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Abstract 

This thesis aims to advance the understanding of ultrasonic processing for the 

alteration of food microstructures. The motivation of this work was based on recent research 

highlighting the significance of low frequency, high power ultrasound for the functional 

modification of food ingredients, and furthermore, the fabrication of submicron emulsion 

droplets. Be that as it may, a fundamental understanding of the factors associated with 

ultrasonic processing are yet to be fully elucidated. This thesis considers the impact of 

ultrasonic processing in terms of how physicochemical alterations of proteins are determined 

by untreated protein structure and processing conditions, and additionally, the significance of 

the relationship between emulsion formulation and ultrasonic process parameters on the 

formation of submicron emulsion droplets.  

To achieve these aims food proteins from a range of sources (i.e. dairy, animal and 

vegetable) were irradiated with ultrasound, after which, physicochemical differences were 

probed in the terms of molecular structure and hydrodynamic properties, and compared to 

their untreated counterparts. From this, the influence of ultrasound treatment upon protein 

structure was investigated and related to functional differences for the formation and long-

term stability of submicron emulsion droplets. 

It was shown that ultrasound treatment of proteins altered the conformational 

structure of proteins in aqueous solution due to disruption of associative non-covalent 

interactions maintaining untreated protein aggregates, reducing the hydrodynamic volume of 

protein aggregates by ultrasonic cavitations. However, insufficient acoustic energy was 

provided to achieve scission of peptide bonds. Emulsions prepared with ultrasound treated 

milk protein isolate, pea protein isolate and bovine gelatin performed better as emulsifiers 
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than their untreated counterparts, as smaller emulsion droplets were achieved exhibiting a 

static droplet size for the duration of stability studies. This behaviour is ascribed to a 

combination of more rapid adsorption of protein molecules to the oil-water interface, reduced 

times for the conformational denaturation required for surface stabilisation and improved 

interfacial packing, all owing to reduction in size of protein associates.  

Furthermore, to assess the efficacy of ultrasound for the fabrication of submicron 

emulsion droplets, a microstructural engineering approach was conducted whereby the effect 

of emulsion formulation, emulsifier type and concentration, and processing conditions, 

residence time within the acoustic field, acoustic energy transmitted, effective processed 

volume and processing methodology (i.e. batch or continuous), upon resultant emulsion 

droplet size were investigated.  

Emulsification from ultrasound occurs due to the implosion of ultrasonic cavitations, 

yielding regions of high hydrodynamic shear, allowing for emulsion droplet breakup. For 

emulsions whereby sufficient emulsifier is present (> 0.5 wt. %) it was shown that emulsion 

droplet size can be predicted from a mathematical relation, regardless of the process 

configuration implemented or process conditions employed, from the derived relationship 

between the emulsion droplet size (d3,2) and energy density (Ev), an amalgamation of the 

process parameters, an inverse power law. Droplet size predictions were unattainable at low 

emulsifier concentrations (≤ 0.5 wt. %) due to the exhibited re-coalescence behaviour 

attributed to insufficiency of emulsifier and droplet collisions within the acoustic field. 

Furthermore, this work highlighted the efficient utilisation of acoustic energy of continuous 

processing methodologies in comparison to batch configurations due to the intense 

transmission of acoustic energy within the smaller processing volumes.   
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1.1. Background 

From the 17th century population growth accelerated exponentially due to increases in 

agricultural production as well as increasing medical knowledge and technological 

innovation, linked to the industrial revolution (Boserup, 1981). According to Thomas 

Malthus, a prominent 18th century English cleric and scholar, populations tend to increase 

faster than the supply of food available for its needs. Overtime population will exceed the 

increase in agricultural production and population will decrease due to food shortages, known 

as a Malthusian crisis. Malthus concluded that “the power of population is indefinitely greater 

than the power in the earth to produce subsistence for man.” However, Malthus recognised 

that technological development and better agricultural techniques could raise the ceiling of 

population and delay the point of crisis. However, inevitably, population growth will outstrip 

technological driven food production and crash (Malthus, 1798). 

Since the time of Malthus, human population has grown sevenfold to 7.2 billion 

people (US Census Bureau, 2014) and to date the growth of food production has outstripped 

the rate of population growth, however there are indications that the rate of food production is 

slowing (FAO, 2014). In the first decade of the 21st century food prices increased rapidly 

(World Bank, 2014a), and in particular, between 2005 and the summer of 2008 the prices of 

wheat and corn tripled, and the price of rice increased fivefold, leading to food riots in over 

two dozen countries primarily in the developing world (World Bank, 2014b). However, 

unlike previous price fluctuations, driven by short term local regional food shortages, this 

peak in grain price occurred in a year where the world’s farmers achieved a record grain crop. 

The high food prices were a symptom of a greater problem within the global food web. For 

most of the first decade of the 21st century the world has been consuming more food than has 

been produced. After years of drawing down stockpiles, in 2007 the world saw global grain 

reserves fall to 60 days of global consumption, the second lowest on record at that time 
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(USDA, 2014). Given the decreasing rate of agricultural production, at present 1-2% per 

annum, and expected to decline further in coming decades, suggesting that it could become 

too low to meet population growth and increasing demand. 

Of the components necessary for human nutrition, including  proteins, carbohydrates, 

fats, vitamins and minerals, proteins are essential for the formation of body proteins such as 

structural proteins (i.e. keratin and collagen), for the building and repair of tissue, and 

enzymes for carrying out metabolic processes (Smil, 2002). In addition they can be utilised as 

an energy source containing 4 kcal per gram, similar to carbohydrates, unlike lipids though 

possessing approximately 9 kcal per gram (Damodaran, 1997a). Nonetheless, from a 

nutritional standpoint the defining characteristics of proteins are their amino acid sequence. 

During human digestion proteins are broken down to polypeptides and peptides by the action 

of hydrochloric acid and proteases, whereby this action allows for the synthesis of essential 

amino acids, which cannot be biosynthesised by the body. There are nine essential amino 

acids, phenylalanine, valine, tryptophan, threonine, methionine, leucine, isoleucine, lysine 

and histidine, which are necessary in order to prevent protein malnutrition (Friedman, 1996).  

In the middle of the 20th century one of the issues regarding protein in nutrition was 

not one of quantity, but rather of quality, a source of protein that would provide a balance of 

the essential amino acids. In areas where wheat is the major part of the caloric intake the 

main deficiency is that of lysine, in addition corn is lacking lysine and tryptophan, and rice is 

lacking lysine and threonine (Jansen & Howe, 1964). Currently, there are major concerns 

associated with disparities in protein intake between the richer countries, where protein intake 

is excessive and at inadequate levels of protein consumption, from both a quality and quantity 

perspective, for hundreds of millions living in Asia, Africa and Latin America (Smil, 

2002).To overcome these issues of protein deficiency a number of methodologies are being 
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implemented, namely the adoption of alternative protein sources, and novel processing 

technologies for the development of functional ingredients and food products.  

Traditional proteins commonly utilised within food applications are either dairy based 

(skimmed milk powders, milk protein concentrates/isolates, whey protein 

concentrates/isolates, caseinates, etc) or animal derived proteins (bovine/porcine gelatin, egg 

white/yolk proteins, etc), whilst proteins can be sourced from other areas, namely vegetable 

sources, such as cereals (e.g. rice, wheat and barley) or legumes (e.g. pea, soy and lentil). 

Recently these protein sources have gained much interest due to their abundant availability 

and improved public perception, by comparison to the traditional dairy and animal proteins, 

yet the fundamentals of how these proteins behave within food systems are yet to be fully 

understood. Moreover, the protein component of these sources was often discarded to waste, 

after extraction of the more ample component, for example in the case of rice, where the 

protein component (~ 8 %) was discarded, as the starch component (~ 80 %) yields greater 

commercial value (Cao et al., 2009; Gonzalez-Perez & Arellano, 2009). 

A relatively new application within the food industry is power ultrasound for the 

modification of food microstructures. Ultrasound treatment (low frequency, high power) of 

foodstuffs generates regions of high hydrodynamic shear, elevated temperatures and the 

potential for chemical reactions from free radical generation (O’Brien, 2007). Ultrasound 

processing of proteins has the potential to improve the functionality (emulsifying, foaming, 

gelation, viscosity enhancement, etc.) and in addition replace current emulsification 

technologies, as it has displayed potential for the efficient fabrication of submicron 

emulsions. This will rely on a detailed understanding of the fundamentals of low frequency, 

high power ultrasound and how it impacts upon food ingredients, namely proteins, for 

functional modification, and lipids, for emulsification. Whilst significant progress has been 

made in this subject matter, there is still much to be gained. 
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1.2. Aims of the research 

Given the preceding gaps in knowledge required for the utilisation of new protein 

sources and the novel technologies for the development of these sources, the aim of this 

thesis is to advance the understanding of novel technologies for both the improvement of the 

functional properties of proteins, emulsion formation in the presence of proteins and 

fabrication of emulsions using ultrasound. Specifically, the effect of ultrasound treatment 

upon the physicochemical properties of a range of proteins derived from different sources and 

ultrasonic emulsification, are investigated.  

To achieve these objectives, solutions of proteins, derived from dairy, animal and 

vegetable sources, were treated with low frequency, high power ultrasound and their 

physicochemical properties were thoroughly analysed using a wide range of techniques. The 

analysis of these results will be discussed in relation to submicron emulsion formation, 

investigated by comparing the effect of ultrasound treatment of proteins, protein type and 

emulsifier concentration, on the formation and stability of submicron emulsions. 

Low frequency, high power ultrasound has shown the capacity for emulsion 

formation, yet the fundamentals involved are yet to be fully understood. In this work, 

emulsions are prepared via batch and continuous configurations varying the process 

parameters and compared between them to discern factors involved in emulsification and the 

energy required to yield submicron droplets in the presence of proteins.  

1.3. Relevance to Kerry Group 

Kerry Group PLC., the industrial collaborator of this study, is a public multinational 

company which primarily trades, develops and markets food ingredient and flavours. Kerry 

Group was founded in Listowel, Ireland in 1972 and was initially a privately owned dairy co-

operative prior to becoming a public company in 1986 (Kennelly, 2000). They are now world 
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leaders in the ingredients and flavours markets employing 24,000 people in 43 countries with 

an annual revenue of ~ €5.93 billion (Kerry, 2014a). Kerry Group’s business can be 

identified into three primary segments: ingredients and flavours (operating globally), foods 

(operating within UK and Irish markets) and agribusiness (operating solely within Ireland). 

Within the ingredients and flavour sector, Kerry Ingredients and Flavour is the business unit 

that markets, develops and distributes ingredients and flavours to the global food, beverage, 

nutrition (infant and clinical) and pharmaceutical industries. 

Increasing global population is adding strains on the current food resources, 

producing circumstances whereby vast numbers of people are unable to secure balanced 

sources of nutrition, sufficient carbohydrate, protein, both quantity and quality, vitamins and 

minerals. Consequently, there has been a shift within industry to develop infant and clinical 

nutrition bases and beverages which have the capacity of fulfilling the dietary requirements 

of infants and the elderly effectively. This industrial shift has arisen due to concerns 

regarding the standards of nutrition globally, in particular in the field of infant nutrition and 

the development of high protein concentration clinical nutrition beverages. This is 

particularly problematic as high protein clinical nutrition beverages tend to have high 

viscosities as a consequence of the elevated proteins, making their consumption difficult.  

As discussed previously, proteins are vital for human nutrition and as functional 

ingredients within a wide range of sectors. Additionally, the implementation of novel 

technologies, such as ultrasound, has the capability to improve protein functionality, either 

from emulsifying or rheological perspectives. Therefore, since Kerry manufactures and 

distributes a wide range of proteins ingredients and protein based infant formulae, the results 

of this thesis are to their benefit as they are in a prime position to improve the understanding 

of proteins as emulsifiers and implement novel technologies (ultrasound) for the development 

of functional protein ingredients. Kerry Group’s mission statement states that they aim “to be 
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the world leaders in food ingredients and flavours serving the food and beverage industry” 

(Kerry, 2014b). Thus, Kerry Group has an interest in implementing novel technology for the 

development of proteins with improved functionality. More specifically, the results and 

discussion contained within this thesis allow Kerry Group to develop novel ingredients with 

improved emulsifying and rheological properties, and efficient emulsification processes.  

1.4. Thesis layout 

This manuscript is composed of six chapters, an introduction, a literature survey, three 

results chapters, and a conclusions and future work chapter.  

 Chapter 1 is an introduction outlining background information, the rationale for the work 

and the industrial relevance. 

 Chapter 2 details the state of the art for proteins, emulsion science, the fundamentals of 

ultrasonic processing and applications of ultrasound for the alteration and generation of 

microstructures. 

 Chapter 3 is the first results chapter, detailing the effect of ultrasound treatment upon the 

structural and emulsifying properties of three dairy proteins. 

 Chapter 4 is the second results chapter investigating the effect of ultrasound treatment of 

three animal derived proteins and three vegetable proteins, upon their physical and 

emulsifying properties.  

 Chapter 5, the final results chapter, investigates sonication for the fabrication of submicron 

emulsions in the presence of proteins, comparing batch and continuous processing 

methodologies.  

 Chapter 6 summarises the conclusions of this study and provides recommendations for 

future work. 
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1.5. Publications and conferences 

Results and discussions obtained throughout this study have been published and 

presented at conferences as follows. 

Publications: 

O’Sullivan, J.J. and Norton, I.T. 2016. Novel ultrasonic emulsification technologies, Gums 

and stabilisers for the food industry, 18. (Submitted) 

O’Sullivan, J.J., Greenwood, R.W. and Norton, I.T. 2015. Applications of ultrasound for the 

functional modification of proteins and nanoemulsion formation: A review. Trends in Food 

Science and Technology. (Submitted) 

O’Sullivan, J.J., Murray, B., Flynn, C. and Norton, I.T. 2015. Comparison of batch and 

continuous ultrasonic emulsification processes. Journal of Food Engineering. (In press) 

O’Sullivan, J.J., Murray, B., Flynn, C. and Norton, I.T. 2015. The effect of ultrasound 

treatment on the structural, physical and emulsifying properties of animal and vegetable 

proteins. Food Hydrocolloids. (In press) 

O’Sullivan, J.J., Arellano, M., Pichot, R. and Norton, I.T. 2014. The effect of ultrasound 

treatment on the structural, physical and emulsifying properties of dairy proteins. Food 

Hydrocolloids, 42(3), 386-396. 

O’Sullivan, J.J., Pichot, R. and Norton, I.T. 2014. Protein stabilised submicron emulsions, 

Gums and stabilisers for the food industry, 17, 223 – 229. 

Poster presentation: 

O’Sullivan, J.J., Pichot, R. and Norton, I.T. Effect of protein structure and molecular weight 

on the formation of O/W emulsions. 1st UK Hydrocolloids Symposium, Huddersfield, 2013. 
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O’Sullivan, J.J. and Norton, I.T. Ultrasonic effect on the rheology of protein solutions. 1st 

Congress on Food Structure Design, Porto, 2014.  

O’Sullivan, J.J. and Norton, I.T. Comparison of batch and continuous acoustic emulsification 

processes. 28th EFFoST International Conference, Uppsala, 2014. 

Oral presentation (speaker underlined): 

O’Sullivan, J.J., Pichot, R. and Norton, I.T. Protein stabilised submicron emulsions, 17th 

Gums and Stabilisers for the Food Industry, Wrexham, 2013. 

O’Sullivan, J.J., Arellano, M. and Norton, I.T. The ultrasonic effect on the physicochemical 

properties of animal and vegetable proteins as emulsifiers, 12th International Hydrocolloids 

Conference, Taipei, 2014. 

O’Sullivan, J.J. and Norton, I.T. Ultrasonic effect on the rheology of protein solutions. 28th 

EFFoST International Conference, Uppsala, 2014. 
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2.1. Background literature survey: proteins and emulsions 

The aim of this section of this chapter is to present a comprehensive survey of 

relevant literature, including an overview of general protein structure, and association 

behaviour of proteins in aqueous solutions. Then, the functional properties, emulsifying, 

foaming, gelation and viscosity enhancement, of proteins is discussed. Emulsion theory is 

then examined in terms of basic terminology, emulsion formation, in terms of droplet 

breakup mechanism and the role of the emulsifier, and emulsion destabilisation mechanisms 

(gravitational separation, flocculation, phase separation and Ostwald ripening).  

  



Chapter 2. State of the Art 

 13  

2.1.1. Proteins 

Proteins serve a variety of functions in both biological settings and food systems 

owing to the complex chemical make-up of these biopolymers. Some of the roles which 

proteins perform in these systems include biocatalysis (i.e. enzymes; e.g. amylase, lactase, 

lipase, maltase, etc.), hormones (e.g. insulin, oxytocin, growth hormone, etc.), antibodies (i.e. 

immunoglobulins), chelation of metal ions (e.g. phosvitin, phytochelatin, etc.), protective 

proteins (i.e. toxins and allergens), transport proteins (e.g. haemoglobin, serum albumin, etc.), 

structural components within organisms (e.g. collagen, keratin, lamin, elastin, etc.), 

contractile proteins (e.g. actin, tubulin, etc.) and as storage proteins (e.g. micellar casein, egg 

and legume albumens, etc.) as sources of energy and nitrogen for developing embryos (Berg 

et al., 2012; Boye et al., 1997; Damodaran, 1997; DeMan, 1999). 

Proteins are biological polymers constituted of monomer units known as amino acids, 

of which 19 are true amino acids and 1 is an imino acid, proline, however, they are all 

commonly referred to as amino acids (Damodaran, 1997a). These 20 amino acids can be 

categorised by their characteristics: aliphatic (alanine, glycine, leucine, isoleucine, proline 

and valine), aromatic (phenylalanine, tryptophan and tyrosine), acidic (aspartic acid and 

glutamic acid), alkaline (arginine, histidine and lysine), hydroxylic (serine and threonine), 

thiolic (cysteine and methionine) and amidic (asparagines and glutamine) (DeMan, 1999). 

Protein structure has four levels of complexity: primary, secondary, tertiary and quaternary 

(Berg et al., 2012).  

The primary structure of a protein refers to the linear amino acid sequence of a given 

polypeptide chain. The amino acid subunits of the primary structure are held together by 

covalent bonds called peptide bonds. The peptide bond possesses a partial double bond 

character due to its resonance structure, restricting rotation of this bond to a maximum of 6o. 
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This sequence of amino acids gives the protein its three dimensional conformation and its 

functionality (Berg et al., 2012; Damodaran, 1997a). The secondary structure of proteins 

refers to the highly regular local sub-structures. The two main structures that occur are alpha-

helices and beta-sheets or -strands (cf. Fig. 2.1; Pauling et al., 1951). These secondary 

structures are defined by patterns of hydrogen bonds between the primary chain peptide 

groups, the C=O and N-H groups (Damodaran, 1997a). 

 

Fig. 2.1. Depiction of alpha helices and beta sheets secondary protein structures. Image adapted from Berg et al., 

(2012) 

The tertiary structure of proteins refers to the three-dimensional structure of a single 

protein molecule. The alpha-helices and beta-sheets are folded into a compact globule. This 

folding is driven thermodynamically by hydrophobic interactions to minimise the free energy 

of the molecule, which are locked in place by specific tertiary interactions, such as salt 
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bridges, hydrogen bonds, tight packing of side chains and disulphide bonds (DeMan, 1999). 

The most important rearrangement associated with the tertiary structure of proteins is the 

geometric displacement of hydrophobic residues to the interior of the globule and expulsion 

of hydrophilic residues to the exterior of the globule (Damodaran, 1997a). The quaternary 

structure of proteins is the three-dimensional structure composed of a number of polypeptide 

chains, whereby these polypeptide chains are known as sub units, and the quaternary complex 

comprising of these sub units is referred to as oligomeric structures. The quaternary structure 

is stabilised by the same non-covalent interactions and disulphide bonding, as in the tertiary 

structure. Proteins molecules containing greater than 28% hydrophobic residues (i.e. valine, 

leucine, isoleucine, phenylalanine and proline) possess a tendency to associate into 

oligomeric structures, as with this percentage of hydrophobic residues in the primary 

structure it is physically impossible to conceal all of the hydrophobic residues within the 

interior of the globule, yielding non-polar regions on the exterior of the globule. These non-

polar regions interact with one another to form oligomeric structures (Damodaran, 1997a; 

DeMan, 1999). Complex oligomeric structures are commonly exhibited  in vegetable proteins 

where the percentage of hydrophobic residues is typically greater than 35 %, and the 

association and disassociation behaviour of these oligomeric structures has been shown to be 

highly dependent on the serum conditions, such as pH and ionic strength (Gonzalez-Perez & 

Arellano, 2009).  

In aqueous solutions proteins either manifest in a monomeric state, as discrete protein 

molecules, or as associates, a cluster of protein molecules. Micellisation of protein molecules 

arises, either due to decreases in solvent quality which induces the formation of protein 

associates, or owing to an increase in protein concentration allowing for interactions between 

protein molecules, similar to molecular associations exhibited by low molecular weight 

surfactants (micelles), referred to as the critical micelle concentration (CMC), driven 



Chapter 2. State of the Art 

 16  

entropically by reducing the Gibbs free energy of the system. In the case of proteins the 

concentration dependent association is known as the critical association concentration (CAC) 

(O’Connell et al., 2003). In particular, proteins which exhibit an amphiphatic character are 

susceptible to these association mechanisms, whereby they arise due to hydrophobic 

associative forces between protein molecules, while electrostatic and steric repulsive forces 

are responsible for associate integrity (Damodaran, 1997a). Removal of the steric repulsive 

forces present within protein associates through reduction of the molecular weight profile of 

proteins by proteolysis leads to a plastein type reaction, whereby insoluble particulates, 

plasteins, are formed (Clemente, 2000). Proteolysis of proteins involves the breakdown of the 

protein molecules into smaller protein fractions, yielding a mixture of hydrophobic, 

hydrophilic or amphiphatic peptides. These peptides rearrange themselves to form plasteins, 

insoluble polypeptides formed by the action of proteolytic enzymes on the hydrolysis of 

proteins. Plasteins have a core of hydrophobic and hydrophobic sections of amphiphilic 

peptides and a shell of hydrophilic and hydrophilic sections of amphiphilic peptides. The 

plastein reaction is driven by hydrophobic forces and is a purely entropy-driven physical 

phenomenon. Gel electrophoresis (reducing SDS-PAGE) has shown that these aggregates 

were not held together by covalent bonds, indicating that the aggregates were maintained by 

hydrophobic associative forces (Mozaffar & Haque, 1992; Yamashita et al., 1976). 

2.1.1.1. Protein functionality 

The term ‘functionality’ as applied to food ingredients describes any property other 

than nutritional attributes that contribute to an ingredient’s beneficial aspects within a 

formulation. Proteins are highly functional molecules within food systems capable of the 

stabilisation of oil droplets and air bubbles, formations of gel structures and the enhancement 

of viscosity. This functionality is due to the complex chemical makeup of these molecules 
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owing to their unique amino acid sequences (O’Connell & Flynn, 2007; Walstra & van Vliet, 

2003). 

2.1.1.1.1. Emulsions and foams 

Emulsions and foams are colloidal dispersions of two immiscible liquids (i.e. oil and 

water), and a liquid and a gas, respectively (Foegeding & Davis, 2011; Walstra, 1993). 

Proteins are capable of stabilising both oil-water and air-water interfaces owing to their 

surface active nature and amphiphilic characteristics. Proteins are surface active due to their 

unique amino acid sequence which produces hydrophobic and hydrophilic regions throughout 

the polypeptide chain. At the interface proteins adapt to the most entropically stable state, 

where the hydrophilic and hydrophobic amino acid side chains associate with the continuous 

and dispersed phases respectively with the state of least energy (O’Connell & Flynn, 2007). 

The continuous phase for both protein stabilised foams and emulsions is an aqueous protein 

solution, whilst the dispersed phase is either oil droplets or air bubbles for emulsions and 

foams, respectively. 

Proteins in solution are capable of forming emulsions and foams by reducing the free 

energy at the interface between the apolar (i.e. oil or air) and polar (i.e. aqueous) phases, by 

reducing the interfacial tension, known as surface tension for air-water systems (Caetano da 

Silva Lannes & Natali Miquelim, 2013). There are two main stages in the reduction of 

interfacial tension by proteins of the air-water and oil-water interfaces. The first stage is 

adsorption of proteins from the bulk to the interface, and is primarily dictated by the 

molecular weight of the proteins. Proteins possessing lower molecular weights have greater 

molecular mobility through the bulk allowing for more rapid adsorption to the interface. The 

second stage is conformational denaturation or re-allignment of proteins upon adsorption at 

interfaces, whereby the protein rearranges itself to the most entropically stable state, 
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positioning the hydrophobic residues at the interface and the hydrophilic residues extend into 

the bulk (Beverung et al., 1999). Proteins possessing lower molecular weights exhibit greater 

rheomorphic properties allowing for more rapid conformational changes at interfaces 

(O’Connell & Flynn, 2007). 

In addition to lowering the interfacial tension, proteins are capable of forming strong 

viscoelastic films around oil droplets and air cells (McClements, 2004). These viscoelastic 

films form via a combination of non-covalent intermolecular associative interaction (i.e. 

hydrogen bonding and van der Waals forces) and covalent mechanisms, notably disulphide 

cross-linking between cysteine residues (Lam & Nickerson, 2013). The formation of these 

films at interfaces prevents coalescence of oil droplets and air bubbles prolonging the 

stability of multiphase systems. The efficacy of a protein to develop a strong viscoelastic film 

at an interface is highly dependent on the surface activity of the protein, where the surface 

activity of a protein includes conformational stability at interfaces, rapid transformations of 

conformation to environmental changes, the availability and the distribution of hydrophobic 

and hydrophilic regions throughout both the primary amino acid sequence and on the surface 

of the protein globule (Foegeding & Davis, 2011). 

Proteins are amphiphatic molecules, yielding an overall electrical charge on the 

surface of the protein associate, characterised by the ζ-potential (DeMan, 1999). Adsorbed 

proteins at interfaces confer electrostatic repulsive stability to emulsion droplets and air 

bubbles, enhancing stability by reducing the likelihood of droplet contact and maintaining 

bubble separation (Given, 2009). Furthermore, as a consequence of the proteins molecular 

weight and adsorption patterns at interfaces (i.e. hydrophilic residue extension into the bulk) 

steric stabilisation of emulsion droplets occurs and this interaction has two components 

(O’Connell & Flynn, 2007). The first is the osmotic repulsion between the overlapping 

segments, favouring the stretching of chains, and the second is associated with the elastic 
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energy of the chains, which opposes stretching. The osmotic repulsive force is the dominant 

of the two interactions allowing for droplet stabilisation (Damodaran, 1997b). 

Be that as it may, many food formulations use high concentrations (> 10 wt. %) of 

protein for nutrition purposes, such as in clinical or parenteral nutrition beverages 

(Waitzberg, 2014). In these circumstances a large proportion of the protein in the formulation 

remains in the bulk, in the form of protein associates (Hunt & Dalgleish, 1994). These 

colloidal protein associates can contribute to depletion flocculation mechanisms, increasing 

the associative osmotic forces between droplets by the exclusion of these associates from a 

narrow region between adjacent droplets. This destabilisation mechanism can be minimised 

by reduction of the emulsion droplet size, reducing the van der Waals forces between droplets 

(Dickinson, 2010; Radford & Dickinson, 2004). 

2.1.1.1.2. Gelation 

Gelation is the mechanism by which aqueous solutions of high molecular weight 

carbohydrates or proteins are cross-linked to form an intermolecular network distributed 

through the volume of the liquid medium (Ziegler & Foegeding, 1990). A colloquial 

definition for a gel is defined as a “system of a solid character, in which colloidal particles 

somehow constitute a coherent structure,” (Bungenberg de Jong, 1949) whilst the most useful 

definitions for gels are derived from rheology, the study of the deformation and flow of 

matter. A gelatinous material is a semi-solid, known as a viscoelastic material, having rigidity 

yet deforms under applied stresses, possessing both solid-like and liquid-like rheological 

aspects (Oakenfull et al., 1997). 

The structure of proteins, owing to their unique amino acid sequences, allows a range 

of practical applications unrivalled by other polymers. In biology, the majority of natural gels 

are constituted of proteins or proteins attached to carbohydrates.  Collagen appears to be the 
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gel-forming protein in jellyfish (Kimura et al., 1983) and blood clots are formed by the action 

of thrombin, a serine protease, on fibrinogen, a plasma glycoprotein (340 kDa), resulting in 

end-to-end aggregation and the formation of a gel network structure (Davie & Ratnoff, 1964). 

Proteins display two mechanisms of gelation, irreversible and reversible gelation (Oakenfull 

et al., 1997). Irreversible gelation is the mechanism whereby proteins possessing globular 

structures unfold in the presence of changes in temperature, pH or ionic conditions and 

aggregation occurs (Boye et al., 1997). Reversible gelation is uncommon for proteins, with 

the notable exception of gelatin, whereby heating a gel fabricated with gelatin liquefies the 

gel (Haug et al., 2004).  

2.1.1.1.2.1. Irreversible gelation – thermal denaturation and coagulation of proteins 

Irreversible gelation of proteins occurs through a sequence of events, starting with 

protein denaturation, followed by aggregation of denatured protein molecules and lastly 

cross-linking of protein strands (Boye et al., 1997). Denaturation of proteins is defined as any 

modification in the conformational structure of a protein (secondary, tertiary or quaternary 

structure) without scission of peptide linkages between amino acids involved in the primary 

structure (Cheftel et al., 1985). One of the most common methods for achieving protein 

denaturation is to heat them in solution. Heat treatment of globular proteins in solution 

increases the molecular motion due to increasing thermal energy, leading to disruption of 

inter- and intramolecular associative bonds which maintain the structure of native proteins. 

This results in rearrangements of the secondary and tertiary structures where previously 

internally and concealed hydrophobic amino acid sequences become exposed to the solvent, 

yielding the formation of new intermediary conformations (Sakurai et al., 2009).  

Denatured protein chains associate through intermolecular interactions to form 

aggregates of irreversibly denatured entities, leading to precipitation, coagulation or gelation 
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(Mine, 2002). Protein aggregation involves the formation of higher molecular weight species 

from denatured protein, which then cross-link by specific bonding at specific sites along 

protein chains or by non-specific bonding which occurs throughout the peptide backbone. 

Cross-linking of protein aggregates, after denaturation, involves one or more of the following 

mechanisms; (1) oxidative chemical reactions of protein molecules resulting from the 

covalent linkage of amino acid residues, (2) cross-linking of proteins by agents dissolved 

within the solvent (i.e. metal ions), (3) physiochemical changes leading to reduced solubility 

(i.e. pH near the isoelectric point, IEP, or changes in ionic conditions), and (4) chemical 

modifications of proteins leading to decreases in protein solubility (i.e. the Maillard reaction). 

Disulphide and hydrogen bonding, as well as ionic interactions, are involved in cross-linking 

mechanisms of aggregates from denatured proteins (Alvarez et al., 2008; Foegeding et al., 

2002; Sun & Arntfield, 2012; Ziegler & Foegeding, 1990).  

Irreversible gelation of food proteins is exhibited by the globular proteins present 

within milk, whey proteins (Fox, 2008). Gelation of whey protein occurs by heating a whey 

protein solution, at a concentration above the critical point, to a temperature in excess of the 

denaturation temperature. The critical point is the minimum concentration required to achieve 

protein gelation, 8% for whey protein concentrate (WPC). The denaturation temperature of 

WPC is within the range of 85 – 100 oC, and is dependent on the concentration of WPC in 

solution (Oakenfull et al., 1997). Initial denaturation of protein structure is followed by 

intermolecular interactions that form the cross-linked matrix of the gel. Environmental 

factors, such as pH and ionic strength, influence the intermolecular interactions, thus 

affecting the viscoelastic properties of the resultant gel (Fitzsimons et al., 2007).   
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2.1.1.1.2.2. Reversible gelation – gelatin and collagen 

 In contrast to gels prepared using polysaccharides, whereby typically gels revert to a 

liquid state upon heating, yet there are examples of chemical gelation induced by addition of 

ions and changes in solvent quality, protein gels are invariably thermally irreversible, with 

the evident exception of gelatin (Garrec & Norton, 2012; Veis, 1964). Gelatin is the 

hydrolysed form of collagen, prepared by heat treatment in the presence of acid or alkali, 

yielding segments of the parent collagen molecule (Schrieber & Gareis, 2007). The 

mechanism of gelation of gelatin is different to that of other proteins, where gelation occurs 

upon cooling of solutions below the helix-coil transition temperature and the protein chains 

cross-link by forming small regions of the collagen triple helix structure. Increasing the 

temperature of a gel prepared with gelatin above the gelation temperature liquefies the gel 

and the helical structure reverts to a random coil configuration (Haug & Draget, 2009).  

2.1.1.1.3. Viscosity enhancement 

The development of viscosity within food systems is typically achieved by the 

addition of high molecular weight biopolymers, carbohydrates or proteins, at elevated 

concentrations. The contribution of a polymeric solute to the viscosity of a solution is 

dictated by its intrinsic viscosity, [η], which is determined for the most part by polymer 

geometry (‘shape’) and hydrodynamic volume (‘size’) (Harding, 1997; Lefebvre, 1982). This 

relationship is described by the Mark-Houwink equation (Eq. 2.1) where Mw is the molecular 

weight of the polymer, K is the Mark-Houwink constant and α is the Mark-Houwink 

exponent, related to the polymer geometry in solution. Values of α range between 0 and 1.8, 

where 0 represents a theoretical spherical shape, 0.5 – 0.8 gives the range for polymers 

exhibiting random coil (equivalent sphere) behaviour, and greater values indicate increasing 

stiffness of the polymer up to values of 1.8 for rigid rod like structures (Sousa et al., 1995). 
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                                                                               (2.1) 

The viscosity of protein solutions is determined by the intrinsic factors associated 

with proteins such as intrinsic viscosity, protein concentration and the intermolecular 

interaction mechanisms (i.e. associative interactions, globule conformation, oligomeric 

structures, etc.) (Curvale et al., 2008; Lefebvre, 1982). Protein solution viscosity follows a 

power-law dependence with concentration until the critical overlap concentration (c*), above 

which a marked increase in the dependence of concentration occurs (Morris et al., 1981). At 

concentrations less than c*, the dilute region, the polymer molecules (colloidal associates for 

the case of proteins) behave as discrete entities sufficiently distanced with respect to one 

another, whilst at concentrations greater than c*, the concentrated region, the combined 

hydrodynamic radii of the chains exceeds that of the solvent volume and physical chain 

interpenetration and network development arises (cf. Fig. 2.2). 

In addition to the intrinsic protein factors which dictate bulk viscosity, extrinsic 

variations in the serum quality influence the bulk viscosity of protein solutions via 

modifications to a protein’s intrinsic viscosity (i.e. hydrodynamic volume) and intermolecular 

interaction mechanisms. Extrinsic factors include changes to the pH, ionic strength and type 

of ion (Harding, 1997). The isoelectric point (IEP) of a protein is the pH at which the overall 

electrical charge (i.e. ζ-potential) of a globule surface is 0, and at pH values close to the IEP 

(± 0.5) reduced electrical surface charges are observed by comparison to pH values further 

from the IEP (> 1.5), whereby surface electrical charges are sufficient to prevent contact of 

protein associates (Damodaran, 1997a). As the overall surface electrical charge of protein 

globules is reduced by approaching the IEP, protein globules come into contact with one 

another, increasing the hydrodynamic volume of protein globules (Curvale et al., 2008). 

Increasing the ionic strength of the serum by addition of salts yields a comparable effect upon 

the hydrodynamic volume of protein globules as approaching the IEP. Increasing the 
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concentration of ions in serum increases the shielding effect upon the surface electrical 

charge of globules allowing for contact of discrete protein associates with one another 

increasing the overall hydrodynamic volume of the protein in solution (Dickinson & 

Ritzoulis, 2000). These increases in hydrodynamic volume associated with approaching the 

IEP and increasing ionic strength of the serum environment increase the contribution of 

protein globule size to the bulk viscosity of the solution (Sousa et al., 1995; Tanner & Rha, 

1980). 

 

Fig. 2.2. Graphical representation of the relationship between viscosity and polymer concentration, showing the 

dilute regime, the critical coil overlap concentration and the concentrated regime. Image adapted from Morris et 

al. (1981).  
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2.1.2. Emulsions 

An emulsion is defined as a ‘fluid system in which liquid droplets are dispersed in a 

liquid’ (IUPAC, 1997). The two liquids in emulsions are immiscible with one another, 

typically oil and water (McClements, 2005). The process of dispersing one fluid in the form 

of droplets within another is known as emulsification. Emulsification requires four 

components, oil, water, an emulsifier and energy (Walstra, 1993). An emulsifier is a material 

which is often necessary to stabilise emulsion droplets, as oil or water droplets tend to merge 

together in a process known as coalescence (McClements, 2005; Walstra, 1993).  Energy is 

required for emulsification so as to disrupt and breakup the dispersed phase into droplets 

within the continuous phase and this is opposed by the Laplace pressure, the pressure 

differential between the convex and concave side of a curved interface (Walstra, 1993). 

