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Synopsis 

The primary focus of this thesis is to determine the best methods for controlling the 

interpolation of NURBS curves and surfaces.  The various factors that affect the quality 

of the interpolant are described, and existing methods for controlling them are reviewed.  

Improved methods are presented for calculating the parameter values, derivative 

magnitudes, data point spacing and twist vectors, with the aim of producing high quality 

interpolants with minimal data requirements. 

A new technique for obtaining the parameter values and derivative magnitudes is 

evaluated, which constructs a C
1
 cubic spline with orthogonal first and second 

derivatives at specified parametric locations.  When this data is used to create a C
2
 

spline, the resulting interpolant is superior to those constructed using existing 

parameterisation and derivative magnitude estimation methods. 

Consideration is given to the spacing of data points, which has a significant impact on 

the quality of the interpolant.  Existing methods are shown to produce poor results with 

curves that are not circles.  Three new methods are proposed that significantly reduce the 

positional error between the interpolant and original geometry.    

For constrained surface interpolation, twist vectors must be estimated.  A method is 

proposed that builds on the Adini method, and is shown to have improved error 

characteristics.  In numerical tests, the new method consistently outperforms Adini. 

Interpolated surfaces are often required to join together smoothly along their boundaries.  

The constraints for joining surfaces with parametric and geometric continuity are 

discussed, and the problem of joining N patches to form an N-sided region is considered.  

It is shown that regions with odd N can be joined with G
1
 continuity, but those with even 

N or requiring G
2
 continuity can only be obtained for specific geometries.   
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Nomenclature 

Symbol Chapter Description 

kα  7 Constant for G
2
 construction 

kβ  7 Constant for G
2
 construction 

kχ  3 Angle between tangents kt  and k 1+t  

δ  2 Small angle tolerance 

∆  6 Vector movement of ,

,

0 0

1 1P  

k∆  3 Parametric interval of local segment, ( )k k 1 ks s∆ += −  

ε  7 Maximum normal curvature error for arbitrary 

topologies 

kφ  3 Angle between tangent k 1+t  and chord ks   

kϕ  3 Scalar to ensure orthogonality with circle orthogonal 

parameterisation 

kγ  7 Constant for G
2
 construction 

kη  7 Constant for G
2
 construction 

0κ , 1κ  4 Start and end curvature values for GCS curve, ( )ξG  

minκ , maxκ  4 Minimum and maximum normal curvature values 

( )uκ  4 Normal curvature of parametric curve 

( )κ ξ  4 Normal curvature of GCS curve 

λ  6 Constant used to specify the relationship between 

twists 

µ  4 Local geometric parameter 

kθ  3 Angle between tangent kt  and chord ks    

ρ  4 Small curvature tolerance 

kσ  7 Constant for G
2
 construction 

ς  4 Parametric tolerance for geometric parameterisation 
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kτ  1-3 Derivative magnitude for NURBS curve, 

( )k u k
sτ = C  

k
υ  7 Constant for G

2
 construction 

ω  5 Total winding angle of curve  

*

k
ω  5 Winding angle parameter from start of curve to *

k
Q , 

where ∗  is a placeholder for the method used to space 

the data points 

ξ  4-5 Arc length parameter of curve 

*

k
ξ  5 Arc length parameter from start of curve to *

k
Q , where 

∗  is a placeholder for the method used to space the 

data points 

k
ψ  3 Scalar to ensure orthogonality with circle orthogonal 

parameterisation 

k
a  2-3 Start derivative magnitude for the local segment 

k
b  2-3 End derivative magnitude for the local segment 

( )k
uB  6 The kth cubic Ball curve segment, with parameter u 

( ),

[ ] ,k l
u v∗B  6 The ( ),k l th cubic Ball sub-patch, taken from the 

surface ( ),u vS , where ∗  indicates the twist 

estimation method used to generate the surface 

k
c  2-3 Magnitude of chord length, k k 1 kc += −Q Q  

0
C , 1

C , 2
C  Multiple Levels of parametric continuity 

( )uC  Multiple NURBS curve, with parameter u 

( )u uC , ( )uu uC  Multiple First and second derivative of ( )uC , respectively 

( ), ,k l
u vC  6 Bilinearly-blended Coons patch, having the same 

boundaries as ( ),

[ ] ,k l

T u vB . 

[ ]C  2 Matrix holding a single x, y or z component for each 

data point used to interpolate a curve; also contains 

derivative info if constrained 

k
d  5 Projected distance between chord 

k
c  and tangent 

k 1+t  

at 
k

Q  
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i
d  3 Chord, 

i k k 1−= −d Q Q  

k
e  5 Projected distance between chord 

k
c  and tangent 

k
t  at 

k 1+Q  

i
e  3 Chord, 

i k 1 k 1+ −= −d Q Q  

,

[ ]

k l

∗E  6 The vector difference between ( ),

[ ] ½,½k l

∗S  and 

( ),

[ ] ½,½k l

TS  where ∗  indicates the twist estimation 

method used to generate the surface 

s
f  6 Constant that relates the change between adjacent 

internal control points for a cubic Ball segment 

0
G , 1

G , 2
G  7 Levels of geometric continuity 

( )ξG  4 GCS curve, with arc length parameter ξ  

k
l  2 Length of circular arc between 

k
Q  and 

k 1+Q  

m  Multiple Number of control points, minus one, in u direction for 

NURBS curve (or surface) 

[ ]M  2 Array of ( ),i pN u  basis functions for all parameter 

values when interpolating a NURBS curve (or surface) 

n  Multiple Number of control points, minus one, in v direction for 

NURBS surface 

N  5 Number of points used when interpolating a curve; 

m 1+  when unconstrained, m 1−  when constrained 

 7 Number of sides to an arbitrary topology region 

( ),i pN u  1-2 ith basis function of degree p 

( ),i pN u′ , ( ),i pN u′′  1-2 First and second derivatives of ( ),i pN u  

[ ]N  2 Array of ( ),j qN v  basis functions for all parameter 

values when interpolating a NURBS surface 

p  Multiple Degree of NURBS curve (or surface) in u 

i
P  Multiple ith Control point for NURBS curve 

,i j
P  Multiple ( ),i j th Control point for NURBS surface 

, [ ]i j C
P  6 ( ),i j th Control point for a bilinearly-blended Coons 

surface. 
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k

i
P  6 ith control point for kth cubic Ball segment ( )k

uB  

,

k

i jP  7 ( ),i j th control point of the kth Bezier patch to join in 

a closed loop creating an N-sided region. 

,

,

k l

i jP  6 ( ),i j th control point for cubic Ball patch ( ),

[ ] ,k l
u v∗B  

[ ]P  2 Matrix holding a single x, y or z component of each 

control point following NURBS curve (or surface) 

interpolation 

q  Multiple Degree of NURBS surface in v 

k
Q  Multiple Data point, ( )k ks=Q C , used to interpolate NURBS 

curve 

*

k
Q  5 Data point, where ∗  is a placeholder denoting the 

method used to space the points 

,k l
Q  Multiple Data point, ( ), ,k l k ls t=Q S , used to interpolate a 

NURBS surface 

r  5 Shape factor of GCS, r 1> −  

k
r  2 Radius used for kth span – circular arc 

parameterisation 

( ),c
u vR , ( ),d

u vR  2 Ruled surface in u and v respectively 

( ),c

u u vR , ( ),d

v u vR  2 Differentiated ruled surface in u and v respectively 

( ),cd
u vR  2 Bilinear surface 

k
s  Multiple kth parameter value in u corresponding to 

k
Q or ,k l

Q  

k
s  3 Unit direction of chord 

S  4 Total arc length of GCS curve 

[ ]S  2 Matrix holding a single x, y or z component for each 

data point used to interpolate a surface; also contains 

derivative and twist data if constrained 

( ),u vS  Multiple NURBS surface, with parameters u and v 

( ),k
u vS  7 kth surface to join in a loop to create an N-sided 

region. 
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( ),u u vS , ( ),v u vS  Multiple Derivatives of ( ),u vS  in u and v respectively 

( ),uv u vS  Multiple Mixed partial derivative, or twist vector, of ( ),u vS   

( ),

[ ] ,k l

uv u v∗S  6 Estimated twist vector for NURBS surface, where ∗  

indicates the method used to generate the estimate.  

Superscript denotes the ( ),k l th sub-patch if used 

t  3 Local parameter for curve segment, 

( ) ( ) ( )k k 1 kt 1 u 1 u s s∆ += − = − −  

k
t  Multiple Tangent direction at 

k
Q , ( )k u k ks c=t C  

l
t  Multiple lth parameter value in v corresponding to ,k l

Q  

T  4 Number of values used for numerical representation of 

geometric parameterisation 

u  Multiple Parameter value for NURBS curve (or surface) 

i
u  Multiple ith knot in U  

U  Multiple Knot vector in the u direction of a NURBS curve (or 

surface) 

v  Multiple Parameter value for NURBS or surface 

i
v  Multiple ith knot in V  

V  Multiple Knot vector in the v direction of a NURBS surface 

i
w , ,i j

w  1 Rational weights for a NURBS curve or surface 

respectively 

W  3-4 Index indicating where the orthogonality conditions 

are satisfied for each C
1
 curve segment 



 

  viii

Contents 

1 Introduction 1 

1.1 Introduction to NURBS interpolation.............................................................1 

1.2 Overview of NURBS......................................................................................3 

1.2.1 B-spline basis functions....................................................................4 

1.2.2 B-spline curves .................................................................................6 

1.2.3 B-spline surfaces...............................................................................7 

1.3 Factors affecting interpolation ......................................................................10 

1.3.1 Type of interpolation ......................................................................10 

1.3.2 Parameterisation .............................................................................11 

1.3.3 Knot vector generation ...................................................................12 

1.3.4 Derivative constraints .....................................................................14 

1.3.5 Derivative magnitude estimation....................................................15 

1.3.6 Degree.............................................................................................16 

1.3.7 Rational weightings ........................................................................17 

1.3.8 Number of data points ....................................................................19 

1.3.9 Spacing of data points.....................................................................20 

1.3.10 Reconciliation of parameter values ................................................21 

1.3.11 Twist vector estimation ..................................................................22 

1.4 Motivation of research ..................................................................................23 

1.5 Outline of thesis ............................................................................................25 

2 The interpolation process 26 

2.1 Review of the interpolation process..............................................................27 

2.1.1 Unconstrained curve interpolation..................................................27 

2.1.2 Constrained curve interpolation......................................................28 

2.1.3 Unconstrained surface interpolation...............................................29 

2.1.4 Constrained surface interpolation...................................................31 

2.1.5 Matrix inversion .............................................................................33 



 

  ix

2.2 Parameterisation methods .............................................................................35 

2.2.1 Equally spaced parameterisation ....................................................35 

2.2.2 Chord length parameterisation........................................................36 

2.2.3 Centripetal parameterisation...........................................................36 

2.2.4 Average parameterisations .............................................................37 

2.2.5 Circular arc parameterisation..........................................................37 

2.2.6 Farin’s parameterisations................................................................39 

2.3 Derivative magnitude estimation methods ...................................................42 

2.3.1 Total chord length...........................................................................42 

2.3.2 Total arc length...............................................................................43 

2.3.3 Farin’s derivative magnitudes ........................................................43 

2.4 Knot vector generation methods ...................................................................44 

2.4.1 Equally spaced knots ......................................................................45 

2.4.2 Averaged knot vector......................................................................45 

2.4.3 Natural knots...................................................................................46 

2.5 Parameter reconciliation methods.................................................................46 

2.6 Twist vector estimation methods ..................................................................47 

2.6.1 Zero twists ......................................................................................48 

2.6.2 Adini twists.....................................................................................48 

2.6.3 Bessel twists ...................................................................................49 

2.6.4 Selesnick twists...............................................................................49 

2.6.5 Energy method................................................................................49 

2.6.6 Brunet twists ...................................................................................50 

2.6.7 Comparison of twist vector estimation methods ............................50 

2.7 Summary.......................................................................................................50 

3 Orthogonal curve construction 52 

3.1 Orthogonal methods......................................................................................53 

3.1.1 Orthogonal construction, W = 0 .....................................................56 

3.1.2 Circle orthogonal parameterisation ................................................57 

3.1.3 Orthogonal construction, W = 1 .....................................................58 



 

  x

3.1.4 Orthogonal construction, W = 2 .....................................................59 

3.1.5 Derivative magnitude estimation....................................................60 

3.2 Analytical evaluation of algorithms..............................................................61 

3.2.1 Stability of algorithms ....................................................................62 

3.2.2 Degenerate performance.................................................................65 

3.2.3 Sensitivity to change.......................................................................67 

3.3 Summary of algorithms ................................................................................74 

4 Numerical testing of parameterisation algorithms 76 

4.1 Test methodology .........................................................................................77 

4.1.1 Algorithms ......................................................................................77 

4.1.2 Data configurations.........................................................................78 

4.1.3 Performance assessment methods ..................................................79 

4.2 Case study 1 - circular arc, points spaced evenly .........................................84 

4.2.1 Positional error profiles ..................................................................86 

4.2.2 Analysis of results ..........................................................................88 

4.3 Case study 2 - circular arc, points spaced exponentially ..............................89 

4.3.1 Positional error profiles ..................................................................91 

4.3.2 Analysis of results ..........................................................................92 

4.4 Case study 3 - GCS, non inflecting...............................................................93 

4.4.1 Positional error profiles ..................................................................96 

4.4.2 Analysis of results ..........................................................................97 

4.5 Case study 4 - GCS, inflecting......................................................................99 

4.5.1 Positional error profiles ................................................................101 

4.5.2 Analysis of results ........................................................................102 

4.6 Summary.....................................................................................................103 

 

 



 

  xi

5 Spacing of data points 106 

5.1 Background.................................................................................................107 

5.2 Existing methods for point spacing with freeform curves..........................109 

5.3 New methods for point spacing ..................................................................111 

5.3.1 Weighted average of distance and angle ......................................111 

5.3.2 Maximum inscribed area ..............................................................112 

5.3.3 Constant projected distance ..........................................................113 

5.4 Numerical testing of spacing methods........................................................117 

5.4.1 Non-inflecting GCS......................................................................117 

5.4.2 Inflecting GCS..............................................................................119 

5.4.3 Damped oscillatory function (data reduction) ..............................121 

5.4.4 Selection of spacing methods .......................................................124 

5.5 Number of data points.................................................................................125 

5.6 Summary.....................................................................................................128 

6 Twist vector estimation 130 

6.1 Improved twist vector estimation method ..................................................131 

6.1.1 Adini .............................................................................................131 

6.1.2 Hypothesis ....................................................................................132 

6.1.3 Method implementation................................................................133 

6.2 Analytical validation of the hypothesis ......................................................134 

6.2.1 True mid-point ..............................................................................134 

6.2.2 Adini mid-point ............................................................................134 

6.2.3 Coons mid-point ...........................................................................136 

6.2.4 Relationship between mid-points .................................................137 

6.3 Error analysis for cubic data .......................................................................140 

6.3.1 True mid-point ..............................................................................140 

6.3.2 Coons mid-point ...........................................................................140 

6.3.3 Adini mid-point ............................................................................141 

6.3.4 Improved mid-point ......................................................................142 



 

  xii

6.3.5 Error terms....................................................................................143 

6.4 Numerical testing and performance............................................................146 

6.5 Conclusion ..................................................................................................151 

7 Arbitrary topologies 152 

7.1 Arbitrary topologies in CAGD ...................................................................153 

7.2 Joining Bézier patches along a common boundary ....................................154 

7.2.1 Parametric continuity....................................................................154 

7.2.2 Geometric continuity ....................................................................155 

7.3 Joining patches within an arbitrary topology region ..................................160 

7.3.1 Configuration of patches ..............................................................160 

7.3.2 Patch orientation ...........................................................................162 

7.3.3 Initial constraints ..........................................................................163 

7.4 Adapting Kahmann’s method for arbitrary topologies ...............................164 

7.5 Modifying Kahmann’s conditions to achieve G1 continuity......................166 

7.6 Modifying Kahmann’s conditions to achieve G2 continuity......................169 

7.7 Summary.....................................................................................................174 

8 Conclusions 175 

Appendix A Relationship between internal Ball vertices 178 

Appendix B Establishing the limit of fs 182 

Appendix C Numerical results from twist vector tests 187 

Appendix D Geometric relationships for N = 3 189 

References  192 

 



 1 

Chapter 1  

Introduction 

1.1 Introduction to NURBS interpolation  

Interpolation, in the context of Computer Aided Geometric Design (CAGD), is the 

process of constructing a freeform parametrically defined curve, or surface, that passes 

through a set of data points exactly.  Additional constraints are often imposed, which 

leads to constrained interpolation, e.g. for a curve, derivative vectors can be prescribed 

at specified points, usually to control the tangent direction at the start and end.  Figure 

1.1 illustrates a curve, ( )uC , that interpolates five data points, ( )ksC , 0 k 4≤ ≤ , and 

two tangent directions, 0t  and 4t .    

Figure 1.1 – A curve interpolated with five points and two tangent directions 

( )0sC

( )1sC

( )2sC

( )3sC

( )4sC

0t

4t
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Interpolation is distinguished from approximation, which is another common process for 

fitting curves or surfaces to geometric data; the resulting entity does not necessarily 

interpolate the data, but strives to produce a ‘best fit’, e.g. least-squares approximation.  

Figure 1.2 illustrates a curve approximating eleven data points, 
k

Q , 0 k 10≤ ≤ , with 

each point having a corresponding error Ek.  Approximation is often used when the data 

points contain ‘noise’, e.g. from sampling points using a contact probe, whereas data 

used for interpolation is assumed to be exact. 

Figure 1.2 – A curve approximating eleven data points 

A parametrically defined curve or surface resulting from an interpolation process often 

has multiple spans or sub-patches respectively.  Such entities can be conveniently 

represented using a single Non-Uniform Rational B-Spline (NURBS) curve or surface.   

There are a significant number of factors that affect the shape of the resulting NURBS 

entity.  This thesis is primarily concerned with assessing the effect these factors have, 

reviewing published methods for controlling them, and developing new ways to improve 

this control.  Section 1.2 provides an overview of NURBS entities, before Section 1.3 

outlines these factors in more detail.  Section 1.4 motivates the need for improved 

control over the interpolation process, and Section 1.5 provides an outline of this thesis. 

0Q
10Q

Ek 

k
Q  
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1.2 Overview of NURBS 

NURBS curves and surfaces are widely used in many Computer Aided Design (CAD) 

applications for representing the form of cars, aircraft, ships, shoes and numerous other 

items with sculptured features [Rogers, 2001].  They are parametrically defined 

polynomial entities, thus well suited for software implementation, whilst their rational 

nature provides additional degrees of freedom compared to their non-rational 

counterparts.  This enables them to exactly reproduce conic surfaces [Rogers, 2001]; 

however, the additional versatility incurs the penalty of increased complexity and, 

frequently, a reduced understanding for the end user. 

The development of NURBS entities can be traced back to Schoenberg [1946], who first 

introduced the B-Spline basis for statistical data smoothing.  Cox [1972] and de Boor 

[1972] independently discovered a recursive definition, allowing the basis functions to 

be evaluated more efficiently, and provided greater numerical stability.  Gordon and 

Riesenfeld [1974] introduced the B-spline basis to the domain of CAGD in the context 

of parametrically defined curves, and Versprille [1975] first discussed the idea of 

rational B-splines. 

NURBS have remained a very popular representation for curves and surfaces in CAD 

software.  Many factors may have contributed to their success including their versatility, 

ability to represent the Bézier form, and adoption into the IGES specification, thereby 

allowing CAD models to be transferred between different systems easily.  Other spline 

forms have been published subsequently, but none have surpassed NURBS in terms of 

their universal support, despite any advantages they may offer.  Barsky [1981] 

introduced the concept of the Beta-spline, which contains the B-spline as a subset.  In 

general, adjacent spans within a Beta-spline do not meet with parametric continuity, 

rather with geometric continuity, and allow shape to be manipulated using bias and 

tension parameters [Barsky and Beatty, 1983].  Other spline forms build on the concept 
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of maintaining geometric continuity, using the additional degrees of freedom as tension 

parameters; these include the Nu-spline [Nielson, G., 1984], the Tau-spline [Hagen, 

1985], and the LT-spline [Cohen, 1987].  However, interpolation of these splines often 

result in a non-linear system of equations, and the majority of CAD systems do not 

support them. 

1.2.1 B-spline basis functions 

The pth degree B-spline basis functions, ( )i ,pN u , 0 i m≤ ≤ , can be obtained recursively 

[Cox, 1972, and de Boor, 1972] in terms of a knot vector U, which takes the form: 

 { }0 m p 1
u , ,u + +=U …  (1.1) 

where the knots, iu , are a sequence of non-decreasing numbers, i.e. i i 1u u +≤ , 

0 i m p≤ ≤ + .  It is noted that this condition allows multiple (i.e. repeated) knots, which 

have special significance – see Section 1.3.3.  The ith basis function, ( )i ,pN u , is 

given by: 

( )


 <≤

= +

otherwise

 if

0

uuu1
uN

1ii

0,i   

 

( ) ( ) ( )uN
uu

uu
uN

uu

uu
uN 1p,1i

1i1pi

1pi

1p,i

ipi

i
p,i −+

+++

++

−

+ −

−
+

−

−
=  0 i m≤ ≤  (1.2) 

noting that the quotient 
0

0
 is defined as zero. 

The ith basis function can be differentiated with respect to the parameter u.  The first 

derivative, ( )i ,pN u′ , is found by differentiating (1.2) using the product rule, 

( )fg f g fg′ ′ ′= + : 
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( )

( )
( ) ( ) ( ) ( ) ( ) ( )

i ,0

i p 1 i 1,p 1 i 1,p 1i ,p 1 i i ,p 1

i ,p

i p i i p 1 i 1

N u 0

u u N u N uN u u u N u
N u

u u u u

+ + + − + −− −

+ + + +

′ =

′− −′+ −
′ = +

− −

 

 0 i m≤ ≤  (1.3) 

The second derivative, ( )i ,pN u′′ , is found by differentiating (1.3) using the product rule: 

( ) ( )

( )
( ) ( ) ( ) ( ) ( ) ( )

i ,0 i ,1

i p 1 i 1,p 1 i 1,p 1i ,p 1 i i ,p 1

i ,p

i p i i p 1 i 1

N u N u 0

u u N u 2N u2N u u u N u
N u

u u u u

+ + + − + −− −

+ + + +

′′ ′′= =

′′ ′− −′ ′′+ −
′′ = +

− −

 

 0 i m≤ ≤  (1.4) 

Higher derivatives can be found analogously using the product rule.  Piegl and Tiller 

[1997] prove, by induction, that (1.3) is equivalent to: 

( )i ,0N u 0′ =  

( ) ( ) ( )i ,p i ,p 1 i 1,p 1

i p i i p 1 i 1

p p
N u N u N u

u u u u
− + −

+ + + +

′ = −
− −

 0 i m≤ ≤  (1.5) 

Letting 
( ) ( )k

i ,pN u  denote the kth derivative of ( )i ,pN u , Piegl and Tiller [1997] give the 

general formula: 

( ) ( )
( ) ( ) ( ) ( )k 1 k 1

k i ,p 1 i 1,p 1

i ,p

i p i i p 1 i 1

N u N u
N u p

u u u u

− −

− + −

+ + + +

 
= − 

 − − 
 0 i m≤ ≤  (1.6) 
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1.2.2 B-spline curves 

The pth degree Non-Uniform B-Spline (NUBS), i.e. non rational, curve, ( )uC , can be 

defined in terms of (1.2), and has m 1+  control points, iP : 

C u( )= Ni ,p u( )Pi

i =0

m

∑  ,  p m 1u u u +≤ ≤  (1.7) 

The curve consists of ( )m 1 p+ −  spans, which are C
p-1

 continuous [Piegl and Tiller, 

1997] assuming there are no repeated interior knots.  Figure 1.3 is an example of a cubic 

B-spline curve with three spans; it has an open clamped knot vector (i.e. p+1 repeated 

knots at either end), which causes the curve to start and end at 0P  and 
m

P  respectively. 

Figure 1.3 – B-spline curve, with 3 spans, and control polygon 

The curve can be differentiated with respect to the parameter u.  The first and second 

derivatives, ( )u uC , and ( )uu uC , are given by: 

( ) ( )
m

u i ,p i

i 0

u N u
=

′=∑C P  ,  p m 1u u u +≤ ≤  (1.8) 

( ) ( )
m

uu i ,p i

i 0

u N u
=

′′=∑C P  ,  p m 1u u u +≤ ≤  (1.9) 

0P  

1P  

2P  

3P  

4P  

5P  

p 3

m 1 6

spans m 1 p 3

=

+ =

= + − =
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The kth derivative of the curve, ( ) ( )k
uC , is given analogously: 

( ) ( ) ( ) ( )
m

k

i ,p ik

i 0

u N u
=

=∑C P  ,  p m 1u u u +≤ ≤  (1.10) 

The pth degree NURBS curve has m 1+  weights, iw 0> , 0 i m≤ ≤ , that can be used to 

bias the curve towards (or away from) their corresponding control points.  The curve is 

defined as: 

( )
( )

( )

,

,

m

i p i i

i 0

m

i p i

i 0

N u w

u

N u w

=

=

=
∑

∑

P

C  ,  p m 1u u u +≤ ≤  (1.11) 

Derivatives of NURBS curves are not used in this thesis; the interested reader is referred 

to [Rogers, 2001] for definitions. 

1.2.3 B-spline surfaces  

A NUBS surface has a bi-directional control net, consisting of control points i , jP , 

0 i m≤ ≤ , 0 j n≤ ≤ .  The surface has an additional knot vector V in the form of (1.1): 

{ }0 n q 1
v , ,v + +=V …  (1.12) 

where the degree of the surface is p in the u-direction and q in the v-direction.  The 

surface requires two basis functions in the form of (1.2), and is given by:  

S u,v( ) = N i, p u( )
j=0

n

∑
i=0

m

∑ N j,q v( )Pi , j , p m 1u u u +≤ ≤ , q n 1v v v +≤ ≤  (1.13) 
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The surface consists of ( ) ( )m 1 p n 1 q+ − × + −  sub-patches, which are C
p-1

 and C
q-1

 

continuous in the u- and v-directions respectively, assuming there are no repeated 

interior knots.  An example of a cubic B-spline surface is given in Figure 1.4; both knot 

vectors U and V are open clamped.  

Figure 1.4 – B-spline surface with 2x2 sub-patches, and control polygon 

The surface can be differentiated with respect to both u and v.  The first derivatives, 

( )u u,vS , and ( )v u,vS , are given by: 

( ) ( ) ( )
m n

u i ,p j ,q i , j

i 0 j 0

u,v N u N v
= =

′=∑∑S P , p m 1u u u +≤ ≤ , q n 1v v v +≤ ≤  (1.14) 

( ) ( ) ( )
m n

v i ,p j ,q i , j

i 0 j 0

u,v N u N v
= =

′=∑∑S P , p m 1u u u +≤ ≤ , q n 1v v v +≤ ≤  (1.15) 

The mixed partial derivatives, ( )uv u,vS , are given by: 

( ) ( ) ( )
m n

uv i ,p j ,q i , j

i 0 j 0

u,v N u N v
= =

′ ′=∑∑S P , p m 1u u u +≤ ≤ , q n 1v v v +≤ ≤  (1.16) 

0,0P  

1,0P
0,1P

4 ,4P

0 ,4P

4 ,0P

p 3

m 1 n 1 5

sub patches 2 2

=

+ = + =

= ×
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The second derivatives, ( )uu u,vS , and ( )vv u,vS , are given by: 

( ) ( ) ( )
m n

uu i ,p j ,q i , j

i 0 j 0

u,v N u N v
= =

′′=∑∑S P , p m 1u u u +≤ ≤ , q n 1v v v +≤ ≤  (1.17) 

( ) ( ) ( )
m n

vv i ,p j ,q i , j

i 0 j 0

u,v N u N v
= =

′′=∑∑S P , p m 1u u u +≤ ≤ , q n 1v v v +≤ ≤  (1.18) 

In general, the ( )k ,l th derivative, ( )( ) ( )k l
u,vS , is given by: 

( )( ) ( ) ( ) ( ) ( ) ( )
m n

k l

i ,p j ,q i , jk l

i 0 j 0

u,v N u N v
= =

=∑∑S P , p m 1u u u +≤ ≤ , q n 1v v v +≤ ≤  (1.19) 

A NURBS surface requires an additional ( ) ( )m 1 n 1+ × +  weights, ,i jw 0> , 0 i m≤ ≤ , 

0 j n≤ ≤ , and is given by: 

( )
( ) ( )

( ) ( )

, , ,

, , ,

,

m n

i p j q i j

i 0 j 0

m n

i p j q i j

i 0 j 0

N u N v

u v

N u N v w

= =

= =

=
∑∑

∑∑

P

S , p m 1u u u +≤ ≤ , q n 1v v v +≤ ≤  (1.20) 

Derivatives of NURBS surfaces are not used in this thesis; the interested reader is 

referred to [Rogers, 2001] for definitions. 
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1.3 Factors affecting interpolation 

A variety of factors affect the interpolation process, including: 

• Type of interpolation 

• Parameterisation 

• Knot vector generation 

• Derivative constraints 

• Derivative magnitude estimation 

• Degree 

• Rational weightings 

• Spacing and number of data points 

• Reconciliation of parameter values (surfaces only) 

• Twist vector estimation (surfaces only) 

An overview of each factor is given in this section, highlighting their influences on the 

interpolated curve or surface.  Methods for controlling many of these factors are detailed 

in subsequent chapters, and are therefore omitted in this overview. 

1.3.1 Type of interpolation 

Interpolation can be performed globally or locally.  Global interpolation produces a 

linear system of equations in terms of all the data points and derivatives – resulting 

directly in a set of control points.  Local interpolation algorithms tend to be more 

geometric in nature, constructing the curve or surface segment-wise, using only local 

data for each step.  Local interpolation processes frequently do not guarantee any form 

of continuity between segments, and can result in multiple internal knots within the knot 

vector [Piegl and Tiller, 1997].  Consequently, this thesis deals only with global 

interpolation methods, as they do not require further manipulation to satisfy continuity 

constraints. 
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1.3.2 Parameterisation 

Interpolation produces a parametrically defined curve (or surface) that passes through 

the defining data points.  The data points on a curve, ( )ksC , therefore have 

corresponding parameter values, ks , 0 k m≤ ≤ .  Parameterisation is the process that 

assigns a particular parameter value to each point.  Generally, the curve is parameterised 

over [0,1], therefore 0s 0=  and ms 1= .  Consider a planar quadratic curve interpolating 

three data points, as illustrated in Figure 1.5.  The three different curves are obtained by 

simply varying the parameter value 1s .  It is evident that parameterisation has a very 

significant effect on the interpolated curve. 

Figure 1.5 – Effect of parameterisation on a quadratic curve 

It is noted that all three curves in Figure 1.5 are mathematically correct, and satisfy the 

data constraints.  However, it could be argued that only the curve corresponding to 

1s 0.4=  ‘characterises’ the data points.   

( )0sC  

( )2sC

( )1sC

1s 0.2=

1s 0.4=

1s 0.6=
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The purpose of any parameterisation algorithm is to automatically assign parameter 

values to points such that the resulting curve is characteristic of the data (see Figure 

1.6a), i.e. does not exaggerate geometric features (Figure 1.6b), or cause the curve to 

undulate through smooth data points (Figure 1.6c). 

Figure 1.6 – Effect of poor parameterisation 

1.3.3 Knot vector generation 

The spacing of knots in the knot vector has a significant effect on the shape of a B-spline 

curve.  The knot vector always has m p 2+ +  monotonically increasing knots, i.e. for a 

curve, i i 1u u +≤ , 0 i m p≤ ≤ + .  It is the relative spacing between knots that affects the B-

{ }. , . , . , . , . , .is 0 0 0 236 0 406 0 594 0 764 1 0=  

 

(a) 

{ }. , . , . , . , . , .is 0 0 0 4 0 45 0 55 0 6 1 0=  

 

(b) 

{ }. , . , . , . , . , .is 0 0 0 1 0 25 0 75 0 9 1 0=  

 

(c) 
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spline basis, therefore it is usual for the knots to lie in the range [ ]iu 0,1∈ , 

0 i m p 1≤ ≤ + + .  The simplest way to distribute the knots is to evenly space them.  

However, the result is that the curve does not start and end at 0P  and mP  respectively, 

Figure 1.7.  The solution is to use an open clamped knot vector, which uses p 1+  

repeated knots at the ends, i.e.: 

{ }, , , , , , , ,
0 p p 1 m m 1 m p 1

u 0 u 0 u u u 1 u 1+ + + += = = = =U … … …  (1.21) 

Figure 1.7 – B-spline curves with evenly spaced knots, and open clamped knots 

For the ith span, the parameter value u varies in the range 
p i p i 1

u u u+ + +≤ ≤ , 

0 i m p≤ ≤ − .  Where the curve contains multiple spans, i.e. m 1 p 1+ − > , the internal 

knots, iu , p 1 i m+ ≤ ≤ , need to be distributed appropriately.  Again, they could be 

evenly spaced, although Piegl and Tiller [1997] warn that this can lead to a singular 

system of equations.   Intuitively, a single span, of degree p, can only satisfy a maximum 

of p 1+  data constraints such as points or derivatives; if the distribution of knots causes 

a single span to be over-specified, then the interpolation cannot be successful.  Most 

algorithms ensure that each span is not over-specified by distributing the knots in 

conjunction with the parameter values.  Any repeated internal knots reduce the level of 

continuity between adjacent spans by one. 

