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Abstract 

Since the metamaterials ethos of geometry over chemistry was first conceived at the 

end of the last century, a great deal of effort has been directed towards the conceptual, 

computational and experimental development of myriad effective electromagnetic media. 

Having been greatly successful, the fruits of this labour are now ripe for use within new and 

exciting applications. However, instead of simply coming up with engineering solutions, 

here, we take inspiration from another discipline which centres on the physics of wave 

behaviour in complex environments, namely Quantum mechanics, to explore novel 

metamaterial systems. In particular, we exploit the possibility of independently controlling 

the elements of an effective polarisability matrix to reveal unique polarisation based 

phenomena.  

Firstly, by employing resonant “meta-atoms” to selectively absorb specific 

polarisation states of THz radiation, while tuning the polarisation conversion efficiency via 

near-field coupling, spontaneous Parity Time symmetry breaking has been observed in 

polarisation space for the first time. Measurements have been carried in the THz frequency 

regime using THz-Time Domain Spectroscopy. Through this investigation we also reveal that 

anisotropic material as well radiative loss can be highly useful for tailoring the response of 

resonant metamaterials.  

Secondly, the possibility of achieving a topologically non-trivial phase within an 

effectively homogeneous photonic medium is discussed. Originating from the inherent spin-

orbit interaction for light, three dimensional metamaterials with chirality and hyperbolicity 

are shown to possess equal-frequency surfaces with non-zero topological indices. As a result, 

an interface formed between this and a trivial medium, such as a vacuum, supports robust 
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surface waves which are unidirectional and immune to backscattering. Building on the 

effective medium calculations, our predictions are confirmed by numerical studies of realistic 

meta-structures. These developments are therefore expected to represent a new direction for 

theoretical and experimental research into topological photonics.            
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Chapter 1: Introduction 

1.1: Background and Motivation 

Scientific revolutions are often born out of a realisation that seemingly disparate 

phenomena are in fact intimately connected. Quantum mechanics is a prime example of this. 

By the start of the 20
th

 century, thanks to the likes of Young, Fresnel and Thomson, the 

existence of light waves and negatively charged particles, known as electrons, had been 

firmly established. However, around this time physicists became troubled by certain 

phenomena involving the interaction between these fundamental excitations which would 

ultimately challenge their preconceptions. In a remarkable twist, great minds including Plank, 

Bohr and Einstein showed that a number of observations including discrete atomic spectra 

and the photoelectric effect could only be explained if light could also be made up of 

particles, known as photons, and matter were able to behave as a wave[1]. This mysterious 

insight lies at the heart of modern physics, chemistry and even biology. One area in which 

quantum mechanics has had a huge impact is condensed matter physics. Unlike photons, 

electrons spend most of their time bound within materials. When introducing wave behaviour 

to the description of such systems exciting properties including superconductivity and 

quantum tunnelling emerge.       

More recently, electromagnetism has undergone its own transformation. Exploiting 

the scale invariance of Maxwell’s equations, electrical engineering design principles have 

been combined with geometrical optics to form the field of metamaterials. John Pendry is 

often credited with proposing the general idea via two papers, one published in 1996 and the 

other in 1999, that if artificial elements are arranged on a subwavelength scale, collectively 

they would mimic the response of atoms within naturally occurring solids[2, 3]. As a result, 
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these man-made materials can be described in terms of effective parameters such as an 

electric permittivity, a magnetic permeability and a refractive index. Importantly, these 

parameters can be controlled via the geometry of the elements used rather than being limited 

by the constitutive materials available, dramatically increasing the range of values that can be 

achieved. Interest in this new field exploded when D. R. Smith used Pendry’s design 

principle to realise the first medium to simultaneously exhibit a negative permittivity and 

permeability[4]. The reason for this excitement was an earlier theoretical prediction by Victor 

Veselago, which was ignored at the time as it was regarded to be unphysical, revealing that 

such a material should be described as having a negative refractive index[5]. This simple 

result which implies that the corresponding waves possess group and phase velocities 

pointing in opposite directions can also be shown to produce remarkable phenomena 

including negative refraction[6], negative radiation pressure[7], backward Cerenkov 

radiation[8] and even super resolution imaging[9].  Due to the enormous amount of interest 

that the field has received since then, metamaterials research is just beginning to reach 

maturity, providing a vast array of not just novel but precise methods for manipulating all 

characteristics of electromagnetic radiation, heralding a new dawn for photonic science. A 

more thorough account of these developments can be found in section (2.3).  

With such an increased level of freedom offered by metamaterials for controlling the 

behaviour of light waves, it is pertinent to search for interesting ways of harnessing this new 

power. One option is to look to the wealth of quantum condensed matter phenomena arising 

from complicated potential energy landscapes. While a number of studies have sought to 

replicate these potentials using spatially dependent refractive index variations, another 

intriguing possibility is the application of quantum principles to distinctly photonic 

behaviour. One such property is polarisation. By representing a uniform beam of light as the 

superposition of left and right handed circularly polarised waves, i.e. waves with 
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electromagnetic fields rotating in clockwise and anticlockwise directions, the intrinsic nature 

of the angular momentum carried by the beam is reminiscent of the spin degree of freedom 

for electrons. Unlike electrons however, the direction of photonic spin is fixed precisely by 

the linear momentum which will later be shown to have some surprising consequences. By 

exploring polarisation dependant light propagation with quantum inspired anisotropic 

metamaterials, we will reveal new physics as well as potentially useful functionalities.   

1.2: Overview of Thesis 

The main body of this thesis includes three chapters. Firstly, in chapter two, key 

background information is provided, forming the foundations for the new results presented 

later in the document. In particular, the physics behind PT symmetric and topological 

quantum problems as well as electromagnetic metamaterial design is outlined. Building on 

this initial discussion, PT symmetric metasurfaces are developed in chapter three with the 

prediction and experimental observation of polarisations phase transitions and topologically 

protected spectral singularities explained in detail. Chapter four then deals with the 

theoretical discovery of a topologically non-trivial phase in chiral hyperbolic metamaterials. 

While this final part of the thesis describes a purely theoretical study, it is concluded by 

presenting realistic designs which should allow experimental validation to be carried out in 

the future.         
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Chapter 2: Fundamental Concepts 

The aim of this thesis is to explore novel polarisation based wave behaviour 

originating from anisotropic metamaterial designs inspired by quantum theory. Before 

embarking on such an endeavour, it is important to set the scene and present the physical and 

mathematical basis for this possibility. To start we will therefore discuss some key concepts 

in quantum mechanics, classical electromagnetism and metamaterials. 

2.1: Symmetry and Topology in Quantum 

Mechanics 

In this section, we introduce a few basic mathematical concepts that underpin some 

fairly recent developments in quantum physics. Specifically, our focus is on simple, non-

interacting problems which depend on a set of parameters. By tracking the solutions of such 

systems while varying those parameters, surprising results can be revealed. It is these results 

that we wish to exploit in the context of photonics and so the information given here will act 

to guide the work presented in chapters three and four.    

2.1.1: Schrödinger’s Equation 

In 1925 Erwin Schrödinger brought about a scientific paradigm shift when he 

postulated that the dynamics of microscopic objects are governed by the following partial 

differential equation[10]. 

 𝑖ℏ
𝜕

𝜕𝑡
Ψ(𝒓, 𝑡) = [−

ℏ2

2𝑚
𝛁2 + 𝑉(𝒓, 𝑡)]Ψ(𝒓, 𝑡) [2.1] 
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Schrödinger’s equation describes the energetic exchange between a potential energy 

landscape 𝑉(𝒓, 𝑡) and a space-time dependant field Ψ(𝒓, 𝑡) and, crucially, supports bound 

and travelling wave solutions. Counterintuitively, Ψ(𝒓, 𝑡) represents just a single particle; a 

fact confirmed by experimental observations which reveal that one can only ever infer its 

existence from repeated measurements rather than probing it directly from a single 

measurement. This seemingly paradoxical result, commonly referred to as wave-particle 

duality, is often resolved by interpreting |Ψ(𝒓, 𝑡)|2 as the probability density for observing 

the particle at some point in space and time in any given measurement[10]. This new 

approach has revolutionised the physical sciences and successfully explained a number of key 

phenomena, including the discretisation of atomic emission spectra, variation in conduction 

for metals and semiconductors and even the lifetime of stars. 

 Without explicit time dependence, 𝑉(𝒓, 𝑡) → 𝑉(𝒓), solutions take the form Ψ𝑛(𝒓, 𝑡) =

𝑒−
𝑖𝐸𝑛𝑡

ℏ 𝜓𝑛(𝒓), where En is the mode energy which can be found by solving the eigenvalue 

problem 𝐸𝑛𝜓𝑛(𝒓) = [−
ℏ2

2𝑚
𝛁2 + 𝑉(𝒓)]𝜓𝑛(𝒓) ≡ ℋ̂𝜓𝑛(𝒓). These are known as stationary 

states as their probability distributions remain fixed in time. While only strictly applicable to 

static systems, time independent solutions can also be used more generally, in conjunction 

with perturbative methods, for approximating the interaction between different sub-systems 

or the dynamics of a particle lying in an evolving potential[10]. As well as the Hamiltonian 

ℋ̂, which represents the energy of a quantum object, other operators, such as the linear or 

angular momentum operators, can extract further information. However, the probabilistic 

nature of the theory usually restricts physically meaningful operations to those that are 

Hermitian, or self-adjoint, guaranteeing a complete set of eigenvectors with real eigenvalues. 

Importantly, the fact that the wavefunction cannot be observed directly also provides a 

freedom to choose its phase arbitrarily. This so called gauge invariance places further limits 
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on the information that can be gleaned from quantum measurements, as any property that 

varies under the transformation 𝜓𝑛(𝒓) → 𝑒𝑖𝜑𝜓𝑛(𝒓) is not physically accessible.  

2.1.2: Parametric Evolution and Geometric 

Phase 

In 1984, Michael Berry decided to investigate the behaviour of a quantum system 

undergoing slow temporal variation[11]. Rather than solving Eq.2.1 directly, Berry described 

the problem in terms of a Hamiltonian ℋ̂(𝑹), dependant on a set of parameters 𝑹 =

(𝑅1(𝑡), 𝑅2(𝑡), 𝑅3(𝑡)… ) that change with time. For sufficiently slow changes
*
, the adiabatic 

theorem guarantees that an initial stationary state |𝑛(𝑹(𝑡 = 0))⟩ of ℋ̂(𝑹(𝑡 = 0)) will remain 

an eigenstate of the instantaneous ℋ̂ for all future t. The general solution can then be written 

as       

 |Ψ(𝑡)⟩ = 𝑒𝑖𝛾𝑛(𝑡)𝑒−
𝑖
ℏ∫

𝐸𝑛(𝑹(𝑡
′𝑡

0 ))𝑑𝑡′|𝑛(𝑹(𝑡))⟩, [2.2] 

where the phase consists of both the usual dynamic contribution plus an extra term 

originating from the changing environment. By inserting this wavefunction into 

Schrödinger’s equation, it can be shown that 

 𝛾𝑛 = 𝑖 ∫⟨𝑛(𝑹)|𝛁𝑹𝑛(𝑹)⟩ ∙ 𝑑𝑹. [2.3] 

Berry’s insight was to notice that, while not generally true, 𝛾𝑛 is gauge invariant (modulo 

2𝜋), and therefore physically observable, for a system which returns to its initial state after 

                                                           
*
 The limit on how slow changes to the Hamiltonian need to be in order for the adiabatic theorem to apply can 

be determined by inspecting the first order corrections to the time dependent wavefunction, which are 
proportional to ⟨𝑛′| 𝜕 𝜕𝑡⁄ |𝑛⟩ (𝐸𝑛 − 𝐸𝑛′⁄ ), where 𝑛′ ≠ 𝑛[12]. Here we can see that the rate of change of the 
initial eigenstate, and therefore the Hamiltonian, needs to be small compared to the separation from 
neighbouring energy levels. It is also then obvious that the adiabatic theorem necessarily breaks down if states 
become degenerate.      
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some time 𝑹(𝑇) = 𝑹(0)[11]. Interestingly, the additional phase factor, often called the Berry 

phase, is entirely geometrical, depending on the path taken through the underlying parameter 

space rather than the local coordinates t or R. Physically, a closed loop in Eq.2.3 can be 

thought of as the interference between two different states, reminiscent of the Aharonov-

Bohm effect for particles taking different routes around a solenoid. Here 

𝑨𝑛 = 𝑖⟨𝑛(𝑹)|𝛁𝑹𝑛(𝑹)⟩, often called the Berry connection, plays the same role as the 

magnetic vector potential in classical electromagnetism. For 2 ≤ dim⁡(𝑹) ≤ 3 we can take 

this analogy further by defining 𝛀𝑛 = 𝛁𝑹 × 𝑨𝑛, often called the Berry curvature, which plays 

the role of an effective magnetic field. Unlike the Berry connection, the Berry curvature is 

actually local and gauge invariant. Using Stokes’s theorem, Eq.2.3 can also then be recast 

into the gauge invariant form        

 𝛾𝑛 = ∫𝛀𝑛 ∙ 𝑑𝑺, [2.4] 

which represents an effective Gauss’s law, relating the Berry phase accumulated around a 

circuit to the Berry flux threading the enclosed surface. 

 One particularly important model to which Berry’s analysis can be applied is that of 

two interacting modes, which can be described by the generalised Hermitian Hamiltonian 

 ℋ̂(𝑹 = (𝑋, 𝑌, 𝑍)) =
1

2
[

𝑍 𝑋 + 𝑖𝑌
𝑋 − 𝑖𝑌 −𝑍

]. [2.5] 

Notable examples of physical systems that can be described by Eq.2.5 include the behaviour 

of a spin−
1

2
 particle under the influence of a slowly rotating magnetic field and Bloch 

electrons at the corner of a hexagonal Brillouin zone. After solving for the eigenstates, it can 

be shown that, in this case, the Berry curvature takes the simple form[11]  

 𝛀𝑛 = ±
𝑹

2𝑅3
. [2.6] 
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Remarkably, this equation describes the field of an effective magnetic monopole sitting at the 

origin of the parameter space 𝑹 = 0. By looking at the energy eigenvalues of Eq.2.5, 

𝜀𝑛 = ±√𝑅2, we can see that a diabolic or Dirac type mode degeneracy also exists for 𝑹 = 0. 

This correspondence between degeneracies and monopole sources of Berry curvature is 

actually quite general and can be proven by using perturbation theory to derive an alternative 

form for 𝛀𝑛 containing terms which are inversely proportional to the separation between 

neighbouring energy levels[12]. Just as the electric flux through a closed surface in real space 

depends solely on the number of electrons or protons contained within it, the Berry flux 

through a closed surface SC in R is equal to the number of monopole degeneracies bounded 

by SC, multiplied by 2𝜋. This leads to the definition of the Chern number,  

 𝐶𝑛 =
1

2𝜋
∬ 𝛀𝑛 ∙ 𝑑𝑺

𝑺𝐶

. [2.7] 

Known as a topological invariant, 𝐶𝑛 can only take on integer values and therefore remains 

Figure 2.1: Topological characterisation of closed 2D surfaces embedded in 3D space. The genus which 

counts the number of holes present is a topological invariant. The objects within each sub figure (a, b and c) are 

topologically equivalent as one can be smoothly deformed into the other, while objects are topologically 

inequivalent to those in other sub figures as punching a hole is not a smooth transformation[111]. 
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invariant under smooth deformations of SC. Cementing the connection between geometry and 

the concepts outlined throughout this section, Eq.2.7 also closely resembles the Gauss-Bonnet 

theorem. Through this analogy, 𝐶𝑛 plays the same role as the genus which counts the number 

of holes in a 2D surface embedded in a 3D space. Topological invariance of the genus can be 

understood very intuitively, as the act of punching a hole through a surface is clearly not 

smooth.              

2.1.3: Non-trivial Topology in Crystals 

Having explained the universal properties of parameter dependant Hamiltonians, we 

now proceed to discuss a specific parametrisation used in condensed matter physics, namely 

Bloch state crystal momentum, for which topology can have some surprising consequences. 

The wavefunction of a quantum particle sitting in a time-independent periodic potential 

𝑉(𝒓) = 𝑉(𝒓 + 𝒂) can be written as   

 |Ψ(𝒓)⟩ = 𝑒𝑖𝒌.𝒓|𝑛(𝒓)⟩, [2.8] 

where |𝑛(𝒓)⟩ = |𝑛(𝒓 + 𝒂)⟩. The periodic part |𝑛⟩ of the wavefunction obeys the k dependant 

eigenvalue problem     

 ℋ̂(𝒌)|𝑛(𝒌)⟩ = 𝜀𝑛𝒌|𝑛(𝒌)⟩, [2.9] 

with the eigenstates of this equation forming a discrete set of continuous energy bands 

separated by band gaps[13], as illustrated schematically in Figure 2.2b. A particle cannot be 

transported through the lattice with energies in the band gap. Such problems can therefore be 

seen to fit nicely within the framework outlined in (2.1.2) with 𝑹 ≡ 𝒌. Under the action of a 

constant, uniform electric field E, the particle will be accelerated, corresponding to a 

variation of k in time, 
𝜕𝒌

𝜕𝑡
= −

𝑒

ℏ
𝑬. As first pointed out by Zak in 1989, closed parametric 

loops can be found even in 1D crystals because the periodic boundary condition only allows 
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for 𝑛(𝑘) and 𝑛 (𝑘 +
2𝜋

𝑎
) to differ by a phase factor 𝑒𝑖𝛾𝑛[14]. Consequently, one commonly 

works only in the first Brillouin zone (−
𝜋

𝑎
< 𝑘 <

𝜋

𝑎
). This phase 𝛾𝑛, given by Eq.2.3, is a 

geometric property of each band and actually attains a topological character when inversion 

symmetry is present as it is quantized in units of 𝜋[14].   

 In two dimensions the situation becomes more interesting as the Berry curvature is 

well defined. With the Brillouin zone now being represented by a closed toroidal surface each 

non-degenerate band can be assigned a Chern number 𝐶𝑛 which can be calculated using 

Eq.2.7[12]. Importantly, although changes to the potential energy will modify 𝜀𝑛𝒌, the 

topological invariance of 𝐶𝑛 means that it can only change if a band gap is closed. As well as 

providing a global signature of each 𝜀𝑛, this has dramatic consequences for the transport 

Figure 2.2: Bulk edge correspondence for boundary between topologically distinct 2D crystals. a) 

Disordered interface between two half-spaces filled with lattice potentials V1 and V2. b-d) Band structures for 

a particle positioned at corresponding coordinates labelled by yellow dotes in subplot(a). As the sum of the 

Chern numbers below the band gap 𝚺 in subplots (b) and (d) differ by one, the gap must close at the interface 

in the form of a one-way edge state, represented by red curves in (a) and (b). 
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properties of finite systems. We can see this by considering an interface between two half-

spaces described by different Hamiltonians ℋ̂1 for (𝑦 < 0) and ℋ̂2 for (𝑦 > 0), as shown in 

Figure 2.2a. If the corresponding bulk band structures, i.e. the solutions to the infinitely 

periodic problems ℋ̂1(𝒌) and ℋ̂2(𝒌), share a complete energy gap one would naturally 

expect the combination to be fundamentally indistinct from a simple defect within a single 

periodic space. However, it turns out that propagating modes must exist at such a boundary, 

unlike a simple defect, when the sum of the Chern numbers associated with energy bands 

below the gap Σ = ∑ Cnn<𝑎 , for a gap between the a
th

 and (a+1)
th

 energy bands, are different 

for ℋ̂1(𝒌) and ℋ̂2(𝒌). This can be understood by imagining a particle located in different 

positions along y. Far from the interface (𝑦 ≪ −𝑎) and (𝑦 ≫ 𝑎), its behaviour will be 

governed approximately by ℋ̂1(𝒌) and ℋ̂2(𝒌), respectively. The act of moving the particle 

from one region of space to the other can then be mapped to a parametric interpolation 

between the two Hamiltonians, which must be accompanied by a band gap closure if a 

topological transition occurs[15], as illustrated schematically in Figure 2.2. In fact, the exact 

number of edge states crossing from the lower, or valence, to the upper, or conduction, bulk 

bands is given by |Σ2 − Σ1|. Crucially, as the justification for this so called bulk-boundary 

correspondence is rooted in k-space it is entirely independent of the detailed formation of the 

interface. Lastly, the requirement for these edge states to connect between different energy 

levels means that they must disperse asymmetrically within a given band gap, leading to a 

definite sign for the group velocity 𝑣𝑔 = ∇𝑘𝜔. Consequently, the electrons can only travel in 

one direction and as their existence is guaranteed such boundaries exhibit dissipationless 

conduction. They are therefore said to be topologically protected against disorder[15].  

Having discussed the relationship between edge states found between two different 

media and their bulk Bloch band topology we will now look at some physical systems which 
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exhibit Σ ≠ 0. The arguments presented above were actually first applied retrospectively to

 

observations made by von Klitzing et al. in 1980 finding that the conductivity of a 2D 

semiconductor becomes precisely quantised in units of 𝑒2 ℎ⁄  in a strong perpendicular 

magnetic field[16]. By regularising the induced cyclotron orbits on a magnetic Brillouin 

zone, the dispersionless Landau levels which propagate in the bulk are found to have non-

zero Chern numbers. As the existence of one-way edge states is guaranteed by bulk boundary 

correspondence and the number of electronic states available to conduct on the edge depends 

only on the Chern numbers of bulk bands below the chemical potential, or Fermi energy, the 

conductivity can only change, and must change discontinuously, when the Fermi energy 

crosses a Landau level. The relationship between quantised conductance and topological bulk 

Figure 2.3: Topological electronics. Real space charge dynamics (left) and surface state 

dispersion (right) for topologically different insulators truncated with a vacuum[112]. 
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indices, later shown to be Chern invariants, was first highlighted by Thouless et al[17]. This 

phase is called the integer quantum hall effect (IQHE).     

More recently, physicists have asked how systems with topological protection can be 

created without a magnetic field. The answer turns out to rely on spin. Close to the Brillouin 

zone corners of graphene, which is a 2D inversion symmetric, honeycomb arrangement of 

carbon atoms, the electronic dispersion can be approximated by Eq.2.5, with (𝑋, 𝑌, 𝑍) ≡

(𝛿𝑘𝑥, 𝛿𝑘𝑦, 0). 𝑍 = 0 leads to a linear degeneracy at 𝛿𝑘𝑥 = 𝛿𝑘𝑥 = 0 and is guaranteed by 

inversion and time reversal symmetries. If 𝑍 ≠ 0 the discussion in (2.1.2) predicts that a gap 

will open between topologically nontrivial bands. However, breaking inversion symmetry 

leads to 𝑍 > 0 and 𝑍 < 0 for different corners of the Brillouin zone causing the net Berry 

curvature to vanish. In 2005, Kane and Mele showed that including a spin-orbit interaction 

can lift each degeneracy with the same Z[18]. Preservation of time reversal symmetry in this 

case is manifest in the fact that 𝑍𝑢𝑝 = −𝑍𝑑𝑜𝑤𝑛. The bulk bands of the two spin sectors can 

then be thought of as IQHE states with opposite signs for the magnetic field. Consequently, 

protected, spin polarised edge states are found after truncating the material as long as time 

reversal symmetry is present, preventing edge spin mixing[19]. This phase is therefore known 

as a quantum spin hall insulator (QSHI). Unfortunately, the gap opened by the spin-orbit 

interaction within graphene is immeasurably small. However, it was later proposed, and 

subsequently demonstrated, that by creating a quantum well structure in which a critical 

thickness is chosen for a HgTe layer sandwiched between two CdTe layers, the normal order 

of symmetric and antisymmetric, valence and conduction bands describing the propagation of 

electrons in the remaining two dimensional plane becomes inverted. This leads to the same 

low energy Hamiltonian as found for graphene except that the much stronger spin orbit 

coupling in these heavy-atom semiconductors produces a large gap[20].     
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Finally, three dimensional crystals can also exhibit non-trivial topology. By 

generalising the band inversion argument used for designing the 2D QSHE , a fully gapped 

3D bandstructure can be predicted for spin-orbit coupled semiconductors with inversion 

symmetry[15]. The surface states of these so called topological insulators form a single Dirac 

cone resulting in a spin polarised version of the electronic conduction found in graphene. 

Unlike graphene, however, the linear degeneracy found in the topological surface dispersion 

is protected by time-reversal rather than spatial symmetries. Experimental confirmation was 

provided in 2008 when the surface bands of Bi1-xSbx where mapped out using angle resolved

 photoemission spectroscopy[21]. Finally, in 3D a truly insulating material isn’t strictly 

necessary. In metallic crystals with strong spin-orbit coupling and broken time reversal or 

inversion symmetry, degeneracies which disperse linearly in all three directions 𝑘𝑥, 𝑘𝑦 and 

𝑘𝑧, known as Weyl points, can be found. Unlike Dirac points, these degeneracies cannot be 

lifted by any perturbation and can only be created in pairs. This robustness originates from 

the fact that each Weyl point acts as a momentum space monopole, shown in (2.1.2) to 

possess a quantised topological charge. As a result, Fermi-surfaces which wrap around an 

Figure 2.4: Topological semi-metals. a) Chern numbers associated with 2D surfaces in 3D Brullion zone. C=1 

if the surface sits between Weyl points of opposite charge, otherwise C=0. Orange curve represents Fermi ark 

which exists for a truncated system. b) Dispersion corresponding to ‘a’ with separated points of linear 

dispersion[22]. 
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odd number of such k-space coordinates can be assigned a nonzero Chern number. In Figure 

2.4 bulk boundary correspondence is seen to produce nodes connecting Weyl points with 

opposite charge, known as Fermi arcs. For particular surface orientations protected surface 

excitations can be supported[22–24]. 

2.1.4: Non-Hermitian Hamiltonians and 

Spontaneous PT Symmetry Breaking 

Despite the great success with which Quantum theory can make predictions, as 

outlined in section 2.1.1, explanations of certain counterintuitive observations, such as 

Young’s double slit experiment, still rely on a set of mysterious postulates. In this section, we 

review recent developments which challenge one particular postulate, stating that only 

eigenvalues of Hermitian operators can be physically measured. Through these endeavours, it 

has been shown that the full wealth of Quantum analysis can be extended to open or 

dissipative systems in which energy is able to enter and leave via interactions with the 

external environment, potentially opening up new directions for experimental study. Of 

course a complete description of any problem would involve the entire universe which must 

be closed due to the principle of energy conservation; however, keeping track of every 

excitation possible is most often impractical.    