Emulsions were first categorised by Ostwald, (1910) in terms of the material of 

dispersed phase with respect to the continuous phase. More specifically, an emulsion is 

classified as an oil-in-water (O/W; ‘Oel in Wasser’) emulsion for which the dispersed phase 

is oil and the continuous phase is water, and conversely as a water-in-oil (W/O; ‘Wasser in 

Oel’) emulsion whereby the dispersed phase is water and the continuous phase is oil 

(McClements, 2009; Ostwald, 1910). The primary methods for classifying these types of 

emulsions are the size of the emulsion droplets. The Sauter mean diameter (SMD), d3,2, is 

commonly used to characterise emulsion droplets, and is defined as the ratio of the third to 

the second moment of the probability density function (Pacek et al., 1998). The droplet size 

of an emulsion can be used to classify emulsions either as macroemulsions, nanoemulsions or 

microemulsions.  

Macroemulsions are kinetically stabilised mixtures of two immiscible fluids, for 

which the dispersed phase has a d3,2 approximately of 1 μm to 100 μm. Macroemulsions 
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scatter light effectively yielding a milky appearance as the droplets are larger than that of the 

wavelength of light. The scattering of light is due to the difference in refractive indices of the 

oil and aqueous phases (McClements, 2005).  

Nanoemulsions, also referred to as miniemulsions, nano-emulsions, ultrafine 

emulsions and submicron emulsions (Solans et al., 2005), typically have a d3,2 range of 50 nm 

to 200 nm (Tadros et al., 2004). Unlike microemulsions, nanoemulsions are only kinetically 

stable, while microemulsions are in addition thermodynamically stable (Eastoe, 2002; Tadros 

et al., 2004). Nanoemulsions are kinetically stable from considerations of their steric 

stabilisation and the ratio of the adsorbed layer thickness to the dispersed phase radius 

(Tadros et al., 2004).  

Due to their droplet size, nanoemulsions are translucent in appearance, as the 

wavelength of light is larger than that of emulsion droplets. The uniformity of droplet size 

distribution (DSD) and degree of Ostwald ripening (cf. section 2.1.2.2.4) of nanoemulsions 

with respect to time are factors leading to growth in emulsion droplet size and loss of optical 

transparency (Solans et al., 2005; Tadros et al., 2004). The rate of Ostwald ripening is a 

strong function of emulsion droplet size and solubility of the dispersed phase in the 

continuous phase (Henry, 2007).  

Nanoemulsions offer several benefits over macroemulsions, including improved 

stability against creaming/sedimentation (cf. section 2.1.2.2.2), flocculation and coalescence 

due to small emulsion droplet size (cf. section 2.1.2.2.3), large surface area for controlled 

release and optically transparent (McClements, 2011; Solans et al., 2005; Tadros et al., 

2004). Despite these benefits, nanoemulsions have only attracted limited interest in recent 

years due to the specialised equipment necessary for their formation (such as microfluidics or 

ultrasonics), the perception that these emulsions are expensive to produce, lack of both, 
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understanding of production mechanisms and demonstration of benefits to list just a few 

(Tadros et al., 2004).  

A microemulsion can be defined as a ‘dispersion made of water, oil and surfactant(s) 

that is an isotropic and thermodynamically stable system with dispersed domain diameter 

varying approximately from 1 to 100 nm, usually 10 to 50 nm’ (Slomkowski et al., 2011). 

Due to the size of the droplets, microemulsions are optically translucent and are 

thermodynamically stable due to their droplet size (Eastoe, 2002). Microemulsions have 

many important commercial applications in fields such as personal care, agrichemicals and 

pharmaceuticals (Eastoe, 2002; Gibaud & Attivi, 2012). 

In contrast to macro- and nanoemulsions, requiring high shear for their formation, 

microemulsions only require simple mixing of their components for their formation, and can 

form spontaneously under the right conditions (Ansari et al., 2008; Eastoe, 2002). These 

conditions include a low dispersed phase volume fraction and a high surfactant concentration. 

Other components may be required in the formulation for the formation of microemulsions, 

such as co-surfactants and/or salts (Eastoe, 2002). For example, in a microemulsion where 

SDS is the surfactant, an aliphatic alcohol as a co-surfactant and an electrolyte, such as NaCl, 

are necessary for the formation of a microemulsion (Eastoe, 2002). 

Due to overlap of the droplet size range there are misunderstandings between 

microemulsions and nanoemulsions. The IUPAC definition of an emulsion excludes 

microemulsions if the word ‘dispersed’ is interpreted as non-equilibrium and opposite to 

‘solubilised’, a term that is applied to both microemulsions and micellar systems, which are 

thermodynamically stable (Gutiérrez et al., 2008). Nanoemulsions are non-equilibrium 

systems which, due to the interfacial tension between the two phases (cf. section 2.1.2.1.3), 

will spontaneously phase separate into constituent phases (Gutiérrez et al., 2008).  
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Nevertheless, the droplet size of nanoemulsions confers kinetic stability to these emulsions, 

even for several years (Tadros et al., 2004).  

Multiple emulsions, also known as double emulsions, are ternary systems having 

either water-in-oil-in-water (W/O/W) or an oil-in-water-in-oil structure (O/W/O), whereby 

the dispersed phase contains smaller droplets of a different phase (Jiao & Burgess, 2008; 

McClements, 2005). Multiple emulsions have a wide range of potential application food, 

pharmaceutical and cosmetic sciences. In the food sector they could potentially be used for 

the controlled release of flavour and in the pharmaceutical sector have applications such as 

prolonged drug release and vaccine adjuvants (Grossiiord & Stambouli, 2008; Jiao & 

Burgess, 2008; Khopade & Jain, 2008; McClements, 2005).  

Multiple emulsions, like both macro- and nanoemulsions, are thermodynamically 

unstable due to the excess of free surface energy between the liquids due the interfacial 

tension. In simple emulsions, Laplace pressure works against the stability of these systems. In 

multiple emulsions it is necessary to balance both the Laplace pressure and osmotic pressure 

from the internal dispersed phase to ensure long term stability of multiple emulsion systems 

(Jiao & Burgess, 2008).  

2.1.2.1. Droplet breakup 

Emulsions are fabricated by a combination of a dispersed phase, a continuous phase, 

an emulsifier and the input of energy, in a process known as emulsification (Walstra, 1993). 

During emulsification the dispersed phase is disrupted into smaller volumes, in the form of 

droplets due to Laplace pressure forces (McClements, 2005). The disruption of oil into 

smaller volumes is known as droplet breakup, and is achieved by a process known as 

homogenisation. Due to differences in the hydrophobicity and hydrophilicity between the 

respective dispersed and continuous phases there is a tendency for phase separation to occur 
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in order to minimise the interfacial surface area between the two phases, an entropy driven 

mechanism, leading to droplet coalescence (cf. section 2.1.2.3.2) (McClements, 2009; 

O’Connell & Flynn, 2007). 

Emulsification is a dynamic process by which two mechanisms occur, a forward 

reaction for the creation of dispersed phase droplets, droplet breakup, and a back reaction, 

whereby newly formed emulsion droplets come in contact with one another and re-coalesce. 

The balance between these processes is of great importance to predict whether emulsion 

droplets form and the size of the newly formed droplets. The size of the formed emulsion 

droplets is dependent on the type of the emulsifier, the concentration of the emulsifier and the 

energy density provided for emulsification (Lee et al., 2013; Niknafs et al., 2011). 

The interfacial forces which maintain the spherical character of the dispersed phase 

within the continuous phase are described by the Laplace pressure (∆PL; Pa), the pressure 

differential between the inside and the outside of an emulsion droplet. It is described by the 

following (Walstra, 1993): 

     
  

 
                                                                                                                               (2.2) 

Where, γ is the interfacial tension between the dispersed and continuous phases        

(N m-1) and r is the emulsion droplet radius (m). The Laplace equation indicates that a system 

with higher interfacial tension between the two phases will have larger emulsion droplets, 

highlighting the importance of emulsifier for the reduction of interfacial tension for formation 

of smaller emulsion droplets (cf. section 2.1.2.1.3). Furthermore, it can be observed (Eq. 2.2) 

that a significant homogenisation pressure is required for the emulsification process in order 

to overcome the interfacial tension, and form emulsion droplets. In addition, when a balance 

between the interfacial tension and the Laplace pressure is achieved, droplet disruption does 

not occur, but solely drop deformation (Binks, 2000; Walstra & Smulders, 2000). 
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The feasibility of the formation of emulsion droplets from the bulk dispersed phase is 

quantified using the Weber number (We), the ratio of disruptive to interfacial forces (Eq. 2.3): 

    
                 

                  
  

    

 
                                                                                           (2.3) 

Where, ηc is the viscosity of the continuous phase (Pa.s) and G is the velocity 

gradient, similar to shear rate (s-1). Generally, droplets are disrupted if We > 1, known as the 

critical Weber number, Wecr. Additionally, the time of the disruptive force (τdis) affecting the 

droplet must be greater than the deformation time (τdef), for droplet breakup, for which the 

ratio of these terms must be greater than 1 for droplet disruption (Lee et al., 2013; Walstra, 

1993). Emulsion droplet breakup depends on the hydrodynamic conditions (i.e. the flow 

regime), and can be categorised as either laminar, whereby shear stresses dominate (cf. 

section 2.2.1.1), or turbulent regime, for which inertial effects (pressure differentials) are the 

ascribed mechanism for droplet breakup (cf. section 2.2.1.2) (Walstra & Smulders, 2000). 

2.1.2.1.1. Laminar regime 

The force exerted upon an emulsion droplet in laminar flow conditions is equivalent 

to the disruptive forces of the Weber equation (Eq. 2.3), ηcG. Droplet breakup occurs in the 

laminar regime if the critical Weber number, Wecr, is exceeded (Walstra, 1993). Additionally, 

Grace, (1982) demonstrated the influence of viscosity ratio of the dispersed phase (ηD) with 

respect to the continuous phase (ηc) for droplet breakup, whereby no droplet disruption 

occurs for ηD/ηc > 4.   
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2.1.2.1.2. Turbulent regime 

Droplet breakup of emulsions whereby the continuous phase has a low viscosity (i.e. 

water continuous emulsion) occurs predominately in turbulent flow regimes, for which the 

droplet disruption mechanism is achieved through turbulent eddies (Walstra, 1993). Flow 

within the turbulent regime will have a spectrum of eddy sizes depending on the Reynolds 

number of the system, and this flow can be characterised using the Kolmogorov theory. 

Smaller turbulent eddies have larger velocity gradients, G (Eq. 2.4): 

   
  

 
                                                                                                                                   (2.4) 

Where, u’ is the root-mean-square (RMS) average difference between u and the 

overall flow velocity (m s-1), and x is the average eddy size (m). The smallest size of an eddy 

is known as the Kolmogorov scale, x0, and droplets smaller than this length scale are usually 

not formed due to the lack of droplet deformation achieved. Droplet disruption is attributed to 

larger eddies, known as energy-bearing eddies. Given the chaotic nature of the turbulent flow 

regime and range of length scales of energy bearing eddies depending on the flow behaviour, 

emulsions prepared in the turbulent regime tend to have a spread of emulsion droplet sizes, 

known as a droplet size distribution (DSD) (Lee et al., 2013; Walstra & Smulders, 2000). 

2.1.2.1.3. Interfacial tension 

The common boundary between two phases is known as the interface. This boundary 

layer between the two phases is quite thin and often considered to be two-dimensional, where 

the thickness is assumed to be negligible, and thus neglected. The third dimension however 

plays a more significant role because of the interactions between the molecules of the two 

phases. The energy required to change the shape of a given interface is known as the 

interfacial tension, the units for which are J m-2, however N m-1 is more commonly employed 
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(McClements, 2005; O’Connell & Flynn, 2007). The phrase interfacial tension refers to 

liquid-liquid interfaces, whilst surface tension refers to gas-liquid interfaces. The term 

interfacial tension, γ, will be used hereafter as emulsions are the consideration of this 

research.  

Temperature and the presence of a solute (e.g. salt, sugar, surface active agent, etc.) 

within the continuous or dispersed phase are the two dominant factors which influence the 

interfacial tension. When interfacial tension values are quoted the corresponding temperature 

at which the measurement was conducted is often given, due to the strong dependence of 

temperature upon interfacial tension. There are conflicting reports in the literature as to the 

trend of increasing temperature upon interfacial tension. Lutton et al., (1969) and Gaonkar, 

(1992) showed that elevated temperatures increased the interfacial tension between the 

dispersed and continuous phases, whilst conversely, Jennings, (1967) and Cabrerizo-Vílchez 

et al., (1995) described how interfacial tension decreased as a function of temperature, 

ascribing the observed reduction to density differentials at the interface as a function of 

temperature. 

The predominant factor contributing to differences in the interfacial tension of a 

system is that of solutes, the major of which are surface active components, such as 

surfactants or proteins, collectively known as emulsifiers. Other components play lesser roles 

in the influence of interfacial tension, such as sugars and salts. Sugar is thought to have very 

little to no effect upon interfacial tension, whilst salt is known to slightly increase it 

(Gaonkar, 1992). The effect of surface active components upon interfacial tension is under 

continual investigation, and is known that they significantly reduce the interfacial tension 

between the continuous and dispersed phases. Emulsifier molecules adsorb to the oil-water 

interface, extending hydrophilic moieties into the aqueous component (i.e. polar) and 

hydrophobic moieties into the oil component (i.e. apolar). This adsorption and rearrangement 
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of emulsifier molecules at the oil-water interface reduces the direct contact of these 

molecules with one another diminishing the surface free energy of the system, the main factor 

contributing to the phase separation of oil-water systems (Beverung et al., 1999; 

McClements, 2009; O’Connell & Flynn, 2007), 

2.1.2.1.4. Role of the emulsifier 

The emulsifier has two primary roles in the emulsion formation, the reduction of 

interfacial tension, which facilitates droplet breakup, and the formation of a barrier between 

the two phases to prevent the re-coalescence of the two phases (cf. section 2.2.2.3.2; 

McClements, 2005; Walstra, 1993). The concentration of emulsifier effects the interfacial 

tension between the two phases, the higher the concentration, the lower the interfacial tension 

and consequently enhanced facilitation of droplet breakup (cf. section 2.2.1.3; Walstra, 1993). 

The degree of prevention of re-coalescence is dependent on both the concentration of the 

emulsifier, where the Gibbs-Marangoni effect can aid in the stabilisation of emulsions, and 

the type of emulsifier, whereby some emulsifiers (i.e. proteins) form thicker interfacial layers 

than others. There are a range of different emulsifiers which can be used to aid emulsion 

formation, such as surfactants (McClements, 2005), proteins (Dickinson, 1999) and solid 

particles, commonly referred to as Pickering particles (Pichot, 2010; Pickering, 1907; 

Ramsden, 1903). 

The Gibbs-Marangoni effect provides coalescence stability to newly formed droplets 

due to interactions of emulsifier at the interface and in the continuous phase (Walstra, 1993). 

During emulsification, if two newly formed emulsion droplets with insufficient coverage of 

emulsifier move into close proximity with one another, they appropriate more surfactant 

during their approach. However, the amount of surfactant available for adsorption will be 

lowest at the point where the liquid film between two emulsion droplets is thinnest. The 
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interfacial differential in this region is greatest due to the lower concentration of adsorbed 

emulsifier (i.e. surface loading; Γ), inducing the Marangoni effect, whereby surface flowing 

in the direction of the region of higher interfacial tension occurs. More specifically, surfactant 

is redistributed to regions of low surface loading. The movement of emulsifier at the surface 

of the interface due to the interfacial differentials causes a streaming effect, moving the 

emulsions droplets from one another (i.e. a self stabilising mechanism). This effect is 

typically observed for low molecular weight surfactants, rather than proteins, owing to the 

significant molecular weight differences between these emulsifier types, inhibiting interfacial 

flowing in the case of proteins (Binks, 2000; Walstra & Smulders, 2000).  

2.1.2.2. Emulsion stability 

Emulsion stability is of great importance as many emulsion based products require 

prolonged storage which necessitates long term stability, often in excess of a year. Emulsion 

stability is characterised by a stable droplet size and droplet size distribution which does not 

change over the life time of the product, static rheological properties and no microbial 

activity. There are two factors which affect emulsions, stabilising effects and destabilisation 

effects, and will both be discussed hereafter. Emulsion stabilisation can either be kinetic or 

thermodynamic, which is dependent on the droplet size. Destabilisation mechanisms which 

can affect emulsions include phase separation, either creaming or sedimentation, depending 

on the type of emulsion (O/W or W/O), droplet aggregation mechanisms, such as flocculation 

or coalescence and Ostwald ripening. 

2.1.2.2.1. Thermodynamic and kinetic stability 

When considering emulsion systems it is necessary to distinguish between its 

thermodynamic and kinetic stability. Thermodynamics explains whether a process will occur, 

whilst kinetics determines the rate of the process if it occurs. Due to the interfacial tension 
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between the continuous and dispersed phases, emulsions are inherently thermodynamically 

unstable systems and tend to minimise the surface area between the two phases by phase 

separation (cf. section 2.1.2.2.2), with the exception of microemulsions which are 

thermodynamically stable (Eastoe, 2002; McClements, 2005).  

The free energy differential (∆G; the interfacial tension between the continuous and 

dispersed phases) associated with emulsion formation indicates the thermodynamic stability 

of the system, yet provides no information as to the kinetic stability of emulsion systems. The 

kinetic stability of emulsions involves the rate of emulsion destabilisation with respect to the 

time, the nature of the changes occurring, and/or the fundamentals for these mechanisms. 

Regardless of thermodynamic instabilities associated with emulsions, prolonged stability can 

be achieved through kinetic stabilisation yielding a metastable system (Binks, 2000; 

Dickinson, 1998; McClements, 2005).  

Kinetic stability of emulsions is understood in terms of the resultant emulsion droplet 

size (smaller emulsion droplets possess greater kinetic stability), the dynamics of the system 

and the type of surface stabilisation mechanism utilised for the formation of the emulsion. 

The dynamic stability of emulsions refers to the continual motion of emulsion droplets due to 

Brownian motion or gravity under quiescent conditions, and additional motion of droplets 

occurs when external forces are applied to the system. The surface stabilisation mechanisms 

determine the nature of the interactions between emulsion droplets which come into close 

proximity with one another, either moving apart, associating together (i.e. flocculation; cf. 

section 2.1.2.2.3.1) or merging together (i.e. coalescence; cf. section 2.1.2.2.3.2) (Chanamai 

& McClements, 2000; Singh, 2011). 

In addition to surface stabilisation mechanisms for the improvement of kinetic 

stability, the rheology of the continuous phase can be altered with texture modifiers for 
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example to either increase the bulk viscosity or form a gel network, reducing the mobility of 

emulsion droplets within bulk reducing the likelihood of droplet collisions (McClements, 

2009; Surh et al., 2006).  

2.1.2.2.2. Phase separation 

As emulsions are dispersions of two immiscible fluids there is a thermodynamic 

tendency for the phases to separate due to the interfacial tension between the two phases and 

that the system aims from a thermodynamic perspective to achieve the lowest possible 

entropy. This may be achieved by reducing the interfacial area between the two phases (i.e. 

coalescence; cf. section 2.1.2.2.3.2). In emulsion systems with sufficient emulsifier to prevent 

phase separation due coalescence of the two phases, emulsions can be destabilised by the 

difference in density of the two phases. The two phases in emulsions often have different 

densities, and this leads to gravitational separation, called creaming in O/W emulsions where 

oil droplets rise to the surface, or sedimentation in W/O emulsions where water droplets go 

tend to the bottom of an emulsion (Chanamai & McClements, 2000; Dickinson & Ritzoulis, 

2000).  

Gravitational separation of emulsions is described by Stokes’ law, which predicts the 

rate of gravitational separation of a given droplet size: 

     
               

 

    
                                                                                                              (2.5) 

Where, vs is the separation velocity (m s-1), ρd is the density of the dispersed phase (kg 

m-3), ρc is the density of the continuous phase (kg m-3), g is the local gravitational 

acceleration (m s-2), d3,2 is the emulsion droplet size (μm/nm) and ηc is the continuous phase 

viscosity (Pa.s). 
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The primary methods for minimising gravitational separation of emulsions include 

reduction of the emulsion droplet size (d3,2), increasing the viscosity of the continuous phase 

(ηc) and modification of the density differential between the continuous and dispersed phases 

to make them more comparable. Stokes’ law shows that the rate of gravitational separation 

(vs) has a quadratic relationship with emulsion droplet size, thus minimising emulsion droplet 

size reduces the rate at which emulsion droplets cream/sediment. In addition, increasing the 

viscosity of the continuous phase reduces the mobility of emulsion droplets within the bulk, 

reducing the rate of gravitational separation (McClements, 2005; Radford et al., 2004).   

2.1.2.2.3. Droplet aggregation 

Emulsion systems have the potential to undergo a number of types of droplet 

aggregation, including flocculation (bridging or completion) or coalescence (partial or 

complete), due to the thermodynamic instabilities between the dispersed and continuous 

phases. Emulsions are dynamic systems, whereby droplets are in a state of motion due to 

gravitational forces and Brownian motion. This droplet motion inevitably leads to droplet 

collisions, which may lead to either flocculation or coalescence depending on the nature if the 

interfacial layer of the droplet (McClements, 2005). 

2.1.2.2.3.1. Flocculation 

Flocculation is the process whereby two or more emulsion droplets associate with one 

another, whilst maintaining their discrete integrity. These associations of droplets are referred 

to as flocs. The association of emulsion droplets as flocs increases the effective volume of the 

associates, increasing the rate of gravitational separation as described by Stokes’ law (cf. 

section 2.1.2.2.2). Additionally, the development of flocculated emulsions yields a 

pronounced increase in the viscosity, due to the increase in the effective hydrodynamic 

volume of the floc, similar to the enhancement of viscosity as per protein solutions (cf. 
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section 2.1.1.1.3). There are two main mechanisms by which flocculation of emulsion 

systems occurs, including bridging or depletion flocculation (Chanamai & McClements, 

2000; Dickinson et al., 1997; McClements, 2005). 

Bridging flocculation commonly occurs in emulsions stabilised with biopolymers 

(e.g. proteins), whereby the associative non-covalent interactions between the hydrophobic 

moieties adsorbed to one droplet interface interact with either the hydrophobic moieties of 

another or the hydrophobic dispersed phase, yielding the development of flocs. This type of 

flocculation tends to occur in systems containing insufficient emulsifier where regions of the 

emulsion droplet surface are not covered completely by emulsifier. Additionally, bridging 

flocculation may occur if an oppositely charged biopolymer is present within the continuous 

phase, linking emulsion droplets. These types of bridging flocculation can be mitigated 

against by sufficiency of emulsifier and ensuring that emulsifier and added biopolymer have 

similar charges, respectively (Dickinson & Golding, 1997; McClements, 2005; Tan & 

McGrath, 2012).  

Depletion flocculation occurs due to the presence of unadsorbed or nonadsorbing 

colloidal entities within the continuous phase. These nonadsorbing entities may be an excess 

of emulsifier in the form of surfactant micelles or protein associates (cf. section 2.1.1). These 

nonadsorbing colloidal entities cause an attractive interaction between emulsion droplets due 

to the osmotic effect arising from the exclusion of these colloids from the confined volume 

between two adjacent emulsion droplets. This attractive force, due to osmotic pressure, 

increases as a function of concentration of free colloids in the continuous phase, eventually 

causing emulsion droplets to associate with one another in the form of flocs. The 

concentration of free biopolymer which initiates depletion flocculation is referred to as the 

critical flocculation concentration (CFC). The CFC decreases as a function of increasing 

emulsion droplet size, whereby the effective volume of colloidal entities increases. Therefore, 
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reduction of emulsion droplet size reduces the CFC, and the potential for depletion 

flocculation (Chanamai & McClements, 2000; Jenkins & Snowden, 1996; Radford & 

Dickinson, 2004).  

2.1.2.2.3.2. Coalescence 

Coalescence is an emulsion destabilisation mechanism by which emulsion droplets 

merge together yielding a larger emulsion droplet. This is a thermodynamically driven 

process, whereby the system is minimising the surface area, and thus the free surface energy. 

This growth in emulsion droplet size causes an increase in the rate of gravitational separation, 

often leading to an increased rate of coalescence due to greater contact of emulsion droplet 

surfaces. In water continuous emulsions the coalescence of emulsions results in the formation 

of an oil layer on the surface, known as oiling off, and in oil continuous emulsions, 

coalescence leads to the collecting of free water at the base of the material (McClements, 

2005; Tcholakova et al., 2006).  

There are two primary methods for controlling and minimising coalescence within 

emulsions, through the prevention of droplet contact or development of a thicker interfacial 

layer. The prevention of droplet contact can be achieved by through the increase of viscosity 

of the continuous phase or the development of a gelled network reducing the mobility of 

emulsion droplets through the bulk. The development of a thicker interfacial layer is achieved 

through the use of sufficient emulsifier, or alternatively a layer-by-layer build up on the 

emulsion droplet surface, using oppositely charged biopolymers, such as positively charged 

chitosan and negatively charged proteins (e.g. sodium caseinate, gelatin, etc.) (Dalgleish, 

1997; Dickinson, 1997; Guzey & McClements, 2006; McClements, 2009).   
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2.1.2.2.4. Ostwald ripening 

Ostwald ripening is an emulsion destabilisation mechanism whereby emulsion droplet 

size increases at the expense of smaller droplets, due to mass transfer of dispersed phase 

through the bulk from one droplet to another. However, for standard food emulsions the 

effect of Ostwald ripening is minimal due to the limited solubility of food lipids (e.g. 

triglycerides) in water (McClements, 2005; Wooster et al., 2008). Ostwald ripening plays a 

prominent role in emulsion stability where the lipids are more water soluble, such as the case 

for flavour oils (e.g. limonene, eugenol, etc.), or when the continuous phase contains alcohol, 

such as cream liqueurs (Heffernan et al., 2011; Williams & Pierce, 1998). 

The physical basis for Ostwald ripening is described by the Lifshitz-Slezov-Wagner 

(LSW) theory as follows (Lifshitz & Slyozov, 1961; Wagner, 1961): 

     

  
  

 

 
                                                                                                                      (2.6) 

Where R is the radius of the emulsion droplet (m), t is time (s), S(∞) is the solubility 

of the dispersed within the continuous phase for an emulsion droplet with a planar interface 

(g L-1), D is the diffusion coefficient of dispersed phase through the continuous phase (m2 s-1) 

and α is the characteristic length scale, determined from Eq. 2.7 as follows: 

   
    

  
                                                                                                                              (2.7) 

Where γ is the interfacial tension between the continuous and dispersed phases (N m-1), 

Vm is the molar volume of the dispersed phase (m3 mol-1), R is the ideal gas constant (8.314 J 

mol-1 K-1) and T is temperature (K).  

The main factor of Ostwald ripening in emulsion systems is the degree of solubility of 

the dispersed phase within the aqueous phase, as well as the use of certain ingredients which 
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decrease solvent quality (e.g. ethanol), yielding systems demonstrating greater solubility of 

dispersed phase within the continuous phase. Utilisation of a dispersed phase with limited 

solubility in the continuous phase and omission of ingredients which decrease solvent quality 

minimises the mechanism of Ostwald ripening. 

Improved packing of emulsifier at the interface yields a lower interfacial tension 

between the dispersed and continuous phases, which consequently reduces the rate of 

Ostwald ripening in emulsion systems (Taylor, 1998; Wooster et al., 2008). Development of 

a structured interface either through fat sintering or protein gelation yields a more rigid 

interface inhibiting the diffusion of partially solubility dispersed phase within the continuous 

phase, minimising the effects of Ostwald ripening (Frasch-Melnik et al., 2010).  
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2.2. Literature review: ultrasound 

This section critically assesses the fundamental theories of ultrasound, in particular 

low frequency high power ultrasound, are reviewed, with a specific focus on the functional 

modification of food proteins and nanoemulsion fabrication using power ultrasound. This 

section examines how ultrasound propagation in a liquid media exhibits cavitations, and how 

these phenomena yield regions of hydrodynamic shear, localised temperature increases and 

pressure differentials. 

The discussion within this section has been submitted for publication within: 

O’Sullivan, J.J., Greenwood, R.W. and Norton, I.T. 2015. Applications of ultrasound for the 

functional modification of proteins and the nanoemulsion formation: A review. Trends in 

Food Science and Technology. 
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2.2.1. Abstract  

This review surveys the most recent developments in low frequency, high power 

ultrasound for the functional modification of proteins derived from a number of food sources 

(e.g. dairy, animal, cereal, legume and fruit), and subsequently for the fabrication of nano-

sized emulsion droplets. Aside from a overview of the fundamentals of ultrasound, including 

a cursory outline of the mathematical models for acoustic streaming phenomena, ultrasonic 

cavitation, heat generation and acoustic energy determination via calorimetry, examples of 

ultrasound treatment for improvements in the solubilisation, hydration, hydrophobicity, 

emulsifying and rheological performance of proteins are described. 

Ultrasound possesses the industrial capability to improve the functional properties of 

proteins, and this review emphasises the improvement to the surface active properties of 

proteins, which is attributed to decreases in protein aggregate size and increases in 

hydrophobicity, demonstrating increased molecular mobility.  

Finally, the utilisation of ultrasound for the fabrication of nanoemulsions is assessed 

with a particular focus on the intrinsic relationship between process configuration (i.e. batch 

or continuous), processing parameters (i.e. acoustic power and residence time) and emulsion 

formulation (i.e. emulsifier type and concentration). A better understanding of the effect of 

industrially relevant high molecular weight biopolymers (i.e. proteins) within ultrasonic 

emulsification processes would increase the utilisation of ultrasound as a fabrication 

technique for nano-sized emulsion droplets.  
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2.2.2. Introduction 

Low frequency, high power ultrasound, commonly referred to as power ultrasound, 

has gained significant interest over the past decade as it possesses a wide range of uses within 

a myriad of sectors making it a versatile processing technology, for the alteration, generation 

and modification of microstructures. As a consequence, due to ultrasonic cavitation, it is 

capable of mechanically altering the structure of proteins in solution without the use of 

additives (chemical or biological) or excess heat, and disrupting volumes of dispersed phase 

in emulsion systems for the generation nano-sized emulsion droplets (McClements, 1995; 

O’Brien, 2007).  

Proteins are ingredients utilised within a wide range of formulations due to both their 

nutritional value and functionality. The term ‘functionality’ as applied to food ingredients 

describes any property other than nutritional attributes that contribute to an ingredient’s 

beneficial aspects within a formulation (Damodaran, 1997a). Proteins are highly functional 

molecules within food systems capable of the stabilisation of oil droplets and air bubbles, 

formations of gel structures and the enhancement of viscosity (O’Connell & Flynn, 2007; P 

Walstra & van Vliet, 2003). This functionality is due to the complex chemical makeup of 

these molecules owing to their unique amino acid sequences (Beverung et al., 1999). 

Improvement to the functional properties of proteins is of great interest so as to increase their 

commercial value and improve utilisation of these high value ingredients, and is 

conventionally achieved through either increasing or reducing their molecular weight, or 

conjugation with other biopolymers (Kato et al., 1993; Nik et al., 2010). 

As for emulsion formation, traditionally it is achieved industrially through the 

implementation of homogenisers, usually two stages, operating at pressures up to 25 MPa 

(McClements, 2005). Numerous technologies have shown the capacity for the fabrication of 



Chapter 2. State of the Art 

 52  

nano-sized emulsion droplets, such as microfluidics, high and ultrahigh pressure valve 

homogenisers, and membrane emulsification (crossflow and rotary) (Lee & Norton, 2013; 

Lloyd et al., 2014). However, industry is reluctant to readily adopt these technologies due to 

the associated capital expenditure and scalability issues.  

Amongst the forthcoming technologies for the functional modification of proteins and 

generation of nano-sized emulsion droplets, power ultrasound has garnered particular interest 

due in part to the mechanical nature of this process (i.e. ultrasonic cavitations). Traditionally, 

the functionality of proteins is altered by aggregation (i.e. increasing molecular weight), 

proteolysis (i.e. reducing molecular weight) or conjugation with other entities (e.g. Maillard 

reaction with reducing sugars). Power ultrasound offers the possibility of altering protein 

structures without the use of additives or excessive thermal treatments, simplifying the 

processing of these ingredients and generating a ‘cleaner’ packaging label for consumers. 

Moreover, the main drawbacks limiting emergent technologies under investigation for the 

fabrication of nanoemulsions are that of scalability and the associated capital expenditure. 

With adequate sonoreactor design (i.e. chamber volume and volumetric flow rate selection), 

and high throughput cost effective generation of nano-sized emulsion droplets is readily 

achievable (Gogate et al., 2011).  

The aim of this review is to outline the fundamentals of ultrasound and critically 

assess applications of ultrasound treatment for the functional modification of proteins in 

aqueous solution (e.g. solubility, hydrophobicity, rheological behaviour, emulsifying 

performance, etc.) and the generation of nano-sized emulsion droplets. A particular focus has 

been placed on the industrial relevance of ultrasonic processing within the food industry, as a 

cost effective, mechanical method for the generation, alteration and modification of food 

microstructures. 
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2.2.3. Fundamentals of ultrasound 

Ultrasound is an acoustic wave above the threshold of human auditory perception (> 

16 kHz). Acoustic waves are the propagation of mechanical (i.e. acoustic) waves of pressure 

and displacement through a medium, as longitudinal waves, exhibiting compressions (high 

pressure regions) and rarefactions (low pressure regions). Longitudinal waves are waves 

whereby the displacement of the medium is in the same direction as the wave (Mansfield & 

O’Sullivan, 1998) (cf. Fig. 2.3). 

 

Fig. 2.3. Depiction of a longitudinal wave showing compressions, rarefactions and wavelength. 

Ultrasound can be further classified in two distinct categories based on the frequency 

range, high frequency (100 kHz – 1 MHz) low power intensity (< 1 W cm-2) ultrasound, 

utilised most commonly for the analytical evaluation of the physicochemical properties of 

food (Chemat et al., 2011; Demirdöven & Baysal, 2008), and low frequency (20 – 100 kHz) 

high power intensity (10 – 1000 W cm-2) ultrasound recently employed for the alteration, 

generation and modification of foods, either physically or chemically (McClements, 1995; 

Soria & Villamiel, 2010). The acoustic power intensity (Ia; W cm-2) is defined as the acoustic 

power (Pa; W) per unit area of ultrasound emitting surface (SA; cm-2). This review will focus 

solely upon low frequency, high power ultrasound, and hereafter will refer to it as simply 

power ultrasound. 
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The effects of power ultrasound on food structures are attributed to ultrasonic 

cavitation, the rapid formation and collapse of gas bubbles, generated by localised pressure 

differentials (~ 50 MPa) occurring over short periods of times (a few microseconds). These 

ultrasonic cavitations cause localised regions of intense hydrodynamic shear forces and a rise 

in temperature at the site of bubble collapse (up to 5000 oC), contributing to the observed 

effects of power ultrasound (Güzey et al., 2006; O’Brien, 2007; O’Donnell et al., 2010). 

Acoustic waves are generated from the conversion of electrical energy into 

mechanical energy. A transducer, a device which converts energy from one form to another, 

is employed to produce acoustic waves. In acoustics, transducers are commonly referred to as 

tips. More specifically, the tip, a part of the sonotrode, is the point from which the acoustic 

waves emanate. The piezoelectric material (e.g. quartz or lithium sulphate zirconate titanates) 

within the transducer oscillates in response to electrical energy, leading to mechanical 

vibrations in the tip. When the tip is submerged in liquids, the mechanical energy at the tip is 

delivered to the medium as the tip vibrates generating acoustic waves (Martini, 2013; Soria & 

Villamiel, 2010; Trujillo & Knoerzer, 2011a). 

2.2.3.1. Acoustic streaming 

Ultrasonic emanation from the tip of the sonotrode is referred to as acoustic streaming 

(Nyborg, 1953; Tjøtta, 1999).There are two main acoustic streaming theories which describe 

this phenomena mathematically, those developed by Rayleigh (Rayleigh, 1896), Nyborg 

(Nyborg, 1953) and Westervelt (Westervelt, 1953), referred to as the RNW theory, and that 

proposed by Lighthill, the Stuart streaming theory (Lighthill, 1978). The RNW theory is 

applied to systems where the Reynolds number (i.e. the ratio of inertial to viscous forces) is 

very low, and the Stuart streaming theory is applicable to systems whereby the acoustic jets 
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take the form of an inertially dominated turbulent jet (i.e. high Reynolds number) with 

powers in excess of 4 x 10-4 W (Trujillo & Knoerzer, 2011a). 

Even though solutions have been derived to describe acoustic streaming based on the 

RNW theory (Nowicki et al., 1997; Nowicki et al., 1998), it was demonstrated that it is 

applicable to systems with very low flows exhibiting low Reynolds numbers (Re < 1) and 

low sources of acoustic power (Lighthill, 1978; Zarembo, 1971). Therefore, the RNW theory 

is not applicable to the jet streaming exhibited by low frequency high power transducers 

(Trujillo & Knoerzer, 2011a) (cf. Appendix A). 

