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Abstract 

 The effect of processing and formulation parameters on the resulting oil-in-water emulsion 

microstructure has been studied for a recently developed process; rotating membrane 

emulsification. A broad range of surfactant and particle dispersions were explored to reveal the key 

drivers that determine the final average droplet size produced. The aim of the study was to 

understand initial droplet generation. Emulsion stability, whilst being a significant element in 

emulsification studies, is not considered here. By furthering the understanding of the processing 

mechanisms involved, this enabled development of theoretical models to estimate droplet size and 

extent of coalescence from first principles. In addition, the implications of process scale-up were 

studied. From this work, the very first design procedure for rotating membrane emulsification was 

derived and proposed. 

 The final emulsion microstructure is heavily dependent on the coupled interaction between 

the fluid flow behaviour of the two phases and interfacial phenomena. Careful selection of process 

parameters based on sufficient characterisation of properties such as interfacial tension and 

viscosity, can avoid the occurrence of droplet coalescence or dispersed phase jetting. These can have 

a detrimental effect on producing a carefully controlled microstructure on a repeatable basis. Of 

particular importance is the rate of surfactant adsorption at the oil/water interface. A unique 

approach of dispersing non-ionic, high HLB surfactants such as Tween 20 and Brij 97 within the oil 

phase has been found to significantly reduce droplet size. This discovery allows the process to be 

highly competitive with a rotor-stator high shear mixer and an ultrasonic probe at a fraction of the 

energy consumption. Pilot-scale operation of rotating membrane emulsification provided important 

insight into how one might design and therefore implement the process for an industrial purpose. It 

is proposed here that a suitable scale-up parameter would be the membrane surface velocity. 
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AΔ,d m2 Area of triangular segment formed by adjacent pores 

AΔ.m m2 Area of triangular segment formed by adjacent active pores 

ΔA m2 Change in interfacial area 

Cac - Capillary number of continuous phase 

Cad - Capillary number of dispersed phase 

D m2 s-1 Diffusion coefficient 

D4,3 μm Volume weighted mean diameter of droplet 

DH m Hydraulic diameter of channel 

dd m Droplet diameter 

dp m Membrane pore diameter 

d1 m Membrane outer diameter 

E J Energy of particle adsorption 

FBG N Buoyancy force 

Fc N Centripetal force 

FDL N Dynamic lift force 

FI N Inertial force 

FR N Drag force 

Fstat N Static pressure force 

Fγ N Interfacial tension force 

ΔG J Gibbs free energy 

g N kg-1 Gravitational field strength 

Hi - Hydrophilic group value 

h1 m Membrane length 

J mol m-2 s-1 Diffusion flux 

Jd L m-2 h-1 Dispersed phase flux 

K m2 Membrane permeability 



  

 

kB m2 kg s-2 K-1 Boltzmann’s constant 

kx - Wall correction factor for drag force 

ky - Lift coefficient for dynamic lift force 

k1, k2 - Coefficients to determine Wecrit 

Lm m Membrane wall thickness 

Lp m Pore channel length 

Lx,a m Distance between adjacent forming droplets 

Md kg Mass of dispersed phase added 

m - Number of hydrophilic groups in surfactant molecule 

md kg Mass of droplet 

n - Number of lypophilic groups in surfactant molecule 

np,a - Numbers of pores active on membrane surface 

np,ac - Maximum number of pores active nearby to a forming droplet 

np,p - Number of pores within close proximity to a forming droplet 

np,t - Total number of pores on membrane surface 

n1 RPM Number of rotations per minute 

Oh - Ohnesorge number 

Pactive - Probability of a randomly chosen pore being active 

Pc Pa Capillary pressure 

Pcoalescence - Probability of droplet coalescence 

  
  Pa Pressure difference between dispersed and continuous phases 

   
  Pa Laplace pressure for non-spherical droplet 

ΔP Pa Laplace pressure 

ΔPtm Pa Transmembrane pressure 

Qd m3 s-1 Volumetric flow rate of dispersed phase through membrane 

qd m3 s-1 Volumetric flow rate through a single pore channel 

Re - Reynolds number 

Rec - Reynolds number of continuous phase 

r m Radius of spherical particle 

rd m Droplet radius 

r1 m Membrane outer radius 

r2 m Emulsification vessel inner radius 

T K Temperature 

Ta - Taylor number 



  

 

tcrit,ref s Droplet detachment time for Cac = 1 

td s Droplet detachment time 

tp s Processing time 

We - Weber number 

Wecrit - Critical Weber number 

Wed - Weber number for dispersed phase 

Vcrit,ref m3 Droplet detachment volume for Cac = 1 

Vd m3 Volumetric contribution of material during detachment 

Vdr m3 Volume of droplet 

Vf m3 Final droplet volume 

Vg m3 Droplet volume at end of growth stage 

vc m s-1 Velocity difference between continuous phase/membrane surface 

vd m s-1 Velocity of dispersed phase 

        m s-1 Average dispersed phase velocity 

vdr m s-1 Tangential velocity of droplet 

x m Diffusion length 

xΔ,a - Number of triangular segments formed by active pores 

xΔ,p - Number of triangular segments formed by all pores 

 

 

 

 

 

 

 

 

 



  

 

Greek letters 

Symbol Unit Definition 

α - Fraction of pores active 

γ N m-1 Interfacial tension 

   s-1 Shear rate 

γow N m-1 Interfacial tension between oil and water 

γso N m-1 Interfacial tension between solid particle and oil 

γsw N m-1 Interfacial tension between solid particle and water 

θ degree Contact angle 

μc Pa s Dynamic viscosity of continuous phase 

μd Pa s Dynamic viscosity of dispersed phase 

π - Pi 

ρc kg m-3 Density of continuous phase 

ρd kg m-3 Density of dispersed phase 

τ - Tortuosity factor for membrane 

τw Pa Wall shear stress 

φ - Membrane porosity 

φc mol m-3 Surfactant molecule concentration 

ω1 rad s-1 Angular velocity of membrane surface 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

Abbreviations 

Abbreviation Definition 

CFD Computational Fluid Dynamics 

CMC Critical Micelle Concentration 

FBM Force Balance Model 

HLB Hydrophilic-Lypophilic Balance 

HSM Rotor-stator High Shear Mixer 

IFT Interfacial Tension 

O/W Oil-in-water 

RME Rotating Membrane Emulsification 

RPM Rotations Per Minute 

SDS Sodium Dodecyl Sulphate 

SFO Sunflower Oil 

SON Ultrasonic Probe 

SPG Shirasu-Porous-Glass 

TBM Torque Balance Model 

TMP Transmembrane Pressure 

W/O Water-in-oil 

W/O/W Water-in-oil-in-water 

XME Cross-flow Membrane Emulsification 
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1.1 Background to Research 

1.1.1 Introduction to Emulsions 

An emulsion is defined as a mixture of two immiscible liquid phases with one finely 

dispersed within the other as droplets. Throughout the ages, emulsion systems have been utilised in 

many instances. Such is their versatile nature, they are ubiquitous within the modern world. 

Naturally occurring emulsions such as milk, rubber latex or plant saps have inspired the development 

of a whole range of man-made emulsion products. Products in a wide range of areas such as foods 

(ice cream, mayonnaise, salad dressing), agrochemicals (pesticides, herbicides), pharmaceuticals 

(creams, ointments), cosmetics (perfumes, lipsticks, moisturisers) and paints incorporate emulsion 

microstructures to induce physical, chemical and sensory attributes. Due to their multitude of uses, 

significant quantities of these systems are manufactured worldwide to meet consumer demand for 

such products. As with many colloidal systems, emulsions can be considered homogeneous at the 

macroscopic scale but heterogeneous at the microscale. They are generally white and opaque in 

appearance depending on the droplet size and the volume fraction of the dispersed phase. This is 

the result of the dispersed droplets diffracting light (Debye, 1947).  

There are two common types of emulsion; Oil-in-water (O/W) emulsions and water-in-oil 

(W/O) emulsions contain oil and water droplets respectively. In addition, double emulsions can also 

be produced which utilise an emulsion as the dispersed phase; for example a water-in-oil-in-water 

(W/O/W) emulsion. Emulsions are typically termed depending on their droplet size with micro- or 

nano- (10-100 nm), mini- (10-1000 nm) or macro- (> 0.5 µm) emulsions possible.  

Traditionally, emulsions have been produced by applying large quantities of energy to break 

down and disperse one of the phases. This can be achieved simply by shaking, whisking or beating a 

mixture of oil, water and a surfactant. However, to produce the small droplets required for use 

within an emulsion product, significant mechanical energy is required to increase interfacial area. 
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Processes such as rotor-stator mixers and high pressure homogenisers are generally employed to 

produce emulsions on an industrial scale. All of the emulsion ingredients are passed through areas of 

high energy dissipation which breaks down the dispersed phase into fine droplets due to turbulence 

within the flow.  The extent of turbulence (i.e. fast and chaotic fluid movement) can be modified by 

the physical design of the process. For rotor-stator mixers, the design of the mixer impeller or the 

tank (e.g. inclusion of baffles) can alter the flow profile and hence alter the degree of droplet break 

up. For high pressure homogenisers, the orifice diameter of which a coarse pre-emulsion passes 

through can be modified to increase droplet break up in conjunction with the pressure drop across 

the orifice. Essentially, these processes are principally similar (imparting shear, turbulence and fluid 

cavitation to break up droplets) albeit different in their mechanical workings.  

1.1.2 Challenges within Emulsification 

The consumer market is becoming ever more demanding with a higher expectation that 

products can offer improved functionality. With further advancements in the development of unique 

emulsion structures (e.g. double emulsions, nano-emulsions, mono-dispersed droplet size 

emulsions), simple O/W or W/O emulsions formulated using convectional technologies are much 

less attractive than in the past. Such smart structures may impart useful properties to products 

including a longer shelf life, a well-controlled release rate of an active ingredient or a lowering of fat 

content without a loss of flavour (Vladisavljevic and Williams, 2005; Van der Graaf et al., 2009). 

Products with these capabilities are only going to increase in popularity as society becomes more 

aware of adopting a healthy lifestyle.  

Although well-understood, emulsification processes currently used within industry (e.g. 

homogenisers, rotor-stator mixers) are generally not suitable for formulating the complex emulsion 

structures needed within multi-functional products. Furthermore, these processes use large 

quantities of energy inefficiently. This is both environmentally and economically unsustainable.  They 

also do not provide a high level of control over the droplet size distribution produced. A lack of 
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uniformity can trigger destabilisation mechanisms and thus be detrimental to the quality and shelf 

life of a product. Emulsions may vary from one operation to another which is not ideal for 

manufacture of a homogeneous product. Large quantities of surfactant are used to overcome this; 

these are costly ingredients within a formulation. The limitations of current technologies are 

accepted, but with a rising demand for higher quality products, they significantly limit the 

microstructures achievable. Thus, new technologies require developing to meet this demand. 

Another important consideration within the manufacturing industry is energy consumption. 

For the majority of current emulsification technologies, the energy applied lies between a factor of 

10-1000 times more than the theoretical energy required to produce the actual emulsion 

microstructure (Gijsbertsen-Abrahamse et al., 2004). For rotor-stator mixers, only a small fraction of 

the power input is transferred to the fluid to induce mixing. The power loss is greater particularly 

under faster rotational speeds, higher viscosity systems or if the shear gap is small (Paul et al., 2004). 

For the energy that is transferred, a large amount of this energy is used to break down droplets that 

have re-coalesced due to the inability of the surfactant to adsorb quickly enough. The need to 

repeatedly break down droplets in the hope they will be stabilised is obviously counterproductive. 

Manufacturers typically over-compensate for this by (over)loading their products with a much 

greater quantity of surfactant than is required to stabilise the emulsion interfacial area. Surfactants 

can be among the most expensive ingredients within a formulation but yet they are essentially being 

wasted. The remainder of the energy is dissipated as heat which can impart thermal stresses on the 

product. This may damage sensitive ingredients within the emulsion such as starches and proteins. It 

is easy to see how there is a cascade of energy loss throughout the process resulting in extremely 

low efficiency. Rhetorically speaking, in an age with rising energy cost and accelerated 

environmental damage, can we afford to be this reckless?  

It is only within the past 25 years that research has shifted away from the well-established 

emulsion technologies towards the development of novel approaches. Generally, the objective is 
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unanimous; to produce emulsion droplets individually and precisely by ‘building’ or ‘growing’ them. 

Such bottom-up manufacturing approaches offer much greater control by comparison with 

turbulent break up. These can be divided into microfluidic approaches (e.g. microcapillary 

emulsification) and membrane emulsification approaches. For the former, the dispersed phase is 

added from the branch of a T-junction into the continuous phase by precisely modifying the ratio of 

the flow rates. Droplets are produced singularly which lends itself perhaps towards low volume, high 

precision processing rather than large-scale emulsion production. Well defined structures such as 

double emulsions or core/shell capsules can be produced in a single step since all the materials are 

intricately positioned where they are needed. Alternatively, membrane emulsification works by 

forcing dispersed phase through a porous structured material. The process can vary dramatically 

depending on the membrane used, as well as the means of which shear (to aid detachment) is 

applied to the membrane surface if at all. Microfluidic and membrane emulsification approaches are 

radically different to current emulsification technologies, with a much more conservative and hence 

efficient use of energy (Gijsbertsen-Abrahamse et al., 2004). 

1.1.3 Introduction to Project 

A new process known as rotating membrane emulsification has been developed within the 

past 8 years. The dispersed phase is forced through a microporous material by the application of 

pressure such that individual droplets are produced at each pore channel. The movement of the 

membrane induces a number of forces to enable detachment of droplets at a controlled size. Such 

an approach solves a number of the problems experienced with current processing technologies 

(less energy consumption, low shear rates, uniform droplet sizes etc.). There is therefore increasing 

interest in exploiting the process to create specifically designed structures for a particular function. 

However, challenges remain that may be holding back rotating membrane emulsification 

from being utilised to manufacture emulsions. Firstly, the process is complex and so there are 

unresolved phenomena that are not fully understood (Schadler and Windhab, 2006). Without this 
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understanding, it is difficult to predict how operation will form a particular emulsion microstructure 

(i.e. initial droplet size) based on the conditions and ingredients used. Exploration of the possibilities 

and limits of rotating membrane emulsification may not be realised without this knowledge. 

Secondly, the procedure on how to design and scale up rotating membrane emulsification is 

undefined since it has yet to be demonstrated at a scale similar to industrial scale manufacture. Even 

for established emulsification processes, scale up is based on experience and trial and error rather 

than a fundamental scientific understanding of the process (Paul et al., 2004). Finally, stable droplet 

production using rotating membrane emulsification generally relies on slow addition of the 

dispersed phase (i.e. low dispersed phase flux). This is unsuitable if the aim is to produce large 

quantities of emulsion containing a well-controlled droplet size. 

The aim of this thesis is therefore to further the fundamental understanding of the rotating 

membrane process. In particular, how the process behaves as one shifts from small-scale to pilot-

scale operation. In turn, this should enable the creation of models that can predict the droplet size 

and dispersed phase flux, as well as outline procedure to design and scale up the process. 

 

 

 

 

 

 

 

 



  

7 
 

1.2 Objectives 

The objectives of this thesis are: 

 To further understanding of the process mechanisms involved during rotating membrane 

emulsification. In particular, to ascertain how the process can be controlled to achieve a 

desired initial droplet diameter or a rate of production. 

 

 To optimise the process to be competitive with current emulsification technologies (rotor-

stator high shear mixer, ultrasonic probe), producing similar droplet sizes at the high 

dispersed phase fluxes needed to be industrially viable. 

 

 To demonstrate the capabilities of a pilot-scale rotating membrane emulsification device 

and to observe whether the process advantages seen with a small-scale device are upheld. 

 

  

 To develop scale-up principles for rotating membrane emulsification through the evaluation 

of the pilot-scale device. This work should lay foundations on the approaches required to 

design and operate this equipment. 
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1.3 Business Case 

Syngenta, who are the primary industrial collaborator within this study, are a multinational 

agribusiness that specialises in the development and manufacture of seeds and agrochemicals. They 

were formed in 2000 with the merger of Novartis Agribusiness and Zeneca Agrochemicals. In 2014, 

sales in crop protection products reached £7.3 billion with a global market share of 19.2%. 

Emulsion systems are incorporated into many of their pesticide and herbicide products. The 

dependence on such products to help yield crops is only going to increase. Considering that the 

global population is growing at a rate of three people per second and on top of this, the land 

available for cultivation is decreasing by an area equal to a football pitch within the same second, 

maximising crop production for food security is extremely important. With 25% of crops being lost 

each year due to insects and weeds, agrochemicals are a necessary purchase by farmers in order to 

produce the food required to feed the population. 

Syngenta have strived to gain an advantage over their competitors (BASF, Dow 

AgroSciences, DuPont) within this growing agrochemical sector (valued at approximately £38 billion) 

through the research and development of more sophisticated or ‘smarter’ emulsion structures. Such 

structures may provide enhanced properties to their products to offer multi-functional purposes. 

Examples include long term product stability, targeted and controlled release of segregated active 

ingredients and minimisation of potentially harmful active ingredients and surfactants within their 

products. Ultimately, these superior products have the potential to be more environmentally 

sustainable, more functional and therefore more marketable. 

Conventional emulsification processes, whilst capable of formulating basic emulsion 

systems, may struggle to produce more intricate structures. Therefore, research into rotating 

membrane emulsification has been undertaken since it has been demonstrated to be capable of 

producing a very wide array of structures including nano-emulsions, double emulsions and shelled 
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structures. In addition, the rotating membrane process utilises a small fraction of the energy needed 

for current manufacturing processes; this would coincide with Syngenta’s company strategy of 

minimising energy consumption and hence environmental impact. However, the procedure to 

design and operate this piece of equipment to meet the needs of a company such as Syngenta is 

undefined. Therefore, this piece of research can help shift the technology from being a simple small-

scale process to one that is industrially viable for emulsification. 
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1.4 Thesis Layout 

The thesis structure is as follows: 

 The introduction to the thesis is discussed in Chapter 1 

 Chapter 2 presents the theoretical background to rotating membrane emulsification, 

alongside a review of the relevant work that has been conducted. This supports a number of 

ideas explored within this thesis. 

 Chapter 3 shows information on the materials and the methods used during the 

experimental work. The basis behind the characterisation of the emulsion structures 

produced is also described. 

 Chapter 4 discusses how the process parameters of rotating membrane emulsification at the 

small-scale alter the fluid flow behaviour and subsequently the emulsion structure. 

 Chapter 5 focuses on modifying the formulation parameters; specifically the surfactant or 

particle type and concentration, to impart different droplet interfacial behaviour during 

processing. 

 In Chapter 6, a number of models relating to droplet-droplet interactions and prediction of 

the droplet size are derived and evaluated. Alongside this, the rotating membrane 

emulsification process is compared to a rotor-stator high shear mixer and an ultrasonic 

probe. 

 Within Chapter 7, a pilot-scale rotating membrane device is tested and compared to a small-

scale device, prior to discussion on how to approach the design and scale-up of the process. 

 Chapter 8 concludes the findings of the work conducted throughout the thesis. Suggestions 

and recommendations for future work are made within Chapter 9.  

 The literature cited within this thesis is fully referenced in Chapter 10.  

 An example of the proposed design procedure being applied is presented in Appendix A.  
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1.5 Publications, Presentations & Awards 

The results and discussions within this thesis are published as follows: 

Spyropoulos, F., Lloyd, D.M., Hancocks, R.D., Pawlik, A.K. (2014). Advances in membrane 
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approaches. Journal of the Science of Food and Agriculture, 94 (4) 613-627. 

Spyropoulos, F., Lloyd, D.M., Hancocks, R.D., Pawlik, A.K. (2014). Advances in membrane 

emulsification. Part B: recent developments in modelling and scale-up approaches. Journal of the 

Science of Food and Agriculture, 94 (4) 628-638. 

Lloyd, D.M., Norton, I.T., Spyropoulos, F. (2014). Processing effects during rotating membrane 

emulsification. Journal of Membrane Science, 466 8-17. 

Lloyd, D.M., Norton, I.T., Spyropoulos, F. (2015). Process optimisation of Rotating Membrane 

Emulsification through the study of surfactant dispersions. Journal of Food Engineering, 166 316-

324. 

 

The results and discussions within this thesis were presented as follows: 

Lloyd, D.M., Spyropoulos, F., Norton, I.T. (April 2012-2014), The engineering principles of rotating 

membrane emulsification. The 9th-11th Annual EngD Formulation Engineering Conference, 

Birmingham, United Kingdom (oral presentation).   

Lloyd, D.M., Norton I.T., Spyropoulos, F. (April 2014), Food-grade emulsion production using a low 

energy rotating membrane technology. The 8th European Workshop on Food Engineering and 

Technology, Quakenbrück, Germany (oral presentation). 

Spyropoulos, F., Lloyd, D.M., Norton, I.T. (June 2015). A microstructural approach to optimising 

membrane emulsification: surfactant diffusion through the oil/water interface. The 12th International 

Congress on Engineering and Food, Quebec City, Canada (poster presentation). 
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The research presented was awarded the following: 

The ‘Peter Bongers Prize’, awarded at the 10th Annual EngD Formulation Engineering Conference 

(April 2013) for the best presentation by an EngD student. 

The ‘Julius-Maggi Research Award’, awarded by Nestlé at the 8th European Workshop on Food 

Engineering and Technology (April 2014) for the best presentation by a doctoral or post-doctoral 

researcher. 
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Chapter 2: 

Literature Review 

This chapter reviews the current theory and understanding behind both conventional 

emulsification techniques and more specifically membrane emulsification. Evolution of the 

membrane process from its initial form to a variation in guises such as rotating membrane 

emulsification is discussed alongside the merits of each. Current understanding of the 

important process mechanisms is introduced in conjunction with how selection of processing, 

formulation and membrane parameters can produce a wide range of micro-structural 

products. Finally, modelling techniques used to reinforce underlying theory are summarised 

which in turn will aid the development of approaches to design and scale up membrane 

emulsification processes. 

 

Elements of the discussion contained within this chapter have been published within: 

Spyropoulos, F., Lloyd, D.M., Hancocks, R.D., Pawlik, A.K. (2014). Advances in Membrane 

Emulsification. Part A: Recent developments in processing aspects and microstructural design 

approaches. Journal of the Science of Food and Agriculture, 94 (4) 613-627. 

Spyropoulos, F., Lloyd, D.M., Hancocks, R.D., Pawlik, A.K. (2014). Advances in Membrane 

Emulsification. Part B: Recent developments in Modelling and Scale-up approaches. Journal of the 

Science of Food and Agriculture, 94 (4) 628-638. 
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2.1 Emulsions and Emulsification 

2.1.1 Fundamentals of Emulsion Formation 

To disperse the two immiscible liquids into an emulsion, mechanical energy is typically 

applied in the presence of an interfacial stabiliser known as a surfactant. The process of forming 

emulsions is known as emulsification or homogenisation. The applied energy in the form of shear is 

used to deform and eventually break down droplets, increasing the interfacial area. However, 

droplet break up is naturally resisted by the internal pressure of the droplet, which is known as the 

Laplace pressure. This is defined as the pressure difference at the convex and concave side of the 

droplet interface and is caused by the surface tension. The applied energy needs to therefore be 

greater than the Laplace pressure in order to break up the droplet. However, this break up can be 

facilitated by a surfactant adsorbing to lower the interfacial tension and hence the Laplace pressure. 

This is quantified within Eq. 2.1 assuming a spherical droplet: 

   
  

  
 

(Eq. 2.1) 

where ΔP is the Laplace pressure, γ is the interfacial tension and rd is the droplet radius. The 

interfacial tension is defined as the work required to alter the shape of an interface. An interface is 

defined as the narrow region between two separate phases. It is an important factor in determining 

emulsion formation, stability and physicochemical properties including viscosity etc.  The interfacial 

tension is measured as a force per unit length parallel to the interface; usually expressed as mN m-1. 

 A surfactant (also known as an emulsifier) is a ‘surface active agent’ capable of adsorbing at 

the interface between oil and water to stabilise droplets. Many of the traditionally used surfactants 

to stabilise emulsion systems were extracted from natural sources. Classic examples include lecithin 

from egg yolk or proteins from milk. However, with advancements both in understanding and the 

technology to synthesise chemical materials, a whole catalogue of surfactants both natural and man-

made are available for use. Other examples include various polysorbates, phospholipids, mono-
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diglycerides etc. The role of the surfactant is to lower the interfacial tension between the two phases 

(to facilitate formation) and then to stabilise the formed droplets against coalescence. This can be 

controlled to an extent by selection of the appropriate type and concentration. Surfactants are 

amphiphilic molecules, usually consisting of a hydrophobic tail group which has affinity to the non-

polar, organic phase and a hydrophilic head group which has affinity to the polar, aqueous phase. 

Because of this structure, they tend towards the oil/water interface so each group can sit either side 

of the interface. This minimises unfavourable contact between the two phases as can be observed in 

Fig. 2.1. The gradual accumulation of surfactant molecules alters the molecular interactions at the 

interface, enabling the system to be more thermodynamically stable (by reducing the Gibbs free 

energy). This is a dynamic process and hence the value of interfacial tension will decrease as a 

function of time to reach an equilibrium value. 

Oil

Water

Hydrophilic 

Head

Hydrophobic 

Tail

Interface

 

Fig. 2.1: A schematic representation of surfactant molecules at an interface. 

The type of hydrophilic head group can determine whether the surfactant is anionic (negatively 

charged), cationic (positively charged), zwitterionic (both positively and negatively charged) or non-

ionic, depending on the capability of the surfactant to dissociate within an aqueous phase. The 

ability of a surfactant to stabilise a particular system can be quantified by the hydrophilic-lypophilic 

balance (HLB) number; essentially a ratio of the molecular weight of the hydrophilic head part to the 

lypophilic tail. It can be used as a rough guide of the surfactants suitability. For example, high HLB 
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values (8+) are suitable for O/W emulsion formation whilst low values (3-6) are preferable for W/O 

emulsions (Griffin, 1949; Griffin, 1954). The further away from the threshold HLB value of 7, the 

more powerful the surfactant. The HLB number can be calculated using the Davies’ method as: 

                  

 

   

 
(Eq. 2.2) 

where m is the number of hydrophilic groups in the molecule, Hi is a predetermined value for each 

hydrophilic group and n is the number of lypophilic groups in the molecule. Whether a surfactant 

stabilises an O/W or W/O emulsion depends on its solubility within each phase. The Bancroft rule 

states that ‘the phase in which the surfactant is more soluble constitutes the continuous phase’ 

(Bancroft, 1912). For this reason, O/W emulsions are typically stabilised by high HLB surfactants 

positioned within the aqueous continuous phase and vice-versa. 

 Beyond a certain concentration, surfactant molecules form self-assembled structures called 

micelles instead of existing as individual molecules or monomer. Hence, this point is termed the 

critical micelle concentration (CMC). Micelles (typically consisting of 50-200 surfactant molecules) 

form in order to lower the free energy of the system. If positioned within an aqueous environment, 

the hydrophobic tail group of a surfactant molecule will congregate towards the centre of the 

micelle structure, whilst the hydrophilic head groups will point outwards.  If positioned within an 

organic environment, the reverse effect will occur with hydrophilic head groups congregating 

towards the centre. In some cases, vesicles or bilayers may form. These are each represented 

schematically in Fig. 2.2. 
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Oil
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Fig. 2.2: A schematic representation of possible surfactant micelle structures. 

In order for surfactant to adsorb at the droplet interface, the micelle must first be transported within 

the bulk phase to a region nearby to the droplet, which is known as the sub-surface. Under 

quiescent i.e. stationary fluid flow conditions, surfactant is transferred by diffusion. This is 

determined by the concentration gradient and the molecular diffusion coefficient; Fick’s Law (Eq. 

2.3). The diffusion coefficient is inversely proportional to the bulk phase viscosity and the surfactant 

molecule characteristic length as stated by the Stokes-Einstein equation (Eq. 2.4): 

    
   

  
 

(Eq. 2.3) 

  
   

    
 

(Eq. 2.4) 

where J is the diffusion flux, D is the diffusion coefficient, φc is the surfactant molecule 

concentration, x is the diffusion length, kB is Boltzmann’s constant, T is the absolute temperature, μ 

is the viscosity and r is the characteristic length of the spherical particle. If fluid is flowing, a 

mechanism to aid transport of the surfactant provided by the motion of the fluid is known as 

advective transport. Advection depends on the fluid velocity and the concentration of surfactant and 

is more dominant than diffusion especially during most emulsification processes. However, the two 

mechanisms of diffusion and advection do combine to provide an overall convective transport. 
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Upon reaching the sub-surface, micelles dissociate into individual surfactant molecules. 

However, it is more likely that individual molecules already free within the bulk will adsorb first and 

the micelle dissociation will simply replenish the free molecules available for adsorption, to remain 

in equilibrium. As such, the concentration of surfactant that is able to adsorb will not change with 

further increase in the overall concentration beyond the CMC; a minimum interfacial tension value 

will be obtained. However, if the micelle dissociation rate is slow relative to the rate of adsorption, 

there will be occurrences where there is minimal surfactant available for adsorption which will 

hinder the rate of interfacial tension reduction. Furthermore, the rate of surfactant adsorption will 

decrease with greater occupation of surfactant at the interface. An equilibrium is established as 

surfactant desorbs from the droplet surface at the same rate that free surfactant adsorbs from the 

sub-surface with no net change at the interface.  

 In addition to surfactants, colloidal particles can also be used to stabilise emulsions via a 

mechanism known as Pickering stabilisation. Examples include silica, clay, calcium carbonate and fat 

or ice crystals. More recently, specially designed amphiphilic particles known as ‘Janus’ particles 

have been produced (Glaser et al., 2006). The concept of particle stabilised emulsions was 

demonstrated by Pickering (1907) for plant spraying applications. Unlike surfactants, particles are 

irreversibly adsorbed at the interface and provide a strong mechanical barrier against destabilisation 

mechanisms. The adsorption process is triggered by the collision of particles with the unoccupied 

droplet interface with sufficient energy (Manga et al., 2012). The energy to remove a particle from 

the interface once adsorbed is very high. As such, droplets colliding in the emulsion bulk do not 

contain enough kinetic energy to displace the particle and coalesce. However, most particles are not 

amphiphilic so they do not significantly alter the interfacial tension to enable easier droplet 

formation. Therefore, the primary benefit of using particles is associated with enhanced stability. 

Interest in these systems has accelerated within the last 30 years or so in conjunction with 

advancements in nanoparticle technology. Particles are required to be at least one order of 

magnitude smaller than the droplet in order to pack around the interface. For example, droplets of 1 
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µm in diameter need to be stabilised by particles < 100 nm. The strength of the adsorption is a 

function of both the particle size but also the contact angle between the particle and each phase 

(Levine et al., 1989) as calculated by Eq. 2.5 and shown in Fig. 2.3: 

                (Eq. 2.5) 

where E is the adsorption energy, r is particle radius, γ is the interfacial tension and θ is the contact 

angle of the particle at the interface. The plus or minus sign depends on whether the particle is 

removed into the oil or water phase respectively. 

Oil

Water

Interface
Particle

θ
θ

 

Fig. 2.3: A schematic illustrating various contact angles of a particle adsorbed at an O/W interface. 

As can be seen from Fig. 2.3, the wettability of the particle alters the position of the particle at the 

interface and subsequently the energy of adsorption. The maximum energy is achieved when the 

contact angle equals 90° i.e. the particle wets both phases equally. For O/W production, generally a 

contact angle of 60-80° is favourable (measured relative to the water phase). Wetting can be 

quantified by the Young’s equation which is essentially a force balance between the 

particle/oil/water interface at the contact line (Tadros, 2005):  

                  (Eq. 2.6) 

where γSW is the interfacial tension between the solid particle and water, γOW is the interfacial 

tension between oil and water and γSO is the interfacial tension between the solid particle and oil. If 

the contact angle is too small (< 60°) or too large (> 130°), it is likely that the particle will remain at 
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the bulk phase rather than adsorb at the interface. In terms of the particle size, small particles are 

able to adsorb faster since they require less energy. They also provide more effective packing and 

surface coverage of the interface. On the other hand, larger particles attach with more energy and 

form a thicker interface. Thus, this imparts greater droplet stability (Binks, 2002). 

 Emulsion droplets can be stabilised by mixtures of surfactants and particles. The droplet 

sizes produced using just particles tend to be relatively large due to the high interfacial tension 

value. However, surfactant only systems do not necessarily provide as effective an interfacial 

stability mechanism. There are therefore opportunities to apply the benefits of each material rather 

than each component in isolation (Pichot et al., 2010). It is highly probable there are going to be 

forms of interactions between the surfactants and the particles depending on the ratio of the two; 

for example surfactants may alter the wettability of the particles (Binks et al., 2007), promote 

particle aggregation within the continuous phase (Binks and Rodrigues, 2007) or displace particles 

from the interface altogether. 

2.1.2 Emulsion Stability 

The stability of emulsions refers to the ability of an emulsion to retain its properties over an 

arbitrary period of time without significant change. This primarily relates to the droplet size 

distribution evolution. Emulsions are thermodynamically unstable systems since increasing the 

interfacial area subsequently increases the Gibbs free energy. This is a directly proportional 

relationship as shown by Eq. 2.7. 

       (Eq. 2.7) 

where ΔG is the change in Gibbs free energy. γ is the interfacial tension and ΔA is the change in 

interfacial area.  However, emulsion systems are kinetically stable since a minimum value of 

‘activation’ energy is required before an emulsion can reach its most thermodynamically favourable 

state (i.e. complete separation of the two phases). Thus, an emulsion can remain stable despite 
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being thermodynamically unfavourable; this is termed metastable. The constant motion of particles 

due to intermolecular or external forces will potentially result in particle interactions and hence 

mechanisms of instability. Conflictingly, nano-sized droplets (<100 nm) move randomly due to 

Brownian motion so these systems are not susceptible to destabilisation mechanisms (hence they 

are thermodynamically stable). This allows nano-emulsions to be stable for many years without any 

change (McClements, 2011). 

 There are a number of different destabilisation mechanisms, which can have a detrimental 

effect on the properties of a product. Firstly, gravitational separation can occur. Due to density 

differences between the two phases under the action of gravity, a concentrated layer of droplets can 

form either at the top or bottom of the emulsion. If the droplets have lower density than the 

continuous phase (typically O/W systems) then this movement is called creaming whilst the opposite 

is sedimentation. Whilst gravitational separation does not alter the droplet size, it can promote 

other forms of destabilisation mechanisms by compacting droplets close together such that 

interactions are more likely.  It can be limited if the densities are very similar, droplets are small or 

the continuous phase is highly viscous. Secondly, constant movement of droplets results in collisions 

within the bulk phase, which depending on their nature can cause droplets to move away separately, 

aggregate together as a cluster of droplets (flocculation) or as a single droplet (coalescence). In the 

case of flocculation, the droplets are still individual entities. The rate and strength of flocculation can 

be controlled by considering the electrostatic and steric colloidal interactions possible. Depending on 

the strength of these interactions between the droplets, the process can be reversible or 

irreversible. Flocculation can also increase emulsion viscosity which may be advantageous for 

obtaining certain properties within a product. In the case of coalescence, external forces cause two 

droplets merge together to form a larger droplet.  This process is always irreversible. Two droplets 

become sufficiently close such that the thin film of continuous phase between the droplets ruptures, 

allowing dispersed phase material to flow between them. With a thicker film, the collision is weaker 

since this film acts as a physical barrier. If coalescence occurs to enough of an extent, phase 
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separation occurs resulting in two distinct layers of material. For O/W emulsions, this may typically 

be a layer of free oil on top of the denser continuous phase. Coalescence therefore needs to be 

limited to achieve stable emulsion production; this is possible through selection of a suitable 

surfactant that is able to adsorb quickly and provide a sufficient steric (if a large molecule) or 

electrostatic (if ionic) repulsive mechanism. Consideration of the operating conditions may also be 

employed i.e. reducing the collision energies through less energy input or increased viscosity. The 

final destabilisation mechanism possible is Ostwald ripening. This is a thermodynamically driven 

process. Laplace pressure differences between droplets of varying size, cause smaller droplets (of 

high Laplace pressure) to migrate towards larger ones (low Laplace pressure). As a consequence, 

small droplets disappear as large droplets grow. Whilst Ostwald ripening is only a major process for 

droplets smaller than 10 µm, the growth caused by this mechanism may induce other destabilisation 

mechanisms (Walstra, 2003). 

