05), complementary parametric tests were conducted. Therefore, an independent samples t-

test was performed to further investigate the association between viewing time for the eye 

region and the Genotype (L/L, S/-).  This analysis revealed a significant effect of Genotype 

group on viewing time for the eye region [t(47) = 27.15,  p = .008], providing evidence that 

Short allele carriers spent relatively less time viewing the eye region compared to participants 

homozygous for the Long allele. This evidence also provides support for the statistical 

interaction observed in the initial ANOVA (see Figure 4.4; Table 4.4). 
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Table 4.4. Means and standard deviations (in brackets) of the BDNF Val66Met and 5-
HTTLPR genotype differences in visual scanning patterns towards eyes and mouth region on 
neutral faces (in ms), relative to the time spent looking the whole face. The S/- genotype 
group is spending significantly less time looking the eyes region, whereas spend more time 
fixating the mouth region of neutral faces.

RoI
BDNF 5-HTTLPR

M/-
(N=21)

V/V
(N=28)

S/-
(N=32)

L/L
(N=17)

Eyes Region 0.25
(0.09)

0.06
(0.08)

0.28
(0.09)

0.04
(0.04)

        0.24
(0.08)

0.06
(0.07)

0.32
(0.10)

0.02
(0.02)

Mouth Region

Due to the fact a Kolmogorov-Smirnov test revealed that the data for the mouth region data 

were not normally distributed (p> 0.05), this analysis was followed up with complementary 

non-parametric tests using a Mann-Whitney U test in order to further investigate the way in 

which 5-HTTLPR genotype groups (i.e. L/L versus S/-) differ in the time spent looking the 

mouth region.  

This analysis revealed a significant effect of Genotype group on the viewing time for the 

mouth region (U = 139.0, p = .005), indicating that Short allele carriers spent relatively more 

time  viewing the mouth region compared to participants homozygous for the Long allele. 

Moreover, a significant effect of genotype on looking the eye region was evident, where Short 

allele carriers spent significant less dwell time fixating the eye region (U = 168.0, p = 0.29), 

when compared to carriers of two copies
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Figure 4.4. Differences of overall time spent looking at the eyes (left) and mouth region 
(right) among 5-HTTLPR genotype groups, relative to the time spent looking the whole face. 
Carriers of at least one Short allele, are fixating less the eyes region, but spending more time 
looking the mouth region of neutral faces. The error bars denote one standard error of the 
mean.

of the Long allele. This evidence provides support for the statistical interaction (see Figure 

4.4; Table 4.4) observed in the initial ANOVA. In consistent a Kruskal-Wallis  test with three 

5-HTTLPR genotype groups showed that 5-HTTLPR genotype modulated the dwell time 

spent fixating the mouth region [x2(2) = 8.50, p = 0.14] but not significant differences on 

viewing the eye region of neutral faces (x2(2) = 4.88, p = .087; see Appendix 4.3). This later 

observation suggests that the presence of at least one copy of the Short allele modulates visual 

scanning of facial features when compared with carriers of two copies of the high uptake 5-

HTTLPR Long allele.
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4.7. Discussion

The present study examined associations of normal variations in genetic SNPs involved in 

both neural plasticity (BDNF Val66Met) and serotonin availability (5-HTTLPR) with visual 

scanning of faces in typically developing young children. The present study show that normal 

variations on the BDNF Val66Met and 5-HTTLPR genotype early in life may account for 

individual differences in the visual scanning of faces. Specifically, it was shown that children 

carrying the low activity BDNF Met allele, exhibited a visual scanning pattern that may relate 

to vigilance-avoidance of viewing angry but not happy faces. Conversely, carriers of two 

copies of the high plasticity Val allele spent less time looking the angry faces in early stages 

of processing but spent significantly more time in the later stages. Moreover, in a separate 

analysis was shown that carriers of the low activity 5-HTTLPR Short allele, compared to the 

participants homozygous for the high serotonin activity Long allele, spent significantly less 

time looking at the eye region relative to the whole face, when at the same time they spent 

more time looking at the mouth region. 

There is increasing evidence to highlight the involvement of BDNF Val66Met on the structural 

formation of brain structures, that play an important role on the affective processing (e.g., 

Joffe et al., 2009; Lang et al., 2007; Van Wingen et al., 2010). Consistent with studies of 

children to suggest heightened neurophysiological sensitivity of Met allele carriers in 

response to negative environmental stressors (Scharinger et al., 2010; Gerritsen et al., 2011; 

Montag et al., 2008; Schofield et al., 2009; Lau et al., 2010), and in line with the study’s 

hypothesis, it was shown that Met allele carriers spent more time fixating angry versus neutral 

facial expressions during early stages of processing (501-1000 ms), which decreased during 

later stages of processing (1501-2000 ms; 2001-2500 ms).On the other hand, participants 
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homozygous for the high activity Val allele did not show similar patterns of avoidance. 

Instead, they spent significantly more time looking at the angry faces after 1501 ms, relative 

to the neutral facial expression. Although, this pattern of findings is consistent with the 

direction of the study’s hypothesis, showing that the two genotype groups spent equal time 

looking the Happy-Neutral face pairs, for the Angry-Neutral face pairs is possible that the 

time-specific significant effect may be mainly driven from a differentiation of the high 

plasticity Val/Val group when processing angry faces, who exhibited an increased interest 

into viewing the angry facial expressions. More specifically, it might be argued that 

participants in the Met/- genotype group have viewed the angry facial expressions in a similar 

fashion to their viewing of happy relative to neutral faces. Taken that the data here represent 

dwell time of looking the emotional face, relative to the neutral face, this may also suggest 

that participants in the low plasticity Met/- group directed their gaze towards the neutral face 

rather than simply avoiding negative stimuli. However, it is possible that Met carriers may 

have viewed neutral faces as negative or threatening, which would be consistent with biases 

observed among people with high trait and state anxiety (Yoon & Zinbarg, 2007, 2008; see 

also Beevers et al., 2011). 

Conversely, the pattern of findings may suggest that the high plasticity Val/Val genotype 

group was shown to exhibit an increased interest towards exploring the negative facial 

expressions, without switching their eye gaze away to explore the neutral stimuli in the trial. 

Although there is evidence to suggest the involvement of the BDNF Val66Met polymorphism 

in modulating responses to environmental stressors (Scharinger et al., 2010; Gerritsen et al.,

2011; Montag et al., 2008; Schofield et al., 2009; Lau et al., 2010), it is not yet clear from the 

present findings, how the increased time spent looking the angry faces relative to the neutral 
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in the high plasticity Val/Val allele relates with the modulation of neural pathways that 

involved in emotion reactivity. Moreover, taking into account previous evidence to show 

reduced fear conditioning (i.e. startle response potentiation) in Met/Met homozygotes, which 

was interpreted in the basis of alterations in fear acquisition in this genotype group (Hajcak et 

al., 2009), the evident reduced viewing of the fearful stimuli in the present study may relate to 

deficits in eliciting defensive response to appropriate environmental stressors in the Met/-

group. This area of inquiry requires further investigation.

To this end, although the study provide evidence for the moderating effects of the BDNF 

genotype on the visual scanning pathways early in life, due to the sample size limitations of 

the study, the present findings need to be considered with great cautiousness. It is not yet clear 

from the current investigation, or other available evidence in the literature, whether the 

spending of more versus less time exploring the affective stimuli may suggest per se risk or 

resilience for affective problems. Early in life young children may exhibit a particular interest 

in specific set of stimuli, but since this area is severely understudied can not be concluded of 

what each of these behaviours account for. As previously reviewed, there is a discrepancy in 

the current literature on the specific visual scanning pathways of affected young children in 

response to emotional faces (e.g., In-Albon et al. 2010). To this end, the present study 

provides an important, but first-stage dimension, in existing work that support the hypothesis 

that variations in the BDNF Val66Met genotype may relate to early manifestation of atypical 

physiological responses to environmental stressors. Further research will be needed to show 

how these differences may relate with context-specific susceptibility for behavioural 

outcomes.
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The current study provides a novel contribution to the neurobiological underpinnings of 

affectivity that may be due to critical influences of the BDNF Val66Met on the connectivity 

between the amygdala and the PFC (Carlson et al., 2013). Conversely, the analyses did not 

reveal a similar effect of 5-HTTLPR genotype on the processing of emotional faces. While 

this later finding may be considered inconsistent with some previous neurophysiological and 

behavioural studies of children and adults that have suggested 5-HTTLPR effects related to 

responses to emotional faces (Homberg & Lesch, 2010; Thomason et al., 2010), it is possible 

that developmental effects of the sample, or differences in the material used, may have 

contributed to these inconsistencies.

In addition to the effects of the BDNF Val66Met genotype in predicting preferential looking, a 

separate analysis suggested a role of the serotonin transporter 5-HTTLPR polymorphism in 

modulating gaze direction towards the eye and the mouth regions of faces posed in neutral 

expressions in the current study. Consistent with a plethora of studies suggesting the existence 

of neurobiological sensitivity for negative affectivity, such as stress reactivity, in carriers of 

the Short 5-HTTLPR allele (e.g. Caspi et al., 2003; Disner et al., 2013; Mercer et al., 2012; 

Thomason et al., 2010) the pattern of results of the present study show that early in life, the 

presence of the Short 5-HTTLPR may be related to individual differences in face scanning 

behaviour that has previously been associated with pervasive anxiety and/or shyness (e.g., 

Horley et al., 2004). More specifically, the study showed that the carriers of the low activity 

Short allele spent significantly less time looking at the eye region relative to the rest of the 

face, compared to the participants homozygous for the high serotonin activity Long allele.  

These individuals also spent more time looking at the mouth region. 
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One possible explanation for the observed pattern of looking behaviour is that Short allele 

carriers diverted their eye gaze away from the eye region of neutral faces, and swift their 

attention away into looking the mouth region of the face perhaps as a compensatory 

mechanism to down-regulate heightened reactivity when processing the eyes region. 

Conversely, Long allele homozygotes may be less reactive to socially demanding stimuli and 

therefore less urged to switch their eye gaze towards the mouth region of the face (see also 

Beevers et al., 2011).The possibility that 5-HTTLPR Short allele carriers, known to 

experience higher vulnerability for poor reactivity to distressing negative emotional cues, may 

help to link with the literature that suggests that reduced looking to the eye region is evident 

in individuals with social anxiety (Crawford et al., 2015; Farzin et al., 2009). However, 

although the sample size and size of effects is similar to the ones previously reported, the 

present pattern of genetic findings needs to be interpreted cautiously. To this end, the 

previously documented plasticity function of the 5-HTTLPR Short allele that is associated 

with disproportionate response to negative and positive environmental influences, may be 

partially reflected in this early eye gaze pattern towards the eyes region early in life, which in 

conjunction with other factors, such as negative life events, may increase the risk versus 

resilience for later affective problems. This hypothesis requires further investigation, which 

will potentially incorporate the longitudinal measurement of behavioural outcomes.

Moreover, contrary to the study’s hypothesis, the present study results did not uncovered 

associations between parent reports of early affective problems and overall fixation duration 

towards emotional faces or facial features. One potential explanation for this may be related to 

the study’s sample age, which consisted of young and unaffected young children compared to 

observations with older children (see Battaglia et al., 2004) or adolescents (Gamble & Rapee,
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2009). As already reviewed in the present study, there is a discrepancy between child and 

adult studies (see also In-Albon et al., 2012), which may be due to methodological or 

maturational effects of the studied samples. Although there is evidence to suggest that during 

the later stages of early childhood, performance in face recognition increases (e.g., Tremblay, 

Kirouac & Dore, 2001), to date there is very limited knowledge on the developmental 

trajectories of such behaviours and their relations with the early manifestation of affective 

problems (for a review see Thomas, De Bellis, Graham & LaBar, 2007). This area of inquiry 

requires further investigation. Another possibility that may explain the absence of effects of 

early behavioural problems in modulating visual scanning of facial emotions and features may 

be the material and the experimental design used in the present study. For instance, previous 

studies have used various negative emotional faces (Gamble & Rapee, 2009), as opposed to 

angry-only negative emotional faces, or longer periods of angry-neutral face pair 

presentations (Gamble & Rapee, 2010). As Bons and colleagues (2013) indicate both these 

variables may be critical in shaping the pattern of findings in studies looking into individual 

differences and may contribute to the discrepancy among studies in typical and atypical 

development. Future investigations that will account for the consistency on the material used 

among studies will shed light in this area of inquiry. Moreover a longitudinal investigation of 

the developmental trajectories of early reactivity in both typical and atypical development will 

further delineate the particular neurobiological constructs of early affectivity early in life.

Limitations

A limitation of the present study is the relatively small sample size. However, through a fine 

grained and hypothesis-driven analysis, reliable data were generated. Moreover, the study 
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adopted a recently established approach to understand the neurobiological basis of 

behavioural problems via the investigation of the normal variation of candidate genes

(Wiggins et al., 2012). In this regard, the current study utilizes a larger sample relative to most 

previous developmental neuroimaging genetic studies that employed fMRI (Stollstorffet al.,

2010; Wiggins et al., 2012) or equal to the ones employing EEG/ERP methods (Bertoletti et

al., 2012). In addition, the evidence provided here is the first known to show the existence of 

serotonin-mediated mechanistic influences of gaze allocation during the processing facial 

features of neutral faces. Although previous evidence has highlighted an atypical pattern 

towards the eyes region in affected young populations, the present evidence generates a novel 

question on whether these atypicalities represent general plasticity for behavioural outcomes, 

as opposed to a disorder-specific phenotype. 

In conclusion, although the employment of eye-tracking technologies provides a direct 

neuropsychological index of reactivity in response to emotional stimuli, the ecological 

validity of the measure needs to be further justified. Future studies in this area of inquiry 

would be necessary to incorporate complementary behavioural measures, such as structured 

observation, so the potential behavioural outcomes of the observed mechanisms that may 

relate to susceptibility for better and for worse could be directly and reliably measured. In 

addition to the evidence presented here to highlight the role of the serotonin 5-HTTLPR 

genotype in modulating the eye gaze patterns towards facial features; variations on the same 

polymorphism have also been associated with negative affectivity in response to aversive 

information in adults. Therefore, further research on the role of serotonin uptake on the 

processing of aversive information in young children would be critical to be conducted, in 

order to unveil the particular neurobiological constructs of early reactivity in response to 

social versus non-social aversive threat. 
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In summary, the current study’s results suggest that normal variation in genetic single-

nucleotide polymorphisms contributes to the manifestation of individual differences on early 

patterns of visual scanning towards faces and face features early in life. Overall, the outcomes 

of the study are consistent with existing adult, adolescent, and child psychopathology research 

literatures suggesting a contribution of both BDNF Val66Met and 5-HTTLPR to variations in 

emotional reactivity that may relate with early onset behavioural problems. The current 

findings further offer particular insights into cognitive/behavioural mechanisms of gene-

mediated early plasticity and affectivity, that in conjunction with other environmental factors, 

may influence the development of psychological problems in the later adolescent and adult 

life.
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CHAPTER 5

Serotonin 5-HTTLPR genotype modulates 

visual scanning of aversive stimuli in young 

children

5.1. Preface

In the previous chapter, the effects of plasticity and serotonin availability-related genes in 

modulating children’s visual scanning towards emotional faces and facial features were 

shown. A number of areas for future research on the context of the neurobiological basis for 

behavioural problems were identified. This included a need for further investigation of the 

modulating role of variations in candidate genes in the visual scanning pathways of threat-

induced information. Therefore, the present chapter aims to assess the putative associations 

between behavioural as well as genetic markers and visual scanning pathways in response to 

aversive stimuli, on the same young population of children as on the study presented in 

Chapter 4. Through the employment of a novel eye-tracking paradigm designed to measure 

visual scanning of social and non-social aversive and positive stimuli and the alongside 

investigation of the impact of normal genetic variations on the visual scanning behaviour, 

novel insights into the early patterns of emotional reactivity will be generated.
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5.2. Processing of affective stimuli and psychopathology

The ability to detect threat in the environment is the ability that humans acquire early in life, 

which has been linked to influences of human evolution (Seligman, 1971). More specifically, 

the accurate and timely effective detection and evaluation of threat are critical for survival 

purposes, where an individual needs to employ an immediate response strategy when exposed 

on a dangerous and life-threatening situation. However, atypical patterns of the visual 

scanning of aversive information have been widely investigated as a putative prominent 

component on the manifestation and establishment of affective problems (for a review see 

Boyer & Bergstrom, 2011). More specifically, patterns of preferential looking, towards or 

away, threat-related information are believed to significantly contribute to the manifestation 

but also on the maintenance of anxiety disorders in the adult life (e.g., Beck, 2008; Eysenck, 

1992; Mathews, May, Mogg & Eysenck, 1990). 