The term ‘Stuart streaming’ was introduced to describe the acoustic streaming at 

higher Reynolds numbers resulting from high power acoustic beams from transducers 

(Lighthill, 1978; Stuart, 1963). This type of acoustic streaming is the most commonly 

exhibited within the food industry for the functional modification of ingredients and the 

development of microstructures. Lighthill, (1978) states that “it is hardly an exaggeration to 

say that all really noticeable acoustic streaming motions are Stuart streaming,” and 

furthermore proved that acoustic streaming takes the form of an inertially dominated 

turbulent jet upon exceeding an acoustic power threshold of 4 x 10-4 W. 

High power acoustic streaming manifests in the form of a jet showing a narrower 

beam of sound emanating from the source with an acoustic power expressed as follows: 

                                                                                                                                     (2.8) 

Where P0 is the acoustic power at the tip of the sonotrode (W), I0 is the acoustic 

power intensity at the tip of the sonotrode (W cm-2) and SA is the cross sectional area of the 

sonotrode tip (cm2) (Lighthill, 1978; Margulis & Margulis, 2003). In the absence of 

attenuation the principles of conservation of energy are applicable, whereby the energy 
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entering the beam from the transducer tip is equal to that leaving the beam (Tjøtta, 1999). 

Thus this conservation of energy can be expressed as follows: 

                                                                                                                                (2.9) 

Attenuation of the sound beam reduces the power of the sound beam according to: 

     
                                                                                                                           (2.10) 

Where x is the distance from the source emanating the sound beam (m) and e-βx is the 

damping term which accounts for spatial attenuation of the acoustic beam, primarily due to 

ultrasonic cavitations. β is the attenuation coefficient proposed by Lighthill defined as the 

proportional loss of ultrasonic energy per unit displacement travelled by a acoustic wave 

(Lighthill, 1978).  

Lighthill proposed that the sonotrode emanates the ultrasonic power as a sound beam 

where the net force at a given distance, x, is determined by applying the law of conservation 

of momentum, yielding the acoustic momentum flow rate after attenuation (Lighthill, 1978). 

Application of the law of conservation of momentum allows for the conclusion that a 

reduction in the acoustic momentum, increases the hydrodynamic momentum in the path of 

the sound beam, also referred to as streaming (Trujillo & Knoerzer, 2011a, 2011b). 

The spatial rate of decay of the hydrodynamic momentum flow rate acts as a net force 

per unit displacement in a given direction, x, generating motion of the medium. If there was 

no impedance present within the path of the sound beam as a consequence of cavitations, the 

attenuation coefficient, β, would have a value of zero, and the net force would thus become 

neglected. Therefore, streaming is a result of acoustic attenuation caused by ultrasonic 

cavitations in the locus of the sound beam (Tjøtta, 1999; Zarembo, 1971). 
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For high values of the attenuation coefficient, β, the streaming motion of the acoustic 

beam is comparable to that of a turbulent jet, whereby the damping term, e-βx, approaches 

zero at short distances by which over short distances within the locus of the sonotrode tip the 

momentum delivered to the medium is equal to P0/c (Trujillo & Knoerzer, 2011a).  

Ultrasonic processing utilised within the food industry for the development of 

microstructures and functional modification of food ingredients is usually power ultrasound 

processing which is most adequately modelled and explained by the Stuart streaming theory 

(McClements, 1995; Trujillo & Knoerzer, 2011a). 

2.2.3.2. Ultrasonic cavitations 

High power ultrasonic waves generate several different types of cavitation bubbles 

due to pressure changes during wave propagation (Servant et al., 2001). Cavitation bubbles 

are formed at acoustic intensities greater than that of the cavitation threshold. The cavitation 

threshold pressure required to initiate cavitations is a strong function of stream width and 

acoustic power, and once triggered bubble generation increases with increasing acoustic 

power (Leighton, 1995; Neppiras, 1980). Cavitation bubbles disperse (i.e. reflect or scatter) 

and attenuate (i.e. gradual reduction of ultrasonic intensity) ultrasonic waves due to the 

acoustic impedance differential between the liquid and gaseous phases. When an acoustic 

wave moves from one medium to another (i.e. from liquid to gaseous bubbles) differences in 

the speed of sound and compressibility between the two phases induces an impedance 

mismatch (McClements, 1995; O’Brien, 2007).  

As a consequence, the acoustic wave is either partially or completely scattered by the 

bubble. Systems containing many bubbles exhibit multiple scatterings as bubbles behave like 

mirrors dispersing acoustic waves, yielding redirection of the acoustic wave, causing an 

effective increase in the absorption of acoustic waves (O’Brien, 2007). The cavitation locus is 
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situated in an area close to the tip of the sonotrode, whereby this region yields the highest 

levels of acoustic intensity, and thus an area of increased formation of cavitations. Therefore, 

the attenuation in this region is quite high and dominated by acoustic scattering (Martini, 

2013). The acoustic intensity decays exponentially with respect to distance from sonotrode 

tip, almost completely dissipated at distances as low as 1 cm (Chivate & Pandit, 1995; Kumar 

et al., 2006; Kumaresan et al., 2006), highlighting the importance of adequate sonotrode 

positioning for effective processing of liquid medium (Gogate et al., 2011; Gogate et al., 

2003).  

Modelling the ultrasonic cavitation process in real, non-ideal conditions is difficult 

given the numerous multi-physics elements involved in the development and behaviour of 

bubbles in an acoustic field, such as the oscillating pressure field, formation and collapse of 

bubbles, and acoustic dispersion and attenuation. A model predicting cavitation should 

account for bubble formation due to acoustic pressure differentials, coalescence of adjacent 

bubbles, bubble breakup, lifespan of bubbles, and interactions between bubbles and the 

acoustic field emitted from the sonotrode tip (Lauterborn et al., 2007; Leighton, 1995).  

The presence and formation of bubbles within the acoustic field influences the 

transmission of ultrasound due to the impedance differential between liquids and gases, and 

the dispersion of ultrasonic waves upon contact with bubble surfaces (i.e. attenuation). Be 

that as it may, the acoustic field also influences bubbles within the medium through the 

Bjerknes force, a translational force exerted upon a bubble due to pressure gradients resulting 

in bubble oscillations, and acoustic streaming resulting from sound absorption (Mettin et al., 

1997). Both of these mechanisms contribute to the migration of bubbles in the presence of an 

acoustic field (Lauterborn et al., 2007; Mettin et al., 1997; Trujillo & Knoerzer, 2011b). 
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The modelling of single bubble mechanics under exertion of an acoustic field is well 

established (Crum, 1975; Doinikov & Dayton, 2006), yet the fundamentals underpinning the 

influence of acoustic fields upon multi-bubble systems has yet to be fully understood due to 

the greatly more complex nature of the system in comparison to the single bubble system. 

2.2.3.3. Heat generation 

Ultrasonic processing of fluid systems yields heat generation due to a number of 

factors which occur as a consequence of the transmission of an acoustic wave through the 

medium, including molecular absorption, dissipation of turbulence, dispersion of acoustic 

waves by gaseous bubbles and viscous losses. The acoustic energy transmitted to the medium 

manifests as both kinetic energy (i.e. bulk motion) and thermal energy (i.e. heat). The kinetic 

energy transmitted to the medium is dissipated as heat due to viscous losses (Tjøtta, 1999; 

Zisu et al., 2010). 

In ultrasonic processes where the attenuation coefficient, β, is high (i.e. a high number 

of ultrasonic cavitations) it can be assumed that the acoustic energy is rapidly converted to 

thermal energy in the locus of the sonotrode tip, from which the acoustic waves emanate 

(Lighthill, 1978). The validity of this assumption is true for systems exhibiting high 

attenuation coefficients where dissipation of acoustic energy occurs at the transducer, and 

additionally where the kinetic energy disperses at the sonotrode tip. Chivate & Pandit, (1995) 

confirmed that acoustic energy dissipates completely within close proximity of the sonotrode 

tip, approximately 1 cm, and it was found that the majority of kinetic energy (> 80 %) is 

dissipated in the form of thermal energy in a small volume (< 2 %) in the locus of the 

transducer (Kumar et al., 2006; Kumaresan et al., 2006). 

  



Chapter 2. State of the Art 

 60  

2.2.3.4. Acoustic energy determination  

The determination of the acoustic energy input into a volume of liquid is a topic under 

investigation, however a satisfactory description of the solution has thus far to be elucidated, 

even though the fields of sonochemistry and ultrasonic cavitation have been under 

investigation for several decades. The electrical consumption of the ultrasonic process and 

the acoustic power under non-cavitational conditions are attainable, however acoustic power 

measurements within the cavitational regime are lacking (Margulis & Margulis, 2003).  

As acoustic energy is transmitted to a liquid medium via the sonotrode tip, this 

acoustic energy is dissipated as absorbed acoustic energy, manifesting as thermal energy, and 

unadsorbed energy. The absorbed acoustic energy is the active component of total acoustic 

energy involved in the processing. Acoustic power intensity, Ia, can be estimated from the 

following: 

    
    

  
                                                                                                                            (2.11) 

Where f is the frequency of sound (Hz), U is the voltage of the transducer (V), k is a 

conversion of coefficient dependent on the transducer type, ρ is the density of the liquid 

medium (kg m-3) and c is the speed of the acoustic wave in a given medium (m s-1). The 

product of density and speed of sound (i.e. ρc) is known as the acoustic resistance (Margulis 

& Margulis, 2003). Under non-cavitational conditions the acoustic energy can be estimated 

accurately using Eq. 2.11, whilst in the cavitational regime the acoustic resistance is 

significantly reduced. The reduction of both the speed of sound and bulk density of the 

medium by the presence of cavitation bubbles within the medium depresses the accuracy of 

the acoustic intensity determination from Eq. 2.11. The underlying principles involved in the 

formation of and interactions between cavitation bubbles are not fully understood, hence the 
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reliability of the acoustic resistance term and consequently Eq. 2.11 as an effective method 

for the estimation of the acoustic intensity within the cavitational regime is dubious 

(Leighton, 1995; Margulis & Margulis, 2003; O’Brien, 2007). 

The drawbacks associated with Eq. 2.11 are mitigated against by the usage of a 

calorimetric method for the determination of absorbed energy (cf. Eq. 2.12), whereby the 

acoustic resistance term is neglected. The main assumption for the determination of acoustic 

energy via calorimetry is that all absorbed acoustic energy is converted to thermal energy.  

    
  

  
  

     
  

  
 

  
                                                                                                             (2.12) 

Where Pa is the absorbed acoustic power (W), SA is the surface area of the tip of the 

transducer (cm2; i.e. ultrasound emitting surface), m is the mass of ultrasound treated medium 

(g), cp is the specific heat capacity of the medium (J/gK) and dT/dt is the rate of change of 

temperature with respect to time, starting at t = 0 (oC s-1). As energy emitted from the 

sonotrode tip, it is absorbed within close proximity to the tip due to cavitational attenuation, 

the energy is dissipated as heat, allowing for estimation of the acoustic energy absorbed 

without the necessity to account for cavitation bubbles (i.e. the acoustic resistance term) 

(Jambrak et al., 2008; Margulis & Margulis, 2003). 

2.2.4. Physicochemical alteration of food proteins via ultrasonic processing 

From the literature, the application of ultrasonic treatment has been related to proteins 

derived from dairy, animal, cereal, legume and fruit sources, see Table 2.1.   
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Table 2.1. Examples of studies examining the effect of ultrasonic treatment related to dairy, animal, cereal, 

legume and fruit protein sources, in relation to solubilisation, aggregate size, molecular structure, rheology and 

interfacial behaviour. 

Protein source Reference 

Dairy Micellar casein Madadlou et al., (2009) 

 Sodium caseinate O’Sullivan et al., (2014), O’Sullivan et al., (2014) 

 Calcium caseinate Zisu et al., (2010) 

 Milk protein concentrates/ 
isolates (including retentates 
and skim powders) 

Chandrapala et al., (2014), McCarthy et al., (2014), 
O’Sullivan, et al., (2014), Shanmugam et al., (2012), Uluko et 
al., (2013), Yanjun et al., (2014), Zisu et al., (2010) 

 Whey protein concentrates/ 
isolates (including retentates, 
BSA and α-lactalbumin) 

Arzeni et al., (2012), Barukčić et al., (2014), Chandrapala et 
al., (2011), Gülseren et al., (2007), Güzey et al., (2006), Guzey 
& Weiss, (2001), Jambrak et al., (2008), Jambrak et al., 
(2010), Jambrak et al., (2014), Martini et al., (2010), 
O’Sullivan, et al., (2014), Zisu et al., (2010) 

Animal Egg white proteins Arzeni et al., (2012), Arzeni et al., (2012), Krise, (2011), 
O’Sullivan et al., (2015b) 

 Gelatin (bovine and piscine) O’Sullivan et al., (2015b) 

Cereal Rice protein isolate O’Sullivan et al., (2015b) 

 Wheat gluten Zhang et al., (2011) 

Legume Soy protein concentrates/ 
isolates (including flakes) 

Arzeni et al., (2012), Chen et al., (2012), Hu et al., (2013), 
Jambrak et al., (2009), Karki et al., (2010), O’Sullivan et al., 
(2015b) 

 Pea protein isolate O’Sullivan et al., (2015b) 

 Black bean protein isolate Jiang et al., (2014) 

 Mung bean protein isolate Charoensuk et al., (2014) 

Fruit Walnut protein Jincai et al., (2013) 

 

Ultrasound treatment offers improved rates of dissolution and solubilisation of protein 

powders in comparison to conventional dissolution methodologies (i.e. high shear mixing) 
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(Chandrapala et al., 2014; McCarthy et al., 2014). The high levels of hydrodynamic shear 

associated with the high number ultrasonic cavitations disrupt agglomerates of powder 

imparting greatly increased rates of solubilisation in comparison to conventional rotor-stator 

mixing or high pressure homogenisation solubilisation methodologies for dairy powders with 

a high degree of micellar casein (Chandrapala et al., 2014). 

Moreover, ultrasound treatment reduced the size of aggregated caseins  in aqueous 

solution (phosphocasein, calcium caseinate, milk protein concentrate from retentate and milk 

protein concentrate reconstituted from powder), and this size reduction is attributed to the 

high shear forces associated with ultrasonic cavitations in liquid mediums (Madadlou et al., 

2009; McCarthy et al., 2014; Shanmugam et al., 2012; Yanjun et al., 2014; Zisu et al., 2010). 

Be that as it may, prolonged ultrasound treatment led to growth in aggregate size, related to 

whey-whey or casein-whey protein interactions as a consequence of elevated temperatures 

from ultrasound treatment (McCarthy et al., 2014; Shanmugam et al., 2012). Sonication of 

whey protein (suspensions, concentrates, isolates, and from retentate) similarly reduced the 

size of protein aggregates due to disruption of non-covalent interactions (i.e. hydrogen 

bonding, hydrophobic and electrostatic interactions) (Arzeni et al., 2012; Chandrapala et al., 

2011; Jambrak et al., 2014; Martini et al., 2010; Zisu et al., 2010), yet similarly displayed 

growth of particle size attributed to increases in temperature (Gülseren et al., 2007).  

Furthermore, the ultrasound treatment of proteins derived from legume sources (pea 

protein, soy protein, black bean protein and mung bean protein) and wheat gluten displayed 

reduction in aggregate size (Charoensuk et al., 2014; Jiang et al., 2014; O’Sullivan, Murray, 

et al., 2015b; Zhang et al., 2011), whilst ultrasound treatment of egg white proteins (Arzeni et 

al., 2012; Krise, 2011) exhibited growth in aggregate size attributed to thermal denaturation 

of protein due to increases in temperature from prolonged ultrasonic treatment. Sonication of 

rice protein isolate demonstrated no significant differences in size, associated with 
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insufficient provided acoustic energy to disrupt disulphide bonding maintaining the denatured 

aggregate structure (O’Sullivan, Murray, et al., 2015b). Size reduction of protein aggregates 

in aqueous solution from ultrasound treatment is associated with the disruption of associative 

non-covalent interactions which maintain protein aggregate structure in aqueous solutions. 

Nonetheless, ultrasound treatment does not appear to cause scission of the primary 

structure for a large number of proteins, including milk protein concentrate (Yanjun et al., 

2014), whey protein suspensions (Martini et al., 2010), soy protein isolate (Hu et al., 2013), 

pea protein isolate (O’Sullivan, Murray, et al., 2015b), wheat gluten (Zhang et al., 2011), 

black bean protein isolate (Jiang et al., 2014), gelatin (O’Sullivan, Murray, et al., 2015b) and 

egg white protein (Krise, 2011), as ultrasound treatment provides insufficient energy to cause 

scission of the primary acid sequence. Krise, (2011) observed a minor shift in the molecular 

weight distribution of egg white protein and attributed this to scission of disulphide bonds 

between cysteine residues present in egg white protein (Mine, 2002). The bond energy 

associated with the disulphide bond is less than that of the peptide bond maintaining the 

primary structure of proteins (cf. Table 2.2), nevertheless, the majority of ultrasonic energy is 

utilised in the disruption of the associative non-covalent interactions maintaining the protein 

associate structure, rather than disruption of covalent linkages. However, a significant 

reduction in the molecular weight of α-lactalbumin (Jambrak et al., 2010) and whey protein 

concentrate/isolate (Jambrak et al., 2014) has been observed which is contradictory to other 

results present in the literature.  
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Table 2.2. Bond energy (kJ mol-1) associated with intra- and intermolecular bonds present in proteins 

(McMurry, 2011). 

 Typical bonds present in proteins Bond energy (kJ mol-1) 

 C-N (peptide bond) 285 

 C=N 615 

Intramolecular bonds present 

within peptide chains 

C-C 348 

N-H 391 

 C-H 413 

 C=O 799 

   

Intermolecular bonds occurring 

between amino acids 

Hydrogen bonding 4 – 13 

S-S 226 

 

Sonication of protein solutions has been shown to either reduce the bulk viscosity, in 

the cases of calcium caseinate (Zisu et al., 2010), milk protein concentrate (Yanjun et al., 

2014; Zisu et al., 2010), whey protein from retentate (Zisu et al., 2010), soy protein isolate 

(Hu et al., 2013) and egg white protein (Arzeni et al., 2012), or to yield no difference in bulk 

viscosity, as for skimmed milk powder (Shanmugam et al., 2012) and α-lactalbumin 

(Jambrak et al., 2010). The reduction in bulk viscosity is attributed to the reduction in 

aggregate size as a consequence of ultrasonic cavitations. The spatial distance between 

adjacent protein aggregates is increased upon size reduction via ultrasound treatment, 

increasing the critical overlap concentration, c*, for a given protein solution, and thus, 

decreasing the bulk viscosity with respect to increasing protein concentration (Lefebvre, 

1982; Morris et al., 1981).   
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Fig. 2.4. Cryo-SEM micrographs of (a) 1% untreated bovine gelatin solution, (b) 1% ultrasound treated bovine 

gelatin solution, (c) 1% untreated bovine gelatin stabilised emulsion and (d) 1% ultrasound treated bovine 

gelatin stabilised emulsion.  Scale bars are 2 μm and 10 μm for solutions and emulsions, respectively. Image 

adapted from O’Sullivan et al., (2015b). 

Proteins which have been treated with power ultrasound have shown improvements in 

both emulsion formation and stability, for milk protein concentrate (Yanjun et al., 2014), 

milk protein isolate (O’Sullivan, et al., 2014), egg white protein (O’Sullivan, Murray, et al., 

2015b), bovine gelatin (O’Sullivan, Murray, et al., 2015b), soy protein isolate (Chen et al., 

2012), pea protein isolate (O’Sullivan, Murray, et al., 2015b), wheat gluten (Zhang et al., 

2011) and walnut protein (Jincai et al., 2013). These improvements in emulsion formation 

and stability were associated with increases in hydrophobicity, which occurred as 

hydrophobic protein residues within the interior of the untreated aggregate became revealed 

upon treatment with ultrasound, and improved interfacial packing at the emulsion droplet 

interface. In addition, ultrasound treatment of whey protein (Arzeni et al., 2012; Gülseren et 
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al., 2007), soy protein (Arzeni et al., 2012; Hu et al., 2013), black bean protein (Jiang et al., 

2014) and egg white protein (Arzeni et al., 2012) increased the hydrophobicity, and the rate 

of protein adsorption to and interfacial packing at the oil-water interface, as measured by 

interfacial tension. These differences were measured for the cases of milk protein isolate 

(O’Sullivan, et al., 2014), bovine gelatin (O’Sullivan, Murray, et al., 2015b), pea protein 

isolate (O’Sullivan, Murray, et al., 2015b) and soy protein isolate (Chen et al., 2012), further 

accounting for improvements in emulsion formation and stability. O’Sullivan et al., (2015b) 

visualised the improved interfacial packing using cryo-SEM for ultrasound treated bovine 

gelatin in comparison to untreated bovine gelatin, whereby the reduction in fibre size of 

bovine gelatin after sonication allowed for improved packing at the oil-water interface (cf. 

Fig. 2.4). 

Ultrasound treatment of a range of dairy proteins (whey protein concentrate, milk 

protein from retentate and calcium caseinate) utilising large scale sonoreactors demonstrated 

the capacity for ultrasound to modify the rheological behaviour of these proteins at pilot scale 

and was attributed to a reduction in protein aggregate size (Zisu et al., 2010). This work 

highlights the potential applicability of ultrasound for the functional modification of proteins 

at larger scales, whilst more work is required to fully implement this technology industrially. 

2.2.5. Nanoemulsion fabrication from ultrasound and the associated parameters 

Power ultrasound is a well established technique for the formation of emulsions from 

either coarse pre-emulsions (i.e. d3,2 > 50 μm) or discrete continuous and dispersed phases, 

consistently yielding nano-sized emulsion droplets (Bondy & Söllner, 1935; Leong et al., 

2009). The resultant microstructure of emulsions is dependent upon formulation and the 

emulsification processing conditions. Processing configurations (i.e. batch or continuous 

processing methodologies) and associated parameters (i.e. acoustic power, residence time, 

etc.) have been extensively investigated, yet the fundamental influence of emulsion 
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formulation with industrial relevant emulsifiers (i.e. high molecular weight biopolymers), 

geometric configuration to optimise contact time and the intrinsic interactions between 

processing and formulations have yet to be fully explored. 

Increasing the contact time of a coarse pre-emulsion within the acoustic field can 

decrease the emulsion droplet size to a minimum size, provided the residence time of the 

emulsion within the acoustic field is sufficient and there is sufficient emulsifier present for 

droplet coverage (Maa & Hsu, 1999). For batch processing methodologies increasing the 

processing time decreases the emulsion droplet size (Abisma  l et al., 1999; Cucheval & 

Chow, 2008; Delmas et al., 2011; Jafari et al., 2007; Jena & Das, 2006; Kaltsa et al., 2013; 

Kentish et al., 2008; Kiani & Mousavi, 2013; Leong et al., 2009; O’Sullivan et al., 2015a; 

Ouzineb et al., 2006; Ramisetty & Shyamsunder, 2011; Shanmugam et al., 2012; Tang et al., 

2013). Similarly increasing the residence time of emulsions for continuous processing, by 

decreasing the flow rate, decreases emulsion droplet size (Behrend et al., 2000; Behrend & 

Schubert, 2001; Freitas et al., 2006; Kentish et al., 2008; O’Sullivan et al., 2015a; Tang et 

al., 2013). Nevertheless, prolonged residence time within the acoustic field can lead to 

growth in droplet size due to re-coalescence of emulsion droplets (i.e. over processing) in 

systems possessing insufficient emulsifier (Jafari et al., 2008; O’Sullivan et al., 2015a).  

The acoustic energy transmitted from the tip of the sonotrode to the medium is highly 

localised (as low as 1 cm from the sonotrode; Chivate & Pandit, 1995) due to attenuation (i.e. 

dispersion of acoustic waves from cavitation bubbles). Ultrasonic cavitation bubbles are 

highly unstable entities yielding implosions creating highly localised regions of 

hydrodynamic shear within close proximity of the tip (Kumar et al., 2006; Kumaresan et al., 

2006). These ultrasonically induced implosions from cavitations result in the disruption of 

micron sized oil droplets and facilitate the formation of nano-sized emulsion droplets. Batch 

processing of emulsions utilising ultrasound is often inefficient due to the nature of the 
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emulsification process, whereby less than 2 % of the medium of a given volume experiences 

acoustic energy due to acoustic attenuation (Kumar et al., 2006; Kumaresan et al., 2006), and 

the turbulent forces generated by the acoustic streaming transfer the coarse emulsion from the 

bulk to within the vicinity of the tip, whereby emulsification occurs. Depending on the 

volume of coarse emulsion being processed and the surface area of the tip via batch 

configuration this can be a time consuming process, in comparison to continuous processing 

methodologies, which typically demonstrate smaller chamber volumes relative to tip surface 

area.  

Continuous processing configurations operate at lower residence times in comparison 

to batch processing (< 1 s), yet are capable of achieving comparable droplet sizes due to 

minimisation of chamber volume to maximise the volume of coarse emulsion within the 

acoustic field. By optimisation of the geometry, whereby the course of emulsion is pumped 

directly into the tip of the sonotrode, maximum droplet breakup can be achieved. The 

residence time for continuous processing is dictated by the flow rate of emulsion, whereby 

reduction of flow rate increases the contact time, allowing for a greater reduction in the 

droplet size (Freitas et al., 2006; Kentish et al., 2008; O’Sullivan, Murray, et al., 2015a; S. Y. 

Tang et al., 2013). 

The rate of droplet breakup can be improved by increasing the acoustic power 

transmitted to the coarse emulsion for both batch processing (Abisma  l et al., 1999; Cucheval 

& Chow, 2008; Delmas et al., 2011; Higgins & Skauen, 1972; Kaltsa et al., 2013; O’Sullivan, 

Murray, et al., 2015a) and continuous processing configurations (Freitas et al., 2006; 

O’Sullivan, Murray, et al., 2015a), decreasing the time required to achieve a minimum 

droplet size, as dictated by the emulsion formulation (Maa & Hsu, 1999). However the 

minimum achievable droplet is dictated by the formulation of the emulsion (Maa & Hsu, 



Chapter 2. State of the Art 

 70  

1999). Thus, increasing the acoustic power minimises the processing time required to achieve 

the minimum droplet size dictated by emulsion formulation.  

The resultant droplet size of emulsions fabricated via ultrasonic processes is dictated 

by the formulation of the emulsion (i.e. emulsifier type and concentration, dispersed phase 

type and volume fraction, presence of stabilisers, etc.), whilst the processing parameters 

determine the rate at which the resultant droplet is formed (Jafari et al., 2007). The majority 

of studies conducted utilise model emulsifier systems (i.e. low molecular weight surfactants), 

whereby a high degree of purity can be guaranteed. These surfactants include Tween 40 

(Kentish et al., 2008), Tween 60 (Abisma  l et al., 1999), Tween 80 (O’Sullivan, Murray, et 

al., 2015a) and Span 80 (Leong et al., 2009). Increasing the emulsifier concentration 

decreases the droplet size to a minimum size given optimal processing conditions to achieve 

the minimal droplet size, such as adequate processing power and time. Few studies have been 

conducted whereby industrial applicable ingredients are utilised, such as multi-component 

protein sources as the emulsifying agent. Kaltsa et al., (2013), Heffernan et al., (2011) and 

O’Sullivan et al., (2015a) employed whey protein concentrate, sodium caseinate and milk 

protein isolate, respectively, as the emulsifying agent in oil-in-water emulsions. Submicron 

emulsion droplets have been prepared from these dairy proteins, whereby Kaltsa et al., (2013) 

and Heffernan et al., (2011) solely utilised batch processing, whilst O’Sullivan et al., (2015a) 

comparatively assessed both batch and continuous configurations, highlighting the efficiency 

of continuous processing, as acoustic energy is utilised more efficiently in lower processing 

volumes associated with the chamber of the continuous configuration.  

From an industrial perspective, the most practical method for the implementation of 

ultrasound within a production environment is the continuous processing configuration, due 

to a combination of higher throughputs and more effective utilisation of acoustic energy. 

Irrespective of configuration, the implementation of ultrasound within the food industry has 
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been limited for a number of reasons: including pitting of the sonotrode tip (i.e. the gradual 

erosion of the tip material due to mechanical vibrations), deposition of tip debris within the 

processed medium and poor performance of current ultrasound geometric configurations (i.e. 

dead zones). Freitas et al., (2006) developed a configuration for continuous processing of 

emulsions, whereby the ultrasonic probe was welded to the steel jacket. Additionally the 

space in between the jacket and the glass tube, through which the medium passed, contained 

pressurised water which behaved as an acoustic conductor. This methodology prevents direct 

contact of the sonotrode with the medium being processed, hence removing the potential for 

contamination from ultrasonic pitting. O’Sullivan et al., (2015a) compared the effect of 

continuous processing at both lab and pilot scale, through means of energy density (Ev; MJ m-

3) and variation of both the residence time and acoustic power, demonstrating that the pilot 

scale continuous configuration is dependent upon the ultrasonic amplitude (i.e. acoustic 

power), unlike the lab scale, due to bypassing of elements of pre-emulsion from the acoustic 

field at lower ultrasonic amplitudes, highlighting the necessity for optimisation of processing 

conditions at larger scales to efficiently achieve nanoemulsions.  

The design of conventional continuous configurations is under investigation and 

continual development (Gogate et al., 2011, 2003). The primary design criteria for the 

development of continuous ultrasonic processes are the operating conditions (i.e. acoustic 

power and processing time) and geometric parameters (sonotrode location, chamber volume, 

tip location within the chamber, etc.). Be that as it may, several other factors must be taken 

into consideration during the development and design of continuous ultrasonic systems: such 

as the hydrodynamic conditions within the acoustic field, variance due to the presence of 

discrete entities within the liquid medium (i.e. gaseous bubbles, immiscible liquid droplets, 

solid particles or high molecular weight biopolymers), the degree of acoustic attenuation 

chiefly due to the non-homogeneous nature of food systems, and ratio of frequency 
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irradiation to power dissipation within the locus of the tip of the sonotrode (Gogate et al., 

2011, 2003). 

2.2.6. Conclusions and future trends 

Even though low frequency, high power ultrasonic processing is a well established 

technology within the food industry, numerous advances have been achieved in 

understanding the fundamental mechanisms for the functional modification of the 

physicochemical properties of proteins for specific applications and the factors associated 

with the efficient generation of nano-sized emulsion droplets in recent years. Ultrasound 

offers the potential for the functional modification of proteins through mechanical means, 

without the use of chemical or biological (i.e. enzymes) additives.  

Ultrasonic treatment of proteins is related to physicochemical changes in structure, 

manifesting as: modifications to the functional attributes of proteins, reduction of bulk 

viscosity, increases of hydrophobicity and improvements in emulsion formation and stability. 

Ultrasound treatment of proteins in solutions affects the associative behaviour of proteins, 

disrupting the non-covalent forces which maintain protein aggregate structure, and reducing 

aggregate size. However there is debate within the literature as to whether sufficient energy is 

provided from low frequency, high power ultrasound to achieve scission of the peptide bond, 

the primary structure of proteins. 

Power ultrasound has shown to be an effective emulsification methodology, either 

utilising batch or continuous configurations, for the formation of nano-sized droplets. The 

development of nano-sized droplets is related to a combination of process parameters (i.e. 

acoustic power and contact time), geometric considerations (i.e. sonotrode location within the 

chamber, chamber geometry, etc.) and emulsion formulation (i.e. emulsifier type and 

concentrations, dispersed phase volume fraction, etc.). Emulsion formation within the 
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acoustic field is attributed to the high levels of hydrodynamic shear generated by ultrasonic 

cavitations within close proximity to the tip of the sonotrode. Increasing the residence time of 

the coarse pre-emulsion within the acoustic field decreases the emulsion droplet size, to a 

minimum droplet size as determined by the emulsion formulation. In addition, increasing the 

acoustic power increases the rate by which this minimal droplet size is achieved. 

Nevertheless, further investigations of emulsification implementing ultrasound are required to 

develop optimised geometries for maximum droplet breakup, utilisation of industrial relevant 

ingredients (i.e. high molecular weight biopolymers) and the intrinsic interactions between 

emulsion formulation and operating conditions (i.e. microstructural engineering). 

Lastly, it is worth mentioning that although numerous advances have been made in 

understanding the effects of power ultrasound upon proteins in aqueous solution and for the 

fabrication of nanoemulsions, this understanding is predominately at lab scale. Although 

studies are being conducted for both the ultrasound treatment of proteins and emulsion 

generation at pilot scale, further work is required to fully understand the specific design 

criteria to allow the effective utilisation of this versatile technology within the food industry.  

2.2.7. References 

Abisma  l, B., Canselier, J. P., Wilhelm, A. M., Delmas, H., & Gourdon, C. (1999). 
Emulsification by ultrasound: drop size distribution and stability. Ultrasonics 
Sonochemistry, 6(1–2), 75–83.  

Arzeni, C., Martínez, K., Zema, P., Arias, A., Pérez, O. E., & Pilosof, A. M. R. (2012). 
Comparative study of high intensity ultrasound effects on food proteins functionality. 
Journal of Food Engineering, 108(3), 463–472.  

Arzeni, C., Pérez, O. E., & Pilosof, A. M. R. (2012). Functionality of egg white proteins as 
affected by high intensity ultrasound. Food Hydrocolloids, 29(2), 308–316.  

Barukčić, I., Lisak Jakopović, K., Herceg, Z., Karlović, S., & Božanić, R. (2014). Influence 
of high intensity ultrasound on microbial reduction, physico-chemical characteristics and 
fermentation of sweet whey. Innovative Food Science & Emerging Technologies.  



Chapter 2. State of the Art 

 74  

Behrend, O., Ax, K., & Schubert, H. (2000). Influence of continuous phase viscosity on 
emulsification by ultrasound. Ultrasonics Sonochemistry, 7(2), 77–85.  

Behrend, O., & Schubert, H. (2001). Influence of hydrostatic pressure and gas content on 
continuous ultrasound emulsification. Ultrasonics Sonochemistry, 8(3), 271–276.  

Beverung, C. J., Radke, C. J., & Blanch, H. W. (1999). Protein adsorption at the oil/water 
interface: characterization of adsorption kinetics by dynamic interfacial tension 
measurements. Biophysical Chemistry, 81(1), 59–80.  

Bondy, C., & Söllner, K. (1935). On the mechanism of emulsification by ultrasonic waves. 
Transactions of the Faraday Society, (31), 835–842. 

Chandrapala, J., Martin, G. J. O., Kentish, S. E., & Ashokkumar, M. (2014). Dissolution and 
reconstitution of casein micelle containing dairy powders by high shear using ultrasonic 
and physical methods. Ultrasonics Sonochemistry, 21(5), 1658–65.  

Chandrapala, J., Zisu, B., Palmer, M., Kentish, S., & Ashokkumar, M. (2011). Effects of 
ultrasound on the thermal and structural characteristics of proteins in reconstituted whey 
protein concentrate. Ultrasonics Sonochemistry, 18(5), 951–957.  

Charoensuk, D., Wilailuk, C., & Wanlop, C. (2014). Effect of high intensity ultrasound on 
physicochemical and functional properties of whey protein isolate and mung bean 
protein isolate. In The 26th Annual Meeting of the Thai Society for Biotechnology and 
International Conferenc (pp. 394–401). 

Chemat, F., Zill-e-Huma, & Khan, M. K. (2011). Applications of ultrasound in food 
technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 
813–35 

Chen, L., Chen, J. S., Yu, L., Wu, K. G., Liu, X. L., & Chai, X. H. (2012). Modifications of 
Soy Protein Isolates Using Ultrasound Treatment for Improved Emulsifying Properties. 
In Advanced Materials Research (Vol. 554–556, pp. 944–948).  

Chivate, M. M., & Pandit, A. B. (1995). Quantification of cavitation intensity in fluid bulk. 
Ultrasonics Sonochemistry, 2(1), S19–S25. 

Crum, L. A. (1975). Bjerknes forces on bubbles in a stationary sound field. The Journal of 
the Acoustical Society of America, 57(6), 1363. 

Cucheval, A., & Chow, R. C. Y. (2008). A study on the emulsification of oil by power 
ultrasound. Ultrasonics Sonochemistry, 15(5), 916–920.  

Damodaran, S. (1997). Food Proteins: An Overview. In S. Damodaran & A. Paraf (Eds.), 
Food Proteins and Their Applications (1st ed., pp. 1–24). New York: Marcel Dekker. 

Delmas, T., Piraux, H., Couffin, A.-C., Texier, I., Vinet, F., Poulin, P., Cates, M., & Bibette, 
J. (2011). How To Prepare and Stabilize Very Small Nanoemulsions. Langmuir, 27(5), 
1683–1692.  



Chapter 2. State of the Art 

 75  

Demirdöven, A., & Baysal, T. (2008). The Use of Ultrasound and Combined Technologies in 
Food Preservation. Food Reviews International, 25(1), 1–11.  

Doinikov, A. A., & Dayton, P. A. (2006). Spatio-temporal dynamics of an encapsulated gas 
bubble in an ultrasound field. The Journal of the Acoustical Society of America, 120(2), 
661.  