2.1.3 The Physics of Conventional Emulsification 

As highlighted previously, emulsions are typically produced by breaking up droplets into 

smaller entities using a ‘top-down’ approach. Examples include high pressure homogenisers and 

high-shear rotor stator mixers. The discussion will focus on the latter case although both rely on the 

principle of shear to break up the droplets. Fluid enters the mixer head from the underside. The 

rotation of a rotor impeller at high speeds between 10-50 m s-1 generates shear (approximately 

20000-100000 s-1) between the rotor and the stator screen (Paul et al., 2004). As a consequence, the 

fluid experiences radial and tangential shear flow inside the stator. The fluid then passes through 

holes within the stator screen. Variation of the surface properties of this screen (e.g. the inclusion of 

specific diameter holes) can further enhance the production of turbulence compared to smooth 

surfaces. The primary operating parameter within mixing processes is the power draw. This is 

defined as the amount of energy required to generate fluid movement by agitation within a given 

time period. For a fixed geometry system, the droplet diameter produced is based on a function of 
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rotational speed and mixing time, as well as the dynamic balance between droplet break up and re-

coalescence (since these both occur simultaneously). The forces involved in breaking up droplets are 

referred to as viscous or frictional forces and are imparted by fluid flow parallel to the droplet 

surface. Additionally, inertial forces due to pressure fluctuations within the fluid act perpendicular to 

the droplet surface. The presence and magnitude of each of these disruptive forces depends on the 

Reynolds number (Re) of the system. For emulsification, operation occurs predominately within 

either the turbulent-viscous (Re = 4000) or turbulent-inertial regime (Re = 40000) rather than 

laminar-viscous flow (Re <2300). The production of turbulent eddies within the flow, each containing 

varying amount of energy depending on their size, promotes droplet break up. The largest eddies 

(comparable to the impeller diameter in size) transfer energy to gradually diminishing eddies until 

reaching the smallest size achievable; known as the Kolmogorov length scale. Droplets existing at a 

size greater than the Kolmogorov length scale are broken up by inertial forces whilst if they are 

smaller, they are broken up by viscous forces (Walstra and Smulders, 1998). The cohesive force 

holding a droplet together and preventing break up is the interfacial tension force. Therefore, the 

feasibility of droplet break up relies on the disruptive forces to overcome the cohesive force. This 

can be numerically characterised by the Weber number (We) which is the ratio of these respective 

forces. If We >1, droplet break up occurs. An additional process complexity is that droplets can re-

coalesce as a consequence of frequent droplet collisions induced by agitation. Surfactant is required 

to adsorb much faster than the collision time in order to prevent coalescence. It is therefore clear 

that a minimum droplet size limit will be reached when; (i) the shear applied is insufficient to 

overcome the Laplace pressure and break droplets up further, (ii) the collision time is very fast due 

to greater numbers of droplets within the bulk, (iii) all free surfactant within the system has been 

exhausted. Furthermore, this suggests that emulsion production adopting a break up approach has a 

number of inherent disadvantages. 

Ensuring uniform energy dissipation (i.e. all turbulent eddies are identical in size) is 

extremely difficult. As a consequence, there is a lack of control over the droplet size distribution with 
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wide distributions produced. This may lead to Ostwald ripening which has a detrimental effect on 

the quality of the product, limiting its lifespan. Process reproducibility is also poor, so each batch 

may vary significantly in droplet size; this is not ideal if one is required to manufacture a 

homogeneous product. Secondly, droplet break up processes impart very high shear stresses on the 

emulsion microstructure. This may therefore be unsuitable for materials or structures that are 

susceptible to damage by shear (e.g. double emulsions, proteins, high dispersed phase volume 

fraction emulsions). Currently, these limitations are accepted gracefully by manufacturers. However, 

the nature of the process may restrict the development of more unique structures in future, of 

which the limitations will be problematic. 

2.2 Membrane Emulsification 

Membrane emulsification is a novel process that has been developed over the past 25 years. 

It was initially introduced by Tadao Nakashima in 1988 at a meeting for the Chemical Engineering 

Society of Japan in conjunction with a new type of membrane material (Shirasu Porous Glass; SPG). 

The first set of experimental data for membrane emulsification was published in 1991 (Nakashima et 

al., 1991) with the process subsequently patented in 1994 (Nakashima et al., Inventors U.S. Pat. No. 

5326484). Within this patent, it was detailed that the process involves a tubular SPG membrane with 

continuous phase flowing through the centre and dispersed phase pressurised from outside-to-

inside. Thus, this was the inception of cross-flow membrane emulsification (XME). Nakashima and 

colleagues produced Kerosene-in-water emulsions stabilised by a variety of surfactants (SDS, Tween 

20 and PGPR). A key feature was the ability of the process to produce mono-dispersed emulsions 

using SPG membranes with span values of less than 0.5. The exact reason has been debated within 

literature. Most authors suggest the reason to be due to the narrow pore size distribution (Cheng et 

al., 2006; Pawlik and Norton, 2013) although the SPG membrane surface consists of asymmetric 

pore openings (Vladisavljevic et al., 2007) which makes this hypothesis unclear. Alternatively, the 

resultant droplet formation mechanisms induced by such pore openings is suggested to be 
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responsible (Yasuno et al., 2002; Rayner et al., 2005). In the case of Nakashima, the Kerosene 

droplets ranged between 300 nm to 40 µm; a ratio of between 3-8 times the pore diameter. This 

ratio has since been suggested to be wider, between 2-15 times and depending on a multitude of 

factors related to the membrane material properties, the process conditions and the formulation 

used (Joscelyne and Tragardh, 2000; Charcosset, 2004).  

Clearly, selection of the appropriate membrane has a strong influence on the emulsion 

structure by determining the droplet formation process. Once the droplet has detached from the 

membrane surface, no further change in size should be experienced either due to turbulent break up 

or coalescence. This is the basis of membrane emulsification. However, the process has been further 

developed leading to a wide variety of approaches to impart shear at the membrane surface. These 

innovations have served to allow for formulation of a wide array of micro-structural products. 

Alongside basic emulsions, double emulsions (van der Graaf et al., 2005; Pawlik and Norton, 2012) 

nano-emulsions (Oh et al., 2011) and structures for encapsulation purposes including microspheres, 

microcapsules and microbeads (Vladisavljevic and Williams, 2005) have all been produced.  As the 

demand within society for specialised products (e.g. low fat foods; achievable via double emulsion 

production and stabilisation) or for products that have been manufactured in a sustainable manner 

(e.g. low energy consumption) increases, it is highly probable that a greater interest will be taken in 

membrane emulsification since it has the potential to meet these demands.  

2.2.1 Process Development 

Membrane emulsification can be undertaken using a wide range of approaches. Whilst 

cross-flow membrane emulsification (XME) was the first membrane emulsification process to be 

developed, it is not considered the simplest of the subset of processes due to the flow of continuous 

phase across the membrane surface. Instead, membrane emulsification can be operated with a 

quiescent continuous phase. Known as dead end membrane emulsification, it is very similar to 

emerging processes such as microchannel emulsification (Kobayashi et al., 2011) and Edge-based 
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Droplet Generation; EDGE (Dijke et al., 2009). Droplet detachment occurs spontaneously in the 

absence of shear induced by the continuous phase. Generally, the droplets produced are quite large 

due to the absence of force that induces earlier detachment such as the drag force. Applying some 

degree of shear at the membrane surface is beneficial for producing smaller droplets. This can be 

achieved either by moving the continuous phase or moving the membrane to induce a relative 

velocity difference between the attached droplet and the continuous phase. For the former, 

movement of fluid is achieved using a re-circulating pump for XME (Peng and Williams, 1998) or a 

mechanical stirrer for stirred cell membrane emulsification (Kosvintsev et al., 2008; Egidi et al., 2008; 

Oh et al., 2011). In the latter case, the membrane can be vibrated (Zhu and Barrow, 2005; Kelder et 

al., 2007) or rotated (Schadler and Windhab, 2006; Yuan et al., 2009; Pawlik and Norton, 2012) to 

move the attached droplet at a faster velocity than the continuous phase adjacent to the membrane 

surface. Finally, an alternative approach in which coarse emulsions were passed through membrane 

materials was recently introduced, known as pre-mix membrane emulsification (Vladisavljevic et al., 

2004a; Nazir et al., 2011). Rather than adopting the conventional approach, droplets are broken 

down within the internal structure of the membrane rather than forming from individual pore 

channels. It is predictable that with such a wide array of process designs, membrane emulsification is 

yet to undertake its completely optimised form. Common problems include low dispersed phase 

flux, membrane fouling, droplet coalescence or break up during/after formation. These will now be 

discussed further for a number of the process developments prior to outlining why rotating 

membrane emulsification (RME) has been considered the most favourable. 

 As highlighted, the XME process utilises a pump to flow continuous phase and flow it across 

the surface of the membrane. This generates shear that acts on droplets to cause detachment from 

the pore outlet at a size smaller than would be achievable purely spontaneously (as with dead end 

membrane emulsification). The continuous phase is continuously re-circulated to gradually increase 

the amount of dispersed phase until the required volume fraction is reached. This therefore means 

that droplets formed at the very beginning of the process are passed repeatedly through the pump 
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which may cause break up or coalescence (Katoh, 1997; Dragosavac et al., 2008). Additionally, the 

dispersed phase flux with XME has been found to be low, particularly when using typical membrane 

materials such as SPG and ceramics (these have a high resistance to flow due to their internal 

structure). A typical flux value would be within the region of 10-100 L m-2 h-1 to produce droplets of 

1-10 µm (Joscelyne and Tragardh, 2000). Combining the issues with droplet-droplet interactions 

within the bulk with long operation times, XME can damage the microstructure of an emulsion. This 

was not a problem with the simpler dead end process which has no moving parts. Furthermore, the 

energy consumption of dead end membrane emulsification is low even compared to other 

membrane emulsification techniques (Lambrich and Schubert, 2005). However, high concentrations 

of surfactant are required to reduce the interfacial tension force sufficiently to detach droplets and 

compensate for a lack of drag force. Instead of these possible configurations, rotating the membrane 

is an innovation that can potentially overcome these problems. 

 Rotating Membrane Emulsification (RME) is a relatively new approach to produce emulsions 

which has been developed over the past 8 years (Schadler and Windhab, 2006; Vladisavljevic and 

Williams, 2006). As such, there are very few studies investigating this process so the effects of 

various parameters on the emulsion structure are unclear. The concept of RME was developed from 

applications within membrane filtration which utilised rotating disks and cylinders to dynamically 

separate materials (Bouzerar et al., 2000; Lee and Lueptow, 2001). Two leading groups pioneered 

initial research into RME; a research group in Switzerland led by Prof. Erich Windhab and one in 

Leeds (UK) which was led by Prof. Richard Williams. Each group rotated micro-engineered metal, 

tubular membranes within a continuous phase vessel to produce emulsions. However, the 

philosophies driving the research were different. Windhab and co-workers focussed on producing 

small emulsion droplets at high surface shear. This was achieved by using a 100 mm diameter, nickel 

foil tube with pores of 1-5 µm produced by etching combined with plasma enhanced chemical 

vapour deposition. The membrane was rotated at speeds up to 8000 RPM within a vessel only 1-2 

mm wider in diameter (Schadler and Windhab, 2006). On the other hand, Williams and co-workers 
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aimed to form mono-disperse droplets by using a narrower diameter (10 mm), stainless steel tube 

with laser-drilled pores of 100-150 µm (Vladisavljevic and Williams, 2006; Aryanti et al. 2009; Yuan et 

al., 2009). Regardless of approach, rotating the membrane negates the requirement of a pump to 

continuously re-circulate the continuous phase. As such, Vladisavljevic and Williams (2006) 

suggested RME to be highly suitable for the production of fragile particles as well as viscous 

emulsions for this reason. In addition, the rotational motion (which imparts shear on the droplet) 

ensures droplets do not flow directly parallel across the surface of the membrane which may 

promote coalescence phenomena. As with many of the membrane emulsification processes, low 

dispersed phase flux to produce small droplets was the rate limiting step and thus a problem 

needing solving.  

The apparent flaw for ‘direct’ membrane emulsification processing resulted in the 

development of an alternative approach; pre-mix membrane emulsification, which uses a coarse 

emulsion as the dispersed phase rather than pure material. Since the viscosity is likely to be much 

lower, much higher fluxes are achievable. For example, Suzuki et al. (1998) recorded fluxes of 13 m3 

m-2 h-1 through 1 µm pore diameter polytetrafluoroethylene (PTFE) membranes and an applied TMP 

of 15 bar. Nazir et al. (2011) achieved fluxes up to 1600 m3 m-2 h-1 using a low porosity (0.05) nickel 

sieve with 13.2 µm pores and a TMP of 2 bar. Vladisavljevic et al. (2004) observed values of up to 37 

m3 m-2 h-1 using a 10.7 µm SPG membrane combined with a TMP of 3 bar. All of these values are 

typically at least two orders of magnitude higher than emulsification with direct XME or RME. The 

basis of pre-mix membrane emulsification is that large droplets are disrupted within pore channels 

through a combination of localised shear forces, interfacial tension effects and steric hindrance of 

droplets (Vladisavljevic et al., 2004). This causes droplets to elongate and compress in a similar 

manner to high pressure homogenisation and hence can be considered a modified approach to 

typical droplet break up processing. Although unclear as to how these combined forces exactly act 

on the droplet (Nazir et al., 2010), it is known that increasing the pore fluid velocity (through 

applying a higher TMP) or the membrane resistance to flow (smaller pores, greater thickness) 
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increases the shear force and subsequently the extent of break up. This process is typically repeated 

numerous times, narrowing the droplet size distribution curve in conjunction with minimising the 

droplet size. Pre-mix membrane emulsification is also very energy efficient since there are no 

moving parts (if used alongside a dead end approach). However, the requirement for multiple passes 

rather than a single, slower pass of pure dispersed phase may result in the energy savings being lost. 

The major drawback to emulsification using this approach is due to membrane fouling (van der Zwan 

et al., 2008; Trentin et al., 2009). The process is still within unchartered territory with regards to the 

theoretical understanding and without readily available membrane materials that minimise fouling 

(or that can be easily and sufficiently cleaned). For these reasons, it was decided that RME has 

shown the most promise but requires detailed exploration. 

2.2.2 Membrane Development 

Arguably, the most important aspect within membrane emulsification processing is the 

membrane itself. A membrane is defined as an interfacial barrier or area that can separate at least 

two different phases and select material passing through it. Selection of the material to-be-used is 

one of the most critical stages for design and operation of membrane emulsification. A table of 

membrane factors influencing the emulsion microstructure and dispersed phase flux as compiled by 

Gijsbertsen-Abrahamse et al. (2004) is shown: 

Table 2.1: Summary of membrane parameters and their effect on droplet diameter and dispersed phase flux. 
Symbols indicate parameter is; critically important (***), important (**) or not important (*)  

Parameter Effect on Droplet Dia. Effect on Flux 

Average pore diameter *** *** 

Shape of pore outlet ** ** 

Wettability *** * 

Porosity ** *** 

Thickness * *** 

 



  

30 
 

Droplets are usually between a ratio of 2-15 times the pore diameter although typically a 

factor of 5 for SPG membranes. For non-SPG membrane types, this ratio can be as high as 50. It is 

therefore apparent that selection of the pore diameter governs the range of droplet sizes that can 

be produced. A uniform pore size distribution is also important for production of mono-disperse 

droplets (Peng and Williams, 1998). The shape of the pores can also be modified to enhance droplet 

formation from conventional circular pores, to oblong (Kobayashi et al., 2002), square (Yuan et al., 

2009) and even unusual shapes such as stars. For example, Yuan et al. (2009) found that horizontally 

aligned rectangular pores produced droplets twice as fast as vertically aligned or cylindrical pores in 

lieu of easier droplet detachment even under low shear rate operation. In terms of the dispersed 

phase flux, this is also strongly determined by membrane properties such as the pore diameter, 

porosity, thickness etc. Membranes can come in a variety of sizes and shapes; typically as cylindrical 

tubes or flat disks. Their surfaces may be hydrophilic, hydrophobic or non-charged; this may be 

modified by pre-soaking the membrane within an acidic solution or an organic silane for example. It 

is essential that the dispersed phase does not wet (i.e. spread across) the membrane surface (wall 

contact angle < 90°) so typically the membrane is soaked in the material to-be-used as the 

continuous phase (Gijsbertsen-Abrahamse et al., 2004). The concept of contact angle is shown by 

Fig. 2.4.  Spreading of the dispersed phase and therefore shifting of the three-phase contact line as 

may promote coalescence between adjacent pores. This may also be promoted if surfactant adsorbs 

to the membrane surface, as well as possible fouling. 

Oil Droplet

Θ > 90°

Hydrophilic Membrane

Oil Droplet

Θ < 90°

Hydrophobic Membrane

 

Fig. 2.4: A schematic representation of an oil droplet positioned upon a membrane surface. 
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When considering the behaviour of the material, a number of assumptions are typically 

made; an idealised membrane material would consist of identical, perfectly spherical, non-

interacting pores. In reality, the internal pore network can be complex so neighbouring pores play an 

important role during droplet formation. If adjacent droplets interact with each other at the 

membrane surface, this could result in coalescence occurring. As such, there is an optimum 

membrane porosity (based on the droplet to pore diameter ratio) which ensures droplet-droplet 

contact is avoided whilst maximising membrane permeability and hence the flux. Based on all pores 

being active (i.e. dispersed phase passing through each one) and equal pore spacing, Abrahamse et 

al. (2002) recommended a maximum porosity of 0.015 for 5 µm pores producing droplets of 33 µm 

in diameter. This transcends to a pore spacing of at least 10 times the pore diameter. Appreciation 

of this concept can allow for the development of carefully engineered membranes to meet 

requirements for a given application. The membranes must also be durable to withstand high 

temperatures and chemicals needed for cleaning processes, as well as strong to withstand forces 

induced by the application of pressure or a rotating motion. With membrane replacement costs 

likely to be reasonably high, work needs to be undertaken to produce membranes with a longer 

lifespan beyond the current estimate of 5 years (Charcosset, 2009). In their present form, materials 

such as SPG, ceramic, polymer and metallic membranes do not meet all of the aforementioned 

criteria. 

SPG (Shirasu-porous-glass) membranes are the most commonly investigated within 

membrane emulsification processing. They are a type of glass material produced by the phase 

inversion of CaO-Al2O3-B2O3-SiO2; a volcanic ash from Kyushu Island, Japan. The material was 

developed and patented by Nakashima et al. (Inventors U.S. Pat. No. 4657875) and is typified by a 

very narrow pore size distribution. Subsequently, this allows SPG membranes to produce very mono-

disperse droplet sizes compared to other membrane types (Vladisavljevic et al., 2004b). They are 

extremely well characterised predominately through the work of Vladisavljevic using liquid 

permeability, Hg (Mercury) porosimetry, SEM imaging and high resolution X-ray microtomography 
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(Vladisavljevic et al., 2005; Vladisavljevic et al., 2007). From this work, it is revealed that SPG 

membranes contain a series of tortuous, non-circular and randomly distributed pores that are 

interconnected within the material structure as a network or ‘maze’. They are available in a range of 

pore sizes between 0.05-30 µm. The porosity varies almost randomly between 0.5-0.6 with an 

average of 0.56. However, the percentage of pores active is below 10% (Schroder et al., 1998; 

Vladisavljevic et al., 2007) so the effective porosity is much lower. Due to the increased resistance to 

flow caused by the interconnection of pores, a tortuosity factor was introduced to characterise the 

pore channel length. For example, a tortuosity factor of 1 indicates perfectly cylindrical pores 

perpendicular to the membrane surface as such the channel length equals the membrane thickness. 

For SPG membranes, the tortuosity factor has been experimentally determined with values of 1.28 

(Vladisavljevic et al., 2005) and 1.32 (Nakashima and Shimizu, 1993) suggested. Alongside their low 

active pore fractions, SPG membranes are fragile (despite being able to withstand TMPs up to 25 

bar) so are therefore unsuitable for many food or pharmaceutical applications as well as for use at 

an industrial scale. 

Ceramic membranes have been investigated by a number of authors (Williams et al., 1998; 

Matos et al., 2013; Hancocks et al., 2013). Typically, their structure consists of an inner ceramic 

substrate which provides strength to the material with a thin, outer microporous ceramic coating or 

‘skin’. Examples include ZrO2 on a TiO2 support substrate (Matos et al., 2013) or α-Al2O3 (Lepercq-

Bost et al., 2010). The pore size is altered by modifying the voids between ceramic particles as part 

of a sintering process although this is difficult to control. Ceramic membranes generally demonstrate 

higher active pore fractions of around 40-60% (Lepercq-Bost et al., 2008) but lower porosity than for 

SPG (between 0.3-0.4). Additionally, the support layer is thicker for ceramic membranes than for 

SPG membranes; around 2 mm compared to 20-30 µm respectively. This increases the resistance to 

flow significantly due to frictional losses which causes ceramic membranes to have low permeability. 

Their fragile nature also eliminates them from use in an industrial environment. On the other hand, 

polymer materials such as polypropylene (Suzuki et al., 1998) and polycarbonate track-etched 



  

33 
 

membranes (Tangirala et al., 2007) may be more favourable due to their higher fluxes and 

availability in large surface areas (Kobayashi et al., 2002). 

It is undoubted that membranes manufactured from metals have the most potential. 

Examples of such membranes may include laser-drilled stainless steel, etched nickel foil or micro-

machined silicon nitride microsieves. In the latter case, microsieves are flat disks consisting of an 

inner thin film layer of pores and an outer support layer with terraces. They were initially developed 

for filtration and particle separation applications (Kuiper et al., 1998) but later adopted for 

emulsification. They are very capable of producing mono-disperse droplets since each pore is almost 

identical, to an even lower tolerance than for glass or ceramic membranes. Furthermore, they are 

extremely thin (a couple of microns) so very high fluxes are achievable (Wagdare et al., 2010) and 

fouling is unlikely. Since their pores are straight and perpendicular to the surface, the active pore 

fraction is close to 100% with a tortuosity factor of 1. Generally, metal membranes can be carefully 

designed in such a way to ensure sufficient pore spacing and with unique pore shapes (Yuan et al., 

2009) to aid droplet detachment (Kobayashi et al., 2002). They are generally more robust, durable 

and versatile than other membrane types allowing for much harsher cleaning treatments. For 

microsieves, they are difficult and expensive to produce. Furthermore, they are fragile since they are 

so thin which may result in them rupturing under high TMPs. Until recently, other processes to 

produce metal membranes (e.g. laser drilling) lacked the precision and accuracy needed to produce 

small, mono-disperse pore sizes. However, advances in metal processing have enabled opportunities 

for realistic, cost-effective solutions to be created in future. 

2.2.3 Droplet Formation Mechanisms 

The mechanisms determining the size produced during droplet formation are important to 

understand in order to control membrane emulsification processes. These are dependent on a 

combination of processing and formulation parameters (Table 2.2) as well as the membrane 

parameters (Table 2.1) discussed within the previous section. 
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Table 2.2: Summary of processing and formulation parameters and their effect on droplet diameter and 
dispersed phase flux. Symbols indicate parameter is; critically important (***), important (**) or not important 

(*)  

Parameter Effect on Droplet Dia. Effect on Flux 

Wall shear stress *** * 

Transmembrane pressure *** *** 

Temperature * ** 

Continuous phase viscosity ** * 

Dispersed phase viscosity ** *** 

Surfactant type/conc. *** ** 

 

Current theory states that the size of which a droplet grows to and subsequently detaches 

from the membrane surface is governed by the point of force imbalance. This idea was introduced 

by Peng and Williams (1998). A high speed camera observed droplet formation from a single 

capillary tube (diameters ranging from 5-200 µm) into a perpendicular flowing continuous phase 

(similar concept to XME). The force balance approach can be applied to a membrane (rather than a 

single capillary tube) provided there are no interactions between adjacent droplets (e.g. coalescence 

or perturbation of the downstream continuous phase velocity). Generally, as a droplet becomes 

larger, the magnitude of the detachment forces increases to overcome the retention force 

(interfacial tension) holding the droplet in position. The interfacial tension force is affected directly 

by the surfactant adsorption behaviour, but more specifically the rate and extent of interfacial 

tension reduction over time. For example, with a fast reduction in interfacial tension droplets can 

detach earlier to be smaller sizes. Of the detachment forces, the most significant is the drag force 

which is induced by a velocity difference between the attached droplet and the continuous phase. 

For XME, the drag force is induced by the continuous phase flowing across the membrane surface. In 

the case of RME, the droplet moves faster than the continuous phase (vr > vcr). These ideas are 

shown schematically in Fig. 2.5.  
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Fig. 2.5: A schematic representation of the velocities across the horizontal plane of an RME configuration. 

Another important detachment force is the buoyancy force particularly if droplets are large or there 

are significant differences in density between the two phases. The inertial, dynamic effect of 

pressure and dynamic lift forces are typically orders of magnitudes lower (Schroder et al., 1998). 

Steric droplet interaction without coalescence can give rise to a ‘push-off’ force that may also aid 

droplet detachment (Egidi et al., 2008; Kosvintsev et al., 2008). Yuan et al. (2009) discussed the 

possibility of a viscous retaining force that hinders droplet detachment. The equations defining each 

of these forces will be discussed in greater detail within Chapter 6 of the thesis as part of the 

application of a theoretical model for RME. 

Once the point of which the detachment forces overcome the retention force, a droplet will 

begin to detach from the membrane surface. However, Peng and Williams (1998) also suggested 

that dispersed phase material will still be contributed to the droplet volume even after force 

imbalance. Material is added to the droplet via the droplet neck (Scheele and Meister, 1968) which 

therefore implies that the droplet size is determined by a two stage mechanism as shown by both 

Eq. 2.8 and Fig. 2.6: 
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                 (Eq. 2.8) 

 

Droplet Growth Droplet Detachment Emulsion Production

Neck

 

Fig. 2.6: A schematic representation of droplet growth and detachment at a membrane surface, leading to 
creation of an emulsion. 

 

where Vf is the final droplet volume, Vg is the droplet volume at the end of the growth stage, Vd is 

the volumetric contribution of material during detachment, qd is the volumetric flow rate through a 

single pore channel and td is the droplet detachment time. Increasing the TMP would increase both 

the rate of droplet growth (as it expands) and also the amount of volume contributed as the droplet 

detaches. If the interfacial area of a droplet expands quickly such that it approaches the rate of 

surfactant adsorption, insufficient interfacial coverage may lead in higher interfacial tension values 

(and therefore larger droplets) (Schroder et al., 1998). Eq. 2.8 was extended by Van der Graaf et al. 

(2006) since the formation process was seen to scale with continuous phase capillary number (Cac) 

alongside two coefficients. This is presented in Eq. 2.9: 

               
              

    (Eq. 2.9) 

where Vcrit,ref and tcrit,ref are the droplet volume at the point of detachment and droplet detachment 

time respectively (for Cac = 1), m and n are coefficients which lie between -0.75 to -1.5 assuming no 

pore distortion effects. To summarise, droplets reach a size in which the detachment forces begin to 
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exceed the retention forces (the ‘droplet growth’ stage). Additional material is then added to the 

droplet depending on the dispersed phase flux and the droplet detachment time (the ‘droplet 

detachment’ stage). 

 Despite the above droplet formation procedure being widely accepted, questions were 

asked as to how a droplet could be deformed when its Laplace pressure far surpasses the magnitude 

of the shear stress (drag force) causing the detachment (Rayner et al., 2004). It was postulated by 

Sugiura et al. (2001) that droplet detachment may be induced by interfacial energy rather than 

hindered by it. A droplet may become deformed (rather than detach directly) due to the forces 

acting upon it. This results in the droplet increasing its surface area to volume ratio, which from the 

perspective of Gibbs free energy is a higher energy state. In an attempt to reach its more 

thermodynamically stable spherical form, a droplet detaches itself from the dispersed phase at the 

pore outlet whilst simultaneously transforming into a sphere. Hence, this mechanism is known as 

Spontaneous Transformation-based Droplet Formation and is represented by Fig. 2.7. 
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Fig. 2.7: Droplet deformation giving rise to spontaneous detachment and transformation. 

 The mechanism may be triggered by the use of non-circular pores (e.g. SPG membranes, 

silicon nitride microsieves) if the dispersed phase wets the pore edges causing droplet deformation. 

Furthermore, for high IFT systems the differences in energy state between a deformed and a 
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completely spherical droplet are greater. There is therefore a more significant driving force causing 

droplet detachment to achieve the lower energy state, spherical form. From a Laplace pressure 

perspective, a deformed droplet has at least one smaller radius of curvature resulting in a higher 

internal pressure (aiding detachment since material moves from high to low pressure). Spontaneous 

transformation-based droplet formation was also concluded to be the droplet formation mechanism 

in the case where droplet sizes were smaller than expected (Kukizaki, 2009; Matos et al., 2013). 

Essentially, this idea was adopted for the ‘push-off’ force value which entails adjacent droplets 

pushing against each other (with small pore spacing distances) but without coalescing (Egidi et al., 

2008; Kosvintsev et al., 2008). This causes an elongation of the droplets which is also energetically 

unfavourable. 

 Finally, it is known that if the dispersed phase velocity within the membrane pore is 

sufficiently high, or the IFT between the dispersed and continuous phases is low, the processes of 

individual droplet formation described above do not occur. Instead, the dispersed phase is injected 

into the continuous phase as a liquid jet. This jet breaks up chaotically at a certain length where it is 

unstable due to Rayleigh instabilities. This mechanism is highlighted schematically in Fig. 2.8. The 

individual droplet formation mechanisms are therefore referred to as ‘dripping’ whilst formation of 

droplets at a distance greater than the droplet diameter away from the membrane surface is known 

as ‘jetting’. Alternatively, the term ‘continuous outflow’ may also be used to describe jetting 

phenomena (Kukizaki, 2009).  
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Fig. 2.8: A schematic representing droplet formation through dispersed phase jetting. 

Jetting is generally considered unfavourable if the objective is to produce mono-disperse 

droplets in a controlled manner. However, it may be appropriate to operate with jetting to maximise 

the dispersed phase flux. It is potentially a compromise between droplet size homogeneity and the 

emulsion production rate although recent effort has been made to control jet fragmentation (Santos 

et al., 2015). The occurrence of the jetting mechanism can be predicted by considering 

dimensionless numbers that characterise the systems flow behaviour. Initially, Sugiura et al. (2002) 

suggested as a rough estimation that a Capillary number (Eq. 2.10) of 0.056 must not be exceeded in 

order to produce droplets in a controlled manner.   

    
       

 
 

(Eq. 2.10) 

where Cad is the dispersed phase Capillary number, µd is the dispersed phase viscosity,        is the 

average dispersed phase velocity and γ is the interfacial tension. Pathak (2011) expanded the idea 

with jetting also being a function of the Weber number (Eq. 2.11).  

    
        

        

  
 

(Eq. 2.11) 
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where Wed is the dispersed phase Weber number, dd is the droplet diameter and ρd is the density of 

the dispersed phase. Simulations were performed using a Computerised Fluid Dynamics (CFD) 

software package. The Weber number was modified between 0.009-1.82 by changing the dispersed 

phase velocity, whilst the continuous phase capillary number was altered by its velocity and IFT 

value between 0.004-0.008. This enabled the transitional point between dripping and jetting to be 

mapped in a way shown in Fig. 2.9 and defined by Eq. 2.12. 
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Fig. 2.9: Mapping of the transitional point between dripping and jetting droplet formation mechanism. 

                 
           

            (Eq. 2.12) 

where Wecrit is critical Weber number, k1 and k2 are coefficients determined to be 1.188 and 3455 

respectively for the system investigated (Pathak, 2011). Meyer (2010) discussed the idea that the 

transitional point is not the same for all fluids on the We and Ca space (i.e. Fig. 2.10). The transitional 

point was found by Ambravaneswaran et al. (2004) to be lower values of We or Ca with increasing 

Ohnesorge number (Eq. 2.13) 

 

Wecrit = f(Ca) 
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Fig. 2.10: Inclusion of Ohnesorge number in the mapping of the transitional point between dripping and jetting 
droplet formation mechanism. 

   
  

          
 (Eq. 2.13) 

where Oh is the Ohnesorge number, µc is the continuous phase viscosity and ρc is the density of the 

continuous phase.    

2.2.4 Fluid Flow Behaviour 

Consideration of the flow behaviour of either the dispersed or continuous phase is 

important in order to understand membrane emulsification processing. More specifically, this 

relates to the dispersed phase permeating through the membrane material and the continuous 

phase flow pattern within the emulsification vessel. The dispersed phase flow behaviour strongly 

governs the droplet growth rate and the subsequent rate of emulsion production. On the other 

hand, the continuous phase predominately determines the point of droplet detachment (due to 

acting detachment forces) and thus the size. Ultimately, the flow behaviour of either phase is 

explained by equations commonly used within fluid mechanics. 
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For the dispersed phase, the movement of material through a single channel can be 

quantified by the Hagen-Poiseuille equation assuming steady-state laminar flow of incompressible 

fluid: 

   
   

 

       
     

(Eq. 2.14) 

where dp is the pore diameter and ΔPtm is the transmembrane pressure. The pore channel length (Lp) 

is calculated using Eq. 2.15: 

       (Eq. 2.15) 

where Lm is the membrane wall thickness and τ is a tortuosity factor which is 1.0 for straight-through 

pores and 1.28 for SPG (Vladisavljevic et al., 2005). The laminar flow condition is often met since the 

pore channels tend to be within the micro-scale and thus the Reynolds number of the fluid is very 

low. However, since membrane emulsification relies on droplet production from multiple pore 

channels (using a porous bed), Darcy’s law is more suitable for predicting the flux behaviour: 

   
        

    
 

(Eq. 2.16) 

where Qd is the volumetric flow rate of dispersed phase through the membrane and Am is the 

membrane surface area.  The permeability (K) is calculated using an equation suggested by O’Brien 

et al. (2007) adapted from the Carman-Kozeny equation: 

     
      (Eq. 2.17) 

where α is the fraction of pores active and φ is the membrane porosity. However, these equations 

cannot be blindly used to estimate the flux and therefore the emulsion production rate. As 

mentioned in section 2.2.2, membrane materials such as SPG and ceramics demonstrate variable 

effective porosity as pores activate with increasing TMP. This means that the TMP not only increases 

the driving force and therefore the flow rate, but also increases the membrane permeability. As 

such, the flux increases exponentially rather than in a linear fashion. For metallic membranes, this 
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occurs to less of an extent so the permeability does not drastically change. The extent of pore 

activation depends on the properties of the specific membrane tested (this may differ slightly for 

each one). Therefore, the fraction of pores active under a given TMP has to be determined 

experimentally. 

 A minimum TMP is required for the dispersed phase to be able to permeate the membrane 

structure and form a droplet. Therefore, the above equations are only applicable presuming the TMP 

is above this critical value; known as the capillary pressure. This is defined as: 

   
      

  
 

(Eq. 2.18) 

where Pc is the capillary pressure and θ is the contact angle between the dispersed phase and the 

capillary wall. The capillary pressure is also affected by tortuosities within the pores, irregular 

shaped pore openings and surface wettability effects so the minimum TMP may need to be slightly 

higher. It is recommended to operate with a TMP between 1-10 times larger than the capillary 

pressure (ideally 1-5) in order to produce small, stable droplets (Nakashima et al., Inventors U.S. Pat. 

No. 5326484) since the interfacial tension force is dominant (Sugiura et al., 2001). However, to 

maximise the dispersed phase flux, the TMP must be as high as possible, but without jetting 

occurring. This may also be achievable by lowering the dispersed phase viscosity via heating, but this 

may promote droplet instability (Boyd et al., 1972). It was also suggested the dispersed phase flux 

could be increased by applying surfactant within the dispersed phase (Katoh et al., 1996), pre-

soaking the membrane in continuous phase (Wu et al., 2006) or using non-circular pores (Yuan et al., 

2009). The occurrence of dispersed phase jetting flow behaviour upon exiting the pore can be 

determined by evaluating the dimensionless Reynolds, Weber and Ohnesorge numbers as discussed 

in section 2.2.3. The velocity term can be estimated by dividing the volumetric flow rate by the 

cross-sectional area of the pore channel or calculated by using the Fanning equation (for steady 

laminar flow in a tubular pipe): 
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(Eq. 2.19) 

where vd is the dispersed phase fluid velocity within the pore channel. However, the velocity is an 

approximation since it has been shown to fluctuate during droplet formation (Abrahamse et al., 

2001). As the droplet expands, the Laplace pressure decreases (Schroder et al., 1998), resulting in 

more of the applied pressure being used to force material through the membrane channel (increase 

in pore fluid velocity). With the formation of a droplet neck, the velocity decreases sharply as the 

pressure drop across the droplet neck is high. This is represented schematically:    
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Fig. 2.11: A schematic diagram representing dispersed phase velocity change as a droplet grows at the 
membrane surface. 

 

For the continuous phase, the flow behaviour depends on the membrane emulsification 

configuration used. For XME, the behaviour can be quantified simply by the Reynolds number within 

the cross-flow channel as shown by Eq. 2.20: 

    
      

  
 

(Eq. 2.20) 

where Rec is the continuous phase Reynolds number, vc is velocity of the continuous phase and DH is 

the hydraulic diameter of the channel. Generally, membrane emulsification is operated within 

laminar flow with streamlines moving parallel to the membrane surface (to ensure uniform droplet 
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production). However, the flow behaviour for RME is more complex since it involves two coaxial 

cylinders in which one rotates at a specified angular velocity relative to the other (Lathrop et al., 

1992). As such, radial mixing rather than axial mixing occurs (Baier et al., 2000). A dimensionless 

Taylor number (Ta) quantifying rotating fluid flow therefore also requires consideration (Taylor, 

1923) alongside an alternative expression for Reynolds number: 

               
  

  
 

 

(Eq. 2.21) 

       
        

     
 

 

(Eq. 2.22) 

where ω1 is the angular velocity of the membrane surface, r1 and r2 are the radii of the membrane 

and outer vessel respectively. The movement of the membrane can generate inertial instability 

within the flow; known as Taylor vortices. Their development depends on factors such as the 

membrane surface angular velocity, the annular gap width between the membrane surface and the 

emulsification vessel wall and the continuous phase viscosity. As the Taylor number exceeds 41.3 

(Schadler and Windhab, 2006), the behaviour shifts from simple laminar-couette flow to laminar 

flow with vortices. Beyond a Taylor number of 400, the flow is turbulent with formation of unsteady, 

non-asymmetric vortices known as Wavy vortices. The development of Taylor vortices as seen by 

Schadler and Windhab (2006) is advantageous for producing small droplet sizes; the droplet to pore 

size ratio decreased from 6.15 to 1.81 in their presence. Eisner (2007) suggested the flow profile 

could directly affect the droplet formation process depending on the alignment of Taylor vortices as 

shown in Fig. 2.12: 
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Fig. 2.12: Possible alignments of Taylor vortices relative to a forming droplet. 

