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ABSTRACT

Let X be a compact connected Riemann surface of genus g and let f : X→ P1 be a meromorphic

function of degree n. Classes of such covers are in one to one correspondence with the primitive

systems, which are tuples of elements (x1,x2, · · · ,xr) in the symmetric group Sn taken up to

conjugation and the action of the braid group, such that x1 ·x2 · · · · ·xr = 1 and G= 〈x1,x2, · · · ,xr〉

is a primitive subgroup G of Sn . This thesis is a contribution to the classification of primitive

genus g 6 2 systems of sporadic almost simple groups.
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CHAPTER 1

INTRODUCTION

A connected second countable Hausdorff topological space X together with a complex struc-

ture is called a Riemann surface[27]. In other words, a Riemann surface is a one-dimensional

complex manifold. Topologically, compact Riemann surfaces are homeomorphic to a sphere,

a torus, or a finite number of tori joined together. The genus g of a compact Riemann surface

X is defined to be number of tori which are joined together. Let f : X → P1 be meromorphic

function, that is, a holomorphic mapping from X to the Riemann sphere P1. The meromor-

phic function f is of degree n if the fiber f−1(p) for general p ∈ P1 is size n. A point a ∈ P1

is a branch point if | f−1(a)| < n. Every meromorphic function f has finitely many branch

points. Let B = {a1,a2, · · · ,ar} be the set of branch points of f and let a0 ∈ P1\B. Denote by

Π1 = π1(P1\B,a0), the fundamental group of P1\B with the base point a0. Let γi ∈ π1(P1\B,a0)

be corresponding to the path winding once around point ai in the counter clockwise direction

and not around any other branch points. The fundamental group Π1 is generated by the ho-

motopy classes of the closed paths γi. The homotopy lifting of paths induces an action on the

fundamental group Π1 on the fiber f−1(a0) (see Section 2.1). This action gives us a homomor-

phism ϕ f from the fundamental group Π1 to the symmetric group Sn. The connectedness of the

Riemann surface X yields that ϕ f (Π1) is a transitive subgroup of Sn and this group is called the

monodromy group of the ramified cover f : X → P1 and is denoted by Mon(X , f ). The gen-

erators {γ1, . . . ,γr} satisfy the relation γ1 · γ2 · . . . · γr = 1 and they are distinguished generators

of the fundamental group Π1. Thus the generators of the monodromy group {g1, . . . ,gr} where
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gi = ϕ f (γi) will satisfy the same relation . Furthermore, the following statements are satisfied:

G = 〈g1, . . . ,gr〉 (1)

g1 · · ·gr = 1, (2)

r

∑
i=1

indgi = 2(n+g−1) (3)

Equation 3 is called Riemann Hurwitz formula. Here indgi = n−number of orbits of (gi) on

f−1(a0). Let G =Mon(X , f ) and let Ci = gG
i be the conjugacy classes of G containing gi. Then

the set C = {C1, . . . ,Cr} is the ramification type of f . In our study, we look at the set

N(C) = {(g1, . . . ,gr) : G = 〈g1, . . . ,gr〉, gi · · ·gr = 1 and gi ∈Ci for all i}

which is equivalent to the set of all monodromy homeomorphism and we call the elements of

N(C) Nielsen tuples. Let G be a transitive group of Sn. A genus g-system is a tuple (g1, . . . ,gr)

satisfying (1), (2) and (3). If G acts primitively, then the genus g system is called a primitive

genus g system.

We are more interested in when the meromorphic function f is indecomposable, that is, f can

not written of the form f = f1 ◦ f2 where degree of f1 and f2 more than one. Which yields the

monodromy group Mon(X , f ) acts primitively on fiber.

A natural question is : Which finite groups can be the monodromy groups Mon(X , f ) for a fixed

genus of X?

In 1990, Guralnick and Thompson [15] put forward the following conjecture: For any fixed

non-negative integer g, there is a finite set E (g) of simple groups such that if X is a compact

Riemann surfaces of genus g and f : X → P1 is a meromorphic function, then the non-abelian

composition factors of the mononodromy group Mon(X , f ) are either alternating groups or

members of E (g). This conjecture was established by Frohardt, Magaard [13]. As E (g) is fi-

nite, one would like to determine E (0), E (1) and E (2) explicitly. Moreover, it would be useful

for future applications to determine all possibilities of how a group in E (g) can arise, as explic-
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itly as possible. Let E (g)∗ = (
⋃
(X , f ) c f (Mon(X , f ))), it is well known that for all X , all prime

p and all n > 4, Cp ∈ E (g)∗ and An ∈ E (g)∗. Indeed for each G which is either a Cp or An, there

is a cover ψ : P1→ P1 depending on G such that Mon(X , f )∼= G (see [33, p.17]).

We call a group a genus g-group if G = Mon(X , f ) for some (X , f ) and g(X) = g.

Using Riemann’s Existence Theorem, Guralnick and Thompson showed in [15] that the ele-

ments E (g) occur in a primitive monodromy action, i.e if G ∈ E (g), then ∃(X , f ) such that G =

Mon(X , f ) and G acts primitively on f−1(a0). This fact brings the Theorem of Aschbacher and

Scott into the picture.

The Fitting subgroup of the group G is denoted by F(G) and it is defined to be the product of

all nilpotent normal subgroups of the group G. It is the largest nilpotent normal subgroup of

the group G. If a group H is perfect and H/Z(H) is simple, then H is called a quasisimple. A

subgroup H of the group G is called a component of G if H is a quasisimple subnormal sub-

group of G. Moreover, F∗(G) = F(G)E(G) is called general Fitting subgroup of the group G,

where E(G) is product of all components of G. Now, with these definitions we can formulate

the important result of Aschbacher and Scott [1].

Theorem 1.0.1 (Aschbacher and Scott). Let G be a finite group and K is a maximal subgroup

of G such that ∩g∈GKg = {1}. Let P be a minimal normal subgroup of G and S be a minimal

normal subgroup of P. Let ∆ = {S1, · · · ,St} be the set of G conjugates of S. Then G = KP and

exactly one of the following holds:

1. S of prime order

2. F∗(G) = P×R where P∼= R and K∩P = {1}

3. F∗(G) = P is non-abelian, K∩P = {1}

4. F∗(G) = P is non-abelian, K∩P 6= {1}= K∩S

5. F∗(G) = P and K∩P = K1×·· ·×Kt where Ki = K∩Si 6= {1},1 6 i 6 t.

Shih [34] and Guralnick and Thompson [15] proved that there is no primitive genus zero sys-

tems in case 2 and 3 respectively of the Theorem 1.0.1. Aschbacher [2] studied case 4 and

he showed that the general Fitting subgroup of G must be equal to A5×A5 in case of a genus

zero system. case 5 was considered by Frohardt, Guralnick and Magaard [10] when Si is of Lie
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type of rank 1. They proved that t 6 2. Furthermore, they established that [Si : K] 6 10000,

when Si/Ki is point action, t = 1 and Si is a classical group. It follows from this result and the

results of Frohardt, Guralnick and Magaard [14] that once the actions of [Si : K]6 10000, if Si

is a classical and t = 1. The first case of the Theorem 1.0.1 is the affine case when F∗(G) is

abelian group. It was first was considered by Guralnick and Thompson[15]. They proved that

there are only finitely many primitive affine groups which are primitive group of genus zero

and Neubauer in [32] studied and extended result to the genus one and two case. The analysis

of the affine genus zero case was completed by Magaard, Shpectorov and Wang[25] they give

a complete list of the primitive affine genus zero systems.In his PhD thesis Salih classified the

affine primitive genus one and two systems[31]. In this thesis we are interested in final case of

the Theorem 1.0.1. Our goal to determine all primitive genus zero, one and two systems for the

almost simple groups G where F∗(G) is a simple sporadic group.

We now briefly outline the contents of the thesis. In Chapter 2 we review some basic back-

ground. This chapter is divided into five sections. In the first section we start with some basics

in algebraic topology and collect facts on covering spaces and fundamental groups. As well,

we introduce monodromy groups. Section two is devoted to the Riemann surfaces. we discuss

the Riemann Existence Theorem, review the connections between the coverings of a Riemann

surface and permutation groups. In section three we study the Hurwitz space HA
r (G) which is

the moduli space of G-covers of the Riemann sphere P1, where Inn(G)6 A 6 Aut(G) and r is

the number of branch points. If A = Inn(G), we denote the Hurwitz space Hr(G)A by H in
r (G).

We focus on the subset H in
r (C) of Hurwitz space H in

r (G), where C is a fixed ramification type.

Next we define Nielsen tuples. The base space Or called configuration space, the space of

branch point of f of cardinality r, is a topological space over C. The Hurwitz space HA
r (G)

is an unramified covering space of the base space Or. As is well known, the fundamental

group of the space Or is the Artin braid group on r strands which is denoted by Br. The braid

group possesses the well known presentation on r−1 generators {Q1, · · · ,Qr−1} satisfying the

following relations

QiQi+1Qi = Qi+1QiQi+1 for all i < r−1 (4)
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and

QiQ j = Q jQi for all i, j = 1,2, · · ·r−1 with |i− j|> 1 (5)

The group action of the braid group Br on the fibers completely determines the connected com-

ponents of Hurwitz space HA
r (G). In particular, the fiber of the subspace H in

r (C) of the Hurwitz

space H in
r (G) are parametrized by the set N(C) and the subgroup of the braid group that pre-

serves the order of ramification type C which is defined by parabolic subgroup B. Thus the

connected components H in
r (C) are parametrized by the B−orbits on the Nielsen classes N(C).

Section four is devoted to describing primitive permutation groups. In the final section of

this chapter we review general criteria for determining possible signatures. Our main results,

Lemma 2.5.18, Lemma 2.5.19 and Lemma 2.5.20, give the complete classification of genus

zero, one and two systems for all class of maximal subgroups of the group G of large index.

Moreover, these lemmas together with Lemma 2.5.17 help us to prove that some sporadic sim-

ple groups are not genus zero, one and two groups.

Chapter 3 is divided into eleven sections. In the first section we explain some criteria to elim-

inate ramification types of sporadic simple groups. Section two, three, four and five devoted to

ramification types of Mathieu groups, Janko groups, Conway groups and Higman-Sim groups,

respectively, by using series of filters to reduce the set of possible ramification types. For in-

stance, we show that the groups J3, J4, Co2 and Co1 possesses no primitive genus zero, one and

two systems.

Now we will state the following Theorem:

Theorem 1.0.2. Let G be an almost simple group with F∗(G) a sporadic simple group and

f : X → P1 be a meromorphic function where X is a compact Riemann surface of genus zero,

one or two. Then G is a composition factor of Mon(X , f ) if and only if G isomorphic to the

group M11, M12, M12 : 2, M22, M22 : 2, M23, M24, J1, J2, J2 : 2, Co3, HS, or HS : 2

Theorem 1.0.3. Let G be any one of the groups J3, J4, Co2, Co2 : 2, Co1, McL, McL : 2, Suz,

Suz : 2, He, HN, HN : 2, Fi22, Fi22 : 2, Fi23, Fi24, Fi24 : 2, ON, ON : 2, Ly, T h, Ru, Ru : 2, B,

M. Then G possesses no primitive genus zero, one and two systems.
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Sections three up to section eleven give a complete proof of Theorem 1.0.3.

Chapter 4 is to provide a complete description of the braid orbits of Nielsen classes of spo-

radic simple groups. Firstly we present a table with the number of ramification types for each

sporadic simple group for which the corresponding Nielsen classes are non-empty. This chapter

is devoted to describing the GAP package MAPClASS. It is used for calculation of braid orbits.

The MAPCLASS package is a modernized version of the GAP package BRAID. MAPCLASS

has 17 functions. In this thesis we use two of them.

Chapter 5 contains a summary of our work.

Appendix A contains tables representing the results of our computation of primitive genus zero

system in sporadic simple groups satisfying Theorem 1.0.2.

Theorem 1.0.4. Let G be a sporadic simple group. Then up to isomorphism, there exists 11

primitive genus zero groups satisfying Theorem 1.0.2. The corresponding primitive genus zero

systems are enumerated in the Tables 5.4 to 5.19.

Appendix B contains tables representing the results of our computation of primitive genus one

system in sporadic simple groups satisfying Theorem 1.0.2.

Theorem 1.0.5. Let G be a sporadic simple group. Then up to isomorphism, there exists 11

primitive genus one groups satisfying Theorem 1.0.2. The corresponding primitive genus one

systems are enumerated in the Tables 5.20 to 5.41.

Appendix C contains tables representing the results of our computation of primitive genus two

system in sporadic simple groups satisfying Theorem1.0.2.

Theorem 1.0.6. Let G be a sporadic simple group. Then up to isomorphism, there exists 11

primitive genus two groups satisfying Theorem 1.0.2. The corresponding primitive genus two

systems are enumerated in the Tables 5.42 to 5.69.
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CHAPTER 2

BACKGROUND

In this chapter, we review and cover some background knowledge which will be used throughout

this thesis. We will start with a section on algebraic topology to collect the facts on covering

space and the fundamental group that we need in the sequel.

2.1 Covering and the fundamental group

Definition 2.1.1. Let X be a topological space. A continuous map f from the interval [0,1] to

the space X is called a path; f (0) = x0 is called the start (initial) point and f (1) = x1 is called

the end (terminal) point. In addition, if the initial and terminal points of a path are equal, then

f is said to be a loop. We say that a loop is based at a point a0 if its initial point is a0.

A subset B of X is said to be path connected if and only if for all x and y in B there is a path

from x to y in B.

Definition 2.1.2. Let f1 and f2 be two paths with the same initial(a0) and terminal(b0) points.

A homotopy between two paths f1 and f2 is a continuous map h : [0,1]2→ X such that

h(0, t) = f1(t),h(1, t) = f2(t) ∀t ∈ I and h(s,0) = a0,h(s,1) = b0 ∀s ∈ I.

Two paths f0 and f1 are called homotopic, which we denoted by f0 ∼ f1, if there exists a

homotopy between them. Homotopy is an equivalence relation on loops with the initial point

a0. By [ f ] we denote the homotopy equivalence class of the loop f .
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Definition 2.1.3. Let f1 and f2 be two paths on X with f1(1) = f2(0). Then the product of f1

and f2 is defined by

( f1 · f2)(t) =


f1(2t) if 0 6 t 6

1
2

;

f2(2t−1) if
1
2
6 t 6 1.

Definition 2.1.4. Let X be a path connected topological space and x ∈ X . The fundamental

group of the space X at the base point x, is denoted by π1(X ,x), and defined to be the set of all

homotopy classes of loops f with the initial point x with respect to the product [ f1][ f2] = [ f1 f2].

Definition 2.1.5. Let X be a Hausdorff space. Then X is a topological manifold (manifold),

if for each point of X there is an open neighborhood of that is homeomorphic to Rn for some

fixed number n > 1.

Clearly, a manifold is connected if and only if it is a path connected. Indeed, if any two different

points can be joined by a path. Moreover, connected components of a manifold are closed and

open therefore they themselves are manifolds.

Definition 2.1.6. A continuous function f between two topological space X and Y is said to be

a homeomorphism if and only if f is bijection and f−1 is continuous . Two topological spaces

X and Y are homeomorphic, if there is a homeomorphism function between them.

Definition 2.1.7. A Local Homeomorphism is a continuous map f : Y −→ X that has the

following property: every point y ∈ Y has an open neighborhood V such that f maps V homeo-

morphically onto f (V ) where f (V ), is open in X .

If X is a connected manifold, then the fundamental groups π1(X ,x) and π1(X ,y) are isomorphic,

for all x,y ∈ X . We explain this statement in the following way. Since X is connected, there is a

path λ from the initial point x to the terminal point y which joins these two points. Based on the

fact λ−1 is a inverse of the path λ with λ−1(t) = λ (1−t)∀t ∈ [0,1]. Although λ−1 ·λ 6= λ ·λ−1,

both λ−1 ·λ and λ ·λ−1 are homotopic to a constant path. We take a loop class [γ] with base

point x, therefore [γ] in π1(X ,x). So we can follow it by a path λ−1 from y to x, following by

a loop γ to initial point x and return to the terminal point y by using the path λ . Then we have

created a loop λ−1γλ with the base point y, such that it is an element of the fundamental group

π1(X ,y). Then we get π1(X ,x)=λπ1(X ,y)λ−1. Hence, there is an isomorphism from π1(X ,x)

to π1(X ,y) as illustrated in the Figure 2.1.
8



Figure 2.1:

Definition 2.1.8. Let X and Y be two topological spaces. Then Y is a covering space (or

cover) of X if there exists a surjective map f : Y → X such that for every x ∈ X there exists a

path connected open neighborhood U of x, such that the inverse image of U under f is the union

of disjoint open sets Di in Y , and each Di is mapped f homeomorphically onto U . The open

neighborhood U is called an admissible neighborhood.

If Y is a cover of X under the surjective function f , then f : Y −→ X is called the covering

map and (Y, f ) is the covering space of X . If X has a covering space (Y, f ), then f is a

local homeomorphism. The converse is not true in general, it is possible to construct a local

homeomorphism which is onto but is not covering map as shown in the following example.

Example 2.1.9. Let f : (0,10)→ S1 be map defined by

f (t) = (cost,sint).

Then f is onto and a local homeomorphism map but ((0,10), f ) is not a covering space of S1.

Definition 2.1.10. Suppose that f : Y → X is a covering map and x ∈ X . The fiber of x is the

set given by

f−1(x) = {y ∈ Y | f (y) = x}.

Let ρ ′ : I −→ Y be a path in Y and let f : Y −→ X be a cover of X . Then f ◦ρ ′ : I −→ X is a

path in X . Moreover, if ρ ′1 and ρ ′2 are two paths in Y such that ρ ′1∼ρ ′2, then f ◦ρ ′1 ∼ f ◦ρ ′2. The

converse raises some natural questions. If we have a path ρ : I −→ X in X , does there exist a

path ρ ′ in Y such that f ◦ρ ′ = ρ , or if ρ ′1,ρ
′
2 are two paths in Y and f ◦ρ ′1 ∼ f ◦ρ ′2 is it true

ρ ′1 ∼ ρ ′2? The answers of both these questions are positive as we will soon explains. Firstly, we

will introduce new concepts in the following lemma.
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Lemma 2.1.11. [35, p.181]

Given a compact metric space X , such that X is the union of a collection of open sets {Ai, i∈ I},

then for every S ⊂ X , there exists a ζ ∈ R such that if the diameter of S is less than ζ then S

contained in some open set Ai. The real number ζ is called a Lebesgues number of open cover.

Proof. Let x ∈ X , it is clearly seen that x ∈ Ai for some i ∈ I. Choose a real number εx >

0, such that the open ball B(x,2εx) of x is contained in Ai for some i ∈ I. Note that the

space X is the union of the collection of open balls
⋃

x∈X
B(xi,εx). Hence X =

n⋃
i=1

B(xi,εxi),

for some finite set {x1,x2, · · · ,xn} ∈ X , as X is a compact metric space. Now suppose that

ζ = min{εx1,εx2, · · · ,εxn} and the diameter of S is less than ζ . Then S ⊂ Ai for some i ∈ I.

Indeed, if z ∈ S, then z ∈ B(x j,εx j) for j ∈ {1,2, · · · ,n}. Thus S ⊂ B(x j,2εx j) then S ⊂ Ai, for

some i ∈ I, as B(x j,2εx j)⊂ Ai.

Definition 2.1.12. Let X and Y be two topological spaces, and f : Y → X be a covering map.

Let p be a path in X . A lift of p is a path p′ in Y such that f ◦ p′ = p.

Lemma 2.1.13. [36, p.64]

Given a covering map f : Y →→ X , y0 ∈Y and x0 = f (y0). Then for any path ρ in X with initial

point x0 there is a unique path ρ ′ in Y with initial point y0 such that f ◦ρ ′ = ρ .

Proof. Clearly, if ρ is in the admissible neighborhood U , then there exists a unique path ρ ′ with

the initial point y0 such that f ◦ρ ′ = ρ . Indeed, let D be a path component of f−1(U) such that

y0 ∈D. Since each path component of f−1(U) is mapped topologically onto U by f , then there

exists a unique path ρ ′ in Y with the initial point y0 such that f ◦ρ ′ = ρ .

In case ρ is not contained in admissible neighborhood U . We can define ρ as a product of

shorter paths such that each of the shorter paths is contained in admissible neighborhood U .

So, apply the previous argument on each of short paths then we can find a unique path ρ ′ in

Y with the required properties. The explanation of this argument is as follows. Assume that

admissible neighborhoods {Ui} covering X . The inverse image of admissible neighborhoods

ρ−1(U) is open cover of the compact metric space I. Suppose that the number r large as can as

possible. Let 1
r < ζ where ζ is Lebesgues number of covering. So, the interval I = [0,1] can

be divided into r subinterval as follows [0,1] = [0, 1
r ]
⋃
[1

r ,
2
r ]
⋃
· · ·

⋃
[ r−1

r ,1]. It is clearly that ρ

10



maps each subinterval into admissible open neighborhoods in X . Thus, we have successfully

defined a unique path ρ ′ over these subintervals .

Lemma 2.1.14. [36, p.68]

Given a covering map f : Y → X . Then the sets f−1(a0),∀a0 ∈ X , have the same cardinality.

Proof. Suppose that a0 and a1 are two different points in X . Let ρ : I → X be a path with

initial point a0 and terminal point a1. We claim that there is a map f−1(a0)→ f−1(a1) which is

bijection. Assume that b0 ∈ f−1(a0), and consider the lift ρ is a path ρ ′ in Y with initial point b0

so that f ◦ρ ′ = ρ . Now suppose that b1 is a terminal point of the path ρ ′. Since the uniqueness

of the lift starting at the point b0 then by previous lemma b1 ith the only possible terminal point.

Thus b0→ b1 which is a required mapping . Similarly, by utilizing the inverse path ρ , we can

define a map f−1(a1)→ f−1(a0). We notice that these maps are inverse each other, which

implies that the map f−1(a0)→ f−1(a1) is bijection. Thus for each a0 ∈ X , f−1(a0) has the

same cardinality.

We conclude from the above two lemmas, if we have a path connected space X and a covering

map f , then there exists a bijection between two different fibers. Thus all fibers have the same

cardinality. This cardinality is said to be the degree of the covering map f , it may be finite or

infinite.

Next we will explain how the group π1(X ,x) acts on the fiber f−1(x), via homotopy lifting. Fix

a point x ∈ X and choose a point y0 ∈ Y such that y0 ∈ f−1(x). Let γ be a loop on X based at

the point x, then the lift of the loop γ is a unique path γ in Y with the initial point y0 (Lemma

2.1.13). Note that the terminal point of this lifted path need not be y0, however, it must be lie

in the fiber over x. The terminal point γ[1], consequently, depends only on the class γ in the

fundamental group π1(X ,x). This gives a right group action of the fundamental group π1(X ,x)

on the fiber f−1(x). This action is called the monodromy action of π1(X ,x) on f−1(x)[30].

Definition 2.1.15. Given a covering map f : Y →X of degree n, and fundamental group π1(X ,x)

based at the point x . The monodromy action of π1(X ,x) on each fiber gives a group homomor-

phism

ρ : π1(X ,x)−→ Sn,

11



Figure 2.2:

this homomorphism is said to be monodromy representation of the covering map f , where Sn

is the symmetric group of n points. The image of homomorphism ρ is called monodromy group

of covering map f and denoted by Mon(Y, f ).

Note that, the subgroup Mon(Y, f )⊂ Sn is a transitive subgroup. Indeed, Y is connected and for

any two any indices i and j there is an element in the monodromy group Mon(Y, f ) such that

taking i to j.

Lemma 2.1.16. [30, p.87]

Suppose that p : π1(X ,x)→ Sn is the monodromy representation for a path connected covering

space (Y, f ) of X of finite degree n. Then Mon(Y, f ) is a transitive subgroup of Sn.

Proof. Take two points xi and x j in the fiber of f over x. As Y is path connected, we can find a

path β ′ on X with the initial point xi and the terminal point x j. Let β = f ◦β ′ be the image of

β ′ in X . Then β is a loop in X based at the point x, since both points xi and x j in f−1(x). Then

we get that p([β ]) is a permutation such that sends xi to x j.

Moving from transitive subgroups of the fundamental group of the space to covers of the space

is permitted by definition of monodromy representations. Suppose ρ : π1(X ,x) −→ Sn, is a

homomorphism such that the image of the function ρ is a transitive subgroup of the symmetric

12



group Sn. Let K ⊆ π1(X ,x) be the subset in π1(X ,x) of X defined by

K = {[β ] ∈ π1(X ,x)|ρ([β ])(1) = 1}

The subgroup K has index n in π1(X ,x) such that it is correspondence with a connected cov-

ering space (Yρ , fρ) of the space X . Note that the homomorphism ρ is exactly a monodromy

representation of the cover Y .

Lemma 2.1.17. Suppose that f : Y −→ X is a covering map and ρ ′1,ρ
′
2 are two paths in Y such

that they have the same initial point. If f ◦ρ ′1 ∼ f ◦ρ ′2, then ρ ′1 ∼ ρ ′2

Proof. Complete proof can be found in [27]

Definition 2.1.18. Two covering spaces (Y, f ) and (Y ′, f ′) of the same space X are isomorphic

if there exists a homeomorphism mapping φ : Y → Y ′ such that f ′ ◦φ = f .

Definition 2.1.19. Let f : Y −→ X be a covering. A homomorphism α : Y −→ Y is said to be

deck transformation of the covering f if f α = f . The group formed by the set of all deck

transformation is denoted by Deck( f ).

Let a be any point in the fiber f−1(x) for x ∈ X then α(a) is still in fiber f−1(x) for any

α ∈ Deck( f ). This implies that the group Deck( f ) acts on the fiber f−1(b).

Now, assume that b is initial point of γ and γ̂ is a lift of γ for γ ∈ π1(X ,x). Then γb is the end

point of the path γ . Furthermore, α(b) and γα(b) are initial and end points of the path α ◦ γ̂

respectively. The fundamental group π1(X ,x) also acts on the fiber f−1(b) via monodromy

action such that the initial point of the lift γ is α(b) and γα(b) it’s end point. By deck trans-

formation we get f α ◦ γ̂ = f γ̂ = γ , therefor α(γ(b)) = γα(b). Thus the monodromy action of

the fundamental group π1(X ,x) commutes with the action of the group Deck( f ), and we get the

following result.

Proposition 2.1.20. Suppose that f : Y −→ X is covering. Then the monodromy action on the

fundamental group π1(X ,x) commutes with the action of the group Deck( f ) on the fiber f−1(x).

Proof. For proof see [36, p.68]

Lemma 2.1.21. Let f : Y −→ X be a covering, p ∈ X and b ∈ f−1(p). Then the group

13



f (π1(Y,b)) is a normal subgroup of the fundamental group π1(X ,x) and the Deck( f ) isomor-

phic to the monodromy group G.

Proof. For a proof see [28, p.134]

Definition 2.1.22. A covering map f : Y −→ X is said to be Galois covering if Deck( f ) acts

transitively on some fibers f−1(b) and Y is connected. If the degree of f is finite then we say f

is finite.

The next result shows that if f : Y −→ X is a Galois covering, then there is a homomorphism

ϕb from the fundamental group π1(X ,x), x ∈ X to the group Deck( f ) such that ϕb is surjective

and unique.

Proposition 2.1.23. Let G be a deck transformation group Deck( f ), where f : Y −→X is Galois

covering such that for b ∈ Y,x ∈ X , f (b) = x. Let [γ] be a loop class based on x. Then there is a

unique surjective homomorphism ϕb from the fundamental group π1(X ,x) to the group G with

ϕb[γ] = [γ]b (Recall that [γ]b is end point of lift γ with initial point b).

Proof. For a proof see [36, p.69]

Corollary 2.1.24. Let [γ] ∈ π1(X ,x) and the end point of its lift is b′ ∈ f−1(x). Let

ϕb : π1(X ,x)−→ Deck( f ) with ϕb[γ] = [γ]b. Then [γ].kerϕb.[γ]
−1 = kerϕb′

Proof. The lift of all elements of loop class [α] ∈ kerϕb is a loop based on b. So for [γαγ−1] ∈

[γ].kerϕb.[γ]
−1, the lift for [γαγ−1] is a loop based on b′. Thus [γ].kerϕb.[γ]

−1 ⊆ kerϕb′ . On the

other hand if [α ′] ∈ kerϕb′ then the lift of α ′ is a loop based at b. Similarly, [γ]−1kerϕb′[γ] ⊆

kerϕb.

It is clear that form above, if the deck transformation group has trivial center, and if we pick any

two points b and b′ in the fiber f−1(x) then b = b′ if and only if the two homomorphism ϕb and

ϕb′ are equal. So, the covering f : Y → X can be represented by the pair (x,ϕb). This property

allows us to construct the Hurwitz spaces.
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2.2 Riemann Surfaces and Riemann Existence Theorem

Definition 2.2.1. Let X be a topological space and U ⊂ X be an open set in X . A homeomor-

phism θ : U → V where V ⊂ C is said to be a complex chart or simple chart on X and the

open set U is called the domain of the chart. If θ(p) = 0 for p ∈U , then we say the chart

centered at p.

Assume that V and W are two open sets of the complex plane and θ : U→V is a complex chart.

If ψ : V →W is holomorphic, one to one and onto, then the composition θ ◦ψ : U →W is also

a complex chart on X[30].

Definition 2.2.2. For any two complex charts θ1 : U1→V1 ,θ2 : U2→V2 on X we say θ1 and θ2

are compatible if either U1∩U2 = /0 or θ2 ◦θ
−1
1 : θ1(U1∩U2)→ θ2(U1∩U2) is holomorphic.

Note that θ1 ◦ θ
−1
2 is holomorphic on θ2(U1 ∩U2) if θ2 ◦ θ

−1
1 is holomorphic on θ1(U1 ∩U2).

The bijective function T = θ2 ◦θ
−1
1 between the two charts is called the transition function.

Definition 2.2.3. Let X be a topological space, U ⊂ X be an open subset of X and V be an

open subset of the complex plane. A complex atlas on X is a collection B = {θ j : U j → Vj}

satisfying:

(1)
⋃
j∈I

U j = X ,

(2) any two charts θ j and θk in B are compatible.

Furthermore, if Y ⊂ X and B = {θ j : U j → Vj} is a complex atlas on X then the collection

BY = {θ j|Y∩U j : Y ∩U j→ θ j(Y ∩U j)} is an atlas on Y [30].

Let A and B be two complex atlases. If every chart in A is compatible with every chart in B,

then we say A and B are equivalent, that means two complex atlases A and B are equivalent if

and only if A∪B is also a complex atlas. An equivalence class of complex atlases on X is said

to be complex structure.

Definition 2.2.4. A second countable Hausdorff connected topological space X together with a

complex structure is called a Riemann surface.

Note that a Riemann surface is a 1-dimensional complex manifold. A compact Riemann surface
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is homeomorphic to a sphere, or a connected sum of tori.

Definition 2.2.5. Suppose that X is a Riemann surface and f is holomorphic in a punctured

neighborhood of p ∈ X . We say that f has a pole if there exists a chart θ : U → V with p ∈U

such that f ◦θ−1 has a pole at θ(p). A function f is said to be, meromorphic at a point p, if f

is holomorphic at p or p is a pole of f . If f : X → P1 is a non-constant analytic function, then f

is called a meromorphic function. Moreover, a pair (X , f ) is called a cover where f : X → P1

is a meromorphic function.