Aiming to delineate the manifestation of affective behaviours, during the last two decades, 

empirical studies with both healthy and clinical populations have highlighted the role of visual 

scanning pathways as a component of behavioural sensitivity that is present in individuals 

affected from a range of affective disorders (Gotlib et al., 2004; Joormann & Gotlib, 2007). 

Most notably, an eye-tracking investigation using negative stimuli presented side-by-side with 

neutral stimuli for three seconds, showed that a young adult population with dysphoria 

exhibited a prolonged period of viewing the affective stimuli compared to controls (Caseras, 

Garner, Bradley & Mogg, 2007). Similarly, other eye-tracking investigations with longer 

periods of processing (i.e., 30 seconds) of different types of emotional versus neutral stimuli 

showed that young adults diagnosed with depression exhibited prolonged eye-gaze duration in 

response to dysphoric images compared to matched controls (Eizenman et al., 2003; 
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Kellough, Beevers, Ellis & Wells, 2008). It has been suggested these gaze biases towards 

negative stimuli and avoidance of the positive stimuli that were evident in individuals with 

depression (Kellough, Beevers, Ellis & Wells, 2008), are driven by effortful control deficits 

that relate with reactivity and emotion regulation, both being core part of the depressive 

symptomatology (Hartlage, Alloy, Vazquez & Dykman, 1993).

However, to date, atypicalities on the visual scanning behaviour of negative stimuli have not 

yet been associated with the particular phenotype of a specific disorder. Conversely, research 

suggests that atypical visual scanning pathways of aversive scenes may reflect a wider 

behavioural trait of overactivity that may also be evident in individuals at increased risk for 

affective symptomatology (for a review see Ellis, Boyce, Belsky, Bakermans-Kranenburg, & 

van IJzendoorn, 2011). Most notably, in a behavioural response task was showed that 

individuals with spider phobia exhibited a vigilance-avoidance pattern of behaviour, where 

they automatically approached –quicker responses– in spider-related stimuli, but later avoided 

the affective stimuli compared to the non-anxious control group (Rinck & Becker, 2006). 

Moreover, other studies have supported the negative selectivity hypothesis (see also Section 

4.2.2.1), based on which individuals diagnosed with anxiety have shown an overall 

preferential orientation towards threatening stimuli (for a review see Ruiz-Caballero & 

Bermudez, 1997; Bradley et al., 2000). 

However, in contrast to the plethora of studies with adults, the very limited evidence coming 

from studies with children does not allow conclusions about the developmental significance 

for each of these accounts. The current cognitive models of anxiety suggest the existence of a 

threat-specific processing system that may be responsible for the prioritization of threat 
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processing compared to other emotions, and subsequently aid on the manifestation of 

affective traits (Beck & Emery, 1985). To date, it is still unclear what the particular constructs 

that determine the individual variation on these behaviours are and their putative role in the 

manifestation of affective problems. Delineating the nature of the manifestation of early 

affectivity may help in detecting those at increased risk for affective disorders early in life and 

design tailored therapeutic interventions.

5.2.1. Measuring visual processing of affective stimuli

Studies employing eye-tracking have provided support for the vigilance-avoidance model in 

anxious adults (Garner et al., 2006; Mogg et al., 2000; Pflugshaupt et al., 2005; Rinck & 

Becker, 2006; see also Section 4.2.2), although a proportion of studies have provided partial 

support to the model, reporting avoidance but not vigilance in anxious populations (e.g.,

Hermans et al., 1999; Rohner, 2002). Similar to the literature on emotional face processing, 

evidence on the field of processing aversive information in both healthy and clinical 

populations has exhibited an heterogeneity, perhaps due to the various methodologies, 

experiment structure and theoretical concepts that have been proposed and adopted over time 

(for a review see Bar Haim et al., 2007; also see Section 4.2.2 for a review on this area). 

However, more recent eye-tracking studies have produced more consistent outcomes, and it 

has been suggested this may be due to the employment of common experimental properties 

(i.e., stimulus duration; stimuli material; for a review see Kellough et al., 2008). Most notably, 

in these eye movement studies, longer durations of stimuli have been used (e.g. 1000 ms), as 

opposed to brief presentation that was usually employed in earlier studies (for a review see 

Kellough et al., 2008). Numerous studies have highlighted the importance of long stimuli 
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duration (i.e. > 1000 ms) on the sustained processing of threat-related stimuli documented in 

individuals diagnosed with affective disorders, such as depression (Calvo & Avero, 2005; 

Rohner, 2002; Mogg & Bradley, 2005; Siegle, Granholm, Ingram & Matt, 2001).

Visual scanning behaviours are typically conceptualised in the context of negative and 

positive affectivity, with the negativity bias to represent increased fixation duration towards 

aversive information and negative affectivity, whereas the positivity bias to represent the 

stronger response to positive or neutral stimuli and positive affectivity (Ito & Cacioppo, 2005; 

Larsen, Norris, McGraw, Hawkley & Cacioppo, 2009; Norris, Larsen, Crawford & Cacioppo, 

2011). It has been previously suggested that if positive affectivity that reflects adaptive 

responses is not effectively established early in life, it may lead to maladaptive responses and 

emotion dysregulation (Norris et al., 2011). To this end, it is critical to investigate the early 

mechanisms that may contribute on the establishment of visual scanning pathways of threat-

inducing environmental stimuli that may contribute on the manifestation of maladaptive 

behaviours in an individual’s later life (Donnelly, Hadwin, Menneer & Richards, 2010). 

5.2.1. Affective processing in typical and atypical development

There are several studies in both typically and atypically developing populations that have 

investigated visual scanning behaviour of aversive stimuli. In this area of inquiry, atypical 

processing patterns of negative information, such as threat, have been associated with 

emotional, temperamental (Pérez-Edgar et al., 2010), and genetic markers (Pergamin-Hight et 

al., 2012). Although previous research has underscored that behavioural patterns of threat 

avoidance are established well before adulthood (Muris et al., 2003), to date, the vast majority 
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of the available evidence in child and adolescent literature is largely inconsistent (for a 

discussion see Vasey & MacLeod, 2001). This may be due to variations in sample’s 

characteristics across studies (i.e., age, abilities) that may further complicate the delineation of 

the developmental parameters of early reactivity in response to threat. For example, a recent 

study, in measuring latency of touch in response to emotional targets found that healthy 

children were quicker in detecting aversive stimuli, such as snakes, compared to frogs or other 

distractors (LoBue & DeLoache, 2008). However, there is inconsistency among studies with 

children diagnosed with anxiety, with a proportion of research examining probe detection of 

emotional-neutral pairs of words to show a preferential response of children with anxiety 

towards threatening stimuli (e.g., Vasey, Daleiden, Williams & Brown, 1995; Vasey, El-Hag &

Daleiden, 1996), whereas others primarily report common patterns of threat avoidance in both 

anxious children and healthy controls (e.g., Kindt, Bierman & Brosschot, 1997). 

In addition to the above difficulties, there is very limited evidence on the time course of visual 

scanning of aversive stimuli early in life. The investigation of the processing of aversive 

stimuli in the child literature has been overshadowed in the literature, perhaps due to the 

reluctance of the research community to provoke threat in young children through the 

exposure to threatening scenes. Most notably, a recent eye movement study showed that 

compared to healthy controls, children with separation anxiety exhibited vigilance-avoidance 

patterns of scanning separation pictures (In-Albon et al., 2010). Additional ERP investigations 

of the brain correlates of threat processing have also used aversive scenes as experimental 

stimuli, that showed differential activation of the emotion-related late positive potential 

between positive and negative emotions in groups of young healthy children (Solomon, De 

Ciccob & Dennisa, 2011; Dennis & Hajcak, 2009). Moreover, a recent ERP investigation has 

also reported developmental effects between pre-school and older school age children, with 
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faster neural processing of negative stimuli to be evident in older children (Leventon, Stevens 

& Bauer, 2014). Taken together, understanding the developmental trajectories of threat 

processing may be particularly important to delineate the individual differences in early 

affectivity. Interestingly, in recent years a separate distinction has emerged in the relevant 

literature, which suggest the existence of differential processing pathways for the processing 

of threat with social versus non-social component.

5.2.1.1. Processing of social versus non-social threat

An additional distinction has also emerged in the field, highlighting the particular constructs 

of fearful information i.e., fearful information that conveys social component (e.g. human 

actions or faces), and stimuli that includes non-social fear (e.g. aggressive animals such as 

bears, snakes, spiders).The neural basis of this assumption is based on evidence that 

highlights that subcortical neural pathways such as amygdala function to be a key component 

for social processing (e.g., Adolphs, 2009; Vuilleumier & Pourtois, 2007). Interestingly, an 

fMRI study with healthy adults has shown significantly reduced amygdala activation during 

the processing of affective socially relevant stimuli, such as faces, as opposed to non-social 

affective stimuli (Kirsch et al., 2005). This differential amygdala activation in response to 

social relevance agrees with other primate lesion (Prather et al., 2001) and human studies 

(Meyer-Lindenberg et al., 2005), suggesting the existence of distinct neural systems for the 

processing of social versus non-social fear.  

In addition, children diagnosed with Williams Syndrome (WS), a genetic syndrome which is 

characterised by hypersociability (e.g., Klein-Tasman & Mervis, 2003; Meyer-Lindenberg,  

Mervis & Berman, 2006), have shown to exhibit increased amygdala reactivity when 
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processing non-social fearful scenes when compared with IQ-matched controls. In contrast, in 

a recent study that measured reaction times based on motor responses young children with 

elevated shyness exhibited increased sensitivity (higher reaction times) towards social threats 

(e.g. faces) but did not differ from the low shyness group in the processing of non-social 

threats (LoBue & Perez-Edgar, 2014), which was interpreted as a pattern of increased 

sensitivity in the group with elevated shyness. Further research in needed to delineate the 

nature of differentiated neural and behavioural responses of social versus non-social threat 

and their role to early manifestation of affective problems. However, the absence of real-time 

recording of preference towards or away threat in these behavioural studies, does not allow 

the drawing of clear conclusions about temperamental variability (see also Section 4.2.2). To 

this end, the distinction between social and non-social threat through robust 

neuropsychological measurements, such as eye-tracking, may be of critical importance in the 

in the extant literature of emotional processing and reactivity. 

In addition to the behavioural associations with visual scanning behaviours in response to 

threat, there is increasing evidence in the adult literature for the existence of gene-mediated 

pathways of preferential looking towards emotional contexts. Visual scanning behaviour and 

their intermediate endophenotypes have been proposed to be temporally stable with a 

profound biological component (Ito & Cacioppo, 2005; Norris et al., 2011). Further 

investigation into the physiological and neurobiological correlates of the individual 

differences that may drive heightened sensitivity to negative cues from the information will 

shed light on the underlying role of these early precursors in predicting later emotion 

dysregulation. 
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5.2.3. Genetic influences in affective processing

5.2.3.1 Serotonin Transporter and affective processing

There are now two decades of research on the individual differences of negativity and 

positivity biases in response to emotional stimuli (e.g., for a review see Hamann & Canli, 

2004). Most notably, serotonin and its variations have been highlighted as an important 

parameter involved in psychological maladjustment, with alterations on the serotonin 

transmission, and subsequently serotonin availability, to be documented to modulate affective 

responses (Carver, Johnson & Joormann, 2009; Gonda et al., 2009). Among the most 

commonly studied genetic polymorphism that may influence human reactive behaviour is the 

promoter region of the serotonin transporter gene (5-HT), known as 5-HTTLPR. The 5-

HTTLPR polymorphism is characterized by pairs of short (S) and long (L) alleles (i.e., 

short/short, long/short, long/long; Lesch et al., 1996), with the Short allele to be associated 

with an approximately three times lower basal activity when compared to the long allele 

(Hariri et al., 2002; Lesch et al., 1996; see also Section 3.2.1). 

Evidence, coming from neuroimaging studies in healthy populations, has shown that carriers 

of the Short allele exhibit heightened neurophysiological reactivity when processing aversive 

stimuli on brain structures that relate with the processing of fear (Bertolino et al., 2005; Hariri 

et al., 2002; Hariri et al., 2005; Munafo et al., 2008; for a recent study see Jonassen and 

Landrø, 2014). Consistently with this notion, a range of studies with children has emerged the 

recent years to show that carriers of the low activity Short 5-HTTLPR allele exhibited 

increased neurophysiological sensitivity in response to negative environmental stressors 

(Bogdan et al., 2014; Caspi et al., 2003; Hankin et al., 2011; Pluess et al., 2010).
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In addition to the neuroimaging studies, recent studies have employed eye-tracking 

technologies to record the putative role of serotonin availability in modulating visual scanning 

patterns of threatening versus positive information. Most notably, in an eye-tracking 

investigation Beevers et al. (2010) reported that Short 5-HTTLPR allele homozygotes 

selectively fixated more to positive emotion scenes when simultaneously processed four 

different emotional stimuli in 30s trials, suggesting a pattern of selective avoidance of 

negative stimuli in an effort to regulate heightened reactivity to negative stimuli. However, 

this finding is not consistent with evidence from behavioural studies that measure reaction 

times. Most notably, following the presentation of pairs of aversive/neutral pairs of stimuli 

participants homozygous for the high serotonin uptake 5-HTTLPR Long allele have been 

shown to exhibit positive affectivity (i.e., higher reaction times) in response to positive and 

neutral stimuli, and a selective avoidance/negative affectivity when processing negative 

stimuli (Fox, Ridgewell & Ashwin, 2009; Perez-Edgar et al., 2010).  In line with this, in a 

study that employed a dot-probe task of pairs of spiders and neutral controls, it was shown 

that 5-HTTLPR Short allele carriers exhibited selective preferential looking at non-social

fearful stimuli when presented for 2000 ms (Osinsky et al., 2008). Although well designed 

behavioural measurements may inform about the nature of positive and negative affectivity in 

response to aversive stimuli, the employment of eye-tracking methodology may also provide a 

reliable neuropsychological index of the direction and the time-course of the reactivity. This 

will also increase the current understanding of the impact of neurobiology on behaviours 

associated with early affectivity.

Despite the increasing evidence coming from eye-tracking studies in adults, currently there is 

no available eye-tracking study on the potential moderating effects of 5-HTTLPR genotype 

on visual scanning of affective stimuli in children. There are only a few available behavioural 
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studies that have used negative facial emotions as an index of early affectivity and revealed 

intermediate effects of 5-HTTLPR genotype in the visual scanning behaviour. Most notably, 

Gibb and colleagues (2009) reported that children who carried at least one Short 5-HTTLPR 

allele when their mothers reported increased depressive symptoms, exhibited avoidance 

behaviour in response to sad  faces when presented side-by-side with neutral faces (Gibb, 

Benas, Grassia, & McGeary, 2009). Consistent with this, a recent meta-analysis on the 

moderating effects of 5-HTTLPR genotype on the avoidance of negative stimuli reported 

more significant effects from evidence coming from adult studies compared with data coming 

from studies with children and adolescents (Pergamin-Height et al., 2011). Although this may 

be due to the limited number of studies with young populations in the field, it also raises some 

critical questions on whether maturational effects may also be involved in affective response. 

Compared to adults, where a priority in processing negative stimuli is evident across studies, 

children may exhibit different patterns of processing of threat-induced stimuli, perhaps due to 

immatureness in the inhibitory control system that has been previously associated with the 

processing of threat (Morren, Kindt, van den Hout & van Kasteren, 2003). Therefore, it is 

possible that young children may look away when exposed to a threatening stimulus or 

situation, instead of further exploring the arousing stimuli, as a way to inhibit their overall 

arousal response (Susa, Pitica & Benga, 2008).

