Bieroza, Magdalena Zofia (2010). Characterising water treatment works performance using fluorescence spectroscopy. University of Birmingham. Ph.D.
|
Bieroza10PhD.pdf
Download (5MB) |
Abstract
Organic matter (OM) in drinking water treatment is a common impediment responsible for increased coagulant and disinfectant dosages, formation of carcinogenic disinfection-by products (DBPs), and microbial re-growth in distribution system. The inherent heterogeneity of OM implies the utilization of advanced analytical techniques for its characterisation and assessment of removal efficiency. Here, the application of simple fluorescence excitation-emission (EEM) spectroscopy to OM characterisation in drinking water treatment was presented. Monthly raw and clarified water samples were obtained for 16 UK surface water treatment works. Fluorescence EEM spectroscopy was used for the assessment of total organic carbon (TOC) removal and OM characterisation. Fluorescence peak C intensity was found to be a sensitive and reliable measure of OM content and hence an indicator of DBPs presence. Fluorescence peak C emission wavelength and peak T intensity (reflecting the degree of hydrophobicity and the microbial fraction respectively) were found to characterise the OM; the impact of both on TOC removal efficiency was apparent. OM fluorescence properties were shown to predict TOC removal, and identify spatial and temporal variations. The simplicity, sensitivity, speed of analysis and low cost, combined with potential for incorporation into on-line monitoring systems, mean that fluorescence spectroscopy offers distinct advantages over other THM precursors characterisation techniques.
Type of Work: | Thesis (Doctorates > Ph.D.) |
---|---|
Award Type: | Doctorates > Ph.D. |
Licence: | |
College/Faculty: | Colleges (2008 onwards) > College of Engineering & Physical Sciences |
School or Department: | School of Engineering, Department of Civil Engineering |
Funders: | None/not applicable |
Subjects: | T Technology > TA Engineering (General). Civil engineering (General) |
URI: | http://etheses.bham.ac.uk/id/eprint/651 |
Actions
Request a Correction | |
View Item |
Downloads
Downloads per month over past year