Proposition 2.2.6. Suppose that f : X → Y is a holomorphic map defined at x ∈ X , where X

and Y are compact Riemann surfaces, . Then there exists a unique positive integer number m

such that for every chart θ ′ : U ′→ V ′ on Y centered at f (x), there exists a chart θ : U → V on

the complex structure on X with θ(x) = 0 and θ ′( f (θ−1(z))) = zm.

Proof. A complete proof can be found in [30, p.44]

The positive integer number m is called the ramification index of f at x and denoted by ex. A

point x ∈ X is called a ramified point of f , if ex > 2. The image of a ramified point of f is

called a branch point.

Definition 2.2.7. A continuous function f : X −→ Y , where X and Y are compact Riemann

surfaces, is called analytic, if for any two charts θ : V −→W in X and θ ′ : V ′ −→W ′ in Y with

f (V )⊂V ′, the map θ ′ ◦ f ◦θ−1 : θ(V )−→ θ(V ′) is holomophic.

Analytic functions between two Riemann surfaces X and Y in general is not coverings in the

sense of the previous section. We can find a covering map f between two Riemann surfaces X

and Y without the ramified points. In the other words, if f : X → Y is a non-constant analytic

function, then we can say that f is a covering map onto its image without exceptional points

y ∈ Y , where degree of f is greater than the cardinality of f−1(y).

Proposition 2.2.8. Let a1,a2, · · · ,ar be r points in Riemann sphere P1 and let X =P1−{a1, · · · ,ar}.

If γ1,γ2, · · · ,γr are loops around the points ai, then the fundamental group π1(X ,x) is generated

by the homotopy classes [γi] of loops γi. Moreover, [γ1][γ2] · · · [γr] = 1.

Proof. See [30].
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In the above proposition we have seen that in the Riemann surface X if f : Y → X is branched

at the elements ai then the homotopy classes of each loop γi around ai is [γi]. Which implies

that, the monodromy representation ρ from the fundamental group π1(X ,x) to the symmetric

group Sn is determined by r permutation σ1, · · · ,σr ∈ Sn. where ρ(γi) = σi and σ1. · · · .σr = 1.

If σ = {σ1, · · · .σr}, then the map f : Y −→ P1 is called of type σ .

In the previous section we understood that if f : R→ P1 is a meromorphic function from a

Riemann surface to P1 in general f is not a covering if the set of branch points is non-empty.

By restricting the domain to R− f−1(B) where B = {a1, . . . ,ar} is the set of branch points,

the meromorphic function f is guaranteed to be a covering. Now we turn our attention to

finite coverings of the punctured sphere, that is the Riemann sphere P1, which is removed a

finite number points with monodromy group G. Further, we look at a relationship between the

elements of the fundamental group of the puncture sphere P1\B and elements of the monodromy

group G. According to this result we focus on the Riemann Existence Theorem . Now assume

that k(r) := {z ∈ C : |z|< r} for r > 0.

Lemma 2.2.9. Let n be a natural number, Then the map fn from k(r1/n) to k(r) mapping z to zn

is a Galois covering and the monodromy group is cyclic of order n.

Proof. A complete proof can be found in [36, p.70].

Lemma 2.2.10. The Galois covering fn : k(r
1
n )→ k(r) and f : A→ k(r) of degree n and they

are equivalent if A is connected.

Proof. A complete proof can be found in [36, p.71].

Suppose that P1 =C∪{∞} is the Riemann sphere and B = {b1, . . . ,br} is a set of branch points

in P1. Let D(p,r) = {z ∈C : |z− p|< r} ; r > 0, p ∈C be a an open set centered at the point p.

If p=∞, then D(p,r) = {z∈C : |z|> r−1}∪{∞}. The Galois covering is obtained by removing

the set of branch points in the Riemann sphere P1. In the other words, P1 \B is a punctured

sphere and f : R→ P1 \B is a Galois covering and the group G is its monodromy group. Note

that, for any b ∈ B there exists r ∈ R such that f (r) = b (because f is onto). Moreover, for the

two points b and r there exists open sets Ur and Vp respectively which are homeomorphic to the
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disc k(r). The above lemma guarantees that that the covering map f : R→ P1\B around each

of the branch points p maps z to zn.

Proposition 2.2.11. Let D\{p} be a punctured disc denoted by D∗ and f : R→P1\B be a Galois

covering. Then the components of f−1(D∗) are permuted transitively by the monodromy group

G. Moreover, if GF is the stabilizer of F in G, where F is one component of f−1(D∗) then GF

is cyclic.

Proof. A complete proof can be found in [36, p.72]

In the above proposition the generator of cyclic group is called canonical generator. For branch

point b , the conjugacy class in G which containing canonical generator is denoted by Cp.

Proposition 2.2.12. Let λ be a loop based on the point p∗, p∗ ∈ D∗ and let δ be another path

joining two points p∗ and q0 where q0 = f (p); p ∈ R. Then the map ϕp from the fundamental

group π1(P1\B,q0) to the group G sends the homotopy class of γ = δ−1λδ (representative

element in π1(P1\B,q0)) to the element in Cp.

Proof. For a proof see [36, p.73].

Let b ∈ B be a branch point. In the fundamental group π1(P1\B,q0), there is a conjugacy class

corresponding to the branch point b. We explain this statement in the following way. First we

select an open disc D(b,s) around the branch point b for s > 0 in which no point of B \ {b} is

contained in the disc D(b,s). We draw a path δ from the base point q0 of the fundamental group

to some boundary point v of the disc D(b,s). Let λ be a closed paths starting from the boundary

point v winding once counter clock wise around D(b,s). The set of the close path δ−1λδ is a

conjugacy class with respect to the branch point b where δ and v vary and it is denoted by Σp.

Corollary 2.2.13. Let ϕb : π1(P1\,qo)→ G be surjective homomorphism. Then ϕb(Σp) =Cp.

Note that if ϕb(Σp) =Cp 6= {1} then surjective homomorphism ϕb is said to be admissible.

Corollary 2.2.14. Let P1 be the Riemann sphere. Let B be a finite set in P1. Then there is one

to correspondence between

• Isomorphism classes of meromorphic function f : X → P1 branched at B

• transitive equivalence classes of permutation representations ϕb : π1(P1\B)→ Sn.
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Definition 2.2.15. Let f : X → P1\B be a finite Galois covering in which B = {a1,a2, · · · ,ar}

is the set of branch points in P1. The ramification type C = {Ca1,Ca2, . . . ,Car} of cover f is

defined to be the set set of non-trivial conjugacy classes in the group G.

Theorem 2.2.16. (Riemann Existence Theorem) Assume that G is a finite group , B ⊂ P1

where B = {a1, . . . ,ar}. Let C = {Ca1, . . . ,Car} be a ramification type. Then there exists G-

cover (branch-cover) of type C if and only if there exists generating tuple (g1, · · · ,gr) of the

group G with
r

∏
i=1

gi = 1 and gi ∈Cai for i = 1,2, . . . ,r.

The complete proof can found in [36]. This theorem tells us that if G is a transitive subgroup of

Sn with elements g1, . . . ,gr, such that G = 〈g1, . . . ,gr〉 ,
r

∏
i=1

gi = 1, and gi 6= 1, for i = 1,2, . . . ,r,

then there exists a cover map f : X → P1 branched at B = {a1, . . . ,ar} such that Mon(Y, f ) is

equal to G.

Theorem 2.2.17. Let X be a Riemann surface of genus g and f : X → P be a meromorphic

function of degree n. Then

2(n+g−1) = ∑
x∈X

(ex−1), (1)

where ex is a ramification index of f at x. Equation (1) is one form of the Riemann Hurwitz

formula.

Proof. A complete proof can be found [30, p.52]

Definition 2.2.18. Suppose that G acts on a finite set Ω. The index of x ∈G on Ω is defined by

ind(x) = |Ω|−orb(x),

where orb(x) is the number of orbits of G on Ω.

Theorem 2.2.19 (Riemann Hurwitz Theorem). Let R be a Riemann surface of genus g and

f : R→ P1 be a meromorphic function of degree n. Let G = Mon(R, f ) with δ1, · · · ,δk ∈ Gk

with δ1 . . .δk = 1. Then
k

∑
i=1

ind(δi) = 2(n+g−1).

Proof. A complete proof can be found [30, p.58]
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Definition 2.2.20. Any tuples which satisfy the conditions laid out in Riemann Existence Theo-

rem and Riemann Hurwitz formula are said to be admissible. Moreover, if σ = {σ1,σ2, · · · ,σr}

is an admissible tuple in the Gr, where G is a transitive subgroup of the symmetric group Sn,

then the pair (G,σ) is said to be a genus g system of degree n.

2.3 Hurwitz space

In this section we aim to formally introduce the notation for Hurwitz spaces. Most of the results

and definitions in this section are taken from [36]. For the remainder of this section, we assume

that the center of the group G is trivial. We denote the group of inner automorphisms of G

by Inn(G). The Riemann extension theorem and Corollary 2.1.24, play an important role in

this section. Let f : Y → X be a Galois covering. Since Z(G) = 1, it follows from Corollary

2.1.24 that if we pick any two points b and b′ in the fiber f−1(x) for x ∈ X , then b = b′ if and

only if ϕb = ϕb′ . We denote by Or, the space of branch point sets in C of cardinality r. So

Or = {Cr\(a1, · · · ,ar) ∈ Cr | there exist i and j with ai = a j}. It is an open set of complex

projective space of dimension r, and if we define the determinate to be ∏i6= j(ai−a j), then it is

the complement of the discriminate locus.

Let A 6 Aut(G) be arbitrary but fixed. Let B ⊆ Or and ϕ : π(P1\B,∞)→ G be an admissible

surjective homomorphism. Then two such pairs (B,ϕ) and (B′,ϕ ′) are A-equivalent if B = B′

and ϕ ′ = p◦ϕ for some automorphism p ∈ A.

We define the Hurwitz space of G-covers to be the set of equivalence classes of the pairs (B,ϕ)

and we denoted it by HA
r (G).

We denoted by [B,ϕ], the equivalence class of the pair (B,ϕ). For each equivalence class [B,ϕ]

in the Hurwitz space HA
r (G), we identify a basis of neighborhoods as follows: Let D1, . . . ,Dr be

r pairwise disjoint discs centered around the r branch points b1, . . . ,br in B. Let B′= {b′1, . . . ,b′r}

be such that b′i ∈ Di and let [B′,ϕ ′] be the equivalence class of the pair (B′,ϕ ′). So the neigh-

borhood of the equivalence classes [B,ϕ] is the set of all equivalence class [B′,ϕ ′] where ϕ ′ is a

composition of ϕ and canonical isomorphism
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π1(P1\B′,∞)→ π1(P1\(D1∪·· ·∪Dr),∞)→ π1(P1\B,∞).

This gives topology on HA
r (G). The Hurwitz space is denoted by H in

r (G) if and only if A =

Inn(G).

Let the tuple ḡ= (g1, . . . ,gr) ∈ Gr be admissible and let ρ ∈ A be any automorphism. Then the

tuple ρ(g) = (ρ(g1), . . . ,ρ(ρ)) is also admissible and it corresponds to another cover ϕ ′ which

is also admissible such that ϕ ′ = ρϕ . Clearly, these two covers are A-equivalent. Hence the

equivalence class of G−cover with the tuple ρ(g) is represented by the equivalence class of the

pair (B,ϕ).

Proposition 2.3.1. Let HA
r (G) be the Hurwitz space and B⊆Or, then the map ψA : HA

r (G)→Or

sending the equivalence class of the pair (B,ϕ) to the set of branch point B is a covering.

Proof. For a proof see [36, 184].

Note that the monodromy homomorphism is completely determined by its action on the stan-

dard generators {γ1, . . . ,γr} of the group π1(P1\B,∞) because γ1, . . . ,γr generate π1(P1\B,∞)

and the monodromy homomorphism ϕ : π1(P1\B,∞)→ G is an admissible surjection. The

monodromy homomorphism ϕ sends the generators of the group π1(P1\B,∞) to the group ele-

ments gi in G such that g1 · · ·gr = 1 and 〈g1, . . .gr〉= G. Let

Er(G) = {(g1, . . .gr) : 〈g1, . . .gr〉= G and g1 · · ·gr = 1}

Then the group A acts on the set Er(G) by sending each gi to ρ(gi) for ρ ∈ A. The set of A−

orbits on Er(G) is denoted by ξ A
r (G) in which ζ A

r (G) = Er(G)/A. Note that Inn(G)'G/Z(G).

If A = Inn(G), then A' G/Z(G) but Z(G) = 1, therefore the set of G−orbits under conjugates

is denoted ξ in
r (G).

Proposition 2.3.2. Let ψA : H(A)
r (G)→ Or with ψA([B,ϕ]) = B be a covering and let B0 be fix

point in Or, such that the fiber ψ
−1
A (B0) contains of all equivalence classes of the pairs (Bo,ϕ).

Then there is a bijection map between the fiber ψ
−1
A (B0) and the set Er(G)A(G) via sending

conjugacy class of the pair (B0,ϕ) to A−equivalence class of (g1, · · · ,gr), where (ϕ[γi]) = gi
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for i = 1 · · ·r.

Proof. The complete proof can be found in [36, 194].

From the above proposition, we see that each tuple ḡ= (g1 · · ·gr) ∈ Er(G) corresponds to a

homomorphism ϕ : (π\B,∞)→ G. Furthermore, the Riemann existence theorem yields that

any admissible tuple corresponds to a covering map f : X → P1. Thus the space H(A)
r (G)

is the set of equivalence classes of G−covers. A tuple ḡ= (g1 · · ·gr) is of a ramification type

C̄=(C1, · · · ,Cr) if gi ∈Ci for all i, then H(A)
r (C)⊆H(A)

r (G) and H(A)
r (C̄) contains all equivalence

class of pairs [B,ϕ]A.

Definition 2.3.3. Let C̄= (C1, · · · ,Cr) be a ramification type. The Nielsen class is defined by

N(C̄)= {(g1, . . .gr)| gi ∈Ci, 〈g1, . . .gr〉= G and g1 · · ·gr = 1}

Definition 2.3.4. Let r be integer number with r > 2. The braid group denoted by Br is

generated by r−1 generators {Q1, · · · ,Qr−1} satisfying the following relations

QiQ j = Q jQi where |i− j|> 1 (2)

QiQi+1Qi = Qi+1QiQi+1 f or i = 1,2, · · · ,r−2 (3)

The term braid was defined by Emil Artin. Braids forms an infinite group. The relation 3 is

said to be Yang Baxter equation. Furthermore, the two relations (3) and (2) together are called

braid relations. Let G be a finite group and ḡ= (g1 · · ·gr) ∈ Gr a generating tuple of G. Then

the braid group Br acts on Gr via:

(g1, . . .gi,gi+1, · · ·)Qi = (g1, . . .gi+1,g−1
i+1gigi+1, · · ·gr) f or i = 1 · · ·r−1. (4)

This action is referred to as the braid action. The smallest set of tuples which contains ḡ=

(g1 · · ·gr) is said to be the braid orbit of g if it contains all image of ḡ under Br. Note that if

ḡ= (g1 · · ·gr) ∈ Gr is a Nielsen tuple then 〈g1, . . .gr〉= G and ∏
r
i=1 gi = 1 which implies that
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g1 · · ·gi+1.g−1
i+1.gi.gi+1. · · ·gr = 1 and

〈g1, . . . ,gi+1,g−1
i+1gigi+1, . . .gr = 1〉= G

So the braid action can be restricted to an action on the set of Nielsen tuples. Assume that

C = (C1, · · · ,Cr) is a ramification type of the tuple ḡ= (g1 · · ·gr) where Ci is a conjugacy class

of G containing gi for i = 1, · · · ,r. Then the conjugacy classes Ci are permuted by the braid

action. So there is a unique homomorphism σ : Br → Sr with σ(Qi) = (i, i+ 1). The kernel

of this homomorphism is denoted by B(r) and is called the pure braid group. The pure braid

elements generate a pure braid group by the following relation

Qi j = Q j−1 . . .Qi+1Q2
i Q−1

i+1 . . .Q
−1
j−1 (5)

= Q−1
1 . . .Q j−2Q2

jQ j−2 . . .Qi (6)

for 16 i6 j 6 r. Because of the braid group action, we can assume that the conjugacy classes in

type C are ordered in particular way. From nowon, we always assume that the same conjugacy

classes in C are adjacent and form a block in C. The braids {Qi j}i, j are conjugate to each other

in Br [22, p.19]. Note that the braid group Br acts on the fiber ψ
−1
A (B0)[proposition 2.3.2], that

is, Br acts on the set ζ A
r (G) via the braid group action, and this action commutes with the action

of Aut(G)(Inn(G)) on tuples.

Definition 2.3.5. Let X = {1, · · · ,r} be a non empty set. Then P = {p1, · · · , ps} with pi ⊆ X is

called a partition of X if
⋃r

i pi = X and pi and p j are disjoint set for i 6= j.

Definition 2.3.6. Let X = {1, · · · ,r} be a non empty set and P = {p1, · · · , ps} be a partition

of X with stabilizer SP when SP is a subgroup of Sr, then the fiber of Sp is called parabolic

subgroup of Br and it is denoted by Bp.

Let C̄= (C1, · · · ,Cr) is a ramification type. For the rest of this thesis we order elements in the

type C̄ in the following way Ci =C j for 1 6 i 6 j 6 r if and only if i = j. Let P be a partition

of the set C, then the parabolic subgroup BP of Br preserves the order of conjugacy class so

Bp-orbit may be shorter than the Br-orbits as much as by the factors of [Sr : SP] which switching
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to the BP-orbits may be useful for our computations.

Proposition 2.3.7. Let C̄= (C1, · · · ,Cr) is a ramification type and N(C) be a Nielsen class. Then

there is a one to one correspondence between Bb-orbit on N(C̄) and connected components of

H in
r (G).

Proof. A complete proof can be found [37]

The above proposition guarantees us that there is a one to one correspondence between Bp-

orbits on the Nielsen class and connected components of H in
r (C̄). In our thesis we focus on the

Hurwitz space , more precisely H in
r (C̄) of H in

r (G). The MapClass package was designed by

James ,Magaard, Shpectorov and Völkein to find braid orbits for a given group and given tuple.

2.4 Primitive Permutation groups

Definition 2.4.1. Let G be a group and Ω be a non empty set. Then a right group action of G

on Ω is a function ∗ : X×G−→Ω satisfying the following conditions

(1) x∗ e = x for x ∈Ω, where e ∈ G is the identity;

(2) x∗ (gh)=(x∗g)∗h for g,h ∈ G and x ∈Ω.

The action of G on Ω is called transitive, if for every x,y∈ X there exists g∈G such that xg = y.

The group G acts faithfully on X if for any g,h ∈ G where g 6= h there exists x ∈ X such that

xg 6= xh. Equivalently, if g 6= e, then xg 6= x for some x.

Definition 2.4.2. Let G be a group acting on Ω. A block of imprimitivity for G is a non-empty

set ∆ ⊂ Ω such that for all g ∈ G either ∆g = ∆ or ∆g
⋂

∆ = /0. If |∆| = 1, then ∆ is called a

trivial block.

Lemma 2.4.3. If G is transitive on Ω and ∆ is a block of imprimitivity then {∆g |g ∈ G} is a

partition of Ω.

Proof. [5, 142]

Example 2.4.4. If H < K < G are subgroups of G, then G acts transitively on G/H and set

∆ = ∪Hk,k ∈ K is a block of imprimitivity.
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Definition 2.4.5. A group G acting on Ω is called primitive if G acts on Ω transitively and

there is no partition of Ω preserved by G. In other words, G is said to act primitively on Ω if

Ω contains no nontrivial blocks. If a primitive group G acts faithfully on Ω, then G is called

primitive permutation group.

Definition 2.4.6. Let G be a group which acts on the non empty set Ω. Then the stabilizer

subgroup of ω ∈Ω is defined by

Gω = {g ∈ G|ωg = ω} .

Theorem 2.4.7. Let G acts transitively Ω . Then G is primitive if and only if Gω is a maximal

subgroup of G.

Proof. Suppose that G is primitive. Let Gω 6 H 6 G for a subgroup H in G. Define ∆ =

{ωh | h ∈ H}. Let g ∈ G and α ∈ ∆g
⋂

∆. Then α ∈ ∆g and α ∈ ∆ which implies that α =

ωh1g = ωh2 where h1,h2 ∈ H. Therefore, ωh1gh−1
2 = ω . Thus, h1gh−1

2 ∈ Gω 6 H. Hence

g = h−1
1 (h1gh−1

2 )h2 ∈ H and so ∆g = ∆. Hence ∆ is block. Since G is primitive, we have

∆ = {ω} or ∆ = Ω. If ∆ = {ω}, then ωh = ω for each h ∈ H, which implies that h ∈ Gω and

hence Gω = H. If ∆ = Ω, then ωg ∈Ω = ∆ for all g ∈ G. Therefore, ωg = ωh for some h ∈ H

which implies that ωgh−1 = ω . So gh−1 ∈Gω 6 H. Thus g ∈H. Implying, G = H. Hence Gω

is a maximal subgroup of G.

Conversely, suppose that G is not primitive. Then there exists a non trivial block ∆ for G. Let

ω ∈ ∆. Then Gω 6 G∆. Indeed for g ∈Gω , ωg = ω , and so we have ∆g
⋂

∆ 6= φ which implies

that ∆g = ∆. So if g ∈G∆ then indeed Gω 6 G∆. Now suppose that Gω = G∆ and α ∈ ∆. Since

G acts transitively on Ω, then there exists g ∈ G such that α = ωg. Thus ∆g
⋂

∆ 6= φ , and it

follows that g ∈G∆ = Gω and so ωg = ω . Then α = ω and ∆ = {ω}: a contradiction. Suppose

that G∆ = G and α ∈ Ω . Since there exists g ∈ G such that α = ωg, we have α ∈ ∆g = ∆; so

∆ = Ω , a contradiction. Thus Gω < G∆ < G. Hence Gω is not maximal.

Let G be a group which acts on the non empty set Ω, then define Gg
ω by Gg

ω = {g−1hg|h ∈Gω}.

Note that if α = ωg then Gα = Gg
ω . If G is a transitive permutation group acting on a non

empty set Ω, and α ∈Ω, then for some g ∈ G, α = ωg so Gα = Gωg = Gg
ω . Which means that
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if Gω and Gα are any two stabilizer subgroups of a transitive permutation group G, then they

are conjugate in G. Gω is maximal subgroup in G then Gωg is a maximal subgroup ∀g ∈ G.

Definition 2.4.8. Assume that G is a group. A non-trivial normal subgroup N of G is called

minimal normal subgroup if for any non-trivial normal subgroup M in G such that M 6 N

then M = N.

Clearly, the intersection of any two different minimal normal subgroup of the group G is trivial.

Indeed, if N1 and N2 are two minimal normal subgroups of G, then N1∩N2 EG, N1∩N2 6 N1

and N1 ∩N2 6 N2. Thus, N1 ∩N2 = {1} (by minimality of N1 and N2). It follows that, N1 6

CG(N2) and N2 6CG(N1) as [N1,N2]6 N1∩N2 = {1}.

Definition 2.4.9. Let G be a simple group . Then L is called almost simple group if

G 6 L 6 Aut(G).

Let G be a non abelian simple group. Then a finite group is almost simple if and only if it is

isomorphic to a group L such that Inn(G)6 L 6 Aut(G).

Let M be a maximal subgroup of an almost simple group L. Then the permutation action of the

group L on the the right cosets of M via right multiplication is primitive. Thus L is a primitive

subgroup of symmetric group Sn where [L : M] = n. To describe the maximal subgroups of Sn,

we require knowledge about the maximal subgroups of all almost simple groups. If there exists

a normal subgroup G in L such that G is simple, then CL(G)=1.

2.5 General criteria for determining possible signatures of

ramification types

Assume that f : X −→P1 is a meromorphic function of degree n, where X is a compact Riemann

surface of genus g. We have shown that if {a1,a2, · · · ,ar} is a set of branch points in P1,

then the fundamental group π1(P1−{a1,a2, · · · ,ar},x0), where x0 ∈ P1−{a1,a2, · · · ,ar}, acts

transitively on the fiber f−1(x0). Now, if G = Mon(X , f ), we are interested in the structure

of the group G when the compact Riemann surface X is of genus g 6 2 and the meromorphic
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function f can not be written as a composition of two homomorphic functions f1 and f2 where

f1 and f2 are two functions of degree greater than or equal to two.

Definition 2.5.1. Let f be a function. Then f is called indecomposable, if f can not be writ-

ten as a composition of two functions of degree greater than one. In the other words, f is

decomposable if and only if f = f1 ◦ f2 where the degree of f1 and f2 are both greater than one.

Theorem 2.5.2. Given a covering map f : Y −→ X of a finite degree n. Then f is indecompos-

able if and only if the corresponding monodromy action is primitive.

Proof. A complete proof can be found in [36, p.47].

Definition 2.5.3. Suppose that {x1,x2, · · · ,xr} is a generating set such that

x1.x2. · · · .xr = 1.

If we set di = |xi|, then we call (d1,d2, · · · ,dr) the signature of the tuple (x1,x2, · · · ,xr). To

standardize matters we generally assume xi such that d1 6 · · ·6 dr.

Definition 2.5.4. Assume that G is a transitive group of Sn. A genus g- system is a tuple

x = (x1,x2, · · · ,xr) such that for all 1 6= xi ∈ G 1 6 i 6 r, x1, · · ·xr = 1 and G = 〈xi|1 6 i 6 r〉

r

∑
i=1

ind(xi) 6= 2(n+g−1). (7)

Note that a tuple x̄ is said to be non-genus g-system if 1 6 i 6 r, x1, · · ·xr 6= 1, G 6= 〈xi|1 6 i 6 r〉

or ∑
r
i=1 ind(xi) = 2(n+g−1). Furthermore we say a group G is not of type x̄ if and only if x̄ is

a non-genus g-system.

Theorem 2.5.5 (Ree ). Assume that G acts transitively on a set of size n. If x1,x2, · · · ,xr are

permutations generating G with x1.x2. · · · .xr = 1, then O1+O2+ · · ·+Or 6 (r−2)n+2 where

Oi is the number of orbits of 〈xi〉.

Ree’s Theorem is a consequence of the Riemann Hurwitz formula but can be proved indepen-

dent by see for example [6]. The Ree Theorem means that if x1,x2, · · · ,xr are permutations

generating a transitive group on a set of size n, then sum of the numbers of cycles of the xi is

less than or equal to (r−2)n+2. We will illustrate this with the following example.
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Example 2.5.6. In the Mathieu group M12 if (x1,x2, · · · ,xr) ∈ Mr
12, in its action on the right

cosets of maximal subgroup M11. M12 is not of types (2B,3A,d), and (2B,4B,d) where d

representative conjugacy classes of any order. As (O2B = 8)+(O3A = 6)+Od > (r−2)n+2 =

14. So Ree’s transitivity condition fails. Hence M12 is not of type (2B,3A,d). Similarly, M12

can not be of type (2B,4B,d).

Definition 2.5.7. Let x = (x1,x2, · · · ,xr) be a tuple of elements of order d1,d2, · · · ,dr respec-

tively. The Zariski number denoted by A(x) and defined by

A(x) =
r

∑
i=1

di−1
di

.

Proposition 2.5.8. (Zariski Condition)[26]

Let G be a finite group acts transitively and faithfully on Ω. Suppose that x = (x1,x2, · · · ,xr) is

an admissible tuple, where r > 3. Then A(x)> 85
42 .

Proof. A complete proof can be found in [26]

Definition 2.5.9. Assume that G is a finite group. The symmetric genus of G is denoted to be

g(G) and defined by the smallest integer g such that G acts faithfully as automorphisms of the

surface and orientably on a closed orientable surface Sg(G) of genus g(G).

The symmetric genus of G is given by g(G) = |G|
2 (N−2)+1, where

N = min
x
{A(d) | d = signature(x),G = 〈x〉,∏

x
xi = 1}.

Theorem 2.5.10. (Marston Conder)

A. The symmetric genus of Mathieu group M11 is 631 with a minimal genus action arising

from (2,4,11) generation of M11.

B. The symmetric genus of Mathieu group M12 is 3169 with a minimal genus action arising

from (2,3,10) generation of M12.

C. The symmetric genus of Mathieu group M22 is 34849 with a minimal genus action arising

from (2,5,7) generation of M22.
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D. The symmetric genus of Mathieu group M23 is 1053361 with a minimal genus action

arising from (2,4,23) generation of M23.

E. The symmetric genus of Mathieu group M24 is 10200961 with a minimal genus action

arising from (3,3,4) generation of M24.

Complete proofs can be found in [6]. In the light of this theorem, we can eliminate some

signatures of possible generating sets of the group G. On the other hand, the above theorem is

not enough to find the final list of possible signatures. There exist some other techniques that

we will explain later.

Theorem 2.5.11. Let X be a Riemann surface of genus zero, and G be a sporadic simple group.

Then there is a non-constant meromorphic function f such that G is a composition factor of

monodromy group Mon(X , f ) if and only if F∗(G) is isomorphic of one of the elements of

{M11,M12,M22,M23,M24,J1,J2,HS,Co3}.

The complete proof can be found [24]. The ideas contained in these theorems require knowledge

about fixed point ratios of primitive permutation representations of the almost simple groups.

In the next definition we will define fixed point ratio and upper bound of fixed point ratio.

Definition 2.5.12. Suppose that G acts on the set Ω. Then the fixed point ratio of x ∈ G on a

set Ω is defined by { f (x)
n } where f (x) is the number of fixed points of x on Ω and n = |Ω|.

In our work we are interested in almost simple groups L with F∗(L) = G, and x∈ L acts by right

translation on the right cosets of some maximal subgroups M of L. The number b(G) is defined

by

b(G) := Max{ f (x)
n
| n = [L : M];M � G, x ∈M}.

is the least upper bound for all fixed point ratios of x occurring in any transitive G-action.

Example 2.5.13. The Mathieu group M11 has the following conjugacy classes of maximal sub-

groups: M10,L2(11),M9.2,S5 and M8[7]. Recall, the set C̄=Cg1 . . . ,Cgr of conjugacy classes of

a group G such that gi ∈ Cgi is called ramification type of the cover f : X → P. The Mathieu

group M11 has 10 conjugacy classes which are C = {1A,2A,3A,4A,5A,6A,8A,8B,11A,11B}. If

M =M10 then [M11 : M] = 11 and the number of fixed point of gi ∈C = {2A,3A,4A,5A,6A,8A,8B,11A,11B}

in M11 acting by translation on right coset of M10, is {3,2,3,1,0,1,1,0,0}. Therefore the max-
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imum fixed point ratio of in this action is equal to 3
11 . Similarly, the maximal fixed point ratios

on other maximal subgroups L2(11),M9.2,S5,M8 are 4
12 ,

7
55 ,

10
66 and 13

165 respectively. Hence the

maximal fixed ratio is 4
12 = 1

3 = b(M11).

Definition 2.5.14. A group G is called a genus g- group if and only if there exists a compact

Riemann surface X of genus g and meromorphic function f : X→ P1 such that G = Mon(X , f ).

If a group G is a composition factor of, Mon(M, f ), then G is said to be genus g composition

factor.

Lemma 2.5.15. Suppose that G is a permutation group acting on n-element the set Ω. Let

xi ∈ G then the following holds.