1 2 3 4 5 6
0, , , , , , ,1

7 7 7 7 7 7

 
=  
 

U { }0,0,0,0,1,1,1,1=U

0P  

3P

0P  

3P
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1.3.4 Derivative constraints 

The interpolation process is constrained if additional information is supplied that the 

resulting entity must satisfy.  This is usually the start and end derivatives for curves, and 

the cross boundary derivatives for surfaces.  The purpose of supplying such data is to 

control the tangent directions at boundaries, allowing greater control of the interpolation 

process.  The system of equations remains linear when constrained by derivative 

information; other constraints can be imposed, such as curvature conditions, but these 

result in non-linear systems of equations. 

Figure 1.8 shows two curves interpolating three points sampled from a unit circle; one 

curve uses derivative constraints, the other does not.  The derivatives shown are scaled 

down by approximately a factor of ten for clarity. 

Figure 1.8 – Circle data interpolated with constrained and unconstrained curves 

A NUBS curve contains m 1+  control points, therefore, for unconstrained interpolation, 

the system of linear equations requires m 1+  data points.  Derivative constraints provide 

an additional two equations, therefore constrained interpolation requires just m 1−  data 

points. 

Scaled derivatives 

Constrained curve 

Unconstrained curve 

Unit circle 

( )0sC  ( )3sC

( )1sC

( )u 0sC

( )u 3sC
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1.3.5 Derivative magnitude estimation 

When a curve or surface is interpolated, the designer usually can only provide geometric 

data, i.e. points, ( )isC , 0 i m 2≤ ≤ − , and end tangent directions, 
0

t  and 
m 2−t ; a 

constrained interpolation, however, requires parametric derivatives, thus the derivative 

magnitudes, 
0

τ  and 
m 2

τ − , need to be estimated, where: 

( )0 0 u 0sτ =t C  

( )m 2 m 2 u m 2sτ − − −=t C  

The derivative directions are a function of the geometry, but the magnitudes have no 

geometric interpretation because the derivatives are formulated with respect to the 

parameterisation.   

To illustrate the effect that derivative magnitudes have, consider the interpolation of two 

data points and two tangent directions by a planar cubic curve.  There are two degrees of 

freedom which control the end derivatives, 
0

τ  and 
1

τ .  Figure 1.9 shows the effect of 

varying 
0

τ . 
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Figure 1.9 – Effect of derivative magnitude 

Despite the magnitude being a function of the parameterisation, it is commonplace to 

approximate it using an estimate of the interpolated curve’s length.  Several distance-

based methods build on this strategy, e.g. summing the chord lengths. 

1.3.6 Degree 

The degree of a B-spline curve or surface dictates the degree of each span or sub-patch; 

the maximum possible degree is defined by the number of control points, i.e. for a curve 

p m≤ , and for a surface p m≤ , q n≤ .  Figure 1.10 illustrates the unconstrained 

interpolation of five data points by four curves of varying degree.  When p 1= , the 

curve is piecewise linear, and has four C
0
 continuous spans; it is clearly unsuitable for 

representing general freeform shapes.  The quadratic curve, p 2= , has three C
1
 

continuous spans.  In general, quadratic curves do not provide sufficient flexibility for 

design: a single span cannot represent an inflection, nor can the derivative magnitudes at 

either end of the span be controlled independently.   

( )0sC  ( )1sC ( )u 1sC

( ) (mag=0.7)u 0sC

( ) (mag=1.4)u 0sC

( ) (mag=2.1)u 0sC
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Figure 1.10 – Various degree curves interpolating 5 data points 

The cubic curve, p 3= , has two C
2
 continuous spans, and overcomes the problems 

encountered by the quadratic case.  It is the most frequently used degree for interpolation 

[Farin, 2002].  The quartic curve, p 4= , has a single C
3
 continuous span; the additional 

continuity constraints of polynomials where p 3>  often force the curve to ‘exaggerate’ 

the features of the interpolated data, and undesirable oscillations may occur.  When the 

flexibility of a higher degree curve is required (e.g. for refinement, manipulation of 

curvature without affecting tangents, joining to other higher order curves, etc.), it is 

usual to interpolate with p 3= , and then raise to the desired degree (see [Piegl and 

Tiller, 1997]).   

1.3.7 Rational weightings 

The control points of a B-spline entity can be represented using homogeneous 

coordinates, i.e. ( )wx,wy,wz,w , where the fourth component w is known as the rational 

weight.  The weights can be used to bias the curve or surface towards (or away from) 

their corresponding control points; this is illustrated in Figure 1.11 where all iw 1= , 

except for 
2

w . 

p 1=  

p 2=

p 3=

p 4=

( )0sC ( )msC
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Figure 1.11 – Effect of various rational weights on a curve 

The added degrees of freedom that the rational weights provide can be very useful, as 

they allow conic entities to be exactly represented, and are beneficial when refining an 

existing definition.  However, when a curve or surface is to be constructed by 

interpolation, all the weights are set to unity; there is very little advantage in doing 

otherwise [Piegl and Tiller, 1997], and would result in a non-linear system of equations 

[Farin,  2002].  One exception to this rule is detailed by Hoschek [1992], and applies 

only when interpolating piecewise circular arcs. 

( )0 0 0 0x , y ,z ,1=P ( )3 3 3 3x , y ,z ,1=P

( )1 1 1 1x , y ,z ,1=P

( )2 2 2 2 2 2 2 2w x ,w y ,w z ,w=P

2w 0.4=

2w 0.7=

2w 1.0=

2w 1.3=
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1.3.8 Number of data points 

All of the preceding factors presume that the data points to be interpolated are given; in 

many circumstances, however, the designer may be able to choose the number of data 

points to meet a specific quality measure, e.g. positional or curvature error.  Supplying 

additional data points will inevitably reduce the error between the interpolated entity and 

the sampled geometry.  Figure 1.12 illustrates two constrained curves interpolating three 

( m 4= ) and five ( m 6= ) evenly spaced points sampled from a unit semi-circle; the 

resulting curvature profiles are shown as an indication of quality. 

Figure 1.12 – Curvature errors when interpolating 3 and 5 points from a semi circle 

The number of data points directly corresponds to the number of control points required 

to represent the interpolated entity, so it is undesirable to use more points than necessary 

– doing so can lead to data proliferation and compromise downstream activities [Cripps 

and Lockyer, 2005].  Also, sampling sparse data points from a poor quality object allows 

the interpolation process to ‘smooth’ over undesirable fluctuations in the geometry, 

whereas a dense point sampling will result in the blemishes being inherited.  The aim is 

therefore to find the minimum number of data points that will satisfy the quality 

requirements. 

1.27 

1.00 

0.87 

m 4=  (27% relative 

curvature error) 

m 6=  (4% relative 

curvature error) 
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1.3.9 Spacing of data points 

Closely related to the number of data points is the spacing.  Where curvature is constant 

(lines, planes, circles, cylinders), evenly spaced points yield optimal results.  This is not 

true of entities with varying curvature profiles.  Consider the Generalised Cornu Spiral 

[Ali, et. al., 1999] in Figure 1.13 (denoted by the red dotted line), which has a rational 

linear curvature profile that monotonically increases over the length of the curve.  When 

points are sampled evenly along the GCS, and then interpolated, it is evident that the 

region with high curvature does not have a sufficient density of points.  The absolute 

positional error shows this approach is insensitive to curvature variation.  An alternative 

spacing shows far superior positional error across the entire curvature range.  It is 

evident that the method used to space points can have a significant effect on the quality 

of the interpolated entity; a good algorithm will characterise the geometry of the original 

shape and minimise positional/curvature errors. 

Figure 1.13 – Effect of data point spacing on abs. positional error for constrained curves 
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1.3.10 Reconciliation of parameter values 

When interpolating surfaces, a single parameterisation needs to be obtained for each 

parametric direction.  Consider the ruled surface illustrated in Figure 1.14, where all the 

data points are sampled from a cylinder.  The parameterisation in the v-direction is 

trivial, but the ideal parameterisation for the boundary ( )u,0S  would be different to that 

of ( )u,1S  because the spacing of data points is different.  One method to reconcile these 

is simply to average the corresponding parameter values – the result, however, is that the 

parameterisation is a compromise for both boundaries, causing distortion and 

undulations.  Unfortunately, some form of parameter reconciliation method is necessary 

when interpolating surfaces, because global interpolation requires that parallel strips of 

points have identical parameterisations.  The only way to avoid poor quality results is to 

ensure the reconciliation process causes minimal disruption to the ideal parameter 

values, i.e. by careful point distribution. 

Figure 1.14 – Reconciling parameter values 

ideal

1s 0.333=  

ideal

2s 0.667=

ideal

2s 0.870=

Reconciled parameter values in u: 

( )0,0.366 ,0.768,1  

ideal

1s 0.400=

Unit circle 

Surface border 

v 

u 
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1.3.11 Twist vector estimation 

A NUBS surface contains ( ) ( ) ( )m 1 n 1 mn m n 1+ × + = + + +  control points, i , jP , 

0 i m≤ ≤ , 0 j n≤ ≤ .  When the surface is created using constrained interpolation, one 

must supply: 

• ( ) ( )m 1 n 1− × −  data points, ( )k ls ,tS , 0 k m 1≤ < − , 0 l n 1≤ < − ,  

• ( )2 n 1−  cross-boundary derivatives in the u-direction, ( )u l0,tS  

and ( )u l1,tS , 0 l n 2≤ ≤ − , 

• ( )2 m 1−  cross-boundary derivatives in the v-direction, ( )v ks ,0S  

and ( )v ks ,1S , 0 k m 2≤ ≤ − . 

The data points and cross-boundary derivatives amount to ( )mn m n 3+ + −  vectors in 

total, leaving four outstanding vector-valued pieces of information.  These are the mixed 

partial derivatives from each corner of the interpolated surface, ( )uv a,bS , { }a,b 0,1= , 

and are commonly referred to as twist vectors.  Mixed partial derivatives are second 

order derivatives, and being entirely a function of the surface’s parameterisation, they 

have no geometric interpretation.  In terms of their effect on the surface, they control the 

rate of change of the cross boundary derivatives, which must be identical in both 

parametric directions at the corners.  Inappropriate control of the twist vectors can lead 

to poor surface geometry and/or poor parameterisation.  Consider the case of a plane: it 

should have zero length twist vectors because the rate of change in the cross boundary 

derivatives is zero.  Figure 1.15(a) illustrates the effect of applying a large twist in the 

normal direction – the interpolated surface is no longer a plane.  Figure 1.15(b) 

illustrates the consequences of a large twist within the plane; the surface remains a 

plane, but the parameterisation is very poor. 
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Figure 1.15 – Effect of poor twists on shape and parameterisation 

Estimating an appropriate twist vector for a general freeform surface is very difficult – 

often the twist vectors are simply set to zero, even though this yields poor results for all 

but the most basic shapes.  

1.4 Motivation of research 

It is evident from the numerous factors outlined in Section 1.3 that the interpolation 

process can yield very poor results if it is not controlled appropriately.  The implications 

of poorly constructed parametric representations affect both subsequent design activities, 

and analysis/simulation.  Smith [1999] reports that poor quality surface representations 

can also have a serious detrimental effect on downstream machining operations. 

To compensate for inadequate control of the interpolation process, designers often 

increase the amount of data points used to define an entity.  This often leads to data 

proliferation, which is undesirable for storage, transmission and subsequent processing.  

Cripps and Lockyer [2005] warn of the adverse effects that this can have on follow-on 

activities.  Furthermore, increasing the data set does not always resolve quality related 

issues; for example, interpolating a smooth data set with a high density of points can 

(a) (b) 
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induce undulations in the curve if a poor parameterisation is used.  Intuitively, one 

expects that this would be less likely if sparse data points were employed. 

Many of the commonly used techniques for controlling the interpolation process have 

been adopted because they are simple, or have been developed heuristically.  A rigorous 

evaluation of these methods is required to ascertain how well they perform in general, 

and to investigate if there are more appropriate methods of control.   For instance, the 

total chord length joining a set of data is often used to estimate the derivative 

magnitudes for a constrained interpolation; however, derivative magnitudes are not a 

geometric feature, being related to the parameterisation of the curve.   

One area where this research will be of considerable benefit is the approximation of 

curves and surfaces defined using Generalised Cornu Spirals [Ali, et. al., 1999].  GCS 

entities have many advantageous properties, such as monotonic variation in curvature, 

but are not supported in existing CAD software.  Points can easily be sampled from a 

GCS definition, but the ‘ideal’ number and position of those points for interpolation is 

uncertain.  Tangent directions are also easily sampled, but GCS definitions are 

parameterised by arc length, so derivative magnitudes and twist vectors need to be 

estimated. 

Another application of this work is to construct surfaces with N-sides, using standard 

rectangular surfaces, in order that they can be represented using existing CAD software.  

The sub-patches that are assembled to form the N-sided region are most likely to be 

constructed using interpolation.  Subsequent modification is then required to attain an 

acceptable level of continuity between sub-patches. 
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1.5 Outline of thesis 

This chapter has provided a background to the interpolation of NUBS curves and 

surfaces, outlining the factors that need to be controlled for producing quality results.  

The next chapter details the process for constructing a curve or surface using 

interpolation, and looks at existing methods for controlling the shape of the interpolant. 

Chapter 3 introduces a new parameterisation and derivative magnitude estimation 

method which strives to maintain orthogonality between the first and second parametric 

derivatives.  The proposed algorithms are assessed analytically for their stability, 

degeneracy, and sensitivity.  Chapter 4 compares the performance of all the algorithms 

presented in Chapters 2 and 3 using a number of numerical tests.  Case studies include 

interpolating points sampled from a circle, and from GCS definitions.   

Chapter 5 evaluates various methods for spacing data points prior to interpolation, and 

proposes a new method that maintains the sum of projected distances over each span.  

Chapter 6 proposes an improved twist vector estimation method, based on the Adini 

algorithm, and is shown to outperform others theoretically and numerically.   

Following the examination of factors that control the interpolation process, Chapter 7 

considers how interpolated surfaces can be joined together with parametric and 

geometric continuity.  These methods are then applied to a common surface construction 

problem – creating an N-sided surface.  Existing solutions to this problem are not 

generally compatible with most CAD software.  However, interpolation can be used to 

assemble N rectangular patches that, after refinement, join with internal geometric 

continuity, and are compatible with most commercial CAD systems.   

Chapter 8 draws conclusions from all aspects of the work detailed in this thesis.  Some 

ideas for future work are also discussed. 
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Chapter 2  

The interpolation process 

NUBS interpolation is essentially the process of calculating the solution to a system of 

linear equations such that the resulting entity satisfies the given data constraints.  This 

chapter reviews the details of this process for both curves and surfaces.  Constrained (i.e. 

using tangent information at boundaries), as well as unconstrained, interpolation is 

considered.  As NUBS interpolation is most commonly implemented in a computer 

system using matrices, a numerical approach to solving systems of linear equations and 

inverting matrices is discussed.  

The interpolation process requires certain factors to be calculated prior to solving the 

system of equations.  These factors can have significant impact on the quality of the 

interpolant, and include the parameterisation, derivative magnitude estimation, knot 

vector generation, parameter reconciliation and twist vector estimation.  This chapter 

presents existing methods for controlling these factors, which are then assessed 

alongside new methods in subsequent chapters. 
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2.1 Review of the interpolation process 

2.1.1 Unconstrained curve interpolation 

To interpolate a set of points with a NUBS curve, the following data is required: 

• A set of data points, ( )ksC , 0 k m≤ ≤  

• The parameter values, ks , 0 k m≤ ≤  

• The degree, p, where p m≤  

• An open clamped knot vector, { }0 m p 1u ,...,u + +=U , in the form of (1.21) 

An ( ) ( )m 1 m 1+ × +  system of linear equations can be set up to solve for the ( )x, y,z  

components of iP , 0 i m≤ ≤ : 

( ) ( )
m

k i ,p k i

i 0

s N s
=

=∑C P  0 k m≤ ≤  (2.1) 

This can be expressed in matrix form: 

[ ] [ ][ ]=C M P   (2.2) 

 [ ] [ ] [ ]
1−

=P M C  (2.3) 

where [ ]C  is a ( )m 1 1+ ×  matrix of 3D points, ( )ksC , 0 k m≤ ≤ , 

 [ ]M  is a ( ) ( )m 1 m 1+ × +  matrix containing ( )i ,p kN s , 0 i,k m≤ ≤ , and 

 [ ]P  is a ( )m 1 1+ ×  matrix of 3D points that will receive iP , 0 i m≤ ≤ . 

[ ]C  holds a single ( )x, y,z  data point on each row; [ ]P  has an identical structure, and 

receives the calculated control points.  [ ]M  is constructed such that each row contains a 

complete set of basis functions corresponding to a single parameter value, i.e.: 

[ ] ( )i ,p kk ,i
N s=M  0 i,k m≤ ≤  (2.4) 
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Note that [ ]M  is banded if the knot vector is constructed such that each internal interval 

contains no more than p 1+  data constraints (see Section 1.3.3, also de Boor [2001]), 

because the basis functions have only a localised effect: 

[ ]

( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( )

0 ,p 0

0,p 1 1,p 1 2,p 1

1,p 2 2,p 2 m 1,p 2

1,p m 2 2,p m 2 m 1,p m 2

2,p m 1 m 1,p m 1 m,p m 1

m,p m

N s 1 0 0 0 0

N s N s N s 0 0

0 N s N s N s 0

0 N s N s N s 0

0 0 N s N s N s

0 0 0 0 N s 1

−

− − − −

− − − −

≡ 
 
 
 
 

=  
 
 
 
 ≡  

M

⋯

⋯

⋯

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

⋯

⋯

⋯

 

 (2.5) 

The solution to (2.3) is found by inverting (2.5) – see Section 2.1.5. 

2.1.2 Constrained curve interpolation 

A constrained curve interpolation gives rise to two additional control points.  The 

following data is required: 

• A set of data points, ( )ksC , 0 k m 2≤ ≤ −  

• The parameter values, ks , 0 k m 2≤ ≤ −  

• The degree, p, where p m≤  

• An open clamped knot vector, { }0 m p 1u ,...,u + +=U , in the form of (1.21) 

• Start and end derivatives, ( )u 0C  and ( )u 1C , both directions and magnitudes 

The ( ) ( )m 1 m 1+ × +  system of linear equations is constructed using matrix form in 

exactly the same way as (2.3); however [ ]M  and [ ]C  need to be modified to accept the 

derivative constraints.  The data points only provide ( )m 1−  equations – the additional 

two are provided by considering the derivatives [Piegl and Tiller, 1997]: 
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( )p 1

0 1 u

u
0

p

+
− + =P P C  (2.6) 

( )m
m 1 m u

1 u
1

p
−

−
− + =P P C  (2.7) 

The two equations, (2.6) and (2.7), are inserted into [ ]M  as the second and penultimate 

rows: 

[ ]

( )

( ) ( ) ( )

( ) ( ) ( )
( ) ( )

( )

0 ,p 0

p 1 p 1

0,p 1 1,p 1 2,p 1

2,p m 3 m 1,p m 3 m,p m 3

m m

m,p m 2

N s 1 0 0 0 0

p / u p / u 0 0 0

N s N s N s 0 0

0 0 N s N s N s

0 0 0 p / 1 u p / 1 u

0 0 0 0 N s 1

+ +

− − − −

−

≡ 
 

− 
 
 

=  
 
 

− − − 
 ≡  

M

⋯

⋯

⋯

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

⋯

⋯

⋯

 

 (2.8) 

[ ]C  needs to be correspondingly modified by inserting the start and end derivatives, 

( )u 0C , and ( )u 1C , as the second and penultimate rows respectively.  The control points 

are obtained by inverting (2.8) and solving (2.3) as before. 

2.1.3 Unconstrained surface interpolation 

To interpolate a set of data points with a NUBS surface, the following data is required: 

• A grid of data points, ( )k ls ,tS , 0 k m≤ ≤ , 0 l n≤ ≤  

• The parameter values, ks , 0 k m≤ ≤ , and 
l

t , 0 l n≤ ≤  

• The degrees  p and q, where p m≤ , q n≤  

• Two open clamped knot vectors, { }0 m p 1u ,...,u + +=U  and { }0 n q 1
v ,...,v + +=V , in 

the form of (1.21) 
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As for curves, a system of linear equations can be set up to solve for the ( )x, y,z  

components of 
i , j

P , 0 i m≤ ≤ , 0 j n≤ ≤ : 

( ) ( ) ( )
m n

k l i ,p k j ,q l i , j

i 0 j 0

s ,t N s N t
= =

=∑∑S P  0 k m≤ ≤ , 0 l n≤ ≤  (2.9) 

This can be expressed in matrix form: 

[ ] [ ][ ][ ]=S M P N   (2.10) 

 [ ] [ ] [ ][ ]
1 1− −

=P M S N  (2.11) 

where [ ]S  is a ( ) ( )m 1 n 1+ × +  matrix of 3D data points, containing ( )k ls ,tS , 

0 k m≤ ≤ , 0 l n≤ ≤ , 

[ ]M  is a ( ) ( )m 1 m 1+ × +  matrix containing ( )i ,p kN s , 0 i,k m≤ ≤ ,  

 [ ]N  is a ( ) ( )n 1 n 1+ × +  matrix containing ( )j ,q lN t , 0 j,l m≤ ≤ , and 

 [ ]P  is a ( ) ( )m 1 n 1+ × +  matrix of 3D points, that will receive 
i , j

P , 0 i m≤ ≤ , 

0 j n≤ ≤ . 

[ ]M  is constructed such that each row contains a complete set of basis functions 

corresponding to a single parameter value, i.e.: 

[ ] ( )i ,p kk ,i
N s=M  0 i,k m≤ ≤  (2.4) 

[ ]N  is constructed analogously, but is the transpose: 

[ ] ( )j ,q lj ,l
N t=N  0 j,l n≤ ≤  (2.12) 

Given that U  and V  are constructed such that each internal interval contains at most 

p 1+  and q 1+  data constraints respectively, [ ]M  and [ ]N  will be banded 
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[de Boor, 2001]; [ ]M  is of the form (2.5), and [ ]N  is analogous except that it is 

transposed.  They are then inverted to provide a solution to (2.11) – see Section 2.1.5. 

2.1.4 Constrained surface interpolation 

To interpolate a set of data points and derivative constraints with a NUBS surface, the 

following data is required: 

• A grid of data points, ( )k ls ,tS , 0 k m 2≤ ≤ − , 0 l n 2≤ ≤ −  

• The parameter values, ks , 0 k m 2≤ ≤ − , and 
l

t , 0 l n 2≤ ≤ −  

• The degrees  p and q, where p m≤ , q n≤  

• Two open clamped knot vectors, { }0 m p 1u ,...,u + +=U  and { }0 n q 1
v ,...,v + +=V , in 

the form of (1.21) 

• The start and end cross-boundary derivatives in the u-direction, ( )u l0,tS  and 

( )u l1,tS , 0 l n 2≤ ≤ −  

• The start and end cross-boundary derivatives in the v-direction, ( )v ks ,0S  

and ( )v ks ,1S , 0 k m 2≤ ≤ −  

• The four corner twist vectors, ( )uv a,bS , { }, ,a b 0 1=  

The system of linear equations is constructed using matrix form in exactly the same way 

as (2.11); however, [ ]M , [ ]N  and [ ]S  need to be modified to accept the derivative 

constraints.  [ ]S  remains a ( ) ( )m 1 n 1+ × +  array of 3D vectors, although only 

( ) ( )m 1 n 1− × −  data points are supplied.  The cross boundary derivatives and the twist 

vectors satisfy the remaining equations.  In general, when p q 3= = , [ ]S  is constructed 

as follows: 
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[ ]

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

v v

0 0 0 0 0 1 0 n 3 0 n 2 0 n 2

u u u u

0 0 0 0 0 1 0 n 3 0 n 2 0 n 2

v v

1 0 1 0 1 1 1 n 3 1 n 2 1 n 2

v v

m 3 0 m 3 0 m 3 1 m 3 n 3 m 3 n 2 m 3 n 2

u u u

m 2 0 m 2 0 m 2 1 m 2 n 3 m 2 n 2 m 2 n

− − −

− − −

− − −

− − − − − − − − −

− − − − − − − − −

=

Q D Q Q D Q

D T D D T D

Q D Q Q D Q

S

Q D Q Q D Q

D T D D T D

⋯

⋯

⋯

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

⋯

⋯

, , , , , ,

u

2

v v

m 2 0 m 2 0 m 2 1 m 2 n 3 m 2 n 2 m 2 n 2− − − − − − − − −

 
 
 
 
 
 
 
 
 
 
  Q D Q Q D Q⋯

 (2.13) 

where the following notation is used for brevity: 

( ), ,k l k ls t=Q S , ( ), ,u

k l u k ls t=D S , ( ), ,v

k l v k ls t=D S , ( ), ,k l uv k ls t=T S , 

0 k m 2≤ ≤ − , 
l

t , 0 l n 2≤ ≤ −  

When m or n is less than 5, the generality of (2.13) is less apparent, so two specific 

examples are given to aid clarity.  Firstly, when m n 3= = : 

[ ]

, , , ,

, , , ,

, , , ,

, , , ,

v v

0 0 0 0 0 1 0 1

u u

0 0 0 0 0 1 0 1

u u

1 0 1 0 1 1 1 1

v v

1 0 1 0 1 1 1 1

 
 
 =
 
 
  

Q D D Q

D T T D
S

D T T D

Q D D Q

 

and when m n 4= = : 

[ ]

, , , , ,

, , , , ,

, , , , ,

, , , , ,

, , , , ,

v v

0 0 0 0 0 1 0 2 0 2

u u u

0 0 0 0 0 1 0 2 0 2

v v

1 0 1 0 1 1 1 2 1 2

u u u

2 0 2 0 2 1 2 2 2 2

v v

2 0 2 0 2 1 2 2 2 2

 
 
 
 =
 
 
 
 

Q D Q D Q

D T D T D

S Q D Q D Q

D T D T D

Q D Q D Q

 

It is noted that there is no requirement for m n≡ . 

When p 3= , the matrix [ ]M  has two additional rows for the differentiated basis 

functions; these are the second and penultimate rows, i.e.: 
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[ ]

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

, , , ,

, , , ,

, , , ,

, , , ,

, , , ,

, , , ,

0 p 0 1 p 0 m 1 p 0 m p 0

0 p 0 1 p 0 m 1 p 0 m p 0

0 p 1 1 p 1 m 1 p 1 m p 1

0 p m 3 1 p m 3 m 1 p m 3 m p m 3

0 p m 2 1 p m 2 m 1 p m 2 m p m 2

0 p m 2 1 p m 2 m 1 p m 2 m p m

N s N s N s N s

N s N s N s N s

N s N s N s N s

N s N s N s N s

N s N s N s N s

N s N s N s N s

−

−

−

− − − − −

− − − − −

− − − − −

′ ′ ′ ′

=

′ ′ ′ ′

M

⋯

⋯

⋯

⋮ ⋮ ⋱ ⋮ ⋮

⋯

⋯

⋯ ( )2

 
 
 
 
 
 
 
 
 
 
  

 (2.14) 

[ ]N  is constructed analogously, but its construction is the transpose of [ ]M .  The 

control points, ,i j
P , 0 i m≤ ≤ , 0 j n≤ ≤ , are obtained by evaluating (2.11). 

2.1.5 Matrix inversion 

Matrix inversion is implicitly linked to solving systems of linear equations.  Consider the 

following linear system, where [ ]A  is a square matrix of order n, and [ ]b  is an n-vector: 

[ ][ ] [ ]=A x b  (2.15) 

The system has a unique solution, [ ]x , if [ ]A  is invertible.  The solution is easily found 

if [ ]A  is in upper-triangular form, with all diagonal entries non-zero, by means of back-

substitution [Conte and de Boor, 1981]: 

,

,

n

k k j j

j k 1

k

k k

b a x

x
a

= +

−

=
∑

  (2.16) 

Where [ ]A  is not in upper-triangular form, an equivalent system can be created by 

performing row and column operations, i.e. Gaussian elimination.  It is of utmost 

importance to preserve numerical accuracy, and therefore the pivotal equation used for 

elimination should be chosen carefully.   Conte and de Boor [1981] recommend a 

strategy called scaled partial pivoting which aims to select the equation with the largest 
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coefficient of kx  relative to the size of the other coefficients in that row, thus avoiding 

division by near-zero coefficients.   

An alternative approach to solving systems of linear equations is to use LU 

decomposition [Conte and de Boor, 1981], which factorises the coefficient matrix [ ]A  

into three: 

[ ] [ ][ ][ ]=A P L U  

where [ ]P  is a permutation matrix that accounts for row interchanges, [ ]L  a lower-

triangular matrix containing multipliers, and [ ]U  an upper-triangular matrix.  The 

solution, [ ]x , is found by forward- and back-substitution.  The principle advantage to 

this approach is that it requires substantially fewer floating-point operations, thereby 

preserving numerical accuracy. 

The inverse of [ ]A , if it exists, can be found by considering that the product 

[ ][ ] [ ]
1−

=A A I .  The jth column of [ ]
1−

A  is the solution of the linear equation: 

[ ][ ] j
 =  A x i  (2.17) 

where 
j

  i  is the jth column of the identity matrix.  The system of linear equations need 

only be solved once if the row operations used during elimination are applied to each 

column of the identity matrix.  This gives an efficient method for finding the inverse of a 

matrix. 
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2.2 Parameterisation methods 

The interpolated curve or surface passes through the specified data points exactly – each 

data point therefore has a corresponding parameter value, 
k

s , 0 k m≤ ≤ , or two values 

in the case of a surface, 
k

s  and 
l

t , 0 k m≤ ≤ , 0 l n≤ ≤ .   Parameterisation is the process 

of determining these values, and can have a significant impact on the resulting entity.  

This section summarises several commonly used parameterisation methods.  The 

performance of these methods is assessed numerically in Chapter 4 alongside the new 

methods, which are presented in the next chapter. 

When a curve is constructed by an unconstrained interpolation, there are ( )m 1+  data 

points.  Generally, parameter values are assigned in the range [ ],0 1 , therefore 
0

s 0=  and 

m
s 1= .   All of the parameterisation algorithms presented in this section assume that a 

curve is being interpolated, and it is unconstrained.  For surfaces, these algorithms can 

easily be applied to the rows and columns of data points.  Where the interpolation is 

constrained, there are only ( )m 1−  data points, so m becomes ( )m 2− .  For brevity, data 

points are denoted 
k

Q , i.e. ( )k ks=Q C , 0 k m≤ ≤ . 

2.2.1 Equally spaced parameterisation 

The simplest parameterisation method equally spaces the parameter values over [ ],0 1 : 

k

k
s

m
=  0 k m≤ ≤  (2.18) 

Equally spaced parameterisation is sometimes called uniform parameterisation.  As the 

parametric interval between data points is constant, the resulting curve is often distorted 

when the points are unevenly distributed. 



 36 

2.2.2 Chord length parameterisation 

A number of parameterisations are distance-based; they aim to produce parameter values 

that vary linearly with arc length so that they reflect the relative spacing of data points.  

One such parameterisation is the cumulative chord length method [Ahlberg, et. al., 

1967], and is probably the most commonly used parameterisation [Piegl and Tiller, 

1997].  It determines the parameter values according to the proportional distances 

between data points: 

0
s 0=

 

k k 1

k k 1 m

c c 1

c 1

s s
−

−

−
=

−
= +

−∑

Q Q

Q Q

 1 k m≤ ≤  (2.19) 

The chord length is a reasonable approximation to the arc length if sufficient data points 

are used to control the curvature of the interpolant; as ( )m 1+ → ∞ , the chord length 

becomes identical to the arc length.  However, more points than necessary may be 

required to attain a specific curvature tolerance using the chord length parameterisation, 

which is undesirable as it can lead to data proliferation [Cripps and Lockyer, 2005]. 

2.2.3 Centripetal parameterisation 

Centripetal parameterisation [Lee, 1989] is a variation on chord length, and is 

formulated by taking the square root of all distances in (2.19), i.e.: 

0
s 0=

 

k k 1

k k 1 m

c c 1

c 1

s s
−

−

−
=

−
= +

−∑

Q Q

Q Q

 1 k m≤ ≤  (2.20) 

Lee [1989] reports that this method almost invariably performs better than chord length 

parameterisation, especially when the interpolated data contains very sharp changes in 

direction. 
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2.2.4 Average parameterisations 

Two further parameterisations are obtained by taking the geometric and harmonic 

averages of the three preceding parameterisations, i.e. the geometric parameterisation is 

given by: 

eq ch ce3
k k k ks s s s= ⋅ ⋅  0 k m≤ ≤  (2.21) 

where eq

ks ,  ch

ks  and ce

ks  represent the equally spaced, chord length and centripetal 

parameterisations respectively.  The harmonic parameterisation is given by: 

k

eq ch ce

k k k

3
s

1 1 1

s s s

=

+ +

 0 k m≤ ≤  (2.22) 

The average parameterisations are adversely affected if any of the constituent 

parameterisations produce poor parameter values; each of the methods have strengths 

and weaknesses with different geometric configurations, implying that the resulting 

parameterisation will always be a compromise. 

2.2.5 Circular arc parameterisation 

The circular arc parameterisation is similar to chord length, but approximates the 

distance between points using circular arcs instead of straight lines.  Consider the four 

points illustrated in Figure 2.1.   
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Figure 2.1 - Construction for circular arc parameterisation 

A circular arc can be passed through the first three points, 
0

Q …
2

Q , and has a radius 
0

r .  