 

In case (a), the droplet is forming at the outflow of the vortex (flow away from membrane surface) 

which helps to pull droplets into the continuous phase. For case (b), droplet production occurs 

within the inflow of the vortex (towards the membrane surface) holding droplets at the membrane 

surface for longer. In case (c), the flow is tangential to the droplet which will induce detachment due 

to shear. The angular velocity of the vortex roughly equates to the velocity of the membrane 

surface; this flow is insufficient to destabilise emulsions due to droplet coalescence within the bulk 

(van Boekel and Walstra, 1981). 

 The shear rate at the membrane surface is also often used as a means to characterise the 

behaviour of the process. This is typically converted into a wall shear stress value by multiplying by 

the continuous phase viscosity demonstrated at a given shear rate. For RME, the shear rate was 

derived by Vladisavljevic and Williams (2006) for a concentric cylinder setup as: 

   
   

   

     
    

  
 

 

(Eq. 2.23) 

        

 

(Eq. 2.24) 

(a) (b) (c) 
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where    is the shear rate, n1 is the number of rotations per minute and τw is the wall shear stress.  

Greater shear generally results in the production of mono-dispersed droplets of diminishing size 

until their diameter becomes independent of the shear (Joscelyne and Tragardh, 2000). The shear 

rates are generally very low (such that it is unlikely droplet break up will occur). Control of the 

droplet size at a given TMP is achieved by modifying the shear rate (rather than the viscosity) to 

impart more detachment force and hence earlier detachment. This is because viscosity effects are 

more complicated; for example, the continuous phase viscosity may limit surfactant diffusion or 

prevent formation of Taylor vortices. 

 Finally, the importance of a dimensionless Capillary number for the continuous phase (Cac) 

was introduced (Lepercq-Bost et al., 2008). This included an interfacial tension value alongside 

consideration of the velocity within a cross-flow channel as shown in Eq. 2.25:  

    
    

 
 

 

(Eq. 2.25) 

Beyond a Capillary number of 0.5, droplet size was unaffected with a constant droplet to pore size 

ratio of 3. Operation at the threshold Capillary number was therefore suggested to be the optimum 

point in terms of energy efficiency. 

2.3 Modelling of Membrane Emulsification Processes 

In order for membrane emulsification to progress from the small scale towards an 

industrially viable emulsion manufacturing method, the process requires the development of scale 

up approaches and appropriate modelling systems. Such models will enable predictions of how input 

parameters (e.g. TMP, shear rate, membrane pore size) determine the output of the process (e.g. 

droplet size, production rate). In essence, this would give manufacturers a significant element of 

control over the final properties of the emulsion product (Schroder and Schubert, 1999; Charcosset 

et al., 2004). However, the process is highly complex, governed by a large number of interacting 
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processing, formulation and membrane parameters (Vladisavljevic et al., 2004b; De Luca et al., 

2007). As such, modelling approaches require much focus as to explain and predict their influence 

on micro-structural design. 

At the most basic level, empirical models have been developed from experimental data 

although these generally demonstrate parameter trends rather than mathematically justify the final 

droplet size. Algebraic force balance models (FBM) and torque balance models (TBM) consider the 

physics of detachment and remain the most widely adopted technique. Other more complex 

approaches such as surface free energy minimisation models, multi-dimensional fluid dynamics 

(CFD) and lattice Boltzmann simulations require the use of computers to predict the aforementioned 

droplet formation mechanisms and fluid flow behaviour. Ideally, the modelling technique should be 

reliable but also easy to use and therefore each method has advantages and limitations. 

The idea of FBMs and TBMs were first introduced by Peng and Williams (1998) when they 

suggested (as discussed within section 2.2.3) that a droplet will begin to detach due to an imbalance 

of forces acting upon it. The difference between the two techniques is primarily down to the point of 

reference, with the TBM considering moments around the leading point of the pore circumference 

in the direction of detachment. On the other hand, the FBM is based around the contact line at the 

membrane surface. However, both rely on the concept that detachment forces (e.g. drag, buoyancy) 

overcome the adhesive force of interfacial tension. A schematic of the forces is represented within 

Fig. 2.13 (a) whilst their magnitude is presented in Fig. 2.13 (b): 

 



  

49 
 

 

Fig. 2.13: Schematic (a) and magnitude (b) of forces acting on a droplet during cross-flow membrane 
emulsification (Schroder et al., 1998). Within this figure, Fγ denotes the interfacial tension force, FR is the 

viscous drag force, FBG is the buoyancy force, FI is the inertial force, FD is the dynamic lift force and Fstat is the 
static pressure force. 

 

 It is clear that modification of processing parameters alters the magnitude of each force as a 

function of droplet size and thus changes the point of which imbalance and therefore detachment 

occurs. Initial attempts used equilibrium rather than dynamic interfacial tension values which led to 

some inaccuracy with the static models. De Luca et al. (2004) improved the TBM to account for this 

by substituting different values of interfacial tension with respect to time; solutions could be found 

numerically over theoretical droplet formation times. Reasonable accuracy was achieved at large 

pore sizes above 5.5 µm. Further development by De Luca and Drioli (2006) introduced a FBM that 

considers distortion of the droplet due to continuous phase flow. In this work, the behaviour of 

advancing and receding contact angles were calculated numerically as a function of droplet size. The 

critical droplet diameter of which detachment began was recorded as the smallest of multiple 

solutions corresponding to one of droplet contact angles reaching a value of 0 or π radians.  

Timgren et al. (2010) successfully developed a FBM to predict droplet size taking into 

account droplet deformation during the growth and detachment stages. This was achieved through 

alteration of the perpendicular drag and lift force coefficients (Timgren et al., 2008). Previous models 

adopted coefficient values of 1.7 and 0.761 respectively. However, these values did not consider the 

attachment between a forming droplet and dispersed phase within the pore, but rather the droplet 

(a) (b) 
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as a rigid spherical entity. Through modelling and iterative calculation of the deformation angle of a 

droplet using CFD, the point of force imbalance could be solved. A drag force coefficient of 2.6 was 

found to correspond better to the systems behaviour. Similarly, a much larger value of 2.0 was 

appropriate for the lift force coefficient since the coefficient asymptotes once the dispersed phase 

Reynolds number falls below 50. Overall, a significant reduction in error was demonstrated between 

calculated and simulated droplet sizes even in the case of low shear rates.  

The limitations of the model are that the transfer of material via the droplet neck during 

detachment is not accounted for; droplets are assumed to detach instantaneously upon force 

imbalance. Secondly, spontaneous transformation-based droplet formation is not considered 

(Rayner et al., 2004). As a consequence, the model can sometimes over-predict the droplet 

diameter. This is prominent particularly for high interfacial tension systems and if very small, 

tortuous or non-circular pore openings are used. This can play a pivotal role in droplet distortion and 

the consequential detachment process. Finally, the models generally do not account for the 

movement and adsorption of surfactant(s). The differences in dynamic behaviour of fast adsorbing 

surfactants such as SDS and those that are slower (e.g. Tween 20) are not discriminated. Greater 

error is experienced if the interfacial tension decreases very quickly (Timgren et al., 2010). Whilst 

these models remain less accurate than the more rigorous computational techniques, they are 

useful for process optimisation studies and serve as a rough estimation of droplet size (De Luca et 

al., 2008). Calculations can be performed quickly since very few equations require solving, facilitating 

their use. They also offer great versatility since many parameters can be altered at once. However, 

the models are based around a number of assumptions namely droplet coalescence negligence. 

Reliability may be increased by removing or relaxing assumptions to take droplet interaction and 

pore effects into account. 

Rayner et al. (2004) developed an alternative modelling technique which accounted for 

droplet detachment being induced by interfacial energy rather than by forces acting upon it (Sugiura 
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et al., 2001) i.e. spontaneous transformation-based droplet formation mechanism. A ‘surface 

evolver’ tool was developed to model the droplet shape as it formed and represented it as a 

triangular tessellation of surfaces as shown in Fig. 2.14.   

 

Fig. 2.14: Pore boundary condition and droplet simulation along minor and major axes; the basis of the surface 
evolver tool (Rayner et al., 2004). 

 The original model assumed a stationary continuous phase and therefore negated the 

effects of drag force on droplet shape. Furthermore, the interfacial tension was taken as a static 

rather than dynamic driving force. Nevertheless, good agreement with experimental data was seen. 

Rayner et al. (2005) improved the model by considering the coupling effect between the rate of 

droplet inflation and the surface coverage by the surfactant, and hence interfacial tension. The 

increase in size during the detachment stage was also accounted for.  This modelling technique was 

capable to overcome some of the issues encountered with FBM and TBM since it could be applied to 

quiescent conditions and non-spherical pore geometries. The limitations of the model primarily 

relate to the longer calculation times required, but also inaccuracy due to possible membrane 

wetting effects. 

 Another useful modelling approach uses CFD to simulate droplet formation on two 

dimensional planes. This has enabled development of the simpler models by providing insight into 

the physics of the process, but also as a means of validating model predictions. Abrahamse et al. 

(2001) successfully demonstrated the use of CFD for membrane emulsification. A droplet was 

theoretically formed from a single cylindrical pore within a laminar flow continuous phase as 
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represented in Fig. 2.15.  

 

Fig. 2.15: Computational fluid dynamics (CFD) velocity profile of an oil droplet forming within an aqueous 
continuous phase (Abrahamse et al., 2001). 

The primary aim of the study was to observe the pressure drop across the pore channel, and 

the subsequent dispersed phase fluid velocity changes as a droplet is produced. As mentioned 

previously, these values fluctuated drastically over time despite a constant applied pressure (1.3 bar) 

and interfacial tension value (30 mN m-1).  This was due to the Laplace pressure decrease as the 

droplet inflated, followed by significant frictional losses from flow via the neck; this would have been 

difficult to measure experimentally. Where CFD particularly excels is for modelling flow behaviour of 

multiple forming droplets. The technique can account for complexities that simplified models do not 

address, including consideration of pore activation and droplet-droplet interactions. The main 

drawback apart from long calculation times, is the need for the system to be very clearly defined in 

term of its physics. Also, CFD has yet to be demonstrated to account for wetting of the membrane 

surface. Despite this, CFD can achieve a decent level of prediction accuracy for two dimensional 

planes. 

Finally, simulations have been performed through adoption of the lattice Boltzmann method 

(Van der Graaf et al., 2006; Van der Zwan et al., 2009) as seen in Fig. 2.16. This approach relies on 

kinetic gas theory to predict how hypothetical particles move and collide on a lattice. There particles 
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can be considered to represent segments of fluid and therefore model the process from both a 

physical and thermodynamic perspective. Generally the other models could only invoke the former 

which is why difficulties arose when accounting for the dynamic behaviour of surfactants. 

 

Fig. 2.16: Visual representation of droplet formation (where T denotes the droplet formation time) using the 
lattice Boltzmann method (Van der Zwan et al., 2009). 

 Van der Graaf et al. (2006) compared simulated and experimental data using this technique 

with a T-shaped microchannel. Interestingly, the wetting of the membrane surface is also accounted 

for; another limitation hindering other techniques. It was concluded that good agreement was found 

for predicted and actual droplet sizes. Importantly, they also found that the volume contribution 

during the growth and detachment stages depended on the continuous phase Capillary number as 

well as the dispersed phase flux. The primary limitation again is the long times required for the 

software to obtain a solution. 

 In conclusion, membrane emulsification can be modelled using a variety of techniques. 

There is usually a trade off between the speed and ease of calculations against their accuracy as 

assumptions are gradually removed. Selection of the appropriate modelling technique depends on 

the level of precision required, as well as the amount of resource available to the user i.e. 

computational power, time. Within this thesis, modelling was undertaken by solving algebraic 

equations within a force balance model (FBM). This was achieved via iteration using Microsoft Excel. 
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2.4 Scale-up of Membrane Emulsification Processes 

Membrane emulsification has been highlighted to offer many advantages over conventional 

processing methods. This is predominantly associated with low energy consumption and the 

intricate level of control, capable of producing unique, high-value products. However, unlike 

processes such as rotor-stator mixers or homogenisers, engineers do not know how to design or up-

scale membrane emulsification equipment. There is no known procedure as to how one would 

approach this problem. Furthermore, demonstration within literature of membrane emulsification at 

the pilot-scale (or larger) is extremely limited. Williams et al. (1998) did demonstrate an industrial 

scale XME device to be capable of formulating O/W emulsions both within batch and semi-

continuous mode. 1.2 kg h-1 of emulsion containing 25 wt. % mineral oil (Marcol 172) as the 

dispersed phase was achieved. A ceramic membrane of 60 cm length, 3.5 mm inner diameter and 

0.5 µm pore diameter was used and a TMP of 1.4 bar was applied. Aside from this, there are almost 

no other examples in open literature of membrane emulsification being operated at a large scale. 

Only one company (Morina Milk Industry, Japan) has been reported to use membrane emulsification 

to manufacture their product (Nakashima et al., 2000). It could be speculated that this was a risky 

decision to deviate from trusted technologies to a relatively unknown one without clear design and 

operation guidelines.  

Considering the general configuration of the process, there are multiple, fundamentally 

different approaches that can potentially be adopted. A number of authors have theorised that 

through modulation i.e. using multiple membrane tubes, production rate requirements could be 

satisfied by overcoming typically low dispersed phase fluxes (Williams et al., 1998; Joscelyne and 

Tragardh, 2000; Charcosset, 2009). However, very little discussion has been focussed on the 

alternative approach; simply using a higher membrane surface area in conjunction with larger 

vessels (the approach used within this thesis). Up-scaling a single membrane may be cheaper from a 

capital cost perspective rather than purchasing multiple membrane tubes. There is no doubt that 
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parallelisation could be applied to membrane emulsification processes. Such an approach has been 

utilised within the field of microfluidics, but primarily within the context of filtration rather than 

emulsification (Hansson et al., 2012). Either multiple membrane tubes could be positioned within a 

single emulsification vessel or alternatively, individual membrane/vessel units could be 

implemented. Challenges may lie in ensuring the shear at the membrane surface or pressure driving 

force is uniform across all membranes. For example, the latter could possibly be difficult to achieve 

due to frictional losses within the pipe work upstream of each membrane. It was observed that even 

subtle variations in the TMP or shear could vastly alter the micro-structural properties of an 

emulsion (Abrahamse et al., 2002; Vladisavljevic et al., 2004b). 

Gijsbertsen-Abrahamse et al. (2004) suggested that the priority in terms of up-scaling should 

be focussing research towards the design of membranes which have specific properties to overcome 

flux limitations. The authors considered a hypothetical scenario of which culinary cream of 30% 

dispersed phase containing droplets of 1-3 µm required manufacture at a rate of 20 m3 h-1. A range 

of membrane materials were considered including SPG, ceramic α-Al2O3 and metallic microsieve 

membranes of variable properties. The pore size of the respective materials was selected as 0.2 µm 

in order to meet the droplet size requirements. Three design scenarios were postulated; to minimise 

membrane area, to produce mono-dispersed droplet sizes or to allow stable emulsion production 

with TMP fluctuation. It was concluded that a microsieve of surface area 1 m2 was the optimum 

membrane material regardless of the design criteria as shown in Fig 2.17. 
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Fig. 2.17: The membrane area required to produce 20 m
3
 h

-1
 of 30% disperse phase culinary cream for 

different membrane material properties. SPG: Shirasu Porous Glass, Al1-3: ceramic α-Al2O3 of increasing pore 
diameter standard deviation, m1-2: silicon nitride microsieve of increasing upper pore layer resistance 

(Gijsbertsen-Abrahamse et al., 2004) 

 

The approach used by Gijsbertsen-Abrahamse at co-workers perhaps suggests that selection of the 

appropriate membrane material (pore size, porosity etc.) could be the first major step in the design 

process for membrane emulsification.  
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Chapter 3: 

Materials and Methods 

 

This chapter details the range of materials, equipment and operating procedures 

used for the experimental work presented in this thesis. 
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3.1 Chemical Components 

3.1.1 Emulsions 

All emulsions were oil-in-water (O/W) systems produced using Milli Q water as the 

continuous phase and either commercially available sunflower oil or silicone oil (Sigma Aldrich, UK) 

as the dispersed phase. Sunflower oil has a density of 919 kg m-3 and a viscosity of 0.066 Pa s at 20°C. 

Silicone oil had variable density and viscosity values depending on the one selected. The quantity of 

dispersed phase within the emulsion was expressed as vol. %. 

Water has a density of 998 kg m-3 and a viscosity of 0.001 Pa s at 20°C. 

Emulsions were stabilised either using a surfactant, particles or a mixture of both. These are 

expressed as wt. % of the whole emulsion system. 

In some cases, Glycerol (supplied by Sigma Aldrich, UK) of varying quantity between 1-87.5 wt. % 

was used to modify the continuous phase viscosity. Glycerol has a density of 1260 kg m-3 and 

viscosity of 1.408 Pa s at 20°C. 

3.1.2 Surfactants 

 All surfactant systems were produced through adding a pre-calculated mass of surfactant to 

a known mass of dispersion media (either water or oil) and applying magnetic stirring until the 

surfactant had dissolved. This was undertaken at a slightly elevated temperature of 40°C to increase 

the speed of the process. However, all the systems were cooled to 20°C prior to their use during 

emulsification. Large batch sizes between 0.5-5 L were produced in order to minimise any human 

error during weighing. 
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3.1.2.1 Tween 20 (Polyoxyethylene (20) sorbitan monolaurate) 

Tween 20 was supplied by Sigma Aldrich (UK). It is a non-ionic surfactant commonly used 

with food products since it has a low toxicity and imparts high emulsion stability. It has the 

molecular formula of C58H114O26 and a molecular mass of 1227.5 g mol-1. In appearance, it is 

described as a transparent yellow liquid. It has a density of approximately 1100 kg m-3. Tween 20 

favours the production of O/W emulsions since it has a high hydrophilic-lypothilic balance (HLB) 

value of 16.9. It was used in concentrations between 0.01-10 wt. % positioned either within the 

continuous phase or the dispersed phase. The critical micelle concentration (CMC) within the 

continuous phase is 0.07 g L-1. 

3.1.2.2 Brij 97 (Polyethylene glycol (10) monooleyl ether) 

 Brij 97 was supplied by Fluka Chemie GmbH (Switzerland). It is a non-ionic surfactant with 

the molecular formula of C20H40O2 and a molecular weight of 357 g mol-1. In appearance it is 

described as a very pale yellow liquid/semi-solid at room temperature. Brij 97 has a density of 

approximately 1000 kg m-3. With a HLB value of 12.4, it is effective at stabilising O/W emulsions. It is 

used in concentrations between 0.01-1 wt. % positioned either within the continuous phase or the 

dispersed phase. The CMC within the continuous phase is 0.29 g L-1. 

3.1.2.3 Sodium Dodecyl Sulphate 

 Sodium Dodecyl Sulphate (SDS) was supplied by Fisher Scientific (UK). It is an anionic 

surfactant with the molecular formula of NaC12H25SO4 and a molecular mass of 288.4 g mol-1. It is 

provided in a form of a fine white powder. SDS has a density of 1010 kg m-3. It is extremely effective 

at stabilising O/W emulsions since it has a very high HLB value is 40 and therefore it is incorporated 

within many detergent and cleaning products. It is used in concentrations between 0.01-5 wt. % 

positioned within the continuous phase only (it is insoluble within oil). The CMC within the 

continuous phase is 2.4 g L-1. 
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3.1.2.4 Hydrolysed Lecithin 

 Hydrolysed Lecithin derived from soy beans was acquired from Cargill (Minnesota, USA). It is 

a phospholipid with a molecular formula of C40H80NO8P and a molecular mass of 678 g mol-1. In 

appearance it is described as a very viscous, dark brown liquid. It has a density value of 1030 kg m-3. 

Hydolysed Lecithin has a low HLB value of approximately 5 which indicates it prefers to stabilise 

water-in-oil (W/O) emulsions. However, it is still capable of (briefly) stabilising O/W emulsions. It is 

used in concentrations between 0.01-1 wt. % positioned either within the continuous phase or the 

dispersed phase. The CMC within the continuous phase is 0.61 g L-1. 

3.1.3 Particles 

 All continuous phase particle suspensions were produced by adding a pre-calculated mass of 

particles to Milli Q water. The pH was then adjusted using hydrochloric acid solution (HCl at a 

concentration of 5 wt. %) or sodium hydroxide solution (NaOH at a concentration of 5 wt. %) to a 

value of 2. These chemicals were both purchased from Sigma Aldrich (UK). Within the work of Pichot 

et al. (2009), a pH of 2 was identified to be the optimum value for emulsification since operating at 

its iso-electric point of the particle encourages aggregation which in turn enhances stability against 

coalescence. The particles were then dispersed using a high intensity ultrasonic vibracell processor 

(Jencons-PLS, UK). The batch size was kept constant at 500 ml in order to ensure uniform dispersion 

during sonication. 

Two forms of silica (silicon dioxide) particles were investigated. These both have the same generic 

molecular formula of SiO2, molecular weight of 60.1 g mol-1 and density of 2200 kg m-3. 

3.1.3.1 Aerosil Silica 

 Aerosil (A200) Silica was purchased from Evonik (Germany). These particles are hydrophilic 

fumed silica particles of high purity silicone dioxide content (greater than 99.9 wt. %). Aerosil is 
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supplied as a fine white powder of particle size 12 nm and a specific surface area of 200 m2 g-1. Once 

dispersed at a pH of 2, the particle size of the aggregates is 190 nm. The concentration of particles 

varied between 0.01-2 wt. %. 

3.1.3.2 Ludox Silica 

 Ludox AM Colloidal Silica was purchased from Sigma Aldrich (UK). These particles are 

provided pre-dispersed within a surfactant-containing solution at a high particle concentration of 30 

wt. %. This therefore required dilution with water before pH adjustment and sonication. The un-

identified surfactant within the solution is incorporated to keep the particles finely dispersed. Ludox 

was characterised on a Zetasizer (Malvern Instruments, UK) to have a particle size of approximately 

21 nm. The concentration of particles varied between 0.1-30 wt. %. 

3.1.4 Surfactant/Particle Mixtures 

 Continuous phase systems with varying ratios of Tween 20 and either Aerosil Silica or Ludox 

Silica were produced using the same procedure as detailed within section 3.1.3. Instead of Milli Q 

water, surfactant solution was used which was produced following the steps outlined in section 

3.1.2. The particles were added to the surfactant solution prior to pH adjustment and sonication. 

3.2 Equipment 

3.2.1 Emulsification Processes 

3.2.1.1 Small-scale Rotating Membrane Emulsification 

 For the small-scale Rotating Membrane Emulsification (RME) device, the membrane material 

most extensively investigated (Chapters 4-6) was a hydrophilic, Shirasu Porous Glass (SPG) 

membrane of 6.1 µm pore diameter. This was purchased from SPG Technology Co. (Japan) as 250 

mm long, 10 mm outer diameter tubes (8 mm inner diameter) which were subsequently cut using a 
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diamond file into 45 mm sections. This gave the membrane an effective surface area of 14.1 cm2. 

Alternatively, a stainless steel membrane with laser drilled pores was also investigated (Chapter 7). A 

readily available metal tube of 60 mm length and 10 mm outer diameter was processed along a 50 

mm section by Laser Micromachining Limited (UK) producing pores of 25 µm diameter, a pore 

spacing of 0.5 mm and an effective surface area of 15.7 cm2.  The short membrane tubes were 

bonded using a resistant epoxy resin or welded to a female threaded ferrule at one end whilst the 

other end was capped to dead-end the system. The membrane tube was then mounted on a male 

threaded shaft fed through a commercially available IKA Eurostar Digital overhead stirrer to provide 

rotational motion. PTFE tape was placed on the threaded shaft to prevent leaking of the dispersed 

phase at the joint. The membrane was then submerged in continuous phase to apply shear at the 

membrane surface induced by the relative velocities of the membrane and continuous phase. The 

continuous phase was contained within an emulsification vessel of variable diameter between 20-

100 mm diameter which altered the emulsion batch size between 20-360 g. A schematic of the 

small-scale rotating membrane apparatus is presented in Fig. 3.1 (a) alongside a photograph in Fig. 

3.1 (b).   
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Fig. 3.1: A schematic diagram (a) and a photograph (b) of the small-scale rotating membrane emulsification 

system used within this thesis.  

 

 Before operating the RME device, the membrane to be investigated was soaked in 

continuous phase (surfactant solution) and cleaned within an ultrasonic bath (Model B2210E, 

Branson, Switzerland) for 3 hours. This was done to remove any air or oil trapped within the internal 

structure of the membrane, replacing these materials with continuous phase. Occasionally (typically 

once a week), a more thorough cleaning procedure was required. In this case, the membrane was 

sonicated in ethanol for 3 hours before drying in an oven at 60°C for 12 hours (overnight). Finally, 

the membrane was sonicated within continuous phase for 3 hours as before. For cleaning during 

operation, after a triplicate of experimental runs (at a given set of conditions), the membrane was 

detached and sonicated for 1 hour within continuous phase. The 3 hour cleaning treatment was only 

undertaken generally at the end of the day in preparation for experimental work the day afterwards. 

(a) (b) 
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 The standard operating procedure was as follows. The dispersed phase storage tank was 

manually filled with the dispersed phase material to be used via the dispersed phase inlet valve. This 

was filled to a maximum working volume of 450 ml (capacity of tank = 482.5 ml) before closing this 

inlet valve. Once the membrane was attached, submerged within continuous phase and rotating at a 

constant speed between 100-2000 rotations per minute (RPM), the dispersed phase storage tank 

was pressurised using compressed air. This was achieved by altering the set-point on a pressure 

regulator between 0.1-1.8 bar combined with the opening of the compressed air inlet valve. The set-

point is the ‘transmembrane pressure’ value quoted since the membrane capillary pressure (≈ 0.03 

bar) and hydrostatic pressures (≈ 0.002 bar) of the respective phases are relatively small. Finally, the 

valve between the dispersed phase storage tank and the membrane tube was opened, allowing 

dispersed phase to permeate through the membrane into the continuous phase as individual 

droplets. RME was operated as a semi-batch process, with the mass increase observed over time 

using a weighing balance. Once the mass of dispersed phase equating to a fixed volume fraction was 

obtained, the dispersed phase tank was depressurised and the valve to the membrane tube closed 

simultaneously. Measuring the time of operation allowed for the rate of mass addition and hence 

the dispersed phase flux to be found. The RME equipment was then shut down by switching off the 

overhead stirrer prior to removal of the emulsion sample away for storage and measurement (within 

less than 8 hours). 

  3.2.1.2 Pilot-scale Rotating Membrane Emulsification 

 For the pilot-scale RME device, the membrane investigated was a large laser drilled stainless 

steel tube of 26 µm pore diameter. Its dimensions were 62 mm outer diameter (60 mm inner 

diameter) and length 400 mm. A small section of the tube was milled to reduce the wall thickness 

from (1 to 0.1 mm). A 50 mm length of this thinner section was laser drilled with pore spacing of 0.5 

mm as a square array. This pore array was skewed by 1° to ensure adjacent pores to not follow the 

same horizontal trajectory path as the membrane rotates. The effective membrane surface area was 
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therefore 97.4 cm2 with comparable properties to the small-scale laser drilled stainless steel 

membrane (pore size, porosity etc.). The pilot-scale RME device was mechanically designed and 

constructed by Het Stempel (Netherlands) according to specifications devised through discussions at 

the University of Birmingham. These were stated as a maximum TMP of 4 bar, rotational speed of 

4000 RPM and batch size volume of 12 litres. RME has been recently commercialised by companies 

such as Kinematica although the scale is still relatively small in comparison to this device; < 12 L h-1 

with a continuous phase volume of 400 ml (Eisner, 2007). Essentially, the fundamental principles of 

the equipment are the same as the small-scale device; a membrane mounted on a motor-driven 

rotating shaft with dispersed phase pressurised through it into an emulsification tank containing 

continuous phase. Obviously the sealing and coupling mechanisms are more complex and therefore 

consideration of the mechanical workings of the process is beyond the scope of this research. The 

primary focus here is towards the understanding of emulsification process mechanisms and design 

based on input variables (TMP, rotational speed etc.) and output variables (droplet size, dispersed 

phase flux). As a visual representation, both a schematic and a photograph of the process are 

presented in Fig. 3.2. 
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Fig. 3.2: A schematic diagram (a) and a photograph (b) of the pilot-scale rotating membrane emulsification 

system used within this thesis. 

 

 Prior to assembly of the pilot-scale device (undertaken monthly), the porous section of the 

membrane tube was sonicated firstly within Milli Q water and then within continuous phase solution 

for 3 hours to remove any possible trapped air or dispersed phase material. Since it was impractical 

(a) 

(b) 
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to deconstruct and then rebuild the equipment between each experimental run (this took around 

half a day), only the membrane surface and emulsification tank were cleaned by using 10 litres of 

dilute surfactant solution followed by the same volume of Milli Q water at a rotational speed of 2000 

RPM for 5 minutes. These were subsequently drained from the emulsification tank removing any 

residual waste material. Since the pore channels are straight-through and relatively short in length 

(0.1 mm), it was assumed that fouling within the pore would be unlikely since the residence time is 

low. Furthermore, since the emulsion systems produced were dilute (< 1 vol % of dispersed phase), 

sample contamination between experimental runs would also be improbable considering the 

cleaning process used 20 litres of material (any dispersed phase would be extensively diluted). 

 The standard operating procedure was as follows. The dispersed phase tank was manually 

filled during the assembly stage to a known height of liquid. Based on the usual dispersed phase tank 

geometry, it was determined using a volumetric flask that 100 ml of dispersed phase correlates to 13 

mm of liquid height. The emulsification tank was filled to a volume of 8 litres (marked height on sight 

glass) using a gear pump (Cole-Parmer, UK) to transfer liquid from two 5 litre batches of continuous 

phase. The rotational speed was set on the control panel of the RME device. The cooling jacket of 

the emulsification vessel was set to 20°C which was then left for 10 minutes to equilibrate the 

temperature of the system. The seal cooling system was set to 1°C to ensure it didn’t melt under 

high rotational speeds due to friction. Both of these cooling systems were necessary to ensure this 

frictional heating did not conduct throughout the stainless steel vessel increasing the emulsification 

temperature. The required TMP was controlled by a pressure regulator using compressed air. Upon 

opening the compressed air valve to the dispersed phase tank, this compressed the dispersed phase 

within the storage tank (altering the liquid height) but also starting the process. The new height was 

recorded and the process was operated until 1 vol. % of dispersed phase was added; this equated to 

roughly 10.5 mm of dispersed phase liquid height (≈ 80 ml). Once this had been added, the dispersed 

phase was depressurised and the valve was closed. The rotational speed of the membrane was then 

set to zero and the emulsification tank was drained. Multiple samples were analysed from the same 
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batch at 2 litre intervals to check consistency throughout the emulsion bulk (this did not dramatically 

vary but was accounted for within the data presented). 

  3.2.1.3 Rotor-Stator High Shear Mixer: The Silverson L4RT 

 Emulsions were also produced using a high shear rotor-stator mixer (Silverson Machines 

Ltd., UK) to offer a process comparison with the small-scale RME device. The 4 vane rotor impeller 

and screen diameters were 21 mm and 22 mm respectively whilst the screen holes were 1 mm in 

diameter. Batch sizes between 110-360 ml were investigated within this thesis. A range of rotational 

speeds between 2000-10000 RPM were used (constant mixing time = 1.5 minutes). Additionally, the 

mixing time was also varied between 10 seconds and 10 minutes (at constant speed = 6000 RPM). 

For operation of the process, the dispersed and continuous phases were both positioned 

immediately within a vessel prior to emulsification. The mixer head was lowered to a positional 

central within the tank and just below the initial oil/water interface. The rotor speed was increased 

starting the process. This was then decreased back to zero after a fixed time had elapsed and the 

sample was retained for analysis. During this process, the temperature was not controlled resulting 

in thermal energy losses from the equipment (due to process inefficiency) heating the emulsion 

sample. However, the heat loss to the environment was minimised using tin foil in order to quantify 

the process inefficiency. 

  3.2.1.4 Ultrasonic Emulsification: The Ultrasonic Vibracell Processor 

 An ultrasonic probe (Jencons-PLS, UK) was used to formulate emulsions to further the 

process comparison study. A 12 mm diameter tip was oscillated at amplitudes between 20-95% of its 

maximum amplitude of 114 µm (for a time of 1.5 minutes). The frequency was constant at 20 kHz in 

all cases. This therefore altered the tip velocity between 1.8 m s-1 to 8.7 m s-1. The sonication time 

was also investigated between 10 seconds and 10 minutes (at a constant amplitude of 60%). Again, 

the dispersed and continuous phases were introduced within a single vessel immediately before 
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emulsification occurred. The ultrasonic probe was centralised within the tank with the edge of the 

tip just below the oil/water interface. Upon inputting the percentage amplitude and operating time 

on the control panel, the ultrasonic probe device was switched on to begin the emulsification 

process. Once completed, the probe was removed away from the emulsification vessel and the 

emulsion was stored until analysed. During the process, the temperature was not controlled and so 

the emulsion sample was heated up by the high energy input of the process. Aluminium foil was 

used to reduce heat losses to the atmosphere, in order to quantify the thermal energy generated 

during the process. 

3.2.2 Characterisation Equipment 

3.2.2.1 Laser Diffraction Particle Size Analysis 

The primary method for analysing the emulsion droplet sizes produced was by laser 

diffraction using a Malvern Mastersizer model 2000 (Malvern Instruments Ltd., UK). The emulsions 

were measured using a Hydro SM manual small volume dispersion unit to obtain a size distribution 

curve. The equipment was repeatedly flushed with Milli Q water at a stirring speed of 3500 RPM 

until the laser light intensity received by the detector was at least 77 %. Once clean, the emulsion 

sample was gently re-dispersed (as appropriate) by inverting a number of times. The dispersion unit 

was filled with Milli Q water and set to 1500 RPM to ensure sufficient dispersion (without droplet 

breakup). The emulsion sample was then added via a pipette. Once the laser obscurity was within 

the green range indicating a measurable degree of laser ‘interference’, a triplicate measurement was 

taken which was averaged. The refractive index used for water at 20°C was 1.33. For sunflower oil 

and silicone oil, the refractive indices used were 1.47 and 1.40 respectively. For the particle 

stabilised emulsions, it is assumed that there is complete coverage of the droplet interface by 

particles. As such, the refractive index used was for silica particles (1.46). The error is likely to be 

minimal since it is very close to the refractive index of the sunflower oil which was the dispersed 

phase used. 
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The droplet size measured by the equipment is the volume weighted mean diameter or 

‘D4,3’. This is defined in Eq. 3.1 as:  

     
     

 

     
  

(Eq. 3.1) 

where ni is the number of droplets and di is the droplet size within a specific size class (since the 

distribution curve is split into vertical bands). There are alternative forms of diameter value that can 

be quoted including the surface weighted mean diameter (D3,2) or the volume median diameter 

(D50). Within this thesis, the D4,3 value was chosen as the representative emulsion droplet diameter 

as this was the value measured directly by the Mastersizer and therefore was more accurate. Unless 

otherwise stated after this point, the droplet ‘diameter’ or ‘size’ will refer specifically to the D4,3 

value. In addition to this diameter, a measure of the size distribution variation (poly-disparity) is also 

used which is known as the span value. This is defined as: 

     
       

   
 

(Eq. 3.2) 

where Dn denotes the volume diameter of which n% of the volume distribution is below this value. A 

lower span value indicates a more uniform distribution curve although there is no absolute 

definition of what span value is considered ‘mono-dispersed’ in literature. 

 As mentioned, the equipment is fundamentally dependent on the principle of laser 

diffraction. Emulsions droplets or solid particles pass through a laser beam; a source of coherent, 

intense, monochromatic light. This induces light scattered in all directions (Rayleigh scattering) at an 

angle depending on their size and the refractive index. For example, large droplets scatter at small 

angles with greater intensity and vice versa. The laser diffraction process can be described using 

both the Fraunhofer Approximation and Mie Theory. For the former, the droplets can be considered 

as opaque discs that scatter light at narrow angles. The refractive index difference between the 

droplet and the surrounding medium is considered infinite and all droplet sizes scatter light equally 

effectively. This allows the Fraunhofer Approximation to accurately determine the size for large 
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droplet sizes (> 50 µm).  For smaller droplet sizes below 50 µm, these are characterised by Mie 

Theory which assumes a homogenous sample of spherical droplets, dilute enough such that 

diffracted light can be measured prior to any further ‘interference’. Mie Theory is able to predict 

both the extent of scattering based on differences in the refractive indices and the degree of 

absorption and subsequent refraction of light by the droplet. This therefore is highly suitable for 

emulsion systems where the measured droplets can be small (< 50 µm) and transparent. Using both 

the Fraunhofer Approximatation and Mie Theory enables a range of sizes between 100 nm and 2000 

microns to be measured by this technology. The interactions between the light and the sample are 

measured by a variety of detectors including focal plane detectors (for small scatter angles < 10°), 

large angle detectors (10° to 90°) and back scatter detectors (100° to 135°). A schematic of the 

equipment is shown in Fig. 3.3: 

Monochromatic 

Light Source

Backscatter 
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Sample

Large angle 

Detectors

Focal Plane 

Detector

 

Fig. 3.3: A schematic diagram illustrating laser diffraction; the basis behind the Malvern Mastersizer model 

2000 used to quantify droplet and particle diameters within this thesis.  