1. ind(xi) = n−∑
di
j=1

1
di

f (x j
i ) where di = |xi| and f (xi) is the number of fixed points of xi

on Ω ;

2. If G =< x1,x2, · · · ,xn > and x1.x2. · · · .xn = 1, then one the following are true.

a. A(x̄)>
85
42

.

b. G is solvable group and G is of type (2,3,6),(2,2,d),(2,4,4),(3,3,3) or (2,2,2,2).

c. G of type (2,3,3) and G' A4.

d. G of type (2,3,4) and G' S4.

e. G of type (2,3,5) and G' A5.

Proof. Complete proof can be found in [12].

Definition 2.5.16. Let G be a group and let

x̄=(x1,x2, · · · ,xr) such that G =< x1,x2, · · · ,xr > and x1.x2. · · · .xr = 1

ȳ=(y1,y2, · · · ,ys) such that G =< y1,y2, · · · ,ys > and y1.y2. · · · .ys = 1

Then we say ȳ<x̄ if and only if A(ȳ)< A(x̄) and ȳ is minimal in G if ȳ is a minimal with respect

to <.

Recall the Riemann Hurwitz formula
k
∑

i=1
ind(xi) = 2(n+g−1) where a group G has a subgroup

M such that [G : M] = n and x̄= (x1,x2, · · · ,xr) is a genus g-system when xi ∈ G acts on the

right cosets of M by right multiplication . The left side of Riemann Hurwitz formula can be
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written as nA(x)− nB(x) where B(x) = (
1
n
)

r
∑

i=1

di−1
∑
j

f (x j
i )

di
, f (xi) are the number of fixed points

of xi and |xi|= di. Moreover nB(x̄) can be bounded above by A(x̄)b(G), hence nA(x̄) − nB(x̄)>

nA(x̄)(1−b(G)).

The following lemma is useful, it is proved in [24].

Lemma 2.5.17. Let G be a finite group and x be minimal in G. If f (g)
[G:M] <

A(x)−2
A(x) for all (g,M),

then G is not a genus zero group.

Lemma 2.5.18. Let G be a finite group and x̄ be minimal in G. If f (g)
[G:M] <

A(x)−2
A(x) for all (g,M),

then G is not a genus one group.

Proof. Suppose that ȳ is a generating genus one system. If G is a genus one group, then the

Riemann Hurwitz formula implies that
k
∑

i=1
ind(yi) = 2(n+ 1− 1) = 2n. In the other hand, the

left side of the Riemann Hurwitz formula can be written in the form

k

∑
i=1

ind(yi) = nA(y)−nB(y)> nA(y)−nA(y)b(G).

Since b(G) = Max( f (g)
[G:M]), then nA(y)−nB(y)> nA(y)−nA(x)A(y)−2

A(x)

therefore we get
k
∑

i=1
ind(yi)> 2nA(y)

A(x) but x is minimal then A(y)
A(x) > 1.

Hence
k
∑

i=1
ind(yi)> 2n. Which is impossible because by hypothesis

k
∑

i=1
ind(yi) = 2n.

Thus G is not a genus one group.

In the next lemma we will show that the group G does not possess a genus two system if f (g)
[G:M] <

A(x)−2
A(x) −

1
[G:M]

Lemma 2.5.19. Let G be a finite group and assume that x̄ be minimal in G. If f (g)
[G:M] <

A(x)−2
A(x) −

1
[G:M] for all (g,M), then G is not a genus two group.

Proof. If G were a genus two group with genus 2-system y, then the Riemann Hurwitz formula

would imply that
k
∑

i=1
ind(yi) = 2(n+2−1) = 2n+2. The left hand side of the Riemann Hurwitz

formula can be written in the form
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k

∑
i=1

ind(yi) = nA(y)−nB(y)> nA(x)−nA(x)b(G).

where b(G) = Max( f (g)
[G:M]). By hypothesis b(G)< A(x)−2

A(x) −
1

[G:M] . We have

k

∑
i=1

ind(yi)> nA(y)−nA(y)(
A(x)−2

A(x)
− 1

[G : M]
) = 2n

A(y)
A(x)

+A(y).

Thus
k
∑

i=1
ind(yi)> 2nA(y)

A(x) +A(y). Since A(y)
A(x) > 1 by minimality of x̄.

So, 2n+2 =
k
∑

i=1
ind(yi)> 2n+A(ȳ)> 2n+2 if and only if A(ȳ)> 85

42 . which is contradiction.

Hence G is not a genus two group

Note that if any system x̄ satisfying the condition of Lemma 2.5.19 above, then it is not a

genus zero or one system i.e If f (g)
[G:M] <

A(x)−2
A(x) −

1
[G:M] <

A(x)−2
A(x) , then by Lemma 2.5.17 and

Lemma2.5.18, x̄ is not a genus zero or one system.

Lemma 2.5.20. Let G be a finite group and M a subgroup of G, then following hold

1. If (
1

[G : M]
)

r
∑

i=1

di−1
∑
j

f (x j
i )

di
< A(x)−2, then x is not genus zero system,

2. If (
1

[G : M]
)

r
∑

i=1

di−1
∑
j

f (x j
i )

di
6= A(x)−2 then x is not genus one system,

3. if (
1

[G : M]
)

r
∑

i=1

di−1
∑
j

f (x j
i )

di
> A(x)−2. then x is not genus two system,

Proof. 1. Suppose that x is a genus zero system then by the Riemann Hurwitz formula
r
∑

i=1
ind(xi) = 2n−2. Since

ind(xi) = n−
di

∑
j=1

f (x j
i )

di

= n− (
di−1

∑
j=1

f (x j
i )

di
+

f (xdi
i )

di
)

= n− n
di
−

di−1

∑
j=1

f (x j
i )

di
.
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So

ind(xi) = n(
di−1

di
)−

di−1

∑
j=1

f (x j
i )

di
,

therefore we get
r

∑
i=1

ind(xi) = n
r

∑
i=1

di−1
di
−

r

∑
i=1

di−1

∑
j=1

f (x j
i )

di
.

Finally, we get 1
n

r
∑

i=1

di−1
∑
j=1

f (x j
i )

di
= A(x)−2+ 2

n as
r
∑

i=1
ind(xi) = 2n−2.

Hence x is a genus zero system if and only if 1
[G:M]

r
∑

i=1

di−1
∑
j=1

f (x j
i )

di
= A(x)−2+ 2

n .

It is clear that [G : M] = n> 1. So if (
1

[G : M]
)

r
∑

i=1

di−1
∑
j

f (x j
i )

di
< A(x)−2, then the Riemann

Hurwitz formula fails. Hence the claim.

2. Suppose that x is a genus one system. Then by the Riemann Hurwitz formula
r
∑

i=1
ind(xi)=

2n.

Similarly,

2n =
r

∑
i=1

ind(xi) = n
r

∑
i=1

di−1
di
−

r

∑
i=1

di−1

∑
j=1

f (x j
i )

di
.

Thus
1

[G : M]

r

∑
i=1

di−1

∑
j=1

f (x j
i )

di
= A(x)−2.

In the other words if
1

[G : M]

r

∑
i=1

di−1

∑
j=1

f (x j
i )

di
6= A(x)−2,

then the Riemann Hurwitz formula fails. Hence x is not a genus one system

3. Suppose that x is a genus two system. Then by the Riemann Hurwitz formula
r
∑

i=1
ind(xi)=

2n+2.

So
1

[G : M]

r

∑
i=1

di−1

∑
j=1

f (x j
i )

di
= A(x)−2− 2

n
.

In the other words, x is not a genus two system, if

(
1

[G : M]
)

r

∑
i=1

di−1

∑
j

f (x j
i )

di
> A(x)−2.
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Note that the above lemmas can be used to eliminate some systems, which are not of genus

zero, one and two.

Lemma 2.5.21. Let f : X → Y be a Galois cover with group of deck transformation G and let

A,B be two proper subgroups of G. If 1G
A is submodule of 1G

B , then g(X/A)6 g(X/B).

A complete proof of 2.5.21 can be found in [11]. If M1 and M2 are non-conjugate maximal

subgroups of the group G affording permutation characters χ1 and χ2 respectively such that χ1

lies in χ2, then any systems eliminated as possible low genus systems in their action on the

cosets of M1, are also eliminated as potential low genus systems in their action on the cosets of

M2.

In this thesis we will determine all possible signatures of genus zero, one and two systems of

sporadic simple groups. A series of filters will be used to eliminate signatures. Now we will

present the main filters and typical arguments which we employ to eliminate signatures .

1. Riemann Hurwitz formula

2. Theorem 2.5.5(Ree Theorem)

3. Zariski Condition

4. For Mathieu groups (M11,M12,M22,M23,M24) using Theorem2.5.10(Marston Conder The-

orem)

5. The group algebra structure constant

6. Lemma 2.5.15

7. Lemma 2.5.17

8. Lemma 2.5.18

9. Lemma 2.5.19.

10. Lemma 2.5.21.
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CHAPTER 3

POSSIBLE RAMIFICATION TYPES FOR THE

SPORADIC SIMPLE GROUPS

The list of sporadic simple groups contains 26 groups. The Mathieu groups M11, M12, M22, M23

and M24 were discovered by Mathieu (1861,1873)[7]. They are the earliest sporadic simple

groups to be discovered.

A Steiner system S(t,k,v) is a finite set X of v points together with a set of k-element subset of

X (called blocks and denoted by B) with the property that every t-points of the set X is contained

in a unique block[8].

The automorphism group of the unique Steiner system S(5,8,24) is M24. The stabilizer of a

point is the group M23 of order |M24|/24= 10200960. In fact M23 is the group of automorphisms

of the Steiner system S(4,7,23). The group M22 is the pointwise stabilizer in M24 of two points.

M22 = |M23|/23 = 443520. The pointwise stabilizer in M24 of three points is the group M21,

of order |M22|/22 = 20160, and is isomorphic to the group PSL3(4) [7]. The Mathieu groups

M24,M23,M22 together are called the large Mathieu groups. Moreover, the automorphism of the

group M22 is a maximal subgroups of M24. The embedding of the group M22 : 2 in the group

M24 has orbit shape 2+22[8].

A binary linear code C based on a finite set A is a subspace of the power set 2A . The size

of finite set A is called length of linear code C . A triple (C ,A,V ) is a linear code over GF(q)

where V is a vector space over GF(q) , A is a basis of V and C subspace in V . Moreover, the

number of the elements of the smallest non-empty subset in the code C is called the minimal
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weight of C . If number of elements of every subset in C is even then the code is called even.

The orthogonal complement of the code C with respect to the parity form

C ∗ = {C| C ∈ 2A, |C∩B| is even for all B ∈ C }

is called dual code C ∗ of the code C . The code C is called self-dual if C = C ∗. A Golay code

is a self-dual code ς of length 24 in which the minimal weight > 8.

The stabilizer in M24 of one of a Golay code word of weight 12, is the group M 'M12 of order

|M24|/2576 = 9540. This fact was discovered by Frobenius using character theory. It is also

known that NM24(M) ' Aut(M12). M12 has a natural permutation representation of degree 12.

The point sets in M12 in it degree 12 action is the smallest Mathieu group M11. It’s sharply

4-transitive permutation group on 11 points. Furthermore, the group M11 is one of the maximal

subgroup of M23.

The Janko groups J1, J2, J3 and J4 were discovered in (1965,1975)[7]. The smallest Janko

group J1 was discovered by Zvonimir Janko around one hundred years after the first Mathieu

group was discovered.[20]. The story of discovering of the smallest Janko group J1 begins with

the centralizer involution of group of the Ree group of Lie type. It was shown that if a is an in-

volution of the Ree group G then CG(a) is isomorphic to external direct product Z2×PSL2(3n)

and the Sylow 2-subgroups are elementary abelian groups of order eight. Conversely it has

been established that all simple groups with Sylow 2-subgroup of order eight which have cen-

tralizer involution isomorphic to Z2×PSL2(pn), p and odd prime then p = 3, n = 2r + 1 or

pn = 5. Janko showed that if G is a simple group such that G has elementary abilean Sylow

2-subgroups of order 8 and if a is an involution in G with C(a)∼= Z2×PSL2(5), then G is iso-

morphic to smallest Janko group J1[20]. The group J1 has a trivial outer automorphism.

Z. Janko in [20] indicated that there are two new simple groups in which 21+4 : A5 is a cen-

tralizer of an involution. These two new simple group are J2 and J3. The Janko group J2 was

found by M.Hall and D.Wales (1967) as a rank 3 permutation group on 100 points [16]. The

group J2 has non trivial outer automorphism and it is the only one of the four Janko groups

that is involved in the Monster group. The Janko group J3 was constructed by G.Higman and

J.Mckay in 1969 [18]. Similarly, the largest Janko group J4 was constructed during the proof
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of the classification theorem of finite simple group. It was discovered by Z. Janko by looking

for groups with an involution centralizer of the form 21+12.3.(M22 : 2)[21]. He showed that if a

simple group G exists with involution centralizer of the form 21+12.3.(M22 : 2) then G contains

a subgroup of the form 211 : M24. By this time, much of the proofs of the classification theo-

rem of finite group had been completed however, studying groups with an involution centralizer

remind[38]. The group J4 has trivial outer automorphism and it is not involved in the Monster

group.

A non empty set L is said to be a lattice if L is a finitely generated free Z-module with an

integer valued bilinear form, written (a,b) for a,b ∈ L[4]. The lattice is said to be integral if

(a,b) takes integer value. An integral lattice L is said to be a unimodular lattice if it is of

determinate 1 or -1. The even unimodular lattice in 24-dimension Euclidean space is said to be

a Leech lattice[4].

The Conway groups Co1,Co2,Co3 can be derived from the Leech lattice. The largest Conway

group Co1 is the automorphism group of Leech lattice, modulo a center of order two, which

was discovered by J.H Conway[7]. The outer automorphism group of the group Co1 is trivial.

By reducing modulo 2 and factoring out a fixed vector we get the group Co2 which is maxi-

mal subgroup of the group Co1. The group Co3 is occurred as a subgroup of automorphism

Leech lattice fixing a vector of ”type 3”. Based in the fact that the Co3 is maximal subgroup

in the largest Conway group Co1, the group Co3 has 2-transitive action of degree 276. The

single point stabilizer of Co3 of this action is the automorphism group of the McLaughlin group

(McL) . The group (McL) was found by McLaughlin as a permutation group acting on the

McLaughlin graph with 275 = 1 + 112 + 162 vertices [7]. The group Higman-Sims (HS) is a

maximal subgroup of the group Co3 which is discovered by Donald G. Higman and Charles C.

Sims [7]. They derived their groups as a rank 3 primitive permutation group of degree 100. The

Suzuki (Suz) group was found by M.Suzuki [7]. It also can be obtained from the Leech lattice.

B. Fischer- R.L. Griess- M.P.Thorne, using the existence of Co1 predicted the existent of a sim-

ple group with involution centralizer 21+24.Co1 (where 21+24 denotes an extra special group

of order 225) and constructed its character table. In 1980 R.L. Griess showed that this group

exists and can be shown to be the automorphism group of a 196884 dimensional algebra. This

is called the monster group. 20 of the sporadic simple group are involved in the Monster. The
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remaining six are called pariahs.

The Fischer groups Fi22,Fi23 and Fi24 are another list of the sporadic groups. They are sub-

quotients of the Monster group. Fisher’s Theorem[9] classified 3-transposition groups (a group

generated by a conjugacy class of involution in which the product of any two non-commutative

involutions has order three). The Fisher groups are special cases of Fisher Theorem. Further,

the Fisher groups Fi22,Fi24 has non-trivial outer automorphisms.

Dieter Held in paper [17] was looking for the simple groups with the property, that this simple

group containing an involution z such that centralizer of z is isomorphic to that of an involu-

tion in the group M24. During his investigation he obtained the group Held (He). The group

Rudvalis (Ru) , Harada-Norton (HN), Thompson (T h), Baby Monster (B), O’Nan (ON), and

Lyons (Ly), are the large sporadic simple groups.

In this thesis we will compute braid orbits of Nielsen class of sporadic almost simple groups.

Recall that a function f is indecomposable if f can not be written as a composition of two

functions of degree greater than one. In our work we are interested in the structure of the

monodromy group G of f when X is a compact Riemann surface of genus g 6 2 and f is

indecomposable meromorphic function. We recall that the monodromy group is primitive in its

monodromy action on the fiber over the base point if and only if the corresponding cover of it

is indecomposable. In light of this statement we are interested in finding all equivalence classes

of admissible generating tuples for sporadic simple groups when the genus of the cover is 0,1

or 2. Recall definition genus g-system is defined as follows.

Definition 3.0.22. Assume that G is a transitive group of Sn. A genus g- system is a tuple

x = (x1,x2, · · · ,xr) such that for all 1 6= xi ∈ G, 1 6 i 6 r, x1, · · ·xr = 1 and G = 〈xi|1 6 i 6 r〉

and
r

∑
i=1

ind(xi) = 2(n+g−1). (1)

If G acts primitively, then the genus g system is called a primitive genus g system. Further-

more, a primitive genus g system is called a primitive low genus system if g 6 2.

The small sporadic simple groups possess primitive permutation representation of degree�2500

and these are stored, for example, in GAP.
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We use the function AllPrimitiveGroups(DegreeOperation,n) to retrieve a copy of a sporadic

simple group, which acts primitively on n points. We present the code and explain the following

example.

Example 3.0.23. gap> AllPrimitiveGroups(DegreeOperation,11);;

[ C(11), D(2*11), 11:5, AGL(1, 11), L(2, 11), M(11), A(11), S(11) ]

gap> k:=last[6];

M(11)

Here we retrieve the sporadic Mathieu group M11 in its action on 11 points.

Each sporadic simple groups has several conjugacy classes of maximal subgroups. We record

the number of conjugacy classes of maximal subgroups in the following table

Table 3.1: Number of classes of maximal subgroups of sporadic simple groups
Groups No. Maximal Subgroups Groups No.Maximal Subgroups Groups No.Maximal Subgroups

M11 5 M12 7 M22 7
M23 6 M24 9 J1 7
J2 9 J3 8 J4 11

Co1 24 Co2 11 Co3 14
Fi22 14 Fi23 14 Fi24 20
Suz 17 HS 11 McL 12
He 11 HN 14 T h 15
B 28 ON 9 Ly 9
Ru 15 M unknown

The GAP library stores primitive permutation groups of degree up to 2500 but some sporadic

simple groups only have maximal subgroups of index more than 2500. Sometime it is conve-

nient for us to construct permutation representations of such group of large degree. We explain

how we do this via the following example.

Example 3.0.24. The smallest maximal subgroups of the Janko group J2 are isomorphic to A5.

The degree of operation of G of this class A5 is 10080 as 10080 = |J2|/|A5|. Also, there are up

to conjugacy 3 distinct embeddings of A5 into J2.

In GAP we can proceed as follows:

• Get J2 and A5 as follows

gap>J2 := UnderlyingGroup(TableOfMarks("J2"));

<permutation group of size 604800 with 2 generators>

gap> A5 := AlternatingGroup(5);
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Alt( [ 1 .. 5 ] )

• Find the embeddings of A5 into J2 up to conjugacy.

gap> embs := IsomorphicSubgroups(J2,A5);;

gap> acts := List(embs,phi->Action(J2,RightCosets(J2,Image(phi)),OnRight));

<permutation group with 2 generators>, <permutation group with 2 generators>,

<permutation group with 2 generators>

• Check which are maximal

gap> for i in[1..Length(act)] do

> if Order(act[i])= Order(J2) then

> if IsPrimitive(act[i]) then Print(i)

> fi;fi;od;

3

• Finally, find all conjugacy class representative then find indices of representative

gap> cclreps := List(acts[3],G->List(ConjugacyClasses(G),Representative));;

gap> indices := List(cclreps,reps->List(reps,

g->10080-Length (Orbits(Group(g),[1..10080]))));

[ 0, 5010, 6720, 8390, 6480, 8064, 8064, 9360, 9360, 8640, 9066, 9066,

5040, 7560, 8820, 8280, 9180, 8056, 8056, 9068, 9068 ]

gap>ll := [];

[];

gap>for i in [1..Length(acts)] do

>ll[i] := [];

>for j in [2..Length(cclreps[i])] do

>Add(ll[i],rec(pos:=j,index:=indices[i][j],ord:=Order(cclreps[i][j])));

od;

od;
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3.1 Possible Ramification Types

In this section we aim to determine all possible ramification types for sporadic simple groups

of genus zero, one and two. Recall that Ree’s theorem states that, if G is a transitive group on

a set of size n and x1,x2, · · · ,xr are permutations generating G with x1.x2. · · · .xr = 1, then O1 +

O2+ · · ·+Or 6 (r−2)n+2 where Oi is the number of orbits 〈xi〉. In the light of Ree’s theorem

we can expect to eliminate certain potential ramification types from further consideration.

In our work we use the Riemann Hurwitz formula( equation 1) to identify the possible rami-

fication types. It should be noted that the right side of Riemann Hurwitz formula (1), is easy

to compute. To find left side of the Riemann Hurwitz formula we first, by using GAP com-

pute all conjugacy class representatives of the groups. Next we compute the index for each

conjugacy class representative on every type primitive permutation representation. We define a

tuple, which is a list of permutation indices such that the sum is equal the right hand side of the

Riemann Hurwitz formula. We will explain this using the following example

Example 3.1.1. gap> AllPrimitiveGroups(DegreeOperation,11);;

[ C(11), D(2*11), 11:5, AGL(1, 11), L(2, 11), M(11), A(11), S(11) ]

gap> k:=last[6];

gap> reps:=List(ConjugacyClasses(k),x->Representative(x));;

gap> Ind:=List(reps,x->11-Length(Orbits(Group(x),[1..11])));

[0,8,4,6,8,8,6,8,10,10]

ll:=[];

[]

gap> for i in [2..Length(reps)] do

> Append(ll,[rec(pos:=i,index:=Ind[i],ord:=Order(reps[i]))]);

> od;

gap>ll;

[rec( index := 8, ord := 5, pos := 2 ), rec( index := 4, ord := 2, pos := 3

), rec( index := 6, ord := 4, pos := 4 ), rec( index := 8, ord := 8, pos :=

5 ), rec( index := 8, ord := 8, pos := 6 ), rec( index := 6, ord := 3, pos

41



:= 7 ), rec( index := 8, ord := 6, pos := 8 ), rec( index := 10, ord := 11,

pos := 9 ), rec( index := 10, ord := 11, pos := 10 ) ]

indes:=List(ll,x->x.index);

tuple:=RestrictedPartitions(20,indes);

[4,8,8], [4,4,4,8], [4,4,4,4,4], [6,6,8], [6,6,4,4], [8,4,8], [8,4,4,4], [8,6,6], [8,8,4], [8,4,8], [8,4,4,4],

[8,6,6], [8,8,4], [8,8,4], [6,6,8], [6,6,4,4], [6,8,6], [6,8,6], [6,6,8], [6,6,4,4], [6,6,8], [6,6,8], [8,4,8],

[8,4,4,4], [8,6,6], [8,8,4], [8,8,4], [8,6,6], [8,6,6], [8,8,4], [10,6,4], [10,6,4], [10,10], [10,6,4],

[10,6,4], [10,10], [10,10]]

Now, we present the number of ramification types for the sporadic simple groups of genus zero,

one and two system which satisfy Riemann Hurwitz formula 1.

Table 3.2: Possible ramification type of Mathieu groups
Groups genus zero genus one genus two total

M11 79 109 155 343
M12 154 256 342 752

M12 : 2 16 27 7 50
M22 34 43 58 135

M22 : 2 177 214 255 646
M23 54 55 93 202
M24 162 264 308 734

For some large sporadic simple groups we will prove later that they have no ramification

Table 3.3: Possible ramification type of Janko groups
Groups genus zero genus one genus two total

J1 1 0 0 1
J2 21 45 32 98

J2 : 2 39 51 47 137
J3 we will prove that it has no ramification type
J4 we will prove that it has no ramification type

Table 3.4: Possible ramification type of Conway groups
Groups genus zero genus one genus two total

Co3 15 16 19 50
Co2 6 4 5 15

Co2 : 2 0 1 0 1
Co1 5 1 0 6

42



Table 3.5: Possible ramification type of Large Sporadic groups
Groups genus zero genus one genus two total

HS 35 49 27 111
HS : 2 86 109 106 301
McL 5 6 3 14

McL : 2 6 10 11 27
Suz 1 10 0 11

Suz : 2 2 9 3 14
He 0 7 1 8

He : 2 0 8 1 9
Fi22 2 12 1 15

Fi22 : 2 4 18 13 25
Fi23 0 1 0 1
Fi24 we will prove that it has not ramification type
ON we will prove that it has no ramification type
T h we will prove that it has no ramification type
Ly we will prove that it has no ramification type
Ru we will prove that it has no ramification type
B we will prove that it has no ramification type
M we will prove that it has no ramification type

In lower case next step we eliminate ramification types by using the filters that we presented in

the previous chapter. We also present some additional filters.

3.1.1 The ClassStructureCharacterTable function

Let G be a group and (g1,g2, . . . ,gr) be a r-tuple in G with g1.g2. · · ·gr = 1. Let C1,C2, . . . ,Cr

conjugacy class of the group G such that gi is in Ci then the number of r-tuples (g1,g2, . . . ,gr)

is computed by this formula

N(C1,C2, . . . ,Cr) =
|C1||C2| . . . |Cr|

|G| ∑
χ(g1)χ(g2) . . .χ(gr)

χ(1)r−2 (2)

We use the function ClassstructureCharacterTable to compute the value N(C1,C2, . . . ,Cr)

for the tuples surviving the first filters . If the group algebra structure constant of any tuple is

equal to zero then we remove this tuple from our candidate list. For example the Mathieu

group M12 not of type (2,3,10) and (2,2,2,3) because a GAP calculation shows that structure

constants of (2,3,10) and (2,2,2,3) are equal to zero. Thus these cases do not need to be

considered.
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3.1.2 Generating Group Criterion

Recall that the symmetric genus of a finite group G is the smallest integer g such that G acts

faithfully as automorphisms of an oriented a closed orientable surface Sg(G) of genus g(G). The

symmetric genus of G can be calculated by using the formula g(G) = |G|
2 (N−2)+1, where

N = min
x
{A(d) | d = signature(x),G = 〈x〉,∏

x
xi = 1}.

Using the GAP program, it is a straightforward exercise to calculate for all triples (x,y,z) within

G such that x ·y = z−1. In other words, if any triple (x,y,z)∈G does not satisfy x ·y ·z = 1 it will

be eliminated. Moreover, if the triple (x,y,z) passes this step, the second step we will examine

the order of the group generated by pair (x,y) , if it does not equal to the order of group G, then

we will ignore the triple (x,y,z). By using the following program we obtain above results

gap> AllPrimitiveGroups(DegreeOperation,11);;

gap> k:=last[6];

gap>reps:=List(ConjugacyClasses(k),x->Representative(x));;

gap> ind:=List(reps,x-> NrMovedPoints(k) -

Length(Orbits(Group(x),[1..NrMovedPoints(k)])));;

gap> elts2:=Elements(ConjugacyClass(k,reps[a]));;

gap> ff:=Filtered(elts2,x-> IsConjugate(k,x*reps[b],reps[c]−1));;

gap> fff:=Filtered(ff,x-> Size(Group(x,reps[b])) = Size(k));;

gap> Length(fff);

We call this criterion the generating group criteria.

3.2 The ramification types of Mathieu groups

In this section we eliminate some ramification types of Mathieu groups by using the series of

filters which were mentioned in the previous chapter and in the section 3.1.
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3.2.1 The Mathieu group M11

The smallest Mathieu group M11 is of order 7920. The classes of maximal subgroups of M11

are given in the first row of the following table.

Maximal subgroups M10 L2(11) M9 : 2 S5 M8 : S3
Index in G 11 12 55 66 165

N.R.T 165 150 14 12 2

The Riemann Hurwitz formula implies that the Mathieu group M11 has 343 ramification types.

The details are given in the third row of the above table. By using the Zariski condition we

can eliminate three ramification types of G in its action on the first maximal subgroups and one

ramification type in its action on the third maximal subgroup.

Lemma 3.2.1. Let G be the Mathieu group M11 and x = (x1, · · ·xr) ∈ Gr. Then x is not a genus

zero, one and two-system if A(x̄)<
95
44

, where A(x̄)= ∑
r
i=1

di−1
di

.

Proof. By Theorem 2.5.10 the minimal genus action is achieved by the ramification type (2,4,11)-

generation of M11. This means that if A(x̄)<
1
2
+

3
4
+

10
11

=
95
44

, then M11 is not a genus zero,

one and two-group.

By using Lemma 3.2.1 we eliminate 5, 2 resp 6 ramification types of G in its action on the 1st,

2nd resp 3rd maximal subgroup. Next, by using generating group criteria we check that G is

not of type (2,6,6) . Indeed given an element z of order six, there are conjugacy classes of

pairs (x,y) of order two and six such that xy = z−1. However, the order of the groups which are

generated by conjugacy classes of the pair(x,y) are not equal to the order of the group M11. It

follows that the triple (2,6,6) can be eliminated. Using similar considerations we eliminate 11

ramification types of first maximal subgroup ,7 ramification types of second maximal subgroup

and 5 ramification types of third maximal subgroup. Finally, by using Lemma 2.5.21, we elim-

inate 10 ramification types of the maximal subgroup S5 and two ramification types of maximal

subgroup M8 : S3. The final list of ramification types which survive the filters is presented in the

following table.

45



Maximal subgroups M10 L2(11) M9 : 2 S5 M8 : S3
Indexes 11 12 55 66 165
N.R.T 146 141 2 2 0

3.2.2 The Mathieu group M12 and its Automorphism group

Let G be an almost simple group such that F∗(G) = M12. The Mathieu group M12 has eight

classes of maximal subgroups which are given in the first row in the Table 3.6. The indexes and

number of ramification types are give in rows two and three respectively.

Table 3.6:
Maximal subgroups M11 M10 : 2 L2(11) M9 : S3 2×S5 M8 : S4 42 : D12 A4×S3

Indexes in G 12 66 144 220 396 495 495 1320
N.R.T 648 62 17 8 5 7 5 0

Lemma 3.2.2. Assume that G is the Mathieu group M12 and (x1,x2, · · · ,xr) ∈ Gr. Then x =

(x1, · · ·xr) is not genus zero, one and two-system if A(x̄)<
31
15

, where A(x̄)= ∑
r
i=1

di−1
di

.

Proof. This follows from the Theorem 2.5.10. Since the Mathieu group M12 can be generated

by a triple of elements of order 2, 3 and 10 [6], which means that if A(x̄)<
1
2
+

2
3
+

9
10

=
31
15

,

then M12 is not genus zero, one and two-system.

A GAP calculation shows that the group algebra structure constant of 20 ramification types

of the first maximal subgroup, 9 ramification types of the second maximal subgroup and 2

ramification types of the fourth maximal subgroup in the Table3.6 above are equal to zero.