In addition, there is a proportion of research highlighting the involvement of a polymorphism 

that relates to neuroplasticity, BDNF Val66Met, with individual differences to aversive 

processing. 

5.2.3.2. BDNF and affective processing

There is a line of research highlighting the role of the BDNF gene on the modulation of 
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affectivity in response to environmental stressors. BDNF is a secreted protein that is involved 

on the release of survival and growth promoting factors (see also Section 4.2.5.1), and normal 

allelic markers within the gene have been associated with the development of depression and 

anxiety symptomatology in adolescents (Aguilera et al., 2009, Kaufman et al., 2006 and 

Wichers et al., 2008). Moreover, BDNF has been shown to have a critical involvement on the 

regulation of neural development, connectivity, as well as neural plasticity (Martinowich, 

Manji & Lu, 2008). Most notably, a functional variation of the BDNF gene, the single 

nucleotide polymorphism BDNF Val66Met (Bath & Lee, 2006), has been widely investigated 

in relation to affective disorders and the associated behavioural traits. In humans the 

polymorphism produces a valine-to-methionine substitution at codon 66 (Chen et al., 2006), 

with the Met allele to be evident to be associate with increased vulnerability for affective 

disorders (e.g., Sarchiapone et al., 2008; for a review see also Section 4.2.5.1).

Interestingly, emerging evidence has shown effects of the BDNF Val66Met polymorphism on 

amygdala and hippocampal activation during the response to emotional tasks in adults 

(Montag et al., 2008; Schofield et al., 2008) and in adolescents (Lau et al., 2010). There is 

emerging evidence to show increased rumination (Hilt et al., 2007; Beevers et al., 2009) and 

deficits in fear conditioning (Hajcak et al., 2009) in adult carriers of the BDNF Met allele. 

However, comparing data coming from adult and child or adolescent studies may be 

problematic as complex gene-by-brain mechanisms may be confounded by developmental 

trajectories that are currently poorly understood (Webster et al., 2002). Future research would 

be critical to be conducted in young children and adolescents to spread extra light on the 

maturational contributions of variations in the BDNF gene and their potential role on the 

development of early affective.
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5.3. The current study

The current study utilizes eye-tracking technology aiming to explore the potential role of the 

common genetic variation in the serotonin transporter-linked 5-HTTLPR and neuroplasticity 

related BDNF Val66Met polymorphism in modulating fixation durations during the processing 

of affective stimuli in children aged 4 to 7. In addition, aiming to unveil association between 

rates of early affective problems and processing of aversive scenes, parent-report measures of 

children’s social-emotional development were also employed.  In this study, positive, 

negative, and neutral stimuli were selected from the International Affective Picture System 

(Lang, Bradley & Cuthbert, 2008).

5.3.1. Aim 1: To investigate the role of early behavioural problems on fixation patterns 
in response to affective stimuli

The study aims to investigate the putative associations between rates of early behavioural 

problems, especially internalizing problems, with visual processing of negative information, 

by calculating the relative viewing dwell time of looking the negative versus positive stimuli. 

Taking into account previous evidence that reported vigilance-avoidance patterns of 

processing threatening pictures in children with separation anxiety (In-Albon et al., 2010), the 

present study aims to investigate whether the same patterns of processing may be also 

associated with elevated rates of behavioural problems, especially internalizing problems, that

may aid as a precursor of affectivity early in life. This is the first known study to test these 

associations in young children, by employing reliable eye-tracking technologies as well as 

ecologically valid parent measures to assess children’ s early affectivity.
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5.3.2. Aim 2: To investigate genetic influences on fixation patterns in response to 
affective stimuli

A second aim of the study is to unveil the putative effects of 5-HTTLPR and BDNF Val66Met 

genotypes on the time course of the time spent looking positive versus aversive stimuli. 

Taking into account recent studies suggesting a direct role of the 5-HTTLPR (Beevers et al., 

2010; Gibb et al., 2009) and BDNF Val66Met genotype (e.g. Hajcak et al., 2009) in 

modulating the processing of affective stimuli, the study sought to unveil the modulating role 

of these two candidate polymorphisms on the affective responses early in life. By 

distinguishing social and non-social negative and positive scenes and calculating the relative 

dwell time spent fixating each type of stimuli, the gene-mediated constructs that relate to early 

reactivity were sought to be unveiled.

5.3.3. Hypotheses

There are two main hypotheses that are tested as part of this study. Firstly, taking into account 

the eye-tracking evidence in adults with dysphoria (Caseras et al., 2007) and depression 

(Kellough et al., 2008) showing prolonged visual scanning of negative stimuli, as well as the 

previously reported vigilance-avoidance patterns of processing threatening pictures in 

children with separation anxiety (In-Albon et al., 2010), it is hypothesised the presence of 

elevated rates of internalizing problems in children, will be significantly correlated with 

vigilance-avoidance patterns of scanning negative stimuli. More specifically, it is expected 

that children that reported to have elevated anxiety and depressive problems will initially 

fixate more to the negative stimuli but later will spend less dwell time fixating the same 

stimuli, providing support for the vigilance-avoidance hypothesis. 
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With regards to the second aim of the study, taking into account emerging evidence 

highlighting the role of variations in the 5-HTTLPR polymorphism (Beevers et al., 2010; 

Gibb et al., 2009) in modulating the processing of affective stimuli, it is hypothesised that 

carriers of the low serotonin 5-HTTLPR Short allele will exhibit a vigilance-avoidance 

pattern of looking negatively valenced stimuli, compared to the high serotonin uptake Long 

allele group, providing support for the vigilance-avoidance model. More specifically, it is 

expected that carriers of the low serotonin uptake Short allele, compared to Long allele 

homozygotes, will initially fixate more on the negative stimuli but on the later stages of 

processing will spend significantly less dwell time fixating the negative stimuli when 

compared to Long allele homozygotes. In a similar vein, taken that carriers of the low 

neuroplasticity Met BDNF Val66Met  allele (e.g. Hajcak et al., 2009) have been shown to 

exhibit increased reactivity in response to environmental stressor is hypothesised that 

compared to the high neuroplasticity Val/Val group, Met allele carriers will exhibit vigilance 

avoidance patterns of processing the aversive stimuli. The study aims to initiate important 

steps in integrating specific neurocognitive and genetic factors that may account as risk 

markers of reactivity early in life.
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5.4. Methods and Materials

5.4.1. Participants

The final sample consisted of 49 children from Caucasian/White British ancestry (24 males; 

25 females; Mean age = 70.8 months, SD = 11.5). Power analysis suggested that the sample 

size required to achieve a power of 1-β = 0.90 for the ANOVA test at significance level α = 

0.050 requires at least 33 participants. See Section 4.4.1 for detailed information on 

participant demographics. 

5.4.2. Data collection procedures

See Section 4.4.2.

5.4.2.1. Behavioural Measures

See Section4.4.2.1. 

5.4.2.2.  Measures of behavioural problems

See Section3.4.2.2. 

5.4.2.3.  Eye-tracking assessment
Stimuli
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Developmentally appropriate coloured pictures that have been previously used in studies with 

children of the same age (Dennis & Hajcak, 2009; Solomon et al., 2011; Leventon et al.,

2014) were selected from the International Affective Picture System (IAPS; Lang et al.,

2008). Many studies in adults have examined preferential looking gaze patterns on emotional 

pictures from the IAPS picture set, which is documented to be a well standardised set of 

emotional stimuli. However, in studies with young children, where it was impossible to obtain 

subjective valence and arousal ratings of the IAPS pictures because of the children’s difficulty 

in understanding the self-assessment mannequin rating techniques (Lang et al., 2008), a 

subset of developmentally appropriate IAPS pictures has been used (Dennis & Hajcak, 2009; 

Solomon et al., 2011; Leventon et al., 2014). 

It has been previously reported that children respond in a similar manner as adults to complex 

developmentally appropriate subset of images/emotional stimuli from the IAPS (Lang et al., 

2008). To this end, in the present study is was deemed appropriate to use a subset of IAPS 

pictures that have been previously used on these studies with children and adolescents, that 

included pleasant scenes12 (e.g. smiling faces, sport scenes, pleasant animals and scenes and 

family moments), unpleasant scenes13 (e.g. faces with negative expressions, attack pictures or 

disasters), and also neutral scenes14 (e.g. neutral faces, household objects or nature). 

Additional neutral stimuli were selected to match the requirements of the experimental design. 

                                                            
12 The IAPS numbers for pleasant pictures are: 1460, 1610, 1710, 1920, 2070, 2091, 2224, 7325, 7330, 
7400, 8031, and 8496. 

13 The IAPS numbers for threatening pictures are: 1050, 1120, 1201, 1300, 1321, 1930, 3280, 6190, 
6300, 9490, 9582, and 9594.

14The IAPS numbers for neutral pictures are:  5130, 5210,  5220, 5201, 5250, 5390, 5551, 5611, 5631, 
5711, 5740, 5750, 5800, 5820, 5870, 5890, 5900, 7002, 7000, 7004, 7009, 7010, 7025, 7030, 7031, 
7035, 7041, 7050, 7100, 7140, 7150, 7175, 7190, 7224, 7233, 7235, 7236, 7496, 7512, 7502, 7545, 
7560, 7580, 7595, 7632, 7705, 7900, 7950.
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As in previous studies that used the same stimuli with young children, means and standard 

deviations for valence and arousal ratings for each picture were taken from the IAPS 

normative adult ratings (Lang et al., 2008). 

The IAPS normative ratings are rated on a 9-point scale, where higher ratings for valence 

represent increased pleasantness, and higher arousal ratings correspond to more arousing 

stimuli. Negative, positive and neutral pictures differed in terms of valence [Positive: 

Mean(SD) = 7.62(1.48); Neutral: Mean(SD) = 5.71(1.36); Negative Mean(SD) = 3.65(1.88)]. 

In a similar vein, the categories of the emotional pictures differed from neutral in terms of 

arousal [Positive Mean(SD) = 4.67(2.35); Neutral: Mean(SD) = 3.32(2.07); Negative: 

Mean(SD) = 6.14(2.01)]. A repeated measures ANOVA comparing the image categories 

(positive versus negative versus neutral) on valence and arousal ratings yielded a significant 

effect of image category on both valence ratings [F(2, 22) = 100.28 , ηp
2 = 0.97, p < .001], as 

well as on arousal ratings, [F(2, 22) = 39.61,  ηp
2 =0.94,  p < .001]. As given by the means and 

standard deviations above, pictures with positive components had higher valence than neutral, 

where neutral had higher valence rates compared to negative stimuli. In contrast, negative 

images had higher arousal ratings than neutral, and in turn, neutral had higher arousal. 

Forty-eight pairs of pictures of negative-neutral and positive-neutral pairs were selected for 

the present study. Stimuli pairs were matched based on colour, contrast, and complexity after 

having been reviewed by two independent investigators and were presented simultaneously 

side-by-side. As a general criterion, all the selected pictures can be seen by young children on 

a daytime television program or in the news. To investigate the potential role of social versus 

non-social components of the stimuli in affectivity, half of the pictures (i.e., n = 6) for 

negative and positive emotional presented scenes that involved people whereas the other half 
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presented scenes that involved animals. In addition, the emotional-neutral pairs were matched 

in terms of arousal levels. The four different types of emotional pictures (i.e., negative social; 

negative non-social; positive social; positive non-social) were pseudorandomly distributed 

across the experiment, and each type presented equally over the left and right side of the 

screen. Moreover, to investigate the role of novelty in fixation durations, the first 24 pairs of 

the experiment consisted of novel affective stimuli (12 negative-neutral pairs, 12 positive-

neutral), whereas in the second block the same emotional stimuli were each paired with a 

novel neutral picture. This was done to inform whether the effects of preferential looking of 

particular type of emotion would be able to hold across the two blocks, compared to the other 

types of stimuli, even when the stimuli have been previously seen.  

The eye-tracking experiment was programmed using Experiment Builder software for 

EyeLink (SR Research, Ontario, Canada). Each trial began with a fixation cross, shown for 

1500 ms, measuring 2.81 x 2.08 degrees of visual angle in the middle of the screen, which 

was displayed for 1000 ms (except in the case of mini calibration; see Procedure Section). 

This was followed by a pair of pictures presented side by side for 3000 ms (see Figure 5.1). 

Stimuli presented on a 19-inch CRT, in 1280 x 1024 dimensions with a gap of 4.3 cm between 

the two pictures. Each stimulus pair was presented with a visual angle of 14.3 x 18.6 degrees.
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Figure 5.1. An example of the stimulus pairs used in the eye-tracking experiment, and an 
illustration of the trial structure.

            

Procedure

After taking consent from parents, children were escorted in a dimly lit room. All children 

initially participated on the face processing eye-tracking experiment that was presented in 

Chapter 4 (see also Section 4.4.2.3). After the completion of the first experiment, children 

were given a short break and were prepared to participate on the affective processing 

experiment. Both experiments took place during a single visit on the same experimental room 

using the same eye-tracking system. Children were told they were going to see different 

pictures on a computer screen, where their eye movements would be recorded with a special 

camera. During calibration, the EyeLink recorded the eye position a 9-target location 

calibration was conducted providing the required reference data for computing gaze positions 

to ensure a point of fixation error rate of less than 0.5 degrees. A mini calibration was repeated 

Fixation 1500 ms
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every four trials in order to ensure that eye movement data were adjusted for small-scale 

movement of the head. In the case of unsatisfactory eye-tracking, a 9-point calibration was 

repeated. The rest of the eye-tracking procedure was the same as on the emotional face 

processing experiment as described in section 4.4.2.3. Participants then completed the 

experimental trials.  A mini calibration was repeated every five trials to ensure that eye 

movement data was adjusted for movement of the headset and/or body. 
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5.5. Analysis

5.5.1. Analysis of Behavioural Data

See Section 3.5.1.

5.5.2. Reduction of eye-tracking data

Data analysis aimed to measure the time-course of preferential looking towards and away 

positive and negative emotional information, relative to the neutral stimulus. The criteria for 

calculating valid fixations were the same as presented in the Section 4.5.2. For the 

investigation of the fixation durations towards and away positive and negative emotions, 

dwell time was calculated in ms after subtracting the overall dwell time of the neutral stimuli 

from the emotional stimuli. This was done separately for each subject and for each positivity 

and negativity-inducing trial. Average dwell time of looking for each emotion type (i.e., 

negative, positive) was later calculated for each subject. A separate calculation of social 

versus non-social trials, for the first and second block separately, was conducted after this 

analysis. All the above analytical procedures were conducted separately for the positive and 

the negative stimulus. After the subtraction, the positive values represented preference

towards the emotion and negative values avoidance of the emotional stimuli. In the case of 

detection of more than 40% invalid trials participants were excluded from further analyses. 

However, no participant met this exclusion criterion; therefore, all 49 participants provided 

valid eye-tracking data.

Aiming to remain consistent with previous studies measuring proportion of fixations to 
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emotional stimuli in adults (Rohner, 2002) and in children (Gamble & Rappe, 2009) where 

the 3-s stimulus exposure was divided into 1 s, in the present study proportion of fixations to 

the emotional picture was computed for each emotion type and each 1000 ms time interval. In 

line with this notion, recent meta-analytical reviews in the field of affective processing 

suggesting that the vigilance in the content of vigilance-avoidance hypothesis has been 

particularly captured after 500ms of presentation when multiple stimuli compete for attention 

(for a review see Weierich, Treat, & Hollingworth, 2008), which has been suggested to be due 

to initial fixation on a stimulus within the 0-1000 ms epoch (for a recent review see 

Armstrong & Olatunji, 2012). Together, taking into account the above evidence and due to the 

complexity of the affective stimuli and developmental age of the participant, the selection of 

three equal 1s time windows for the investigation of the vigilance-avoidance patterns of 

scanning affective stimuli was deemed as the most appropriate in the present study. 

5.5.3. Analysis of Genetic Material

5.5.3.2. 5-HTTLPR Genotyping

See Section 3.5.3.1. 

5.5.3.1. BDNF Genotyping

See Section 4.5.3.1. 

5.5.4. Statistical Analysis

Preliminary Analyses
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See Section 4.5.4.