Freitas, S., Hielscher, G., Merkle, H. P., & Gander, B. (2006). Continuous contact- and 
contamination-free ultrasonic emulsification—a useful tool for pharmaceutical 
development and production. Ultrasonics Sonochemistry, 13(1), 76–85.  

Gogate, P. R., Sutkar, V. S., & Pandit, A. B. (2011). Sonochemical reactors: Important design 
and scale up considerations with a special emphasis on heterogeneous systems. 
Chemical Engineering Journal, 166(3), 1066–1082.  

Gogate, P. R., Wilhelm, A. M., & Pandit, A. B. (2003). Some aspects of the design of 
sonochemical reactors. Ultrasonics Sonochemistry, 10(6), 325–330.  

Gülseren, İ., Güzey, D., Bruce, B. D., & Weiss, J. (2007). Structural and functional changes 
in ultrasonicated bovine serum albumin solutions. Ultrasonics Sonochemistry, 14(2), 
173–183.  

Güzey, D., Gülseren, İ., Bruce, B., & Weiss, J. (2006). Interfacial properties and structural 
conformation of thermosonicated bovine serum albumin. Food Hydrocolloids, 20(5), 
669–677.  

Guzey, D., & Weiss, J. (2001). High-intensity ultrasonic processing improves emulsifying 
properties of proteins. Colloidal and Interfacial Food Science Laboratory, Department of 
Food Science and Technology, The University of Tennessee. 

Heffernan, S. P., Kelly, A. L., Mulvihill, D. M., Lambrich, U., & Schuchmann, H. P. (2011). 
Efficiency of a range of homogenisation technologies in the emulsification and 
stabilization of cream liqueurs. Innovative Food Science & Emerging Technologies, 
12(4), 628–634.  

Higgins, D. M., & Skauen, D. M. (1972). Influence of power on quality of emulsions 
prepared by ultrasound. Journal of Pharmaceutical Sciences, 61(10), 1567–1570.  

Hu Hu, H., Wu, J., Li-Chan, E. C. Y., Zhu, L., Zhang, F., Xu, X., Gang, F., Lufeng, W., 
Xingjian, H., & Pan, S. (2013). Effects of ultrasound on structural and physical 
properties of soy protein isolate (SPI) dispersions. Food Hydrocolloids, 30(2), 647–655.  

Jafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Re-coalescence of emulsion 
droplets during high-energy emulsification. Food Hydrocolloids, 22(7), 1191–1202.  

Jafari, S. M., He, Y., & Bhandari, B. (2007). Production of sub-micron emulsions by 
ultrasound and microfluidization techniques. Journal of Food Engineering, 82(4), 478–
488.  



Chapter 2. State of the Art 

 76  

Jambrak, A. R., Lelas, V., Mason, T. J., Krešić, G., & Badanjak, M. (2009). Physical 
properties of ultrasound treated soy proteins. Journal of Food Engineering, 93(4), 386–
393.  

Jambrak, A. R., Mason, T. J., Lelas, V., Herceg, Z., & Herceg, I. L. (2008). Effect of 
ultrasound treatment on solubility and foaming properties of whey protein suspensions. 
Journal of Food Engineering, 86(2), 281–287.  

Jambrak, A. R., Mason, T. J., Lelas, V., & Krešić, G. (2010). Ultrasonic effect on 
physicochemical and functional properties of α-lactalbumin. LWT - Food Science and 
Technology, 43(2), 254–262.  

Jambrak, A. R., Mason, T. J., Lelas, V., Paniwnyk, L., & Herceg, Z. (2014). Effect of 
ultrasound treatment on particle size and molecular weight of whey proteins. Journal of 
Food Engineering, 121(0), 15–23.  

Jena, S., & Das, H. (2006). Modeling of particle size distribution of sonicated coconut milk 
emulsion: Effect of emulsifiers and sonication time. Food Research International, 39(5), 
606–611.  

Jiang, L., Wang, J., Li, Y., Wang, Z., Liang, J., Wang, R., Chen, Y., Ma, W., Qi, B., & 
Zhang, M. (2014). Effects of ultrasound on the structure and physical properties of black 
bean protein isolates. Food Research International, 62, 595–601.  

Jincai, Z., Shaoying, Z., & Rixian, Y. (2013). Ultrasonic Enhanced Walnut Protein 
Emulsifying Property. Journal of Food Processing & Technology, 4(7).  

Kaltsa, O., Michon, C., Yanniotis, S., & Mandala, I. (2013). Ultrasonic energy input 
influence οn the production of sub-micron o/w emulsions containing whey protein and 
common stabilizers. Ultrasonics Sonochemistry, 20(3), 881–91.  

Karki, B., Lamsal, B. P., Jung, S., van Leeuwen, J., Pometto, A. L., Grewell, D., & Khanal, 
S. K. (2010). Enhancing protein and sugar release from defatted soy flakes using 
ultrasound technology. Journal of Food Engineering, 96(2), 270–278.  

Kato, A., Kobayashi, K., & Chemicals, T. (1993). Improvement of Emulsifying Properties of 
Egg White Proteins by the Attachment of Polysaccharide through Maillard Reaction in a 
Dry State, 540–543. 

Kentish, S., Wooster, T. J., Ashokkumar, M., Balachandran, S., Mawson, R., & Simons, L. 
(2008). The use of ultrasonics for nanoemulsion preparation. Innovative Food Science & 
Emerging Technologies, 9(2), 170–175.  

Kiani, S., & Mousavi, S. M. (2013). Ultrasound assisted preparation of water in oil emulsions 
and their application in arsenic (V) removal from water in an emulsion liquid membrane 
process. Ultrasonics Sonochemistry, 20(1), 373–7.  

Krise, K. M. (2011). The effects of microviscosity, bound water and protein mobility on the 
radiolysis and sonolysis of hen egg white. PhD Thesis. The Pennsylvania State 
University. 



Chapter 2. State of the Art 

 77  

Kumar, A., Kumaresan, T., Pandit, A. B., & Joshi, J. B. (2006). Characterization of flow 
phenomena induced by ultrasonic horn. Chemical Engineering Science, 61(22), 7410–
7420.  

Kumaresan, T., Kumar, A., Pandit, A. B., & Joshi, J. B. (2006). Modeling Flow Pattern 
Induced by Ultrasound:  The Influence of Modeling Approach and Turbulence Models. 
Industrial & Engineering Chemistry Research, 46(10), 2936–2950.  

Lauterborn, W., Kurz, T., Geisler, R., Schanz, D., & Lindau, O. (2007). Acoustic cavitation, 
bubble dynamics and sonoluminescence. Ultrasonics Sonochemistry, 14(4), 484–91.  

Lee, L., & Norton, I. T. (2013). Comparing droplet breakup for a high-pressure valve 
homogeniser and a Microfluidizer for the potential production of food-grade 
nanoemulsions. Journal of Food Engineering, 114(2), 158–163.  

Lefebvre, J. (1982). Viscosity of concentrated protein solutions. Rheologica Acta, 21(4-5), 
620–625.  

Leighton, T. G. (1995). Bubble population phenomena in acoustic cavitation. Ultrasonics 
Sonochemistry, 2(2), S123–S136.  

Leong, T. S. H., Wooster, T. J., Kentish, S. E., & Ashokkumar, M. (2009). Minimising oil 
droplet size using ultrasonic emulsification. Ultrasonics Sonochemistry, 16(6), 721–727.  

Lighthill, S. J. (1978). Acoustic streaming. Journal of Sound and Vibration, 61(3), 391–418.  

Lloyd, D. M., Norton, I. T., & Spyropoulos, F. (2014). Processing effects during rotating 
membrane emulsification. Journal of Membrane Science, 466, 8–17.  

Maa, Y. F., & Hsu, C. C. (1999). Performance of sonication and microfluidization for liquid-
liquid emulsification. Pharmaceutical Development and Technology, 4(2), 233–40.  

Madadlou, A., Mousavi, M. E., Emam-djomeh, Z., Ehsani, M., & Sheehan, D. (2009). 
Sonodisruption of re-assembled casein micelles at different pH values. Ultrasonics 
Sonochemistry, 16(5), 644–8.  

Malaki Nik, A., Wright, A. J., & Corredig, M. (2010). Interfacial design of protein-stabilized 
emulsions for optimal delivery of nutrients. Food & Function, 1(2), 141–8.  

Mansfield, M., & O’Sullivan, C. (1998). Wave Motion. In Understanding Physics (pp. 307–
357). Wiley-Blackwell. 

Margulis, M. A., & Margulis, I. M. (2003). Calorimetric method for measurement of acoustic 
power absorbed in a volume of a liquid. Ultrasonics Sonochemistry, 10(6), 343–345.  

Martini, S. (2013). Sonocrystallization of Fats. (R. W. Hartel, Ed.) (1st ed.). New York: 
Springer US. 



Chapter 2. State of the Art 

 78  

Martini, S., Potter, R., & Walsh, M. K. (2010). Optimizing the use of power ultrasound to 
decrease turbidity in whey protein suspensions. Food Research International, 43(10), 
2444–2451.  

McCarthy, N. A., Kelly, P. M., Maher, P. G., & Fenelon, M. A. (2014). Dissolution of milk 
protein concentrate (MPC) powders by ultrasonication. Journal of Food Engineering, 
126, 142–148.  

McClements, D. J. (1995). Advances in the application of ultrasound in food analysis and 
processing. Trends in Food Science & Technology, 6(9), 293–299.  

McClements, D. J. (2005). Food Emulsions: Principles, Practices, and Techniques (2nd ed.). 
CRC Press. 

McMurry, J. E. (2011). Organic Chemistry (8th ed.). Brooks/Cole. 

Mettin, R., Akhatov, I., Parlitz, U., Ohl, C., & Lauterborn, W. (1997). Bjerknes forces 
between small cavitation bubbles in a strong acoustic field. Physical Review E, 56(3), 
2924–2931.  

Mine, Y. (2002). Recent advances in egg protein functionality in the food system, World’s 
Poultry Science Journal, 58(1), 31-39. 

Morris, E. R., Cutler, A. N., Ross-Murphy, S. B., Rees, D. A., & Price, J. (1981). 
Concentration and shear rate dependence of viscosity in random coil polysaccharide 
solutions. Carbohydrate Polymers, 1, 5–21. 

Neppiras, E. A. (1980). Acoustic cavitation. Physics Reports, 61(3), 159–251.  

Nowicki, A., Kowalewski, T., Secomski, W., & Wójcik, J. (1998). Estimation of acoustical 
streaming: theoretical model, Doppler measurements and optical visualisation. European 
Journal of Ultrasound, 7(1), 73–81.  

Nowicki, A., Secomski, W., & Wójcik, L. (1997). Acoustic streaming: comparison of low-
amplitude linear model with streaming velocities measured by 32-MHz Doppler. 
Ultrasound in Medicine & Biology, 23(5), 783–91.  

Nyborg, W. L. (1953). Acoustic Streaming due to Attenuated Plane Waves. The Journal of 
the Acoustical Society of America, 25(1), 68. 

O’Brien, W. D. (2007). Ultrasound-biophysics mechanisms. Progress in Biophysics and 
Molecular Biology, 93(1-3), 212–55.  

O’Connell, J. E., & Flynn, C. (2007). The Manufacture and Application of Casein-Derived 
Ingredients. In Y. H. Hui (Ed.), Handbook of Food Products Manufacturing (1st ed., pp. 
557 – 593). New Jersey: John Wiley & Sons. 

O’Donnell, C. P., Tiwari, B. K., Bourke, P., & Cullen, P. J. (2010). Effect of ultrasonic 
processing on food enzymes of industrial importance. Trends in Food Science & 
Technology, 21(7), 358–367.  



Chapter 2. State of the Art 

 79  

O’Sullivan, J., Arellano, M., Pichot, R., & Norton, I. (2014). The Effect of Ultrasound 
Treatment on the Structural, Physical and Emulsifying Properties of Dairy Proteins. 
Food Hydrocolloids, 42(3), 386–396. 

O’Sullivan, J., Murray, B., Flynn, C., & Norton, I. (2015a). Comparison of batch and 
continuous ultrasonic emulsification processes. Journal of Food Engineering (In press). 

O’Sullivan, J., Murray, B., Flynn, C., & Norton, I. T. (2015b). The Effect of Ultrasound 
Treatment on the Structural, Physical and Emulsifying Properties of Animal and 
Vegetable Proteins. Food Hydrocolloids (In press). 

O’Sullivan, J., Pichot, R., & Norton, I. T. (2014). Protein Stabilised Submicron Emulsions. In 
P. A. Williams & G. O. Phillips (Eds.), Gums and Stabilisers for the Food Industry 17 
(pp. 223–229). Cambridge, UK: The Royal Society of Chemistry. 

Ouzineb, K., Lord, C., Lesauze, N., Graillat, C., Tanguy, P. A., & McKenna, T. (2006). 
Homogenisation devices for the production of miniemulsions. Chemical Engineering 
Science, 61(9), 2994–3000.  

Ramisetty, K. A., & Shyamsunder, R. (2011). Effect of Ultrasonication on Stability of Oil in 
Water Emulsions. International Journal of Drug Delivery.  

Rayleigh, Lord. (1896). Theory of Sound. New York: Dover Publications. 

Servant, G., Laborde, J. L., Hita, A., Caltagirone, J. P., & Gérard, A. (2001). Spatio-temporal 
dynamics of cavitation bubble clouds in a low frequency reactor: comparison between 
theoretical and experimental results. Ultrasonics Sonochemistry, 8(3), 163–74.  

Shanmugam, A., Chandrapala, J., & Ashokkumar, M. (2012). The effect of ultrasound on the 
physical and functional properties of skim milk. Innovative Food Science & Emerging 
Technologies, 16, 251–258.  

Soria, A. C., & Villamiel, M. (2010). Effect of ultrasound on the technological properties and 
bioactivity of food: a review. Trends in Food Science & Technology, 21(7), 323–331.  

Stuart, J. . (1963). Unsteady boundary layers. In L. Rosenhead (Ed.), Laminar Boundary 
Layers (1st ed.). London: Oxford University Press. 

Tang, S. Y., Shridharan, P., & Sivakumar, M. (2013). Impact of process parameters in the 
generation of novel aspirin nanoemulsions – Comparative studies between ultrasound 
cavitation and microfluidizer. Ultrasonics Sonochemistry, 20(1), 485–497.  

Tjøtta, S. (1999). Theoretical Investigation of Heat and Streaming Generated by High 
Intensity Ultrasound. Acustica, 85, 780–787.  

Trujillo, F. J., & Knoerzer, K. (2011a). A computational modeling approach of the jet-like 
acoustic streaming and heat generation induced by low frequency high power ultrasonic 
horn reactors. Ultrasonics Sonochemistry, 18(6), 1263–73.  



Chapter 2. State of the Art 

 80  

Trujillo, F. J., & Knoerzer, K. (2011b). Modelling the acoustic field and streaming induced 
by an ultrasonic horn sonoreactor. In K. Knoerzer, P. Juliano, P. Roupas, & C. Versteeg 
(Eds.), Innovative Food Processing Technologies (1st ed.). Indianapolis, USA: Wiley 
and Sons. 

Uluko, H., Zhang, S., Liu, L., Chen, J., Sun, Y., Su, Y., Li, H., Cui, W., & Lv, J. (2013). 
Effects of microwave and ultrasound pretreatments on enzymolysis of milk protein 
concentrate with different enzymes. International Journal of Food Science & 
Technology, n/a–n/a.  

Walstra, P., & van Vliet, T. (2003). Chapter II Functional properties. In R. J. H. W.Y. 
Aalbersberg  P. Jasperse, H.H.J. de Jongh, C.G. de Kruif, P. Walstra and F.A. de Wolf 
BT - Progress in Biotechnology (Ed.), Industrial Proteins in Perspective (Vol. Volume 
23, pp. 9–30). Elsevier. 

Westervelt, P. J. (1953). The Theory of Steady Rotational Flow Generated by a Sound Field. 
The Journal of the Acoustical Society of America, 25(1), 60.  

Yanjun, S., Jianhang, C., Shuwen, Z., Hongjuan, L., Jing, L., Lu, L., Uloko, H., Yangling, S., 
Wenming, C., Wupeng, G., & Jiaping, L. (2014). Effect of power ultrasound pre-
treatment on the physical and functional properties of reconstituted milk protein 
concentrate. Journal of Food Engineering, 124(0), 11–18.  

Zarembo, L. K. (1971). Acoustic Streaming. In L. D. Rozenberg (Ed.), High Intensity 
Ultrasonic Fields (1st ed.). London: Plenum Press. 

Zhang, H., Claver, I. P., Zhu, K.-X., & Zhou, H. (2011). The Effect of Ultrasound on the 
Functional Properties of Wheat Gluten. Molecules, 16(12), 4231–4240.  

Zisu, B., Bhaskaracharya, R., Kentish, S., & Ashokkumar, M. (2010). Ultrasonic processing 
of dairy systems in large scale reactors. Ultrasonics Sonochemistry, 17(6), 1075–81.  

 



Chapter 3. The Effect of Ultrasound Treatment on the Structural, Physical and Emulsifying 
Properties of Dairy Proteins 

 81  

 

 

 

 

 

Chapter 3. The Effect of Ultrasound Treatment 

on the Structural, Physical and Emulsifying 

Properties of Dairy Proteins 

 

 

 

 

Data and discussions contained within this chapter have been published within: 

O’Sullivan, J.J., Arellano, M., Pichot, R. and Norton, I.T. 2014. The effect of ultrasound 

treatment on the structural, physical and emulsifying properties of dairy proteins. Food 

Hydrocolloids, 42(3), 386-396.  

Data and discussions contained within this chapter have been in part published within: 

O’Sullivan, J.J., Pichot, R. and Norton, I.T. 2014. Protein stabilised submicron emulsions, 

Gums and stabilisers for the food industry, 17, 223 – 229.   



Chapter 3. The Effect of Ultrasound Treatment on the Structural, Physical and Emulsifying 
Properties of Dairy Proteins 

 82  

3.1. Abstract 

The effect of ultrasound treatment on the structural, physical and emulsifying 

properties of three dairy proteins: sodium caseinate (NaCas), whey protein isolate (WPI) and 

milk protein isolate (MPI) was investigated. The pH of untreated NaCas, WPI and MPI 

solutions was 7.1, 6.8 and 6.7, respectively. Protein solutions were sonicated for 2 min at a 

frequency of 20 kHz and with a power intensity of ~34 W cm-2. The structural and physical 

properties of dairy proteins were studied in terms of changes in protein size, molecular 

structure and hydrodynamic volume using DLS, SDS-PAGE and intrinsic viscosity, 

respectively. The emulsifying properties of the sonicated proteins were compared to untreated 

proteins and Tween 80. Ultrasound treatment reduced the size and hydrodynamic volume of 

the proteins, while there was no measurable reduction in molecular weight. Emulsions 

prepared with untreated NaCas and WPI had submicron sized droplets (~120 nm), whilst 

emulsions produced with untreated MPI and Tween 80 had micron sized droplets (> 1 µm) at 

lower concentrations studied.  

Unexpectedly, emulsions produced with ultrasound treated NaCas and WPI had the 

same droplet sizes as the untreated proteins at all concentrations, despite the reduction in 

protein size of the sonicated proteins. Emulsions prepared with sonicated MPI at 

concentrations ≤ 1 wt. % had smaller droplet sizes than the emulsions produced with untreated 

MPI. This effect was consistent with the observed decrease in interfacial tension for 

ultrasound treated MPI, which will facilitate droplet break-up during emulsification.  
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3.2. Introduction 

Proteins are highly functional molecules that are widely used in the pharmaceutical 

and food industries, having a wide range of applications. Proteins are of particular interest in 

food systems in terms of their emulsifying properties, due to their abilities to adsorb at oil-

water interfaces and to form interfacial films (Foegeding & Davis, 2011; Lam & Nickerson, 

2013). The surface activity of proteins is due to their amphiphilic nature, owing to the 

presence of both hydrophilic and hydrophobic groups in their molecular structure (Beverung 

et al., 1999). Due to their bulky structure, proteins diffuse slowly to the interface, in 

comparison to low molecular weight emulsifiers, such as Tween 80 which diffuse more 

rapidly (McClements, 2005). Once at the interface, proteins undergo conformational changes 

(i.e. surface denaturation) and with a thermodynamically driven rearrangement tending to 

align hydrophobic amino acids within the oil phase and hydrophilic amino acids within the 

aqueous phase (McClements, 2004; Walstra & van Vliet, 2003), the effect of which reduces 

the interfacial tension and the overall free energy of the system (McClements, 2004). One 

particular advantage of proteins is that protein-protein interactions at the interface, 

subsequently leading to the formation of strong viscoelastic films that are more resistant to 

coalescence and provide both electrostatic or steric stabilisation (Lam & Nickerson, 2013; 

McClements, 2004). Therefore, it is of great interest for the food industry, to investigate 

methodologies that are capable of enhancing the emulsifying properties of proteins. 

In recent years, low frequency, high energy ultrasound (i.e. frequency ≤ 100 kHz, 

power intensity 10 – 100 W cm−2) has been used in the food industry to modify the functional 

properties of proteins. The effect of ultrasound on the physicochemical properties of the 

treated molecules is related to cavitation (rapid formation and collapse of gas bubbles), which 

is generated by highly localized changes in pressure (up to 50 MPa) and heat (up to 5000 °C), 

occurring during very short periods of time (O’Donnell et al., 2010). High shear forces and 
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turbulence resulting from these cavitations, also contribute to the observed effects of 

ultrasound (O’Donnell et al., 2010).  

The application of ultrasound to proteins has been related to effects on the structural 

and functional properties of whey protein concentrates (Güzey et al., 2006), soybean proteins 

(Arzeni et al., 2012; Jambrak et al., 2009; Karki et al., 2010), and egg white proteins (Arzeni 

et al., 2012; Krise, 2011). Arzeni et al., (2012) studied the influence of ultrasound on the 

structural properties of whey protein concentrate (WPC), soy protein isolate (SPI) and egg 

white protein (EWP). They observed a significant reduction of the protein size for WPI and 

SPI. Guzey & Weiss, (2001) investigated the effect of high-intensity ultrasonic processing on 

the surface activity of bovine serum albumin (BSA) and WPI. It was reported that ultrasound 

treatment significantly improved the emulsifying properties of BSA and WPI.  

However, there are contradictory reports on the effect of ultrasound on the molecular 

weight of proteins. For example, ultrasound treatment at 20 and 40 kHz for 30 min resulted in 

a significant decrease in molecular weight for WPC, WPI (Jambrak et al., 2014) and α-

lactalbumin (Jambrak et al., 2010). Whereas, sonication at 20 kHz for 30 min with varying 

power intensities was reported to have no significant effect on the molecular weight of SPI 

(Jambrak et al., 2010). In addition, no significant changes in molecular weight were reported 

for EWP treated with ultrasound at 55 kHz for 12 min (Hu et al., 2013; Karki et al., 2010). 

Therefore, it is necessary to further investigate the effects of ultrasound on the structural and 

functional properties of food proteins. 

Sodium caseinate (NaCas) is a functional ingredient widely used in the food industry. 

This protein is used as an emulsifier in a wide range of food applications, including coffee 

creamers, infant formulas, soups and processed meat (O’Connell & Flynn, 2007). NaCas is a 

composite mixture of four protein fractions: αs1-, αs2-, β- and κ-caseins (O’Connell et al., 

2003). In solution, these caseins are prone to form spherical colloidal associations, or 



Chapter 3. The Effect of Ultrasound Treatment on the Structural, Physical and Emulsifying 
Properties of Dairy Proteins 

 85  

micelles, due to regions of high hydrophobicity and the charge distribution arising from the 

amino acid sequence, phosphorylation and glycosylation (Srinivasan et al., 2002). The 

internal structure of the casein micelle is constituted of the calcium sensitive protein fractions 

(αs1-, and αs2-), which are held together by cohesive hydrophobic interactions and calcium-

phosphoserine crosslinks. The micelle is stabilised by κ-casein which is predominately found 

at the micelle surface due to its highly hydrophilic C-terminal protruding into the aqueous 

phase. β-casein exists in a temperature dependant equilibrium between the aqueous phase and 

the micelle (O’Regan et al., 2009).  

Whey protein isolate (WPI) is a nutritional ingredient used in the food industry 

because of its desirable functional properties, such as emulsification, gelation and foaming 

(Dalgleish, 2011; O’Connell & Flynn, 2007). The main protein fractions in WPI are β-

lactoglobulin (β-lg), α-lactalbumin (α-lac) and bovine serum albumin (BSA). Whey proteins 

have globular conformations. β-lg contains five cysteine residues, four of which occur as 

intra-molecular disulfide cross-links and one as a free thiol group (-SH). α-lac is a calcium 

metalloprotein that has four intra-molecular disulphide cross-links. The binding of calcium is 

essential for proper folding and disulphide bond formation of α-lactalbumin (O’Regan et al., 

2009). BSA is stabilised to a great extent by its 17 cysteine disulphide bonds (O’Regan et al., 

2009). Milk protein isolate (MPI) is a mixture of micellar casein (~80 %) and whey (~20 %) 

(Nakamura et al., 1997). The casein in MPI has a micellar structure similar to the native form 

found in milk, and the whey proteins are present in the globular native form (Fox, 2008).  

In the present work, analyses were carried out on commercially available dairy 

proteins widely used in the food industry, in order to assess the industrial relevance of 

ultrasound treatment on composite mixtures of food protein systems. The objective of this 

research was to understand the effects of ultrasound treatment on the structural and physical 

properties of three dairy proteins: sodium caseinate (NaCas), whey protein isolate (WPI) and 
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milk protein isolate (MPI). Changes in the structural and physical properties of the proteins 

were measured in terms of protein size, molecular structure and intrinsic viscosity. Moreover, 

it was investigated whether the proteins treated by ultrasound have the ability to increase the 

stability of oil-in-water emulsions against coalescence. Oil-in-water emulsions were prepared 

with either untreated or ultrasound treated NaCas, WPI and MPI at different concentrations 

and compared between them and to a low molecular weight emulsifier, Tween 80.  

3.3. Materials and methodology  

3.3.1. Materials 

Acid casein (KerrynorTM A290), whey protein isolate (W994) and milk protein isolate 

(UltranorTM 9075) were all kindly provided by Kerry Ingredients (Listowel, Ireland). The 

composition of the three dairy proteins is provided in Table 3.1. Tween 80 and sodium azide 

were purchased from Sigma Aldrich (UK). The oil used in this study was commercially 

available rapeseed oil. The water used in all experiments was passed through a double 

distillation unit (Aquatron A4000D). All materials were used with no further purification or 

modification of their properties. 

Table 3.1. Composition of acid casein, whey protein isolate (WPI) and milk protein isolate (MPI). 

 Acid Casein WPI MPI 

Protein (wt. %) 86 91 86 

Moisture (wt. %) 10 4 4 

Fat (wt. %) 1 1 1.5 

Lactose (wt. %) 0.1 0.5 1 

Calcium (wt. %) 0.06 0.5 1.7 

Sodium (wt. %) 0.06 0.1 0.08 

Potassium (wt. %) 0.13 0.15 0.35 

Phosphorus (wt. %) 0.7 0.65 1.1 

Magnesium (wt. %) 0.01 0.02 0.08 
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3.3.2. Methods 

3.3.2.1. Preparation of untreated protein solutions 

Sodium Caseinate (NaCas) was prepared from acid casein using the method outlined 

by (O’Connell & Flynn, 2007). NaCas, WPI and MPI were dispersed in water to obtain 

solutions at concentrations within the range of 0.1 – 5 wt. %. All proteins were completely 

soluble at this range of concentrations. The pH of untreated NaCas, WPI and MPI at a 

concentration of 1 wt. % was 7.1, 6.8 and 6.7, respectively. Sodium azide (0.02 wt. %) was 

added to the solutions as an anti-microbial agent. 

3.3.2.2. Ultrasound treatment of protein solutions 

An ultrasonic processor (Viber Cell 750, Sonics, USA) with a 12 mm diameter probe 

in stainless steel was used to sonicate NaCas, WPI and MPI solutions at concentrations of 0.1 

- 5 wt. %. 50 ml of protein solution were sonicated in 100 ml glass beakers, which were 

placed in an ice bath to reduce heat gain. The protein solutions were sonicated for up to 2 min 

with a frequency of 20 kHz and maximum amplitude of 95 % (ultrasonic wave of 108 μm). 

This power setting yielded an ultrasonic intensity of ~34 W cm-2, which was determined 

calorimetrically by measuring the temperature rise of the sample as a function of treatment 

time, under adiabatic conditions. The acoustic power, P (W), was calculated as follows 

(Margulis & Margulis, 2003):  

       
  

  
                                                                                                                       (3.1) 

where m is the mass of ultrasound treated solution (g), cp is the specific heat of the material 

(J/gK) and dT/dt is the rate of temperature change with respect to time, starting at t = 0.  

The temperature of the protein solutions was measured before and after ultrasound 

treatment by means of a digital thermometer (TGST3, Sensor-Tech Ltd., Ireland), with an 
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accuracy of ± 0.1 °C. After sonication treatment, the temperature of all protein solutions was 

raised to approximately ~45 °C.  

3.3.2.3. Characterisation of untreated and ultrasound treated proteins  

3.3.2.3.1. pH measurements  

The pH of the protein solutions was measured before and after ultrasound treatment. 

pH measurements were made by using a pH meter (SevenEasy, Mettler Toledo, UK).  This 

instrument was calibrated with standard solutions of known pH. The pH values are reported 

as the mean and the standard deviation of three replicates. 

3.3.2.3.2. Microstructure characterisation 

The size of untreated and ultrasound treated proteins was measured by dynamic light 

scattering using a Zetasizer Nano Series (Malvern Instruments, UK), at a protein 

concentration of 0.1 wt. %. Protein associate size values are reported as Z-average (Dz), that 

is expressed as the intensity based harmonic mean (2,3) (Dz = ΣSi / Σ(Si/Di)), where Si is the 

scattering intensity from a given particle i and Di is the diameter of the particle i.  

The width of the protein size distribution was expressed in terms of span (Span = 

Dv0.9-Dv0.1/Dv0.5), where Dv0.9, Dv0.1, and Dv0.5 are the equivalent volume diameters at 90, 10 

and 50 % cumulative volume, respectively. Small span values indicate a narrow protein size 

distribution. Protein aggregate size and span values are reported as the average and the 

standard deviation of three replicates. 

3.3.2.3.3. Microstructure visualisation 

Cryogenic scanning electron microscopy (Cryo-SEM, Philips XL30 FEG ESSEM) was 

used to visualise the microstructure of untreated and ultrasound treated proteins. One drop of 

protein solution was frozen to -198 °C in liquid nitrogen. Samples were then fractured at -180 
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°C and etched for 5 min at -90 °C inside a cryo preparation chamber, the process by which ice 

is sublimed. Afterwards, samples were coated with gold and scanned at -160 °C. 

3.3.2.3.4. Molecular structure characterisation 

The molecular structure of untreated and ultrasound treated proteins was determined 

by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), using a Mini-

Protean 3 Electrophoresis System (Bio-Rad, UK). 100 μl of protein solution at 1 wt. % 

concentration were added to 1 ml of native sample buffer (Bio-Rad, UK) in 2 ml micro tubes 

and sealed. A 10 μl aliquot was taken from each sample and loaded onto a Tris-acrylamide 

gel (Bio-Rad, UK; 4-20% Mini Protean TGX Gel, 10 wells). A protein standard (Bio-Rad, 

UK; Precision Plus ProteinTM All Blue Standards) was used to determine the molecular 

weight of the samples. Gel electrophoresis was carried out initially at 55 V (I > 20 mA) for 

10 min, then at 155 V (I > 55 mA) for 45 min in a running buffer (Bio-Rad, UK; 10x 

Tris/Glycine/SDS Buffer). The gels were removed from the gel cassette and stained with 

Coomassie Bio-safe stain (Bio-Rad, UK) for 1 hr and de-stained with distilled water 

overnight. 

3.3.2.3.5. Intrinsic viscosity measurements 

The intrinsic viscosity of untreated and ultrasound treated proteins was determined by 

a double extrapolation to an infinite dilution method, as described by (Morris et al., 1981), 

using the models of Huggins and Kraemer, as follows: 

Huggins (Huggins, 1942):  
   

             
                                                              (3.2) 

Kraemer (Kraemer, 1938):     
      

             
                                                      (3.3) 
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where ηsp is the specific viscosity (viscosity of the solvent, η0 / viscosity of the solution, η), c 

the protein concentration (w/v%), [η] the intrinsic viscosity (dL/g), kH the Huggins constant. 

ηrel is the relative viscosity (viscosity of the solution, η / viscosity of the solvent, η0) and kK is 

the Kraemer constant. 

The concentration ranges used for the determination of the intrinsic viscosity of 

NaCas, WPI and MPI were 0.25 – 0.45 wt. %, 1 – 2.5 wt. % and 0.5 – 2 wt. %, respectively. 

The validity of the regression procedure is confined within a discrete range of ηrel, 1.2 < ηrel < 

2. The upper limit is due to the hydrodynamic interaction between protein molecules, and the 

lower limit is due to inaccuracy in the determination of very low viscosity fluids. A value of 

ηrel approaching to 1 indicates the lower limit (Morris et al., 1981).  

The viscosity of the protein solutions was measured at 20 °C using a Kinexus 

rheometer (Malvern Instruments, UK) equipped with a double gap geometry (25 mm 

diameter, 40 mm height). As reported by (Morris et al., 1981), in order to derive the intrinsic 

viscosity by extrapolation to infinite dilution, there must be linearity between shear stress and 

shear rate, which indicates a Newtonian behaviour region on the range of shear rate used in 

the measurements. The Newtonian plateau region of the NaCas, WPI and MPI solutions at 

the range of concentrations used, was found within a shear rate range of 25 - 1000 s-1. Thus, 

the values of viscosity of the protein solutions and that of the solvent (distilled water) were 

selected from the flow curves data at a constant shear rate of 250 s-1 (within the Newtonian 

region), which were subsequently used to determine the specific viscosity, ηsp, the relative 

viscosity, ηrel, and the intrinsic viscosity, [η]. At least three replicates of each measurement 

were made.   
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3.3.2.4. Preparation of oil-in-water emulsions  

10 wt. % of dispersed phase (rapeseed oil) was added to the continuous aqueous phase 

containing either untreated or sonicated proteins or Tween 80 at different concentrations, 

ranging from 0.1 to 5 wt. %. This mixture was emulsified first at 8000 rpm for 2 min using a 

high shear mixer (SL2T, Silverson, UK) to form an oil-in-water pre-emulsion. Afterwards, 

oil-in-water submicron emulsions were prepared by further emulsifying the pre-emulsion 

using a high-pressure valve homogeniser (Panda NS 1001L-2K, GEA Niro Soavi, UK) at 125 

MPa for 2 passes. The emulsions were prepared at 20 °C in a controlled temperature 

laboratory. 

3.3.2.5. Characterisation of oil-in-water emulsions. 

3.3.2.5.1. Droplet size measurements 

 The droplet size of the emulsions was measured by using laser diffraction (Hydro 

2000SM, Mastersizer 2000, Malvern Instruments, UK) immediately after emulsification. 

Emulsion droplet size values are reported as the volume-surface mean diameter (d3,2 = Σ 

nidi
3/ Σ nidi

2), where ni is the number of droplets of diameter di. The stability of the emulsions 

was assessed by droplet size measurements over 28 days. The emulsions were stored under 

refrigerated conditions (4 °C) throughout the duration of the stability study. The droplet size 

values and the error bars are reported as the mean and the standard deviation, respectively, of 

three replicates.  

3.3.2.5.2. Interfacial tension measurements 

The interfacial tension between the aqueous phase (pure water, protein solutions and 

low molecular weight surfactant solutions) and oil phase (rapeseed oil) was measured using a 

tensiometer K100 (Krűss, Germany) with the Wilhelmy plate method. The Wilhelmy plate is 
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made of platinum, of a length, width and thickness of 19.9 mm, 10 mm and 0.2 mm, 

respectively. The Wilhelmy plate was immersed in 20 g of aqueous phase to a depth of 3 mm 

with a surface detection speed of 15 mm/min. The surface detection is the speed of the vessel 

drive used for the detection of the liquid surface. Once the surface has been detected by the 

microbalance in the tensiometer the vessel moves at the chosen surface detection speed to the 

position specified by the immersion depth (3 mm). Subsequently, an interface between the 

aqueous phase and oil phase was created by carefully pipetting 50 g of the oil phase over the 

aqueous phase. The test was conducted over 3,600 s and the temperature was maintained at 

20 °C throughout the duration of the test. The interfacial tension values and the error bars are 

reported as the mean and the standard deviation, respectively, of three replicates.  

3.3.3. Statistical analysis 

Student’s t-test, a statistical hypothesis test, with a 95 % confidence interval was used 

to assess the significance of the results obtained. t-test data with P < 0.05 were considered 

statistically significant.  