The associated span length, 
0

l , can be obtained from the two points, 
0

Q  and 
1

Q , and the 

radius 
0

r .  The last span length, 
2

l , can be obtained analogously.  Intermediate spans 

have four surrounding points, so an average radius is used, e.g. 
1

l  is calculated using the 

points 
1

Q , 
2

Q  and the radius 0 1
r r

2

+
.  Therefore, 

k
l  is given by: 

( )

sin if 

sin if 

sin otherwise

1 01

0

0

m m 11

k m 2

m 2

k 1 k1

k 1 k

k 1 k

2r k 0
2r

l 2r k m 1
2r

r r
r r

−

−−
−

−

+−
−

−

  −
=  

 


 −
= = −  

 
  − +   + 

Q Q

Q Q

Q Q

 0 k m 1≤ ≤ −  (2.23) 

where the radii, 
k

r , 0 k m 2≤ ≤ − , are given in terms of the data points [Faux and Pratt, 

1979]: 

0
Q

1
Q

2
Q  

3
Q

1
r

0
r

0
l  

1
l  

2
l
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( ) ( )
k 1 k k 2 k k 2 k 1

k

k 1 k k 2 k

r
2

+ + + +

+ +

− − −
=

− × −

Q Q Q Q Q Q

Q Q Q Q
 0 k m 2≤ ≤ −  (2.24) 

Despite the fact that there are an infinite number of arcs of fixed radius that can pass 

through two points (in 3D), the arc length is common to them all. 

Circular arc parameterisation is calculated as follows: 

0s 0=
 

k 1
k k 1 m 1

c

c 1

l
s s

l

−
− −

=

= +

∑
 1 k m≤ ≤  (2.25) 

Circular arc parameterisation is unstable when three adjacent data points are collinear to 

within numerical tolerances.  This causes the denominator of (2.24) to become zero, 

giving an infinite radius, kr .  However, this is simple to check for and avoid, replacing 

the value of kl  from (2.23) with k 1 k+ −Q Q  when 

( ) ( )
( ) ( )

sin
k 1 k k 2 k1

k 1 k k 2 k

δ
+ +−

+ +

 − × −
< 

 − − 

Q Q Q Q

Q Q Q Q
, where δ  is a small angle tolerance; a value of 

.0 0002δ =  radians (approx. 0.01°) is adopted in the following examples. 

2.2.6 Farin’s parameterisations 

Farin [1988] proposes two parameterisation methods in the context of constructing a C
1
 

piecewise cubic curve.  His development uses the Hermite equation form: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )        

2 3 2 3

k k 1

2 3 2 3

k u k k u k 1

u 1 3t 2t s 3t 2t s

t 2t t s t t s∆ ∆

+

+

= − + + −

+ − + + − +

C C C

C C
 0 k m≤ <  (2.26) 

where ( )k k 1 ks s∆ += − , and ( ) /k kt u s ∆= −  is the local parameter of each segment.  Both 

data points, 
k

Q , and tangent directions, ( ) ( )k u k u k
s s≡t C C , 0 k m≤ ≤ , are required.  

The derivative magnitudes for each span must be determined, i.e.: 
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( )k k u k
a s∆≡ C  0 k m≤ <  (2.27) 

( )k k u k 1
b s∆ +≡ C  0 k m≤ <  (2.28) 

Farin’s first method, a ‘quick and easy’ solution, obtains values for 
k

a  and 
k

b  in 

proportion to the chord length: 

.
k k k

a b 1 2c= =  0 k m≤ <  (2.29) 

where 
k

c  is the chord length: 

k k 1 kc += −Q Q  0 k m≤ <  (2.30) 

The parameter values, 
k

s , 0 k m≤ ≤ , can then be solved uniquely using the first order 

parametric continuity condition: 

k k 1

k k 1

a b

∆ ∆
−

−

=  1 k m≤ <  (2.31) 

assuming 
0

s 0=  and 
m

s 1= .  Alternatively, the parameter values can be obtained more 

efficiently by assuming 
0

s 0=  and 
1

s 1= , then calculating 
k 1

s + : 

( )k k k 1

k 1 k

k 1

a s s
s s

b

−

+

−

−
= +  1 k m≤ <  (2.32) 

The parameter values will be in the range 
k m

0 s s≤ ≤ , and therefore need to be scaled 

down by a factor of 
m

s  to be in the range [0,1]. 

Farin [1988] proposes a more ‘sophisticated’ method, which ensures that the 

parameterisation of each segment is linear in the direction of the chord, see Figure 2.2.  



 41 

Figure 2.2 - A planar curve with uniform parameterisation along the chord, showing 

inner Bézier control points 

As the angle between the chord and tangent increases, the magnitudes become 

unreasonably large, and at 90°, the numerical stability of the algorithm is compromised.  

Farin therefore limits the angle to a maximum of 60°, although little justification is given 

for this specific value other than convenience, as cos60 1 2° = .  
k

a  and 
k

b  can be found 

by trigonometric relationships: 

( )max , .

k
k

k k

c
a

0 5
=

⋅s t
 0 k m≤ <  (2.33) 

( )max , .

k
k

k k 1

c
b

0 5+

=
⋅s t

 0 k m≤ <  (2.34) 

where ks  is the unit direction of the chord: 

( )k k 1 k kc+= −s Q Q  (2.35) 

The parameter values are then given by (2.31) or (2.32). 

0 0=Q P

1 3=Q P

1P  

2P
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2.3 Derivative magnitude estimation methods 

If the interpolation process is constrained, the end derivatives are required, i.e. ( )u 0C  

and ( )u 1C  for a curve, or ( )u l0,tS , ( )u l1,tS , ( )v ks ,0S , ( )v ks ,1S , 0 k m 2≤ ≤ − ,  

0 l n 2≤ ≤ − , for a surface.  For brevity, this section will consider only curves, as the 

algorithms are easily applied to the rows and columns of data points on a surface.   

Usually, only the end tangents directions, 0t  and m 2−t , are available as the magnitudes 

are not a geometric feature, being a function of the parameterisation.  The derivative 

magnitudes, 
0

τ  and 
m 2

τ − , need to be estimated, where: 

( )0 0 u 0sτ =t C  

( )m 2 m 2 u m 2sτ − − −=t C  

This section summarises the existing methods for estimating derivative magnitudes.  The 

performance of these methods is then assessed in Chapter 4.   

It is very common to estimate the magnitudes with an approximation of the arc length of 

the curve.  As many of the parameterisations given in Section 2.2 are distance based, 

they have corresponding methods for estimating the arc length, and therefore the 

derivative magnitude.  Such an approach yields a single value for both the start and end 

magnitudes, i.e. 
0 m 2

τ τ −= .  This is not true for non-distance based approaches.   

2.3.1 Total chord length 

Several of the parameterisation methods utilise the chord length between adjacent data 

points as an approximation to the arc length of the curve between those points.  The 

simplest method for approximating the derivative magnitudes is therefore obtained by 

summing the chord lengths between all adjacent data points.  Hence:  
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m 2

0 m 2 k k 1

k 1

τ τ
−

− −
=

= = −∑ Q Q   (2.36) 

2.3.2 Total arc length 

A more realistic estimate of the arc length of a curve is obtained if a circular arc is fitted 

between each adjacent point, as the chord between two data points will underestimate 

the arc length of segments with high curvature (see Figure 2.1).  These arc lengths are 

summed to give an estimation of the total arc length.  The derivative magnitudes are 

therefore given by: 

m 3

0 m 2 k

k 0

lτ τ
−

−
=

= =∑   (2.37) 

where kl  is the length of the kth circular arc, given by (2.23). 

2.3.3 Farin’s derivative magnitudes 

Farin’s [1988] piecewise cubic C
1
 curve construction methods provide values for the 

derivative magnitudes.  For Farin’s simple method, the derivative magnitudes are 

obtained by substituting (2.29) and (2.30) into (2.27) and (2.28): 

( )
1 00 0

0

0 0 1 0

1.2a 1.2c

s s
τ

∆ ∆

−
= = =

−

Q Q
 (2.38) 

( )
m 2 m 3m 3 m 3

m 2

m 3 m 3 m 2 m 3

1.2b 1.2c

s s
τ

∆ ∆
− −− −

−

− − − −

−
= = =

−

Q Q
 (2.39) 

where the parameter values, ks , 0 k m 2≤ ≤ − , are given by (2.31). 

It is noted that the derivative magnitudes, in general, will be different at the two ends, 

and that the magnitudes are scaled up according to the parametric interval of the span. 

The derivative magnitudes for Farin’s more ‘sophisticated’ method are obtained 

analogously by substituting (2.33) and (2.34) into (2.27) and (2.28): 
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( ) ( ) ( )
1 00 0

0

0 0 0 0 1 0 0 0

a c

max ,0.5 s s max ,0.5
τ

∆ ∆

−
= = =

⋅ − ⋅

Q Q

s t s t
 (2.40) 

( )
m 3 m 3

m 2

m 3 m 3 m 3 m 2

b c

max ,0.5
τ

∆ ∆
− −

−

− − − −

= =
⋅s t

 

 
( ) ( )

m 2 m 3

m 2 m 3 m 3 m 2
s s max ,0.5

− −

− − − −

−
=

− ⋅

Q Q

s t
 (2.41) 

where ks  is given by (2.35). 

2.4 Knot vector generation methods 

The knot vector, U, needs to be generated before a NUBS curve can be interpolated.  

NUBS surfaces require two knot vectors, U, and V, but as they are both constructed 

analogously this section will only discuss the generation of U for a curve.  Generally, an 

open clamped knot vector is used, as this forces the ends of the control polygon to 

coincide with the ends of the curve (c.f. Figure 1.7).  The knot vector contains p 1+  

repeated knots at either end, and is bounded on [0,1]: 

{ }, , , , , , , ,0 p p 1 m m 1 m p 1u 0 u 0 u u u 1 u 1+ + + += = = = =U … … …  (2.42) 

When a cubic curve contains a single segment, the knot vector becomes 

{ }, , , , , , ,0 0 0 0 1 1 1 1=U , i.e. the knot vector required to reproduce a Bézier curve. 

When the curve contains multiple segments, i.e. m 1 p 1+ − > , the internal knots, iu , 

p 1 i m+ ≤ ≤ , need to be distributed appropriately.  There are several existing methods 

for this purpose, which are reviewed here. 
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2.4.1 Equally spaced knots 

The simplest method for spacing the internal knots is to equally space them, i.e.: 

0 pu u 0= = =… , m 1 m p 1u u 1+ + += = =…  

p i

i
u

m p 1
+ =

− +
 , ,i 1 m p= −…  (2.43) 

Piegl and Tiller [1997] warn that distributing the knots in this way can lead to a singular 

system of equations.  The problem arises because each internal knot defines the 

parametric boundary between two segments, assuming none of the knots are repeated.  A 

single segment, of degree p, can only satisfy a maximum of p 1+  data constraints.  If 

the distribution of internal knots causes a single segment to have p 1> +  data 

constraints, then intuitively the interpolation can not succeed.  Mathematically, this is 

because [ ]M  from (2.5) will not possess an inverse.   

2.4.2 Averaged knot vector 

Piegl and Tiller [1997] suggest that the internal knots should reflect the distribution of 

the parameter values, thereby ensuring that each segment does not contain p 1> +  data 

constraints.  They propose an averaging technique: 

0 pu u 0= = =… , m 1 m p 1u u 1+ + += = =…  

i p 1

p i k

k i

1
u s

p

+ −

+
=

= ∑  , ,i 1 m p= −…  (2.44) 

Whilst (2.44) ensures (2.5) will always have an inverse, the resulting curve segments do 

not necessarily start and end at a data point. 
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2.4.3 Natural knots 

de Boor [1978] proposes a natural knot method that sets the internal knots to coincide 

with the parameter values, and therefore each segment is bounded by a data point.   For a 

constrained cubic curve interpolation, the knots are given by: 

0 3u u 0= = =… , m 1 m 4u u 1+ += = =…  

3 i iu s+ =  , ,i 1 m 3= −…  (2.45) 

For an unconstrained interpolation, the first and last segments must contain 3 data 

points: 

3 i i 1u s+ +=  , ,i 1 m 3= −…  (2.46) 

The advantage of this method is that each span clearly corresponds to two (or three) data 

points, and also guarantees that (2.5) has an inverse.  Park [2001] recommends using the 

natural method to space internal knots for all odd degree B-Splines, although warns that 

even degree systems using this method can become ill-conditioned.  He proposes the 

shifting method as an alternative for even degree systems, but details are omitted here 

because this thesis is primarily concerned with cubic spline interpolation. 

2.5 Parameter reconciliation methods 

Parameterisation methods operate in a single parametric direction, and act on a string of 

data points, i.e. data for a curve interpolation.  For surfaces, the parameterisation needs 

to be calculated for each row and column of data points, resulting in multiple sets of 

parameter values.  This section gives consideration to the problem of reconciling these to 

provide a single parameterisation in each direction. 

An unconstrained surface is interpolated with a grid of data points, ,k lQ , 0 k m≤ ≤ , 

0 l n≤ ≤ .  Each point has two corresponding parameter values, ,k ls  and ,k lt .  The easiest 
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way to reconcile all the sets of the parameter values for a single parametric direction is 

to perform an arithmetic average [Piegl and Tiller, 1997]: 

,

n

k k l

l 0

1
s s

n 1 =

=
+
∑  0 k m≤ ≤  (2.47) 

,

m

l k l

k 0

1
t t

m 1 =

=
+
∑  0 l n≤ ≤  (2.48) 

These equations can be modified for constrained surfaces by replacing m with ( )m 2− , 

and n with ( )n 2− .  Instead of averaging arithmetically, geometric and harmonic 

averages can be used.  Also, the intervals may be averaged instead of the values 

themselves.  However, any method used to reconcile the ideal parameter values for a 

surface into a single set will, in general, compromise the surface quality (cf. 1.3.10).  

The only way to preserve quality is to ensure that the reconciled values differ as little as 

possible from the ideal ones by using carefully spaced data points.   

Numerical evidence suggests that there is very little performance difference between 

these methods.  All of the surface interpolations performed in this thesis use the 

arithmetic averaging strategy proposed by Piegl and Tiller [1997], i.e. (2.47) and (2.48). 

2.6 Twist vector estimation methods 

When a constrained surface is interpolated, mixed partial derivatives, also known as 

twist vectors, are required for each corner of the surface (cf. 1.3.11).  Producing a 

reasonable estimation for these vectors is problematic because they do not relate to the 

geometry of the surface.  A number of methods have been published, which are 

reviewed here. 
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2.6.1 Zero twists 

The first method, suggested by Ferguson [1964], is simply to set the four twist vectors to 

zero.  A special category of surfaces, know as translational surfaces, do have zero twists 

at the corners, although for most other types of surface this method will give undesirable 

results.  Characteristic effects include ‘flat spots’ [Barnhill et. al., 1988], and uneven 

parameterisation in the locality of the twist. 

2.6.2 Adini twists 

The Adini twist estimation method [Barnhill, et. al., 1978], uses the fact that the 

supplied points and derivatives are sufficient to completely define the boundaries of the 

corner sub-patches.  In turn, this information can be used to construct a bilinearly-

blended Coons patch in each corner of the surface.  A Coons patch is defined as: 

 

( ) ( ) ( ) ( )c d cd
u,v u,v u,v u,v= + −C R R R  (2.49) 

where ( )c
u,vR  is a ruled surface defined by two boundary curves in the u-direction, 

( )d
u,vR  is a ruled surface defined by two boundary curves in the v-direction, and 

( )cd
u,vR  is a bilinear patch through the 4 corner points of the local patch. 

Differentiation of (2.49) with respect to u and v yields a corner twist at ( )0,0C of: 

( )uv 0,0 =C ( ) ( ) ( ) ( )c c c c
0,1 0,0 1,0 1,1− + −R R R R  

  ( ) ( )c c

u u0,1 0,0+ −R R ( ) ( )d d

v v1,0 0,0+ −R R  (2.50) 

The Adini twist is obtained by selecting the relevant Coons patch and corner, and then 

scaling the sampled twist by the parametric intervals in u and v, i.e. for the corner 

corresponding to the point ( )0,0S , the Adini twist ( )[ ]uv A 0,0S  is: 
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( )
( )

( )( )[ ]

0 ,0

uv

uv A

p 1 p q 1 q

0,0
0,0

u u v v+ +

=
− −

C
S  (2.51) 

where the knot vectors of the NUBS surface are open clamped (2.42). 

2.6.3 Bessel twists 

Bessel twists [Barnhill et. al., 1988] are generated by constructing four bilinear patches 

in the vicinity of the required twist, and taking a bilinear interpolant of their twists at the 

common central vertex.  However, it is not always possible to know the geometry of 

surrounding patches and the linearity of this method implies that the error in the 

estimation will grow rapidly as sparser data sets are employed.   

2.6.4 Selesnick twists 

The normal component of a twist vector is related to the Gaussian curvature at that point.  

The Selesnick [1981] method calculates this component given an estimation of Gaussian 

curvature.  The tangent component can be calculated using another method, e.g. Adini.  

As twist vectors have no geometric interpretation, there is no assurance that the twist 

vector will be principally in the normal direction, and therefore the usefulness of this 

method is questionable.   

2.6.5 Energy method 

The Energy method [Hagen and Schulze, 1987] uses a standard fairness criterion 

[Nowacki and Reese, 1983]: 

 ( ) d2 2

min max

s

sκ κ+∫ ,  

based on the maximum and minimum curvature values at the relevant corner to evaluate 

the normal component of the twist; Farin and Hagen [1992] have developed this concept 

further.  Again, only the normal component is calculated, and the usefulness of these 

methods is limited to those situations where an accurate estimation of the curvature is 
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available.  The twist vector has a significant effect on the curvature of the surface in 

region where the twist acts – therefore any curvature estimation technique based on the 

interpolation data alone is likely to be inaccurate. 

2.6.6 Brunet twists 

Brunet's method [Barnhill et. al., 1988] is fundamentally different from the others; it 

starts from a given patch definition, and modifies it with the aim of becoming more like 

the Adini surface.  In Bézier form, this is implemented by taking a weighted average of 

the interior control points from the old surface and those resulting from using zero 

twists. 

2.6.7 Comparison of twist vector estimation methods 

Barnhill et al. [1988] considered all but one of these methods, and concluded that Adini 

was the best method in general for estimating twist vectors following a series of 

numerical tests, which produced a variety of surface curvature plots that were compared 

visually.  However, the Adini twist estimation method naïvely assumes that a bilinearly-

blended Coons patch is a reasonable approximation to a general bi-parametric patch.  

Where this assumption is invalid, the Adini twist estimation method is inaccurate.  Farin 

and Hagen [1992] did propose a further method subsequent to this review, although it 

relies on local Gaussian curvature estimates, which may be inaccurate. 

2.7 Summary 

This chapter has detailed the interpolation process for curves and surfaces.  A number of 

factors affect the quality of the interpolant, and several existing methods for controlling 

these have been presented.  Two key factors are the parameterisation and derivative 

magnitude estimation methods, which are most commonly resolved using a chord length 

approach.  Chapter 3 introduces a new family of methods to obtain the parameter values 
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and provide derivative magnitudes, and Chapter 4 compares the performance of the 

existing and new methods numerically. 

This chapter also summarised various methods for generating the knot vector.  It was 

concluded that the knot vector should be distributed in conjunction with the calculated 

parameter values, and assigning the internal knots to be equal to the parameter values 

had the advantage that each pair of adjacent points then precisely corresponds to a single 

segment. 

Options were considered for reconciling the sets of parameter values for a surface to 

produce a single set in each parametric direction, although it was concluded that there 

was very little difference in performance between the various averaging methods.  It was 

noted that any method that changed the parameter values from the ideal values would 

compromise the surface quality.  To avoid this compromise, the points themselves need 

to be spaced appropriately, which is the subject of Chapter 5.   

Several methods for estimating the twist vectors were outlined.  It was reported that the 

Adini twist, which is based on a bilinearly-blended Coons patch, is the best method in 

general, although the formulation suggests that certain geometries may not yield 

acceptable results.  Chapter 6 returns to the subject of twist vector estimation. 
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Chapter 3  

Orthogonal curve construction 

When constructing a piecewise curve, it is desirable that the parameter value varies 

linearly with arc length [Brodlie, 1980], [de Boor, 2001].  Many of the parameterisation 

and derivative magnitude estimation algorithms presented in Chapter 2 strive to obtain 

this property by approximating the distance along the curve between data points.  Ball 

[2004] shows that an equivalent formulation of this property is that the first and second 

parametric derivatives must be orthogonal. Ball proves that, in general, this condition 

will not be satisfied at all points on the parametric segment simultaneously, and proposes 

a family of new C
1
 piecewise curve construction methods that force the condition to be 

satisfied at various parametric locations.  The piecewise construction allows the 

parameter values and the derivative magnitudes to be obtained, which can then be used 

to construct a C
2
 NUBS spline by interpolation. 

The orthogonal parameterisation and derivative magnitude estimation algorithms are 

investigated analytically to establish geometric conditions that can cause instability, 

degeneracy, or over-sensitivity to changes in input data.  The performance of the 

algorithms is tested numerically in Chapter 4. 
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3.1 Orthogonal methods 

The majority of curve construction methods strive to distribute the parameter values 

such that the interpolant’s parameter will vary linearly with arc length.  The general 

strategy used is to assign parameter values in proportion to the arc lengths of the curve 

segments, which are usually estimated using a distance-based scheme such as the chord 

length between data points.  Ball [2004] shows that the parameter value of a cubic spline 

varies linearly with arc length when the first and second derivatives are orthogonal, i.e.: 

2

2

d d
0

dt dt
⋅ =

C C
 (3.1) 

where t is the local parameter of a curve segment.   

The advantage of formulating the construction process in terms of the orthogonality 

conditions is that they are parametric expressions that can be satisfied exactly, whereas 

the distance-based parameterisations need to estimate the arc length using heuristic 

methods.   

To create a piecewise C
1
 construction, the data points, kQ , and tangent directions, 

( ) ( )k u k u k
s s=t C C , are required, 0 k m 2≤ ≤ − .  The derivative magnitudes for each 

segment, ( )k k u k
a s∆= C  and ( )k k u k 1

b s∆ += C , ( )k k 1 ks s∆ += − , must be determined 

to satisfy the orthogonality conditions.  The parameter values, ks , 0 k m 2≤ ≤ − , can 

then be solved uniquely using the first order parametric continuity condition: 

k k 1

k k 1

a b

∆ ∆
−

−

=  1 k m 2≤ < −  (3.2) 

assuming 
0

s 0=  and 
m 2

s 1− = .  Rearranging (3.2) allows the parameter values to be 

obtained more efficiently by assuming 
0

s 0=  and 
1

s 1= , then calculating 
k 1

s + : 
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( )k k k 1

k 1 k

k 1

a s s
s s

b

−

+

−

−
= +  1 k m 2≤ < −  (3.3) 

The parameter values will be in the range 
k m 2

0 s s −≤ ≤ , and therefore need to be scaled 

down by a factor of 
m 2

s −  to be in the range [0,1]. 

The derivative magnitudes at the start and end of the piecewise curve are obtained by 

( ) 0
0 u 0

0

a
sτ

∆
= =C  (3.4) 

( ) m 3
m 2 u m 2

m 3

b
sτ

∆
−

− −

−

= =C  (3.5) 

A C
2
 NUBS spline is constructed by interpolation using the same parameter values and 

end derivative magnitudes; however, the internal tangent directions and magnitudes will 

vary from those of the C
1
 construction, and therefore the orthogonality conditions will be 

disturbed.  It is possible at this stage to discard the derivative information and perform 

an unconstrained interpolation; in this case, m 2−  must be replaced with m in this 

chapter, as it is assumed that the interpolation is constrained. 

Each segment of the C
1
 curve can be represented using the Hermite equation form: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )        

2 3 2 3

k k 1

2 3 2 3

k u k k u k 1

u 1 3t 2t s 3t 2t s

t 2t t s t t s∆ ∆

+

+

= − + + −

+ − + + − +

C C C

C C
 0 k m 2≤ < −  (3.6) 

where ( ) /k kt u s ∆= − . 

Substituting the first and second derivatives of (3.6) into (3.1) yields the orthogonality 

condition [Ball, 2004]: 
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( ) ( ) ( )
( ) ( )
( )

2 3 2 2 3 2 2 3 2

k k k

2 3 2 3

k k k k k k k k 1

2 3

k k k k 1

36t 108t 72t c 4 22t 36t 18t a 4t 18t 18t b

6 60t 126t 72t c a 24t 90t 72t c b

2 22t 54t 36t a b 0

+

+

− + + − + − + + − +

+ − + − ⋅ + − + − ⋅

+ − + − + ⋅ =

s t s t

t t

 

 (3.7) 

where kc  is the chord length, and ks  the unit direction of the chord: 

k k 1 kc += −Q Q  0 k m 2≤ < −  (3.8) 

( )k k 1 k kc+= −s Q Q  0 k m 2≤ < −  (3.9) 

and 
k

t , 
k 1+t  are the tangent directions.  These are illustrated in Figure 3.1: 

Figure 3.1 – Notation for C
1
 cubic spline 

The orthogonality condition (3.7) is cubic in t, and therefore there are, in general, at 

most three points on a non-rational parametric cubic segment where it can be satisfied.  

Ball’s formulation controls the parametric location of two of these points, specifically at 

t  and ( )1 t−  simultaneously.  Three different algorithms are proposed that correspond to 

distinct locations of t ; these are given by [Ball, 2004]: 

( )W 9t 1 t= −  W 0,1,2=  (3.10) 

Ball [2004] reformulates the orthogonality condition (3.7) to correspond with the 

parametric locations t  and ( )1 t− , and substitutes (3.10) to eliminate t : 

kQ

k 1+Q

kt

k 1+t

k kc s

kθ  

kφ

kχ
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( ) ( ) ( ) ( )2 2

k k k k k k k k k k 1 k k k k 12Wc 2 W a 3 3W c a W c b 1 W a b 0+ ++ − + + − ⋅ + − ⋅ + − + ⋅ =s t s t t t  

 (3.11) 

( ) ( ) ( ) ( )2 2

k k k k k k k k k k 1 k k k k 12Wc 2 W b W c a 3 3W c b 1 W a b 0+ ++ − + + − ⋅ + − ⋅ + − + ⋅ =s t s t t t  

 (3.12) 

Given the geometric data 
k

c , 
k

s , 
k

t , 
k 1+t , and the selected value of W, (3.11) and (3.12) 

can be solved for 
k

a  and 
k

b , accepting only those solutions with positive values of 
k

a  

and 
k

b .   

3.1.1 Orthogonal construction, W=0 

When W 0= , the orthogonality condition is satisfied at both ends of the segment.  

Substituting W 0=  into (3.11) and (3.12), and solving the resulting linear equations for 

,k ka b 0>  yields [Ball, 2004]: 

( )

( )
k k k k 1 k k 1

k k 2

k k 1

2
a 3c

4

+ +

+

 ⋅ − ⋅ ⋅
 =
 − ⋅ 

s t s t t t

t t
 (3.13) 

( )

( )
k k 1 k k k k 1

k k 2

k k 1

2
b 3c

4

+ +

+

 ⋅ − ⋅ ⋅
 =
 − ⋅ 

s t s t t t

t t
 (3.14) 

Certain geometric configurations of k k⋅s t  and k k 1+⋅s t  lead to negative or improbably 

small values of 
k

a  and 
k

b , so it is assumed , .k k k k 1 0 5+⋅ ⋅ ≥s t s t , i.e. ,k k 60θ φ ≤ °  (see 

Figure 3.1.), in keeping with Farin [1988].  The parameter values are given by (3.2). 

Ball [2004] proposes two variations to (3.13) and (3.14); the first is motivated by the 

convex planar configuration.   The dot products k k⋅s t  and k k 1+⋅s t  are replaced by the 

cosines ( )cos kθ  and ( )cos kφ  respectively, and k k 1+⋅t t  is replaced with ( )cos k kθ φ+ , 

which is only equivalent to ( )cos kχ  when kt  and k 1+t  are coplanar (see Figure 3.1.)  

This yields: 
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( )
( )

* * * *

* *

cos cos cos

cos

k k k k

k k 2

k k

2
a 3c

4

θ φ θ φ

θ φ

− +
=

− +
 (3.15) 

( )
( )

* * * *

* *

cos cos cos

cos

k k k k

k k 2

k k

2
b 3c

4

φ θ θ φ

θ φ

− +
=

− +
 (3.16) 

where ( )* min ,k k 60θ θ= °  and ( )* min ,k k 60φ φ= ° . 

The second variation is motivated by the circular configuration, where 
k k

θ φ= ; 

simplifying (3.15) and (3.16) with this assumption yields: 

*

*

cos

cos

k
k k

k

a 3c
2 2

θ

θ
=

+
 (3.17) 

*

*

cos

cos

k
k k

k

b 3c
2 2

φ

φ
=

+
 (3.18) 

3.1.2 Circle orthogonal parameterisation 

Cripps and Ball [2003] propose a parameterisation that is optimal for circular arcs, and is 

based on the orthogonal W 0=  construction; however, the method does not require 

tangent directions as they can be constructed from the data points.  The parameterisation 

is able to construct a C
1
 piecewise curve that has orthogonality between first and second 

derivatives at the knots. 

Given 
k

Q , 0 k m 2≤ ≤ − , let 
k k k 1−= −d Q Q , 1 k m 2≤ ≤ − , and 

i k 1 k 1 k k 1+ − += − = +e Q Q d d , 1 k m 3≤ ≤ − , as illustrated in Figure 3.2, then the 

parameterisation is given by Cripps and Ball [2003]: 

0s 0= , 1s 1=  

( )
( ) ( )

( ) ( )

2

k 1 k k k k

k 1 k k k 1 2

k k k k 1 k

s s s s
ϕ

ψ

+

+ −

+

  ⋅ + ⋅
  = + −
  ⋅ + ⋅   

d e d e

d e d e
 1 k m 3≤ ≤ −  (3.19) 
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where 
k

ϕ  and 
k

ψ  are scalars determined to ensure the condition (3.1) is satisfied at the 

knots.  
k

ϕ  and 
k

ψ  are given by Cripps and Lockyer [2005]: 

2 2

k k 1 k

1

2
ϕ += d e  (3.20) 

2 2

k k k

1

2
ψ = d e  (3.21) 

Figure 3.2 - Circle orthogonal construction 

The parameter values given by (3.19) will be in the range k m 20 s s −≤ ≤ , and therefore 

need to be scaled down by a factor of m 2s −  to be in the range [0,1]. 

3.1.3 Orthogonal construction, W=1 

When W 1=  is substituted into (3.11) and (3.12), the orthogonality condition is satisfied 

at ( )t 3 5 6= ±  and gives [Ball, 2004]: 

2 2

k k k k k k 1
2c a c b 0+− − ⋅ =s t  (3.22) 

2 2

k k k k k k
2c b c a 0− − ⋅ =s t  (3.23) 

This value of W is special because it ensures the solution is independent of the angle 

between the two end tangents, kχ .  Eliminating 
k

b  from (3.22) and (3.23) gives a 

quartic function: 

( ) ( )( ) ( )
2 24 2 2 3 4 4

k k k k k k k k k k 1 k k k k 1
f a a 4c a c a 4c 2c 0+ += − + ⋅ ⋅ + − ⋅ =s t s t s t  (3.24) 

k 1−Q

k
Q

k 1+Q

k
d k 1+d

k
e
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Ball [2004] shows that, if 
k k 1

0+⋅ >s t , then 
k k

0 a 2c< < .  The required root of 

( )kf a 0=  can therefore be found numerically; the corresponding value of 
k

b 0>  can be 

obtained from (3.24).  The parameter values are given by (3.2). 

3.1.4 Orthogonal construction, W=2 

Substituting W 2=  into (3.11) and (3.12) causes the orthogonality condition to be 

satisfied at t 1 3=  and t 2 3= , and gives [Ball, 2004]: 

2

k k k k k k k k k 1 k k k k 1
4c 3c a 2c b a b 0+ +− ⋅ − ⋅ + ⋅ =s t s t t t  (3.25) 

2

k k k k k k k k k 1 k k k k 1
4c 2c a 3c b a b 0+ +− ⋅ − ⋅ + ⋅ =s t s t t t  (3.26) 

which have solutions: 

( )

( )( ) ( ) ( ) ( ) ( )( )

k k k 1

k
2 2

k k k k 1 k k k k 1 k k k k 1 k k 1

8c
a

5 25 16

+

+ + + +

⋅
=

⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ ⋅

s t

s t s t s t s t s t s t t t
 

 (3.27) 

( )

( )( ) ( ) ( ) ( ) ( )( )

k k k

k
2 2

k k k k 1 k k k k 1 k k k k 1 k k 1

8c
b

5 25 16+ + + +

⋅
=

⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ ⋅

s t

s t s t s t s t s t s t t t
 

 (3.28) 

If 
k k 1+=t t , then there is no real solution if .

k k k k 1
0 0 8+< ⋅ = ⋅ <s t s t .  Ball [2004] 

suggests three possible solutions: 

a) Restrict applications such that , .
k k k k 1

0 8+⋅ ⋅ ≥s t s t , i.e. , .36 9θ φ < °  (3 s.f.), 

see Figure 3.1. 

b) Replace 
k k 1+⋅t t  by its average value ( )( )k k k k 1+⋅ ⋅s t s t .  This then gives the 

same formulae as (2.33) and (2.34), and extends the applicability to 

, .
k k k k 1

0 5+⋅ ⋅ ≥s t s t . 
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c) Replace 
k k 1+⋅t t  by ( )cos k kθ φ+ , motivated by the convex planar 

configuration.  This gives: 

( )* * *cos tan tan

k
k

k k k

8c
a

5 9 16θ θ φ
=

+ +
 (3.29) 

( )* * *cos tan tan

k
k

k k k

8c
b

5 9 16φ θ φ
=

+ +
 (3.30) 

where ( )* min ,k k 60θ θ= °  and ( )* min ,k k 60φ φ= ° . 