Thus, all of these can not occur. By using the Zariski condition and Lemma 3.2.2 above we

can eliminate 32, 16, 2 respectively 5 ramification types of G in its action on the 1st, 2nd, 3rd

respectively 4th maximal subgroup. Assume that x,y and z are representatives of the conjugacy

class of elements of order four. So if x,y are conjugacy classes in the same type or in different

type then there are conjugacy classes of pairs (x,y) whose product is equal to z−1. In both

cases the order of the group 〈x,y〉 is different form the order of the Mathieu group M12. Thus

G is not of type (4,4,4). Using similar considerations we eliminate a further 27 ramification

types of the first maximal subgroups , 24 ramification types of the second maximal subgroup

and 12 ramification types of the third maximal subgroup. Finally by using Lemma 2.5.21 all
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ramification types of the maximal subgroups 2× S5, M8 : S4, 42 : D12 are eliminated. So, the

final list of ramification types which passed the filters we present in the following table.

Table 3.7:
Maximal subgroups M11 M10 : 2 L2(11) M9 : S3 2×S5 M8 : S4 42 : D12 A4×S3

Indexes 12 66 144 220 396 495 495 1320
N.R.T 569 13 3 1 0 0 0 0

Now we will describe an analysis of Aut(M12) similar to the one above. Let G be the almost

simple group Aut(M12) = M12 : 2. The classes of maximal subgroups of G , their indexes, and

number of ramification types is presented in the following table.

Table 3.8:
Maximal subgroups L2(11) : 2 (22×A5) : 2 H.2 H.2 S4×S3

Indexes 144 396 495 495 1320
N.R.T 56 9 6 3 0

Similarly, by using the Zariski condition, the ClassStructureCharacterTable function and the

Generating group criterion all but eight ramification types in the first maximal subgroup in

Table 3.8 can be eliminated .

3.2.3 The Mathieu group M22 and its Automorphism group

Let G be an almost simple group such that F∗(G) = M22. The Mathieu group M22 has seven

classes of maximal subgroups which are shown in the first row in Table 3.9. The indexes and

number of ramification types, which are satisfying the Riemann-Hurwitz formula for g = 0,1

or 2 are given in the rows two and three respectively.

Table 3.9:
Maximal subgroups L3(4) 24 : A6 A7 24 : S5 23 : L2(3) M10 L2(11)

Indexes in G 22 77 176 231 330 616 672
N.R.T 104 19 5 3 2 2 0

Lemma 3.2.3. Assume that G is the Mathieu group M22 and (x1,x2, · · · ,xr) ∈ Gr. Then x =

(x1, · · ·xr) is not genus zero, one and two-system if A(x̄)<
151
70

, where A(x̄)= ∑
r
i=1

di−1
di

.

Proof. Follows from Theorem 2.5.10.
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The number of ramification types additionally satisfying the condition of Lemma 3.2.3 and the

Zariski condition is shown below

Maximal subgroups L3(4) 24 : A6 A7 24 : S5 23 : L2(3) M10 L2(11)
N.R.T 104 14 1 1 0 0 0

One can check in GAP that two elements x,y of order 4,in the same class or in different type

such that xy is also of order 4 never generate the whole group M22. Thus G is not of type

(4,4,4). In a similar way two , eight,one respectively one ramification type in its action on the

1st, 2nd resp 3rd and 4th maximal subgroup can be canceled. So the final list of ramification

types is presented in the following table

Maximal subgroups L3(4) 24 : A6 A7 24 : S5 23 : L2(3) M10 L2(11)
Indexes 22 77 176 231 330 616 672
N.R.T 102 6 0 0 0 0 0

Now we will do the similar analysis for the automorphism group of M22. Let G be the almost

simple group Aut(M22). The classes of maximal subgroups of G, their indexes and the number

of ramification types is presented in the following table.

Table 3.10:
Maximal subgroups L3(4) : 22 24 : S6 25 : S5 23 : L2(3)×2 A6.22 L2(11) : 2

Indexes in G 22 77 231 330 616 672
N.R.T 413 157 38 35 2 1

By using the generating group criterion 121 ramification types of the first maximal subgroup in

the Table 3.10 can be ruled out. Lemma 2.5.21 implies that 133 ramification types of the second

maximal subgroup and all ramification types of the other maximal subgroups can be ruled out.

So the final result is presented in the following table.
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Maximal subgroups L3(4) : 22 24 : S6 25 : S5 23 : L2(3)×2 A6.22 L2(11) : 2
N.R.T 291 24 0 0 0 0

3.2.4 The Mathieu group M23

Let G be a Mathieu group M23. The classes of maximal subgroups of M23, their indexes and

number of ramification types are given in the following table.

Maximal subgroups M22 L3(4) : 22 24 : A7 A8 M11 24 : (3×A5) : 2 23 : 11
Indexes 23 253 253 506 1288 1771 40320
N.R.T 182 10 10 0 0 0 0

Lemma 3.2.4. Assume that G is the Mathieu group M23 and (x1,x2, · · · ,xr) ∈ Gr. Then x =

(x1, · · ·xr) is not genus zero, one and two-system if A(x̄)<
203
92

, where A(x̄)= ∑
r
i=1

di−1
di

.

Proof. Similarly, by Theorem 2.5.10.

Lemma 3.2.4 guarantees us that 4 ramification types of the first maximal subgroup and all

ramification types of the second and third maximal subgroup can be ruled out.

3.2.5 The Mathieu group M24

The largest Mathieu group M24 is of order 244823040. Table 3.11 gives information about the

classes of maximal subgroups of M24.

Table 3.11:
Maximal subgroups M23 M22 : 2 24 : A8 M12 : 2 26 : (3.S6) L3(4) : S3 26 : (L(3)×S3) L2(12) L2(7)

Indexes 24 276 759 1288 1771 2024 3795 40320 1457280
b 8

24
36
276

70
759

56
1288

91
1771

120
2024

99
3795

320
40320

960
1457280

The maximal fixed point ratios in the respective actions are given in row three and the indexes

of classes of maximal subgroups are given in row two in above table.

Lemma 2.5.19 implies that if b+ 1
[G:M] <

1
85 , then no genus system x̄= (x1,x2, . . . ,xr) satisfies

the Riemann Hurwitz formula. So the group M24 possesses no primitive genus zero, one and

two systems in its action on the right cosets of the maximal subgroup L2(12) and L2(7). Next

we present number of possible ramification types of the other maximal subgroups of M24.
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Table 3.12:
Maximal subgroups M23 M22 : 2 24 : A8 M12 : 2 26 : (3.S6) L3(4) : S3 26 : (L(3)×S3)

Indexes in G 24 276 759 1288 1771 2024 3795
N.R.T 697 21 6 6 0 4 0

Lemma 3.2.5. Assume that G is the Mathieu group M24 and (x1,x2, · · · ,xr) ∈ Gr. Then x̄=

(x1, · · ·xr) is not genus zero, one and two-system ifA(x̄)<
25
12

, where A(x̄)= ∑
r
i=1

di−1
di

.

Proof. This follows from Theorem 2.5.10.

Lemma 3.2.5 guarantees that 17 of the 697 ramification type of the group M24 acting on the

cosets of M23 can not occur. Now by using the Generating Group Criterion, if x , y and z are

representatives of conjugacy classes 3A, 4A and 4C respectively then there are conjugacy classes

of pairs (x,y) whose product is equal to z. However the order of the group 〈x,y〉 is not equal to

order of the group M24. Hence G is not of type (3A,4A,4C). Similarly, 46 ramification type of

the first maximal subgroup can be ruled out. All ramification types of other maximal subgroups

are ruled out by Lemma 2.5.21.

3.3 The ramification types of Janko groups

In this section we will use series of filters to eliminate some ramification types of Janko groups.

Lemma 3.3.1. Let G be the Janko group J1. Then G is (2,3,7)-generated.

Proof. A complete proof can be found in [39].

Lemma 3.3.2. Let G be the Janko group J2. Then G is (2,3,7)-generated.

Proof. See [39].

Lemma 3.3.3. Let G be the Janko group J3. Then G is (2,3,10)-generated.

Proof. See [39].

3.3.1 The Janko group J1

The smallest Jonko group J1 is of order 175560. The classes of maximal subgroups of J1 ,

their indexes and their maximal fixed point ratios in the representative action are given in the
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following table.

Table 3.13:
Maximal subgroups L2(11) 23 : 7 : 3 2×A5 19 : 6 11 : 10 D6×D10 7 : 6

Indexes 266 1045 1463 1540 1596 2926 4180
b 10

266
10

1045
31

1463
20

1540
12

1596
46

2926
20

4180

In ATLAS explain that the group A:B denotes any group having a normal subgroup of structure

A for which corresponding quotient group has structure B which is a split extension or semi

direct product. Let M be one of the class of maximal subgroup 23 : 7 : 3 , 11 : 10 or 7 : 6, then

b+ 1
[G:M] <

1
85 . Using Lemma 2.5.19 implies that the group J1 possesses no primitive genus

zero, one and two system in its action on the right cosets of the maximal subgroups 23 : 7 : 3 ,

11 : 10 and 7 : 6. Riemann Hurwitz formula implies that the maximal subgroup 2×A5 has one

ramification type (3A,3A,3A) which is eliminated by the Zariski condtion.

The typical row of the character table consists mostly of character values, together with indicator

and fusion information that is described in ATLAS. Usually the character values are ordinary

integers, but certain algebraic irrationalities can also arise. In such cases we either print the

ATLAS name for the desired irrationality in full, or just an algebraic conjugacy operator by

which it can be obtained from a nearby entry in the same row. To be precise, this nearby entry

can be any entry for a class in the same algebraically conjugate family as the desired one that is

printed in full. In then next table we presents permutation characters of the second, fourth and

sixth maximal subgroup of the group J1.

Table 3.14:
Maximal subgroups χM

23 : 7 : 3 1a+56ab+76a+77bc+120abc+133a+209a
2×A5 1a+56ab+76a2 +77a2 +120abc+133a2 +209a2

19 : 6 1a+56ab+76a2 +77abc+120abc+133a2 +209a2

D6×D10 1a+56ab+76a3 +77a3 +120a2b2c2 +133a4bc+209a4

By Lemma 2.5.21 the group J1 possesses no primitive genus zero, one and two system in its

action on the right cosets of maximal subgroup 19 : 6 and D6×D10 because 1G
23:7:3 is submodule

of 1G
19:6 and 1G

2×A5
is submodule of 1G

D6×D10
. Next Riemann Hurwitz formula implies that J1 has

one ramification type (2A,3A,7A) of genus zero in its action on the right cosets L2(11).
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3.3.2 The Janko group J2 and its Automorphism group

Let G be an almost simple group such that F∗(G) = J2. The Janko group J2 has nine classes of

maximal subgroups which are given in the first row in the Table 3.15. Note that the maximal

fixed point ratio of the maximal subgroup A5 is equal to 60
10080 . So Lemma 2.5.19 implies that

the group J2 possesses no primitive genus zero, one and two system in its action on the right

cosets of the maximal subgroup A5. The indexes and number of ramification types of other

classes of maximal subgroups are given in the rows two and three respectively.

Table 3.15:
Maximal subgroups U3 3.PGL2(9) 21+4 : A5 22+4 : (3×S3) A4×A5 A5×D10 (L(3)(2) : 2 52 : D12

Indexes 100 280 315 525 840 1008 1800 2016
N.R.T 58 19 14 1 1 2 1 2

A GAP calculation shows that the group algebra structure constant of 26 ramification types of

first maximal subgroup, eight ramification types of second maximal subgroup and six ramifi-

cation types of third maximal subgroup of above table are equal to zero and thus are ruled out.

By using the Zariski condition we can eliminate two of the 58 ramification types of J2 acting on

the cosets of U(3). Let x , y and z be representative of conjugacy classes 2A, 4A and 15(AorB)

respectively then there are conjugacy classes of pair (x,y) such that whose product is equal to

z. However the order group 〈x,y〉 is not equal to order of the group J2. Hence G is not of type

(2A,4A,15AB). Using similar argument we can eliminate a further 23 ramification types of the

first maximal subgroup,10 ramification types of the second maximal and 7 ramification types

of the third maximal subgroup. In the light of Lemma 2.5.21 all ramification types of the fourth

class of maximal subgroup up to eighth class of maximal subgroups can be ruled out. By the

next table we show the number of ramification types of maximal subgroups of Janko group J2

which survive the filters.

Table 3.16:
Maximal subgroups U3 3.PGL2(9) 21+4 : A5 22+4 : (3×S3) A4×A5 A5×D10 (L(3)(2) : 2 52 : D12

Indexes 100 280 315 525 840 1008 1800 2016
N.R.T 7 1 1 0 0 0 0 0

Now we will use similar considerations for the automorphism group of J2. Let G be almost

simple group Aut(J2). The classes of maximal subgroup of G, their indexes, and number of

ramification types of maximal subgroups are presented in the following table.
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Table 3.17:
Maximal subgroups U3 : 2 3.A6.22 21+4 : S5 H.2 (A4×A5) : 2 (A5×D10).2 (L(3)(2) : 2×2 52 : (4×S3)

Indexes in G 100 280 315 525 840 1008 1800 2016
N.R.T 82 17 15 2 26 10 1 4

By using the Zariski condition, the Generating Group Criterion, the ClassStructureCharac-

terTable function, and Lemma 2.5.21 all but 13 ramification types in the first maximal subgroup

in the above table are eliminated.

3.3.3 The Janko group J3 and its Automorphism group

Let G be an almost simple group such that F∗(G) = J3. The Janko group J3 has eight classes of

maximal subgroups which are given in the first row in the Table 3.18. The maximal fixed point

ratios in the respective actions are given in row 3. The indexes of the maximal subgroups are

given in row 2.

Table 3.18:
Maximal subgroups L2(16) : 2 L2(19) 24 : (3×A5) L2(17) (3×A6) : 22 32.(3×32) : 8 21+4 : A5 22+4 : (3×S3)

Indexes in G 6156 14688 17442 20520 23256 25840 26163 43605
b 76

6156
96

14688
72

17442
120

20520
136

23256
80

25840
131

26163
90

43605

Lemma 2.5.19 implies that no genus system x̄= (x1,x2, . . . ,xr) satisfies the Riemann Hurwitz

formula if b+ 1
[G:M] <

1
85 . Thus the maximal subgroup M = L2(16) : 2 gives the only possible

primitive action of G which may possess a low genus system.

Table 3.19:
Conjugacy class representative 2A 3A 3B 4A 5A 5B 6A 8A 9A 9B 9C

indexes 3040 4080 4104 4592 4924 4924 5104 5374 5472 5472 5472
Conjugacy class representative 10A 10B 12A 15A 15B 17A 17B 19A 19B

indexes 5532 5532 5628 5740 5740 5792 5792 5832 5832

According to the above Table 3.19, the Riemann Hurwitz formula implies that G has one ram-

ification type (3B,3B,3B) of genus one system, which is eliminated by the Zariski condition.

Hence the group G possesses no primitive genus zero, one and two systems in its action on the

right cosets of all maximal subgroups.

Let G be the almost simple group Aut(J3). The group G has seven class of maximal subgroups

which are given in the table. Similarly, the maximal fixed point ratio in the respective actions

are given in row 3 and the indexes of maximal subgroups are given in row 2.
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Table 3.20:
Maximal subgroups L2(16) : 4 24 : (3×A5).2 L2(17) (3×M10) : 2 32.(3×32) : 8.2 21+4 : S5 22+4 : (S3×S3)

Indexes 6156 17442 20520 23256 25840 26163 43605
b 76

6156
102

17442
154

20520
136

23256
80

25840
153

26163
255

43605

Lemma 2.5.19 implies that the maximal subgroup L2(16) : 4 is the only possible primitive action

of G which may possess a low genus system.

Table 3.21: Index on maximal subgroup L2(16) : 4
Conjugacy class representative 2A 2B 3A 3B 4A 4B 5A 6A 6B 8A 8B 9A 9B 9C

indexes 3040 3078 4080 4104 4592 4594 4924 5104 5130 5374 5374 5472 5472 5472
Conjugacy class representative 10A 12A 12B 15A 17A 17B 18A 18B 18C 19A 24A 24B 34A 34B

indexes 5532 5628 5628 5740 5792 5792 5814 5814 5814 5832 5892 5892 5974 5974
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According to the above table, Riemann Hurwitz formula implies that G has three ramification

types (3B,3B,3B), (2B,2B,2B,2B), (2B,3B,6B) of genus one system which are eliminated

by the Zariski condition. Hence the group G possesses no primitive genus zero one and two

systems in its action on the right cosets of any maximal subgroups.

3.3.4 The Janko group J4

The largest Janko group J4 has order 86775571046077562880. The classes of maximal sub-

groups of J4 , their indexes and their maximal fixed point ratios in their representative actions

are given in the following table.

Table 3.22:
M.S 211 : M24 210 : L5(2) 21+12 : 3.M22.2 23+12.(S5×L3(2)) U3(11) : 2 111+2 : (5×2S4)
Ind 173067389 8474719242 3980549947 131358148251 611822174208 2716499045348352
b 52349

173067389
285450

8474719242
194107

3980549947
1421211

131358148251
2064384

611822174208
8257536,

2716499045348352
M.S L2(23) : 5 L2(23) : 2 29 : 28 43 : 14 37 : 12
Ind 530153782050816 7145550975467520 106866466805514240 144145466853949440 195440475329003520
b 11354112

530153782050816
454164480

7145550975467520
64880640

106866466805514240
129761280

144145466853949440
151388160,

195440475329003520

Lemma 2.5.19 implies that the group G possesses no primitive genus zero one and two systems

in its action on the right cosets of any maximal subgroup.

3.4 The ramification types of the Conway groups

In this section we are going to determine all possible ramification types for the Conway groups.

Firstly we start by determining the ramification types of the smallest Conway group Co3.

3.4.1 The Conway group Co3

Let G be a Conway group Co3. The group G has 14 conjugacy classes of maximal subgroups

which are presented in the first row of the table 3.23. The indexes and the maximal fixed point

ratios in the representative actions are given in the second and third rows of the table 3.23

respectively.

Lemma 2.5.19 implies that if M be any maximal subgroup for the group Co3 and b+ 1
[G:M] <

1
85 ,

then G possesses no primitive genus system in its action on the right cosets of the maximal
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Table 3.23:
Max.Subgroups McL : 2 HS U4(3) : (22)133 M23 35 : (2×M11) 2.S6(2) U3(5) : S3

Indexes 276 11178 37950 48600 128800 170775 655776

b 36
276

378
11178

750
37950

1080
48600

1120
128800

631
170775

2016
655776

Max.Subgroups 31+4 : 4S6, 24.A8, L3(4) : D12 2×M12 22.[27.32].S3 S3×L2(8) : 3 A4×S5
Indexes 708400 1536975 2049300 2608200 17931375 54648000 344282400

b
1456

708400
7695

1536975
8100

2049300
7560

2608200
19215

17931375
5280

54648000
30240

344282400

subgroup M. Thus the maximal subgroups McL2, HS, U4(3) : (22)133 and M23 are the only

possible primitive actions of G which may possibly posses a low genus system.

According to the Riemann Hurwitz formula Co3 has 50 possible ramification types of genus

zero, one and two systems in its action on the right coset of the maximal subgroups McL : 2

, HS ,M23 and U4(3) : (22)133. Given an element z of order eleven of type A or B, there are

conjugacy classes of pairs (x,y) of order two of type A and three of type A respectively such

that xy = z−1. However, order of the groups which are generated by conjugacy classes of the

pairs(x,y) are not equal to the order of the group Co3. It follows that the triple (2A,3A,11AB)

can be eliminated. Similarly, by the same argument 38 ramification types can be eliminated.

Moreover, 7 of ramification types can be eliminated by the Zariski condition. Finally a GAP

calculation shows that the group algebra structure constant of three of the ramification types

is equal to zero, so these are also eliminated. Thus all 50 ramification types of Co3 can be

eliminated except (2B,3C,7A) of genus zero in its action of the right coset of the maximal

subgroups McL : 2.

3.4.2 The Conway group Co2 and its automorphism group

Let G be an almost simple group such that F∗(G) =Co2. The group Co2 has eleven conjugacy

classes of maximal subgroups which are given in the first row in the Table 3.24. Note that the

maximal fixed point ratio of G actions on the maximal subgroup 24+10(S5× S3), M23, 31+4 :

21+4.s5 and 51+2 : 4S4 are equal to 34083
3586275 , 15360

4147200 , 71680
45337600 , 86016

3525417662 respectively. So Lemma

2.5.19 implies that the group Co2 possesses no primitive genus zero, one and two system in its

action on the right cosets of these maximal subgroups. The indexes and number of ramification

types of the other class of maximal subgroups are given in the rows two and three respectively.

A GAP calculation shows that the group algebra structure constant of four ramification types of
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Table 3.24:
Maximal subgroups U6(2) : 2 210 : M22 : 2 McL 21+8 : S6(2) HS : 2 (21+6×24).A8 U4(3).D8

Indexes in G 2300 46575 47104 46925 476928 1024650 1619200
N.R.T 13 1 0 1 0 0 0

the first maximal subgroup are equal to zero, so these will be ruled out. By using the Zariski

condition 4 ramification types of the first maximal subgroup, one ramification types of the sec-

ond maximal subgroup and one ramification of the fourth maximal subgroup are eliminated.

Finally five ramification types in the first maximal subgroup can be eliminated by using Gener-

ating Group Criterion. Hence G possesses no primitive genus zero, one and two systems.

If G = Aut(Co2) = Co2 : 2, then G possesses no primitive genus zero, one and two system

because all ramification types ruled out by arguments the similar to the ones given above.

3.4.3 The Conway group Co1

Let G be a group Co1. The conjugacy classes of maximal subgroups of G,their indexes and

their maximal fixed point ratios in their representative actions are given in the following table.

Table 3.25:
Maximal subgroups Indexes fixed point ratio

Co2 98280 2280
98280

3.Suz : 2 1545600 22881
1545600

211 : M24 8282375 32535
8282375

Co3 8386560 30720
8386560

21+8.O8(2) 46621575 135135
46621575

U6(2) : S3 75348000 132640
75348000

(A4×G2(4)) : 2 688564800 928422
688564800

22+12 : (A8×S3) 2097970875 1216215,
2097970875

24+12.(S3×3S6) 4895265375 1143135
4895265375

32.U4(3).D8 17681664000 3226080
17681664000

36 : 2M12 30005248000 2867200
30005248000

(A5× J2) : 2 57288591360 10749024
57288591360

31+4 : 204(2) : 2 165028864000 12812800
165028864000

(A6×U3(3)) : 2 954809856000 29652480
954809856000

33+4 : 2(S4×S4) 1650288640000 41641600
1650288640000

A9×S3 3819239424000 207567360
3819239424000

(A7×L2(7)) : 2 4910450688000 111196800
4910450688000

(D10× (A5×A5).2).2 28873450045440 373621248
28873450045440

51+2 : GL2(5) 69296280109056 111476736
69296280109056

72 : (3×2A4) 1178508165120000 5406720
1178508165120000

Lemma 2.5.19 implies that the maximal subgroups Co2 and 3.Suz : 2 are the only possess prim-

itive action of G which may possess a low genus system.

Riemann Hurwitz formula implies that G has 6 possible ramification types of genus zero and

one systems. All of them can be ruled out using the Zariski condition , the Generating Group
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Criterion and the ClassStructureCharacterTable function.

3.5 The ramification types of the Higman-Sims group and its

automorphism group

Let G be an almost simple group such that F∗(G) = HS. The group HS has ten conjugacy

classes of maximal subgroups which are given in the first row in the table 3.26. we note that

the maximal fixed point ratios of the classes of maximal subgroups 2×A6.22 and 5 : 4×A5

are equal to 2
154 and 216

36960 respectively. So Lemma 2.5.19 implies that the group G possesses

no primitive genus zero, one and two system in its action on the right cosets of the maximal

subgroup 2×A6.22 and 5 : 4×A5. The indexes and number of ramification types of the maximal

subgroups are given in the rows two and three respectively.

Table 3.26:
Maximal subgroups M22 U3(5) : 2 L3(4) : 21 S8 24.S6 43 : L3(2) M11 4.24 : S5

Indexes 100 176 1100 1100 3850 4125 5600 5775
N.R.T 78 28 3 6 0 0 0 0

GAP calculation shows that the group algebra structure constant of 18 of ramification types of

first maximal subgroup and 9 ramification types of the second maximal subgroup are equal to

zero, so they can be eliminated. Furthermore, 5 ramification types of the first maximal subgroup

and 2 ramification types of the second maximal subgroup will be eliminated by the Zariski

condition. Given an element z of order ten of type A, there are conjugacy classes of pairs (x,y)

of order two of type B and three of type A such that xy = z−1. However, order of the groups

which are generated by conjugacy classes of the pairs(x,y) are not equal to the order of the

group HS. It follows that the triple (2B,3A,10A) of genus zero system can be eliminated. By a

similar argument 42 of the ramification types of the first maximal subgroup and 17 ramification

types of the second maximal subgroup can be eliminated. Note that the permutation character

of the maximal subgroup U3(5) : 2 lies in the permutation character of the maximal subgroups

L3(4) : 21 and S8. So 1G
U3(5):2

is a submodule of 1G
L3(4):21

and 1G
S8

. By using Lemma 2.5.21 we

can eliminate three ramification types the third maximal subgroup and 6 ramification types of

the fourth maximal subgroup. Hence we have to find braid orbits of 9 tuples of the group HS.

All of these are in the action of G on the first maximal subgroup.
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Let G be a group Aut(HS), then G has eight classes of maximal subgroups. The maximal fixed

point ratio of the maximal subgroups H.2 and 5 : 4×S5 are equal to 2
154 , 216

36960 respectively. So

Lemma 2.5.19 implies that the group G possesses no primitive genus zero, one and two system

in its action on the right cosets of the maximal subgroup 2×A6.22 and 5 : 4×A5. The other

maximal subgroups are given in the first row of the table 3.27. The indexes and number of

ramification types of the maximal subgroups are given in the rows two and three respectively.

Table 3.27:
Maximal subgroups M22 : 2 L3(4) : 22 S8×2 25.S6 43 : (L3(2)×2) 21+6 : S5

Indexes 100 1100 1100 3850 4125 5775
N.R.T 78 3 6 0 0 0

By using the Zariski condition and the Generating Group Criterion all but 29 of ramification

types in the first maximal subgroup in the Table 3.27 are eliminated.

3.6 The ramification types of the Fischer Groups

The Fischer groups are Fi22 , F23 and Fi24. In this section we discuss why the Fischer groups

do not possess primitive genus zero, one and two systems.

3.6.1 The Fischer group Fi22 and its automorphism group

Let G be an almost simple group such that F∗(G) = Fi22. The group G has 12 conjugacy classes

of maximal subgroups. Note that the maximal fixed point ratios of the maximal subgroups

31+6 : 23+4 : 32 : 2, S10 and M12 : 2 are equal to 9856
12812800 , 228096

17791488 and 221184
679311360 respectively. So

Lemma 2.5.19 implies that the group G possesses no primitive low genus systems in its action

on the right cosets of the maximal subgroups 31+6 : 23+4 : 32 : 2, S10 and M12 : 2. All other

maximal subgroups and their indexes and possible number of ramification types are given in

the following table.

Table 3.28:
Maximal subgroups 2.U6(2) O7(3) O8(2) : S3 210 : M22 26 : S6(2) (2×21+8 : U4(2)) : 2 2F4(2) 25+8 : (S3×S6)

Indexes 3510 14080 61776 142155 694980 1216215 1647360 3592512
N.R.T 11 1 0 10 0 0 0 0

A GAP calculation shows that the group algebra structure constant of 3 ramification types of

the first maximal subgroup is equal to zero, so these can be eliminated. By using the Zariski
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condition two ramification types of the first maximal subgroup, one ramification type of the

second maximal subgroup and 10 ramification types of the fourth maximal subgroup can be

ruled out. Finally, given an element z of order eight of type A, there are conjugacy classes of

pairs (x,y) of order two of type B and three of type A such that xy = z−1. However, orders

of the groups which are generated by conjugacy classes of the pairs(x,y) are not equal to the

order of the group G. It follows that the triple (2B,3A,8A) can be eliminated. Using similar

considerations we eliminate a further 6 ramification types of the first maximal subgroup. Hence

G possesses no primitive low genus systems.

Similarly, if G is the group Fi22 : 2 then G has no primitive low genus system in its action on

any maximal subgroup.

3.6.2 The Fischer group Fi23

Let G be a Fischer group Fi23. The group Fi23 has 14 conjugacy classes of maximal subgroups

which are given in the first column in the Table 3.29. The maximal fixed point ratios in the

respective actions are given in column 3. The indexes of maximal subgroups are given in

column 2.
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Table 3.29:
MaximalSubgroups Indexes Maximal f ixed pointratio

2.Fi22 31671 3511
31671

O8
+(3) : S3 137632 14080

137632

22.U6(2).2 55582605 1219725
55582605

S8(2) 86316516 694980
86316516

S3×O7(3) 148642560 1661440
148642560

211.M23 195747435 142155
195747435

3+1+8.21+6.31+2.2S 1252451200 12812800
1252451200

33.[37].(2×L3(3)) 6165913600 15769600
6165913600

S12 8537488128 17791488
8537488128

(22×21+8).(3×U4(2)).2 12839581755 74189115
12839581755

26+8 : (A7×S3) 16508033685 28667925
16508033685

S4×S6(2) 117390461760 255752640
117390461760

S4(4) : 4 1044084577536 35126784
1044084577536

L2(17) : 2 673496454758400 13271040
673496454758400
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Lemma 2.5.19 implies that the maximal subgroups 2.Fi22, O8
+(3) : S3 and 22.U6(2).2 are the

only possible primitive actions of G which may possesses a low genus system.

Riemann Hurwitz formula implies that G has no possible ramification types of genus zero, one

and two systems, in its action on the right cosets of 2.Fi22, O8
+(3) : S3 and 22.U6(2).2. Hence

G poss no primitive low genus system.

3.6.3 Fischer group Fi24 and its automorphism group

Let G be an almost simple group such that F∗(G) = Fi24. The group G has 20 classes of

maximal subgroups which are given in the first column in the table 3.30. The maximal fixed

point ratios in the respective actions are given in column 3. The index of maximal subgroups

are given in column 2.

We observe the upper bound fixed point ratio is approximately 6 1
90 . Thus Lemma 2.5.19

implies that the group G possesses no primitive genus zero, one and two systems in its action

on it’s maximal subgroups. Similarly, if G is almost simple group Fi24 : 2 then the upper bound

for the fixed point ratios is 6 1
90 . Hence Fi24 : 2 possesses no primitive low genus system in its

action for the right cosets of its 18 conjugacy classs of maximal subgroups.
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Table 3.30:
MaximalSubgroups Indexes Maximal f ixed pointratio

Fi23 306936 3512
306936

2.Fi22 : 2 4860485028 1346788
4860485028

(3×O8(3) : 3) : 2 14081405184 1675520
14081405184

O10(2) 50177360142 7992270
50177360142

37.O(3) 125168046080 5125120
125168046080

31+10 : U5(2) : 2 258870277120 12812800
258870277120

211.M24 2503413946215, 93964455
2503413946215,

22.U6(2) : S3 5686767482760 119887560
5686767482760

21+12.3U4(3).22 7819305288795 113107995
7819305288795

32.34.38.(A5×2A4).2 91122337546240 205004800
91122337546240

(A4×O8(2) : 3) : 2 100087107696576 375350976
100087107696576

He : 2 155717756992512 800616960
155717756992512

33+12.(L3(2)×A6) 633363728392395 955423755
633363728392395

26+8.(S3×A8) 633363728392395 2289785355
633363728392395

(32 : 2×G2(3)).2 8212275503308800 850305600
8212275503308800

(A5×A9) : 2 57650174033227776 8931326976
57650174033227776

7 : 6×A7 11859464372549713920 256197427200
11859464372549713920

29 : 14 3091639677809511628800 11466178560
3091639677809511628800

33.[310]3.GL3(3) 574727888823563059200 12421693440
574727888823563059200

A6×L2(8) : 3 574727888823563059200 12421693440
574727888823563059200
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3.7 The ramification types of the McLaughlin group and its

automorphism group

Let G be an almost simple group such that F∗(G) =McL. The group G has 10 conjugacy classes

of maximal subgroups. Based on the fact, that the maximal fixed point ratio on the classes of

maximal subgroups 31+4 : 2S5, 2.A8, M11, and 51+2 : 3 : 8 is equal to 91
15400 , 211

22275 , 84
11340 , and

486
299376 respectively, Lemma 2.5.19 guarantees that the group G possesses no primitive low genus

systems in its action on the right cosets of those classes of maximal subgroups. Moreover, the

six remaining classes of maximal subgroups, their indexes, and number of ramification types

are given in the following table.

