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 Abstract 

The spray and combustion characteristics of the new bio-fuel candidates, 2,5-dimethylfuran 

(known as DMF) and 2-methylfuran (known as MF), are examined using optical diagnostic 

methods.  

A macroscopic spray characteristics study using high speed imaging has been performed to 

gain the understanding of the bio-fuels’ spray behavior under various conditions compared to 

gasoline and isooctane. It is found that at different injection pressure and back pressure, the 

penetration lengths of the 5 fuels (MF, DMF, ethanol, isooctane and gasoline) are quite similar. 

However, the penetration lengths of the two new bio-fuels, especially DMF, are longer than 

the gasoline at elevated temperatures due to their higher boiling points.  

The droplet sizes of the bio-fuel injections under different operating conditions are also 

studied using Phase Doppler Particle Analyzer (PDPA). The study indicates that the fuels’ 

properties (e.g. surface tension, viscosity, density, boiling point) have considerable impacts on 

the atomization of the spray. Moreover, the differences of these properties lead to different 

droplet size orders for the fuels at different test conditions. It should be note that the 

alternative fuels, MF and DMF, did have similar droplet sizes at various test conditions 

compared to the benchmark gasoline and isooctane. This was a good sign for them to be used 

in current GDI engines. 

The laminar flame propagation and the turbulent flame propagation for MF and DMF have 

been benchmarked against isooctane. The laminar burning velocity of MF is around 17% 

faster than that of DMF and around 30% faster than that of isooctane. For turbulent flame 
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propagation in the engine cylinder, MF has the fastest flame area growth rate, highest peak 

flame speed and quickest heat release rate at different loads compared to the other two fuels 

due to its higher laminar burning velocity. Four functions have been constructed to reveal the 

close link between the flame in 2-D form and the combustion parameters in the cylinder. They 

offered alternative ways to estimate the combustion process and combustion parameters in the 

cylinder using photography method rather than using the pressure data. 
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 Chapter 1 

1 Introduction 

1.1 Background  

Recently, the use of fossil fuels has caused several issues which arouse extensive 

concerns among the public and fuel researchers. The first concern is that the 

diminishing oil reserve cannot fulfill the increasing oil consumption for very long. The 

world oil consumption rate has been continuously increasing since the middle of the 

1980s, due to the rapid increasing demand from developing countries especially China 

(Energy Statistic, 2014 ). Following this trend, unless some effect is made to slow 

down the speed of this consumption, the reported oil reserve will be exhausted in half 

a century (Energy Statistic, 2014). The second concern is the global warming effect 

due to the increasing proportion of CO2 in the air. The global warming effect can 

cause many disastrous consequences which include global temperature increase, 

species extinction and sea level rise. In order to ensure the supply of liquid fuels and to 

balance the CO2 level in the atmosphere, sustainable alternative fuels should be found 

and put into use by fuel researchers; research in this key area is urgently needed.  

 

Several solutions have been proposed by the researchers. Hydrogen is considered as a 

clean and sustainable alternative for gasoline and diesel. Its abundance, high energy 

density by mass and zero CO2 emissions make it attractive. However, the main 

obstructions for using hydrogen as a vehicle fuel are the safety issues and the 
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infrastructure needed for refilling. The strict requirements for hydrogen storage and 

the necessary new hydrogen refill points make it impossible put into widespread use 

in the short term.   

 

Battery powered vehicles seem to be another solution. Electric vehicles generate no 

emissions at all and it is very easy to find a plug which allows the battery to be 

charged. The success of Tesla motors (Tesla Motors, 2014) is proving that there is a 

promising future for the battery powered vehicle in the market. However, the 

aforementioned problems still remain unsolved from the author’s perspective: the 

electricity needed for the electric vehicles is mainly generated by thermal power 

plants and thermal power plants mainly consume coal to generate energy. In this way, 

a large amount of CO2 is still emitted into the atmosphere. Also, due to the limitation 

of the transfer efficiency between the power plug and the car battery, the use of 

electric vehicles is not really clean.  

 

Currently, the most extensively used short term solution is bio-ethanol. In many 

countries, ethanol is added into gasoline in order to slow down the speed of using 

fossil fuel and to balance the amount of CO2 in the atmosphere. Its renewable nature 

and mature production method make it favorable. A large amount of research has been 

carried out on the use of ethanol as a fuel in the internal combustion engine. However, 

its limitation, which associated with its low energy density and high energy need in 

the production process, hinders its further development.   
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Therefore, it is very important to select bio-fuels that have high energy density, 

reliable high yield and high combustion efficiency. Amongst the possible candidates, 

the furan derivatives fit the role well and are rapidly becoming gasoline alternatives.  

 

1.2 Research Outline  

In order to commercialize bio-fuels, their spray behaviours should be examined and 

understood because they affect the combustion and emissions. Therefore, the research 

presented in this thesis gives detailed analysis on the bio-fuels’ macroscopic spray 

characteristics (penetration length and cone angle) compared to ethanol and gasoline.  

 

The microscopic spray characteristics, including the droplet size and the droplet 

velocity, are also studied. The sensitivity of these furan bio-fuels to the injection 

pressure, ambient pressure, and the ambient temperature is investigated.  

 

The laminar burning characteristics are studied in order to understand the fundamental 

knowledge concerning the fuels’ burning behaviour. The flame instabilities of the 

bio-fuels are analyzed and compared to those of isooctane.  

 

The last part of this thesis examines the combustion of the bio-fuels in the optical 

engine using high speed imaging and OH-LIF. Correlations are made to present the 

relationship among the burning rate, the flame area and the OH signal. The effect of 
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engine load is also analyzed.  

1.3 Objective and Approaches 

The aim of this research was to investigate the spray and combustion characteristics 

of the two furan bio-fuels, DMF and MF, and compare their characteristics to the 

benchmarks, gasoline and isooctane. Several optical diagnostic techniques were used 

in order to measure these properties. This research can generate supporting 

information for engine designing and CFD modelling for the bio-fuels. The objectives 

include the following points:  

1. To study the macroscopic spray characteristics of these bio-fuels in order to 

understand the differences between the bio-fuels and gasoline. The effects of 

injection pressure, back pressure, ambient temperature, and the fuel properties on 

the bio-fuels spray are also studied.  

2. To investigate the fuel atomization characteristics and the influence of the test 

conditions on the droplet size and the droplet velocity.    

3. To study the laminar flame propagation and the flame instability of the bio-fuels 

in a constant volume vessel.  

4. To examine the turbulent flame propagation in the engine and compare the 

properties with various fuels including gasoline and ethanol.  

5. To analyze the correlation between the laminar flame properties and the turbulent 

flame properties.  

6. To analyze the possible effects of these bio-fuels being used in an engine. 
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1.4 Thesis Outline  

This thesis is divided into eight chapters that contain the investigation into the spray 

and flames of the bio-fuels. A brief summary of each chapter is given below.  

 

Chapter 1-Introduction 

This chapter introduces the motivation and the main objectives of this study. The 

promising furan bio-fuels are introduced.  

 

Chapter 2-Literature review 

This chapter presents the review of the relevant literature. Firstly, the modern GDI 

engine and its related technologies are reviewed. Then, the second part introduces the 

bio-fuels used in spark ignition engines, especially the furan derivatives and then the 

review on spray characteristics of the GDI injector is given. The third part gives a 

review on spray characteristics of the GDI injector. Finally, an overview on the 

laminar flame propagation and in-cylinder flame propagation are presented in the next 

section; this includes the theory of both and the relationship between them. 

 

Chapter 3-Experimental set up and techniques 

This chapter includes the experimental facilities and the related techniques used in the 

study. Detailed descriptions are given of the facilities including the constant volume 

vessel, the fuel injection system, the optical engine and the high speed camera. The 

techniques used, which include high speed imaging, Schlieren photography and PDPA, 
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along with the related data analysis methods, are described.  

 

Chapter 4-Macroscopic spray characteristics 

The macroscopic spray characteristics, which mainly include the spray cone angle and 

the spray penetration, are examined with varied test conditions. The effect of the fuels, 

the injection pressures ambient temperature and the ambient pressure are analyzed.  

 

Chapter 5 - Droplet size and velocity measurement 

The effects of injection pressure, back pressure, the fuels properties and the vessel 

temperature on the droplet size and the velocity are examined using the PDPA 

technique. The comparison amongst the fuels is given and the potential of the 

bio-fuels is analyzed.  

 

Chapter 6-Laminar flame characteristics of 2,5-dimethylfuran and 2-methylfuran 

In this chapter, the laminar flame properties of the bio-fuels and air mixtures with 

varying initial temperatures (60oC, 90oC and 120oC) and equivalence ratios (0.6-1.1) 

at 0.1MPa initial pressure is studied using schlieren photography. The effect of these 

conditions on the stretched flame speed, unstretched flame speed, Markstein length, 

laminar burning velocity, flame thickness, density ratio and laminar burning flux of 

the fuel-air mixtures are discussed.   
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Chapter 7-Turbulent flame behaviour in the engine 

The turbulent flame propagation speed, the burning rate, and the fluorescence signal 

are measured and correlated under varied engine loads. The comparison of these fuels 

is given and the potential of these fuels is discussed. 

 

Chapter 8-Summary and future work 

The main findings in the previous chapters are summarized in this chapter. 

Recommendations for future work are also given.  
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Chapter 2  

2 Literature Review 

The aim of this chapter is to review the literature related to the work in this thesis. It 

starts with a review of the modern GDI engine, which includes the mixture formation, 

the DISI combustion system, the GDI injector types and the engine-out emissions.  

The second part introduces the bio-fuels used in spark ignition engines, especially the 

furan derivatives and then the review on spray characteristics of the GDI injector is 

given. In this part the spray structure and break up theories are covered. Literature 

relevant to spray tip penetration, cone angle, spray droplet size and droplet velocities 

are discussed. Finally, an overview on the laminar flame propagation and in-cylinder 

flame propagation are presented in the next section; this includes the theory of both 

and the relationship between them.  

 

2.1 Modern Gasoline Direct-Injection (GDI) Engines 

2.1.1 GDI Engines Overview 

The idea of gasoline direct injection dates back to the early 20th century. At that time, 

most of the work was focused on developing new aircraft piston engines with high 

power output and low fuel consumption for military uses (Zhao, 2009a). After the 

Second World War, this technology was transferred from aircraft engines to 

automotive engines. The first application of GDI on vehicles was introduced by 

Goliath and Gutbrod in 1952. Both companies’ GDI systems were developed by 
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Bosch. Later, in 1955, Mercedes-Benz released the famous Mercedes-Benz 300SL, 

which was a sports car equipped with a GDI system developed by Bosch. In this 

period, the main aim of using GDI on a vehicle was to increase the performance of the 

vehicle through the charging cooling effect of direct fuel injection. In the 1970s, there 

was a short period when a large amount of research and development on GDI engines 

was carried out by Ford motor company and the American Motors Corporation (AMC) 

(Scussei, 1978). Ford developed a stratified-charge GDI engine called “PROCO” 

(programmed combustion). However, this project was soon cancelled because of the 

high cost and the high amount of NOx emissions which could not meet the coming 

EPA (United States Environmental Protection Agency) limits. The AMC conducted 

research aimed to develop a Straticharge Continuous Fuel-Injection (SCFI) system in 

the early 1970s. In 1973, a road test on the prototype “Straticharge” engine was 

performed, but was stopped due to teething problems with the mechanical fuel 

control.  

The real success of a GDI engine in a vehicle was achieved in the 1990s when 

Mitsubishi Motors introduced the Galant/Legnum 1.8L straight 4 into the Japanese 

market in 1996 (Iwamoto, 1997). Afterwards the other car manufacturers in Europe 

and Japan followed step by producing their own GDI engines or taking licenses from 

Mitsubishi. These engines adopted stratified operation at part load and low to medium 

speed; whereas homogeneous operation was used at high load and high speed. Until 

2001, over one million GDI engines were manufactured by Mitsubishi. 

However, with the stricter emissions’ legislation after 2000, the fuel efficiency of the 
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engines became the second priority. For stratified lean-burn operations, the expensive 

and inefficient lean-burn NOx aftertreatment has to be used in order to fulfill the 

emissions’ legislation. As a result, GDI engines after 2001 were designed to operate 

only at homogeneous operation mode.  

The later trend of the GDI engine development has been led by the Volkswagen (VW) 

and Audi group (Zhao, 2009b). They aggressively adopted turbochargers and 

superchargers in the GDI engines. The impressive TSI 1.4 litre GDI engine was able 

to produce 90kW/litre power density. The concept of engine downsizing, which 

means substituting the naturally aspirated engines by smaller displacement engines, 

became widely recognized and employed by the automotive manufacturers.   

In recent years, the automotive industry faced new challenges not only due to the 

tougher emissions’ legislation but also because of the need to reduce CO2 emissions. 

The emissions of CO2 attracted extensive concern due to their related greenhouse 

effect. So, the task for the automotive researchers was to increase the efficiency of the 

engines. The stratified lean-burn combustion was returned to the market as BMW 

introduced the efficient updated straight six-cylinder gasoline engine in 2007 

(Schwarz, 2006). In summary, the current focus of GDI engine development was put 

on engine downsizing, which employed homogenous charge operation with boosting; 

the fuel economy and the emissions’ benefits were gained simultaneously.  

The future trend of GDI engine development is still ambiguous, but the aim of the 

development is clear: to achieve reductions in both CO2 emissions and pollutant 

emissions. There are a few techniques available: advanced valve actuation systems, 
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boosting and premixed and diluted low temperature combustion including CAI/HCCI 

operation.  

 

2.1.2  Mixture Formation and Operating Modes in the Gasoline 

Engine 

According to how mixtures are prepared for combustion in the cylinder, gasoline 

engines can be classified into three types: the Carburetter injection, the port fuel 

injection (PFI) and the GDI. The features of the three types of mixture formation are 

shown in Figure 2-1. Due to the highly evaporable nature of gasoline, it is very 

convenient to generate homogenous flammable mixtures outside the cylinder using a 

Carburetter. Therefore, for a long time, the main method for mixture formation in a 

vehicle engine was to install a Carburetter on the main manifold. The work of a 

Carburetter relies on Bernoulli’s principle: the faster the air moves, the lower the 

static pressure. As shown in Figure 2-1 a, the diameter of the throttle is smaller at the 

location of the Carburetter. When air flows through the Carburetter throttle, it speeds 

up and leads to the decrease of local pressure. The fuel is then sucked into the throttle 

and breaks into small droplets under the high speed air flow. The droplets are then 

vaporized; thus the mixture is formed and is taken into the cylinder. The carburetter 

provides a way to control the air/fuel ratio for the mixture. However, its mechanism 

makes it hard to control the air/fuel ratio accurately under varying working conditions. 

With the stringent emissions’ legislation all over the world, a Carburetter is seldom 

used on vehicles now.  
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(a) Carburetter             (b) PFI                    (c) GDI 

Figure 2-1: Mixture formation in gasoline engines (Celik, 2010) 

The implementation of port fuel injection (PFI) was applied later in gasoline engines. 

In the PFI system, the fuel is pressurized by a pump to around 0.3MPa and then 

injected into the pre-vaporizing chamber by an injector to be vaporized. In the intake 

stroke, the air-fuel mixture will be inhaled into the cylinder. Then, in the compression 

stroke the mixture can be ignited. Compared to a Carburetter, the advantages of port 

fuel injection are improved volumetric efficiency, more accurate control of the 

equivalence ratio and more uniform fuel distribution. Thus, the PFI system was 

widely used on vehicles’ engines. However, the PFI system also has its drawbacks. Its 

response during cold start and load change is not good. In order to precisely and 

instantly control the amount of fuel into the cylinder and further improve the fuel 

economy, the gasoline direct injection (GDI) system was developed.  

For a GDI engine, there are two operating modes: homogeneous operation and 

stratified-charge operation (Figure 2-2). In the homogeneous operation, the fuel 

injection usually happens at the early intake stroke, which ensures the full mixture of 

the fuel and the air due to the long time interval between the injection and the ignition 

(as shown in Figure 2-2a, the fuel is injected at the intake stroke). This is similar to 
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the port fuel injection (PFI) where fuel and air are mixed uniformly. At high engine 

load, homogeneous (stoichiometric) operation has to be used in order to provide 

enough power to the engine. However, at low load, stratified operation could be 

applied to the engine due to its advantages of the unthrottled operation. Unthrottled 

stratified operation can largely reduce the pumping loss and heat loss, which accounts 

for a large proportion of the lost work in the engine operation. In order to realize 

stratified operation in an engine, the fuel (or a proportion of the fuel) should be 

injected in the compression stroke and transported near to the spark plug to form a 

flammable mixture, which could be ignited by the discharge (as shown in Figure 2-2 

b). Thus, even the global air-fuel ratio in the combustion chamber is leaner than the 

ignitable limit; the discharge can ignite the mixture due to the relatively rich region 

near the spark plug. Ideally, for the stratified operation, a GDI engine should operate 

with the throttle fully open. The load of the engine is solely controlled by the amount 

of fuel injected.  

 
(a) Homogeneous operation      (b) Stratified-charge operation 

Figure 2-2:  Operating modes in gasoline engines (Celik, 2010) 
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2.1.3  The Direct-Injection Spark-Ignition (DISI) Combustion 

System 

In order to achieve stratified operation in the engine, three types of combustion 

concept were proposed and designed: the wall-guided, the air-guided and the 

spray-guided combustion systems (Figure 2-3).   

 
(a) Spray guided          (b) Wall guided            (c) Air guided 

Figure 2-3: The direct-injection spark-ignition combustion systems(Celik, 2010) 

 

The first generation stratified operation engines mainly employed the wall-guided 

combustion concept. As shown in Figure 2-3 b, this kind of engine has a specially 

designed piston crown bowl which acts as the guiding “wall”. The injector is placed 

on the side of the engine opposite to the wall. After the injection, the fuel is 

transported to the spark plug by the guidance of the wall. The flow in the engine 

usually supports the transportation of the mixture towards the spark plug. The initial 

idea of the first generation stratified charge engine is to create a stratified mixture in 

the combustion chamber so that the fuel economy of the engine could be increased. 

However, it suffers from its problems. The first problem is related to its design 

features: the direct contact of the spray jet and the piston leads to a high level of 

deposit on the piston and unburned hydrocarbons in the exhaust gas. Furthermore, the 
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coordination of the ignition timing and the spark timing along a wide range of engine 

operating conditions is very difficult, because the transportation of the fuel is highly 

dependent on the in-cylinder flow and the flow intensity and pattern varied with the 

change of operating conditions.  

The air-guided combustion system (shown in Figure 2-3 c) is a different type of first 

generation gasoline direct injection system. Compared with the wall-guided 

combustion system, the air-guided system utilizes charge movement to mix the fuel 

and the air; which avoids contact of the spray jet and the piston crown. This design 

eliminates the fuel deposit on the piston. However, in order to achieve the specific 

charge movement needed for transporting the mixture to the spark plug, the 

volumetric efficiency will be reduced to create the swirl and tumble required; 

therefore, the performance is affected.  

The later developed second generation combustion systems solved the previous 

problems on the first generation combustion systems. As shown in Figure 2-3 a, the 

configuration of the spray-guided combustion is significantly different from the 

wall-guided and air-guided combustion system: its injector is placed in the middle of 

the pentroof chamber rather than on one side of the cylinder. This feature ensures that 

when the spark plug discharges, an ignitable mixture could be predictably prepared 

around the spark plug across a wide engine speed/load range, because the 

transportation of the fuel is mainly reliant on the spray itself. Thus, research should be 

carried out in order to figure out the spray pattern of this type of GDI injector under 

different back pressure and flow conditions. 
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2.1.4  Types of GDI Injectors 

The fuel injector is a very important component for the GDI engine in that it should 

be able to realize both homogenous charge combustion and stratified charge 

combustion in the engine cylinder. For the homogeneous charge operation, a 

well-atomized and evenly distributed fuel spray is needed at low in-cylinder pressure 

under early injection strategy. Whereas for the stratified charge operation, a 

well-atomized, compact and repeatable fuel spray is needed at pressurized in-cylinder 

pressure under late injection strategy. Fast mixture formation and controlled 

stratification should be achieved under various engine conditions. In order to fulfill 

these requirements, three kinds of GDI injectors are designed, as shown in Figure 2-4.  
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(a) Swirl injector 

     

     (b) outward-opening injector         (c) multi-hole injector 

Figure 2-4 : Three kinds of GDI injectors (Zhao, 2009c) 

The swirl injector, as shown in Figure 2-4 a, is designed for the first generation 

wall-guided combustion system. Its features contain an inwardly opening pintle and a 

single exit orifice. When the pintle moves and opens, the fuel comes out from the 

orifice; then a hollow-cone spray is formed and spreads quickly. However, the spray 

pattern of the swirl injector is significantly affected by the injection pressure, the back 

pressure and the injector temperature. Furthermore, during the late injection of the 

stratified charge operation, the hollow-cone spray will collapse due to the elevated 
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ambient density. A narrow spray with an increased penetration will occur. Thus, it is 

quite difficult to optimize the stratified charge operation over a wide range of 

operating conditions due to the changing spray pattern.  

The solenoid-actuated multi-hole injector and the piezo-electrically actuated 

outward-opening injector, as shown in Figure 2-4, are developed for the GDI engine, 

in order to attain the spray-guided stratified charged combustion in the cylinder at part 

load and improve the engine performance at full load. The outward-opening injector 

possesses several advantages. Firstly, the blocking of the injector nozzle by the 

accumulated deposit can be avoided due to the movement of the outward opening 

pintle. Secondly, the liquid sheet of the spray can be controlled by the pintle stroke. 

This means that the spray angle, spray penetration and the droplet size can be 

controlled to some extent. Thirdly, the small opening and closing time of the 

piezo-electric actuation allows a much shorter opening period. Moreover, more fuel 

can be injected at full pintle lift. In summary, the piezo-electrically actuated 

outward-opening injector is capable of providing repeatable actuation dynamics, large 

fuel flow rate and multiple injections at one cycle, which are favorable for the 

development of the GDI engines. In principle, the solenoid-actuated multi-hole 

injector can produce any spatial fuel distribution pattern by varying the number of the 

holes, the angles of the spray jet and the offset from the injector axis. However, due to 

the requirement of fuel atomization, a relatively high injection pressure (e.g. 150 bar) 

is need. Furthermore, deposit can accumulate on the injector tip and blocks the small 

holes of the injector.  
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2.1.5 Engine-out Emissions 

The most harmful and worrying emissions exhausted from vehicle engines are carbon 

monoxide (CO), unburned hydrocarbons (HC), nitrogen oxides (NOx) and particulate 

matter (PM). Legislations have been put into place worldwide to limit the amount of 

these emissions. Emissions of CO, HC and NOx are determined mainly by the status 

of the engine combustion. A combustion of rich mixture is usually the cause of CO 

concentration because there will be incomplete combustion; due to lack of oxygen, 

carbon atoms are oxidized to CO rather than CO2. For lean mixtures, CO could also 

be produced due to dissociation and incomplete combustion. In this case, the 

concentration of CO would increase with the decrease of the combustion temperature. 

Unburned hydrocarbons include unburned fuel, intermediate product resulting from 

incomplete combustion, lubricant oil and its dissociated and oxidized components. 

These emissions come from flame quenching, crevices effect and oil film. The 

formation of NOx is due to the reaction between nitrogen and oxygen under high 

temperature. The reaction could be explained by the Zeldovich mechanism (Stone, 

2012a). Two factors are required for the generation of NOx: the presence of oxygen 

and a high combustion temperature. The concentration of NOx would be highest for 

the combustion of a slightly rich mixture, due to high temperature and a relatively 

high concentration of oxygen. There are three sources for PM emissions: sulfates, lead 

and organic particulates (including soot). The sulfur content in the fuel could be 

oxidized to SO2 during the combustion and again be oxidized by the exhaust catalyst 
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to SO3; which could then further combine with water at ambient temperatures to form 

a sulfuric acid aerosol. The amounts of sulfate emissions depend on the sulfur content 

in the fuel. The fuel lead content generates lead compounds and it damages the three 

way catalyst. Thus, nowadays unleaded gasoline is used. The soot emissions result 

from the combustion of a rich mixture; such as the rich combustion of a SI engine and 

the combustion of the rich zone in a CI engine. Usually, the soot emissions of CI 

engines are much higher than SI engines. Overall, the emissions’ level of a GDI 

engine is determined by the combined effect of the mixture formation and the 

operational parameters’ both of which are highly relative to this research. 