3.4. Results and discussions 

3.4.1. Effect of ultrasound treatment on the structural and physical properties of 

NaCas, WPI and MPI 

The effect of time of ultrasound treatment on the size and pH of NaCas, WPI and MPI 

was initially investigated. Protein solutions at concentration of 0.1 wt. % were sonicated for 

15, 30, 60, and 120 s, with a frequency of 20 kHz and maximum amplitude of 95%. Protein 

size and pH measurements as a function of sonication time, for untreated and sonicated 

NaCas, WPI and MPI are shown in Table 3.2. As can be seen from results in Table 3.2, there 

is a significant reduction (P < 0.05) in the size of all proteins with the increase in the 
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sonication time. The results also indicate that after 1 min of ultrasound treatment there is no 

further reduction in protein size for NaCas, WPI and MPI. This decrease in protein size is 

suggested to be due to the breakdown of the untreated protein aggregates caused by 

disruption of associative electrostatic and hydrophobic interactions, induced by the high shear 

forces originating from ultrasonic cavitations (O’Brien, 2007). It can also be seen (cf. Table 

3.2), that the pH of all the protein solutions decreased significantly (P < 0.05) as the time of 

ultrasound treatment increased. Furthermore, after 1 min of sonication the pH of all the 

proteins solutions was not further decreased. The reduction in the pH of the proteins can be 

due to the exposure of acidic amino acid residues (Sakurai et al., 2009) which were contained 

within the aggregated structure of the protein micelles prior to sonication. The size of 

proteins after a 2 min sonication time represents aggregates rather than discrete protein 

molecules, as, for example, the hydrodynamic radius of sodium caseinate is ~ 8 nm 

(O’Connell & Flynn, 2007). 

Table 3.2. Effect of sonication time on pH and protein size (Dz) of NaCas, WPI and MPI solutions at a 

concentration of 0.1 wt. %. The standard deviation for all pH measurements was < 0.04 in all cases. 

 Dz (nm) pH (-) 

Time (s) NaCas WPI MPI NaCas WPI MPI 

0 245 ± 12 433 ± 11 956 ± 48 7.15 6.82  6.74 

15 164 ± 6 291 ± 7 338 ± 5 7.07 6.72 6.66 

30 113 ± 5 152 ± 15 299 ± 15 7.03 6.62 6.58 

60 60 ± 5 75 ± 11 247 ± 12 6.95 6.57 6.53 

120 58 ± 4 72 ± 9 256 ± 6 6.95 6.56 6.51 

 

The stability over time of the protein size and width of the protein size distribution 

(span) of ultrasound treated NaCas, WPI and MPI were also investigated. Protein solutions at 
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concentration of 0.1 wt. % were sonicated for 2 min at 20 kHz and ~34 W cm-2, since after 1 

minute of sonication there was no further decrease in the size of protein (cf. Table 3.2). The 

aggregate size of the ultrasound treated proteins was measured immediately after sonication 

and after 1 and 7 days, in order to assess the stability of micelle size. Protein size 

measurements and span values obtained by dynamic light scattering for untreated and 

sonicated NaCas, WPI and MPI are shown in Table 3.3. 

Table 3.3. Average protein size (Dz) and span of untreated and ultrasound treated NaCas, MPI and WPI at a 

concentration of 0.1 wt. %. 

 Untreated Ultrasound treated 

Protein 

type 
Dz (nm) Span (-) 

Dz (nm) Span (-) 

Day 0 Day 1 Day 7 Day 0 Day 1 Day 7 

NaCas 245 ± 12  10.45 ± 0.31 58 ± 4 145 ± 2 166 ± 4 0.33 ± 0.04 0.72 ± 0.06 0.95 ± 0.02 

WPI 433 ± 11 1.93 ± 0.24 72 ± 9 189 ± 8 210 ± 2 0.33 ± 0.07 0.66 ± 0.03 0.85 ± 0.08 

MPI 956 ± 48 3.84 ± 0.43 256 ± 6 250 ± 14 242 ± 5 1.72 ± 0.09 1.68 ± 0.11 1.34 ± 0.17 

 

As can be seen from Table 3.3, the ultrasound treatment produced a significant 

reduction (P < 0.05) in the size of NaCas and narrowed the protein size distribution. 

However, on day 7 after ultrasound treatment an increase in size of NaCas can be observed 

and the width of the size distribution slightly increases. Thus, the ultrasound treatment 

applied to NaCas induced an effective micelle size reduction of 32 % on day 7. A similar 

behaviour can be seen for WPI (cf. Table 3.3), which results showed a significant size 

reduction (P < 0.05) and narrowing of the protein size distribution after ultrasound treatment, 

and on day 7 a slight increase in the width of the distribution and an increase in size, 

representing an effective micelle size reduction of 50 %.  

In the case of MPI, results in Table 3.3 showed that ultrasound treatment caused a 

significant decrease in size (P < 0.05) and narrowed the protein size distribution. It can also 
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be seen that on day 7, the width of the protein size distribution was slightly narrower and the 

protein aggregate size slightly decreased further, representing an effective size reduction of 

75 %. These results are in agreement with those of Jambrak et al., (2014), which showed a 

significant reduction in WPI associate size after an ultrasound treatment of 15 min at 20 kHz 

and ~48 W cm-2. Yanjun et al., (2014) also observed a decrease in particle size for MPC 

treated by ultrasound at 12.5 W and 50 % amplitude for 2 min. 

The reason for the observed decrease in size for NaCas and WPI is suggested to relate 

to a structural disruption in the untreated protein aggregates associated with the cleavage of 

hydrophobic interactions between the proteins fractions, likely induced by the high shear 

forces and turbulence resulting from cavitation. The subsequent size increase observed in 

NaCas and WPI on day 7 after sonication is thought to be due to a reorganisation of the 

proteins into smaller sub-associates due to non-covalent molecular interactions such as 

electrostatic and hydrophobic interactions. In the case of MPI, the observed reduction in 

micelle size is presumably due to ultrasonic cavitation effects, which break up the aggregates 

of proteins and reduce their size. In order to test these hypotheses, cryo-SEM micrographs 

were captured of untreated and 7 days after ultrasound treatment of NaCas, MPI and WPI 

solutions at 1 wt. % for all proteins tested (cf. Fig. 3.1).  
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Fig. 3.1. Cryo-SEM micrographs of protein solutions: (a) 1 wt. % Untreated NaCas solution, (b) 1 wt. % 

Ultrasound treated NaCas solution, (c) 1 wt. % Untreated WPI solution, (d) 1 wt. % Ultrasound treated WPI, (e) 

1 wt. % Untreated MPI solution and (f) 1 wt. % Ultrasound treated MPI.  Scale bar is 2 μm in all cases. 

As can be seen in Fig. 3.1, the untreated aggregates of NaCas in solution (Fig 3.1a) 

appear to be distributed within a densely packed network and to have a polydisperse protein 

size; whereas the NaCas treated by ultrasound (cf. Fig. 3.1b) appear to be distributed into 

discrete entities, having a smaller and a slightly more uniform size in comparison to the 

untreated aggregates of NaCas. The structure of untreated WPI in solution (cf. Fig. 3.1c) 
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appears to have a highly polydisperse size distribution, these micelles also appear to be 

distributed within a  packed network; whilst for the sonicated WPI (cf. Fig. 3.1d) a clear 

reduction in the size can be seen and the size distribution is monodisperse. Additionally, the 

sonicated WPI micelles appear to be more evenly distributed and separated from each 

another, in comparison to their untreated counterparts. In the case of untreated MPI in 

solution (cf. Fig. 3.1e), large discrete polydisperse protein micelles can be distinguished; 

whereas the MPI micelles treated by ultrasound (cf. Fig. 3.1f) appear to be smaller and 

monodisperse. These findings are consistent with the previously observed reduction in 

aggregate size of sonicated NaCas, WPI and MPI (cf. Table 3.3), and validate the hypothesis 

that ultrasound treatment causes the disruption of the protein micelles, which then reorganise 

themselves into smaller sub-associates. 

 

Fig. 3.2. SDS-PAGE electrophoretic profiles of protein solutions: (a) Molecular weight standard (10 kDa – 250 

kDa), (b) Untreated NaCas, (c) Ultrasound treated NaCas, (d) Untreated MPI, (e) Ultrasound treated MPI, (f) 

Untreated WPI and (g) Ultrasound treated WPI. 
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The molecular structure of untreated and ultrasound treated proteins NaCas, MPI and 

WPI was subsequently investigated. Proteins solutions at a concentration of 0.1 wt. % were 

sonicated for 2 min at 20 kHz and ~34 W cm-2, as after 1 minute of sonication there was no 

further decrease in the size of protein (cf. Table 3.2). Electrophoretic profiles obtained by 

SDS-PAGE for untreated and sonicated NaCas, WPI and MPI are shown in Fig. 3.2. As can 

be seen from results in Fig. 3.2, no difference in protein fractions between the untreated and 

ultrasound treated NaCas, WPI and MPI was observed. These results are in agreement with 

those reported by Gülseren et al., (2007) who showed no differences in molecular weight 

between untreated and sonicated bovine serum albumin (BSA), treated at 20 kHz, ~20 W cm-

2 for 15 min. Yanjun et al., (2014) also observed that ultrasound treatment (12.5 W at 50% 

amplitude for 2 min) induced no changes in the molecular weight of milk protein concentrate 

(MPC) solutions. On the other hand, Jambrak et al., (2014) observed a reduction in the 

molecular weight of WPI and WPC treated by ultrasound (20 kHz, ~48 W cm-2 and 15 min). 

The difference between these results and those of Jambrak et al., (2014) may have resulted 

from the different ultrasonic intensity and time of treatment applied to WPI. They used an 

ultrasound treatment of 15 min and their ultrasound probe provided 35% more ultrasonic 

intensity to WPI, which may have caused higher shear stress and turbulence effects in their 

WPI solutions and resulted in the split of the molecular structure of the protein. 

The intrinsic viscosity was obtained from the fitting of the Huggins and Kraemer 

equations to the experimental viscosity data, for the untreated and ultrasound treated NaCas, 

WPI and MPI in solution at different concentrations, as shown in Fig. 3.3. The values of 

intrinsic viscosity and Huggins and Kraemer constants for each of the studied proteins are 

listed in Table 3.4. 
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Fig. 3.3. Fitting of the Huggins (●) and Kraemer (○) equations to the viscosity data of the studied protein 

solutions: (a) Untreated NaCas, (b) Ultrasound treated NaCas, (c) Untreated WPI, (d) Ultrasound treated WPI, 

(e) Untreated MPI and (f) Ultrasound treated MPI. Average [η] values displayed on each plot. 
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Table 3.4. Intrinsic viscosity ([η]), Huggins (kH) and Kraemer (kK) constants obtained for untreated and 

ultrasound treated NaCas, WPI and MPI solutions. 

Protein in 
solution 

[η] Untreated 
(dL/g) kH Untreated kK Untreated 

[η] Ultrasound 
(dL/g) kH Ultrasound kK Ultrasound 

NaCas 1.21 ± 0.02 -1.33 -1.29 1.01 ± 0.03 -1.07 -1.05 

WPI 0.29 ± 0.005 -0.042 -0.047 0.24 ± 0.006 -0.036 -0.040 

MPI 0.59 ± 0.007 -0.096 -0.134 0.41 ± 0.004 -0.072 -0.089 

 

Intrinsic viscosity, [η], measurements provide information about the molecular 

properties of biopolymers in solution. More specifically, [η] reflects the ability of a solvent to 

hydrate proteins and provides information about the molecular hydrodynamic volume, which 

is related to the chain conformation of the proteins in solution (Behrouzian et al., 2014). By 

comparing the obtained values of intrinsic viscosity between the untreated and sonicated 

dairy proteins (cf. Table 3.4), we can see that ultrasound treatment induced a significant 

reduction (P < 0.05) in the intrinsic viscosity of NaCas, WPI and MPI in solution, and thus a 

significant reduction in the hydrodynamic volume occupied by the proteins and the solvent 

they entrapped. 

These results are also consistent with the reduction in associate size measured by 

dynamic light scattering (cf. Table 3.3) and observed on the cryo-SEM micrographs (cf. Fig. 

3.1). (Behrouzian et al., 2014) reported intrinsic viscosity values of 0.234 dL/g and 0.514 

dL/g for αs1-casein and BSA, respectively. Those values are lower than the results obtained in 

this work for untreated NaCas, WPI and MPI (cf. Table 3.4). These differences may arise due 

to the complexity of the untreated NaCas, WPI and MPI solutions, which are composed of a 

mixture of proteins rather than single αs1-casein or BSA used by Lefebvre, (1982). Another 

possibility is the type of solvent used, which in the work of Lefebvre, (1982) was 6 M 

guanidine hydrochloride, whilst in the untreated proteins in the present work were dispersed 
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in serum. High concentrations of guanidine hydrochloride (i.e. 6 M) cause protein 

dissociation, whereby random coil like behaviour is exhibited. 

As reported by Tanner & Rha, (1980), the intrinsic viscosity of a protein solution may 

give a measure of the degree of hydrophobicity of the protein. The intrinsic viscosity of a 

protein depends on its conformation and thus on its level of hydration, which are a result of 

the amount of hydrophobic side chains that are buried in the interior of the protein micelles in 

solution. Khan et al., (2012) also reported that a decrease in intrinsic viscosity can potentially 

lead to the dehydration of amphiphilic biopolymer micelles, increasing the hydrophobicity of 

the biopolymer and hence reduced the energy required for the adsorption of amphiphilic 

biopolymers at the oil-water interface. It can therefore be hypothesised, that the observed 

reduction in intrinsic viscosity of the proteins induced by the ultrasound treatment (cf. Table 

3.4), indicates a potential increase in the degree of hydrophobicity of all the investigated 

proteins, the effect of which is slightly more significant for MPI (P < 0.041), followed by 

NaCas (P < 0.043) and WPI (P < 0.044).   

The Huggins and Kraemer coefficients are adequate to assess the quality of a solvent. 

Values for the Huggins coefficient (kH) within a range of 0.25 to 0.5 are attributed to a good 

solvation, whilst values above 0.5 - 1.0 are related to poor solvents (Delpech & Oliveira, 

2005). Similarly, negative values for the Kraemer coefficient (kK) indicate good solvents and 

positive values indicate a poor solvation (Delpech & Oliveira, 2005). As can be seen from 

results in Table 3.4, the values obtained for the Huggins (kH) and Kraemer (kK) constants are 

both negative, which indicate a good solvation considering kK, but an unusual behaviour in 

the case of kH. However, negative values of kH have also been reported in literature for 

biopolymers with amphiphilic properties, such as bovine serum albumin dissolved in water 

(Delpech & Oliveira, 2005), and polydimethylsiloxane–polyurea copolymers dissolved in 

isopropyl alcohol (Curvale et al., 2008). It is also generally accepted, for hydrocolloids, that 
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the relation of kH + kK = 0.5 indicates adequacy of experimental results, given the expected 

values of kH and kK as previously discussed (Yilgor et al., 2006). However, the results 

presented in Table 3.4 do not yield this value. This effect is thought to be due to the 

amphiphilic character of the proteins (by comparison to non-amphiphilic polysaccharides) 

which yields negative values of kH and kK. Similar results have been reported in literature for 

other amphiphilic biopolymers (Curvale et al., 2008; Morris et al., 1981). 

3.4.2. Comparison of the emulsifying properties of untreated and ultrasound 

treated NaCas, WPI and MPI 

 A series of oil-in-water emulsions were produced with 10 wt. % rapeseed oil and an 

aqueous continuous phase containing either untreated or ultrasound treated (2 min at 20 kHz, 

~34 W cm-2) NaCas, WPI and MPI, or a low molecular weight surfactant, Tween 80 at 

different concentrations (0.1 - 5 wt. %). The emulsions were passed through a high-pressure 

valve homogenizer at 125 MPa for 2 passes. Emulsion droplet size measurements obtained by 

laser diffraction are shown in Fig. 3.4. The emulsion droplet size was measured immediately 

after emulsification. 

Emulsions prepared with untreated and ultrasound treated NaCas and WPI had the 

same droplet sizes for all the concentrations used, and resulted in similar droplet sizes as 

those obtained with Tween 80 (cf. Fig. 3.4 a & b). This behaviour is unusual, considering the 

significant aggregate size reduction (increase in surface area-to-volume ratio) observed for 

sonicated NaCas and WPI (cf. Table 3.3), for which it would have been expected to result in a 

faster adsorption of the proteins at the water-in-oil interface, as reported by(Curvale et al., 

2008; Delpech & Oliveira, 2005; Yilgor et al., 2006), and thus lead to a higher reduction in 

the interfacial tension and to smaller emulsion droplet sizes. Furthermore, the potential 

increase in the hydrophobicity of the sonicated NaCas and WPI with the decrease in intrinsic 

viscosity (cf. Table 3.4; Khan et al., 2012; Tanner & Rha, 1980) would also be expected to 
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lead to a faster adsorption of the proteins to the oil-water interface, thus reducing interfacial 

tension and facilitating droplet break-up. However, it appears that the rate of adsorption to the 

interface of sonicated NaCas and WPI remains unchanged despite the smaller micelle sizes 

and higher hydrophobicity obtained, in comparison with untreated NaCas and WPI. Results 

in Fig. 3.4 a & b also showed that droplet sizes decreased significantly (P < 0.05) with the 

increase in NaCas and WPI concentration, which is in agreement with the results obtained by 

Srinivasan et al., (2002) for emulsions formed with NaCas, and those measured by 

Tcholakova et al., (2006) for emulsions containing whey protein concentrate (WPC). The 

submicron emulsion droplet sizes obtained for both, untreated NaCas and WPI are in 

agreement with droplet sizes obtained by Dybowska, (2011), in the order of ~120 nm for 

emulsions containing WPC (3 wt. %), and with those measured by Lee & Norton, (2013), in 

the order of ~170 nm for emulsions containing NaCas (3 wt. %).  

It can also be seen (cf. Fig. 3.4) that the obtained emulsion droplet sizes are 

comparable to the size of untreated proteins (cf. Table 3.3). However, it must be considered 

that the protein size data displayed in Table 3.3 represents aggregates, and not the individual 

protein fractions composing the micelles. In fact, in solution, proteins form aggregates 

(micelles) due to electrostatic and hydrophobic interactions (O’Connell et al., 2003). But, in 

the presence of a hydrophobic dispersed phase (e.g.. rapeseed oil), the individual protein 

fractions detach from the bulk micelles and adsorb to the oil-water interface (Beverung et al., 

1999; O’Connell & Flynn, 2007). As an example, the size of NaCas discrete molecules has 

been reported to be ~8 nm (O’Connell & Flynn, 2007; O’Connell et al., 2003), which makes 

it possible to form the submicron droplets presented in this work.  
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Fig. 3.4. Emulsion droplet size (d3,2) as a function of concentrations of: (a) Untreated NaCas, sonicated NaCas 

and Tween 80, (b) Untreated WPI, sonicated WPI and Tween 80, and (c) Untreated MPI, sonicated MPI and 

Tween 80. 
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The results observed in emulsion droplet sizes (cf. Fig. 3.4), which were shown to be 

dependent on the type of emulsifier, can be explained by considering the interfacial tension of 

the studied systems. Fig. 3.5 presents the interfacial tension between water and oil, obtained 

for untreated and sonicated NaCas, WPI, MPI, as well as for Tween 80 at 0.1 wt. % 

concentration. In order to assess the presence of interfacial impurities of the systems, the 

interfacial tension between pure water and rapeseed oil was measured. As can be seen from 

Fig. 3.5, the interfacial tension of all systems decreased with time. As a consequence, the 

decrease in interfacial tension with time is thought to be due to a great extent on the nature of 

the oil used, and to a lesser extent on the type of emulsifier. As reported by Gaonkar, (1989, 

1991), the interfacial tension of commercial vegetable oils against water decreases with time 

due to the adsorption of surface active impurities, in the oils, at the interface. It was also 

reported that after purification of the vegetable oils, the time dependency of the interfacial 

tension is no longer observed (Gaonkar, 1989, 1991). 
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Fig. 3.5. Interfacial tension between water and pure vegetable oil as a function of emulsifier type: (a) Untreated 

NaCas, sonicated NaCas and Tween 80, (b) Untreated WPI, sonicated WPI and Tween 80 and (c) Untreated 

MPI, sonicated MPI and Tween 80. The concentration for all emulsifiers was 0.1 wt. %. 

As can be seen in Fig. 3.5 a & b, no significant differences (P > 0.05) in the obtained 

values of interfacial tension between the untreated and ultrasound treated NaCas and WPI 

were observed. These results are consistent with the emulsion droplet sizes seen in Fig. 3.4 a 
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& b at 0.1 wt. % concentration, and add evidence to the hypothesis that the rate of protein 

adsorption at the oil-water interface is the same for the untreated and ultrasound treated NaCas 

and WPI. Results in Fig. 3.5 a & b also showed that lower interfacial values were obtained for 

Tween 80 than those obtained for untreated and sonicated NaCas and WPI. This effect is 

likely due to the smaller size and molecular weight of this emulsifier as compared with the 

bulkier structure of NaCas and WPI. It can also be seen (cf. Fig. 3.5 c) that the interfacial 

tension values obtained for ultrasound treated MPI were significantly lower (P < 0.05) than 

those obtained for untreated MPI, and slightly lower than those obtained with Tween 80. This 

result is consistent with the obtained emulsion droplet sizes presented in Fig. 3.4 c, and 

confirms the hypothesis that the micelles of sonicated MPI adsorb faster to the oil-water 

interface, due to the higher surface area-to volume ratio (cf. Table 3.3; smaller protein size) 

and higher hydrophobicity of these proteins (cf. Table 3.4; lower intrinsic viscosity), which 

significantly reduced the interfacial tension, enhanced oil droplet break-up during 

emulsification and produced smaller droplet sizes. Furthermore, the compositional differences 

between MPI and the other investigated dairy proteins, predominately ions, may be a 

contributing factor to the observed significant reduction (P < 0.05) in interfacial tension for 

ultrasound treated MPI in comparison to untreated MPI.  

The stability of the oil-in-water emulsions prepared with untreated and ultrasound 

treated NaCas, WPI and MPI were investigated during a 28 day period. Emulsions prepared 

with Tween 80 were also assessed for comparative purposes. Fig. 3.6 shows the evolution of 

droplet size (d3,2) as a function of time for emulsions prepared with untreated and sonicated 

NaCas, MPI and WPI, as well as with Tween 80 at 1 wt. % concentration. 
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Fig. 3.6. Effect of emulsifier type on droplet size as a function of time for O/W emulsions stabilised by: (a) 

Untreated NaCas, sonicated NaCas and Tween 80, (b) Untreated WPI, sonicated WPI and Tween 80 and (c) 

Untreated MPI, sonicated MPI and Tween 80. The concentration for all emulsifiers was 1 wt. %. 

Fig. 3.6 a & b show that emulsions prepared with untreated and sonicated NaCas and 

WPI, as well as with Tween 80 were all stable against coalescence for 28 days. This stability 

behaviour observed for untreated and ultrasound treated NaCas and WPI was the same for all 

the concentrations used in this work. In all cases, no oil layer was observed on the upper part of 

the emulsions over 28 days. In the case of MPI, results in Fig. 3.6 c showed that the emulsions 

prepared with untreated MPI exhibited coalescence at 1 wt. % concentration, as seen by the 
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increase in droplet size over time. Coalescence was also observed for emulsions prepared with 

untreated MPI at 0.1 and 0.5 wt. % concentrations, but the emulsions prepared with untreated 

MPI at a concentration higher than 1 wt. % were stable for 28 days. A layer of oil was observed 

at the top of the emulsions which exhibited coalescence. However, it can also be seen (cf. Fig. 

3.6 c) that the emulsions prepared with ultrasound treated MPI at 1 wt. % concentration were 

resistant against coalescence over 28 days and had the same stability as the emulsions prepared 

with Tween 80. This behaviour observed for sonicated MPI was the same for all the 

concentrations used in this work. This improved stability of the emulsions prepared with 

sonicated MPI in comparison with untreated MPI is thought to be related to the reduction in 

micelle size (i.e. increase in surface area-to-volume ratio; cf. Table 3.3) and to the increase in 

hydrophobicity (i.e. decrease in the intrinsic viscosity; cf. Table 3.4) of sonicated MPI as 

aforementioned. The effect of which results in a faster adsorption of sonicated MPI to the oil-

water interface, higher reduction in interfacial tension and thus to smaller droplet sizes. 

3.5. Conclusions 

This study showed that ultrasound treatment (20 kHz, 34 W cm-2 for 2 min) of NaCas, 

WPI and MPI caused a significant (P < 0.05) reduction in the protein size and hydrodynamic 

volume of the proteins. This effect was attributed to the high shear forces resulting from 

ultrasonic cavitations. However, no differences in molecular weight were observed between 

untreated and ultrasound treated NaCas, WPI and MPI.  

Unexpectedly, the emulsions prepared with ultrasound treated NaCas and WPI had 

the same submicron droplet sizes as those obtained with their untreated counterparts, and 

were stable at the same concentrations. These results suggested that ultrasound treatment did 

not affect significantly the rate at which protein adsorption occurs at the interface, since no 

significant (P > 0.05) changes in interfacial tension were observed between the untreated and 
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sonicated NaCas and WPI. In contrast, the emulsions prepared with sonicated MPI at 

concentrations ≤ 1 wt. % had smaller droplet sizes than those obtained with untreated MPI at 

the same concentrations. This effect was explained by the significant reduction in micelle size 

(i.e. an increase in surface are-to-volume ratio) and increase in hydrophobicity (reflected by 

the decrease in intrinsic viscosity) of ultrasound treated MPI. These effects led to a faster 

adsorption of the protein to the oil-water interface, significantly reduced the interfacial 

tension and thus facilitated droplet break-up during emulsification. In addition, the emulsions 

prepared with ultrasound treated MPI were stable against coalescence for 28 days at all the 

concentrations tested, whereas the emulsions produced with untreated MPI showed 

coalescence 7 days after emulsification at concentrations ≤ 1 wt. %.  
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4.1. Abstract 

The ultrasonic effect on the physicochemical and emulsifying properties of three 

animal proteins; bovine gelatin (BG), fish gelatin (FG) and egg white protein (EWP), and 

three vegetable proteins; pea protein isolate (PPI), soy protein isolate (SPI) and rice protein 

isolate (RPI), was investigated. Protein solutions (0.1 – 10 wt. %) were sonicated at an 

acoustic intensity of ~34 W cm-2 for 2 minutes. The structural and physical properties of the 

proteins were probed in terms of changes in size, hydrodynamic volume and molecular 

structure using DLS and laser diffraction, intrinsic viscosity and SDS-PAGE, respectively. 

The emulsifying performance of ultrasound treated animal and vegetable proteins were 

compared to their untreated counterparts and Brij 97. Ultrasound treatment reduced the size 

of all proteins, with the exception of RPI, whilst no reduction in the primary structure 

molecular weight profile of proteins was observed in all cases. Emulsions prepared with all 

untreated proteins yielded submicron droplets at concentrations ≤ 1 wt. %, whilst at 

concentrations > 5 wt. % emulsions prepared with EWP, SPI and RPI yielded micron sized 

droplets (> 10 μm) due to pressure denaturation of protein from homogenisation. Emulsions 

produced with sonicated FG, SPI and RPI had the similar droplet sizes as untreated proteins 

at the same concentrations, whilst sonicated BG, EWP and PPI emulsions at concentrations ≤ 

1 wt. % had a smaller droplet size compared to emulsions prepared with their untreated 

counterparts. This effect was consistent with the observed reduction in the interfacial tension 

between these untreated and ultrasound treated proteins. 
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4.2. Introduction 

Proteins perform a vast array of functions in both the food and pharmaceutical 

industries, such as emulsification, foaming, encapsulation, viscosity enhancement and 

gelation. This functionality arises from the complex chemical make-up of these molecules 

(O’Connell & Flynn, 2007; Walstra & van Vliet, 2003). Proteins are of particular interest in 

food systems as emulsifiers, due to their ability to adsorb to oil-water interfaces and form 

interfacial films (Foegeding & Davis, 2011; Lam & Nickerson, 2013). The surface activity of 

proteins arises from the amphiphilic nature of these molecules, because of the presence of 

both hydrophobic and hydrophilic amino acid residues in their peptide chains (Damodaran, 

1997b). Due to the larger molecular weight of proteins lending to their bulkier structure by 

comparison to low molecular weight emulsifiers (e.g. Brij 97) proteins diffuse more slowly to 

the oil-water interface through the continuous phase (Beverung et al., 1999; O’Connell & 

Flynn, 2007). Once at the interface proteins undergo surface denaturation and rearrange 

themselves in order to position their hydrophobic and hydrophilic amino groups in the oil and 

aqueous phase respectively, reducing the interfacial tension and overall free energy of the 

system (Caetano da Silva Lannes & Natali Miquelim, 2013; McClements, 2004). Proteins 

provide several advantages for emulsion droplet stabilisation, such as protein-protein 

interactions at interfaces, and electrostatic and steric stabilisation due to the charged and 

bulky nature of these biopolymers (Lam & Nickerson, 2013; McClements, 2004; O’Connell 

& Flynn, 2007).  

Ultrasound is an acoustic wave with a frequency greater than 20 kHz, the threshold 

for human auditory detection (Knorr et al., 2004). Ultrasound can be classified in two distinct 

categories based on the frequency range, high frequency (100 kHz – 1 MHz) low power (< 1 

W cm-2) ultrasound, utilised most commonly for the analytical evaluation of the 

physicochemical properties of food (Knorr, Zenker, Heinz, & Lee, 2004), and low frequency 
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(20 – 100 kHz) high power (10 – 1000 W cm-2) ultrasound recently employed for the 

alteration of foods, either physically or chemically (Chemat et al., 2011). The effects of high 

power ultrasound on food structures is attributed to the ultrasonic cavitations, the rapid 

formation and collapse of gas bubbles, which is generated by localised pressure differentials 

occurring over short periods of times (a few microseconds). These ultrasonic cavitations 

cause hydrodynamic shear forces and a rise in temperature at the site of bubble collapse (up 

to 5000 oC) contribute to the observed effects of high power ultrasound (Güzey et al., 2006; 

O’Brien, 2007; O’Donnell et al., 2010). 

Ultrasound treatment of food proteins has been related to affects of the 

physicochemical properties of a number of protein sources including soy protein 

isolate/concentrate (including soy flakes; (Güzey et al., 2006; O’Brien, 2007; O’Donnell et 

al., 2010) and egg white protein (Arzeni et al., 2012; Arzeni, Pérez, & Pilosof, 2012; Krise, 

2011). Arzeni et al., (2012a, 2012b) studied the effect of ultrasound upon the structural and 

emulsifying properties of egg white protein (EWP) and observed an increase in the 

hydrophobicity and emulsion stability of ultrasound treated EWP by comparison to untreated 

EWP. In addition, Krise, (2011) reported no significant reduction in the primary protein 

structure molecular weight profile of EWP after sonication at 55 kHz for 12 minutes. 

Similarly, Karki et al., (2010) and Hu et al., (2013) observed no significant changes in the 

primary protein structure molecular weight profile of ultrasound treated soy protein. 

Furthermore, Arzeni et al., (2012) described a significant reduction in protein aggregate size 

for soy protein isolate (SPI). However, the effect of ultrasound treatment upon gelatin, either 

mammalian or piscine derived, pea protein isolate or rice protein isolate has yet to be 

investigated.  

Gelatin is a highly versatile biopolymer widely used in a myriad of industries, from 

the food industry for gelation and viscosity enhancement, and the pharmaceutical industry for 
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the manufacture of soft and hard capsules (Duconseille et al., 2015; Haug et al., 2004; 

Schrieber & Gareis, 2007). Gelatin is prepared from the irreversible hydrolysis of collagen (a 

water insoluble structural protein of connective tissues in animals) under either acidic or 

alkaline conditions in the presence of heat, yielding a variety of peptide-chain species 

(Schrieber & Gareis, 2007; Veis, 1964). Gelatin is a composite mixture of three main protein 

fractions: free α-chains, β-chains, the covalent linkage between two α-chains, and γ-chains, 

the covalent linkage between three α-chains (Schrieber & Gareis, 2007; Veis, 1964). Gelatin 

is unique among proteins owing to the lack of appreciable internal structuring, so that in 

aqueous solutions at sufficiently high temperatures the peptide chains take up random 

configurations, analogous to the behaviour of synthetic linear-chain polymers (Veis, 1964). 

Egg white protein (EWP) is a functional ingredient widely used in the food industry, 

due to its emulsifying, foaming and gelation capabilities,  and utilised within a wide range of 

food applications, including noodles, mayonnaise, cakes and confectionary (Veis, 1964). 

EWP is globular in nature with highly defined tertiary and quaternary structures. The main 

protein fractions of egg white protein include ovalbumin (~55 %), ovotransferrin (~12 %) and 

ovomucin (~11 %), as well as over 30 other protein fractions (Anton et al., 2009). 

Pea protein isolate (PPI) is a nutritional ingredient used in the food industry owing to 

its emulsifying (Donsì et al., 2010) and gelation properties (Gharsallaoui et al., 2011; Liang 

& Tang, 2014), and additionally it has hypoallergenic attributes (Sun & Arntfield, 2012). PPI, 

a pulse legume, is extracted from Pisum sativum, and is the main cultivated protein crop in 

Europe (Boye et al., 2010). The major protein fractions found in PPI are albumins (2S; 5 – 80 

kDa) and globulins, the major fractions in pulse legumes are legumin (11S; ~40 kDa), vicilin 

(7S; ~175 kDa) and convicilin (7-8S; ~290 kDa) (Gonzalez-Perez & Arellano, 2009). Other 

minor proteins found in pulses include prolamins and glutelins (Boye et al., 2010; Gonzalez-

Perez & Arellano, 2009). 
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Soy protein isolate (SPI) is of particular interest to the food industry, as it is the 

largest commercially available vegetable protein source owing to its high nutritional value 

and current low cost, and a highly functional ingredient due to its emulsifying and gelling 

capabilities, however, this functionality is dependent upon the extraction method utilised for 

the preparation of the isolate (Saharan & Khetarpaul, 1994). SPI, extracted from Glycine 

max, is an oilseed legume grown primarily in the United Sates, Brazil, Paraguay and Uruguay 

(Achouri et al., 2012; Molina et al., 2002; Sorgentini et al., 1995). Similar to pulse legumes, 

like PPI, the major protein factions in oilseed legumes are albumins (2S; < 80 kDa) and 

globulins. The dominant fractions in SPI are glycinin (11S; 300-360 kDa) and β-conglycinin 

(7S; 150-190 kDa) a trimeric glycoprotein (Gonzalez-Perez & Arellano, 2009).  

Rice protein isolate (RPI) is a food ingredient of great importance, reflected by the 

large annual consumption of rice, 440 million metric tonnes in 2009 (Gonzalez-Perez & 

Arellano, 2009; Shewry et al., 1995). Up until recently, the protein component of rice (~8 %) 

was usually discarded, as the starch component (~80 %) yielded greater commercial value 

(Romero et al., 2012). Despite rice proteins being common ingredients in gels, ice creams 

and infant formulae (Cao et al., 2009; Gonzalez-Perez & Arellano, 2009), few studies have 

been conducted on these proteins to ascertain emulsifying, foaming and gelling capabilities 

(Chrastil, 1992). RPI is extracted from Oryza sativa, a cereal grain, and is cultivated 

primarily in Asia (Agboola et al., 2005; Romero et al., 2012). Similar to PPI and SPI, RPI 

has four main protein fractions albumin (~5 %), globulin (~12 %), glutelin (~80 %) and 

prolamin (~3 %), which are water-, salt-, alkali- and alcohol-soluble, respectively (Gonzalez-

Perez & Arellano, 2009). 

In this work, three animal proteins, bovine gelatin (BG), fish gelatin (FG) and egg 

white protein (EWP), and three vegetable proteins, pea protein isolate (PPI), soy protein 

isolate (SPI) and rice protein isolate (RPI), all of which are composite mixtures of a number 
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of protein fractions, were investigated in order to assess the significance of high power 

ultrasound treatment on industrially relevant food proteins. The objectives of this research 

were to discern the effects of ultrasound treatment upon animal and vegetable proteins, in 

particular changes in physicochemical properties, measured in terms of size, molecular 

structure and intrinsic viscosity. Furthermore, differences in the performance of proteins as 

emulsifiers after ultrasound treatment was assessed in terms emulsion droplet size, emulsion 

stability and interfacial tension. Oil-in-water emulsions were prepared with either untreated 

or ultrasound treated BG, FG, EWP, PPI, SPI and RPI at different concentrations and 

compared between them and to a low molecular weight emulsifier, Brij 97.  

4.3. Materials and methodology 

4.3.1. Materials 

Bovine gelatin (BG; 175 Bloom), cold water fish gelatin (FG; 200 Bloom), egg white 

protein from chickens (EWP), Brij® 97 and sodium azide were purchased from Sigma 

Aldrich (UK). Pea protein isolate (PPI), soy protein isolate (SPI) and rice protein isolate 

(RPI) were all kindly provided by Kerry Ingredients (Listowel, Ireland). The composition of 

the animal and vegetable proteins used in this study is presented in Table 4.1, acquired from 

the material specification forms from suppliers. The oil used was commercially available 

rapeseed oil. The water used in all experiments was passed through a double distillation unit 

(A4000D, Aquatron, UK).   
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Table 4.1. Composition and pH (measured at a concentration of 1 wt. % and a temperature of 25 oC) of bovine 

gelatin (BG), fish gelatin (FG), egg white protein (EWP), pea protein isolate (PPI), soy protein isolate (SPI) and 

rice protein isolate (RPI). 