Behavioural Ratings and Eye Gaze Patterns

The primary analysis examined whether children’s behavioural scores (i.e., early behavioural 

problems; rates of autism symptomatology) were correlated with visual scanning patterns in 

response to particular emotional picture. Therefore, initial parametric and non-parametric 

correlation analyses were conducted with the overall viewing dwell time to the negatively and 

positively valenced pictures separately.  

Genetics and visual scanning

Each 3-second trial was divided into three equal 1000 ms intervals. The relative viewing 

dwell time (in ms) of the emotional images was calculated for each 1000 ms interval and then 

averaged across trials for each emotion (i.e., positive versus negative), condition (i.e., social 

versus non-social) and block (i.e., block 1 versus block 2) separately. A 2 (Image Type: 

negative versus positive) by 3 (Time: 0-1000 ms versus 1001-2000 ms versus 2001-3000 ms) 

by 2 (Condition: social versus non-social) by 2 (Block: novel emotional versus familiar 

emotional)   mixed analysis of variance (ANOVA) with 5-HTTLPR Genotype (L/L versus S/) 

and Gender as between-groups factors was conducted. The same analysis was repeated 

separately with different 5-HTTLPR genotype classification (i.e. S/S versus S/L versus L/L), 

as well as with two (i.e. V/V versus M/-) and three (M/M versus V/M versus V/V) BDNF 

Val66Met genotype. All within subject, effects that violated the assumption of sphericity were 



               Serotonin 5-HTTLPR genotype modulates fixation duration towards affective stimuli in young children

191

adjusted using the Greenhouse-Geisser correction (adjusted degrees of freedom are noted as 

adj. df). To further evaluate the time course of attention allocation, independent samples t-

tests were conducted to determine whether there was a looking preference towards or away 

from the emotional images of a specific genotype group at any of the 1000 ms time intervals.   

This was done for each SNP (i.e., 5-HTTLPR and BDNF Val66Met) and each emotion, 

separately, after the initial ANOVA. When the data did not satisfy Kolmogorov-Smirnov tests 

for normality, Mann-Whitney U tests were performed instead of t-tests.
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5.6. Results

5.6.1. Demographic Characteristics

See Section 4.6.1 for the sample’s demographic characteristics.

Task engagement was calculated by subtracting the relative looking time away from the areas 

of the stimuli from the time looking the affective stimuli. This analysis show that participants 

spent consistently over 60% of the time looking the affective stimuli [M(SD) = 0.625 (0.31)] 

and a T-test test show that these rates did not differ between the 5-HTTLPR S/- and L/L 

genotypes [t(47) = .436, p = .665)] as well as when comparing three 5-HTTLPR genotypes 

(one-way ANOVA; p = .320). In a similar vein no difference on the task engagement rate 

where evident between the two [t(47) = .156, p = .887) or three BDNF genotypes (one-way 

ANOVA; p = .721; see also Appendix 5.3). Moreover, repetition of the same analysis for the 

engagement with negative and positive stimuli separately showed these rates did not differ 

between the 5-HTTLPR S/- and L/L genotypes [t(47) = .432, p = .661)] as well as when 

comparing three 5-HTTLPR genotypes (one-way ANOVA; p = .622). In a similar vein no 

difference on the task engagement rate where evident between the two [t(47) = .425, p = .772) 

or three BDNF genotypes (one-way ANOVA; p = .522).

5.6.2. Behavioural effects in fixation duration

Pearson correlation analyses revealed a negative correlation between looking time of the 

negatively valenced stimuli and age (r = -.559, p < .001), where younger children exhibited 
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higher reactivity/attenuation towards negative stimuli. No further significant correlations 

between children’s demographic characteristics and fixation duration for each emotion, block, 

condition, and time point were observed. Moreover, no significant correlation was evident 

with children’s internalizing and externalizing problems and average fixation duration at any 

emotion, time point, condition or block.

5.6.3. Genotype effects in fixation duration towards affective stimuli

A 2 (Image Type: negative versus positive) by 3 (Time: 0-1000 ms versus 1001-2000 ms 

versus 2001-3000  ms) by 2 (Condition: social versus non-social) by 2 (Block: novel 

emotional versus familiar emotional)  mixed ANOVA with Genotype (5-HTTLPR L/L versus 

S/-) and Gender as between factors revealed a significant main effect on Emotion [F(1,45) = 

6.27,  ηp
2 = .122, p = .016)], where participants exhibited a preferential looking pattern 

towards the positive stimuli compared to the negatively stimuli (see Table 5.1; see also 

Appendix 5.1 for raw data). A significant main effect of Time was also evident [F(2,44) = 

121.80, ηp
2 = .730, p <.001] with visual scanning duration to be evident to peak at T2 [1001-

2000 ms] and declined on the later stage of processing (see Table 5.2). Moreover, a main 

effect of Block [F(1,45) = 112.72, ηp
2  = .715, p <.001] suggests that participants during Block 

2 spent less time looking on the emotional/previously seen emotional stimuli (Block 1) and 

compensate the time by exploring the novel neutral stimuli (see Table 5.1). In addition, a 

significant two-way Time by Block interaction [F(2,44) = 44.66, ηp
2  = .498, p < .001] 

suggests that independently of the emotion valance children spent less time looking the 

emotional/previously seen stimuli on the second block, and spend more time exploring the 

novel neutral stimuli (see Table 5.2). Furthermore, a two-way Emotion by Time interaction 
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effect was evident [F(2,44) = 6.72, ηp
2 = .130, p = .002] where participants spent more time 

looking at the positive stimuli across blocks and conditions relatively to the negative stimuli, 

difference which was more pronounced over T2 (1001-2000 ms; see Table 5.2). Similarly, a 

two-way Emotion by Condition effect [F(1,45) = 6.03, ηp
2 = .118,  p = .018] was observed 

with relatively lower visual scanning time to be evident for non-social negative stimuli (see 

Table 5.1). In addition, a three-way Emotion by Time by Condition interaction was observed 

[F(2,44) = 5.69,  ηp
2 = .112, p = .005] with more time spent looking at the positive non-social 

stimuli (i.e., happy animals; sweets) than social and/or negative, which was more pronounced 

during 2001-3000 ms (T3; see Table 5.2). 

Table 5.1. Participants’ mean time (in ms) and standard deviations (in brackets) spent per 
emotion, condition and block, averaged across time points.

Social Non-Social

Block 1 Block 2 Block 1 Block 2

Positive 495(278) 200(298) 588(325) 243(299)

Negative 448(364) 140(363)         344(436) 22(354)

With regards to the effects of serotonin transporter polymorphism, a two-way Time by 5-

HTTLPR genotype was evident [F(2,90) = 3.61, ηp
2  = .074, p =.031] where Short allele 

carriers, compared to Long allele homozygotes, spent less time looking at the emotional 

stimuli independently of valence during T2 (1001-2000 ms; see Figure 5.2). Moreover, a 

three-way Time by 5-HTTLPR by Gender interaction was evident [F(2,90) = 10.79, ηp
2 = 

.193, p <.001] where homozygous female participants for the high serotonin uptake Long 
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allele spent significantly more time processing the emotional stimuli independently of the 

valence at T2 (Mean = 838.53; SD = 163.10; see Figure 5.2) and female Short allele carriers 

spent less dwell time looking at the emotional stimuli during T2(M = 417.61, SD = 345.77). 

No further effects of the 5-HTTLPR were evident for this analysis. 

Figure 5.2. Genotype and gender effects on time course of visual scanning of emotional 
stimuli

To further investigate the documented two-way Time by 5-HTTLPR genotype (S/- versus 

L/L), the dwell time at each of the three time points was averaged across the two emotions. A 

Kolmogorov-Smirnov test of normality showed that the averaged data at each time point was 

normally distributed (p > .005). Therefore, a t-test was conducted at each time point, which 

showed Short allele carriers spent significantly less time looking at the emotional stimuli 

when compared to Long allele homozygotes during 1001-2000 ms [t(47) = -2.28, p = .027; 

see Table 5.3].  Interestingly, a two-way ANOVA at each of the three time points of 

processing emotional stimuli irrespectively of the valance, with both gender and 5-HTTLPR 

genotype as independent variables, show a significant Gender by 5-HTTLPR effect at T2 

[F(1) = 7.94, p = .007,  ηp
2= .150] and T3 [F(1) = 11.15, p =  .002, ηp

2= .199]. This may 
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suggest that gender when combined with genetic mechanisms may modulate behavioural 

reactivity in response to emotional information early in life.

This initial analysis was repeated with three 5-HTTLPR genotype groups (i.e. L/L versus L/S 

versus S/S) which revealed an additional three-way Emotion by Condition by 5-HTTLPR 

interaction [F(2,43) = 1.78, ηp
2 = .159,  p = .024]. This analysis suggested that participants 

who were carriers of two copies of the Long allele, spent more time exploring the non-social 

threatening stimuli, where Short allele carriers (i.e. S/S, L/S) spent relatively less time looking 

at the negatively valenced non-social stimuli (see Figure 5.3. and Appendix 5.2). 

Figure 5.3. 5-HTTLPR genotype effects on relative viewing time per emotion and condition. 
The presence of one Short allele was associated with avoidance pattern of non-social negative 
stimuli, whereas two copies of the genotype with two copies of the Short allele were 
associated with reduced looking at non-social positive stimuli.

The initial ANOVA was repeated with the BDNF Val66Met genotype (i.e. V/V versus M/-), 

which did not revealed any Time X BDNF genotype effect [F(2,90) = 0.30, ηp
2  = .030, p = 

.506]  or any additional effect (see Table 5.4). Similarly, when entering the three BDNF 

genotype groups (i.e. M/M versus V/M versus V/V) as between factor, no significant Time by 
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BDNF interaction [F(4,86) = 0.55, ηp
2 = .025, p = .693]  or a three-way Emotion by Condition 

by BDNF Genotype [F(2,43) = 1.10, ηp
2 = .005, p = .896], or any other interaction was 

evident (see also Appendix 5.3).  

To further delineate the 5-HTTLPR genotype effects on fixation duration towards social and 

non-social fearful stimuli, separate one-way ANOVAs were conducted after the relative dwell 

time was averaged for Negative-Non-Social, Positive Social and Positive Non-Social stimuli 

(normally distributed; Kolmogorov-Smirnov test p > .05) comparing the three 5-HTTLPR 

genotype groups. Since the data from the average fixation duration in response to Negative-

Social stimuli were not normally distributed (Kolmogorov-Smirnov test p < .05), a Kruskal-

Wallis test was conducted. The ANOVAs revealed a significant effect of 5-HTTLPR 

genotype on the time spent looking the negative non-social stimuli [F(2) = 4.04, p = .025] 

showing that Long allele homozygotes spent significantly more time looking at the non-social 

negative stimuli (see Figure 5.3 and Appendix 5.2). In contrast, the ANOVAs did not revealed 

any significant effect for the Non-social positive stimuli [F(2) = 2.66, p = .080]  and social 

positive stimuli [F(2) = .844, p = .437]. In a similar vein the Kruskal-Wallis test did not 

revealed any significant effect of 5-HTTLPR genotype on the processing of negative stimuli 

with social component [x2(2) = 2.21, p = .330].
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Table 5.2. Mean dwell time of participants (in ms) and standard deviations (in brackets) per Emotion, Block, Condition and Time Point. 
Participants are spending less time fixating the negative non-social stimuli across the two blocks compared to the social-related emotional 
stimuli.

Block 1 Block 2

Social Non-Social Social Non-Social

T1

Mean

(SD)

T2 

Mean

(SD)

T3 

Mean

(SD)

T1 

Mean

(SD)

T2 

Mean

(SD)

T3 

Mean

(SD)

T1 

Mean

(SD)

T2 

Mean

(SD)

T3 

Mean

(SD)

T1 

Mean

(SD)

T2 

Mean

(SD)

T3 

Mean

(SD)

Negative 67

(143)

765

(503)

513

(617)

94

(166)

649

(613)

289

(730)

-25

(110)

346

(512)

97

(603)

2

(105)

92

(488)

-29

(606)

Positive 57

(136)

867

(411)

561

(443)

48

(173)

956

(423)

759

(557)

-3

(100)

385

(442)

219

(504)

9

(93)

441

(419)

278

(490)
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Table 5.3. 5-HTTLPR genotype groups dwell time (in ms) and standard deviations (in brackets) per Emotion, Block, Condition, and Time 
Points.  Carriers of at least one Short allele are spending less time fixating negative stimuli overall, across blocks, different which is more 
pronounced for the non-social threat stimuli.

Block 1 Block 2

Social Non-Social Social Non-Social

T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

5-HTTLPR

L/L

S/-

Negative 80

(149)

905

(448)

719

(586)

129

(207)

945

(602)

617

(626)

-7

(140)

368

(500)

117

(514)

8

(74)

296

(401)

178

(543)

Positive 44

(163)

925

(398)

680 

(403)

79

(228)

1065

(331)

877

(516)

23

(116)

501

(385)

274

(434)

35

(110)

479

(428)

225

(499)

Negative 61

(141)

691

(521)

403

(614)

75

(140)

492

(567)

115

(730)

-34

(92)

335

(526)

87

(653)

-1

(118)

-16

(501)

-139

(616)

Positive 64

(122)

836

(420)

497

(456)

32

(137)

898

(459)

697

(575)

-16

(89)

324

(464)

189

(542)

-5

(82)

420 

(419)

306 

(491)

Serotonin 5-H
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R
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Table 5.4. BDNF genotype groups dwell time (in ms) and standard deviations (in brackets) per Emotion, Block, Condition, and Time Points. No 
significant variations between the two genotypes observed.

Block 1 Block 2

Social Non-Social Social Non-Social

T1

Mean

(SD)

T2 

Mean

(SD)

T3 

Mean

(SD)

T1 

Mean

(SD)

T2 

Mean

(SD)

T3 

Mean

(SD)

T1 

Mean

(SD)

T2 

Mean

(SD)

T3 

Mean

(SD)

T1 

Mean

(SD)

T2 

Mean

(SD)

T3 

Mean

(SD)

BDNF Val66Met

V/V Negative 83

(134)

825

(458)

527

(503)

132

(171)

669 

(597)

295

(701)

-40

(94)

398

(494)

149

(492)

5

(115)

181 

(387)

86

(451)

Positive 111

(111)

966

(433)

546

(481)

85

(160)

938

(427)

762

(617)

-5

(101)

399

(466)

198

(525)

11

(95)

472

(330)

338

(438)

M/- Negative 49

(154)

692

(555)

495

(747)

47

(150)

625

(645)

281

(781)

-6

(127)

283

(539)

35

(723)

-1

(93)

-18

(580)

-170

(741)

Positive -9

(138)

745

(355)

579

(401)

3

(182)

978

(426)

756

(487)

0

(100)

369

(422)

245

(488)

7

(94)

403

(513)

203

(549)
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5.7.   Discussion

The present study was designed to examine the relationships between 5-HTTLPR and BDNF 

Val66Met genotypes, rates of early behavioural problems and visual scanning of emotional 

stimuli in young children. The results indicated that children with at least one Short 5-

HTTLPR allele exhibited increased reactivity in response to threat-related stimuli with non-

social component, compared to participants with two copies of the Long 5-HTTLPR allele. 

Conversely, participants with two copies of the Long 5-HTTLPR allele were found to spend 

significantly more time fixating the non-social negative stimuli. Contrary, variation on the 

BDNF Val66Met genotype did not accounted for individual differences on the visual scanning 

of affective stimuli.