The strange and often controversial features of Quantum physics stem from the 

probabilistic interpretation of Schrödinger’s equation. Any attempt at describing point 

particle observations using wave mechanics necessarily involves the use of additional 

constraints to avoid unphysical predictions. Traditionally, the stipulation that only the action 

of self-adjoint, or Hermitian, operators ℋ̂ = ℋ̂† can be probed experimentally is applied 

axiomatically[10]. Hermiticity guarantees the existence of both real numbered eigenvalues, 



P a g e  | 16 

 

which is a requirement as imaginary energy, momentum or position for example would be 

nonsensical, and a unitary time evolution operator 

 |Ψ(𝑡)⟩ = 𝑈̂|Ψ(0)⟩ [2.10] 

which ensures that probabilities are conserved. Of course for a problem to be Hermitian the 

potential energy must be a real-valued function of position.   

However, in 1998 Bender et al. decided to explore one dimensional Hamiltonians 

ℋ̂(𝑥) which extend into the complex plane[25]. Remarkably, they found a whole new class 

of non-Hermitian problems which still have real eigen spectra. Instead the reality of the 

eigenvalues was put down to PT symmetry, i.e. [ℋ̂, 𝑃𝑇] = 0, where P is the parity or mirror 

operator which changes  𝑝 → −𝑝 and 𝑥 → −𝑥, while T is the time reversal operator which 

converts 𝑝 → −𝑝 and 𝑖 → −𝑖. The correspondence between complex conjugation and time 

reversal comes from the fact that time dependence only enters the wave function 

Figure 2.5: Energy levels of the Hamiltonian 𝓗̂ = 𝒑𝟐 − (𝒊𝒙)𝑵 as a function of the 

parameter N. There are three regions: When 𝑵 ≥ 𝟐 the spectrum is real and positive. The 

lower bound of this region, 𝑵 = 𝟐, corresponds to the harmonic oscillator, whose energy 

levels are 𝑬𝒏 = 𝟐𝒏 + 𝟏. When 𝟏 < 𝑵 < 𝟐 there are a finite number of real positive 

eigenvalues and an infinite number of complex conjugate pairs of eigenvalues. As N 

decreases from 2 to 1, the number of real eigenvalues decreases; when 𝑵 ≤ 𝟏. 𝟒𝟐𝟐𝟎𝟕, the 

only real eigenvalue is the ground-state energy. As N approaches 1, the ground-state energy 

diverges. For 𝑵 ≤ 𝟏 there are no real eigenvalues[25]. 
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harmonically Ψ𝑛(𝒓, 𝑡) = 𝑒−
𝑖𝐸𝑛𝑡

ℏ 𝜓𝑛(𝒓)  as 𝑡 is assumed to be absent in ℋ̂. This also provides 

physical meaning to the imaginary part of the potential which can be seen to lead to 

exponential growth/decay of the wave function. PT symmetry therefore provides a natural 

route to exploring open quantum systems.    

Interestingly, PT symmetry unlike Hermiticity doesn’t guarantee real eigenvalues. In 

[25] a detailed numerical investigation of the Hamiltonian ℋ̂ = 𝑝2 − (𝑖𝑥)𝑁 was carried out 

as a function of the real-valued parameter N. The results of their analysis are summarised in 

Figure 2.5. Although this equation is PT invariant for all N, when 𝑁 ≤ 2 complex conjugate 

eigenvalue pairs emerge. In this region PT symmetry is said to be spontaneously broken as 

not all of the energy eigenstates commute with the PT operator. Exactly at the transition point 

𝑁 = 2, and any other N for which two real energy levels merge together, the associated 

eigenstates also become degenerate. Such coordinates are known as exceptional points (EPs), 

representing the extreme non-Hermitian limit[25].  

In a later study the same authors pointed out that when PT symmetry is unbroken a 

norm preserving inner product can be defined in terms of a linear operator 𝐶(𝑥, 𝑦) =

∑ 𝜓𝑛(𝑥)𝜓𝑛(𝑦)𝑛 , where 𝜓𝑛 are the energy eigenstates, which commutes with both PT and ℋ̂. 

The reason for labelling this operator C is that it has a very similar form to the charge 

conjugation operator which transforms, for example, a particle into an antiparticle. As a 

result, Bender et. al. proposed CPT symmetry as a complex generalisation of traditional 

quantum mechanics[26]. However, the physical significance of this finding is still hotly 

debated and, as we are only interested in the insights provided for complex wave dynamics, 

we will not discuss the issue further.       
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2.2: Classical Electromagnetism and Natural 

Media 

In the second part of chapter two, we will introduce the physical principles, and 

corresponding mathematical descriptions, necessary for understanding the propagation of 

electromagnetic radiation through naturally occurring materials. As well as providing an 

initial discussion of the light-matter interaction, this section will also act as a guiding light for 

designing artificial systems with new and exciting properties.  

2.2.1: Electromagnetic Wave Propagation  

The laws of electromagnetism can be neatly summarised by Maxwell’s equations  

 𝛁 ∙ 𝑬(𝒓, 𝑡) =
𝜌(𝒓, 𝑡)

𝜀0
 [2.11] 

 𝛁 ∙ 𝑩(𝒓, 𝑡) = 0 [2.12] 

 𝛁 × 𝑬(𝒓, 𝑡) = −
𝜕𝑩(𝒓, 𝑡)

𝜕𝑡
 [2.13] 

 𝛁 × 𝑩(𝒓, 𝑡) = 𝜇0 (𝑱(𝒓, 𝑡) + 𝜀0
𝜕𝑬(𝒓, 𝑡)

𝜕𝑡
), [2.14] 

which describe the generation of electric 𝑬 and magnetic 𝑩 fields by the presence of source 

electric charge 𝜌 and current 𝑱 densities, as well as other time varying fields[27]. The 

fundamental constants 𝜀0 and 𝜇0 are known as the permittivity and permeability of free-

space, respectively. Importantly, without sources 𝜌 = 𝑱 = 0 Eq.2.11-14 can be written simply 

as  

 ∇2𝑬/𝑩(𝒓, 𝑡) + 𝜀0𝜇0
𝜕2𝑬/𝑩(𝒓, 𝑡)

𝜕𝑡2
= 0, [2.15] 
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permitting solutions of the form 𝑬 = 𝑬𝟎𝑒
𝑖(𝒌.𝒓−𝜔𝑡), 𝑩 = −

𝑖

𝜔
𝒌 × 𝑬 where 𝜔 = |𝒌| √𝜀0𝜇0⁄ . 𝒌 

is known as the wave-vector and is related to the spatial periodicity or wavelength via 

𝜆 = 2𝜋 |𝒌|⁄ , and 𝜔, known as the angular frequency, is related to the temporal periodicity via 

𝑇 = 2𝜋 𝜔⁄ . We can also label the quantity 𝑐 = 𝜆 𝑇 =⁄ 1 √𝜀0𝜇0⁄  which represents the speed 

of speed of light in a vacuum. Throughout the rest of this thesis we will deal almost 

exclusively with the propagation of these electromagnetic wave fields, leaving their 

excitation and detection as an experimental detail. Consequently, non-zero 𝜌 and 𝑱 can only 

arise as a result of Lorentz forces acting on charges bound within previously neutral and 

static objects. The detailed spatial distribution of the induced 𝜌(𝒓, 𝑡) and 𝑱(𝒓, 𝑡) can be 

incredibly complicated. However, the scale of variations caused by atomic and molecular 

effects is so small that the averaged response is often approximated by the polarisation 𝑷 and 

magnetisation 𝑴 vector fields, defined via the continuity equation 𝛁 ∙ 𝑱 − 𝜌 = 0 as[27] 

 𝜌(𝒓, 𝑡) = −𝛁 ∙ 𝑷(𝒓, 𝑡) [2.16] 

 
𝑱(𝒓, 𝑡) = 𝛁 ×𝑴(𝒓, 𝑡) +

𝜕𝑷(𝒓, 𝑡)

𝜕𝑡
. [2.17] 

In the limit 𝒌 → 0, 𝑴 and 𝑷 physically represent the density of magnetic and electric dipole 

moments, respectively. Crucially, the absence of magnetic charges means that magnetic 

dipoles can only be generated by circulating currents, as expressed by the curl operation in 

Eq.2.17 and illustrated in Figure 2.6b. Having put the material response on the same footing as 

the electric and magnetic fields, Maxwell’s equations can be written in their macroscopic 

form     

 𝛁 ∙ 𝑫(𝒓, 𝑡) = 0 [2.18] 

 𝛁 ∙ 𝑩(𝒓, 𝑡) = 0 [2.19] 
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𝛁 × 𝑬(𝒓, 𝑡) = −

𝜕𝑩(𝒓, 𝑡)

𝜕𝑡
 [2.20] 

 
𝛁 × 𝑯(𝒓, 𝑡) =

𝜕𝑫(𝒓, 𝑡)

𝜕𝑡
, [2.21] 

where 𝑫 = 𝜀0𝑬 + 𝑷 and 𝑯 = 𝑩 𝜇0⁄ −𝑴. As previously mentioned, we consider here only 

induced 𝜌 and 𝑱 and, therefore, 𝑷 and 𝑴 must be expressible in terms of the incident fields, 

𝑷 = 𝜀0𝝌𝒆𝑬 + 𝝌𝒆𝒎𝑯 and 𝑴 = 𝝌𝒎𝑯+ 𝝌𝒎𝒆𝑬, where 𝜒𝑒,𝑚,𝑒𝑚,𝑚𝑒 are known as the electric, 

magnetic and magneto-electric susceptibilities. A further parameterisation that can be made,

 

which simplifies the constitutive equations, is to define the relative permittivity 𝜺𝒓 = 𝑰 + 𝝌𝒆 

and relative permeability 𝝁𝒓 = 𝑰 + 𝝌𝒆. In general, 𝜒𝑒,𝑚,𝑒𝑚,𝑚𝑒 are 3x3 tensors. However, 

anisotropy and magneto-electric coupling are rare and usually very weak in natural materials. 

Ignoring these effects, classical electromagnetic problems can be reduced to solving the 

equation  

 
∇2𝑬(𝒓, 𝑡) + 𝜀0𝜇0𝜀𝑟(𝑟)𝜇𝑟(𝑟)

𝜕2𝑬(𝒓, 𝑡)

𝜕𝑡2
= 0 [2.22] 

Figure 2.6: Schematic illustration of the interaction between electric and 

magnetic fields, and charge bound within a medium. (a) Linearly displaced 

charge creates dipole moment 𝑷 and linear polarisation current. (b) Circulating 

current creates magnetic dipole moment 𝑴.    
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where 𝜀𝑟 and 𝜇𝑟 are scalar quantities. As for a vacuum, represented by Eq.2.15, a 

homogeneous space filled with some polarisable medium accepts plane wave solutions, with 

the modified dispersion relation 𝜔 = 𝑐|𝒌| √𝜀𝑟𝜇𝑟⁄ . However, unlike 𝜀0 and 𝜇0, 𝜀𝑟 and 𝜇𝑟 have 

in general a complex frequency dependence, originating from the internal charge dynamics. 

Detailed discussion of this issue will be left until later on in this chapter when physical 

models are introduced for specific dynamical processes. We can see that the wave speed 

𝑣 = 𝑐 𝑛⁄  is altered by a factor of 𝑛 = √𝜀𝑟𝜇𝑟, known as the refractive index. At this point we 

should note that, while devised initially to describe the response of atoms and molecules 

within chemical elements and compounds, metamaterials research actually grew from the 

simple realisation that exactly the same rules apply for artificial “atoms” if constructed on a 

sufficiently small scale. Such an upper limit on the structure size stems from the definition of 

the polarisabilities. Although 𝑷 and 𝑴 are always well defined, if material variations reach a 

significant fraction of the wavelength of the considered radiation, 𝑷 and 𝑴 can no longer 

simply be expressed in terms of 𝑬 and 𝑯. Instead, gradients of the fields become important 

and 𝜀𝑟 and 𝜇𝑟 must depend on 𝒌 as well as 𝜔, meaning that the domain cannot be considered 

a true effective medium. The systems investigated in chapters three and four of this thesis 

happen not to be particularly sensitive to such non-local effects; therefore, care has not been 

taken to produce deeply subwavelength designs. Nevertheless, spatial dispersion should and 

has been accounted for in order to provide an accurate description of the physics involved.            

 Having explained that it is possible to encapsulate the averaged response of an 

ensemble of induced charges and currents by assigning effective parameters, one final 

question remains. What happens to electric and magnetic fields at discontinuities which must 

appear at the boundary between two different materials? The answer can be found by 

considering the integral forms of Eqs.2.18-2.21 directly at the interface. It is straightforward 

to show that, due to the lack of free surface charge, the normal components of 𝑫 and 𝑩 must 
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be continuous. Similarly, the absence of free surface currents means that the tangential 

components of 𝑬 and 𝑯 must also be continuous.           

 In section 2.3 of this chapter we will focus on how artificial structures can be 

exploited for manipulating electromagnetic radiation, within the mathematical framework 

developed in the current section. Particular attention will be paid to wave propagation 

through media with highly anisotropic 𝜀𝑟 and 𝜇𝑟, as well as strong magneto-electric coupling.   

2.2.2: Light and Metals  

 In the previous section, we discussed the existence of wave solutions to Eq.2.22, with 

wavenumbers |𝒌| = 𝜔√𝜀𝑟𝜇𝑟 𝑐⁄ . However, only real-valued wavenumbers represent 

propagating solutions. For 𝜀𝑟𝜇𝑟 < 0, |𝒌| becomes imaginary, corresponding to evanescent 

fields which decay in space. The most common materials to exhibit this kind of behaviour are 

metals, which have a negligible magnetic response 𝜇𝑟 = 1 but a strong electric response 

𝜀𝑟 < 0. Typically, the interaction between metals and oscillating electric fields 𝑬 = 𝑬𝟎𝑒
−𝑖𝜔𝑡 

is described via the Drude model, which treats the conduction electrons as free particles, 

allowing the AC conductivity to be expressed by[28] 

 𝜎(𝜔) =
𝜎0

1 − 𝑖
𝜔
𝛾

, 
[2.23] 

where 𝜎0 is the DC conductivity and 𝛾 describes the rate at which electrons dissipate energy 

through collisions with each other and lattice defects. As the induced current is simply 

𝒋 = 𝜎𝑬, the permittivity can then be written as      

 
𝜀𝑚 = 𝜀∞ +

𝑖𝜎0

ε0𝜔 (1 − 𝑖
𝜔
𝛾)
, [2.24] 
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where 𝜀∞ represents the dielectric response of bound electrons. From Eq.2.24 it can be shown 

that, for 𝜔 < 𝜔𝑝 = √
𝛾𝜎0

ε0
, where 𝜔𝑝 is known as the plasma frequency, the real part of 𝜀𝑚 

takes on negative values and propagating waves are suppressed. In fact, the Drude model 

predicts a complex permittivity with both real and imaginary parts contributing to the decay 

coefficient of the electric field. Importantly, however, only the imaginary part of 𝜀𝑟 shows up 

in the expression for the change in the time averaged power and thus represents attenuation of 

the incident radiation. Perhaps the most interesting behaviour revealed by Eq.2.24 occurs for 

𝛾 < 𝜔 < 𝜔𝑝. Here, |
𝑅𝑒(𝜀𝑚)⁡

𝐼𝑚(𝜀𝑚)
| ≫ 0 allowing the field to penetrate into the metal with minimal 

loss of energy[28]. What’s more, an interface between such a metal and a dielectric medium 

𝜀𝑑 > 0 can be shown to support propagating solutions known as surface plasmon polaritons 

(SPP), which can be used for a range of exciting applications. With plasma frequencies 

tending to lie in the ultraviolet, surface plasmons traditionally exist only at optical 

frequencies.  

 Throughout this thesis we will mainly be concerned with electromagnetic waves 

oscillating at frequencies of one Terahertz and below. Estimates often put the collision 

frequencies of commonly used metals, including gold, silver, lead and aluminium, in the far-

infrared spectral region 𝛾~10𝑇𝐻𝑧. It has also been shown that in thin films an increased 

contribution from surface defects pushes 𝛾 to higher frequencies and, consequently, for the 

regime and structures under consideration 
𝜔

𝛾
≪ 1, meaning that the permittivity can be 

written approximately as[29, 30] 

 
𝜀𝑚 ≈ 𝜀∞ −

𝜎0
ε0𝛾

+
𝑖𝜎0
ε0𝜔

. [2.25] 

The final, imaginary term in this expression also dominates the other two and so, metals can 

often be described purely in terms of the DC conductivity[29]. At even lower frequencies, i.e. 
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microwaves, the ratio between the penetration depth and the wavelength becomes so small 

that metallic regions can be replaced, to a very good approximation, by a hard wall boundary 

condition 𝑬 = 0 on the perimeter. Not only does this significantly improve the computational 

efficiency of simulations, but it also means that metallic absorption of microwaves is 

negligible, making them ideal candidates for guiding such radiation over long distances. 

2.2.3: Birefringence in Anisotropic Media  

While most materials can be described by simple scalar parameters, in certain 

crystals, such as calcite and rutile, the strength of the induced dipole moments depends on the 

orientation of the applied electric field with respect to the crystal axes. In this case, the 

permittivity must be represented by a 3×3 tensor, which is diagonal in the principal 

coordinates. Anisotropy has two key consequences. Firstly, an electromagnetic wave 

travelling in a given direction within such a medium can experience two possible refractive 

indices depending on the direction in which the field is polarised. This is commonly referred 

to as birefringence. Secondly, the inherent relationship that exists between the polarisation 

and the wavevector, coming from Eqs.2.18-2.19, means that the refractive index can also 

vary for different propagation directions. We can see this by considering the more general 

form of Eq.2.22 

 
−∇ × ∇ × 𝑬(𝒓, 𝑡) = 𝜀0𝜇0𝜺𝒓

𝜕2𝑬(𝒓, 𝑡)

𝜕𝑡2
, [2.26] 

for a homogeneous space with 𝜺𝒓 = 𝑑𝑖𝑎𝑔(𝜀𝑥, 𝜀𝑦, 𝜀𝑧) and 𝜇𝑟 = 1, where 𝜀𝑥 ≠ 𝜀𝑦 ≠ 𝜀𝑧. 

Substituting 𝑬 = 𝑬𝟎𝑒
𝑖(𝒌.𝒓−𝜔𝑡), the dispersion relations for plane waves can then be found by 

solving   
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|

|
−𝑘𝑦

2 − 𝑘𝑧
2 + 𝜀𝑥 (

𝜔

𝑐
)
2

𝑘𝑥𝑘𝑦 𝑘𝑥𝑘𝑧

𝑘𝑥𝑘𝑦 −𝑘𝑦
2 − 𝑘𝑧

2 + 𝜀𝑦 (
𝜔

𝑐
)
2

𝑘𝑦𝑘𝑧

𝑘𝑥𝑘𝑧 𝑘𝑦𝑘𝑧 −𝑘𝑦
2 − 𝑘𝑧

2 + 𝜀𝑧 (
𝜔

𝑐
)
2
|

|
= 0. [2.27] 

In the simplified, and more common, scenario of a uniaxial permittivity 𝜀𝑥 = 𝜀𝑦, Eq.2.27 can 

be factorised into the expressions 

 𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2 = 𝜀𝑥 (

𝜔

𝑐
)
2

, [2.28] 

corresponding to a so called Transverse Electric (TE) wave, as its electric field is polarised in 

the 𝑥𝑦 plane and, 

 
𝑘𝑥
2 + 𝑘𝑦

2

𝜀𝑧
+
𝑘𝑧
2

𝜀𝑥
= (

𝜔

𝑐
)
2

, [2.29] 

corresponding to a Transverse Magnetic (TM) wave, as its Magnetic field is polarised in the 

𝑥𝑦 plane. Although Eq.2.28 describes an isotropic response, which is reasonable since the 𝑬 

field only interacts with 𝜀𝑥 and not 𝜀𝑧, Eq.2.29 reveals that the TM mode has an ellipsoidal 

dependence on the wavevector. Consequently, these materials are sometimes referred to as 

elliptic media. From Figure 2.7 the difference in the effective indices for the two solutions can 

be seen to vanish for waves propagating along the optical axis 𝒛̂ and reach a maximum 

|∆𝑛| = |√𝜀𝑥 − √𝜀𝑧| for waves propagating perpendicular to 𝒛̂. Between these two directions 

the TM wave also has the strange property that its group velocity 𝒗𝑔 = 𝛁𝑘𝜔(𝒌), which can 

also be represented geometrically as the normal to the equi-frequency surface (EFS), and 

phase velocity 𝒗𝑝 =
𝜔

|𝒌|
𝒌̂ are misaligned. Electromagnetic energy within such a material, 

therefore, flows in a different direction to that of the wave fronts.    
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Figure 2.7: Equi-frequency surfaces for uniaxially birefringent media with z orientated optical axes. (a) 

Positive birefringence 𝒏𝒛 = 𝟑 and 𝒏𝒙/𝒚 = 𝟏. 𝟓. (b) Negative birefringence 𝒏𝒛 = 𝟏. 𝟓 and 𝒏𝒙/𝒚 = 𝟑. In both 

figures orange arrows represent wave-vectors and purple arrows represent group velocity directions. The blue 

and turquoise EFSs correspond to TE and TM polarisations, respectively.    

Not only is birefringence an interesting phenomenon, but it can also be useful for 

manipulating polarisation states of light. Changes in photonic polarisation are best described 

by using Jones calculus in which the transverse electric or magnetic field of a wave is 

represented by a complex two component vector. Alterations caused by the wave’s passage 

through a polarising medium can then be accounted for by the action of a transfer matrix, 

commonly referred to as a Jones matrix[31] 

 (
𝐸̃𝑥
𝐸̃𝑦
)
𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑

= (
𝑡̃𝑥𝑥 𝑡̃𝑥𝑦
𝑡̃𝑥𝑦 𝑡̃𝑦𝑦

)(
𝐸̃𝑥
𝐸̃𝑦
)
𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡

. [2.30] 

This also allows us to determine the polarisation state transmitted through a stack of materials 

with different properties simply by cascading Jones matrices 𝑬̃𝑡 = 𝐽3𝐽2𝐽1. . . 𝑬̃𝑖. The response 

of a birefringent slab whose optical axis lies in 𝒙̂ for example can be written as 
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 𝐽𝑏𝑖 = (𝑒
𝑖Δ𝑛𝜋

𝑑
𝜆 0

0 𝑒−𝑖Δ𝑛𝜋
𝑑
𝜆

), [2.31] 

where 𝑑 is the thickness of the slab and 𝜆 is the optical wavelength. From Eq.2.31 it can be 

seen that circular polarisation can be produced by passing 𝒙̂ or 𝒚̂ polarised light through a 

slab of thickness 𝑑 =
𝜆

4|Δ𝑛|
. Such a device is known as a quarter-waveplate and is one of the 

most widely used components in modern optics. The difference in TE and TM refraction 

angles can also be used for making polarising beam splitters.     

2.2.4: Surface Waves  

We have already seen that under certain circumstances the dispersion relation 𝜔(𝒌) 

can only be satisfied by wavevectors with at least one imaginary component, corresponding 

to fields which exponentially decay along some spatial coordinate. Such solutions to 

Maxwell’s equations play an important role in describing the behaviour of waves at 

boundaries between media with different electromagnetic properties. For example, 

evanescent fields are responsible for the strong reflections that occur at a metal-dielectric 

interface and the total reflection that occurs, beyond a critical incident angle, for light passing 

from one dielectric material to another. In this section, we will discuss another possibility in 

which travelling waves are prohibited on both sides of an interface. In this case, solutions that 

propagate along the interface, but decay away from it, can still exist. In recent years it has 

been shown that these so called surface waves can be incredibly useful for guiding and 

controlling electromagnetic energy.     

For any one dimensional boundary between two distinct, homogeneous, materials, i.e. 

properties varying as a step function of a single coordinate, chosen here to be 𝑧, the existence 

of surface waves can be investigated by following a universal prescription. First of all, the 
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general spatially dependant solution 𝐸/𝐻𝑗(𝑥, 𝑦, 𝑧) = 𝐴𝑗𝑒
−𝛽𝑗|𝑧|𝑒𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦), where 𝛽𝑗, 𝑘𝑥 and 

𝑘𝑦 are real and positive in a lossless system, is fixed by the presence of translational 

symmetry in 𝑥 and 𝑦 and the requirement that the excitation be bound to the interface. 

Relationships between the fields can then be found by using Eqs.2.20-2.21 to solve for the 

polarisation eigenstates in each medium. Finally, after applying the boundary conditions 

given at the end of (2.2.1), the existence and dispersion of surface waves can be determined. 