3.1.5 Derivative magnitude estimation 

Each of the orthogonal construction methods, , ,W 0 1 2= , can be used to generate the 

parameter values and derivative magnitudes such that a piecewise cubic C
1
 curve could 

be constructed, having orthogonal derivatives at the parameter values specified by 

(3.10).  However, when the points, end tangents directions, end tangent magnitudes and 

the parameter values are used to interpolate a cubic NUBS curve (i.e. C
2
 continuity 

across segments), the orthogonality conditions are, in general, no longer satisfied.  Ball 

[2005] shows that it is possible to change the end tangent magnitudes, 0τ  and m 2τ − , to 

force orthogonality at either end of the interpolated spline. 

Given ( )m 1−  data points, 0 m 2−Q Q… , end tangent directions, 0t  and m 2−t , and the knot 

vector, the cubic NUBS interpolant is uniquely defined by the two end tangent 

magnitudes, 0 cτ ϕ=  and m 2 cτ ψ− = , where c is the accumulated chord length given by 

(2.36).  The cubic spline, ( ),ϕ ψC , ,0 1ϕ ψ≤ ≤ , can be expressed as the sum of three 

other cubic splines [Ball, 2005]: 

( ) ( ) ( ) ( ) ( ) ( ) ( ), , , ,1 1 1 1 1 0 1 0 1ϕ ψ ϕ ψ ψ ϕ= + − + − + −C C C C  (3.31) 

Let ( ),0 ϕ ψ′′C  and ( ),m 2 ϕ ψ−
′′C  denote the respective end second derivatives, and 
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( ) ( ), ,0 0 0ϕ ψ ϕ ψ′′ ′′= ⋅D C t  (3.32) 

( ) ( ), ,m 2 m 2 m 2ϕ ψ ϕ ψ− − −
′′ ′′= ⋅D C t  (3.33) 

To force orthogonality at the ends of the spline, values of ,ϕ ψ  need to be found such 

that: 

( ),0 0ϕ ψ′′ =D  (3.34) 

and ( ),m 2 0ϕ ψ−
′′ =D  (3.35) 

Ball [2005] formulates a pair of linear equations in ( ) ( ),1 1ϕ ψ− − : 

( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , ,0 0 0 0 01 1 1 1 1 0 1 1 1 1 1 0 0ϕ ψ′′ ′′ ′′ ′′ ′′   + − − + − − =   D D D D D  

 (3.36) 

( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , ,
m 2 m 2 m 2 m 2 m 2

1 1 1 1 1 0 1 1 1 1 1 0 0ϕ ψ− − − − −
′′ ′′ ′′ ′′ ′′   + − − + − − =   D D D D D  

 (3.37) 

Hence the two end tangent magnitudes, 0 cτ ϕ=  and m 2 cτ ψ− = , can be found. 

3.2 Analytical evaluation of algorithms 

The previous section introduced the orthogonal construction methods corresponding to 

, ,W 0 1 2= , which strive to establish orthogonality between the first and second 

derivatives at different parametric locations; however, no indication was given to 

suggest which of the methods presented are of greatest practical interest.   This section 

aims to provide insight into the behaviour of these methods by critically evaluating them 

in terms of their stability, degeneracy, and sensitivity.  The numerical performance of the 

algorithms is tested in Chapter 4 using a range of data configurations; recommendations 

on the most useful methods for general interpolation are then made, drawing on the 

information provided in both chapters.  
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In this section, it is assumed that the input data is not too extreme, i.e. that the tangents 

form an angle no greater than 90° with the chord, i.e. ,k k0 90θ φ° ≤ ≤ ° , and that no two 

consecutive data points are the same, i.e. k k 1+≠Q Q , 0 k m 2≤ < − . 

3.2.1 Stability of algorithms 

Instability may arise in an algorithm under certain geometric conditions, causing the 

result to be undefined.  Typically, this occurs when the algorithm requires division by 

zero.  The stability of an algorithm does not give any indication of how well an 

algorithm will perform given a specific data set, rather how robust it is numerically.  

This is evident when considering the equally spaced parameterisation method – the 

output is completely stable as it is not a function of the input data, but in general 

produces a poor result.  The output of an algorithm is likely to be unrealistic, albeit 

valid, when the geometry is close to that which causes instability.   

Table 3.1 summarises all of the conditions that cause instability in the orthogonal 

methods, and the equation numbers from which they are derived.  The table also states 

the geometric configurations that result in the instability condition being satisfied.  The 

orthogonal methods operate by calculating the derivative magnitudes for each segment; 

instability generally arises when a denominator evaluates to zero when calculating these 

magnitudes, or when the numerator evaluates to zero causing the denominator of another 

equation to become zero.  Following the table are a few illustrations of the geometric 

configurations that cause failure. 
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Method Equations Condition for instability Geometric configuration 

W 0=  (3.14), 

(3.3) 
( ) ( )k k 1 k k k k 12 0+ +⋅ − ⋅ ⋅ =s t s t t t  

 

i)  k 90φ = °  and ,k 0 90θ = °  

 (Figure 3.3)   

ii) Inflecting condition  

 
cos

tan
sin cos

2
1 k

k

k k

2 θ
φ

θ θ
−  −

=  
 

 

 (Figure 3.4)   

W 0 RP=  (3.16), 

(3.3) 
If ,k kθ φ  not restricted to 60°: 

( )cos cos cosk k k k2 0φ θ θ φ− + =  

i)  k 90φ = °  and ,k 0 90θ = °  

 (Figure 3.3)   

ii) Inflecting condition  

 
cos

tan
sin cos

2
1 k

k

k k

2 θ
φ

θ θ
−  −

=  
 

 

 (Figure 3.4)   

W 0 RC=  (3.18), 

(3.3) 
If ,k kθ φ  not restricted to 60°: 

cos k 0φ =  

k 90φ = °  

CO (3.19) ( )k 1 k 0+ ⋅ =d e  ( ),k 1 k 90+∠ = °d e   

(refer to Figure 3.2) 

W 1=  n/a Never n/a 

W 2a=  (3.27), 

(3.28) 

No instability, however (3.27) 

and (3.28) may be undefined 

(complex solution) when 

, .k k k k 10 0 8+< ⋅ ⋅ <s t s t  

Possibly undefined when 

, .k k 36 9θ φ > °  

W 2b=  (2.33) If ,k kθ φ  not restricted to 60°: 

,k k k k 1 0+⋅ ⋅ =s t s t  

,k k 90θ φ = °  

W 2c=  (3.29), 

(3.30) 
If ,k kθ φ  not restricted to 60°: 

cos , cosk k 0θ φ =   

,k k 90θ φ = °  

Table 3.1 – Conditions that cause instability for the orthogonal parameterisations 
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Figures 3.3 and 3.4 demonstrate failure conditions for W 0=  and W 0 RP= , and were 

interpolated using the W 1=  method for illustrative purposes.  These configurations 

cause the numerators of (3.14) and (3.16), for the W 0=  and W 0 RP=  methods 

respectively, to become zero.  This results in division by zero when the parameter values 

are calculated using (3.3). 

Figure 3.3 – Conditions for instability with W 0=  orthogonal parameterisation 

Figure 3.4 – Inflecting condition for instability with W 0=  orthogonal parameterisation 

Figure 3.4 illustrates just one of an infinite number of inflecting configurations that 

cause instability for the W 0=  and W 0 RP=  methods.  When kt  and k 1+t  are coplanar, 

the angle between the tangents is k k kχ θ φ= − .  For every value of 
k

0 90θ≤ ≤ ° , there is 

a corresponding value of 
k

φ  that will cause the W 0=  and W 0 RP=  parameterisations 

to fail; the exact value is given by: 

 

ks

.k 71 6φ = °

k 1+t  

kt

k 45θ = °

kQ
k 1+Q

ks
k 90φ = °

k 1+t

kt

k 90θ = °
ks

k 90φ = °

k 1+t

kt

k 0θ = °

kQ  k 1+Q
kQ k 1+Q
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( )cos cos cos cos cosk k k k k k2 φ θ γ θ θ φ= = −  (From the numerator of (3.16)) 

⇒  ( )cos cos cos cos sin sink k k k k k2 φ θ θ φ θ φ= +  

⇒  cos sin cos tan2

k k k k
2 θ θ θ φ= +  

⇒  
cos

tan
sin cos

2
1 k

k

k k

2 θ
φ

θ θ
−  −

=  
 

 

It is evident that all of the methods, with the exception of W 1= , become unstable when 

interpolating certain geometric configurations.  Generally, the angles between tangent 

and chord must be very large (e.g. 60> ° ) before any problems are encountered.  Many 

of the methods have numerical artifices to prevent angles in excess of 60°  being used, 

thereby averting difficulties, but this approach disturbs the orthogonality conditions for 

the C
1
 piecewise construction. 

3.2.2 Degenerate performance 

Degenerate performance occurs when the output of an algorithm is invalid, for example 

when a parameterisation algorithm produces repeated parameter values for non-

coincident points, or a derivative magnitude estimation algorithm yields a zero 

magnitude.  The output of an algorithm is likely to be unrealistic, albeit valid, when the 

geometric conditions are close to that which causes degenerate behaviour.   

Table 3.2 summarises all of the conditions that cause degeneracy in the orthogonal 

methods, and the equation numbers from which they are derived.  The table also states 

the geometric configurations that result in the degeneracy condition being satisfied.  The 

orthogonal methods operate by calculating the derivative magnitudes for each segment; 

degeneracy generally arises when a numerator evaluates to zero when calculating these 

magnitudes, which causes the parameter values for consecutive data points to become 

identical.  Following the table is an illustration of a geometric configuration that causes 

failure. 



 66 

 

Method Equations Condition for degeneracy Geometric configuration 

W 0=  (3.13), 

(3.3) 
( ) ( )k k k k 1 k k 12 0+ +⋅ − ⋅ ⋅ =s t s t t t  

 

i)  k 90θ = °  and ,k 0 90φ = °  

ii) Inflecting condition  

 
cos

tan
sin cos

2
1 k

k

k k

2 φ
θ

φ φ
−  −

=  
 

 

 (Figure 3.5)   

W 0 RP=  (3.15), 

(3.3) 
If ,k kθ φ  not restricted to 60°: 

( )cos cos cosk k k k2 0θ φ θ φ− + =  

i)  k 90θ = °  and ,k 0 90φ = °  

ii) Inflecting condition  

 
cos

tan
sin cos

2
1 k

k

k k

2 φ
θ

φ φ
−  −

=  
 

 

 (Figure 3.5)   

W 0 RC=  (3.17), 

(3.3) 
If ,k kθ φ  not restricted to 60°: 

cos k 0θ =  

k 90θ = °  

CO (3.19) ( )k k 0⋅ =d e  ( ),k k 90∠ = °d e   

(refer to Figure 3.2) 

W 1=  n/a Never n/a 

W 2a=  (3.27), 

(3.28) 

No instability, however (3.27) 

and (3.28) may be undefined 

(complex solution) when 

, .k k k k 10 0 8+< ⋅ ⋅ <s t s t  

Possibly undefined when 

, .k k 36 9θ φ > °  

W 2b=  n/a Never n/a 

W 2c=  n/a Never n/a 

Table 3.2 – Conditions that cause degeneracy for the orthogonal parameterisations  

Figure 3.5 demonstrates the failure condition for W 0=  and W 0 RP=  when 

interpolating an inflecting configuration; the red curve illustrates the degenerate curve 

interpolated using W 0= , and the blue curve illustrates a non-degenerate curve 

interpolated using W 1= .  The geometric configuration causes the numerators of (3.13) 
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and (3.15), for the W 0=  and W 0 RP=  methods respectively, to become zero.  When 

the results are used to calculate the parameter values using (3.3), consecutive values are 

identical, i.e. the parametric interval for the segment will be zero.  Also, the starting 

derivative magnitude for the segment will be zero, allowing the tangent at the start of the 

interpolated curve to differ from the specified tangent. 

Figure 3.5 – Degenerate performance with W 0=  (red), compared with W 1=  (blue) 

Again, degeneracy only occurs with large angles between the tangent and chord 

(e.g. 60> ° ), and a number of the methods have numerical artifices to limit the angles.   

3.2.3 Sensitivity to change 

The sensitivity of an algorithm is an indication of how large the change in output is 

following a small change in input.  The majority of the orthogonal parameterisations 

require tangent directions at each of the data points, and operate by varying the 

magnitudes for each span, i.e. ka  and kb .   As these magnitudes are calculated 

analogously, only ka  is considered.  This subsection investigates the sensitivity of k ka c  

following a change in the configuration of the tangents (i.e. kθ  and kφ ) for each of the 

algorithms, W 0,1,2= .   

W=0 orthogonal parameterisation 

(3.13) can be reformulated in terms of kθ , kφ  and kχ  (Figure 3.1): 

ks  k 45φ = °

k 1+t
kt

.k 71 6θ = °

kQ k 1+Q
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cos cos cos

cos

k k k
k k 2

k

2
a 3c

4

θ φ χ

χ

 −
=  

− 
 (3.38) 

When kt  and k 1+t  are coplanar, and configured such that the curve is inflecting (e.g. 

Figure 3.4), then the angle k k kχ θ φ= − .  For ,k k0 90θ φ° ≤ ≤ ° , the relationship with 

k ka c  is illustrated in Figure 3.6: 

Figure 3.6 – Variation of k ka c  with kθ  and kφ  for W 0=  (inflecting) 

It is evident that, for small ,k kθ φ , slight changes in angle do not produce a large change 

in ka ; when k k 0θ φ= = ° , a change in angle k 1θ∆ = °  produces a 0.0254% change in 

k ka c .  However, the gradient of k ka c  increases with larger ,k kθ φ , indicating greater 

sensitivity: when ,k k70 45θ φ= ° = ° , a change in angle k 1θ∆ = °  produces a 178% 

change in k ka c .  The percentage change is particularly large with this configuration as 

the absolute value of k ka c  is very close to zero, and therefore the parameterisation is on 

the verge of degenerating.   
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For non-inflecting planar configurations, the angle between tangents is given by 

k k kχ θ φ= + .  This is equivalent to the formula when it has been relaxed using the 

convex planar configuration (3.15) without capping the angles to 60°.  The relationship 

is illustrated in Figure 3.7: 

Figure 3.7 – Variation of k ka c with kθ  and kφ  for W 0=  (non-inflecting) 

In this configuration, the gradient of ka  again increases rapidly with larger values of  

,k kθ φ  reaffirming that the parameterisation is fairly sensitive to changes in input.  When 

k k 0θ φ= = ° , a change in angle k 1θ∆ = °  produces a 0.0254% change in k ka c , whereas 

at ,k k90 45θ φ= ° = °  it produces a 4.70% change. 

All non-planar configurations can be represented by rotating k 1+t  about an axis through 

kQ , k 1+Q , by an angle of 180° .  As the angle varies between 0 and 180°, the resulting 

relationship is seen to vary between the two planar configurations, Figure 3.8. 
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Figure 3.8 – The effect on k ka c when rotating k 1+t  about the chord between up to 180°   

W=0 orthogonal parameterisation – relaxed circular configuration 

The relationship between k ka c  and ,k kθ φ  for the W 0=  relaxed circular configuration 

(3.17) is illustrated in Figure 3.9; it is noted that this relationship is identical for both the 

inflecting and non-inflecting cases.  The relationship is independent of the angle 

between tangents, therefore Figure 3.9 is the same for non-planar configurations. 

Figure 3.9 – Variation of k ka c  with kθ  and kφ  for W 0=  (relaxed circular) 
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The parameterisation is relatively insensitive to changes in tangent angle for k 60θ < ° , 

but with larger angles, k ka c becomes highly sensitive.  When k 0θ = ° , a change in angle 

k 1θ∆ = °  produces a 0.00508% change in k ka c , whereas at k 89θ = °  it produces a 

100% change.  k ka c  is invariant with kφ . 

W=1 orthogonal parameterisation 

The relationship between k ka c  and ,k kθ φ  for the W 1=  parameterisation is illustrated 

in Figure 3.10.    

Figure 3.10 – Variation of k ka c  with kθ  and kφ  for W 1=  

It is evident that ka  has a relatively shallow gradient for ,k k0 90θ φ° ≤ ≤ °  compared with 

the W 0=  variations, indicating a more predictable behaviour.  When k 0θ = ° , a change 

in angle k 1θ∆ = °  produces a 0.00510% change in k ka c , whereas at k 89θ = °  it 

produces a 0.403% change.  The W 0=  method is independent of the angle between 

tangents, and therefore the relationship displayed in Figure 3.10 is equally valid for all 

planar and non-planar configurations. 
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W=2 orthogonal parameterisation 

The relationship between ka  and ,k kθ φ  for W 2a=  is illustrated in Figure 3.11 for the 

inflecting and non-inflecting planar configurations.  If k 1+t  is rotated about an axis 

through kQ , k 1+Q , between 0°  and 180° , the relationship varies between these planar 

configurations.  It is noted that ka  is only valid for , .k k 36 9θ φ < ° , and this is reflected in 

the scale. 

Figure 3.11 – Variation of k ka c  with kθ  and kφ  for W 2a=  

Assuming , .k k 36 9θ φ < ° , k ka c  does not become overly-sensitive to changes in ,k kθ φ .  

The maximum change in k ka c  occurs when 0χ = ° , in the region of ,k k39 39θ φ= ° = ° , 

where a change in angle of k 1θ∆ = °  affects the output by 0.0160% .  If the applicability 

of the algorithm is extended by replacing 
k k 1+⋅t t  with its average value 

( )( )k k k k 1+⋅ ⋅s t s t , Farin’s sophisticated parameterisation is reproduced (2.16)-(2.17), and 

the algorithm is no longer affected by the angle between the tangents.  These 

formulations give unrealistically large values of ka  when ,k k 60θ φ > ° , and become 

0

10

20

30
0

10

20

30

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

k ka c

kφ

kθ

0

10

20

30
0

10

20

30

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

kφ

kθ

Rotated 0°  

(Inflecting configuration) 

Rotated 180°  

(Non-Inflecting configuration) 



 73 

unstable at ,k k 90θ φ = ° ; Farin therefore limits ,k kθ φ  to a maximum of 60° .  The 

relationship between k ka c  and ,k kθ φ  is given in Figure 3.12.  Note that the angles on 

the graph axes have been switched for clarity. 

Figure 3.12 – Variation of k ka c  with kθ  and kφ  for W 2b=  

The gradient of k ka c  begins to rise quickly as kθ  increases, but is capped when  

k 60θ > ° ; just before this point, a change in angle of k 1θ∆ = °  would cause a 3.01% 

change in k ka c .  It is noted that k ka c  is invariant with kφ .   

The alternative proposed by Ball is to replace 
k k 1+⋅t t  with ( )cos k kθ φ+ , limiting ,k kθ φ  

to a maximum of 60° .  The relationship between k ka c  and ,k kθ φ  is given in Figure 

3.13.  Again, the axes have been switched for clarity. 
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Figure 3.13 – Variation of k ka c  with kθ  and kφ  for W 2c=  

The numerical restrictions on ,k kθ φ  prevent ka  from becoming overly-sensitive to 

changes in input data.  The largest change in output resulting from a change in angle of 

k 1θ∆ = °  occurs when ,k k60 0θ φ= ° = , with a value 2.92%. 

3.3 Summary of algorithms 

This chapter has introduced the concept of orthogonality as a means of controlling the 

parameter of a curve such that it varies linearly with arc length.  Three types of 

algorithm were presented to attain the desired orthogonality conditions at distinct 

locations corresponding to , ,W 0 1 2= .   

The W 0=  construction satisfies the condition at the beginning and end of each C
1
 

segment, i.e. ,t 0 1= .  It is stable and does not produce degenerate results for 

‘reasonable’ data configurations where ,k k 60θ φ < ° ; where the angles exceed 60° , they 
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zero, or even negative, and the algorithm can become overly sensitive to changes in 

input data. 

The W 1=  construction satisfies the orthogonality condition at ( )t 3 5 6= ±  within 

each C
1
 segment.  The algorithm is stable for all data configurations of practical interest, 

and does not need to restrict applications or limit angles to ensure numerical robustness 

or reasonable performance.  The algorithm cannot be solved analytically, requiring the 

roots to be found numerically; however, the lower and upper bounds for the roots is 

known, i.e. 
k k

0 a 2c< < , and a solution is therefore guaranteed.    

The W 2=  construction satisfies the orthogonality condition at t 1 3=  and t 2 3=  

within each C
1
 segment.  The algorithm is restricted to applications where , .k k 36 9θ φ < ° , 

which could be a limiting factor when interpolating sparse data.  Variations of this 

algorithm increase its range to ,k k 60θ φ < ° , above which the angles need to be limited. 

For small ,k kθ φ , all of the algorithms appear to yield sensible results, are stable, and not 

overly-sensitive.  For more exotic data configurations, only W 1=  can guarantee a 

reasonable solution, as there are no configurations that cause it to fail or become overly-

sensitive.  It has the added advantage that it does not require a numerical artifice to limit 

,k k 60θ φ < ° , and is independent of the angle between the tangents, kχ .  As a 

consequence, it does not compromise the orthogonality of non-planar segments.  All of 

the new parameterisations are tested numerically in the next chapter, and the 

performance compared with existing methods. 
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Chapter 4  

Numerical testing of parameterisation 

algorithms 

The previous two chapters have presented a number of parameterisation algorithms, 

along with several corresponding derivative magnitude estimation methods.  Whilst 

these chapters have described how the methods work, and any theoretical limitations 

they may have, no conclusions have been drawn with regard to their overall 

performance.  This chapter seeks to compare the performance of the algorithms 

numerically and, in conjunction with the analytical evaluations from the previous 

chapter, conclude which are most suited to the interpolation of general data sets.  A 

number of case studies are therefore considered, each with different geometric 

characteristics.  Firstly, the algorithms are used to interpolate a series of evenly spaced 

points sampled from a circular arc, to test the performance of the algorithms with 

‘ideally’ spaced data.  Next, points are sampled unevenly from the circular arc, with the 

distance between points increasing exponentially.  The algorithms are then used to 

interpolate points sampled from GCS profiles, both non-inflecting and inflecting. 
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The performance of the algorithms is assessed using two methods: absolute positional 

error, and relative curvature error.  The merits of the two approaches are discussed, and 

consideration is given to the problem of calculating a sensible relative curvature error 

when the curve inflects. 

4.1 Test methodology 

4.1.1 Algorithms 

The purpose of the tests is to assess the performance of the parameterisation algorithms 

presented in Chapters 2 and 3, which are listed in Tables 4.1a – 4.1b, with the aim of 

identifying those algorithms that are most suited to interpolating general data sets.  

Abbreviations of the method names are used in this chapter, and are given in brackets.  

Each parameterisation will be tested in conjunction with its corresponding derivative 

magnitude method.  In the case of the orthogonal methods, the data will be interpolated 

twice: firstly with its corresponding derivative method, and secondly with the method 

that forces the orthogonality condition to be satisfied at the ends of the curve. 

Parameterisation Method Derivative Magnitude Method 

Evenly spaced (ES) Total chord length (TCL) 

Chord length (CL) (TCL) 

Centripetal (Cent) (TCL) 

Geometric (Geom) (TCL) 

Harmonic (Harm) (TCL) 

Circular arc length (CA) Total arc length (TAL) 

Farin simple (FSimp) (FSimp) 

Table 4.1a – Existing parameterisation and derivative magnitude methods 
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Parameterisation Method Derivative Magnitude Methods 

W 0=  W 0=  Force orthog. at ends (FO) 

W 0=  Relaxed Planar (RP) W 0 RP=  (FO) 

W 0=  Relaxed Circular (RC) W 0 RC=  (FO) 

Circle orthogonal (CO) (CO) 

W 1=  W 1=  (FO) 

W 2a=  W 2a=  (FO) 

W 2b=  (Farin’s sophisticated) W 2b=  (FO) 

W 2c=  W 2c=  (FO) 

Table 4.1b – Orthogonal parameterisation and derivative magnitude methods 

4.1.2 Data configurations 

The first case study interpolates 6 points sampled evenly from a unit semi-circle.  The 

curvature of a circle is constant, and therefore evenly spaced points should be ideal 

[Cripps and Ball, 2003].  The second case study also uses points sampled from a semi-

circle, but the points are spaced with exponentially increasing intervals; the purpose of 

unevenly spacing the points is to test the parameterisations’ performance with data that 

is not ideally spaced. 

The third case study interpolates 7 points sampled from a non-inflecting GCS curve.  

The curvature profile of a GCS section is rational linear and varies monotonically, 

therefore the sampled points are guaranteed to represent a quality curve definition.  The 

final case study interpolates 10 points sampled from an inflecting GCS curve. 

4.1.3 Performance assessment methods 

The performance of the algorithms needs to be assessed using a quantitative measure.  

Two measures are proposed: absolute positional error, and relative curvature error.  Both 

methods have advantages and disadvantages. 



 79 

Absolute positional error is easily understood, and it is simple to relate to physical 

tolerances.  Meaningful comparisons can be made between the resulting interpolants for 

a specific case study, although comparison with other curves is more difficult because 

the error is not relative to the size of the entity.  Calculating the absolute positional error 

is not straightforward, however, as the interpolants are parametric curves whilst the 

‘true’ curves, from which the points are sampled, are defined analytically.  

Two methods that can overcome these issues are discussed, and provide an absolute 

positional error between two curves.  Firstly, the absolute positional error can be taken 

as the distance between the curves in the direction of the normal from the host, or ‘true’, 

curve, as illustrated in Figure 4.1(a).  However, this method can give misleading results 

in extreme situations, Figure 4.1(b). 

 

 

 

Figure 4.1 – Absolute error calculated using distance in normal direction 

An alternative approach is adopted: both the parametric and analytical curves can be 

geometrically parameterised, that is to construct a parameter that varies linearly with a 

specific geometric feature of the curve.  For this application, it is convenient to 

geometrically parameterise the curves in terms of their arc length, scaling the parameter 

values to be on [0,1].  The absolute error is then simply given as the distance between 

points with the same geometric parameter value, see Figure 4.2.  As an interpolated 

curve must pass through the data points, the error must be zero at those locations; to 

ensure this criterion is satisfied, each segment must be individually geometrically 

parameterised. 

(a) (b) 
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Figure 4.2 – Geometric parameterisation of curve segments 

Creating a geometric parameterisation for a GCS curve is simple as it is already arc 

length parameterised.  A circle can be represented as a GCS section, and therefore poses 

no problems.  For a parametrically defined curve, ( )uC , the relationship between the 

host parameter, t, and the local geometric parameter, µ , must be established, where t is 

the local parameter for the kth curve segment: 

k

k 1 k

u s
t

s s+

−
=

−
, (4.1) 

and u is the global parameter of the curve; ks , 0 k m 2≤ ≤ − , are the parametric 

locations of the data points.  Generally, this relationship is complex, and best calculated 

numerically.  A lookup table can be employed to record corresponding t  and µ  values, 

and linear (or quadratic) interpolation used to generate intermediate values.  The lookup 

table should contain T values, and it is suggested that { }cT 2 1= +  where c is a positive 

integer; a value of c 1=  implies that the segment is sub-divided at the geometric mid-

point, and incrementing c has the effect of placing additional points halfway between 

each of the previous points.  A value of T 129=  per curve segment was found to be 

sufficient, as the difference in results obtained with T 257=  was negligible for the four 

case studies considered. 

The geometric parameters need to be evenly distributed on [0,1] for each segment: 

i

i

T 1
µ =

−
 , ,i 0 T 1= −…  (4.2) 
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Corresponding t values are initially set to the same values as the geometric parameters: 

0

i i
t µ=  , ,i 0 T 1= −…  (4.3) 

where the superscript denotes the level of recursion.  The final corresponding t values 

are obtained by iteration: 

i 1
h 1 h h

i i i f

f 0

t t lµ
−

+

=

  
= + −   

  
∑  , ,i 0 T 2= −…  (4.4) 

where h is the level of iteration, and: 

( )( ) ( )( )

( )( ) ( )( )

h h

i 1 k 1 k k i k 1 k kh

i T 2
h h

f 1 k 1 k k f k 1 k k

f 0

t s s s t s s s
l

t s s s t s s s

+ + +

−

+ + +
=

− + − − +
=

− + − − +∑

C C

C C

 , ,i 0 T 2= −…   

 (4.5) 

To ensure the parameter values are valid following floating-point computation, any 

values of .h 1

it 1 0
+ >  should be set to 1.0.  Similarly, any values of .h 1

it 0 0
+ <  should be 

set to 0.0.  The stop criterion for the iterative process is: 

h h 1

i it t ς+− <  , ,i 0 T 1= −…  (4.6) 

where ς  is the specified tolerance on the parameter.  For most applications, .0 0001ς =  

was found to be acceptable; decreasing ς  had little impact on the results, but 

significantly increased computational time. 

The maximum positional error between the GCS, ( )ξG , and the parametric curve 

segment, ( )k k 1s u s +≤ ≤C  is given by: 

( )( ) ( )( )max h

i k 1 k k i k 1 k kt s s sµ ξ ξ ξ+ +
 − + − − + G C  , ,i 0 T 1= −…  (4.7) 
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where kξ  are the arc lengths on the GCS corresponding to the sampled points, i.e. 

( ) ( )k ksξ =G C , 0 k m 2≤ ≤ − . 

The second measure of performance is relative curvature error.  Curvature can highlight 

problems that are not apparent when considering the positional error, as it is highly 

sensitive to changes in shape.  For example, curvature values can indicate if a derivative 

magnitude is too small or too large.  Relative curvature error is used because the error 

term is scaled according to the size of the entity, and therefore allows comparisons to be 

made between curves of different proportions. 

The curvature of a parametrically defined curve is given by: 

( )
( ) ( )

( )

u uu

3

u

u u
u

u
κ

×
=

C C

C
 (4.8) 

and the relative curvature error (as a percentage) is given by: 

( ) ( )
( )

actual true

true

u u
r 100

u

κ κ

κ

−
= ⋅  (4.9) 

If the curve inflects, curvature values tend to zero at the point of inflection, causing (4.9) 

to become infinite unless ( ) ( )actual trueu uκ κ= .  The relative curvature error in this region 

is therefore less meaningful.  O’Neill [1993] and Ma [2006] propose a method for 

handling relative curvature values at an inflection point.  When ( )uκ ρ< , where ρ  is a 

small curvature threshold, ( )uκ  is transformed to ( )( ) ( )( )f u u 2κ ρ κ= + , as 

shown in Figure 4.3. 
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Figure 4.3 – Small curvature transformation 

The choice of ρ  will affect the resulting relative curvature error.  O’Neill [1993] 

suggests that . 41 0 10ρ −= ×  is a reasonable value for practical purposes; Ma [2006] 

argues that ρ  can be chosen according to the maximum curvature of the application, 

and proposes ( )max.0 05 uρ κ= × .  The latter approach is adopted in this thesis, as it 

ensures that the method is geometrically invariant under translation, rotation and scaling, 

since ( )uκ∆  is invariant under translation and rotation, and relative error is scaling 

invariant. 

Despite handling small curvature errors as a special case, the usefulness of the maximum 

error as a performance assessment method is questionable.  The maximum relative error 

is very likely to occur at, or near, the inflection point, even when the curvature elsewhere 

is poor.  Where the curve contains an inflection, the absolute positional error is to be 

considered the more consistent and reliable assessment method.  If the curve does not 

inflect, both measures are useful for comparing the performance of different methods.  

0 ρ

0 
( )uκ

 

2

ρ

0 

ρ

0 

( )( )f uκ
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4.2 Case study 1 - circular arc, points spaced evenly  

The first case study interpolates 6 points sampled equally from a semi-circle, i.e.: 

cos ,sin ,
k

k k
0

5 5

π π    
=         

Q  , ,k 0 5= …  (4.10) 

The curve interpolation is constrained; 6 data points are used following the heuristic rule 

given by Cripps and Lockyer [2005] for approximating a unit circle to within a 5% 

relative curvature error using circle orthogonal parameterisation: 

 

int
6

N 1
θ

π

 
= +  

 
 (4.11) 

where N here is the number of data points to use in a constrained interpolation, and θ  is 

the span of the circular arc in radians.  The data points and tangents are illustrated in 

Figure 4.4, and are interpolated using the chord length parameterisation and the total 

chord length derivative magnitudes. 

Figure 4.4 – Case study 1 – evenly spaced points from a semi-circle 

The maximum absolute positional errors and the maximum relative curvature errors for 

case study 1 are displayed in Table 4.2 for all of the algorithms specified in Table 4.1.  It 

is broken into 3 sub-sections, corresponding to existing parameterisations, orthogonal 

0
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5
Q

5
t
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parameterisations with their corresponding derivatives, and orthogonal parameterisations 

with the derivatives that force orthogonality at the ends.   

Parameterisation 
Derivative 

Magnitude 

Max Absolute 

Positional Error 

Relative Curvature 

Error % 

ES TCL 0.000929 6.798927 

CL TCL 0.000929 6.798927 

Cent TCL 0.000929 6.798927 

Geom TCL 0.000929 6.798927 

Harm TCL 0.000929 6.798927 

CA TAL 0.000468 3.538828 

FSimp FSimp 0.005421 25.834078 

W 0=  W 0=  0.000447 3.519094 

W 0 RP=  W 0 RP=  0.000447 3.519094 

W 0 RC=  W 0 RC=  0.000447 3.519094 

CO  CO 0.000447 3.519094 

W 1=  W 1=  0.000465 3.535666 

W 2a=  W 2a=  0.000481 3.550879 

W 2b=  W 2b=  0.001265 4.279773 

W 2c=  W 2c=  0.000481 3.550879 

W 0=  FO 0.000447 3.519094 

W 0 RP=  FO 0.000447 3.519094 

W 0 RC=  FO 0.000447 3.519094 

W 1=  FO 0.000447 3.519094 

W 2a=  FO 0.000447 3.519094 

W 2b=  FO 0.000447 3.519094 

W 2c=  FO 0.000447 3.519094 

Table 4.2 – Case study 1 results 

The positional error profiles are given for each of the three sub-sections – see Figures 

4.5 to 4.7.  The chord length method is shown on all for comparison.   
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It is noted that many of the algorithms can produce identical output; where this occurs, a 

single colour is used to represent all the identical error profiles.  If two distinct curves 

are very close, one may become obscured; consideration of the data table should clarify 

its performance.  Curvature error profiles generally replicate the information in the 

positional error plots, and are therefore omitted. 