While this pattern of findings agrees with previous evidence that reported avoidance but not 

vigilance towards negative stimuli in anxious populations (e.g., Hermans et al., 1999; Rohner, 

2002), the present pattern of findings may also suggest the existence of reward-seeking 

behaviour in carriers of the high serotonin uptake-related Long 5-HTTLPR allele. More 

specifically, the pattern of the eye movement behaviour suggest that carriers of two copies of 

the Long allele, compared to carriers of the Short allele consistently spend more time fixating 

the different types of negative but also positive stimuli. This pattern of findings reaches 

significant levels during the processing of non-social negative stimuli. Taken previous 

findings that reported positive association between the presence of the Long 5-HTTLPR allele 

and novelty seeking behaviours (e.g., Strobel, Lesch, Jatzke, Paetzold, & Brocke, 2003) future 

research would be critical to be conducted to differentiate between neuropsychological 

indexes of vigilance-avoidance and reward and novelty seeking, as well as positive approach.
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With regards to the evident effect of 5-HTTLPR genotype on the visual scanning of negative 

non-social stimuli, although the pattern of findings was in principle consistent with the study’s 

hypothesis, the vigilance-avoidance pattern was not evident. In contrast, the results suggest 

that participants carrying at least one low serotonin uptake-related Short allele, compared to 

Long allele carriers, exhibited a consistent selective avoidance pattern of looking the non-

social negative stimuli across the 3,000 ms trial. This pattern of findings is partially consistent 

with eye movement data in adults that reported that carriers of the Short 5-HTTLPR allele 

spent significantly less time fixating negative stimuli and subsequently fixated more at 

positive emotion scenes, pattern of findings which interpreted as an effort to regulate 

heightened reactivity to negative stimuli (Beevers et al., 2010). Interestingly, the present study 

shows that the reduced looking pattern was specific to aversive stimuli with non-social 

component. This finding agrees with a range of observations with adults (Kirsch et al., 2005; 

Prather et al., 2001; Meyer-Lindenberg et al., 2005) and children (Susa et al., 2008) that 

reported a differential role of non-social fear in uniquely generating affective responses. 

Therefore, it is possible that children as young as 4 years old that carry the plasticity-related 

Short 5-HTTLPR allele may look away from the threatening situation, instead to further 

explore the aversive stimuli, as a way to inhibit their emotional arousal. 

At this point is worth highlighting that the differential susceptibility hypothesis has been 

influential in the field in terms of adopting a more flexible framework to describe sensitivity 

for psychopathology (Boyce & Ellis, 2005). Based on this account, the Short 5-HTTLPR 

allele is not considered as per-se risk allele but as a plasticity allele that can interact with 

environmental factors to predict behavioural outcomes for better and for worse (see also 

Section 3.2.1). More specifically, recent meta-analyses have confirmed that the Short 5-

HTTLPR allele was associated with risk for negative outcomes when exposed to adverse 



               Serotonin 5-HTTLPR genotype modulates fixation duration towards affective stimuli in young children

203

environment, but were also found to be associated with more positive influences when 

supported by positive environments (see van IJzendoorn et al., 2012). Therefore, the 

documented neuropsychological index of reduced fixation duration in response to negative 

non-social stimuli in young carriers of the Short 5-HTTLPR allele in the present study, would 

be important to be measured along with environmental influences later in life to confirm 

whether these associations may account as differential early markers for negative but also 

positive affectivity. To this end, future research that will include the investigation of gene-

mediated behavioural outcomes in both typical and atypical development will eliminate the 

inconsistencies in the extant literature (LoBue & Perez-Edgar, 2014; Munoz et al., 2010) and 

will shed light on the particular constructs of early reactivity and behavioural affectivity.

However, in contrast to the study’s hypothesis, the results did not show any significant effect 

of the BDNF Val66Met genotype on the visual scanning of affective stimuli (Montag et al.,

2008; Schofield et al., 2008; Lau et al., 2010) As reviewed earlier although research has 

shown that both 5-HTTLPR and BDNF genotype are involved in similar aspects of affective 

responses, and taken the documented effects of BDNF on visual scanning of faces on Chapter 

4, there is a possibility that early in life, differing genetic mechanisms may drive reactivity in 

response to faces versus aversive scenes. To this end, the documented effects of the two 

candidate polymorphisms on emotion reactivity in the present young and unaffected sample 

of children may be due to complex, but poorly understood pathways that undergoing 

maturation during these sensitive periods. It has been shown earlier that early manifestation of 

visual scanning behaviour in response to emotions may relate with individual differences in 

emotion regulation. However, taking into account previous evident that highlight 5-HTTLPR 

as plasticity variant (e.g., see Belsky et al., 2009) that may be associated with both negative 

and positive outcomes depending on the context, it is difficult to interpret whether the 
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direction of more versus less time spent looking emotional stimuli may related with a specific 

kind of affectivity. Further developmental research is required to delineate the putative aging 

effects on reactivity and the potential role of neurobiological mechanisms that modulate 

reactivity. 

In addition to the effect of 5-HTTLPR genotype in modulating visual scanning pathways in 

response to non-social negative stimuli, an interaction between serotonin genotype and gender 

was evident on the time course of viewing emotional stimuli, irrespectively of the valence. 

More specifically, compared to females carrying the Short allele and males with either the 

genotype, female with two copies of the Long 5-HTTLPR allele, spent significantly more 

time looking the emotional stimuli during T2 and T3.  The current observation for gender by 

genotype interaction may suggest the existence of a gender-specific biological contribution in 

the visual scanning of emotions early in life that may relate to increased susceptibility for 

behavioural problems. However, taken that there is no conclusive evidence on the gender 

effects of affectivity early in life, as well as the sample size limitation of the study, the present 

pattern of findings need to be interpreted cautiously.  Although, research has previously 

highlighted the existence of gender differences on the manifestation of affectivity, especially 

in relation to depression, where increased susceptibility for affective disorders has been found 

in females compared to males (Nestler et al., 2002), the particular gender underpinnings that 

may influence susceptibility for affective disorders are currently unknown (e.g., for a review 

see Bale, 2006). This hypothesis requires further investigation.
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Moreover, the results of the present study did not provide significant correlations between 

parent reports of early affective problems, especially anxiety traits, and average fixation 

duration to emotional pictures. The previously documented association between early 

affective traits and atypicalities on visual scanning behaviours in youths are not confirmed 

here (Martin, Horder & Jones, 1992; Vasey et al., 1995; Vasey et al., 1996; LoBue & Perez-

Edgar, 2014). As highlighted earlier, the sample of children that was employed in the present 

study consists of a young unaffected population. Therefore, the regulatory mechanism of 

visual scanning may differ between healthy children, as in the study’s sample, and affected 

subgroups (e.g., LoBue & Perez-Edgar, 2014). However, the fact that children in each 

genotype group were matched on their early affectivity rates, allows for the outcomes coming 

from the eye movement data to be uniquely attributed on the variations of the serotonin 

transporter-linked 5-HTTLPR polymorphism. Future research that will include diverse groups 

of children (e.g., ability, genetic profile, nurturing environment) and in multiple 

developmental ages, will be important to be conducted in the future to inform about the 

putative developmental pathways and constructs of early affectivity.

In addition to the genotype and behavioural implications, some additional effects were 

documented that are informative for the field of affective processing. More specifically, the 

evident Emotion by Time interaction suggested a preferential pattern in response to stimuli 

with positive valence. Most notably, it was shown children spent more time looking at the 

positive (especially non-social) stimuli relatively to the negative stimuli, a difference which 

was more pronounced between 1000-2000 ms of processing. Recent studies with young 

populations have shown that increased preferential looking at threat only manifests in a subset 

of anxious children, while non-anxious children exhibit a preferential looking for positively 
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valenced stimuli as opposed to negative (Eldar et al., 2012).  Compared to adults, where a 

priority in processing negative stimuli is evident across studies, the documented increased 

fixation duration in response to positive stimuli in the sample of young children on the present 

study may be explained by immatureness in the inhibitory control system that is associated 

with the processing of threat (Morren et al., 2003). 

Conversely, the study reported lower visual scanning allocation in response to negative 

stimuli with non-social components (e.g. animals) on the later stage of visual scanning. This is 

consistent with a plethora of neurophysiological studies that highlighted the differential role 

of non-social fear in uniquely generating affective neural responses (Kirsch et al., 2005; 

Prather et al., 2001; Meyer-Lindenberg et al., 2005). The present study further supports the 

existence of a potential differential effortful control mechanism early in life in response to 

environmental stressors that may underpin the evolutionary influence of defence when an 

individual is exposed in a dangerous environmental situation. Interestingly, in line with this 

finding the study also revealed a main effect of novelty during the visual scanning of 

previously seen affective stimuli. More specifically, the study showed that subjects exhibited 

a decrease on the preferential looking in response to emotions (independently of the valence) 

when the same/previously seen affective stimuli was presented on the second block matched 

with novel neutral stimuli. This suggested that children as young as 4 years old, were able to 

recognise the previously seen positive or negative affective stimuli and recruit the appropriate 

regulatory abilities to switch their eye gaze away from the familiar stimuli and explore the 

novel neutral stimuli. Taken together, the study suggests that children early in life are able to 

shift their eye gaze towards novel stimuli, and conversely to avoid explore the fearful stimuli 

especially the one associated with animals at the later stage of processing (2001-3000 ms).
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Limitations

Taking into account the absence of previous empirical studies in the field, the purpose of the 

current study was to examine the contribution of normal genotype variations in the visual 

scanning of aversive stimuli, aiming to fill an existing gap in the extant literature. Therefore, 

it was beyond the remit of the present thesis to delineate the same patterns affectivity in 

children diagnosed with affective disorders. Future studies, however, that will investigate the 

visual scanning of fear in atypically developing populations, such as children with anxiety 

disorders would be necessary for the field. To this end, the results of the present empirical 

study can act as a springboard for future research in other populations and ages of children, to 

achieve a holistic perspective for the unveiling of the neurobiological underpinnings of early 

emotional reactivity. Especially considering populations of children that are affected from 

profound social interaction deficits, such as children with autism, anxiety, and rare genetic 

syndromes (e.g. Williams Syndrome) the investigation of the early manifestation of 

atypicalities on preferential looking, and whether these are disorder specific or not, will 

further delineate the development of early affectivity. To this end, taken that the study sample 

was relatively underpowered, further research using a larger sample is required to further 

delineate the complex interactions between genes, neural structures of emotional processing, 

and their importance as precursors of later maladaptive behaviour.

Future longitudinal investigations, that will focus on the long-term effects of the susceptibility 

patters for better and for worse outcomes, would be critical to be conducted in the future. In 

line with this claim, the cognitive models of child anxiety suggest that threat avoidance may 

maintain anxiety traits in children, since they are not developing the critical evaluation 

abilities for the formation of effective emotion regulation (Hudson & Rapee, 2004; Rapee, 

2001).To this end, taken the absence of direct evidence coming from young populations in the 
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field, the present findings fill an existing gap in the literature on the effect of 5-HTTLPR in 

preferential looking towards threat as early as the age of four, that may account as a first-stage 

contribution on the field that may inform future research on the role of gene-mediated risk 

mechanisms of affectivity in determining differential behavioural outcomes in the later life.
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CHAPTER 6

General Discussion

6.1. Preface

The study in Chapter 5 investigated the effects of serotonin transporter genotype on visual 

scanning pathways in response to aversive scenes in a group of typically developing children 

aged between 4 and 7 years. The results uncovered associations between serotonin-related 

normal genetic variations and visual scanning patterns of non-social threat that may account 

as a first stage contribution on the neurobiological basis of early reactivity. In the current

chapter, the results of all of the empirical studies presented in this thesis will be discussed and 

synthesised with the existing literatures, with a view to highlighting the impact of the current 

work as well asimplications for future research and directions in the area of vulnerability for 

affectivity and early behavioural problems. 
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6.2. Introduction

The development of emotion regulation is a critical ability for an individual’s later 

psychological functioning, which is involved in the establishment of positive and negative 

affectivity patterns early in life (Fonagy & Target, 2008). In a similar vein, the developmental 

nature of affective disorders has been previously highlighted, where the early behavioural 

manifestation of affectivity in children has been identified as a reliable predictor of later 

psychological maladjustment (Leonardo & Hen, 2008). During recent years, there has been a 

line of research examining the complex neural, behavioural and genetic mechanisms involved 

in the manifestation of affective problems and psychopathology early in life (for a review see 

Moffitt, 2005; Caspi & Moffitt, 2006; Cummings, Davies & Campbell, 2000).

The literature review presented in this thesis highlighted that variations in experimental 

designs and samples characteristics (i.e., age, ability) can impede the development of a single, 

reliable, and conclusive framework in the field of early behavioural problems. Similarly, 

confusion surrounding the various terms and associated definitions used in the field to 

describe the constructs of early affectivity has further challenged this area of inquiry. 

Therefore, the broader aim implemented throughout this thesis was to review and carefully 

consider the existing theoretical concepts and relevant methods and measurements to most 

effectively examine early markers for behavioural problems.  For example, the most 

significant theoretical proposals were selected to drive and frame measures of early 

affectivity. This was pursued through an effort to delineate potentially key neural, 

behavioural, and genetic constructs that might be involved on the early manifestation of 

behavioural problems.
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Consistent with the overreaching aim of the thesis, four empirical studies were conducted. As 

part of the first two studies, EEG was employed in an effort to derive neurophysiological 

signatures of early behavioural problems (Chapter 2), and to investigate novel associations 

between genes, brain, and behaviour (Chapter 3) that may suggest the existence of gene-brain 

mechanisms which may relate to increased sensitivity for behavioural problems in early 

childhood. In the third and fourth studies, eye-tracking technology was utilized to investigate 

the genetic underpinnings of early reactivity in response to facial emotions and features

(Chapter 4) and aversive emotional scene information (Chapter 5). Collectively, these 

empirical studies, described in the thesis, elucidate putative associations that may help 

delineate the nature of the manifestation of behavioural problems, and allow a first stage 

contribution towards the identification of novel neurobiological mechanisms that may drive 

early affectivity. Below, I discuss the main findings, strengths, limitations, and clinical 

implications of this research, with reference to the existing literature. Furthermore, 

implications for future research directions in the field of behavioural problemsand 

developmental psychopathology will be presented. 
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6.3. Main Findings

The present thesis had a broad research aim, where a range of methods and techniques were 

employed. To this end, the key results and implications will be considered within three 

domains: (1) neurophysiology of early behavioural problems, (2) serotonin influences of 

affective patterns of frontal activation, and (3) putative genetic markers of early emotional 

reactivity during early childhood.

6.3.1. Neurophysiological signatures of behavioural problems in early childhood

One of the key aims of this thesis was to critically review the existing empirical research on 

the development of behavioural problems, and the early neurophysiological underpinnings of 

behavioural problems, in both typical and atypical development. Most notably, in Chapter 2 it 

was highlighted that frontal EEG studies have classified the same clusters of behavioural 

problems differently in terms of negative or positive affectivity. For instance, externalizing 

behaviourshave been seen as a component of positive reactivity in some studies (Baving et 

al., 2003) where in others has been perceived as a negative component of behaviour (Fox, 

1991). This documented inconsistency in the definition of the different constructs of 

affectivity may generate a major definition issue in the field, and subsequently a considerable 

discrepancy in the literature that investigates brain-behaviour associations. 

In light of these issues in the literature, the first empirical study of the thesis aimed to 

investigate the putative brain-behaviour associations that are present early in life by utilizing a 

novel frontal EEG experiment and by employing well-structured standardised parent-filled 
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measures of early behavioural problems. Frontal EEG has been widely utilized in the past as a 

reliable index of affectivity in children, adolescents, and adults. More specifically, right 

asymmetry has been consistently associated with negative affectivity, whereas more left 

asymmetry with positive affectivity (for a review see Coan & Allen, 2003).

The results of the study confirmed the literature that suggests negative behavioural and 

neurophysiological affectivity (i.e., greater right frontal EEG asymmetry) is not only 

associated with internalizing problems (e.g., Fox, 1991), but may also infer the presence of 

externalizing problems (Baving et al., 2003; Santesso et al., 2006). Most notably, it was 

highlighted that the context in which aggression is expressed may be a key mediator of the 

negative or positive component of the manifested aggressive behaviour (Smits & Kuppens, 

2005; Cooper et al., 2007). Consistent with previous evidence with children, the study 

suggested that children exhibiting increased approach behaviours (who traditionally were 

associated with higher right frontal activation) are more likely to develop aggressive 

behaviours. This may be due to their difficulties in regulating their negativity-related 

affectivity that results from their approach-related aggressive behaviours (Smith & Bell, 

2010). 

In addition to the investigation of behavioural measures as a predictor of frontal brain 

activation, the utilization of frontal EEG as a trait versus state measure of affectivity was also 

examined in this thesis, by investigating the frontal asymmetries in response to social and 

non-social experimental conditions. To this end, it was hypothesised that 

negativity/withdrawn-related patterns of greater right asymmetry would be specific to social 

stimuli (as a way of inhibiting the emotional arousal of the social situation) and would be 
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associated with elevated rates ofbehavioural problems in young children. In contrast to the 

expectations, the results indicated that frontal activation was independent of whether children 

were observing videos with social or non-social component, providing support for a 

utilization of the EEG as a trait measure. The patterns of these results also suggest that EEG 

activation early in life may indicate a non-disorder specific endophenotype of affectivity 

(Burnette et al., 2011). 