We can apply this procedure to the simple case of isotropic, non-magnetic 𝜇𝑟 = 1 media 

𝜀1 ≠ 𝜀2, choosing 𝑥 as the propagation direction 𝑘𝑦 = 0 without loss of generality. As for 

plane waves within such materials, surface modes can be separated out into independent TE 

(𝐸𝑥 = 𝐸𝑧 = 𝐻𝑦 = 0) and TM (𝐻𝑥 = 𝐻𝑧 = 𝐸𝑦 = 0) polarised components. The decay 

coefficients on each side of the interface can then be shown to follow 

 𝛽2 = −𝛽1, [2.32] 

for TE and 

 
𝛽2
𝛽1

= −
𝜀2
𝜀1
, [2.33] 

for TM. Clearly Eq.2.32 cannot be satisfied with 𝛽1,2 > 0 and, therefore, TE polarised 

surface waves cannot be localised. Eq.2.33 on the other hand, can be satisfied with 𝛽1,2 > 0 

as long as 𝑅𝑒(𝜀2) 𝑅𝑒(𝜀1) < 0⁄ . This means that one of the two materials must be metallic, 

while the other is a dielectric. By ensuring that the parameters 𝛽1, 𝛽2 and 𝑘𝑥 are consistent 

with Eqs.2.22 and 2.33, the dispersion relation for the TM wave, known as a surface plasmon 

polariton (SPP), can be then found[28]  

 𝑘𝑥 =
𝜔

𝑐
√(

𝜀1𝜀2
𝜀1 + 𝜀2

). [2.34] 
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Figure 2.8 shows the dispersion relation for SPPs at the interface between a vacuum 𝜀1 = 1 

and an ideal Drude metal 𝜀2 = 1 − 𝜔𝑝
2 𝜔2⁄ . As well as being localised in the

 

Figure 2.8: Dispersion relation of a surface plasmon polariton at the interface between a vacuum and a 

lossless metal[32]. 

direction normal to the boundary, it can be seen that when 𝜀1 + 𝜀2 becomes small the 

plasmonic wavenumber grows much bigger than the free-space equivalent. Such large 

wavenumbers, therefore, allow electromagnetic fields to be confined within regions much 

smaller than the free-space wavelength, which is usually forbidden by the well-known 

diffraction limit. Although in Eq.2.34 𝑘𝑥 asymptotically approaches ∞ as 𝜀2 tends to 𝜀1, in 

reality absorption in the metal, represented by an imaginary part in 𝜀2, will provide an upper 

bound for 𝑘𝑥. High losses also prevent long propagation distances. Nevertheless, aided by the 

development of nanofabrication techniques such as electron beam lithography, these 

excitations have been used to demonstrate unprecedented levels of control in optical 

experiments. Consequently, surface plasmons are currently at the heart of modern research 

into nano-photonics and are becoming more and more popular for creating nanoscale devices. 
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  Much more recently, a new type of surface wave has been discovered which does not 

rely on a metallic response. Predicted in 1988, these so called Dyakonov waves exist at 

boundaries between materials which depend differently on the electric and/or magnetic field 

directions[33]. The initial study in [33] considered the particular case of an isotropic 

dielectric medium 𝜀1 and a uniaxial dielectric medium with its optical axis, chosen here to be 

𝑧, aligned parallel to the interface 𝜀𝑧 = 𝜀∥, 𝜀𝑥 = 𝜀𝑦 = 𝜀⊥. In (2.2.3) we have already explored 

the polarisation eigenstates of just such an anisotropic material, showing that there exists a 

TE solution with 𝐸𝑧 = 0 and a TM solution with 𝐻𝑧 = 0, described by Eq.2.28 and Eq.2.29, 

respectively. As there is now three different dispersion relations, in general we must have 

three different decay coefficients 𝛽𝑇𝐸, 𝛽𝑇𝑀 and 𝛽𝑖𝑠𝑜 normal to the interface, chosen here to lie 

at 𝑥 = 0 with 𝜀 = 𝜀1 for 𝑥 > 0 and 𝜀 = 𝑑𝑖𝑎𝑔(𝜀⊥ 𝜀⊥ 𝜀∥) for 𝑥 < 0. After applying 

Eqs.2.18-2.21 in the two regions, the electric and magnetic field components of each mode 

can be written as  

 

[

𝐸𝑥
𝐸𝑦
𝐸𝑧

] = [
0
1
0
]

𝑇𝐸+

, [

𝑞
0

−𝑖𝛽𝑖𝑠𝑜
]

𝑇𝑀+

, [

𝑞 sin𝜑
𝑖𝛽𝑇𝐸 cos 𝜑
𝑖𝛽𝑇𝐸 sin𝜑

]

𝑇𝐸−

, [

𝑖𝛽𝑇𝑀𝑞 cos𝜑
−𝜀⊥ sin𝜑

(𝜀⊥ − 𝑞2) cos 𝜑
]

𝑇𝑀−

, 

[

𝐻𝑥

𝐻𝑦

𝐻𝑧

] = [

−𝑞
0

𝑖𝛽𝑖𝑠𝑜
]

𝑇𝐸+

, [
0
𝜀1
0
]

𝑇𝑀+

, [

−𝑖𝛽𝑇𝐸𝑞 cos𝜑
𝜀⊥ sin𝜑

𝛽𝑇𝐸
2 cos 𝜑

]

𝑇𝐸−

, [

𝑞𝜀⊥ sin𝜑
𝑖𝛽𝑇𝑀𝜀⊥ cos𝜑
𝑖𝛽𝑇𝑀𝜀⊥ sin𝜑

]

𝑇𝑀−

, 

[2.35] 

where 𝑞2 = 𝑘𝑦
2 + 𝑘𝑧

2 and tan𝜑 = 𝑘𝑧 𝑘𝑦⁄ . Unlike the above case for SPPs, 𝑇𝐸− and 𝑇𝑀− are 

not necessarily orthogonal and, therefore, surface waves are in general made up of all four 

eigenstates. By equating the tangential fields, 𝐸𝑦, 𝐸𝑧 , 𝐻𝑦 and 𝐻𝑧, across the boundary it can be 

shown that for a surface wave to exist, the bulk dispersion relations as well as the condition 

 (𝛽𝑖𝑠𝑜 + 𝛽𝑇𝑀)(𝛽𝑖𝑠𝑜 + 𝛽𝑇𝐸)(𝜀𝛽𝑇𝐸 + 𝜀⊥𝛽𝑇𝑀) = (𝜀∥ − 𝜀)(𝜀 − 𝜀⊥)𝛽𝑇𝐸 [2.36] 

must be satisfied. Once again, we need 𝛽𝑖𝑠𝑜 , 𝛽𝑇𝐸,⁡𝛽𝑇𝑀 > 0 for the excitation to be localised at 

the interface. It follows that this requirement is only met by the configuration 𝜀∥ > 𝜀 > 𝜀⊥. 
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Even with appropriate material parameters the wave can only propagate within a certain 

range of angles 𝜑, the limits of which depend on the permittivities as      

 

sin2 𝜑𝑚𝑖𝑛 =
𝜉

2
[1 − 𝜂𝜉 + √((1 + 𝜂𝜉)2 + 4𝜂)], 

sin2 𝜑𝑚𝑎𝑥 =
(1 + 𝜂)3𝜉

(1 + 𝜂)2(1 + 𝜂𝜉) − 𝜂2(1 − 𝜉)2
, 

[2.37] 

where 𝜂 =
𝜀∥

𝜀⊥
− 1 and 𝜉 =

(𝜀−𝜀⊥)

(𝜀∥−𝜀⊥)
.  

   Dyakonov waves were only observed experimentally in 2009[34], 20 years after they 

were first predicted to occur. This delay can be attributed to the lack of materials available 

with a suitably anisotropic response. While many birefringent crystals exist, they typically 

have very weak directionality 𝜂 ≪ 1. Not only does this necessitate a cover material to be 

chosen with a very specific 𝜀, but it also leads to a very small angular distribution of possible 

surface wavevectors, requiring incredibly precise measurements. As we will discuss in 

section (2.3), metamaterials research provides an ideal platform for not only achieving 

extremely strong anisotropy but also combining Dyakonov’s original idea with more exotic 

interactions, such as magneto-electric coupling.  

2.3: Artificial Electromagnetic Media 

In the final part of chapter 2 we will outline some key concepts which underpin recent 

developments in the field of artificial electromagnetism. In particular, we will focus on 

metamaterials, man-made structures composed of elements arranged on a subwavelength 

scale whose properties can be derived from geometry rather than the constitutive materials 

they are made form. As well as enabling the realisation of completely new phenomena such 

as negative refractive index and super-lenses, metamaterials also provide the ability to 

enhance and control properties found in natural media. Throughout this section, we will build 
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on the foundations laid down in (2.2), showing how an understanding of the microscopic 

formation of electric and magnetic dipoles can provide a recipe for geometrically tailoring the 

light matter interaction. We will also place a particular emphasis on polarisation dependant 

propagation in anisotropic and bi-anisotropic media. This information will provide the 

necessary tools needed for investigating photonic PT symmetry and topology in the following 

chapters. 

2.3.1: Wire-Metamaterials as Designer Metals  

 As discussed in (2.2.2/4), electrically conducting materials are very useful for 

confining and controlling optical frequency electromagnetic fields on the subwavelength 

scale. This functionality relies crucially on the dominance of the negative real part of the 

permittivity, which only occurs in the range 𝛾 < 𝜔 < 𝜔𝑝. At lower frequencies, absorption 

takes over and metals start behaving like lossy mirrors. The plasma frequency associated with 

a given metal depends on the number density 𝑛𝑒 and effective mass 𝑚𝑒 of free electrons 

 𝜔𝑝
2 =

𝑛𝑒𝑒
2

𝜀0𝑚𝑒
, [2.38] 

where 𝑒⁡is the electric charge. While it lies traditionally in the visible or ultraviolet part of the 

electromagnetic spectrum, in 1996 Pendry et. al. realised that chemistry wasn’t the only tool 

available for manipulating 𝜔𝑝[2]. Starting with a conventional metallic solid and stripping 

away most of the material until currents can be driven only in a mesh of very thin wires; the 

remaining structure can be assigned an effective plasma frequency 𝜔𝑝
∗  given by Eq.2.38 in 

terms of an effective free electron density 𝑛𝑒
∗  which is smaller than 𝑛𝑒 in proportion to the 
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reduction of space occupied by the metal. By localising the flow of current, inductance is also 

 

Figure 2.9: Schematic of a wire-metamaterial with a geometrically suppressed plasma frequency[2]. 

generated which acts to increase the effective mass of the electrons       

 𝑚𝑒 =
𝜇0𝑛𝑒𝑟

2

2
ln (

𝑑

𝑟
), [2.39] 

where 𝑑 is the lattice constant of the mesh and 𝑟 is the wire radius. Taking both of these 

effects into account we obtain     

 𝜔𝑝
∗2 =

2𝜋𝑐2

𝑑2 ln (
𝑑
𝑟)
. [2.40] 

From this expression we can clearly see that the plasma frequency of a domain can easily be 

controlled by scaling up the size of the unit cell. Importantly, however, as mentioned in (2.2) 

the appropriate use of such a parameter within an effective medium description of an 

inhomogeneous space, Eq.2.24, relies on the variation of induced sources being much smaller 

than the electromagnetic wavelength. Due to the logarithmic dependence of 𝜆𝑝 on (𝑑 𝑟⁄ ), 

𝜆𝑝 = 𝑑√2𝜋ln(𝑑 𝑟⁄ ), the use of wires that aren’t a lot thinner than the lattice spacing will 

therefore cause the true response to deviate from the simple frequency dependent model 

discussed above. In fact, by considering waves propagating in arbitrary directions, such that 
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the electric field neither aligns parallel nor perpendicular to the wires, it can be shown that at 

low frequencies the local description breaks down even in the limit 𝒌 → 0, due to the 

presence of longitudinal modes[35]. We will discuss modifications that can be made to 

overcome this strong spatial dispersion in the following section. Despite these limitations, a 

number of groups have successfully demonstrated a plasmonic response to microwaves using 

Pendry’s approach, including the first realisation of a material with a negative refractive 

index[4, 36].   

2.3.2: Hyperbolic Metamaterials 

The electromagnetic response of many metamaterial elements depends critically on 

the direction in which the fields are applied. Far from a coincidence, this anisotropy 

facilitates a strong interaction between radiation and subwavelength current distributions. 

Early on, researchers considered this to be detrimental to the performance of their designs, 

not least because of a desire to realise an isotropic 3D material with a negative refractive 

index. However, not only are metamaterials with an anisotropic response easier to design and 

fabricate, but they can also reveal properties that are as, if not more, interesting and useful 

than their isotropic counterparts. As discussed in (2.2.3), natural crystals with a directionally 

dependent response do exist but they usually only possess a very slight variation in the index 

for different orientations ∆𝑛 ≪ 𝑛̅. Not only can artificial structures be used to dramatically 

enhance the range of possible ∆𝑛 that can be achieved, but they also enable a scenario that 

very rarely occurs naturally, in which metallic and dielectric behaviour coexists. Some 

exceptions to this are found in the THz and far-infrared regimes where anisotropic phonon 

resonances and plasma oscillations lead to narrow bands with extreme properties[37]. 

Mathematically, these materials can be described by a 3×3 permittivity and/or permeability 

tensor with positive and negative components. For simplicity, in this section we restrict our 
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attention to non-magnetic 𝜇𝑟 = 1 and uniaxial systems 𝜺𝒓 = 𝑑𝑖𝑎𝑔(𝜀𝑥, 𝜀𝑥, 𝜀𝑧) as all of the 

salient features are captured by this simplification. We will extend our treatment to the most 

general case, including magneto-electric coupling, when designing a topological 

metamaterial in chapter 4. Two possibilities remain, type I (𝜀𝑥 < 0, 𝜀𝑧 > 0) and type II 

(𝜀𝑥 > 0, 𝜀𝑧 < 0). The corresponding wave solutions to Maxwell’s equations are given by 

Eqs.2.28-2.29. From Eq.2.28 we can see that only a type II permittivity supports

 

Figure 2.10: Equi-frequency surfaces for uniaxial hyperbolic media with z orientated optical axes.(a) type 

II (𝜺𝒙 > 𝟎, 𝜺𝒛 < 𝟎). (b) type I (𝜺𝒙 < 𝟎, 𝜺𝒛 > 𝟎). In both figures orange arrows represent wave-vectors and 

purple arrows represent group velocity directions. The blue and turquoise EFSs correspond to TE and TM 

polarisations, respectively. 

an isotropic TE mode as 𝜀𝑥 < 0 leads to an imaginary wavevector. More interestingly, 

Eq.2.29 now represents the equation for a 𝑘 space hyperbola. In stark contrast to elliptical 

media, the EFSs for TM modes in these so called hyperbolic media, shown in Figure 2.10, are 

unbound. Remarkably, this means that light with an arbitrarily small wavelength can 

propagate through such materials, making them ideal for super resolution imaging[38, 39]. 

As well as permitting solutions with large wavenumbers, the infinite area of the hyperbolic 

EFSs also provides a divergence in the density of states available to local sources of 

radiation. It has been shown that this divergence can dramatically enhance the Purcell factor 
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of a quantum emitter placed in close proximity to the anisotropic metamaterial[40]. Similarly, 

the power of Cerenkov radiation emitted within hyperbolic systems can be shown to increase, 

rather than decrease as per convention, with a decrease in particle velocity[41]. This may be 

useful for the detection of heavy charged particles. From Figure 2.10 we can also see that the 

orientation of the group velocity of the TM wave can deviate massively from its phase 

velocity. This has allowed negative refraction to be observed without the need for a magnetic 

response, as required by materials with a negative refractive index[42, 43]. 

The accuracy of Eq.2.29 relies on the elements of the permittivity tensor being strictly 

local parameters. In reality, any structure used to investigate these hyperbolic phenomena 

must have some finite periodicity or length scale. Near the corresponding Brillouin zone 

edge, Bragg scattering will modify the wave dynamics providing a natural cut-off. Perhaps 

more importantly, at least for optical applications, the presence of metallic losses will also 

lead to strong attenuation of the high 𝑘 modes over relatively short distances even with a very 

small lattice constant. Nevertheless, most of the above mentioned phenomena have been 

successfully demonstrated at a range of different frequencies, showing that these limitations 

do not completely destroy the validity of the approach and interesting physics can still be 

observed[44].    

The vast majority of experimental investigations into hyperbolic metamaterials have 

employed structures similar to Figure 2.9 but with metallic regions extending continuously 

only in one or two dimensions. While a 2D array of parallel wires is often used to realise a 

type II medium, type I media usually take the form of simple 1D metal-dielectric stacks, due 

to the ease of fabrication. As shown in (2.3.1), electric fields aligned with the wires or sheets 

will experience a geometrically dependant Drude response. Conversely, as long as the 

structures are very thin, so as to avoid unwanted resonant effects, perpendicular fields will be 

unable to induce currents in the metal and will therefore only interact with the dielectric host. 
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These designs work well at high frequencies, for micro and nano fabricated structures, and 

can be described reasonably well by a local permittivity tensor. In 2003 however, Belov et. 

al. revealed  that in the microwave regime wire structures suffer from spatial dispersion even 

in the long wavelength limit 𝒌 → 0[35]. Although the response to waves propagating 

perpendicular to the wires agrees with Pendry’s diluted plasma model, for other directions the 

axial permittivity can be shown to take the modified form  

 𝜀𝑧(𝜔, 𝒌) = 𝜀0 (1 −
𝜔𝑝
2

𝜔2 − (𝑐𝑘𝑧)2
). [2.41] 

Not only does this diminish the original claim that such an array can be considered as an 

effective medium, but after solving for the corresponding eigenmodes it can be shown that 

the interesting high-𝑘 states, previously predicted to occur for TM polarisations, vanish. 

Physically, this strong spatial dispersion originates from the large conductivity of the metals 

involved, allowing charge to build up on the wires. Later, Pendry et. al. provided a solution to 

this problem. By adding structures to increase the capacitive or inductive interaction

 
Figure 2.11:  Schematic diagram of a capacitively loaded wire metamaterial. The structure is  

designed to exhibit negative refraction due to the possession of a local hyperbolic permittivity[46].       
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between the wires, charge can be re-distributed throughout the unit cell and a local hyperbolic 

response can be re-established[45]. One such design which employs metallic plates is 

illustrated in Figure 2.11[46].        

2.3.3: Designer Atoms and Artificial Magnetism 

Up until now, we have focussed on explaining ways in which the ability of a domain 

to conduct electricity can be tailored by structuring the constitutive metals, allowing one to 

control the details of a Drude type permittivity. In this section, we will consider the 

possibility of replicating the qualitatively different response of insulating materials in which 

charge is tightly bound within atoms or molecules. As for metals, the presence of an 

electromagnetic field can drive the charge into motion. However, in this case, the strong 

Coulombic restoring forces involved lead to a Lorentzian form for the polarisability[27]  

 
𝛼(𝜔) ∝

1

𝜔2 − 𝜔0
2 + 𝑖𝛾𝜔

, [2.42] 

where 𝜔0 is the resonant frequency and 𝛾 once again represents the rate at which energy is 

dissipated. As mentioned in (2.2.1), the absence of magnetic charges means that secondary 

sources of electric and magnetic fields require distinct physical mechanisms. Electric dipoles 

can arise, for example, from electron clouds which are linearly displaced with respect to their 

atomic nuclei, whereas magnetic dipoles rely on atomic or molecular states with a sense of 

rotation, such as those with a non-zero orbital or spin quantum number. Not only do these 

processes lead to separate resonant features, but the field strengths they generate also scale 

differently with the size of the object in question, which in turn explains the relative 

weakness of magnetic effects, especially at high frequencies[47]. It is this fundamental 

asymmetry that makes the prospect of realising artificial atoms so attractive.    
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 We have already seen that subwavelength arrays of straight conducting wires can be 

used to geometrically depress the effective plasma frequency. In 1999, Pendry et.al. 

theoretically explored the possibility of using metallic loops to produce an artificial magnetic 

response to axial fields[3]. Importantly, structures were chosen that contained gaps, impeding 

the flow of current and causing a build-up of charge. These so called split ring resonators 

(SRR) can be modelled as 𝐿𝑅𝐶 circuits, were the inductance 𝐿 and capacitance 𝐶 depend on 

the size and shape of the loops and the gaps in the design, respectively, while the resistance 𝑅 

represents the net dissipation of energy trapped close to the ring. It is well known that such a 

circuit obeys the same harmonic oscillator equation as the atomic transitions discussed above, 

with 𝜔0 =
1

√𝐿𝐶
. If we then arrange a large number of these structures in a periodic fashion, for 

radiation with a wavelength much larger than the lattice constant, each ring can be treated as 

a single magnetic dipole 𝒎 = 𝛼(𝜔)𝑯, resulting in the magnetisation 𝑴 = 𝐹𝒎, where 𝐹 is 

 

Figure 2.12: Artificial magnetism in SRR metamaterials.a) Schematic diagram of a double SRR array b) 

Effective permeability of SRR array shown in “a” with 𝒅 = 𝟒𝒎𝒎, 𝒓 = 𝟏𝒎𝒎 and 𝒔 = 𝟎. 𝟏𝒎𝒎[48]. 

the SRR filling fraction. Following the prescription used for describing the response of wire-

metamaterials, such an array can be considered as a homogeneous medium, with an effective 

permeability  
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𝜇𝑟(𝜔) = 1 −

𝜔2𝐹

𝜔2 − 𝜔0
2 + 𝑖𝛾𝜔

. [2.43] 

From the example shown in Figure 2.12, we can see that as well as being enhanced close to 

resonance, 𝜇𝑟 behaves very differently above and below 𝜔0. This difference stems from the 

frequency dependent phase of the induced dipoles. For 𝜔 > 𝜔0, The Magnetisation lags 

behind the incident magnetic field causing them to interfere destructively. If the magnitude of 

the response is strong enough the permeability can even become negative, as evidenced by 

Figure 2.12b, which is incredibly rare in natural materials. The dominant role played by 

geometry in deciding the value of parameters found in Eq.2.43 provides a clear route for 

designing artificial magnetic materials. However, as already mentioned, variations that aren’t 

significantly smaller than the wavelength prohibit the accurate use of a purely frequency 

dependent 𝜇𝑟. Because 𝜇𝑟 tends to one away from resonance, it is therefore critical that we 

find structures, with characteristic length scale 𝑑, for which 𝜔0𝑑/𝑐 ≪ 1. Although 𝐿 depends 

on the area enclosed by the SRR, causing the resonant wavelength to vary linearly with the 

ring radius, 𝐶 can in principle be increased arbitrarily by using very fine gaps relative to the 

ring width without increasing its radius. What’s more, sophisticated designs which employ 

multiple rings, like the example shown in Figure 2.12, can be used to further enhance the 

capacitance. Guided by simple circuit theory, researchers have been able to significantly 

reduce 𝜔0𝑑/𝑐. Since these ideas were first presented, many groups have followed the path 

laid out in [3] to geometrically enhance magnetism at a range of different frequencies, 

including regimes in which the response of natural materials is very weak[49, 50]. As shown 

in Figure 2.13, structures employed to achieve an optical response are somewhat different 

from their microwave counterparts. This is because plasmonic effects takeover from the 

simple circuit description. Such effects also give rise to enhanced material or Ohmic losses in 
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the metal producing a large imaginary part in the effective parameters close to a resonance.

 

Figure 2.13: Plot charting the observation of artificially induced magnetic response at ever increasing 

frequencies. Reproduced from [51] with labels corresponding to references therein. 

When trying to manipulate the propagation of light with these devices, the desire to achieve a 

strong response must be balanced with the need to avoid excessive absorption. This is 

especially true for 3D optical metamaterials.    

Having explained the importance of charging effects in producing a subwavelength 

magnetic resonance, we should also note that such features act as a second source of radiation 

coupling. When an electric field is applied parallel to a dielectric gap which separates two 

metallic regions, an electric dipole moment can be induced[52]. This interaction is easily 

included in the effective medium description of a SRR metamaterial via an effective 

permittivity with a Lorentzian form similar to that of Eq.2.43. As the electric dipole is simply 

another mechanism by which radiation can couple to the fundamental 𝐿𝐶 resonance, it cannot 

have a separate resonant frequency. On the other hand, artificial electric and magnetic 
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dipoles, just like their atomic counterparts, can, and in general do, radiate with very different 

efficiencies. Unlike natural systems, however, metamaterial structures can be precisely 

tailored to achieve unprecedented material properties such as balanced 𝜀𝑟 and 𝜇𝑟. For waves 

propagating along certain directions of high symmetry, the excitation of one or more dipoles 

may be forbidden, simplifying the response. When working at THz frequencies and above, 

for example, micro and nano-fabrication techniques are required. With these techniques non-

planar designs are expensive, time consuming and often inaccurate. However, at normal 

incidence, the direct excitation of magnetic dipole moments associated with planar current 

loops is prohibited due to their alignment with the incident wavevector. Nevertheless, 𝐿𝐶 

resonances can still be excited electrically, providing a convenient way to access such modes 

and the corresponding surface field enhancement[53]. For arbitrary directions, not only are 

both electric and magnetic dipoles expected to be simultaneously accessible, but the low 

symmetry of the light-matter interaction also leads to strong magneto-electric coupling. This 

phenomenon, termed bi-anisotropy, will be dealt with more thoroughly in the next section. 

We note finally that, although we have focussed on the dipolar modes of SRRs, higher order 

excitations such as electric and magnetic quadrupoles can also exist. While the radiation from 

these modes vanishes in the long wavelength limit, for structures with a finite size they 

cannot always be ignored.       

2.3.4: Optical Activity and Chiral Meta-

Structures 

At the beginning of the 19
th

 century, a number of prominent scientists, including Biot, 

Fresnel and Pasteur, began to explore a strange effect known as optical activity in which the 

plane of polarisation of light passing through particular substances gets rotated[54]. As 



P a g e  | 43 

 

linearly polarised waves can be expressed as the superposition of circularly polarised 

components 

 
(
𝐸𝑥
𝐸𝑦
) =

1

√2
[(
1
𝑖
) + 𝑒𝑖2𝜃 (

1
−𝑖
)], [2.44] 

where 𝜃 determines the orientation of the linear field, it is reasonable to conclude that optical 

activity results from circular birefringence, in which electromagnetic waves rotating 

clockwise and counter clockwise experience different refractive indices. Importantly, the 

shape swept out by a circularly polarised electric field, as the light propagates, is a helix.

 

Such geometries are said to be chiral; a term coined by Lord Kelvin in 1893 to describe 

objects which are not superimposable on to their mirror image, coming from the Greek word 

for hand, as human hands have become the archetypal example of chirality. In fact, clockwise 

and counter clockwise polarisations, also known as left and right handed, are mirror images 

of each other. To explain the selective interaction with chiral light fields it was hypothesised 

Figure 2.14: Symmetry, light and matter. a) Two enantiomers of a chiral amino acid[113]. b) 

Electric fields of circularly polarised light[114].    
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that optical activity originates from similarly chiral molecular structures. Louis Pasteur 

confirmed this theory in 1848 by measuring an equal but opposite optical rotation after 

separating out mirror symmetric partners, also known as enantiomers[54]. Nowadays, 

chirality is known to be incredibly important for determining the behaviour of chemical and 

biological systems and thus, optical activity has become an invaluable tool for analysis within 

many scientific fields. However, while a significant rotation can be measured for light 

passing through many wavelengths of a substance, natural molecules respond only very 

weakly ∆𝑛𝐶 = 𝑛𝐿 − 𝑛𝑅 ≪ 1, rendering them impractical for manipulating photonic 

polarisation states.    

 As for magnetism and anisotropy, metamaterials provide an ideal platform for 

enhancing circular birefringence. While symmetry arguments allow one to reason as to 

whether or not a given structure will be optically active, predicting the strength of this 

interaction requires an understanding of the underlying charge dynamics. If we assume that 

an object is much smaller than the relevant wavelength, we have already learnt that, to 

leading order, the response will be dominated by co-located electric and magnetic dipole 

moments, arising from accumulated charge and circulating currents, respectively. To 

selectively perturb a wave with a particular handedness, these induced dipoles must generate 

radiation that is orthogonally orientated and 
𝜋

2
 out of phase with respect to the incident wave. 

Without breaking Lorentz reciprocity, the necessary phase difference can only be achieved if 

electric (magnetic) dipoles can be excited by mutually aligned magnetic (electric) fields 

 
(
𝒑
𝒎
) = (

𝛼𝑒 𝑖𝜅
−𝑖𝜅 𝛼ℎ

) (
𝑬
𝑯
), [2.45] 

where the form of the off-diagonal elements is set by the reciprocal nature of the problem. 