4.2.1 Positional error profiles 
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Figure 4.5 – Case study 1 positional error profiles – existing parameterisations  
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Figure 4.6 – Case study 1 positional error profiles – orthogonal parameterisations with 

corresponding derivative magnitudes  
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Figure 4.7 – Case study 1 positional error profiles – orthogonal parameterisations with 

derivative magnitudes that force orthogonality at the ends  
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4.2.2 Analysis of results 

Considering Figure 4.5, it is evident that many of the existing parameterisations produce 

identical results for this particular case study.  The points are equally spaced, and 

therefore the equally spaced, chord length and centripetal methods yield the same 

parameter values.  The geometric and harmonic averages take an average of these three 

methods, and therefore also produce identical results.  The circular arc method is seen to 

have marginally better performance, as the maximum error is smaller, and consistent for 

each segment; this is because the derivative magnitude estimate is superior than the 

chord length approximation.  Farin’s simple construction method is seen to be poor, as it 

assumes that the derivative magnitudes for each segment will be .1 2c , where c is the 

chord length between points.  For this specific case, .c 0 618=  and the arc length 

between the points is .0 628 , giving a ratio of 1.02; hence, the derivative magnitudes are 

too large. 

The orthogonal parameterisations all have comparable maximum positional errors in 

Figure 4.6, with the exception being the W 2b= (Farin’s sophisticated) method, which is 

significantly worse than the others.  Again, this is caused by the derivative magnitudes 

being too large.  It is noted that for planar, circular data, all of the W 0=  methods and 

the circle orthogonal method yield identical results; they easily outperform the chord 

length method, and marginally outperform the circular arc method. 

All of the interpolants in Figure 4.7 have the same derivative magnitude method, and 

therefore yield identical results because the points are equally spaced.  It is evident that 

equally spaced points are indeed ‘ideal’ for a circle, because the error profile is identical 

for each segment.  This also implies that the derivative magnitudes produced by the 

method that forces orthogonality at the ends are consistent with the derivatives at the 

internal knots on the C
2
 interpolated curve.  This is also true of the W 0=  derivatives, 

and all its variations. 
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4.3 Case study 2 - circular arc, points spaced exponentially 

The second case study again interpolates 6 points sampled from a semi-circle, but the 

points are spaced unequally to assess the performance of the algorithms with data that is 

not ‘ideal’.  There are an infinite number of ways to unequally space data points on a 

semi-circle, but it is desirable that the point spacing varies from dense to sparse, as the 

affect of point spacing on the resulting error profiles is then clear.  One approach that 

achieves this is to space the points exponentially: 

( )
( )

( )
( )

cos ,sin ,

k 5 k 5

k

e 1 e 1
0

e 1 e 1
π π

    − −
    =
 − −        

Q  , ,k 0 5= …  (4.12) 

The points, tangents, and the chord length interpolant are shown in Figure 4.8: 

Figure 4.8 – Case study 2 – points spaced exponentially from a semi-circle 

The maximum absolute positional errors and the maximum relative curvature errors for 

case study 2 are displayed in Table 4.3 for all of the algorithms specified in Table 4.1.   
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Parameterisation 
Derivative 

Magnitude 

Max Absolute 

Positional Error 

Relative Curvature 

Error % 

ES TCL 0.028327 165.616606 

CL TCL 0.004534 15.870222 

Cent TCL 0.016747 73.262239 

Geom TCL 0.016220 70.248957 

Harm TCL 0.016226 69.693339 

CA TAL 0.002037 7.099909 

FSimp FSimp 0.007686 28.927641 

W 0=  W 0=  0.002382 8.217297 

W 0 RP=  W 0 RP=  0.002382 8.217297 

W 0 RC=  W 0 RC=  0.002382 8.217297 

CO  CO 0.002382 8.217297 

W 1=  W 1=  0.002090 7.269744 

W 2a=  W 2a=  0.001848 6.488423 

W 2b=  W 2b=  0.003542 9.268460 

W 2c=  W 2c=  0.001848 6.488423 

W 0=  FO 0.002451 8.462202 

W 0 RP=  FO 0.002451 8.462202 

W 0 RC=  FO 0.002451 8.462202 

W 1=  FO 0.002380  8.288994 

W 2a=  FO 0.002323 8.151178 

W 2b=  FO 0.001570 6.233795 

W 2c=  FO 0.002323 8.151178 

Table 4.3 – Case study 2 results 

Again, the positional error profiles are given for each of the three sub-sections – see 

Figures 4.9 to 4.11.  The chord length method is shown on all profiles for comparison. 
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4.3.1 Positional error profiles 
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Figure 4.9 – Case study 2 positional error profiles – existing parameterisations  
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Figure 4.10 – Case study 2 positional error profiles – orthogonal parameterisations with 

corresponding derivative magnitudes 
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Figure 4.11 – Case study 2 positional error profiles – orthogonal parameterisations with 

derivative magnitudes that force orthogonality at the ends 

4.3.2 Analysis of results 

The positional error in Figure 4.9 reveals that the equally spaced parameterisation 

method performs very badly on unequally spaced data.  Consequently, the geometric and 

harmonic parameterisations are also poor.  Interestingly, the centripetal parameterisation 

performs badly too; Lee [1989] claims that it performs well when the data contains sharp 

corners, but clearly it cannot handle simple configurations when they are not ‘ideally’ 

spaced.   

Again, the orthogonal parameterisations all perform well, with the W 2b=  

parameterisation being the weakest (Figure 4.10) because the derivative magnitudes are 

too large.  However, when the W 2b=  parameterisation is used in conjunction with the 

derivatives that force orthogonality at the ends, the performance is much improved 

(Figure 4.11).  The remaining orthogonal parameterisations are approximately 

comparable when using the derivatives that force orthogonality. 
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It is evident from all of the error distributions that as the point spacing becomes sparser, 

the errors become significantly larger.  This is true for all the parameterisations and 

derivative magnitude methods, and therefore the spacing of data points is a significant 

factor in the quality of the resulting interpolant. 

4.4 Case study 3 - GCS, non inflecting 

The third case study is a non-inflecting planar GCS curve.  GCS curves, first proposed 

by Ali [1994], are defined by their curvature profile, which is rational linear and varies 

monotonically.  The curvature at any point, ( )κ ξ , is given by: 

( )
( )1 0 1 0r S

r S

κ κ κ ξ κ
κ ξ

ξ

− + +
=

+
,  0 Sξ≤ ≤ , r 1> −  (4.11) 

where ξ  is the arc length parameter, 0κ  the starting curvature, 1κ  the finishing 

curvature, r the shape factor, and S the total arc length. 

The winding angle of a GCS, ( ) ( )
0

s d

ξ

θ κ ξ ξ= ∫ , is given by Ali as: 

( )

( )( ) ( )( )

( )

log if

otherwise

0 1 1 02

2

1 0 0

S
1 r 1 r r 1 r r 0

r S S

S
2

S

ξ ξ
κ κ κ κ

θ ξ ξ
κ κ κ ξ

   
+ − + + + − ≠   

  
= 

− +



 

 (4.12) 

A point on a GCS, ( ) ( )( ), ,x y 0ξ ξ , must be obtained by numerical integration as they 

involve Fresnal integrals: 

( ) ( )( )cos
0

x d

ξ

ξ θ ξ ξ= ∫  (4.13) 
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( ) ( )( )sin
0

y d

ξ

ξ θ ξ ξ= ∫  (4.14) 

The previous section highlighted the fact that the location of the data points has a 

significant effect on the resulting interpolant.  This case study evaluates 7 points from a 

GCS curve, which are given and assumed to adequately characterise the shape – Figure 

4.12.  The number and spacing of data points was determined using methods that are 

discussed in Chapter 5. 

Figure 4.12 – Case study 3 – points from a non-inflecting GCS curve 

The maximum absolute positional errors and the maximum relative curvature errors for 

case study 3 are displayed in Table 4.4 for all of the algorithms specified in Table 4.1.   

 

 

 

 

 

0Q

6Q

6t

0t

GCS Data: 

Length, S = 0.90 

Shape Factor, r = – 0.95 

Start Curv., 0κ  = 1.0 

End Curv., 1κ  = 20.0 



 95 

Parameterisation 
Derivative 

Magnitude 

Max Absolute 

Positional Error 

Relative Curvature 

Error % 

ES TCL 0.007605 416.347974 

CL TCL 0.000478 8.933751 

Cent TCL 0.003184 110.138838 

Geom TCL 0.003637 131.678403 

Harm TCL 0.003682 134.145154 

CA TAL 0.000430 8.409158 

FSimp FSimp 0.001086 34.714553 

W 0=  W 0=  0.000151 11.328833 

W 0 RP=  W 0 RP=  0.000151 11.328833 

W 0 RC=  W 0 RC=  0.000263 12.830279 

CO  CO 0.000362 12.002592 

W 1=  W 1=  0.000167 9.900945 

W 2a=  W 2a=  0.000306 17.506601 

W 2b=  W 2b=  0.000786 28.783219 

W 2c=  W 2c=  0.000306 17.506601 

W 0=  FO 0.000167 11.635568 

W 0 RP=  FO 0.000167 11.635568 

W 0 RC=  FO 0.000628 10.341897 

W 1=  FO 0.000377 10.262211 

W 2a=  FO 0.000766 13.020017 

W 2b=  FO 0.000560 10.249609 

W 2c=  FO 0.000766 13.020017 

Table 4.4 – Case study 3 results 

The positional error profiles are given for each of the three sub-sections – see Figures 

4.13 to 4.15.  The chord length method is shown on all profiles for comparison. 
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4.4.1 Positional error profiles  
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Figure 4.13 – Case study 3 positional error profiles – existing parameterisations 
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Figure 4.14 – Case study 3 positional error profiles – orthogonal parameterisations with 

corresponding derivative magnitudes 
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Figure 4.15 – Case study 3 positional error profiles – orthogonal parameterisations with 

derivative magnitudes that force orthogonality at the ends  

4.4.2 Analysis of results 

Once again, Figure 4.13 illustrates the fact that the equally spaced and average 

parameterisations give poor results when the data is unequally spaced, principally 

because the equally spaced method is not distributing the parameter values to correspond 

with the spacing of data points.  It is seen again that the centripetal method, despite 

Lee’s [1989] claim, performs significantly worse than the chord length method.  Lee 

argued that the centripetal method was superior to chord length, especially when the data 

contains sharp changes in direction; however, where the data represents a smooth curve 

with unequally spaced data points, the chord length parameterisation is evidently better.   

The centripetal method does not attempt to distribute parameters such that they vary 

linearly with arc length; rather it reduces the parametric interval for larger spans so that 

it can increase the parametric interval for tight turns where the data is very closely 

spaced.  This allows it to perform well with very specific data sets that contain sparse 

data points and sharp turns controlled by two very close data points; however, it is 
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fundamentally inappropriate for general interpolation where the data points are 

distributed smoothly such that they characterise the shape.  The circular arc method 

consistently produces a good approximation of the true arc length, and therefore 

performs well.   

The majority of the orthogonal parameterisations have similar relative curvature errors 

to the chord length method (Table 4.4), but significantly smaller maximum positional 

errors.  This is because the maximum positional errors occur in the region of high 

curvature, and therefore the chord becomes a less accurate representation of the arc 

length in that vicinity; the relative curvature error does not highlight the problem as the 

absolute curvature value is large.  The W 0=  and W 1=  methods perform particularly 

well, although the W 2b=  method is poor, owing principally to derivative magnitudes 

that are too large.   

When the derivatives that force orthogonality at the ends are used, the W 0=  and W 1=  

methods again perform very well, but the positional error for the W 0 RC=  and W 2=  

methods is larger than the chord length interpolant.  The W 0 RC=  parameterisation 

assumes that the tangent between the chord is the same at the start and end of each 

segment, which is only true for a circle, and therefore would not be expected to perform 

well for a spiral segment; clearly forcing the derivatives to be orthogonal at the ends of 

the interpolant does not improve the performance for this parameterisation.  The W 2b=  

method is much improved by the derivatives that force orthogonality, but it is still 

slightly worse than the chord length method. 

It is apparent that, despite the points being much closer, the positional error is 

significantly larger in the regions of high curvature; the relative curvature error does not 

increase in the same fashion because the absolute curvature is also increasing. 
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4.5 Case study 4 - GCS, inflecting 

The final case study is a planar GCS curve that inflects.  There are 10 points, which are 

given and assumed to characterise the shape (Figure 4.16); the methods that are used to 

obtain the number and spacing of points are discussed in Chapter 5.  

Figure 4.16 – Case study 4 – points from an inflecting GCS curve 

The maximum absolute positional errors and the maximum relative curvature errors for 

case study 4 are displayed in Table 4.5 for all of the algorithms specified in Table 4.1.   
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Parameterisation 
Derivative 

Magnitude 

Max Absolute 

Positional Error 

Relative Curvature 

Error % 

ES TCL 0.021108 124.654416 

CL TCL 0.001595 28.461913 

Cent TCL 0.012522 66.406228 

Geom TCL 0.011998 66.992622 

Harm TCL 0.012005 72.992814 

CA TAL 0.001498 29.342923 

FSimp FSimp 0.005868 30.259348 

W 0=  W 0=  0.001006 28.790816 

W 0 RP=  W 0 RP=  0.001006 28.790816 

W 0 RC=  W 0 RC=  0.001421 27.390656 

CO  CO 0.001567 27.476649 

W 1=  W 1=  0.001259 27.596282 

W 2a=  W 2a=  0.001518 27.184208 

W 2b=  W 2b=  0.001065 25.199613 

W 2c=  W 2c=  0.001518 27.184208 

W 0=  FO 0.001013 28.851117 

W 0 RP=  FO 0.001013 28.851117 

W 0 RC=  FO 0.001586 28.712727 

W 1=  FO 0.001360 28.401553 

W 2a=  FO 0.001721 28.823576 

W 2b=  FO 0.001535 28.969306 

W 2c=  FO 0.001721 28.823576 

Table 4.5 – Case study 4 results 

The positional error profiles are given for each of the three sub-sections – see Figures 

4.17 to 4.19.  The chord length method is shown on all profiles for comparison. 
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4.5.1 Positional error profiles  

0

0.005

0.01

0.015

0.02

0.025

0 2 4 6 8 10

Arc Length Parameter

A
b

s
o

lu
te

 P
o

s
it

io
n

a
l 

E
rr

o
r

ES - TCL

CL - TCL

Cent - TCL

Geom - TCL

Harm - TCL

CA - TAL

FSimp - FSimp

 

Figure 4.17 – Case study 4 positional error profiles – existing parameterisations 
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Figure 4.18 – Case study 4 positional error profiles – orthogonal parameterisations with 

corresponding derivative magnitudes 
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Figure 4.19 – Case study 4 positional error profiles – orthogonal parameterisations with 

derivative magnitudes that force orthogonality at the ends 

4.5.2 Analysis of results 

Figure 4.17 again emphasises the poor performance of the existing algorithms; the 

equally spaced and average parameterisations due to the data points not being spaced 

with equidistant intervals, the centripetal parameterisation because it is not striving for 

an arc length parameterisation on smooth data, and Farin’s simple method because it 

assumes a fixed arc length to chord ratio.  The chord length and circular arc 

parameterisations have very comparable performance, but are generally inferior to the 

orthogonal methods. 

It is noted that the maximum relative curvature errors displayed in Table 4.5 are 

comparable for all of the orthogonal methods, although the usefulness of this error term 

is questionable as the curves inflect.  The W 0 RC=  method is only marginally better 

than the chord length parameterisation; again, it was not anticipated that it would 

perform well on data sets that are not symmetrical (i.e. angle between chord and tangent 
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equal at either end of each segment).  The W 0= , W 1=  and W 2b=  parameterisations 

all have a comparatively small maximum positional error when used in conjunction with 

their corresponding derivative magnitude methods, indicating that the C
1
 curve 

construction process is not adversely affected by inflecting configurations.  The W 0=  

and W 1=  parameterisations also perform well when coupled with the derivative 

method that forces orthogonality at the ends, as the new magnitudes differ only slightly 

from the original ones; however, the W 2b=  case no longer performs well, as the 

magnitudes are smaller. 

The positional error profiles all indicate that the point density in the region of the 

inflection is not quite sufficient, as this is the region that has the greatest error.  This 

does not, however, invalidate the test results, as parameterisations must be able to 

operate with less than ‘ideal’ data. 

4.6 Summary 

The numerical case studies considered in this chapter allow certain conclusions to be 

drawn with regard to the performance of the parameterisation and derivative magnitude 

estimation algorithms presented in chapters 2 and 3.  Three broad categories are used to 

summarise the performance: ‘poor’, ‘reasonable’ and ‘good’ – see Table 4.6. 

Poor Reasonable Good 

Equally spaced Chord Length W 0=  

Centripetal Circular Arc W 0=  Relaxed Planar 

Geometric W 0=  Relaxed Circular W 1=  

Harmonic Circular Orthogonal  

Farin Simple W 2a=   

 W 2b=  (Farin Sophisticated)  

 W 2c=   

Table 4.6 – Performance of algorithms 
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‘Poor’ parameterisations are defined as those which are insensitive to either the spacing 

of data points, or the configuration of tangents directions.  The worst method was the 

equally spaced parameterisation, as it simply assigns a constant parametric interval to 

each segment, irrespective of the geometric distribution of points.  The geometric and 

harmonic average parameterisations are therefore adversely affected.  The centripetal 

parameterisation does not attempt to distribute parameter values to reflect the arc length 

of the curve, rather concentrating the parametric intervals for the segments that have 

shorter chords; this strategy is only appropriate with very specific data sets that contain 

sharp corners and sparse flat regions.  Finally, Farin’s simple method only succeeds if 

the ratio of the arc length to the chord is close to the ‘magic’ number of 1.2. 

The next category is the ‘reasonable’ parameterisations, which are defined as those that 

produce parameter values and derivative magnitudes that closely resemble the true arc 

length-equivalents, and perform well for the majority of data configurations.  Of the 

existing methods, this category includes the chord length and circular arc 

parameterisations.  The circular arc parameterisation has a more accurate method of 

estimating the arc length of a segment, and therefore usually outperforms the chord 

length parameterisation by a small margin.  The chord length approach, however, is very 

stable, simple and intuitive.  The W 0 RC=  parameterisation assumes that the angle 

between the tangent and the chord is constant at the beginning and end of each segment, 

which for general data proves to compromise the results, although it usually outperforms 

the chord length method.  The CO  method does not use the intermediate tangent 

information, assuming that the data points lie on a circle.  Whilst this is an advantage 

when the intermediate tangents are not available, the results are not as good for non-

circular data compared with other orthogonal methods.  The W 2=  parameterisations 

did not perform consistently well in the numerical tests; interestingly, the W 2b=  

occasionally performed extremely well, but with other geometries was very poor.   
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The last category, or the ‘good’ parameterisations, is defined as those that consistently 

performed well for all the geometries considered, and includes the W 0=  and W 1=  

methods.  Of these parameterisations, the case studies highlight that neither method 

outperforms the other in all circumstances, and that the difference in performance 

between these methods is generally negligible.  However, the analytical investigation 

from the previous chapter provides additional guidance when making a decision.   

The W 0=  method performed consistently well with both its corresponding derivative 

magnitude method, and the derivatives that force orthogonality at the ends.  The 

algorithm requires that the angles between the tangents and chord be limited to 60°  to 

ensure numerical stability, although such geometries will rarely be encountered when 

interpolating data that characterises the desired shape.  The W 0=  method is a function 

of the angle between tangents for each segment; the W 0 RP=  version relaxes the 

construction, removing the dependence on the angle between tangents, but this 

compromises the orthogonality conditions for non-planar and inflecting configurations. 

The W 1=  method also performed consistently well with both derivative methods.  The 

algorithm is stable for all reasonable data configurations, and has the advantage that it is 

independent of the angle between tangents.  This means that the orthogonality condition 

is not compromised by relaxing the construction to a planar configuration.  

It is evident that formulating the parameterisations in terms of the orthogonality between 

first and second derivatives is a much superior approach of distributing parameter values 

compared with the conventional methodologies.  In all the numerical cases considered, 

the W 0=  and W 1=  methods outperformed the chord length parameterisations in terms 

of maximum absolute positional error.  The W 1=  parameterisation method is 

recommended over the W 0=  method, as it is stable for all reasonable data 

configurations, and is independent of the angle between tangents. 
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Chapter 5  

Spacing of data points 

The focus of the previous three chapters has been on optimising the interpolation 

process, i.e. given data points and derivatives, selecting the most appropriate methods 

for obtaining the parameter values, derivative magnitudes, etc..  This chapter considers 

how the data points are actually obtained, as the location of the data points can have a 

significant impact on the quality of the resulting interpolant, and yet the subject is often 

overlooked.  For example, points that are equally spaced along the circumference of a 

circle are ideal, but equally spaced points used to interpolate a GCS leads to a poor 

representation – Figure 5.1(a).  An alternative spacing method that provides a greater 

density of points for regions of higher curvature is much more successful, Figure 5.1(b). 

Figure 5.1 – Points sampled from a GCS (a) Equally spaced; (b) Improved spacing 

(a) (b) 
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This chapter assumes that points can be sampled at any location on the original 

geometry, which might be a defined analytically, e.g. a circle or GCS, or parametrically, 

e.g. a NUBS curve.  Alternatively, the curve could be originally represented by a dense 

string of points, from which a significantly smaller subset could be retained, i.e. data 

reduction.   

Some consideration is also given to the number of points used to represent a given curve.  

Increasing the number of data points, if spaced optimally, will decrease the maximum 

positional error between the original and the interpolant.  However, over definition is 

undesirable, as it leads to data proliferation and can compromise follow on activities 

[Cripps and Lockyer, 2005]. 

The discussion in this chapter is restricted to the positioning of points on a planar curve, 

although many of the methods presented can easily be modified for general freeform 

curves.  Points on a surface would need to be calculated as rows and columns of curves, 

and then average values positioned using a geometric arc length parameterisation 

method such as that presented by Czerkawski [1996] and improved by Chong [2006]. 

5.1 Background  

The optimal spacing of data points has been considered in contexts other than 

interpolation; Pitteway [1967] describes an algorithm for plotting ellipses such that the 

pen, when drawing in straight line segments, deviates from the desired curve as little as 

possible.  A similar algorithm is given by Partridge [1968] for plotting hyperbolas.  

Smith [1971], motivated by the limitations of computer display hardware, proposed 

methods for drawing ellipses, hyperbolas and parabolas using a fixed number of points.  

This last article is particularly relevant to the current topic. 
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Smith argues that, given a fixed number of points, there is an obvious distribution of 

those points to graphically represent a circle.  Equal angle increments with a point on the 

perimeter for each angle leads to a satisfactory representation, assuming the number of 

points, N, is great enough.  However, using the same method to produce an ellipse can 

fail to represent the small ends if the eccentricity is large, as shown in Figure 5.2: 

 

Figure 5.2 – Equal angle representation of an ellipse 

Smith [1971] proposes that the ellipse be represented parametrically.  An ellipse centred 

at the origin with axes 2a and 2b is given by: 

cosx a φ=  (5.1) 

siny a φ=  (5.2) 

where φ  is a parameter (not an angle) that is incremented in ( )2 N 1π −  steps over the 

interval [ ],0 2π .  An example of the resulting point spacing is given in Figure 5.3.  The 
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density of the points is greater in the regions of higher curvature.  Smith proves that this 

point distribution method actually yields the maximum possible inscribed area for the 

polygon using any given N. 

 

Figure 5.3 – Points spaced on the ellipse such that the inscribed area is maximum 

In a similar fashion, Smith [1971] provides parametric representations for the hyperbola 

and parabola, again both of which produce a polygon with the maximum inscribed area.  

Whilst these methods have no direct application to the spacing of data points on a 

freeform curve, the concept of spacing points such that the inscribed area is maximum 

can be utilised; a method developed using this concept is presented in Section 5.3.2. 

5.2 Existing methods for point spacing with freeform curves 

Each of the point spacing methods presented in this chapter position data points, *

k
Q , 

0 k N 1≤ ≤ − , where the superscript denotes the method used.  The location of *

k
Q  can 

also be represented by geometric parameters: the arc length, *

k
ξ , is the distance along the 

curve from *

0
Q  to *

k
Q , and the winding angle, *

k
ω , is the total winding angle through 

which the curve turns between *

0
Q  and *

k
Q .  As the arc length and winding angle are 

geometric parameters, they are independent of the method used to define the original 

curve.  If the point is sampled from a parametric curve, then it has an associated 

parameter value, i.e. ( )* *

k k
s=Q C .  There is a unique correlation between each of these 

representations; corresponding values can be calculated using a numerical search. 
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A commonly used method for spacing points along a freeform planar curve is to evenly 

space the data points by arc length.  The arc length from 
0

Q  to distance

k
Q  is given by: 

distance
distance N 1
k

k

N 1

ξ
ξ −=

−
,  0 k N 2≤ ≤ −  (5.3) 

where distance

N 1ξ −  is the total arc length, and can be found numerically by approximating the 

curve with a large number of linear segments.  Rogers and Adams [1990] warn that 

points spaced equally by distance can lead to a poor representation when the radius of 

curvature decreases monotonically, as illustrated in Figure 5.1(a).   

When points are evenly spaced on a circle, the winding angle between each point is 

constant.  This suggests that points on any curve can be distributed by constant winding 

angle, thus providing a greater density of points in regions of higher curvature.  The total 

winding angle from the start of the curve to angle

kQ  is given by: 

angle
angle N 1
k

k

N 1

ω
ω −=

−
,  0 k N 2≤ ≤ −  (5.4) 

where angle

N 1ω −  is the total winding angle, which can be found numerically by 

approximating the curve with a large number of linear segments, and summing the angle 

between consecutive segments.  Figure 5.4 illustrates a GCS interpolating points 

sampled by constant winding angle. 

Figure 5.4 – Points sampled from a GCS by constant winding angle 
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It is evident, however, that the greater density of points at one end of the GCS seriously 

compromises the shape at the other end where there are now insufficient points.   

Both Smith [1971] and Rogers and Adams [1990] advocate that the point distribution 

should ‘reflect’ the curvature, although neither suggest any practical way of 

implementing this.  Where the curvature of the original curve monotonically increases, 

e.g. like a GCS, then implementing a linear relationship between the density of the 

points and the value of curvature is possible – see Figure 5.5.  It is clear that such a 

direct relationship produces very poor results when the curvature variation is large, as 

the curve is seriously under-represented in the region of low curvature.  Even despite the 

poor results, implementing this as a general point spacing method is troublesome: many 

curve definitions will have fluctuating and complex curvature profiles, or are defined by 

a dense string of points and, subsequently, have no explicit curvature definition.  As a 

consequence, no further consideration is given to points spaced linearly with curvature 

in this chapter.  It is therefore desirable that any new methods are sensitive to variations 

in curvature, but be formulated in terms of position and tangent information. 

Figure 5.5 – Points sampled from a GCS by a constant curvature variation 

5.3 New methods for point spacing 

5.3.1 Weighted average of distance and angle 

The first new method to be proposed is a ‘quick and easy’ method, and is produced by 

taking a weighted average of the methods that space points equally by distance and 
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angle.  The average is arithmetic, and applies to the geometric arc length from the start 

of the curve to the kth points, produced by the two methods:  

weighted distance angle

k k k

1 2

3 3
ξ ξ ξ= +  0 k N 1≤ ≤ −  (5.5) 

where *

k
ξ is the arc length distance from *

0
Q  to *

k
Q , and the superscript denotes the point 

spacing method.  The weightings in (5.5) were obtained heuristically.  Figure 5.6 

illustrates the point spacing method on a GCS.  The density of the points increase with 

curvature, as when spaced by angle, but the ‘flatter’ region is more controlled, as when 

spaced by distance. 

Figure 5.6 – Points sampled from a GCS by a weighted average of distance and angle 

5.3.2 Maximum inscribed area  

Another method is proposed that is motivated by the work of Smith [1971], who 

distributed points on ellipses, hyperbolas and parabolas such that the inscribed area was 

a maximum.  This concept can be applied to the distribution of points on a freeform 

curve.  Smith proves that a polygon inscribed in a convex curve has maximum area 

when, for every three consecutive points, the tangent at the middle point parallels the 

chord between the other two points.  This is illustrated in Figure 5.7; it is intuitive 

because the maximum area of the triangle occurs when the height, perpendicular to the 

chord, is greatest.  Because the curve is convex, the maximum height must occur when 

the tangent is parallel to the chord. 
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Figure 5.7 – Condition for maximum inscribed area of convex polygon 

The location of the points on the curve can be repositioned iteratively such that: 

( ) ( )( ) ( )k 1 k 1 u k
s s s 0+ −− × =C C C  1 k N 2≤ ≤ −  (5.6) 

It is noted that this method can only be used where the curve is strictly convex, i.e. 

contains no inflections, although the curve could be split into sections with monotonic 

curvature, and the method applied to each section individually.  However, the location of 

the points between sections may not be ideal, and could result in some sections being 

under-specified; it is therefore not recommended.  The method is illustrated in Figure 5.8 

for convex data. 

Figure 5.8 – Points sampled from a GCS by the maximum inscribed area method 

5.3.3 Constant projected distance 

A third new method is proposed, that aims to maintain as constant the sum of the 

projected distances for each segment, see Figure 5.9: 
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Figure 5.9 – Construction of the projected distances 

The method requires the sum of the projected distances for each segment to be constant, 

i.e.: 

( ) ( )k k k 1 k 1d e d e+ ++ = +  0 k N 2≤ ≤ −  (5.7) 

where: 

k k k 1d += ×c t  (5.8) 

k k ke = ×c t  (5.9) 

Conceptually, requiring ( )k kd e+  to be a constant ensures that regions of higher 

curvature receive a greater density of points because the angle between the chord and 

tangent will be large.  However, regions of low curvature are less likely to be under-

represented because ( )k kd e+  increases with the length of the chord.  The method 

therefore creates a balance between the point density and curvature.  The spacing of data 

points on a GCS using the constant projected distance (CPD) method is illustrated in 

Figure 5.10. 

Qk 
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 tk 
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ck 
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dk+1 
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Qk Data points, 0 k N 1≤ ≤ −  

ck Chord, (Qk+1 – Qk)  
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dk Projected distance between 

chord ck, and tangent tk+1 at Qk 

ek Projected distance between 

chord ck, and tangent tk at Qk+1 
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Figure 5.10 – Points sampled from a GCS by the constant projected distance method 

The points need to be iteratively repositioned to satisfy condition (5.7).  The process is 

well behaved when the curve is convex: moving point k 1+Q  further along the curve has 

the effect of increasing both kd  and ke , and reducing both k 1d +  and k 1e + .  This is not 

true in the region of an inflection, but numerical evidence suggests that ( )k kd e+  will 

still increase, and ( )k 1 k 1d e+ ++  decrease, so a numerical solution is always possible.   

The CPD method tends to under-represent regions that contain an inflection.  Consider 

the curve in Figure 5.11: 

Figure 5.11 – Construction of CPD method when the curve inflects 
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The curve inflects somewhere between iQ  and i 1+Q ; it is possible to reflect the curve 

beyond the inflection point such that the resulting curve has the same absolute curvature, 

but remains convex.  One might expect that the distribution of points on these two 

curves should be mirrored in the reflection line, but Figure 5.11 illustrates that the sum 

of the projected distances is very different for the corresponding i 1+Q  and i 1+
′Q  points.  

Without reflecting the curve, the inflection causes the projected distances id  and ie  to 

under-represent the extent of the local change in shape.   

An inflecting version of the CPD method, ICPD, therefore checks to see if two 

consecutive points bound an inflection, and reflects the curve in the tangent at the 

inflection point if they do.  The parametric location of the reflected point, i 1+
′Q , that 

satisfies (5.7) is used to obtain the corresponding point on the true curve, i 1+Q .  The 

difference between the CPD and ICPD methods is given in Figure 5.12.  It is anticipated 

that this method will perform well when the rate of change in curvature is large. 

Figure 5.12 – Inflecting GCS curve spaced using (a) CPD, (b) Inflecting CPD methods 
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5.4 Numerical testing of spacing methods 

The performance of the spacing algorithms is assessed numerically by sampling and 

interpolating points from three different curves:  a non-inflecting GCS, an inflecting 

GCS, and a damped oscillatory function.  There would be no benefit in sampling points 

from a circle, as each of the methods reviewed would equally space the points.  In all 

cases, the points will be interpolated using the W 1=  orthogonal parameterisation 

method, following the conclusions of Chapter 4, with the derivative magnitudes that 

force orthogonality at the ends.  The performance of the algorithms will be assessed in 

terms of the maximum absolute positional error between the interpolated curve and the 

original definition, calculated using a geometric parameterisation approach (see 

Chapter 4).  Relative curvature error is not used as a measure of performance, because 

two of the case studies contain inflections, causing the relative curvature measure to 

become less meaningful and possibly misleading. 