A number of methodological issues may also account for the findings in this study. In contrast 

to previous studies that utilized EEG as an index of temperament and used a similar, but more 

ecological valid social stimuli (Hane & Fox, 2006; Marshall et al., 2002), the present study 

did not uncover a significant effect of the type of videos viewed on the modulation of frontal 

EEG activation. This pattern of findings is in favour of the literature suggesting a reliable 

trait, instead of state, utilization of frontal EEG activation. However, it is worth highlighting 

the evidence supporting that an EEG procedure itself can be experienced as an affective 

situation for some individuals, which may influence brain asymmetries accordingly 

(Blackhart et al., 2006). To this end, children’s patterns of brain activation that relate with 

negative and positive affectivity may be influenced by minimum environmental stimulation, 

when compared to adults. 

Furthermore, it is known that resting EEG effects and associations are strongest with eyes 

closed, and a proportion of EEG studies employ this kind of baseline resting state condition, 

which helps draw better comparisons and conclusion across conditions. However, the fact 

children as young as 4 years old experience difficulties sitting with their eyes closed during 

the EEG assessment, the employment of a baseline condition would potentially result in 
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increased risk for data loss, as well as in a final sample consisting by a group of children with 

specific abilities.  Moreover, alternative reasons to explain the null effect of the social versus 

non-social videos in frontal brain activation may relate to the information included in the 

videos that may elicit more eye movement artefacts or activate more memories that may 

interfere with the passive viewing of videos. To this end, it is possible the information 

included on the videos to elicit specific memories in children that may affect frontal EEG 

activation. These cognitive processes have not been controlled here for their role in mediating 

frontal EEG activation; therefore, the role of other cognitive processes in frontal EEG 

activation during the processing of social versus non-social information requires further 

research.

6.3.1.2. Summary of the EEG signatures of early behavioural problems

The results of the study presented in Chapter 2 demonstrated proof of principle that early 

markers of emotional affectivity may be predicted from measures of relatively higher right 

frontal EEG activation. Whilst this index alone may not entail vulnerability for negative 

outcomes later in life, the evident associations between behaviour and frontal EEG activation 

that were demonstrated in the study prompt further utilization of frontal EEG in investigating 

the constructs of affectivity early in life. As shown later in Chapters 3, 4 and 5, the existence 

of complex gene, neurophysiology and behaviour-mediated mechanisms may further account 

for an index of later affectivity that can help to determine psychological outcomes later in life.  

6.3.2.   Serotonin influences on affective patterns of frontal activation
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Previous studies with children (Santesso et al., 2006; Baving et al., 2003) and the results of 

the study in Chapter 2, have highlighted the patterns of frontal EEG asymmetries as putative 

endogenous markers for negative and positive affectivity in the later life (e.g., Schmidt et al.,

2009; for a recent discussion see Schmidt & Moscovic, 2013). More specifically, relatively

more right frontal asymmetry has been associated with withdrawn-related behaviours and 

negative affectivity, whereas left frontal asymmetry with approach-related behaviours and 

positivity (e.g., Coan & Allen, 2003). A separate line of research has highlighted that normal 

genotype variations on the serotonin transporter polymorphism are also associated with the 

manifestation of a range of affective disorders; particularly depression. More specifically, the 

presence of the Short allele on 5-HTTLPR has been shown to be associated with the 

depressogenic effects of stressful events (Caspi et al., 2003) and increased risk for affective 

disorders. Conversely, children with at least one Long allele have been found to manifest 

behavioural resilience against affective disorders, when compared to children homozygous for 

the 5-HTTLPR Short allele (L/S, L/L; Bogdan et al, 2014). 

Interestingly, variations on the 5-HTTLPR polymorphism have not only been associated with 

risk (diathesis-stress model), but have been also associated with plasticity for both positive 

and negative outcomes depending on the context (differential susceptibility; Belsky et al.,

2009; Belsky & Pluess, 2009) as well as with unilateral positive outcomes (vantage 

sensitivity; Eley et al., 2012). Based on the later account, it has been shown that the presence 

of the Short 5-HTTLPR allele was associated with low levels of neuroticism in face of 

positive events, when compared to other genotypes (Kuepper et al., 2012). The individual 

differences in this increased possibility to benefit from positive experiences has been  

associated with behavioural, physiological and genetic variables, which have been previously 
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described as per se “risk” or “vulnerability” factors in the literature (for a review see Pluess & 

Belsky, 2013). To this end, there is an increasing consensus in the field to support that these 

factors may be required to reconceptualised as plasticity markers   (Belsky et al., 2009; 

Belsky & Pluess, 2009). 

Taking into account the above evidence, a second key aim of the thesis was to investigate the 

genetic influences of children’s behavioural and neurophysiological patterns of early 

affectivity, as recorded from frontal EEG activation and parent reports of early behavioural 

problems. The novel findings that resulted from these investigations contribute to further 

delineating the complex neurobiological mechanisms that may be associated with the 

development of positive and negative affectivity in early childhood. 

The study in Chapter 3 showed that the presence of two copies of the 5-HTTLPR Short allele, 

associated with low availability of serotonin uptake, were also strongly associated with the 

negativity-related greater right frontal asymmetry. Interestingly, control analyses with the 

COMT Val158Met genotype or the parietal region did not show significant patterns of 

findings.The findings suggest the existence of an associative mechanism that may relate to the 

early manifestation of affectivity and behavioural problems early in life. These findings 

extended preliminary fMRI studies in adolescence suggesting a link between serotonin 

availability and activation over the dorsolateral frontal region (Wiggins et al., 2012). Similar 

pattern of findings was also found in a recent EEG study with adults (Papousek et al., 2012). 

Especially, considering the developmental stage of the study’s sample; these results may 

suggest the existence of vulnerability patterns of affectivity well before the trait or risk for a 
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psychopathology may be diagnosable, which can act as a unique prognostic value for future 

research.

Together with the existing findings in adolescents (Wiggins et al., 2012) and adults (Papousek 

et al., 2013), the outcomes of this investigation open up a possibility for the existence of early 

mechanisms that may place an individual in higher vulnerability for affective disorders 

through the existence of neurobiologically determined cognitive and behavioural tendencies 

that are present early in life. However, taken the increased consensus in the literature 

suggesting the existence of 5-HTTLPR by environment interactions with differential 

behavioural outcomes (e.g.., Belsky & Pluess, 2009), it would be necessary for the 

documented gene-brain associations here to be considered with caution. It is possible that 

complex gene by brain interactions during sensitive periods of development form plasticity 

mechanisms that in combination with positive and negative environmental exposures later in 

life may generate differential behavioural outcomes. The findings of the study can act as a 

springboard for further investigation and replication of this novel hypothesis early in life. 

6.3.2.2. Summary of the serotonin variation influences on frontal EEG

The results of the study have identified novel mechanistic relationships between normal 

genetic variations that determine serotonin uptake and patterns of affectivity of frontal EEG 

activation early in life. These findings have important implications for both the theoretical and 

clinical understanding of early manifestation of behavioural problems during early childhood. 

The study provided proof of principle that neurobiological markers that have been previously 

independently associated with plasticity for negative and positive behavioural outcomes are 



General Discussion

219

actually associated to one another in a mechanistic context. To this end, the study is consistent 

with the evidence that underscored frontal EEG asymmetries as a critical endogenous factor 

(Schmidt et al., 2009). This factor may interact with the genetic mechanisms of plasticity and 

depending in contextual contributions to lead to better or worse outcomes later in life. 

6.3.3.   Genetic markers of emotional reactivity in young children

A final aim of this thesis was to investigate the genetic underpinnings that may relate to 

increased reactivity in response to different types of emotional stimuli in a group of typically 

developing young children.Two separate eye-tracking investigations were conducted aiming 

to unveil the effects of normal variations in the BDNF Val66Met and 5-HTTLPR 

polymorphisms that may influence the processing of faces as well as the visual scanning of 

affective/aversive scenes.

6.3.3.1. Genetic influences of face processing early in life

Eye-tracking measures have been widely employed in the last two decades, with research 

showing that recording of eye-movements in response to affective stimuli may be a reliable 

neuropsychological index related with the presence or increased risk for psychopathology 

(e.g., Armstrong et al., 2010). More specifically, biased visual scanning of emotional stimuli 

from faces has been widely reported as a reliable neuropsychological index for affective 

disorders (e.g., Calvo & Avero, 2005; Rohner, 2002), such as depression and anxiety. In a 

similar vein, by employing eye-tracking technologies, research has examined the role of early 
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atypicalities of visual scanning of emotions as an index for risk versus resilience for 

psychological problems during development (e.g., Pine et al., 2009). 

From a neurobiological perspective, previous research with children and adolescents has 

suggested heightened reactivity in carriers of the neuroplasticity low activity Met BDNF 

Val66Met allele in response to negative environmental stressors (Scharinger et al., 2010; 

Gerritsen et al., 2011; Montag et al., 2008; Schofield et al.,2009; Lau et al., 2010). The 

BDNF Val66Met polymorphism has been widely associated with modulation of emotional 

regulation and affective processing (e.g., Joffe et al., 2009; Lang et al., 2007). The study 

presented in Chapter 4, by employing a novel eye-tracking investigation of preferential 

looking of emotional faces (i.e. angry versus happy versus neutral), provided evidence for the 

existence of visual scanning pathways that relate to increased reactivityin response to facial 

expressions of anger determined by variations on the BDNF Val66Met polymorphism. 

More specifically, the findings of the study confirmed the role of the Met allele as a 

moderator of affectivity-related behaviours early in life (Beevers et al., 2009; Gattet al., 2009; 

Kretschmer et al., 2014). Met allele carriers were found to look away from the negative facial 

expressions, probably as a way to inhibit the arousal that the stimuli generated to them. In a 

methodological progression that allowed the reliable measurement of the time course of 

preferential looking across different emotional facial expressions, the patterns of these 

findings provided support for the vigilance-avoidance model of visual scanning. According to 

this model, individuals initially spend more time scanning the affective stimuli, but later look 

away as a way to inhibit the arousal that the stimuli provoke to them. This is the first study 

with children to show that early behavioural patterns of reactivity-related visual scanning 
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pathways may be modulated by normal variations in genetic mechanisms related to 

neuroplasticity.

However, this pattern of findings may not be only interpreted in the basis of vigilance-

avoidance for the low plasticity Met-, as it can be argued that the effects may be driven from 

the high plasticity Val/Val genotype group which was shown to exhibit an increased interest 

towards exploring the negative facial expressions, without switching their eye gaze away to 

explore the neutral stimuli in the trial. Although there is evidence to suggest the involvement 

of the BDNF Val66Met polymorphism in modulating responses to environmental stressors 

(Scharinger et al., 2010; Gerritsen et al., 2011; Montag et al., 2008; Schofield et al., 2009; 

Lau et al., 2010), it is not yet clear from the present findings how the increased time spent 

looking the angry faces relative to the neutral in the high plasticity Val/Val allele relates with 

the modulation of neural pathways that involved in emotion reactivity. In a similar vein, 

taking into account evidence highlighting a differential involvement of the BDNF genotype 

on both positive and negative outcomes (e.g., Drury et al., 2012) it is not yet clear from the

current investigation, or other available evidence in the literature, whether the spending of 

more versus less time exploring the affective stimuli may link with a neuropsychological 

behaviour associated with per se risk or resilience for affective problems. Future research is 

needed to investigate how environmental influences may account for the manifestation of 

better and worse outcomes later in life.

In addition to the effects of the BDNF Val66Met genotype in the processing of emotional 

faces, an additional investigation of the study revealed effects of the 5-HTTLPR genotype on 

children’s eye gaze towards neutral facial features. The 5-HTTLPR polymorphism is part of 

the promoter region of the serotonin 5-HTT gene that is involved in serotonin uptake with 
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recent meta-analytical studies highlighting the polymorphism’s involvement in modulating 

amygdala reactivity in response to negative or arousing environmental conditions (Munafo et 

al., 2009; Murphy et al., 2013; Walsh et al., 2012). The study showed that carriers of at least 

one low serotonin uptake-related Short allele spent significant less dwell time looking at the 

eyes region of neutral faces and more time looking at the mouth region. In contrast, children 

homozygous for the Long allele spent more time looking at the eyes region and less on the 

mouth region.One possible explanation for the observed pattern of looking behaviour is that 

Short allele carriers diverted their eye gaze away from the eye region of neutral faces, and 

turned their attention away to looking the mouth region of the face, perhaps as a 

compensatory mechanism to down-regulate heightened reactivity when processing the eyes 

region. Conversely, Long allele homozygotes may be less reactive to socially demanding 

stimuli, and therefore have less of an urge to switch their eye gaze towards the mouth region 

of the face (see also Beevers et al., 2011). 

The possibility that 5-HTTLPR Short allele carriers, known to experience higher vulnerability 

for poor reactivity to distressing negative emotional cues, may help to link with the literature 

that suggests that reduced looking to the eye region is evident in individuals with social 

anxiety (Crawford et al., 2015; Farzin et al., 2009). However, although the sample size and 

size of effects is similar to the ones previously reported, the present pattern of genetic findings 

needs to be interpreted cautiously. It has been previously showed that the 5-HTTLPR Short 

allele can act as a plasticity factor (e.g., for a review see Pluess & Beslky, 2013), which in 

conjunction with other context-specific factors, such as life events, may differentially increase 

the risk versus resilience for later affective problems. This hypothesis requires further 

investigation, which will potentially incorporate the longitudinal measurement of behavioural 

outcomes.
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6.3.3.2. Genetic influences of processing of aversive scenes early in life

Reactivity in response to threatening stimuli of the environment is a critical component of 

affectivity, with research suggesting the existence of a specific evolutionary component in 

relation to threat and the immediate responses, which is provoked in humans. Compared to 

the emotional reactivity that is related to visual scanning of emotional faces (Chapter 4), the 

processing of affective stimuli may inform for a separate aspect of affectivity that is related 

with the facilitation of immediate reactive response when an individual is exposed in a 

threatening environmental condition. In line with this claim, existing literature in children 

suggests the existence of atypical vigilance-avoidance patterns of visual scanning of affective 

pictures in children with separation anxiety compared to controls (In-Albon et al., 2010). 

However, the common or differing neurobiological constructs that may be involved in the 

affectivity concerning social (facial emotions and features) or non-social aversive processing 

are not yet known. To this end, the empirical study conducted in Chapter 5 aimed to 

investigate the neurobiological underpinnings of the visual scanning patterns of reactivity in 

response to threat. Moreover, to further clarify and investigate whether the documented 

neurobiological patterns of affectivity that are related to facial processing, as observed in 

Chapter 4, represent face-related reactivity or whether distinct fear-related neuropsychological 

pathways of reactivity exist, the study conducted in Chapter 5 was done with the same 

population of children.

Similar to the patterns of recent studies highlighting the effects of serotonin transporter-linked 

5-HTTLPR polymorphism in early affectivity in young populations (Bogdan et al., 2014) and 
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adults (Beevers et al., 2010), the study presented in Chapter 5 showed associations between 

the plasticity-related 5-HTTLPR genotype and visual scanning of aversive scenes with non-

social component (i.e., aggressive animals). Interestingly, contrary to the emotional face 

processing investigation, a control analysis with the BDNF Val66Met genotype groups for the 

aversive processing investigation did not provide significant differences for visual scanning 

for any time of the affective stimuli used. More specifically, carriers of at least one Short 

allele, when compared to homozygotes for the high uptake Long allele, spent significantly 

less time looking for the aversive non-social stimuli. This is probably because of a gene-

influenced behaviour pattern, which serves to suppress the arousal that the exposure to the 

negative stimuli elicits. Conversely, Long allele homozygotes were found to spend 

significantly more time processing the non-social aversive scenes that suggests the existence 

of a serotonin-induced visual scanning of threat through the detailed exploration (instead 

avoidance) of the negative stimuli. 