This requirement provides a more concrete explanation of the need for chiral geometries. It is 

well known that magnetic and electric fields transform symmetrically and anti-symmetrically, 
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under spatial inversion, respectively; the overlap integral for these fields must therefore 

vanish without an asymmetric, or chiral, contribution from the environment. The principles 

described in this paragraph and at the end of (2.3.3) together point to an obvious route for 

structurally enhancing circular birefringence. Take for example, the simple case of an 

oscillating electric field incident upon an array of small metallic helices. As illustrated in 

Figure 2.15a, the axial components of the electric field can drive currents through the metal 

wires which in turn generate a set of axial magnetic dipole moments coming from loops in 

the wire geometry. The magnetic dipoles can then radiate with a ±
𝜋

2
 phase difference with 

respect to the initial excitation, depending on the handedness of the helices being used. The 

frequency dependence of this interaction can be described by the same 𝐿𝐶 circuit model as 

previously applied to SRRs. The simulated transmission of circularly polarised microwaves 

through such an array is shown in Figure 2.15b, clearly revealing a marked difference for just 

a single layer. Although the helical geometry has a definite handedness, we can see that the 

optical activity changes sign across the resonance. This can be reasoned by considering the 

Lorentzian frequency dependence. While 𝒑 and 𝒎 have a fixed relationship with each other, 

Figure 2.15: Chiral metamaterial. a) Magneto-electric coupling in a single helix. b) Simulated transmission 

spectra through helix array, blue curve (right y axis) showing circularly polarised transmission amplitude 

|𝑻𝒍𝒍|=|𝑻𝒓𝒓| and black curve (left y axis) showing linear polarisation rotation angle in radians. The inset shows 

a single unit cell, including four coils to maintain four fold rotational symmetry thereby preventing circular 

polarisation conversion 𝑻𝒓𝒍 = 𝑻𝒍𝒓 = 𝟎.    
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for 𝜔 above the resonant frequency, the dipoles oscillate out of phase with respect to the 

incident wave, mimicking the effect of structural inversion. Despite the fact that chirality is 

an intrinsic geometrical property of an object, it is important to note that waves propagating 

along the axis of the coils in Figure 2.15 experience no optical activity. This highlights the 

polarisability as the fundamental property which must always be considered when designing 

photonic metamaterials. Such magneto-electric coupling can be treated within an effective 

medium description via the constitutive relations[55, 56] 

 𝑫 = 𝜀0𝜀𝑟𝑬 − 𝑖
𝛾

𝑐
𝑯 [2.46] 

 𝑩 = 𝜇0𝜇𝑟𝑬 + 𝑖
𝛾

𝑐
𝑬. [2.47] 

After applying Eqs.2.46-2.47 to Eqs.2.18-2.21, for an isotropic chiral medium, circularly 

polarised wave solutions can be found with refractive indices  

 𝑛𝐿/𝑅 = √𝜇𝑟𝜀𝑟 ± 𝛾. [2.48] 

From Eq.2.48 we can see that a strong chiral response 𝛾2 > 𝜇𝑟𝜀𝑟 can also lead to a negative 

refractive index without the need for negative permeability or permittivity[57]. For many 

groups this result has been a key motivation for the development of artificial chiral materials, 

especially at high frequencies[55–58]. 

While 2D chiral designs, such as SRRs, exhibit magneto-electric coupling, restricting 

the induced currents to lie in the plane forces the corresponding magnetisation to point in the 

normal direction. A differential response to circularly polarised radiation must therefore be 

absent at normal incidence as only the in plane electric dipoles can be excited. For oblique 

incidence, however, it has been demonstrated that optical activity can occur if the electric and 

magnetic dipoles share a common field component when projected onto the plane 𝒌 ∙ 𝑩 = 𝒌 ∙

𝑬 = 0. On the other hand, the mirror symmetry that necessarily exists for such 2D 
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geometries, if we ignore the small effect coming from the difference in permittivity of the 

super and substrates, must cause the discrimination between left and right handed 

polarisations to cancel globally, i.e. for any given direction there must exist a partner in 

which the optical rotation is equal and opposite. As 3D micro and nano structures are very 

challenging to fabricate, artificially realising a true chiral response at high frequencies 

requires the employment of more imaginative designs. A particularly popular approach for 

overcoming these difficulties has been to create bilayer structures[56, 59, 60], as shown in 

Figure 2.16, in which closely spaced 2D resonators are capacitively and/or inductively coupled 

together. While complicated circuit models can be used to describe their electromagnetic 

 

Figure 2.16: Examples of bilayer chiral metamaterials from microwave (a,b) and terahertz (d,e,f) frequencies 

up to the optical regime (c,g). Reproduced from [51] with sub figures found in references therein. 

response, a more abstract hybridisation picture is perhaps more useful for understanding the 

qualitative behaviour of such a system. As will be discussed in greater detail in the following 

section, coupling between two resonators leads to the occurrence of two new resonant 

features at different frequencies. It can also be shown that one of these modes consists of a 

symmetric combination of in plane electric and magnetic dipoles, while the other possesses 



P a g e  | 48 

 

an antisymmetric configuration. Interference between the two modes in these bilayer designs 

therefore produces a less dispersive and more broadband chiral response than the simple coil 

geometry shown in Figure 2.15. Finally, we note that pure optical rotation only occurs for 

lossless systems with four-fold rotational symmetry about the propagation direction. When 

loss is considered ∆𝑛𝐶 can possess an imaginary part, describing the differential absorption of 

left and right circular polarisations.  By inspecting Eq.2.44 we can see that this phenomenon, 

commonly referred to as circular dichroism, will cause a linearly polarised incident wave to 

become elliptical rather than simply rotated. For chiral structures with low rotational 

symmetry, the off-diagonal elements of the Jones matrix in the circularly polarised basis 

become non-zero, meaning that the transmission of circularly polarised light cannot be 

described by the refractive index alone. In fact, it has been shown that such metamaterials 

with low symmetry can be used to induce a differential circular response even for a 2D, and 

therefore non-chiral, setting[61]. This is possible because the conversion between LCP and 

RCP light can be non-reciprocal.          

2.3.5: “Meta-Molecules” from Coupled “Meta-

Atoms” 

In sections (2.3.3/4) we have focussed on the creation of manmade electromagnetic dipole 

moments. We have seen that an ability to structurally manipulate the flow of charge on a 

subwavelength scale allows the properties of these dipoles to be chosen almost arbitrarily. 

Often, simple designs which exhibit spectrally isolated Lorentzian resonances are employed, 

allowing a strong analogy to be drawn between meta-structures and atomic dipole transitions. 

However, this is but one of many possible excitations that can be found in nature. The energy 

levels associated with a complex molecule, for example, can reveal a rich variety of 
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behaviour. Rather than solving Schrödinger’s equation for the entire molecule, physicists 

commonly view the eigenstates of such a system as mixtures of well-known atomic orbitals. 

 

Figure 2.17: Plasmonic hybridisation model, reproduced from Ref[62]. Resonant frequencies of metallic 

nanorings can be predicted from analytical solutions of isolated metal spheres and cavities. 

In 2003 Prodan et. al. applied the same principle to the analysis of plasmonic resonators[62]. 

They showed that the resonant features of a complicated metallic structure could be predicted 

by representing them as a hybridisation between modes of simpler geometries. This approach 

provides a powerful conceptual tool for designing novel metamaterials. In essence, it means 

that understanding the response of just a few basic objects or “meta-atoms” such as spheres, 

rods and rings, as well as knowing the rules that govern their interactions; a plethora of 

intricate “meta-molecules” can be modelled with ease.  

 In the simplest case of two identical oscillators with resonant frequencies 𝜔0, coupled 

together via a near-field interaction of strength 𝜉, two hybrid solutions emerge with the same 

Lorentzian form as for 𝜉 = 0 given in Eq.2.42, but with mode frequencies 𝜔± =

𝜔0 √1 ∓ 𝜉⁄ [63]. These new states correspond to symmetric and antisymmetric, i.e. in and out 

of phase, combinations of the component resonators meaning that their ability to radiate, 
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which depends strongly on the chosen configuration, can be very different. For example, the 

far field response of the antisymmetric mode for a subwavelength pair of parallel nanorods 

can be completely suppressed while the response of the symmetric mode is actually 

enhanced. More exotic hybridisation effects occur when the sub systems are not identical but 

instead have very different properties. For instance, when a narrow resonance is coupled to a 

relatively broad feature, i.e. a resonance with a much bigger dissipation coefficient, located at 

a different frequency it develops an asymmetric dispersion which is given approximately by   

 
𝐼 ∝

(𝐹𝛾 + 𝜔 − 𝜔0)
2

(𝜔 − 𝜔0)2 + 𝛾2
. [2.49] 

This is known as Fano resonance, named after Ugo Fano who derived Eq.2.49 in 1961 to 

explain atomic auto-ionisation observations[64]. Specifically, he considered the interference 

between scattering from a discrete Lorentzian excitation and a background continuum of 

 

Figure 2.18: Mie scattering from a metallic sphere. Red and blue curves represent back and forward 

scattering, respectively. The interaction between the low frequency dipole and high frequency 

quadrupole resonances can be seen to produce a Fano line shape[64]. 
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states. However, slow amplitude and phase variation rather than a precisely flat continuum is 

sufficient to produce this form of asymmetric line shape. As such a condition is satisfied by a 

broad response away from resonance, Fano spectral features turn out to be ubiquitous in 

plasmonics[64]. An example showing the interaction between the dipole and quadrupole 

modes of a metallic nanoparticle can be found in Figure 2.18. Due to the steep gradient found 

in these dispersion curves it has been suggested that they could be used for improving 

plasmon based sensors and switches[65]. Another metamaterial system which makes use of 

differences in meta-atom dissipation has also received a lot of attention recently. In this case, 

a bright mode which radiates strongly to the far field is coupled to a dark mode, from which 

radiation is completely suppressed, with the same resonant frequency. Such a metastructure is

 

shown in Figure 2.19b. As revealed in Figure 2.19a, a sharp transparency window opens in the 

transmission for large coupling strengths caused by destructive interference between the field 

Figure 2.19: Coupled metamolecules. a) E-field near bright metaatom for different separations and therefore 

coupling strengths b) E-field patterns at central frequency for isolated nanorod (left) and EIT metamolecule 

(right) c) isolated resonant field enhancements for nanorods in ‘e’ d) anti-Hermitian coupling narrowed field 

enhancements for structure in ‘e’ f) retarded coupling between dipolar mode of nanorod and quadrupole mode 

of nanorod pair. g) electromagnetically induced absorption from structure in ‘f’[66–68]. 
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incident on the bright nanorod and the feedback from the dark nanorod pair. This can be seen 

as an analog of electromagnetically induced transparency (EIT) found in three level atomic 

systems. Most interestingly, the sharp spectral feature combined unity transmission leads to a 

huge reduction in the group velocity which could be useful for nanoscale slow light 

applications[66].       

 Above we have focussed on ways in which the dissipation of the meta-atoms 

themselves can lead to interesting meta-molecule states. However, the imaginary part of the 

coupling coefficient can also provide an extra degree of freedom. While quasistatic near-

fields dominate the interaction for closely spaced antennas, ensuring that 𝐼𝑚(𝜉) = 0, as they 

are moved further apart retardation of the field leads to 𝜉 ∝ 𝑒𝑖𝑘𝑑, where d is the antenna 

separation. In Ref[67] the structure illustrated in Figure 2.19f, which is the same as the one 

used in Ref[66] except that 𝜉 is complex, was shown to produce electromagnetically induced 

absorption, Figure 2.19g. Furthermore, in Ref[68] it was revealed that the indirect coupling 

between two nanorods through a shared radiation channel leads to an imaginary, anti-

Hermitian 𝜉. This can narrow the response of spectrally overlapping resonances, shown in 

Figure 2.19c/d, allowing for selective excitation of closely spaced nanoparticles.       

  2.4: Chapter Summary 

Throughout this chapter we have outlined the conceptual tools and key mathematical 

details required for discussions in the following chapters. Starting with quantum mechanics in 

(2.1), single particle Hamiltonians, dependant on a set of parameters, were investigated. After 

introducing the idea of geometric, or Berry, phases and topological invariants, the guaranteed 

one-way excitations at boundaries between topologically trivial and nontrivial crystals were 

analysed. The occurrence of spontaneous symmetry breaking in complex PT symmetric 

problems was also highlighted. Next, in section (2.2) an overview of wave solutions to the 
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macroscopic Maxwell’s equations for natural phenomena including birefringence and surface 

waves was provided. Finally in (2.3) a summary of the experimental and theoretical aspects 

of the field of photonic metamaterials was presented. As well as explaining the general 

principles behind artificial electric and magnetic materials, an emphasis has been placed upon 

polarisation dependant propagation in anisotropic and bianisotropic media, including 

hyperbolic and chiral metamaterials.   
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Chapter 3: Metasurfaces, What Can Be 

Gained From Loss? 

Part of the work presented in this chapter has been published in [69], for which I was 

personally responsible for writing the first draft. The chapter includes blocks of text taken 

from this publication. 

When attempting to manipulate the flow of light, dissipative processes which convert 

electromagnetic energy into other forms, such as thermal or mechanical motion, are often 

considered to be unwanted side-effects. This is especially true in the field of metamaterials, 

as discussed in (2.3), where a reliance on metallic structures, which are inherently absorptive, 

limits potential applications to those operating over short distances or with weak output 

signals. In fact, plasmonic losses are often quoted as the main reason for the lack of real 

world meta-devices at visible frequencies. In this chapter, we will investigate a new set of 

phenomena which occur because of, rather than in spite of, dissipation. Drawing inspiration 

from discoveries made during theoretical studies into non-Hermitian quantum operators, 

described in (2.1.4), the design principles outlined in (2.3) will be applied to the development 

of non-Hermitian, anisotropic metasurfaces.  

After reviewing previous work regarding electromagnetic analogues of quantum 

systems with spatially varying dissipation, the consequences of PT symmetry breaking and 

exceptional point mode coalescence for the response of an effectively homogeneous medium 

will be discussed. In particular, novel functionalities including polarisation phase transitions 

and spectral singularities have been found, providing a new degree of freedom for controlling 
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polarisation states of light. As well as modelling our designs using FDTD simulations, 

experimental verification has been carried out at THz frequencies using THz-TDS.    

3.1: Introduction to PT symmetric 

Electromagnetics 

As explained in (2.1.4), non-Hermitian quantum mechanical Hamiltonians which are 

invariant under the simultaneous transformations of parity and time-reversal can possess 

either real or imaginary eigenvalues. Most interestingly, the variation of some external 

parameter can actually cause such a system to transition suddenly from one type of solution 

to the other, altering its dynamical behaviour dramatically. Unfortunately, the requirement for 

a precisely balanced potential energy landscape 𝑉(𝒓) = 𝑉∗(−𝒓) makes experimentally 

validating these models incredibly challenging. However, a few years after Bender’s 

theoretical investigation, Guo et al provided a classical electromagnetic demonstration[70]. 

By exploiting the formal equivalence between the time dependent Schrödinger equation, 

Eq.2.1, and the optical wave equation within the paraxial approximation 

 −𝑖
𝜕𝐸

𝜕𝑧
=

1

2𝑛0𝑘0

𝜕2𝐸

𝜕𝑥2
+ 𝑘0𝑛(𝑥)𝐸, [3.1] 

where 𝑘0 is the free-space wavenumber and 𝑛(𝑥) is the deviation from the background 

refractive index 𝑛0. Here, variations in the electric field profile as the beam propagates along 

the spatial 𝑧 coordinate can be seen to mimic the temporal evolution of a quantum particle. 

𝑘0𝑛(𝑥), therefore, plays the role of an optical potential. Clearly, Eq.3.1 is PT symmetric if 

𝑛(𝑥) = 𝑛∗(−𝑥). To satisfy this condition non-trivially, i.e. 𝑛(𝑥) ≠ 𝑛(−𝑥), two single mode 

waveguides constructed out of dielectric materials with 𝑛1,2 = 𝑛𝑟 ± 𝑖𝑛𝑖 can be placed side by 
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side. For convenience, the propagating solution within each waveguide 𝐸1,2(𝑥, 𝑦, 𝑧) =

𝑈1,2𝑓1,2(𝑥, 𝑦)𝑒
𝑖𝛽1,2𝑧 can be used as the basis for a set of coupled mode equations          

 𝑖
𝜕

𝜕𝑧
(
𝑈1
𝑈2
) = (

𝛽1 𝜅
𝜅∗ 𝛽2

) (
𝑈1
𝑈2
), [3.2] 

where 𝜅 is given by the overlap integral between the fields 𝐸1 and 𝐸2 for a given separation 

distance. The eigenvalues of Eq.3.2 are given by 

 𝑘𝑧 = −(
𝛽1 + 𝛽2

2
) ± √|𝜅|2 + (

𝛽1 − 𝛽2
2

)
2

. [3.3] 

From this expression, we can see that if 𝛽2 = 𝛽1
∗ spontaneous PT symmetry breaking occurs 

upon varying 𝜅 or 𝐼𝑚(𝛽1). For |𝜅| > |𝐼𝑚(𝛽1)|, 𝑘𝑧 is real and the eigenmodes propagate 

through the double channel structure without dissipating. While the eigenmodes evolve 

unitarily however, if energy is injected into just one port, the non-orthogonality of the 

associated fields given by (𝑈1, 𝑈2) = (1,±𝑒𝑥𝑝(±𝑖 sin−1(𝐼𝑚(𝛽1) 𝜅⁄ ))), which is a 

Figure 3.1: Side coupled PT symmetric waveguides. a) Effective refractive indices and b) dissipation factors 

for coupled eigemodes. c) Schematic and d) SEM image of PT waveguide design. e) Plot of dissipation factor for 

ridge waveguide mode of structure on right hand side of c and d with varying width of Chromium strip[70]. f-h) 

Transmitted optical field through coupled waveguide pair, with energy injected into left guide for left column 

and right guide in right column. f) Lossless waveguides. g) PT waveguides, red=gain and green=loss, in exact 

phase. h) PT waveguides with broken PT symmetry. The orange curves represent the total optical power[115].      
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consequence of working with a non-Hermitian Hamiltonian, causes the total optical power to 

oscillate as a function of 𝑧[70, 71]. What’s more, the efficiency with which energy is 

converted between the two channels, after propagating a given distance, depends strongly on 

which port has been excited. When 
|𝜅|

|𝐼𝑚(𝛽1)|
 drops below the EP |𝜅| = |𝐼𝑚(𝛽1)|, the 

qualitative behaviour of the system changes; with 𝑘𝑧 being complex and the eigenvectors 

becoming (𝑈1, 𝑈2) = (1, 𝑖𝑒𝑥𝑝(∓ cosh−1(𝐼𝑚(𝛽1)/𝜅))), the transmission of light through the 

system becomes dominated by the amplifying waveguide 𝐼𝑚(𝛽) < 0. In this case, the 

asymmetry in the response is further accentuated, with the light always exiting via the same 

waveguide. Although the exact PT symmetric condition 𝑛𝑖(𝑥) = −𝑛𝑖(−𝑥) can only be 

satisfied with loss and gain, even with 𝐼𝑚(𝛽1,2) > 0 Eq.3.3 still reveals a bifurcation in 𝑘𝑧 as 

long as 𝑅𝑒(𝛽1) = 𝑅𝑒(𝛽2) and 𝐼𝑚(𝛽1) ≠ 𝐼𝑚(𝛽2). This can be understood by the fact that a 

simple gauge transformation allows a common decay factor (𝐼𝑚(𝛽1) + 𝐼𝑚(𝛽2))/2 to be 

extracted, retrieving a mathematical description identical to that of an active system. In these 

passive PT structures increasing the amount of absorption can have the counter intuitive 

effect of increasing the transmitted power[70].           

The coupled mode approach discussed above highlights the power of modern optical 

engineering methods as a platform for exploring such subtle wave phenomena. The parity 

operator 𝑃 = 𝑥 → −𝑥, constrains  the real and imaginary parts of the index profile to be 

precise symmetric and antisymmetric functions of position, respectively, for Eq.3.1 to be PT 

invariant. On the other hand, Eq.3.2 only requires the effective mode indices associated with 

the two waveguides to be balanced 𝛽2 = 𝛽1
∗, irrespective of the particular designs being used. 

This is important because even with the wide array of optical materials available, finding two 

with exactly the same 𝑅𝑒(𝑛) is difficult. Engineering a specific complex effective index on 

the other hand, by borrowing techniques from the semiconductor electronics industry, is 
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fairly straightforward. In [70] for example, a thin Chromium strip was added to just one of a 

pair of ridge waveguides fabricated on top of an AlGaAs heterostructure, as shown in Figure 

3.1c,d. By making a number of samples with different strip widths the absorption coefficient 

of one of the guided modes could be varied, shown in Figure 3.1e, allowing the phase 

transition to be mapped out. Later, an exact PT transition was demonstrated by selectively 

pumping one of two optical channels within a photorefractive substrate made from Fe-doped 

LiNbO3[71].  

As discussed above, for a pair of side coupled waveguides with balanced loss and 

gain, the presence of non-orthogonal eigenstates leads to pronounced asymmetric mode 

 

Figure 3.2: Unidirectional transparency in PT symmetric Bragg gratings. a) Schematic representation of PT 

Bragg grating with a loss-gain modulation depth corresponding to an EP. While the transmission is always 

unity, the reflection only goes to zero for left incident waves. b) SEM image of passive PT structure. c) 

Directionally dependant reflection measurement of sample shown in “c”. “a” and “b, c” reproduced from Refs 

[72] and [73], respectively. 
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conversion. In other work, this asymmetry was shown to have interesting consequences for 

the reflection of light from a periodic arrangement of a similarly PT symmetric refractive 

index modulation along the propagation direction[72]. While the transmission through such a 

structure must be reciprocal, the reflection can varying depending on which side is being 

illuminated. Remarkably, the EP eigenmode coalescence, which occurs for a particular ratio 

between the modulation depths of the real and imaginary parts of the refractive index, causes 

reflections to vanish but from only one side, shown in Figure 3.2a. Essentially, in this 

configuration, the absorbing medium exactly cancels the Bragg scattered field in one 

direction, while in the opposite direction the field is enhanced by the amplifying medium. As 

unitary transmission is maintained for an active system, such a structure is said to be 

unidirectionally invisible. In 2012, Feng et al provided a demonstration of this phenomenon 

in a passive experiment involving an intricate Silicon waveguide design[73], shown in Figure 

3.2b. Although the incident light could of course not be transmitted perfectly, strong 

directionality in the reflected signal was observed, shown in Figure 3.2c.  

 Inspired by the useful properties discovered with surprisingly simple PT setups, 

researchers have also begun to explore wave dynamics in lattice systems with loss and 

gain[74–76]. In this case, new effects including nonreciprocal Bloch oscillations[74] and 

double negative refraction[75] have been predicted. While precisely balanced complex index 

variations are difficult to fabricate in 2 or 3 dimensions, a particularly interesting way of 

investigating such structures has been demonstrated using a pair of coupled optical fibre 

loops[77]. By tuning the difference in length between the loops and dynamically modulating 

the amplitude and phase of a circulating pulse, wave propagation through a whole host of 

spatial networks can be modelled as purely temporal changes. Not only does this method 

represent an elegant tool for simulating PT arrays, but it may also lead to novel pulse shaping 

functionalities enabled by mapping from real space behaviour. As well as revealing new 
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physics, recently, PT symmetric optical devices have also been proposed including CPA-

laser/absorbers[78] and lasing mode suppression[79].        

 At this point we should note that non-Hermitian dynamics and the physical 

consequences of exceptional points were explored long before Bender and colleagues 

formulated their proposed extension to quantum theory. In 1902, Voigt, and Pancharatnam in 

a later re-examination, showed that light propagating in certain directions through an 

absorbing biaxial crystal would experience a non-Hermitian permittivity tensor. They also 

found that along certain “singular axes” only one circularly polarised eigenstate exists. Based 

on geometric arguments, Pancharatnam hypothesized that an orthogonally polarised wave 

incident in this direction would, contrary to Voigt’s belief that perfect reflection should 

occur, be slowly converted to the eigenstate while propagating through the crystal[80]. 

Pancharatnam’s prediction was confirmed by measurements showing that the transmitted 

intensity is actually greatest for circularly polarised incidence with the opposite handedness 

to that of the eigenmode[81]. It is exactly this form of light-matter interaction which will be 

the focus of the following sections in this chapter. Not only will we reveal how metamaterials 

provide a convenient way of engineering and enhancing such properties, but also how they 

make novel phenomena, such as arbitrarily polarised singular waves, accessible. More 

recently, EPs have also been observed in microwave cavity experiments where the spatial 

structure of the resonances involved could be analysed in great detail[82–84].            

3.2: Numerical Treatment of Metasurfaces 

Throughout this chapter, we will rely heavily on the coupled dipole approximation to 

engineer and understand the response of our metastructure designs. However, before 

proceeding to experimental demonstrations of any phenomena that have been predicted, 

numerical full-wave simulations will be performed to provide an accurate forecast of the 
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outcome. Specifically, the transient and frequency domain solvers within the commercial 

software package CST Microwave Studio
TM 

will be employed. The transient solver makes 

use of the finite difference time domain method which tracks the temporal evolution of an 

initial field distribution by solving the time dependant Maxwell’s equations on a discrete 

hexahedral grid. By setting up a plane wave excitation for a single unit cell with periodic 

boundary conditions, the interaction between a Gaussian photonic beam and a large periodic 

metasurface can be well approximated. When oblique incidence is required, the frequency 

solver, which relies on the finite element method to solve Maxwell’s equations at discrete 

frequencies, will be used in conjunction with Floquet waveguide ports. As only THz devices 

will be considered in this chapter, metallic objects will be represented by lossy Drude 

permittivities, parameterised in terms of their DC conductivities. The silicon substrate will be 

described as a lossless, dispersionless dielectric 𝜀𝑠 = 11.7.            

3.3: Metasurface Fabrication and 

Characterisation 

Changes to photonic polarisation states that occur after interacting with artificial 

structures will form the main focus of investigations in the following sections. However, it is 

the specific polarisation eigenstates that will be important, not just the transmission or 

conversion efficiencies in a particular basis. In order to determine these eigenstates, the phase 

of the transmitted light must be measured. A technique known as Ellipsometry, in which 

polarising components are varied dynamically, can provide the relative phase between TE 

and TM transmitted waves resulting from a particular incident polarisation. However, the 

lack of information regarding the absolute phase still makes determining the full Jones matrix 

complicated and besides, commercial versions of such systems are unavailable at THz 
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frequencies, our desired regime due to the favourability of metallic properties. Instead we 

have chosen to use Terahertz time domain spectroscopy (THz-TDS) which allows the time 

dependant electric field strength of a terahertz pulse, emitted by a photoconductive antenna, 

to be measured after passing through a sample. Specifically, the system consists of four 

parabolic mirrors placed between the transmitter and receiver which are arranged in an 8-F 

confocal geometry enabling a frequency independent beam waist of ~5mm at the sample. 