 

 The main advantages of using laser diffraction for the droplet size analysis as opposed to 

other techniques (e.g. microscopy) are: 

 Quick to quantify multiple droplet sizes without image analysis 

 Does not require calibration. Only the correct refractive indices are needed 

 Measurements can be made rapidly within a couple of minutes of emulsion formation 

 Only a small quantity of sample is required (typically a few millilitres) 
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However, there are a few limitations of laser diffraction. Firstly, it is assumed that the droplets (or 

particles) measured are completely spherical entities. In reality, droplets might be deformed within 

the flow at an orientation that alters the extent of diffraction giving an erroneous measurement. 

Secondly, laser diffraction is difficult to accurately measure if the refractive indices of the dispersed 

and continuous phases are very similar. Therefore, care and consideration is required both during 

the application of laser diffraction and interpretation of the droplet size data generated. 

3.2.2.2 Dispersed Phase Flux Measurement  

During emulsion production, the change in mass of the emulsification vessel due to oil 

addition was recorded as a function of time. Therefore, the dispersed phase flux value can be 

obtained using: 

   
  

      
 

(Eq. 3.3) 

where Md is the mass of dispersed phase added, ρd is the density of the dispersed phase, Am is the 

effective membrane surface area and tp is the processing time. The units of flux are generally 

expressed as a volume of material per unit area per unit volume. Within this thesis, the unit L m-2 h-1 

is used for the dispersed phase flux values.   

3.2.2.3 Interfacial Tension Measurement  

 The interfacial tension (IFT) between oil/water was measured predominately using an 

EASYDROP Contact Angle Measuring System (Kruss GmbH, Germany), referred to as a Goniometer, 

which employs the pendant drop method. A droplet of organic material (with or without oil-soluble 

surfactant) or aqueous solution (with or without water-soluble surfactant) was produced via a 

controllable syringe unit which took approximately less than 3 seconds to form. This occurred whilst 

the syringe needle (of 1.8 mm diameter) was submersed within the alternate phase contained within 

a 40 x 40 x 30 mm glass cuvette. A Monochrome interline CCD camera observed the shape of the 
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droplet at a rate of 25 frames per second.  The associated software monitors and analyses the shape 

of the droplet over time, based on the known density values of each phase. In turn, this calculates 

the IFT between the two phases (using the Laplace equation) by accounting for buoyancy force 

effects on the droplet shape. A schematic of the equipment can be seen in Fig. 3.4. 

Light SourceCamera

Needle

Syringe

Droplet

 

Fig. 3.4: A schematic diagram illustrating interfacial tension measurement with the Kruss Goniometer. 

In the majority of cases, an oil droplet was formed within an aqueous solution in order to 

emulate the RME research producing O/W emulsions. However, in some cases the phases were 

reversed if the aqueous solution was too opaque (e.g. lecithin solutions, Aerosil dispersions). A U-

shaped syringe needle was used to produce oil droplets since the buoyancy force acts to move 

droplets upwards and away from the needle once detached. This is shown schematically in Fig. 3.5. 

Oil Phase

Aqueous Phase
Oil Phase

Aqueous Phase

 

Fig. 3.5: A schematic indicating the possible measurement configurations depending on the properties of the 

material used to form the droplet. 
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Once an individual measurement had been completed, the glass cuvette was cleaned with distilled 

water and then dried. When required, the syringe needle was flushed repeatedly with oil or water 

(without surfactant) to prevent contamination when altering the material used to create the droplet. 

 A range of measurement approaches were utilised with the Goniometer. In all cases, the 

measurement temperature was at 20°C. To determine the equilibrium IFT, a triplicate series of 

measurements were performed for a time of 30 minutes with IFT measurements taken at 30 second 

intervals. For a more detailed observation of the IFT immediately upon droplet formation, IFT values 

were measured at the shortest time intervals possible (≈ 0.2 seconds) for a period of one minute. 

This was performed ten times to provide confidence in the rate behaviour of the systems 

investigated. Since there was an inherent 3.5 second time delay between forming the droplet and 

beginning the measurement, this was accounted for i.e. measurement time of 0 seconds was altered 

to 3.5 seconds. A logarithmic function was then applied to this data to obtain an equation 

connecting IFT with time. This allowed for the IFT to be back-calculated for times less than 3.5 

seconds as an estimation of the IFT value within a time period similar to droplet formation during 

RME.  

 The primary advantages of using the Goniometer to measure the IFT are: 

 Measurements can be taken quickly and easily 

 Only the density values of the respective phases are required 

 It is a crude representation of the membrane emulsification process 

 It can provide a visual demonstration of droplet formation and evolution of its shape 

 Only requires small quantities of the dispersed and continuous phases 

The limitations of the Goniometer relate mainly to the difficulty of the software to identify the 

interface if both phases are opaque or if they have a similar refractive index. Additionally, both a 

high resolution camera and a smooth capillary needle (to form an axisymmetric droplet) are 

required to perform accurate measurements. 
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3.2.2.4 Rheology 

 The bulk viscosity was measured using a Bohlin Gemini HR Nano (Malvern Instruments, UK) 

with the concentric cylinder C25 DIN 53019 geometry at 20°C. Initially, a cone-and-plate geometry 

was used since it applies a uniform shear field across the whole sample. However, this led to 

inaccuracies particularly when measuring very low viscosity fluids since the gap did not remain filled. 

Instead, the concentric cylinder geometry was used since fluid could be contained within the outer 

cylinder. In addition, the configuration is conceptually similar to the RME process i.e. an inner 

rotating cylinder within an outer stationary cylinder. Viscosity measurements of emulsions or their 

constituent ingredients were undertaken across a range of shear rates between 0.1 s-1 and 1000 s-1 

to investigate behaviour under shear rates similar to both the small-scale (0.6-139.6 s-1) and pilot-

scale (2.2-89.1 s-1) RME equipment during emulsification. 

3.2.2.5 Density 

 Density values for the dispersed and continuous phase materials were generally acquired via 

material data sheets. In some cases (e.g. for surfactant solutions), the average density was 

calculated by considered the mass fraction of each component. If no density information was 

available, 25 ml of material was placed within a volumetric flask and then its mass was recorded. The 

density was then calculated by dividing the recorded mass by the volume. 

3.2.2.6 Temperature 

 Within Chapter 6, the emulsion temperature was measured immediately upon formation to 

quantify the process energy wasted as thermal energy. This was undertaken using a commercially 

available digital thermometer. In order to minimise heat losses to the environment, the 

emulsification vessel was insulated with tin foil such that it could be considered a closed system. 
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3.2.2.7 Process Energy Consumption during Emulsification    

 The energy consumed during process operation was calculated firstly by measuring the 

power draw using a commercially available plug-in energy meter at a given equipment rotational 

speed. Ten measurements were recorded whilst the membrane or impeller was fully submerged 

within distilled water and then a 10 vol. % sunflower oil-in-water emulsion (representing the two 

extremes of viscosity).  These values were averaged to find the rate of energy consumption in Joules 

per second, which when multiplied by the processing time gives the energy consumed to operate 

the process. 
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Chapter 4: 

Processing Effects using a Small-scale Rotating 

Membrane Emulsification Device 

 

This chapter furthers current understanding on how processing variables influence 

fluid flow behaviour, and consequently the observed droplet size and dispersed phase flux 

during rotating membrane emulsification for batch sizes less than 0.36 kg.  

 

 

 

 

Data and discussions contained within this chapter have been published within: 

Lloyd, D.M., Norton, I.T., Spyropoulos, F. (2014). Processing effects during rotating membrane 

emulsification. Journal of Membrane Science, 466 8-17. 
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4.1 Introduction and Preliminary Studies 

The aim of this chapter is to gain insight into how the O/W emulsion droplet size and 

production rate are affected by the flow behaviour of the dispersed phase (flow through the 

membrane) and continuous phase (flow within the processing vessel) during Rotating Membrane 

Emulsification (RME). It is well known that the key processing parameters are the transmembrane 

pressure (TMP; which forces the dispersed phase to permeate through the membrane material and 

form individual droplets) and the shear rate (which acts to detach droplets from the membrane 

surface). What is important to consider is that these can be selected and altered by the operator 

allowing for flexibility if one wanted to produce smaller droplets for example. It is therefore 

fundamentally important that these parameters, and more specifically the influence they have on 

droplet formation mechanisms, are well understood. However, there is a lot of deliberation within 

literature which means the design and operation procedures for RME lack clarity. The following 

chapter is therefore designed to evaluate these processing effects in order to further understanding 

of RME. 

 Prior to exploration of the processing effects that can occur, a number of key variables had 

to be selected. In particular, these relate to formulation parameters (such as surfactant type, 

concentration, volume fraction etc.) which will be discussed further in Chapter 5. The membrane 

parameters were also kept constant. Sunflower oil (SFO) was chosen as the dispersed phase since it 

is readily available, cheap and safe to use. Dragosavac et al. (2008) stated that SFO is a suitable 

dispersed phase material when performing membrane emulsification with hydrophilic Shirasu-

Porous-Glass (SPG) membranes because it does not contain any triglycerides that specifically would 

adsorb to the membrane and cause wetting of dispersed phase across the membrane surface. The 

non-ionic surfactant Tween 20 was used within the continuous phase because it is reasonably 

effective at stabilising O/W emulsions and also any electrostatic effects between forming droplets 

and the membrane surface are eliminated (compared to anionic SDS for example). At 1 wt. %, the 
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concentration is well above the CMC and therefore emulsions remain stable far beyond the 

timescale between emulsion formation and droplet size analysis (typically < 8 hours). This is 

highlighted in Fig. 4.1 below where a range of formed droplet sizes stabilised by 1 wt. % Tween 20 

were measured immediately after formation and 2 weeks later after storage at 20°C.  

 

Fig. 4.1: 2 Week stability data of 10 vol. % Sunflower Oil-in-water emulsions stabilised by 1 wt. % Tween 20. 

 

 It is clear that there is a negligible difference in droplet size after 2 weeks (gradient very 

close to 1) except in the case where larger droplet sizes had been produced (>60 μm). This is likely to 

be due to minor destabilisation mechanisms perhaps induced by creaming. However, considering 

the time between droplet formation and measurement during the remainder of this study is less 

than 8 hours and hence a much shorter timescale, it is reasonable to suggest that the measured 

droplet size and the droplet size upon formation are the same. 

 Another important consideration for RME that required brief investigation was whether the 

emulsion properties changed during processing time. This was to ensure that droplet formation 
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remains a homogeneous process from start to finish as the RME process is being operated. For 

example, it could be hypothesised that under the highest shear rates achievable during RME, 

droplets may break up in the bulk continuous phase. This would not only add a layer of complexity in 

deciphering why droplets achieve a certain size under a given set of conditions, but also undermines 

the nature of RME (to build-up droplets individually in a controlled manner). Fortunately, this was 

ruled out by subjecting an emulsion of large droplet size (104 μm, stabilised by 1 wt. % Tween 20) to 

the highest shear rate achievable with the RME setup (139.6 s-1) for a period of 1 hour which is far 

longer than typical operation times (< 5 minutes depending on the applied TMP). For this 

experiment, no additional dispersed phase was added via the membrane, but the membrane was 

rotated at the maximum speed of 2000 RPM within a 20 mm diameter vessel to impart shear on the 

already formed emulsion. As can be seen in Fig. 4.2, there is minimal difference between the two 

droplet distribution curves which implies that droplets do not break up once they have detached 

from the membrane surface. Furthermore, the likelihood of droplet break up is reduced further if 

the droplets are smaller (due to their Laplace pressure), less shear is applied (e.g. at lower RPM) or 

the processing time is shorter.  

 

Fig. 4.2: Droplet size distributions for an initial emulsion and after 1 hour of shear at a rate of 139.6 s
-1

 applied 
using the rotating membrane emulsification equipment without dispersed phase addition. 

0 

2 

4 

6 

8 

10 

12 

14 

1 10 100 1000 10000 

V
o

lu
m

e 
(%

) 

Droplet Diameter (μm) 

Initial 

1 Hour 



  

81 
 

One final consideration is that since the dispersed phase is gradually added to the 

continuous phase over time, it could also be hypothesised that the viscosity may vary and so 

droplets formed towards the end of process operation experience a different drag force to those 

formed within pure surfactant solution at the very beginning. A dispersed phase volume fraction of 

10% was chosen for a number of reasons. Firstly, the majority of emulsion based products are non-

dilute systems, so the aim was to ensure the research would be applicable if one wanted to 

formulate emulsions with RME to replicate those used in actual products. Secondly, production of 

these systems did not take too long or occur too quickly so this was beneficial from a practical point 

of view.  Finally, these emulsions were concentrated enough to be easily measured during droplet 

size analysis without large quantities of emulsion required (particularly when the emulsion droplets 

are large and diffraction occurs to less of an extent). In order to investigate the extent of viscosity 

modification during processing, emulsions containing 5 v/v % and 10 v/v % dispersed phase (which 

represent the midpoint and endpoint of the process respectively) were compared to 1 wt. % Tween 

solution (i.e. 0 v/v % dispersed phase) using a Rheometer. It can be observed from Fig. 4.3 that 

viscosity appears to be independent of the dispersed phase volume fraction (for dilute systems) or 

range of droplet diameters considered. Shear thinning behaviour occurs under low shear rates (<1 s-

1) with the value then tending to approximately the viscosity of water. Importantly, this indicates 

that the drag force acting on droplets forming towards the end of the process is going to be almost 

(if not) identical to the force acting on droplets at the beginning (as per findings by Schadler and 

Windhab, 2006). It is noteworthy that the sudden increase in viscosity around 60 s-1 is due to vortex 

formation within the Rheometer resulting in erroneous values upon further increase in shear. Thus, 

these values were ignored from calculations.  



  

82 
 

 

Fig. 4.3: Bulk rheological measurements to compare dynamic viscosity values for a range of Sunflower Oil-in-
water emulsions with the initial surfactant solution (i.e. pure continuous phase). 

 

The membrane used within this chapter and a large portion of this thesis is a Shirasu-porous-

glass (SPG) membrane of 6.1 μm pore diameter. SPG membranes are very capable of producing 

uniform droplet sizes with highly repeatable results due to their extremely narrow pore size 

distributions (Vladisavljevic et al., 2007). This is important because it therefore allows droplet 

formation mechanisms induced by a particular set of processing conditions to be studied. Use of an 

intermediate size pore diameter and relatively high TMPs (up to 57 times higher than the capillary 

pressure) was deliberate because the motivation behind the research was aiming towards high 

production rate emulsion production rather than forming the narrowest droplet size distribution 

achievable. However, variations caused by membrane and formulation parameters have been 

minimised where possible in order to obtain the lowest error and hence repeatable results. These 

preliminary findings provide confidence that the processing effects are meaningful observations 
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rather than being an artefact caused by the experimental methodology. The effect of processing 

parameters will now be discussed further. 

4.2 Effect of Transmembrane Pressure 

4.2.1 On the resultant droplet size 

Fig. 4.4 shows the resulting droplet size of the emulsion at different TMPs (between 0.1 to 

1.8 bar) across a range of rotational speeds (100, 1000 and 2000 RPM). Predominantly, the TMP 

used within most other studies tends to be no more than 2 or 3 times the critical capillary pressure. 

In this study, much higher TMPs are investigated up to 57 times the capillary pressure as the aim was 

to obtain high(er) throughput of dispersed phase. The trend observed in general was that with 

increasing pressure, the droplet size decreased to a minimum before gradually increasing upon 

further pressure application. This behaviour is more prominent when the rotational speed, and 

hence the shear rate is low (i.e. 100 RPM). It is highly likely that to some extent coalescence is a 

contributing factor to the relatively large droplet sizes under these processing conditions, since 

these droplet sizes vary between 8.6-17.2 times larger than the pore diameter i.e. the upper end of 

the ratio values suggested by other authors (Charcosset, 2009; Joscelyne and Tragardh, 2000). 

Furthermore, droplet size distribution span values across the whole data set range dramatically 

between 0.720 to 2.210 depending on processing conditions. 
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Fig. 4.4: The influence of transmembrane pressure on the mean droplet size for different rotational speeds. 
The emulsions are 10 vol. % sunflower oil stabilised by 1 wt. % Tween 20. The error bars represent one 

standard deviation of a triplicate of experimental runs. 

 

Within the literature, the effect of TMP in membrane emulsification is contentious with the 

majority suggesting the droplet size increases with increasing TMP (Katoh et al., 1996; Schroder et 

al., 1998; Peng and Williams, 1998; Christov et al., 2008). Abrahamse et al. (2002) and Matos et al. 

(2013) found the droplet size to decrease with increasing TMP. Within this study, it is observed that 

there is an initial decrease followed by an increase agreeing with the work of Vladisavljevic et al. 

(2004b). It is therefore logical to suggest that there are multiple, competing factors affecting the 

droplet size produced. A droplet size increase with increasing pressure is attributed to higher IFT 

values at small droplet formation times due to depletion of surfactant adsorbed at the rapidly 

expanding interface (Schroder et al., 1998). It has also been suggested that there is significant mass 

transfer of dispersed phase via the droplet neck during detachment (Peng and Williams, 1998) 

although the pressure does not directly alter the point that a droplet begins to detach since the 

inertial force is considered negligible. On the other hand, explanations for size decrease are that 
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steric hindrance aids detachment of droplets from the membrane surface as a ‘push off’ force 

(Abrahamse et al., 2002; Egidi et al., 2008; Kosvintsev et al., 2008) and formation occurs from 

smaller diameter pore channels that were previously inactive at lower pressure due to their higher 

capillary pressures (Vladisavljevic et al., 2004b). The data presented here in Fig. 4.4 can be 

essentially divided into three regions with regards to TMP; a droplet decrease to a minimum (<0.5 

bar), a gradual increase in droplet size (0.5-1.5 bar) and then a rapid increase with poly-dispersed 

droplet sizes formed (>1.5 bar). The exact transitional point between the regions depends on the 

rotational speed so approximations are stated to enable clarity during the discussion. Although not 

observed for the experimental conditions studied for systems shown in Fig. 4.4, in the later parts of 

this chapter and for systems of higher IFT values, the existence of a fourth region, in which a droplet 

size plateau is observed, will be proposed.  

At pressures <0.5 bar the droplet size decreases with the extent depending on the rotational 

speed. At 100 RPM, this decrease is significant (22.5%, from 99.6 µm to 77.2 µm) whilst at 2000 RPM 

the decrease is almost negligible (6.9%, from 55.5 µm to 51.4 µm). The droplet size distribution span 

values follow a similar trend decreasing from 1.786 to 1.058 at 100 RPM whilst at 2000 RPM they 

decrease from 0.784 to 0.722. The observed decrease in droplet diameter with increasing rotational 

speeds is explained by the higher drag force aiding earlier detachment with increasing rotational 

frequency. In the case of 0.1 bar TMP and 100 RPM, the emulsion phase separated completely. It is 

unlikely that such a dramatic destabilisation between 0.1 and 0.2 bar could be explained purely by 

the activation of smaller pores on the surface forming smaller droplets as postulated by 

Vladisavljevic et al. (2004b). Furthermore, if steric hindrance to aid droplet detachment as suggested 

by  Abrahamse et al. (2002) is the explanation then surely a dramatic droplet size decrease would 

also be experienced (but without complete phase separation) at the higher rotational speeds. 

Therefore, it is proposed that droplet coalescence at the membrane surface would explain the 

trends.  
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With an increase in TMP, the droplet formation time will decrease and thus droplets spend 

less time at the membrane surface i.e. where there is a higher risk for droplet coalescence (Lepercq-

Bost et al., 2010). Furthermore, the magnitude of the linear momentum and dynamic effect of 

pressure forces will increase, slightly aiding both detachment and displacement away from the 

membrane surface. If droplets remain nearby to the membrane surface and are not swept away into 

the bulk continuous phase, coalescence events between them and the forming droplet (at the 

membrane surface) would not be inconceivable (due to longer droplet contact times). This would 

eventually lead to formation of a more poly-dispersed emulsion (i.e. greater droplet size distribution 

span values). Coalescence would be promoted when an increase in active pore fraction leads to 

droplets forming more closely together, increasing the likelihood of contact between droplet 

interfaces. However the distance between active pores across the membrane surface is on average 

over 100 μm (number of pores estimated from Vladisavljevic et al., 2005, assuming a triangular 

tessellation of evenly distributed pores; this is discussed further in Chapter 6) meaning contact even 

at higher pressures is unlikely. It appears longer droplet formation times implicit to low shear rates 

and low pressures pose a higher risk of coalescence, hence production of larger droplet sizes and 

even phase separation can occur. However, this can be avoided with careful process operation, a 

fast adsorbing surfactant (Vladisavljevic and Schubert, 2002; Kobayashi et al., 2002) or sufficient 

pore spacing (Abrahamse et al., 2001). 

As the pressure is increased between 0.5-1.5 bar, the extent of droplet size increases 

gradually, but dependency on the rotational speed is still observed. At 100 RPM, an increase of 

20.3% (up to 92.9 µm) is observed whilst at 2000 RPM the increase is 7.3% (up to 55.2 µm). It is 

hypothesised that the effect of coalescence is now minimised (since droplets spend less time at the 

membrane surface) and as such, the droplet size is determined by the dispersed phase mass transfer 

rate as the droplet detaches from the membrane surface and thus on the TMP. This theory was 

discussed within the work of Peng and Williams (1998) in which the final droplet size was suggested 

to consist of volumetric contributions from both the growth and detachment stages. The growth 
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volume depended on the size needed for the detachment forces to overcome the interfacial tension 

force. However, the detachment volume scaled linearly with dispersed phase flux with a greater 

contribution towards the final volume if the flux was high or the detachment time was long (which 

they observed under low shear conditions). At a low rotational speed, the droplet detachment time 

is likely to be longer compared to higher speeds (since lower magnitude of force to displace droplets 

from the membrane surface) and as such the mass transfer of dispersed phase during detachment is 

more significant. With high rotational speeds, the droplet detachment time approaches close to zero 

meaning any variation in volumetric flow rate (determined by TMP) does not significantly influence 

the volumetric contribution during detachment. The final droplet volume is likely to coincide with 

the growth volume which will be smaller due to dominating drag force and presence of Taylor 

vortices compared to at low speed.  

 Finally, at pressures >1.5 bar the droplet size begins to increase rapidly and erratically (as 

shown by the large error bars). Evaluation of the Capillary number (using Eq. 2.10) suggests there is a 

likely change in the droplet formation mechanism from dripping to jetting. For jetting to occur, 

either the dispersed phase velocity within the pore has to be high or the interfacial tension (IFT) has 

to be low. The IFT value for 1 wt. % Tween 20 and SFO is shown in Fig. 4.5. The complete line 

represents almost continuous measurement of the IFT whilst the dotted line is back-calculated from 

the dynamic rate since there was an inherent 3.5 s time delay between droplet formation and IFT 

measurement. Droplet formation and detachment typically occurs within a couple of seconds 

(Abrahamse et al., 2002) so using the equilibrium IFT value would be a significant underestimation 

(De Luca et al., 2004). For example, the IFT varies between 10.7 mN m-1 at 0.01s and 7.7 mN m-1 at 2 

s (Fig. 4.5 [a]) - values much higher than the equilibrium value of 4.8 mN m-1 (Fig. 4.5 [b]).  
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Fig. 4.5: Dynamic interfacial tension between sunflower oil and 1 wt. % Tween 20 solution. (a) shows the initial 
decrease whilst (b) shows the system equilibrium value. Note: Dotted line and solid line represent back-

calculated and measured interfacial tension values respectively. 

 

At pressures beyond 1.5 bar, the dispersed phase velocity exceeds 0.0023 m s-1 (calculated 

using Eq. 2.19) so evaluating for the Capillary Number with SFO of measured viscosity 0.066 Pa s 

equates to values greater than 0.014. Thus, the Capillary Number is tending towards the 

approximate threshold of 0.056 suggested by Sugiura et al. (2002) as the jetting point. At low droplet 

formation times that are achieved with high pressure (van der Graaf et al., 2004) or high rotational 

speed, detachment will occur in a period of higher IFT which minimises the Capillary number slightly. 

However, the velocity increase induced by higher pressure is far more influential compared to any 

slight differences in the IFT. Using this logic, this would explain why the droplet size increases more 

erratically at 100 RPM compared to 2000 RPM as the lower drag force allows sufficient time for the 

IFT value to tend more towards the equilibrium value (increasing Capillary Number). Pathak (2011) 

reported that a higher continuous phase Weber number, which in this case would be induced by a 

higher rotational speed, could also induce jetting by ‘pulling’ the dispersed phase from the pore 
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opening. However, for this configuration the Weber number did not dramatically vary compared to 

the Capillary number since the continuous phase velocity is low. 

What is clear is that the TMP has differing effects on the droplet size depending on the 

amount of shear applied through rotation. Both a decrease following by an increase in droplet size, 

as well as an almost single increase has been demonstrated within this study across the range of the 

pressures investigated.  This may possibly explain the variation in observations for this parameter 

within the literature. 

4.2.2 On the flux through the membrane 

 The dispersed phase flux is defined as the volumetric flow rate of the material across a 

specific membrane surface area. The rate limiting step of RME is the addition of dispersed phase to 

the continuous phase. This means that if the flux is high, the dispersed phase is added faster and 

therefore less time has to pass before the desired volume fraction is reached. Intrinsically, the 

production rate of the emulsion is greater which may be beneficial if RME is used as a manufacturing 

process. High dispersed phase flux is also potentially favourable because longer processing times can 

lead to the energy advantage over conventional processes being lost (since rotating the shaft for 

RME or re-circulation through the pump in XME requires energy input, albeit relatively low) 

(Joscelyne and Tragardh, 2000). However, if the dispersed phase flux is too high then jetting may 

occur as discussed in the previous section. It is therefore apparent that manipulation of the TMP is 

generally a balancing act between the level of control on the droplet formation process versus the 

throughput. 

From the same experimental data shown in Fig. 4.4, the dispersed phase flux was also 

measured (as a mass flow rate). This was converted into flux using the density and membrane 

surface area (which were 919 kg m-3 and 14.1 cm3 respectively) with the findings presented in Fig. 
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4.6 (a). Knowledge of the flux is important to correlate the TMP to the demonstrated permeability of 

the membrane, which for SPG membranes is known to vary depending on the pressure applied. 

 

Fig. 4.6: Influence of transmembrane pressure on the average dispersed phase flux (a) and active pore fraction 
(b) for a 6.1 μm pore diameter, hydrophilic SPG membrane 

 

As expected, with increasing pressure the dispersed phase flux also increases as determined 

by Darcy’s law. Typical values of 100-200 L m-2 h-1 are achieved at 0.2 bar compared to 2000-2600 L 

m-2 h-1 at 1.5 bar. This relationship shows an exponential increase in flux due to increased pore 

activation of the SPG membrane when greater pressure is applied. If a membrane consists of 

multiple interconnected, tortuous pore channels of varying cross-sectional area, it is the wider 

channels that will activate first since there is less resistance to flow followed by the narrower ones 

(increasing the overall permeability). Vladisavljevic et al. (2004b) found the flux of water was 

proportional to the TMP to the power of a value between 2.3-2.7 when using SPG membranes. 

However, a value of 1.28 is demonstrated within this work which is likely to be because the 

dispersed phase used is of higher viscosity and has different wetting properties within the 

membrane structure. In all cases, the percentage of pores active increased in a linear manner and 
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ranged between 0.9-2.7% (Fig. 4.6 [b]) which is similar to values quoted in previous literature 

(Vladisavljevic et al., 2004b; Vladisavljevic and Schubert, 2002). Lepercq-Bost et al. (2008, 2010) 

observed a hysteresis effect with both droplet diameter and dispersed phase flux as the TMP 

increased and then decreased. Pores activated under high TMP conditions then remained active at a 

lower TMP. Whilst being logical that this could happen if one altered TMP mid-experiment, this was 

not observed possibly due to differences in membrane cleaning protocols.  

The active pore fraction was calculated by firstly evaluating the demonstrated permeability 

(K) of the SPG membrane at a given TMP (ΔPtm); combining Darcy’s law with an expression for 

volumetric flow rate per unit membrane surface area: 

   
     

    
 

  

      
 

(Eq. 4.1) 

where Jd is the dispersed phase flux, Md is the mass of dispersed phase added, µd is the dispersed 

phase viscosity, ρd is the dispersed phase density, Am is the membrane surface area and tp is the 

processing time.  The pore channel length (Lp) is estimated as the membrane thickness multiplied by 

a tortuosity factor of 1.28 for SPG membranes (Vladisavljevic et al., 2005). Using this value within an 

expression of permeability given by O’Brien et al. (2007) allows for the active pore fraction (α) to be 

estimated:  

where dp is the pore diameter and φ is the membrane porosity which is assumed to be 

approximately 0.56. This value was obtained by averaging all SPG porosities measured within the 

work of Vladisavljevic et al. (2005) since porosity varied randomly between 0.5 and 0.6. The flux also 
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appeared to be hindered under higher rotational speeds. As an example, at 1.8 bar the flux at 100 

RPM was 3600 L m-2 h-1, but at 2000 RPM it was lower at 3100 L m-2 h-1. This may be the 

consequence of the inward acting centripetal force acting on the dispersed phase within the pore 

channel. If this hypothesis is the case, it is likely the active pore fraction will be slightly higher than 

calculated.  

4.3 Effect of Rotational Speed 

 The effect of varying the rotational speed of the membrane between 100 and 2000 RPM on 

droplet size is shown in Fig. 4.7. As mentioned at the beginning of this chapter, another key 

parameter (alongside the TMP) is the shear rate applied at the membrane surface. This can be 

manipulated either by altering the rotational speed, the membrane outer diameter or the distance 

between the membrane surface and the emulsification vessel wall (termed the annular gap width). 

The shear rate equation between two concentric cylinders of which the inner cylinder is rotating and 

the outer is stationary was derived by Vladisavljevic and Williams (2006): 

   
   

   

     
    

  
 

 

(Eq. 4.4) 

 It is clear that the shear rate (  ) increases linearly with increasing rotational speed (n1) assuming the 

radii of the membrane (r1) and the emulsification vessel are constant. Within this experiment, the 

annular gap width was kept at 25 mm which varied the shear rate between 0.60 s-1 and 12.0 s-1. The 

TMP was also kept constant at 0.5 bar to minimise as much as possible the effects of coalescence or 

jetting which would complicate the discussion. 
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Fig. 4.7: The influence rotational speed on the mean droplet size at a transmembrane pressure of 0.5 bar. The 
emulsions are 10 vol. % sunflower oil stabilised by 1 wt. % Tween 20. The error bars represent one standard 

deviation of a triplicate of experimental runs. 

 

With increasing rotational speed, the droplet size decreases until it reaches a size almost 

independent of the speed (i.e. an exponential decay relationship). For example, as the speed 

increases from 100 to 500 RPM, the droplet size reduces significantly from 77.2 μm to 64.1 μm (a 

decrease of 17.0%). In contrast, the droplet sizes produced at 1000 and 2000 RPM are 56.8 μm and 

53.3 μm respectively (a smaller decrease of 6.2% across a wider range). As the rotational speed 

increases, the magnitude of the inward acting centripetal force becomes more significant (compared 

to the drag force) to therefore hold the less dense dispersed phase at the membrane surface. Within 

literature, there is unanimous agreement that increasing the shear rate results in droplets 

experiencing more drag force and therefore detaching earlier at a smaller size. This was irrespective 

of the method used to apply that shear whether that be by rotational motion of the membrane 

(Pawlik and Norton, 2013; Schadler and Windhab, 2006; Yuan et al., 2009) or increase of the 

continuous phase flow velocity by pumping (van der Graaf et al., 2004; Spyropoulos et al., 2011; 

Vladisavljevic et al., 2004b) or stirring (Egidi et al., 2008; Dragosavac et al., 2008). At the lowest 
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speed of 100 RPM, the large error bar can be attributed to coalescence at the membrane surface 

resulting in inconsistency during the droplet formation process (Kobayashi et al., 2002). This is 

evident when examining the droplet distribution curves in Fig. 4.8 with a less homogeneous droplet 

size (wider distribution curve) at 100 RPM compared to 2000 RPM, corresponding to span values of 

1.593 and 0.733 respectively. It can be seen that smaller daughter droplets are formed under low 

speed which can be a by-product of coalescence phenomena (Charles and Mason, 1960). 

 

Fig. 4.8: Droplet size distributions for emulsions produced at a transmembrane pressure of 0.5 bar. The 
emulsions are 10 vol. % sunflower oil stabilised by 1 wt. % Tween 20. 

 

4.4 Effect of Annular Gap Width 

 The annular gap width (the distance between the membrane surface and the emulsification 

vessel wall) is another parameter that requires consideration during the process design and 

operation stages. As shown in Eq. 4.4, the system geometry plays an important role in determining 

the shear rate at the membrane surface with higher shear rates achievable if the annular gap width 

is narrow (Vladisavljevic and Williams, 2006). Furthermore, the continuous phase flow behaviour is 
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strongly influenced by the annular gap width and membrane rotational speed as discussed in section 

2.2.4. A series of transitions in the flow profile may occur depending on the Reynolds and Taylor 

numbers, which therefore requires consideration. 

 A range of emulsification vessel diameters ranging between 20 and 100 mm were explored 

at low (100 RPM), intermediate (1000 RPM) and high (2000 RPM) rotational speeds with the results 

displayed in Fig. 4.9. Again, a TMP of 0.5 bar was applied to minimise coalescence or jetting. It can 

be observed that the annular gap width influences the droplet diameter but primarily when 

operating with a low rotational speed. However, re-plotting the same data as a function of shear 

rate highlights a much clearer relationship as seen in Fig. 4.10. 

 

Fig. 4.9: The influence of gap width and rotational speed on the mean emulsion droplet size at 0.5 bar. The 
emulsions are 10 vol. % sunflower oil stabilised by 1 wt. % Tween 20. The error bars represent one standard 

deviation and where not visible are smaller than the symbols. 
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Fig. 4.10: Relationship between droplet size and the shear rate at the membrane surface for the different gap 
widths and rotational speeds investigated, at 0.5 bar. 

 

With a rotational speed of 100 RPM, the shear rate at the membrane surface varied across a 

range of 0.21-6.98 s-1. Increasing the gap size between 12.5-45 mm, the droplet size increased 

almost linearly from 68.9 μm to 96.5 μm. This is attributed to low shear rates indicating droplets 

grow much larger before experiencing sufficient drag force that induces detachment. With a wider 

outer vessel, the velocity gradient of the continuous phase in the radial direction is reduced. 

Therefore, droplets need to protrude further to encounter a significant velocity difference between 

the membrane surface and the continuous phase. Coalescence may also be a factor at the lowest 

shear rates as the probability of droplet-droplet interactions on the membrane surface increases 

with larger droplets. Within this range of gap sizes, vortices are produced as the Taylor number 

exceeds the critical value of 41.3 as shown in Fig. 4.11. However in the case of the 5 mm gap, 

vortices are not present since the calculated Taylor number for this configuration is 26. The small 

gap inhibits the development of these vortices such that the system is simple laminar couette flow. 

Thus, a larger than expected droplet size of 72.6 μm is obtained despite the higher shear rate as 

30 

40 

50 

60 

70 

80 

90 

100 

110 

0.1 1 10 100 1000 

D
ro

p
le

t 
D

ia
m

et
er

 D
4

,3
 (
μ

m
) 

Shear Rate (s-1) 

100 RPM 

1000 RPM 

2000 RPM 

No Taylor 

Vortices  



  

97 
 

seen in Fig. 4.10; This is consistent with the findings by Schadler and Windhab (2006) under low 

rotation speeds (<5000 RPM) and a 0.5 mm annular gap width. 

 

Fig. 4.11: Relationship between mean emulsion droplet size and (continuous phase) Taylor number as a 
function of rotational speed, at a transmembrane pressure of 0.5 bar. 

 

Increasing the membrane rotational speed to an intermediate level of 1000 RPM, this 

broadened the shear rate range experienced by droplets at the membrane surface between 2.12-

69.8 s-1. The droplet size remained relatively constant (56.8-60.2 μm) regardless of the shear rate 

applied. This suggests that with the rotating membrane system, as with previous findings with Cross-

flow Membrane Emulsification (XME), the droplet size tends to a value that is independent of the 

shear rate applied. However, droplet sizes produced at 1000 RPM were smaller than those produced 

at 100 RPM because of higher shear rates alongside the presence of Taylor vortices. The flow regime 

of the continuous phase in all cases apart from with a 5 mm gap was turbulent although in this 

specific case, there is no difference in droplet size below the threshold of turbulent flow (Taylor 

number of 400). 
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 At 2000 RPM, shear rates of 4.2-139.6 s-1 were generated across the range of gap widths 

investigated and turbulent flow was present in all cases (Ta >400). Droplets were consistently 50.3-

53.4 μm in diameter suggesting the size was again independent of the shear rate applied.  

4.5 Effect of Shear Rate with Transmembrane Pressure 

 In the previous section, a range of shear rates were applied between 0.21-139.6 s-1 at a fixed 

TMP of 0.5 bar. It is apparent that there is a relationship between TMP, rotational speed and the 

annular gap size on the droplet size produced during RME. Therefore, a low (0.2 bar) and high (1.5 

bar) TMP were also investigated to consider all three variables. The results are shown in Fig. 4.12.  