 

2.1.6 Advanced GDI Engine Technologies 

Throughout the history of the internal combustion engine (ICE), the main efforts of 

automotive research have been placed on reducing fuel consumption and the pollutant 

emissions. The gasoline engine has played an important role in achieving these goals. 

In particular, the developments on the GDI engine’s technologies offer many solutions 

to the future possibilities of the internal combustion engine. The “downsizing” 

concept, which utilizes a supercharger or turbocharger so that a smaller displacement 

engine can generate power comparable to a bigger displacement naturally aspirated 

engine, reduces the throttle loss and forces the engine to operate at a high efficiency 

range on the engine map. This concept can largely reduce the fuel consumption and in 

the meantime does not deteriorate the emissions. An engine with exhaust gas 

recirculation (EGR) can largely reduce the NOx emissions. A GDI engine with auto 
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ignition combustion (HCCI or CAI) can achieve fuel economy and a good emissions’ 

level at the same time, due to its fast burn and low combustion temperature. This 

technology might be used in the low to medium load range in order to save fuel. At 

high load, another combustion mode would be used. The lean boost GDI engine might 

be another possibility, due to the future legislation on CO2. With the second 

generation GDI injector, there would be repeatable and controllable spray in the 

combustion chamber. This technology could further reduce the fuel consumption 

compared to the “downsizing” concept. It also improves the knocking limit and the 

transient response.  

 

2.2  Bio-fuels for Spark Ignition Engines 

The use of bio-fuels in spark ignition engines brings benefits on balancing CO2 

emissions and improving fuel security. It can also have environmental and economic 

benefits. Currently, ethanol is the only large scale used bio-fuel because of its mature 

production method and favorable performance and emissions from the engine. The 

high tolerance of ethanol towards knock can improve the thermal efficiency and 

torque output (Nakama, 2008). In 2007, 80% of the world’s bio-fuel used was ethanol 

(OECD, 2008). However, ethanol fuelled engines suffer from bad cold starts and high 

fuel consumption (Chen, 2011). Moreover, an argument exists regarding to the fact 

that the consumption of grain in the production process of ethanol would increase 

food prices and thus create food shortages, particularly for the poor (Russell, 1980 

and Kenneth, 2007).  
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The use of methanol is another choice for bio-fuel. Research shows that low methanol 

blends only require minor engine modifications (Kowalewicz, 1993) but still produce 

a similar performance compared to gasoline (Liu, 2007 and Wei, 2008). Nevertheless, 

similarly to ethanol, the low energy density of methanol impedes its use in high 

blends.   

The two gasoline alternatives 2-methylfuran (known as MF) and 2,5-dimethylfuran 

(known as DMF) are heterocyclic compound derivatives of furan. Their new mass 

production method was found by several research teams independently (Roman, 2007, 

Luque, 2008 and Zhao, 2007). It is this method which makes them possible for future 

commercial use. Using two main oxygen removal steps, fructose can be converted 

into MF and DMF: in the first step, three oxygen atoms are removed through 

dehydration in order to produce 5-hydroxymethylfurfural (known as HMF); in the 

second step, two oxygen atoms are further removed from HMF through dehydration. 

In this process, MF and DMF are produced. Due to the fact that fructose is abundant 

in bio-mass, MF and DMF can be considered as sustainable bio-fuels.  

The properties of MF and DMF are what made them attractive. The research octane 

number (RON) of MF and DMF are 103 and 101, respectively. The high octane 

numbers means that the two fuels have good knock resistance and thus could be used 

at higher compression ratio in order to achieve higher combustion efficiency. The 

latent heat of vaporization of MF (358.4kJ/kg) and DMF (332kJ/kg) are similar to 

gasoline (373kJ/kg). Moreover, the energy densities of MF (28.5MJ/l) and DMF (29.3 

MJ/l) are very high and quite close to that of gasoline (31.9MJ/l). Compared to 
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ethanol (energy density 23.43 MJ/l), the widely used bio-fuel in the market, MF and 

DMF contains more energy.  

DMF is a promising biofuel candidate which attracted the attention of the researchers 

earlier. The author’s group is the one of the first groups that studied the performance 

of MF and DMF as an alternative fuels in the engine. Zhong et al. (2010) investigate 

the engine performance of DMF in a single cylinder DISI engine compared with 

gasoline and ethanol. They concluded that the engine performance and emissions of 

DMF were very similar to those of gasoline. Tian et al. (2010a) studied spray 

characteristics of DMF using PDPA and their work showed that the spray 

characteristics of DMF were very much similar to that of gasoline compared with 

ethanol. Daniel et al. (2011) compared the engine performance and emissions of DMF, 

gasoline and ethanol under fuel-specific ignition timing and gasoline maximum break 

torque (MBT) ignition timing in a direct injection spark ignition (DISI) single 

cylinder engine. Wu et al. (2011) studied the dual-injection strategy on a single 

cylinder DISI engine fueled with gasoline blended with DMF, ethanol. These engine 

studies suggest that DMF produced competitive combustion and emissions qualities 

compared to gasoline. Rothamer et al. (2012) investigated the knocking propensity of 

DMF–gasoline blends compared to ethanol–gasoline blends, which indicated that the 

blend fuel with 10% DMF provided the best performance. Zhang et al. (2013) studied 

the combustion and emissions of DMF addition on a diesel engine. It was found that 

DMF addition has little effects on CO and THC emissions, whereas 40% DMF 

addition could reduce soot emissions to nearly zero. 
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As for the study of MF, only a few publications are available. Wang et al. (2013) 

examined the engine performance, PM, regulated emissions, and unregulated 

emissions of MF, DMF, gasoline and ethanol. It was found that even though MF and 

DMF have similar chemical structures, the combustion characteristics of them were 

significantly different. MF has higher indicated thermal efficiency compared to DMF 

and gasoline due to its fast burning rate and knock suppression ability. The impact of 

MF on mixture formation and combustion was examined in a DISI Engine by Thewes 

(Thewes, 2011). They found that the initial evaporation of 2-methylfuran is quicker 

than ethanol due to the low boiling temperature and high vapor pressure. The NOx 

emission of MF combustion is high due to its high adiabatic flame temperature. The 

auto-ignition characteristics of MF in a SI engine were studied by Ohtomo (Ohtomo, 

2011). In this study, it was proved that the auto-ignition suppression of MF was 

almost equal to that of ethanol and larger than toluene although the auto-ignition 

delay of pure MF was shorter than that of ethanol and toluene. A detailed chemical 

kinetic modeling study of MF oxidation was established and compared to the 

experimental results by Somers (Somers, 2013). The model was proved capable of 

precisely reproducing the experimental results as a function of both equivalence ratio 

and temperature.  

Knowledge of the spray and flame propagation are essential for the future 

commercialization of any new fuel. Until now, no detailed investigation on the spray 

and flame propagation of these furan derivatives has been conducted. Thus it is 

necessary for this research to be carried out.  
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2.3 Spray Characteristic of the GDI Injector 

As mentioned previously, for a GDI engine the spray-guided combustion system is 

favoured for future GDI engine development; due to its advantages in the control of 

the fuel distribution and reduction of the exhaust emissions. Two types of injectors are 

designed for the spray-guided combustion system: the multi-hole injector and the 

outward-opening injector. In this thesis, the research is focused on the spray of the 

furan bio-fuels using a multi-hole injector. The spray characteristics, including the 

macroscopic and microscopic characteristics which can largely affect the performance 

and emissions of an engine, are discussed in this section.  

 

2.3.1 Spray Structure and Break Up 

A typical spray structure is shown in Figure 2-5, which illustrates the important 

parameters that are used to describe and evaluate a spray. These parameters include 

the spray cone angle, the break-up length, the spray penetration and the droplet size 

distribution. After coming out through the nozzle hole (this is usually accomplished 

by lifting the needle valve for the case of the multi-hole injector), the fuel starts to 

interact with the ambient air. It pushes air away from its path and in the meantime 

entrains the surrounding air into the spray and becomes turbulent. The length of the 

continuous liquid column is called the break-up length (Hiroyasu, 1990). Then, the 

liquid fuel starts to disintegrate into droplets or detached columns. The spray becomes 
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wider as more air is entrained and more fuel is atomized into small droplets. The 

spray tip velocity decreases in this process and the evaporation of the fuel continues 

throughout the whole process of the injection and even after the injection.  

 
Figure 2-5:  Spray structure (Hiroyasu, 1990)  

The break-up or disintegration of a spray jet is of vital importance to the further 

development of the spray. The break-up mechanisms can be divided into five regimes 

according to the jet velocities (Hiroyasu, 1985). Figure 2-6 shows the jet stability 

curve which indicating the change of the break-up length with the increase of the jet 

velocity. Five regimes can be found from this figure: A: the dripping regime, B: 

Rayleigh regime, C: the first wind-induced regime, D: second wind-induced regime, E: 

atomization regime.  
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Figure 2-6: Jet stability curve (Hiroyasu, 1985) 

When the jet velocity is very low, a continuous liquid column cannot form and fuel 

can only be emitted from the nozzle of the injector. Thus this regime is called the 

dripping regime. The next regime is called the Rayleigh regime; in which the 

break-up is caused by the axis-symmetric instabilities and a droplet is produced when 

the perturbation becomes equal to the jet radius. As the jet velocity increases, the 

liquid column enters a regime called the first wind induced regime. In this regime, the 

surface wave perturbation is still quite axis-symmetric but begins to be assisted by the 

ambient air; thus the droplet diameter is slightly smaller than in the Rayleigh regime. 

The next regime is called the second wind-induced regime; where the disintegration 

of the jet is caused by the radial component of velocity resulting from the turbulent 

flow in the injector nozzle. The radial velocity can overcome surface tension and 
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assist the break-up of the jet. The characteristic length of the initial surface 

perturbations produced by the turbulent fluctuations is proportional to the integral 

length scale of turbulence. Gas is the driving agent of the turbulent fluctuations’ 

unstable growth because of the shear force between gas and liquid. The perturbation is 

restricted by surface tension forces and liquid viscous forces. In the atomization 

regime, the spray is completely atomized at the nozzle exit (Lefebvre, 1989) and the 

onset of the break-up is strongly influenced by the liquid flow inside the nozzle and 

the presence of turbulence. The resulting droplet sizes in this regime are much smaller 

than in the other regimes and the gasoline engine mixture formation can be 

represented solely by the atomization process (Basshuysen, 2009).  

Two non-dimensional numbers, the Weber number (We) and the Reynolds number 

(Re), have been created as the characteristic numbers for the break-up of a liquid 

(Lefebvre, 1989). These two non-dimensional numbers are used to estimate the effect 

of the external aerodynamic force and the inertial force of the liquid on the liquid 

break-up.  

The Weber number indicates the ratio of the external disruptive aerodynamic force to 

the surface tension force (Lefebvre, 1989). It can be expressed by: 

We=𝜌𝜌𝜌𝑑
2

𝜎
        (2-1) 

Where: 

ρ is the liquid density (unit: kg/m3); D is the droplet diameter (unit: m); 𝑢𝑑 is the 

droplet relative velocity (unit: m/s) and σ is the surface tension of the liquid (unit: 

N/m).  
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The Reynolds number represents the ratio of inertial force to viscous force of the 

liquid (Lefebvre, 1989). The equation for it is: 

Re=𝜌𝜌𝑑𝐿
𝜇

         (2-2) 

Where: ρ is the liquid density (unit: kg/m3); μ is the dynamic viscosity (unit: 

kg/m*s);  𝑢𝑑 is the droplet velocity (unit: m/s) and L is the nozzle diameter (unit: 

m).  

Except these two non-dimensional numbers, the Ohnesorge number (Oh) is also 

commonly used to define the ratio of internal viscous forces to surface tension forces.  

Oh=√
𝑊𝑊
𝑅𝑅

     (2-3) 

2.3.2 Spray Tip Penetration and Spray Angle 

Both the spray tip penetration and the spray angle have significant influence on the 

engine performance and emissions. The influence of the spray tip penetration on 

combustion is obvious: if the penetration length is too long, the spray jet would easily 

impinge on the piston top or the cylinder wall causing an increase of the HC 

emissions and a decrease of the combustion efficiency; if the penetration length is too 

short, then the fuel cannot be adequately delivered to the far end of the combustion 

chamber which leads to improper mixing and therefore would increase the emissions. 

The influence of the spray angle on the mixture preparation is different: better mixing 

could be achieved with larger spray angle. The spray angle affects the axial and radial 

fuel distribution for the GDI engine. 

 

Many studies on spray penetration have been carried out and correlations based on 



30 
 

experimental data can be found in literature (Hiroyasu, 1985, Smallwood, 2000, 

Klein-Douwel, 2009, Heywood, 1988 and Lefebvre, 1989). The liquid spray 

penetration is affected by several variables (Smallwood, 2000): the nozzle diameter; 

the nozzle length/diameter ratio; the injection pressure; the ambient gas density; the 

ambient gas temperature; the fuel viscosity; the fuel surface tension and the fuel 

temperature. In general, a fuel with high viscosity and surface tension under high 

injection pressure and low ambient gas density tends to have longer spray penetration.  

The spray angle definition is not unanimous for all researchers; some use isosceles 

triangles which have the same area and height as the entire or half of the spray to 

define the spray angle (Kang, 2003); others define the spray angle by connecting the 

spray width at a certain axial position to the starting point of the spray (Lefebvre, 

1989, Farrel, 1996, Dodge, 1992). Usually, a fit line is used on the spray contour to 

illustrate the spray angle (Pastor, 2001, Delacourt, 2005). A number of parameters 

affect the spray angle. The spray angle increases with gas/liquid density ratio and 

decreases with the nozzle length/diameter ratio (Reitz, 1979). The spray angle 

increases with a decreasing fuel viscosity and the jet divergence begins at the nozzle 

exit if the fuel viscosity is below a certain level (Heywood, 1988).  

 

2.3.3  Droplet Size  

After break-up, the liquid column of a spray disintegrates into countless small 

droplets. The droplet size and size distribution largely influence the evaporation of the 

fuel in the engine cylinder and further on influence the combustion and emissions. 
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The studies of the droplet mean diameter and the droplet size distribution reveal the 

spray quality and are of great importance to the analysis of the fuel properties and the 

injection system. In order to evaluate and describe the droplet size in the automotive 

field, the Sauter mean diameter (SMD) is often used and the definition is:  

D32= 𝛴𝛴𝑖𝐷𝑖
3

𝛴𝑁𝑖𝐷𝑖2
     (2-3) 

Where 𝑁𝑖 is the amount of droplets in class i and 𝐷𝑖 is the diameter of class i. In 

this study, Sauter mean diameter (SMD) is used for all the analysis on droplet sizes of 

the fuels.  

 

2.4 Laminar Premixed Flame and Turbulent Premixed 

Flame  

The laminar premixed flame and the turbulent premixed flame have a large number of 

applications in commercial and industrial devices. Examples of laminar premixed 

flame applications include gas ranges, heating appliances and Bunsen burners and the 

most widely used application for the turbulent premixed flame is the spark ignition 

engine. In this chapter, the characteristics and related theories of the laminar premixed 

flame and the turbulent premixed flame will be discussed. The effect of the 

equivalence ratio, temperature, initial pressure and fuel property on the laminar flame 

will be illustrated. The dependence of the turbulent flame’s velocity on the flow and 

the mixture properties will be examined.   
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2.4.1 Laminar Flame Propagation 

The laminar premixed flame and its theories are important because it is widely used in 

many applications; even more importantly, it is a prerequisite to understanding the 

turbulent flame. The most essential characteristics of a laminar premixed flame can be 

represented by its laminar flame speed and the flame thickness. The laminar flame 

speed and the flame thickness are influenced by a number of factors including the 

equivalence ratio, the initial temperature, the initial pressure and the fuel properties.  

 

The dependence of the laminar flame speed (SL) on the temperature and pressure for 

methanol, isooctane, indolene and air mixtures over a range of temperatures and 

pressures are experimentally determined by Metghalchi and Keck (Metghalchi, 1982): 

SL=SL,ref(
𝑇𝑢

𝑇𝑢,𝑟𝑟𝑟
)γ( 𝑝

𝑃𝑟𝑟𝑟
)β(1-2.1Ydil)   (2-4) 

Where the subscript ref refers to reference conditions defined by Tu,ref=298K; 

pref=1atm; Tu is the initial temperature; p is the initial pressure and Ydil is the mass 

fraction of the diluent. The temperature and pressure exponents, γ and β, are functions 

of the equivalence ratio (Ф): 

γ=2.18-0.8(Ф-1)  

β=-0.16+0.22(Ф-1)     (2-5) 

The relationship between the laminar flame speed (SL) and the flame thickness (δl) 

can be expressed using (Bradley, 1998):  

δl =2α/SL         (2-6) 

in which α is the thermal diffusivity.  
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It can be seen that the laminar flame speed and the related flame thickness have strong 

temperature dependence and relatively weak pressure dependence. These dependences 

expressed by the equations can be used to estimate the laminar flame speed and the 

flame thickness of various fuel-air mixtures at different temperatures and pressures.  

Except for very rich mixtures, the influence of the equivalence ratio on the laminar 

flame speed (SL) is actually the influence of the equivalence ratio on the flame 

temperature (Turns, 2011a). Therefore, the laminar flame speed will increase from 

lean mixtures to slightly rich mixtures and then decrease with the increase of the 

equivalence ratio. From equation 2-6, it can be seen that the flame thickness is 

proportional to 1/ SL. Thus, an inverse trend for the flame thickness, which it 

minimizes at slightly rich conditions, can be expected and observed because the 

laminar flame speed peaks at slightly rich conditions.  

The property of a fuel affects the laminar flame speed and the flame thickness as well. 

The work of Barnett et al. (1957) studied and compared the flame velocities of C2-C6 

alkanes (single bonds), alkenes (double bonds) and alkynes (triple bonds) using the 

laminar flame speed of propane as the reference. It was found that the trend of the 

laminar flame speeds of the C3-C6 hydrocarbons roughly followed a function of the 

flame temperature. The laminar flame speeds of the C2 group, ethylene (C2H4) and 

acetylene (C2H2), were higher than the C3-C6 group. The case of pure hydrogen is 

quite different: its laminar flame speed was several times higher than the hydrocarbon 

fuels. For instance, its laminar flame speed was 210 cm/s at an equivalence ratio of 
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1.0 and initial pressure of 0.1 MPa whereas under the same conditions the laminar 

flame speeds of propane and methane were 44 cm/s and 40 cm/s, respectively (Turns, 

2011c).  

 

2.4.2 Turbulent Flame Propagation in Spark Ignition Engines 

The combustion process in a homogeneously charged SI engine is usually divided into 

three periods (Stone, 2012b):  

First period: the initial burning period - after discharge of the spark plug, a small 

flame kernel is initiated. Before the kernel is big enough to be affected by the 

turbulence, the flame is considered as laminar burning. The first few percent of the 

mass fraction burned corresponds to this period.  

Second period: the turbulent period - in this period, the volume of the flame is 

comparatively large. With small unburned fractions entrained into the flame front, the 

mixture burns fast.  

Third period: the final burning period - this period is also called the “termination 

period” or the “burn-up period”. Due to the slowdown of the fluid motion and the 

reduced temperature in the cylinder, the residual mixture in the cylinder burns out 

slowly.  

Among these three periods, the turbulent burning period is of great importance 

because it is the main combustion period which largely affects the performance and 

emissions of the engine. However, compared with laminar flame propagation, the 

turbulent flame propagation in a spark ignition engine is more complex; not only the 
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mixture properties, but also the flow in the engine affects the turbulent flame speed. 

The definition of turbulent flame by Stephen R Turns is (Turns, 2011d): 

 

“For an observer travelling with the flame, we can define a turbulent flame speed, St, 

as the velocity at which unburned mixture enters the flame zone in a direction normal 

to the flame.” 

  

The turbulent flame speed (or global consumption speed) for all turbulent flames is 

commonly expressed as follows (Turns, 2011d): 

St=
𝑚̇
𝐴̅𝜌𝑢

        (2-7) 

where St is the turbulent flame speed (unit: m/s); ṁ is the reactant flow rate (unit: 

kg/s); ρu is the unburned gas density (unit: kg/m3) and A� is the time-smoothed flame 

area (unit: m2). In a real situation, the calculation of a turbulent flame speed is 

challenging due to the difficulty in determining the flame area, which usually has a 

complex shape and thus causes ambiguity. 

 

Although the definition of the turbulent flame speed is expressed by equation 2-7, a 

large number of phenomenological combustion models have been developed by the 

researchers in order to predict and describe the turbulent combustion process 

especially in the SI engine. The turbulent combustion model developed by 

Tabaczynski et al. (1977) gives a prediction of turbulent combustion. His combustion 

model considers the influence of the turbulence in the cylinder and the laminar flame 
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speed of the fuel. It is assumed that the flame propagates with an entrainment process 

and within the entrainment region burning happens at a rate controlled by turbulence 

parameters. The mass entrainment rate is described by:  

dm𝑒
dt

=ρuAf(μ+SL)     (2-8 ) 

where me is the mass entrained into the flame front;  ρu is the unburned charge 

density (unit: kg/m3);  Af  is the flame front area (unit: m2); μ is the turbulence 

intensity (unit: m/s); SL is the laminar flame speed (unit: m/s).    

From this equation, it can be seen that the turbulent flame speed in an engine cylinder 

is largely affected by the turbulence intensity and the local laminar flame speed. As 

discussed in section 2.4.1, the laminar flame speed is influenced by the local 

equivalence ratio, the local temperature and the local pressure and the fuel properties. 

The turbulence intensity is assumed to be proportional to the mean piston speed. 

Therefore, the combined effects of the in-cylinder conditions and the property of the 

fuel determine the turbulent flame speed.  

  

2.5  Summary 

In summary, this chapter discussed the development of the GDI engine including a 

short history; mixture formation type of GDI compared with a Carburetter and PFI; 

the operating modes and the combustion concepts of the GDI engine. Then the 

emission legislations and the GDI engine technologies were presented.   

The second part introduced the background knowledge of leading bio-fuels on the 

market, including the use of ethanol and methanol. The properties of the furan 
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derivatives, DMF and MF, were presented and the related research of these bio-fuels 

is introduced.   

The third part of this literature review discussed relevant knowledge about the spray 

of the GDI injectors and the flame propagation in the vessel and in the GDI engine. 

The structure and the break-up of a spray were reviewed. The related parameters 

which could be used to evaluate the spray, including the spray tip penetration, spray 

cone angle, droplet size and droplet velocities, were discussed. The laminar flame 

propagation and the turbulent flame propagation were then discussed. The parameters 

which affect the laminar flame propagation were summarized and considered. The 

turbulent flame propagation model developed by Tabaczynski was presented and the 

links between the laminar flame and the turbulent flame were discussed.  

Through the literature, the main motivation of this thesis, which was to investigate the 

spray and combustion of the furan alternatives, was introduced and explained.    
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 Chapter 3 

3 Experimental Set up and Techniques 
 

The aim of this chapter is to present the experiment facilities and the related data 

acquisition techniques used in the study. The facilities included the constant volume 

vessel, the fuel injection system, the high speed Phantom camera, the intensifier, the 

Schlieren system, the optical engine, the PLIF laser, and the PDPA system.  

 

3.1 Spray Image Acquisition System 

Using high speed imaging, the macroscopic spray characteristics of the bio-fuels 

under various back pressures, injection pressures and vessel temperatures were 

evaluated. The spray images of the bio-fuels were acquired by using the high speed 

camera and they were analysed by MATLAB code. Detailed description of the 

experiment system and the data analysis will be given in this part.  