After taking the Fourier transform of the time signal and normalising against transmission 

through the bare substrate 𝑡̃ = 𝐸̃𝑠𝑎𝑚𝑝𝑙𝑒 𝐸̃𝑟𝑒𝑓⁄ , this measurement results in a complex 

transmission spectrum. Finally, the anisotropy of our metasurfaces requires this process to be 

repeated for the four possible linear input/output polarisation combinations, Figure 3.3.  

Metallic structures that are resonant in the THz regime tend to be tens of micrometres 

in size. We have therefore employed photolithography to fabricate our designs. As shown in 

Figure 3.4, a separate chrome mask was first created for each ring geometry and then used to 

expose a negative photoresist on top of a silicon substrate. After evaporating a thin ~300𝑛𝑚 

layer of silver, lead or gold, the process is completed by lifting off the remaining photoresist 

Figure 3.3: Schematic representation of polarising configuration. By rotating the second and third wire-

grid polarisers to +45
o 
or -45

o 
with respect to the first and fourth polarisers, which share the same alignment, 

all four linear transmission coefficients, 𝑡̃𝑥𝑥, 𝑡̃𝑦𝑦 , ⁡𝑡̃𝑦𝑥 and 𝑡̃𝑥𝑦 can be measured.  
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to leave an array of isolated metal structures. Where more than one metal is required, the

 

previous steps are repeated using alignment marks on the photomask to achieve a specified 

separation between objects made from the different materials.      

3.4: Manifestation of PT Symmetry Breaking in 

Polarisation Space 

As described in (3.1), up until now photonic investigations of PT symmetry breaking 

have for the most part, focussed on diffraction from index variations satisfying the condition 

𝑛(𝒓) = 𝑛∗(−𝒓). However, the mathematical structure underpinning the interesting physics 

observed in these experiments is not uniquely related to spatial symmetry. Any dynamical 

system in which the rate of decay varies under the action of some field transformation must 

be governed by a non-Hermitian differential operator. With this in mind, here we decide to 

Figure 3.4: Illustration of the fabrication steps used to create metasurface samples. 
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focus on another photonic degree of freedom, namely the electromagnetic polarisation. While 

the importance of symmetry and symmetry breaking for enhancing optical activity, 

asymmetric transmission, birefringence etc. has been thoroughly investigated, much less 

effort has been directed towards understanding the role played by loss. As well as 

representing a fundamentally new approach to exploring PT concepts, we also therefore, 

expect the current study into carefully balanced polarisation dependent dissipation to provide 

useful insights for the development of future photonic devices.  

Restricting our discussion to monochromatic plane wave propagation, all possible 

solutions can be written in the form of frequency dependent Jones vectors   

 𝑬 = (
𝐸̃𝑥(𝜔)

𝐸̃𝑦(𝜔)
) = (

𝐸𝑥(𝜔)𝑒
𝑖𝜑𝑥(𝜔)

𝐸𝑦(𝜔)𝑒
𝑖𝜑𝑦(𝜔)

). [3.4] 

In general, these states correspond physically to electric fields which sweep out elliptical 

shapes as time progresses. Ignoring the overall intensity, any given polarisation ellipse can be 

expressed by two key geometrical parameters, the orientation angle 𝜓 defined via 

 tan 2𝜓 =
2𝐸𝑥𝐸𝑦

𝐸𝑥2 − 𝐸𝑦2
cos(𝜑𝑦 − 𝜑𝑥) [3.5] 

and the ellipticity angle 𝜒 defined via 

 sin 2𝜒 =
2𝐸𝑥𝐸𝑦

𝐸𝑥2 + 𝐸𝑦2
sin(𝜑𝑦 − 𝜑𝑥), [3.6] 

shown in Figure 3.5a. Throughout this chapter, Jones vectors associated with theoretically and 

experimentally obtained transmission data will be plotted on the Poincare sphere, shown in 

Figure 3.5b, which is a convenient graphical representation with 𝜓 and 𝜒 as polar coordinates. 

Any alteration to the state of a wave, taken here to be travelling in the 𝑧 direction, after 

interacting with some photonic device can then be accounted for by the action of a 2 × 2 

matrix 
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 𝑬̃𝒕 = (
𝑡̃𝑥𝑥 𝑡̃𝑥𝑦
𝑡̃𝑦𝑥 𝑡̃𝑦𝑦

) 𝑬̃𝒊 = 𝑱̂𝒕𝑬̃𝒊,  [3.7] 

as explained at the end of (2.2.3). In general, 𝑡̃𝑥𝑥, 𝑡̃𝑦𝑦, ⁡𝑡̃𝑦𝑥 and 𝑡̃𝑥𝑦 are complex and different. 

Problems involving polarisation modification are typically, therefore, non-Hermitian. We are 

particularly interested in operations for which 𝑡̃𝑥𝑥 = 𝑡̃𝑦𝑦
∗  and 𝑡̃𝑥𝑦 = 𝑡̃𝑦𝑥

∗ , meaning that Eq.3.7 

remains invariant under the simultaneous 𝑷 = 𝝈𝒙 and 𝑻 =∗ transformations, i.e. 𝑷𝑻𝑱 ≡ 𝑱𝑷𝑻, 

where 𝝈𝒙  is a Pauli matrix and ∗ represents complex conjugation. As we are only 

considering systems constructed from linear materials, meaning that the electromagnetic 

fields have harmonic time dependence, T like for quantum states and optical waveguide 

modes can be thought of as a time reversal operator. On the other hand, while P will be

 

Figure 3.5: Representation of generalised polarisation ellipses. a) Ellipse plotted in Cartesian coordinates 

showing the geometrical significance of 𝝍 and 𝝌. b) The Poincare sphere used for graphically representing 

photonic polarisation states, linearly polarisation lies on the equatorial circle 𝝌 = 𝟎 and circular polarisations 

𝝌 = ±𝝅 𝟐⁄  lie at the north and south poles[85].      

referred to as parity, rather than the usual three dimensional operation (𝑥, 𝑦, 𝑧) →

(−𝑥, −𝑦,−𝑧) for a vector field, here 𝑷 is a one dimensional reflection about the plane 𝑥 = 𝑦. 

Also, even though this condition is mathematically identical to that discussed in the context 

of Eq.3.2, physically 𝑷 here has a very different meaning. Instead of representing a 

discretised version of the traditional one-dimensional parity operation 𝑬(𝒓) → 𝑬(−𝒓), when 
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acting on Jones matrices 𝑷 is a local but anisotropic field transformation, e.g. 𝐸𝒙(𝒓) →

𝐸𝒚(𝒓). By varying the ratio 𝐼𝑚(𝑡̃𝑥𝑥)/|𝑡̃𝑥𝑦|, the eigen-transmission coefficients 

 𝑡̃ = 𝑅𝑒(𝑡̃𝑥𝑥) ± √|𝑡̃𝑥𝑦|
2
− 𝐼𝑚(𝑡̃𝑥𝑥)2, [3.8] 

can be seen to undergo a transition from real valued 𝑡̃ for |𝑡̃𝑥𝑦| > |𝐼𝑚(𝑡̃𝑥𝑥)| to complex 𝑡̃ for 

|𝑡̃𝑥𝑦| < |𝐼𝑚(𝑡̃𝑥𝑥)|. At the same time, the corresponding polarisation eigenvectors change 

suddenly from 

 
𝐸̃𝑦

𝐸̃𝑥
= ±𝑒−𝑖𝑎𝑟𝑔(𝑡̃𝑥𝑦)𝑒

±𝑖 𝑠𝑖𝑛−1(
|𝐼𝑚(𝑡̃𝑥𝑥)|

|𝑡̃𝑥𝑦|
)
 [3.9] 

for (|𝑡̃𝑥𝑦| > |𝐼𝑚(𝑡̃𝑥𝑥)|), to 

 
𝐸̃𝑦

𝐸̃𝑥
= 𝑖𝑒−𝑖𝑎𝑟𝑔(𝑡̃𝑥𝑦)𝑒

∓𝑐𝑜𝑠ℎ−1(
|𝐼𝑚(𝑡̃𝑥𝑥)|

|𝑡̃𝑥𝑦|
)
 [3.10] 

for (|𝑡̃𝑥𝑦| < |𝐼𝑚(𝑡̃𝑥𝑥)|). Unlike for the waveguide systems investigated in [70, 71], the 

 

Figure 3.6: PT symmetry breaking in polarisation space. a) Eigen polarisation states of PT symmetric Jones 

matrix for real-valued 𝒕̃𝒙𝒚 = 𝟎 → ∞ plotted on the Poincare sphere. b, c) Polarisation ellipses for unbroken PT 

symmetry, i.e. Eq.3.9, with ‘b’ also corresponding to coordinates marked by orange stars in ‘a’. d) Single left 

handed circularly polarised eigenstate for 𝒕̃𝒙𝒚 = |𝑰𝒎(𝒕̃𝒙𝒙)|, also marked by yellow star in ‘a’. e, f) Polarisation 

ellipses for broken PT symmetry, i.e. Eq.3.10, with ‘f’ also corresponding to coordinates marked by blue stars in 

‘a’. 
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specific details of these modes, as well as their overlap, are important. As illustrated in Figure 

3.6, for real-valued 𝑡̃𝑥𝑦 Eq.3.9 describes a pair of ellipses with major axes oriented along 

±45° with respect to 𝑥̂. Eq.3.10 on the other hand corresponds to elliptical fields with 𝑥̂ and 

𝑦̂ oriented major axes. In this case, PT symmetry is said to be broken as the eigenstates of 𝑱 

are no longer eigenstates of the PT operator but are instead exchanged when it acts upon 

them. From Figure 3.6a we can also see that, for fixed 𝑠𝑔𝑛(|𝐼𝑚(𝑡̃𝑥𝑥)| 𝑡̃𝑥𝑦⁄ ), the eigen-

polarisation coordinates all lie on the same Poincare hemisphere, indicating that they all share 

the same sense of rotation. This non-orthogonality, which is a clear manifestation of non-

Hermiticity, becomes most extreme at the EP where only LCP light can pass through the 

system without being partially converted to its orthogonal state, namely RCP. Interestingly, 

throughout this parametric variation only the ellipticities, i.e. the elevation angles on the 

Poincare sphere, are tuned continuously. The orientation angles remain fixed except for a 

sharp 45° twist that occurs when passing through the EP. What’s more, although Eq.3.7, 

which is written in the Cartesian basis, formed the starting point of our analysis, polarisation 

states can be expressed as the relative complex amplitude of any two antipodal coordinates on 

the Poincare sphere. As the mathematical form of Eqs.3.8-3.10 is independent of the chosen 

basis, it should therefore be possible to observe phase transitions in which 𝜓, 𝜒 or even both 

𝜓 and 𝜒 jump suddenly in response to the variation of some parameter.             

 Up until this point, we have simply discussed the properties of an abstract PT 

symmetric Jones matrix. The next question is how can we physically realise such a system? 

Firstly, a significant departure of this particular problem from conventional non-Hermitian 

dynamics is that the imaginary part of the transmission coefficient corresponds to phase 

retardation of a wave rather than dissipation. Hence, even the description of a lossless 

birefringent medium requires the use of a complex Jones matrix. However, relying on an 

accumulated phase difference between orthogonal waves to achieve a carefully balanced 
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output means that the behaviour will be highly sensitive to the relationship between the 

device thickness and the wavelength, leading to strong dispersion. Here we wish to explore 

PT symmetry within media with locally well-defined polarisation eigenstates. In this case, the 

material properties themselves, i.e. the polarisability tensor, must be non-Hermitian and the 

presence of dissipation is again necessary. As explained in (2.3), metamaterials represent the 

ideal platform for realising a tailored electromagnetic response, especially when we seek 

precise, rather than simply large, values. In actual fact, because we only care about changes 

to the field directions and not the propagation characteristics of the transmitted light, 

metasurfaces which consist of a single monolayer of artificial structures will be employed, 

simplifying the sample fabrication significantly.   

 To begin, we consider an idealised metasurface consisting of a two dimensionally 

periodic, square array of “meta-molecules” with lattice constant 𝑑. Each molecule is made 

from a pair of “meta-atoms” in the form of electric dipole antennas which oscillate in plane

 
Figure 3.7: Coupled array of oscillating electric dipole moments with red and blue dipoles 

experiencing loss and gain, respectively.   
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and are oriented perpendicular to one another 𝑝̂𝑥,𝑦 = 𝑝𝑥,𝑦(𝜔)𝑒
𝑖𝜔𝑡, as illustrated in Figure 3.7. 

The interaction between an individual dipole moment and a local monochromatic electric 

field 𝑬̂𝒍𝒐𝒄 = (𝐸̃𝑙𝑥, 𝐸̃𝑙𝑦)𝑒
𝑖𝜔𝑡 can then be described by a Lorentzian resonance model 

 (𝜔𝑥,𝑦
2 − 𝜔2 + 𝑖2𝜔𝛾𝑥,𝑦)𝑝̃𝑥,𝑦 = 𝜔𝑥,𝑦𝑔𝑥,𝑦𝐸̃𝑙𝑥,𝑙𝑦. [3.11] 

Crucially, if 𝑑 is smaller than the wavelengths of propagating solutions in the surrounding 

media, diffraction is prohibited and the metasurface will only reflect or transmit an incident 

plane wave. However, this doesn’t mean that the scattered wave can be found by simply 

replacing 𝑬̂𝒍𝒐𝒄 by the incident radiation field 𝑬̂𝒊𝒏𝒄, as the mutual dipole coupling still can’t be 

ignored. Instead, 𝑬̂𝒍𝒐𝒄 at the location of a given antenna should be written as       

 (
𝐸̃𝑙𝑥
𝐸̃𝑙𝑦

) = 𝑬̂𝒊𝒏𝒄 + (
𝐺𝑥𝑥 𝐺𝑥𝑦
𝐺𝑦𝑥 𝐺𝑦𝑦

) (
𝑝𝑥
𝑝𝑦
), [3.12] 

where 𝐺𝑖𝑗 represents a summation of 𝑖 oriented fields produced by all other 𝑗 oriented 

antennas and 𝐺𝑥𝑦 = 𝐺𝑦𝑥 as we consider only reciprocal constitutive materials. By working 

close to resonance (𝛿𝑥,𝑦 = 𝜔 − 𝜔𝑥,𝑦 ≪ 𝜔𝑥,𝑦) and in the weak damping limit (𝛾𝑥,𝑦 ≪ 𝜔𝑥,𝑦), 

the induced response of the metasurface to incoming light can then be expressed by       

 (
𝛿𝑥 + 𝑖𝛾𝑥 + 𝐺𝑥𝑥 𝐺𝑥𝑦

𝐺𝑥𝑦 𝛿𝑦 + 𝑖𝛾𝑦 + 𝐺𝑦𝑦
)(

𝑝𝑥
𝑝𝑦
) = (

𝑔𝑥𝐸̃𝑖𝑛𝑐,𝑥

𝑔𝑦𝐸̃𝑖𝑛𝑐,𝑦
). [3.13] 

If we restrict our discussion for the time being to normal incidence 𝑘𝑥 = 𝑘𝑦 = 0, the 

corresponding Jones matrix for transmission is simply given by the superposition of the 

incident field 𝑬̂𝒊𝒏𝒄 and the field scattered by the dipole array in the forward direction 

𝑖𝜔𝜂0

2𝑑2
(𝑔𝑥𝑝̃𝑥, 𝑔𝑦𝑝𝑦):    ` 

 (
𝐸̃𝑡𝑥
𝐸̃𝑡𝑦

) = [𝐼⃡ + 𝐴 (
𝑔𝑥
2(𝛿𝑦 + 𝑖𝛾𝑦 + 𝐺𝑦𝑦) −𝑔𝑥𝑔𝑦𝐺𝑥𝑦

−𝑔𝑥𝑔𝑦𝐺𝑥𝑦 𝑔𝑦
2(𝛿𝑥 + 𝑖𝛾𝑥 + 𝐺𝑥𝑥)

)] (
𝐸̃𝑖𝑥
𝐸̃𝑖𝑦

), [3.14] 

where 
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 𝐴 =
𝑖𝜔𝜂0

2𝑑2((𝛿𝑥 + 𝑖𝛾𝑥 + 𝐺𝑥𝑥)(𝛿𝑦 + 𝑖𝛾𝑦 + 𝐺𝑦𝑦) − 𝐺𝑥𝑦2 )
. [3.15] 

Clearly any changes to the state of polarisation must be governed by the matrix in the second 

term of Eq.3.14, while the multiplicative factor 𝐴 and the additional identity matrix can only 

influence spectral variations. As explained previously, we wish to explore the requirements 

for such a matrix to be PT symmetric. First however we can make some simplifying 

observations. Because the summation terms 𝐺𝑖𝑗 depend purely on the lattice geometry, the 

use of a square unit cell fixes 𝐺𝑥𝑥 = 𝐺𝑦𝑦. What’s more, as the 𝑥 and 𝑦 oriented dipoles 

radiate into orthogonally polarised channels, they can only interact via their quasi-static 

electric near fields and so 𝐺𝑥𝑦 must simply be a constant real number. Consequently, the 

symmetry of the Jones matrix is wholly determined by the local quantities 𝛿𝑥,𝑦, 𝛾𝑥,𝑦 and 𝑔𝑥,𝑦. 

In particular, we can see that the condition for a metasurface to be non-Hermitian but PT 

symmetric becomes 𝑔𝑥 = 𝑔𝑦, 𝛿𝑥 = 𝛿𝑦, 𝛾𝑥 ≠ 𝛾𝑦and 𝛾𝑥 + 𝛾𝑦 = −2𝐼𝑚(𝐺𝑥𝑥). As 0 < 𝐼𝑚(𝐺𝑥𝑥), 

to satisfy the last relationship one of the two sets of antennas must amplify the incident E-

field. Here, for experimental convenience we will deal only with passive systems 𝛾𝑦 > 𝛾𝑥 >

0. Nevertheless, similarly to previous works[70, 73], Eq.3.14 can be separated into a lossy 

isotropic part and an anisotropic PT part 

 (
𝐸̃𝑡𝑥
𝐸̃𝑡𝑦

) = [1 + 𝑔𝑥
2𝐴𝑆]𝐼⃡ (

𝐸̃𝑖𝑥
𝐸̃𝑖𝑦

) − 𝑔𝑥
2𝐴 (

−𝑖Γ 𝐺𝑥𝑦
𝐺𝑥𝑦 𝑖Γ

) (
𝐸̃𝑖𝑥
𝐸̃𝑖𝑦

), [3.16] 

where 𝑆 = 𝛿𝑥 + 𝐺𝑥𝑥+𝑖(𝛾𝑦 + 𝛾𝑥)/2 and Γ = (𝛾𝑦 − 𝛾𝑥)/2. Although the physical system 

being considered is a coupled set of lossy resonators, Eq.3.16 could equally well describe an 

oscillator model with balanced loss and gain (2
nd

 term on right-hand side of Eq.3.16) 

embedded in an absorptive background medium (1
st
 term on right-hand side of Eq.3.16). As 

per the analysis summarised in Figure 3.6, variation of Γ/𝐺𝑥𝑦 brings about a phase transition 



P a g e  | 71 

 

in the polarisation eigenstates. Originating from the inherent dispersion of the component 

antennas, the corresponding transmission eigen-spectra       

 𝑡̃𝑒𝑖𝑔(𝜔) = 1 +
𝑖𝜔𝜂0𝑔𝑥

2(𝑆 ± √𝐺𝑥𝑦2 − Γ2)

2𝑑2((𝛿𝑥 + 𝑖𝛾𝑥 + 𝐺𝑥𝑥)(𝛿𝑥 + 𝑖𝛾𝑦 + 𝐺𝑥𝑥) − 𝐺𝑥𝑦2 )
 [3.17] 

take the form of two separate resonant features with different natural frequencies for Γ < 𝐺𝑥𝑦 

but different linewidths for Γ > 𝐺𝑥𝑦. As these are purely hybridised modes, not relying on 

any interference effects, the two expressions in Eq.3.17 represent curves with a simple 

Lorentzian shape. This spectral signature indicates that the coupled antennas are responding 

as two physically independent, but highly overlapping, sets of elliptical dipoles. On the other 

hand, conventional systems, such as the bilayer chiral geometries discussed in (2.3.4), have 

modes which are approximately orthogonal.      

 Having derived the conditions that need to be met for a collection of dipole emitters to 

exhibit PT symmetric behaviour, we now proceed to the design of a realistic PT metasurface. 

Many possible forms exist but our chosen meta-atom for this purpose is the SRR, for reasons 

that will be made clear later on. As discussed in (2.3.3), the LC resonance 𝜔0 of such a 

structure can be controlled by tailoring its specific size and shape. Although this fundamental 

mode possesses two radiative outlets, one of magnetic and one of electric origin, when 

working at normal incidence each ring can be considered as a single electric dipole moment 

centred approximately on the gap in that ring. The radiative coupling strength 𝑔 depends, 

therefore, on the specific geometry of this gap. It is clear then that the most straightforward 

way, or indeed the only practical way, of creating an anisotropic PT metasurface is to use 

structurally identical antennas for both 𝑥 and 𝑦 oriented arrays. This just leaves the question 

of how to independently engineer the dissipation of the resonators. The parameter 𝛾, used 

above, describes the rate at which the total energy contained within an oscillator decays in 

time. Two mechanisms, radiation and absorption contribute to this decay. In most other 
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metamaterial investigations seeking to exploit or manipulate dissipation, attention is 

commonly directed towards the former mechanism while Ohmic or material loss is 

considered a limiting factor. On the contrary, for the present study absorption provides the 

only available method for satisfying 𝛾𝑥 ≠ 𝛾𝑦and 𝑔𝑥 = 𝑔𝑦 simultaneously. Specifically, we 

can construct the same SRR design out of two metals with different imaginary parts of their 

permittivities. A complication for this approach is that material variations can also affect the 

resonant frequency. This is especially true at optical frequencies as plasmonic modes are 

highly sensitive to changes in the real part of the dielectric function. Fortunately, the 

characteristic length scale of THz resonators is much larger than the skin depth of most 

metals because of their huge dynamic conductivities. Consequently, the electromagnetic 

boundary condition created at the surface of a SRR, and in turn its natural frequency, vary 

only very slightly with changes to the permittivity. On the other hand, the field penetrating 

into the structure is still sufficient to achieve a significant attenuate of the oscillation. 

 

Figure 3.8: FDTD simulations of the transmitted amplitude through Lead (blue) and Silver 

(red) SRR arrays. The larger penetration depth of Lead compared to Silver leads to a 

pronounced broadening of the linewidth compared to the very subtle frequency shift. 
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Figure 3.8 shows the simulated transmission spectra for a set of Lead and Silver rings, 

described via the Drude model with DC conductivities 𝜎 = 3.5𝑀𝑆𝑚−1 and 𝜎 = 7𝑀𝑆𝑚−1, 

respectively. It is clear to see that the different material properties give rise to distinct 

linewidths whilst maintaining very similar mode frequencies.  

By employing different metals we can easily satisfy the conditions for PT symmetry. 

To observe a phase transition, next we seek to tune the coupling parameter 𝐺𝑥𝑦.When 

interlacing two orthogonally oriented SRR arrays, the energy transferred from one array to 

the other is determined by the overlap between the isolated resonant near field patterns. As 

already discussed, the electric response resembles a periodic dipolar function of the in plane 

coordinates. Unlike for the radiation emitted to the far field, magnetic induction plays an

 

important role in the inter-ring coupling strength. Interestingly, from Figure 3.9 we can see 

that when orthogonally arranged the capacitive and inductive SRR interactions have opposite 

signs. Thus, depending on the chosen configuration the two mechanisms could potentially 

Figure 3.9: Dipole coupling between orthogonally oriented SRRs. a) Symmetric current distribution 

represents antisymmetric (symmetric) electric (magnetic) dipole configuration providing positive (negative) 

contribution to the coupling coefficient. b) Antisymmetric current distribution represents antisymmetric 

(symmetric) magnetic (electric) dipole configuration providing positive (negative) contribution to the 

coupling coefficient. 
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cancel providing access to the weak coupling limit. Another important feature of these 

particular antennas is that the electric field is highly localised in the gaps. Therefore, by using 

a relatively larger ring structure the resonant wavelength can be made to be much bigger than 

the gaps while still being smaller than the array period, meaning that strong nearest neighbour 

coupling should take place with minimal lattice suppression. 

To numerically confirm our analytical predictions, simulations of normally incident 

plane wave transmission through metasurfaces composed of meta-molecules with different 

relative SRR positions, have been carried out. By calculating for both 𝑥 and 𝑦 polarised 

incident excitations, the four complex Cartesian spectra 𝑡̃𝑥𝑥, 𝑡̃𝑦𝑦, 𝑡̃𝑦𝑥 and 𝑡̃𝑥𝑦 can be found. 

Subsequently, the 2  2 transmission Jones matrix comprising these four complex 

coefficients can be diagonalised at each frequency. The resulting polarisation eigen-states and 

corresponding transmission spectra are shown in Figure 3.10. As expected from the analysis 

above, when nearest neighbour SRRs are placed in close proximity with their gaps facing one 

another strong electric dipole coupling leads to pronounced resonant frequency splitting, 

Figure 3.10b. The associated polarisation states are almost linear and oriented along 𝑦 = ±𝑥, 

Figure 3.10g. In this configuration the difference in material loss is therefore seen to have very 

little effect. When the rings are moved further apart, eventually, inductive coupling takes 

over, flipping the handedness of both modes, as evidenced by the single data point occupying 

the southern hemisphere in Figure 3.10a. The electric and magnetic interactions are therefore 

guaranteed to cancel out at a particular distance, ~19𝜇𝑚 in Figure 3.10f/k, leaving practically 

independent 𝑥 and 𝑦 polarised responses with spectral features very similar to the isolated 

case shown in Figure 3.8. Consequently, the arrangement we have chosen makes the full range 

of values for 𝐺𝑥𝑦/Γ accessible. Between the two extremes 𝐺𝑥𝑦 Γ⁄ = 0 and 𝐺𝑥𝑦 Γ⁄ ≫ 1 the 
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simulated metasurface response, shown in Figure 3.10a, follows the PT dipole

 

Figure 3.10: Full-wave simulation results for a PT symmetric metasurface, the unit cell of which 

appears in  the inset of subplot (l) (detailed dimensions are given in Figure 3.11a), with variable coupling 

strength, controlled by changing the distance between more and less lossy SRRs, denoted by ‘S’ in the inset 

of (l),between 2 and 20µm. a) Polarisation eigenstates for different SRR separations plotted on the Poincare 

sphere with LCP at the northpole, the dashed lines represent the eigenstates of an ideal PT symmetric dipole 

model with varying coupling coefficients and the single star occupying the southern hemisphere represents a 

change of sign of the coupling coefficient caused by the domination of the inductive coupling at large ring 

separation. b-f) show sampled transmission spectra for the eigenpolarisation states g-k) which correspond to 

points labelled in (a), ring separation in μm = 2 (b, g), 12 (c, h),  14.5 (d, i), 16 (e, j), 19 (f, k). l) Circular 

transmission spectra for SRR configuration closest to the EP (d, i). Figure and caption from [69]. 
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model very closely, with a sudden 45
o
 rotation of the polarisation eigenstates, caused by PT 

symmetry breaking, clearly visible at ~14.5𝜇𝑚. A slight deviation from the ideal transition 

does occur, however, at the EP. Rather than coalescing exactly, it can be seen that the 

eigenmodes always have a finite difference in their ellipticities. The origin of this avoided 

crossing will be discussed later on. Nevertheless, in the configuration closest to the EP, the 

circularly polarised transmission spectra, shown in Figure 3.10l, exhibit asymmetric 

conversion efficiencies |𝑡̃𝑟𝑙| ≠ |𝑡̃𝑙𝑟| with |𝑡̃𝑟𝑙| ≈ 0 across the entire resonance feature. This is 

indicative of the system behaving to a good approximation as an array of left handed 

circularly polarised dipole moments. 