5.4.1 Non-inflecting GCS 

The first case study requires points to be sampled from a non-inflecting GCS profile, 

which is defined as follows: 

Total arc length S 1.393465 

Shape factor r -0.952602 

Start curvature 
0κ
 

0.000002 

End curvature 
1κ
 

20.587628 

Table 5.1 – Case study 1 GCS definition 

The minimum number of points that should be used to interpolate any given curve is 

discussed in Section 5.5; following the recommendations in that section, 8 points are 

used to interpolate the GCS curve.  The point distributions and maximum positional 

errors for each point spacing method are illustrated in Figure 5.13. 
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Figure 5.13 – Case study 1 – point distributions on a non-inflecting GCS 
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It is evident from Figure 5.13 that points spaced evenly by distance or angle do not 

perform well; distance based points do not account for any change in curvature, whereas 

angle based points overcompensate in the region of increased curvature.  As the 

weighted average method balances these two distributions, it does perform well; the 

heuristically defined weighting factor is seen to be appropriate as the positional error is 

approximately equal at either end of the GCS. 

The maximum inscribed area method performs very well, although the CPD method is 

better still, having a slightly reduced maximum error in the region of highest curvature.  

The maximum inscribed area method has a smaller error at the beginning of the curve, 

but reducing the error in one region of the curve often means the error in another region 

will be larger.  It is noted that the inflecting CPD method produces an identical result to 

the CPD method as the curve does not contain an inflection. 

5.4.2 Inflecting GCS 

The second case study requires points to be sampled from an inflecting GCS profile, 

which is defined in Table 5.2; 10 points are used following the guidelines in Section 5.5.   

Total arc length S 24.0 

Shape factor r -0.58 

Start curvature 
0κ
 

0.16 

End curvature 
1κ
 

-0.65 

Table 5.2 – Case study 2 GCS definition 

It is noted that the maximum inscribed area method is not used because it only operates 

with convex data – see Section 5.3.2.  The point distributions and maximum positional 

errors for each point spacing method are illustrated in Figure 5.14. 
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Figure 5.14 – Case study 2 – point distributions on an inflecting GCS 
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Again, points equally spaced by distance are completely insensitive in regions with 

larger curvature, and therefore perform badly.  All of the other methods have fewer 

points in the region of the inflection, allowing a greater density of points where the 

curvature is greater, hence the error distributions are similar.  It is apparent that the 

points equally spaced by angle are a very poor representation of the curve in the 

inflecting region, as the angular variation is minimal.  Whilst the weighted average 

method has a smaller maximum positional error compared with the previous two 

methods, it still does not perform very well around the inflection.  The weighting factor 

is seen to bias the resulting point distribution too much towards the angle spaced points, 

indicating that there is no ‘ideal’ weighting factor. 

The CPD method performs very well over the entire curve, having a significantly 

reduced maximum positional error.  The ICPD method slightly outperforms the standard 

method because the curve inflects, causing the density of points to be increased in the 

region of the inflection.  The difference is only small because the angular variation in the 

region of the inflection is small, as expected. 

5.4.3 Damped oscillatory function (data reduction) 

The final case study has two aims; firstly, it tests the point spacing algorithms on more 

‘exotic’ data, which is irregular, contains large variations in curvature, and has multiple 

inflections.  The second aim is to demonstrate how the algorithms can be used for data 

reduction.   

The data is generated using the damped oscillatory function: 

cos sin ,
1 1

x x
2 2

1 19 1
y 1 e 3x e 3x 0 x 12

2 23

− −   
= − + ≤ ≤   

   
 (5.10) 

where points are sampled . , . , , . , .x 0 0 0 1 11 9 12 0= … .  This creates a set of 121 points, 

Figure 5.15, which is significantly greater than the number of points required to 
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characterise the geometric shape.  From this data set, the algorithms are used to select a 

subset of 15 points, following the general guidance given in Section 5.5, which are then 

used to interpolate the curve.   

 

Figure 5.15 – Case study 3 - points used for data reduction 

The point distributions and maximum positional errors for each point spacing method 

are illustrated in Figure 5.16.  Again, the maximum inscribed area method is not used, as 

the data contains three inflections – see Section 5.3.2. 
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Figure 5.16 – Case study 3 – data reduction 
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The interpolants passing through the points spaced by constant distance or winding angle 

are once again poor; the constant distance method does not provide a sufficient density 

of points in the regions of high curvature, and the constant angle method under-specifies 

regions with low curvature.  The weighted average method provides a much improved 

representation of the data, although the CPD methods produce the best results.  The 

inflecting CPD method has only a marginal performance advantage over the standard 

method.  This is because the CPD method placed data points very near to the first two 

inflection points of the curve, which effectively makes the algorithms perform 

identically in those regions.  The ICPD method reduces the error near to the third 

inflection point, but the angular variation in this region is small, causing the difference to 

be minimal. 

5.4.4 Selection of spacing methods 

The case studies highlight that the existing methods of spacing points by constant 

distance or constant angle will often result in a poor representation of the original curve.  

A non-iterative method takes the weighted average of these methods, and usually yields 

improved results.  The maximum inscribed area method was seen to outperform the 

weighted average method, although is only applicable to data that is strictly convex. 

The constant projected distance methods were seen to outperform the other methods in 

all of the experiments conducted; they place points in such a way that regions of high 

curvature have a higher density of points, as the angle between chord and tangent is 

large, and regions of low curvature are not under-represented, as the projected distances 

are proportional to the chord between data points.  The ICPD method was seen to have a 

marginal performance advantage over the CPD method because it treats any segments 

with inflections as if the curve were convex. 
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5.5 Number of data points 

It can be expected that in general, increasing the number of points will reduce the error 

between the original and interpolated curves, and likewise decreasing the number of data 

points will increase the error.  Generally, one should select the number of points that is 

necessary to achieve the required accuracy for the given application.  For example, 

automotive industries require very high tolerances for A-class surfaces such as exterior 

car panels, whereas toolmakers for the casting industry will probably use more relaxed 

tolerances [Cripps, 2003].  Using significantly more points than required will usually 

guarantee tolerances are met, although Cripps and Lockyer [2005] warn that this can 

lead to data proliferation, which has adverse implications for data processing, 

management and manipulation.  In this section, a ‘guideline’ for the minimum number 

of points that will yield an acceptable result is presented. 

Cripps [2003] reports that a relative curvature tolerance of 5% is sufficient to satisfy the 

exacting tolerances required by the aeronautical and automotive industries.  Motivated 

by this, Cripps and Lockyer [2005] propose a heuristic rule for the number of data points 

required to interpolate a circular arc using the circle orthogonal parameterisation: 

int
6

N 1
ω

π

 
= +  

 
 (5.11) 

where ω  is the swept angle of the circular arc.   

The rule is unaffected if the angle, ω , is considered as the total winding angle of the 

curve, allowing it to be applied to general freeform curves.  An investigation consisting 

of seven GCS curves was used to test the applicability of this rule to data with more 

complex curvature profiles than a circle.  The GCS definitions are given in Table 5.3: 
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Total arc length S 3.141 

Shape factor r 1.0 

Start curvature 
0

κ  1.0 

End curvature 
1

κ  0.1, 0.3, 0.5, 0.7, 1.0, 1.4, 2.0 

Table 5.3 – GCS definitions for ascertaining the optimum number of points 

The seven GCS curves and their corresponding curvature profiles are illustrated in 

Figure 5.17: 

Figure 5.17 – (a) GCS curves and (b) curvature profiles, used in determining the 

optimum number of points 

The investigation established that (5.11) was generally applicable to all of the GCS 

curves, although it tended to over-specify the number of points required.  A more 

appropriate rule is: 

int
5

N 1
ω

π

 
= +  

 
 (5.12) 

The majority of circular arcs, 6 2π ω π≤ ≤ , interpolated using (5.12) and the circle 

orthogonal parameterisation still yield a relative curvature error %5< .  When (5.12) is 

applied to the seven GCS curves specified in Table 5.3, and the points spaced using the 

κ =2.0

κ =1.4

κ =0.7

κ =1.0

κ =0.5

κ =0.3

κ =0.1

(a) (b) 
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constant projected distance method, the curvature errors are displayed in Table 5.4.  

Curvature errors are used following Cripps and Lockyer [2005]. 

 

End 

Curvature,  

1
κ  

Winding 

angle,  

ω ° 

Number 

of points,  

N 

Relative curvature 

error with N,  

% 

Relative curvature 

error with N-1,  

% 

0.1 80.6 3 11.670424 149.887082 

0.3 102.7 4 4.707136 10.627244 

0.5 124.7 5 3.147426 5.869782 

0.7 146.8 5 3.942306 7.487661 

1.0 180 6 3.517725 5.716739 

1.4 224.1 7 4.296107 6.421410 

2.0 290.4 9 4.471289 6.006655 

Table 5.4 – Results from interpolating seven GCS curves with (5.12) 

The table lists the number of points specified by (5.12) for each of the GCS profiles, and 

the corresponding relative curvature errors; the table also gives the relative curvature 

errors when N is reduced by one.  It is evident that, for all cases, when N is less than the 

value given by (5.12), the relative curvature error is greater than 5%.  Conversely, when 

N is given by (5.12), the relative curvature error is less than 5%, with the exception of 

the .
1

0 1κ =  case.  This indicates that (5.12) is an appropriate guideline for the minimum 

number of points to use for a given interpolation. 

The .
1

0 1κ =  case has a higher curvature error than anticipated; this is caused by the low 

value of the absolute curvature, as it is approaching an inflection, and causes the relative 

curvature error to become large.  If each of the GCS profiles were interpolated using 

exactly six points, one would intuitively expect the relative curvature error to decrease as 

the winding angle decreased.  This is illustrated in Figure 5.18.  However, the relative 

curvature error is seen to rise for GCS with the smallest end curvature, because 
1

κ  is 
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small.  In contrast, the absolute positional error is seen to continue diminishing with 

decreasing winding angle.   

Figure 5.18 – Comparison of relative curvature error with absolute positional error 

(5.12) applies to strictly convex curves.  For inflecting curves, it should be applied to 

each convex section; the total number of points required for the interpolation is then the 

sum of those required for each section, minus one for each boundary between segments.  

Where the curve contains large variations in curvature, the number of points should be 

increased by one per convex section. 

5.6 Summary 

This chapter has considered the problem of how points should be distributed to minimise 

the resulting error following interpolation, and the related problem of specifying the 

minimum number of points required to satisfy the tolerances generally required within 

industry.  It was assumed that the points can be obtained from the original geometry, 

which can be defined analytically, parametrically, or as a dense string of points. 

Two conventional methods were considered that spaced points either by constant arc 

length, or by constant winding angle.  It was discovered that the former was insensitive 

to changes in curvature, under-representing areas of high curvature, whereas the latter 

over-compensated.  A new method was proposed that takes a weighted average of these 

two approaches, and was found to yield improved results. 
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Motivated by the work of Smith [1971], a second method was developed for convex 

curves, which distributes data points such that the inscribed area is maximal.  This 

method also gave good results, but requires the solution to be found by iteration, and 

also can only be applied to strictly non-inflecting curves.  The original geometry can be 

split into sections having monotonic curvature variation, applying the algorithm to each 

section individually; however, this approach forces data points to be placed at inflection 

points, which can result in some sections being under-specified. 

A third method was proposed that aims to keep the sum of the projected distances 

constant throughout the curve.  The method also requires iteration to converge upon a 

solution, but the results were found to be excellent, outperforming all other methods in 

all the tests conducted.  A version of the method was presented that is slightly more 

sensitive to curves that inflect, although the original approach is not restricted to non-

inflecting curves. 

The second aspect of the problem was determining the number of data points to use for 

any given interpolation.  It was concluded that the number of points required is 

application dependent, although a heuristic rule was suggested that relates the number of 

data points required for interpolation to the winding angle of the curve.  This rule was 

seen to be appropriate for a number of different GCS curves. 

It is evident that the choice of a point spacing method, and the number points used, has a 

significant effect on the quality of the resulting interpolant.  The constant projected 

distance method is recommended for distributing data points; the number of points used 

should reflect the application, but a reasonable guideline is that an additional point 

should be used for every 36° change in winding angle. 
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Chapter 6  

Twist vector estimation 

Chapter 1 highlighted the need for four mixed partial derivatives, or twist vectors, when 

interpolating a constrained NUBS surface.  Generally, these twist vectors need to be 

estimated, although being second derivatives they are not related to the geometry of the 

surface, rather its parameterisation.  Several methods for estimating the twist vectors 

were reviewed in Chapter 2, and it was concluded that the Adini method [Barnhill, 

et. al., 1978] was the best existing algorithm, despite the fact that its formulation 

contains the naïve assumption that all general cubic patches can be well represented 

using bilinearly-blended Coons patches. 

This chapter presents a new twist vector estimation method that builds on the Adini 

method.  It is shown that, for quadratic data, the true twist can be exactly recreated using 

the Adini twist and a bilinearly-blended Coons patch.  The method gives excellent 

results for general cubic surfaces, and the resulting error is shown to diminish at a faster 

rate than Adini when the data is subdivided.  Numerical tests reinforce that the Improved 

method consistently outperforms Adini. 
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6.1 Improved twist vector estimation method 

6.1.1 Adini 

If a bi-cubic surface is constructed by constrained interpolation with ( ) ( )m 1 n 1− × −  

data points, it can be exactly represented with ( ) ( )m 2 n 2− × −  bi-cubic sub-patches 

using, for example, the Bézier or Ball basis.  However, the four central control vertices 

of each sub-patch are influenced by the four corner twist vectors of the interpolated 

surface, which are generally not known.  Recalling from Chapter 2, the Adini method 

[Barnhill, et. al., 1978] represents the sub-patches using bilinearly-blended Coons 

patches, which are entirely defined by their twelve external vertices.  As a consequence, 

the required four twist vectors can be sampled from the four corner Coons patches, and 

scaled according the parametric intervals of the surface ((2.50) – (2.51)).  If the 

bilinearly-blended Coons patches are a good approximation of the ‘true’ surface, the 

four sampled twist vectors will also be good.  However, where this is not the case, the 

twist vectors produced by Adini may be unacceptable. 

When a surface is constructed using data points and cross boundary derivatives, it is 

impossible to know what the ‘true’ surface is, as it is a function of the twist vectors.  It is 

possible to visually compare the performance of different twist vector estimation 

algorithms by considering the Gaussian curvature of the surfaces [Barnhill, et. al., 1978], 

although this is a subjective approach.  The performance of a twist vector estimation 

algorithm can be numerically assessed by sampling points, cross-boundary derivatives 

and twist vectors from an existing surface, and using the algorithm to estimate the twist 

vectors; the results can be compared to the sampled vectors to give a numerical measure 

of performance. 
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6.1.2 Hypothesis 

The Adini twist [Barnhill, et. al., 1978], when applied to all four corners of a single 

bicubic patch, produces a Coons patch by definition.  When an Adini twist is used at the 

corner of a multi-patch interpolation, the resulting corner sub-patch is not identical to a 

Coons patch.  This is because the twist vectors at the other three corners of the sub-patch 

do not, in general, correspond to Adini.  There is however a relationship between the 

mid-point of this patch, and the mid-point of the corresponding Coons patch.  It is 

hypothesised that, for quality surfaces [Cripps and Ball, 1998], there is an approximate 

linear relationship between these two mid-points and the mid-point that lies on the ‘true’ 

surface.  This hypothesis implies that there is an approximate linear relationship between 

the corresponding twist vectors, which can be expressed in the following form for one 

corner and is the crux of the improved algorithm: 

( ) ( ) ( ) ( )[ ] [ ] [ ]uv A uv C uv T0,0 1 0,0 0,0λ λ= − +S S S , 0 1λ≤ ≤  (6.1) 

where ( )[ ]uv A 0,0S  is the Adini twist, ( )[ ]uv T 0,0S the true twist, and ( )[C]uv 0,0S  the twist 

that would cause the interpolated surface to pass through the parametric centre of the 

locally interpolated Coons patch, ( )0 ,0
½,½C .  ( )[C]uv 0,0S  cannot be calculated directly, 

but needs to be obtained numerically.  Since, from linear algebra, the vector difference 

between any two given twist vectors is proportional to the vector difference between the 

parametric mid-points of their corresponding corner patches: 

( ) ( ) ( ) ( )( )0,0 0,0

[C] [A] [A]½,½ ½,½
uv uv

0,0 0,0 γ= + −S S C B  (6.2) 

where γ  is the scale factor of proportionality.  The value of γ  can be obtained by 

rearranging (6.2), and substituting for known vector quantities, e.g.: 

( ) ( )

( ) ( )
[Z] [A]

0,0 0,0

[Z] [A]½,½ ½,½

uv uv
0,0 0,0

γ
−

=
−

S S

B B
 (6.3) 
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where [ ]Z  indicates that the surface has been interpolated with zero twists. 

The linear relationship (6.1) is illustrated graphically in Figure 6.1 for a cubic NUBS 

interpolation with open clamped knot vectors. 

Figure 6.1 – NURBS surface interpolation showing the relationship between twists 

6.1.3 Method implementation 

The algorithm takes as input a grid of points suitable for a constrained interpolation, 

corresponding cross-boundary derivatives, and both knot vectors.  It has three discrete 

stages: 

i. A bilinearly-blended Coons patch is calculated in each corner of the surface, from 

which the Adini twists are obtained.   
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ii. Twist vectors are then calculated that force the interpolated surface to pass through 

the mid-points of each of the four corner Coons patches using (6.2).  This involves 

calculating the linear factor that relates a change in the twist to a change at the 

mid-point on the corner sub-patch (6.3).   

iii. Lastly, the linear relationship (6.1) can then be used to yield the estimated ‘true’ 

twist.  The value of λ  is given by (6.21) in Section 6.2.4. 

6.2 Analytical validation of the hypothesis 

To establish (6.1) mathematically, it is necessary to consider analytical expressions for 

each of the vector quantities.  Since the mid-point of any interpolated patch is a linear 

function of its points, derivatives and twist vectors, (6.1) can be reformulated, i.e.: 

( ) ( ) ( ) ( )[ ] [ ]½ ½ ½ ½ ½ ½0 ,0 0,0 0 ,0

A T, 1 , ,λ λ= − +B C B  (6.4) 

The three points, ( )[ ] ½ ½0 ,0

A ,B , ( )½ ½0 ,0
,C  and ( )[ ] ½ ½0 ,0

T ,B  therefore need to be expressed 

analytically for the hypothesis to be verified. 

6.2.1 True mid-point 

To simplify the analysis, the mid-point of a general bi-cubic patch can be expressed in 

terms of the cubic Ball basis [Ball, 1974]: 

( ), ,

[ ] ,½,½
3 3

0 0 0 0

T i j

i 0 j 0

1

16 = =

= ∑∑B P , ,0 i j 3≤ ≤  (6.5) 

6.2.2 Adini mid-point 

The mid-point of a patch that is part of a surface interpolated using the Adini twist 

( )[ ]uv A 0,0S  can also be expressed analytically using the Ball basis.  Initially, consider the 

corner bi-cubic sub-patch ( )[T]

0 ,0
u,vB , which is part of an interpolated surface that 
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contains 2 2×  sub-patches, and has the true twists.  It joins with C
2
 continuity to 

adjacent sub-patches.  If the twist vector for this surface were changed from the true 

value, ( )[ ]uv T 0,0S , to that estimated by Adini, ( )[ ]uv A 0,0S , the control point 0 ,0

1,1P  would 

move by a vector amount ∆ , Figure 6.2.    

Figure 6.2 – Effect on internal vertices when twist is changed from true to Adini  

The effect on the remaining internal vertices, 0 ,0

1,2P , 0 ,0

2,1P  and 0 ,0

2,2P  can be determined by 

considering the continuity conditions with adjacent patches.   Each row and column of 

control points can represent a cubic Ball segment, all of which must join with C
2
 

continuity to their corresponding segments on the adjacent patches for the overall 

surface to be C
2
 continuous.  The kth cubic Ball segment, ( )k

uB , and its derivatives is 

given in terms of its control points, k

i
P , 0 i 3≤ ≤ , by: 

( ) ( ) ( ) ( )k 2 k 2 3 k 2 3 k 2 k

0 1 2 3
u 1 2u u 2u 4u 2u 2u 2u u= − + + − + + − +B P P P P  (6.6) 

( ) ( ) ( ) ( )
k

k 2 k 2 k k

0 1 2 3

d
u 2 2u 2 8u 6u 4u 6u 2u

du
= − + + − + + − +

B
P P P P  (6.7) 

( ) ( ) ( )
2 k

k k k k

0 1 2 32

d
u 2 8 12u 4 12u 2

du
= + + + − +

B
P P P P  (6.8) 

∆

4

∆

16

∆
 

 

0,0

0,0P

 

0,0

3,0P  

0,0

0,3P 0,0

3,3P

4

∆
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If two segments, having control points 0

iP  and 1

iP , 0 i 3≤ ≤ , respectively join with C
2
 

continuity, the following relationships are obtained by substituting ,u 0 1=  into (6.6) to 

(6.8): 

C
0
: 0 1

3 0=P P  (6.9) 

C
1
: 0 0 1 1

2 3 0 12 2 2 2− + = − +P P P P  (6.10) 

C
2
: 0 0 0 0 1 1 1 1

0 1 2 3 0 1 2 32 4 8 2 2 8 4 2+ − + = − + +P P P P P P P P  (6.11) 

Eliminating 1

0P  and 1

1P  from (6.11) using (6.9) and (6.10) yields: 

0 0 0 0 1 1

1 0 2 3 2 34 2 16 16 4 2= − + − + +P P P P P P  (6.12) 

Applying this result to the surface in Figure 6.2, it is evident that moving 0 ,0

1,1P  by ∆  will 

cause 0 ,0

1,2
P  to move by 4∆  as 0 ,0

1,0
P , 0 ,0

1,3
P , 0 ,1

1,2
P  and 0 ,1

1,3
P  must be fixed to maintain C

2
 

continuity.  Likewise, moving 0 ,0

1,1P  by ∆  causes 0 ,0

2,1
P  to move by 4∆  and 0 ,0

2,2
P  to move 

by 16∆ . 

The mid-point of the Adini corner patch, ( ),

[ ] ½,½0 0

AB , can therefore be expressed 

analytically in terms of the true mid-point, ( ),

[ ] ½,½0 0

TB , and ∆ : 

( ) ( ) ( ), , ,

[ ] [ ] [ ]½,½ ½,½ ½,½0 0 0 0 0 0

A T T

1 1 25

16 4 4 16 16 16

 
= + + + + = +  

∆ ∆ ∆ ∆
B B ∆ B  (6.13) 

6.2.3 Coons mid-point 

In a similar way to the previous section, Figure 6.3 illustrates the difference in the 

internal control points between the patch ( )[ ]

0 ,0

T u,vB  and a bilinearly-blended Coons 

Patch, ( )0 0,
u,vC , constructed using the true sub-patch boundaries.  This sub-patch has 

only C
0
 continuity with bounding patches.  The control point ,

,

0 0

1 1P  must move exactly 

the same amount as Adini, i.e. ∆ , since Adini reproduces Coons.  If the boundaries of 
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the sub-patch ( )[ ]

0 ,0

T u,vB  are quadratic, the three remaining control points will be 

coincident with ,

,

0 0

1 1P , and hence they will also move by ∆  (this is a special property of 

the Ball basis).  For cubic surfaces, this assumption is only an approximation of the 

movement of 0 ,0

1,2P , 0 ,0

2,1P  and 0 ,0

2,2P ; an associated error term is therefore produced which 

is examined in Section 6.3. 

Figure 6.3 – Effect on internal vertices when the sub patch is approximated by Coons 

The mid-point of the Coons corner patch, ( ), ½,½0 0C , can therefore be expressed 

analytically in terms of the true mid-point, ( ),

[ ] ½,½0 0

TB , and ∆ : 

( ) ( ), ,

[ ]½,½ ½,½0 0 0 0

T

1
4

16
= +C B ∆  (6.14) 

6.2.4 Relationship between mid-points 

For 2 x 2 sub-patches, a ratio 2λ  between the mid-points can be expressed by 

substituting (6.13) and (6.14) into (6.4), giving: 

( ) ( )( ) ( ) ( ), , , ,

[ ] [ ]½,½ ½,½ ½,½ ½,½0 0 0 0 0 0 0 0

2 T Aλ − = −B C B C  

 ( )2

25
0 4 4

16
λ − = −

∆
∆ ∆ ∆  

 .
2

39
0 60938

64
λ = ≈  

∆ ∆

∆ ∆

0,0

0,0P

 

0,0

3,0P  

0,0

0,3P 0,0

3,3P
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It is evident that there is a relationship between the three mid-points and, therefore, there 

must be a relationship between the three corresponding twist vectors.  This relationship 

is exact for quadratic data, and approximate for cubic data.  By considering how the 

continuity conditions (6.9) – (6.11) are affected by varying the number of patches, it is 

possible to generalise this process for s x s sub-patches and observe the behaviour of 
s

λ  

as s → ∞ .  The relationship between the movements of any two internal adjacent control 

points is derived in Appendix A, and given by: 

s

1

4 f−
 (6.15) 

where 
s

s 1

0 s 2

f 1
s 3

4 f −

=


=  
≥  − 

 (6.16) 

Therefore 
s

λ  can be expressed generally: 

( ) ( )( ) ( ) ( ), , , ,

[ ] [ ]½,½ ½,½ ½,½ ½,½0 0 0 0 0 0 0 0

s T A
λ − = −B C B C  (6.17) 

 ( )( ) ( ), ,

[ ] [ ]
½,½ ½,½0 0 0 0

s T T

1
4

16
λ
  

− + =  
  

B B ∆  

( ) ( ), ,

[ ] [ ]½,½ ½,½

2

0 0 0 0

T T

s s

1 1 1 1
2 4

16 4 f 4 f 16

         + + + − +     
− −         

B ∆ ∆ ∆ B ∆  

 
( )

2

2

2

1 1
2 1 4

4 4 39 22 3

0 4 4 4

s s
s s

s

s

f f f f

f
λ

    
 + + −    − −    − + = =

− −
 (6.18) 

The value of 
s

f  in (6.16) is given by a recurrence relationship; a more convenient 

formulation using a linear difference equation is derived in Appendix B, and is given by: 

( ) ( )
( ) ( )

s 1 s 3

s s s 2

2 3 2 3
f

2 3 2 3

− −

−

+ − −
=

+ − −
, s 3≥  (6.19) 
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In the limit:  

( )lim
s

s
f 2 3

→∞
= −  (6.20) 

 ( )lim ½ .
s

s
3 3 4 0 59808λ

→∞
= − ≈  (6.21) 

s
λ  converges rapidly as s increases: with only 4 spans the relative error in 

s
λ  is less than 

0.01% – see Figure 6.4.  This analysis makes the necessary assumption that only one 

twist is being estimated, and that the other three corners have true twists.  This 

assumption is valid because the effect of an adjacent corner twist rapidly decreases as s 

increases.  By considering the continuity conditions between adjacent patches, it can be 

shown that the effect of changing ,

,

0 0

1 1P  by ∆  on the position of the mid-point in adjacent 

patches is 
h

25

16 4⋅
∆ , where h is the span index, 0 h s≤ < .   

Variation of Lamda with increasing number of spans

0.596

0.598

0.6

0.602

0.604

0.606

0.608

0.61

2 3 4 5 6 7 8 9 10 11 12

Spans

L
a
m

d
a

 

Figure 6.4 – Value of 
s

λ  as the number of spans increase 
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6.3 Error analysis for cubic data 

For quadratic data, the relationship (6.4) is exact assuming that λ  is given by (6.21) and 

s → ∞ .  It has been shown that the error associated with this assumption converges 

rapidly.  The error that results from using cubic data with the Improved algorithm can be 

evaluated; this error can then be compared with the error produced by the Adini method.  

As twist vectors have no geometric interpretation, the error term is taken as the vector 

difference between the estimated and true mid-points of the corner sub-patches, i.e.: 

( ) ( ) ( ), , ,

[ ] [ ] [ ]½,½ ½,½ ½,½0 0 0 0 0 0

A A T= −E S S  

( ) ( ) ( ), , ,

[ ] [ ] [ ]½,½ ½,½ ½,½0 0 0 0 0 0

I I T= −E S S  

The error term is developed to correspond with the sub-patch ( ),

[ ] ,0 0

T u vB ; the error terms 

for the other corner sub-patches can be derived analogously.  Analytical expressions for 

( ),

[ ] ½,½0 0

TB , ( ), ½,½0 0C , ( ),

[ ] ½,½0 0

AB  and ( ),

[ ] ½,½0 0

I
B  are required in terms of the 

original 16 control points, ,

,

0 0

i jP , ,0 i j 3≤ ≤ . 

6.3.1 True mid-point 

The mid-point of the true sub-patch is given by (6.5), although it is more convenient to 

expand this expression to include all 16 control points: 

( )

, , , ,

, , , ,

, , , ,

, , , ,,

[ ] , , , ,

, , , ,

, , , ,

, , , ,

½,½

0 0 0 0 0 0 0 0

0 0 0 1 0 2 0 3

0 0 0 0 0 0 0 0

1 0 1 1 1 2 1 30 0

T 0 0 0 0 0 0 0 0

2 0 2 1 2 2 2 3

0 0 0 0 0 0 0 0

3 0 3 1 3 2 3 3

1 1 1 1

1 1 1 11

1 1 1 116

1 1 1 1

 + + + +
 

+ + + + =
 + + + +
  + + + + 

P P P P

P P P P
B

P P P P

P P P P

 (6.22) 

Note that this is not a matrix, but a sum of 16 vector quantities. 

6.3.2 Coons mid-point 

A bilinearly-blended Coons patch is constructed from the patch’s boundary data alone.  

The internal vertices of the Coons patch using the Ball basis are given by: 
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( ) ( ), [ ] , , , , , , , ,i j C 0 j i 0 i 3 3 j 0 0 0 3 3 0 3 3

1 1

2 4
= + + + − + + +P P P P P P P P P ,  ,1 i j 2≤ ≤  

  (6.23) 

The mid-point of the coons patch, ( ), ½,½0 0C , is obtained by substituting (6.23) into 

(6.22): 

( )

, , , ,

, , , ,

, , , ,

, , , ,,

, , , ,

, , , ,

, , , ,

, , , ,

½,½

0 0 0 0 0 0 0 0

0 0 0 1 0 2 0 3

0 0 0 0 0 0 0 0

1 0 1 1 1 2 1 30 0

0 0 0 0 0 0 0 0

2 0 2 1 2 2 2 3

0 0 0 0 0 0 0 0

3 0 3 1 3 2 3 3

0 2 2 0

2 0 0 21

2 0 0 216

0 2 2 0

 + + + +
 

+ + + + =
 + + + +
  + + + + 

P P P P

P P P P
C

P P P P

P P P P

 (6.24) 

6.3.3 Adini mid-point 

The Adini mid-point cannot be expressed directly in terms of the original 16 vertices as 

it is a function of s.  When s 2= , the mid-point is given by (6.13).  By considering the 

C
2
 continuity conditions between adjacent patches, the relationship between adjacent 

internal control points is given by (6.15); the value in the limit is obtained by 

substituting (6.20): 

( )
1

2 3+
 (6.25) 

It is noted that (6.15) converges rapidly, allowing (6.13) to be rewritten for s → ∞ : 

( ) ( )
( ) ( )

, ,

[ ] [ ]½,½ ½,½0 0 0 0

A T 2

1 1 1
2

16 2 3 2 3

   
   = + + +   +  +     

B B ∆ ∆ ∆  

 ( ) ( )
( )

, ,

[ ] [ ]½,½ ½,½0 0 0 0

A T

6 2 3

16

−
= +

∆

B B  (6.26) 

The vector ∆  is given by the difference between the corresponding 0 ,0

1,1P  control points 

on the Coons and True surfaces, i.e.: 



 142 

[ ] [T]

0 ,0 0 ,0

1,1 C 1,1= −∆ P P  

 

0 ,0 0 ,0 0 ,0 0 ,0

1,1 1,1 1,1 1,1

0 ,0 0,0 0 ,0 0 ,0

1,1 1,1 1,1 1,1

0 ,0 0,0 0 ,0 0 ,0

1,1 1,1 1,1 1,1

0 ,0 0 ,0 0 ,0 0 ,0

1,1 1,1 1,1 1,1

1 2 0 1

2 4 0 21

16 0 0 0 0

1 2 0 1

 − + + −
 

+ − + + =
 + + + +
  − + + − 

P P P P

P P P P
∆

P P P P

P P P P

 (6.27) 

Therefore the convergent Adini mid-point can be expressed in terms of the original 

control points of the true sub-patch ( ),

[ ] ,0 0

T u vB  by substituting (6.27) into (6.26): 

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

, , , ,

, , , ,

, , , ,

, , , ,,

[ ]
, , , ,

, , , ,

, , , ,

, , , ,

½,½

0 0 0 0 0 0 0 0

0 0 0 1 0 2 0 3

0 0 0 0 0 0 0 0

1 0 1 1 1 2 1 30 0

A
0 0 0 0 0 0 0 0

2 0 2 1 2 2 2 3

0 0 0 0 0 0 0 0

3 0 3 1 3 2 3 3

8 6 3 28 12 3 4 8 6 3

28 12 3 44 24 3 4 28 12 31

64 4 4 4 4

8 6 3 28 12 3 4 8 6 3

+ − + + − + + − +

+ − + − + + + −
=

+ + + +

+ − + + − + + − +

P P P P

P P P P
B

P P P P

P P P P

 
 
 
 
 
 
  
 

 

 (6.28) 

6.3.4 Improved mid-point 

The Improved mid-point is obtained by rearranging (6.4): 

( )
( ) ( ) ( )[ ]

[ ]

½ ½ ½ ½
½ ½

0,0 0,0

A0 ,0

I

, 1 ,
,

λ

λ

− −
=

B C
B  (6.29) 

and assuming the value of λ  from (6.21).  The mid-point ( ),

[ ] ½,½0 0

IB  can be evaluated 

by substituting (6.24) and (6.28): 



 143 

( )
( )

,

[ ] ½,½0 0

I

2 3 3 41

64 11

+
=B  

( ) ( ) ( )
( )

( ) ( )
( ) ( ) ( )

, , , ,

, , , ,

, , , ,

, , , ,

, , , ,

, , , ,

, , , ,

, , , ,

0 0 0 0 0 0 0 0

0 0 0 1 0 2 0 3

0 0 0 0 0 0 0 0

1 0 1 1 1 2 1 3

0 0 0 0 0 0 0 0

2 0 2 1 2 2 2 3

0 0 0 0 0 0 0 0

3 0 3 1 3 2 3 3

8 6 3 4 20 12 3 8 6 3

4 44 24 3 4 4

20 12 3 4 4 20 12 3

8 6 3 4 20 12 3 8 6 3

 + − + + + − + + − +



+ + − + + +


+ − + + + + − +

 + − + + + − + + − +


P P P P

P P P P

P P P P

P P P P










 

 (6.30) 

6.3.5 Error terms 

Expressing the errors as the vector difference between the interpolated and true mid-

points, the Adini error, ( )[ ] ½,½0 ,0

AE , is found using (6.4) and (6.28): 

( ) ( ) ( ), , ,

[ ] [ ] [ ]½,½ ½,½ ½,½0 0 0 0 0 0

A A T= −E S S  

 ( ) ( )

, , , ,

, , , ,

, , , ,

, , , ,,

[ ] , , , ,

, , , ,

, , , ,

, , , ,

½,½

0 0 0 0 0 0 0 0

0 0 0 1 0 2 0 3

0 0 0 0 0 0 0 0

1 0 1 1 1 2 1 30 0

A 0 0 0 0 0 0 0 0

2 0 2 1 2 2 2 3

0 0 0 0 0 0 0 0

3 0 3 1 3 2 3 3

1 2 0 1

2 4 0 21
12 6 3

0 0 0 064

1 2 0 1

 + − + +
 

− + + − = − +
 + + + +
  + − + + 

P P P P

P P P P
E

P P P P

P P P P

 (6.31) 

The Improved error is found using (6.4) and (6.30): 

( ) ( ) ( )
,

, ,

[ ] [ ] [ ]½,½ ½,½ ½,½
0 0

0 0 0 0

I I T= −E S S  

 ( )
( )

( )

, , , ,

, , , ,

, , , ,

, , , ,,

[ ] , , , ,

, , , ,

, , , ,

, , , ,

½,½

0 0 0 0 0 0 0 0

0 0 0 1 0 2 0 3

0 0 0 0 0 0 0 0

1 0 1 1 1 2 1 30 0

I 0 0 0 0 0 0 0 0

2 0 2 1 2 2 2 3

0 0 0 0 0 0 0 0

3 0 3 1 3 2 3 3

0 1 1 0

2 3 3 4 1 3 1 11
12 6 3

1 1 1 164 11

0 1 1 0

 + − + +
 + − + − − = − +
 + − − +
  + − + + 

P P P P

P P P P
E

P P P P

P P P P

 

  (6.32) 

It is impossible to meaningfully compare the two error terms directly; it could only be 

concluded that one error was smaller than another, in general, if the coefficient of every 

control point was smaller in one expression compared with the other.  However, 

significant meaning can be obtained by observing the rate at which the error terms 



 144 

diminish when the original patch is subdivided at ( )[ ] ½ ½0 ,0

T ,B .  The 16 control points 

belonging to the subdivided patch, ,

,

0 0

i j

′P , can be expressed in terms of the original 16 

control points ,

,

0 0

i jP , 0 i, j 3≤ ≤ , by equating parametric points, derivatives and twists, at 

( ), ,0 0
0 0S , ( ), ,½0 0

0S , ( ), ½,0 0
0S  and ( ), ½,½0 0S , i.e.: 

( ) ( ), ,, ,0 0 0 0
0 0 0 0′ =S S  ⇒  , ,

, ,

0 0 0 0

0 0 0 0
′ =P P , 

( ) ( ), ,, ,½0 0 0 0
0 1 0′ =S S  ⇒  0 ,0 0 ,0 0 ,0

0 ,1 0 ,0 0 ,1

1 1

2 2

′ = +P P P , 

( ) ( ), ,, ½ ,0 0 0 0

u u0 0 0 0′ =S S  ⇒  0 ,0 0 ,0 0 ,0

1,0 0 ,0 1,0

1 1

2 2
′ = +P P P , etc.. 