 

3.1.1  System Configuration  

The experimental setup for the high speed image acquisition of the macroscopic spray 

is shown in Figure 3-1. The injector was installed on the top of the vessel and a 45˚ 

mirror was placed under the vessel in order to allow the camera to capture the spray 

images via the window in the bottom. The temperature and pressure in the vessel were 

controlled. The devices used in this system, including the constant volume vessel, the 
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camera, the fuel injection system and the temperature control system will be described 

in the following sections.  

 
Figure 3-1：High speed image acquisition system for spray in the vessel 

 

3.1.2  Constant Volume Vessel 

Many tests in this study were carried out in a constant volume vessel (e.g. the 

Schlieren test, macroscopic spray test and the PDPA test). As shown in Figure 3-2, 

this black cubic constant volume vessel contained several optical windows which had 

optical access diameters of 100mm and lids which connected to tubes, solenoid valves 

and safety valves. The optical windows and the lids were interchangeable. So in 

different experiments, the setting could be changed according to the needs of each 

experiment. Eight heating units were placed in the eight corners of the vessel. Each of 
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them provided 250 watts of power and the vessel could be heated up to 120˚C.  A 

Bosch AJ133 injector was installed on the top lid of the vessel. This injector was 

controlled by a Bosch ECU. The safety valve, which released the pressure in the 

vessel when it was higher than 0.7 MPa, was placed on one of the lids. A TC-direct 

thermocouple was used to measure and control the temperature in the vessel. The 

accuracy was within 1 degree. The tubes and the solenoid valve were used to intake 

fresh air and exhaust the mixture inside the vessel. The solenoid valves were 

controlled by the TTL pulse signals. 

 
Figure 3-2: Constant volume vessel with heating units in 8 corners of the vessel 

 

3.1.3 Fuel Injection System  

In this study, the fuels were supplied by the fuel accumulator and injected by a 

multi-hole GDI injector. The injection amount, timing and frequency were precisely 

controlled by the computer through an ECU, as shown in Figure 3-1. The GDI 
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injector is shown in Figure 3-3. Before any test, the fuel was pumped into the fuel 

accumulator and then pressurized by the high pressure nitrogen bottle; the injection 

pressure was controlled by varying the pressure of the nitrogen gas. In the high speed 

imaging spray test, the injection and the camera were synchronized by the computer. 

 
Figure 3-3: The multi-hole GDI injector 

 

3.1.4 CCD Camera (Intensifier) 

Figure 3-4 shows the Phantom V710 ultra-high speed camera and the HAMAMATSU 

high speed intensifier. Table 3-1 shows the specification of the camera and the 

intensifier. The Phantom V710 camera was used throughout this work. In the 

macroscopic spray characteristic study, it was used to capture the spray images. The 

frame rate used was 18 kHz and the resolution was 608x600. In the Schlieren test, it 

was used to capture the laminar flame images. The frame rate was 10 kHz and the 

resolution was 800x800. In the turbulent flame measurement, it was used to record the 

in-cylinder flame of the bio-fuels. The frame rate was also 10 kHz and the resolution 

was 800x800.  
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Figure 3-4: High speed camera coupled with the intensifier 

 

Table 3-1: Specification of the camera and the intensifier 

Phantom V710 Camera 

Resolution  Up to 1280x800 

Sample rate (fps) Up to 1,500,000 

Colour expression, gradations  Monochrome 8 bit and 12 bit 

Storage  16GB 

HAMAMATSU Intensifier (C10880-03F) 

Maximum gated rate 10 kHz 

Minimum gating time 20ns 

Response time 10ns 

In the spray test and the Schlieren test, there was no need to use the intensifier, 

because the light was relatively strong. However, for the in-cylinder flame recording 

and the LIF image recording, it was necessary to use the intensifier. Figure 3-5 shows 

the recorded images with and without the intensifier. It is obvious that the intensifier 

could make the weak flame light “visible” to the camera.  
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                 （a）                         （b） 

Figure 3-5: Flame image in the cylinder (a) without the intensifier (b) with the 
intensifier (IMEP=4.5bar, lambda=1)  

 

3.2  PDPA system 

PDPA is a non-intrusive method which can be used to measure the droplet size and 

droplet velocity at a particular point of a spray jet. In this work, the PDPA system was 

used to measure the droplet size and velocities of the bio-fuel injection under different 

back pressures, ambient temperatures and injection pressures. A typical PDPA system 

is shown in Figure 3-6. It comprises a laser, transmitting optics, photon detectors and 

signal processers. The laser beam goes through the transmitting optics and is divided 

into a pair of intersected beams. Thus a fringe pattern (the measurement volume) is 

created. When droplets travel through the measurement volume, laser light will be 

scattered and the photon detectors will capture these light signals. The associated 

temporal and spatial information of the droplets are then analyzed by the signal 

processor and recorded by the computer. It should be note that Figure 3-6 is only used 

to describe the PDPA system working theory rather than indicating the geometry of 

the PDPA system used in this study. The configuration of the PDPA system used in 
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this study is shown in Figure 3-7 and detailed description on the droplet size and 

velocity measurement can be found in section 3.5.2. 

 
Figure 3-6:  PDPA system working theory (Zhao, 2001) 

 

3.2.1  System Introduction 

The schematic of the PDPA system used in this work is shown in Figure 3-7. The 

entire PDPA system, including the transmitting optics and the detectors, were fixed on 

a 3D traverse system. The traverse system allowed the measuring point to move 3 

dimensionally in the space and the accuracy was within 0.01 mm. In order to make 

the measurement under varied back pressures and ambient temperatures, a 

combustion vessel was used as the test field (described in chapter 3.1.2). The heating 

units installed in the 8 corners of the vessel were used to change the temperature. A 

compressed nitrogen bottle was connected to the vessel in order to vary the vessel 

pressure. The pressure in the vessel was monitored by a pressure gauge. The fuel 

spray was controlled by the fuel injection system described in chapter 3.1.3. The 

injector used was the AJ133 injector.  
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Figure 3-7: PDPA system used in this study 

In the beginning of each test, the test matrix which contained spatial information of 

the spray jet was input into the PDPA control and processing software, called BSA 

flow. The measurement was taken at each point and terminated at the point when 

either the measuring time reached the set maximum time (usually 60s or 90s) or the 

recorded point reached the set maximum point (usually 50,000 points). The fuel 

injection, the PDPA processor and the air sweep were synchronized and controlled by 

the signals produced by the pulse generator. While measuring, fuel was injected into 

the vessel at a rate of 2 Hz for three times and then it rested for 1.5s to allow fresh 

nitrogen gas to enter the vessel. The fuel injection pulse width was fixed at 1ms. The 

BSA flow software recorded the droplet information for 5ms after every pulse. The 
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statistical data for both the droplet size and the droplet velocity was then analysed by 

the software. After the measurement was finished on all the spatial points, the data 

was output and the appropriate graphs were plotted.  

 

3.3 Schlieren System 

3.3.1  Schlieren System Overview 

Figure 3-8 shows the sketch of the schlieren system used in this work. The constant 

volume vessel, which was described in Chapter 3.1, was used for this Schlieren test. 

In order to install the Schlieren system in a small space in the optical lab, the Z-type 

Schlieren setup was used. A lens and pin-hole group was coupled with a 500W xenon 

lamp to form the point light source. The light from the point light source was then 

guided to the first concave mirror by a small flat mirror. After reflecting from the 

concave mirror, the divergent light was converted into parallel light. The parallel light 

travelled through the two oppositely placed quartz windows on the vessel to form the 

test field. The other concave mirror was placed on the other side of the vessel to 

converge the parallel light into a point light again. A knife edge was used to cut the 

point in order to form the Schlieren graph. The high speed phantom camera, which 

was synchronized with the spark timing, then captured the image during the burning 

period at a resolution of 800x800 and a sample rate of 10 KHz.  
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Figure 3-8: Schlieren system setup (Ma, 2013) 

In the beginning of each test, both the intake and exhaust valves were opened to allow 

the burned mixtures to be scavenged by the compressed air. Then, the intake valve 

was closed whereas the exhaust valve was still open until the temperature in the vessel 

rose to the set temperature. After the stabilization of the temperature, all the valves 

were closed and thus the vessel was sealed. Then the fuel was injected via the 

aforementioned AJ133 injector. The equivalence ratios were precisely controlled by 

the amount of fuel injected into the vessel. The AJ133 injector was calibrated before 

the Schlieren experiment and the pre-calibrated data were used to determine the 

injection durations and pulses needed in order to achieve certain equivalence ratios in 

the vessel. After the injection, the vessel was left undisturbed for several minutes to 

achieve homogeneous air-fuel mixtures and a near quiescent condition. A signal was 

sent to start the electrode discharge and to trigger the camera recording 
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simultaneously. In this way, the flame propagation which was initiated by the 

electrode discharge was recorded by the high speed camera. After the combustion, the 

recorded images were transferred to the computer to be stored and the vessel was 

flushed with compressed air so that the test could be started again. The Schlieren test 

for the three fuels (MF, DMF, Isooctane) were performed at three temperatures 

elevated from 60°C to 120°C and equivalence ratios varied from 0.6 to 1.4 under an 

initial pressure of 0.1 MPa. At each test condition, the test was repeated 3 times and 

the analysis was based on the averaged data. The data analysis, including the image 

processing and the calculation of the parameters is discussed in section 3.5.3. 

 

3.4 Optical Engine and PLIF Laser 

In this work, high speed imaging tests and PLIF tests were conducted in an optical 

engine in order to evaluate the combustion of the bio-fuels. The optical engine used 

for the experiments was a single cylinder DISI engine (also equipped with PFI) which 

was based on a Jaguar engine. The PLIF laser used was a Dantec dye laser (TDL90) 

which was pumped by a Brilliant B Nd Yag laser. The CCD camera and the image 

intensifier used in both experiments are described in section 3.1.4. In the following 

sections, the optical engine, the PLIF laser and the related data processing technique 

are introduced.  
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3.4.1 Single Cylinder Optical Engine 

The 4-stroke single cylinder optical engine is shown in Figure 3-9. This 0.562 L single 

cylinder engine direct-injection spark-ignition (DISI) engine was developed by 

Ford/Jaguar. The extended piston was specially designed to provide optical access 

from the bottom via a transparent quartz piston window. A 45˚ mirror was installed to 

allow the camera to capture the spray and combustion images inside the combustion 

chamber. As shown in Figure 3-9, two white water pipes were connected to the steel 

liner in order to provide water coolant. 

 
Figure 3-9:  Single cylinder optical engine 

This single cylinder engine had four valves including two intake valves with a 

diameter of 36mm and two exhaust valves with a diameter of 30 mm. The cylinder 

head was designed with a 13˚ pentroof and a centrally mounted spark plug. The 

injector was installed near the spark plug. The bore and stroke of this engine are 89 

mm and 90.3 mm respectively and the engine compression ratio was 11:1. The system 

was directly installed on a cast-iron test bench which means that no counter-balance 

was required on the crankshaft. More details of the engine can be found in section 
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3.4.2.2.   

 

3.4.2 Engine Test Facility (High Speed Imaging) Overview 

The schematic of the engine test facility is shown in Figure 3-10. Several main parts 

were involved in the investigation: the optical engine, the camera, the engine control 

system. Each of them is discussed in detail in the forthcoming sections.  

 
Figure 3-10: Schematic of the optical engine, instrumentation and acquisition 
systems 
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3.4.2.1 Dynamometer and Electric Motor 

The optical engine crankshaft was motored by an electrical motor and coupled with an 

eddy dynamometer supplied by Trans-drive. This dynamometer worked under three 

phase, 340 volt electric power and could maintain a constant speed or constant engine 

load at motoring or firing conditions. The speed of the engine could be manually 

controlled on the engine control box which had a digital indicator on it. 

 

3.4.2.2 Engine Specification  

The specification of the optical engine is shown in Table 3-2. It was a 4 stroke single 

cylinder engine developed from a Ford/Jaguar V8 engine. The displacement of the 

engine was 0.562 L and the clearance volume was 0.0562 L. The connecting rod 

length was 148.9 mm. The engine had two exhaust valves and two intake valves and 

the spark plug was installed in the centre of the cylinder. The injector was installed 

near the spark plug, as shown in Figure 3-10. 
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Table 3-2: The optical engine specification 

Parameter Value 
Engine head type Jaguar V8 
Cycle  4-stroke 
Bore 89 mm 
Stroke 90.3 mm 
Displacement 0.562 L 
Clearance volume 0.0562 L 
Geometric Compression Ratio 11:1 
Connecting Rod length  148.9 mm 
Number of Intake Valves 2 
Number of Exhaust Valves 2 
Intake Valve Lift 10.5 mm 
Exhaust Valve Lift 9.3 mm 
Intake Camshaft Duration 250 CAD 
Exhaust Camshaft Duration  250 CAD 

For current work, all the tests were performed at an engine speed of 1200 rpm due to 

the requirement of using the PLIF laser. In order to synchronize the PLIF laser with 

the engine, at every cycle, a signal was given to the timing box at a specific crank 

angle (this timing of the signal could be varied on the control software). The 

frequency of the PLIF laser was fixed at 10 HZ. Thus, the frequency of the signal 

given by the engine control software was only 10 HZ, which gave the engine a speed 

of 1200 rpm. In order to make it convenient to analyse, the high speed imaging test 

for turbulent flame was also performed at an engine speed of 1200 rpm.  

The engine valve timing was set as following: the intake valve opens (IVO) at 16˚ 

bTDC and exhaust valve closes (EVC) at 36° aTDC. The maximum intake and 

exhaust valve lifts occurred at 109˚ aTDC and 89˚ bTDC, respectively.  
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3.4.2.3  Direct Injection System and Fuel Supply  

The engine could operate under both high pressure GDI (150 bar) and low pressure 

PFI (3 bar). These two systems could operate separately or simultaneously. This 

investigation mainly focused on the GDI operation. An accumulator was used to store 

and pressurize the fuel. Before the engine was operated, high pressure nitrogen gas 

was connected to the bottom of the accumulator to apply the 150 bar pressure to the 

fuel. The fuel line was connected to the engine by the injector. A gauge was installed 

near the injector to monitor the injection pressure. The injection timing and injection 

duration was controlled by the engine control software, which is described in section 

3.4.2.7. The injector used here was the Bosch AJ133 injector.  

 

3.4.2.4 Ignition System 

The in-cylinder charge was ignited by the discharge of the spark plug, which was 

placed in the centre of the pentroof combustion chamber. The ignition timing and coil 

discharge duration could be controlled by the engine control software. Variable spark 

timing could be achieved for different combustion strategies.  

 

3.4.2.5 Pressure Recording and Coolant Temperature Control 

The cylinder pressure was measured by a Kistler 6051A pressure sensor which was 

coupled with a Kistler 5011B charge amplifier. A LabVIEW program made by the 

previous researchers was used to record the pressure and indicate the load and COV. 



54 
 

The test facility contained a water heating and cooling circuit for the engine cylinder 

head and the liner. A K-type thermocouple was used to measure and control the water 

coolant temperature. In this investigation, the coolant temperature was set as 85˚C. 

The oil heating and cooling system operated separately and the temperate was set at 

85˚C too.  

 

3.4.2.6 Optical Piston and Cylinder Liner 

The optical piston is shown in Figure 3-11. The flat piston top was made of quartz, 

which allowed light to travel through the piston. The diameter of the quartz window 

was 70 mm. However, the diameter of the visible area is only 60% due to blockage 

caused by the mirror fixture. Two sets of gas rings and one oil ring were mounted on 

the optical piston. The material of these rings was Torlon. A steel liner with water 

coolant connected on both sides was typically used for the combustion tests. A full 

stroke quartz liner could also be used to examine the spray from the side (shown in 

Figure 3-11 b). The inner diameters for both liners were all 90 mm. The thickness of 

the optical liner was 25 mm. A gasket was positioned between the liner and the 

cylinder head in order to seal the combustion chamber. In order to fix the liner on the 

cylinder head, the liner seat was raised up and kept in place by 20 bar of compressed 

nitrogen gas supplied by an additional nitrogen bottle.  
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Figure 3-11: Optical engine piston and full stroke transparent optical liner on the 
single cylinder engine 

 

3.4.2.7 Engine Control  

The engine control system contained two main parts: the LabView software run by the 

control computer and the control box. As an integral system, they controlled the 

injection timing, injection pulse width, ignition timing (single injection and double 

injection could be achieved), coil charge time and the trigger timing. The control 

software (called Engine Timing Control System) was developed by the ICE Group, as 

shown in Figure 3-12. All the operational parameters mentioned above could be 

controlled in real-time using the software.  
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Figure 3-12: The engine timing control system control panel  

 

The control box integrated the hardware needed for the engine operation. A NI 

PCI-6023E interface card was used to relay the signals from the computer to the 

engine in order to control it. This NI card was used to control the engine and process 

various parameters. The engine timing was defined by the crankshaft encoder. The 

crankshaft encoder, which was made by Kistler, provided 360 TTL signals every 

crankshaft revolution and determined the location of the piston in regards to the top 

dead centre (TDC). The whole system control including the spark timing, injection 

timing, trigger timing, and the pressure recording, depended on this signal. 

3.4.2.8 Camera Setup  

The camera used in the high speed imaging and the PLIF tests for combustion 
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diagnostics was the Phantom V710 high speed camera. In order to capture the 

relatively weak luminosity from the flame or the fluorescence, the Hamamatsu 

intensifier was used. Both of these devices were described in previous sections. The 

camera resolution used in both tests was 800x800 pixels. The frame rates of the 

cameras were 10,000 Hz and 10 Hz for the high speed imaging and the PLIF test, 

respectively.  

Before each test, the camera needed to be accurately placed in order to avoid any 

flame image distortion. The lens needed to be focused at the top of the piston stroke 

so that high quality flame images could be achieved. In the PLIF tests，a special UV 

lens (described in chapter 3.4.3.4) was used to capture the 308 nm fluorescence. A 

narrow band (308±8 nm) OH filter was installed on the lens to filter the 

chemiluminescence from the flame.  

 

3.4.2.9 Time-box and System Synchronization 

A time-box supplied by Dantec was used to synchronize the camera and laser system 

with the engine system. The timing of the camera and the laser was accurately 

controlled by the Dynamic Studio software provided by Dantec. The time-box had 8 

BNC (Bayonet Neil-Concelman) connection points on the front panel which provided 

the TTL signal output to the laser, camera and intensifier. The timing of these devices 

could be accurately varied with an accuracy of 12.5 ns. On the back panel of the 

timing box, there were two BNC connection points: channel 1 and channel 2. The 

function of channel 1 was to start a recording cycle: when a signal is received, it 
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started a cycle in the software and recorded a number of images according to the 

setting of the user. The function of channel 2 was to enable a single image recording 

within a recording cycle: when it received a signal, the software enabled the recording 

of only one image. The input and output channels of the timing box enabled the 

synchronization to be made between the engine and the optical system including the 

laser, the camera and the intensifier. Thus, the spray and combustion images could be 

recorded at a specific crank angle according to the need of the researcher.  

 

3.4.3 PLIF Laser  

In this investigation, the TDL 90 dye laser, which was powered by the Brilliant B Yag 

laser, was used to generate the laser beam. Both of these devices were supplied by 

Dantec. As mentioned above, the control of the laser was implemented via control 

software called Dynamic Studio. The connection and timing of the system was 

achieved by the timing box. In the practical experiments, in order to convert the laser 

beam into a laser sheet, a beam expander was used.  

 

3.4.3.1 PLIF Laser 

The PLIF laser actually contained two main parts: the Brilliant B Yag laser and the 

TDL 90 dye laser. The Brilliant B Yag laser acted as a power source for the dye laser. 

By using different modules of harmonic, the wavelength of the emitted light from the 

Yag laser could be altered between 1064 nm, 532 nm, 355nm and 255nm. For these 
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tests, the second harmonic module was used thus the 532 nm light was generated by 

the Brilliant B laser. The energy of each pulse of laser was 400 mJ. The 532 nm laser 

beam was then guided to the dye cells in the dye laser in order to halve the 

wavelength to around 280 nm. In the meantime, the dye laser allowed the wavelength 

to be varied within a small range (276nm-284nm). Thus, the OH-LIF test could be 

performed using the dye laser.  

 

3.4.3.2 Control Software 

The Dynamic Studio, which was supplied by Dantec, controlled and synchronized the 

laser, the camera and intensifier with the engine. Internally in the software, the 

connection of the trigger cables for all the devices could be altered according the 

physical connection on the timing box. Therefore, the software knew where to send 

the trigger signal. The timing of each device thus could be controlled via the signal 

sequence sent from the timing box with an accuracy of 12.5 ns. Using this software, 

the settings of the devices connected to the timing box could also be changed (e.g. the 

gate time of the camera and the intensifier). Furthermore, the control panel of this 

software was capable of defining the camera speed and the number of images taken in 

one running cycle.  

3.4.3.3 Beam Expander  

In order to expand the laser beam into a laser sheet, a beam expander (also called 

sheet optics) was used in this study. The Dantec 9080X0841 beam expander, as shown 
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in Figure 3-13, produced a light-sheet with adjustable thickness and adjustable focus 

length, which enabled the generation of a laser sheet for PLIF and PIV. In the OH-LIF 

study particularly, the beam expander converted the laser beam with a diameter of 8 

mm to a laser sheet with a width of 50 mm and a thickness of 1.5 mm.   

  

 

Figure 3-13: The beam expander for OH-LIF 

 

3.4.3.4 UV Lens and Filter (OH-LIF) 

In order to perform the OH-LIF test, a special UV lens had to be used as the 

wavelength of the fluorescence light emitted from the OH radicals is around 308 nm 

which is out of the visible range (390 nm-700 nm) of the human eye and cannot be 

captured by an ordinary lens which is designed to capture light in the visible range.  

In this investigation, the Nikon 105 mm UV lens was used. The f number of the UV 

lens could be varied from 4.5 to 32. This lens allowed light in the range of 

220nm-700nm to travel through. A light filter was installed on the lens to filter the 

light from other sources (e.g. the chemiluminescence from the flame). The filter had a 
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centre pass-through wavelength of 308 nm and a FWHM (Full Wave at Half 

Maximum) of 8 nm.  

3.5 Data Processing 

3.5.1 Spray Penetration Length and Cone Angle Measurement 

The spray penetration length and the cone angle are essential parameters describing 

the macroscopic characteristics of the spray.  In order to measure the spray tip 

penetration length, a MATLAB code was created to process the images recorded by 

the high speed camera. Figure 3-14 shows the method used to measure the spray tip 

penetration. Figure 3-14 a is the raw image taken by the camera; Figure 3-14 b is the 

image processed by the MATLAB code; Figure 3-14 c illustrates the transformation of 

the visual length to the real length. Figure 3-14 d shows the measurement of the spray 

cone angle.  
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                 (a)                               (b) 

 

(c)                               (d) 

Figure 3-14: Measurement of the spray tip penetration (a) Original image (b) 
Image processed by MATLAB code (c) Transformation from visual length to real 
length (d) Measurement of the cone angle 

The MATLAB code measured the penetration lengths of the 6 jets by applying a 

measuring line on each jet, as shown in Figure 3-14 b. A threshold of 20% was 

applied in order to define the spray tip alone the measuring lines. In order to simplify 

the analysis in this study, only jet 1 is used for comparison between fuels. The images 

for the injection were analyzed and numbers of pixels which represent the visual 
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penetration lengths were recorded. The real penetration length could then be 

calculated according to the inclination angle of the spray, as shown in Figure 3-14 c. 

The pixel/length ratio was measured and calculated before the test. The last step was 

to transfer the length from pixel to metric length. For this study of the macroscopic 

spray characteristics in this thesis, in order not to overcomplicate the analysis, only 

the penetration length and cone angle of jet 1 were used for further comparison.  

 

Figure 3-15: Effect of different thresholds on the penetration length 
measurement. 