 As well as confirming our analytical model, the numerical results also reveal the 

relationship between physical changes to the metastructure and the transition that occurs for 

the Jones matrix. Interestingly, the subtle variation of a single geometric feature is seen to be 

responsible for the drastic alteration to the polarisation response. This is unusual for such a 

well ordered metamaterial system, where the eigenstates associated with simple Lorentzian 

resonances normally depend on the effect of global symmetry operations, such as rotation and 

inversion[31]. Figure 3.10 also provides an insight into the role played by loss in asymmetric 

transmission. In [86] it was shown that, for a 2D structure, circularly polarised asymmetric 

transmission correlated directly with an increase in the anisotropy of loss. Here, on the other 

hand, a balance between loss and coupling 𝐺𝑥𝑦 = Γ optimises this particular effect. 

Therefore, decreasing 𝐺𝑥𝑦 away from the EP, or increasing Γ by the duality between 𝐺𝑥𝑦 and 

Γ in Eq.3.16, will actually reduce the ellipticity of the eigenmodes, thereby diminishing the 

asymmetry of the circular conversion efficiency. 

To experimentally demonstrate PT symmetry breaking in polarisation space, a 

number of different samples have been fabricated based on the SRR design simulated in 
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Figure 3.10. By carrying out two successive photolithographic processes, a set of lossy rings 

made of lead could be created on the same silicon substrate as a set of less lossy silver rings. 

This procedure also allowed the relative positioning of the two sets to be varied from sample 

to sample, providing a range of configurations with different coupling strengths. A 

photographic image of an example metasurface is shown in Figure 3.11a. After measuring the 

Figure 3.11: THz-TDS measurements for a PT symmetric metasurface with variable coupling strength, 

controlled by changing the distance between Lead and Silver SRRs, labelled by S in (a), between 2 and 20µm. 

a)  Photograph of PT symmetric metasurface composed of 300nm thick silver (yellow) and lead (turquoise) 

SRRs on Silicon substrate. b-f) Sampled transmission spectra for the eigenpolarisation states (g-k) which 

correspond to points labelled in (l), nominal ring separation S in μm = 2 (b, g), 10 (c, h), 11.5 (d, i), 16 (e, j), 

20 (f, k). l) Polarisation eigenstates for different S plotted on the Poincare sphere, the dashed lines represent 

the eigenstates of an ideal PT symmetric dipole model, red and blue stars represent simulated data and 

turquoise and purple squares represent measured data. m) Circular transmission spectra for SRR configuration 

closest to the EP, measured and simulated results represented by dashed (d, i) and solid lines, respectively. 

Figure and caption modified from [69].    
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four frequency dependant elements of the Jones transmission matrices using THz-TDS, the 

eigenstates of each structure could be analysed. In Figure 3.11b-k, a clear transition from 

resonant splitting to relative broadening is observed, accompanied by a definite 45
o 

rotation 

of the corresponding polarisation states, i.e. a 90
o
 azimuthal rotation on the Poincare sphere. 

Good correspondence between the trend of the experimental data and our theoretical results 

can also be seen in Figure 3.11l. The slight scattering of the points plotted on the Poincare 

sphere can be attributed to measurement errors. The difficultly in orienting each sample in 

precisely the same direction with respect to the polarisers limits the accuracy with which the 

azimuthal coordinates can be determined. Similar errors are responsible for the fact that the 

ellipticities of the two eigenstates associated with a particular metasurface are not exactly the 

same and that their azimuthal angles do not differ by precisely 90
o
. These conditions should 

always hold for normally incident illumination of a 2D structure. A more serious issue, 

however, is the avoided crossing that occurs close to the EP, which is larger than for the 

simulated data and too significant to be explained by uncertainties in the measurements.             

To explore the reasons behind the deviations from ideal PT symmetry observed 

above, both theoretically and experimentally, the various parameters that control the 

polarisabilities for each system need to be interrogated. While Eqs.3.14 and 3.15 describe the 

transmission through our metasurfaces, they also contain the quantity 𝐺𝑥𝑥 which is a slowly 

converging sum over the entire lattice. We have already explained how this summation plays 

no part in the PT symmetric transition. Therefore, a retrieval method, which has proven 

effective for SRR arrays which are very similar to the design explored here, will be 

employed[87]. By applying the Fresnel equations to a homogeneous, dielectric slab of 

thickness t between a substrate with refractive index 𝑛𝑠 and a vacuum, the transmission 

through an ultrathin 𝑡 ≪ 𝜆 set of electric dipoles antennas can be written approximately in 

terms of the individual antenna polarizabilites 𝛼̃ as[87]   
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 𝑡̃(𝜔) ≈
2𝑛𝑠

1 + 𝑛𝑠 − 𝑖
2𝜋
𝑑2𝜆

𝛼̃(𝜔)
. [3.18] 

Typically this expression is only used when the incident E-field vector is aligned with linear 

dipole moments. However, it could equally well describe the response of a metasurface to 

any incident wave for which the transmitted polarisation remains unchanged, i.e. any 

polarisation eigenstate. After inverting Eq.3.18, a Lorentzian function  

 𝛼̃(𝜔) = 𝐴 +
𝑔

𝜔 − 𝜔0 + 𝑖𝛾
 [3.19] 

has been fitted to the simulated and measured eigen transmission spectra with varying SRR 

separation, shown in Figure 3.12. As expected, the instantaneous bifurcation of the resonant 

frequencies and linewidths associated with ideal PT symmetry breaking has been replaced by 

a clear but more gradual transition. The properties of the corresponding antennas can then be

Figure 3.12: Dissipation coefficients (a, d) and resonant frequencies (b, e) in THz associated with the 

eigenstates of the polarisability matrix, for simulation (a-c) and experiment (d-f). Solid lines represent 

the eigenvalues of an almost PT symmetric matrix constructed from avaraged parameter values from Figure 

3.13, with in particular 𝜹 = 𝟎. 𝟎𝟎𝟐𝟑 THz (a, b) and 𝜹 = 𝟎. 𝟎𝟎𝟕𝟑 THz (d, e). A cubic fit was used to relate 

𝑮𝒙𝒚 to SRR separation. Dashed lines represent the eigenvalues of an ideal PT symmetric matrix with the 

same parameterisation as the solid lines except for 𝜹 = 𝟎. Examples of fitted curves (solid black) alongside 

data (dotted colour) are shown in c and f for simulated and measured results, respectively.       
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 found by using the eigenstates of the Jones matrices 𝑱𝒕 = 𝑿𝑑𝑖𝑎𝑔(𝑡̃1,𝑡̃2)𝑿
−𝟏 to transform the 

polarisabilities back to the Cartesian basis 

 (
𝛼̃𝑥𝑥(𝜔) 𝛼̃𝑥𝑦(𝜔)

𝛼̃𝑦𝑥(𝜔) 𝛼̃𝑦𝑦(𝜔)
) = 𝑿(

𝛼̃1 0
0 𝛼̃2

)𝑿−𝟏 [3.20] 

 and then fitting the functions 

 

|𝛼𝑥𝑥(𝜔)| = |𝐴 +
𝑔𝑥
2(𝜔 − 𝜔𝑦 + 𝑖𝛾𝑦)

(𝜔 − 𝜔𝑥 + 𝑖𝛾𝑥)(𝜔 − 𝜔𝑦 + 𝑖𝛾𝑦) − 𝐺𝑥𝑦2
| 

|𝛼𝑦𝑦(𝜔)| = |𝐴 +
𝑔𝑦
2(𝜔 − 𝜔𝑥 + 𝑖𝛾𝑥)

(𝜔 − 𝜔𝑥 + 𝑖𝛾𝑥)(𝜔 − 𝜔𝑦 + 𝑖𝛾𝑦) − 𝐺𝑥𝑦2
| 

𝛼𝑥𝑦(𝜔) =
𝑔𝑥
2𝑔𝑦

2𝐺𝑥𝑦

(𝜔 − 𝜔𝑥 + 𝑖𝛾𝑥)(𝜔 − 𝜔𝑦 + 𝑖𝛾𝑦) − 𝐺𝑥𝑦2
. 

[3.21] 

From Figure 3.13a the simulated meta-structure is seen to respond to changes in SRR 

separation as predicted, with the dissipation coefficients remaining constant, 𝛾𝑥~0.0285 THz 

and 𝛾𝑦~0.0178 THz, while the coupling strength decreases with increased separation before 

dropping to zero and changing sign at a critical distance ~19um. As well as the expected 

properties, a fairly constant resonant frequency shift 𝛿~0.0023⁡THz is also present which 

explains the anti-crossing behaviour of the eigenvalues in Figure 3.12. If the diagonal 

components of the polarisability matrix have different real as well as imaginary parts, the 

system is not exactly PT symmetric. Consequently, the discriminant of the transmission 

eigenvalues becomes complex and therefore never vanishes for real 𝐺𝑥𝑦, which is guaranteed 

by the periodic nature of the simulations and the orthogonality of the two sets of SRR’s. 

Although the parameters, presented in Figure 3.13b, retrieved from the experimental data 

appear more scattered, the trend of the results still follows that of Figure 3.13a with relatively 

fixed values for the dissipation coefficients and a decaying coupling coefficient. There is also 

a larger resonant frequency shift 𝛿~0.0073 THz compared to simulation. 
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 Given the complicated two-step process required to combine SRR’s of different metals, we 

believe that both the scattering of the data and the large 𝛿 can be attributed to fabrication 

error. In Figure 3.12 the eigenvalues of a PT symmetric matrix after the inclusion of an 

appropriate resonant frequency shift match our metasurface polarisability eigenvalues well 

indicating that 𝛿 is indeed the main source of deviation from exact PT symmetry found in 

Figure 3.10 and Figure 3.11.   

Figure 3.13: Effective parameter retrieval. Fitted values for, 𝛅 = |𝛚𝐱 −𝛚𝐲| (cyan diamonds), 𝛄𝐱 

(red circles), 𝛄𝐲 (blue circles) and 𝑮𝒙𝒚 (black squares) in THz for simulation (a) and experiment (b). 

Examples of fitted curves (solid black) alongside data (dotted colour) are shown in c and d for 

simulated and measured results, respectively. 
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3.5: Chiral PT Symmetric Metamolecules   

Having successfully demonstrated that PT symmetry breaking can produce a 45
o
 

rotation of the polarisation eigenstates for ultrathin metasurfaces, it is natural to ask whether 

further dissipation induced transitions can be realised. As previously mentioned, the 

representation of the relevant parity operator 𝑷 = 𝜎𝑥 is independent of the physical choice of 

basis states. This means that we can explore different trajectories on the Poincare sphere by 

coupling together meta-atoms which radiate via elliptically, rather than linearly, polarised 

light. At normal incidence, planar structures can only emit to the far field by forming electric 

dipole moments. Unfortunately, rotating electric dipoles are necessarily forbidden unless we 

break reciprocity and so only the behaviour presented in Figure 3.10 and Figure 3.11 can be 

observed for 2D metasurfaces. However, as discussed in (2.3.4), coupled, collinear, electric 

and magnetic dipoles can selectively interact with electromagnetic wave fields rotating in a 

particular direction. Optical activity and circular dichroism represent special cases of this 

phenomenon. Again from (2.3.4) we know that resonant structures must be chiral to exhibit 

the required combination of dipolar sources. With this in mind, the prescription outlined in 

(3.4) can be adapted to create a new PT meta-molecule out of chiral meta-atoms. For 

example, the coil geometry considered in Figure 2.15, which is the archetypal antenna for 

achieving such a response, can be employed. Unlike 2D objects for which rotation can mimic 

inversion, for the two coils to radiate via antipodal points on the Poincare sphere, thus 

avoiding a radiative anti-Hermitian coupling contribution, they must be enantiomers of one 

another. An example of such a structure is shown in Figure 3.14. While this design is a 

perfectly reasonable option, the intricate nature of the 3D shapes involved means that the 

fabrication of a device working at frequencies outside of the microwave regime will be very 

difficult if not impossible. Moreover, coming up with a design for achieving a particular 
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elliptical polarisation basis is a non-trivial task. Another approach is to persist with simple 

linearly polarised, and therefore non-chiral, dipole antennas but engineer a complex, 

Hermitian coupling coefficient between them. From Eqs.3.9/10 a complex 𝑡̃𝑥𝑦 can be seen to 

shift the polarisation eigenstates of the system by the constant elevation angle arg⁡(𝑡̃𝑥𝑦) on the 

Poincare sphere at the azimuthal coordinate occupied for unbroken PT symmetry. One way of 

achieving an imaginary 𝑡̃𝑥𝑦 is to take a resonator with a radiating magnetic dipole and couple 

it to a separate resonator with a radiating electric dipole moment. Such a system exhibits the 

same polarisation phase transition as one composed of coupled chiral objects, each 

possessing a circularly polarised eigenmode, except that PT symmetry broken and unbroken 

regions are exchanged. While the example illustrated in Figure 3.14b is somewhat simpler 

than the design shown in Figure 3.14a, this approach suffers from the fundamental asymmetry 

between sources of electric and magnetic fields. The need to use two very different meta-

atom structures means that the corresponding resonant frequencies and radiation efficiencies 

must be carefully tuned to ensure that they match. This will make the device very sensitive to 

errors in both the design and fabrication processes. However, one final method remains. 

Figure 3.14: PT symmetric, chiral meta-molecules. a) Coupling between enantiomer meta-atoms. b) Coupling 

between non-chiral SRRs, radiating via a magnetic and electric moment. c) Coupled SRRs, both radiating via 

electric dipole moments, displaced in the propagation direction. Electric (magnetic) dipole moments are 

represented by green (magenta) arrows.        
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While reciprocity forbids arg⁡(𝑡̃𝑥𝑦) ≠ 0 for orthogonal, collocated electric dipole moments, if 

the antennas are displaced in the propagation direction the near-field coupling matrix on the 

left-hand side of Eq.3.13 still applies but the corresponding fields are now emitted from 

different points in space. This can be described as a local light-matter interaction by relating 

these two points, separated by a distance s, in the radiation field via the dynamic phase 

accumulated 𝐸(𝑠) = 𝑒𝑖
2𝜋𝑠

𝜆 𝐸(0). The transmission is then given once again by Eq.3.16 but 

with arg(𝑡̃𝑥𝑦) =
2𝜋𝑠

𝜆
. Importantly, this configuration can be realised in a multilayer design, as 

demonstrated in [88], which only requires planar fabrication techniques as were employed in 

section (3.4).   

Figure 3.15 reveals the simulated results for transmission through double layer 

metasurfaces consisting of orthogonally oriented metal bars. To avoid Fabry-Perot type 

behaviour which would spoil the simple dipolar response, the structures are completely 

 

Figure 3.15: Simulated bilayer chiral metamolecule. b) Phase difference between the two linear 

polarisation conversion coefficients for structure in ‘d’, but for two silver bars, with z=12μ (cyan), 25μ 

(green), 37μ (pink) and 50μ (orange). a) Amplitudes of linearly polarised transmission coefficients 

corresponding to z=25μ (green curve) in ‘b’, |𝒕𝒚𝒙|, |𝒕𝒙𝒚|, |𝒕𝒙𝒙| and |𝒕𝒚𝒚| are red, blue, black and green, 

respectively. c) Polarisation eigenstates corresponding to ‘b’. e-g) Eigen polarisation ellipses for coordinates 

in ‘h’. h) By tuning the separation between lead and silver bars in the propagation direction to be a quarter of 

the free space wavelength at resonance, 𝒛~𝟓𝟎𝝁, and varying the in-plane coupling configuration a linearly 

polarised EP is found, seen in ‘f’, at the transition between linear and elliptical states.     
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submerged within a slab of silicon. In accordance with the arguments presented above, when 

using just one metal, varying the separation between the two layers causes a change in 

arg(𝑡̃𝑥𝑦), seen in Figure 3.15b, while |𝑡̃𝑥𝑦| ≈ |𝑡̃𝑦𝑥| is maintained, evident by the almost 

complete overlap between the red and blue curves in Figure 3.15a. Consequently, the 

ellipticity of the polarisation eigenstates in the strong coupling limit can be manipulated 

continuously, shown in Figure 3.15c. When different metals, with different loss, are 

considered, changes to the relative in plane positioning of the two arrays can be used to 

control abs(𝑡̃𝑥𝑦). Indeed Figure 3.15e-h reveals that for a particular layer thickness a 

transition from linear eigenstates with varying relative orientation to identical ellipses with 

opposite rotation direction is produced. In this case, a linearly polarised EP occurs. This 

platform therefore makes available all of the possible polarisation phase transitions. 

Moreover, arbitrarily polarised EPs can be realised easily.  

To conclude this discussion we note that even though coupling induced transitions 

have formed the focus of our simulations and experiments up until now, systems with fixed 

coupling strengths but varying absorption should provide exactly the same response. 

Recently, a number of different techniques for actively tuning the linewidths of meta-atoms 

have been demonstrated, exploiting for example, the electrically dependent conductivity of 

graphene, the photoactive response of silicon or thermally varying phase change materials, 

such as vanadium dioxide. Taking this approach to PT symmetry would enable the 

development of a new class of polarisation modulation devices. For instance, if the structure 

explored in Figure 3.15 was modified such that the interlayer phase accumulated by the wave 

and the loss of one set of SRRs could be tuned dynamically via independent mechanisms, 

then a single metasurface could generate arbitrary eigen-polarisation pairs.          
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3.6: Exceptional Points and Polarisation Phase 

Singularities  

The preceding sections have covered the development of a new class of PT symmetric 

metasurfaces which exhibit a host of novel polarising properties as a result of using carefully 

balanced resonators with differing rates of absorption. In this final part of chapter 3, we seek 

to explore the wider parameter space within which these delicate phenomena exist. It is clear 

that the interesting physics associated with PT symmetry breaking stems from the presence of 

EPs. However, although PT invariance guarantees that a Hamiltonian will pass exactly 

through such a singular parametric coordinate, EPs are not limited to these specific problems. 

In fact, they are common features of complex parameter spaces. The most complete 

investigations of the dynamics of a system in the vicinity of EPs have centred on lossy 

microwave cavity experiments[82–84]. These studies benefit from the ability to meticulously 

control the structural properties of the setup, thereby manipulating the corresponding 

electromagnetic eigenmodes. Just as importantly, the ease with which local field probes and 

sources can be created also enables the resonances to be selectively excited and their resonant 

frequencies and field patterns to be measured in fine detail. Consequently, parametric loops 

which encircle an EP have been shown to cause the eigenstates to exchange eigenvalues 

whilst one of the modes picks up a path dependent geometric phase, signifying the presence 

of a non-trivial topological structure[83]. Here we wish to extend our discussion presented in 

(3.4) to the more general case of non-Hermitian and non-PT symmetric metasurfaces in order 

to observe this interesting behaviour near a polarisation based EP.  

In particular, we return to Eq.3.14 but this time the constraint 𝑔𝑥 = 𝑔𝑦, forcing 

orthogonal dipoles to radiate with the same efficiency, is relaxed. Maintaining a square lattice 
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of meta-molecules 𝐺𝑥𝑥 = 𝐺𝑦𝑦, the Jones matrix is given, up to an additional term 

proportional to the identity matrix, by    

 𝑱 = 𝐴(
𝑔𝑥
2(𝜔 − 𝜔𝑦 + 𝑖𝛾𝑦) −𝑔𝑥𝑔𝑦𝐺𝑥𝑦

−𝑔𝑥𝑔𝑦𝐺𝑥𝑦 𝑔𝑦
2(𝜔 − 𝜔𝑥 + 𝑖𝛾𝑥)

). [3.22] 

Importantly, in Eq.3.22 (𝑅𝑒(𝑡̃𝑥𝑥) − 𝑅𝑒(𝑡̃𝑦𝑦)) depends on 𝜔. This means that the polarisation 

response must now be dispersive. Therefore, unlike a balanced system governed by Eq.3.16, 

a range of coordinates within a non-Hermitian parameter space can be explored by measuring 

the transmission spectrum through a single metasurface with 𝑔𝑥 ≠ 𝑔𝑦. Moreover, Eq.3.22 is 

PT symmetric at a single frequency 𝜔 = (𝜔𝑦𝑔𝑥
2−𝜔𝑥𝑔𝑦

2)/(𝑔𝑥
2 − 𝑔𝑦

2) and thus, an EP will be 

found after varying the coupling 𝐺𝑥𝑦 or dissipation parameters 𝑔𝑥,𝑦 and⁡𝛾𝑥,𝑦. The eigenvalue 

map for an example of such a variation is illustrated in Figure 3.16a. From this we can see 

 

Figure 3.16: Dispersion of transmission coefficients for Polarisation eigenstates of non-Hermitian 

metasurfaces. Eigenvalue amplitudes from matrix in Eq.3.19 with 𝝎𝒚 = 𝝎𝒙 = 𝟐,⁡𝜸𝒚 = 𝜸𝒙 = 𝟏, 𝒈𝒚 = 𝟏, 

𝒈𝒙 = 𝟐. 𝟓. In (b) a constant anti-Hermitian term has also been added 𝑰𝒎(𝒕̃𝒙𝒚) = 𝟎. 𝟓. EPs are marked by pink 

dots and grey lines represent coordinates for which either 𝑹𝒆(∆𝒕̃𝒆𝒊𝒈) = 𝟎 or 𝑰𝒎(∆𝒕̃𝒆𝒊𝒈) = 𝟎.        
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clearly the reason behind the strange behaviour of PT symmetry breaking. Rather than two 

independent polarisation states, the transmission through an anisotropically lossy structure is 

governed by a single self-intersecting Riemann surface. This is counter intuitive given the 

fact that we arrived at Eq.3.22 by hybridising two well defined oscillators. More than simply 

causing eigenstate coalescence the EP is, therefore, a parametric discontinuity which must 

exist to allow the manifold to be smooth elsewhere. As such, the effect that an EP has on the 

wider parameter space is reminiscent of Dirac like linear degeneracies. In fact, Eq.3.22 can be 

analysed in the context of a complex extension to Eq.2.5, with degeneracies once again 

representing effective monopoles[89]. Correspondingly, the EP found in the description of 

light transmitted through our anisotropic metasurface is topologically protected. This is seen 

in Figure 3.16b. By adding an imaginary part to 𝐺𝑥𝑦, breaking the PT symmetry of Eq.3.22 for 

all 𝜔, the eigenvalue map is altered significantly and the EP changes position but remains 

intact.        

 To realise such a metamolecule we need to incorporate antennas with similar resonant 

frequencies but sufficient structural differences to produce 𝑔𝑥 ≠ 𝑔𝑦. This situation is akin to 

the condition for observing EIT in metamaterials, as discussed in (2.3.5). Those studies, 

 

Figure 3.17: Non-Hermitian metasurface near EP. a) Transmission through relatively bright and dark 

metaatoms in isolation. b) Eigen-transmission spectra for metamolecules, an example of which is shown in 

‘a’, with SRR separation ‘S’ varied between 5 (green) and 20μ (purple). c) polarisation eigenstates 

corresponding to ‘b’, with dashed arrows showing a cyclical variation in the eigenstates which represents two 

loops around the EP in the (𝝎 − 𝑮𝒙𝒚) parameter space. 
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however, simply sought to maximise both the mutual interaction and overall loss contrast 

between the elements, leading logically to the use of a completely dark quadrupole mode. 

Here on the other hand, the difference in radiative loss needs to be roughly balanced by the 

coupling strength and so a meta-atom which can radiate via a small but finite dipole moment 

is required. Consequently, SRRs are again chosen to be the subcomponents of our 

metamolecule. As the electric dipole strength associated with a subwavelength capacitive gap 

is proportional to the corresponding plate separation, perpendicular rings with different gap 

sizes can be employed to ensure that 𝑔𝑥 ≠ 𝑔𝑦, while the resonant frequencies can be 

realigned by varying the relative areas they enclose, shown in Figure 3.17a. Although Ohmic 

loss is necessary it doesn’t have to be anisotropic and so gold has been used for both 

structures to simplify the fabrication process. Figure 3.17b reveals the eigen-transmission 

spectra for different resonator positions within the unit cell. Clear correspondence between 

these simulated results and Figure 3.16a is seen, with the qualitative nature of the dispersion 

changing dramatically when the EP is crossed. The unique topological structure of this 

parameter space also shows up in the frequency dependence of the polarisation eigenstates, 

shown in Figure 3.17c. For weak coupling two loops appear on the Poincare sphere located 

near the linear x and y polarised coordinates, representing the perturbed responses of the 

isolated rings. For strong coupling however, open curves are formed connecting between x 

and y polarisations, describing eigenstates which contain an equal contribution from both 

rings. A cyclical path returning to the same state after encircling the EP is also drawn, 

corresponding to a double loop in the underlying parameter space, which agrees with 

previous experiments performed using microwave cavities[83, 84].  