Table 3.31:
Maximal subgroups U4(3) M22 U3(5) 34 : M10 L3(4) : 22 24 : A7

Indexes 275 2025 7128 15400 22275 22275
N.R.T 11 2 1 0 1 1

Note that the group algebra structure constant of seven ramification types of the first maximal

subgroup in the Table 3.31 are equal to zero , so they can be ruled out. Furthermore, two

ramification types of the first maximal subgroup , one ramification type of the second, third,

fourth and fifth maximal subgroups can be eliminated by using the Zariski condition. Finally,

by using the Generating Group Criterion 2 of ramification types of the first maximal subgroup

and one ramification type of the second maximal subgroup can not occur. Hence G possesses

no primitive low genus system.

Now, let G = Aut(McL) = McL : 2, then G has eight classes of maximal subgroups. The max-

imal fixed point ratio on the maximal subgroups 31+4 : 4S5, 2.s8, M11× 2 and H.2 is equal to

110
15400 , 211

22275 , 84
11340 and 486

299376 respectively. So Lemma 2.5.19 implies that the group G possesses

no primitive low genus system in its action of those maximal subgroups. The other maximal

subgroups, their indexes, and number of ramification types are given in the following table.

Now we will make an analysis of McL : 2 similar to that given above. By using the Gener-

ating Group Criterion and the Zariski condition all ramification types of the table above are

eliminated. Hence G possesses no primitive genus zero, one and two system.
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Table 3.32:
Maximal subgroups U4(3) : 23 U3(5) : 2 34 : (M10×2) L3(4) : 22

Indexes 275 7128 15400 22275
N.R.T 22 5 0 1

3.8 Ramification types of the Suzuki group and its automor-

phism group

Let G be an almost simple group such that F∗(G) = Suz. The group G = Suz has 16 conjugacy

classes of maximal subgroups which are given in the first column in the table 3.33. The indexes

of maximal subgroups and the maximal fixed point ratios in the respective actions are given in

the columns two and three respectively.

Table 3.33:
MaximalSubgroups Indexes Maximal f ixed pointratio

G2(4) 1782 162
1782

32.U4(3) : 23 22880 480
22880

U5(2) 32760 760
32760

21+6.U4(3) 135135 2835
135135

35 : M11 232960 2560
232960

J2 : 2 370656 4536
370656

24+6 : 3A6 405405 2205
405405

(A4×L3(4)) : 21 926640 2160
926640

22+8 : (A5×S3) 1216215 8505
1216215

M12 : 2 2358720 8640
2358720

32+4 : 2(A4×22).2 3203200 5320
3203200

(A6×A5) : 2 10378368 4536
10378368

(32 : 4×A6).2 17297280 15120
17297280

L3(3) : 2 39916800 34560
39916800

L2(25) 57480192 6720
57480192

A7 17714880 6720
17714880
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Clearly, the maximal subgroups G2(4), 32.U4(3) : 23, U5(2), 21+6.U4(3) , 35 : M11 are the only

subgroups where a primitive action of low genus is possible (Lemma 2.5.19). So we present the

number of ramification types of those maximal subgroups in the following table

Table 3.34:
Maximal subgroups G2(4) 32.U4(3) : 23 U5(2) 21+6.U4(3) 35 : M11

N.R.T 4 0 4 1 2

Note that the group algebra structure constant of three ramification types of the first maximal

subgroup is equal to zero, so they can not occur. By using the Zariski condition one ramification

type of the first maximal subgroup and four ramification types of the third maximal subgroup,

one ramification type of the fourth and two ramification types of the fifth maximal subgroup

will be ruled out. Hence G possesses no primitive genus low genus system in its action on the

maximal subgroups.

Let G = Aut(Suz) = Suz : 2. G has 15 classes of maximal subgroups which are given in the first

column of Table 3.35. The indexes of the maximal subgroups are given in the second column

and the maximal fixed point ratios are given in the third column.

According to the maximal fixed point ratio, the maximal subgroups G2(4) : 2, 3U4(3).(22)133,

U5(2) : 2, 21+6.U4(3).2 ,35 : (M11× 2) are the only ones in which G may allows a primitive

action of low genus (Lemma 2.5.19). The Riemann Hurwitz formula allows 20 possible ram-

ification types. All of them can be eliminated by using the Zariski condition and the Group

Generating Criterion.

3.9 The ramification types of the Held group and its auto-

morphism group

Let G be an almost simple group such that F∗(G) = He. The group G = He has 10 conjugacy

classes of maximal subgroups which are given in the first column in the Table 3.36. The indexes

of maximal subgroups and the maximal fixed point ratios in the respective actions are given in

the columns two and three respectively.

The only possible primitive actions where G may have a possible low genus systems are on the
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Table 3.35:
MaximalSubgroups Indexes Maximal f ixed pointratio

G2(4) : 2 1782 162
1782

3U4(3).(22)133 22880 480
22880

U5(2) : 2 32760 760
32760

21+6.U4(3).2 135135 2835
135135

35 : (M11×2) 232960 2560
232960

J2 : 2×2 370656 4536
370656

24+6 : 3S6 405405 2205
405405

(A4×L3(4) : 23) : 2 926640 2640
926640

22+8 : (S5×S3) 1216215 8505
1216215

M12 : 2×2 2358720 8640
2358720

32+4 : 2(S4×D8) 3203200 5320
3203200

(A6 : 22×A5) : 2 10378368 9408
10378368

(32 : 8×A6).2 17297280 15152
17297280

L2(25) : 2 57480192 10080
57480192

S7 17714880 6720
17714880

classes of maximal subgroups S4(4) : 2, 22.L3(4).S3, and 26 : 3.S6. The first maximal subgroup

has 8 ramification types such that all of them can be ruled out by the Generating Group Criterion.

The second and third maximal subgroups have no ramification types. Hence G possesses no

primitive genus systems in its action in the right cosets of maximal subgroups.

Similarly, if G = Aut(He) = He.2, then the only possible primitive actions of G for which a low

genus systems may occur are on the classes of maximal subgroups S4(4) : 4, 22.L3(4).D12. The

first maximal subgroup has eight ramification types and all of them can be ruled out. The second

maximal subgroup has no possible ramification types of low genus system. Thus G possesses

no primitive genus system in its action on the right cosets of maximal subgroups.
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Table 3.36:
MaximalSubgroups indexes Maximal fixed point ratio

S4(4) : 2 2058 154
2058

22.L3(4).S3 8330 346
8330

26 : 3.S6 29155 651
29155

21+6.L3(2) 187425 945
187425

72 : 2L2(7) 244800 84
244800

3.S7 266560 1792
266560

71+2 : (S3×3) 652800 120
682800

S4×L3(2) 999600 2880
999600

7 : 3×L3(2) 1142400 960
1142400

52 : 4A4 3358656 4032
3358656

3.10 The ramification types of the Rudvalis group and its au-

tomorphism group

Let G be an almost simple group such that F∗(G) = Ru. The group G = Ru has 15 conjugacy

classes of maximal subgroups which are given in the first column in the Table 3.37. The indexes

of the maximal subgroups and the maximal fixed point ratios in the respective actions are given

in the columns two and three respectively.

Lemma 2.5.19 implies that the maximal subgroup 2F4(2) is the only possible primitive action

of G which may possesses a low genus system.

Riemann Hurwitz formula implies that G has no possible ramification types of genus zero , one

or two systems in its action on the right cosets 2F4(2). Hence, G possesses no primitive genus

system in its action on the right cosets of maximal subgroups.

If G = Aut(Ru) = Ru : 2, then in similar way we can show that G possesses no primitive low

genus system in its action on the right cosets of maximal subgroups.
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Table 3.37: Ru
MaximalSubgroups indexes Maximal fixed point ratio

2F4(2) 4060 92
4060

(26 : U3(3)) : 2 188500 980
188500

(22×Sz(8)) : 3 417600 456
417600

23+8 : L3(2) 424125 1085
424125

U3(5) : 2 579072 1536
579072

2.24+6 : S5 593775 1391
593775

L2(25).22 4677120 3584
4677120

A8 7238400 3840
7238400

L2(29) 11980800 4160
11980800

52 : 4S5 12160512 3584
12160512

3.A6.22 33779200 7680
33779200

51+2 : [25] 36481536 4608
36481536

L2(13) : 2 66816000 4160
66816000

A6.22 101337600 18944
101337600

5 : 4×A5 121605120 8736
121605120

3.11 The ramification types of the large sporadic simple groups

In this section we are going to prove that the large sporadic simple groups HN, Ly, ON, T h, B

and M possess no primitive genus systems in their actions on the right cosets of their maximal

subgroups. Now we give tables such that the maximal subgroups are given in the first column,

the indexes of the maximal subgroups, and the maximal fixed point ratios in the respective

actions are given in columns two and three respectively
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Table 3.38: HN
MaximalSubgroups indexes Maximal fixed point ratio

A12 1140000 8800
1140000

2.HS.23 1539000
7979

1539000
U3(8) : 3 16500000 1920

16500000

21+8.(A5×A5).2 74064375 51975
74064375

(D10×U3(5)).2 108345600 37312
108345600

51+4 : 21+4.5.4 136515456 10368
136515456

26.U4(2) 165587500 177100
165587500

(A6×A6).D8 263340000 215600
263340000

23.22.26.(3×L3(2)) 264515625 119625
264515625

52.5.52.4A5 364041216 21504
364041216

M12 : 2 1436400000 369600
1436400000

34 : 2(A4×A4).4 2926000000 308000
2926000000

31+4 : 4A5 4681600000
56320

4681600000

Table 3.39: Ly
MaximalSubgroups indexes Maximal fixed point ratio

G2(5) 8835156 7128
8835156

2.McL : 2 9606125
15401

9606125
53 : L3(5) 1113229656 16632

1113229656

2.A11 1296826875 34651
1296826875

51+4 : 4S6 5751686556 299376
5751686556

35 : (2×M11) 13448575000 64120
13448575000

32+4 : 2A5.D8 73967162500 708400
73967162500

67 : 22 35118846000000 1814400
35118846000000

37 : 18 77725494000000 2217600
77725494000000
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Table 3.40: ON
MaximalSubgroups Indexes Maximal f ixed pointratio

L3(7) : 2 122760 360
122760

J1 2624832 1344
2624832

42.L3(4) : 21 2857239 1751
2857239

(32 : 4×A6).2 17778376 2856
17778376

34 : 2(1+4)D10 17778376 1064
17778376

L2(31) 30968784 5040
30968784

43.L3(2) 42858585 5145
42858585

M11 58183776 3360
58183776

A7 182863296 6720
182863296

Table 3.41: Th
MaximalSubgroups indexes Maximal fixed point ratio

3D4(2) : 3 143127000 102
1431270

25.L5(2) 283599225
3159

283599225
21+8.A9 976841775 30511

976841775

U3(8) : 6 2742012000 408
27420120

(3×G2(3)) : 2 3562272000 576
35622720

[39].2S4 96049408000 3584
960494080

32.[37].2S4 96049408000 3584
960494080

35 : 2S6 259333401600 236544
259333401600

51+2 : 4S4 7562161990656 2916
7562161990656

52 : GL2(5) 7562161990656 1354752
7562161990656

72 : (3×2S4) 12860819712000 64512
1286081971200

L2(19) : 2 13266950860800 4902912
13266950860800

M10 126036033177600 580608
12603603317760

31 : 15 195152567500800 23328
195152567500800

S5 7566216199065600 193536
75662161990656
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Table 3.42: B
MaximalSubgroups indexes Maximal fixed point ratio

2.(2E6(2)) : 2 13571955000 27081784
13571955000

21+22.Co2 11707448673375
3146667615

11707448673375
Fi23 1015970529280000, 4823449600

1015970529280000

21+6.L3(2) 1015970529280000 4823449600
1015970529280000

29+16.S8(2) 2613515747968125 91161395325
2613515747968125

T h 45784762417152000 125829120
45784762417152000

22×F4(2) : 2 156849238149120000 1609085288448
156849238149120000

22+10+20.(M222×S3) 181758140654146875 24451988201550
181758140654146875

[230].L5(2) 386968944618506250 32655623
3538810650375

S3×Fi22 : 2 5362800438804480000 161238689449
335175027425280000

HN : 2 7608628361513926656 184
1399720959

O+
8 (3).S4 3495751397146624000 49742

104181510125

31+8.21+6.U4(2).2 31811337714034278400000 2263261
18961034842750

5 : 4×HS : 2 2341935809673986624716800 189812697628409856
2341935809673986624716800

S4×2F4(2).2 4816481232502590013440000 2129309108011008
4816481232502590013440000

32.33.36.(S4×2S4) 20359256136981938176000000 2430157994328064
203592561369819381760000

A5.2×M22.2 39032263494566443745280000 977822987782717440
39032263494566443745280000

(S6×L3(4) : 2).2 71559149740038480199680000 7908862401183744
715591497400384801996800

53.L3(5) 89350139381213466476937216 4870492913664
89350139381213466476937216

51+4.21+4.A5.4 173115895051101091299065856 3696704121470976
173115895051101091299065856

52 : 4S4×S5 14426324587591757608255488000 10629511067190951936
14426324587591757608255488000

L2(49).23 35329774500224712510013440000 121762322841600
35329774500224712510013440000

L2(31) 279219185566220827404288000005 365286968524800
279219185566220827404288000005

M11 524593621366973003936563200000 243524645683200
524593621366973003936563200000

L3(3) 739811517312397826064384000000 243524645683200
739811517312397826064384000000

L2(17).2 848607328681868094603264000000 6899864961024
8486073286818680946032640000

L2(11) : 2 3147561728201838023619379200000 1071508441006080
3147561728201838023619379200000

47 : 23 3843461129719173164826624000000 22
3843461129719173164826624000000
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If G ' HN, Ly, ON, T h, or B, then the fixed point ratios and indexes satisfy the hypothesis to

Lemma 2.5.19. Thus these group do not possess primitive low genus systems.

The maximal subgroups of the Monster simple group have not been completely classified in the

sense that the proof that the maximal 2-locals are exactly those given in the ATLAS exists only

in the form of a preprint[29]. The other maximal subgroups were determined in [3].

Lemma 3.11.1. Let G be a group. If for all irreducible complex characters χi(g), χi(g)/χi(1)<

1
k+1 with χi(g) 6= χi(1) then f (g)

k < 1
k , ∀g ∈ G.

A complete proof can be found in [24]. This lemma guarantees us that all fixed point ratios of

all nontrivial elements of their actions on the known maximal subgroup are < 1
100 except that

for element 2A which is < 1
44 . So by Table 2 in [24] the only possible ramification types are

(2A,3,7) or (2A,3,8). By Lemma 3.11.1 fixed point ratio of 2A is < 1
44 , and fixed point ratios

of elements 3,7,8 are < 230. Thus Lemma 2.5.20 suffices to rule out the Monster as a primitive

low genus group.
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CHAPTER 4

BRAID ORBITS ON NIELSEN CLASSES OF

SPORADIC SIMPLE GROUPS

In this chapter we provide a complete description of the braid orbits of low genus systems for

the sporadic simple groups. A ramification type C̄= (C1, . . . ,Cr) of the group G is said to be

a Generating Type if there exists at least one generating tuple ḡ= (g1, . . . ,gr) of this type in

G. In the previous chapter, we used several filters to eliminate most non- generating types and

were left with a small collection of possible generating types of genus zero, one and two for each

sporadic simple group. Consider a generating type ḡ. Finding the braid orbits Oḡ of the tuple ḡ

is uncomplicated. Take a first random tuple t̄ of type ḡ and begin applying the generators of the

braid group to t̄ and then recording any new tuples in the list. Eventually we exhaust the orbit of

t̄ and then we stop and record it. We repeat the same process for the next random tuple, and so

on, until we find all the orbits. Note that the size of the braid orbits of the tuple ḡ is dependent

on the type length, that is, the longer the tuple then the sum of the sizes of (the braid orbit)

increases dramatically, (roughly equal to α|gG
r | where α ∈ (0,1)). So computing a braid orbit

corresponding to a long tuple may take long time. Firstly, we present tables listing the number

of generating ramification types for each sporadic simple groups for which the corresponding

Nielsen class is non-empty.
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Table 4.1: Number of ramification types of the Mathieu groups which passed all filters
Groups genus zero genus one genus two total

M11 47 95 149 291
M12 90 194 302 584

M12 : 2 0 2 6 8
M22 24 38 46 108

M22 : 2 52 111 152 315
M23 44 51 83 178
M24 115 231 288 634

Table 4.2: Number of ramification types of the Janko groups which passed all filters
Groups genus zero genus one genus two total

J1 1 0 0 1
J2 2 3 4 9

J2 : 2 2 7 4 13

Table 4.3: Number of ramification types which passed all filters
Groups genus zero genus one genus two total

HS 0 2 7 9
HS : 2 4 6 19 29
Co3 1 0 0 1

Computing braid orbits on the Nielsen tuples of given type of length three is straightforward.

Firstly define double cosets.

Definition 4.0.2. Let H and K be subgroup of the groups G and x ∈ G. A double coset of H

and K is the set

HxK = {hxk | h ∈ H,k ∈ K}.

Note that HxK is the union of the K-orbits on its action on the cosets of H under right multipli-

cation. Double cosets can be used to help us to find braid orbits for the tuples of length three.

The next lemma provides us with more detail.

Lemma 4.0.3. Let C = (C1,C2,C3) be a ramification type of length three with class represen-

tatives c1,c2 and c3. Then 〈c1,ck
2,(c1ck

2)
−1〉 is the generating tuple of C up to conjugation in G

where k is in double coset CG(c1) - CG(c2) representative and (c1ck
2)
−1 in C3.

Proof. Complete proof can be found in [37].

For the group G the function Find3Tuple is defined in [37]. This function required two inputs

which are the tuple(it should be of length three) and the group. If the type is a generating type

then the output of this function is a list of Nielsen tuples of length one. Each tuple ḡ represents

an equivalence class of covers of P1 with ramification type given by ḡ.
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4.1 MAPCLASS

MAPCLASS is a GAP package that is used for calculations of braid orbits and mapping class

group orbits. MAPCLASS package has 17 functions. The primary functions of MAPCLASS

are

• GeneratingMCOrbits(group,genus,tuple).

• AllMCOrbits(group,genus,tuple).

• GeneratinMCOrbitsCore(group,genus,tuple,partition,constant).

• AllMCOrbitsCore(group,genus,tuple,partition,constant).

• NumberGeneratingTuples(group,genus,tuple).

• TotalNumberTuples(group,genus,tuple).

In our work we used first and second above functions we will explain both of them.

4.1.1 GeneratingMCOrbits

GeneratingMCOrbits(group,genus,tuple) is the primary and most important function used in

this computation. The objective of this function is to compute generating braid orbits on the

Nielsen tuples of a given type. Note that this function calls a function NumberGeneratingTu-

ples(group,genus,tuple) which finds the number of generating tuples. In this section we are

going to explain how the orbits are calculated by the function GeneratingMCOrbits for a given

group G, genus g, and ramification type C̄= (C1, · · · ,Cr). To achieve this, there are certain steps.

The function first generates, for the type and genus, the action of the mapping class group gen-

erators. After that, it is calculating the total number of available tuples. This number allows us

to know when we have already constructed all orbits. We require the knowledge of the variety

of ways of achieving [a1,b1] . . . [ag,bg]c1 . . .cr for a,b and c in some finite group G, where ci is

in the conjugacy class Ci. This scheme is achievable by taking the cardinality of the set of all

homomorphisms from a Fuchsian group ϒ = 〈a1,b1, . . . ,ag,bg,c1, · · · ,cr |∏g
i=1[ai,bi]∏

r
i=1 ci =

1, 〉 to the group G, which is denoted by Λ(G,g : C1, . . . ,Cr). Liebeck and Shalev[23]in Lemma
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3.1, present an accurate calculation of this.

Theorem 4.1.1.

Λ(G,g : C1, . . . ,Cr) = |G|2g−1|C1| · · · |Cr| ∑
χ∈Irr(G)

(χ(1)2−2g−r(
r

∑
ci∈Ci

χ(ci))).

In particular, the number Λ(G,g : C1, . . . ,Cr) is exponential. The factor |G|2g−1 should be ac-

knowledged as the most dominant term in the expression for Λ(G,g : C1, . . . ,Cr).

To find orbits, we choose a random tuple that has length of 2g+ r in which the elements of the

positions 2g+1, . . . ,2g+ r correspond with our ramification types C and hence the conjugacy

class Ci contains the 2g+ i-th element. We are given access to new tuples as we successively

apply generators of the mapping class group to a random chosen tuple . The already existing

orbit is then compared with the new tuple. If a new tuple is not in the existing orbit then we add

it. We then repeat this technique, taking tuples in our orbit, retrieved from the initial tuple. The

orbit is then saved. All available tuples need to be considered, so we start taking random tuples

that do not exist in our current orbits. It should be noted that the previous entire calculations

were up to conjugation in G. A Minimization routine is used to check whether two tuples are

conjugate or not. A limited explanation is going to be given but a more comprehensive one can

be found in[19]. A tree diagram is the best way of representing the process of minimization and

how it takes place. We suppose that the root of our tree is (G,x) where x is a minimal element of

conjugacy class Cr. If (K,y) is a node at the level n−1 of our tree, the children of (K,y) would

be pairs of the form (CK(y),mi). Here mi is is considered as the minimal element of the orbits of

(CK(x)) in the conjugacy class Cn. For each conjugacy class, the minimal elements that belong

to the same orbit can be tracked. Until all the K are trivial or all conjugacy class are resolved, we

proceed with a continuous system. Hence the tuple g = (g1, . . . ,gr). The minimization system

works in the following manner: for every gi,a corresponding minimal element mi is chosen

from the tree. All of the g is then conjugated with ki ∈ K and hence taking gi to mi and then

repeating the process with a new tuple. Elements that were previously chosen for the process

of minimization will be fixed by further conjugation as we’ll be conjugating by an element

contained in the intersection of centralizers.
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As we have seen this function require three inputs which are the group, the genus and the

tuple. The tuple is a tuple of conjugacy class representatives of the given group. Although the

number of orbits, length of orbits and size of centralizer etc. are outputs of this function, our

requirements are the number of orbits and length of orbits. Now we give an example of a sample

run of this function.

Example 4.1.2. Let G be the Mathieu group M11. For genus two in the first class of maximal

subgroup there is a tuple (2A,2A,2A,2A,5A) of length five. The

tuple :=[ ( 3, 7)( 4,11)( 5, 9)( 6, 8), ( 1,10)( 2, 4)( 3, 5)( 8, 9), ( 1,

6)( 2, 4)( 5, 9)( 7,10), ( 2, 8)( 3, 4)( 5, 9)( 6,10), ( 1, 8, 2, 5, 7)( 3,11,

4, 9, 6) ] is of type (2A,2A,2A,2A,5A).

gap> GeneratingMCOrbits(G,0,Type);;

gap> Length(last);

gap>1

gap>orb:=orbits[1];;

gap>Length(orb.TableTuple);

gap>12000

We see that in this case the braid group has exactly one orbit of length 12000 on the Nielsen

class (2A,2A,2A,2A,5A). So for the tuple of long length in large groups the problem such of

computing the braid orbits requires a computer with large memory and such computer may not

be available. We then used the function AllMCOrbits(Group,genus,type) we will explain in

next section. Now in Table 4.4 we collect the data for our calculations of braid orbits for groups

of the tuples of length > 4.

78



Table 4.4: Generating braid orbits for types of length> 4
Groups Rami f icationTypes N.Orbits LengthO f Orbits

(2A,2A,2A,2A,3A) 1 2376
M11 (2A,2A,2A,2A,2A,2A) 1 229680

(2A,2A,2A,2A,5A) 1 12000
(2A,2A,2A,2A,3A) 1 2376
(2A,2A,2A,2A,6A) 1 12528
(2B,2B,2B,2B,8A) 2 26880,26880

M12 (2B,2B,2B,3A,3A) 2 15840,6024
(2B,2B,2B,2B,6B) 2 25056,26864
(2B,2B,2B,2B,3B) 2 8280,5562

(2B,2B,2B,2B,2B,2B) 2 588800,332640
(2A,3A,3A,3A) 2 1680,2448

M22 (2A,2A,3A,5A) 2 1380,1500
(2A,2A,4A,4B) 3 108,108,100

(2A,2A,2A,2A,4B) 5 2960,13056,11232,12960,9792
(2A,2A,2A,2A,4A) 4 27456,52992,52992,30912
(2A,2A,2A,2A,3A) 1 21456

M23 (2A,2A,2A,2A,6A) 1 1050336
(2A,2A,2A,2A,5A) 1 732000
(2A,2A,2A,3A,3A) 1 850392

(2A,2A,2A,2A,2A,2A) 1
(2A,2A,2A,2A,4B) 1 72000

M24 (2A,2A,4B,6A) 1 57023
(2A,2A,4B,5A) 1 1970
(2A,2A,4B,8A) 1 34944

(2A,2A,2A,2A,5A) 1 342600

4.1.2 AllMCOrbits

Both generating braid orbits and non-generating braid orbits of the given groups are computed

by this function. For the large groups or for the long tuples the function GeneratingMCOrbits

does not work. For instance the braid orbits of the ramification types in Table 4.4 for the group

M24 can not be found by the function GeneratingMCOrbits. Using this function is quite easy but

the long time is required to compute it. Moreover we have to use several steps to find generating

braid orbits. This function requires three inputs which are the group, the genus and the tuple.

The number of all orbits, length of orbits and size of centralizer etc. are outputs of this function,

our requirement are the number of generating orbits and length of generating orbits.

AllMCOrbits(group,genus,tuple)

79



The following example demonstrates how one can find generating braid orbits.

Example 4.1.3. Let G be the smallest Mathieu group M11 and g = 2. The

tuple = [(2,10)(3,4)(6,8)(7,11),(2,8,10,6)(3,7,4,11),(1,2,7)(3,8,4)(9,10,11),

(2,7,6,3,10,11,8,4)(5,9)]

is of type (2A,3A,4A,8A). Recall that a ramification type C̄= (C1, . . . ,Cr) of the group G is

said to be of generating type if there exists at least one generating tuple ḡ= (g1, . . . ,gr) of this

group. In the other words a ramification type C̄= (2A,3A,4A,8A) the will be of generating type

if there exists a braid orbit O such that the tuple from it generates sporadic the simple group G.

gap> AllPrimitiveGroups(DegreeOperation,11);;

gap>G:=last[6];

M(11)

gap>O:=AllMCOrbits(G,0,tuple);

gap> Length(O);

4

gap>for i in [1..Length(O)]do

>Print(Length(O[i].TupleTable));

> Print("\n");

>fi;od;

951

225

12

6

The above program shows that there are four braid orbits of length 951,225,12,6. Now for each

braid orbit we look for a group K generated by the tuple from the orbit O. Firstly we have to

check that whether K is a primitive group.

gap>for i in [1..Length(O)]do

>h:=Group(O[i].TupleTable[1].tuple); >if Isprimitive(h)=true then ;

> Print(i);

> Print("\n");
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>fi;

>od;

1

2

It should be noted that the first tuple from orbits one and two generate primitive groups. On the

other hand the first tuple of the orbit three and four does not generate the primitive group. Next

we check that the size of primitive groups is equal to the Mathieu group M11.

gap> A:=AllPrimitiveGroups(DegreeOperation,11);

[ C(11), D(2*11), 11:5, AGL(1, 11), L(2, 11), M(11), A(11), S(11) ]

gap> h1:=Group(O[1].TupleTable[1].tuple);;

gap>for i in [1..Length(A)]do if size(A[i])=Size(h) then ;

> Print(i);

> Print("\n");

>fi;

>od;

6

gap>IsomorphismGroups(h1,A[6]);

[ (2,3)(5,11)(7,8)(9,10), (1,3,6,5)(4,9,7,11) ]− > [(2,3)(4,11)(5,6)(7,10),

(1,3,6,4)(8,11,9,10) ]

This means that the first tuple from orbit one generates a primitive group which isomorphic to

the smallest Mathieu group M11.

h2:=Group(O[2].TupleTable[1].tuple);;

gap>for i in [1..Length(A)]do if size(A[i])=Size(h) then ;

> Print(i);

> Print("\n");

>fi;od;

So the first tuple from orbit two generates a primitive group which is not isomorphic to the group

M11. Hence we ignore this primitive group. Thus the ramification type C̄= (2A,3A,4A,8A) has

one braid orbit of length 951.
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CHAPTER 5

CONCLUSIONS

This thesis set out to calculate the connected components of H in(G,C) where G is a sporadic

simple group . The total numbers of components of H in(G,C) are shown in the Tables

Table 5.1: Number of Components of Genus Zero
Groups ]Ramification ]comp’s ]comp’s ]comp’s ]comp’s

Type r = 3 r = 4 r = 5 r = 6
M11 47 34 12 1 -
M12 90 62 25 3 -
M22 24 19 5 - -

M22 : 2 52 34 16 2 -
M23 44 33 10 1 -
M24 115 96 18 1 -
J1 1 1 - - -
J2 2 2 - - -

J2 : 2 2 2 - - -
Co3 1 1 - - -

HS : 2 4 4 - - -
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Table 5.2: Number of Components of Genus one
Groups ]Ramification ]comp’s ]comp’s ]comp’s ]comp’s

Type r = 3 r = 4 r = 5 r = 6
M11 95 60 28 6 1
M12 194 113 69 11 1

M12 : 2 2 2 - - -
M22 38 30 7 1 -

M22 : 2 111 63 38 9 1
M23 51 42 8 1 -
M24 231 180 43 7 1∗

J2 3 3 - - -
J2 : 2 7 6 1 - -
HS 2 2 - - -

HS : 2 6 5 1 - -

*Ramification type of length six of Mathieu group M24 we were not able to compute all braid

orbit.