Note that derivatives must be scaled down by a factor of 2, and twists by a factor of 4. 

Substituting the expressions for the subdivided control points into (6.31) and (6.32) 

gives the Adini and Improved errors following one level of subdivision: 

( ) ( )

, , , ,

, , , ,

, , , ,

, , , ,,

[ ] , , , ,

, , , ,

, , , ,

, , , ,

½,½

0 0 0 0 0 0 0 0

0 0 0 1 0 2 0 3

0 0 0 0 0 0 0 0

1 0 1 1 1 2 1 30 0

A 0 0 0 0 0 0 0 0

2 0 2 1 2 2 2 3

0 0 0 0 0 0 0 0

3 0 3 1 3 2 3 3

4 12 4 4

12 36 12 121
12 6 3

4 12 4 44096

4 12 4 4

 + − + +
 

− + − − ′ = − +
 + − + +
  + − + + 

P P P P

P P P P
E

P P P P

P P P P

 

 (6.33) 

( )
( )

( )

, , , ,

, , , ,

, , , ,

, , , ,,

[ ] , , , ,

, , , ,

, , , ,

, , , ,

½,½

0 0 0 0 0 0 0 0

0 0 0 1 0 2 0 3

0 0 0 0 0 0 0 0

1 0 1 1 1 2 1 30 0

I 0 0 0 0 0 0 0 0

2 0 2 1 2 2 2 3

0 0 0 0 0 0 0 0

3 0 3 1 3 2 3 3

0 2 2 0

2 3 3 4 2 11 7 21
12 6 3

2 7 3 24096 11

0 2 2 0

 + − + +
 + − + − − ′ = − +
 + − + +
  + − + + 

P P P P

P P P P
E

P P P P

P P P P
 

 (6.34) 

The rate at which the Adini error is reducing cannot be determined because (6.33) has 

non-zero coefficients that are not present in (6.31).  However, subdividing a second time 

overcomes this problem: 
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( ) ( )

, , , ,

, , , ,

, , , ,

, , , ,,

[ ] , , , ,

, , , ,

, , , ,

, , , ,

½,½

0 0 0 0 0 0 0 0

0 0 0 1 0 2 0 3

0 0 0 0 0 0 0 0

1 0 1 1 1 2 1 30 0

A 0 0 0 0 0 0 0 0

2 0 2 1 2 2 2 3

0 0 0 0 0 0 0 0

3 0 3 1 3 2 3 3

16 56 24 16

56 196 84 561
12 6 3

24 84 36 24262144

16 56 24 16

 + − + +
 

− + − − ′′ = − +
 + − + +
 + − + + 

P P P P

P P P P
E

P P P P

P P P P 

 

 (6.35) 

( )
( )

( )

, , , ,

, , , ,

, , , ,

, , , ,,

[ ] , , , ,

, , , ,

, , , ,

, , , ,

½,½

0 0 0 0 0 0 0 0

0 0 0 1 0 2 0 3

0 0 0 0 0 0 0 0

1 0 1 1 1 2 1 30 0

I 0 0 0 0 0 0 0 0

2 0 2 1 2 2 2 3

0 0 0 0 0 0 0 0

3 0 3 1 3 2 3 3

0 4 4 0

2 3 3 4 4 27 19 41
12 6 3

4 19 11 4262144 11

0 4 4 0

 + − + +
 + − + − − ′′ = − +
 + − + +
  + − + + 

P P P P

P P P P
E

P P P P

P P P P

 

 (6.36) 

Considering equations (6.33), (6.34), (6.35) and (6.36), it is evident that each of the 16 

components of the Improved error reduces at least twice as quickly compared with 

Adini.  The ratios are:   
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Figure 6.5 shows how the error associated with the Improved method reduces at a much 

faster rate than Adini as s increases.  The error is measured in terms of the Euclidean 

distance between the parametric mid-points of the interpolated and true corner sub-

patches, and is directly proportional to the magnitude of the absolute difference between 

the corresponding twist vectors.   
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Error when subdividing data
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Figure 6.5 – Reducing error terms with increasing number of interpolated points 

The Adini and the Improved algorithms produce identical errors when interpolating a 

single patch.  As s increases, the Improved method will, in general, produce a smaller 

error.  Whilst it is possible to construct cases where the Adini algorithm produces a 

smaller error for a specific s, the Improved algorithm would outperform Adini if the 

interpolation data were subdivided.  The Improved algorithm is therefore a better choice 

than Adini when selecting a general-purpose twist vector estimation algorithm. 

6.4 Numerical testing and performance 

Generally, the true twist for an interpolated surface would not be known, but the 

performance of any algorithm can be assessed by sampling interpolation data – including 

the twist vector – from a range of explicitly defined surfaces, and assessing how well the 

algorithm performs in reproducing them.  The original surfaces must be unbiased to any 

particular twist estimation algorithm, and ideally not reliant on any special 

parameterisation or derivative magnitude estimation algorithms.  Four primitive surface 
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types were selected (cylinders, cones, spheres and tori) as they characterise many 

engineering surfaces, the construction is not influenced by any factors that would bias 

the results, and the data sets can be easily reproduced.  Figure 6.6 illustrates the four 

surface types.  Each surface is created using 6 data points in each parametric direction, 

following the guidelines given in Chapter 5. 

Figure 6.6 – Four surface types: Cylinder, Cone, Sphere, and Torus 

To generate a wider range of unbiased surfaces, points were sampled from the four 

primitive types in six different configurations by skewing the data grids and angling 

their boundaries with respect to the ‘natural’ orientations illustrated in Figure 6.6.   This 

is illustrated in Figure 6.7 for a cylinder, although the method is analogous for the other 

surfaces.   
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Figure 6.7 – Six configurations for parametrically sampling points from a cylinder 

The required interpolation data consists of points and derivatives.  Whilst derivative 

directions could be sampled from the primitive data, their magnitudes would need to be 

estimated using an appropriate algorithm as they are a function of the parameterisation 

of a surface, not its geometry.  To avoid introducing unnecessary ambiguity into the 

resulting surface, it was decided to construct the ‘true’ surfaces by performing an 

unconstrained interpolation of the data points.  Additional points were sampled from the 

original surfaces to control the cross boundary derivatives and twists.  These additional 

points are located at the parametric mid-point between the first and second, and 

penultimate and last, data points in each row and column – denoted by the red dots in 

Figure 6.8(a).  Green arrows are used to represent derivatives, and orange arrows to 

represent twists in Figure 6.8(c).   
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Figure 6.8 – Obtaining the constrained interpolation data 

Points and derivatives were sampled from each of the 24 ‘true’ surfaces, and used to 

create the Adini and Improved twist vector estimates.  The performance of the 

algorithms could be measured as the absolute error between the estimated and ‘true’ 

twist vectors.  However, the twist vectors have no geometric interpretation so the 

numerical values are difficult to interpret.  Instead, the positional error between the 

corner patch mid-points was used, which is directly proportional to the absolute error 

between the true and interpolated twist vectors.  Measuring the error as a distance does 

(a) Sampling additional points to 

control derivatives 

(b) Unconstrained interpolation: 

‘true’ surface 

(c) Sampling constrained 

interpolation data from 

unconstrained surface 
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not affect the outcome of the results, but gives it geometric significance as it can be 

related to a physical tolerance.   

The results for each of the 96 cases (24 surfaces, each with 4 corners) are given in 

Appendix C.  The Improved method outperforms Adini in all 96 cases, and on average 

produces an error that is 4.95 times smaller, with a minimum of 0.0 and a maximum of 

61.8.  It is possible to visualise the effect that the twist vectors have over the entire 

surface by considering the positional error at all points on the surface.  Figures 6.9 and 

6.10 show the errors for a sphere and a torus respectively.  The colour indicates the error 

in terms of the Euclidean distance between the surfaces with the true and estimated 

twists, calculated using a geometric arc length approach similar to Chong [2006], 

although modified to parameterise each patch individually as suggested for curve 

segments in Chapter 4. 

Figure 6.9 – Position error for sphere data when using a) Adini b) Improved Twists 

a) Adini twists b) Improved twists 
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Figure 6.10 – Position error for torus data when using a) Adini b) Improved Twists  

 

6.5 Conclusion 

It has been shown that the Improved algorithm has a theoretical foundation, and for 

quadratic surfaces it reproduces twists that tend towards the exact solution.  For cubic 

data, the Improved algorithm produces an identical result to Adini for single patch 

interpolations, and, in general, produces a better estimate than Adini for multi-patch 

interpolations. It has been shown that the error produced by the Improved algorithm 

reduces at a faster rate than Adini when the data is sub-divided.  A wide range of 

numerical tests was conducted to practically compare the algorithms, and in all cases the 

Improved algorithm outperformed Adini.  The Improved algorithm is therefore 

recommended as the best method for estimating twist vectors for general purpose 

interpolation of engineering data. 
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Chapter 7  

Arbitrary topologies 

The primary focus of this thesis is to control the interpolation process, with the aim of 

constructing high quality surfaces; however, ‘real’ surfaces rarely exist in isolation, and 

are frequently required to join with other surfaces.  This chapter considers the conditions 

for joining two surfaces with parametric and geometric continuity. 

An interpolated NUBS surface has exactly four sides, or boundaries, assuming that the 

surface is not degenerate (i.e. with a zero-length side).  Certain geometries arise that 

require the use of N-sided surfaces.  Various N-sided surface definitions have been 

proposed, although none are widely accepted and most CAD software will only support 

rectangular surface types, i.e. N 4= .  As a consequence, it is helpful to be able to 

represent a non-rectangular surface using an assembly of rectangular patches.  Kahmann 

[1983] proposed a generalised algebraic method for joining two adjacent patches with 

geometric continuity.  This technique has been developed and reformulated to allow an 

N-sided assembly of patches to be constructed with G
1
 continuity.  G

2
 continuity is 

desirable but it is proven that this is, in general, mathematically impossible using 

Kahmann’s method applied to arbitrary topologies.   
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7.1 Arbitrary topologies in CAGD 

Most surfaces in CAGD can be represented using rectangular surfaces, i.e. N 4= , that 

join with an acceptable level of continuity.  Certain geometries arise which require non-

rectangular surfaces; these surfaces cannot be assembled from rectangular patches that 

join with parametric continuity.  Examples of such circumstances are illustrated in 

Figure 7.1. 

Figure 7.1 – Geometries that have areas with 3,5 and 6 sides 
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It is evident that being able to properly handle surfaces of arbitrary topology is 

advantageous.  Much of the work published in this field actually defines new types of 

patches that have an arbitrary number of sides; these patches have non-standard 

parameterisations and constructions (see [Sabin, 1983], [Hosaka and Kimura, 1984], 

[Lee, et. al., 1995], [Zheng and Ball, 1997], [Goldman, 2004]).  CAD software 

manufacturers must specifically implement these schemes for them to be of any use, 

which is a significant restriction.  Even when implemented, many problems can occur, 

i.e. when transferring CAD models to other software for analysis or machine tool path 

generation.   

It is therefore desirable that any solution should be assembled from a collection of 

parametrically defined patches with rectangular topology.  These patches could be 

originally represented using either the Bézier or B-spline basis, but any B-spline patches 

can be converted to Bézier.  This allows a more straightforward analysis of the assembly 

conditions.  If the B-spline surfaces contain multiple sub-patches, just the N sub-patches 

with the common central vertex are assembled; the remaining sub-patches have 

rectangular topology, and so it is assumed that they can be subsequently modified to 

attain the desired continuity with adjoining patches.  The non-rational form is used, as 

these N-sided surface assemblies are to be integrated with other surfaces produced by 

interpolation; such surfaces very rarely employ rational form [Piegl and Tiller, 1997].   

7.2 Joining Bézier patches along a common boundary 

7.2.1 Parametric continuity 

Two Bézier [Farin, 2002] patches ( )A
u,vS  and ( )B

u,vS , 0 u,v 1≤ ≤  with control 

points A

i , jP , A0 i m≤ ≤ , A0 j n≤ ≤ , and B

i , jP , B0 i m≤ ≤ , B0 j n≤ ≤ , respectively, can be 



 155 

joined with parametric continuity along a common boundary.  If the common boundary 

curves are ( )A
1,vS  and ( )B

0,vS , C
0
 continuity is obtained when: 

( ) ( )B A
0,v 1,v=S S  0 v 1≤ ≤  (7.1) 

Assuming that A Bn n= , C
0
 continuity is attained when the common boundary control 

points are identical, i.e.: 

A

B A

0 , j m , j=P P  A B0 j n n≤ ≤ =  (7.2) 

C
1
 continuity implies C

0
, and in addition requires parametric derivative continuity across 

the boundary: 

( ) ( )B A

u u0,v 1,v=S S  0 v 1≤ ≤   

This condition is obtained when the control points satisfy: 

A A

B B A A

1, j 0 , j m , j m 1, j−− = −P P P P  A B0 j n n≤ ≤ =  (7.3) 

C
2
 continuity implies C

1
, and in addition requires second order parametric derivative 

continuity: 

( ) ( )B A

uu uu0,v 1,v=S S  0 v 1≤ ≤   

This condition is satisfied when: 

A A A

B B B A A A

2, j 1, j 0 , j m , j m 1, j m 2, j2 2 − −− + = − +P P P P P P  A B0 j n n≤ ≤ =  (7.4) 

7.2.2 Geometric continuity 

It is possible to relax the strong requirements of parametric continuity to that of 

geometric continuity.  G
0
 continuity requires only that the two boundary curves be 

common, and need not require the control points to be identical as for C
0
.  However, C

0
 

continuity (7.1) is used for simplicity of analysis, although it is noted that this does not 

reduce any degrees of freedom assuming that the curves have the same degree and do 



 156 

not represent a straight line.  G
1
 continuity only requires tangent continuity across the 

boundary, instead of requiring parametric derivative continuity.  The simplest way of 

achieving this is to maintain the parametric direction of the cross boundary derivatives, 

but allow the magnitude to differ by a constant positive factor α , i.e.:    

( ) ( )B A

u u0,v 1,vα=S S  0 v 1≤ ≤  (7.5) 

This condition is attained when the control points satisfy the relationship: 

( )
A A

B B A A

1, j 0 , j m , j m 1, jα −− = −P P P P  A B0 j n n≤ ≤ =  (7.6) 

It is noted that C
1
 always implies G

1
, assuming ( )B

u 0,v 0>S , but the converse is not 

always true.  

In a similar fashion, G
2
 does not require second derivative continuity, rather curvature 

continuity across the boundary.  The simplest way to achieve this is given by Barsky and 

DeRose [1989]: 

( ) ( ) ( )B 2 A A

uu uu u0,v 1,v 1,vα η= +S S S  0 v 1≤ ≤   

where α  is from (7.5), and η  is an arbitrary constant.  This leads to the control point 

condition: 

( ) ( )
A A A A A

B B B 2 A A A A A

2, j 1, j 0 , j m , j m 1, j m 2, j m , j m 1, j

A

2 2
m 1

η
α − − −− + = − + + −

−
P P P P P P P P

A B0 j n n≤ ≤ =  (7.7) 

However, geometric continuity does not require that the direction of any parametric 

derivatives be maintained; tangent and curvature continuity can be preserved even when 

two patches join such that their parameter lines do not have tangent continuity.  This is 

easily seen to be true by considering two planes that meet as in Figure 7.2.  They must 

have both tangent and curvature continuity at all points along the boundary, yet their 

parameter lines join at an angle. 
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Figure 7.2 – Two planes that join with G
2
, but not parametric, continuity 

Kahmann [1983] proposed a general algebraic method for joining two surfaces together 

along a common boundary, with G
1
 and then G

2
 continuity.  The mathematical 

continuity conditions are applied to Bézier patches, resulting in a set of relationships 

between the control points on adjoining patches.  The formulation assumes that one 

patch, A, is predefined, and that the adjoining patch, B, is modified to attain the required 

continuity.  Alternative formulations can be constructed where A is modified and B 

predefined, or both A and B are modified, although as neither increase the chances of 

obtaining a successful assembly, these formulations are not considered. 

To obtain G
0
 continuity between two patches, Kahmann assumes that the row of 

common control points between two adjacent patches must be identical.  It is noted that 

this is actually the C
0
 condition, but does not reduce the freedom in the system unless the 

boundary is a straight line.  The next row of control points on patch B must be modified 

for G
1
 continuity, i.e. control points B

1, jP , A B0 j n n≤ ≤ = .  The third row, control points 

B

2, jP , A B0 j n n≤ ≤ = , are required for G
2
 continuity.  On patch A, control points A

i , jP , 

A Am 2 i m− ≥ ≥ , A B0 j n n≤ ≤ = , are predefined and must not be changed after the 

control points on patch B have been determined.  Control points A

i , jP , Ai m 2< − , 

A B0 j n n≤ ≤ = , and B

i , jP , i 2> , A B0 j n n≤ ≤ = , have no influence on the continuity.  

See Figure 7.3. 

u 

v 

u 
v 
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Figure 7.3 – The control points affecting different levels of continuity when joining two 

patches 

For G
1
 continuity between the two patches, Kahmann assumes both patches must have 

coincident tangent planes at every point on the common boundary, as well as (7.1).  

Kahmann [1983] uses the following conditions: 

( ) ( ) ( ) ( ) ( )B A A

u u v0,v p v 1,v q v 1,v= +S S S  0 v 1≤ ≤  (7.8) 

where ( )p v  is a positive constant, and ( )q v  is a linear function.  This condition implies 

that the unit normal must be common at all points along the boundary.  Defining 

( )p v 0α= > , as in (7.6), and ( ) ( )q v 1 v vβ γ= − + , where β , γ  are arbitrary constants, 

the control point condition for G
1
 continuity can be derived by comparing coefficients in 

(7.8): 

( ) ( ) ( )
A A A A A A

B A A A A A A BA
1, j m , j m 1, j m , j 1 m , j m , j m , j 1 0 , j

A A

n j j

m m
α β γ− + −

−
= − + − + − +P P P P P P P P  

A B0 j n n≤ ≤ =  (7.9) 

It is noted that (7.9) is equivalent to (7.6) when 0β γ= = , and also equivalent to (7.3) 

when 1, 0α β γ= = = , indicating C
1
 ⊂  G

1
. 
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For G
2
 continuity between the two patches, the principal directions and curvatures must 

coincide at all points along the boundary, in addition to (7.1) and (7.8).  Kahmann 

[1983] states that an equivalent formulation requires that the Dupin indicatrices must 

also coincide at all points along the common boundary, leading to the following 

condition: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2B A A A

uu uu uv vv0,v p v 1,v 2 p v q v 1,v q v 1,v= + +S S S S   

( ) ( ) ( ) ( )A A

u vr v 1,v s v 1,v+ +S S  0 v 1≤ ≤   

where ( )r v  is a constant, and ( )s v  is a linear function [Kahmann, 1983].  For 

simplicity, Kahmann assumes ( ) ( )r v s v 0= = , which yields the G
2
 continuity condition 

in terms of the Bézier control points: 

( )

( )

( )

( )( )
( )

         

         

         

A A A

A A A A

A A A A

A A

B 2 A A A

2, j m , j m 1, j m 2, j
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m , j 1 m , j m 1, j 1 m 1, j
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A
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A
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m , j 1 m , j m , j 1

A A

2 A A A

m , j m , j 1 m , j 2
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B B

1, j 0 , j

n j j
2 2

m m 1

j j 1
2

m m 1

2 ,

βγ

γ

+ −

− −

+

−
+ − +

−

−
+ − +

−

+ −

P
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A B0 j n n≤ ≤ =  (7.10) 

It is noted that (7.10) is equivalent to (7.7) when 0β γ η= = = , and also equivalent to 

(7.4) when 1, 0α β γ= = = , indicating C
2
 ⊂  G

2
.  It is also noted that assuming 

( ) ( )r v s v 0= =  reduces the degrees of freedom in the system. 
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7.3 Joining patches within an arbitrary topology region 

7.3.1 Configuration of patches 

There are two common approaches for joining patches together to form an arbitrary 

topology region, illustrated in Figure 7.4 

Figure 7.4 – Two methods to fill an arbitrary topology region with rectangular patches  

The first method is a recursive method that fits a strip of rectangular patches around the 

arbitrary topology region, leaving another smaller arbitrary topology region in the 

middle.  After several recursions, the ‘hole’ becomes smaller than a given tolerance, and 

can be ignored.  The second method directly fills the arbitrary topology region without 

recursion by assembling patches that all join at a single point within the region.  The 

focus of this research is based around the latter method, as the former can lead to data 

proliferation, which is very undesirable.   

The starting point for the method, therefore, is a collection of N patches in one of the 

forms illustrated in Figure 7.5.  It is impossible for these patches to all join together with 

parametric continuity when N 4≠  without forcing at least one patch to have an angle 

between u and v of 0°  or 180°  at the central vertex.  However, if the patches join with 

geometric continuity they need only meet with tangent and curvature continuity, 

allowing the parameter lines on adjacent patches to meet at an angle.  
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Figure 7.5 – Configuration of patches for N = 3, 4, 5, and 6 

A restriction is placed on the geometry of each patch within the assembly such that the 

angle between the u and v parametric derivatives at the central vertex is greater than 0° 

and less than 180°.  This ensures that the normal is well defined at the centre, which 

must be common to all patches.  When N 2= , at least one patch has a reflex or collinear 

angle between parametric derivatives at the mid-point, as illustrated in Figure 7.6, thus 

only N 3≥  is considered.   

Figure 7.6 – Configuration for N = 2 

N=3 N=4 

N=6 N=5 
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Each of the N-sided regions is filled with N patches.  It is worth noting that the N 4=  

configuration illustrated is often superfluous, as a single patch also has four sides and 

would guarantee G
2
 (in fact C

2
) continuity everywhere within the boundaries without the 

need for assembly.  Likewise, the N 6=  configuration could be replaced with 3 patches; 

this is outlined in Figure 7.7.  Note that there are two different configurations possible, 

which will almost certainly result in different surfaces.  Any even N-sided surface 

assembly, N 6≥ , in the form of those in Figure 7.2 can be replaced with N 2  patches 

in the form of those in Figure 7.7. 

Figure 7.7 – Alternative configurations with 3 patches N=6 

It is assumed that the patches are fully defined (i.e. position of all control points known), 

but need to be modified to attain the desired level of internal continuity.  This is because 

the patches are most likely to be constructed by interpolation.  The corner control points 

of each patch are fixed, and all others are allowed to move; however, how they move 

will be subject to constraints. 

7.3.2 Patch orientation 

Irrespective of the particular configuration employed, the Bézier patches are constructed 

such that the parametric origin for each patch is at the central vertex, and the u-direction 

of any patch corresponds to the v-direction of the adjacent patch along the same 

boundary.  Such a construction requires (7.2), (7.9) and (7.10) to be reformulated, but 
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has the advantage that each patch then joins to its neighbour in exactly the same way.  

This configuration is illustrated for the case N 3=  in Figure 7.8. 

Figure 7.8 – Construction of Bézier patches to form an arbitrary topology 

The control points for the patches are denoted as k

i , jP , where the subscripts i and j 

represent the indices of the control point in the parametric u and v-directions 

respectively, and the superscript k represents the patch number, 0 k N≤ < .  For 

convenience when joining adjacent patches, the degree along the common boundary is 

required to be the same for both patches, i.e.: 

k cm n= , 0 k N≤ < , ( )  c k 1 mod N= −  

It is noted that all patches within the assembly could be degree elevated, in both 

parametric directions, to the highest degree in the collection of N patches without any 

compromise in geometry.  However, this is not a requirement for assembly, and does not 

increase the chances of a successful construction. 

7.3.3 Initial constraints 

To ensure the overall geometry of the patches is maintained, the corner vertices of each 

patch, k

0,0P , 
k

k

0 ,nP , 
k

k

m ,0P , and 
k k

k

m ,nP ,  0 k N≤ < , are not modified. 

u 

v k=0 

k=1 
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To enforce C
0
 continuity along the internal boundaries, each pair of corresponding 

boundary points are constrained such that they are identical: 

k c

i ,0 0 ,i=P P  0 k N≤ < ,  k0 i m≤ ≤ , ( )  c k 1 mod N= −  (7.11) 

For G
1
 continuity, all the patches must meet with tangent plane continuity at the central 

vertex.  This constraint can be expressed in terms of the control points: 

( ) ( )k c cc
0 ,1 0,0 k 1,0 0 ,0 k 0 ,1 0,0

c

n

m
α β− = − − + −P P P P P P  (7.12) 

0 k N≤ < , ( )  c k 1 mod N= −  

where 
k

α  and 
k

β  are numerical constants.  (7.11) is derived from (7.9), with j 0= , but 

is reformulated to allow for the change in parametric origin.   

For assemblies using N patches, the boundary of the N-sided region must consist of N  

G
1
 curves, otherwise the surface is not guaranteed to have N sides.  This constraint can 

be expressed in terms of the control points: 

( )
k c c c

k c c c

m ,1 0 ,n k 1,n 0,nα− = − −P P P P  0 k N≤ < , ( )  c k 1 mod N= −  (7.13) 

where 
k

α  are the same as those in (7.12).  (7.13) is also derived from (7.9), with cj n= , 

and k 0γ = , 0 k N≤ < , again reformulated to allow for the change in parametric origin.  
 

No continuity conditions are imposed with regard to surfaces outside the boundary, 

except the C
0
 condition at patch corners.  Patches that join with the N-sided surface 

assembly must be subsequently constructed with the appropriate level of continuity. 

7.4 Adapting Kahmann’s method for arbitrary topologies 

After the initial constraints have been imposed, the geometric continuity conditions 

(7.2), (7.9) and (7.10) are required.  When they are applied to arbitrary topologies, a 
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closed loop will be formed; see Figure 7.9.  The assumption that one patch can be 

predefined whilst another is modified to obtain the required continuity is no longer valid 

because there are cyclic dependencies on certain control points.  To obtain C
0
 between 

all adjacent patches within the arbitrary topology region, all control points on adjacent 

boundaries must be identical, i.e. (7.11).  The second row of control points must be 

modified for G
1
 continuity, i.e. control points k

i ,1
P , 0 k N≤ < , k0 i m≤ ≤ .  The third row, 

control points k

i ,2P , 0 k N≤ < , k0 i m≤ ≤ , are required for G
2
 continuity.   

Figure 7.9 – The control points affecting different levels of continuity, N=3 

Every patch, index k, has to be considered as both the predefined patch when calculating 

the control points on patch k+1, and the patch to be modified to achieve continuity with 

patch ( )k 1 mod N− .  As a consequence, certain groups of points need to be determined 

by systems of linear equations.  If linear equations are consistent, there may be a unique 
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or infinite number of solutions.  Control points k

i , jP , 0 k N≤ < , i 2> , j 2> , have no 

influence on the continuity, and can be assigned arbitrarily. 

7.5 Modifying Kahmann’s conditions to achieve G
1
 

continuity 

The starting point for assembling a collection of patches with G
1
 continuity to create an 

N-sided surface is one of the forms in Figure 7.5.  The patch corner points must be fixed, 

and C
0
 continuity along boundaries must be enforced (7.11).  Two other initial 

conditions are imposed: (7.12) ensures that there is a common normal at the central 

vertex, and (7.13) ensures that the N-sided surface boundary consists of N  G
1
 curves. 

Kahmann’s condition for G
1
 continuity (7.9) must be reformulated to be compatible with 

the change made to the parametric origin of each patch.  It becomes: 

( ) ( ) ( )k c c c c c c cc
j ,1 k 1, j 0 , j k 0 , j 1 0 , j k 0 , j 0 , j 1 0 , j

c c

n j j

m m
α β γ+ −

−
= − − + − + − +P P P P P P P P ,  

 0 k N≤ < , c0 j n≤ ≤ , k cm n= , ( )  c k 1 mod N= −  (7.14) 

It is noted that (7.14) simplifies to the initial constraints (7.12) and (7.13) when j 0= , 

and cj n= , respectively.  All control points beyond the second row, i.e. k

i , jP , 0 k N≤ < , 

k0 i m≤ ≤ , k2 j n≤ ≤ , can be assigned arbitrarily, as they have no effect on the 

continuity between adjacent patches.   

Before (7.14) can be used to determine any control points, kα , kβ  and kγ , 0 k N≤ < , 

must be determined.  Recalling that the unit normal at the central vertex must be 

common to all patches, 0,0P  and k

0,1P , 0 k N≤ < , must lie in a plane.  k

0,1P  can be chosen 

to maintain the desired normal thereby defining kα  and kβ .  kγ , 0 k N≤ < , can be 
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defined such that the direction of ( )
k k

k k

m ,1 m ,0−P P , 0 k N≤ < ,  is maintained and the initial 

constraint (7.13) satisfied; the magnitude cannot be prescribed because the G
1
 condition 

completely defines 
k

k

m ,1P .  If N patches are used, then k 0γ = , 0 k N≤ < , ensures that the 

assembly of N patches remains N sided. 

k

1,1P , 0 k N≤ <  must now be found; however, k

1,1P  is a function of c

1,1P , 

( )  c k 1 mod N= − , so they can not be solved independently.  See Figure 7.10. 

Figure 7.10 – Control points used when calculating k

1,1P , N 3=  

To solve for k

1,1P , a system of N linear equations is required: 

( ) ( )k c c c c c c cc k
1,1 k 1,1 c k 0,1 k 0 ,2 0 ,1 0,1 0 ,0 0,1

c c

n 1

m m

γ
α α β

 −
+ = = + − + − + 

 
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For N=3, the system of equations can be written as: 

0

0 1,1 2

1

1 1,1 0

2

2 1,1 1

1 0

1 0

0 1

α

α

α

    
    =    
        

P E

P E

P E

 

This system of equations has the determinant: 

0

1 0 1 2

2

1 0

1 0 1 2

0 1

α

α α α α

α

= + =  

because 
0 1 2

1α α α =  (Appendix D).  Therefore, a solution is always guaranteed. 