 Although Figure 3.17b and c present results obtained after diagonalising the Jones 

matrices, interesting behaviour can also be seen in the transmission directly without post 

processing. Figure 3.18 shows the circularly polarised transmission spectra. As expected from 
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section (3.4), close to the critical coupling strength and for 𝜔 = (𝜔𝑦𝑔𝑥
2−𝜔𝑥𝑔𝑦

2)/(𝑔𝑥
2 − 𝑔𝑦

2) 

the conversion from LCP to RCP vanishes while significant conversion from RCP to LCP 

remains. However, unlike Figure 3.10l where a flat response is found, in Figure 3.18a 𝑡𝑟𝑙 can be 

seen to disperse almost linearly away from the EP. This can be explained by looking at the 

corresponding phase angle in the wider parameter space. Figure 3.18b reveals that arg⁡(𝑡𝑟𝑙) 

forms a spiral shape, similar to the real space structure of a Laguerre-Gauss beam. Such a 

profile must have a discontinuity at the centre which can only happen if the intensity goes to 

zero. As discussed previously, an EP behaves as an effective monopole. The behaviour of 𝑡𝑟𝑙 

in Figure 3.18 can therefore be understood as a manifestation of the geometric phase 

accumulated by the eigen-polarisation states upon circling the north pole of the Poincare 

sphere. As well as being of fundamental interest, phase singularities occurring in plasmonic 

systems have been investigated recently due to their potential for use in sensing 

applications[90].    

 Next we turn to the experimental observation of a metasurface EP. Thus far, we have 

focussed on the (𝜔 − 𝐺𝑥𝑦) parameter space, which can only be mapped out by once again 

fabricating and comparing a number of different samples or somehow dynamically 

Figure 3.18: Circularly polarised transmission through non-Hermitian metasurface near EP. a) 

Transmitted amplitudes for metamolecule configuration closest to the EP, corresponding to the blue curve 

in Figure 3.17. b) with SRR separation ‘S’ varied between 5μ (green) and 20μ (purple), with colour coding 

matching Figure 3.17b and Figure 3.17c.    
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modulating the inter ring coupling strength. An important thing to remember, however, is that 

such an EP is topologically robust. So any smooth alteration to the symmetry of the light-

metamolecule interaction will modify the relationship between the components of the Jones 

matrix, potentially shifting the singular coordinate across the real frequency axis. One such 

alteration that is particularly straightforward to implement is a variation in the incident angle. 

The reasons we expect this to strongly affect the polarisation response are two-fold. Firstly, 

from the Fresnel equations, the background transmission from the air to the substrate will 

become anisotropic, requiring a real diagonal matrix to be added to Eq.3.22. Also the overlap 

between the dipole moments of the SRRs and the transverse radiation fields will be modified, 

depending on weather the gap of a particular ring lies in the incident plane, potentially 

changing 𝑔𝑥 or 𝑔𝑦. Although obliquely incident illumination complicates the polarisability 

Figure 3.19: Variation of non-Hermitian metasurface transmission with incident angle. a) Illustration 

of incident plane with respect to metamolecule. b) and c) Simulated eigen polarisation states and 𝐚𝐫𝐠⁡(𝒕𝒓𝒍), 
respectively, for 𝜽 =0

o
 (orange) to 50

o
 (red). d), e) and f) THz-TDS measurements of the eigen polarisation 

states, |𝒕𝒓𝒍|  and 𝐚𝐫𝐠⁡(𝒕𝒓𝒍), respectively, for 𝜽 =0
o
 (blue) to 43

o
 (orange). Microscope image of the sample is 

shown in the inset of ‘e’.     
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somewhat, introducing chirality, bianisotropy and also radiative coupling; since the 

phenomenon in question is rooted in the global properties of the spectral information, we 

need only concern ourselves directly with the frequency dependence of the Jones matrix. 

Figure 3.19 reveals our simulated and measured data for incident angle dependent 

transmission through a single metasurface, showing good agreement. These results can also 

be seen to closely resemble the behaviour found in Figure 3.17 and Figure 3.18, except that the 

EP has shifted away from LCP. Despite the poor quality of the fabricated sample, 

remarkably, the measured phase dislocation and associated dark spot in the circular 

conversion efficiency 𝑡𝑟𝑙 close to the critical angle, represented by the black curves in Figure 

3.19e and f, perform just as well as the ideal periodic structure evaluated numerically. This is 

a signature of the topological origin of such a spectral feature. We should note that all of the 

information given in Figure 3.19 has been found from linearly polarised measurements and 

then transformed using basis transformations. However, this is simply an issue of 

convenience as linear polarisers perform much better than circular polarisers at THz 

frequencies. There is also no reason to expect that the phenomenon observed here cannot be 

reproduced in the optical domain. Although EPs occurring within metamaterial 

transmission/reflection spectra have been investigated previously[91–93], to the best of our 

knowledge, we are the first to demonstrate tuning across such a singularity, allowing the 

phase gradient to be made arbitrarily steep. In [90] it was demonstrated that a similarly robust 

frequency dependent phase jump, found for the reflection from nanoparticle arrays with a 

local plasmon resonance close to the Rayleigh cut-off, can be used for extremely sensitive 

biochemical detection. EPs may also, therefore, represent a useful alternative to these 

devices, relying purely on local anisotropic resonators.   
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3.8: Chapter Summary  

 Throughout this chapter we have demonstrated that anisotropic metasurfaces 

represent a natural platform for investigating non-Hermitian physics. By employing dipolar 

resonators to selectively absorb specific polarisation states of light and controlling the 

metamolecule configuration to introduce polarisation conversion, a novel phase transition has 

been observed, resulting from PT symmetry breaking. Polarisation phase transitions have also 

been predicted to occur along different routes on the Poincare sphere if the phase as well as 

the amplitude of the near-field interaction can be manipulated. Finally, in the last part of this 

chapter the topological structure of a non-Hermitian degeneracy found in the description of 

light propagating through a metasurface with anisotropic radiation coupling was shown to 

produce a spectral phase singularity. Exploiting their robustness to parametric variations, we 

have experimentally tuned across an EP observed at a critical angle of incidence. For all 

experimental investigations THz-TDS has been used giving the phase and amplitude of the 

Jones matrix for transmission through our samples. This data has then been processed to 

reveal the full eigenmode structure of the problem, providing a convenient tool for analysing 

a non-Hermitian electromagnetic system in complete detail for a high frequency wave 

platform, instead of the microwave cavities that have been explored previously.       
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Chapter 4: Topological Photonic Phase 

in Chiral Hyperbolic metamaterials 

Part of the work presented in this chapter has been published in [94], for which I was 

personally responsible for writing the first draft. The chapter includes blocks of text taken 

from this publication. 

Modern developments in electromagnetic, nanoscale and material sciences have led to 

tremendous improvements in the performance of optical components, in terms of their 

efficiencies, sensitivities and miniaturisation. With this unprecedented level of control, 

researchers are becoming more ambitious in their attempts to apply light to technological 

problems. An example of this is the desire to develop 3D integrated photonic circuits which 

mimic their electronic counterparts but could potentially operate at optical frequencies and 

could therefore process information at a much higher rate. To realise such a device, however, 

it is imperative that we possess the capability to reliably transmit light between arbitrary 

points in space. This is difficult to achieve with conventional wave guiding structures because 

of scattering losses. An approach that has received a lot of attention recently for overcoming 

these losses is to replicate the topological protection of quantum waves at the boundaries of 

particular insulating crystals. Specifically, Maxwell’s equations have been shown to map to 

topologically nontrivial quantum Hamiltonians for certain periodic arrangements of special 

photonic materials. In this chapter, we will investigate the possibility of exploiting 

topological arguments within the description of polarisation dependent photonic transport for 

creating highly-confined, robust, one-way waveguides without breaking time-reversal 

symmetry.  
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Following an initial discussion of recent proposals and demonstrations of photonic 

crystal topological insulators, we will investigate the natural spin-orbit interaction that exists 

for plane electromagnetic waves propagating in homogeneous materials. Metamaterial theory 

will then be employed to the task of engineering a topologically nontrivial phase in a system 

with only subwavelength structural variations. Using a combination of analytical and 

numerical techniques, the existence of topologically protected surface waves will be verified 

in both the effective medium approximation and for realistic metamaterial structures in the 

microwave frequency regime.   

4.1: Topological Photonic Crystals 

The rejection of light at certain frequencies by a one dimensionally periodic 

arrangement of dielectric layers has been known since Lord Rayleigh’s thorough analysis of 

wave behaviour at the end of the 18 hundreds[95]. Nevertheless, higher dimensional versions 

of such periodic systems were first considered much later. These so called photonic crystals 

can perfectly reflect light of specified frequencies from a range of incident angles. What’s 

more, the ability of a localised embedded emitter to radiate can be entirely suppressed 

without the inherent losses associated with metallic cavities. In this sense, a strong analogy 

can be drawn between photonic crystals and electronic band insulators[95]. For the optical 

domain, structures varying periodically in only two dimensions, with index variations guiding 

the wave in the third, have become particularly popular due to the relative ease with which 

they can be fabricated using nanoscale lithography[96]. As well as fully localised modes, one 

dimensional defects within periodic dielectrics can be used as waveguides with properties 

tailorable to suit a multitude of applications[97].  

As discussed in (2.1.3), in recent years a fundamentally new type of electronic band 

insulator has received a lot of attention. These so called topological insulators still prohibit 
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electrons from travelling through the bulk, but propagating modes allowing current to flow at 

the boundaries are guaranteed to exist, deriving from the topology of the bulk band structure 

rather than the detailed formation of the boundaries. Usefully, the non-degeneracy of these 

modes forces the corresponding electrons to travel in one direction, preventing them from 

scattering off of lattice defects or imperfections. Importantly, topological properties of such 

condensed matter systems arise purely from the wave nature of the quantum states rather than 

the fermionic character of the electrons. This fact has driven a number of groups to search for 

photonic crystal analogues of topological insulators. 

The most straightforward way of creating topologically non-trivial electronic edge 

states is to apply a magnetic field normal to a 2D metal, leading to the IQHE. By definition 

photons do not interact with magnetic fields, however, if a DC E/B-field is applied to 

gyroelectric or gyromagnetic materials, the resulting permittivity or permeability tensors 

 𝜀𝑟 , 𝜇𝑟 = (

𝛼 𝑖𝛿𝐸𝑧/𝐵𝑧 0
−𝑖𝛿𝐸𝑧/𝐵𝑧 𝛼 0

0 0 𝛽
), [4.1] 

inherit the nonreciprocal form of the induced cyclotron orbits. This response is well known to 

cause the Faraday Effect in which linear polarisation is rotated upon transmission, similarly 

to optical activity. In 2008, Ragu and Haldane showed that if a 2D photonic crystal made of 

such materials was designed such that there exists an isolated Dirac like degeneracy, the 

application of an external field could lift this degeneracy leading to a complete bandgap 

between topologically non-trivial bulk bands[98]. Physically this process corresponds to 

counter rotating combinations of orthogonal dipole fields at the Dirac point being 

energetically separated, in a non-reciprocal form of the type of spin-orbit coupling found in 

heavy semiconductors. The resulting one-way edge states were experimentally verified later 

by Wang et al[99]. More recently, Khanikaev et al. showed that a reciprocal equivalent of this 

spin-orbit interaction could arise from magneto-electric coupling[100]. In particular, an 
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antisymmetric bianisotropy tensor was proposed which, when applied in the context of a 

hexagonal photonic crystal, allowed for a mapping between Maxwell’s equations and the 

Kane model for topological graphene. Correspondingly, spin polarised edge states were 

predicted to exist with counter rotating dipole fields only able to travel in opposite directions. 

A catch for this approach is that unlike electronic spin which is preserved by time-reversal 

symmetry due to Kramer’s theorem, photonic polarisation is sensitive to the detailed material 

properties involved. To prevent mixing between counter propagating excitations, an extra 

constraint 𝜀𝑟 = 𝜇𝑟 is required. As this specific form of bianisotropy cannot be found in 

nature, it was suggested that metamaterials could be employed to realise the desired response. 

However, the very precise parametric relationships that need to be met, makes the design and 

fabrication of an appropriate subwavelength structure very challenging. Instead, 2D periodic 

arrangements of larger objects which lack inversion symmetry in the out of plane direction 

have been shown to provide the necessary magneto-electric coupling with spin degeneracy, 

Figure 4.1: 2D Photonic topological insulators from spin orbit coupling. a) An array of gyromagnetic rods 

give rise to one way back-scatter immune edge states when a B field is applied[99]. b) Dirac point degeneracy 

of hexagonal photonic crystal is lifted in a topologically nontrivial fashion by employing bianisotopic 

metamaterials. Two example meta-atom designs for realising this response, composed of SRRs and split wires, 

are shown[100]. c) Images of topologically nontrivial bianisotropic photonic crystal edge without defect (A) and 

with defect. Very similar transmission is shown in (C) for the corresponding edge modes[101]. 
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allowing for a photonic topological insulating phase to be observed experimentally[101]. As 

DC electric/magnetic fields fail to induce a significantly nonreciprocal response above tens of 

GHz and fabrication tolerances become very important for small scale devices, in practice 

both of these schemes are limited to microwave frequencies.    

An entirely different approach that has also been proposed is to engineer an effective 

magnetic field for light. This possibility can be understood by considering the fact that 

Lorentz forces actually enter the electronic Hamiltonian via the vector potential 𝑨(𝒓), defined 

by 𝑩(𝒓) = ∇ × 𝑨(𝒓). Therefore, a periodic scalar potential with a uniform 𝑩 can always be 

represented by overlaying a non-periodic spatial variation on to the regular lattice. For 

example, in [102] a 2D resonator array with dynamically modulated coupling strengths was 

shown to produce one way edge states after a linear gradient in the hopping phase was 

introduced. Unfortunately, accurate control over the relative phase between many oscillators 

simultaneously is incredibly difficult to achieve. Time reversal invariant versions of this 

technique, however, have been more successful. Rechtsman et al. for instance demonstrated 

that the evolution of a light field distribution while propagating through a lattice of helically 

wound optical waveguides can mimic the motion of a charged particle in a time varying 

potential[103]. In this sense, the behaviour can also be considered as a Floquet Topological 

Insulator. As long as the periodicity along the propagation direction is maintained, scattering 

from 𝒌 and – 𝒌 is prohibited and so the waves at the surface are protected. Similarly, Hafezi 

et al. have realised an effective vector potential in a SOI platform by treating counter rotating 

ring resonator modes as spin[104]. Coupling each lattice site by a secondary ring, the spin 

states can be preserved as long as the structures used guide the wave adiabatically. A spatial 

variation in the coupler lengths can then produce an effective gauge potential, with opposite 

signs for the two spins, and protected edge states. Both [103] and [104] rely on carefully 
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fabricated samples to prevent backscattering as they are only immune to disorder larger than

 

the wavelength. Finally, a photonic analogue of a Weyl semimetal has also been proposed. 

By considering the effect of Inversion and time reversal symmetry breaking perturbations to a 

highly symmetric gyroid photonic crystal, pairs of Weyl point degeneracies were found in an 

otherwise complete band gap. As is known from electronic investigations, these degeneracies 

act like momentum space monopoles leading to topologically non-trivial surface 

behaviour[105]. Further details regarding the systems discussed above can be found in the 

review article[106]. 

One thing that these previous schemes have in common is that they all seek to 

replicate the features of topological quantum systems by energetically separating artificially 

Figure 4.2: Topological photonic phases from effective magnetic fields, reproduced form Ref 

[106]. a) Spatial phase variation of bulk and edge states in IQHE. Effective photonic gauge potentials 

induced by spatially varying b) ring resonators, c) dynamically modulated resonator coupling and d) 

helical waveguides.   
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engineered counter rotating wave functions. Here we wish to explore topological properties 

unique to electromagnetic waves. Then by exploiting the power of metamaterials to 

manipulate the relationship between photonic polarisation and propagation characteristics, a 

fundamentally new topologically non-trivial phase will be proposed.          

4.2: Electromagnetic Plane Waves and 

Momentum Space Monopoles  

Clearly, the topology of a Bloch state defined on a periodic reciprocal lattice can have 

some remarkable consequences for wave propagation within crystal structures. However, one 

of the first systems to which Berry’s geometric analysis was applied was classical wave 

optics. Even in this fairly simple setting fascinating results can emerge.  

Taking perhaps the simplest electromagnetic problem of a homogeneous space filled 

with an isotropic dielectric 𝑛 = √𝜀𝑟, the source free Maxwell equations admit plane wave 

solutions with the isotropic dispersion relation 𝜔 = 𝑐|𝒌| 𝑛⁄ . The corresponding fields are 

constrained to lie in the plane 𝒌 ∙ 𝑬 = 𝒌 ∙ 𝑩 = 0 and are related to each other by 𝒌 × 𝑬 =

|𝒌|

𝑛
𝑩.  For circular polarisations 𝑩 = 𝜎𝑖𝑬, where 𝜎 = ±1 corresponding to LCP and RCP, the 

general solution for 𝑬 can then be written as  

 𝒌 × 𝑬 = 𝜎
|𝒌|

𝑛
𝑬. [4.2] 

Interestingly, the left hand side of this equation can be expressed in terms the spin-1 matrices 

(𝑆𝑎)𝑏𝑐 = −𝑖𝜀𝑎𝑏𝑐(where 𝜀𝑎𝑏𝑐is the Levi-Civita symbol) as 𝒌 × 𝑬 = (𝒌 ∙ 𝑺)𝑬. This reveals a 

formal equivalence between the role played by 𝒌 for electromagnetic wave propagation and 

the action of a magnetic field 𝑩 on a spin-1 particle  
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 (𝑩 ∙ 𝑺)|𝝍⟩ = 𝜆|𝝍⟩. [4.3] 

We have already seen in (2.1.2) that in the presence of a magnetic field which is slowly and 

cyclically rotated, a spin-½ particle will accumulate a geometric phase dependant on the 

particular shape swept out by 𝑩[11]. This phase factor originates from the monopole sources 

of Berry curvature generated by the square root singularity of the eigenvalues at the origin 

𝑩 = 0. Generalising to spin-𝑠, the form of the curvature remains the same but the topological 

charge associated with the monopoles becomes 𝑠[11]. Therefore, a circularly polarised 

photon whose propagation direction is varied adiabatically will experience a Berry curvature 

field      

 𝛀𝝈 = 𝜎
𝒌

|𝒌|𝟑
. [4.4] 

The consequences of this can be observed in a fairly simple experiment. By sending a linearly 

polarised beam of light down a single mode optical fibre which is helically wound in space, 

the polarisation can be seen to rotate after 𝒌 returns to the same direction as the incident 

excitation. Assuming an ideal system of a perfectly smooth and round fibre with a

 

Figure 4.3: Geometric phase accumulated by electromagnetic wave propagating through helical fibre, 

reproduced from Ref [108]. a) Parallel transport of field vector produces rotation 𝚯 after travelling around a 

circle on the Equi-frequency sphere, which can also be considered as a geometric phase driven by the 

enclosed Berry flux produced by a topological monopole. b) Schematic representation of polarisation rotation 

within helical fibre.   
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sufficiently gentle curve, the left and right handed components of the linear mode can be 

treated independently. As |𝒌| remains fixed, twists in the guiding geometry can be 

represented by paths on the equi-frequency sphere. Applying Eq.4.4 within Eq.2.4 for 

circular loops on the sphere parameterised in terms of their elevation angles ϑ, the 

dependence of the berry phase on the pitch angle of the coil can then be shown to take the 

form 

 Φ𝜎 = 2𝜋𝜎(1 − cos ϑ). [4.5] 

The geometrically accumulated phase difference 2Φ𝜎 between LCP and RCP waves can 

therefore be seen to mimic the polarisation rotation that occurs within optically active 

media[107]. 

 Importantly, even though the dynamic reorientation of a particle with relativistic spin 

is a truly quantum problem, monopoles in the description, which are at the heart of the 

interesting physics exhibited by this system, arise purely from Dirac points in the dispersion 

relation. For this reason, path dependent changes to the polarisation of an electromagnetic 

wave as a result of alterations made to its trajectory can be derived simply from Maxwell’s 

classical theory. With the transversality conditions 𝒌 ∙ 𝑬 = 𝒌 ∙ 𝑩 = 0, the rotation of a linear 

excitation after travelling through a twisted fibre can be found by parallel transporting the 𝑬 

field vector tangent to the 𝒌-sphere along a specified curve[108]. From this perspective, the 

inherent relationship between photonic polarisation and 𝒌, commonly referred to as spin orbit 

coupling, also has interesting consequences beyond the limits of adiabatic evolution. For 

example, the transmission or reflection of light obliquely incident upon a dielectric interface 

will experience a lateral shift, with LCP and RCP moving in opposite directions. This is 

known as the spin Hall effect of light as it is similar to the spin dependant deflection of 

electrons that occurs in certain heavy semiconductors[109]. However, although this 
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comparison is often used, an important difference exists between these two phenomena. 

While electrons require particular crystal structures with broken inversion symmetry to 

provide a spin-orbit interaction, photons are intrinsically spin-orbit coupled, experiencing 

Hall type deflections purely from variations in momentum. Physically, the distinction arises 

because electrons, unlike photons, have a finite rest mass leading to quadratic rather than 

linear dispersion at low energies. It is this inherent property of light waves that we wish to 

explore and exploit in the coming sections.       

 Returning to the momentum space of electromagnetic waves in a simple 

homogeneous, isotropic medium, we note that as well as considering the Berry flux through 

open surfaces we can also integrate Eq.4.4 on an entire equi-frequency sphere. Rather than 

describing the geometric phase associated with a particular ray trajectory, this gives the net 

topological charge contained within that sphere, 𝑞 = 𝜎4𝜋. As discussed in (2.1.2/3), this 

calculation will actually produce the same 𝑞 for any closed surface in the wider 𝜔(𝒌) space 

as long as it contains the monopole at |𝒌| = 0, otherwise 𝑞 = 0. 𝑞 is therefore said to be a 

topological invariant. Making a connection with the systems discussed in the previous 

section, the Chern number 𝐶 = 𝑞/2𝜋. Despite being fairly obvious from a geometric 

interpretation of classical wave theory, the result 𝐶 = ±2 for such a simple photonic system 

is rather exciting. That is because it is these Chern invariants that are at the heart of the 

quantum Hall type phases which have received so much attention recently. However, Due to 

the degeneracy that exists between LCP and RCP modes, such a medium is still topologically 

trivial. We are, on the other hand, presented with an intriguing possibility. If we could 

engineer the dispersion relations for LCP and RCP waves independently, perhaps we could 

create a topologically non-trivial phase within a completely homogeneous environment. As 

will be demonstrated in the next section, metamaterials are ideally suited to this task.      
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4.3: Non-trivial Topology in Effective Media 

In this section, guided by concepts outlined in (2.3), we will explore the possibility of 

creating a topologically non-trivial, homogeneous medium, within which wave propagation is 

fully determined by the local permittivity 𝜀𝑟, permeability 𝜇𝑟 and magneto-electric 𝛾 tensors, 

defined via the constitutive relations Eqs.2.46/7. Specifically, starting from free-space which 

has already been shown to exhibit an interesting topological structure, we wish to find a 

parametric configuration with EFSs well separated in 𝒌-space and possessing non-zero Chern 

numbers. The most important consideration for this endeavour is the role played by the 

photonic helicity. Although we have placed great emphasis on the existence of topological 

charges for free-space waves, the corresponding Berry curvature fields only emerge after 

fixing the polarisation to either LCP or RCP. Therefore, while many material parameter 

combinations may provide an appropriately birefringent response, lifting the polarisation 

degeneracy, they may not preserve the topological character of the original 𝒌-spheres. A 

logical first step then is to consider an isotropic but chiral, or optically active, medium with a 

non-zero scalar valued 𝛾. In this case, the degenerate modes for 𝛾 = 0 separate into two new 

spherical EFSs with different radii |𝒌𝜎| = 𝜔𝑛𝜎/𝑐, where 𝑛𝜎 = √𝜇𝑟𝜀𝑟 + 𝜎𝛾, as shown in 

Figure 4.4c. As Eq.4.2 still holds, the corresponding Chern numbers once again take the values 

𝐶 = 𝜎2.  Crucially, however, these topological invariants are now unambiguous as they do 

not depend on the representation of the fields. In this respect we have achieved our goal, with 

different Chern numbers belonging to eigenstates which occupy distinct regions of 𝒌-space. 

Specifically, 𝐶 = 2sgn() and 𝐶 = −2sgn() for states at large and small 𝒌, respectively. 

Our original motivation for engineering such a response was the expectation that it would 

lead to interesting boundary behaviour when the medium is truncated. Unfortunately, in the 

linear regime energy conservation only fixes the frequency of an electromagnetic wave, and 
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so bulk propagating states will, in general, dominate a photonic system if they exist at the 

excitation frequency. However, from section (2.2.4) we know that surface modes can still be 

supported in voids within the bulk dispersion of a transparent material as long as translational 

symmetry is present. In particular, the absence of travelling wave solutions spanning an entire 

2D plane in 𝒌-space allows surface and volume waves to be completely decoupled via 

translational invariance along a single Cartesian coordinate. Such a system can be considered 

as an interface between a pair of 2D photonic insulators. To satisfy this condition, the simple 

chiral medium (Figure 4.4c) which only has radially separated EFSs, requires further 

modifications. Anisotropy in particular can be used to introduce a directionally dependent 

birefringence. For the most general case of tensor-valued 𝜺𝒓, 𝝁𝒓 and 𝜸, applying the 

constitutive relations Eqs.2.46/7 to Maxwell’s equations, we obtain the plane wave equation 

Figure 4.4: Evolution of equi-frequency surfaces and their Chern numbers due to changing material 

parameters.  a, hyperbolic medium r = diag(4, 4, -3),  = 0. b, isotropic non-chiral medium r = 4,  = 0. c, 

isotropic chiral medium r = 4,  = 0.5. d, anisotropic chiral medium r = diag(4, 4, 30),  = 0.5. e, Highly 

anisotropic chiral medium r = diag(4, 4, ),  = 0.5, black dotted lines show the plot boundary of infinitely 

extended sheets. f, hyperbolic chiral medium r = diag(4, 4, -3),  = 0.5. r is set to 0.5 for all plots. The 

numeric label assigned to each surface represents its associated Chern number. Figure and caption adapted 

from [94].     
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 𝝁𝒓[𝒌 × 𝝁𝒓
−𝟏𝒌 × +𝑖𝑘0(𝜸𝝁𝒓

−𝟏𝒌 × +𝒌 × 𝝁𝒓
−𝟏𝜸) + 𝑘0

2(𝜺𝒓 − 𝜸𝝁𝒓
−𝟏𝜸)]𝑬 = 0, [4.6] 

where 𝑘0 = 𝜔 𝑐⁄  is the free-space wave number. Working with Eq.4.6 in matrix form 

𝑴 ∙ 𝑬 = 0 and starting with the simplified situation of scalar valued 𝜇𝑟 and 𝛾 but a uniaxial 

permittivity tensor 𝜺𝒓 = 𝑑𝑖𝑎𝑔(𝜀𝑖, 𝜀𝑖, 𝜀𝑧), the dispersion relation is given by |𝑴| = 0,  

 

|

𝑘𝑦
2 + 𝑘𝑧

2 + 𝑘0
2(𝛾2 − 𝜇𝑟𝜀𝑖) −𝑘𝑥𝑘𝑦 + 2𝑖𝛾𝑘0𝑘𝑧 −𝑘𝑥𝑘𝑧 − 2𝑖𝛾𝑘0𝑘𝑦

−𝑘𝑥𝑘𝑦 − 2𝑖𝛾𝑘0𝑘𝑧 𝑘𝑥
2 + 𝑘𝑧

2 + 𝑘0
2(𝛾2 − 𝜇𝑟𝜀𝑖) −𝑘𝑦𝑘𝑧 + 2𝑖𝛾𝑘0𝑘𝑥

−𝑘𝑥𝑘𝑧 + 2𝑖𝛾𝑘0𝑘𝑦 −𝑘𝑦𝑘𝑧 − 2𝑖𝛾𝑘0𝑘𝑥 𝑘𝑦
2 + 𝑘𝑥

2 + 𝑘0
2(𝛾2 − 𝜇𝑟𝜀𝑧)

|

= 0. 