Table 5.3: Number of Components of Genus two
Groups ]Ramification ]comp’s ]comp’s ]comp’s ]comp’s

Type r = 3 r = 4 r = 5 r = 6
M11 149 76 56 15 2
M12 302 122 147 30 3

M12 : 2 6 5 1 - -
M22 46 35 9 2 -

M22 : 2 152 73 62 16 2
M23 83 63 16 3 1
M24 288 222 60 6 -
J2 4 4 - - -

J2 : 2 4 3 1 - -
HS 7 7 - - -

HS : 2 19 16 3 - -

In fact to establish this result, firstly in Chapter 2 and the first section of Chapter 3, we presented

some filters to eliminate non generating ramification types of sporadic simple groups. Moreover,

we proved Lemma 2.5.18, Lemma 2.5.19 and Lemma2.5.20, that play an important role in

eliminating ramification types of large sporadic simple groups. In Chapter 3 we check whether

or not the sporadic simple groups possessed primitive genus g systems by using filters. For large

sporadic simple groups, we found fixed point ratios and, by using Lemma 2.5.19, we showed

that these groups possessed no primitive genus g-system. Note that the GAP library stores

primitive permutation groups up to degree 2500. In some cases where the group possesses
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a permutation representation of degree < 2500, we were able to construct explicitly all the

permutation representations of degree > 2500 that we needed to work with .

Secondly, we computed braid orbits of the sporadic simple groups that possess primitive genus

g-systems by using the packages Braid and MapClass. However, in one case, namely

(2A,2A,2A,2A,2A,2A) for the large Mathieu group M24, we were not able to compute all braid

orbit because its Nielsen class is too big. We leave this case open but suspect that there is only

one braid orbit of this type of length 12307440. We hope to be able to address it in our future

work. In this thesis we compute braid orbits of Nielsen Class of sporadic simple groups, future

work we will compute the braid orbits of Nielsen class of low genus systems for other almost

simple groups (Classical groups).
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APPENDIX A

GENUS ZERO COVERS
Appendix A contains table representing the result of our computation of primitive genus zero
cover in sporadic simple groups satisfying Theorem 1.0.2. Note that N.Orbit means number of
orbits, L.O means length of orbits.

Table 5.4: M11,g = 0, Of Degree 11
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(3A,3A,8A) 2 1 (3A,3A,8B) 2 1
(3A,4A,6A) 5 1 (3A,4A,8A) 3 1
(3A,4A,8B) 3 1 (3A,4A,5A) 5 1
(4A,4A,8B) 4 1 (4A,4A,8A) 4 1
(4A,4A,6A) 12 1 (4A,4A,5A) 6 1
(2A,6A,8A) 3 1 (2A,6A,8B) 2 1
(2A,8A,8A) 3 1 (2A,8B,8B) 2 1
(2A,4A,11A) 1 1 (2A,4A,11B) 1 1
(2A,2A,3A,4A) 1 92 (2A,2A,4A,4A) 1 168
(2A,2A,2A,8A) 1 48 (2A,2A,2A,8B) 1 48
(2A,5A,8A) 3 1 (2A,5B,8B) 3 1

Table 5.5: M11,g = 0, Of Degree 12
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(3A,5A,6A) 7 1 (3A,6A,6A) 12 1
(3A,3A,8A) 2 1 (3A,3A,8B) 2 1
(3A,4A,5A) 5 1 (3A,4A,6A) 5 1
(2A,5A,11A) 1 1 (2A,5A,11B) 1 1
(2A,5A,8A) 3 1 (2A,5A,8B) 3 1
(2A,6A,11A) 3 1 (2A,6A,11B) 3 1
(2A,6A,8A) 3 1 (2A,6A,8B) 3 1
(2A,4A,11A) 1 1 (2A,4A,11B) 1 1
(2A,3A,3A,3A) 1 63 (2A,2A,3A,5A) 1 100
(2A,2A,3A,6A) 1 92 (2A,2A,3A,4A) 1 156
(2A,2A,2A,11A) 1 33 (2A,2A,2A,11B) 1 33
(2A,2A,2A,8A) 1 48 (2A,2A,2A,8B) 1 48

(2A,2A,2A,2A,3A) 1 2376
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Table 5.6: M12,g = 0, Of Degree 12
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(4A,8A,8A) 4 1 (4A,4B,11B) 1 1
(4A,4B,11A) 1 1 (4B,4B,8B) 4 1
(4B,4B,6A) 2 1 (4B,4B,10A) 2 1
(4B,6B,8A) 16 1 (4B,6B,6B) 38 1
(3B,4B,8A) 5 1 (3B,4B,6B) 10 1
(4A,4B,8A) 6 1 (4A,4B,6B) 8 1
(3B,4A,4B) 4 1 (4B,5A,8A) 7 1
(4B,5A,6B) 1 1 (3B,4B,5A) 7 1
(4A,4B,5A) 4 1 (4B,5A,5A) 3 1
(3A,8A,8A) 6 1 (3A,4B,11B) 1 1
(3A,4B,11A) 1 1 (3A,4B,8B) 2 1
(3A,4B,6A) 3 1 (3A,4B,10A) 3 1
(3A,6B,8A) 16 1 (3A,6B,6B) 8 1
(3A,3A,11A) 1 1 (3A,3A,11B) 1 1
(3A,3A,6A) 2 1 (3A,3B,8A) 6 1
(3A,3B,6B) 6 1 (3A,5A,8A) 4 1
(3A,3B,5A) 2 1 (3A,4A,8A) 2 1
(3A,5A,6B) 6 1 (3A,5A,5A) 6 1
(2B,8A,11B) 2 1 (2B,8A,11A) 2 1
(2B,8A,8B) 4 1 (2B,6A,8A) 4 1
(2B,8A,10A) 2 1 (2B,6B,11A) 1 1
(2B,6B,11B) 1 1 (2B,6A,6B) 8 1
(2B,6B,10A) 8 1 (2B,3B,11A) 1 1
(2B,3B,11A) 1 1 (2B,3B,10A) 2 1
(2B,5A,11B) 1 1 (2B,5A,11A) 1 1
(2B,5A,6A) 2 1 (2B,5A,10A) 2 1
(2A,8A,8A) 1 1 (2A,4B,11A) 1 1
(2B,4B,11B) 1 1 (2A,6B,8A) 6 1
(2A,6B,6B) 8 1 (2A,3A,11A) 1 1
(2A,3A,11B) 1 1 (2A,5A,8A) 3 1
(2B,5A,6B) 1 6 (2B,4B,4B,4B) 1 244

(2B,3A,4B,4B) 1 240 (2B,3A,3A,4B) 1 132
(2B,3A,3A,3A) 1 1 (2A,2B,3A,3A) 1 48
(2B,2B,4B,8A) 1 288 (2B,2B,4B,6B) 1 504
(2B,2B,3B,4B) 1 144 (2B,2B,4A,4B) 1 88
(2B,2B,4B,5A) 1 220 (2B,2B,3A,8A) 2 104,104
(2B,2B,3A,6B) 1 144 (2B,2B,3A,3B) 1 56
(2B,2B,3A,5A) 1 120 (2B,2B,2B,11A) 1 22
(2B,2B,2B,11B) 1 22 (2B,2B,2B,6A) 1 72
(2B,2B,2B,2B,4B) 1 7269 (2B,2B,2B,2B,3A) 1 2784
(2A,2B,2B,2B,2B) 1 2048 (2B,2B,2B,10A) 2 40,40
(2A,2B,2B,8A) 1 64 (2A,2B,2B,6B) 1 144
(2A,2B,2B,3B) 1 32 (2A,2B,2B,5A) 1 80
(2A,2B,4B,4B,) 1 80 (2A,2B,3A,4B) 1 66
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Table 5.7: M12,g = 0, Of Degree 66
Rami f icationType N.Orbit LO Rami f icationType N.Orbit L.O

(2B,3B,10A) 2 1 (2A,2B,2B,3B) 1 32

Table 5.8: M22,g = 0, Of Degree 22
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(3A,3A,7A) 12 1 (3A,3A,7B) 12 1
(3A,3A,8A) 16 1 (3A,4B,5A) 8 1
(3A,4B,6A) 12 1 (3A,4A,5A) 48 1
(3A,4A,6A) 24 1 (4A,4A,4B) 26 1
(4A,4A,4A) 12 1 (2A,5A,7A) 10 1
(2A,5A,7B) 10 1 (2A,5A,8A) 12 1
(2A,6A,7A) 6 1 (2A,6A,7B) 6 1
(2A,6A,8A) 12 1 (2A,4B,11A) 2 1
(2A,4B,11B) 2 1 (2A,3A,11A) 4 1
(2A,3A,11B) 4 1 (2A,2A,3A,4B) 1 180
(2A,2A,3A,4A) 1 180 (2A,2A,2A,7A) 3 42
(2A,2A,2A,7B) 3 42 (2A,2A,2A,8A) 4 48

Table 5.9: M = M22.2,g = 0, Of Degree 22
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(4D,4D,5A) 6 1 (4D,4D,6A) 2 1
(4A,4C,4D) 3 1 (4A,4D,6B) 20 1
(2C,4D,7A) 2 1 (2C,4D,7B) 2 1
(2C,4A,8B) 3 1 (2C,5A,6B) 11 1
(2C,6A,6B) 7 1 (2C,3A,14A) 2 1
(2C,3A,14B) 2 1 (2A,8B,8B) 3 1
(2C,4C,14B) 1 1 (2A,4C,14A) 1 1
(2A,6B,10A) 10 1 (2A,6B,14B) 3 1
(2A,6B,14A) 3 1 (2A,6B,12A) 6 1
(3A,4D,8B) 4 1 (3A,6B,4C) 10 1
(3A,6B,6B) 10 1 (3A,7B,8B) 1 1
(2B,7A,8B) 1 1 (2B,5A,10A) 4 1
(2B,5A,14B) 1 1 (2B,5A,14A) 1 1
(2B,5A,12A) 1 1 (2B,4C,11A) 1 1
(2B,6A,10A) 2 1 (2B,6A,14A) 1 1
(2B,6A,14B) 1 1 (2B,6A,12A) 2 1
(2B,6B,11A) 3 1 (2A,2A,4D,4D) 1 128

(2A,2A,2C,6B) 1 156 (2A,2B,4A,4D) 1 94
(2A,2A,2B,2B,3A) 1 600 (2A,2B,2C,5A) 1 45
(2A,2B,2C,6A) 1 30 (2A,2A,2B,10A) 2 20
(2A,2A,2B,14B) 1 14 (2A,2A,2B,14A) 1 14
(2A,2A,2B,12A) 1 24 (2A,2A,2A,2B,2C) 1 660
(2A,2B,3A,4C) 1 34 (2A,2B,3A,6B) 1 123
(2B,2B,4A,4A) 1 34 (2A,2B,2B,11A) 1 11
(2B,2A,3A,5A) 1 88 (2B,2B,3A,6A) 1 36
(2B,2C,3A,3A) 1 72
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Table 5.10: M22 : 2,g = 0, Of Degree 77
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(2B,4C,11A) 1 1

Table 5.11: M23,g = 0, Of Degree 23
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(4A,4A,5A) 104 1 (4A,4A,6A) 192 1
(3A,5A,5A) 30 1 (3A,4A,8A) 54 1
(3A,4A,7B) 15 1 (3A,4A,7A) 15 1
(3A,5A,6A) 70 1 (3A,6A,6A) 120 1
(3A,3A,15B) 4 1 (3A,3A,15A) 4 1
(3A,3A,11B) 6 1 (3A,3A,11A) 6 1
(3A,3A,14B) 4 1 (3A,3A,14A) 4 1
(2A,8A,8A) 28 1 (2A,5A,15B) 5 1
(2A,5A,15A) 5 1 (2A,5A,11B) 6 1
(2A,5A,11A) 6 1 (2A,5A,14B) 3 1
(2A,5A,14A) 3 1 (2A,4A,23B) 2 1
(2A,4A,23A) 2 1 (2A,7B,8A) 8 1
(2A,7B,7B) 4 1 (2A,7A,8A) 8 1
(2A,7A,7A) 4 1 (2A,6A,15B) 9 1
(2A,6A,15A) 6 1 (2A,4A,11B) 12 1
(2A,4A,11A) 12 1 (2A,4A,14B) 9 1
(2A,4A,14A) 9 1 (2A,3A,3A,3A) 1 996
(2A,2A,4A,4A) 1 2456 (2A,2A,3A,5A) 1 980
(2A,2A,3A,6A) 1 1428 (2A,2A,2A,15B) 1 90

(2A,2A,2A,15A)1 90 (2A,2A,2A,11B) 2 66,66
(2A,2A,2A,11A) 2 66,66 (2A,2A,2A,14B) 1 84
(2A,2A,2A,14A) 1 84 (2A,2A,2A,2A,3A) 1 21456
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Table 5.12: M24,g = 0, Of Degree 24
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(4B,4B,8A) 112 1 (4B,4B,7B) 22 1
(4B,4B,7A) 22 1 (4B,4B,4C) 40 1
(4B,6A,6A) 478 1 (4A,4B,6A) 44 1
(4B,5A,6A) 158 1 (4A,4B,5A) 11 1
(4B,5A,5A) 38 1 (3B,4B,6A) 62 1
(3B,4A,4B) 4 1 (3B,4B,5A) 30 1
(2A,8A,12A) 26 1 (2A,8A,14A) 9 1
(2A,8A,14B) 9 1 (2A,8A,11A) 13 1
(2A,8A,10A) 10 1 (2A,8A,15B) 9 1
(2A,8A,15A) 9 1 (2A,6B,8A) 2 1
(2A,6A,21B) 7 1 (2A,6A,21A) 7 1
(2A,6A,23B) 5 1 (2A,6A,23A) 55 1
(2A,4A,21B) 1 1 (2A,4A,21A) 1 1
(2A,7B,12A) 4 1 (2A,7B,14A) 3 1
(2A,7B,11A) 2 1 (2A,7B,10A) 1 1
(2A,7B,15B) 2 1 (2A,7B,15A) 2 1
(2A,7B,6B) 4 1 (2A,7A,12A) 4 1
(2A,7A,14B) 3 1 (2A,7A,11A) 2 1
(2A,7A,11B) 1 1 (2A,7A,15B) 2 1
(2A,7A,15A) 2 1 (2A,7A,6B) 4 1
(2A,5A,21B) 2 1 (2A,5A,21A) 2 1
(2A,5A,12B) 3 1 (2A,5A,14B) 4 1
(2A,5A,14A) 4 1 (2A,4C,11A) 5 1
(2A,4C,15B) 4 1 (2A,4C,15A) 4 1
(2A,3B,23B) 1 1 (2A,3B,23A) 1 1
(3A,4B,12A) 26 1 (3A,4B,14B) 12 1
(3A,4B,14A) 12 1 (3A,4B,11A) 15 1
(3A,4B,10A) 18 1 (3A,4B,15B) 12 1
(3A,4B,15A) 12 1 (3A,4B,6B) 21 1
(3A,6A,8A) 96 1 (3A,6A,7B) 16 1
(3A,6A,7A) 16 1 (3A,4C,6A) 28 1
(3A,4A,8A) 10 1 (3A,4A,7B) 2 1
(3A,4A,7A) 2 1 (3A,3A,21B) 1 1
(3A,3A,21A) 2 1 (3A,3A,23B) 1 1
(3A,3A,23A) 2 1 (3A,3A,12B) 4 1
(3A,5A,8A) 28 1 (3A,5A,7B) 4 1
(3A,5A,7A) 4 1 (3A,4C,5A) 7 1
(3A,3B,8A) 14 1 (3A,3B,7B) 5 1
(3A,3B,7A) 5 1 (3A,3B,4B) 3 1
(2B,4B,14B) 8 1 (2B,4B,14A) 8 1
(2B,4B,11A) 11 1 (2B,4B,15B) 8 1
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Table 5.13: M24,g = 0, Of Degree 24
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(2B,4B,15A) 8 1 (2B,6A,8A) 42 1
(2B,6A,7B) 11 1 (2B,6A,7A) 11 1
(2B,3A,21B) 1 1 (2B,3A,21A) 1 1
(2B,3A,23B) 1 1 (2B,3A,23A) 1 1
(2B,5A,8A) 14 1 (2B,5A,7B) 5 1
(2B,5A,7A) 5 1 (2A,6A,12B) 19 1
(2A,5A,23B) 5 1 (2A,5A,23A) 1 1
(2A,2A,4B,6A) 1 5730 (2A,2A,4A,4B) 1 464
(2A,2A,4B,5A) 1 1970 (2A,2A,3B,4B) 1 969

(2A,2A,2A,2A,4B) 1 72000 (2A,2A,2A,21B) 1 63
(2A,2A,2A,21A) 1 63 (2A,2A,2A,23B) 1 46
(2A,2A,2A,23A) 1 46 (2A,2A,2A,12B) 1 144
(2A,2A,2A,8A) 1 1128 (2A,2A,3A,7B) 1 224
(2A,2A,3A,7A) 1 224 (2A,2A,3A,4B) 1 684
(2A,2A,2B,8A) 1 416 (2A,2A,2B,7B) 1 98
(2A,2A,2B,7A) 1 98 (2A,3A,3A,4B) 1 1776
(2A,2B,3A,4B) 1 684

Table 5.14: J1,g = 0, Of Degree 266
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(2A,3A,7A) 7 1

Table 5.15: J2,g = 0, Of Degree 100
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(2B,3B,7A) 10 1

Table 5.16: J2,g = 0, Of Degree 280
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(2B,3B,7A) 10 1

Table 5.17: J2 : 2,g = 0, Of Degree 100
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(2C,3B,14A) 3 1 (2C,3B,12C) 2 1

Table 5.18: Co3,g = 0, Of Degree 276
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(2B,3C,7A) 12 1

Table 5.19: HS : 2,g = 0, Of Degree 100
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(2C,4F,10A) 1 1 (2D, 5C, 6C ) 9 1
(2D,4F,6B) 10 1 (2D, 4F, 5C ) 1 1
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APPENDIX B

GENUS ONE COVERS
Appendix B contains table representing the result of our computation of primitive genus one
cover in sporadic simple groups satisfying Theorem 1.0.2. Note that N.Orbit means number of
orbits, L.O means length of orbits.

Table 5.20: M11,g = 1, Of Degree 11
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(3A,6A,6A) 12 1 (3A,6A,8A) 9 1
(3A,6A,8B) 9 1 (3A,8A,8A) 3 1
(3A,8B,8B) 3 1 (3A,5A,6A) 7 1
(3A,5A,8A) 9 1 (3A,5A,8B) 9 1
(4A,6A,6A) 30 1 (3A,4A,11A) 4 1
(3A,4A,11B) 4 1 (4A,6A,8A) 18 1
(4A,6A,8B) 18 1 (4A,8B,8B) 10 1
(4A,8A,8A) 10 1 (4A,8A,8B) 10 1
(3A,8A,8B) 7 1 (4A,4A,11A) 7 1
(4A,4A,11B) 7 1 (4A,5A,6A) 31 1
(4A,5A,8A) 17 1 (4A,5A,8B) 17 1
(4A,5A,5A) 28 1 (2A,6A,11A) 3 1
(2A,6A,11B) 3 1 (2A,3A,3A,3A) 1 63
(2A,8A,11A) 2 1 (2A,8A,11B) 2 1
(2A,8B,11A) 2 1 (2A,8B,11B) 2 1
(2A,3A,3A,4A) 1 368 (2A,3A,4A,4A) 1 708
(2A,4A,4A,4A) 1 1328 (2A,2A,3A,6A) 1 156
(2A,2A,3A,8A) 1 160 (2A,2A,3A,8B) 1 160
(2A,2A,3A,5A) 1 100 (2A,2A,4A,6A) 1 472
(2A,2A,4A,8A) 1 304 (2A,2A,4A,8B) 1 204
(2A,2A,4A,5A) 1 500 (2A,2A,2A,11A) 1 33
(2A,2A,2A,11B) 1 33 (2A,2A,2A,2A,3A) 1 2376
(2A,2A,2A,2A,4A) 1 8832 (2A,5A,11A) 1 1

(2A,5A,11B) 1 1
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Table 5.21: M11,g = 1, Of Degree 12
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(5A,5A,5A) 24 1 (5A,5A,6A) 38 1
(5A,6A,6A) 34 1 (6A,6A,6A) 36 1
(3A,5A,11A) 5 1 (3A,5A,11B) 5 1
(3A,5A,8A) 9 1 (3A,5A,8B) 9 1
(3A,6A,11A) 5 1 (3A,6A,11B) 4 1
(3A,4A,11A) 4 1 (3A,4A,11B) 4 1
(3A,6A,8A) 9 1 (3A,6A,8B) 9 1
(3A,4A,8A) 3 1 (3A,4A,8B) 3 1
(4A,5A,5A) 28 1 (4A,5A,6A) 31 1
(4A,6A,6A) 30 1 (4A,4A,5A) 6 1
(4A,4A,6A) 12 1 (2A,11A,11A) 1 1
(2A,11B,11B) 1 1 (2A,8A,11A) 2 1
(2A,8A,11B) 2 1 (2A,8B,11A) 2 1
(2A,8B,11B) 2 1 (2A,8B,8B) 2 1
(2A,8A,8A) 2 1 (3A,3A,3A,3A) 1 288

(2A,3A,3A,5A) 1 385 (2A,3A,3A,6A) 1 444
(2A,3A,3A,4A) 1 368 (2A,3A,5A,5A) 1 570
(2A,2A,5A,5A) 1 570 (2A,2A,6A,6A) 1 708
(2A,2A,3A,11A) 1 77 (2A,2A,3A,11B) 1 77
(2A,2A,3A,8A) 1 160 (2A,2A,3A,8B) 1 160
(2A,2A,4A,5A) 1 500 (2A,2A,4A,6A) 1 472
(2A,2A,4A,4A) 1 168,92 (2A,2A,2A,3A,3A) 1 8280

(2A,2A,2A,2A,5A) 1 12000 (2A,2A,2A,2A,6A) 1 12528
(2A,2A,2A,2A,4A) 1 8832 (2A,2A,2A,2A,2A,2A) 1 229680
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Table 5.22: M12,g = 1, Of Degree 12
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(8B,8B,8B) 68 1 (4B,8B,11B) 11 1
(4B,8B,11A) 11 1 (4B,8A,8B) 36 1
(4B,6A,8B) 18 1 (4B,8B,10A) 20 1
(4B,6B,11B) 27 1 (4B,6B,11A) 27 1
(4B,6B,8A) 58 1 (4B,6A,6B) 39 1
(4B,6B,10A) 39 1 (3B,4B,11B) 8 1
(3B,4B,11A) 8 1 (3B,4B,8A) 13 1
(3B,4B,10A) 10 1 (4A,4B,11B) 8 1
(4A,4B,11A) 8 1 (4A,4B,8A) 6 1
(4A,4B,6A) 10 1 (3B,4B,6A) 7 1
(4A,4B,10A) 6 1 (4B,5A,11B) 10 1
(4B,5A,11A) 10 1 (4B,5A,8A) 24 1
(4B,5A,6A) 19 1 (4B,5A,10A) 22 1
(6B,8B,8B) 124 1 (6B,6B,8B) 256 1
(6B,6B,6B) 332 1 (3A,8B,11B) 10 1
(3A,8B,11A) 10 1 (3A,8A,8B) 16 1
(3A,6A,8B) 18 1 (3A,8B,10A) 18 1
(3A,6B,11B) 16 1 (3A,6B,11A) 16 1
(3A,6B,8A) 16 1 (3A,6A,6B) 24 1
(3A,6B,10A) 28 1 (3A,3B,11B) 5 1
(3A,3B,11A) 5 1 (3A,3B,8A) 6 1
(3A,3B,6A) 4 1 (3A,3B,10A) 8 1
(3A,4A,11B) 1 1 (3A,4A,11A) 1 1
(3A,4A,6A) 3 1 (3A,4A,10A) 3 1
(3A,5A,11B) 4 1 (3A,5A,11A) 4 1
(3A,5A,8A) 4 1 (3A,5A,6A) 6 1
(3A,5A,10A) 16 1 (3B,8B,8B) 32 1
(3B,6B,8B) 50 1 (3B,6B,6B) 72 1
(3B,3B,8B) 8 1 (3B,3B,6B) 8 1
(4A,8B,8B) 44 1 (4A,6B,8B) 58 1
(4A,6B,6B) 38 1 (3B,4A,8A) 13 1
(3B,4A,6B) 10 1 (4A,4A,8B) 4 1
(2B,11B,11B) 2 1 (2B,11A,11B) 3 1
(2B,11A,11A) 3 1 (2B,8A,11B) 2 1
(2B,8A,11A) 2 1 (2B,6A,11B) 4 1
(2B,6A,11A) 4 1 (2B,6A,8A) 4 1
(2B,6A,6A) 4 1 (2B,10A,11B) 4 1
(2B,10A,11A) 4 1 (2B,8A,10A) 2 1
(2B,6A,10A) 6 1 (2B,10A,10A) 4 1
(5A,8B,8B) 66 1 (5A,6B,8B) 132 1
(5A,6B,6B) 160 1 (3B,5A,8B) 32 1
(3B,5A,6B) 44 1 (3B,3B,5A) 2 1
(4A,5A,8B) 24 1 (4A,5A,6B) 14 1
(3B,4A,5A) 7 1 (5A,5A,8B) 48 1
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Table 5.23: M12,g = 1, Of Degree 12
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(5A,5A,6B) 64 1 (3B,5A,5A) 12 1
(4A,5A,5A) 3 1 (5A,5A,5A) 6 1
(2A,8B,11B) 4 1 (2A,8B,11A) 4 1
(2A,8A,8B) 8 1 (2A,6A,8B) 4 1
(2A,8B,10A) 5 1 (2A,6B,11B) 6 1
(2A,6B,11A) 6 1 (2A,6B,8A) 6 1
(2A,6A,6B) 6 1 (2A,6B,10A) 6 1
(2A,4A,11B) 1 1 (2A,4A,11A) 1 1
(2A,5A,11A) 6 1 (2A,5A,11B) 6 1
(2A,5A,8B) 3 1 (4B,4B,4B,4B) 3 528,1056,180

(3A,4B,4B,4B) 1 1494 (3A,3A,4B,4B) 3 72,1020,132
(3A,3A,3A,4B) 1 792 (3A,3A,3A,3A) 2 132,288
(2B,4B,4B,8B) 1 2160 (2B,4B,4B,6B) 1 4000
(2B,3B,4B,4B) 1 936 (2B,4A,4B,4B) 1 972
(2B,4B,4B,5A) 1 1940 (2B,3A,4B,6B) 1 2816
(2B,3A,3B,4B) 1 670 (2B,3A,4A,4B) 1 530
(2B,3A,4B,5A) 1 1310 (2B,3A,3A,8B) 2 1310,524
(2B,3A,4B,8B) 1 1756 (2B,3A,3A,6B) 2 524,524
(2B,3A,3A,3B) 2 162,192 (2B,3A,3A,4A) 1 132
(2B,3A,3A,5A) 2 570,120 (2B,2B,8B,8B) 4 1120,784,128,96
(2B,2B,4B,11B) 1 396 (2B,2B,4B,11A) 1 396
(2B,2B,4B,8A) 1 672 (2B,2B,4B,6A) 1 552
(2B,2B,4B,10A) 1 540 (2B,2B,6B,8B) 2 1864,1864
(2B,2B,6B,6B) 5 2152,1524, (2B,2B,3A,11B) 2 55,154

456,288,108
(2B,2B,3A,11A) 2 55,154 (2B,2B,3A,8A) 2 104,104
(2B,2B,3A,6A) 1 272 (2B,2B,3A,10A) 2 160,160
(2B,2B,3B,8B) 2 396,396 (2B,2B,3B,6B) 2 648,396
(2B,2B,3B,3B 2 64,72 (2B,2B,4A,8B) 1 672
(2B,2B,4A,6B) 1 504 (2B,2B,3B,4A) 1 144

(2B,2B,2B,4B,4B) 1 65472 (2B,2B,2B,3A,4B) 1 42000
(2B,2B,2B,2B,8B) 2 26880,26880 (2B,2B,2B,3A,3A) 2 15840,6024
(2B,2B,2B,2B,5A) 2 22800,9900 (2B,2B,2B,2B,4A) 1 12768
(2B,2B,2B,2B,6B) 2 25056,26864 (2B,2B,2B,2B,3B) 2 8280,5562
(2A,2B,2B,2B,3A) 1 8256 (2A,2A,2B,2B,2B) 1 1216
(2B,2B,5A,8B) 2 900,900 (2B,2B,5A,6B) 2 720,1440
(2B,2B,3B,5A) 2 300,270 (2B,2B,4A,5A) 1 220
(2A,2B,2B,11A) 1 88 (2A,2B,2B,8A) 1 64
(2A,2B,2B,6A) 1 78 (2A,2B,2B,10A) 1 60
(2A,2B,4B,8B) 1 596 (2B,2B,5A,5A) 4 660,180,160,40
(2A,2B,2B,11B) 1 88 (2A,2B,4B,6B) 1 894
(2A,2B,3B,4B) 1 165 (2A,2B,4A,4B) 1 120
(2A,2B,4B,5A) 1 500 (2A,2B,3A,8B) 1 372
(2A,2B,3A,6B) 1 584 (2A,2B,3A,3B) 1 108
(2A,2B,3A,4A) 1 66 (2A,2B,3A,5A) 1 330
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Table 5.24: M12,g = 1, Of Degree 12
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O
(2A,2A,2B,8B) 1 96 (2A,2A,2B,6B) 1 108
(2A,2A,2B,5A) 1 40 (2A,4B,4B,4B) 1 688,156
(2A,3A,4B,4B) 1 564 (2A,3A,3A,4B) 1 72
(2A,3A,3A,3A) 1 144 (2A,2A,4B,4B) 1 60
(2A,3A,3A,4B) 1 72 (2A,2A,3A,3A) 1 44

(2A,2B,2B,2B,4B) 1 12768 (2B,2B,2B,2B,2B,2B) 2 588800,332640

Table 5.25: M12,g = 1, Of Degree 66
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(2B,3B,11A) 1 1 (2B,3B,11B) 1 1
(2A,3A,11A) 1 1 (2A,3A,11B) 1 1

Table 5.26: M12,g = 1, Of Degree 144
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(2A,3A,11A) 1 1 (2A,3A,11B) 1 1

Table 5.27: M12.2,g = 1, Of Degree 144
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(2C,4C,6B) 4 1 (2C,4A,6A) 2 1

Table 5.28: M22,g = 1, Of Degree 22
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(3A,5A,5A) 162 1 (3A,5A,6A) 122 1
(3A,6A,6A) 66 1 (3A,3A,11B) 18 1
(3A,3A,11A) 18 1 (3A,4B,7B) 28 1
(3A,4B,7A) 28 1 (3A,4B,8A) 26 1
(3A,4A,7A) 52 1 (3A,4A,7B) 52 1
(3A,4A,8A) 60 1 (4B,4B,5A) 14 1
(4B,4B,6A) 24 1 (4B,4B,5A) 108 1
(4A,4B,6A) 50 1 (4A,4A,5A) 158 1
(4A,4A,6A) 104 1 (2A,5A,11A) 14 1
(2A,5A,11B) 14 1 (2A,6A,11A) 10 1
(2A,6A,11B) 10 1 (2A,3A,3A,3A) 2 1680,2448
(2A,7A,7A) 16 1 (2A,7A,7B) 12 1
(2A,7B,7B) 16 1 (2A,7A,8A) 16 1
(2A,7B,8B) 16 1 (2A,8A,8A) 10 1

(2A,2A,3A,5A) 2 1380,1500 (2A,2A,3A,6A) 2 864,744
(2A,2A,4B,4B) 3 108,108,100 (2A,2A,4A,4B) 3 108,108,100
(2A,2A,4A,4A) 5 840,840,488,200,216 (2A,2A,2A,11A) 6 33
(2A,2A,2A,11B) 6 33 (2A,2A,2A,2A,3A) 2 22464,22032