In order to obtain accurate penetration length using the MATLAB code, a large 

numbers of thresholds were tested on different sets of spray images.  Figure 3-15 

shows an example of the sensitivity analysis of the threshold on the penetration length 

measurement. The penetration lengths (jet 1) of MF spray under 150 bar injection 

pressure and 1 bar back pressure at room temperature of 20oC were measured using 

different threshold ranging from 10% to 50%. It can be seen that the penetration 
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length shortened if a higher threshold was applied to the measurement. However, the 

influence of the threshold on the penetration length measurement for current 

methodology was not very big. For instance, differences between the penetration 

length measured with 10% threshold and the penetration length measured with 50% 

was only around 4%-5% at the end of the injection. Also, the difference between 15% 

threshold and 25% threshold at the end of the injection is only around 1%. The 

threshold was chosen to be 20% because the author found that a 20% threshold can 

very clearly indicate the boundary of the spray at other directions (not only on this 

measuring line). For the macroscopic spray characteristics analysis in this study, this 

threshold number, 20%, was applied on all the measurements to ensure that same 

criteria were used for the spray measurement of different fuels. 

The cone angle represents the quality of the mixture formation. In this study, the cone 

angles for all the jets were measured in the end of the spray duration. As shown in 

Figure 3-14 d, two fitting lines were plotted following the boundary of the maximum 

spray contour. The measured angle was defined as the spray cone angle.  

 

3.5.2 Droplet Size and Velocities Measurement  

The PDPA measurement in this thesis is conducted on jet 1 (Jet number shown in 

Figure 3-14) as well. In order to explain the principle of the droplet size and velocity 

measurement, the schematic of light incident on a droplet has been provided in Figure 

3-15. As shown in the figure, when the light rays (from the transmitter) are incident 

on the spherical droplet, part of the light is reflected from the external surface of the 
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sphere (called reflected light), while the other part of the light is refracted and then 

goes into the droplet sphere. Again, this part of light is reflected and refracted on the 

inner surface of the droplet sphere. This refracted light on the inner surface is called 

the first-order refracted light. The rays which reflected from the inner surface and 

refracted in the opposite part of the inner surface are called the second-order refracted 

light. The rays which are incident on different positions of the droplet sphere have 

different phase difference when they are received by the signal detector due to the 

difference of the light path. This phase difference is associated with droplet diameter 

and thus is used to determine the droplet size.  

 

Figure 3-15: Scattering modes of a set of rays incident on a liquid droplet 
(Dantec-Dynamics, 2006) 

 

For the PDPA system used in this study, the angle between the transmitter optics and 

the receiver is 70o, as shown in Figure 3-7. This is different from the configuration 

used in other researchers’ research, which the refracted light is collected at 30o toward 
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the incident light. There are several reasons for this configuration to be adopted by the 

Dantec system. The first reason is the phase/refractive index response linearity. For 

the 70o scattering geometry, the phase/refractive index relationship is linear for 

different droplet sizes, whereas the 30o scattering geometry suffers from poor phase 

linearity for droplet size smaller than 10 microns. Thus it increases the ambiguity in 

determine droplet sizes at the 30o scattering geometry. The second reason is the 

sensitivity of the measurement towards the refractive index. Pitcher et al (1990) 

examined the sensitivity of droplet size measurement to refractive index change. 

Figure 3-17 shows the phase/droplet size relationships for 30o and 70o scattering 

geometry measured by them. It can be seen from this figure that for the 70o scattering 

geometry, despite the change of refractive index from 1.27 to 1.45, a single 

phase/droplet size factor is applicable (For their PDA system, it is 5.01o per micron). 

However, for the 30o scattering geometry, the phase/droplet size factor varies from 5 o 

per micron (refractive index of 1.22) to 4 o per micron (refractive index of 1.45).  
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(a) 

 

(b) 

Figure 3-17: Effect of refractive index changes on PDA phase factor (a) 30o 
scattering geometry (b) 70o scattering geometry (Picher, 1990)  

In current study, the vessel temperature is elevated to 60oC and 90 oC to allow the 

effect of ambient temperature on the fuel spray to be examined. However the 

refractive indices of the fuels droplets will change in the high temperature 

environment. Thus, errors may occur during the tests because all the refractive indices 
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used in this study are the refractive indices for the fuels at room temperature. In order 

to estimate the level of the possible droplet size measurement errors result from the 

change of environment temperature, it is necessary to know the effect of the 

temperature on the refractive indices. However, refractive data for fuels at elevated 

temperature are scarce. Thus, the Eykman equation, as shown in Table 3-3, is used to 

estimate the refractive indices at elevated temperature. The Eykman equation is an 

empirical equation derived for hydrocarbons. It generally produces good estimation of 

the refractive index based on the density change of a fuel. The variation of the 

refractive index, n, of the fuels with density, ρ, and temperature, T, is indicated in 

the table.  

Table 3-3: Calculation of the refractive index under different temperatures. 

Ekyman equation: (n2-1)/(n+0.4)=Const*ρ 

Fuel 20 oC 60oC 90 oC 

ρ(kg/m3) n ρ(kg/m3) n ρ(kg/m3) n 

MF 913.2 1.43 868.0 1.41 829.8 1.39 

DMF 889.7 1.44 852.8 1.42 819.2 1.40 

Isooctane 691.9 1.39 660.5 1.37 633.2 1.36 

Ethanol 789.0 1.36 747.7 1.34 714.1 1.32 

Gasoline 744.6 1.40 713.46 1.38 692.4 1.37 

From this table, it is known that the refractive indices of all the fuels are in the range 

of 1.22 to 1.45 between the temperature of 20oC and 90 oC. As it is discussed before, 

for the 70o scattering geometry, a single phase/droplet size factor could be used for the 

PDA system to calculate the droplet diameter. According to Pitcher’s work on the 70o 
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scattering configuration (Picher, 1991), the corresponding error over the refractive 

index range of 1.22 to 1.45 ranges by using a single refractive index for instrumental 

phase factor calculations is within 1%. Thus, the author is confident that although all 

the refractive indices used in this study are the refractive indices for the fuels at room 

temperature, the systemic error due to the change of refractive indices at an elevated 

temperature environment is minimal.  

There are also other good reasons for the author to use the 70o scattering configuration 

in this study. The test is performed in the vessel. However, the front window towards 

the laser transmitter on the vessel is not big enough to allow the refractive light to be 

collected at 30o angle. Thus, a 70o scattering geometry allows the receiver to collect 

the light from the side window. Thus, for the current test 70o scattering geometry is 

the best choice. 

3.5.3 Schlieren Image Processing 

In this study, the schlieren test on each point is repeated for 3 times and the averaged 

results are used for further analysis. The same repetition times and methodology are 

broadly adopted in other literatures on laminar flame study in the vessel (Broustail, 

2011, Vukadinovic, 2013, Wu, 2012, Jerzembeck, 2009, Gu, 2010). In order to detect 

the flame boundary from the Schlieren images, a MATLAB code was developed. 

Firstly, the original images were rotated 45 degrees to avoid the vague which the 

electrodes may create in defining the flame boundary (The light intensity gradient 

cannot be detected due to the blockage of the electrodes). Then, the radii of the flame 

sphere were measured by detecting the change of the gray scale value from four 
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directions as shown in Figure 3-18. The radii measured from the four directions were 

averaged in order to reduce errors which may occur in the measurement process. In 

other researchers’ work, the flame radii are usually measured at the vertical direction 

rather than the current 4 directions. However, due to the non-spherical of the flame, 

the two methods might generate different measurement results. In order to justify the 

current method, the author measures the flame radii (between 6mm and 18mm) from 

the vertical direction and compares them with the current results. At around 6mm, the 

flame radii measured from vertical direction are about 5%-7% larger than the current 

measurement. As the flame expand to a radius of 7mm to 8 mm, the difference 

between these two decreases to around 3% to 4%. When the flame radius is bigger 

than 9mm, the difference further drops to 2%. As the flame becomes larger, the 

difference between these two methods decreases to 1%. It can be seen that as the 

flame volume becomes larger, the flame becomes spherical and the measurement from 

all directions becomes similar. Due to these measurement error in the current 

methodology, the current calculated unstretched flame speed is around 1%-2% lower 

than it should be. In the following part, the formulas used for the calculation are 

given.  
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Figure 3-16: Laminar flame radius detection. 

In the analysis, only the photos with flame radii between 6mm and 18mm were used 

in order to avoid the effect of spark energy disturbance (Bradley, 1998, Huang, 2006), 

pressure increase due to the burning (Zhang, 2008), and space confinement (Burke, 

2009). The research of Bradley et al.(1998) and Huang et al.(2006) show that the 

flame speed would not be influenced by the spark energy if the flame radius is greater 

than 6 mm. Also, the study of Burke et al. (2009) shows that the effect of the space 

confinement on the flame propagation could be ignored when the flame radius is less 

than 0.3 times of the chamber radius. The chamber radius used in this study is around 

60 mm. Thus, it is reasonable to analyze the flame radii less than 18 mm (60 

mm*0.3=18 mm).  

The laminar flame speed Sn (unit: m/s) was calculated as: 

Sn=dru/dt 

Where ru (unit: m) is the flame radius and t (unit: s) is the time after the spark. After 

obtaining the stretched flame speed, the stretch rate α (unit: s-1) could be calculated as:  

α=2Sn/ru 
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The linear relationship between the stretch rate α and the laminar flame speed Ss (unit: 

m/s) can be used to obtain the Markstein length and the laminar flame speed:  

Sn=Ss-Lb*α 

where Lb (unit: m) is the Markstein length and Ss  (unit: m/s)is the laminar flame 

speed. Ss was calculated by extrapolating Sn to stretch rate of 0. Lb is the negative 

value of the gradient of the curve obtained when flame propagation speed is plotted 

against the stretch rate.  

The laminar burning velocity ul (unit: m/s), is deduced from the following equation:  

μl =Ss*ρb/ρu 

where ρb (unit: kg/m3) represents the burned mixture densities and ρu (unit: kg/m3) 

represent the unburned mixture densities. Using the conservation of mass equation, 

the ratio of the burned mixture density ( ) to the unburned mixture densities ( ) 

could be found. The formula can be expressed as following:  

ρb/ρu =Vu/Vb=nuTu/nbTb 

In this equation, nu (unit: mol) and nb (unit: mol) are numbers of moles of the 

reactants and the products in the combustion vessel; Tu (unit: K) and Tb (unit: K) are 

the initial temperatures and the adiabatic flame temperatures, respectively. The 

software HPFLAME (Turns, 1996), which incorporated the Olikara & Borman 

equilibrium routines (Olikara, 1975), was used to determine the adiabatic flame 

temperature at different initial temperatures and equivalence ratios. The input file for 

this software requires the fuel definition by providing the number of carbon, number 

of hydrogen, number of oxygen and number of nitrogen atoms of the fuel molecule. 
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Other parameters are also needed: the equivalence ratio, a guess for the adiabatic 

flame temperature, the initial pressure and the reactant’s enthalpy. Using these 

parameters, the reactants’ enthalpy could be easily calculated. Then, this software 

utilizes the fact that the reactants’ enthalpy equals to the products’ enthalpy (first-law 

of thermodynamics) to calculate the products’ constant-pressure adiabatic flame 

temperature. 

The flame thicknesses under different test conditions were calculated via the 

following equation:  

δl=v/ μl 

where v (unit: m2/s) represents the kinematic viscosity of the air/fuel mixture.  

The Laminar burning flux, f (unit: kg/m2s), which is the eigenvalue of the flame 

propagation, is calculated using: 

f= μl *ρu 

 

3.5.4 Combustion Image Processing   

An in-house developed MATLAB program was used to process the images. The raw 

image data were read into the computer in sequences and background subtraction was 

applied in every cycle followed by noise signal removal through median filtering. 

Images were converted to binary images and the boundary of the flame shape was 

identified by the software. In order to let the MATLAB program define the boundary 

accurately, different thresholds were tried and compared, as shown in Figure 3-19. 

With a lower threshold applied to the analysis, the flame boundary tended to be larger 



74 
 

because the dark part was reckoned as the flame. When a higher threshold was applied, 

only the bright parts of the flame could be detected. Through trial and error, the author 

believed that 16% was appropriate for the analysis. As it can be seen from Figure 3-19, 

when a threshold of 16% was applied, the boundary of the flame was neither bigger 

than it should be nor smaller than it should be. Therefore, for all the flame image 

analysis, a threshold of 16% of the peak grayscale value was applied.  
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Threshold Raw image Binary image Image boundary 

5% 
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Figure 3-19: Imaging processing using different thresholds.  
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After detection of the flame boundary, the average flame front propagation speed 

between two adjoining images could then be estimate using the following equation:  

V=ΔS/(LΔt)          

where ∆𝑆 is the augmentation of the flame area; ∆t is the time interval between the 

two images; and L is the length of the flame boundary. Because the interval between 2 

adjacent images was extremely short and thus the increment of L in the later image 

was negligible, the flame boundary length L could be treated as a constant in one 

calculation. The process of the 2D flame speed calculation is shown by Figure 3-20 

which is based on an ensemble average. When part of the flame front went beyond the 

window scope, only the visible flame front boundaries could be used to calculate the 

flame front propagation speed.  

 
 

(a) (b) 

Figure 3-20:  Flame speed calculation (a) Normal condition (b) Flame partly 
beyond the window range 
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3.5.5  OH-LIF 

Figure 3-21 is a schematic of the visible area through the piston window used for both 

flame and LIF imaging. The coloured region indicates the area illuminated by the 

laser sheet. The boundary areas of the laser sheet where the energy is weak have been 

removed from the measurement, leaving an available width of 50 mm (as mentioned 

before, the thickness is 1.5 mm). The laser sheet is projected into the engine cylinder 

at 9 mm below the spark plug via a small side window on the optical engine. The 

images were captured at a resolution of 800x800, covering the whole combustion 

window. For each crank angle, 200 images from continuous stable cycles were 

acquired in the OH-LIF tests. Before the engine experiment, an open flame burner 

was used to tune the UV laser wavelength to find OH’s absorption line near 283 nm, 

which lead to the strongest LIF emission. The engine was operated at 1200 rpm which 

allowed the synchronization of engine cycle with the laser’s frequency. The laser fired 

at certain crank angles set by the control system. For a whole cycle observation, the 

measuring points started from 15°CA BTDC to around 40 °CA ATDC, with an 

interval of 3°CA at the early stage of the measurement and 5°CA at the late stage. An 

energy meter was used to observe the laser energy during the experiment.  

 
Figure 3-21: The schematic graphic of the piston window and the laser sheet 
region 
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It is known that temperature and pressure conditions have significant impacts on 

quantum yield and the quenching effect (Schulz, 2005, Verbiezen, 2007, Zhao, 2012 

and Zhao, 1998). In this study the area of OH distribution was only taken as an 

indicator of combustion development. As the laser energy was high enough to 

overcome any significant absorption attenuation, the main correction needed for the 

images was the laser energy correction applied with the energy meter recording. After 

background subtraction and removing the region outside the laser area, the images 

were corrected and binarized using a threshold which was obtained from an 

evaluation of all the averaged data and confirmed by a test covering 20 groups of the 

pictures. In the image processing of all the sequences, the threshold was set to be 20% 

of the brightest point. As it can be seen from Figure 3-22, if the threshold was higher 

than 20%, then not all the area which has OH signal could be detected. Also, if the 

threshold was lower than 20%, the cavities inside the OH area could not be 

distinguished clearly.  Thus, the threshold of 20% was applied so that the cavities 

inside the OH area could be distinguished while the loss of boundary information was 

minimized. After this step, binary images could then be used to calculate the pixel 

number of the LIF signal area and the average results, which provide information of 

OH radical distribution. 
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Figure 3-22:  Image processing for OH-LIF using different thresholds.  
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3.5.6 Heat Release Analysis  

The in-cylinder pressure is very important for understanding the combustion behavior.  

One of the main reasons is because it could used to calculate the heat release rate and 

the related mass fraction burned (MFB). In this study, the net heat release rate (dQ/d

θ) is calculated using the method described in an internal combustion engine 

handbook(Stone, 1999). 

 

In this equation, γis the heat capacity ratio (cp/cv); P (unti: Pa) is the instantaneous 

in-cylinder pressure; V (unit: m3) is the instantaneous volume of the combustion 

chamber and θ(unit: o)is the crank angle.  

After the calculation of the heat release rate, MFB then could be calculated by 

integrating the heat release rate:  

 

 

3.6 Experiment Uncertainty Analysis  

3.6.1 Uncertainty in the Macroscopic Characteristics of the Spray  

The uncertainty in the macroscopic characteristics analysis is mainly caused by 

several issues. The first cause of the uncertainly is the shot to shot variation of the 

spray. The shot to shot variation may affect the measure of the penetration length and 
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the spray cone angle. It is caused by the turbulent and irregularity of the spray-air 

interface. In order to avoid the shot to shot variation, the spray imaging tests are 

repeated 5 times and the averaged results are used for the analysis. The other factor 

which might cause error for the measurement is the pixel ambiguity. The Matlab code 

used for the penetration length measurement can only define pixel in the form of 

integer. So there might be a ±1 pixel error in any measurement. This 1 pixel error 

equals to 0.2 mm of error in the real measured length.  

 

3.6.2 Uncertainty of the PDPA System  

There are several reasons which might affect the measurement accuracy in the PDPA 

tests. Firstly, the phase difference could cause uncertainty. The PDPA detector has 

certain tolerances for the phase detection and thus the precision of the measurement is 

affected. The second affecting factor is the droplet sphericity. As shown in Figure 3-6, 

the PDPA system has 3 detectors which give 2 pairs of phase differences. The phase 

difference for each pair provides the information about the curvature over a certain arc 

of the droplet surface. Thus, 2 pairs of diameters are obtained. If the droplet is 

spherical, the measured diameters will be the same. However, if the droplet is not 

spherical, the difference between the 2 diameters will be large. If the diameter 

difference is larger than a certain limited set by the software, the measurement of the 

droplet diameter would be rejected and therefore error will occur. The third affecting 

factor is the trajectory effect which is attributed to the Gaussian intensity distribution. 

In the measurement, the first-order refraction is adopted as the scattering mode. In the 
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measuring volume, the reflection on the particle may become the dominant signal due 

to much higher light intensity. As discussed in section 3.5.2, a 70o scattering geometry 

is used in current setup. At this angle, the reflection light is not very strong. Thus, the 

dominant signal is the refractive light. The possible error which might occur is very 

small. The fourth factor which might affect the accuracy of the measurement is the 

environment temperature change in the heated vessel. The change of the temperature 

leads to the change of the refractive index. The calculation of the droplet diameter 

depends on the refractive index thus a shift of the refractive index might cause error 

on calculation. Section 3.5.2 discusses the sensitivity of the refractive index to the 

temperature and the sensitivity of the phase/drop size factor to the refractive index in 

details. It can be seen that the effect of the temperature change on the drop size 

measurement is within 1%.  

 

3.6.3 Uncertainty of the Laminar Flame Measurement  

Several factors may affect the laminar flame measurement: the initial temperature, the 

initial pressure, the purity of the fuel and the measurement of the flame radius from 

the images. In this study, the initial temperature is measured by a temperature sensor 

with an accuracy of 1 oC. The initial pressure is kept 1 bar (0.1MPa) via connecting 

the vessel with ambient air before the test. The purities of the fuels are 99%, 99% and 

99.9% for MF, DMF and isooctane, respectively. As described in Chapter 3.5.3, the 

laminar flame radii are measured from 4 directions of the flame to ensure the accuracy. 

Also, a repetition of 3 times is carried for each test and the averaged data is used for 
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further analysis. The root mean square deviation (RMSD) for different measurement 

is generally less than 2%. However, at some extreme test points, the RMSD could be 

5% to 7%. As mentioned in chapter 3.5.3, due to non-spherical flame shape, the 

current calculated unstretched flame speed is around 1%-2% lower than it should be.  

 

3.6.4 Uncertainty of the Turbulent Flame Measurement  

The methods of the turbulent flame measurement, including the high speed imaging 

and the OH-LIF, are described in Chapter 3.5.4 and Chapter 3.5.5. The main factor 

which may affect the measurement of the turbulent flame properties is the cycle to 

cycle variation. In order to avoid the variation, 100 cycles of pressure data is recorded 

and used for the analysis. 30 cycles of combustion images are recorded at each test 

point and the averaged results are used in order to obtain the flame area, flame 

velocity. For the OH-LIF test, 200 images are record used for further analysis.  

 

3.7 Summary  

In summary, this chapter highlighted the experimental test facility and the relevant 

data processing methods used in this work. Firstly, the spray image acquisition system, 

including the constant volume vessel, the fuel injection system and the high speed 

CCD camera, was introduced. The second part introduced the PDPA system setup. 

Then the Schlieren test facility was presented. Following that, the single cylinder and 

the PLIF laser used in this work were described in detail. The fifth part introduced the 

data processing methods for the spray images, the PDPA results, the Schlieren images, 
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the engine combustion images and the OH-LIF images. The last part analyzed the 

possible experiment uncertainty which might occur in the study.   
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 Chapter 4  

4 Macroscopic Spray Characteristics 

 

This chapter investigates the macroscopic spray characteristics of MF and DMF in 

comparison to ethanol, isooctane, and gasoline using high speed imaging. The effects 

of injection pressure, back pressure and ambient temperature on the spray penetration 

length (S) and spray cone angle (θ) are evaluated. Specifically, the flash boiling 

phenomenon of some of the fuels are discussed.  

 

4.1 Introduction 

The majority of the work in the direct-injection spray investigations published up to 

this present date are concerned with diesel injectors. Very few research investigations 

are about the gasoline direct-injection injectors, especially the multi-hole injectors. 

Thus the motivation of this work is to produce rare fundamental knowledge of the 

sensitivity of spray development of the multi-hole gasoline injector towards the 

change of the ambient conditions (injection pressure, back pressure and vessel 

temperature) and the fuels chemico-physical properties.  

 

4.2 Test Conditions and the Properties of the Fuel 

The test conditions are shown in table 4-1. Multiple factors are considered in order to 

gain a comprehensive understanding of the GDI multi-hole injector spray. The 
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bio-fuels, MF and DMF, are tested and compared with isooctane, ethanol and gasoline 

in order to understand the effect of the fuel properties on the spray. The injection 

pressures in this test are 50 bar, 100 bar and 150 bar, which are typical injection 

pressures for a GDI engine. The back pressures used in this test is 1 bar, 3 bar and 7 

bar. The ambient temperatures (vessel temperature) are set to be 20oC, 60 oC and 90 

oC. The injection duration for all the tests is 1 ms. The camera used here is the 

Phantom V710 camera.  

 

Table 4-1: Test conditions for the high speed spray imaging test 

Test Conditions 
Test fuels MF, DMF, Isooctane, Ethanol, Gasoline 
Injection pressures 50 bar, 100 bar, 150 bar 
Back pressure 1 bar, 3 bar, 7 bar 
Ambient temperatures 20oC, 60 oC, 90 oC 
Fuel temperatures 20 oC,  
Injection duration 1 ms 
Camera setting   Phantom V710 @ 18,000 Hz 
Camera Resolution 608x600 pixels  
 

In order to discuss comprehensively on the spray characteristics, the fuel properties of 

the five fuels are presented in Table 4-2. Various chemico-physical properties of the 

fuels are included. These data will be referred in the following discussion.  
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Table 4-2 : Properties of the test fuels  

 MF DMF ISO Ethanol Gasoline 

Chemical 
formula 

    
C2-C14 

H/C ratio 1.2 1.333 2.25 3 1.795 
O/C ratio 0.2 0.167 0 0.5 0 
Gravimetric 
oxygen 
content (%) 

19.51 16.67 0 34.78 0 

Density @ 20 
C (kg/m3) 913.2b 889.7a 691.9 789 744.6 

Research 
Octane 
Number 
(RON) 

103b 101.3c 100 108.6 96.8 

Motor Octane 
Number 
(MON) 

86b 88.1c 100 89.7 85.7 

Stoichiometric 
air–fuel ratio 10.05 10.72 15.13 8.95 14.46 

LHV (MJ/kg) 31.2b 32.89b 44.3 29.7 42.9 
LHV (MJ/l) 28.5b 29.3a 30.66 23.43 31.9 
Heat of 
vaporization 
(kJ/kg) 

358.4b 332 307.63 841 373 

Initial boiling 
point (oC) 64.7 d 92 d 99 d 78.37 d 32.8  

Surface 
tension@ 
20 oC (N/m) 

24.58*10-3 

d 
26.02*10-3  

d 
18.77*10-3 

d 
24.04*10-3 

d 
21.58*10-3 

d 

Dynamic 
Viscosity@ 
20oC (kg/m*s) 

0.396*10-3 

d 
0.515*10-3 

d 
0.502*10-3 

d 
1.18*10-3 

d 
0.501*10-3 

d 

a Measured at the University of Birmingham, 2010. 
b NREL/TP-5400-50791. (Janet, 2011)  
c (Wang, 2013) 
d Yaws’ Handbook of properties of the chemical elements (Yaws, 2011) 
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4.3 High Speed Imaging Results 

The macroscopic spray characteristic, which is affected by many parameters including 

the ambient conditions, injector nozzle geometry, and the fuel properties, is important 

due to its guiding function to the engine combustion chamber design, engine 

calibration and validation of the engine modelling. The following sections present the 

analysis of the spray penetration and the spray cone angle under different test 

conditions.  