 

Fig. 4.12: Relationship between mean emulsion droplet size and shear rate at a low (0.2 bar) and high (1.5 bar) 
transmembrane pressure. 

 

 At shear rates below ≈ 1s-1, it can be seen that droplets formed under low TMP conditions 

are approximately 7-10 μm larger than those formed at high TMP. The difference can be explained 
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forming at the membrane surface and so are more prone to coalescence. For 1.5 bar, droplets form 

much faster although the membrane would demonstrate a higher active pore fraction so droplets 

would be forming closer together. This therefore suggests that time at the membrane surface is 

important, considering that low TMP just above the capillary pressure should theoretically yield the 

smallest droplets (Spyropoulos et al., 2011). With the shear rate above ≈ 1 s-1, the droplet diameters 

are relatively similar with perhaps a low TMP being slightly favourable to formation of smaller 

droplets. In this instance, the interface is formed slowly at 0.2 bar allowing surfactant sufficient time 

to adsorb to lower the IFT. The interfacial tension force holding the droplet at the membrane surface 

is therefore lower so droplets can grow to a smaller size, but still experience sufficient drag force to 

enable detachment. Furthermore, less dispersed phase material is added to the droplet during the 

detachment stage since the flux is lower. Again, in the absence of Taylor vortices developing (in the 

case of 6.98 s-1 i.e. 100 RPM and 5 mm gap) within the continuous phase flow, a sudden ‘jump’ in the 

droplet size can be observed irrespective of the TMP applied. This therefore confirms that this effect 

is induced by the continuous phase flow profile rather than the dispersed phase flow behaviour.  

4.6 Viscosity Effects 

It is well established that fluid flow behaviour is related not only to the energy input 

(whether this be achieved by pressure, agitation, gravity etc.) but the resistance to flow of the fluid 

itself i.e. its viscosity. Until now, processing effects have been investigated using SFO as the 

dispersed phase and 1 wt. % Tween 20 solution. However, investigation into the behaviour of 

differing viscosity systems gives a further insight into the flow behaviour induced by altering process 

variables. Viscosity tends to be inherent to the ingredients selected to formulate the emulsion rather 

than being controlled directly during operation. To some extent this would be achievable through 

thermal control, for example the dispersed phase viscosity could be lowered by heating to increase 

the dispersed phase flux. However, this may have a detrimental effect on the emulsion stability so 

generally this is avoided. For this study, a range of silicone oils and glycerol concentrations are 
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explored to alter the dispersed and continuous viscosities respectively and hence clarify their effects 

on droplet size and dispersed phase flux. 

4.6.1 Dispersed Phase Viscosity 

A range of different viscosity silicone oils were used to form O/W emulsions under varying 

TMP and a fixed shear rate of 5.98 s-1 (1000 RPM and 25 mm gap). The dynamic viscosity of these 

oils varied between 0.012-0.085 Pa s with their properties listed in Table 4.1. As can be seen in Fig. 

4.13, the dispersed phase viscosity has an influence on the measured droplet size.  

Table 4.1: Density values for the silicone oils investigated. 

Dispersed Phase Density (kg m-3) 

Silicone Oil (0.012 Pa s) 930 

Silicone Oil (0.023 Pa s) 950 

Silicone Oil (0.085 Pa s) 960 

 

Fig. 4.13: The influence of transmembrane pressure on the mean droplet size for different oil viscosities. The 
emulsions are 10 vol. % silicone oil stabilised by 1 wt. % Tween 20. The error bars represent one standard 

deviation of a triplicate of experimental runs 
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With increasing TMP, the droplet size decreased to a minimum with the extent depending 

on the viscosity. For the lowest viscosity silicone oil (0.012 Pa s), the decrease between 0.2-1.8 bar 

was 23.8% (from 44.5 µm to 33.9 µm) whereas for the highest viscosity oil (0.085 Pa s), the decrease 

was 6.3% (from 28.6 μm to 26.8 μm). Generally, the droplet sizes were the largest for the 0.012 Pa s 

oil agreeing with a number of authors (Kobayashi et al., 2005; Vladisavljevic et al., 2008). On the 

other hand, Yuan et al. (2009) implied a higher viscosity dispersed phase would produce larger 

droplets because of the presence of a viscous force holding droplets at the membrane surface 

(directly proportional to viscosity). Perhaps the trend seen here is because the lower resistance to 

flow enables greater mass transfer during the detachment stage. Furthermore, it was suggested that 

the drag coefficient adopted (typically 1.7 for a rigid sphere; O’Neil, 1964) was a possible variable 

within force balance models (Timgren et al., 2008). It is proposed here that a higher viscosity 

dispersed phase droplet potentially resembles a rigid sphere more closely than a lower viscosity 

equivalent and therefore experiences greater drag to aid detachment. The density differences 

between the silicone oils (listed in Table 4.1) also alter the point of detachment with higher density 

droplets (approaching that of the continuous phase) less susceptible to being held at the membrane 

surface by the centripetal force.  

In contrast with Fig. 4.4 shown in section 4.2.1, only two distinct regions are observed; an 

initial droplet size decrease that may possibly be attributed to coalescence, followed by a plateau in 

the size. The latter region was typically observed within microchannel emulsification and is known as 

the ‘size-stable zone’ (Kukizaki, 2009; Kobayashi et al., 2003). The prominence of this region depends 

on high IFT values which cause non-spherical, deformed droplets to transform back to spheres by 

detaching in a bid to minimise their interfacial free energy – known as ‘spontaneous transformation-

based droplet formation’ (Sugiura et al., 2001). As can be seen by Fig. 4.14, the IFT between silicone 

oil and 1 wt. % Tween 20 solution is higher than for SFO (Fig. 4.5) since there are no triglyceride 

impurities and hence the ‘size-stable zone’ is not apparent in Fig. 4.4. A more viscous silicone oil also 

has a higher IFT value due to high molecular weight siloxane chains having greater Van der Waals’ 
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forces between them and hence a greater cohesive energy (Conley, 1996). Upon further pressure 

increase (beyond the 1.8 bar maximum TMP studied here), it is predicted the droplet size will begin 

to increase as the volumetric contribution during detachment becomes significant and eventually 

droplet production through a jetting mechanism will occur. However, these latter two regions 

(unlike in Fig. 4.4) are not observed here. Despite the high dispersed phase velocity achievable with 

0.012 Pa s silicone oil (0.0015-0.014 m s-1 across the pressure range, calculated using Eq. 2.19), the 

high IFT during detachment (between 18.8 mN m-1 at 0.01 s and 13.1 mN m-1 at 2 s) ensures the 

Capillary number (calculated using Eq. 2.10) does not exceed 0.010 implying the IFT is the 

dominating factor in droplet formation (Kukizaki, 2009).   

Fig. 4.14: Dynamic interfacial tension between silicone oil of varying viscosity and 1% Tween 20 solution. (a) 
shows the initial decrease whilst (b) shows the system equilibrium value. Note: Dotted line and solid line 

represent back-calculated and measured interfacial tension values respectively. 

   

The dispersed phase flux for the respective silicone oils is presented in Fig. 4.15. As 
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Pa s silicone oil compared to 50-1200 L m-2 h-1 for the 0.085 Pa s oil. The exponential coefficient 

ranges between 1.43-1.49 with increasing viscosity; the 0.012 Pa s silicone oil has the lowest surface 

tension allowing it to permeate more readily through the tortuous pore channels previously inactive 

at lower pressure. This may be a similar effect to one observed by Yuan et al. (2009) where with 

increasing wettability of a more viscous dispersed phase (0.23 Pa s), they obtained similar fluxes to 

unmodified dispersed phase of lower viscosity (0.049 Pa s). 

 

Fig. 4.15: Influence of transmembrane pressure on the dispersed phase flux for differing viscosity silicone oil 
through a 6.1 μm pore diameter, hydrophilic SPG membrane.  
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decided the former was the priority in order to impart a constant shear stress during operation (at a 

given shear rate) to produce the most uniform droplet size. The IFT decreases at higher glycerol 

concentrations since glycerol interacts with the hydrogen bonding in the continuous phase to lower 

the cohesive forces and hence the surface tension. Yilmaz et al. (1999) suggested that glycerol can 

be considered as a ‘co-emulsifier’. Irrespective of the mechanism, the IFT needs accounting for 

during the discussion.  For this experiment, the TMP was fixed at 0.5 bar and the shear rate was 

modified between 0.60-104.7 s-1 by varying both the rotational speed and annular gap width. The 

results are presented in Fig. 4.16. 

Table 4.2: Physical properties of solutions investigated when modifying continuous phase viscosity with 
glycerol. 

Ratio of Glycerol : 

Water (wt. %) 

Equilibrium IFT w/ 

SFO & 1% Tween 20 

(mN m-1) 

Viscosity w/ 1% 

Tween 20 (Pa s) 

Density w/ 1% 

Tween 20 (kg m-3) 

1 : 99 4.7 0.00186 1001.6 

10 : 90 4.1 0.00226 1025.0 

25 : 75 3.5 0.00332 1063.9 

50 : 50 2.4 0.00916 1128.7 
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Fig. 4.16: The influence of continuous phase viscosity and shear rate on the mean droplet size at 0.5 bar using 
a 6.1 μm pore diameter, hydrophilic SPG membrane. 

 

The viscosity of the continuous phase has previously been shown to affect the droplet size 

with a rotating membrane configuration (Aryanti et al., 2009; Pawlik and Norton, 2013; 

Vladisavljevic and Williams, 2006). In these studies, the droplet size decreased when using a more 

viscous continuous phase since the drag force increases in a directly proportional manner. It was 

therefore expected that investigation of this parameter by thickening the continuous phase with 

glycerol would provide a similar trend. As can be seen, surprisingly the smallest droplet sizes (37.1-

73.6 μm) were achieved with the lowest viscosity continuous phase of 1 wt. % glycerol compared to 

25 wt. % glycerol (450-155 μm). Additionally, differentiating the power curve functions shows the 

droplet size decreases much more rapidly for high viscosity systems up to 25-50 wt. % glycerol 

where the curves are parallel.  This is despite the IFT retaining the droplet at the membrane surface 

being slightly higher for low glycerol concentrations. Matos et al. (2013) observed larger droplets 

when using more viscous continuous phase attributing this to surfactant diffusion being hindered by 
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the higher viscosity, resulting in coalescence. From Fig. 4.17, there is no evidence that surfactant 

diffusion is limited by viscosity as the initial rate of IFT decrease is quick for higher viscosity systems. 

This effect may be hidden by the glycerol surface activity in this case. 

Fig. 4.17: Dynamic interfacial tension between sunflower oil and continuous phase containing variable 
concentration of glycerol and 1 wt. % Tween 20. 

 

The droplet size observations (from Fig. 4.16) may therefore perhaps be explained by 

considering the movement of droplets within the continuous phase. With a more viscous continuous 

phase, droplets cannot easily move away from the membrane surface towards the outer edge of the 

emulsification vessel since their movement is hindered by viscosity and density effects (SFO droplets 

less dense than continuous phase). As a consequence, detached droplets remain within the vicinity 

of forming droplets increasing the likelihood of coalescence. This would explain why complete phase 

separation is observed in the case of 50 wt. % glycerol under a shear rate of 0.60 s-1. Also, very 

viscous solutions are more laminar within a concentric cylinder setup and as such may not develop 

Taylor vortices to sweep droplets away. This can be seen in the case of 50 wt. % glycerol and an 
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applied shear rate of 52.4 s-1 (which corresponds to 750 RPM and a 5 mm gap size). Under these 

conditions, the Taylor number is 31 and hence the droplet size is much larger than expected (127 

μm). Overall, the droplet size decrease is rapid for more viscous solutions upon increasing the shear 

rate. As coalescence effects are negated, the higher drag force allows droplets to detach much 

earlier from the membrane surface. It is therefore predicted that further shear rate modification 

>>104.7 s-1 that droplet sizes will be smaller for higher viscosity continuous phase systems. 

4.6.3 Viscosity Ratio 

 Finally, the effect of viscosity ratio was studied under fixed processing conditions (TMP = 0.5 

bar, shear rate = 5.98 s-1). A slightly broader range of silicone oils (0.007-0.085 Pa s) and glycerol 

concentrations (1-75 wt. %) were used in order to explore viscosity ratios between 0.16 to 45.7.  

Droplet sizes between 35.2-69.2 μm were produced as shown in Fig. 4.18. 

 Fig. 4.18: The influence of viscosity ratio on the mean droplet size stabilised by 1 wt. % Tween 20. The ratio 
was modified by using different viscosity silicone oils and varying the quantity of glycerol within the continuous 

phase. The error bars represent one standard deviation of a triplicate of experimental run. 
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As a general observation, a lower viscosity dispersed phase produced larger droplets as seen 

in section 4.6.1. It is suggested that this is due to more viscous oil droplets acting as rigid entities 

having a higher drag coefficient so they experience more drag force. A lower density difference 

between the two phases will mean the droplet is influenced less by the inward acting centripetal 

force. The higher viscosity dispersed phase also has a lower dispersed phase flux so less material will 

be transferred to the droplet during the detachment stage (Kukizaki, 2009).  Beyond a viscosity ratio 

of 1, the droplet size decreases with this explained within section 4.6.2 by the continuous phase 

hindering the movement of droplets away from the membrane surface at high viscosity. This theory 

is possibly supported by observations here as more dense material (e.g. 0.085 Pa s silicone oil) is able 

to overcome the flow resistance within the continuous phase since it has greater momentum upon 

detachment. As a consequence, the droplet size does not increase as dramatically with increasing 

continuous phase viscosity compared to a dispersed phase of lower density (e.g. 0.007 Pa s silicone 

oil). Kukizaki (2009) and Christov et al. (2008) both observed a decrease in droplet diameter with 

increasing viscosity ratio with smaller droplets produced when using a lower viscosity continuous 

phase and higher viscosity dispersed phase. The data therefore agrees with those findings 

presented. Kukizaki (2009) also suggested the droplet size was independent of viscosity ratio at a 

TMP of 1.1 times the capillary pressure of the membrane pore channel. In this case, the TMP was 

kept constant rather than altered to account for lower IFT systems reducing the capillary pressure 

required. However, there is a slight suggestion this is the case at a fixed ratio above the capillary 

pressure. Droplet size and viscosity ratio data clusters around areas which may have a similar 

approximate IFT based on measurements made within sections 4.6.1 and 4.6.2. Some examples are 

shown in Table 4.3 in which the TMP is roughly 15.2 times the capillary pressure calculated from Eq. 

2.10. 
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Table 4.3: Droplet size data for systems which share similar viscosity ratios and approximate IFT values. 

Dispersed 

Phase 

Viscosity    

(Pa s) 

Continuous 

Phase 

Viscosity      

(Pa s) 

Dispersed 

Phase IFT a 

(mN m-1) 

Continuous 

Phase IFT b 

(mN m-1) 

Average 

IFT c 

(mN     

m-1) 

Viscosity 

Ratio 

Droplet 

Diameter 

(μm) 

0.012 0.00332 6.6 3.5 5.1 3.61 52.1 

0.023 0.00916 7.5 2.4 5.0 2.51 52.1 

0.023 0.00226 6.6 4.1 5.4 10.18 43.2 

0.085 0.04125 8.8 1.7 5.3 9.28 40.2 

(a) Measured between silicone oil and 1 wt. % Tween 20.  

(b) Measured between sunflower oil and varying glycerol content with 1 wt. % Tween 20. 

(c) Rough approximation of average value between measurements from (a) and (b). 

 

A more rigorous study of viscosity ratio accounting for TMP and IFT (to keep the ratio of TMP above 

the capillary pressure constant) would be required in order to sufficiently prove that the droplet size 

does not change at a given viscosity ratio. 
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4.7 Conclusions 

The effect of TMP, shear rate, dispersed and continuous phase viscosity on the final droplet 

size and flux has been investigated for a RME system. O/W emulsion droplets of average diameter 

23.4-217 μm have been produced using an SPG membrane of 6.1 μm pore diameter. In this chapter, 

a number of complex processing effects have been discussed through consideration of the fluid flow 

and IFT behaviour of the two phases. 

Considering the dispersed phase flow behaviour effects on droplet size, four distinct regions 

can be seen across the range of TMPs investigated. Firstly, a decrease in size across low pressures (at 

approximately <0.5 bar) which is attributed to coalescence at the membrane surface during long 

droplet formation times. Secondly, a plateau in size known as the ‘size-stable’ zone which occurs due 

to the spontaneous transformation-based droplet formation mechanism in systems with high IFT 

(i.e. with silicone oils). Thirdly, an eventual increase in droplet size as significant mass is transferred 

via the droplet neck during detachment. The volumetric contribution during this stage depends 

primarily on the droplet detachment time at the dispersed phase flux and thus can become 

negligible at increased rotational speeds (>1000 RPM). This is due to higher drag force to ensure 

earlier detachment from the membrane surface. It is also suggested that viscous dispersed phase 

droplets may experience a higher drag coefficient since they resemble more rigid spheres; an 

assumption within drag force calculations. Finally, if the IFT is low and dispersed phase flux (or more 

specifically the pore fluid velocity) is sufficiently high, jetting of the dispersed phase may occur 

(approximately >1.5 bar). In this case, the Capillary number defining this flow behaviour approaches 

the threshold value of 0.056 that is previously suggested in literature. 

The flux through the membrane increases with high pressure and low dispersed phase 

viscosity as defined by Darcy’s law. Values between 50-12500 L m-2 h-1 were measured for oil 

viscosities between 0.012-0.085 Pa s across applied TMPs between 0.1-1.8 bar. For SPG membranes, 

this relationship between flux and pressure is exponential rather than directly proportional since 
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membranes demonstrate a variable permeability. The percentage activation of tortuous pore 

channels depends on the applied TMP. The calculated values for active pore fraction ranged 

between 0.5-2.7% coinciding with previous findings for SPG membranes.  

The continuous phase flow behaviour also determines the droplet size produced primarily by 

altering the drag force acting on the droplet. By increasing the shear rate (through higher rotational 

speeds and narrower annular gap widths), the droplet size tends to a minimum independent of the 

applied shear as commonly observed within cross-flow membrane emulsification. In this case, higher 

RPM imparts greater centripetal force which dominates over the effect of increasing shear. Another 

key consideration is where Taylor vortices can form and in their absence below a critical Taylor 

number of 41.3, droplet sizes are significantly larger. This is possible particularly for low speed, 

narrow gap or high viscosity continuous phase systems. Finally, if there is a significant density 

difference between the two phases (dispersed phase being typically lower for O/W systems) or if the 

aqueous continuous phase viscosity is high, there is a potential for droplets to not be displaced 

sufficiently away from the membrane surface but remain within the vicinity of other forming 

droplets. This is likely to increase coalescence phenomena, which is generally unfavourable during 

emulsification processing.  
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Chapter 5: 

Formulation Effects using a Small-scale Rotating 

Membrane Emulsification Device 

 

This chapter furthers current understanding on how interfacial phenomena 

determined by the formulation can control the droplet size during rotating membrane 

emulsification for batch sizes less than 0.36 kg.  

 

 

Data and discussions contained within this chapter are to be published within: 

Lloyd, D.M., Norton, I.T., Spyropoulos, F. (2015). Process optimisation of Rotating Membrane 

Emulsification through the study of surfactant dispersions. Journal of Food Engineering, 166 316-

324. 

Spyropoulos, F., Lloyd, D.M., Norton, I.T. (June 2015). A microstructural approach to optimising 

membrane emulsification: surfactant diffusion through the oil/water interface. The 12th International 

Congress on Engineering and Food, Quebec City, Canada (poster presentation). 
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5.1 Introduction 

The aim of this chapter is to investigate how O/W emulsion droplet size is affected by the 

interfacial behaviour of the material used to stabilise the droplets. A range of materials are used 

from conventional surfactants (e.g. Tween 20, Brij 97), particles (silica) and mixtures of the two. As 

discussed earlier in this thesis, surfactants are commonly used to lower the tension between the 

oil/water interface to facilitate droplet break up (high-shear processing) or droplet detachment 

(membrane processing). Surfactants and particles can stabilise the droplet interface to prevent 

coalescence through steric or electrostatic repulsive mechanisms. Therefore, selection of a suitable 

surfactant/particle type and concentration is a key consideration in order to produce an emulsion 

microstructure of desired properties (e.g. a specific droplet size or a narrow droplet size 

distribution).  

Within many formulations, surfactants in particular remain some of the most costly 

components and therefore minimising consumption of these would be positive from a 

manufacturer’s perspective since the product would be more profitable. On the other hand, 

insufficient amount of surfactant/particles can reduce the efficiency of the emulsification process 

and have a detrimental effect on properties such as emulsion stability. Typically, manufacturers 

over-compensate by using a much higher concentration than required; this is not very effective with 

a large quantity of material remaining ‘wasted’ in the bulk continuous phase rather than at the 

interface. Membrane emulsification is able to use surfactant more efficiently since the interfacial 

area is gradually increased, potentially allowing surfactant sufficient time to adsorb. However, this 

generally coincides with low dispersed phase flux and therefore the rate of production is slow 

compared to other processes used in industry. It is therefore a dilemma if the intention is to produce 

small, mono-dispersed droplets at a rate that is competitive with current emulsification 

technologies. The key to solving this challenge is by ensuring rapid adsorption of surfactant/particles 

to ensure early droplet detachment and stabilisation of the interface against coalescence. At 
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present, conventional approaches may lead to membrane coalescence in the majority of cases 

irrespective of the surfactant type(s) and concentrations used (Wagdare et al., 2010; Abrahamse et 

al., 2002). 

This chapter considers dynamic interfacial behaviour of the oil/water system for a range of 

material types and concentrations using a rotating membrane emulsification (RME) setup. 

Processing parameters such as the transmembrane pressure (TMP) and shear rate are also 

investigated to explore the coupled behaviour between the rate of generation of the interface 

versus the rate of adsorption kinetics of the surfactant/particles used. Subsequently, a novel 

approach to ensure rapid adsorption of surfactant is presented namely through positioning of high 

hydrophilic-lypophilic balance (HLB), non-ionic surfactants within the dispersed phase rather than 

their common positioning within the continuous phase. This is compared to a pre-mix membrane 

emulsification setup which is considered favourable for high production rate processing. The study 

will therefore further understanding of the RME process and allow for optimisation to reduce 

droplet size and surfactant/particle consumption whilst maximising production rate simultaneously. 

5.2 Effect of Surfactant Type/Concentration 

 The surfactant used plays an essential role in the stabilisation and detachment of droplets 

during RME. The major retaining force acting to hold droplets at the membrane surface during 

formation is the interfacial tension (IFT) force. If this is able to be reduced significantly and quickly 

through rapid adsorption of surfactant, droplets detach from the membrane surface earlier and 

therefore have grown to less of an extent. A surfactants ability to migrate towards, adsorb and 

stabilise an oil/water interface depends on intrinsic physicochemical properties such as its affinity 

towards the interface (roughly quantified by the hydrophile-lipophile balance; HLB) and its molecular 

weight. Concentration of surfactant is also a very important formulation variable during 

emulsification. Firstly, the greater the interfacial area of the emulsion system, the more surfactant is 

required to stabilise that interface so by that logic, higher concentrations can produce smaller 
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droplets or stable emulsions of higher dispersed phase volume fractions. Secondly, operation below 

a threshold concentration known as the critical micelle concentration (CMC) means the surfactant 

moves within the bulk phase as individual molecules (or monomer) which would be depleted over 

time as they adsorb at the oil/water interface. Above the CMC, micelle formation occurs so the 

amount of free surfactant molecules in the bulk phase remains in dynamic equilibrium. As surfactant 

molecules enter the sub-surface prior to adsorption at the droplet interface, these molecules are 

replenished by the dissociation of surfactant micelles. Theoretically, further increase of the 

surfactant concentration above the CMC results in greater numbers of micelles (rather than 

individual monomer available for adsorption) and as such the extent of IFT decrease is not 

dramatically affected. Finally, the concentration of surfactant alters the transport through the bulk 

phase by diffusion and convection with these processes promoted with a higher quantity of 

surfactant. In turn, this enhances the rate of IFT decrease (Schroder et al., 1998) which can facilitate 

early droplet detachment. Selection of the surfactant type and concentration is clearly just as 

important as how the RME process is operated, hence these formulation parameters also require 

rigorous investigation. It is worth highlighting that even in the absence of surfactant (Fig. 5.1), there 

is a gradual decrease in IFT (to 23.2 mN m-1) between SFO and water due to surface active impurities 

within the oil. These impurities are triglycerides, namely saturated palmitic and stearic acids, 

monounsaturated oleic acid and polysaturated linoleic acid (Garces et al., 2009). 
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Fig. 5.1: Dynamic interfacial tension between sunflower oil and water with no surfactant present. 

 

 Four surfactants were identified to explore a range of properties that can affect the 

interfacial behaviour. Tween 20 and Brij 97 were selected as two differing non-ionic surfactants. 

Sodium dodecyl sulphate (SDS) was also investigated since it is anionic and extremely effective at 

stabilising O/W emulsions. Finally, hydrolysed lecithin (a phospholipid derived from soy beans) was 

chosen as an alternative since whilst more suited to W/O emulsion stabilisation, is also capable of 

stabilising O/W. Important surfactant properties are listed in Table 5.1. A range of concentrations 

were used between 0.01 wt. % and a maximum of 10 wt. % depending on the observed solubility 

within the aqueous continuous phase. 10 vol. % of sunflower oil (SFO) in water emulsions were 

produced under fixed processing conditions; TMP = 0.5 bar, shear rate = 5.98 s-1. The results are 

presented in Fig. 5.2. 
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Fig. 5.2: The effect of surfactant concentration on the mean droplet size for different surfactant types 
positioned within the aqueous continuous phase. The emulsions are 10 vol. % sunflower oil-in-water. The 

transmembrane pressure is 0.5 bar and the shear rate is 5.98 s
-1

.  The dotted lines are to guide the eye across 
the data set. The error bars represent one standard deviation of a triplicate of experimental runs. 

 

Table 5.1: Important physicochemical properties of the surfactants investigated. 

Surfactant HLB Value 
Molecular Weight 

(g mol-1) 

CMC 

(g L-1) (wt. %) 

Tween 20 16.9 1228 0.07 0.006 

Brij 97 12.4 357 0.29 0.026 

SDS 40 288 2.4 0.218 

Hydrolysed Lecithin 5 678 0.61 0.055 
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It is clear that an increasing concentration of surfactant leads to a decrease in droplet 

diameter. Furthermore, the most significant variation in droplet size occurs at very low 

concentrations. For example, as the concentration of Tween 20 is increased from 0.01-0.1 wt. %, the 

droplet size reduces by 21.5% from 108 μm to 81.5 μm. Increasing the concentration further to 0.2 

wt. % results in only a 12.8% decrease in size to 74.2 μm. This agrees with most findings in literature 

that the droplet size decreases with increasing surfactant concentration until the diameter becomes 

independent of the concentration (van der Graaf et al., 2004; Christov et al., 2008; Spyropoulos et 

al., 2011). Using a higher surfactant concentration reduces the IFT much quicker and to a greater 

extent resulting in early droplet detachment (Lepercq-Bost et al., 2008) Despite the presence of 

surface active SFO impurities, these would only have a minor effect on IFT considering surfactant is 

much more dominant in determining the IFT due to faster occupation of the interface. This is true 

even at very low concentrations as can be observed in Fig. 5.3. For example, 0.01 wt. % Brij 97 

reduces the IFT to 5.4 mN m-1 which is much lower than without any surfactant. 
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Fig. 5.3: Dynamic interfacial tension between sunflower oil and continuous phase containing variable 
concentration of surfactants: (a) Tween 20, (b) Brij 97, (c) SDS and (d) lecithin. 

 

Focussing on properties of the emulsions produced (Fig. 5.1), very large droplets (>100 μm) 

are formed at low concentrations (<0.1 wt. %) especially if the surfactant is not very effective (i.e. 

lecithin) or the concentration is below the CMC (i.e. Brij 97). It is highly likely this is due to a 
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combination of dominant retention forces (Vladisavljevic et al., 2008) and coalescence at the 

membrane surface (Lepercq-Bost et al., 2010) instigated by insufficient droplet coverage and/or 

slow rate of transport and subsequent adsorption. Coalescence has been observed in literature even 

in cases of high surfactant concentration e.g. 4 wt. % Tween 20 (Wagdare et al., 2010) very effective 

surfactant systems e.g. 2 wt. % SDS (Lepercq-Bost et al., 2010) or under optimised process 

conditions e.g. SDS just above the capillary pressure (Christov et al., 2008). Under these 

circumstances, large poly-dispersed droplets were formed and droplets were observed to be 

partially  ‘sticking’ to the surface of the membrane – this was also apparent within this experiment 

(as well as under low TMP and low shear rate conditions to be discussed further in sections 5.3 and 

5.4).  

Comparing the differences between surfactants, it can be seen from Fig. 5.2 that SDS 

produces the smallest droplet sizes (39.6-103 μm). The adsorption dynamics of SDS are much faster 

than most other surfactants (Schroder et al., 1998; Wagdare et al., 2010) particularly when 

operating with a concentration above the CMC (>0.22 wt. %) as shown in Fig. 5.3 (c). SDS is capable 

of reducing the IFT to a significant extent as characterised by its very high HLB number of  40 (Table 

5.1). Furthermore, SDS is anionic so once adsorbed at the droplet interface, electrostatic repulsive 

forces between adjacent droplets will reduce the extent of coalescence. The negatively charged 

membrane surface will also repel droplet interfaces covered by SDS to perhaps additionally aid 

detachment. In contrast, systems using lecithin produced extremely large droplets (88.8-402 μm). 

Lecithin does not decrease IFT to as much as an extent as the other surfactants (low HLB value of 5) 

with equilibrium values above 10.0 mN m-1 (Fig. 5.3 [d]). Also, the rate of IFT reduction is very 

gradual since lecithin much first dissociate from vesicles (rather than micelles) formed in the bulk 

solution prior to adsorption at the forming droplet interface. This essentially lowers the effective 

concentration of free lecithin able to stabilise the droplet. Hence, this combination of factors 

consequently results in droplets requiring to grow to large diameters before experiencing sufficient 

detachment forces to overcome the higher retention forces. For Brij 97, a very large droplet size was 
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produced when operating below the CMC (354 μm at a concentration of 0.01 wt. %). Above the CMC 

of 0.03 wt. %, droplet sizes of between 57.5-90.1 μm were produced. Across the same concentration 

range for Tween 20 (0.1-1 wt. %), the droplet diameter varied between 65.4-85.1 μm. Brij 97 despite 

having a lower HLB value than Tween 20 (12.4 and 16.9 respectively), produced smaller droplets 

because its molecular weight is much lower. This means the Brij 97 molecules (357 g mol-1) can move 

more freely throughout the bulk continuous phase compared to heavier Tween 20 molecules (1228 

g mol-1) which are hindered by hydrodynamic resistance forces (e.g. drag). Hence, Brij 97 can reduce 

the IFT faster (Fig. 5.3 [b]) and enable earlier droplet detachment compared to Tween 20 (Fig. 5.3 

[a]). 

5.3 Effect of Transmembrane Pressure with Surfactant Type 

The TMP has been seen within the previous chapter to strongly influence both the droplet 

size produced but also the dispersed phase flux. If the TMP was too low and there was insufficient 

drag force, droplets were seen to be large due to coalescence. On the other hand, if the TMP was 

too high and the IFT was sufficiently low, again large droplets were produced of a poly-dispersed size 

distribution. Hence, the microstructure of the emulsion depends on the TMP but also the capability 

of the surfactant to reduce IFT and stabilise against coalescence. These two parameters therefore 

require studying in tandem to understand the time element of surfactant adsorption versus the 

interfacial expansion rate (as per Rayner et al., 2004). A variety of low (0.1 wt. %) and high (1 wt. %) 

surfactant concentrations were investigated. A TMP range between 0.2 and 1.5 bar was used whilst 

operating at a shear rate of 5.98 s-1.  
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Fig. 5.4: The influence of transmembrane pressure on the mean droplet size for different surfactant types and 
concentrations. A shear rate of 5.98 s

-1
 is applied corresponding to a rotational speed of 1000 RPM and an 

annular gap width of 25 mm. The dotted lines are drawn to guide the eye across the data set. The error bars 
represent one standard deviation of a triplicate of experimental runs. 

 

Table 5.2: Equilibrium interfacial tension values for systems investigated. 

Low Concentration        

(0.1 wt. %) 

Equilibrium IFT 

w/ SFO (mN m-1) 

High Concentration          

(1 wt. %) 

Equilibrium IFT       

w/ SFO (mN m-1) 

Tween 20 5.1 ± 0.1 Tween 20 4.8 ± 0.1 

Brij 97 4.2 ± 0.1   

SDS 3.7 ± 0.5 SDS 0.8 ± 0.1 

Lecithin 10.0 ± 1.0   

 

Fig. 5.4 shows the effect of TMP on the resultant droplet diameter for a variety of surfactant 

types and concentrations in which the surfactant is dissolved within the continuous phase. What is 

clear is that there is a variance in the behaviour of the trend across the TMP range depending on 

both the type of surfactant used and whether a low or high concentration is used. For just the low 

concentration systems, Tween 20 exhibits a decrease across the pressure range investigated (from 
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74.2 μm to 65.6 μm). The systems containing Brij 97, SDS and lecithin follow a steady increase in 

droplet size with increasing pressure; this is expected in the absence of coalescence with diffusion 

being fast relative to the rate of interfacial expansion (van der Graaf et al., 2004). Additionally, more 

mass is transferred to the droplet during the detachment stage (Peng and Williams, 1998). 

Furthermore, droplets detach in a period of higher IFT if the droplet forms very quickly (e.g. under 

high TMP). What separates the behaviour of Tween 20 from the other surfactants can be explained 

again by considering the physicochemical properties associated with each of the surfactants used (as 

shown in the previous section in Table 5.1). It might be expected that Brij 97 and Tween 20 exhibit 

slightly different behaviour across the pressure range as Brij 97 molecules can adsorb much faster 

than Tween 20 (Fig. 5.3) to prevent coalescence (hence only an increase in size with TMP). The 

surface coverage of the surfactant needs to be quicker than the rate of interfacial expansion in order 

to prevent coalescence upon droplet-droplet interactions. On the other hand, Brij 97 is a less 

effective surfactant (compared to Tween 20) at stabilising O/W emulsions as indicated by the HLB 

value, droplet diameters between 77.5 μm to 139 μm are formed which are larger than those 

observed with Tween 20. SDS being an anionic surfactant of very high HLB value indicates it is a very 

effective surfactant for stabilising forming oil droplets at the membrane surface and enabling 

detachment. A combination of electrostatic repulsive forces between adjacent forming droplets 

(that have adsorbed SDS molecules at their interface) and low IFT values (Table 5.2) enabling 

droplets to detach earlier during formation virtually eliminate coalescence events and produce the 

smallest droplets (between 48.1 μm to 58.6 μm ≥ 1.2 bar). Lecithin is a zwitterionic phospholipid 

with a low HLB value and hence is more effective at stabilising W/O emulsions. A unique 

characteristic of lecithin is its ability to form an elastic-like interface (Dimitrov et al., 1978) which 

may in turn prevent coalescence. The largest droplet diameters are formed (111 μm to 138 μm) 

since lecithin does not reduce the IFT to as great an extent as the other surfactants. Furthermore, 

the rate of decrease is slow since the lecithin must first dissociate from vesicles formed in the bulk 

solution prior to adsorption at the forming droplet interface. This essentially lowers the effective 
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concentration of free lecithin to stabilise the droplet since vesicle dissociation is the rate limiting 

step. Hence this combination of factors imply that droplets have to grow to much larger sizes in 

order to experience sufficient detachment force to overcome the higher retention forces 

(Spyropoulos et al., 2014). As a general observation, the droplet size average across the data set 

corresponds with the HLB value of the surfactant with higher values leading to smaller droplets. This 

agrees with findings by a number of other authors (Ban et al., 1994; Spyropoulos et al., 2011; Pawlik 

and Norton, 2013; van der Graaf et al., 2004; Kukizaki, 2009). 

 Focussing on the high surfactant concentration systems, slightly different behaviour is 

exhibited by the Tween 20 and SDS systems than observed at 0.1 wt. %. It is expected that increasing 

surfactant concentration generally enables formation of smaller droplet sizes since there are more 

surfactant molecules available for adsorption across a greater dispersed phase surface area and so 

the IFT is lower (Schroder et al., 1998). For example, at 0.5 bar the droplet diameters of 0.1 wt. % 

and 1 wt. % of Tween 20 are 67.9 μm and 56.8 μm respectively. Similarly for SDS, these values are 

53.6 μm and 28.6 μm respectively. However, there is a stark contrast in the behaviour of these 

systems across the pressure range. Tween 20 demonstrates a decrease followed by a plateau and 

then a slight increase which was not observed at the low concentration. The plateau region (referred 

to previously as the size-stable zone) is attributed to droplet formation due to a spontaneous 

transformation in its shape in order to lower its Gibbs free energy (Sugiura et al., 2001; Rayner et al., 

2004). Such a phenomenon is more prevalent for high(er) IFT system since they are more 

thermodynamically unstable. Therefore, with an increase in surfactant concentration to 1 wt. % and 

hence lower IFT, the region of which this phenomenon potentially occurs becomes much narrower 

and so an eventual increase in droplet size upon further increase in TMP is observed. In the case of 

SDS, beyond 0.5 bar the droplet size increases extremely rapidly from 28.6 μm to 103 μm. Beyond 

1.2 bar, the droplet sizes produced are much larger than those formed at low concentration. It is 

therefore expected that there is a change in the droplet formation mechanism from dripping to 

jetting which is inherent to high pressures and low IFT systems (Sugiura et al., 2002). This suggests 
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that whilst lowering the IFT is beneficial if one wanted to produce smaller droplets, it limits the 

ability to operate at higher throughputs of dispersed phase whilst still forming droplets in a 

controlled way. Across all experiments conducted, the dispersed phase flux was unaffected by the 

surfactant system used since the TMP was well above the minimum capillary pressure. 