 BG FG EWP PPI SPI RPI 

Protein (wt. %) 86 86 85 86 86 84.5 

Moisture (wt. %) 10 12 8.4 7.2 6.2 7.7 

Fat (wt. %) 0 0 < 0.1 0 3.5 3 

Carbohydrate (-) neg. neg. neg. pos. pos. pos. 

Ash (wt. %) 0.76 0.09 4.11 4.85 4.96 0.72 

pH (-) 5.32 5.02 6.26 7.45 6.95 4.85 

 

4.3.2. Methods 

4.3.2.1. Preparation of untreated protein solutions 

Bovine gelatin (BG), fish gelatin (FG) and rice protein isolate (RPI) solutions were 

prepared by dispersion in water and adjusting the pH of the solution to 7.08 ± 0.04 with 1 M 

NaOH, as the initial pH of the solution is close to the isoelectric point, 5.32, 5.02 and 4.85, 

for BG, FG and RPI, respectively. The proteins were all dispersed in water to obtain solutions 

within a protein concentration range of 0.1 – 10 wt. %, where all the animal proteins were 

soluble at the range of concentrations, whilst the vegetable proteins possessed an insoluble 

component regardless of hydration time. Sodium azide (0.02 wt. %) was added to the solution 

to mitigate against microbial activity. 

4.3.2.2. Ultrasound treatment of protein solutions 

An ultrasonic processor (Viber Cell 750, Sonics, USA) with a 12 mm diameter 

stainless steel probe was used to ultrasound treat 50 ml aliquots of the protein solutions in 
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100 ml plastic beakers, which were placed in an ice bath to reduce heat gain. The protein 

solutions were sonicated with a frequency of 20 kHz and amplitude of 95 % (wave amplitude 

of 108 μm at 100% amplitude) for up to 2 minutes. This yielded an ultrasonic power intensity 

of ~34 W cm-2, which was determined calorimetrically by measuring the temperature rise of 

the sample as a function of treatment time, under adiabatic conditions. The acoustic power 

intensity, Ia (W cm-2), was calculated as follows (Margulis & Margulis, 2003):  

    
  

  
                    

  

  
                                                                            (4.1) 

where Pa (W) is the acoustic power, SA is the surface area of the ultrasound emitting surface 

(1.13 cm2), m is the mass of ultrasound treated solution (g), cp is the specific heat of the 

medium (4.18 kJ/gK) and dT/dt is the rate of temperature change with respect to time, 

starting at t = 0 (oC/s).  

The temperature of the protein solutions was measured before and after sonication by 

means of a digital thermometer (TGST3, Sensor-Tech Ltd., Ireland), with an accuracy of ± 

0.1 °C. Prior to ultrasound treatment, the temperature of protein solutions was within the 

range of 5 – 10 oC, whilst the temperature BG and FG solutions was within a temperature 

range of 45 – 50 oC, above the helix coil transition temperature.  After ultrasonic irradiation, 

the temperature of all protein solutions was raised to approximately ~45 °C. 

4.3.2.3. Characterisation of untreated and ultrasound treated proteins  

4.3.2.3.1. pH measurements 

The pH of animal and vegetable protein solutions was measured before and after 

sonication at a temperature of 20 oC. pH measurements were made by using a SevenEasy pH 

meter (Mettler Toledo, UK).  This instrument was calibrated with buffer standard solutions of 
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known pH. The pH values are reported as the average and the standard deviation of three 

repeat measurements. 

4.3.2.3.2. Microstructure characterisation 

The size of untreated and ultrasound treated animal proteins was measured by 

dynamic light scattering (DLS) using a Zetasizer Nano Series (Malvern Instruments, UK), 

and the size of untreated and ultrasound treated vegetable proteins was measured by laser 

diffraction using the Mastersizer 2000 (Malvern Instruments, UK). Protein size values are 

reported as Z-average (Dz). The width of the protein size distribution was expressed in terms 

of span (Span = Dv0.9 - Dv0.1/Dv0.5), where Dv0.9, Dv0.1, and Dv0.5 are the equivalent volume 

diameters at 90, 10 and 50 % cumulative volume, respectively. Low span values indicate a 

narrow size distribution. The protein size and span values are reported as the average and the 

standard deviation of three repeat measurements. 

4.3.2.3.3. Microstructure visualisation 

Cryogenic scanning electron microscopy (Cryo-SEM; Philips XL30 FEG ESSEM) was 

used to visualise the microstructure of untreated and ultrasound treated proteins. One drop of 

protein solution was frozen to approximately -180 °C in liquid nitrogen slush. Samples were 

then fractured and etched for 3 min at a temperature of -90 °C inside a preparation chamber. 

Afterwards, samples were sputter coated with gold and scanned, during which the temperature 

was kept below -160 °C by addition of liquid nitrogen to the system. 

4.3.2.3.4. Molecular structure characterisation 

The molecular structure of untreated and ultrasound treated animal and vegetable 

proteins was determined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis 

(SDS-PAGE), using a Mini-Protean 3 Electrophoresis System (Bio-Rad, UK), where proteins 
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were tested using the reducing method. 100 μl of protein solution at a concentration of 1 wt. 

% was added to 900 μl of Laemmli buffer (Bio-Rad, UK; 65.8 mM Tris-HCl, 2.1% SDS, 

26.3% (w/v) glycerol, 0.01% bromophenol blue) and 100 μl of β-mercaptoethanol (Bio-Rad, 

UK) in 2 ml micro tubes and sealed. These 2 ml micro tubes were placed in a float in a water 

bath at a temperature of 90 oC for 30 minutes, to allow the reduction reaction to take place. A 

10 μl aliquot was taken from each sample and loaded onto a Tris-acrylamide gel (Bio-Rad, 

UK; 4-20% Mini Protean TGX Gel, 10 wells). A molecular weight standard (Bio-Rad, UK; 

Precision Plus ProteinTM All Blue Standards) was used to determine the primary protein 

structure molecular weight profile of the samples. Gel electrophoresis was carried out 

initially at 55 V (I > 20 mA) for 10 min, then at 155 V (I > 55 mA) for 45 min in a running 

buffer (10x Tris/Glycine/SDS Buffer, Bio-Rad, UK; 4% Tris, 15% glycine, 0.5% SDS). The 

gels were removed from the gel cassette and stained with Coomassie Bio-safe stain (Bio-Rad, 

UK; 4% phosphoric acid, 0.5% methanol, 0.05% ethanol) for 1 hr and de-stained with 

distilled water overnight. 

4.3.2.3.5. Intrinsic viscosity measurements 

The intrinsic viscosity of untreated and ultrasound treated animal and vegetable 

proteins was determined by a double extrapolation to a zero concentration method, as 

described by (Morris et al., 1981), using the models of Huggins’ and Kraemer, as follows: 

Huggins (Huggins, 1942):      
 

            
                 (4.2) 

Kraemer (Huggins, 1942):        

 
            

                           (4.3) 

where ηsp is the specific viscosity (viscosity of the solvent, η0 / viscosity of the solution, η), c 

the protein concentration (w/v%), [η] the intrinsic viscosity (dL/g), kH the Huggins constant. 
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ηrel is the relative viscosity (viscosity of the solution, η / viscosity of the solvent, η0) and kK is 

the Kraemer constant. 

The concentration ranges used for the determination of the intrinsic viscosity of BG, 

FG, EWP, PPI, SPI and RPI were 0.1 – 0.5 wt. %, 0.25 – 1.5 wt. %, 1.5 – 3 wt. %, 0.5 – 0.8 

wt. %, 1.5 – 3 wt. % and 0.5 – 2 wt. %, respectively. The validity of the regression procedure 

is confined within a discrete range of ηrel, 1.2 < ηrel < 2. The upper limit is due to the 

hydrodynamic interaction between associates of protein molecules, and the lower limit is due 

to inaccuracy in the determination of very low viscosity fluids. A value of ηrel approaching 1 

indicates the lower limit (Morris et al., 1981).  

The viscosity of the protein solutions was measured at 20 °C using a Kinexus 

rheometer (Malvern Instruments, UK) equipped with a double gap geometry (25 mm 

diameter, 40 mm height). For the determination of intrinsic viscosity by extrapolation to 

infinite dilution, there must be linearity between shear stress and shear rate, which indicates a 

Newtonian behaviour region on the range of shear rate used in the measurements. The 

Newtonian plateau region of the protein solutions at the range of concentrations used was 

found within a shear rate range of 25 - 1000 s-1. Thus, the values of viscosity of the protein 

solutions and that of the solvent (distilled water) were selected from the flow curves data at a 

constant shear rate of 250 s-1 (within the Newtonian region), which were subsequently used to 

determine the specific viscosity, ηsp, the relative viscosity, ηrel, and the intrinsic viscosity, [η]. 

At least three replicates of each measurement were made.  

4.3.2.4. Preparation of oil-in-water emulsions  

10 wt. % dispersed phase (rapeseed oil) was added to the continuous aqueous phase 

containing either untreated or sonicated animal or vegetable proteins or Brij 97 at different 

concentrations, ranging from 0.1 to 10 wt. %. An oil-in-water pre-emulsion was prepared by 
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emulsifying this mixture at 8000 rpm for 2 min using a high shear mixer (SL2T, Silverson, 

UK). Submicron oil-in-water emulsions were then prepared by further emulsifying the pre-

emulsion using a high-pressure valve homogeniser (Panda NS 1001L-2K, GEA Niro Soavi, 

UK) at 125 MPa for 2 passes. The initial temperature of EWP, PPI, SPI and RPI emulsions 

was a temperature of 5 oC to prevent thermal denaturation of proteins from high pressure 

homogenisation, whilst denaturation may still occur due the high shear during high pressure 

processing. The initial temperature of BG and FG emulsions was at a temperature of 50 oC to 

prevent gelation of gelatin (bovine or fish) during the homogenisation process. High pressure 

processing increases the temperature of the processed material, and consequently, the final 

temperatures of emulsions prepared with EWP, PPI, SPI and RPI, and gelatin (BG and FG), 

after homogenisation were ~45 oC and ~90 oC, respectively.  

4.3.2.5. Characterisation of oil-in-water emulsions. 

4.3.2.5.1. Droplet size measurements 

The droplet size of the emulsions was measured by laser diffraction using a 

Mastersizer 2000 (Malvern Instruments, UK) immediately after emulsification. Emulsion 

droplet size values are reported as the volume-surface mean diameter (Sauter diameter; d3,2). 

The stability of the emulsions was assessed by droplet size measurements over 28 days, 

where emulsions were stored under refrigeration conditions (4 oC) throughout the duration of 

the stability study.  The droplet sizes and error bars are reported as the mean and standard 

deviation, respectively, of measured emulsions prepared in triplicate. 

4.3.2.5.2. Interfacial tension measurements 

The interfacial tension between the aqueous phase (pure water, animal or vegetable 

protein solutions, or surfactant solution) and oil phase (rapeseed oil) was measured using a 
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tensiometer K100 (Krűss, Germany) with the Wilhelmy plate method. The Wilhelmy plate 

has a length, width and thickness of 19.9 mm, 10 mm and 0.2 mm, respectively and is made 

of platinum. The Wilhelmy plate was immersed in 20 g of aqueous phase to a depth of 3 mm. 

Subsequently, an interface between the aqueous phase and oil phase was created by carefully 

pipetting 50 g of the oil phase over the aqueous phase. The test was conducted over 3,600 s 

and the temperature was maintained at 20 °C throughout the duration of the test. The 

interfacial tension values and the error bars are reported as the mean and standard deviation, 

respectively, of three repeat measurements. 

4.3.2.5.3. Emulsion visualisation 

Cryogenic scanning electron microscopy (Cryo-SEM; Philips XL30 FEG ESSEM) was 

used to visualise the microstructure of pre-emulsions using untreated and sonicated proteins. 

One drop of pre-emulsion was frozen to approximately -180 °C in liquid nitrogen slush. 

Samples were then fractured and etched for 3 min at a temperature of -90 °C inside a 

preparation chamber. Afterwards, samples were sputter coated with gold and scanned, during 

which the temperature was kept below -160 °C by addition of liquid nitrogen to the system. 

4.3.3. Statistical analysis 

Student’s t-test, a statistical hypothesis test, with a 95 % confidence interval was used 

to assess the significance of the results obtained. t-test data with P < 0.05 were considered 

statistically significant.  
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4.4. Results and discussions 

4.4.1. Effect of ultrasound treatment on the structural and physical properties of 

animal and vegetable proteins 

The effect of duration of ultrasonic irradiation on the size and pH of animal and 

vegetable proteins was initially investigated. 0.1 wt. % solutions of BG, FG, EWP, PPI, SPI 

and RPI were sonicated for 15, 30, 60 and 120 s, with an ultrasonic frequency of 20 kHz and 

an amplitude of 95 %. Protein size and pH measurements for untreated, and ultrasound 

treated proteins as a function of time are shown in Fig. 4.1 and Table 4.2. The size of the 

vegetable protein isolates presented in Fig. 4.1 prior to sonication (i.e. t = 0) are in a highly 

aggregated state due to protein denaturation from the processing to obtain these isolates. Fig. 

4.1 shows that there is a significant reduction (P < 0.05) in protein size with an increase in the 

sonication time, and the results also highlight that after a sonication of 1 minute there is 

minimal further reduction in protein size of BG, FG, EWP, PPI and SPI. This decrease in 

protein size is attributed to disruption of the hydrophobic and electrostatic interactions which 

maintain untreated protein aggregates from the high hydrodynamic shear forces associated 

with ultrasonic cavitations.  

However, there is no significant reduction (P > 0.05) in the size of RPI agglomerates, 

irrespective of treatment time, due to the highly aggregated structure of the insoluble 

component of RPI, ascribed to both the presence of carbohydrate within the aggregate 

structure and the denaturation of protein during the preparation of the protein isolate, 

restricting size reduction by way of ultrasound treatment (Guraya & James, 2002; Marshall & 

Wadsworth, 1994; Mujoo, Chandrashekar, & Zakiuddin Ali, 1998).  

The pH of all animal and vegetable protein solutions, with the exception of RPI, 

decreased significantly (P < 0.05) with increasing sonication time. Equivalent to the protein 
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size measurements, after a treatment time of 1 min the pH of protein solutions decreased no 

further. The decrease in pH of animal and vegetable protein solutions is thought to be 

associated with the transitional changes resulting in deprotonation of acidic amino acid 

residues (Sakurai et al., 2009) which were contained within the interior of associated 

structures of untreated proteins prior to ultrasound treatment. Our results are in agreement 

with those of O’Sullivan, et al., (2014), who showed that an increased sonication led to a 

significant reduction of protein size and pH for dairy proteins up to a sonication time of 1 

min, as with animal and vegetable proteins, with an ultrasound treatment of 20 kHz and an 

amplitude of 95%. 

 

Fig. 4.1. Effect of sonication time on the Dz (nm) of (a) BG, (b) EWP, (c) PPI and (d) RPI. 
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Table 4.2. Effect of sonication time on pH of BG, FG, EWP, PPI, SPI and RPI solutions at a concentration of 

0.1 wt. %. The standard deviation for all pH measurements was < 0.04 in all cases. 

 pH (-) 

Time (s) 0 15 30 60 120 

BG 7.09 6.97 6.84 6.71 6.63 

FG 7.11 7.02 6.82 6.68 6.77 

EWP 6.28 6.19 6.11 6.07 6.04 

PPI 7.45 7.36 7.26 7.14 7.12 

SPI 6.94 6.8 6.69 6.61 6.59 

RPI 7.05 7.04 7.04 7.03 7.02 

 

The stability of sonicated animal and vegetable protein solutions as a function of time 

was investigated by protein size and protein size distribution (span) of sonicated proteins. 

Animal and vegetable protein solutions with a concentration of 0.1 wt. % were ultrasound 

treated at 20 kHz and ~34 W cm-2 for a sonication time of 2 min, as no further decrease in 

protein size after a sonication time of 1 min was observed (cf. Fig. 4.1). The protein size and 

span values of sonicated animal and vegetable proteins were measured immediately after 

treatment and after 1 and 7 days, in order to assess the stability of protein size and protein 

size distribution. Protein size measurements and span values obtained from DLS and laser 

diffraction for untreated and ultrasound treated animal and vegetable proteins are shown in 

Table 4.3. 
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Table 4.3. Average protein size (Dz) and span of untreated and ultrasound treated animal and vegetable proteins 

at a concentration of 0.1 wt. %. 

  Ultrasound Treated  

Dz (nm) Untreated Day 0 Day 1 Day 7 

BG 812 ± 19 61 ± 7 112 ± 11 117 ± 8 

FG 554 ± 23 52  ± 9 104 ± 13 111 ± 17 

EWP 1,600 ± 120 244 ± 5 398 ± 7 412 ± 22 

PPI 5,250 ± 230 187 ± 7 198 ± 6 222 ± 4 

SPI 1,700 ± 320 265 ± 10 293 ± 9 298 ± 15 

RPI 51,600 ± 920 52,800 ± 840 52,400 ± 680 52,500 ± 730 

Span (-) Untreated Day 0 Day 1 Day 7 

BG 1.93 ± 0.54 0.44 ± 0.03 0.67 ± 0.07 0.73 ± 0.06 

FG 1.72 ± 0.43 0.35 ± 0.04 0.59 ± 0.06 0.66 ± 0.05 

EWP 8.20 ± 0.44 5.80 ± 0.11 6.0 ± 0.11 5.80 ± 0.11 

PPI 2.80 ± 0.13 48.1 ± 1.50 47.9 ± 1.70 46.6 ± 2.30 

SPI 3.40 ± 0.43 23.5 ± 0.90 24.1 ± 1.20 24.4 ± 1.50 

RPI 3.61 ± 0.23 3.57 ± 0.32 3.58 ± 0.43 3.60 ± 0.52 

 

Ultrasound treatment produced a significant reduction (P < 0.05) in the size and span 

of BG, FG and EWP. However, 7 days after sonication an increase in the size and the 

broadening of the distribution was observed for animal proteins. The effective size reduction 

of the ultrasound treatment to BG, FG and EWP on day 7 was 85.6 %, 80 % and 74.3 %, 

respectively. In the case of PPI and SPI, the results in Table 4.3 show that ultrasound 

treatment significantly (P < 0.05) reduced the aggregate size and broadened of the protein 

size distribution. The size distribution of PPI and SPI after ultrasound treatment is bimodal, 
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one population having a similar size as the parent untreated protein, and the other population 

is nano-sized (~120 nm). The span of the distribution and protein size on day 7 for PPI and 

SPI was quite similar to that after immediate sonication, representing an effective protein size 

reduction of 95.7 % and 82.3 % for PPI and SPI respectively. This significant reduction in 

aggregate size of both PPI and SPI from ultrasound treatment allows for improved 

solubilisation and prolonged stability of these vegetable protein isolates to sedimentation.  

These results are in agreement with those of Jambrak et al., (2009), who observed a 

significant reduction in the size of SPI aggregates. Arzeni et al., (2012) also observed a 

decrease in the protein size for sonicated SPI, but an increase in size for EWP treated by 

ultrasound, whereby this increase in size of EWP aggregates is associated with thermal 

aggregation during the ultrasound treatment. The reason for the observed decrease in the size 

of the proteins, with the exception of RPI, is due to disruption of non-covalent associative 

forces, such as hydrophobic and electrostatic interactions, and hydrogen bonding, which 

maintain protein aggregates in solution (cf. section 2.1.1.), induced by high levels 

hydrodynamic shear and turbulence due to ultrasonic cavitations. 

The observed increase in size for BG, FG and EWP after 7 days is thought to be due 

to reorganisation of proteins into sub-aggregates due to non-covalent interactions 

(electrostatic and hydrophobic). In the case of PPI and SPI, the static size observed is due to 

the more defined structure of the PPI and SPI aggregates in comparison to the fully hydrated 

animal proteins, which allows for greater molecular interactions and mobility (Veis, 1964). In 

order to validate these hypotheses, cryo-SEM micrographs were captured of untreated and 7 

days after sonication of BG and SPI solution at 1 wt. % for all proteins tested (Fig. 4.2). 
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Fig. 4.2. Cryo-SEM micrographs of protein solutions: (a) 1% Untreated BG, (b) 1% Ultrasound treated BG, (c) 

1% Untreated SPI and (d) 1% Ultrasound treated SPI. Scale bar is 2 μm in all cases. 

Untreated BG in solution (cf. Fig. 4.2a) appears to be distributed into discrete fibres, 

which is consistent with the literature, describing gelatin as a fibrous protein (Veis, 1964), 

whilst BG treated by ultrasound (cf. Fig. 4.2b) appears to be in the form of fibrils of the 

parent untreated BG fibre, where the width of the fibres and the fibrils is equivalent, yet the 

length of the fibrils is shorter than the untreated BG fibres. In the case of untreated SPI (cf. 

Fig. 4.2c) large aggregates of protein can be seen, composed of discrete entities, whereas 

sonicated SPI (cf. Fig. 4.2d) has a notably reduced protein size, with a monodisperse size 

distribution. Similar results were observed for FG, EWP and PPI. These results are in 

agreement with previously discussed observations (cf. Table 4.3), and adds evidence to the 

hypothesis that ultrasound treatment causes disruption of protein aggregates, that 

subsequently reorganise themselves into smaller sub-associates. 



Chapter 4. The effect of ultrasound treatment   on the structural, physical and emulsifying 
properties of animal and vegetable proteins 

 134  

The molecular structure of untreated and ultrasound treated animal and vegetable 

proteins was investigated next. Protein solutions at a concentration of 1 wt. % were 

ultrasound treated for 2 min at 20 kHz, with a power intensity of ~34 W cm-2. Electrophoretic 

profiles obtained by SDS-PAGE for untreated and ultrasound treated proteins, and the 

molecular weight standard, are shown in Fig. 4.3.  

 

Fig. 4.3. SDS-PAGE electrophoretic profiles of protein solutions: (a) Molecular weight standard (10 kDa – 250 

kDa), (b) Untreated BG, (c) Ultrasound treated BG, (d) Untreated FG, (e) Ultrasound treated FG, (f) Untreated 

EWP, (g) Ultrasound treated EWP, (h) Untreated PPI, (i) Ultrasound treated PPI, (j) Untreated SPI, (k) 

Ultrasound treated SPI, (l) Untreated RPI and (m) Ultrasound treated RPI. 

No difference in the protein fractions was observed between untreated and sonicated 

BG, FG, EWP, SPI, PPI and RPI (cf. Fig. 4.3). These results are in concurrence with those 

reported by Krise, (2011) who also showed no difference in the primary structure molecular 

weight profile between untreated and ultrasound treated egg white, with a treatment 

conducted at 55 kHz, 45.33 W cm-2 for 12 min. Moreover, the molecular weight of the 

obtained protein fractions are in agreement with the literature for gelatin (Gouinlock et al., 
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1955; Veis, 1964), EWP (Anton et al., 2009), SPI (Gonzalez-Perez & Arellano, 2009), PPI 

(Sun & Arntfield, 2012) and RPI (Hamaker, 1994; Juliano, 1985).  

The intrinsic viscosity, [η], was obtained by the fitting of experimental viscosity data 

to the Huggins’ and Kraemer equations, for untreated and ultrasound irradiated animal and 

vegetable protein solutions, as shown in Fig. 4.4 for EWP and PPI. The other proteins 

investigated as part of this study (BG, FG, SPI and RPI) display similar behaviour to EWP 

(i.e. negative kH and kK values). The values of [η] and the Huggins’, kH, and Kraemer, kK, 

constants for each of the proteins investigated in this study are listed in Table 4.4.  

Table 4.4. Intrinsic viscosity ([η]), Huggins (kH) and Kraemer (kK) constants obtained for untreated and 

ultrasound treated animal and vegetable protein solutions. 

Protein in 
solution 

[η] Untreated 
(dL/g) kH Untreated kK Untreated 

[η] Ultrasound 
(dL/g) kH Ultrasound kK Ultrasound 

BG 2.75 ± 0.08 -2.88 -3.09 2.06 ± 0.09 -2.31 -2.39 

FG 1.06 ± 0.07 -0.38 -0.41 0.76 ± 0.05 -0.18 -0.24 

EWP 0.25 ± 0.001 -0.03 -0.033 0.21 ± 0.001 -0.023 -0.026 

PPI 0.8 ± 0.005 0.59 0.034 0.76 ± 0.007 -0.24 -0.29 

SPI 0.31 ± 0.002 -0.02 -0.032 0.27 ± 0.001 -0.023 -0.031 

RPI 0.55 ± 0.009 -0.15 -0.16 0.56 ± 0.007 -0.13 -0.14 
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Fig. 4.4. Fitting of the Huggins (●) and Kraemer (○) equations to the viscosity data of the studied protein 

solutions: (a) Untreated EWP, (b) Ultrasound treated EWP, (c) Untreated PPI and (d) Ultrasound treated PPI. 

Intrinsic viscosity, [η], demonstrates the volume of water entrained by an aggregate of 

protein (i.e. hydration of proteins) and provides information about the associate 

hydrodynamic volume, which is related to molecular conformation of proteins in solution 

(Behrouzian et al., 2014; Harding, 1997; Sousa et al., 1995). A comparison of the [η] 

between untreated and ultrasound treated animal and vegetable proteins (cf. Table 4.4) 

demonstrates that ultrasound treatment induced a significant reduction (P < 0.05) in the 

intrinsic viscosity of five of the protein solution, and consequently a significant reduction in 

the hydrodynamic volume occupied by the proteins and the solvents entrained within them.  
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These results are in agreement with the reduction in associate size (cf. Table 4.3) and 

cryo-SEM micrographs (cf. Fig. 4.2), however, for the case of RPI, there is no reduction in 

the intrinsic viscosity, which is consistent with the previous size measurements (cf. Table 

4.3). Gouinlock et al., (1955), Lefebvre, (1982) and Prakash, (1994)  reported intrinsic 

viscosity values of 6.9 dL/g for gelatin, 0.326 dL/g for ovalbumin and 0.46 dL/g for glycinin 

(11S; soy globulin), respectively. These values differ to those obtained in this work for 

untreated BG, EWP and SPI (cf. Table 4.4). These differences may be a consequence of the 

complexity of EWP and SPI solutions, which are composed of a mixture of protein fractions 

rather than single component ovalbumin and glycinin (Lefebvre, 1982; Prakash, 1994), and in 

case of gelatin, differences may arise due to variability in preparation of the gelatin from 

collagen, which determines the molecular weight profile of the resulting gelatin (Veis, 1964). 

Extrinsic variations in solvent quality greatly affect the determination of intrinsic viscosity 

and further accounts for the differences between the single fraction proteins and the multi-

component proteins investigated in this study. Extrinsic factors affecting intrinsic viscosity 

include temperature, pH, initial mineral content and composition, co-solvents, additional salts 

and their concentration (Harding, 1997). Furthermore, the large [η] of both BG and FG by 

comparison to the other proteins investigated as part of this study is due to the random coil 

conformation of these molecules in solutions, which consequently entrain more water giving 

a larger overall hydrodynamic volume. 

The intrinsic viscosity of a protein solution can be used to indicate the degree of 

hydrophobicity of the protein (Tanner & Rha, 1980). The intrinsic viscosity of protein 

associates in solution is dependent on its conformation and degree of hydration, which dictate 

the amount of hydrophobic residues that are within the interior of protein associates. A 

decrease in the intrinsic viscosity may lead to dehydration of amphiphilic biopolymers, 

potentially increasing the hydrophobicity of the biopolymer and thus, reducing the associated 



Chapter 4. The effect of ultrasound treatment   on the structural, physical and emulsifying 
properties of animal and vegetable proteins 

 138  

energy required for adsorption of amphiphilic biopolymers to the oil-water interface (Khan et 

al., 2012). Thus, the significant reduction (P < 0.05) of intrinsic viscosity induced by 

ultrasound treatment (cf. Table 4.4), demonstrates the potential for an increase in the degree 

of hydrophobicity of BG, FG, EWP, PPI and SPI. 

The Huggins’ and Kraemer coefficients are adequate for the assessment of solvent 

quality. Positive values of the Huggins’ coefficient, kH, within a range of 0.25 – 0.5 indicate 

good solvation, whilst kH values within a range of 0.5 – 1.0 are related to poor solvents 

(Curvale et al., 2008; Delpech & Oliveira, 2005). Conversely negative values for the 

Kraemer coefficient, kK, indicate good solvent, yet positive values express poor solvation 

(Delpech & Oliveira, 2005; Harding, 1997). The values for the kH and kK (cf. Table 4.4) are 

both negative, with the exception of untreated PPI exhibiting a positive kH value, indicating 

good solvation when considering kK, yet unusual behaviour in the case of kH. Nonetheless, 

negative values of kH have been reported in the literature for biopolymers with amphiphilic 

properties, such as bovine serum albumin (Curvale et al., 2008), sodium caseinate, whey 

protein isolate and milk protein isolate (O’Sullivan et al., 2014a; O’Sullivan et al., 2014b), all 

dispersed within serum. Positive kH values are associated with uniform surface charges of 

polymers (Sousa et al., 1995), indicating that untreated PPI aggregates have a uniform 

surface charge, and after ultrasound treatment conformational changes occur yielding an 

amphiphatic character on the surface of the ultrasound treated PPI, observed by the negative 

kH value. It is also important to observe that the relation kH + kK = 0.5, generally accepted to 

indicate adequacy of experimental results for hydrocolloids, was not found for any of the 

proteins investigated in this study (cf. Table 4.4). This effect is thought to be associated with 

the amphiphatic nature of the proteins used in this study (in comparison to non-amphiphilic 

polysaccharides) yielding negative values of kH and kK. Similar results have been reported in 

the literature for other amphiphilic polymers (Curvale et al., 2008; O’Sullivan, et al., 2014a; 
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Yilgor et al., 2006). In addition, the values of kH and kK tend to decrease after ultrasound 

treatment indicating improved solvation of proteins (Delpech & Oliveira, 2005). 

4.4.2. Comparison of the emulsifying properties of untreated and ultrasound 

treated animal and vegetable proteins 

Oil-in-water emulsions were prepared with 10 wt. % rapeseed oil and an aqueous 

continuous phase containing either the untreated or ultrasound irradiated (2 min at 20 kHz, 

~34 W cm-2) proteins, or a low molecular weight surfactant, Brij 97, at a range of emulsifier 

concentrations (0.1 – 10 wt. %). Emulsions were prepared using high-pressure valve 

homogenisation (125 MPa for 2 passes) and droplet sizes as a function of emulsifier type and 

concentration are shown in Fig. 4.5. The emulsion droplet sizes were measured immediately 

after emulsification, and all exhibited unimodal droplet size distributions. 

Emulsions prepared with sonicated BG (cf. Fig 4.5 a), EWP (cf. Fig. 4.5 c) and PPI 

(cf. Fig. 4.5 d) at concentrations < 1 wt. % yielded a significant (P < 0.05) reduction in 

emulsion droplet size by comparison to their untreated counterparts. At concentrations ≥ 1 

wt. % the emulsions prepared with untreated and ultrasound treated BG, EWP and PPI 

exhibited similar droplet sizes. The decrease in emulsion droplet size after ultrasound 

treatment at concentrations < 1 wt. % is consistent with the significant reduction (P < 0.05) in 

protein size (increase in surface area-to-volume ratio) upon ultrasound treatment of BG, EWP 

and PPI solutions (cf. Table 4.3) which allows for more rapid adsorption of protein to the oil-

water interface, as reported by Damodaran & Razumovsky (2008). In addition, the significant 

increase of hydrophobicity of ultrasound treated BG, EWP and PPI and the decrease in 

intrinsic viscosity (cf. Table 4.4; Khan et al., 2012) would lead to an increased rate of protein 

adsorption to the oil-water interface, reducing interfacial tension allowing for improved 

facilitation of droplet break-up. The submicron droplets obtained for untreated PPI are in 



Chapter 4. The effect of ultrasound treatment   on the structural, physical and emulsifying 
properties of animal and vegetable proteins 

 140  

agreement with droplet sizes obtained by those measured by Donsì et al., (2010), in the order 

of ~200 nm  for emulsions containing pea protein (4 wt. %). 

 

Fig. 4.5. Average droplet size as a function of concentrations of: (a) Untreated BG, sonicated BG and Brij 97, 

(b) Untreated FG, sonicated FG and Brij 97, (c) Untreated EWP, sonicated EWP and Brij 97 and (d) Untreated 

PPI, sonicated PPI and Brij 97. 

Emulsions prepared with the tested concentrations of untreated and ultrasound treated 

FG (cf. Fig. 4.5 b), SPI and RPI yielded similar droplet sizes, where emulsions prepared with 

0.1 wt. % FG yielded emulsion droplets ~5 μm, and both SPI and RPI yielded ~2 μm droplets 

at the same concentration. Furthermore, at similar concentrations PPI yielded smaller 

emulsion droplets than those prepared with SPI, making SPI a poorer emulsifier, in 

agreement with the results of Vose, (1980). This behaviour was anticipated for RPI, where no 

significant reduction (P > 0.05) in protein size was observed (cf. Table 4.3), yet unexpected 
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when considering the significant reduction (P < 0.05; increase in surface area-to-volume 

ratio) of protein size observed for both sonicated FG and SPI (cf. Table 4.3). Moreover, the 

potential increase in hydrophobicity of ultrasound treated FG and SPI expressed by the 

decrease in intrinsic viscosity (cf. Table 4.4; Khan et al., 2012; Tanner & Rha, 1980) would 

also be expected to result in faster adsorption of protein to the oil-water interface, however it 

appears that the rate of protein adsorption of ultrasound treated FG and SPI to the oil-water 

interface remains unchanged regardless of the smaller protein associate sizes and increase in 

hydrophobicity, when compared with untreated FG and SPI. Even though ultrasound 

treatment reduces the aggregate size of SPI, proteins possessing an overall low molecular 

weight, such as EWP (ovalbumin is ~44 kDa), are capable of forming smaller emulsion 

droplets than larger molecular weight proteins (glycinin is 360 kDa) as lower molecular 

weight species have greater molecular mobility through the bulk for adsorbing to oil-water 

interfaces (Beverung et al., 1999; Caetano da Silva Lannes & Natali Miquelim, 2013). The 

submicron droplets achieved for untreated FG are consistent with droplet sizes obtained by 

Surh et al., (2006), in the order of ~300 nm for emulsions containing either low molecular 

weight (~55 kDa) or high molecular weight (~120 kDa) fish gelatin (4 wt. %). 

At protein concentrations > 1 wt. % for emulsions prepared with either untreated or 

ultrasound treated EWP (cf. Fig. 4.5 c), SPI and RPI micron sized entities (> 10 μm) were 

formed. Unexpectedly, emulsions prepared with PPI did not exhibit the formation of these 

entities, even though the structure of PPI is similar to that of SPI. The degree and structure of 

the denatured component of PPI likely varies to that of SPI and accounts for the non-

aggregating behaviour of PPI. Emulsions being processed using high pressure 

homogenisation experience both increases in temperature and regions of high hydrodynamic 

shear, both of these mechanisms result in denaturation of proteins. These micron sized 

entities are attributed to denaturation and aggregation of protein due to the high levels of 



Chapter 4. The effect of ultrasound treatment   on the structural, physical and emulsifying 
properties of animal and vegetable proteins 

 142  

hydrodynamic shear present during the homogenisation process, as thermal effects were 

minimised by ensuring that the emulsions were processed at a temperature of 5 oC, and the 

outlet temperature was less than 45 oC in all cases, lower than the thermal denaturation 

temperatures of EWP, SPI and RPI (Ju et al., 2001; Sorgentini et al., 1995; Van der Plancken 

et al., 2006). Hydrostatic pressure induced gelation of EWP, SPI and RPI has been reported 

in the literature (Messens et al., 1997; Molina et al., 2002; Tang & Ma, 2009; Zhang-Cun et 

al., 2013) and the formation of these entities is attributed to the high shear forces exerted 

upon the proteins while under high shear conditions, whereby the excess of bulk protein 

allows for greater inter-penetration of protein chains under high shear yielding the formation 

of discrete entities composed of oil droplets within denatured aggregated protein. 

Unexpectedly, emulsions prepared with a higher concentration of protein (10 wt. %) yielded 

a significant (P < 0.05) reduction in entity size in comparison to those prepared with the 

lower concentration (5 wt. %). This behaviour is ascribed to an increased rate of formation 

and number of aggregates formed at higher concentrations during the short time within the 

shear field. 