 

4.3.1  Effect of Fuel 

Figure 4-1 presents the spray images of the five fuels under 150 bar injection pressure 

at 1 ms ASOI. The first column of the images is taken under 20oC vessel temperature 

at back pressure of 1 bar. The second column of the images is taken under 20oC vessel 

temperature at back pressure of 7 bar. From these spray images, the general 

characteristics of the spray formation could be seen. At the nominally conditions(20 

oC ambient temperature, 1bar back pressure), the five fuels show similar spray forms. 

As the ambient pressure goes higher to 7 bar, their spray penetration lengths become 

shorter. The five fuels also exhibit similar form of spray at this condition as well.  
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Figure 4-1: Spray of the five fuels under different ambient conditions (1ms 
ASOI).  
  

Fuels 1 bar 7 bar 90 OC 

MF 

   

DMF 

   

ISO 

   

ETH 

   

Gasoline 
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Table 4-3: Vapour pressures of MF, DMF, Isooctane and Ethanol at different 
temperatures. 

Vapor pressure 

(bar) 

20 ˚C 60 ˚C 90 ˚C 

MF 0.194 0.870 2.151 

DMF 0.048 0.313 0.920 

Isooctane 0.066 0.286 0.774 

Ethanol  0.066 0.482 1.560 

Data from: Yaws’ Handbook of properties of the chemical elements (Yaws, 2011) 
 

The third column in Figure 4-1 shows the spray images of the 5 fuels under vessel 

temperature of 90oC and back pressure of 1 bar. In order to understand the “collapse” 

of the spray forms, Table 4-3 presents the vapor pressures of different fuels at three 

temperatures. It could be seen that at 60oC, none of the fuels’ vapor pressure is higher 

than the back pressure (1bar). When the temperature goes to 90oC, the vapor pressures 

of MF and ethanol are significantly higher than 1bar. Thus the “collapse” of the 

sprays of those two fuels could be expected. Also, it could be not that the vapor 

pressure of MF (2.151 bar) is higher than ethanol; therefore the “collapse” of MF is 

more severe than that of ethanol on the image. The vapor pressure of gasoline 

(produced by Shell) at 20oC is around 0.3 to 0.9 bar (Shell, 2011), which is much 

higher than any of the other 4 fuels. It could be reasonable deduced that gasoline has a 

much higher vapor pressure than other fuels at 90oC. Thus the “collapse” of gasoline 

is the most severe than the other fuel injections at 90oC, as shown in Figure 4-1. 
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(c)  

Figure 4-2: Penetration length of different fuels under 150 bar injection pressure 
(a) ambient temperature 20oC, ambient pressure 1 bar (b) ambient temperature 
20oC, ambient pressure 7 bar (c) ambient temperature 90oC, ambient pressure 1 
bar 

The fuel properties, including the density, viscosity, surface tension, boiling point and 

the latent heat etc., significantly affect the spray evolution. These parameters are 

closely related to the spray penetration length and the spray cone angle. Figure 4-2 

shows the spray penetration of the five fuels under different conditions: (a) 150 bar 

injection pressure, 1 bar ambient pressure and 20˚C ambient temperature (b) 150 bar 

injection pressure, 7 bar ambient pressure and 20˚C ambient temperature (c) 150 bar 

injection pressure, 1 bar ambient pressure and 90˚C ambient temperature. It can be 

seen from Figure 4-2 (a) that the spray penetration length of ethanol, DMF and 
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gasoline almost overlapped with each other (ethanol is a little higher than the other 

two). The penetration lengths of MF and isooctane were lower than the other three 

fuels. It appears that viscosity played a very important role regarding the penetration 

lengths of different fuels. The viscosity of MF was the smallest which means the MF 

liquid column could be easier to break up. Thus its penetration length was the shortest. 

Details about the droplet sizes of MF and other fuels can be found in chapter 5. 

As the back pressure increased, a deceleration could be seen for all fuels at 0.8 ms 

after start of injection, as shown in Figure 4-2 (b). The final penetration (when the 

injection stopped at about 1.3 ms after start of injection) under 7 bar back pressure 

was 22%-24% shorter than the final penetration under 1 bar back pressure. In addition, 

the penetration lengths of different fuels behaved differently at a higher back pressure. 

The penetration lengths of MF and DMF were almost the same, having longer 

penetration lengths than that of isooctane, ethanol and gasoline. As the back pressure 

increased, the drag force from the air increased which caused deceleration. The 

penetration of the spray jet after SOI was mainly supported by the inertia of the fuel; 

fuel with higher density can penetrate longer than the others. Thus MF and DMF had 

longer penetration lengths under high back pressure conditions compared with other 

fuels.  

When the ambient temperature was 20˚C, the spray penetration lengths of all the five 

fuels were quite close. However, when the ambient temperature was elevated to 90˚C, 

the differences between different fuels were dramatic. At a short period after the spray 

starts, the spray penetration lengths of the five fuels were quite close. After about 0.15 
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ms after the appearance of the spray, obvious divergence could be seen. Generally, the 

penetration length of MF was the longest, followed by isooctane and then ethanol; MF 

was shorter than these three and gasoline was the shortest. These trends resulting from 

the elevated temperature are associated with their boiling points. When the ambient 

temperature was higher than the boiling point of the fuel, the spray collapsed, 

meaning that the fuel column evaporated at the vicinity of the injector tip. That is why 

isooctane (boiling point 99˚C) and MF (boiling point 92˚C) had the longest 

penetration lengths, followed by ethanol (boiling point 78.4˚C) and then MF (boiling 

point 64.7˚C) and finally gasoline (boiling point 32.8˚C).  
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Figure 4-3 : Spray cone angle of different fuels under 150 bar injection pressure 
(a) ambient temperature 20oC, ambient pressure 1 bar (b) ambient temperature 
20oC, ambient pressure 7 bar  

 

Figure 4-3 shows the spray cone angle of different fuels at different ambient 

conditions. It can be clearly seen from Figure 4-3 (a) that isooctane had the biggest 
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spray cone angle followed by MF, ethanol and then gasoline. DMF had the smallest 

spray angle. This can be explained by their surface tension. Isooctane had the smallest 

surface tension at 20˚C, whereas ethanol and MF were relatively larger. DMF had the 

highest surface tension. That is why isooctane had the largest spray cone angle 

whereas DMF had the smallest spray cone angle. Gasoline is a mixture of a wide 

range of hydrocarbon compounds, so it did not quite follow the trend of the single 

component fuels such as MF and DMF. When the back pressure increased from 1 bar 

to 7 bar, the spray cone angles of all the fuels increased as shown in Figure 4-3 (b). 

The density of the ambient gas increased as the pressure increases, and the increased 

density resulted in a higher drag on the spray which promoted the spray break up. 

Thus bigger spray cone angles were observed under higher back pressures. It is also 

noticed that when the back pressure was higher, the differences of the cone angles 

between DMF and other fuels became smaller.  

 

4.3.2 Effect of Injection Pressure 

Figure 4-4 presents the spray images of MF, DMF and gasoline under injection 

pressure of 50 bar, 100 bar and 150 bar. Generally, the sprays of the three fuels exhibit 

similar increasing trend when the injection increases. Also, it can be seen that the 

spray cone angles of the plumes increase with the increase of the injection pressure. 

The increased injection pressure promotes the increase of the penetration length and 

in the meantime improves the air/fuel mixture. Figure 4-5 shows the effect of 

injection pressure on the spray penetration of MF and DMF compared to gasoline at 
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equivalent injection pressures. From the statistical data, the influences of the changing 

injection pressure can be seen more clearly. For MF, DMF and gasoline, the effect of 

injection pressure on the penetration length was the same. At higher injection 

pressures, the penetration length was longer. The curves of the penetration lengths 

versus time of DMF at the three injection pressures (50 bar, 100 bar and 150 bar) were 

almost the same as those of gasoline. However, for MF, shorter penetration lengths 

were observed. This is mainly due to the difference in dynamic viscosity between MF 

and the other fuels. Gasoline and DMF have similar viscosities, which are 0.501*10-3 

kg/m*s and 0.515*10-3 kg/m*s, respectively, whereas MF has a much smaller 

viscosity (0.396*10-3 kg/m*s). At 50 bar injection pressure, the penetration length of 

MF was similar to that of gasoline. This is because as the injection pressure was 

lowered; the deceleration of the fuel due to the drag force became obvious. As 

discussed before, fuel with higher inertia had a longer penetration length. Thus, under 

the combined effect of the dynamic viscosity and fuel density, the penetration length 

of MF at 50 bar had a similar penetration length compared to gasoline.  
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Figure 4-4: Spray of MF, DMF and gasoline under three injection pressures (1 
ms ASOI) 
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Figure 4-5: Penetration length of MF and DMF under different injection 
pressures compared with gasoline (ambient temperature 20oC, ambient pressure 
1bar) 
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The spray cone angles of MF and DMF compared with gasoline under different 

injection pressures are shown in Figure 4-6. As the injection pressure increased, the 

spray cone angle increased due to better atomization of the spray. Almost all the spray 

cone angles were within the range of 15 to 20˚. The differences between MF, DMF 

and gasoline were rather small. However, it still can be seen that the spray cone angles 

of MF were bigger than DMF and gasoline at the same injection pressures. DMF and 

gasoline had similar spray cone angles at the same conditions.  
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Figure 4-6: Spray cone angle of MF and DMF under different injection pressures 
compared with gasoline 
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4.3.3 Effect of Ambient Pressure 

Figure 4-7 shows the spray images of MF, DMF and gasoline under different back 

pressures. With the increase of the back pressure, the spray plumes of the three fuels 

decrease due to the increased air drag force resulting from the increased air density. It 

can be seen that in terms of penetration length and spray cone angle, the three fuels 

are very similar under these three back pressures. However, it is very hard to judge 

whether there is any small difference between different sprays of the fuels. More 

details could only be found from the statistical data. The effects of the injection 

pressure on the spray penetration of MF and DMF compared to gasoline under 150 

bar injection pressure are presented in Figure 4-8. For MF, DMF and gasoline, their 

spray penetration lengths decreased as the back pressure increased. The higher gas 

density applied higher drag on the spray. However, the behaviors of the fuel sprays 

towards the increased gas density were different. For MF, when the back pressure was 

1 bar, its penetration length was lower than gasoline. When the back pressure was 3 

bar, the penetration length of MF and gasoline were almost the same. As the back 

pressure further increased to 7 bar, the penetration length of MF was higher than that 

of gasoline under this condition.  
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Figure 4-7: Spray images under different back pressure (1ms ASOI) 
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Figure 4-8: Penetration length of MF and DMF under different ambient 
pressures compared with gasoline (ambient temperature 20oC, injection pressure 
150 bar) 
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Figure 4-9: Spray cone angles of MF and DMF under different ambient 
pressures compared with gasoline  

 

The Spray cone angles of MF and DMF under different ambient pressures compared 

to gasoline are shown in Figure 4-9. As the back pressure increased, the spray cone 

angles of the three fuels increased. As mentioned before, this was due to the higher 

drag of the air which promoted the break-up of the spray. At the back pressure of 1 bar, 

the differences between the cone angles of MF, DMF and gasoline were relatively 

higher. When the back pressure rose to 7 bar, the cone angles of three fuels become 

very close (almost all of them are 22˚). At lower back pressures, the surface tension 

was playing an important role in affecting the cone angle. At higher back pressures, 

other properties, such as the viscosity and density, started to affect the cone angle.  
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4.3.4 Effect of Ambient Temperature 

The penetration lengths and cone angles of MF, DMF and gasoline under elevated 

ambient temperatures (20˚C, 60˚C, 90˚C) were also measured and compared to 

gasoline. Figure 4-10 shows the spray images of the three fuels at three ambient 

temperatures. With the vessel temperature increase from 20˚C to 60˚C, an increase on 

the cone angle could be observed. At this temperature, none of the sprays fully 

collapse because the temperature does not reach to the fuels’ flash boiling point at this 

pressure (as shown in Table 4-3). Thus the penetration lengths of the three fuels are 

not significantly affected. When the vessel temperature increases to 90˚C, the spray 

forms of MF and gasoline collapse while DMF still maintains its spray form due to its 

lower vapor pressure at this temperature. From the images, it could be seen that as the 

fuel spray collapse the 6 jets mixes together. The penetration length of the spray 

decrease dramatically. For DMF, the effect of the elevated temperature on the 

penetration length is not so significant in the absence of spray collapse.  
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Figure 4-10: Spray images at different vessel temperatures (1 ms ASOI) 

 

Figure 4-11 shows the penetration length of MF and DMF compared to gasoline under 

1 bar ambient pressure and injection pressure of 150 bar. Generally, the increases of 

the temperature lead to a decrease of the penetration length. The increases might not 

be very significant. For example, the penetration lengths of MF under 20˚C and 60˚C 

ambient temperatures were almost the same and the penetration length of DMF under 

60˚C and 90˚C ambient temperatures overlapped with each other. The same trend can 

be seen for gasoline spray penetration length under 20˚C and 60˚C ambient 

temperatures. However, when the temperature reached the boiling point of the fuel, 
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the spray collapsed which lead to a significant decrease of the spray penetration. The 

boiling points of MF and DMF are 64.7˚C and 92˚C, respectively, as shown in table 

4-2. The spray of MF and gasoline collapsed at a temperature of 90˚C and the spray of 

DMF did not collapse at any of the temperatures due to its high boiling point. As a 

result, the penetration length of MF and gasoline dramatically decreased when the 

ambient temperature reached 90˚C. For DMF, the effect of the temperature on its 

penetration length was relatively quite small.  
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Figure 4-11: Penetration length of MF and DMF under different ambient 
temperatures compared with gasoline (ambient pressure 1 bar, injection pressure 
150 bar) 
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Figure 4-12: Spray cone angle of MF and DMF under different ambient 
temperatures compared with gasoline  

 

The spray cone angles of MF and DMF under 20˚C and 60˚C temperatures at an 

ambient pressure of 1 bar and injection pressure of 150 bar are shown in Figure 4-12. 

Due to the evaporation of the fuel sprays at 90˚C, the sprays of the 6 jets overlapped 

with each other thus the measurement of the cone angle could not be conducted. 

Therefore, only the data for 20˚C and 60˚C is given in this figure.   

 

4.4 Summary   

This chapter investigates the macroscopic spray characteristics of MF and DMF 

compared to ethanol, isooctane, and gasoline using high speed imaging. General 

observations of the spray images are presented. The penetration length and the spray 

cone angle are calculated. The following conclusions are drawn:  

1. General observation: 
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 The five fuels show very similar spray form at the nominal conditions (150bar 

injection pressure, 20oC ambient temperature, 1bar back pressure). As back 

pressure goes up to 7bar, the spray jets become much shorter. Under ambient 

temperature of 60oC, the spray jets of all fuels exhibit wider spray cone angles. 

However, the penetration lengths are not significantly affected because there is 

no “spray collapse” at this ambient temperature. For MF, ethanol and gasoline, 

the spray forms have “collapsed” at ambient temperature of 90oC and back 

pressure of 1bar. For DMF and isooctane, there is no sign of spray collapse due 

to their lower vapour pressures.  

 
2. Spray penetration and cone angle:  
 

 When changing the ambient conditions, the order of the penetration lengths of 

the fuels could change dramatically due to their fuel properties which affect the 

penetration length. For example, at nominal conditions, the spray penetration 

lengths of DMF and gasoline are very similar. However, when the ambient 

temperature goes up to 90oC, the penetration length of DMF is much longer than 

that of gasoline due to the gasoline spray’s “spray collapse”.  

 Compared to gasoline, MF has a shorter penetration length at different injection 

pressures (20oC ambient temperature, 1 bar back pressure) whereas the 

penetration length of DMF was almost the same as the penetration length of 

gasoline. This behavior occurred because DMF and gasoline have similar 

dynamic viscosities which are higher than that of MF.  
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 As the back pressure increased, the effect of the density became very important. 

Fuels with higher density, such as DMF and MF, had longer penetration lengths 

under high back pressures due to the higher momentum of the spray jet. The 

penetration length of MF was shorter than that of gasoline at an injection 

pressure of 150bar and a back pressure of 1bar. However, as the back pressure 

increased to 3bar and 7bar, the penetration length of MF was longer than that of 

gasoline due to its higher density.  

 When the ambient temperature increase to 60˚C, the penetration lengths of fuels 

(MF, DMF and gasoline) slightly decrease in the absence of “spray collapse”. As 

the ambient temperature further increase to 90˚C, the collapse of the spray leads 

to dramatic decreases of the penetration length. At this ambient temperature, the 

sequence of the penetration length for the 5 fuels was the reverse sequence of 

their boiling point. The penetration length of a fuel at higher ambient 

temperature is highly affected by it boiling point.  

 For single component fuels, surface tension plays an important role in affecting 

the spray cone angle. At the nominal conditions, isooctane had the biggest cone 

angle because it has the lowest surface tension. The cone angles of MF, ethanol 

and gasoline were quite close to each other and the cone angle of DMF was the 

smallest.   
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 Chapter 5  

5 Droplet Size and Velocity Measurement 

 

The aim of this chapter is to evaluate atomization of the bio-fuels in terms of droplet 

size and velocities. Using PDPA, the effect of the measuring point, injection pressure, 

back pressure and ambient temperature on the droplet size and the droplet velocity are 

investigated.  

 

5.1  Introduction 

A bio-fuel’s potential to be used on a vehicle’s engine is largely determined by its 

properties. Among these properties, the atomization characteristics are very important 

as they directly affect the combustion of a fuel in the engine. A previous study (Tian, 

2010a) has revealed the atomization characteristics of DMF and its blends under 1 bar 

ambient pressure. Some other studies have also been carried out to investigate the 

atomization of other bio-fuels (Aleiferis, 2013, Gao, 2007 and He, 2008). However, 

the atomization of MF and DMF under varied back pressure and ambient pressure has 

not been fully studied. This work studies the atomization of MF and DMF under 

various conditions. The comparisons of different bio-fuels and the benchmark 

gasoline are also given in terms of droplet size and droplet velocity. In order to 

support the discussion, the histogram of the droplet distribution, the Weber number, 

the Reynolds number and the Ohnesorge number are also presented.  
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5.2 Test Conditions and calculation of  

5.2.1 Test conditions  

The test conditions of the PDPA test in this study are shown in Table 1. The test was 

performed under different injection pressures, back pressures and different ambient 

temperatures. Measurements were taken at 30mm, 40mm, 50mm and 60mm distance 

from the injector tip, because the liquid column does not yet fully break up at the 

20mm position. At each position, the measurement would terminate when either the 

measurement time reaches 90 seconds or 50,000 droplets are acquired.  

Table 5-1：Test conditions for PDPA test 

Test Conditions 
Test fuels MF, DMF, Isooctane, Ethanol, Gasoline 
Injection pressures 50 bar, 100 bar, 150 bar 
Back pressures 1 bar, 3 bar, 7 bar 
Ambient temperatures 20oC, 60 oC, 90 oC 
Injection duration 1 ms 
Measuring points 30mm, 40mm, 50mm, 60mm from the nozzle 
 

5.2.2 Calculation of the non-dimensional numbers 

The Weber number is calculated from formula Wb=ρu2d/δ; the Reynolds number is 

calculated from formula Re=ρud/µ and the Ohnesorge number is calculated from 

Oh=We1/2/Re. Detailed description on the formulas of the three non-dimensional 

numbers can be found in Chapter 2.3.1. In this study, the jet velocity (u) at the exit of 

the nozzle is calculated from the high speed imaging data. It is assumed that the 

droplet diameter (d) at the exit of the nozzle equals to the nozzle diameter and the 

nozzle diameter for the GDI injector used in this study is 0.2 mm. The other 

parameters including the liquid density (ρ), surface tension (δ) and the dynamic 
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viscosity (µ) can be found in Table 4-2.   

 

5.3  Results and Discussion  

5.3.1 Spray Structure against Time 

Typical diagrams of the droplet diameter and velocity distribution against time are 

shown in Figure 5-1. The measurement is made under ambient temperature (20oC) 

and pressure conditions using gasoline under 150 bar injection pressure (nominal 

conditions). An injection duration of 1 ms is chosen and the measurement is carried 

out at a distance of 40 mm from the injector nozzle. After the injection, the spray 

reached the measuring point of the PDPA system after a short period of time. This 

time is called the injection delay and it is the sum of the solenoid delay of the injector 

and the spray travelling time. In order to compare the differences of different fuels 

under different conditions, the averaged droplet diameter and velocity line are used 

here by deducing the mean diameter and velocity of all the droplets in every time bin 

of 0.1 ms. The evolution of the droplet diameter and the velocity are clearly shown by 

the average velocity lines. All the analysis on droplet velocity in this chapter will be 

presented in the form of average velocity.  
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Figure 5-1: Droplet diameter and velocity of MF against time at ambient 
conditions and an injection pressure of 150 bar (40 mm from the nozzle) 

5.3.2  Effect of Axial Position on SMD and Velocity  

For each fuel under one test condition, the measurement of the SMD and the droplet 

velocity are taken at four different positions. Figure 5-2 shows the SMD and the mean 

velocity of a gasoline injection at 150 bar injection pressure and 1 bar ambient 
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pressure under the ambient temperature of 20oC. The SMD value of gasoline 

increases as the measuring point moves downwards, as shown in the figure. This is 

due to the evaporation of the small droplets during the movement of the spray. After 

the break-up of the liquid fuel, a large amount of droplets with different sizes are 

generated. It should be noted that it is easier for small droplets to evaporate than big 

droplets. Therefore, after the small droplets “disappear”, the mean diameter size 

would increase. A similar trend can be observed for the measurements of all the fuels 

in this study.  
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Figure 5-2: The SMD and mean velocity of gasoline at different positions. 

 

Differences can be observed amongst the velocities measured at different positions, as 

shown in Figure 5-2. The maximum velocity on the average velocity line decreases as 

the measuring point moves downwards (from 30mm to 60mm). The maximum 

velocity measured at 30 mm distance from the nozzle is about 100 m/s whereas the 

maximum velocity measured at 60 mm distance from the nozzle is about 70 m/s. This 

trend is due to the deceleration of the droplets caused by the drag force from the 

ambient air. In the meantime, the time between the injection and the maximum 
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velocity point increase when the measuring point goes down. On the tail, the delay 

can also be clearly seen. In this study, in order to compare the droplet velocity of 

different fuels, only the droplet velocity at the position of 40 mm would be used. At 

this point, the break-up process is almost finished for all fuels.     

 

5.3.3 Droplet Distribution (SMD distribution) 

The SMD maps of all the tested fuels across the spray are shown in Figure 5-3. 