However, it is not yet understood whether the documented genetic influences in early 

reactivity affect the behavioural arousal response, or if there is an influence that is specific to 

thenature or the size of this behavioural arousal. Future research that will employ the same 

experiment, but will manipulate the stimuli’s presentation time in groups of participants at 

different developmental stages, may shed light on this issue.  Moreover, it not yet clear why 

the effect of the 5-HTTLPR genotype emerge in response to non-social, but not social 

threatening stimuli. A possible explanation may relate to the subcortical neural pathways such 

asamygdala function that has been shown to be a key component for social processing 

(Adolphs, 2009; Lieberman, 2007; Vuilleumier & Pourtois, 2007). Detection of threat has an 

evolutionary component that may be critical for survival (Green & Phillips, 2004). Taken 
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together, the evidence effect of 5-HTTLPR genotype on the processing of non-social threat 

early in life may relate with complex, but poorly understood, serotonin-induced neural 

pathways. This area of inquiry requires further delineation.

Although behavioural evidence exists on the differential role of non-social fear in uniquely 

generating affective responses (Kirsch et al., 2005; Prather et al., 2001; Meyer-Lindenberg et 

al., 2005), this is the first known study in child, adolescent, and adult psychopathology to 

show the moderating effect of 5-HTTLPR polymorphism in the visual scanning of non-social 

fear. The study adds to the existing evidence of genetic influences of preferential looking 

towards and away from aversive non-social stimuli are present early in life, suggesting a 

genetic mechanism that may act as a precursor for increased vulnerability for later emotional 

and psychological maladjustment. However, taken the increasing literature to describe 5-

HTTLPR polymorphism as a plasticity variable, where depending on the context to be 

involved in both better and worse outcomes, it would be critical for future research to 

examine how the early neuropsychological mechanisms of reactivity as documented on the 

present study may interact with positive versus negative environmental influences to predict 

outcomes later in life. 

6.3.3.3. Summary of the genetic markers of early emotional reactivity

The findings of the study on the serotonin effects on visual scanning of aversive scenes are of 

particular interest when compared to the findings of the earlier face processing study. While 

the first face processing study provided novel insights in the existing adult literature for the 

involvement of the BDNF Val66Met genotype in the processing of angry versus happy faces 
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early in life, it has also provided an involvement of the 5-HTTLPR genotype in looking 

behaviour towards facial features important for effective social interaction. Moreover, 

although this second finding itself is of significant importance for the field, the second study 

on the processing of aversive stimuli adds that the same plasticity-related polymorphism may 

also modulate fear-related reactivity in a different context. This is important for the field of 

child, adolescent and adult psychopathology, highlighting for the first time that related, in 

terms of valence, yet differing experimental stimuli may contribute to the manifestation and 

potentially establishment of social-related difficulties and non-social threat-related reactivity. 

Likewise, the alongside investigation of the processing of emotional faces and aversive scenes 

in the same population of children strengthens the reliability of the outcomes suggesting the 

putative existence of common serotonin-mediated neural pathways for regulation of the 

reactivity in response to different types of experimental stimuli.

The results of the two eye-tracking studies provide first-stage contributions on the 

neurobiological influences of early reactivity in response to environmental stressors. From a 

developmental perspective, taking into account the previous behavioural data that indicate 

atypical patterns of preferential looking of emotional faces in children at increased risk for 

affective disorders (Battagglia et al., 2004; 2005), additional research on the potential for a 

mechanistic interaction between neuropsychological measures of emotional reactivity through 

eye-tracking may aid in the identification of the early cognitive, behavioural, and genetic 

precursors and potential markers for maladaptation. Interestingly, a recent eye-tracking study 

has shown that children with separation anxiety disorder reduced their vigilance pattern of 

visual scanning of negative facial expressions after they received Cognitive Behavioural 

Therapy (CBT; In-Albon & Schneider, 2012). Therefore, the early manifestation of 

atypicalities in visual scanning of emotions may be a significant neuropsychological marker 
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of affectivity that may aid not only in the early identification of the individuals at increased 

risk for affective disorders, but also facilitate the development and implementation of early 

therapeutic interventions. 

The amygdala is a core neural mechanism that is involved on the modulation of reactivity. To 

this end, the employment of eye-tracking as a neuropsychological index of the activation of 

neural structures, such as amygdala, may be critical on the identification of those at increased 

risk for the development of psychological problems early in life. Especially considering 

scientific approaches that employ multimodal measures such as brain, genome, and 

behaviour, future research may be of vital importance for the effective identification of 

individuals that are at familiar risk for the development of a particular set of symptoms. 

Moreover, such scientific approaches may be able to inform about the effectiveness of 

particular interventions that target the treatment of behaviour with pre- and post- intervention 

eye-tracking assessments, and how this impacts upon neural structures and 

neuropsychological reactivity.

6.3.4. Overall summary

As part of the present thesis, four empirical studies were conducted. The studies investigated 

the neural, behavioural and genetic underpinnings of affectivity in early childhood. Although 

the individual studies had a unique design and scope, it would be also interesting to have an 

overall overview of the importance and significance of the thesis research outputs. 



General Discussion

228

Most importantly, the present thesis highlighted the particular role of the variations in 5-

HTTLPR on various neuropsychological aspects that link to early reactivity and affectivity. 

More specifically, 5-HTTLPR has been shown to modulate individual differences in frontal 

brain activation, and in a sub-group of the same population to modulate eye gaze duration in 

response to angry faces as well as non-social affective stimuli, in a separate investigation. 

Examining the neurobiological underpinnings of reactivity using a variety of techniques in the 

same population may be a useful tool to delineate the exact nature of early susceptibility for 

affective problems. The evidence of the present thesis highlights that common serotonin-

mediated neural pathways, may produce the same neurophysiological reactions under 

different experimental conditions. Collectively, future research will answer whether the 

observed effects of the 5-HTTLPR polymorphism with frontal brain and eye gaze patterns of 

reactivity may account as reliable endophenotype markers for later behavioural outcomes.  

While the EEG study in Chapter 3 examined frontal brain patterns associated with negative 

and relative affectivity, the observations in Chapters 4 and 5 where looking for the same 

patterns of affectivity as reflected in eye gaze in response to affective stimuli. To this end, if a 

need existed to collapse the research outputs across the different observations, it would 

require great caution, as different methodologies, timing and analytical procedures where 

employed for each investigation. Moreover, for the later eye-tracking observations only a sub 

group of children was studied after an average period of 6 months from the original EEG 

study. To this end, it is not yet clear, how these overlapping effects can be solely attributed to 

the genotype effect, as other environmental event may have contributed on the multiple 5-

HTTLPR effects. Future cross-sectional studies with consistent sizes of young samples would 

be required to further delineate this area of inquiry.  
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The evident gene-related effects on brain functioning and reactivity may suggest that early 

mechanisms of affectivity may exist that may place some individuals in higher risk versus 

resilience for psychopathological problems. Taking into account previous evidence 

conceptualising both the 5-HTTLPR and BDNF Val66Met polymorphism as a plasticity 

variable, it would be useful the current research outputs to be replicated in longitudinal studies 

that involve the measurement of context-specific influences on the development of better and 

worse outcomes. Therefore, while the documented EEG by Genotype or Eye gaze by 

Genotype associations may suggest a type of behaviour that can be linked with existing 

models of reactivity, it would be critical future studies to include longitudinal investigation of 

environmental influences into generating behavioural outcomes for better and for worse.

In addition, across the four empirical studies of the thesis, standardised parent reports of 

children’s behavioural problems were employed. The results show that elevated rates of 

behavioural problems were associated with patterns of frontal brain activation (Chapter 2), 

which was not replicated in a larger sample (Chapter 3) and did not provided associations 

with eye gaze patterns towards types of emotional stimuli (Chapters 4 and 5). It is possible 

that early in life behavioural associations with reactivity may exist but were not documented 

in the present thesis. This may relate to the behavioural measures employed, or other potential 

sample characteristics, e.g. typically developing children (instead of children with a particular 

set of symptoms), ethnical homogeneity of the sample (instead of a more culturally diverse). 

Future research is required to delineate this area of inquiry, that ideally will include various 

methods of measuring behavioural manifestations, such as a range of standardised parent and 

self-report measures, as well as observations. To this end, it is likely that other behavioural 
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characteristics, such as parental well-being, or life events (e.g. school transitions) to account 

as confounding variables in this area of research, but here have not been tested. There is 

research that needs to be conducted to test this novel hypothesis.  

It is anticipated that the empirical evidence describedin this thesis will act as a springboard for 

the direct testing of several novel research hypotheses related to potential mechanistic 

interactions between genes, brain, and behaviour early in life that may contribute to the 

current understanding and determination of the neurobiological basis of the manifestation of 

early reactivity and psychological maladjustment. Together, this and future research on this 

topic may also lead to the development of new theoretical understandings related to 

vulnerability and protection for psychopathological problems. Furthermore, similar 

investigations employing the methods developed and utilised in this thesis for the study of 

atypical populations may aid in the development of targeted interventions for the treatment of 

those at increased risk for, or experiencing, affective disorders. For this to be effective, it is 

vital the measurement of the effect of positive versus negative environmental contexts on 

better and worse outcomes to be incorporated. Future research that will implement novel 

therapeutic approaches in individuals that are identified as vulnerable early in life may be a 

reliable approach for tackling the prevalence of affective disorders in the society. For these 

approaches to be effective, the complex interactions among behaviour, environment, and 

neurobiology need to be carefully considered and studied. 
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6.4.   Limitations and Strengths of the Research

Whilst the main findings of the thesis provide novel and experimentally valuable 

information and insights on the neurobiological basis of early emotion reactivity and 

psychological maladjustment, a number of limitations also need to be acknowledged. Most 

notably, throughout the thesis children’s early manifestation of behavioural problems was 

measured via parents’ reports of early affectivity rather through direct and structured 

observations of children’s behaviour. Thus, this aspect of all of the studies described may 

lack part of the ecological validity that an observational method can provide. Moreover, 

throughout the thesis,the main evidence that was examined as affectivity-related from the 

empirical studies of the thesis was quantified through the investigation of indexes of 

endophenotypic diversity, by employing EEG and eye-tracking technologies.Longitudinal 

observations of the mechanistic associations between neurophysiology, genes, behaviour 

and the environmental context would be necessary to be conducted in the future, to inform 

about the validity of such associations in predicting behavioural outcomes. Likewise, in 

combination with the very limited available evidence in child literature, the comparison 

and replication of the findings of the present thesis with previous studies is made difficult. 

However, through the integration of genetic, behavioural and neurophysiological 

investigations across the thesis, a comprehensive examination of the field was allowed by 

suppressing the possibility for false-positive effects. The consistent utilization of this 

approach may further ensure the future high levels replication validity of the empirical 

studies denoted in this thesis. 

Moreover, although the two separate eye-tracking investigations provided evidence for the 

involvement of 5-HTTLPR genotype on patterns of early affectivity, a potential alternative 
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explanation for the differentiated 5-HTTLPR effects between the two studies is necessary 

to be acknowledged. More specifically, it was shown that 5-HTTLPR genotype effects 

were evident for the processing of the eyes region of neutral faces and for the processing 

of non-social aversive scenes, but not for the time-course of processing emotional faces. 

Although this pattern of findings may be due to the previously documented increased 

amygdala reactivity in carriers of the short 5-HTTLPR allele (Munafo et al., 2008; Murphy 

et al., 2013; Walsh et al., 2012), variations in the experimental structure and stimuli used 

between the two eye-tracking experiments may also have critical contribution to the 

manifestation of young children’s reactivity. In addition, it is possible that maturational 

factors may drive the differential response of the same genotype group across different 

types of stressors. Due to the absence of developmental evidence in the field, it is difficult 

to infer conclusions of why children at the age of the sample may provide this differential 

response. This hypothesis requires further investigation. 

Finally, across the thesis there was a consistent weakness of sample size. However, 

compared to previously published neurophysiological and behavioural studies examining 

the role of candidate genes in youth, the empirical studies utilized larger or equal samples. 

Moreover, through the employment of a fine grained and hypothesis-driven statistical 

strategy for each investigation, including comparison control analyses, the validity of the 

results has been further enhanced. It would be important to highlight, however, that sample 

sizes for genetic studies of the kind that conducted in the present thesis, is a consistent 

issue in the field. More specifically, replication problems have been previously highlighted 

in candidate gene studies (e.g. Gillespie, Whitfield, Williams, Heath, & Martin, 2005; 

Surtees et al., 2006) that may contribute to slowing down the delineation of the biological 
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underpinnings of human affectivity. To this end, and taking into account the underpowered 

sample sizes across the empirical studies conducted in the present thesis, it would be vital 

to increase the sample size in future research in the field. Moreover, in keeping the 

methodological procedures and the sample characteristics consistent (e.g. age, ancestry, 

cognitive abilities), this may also help to tackle replication difficulties in the field.To this 

end, throughout the thesis attempts were made to delineate the theoretical background in 

the field, where various empirical evidence, techniques and approaches were taken into 

account. This allowed the generation of novelinsights, but also novel research questions 

for the field. 

A key strength of the research conducted in this thesis is that it was driven from the critical 

need to the field to unveil the complex neurobiological pathways and associations that may 

relate to the manifestation of affectivity-related patterns of behaviour later in life. Despite 

the increasing evidence in normal and affected adult populations, little focused research 

with young populations had been conducted in the field so far. The empirical studies 

presented in the present thesis were conducted in an ethnically homogenous sample of 

young children. Previous evidence have highlighted that the absence of ethnical 

homogeneity in the studied samples in genetic study, may have generated discrepancy in 

the field (for a recent protocol review see Culverhouse et al., 2013). Together, the findings 

of this thesis offer valuable and exciting first-stage contributions to our understanding on 

the putative effects of the complex associations between genes, brain, and behaviour and 

generate novel research questions on the individual differences that may drive risk versus 

resilience for affective problems later in life.  
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6.5.   Future Directions

As a result of the research in this thesis, a number of future key research areas can be 

identified. Firstly, a longitudinal study that begins early in life, where the temperamental 

formation takes place would be necessary to be conducted in the future. This research 

should evaluate the developmental trajectories that may contribute to the complex G×E 

interactions of positive and negative affectivity the earliest possible in life. Moreover, 

future studies in this area would require careful selection of various methodologies and the 

recruitment of substantial samples of both typically, but also atypically, developing young 

populations. To this end, the utilization of EEG and eye-tracking methods in a 

comprehensive framework that accounts for phenotypic, endophenotypic and genotypic 

diversity would aid in the development of interventions for those at increase vulnerability 

for affective disorders. 

Linking neuropsychological data with biological or other behavioural data may be a very 

useful tool not only for the early identification of young children at increased risk for 

psychological problems, but also for understanding the nature of different 

psychopathologies and designing tailored interventions. These tailored interventions may 

target the atypical behaviours that are identified as precursors of a particular 

psychopathology and apply a therapeutical approach to modify these behaviours early in 

life by applying cognitive and behavioural approaches. If this protocol can be applied in 

both pre- and post-interventionbasis, the putative differential responsiveness of the applied 

intervention in differing populations can be effectively and reliably determined. For 

instance, previous evidence has shown differential susceptibility in institutionalised young 

children, where children carrying at least one copy of the low uptake BDNF Met allele and 
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two copies of the low serotonin uptake 5-HTTLPR Short allele exhibited most 

indiscriminate behaviour when placed in the usual care but the least indiscriminative in 

enhanced caring environment (e.g., Drury et al., 2012). This evidence further suggests the 

importance of the genetic influences and their impact on other constructs of affectivity 

(i.e., neurophysiology, behaviour) in response to environmental modifications.To this end, 

future research would be critical to further delineate the complex G×E interactions or even 

the complex interaction among different genetic systems (i.e. Gene×Gene interactions; 

epistasis) when aiming to aiming to delineate what works for whom.