5.4 Effect of Shear Rate with Surfactant Type 

The shear rate applied can impact on the droplet formation process in two ways during RME. 

Operating with a range of rotational speeds and/or annular gap widths alters the drag and 

centripetal force, and therefore the initial size at the end of the droplet growth stage. Additionally, 

the hydrodynamic behaviour of the continuous phase induced by these process parameters can alter 

the transport mechanisms of the surfactant. For example, if the rotational speed is high, this may aid 

movement of surfactant molecules throughout the bulk phase by advection. The study of shear rate 

against surfactant type is essentially considering the ratio of inertial forces to capillary forces i.e. 

altering the point of droplet imbalance. 
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Fig 5.5: The influence of shear rate on the mean droplet size for different surfactant types and 
concentrations. A transmembrane pressure of 0.5 bar is applied. The dotted lines are to guide the eye across 

the data set. The error bars represent one standard deviation of a triplicate of experimental runs. 

 

The effect of altering the shear rate at the membrane surface between 0.6-104.7 s-1 (whilst 

applying a TMP of 0.5 bar) for different surfactant systems is shown in Fig. 5.5. Generally, increasing 

the shear rate through higher rotational speeds and/or narrower annular gap widths leads to 

formation of smaller droplet sizes. The drag force is greater so droplets detach earlier from the 

membrane surface. This will also occur if the IFT can be reduced to low values quickly so the 

magnitude of the IFT force is smaller e.g. when using SDS (Kobayashi et al., 2002). It is therefore 

unsurprising that the 1 wt. % SDS system (which has the lowest IFT) produces the smallest droplet 

sizes between 27.5 μm and 58.2 μm followed by 0.1 wt. % SDS (49.3 μm to 89.5 μm) and 1 wt. % 

Tween 20 (57.0 μm to 94.1 μm). Furthermore, with higher rotational speeds which subsequently 

increase the Reynolds and Taylor numbers of the continuous phase, the transport of surfactant 

towards the interface is aided by a combination of diffusion and convection. As observed with the 
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effect of TMP in Fig. 5.4, lecithin since it has a low HLB value produces the largest droplet sizes. The 

significant error bars when using lecithin also indicates droplet formation is quite erratic perhaps 

due to variant effects that the shear has on deforming the elastic interface which may subsequently 

promote forms of droplet-droplet interactions (Lepercq-Bost et al., 2010; Dragosavac et al., 2008; 

Egidi et al., 2008) or alter the velocity profile locally to the membrane surface (Timgren et al., 2009). 

Overall, the lower the IFT value, the less influence shear has on droplet diameter due to the relative 

ease droplets can detach even at low shear rates agreeing with findings by Lepercq-Bost et al. 

(2008). 

5.5 Effect of Particle Type/Concentration 

Emulsion droplet interfaces can also be stabilised by solid particles in what is termed as a 

‘Pickering’ emulsion. This is an area of growing interest because the use of particles provides greater 

stability against coalescence either during production or long-term storage. For instance, Midmore 

(1998) produced very concentrated paraffin oil-in-water emulsions up to 81 vol. % stabilised by 

Ludox silica. The droplet size of the emulsion did not change over a 3 month period. Particles 

irreversibly adsorb to form a very strong physical barrier that prevents droplet interfaces coalescing 

(once adsorbed) due to steric stabilisation mechanism. There have also been advancements in 

recent years in the manufacture of nanoparticles, which are highly suitable for emulsion 

stabilisation. Ideally, the particles used need to be at least an order of magnitude smaller than the 

desired droplet size range in order to pack effectively around the oil/water interface. For example, 

particles of 10-100 nm would be needed to stabilise a droplet of approximately 1 μm. 

Whilst Pickering emulsions have been extensively investigated by a large number of 

researchers (Binks and Lumsdon, 1999; Guillot et al., 2009; Pichot et al., 2012), there are very limited 

studies of their use during membrane emulsification (and more specifically RME). Conventionally, 

high energy mechanical processes are used to provide the particles sufficient energy to adsorb 

(Manga et al., 2012) since this energy is much higher than for surfactant systems. In this instance, 
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the low energy RME process is investigated. Varieties of colloidal silica particles were chosen since 

they were readily available and reasonably homogeneous in size (≈ 12 nm). However, operating at a 

pH of 2.0 (the iso-electric point of silica) enabled different degrees of flocculation (due to attractive 

van der Waals forces) and hence varied the size of the aggregates. Therefore, it is a two stage 

mechanism as particles flocculate within the bulk phase prior to adsorption at the interface as 

multilayers of particles (Hassander et al., 1989). Aerosil silica was measured to be around 190 nm 

whilst Ludox silica was smaller at approximately 21 nm. The size of the flocs determines the energy 

of adsorption (Eq. 2.5) with larger aggregates requiring more energy to adsorb which prolongs the 

adsorption time. Furthermore, the ability of the particles to pack effectively around a spherical 

interface is governed by the ratio of the droplet and the particle used. For example, smaller particles 

can potentially pack more effectively around a given droplet diameter with less void space between 

adjacent particles. 

The effect of increasing concentration of silica for Aerosil (between 0.01-2 wt. %) and Ludox 

(0.1-30 wt. %) to stabilise a dispersed phase volume fraction of 10 vol. % of SFO is shown in Fig. 5.6. 

The processing conditions were a TMP of 0.5 bar and a shear rate of 5.98 s-1. The pH of the 

continuous phase was 2.0 so as mentioned the aggregates of Aerosil and Ludox were 190 nm and 21 

nm respectively. 
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Fig. 5.6: The effect of particle concentration on the mean droplet size for different silica systems positioned 
within the aqueous continuous phase. The emulsions are 10 vol. % sunflower oil-in-water. The transmembrane 
pressure is 0.5 bar and the shear rate is 5.98 s

-1
. The error bars represent one standard deviation of a triplicate 

of experimental runs 

 

 There are two clear observations that can be made. Firstly, increasing the concentration of 

particles results in the production of smaller droplet sizes. This is expected because with more 

particles available within the continuous phase, the probability of collisions that lead to the particle 

adsorbing at the forming droplet interface increases. This reduces the extent of droplet coalescence 

at the membrane surface as there is less un-stabilised interface. Secondly, the droplets stabilised by 

Aerosil are significantly larger than those stabilised by Ludox. For example, at 0.1 wt. % the droplet 

diameter for Aerosil and Ludox stabilised emulsions were 272 and 116 μm respectively. At 1 wt. %, 

these sizes reduced to 162 and 105 μm. It is important that the adsorption kinetics of the particle is 

fast to prevent coalescence (Manga et al., 2012). Aerosil aggregates are an order of magnitude larger 

than Ludox so both the movement throughout the continuous phase (due to drag) and adsorption 

(high energy required) are slow processes. Furthermore, the Aerosil cannot pack as effectively 

around the interface if the droplet curvature is too great. These reasons enhance the likelihood of 

10 

100 

1000 

0.001 0.01 0.1 1 10 100 

D
ro

p
le

t 
D

ia
m

et
er

 D
4

,3
 (
μ

m
) 

Concentration of Particles (wt. %) 

Aerosil 

Ludox 



  

130 
 

coalescence when using Aerosil. Studying the IFT data for Aerosil and Ludox (Fig. 5.7), the IFT is 

much higher than for surfactant systems and very close to the IFT between SFO and water without 

surfactant (Fig. 5.2).  

 

Fig. 5.7: Dynamic interfacial tension between sunflower oil and continuous phase containing variable 
concentration of silica particles: (a) Aerosil (b) Ludox. 

 

The high IFT values (and hence the retention force) would explain why droplets are 

significantly larger than surfactant systems under corresponding process conditions (Fig. 5.2). For 

example, the equilibrium IFT values of 1 wt. % Tween 20 and 1 wt. % Aerosil are 4.8 mN m-1 and 24.4 

mN m-1 respectively; a ratio of 5.1. However, the droplet size produced by these systems was 65.4 

μm and 162 μm; a ratio of 2.5. This therefore suggests that the difference is not purely due to IFT 

differences but behaviour of the interface. Tween 20 forms an interface only a couple of nanometres 

in thickness which is a lower energy barrier against coalescence. The Ludox systems demonstrate a 

slightly lower IFT due to surface active materials added by the manufacturer within the concentrated 
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Ludox solution that are used to keep the silica dispersed during storage. Certainly for the Aerosil 

systems, a decrease in IFT can be observed suggesting that particles do adsorb at the oil/water 

interface (albeit very slowly), agreeing with some authors (Kutuzov et al., 2007; Du et al., 2010; Kim 

et al., 2010; Manga et al., 2012) but disagreeing with others (Vignati et al., 2003; Drelich et al., 2010; 

Pichot et al., 2012). The exact effect that particles have on the IFT is a contentious issue within 

literature. Brian and Chen (1987) argued that adsorption of particulate flocs would be unlikely to 

alter IFT since this process would not interfere with oil/water interactions at a molecular level. In 

contrast, Levine et al. (1989) predicted as part of a theoretical model that the IFT would decrease as 

the contact angle for the particle approaches 90° (for which the particle is wetted by both oil/water 

phases). However, Pichot et al. (2012) measured the contact angle for Aerosil silica at a pH of 2.0 to 

be very close to 90° so therefore the IFT data in Fig. 5.7 validates the model proposed by Levine et al. 

(1989). 

5.6 Effect of Transmembrane Pressure with Particle Type 

 The rate that particles collide with and subsequently adsorb at the droplet interface plays an 

important role as seen in the previous section. However, another key consideration is the rate of 

interfacial expansion of the droplet. This is manipulated by altering the TMP to control the dispersed 

phase flux. It is well established that high TMPs lead to rapid expansion of the interface and hence 

shorter droplet formation times. This may have consequences for the emulsification process if 

particle adsorption is too slow so this therefore requires investigation. The TMP was varied between 

0.2 and 1.5 bar for both a low and high concentration of particles. The shear rate was constant at 

5.98 s-1. 
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Fig. 5.8: The influence of transmembrane pressure on the mean droplet size for (a) Aerosil and (b) Ludox silica 
at a low and high concentration of particles. A shear rate of 5.98 s

-1
 is applied corresponding to a rotational 

speed of 1000 RPM and an annular gap width of 25 mm. The error bars represent one standard deviation of a 
triplicate of experimental runs. 

 

Fig. 5.8 shows the relationship between TMP and droplet size differs depending on whether 

Aerosil or Ludox silica is used. Focussing on Fig. 5.8 (a), much larger droplets were produced if the 

TMP was high or the concentration of particles was low. For 0.1 wt. % Aerosil, the droplet diameter 

increased by 44.7% across the TMP range from 213 μm to 384 μm. For 1 wt. %, the increase was to 

less of an extent (18.2%) from 145 μm to 178 μm. With a higher concentration of particles, the 

likelihood of particles adsorbing to stabilise the droplet interface is much greater. Furthermore, the 

system can stabilise smaller droplets even if the relative expansion is high (i.e. at 1.5 bar). Unlike in 

the case of Tween 20 as shown in section 5.3, coalescence is negated to an extent by the creation of 

a thick (>190 nm), rigid interface of particles. A decrease in droplet diameter is not observed. In 

contrast, Fig. 5.8 (b) shows the droplet size to reduce with increasing TMP. Again, the high 

concentration of particles produced the smallest droplet diameters. At 5 wt. % Ludox, the droplet 
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size decreases by 37.2% from 116 μm to 72.9 μm and for 10 wt. % Ludox, the size decrease is 32.9% 

(from 91.2 μm to 61.2 μm). The probability of particles colliding with the droplet interface is much 

higher in the case of Ludox as there are more particles by at least three orders of magnitude 

compared to the Aerosil systems. Additionally, these Ludox particles diffuse faster and require less 

energy to adsorb since their radius is an order of magnitude smaller (Eq. 2.5) so the collisions are 

more likely to be successful. This therefore suggests that the rate of particle adsorption is likely to be 

in excess to the rate of interfacial expansion. The formation of a thinner interface with Ludox silica 

aggregates (≈ 21 nm) may not be able to provide a significant steric stabilisation mechanism to 

prevent coalescence. Less energy is required to displace the particles from the interface compared 

to Aerosil. As a consequence, higher pressures reduce the time that droplets potentially spend in 

contact with adjacent forming droplets to minimise coalescence. Overall, the Ludox silica produced 

the smallest droplet sizes because of its availability for adsorption (and hence coverage of the 

interface) alongside lower IFT values as shown in Fig. 5.7.  

5.7 Effect of Shear Rate with Particle Type 

Modification of the shear rate (by changing the rotational speed of the membrane and 

annular gap width) can potentially play an even more critical role when operating RME to produce 

Pickering emulsions. The frequency and energy of particle collisions with the forming droplet 

interface is not only governed by the particle size or concentration but by the hydrodynamic 

behaviour of the continuous phase. For example, it would be expected that under turbulent flow 

conditions, particles would move throughout the continuous phase with higher velocity and hence 

greater kinetic energy. For surfactant systems, these are small amphiphilic molecules (rather than 

large particle aggregates) that are attracted to the interface and so the transport of surfactant is 

more reliant on diffusion than convection. The hydrodynamics of RME when using particles 

therefore plays a dual role in providing particles and energy for adsorption but also inducing 
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detachment forces such as drag. The shear rate ranged between 0.6-104.7 s-1 whilst the TMP was 

kept constant at 0.5 bar. 

 

Fig 5.9: The influence of shear rate on the mean droplet size for (a) Aerosil and (b) Ludox silica at low 
and high concentrations of particles. A transmembrane pressure of 0.5 bar is applied. The error bars represent 

one standard deviation of a triplicate of experimental runs. 

 

 There are two interesting observations that can be made from Fig. 5.9. Firstly, for a fixed 

annular gap width, increasing shear through higher rotational speeds led to the formation of smaller 

droplet diameters. For example, 1 wt. % Aerosil produced 439 μm at 100 RPM (shear rate = 0.6 s-1) 

and 176 μm at 2000 RPM (shear rate = 12.0 s-1). This is due to the higher drag force (Manga et al., 

2012) alongside faster movement of silica particles within the continuous phase induced by the fluid 

flow behaviour. Secondly, the droplet size is seen to suddenly increase as the annular gap width is 

reduced to impart higher shear rates; this was not the case for surfactant systems as seen in Fig. 5.5 

previously. With the reduction of the annular gap width, the Reynolds and Taylor numbers of the 

systems are lower despite the higher shear rate at the membrane surface. As a consequence, the 

flow is less chaotic and so particles collide less frequently and energetically with the forming 
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interface.  Coalescence is more likely with insufficient coverage and so the sudden increase in size 

occurs.  

5.8 Surfactant/Particle Mixtures 

There have been very few studies on the stabilisation of emulsion droplets using both 

surfactants and particles. The key function of the surfactant is to lower the IFT quickly whilst for the 

particle, its main purpose it to provide stability against coalescence (Whitby et al., 2008; Midmore, 

1998). Therefore, it seems logical that by positioning both surfactants and particles at the droplet 

interface, this may offer both these functions for the emulsion system. This was observed to be the 

case within the work of Pichot et al. (2009, 2010) for high shear processing. For RME; a process that 

can be susceptible to coalescence at the membrane surface, a combination of surfactants and 

particles may be capable of preventing this phenomena occurring. 

A high and low concentration of Aerosil and Ludox silica particles within the continuous 

phase was combined with varying quantity of Tween 20 (also within the continuous phase). This 

essentially altered the ratio between the two components. The processing conditions were fixed at a 

TMP of 0.5 bar and a shear rate of 5.98 s-1. The emulsion droplet sizes as a function of Tween 20 

concentration (0.01-2 wt. %) are shown in Fig. 5.10. 
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Fig. 5.10: The effect of Tween 20 concentration on the mean droplet size for (a) Aerosil and (b) Ludox silica at a 
low and high concentration of particles. The transmembrane pressure is 0.5 bar. A shear rate of 5.98 s

-1
 is 

applied corresponding to a rotational speed of 1000 RPM and an annular gap width of 25 mm. The pH of the 
continuous phase is 2.0. The error bars represent one standard deviation of a triplicate of experimental runs. 

 

It is evident that increasing the concentration of Tween 20 within the system results in a 

decrease of droplet diameter. This coincides with findings discussed within section 5.1 that higher 

surfactant concentration decreases the IFT at a faster rate, resulting in earlier droplet detachment 

from the membrane surface. In the absence of any silica particles at all, droplets stabilised solely 

with Tween 20 were generally much larger than in their presence. As the concentration of Tween 20 

increases from 0.01 wt. % to 2 wt. %, the droplet diameter decreases by 41.6% from 108 μm to 63.3 

μm. In the presence of 1 wt. % Aerosil for example, the droplet size decreases to a much greater 

extent (by 74.7% from 162 μm to 40.9 μm). At very low concentrations of Tween 20 (≈ 0.01 wt. %), 

the droplet interface is primarily stabilised by the particles which impart higher IFT values and hence 

droplets are larger than with just Tween 20. With increasing concentration of surfactant, there is a 

threshold of which the interface is stabilised by both surfactants and particles which can impart 

greater stability against coalescence than Tween 20 independently. As a consequence, the droplet 

sizes are smaller. The proposed mechanism by Pichot et al., (2010) is competitive adsorption of both 
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surfactant and particles. The surfactant generally adsorbs first to stabilise the initial interface (since 

it is amphiphilic, smaller and therefore more mobile). Following this, the particle then adsorbs more 

slowly either at exposed or ‘naked’ areas of the droplet interface but also to the adsorbed 

surfactant. At very high concentrations of surfactant, it is likely the surfactant will dominate with the 

particle unable to adsorb quickly enough. However, the droplet diameter does not tend towards the 

sizes produced by the surfactant only system even if this is the case. It is also probable some of the 

surfactant adsorbs to the surface of the particles and is therefore unavailable for adsorption to the 

droplet interface; this would be noticeable at low surfactant concentration where the proportion 

‘lost’ to particle surfaces would be high (Pichot et al., 2012). The IFT data shown in Fig. 5.11 (using 5 

wt. % Ludox as an example) supports these ideas. It can be seen that the IFT values of 0.01 wt. % 

Tween 20 in the presence of particles are much higher than in their absence. The Ludox can compete 

with the rate of the adsorption of the Tween 20 (and so the IFT curve is closer to the 5 wt. % Ludox 

data without surfactant). Additionally, the ‘effective’ concentration of Tween 20 in the continuous 

phase may be lower due to adsorption to the particle surface resulting in a greater IFT value. At a 

much higher concentration of surfactant (1 wt. %), the Ludox particles cannot compete with the rate 

of surfactant adsorption. Consequently, the IFT values of 1 wt. % Tween 20 irrespective of the 

presence or absence of particles are almost the same since the effect of surfactant adsorbing to the 

particle surface is negligible (compared to that in the continuous phase). In the case of Aerosil silica 

which is much larger (and hence has a lower surface area), the presence of surfactant dominates 

adsorption to the droplet interface. Differences in IFT with or without particles are less pronounced 

since there is less surface area that may be coated by the Tween 20.  
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Fig. 5.11: Dynamic interfacial tension between sunflower oil and continuous phase containing either Ludox 
(particles), Tween 20 (surfactant) or a combination of the two. The pH was 2.0. 

 

5.9 Effect of Surfactant Positioning 

Within sections 5.1 to 5.3 in which the surfactant was dissolved within the continuous 

phase, a wide range of droplet sizes were produced. Considering just the non-ionic surfactants 

(Tween 20 and Brij 97), the droplet size ranged from between 51.4 μm to 354 μm. Given the pore 

diameter of the SPG membrane was 6.1 μm, this means the droplet size to pore size ratio varied 

between 8.4 to 58.1, which is at the upper end (and beyond) of the ratio values suggested by other 

authors (Joscelyne and Tragardh, 2000; Charcosset, 2009). Since the hydrodynamics of RME are 

generally quite mild by comparison to the XME setup, the transport of surfactant to the forming 

droplet interface relies primarily on diffusion (and to a lesser extent convection). It can therefore be 

concluded that with the surfactant in the continuous phase, the transport and subsequent 

adsorption of surfactant is too slow and thus coalescence to some extent occurs in most cases. This 

is supported by observations within the work of Wagdare et al. (2010) in which 4 wt. %  Tween 20 
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and 1 wt. % SDS were unable to single-handedly prevent coalescence of SFO droplets produced from 

a silicon nitride membrane. For SDS, the surfactant is able to stabilise droplet interfaces more 

effectively, but is prone to jetting except under low TMP conditions where the pore fluid velocity is 

minimised (Fig. 5.4). This raises two fundamentally important questions. Firstly, ‘how can small 

droplets be produced quickly and in a controlled manner?’ and similarly ‘how can rapid adsorption 

of surfactant be ensured to minimise droplet coalescence in this process?’.  

Interestingly, a recent article by Gassin et al. (2013) considered the effects of the transfer of 

amphiphilic molecules across an O/W interface on the IFT between the two phases. They supported 

earlier findings (Ferrari et al., 1997; Ligierri et al., 1997) that the IFT of a system could decrease 

below the equilibrium value at least in the initial stages depending on the partition coefficient of the 

surfactant and the kinetic rate to achieve adsorption equilibrium. This approach relies on surfactants 

that can be soluble in both aqueous and organic phases. Therefore, the use of non-ionic surfactants 

such as Tween 20 and Brij 97 and the zwitterionic surfactant lecithin are facilitated whilst SDS is 

excluded since it is insoluble in oil. It was hypothesised that by allowing surfactant to diffuse through 

a forming droplet interface during RME, this would cause earlier detachment of droplets due to 

lower than expected IFT values whilst simultaneously limiting coalescence by enhancing the rate of 

adsorption. Thus, the process would be operated much more efficiently.  
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Fig. 5.12: The influence of transmembrane pressure on the mean droplet size for different surfactant positions. 
A shear rate of 5.98 s

-1
 is applied corresponding to a rotational speed of 1000 RPM and an annular gap width of 

25 mm. The dotted lines are drawn to guide the eye across the data set. The error bars represent one standard 
deviation of a triplicate of experimental runs. 

 

What can be observed in Fig. 5.12 are significant differences in the droplet size depending 

on the positioning of the surfactant. For example, emulsions formed by using 0.1 wt. % Tween 20 

and Brij 97 positioned within the oil phase (o) are at least 3 times smaller than those formed with 

surfactant within the conventional aqueous phase for the same formulation/processing conditions. 

In this case, the droplet size to pore size ratio is much lower than previously observed, between 2.2 

and 3.7. With 1 wt. % Tween 20 (o) and 0.2 bar TMP, a ratio as low as 1.1 is achieved. Furthermore, 

0.1 wt. % Tween 20 (o) produces smaller droplets than a higher concentration of surfactant (1 wt. %) 

within the continuous phase (w). These two surfactants preferentiate towards being within the 

water phase and so by diffusing out of the oil droplet to move into an aqueous environment, the IFT 

is seen to drop below equilibrium as shown by Fig. 5.13. As an example, the IFT of 0.1 wt. % Tween 

20 (o) reaches 1.7 mN m-1 after 30 minutes but within water (Fig. 5.3) the value is 5.1 mN m-1. It is 
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anticipated that if left for a long enough period, the IFT values of the systems will converge to the 

same point. However, the RME process relies on droplet formation and detachment within the first 

few seconds (in which the two phases are introduced) and thus a rapid decrease in IFT is beneficial. 

In the case of lecithin, this surfactant partitions in favour of being within the oil phase and is 

therefore ‘reluctant’ to diffuse out of the droplet and stabilise the forming interface. As a 

consequence, emulsions formed with lecithin in oil destabilised almost immediately most likely due 

to significant coalescence at the membrane surface (agreeing with findings by Wagdare et al., 2010). 

In terms of the effects of TMP, very little variation is seen between 0.2 and 1.5 bar when Tween 20 

and Brij 97 are positioned within the oil phase (< 9 μm).  Since the timescale for droplet formation 

and detachment is likely to be much shorter (since droplets are smaller), any variations within 

dispersed phase flow will not drastically alter the volume contributed during detachment (Peng and 

Williams, 1998). For these systems, jetting does not occur because although the IFT is low, the slight 

increase in viscosity from blending 0.1 or 1 wt. % of surfactant into the 10 vol. % dispersed phase 

rather than the 90 vol. % of continuous phase leads to a lower dispersed phase pore fluid velocity 

such that the jetting point is not reached. It is likely further increase in TMP beyond 1.5 bar, the 

jetting point may be reached. 
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Fig. 5.13: Dynamic interfacial tension between distilled water and sunflower oil containing variable 
concentration of surfactants: (a) Tween 20, (b) Brij 97, (c) Lecithin. 

 

The effect of shear rate at the membrane surface on droplet diameter when considering the 

surfactant position is presented in Fig. 5.14. Since the IFT of the non-ionic surfactant systems within 

oil is much lower than when in water, droplets are less resistant to shear and therefore detach 
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earlier as smaller sizes. Only a small decrease is seen with increasing shear rate from 0.6 s-1 to 104.7 

s-1. For example, when using 0.1 wt. % Brij 97 (o), the droplet size varies between 15.2 μm to 21.5 

μm (6.3 µm increase) compared to the more dramatic variation when within the aqueous phase 

(64.8 μm to 105 μm; 40.2 µm increase). This emphasises that if the aim is produce small droplet 

diameters, this can be achieved using less surfactant and less energy input if operating under 

minimal shear rates with Tween 20 or Brij 97 within the dispersed phase. 

 

Fig. 5.14: The influence of shear rate on the mean droplet size for different surfactant positions. A 
transmembrane pressure of 0.5 bar is applied. The dotted lines are drawn to guide the eye across the data set. 

The error bars represent one standard deviation of a triplicate of experimental runs. 

 

Fig. 5.15 shows droplet formation images for low (100 μl min-1) and high (1000 μl min-1) 

injection rates under quiescent continuous phase conditions (i.e. zero shear) using a Goniometer. 

Very small droplets can be produced from the needle (representative of a pore channel) with 1 wt. % 

Tween 20 (o) and a low injection rate applied. In this case, the droplet detaches almost 

simultaneously as it forms since buoyancy overcomes the low IFT holding the droplet at the needle 

outlet. For RME, the drag force will inevitably lead to an even earlier detachment but perhaps 
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reduce the extent of the size difference between the systems. To paraphrase, it is hypothesised that 

if the shear rate was increased to much greater values than 104.7 s-1, the droplet size difference 

between the observed systems may be minimal. However, care is required when selecting operating 

parameters such as the applied TMP and shear rate in conjunction with inherent system properties 

such as IFT and viscosity in order to prevent chaotic jetting phenomena.  

 

 

 

 

 Fig. 5.15: Images of droplet formation and initial detachment stages from a 1.8 mm diameter needle 
under quiescent continuous phase conditions. Sunflower oil, water and 1 wt. % Tween 20 were used in all 

cases. The surfactant positioning and injection rate between low (100 μl min
-1

) and high (1000 μl min
-1

) were 
varied as follows:  (a) low & in water, (b) low & in oil, (c) high & in water, (d) high & in oil.    
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5.10 Pre-mix Rotating Membrane Emulsification 

A number of publications have altered the approach of membrane emulsification by passing 

coarse emulsions through the membrane rather than pure dispersed phase (Surh et al., 2008; 

Vladisavljevic et al., 2004a). The mechanism of droplet formation differs with droplets breaking 

down due to shear stresses elongating and compressing the droplets within the pore channel. Pre-

mix membrane emulsification has been suggested to offer additional benefits such as high dispersed 

phase flux and lower energy consumption for producing high volume fraction emulsions (Nazir et al., 

2010).  The logic underlining this approach is that droplets upon leaving pore outlets are already 

stabilised by surfactant provided within the initial coarse emulsion and therefore nullifies 

coalescence effects. If this is the case, this logic would also be valid with the surfactant being 

supplied within the dispersed phase as discussed in the previous section. To test this hypothesis, an 

initial emulsion of 20 vol % dispersed phase was formed either with Tween 20 within the continuous 

phase (w) or dispersed phase (o) using the conventional RME approach. Each of these emulsions was 

then passed through the same, cleaned membrane into distilled water a further three times to 

observe the extent of droplets being broken down within the pore channels. The results are 

presented in Fig. 5.16. 
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Fig 5.16: The influence of pass number on mean droplet size using sunflower oil, distilled water and 1 wt. % 

Tween 20. Pass 0 denotes the initial emulsion droplet size adopting the conventional RME approach. Pass 1-3 
denotes the extent of droplet break up as the initial emulsion is passed through the membrane repeatedly. A 

transmembrane pressure of 0.5 bar and shear rate of 5.98 s
-1

 is applied in all cases. The dotted lines drawn are 
to guide the eye across the data set. The error bars represent one standard deviation of a triplicate of 

experimental runs. 

 

As shown within the previous section, the initial emulsion droplet size (Pass 0) is lower with 

the Tween 20 in the dispersed phase due to the partitioning behaviour of the surfactant. What is 

interesting is the extent and rate of droplet size minimisation upon passing the emulsions through 

the membrane repeatedly (Pass 1 to 3). With the surfactant within the oil, the droplets experience 

only a small reduction in size beyond applying a single pass. With a more conventional use of 

surfactant, it was shown by Nazir et al (2011) that droplet size reduction is limited after three passes. 

Here, using 1 wt. % Tween 20 (o) as an example, the initial droplet size of 15.4 μm is broken down to 

6.1 μm, 4.5 μm and 4.3 μm upon applying further passes. If compared with 1 wt. % Tween 20 (w), 

the break down is much more prominent from 58.8 μm to 15.1 μm, 6.7 μm and 5.9 μm. With further 

passes, it is likely they will achieve the same droplet size value where the shear stresses are unable 

to deform droplets due to their high Laplace pressure. Overall, a much more efficient adsorption of 
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surfactant is achieved as demonstrated by 0.1 wt. % Tween 20 (o) reaching smaller diameters than 1 

wt. % in the water phase. The point is, through applying the surfactant within the oil phase, the need 

of multiple passes to achieve sufficient break down to the minimum droplet size is eliminated. In 

fact, the very nature of adopting a pre-mix setup can be questioned since fouling is a severe problem 

(Trentin et al., 2009; Surh et al., 2008) as shown in Fig. 5.17. SPG membranes are known to be very 

effective for use within a pre-mix membrane emulsification setup. Since they have a structure of 

interconnected tortuous pore channels, this imparts much higher shear stresses to break up droplets 

than membranes with straight, perpendicular pore channels. On the other hand, the drawback to 

this is an increased likelihood of fouling and hence the dispersed phase flux will be negatively 

affected. This implies that the use of thin metallic membranes (such as silicon microsieves) may need 

to be implemented within a pre-mix setup to minimise fouling (Nazir et al., 2011) and allow for more 

rigorous cleaning techniques with tailoring of process parameters (e.g. TMP) to impart higher shear. 

 

Fig. 5.17: Volume fraction of oil within the final emulsion during process operation at a transmembrane 

pressure of 0.5 bar and a shear rate of 5.98 s
-1

. The percentages represent the mass composition of the 
dispersed phase only. Note: the 90% sunflower oil and 10% Tween 20 data set is representative of the 1 wt. % 

Tween 20 (o) system.  
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In order to compare flow behaviour between the dispersed phase systems used (pure SFO, 

oil with surfactant and a pre-emulsion), the graph is expressed as mass of oil added to the final 

emulsion since the objective is to reach a pre-defined quantity of this material. There is no doubt 

that the flux of a pre-emulsion is much higher than of pure oil, but a significant volume of that 

emulsion must pass through the membrane to arrive at the end point of the process. What is 

apparent is that the rate of mass transfer/addition for the pre-emulsion is not linear - that would be 

expected by Darcy’s law. This suggests an increase in resistance to flow over time which is likely to 

be caused by fouling. In the case of droplets slightly larger in diameter than the membrane pore 

channel, the shear exerted within the internal structure may not be great enough to overcome the 

droplet Laplace pressure. As a consequence, the droplet cannot deform sufficiently enough to pass 

through and thus it becomes trapped within the membrane, causing a blockage However, much 

larger droplets will be broken up by the shear within the pore channel whilst smaller droplets will 

pass through unopposed. The flow behaviour of pure SFO in contrast to a pre-emulsion obeys a 

linear addition of mass over time whilst a mixture of SFO and Tween 20 exhibits a slight reduction in 

the rate followed by a linear region. The surfactant may coat the membrane walls within pore 

channels during the initial stages of operation (and hence the flow behaviour) before the mixture 

acting as a bulk material. As expected the gradient of this linear region is lower than pure SFO since 

the viscosity is slightly higher. With the requirement to pass the pre-emulsion through the 

membrane further times to achieve sufficient break down of droplets, it may be therefore more 

efficient to operate using a dispersed phase with lower flux, but which ensures rapid adsorption of 

surfactant from a single pass i.e. using high HLB non-ionic surfactant within the oil. Subsequently, 

this limits the effect of fouling which will further reduce process efficiency.  
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5.11 Conclusions 

A variety of emulsion systems stabilised by surfactants, particles and mixtures of the two 

were produced using a RME setup. The objective was to investigate how the interfacial behaviour 

governs the emulsion structure (i.e. droplet size) in conjunction with processing parameters (TMP 

and shear rate). For stable operation of RME, it is very important that the surfactant or particle 

adsorbs quickly, especially if operating at a high TMP paramount to greater emulsion production 

rates. This is to ensure coverage of the interface as it is generated to prevent coalescence at the 

membrane surface and allow for earlier droplet detachment (since the primary retention force of IFT 

is minimised). However, care is required to ensure jetting of the dispersed phase doesn’t occur if the 

IFT is very low and the pore fluid velocity is high (e.g. 1% wt. SDS at 1.5 bar led to large, poly-

dispersed droplets forming). The rate of transport towards the interface and subsequent adsorption 

depends primarily on physicochemical properties of the surfactant or particle used. For surfactant 

systems, such properties include the HLB number, molecular weight and the CMC. For particle 

systems, the particle radius and contact angle are important characteristics since these determine 

the adsorption energy. Interestingly, the presence of turbulent flow of the continuous phase was 

influential on producing smaller droplet sizes using particles (but surfactants were unaffected). This 

therefore suggests differences in the transport mechanism towards the droplet interface with 

surfactants relying on diffusion whilst particles on convection to increase the rate of collisions and 

hence the likelihood of adsorption. 

The stabilisation mechanism provided by the material positioned at the droplet interface 

needs to be strong energetically. Assuming adsorption is sufficiently fast, electrostatic repulsion 

(demonstrated with the use of the anionic surfactant SDS) or steric repulsion (demonstrated with 

silica particles) between adjacent droplet interfaces can prevent coalescence. Utilising a combination 

of a surfactant alongside particles has a synergistic effect on droplet stabilisation with each providing 

a different function to the interface. The surfactant reduces the IFT to allow for early detachment 
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(by altering the point of force imbalance) whilst the particle provides a greater steric barrier to limit 

coalescence. The suggested mechanism of competitive adsorption has a slightly antagonistic effect 

on the IFT since particles do not reduce IFT to as great an extent as surfactants. Furthermore, some 

surfactant is likely to adsorb to the surface of the particle to reduce the concentration available for 

adsorption at the droplet interface. Irrespective of this matter, smaller droplets were produced by 

using both surfactants and particles together than each component separately. 

Finally, a novel approach in which surfactant is supplied via the dispersed phase rather than 

its conventional positioning within the continuous phase was introduced. By allowing material to 

diffuse through the interface, this leads to a reduction in the IFT well below the equilibrium value 

which is highly beneficial to the RME process to allow early droplet detachment. However, this 

approach has only been successfully demonstrated for stabilising O/W droplets using high HLB non-

ionic surfactants such as Tween 20 and Brij 97. When using a low HLB surfactant such as lecithin, 

droplets were not stabilised since due to its partition coefficient, remains primarily within the oil 

phase and hence does not diffuse out of the droplet to the extent of the high HLB surfactants. RME 

with surfactant within the dispersed phase compares favourably to a pre-mix emulsification setup 

since droplet size minimisation through multiple passes is achieved much earlier by ensuring rapid 

adsorption of surfactant. Furthermore, the effects of membrane fouling are avoided. Such an 

approach may therefore be advantageous for high production rate processing where the rate of 

surfactant adsorption is sufficiently fast compared to the rate of droplet interface generation. 
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Chapter 6: 

Theoretical Modelling and Process Comparison 

 

This chapter describes the development of models for rotating membrane 

emulsification based on findings within the previous two chapters. Comparisons are also 

made with a rotor-stator mixer and an ultrasonic probe device in terms of the rate of 

emulsion production and the energy consumption to assess the benefits of rotating 

membrane emulsification processing.  

 

 

Data and discussions contained within this chapter are to be published within: 

Lloyd, D.M., Norton, I.T., Spyropoulos, F. (2015). Process optimisation of Rotating Membrane 

Emulsification through the study of surfactant dispersions. Journal of Food Engineering, 166 316-

324. 

Lloyd, D.M., Norton I.T., Spyropoulos, F. (April 2014), Food-grade emulsion production using a low 

energy rotating membrane technology. The 8th European Workshop on Food Engineering and 

Technology, Quakenbrück, Germany (oral presentation). 