Emulsion droplet sizes for all animal and vegetable proteins (treated and untreated) 

investigated (cf. Fig. 4.5) are smaller than that of the size of the untreated proteins (cf. Table 

4.3). Be that as it may, the reported protein sizes (cf. Table 4.3) represent aggregates of 

protein molecules and not discrete protein fractions. Native ovalbumin and glycinin have 

hydrodynamic radii (Rh) of approximately 3 nm and 12.5 nm respectively (García De La 

Torre et al., 2000; Peng et al., 1984), in comparison to size data presented in Table 4.3, 

whereby the EWP and SPI have Dz values of EWP and SPI of approximately 1.6 and 1.7 μm, 

respectively. This disparity in size is due to the preparation of these protein isolates whereby 

shear and temperature result in the formation of insoluble aggregated material, in comparison 

to the soluble native protein fractions. Proteins in aqueous solutions associate together to 
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form aggregates due to hydrophobic and electrostatic interactions (O’Connell et al., 2003), 

however in the presence of a hydrophobic dispersed phase (i.e. rapeseed oil) the protein 

fractions which comprise the aggregate dissociate and adsorb to the oil-water interface 

(Beverung et al., 1999; O’Connell & Flynn, 2007), which may account for the fabrication of 

submicron droplets presented in this study. 

The emulsion droplet sizes presented in Fig. 4.5, which were shown to be dependent 

on the emulsifier type, can be interpreted by comparing the interfacial tension of the studied 

systems. Fig. 4.5 presents the interfacial tension between water and rapeseed oil, for 

untreated and ultrasound treated BG, FG, PPI and SPI, and Brij 97, all at an emulsifier 

concentration of 0.1 wt. %. In order to assess the presence of surface active impurities within 

the dispersed phase, the interfacial tension between distilled water and rapeseed oil was 

measured. Fig. 4.6 shows that the interfacial tension of all systems decreases continually as a 

function of time. In light of these results, the decrease of interfacial tension with time is 

attributed primarily to the nature of the dispersed phase used, and to a lesser degree the type 

of emulsifier. Gaonkar, (1989, 1991) explained that the time dependent nature of interfacial 

tension of commercially available vegetable oils against water was due to the adsorption of 

surface active impurities present within the oils at the oil-water interface. Gaonkar, (1989, 

1991) also reported that after purification of the vegetable oils (percolation through a 

synthetic magnesium silicate bed), the time dependency of interfacial tension was no longer 

observed. 
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Fig. 4.6. Interfacial tension between water and pure vegetable oil as a function of emulsifier type: (a) Untreated 

BG, ultrasound treated BG and Brij 97, (b) Untreated FG, ultrasound treated FG and Brij 97, (c) Untreated PPI, 

ultrasound treated PPI and Brij 97 and (d) Untreated SPI, ultrasound treated SPI and Brij 97. 

No significant differences (P > 0.05) were observed in the obtained values of 

interfacial tension between untreated and ultrasound treated FG (cf. Fig. 4.6 b) and RPI. 

These results are consistent with droplet size data, where no significant difference in the 

droplet size was observed. Significant differences were shown for the initial rate of decrease 

of interfacial tension when comparing untreated and ultrasound treated PPI (cf. Fig. 4.6 c). 

Ultrasound treated PPI aggregates are smaller than untreated PPI (cf. Table 4.3) and have 

greater hydrophobicity (i.e. reduction in [η]; cf. Table 4.4) accounting for the significant 

reduction of initial interfacial tension, enhancing droplet break-up during emulsification. 
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Significant differences (P < 0.05) in the equilibrium interfacial tension values were observed 

when comparing untreated and sonicated BG (cf. Fig. 4.6 a), EWP and SPI (cf. Fig. 4.6 d). 

These results are consistent with the observed significant reduction (P < 0.05) in emulsion 

droplet size for BG (cf. Fig. 4.5 a) and EWP (cf. Fig. 4.5 c) and adds evidence to the 

hypotheses that aggregates of sonicated BG and EWP adsorb faster to the interface due to 

higher surface area-to-volume ratio (cf. Table 4.3; smaller protein size) and increased 

hydrophobicity (i.e. reduction in [η]; cf. Table 4.4), significantly reducing the equilibrium 

interfacial tension, yielding smaller emulsion droplets. No significant reduction (P > 0.05) in 

emulsion droplet size was noted for SPI, despite the observed reduction in equilibrium 

interfacial tension of SPI (cf. Fig. 4.6 d) which may be a consequence of alternative protein 

conformations at the oil-water interface. These hypotheses were explored by cryo-SEM of 

pre-emulsions, to allow for visualisation emulsion droplet interface, prepared with untreated 

and ultrasound treated BG and SPI at an emulsifier concentration of 1 wt. % for all pre-

emulsions tested (cf. Fig. 4.7). 
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Fig. 4.7. Cryo-SEM micrographs of protein stabilised O/W pre-emulsions: (a) 1% Untreated BG stabilised 

emulsion, (b) 1% Ultrasound treated BG stabilised emulsion and (c) 1% Untreated SPI stabilised emulsion, (d) 

1% Ultrasound treated SPI stabilised emulsion.  Scale bar is 10 μm in all cases. 

Emulsion droplets of pre-emulsions prepared with untreated BG (cf. Fig. 4.7 a) show 

fibres of gelatin tracking around the surface of the droplets whereas emulsion droplets of pre-

emulsions prepared with ultrasound treated BG (cf. Fig. 4.7 b) show the smaller fibrils of 

gelatin at the interface of the droplets, yielding improved interfacial packing of protein, 

accounting for the lower equilibrium interfacial tension (cf. Fig. 4.6 a) and the decrease in 

droplet size (cf. Fig. 4.5 a). The droplet surfaces of pre-emulsions prepared with ultrasound 

SPI (cf. Fig. 4.7 d) appear to be smoother by comparison to the seeming more textured 

droplet interfaces observed for pre-emulsions prepared with untreated SPI (cf. Fig. 4.7 c). 

These findings are consistent with the interfacial tension data (cf. Fig. 4.6), where a 

significant reduction (P < 0.05) of the equilibrium interfacial tension upon sonication of BG  
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and SPI was observed, and accounted for by visualisation of the improved interfacial packing 

of protein. 

The stability of oil-in-water emulsions prepared with untreated and sonicated proteins, 

and Brij 97 for comparative purposes, was assessed over a 28 day period. Fig. 4.8 shows the 

development of droplet size (d3,2) as a function of time for emulsions prepared with untreated 

and ultrasound irradiated BG, FG, PPI and SPI, as well as Brij 97, at an emulsifier 

concentration of 0.1 wt. %.  

 

Fig. 4.8. Effect of emulsifier type on droplet size as a function of time for O/W emulsions stabilised by: (a) 

Untreated BG, ultrasound treated BG and Brij 97, (b) Untreated FG, ultrasound treated FG and Brij 97, (c) 

Untreated PPI, ultrasound treated PPI and Brij 97, and (d) Untreated SPI, ultrasound treated SPI and Brij 97. 

Emulsions prepared with untreated BG (cf. Fig. 4.8 a) exhibited a growth in droplet 

size, and this coalescence was also observed for emulsions prepared with 0.5 wt. % untreated 
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BG, while emulsions prepared with higher concentrations (≥ 1 wt. %) of untreated BG were 

stable for the 28 days of the study. However, it can also be seen (cf. Fig. 4.8 a) that emulsions 

prepared with ultrasound treated BG were resistant to coalescence over the 28 days of the 

study, and had the same stability of Brij 97. The behaviour exhibited by 0.1 wt. % ultrasound 

treated BG was observed at all concentrations investigated in this study. This improved 

stability of ultrasound treated BG by comparison to untreated BG is thought to be associated 

with an increase in the hydrophobicity (i.e. decrease in the intrinsic viscosity; cf. Table 4.4) 

and improved interfacial packing of ultrasound treated BG by comparison to untreated BG as 

observed by a decrease in the equilibrium interfacial tension (cf. Fig. 4.6 a) and cryo-SEM 

visualisation (cf. Fig. 4.7 a, b).  

In contrast, results in Fig 4.8 b show that emulsions prepared with both untreated and 

ultrasound treated FG display coalescence, yet ultrasound treated FG displayed a notable 

decrease in emulsion stability by comparison to untreated FG. The emulsion stability of 

untreated and ultrasound treated FG is analogous to untreated BG, where coalescence was 

observed at a concentration of 0.5 wt. %, and stable emulsions were achieved with higher 

emulsifier concentrations (≥ 1 wt. %). This decrease in emulsion stability after ultrasound 

treatment of FG is thought to be associated with a weaker interfacial layer of ultrasound 

treated FG by comparison to untreated FG allowing for a greater degree of coalescence, 

accounting for the decrease in emulsion stability.  

Emulsions prepared with either untreated or sonicated EWP, PPI (cf. Fig. 4.8 c), SPI 

(cf. Fig. 4.8 d) and RPI, and Brij 97 (cf. Fig 4.8) were all stable against coalescence and 

bridging flocculation over the 28 days of this study. This stability was observed for all 

concentrations probed in this study (≥ 0.5 wt. %) of untreated and ultrasound treated EWP, 

PPI, SPI and RPI investigated, as well as for Brij 97. In all cases no phase separation was 

observed in the emulsions, whilst emulsions with droplet sizes > 1 μm exhibited gravitational 
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separation with a cream layer present one day after preparation. Furthermore, the d3,2 is lower 

in all cases at an emulsifier concentration of 0.1wt. % for ultrasound treated proteins by 

comparison to that of their untreated counterparts, as previously discussed. 

4.5. Conclusions 

This study showed that ultrasound treatment (20 kHz, ~34 W cm-2 for 2 min) of the 

three animal and three vegetable proteins significantly (P < 0.05) reduced aggregate size and 

hydrodynamic volume, with the exception of RPI. The reduction in protein size was 

attributed to the hydrodynamic shear forces associated with ultrasonic cavitations. In spite of 

the aggregate size reduction, no differences in primary structure molecular weight profile 

were observed between untreated and ultrasound irradiated BG, FG, EWP, PPI, SPI and RPI. 

Emulsions prepared with the ultrasound treated FG, SPI and RPI proteins had the 

same droplet sizes as those obtained with their untreated counterparts, and were stable at the 

same concentrations, with the exception of emulsions prepared with ultrasound treated FG 

where a reduced emulsion stability at lower concentrations (< 1 wt. %) was exhibited. These 

results suggest that sonication did not significantly affect the rate of FG or RPI surface 

denaturation at the interface, as no significant (P > 0.05) reduction in the equilibrium 

interfacial tension between untreated and ultrasound irradiated FG or RPI was observed.  

In comparison, emulsions fabricated with ultrasound treated BG, EWP and PPI at 

concentrations < 1 wt. % had smaller emulsion sizes than their untreated counterparts at the 

same concentrations. This behaviour was attributed to a reduction in protein aggregate size 

(i.e. increased mobility through the bulk) and an increase in the hydrophobicity (reflected by 

a decrease in the intrinsic viscosity) of sonicated BG, EWP and PPI. Furthermore, emulsions 

prepared with ultrasound treated BG had improved stability against coalescence for 28 days 

at all concentrations investigated. This enhancement in emulsion stability was attributed to 
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improved interfacial packing, observed by a lower equilibrium interfacial tension and cryo-

SEM micrographs. 

Ultrasound treatment can thus improve the solubility of previously poorly soluble 

untreated vegetable proteins (PPI and SPI) and moreover, is capable of improving the 

emulsifying performance of other proteins (BG, EWP and PPI).  
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5.1. Abstract 

Batch and continuous ultrasonic emulsification processes on both lab and pilot scales 

were investigated using Tween 80, milk protein isolate (MPI) or pea protein isolate (PPI) as 

emulsifiers. The process parameters of processing volume, residence time and ultrasonic 

amplitude, as well as emulsion formulations, emulsifier type and concentration, were studied 

for the effect on emulsion droplet size. Emulsions prepared with ultrasound yielded 

submicron droplets, ~150 nm, with Tween 80, MPI and PPI, utilising all processing 

methodologies. Inverse power laws were obtained correlating emulsion droplet size with 

respect to energy density, highlighting the efficiency of the continuous over batch processing. 

This efficiency is ascribed to the smaller processing volumes, associated with continuous 

ultrasonic emulsification. Longer processing times were required for MPI and PPI to achieve 

submicron droplets (< 200 nm) in comparison to Tween 80 as greater times are necessary for 

interfacial adsorption and surface stabilisation, shown by interfacial tension measurements. 
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5.2. Introduction 

Low frequency (≤ 100 kHz), high power (> 10 W cm-2) ultrasound is a versatile 

technology widely utilised within the food industry for the alteration and generation of 

microstructures (McClements, 1995). It is a long established technique for the preparation of 

emulsions (Bondy & Söllner, 1935). Sonication readily produces submicron droplets when 

using low molecular weight surfactants (Abisma  l et al., 1999). Submicron dispersed phase 

droplets confer several advantages over larger droplets, including an increase in the 

bioavailability of lipophilic components and a surface area for controlled release. Increased 

emulsion stability due to reduced creaming or sedimentation which limits aggregation and 

coalescence enhances the commercial shelf life (McClements, 2011; O’Sullivan et al., 2014).  

Ultrasound treatment of liquid media operates through the generation of cavitation 

bubbles due to pressure differentials during acoustic wave propagation (Servant et al., 2001). 

Cavitation bubbles disperse and attenuate ultrasonic waves due to the acoustic impedance 

differential between the liquid and gaseous phases, resulting in either partial or complete 

scattering of the acoustic waves (McClements, 1995). Systems containing many bubbles 

exhibit multiple scattering as the bubbles behave like mirrors, causing reflection of the 

acoustic wave and an effective increase in the absorption of acoustic energy (Juliano et al., 

2011; McClements & Povey, 1989). Cavitations are concentrated in the volume at the tip of 

the sonotrode, this localisation results in high levels of energy input (Martini, 2013; Trujillo 

& Knoerzer, 2011a). Given the high number of cavitations within the vicinity of the tip of the 

sonotrode, higher attenuation (i.e. gradual loss of intensity) levels are observed and are 

dominated by acoustic scattering. The acoustic intensity decays exponentially with increasing 

distance from the sonotrode tip, effectively dissipated at distances as low as 1 cm from the tip 

(Chivate & Pandit, 1995). Ultrasonic cavitations are highly unstable entities prone to rapid 

collapse creating highly localised regions of hydrodynamic shear (O’Donnell et al., 2010). 
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These acoustically induced cavitations result in the disruption of micron sized dispersed 

phase droplets and facilitate the formation of submicron emulsion droplets (Gogate et al., 

2011).  

Emulsification utilising ultrasonic technologies has been a field of growing interest 

over the past decade, with extensive investigations conducted upon the process parameters 

(i.e. contact time with the acoustic field, ultrasonic power, volume processed, etc.), in 

addition to emulsion formulations (Jafari et al., 2007; Kentish et al., 2008). Low molecular 

weight emulsifiers (i.e. surfactants) have predominantly been utilised as part of these studies. 

To date, there is a lack of literature on the use of industrially relevant high molecular weight 

emulsifiers (i.e. proteins). The work of Kaltsa et al. (2013) on whey protein and Heffernan et 

al. (2011) on sodium caseinate show that the formation of submicron emulsions via batch 

ultrasonic emulsification is possible. No systematic investigations of process parameters or 

continuous methods using proteins as emulsifiers with ultrasound are currently available.  

The objective of this research was to understand the influence of ultrasonic process 

parameters and emulsion formulation, emulsifier type and concentration, on the 

microstructure of oil-in-water emulsions (i.e. Sauter mean diameter, d3,2). The efficacy of 

batch and continuous process configurations for the production of submicron emulsions with 

industrially relevant ingredients using low frequency, high power ultrasound was assessed. 

Comparisons between batch and continuous processing were explored in terms of processing 

time within the acoustic field, acoustic power and processing volume. The effect of 

emulsifier type, was investigated with a low molecular weight surfactant (Tween 80) and 

high molecular weight biopolymer (milk protein isolate and pea protein isolate), over a range 

of concentrations to assess the performance of these ingredients as emulsifiers during the 

sonication process. 
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5.3. Materials and methodology 

5.3.1. Materials 

Milk protein isolate (MPI), a composite mixture of ~80% micellar casein and ~20% 

whey protein (Fox, 2008),  and pea protein isolate (PPI) were both kindly provided by Kerry 

Ingredients and Flavours (Listowel, Ireland). The composition of these proteins is provided in 

Table 5.1. Tween 80 and sodium azide were purchased from Sigma Aldrich (UK). The oil 

used in this study was commercially available rapeseed oil. The water used in all experiments 

was passed through a double distillation unit (A4000D, Aquatron, UK). 

Table 5.1. Composition and pH of milk protein isolate (MPI) and pea protein isolate (PPI) 

 MPI PPI 

Protein (wt. %) 86 86 

Moisture (wt. %) 4 7.2 

Fat (wt. %) 1.5 0 

Carbohydrate (-) 1 pos. 

Ash (wt. %) 6 4.85 

pH at a concentration of 1 wt. % (-) 6.74 7.45 

 

5.3.2. Methods 

5.3.2.1. Preparation of emulsifier solutions 

 Tween 80, MPI and PPI were dispersed in water at 40 oC for a minimum of three 

hours to obtain solutions at concentrations in the range of 0.1 – 3 wt. %. Tween 80 and MPI 

are completely soluble at these concentrations, whilst PPI exhibited a sedimenting component 
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irrespective of hydration time. Sodium azide (0.02 wt. %) was added to the solutions to 

diminish the microbial activity. 

5.3.2.2. Ultrasonic processing and acoustic intensity determination 

A lab scale ultrasonic processor (Viber Cell 750, Sonics, USA) with a stainless steel 

microtip (d = 3 mm; SA = 0.07 cm2) was used for the preparation of emulsions using batch 

and continuous configurations, operating at 20 kHz. Continuous emulsification was further 

investigated with scale up trials utilising a pilot scale ultrasonic processor (UIP1000hd, 

Hielscher Ultrasonics GmbH, Germany) with a titanium tip (d = 20 mm; SA = 3.8 cm2). 

Emulsions were sonicated at different amplitudes to vary the acoustic power 

transmitted, whereby the lab and pilot scale ultrasonic processors operated within amplitude 

ranges of 20 – 40 % (maximum amplitude of 108 μm) and 50 – 100 % (maximum amplitude 

of 57 μm), respectively. The acoustic intensity (Ia) was determined calorimetrically by 

measuring the temperature rise of the sample as a function of time, under adiabatic 

conditions. The acoustic intensity, Ia (W cm-2), was calculated using Eq. 5.1 from Margulis & 

Margulis, (2003):  

    
  

  
                     

  

  
                                                                            (5.1) 

Where, Pa is the acoustic power (W), SA is the surface area of the tip of the sonotrode 

(cm2), m is the mass of ultrasound treated medium (g), cp is the specific heat of the medium             

(J g-1 K-1) and dT/dt is the rate of temperature change with respect to time of the medium (K 

s-1), starting at t = 0. The temperature was measured by means of a digital thermometer 

(TGST3, Sensor-Tech Ltd., Ireland), with an accuracy of ± 0.1 K. The acoustic power (Pa) 

and acoustic intensity (Ia) for the lab scale and pilot scale ultrasonic processors are provided 

in Table 5.2, for the ultrasonic amplitudes employed during emulsification.  
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Table 5.2. Acoustic power (Pa) and acoustic intensity (Ia) for lab (Viber Cell 750) and pilot (UIP1000hd) scale 

ultrasonic processors. 

Ultrasonic Processor Amplitude (%) Acoustic Power (W) Acoustic Intensity (W cm-2) 

Viber Cell 750 20 8.5 120.3 

30 19 269.1 

40 32 453.3 

UIP1000hd 50 78 20.5 

60 98 25.7 

70 131 34.4 

80 164 43.2 

90 208 54.7 

 100 234 61.6 

 

5.3.2.3. Emulsion preparation and characterisation 

10 wt. % of dispersed phase (rapeseed oil) was to added to the continuous phase 

containing either Tween 80 or MPI at concentrations, ranging from 0.1 - 3 wt. %. A coarse 

pre-emulsion was prepared via high shear mixing at 8,000 rpm for 2 minutes for lab and pilot 

scale trials, utilising SL2T and AXR Silverson mixers, respectively (Silverson, UK). 

5.3.2.3.1. Batch configuration for ultrasonic emulsification 

Lab scale batch ultrasonic processing (Viber Cell 750, Sonics, USA) was undertaken 

with the ultrasonic probe centrally located with an immersion depth of 3 mm in the pre-

emulsion, with volumes ranging from 3 – 100 mL, sonication times from 1 – 300 s and 

ultrasonic amplitudes of 20 – 40 %.  
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Fig. 5.1. Schematic of continuous ultrasonic emulsification setups for (a) lab scale and (b) pilot scale trials. 

5.3.2.3.2. Continuous configuration for ultrasonic emulsification 

Lab scale continuous processing (Viber Cell 750, Sonics, USA) was carried out by 

positioning the ultrasonic probe orthogonal to the path of flow of the pre-emulsion, using a 

brass tee junction with an internal diameter of 4 mm. The ultrasonic probe was positioned 4 
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mm from the base of the tee junction (cf. Fig. 5.1 a) and surrounded by ice to mitigate against 

heat gain. The pre-emulsion was pumped peristaltically (Masterflex L/S Digital Pump System 

with Easy-Load II Pump Head, Cole-Parmer, UK) with volumetric flow rates of 25 – 250 

mL/min and an ultrasonic amplitude range of 20 – 40%. 

Pilot scale continuous processing (UIP1000hd, Hielscher Ultrasonics GmbH, 

Germany) had the flow path of pre-emulsion in the same plane as the ultrasonic probe. The 

ultrasonic probe was positioned 20 mm from the inlet of the coarse emulsion and the outlet 

was positioned perpendicular to the sonotrode (cf. Fig. 5.1 b). The pre-emulsion was pumped 

centrifugally (Millipore, UK) with volumetric flow rates ranging from 2,700 – 5,700 mL/min 

(163 – 343 L/hr) with ultrasonic amplitudes of 50 – 100 %.  

The residence time, t, which the pre-emulsion is within the acoustic field for both 

continuous processing methodologies is controlled by variation of the volumetric flowrate 

(Q), and is determined from Eq. 5.2: 

                                                                                                                                     (5.2) 

Where t is the residence time (s), V is the volume under the influence of the acoustic field 

(m3) and Q is the volumetric flowrate (m3 s-1). The volumes under the influence of the 

acoustic field for the lab and pilot scale continuous processes are 5 x 10-8 m3 and 6.3 x 10-6 

m3, respectively. The residence times for pre-emulsions within the acoustic field for 

continuous processing in both lab and pilot scale ultrasonic processors are provided in Table 

5.3. 

5.3.2.3.3. Droplet size measurements 

The droplet size of the emulsions was measured by laser diffraction using a 

Mastersizer 2000 (Malvern Instruments, UK) immediately after emulsification. Emulsion 
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droplet size values are reported as the surface mean diameter (Sauter mean diameter; d3,2 = Σ 

nidi
3/ Σ nidi

2), where ni is the number of droplets of diameter di. 

Table 5.3. Residence times (t) of pre-emulsion within acoustic field for lab (Viber Cell 750) and pilot 

(UIP1000hd) scale ultrasonic processors with respect to volumetric flowrate (Q). 

Ultrasonic processor Volumetric flowrate (mL/min) Residence time (ms) 

Viber Cell 750 25 120 

50 60 

100 30 

150 20 

200 15 

250 12 

UIP1000hd 2,700 140 

4,500 84 

5,700 66.3 

 

5.3.2.3.4. Interfacial tension measurements 

The interfacial tension between the aqueous phases (pure water, low molecular weight 

surfactant, or high molecular weight biopolymer solutions) and the oil phase (rapeseed oil) 

was measured using a tensiometer K100 (Krűss, Germany) with the Wilhelmy plate method, 

as detailed by O’Sullivan et al., (2015). The interfacial tension values and the error bars are 

reported as the mean and standard deviation, respectively, of three repeat measurements. 
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5.3.3. Statistical analysis 

Student’s t-test, a statistical hypothesis test, with a 95% confidence interval was used 

to assess the significance of the results obtained. t-test data with P < 0.05 were considered 

statistically significant.  

5.4. Results and discussions 

5.4.1. Comparison of lab scale batch and continuous configurations for effect of 

processing time and ultrasonic power 

The effect of processing size for lab batch configuration for a fixed ultrasonic 

amplitude and emulsifier concentration upon emulsion droplet size was initially investigated. 

Fig. 5.2 shows pre-emulsions prepared with 1.5 wt. % Tween 80 which were sonicated with 

an ultrasonic amplitude of 40 % (i.e. 453.3 W cm-2). Droplet size measurements as a function 

of processing time, from 0 to 300 s, and batch sizes from 3 to 150 g. 

Increasing the processing time of batch ultrasonic homogenisation results in a 

decrease in the resultant emulsion droplet size regardless of batch size, this has also been 

reported by Abisma  l et al., (1999) and Jafari et al., (2007). The time required to achieve the 

minimum droplet size is a function of the processing volume, larger batch sizes require 

prolonged processing times to achieve the minimum droplet size which has been shown by  

Maa & Hsu (1999). Ultrasonic processing of smaller volumes is more efficient as the acoustic 

energy emanated from the tip of the sonotrode is absorbed more intensely resulting in more 

rapid size reduction. This volume effect arises from the complete dissipation of acoustic 

intensity at distances as low as 1 cm from the tip (Chivate & Pandit, 1995) highlighting the 

importance of ultrasonic tip location for effective processing (Gogate et al., 2011).  
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The effect of residence time of pre-emulsion within the acoustic field at the lab scale 

with respect to continuous processing is presented in Fig. 5.3, this was achieved by variation 

of the volumetric flow rate to alter the acoustic residence time. Pre-emulsions with 1.5 wt. % 

Tween 80 were sonicated with an ultrasonic amplitude of 40 % (i.e. 453.3 W cm-2). Droplet 

size changes as a function of residence time for lab scale continuous ultrasonic processing is 

shown in Fig. 5.3. 
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Fig. 5.2. Effect of batch size and ultrasonic processing time on droplet size (d3,2) of emulsions stabilised with 1.5 

wt. % Tween 80 prepared employing lab scale batch ultrasonic homogenisation. 
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Fig. 5.3. Effect of acoustic processing time on droplet size (d3,2) of emulsions stabilised with 1.5 wt. % Tween 

80 prepared employing continuous lab scale ultrasonic processor (40% amplitude). 

Similar to the behaviour shown in Fig. 5.2 for batch processing, increasing the 

residence time of pre-emulsions within the acoustic field for continuous processing increases 

energy transmission to the pre-emulsion, enhancing droplet size reduction (Kentish et al., 

2008). However, the timescale for emulsification utilising continuous ultrasonic processing is 

milliseconds in comparison to seconds for batch processing, this is due to the flow rates of 

pre-emulsion through the system. Submicron emulsion droplet sizes are achieved with the 

continuous configuration in milliseconds owing to the smaller processing volume (5 x 10-2 

mL) by comparison to those of batch processing (≥ 3 mL). The smaller volumes considered 

for residence times with continuous processing allow for a greater increase in the volume 

effect seen with batch systems. This allows the entire flow path to be subject to acoustic 

energy which improves transmission of acoustic energy to generate smaller emulsion droplets 

and increases the efficacy of this process.  
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The effect of energy transmission to the pre-emulsion (i.e. different acoustic 

amplitudes) upon resultant emulsion droplet size was also investigated. 1.5 wt. % Tween 80 

pre-emulsions were sonicated with ultrasonic amplitudes of 20 – 40 % for both lab scale 

batch and continuous configurations, with a 50 g mass of pre-emulsion for lab scale batch 

processing. Fig. 5.4 shows droplet size measurements as a function of processing time and 

ultrasonic amplitude for both batch and continuous processing. 

Increasing the acoustic amplitude yields greater ultrasonic energy transmission to the 

pre-emulsion (cf. Table 5.2), decreasing the time required to achieve the minimum emulsion 

droplet size which is determined by the emulsion formulation, ~200 nm (cf. Fig. 5.4 a). The 

acoustic power imparted to a liquid system controls the number of bubbles, with a higher 

power (i.e. amplitude) generating more bubbles (Trujillo & Knoerzer, 2011a). The unstable 

nature of ultrasonically generated bubbles results in the number of cavitation events being 

related to the number of bubbles present. The cavitation events result in high levels of 

hydrodynamic shear which acts upon the pre-emulsion reducing droplet size, so more power 

more rapidly reduces droplet size.  
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Fig. 5.4. Effect of ultrasonic amplitude and processing time (t) with the acoustic field upon droplet size (d3,2) of 

emulsions fabricated with 1.5 wt. % Tween 80 prepared utilising (a) lab scale batch (50 g) and (b) lab scale 

continuous configurations. 

Similar trends were exhibited with the lab scale continuous configurations (cf. Fig. 

5.4b), whereby increasing the ultrasonic amplitude reduced the processing time required to 

decrease emulsion droplet size, for comparable reasons as previously discussed. Given the 
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lower residence times associated with the continuous processing methodology, it appears 

emulsions with smaller droplet sizes can be achieved more effectively due to more efficient 

utilisation of acoustic energy with this configuration. Furthermore, operating at higher 

acoustic energies (i.e. greater ultrasonic amplitudes) predominately decreases the timescale 

by which smaller emulsion droplets are formed. In order to test these hypotheses, the effect of 

energy with respect to volume processed, energy density (Ev; MJ m-3), was subsequently 

determined for the assessment of the efficiency of energy utilisation of each of the 

configurations investigated. 

Emulsion droplet size data for all configurations (cf. Fig. 5.4) was normalised with 

respect to energy, whereby residence time (t; s), acoustic intensity (Ia; W cm-2), tip surface 

area (SA; cm2) and processing volume (V; m3) were used to obtain energy density (Ev; MJ m-3) 

of the systems, determined with Eq. 5.3: 

    
     

 
                                                                                                                             (5.3) 

Droplet size measurements (d3,2) as a function of energy density (Ev) are shown in 

Fig. 5.5 for both lab scale configurations.  

Normalisation of the emulsion droplet size data yielded a linear trend, with 

logarithmic plot axes this can be fitted by Eq. 5.4, an inverse power law: 

      
 

                                                                                                                               (5.4) 

Where, f(x) is emulsion droplet size (d3,2; μm), x is energy density (Ev; MJ m-3), a is the value 

of f(x) when x = 1 and b is the gradient of the fit. 
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Fig. 5.5. Effect of energy density (Ev) upon emulsion droplet size (d3,2) utilising (a) lab scale batch ultrasonic 

processing (20 - 40% amplitudes) and (b) lab scale continuous ultrasonic processing (20 - 40% amplitudes) for 

1.5 wt. % Tween 80 stabilised emulsions. 

For both lab scale configurations, master curves were obtained which predict 

emulsion droplet size with respect to energy density for all ultrasonic amplitudes 
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investigated. Similar coefficient values (a and b) were obtained for the batch and continuous 

process configurations (cf. Eq. 5.5 and 5.6), but significant differences (P < 0.05) in energy 

density between batch and continuous process were observed, whereby the energy density for 

the continuous configuration is lower than the batch configuration by approximately 50%. 

The energy density differential between configurations is predominately attributed to the 

difference in processing volume, for which continuous processing has a chamber volume 

1,000 times less than that of the batch configuration, allowing for more effective transmission 

of acoustic energy to the pre-emulsion. Additionally, the effect of acoustic amplitude yields 

no difference on the obtained predictive curves for the determination of emulsion droplet size 

at a given energy input, highlighting that the energy provided, a combination of acoustic 

power and processing time, are the determining factors of emulsion droplet size for lab scale 

ultrasonic emulsification processes. 

Lab scale batch configuration:       
     

  
                                                                 (5.5) 

Lab scale continuous configuration:       
    

  
                                         (5.6) 

5.4.2. Effect of emulsifier concentration and type on emulsion formation  

Oil-in-water emulsions were prepared as described in section 5.3 using batch and 

continuous processes via the previously described ultrasonic emulsification configurations, in 

the presence of both a low molecular weight surfactant (i.e. Tween 80) and high molecular 

weight biopolymers (i.e. MPI and PPI), at a range of emulsifier concentrations (0.1 – 3 wt. 

%). Emulsions were fabricated utilising lab scale batch (50 g) and continuous configurations 

(ultrasonic amplitude of 40 %). Emulsion droplet size (d3,2) as a function of emulsifier type 

and concentration is shown in Fig. 5.6. Emulsion droplet sizes were measured immediately 

after emulsification. 
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Fig. 5.6. Effect of emulsifier type and concentration (0.1 – 3 wt. %) upon emulsion droplet size (d3,2) of: (a) 

Tween 80 for batch ultrasonic processing, (b) Tween 80 for continuous ultrasonic processing, (c) MPI for batch 

ultrasonic processing, (d) MPI for continuous ultrasonic processing, (e) PPI for batch ultrasonic prcessing and 

(f) PPI for continuous ultrasonic processing. All data is for lab scale methodologies (ultrasonic amplitude of 

40%) and the batch size is 50 g. 
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Regardless of emulsifier type or the processing methodology employed, increasing 

the emulsifier concentration allows for the formation of smaller emulsion droplets with 

slower processing times. This is due to increased emulsifier concentration, whereby more 

emulsifier molecules are present within the continuous phase allowing reduced times for 

adsorption to the newly formed interface. This allows for more rapid formation of submicron 

emulsion droplets (Beverung et al., 1999). A minimum surfactant concentration is required to 

stabilise the emulsion interface, if this is reached submicron emulsion droplets can be 

produced. At emulsifier concentrations > 0.5 wt. %, for both emulsifier types and processing 

methodologies, the difference in the emulsion droplet size is not statistically significant (P > 

0.05). This shows that once sufficient emulsifier is present to stabilise the interfaces an excess 

of emulsifier is present within the continuous phase. This is in agreement with those results of 

O’Sullivan et al., (2014) for Tween 80 and MPI, and O’Sullivan et al., (2015) for PPI, 

whereby emulsions were prepared utilising high pressure valve homogenisation at 

concentrations > 0.5 wt. %.  

At lower emulsifier concentrations (≤ 0.5 wt. %) rapid emulsion coalescence was 

exhibited for batch and continuous processes, for all investigated emulsifiers. This re-

coalescence of emulsion droplets is attributed to a combination of insufficiency of emulsifier 

to stabilise the interface within the respective formulations and over processing of the 

emulsions. Back coalescence of emulsion droplets is commonly exhibited in systems where 

insufficient emulsifier is present, and over processing occurs. Jafari et al., (2008) detail the 

factors involved in the re-coalescence behaviour of emulsions prepared utilising ultrasonic 

equipment. The predominant rationale ascribed to the observed re-coalescence phenomena is 

a combination of the low adsorption rate of emulsifier, due to the low concentrations present, 

and the high energy density associated with ultrasonic processing, whereby the likelihood of 
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droplet collision is increased within the area of emulsification (i.e. proximity to the tip of the 

sonotrode).  

As previously discussed for emulsion formulations prepared with Tween 80, the 

residence time during which the pre-emulsion in the acoustic field is of the order of 

milliseconds for continuous processing in comparison to batch processing, where the 

timescale is an order of magnitude greater, that of seconds. Emulsions prepared with Tween 

80 form smaller emulsion droplets in shorter residence times in the acoustic field in 

comparison to the high molecular weight emulsifiers, MPI and PPI, for all emulsifier 

concentrations and processing configurations. This behaviour is ascribed to a combination of 

lower diffusion rates for the higher molecular weight species, and longer surface denaturation 

times required for surface stabilisation of emulsion droplets with proteins (Beverung et al., 

1999). 

The rate of diffusion of an emulsifier to an interface and the time required for 

conformational changes upon adsorption was probed with studies of interfacial tension. Fig. 

5.7 presents the interfacial tension between rapeseed oil and water, 0.1 wt. % Tween 80, MPI 

and PPI solutions. The presence of naturally present surface active surface impurities within 

the dispersed phase was assessed by measuring the interfacial tension of distilled water and 

rapeseed oil. The interfacial tension decreases continually with respect to time (cf. Fig. 5.7), 

and this behaviour is attributed to the nature of the dispersed phase and to a lesser extent the 

type of emulsifier utilised. Gaonkar, (1989, 1991) described how the time dependant nature 

of interfacial tension of commercially available rapeseed oils with pure water was due to the 

presence of surface active impurities present within the oils. Furthermore, after purification of 

these oils the time dependant nature of the interfacial tension was no longer exhibited 

demonstrating that the time dependant nature of interfacial tension is due to surface active 

impurities within the commercially available rapeseed oil.  
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Fig. 5.7. Comparison of interfacial tension between distilled water (●), Tween 80 (○), MPI (▼) and PPI (∆) 

with rapeseed oil. The concentration for all emulsifiers was 0.1 wt. %. 

The initial interfacial tension value for 0.1 wt. % Tween 80 is significantly (P < 0.05) 

lower than that of 0.1 wt. % MPI or PPI (cf. Fig. 5.7), demonstrating how the lower 

molecular weight emulsifier is capable of adsorbing to the oil-water interface more rapidly, 

accounting for the increased rate of droplet breakup for Tween 80 in comparison to that of 

MPI or PPI. The equilibrium value of interfacial tension differs significantly between Tween 

80, MPI and PPI due to a combination of molecular weight differences, the average 

molecular weight of Tween 80 and, the tested proteins are 1.3 and > 24 kDa, respectively 

(O’Sullivan, et al., 2014; O’Sullivan et al., 2015) and required surface denaturation for 

interfacial stabilisation. This demonstrates that lower molecular weight emulsifiers (i.e. 
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Tween 80) have a better interfacial packing and enhanced facilitation of droplet breakup by 

comparison to higher molecular weight entities (i.e. MPI and PPI). Furthermore, these results 

are consistent with the emulsion droplet size data (cf. Fig. 5.6), whereby the equilibrium 

value of interfacial tension of PPI is significantly lower (P < 0.05) than that of MPI, allowing 

for the improved facilitation of emulsion droplet breakup for emulsion fabricated with PPI, 

allowing for the formation of smaller emulsion droplets more rapidly for emulsions prepared, 

in comparison to MPI, at the same concentrations. 