[4.7] 

Setting 𝑘0 = 1 and numerically mapping out the 𝒌 coordinates which satisfy Eq.4.7, we can 

then investigate how changes to the material parameters affect the shape of the EFSs. In the 

following, a continuous parametric transformation from an isotropic, chiral medium to a 

topologically non-trivial medium with complete voids in 𝒌-space is described.  

By introducing anisotropy along the z direction such that 𝜀𝑧 > 𝜀𝑖, both 𝒌-spheres, 

shown in Figure 4.4c, become elliptically distorted, with the outer surface experiencing a 

larger deformation, i.e. the in-plane radius 𝑘𝑟 is seen to increase dramatically, as shown in 

Figure 4.4d. Further increasing z towards infinity then causes 𝑘𝑟⁡of the outer 𝒌-surface to 

become extremely large (Figure 4.4e). While the Berry curvature distribution, plotted in Figure 

4.5, loses its uniformity in such a highly anisotropic system, with increased concentration 

near 𝑘𝑟 = 0 and decaying to zero for 𝑘𝑧 → 0, as long as the two EFSs do not reconnect 

throughout this transformation, their topological identities, and therefore Chern numbers, 

must be preserved. Figure 4.4f shows that finally pushing 𝜀𝑧 through ∞ to negative values 

while keeping 𝜀𝑖 fixed acts to transform the outer (𝜎𝛾 > 0)  𝒌-surface from a closed surface 

to a slightly deformed two-sheeted hyperboloid, while the inner (𝜎𝛾 < 0) 𝒌-surface once 

again remains closed. The Chern number of the central (𝜎𝛾 < 0) 𝒌-surface is therefore 

unaltered with respect to the isotropic case, 𝐶 = −2sgn(𝛾), while the two hyperbolic sheets 
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possess identical Chern numbers that sum to the opposite value, i.e., 𝐶 = sgn(𝛾) for each 

sheet. The chiral hyperbolic metamaterial thus displays three well separated and topologically 

non-trivial EFSs. In particular, two complete voids can be seen in the 𝑧 direction meaning 

that only evanescent modes exist for this particular range of 𝑘𝑧. Similarly, light is unable to 

propagate through a simple dielectric for |𝒌| > 𝑛𝜔 𝑐⁄ . But, we know from above that the 

Chern numbers vanish for this medium due to the degeneracy between LCP and RCP waves. 

In fact, the fundamental difference between these two cases can only be discerned at an 

interface formed between the chiral-hyperbolic and dielectric media. At such an interface, a 

Figure 4.5: EFS Berry curvature distributions. a, b, c and d correspond to Figure 4.4c, d, e and f, 

respectively. Dashed curves plotted on right y-axes (coloured black) represent radial EFCs 𝒌𝒛 (𝒌𝒓 =

√(𝒌𝒙
𝟐 + 𝒌𝒚

𝟐)) and solid curves plotted on left y-axes (coloured blue) represent the associated k dependent 

Berry curvature distributions, green=inner contours and purple/red=outer contours. The curvature has been 

calculated by numerically differentiating the 𝒌𝒓 dependent berry phase and normalising against the k-

surface area, as illustrated in ‘a’.      
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topological transition should guarantee the existence of a surface wave in the forbidden 

regions of the bulk dispersion.    

4.4: Topologically Protected Surface Waves 

We now turn to studying how these topological features manifest themselves on the 

boundary of our metamaterial. In what follows we investigate systems with continuous 

translational invariance in the 𝑧 direction, thereby conserving 𝑘𝑧. The topologically non-

trivial EFSs are then expected to be joined by surface equi-frequency arcs, similar to Fermi 

arcs in topological semimetals. To confirm this, now we solve for surface waves at a planar 

interface between a semi-infinite chiral hyperbolic medium and a semi-infinite vacuum. As 

well as requiring the metamaterial’s permittivity to be hyperbolic, choosing positive tensor 

elements that are significantly greater than one ensures that there exists a range of 𝑘𝑧 values 

for which bulk waves are prohibited on both sides of the boundary. The general method of 

solving for propagating electromagnetic modes confined to the interface between materials 

with different properties was outlined in section (2.2.4). Here we follow the same prescription 

except for one slight deviation. Usually the components of 𝒌 for waves travelling through a 

lossless medium are either real or imaginary. From Eq.4.7, however, we find that between the 

chiral hyperbolic EFSs they can actually take complex values. Unlike for SPPs or Dyakonov 

waves, with our chiral-hyperbolic medium we therefore need to look for solutions with the 

wave vector normal to the interface 𝑘𝑦 being a complex number. To check that such an 

excitation is consistent with the absence of loss in the system, the Poynting vectors have been 

calculated to make sure that 𝑅𝑒(𝑃𝑦) = 0. Due to the problem’s complicated algebraic form, 

𝑘𝑦(𝑘𝑥, 𝑘𝑧) and the corresponding 𝑬 and 𝑯 fields have been solved for numerically by 

sweeping through the 𝑘𝑥𝑘𝑧-plane within Eq.4.6/7. Using these results, solutions to the 

boundary condition matrix have then also been found numerically. In Figure 4.6a the results of 



P a g e  | 109 

 

this calculation reveal that a given surface can support just one propagating mode connecting 

the bulk EFSs with different Chern numbers, as expected. Importantly, the spatial separation 

of left and right moving surface waves at a certain 𝑘𝑧 prevents the occurrence of 

backscattering from any z-invariant disorder, as schematically illustrated in Figure 4.6b.  

This immunity to backscattering has also been confirmed using full wave simulations, 

shown in Figure 4.7, in which a right moving surface wave propagates seamlessly around a 

large step defect. COMSOL is used to simulate the propagation of surface states at the 

interface between the topological metamaterial and vacuum. The simulation is performed in 

the x-y plane for different propagation constants 𝑘𝑧 in the gap between the bulk EFSs, as 

indicated in Figure 4.6a. As shown by Figure 4.7a-c, the surface waves are not reflected or 

Figure 4.6: Topologically protected surface states at the interface between a chiral hyperbolic 

metamaterial and a vacuum. a, Volume (black) and Surface (red and blue) state dispersion for boundary in 

𝒙 − 𝒛⁡plane with top (bottom) surface defined by metamaterial (vacuum) occupying the half space, y < 0, as 

depicted in the inset. The parameters of the metamaterial are r = diag(4, 4, -3),  = 0.5. r = 0.5; the black 

triangles represent the coordinates in k space corresponding to surface states in Figure 4.7(a-c), LHEP and 

RHEP stand for Left and Right handed elliptical polarisation respectively. b, Chiral surface state propagating 

around a cylindrical metamaterial surrounded by air, despite the existence of sharp corners back-scattering is 

forbidden due to the absence of anticlockwise modes. The dimensions of the metamaterial in the 𝒙 − 𝒚⁡plane 

are assumed to be much bigger than the surface wave decay length such that the surface propagation 

characteristics correspond approximately to subplot (a). Figure and caption modified from [94].    
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scattered by the presence of sharp corners. When we change the sign of the metamaterial’s 

chirality parameter 𝛾 → −𝛾 the surface wave still only goes one-way but now travels in the 

opposite direction, as shown by Figure 4.7d. This is because the helicities of the bulk 

polarisation states have changed sign while the dispersion is unaffected and so all of the EFS

Figure 4.7: Full wave simulations of topologically protected surface waves. a-c, cross section view 

(x-y plane) of the field distribution at an interface between a hyperbolic chiral metamaterial and 

vacuum is shown with  stars representing  line sources with a z dependant phase gradient designed to 

excite electromagnetic waves with kz = 1.1k0 (a), kz = 1.3k0 (b) and kz = 1.5k0 (c), where k0 is the free-

space wavenumber. The metamaterial parameters are the same as in Fig. 6. As kz is in the topological 

band gap a single surface wave can be seen propagating to the right moving smoothly through a step 

defect placed in its path due to the absence of left moving solutions. d), field distribution for a 

topological metamaterial with a negative chirality parameter  = -0.5 at kz = 1.5k0. As the sign of the 

chirality parameter  is reversed the direction of propagation is switched to the left. In all simulations 

an absorbing layer with the same material properties as our topological metamaterial except for a large 

imaginary component added to the permittivity has been used to prevent the surface waves from 

interfering with themselves, allowing the unidirectionality of the boundary modes to be seen clearly. 

Figure and caption from [94].         
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Chern numbers must change sign accordingly. These surface waves are therefore confirmed 

to be topologically protected.  

Although the topological metamaterial parameters considered thus far are remarkably 

simple from a theoretical stand point, isotropic chirality to date presents some experimental 

challenges. However, by making further adjustments to the material properties whilst 

ensuring that the EFSs remain well separated and thus retain the same Chern numbers, it is 

easy to show that we have far from exhausted the topologically non-trivial parameter space. 

For example, returning to Eq.4.6 and repeating the Surface wave calculation above with 

biaxial permittivity and a tensor valued 𝜸 = 𝑑𝑖𝑎𝑔(𝛾𝑥, 𝛾𝑦, 𝛾𝑧), the existence of non-tivial 

topology in metamaterials with very low symmetry can be investigated, as shown in Figure 

4.8. It turns out that our metamaterial is not only simple to design but is highly robust since 

the non-trivial topology persists in a large portion of the full parameter space, with only two 

requirements that need to be satisfied. The first of these requirements is the existence of 

chirality. Importantly however, this chirality need not be isotropic. Amazingly, a chirality 

tensor with just a single in-plane component, orthogonal to the axis of the negative 

permittivity, is required for topologically non-trivial EFSs to exist, as shown in Figure 4.8a 

and 4.8b. The second constraint is that the metamaterial must possess unbounded EFSs. This 

can be achieved for any hyperbolic permittivity tensor with only a single negative 

component, but this tensor does not have to be uniaxial, as shown in Figure 4.8c and 4.8d 

where robust surface states are found for a system with in-plane anisotropy. One final 

restriction prevents the chirality from being too large with respect to the permittivity and 

permeability. In the uniaxial case for instance when |𝛾| > √𝜀𝑖𝜇𝑟 all EFSs become either open 

or closed, and so the topologically non-trivial voids in 𝒌-space vanish. Taking the example 

configuration used in Figure 4.6 and Figure 4.7, an upper limit on the chirality parameter 

𝛾 ≈ 1.4 can be found. However, since this boundary is already large compared to the 
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magneto-electric coupling capabilities of most metamaterial designs we do not believe that it 

represents any real limitation upon the practicality of our scheme. 

To complement our finding of nontrivial topology in chiral hyperbolic metamaterials 

it is instructive to look for effective metamaterial parameters that lead to topologically trivial, 

but still well separated, bound and unbound EFSs. For this we simply need to include 

magneto-electric coupling that lifts the degeneracy for waves propagating in the z direction 

Figure 4.8: Non-trivial topology is preserved in hyperbolic chiral metamaterials with low symmetry. a, 

b Chirality in a single direction is sufficient to warrant the existence of nontrivial gaps and surface states. Here 

parameters are: ε=diag[4,4,-3], μ=0.5, γ=diag[0.5,0,0]. The topologically protected surface states are shown 

on both (a) x-z plane and (b) y-z plane. c, d Besides chirality in a single direction, in-plane anisotropy is 

further added to prove the robustness of the topology. The parameters are: ε=diag[3,5,-3], μ=0.5, 

γ=diag[0.5,0,0]. The topologically protected surface states are shown on both (c) x-z plane and (d) y-z plane. 

a b 

c d 
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without introducing a rotationally dependant refractive index. Figure 4.9 reveals that these 

 

criteria can be satisfied by replacing chirality with bianisotropy, coupling Ex and Hx with Hz 

and Ez, respectively. In this case, surface states appear which are prone to scattering in 

contrast to the protected surface states found in Figs.4.6 and 4.8. 

While this result may seem to imply that bianisotropic perturbations could cause 

backscattering of the surface states in a chiral hyperbolic medium, the topological nature of 

the chiral hyperbolic system guarantees that one-way surface states remain as long as the bulk 

EFSs stay separated. This is true provided that the chiral response is stronger than the 

bianisotropic response. 

Figure 4.9: Bianisotropic, hyperbolic medium. Topologically trivial EFSs (C=0) result from the 

combination of bianisotropy and a hyperbolic permittivity tensor. Here parameters are: εr=diag[4,4,-3], 

μr=0.5, 𝜸𝒙𝒛 =⁡−𝜸𝒛𝒙 = 𝟏. Trivial surface states can be seen to originate from just one EFS, with left 

and right moving solutions coexisting on a single interface making them prone to scattering. 
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4.5: Topologically Non-trivial Microwave 

Metamaterials  

Having outlined the prescription for non-trivial topology in a homogeneous medium 

based on the effective parameters, we now demonstrate the experimental feasibility of our 

scheme by designing realistic topological metamaterial structures. We choose to work in the 

microwave frequency regime as the lossless, dispersionless response of metals, which can be 

described as perfect electrical conductors (PEC), significantly simplifies the calculations. 

However, the design principles should remain the same for higher frequencies. From our 

effective medium treatment it is clear that the key ingredients for achieving topologically 

non-trivial EFSs are hyperbolicity and chirality, both of which have been dealt with 

extensively in the literature.  

One thing that we have ignored up until now is the frequency dependence of the 

material parameters, which is usually critical in determining the behaviour of a photonic 

system. Fortunately, while gradients 
𝜕

𝜕𝜔
 appear in the energy density and can affect the 

overall wave amplitude, they play no part in controlling the relationship between the different 

fields. Therefore, dispersion is only important if we are concerned about the bandwidth of the 

response. We have already seen in (2.3.1/2) that a wire/plate structure behaves as an 

anisotropic Drude metal with (𝜀𝑟 > 0) for 𝑬 fields perpendicular to the wires and (𝜀𝑟 < 0) 

for fields parallel to the wires, below a certain frequency. In (2.3.4) we also found that a coil 

geometry could produce strong optical activity, close to the resonant frequency, for waves 

incident perpendicular to its axis. Alongside the magneto-electric coupling, the presence of 

bright electric and magnetic dipoles also leads to Lorentzian Line shapes for the permittivity 

and permeability.  We will therefore focus on frequencies below resonance to avoid (𝜀𝑟 < 0) 
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and/or (𝜇𝑟 < 0). Combining these two structures with the coils aligned perpendicular to the 

wires should then reproduce the qualitative behaviour discovered with the effective medium 

calculations above. 

 

Figure 4.10: Topologically non-trivial EFS’s for realistic metamaterial structure. a, b Simulated 

metamaterial structure with tilted view of lattice (a) and  tilted view of single square unit cell (b) containing 

PEC wires and plates embedded in a dielectric medium, r = 10.2, in which both straight and coiled wire 

radii are 0.2mm and the overall coil radius is 2.5mm. c. Calculated EFS’s for structure shown in (a-b) at f = 

1.1GHz, with k in units of /d, where d is the unit cell period, revealing large topologically non-trivial gap 

(kz/kz  0.3). d. Surface state dispersion for kz = 0.37/d corresponding to supercell structure sandwiched 

between PEC walls shown in (e). f, g Surface state E-field patterns for  ky = 0.1/d, at f = 1.056 GHz (f) 

and f = 1.16 GHz (g), clearly showing that the surface modes are separated on different sides of the 

supercell. 
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By using the Eigenmode solver within CST MWS to calculate the eigenfrequencies 

for different boundary phase steps of a unit cell containing both the wire/plate structure and 

the coil structure, shown in Figure 4.10a-b, the bulk propagation characteristics of the 

proposed metamaterial can be investigated. In Figure 4.10c a large separation can be seen 

between EFS’s associated with Bulk propagating modes with opposite helicities. Based On 

the analysis above we therefore expect this metamaterial design to support protected photonic 

surface states with wave vectors in the gap region.  

To confirm the presence of topological order a supercell calculation involving six 

metamaterial unit cells contained within PEC walls, as shown in Figure 4.10e, has been 

performed with results presented in Figure 4.10d. Just two surface modes, isolated on opposite 

sides of the supercell as shown by Figure 4.10f-g, can be seen to traverse the bulk gap, 

signifying topological protection. Although the unit cell considered is much smaller than the 

free-space wavelength ~25𝑐𝑚 it is not deep subwavelength when compared to its 

wavelength inside the metamaterial, which may a cause non-local response. However, the 

strong optical activity originating from the coils still dominates, leading to opposite spin in 

the two bands in Figure 4.10c, as occurs in a completely homogeneous chirohyperbolic 

metamaterial. Therefore, the observation of topologically protected surface waves in this 

frequency regime also highlights the robustness of our scheme to non-local as well as local 

perturbations.    

To demonstrate the versatility of the metamaterial approach to topological protection 

we can also design a chirohyperbolic structure with an indefinite magnetic rather than electric 

response, i.e. a diagonal permeability tensor with a single negative component. SRRs are 

typically employed for achieving 𝜇 < 0. However, as explained in (2.3.3), such objects are 

also bianisotropic, due to the formation of an electric dipole moment in the gap, which is 

undesirable for our purpose. While a continuous ring only possesses a magnetic dipole, on the 
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subwavelength scale its interaction with radiation is too weak. Instead, the modified double 

loop design shown in Figure 4.11a has been used[110]. It can be seen that an incident wave 

experiences a stop-band around three GHz if the magnetic field is aligned with the ring axis 

but passes straight through otherwise. Chirality can then be once again introduced via the 

addition of springs, this time with a cylindrical geometry to provide a low resonant frequency 

whilst maintaining a small unit cell volume, preventing the SRR array from becoming too 

diluted which enhances the 𝜇 < 0 bandwidth. As this new metamaterial contains two separate 

resonators, coupling is quite likely to occur. Figure 4.11b shows that this interaction can be 

minimised, leading to optical activity in the stop-band seen in Figure 4.11a, by placing the 

coils in-between the rings. Finally, the topologically non-trivial nature of this structure is 

Figure 4.11: Topological metamaterial with hyperbolic permeability tensor. a) Linearly polarised 

transmission through 5 layer, non-bianisotropic SRR metamaterial. The wave is travelling in the plane of the 

rings with magnetic field aligned parallel (blue) and perpendicular (red) to this plane. b) Optical activity is 

suppressed when coils are centred on the SRRs. c) Surface wave dispersion for supercell shown within for 

𝒌𝒛 = 𝟎. 𝟐𝟐𝟕𝝅/𝒅.     
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confirmed in Figure 4.11c with crossed surface states existing for a supercell contained within 

PEC walls. Based on the two very different examples that have been explored here, it should 

be possible to come up with many more designs which are suited to different fabrication 

processes and operating frequencies. Topological metamaterial investigations ought therefore 

to be well within reach of experimental verification.   

4.6: Chapter Summary  

In conclusion, we have theoretically demonstrated that a topologically nontrivial phase can 

exist without a spatially dependent optical potential in homogeneous photonic systems with 

completely local material properties. Although Ref [100] employs bianisotropic 

metamaterials to provide a spin-orbit interaction within a 2D photonic crystal, where 

nonlocality and the band structure play important roles, the resultant topological phase relies 

crucially on the isolated fourfold degeneracies that exist within permittivity and permeability 

matched photonic crystals with threefold rotational symmetry. In contrast, here we utilize an 

intrinsic form of spin-orbit interaction originating from the transversality of Maxwell’s 

equations, with our metamaterial parameters chosen simply to separate out particular 

polarisation states in 𝒌-space. While achieving bulk propagating modes with nontrivial 

topology in photonic crystals requires complicated arrangements of complex materials[100, 

103, 104, 106], here the nontrivial topology of our metamaterial is controlled by only a few 

effective material parameters, namely, the permittivity tensor and chirality. Importantly, 

hyperbolicity and chirality are responsible for protecting the edge states from backscattering, 

and so time-reversal symmetry does not need to be broken by using external magnetic fields; 

therefore, our design can be easily scaled to operate at any frequency. Since the building 

blocks of the topologically nontrivial metamaterial proposed here can be deep 

subwavelength, our work provides a platform for investigating highly confined topological 
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surface states and manipulating surface waves with potentially subwavelength resolution. Our 

numerical investigation into a realistic metamaterial structure clearly reveals topological 

behaviour in support of our initial effective medium approach; however, this is by no means 

the only or indeed optimal design for achieving a topological phase. In fact, the extremely 

large body of literature dealing with theoretical and experimental investigations of both 

hyperbolic metamaterials [44] and metamaterials with gigantic chirality [55, 56, 58], from 

microwave to optical frequencies, means that the experimental realization of metamaterial 

topological phases should be well within reach. 
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Chapter 5: Conclusion and Outlook 

Despite the fact that human beings cannot directly perceive optical polarisation, it is 

one of the most widely known, best understood and technologically useful physical 

phenomenon known to science, finding applications in communications, imaging and even 

entertainment. These applications rely on birefringent materials to manipulate and detect 

polarised light. Recently, metamaterials have dramatically enhanced the range of properties 

available for such devices with much of the power behind these artificial structures stemming 

from their ability to couple selectively with arbitrary electric and/or magnetic field 

components. Even within a linear and completely homogeneous medium the most general 

light-matter interaction is described by a complex 6x6 polarisability tensor. There exists, 

therefore, a large number of possible degrees of freedom which, despite the control offered 

by metamaterials, has yet to be fully explored. The present thesis goes some way to 

addressing this, demonstrating that simply combining familiar properties together can result 

in surprising photonic phenomena. In particular, the role of subtle mathematical relationships, 

considered previously only for diffractive systems, on polarisation dependent plane wave 

propagation has been revealed. 

Firstly, after outlining key background information, the transmission of THz radiation 

through metasurfaces composed of effective loss-gain dimer arrays was investigated. By 

exploiting the dependence of the near-field interaction between, and the far-field emission 

from, dipole antennas on the spatial configuration of a given metamolecule, variations in 

coupling strength have been shown to bring about polarisation phase transitions as a result of 

PT symmetry breaking. As well as dramatically altering the polarisation eigenstate evolution, 

i.e. a 45
o
 rotation of the trajectories on the Poincare sphere, the overlap between the 

eigenstates is proportional to the proximity of a system to the transition coordinate, known as 
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the exceptional point. Although the metasurfaces in question are non-Hermitian, the 

transmission of each normal mode can be described as the excitation of a simple Lorentzian 

dipole moment. Aside from providing a novel platform for studying PT symmetric physics, 

our artificial, anisotropically absorbing materials also, therefore, represent a method of 

realising effective, arbitrarily rotating dipole pairs. Control over polarisation eigenstates is 

becoming increasingly important in modern photonics research. Phase gradient metasurfaces 

for instance rely in a spatial variation of the local anisotropy to enable a range of 

functionalities, including beam steering, lensing and holography, with ultrathin devices. 

Hence, we believe the work presented here may open up new possibilities when incorporated 

into inhomogeneous systems.    

The final part of chapter three explored the wider non-Hermitian parameter space 

surrounding an EP within the description of light transmitted through structures with 

anisotropic radiation efficiency. Specifically, the singular coordinate was shown to act as a 

topological monopole, leading to a geometric phase for a parametric circuit. Most 

interestingly, such a topological feature is robust to perturbations, which has allowed us to 

experimentally observe the associated phase singularity by varying the incident angle, despite 

the presence of imperfections in the sample fabrication and measurement setup. All 

experiments discussed in this thesis have been carried out using THz-TDS, agreeing well 

with the theoretical predictions.                   

In chapter four we looked into photonic wave solutions at the surfaces of Chiral-

hyperbolic media. It was shown that these excitations are guaranteed to exist as they are a 

manifestation of the transition that must occur between two materials with topologically 

distinct bulk EFSs. Similarly to photonic and electronic crystal structures analysed by other 

groups, the boundary modes can only travel in one direction and are therefore
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robust against back-scattering from defects. Unlike photonic crystals however, the non-trivial 

bulk topology here arises from the inherent spin-orbit interaction, where spin=polarisation, 

coming from the transversality of light. Our approach is fundamentally unique in this sense as 

it requires no spatial variations of the fields. Consequently, chiral-hyperbolic metamaterials 

are not only attractive candidates for producing efficient guiding devices but may also 

represent an interesting platform for investigating new topological physics. 

While the simulations included in (4.5) provide realistic designs for experimentally 

verifying our effective medium predictions at microwave frequencies, the need to isolate 

particular regions of reciprocal space, thus preventing the excitation of bulk waves, requires a 

field source to be carefully chosen. In the GHz regime, Yagi-Uda antennas directed along the 

(𝜀, 𝜇 < 0) axis and placed close to the metamaterial can be used to inject/detect modes with a 

particular range of phase velocities, as illustrated in Figure 5.1a. The presence of topological 

protection can then be probed by comparing the measured transmission efficiency across the 

Figure 5.1: Schematics for experimentally observing topologically protected waves at the surfaces of 

chiral-hyperbolic metamaterials. a) Microwave setup using Yagi-Uda antennas to excite modes with a 

specified phase velocity. b) Optical setup using grating couplers. 
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surface with and without a defect. Although designing and fabricating a chiral-hyperbolic 

medium to operate at optical frequencies would be more challenging, mainly because of the 

dispersive and lossy response of metals, we believe that it should still be possible due to the 

flexibility of the scheme. In this case, focussing a laser spot onto a metal grating of a 

specified period can excite a surface wave with a particular k, as illustrated in Figure 5.1b.  

Furthermore, to date topological photonic investigations have remained limited to two 

dimensions or less, while a range of remarkable electronic properties have been revealed in 

3D topological insulators. Realising such behaviour for electromagnetic waves will represent 

a new research direction and we believe that metamaterials in particular hold the key to this 

possibility.        

To conclude, we note that the work presented here provides just a glimpse of the great 

richness of effective medium theory. Due to the freedom gifted by metamaterials, far from a 

simple probe, light has become a unique conceptual arena in its own right, suitable for 

playing out simple yet intriguing tales.    
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