Table 5.29: M22,g = 1, Of Degree 77
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(2A,4A,11A) 2 1 (2A,4A,11B) 2 1
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Table 5.30: M = M22.2,g = 1, Of Degree 22
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(4D,4D,8A) 8 1 (4D,4D,7B) 10 1
(4D,4D,7A) 10 1 (4B,4D,8B) 5 1
(4C,4D,5A) 20 1 (4C,4D,6A) 8 1
(4A,4D,8B) 20 1 (4D,5A,6B) 62 1
(4D,6A,6B) 51 1 (2C,4D,11A) 5 1
(2C,5A,8B) 12 1 (2C,4B,10A) 3 1
(2C,4B,14B) 2 1 (2C,4B,14A) 2 1
(2C,4B,12A) 4 1 (2C,4C,8A) 3 1
(2C,4C,7A) 2 1 (2C,4C,7B) 2 1
(2C,4A,10A) 9 1 (2C,4A,14B) 7 1
(2C,4A,14A) 7 1 (2C,4A,12A) 6 1
(2C,6A,8B) 5 1 (2C,6B,8A) 9 1
(2C,6B,7B) 14 1 (2C,6B,7A) 14 1
(4B,4C,4C) 3 1 (4B,4C,6B) 15 1
(4B,6B,6B) 49 1 (4A,4C,4C) 6 1
(4A,4C,6B) 37 1 (3A,4D,12A) 12 1
(3A,4C,8B) 13 1 (3A,6B,8B) 50 1
(2B,8B,11A) 3 1 (2B,8A,10A) 3 1
(2B,8A,14A) 2 1 (2B,8A,14B) 2 1
(2B,8A,12A) 2 1 (2B,7B,14A) 4 1
(2B,7B,10A) 2 1 (2B,7B,14B) 4 1
(4A,6B,6B) 200 1 (2A,8B,10A) 4 1
(2A,8B,14B) 6 1 (2A,8B,14A) 6 1
(2A,8B,12A) 6 1 (3A,4D,10A) 21 1
(3A,4D,14A) 9 1 (3A,4D,14B) 3 1
(2B,7B,12A) 3 1 (2B,7A,10A) 4 1
(2B,7A,14A) 3 1 (2B,7A,14B) 2 1
(2B,7A,12A) 3 1 (2A,2C,2C,4B) 1 50

(2A,2C,2C,4A) 1 108 (2A,2C,3A,4D) 1 378
(2A,2A,4C,4D) 1 200 (2A,2A,4D,6B) 1 1080
(2A,2A,2C,8B) 1 136 (2B,2C,4D,4D) 1 4
(2B,2C,2C,4C) 1 16 (2B,2C,2C,6B) 1 66
(2B,2C,3A,4B) 1 96 (2B,2C,3A,4A) 1 258
(2A,2B,4D,5A) 1 330 (2A,2B,4D,6A) 1 204
(2A,2B,2C,8A) 1 44 (2A,2B,2C,7A) 1 63
(2A,2B,2C,7B) 1 63 (2A,2B,4B,4C) 1 60
(2A,2B,4B,6B) 1 222 (2A,2B,4A,4C) 1 160
(2A,2B,4A,6B) 1 984 (2A,2B,3A,4D) 1 276
(2A,3A,3A,4D) 1 480 (2B,2B,4D,8B) 1 40
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Table 5.31: M22.2,g = 1, Of Degree 22
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O
(2B,2B,2C,10A) 1 20 (2B,2B,2C,14B) 1 14
(2B,2B,2C,14A) 1 14 (2B,2B,2C,12A) 1 24
(2B,2B,4B,5A) 1 45 (2B,2B,4B,6A) 1 72
(2B,2B,4C,4C) 1 16 (2B,2B,4A,5A) 1 350
(2B,2B,4A,6A) 1 168 (2A,2B,2B,2C,2C) 1 312

(2A,2A,2B,2B,4B) 1 1024 (2A,2A,2B,2B,4A) 1 4864
(2B,2B,4C,6B) 1 96 (2B,2B,6B,6B) 2 66,228
(2B,2B,3A,8A) 1 80 (2B,2B,3A,7B) 2 56,35
(2B,2B,3A,7A) 2 56,35 (2A,2B,2B,2B,4C) 1 368

(2A,2B,2B,2B,6B) 1 1404 (2B,2B,2B,2B,5A) 1 300
(2B,2B,2B,2B,6A) 1 432 (2A,2A,2A,2B,4D) 1 5232
(2B,2B,2B,2C,3A) 1 648 (2A,2A,2B,2B,2B,2B) 1 6704

Table 5.32: M22.2,g = 1, Of Degree 77
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(2C,4A,7A) 2 1 (2C,4A,7B) 2 1
(2C,4C,8A) 3 1 (2C,4C,8B) 3 1
(2C,5A,6B) 11 1 (2C,6A,6B) 7 1
(2C,3A,11A) 2 1 (2C,3A,11B) 2 1

(2B,2C,2C,4D) 1 16
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Table 5.33: M23,g = 1, Of Degree 23
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(4A,5A,5A) 396 1 (4A,4A,8A) 568 1
(4A,4A,7B) 206 1 (4A,4A,7A) 206 1
(4A,5A,8A) 170 1 (3A,5A,7B) 59 1
(3A,5A,7A) 59 1 (3A,4A,15B) 57 1
(3A,4A,15A) 57 1 (3A,4A,11B) 63 1
(3A,4A,11A) 63 1 (3A,4A,14B) 51 1
(3A,4A,14A) 51 1 (3A,6A,8A) 350 1
(3A,6A,7B) 138 1 (3A,6A,7A) 138 1
(3A,3A,23B) 6 1 (3A,3A,23A) 6 1
(2A,8A,15B) 28 1 (2A,8A,15A) 28 1
(2A,8A,11B) 28 1 (2A,8A,11A) 28 1
(2A,8A,14B) 26 1 (2A,8A,14A) 26 1
(2A,5A,23A) 6 1 (2A,5A,23B) 6 1
(2A,7B,15B) 11 1 (2A,7B,15A) 11 1
(2A,7B,11B) 12 1 (2A,7B,11A) 12 1
(2A,7B,14B) 5 1 (2A,7B,14A) 12 1
(2A,7A,15B) 11 1 (2A,7A,15A) 11 1
(2A,7A,11B) 12 1 (2A,7A,11A) 12 1
(2A,7A,14B) 12 1 (2A,7A,14A) 5 1
(2A,6A,23B) 14 1 (2A,6A,23A) 14 1
(4A,6A,6A) 1220 1 (4A,5A,6A) 776 1

(2A,3A,3A,4A) 1 11784 (2A,2A,4A,5A) 1 10680
(2A,2A,4A,6A) 1 16656 (2A,2A,3A,8A) 1 4352
(2A,2A,3A,7B) 1 1799 (2A,2A,3A,7A) 1 1799
(2A,2A,2A,23B) 2 69,69 (2A,2A,2A,23A) 2 69,69
(2A,2A,2A,2A,4A) 1 244224
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Table 5.34: M24,g = 1, Of Degree 24
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(4B,4B,12A) 484 1 (4B,4B,14B) 284 1
(4B,4B,14A) 284 1 (4B,4B,11A) 315 1
(4B,4B,10A) 300 1 (4B,4B,15B) 288 1
(4B,4B,15A) 288 1 (4B,4B,6B) 327 1
(4B,6A,8A) 1736 1 (4B,6A,7B) 444 1
(4B,6A,7A) 444 1 (4B,4C,6A) 510 1
(4A,4B,8A) 182 1 (4B,4B,7B) 44 1
(4A,4B,7A) 182 1 (4A,4B,4C) 22 1
(4B,5A,8A) 461 1 (4B,5A,7B) 104 1
(4B,5A,7A) 104 1 (4B,4C,5A) 147 1
(3B,4B,8A) 128 1 (3B,4B,7B) 62 1
(3B,4B,7A) 62 1 (3B,4B,4C) 38 1
(6A,6A,6A) 7516 1 (4A,6A,6A) 652 1
(4A,4A,6A) 32 1 (2A,8A,21B) 17 1
(2A,8A,21A) 17 1 (2A,8A,23B) 9 1
(2A,8A,23A) 9 1 (2A,8A,12B) 41 1
(2A,12A,12A) 48 1 (2A,12A,14B) 49 1
(2A,14B,14B) 31 1 (2A,12A,14A) 49 1
(2A,14A,14B) 12 1 (2A,14A,14A) 31 1
(2A,7B,21B) 3 1 (2A,7B,21A) 7 1
(2A,7B,23B) 3 1 (2A,7B,23A) 3 1
(2A,7B,12B) 11 1 (2A,7A,21B) 7 1
(2A,7A,23A) 3 1 (2A,7A,12B) 3 1
(2A,11A,12A) 11 1 (2A,11A,14B) 43 1
(2A,7A,23B) 3 1 (2A,10A,11A) 21 1
(2A,11A,14A) 22 1 (2A,11A,11A) 19 1
(2A,10A,12A) 30 1 (2A,10A,14B) 26 1
(2A,10A,14A) 26 1 (2A,10A,10A) 22 1
(2A,12A,15B) 47 1 (2A,14B,15B) 24 1
(2A,14A,15B) 24 1 (2A,11A,15B) 26 1
(2A,10A,15B) 21 1 (2A,15B,15B) 19 1
(2A,12A,15A) 47 1 (2A,14B,15A) 24 1
(2A,14A,15A) 24 1 (2A,11A,15A) 26 1
(2A,10A,15A) 21 1 (2A,15A,15B) 33 1
(2A,15A,15A) 19 1 (2A,6B,12A) 28 1
(2A,6B,14B) 33 1 (2A,6B,14A) 33 1
(2A,6B,11A) 31 1 (2A,6B,10A) 15 1
(2A,6B,15B) 27 1 (2A,6B,15A) 27 1
(2A,6B,6B) 6 1 (2A,4C,21B) 7 1
(2A,4C,21A) 7 1 (2A,4C,23B) 7 1
(2A,4C,23A) 7 1 (2A,4C,12B) 6 1
(3A,8A,8A) 238 1 (3A,4B,21B) 30 1
(3A,4B,21A) 30 1 (3A,4B,23B) 19 1
(3A,4B,23A) 19 1 (3A,4B,12B) 54 1

99



Table 5.35: M24,g = 1, Of Degree 24
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(3A,6A,12A) 412 1 (3A,6A,14B) 218 1
(3A,6A,14A) 218 1 (3A,6A,11A) 241 1
(3A,6A,10A) 210 1 (3A,6A,15B) 230 1
(3A,6A,15A) 230 1 (3A,6A,6B) 243 1
(3A,4A,12A) 20 1 (3A,4A,14B) 22 1
(3A,4A,14A) 22 1 (3A,4A,11A) 32 1
(3A,4A,10A) 14 1 (3A,4A,15B) 24 1
(3A,4A,15A) 24 1 (3A,4A,6B) 15 1
(3A,7B,8A) 64 1 (3A,7B,7B) 13 1
(3A,7A,8A) 64 1 (3A,7A,7B) 16 1
(3A,7A,7A) 13 1 (3A,5A,12A) 112 1
(3A,5A,14B) 58 1 (3A,5A,14A) 58 1
(3A,5A,11A) 50 1 (3A,5A,10A) 69 1
(3A,5A,15B) 51 1 (3A,5A,15A) 51 1
(3A,5A,6B) 66 1 (3A,4C,8A) 69 1
(3A,4C,7B) 26 1 (3A,4C,7A) 26 1
(3A,4C,4C) 10 1 (3A,3B,12A) 40 1
(3A,3B,14B) 30 1 (3A,3B,14A) 30 1
(3A,3B,11A) 27 1 (3A,3B,10A) 21 1
(3A,3B,15B) 20 1 (3A,3B,15A) 20 1
(3A,3B,6B) 10 1 (5A,6A,6A) 2362 1
(4A,5A,6A) 191 1 (4A,4A,5A) 8 1
(5A,5A,6A) 673 1 (2A,2B,4B,4B) 1 10852
(4A,5A,5A) 84 1 (5A,5A,5A) 138 1
(3B,6A,6A) 576 1 (3B,4A,6A) 34 1
(3B,5A,6A) 227 1 (3B,4A,5A) 22 1
(3B,5A,5A) 76 1 (3B,3B,6A) 28 1
(3B,3B,5A) 6 1 (2B,8A,8A) 92 1
(2B,4B,21B) 12 1 (2B,4B,21A) 12 1
(2B,4B,23B) 7 1 (2B,4B,23A) 7 1
(2B,4B,12B) 19 1 (2B,6A,12A) 70 1
(2B,6A,14B) 70 1 (2B,6A,14A) 70 1
(2B,6A,11A) 80 1 (2B,6A,10A) 34 1
(2B,6A,15B) 69 1 (2B,6A,15A) 69 1
(2B,6A,6B) 30 1 (2B,4A,14B) 3 1
(2B,4A,14A) 3 1 (2B,4A,15B) 3 1
(2B,4A,15A) 3 1 (2B,7B,8A) 32 1
(2B,7B,7B) 6 1 (2B,7A,8A) 32 1
(2B,7A,7B) 17 1 (2B,7A,7A) 6 1
(2B,5A,12A) 21 1 (2B,5A,14B) 20 1
(2B,5A,14A) 20 1 (2B,5A,11A) 34 1
(2B,5A,10A) 10 1 (2B,5A,15B) 27 1
(2B,5A,15A) 27 1 (2B,5A,6B) 14 1

100



Table 5.36: M24,g = 1, Of Degree 24
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(2B,4C,8A) 12 1 (2B,4C,7B) 4 1
(2B,4C,7A) 4 1 (2B,3B,14B) 4 1
(2B,3B,14A) 4 1 (2B,3B,15B) 3 1
(2B,3B,15A) 3 1 (2A,7B,21A) 3 1
(2A,2A,4B,8A) 1 19960 (2A,2A,4B,7A) 1 5313
(2A,2A,4B,7A) 1 5313 (2A,2A,4B,4C) 1 5104
(2A,2A,6A,6A) 2 84012,960 (2A,2A,4A,6A) 1 7044
(2A,2A,4A,4A) 1 384 (2A,2A,2A,2A,6A) 1 989280

(2A,2A,2A,2A,4A) 1 74496 (2A,2B,4B,6A) 1 86610
(2A,2A,2A,2A,5A) 1 342600 (2A,2A,2A,2A,3B) 1 75816
(2A,2A,2A,3A,3A) 1 35060 (2A,2A,2A,2B,3A) 1 85986
(2A,2A,2A,2B,2B) 2 10896,37506 (2A,2A,3A,12A) 1 3876
(2A,2A,3A,14A) 1 2366 (2A,2A,3A,14B) 1 2366
(2A,2A,3A,11A) 1 2926 (2A,2A,3A,10A) 1 2130
(2A,2A,3A,15A) 1 2400 (2A,2A,3A,15B) 1 2400
(2A,2A,3A,6B) 1 2397 (2A,2A,5A,6A) 2 48480,27330
(2A,2A,4A,5A) 1 2000 (2A,2A,5A,5A) 2 8280,340
(2A,2A,3B,6A) 1 6744 (2A,2A,3B,4A) 1 504
(2A,2A,3B,5A) 1 2505 (2A,2A,3B,3B) 1 258
(2A,2A,2B,14A) 1 812 (2A,2A,2B,14B) 1 812
(2A,2A,2B,11A) 1 913 (2A,2A,2B,12A) 1 720
(2A,2A,2B,10A) 1 720 (2A,2A,2B,15A) 1 750
(2A,2A,2B,15B) 1 750 (2A,2A,2B,6B) 1 360
(2A,3A,3A,6A) 1 27024 (2A,3A,3A,4A) 1 2172
(2A,3A,3A,5A) 1 8430 (2A,3A,3A,3B) 1 2592
(2A,2B,3A,4A) 1 336 (2A,2B,3A,6A) 1 7836
(2A,2B,3A,5A) 1 2775 (2A,2B,3A,3B) 1 552
(2B,2B,3A,3A) 1 290 (2B,3A,3A,3A) 1 3220
(2A,2B,2B,5A) 1 340

Table 5.37: J2,g = 1, Of Degree 100
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(2B,3B,12A) 8 1 (2B,4A,7A) 4 1

Table 5.38: J2,g = 1, Of Degree 315
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(2B,3B,7A) 10 1

Table 5.39: J2 : 2,g = 1, Of Degree 100
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(2C,4C,8A) 6 1 (2C,4B,12B) 5 1
(2C,4C,24A) 2 1 (2C,4C,24B) 2 1
(2A,2C,2C,3B) 1 141 (2C,4A,12B) 1 1
(2C,4C,6B) 5 1
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Table 5.40: HS,g = 1, Of Degree 100
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(2B,3A,11A) 3 1 (2B,3A,11B) 3 1

Table 5.41: HS : 2,g = 1, Of Degree 100
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O
(2B,2C,2C,5A) 1 1 (2C,4F,11B) 3 1
(2D,4E,8B) 10 1 (2D,4E,7A) 10 1
(2D,3A,20D) 2 1 (2D,3A,20E) 2 1
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APPENDIX C

GENUS TWO COVERS
Appendix C contains table representing the result of our computation of primitive genus two
cover in sporadic simple groups satisfying Theorem 1.0.2. Note that N.Orbit means number of
orbits, L.O means length of orbits.

Table 5.42: M11,g = 2, Of Degree 11
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(6A,6A,6A) 36 1 (3A,6A,11A) 4 1
(3A,6A,11B) 4 1 (3A,8A,11A) 3 1
(3A,8B,11B) 5 1 (3A,8B,11A) 5 1
(3A,8A,11B) 5 1 (3A,5A,11A) 5 1
(3A,5A,11B) 5 1 (6A,6A,8A) 28 1
(6A,6A,8B) 28 1 (8A,8A,8A) 14 1
(8A,8A,8B) 14 1 (8A,8B,8B) 14 1
(8B,8B,8B) 14 1 (6A,8A,8A) 12 1
(6A,8A,8B) 28 1 (6A,8B,8B) 12 1
(4A,6A,11A) 18 1 (4A,6A,11B) 18 1
(4A,8A,11A) 11 1 (4A,8A,11B) 11 1
(4A,8B,11A) 11 1 (4A,8B,11B) 11 1
(4A,5A,11A) 18 1 (4A,5A,11B) 18 1
(2A,11A,11A) 1 1 (2A,11B,11B) 1 1
(5A,5A,5A) 24 1 (5A,64,6A) 34 1
(5A,6A,8A) 33 18 (5A,6A,8B) 33 1
(5A,8A,8A) 23 1 (5A,8A,8B) 23 1
(5A,8B,8B) 23 1 (5A,5A,6A) 38 1
(5A,5A,8A) 36 1 (5A,5A,8B) 36 1

(3A,3A,3A,3A) 1 288 (3A,3A,3A,4A) 1 1104
(3A,3A,4A,4A) 2 2128,92 (3A,4A,4A,4A) 1 4428
(4A,4A,4A,4A) 3 2880,4776,504 (2A,3A,3A,6A) 1 444
(2A,3A,3A,8A) 1 450 (2A,3A,3A,8B) 1 450
(2A,3A,3A,5A) 1 385 (2A,3A,4A,6A) 1 1417
(2A,3A,4A,8A) 1 951 (2A,3A,4A,8B) 1 951
(2A,3A,4A,5A) 1 1528 (2A,4A,4A,6A) 1 3016
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Table 5.43: M11,g = 2, Of Degree 11
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O
(2A,4A,4A,8A) 1 1940 (2A,4A,4A,8B) 1 1940
(2A,4A,4A,5A) 1 3150 (2A,2A,6A,6A) 1 1940
(2A,2A,3A,11A) 1 77 (2A,2A,3A,11B) 1 77
(2A,2A,6A,8A) 1 566 (2A,2A,6A,8B) 1 566
(2A,2A,8A,8A) 2 272,48 (2A,2A,8A,8B) 1 436
(2A,2A,4A,11A) 1 286 (2A,2A,4A,11B) 1 286
(2A,2A,2A,3A,3A) 1 8280 (2A,2A,2A,4A,4A) 1 57720
(2A,2A,2A,3A,4A) 1 27204 (2A,2A,2A,2A,6A) 1 15228
(2A,2A,2A,2A,8A) 1 10944 (2A,2A,2A,2A,8B) 1 10944

(2A,2A,2A,2A,2A,2A) 1 229680 (2A,2A,2A,2A,5A) 1 12000
(2A,2A,5A,6A) 1 680 (2A,2A,5A,8A) 1 630
(2A,2A,5A,8B) 1 630 (2A,2A,5A,5A) 1 570
(2A,2A,8B,8B) 2 272,48

Table 5.44: M11,g = 2, Of Degree 12
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(3A,5A,11A) 17 1 (5A,5A,11B) 17 1
(5A,5A,8A) 16 1 (5A,5A,8B) 16 1
(5A,6A,11A) 20 1 (5A,6A,11B) 20 1
(5A,6A,8A) 33 1 (5A,6A,8B) 33 1
(6A,6A,11A) 13 1 (6A,6A,11B) 13 1
(6A,6A,8A) 28 1 (6A,6A,8B) 28 1

(3A,11A,11A) 5 1 (3A,11A,11B) 2 1
(3A,11B,11B) 5 1 (3A,8A,11A) 5 1
(3A,8A,11B) 5 1 (3A,8B,11A) 5 1
(3A,8B,11B) 5 1 (3A,8A,8A) 3 1
(3A,8A,8B) 7 1 (3A,8B,8B) 3 1
(4A,5A,11A) 18 1 (4A,5A,11B) 18 1
(3A,5A,8A) 17 1 (3A,5A,8B) 17 1
(4A,6A,11A) 18 1 (4A,6A,11B) 18 1
(4A,5A,8A) 18 1 (4A,5A,8B) 18 1
(4A,4A,11A) 7 1 (4A,4A,11B) 7 1
(4A,4A,8A) 4 1 (4A,4A,8B) 4 1

(3A,3A,3A,5A) 1 1155 (3A,3A,3A,6A) 1 1494
(3A,3A,3A,4A) 1 1104 (2A,3A,5A,5A) 1 1850
(2A,3A,5A,6A) 1 2010 (2A,3A,6A,6A) 1 1791
(2A,3A,3A,11A) 1 286 (2A,3A,3A,11B) 1 286
(2A,3A,3A,8A) 1 450 (2A,3A,3A,8B) 1 450
(2A,3A,4A,5A) 1 1525 (2A,3A,4A,6A) 1 1417
(2A,3A,4A,4A) 1 708 (2A,2A,5A,11A) 1 385
(2A,2A,5A,11B) 1 385 (2A,2A,5A,8A) 1 630
(2A,2A,5A,8B) 1 630 (2A,2A,6A,11A) 1 352
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Table 5.45: M11,g = 2, Of Degree 12
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O
(2A,2A,6A,11B) 1 352 (2A,2A,6A,8A) 1 566
(2A,2A,6A,8B) 1 566 (2A,2A,3A,3A,3A) 1 26856
(2A,2A,4A,11A) 1 286 (2A,2A,4A,11B) 1 286
(2A,2A,4A,8A) 1 304 (2A,2A,4A,8B) 1 304

(2A,2A,2A,3A,5A) 1 37200 (2A,2A,2A,3A,6A) 1 35492
(2A,2A,2A,3A,4A) 1 27204 (2A,2A,2A,2A,11A) 1 6897
(2A,2A,2A,3A,11B) 1 6897 (2A,2A,2A,2A,8A) 1 10944
(2A,2A,2A,2A,8B) 1 10944 (2A,2A,2A,2A,2A,3A) 1 692280

Table 5.46: M11,g = 2, Of Degree 55
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(2A,4A,11A) 1 1 (2A,4A,11B) 1 1

Table 5.47: M11,g = 2, Of Degree 66
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(2A,4A,11A) 1 1 (2A,4A,11B) 1 1

Table 5.48: M12,g = 2, Of Degree 12
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(8B,8B,11A) 92 1 (8B,8B,11B) 92 1
(8A,8B,8B) 180 1 (6A,8B,8B) 104 1
(8B,8B,10A) 120 1 (4B,11B,11B) 16 1
(4B,11A,11B) 16 1 (4B,11A,11A) 16 1
(4B,8A,11B) 33 1 (4B,8A,11A) 33 1
(4B,8A,8A) 44 1 (4B,6A,11A) 22 1
(4B,6A,11B) 22 1 (4B,6A,8B) 46 1
(4B,6A,6A) 22 1 (4B,10A,11B) 26 1
(4B,10A,11A) 26 1 (4B,10A,8A) 47 1
(4B,6A,10A) 28 1 (6B,8B,11B) 150 1
(6B,8B,11A) 150 1 (6B,8A,8B) 260 1
(6A,6B,8B) 162 1 (6B,8B,10A) 186 1
(6B,6B,11B) 211 1 (6B,6B,11A) 211 1
(6B,6B,8A) 256 1 (6A,6B,6B) 230 1
(6B,6B,10A) 268 1 (3A,11B,11B) 12 1
(3A,11A,11A) 12 1 (3A,8A,11B) 10 1
(3A,8A,11A) 10 1 (3A,8A,8A) 6 1
(3A,6A,11B) 15 1 (3A,6B,11A) 15 1
(3A,6B,8A) 18 1 (3A,6A,6A) 14 1
(3A,10A,11B) 14 1 (3A,10A,11A) 14 1
(3A,10A,8A) 18 1 (3A,6A,10A) 24 1
(3A,10A,10A) 14 1 (3B,8B,11B) 28 1
(3A,8B,11A) 28 1 (3B,8A,8B) 52 1
(3B,6A,8B) 28 1 (3B,8B,10A) 32 1
(3B,6B,11B) 40 1 (3B,6B,11A) 40 1
(3B,6B,8A) 50 1 (3B,6A,6B) 36 1
(3B,6B,10A) 44 1 (3B,3B,11B) 7 1
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Table 5.49: M12,g = 2, Of Degree 12
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(3B,3B,11A) 7 1 (3B,3B,8A) 8 1
(3B,3B,10A) 4 1 (4A,8B,11B) 33 1
(4A,8B,11A) 33 1 (4A,8A,8B) 36 1
(4A,6A,8B) 46 1 (4A,8B,10A) 47 1
(4A,6A,11B) 27 1 (4A,6B,11A) 27 1
(4A,6A,6B) 39 1 (4A,6B,10A) 39 1
(3B,4A,11B) 8 1 (3B,4A,11A) 8 1
(3B,4A,8A) 5 1 (3B,4A,6A) 7 1
(3B,4A,10A) 10 1 (4A,4A,11A) 1 1
(4A,4A,11B) 1 1 (4A,4A,6A) 2 1
(4A,4A,10A) 2 1 (5A,8B,11A) 72 1
(5A,8B,11A) 2 1 (5A,8A,8B) 120 1
(5A,6A,8B) 100 1 (5A,8B,10A) 112 1
(5A,6B,11B) 100 1 (5A,6B,11A) 100 1
(5A,6B,8A) 132 1 (5A,6A,6B) 132 1
(5A,6B,10A) 156 1 (3B,5A,11B) 19 1
(3B,5A,11A) 19 1 (3B,5A,8A) 22 1
(3B,5A,6A) 22 1 (3B,5A,10A) 28 1
(4A,5A,11B) 10 1 (4A,5A,11B) 10 1
(4A,5A,8A) 7 1 (4A,5A,6A) 19 1
(4A,5A,10A) 22 1 (5A,5A,11B) 30 1
(5A,5A,11A) 30 1 (5A,5A,8A) 48 1
(5A,5A,6A) 58 1 (5A,5A,10A) 68 1
(2A,11A,11B) 8 1 (2A,8A,11B) 4 1
(2A,8A,11A) 4 1 (2A,8A,8A) 4 1
(2A,6A,11B) 1 1 (2A,6A,11A) 1 1
(2A,6A,8A) 4 1 (2A,10A,11B) 4 1
(2A,10A,11A) 4 1 (2A,10A,10A) 6 1
(2A,8A,10A) 5 1 (4B,10A,10A) 31 1
(4A,6B,8A) 16 1 (4B,4B,4B,8B) 1 14744

(4B,4B,4B,6B) 1 26568 (3B,4B,4B,4B) 1 6075
(4A,4B,4B,4B) 1 6478 (4B,4B,4B,5A) 1 11665
(3A,4B,4B,8B) 1 10560 (3A,4B,4B,6B) 1 18276
(3A,3B,4B,4B) 1 3750 (3A,4A,4B,4B) 1 4446
(3A,4B,4B,5A) 1 8790 (3A,3A,4B,8B) 1 7824
(3A,3A,4B,6B) 1 11952 (3A,3A,3B,4B) 1 2484
(3A,3A,4A,4B) 1 2100 (3A,3A,4B,5A) 1 5760
(3A,3A,3A,8B) 2 2328,2328 (3A,3A,3A,6B) 1 2376,3744
(3A,3A,3A,3B) 2 774,486 (3A,3A,3A,4A) 1 792
(2B,4B,8A,8A) 1 13764 (2B,4B,4B,11B) 1 2431
(2B,4B,4B,11A) 1 2431 (2B,4B,4B,8A) 1 17776
(2B,4B,4B,6A) 1 2874 (2B,4B,4B,10A) 1 3240
(2B,4B,6B,8B) 1 22624 (2B,4B,6B,6B) 1 34978
(2B,3B,4B,8B) 1 624 (2B,3B,4B,6B) 1 6696
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Table 5.50: M12,g = 2, Of Degree 12
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O
(2B,3A,3A,10A) 2 650,650 (2B,3A,3B,8B) 2 1477,1477
(2B,3A,3B,6B) 2 2088,1876 (2B,3A,3B,3B) 2 296,432
(2B,3A,4A,8B) 2 2722,1876 (2B,3A,4A,6B) 1 2816
(2B,3A,3B,4A) 1 670 (2B,3A,4A,4A) 1 240
(2B,3A,5A,8B) 1 1310 (2B,3A,5A,6B) 2 5850,3910
(2B,2B,4A,11A) 1 396 (2B,3A,5A,4A) 2 3720,3720
(2B,2B,4A,6A) 1 522 (2B,2B,8B,11B) 2 1078,1078

(2B,2B,2B,3B,4B) 1 99720 (2B,2B,8A,8B) 3 1944,992,384
(2B,2B,6A,8B) 1 25208 (2B,2B,8B,10A) 2 1390,1390

(2B,2B,4B,4B,4B) 1 424280 (2B,2B,6B,11B) 2 1166,1782
(2B,2B,6B,11A) 2 1166,1782 (2B,2B,6B,8A) 2 1864,1864
(2B,2B,6A,6B) 1 3456 (2B,2B,6B,10A) 2 2040,2040

(2B,2B,3A,4B,4B) 1 288928 (2B,2B,3A,3A,4B) 1 179048
(2B,2B,5A,10A) 1 1030 (2B,2B,3B,11B) 2 363,264
(2B,2B,3B,11A) 2 363,264 (2B,2B,3B,8A) 2 396,396
(2B,2B,3B,6A) 1 640 (2B,2B,3B,10A) 2 390,390
(2B,2B,4A,11B) 1 396 (2B,3A,3B,5A) 2 1080,1100
(2B,2B,4A,8A) 1 288 (2B,3A,5A,5A) 2 1360,3360
(2B,2B,4A,10A) 1 540 (2B,2B,2B,4B,8B) 1 353568
(2B,2B,2B,4B,6B) 1 518472 (2B,2B,8B,11A) 2 1078,1078
(2B,2B,2B,4B,5A) 1 278100 (2B,2B,2B,3A,8B) 2 108984,108984
(2A,2B,4B,8A) 1 756 (2B,2B,2B,3A,3B) 2 27864,28692

