Direct contact measurement of the dielectric properties of glass ionomer cements for MEMs design

Boissonade, Jonathan James (2015). Direct contact measurement of the dielectric properties of glass ionomer cements for MEMs design. University of Birmingham. Ph.D.

[img]
Preview
Boissonade15PhD.pdf
PDF - Accepted Version

Download (11MB)

Abstract

This investigation was aimed at measuring the changes in dielectric properties of glass ionomer cements during their setting reaction in order to observe if there is a correlation between these properties and the cement curing. Commercial glass ionomer cements were prepared and their setting process was monitored over a 24 hour period using FT-IR and direct contact impedance measurement. An impedance bridge with a dielectric test assembly, based on previous work by Braden et al, was used to measure the dielectric properties of a number of different glass ionomer cements using a simple design. Using the dielectric properties of the glass ionomer cements, it could be possible to develop a micro-electro-mechanical sensor (MEMS) based on this design, which could be implanted into a dental restoration and interrogated remotely. During the curing of the cements examined, the dielectric data collected from the co-planar assembly showed a change in impedance over the course of the setting of the cement, which when compared to FT-IR spectra over the same period, showed a correlation between the dielectric properties and the chemical changes within the cement.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Supervisor(s):
Supervisor(s)EmailORCID
Stamboulis, ArtemisUNSPECIFIEDUNSPECIFIED
Ward, Michael C. L.UNSPECIFIEDUNSPECIFIED
Licence:
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Metallurgy and Materials
Funders: Engineering and Physical Sciences Research Council
Subjects: Q Science > QD Chemistry
R Medicine > RK Dentistry
URI: http://etheses.bham.ac.uk/id/eprint/6321

Actions

Request a Correction Request a Correction
View Item View Item

Downloads

Downloads per month over past year