From a methodological perspective, there are specific aspects of employing EEG and eye-

tracking technologies in clinical practice that may further enhance the usefulness of the 

current empirical evidence of the study. Most notably, EEG and eye-tracking equipment 

are relatively inexpensive compared to fMRI that makes large-scale studies possible to be 

conducted in the future. In line with this claim, with the most hospitals and clinical settings 

nowadays to have EEG equipment available, future inexpensive investigations of early 

affectivity may be possible to be conducted across multiple sites. Moreover, despite the 

temporal and inferential weaknesses of both EEG and eye-tracking methodologies, the 

employment of these methods has been shown to be reliable indexes of individual 

neurophysiological variation, providing recording of brain activation or eye gaze swifts in 

milliseconds. Taking into account recent studies that highlighted the usefulness of using 

methods that measure blood-flow to access brain-derived mechanisms of affective 

disorders, such as fMRI (e.g., Savitz, Rauch & Drevets, 2013), the employment of multiple 

methods in the investigation of human affectivity may help to minimize the weaknesses of 

each of these methods and assist to measure more reliably the neural mechanisms that 

relate to human affectivity. For example compared to fMRI, EEG provides the ability to 
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measure brain activation with the necessary temporal resolution, but it has limited spatial 

resolution. Conversely, fMRI provides highly accurate location of brain activity but with 

poor temporal accuracy (for a review see Menon & Crottaz-Herbette, 2005). In line with 

this claim, recent studies with youth have started to incorporate different methods under 

the same multimodal investigation. For instance, recent studies have combined fMRI with 

EEG (Schelenz et al., 2013) or eye-tracking methods (Fan, Chen, Chen, Decety & Cheng, 

2013) to inform about affectivity in response to environmental emotional stressors. Future 

developmental studies will be important to incorporate multimodal neurophysiological 

mapping of affectivity by employing large samples to delineate the particular constructs in 

neurophysiological and behavioural diversity.

From a genetic perspective, advancements in the field have highlighted the recent years 

that alterations in the biochemical process of DNA methylation may lead to alterations in 

the baseline transcription procedures of multiple genes and infer susceptibility for affective 

disorders (e.g., McGowan et al., 2009; Booij et al., 2013). Most notably, as Booij et al. 

(2013) highlight, DNA methylation is the most reliable epigenetic modification that can be 

observed in brain during development (e.g. in the case of childhood abuse), and therefore 

may be accounted for as a robust predictor for the manifestation of affective disorders later 

in life. There are still a lot to be discovered in this respect in the near future, and the 

research community need to pay extra attention on the outcomes of future advancement in 

the field and their importance in understanding individual variation in brain, mind and 

psychopathology. 
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Finally, given the significant implications that the early identification of the 

psychopathology precursors has for both social policy and clinical practice, research must 

focus on evaluating the strengths and weaknesses of the existing interventions that target 

early manifestation of affective disorders. The findings of this thesis have identified novel 

neural, behavioural, and genetic mechanisms that may provide a first-stage contribution 

towards understanding early affectivity and markers for behavioural problems. To this end, 

if a pragmatic argument is accepted that intervention for the treatment for behavioural 

problems is more effective during the early years of life, the present data may potentially 

contribute, in the near future, to the successful reduction of early affectivity through 

eventual application of individualised early therapeutic interventions.
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6.6.   Closing Summary

Whilst the present thesis has generated many potential new research inquiries in the 

neurobiological basis of early emotion reactivity and early onset behavioural problems, it 

has also directly given novel, direct, and robust answers to critical questions on the 

neurophysiological and genetic mechanisms involved on the individual differences in 

affectivity and early problematic behaviour.These findings show that differing 

neurobiological and behavioural precursors of affectivity exist early in life, and suggest 

that complex interactions among them may be critical for advancing our understanding of 

the manifestation of psychopathologies and affective-related behaviours later in life. Given 

that this thesis was broadly motivated by a critical need to further delineate the nature of 

early affectivity during early childhood, the current results suggest that it is important for 

the future direction of research to remain focused on examining the developmental 

constructs of vulnerability versus protection, acknowledging at the same time that further 

theoretical questions may still need to be addressed in the field. Once both empirical and 

theoretical components of research are investigated alongside, successful advances in the 

field of developmental psychopathology can be made in the near future with an ultimate 

goal to tackle the prevalence of affective disorders in the society.
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APPENDIXES

Appendix 2. 1  CBCL 1 ½ -5 items for internalizing and externalizing scales.

                                           Internalizing       Externalizing

Emotionally
Reactive

Anxious/
Depressed

Somatic
Complaints

Withdrawn Sleep 
Problems

Attention 
problems

Aggressive 
behaviour

Disturbed by 
change

Twitching
Shows Panic
Rapid Shifts

Mood 
Change
Sulks

Upset by 
new

Whining
Worries

Clings
Feelings Hurt

Upset by 
Separation 

Looks 
Unhappy 
Nervous

Self-Conscious
Fearful

Sad

Aches
Can’t stand 
things out of 

place
Constipated
Diarrhoea

Doesn’t Eat 
well

Headaches
Nausea

Painful BM
Stomach 

aches
Too Neat
Vomiting

Acts too Young
Avoids Eye

Doesn’t Answer
Refuses active 

games
Unresponsive

Little Affection
Little Interest
Withdrawn

Not Sleep 
Alone Sleep 

Problems
Nightmares
Resists Bed
Sleeps Less

Talks in Sleep
Wakes Often

Concentrate
Can't Sit Still

Clumsy
Shifts Quickly

Wanders

Can't Wait
Defiant

Demanding
Destroys others’

Disobedient
No Guilt

Frustrated
Fights

Hits Others
Hurts 

accidentally
Angry Moods

Attacks
Punishment

Screams
Selfish

Stubborn
Temper

Uncooperative
Wants attention
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Appendix 2.2.  Histograms illustrating the PSD values for each condition, hemisphere and region.
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Appendix 2.3. Scatter plots illustrating correlations coefficients between behavioural problems and asymmetry ratios
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Appendix 3.1. Artefact-free EEG data ,asymmetry frequencies and demographics per 5-HTTLPR and COMT Val158Met genotype groups.

Table 1. Time (in minutes) of artefact-free EEG data after bad channel replacement per 5-HTTLPR and COMT Val158Met genotype and condition. 

SNP Social Non-Social
Mean (SD)          Mean (SD)

5-HTTLPR
L/L 3.43 (0.13)

3.30 (0.13)

3.72 (0.15)

3.09 (0.16)

3.09 (0.14)

3.44 (0.22)

S/L

S/S

COMTVal158Met
V/V

M/V

M/M

3.30 (0.61)

3.47 (0.71)

3.44 (0.77)

3.31 (0.88)

3.14 (0.81)

3.03 (0.85)
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Table 2. Asymmetry frequencies in each genotype group.

SNP Asymmetry

Left Asymmetry N(%)                            Right Asymmetry N(%)

5-HTTLPR
L/L 17(24.28) 7 (10)

S/L 21 (30) 12 (17.14)

S/S 4 (5.71) 9 (12.85)

COMTVal158Met
V/V 7 (10) 8 (11.42)

M/V 26 (37.14) 15 (21.42)

M/M 8 (11.42) 6 (8.57)
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Table 3. Participants’ demographic characteristics by 5-HTTLPR genotype.

                                                         5-HTTLPR Genotype ANOVA
S/S S/L L/L F d   df P

N 13 33 1
  

Gender % Male(N)

% Female (N)

8.5 (6)

10.0 (7)

25.7 (18)

21.4 (15)

20.0 (14)

14.2 (10)

.244 2 .784

Handedness % Right (N)

% Left (N)

14.2 (10)

   4.2 (3)

37.1 (26)

10 (7)

  31.4 (22)

2.8 (2)

.955 2 .375

SCQ
Total Score

Mean(SD) 4.76 (3.34) 3.96(3.47) 4.37(2.55) .323 2 .725
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Table 4. Participants’ Cognitive abilities and developmental ages by 5-HTTLPR genotype.

                                                                 5-HTTLPR Genotype                          ANOVA

S/S S/L L/L F d   df P

Chronological Age
    
    Mean(SD) 58.15(11.38) 60.78(10.94) 62.33 (12.84) .537 2 .587

Overall Ability
        
    Mean(SD) 103.71 (8.91) 105.90 (9.10) 106.81 (8.11) .533 2 .589

Verbal Ability Mean(SD) 100.53 (12.55) 110.81(12.96) 104.95(11.52) 1.16 2 .318

Non-verbal Ability Mean(SD) 106.30 (12.27) 99.63(14.69) 109.50(13.47) 5.60 2 .574

Developmental Age
(Months) Mean(SD) 61.09 (15.32) 64.81 (11.80) 65.02 (13.26) .457 2 .635

Developmental 
Verbal Ability 

Mean(SD) 60.23 (18.35) 60.96 (14.71) 63.68 (14.71) .306 2 .737

Developmental Non
Verbal Ability 

Mean(SD) 61.84 (16.12) 69.36 (14.24) 66.50 (15.47) 1.28 2 .312

245
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Table 5. Participants’ Cognitive abilities and developmental ages by COMT Val66Met genotype.

                                                                 COMT Val66Met Genotype                     ANOVA

M/M M/V V/V F d   df P

Chronological Age    Mean(SD) 58.15(11.38) 60.73(11.83) 61.06 (12.43) .555 2 .577

Overall Ability
        
    Mean(SD) 109.35 (10.09) 104.54 (8.69) 105.97 (6.59) 1.63 2 .202

Verbal Ability Mean(SD) 106.21 (10.53) 99.85 (14.47) 102.20 (12.00) .550 2 .304

Non-verbal Ability Mean(SD) 112.71 (13.41) 108.97(12.54) 108.06(13.96) 5.60 2 .579

Developmental Age
(Months)

Mean(SD) 63.57 (13.70) 63.68 (12.98) 66.17 (12.58) .457 2 .802

Developmental 
Verbal Ability 

Mean(SD) 61.57 (15.22) 60.75 (15.60) 64.70 (13.45) .221 2 .688

Developmental Non
Verbal Ability 

Mean(SD) 67.71 (14.52) 66.54 (15.12) 67.50 (16.36) .041 2 .960
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Appendix 3.2. Time (in minutes) of artefact-free EEG data after bad channel replacement per 5-HTTLPR genotype and condition.

SNP Social Non-Social
Mean (SD)          Mean (SD)

5-HTTLPR
L/L 3.43 (0.13)

3.30 (0.13)

3.72 (0.15)

3.09 (0.16)

3.09 (0.14)

3.44 (0.22)

S/L

S/S

COMTVal158Met
V/V

M/V

M/M

3.30 (0.61)

3.47 (0.71)

3.44 (0.77)

3.31 (0.88)

3.14 (0.81)

3.03 (0.85)
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Appendix 4.1. Scatter plots illustrating the dwell time data for each face emotion and time point
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Appendix 4.1.  (Continuing)                               
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Appendix 4.2. Overall dwell time (in ms) and standard deviations (in brackets) viewing angry and happy faces among BDNF Val66Met  and 5-
HTTLPR  genotype groups, showing an aggression-specific vigilance-avoidance patterns of attention allocation in carriers of at least one Met allele.

Time Interval
BDNF Val66Met 5-HTTLPR

M/M
(N=3)

M/V
(N=18)

V/V
(N=28)

S/S
(N=10)

S/L
(N=17)

L/L
(N=22)

Facial expressions of   
Anger

T1 0.00
(0.00)

-9
(53)

-7
(49)

20
(43)

-13
(43)

-16
(55)

T2 197
(138)

223
(142)

134
(168)

237
(92)

146
(172)

        164
              (173)

T3 135
(545)

319
(298)

438
(233)

455
(210)

373
(270)

332
(343)

T4 92
(482)

286
(286)

465
(237)

460
(220)

387
(276)

314
(336)

T5 13
(427)

51
(217)

191
(236)

171
(199)

136
(255)

94
(270)

Facial expressions of 
Happiness
T1 0.00

(0.00)
53

(195)
18

(63)
-9

(28)
24

(56)
60

(204)
T2 -3

(173)
189

(301)
174

(175)
87

(214)
185

(180)
196

(290)
T3 309

(348)
159

(342)
199

(218)
187

(202)
165

(209)
228

(376)
T4 280

(271)
78

(309)
135

(251)
180

(238)
87

(244)
136

(331)
T5 130

(215)
29

(237)
23

(181)
68

(161)
15

(124)
33

(294)
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Appendix 4.3. Means of dwell time (in ms) and standard deviations (in brackets) of the BDNF Val66Met and 5-HTTLPR genotype groups in 
attentional patterns towards eye and mouth region on neutral faces. Carriers of at least one Short 5-HTTLPR allele are spending significantly 
less time looking the eyes region, whereas spend more time fixating the mouth region of neutral faces.

RoI
BDNF Val66Met 5-HTTLPR

M/M
(N=3)

M/V
(N=18)

V/V
(N=28)

S/S
(N=10)

S/L
(N=22)

L/L
(N=17)

Eyes Region 0.27
(0.10)

0.25
(0.10)

0.28
       (0.09)

0.24
(0.12)

0.24
(0.06)

0.32
(0.10)

Mouth Region 0.04
(0.04)

0.06
(0.09)

0.04
(0.04)

0.09
(0.12)

0.05
(0.04)

0.02
(0.02)
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Appendix 5.1 Participants’ mean time (in ms) and standard deviations (in brackets) spent per emotion, condition and block, averaged across
time points.

Social Non-Social

Block 1 Block 2 Block 1 Block 2

       Positive     1851(334) 1105 (238) 1836 (383) 1247(269)

      Negative 1416 (231) 1008(205)         1295 (134) 575 (227)

252
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Appendix 5.2.  5-HTTLPR genotype groups dwell time (in ms) and standard deviations (in brackets)  per Emotion, Block, Condition and 
Time Points. Carriers of at least one Short allele are spending less time fixating negative stimuli overall, across blocks, different which is more 
pronounced for the non-social threat stimuli.

Block 1 Block 2

Social Non-Social Social Non-Social

T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 

L/L

S/L

S/S

Negative

Positive

Negative

Positive

Negative
  
Positive

80
(149)

905
(448)

719
(586)

129
(207)

945
(602)

617
(626)

-7
(140)

368
(500)

117
(514)

8
(74)

296
(401)

178
(543)

44
(163)

97
(140)

97
(113)

925
(398)

743
(541)
879

(425)

680
(403)

387
(680)
468

(391)

79
(228)

91
(116)

48
(140)

1065
(331)

478
(632)
941

(516)

877
(516)

69
(806)
769

(606)

23
(116)

-50
(87)
-6

(92)

501
(385)

334
(534)
353

(495)

274
(434)

77
(703)
144

(549)

35
(110)

-19
(128)

9
(62)

479
(428)

-95
(525)
513

(435)

225
(499)

-186
(634)
408

(467)

-18
(112)

-9
(114)

     576
(481)
740

(416)

      439
(468)
560

(593)

     39
(183)

-3
(130)

     522
(417)
804

(298)

     215
(553)
538

(492)

0
(98)
-38
(83)

336
(538)
258 

(405)

107
(558)
290

(541)

39
(86)
-34

(112)

156
(415)
218

(311)

-35
(592)

81
(488)
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Appendix 5.3.  BDNF genotype groups mean dwell time  (in ms) and standard deviations (in brackets) per Emotion, Block, Condition and 
Time Points. No significant variations between the two genotypes observed.

Block 1 Block 2

Social Non-Social Social Non-Social

T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

V/V Negative 83
(134)

825
(458)

527
(503)

132
(171)

669
(597)

295
(701)

-40
(94)

398
(494)

149
(492)

5
(116)

181
(387)

86
(451)

Positive 111
(111)

966
(433)

546
(481)

85
(160)

938
(427)

762
(617)

-5
(101)

399
(466)

198
(525)

10.59
(95)

472
(330)

338
(438)

M/V

M/M

Negative

Positive

Negative

Positive

59
(168)

6
(134)

15
(63)
-102
(177)

668
(605)
733

(343)

760 
(289)
580 

(188)

440
(795)
624

(417)

750
(574)
274

(207)

55
(161)

17
(194)

-25
(60)
-63

(130)

546
(663)
1007
(426)

804
(363)
828

(567)

221
(814)
820

(497)

309
(482)
317

(213)

12
(114)
-10

(107)

-114
(198)

64
(41)

268
(586)
420

(439)

313
(329)

46
(214)

-44
(775)
312

(489)

376
(285)
-175
(403)

-3
(85)
26

(78)

910
(172)
-101
(137)

-27
(635)
437

(539)

0
(323)

58
(124)

-113
(790)
252

(543)

-485
(529)
-308
(144)
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