For N=4, the system of equations has the determinant: 

0

1

0 1 2 3

2

3

1 0 0

1 0 0
1 0

0 1 0

0 0 1

α

α
α α α α

α

α

= − =  

because experimental evidence suggests 
0 1 2 3

1α α α α = .  Therefore, the system of linear 

equations either has no solution, or an infinite number of solutions.  It is noted that at 

least one solution must be possible, when k 1α = , k 0β =  and k 0γ = , 0 k N≤ < , as this 

is the condition for C
1
 continuity, which is a special subset of G

1
.  Further research is 

required to classify all the geometries that lead to an under-specified system, and will 

therefore yield a solution. 

For N=5, the system of equations has the determinant: 

0

1

2 0 1 2 3 4

3

4

1 0 0 0

1 0 0 0

0 1 0 0 1 2

0 0 1 0

0 0 0 1

α

α

α α α α α α

α

α

= + =  
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because experimental evidence suggests 
0 1 2 3 4

1α α α α α = .  Therefore, a solution is 

always guaranteed.  After observing the trend for , , , , ,N 3 4 5 6 7=  it is noted that any 

arbitrary topology region with an odd N should be solvable, and any arbitrary topology 

region with an even N will have a determinant 0=  for k

1,1P .   

Assuming a solution can be found for k

1,1P , the next step is to calculate k

i ,1P , 0 k N≤ < , 

k2 i m≤ < .  This is achieved by simply applying the G
1
 condition (7.14), and completes 

the construction of k patches to form a G
1
 arbitrary topology region. 

7.6 Modifying Kahmann’s conditions to achieve G
2
 

continuity 

To achieve G
2
 continuity between two adjacent patches, Kahmann [1983] requires both 

the tangent planes (for G
1
) and the Dupin indicatrices (for G

2
) of both patches to 

coincide at every point along the common boundary curve.  The method assumes that 

moving control points to attain G
2
 continuity on one patch will not affect the other; 

however, when assembling patches that join up in a closed loop this assumption is no 

longer valid.  Certain control points that were predefined for the G
1
 construction now 

need to become variables, therefore the starting point for the G
2
 method is a collection of 

N patches in one the forms illustrated in Figure 7.5. 

The condition for G
2
 (7.10) must be reformulated to be compatible with the changes 

made to the parametric origin of each patch.  In the original derivation, Kahmann 

assumed ( ) ( )r v s v 0= =  for simplicity.  To maximise the chances of finding a solution, 

any such simplifications have been removed.  Defining ( )r v η= , and 

( ) ( )s v 1 v vσ υ= − +  yields three additional terms with coefficients and 
k k k
, ,η σ υ .  

Reformulating and generalising yields: 
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( ) ( )

( )

( )( )
( )

( )

( )

         

         

         

k 2 c c c c c c cc

j ,2 k 2, j 1, j 0 , j k k 1, j 1 1, j 0 , j 1 0 , j

c

c c c c

k k 1, j 1, j 1 0 , j 0 , j 1

c

c c2 c c c

k 0 , j 2 0 , j 1 0 , j

c c

c

k k

n j
2 2

m 1

j
2

m 1

n j n j 1
2

m m 1

n j j
2

m

α α β

α γ

β

β γ

+ +

− −

+ +

 −
= + − + − − − + 

− 

 
− − − + 

− 

− − −
+ − +

−

−
+

P P P P P P P P

P P P P

P P P

( )
( )

( )
( )

( )

( )
( ) ( )

( )
( )

( )
( )

         

         

         

         

c c c

0, j 1 0 , j 0 , j 1

c c

2 c c c

k 0 , j 0 , j 1 0 , j 2

c c

cc c c ck
1, j 0 , j k 0 , j 1 0 , j

c c c

c ck

0, j 0 , j 1

c c

k k

j ,1 j ,0

2
m 1

j j 1
2

m m 1

n j

m 1 m m 1

j

m m 1

2

γ

η
σ

υ

+ −

− −

+

−

− +
−

−
+ − +

−

−
− − + −

− −

+ −
−

+ −

P P P

P P P

P P P P

P P

P P
 

0 k N≤ < , c0 j n≤ ≤ , k cm n= , ( )  c k 1 mod N= −  (7.15) 

As before, the corner vertices of each patch are fixed, i.e. control points k

0,0P , 
k

k

0 ,nP , 
k

k

m ,0P , 

k k

k

m ,nP ,  0 k N≤ < , and C
0
 continuity is enforced along internal boundaries (7.11). 

Constraints are imposed such that the normal at the centre is common to all patches 

(7.12), and the N-sided surface assembly has N G
1
 sides (7.13).  All control points 

beyond the third row, i.e. k

i , jP , 0 k N≤ < , k0 i m≤ ≤ , k3 j n≤ ≤ , can be assigned 

arbitrarily, as they have no affect on the continuity between adjacent patches.   
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k

0,1P , 0 k N≤ < , are solved in the same way as for G
1
.  The implications of the patches 

joining in a closed loop are greater for G
2
 than G

1
 because the dependencies on each 

control point are increased.  k

1,1P , 0 k N≤ < , is now a function of c

1,1P  and c

0 ,2P , 

( )  c k 1 mod N= − , so they must all be solved simultaneously.  See Figure 7.11. 

Figure 7.11 – Control points used when calculating k

1,1P  and k

0 ,2P , N=3 

Setting up a system of 2N linear equations using (7.14) as the condition on k

1,1P  and 

(7.15) as the condition on k

0 ,2P  yields: 
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( )      

k c cc
1,1 k 1,1 k 0 ,2 c

c

c c c c cc k
k 0,1 k 0,1 0 ,1 0,0 0 ,1

c c

n 1

m

n 1

m m

α β

γ
α β

 −
+ − = 

 

 −
= − + − + 

 

P P P E

P P P P P

  

0 k N≤ < , ( )  c k 1 mod N= −  

and 

( ) ( )
( )

( ) ( )

( )( )
( )

( )

( )
( )

( )

=       

         

         

c ck 2 d 2 c cc

0 ,2 k 0 ,2 k 0 ,2 k k 1,1 c

c c c

2 c c c c cc
k 1,0 0 ,0 k k 1,0 0,1 0,0

c

c c2 c c

k 0,1 0,0

c c

c ck c
1,0 0,0 k 0 ,

c c c

n n 1 n
2

m m 1 m 1

n
2 2

m 1

n n 1
2

m m 1

n

m 1 m m 1

α β α β

α α β

β

η
σ

−  
− − + = 

− − 

 
− + − − − + 

− 

−
+ − +

−

− − +
− −

P P P P H

P P P P P

P P

P P P( )

         

c c

1 0 ,0

k k

0 ,1 0 ,02

−

+ −

P

P P

  

0 k N≤ < , ( )  c k 1 mod N= − , ( )  d k 2 mod N= −  

For N 3= , the resulting system of linear equations is: 

( )
( )

( )
( )

( )
( )

2
0 0

2

0

1 1

0

1
2 2

1

2 22 22
0 0 0 0

2 2 2

0 02 20
1 1 1 1

0 0 0

1 12 21
2 2 2 2

1 1 1

n 1
1 0 0 0

m
n 1

1 0 0 0
m

n 1
0 1 0 0

m
n n 1n

0 0 2 1
m 1 m m 1

n n 1n
2 0 0 1

m 1 m m 1
n n 1n

0 2 0 1
m 1 m m 1

α β

α β

α β

α β α β

α β β α

α β α β

  −
  

 
 −
   

  −
  

 
−  − −  − −  − 

− −  
− −  

− 
− −  − −   

0

1,1 2

1

1,1 0

2

1,1 1

0

0 ,2 2

1

0 ,2 0

2

0 ,2 1

   
   
   
   
   
   
    =
   
   
   
   
   
   
      


P E

P E

P E

P H

P H

P H

 

The determinant of the coefficient matrix is: 
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( )
( )

( )
( )

( )
( )

2
0 0

2

0
1 1

0

1
2 2

1

2 22 22
0 0 0 0

2 2 2

0 02 20
1 1 1 1

0 0 0

1 12 21
2 2 2 2

1 1 1

n 1
1 0 0 0

m
n 1

1 0 0 0
m

n 1
0 1 0 0

m
n n 1n

0 0 2 1
m 1 m m 1

n n 1n
2 0 0 1

m 1 m m 1
n n 1n

0 2 0 1
m 1 m m 1

α β

α β

α β

α β α β

α β β α

α β α β

 −
 
 

 −
 
 

 −
 
 

− 
− − 

− − 
− 

− − 
− − 

− 
− − 

− − 

 

After expanding this determinant and substituting the relationship 
0 1 2

1α α α =  

(Appendix D), all terms cancel out leaving the result of the determinant 0= .  The 

system of linear equations has therefore either no solution, or an infinite number of 

solutions.  Solving the system of linear equations using Gaussian elimination and back 

substitution with an arbitrary example yields a non-zero right hand side.  The system of 

linear equations has, in general therefore, no solution, although certain geometries may 

lead to a zero right hand side resulting in an under-specified system.  It is noted that any 

assumptions made with regard to ( )r v , ( )s v  have no bearing on this result. 

For N 4=  and N 5= , experimental evidence suggests that 
0 1 2 3

1α α α α =  and 

0 1 2 3 4
1α α α α α =  respectively.   When these relationships are substituted into their 

corresponding systems of equations, the resulting determinants 0= .   

It seems evident, therefore, that a collection of N patches cannot be assembled with G
2
 

continuity for the general case, although it is known that certain specific geometries will 

produce a zero right hand side and therefore a solution can be found in those 

circumstances.  An example of such geometries is when N 4=  with k 1α = , 

k k k k k
0β γ η σ υ= = = = = ,  0 k N≤ < , as this is the condition for C

2
 continuity, which 

is a special subset of G
2
.  Also, it is noted that an assembly of planar patches must join 



 174 

with G
2
 for any N.  The classification of all geometries that do lead to a G

2
 solution is 

the subject of future research. 

Where a G
2
 solution is not possible, it may be possible to construct the assembly of 

patches such that the maximum discrepancy in normal curvature, ε , is minimised 

between all boundary curves, i.e. G
2 −ε  continuity.  This is also the subject of further 

research. 

7.7 Summary 

This chapter has demonstrated that arbitrary topology regions with an odd N can always 

be filled with N patches joining with G
1
 internal continuity.  For even N, the system of 

equations used to solve for k

1,1P  has a zero determinant; further work is required to 

classify all the geometries that lead to an under-specified system, and can therefore yield 

a solution. 

For G
2
, it has been shown that the system of linear equations used to calculate k

1,1P  and 

k

0 ,2P  will always have a zero determinant for N 3,4,5= .  Further work is required to 

prove: 

 
N 1

i

i 0

1α
−

=

=∏   

for all N 3> , and identify any specific geometries where a G
2
 solution is possible.  

Where it is not possible, a method needs to be developed for obtaining a G
2
 solution to 

within a maximum normal curvature discrepancy ε , i.e. G
2 −ε  continuity. 
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Chapter 8  

Conclusions and further work 

The primary focus of this thesis has been to determine the best methods for controlling 

the interpolation process.  Chapter 1 provided an outline of how NUBS curves and 

surfaces are constructed by interpolation, and the various factors that affect the quality of 

the resulting interpolant.  Chapter 2 gave a detailed description of the interpolation 

process, and summarised a variety of existing methods for controlling the 

parameterisation, derivative magnitude estimation, knot vector generation, parameter 

reconciliation and twist vector estimation. 

Chapter 3 introduced a new technique, proposed by Ball [2004], which calculates the 

parameter values and derivative magnitudes for a spline curve.  Given points and 

tangents, the method constructs a piecewise C
1
 curve with orthogonal first and second 

derivatives at specified parametric locations.  The parameter values and end derivative 

magnitudes are then used to interpolate a C
2
 NUBS curve.  By varying the location of 

where the orthogonal conditions are satisfied within each C
1
 span, three algorithms were 

suggested, corresponding to W 0,1,2.=   An analytical study was conducted on the new 

methods, and concluded that the method which satisfies the orthogonality condition at 
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( )t 3 5 6= ±  within each C
1
 segment, W 1= , has the greatest practical interest.  This 

method is stable for all data configurations, is independent of the angle between 

tangents, and does not need to restrict applications to ensure numerical robustness or 

reasonable performance.   

All of the existing and orthogonal parameterisation methods were tested numerically in 

Chapter 4, along with their corresponding derivative magnitude estimation methods.  

The case studies highlighted that all of the methods were virtually identical for evenly 

spaced data sampled from a unit semi-circle; however, many of the existing methods 

were shown to be very poor when the data is not evenly spaced, or is sampled from 

profiles with non-constant curvature.  The orthogonal parameterisations were seen to 

perform very well: the W 0=  and 1  parameterisations both outperformed the other 

methods repeatedly, including the chord length method, which Piegl and Tiller [1997] 

state is the most common parameterisation.  Considering the analytical and numerical 

investigations, it was concluded that the W 1=  parameterisation and derivative 

magnitude estimation methods are the most appropriate for general interpolation. 

Chapter 5 discussed how data points should be distributed to control the shape of the 

interpolant.  It was identified that distributing points evenly by arc length along the 

curve under-represented areas of higher curvature, and distributing points linearly with 

either winding angle or curvature under-represented areas of low curvature.  Three new 

methods were proposed, of which the constant projected distance method outperformed 

all others in the numerical tests conducted.  The method can be applied to analytic or 

parametric functions, or be used for data reduction when given a dense string of points.  

Further work is required to reformulate this method for selecting the optimal 

interpolation points for a surface; it is anticipated that points will need to be sampled in 

strips across and along the surface, resolving the final location of each point using a 
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geometric arc length parameterisation method such as that proposed by Chong [2006].  

The chapter also provide a guideline to the number of data points required to produce an 

acceptable error, based on the total winding angle of the curve. 

An improved method for twist vector estimation is considered in Chapter 6, building on 

the Adini [Barnhill, et. al., 1978] method.  A hypothetical relationship is presented, 

which states that the true twist is a linear combination of the Adini and Coons twists.  

This relationship is proved to be true for quadratic data, and the general error term for 

cubic data is evaluated.  This error is shown to diminish at a faster rate than the Adini 

error when the data is subdivided, indicating superior performance.  Numerical tests 

conducted on a wide range of surface types illustrate that the Improved method 

consistently outperforms Adini, and therefore the Improved method is recommended as 

the most appropriate technique for interpolating constrained surfaces. 

Chapter 7 considers the problem of joining interpolated surfaces together with 

parametric and geometric continuity constraints.  Specific attention is given to joining N 

surfaces together, with geometric continuity, to form a closed loop such that an N-sided 

surface is created.  Using Kahmann’s [1983] conditions for G
1
 and G

2
 continuity, it is 

shown that surfaces with odd N can always be joined with G
1
 continuity, but only certain 

geometries can lead to a G
1
 solution with even N.  These conclusions rely in part on 

experimental evidence, which indicates that  
N 1

i

i 0

1α
−

=

≡∏ , although it has only be proven 

for N 3= ; further work is required to develop a general proof.  Only certain geometries 

can lead to a G
2
 solution for either odd or even N.  Further work is required to classify 

all the geometries that can lead to G
1
 and G

2
 solutions and, where a solution is not 

possible, to identify a method for obtaining the solution with minimum error. 
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Appendix A 

Relationship between internal Ball vertices 

Given s  cubic Ball segments, ( )j
0 t 1≤ ≤B , 0 j s 1≤ ≤ − , with control points j

i
P , 

0 i 3≤ ≤ , 0 j s 1≤ ≤ − , that join with C
2
 continuity, fix the continuity conditions and 

move 0

1
P  (i.e. the curve’s start derivative) by a vector amount ∆ .  The amount that 0

2
P  

moves as a result is a function of the number of segments, s .  The relationship between 

0

1
P  and 0

2
P  is calculated for , ,s 2 3 4= , then the general relationship is deduced. 

A point on a cubic Ball segment is given by: 

( ) ( ) ( ) ( )j 2 j 2 3 j 2 3 j 2 j

0 1 2 3
t 1 2t t 2t 4t 2t 2t 2t t= − + + − + + − +B P P P P   

The continuity conditions between segments are obtained by equating 

( ) ( )( ) ( )

j j 1

c c1 0
+=B B , 0 j s 2≤ ≤ − , where { }( ) , ,c 0 1 2=  denotes the parametric point, first 

derivative and second derivative respectively: 

C
0
: j j 1

3 0

+=P P  (A1) 

C
1
: j j j 1 j 1

2 3 0 1
2 2 2 2

+ +− + = − +P P P P  (A2) 

C
2
: j j j j j 1 j 1 j 1 j 1

0 1 2 3 0 1 2 3
2 4 8 2 2 8 4 2

+ + + ++ − + = − + +P P P P P P P P  (A3) 
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For two segments, s 2= , the relationship between 0

1
P  and 0

2
P  is obtained by 

substituting (A1) into (A2), j 0= , to eliminate 1

0
P , and the result into (A3) to 

eliminate 1

1
P : 

0 0 0 0 1 1

1 0 2 3 2 3
4 2 16 16 4 2= − + − + +P P P P P P  (A4) 

If the curve segments ( )j
tB  represent constrained interpolation data, then 0

0
P , 0 1

3 0
=P P  

and 1

3
P  are fixed as they represent data points, and 1

2
P  is also fixed as it represents an 

end derivative.  Ignoring fixed terms for clarity, the relationship (A4) becomes: 

0 0

1 2
4 16=P P  (A5) 

i.e. moving 0

1
P  by ∆  causes 0

2
P  to move by ∆ 4 . 

For s 3= , the continuity conditions (A1)-(A3), with j 1= , must be used to eliminate 

1

2
P  in (A4), yielding the control point relationship: 

0 0 1 2 2
0 0 0 0 13 2 3 2 3

1 0 2 3 3

10 4 16 4 2
4 2 16 16 4 2

16

 − + − −
= − + − + + 

 

P P P P P
P P P P P   

The control points 0

0
P , 0 1

3 0
=P P , 1 2

3 0
=P P  and 2

3
P are fixed because they represent data 

points, and 2

2
P  represents the fixed derivative.  Again, ignoring fixed terms, the 

relationship becomes: 

0 0 0

1 2 2

1
4 16 4

4

 
= + −  

P P P  (A6) 

For s 4= , a relationship between 2

2
P  and 1

2
P  can be obtained by substituting (A1) and 

(A2) into (A3), with j 2= : 
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( )1 2 2

2 2 24 8 8 4 0− − = +P P P   

⇒  2 1

2 2

1

4
= −P P  (A7) 

0

0
P , 0 1

3 0
=P P , 1 2

3 0
=P P , 2 3

3 0
=P P  and 3

3
P  are fixed because they represent data points, 

and 3

2
P  represents the fixed derivative.  Rearranging (A3), j 1= , substituting in (A1) 

and (A2), j 1= , and ignoring fixed terms, the following can be deduced: 

0 1 1 2

2 2 2 2
4 8 8 4− − = +P P P P  (A8) 

Hence a relationship for 1

2
P  can formulated in terms of 0

2
P  using (A7) and (A8): 

⇒  1 0 0

2 2 2

4 1

115
4

4

= − = −
 

− 
 

P P P   

Thus substituting into (A4) and ignoring fixed terms gives: 

0 0 0

1 2 2

1
4 16 4

1
4

4

 
 

= + − 
 −
 

P P P  (A9) 

(A5), (A6) and (A9) can be expressed in the following form: 

s 2=  ( )( )0 0

1 24 16 4 0= −P P  

s 3=  
( )

0 0

1 2

1
4 16 4

4 0

  
= −  

−  
P P  

s 4=  

( )

0 0

1 2

1
4 16 4

1
4

4 0

  
  
  

= −   
  −    −   

P P  

The effect of adding additional spans is known because their effect on 0

2
P  is determined 

by equations of the same form as (A8).  Therefore, in general: 
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( )0 0

1 s 24 16 4 f= −P P ,  (A10) 

where 
s

s 1

0 s 2

f 1
s 3

4 f −

=


=  
≥  − 

 (A11) 

Equation (A11) is a recurrence relation, which is difficult to manipulate.  The limit as 

s → ∞  can be found by considering (A11) in terms of a linear difference equation 

(Appendix B). 
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Appendix B 

Establishing the limit of fs 

Appendix A defined the recurrence relationship: 

s

s 1

0 s 2

f 1
s 3

4 f −

=


=  
≥  − 

  

A more convenient formulation is in terms of a linear difference equation.  Assume that 

such a relationship exists in the form: 

s s 2
s

s s 2

a b f
f

c d f

−
=

−
,  k 2≥  

where sa , sb , sc , and sd  are integers that yield a fraction in its lowest form.  

Since f2=0, this becomes: 

s
s

s

a
f

c
= ,  s 2≥  (B1) 

It is possible to observe how sf  varies with s and establish the coefficients sa  and sc  – 

see Table B1. 
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s 
sf  sa  sc  

2 
2

0
f

1
=  

0 1 

3 
3

2

1 1
f

4 f 4
= =

−
 

1 4 

4 
4

3

1 1 4
f

14 f 15
4

4

= = =
−  

−  
 

 
4 15 

5 
5

4

1 1 15
f

44 f 56
4

15

= = =
−  

−  
 

 
15 56 

6 
5

4

1 1 56
f

154 f 209
4

56

= = =
−  

−  
 

 
56 209 

Table B1 – Finding the coefficients for the linear difference equation 

The following relationships are evident: 

s s 1 s 2
c 4c c− −= −   

s s 1
a c −=  (B2) 

Using (B2), sa  can be eliminated from (B1) to give: 

s 1
s

s

c
f

c

−= ,  s 2≥  (B3) 

The general solution for sc  is: 

s s

s 1 2
c A Bγ γ= +   

and the characteristic equation is: 

2 4 1 0γ γ− + =  
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with roots:  

( )4 16 4
2 3

2
γ

± −
= = ±   

Thus the specific solution can be formulated: 

( ) ( )
s s

s
c A 2 3 B 2 3= − + +  (B4) 

When s 1= , 1c 0=  

⇒  ( ) ( )A 2 3 B 2 3 0− + + =  (B5) 

When s 2= , 2c 1=  

⇒  ( ) ( )
2 2

A 2 3 B 2 3 1− + + =  (B6) 

Eliminating B using (B5) and (B6) yields: 

( )
2

1
A

2 3 1

=
− −

 (B7) 

Eliminating A using (B5) and (B6) yields: 

( )
2

1
B

2 3 1

=
+ −

 (B8) 

Manipulating (B7) gives: 

( )
( )

( )

2

2 2

2 31
A

2 3 1 2 3 1

+
= = −

− − + −
 (B9) 
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The value of sc  is then obtained by substituting (B8) and (B9) into (B4): 

( )
( )

( )
( )

( )
2

s s

s 2 2

2 3 1
c 2 3 2 3

2 3 1 2 3 1

+
= − − + +

   + − + −
      

  

⇒  

( )
( ) ( ) ( )

2 s s

s 2

1
c 2 3 2 3 2 3

2 3 1

 = − + − + +
   + −

  

  

⇒  

( )
( ) ( )

s s 2

s 2

1
c 2 3 2 3

2 3 1

− = + − −
   + −

  

, s 3≥  (B10) 

Finally, sf  is derived by substituting (B10) into (B3): 

( ) ( )

( ) ( )

s 1 s 3

s 1
s s s 2

s

2 3 2 3
c

f
c 2 3 2 3

− −

−

−

 + − −
  = =
 + − −
  

,  s 3≥  (B11) 

This is verified using proof by induction: checking for the smallest case: 

s 3=  
( ) ( )

( ) ( )

2 0

3 3 1

2 3 2 3
6 4 3 1

f
424 16 32 3 2 3

 + − −
  + = = =
  ++ − −
  

 

which is correct. 

Assuming (B11) to be true for s, test for s+1: 

( ) ( )

( ) ( )

s s 2

s 1s 1 s 1

2 3 2 3

f

2 3 2 3

−

++ −

 + − −
   ≡
 + − −
  

    q.e.d. 

Hence (B11) is true when s 3≥ . 
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From (B11), the limit of 
s

f  as s → ∞  is:  

( ) ( )

( ) ( )
lim lim

s

s 1 s 3

s s 2s s

2 3 2 3

f

2 3 2 3

− −

−→∞ →∞

 + − −
  =
 + − −
     

⇒  
( )

( ) ( )
( )

( ) ( )
lim lim lim

s

s 1 s 3

s s 2 s s 2
s s k

2 3 2 3
f

2 3 2 3 2 3 2 3

− −

− −→∞ →∞ →∞

+ −
= −

+ − − + − −
  

Noting that ( ) ( )
1

2 3 2 3
−

+ ≡ − , this can be simplified to: 

⇒  
( )
( )

( )
( )

lim lim lim
s 2s 2 2s 2

s s k

2 3 2 3
f

1 2 3 2 3 1
− −→∞ →∞ →∞

− +
= −

− − + −
   

⇒  ( )lim
ss

f 2 3
→∞

= −  (B12) 
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Appendix C 

Numerical results from twist vector tests 

The results for each of the 96 cases (24 surfaces, each with 4 corners) from Section 6.4 

are given in Tables C1 to C4, and record the absolute positional error between the true 

and interpolated mid-points of the corner sub-patches.  In all cases, the Improved 

method is either the same or better than Adini.  [ ]∗  indicates the method. 

Case Error  ( ),

[ ] ½,½0 0

∗B  (m) ( ),

[ ] ½,½5 0

∗B  (m) ( ),

[ ] ½,½0 5

∗B  (m) ( ),

[ ] ½,½5 5

∗B  (m) 

(a) Adini 

New 

0.000956038 

0.000181146 

0.000956038 

0.000181146 

0.000956038 

0.000181146 

0.000956038 

0.000181146 

(b) Adini 

New 

0.001031893 

0.000197260 

0.001297937 

0.000443613 

0.000397021 

0.000102989 

0.000299838 

0.000076281 

(c) Adini 

New 

0.001098750 

0.000290537 

0.001098750 

0.000290537 

0.000324420 

0.000079729 

0.000324420 

0.000079729 

(d) Adini 

New 

0.000773581 

0.000178811 

0.000318235 

0.000086833 

0.000603612 

0.000098228 

0.000141436 

0.000062483 

(e) Adini 

New 

0.000838934 

0.000208494 

0.000652596 

0.000135367 

0.000305905 

0.000056944 

0.000219863 

0.000040049 

(f) Adini 

New 

0.001172420 

0.000365068 

0.000482422 

0.000081385 

0.000455922 

0.000069065 

0.000085379 

0.000008433 

Table C1 – Positional errors from the Adini and Improved surfaces for torus cases 
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Case Error  ( ),

[ ] ½,½0 0

∗B  (m) ( ),

[ ] ½,½5 0

∗B  (m) ( ),

[ ] ½,½0 5

∗B  (m) ( ),

[ ] ½,½5 5

∗B  (m) 

(a) Adini 

New 

0.000108664 

0.000019354 

0.000061187 

0.000011741 

0.000108664 

0.000019354 

0.000061187 

0.000011741 

(b) Adini 

New 

0.000117450 

0.000022550 

0.000068789 

0.000018869 

0.000044551 

0.000011072 

0.000038093 

0.000008888 

(c) Adini 

New 

0.000118246 

0.000023727 

0.000065756 

0.000015507 

0.000043506 

0.000010761 

0.000031569 

0.000007377 

(d) Adini 

New 

0.000064059 

0.000011982 

0.000043192 

0.000008382 

0.000038921 

0.000008196 

0.000063800 

0.000011993 

(e) Adini 

New 

0.000074664 

0.000014945 

0.000027738 

0.000011506 

0.000023727 

0.000005171 

0.000029107 

0.000006342 

(f) Adini 

New 

0.000083344 

0.000017509 

0.000031570 

0.000009550 

0.000029355 

0.000005792 

0.000030603 

0.000006720 

Table C2 – Positional errors from the Adini and Improved surfaces for sphere cases 

Case Error  ( ),

[ ] ½,½0 0

∗B  (m) ( ),

[ ] ½,½5 0

∗B  (m) ( ),

[ ] ½,½0 5

∗B  (m) ( ),

[ ] ½,½5 5

∗B  (m) 

(a) Adini 

New 

0.000000001 

0.000000001 

0.000000001 

0.000000001 

0.000000000 

0.000000000 

0.000000000 

0.000000000 

(b) Adini 

New 

0.000233211 

0.000042162 

0.000463585 

0.000148289 

0.000045244 

0.000019415 

0.000309330 

0.000025247 

(c) Adini 

New 

0.000283850 

0.000077629 

0.000283850 

0.000077629 

0.000135911 

0.000015865 

0.000135911 

0.000015865 

(d) Adini 

New 

0.000243377 

0.000018236 

0.000264913 

0.000061690 

0.000308712 

0.000071321 

0.000340592 

0.000033255 

(e) Adini 

New 

0.000233141 

0.000011212 

0.000804766 

0.000251036 

0.000174168 

0.000045966 

0.000555398 

0.000055713 

(f) Adini 

New 

0.000201466 

0.000022427 

0.000438890 

0.000121332 

0.000054802 

0.000018436 

0.000349498 

0.000028270 

Table C3 – Positional errors from the Adini and Improved surfaces for cone cases 

Case Error  ( ),

[ ] ½,½0 0

∗B  (m) ( ),

[ ] ½,½5 0

∗B  (m) ( ),

[ ] ½,½0 5

∗B  (m) ( ),

[ ] ½,½5 5

∗B  (m) 

(a) Adini 

New 

0.000000000 

0.000000000 

0.000000000 

0.000000000 

0.000000000 

0.000000000 

0.000000000 

0.000000000 

(b) Adini 

New 

0.000320571 

0.000100376 

0.000053097 

0.000027460 

0.000155522 

0.000004098 

0.000050326 

0.000015569 

(c) Adini 

New 

0.000132662 

0.000044060 

0.000132662 

0.000044060 

0.000081021 

0.000010460 

0.000081021 

0.000010460 

(d) Adini 

New 

0.000092357 

0.000010340 

0.000092357 

0.000020390 

0.000092357 

0.000020391 

0.000092358 

0.000010340 

(e) Adini 

New 

0.000069826 

0.000026754 

0.000160757 

0.000048559 

0.000052376 

0.000009973 

0.000089735 

0.000006873 

(f) Adini 

New 

0.000071865 

0.000024204 

0.000337963 

0.000103068 

0.000053817 

0.000015714 

0.000157444 

0.000002506 

Table C4 – Positional errors from the Adini and Improved surfaces for cylinder cases 
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Appendix D 

Geometric relationships for N = 3 

Hypothesis for N = 3 

Given N 3=  Bézier patches that join with a common vertex k

0,0
P , 0 k N≤ < , to form a 

3-sided surface, then: 

3 3

i i

i 0 i 0

1α β
= =

= − =∏ ∏   

Proof 

The vertices k

0,1P , 0 k N≤ < , are all related geometrically in terms of kα  and kβ .  The 

governing equations are the G
1
 constraints given by (7.12) in Chapter 7, assuming 

k km n= , 0 k N≤ < : 

( ) ( )k c c

0 ,1 0 ,0 k 1,0 0 ,0 k 0 ,1 0,0
α β− = − − + −P P P P P P   0 k N≤ < , ( )  c k 1 mod N= −  

These relationships are illustrated in Figure D1. 
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Figure D1 – Geometric relationships for k

0,1P , N=3 

It is assumed in Section 7.3.1 that the angle between ( )k

0 ,1 0 ,0−P P  and ( )c

0 ,1 0 ,0−P P , 

( )  c k 1 mod N= − , 0 k N≤ < , is ≤ 180°, therefore k 0α >  and k 0β < .  

Consider triangles A and B.  The ratios of corresponding sides are: 

1 0 2

0 0 ,1 0 ,0 0 ,1 0 ,0 0 0 ,1 0 ,0

1 0 2

0 ,1 0 ,0 1 0 ,1 0 ,0 1 0 ,1 0 ,0

α β

β α

− − −
= =

− − −

P P P P P P

P P P P P P
 

i.e. 
0

0

1 1

1 β
α

β α
= =  (C1) 

Since k 0α >  and k 0β < , 0 k N≤ < : 

 0 1 1α β =   ⇒  0 1 1α β = −   

Considering triangles A and C, and B and C in turn gives: 

( )2

0 0 ,1 0,0β −P P
 

( )0

0 ,1 0 ,0−P P

A 

k=0 

0,0P
 

0

0 ,1P
 

1

0 ,1P
 

2

0 ,1P
 

( )1

0 ,1 0 ,0−P P

( )2

0 ,1 0 ,0−P P

B 

k=1 

C 

k=2 

( )2

1 0 ,1 0,0α −P P
 

( )0

1 0,1 0 ,0β −P P
 

( )0

2 0 ,1 0 ,0α −P P
 

( )1

2 0 ,1 0,0β −P P
 

( )1

0 0,1 0 ,0α −P P
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1 2 1α β = −  (C2) 

2 0 1α β = −
 (C3) 

Now from (C1), 
0

0

1

β
α

α
= , and from (C3), 0

2

1
β

α
= − , therefore: 

0

1 2

1
α

α α
=  ⇒  

0 1 2
1α α α =   

since k 0α > , 0 k N≤ < . 

Similarly, from (C1), 
0

1 1

1β

α β
= , and from (C2), 1

2

1
α

β
= − , therefore: 

0 2

1

1

1

β β

β
=  ⇒  

0 1 2
1β β β = −   

since k 0β < , 0 k N≤ < , which completes the proof. 
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