Droplet sizes of different axial (from 30 mm to 60 mm) and radial (from -4 mm to 4 

mm relative to the jet center) positions are shown in the circles with the unit of μm. 

The range of the droplet size is within 8μm to 15μm and the droplet sizes generally 

show good symmetry along the axis for all the fuels. The droplet size in the centre is 

generally larger than the droplet size on the edge, due to the break-up and evaporation 

process. A similar trend can be found in the literature (Tian, 2010a). From the maps, it 

can be observed that the SMD value of ethanol is the largest and gasoline is the 

smallest. Other fuels also exhibit differently in terms of droplet size; detailed analysis 

will be given in following sections.  



114 
 

-6 -4 -2 0 2 4 6
70

60

50

40

30

20

12.212.412.412.812.812.211.912.312.3

12.412.512.311.911.511.310.8

11.211.411.310.810.0

9.49.0

 

 

Ax
ia

l d
ist

an
ce

 to
 n

oz
zle

 (m
m

)

Radial distance to axis (mm)

9.4

MF

 
（a） 

 
 

-6 -4 -2 0 2 4 6
70

60

50

40

30

20

13.513.113.413.513.413.412.612.413.1

12.513.012.912.512.512.211.5

11.611.811.911.310.9

10.59.9

 

 

Ax
ia

l d
ist

an
ce

 to
 n

oz
zle

 (m
m

)

Radial distance to axis (mm)

9.9

DMF

 
（b） 



115 
 

-6 -4 -2 0 2 4 6
70

60

50

40

30

20

11.412.412.412.212.111.811.511.210.9

11.711.811.511.711.910.710.5

10.811.011.211.110.0

9.39.0

 

 

Ax
ia

l d
ist

an
ce

 to
 n

oz
zle

 (m
m

)

Radial distance to axis (mm)

9.1

ISO

 
（c） 

 

-6 -4 -2 0 2 4 6
70

60

50

40

30

20

14.714.814.614.414.314.213.813.513.5

13.214.014.013.513.612.913.3

13.313.512.912.712.3

11.511.7

 

 

Ax
ia

l d
ist

an
ce

 to
 n

oz
zle

 (m
m

)

Radial distance to axis (mm)

10.4

Ethanol

 
（d） 



116 
 

-6 -4 -2 0 2 4 6
70

60

50

40

30

20

11.211.211.611.912.211.811.811.311.6

11.211.611.711.210.710.710.6

10.511.010.69.99.3

9.48.9

 

 

Ax
ia

l d
ist

an
ce

 to
 n

oz
zle

 (m
m

)

Radial distance to axis (mm)

8.7

Gasoline

 
（e） 

 
Figure 5-3: SMD values of the tested fuels throughout the spray (Test conditions: 
150 bar injection pressure, 1 bar back pressure, 20oC vessel temperature) 

 

5.3.4  The Differences of the Fuels 

Figure 5-4 shows the SMD and development of the droplet velocity of different fuels 

under 150 bar injection pressure and 1 bar back pressure and vessel temperature of 20 

oC. Ethanol exhibits the largest SMD at almost all positions, followed by DMF, MF 

and then isooctane. Gasoline has the smallest SMD compared to other fuels. In 

contrast, the development of the droplet velocity shows totally different trend. MF, 

DMF and isooctane almost have overlapping droplet velocity curves. The droplet 

velocity of gasoline is lower than these three and ethanol has the lowest droplet 

velocity.  At this test condition, the SMD of ethanol is about 16%-21% larger than 

the gasoline and its droplet velocity is about 20% lower than the gasoline at the head 
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part. The SMD of MF and DMF are about 6% and 11% larger than that of gasoline 

after axial position of 30 mm.  
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Figure 5-4: SMD values and droplet velocity (40 mm from the nozzle) of the five 
fuels under 150 bar injection pressure, 1 bar back pressure and vessel 
temperature of 20 oC (nominal conditions). 

 

Figure 5-5 presents the Reynolds number and the Weber number for the injection of 

all the fuels under the same condition as Figure 5-4. For ethanol injection, both its 

Weber number and Reynolds number are the smallest compared to the other fuels. It 

means that the forces which break the droplet up are relatively small. It can be 

inferred that the droplet size of ethanol should be the largest amongst the five fuels. 

This inference is in agreement with the test results shown in Figure 5-5, in which 

ethanol spray has the largest droplet size.  
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Figure 5-5: Reynolds number and Weber number of MF and DMF at nominal 
conditions  

 

As for the other fuels, the Weber number of DMF injection is as small as ethanol 

injection even though its Reynolds number is higher; this could be the reason that 

DMF injection has the second largest SMD, as shown in Figure 5-4. The Weber 

number of MF injection is larger than that of DMF and ethanol and smaller than that 

of gasoline and isooctane. This gives MF the SMD values which are smaller than 

those of DMF and ethanol and bigger than those of gasoline and isooctane. The main 

dominant factor is the Weber number in this condition. When the Weber number is 

higher, the fuel would have small SMD values regardless of the Reynolds number. 

However, if the Weber number is similar, the injection with the larger Reynolds 

number would have small SMD values.  
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Figure 5-6： Histogram of the five fuels at nominal conditions (40 mm from the 
nozzle) 
 

The histogram for droplet sizes of different fuels at nominal conditions is shown in 

Figure 5-6. It is not surprising that ethanol has the highest percentages of big droplets. 

This shows accordance with the SMD values in Figure 5-4. Some differences are also 

observed amongst the fuels. DMF shows a slightly higher probability between droplet 

size of 10μm and 20μm. Gasoline has higher proportion of small droplets. That is 

why the SMD values of DMF are the second highest and the SMD values of gasoline 

are the lowest.   

5.3.5 Effect of the Injection Pressure 

In this section, the effects of injection pressure on SMD and droplet velocities are 

studied. Figure 5-7 shows the SMDs and droplet velocities of MF and DMF under 

three injection pressures (50 bar, 100 bar, 150 bar) and vessel temperature 20⁰C. As 
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the injection pressure increases, a significant drop in the droplet size can be observed. 

The direct effect of the injection pressure increase is the increase of the exit velocities 

of the spray jet. The higher exit velocities create a stronger interaction between the 

fuel jet and the surrounding air, which enables better break-up of the fuel droplets. 

The droplet velocities prove this from another aspect: compared with the SMD value, 

the droplet velocity shows the reverse trend in that the droplet velocity increases 

dramatically as the injection pressure increases. This is due to the larger drag force 

resulting from the higher air density.  
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Figure 5-7: SMD values and droplet velocity of MF and DMF under three 
injection pressures, 1 bar back pressure and vessel temperature of 20 oC 

The Reynolds number and the Weber number of both fuel injections are shown in 

Figure 5-8; both of them increase as the injection pressure increases. This indicates 

that the inertial and external forces, which promote the break-up of the spray, increase 
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with the increase of the injection pressure. This is in accordance with the observation 

of the SMD values in Figure 5-7. It can also be seen from Figure 5-7 that the SMD 

values of MF are smaller than those of DMF under all injection pressures. This is due 

to MF injection having a higher Reynolds number and higher Weber number, which 

leads to better atomization. It can also be noticed that the Reynolds number and 

Weber number of MF injection are higher than those of DMF at all injection pressures. 

This should be the main reason that MF has smaller SMD than DMF.  
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Figure 5-8: Reynolds number and Weber number of MF and DMF injection at 
different injection pressures 
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Figure 5-9: Histogram of MF and DMF at different injection pressures (40 mm 
from the nozzle) 
 

As shown in Figure 5-9, the effect of the injection pressures on MF and DMF 

injection are similar. With a higher injection pressure applied on the liquid fuels, the 
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percentage of the small droplets increase while the percentages of the big droplets 

decrease significantly. This is because that high injection pressures lead to higher exit 

velocity of the liquid columns. Thus the big droplets in both fuels have more chances 

to break-up into small droplets.  

Figure 5-10 exhibits the SMD values and droplet velocities of different fuels under 50 

bar injection pressure. The SMD values exhibit differently under this low injection 

pressure compared to the SMD values at an injection pressure of 150 bar. Although 

ethanol still has the biggest SMD values under both injection pressures, the contrasts 

of other fuels are not so clear at lower injection pressures (50 bar) as it is at high 

injection pressure (150 bar). In general, the SMD values of ethanol are the highest 

along the axle, followed by gasoline and then DMF, isooctane and MF. This can be 

explained by the corresponding Reynolds numbers and Weber numbers. As shown in 

Figure 5-11, isooctane injection has the highest Weber number while the rest of the 

fuels have similar Weber numbers at an injection pressure of 50 bar. As for Reynolds 

number, MF injection is the highest, followed by DMF, isooctane and then ethanol. 

The Reynolds number of gasoline injection is close to that of isooctane injection. It 

should be noted that the Reynolds number of MF injection is 3.5 times as big as the 

Reynolds number of ethanol injection. The simplest deduction from the order of the 

Reynolds numbers and the Weber numbers is that ethanol spray would have the 

largest mean droplet size amongst the fuels because of its low level of the Reynolds 

number and its average level of Weber number. This is verified by the test result in 

Figure 5-4. The reason that MF has the lowest SMD values is that the Reynolds 
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number of MF injection is the highest and the Weber number is not low. Isooctane 

injection has the second lowest SMD values even though its Reynolds number is not 

high; this is mainly due to its high Weber number. Therefore, it can be concluded that 

when the injection pressure is low, both the Reynolds number and the Weber number 

are affecting the SMD values. Neither of them is the dominant factor. In order to 

make the statement more clearly, the discussion is summarized in Table 5-2.  

Table 5-2: Summary of the trends for Wb, Re, and SMD values at 50 bar and 150 
bar injection pressure 

Injection 
pressure 

Wb number and Re number SMD Explanation 

High (150 
bar) 

Wb Gasoline>ISO>MF>ETH≈DMF ETH>DMF>MF> 
ISO>Gasoline 

At high injection 
pressure, Wb is 
playing a more 
important role 

than Re  

Re MF>DMF>Gasoline>ISO>ETH 

Low (50 bar) Wb ISO>ETH≈MF>DMF≈Gasoline ETH>Gasoline>DMF 
>ISO>MF 

At lower injection 
pressure, both 
Wb and Re are 

important to the 
droplet size.  

Re MF>DMF>ISO≈Gasoline>ETH 

The peak droplet velocities of the five fuels fall from the range of 90 m/s to the range 

of 50 m/s as the injection pressure drops from 150 bar to 50 bar. Moreover, for the 

five fuels, their droplet velocity diagrams almost overlap with each other. It seems 

that the fuel properties are not the main factors which determine the droplet velocities 

under low injection pressure.  
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Figure 5-10: SMD values and droplet velocities of the five fuels under 50 bar 
injection pressures, 1 bar back pressure and vessel temperature of 20 oC.  
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Figure 5-11: Reynolds number and Weber number of the fuel injections at 
injection pressure of 50 bar 

 

5.3.6 Effect of the back pressure 

Figure 5-12 shows the SMD and droplet velocities of MF and DMF spray under three 

back pressures (1 bar, 3 bar, 7 bar). It can be seen that back pressure has a significant 

effect on both the droplet size and the droplet velocities. With the increase of the back 

pressure, the SMD values of MF and DMF first decrease and then increase. The SMD 

values at 3 bar back pressure are slightly lower (at most of the distances about 5% 

lower) than the SMD values at 1 bar back pressure whereas the SMD values at 7 bar 
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back pressure are much higher than the SMD values at 3 bar back pressure. The SMD 

values of MF at 7 bar are about 30% to 40% higher compare to the values at 3 bar. 

Similarly, the SMD values of DMF at 7 bar are around 40% to 50% higher than the 

values at 3 bar. In order to understand this, it should be noted that the increase of the 

back pressure has two effects on the spray break-up: firstly, the increase of the gas 

density increases the drag force and thus causes higher deceleration to the spray jet. 

This can be observed from the droplet velocity diagram. The maximum droplet 

velocities are about 90 m/s, 70 m/s and 50 m/s for 1 bar, 3bar, and 7 bar back pressure, 

respectively. The deceleration effect becomes much bigger as the back pressure goes 

up. Secondly, the increase of the gas density may increases the shear force which 

breaks the liquid column up. As reported in the literature on diesel fuel break-up (Li, 

2012), droplet sizes decrease when the back pressure increases due to the increase of 

the shear force. In conclusion, the increase of the back pressure has two opposite 

effects on the droplet size. One of the effects, the deceleration, leads to larger SMD 

values. The other effect, the increase of the shear force, leads to smaller SMD values. 

In this study, the SMD values for both MF and DMF decrease when the back pressure 

increases from 1 bar to 3 bar and increases when the back pressure increases from 3 

bar to 7bar. This means that when the increase of the back pressure is not so 

significant, for example from 1 bar to 3bar, the dominant effect is the increase of the 

shear force rather than the deceleration. Therefore, the SMD values decrease because 

of the larger interaction between spray and air. When the pressure increases to 7 bar, 

the main affecting factor becomes the deceleration of the spray. Thus, in this case, the 



126 
 

SMD values increase due to the dramatic decrease in the speed. A summary of the 

discussion is given in Table 5-3. 
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Figure 5-6: SMD values and droplet velocity of MF and DMF under three back 
pressures, 150 bar injection pressure and vessel temperature of 20 oC. 
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Figure 5-7: Reynolds number and Weber number of MF and DMF under 
different back pressures 
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Table 5-3: Summary of the trends for Wb, Re, and SMD at 1 bar and 7 bar back 
pressure 

Back 
pressure 

Wb number and Re number SMD Explanation 

Low (1 bar) Wb Gasoline>ISO>MF>ETH≈DMF ETH>DMF>MF> 
ISO>Gasoline 

At low back pressure, 
the external disruptive 

aerodynamic force, 
represented by Wb, is 

more significant.  

Re MF>DMF>Gasoline>ISO>ETH 

High (7 bar) Wb ISO>ETH≈MF>DMF>Gasoline ETH>ISO>DMF 
>Gasoline≈MF 

At high back pressure, 
the inertial force, 

represented by Re, has 
a bigger impact.  

Re MF>DMF>ISO≈Gasoline>ETH 

The Reynolds number and Weber number for MF injection and DMF injection under 

different ambient pressures are shown in Figure 5-13. Both numbers decrease as the 

ambient pressure increase. This is due to the increased drag force from the ambient air 

which causes the decrease of the spray velocity. For both non-dimensional numbers, 

the values of MF are larger than those of DMF. This indicates better break-up of the 

spray. From the previous figures, it can be seen that the SMD values of MF are 

smaller than that of DMF.  

 

0 5 10 15 20 25 30 35 40
0

3

6

9

12

15

 1 bar
 3 bar
 7 bar

 

 

Pr
ob

ab
ilit

y(
%

)

Diameter (mm)

MF

  
0 5 10 15 20 25 30 35 40

0

3

6

9

12

15

 1 bar
 3 bar
 7 bar

 

 

Pr
ob

ab
ilit

y(
%

)

Diameter (mm)

DMF

 

Figure 5-14：Histogram of MF and DMF at different back pressures (Injection 
pressure 150bar, vessel temperature 20oC and measured at 40 mm from the 
nozzle) 

The histograms of MF and DMF at different back pressures are presented in Figure 

5-14. As discussed previously, when the back pressure increases from 1 bar to 3 bar, 
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the SMD values of both fuels decrease; when the back pressure further increase from 

3 bar to 7 bar, the SMD values of both fuels increase. This trend could be seen more 

clearly in the histogram figure: the back pressure has a very big impact on the droplet 

size distribution. As the back pressure increase from 1 bar to 3 bar, the proportion of 

the small droplets (between 0 μm to 5 μm) increases. Also, when the back pressure 

increases from 3 bar to 7 bar, the concentration of the big droplet significantly 

increase. The reason for this phenomenon is explained in previous part.  

 

Clear differences between the SMD values of different fuels under high back pressure 

can be observed in Figure 5-15. The SMD values of ethanol are the highest, followed 

by isooctane, DMF and then gasoline. MF has the smallest SMD values. On 

comparing the SMD values of these fuels under 1 bar back pressure, as shown in 

Figure 5-4, the SMD values increase from a range of 9-14 µm to the range of 12-20 

µm. This 30% increase of SMD values is due to the decrease of the Reynolds number 

and the Weber number caused by the deceleration of the spray. This trend is very 

different from the research on diesel or diesel-like fuel spray in the other people’s 

study (Li, 2012), in which the SMD values decrease with the increase of the back 

pressure.  In the case of diesel fuel injection, the injection pressure is much higher 

(100MPa-300MPa). The spray exit velocity is thus much higher compared with the 

GDI injector spray’s exit velocity. The deceleration effect from the air is not 

significant in the case of diesel injection. However, the interaction between air and the 

spray increases and the effect surpasses the effect of deceleration. Therefore, the 
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diesel fuel droplet sizes decrease with the increase of the back pressure; whereas the 

droplet sizes of the gasoline alternatives decrease with the increase of the back 

pressure.  
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Figure 5-8: SMD values and droplet velocity of the five fuels under 7 bar back 
pressures, 150 bar injection pressure and vessel temperature of 20 oC. 

Figure 5-15 also shows the droplet average velocity of the five fuels. It could be seen 

that almost all the fuels have similar droplet velocities along the time axle, except 

DMF. The velocity of DMF between the time 1.3 ms and 1.8 ms is higher at some 

points. But generally at most of the time period after start of injection, its velocity is 

similar to the other fuels. The effect of the higher droplet velocity on the DMF droplet 

size is not very clear due to its relative short period.  
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Figure 5-9: Reynolds number and Weber number of the fuel injections under 
back pressure of 7bar 
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Under the ambient pressure of 7 bar, ethanol has the largest SMD values followed by 

gasoline, DMF and isooctane; MF has the smallest SMD values, as shown in Figure 

5-15. The SMD values of the five fuels show a reverse trend compared to the 

Reynolds numbers, as shown in Figure 5-16. The sequence of SMD values is no 

longer the same as the SMD values at 1 bar ambient pressure, which is shown in 

Figure 5-4, because at 1 bar ambient pressure, the dominant factor is the Weber 

number whereas at 7 bar ambient pressure the dominant factor is the Reynolds 

number.  

5.3.7 Effect of the Vessel Temperature  

In order to examine the effect of the ambient temperature (vessel temperature) on the 

SMD and the droplet velocity, the measurement of these parameters are made at three 

ambient temperatures (20oC, 60oC, 90oC). Figure 5-17 exhibits the SMD and droplet 

velocities of MF and DMF spray under three ambient temperatures. Figure 5-18 

shows the Reynolds number and the Weber number of the two fuels’ injection under 

three ambient temperatures. As mentioned in Chapter 4, the spray “collapses” when 

the ambient temperature reaches the fuel’s boiling point. The main behaviour of the 

spray jet’s “collapse” is the significantly reduced penetration length and the 

disappearance of the clear boundary of each jet.  In the meantime, the vessel 

temperature has a negative effect on the SMD values of MF and DMF, as shown in 

Figure 5-17. When the vessel temperature increases, the SMD values of both fuels 

decrease.  

It can be clearly seen that the increase of the vessel temperature leads to decrease of 
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the droplet velocity. If the vessel temperature is lower than the fuel’s boiling point, the 

droplet velocity only decreases slightly (about 10m/s decrease on the droplet 

velocities for the temperature increase from 20 oC to 60 oC for MF and DMF). If the 

vessel temperature is higher than the fuel’s flash boiling point, the droplet size would 

fall dramatically. The droplet velocity of MF decreases by 60% to 70% as the vessel 

temperature increases from 60 oC to 90 oC. This effect is mainly due to the “collapse” 

of the fuel spray. 
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Figure 5-10: SMD values and droplet velocities of MF and DMF under 150 bar 
injection pressures, 1 bar back pressure and vessel temperature of 20oC, 60 oC 
and 90 oC. 
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Figure 5-11: Reynolds number and Weber number of MF injection and DMF 
injection at different ambient temperatures  
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Figure 5-19： Histogram of MF and DMF at different ambient temperatures (40 
mm from the nozzle) 
 

The effect of the vessel temperature on the probability of the droplet size of MF and 

DMF is shown in Figure 5-19. With the increase of the ambient temperature, it could 

be seen that proportion of the big droplet significantly decreases due to evaporation of 

the fuels. Also, it could be seen that probability of the small droplets (less than 5 μm) 

increase. This means that the medium size droplets become small droplets when the 

surrounding temperature is high. The main effect of the ambient temperature on the 

atomization of MF and DMF is the evaporation of all the droplets.  

 

5.3.8 Ohnesorge number at different conditions 

In order to estimate the atomization of the fuels under different conditions (test 
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conditions presented in Table 5-4), the Ohnesorge numbers of them are plotted against 

their Reynolds numbers, as shown in Figure 5-20. The method of calculation the 

Ohnesorge number is described in chapter 2.3.1. In this figure, the break-up regimes 

which are defined by Reitz et al. (1982) are also added. It should be noted that, for all 

the fuels, regardless of their injection pressure, back pressure, and ambient 

temperature, all of the test points are well in the atomization regime. This means the 

onset of the fuel liquid column break-up is, or at least very close to, the nozzle exit. In 

this regime, the complete disintegration of the jet leads to very small droplets.  
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Table 5-4: Test conditions for the Ohnesorge numbers plotted in Figure 5-20 

Fuel Injection pressure (bar) Back pressure (bar) Vessel temperature (oC) 

MF 

DMF 

ISO 

ETH 

Gasoline 

50 1 20 

100 1 20 

150 1 20 

150 3 20 

150 7 20 

150 1 60 

150 1 90 

 

5.4 Summary  

This chapter evaluates the atomization of the fuels in terms of droplet size and 

velocities. The effect of the measuring point, injection pressure, back pressure and 

ambient temperature on the droplet size and the droplet velocity are investigated. The 

following conclusions are drawn:  

1. The differences of the fuel properties (e.g. density, viscosity, and surface tension) 

are estimated by calculating their Reynolds numbers and Weber numbers under 

different test conditions. Ethanol spray has a relatively higher Weber number and 

Reynolds number at almost all the conditions, thus its droplet size is the biggest 

under almost all test conditions. DMF usually has a bigger droplet size compared 

to gasoline. The droplet size of MF is usually smaller than that of DMF, due to 

the higher Reynolds numbers and Weber numbers. The order of the SMD values 

among the three fuels (MF, DMF and gasoline) varies under different test 

conditions, due to the varying combined effect of the Reynolds number and the 
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Weber number. Generally, Compared to ethanol, the droplet size of MF and DMF 

was more similar to that of gasoline and isooctane at different conditions.  

2. The main effect of the injection pressure on the spray break-up is on the spray 

exit velocity. Higher injection pressure leads to higher spray velocity; thus a 

higher Reynolds number and Weber number could be observed. Both the inertial 

force and the external force, which break up the spray liquid column and the 

droplets, are bigger. Therefore smaller SMD values and higher droplet velocities 

are expected and observed.  

3. Two main effects of the back pressure on the spray break-up are observed: Firstly, 

the increase of the gas density increases the drag force and thus causes 

deceleration to the spray jet. This effect hinders the break-up of the spray. 

Secondly, the increase of the gas density may increases the shear force which 

makes the liquid column up easier to break up. The SMD values for both MF and 

DMF decrease by around 5% at most distances when the back pressure increases 

from 1 bar to 3 bar.  And the SMD values of the two fuels increase by around 30% 

to 50% when the back pressure increases from 3 bar to 7bar. This means the 

dominant factor affecting between 1 bar and 3 bar is the increase of the shear 

force and when the pressure continues to increase the main effect becomes the 

spray jet deceleration.  

4. When the injection pressure is relatively high (150 bar) and the back pressure is 

relatively low (1 bar), the dominant affecting factor is the Weber number. The 

shear force between the flow and the ambient air dominates the spray break-up. If 
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the back pressure is relatively high (7 bar), the dominant factor shifts to the 

Reynolds number. In this situation, the drag force which is applied on the flow 

from the air is very high. The flow deceleration is so fast that the speed of the 

flow downstream of the spray is low. The shear force, which is due to the 

interaction between the spray flow and the air, is thus restrained. The internal 

force, which is represented by the Reynolds number, becomes the main affecting 

factor.  