The effect of emulsifier concentration above the 0.5 wt. % limiting concentration 

upon the previously discussed correlative models relating emulsion droplet size (d3,2) with 

respect to energy density (Ev) was consequently assessed. Fig. 5.8 shows emulsion droplet 

size as a function of energy density for emulsions prepared with a range of Tween 80, MPI 

and PPI concentrations utilising lab scale batch and continuous ultrasonic processing (50 g), 

with an ultrasonic amplitude of 40 %.  

Increasing the emulsifier concentration above the 0.5 wt. % limiting concentration 

yields a marginal reduction in emulsion droplet size with respect to energy density, indicating 

that increased emulsifier concentrations allows for a marginally more efficient utilisation of 

acoustic energy, with the exception of PPI, for which significant (P < 0.05) differences were 

observed in emulsion droplet size with increased emulsifier concentrations. This behaviour 

with PPI is attributed to the highly aggregated state of PPI and its extensive disruption via 

ultrasound treatment (O’Sullivan, Murray, et al., 2015b). Regardless of emulsifier type or 

processing configuration (batch or continuous), no significant differences were observed 

between the power law fittings for Tween 80 or MPI, whilst significant differences were 

observed for the power law fittings of PPI. The inverse power law model for d3,2 and Ev did 

not accurately predict the behaviour of sonicated emulsions with deficiency of  emulsifier (< 

0.5 wt. %). 
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Fig. 5.8. Effect of energy density (Ev) upon emulsion droplet size (d3,2) for emulsions prepared with (a) Tween 

80 for batch ultrasonic processing, (b) Tween 80 for continuous ultrasonic processing, (c) MPI fr batch 

ultrasonic processing, (d) MPI for continuous ultrasonic processing, (e) PPI for batch ultrasonic processing and 

(f) PPI for continuous ultrasonic procerssing, at emulsifier concentrations ranging from 0.75 – 3 wt. % (40% 

amplitude and 50 g for batch processing). 
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5.4.3. Effect of energy density on pilot scale continuous ultrasonic 

emulsification  

The effect of energy density on pilot scale continuous ultrasonic homogenisation and 

the emulsion droplet size (d3,2) produced was assessed. Pre-emulsions prepared with 1.5 wt. 

% Tween 80, MPI and PPI were processed at ultrasonic amplitudes of 50 % and 90 %. 

Droplet size measurements as a function of energy density are shown in Fig. 5.9.  

Pilot scale processing yields two distinct fits for emulsion droplet size with respect to 

energy density, unlike lab scale they are dependent on the ultrasonic amplitude. The 

significant difference in gradient (i.e. b) between the fits demonstrates that processing of 

emulsions at higher ultrasonic energies yields more efficient utilisation of energy for 

emulsion droplet breakup.  

There is a disparity between the results obtained for the lab scale (cf. Fig. 5.5) and that 

of the pilot scale predictive models (cf. Fig. 5.9), whereby for the lab scale configurations all 

fall onto one master curve independent of ultrasonic amplitude, whilst the pilot scale 

processing exhibits two distinct slopes based on ultrasonic amplitude. This is attributed to the 

configuration of the pilot scale in comparison to the lab scale setups, whereby the tip of the 

sonotrode is located 2 cm from the entrance to the chamber (cf. Fig. 5.1). It is therefore 

possible that the ultrasonic cavitations which instigate emulsification are sufficiently 

distanced from the entrance to the chamber allowing some elements of pre-emulsion to 

bypass the acoustic field either partially or completely. Increasing the ultrasonic amplitude 

results in the ultrasonic cavitations occurring closer to the entrance of the chamber, allowing 

for improved emulsification efficiency. Thus, operating at higher acoustic intensities provides 

more efficient use of acoustic energy for the fabrication of submicron droplets, as is exhibited 

by the difference in gradients between processing at 50 % and 90 % amplitudes (cf. Fig. 5.9). 
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The lab scale continuous configuration is more efficient in size reduction at all amplitudes 

investigated due to the narrow distance between the tip of the sonotrode and the base of the 

tee-junction (3 mm) inhibiting the bypassing effect exhibited in the pilot scale configuration, 

highlighting the importance of adequate ultrasonic processor design for efficient 

emulsification (Gogate et al., 2011). 

 

Fig. 5.9. Effect of energy density (Ev) upon emulsion droplet size (d3,2) utilising pilot scale continuous ultrasonic 

processing (ultrasonic amplitudes of 50% and 90%) for (a) 1.5 wt. % Tween 80 , (b) 1.5 wt. % MPI and (c) 1.5 

wt. % PPI stabilised emulsions. 

The acoustic energy provided by ultrasound is used more effectively in the instance of 

the continuous methodology, whereby more than 90% of the energy provided is employed for 

emulsification, in comparison to traditional methods of emulsification, such as valve 

homogenisation, whereby in certain scenarios it is thought that less than 30% of the provided 
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energy is utilised in the fabrication of emulsion droplets, the remainder of the energy is 

dissipated as a combination of thermal and acoustic losses (Lee et al., 2013; McClements, 

2005; O’Sullivan et al., 2015). 

5.5. Conclusions 

This study showed the capacity of low frequency, high power ultrasound for the 

formation of submicron emulsion droplets at both lab scale (batch and continuous) and pilot 

scale (continuous). From the process parameters investigated, the efficient formation of 

submicron droplets is achieved with higher ultrasonic amplitudes and lower processing 

volumes, as acoustic energy is utilised more efficiently in lower processing volumes. 

Prolonged contact times of pre-emulsion with an acoustic field allow for greater droplet 

breakup. The timescale of emulsification for both continuous processing methodologies is 

milliseconds in comparison to seconds for batch processing, yet submicron emulsions are 

achieved in both due to the intense utilisation of acoustic energy.  

The investigated process parameters were combined to relate emulsion droplet size 

(d3,2) with respect to energy density (Ev), where an inverse power law model relation was 

obtained. These fits were dependent predominantly upon the emulsifier type, whilst 

independent of emulsifier concentration (> 0.5 wt. %) for Tween 80 and MPI, yet dependent 

for PPI, and independent of ultrasonic amplitude for the lab scale methodologies. The pilot 

scale continuous configuration is dependent upon the ultrasonic amplitude, unlike the lab 

scale, due to bypassing of elements of pre-emulsion from the acoustic field at lower 

ultrasonic amplitudes. Additionally, the fittings were unable to predict the re-coalescence 

behaviour exhibited for both emulsifiers at low emulsifier concentrations (i.e. ≤ 0.5 wt. %). 

The high molecular weight biopolymers (i.e. MPI and PPI) achieved submicron 

droplets at a slower rate than that of the low molecular weight surfactant (i.e. Tween 80). 
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This is due to the lower rates of diffusion through the bulk and greater time required for 

surface stabilisation by proteins in comparison to that of small molecule surfactants, as 

reported from interfacial tension measurements.  
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The objective of this thesis was to advance the understanding of low frequency, high 

power ultrasound upon the structure of proteins in aqueous solution and submicron emulsion 

fabrication. Ultrasound treatment has shown potential for the generation, alteration and 

modification of food microstructures, yet the underlying principles are to be fully elucidated. 

Proteins are essential for human nutrition, and are commonly utilised as functional 

ingredients within food formulations. Thus, understanding the effect of ultrasound upon 

protein structure will assist the development of ingredients with improved functionality. This 

study is of particular relevance to Kerry Group who manufactures and distributes both protein 

derived ingredients and emulsion systems for food and pharmaceutical industries globally. 

Therefore, a technology that offers the potential for the functional modification of proteins 

and the fabrication of submicron emulsions is of considerable relevance. 

To conduct this study, proteins derived from dairy, animal and vegetable sources were 

treated with ultrasound and physicochemical differences between untreated and ultrasound 

treated were characterised using a myriad of techniques. Subsequently, emulsions prepared 

with ultrasound treated proteins were assessed by comparison to those fabricated with their 

untreated counterparts, and low molecular weight surfactants, at a range of emulsifier 

concentrations. Emulsion formation and stability was examined in terms of emulsion droplet 

size, interfacial tension and long-term stability tests.  

Furthermore, power ultrasound is known to be capable for the fabrication of 

submicron emulsion droplets, however, the interactions between emulsion formulation and 

process parameters upon emulsion formation are not well understood. To address this, a 

fundamental study was conducted to assess the effect of process configuration (i.e. batch or 

continuous), processing parameters (i.e. acoustic power and residence time) and emulsion 

formulation (i.e. emulsifier type and concentration) on emulsion droplet size (d3,2). 
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The main conclusions from this thesis are summarised in the following three sections.  

6.1. Understanding the ultrasonic effect upon the physicochemical 

properties of proteins 

 Ultrasound treatment reduces the aggregate size of dairy, animal and legume 

proteins in aqueous solution 

Ultrasound treatment significantly reduced the aggregate size of dairy (i.e. NaCas, MPI 

and WPI), animal (i.e. BG, FG and EWP) and legume (i.e. PPI and SPI) proteins due to 

disruption of associative non-covalent interactions (i.e. hydrogen bonding, hydrophobic and 

electrostatic interactions) attributed to the high levels of hydrodynamic shear associated with 

ultrasonic cavitations.  

 Ultrasound treatment of cereal proteins unable to reduce  aggregate size in aqueous 

solution 

No aggregate size reduction was observed for RPI from ultrasound treatment, irrespective 

of treatment time. This behaviour is attributed to insufficient energy provided from the 

ultrasound treatment to disrupt the disulphide bonds (cf. Table 2.2) maintaining the 

aggregated structure of these proteins, whereby this disulphide bonding occurs due to protein 

denaturation from the preparation of these protein isolates.  

 Ultrasound treatment provides insufficient energy to reduce the primary amino acid 

sequence 

SDS-PAGE demonstrated that there was no reduction in the primary structure of proteins, 

thus no scission of the peptide bond. Ultrasound treatment provides insufficient energy to 

hydrolyse the peptide bond, especially given the partial double character it exhibits, giving it 
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significantly greater associated bond energy (cf. Table 2.2). Ultrasound treatment supplies 

sufficient energy to disrupt the non-covalent interaction maintaining protein aggregates in 

aqueous solution. 

 Ultrasound treatment increases the hydrophobicity of proteins, with the exception of 

cereal proteins, in aqueous solution 

The size reduction of proteins via ultrasound treatment was measured both using light 

scattering techniques (i.e. DLS and laser difraction), and rheology (i.e. intrinsic viscosity). A 

reduction in the value of intrinsic viscosity of proteins in solution demonstrates a decrease in 

the hydration of protein associates, and a potential increase in the hydrophobicity of proteins, 

exhibited by intrinsic viscosity reduction by ultrasound treatment (Tanner & Rha, 1980).  

6.2. Understanding the ultrasonic effect of the emulsifying 

performance of proteins 

 Ultrasound treated proteins yield smaller emulsion droplets in comparison to 

untreated counterparts at low emulsifier concentrations 

Emulsions prepared with ultrasound treated MPI, BG, EWP and PPI yielded smaller 

emulsion droplets in comparison to emulsions prepared with untreated counterparts, at low 

emulsifier concentrations (< 1 wt. %). This behaviour is attributed to reduction in protein size 

and increase in the hydrophobicity from ultrasound treatment. Whilst, emulsions prepared 

with ultrasound treated NaCas, WPI, FG, SPI and RPI yielded no significant reduction in 

emulsion droplet size, ascribed to limited improvement in adsorption behaviour as measured 

by interfacial tension. 
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 Ultrasound treated dairy, animal and vegetable proteins yield more stable or 

comparable emulsion stability in comparison to untreated counterparts, with the 

exception of emulsions prepared with ultrasound treated FG  

Emulsions prepared with ultrasound treated MPI and BG yielded stable emulsions 

resistant to coalescence over the 28 day stability study, whilst emulsions prepared with FG 

displayed a decrease in emulsion stability. The improved stability for ultrasound treated MPI 

and BG emulsions is ascribed to an improvement in interfacial packing and a more 

viscoelastic interface, as measured by interfacial tension and observed from cryogenic 

scanning electron micrographs, whilst the reduction in stability for ultrasound treated FG 

emulsions is attributed to a weaker interfacial layer, by comparison to their untreated 

counterparts. Emulsions prepared with ultrasound treated NaCas, WPI, EWP, PPI, SPI and 

RPI exhibit comparable emulsion stability to emulsions prepared with their untreated 

counterparts.  

 Ultrasound treated MPI, BG, EWP, PPI and SPI possess greater molecular mobility 

and improved interfacial packing behaviour, whilst NaCas, WPI, FG and RPI exhibit 

comparable interfacial behaviour 

Ultrasound treatment of proteins improves the interfacial behaviour through increased 

molecular mobility through the bulk to the interface, observed by a decrease in the initial 

value of interfacial tension, and improved interfacial packing, observed from lower 

equilibrium values of interfacial tension, for MPI, BG, EWP, PPI and SPI. These 

improvements in the interfacial properties account for the reduction in emulsion droplet size 

and increased emulsion stability, and are attributed to the measured reduction in protein 

aggregate size. The interfacial tension for NaCas, WPI, FG and RPI is comparable to that of 
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their untreated counterparts, ascribed to less significant reduction in protein aggregate size in 

comparison to the other investigated proteins. 

6.3. Understanding acoustic emulsification 

 Increased processing times and ultrasonic energy allows for the generation of 

submicron emulsions  

Increasing the processing time of pre-emulsions allow for the generation of submicron 

emulsion dropletss, as the pre-emulsion is within the shear field for prolonged times. In 

addition, increased levels of ultrasonic energy allow for the more rapid formation of 

submicron emulsion droplets, given the increased number of ultrasonic cavitations due to the 

increased ultrasonic amplitudes. 

 Continuous ultrasonic emulsification yields submicron emulsion droplets more 

efficiently in comparison to batch ultrasonic emulsification   

Continuous ultrasonic emulsification yields submicron emulsion droplets twice as 

efficiently as batch configuration for lab scale processing as shown from energy density 

comparisons. The smaller processing volume of the continuous configuration allows for the 

more intense dissipation of acoustic energy in comparison to batch processing, a volume 

effect, yielding more rapid generation of submicron emulsion droplets.  

 Emulsions with deficient emulsifier demonstrate re-coalescence behaviour 

Emulsions with low emulsifier concentrations (i.e. < 0.75 wt. %) demonstrate re-

coalescence behaviour for both batch and continuous processing due to a combination of 

insufficiency of emulsifier and the high energy density of ultrasonic processing. The high 

energy density results in droplet collisions leading to coalescence of emulsion droplets, due to 

the incomplete interfacial coverage of emulsion droplet surfaces. 
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 Low molecular weight emulsifiers form submicron emulsions more rapidly than 

higher molecular weight emulsifiers 

Lower molecular emulsifiers (i.e. Tween 80) form submicron emulsion droplets more 

rapidly than higher molecular weight emulsifiers (i.e. MPI and PPI) when sufficient 

emulsifier is present, as lower molecular weight emulsifiers have greater molecular mobility 

through the continuous phase to the oil-water interface, as shown by interfacial tension 

measurements.  

 Higher acoustic energies necessary for pilot scale continuous emulsification for 

effective emulsification   

Higher acoustic energies are required while utilising pilot scale ultrasonic emulsification 

processes, as a bypassing behaviour of pre-emulsion is exhibited at lower amplitudes, due to 

the minimal reduction in emulsion droplet size by comparison to higher amplitudes (i.e. 

greater acoustic energy). Increased acoustic energies display a pronounced region of 

ultrasonic cavitations (i.e. region of hydrodynamic shear) up to the entrance of the ultrasonic 

chamber, whilst a reduced region is exhibited for lower amplitudes, allowing for bypassing of 

pre-emulsions.  

6.4. Future recommendations 

This sections aims to highlight areas of which justify further potential research based 

on the contemplations and conclusions developed from this study. 

 Investigate the hydrolysis of proteins from ultrasound treatment 

Ultrasound treatment has been shown to reduce the molecular weight profile of 

cellulose ethers (i.e. polysaccharides) as measured by intrinsic viscosity and steric exclusion 

chromatography (Goodwin et al., 2011), whilst there is debate within the literature as to 
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whether low frequency, high power ultrasound is capable of reducing the primary amino acid 

sequence of proteins by scission of the peptide bond (Jambrak et al., 2014; Yanjun et al., 

2014).  

In the present study, the ultrasonic treatment times employed provide insufficient 

energy to achieve hydrolysis of the peptide bond, given the bond energies of the peptide bond 

(i.e. C-N) and its dimeric form (i.e. C=N bonds) due to the adjacent carboxylic group (cf. 

Table 2.1). However, a combination of either prolonged treatment times or more intense 

treatment (i.e. greater acoustic intensity) offer the potential for the reduction of molecular 

weight with low degrees of hydrolysis, reducing the allergenic attributes of certain proteins 

(i.e. dairy or soy proteins), and maintaining sufficient tertiary structure for the formation and 

stabilisation of emulsion droplets.  

 Investigate the rate and degree of enzymatic proteolysis in the presence of ultrasound 

Protein hydrolysates are commonly utilised ingredients within infant and clinical 

nutrition formulations, as they exhibit improved digestibility with lower allergenicity 

attributes in comparison to the parent protein. The food industry is moving toward utilisation 

of newer protein sources derived from vegetable, which, due to the processing of these 

ingredients, possess a large denatured insoluble component. Thus, the rate of hydrolysis 

reaction and yield (i.e. soluble component) from these reactions is often prolonged and low, 

respectively, by comparison to the hydrolysis of conventional protein sources which are 

readily hydrolysed (i.e. dairy proteins).   

It is expected that ultrasound treatment of protein hydrolysis reactions offer potential of 

both disruption of insoluble protein aggregates and expansion of quaternary/tertiary structure 

allowing for increased rates of hydrolysis and improved yields. Based on the work conducted 

in this study, ultrasound treatment has been shown to alter the quaternary and/or tertiary 
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structure of proteins, potentially reducing the proteolytic activity of enzymes. Therefore, 

optimisation of pulsed ultrasonic treatment offers potential to disrupt the insoluble aggregates 

of proteins, whilst minimising detrimental effects to enzymes allowing for increased rates and 

yields of enzymatic hydrolysis reactions. 

 Extend the understanding of the effect of ultrasound treatment on protein structure 

in solution to those adsorbed at interfaces  

In the present study the effect of ultrasound treatment was extensively probed for a 

wide range of proteins in aqueous solutions, and predominately improved the emulsifying 

performance of proteins. Be that as it may, this work also indicated that the improved 

emulsifying performance from ultrasound treatment does not extend to proteins adsorbed at 

emulsion droplet interfaces prior to ultrasound treatment. The emulsions prepared with MPI 

and PPI utilising batch and continuous ultrasonic processes as the method of emulsification at 

concentrations < 0.75 wt. % yielded larger emulsion droplets (cf. Fig. 5.6) than those of 

emulsions prepared with MPI and PPI ultrasound treated prior to emulsification (cf. Fig. 3.4 

and 4.5).  

 This disparity could be addressed by the fabrication of emulsions with untreated and 

ultrasound treated proteins, and subsequently ultrasonically treating the untreated emulsions, 

and further processing these emulsions utilising the same emulsification technology, which is 

capable of achieving smaller emulsion droplets with a more uniform (i.e. low span) droplet 

size distribution than ultrasonic technologies (i.e. microfluidics).  
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 Investigating the effect of ultrasound treatment on the physicochemical properties 

and emulsifying performance of additional non-conventional protein sources 

Extensive research is being conducted on the extraction and implementation of proteins 

isolates from non-conventional sources for utilisation within the food industry, such as potato 

protein isolate, lentil protein isolate, wheat protein isolate and blue sweet lupine protein 

isolate to mention but a few. The majority of these upcoming isolates are derived from 

vegetable sources and their extraction methods result in the denaturation of protein yielding 

an insoluble component, often with a particle size > 1 μm, resulting in an unstable isolate 

which is prone to rapid phase separation (i.e. sedimentation). 

This study has shown that ultrasound treatment can improve the solubilisation and 

interfacial behaviour of legume derived protein isolates (i.e. pea and soy) by size reduction. 

However, no size reduction was observed for the tested cereal protein (i.e. rice), and 

consequently no change in the physicochemical properties and emulsifying performance of 

this protein. It is expected that other proteins derived from cereals (e.g. wheat or bran) would 

be resistant to size reduction from ultrasound treatment, whilst proteins derived from other 

vegetable sources (e.g. blue sweet lupine or lentil) would be susceptible to size reduction 

because of structural similarities between the different vegetable proteins. However, the 

effect of ultrasound on tuberous proteins (i.e. potato), have yet to be explored.  

 Development of a continuous ultrasonic process for the functional modification of 

proteins 

The first two results chapter of this thesis focused on the effect of sonication of 

protein solutions employing batch processing methodologies, for the functional modification 

of these ingredients. To increase the industrial applicability of this work development and 

optimisation of continuous processing methodologies should be investigated, whereby, the 
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processing power (i.e. acoustic energy) and flow rate (i.e. residence time) would be optimised 

in order to achieve the functional improvements observed from batch processing.  
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Ultrasonic emanation from the tip of the sonotrode is referred to as acoustic streaming 

(Nyborg, 1953; Tjøtta, 1999).There are two main acoustic streaming theories which describe 

this phenomena mathematically, that developed by Rayleigh (Rayleigh, 1896), Nyborg 

(Nyborg, 1953) and Westervelt (Westervelt, 1953), referred to as the RNW theory, and that 

proposed by Lighthill, the Stuart streaming theory (Lighthill, 1978). The RNW theory is 

applied to systems where the Reynolds number (i.e. the ratio of inertial to viscous forces) is 

very low, and the Stuart streaming theory is applicable to systems whereby the acoustic jets 

take the form of an inertially dominated turbulent jet (i.e. high Reynolds number) with 

powers in excess of 4 x 10-4 W (Trujillo & Knoerzer, 2011a).  

A.1. Rayleigh, Nyborg and Westervelt (RNW) streaming theory 

Acoustic streaming is calculated from the RNW theory by combining the continuity 

equation (cf. Eq. A.1) and the Navier-Stokes equations (cf. Eq. A.2). 

  

  
                                                                                                                               (A.1) 

  
  

  
                                                                                                         (A.2) 

Where ρ is density (kg m-3),    is velocity (m s-1), t is time (s), p is pressure (Pa), μ is 

viscosity (Pa s) and    represents the force per unit volume that causes streaming (N m-3). The 

convective acceleration term (      ), also known as the inertia term, is neglected and 

subsequently    can be calculated as a spatial variation of the Reynolds number (Lighthill, 

1978), implementing the Einstein notation, force, F, can be written in terms of the j 

component:  

     
               

   
                                                                                                                     (A.3) 
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The spatial variations of the Reynolds stress are dictated by sound attenuation (i.e. 

absorption of sound; Trujillo & Knoerzer, 2011b). In particular for acoustic waves whereby 

plane wave attributes are observed (i.e. constant compression-to-compression amplitude with 

respect to velocity in a given vector), the force associated with the attenuation of a sound 

field is obtained from the following expression (Tjøtta, 1999): 

    
 

 
                                                                                                                              (A.4) 

Where c is the speed of sound (m s-1) and     is the acoustic power intensity (W cm-2). 

The solution to Eq. A.1 and A.2 was obtained by successive approximations, whereby each 

value was expanded as a series of terms, representing the excess pressure,           , the 

excess velocity,           , and the excess density,           , at any given 

location in the acoustic field (Nyborg, 1953; Zarembo, 1971): 

                                                                                                                          (A.5) 

                                                                                                                          (A.6) 

                                                                                                                          (A.7) 

Terms with a subscript 0 represent the system under placid fluid conditions. The first 

order terms of the equations (i.e. a subscript of 1) are usually the solution to the wave 

equation. These values vary in a sinusoidal manner with respect to the frequency, ω, of the 

acoustic wave, and hence represent the sound field (Nyborg, 1953). The second order 

approximation terms (i.e. a subscript of 2) are time-averaged terms, also known as time-

independent terms, correction terms to be added to the first order values. The first order 

velocity term, v1, represents the velocity of compressions and rarefactions of particles during 

the transmission of acoustic waves through a medium, thus the velocity through the medium 

is of the same magnitude as the speed of sound. The speed of sound through water is 
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approximately 1,500 m s-1. The time-independent streaming velocity (i.e. v2) is within the 

order of a few meters per second.  

Even though solutions have been derived to describe acoustic streaming based on the 

RNW theory (Nowicki, Secomski, & Wójcik, 1997; Nowicki, Kowalewski, Secomski, & 

Wójcik, 1998), it was demonstrated that neglecting the inertia term from the Navier-Stokes 

equation is applicable to systems with very low flows exhibiting low Reynolds numbers (Re 

< 1) and low sources of acoustic power (Lighthill, 1978; Zarembo, 1971). Therefore, the 

RNW theory is not applicable to the jet streaming exhibited by low frequency, high power 

transducers (Trujillo & Knoerzer, 2011a). 

A.2. Stuart streaming theory 

Stuart, (1963) developed the concept that for systems which exhibited higher 

Reynolds numbers, such as systems utilising high acoustic powers, the Navier-Stokes 

equation of motion (cf. Eq. A.8) must be used with the inclusion of the inertia term (      ): 

                                                                                                                     (A.8) 

Eq. A.8 is the time-independent version of the Navier-Stokes equation, where the 

transient term is removed and    and    represent the time average variations of velocity and 

pressure, respectively, equivalent to the second order terms from the successive 

approximations devised by Nyborg, (1953) (cf. Eq. A.5 and A.6) as they also represent time-

averaged values. The term ‘Stuart streaming’ was introduced to describe the acoustic 

streaming at higher Reynolds numbers resulting from high power acoustic beams from 

transducers. This type of acoustic streaming is the most commonly utilised within the food 

industry for the functional modification of ingredients and the development of 

microstructures. Lighthill, (1978) described that “it is hardly an exaggeration to say that all 
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really noticeable acoustic streaming motions are Stuart streaming,” and furthermore proved 

that acoustic streaming takes the form of an inertially dominated turbulent jet upon exceeding 

an acoustic power of 4 x 10-4 W.  

High power acoustic streaming manifests in the form of a jet showing a narrower 

beam of sound emanating from the source with an acoustic power of         , where P0 is 

the acoustic power at the tip of the sonotrode (W), I0 is the acoustic power intensity at the tip 

of the sonotrode (W cm-2) and SA is the cross sectional area of the sonotrode tip (cm2) 

(Lighthill, 1978). In the absence of attenuation (cf. section 2.3.1.2.) the principles of 

conservation of energy are applicable, whereby the energy entering the beam from the 

transducer tip is equal to that leaving the beam. Thus this conservation of energy can be 

expressed as follows: 

                                                                                                                               (A.9) 

Attenuation of the sound beam reduces the power of the sound beam according to: 

     
                                                                                                                          (A.10) 

Where x is the distance from the source emanating the sound beam (m) and e-βx is the 

damping term which accounts for spatial attenuation of the acoustic beam, primarily due to 

ultrasonic cavitations. β is the attenuation coefficient proposed by Lighthill, (1978) defined as 

the proportional loss of ultrasonic energy per unit displacement travelled by a acoustic wave.  

In addition, attenuation of sound beams can be expressed in terms of dampening of 

the pressure amplitude, p, whereby the absorption coefficient is α (Nyborg, 1953; Tjøtta, 

1999). For plane waves the relationship between the attenuation coefficient, β, and the 

absorption coefficient, α, is β = 2α. 

      
                                                                                                                    (A.11) 
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Lighthill, (1978) proposed that the sonotrode emanates the ultrasonic power as a 

sound beam where the net force at a given distance, x, is determined by applying the law of 

conservation of momentum, yielding the acoustic momentum flow rate after attenuation. 

Application of the law of conservation of momentum allows for the conclusion that a 

reduction in the ‘acoustic momentum,’ Fa (cf. Eq. A.12), increases the ‘hydrodynamic 

momentum,’ Fh (cf. Eq. A.13), in the path of the sound beam, also referred to as streaming. 

    
 

 
  

  

 
                                                                                                                  (A.12) 

    
  

 
  

  

 
      

  

 
                                                                                        (A.13) 

The spatial rate of decay of the hydrodynamic momentum flow rate, FL, acts as a net 

force per unit displacement in a given direction, x, generating motion of the medium (cf. Eq. 

A.14). If there was no impedance present within the path of the sound beam as a consequence 

of cavitations, the attenuation coefficient, β, would have a value of zero, and the net force 

would thus become neglected. Therefore, streaming is a result of acoustic attenuation caused 

by ultrasonic cavitations in the locus of the sound beam (cf. section 2.3.1.2.). 

     
   

  
  

 

 
   

     
 

 
                                                                                          (A.14) 

For high values of the attenuation coefficient, β, the streaming motion of the acoustic 

beam is comparable to that of a turbulent jet, whereby the damping term, e-βx, approaches 

zero at short distances by which over short distances within the locus of the sonotrode tip the 

momentum delivered to the medium is equal to P0/c (cf. Eq. A.14; Trujillo & Knoerzer, 

2011a).  
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The average flow of a turbulent jet has a comparable solution to that of a laminar jet 

for a constant eddy viscosity, μt (cf. Eq. A.15), where Km represents the mechanical 

momentum (Km = ρ0Fh) (Schlichting, 1979). 

                                                                                                                            (A.15) 

 When the attenuation coefficient, β, is low the eddy viscosity along the path of the 

acoustic beam increases as the hydrodynamic momentum flow rate, Fh, increases as per Eq. 

A.13.  

The velocity profile of the acoustic beam emanating from the sonotrode tip, v, is 

equivalent to a jet and can be described by a Gaussian distribution: 

    
   

     
                                                                                                                  (A.16) 

Where r is the radius of the acoustic beam (m) and S is the width of the jet as a 

function of distance from the sonotrode tip (m), S = S(x). The velocity profile (cf. Eq. A.16) 

can be justified if the acoustic intensity (Ia) additionally exhibits a Gaussian tendency 

(Lighthill, 1978). 

Ultrasonic processing utilised within the food industry for the development of 

microstructures and functional modification of food ingredients is usually high power 

ultrasound processing which is most adequately modelled and explained by the Stuart 

streaming theory (McClements, 1995; Trujillo & Knoerzer, 2011a).  
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The following droplet size distribution (DSD) data is provided for selected examples 

of emulsions prepared in the experimental chapters (i.e. chapters 3, 4 and 5) of this thesis. 

The presented data can be broadly categorised as those comparing emulsions prepared with 

untreated and ultrasound treated proteins, and a comparison of emulsions prepared using 

ultrasound as the emulsification methodology. 

Fig. B.1 compares the DSD of untreated sodium caseinate (NaCas), ultrasound treated 

sodium caseinate (NaCas) and Tween 80, all at an emulsifier concentration of 0.1 wt. %. The 

droplet size distributins of NaCas emulsions were comparable whether untreated or 

ultrasound treated, as detailed in chapter 3. 

 

Fig. B.1. Comparison of DSD of untreated NaCas, UST NaCas and Tween 80, all at an emulsifier concentration 

of 0.1 wt. % 

Fig. B.2 compares the DSD of untreated whey protein isolate (WPI), ultrasound 

treated whey protein isolate (WPI) and Tween 80, all at an emulsifier concentration of 0.1 wt. 

%. The droplet size distributins of WPI emulsions were comparable whether untreated or 

ultrasound treated, as detailed in chapter 3. 
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Fig. B.2. Comparison of DSD of untreated WPI, UST WPI and Tween 80, all at an emulsifier concentration of 

0.1 wt. % 

Fig. B.3 compares the DSD of untreated bovine gelatin (BG), ultrasound treated 

bovine gelatin (BG) and Brij 97, all at an emulsifier concentration of 0.1 wt. %. The droplet 

size distributins of ultrasound treated BG emulsions were smaller than untreated BG 

stabilised emulsions, as detailed in chapter 4. 
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Fig. B.3. Comparison of DSD of untreated BG, UST BG and Brij 97, all at an emulsifier concentration of 0.1 

wt. % 

Fig. B.4 compares the DSD of untreated fish gelatin (FG), ultrasound treated fish 

gelatin (FG) and Brij 97, all at an emulsifier concentration of 0.1 wt. %. The droplet size 

distributins of FG emulsions were comparable whether untreated or ultrasound treated, as 

detailed in chapter 4. 
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Fig. B.4. Comparison of DSD of untreated FG, UST FG and Brij 97, all at an emulsifier concentration of 0.1 wt. 

% 

Fig. B.5 compares the DSD of untreated egg white protein (EWP), ultrasound treated 

egg white protein (EWP) and Brij 97, all at an emulsifier concentration of 0.1 wt. %. The 

droplet size distributins of ultrasound treated EWP emulsions were smaller than untreated 

EWP stabilised emulsions, as detailed in chapter 4. 
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Fig. B.5. Comparison of DSD of untreated EWP, UST EWP and Brij 97, all at an emulsifier concentration of 

0.1 wt. % 

Fig. B.6 compares the DSD of untreated soy protein isolate (SPI), ultrasound treated 

soy protein isolate (SPI) and Brij 97, all at an emulsifier concentration of 0.1 wt. %. The 

droplet size distributins of ultrasound treated SPI emulsions were smaller than untreated SPI 

stabilised emulsions, as detailed in chapter 4. 
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Fig. B.6. Comparison of DSD of untreated SPI, UST SPI and Brij 97, all at an emulsifier concentration of 0.1 

wt. % 
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Fig. B.7 compares the effect of processing time for emulsions prepared with 1,5 wt. % 

Tween 80 via ultrasound using batch processing (150 g) and an ultrasonic amplitude of 40%.  

 

Fig. B.7. Comparison of processing times (0, 30, 60 and 300 s) for the fabrication of emulsions via batch 

ultrasonic emulsification with an acoustic amplitude of 40% and a batch size of 150 g 

Fig. B.8 compares the effect of processing time for emulsions prepared with 1,5 wt. % 

Tween 80 via ultrasound using batch processing (50 g) and an ultrasonic amplitude of 40%.  
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Fig. B.8. Comparison of processing times (0, 30, 60 and 300 s) for the fabrication of emulsions via batch 

ultrasonic emulsification with an acoustic amplitude of 40% and a batch size of 50 g 

Fig. B.9 compares the effect of processing time for emulsions prepared with 1,5 wt. % 

Tween 80 via ultrasound using batch processing (3 g) and an ultrasonic amplitude of 40%.  

 

Fig. B.9. Comparison of processing times (0, 1, 3 and 10 s) for the fabrication of emulsions via batch ultrasonic 

emulsification with an acoustic amplitude of 40% and a batch size of 3 g 
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Fig. B.10 compares the effect of ultrasonic amplitude for emulsions prepared with 1,5 

wt. % Tween 80 via ultrasound using batch processing (50 g) and a processing time of 50 g.  

 

Fig. B.10. Comparison of ultrasonic amplitude (20, 30 and 40 %) for the fabrication of emulsions via batch 

ultrasonic emulsification with a processing time of 60 s and a batch size of 50 g 
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The following rheology flow profile data is provided for selected examples of protein 

solutions prepared in the experimental chapters 3 and 4 of this thesis, used for the 

determination of intrinsic viscosity as described in sections 3.3.2.3.5. and 4.3.2.3.5. of this 

thesis. The flow curves follow the expected behaviour, whereby untreated proteins have 

higher viscosities than their untreated counterparts. 

 

Fig. C.1. Comparison of the flow curves of untreated sodium caseinate (NaCas) solutions as a function of 

concentration (0.15 – 0.35 wt . %), used for the determination of intrinsic viscosity 
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Fig. C.2. Comparison of the flow curves of UST NaCas solutions as a function of concentration (0.15 – 0.35 wt . 

%), used for the determination of intrinsic viscosity 

 

Fig. C.3. Comparison of the flow curves of untreated milk protein isolate (MPI) solutions as a function of 

concentration (0.5 – 2 wt . %), used for the determination of intrinsic viscosity 
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Fig. C.4. Comparison of the flow curves of UST MPI solutions as a function of concentration (0.5 – 2 wt . %), 

used for the determination of intrinsic viscosity 

 

Fig. C.5. Comparison of the flow curves of untreated egg white protein (EWP) solutions as a function of 

concentration (1.5 – 3 wt . %), used for the determination of intrinsic viscosity 
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Fig. C.6. Comparison of the flow curves of UST EWP solutions as a function of concentration (1.5 – 3 wt . %), 

used for the determination of intrinsic viscosity 

 

Fig. C.7. Comparison of the flow curves of untreated soy protein isolate (SPI) solutions as a function of 

concentration (1.5 – 3 wt . %), used for the determination of intrinsic viscosity 
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Fig. C.8. Comparison of the flow curves of UST SPI solutions as a function of concentration (1.5 – 3 wt . %), 

used for the determination of intrinsic viscosity 

 