Spyropoulos, F., Lloyd, D.M., Norton, I.T. (June 2015). A microstructural approach to optimising 

membrane emulsification: surfactant diffusion through the oil/water interface. The 12th International 

Congress on Engineering and Food, Quebec City, Canada (poster presentation). 
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6.1 Introduction 

The aim of this chapter is to consider some of the theoretical concepts behind the rotating 

membrane emulsification process (RME); specifically related to coalescence at the membrane 

surface and the droplet size produced for a given set of conditions. The application of the models 

developed will prove valuable if one was to design and operate this piece of equipment. In addition, 

RME is compared to a rotor-stator high shear mixer (HSM) and an ultrasonic probe (SON). This is 

with regards to their capability to produce similar size droplets based on the emulsion rate of 

production and the energy input. Such a comparison evaluates whether producing emulsions with 

rotating membrane emulsification is as beneficial as suggested by other authors.  

6.2 Model to Estimate the Probability of Coalescence 

The likelihood of droplet coalescence during membrane emulsification is an important 

consideration since the presence or absence of this phenomenon may have a detrimental effect on 

the capability of the process to produce uniform droplet sizes. Coalescence has been shown to occur 

as a result of droplet contact on the membrane surface (Abrahamse et al., 2002; Vladisavljevic et al., 

2004b). During expansion of the droplet interface, this provides an opportunity for droplet 

coalescence in contacting areas insufficiently covered by surfactant. Coalescence is less of an issue 

within the continuous phase as droplets reside with low collision energies. One of the key 

parameters contributing to the occurrence of coalescence (or not), as demonstrated by the work of 

Timgren et al. (2009) is membrane porosity. Membrane porosity to a large extent determines the 

distance between adjacent active pores, with smaller distances potentially leading to interactions 

between forming or just formed droplets. This emphasises the requirement for models that can 

predict coalescence to aid membrane design. 

There are a couple of rough estimates on the maximum porosity value to avoid coalescence 

for a given droplet size to pore size ratio. Abrahamse et al. (2001) suggested a maximum porosity of 
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0.015 for producing 33 µm diameter droplets from a 5 µm diameter pore (ratio of 6.6). Schroder et 

al. (1998) calculated a porosity value of 0.3 for droplets a ratio of 1.6 times larger than the pore. 

Lepercq-Bost et al. (2010) took these observations and developed a model that estimated the risk of 

coalescence based on the operating conditions. A ceramic membrane (α-Al2O3) was used so the 

effective membrane porosity increased with applied transmembrane pressure (TMP). The 

hypothesis behind the model was that in the event that one other pore was active within close 

proximity to the forming reference droplet, coalescence would occur. Whilst this assumption was 

supported by experimental droplet size distribution data, the model did not quantify a numerical 

probability value but stated a ‘yes or no’ likelihood. However, it still serves as a useful tool to 

determine the maximum effective porosity (due to the applied pressure) to create narrow droplet 

size distributions as quickly as possible. The percentage of active pores relies upon experimental 

determination of the relationship between dispersed phase flux and pressure prior to model 

application. 

Here, a slightly more involved model has been developed for coalescence prediction. It is 

insufficient to simply state that coalescence does or does not occur considering it may happen to a 

minor extent with a minimal effect on the droplet size distribution. The distribution of active pores 

across the membrane surface is the most important consideration to both of these models; the two 

extreme cases are an equidistant distribution or a completely random distribution of pores 

producing droplets. For metallic materials, the pore spacing is controllable and the majority of pores 

are active i.e. droplets are formed as a regular array. For materials such as SPG and ceramics, the 

latter case of random activation is more applicable and therefore a more complex model is required 

to account for this. 

The model presented here is derived for an SPG membrane of 6.1 µm pore diameter as used 

within Chapters 4 and 5. Firstly, the fraction of active pores at a specific TMP needs to be calculated 

(using Eq. 4.3 in section 4.2.2). This requires experimental determination of the dispersed phase flux 
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behaviour to find the membrane permeability. The average porosity of an SPG membrane is 0.56 

(Vladisavljevic et al., 2005). The porosity value is needed to solve for the active pore fraction using 

Eq. 4.2. Next, the total number of pores on the membrane surface requires estimation. Vladisavljevic 

et al. (2005) concluded that for SPG membranes, the total number of pores per unit area was 

inversely proportional to the square of the mean pore size: 

  

     
      

  
  

(Eq. 6.1) 

where np,t is the total number of pores on the membrane surface, Am is the membrane surface area 

covered by pores and dp is the pore diameter. Therefore the number of pores active at a specific 

moment in time during operation (np,a) is: 

           (Eq. 6.2) 

where α is the fraction of active pores at a given TMP. Coalescence is likely to happen if the distance 

between forming droplets (Lx,a) is small enough such that the forming interfaces come into contact 

as shown in Fig. 6.1. Therefore, the likelihood of this event occurring requires consideration. 

 

Fig. 6.1: A schematic representation of two droplets forming at adjacent active pores. In this case, Lx,a < 2rd 
indicating coalescence is likely due to droplet interface contact during expansion. 

 

In the case of an even distribution of active pores, the distance between adjacent active pores can 

be found relatively easily. By dividing the membrane surface into a series of equilateral triangular 
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segments consisting of a pore at each vertex, the length of each side defines the distance between 

adjacent pore centre points (Fig. 6.2). 

 

Fig. 6.2: The basis for calculation of the average distance between pores across the membrane surface 
assuming a triangular array. 

 

If one of these segments is formed by three active pores, the number of segments (xΔ,a) across the 

membrane surface (Pach and Pinchasi, 2003) is: 

            (Eq. 6.3) 

And therefore the area of one segment (AΔ,a): 

     
  

    
 

(Eq. 6.4) 

The length of each side calculated for an equilateral triangle is the average distance between the 

centre of each active pore (Lx,a): 

         
   

 
 

(Eq. 6.5) 

 



  

156 
 

      
     

  
 

(Eq. 6.6) 

If Lx,a is less than the diameter of the droplet, coalescence may occur. This is the basis of the Lepercq-

Bost model. However, the approach is inappropriate if the active pores are not distributed in this 

way. 

 In the case of a random active pore distribution, a similar approach is required to determine 

the spacing between all pores on the membrane surface. Eq. 6.1 to Eq. 6.6 can be applied but 

instead by using the total number of pores (np,t) rather than the number of active pores (np,a). The 

next step is to assume a theoretical droplet diameter for a droplet attached to the membrane 

surface. There will be a number of pores within close proximity of this droplet, more so if the droplet 

is large. Since coalescence is assumed to occur if the distance between forming droplets is less than 

the droplet diameter (dd), there is a proximity zone where formation of another droplet will induce 

coalescence. The cross-sectional area of this zone (Ad,p) is defined as: 

         
   (Eq. 6.7) 

There are a number of pores within this proximity zone. The average number of segments (xΔ,p) and 

hence pores (np,p) nearby to a forming droplet: 

     
    

    
 

(Eq. 6.8) 

  

            (Eq. 6.9) 

where AΔ,t is the area of one segment formed by three adjacent pores. For a given active pore 

fraction, the number of pores that are active at any one moment and therefore the likelihood that 

one of the pores within the proximity zone will be active can be calculated. The number of pores 

active is solved by Eq. 4.1 to Eq. 4.3. Assuming all droplets have the same droplet formation time, 

the maximum number of pores that could be active (np,ac) would be realised if all other droplets 
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begin to form from previously inactive pores at the midpoint of droplet formation of the reference 

droplet (i.e. completely out of phase frequency): 

              (Eq. 6.10) 

The probability of a randomly chosen pore on the membrane surface being active (Pactive) is 

therefore: 

        
     

    
 (Eq. 6.11) 

With np,p number of pores being active and the probability of any single pore being active is Pactive, 

the probability of at least one pore being active within the proximity zone and hence coalescence 

occurring (Pcoalescence) is: 

                           
      (Eq. 6.12) 

To demonstrate the implications of these models, the following input parameters shown in Table 6.1 

are used for SPG membranes: 

Table 6.1: Parameter values applied within model of droplet coalescence 

Parameter Value 

Membrane Surface Area (Am) 0.00141 (m2) 

Membrane Pore Diameter (dp) 6.1 × 10-6 (m) 

Active Pore Fraction (α) Assumed Variable 

Droplet Diameter (dd) Assumed Variable 

  

For equidistant pore distribution, applying Eq. 6.1 to Eq. 6.6 yields the following results (Table 6.2): 
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Table 6.2: Distance between active pores assuming an even distribution of these pores across the membrane 
surface, for a given active pore fraction. 

Active Pore Fraction, α (%) 
Distance between Adjacent Active 

Pores, Lx,a (µm) 

0.01 1240 

0.1 392 

1 124 

5 55.4 

 

This means that if the droplet diameter is larger than the distance between adjacent active pores, 

coalescence may occur. Considering the distances are relatively large compared to the droplet size 

data shown in Chapters 4 and 5 (except at the highest active pore fractions), this indicates 

coalescence is unlikely. However, this is an idealised case since the pores are spaced as far away 

from each other as possible. 

 For a random active pore distribution, applying Eq. 6.1 to Eq. 6.12 for all pores shows there 

are 2.13×107 pores on the membrane surface with each spaced on average 12.4 µm away from each 

other. As the theoretical diameter of the droplet becomes larger, more pores are located in the 

proximity zone increasing the likelihood of coalescence. Similarly, with a higher active pore fraction 

the probability of one of these pores being active is higher which also increases coalescence 

phenomena. This is shown in Fig. 6.3: 
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Fig. 6.3: The probability of coalescence for active pores randomly distributed on the membrane surface as a 
function of theoretical droplet diameter. 

 

Applying the coalescence probability models with the data shown in section 4.2, the effect 

of TMP between 0.1-1.8 bar found 0.9-2.7 % of pores to be active based on the dispersed phase flux 

measurements. If these pores were evenly distributed, the distance separating them would be 

between 75.4 µm and 131 µm. All droplet sizes were greater than 51.4 µm (0.5 bar, 2000 RPM) 

which means in the case of completely random distribution, even with the lowest active pore 

fraction (0.9%) coalescence would occur in roughly 80+% of cases. This therefore clearly suggests 

that coalescence has occurred to some extent and the droplets were likely to have been smaller but 

had in fact coalesced during processing. The final measured sizes ranged between 51.4-103 µm. 
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6.3 Application of the Force Balance Model to Predict Droplet Size 

It was discussed within Section 2.2.3 that a droplet will begin to detach from the membrane 

surface due to an imbalance of forces (Peng and Williams, 1998). If these forces can be identified 

and then calculated, the droplet size can be predicted at least at the end of the growth stage i.e. at 

the point of detachment. It was highlighted that the size will increase due to additional material 

being contributed to the droplet via its neck; this is a function of the dispersed phase flux and the 

droplet detachment time (Eq. 2.8). Therefore, it is expected that such a force balance model would 

under-predict the droplet size unless i) the dispersed phase flux is low or ii) the droplet detachment 

time is short. A force balance model applicable to rotating membrane emulsification is discussed and 

evaluated within this section. 

There are a number of forces that are common within a range of membrane emulsification 

approaches. The adhesive force holding a forming droplet at the pore outlet is the interfacial tension 

force (Fγ). The force can be calculated assuming a spherical pore: 

         (Eq. 6.13) 

where γ is the interfacial tension and rp  is the pore radius  It is important to note that there is a time 

dependency on the value of interfacial tension between the organic and the aqueous phase. The 

adsorption of surfactant molecules decreases the interfacial tension whilst the expanding nature of 

the interface depletes the surfactant coverage, increasing interfacial tension. It is therefore 

complicated to predict the interfacial tension of a growing droplet over time so static interfacial 

tension values are adopted (Schroder et al., 1998). Approaches to use dynamic values are difficult to 

use, requiring mathematical simulations to apply (De Luca et al., 2004; De Luca and Drioli, 2006). 

Therefore, in this case a static value is applied. 

 The drag force (FR) is the dominant detachment force enabling individual droplets to be 

produced. It is calculated by considering the force exerted by fluid flow on a rigid sphere: 
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                (Eq. 6.14) 

where kx is the wall correction factor, μc is the continuous phase viscosity and vc is the velocity 

difference between the continuous phase and the membrane surface. The wall correction factor 

usually adopted is 1.7 (O’Neil, 1964). It was suggested earlier within this thesis (section 4.6.1) that kx 

may vary as a function of viscosity since droplets are not rigid spheres but they can be deformed 

altering the drag coefficient (Timgren et al., 2008; Egidi et al., 2008). 

 The two other universally recognised forces are the buoyancy force (FBG) and the inertial 

force (FI). The former is induced by density differences between the two phases (Eq. 6.15) whilst the 

latter is the result of the linear momentum of the dispersed phase upon leaving the pore channel 

(Eq. 6.16): 

    
 

 
   

          
(Eq. 6.15) 

where ρc and ρd are the densities of the continuous and dispersed phases respectively, g is the 

gravitational field strength,       is the average velocity of dispersed phase within the pore channel 

(which depends on the TMP) and An is the cross-sectional area of the droplet neck. Other forces that 

should theoretically be considered are the dynamic lift force (FDL) and the static pressure force (Fstat) 

defined by Eq. 6.17 and Eq. 6.18 (Schroder et al., 1998): 

where ky is the lift coefficient, τw is the shear stress at the membrane wall and   
  is the pressure 

difference between the dispersed and continuous phase. The dynamic lift force is the perpendicular 

component of the surface force experienced by object within a fluid flow field (with drag force being 

the parallel component). The lift coefficient was debated by Timgren et al. (2008) to vary as a 

       
       (Eq. 6.16) 

      

  
     

    

  
 

(Eq. 6.17) 

        
    (Eq. 6.18) 
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function of Reynolds number so it may be higher than the value of 0.761 which is typically used 

within this equation. The static pressure force is caused by the difference in internal pressure of the 

droplet and the continuous phase. The internal pressure comprises of i) a fraction of the applied 

pressure upstream after the pressure drop across the membrane due to frictional losses and ii) a 

modified Laplace pressure value for a droplet attached to the membrane surface. This was 

determined by Abrahamse et al. (2001) as: 

where    
  is the estimated Laplace pressure for a non-spherical droplet and Vdr is the droplet 

volume.  It was shown via simulation that the cumulative effect on the internal droplet pressure was 

a reduction over the initial stages of droplet formation as the droplet grows in size. The Laplace 

pressure can be considered to be the main component of this value since the pressure drop across 

the pore channel is often large. 

 Finally, with rotating membrane emulsification an additional centripetal force (FC) requires 

consideration. This force hinders droplet detachment if the dispersed phase density is lower than 

the continuous phase. The centripetal force acting on a spherical droplet can be estimated using Eq. 

6.20: 

where md is the mass of the droplet and r1 is the membrane radius. The tangential velocity of the 

droplet (vdr) equals: 

   
  

  

      
 

 
(Eq. 6.19) 

   
     

 

  
 

(Eq. 6.20) 

    
           

  
 

(Eq. 6.21) 
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where n1 is the rotations per minute of the membrane. The presence of a ‘push off’ force 

hypothesised by Egidi et al. (2008) and Kosvintsev et al. (2008) has not been included since droplet 

formation is extremely unlikely to occur as a regular array when using SPG membranes. The force 

balance model for rotating membrane emulsification therefore takes the final form shown in Eq. 

6.22 and visually represented in Fig. 6.4: 

 

FBG

FD

FC

FR

FI

Fγ- Fstat

 

Fig. 6.4: A schematic representation of the forces acting on a droplet at the point of detachment from the 
membrane surface. 

 

As is seen by observing Eq. 6.13 to Eq. 6.20, the magnitude of the forces changes with an 

increase in droplet size; the detachment forces are greater for larger droplets. Eventually a droplet 

will reach a size where the interfacial tension force is overcome. This can be seen by solving the 

force balance for an example case; the input parameters used are listed in Table 6.3: 

                          (Eq. 6.22) 
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Table 6.3: Parameter values applied within the force balance model example. 

Parameter Value Parameter Value 

Transmembrane Pressure 0.5 (Bar) Pore Diameter 6.1 (µm) 

Rotational Speed 1000 (RPM) Membrane Diameter 10 (mm) 

Vessel Diameter 60 (mm) Membrane Thickness 1 (mm) 

Interfacial Tension 4.8 (mN m-1) Tortuosity Factor 1.25  

Dispersed Phase Viscosity 0.066 (Pa s) Drag Coefficient 1.7 

Dispersed Phase Density 919 (kg m-3) Lift Coefficient 0.761 

Continuous Phase Viscosity 0.0015 (Pa s) Gravitational Field Strength 9.81 (N kg-1) 

Continuous Phase Density 999 (kg m-3)   

  

The magnitude of the sum of the detachment and retaining forces as a function of a theoretical 

droplet size is shown in Fig. 6.5 whilst a breakdown of the individual component forces is shown in 

Fig. 6.6: 

 

Fig. 6.5: Relationship between droplet diameter and the magnitude of detachment and retaining forces based 
on the conditions listed in Table 6.3. 
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Fig. 6.6: A more detailed breakdown of the acting forces on a droplet as it grows based on the conditions listed 
in Table 6.3. 

 From Fig. 6.5., it is clear there are two solutions given where the detachment and retaining 

forces intersect. Solution 1 equals the membrane pore diameter; this is an imaginary solution. As the 

droplet begins to the form, the interfacial tension will be higher than the equilibrium value used in 

this instance. Furthermore, it is likely the Laplace pressure and therefore the static pressure force is 

overestimated since only a small portion of the dispersed phase is in contact with the continuous 

phase. However, as the droplet begins to protrude into the continuous phase, the static pressure 

value becomes more accurate (decreasing as the droplet grows in volume). Solution 2 is the real 

value; in this example case it is 236 µm which was found via iteration. This is likely to be an over-

prediction of the size produced, even more so considering the volume increase during detachment 

has not been accounted for. Fig. 6.6, shows that the majority of the detachment forces increase as 
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surfactant adsorbs at the interface. Models such as the one developed by Rayner et al. (2005) 

connecting the rate of droplet inflation with its surfactant coverage would be required to use 

dynamic rather than static interfacial tension values.  

 The force balance model was tested and compared to experimental data acquired and 

presented in Chapters 4 and 5. The four parameters investigated and shown within Fig. 6.7 were 

Transmembrane Pressure (a), Rotational Speed (b), Concentration of Tween 20 (c) and Interfacial 

Tension (d). Unless otherwise stated, the conditions listed in Table 6.3 are applied. 
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Fig. 6.7: Predicted droplet sizes compared to actual experimental data presented within Chapters 4 and 5. The 
parameters modified were (a) Transmembrane Pressure (b) Rotational Speed (c) Tween 20 concentration and 

(d) Interfacial Tension value. 
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tension force should also be influenced by pressure since as mentioned the surfactant will be 

depleted as the interface expands. However, in this case a static value is used. Similarly, the different 

behaviour for the surfactants (i.e. rate of diffusion and adsorption) is not discriminated; the 

interfacial tension value is insufficient information for prediction of the droplet size. Finally, in the 

majority of cases the force balance model significantly overestimates the droplet size produced. This 

is all the more surprising considering the volumetric contribution of dispersed phase during 

detachment is not accounted for, and furthermore that the equilibrium value of interfacial tension is 

used. The reason that droplets may be detaching earlier than expected is due to the mechanism 

proposed by Rayner et al. (2004); spontaneous transformation-based droplet formation. This is a 

likely phenomenon especially if tortuous pore channels imperative of SPG membranes are used. The 

detachment forces may deform the droplet to a non-spherical, higher energy state with the 

interfacial energy then acting to detach the droplet. The detachment forces then act to accelerate 

the detached droplet away from the membrane surface to reduce coalescence phenomena. Perhaps 

derivation of an interfacial energy driving force (to induce detachment) is required to improve model 

accuracy. The force balance model in its current form serves as a useful, easy-to-apply tool for 

predicting rotating membrane process behaviour rather than accurately determining the droplet size 

produced. More rigorous computational-based modelling processes should be used in conjunction 

with the force balance model to increase accuracy. 

6.4 Process Comparison on the Basis of Production Rate 

One of the primary limitations of membrane emulsification relates to its ability to produce 

emulsions at a rate competitive with other processes. This is due to the low dispersed phase flux 

typically required to produce small, mono-dispersed droplet sizes. If membrane emulsification 

cannot match the capability of current implemented processes within industry i.e. production of 

comparable droplet sizes at a similar rate, irrespective of the energy savings the business case will 

not be answered. The loss of production rate is far more likely to damage potential income than save 
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cost through reduction in energy consumption. Therefore, the capabilities of alternative processes 

(to membrane emulsification) require exploration prior to comparison to the RME process to 

determine whether RME can be competitive. 

For batch processing, the production rate can be altered simply by changing the processing 

time or the quantity of material processed in a single operation i.e. the batch size. In this instance, 

the former is investigated. The processes used were a rotor-stator high shear mixer (HSM) and an 

ultrasonic probe (SON). An intermediate rotational speed (6000 RPM) or tip velocity (5.5 m s-1) were 

selected and the processing time was varied between 10-600 seconds (these times were similar to 

the RME operating times measured in Chapter 4 and 5). The emulsions produced were all 10 v/v % 

SFO stabilised by 1 wt. % surfactant; these were Tween 20 either in the aqueous (w) or organic (o) 

phase or SDS. The results are shown in Fig. 6.8: 

  

Fig. 6.8: The effect of processing time on the emulsion droplet size produced using: (a) Rotor-stator high shear 
mixer (HSM) at 6000 RPM and (b) Ultrasonic probe (SON) at 5.5 m s

-1
 tip speed. 
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It is clear that with increasing processing time, the droplet size decreases. This is explained 

simply by the droplet experiencing continual break up within regions of shear (cavitation) for a 

longer period. As the droplet becomes smaller, the Laplace pressure increases significantly such that 

the droplet is able to resist deformation and hence break-up. It is apparent that the droplet size 

decrease with SON is much more dramatic than for the HSM; using Tween 20 (w) as an example, 

SON droplet sizes decrease from 37.3 µm to 0.5 µm whereas for HSM, the decrease is 29.2 µm to 

12.3 µm. SON is a higher energy process (as will be discussed further in Section 6.5) which enables 

the formation of sub-micron droplets. A slight plateau in droplet size can be observed for SON when 

using Tween 20 at the longer processing times; it is possible that the surfactant available for 

adsorption has been exhausted and therefore the system is incapable of stabilising a greater 

interfacial area. An alternative explanation would be that the Tween 20 cannot adsorb sufficiently 

quickly to prevent droplet coalescence (i.e. the ‘back-reaction’). In the case of SDS, the surfactant 

can quickly stabilise droplets as small as 0.2 µm aided by electrostatic repulsion to keep droplets as 

separate entities. The IFT of SDS systems is lower which facilitates easier break-up of droplets. The 

effect of surfactant positioning is minimal compared to membrane emulsification processing (except 

at the shortest processing times). The repeated break-up of droplets means the primary surfactant 

transport mechanism is convection. As such, the system is mechanically forced to approach the 

equilibrium IFT value of which surfactant positioning does not make a difference, so droplet break-

up towards the end of the process occurs to a similar extent. 

 Re-plotting the above data as production rate and comparing to RME data presented in 

Chapter 5 (where the TMP is used to control the production rate), it can be observed within Fig. 6.9 

that generally the droplet size for all processes increases as the production rate is increased from 

0.7-39.7 kg h-1. Ideally, the production rate should be high from a manufacturer’s perspective to 

create more emulsion product. Although SON is able to produce sub-micron droplet sizes, this 

advantage is lost at higher production rates > 4.4 kg h-1. What is important to note is that by 

positioning the surfactant in the dispersed phase for RME i.e. 1 wt. % Tween 20 (o), the droplet sizes 
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are in a similar range to HSM and SON even at production rates above 8.0 kg h-1. This is despite a 

much lower energy input. Thus, ensuring the rapid adsorption of surfactant is paramount if RME is to 

be competitive with other processes (at least for small-scale processing). 

Fig. 6.9: The effect of varying processing time and subsequently the production rate on the emulsion droplet 
size produced. Power consumption: Rotating Membrane Emulsification (RME) = 16.4 W, Rotor-stator High 

Shear Mixer (HSM) = 70.9 W, Ultrasonic Probe (SON) = 102.2 W. 

 

6.5 Process Comparison on the Basis of Energy Consumption 

It is widely reported that membrane emulsification utilises energy to produce emulsions in a 

much more efficient manner due to the avoidance of repeated droplet break up and re-coalescence 

(Gijsbertsen-Abrahamse et al., 2004; Jafari et al., 2008; Charcosset, 2009). However, this efficiency is 

yet to be determined for production of emulsions that match both the droplet size and the 

throughput. Whilst RME may be able to produce very small droplet sizes in a controlled way 

(generally under low TMP conditions), the long operation times mean the energy savings may be lost 
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(Joscelyne and Tragardh, 2000). The idea behind the following experiments was to demonstrate the 

process energy efficiency of the RME process in comparison with the HSM and SON processes. 

The energy input during processing can be dramatically modified by altering the speed of 

which the mechanical workings that impart shear/cavitation operate at. For HSM, this is quantified 

typically by the rotational speed and for SON, the tip velocity can be used (a function of the % of the 

maximum amplitude for a fixed oscillation frequency). The droplet size data of the 10 vol. % SFO in 

water emulsions is shown in Fig. 6.10: 

Fig. 6.10: The effect of varying the process mechanical speed on the resulting emulsion droplet size. For the 
HSM (a), this was rotational speed of the rotor and for SON (b), this was the tip speed. The processing time (90 

seconds) and batch size (110 ml) were kept constant. 
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therefore suggests for the HSM, the surfactant is yet to be exhausted for droplet sizes < 10 µm and 

that the shear forces are limiting factor enabling further break-up. 

 Fig. 6.11 shows the amount of energy input per volume to formulate an emulsion against the 

droplet diameter achieved. The emulsion production rate was between 3.7-6.2 kg h-1. With 

consideration against RME data shown in Chapter 5, it can be seen that RME is further towards the 

left side of scale; the energy densities are orders of magnitude lower than HSM and SON with values 

between 3.2×103 and 3.0×104 kJ m-3. For HSM and SON, the energy densities were between 2.1×104 

and 1.5×105 kJ m-3. 

 Fig. 6.11: The energy density utilised to produce emulsions containing 10 vol. % sunflower oil at a rate 
between 3.7 kg h

-1
 to 6.2 kg h

-1
 (depending on dispersed phase viscosity in case of RME). 
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RME can form droplet sizes between 11.4-18.1 µm with energy densities values <3.0×104 kJ m-3. For 

HSM, this region is obtained with energy density values >5.8×104 kJ m-3. For SON, approximately 

>5.0×104 kJ m-3 is needed. This therefore emphasises the potential of RME for production of 

emulsions in a more energy efficient manner without necessarily compromising the dispersed phase 

flux and hence production rate. Another further consideration is the energy wasted as thermal 

energy input. For RME there was no change in the sample temperature as a consequence of 

processing. For HSM the bulk temperature (per 110 ml) increased by 0.7-3.8°C whilst for SON this 

value was between 3.0-18.4°C (not accounting for heat losses). Hence, both the HSM and SON 

demonstrate potential unsuitability for certain ingredients (e.g. possible protein denaturisation) if 

one considers localised temperatures may far exceed those of the bulk temperature (alongside the 

energy being wasted in the form of heat). Whether this energy advantage is upheld for more 

concentrated emulsion systems remains to be seen, but it is hypothesised this is unlikely given the 

energy consumption will scale at best with linear behaviour against the processing time required. 
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6.6 Conclusions 

A number of models relating to droplet coalescence and droplet size prediction have been 

derived and tested within this chapter. In addition, rotating membrane emulsification has been 

compared to a rotor-stator high shear mixer an ultrasonic probe both on the basis of emulsion 

production rate or energy consumption versus the droplet size. From this work, a number of 

conclusions can be drawn. 

Firstly, the probability of coalescence can be predicted for non-regular array membrane 

materials (e.g. SPG) by considering the two extreme cases of active pore distribution; equidistant 

and random. Applying the derived model to data obtained in Chapter 4, the former case suggested 

coalescence to be unlikely whilst the latter suggested it would occur in at least 80% of droplet 

formation instances. Since active pore distributions with SPG membranes are randomised, this 

implies coalescence is likely and hence explains the relatively large droplet to pore size ratio 

obtained (8.6-17.2). 

Secondly, a force balance model was adapted for rotating membrane emulsification. The 

primary forces enabling droplet detachment are the drag, buoyancy and static pressure forces. 

Comparing against a range of processing and formulation parameters, the model over-predicted the 

droplet size in the majority of cases. This is despite not accounting for further addition of dispersed 

phase as the droplet detaches and also applying a static, equilibrium interfacial tension value. It is 

therefore suggested that the spontaneous transformation-based droplet formation mechanism plays 

a role in enabling earlier droplet detachment. This may need to be included for future models. 

However, the model in its current form can still be applied as a simple process optimisation tool. 

Finally, comparing rotating membrane emulsification to other processes reveals that by 

ensuring rapid, efficient adsorption of surfactant (namely through positioning a high HLB non-ionic 

surfactant within the dispersed phase), this enables rotating membrane emulsification to be highly 
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competitive. This is on the basis of producing comparable droplet sizes at a similar rate of 

production (8-20 kg h-1) for 10 vol. % dispersed phase O/W emulsions. The advantage of energy 

efficiency is maintained whilst minimum thermal stress is imparted on the emulsion structure. The 

findings therefore reflect favourably on rotating membrane emulsification and its potential for 

exploitation within industry, at least for the production of dilute emulsion systems (< 10 vol. % 

dispersed phase).  
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Chapter 7: 

Operation using a Pilot-scale Rotating Membrane 

Emulsification Device 

 

This chapter discusses initial findings using a novel, pilot-scale rotating membrane 

emulsification device for batch sizes greater than 8 kg. A recommended design procedure is 

outlined from findings made across the two process scales investigated within this thesis. 

 

 

 

 

Discussion contained within this chapter has been published within: 

Spyropoulos, F., Lloyd, D.M., Hancocks, R.D., Pawlik, A.K. (2014). Advances in Membrane 

Emulsification. Part B: Recent developments in Modelling and Scale-up approaches. Journal of the 

Science of Food and Agriculture, 94 (4) 628-638. 
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7.1 Introduction 

The aim of this chapter is to investigate the capabilities of a pilot-scale RME device as a proof 

of concept. Since the inception of membrane emulsification at the start of the 1990s (Nakashima et 

al., 1991), the process has been demonstrated to offer numerous benefits over conventional 

emulsification techniques as evident in the previous chapters. Advantages such as less energy 

consumption, lower shear, a more efficient use of surfactant, good process repeatability and a 

significant level of control over droplet size are typically cited in literature (Joscelyne and Tragardh, 

2000; Charcosset et al., 2004; Gijsbertsen-Abrahamse et al., 2004). Yet, to date there is only one 

documented case of using membrane emulsification industrially; ‘Yes light’, a low fat butter 

substitute by Moringa Milk Industry in Japan. It is therefore very surprising that the process has not 

been exploited further. This can possibly be attributed to a lack of validated scale-up theories and 

approaches. The research conducted using this pilot-scale RME device should therefore enable the 

development of such approaches as one shifts across different scales of production. 

The approach adopted here is to use both a greater membrane effective surface area (97.4 

cm2) within a larger vessel (12 litres maximum capacity). Given the working volume of continuous 

phase was around 8 litres, very dilute emulsions of less than 1 vol. % dispersed phase of SFO were 

produced in order to conserve material (this was still around 70 g of oil per experimental run). A 

laser drilled stainless steel membrane of 26 μm was used since fragile materials such as SPG and 

ceramic membranes would be unlikely to withstand the mechanical stresses during operation. The 

applied TMPs investigated were much higher than the capabilities of the small-scale device (up to 4 

bar). Additionally, the rotational speed could be altered to values between 100 and 4000 RPM, 

corresponding to shear rates between 2.23 s-1 and 89.1 s-1. For very high ratios of TMP to capillary 

pressure, the shear rate needs to be high for stable emulsion droplet production. 
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7.2 Effect of Transmembrane Pressure 

 Fig. 7.1 shows the resultant droplet diameter stabilised by 1 wt. % Tween 20 (within the 

continuous phase) with variation in the TMP. The rotational speed was held constant at 1000 RPM 

which applied a shear rate at the membrane surface of 22.3 s-1.  

 

Fig. 7.1: The effect of transmembrane pressure on the mean droplet size using a pilot-scale rotating membrane 
emulsification device. The emulsions are approximately 1 vol. % sunflower oil stabilised by 1 wt. % Tween 20 
within the continuous phase. The error bars represent one standard deviation of a triplicate of experimental 

runs. 

 

It is apparent that the relationship between TMP and droplet size is different from that seen 

when using an SPG membrane (e.g Fig 4.4 in section 4.2.1). In this case, larger droplet diameters are 

produced at higher TMPs. For example, at 0.2 bar the droplet diameter is 63 μm whereas at 2.5 bar 

the size is 216 μm. This is attributed to the greater rate of droplet inflation relative to the rate of IFT 

decrease to enable detachment. The coalescence region is not observed at low pressures (as was the 

case using the SPG membranes) because the pore spacing is sufficiently wide (0.5 mm or 500 

microns) such that droplets will not interact during formation. This emphasises the advantage of 
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membranes consisting of a regular array of pores since the spacing between adjacent pores can be 

controlled to limit coalescence phenomena. In the absence of coalescence, this relationship between 

droplet size and TMP is expected (Wagdare et al., 2010). It is evident that the error bars across the 

data set are generally large indicating droplet formation is not a uniform process. However, this is 

likely to be due to the wide pore size distribution from drilling inaccuracy during fabrication of the 

membrane. Additionally, considering the dispersed phase flux behaviour shown in Fig. 7.2, the 

values presented corresponds to pore fluid velocities up to 0.017 m s-1 i.e. an order of magnitude 

higher than with the SPG membranes. As a consequence, the dispersed phase capillary number is 

likely to be sufficiently high (>0.056) even at the lowest TMPs such that jetting could occur and 

hence droplet formation is unstable and erratic. The flux increases between 4.7-123.2 L m-2 h-1 at a 

rate directly proportional to the TMP to the power of 1.05. It was expected the relationship would 

be linear (i.e. a power coefficient of 1.00) since the membrane consists of rigid, straight-through 

pore channels. This therefore suggests that there is a very slight increase in membrane permeability 

associated with activation of pores. 
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Fig. 7.2: Influence of transmembrane pressure on the dispersed phase flux at 1000 RPM for a 26 μm pore 
diameter, stainless steel membrane. 

 

7.3 Effect of Rotational Speed 

The effect of membrane rotational speed on the emulsion droplet size is shown in Fig. 7.3 at 

a TMP of 0.5 bar and 1 wt. % Tween 20 within the continuous phase. This TMP value was selected in 

order to add the dispersed phase sufficiently quickly whilst also being just below the jetting point. As 

the rotational speed was increased from 100 RPM to 4000 RPM, this increased the shear rate 

linearly from 2.23 s-1 to 89.1 s-1. As a consequence, the droplet diameter decreased due to higher 

drag force to aid droplet detachment from the membrane surface. In all cases, Taylor vortices were 

present since under the lowest rotational speed of 100 RPM and annular gap width of 0.1m (fixed), 

the Taylor number exceeded 2700 indicating turbulent flow behaviour. 
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Fig. 7.3: The influence rotational speed on the mean droplet size at a transmembrane pressure of 0.5 bar. The 
emulsions are 1 vol. % sunflower oil stabilised by 1 wt. % Tween 20 within the continuous phase. The error 

bars represent one standard deviation of a triplicate of experimental runs. 

  

Interestingly, at rotational speeds greater than 3500 RPM, the droplet size produced was 

between 19.6-21.9 µm. This indicates with sufficiently high detachment forces, the droplet diameter 

formed can be smaller than the pore diameter. Vladisavljevic and Williams (2006) also produced 

droplets smaller than the pore diameter with RME using a laser drilled stainless steel membrane of 

100 µm pore diameter. This was the case specifically when operating at faster speeds or with a 

viscous continuous phase; both significantly applying high shear stress at the membrane surface. Oh 

et al. (2011) produced nano-sized droplets that were 25 times smaller than the pore diameter (2.5 

µm SPG membrane) using a stirred-cell configuration, low TMP and a very high concentration of 

surfactant. These findings therefore indicate that the droplet size to pore size ratio minimum is 

much lower than the typically cited value of 2 (Joscelyne and Tragardh, 2000) if the detachment 

forces are very high or the IFT retention force is low. 
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7.4 Comparison with Small-scale Rotating Membrane Device 

In order to develop the theoretical understanding on how to design the RME process, a 

comparison between a small-scale and pilot-scale device needs to be undertaken. For this, the 

processing parameters of TMP and rotational speed are considered to alter the flow behaviour for 

each of the two scales. The membrane parameters (e.g. pore diameter, porosity) ideally need to be 

very similar if not identical in order to draw comparison on the droplet formation mechanisms 

induced by this flow behaviour. Ultimately, this study aims to answer questions related to the 

physical constraints of the process e.g. how big or how fast does the process need to be to achieve 

desired outputs such as droplet size and dispersed phase flux? 

 A stainless steel membrane with almost identical pore size (25 µm) and matching pore 

spacing (0.5 mm) was tested on the small-scale device. This therefore had similar properties to the 

pilot-scale stainless steel membrane. The active surface areas of two membranes were 15.7 cm2 and 

97.4 cm2 which were due to the differences in membrane diameter; 10 and 62 mm respectively. 