5. The main effect of the vessel temperature on the droplet size and the velocity is 

linked to the fuel’s flash boiling point. If the vessel temperature is lower than the 

fuel’s flash boiling point, the droplet velocity only decreases slightly. If the vessel 

temperature is higher than the fuel’s flash boiling point, the droplet size would 

fall dramatically. With the increase of the surrounding temperature, the SMD 

values of MF and DMF injection decrease.  
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 Chapter 6  

6 Laminar Flame Characteristics of 2, 5-dimethylfuran 

and 2-methylfuran 

 

This chapter examines the laminar flame characteristics of the bio-fuels, MF and DMF, 

compared to isooctane. In particular, the laminar burning velocity and the flame 

instability of the fuels are discussed.  

6.1 Introduction  

Laminar flame propagation characteristics are important fundamental 

physicochemical properties for a fuel; they are the basic data required for combustion 

modeling and also can be used in validating the chemical reaction mechanisms of the 

fuel(Law, 2000). Using high speed schlieren photography, this work examines the 

laminar burning characteristics of MF-air mixtures with varying temperatures (60oC, 

90oC and 120 oC) and equivalence ratios (0.7-1.1) at 0.1MPa initial pressure in a 

constant volume vessel. The stretched flame speeds are determined by the outwardly 

spherical flame method. The unstretched flame speed, Markstein length and laminar 

burning velocity of MF combustion at different equivalence ratios and temperatures 

are then deduced and compared to those of DMF and isooctane. Finally, the flame 

instability analysis including the analysis of the flame thickness, density ratio and 

laminar burning flux is provided.  
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6.2  System Validation 

In order to validate the system setup and procedures used, laminar burning velocities 

of isooctane-air mixtures at 0.1MPa initial pressure and elevated temperatures were 

calculated and compared with the data from the literature in Figure 6-1. It is shown   

that the current measurement has a good agreement with the widely accepted result of 

Bradley et al.(1998), and Hasse et al.(2000). It can also be seen that the current results 

are higher than the work of Kelley et al. ( 2011). It is because their initial temperature 

is 80oC and the initial temperature for current work is 90oC. The Markstein Length of 

isooctane from the current measurement is also compared with data from literature. 

The current results show good agreement with the results of Halter et al.(2010), Zhou 

et al. (2011) and Bradley et al.(1998). The method they used to calculate the 

Markstein length is the same as the current work (Linear methodology, described in 

chapter 3.5.3). There is some difference between the current results and the results of 

Galmiche et al.(2012) and Varea et al.(2012). This is because the current work uses 

linear methodology to deduce the Markstein length. However the work of Galmiche et 

al. and Varea et al. use non-linear methodology, which is developed by Kelley and 

Law (2009), to deduce the Markstein Length. Therefore, differences at lean conditions 

could be expected. Generally, it could be seen that the current work shows acceptable 

agreement with the work found in literature in terms of laminar burning velocity and 

Markstein Length (Linear methodology). This validates the present experimental 

setup and methodology. 
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Figure 6-1: Laminar burning velocities and Markstein length of isooctane-air 
mixtures versus equivalence ratios at 0.1MPa pressure and elevated initial 
temperature 
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6.3 Flame Morphology 

The schlieren images for MF, DMF and isooctane at stoichiometric conditions and the 

initial temperature of 90°C are shown in Figure 6-2. MF flame propagation is the 

fastest and isooctane flame propagation speed is the slowest. Due to the quenching 

effect from the electrodes the flame propagation speed is always slower along the 

direction of the electrodes than the vertical direction thus the flame is not perfectly 

spherical. Small wrinkling also appears near the electrodes, but it does not affect the 

overall shape of the flame.  

Based on the repeated schlieren imaging, it was found that the early stage of the flame 

is greatly affected by the spark energy. While as the flame approaches the vessel 

boundary, the shape of the flame becomes distorted with the flatter surface at the 

vertical sides due to the influence of the internal geometry (Burke, 2009).  
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Figure 6-2: Chronological schlieren images of stoichoimetric fuel-air mixtures at 
initial temperature of 90°C. 
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6.4 Stretched and Unstretched Flame Speed 

Figure 6-3 shows the stretched flame propagation speed versus stretch rate for the 

three fuels at different equivalence ratios and 120oC initial temperature. Both the 

stretched propagation speed and the stretch rate are calculated by detecting the flame 

front from four directions, as shown in Figure 3-16. With respect to time, the flame 

expands in the vessel; the flame stretch rate becomes smaller due to the inverse 

relationship between the flame stretch rate and flame radius. The close-to-linear 

relationship between the flame stretch rate and the flame radius can be observed at a 

large stretch rate. For instance, in Figure 6-3 a, it can be seen that all the results show 

a good linearity at large stretch rates (the fitting line plotted on the figure). At a 

relatively smaller stretch rate, when the flame radius are big, the acceleration of the 

stretched flame speed decreased or even stopped, thus the trends become non-linear. 

This demonstrates that the geometry of the vessel affects the flame propagation when 

the flame boundary approaches to the vessel wall.  
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Figure 6-3: Stretched flame speed of the test fuels at 120°C initial temperature at 
different equivalence ratios and stretch rates.  

The unstretched flame propagation speed was obtained by extrapolating the stretched 

flame propagation speed to zero stretch rate and the Markstein length was obtained by 

calculating the gradient of the stretched flame propagation speed to stretched rate 

slope. Figure 6-4 shows the unstretched flame speed of the three fuels at different 

temperatures and equivalence ratios. For all the temperatures (60°C, 90°C and 120°C), 

MF has the fastest unstretched flame propagation speed at all the equivalence ratios. 

For instance, at 120°C and under the same equivalence ratio, the unstretched flame 

propagation speed of MF is about 15% faster than that of DMF and about 20%-50% 

faster than that of isooctane. The unstretched flame propagation speeds of the three 

fuels increase significantly with the increase of initial temperatures, as expected. The 

maximum unstretched flame propagation speed of MF occurs at slightly rich region 

when Φ=1.1 for the three temperatures tested, although the unstretched flame 

propagation speed for Φ=1.2 is only slightly slower than that at Φ=1.1. However for 

DMF and isooctane, the maximum unstretched flame propagation speeds occur 

between the equivalence ratios of 1.1 and 1.2. The error bars in Figure 6-4 indicate 

that the root mean square deviation (RMSD) for different measurement of the laminar 

burning velocity is generally less than 2%. However, very rarely, at a few extreme test 

points, the RMSD could be 5% to 7% (e.g. the RMSD for MF at 90oC and Ф=1.1 is 

6%). 
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Figure 6-4: Unstretched flame speed of the test fuels at different temperatures 
and equivalence ratios 
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6.5  Adiabatic Flame Temperature and Laminar Burning 

Velocities 

The adiabatic flame temperatures for MF, DMF and isooctane under 120°C initial 

temperature at varying equivalence ratios are shown in Figure 6-5. MF has the highest 

adiabatic flame temperature, followed by DMF and then isooctane. The adiabatic 

flame temperatures of MF and DMF reach their peaks at the equivalence ratio of 1.1. 

The same trend can be observed for isooctane except that the peak occurs under the 

condition closer to a stoichiometric ratio of 1.0. For hydrocarbon-air mixtures the 

adiabatic flame temperature peaks at the rich mixture side due to the product 

dissociation and reduced amount of heat release.  
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Figure 6-5: Adiabatic flame temperatures for three fuels at 120 oC with varying 
equivalence ratios. 

 

The laminar burning velocity is a strong function of the equivalence ratio and initial 

temperature of the reactants (Stone, 1999). It is the speed at which the flame is 

advancing into the unburned mixture. Figure 6-6 shows the laminar burning velocities 
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versus the equivalence ratios at different initial temperatures. The laminar burning 

velocities of MF under varying initial temperatures reach their peaks in the 

equivalence ratio range of 1.1 to 1.2 and this is correlated to the state of the adiabatic 

flame temperatures. For the other two fuels, a similar trend can be observed. 

Compared with DMF and isooctane, MF has the highest laminar burning velocities at 

all conditions. For instance, at 90 °C initial temperature and the equivalence ratio of 

1.2, the laminar burning velocities of MF, DMF and isooctane are 69cm/s, 61cm/s and 

56cm/s, respectively. Based on Tabaczynski’s theory described in the literature (Stone, 

1999), the flame burning rate in a spark ignition engine is largely affected by the 

laminar burning velocity and turbulence intensity in the combustion chamber. With 

the same engine configuration and operation conditions, the fuel which possesses 

higher laminar burning velocities burns faster in the cylinder. The work of Wang et al.

（2013） proved that the combustion duration of MF is much shorter than that of 

DMF and gasoline in a DISI engine, which leads to higher indicated thermal 

efficiency than the other two fuels. In addition, the laminar burning velocities for all 

the three fuels increase with the initial temperature. For MF, the laminar burning 

velocity at 120 °C is about 16%-18% faster than that at 90 °C and 34%-40% faster 

than that at 60 °C within the range of equivalence radio 0.7-1.1. 

 

 

 



148 
 

0.6 0.8 1.0 1.2 1.4

30

40

50
 MF
 DMF
 ISO

 

 

u l
(c

m
/s

)

Equivalence ratio Φ

60oC

 

0.6 0.8 1.0 1.2 1.4

30

40

50

60
 MF
 DMF
 ISO

 

 

u l
(c

m
/s

)

Equivalence ratio F

90oC

0.6 0.8 1.0 1.2 1.4

30

40

50

60

70  MF
 DMF
 ISO

 

 

u l
(c

m
/s

)

Equivalence ratio F

120oC

 
Figure 6-6: Laminar burning velocities of test fuels at different temperatures and 
equivalence ratios. 
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6.6 The Flame Instability  

The flame instability is essential for understanding of the combustion of a fuel. In 

flame propagation, the flame front cellular instability leads to self-acceleration and the 

detonation. If this happens in an engine, the heat release will be very unsteady and 

knock might occur. In order to understand the effect of the influencing factors on the 

flame front instability, it is necessary to give a short review on the theory. According 

to the literature (Law, 2000 and Matalon, 2007), there are mainly two types of flame 

surface instabilities acting on the flame front when the laminar burning velocity is 

relatively high: the diffusion-thermal instability and the hydrodynamic instability. The 

diffusion-thermal instability is a result of diffusion in the flame front while the 

hydrodynamic instability is a result of thermal expansion of the gas upon crossing the 

flame. The diffusion-thermal instability is characterized by the Markstein length. The 

hydrodynamic instability of the flame front, which is induced by the density transition 

across the flame front, is characterized by the flame thickness and the density ratio. 

The increase of the density ratio or the decrease of the flame thickness indicates the 

promotion of this kind of instability. 

6.6.1 Markstein Length 

Markstein length indicates the effect of stretch rate on flame propagation speed, and 

characterizes the diffusion-thermal instability (Law, 2000 and Karlin, 2007) of the 

fuel. For heavy hydrocarbon–air mixtures, the Markstein length decreases with the 

increase of equivalence ratio; while for light hydrocarbon–air mixtures it increases 

with the increase of the equivalence ratio (Bechtold, 2001). Figure 6-7 shows that the 
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Markstein lengths of MF and the other two fuels at tested temperatures all decrease 

with the increase of the equivalence ratios, and this observation is in agreement with 

the above theory since these three fuels are all heavy hydrocarbon fuels. The results 

also show that the Markstein length of MF is significantly smaller than those of DMF 

and isooctane at equivalence ratios lower than 1.1. However, at equivalence ratios 

higher than 1.1, the differences between MF and the other two fuels are within the 

error range. So, it can be concluded that the diffusion-thermal instability of MF is 

higher than DMF and isooctane at low equivalence ratios and it is nearly the same 

compared to DMF and isooctane at equivalence ratios higher than 1.1.  
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Figure 6-7: Markstein length of test fuels at different temperatures and 
equivalence ratios.  
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With respect to initial temperature under the same equivalence ratio conditions，the 

difference between the Markstein lengths of MF for 90°C and 120°C are very small. 

At 60°C, MF has bigger Markstein lengths than the other two temperatures (90°C and 

120°C) at low equivalence ratios (0.7-1.0) but the differences become very small at 

high equivalence ratios (1.1-1.4).  

 

6.6.2  Flame Thickness and Density Ratio 

Figure 6-8 shows the flame thickness and density ratio versus equivalence ratio for 

MF at different initial temperatures and the three fuels at an initial temperature of 

90oC. For MF, the flame thickness is not sensitive to variation of initial temperature 

whereas the density ratio decreases with the increase of the initial temperature, as 

shown in Figure 6-8 a. It is indicated in Figure 6-8 b that MF has the smallest flame 

thickness at all equivalence ratios compared to DMF and isooctane. Also, it can be 

seen that the density ratio of MF and DMF are similar and both of them are slightly 

higher than that of isooctane. Therefore, the hydrodynamic instability of MF is the 

highest amongst the three fuels followed by DMF and then isooctane and it decreases 

with the increase of the initial temperature.  
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Figure 6-8: Flame thickness (solid line) and density ratio (dot line) versus 
equivalence ratio for (a) MF under three temperatures (b) three fuels under 
90oC. 

 

6.6.3 Burning Flux 

Laminar burning flux is the eigenvalue of flame propagation. It provides the essential 

information of exothermicity, reactivity and diffusivity (Law, 2006). It is a very 

important indicator of the fuel’s combustion properties. Figure 6-10 shows the 
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burning flux versus equivalence ratio for MF at different initial temperatures and the 

three fuels at an initial temperature of 120oC. The laminar burning flux of MF 

increases with the increase of the initial temperature. With increasing initial 

temperature, the increase of the laminar burning velocity of MF is the main effect on 

the laminar burning flux compared to the decreasing density of the MF-air mixture. 

The peak values of the laminar burning flux of MF at three temperatures appear 

between equivalence ratio 1.1 and 1.2. Figure 6-10 b shows that the burning flux of 

MF is the highest amongst the three fuels followed by DMF and then isooctane. The 

laminar burning flux of MF and DMF exhibit peak values between equivalence ratios 

of 1.1 and 1.2 whereas the laminar burning flux of isooctane exhibits peak values 

between equivalence ratios of 1.0 and 1.1.  
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Figure 6-9: Burning flux versus equivalence ratio for (a) MF under three 
temperatures (b) three fuels under 120oC. 

6.7 Summary  

An experimental investigation of the laminar combustion characteristics of 

2-methylfuran (MF) was conducted using high speed schlieren photography in a 

constant volume vessel at elevated temperatures (60°C, 90°C and 120°C) and varied 

equivalence ratios (Φ=0.6-1.4) under 0.1MPa initial pressure. The characteristics of 
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MF laminar flame were compared to those of DMF and isooctane. The conclusions 

drawn from the study for the tested conditions are as follows: 

1. The unstretched flame speed of MF is up to 30% faster than that of DMF and up 

to 50% faster than that of isooctane. The highest unstretched flame speed of MF 

under all temperatures occurs at the equivalence ratio of 1.1, whereas for DMF 

and isooctane, the highest unstretched flame speed occurs at equivalence ratios 

between 1.1 and 1.2.  

2. At equivalence ratios lower than 1.1, MF flame is less stable than DMF and 

isooctane and the Markstein lengths of MF are smaller than those of DMF and 

isooctane.  At the equivalence ratios higher than 1.1, the Markstein length 

differences between MF and the other two fuels are very small.  

3. The laminar burning velocity of MF is the highest amongst the three fuels under 

all the conditions tested, and it reaches its maximum of 70.4cm/s at an initial 

temperature of 120°C and an equivalence ratio of 1.1.  

4. MF has the smallest flame thickness at all the conditions tested compared to DMF 

and isooctane. For MF, the density ratio is significantly affected by the initial 

temperature whereas the flame thickness is very insensitive to initial temperature 

change.  

5. The laminar burning flux of MF increases with the increase of initial temperature 

and exhibits peak values between the equivalence ratios of 1.1 and 1.2. Compared 

to DMF and isooctane, the burning flux of MF is the highest at all the conditions 

tested.  
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 Chapter 7 

7 Turbulent Flame Behavior in the Engine 
 

This chapter investigates the turbulent flame behavior of the bio-fuels in the optical 

engine using high speed imaging and OH-LIF. The turbulent flame propagation speed, 

the burning rate, and the fluorescence signal were measured and correlated. 

 

7.1  Introduction 

Despite the aforementioned OH-LIF and high speed imaging studies on a wide range 

of open flames and in-cylinder combustion (Soid , 2011, Singh, 2009), an optical 

study of the in-cylinder combustion of DMF and MF to reveal the information of OH 

distribution and flame has not been reported. In this paper, a combination of 

high-speed imaging and PLIF is used to observe the flame propagation and OH in the 

combustion process of DMF and MF, using a DISI optical engine with homogeneous 

mixtures generated by an early injection strategy. The experiment was carried out at 

two different engine load conditions (for IMEP of 4.5 and 5.5 bar). Heat release 

analysis and image studies were performed.  Isooctane was used as the reference fuel 

instead of gasoline as in many relevant research studies (Schulz, 2005) because of its 

non-fluorescent characteristics. The key contribution is that four empirical functions 

has been constructed which can correlate the data from the present study and also the 

previous publications among OH distribution, flame propagation and heat release rate. 

These functions reveal the close link between the flame images in 2-D form and the 
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combustion parameters in the cylinder (e.g. heat release, MFB). They offer an 

alternative way to estimate the combustion in the cylinder (e.g. heat release, MFB) 

using photography method rather than using the pressure data.  

 

7.2 Test Conditions  

The engine was operated at IMEPs of 4.5 and 5.5 bar with stoichiometric air/fuel 

ratios for three different fuels, i.e. isooctane, DMF and MF. The injection timing was 

280°CA BTDC in order to generate homogeneous mixtures and the ignition timing 

was fixed for each engine load condition, which was 29°CA BTDC for IMEP 4.5 bar 

and 24 °CA BTDC for IMEP 5.5 bar. A pressure transducer was used to record the 

in-cylinder pressure. Before the pressure data was recorded, the engine was operated 

for at least 3 minutes to stabilize its operating condition. 

 

7.3 Pressure Trace and Combustion Phase  

The in-cylinder pressure results were averaged from 100 cycles for each throttle 

position used in the optical measurement. The pressure traces of the three fuels 

(isooctane, DMF and MF) are shown in Figure 7-1 (hereafter isooctane is marked as 

ISO in the figures, TDC is referred to as 360°CA,). It is observed that MF has the 

highest peak pressure and fastest combustion at the IMEP of both 4.5 and 5.5 bar. 

DMF is between the other two, closer to isooctane. These trends have showed good 

agreement with the previous study (Wang, 2013, Zhong, 2010 and Daniel, 2011).  
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Table 7-1: Ignition delays 

IMEP Fuel Ignition Delay (°CA)  
MFB0-MFB10 

4.5 bar 
Isooctane 32 

DMF 31 
MF 29.5 

5.5 bar 
Isooctane 30.5 

DMF 27 
MF 27 
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Figure 7-1: In-cylinder Pressures and MFB (a) IMEP 4.5bar (b) IMEP 5.5bar 

DMF and MF both have shorter ignition delays (shown in Table 7-1, defined as from 
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spark timing to MFB10) and higher burning velocities than isooctane, thus higher 

thermal efficiencies can be achieved even without advancing the ignition timing. The 

previous thermal engine tests have discussed these in detail (Daniel, 2011, Wang , 

2013, Zhong , 2010, Daniel, 2012a, Daniel, 2012b) so there is no further discussion of 

this part in the current paper.  

 

7.4 Flame Propagation 

7.4.1 Flame Luminance 

The images in Figure 7-2 show faster flame propagation towards the exhaust valves 

due to the higher local temperature and the tumble, as shown in previously studies 

(Ma, 2012). DMF and MF have brighter flames than isooctane with the camera 

having the same gain setting. Generally, the higher flame luminance is associated with 

higher combustion temperatures and higher soot concentrations (He, 2008).  

However, the brightness of the flames of the three fuels does not directly reflect the 

in-cylinder temperatures in the current results. The pressure trace of DMF at the low 

load is very close to that of isooctane (see Figure 7-1), indicating the two cases have 

similar in-cylinder temperatures through the whole combustion process. Nevertheless 

the luminance of DMF flame is higher than that of isooctane. From chapter 6, it is 

known that adiabatic temperatures of MF is about 1% higher than DMF at 

stoichiometric state (also shown in Table 7-2), and because the pressure trace of MF is 

also the highest, it is confirmed that MF has the highest in-cylinder flame temperature. 
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But the shown luminance of MF flame here is slightly lower than that of DMF. 

Therefore it is believed that the dominating factor for the luminance of the flame of 

the test fuels might be the soot concentration and DMF’s brighter flame reflects a 

stronger soot formation. However, an interesting contrast was found by previous 

thermal engine researches (Wang, 2013, Zhong, 2010 and Wu, 2011) that the exhaust 

emissions of PM with DMF and MF are lower than with gasoline, which was 

attributed to the oxygen content in the molecule. Thus it can be deduced that DMF 

and MF might generate more soot than isooctane does during combustion because of 

the circular molecular structures, but the oxygen content also promotes the oxidization 

process and the soot concentration also reduces faster than in the isooctane cases. 

These behavior differences balance out generating a low final soot quantity in the 

exhaust.  

 

Table 7-2: The adiabatic flame temperatures and un-stretched laminar flame 
speeds of the three fuels 

 Adiabatic Flame Temperature Flame speed 
MF 2342 K 3.8 m/s 
DMF 2326 K 3.2 m/s 
Isooctane 2270 K 2.9 m/s 

*Pressure 1 bar, initial temperature 90ºC, stoichiometric 
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Figure 7-2: Single cycle images 
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7.4.2 Flame Area vs MFB  

Figure 7-3 a and b present the average flame area growths and the MFB data at the 

loads of IMEP 4.5 and 5.5 bar respectively. The dash-dot lines are the normalized 

flame areas and the solid lines are MFB data from Figure 7-1.  The errors for over 90% 

of the data points (error bar not included for clarity of the figure) are lower than 

±7.25%, and some points (<10%) at the very early or late stages produced larger 

errors up to ±16.5%.   
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Figure 7-3: Flame area and MFB data analyses (a) MFB and normalized area at 
IMEP 4.5bar (b) MFB and normalized area at IMEP 5.5bar (c) Correlation 
between flame area and MFB (4.5bar) (d) Correlation between flame area and 
MFB (5.5bar)  

 



164 
 

In Figure 7-3 a, DMF and isooctane have similar flame area growths at IMEP 4.5 bar, 

following the trends of the MFB data. When the flame is spread over the visible area, 

the combustion process is at around MFB50. MF has a significantly shorter ignition 

delay and a faster flame area growth. The flame area growth of MF reaches 60% of 

the visible area more than 10°CA earlier than the other fuels. In Figure 7-3 b, the 

flame growth curves of DMF and isooctane show larger differences at IMEP 5.5 bar 

than at 4.5 bar, particularly in the later stage. It was found that, at the same spark 

timing, DMF had larger differences compared to gasoline in flame propagation at 

IMEP 3.0 bar but was similar to gasoline at IMEP 4.0 bar (Ma, 2012, Jiang, 2012). 

The differences between isooctane and DMF are small around IMEP 4.0 to 4.5 bar. 

MF’s flame propagation is the fastest and all the fuels have faster rates of flame area 

growth at a higher IMEP (note that at 5.5 bar the spark timing is 5°CA later than at 

4.5bar). 

After part of the flame went beyond the visible area in the later stage, the visible 

boundary length started to reduce and this situation increasingly affected the results. 

Therefore, the flame images at the early stage (the early combustion corresponding to 

MFB up to 25% ) are used to for correlation with the heat release data,  as shown for 

the two engine loads in Figure 7-3 c and 7-3 d respectively. As mentioned above, the 

MFB is directly associated to the burned volume of the mixture, which is a cubic 

function of the flame propagation radius; while the flame area is a quadratic function 

of the flame propagation radius. Therefore the leading order of the correlation 

functions for the three fuels should be 2/3. Thus the correlation function is constructed 
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as: 

Aflame = α1VMFB
2/3 + C1                  (2) 

where Aflame is the flame area, VMFB is the MFB value, α1 and C1 are coefficients  (the 

values are given in Table 7-3). The R-square results show that this constructed 

correlation function fits into the experimental data very well.. 