(2B,2B,2B,3A,4A) 1 42000 (2B,2B,2B,3A,5A) 2 93600,55200
(2A,2B,4B,11B) 1 539 (2B,2B,2B,2B,11A) 2 25168,16698
(2B,2B,2B,2B,8A) 1 26880 (2B,2B,2B,2B,6A) 1 46944

(2A,2B,2B,2B,2B,2B) 1 1247232 (2B,2B,2B,2B,10A) 2 28000,28000
(2A,2B,2B,2B,8B) 1 58432 (2A,2B,2B,2B,6B) 1 83088
(2A,2B,2B,2B,3B) 1 14400 (2A,2B,2B,2B,4A) 1 12768
(2A,2B,2B,2B,5A) 1 48080 (2B,2B,5A,11B) 2 880,495
(2B,2B,5A,11A) 2 880,495 (2B,2B,5A,8A) 2 900,900
(2B,2B,5A,6A) 1 1740 (2B,2B,3A,3A,3A) 2 33384,61520

(2A,2B,2B,4B,4B) 1 82656 (2A,2B,2B,3A,4B) 1 51828
(2A,2B,2B,3A,3A) 1 3106 (2A,2A,2B,2B,3A) 1 6444
(2A,2A,2A,2B,2B) 1 1520 (2A,2A,2B,2B,4B) 1 11488
(2A,2B,8B,8B) 1 2860 (2B,2B,2B,2B,11B) 2 25168,16698
(2A,2B,4B,11A) 1 539 (2B,2B,2B,3A,6B) 2 118368,162168
(2A,2B,4B,6A) 1 525 (2A,2B,4B,10A) 1 580
(2A,2B,6B,8B) 1 3894 (2A,2B,6B,6B) 1 5400
(2A,2B,3A,11B) 1 330 (2A,2B,3A,11A) 1 330
(2A,2B,3A,8B) 1 372 (2A,2B,3A,6A) 1 330
(2A,2B,3A,10A) 1 330 (2A,2B,3B,8A) 1 688
(2A,2B,3B,6B) 1 892 (2A,2B,3B,3B) 1 120
(2A,2B,4A,8A) 1 756 (2A,2B,4A,6B) 1 894
(2A,2B,3B,4A) 1 165 (2A,2B,4A,4A) 1 88
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Table 5.51: M12,g = 2, Of Degree 12
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O
(2B,3B,3B,4B) 1 1148 (2B,4A,4B,8B) 1 5310
(2B,4A,4B,6B) 1 7290 (2B,3B,4A,4B) 1 1461
(2B,4A,4A,4B) 1 972 (2B,4B,5A,8B) 1 11985
(2B,4B,5A,6B) 1 18660 (2B,3B,4B,5A) 1 3885
(2B,4A,4B,5A) 1 3740 (2B,4B,5A,5A) 1 9185
(2A,3A,8B,8B) 2 5358,4552 (2B,3A,4B,11B) 1 1683
(2B,3A,4B,11A) 1 1683,4552 (2B,3A,4B,8A) 1 2722
(2B,3A,4B,6A) 1 2037,4552 (2B,3A,4B,10A) 1 2325
(2B,3A,6B,8B) 2 2476,2476 (2B,3A,6B,6B) 2 11208,8252
(2B,3A,3A,11B) 2 528,286 (2B,3A,3A,11A) 2 528,286
(2B,3A,3A,8A) 2 524,524 (2B,3A,3A,6A) 1 1080
(2A,2B,5A,8B) 1 2317 (2A,2B,5A,6B) 1 3258
(2A,2B,3B,5A) 1 2572 (2A,2B,4A,5A) 1 500
(2A,2B,5A,5A) 1 1892 (2A,2A,2B,11B) 1 66
(2A,2B,2B,11A) 1 66 (2A,2A,2B,8A) 1 96
(2A,2A,2B,6A) 1 42 (2A,2A,2B,10A) 1 80
(2A,4B,4B,8B) 1 3840 (2A,4B,4B,6B) 1 5640
(2A,3B,4B,4B) 1 1088 (2A,4A,4B,4B) 1 1004
(2A,4B,4B,5A) 1 3362 (2A,3A,4B,8B) 1 2460
(2A,3A,4B,6B) 1 3432 (2A,3A,3B,4B) 1 624
(2A,3A,4A,4B) 1 582 (2A,3A,4B,5A) 1 2088
(2A,3A,3A,8B) 1 1536 (2A,3A,3A,6B) 1 2112
(2A,3A,3A,3B) 1 426 (2A,3A,3A,4A) 1 360
(2A,3A,3A,5A) 1 1380 (2A,2A,4B,8B) 1 520
(2A,2A,4B,6B) 1 756 (2A,2A,3B,4B) 1 120
(2A,2A,4A,4B) 2 76,64 (2A,2A,4B,5A) 2 295,135
(2A,2A,3A,8B) 1 360 (2A,2A,3A,6B) 1 456
(2A,2A,3A,3B) 1 54 (2A,2A,3A,4A) 1 72
(2A,2A,3A,5A) 1 180 (2B,2B,2B,2B,2B,3A) 2 1745280,2524320
(2A,2A,2A,6B) 3 36,36,36 (3A,3A,3A,5A) 2 510,2360

(2B,2B,2B,4A,4B) 1 98496 (2B,2B,2B,2B,2B,4B) 2 510,7824000
(2A,2A,2A,8B) 1 48

Table 5.52: M12,g = 2, Of Degree 66
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(3B,4A,4B) 4 1 (2B,6A,6B) 8 1
(2B,5A,6A) 2 1 (2A,4B,11A) 1 1
(2A,4B,11B) 1 1 (2A,6B,6B) 8 1
(2A,5A,6B) 6 1

Table 5.53: M12,g = 2, Of Degree 144
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(2B,3B,10A) 2 1
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Table 5.54: M12,g = 2, Of Degree 220
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(2B,3B,10A) 2 1

Table 5.55: M12.2,g = 2, Of Degree 144
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(2C,3B,12B) 2 1 (2C,3B,12C) 2 1
(2C,3A,12A) 1 1 (2C,4A,6C) 4 1
(2B,4C,6C) 4 1 (2A,2C,2C,3A) 1 22

Table 5.56: M22,g = 2, Of Degree 22
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(3A,5A,7A) 208 1 (3A,5A,7B) 208 1
(3A,5A,8A) 228 1 (3A,6A,7A) 130 1
(3A,6A,7B) 130 1 (3A,6A,8A) 124 1
(3A,4B,11A) 29 1 (3A,4B,11B) 29 1
(3A,4A,11A) 58 1 (3A,4A,11B) 58 1
(4A,5A,5A) 264 1 (4A,5A,6A) 180 1
(4B,5A,5A) 264 1 (4B,5A,6A) 180 1
(4B,6A,6A) 94 1 (4B,4B,7B) 40 1
(4B,4B,7A) 40 1 (4B,4B,8A) 36 1
(4A,6A,6A) 176 1 (4A,4B,7A) 98 1
(4A,4B,7B) 98 1 (4A,4B,8A) 74 1
(4A,4A,7A) 150 1 (4A,4A,7B) 150 1
(4A,4A,8A) 188 1 (2A,3A,3A,4B) 2 3492,2688

(2A,3A,3A,4A) 1 14904 (2A,7A,11A) 16 1
(2A,7A,11B) 16 1 (2A,7B,11A) 16 1
(2A,7B,11B) 16 1 (2A,8A,11A) 18 1
(2A,8A,11A) 18 1 (2A,2A,3A,7A) 2 1820,1456
(2A,2A,3A,7B) 2 1820,1456 (2A,2A,3A,8A) 2 1584,1584
(2A,2A,4B,5A) 6 780,750,750, (2A,2A,4B,6A) 6 576,352,352,

900,630,630 372,504,504
(2A,2A,4A,5A) 4 1672,936 (2A,2A,4A,6A) 4 1672,936,

,1672,1104 1672,1104
(2A,2A,2A,2A,4B) 5 2960,13056, (2A,2A,2A,2A,4A) 4 27456,52992,

11232,12960,9792 52992,30912

Table 5.57: M22,g = 2, Of Degree 77
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(2A,4B,11A) 4 1 (2A,4B,11B) 4 1
(2A,6A,11A) 12 1 (2A,6A,11B) 12 1
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Table 5.58: M22.2,g = 2, Of Degree 22
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O
(4D,4D,11A) 25 1 (4D,5A,8B) 76 1
(4B,4D,10A) 34 1 (4B,4D,14B) 15 1
(4B,4D,14A) 15 1 (4B,4D,12A) 20 1
(4C,4D,8A) 21 1 (4C,4D,7A) 19 1
(4C,4D,7B) 19 1 (4A,4D,10A) 62 1
(4A,4D,14B) 40 1 (4A,4D,14A) 40 1
(4A,4D,12A) 54 1 (4D,6A,8B) 56 1
(4D,6B,8A) 92 1 (4D,6B,7B) 97 1
(4D,6B,7A) 97 1 (2C,8A,8B) 11 1
(2C,7B,8B) 15 1 (2C,7A,8B) 15 1
(2C,5A,10A) 17 1 (2C,5A,14B) 20 1
(2C,5A,14A) 20 1 (2C,5A,12A) 19 1
(2C,6A,10A) 9 1 (2C,6A,14A) 7 1
(2C,6A,14B) 7 1 (2C,6A,12A) 8 1
(2C,6B,11A) 23 1 (4B,4B,8B) 16 1
(4B,6B,8B) 68 1 (4C,4C,5A) 12 1
(4C,4C,6A) 4 1 (4A,4C,8B) 38 1
(4A,6B,8B) 187 1 (2A,10A,10A) 22 1
(2A,12A,14B) 12 1 (2A,12A,14A) 12 1
(2A,12A,12A) 18 1 (4B,5A,6B) 132 1
(4B,6A,6B) 58 1 (5A,6B,6B) 621 1
(6A,6B,6B) 406 1 (3A,8B,8B) 41 1
(3A,4C,10A) 41 1 (3A,4C,14A) 16 1
(3A,4C,14B) 16 1 (3A,4C,12A) 20 1
(3A,6B,10A) 164 1 (3A,6B,14A) 87 1
(3A,6B,14B) 87 1 (3A,6B,12A) 116 1
(2B,10A,11A) 8 1 (2B,11A,14A) 4 1
(2B,11A,14B) 4 1 (2B,11A,12A) 7 1
(2A,10A,14A) 16 1 (2B,10A,14B) 16 1
(2A,14A,14A) 10 1 (2B,14A,14B) 7 1
(2A,14B,14B) 10 1 (2B,10A,12A) 18 1
(2A,2C,4B,4D) 1 492 (2A,2C,4A,4D) 1 1194
(2A,2C,2C,5A) 1 340 (2A,2C,2C,6A) 1 156
(2A,2C,3A,4C) 1 348 (2A,2C,3A,6B) 1 2794
(2A,2A,4D,8B) 1 1376 (2A,2A,2C,10A) 1 320
(2A,2A,2C,14B) 1 266 (2A,2A,2C,14A) 1 266
(2A,2A,2C,12A) 1 288 (2A,2A,4C,4C) 2 132,76
(2A,2A,6B,6B) 3 5398,4350,312 (2A,3A,4D,4D) 1 3026
(2B,2C,4C,4D) 1 122 (2B,2C,4D,6B) 1 744
(2B,2C,2C,8B) 1 72 (2B,2C,4B,4B) 1 136
(2B,2C,4A,4B) 1 292 (2B,2C,4A,4A) 1 814
(2B,2C,3A,5A) 1 965 (2B,2C,3A,6A) 1 448
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Table 5.59: M22.2,g = 2, Of Degree 22
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O
(2A,2B,4D,8A) 1 412 (2A,2B,4D,7B) 1 476
(2A,2B,4D,7A) 1 476 (2A,2B,2C,11A) 1 121
(2A,2B,4B,8B) 1 328 (2A,2B,4C,5A) 2 305,315
(2A,2B,4C,6A) 1 193 (2A,2B,4A,8A) 1 952
(2A,2B,5A,6B) 2 1625,1500 (2A,2B,3A,10A) 2 375,375
(2A,2B,3A,14B) 2 196,231 (2A,2B,3A,14A) 2 196,231
(2A,2B,3A,12A) 2 318,210 (2A,3A,3A,4C) 1 296
(2B,3A,3A,6B) 3 1552,886,1968 (2B,2B,4D,10A) 1 210
(2B,2B,4D,14A) 1 98 (2B,2B,4D,14B) 1 98
(2B,2B,4D,12A) 1 120 (2B,2B,5A,5A) 3 480,360,90
(2B,2B,4B,7B) 2 91,42 (2B,2B,4B,7A) 2 91,42
(2B,2B,4C,8B) 1 104 (2B,2B,4A,8A) 1 264
(2B,2B,4A,7B) 1 350 (2B,2B,4A,7A) 1 350
(2B,2B,5A,6A) 2 315,310 (2B,2B,6A,6A) 3 60,160120

(2A,2B,2B,2C,4D) 1 3400 (2A,2A,2B,2B,5A) 2 8075,7650
(2A,2A,2B,2B,6A) 2 5172,3756 (2A,2B,2B,3A,3A) 2 12594,10188
(2B,2B,6B,8B) 2 912,288 (2B,2B,3A,11A) 2 55,44,44,44

(2B,2B,2B,2C,4B) 1 912 (2B,2B,2B,2C,4A) 1 2160
(2A,2B,2B,2B,8B) 1 2400 (2B,2B,2B,3A,4D) 1 4536
(2B,2B,2B,2B,8A) 1 768 (2B,2B,4B,8A) 1 120
(2B,2B,2B,2B,7B) 2 588,294 (2B,2B,2B,2B,2B,2C) 1 6144
(2B,2B,2B,2B,7A) 2 588,294 (2B,3A,4B,4D) 1 630
(2B,3A,4A,4D) 1 2270 (2C,2C,2C,4D) 1 90
(2C,2C,3A,3A) 1 534 (2A,2A,4C,6C) 2 704,1104

(2A,2A,2B,2C,3A) 1 13356 (2B,4D,4D,4D) 1 576
(2A,2A,2A,2B,4C) 2 4920,3384 (2A,2A,2A,2B,6B) 2 27954,22194

(2A,2A,2A,2A,2B,2B) 2 137480,113040 (2A,2A,2A,2C,2C) 1 5172

Table 5.60: M22 : 2,g = 2, Of Degree 77
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(2C,4C,7A) 2 1 (2C,4C,7B) 2 1
(2C,4A,12A) 3 1 (2C,4A,10) 4 1
(2B,6B,12A) 4 1 (2B,6B,10A) 1 1
(2B,6A,11A) 3 1 (2B,6B,12A) 2 1
(2B,6B,10A) 2 1 (2A,4D,11A) 1 1
(2A,4D,11B) 1 1 (2A,2C,2C,6B) 1 48
(2A,2B,2C,5A) 1 30 (2A,2C,2V,4A) 1 50
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Table 5.61: M23,g = 2, Of Degree 23
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(5A,5A,5A) 972 1 (4A,5A,8A) 1484 1
(5A,5A,5A) 972 1 (4A,5A,8A) 1484 1
(4A,5A,7B) 622 1 (4A,5A,7A) 622 1
(4A,4A,15B) 480 1 (4A,4A,15A) 480 1
(4A,4A,11B) 564 1 (4A,4A,11A) 564 1
(4A,4A,14B) 464 1 (4A,4A,14A) 464 1
(4A,6A,8A) 564 1 (4A,6A,7B) 1157 1
(4A,6A,7A) 1157 1 (5A,5A,6A) 2178 1
(5A,6A,6A) 3416 1 (6A,6A,6A) 4860 1
(3A,8A,8A) 568 1 (3A,5A,15B) 159 1
(3A,5A,15A) 159 1 (3A,5A,11B) 148 1
(3A,5A,11A) 148 1 (3A,5A,14B) 150 1
(3A,5A,14A) 150 1 (3A,4A,23B) 50 1
(3A,4A,23A) 50 1 (3A,7B,8A) 272 1
(3A,7B,7B) 98 1 (3A,7A,8A) 272 1
(3A,6A,15B) 269 1 (3A,6A,15A) 269 1
(3A,6A,11B) 311 1 (3A,6A,11A) 311 1
(3A,6A,14B) 265 1 (3A,6A,14A) 265 1
(2A,8A,23B) 16 1 (2A,8A,23A) 16 1
(2A,15B,15B) 16 1 (2A,15A,15B) 24 1
(2A,15A,15A) 16 1 (2A,11B,15B) 23 1
(2A,11B,15A) 23 1 (2A,11B,11B) 18 1
(2A,11A,15B) 23 1 (2A,11A,15A) 23 1
(2A,11A,11B) 22 1 (2A,11A,11A) 18 1
(2A,14B,15B) 22 1 (2A,14B,15A) 22 1
(2A,11B,14B) 20 1 (2A,11A,14B) 20 1
(2A,14B,14B) 24 1 (2A,14A,15B) 22 1
(2A,14A,15A) 22 1 (2A,11B,14A) 20 1
(2A,11A,14A) 20 1 (2A,11A,14B) 17 1
(2A,14A,14A) 24 1 (2A,7B,23B) 8 1
(2A,7B,23A) 8 1 (2A,7A,23B) 8 1
(2A,7A,23A) 8 1 (2A,3A,4A,4A) 1 103728
(2A,3A,3A,5A) 1 34170 (2A,3A,3A,6A) 1 54918
(2A,2A,5A,5A) 1 30400 (2A,2A,4A,8A) 1 34944
(2A,2A,4A,7B) 1 15848 (2A,2A,4A,7A) 1 15848
(2A,2A,5A,6A) 1 48180 (2A,2A,5A,6A) 1 72528
(2A,2A,3A,15B) 1 3335 (2A,2A,3A,15A) 1 3335
(2A,2A,3A,11B) 1 4070 (2A,2A,3A,11A) 1 4070
(2A,2A,3A,14B) 1 3206 (2A,2A,3A,14A) 1 3206
(2A,2A,2A,3A,3A) 1 850392 (2A,2A,2A,2A,5A) 1 732000
(2A,2A,2A,2A,6A) 1 1050336 (2A,2A,2A,2A,2A,2A) 1 16463280
(3A,3A,3A,3A) 2 28980,8316
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Table 5.62: M24,g = 2, Of Degree 24
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(4B,8A,8A) 3440 1 (4B,4B,21B) 388 1
(4B,4B,21A) 388 1 (4B,4B,23B) 245 1
(4B,4B,23A) 245 1 (4B,4B,12B) 792 1
(4B,6A,12A) 4734 1 (4B,6A,14B) 2962 1
(4B,6A,14A) 2962 1 (4B,6A,11A) 3303 1
(4B,6A,10A) 2642 1 (4B,6A,15B) 2960 1
(4B,6A,15A) 2960 1 (4B,6A,6B) 2697 1
(4A,4B,12A) 316 1 (4A,4B,14B) 242 1
(4A,4B,14A) 242 1 (4A,4B,11A) 278 1
(4A,4B,10A) 185 1 (4A,4B,15B) 268 1
(4A,4B,15A) 268 1 (4A,4B,6B) 204 1
(4B,7B,8A) 988 1 (4B,7B,7B) 253 1
(4B,7A,7A) 212 1 (4B,4C,5A) 1406 1
(4B,5A,14B) 820 1 (4B,5A,14A) 820 1
(4B,5A,11A) 810 1 (4B,5A,10A) 823 1
(4B,5A,15B) 806 1 (4B,5A,15A) 806 1
(4B,5A,6B) 786 1 (4B,4C,8A) 958 1
(4B,4C,7B) 300 1 (4B,4C,7A) 300 1
(4B,4C,4C) 172 1 (3B,4B,12A) 328 1
(3B,4B,14B) 264 1 (3B,4B,14A) 264 1
(3B,4B,11A) 322 1 (3B,4B,10A) 199 1
(3B,4B,15B) 234 1 (3B,4B,15A) 234 1
(6A,6A,8A) 15392 1 (6A,6A,7B) 4825 1
(6A,6A,7A) 4825 1 (4C,6A,6A) 3896 1
(4A,6A,8A) 1286 1 (4A,6A,7B) 414 1
(4A,6A,7A) 414 1 (4A,4C,6A) 202 1
(4A,4A,8A) 36 1 (4A,4A,7B) 15 1
(4A,4A,7A) 15 1 (4A,4A,4C) 12 1
(2A,12A,21B) 57 1 (2A,12A,21A) 57 1
(2A,12A,23B) 33 1 (2A,12A,23A) 33 1
(2A,12A,12B) 83 1 (2A,14B,21B) 28 1
(2A,14B,21A) 39 1 (2A,14B,23B) 23 1
(2A,14B,23A) 23 1 (2A,12B,14B) 61 1
(2A,14A,21B) 39 1 (2A,14A,21A) 28 1
(2A,14A,23B) 23 1 (2A,14A,23A) 23 1
(2A,12B,14A) 61 1 (2A,11A,21B) 36 1
(2A,11A,21A) 36 1 (2A,11A,23B) 22 1
(2A,11A,23A) 22 1 (2A,11A,12B) 52 1
(2A,10A,21B) 34 1 (2A,10A,21A) 34 1
(2A,10A,23B) 21 1 (2A,10A,23A) 21 1
(2A,10A,12B) 49 1 (2A,15B,21B) 33 1
(2A,15B,21A) 33 1 (2A,15B,23B) 22 1
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Table 5.63: M24,g = 2, Of Degree 24
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O
(2A,15B,23A) 22 1 (2A,12B,15B) 60 1
(2A,15A,21B) 33 1 (2A,15A,21A) 33 1
(2A,15A,23B) 22 1 (2A,15A,23A) 22 1
(2A,12B,15A) 60 1 (2A,6A,21B) 23 1
(2A,6B,21A) 23 1 (2A,6B,23B) 19 1
(2A,6B,23A) 19 1 (2A,6B,12B) 40 1
(3A,8A,12A) 740 1 (3A,8A,14B) 448 1
(3A,8A,14A) 448 1 (3A,8A,11A) 436 1
(3A,8A,10A) 458 1 (3A,8A,15B) 444 1
(3A,8A,15A) 444 1 (3A,8A,6B) 414 1
(3A,6A,21B) 294 1 (3A,6A,21A) 294 1
(3A,6A,23B) 193 1 (3A,6A,23A) 193 1
(3A,6A,12B) 540 1 (3A,4A,21B) 30 1
(3A,4A,21A) 30 1 (3A,4A,23B) 22 1
(3A,4A,23A) 22 1 (3A,4A,12B) 45 1
(3A,7B,12A) 228 1 (3A,7B,14B) 130 1
(3A,7B,14A) 122 1 (3A,7B,11A) 112 1
(3A,7B,10A) 142 1 (3A,7B,15B) 115 1
(3A,7B,15A) 117 1 (3A,6B,7B) 36 1
(3A,7A,12A) 228 1 (3A,7A,14B) 122 1
(3A,7A,14A) 130 1 (3A,7A,11A) 112 1
(3A,7A,10A) 142 1 (3A,7A,15B) 117 1
(3A,7A,15A) 117 1 (3A,6B,7A) 136 1
(3A,5A,21B) 78 1 (3A,5A,21A) 78 1
(3A,5A,23B) 42 1 (3A,5A,23A) 42 1
(3A,5A,12B) 144 1 (3A,4C,12A) 192 1
(3A,4C,14B) 146 1 (3A,4C,14A) 146 1
(3A,4C,11A) 160 1 (3A,4C,10A) 99 1
(3A,4C,15B) 144 1 (3A,4C,15A) 144 1
(3A,4C,6B) 90 1 (3A,3B,21B) 18 1
(3A,3B,21A) 18 1 (3A,3B,23B) 20 1
(3A,3B,23A) 20 1 (3A,3B,12B) 36 1
(5A,6A,8A) 4756 1 (5A,6A,7B) 1343 1
(5A,6A,7A) 1343 1 (5A,4C,6A) 1323 1
(4A,5A,8A) 481 1 (4A,5A,7B) 151 1
(4A,5A,7A) 151 1 (4A,4C,5A) 80 1
(5A,5A,8A) 1152 1 (5A,5A,7B) 277 1
(5A,5A,7A) 277 1 (3B,4B,6B) 117 1
(4C,5A,5A) 444 1 (3B,6A,8A) 1070 1
(3B,6A,7B) 414 1 (3B,6A,7A) 414 1
(3B,4C,6A) 191 1 (3B,4A,8A) 102 1
(3B,4A,7B) 41 1 (3B,4A,7A) 41 1
(3B,5A,8A) 404 1 (3B,5A,7B) 142 1
(3B,5A,7A) 142 1 (3B,4C,5A) 96 1

114



Table 5.64: M24,g = 2 Of Degree 24
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(3B,3B,8A) 32 1 (3B,3B,7B) 12 1
(3B,3B,7A) 12 1 (3B,8A,12A) 114 1
(2B,8A,14B) 103 1 (2B,8A,14A) 103 1
(2B,8A,11A) 121 1 (2B,8A,10A) 64 1
(2B,8A,15B) 119 1 (2B,8A,15A) 119 1
(2B,6B,8A) 80 1 (2B,6A,21B) 66 1
(2B,6A,21A) 66 1 (2B,6A,23B) 50 1
(2B,6A,23A) 50 1 (2B,6A,12B) 99 1
(2B,4A,21B) 4 1 (2B,4A,21A) 4 1
(2B,4A,23B) 5 1 (2B,4A,23A) 5 1
(2B,4A,12A) 48 1 (2B,7B,14B) 22 1
(2B,7B,14A) 54 1 (2B,7B,11A) 54 1
(2B,7B,10A) 22 1 (2B,7B,15B) 47 1
(2B,7B,15A) 47 1 (2B,6B,7B) 33 1
(2B,7A,12A) 48 1 (2B,7A,14B) 54 1
(2B,7A,14A) 22 1 (2B,7A,11A) 54 1
(2B,7A,10A) 22 1 (2B,7A,15B) 47 1
(2B,7A,15A) 47 1 (2B,6B,7A) 33 1
(2B,5A,21B) 24 1 (2B,5A,21A) 24 1
(2B,5A,23B) 19 1 (2B,5A,23A) 19 1
(2B,5A,12B) 36 1 (2B,4C,12A) 16 1
(2B,4C,14B) 23 1 (2B,4C,14A) 23 1
(2B,4C,11A) 24 1 (2B,4C,10A) 6 1
(2B,4C,15B) 20 1 (2B,4C,15A) 20 1
(2B,3B,21B) 1 1 (2B,3B,21A) 1 1
(2A,4B,4B,4B) 1 526208 (2A,2A,4B,12A) 1 49424
(2A,2A,4B,14B) 1 33194 (2A,2A,4B,14A) 1 33194
(2A,2A,4B,11A) 1 39149 (2A,2A,4B,10A) 1 28660
(2A,2A,4B,15B) 1 32855 (2A,2A,4B,15A) 1 32855
(2A,2A,4B,6B) 1 28341 (2A,2A,6A,8A) 1 181688
(2A,2A,6A,7B) 1 55727 (2A,2A,6A,7A) 1 55727
(2A,2A,4C,6A) 1 43352 (2A,2A,4A,8A) 1 15112
(2A,2A,4A,7B) 1 4424 (2A,2A,4A,7A) 1 4424
(2A,2A,4A,4C) 1 2384 (2A,2A,2A,2A,8A) 1 2173440

(2A,2A,2A,2A,7B) 1 675514 (2A,2A,2A,2A,7A) 1 675514
(2A,2A,2A,2A,4C) 1 468928 (2A,2A,2A,3A,4B) 1
(2A,2A,2A,2B,4B) 1 1002768 (2A,2A,3A,21B) 1 2947
(2A,2A,3A,21A) 1 2947 (2A,2A,3A,23B) 1 2185
(2A,2A,3A,23A) 1 2185 (2A,2A,3A,12B) 1 3876
(2A,2A,5A,7B) 1 16555 (2A,2A,5A,7A) 1 16555
(2A,2A,5A,4C) 1 13860 (2A,2A,3B,8A) 1 12528
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Table 5.65: M24,g = 2 Of Degree 24
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O
(2A,2A,3B,7B) 1 4669 (2A,2A,3B,7A) 1 4669
(2A,2A,3B,4C) 1 2656 (2A,2A,2B,21B) 1 805
(2A,2A,2B,21A) 1 805 (2A,2A,2B,23B) 1 575
(2A,2A,2B,23A) 1 575 (2A,2A,2B,12B) 1 1224
(2A,3A,4B,6A) 1 3876 (2A,3A,4A,4B) 1 29134
(2A,3A,4B,5A) 1 10852 (2A,3A,3B,4B) 1 28658
(2A,3A,3A,8A) 1 57840 (2A,3A,3A,7B) 1 17038
(2A,3A,3A,7A) 1 17038 (2A,3A,3A,4C) 1 14080
(2A,2B,4B,6A) 1 86610 (2A,2B,4A,4B) 1 5112
(2A,2B,4B,5A) 1 31000 (2A,2B,3B,4B) 1 4941
(2A,2B,3A,8A) 1 15072 (2A,2B,3A,7B) 1 5201
(2A,2B,3A,7A) 1 5201 (2A,2B,3A,4C) 1 2640
(2A,2B,2B,8A) 1 2080 (2A,2B,2B,7B) 1 763
(2A,2B,2B,7A) 1 763 (2A,2B,2B,4C) 1 208
(3A,3A,3A,4A) 1 118236 (2B,3A,3A,4B) 1 34464
(2B,2B,3A,4B) 1 4680 (2B,2B,2B,4B) 1 624
(2A,2A,5A,8A) 1 57000 (2A,2A,4C,5A) 1 13860

Table 5.66: J2,g = 2, Of Degree 100
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(2B,3B,10A) 6 1 (2B,3B,10B) 6 1
(2A,5C,6B) 1 1 (2A,5D,6B) 1 1

Table 5.67: J2 : 2,g = 2, Of Degree 100
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(2C,6C,5D) 4 1 (2C,4C,14A) 9 1
(2A,2C,2C,4A) 1 28 (2A,4C,12C) 2 1

Table 5.68: HS,g = 2, Of Degree 100
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(2B,4C,20A) 3 1 (2B,4C,20B) 3 1
(2B,4C,7A) 18 1 (2B,6B,6B) 20 1
(2B,5C,6B) 22 1 (2B,5C,5C) 18 1
(2B,3A,15A) 2 1

Table 5.69: HS : 2,g = 2, Of Degree 100
Rami f icationType N.Orbit L.O Rami f icationType N.Orbit L.O

(2C,6E,10A) 1 1 (2C,4F,15A) 1 1
(2D,6B,6E) 8 1 (2D,3A,20C) 1 1
(2D,5C,6E) 6 1 (2D,4D,11B) 1 1
(2D,4F,6A) 5 1 (2D,4C,12B) 3 1
(2D,4C,10C) 6 1 (2D,4C,10D) 22 1
(2A,4E,20E) 3 1 (2A,4E,20D) 3 1
(2A,6C,10C) 1 1 (2A,2D,2D,4C) 1 268
(2D,4F,12B) 6 1 (2A,4F,10C) 2 1
(2A,4F,10D) 14 1 (2A,2A,2D,6C) 1 12

(2A,2A,2D,4F) 1 160
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