Emulsions of 1 vol. % of dispersed phase stabilised by 1 wt. % Tween 20 were produced across a 

range of TMPs between 0.2 and 1.5 bar as shown in Fig. 7.4. The rotational speed was held constant 

at 1000 RPM allowing for the results to be comparable with Fig. 7.1 in section 7.2. Firstly, it is 

apparent that the relationship between droplet diameter and TMP is very similar to the one 

observed with the pilot-scale device. Larger droplet diameters are produced with increasing TMP as 

would be expected in the absence of coalescence at the membrane surface. Secondly, the droplet 

diameters are significantly larger across a similar TMP range for the small-scale device. The droplet 

size varies between 240-302 µm between 0.2 bar to 1.5 bar, whilst for the pilot-scale the range is 

63.5-162 µm. This therefore suggests that the scaling of the RME process is not simply achieved 

through matching the RPM.  
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Fig. 7.4: The effect of transmembrane pressure on the mean droplet size using a small-scale rotating 
membrane emulsification device with a stainless steel membrane. The rotational speed is 1000 RPM and the 
annular gap width is 25 mm. The emulsions are 1 vol. % sunflower oil stabilised by 1 wt. % Tween 20 within the 
continuous phase. The error bars represent one standard deviation of a triplicate of experimental runs. 

 

 Droplet formation for membrane emulsification as previous discussed in the previous 

chapters is attributed to an imbalance of forces. For RME, the primary force inducing detachment is 

the drag force but on the other hand, the centripetal force hinders detachment. Whilst the 

magnitude of these forces are heavily dependent on the rotational speed with higher speeds 

resulting in greater force, this term does not appear in the derived equations for each of these 

forces. This is why matching the rotational speed across the two scales does not yield similar droplet 

sizes. Instead, the magnitude of these forces is indebted specifically to the velocity that the droplet 

moves at whilst attached to the membrane surface. The difference between the droplet velocity and 

membrane surface velocity is negligible given droplet diameters are orders of magnitude smaller 

than the membrane diameter. At a fixed rotational speed (RPM), the membrane surface of the pilot-

scale device is required to move with greater velocity as its circumference is more than six times 

greater than the small-scale device. Alternatively, one might consider that matching the shear rate 

at the membrane surface may consequently result in similar droplet sizes. As was apparent in 
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Chapter 4, the flow behaviour of the continuous phase (whether Taylor vortices can form) is strongly 

related to the annular gap width alongside the rotational speed. The annular gap width for the small-

scale and pilot-scale devices was 25 mm and 69 mm respectively. In order to match the membrane 

surface velocity and shear rate for the two systems, the small-scale device was operated at 2000 

RPM whilst the pilot-scale device was set at 322 RPM (matched velocity) and 537 RPM (matched 

shear rate). This is summarised in Table 7.1: 

Table 7.1: Details of experimental configurations investigated across the small-scale and pilot-scale rotating 
membrane emulsification devices. 

 
Matched RPM Matched Surface 

Velocity 

Matched Shear Rate 

Scale Small Pilot Small Pilot Small Pilot 

Relevant Figure Fig. 7.4 Fig. 7.1 Fig. 7.5 (a) Fig. 7.5 (b) 

Rotational Speed 

(RPM) 
1000 1000 2000 322 2000 537 

Membrane 

Surface Velocity 

(m s-1) 

0.52 3.25 1.05 1.05 1.05 1.75 

Shear Rate (s-1) 5.98 22.3 12.0 7.18 12.0 12.0 
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Fig. 7.5: The effect of transmembrane pressure on the mean droplet size for matched membrane surface 
velocity (a) and matched shear rate (b). The emulsions are 1 vol. % sunflower oil stabilised by 1 wt. % Tween 

20 within the continuous phase. The error bars represent one standard deviation of a triplicate of 
experimental runs. 

 

The effect of TMP on droplet diameter is shown for a matched membrane velocity of 1.05 m 

s-1 (Fig. 7.5 [a]) and matched shear rate of 12.0 s-1 (Fig. 7.5 [b]). Irrespective of the scalable 

parameter used, the droplet diameter increases with increasing TMP. However, it is apparent there 

is a transitional point in which droplet diameters produced using the pilot-scale device are larger 

than those by the small-scale device. It is hypothesised that given the membrane parameters are 

very similar and the formulation parameters are the same, that the transitional point is connected to 

the flow behaviour of both the dispersed phase and the continuous phase. Furthermore, that as the 

applied TMP is extended beyond this threshold pressure value, that jetting occurs for pilot-scale 

operation but not for the small-scale explaining the larger droplet sizes. As shown by Pathak (2011), 

jetting is a function of the flow of both phases. The transitional point shifts as a function of 

rotational speed of the pilot-scale device with jetting more probable when operating at low speed 

and hence a more stationary continuous phase. At 322 RPM and 537 RPM, the transitional TMPs are 

0.39 bar and 0.64 bar respectively, whilst at 1000 RPM, the curves do not intersect at all. This 
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therefore requires consideration since jetting is unfavourable, although operation at a TMP just 

below the point of jetting is advantageous in maximising the rate of stable droplet production. 

The scalable parameters of membrane surface velocity (Fig. 7.6 [a]) and shear rate (Fig. 7.6 

[b]) were investigated further for a fixed TMP of 0.5 bar across the two scales. This was achieved by 

varying the rotational speed of the membrane between 100-2000 RPM for the small-scale device 

and 100-4000 RPM for the pilot-scale device (as with Fig. 7.3). In both instances, increasing the 

velocity or shear rate results in a decrease to a size independent of the scalable parameter used. The 

droplet diameter limit is governed primarily by the interfacial tension between the oil/water 

interface, the viscosity of the respective phases and the pore diameter. Inspection of the two curves 

reveals the most suitable scalable parameter is membrane surface velocity. There is a smoother 

transition from small-scale to large-scale emulsion production (at a given TMP) as shown by the R2 

values. However, this would require further investigation (perhaps at another scale of production) in 

order to validate this suggestion. 

 

Fig. 7.6: The effect of Membrane surface velocity (a) and Shear rate (b) on the mean droplet size produced. 
The emulsions are 1 vol. % sunflower oil stabilised by 1 wt. % Tween 20 within the continuous phase. The error 

bars represent one standard deviation of a triplicate of experimental runs. 
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7.5 Effect of Surfactant Type/Concentration 

As was shown within the previous section, for the pilot-scale RME device the droplet size 

tends to a minimum value with increasing rotational speed/shear rate/membrane surface velocity. 

At this point, the droplet size is limited by factors such as the IFT holding the droplet at the 

membrane surface. This was therefore investigated further by altering the surfactant type and 

concentration to modify the IFT, allowing for exploration of the process limit to form droplets 

smaller than the membrane pore diameter. The process parameters were optimised with a TMP of 

0.5 bar and a rotational speed of 4000 RPM in order to minimise the droplet diameter whilst also 

achieving reasonable dispersed phase flux. The non-ionic surfactant Tween 20 was compared to 

anionic SDS (within the continuous phase) since the latter imparts the droplet interface with a 

negative electrostatic charge which can minimise possible droplet coalescence. The concentration of 

surfactant ranged between 0.01-2 wt. % to alter the rate of IFT decrease as shown within Chapter 5. 

 

 Fig. 7.7: The effect of surfactant concentration on the mean droplet size for different surfactant types 
positioned within the aqueous continuous phase. The emulsions are 1 vol. % sunflower oil in water. The 
transmembrane pressure is 0.5 bar and the shear rate is 89.1 s

-1
.  The error bars represent one standard 

deviation of a triplicate of experimental runs. 
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Under these optimised processing conditions, it is illustrated within Fig. 7.7 that with 

increasing Tween 20 concentration, a very slight decrease in droplet diameter is observed (from 27.1 

µm to 24.6 µm; a decrease of 9.2%). For SDS, a sudden drop in droplet size can be seen at 0.2 wt. % 

which is close to the CMC (0.22 wt. %). Below 0.2 wt. % of SDS, larger droplets between 22.4-23.5 

µm are produced since the surfactant monomer is depleted from the continuous phase over time 

and so the IFT is higher. At an SDS concentration beyond the CMC, again a minimal decrease in size is 

evident from 17.2 µm at 0.2 wt. % to 14.4 µm at 2 wt. % (decrease of 16.3%). Generally, SDS 

produces smaller droplet sizes than Tween 20 since the IFT is lower as was observed in Fig. 5.3. 

Furthermore, the effect of increasing concentration relative to droplet size reduction is minimal 

compared to operation at the small-scale (Fig. 5.2). This is due to the dominance of the detachment 

forces over the retaining IFT force such that small variations in the IFT force have a negligible effect.  

7.6 Effect of Surfactant Positioning 

It has been previously shown that positioning non-ionic, high HLB surfactants within the 

dispersed phase (as opposed to their conventional positioning within the continuous phase) is 

advantageous if the aim is to produce small droplets. In this case, blending surfactant with oil was 

demonstrated to reduce the IFT of the system very quickly to a value below the equilibrium IFT 

(measured at long time scales). As a consequence, droplets could detach very early from the 

membrane surface at a smaller diameter since the surfactant moves towards the interface quickly 

due to its partitioning coefficient. This concept was investigated (using Tween 20) for the pilot-scale 

device to examine whether this advantage is still upheld. For modification of the TMP between 0.2 

and 4 bar, the rotational speed was constant at 1000 RPM (Fig. 7.8 [a]) whilst for the study of 

rotational speed effects, the TMP was set at 0.5 bar (Fig. 7.8 [b]). 
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Fig. 7.8: The effect of transmembrane pressure (a) and rotational speed (b) on the mean droplet size using a 
pilot-scale rotating membrane emulsification device. The emulsions are approximately 1 vol. % sunflower oil 

stabilised by 1 wt. % Tween 20 within the dispersed phase. The error bars represent one standard deviation of 
a triplicate of experimental runs. 

 It is clear that positioning the surfactant within the dispersed phase (o) using the pilot-scale 

RME device generally forms small droplets compared to when Tween 20 is within the continuous 

phase (w) as shown in section 7.2 and 7.3. Focussing on Fig. 7.8 (a) the droplet size increases at 

higher TMP as expected when coalescence is minimised. Across the TMP range, droplet sizes 

between 14.0 µm and 183 µm are produced which are smaller than with Tween 20 (w) as was shown 

in Fig. 7.1 (63.5-212 µm). This is due to differences in the IFT between the two systems. Whilst the 

IFT is lower for the Tween 20 (o), jetting did not occur until the TMP exceeded 3 bar in which the 

droplet size increased rapidly with large variation between experimental runs (wide error bars). The 

viscosity increase caused by blending Tween 20 with the dispersed phase results in a greater 

resistance to flow and hence a lower pore fluid velocity. In the case of modifying the rotational 

speed (Fig. 7.8 [b]), again the droplet diameter is much smaller with Tween 20 (o); between 13.7-102 

µm, compared to Tween 20 within the continuous phase (19.6-160 µm). Droplet detachment is 

achievable under low shear if the IFT force holding the droplet is small such that even at a speed of 
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1500 RPM for example, droplets roughly the same diameter as the pore diameter (26.8 µm) could be 

created. For Tween 20 (w), the rotational speed had to exceed 3000 RPM for the droplet size to pore 

size ratio to equal 1. This suggests that by using surfactant in this way, processing can be undertaken 

at a lower rotational speed (and hence less energy consumption) since inducing droplet detachment 

is much easier.  

7.7 Energy Considerations 

Within Chapter 6, it was demonstrated that a small-scale RME device could be competitive 

with both a rotor-stator mixer and an ultrasonic probe for emulsion production. This is on the basis 

of droplet size and production rate whilst using less energy. It is expected that a pilot-scale device 

will require a greater energy input in order to rotate a much larger, heavier cylindrical membrane. As 

such, questions could arise as to whether the energy advantage is upheld as a consequence of up-

scaling. Therefore, this clearly required consideration. The energy input (and hence energy density) 

was modified by altering the rotational speed at a TMP of 0.5 bar i.e. using the data presented in Fig. 

7.3 and Fig. 7.8 (b) for a production rate of 10 kg h-1.  The results are shown below in Fig. 7.9. 
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Fig. 7.9: The energy density utilised to produce emulsions containing ≈1 vol. % sunflower oil at a rate of 10 kg 
h

-1
. A constant TMP of 0.5 bar is applied whilst the rotational speed is varied between 100-4000 RPM. 

  

As observed with the small-scale processes, generally increasing the amount of energy input 

to form the emulsion results in the production of smaller droplet sizes. Surprisingly, rotational 

speeds of 3500-4000 RPM utilise less energy than 2000-3000 RPM as was specified by the power 

curve provided by the manufacturer. However, this concept is similar to a motorised vehicle engine 

in which there is an optimum speed to travel at for maximum fuel efficiency based on rotational 

frequency. It is therefore apparent that operating at speeds greater than 3500 RPM is beneficial 

both in maximising the membrane surface velocity and hence the drag force required to enable 

droplet detachment, but also to operate more energy efficiently. By utilising the surfactant within 

the dispersed phase, this suggests that operating at even lower speeds (≈ 1000 RPM) allows for the 

production of droplet sizes smaller than when positioned within the continuous phase. Operation at 

very high rotational speeds may therefore be unnecessary when the role of interfacial tension 

minimisation to enable detachment is more critical. The energy density range investigated (1.2×104 

to 3.1×105 kJ m-3) is broader than the values explored at the small-scale. Despite non-optimised 
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processing and membrane parameters (large pore diameter, low porosity), RME still maintains the 

potential to be more energy efficient than other emulsification processes although perhaps not to 

the extent as observed at the small-scale. A more rigorous study is required using smaller pore, 

higher porosity membranes is required in order to fully explore the capabilities of the pilot-scale 

device and its advantage over other emulsification methods. 

7.8 Recommended Procedure for Process Design 

Analysis of the experimental data presented within this thesis has allowed for a significant 

understanding of the processing mechanisms involved within rotating membrane emulsification. 

Combining this work within the existing knowledge contained within the literature enables the 

inception of a possible procedure to design such a piece of equipment. However, in order to 

implement such a guide relies upon the desired droplet size and production rate (i.e. dispersed 

phase flux) to be specified. Furthermore, the physicochemical properties of the emulsion system 

(e.g. interfacial tension, dispersed phase viscosity) and the membrane pore activation behaviour 

under applied pressure must be well characterised. Assuming these input parameters are known, 

the following procedure is recommended: 

1. Select a membrane with the appropriate pore size and surface properties 

Ensure the pores are sufficiently small to form the desired droplet size. Emulsion droplets for 

O/W emulsions can be between a ratio of 1-15 times larger than the pore diameter. If the 

surfactant adsorption kinetics is fast or the interfacial tension is low, a larger pore size may be 

suitable since the droplet to pore size ratio is likely to be lower. 

It is also important that hydrophilic charged membranes are used for O/W emulsion production 

and hydrophobic charged membranes for W/O emulsions to ensure the dispersed phase does 

not wet the membrane surface and potentially cause coalescence. 



  

194 
 

2. Check pore spacing is suitable between adjacent forming droplets 

Steric hindrance of droplets as they are forming can result in a much less controlled emulsion 

microstructure. It is recommended that the pore spacing is either 1.5 times the desired droplet 

diameter (to consider possible droplet distortion due to detachment forces) or 10 times the pore 

diameter; whichever is the larger value to reduce the probability of coalescence. For materials 

with random pore activation (e.g. glass and ceramic membranes), more care is required since 

pores are very unlikely to be evenly distributed so evaluate whether the distance between active 

pores will be great enough under the likely TMP range to be applied. 

3. Evaluate the transitional point from dripping to jetting droplet formation mechanism 

For well controlled droplet production, droplets must form within the dripping regime. Although 

the exact transitional point can vary depending on the Weber and Ohnesorge numbers of the 

continuous phase, calculation of the Capillary number for the dispersed phase using Eq. 2.10 can 

determine whether jetting is likely. An approximate value of critical Capillary number is 0.056 

(Sugiura et al. 2002). Therefore substituting the threshold value alongside the system interfacial 

tension and the dispersed phase viscosity and then rearranging yields the pore fluid velocity that 

would instigate jetting. Operating below this point is favourable in producing narrow droplet size 

distributions. 

4. Calculate the volumetric flow rate of dispersed phase required 

For a specified production rate (kg h-1) and dispersed phase volume fraction, the volumetric flow 

rate (m3 h-1) can be found. This may involve converting between mass and volume using the 

density of the respective phases. 
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5. Calculate the membrane surface area required 

With the dispersed phase volumetric flow rate specified and membrane properties and 

behaviour known, the membrane surface area needed to achieve the necessary flow rate can be 

calculated as a function of TMP. This is possible by equating Darcy’s law to the rate of mass 

transfer required and rearranging. The pore channel length (Lp) and membrane permeability (K) 

may require solving using Eq. 2.15 and Eq. 4.2 respectively. It is important to check that the pore 

fluid velocity does not exceed the value found in step 3. This can be estimated by using Eq. 2.19. 

If the membrane dimensions are too large, a higher TMP may be required as well as possible 

reconsideration of the membrane parameters i.e. thickness, pore spacing, pore diameter etc. 

6. Consider the aspect ratio of the membrane cylinder 

There are a range of options available for ensuring the membrane has the required surface area. 

Both the membrane length (h1) and diameter (d1) are possible variables that can be altered. It is 

recommended that short membranes of wide diameter are more suitable since the pressure 

drop of the dispersed phase inside the centre of the tube will be less and the membrane surface 

velocity to induce droplet detachment will be greater. However, it is vital to consider the likely 

dimensions of the emulsification vessel of which the membrane is to be situated in, as well as 

the power requirements of the motor needed to rotate the membrane-mounted shaft. 

7. Consider the likely range of rotational speeds to be applied 

The range of rotational speeds to be used to control the droplet size depends on the power of 

the motor and the scale of operation. Higher rotational speeds are more capable of producing 

smaller droplets and therefore reducing the droplet to pore size ratio. However, the maximum 

speed to be incorporated within the design will depend on mechanical constraints as well as 

capital costs, energy consumption etc. 
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8. Calculate the required dimensions of the emulsification vessel 

For the minimum rotational speed, it is important for Taylor vortices to form in order to produce 

the smallest droplets and a narrow size distribution. Thus, the Taylor number must exceed 41.3. 

This can be ensured by selecting a suitable emulsification vessel radius. In one respect, the gap 

size should be small to apply the highest shear at the membrane surface. On the other hand, it is 

vital that the radius is large enough for the vortices to form within the continuous phase flow. 

Substituting Ta = 41.3 into Eq. 2.22 and rearranging can find the minimum vessel radius (r2) 

required. The height of the vessel must be greater than the height of the membrane to ensure 

all pores are submerged within the continuous phase. In addition, there must be sufficient 

volume for the dispersed phase to be added without overfilling the vessel. 

9. Check industrial applicability of design parameters and scale-up considerations 

As a final step, it is necessary to check all calculations are mathematically correct, logical and 

realistic. The operating time will depend on the volume of dispersed phase to be added to the 

emulsification vessel and the TMP applied. The droplet size can be controlled by modifying the 

membrane surface velocity, TMP (at the expense of throughput) or the surfactant concentration 

(provided jetting of the dispersed phase does not occur). Scale-up can be undertaken by 

matching the membrane surface velocity provided all other operating parameters are similar. 

The throughput should scale proportionally with the membrane surface area. Further process 

optimisation is possible with the use of ionic surfactants to reduce coalescence likelihood or by 

incorporating high HLB non-ionic surfactants within the dispersed phase. In the latter case, care 

must be taken to ensure sufficient dispersed phase flux without jetting due to low IFT values. 

An example calculation following the above procedure is shown within Appendix A. 
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7.9 Conclusions 

A pilot-scale RME device has been investigated to produce O/W emulsions. Emulsion droplet 

sizes between13.7-160 µm were produced using a laser-drilled stainless steel membrane of pore 

diameter 26 µm. A few key processing and formulation parameters were studied to see their impact 

on the emulsion microstructure. Furthermore, a procedure to design a RME device based on 

experimental observations and theory has been outlined and suitable scalable parameters were 

identified. 

For pilot-scale production, it is recommended to use metallic membranes due to the high 

mechanical forces exerted on the membrane itself due to pressure and rotation. A benefit to using 

metal material is that the pore spacing can be controlled and therefore selected to minimise 

coalescence phenomena; an issue problematic for SPG membranes. As a consequence, it was 

observed that increasing TMP between 0.2 and 4 bar increased the droplet size only. This 

relationship was more complex as discussed within Chapter 4. However, careful operation is 

required to avoid droplet formation through jetting under very high TMPs (but also under low shear 

rates). For the dispersed phase flux, minimal variation in the active pore fraction as a function of 

TMP was seen due to the use of straight-through pore channels. Flux values between 4.7-123.2 L m-2 

h-1 were recorded.  

Modifying the rotational speed between 100-4000 RPM demonstrated a similar relationship 

(seen previously) of decreasing droplet size exponentially to a minimum value. Thus, observations 

made both earlier within this thesis and in other literature are relevant to pilot-scale operation since 

the trends at the small-scale are similar. For sufficiently high rotational speeds (>3500 RPM), 

droplets smaller than the pore diameter can be produced even without reducing the IFT to small 

values (i.e. positioning non-ionic high HLB surfactants in the dispersed phase). The IFT is less 

important when greater detachment forces are exerted on the droplet and hence subtle variations 

in the retention force have a minimal influence on the final droplet size achieved. Importantly, it was 
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discovered that simply matching the rotational speed of the membrane does not yield similar 

droplet sizes. Instead, the membrane surface velocity requires consideration with wider diameter 

membranes able to potentially exert much greater drag force on a forming droplet (even at a lower 

RPM). 

Pilot-scale operation of RME is not as advantageous as expected in terms of energy 

consumption as was seen at the small-scale. This is due to the much greater force required to rotate 

a heavier membrane at high speeds. Another limitation for the process relates to the properties of 

the membrane itself. For metallic membranes, current technology to produce the pores is unable to 

deliver very small pore diameters with high precision (although rapid progress is being made). 

Additionally, it is evident that thin-walled (but mechanically strong) membranes are necessary to 

achieve sufficiently high dispersed phase flux for emulsion production on an industrial scale. 

However, this is likely to be recognised in future with advancements in material science (e.g. nano-

reinforced metal composites) and therefore this limitation can be overcome.     
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The objectives of this thesis were to further understanding of the processing mechanisms 

involved during rotating membrane emulsification, such that they are well understood and therefore 

can be optimised. In addition, the aim was to investigate the capabilities of a pilot-scale rotating 

membrane emulsification device to help generate a procedure of how one might design and up-

scale such a piece of equipment. 

A wide range of emulsion droplet sizes were formulated via manipulation of the processing 

and formulation parameters. This approach enabled the development of a fundamental 

understanding of how such parameters can control both the emulsion microstructure and the rate of 

production. 

The main conclusions from the results chapters are summarised: 

1. Alteration of membrane emulsification processing parameters can induce multiple 

contributing effects that influence the final droplet size created. 

It is important to consider a number of processing effects that can occur during operation; imparted 

by the fluid flow and interfacial behaviour of the two phases. These include the possibilities of 

coalescence on the membrane surface if droplets form within close proximity of each other, remain 

at the surface for a prolonged time period (due to low shear for example) or are not displaced away 

from the membrane surface upon detachment (due to a high viscosity continuous phase). 

Spontaneous transformation-based droplet formation may occur if the O/W interfacial tension is 

high and non-circular pore membranes are used imperative of porous glass (e.g. SPG) and ceramic 

materials. Droplets distorted by externally acting forces detach earlier than expected to become 

spherical and hence achieve a lower thermodynamically energetic state. In this instance, the 

interfacial tension almost solely dictates the point of droplet detachment with minimal influence of 

processing parameters; as such this may be referred to as droplets reaching their ‘natural’ 

detachment size. Droplet formation can also occur through break up of liquid jets if the dispersed 
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phase fluid velocity is too high (typically controlled by the transmembrane pressure) or the O/W 

interfacial tension is low; both factors can be quantified by the dimensionless dispersed phase 

Capillary number. This approach generally leads to production of poly-dispersed emulsions of larger 

droplet sizes rather than droplets of a single size; thus processing in this way is less controllable and 

more chaotic. The occurrence of Taylor vortices is observed to be beneficial for rotating membrane 

emulsification processing for production of smaller droplet sizes. Operating under high enough 

rotational speeds or larger diameter emulsification vessels enables their formation, which 

subsequently aids droplet detachment and displace droplets away from the membrane surface. 

2. The behaviour of the material used to stabilise the droplet interface strongly determines the 

droplet size formed. 

The rapid adsorption of the material (surfactant/particle) at the droplet interface is necessary to 

minimise droplet coalescence and allow for earlier droplet detachment. The transport of material 

towards the interface is also critical and depends on its physicochemical properties. Generally, 

surfactants adsorb faster than particles due to their lower minimum energy of adsorption and their 

smaller size (which aids mobility towards the interface due to less hydrodynamic resistance). Hence, 

surfactant transport is determined by diffusion whereas convection is more relevant for particle 

systems. Stabilisation of a droplet interface combining both surfactants and particles is seen to 

synergistically benefit droplet formation since each provide a different role; the surfactant which 

adsorbs first lowers the interfacial tension holding the droplet at the membrane surface whilst the 

particle provides a greater steric barrier to minimise coalescence..  

3. Surfactant diffusion through a forming droplet interface can enhance process efficiency. 

The movement of non-ionic surfactants through a droplet interface (demonstrated with Tween 20 

and Brij 97) can lower the interfacial tension below the equilibrium value and thus a droplet is able 

to detach very early from the membrane surface. This approach requires the use of a surfactant that 
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is soluble in both phases, but preferential to the opposing phase that it is positioned in e.g. high HLB 

Tween within the oil phase. Hydrolysed lecithin (low HLB) demonstrated the opposite behaviour 

with smaller droplets when positioned within the aqueous phase, hence indicating this phenomenon 

to be implicit to the partition coefficient of the surfactant. Applying this approach allows for direct 

membrane emulsification to be competitive with a pre-mix configuration without suffering from 

fouling due to droplet break up within the pores (as in the latter case). This therefore is 

advantageous for emulsion production containing small droplets at greater rates than through 

applying the conventional approach. 

4. Theoretical models for rotating membrane emulsification are useful for process optimisation 

rather than accurate prediction. 

Models to estimate either droplet coalescence or droplet size prediction (based on a force balance 

model) were derived for rotating membrane emulsification. For droplet coalescence modelling, two 

cases representing the extremities of active pore distribution were considered; even distribution or 

random distribution. Application of the model to experimental data revealed coalescence was likely 

to be the cause of the large droplet sizes produced. For the force balance model, the predicted 

droplet size was always greater than the measured size despite not accounting for dispersed phase 

addition as the droplet detaches. The over-prediction in size is hypothesised to be due to an 

additional force yet to be included in any force balance model, but based on thermodynamically 

induced detachment (i.e. spontaneous transformation-based droplet formation mechanism). 

However, the model does predict the general trend and therefore can be applied as a process 

optimisation tool. 

5. Rotating membrane emulsification is a more energy efficient process than both a rotor-

stator high shear mixer and an ultrasonic probe under the condition of matching emulsion 

droplet size and production rate. 
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Comparison between the processes found rotating membrane emulsification has the potential to 

produce similar droplet sizes with a fraction of the energy input. By ensuring the interfacial tension 

decreases rapidly with surfactant diffusion through the droplet interface, rotating membrane 

emulsification can be operating at higher production rates without compromising its ability to create 

small droplets. This is therefore a significant process optimisation approach which considers both 

droplet size minimisation and dispersed phase flux maximisation in tandem. However, it is likely that 

producing more concentrated emulsions (greater than 10 vol. % dispersed phase) that the energy 

advantage will be lost since the energy consumption scales linearly with operating time. 

6. Rotating membrane emulsification can be successfully operated at a pilot-scale of 

production. 

The capabilities of a pilot scale device were tested to produce O/W emulsions using a laser drilled 

stainless steel membrane. This membrane material is more suited to larger scale operation due to 

the high mechanical forces exerted by either the transmembrane pressure or the rotational motion 

applied. For metallic membranes formed in this way, the pore spacing can be selected to be great 

enough such that coalescence between adjacent forming droplets is eliminated. The pilot-scale 

operation demonstrated similar trends to those observed at the small-scale indicating process 

phenomena to be relevant irrespective of the scale. The interfacial tension plays a less significant 

role in determining the droplet size formed since the forces inducing detachment (e.g. drag force) 

are much greater. Scaling up rotating membrane emulsification into a pilot-scale device was found 

to not be as advantageous in energy efficiency due to the force required to rotate a larger 

membrane. Comparison across two scales of operation highlighted the likely scalable parameters to 

be the membrane surface area (more pores form more droplets in a linear manner) and membrane 

surface velocity (a key variable altering the magnitude of the detachment forces). 

7. Rotating membrane emulsification can be designed by applying the relevant equations and 

considering the process mechanisms that can impact on emulsification performance. 
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A proposed design procedure was outlined with discussion of the important considerations at each 

step. This was based on both theoretical understanding of the process and experimental findings 

that are presented within the thesis. For example, it may be extremely useful to incorporate 

computational modelling (e.g. lattice Boltzmann simulations) in order to both validate and improve 

the procedure for scale-up and thus industrially relevant applications. 
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Chapter 9: 

Future Work 
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The research presented here has uncovered a number of areas related to rotating 

membrane emulsification that would be very interesting to explore. These are suggested below: 

9.1 Operation as a continuous process 

At present, rotating membrane emulsification is operated as a semi-continuous process; the 

dispersed phase is gradually added to a fixed amount of continuous phase. An alternative approach 

would be to flow continuous phase into the emulsification vessel as the dispersed phase is added, 

whilst allowing emulsion product to leave. This would be very interesting especially if the process is 

to be implemented within industry. Continuous processes are generally more capable of achieving 

higher production rates and are also much easier to automate the control. However, continuous 

operation would be challenging since the dispersed phase volume fraction of the exiting emulsion is 

determined by the ratio of the continuous and dispersed phase inlet flow rates and the residence 

time within the emulsification vessel. The droplet size would have to be controlled by the rotational 

velocity, surfactant type/concentration (etc.) rather than the transmembrane pressure. The 

continuous phase flow behaviour would also be more complex with streams of material entering and 

leaving the emulsification vessel; this could possibly be overcome with careful design of the entry 

and exit points. A possible adaption may also include the use of static mixers within the 

emulsification vessel to control the flow profile and hence shear better in the case of continuous 

production. Sufficient mixing would also be required to ensure the emulsion siphoned off is 

homogeneous in consistency. In this instance, qualitative checks with tools such as CFD modelling 

would be extremely useful. 

9.2 Effect of Temperature 

 Whilst a number of processing parameters were investigated, another parameter that could 

be considered would be the temperature of the dispersed and continuous phases. With the low 

dispersed phase flux being the primary limitation of membrane emulsification processing, perhaps 
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this could be enhanced by heating the dispersed phase to lower the viscosity (Joscelyne and 

Tragardh, 2000). This may be compensated with a much cooler continuous phase to ensure the 

emulsion is not destabilised by the thermal energy input. The temperature might also be used to 

alter the interfacial tension and viscosities of the system to control the droplet diameter produced. It 

may be possible to crystallise material e.g. fat via flash cooling of the droplets as they form but it is 

anticipated this would risk fouling of the membrane pores. 

9.3 Further study of Surfactant Diffusion through an Interface 

 A good continuation of the study of surfactant positioning would be to explore W/O 

emulsion production by adopting a similar approach. It was demonstrated that positioning high HLB 

non-ionic surfactants within the dispersed phase could produce much smaller oil droplet sizes. If 

surfactant diffusion to lower the interfacial tension below the equilibrium value is responsible, it is 

expected that a low HLB non-ionic surfactant positioned within a forming water droplet would show 

similar behaviour. In addition to this, it would be interesting to observe these effects for multiple 

surfactant or surfactant-particle systems. For example, a non-ionic surfactant within the dispersed 

phase and particles positioned within the continuous phase. It would also be useful to undertake 

studies of long-term emulsion stability (rather than just the initial size produced) in order to better 

understand the dynamic behaviour of such systems. 

9.4 Bi-modal Emulsion Production 

 In the majority of cases, mono-dispersed droplet size production is desired in order to 

ensure high stability (Walstra, 2003). However, bi-modal or multi-modal distributions with distinct 

narrow peaks may also be produced by altering the rotational velocity of the process mid-operation. 

Droplets forming either side of this modification to the operating conditions would detach at 

different sizes. This may be advantageous for achieving a particular emulsion viscosity or the delivery 

of an active ingredient with variation in the release rate for example.  
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Appendix A: Example Case for Design Procedure 

An O/W emulsion containing droplets of 10 µm (2 vol. % dispersed phase) is required to be produced 

at a rate of 50 kg h-1. The equilibrium IFT between the oil and water with a pre-determined 

surfactant type and concentration is 5 mN m-1. Suggest a suitable design configuration. 

ASSUMPTION: Stainless steel membrane, triangular array of pores. Straight through channels i.e. 

membrane tortuosity (τ) = 1. Active pore fraction (α) constant = 1. Membrane thickness (Lm) = 0.1 

mm. 

1. 1 µm pore diameter would be suitable assuming a droplet to pore size ratio of 10. 

2. With droplets of 10 µm diameter, a pore spacing of 15 µm should limit steric hindrance of 

adjacent forming droplets. 

Dynamic viscosity (µd) of SFO at 20°C = 0.066 Pa s. The dispersed phase is Newtonian. 

3.     
    

 
   =>     

    

  
 

            

     
  => vd = 4.2 × 10-3 m s-1 

Therefore the dispersed phase fluid velocity in the pore must not exceed this value. 

Densities of dispersed (ρd) and continuous (ρc) phases at 20°C are 920 kg m-3 and 1000 kg m-3 

respectively. 

4.                                                          

           => ρemulsion = 998.4 kg m-3 

          
  

         

         

 
 

   

     
  =>          

 = 0.1 m3 h-1 

                  
            => Qd = 2 × 10-3 m3 h-1 

5.    
     

    
 

   

    
   =>        
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                  =>   

  = 1.84 kg h-1 

                    => Lp = 0.1 × 10-3 m 

On the basis of 1m × 1m sheet of membrane material with triangular array of 1 µm diameter 

pores spaced 15 µm apart: 

      
   

 
            

  

 
   => AΔ = 9.74 × 10-11 m2 

   
      

  
 

 

              => xΔ = 1.03 × 1010≈ np 

         
                               => Avoid = 8.06 × 10-3 m2 

    
     

      
 

         

 
  =>   = 0.00806 

     
                

 
             => K = 7.24 × 10-16 m2 

       
       

   
 

                     

                
  =>    

        

    
  

 Fig. A1: Membrane surface area required based on the selected Transmembrane Pressure. 
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Table A1: Possible solutions for membrane surface area required based on selected Transmembrane Pressure.  

Transmembrane Pressure (Bar) Membrane Surface Area (m2) Pore Fluid Velocity (m s-1) 

1 182.0 3.03 × 10-7 

2 91.0 7.57 × 10-7 

5 36.4 1.89 × 10-6 

10 18.2 3.79 × 10-6 

 

Pore fluid velocity across range of TMPs does not exceed value that would cause jetting (4.2 

× 10-3 m s-1).   

ASSUMPTION: Transmembrane Pressure of 8 bar deemed suitable in conjunction with a membrane 

surface area of 22.8 m2. A cylindrical membrane is used. 

6.           =>      
  

 
 

    

 
   =>  d1h1 = 7.257 

 

Fig. A2: Possible dimensions for a cylindrical membrane for the chosen surface area of 22.8 m
2
. 

 

A suitable arrangement may be a 1.5 m diameter (r1 = 0.75 m) membrane of 4.8 m length 

(h1) to provide the surface area of 22.8 m2.  
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ASSUMPTION: The dimensions are suitable but the motor is only sufficiently powerful to operate at 

rotational speeds between 50-400 RPM. 

7.    
     

  
 

        

  
  => v1 = 3.9 to 31.4 m s-1 

Dynamic viscosity (µc) of the continuous phase at 20°C = 0.0013 Pa s. The solution is Newtonian. 

8.               
  

  
 

        

     
 = 41.3  

=>  
  

  
                

    

      
  

          

       
       => Solve iteratively for r2 

=> r2 minimum > 0.752 m  

ASSUMPTION: An emulsification vessel diameter of 2 m is selected and the vessel is cylindrical; 

hence a concentric cylinder configuration. Initially, the vessel height (h2) equals the membrane 

height (h1). 

       
       

                               => Vc = 6.6 m3 

Therefore the required volume is the nominal emulsification vessel volume (Vc) plus the volume of 

dispersed phase needed to be added to form the emulsion, multiplied by a safety factor (1.2) to 

prevent overfilling. 

                                      =>  V2 = 8.08 m3 

ASSUMPTION: The membrane height (h1) will now equal the required emulsification vessel height 

(h2). 

       
       

           
     

   

    
  

    
     

  
 

    

                 
  => h2 = 5.88 m 
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To summarise: 

Processing Parameters     

      

Transmembrane Pressure 8 bar g 

Rotational Speed 50-400 RPM 

 

Membrane Parameters     

      

Material SS   

Surface Area of Porous section 22.8 m2 

Pore Diameter 1 µm 

Pore Spacing 15 µm 

Membrane Thickness 0.1 mm 

Membrane Diameter 1.5 m 

Membrane Height 5.88 m 

Total Membrane Surface Area 27.7 m2 

 

Vessel Parameters     

      

Operating Volume of Vessel 8.08 m3 

Vessel Diameter 2 m 

Vessel Height 5.88 m 
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