 
 

Table 7-3: Fitting results for flame area-MFB 

Function Aflame =α1VMFB
2/3  + C1    

IMEP  α1 C1 R-square 

4.5 bar 
Isooctane 1.927 -0.08089 0.9991 

DMF 2.086 -0.1923 0.9999 
MF 2.237 -0.07849 0.9958 

5.5 bar 
Isooctane 2.023 -0.1392 0.9968 

DMF 1.971 -0.1484 0.9971 
MF 1.781 0.03369 0.994 

      

In function Equation 2, a higher temperature leads to a higher value of α1 at the low 

load but the tendency is opposite at the high load, the values are all around 2.0. 

Therefore, α1 is related to both the temperature and the fuel property, but the 

combustion system design is the dominating factor. In theory, C1 should always be 

zero since the heat release starts with the flame propagation. However, the pole of the 

spark plug shields part of the initial flame, resulting in some errors in the fittings. This 

explains the reason why most of the flame area growth at the beginning is behind the 

MBF starting point. At the same time, the equivalence ratio of the local mixture is 

subject to cycle-to-cycle variations, leading to relatively larger errors in the flame 

measurement. It is also found that C1 is related to the fuel type, as MF always has the 

highest C1 while DMF has the lowest. This is because the ignition and initial flame 
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propagation of MF is the fastest and DMF is relatively more difficult to ignite, which 

is also indicated by the flash point data in Table 1. 

 

7.4.3 Flame Speed vs ROHR  

Figure 7-4 a and 7-4 b represent the flame speeds (scattering points) and the rate of 

heat release (lines).  In all the cases, the flame speeds follow similar mono-peak 

profiles to the heat release rate.  In Figure 7-4 a, a good linear trend is revealed in 

MF’s flame speed on the rising side. MF has the highest flame speed of about 7.1 m/s 

at 365°CA, nearly 2 m/s faster than the peaks of isooctane and DMF. The flame speed 

of MF at 350°CA is about 4.2 m/s, 0.6 m/s more than that of isooctane and DMF. This 

means shortly after the ignition, the flame speed of MF becomes significantly faster 

than the other two. Additionally, MF has shortest ignition delay among the three fuels. 

These two reasons result in the very fast flame propagation in MF combustion, as 

shown in previous figures. The ROHR data show that the heat release rate of DMF is 

slightly higher than that of isooctane. The peak of DMF and MF is 3.5°CA and 9°CA 

earlier, and about 4% and 23% higher than that of isooctane respectively.  
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Figure 7-4: Flame speed and ROHR (a) Flame speed and ROHR at IMEP 4.5bar 
(b) Flame speed and ROHR at IMEP 5.5bar (c) Correlation between flame speed 
and ROHR (4.5bar) (d) Correlation between flame speed and ROHR (5.5bar). 
(Scattering points: experiment data; lines: fitting results) 

The ROHR data in Figure 7-4 b for the higher load shows significant differences 

among the three fuels. MF has the fastest flame speed and isooctane has the slowest. 

The maximum ROHR of MF is 7°CA earlier and about 26% higher than that of 

isooctane. Unlike the cases in Figure 7-4 a, the difference of ROHR between DMF 

and isooctane is larger. The maximum ROHR of DMF is 4°CA earlier and 8% higher 

than that of isooctane. The peak flame speed of MF in Figure 7-4 b is about 8.1 m/s. 
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DMF has a peak speed around 6 m/s, which is about 0.2 m/s higher than that of 

isooctane. At the initial stage around 350°CA, all the three fuels have similar speeds 

around 3.4 m/s. Aleiferis et al. (2012a) reported similar in-cylinder isooctane flame 

speeds in a DISI engine.  In Figure 7-4 b, all of the speed increments are quite 

similar to each other and clearly different from the case of IMEP 4.5 bar. This means 

the turbulence, which strengthens at higher loads, has a great effect on the combustion, 

particularly in the early stages.  

The laminar flame research studies in chapter 6 showed that the un-stretched flame 

speed of DMF was around 3 m/s at 1 bar initial pressure at 90°C which was slightly 

faster than for isooctane (see Table 7-2) under this condition. In the current study, the 

flame speeds were quite different because the in-cylinder combustion was dominated 

by the turbulence, and obviously the temperatures and the pressures were much higher. 

The flame speeds of DMF and isooctane are closer as revealed by the laminar flame 

test results. A previous fundamental study of MF flame (Wu, 2011) showed that MF 

has higher reactivity than the other two fuels because of its chemical characteristics 

and this is supported by the present study as MF demonstrated the fastest combustion 

rate. On the other hand, if the current in-cylinder flame speed is normalized by the 

laminar flame speed (in-cylinder flame speed/laminar flame speed ratio) respectively, 

the speed curves interestingly collapse into almost one single curve, as shown in 

Figure 7-5. It can be concluded that, although turbulence can dominate the in-cylinder 

combustion, flame propagation is still greatly affected by the fuel characteristics. 
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Figure 7-5: The comparison of the flame speeds (a) IMEP 4.5 bar (b) IMEP 5.5 
bar 

When the flame front was approaching the cylinder wall, the flame propagation speed 

slowed down with the pressure wave reflected from the wall (Tian, 2010). Thus only 

the data before the peak of heat release rate, which usually corresponds to the time 

before the flame spreads to the whole combustion chamber (Wilson, 2005), is used to 

correlate with the ROHR in Figure 7-4 c and 7-4 d for the 2 engine loads.  As 

discussed in Sec. 4.2.2, the heat release rate is correlated to the change rate of the 

burned volume of the mixture, while the flame speed is correlated to the changing rate 

of the flame propagation distance. Additionally, the correlation between the flame 

propagation distance and the burned volume of the mixture is a cubic function. 
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Therefore, the fitting function is constructed with an exponent of 2/3 and an exponent 

of 1/3 to reflect the correlation between the flame speeds based on 2D flame front 

measurement and the burning rate of the mixture in volume (the heat release rate). 

The function is in the following form: 

VSPEED  = α2HROHR
2/3 + β2 HROHR

1/3 + C2                      (3) 

where VSPEED is the flame speed, HROHR is the ROHR value, α2, β2 and C2 are 

coefficients (the values are given in Table 7-4). In theory, C2 should be zero and 

constant, however considering the errors, C2 is restricted in a range of -0.1 to 0.1. The 

R-square results are also given. The R-square results are still over 0.95, slightly lower 

than for the fitting of Equation 1, because the results include the errors from the 

device, method and the calculation.  

Table 7-4: Fitting results for flame speed-ROHR 

Function VSPEED  = α2HROHR
2/3 + β2 HROHR

1/3 + C2  
IMEP  α2 β2 C2 R-square 

4.5 bar 
Isooctane -0.3765 3.068 0.036 0.9575 

DMF -0.45  3.064  -0.0556  0.9505 
MF -0.2345  3.125  0.08512 0.9836 

5.5 bar 
Isooctane -0.2072  2.735 0.0665  0.9649 

DMF -0.2237  2.802 0.00167  0.9635 
MF -0.0809  2.35 0.10756 0.9754 

At the load of IMEP 5.5 bar, the three lines tend to overlap within a small range but in 

the cases of IMEP 4.5 bar they are more separated. As the exponent 2/3 represents the 

3D-to-2D projected results of the flame imaging, the values of α2 mainly relate to the 

engine specification. The impact of turbulence is more obvious, which is revealed by 

β2, showing that their values for the three fuels are close to each other at the same 

loads but are different at varied loads, respectively. Also, it should be noted that a 
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higher β2 does not necessary mean higher impact of turbulence. There are an obvious 

differences for the values of β2  at different loads. However, for the same load, the 

differences between different fuels are very small. The differences among the values 

of β2 imply that the fuel properties also have considerable impacts.  

A validation is given in Figure 7-6 and Table 7-5 to prove the form of Equation 3. The 

data of a previous flame speed study (Wei, 2012a) were extracted and fit in the same 

way as the current discussion. It was found that the form of Equation 3 presents good 

profile in the fitting. And the curves of high turbulence cases also show a concentrated 

tendency just like in Figure 7-4 d, which confirms the conclusion that, when the 

turbulence gets stronger, it becomes a dominating factor more than the fuel property 

does. 
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Figure 7-6: The validation for the speed-ROHR function form (Sementa, 2011) 
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Table 7-5: The parameters for the fittings in Figure 7-6 

Function VSPEED  = α2HROHR
2/3 + β2 HROHR

1/3 + C2  
RPM  α2 β2 C2 R-square 

2000 
High Pinj -2.48 10.19 0.0856 0.9995 

Low Pinj -1.53 7.4960 0.0519 0.9912 

4000 
High Pinj -2.0980 8.9010 0.0325 0.9941 

Low Pinj -2.0620 8.990 0.0903 0.9914 

7.5 OH-LIF 

7.5.1  Effect of Fuel  

Figure 7-7 presents the normalized OH-LIF signal area compared with the heat 

release rate. As discussed in chapter 3.5.5, the laser sheet is projected into the engine 

cylinder at 9 mm below the spark plug via a small side window on the optical engine. 

In this study, the area of the LIF signal under the same threshold is measured to 

indicate the LIF signal. The total area which the laser covers in the cylinder is 

normalized as 1 and the ratio of the LIF signal area to the total area is called the 

“Normalized LIF signal”. The LIF signal is normalized statistically by averaging the 

OH area using the same threshold so the results can be compared directly to each 

other. The method is described in section 3.5.5. Error bars representing the normalized 

deviations are given at each point, which show the variations of the OH signal area 

due to the cycle-to-cycle variations of the SI combustion. Larger deviations appear in 

the later stage after 360°CA when the flame front went beyond the laser area. The area 

of OH signal appearance always reaches the peak before the ROHR maximum and 

then decreases. It must be noted that the combustion area inside the laser sheet is only 

a small part of the combustion chamber, thus the descending of the OH signal does 

not necessarily mean that total OH in the whole engine cylinder is reducing after the 
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flame goes beyond the piston window but it does indicate the status of OH 

concentration within the visible area.    
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                                  (c) 
Figure 7-7: ROHR and Normalized LIF Signal (IMEP=4.5bar) (a) Isooctane (b) 
DMF (c) MF 
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The OH signal areas of isooctane (Figure 7-7a) and DMF (Figure 7-7b) have similar 

rising trends at the load of IMEP 4.5 bar. This matches the in-cylinder pressure trace 

data analyzed above. However the peak value of the OH area with DMF is 10% 

higher than with isooctane, and this reflects the higher combustion temperature of 

DMF. The OH in the MF flame (Figure 7-7c) increases significantly faster than the 

other two and the maximum OH area of MF is at the same level as that of DMF, but 

the time is about 3°CA earlier as a result of the fast chemical reaction in MF 

combustion.  

 

Figure 7-8 shows the ROHR and the normalized LIF signal at a load of IMEP 5.5 bar. 

The scale of the LIF signal in Figure 7-8 is the same as that in Figure 7-7. Increasing 

errors of the LIF signal data at the later stage are also observed. The OH-LIF signal 

data show that the three fuels have larger differences at the load of IMEP 5.5 bar.  

Figure 7-8 a and 7-8 b shows the maximum OH areas of DMF and isooctane are again 

quite close, but the peak of DMF is earlier showing the earlier heat release. The OH 

area in the MF flame (Figure 7-8 c) has increased fastest and the peak is the highest 

and the earliest.  
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Figure 7-8: ROHR and Normalized LIF Signal (IMEP=5.5bar) (a) Isooctane (b) 
DMF (c) MF 
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It has been known that more OH leads to a fiercer reaction because OH is one of the 

most important radicals in breaking the carbon chains and C-H bonds, as well as in 

oxidizing the carbon and hydrogen atoms. The energy released in these processes is a 

large percentage of the total energy release of the entire combustion process, making 

the OH radical signal representative of the high temperature reaction area. From the 

analysis of the OH and ROHR data above, it can be concluded that molecular 

structure plays an important role in these reactions. Although the circular structures of 

DMF and MF seem to be more stable than the carbon chain structure of isooctane, the 

CH3- radicals in the reaction during their combustion are actually much more reactive 

than the CH3- and -CH2- radicals with isooctane combustion (Wei, 2012b). The CH3- 

structure in the DMF and MF molecules can more readily lose an H- radical, which 

may become an OH radical later, promoting the reaction. Furthermore, the 

unsymmetrical structure of MF makes it even easier to lose an H- radical from the 

CH3- side of the molecule, which is reported in a previous fundamental research study 

(Friese, 2013).  Besides, MF has a lower molecular weight than DMF, which also 

promotes the mass transfer in the combustion process and accelerates the combustion 

reactions.  

7.5.2 Effect of Load  

Figure 7-9 summaries all of the OH-LIF data from the previous figures. The reactivity 

of DMF is between MF and isooctane as discussed in the previous section, but clearly 

the load (temperature and pressure) has a larger impact on DMF’s OH distribution 

than for the other two fuels. The OH signal of DMF appears much faster at higher 
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loads than at low loads and the difference for DMF is more significant. This indicates 

that the variation of ignition delay for DMF caused by the load increase is the largest, 

in line with the heat release results (see Table 7-1). 
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Figure 7-9: Normalized LIF Signal 

 
Figure 7-10: Interval between the OH and ROHR peaks with IMEP 4.5 bar and 

5.5 bar 

 
 

Figure 7-10 shows the intervals between the OH area peaks and the ROHR peaks at 
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the two different loads (from Figure 7-8). At the load of IMEP 4.5 bar, the intervals 

between the ROHR peaks and LIF signal peaks are 19°CA, 15.5°CA and 11°CA for 

isooctane, DMF and MF respectively. In the case of IMEP 5.5 bar, the intervals are 

15.5°CA, 14.5 °CA and 14°CA respectively. Although the IMEP increased by only 1.0 

bar, the interval between the peaks of OH and ROHR have changed significantly. The 

differences between the three fuels are much smaller at 5.5 bar IMEP, where all the 

intervals are between 14 and 15.5°CA. The interval with MF increases and the other 

two decrease with load. This indicates that the ignition delay of MF is more sensitive 

to the in-cylinder condition (pressure and temperature) associated with engine load. 

Thus the initial heat release retards more significantly than with that of the other two 

fuels at IMEP 5.5 bar, resulting in a shorter interval. It appears that when the load 

increases with a given fuel, the in-cylinder condition (turbulence, pressure and 

temperature) starts to play a more pronounced role in the flame development which 

partially offsets the effect of fuel characteristics.    

 

7.5.3 Correlations among OH Distribution, Flame Area and MFB 

Figure 7-11 shows the correlations of OH-LIF signal with MFB and the flame area 

before MFB20 (for the reason explained earlier about the visible flame area, in section 

4.2.1) and curved profiles of the fitting lines can be observed. The data errors or 

deviations in the early stages were relatively large because the initial flame areas were 

small and in later stages near MFB20, the flame in some cycles had already gone out 

of the visible area, reducing the observed growth rates of the OH areas.  
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Figure 7-11:  Correlations among LIF signal, MFB and flame area (a) OH-LIF 
versus MFB at IMEP 4.5bar (b) OH-LIF versus MFB at IMEP 5.5bar (c) 
OH-LIF versus Flame area at IMEP 4.5bar (d) OH-LIF versus Flame area at 
IMEP 5.5bar  (Scattering points: experiment data; lines: fitting results) 

 
 

It is predicable that when the flame is fully inside the visible range, the MFB, flame 

area and OH distribution should have a similar correlation to each other. Since the 

MFB and OH in the flame are both related to the volume of the burned mixture, the 

following cubic function is constructed to evaluate the OH LIF distribution, showing 

a correlation with MFB in isooctane, DMF and MF’s combustion: 
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SOH =α3β3VMFB
2/3 +γ3δ3VMFB

1/3 + C3           (4) 

where SOH is a relative value of OH distribution; VMFB is the MFB value; α3 and γ3 are  

coefficients that related to the engine specifications;  β3 is related to the loads and δ3 

is a coefficient related to the fuel type. C3 is a correction factor related to the fuel and 

engine load. Table 7-6 presents the fitting parameters used for Figure 7-11 a and 7-11 

b. The R-square results are all above 0.975. Notice that the OH-LIF signal is 

normalized, the discussion of the coefficients are all based on the current relative 

values.  

Table 7-6: Fitting results for OH-MFB 

Function SOH =α3β3VMFB
2/3 +γ3δ3VMFB

1/3 + C3    
IMEP  α3β3 γ3δ3 C3 R-square 
4.5 bar Isooctane 0.6946 2.675 -0.944 0.9768 

DMF 0.672  2.752 -0.9834 0.9935 
MF 0.673 2.22 -0.437 0.9838 

5.5 bar Isooctane -7.829 10.08 -2.32 0.9926 
DMF -7.911 10.6 -2.481 0.9853 
MF -7.916 9.72 -1.92 0.9845 

Table 7-6 shows that, with a fixed engine specification, the product of α3 and β3 is 

mainly determined by the in-cylinder temperature and turbulence which are related to 

the load. The product of γ3 and δ3 shows a tendency that a faster combustion fuel has a 

higher value and a higher in-cylinder temperature results in larger variations, 

indicating the effect of the fuel property. The values of C3 show that no OH signal 

appears in the initial stage, because the laser sheet is located lower than the spark plug, 

as introduced in the experimental setup part. The impact of fuel characteristics can be 

observed in the values of C3. For Figure 7-11 a and 7-11 b, C3 values of MF are the 

highest because MF combustion has a faster flame speed and temperature rising rate, 
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and thus OH signal appears the fastest. 

As expected, the similarity of DMF and isooctane at 4.5 bar IMEP has also appeared 

in Figure 7-11 a.  Due to the similarity in the pressure trace results, the two lines 

almost overlapped. In Figure 7-11 b, the three lines for the higher load remain in the 

same order but the lines of DMF and isooctane are more separated than in Figure 7-11 

a for the lower load. The incline angles (indicator of the first degree correlation 

between the amount of burned mixture and the LIF signal) for all the fuels remain 

similar in the initial stages before MFB10, and this observation is in agreement with 

the results in a study of in-cylinder OH chemiluminescence of flame propagation of 

gasoline (Sementa, 2011). Previous HCCI OH-LIF studies (Collin, 2003, Hildingsson, 

2005) also showed similar trends in the correlations of MFB and LIF signal in the 

flame propagation stages. Based on the data above, it is can be concluded that in the 

early stage of in-cylinder SI combustion, OH can indicate the MFB of the three fuels 

in a relative scale. A validation of Equation 4 is shown by Figure 7-12 and the results 

show a good correlation in the constructed function form between the heat release 

rates and the OH signals. 
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Figure 7-12: The validation for the LIF-MFB function form (Collin, 2003) 

 

Figure 7-11 c and 7-11 d are the correlations between OH-LIF and flame area growth. 

The solid lines in the figure are the fitting results for the scattering points. At the load 

of 5.5 bar IMEP, the initial incline angles are larger than those for 4.5 bar IMEP, and 

the change with MF is the most significant. Although the OH area can be deduced 

from Equation 2 and Equation 4, an accurate description of the turbulent combustion 

process using empirical models is not straightforward. Based on the flame 

propagation data and the OH-LIF results, a cubic function has been constructed to 

predict the OH distribution area from the flame images:   

   SOH = α4Aflame
 3 +β4γ4Aflame

 2 +δ4ε4Aflame + C4                           (5) 

where SOH is a relative value of OH distribution; Aflame is the flame area and the others 

are coefficients.  
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Table 7-7:  Fitting results for OH-Flame 

Function SOH =α4Aflame
3 +β4γ4Aflame

2 +δ4ε4Aflame + C4      
IMEP  α4 β4γ4 δ4ε4 C4 R-square 

4.5 bar 
Isooctane -3.3898 2.2728 1.4901 -0.1025 0.9845 

DMF -3.3920 2.3272 1.4889 -0.0783 0.9933 
MF -3.3954 2.1038 1.4897 0.0037 0.9838 

5.5 bar 
Isooctane -4.8528 3.0772 1.5416 -0.0538 0.9922 

DMF -4.8517 -0.5762 3.3328 0.00 0.9927 
MF -4.8820 1.185 2.609 0.0002 0.9883 

 

Table 7-7 presents the fitting coefficients used for Figure 7-11 c and 7-11 d. The 

R-square results are all above 0.983. The variation of the coefficients with load is 

significant in the quadratic term and the one-degree term, while the leading term is 

relatively stable at the same load. Therefore, α4, γ4 and ε4 are used to indicate the 

impacts of the engine specifications and the working condition which is related to the 

turbulence, the in-cylinder pressure and temperature; β4 and δ4 are coefficients related 

to the fuel type. C4 is a correction factor depending on the fuel and the working 

condition in relation to early flame development as faster combustion fuel always has 

higher C4, due to the faster forming of the OH. Higher temperature and in-cylinder 

pressure also give rise to a higher value of C4. The fitting test results show that 

although the deduction from Equation 2 and Equation 4 leads to a different form, the 

cubic degree function in Equation 5 is good to represent the correlation.  

  

7.6  Summary  

The characteristics of the combustion of DMF and MF compared with isooctane were 

studied in a direct injection SI optical engine using OH-LIF and high speed imaging 
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combined with in-cylinder pressure measurement and heat release analysis. MF 

presents significant differences with DMF and isooctane. The following conclusions 

were drawn from the experiment results: 

1. MF has the fastest flame area growth rate and the highest peak flame speed at 

different temperatures and in-cylinder pressures (represented by the loads), 

followed by DMF. The averaged flame propagation data shows that the 

differences between DMF and isooctane are smaller at lower temperatures, 

which matches the similarities in the pressure trace data and the combustion 

phases. The flame speed data also represents a correlation with the previous 

laminar flame speed test results. 

2. Flame area growth data shows significant correlations with the MFB data 

and the flame speed data also reveals correlations with the ROHR data in the 

early stage (when the flame was in the fully visible range). It is found that the 

differences of the fitting results among the three fuels became smaller in a 

condition of higher temperature (high load).  

3. The OH distribution of MF has the highest peak value and time at different 

temperatures and pressures; DMF has the second highest. In general, higher 

combustion temperatures and pressures will advance the peaks of the OH 

signals. The difference becomes quite significant with higher temperatures 

and pressures. The OH LIF signal of DMF has a similar profile to that of 

isooctane in the majority of the early stage when the load is lower, which 

matched the results of the pressure traces. The load had a larger impact on 
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the OH results of DMF, due to the variations in the evaporation of DMF 

which was related to the in-cylinder temperature.      

4. The ROHR trends match the OH distributions well before the flame went out 

of the visible range. The intervals between the peaks of ROHR and OH 

distribution increase in the order of MF, DMF and isooctane. It is also found 

that the intervals change and the difference among the three fuels become 

less at the higher load due to the impact of turbulence. 

5. MFB and OH-LIF results are correlated with a fitting function with an 

exponent of 2/3 and show that OH signal matches the MFB data well, thus 

OH can indicate the MFB of the three fuels in relative values. The flame 

area and the OH-LIF signal reveal cubic function correlations at different 

loads respectively. The fitting results show that combustion temperature is 

an important factor in both of the evaluations. 

6. The most important contribution of this work is that 4 empirical functions 

have been constructed. These functions reveal the close link between the 

flame images in 2-D form and the combustion parameters in the cylinder 

(e.g. heat release, MFB). They potentially offer an alternative way to 

estimate the combustion in the cylinder (e.g. heat release, MFB) using 

photography method rather than using the pressure data. 
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 Chapter 8 

8  Conclusions  

The main aim of this thesis was to explore the spray and combustion characteristics of 

the furan gasoline alternatives: MF and DMF. Their characteristics were compared to 

gasoline and other fuels in order to gain better understanding of these two bio-fuels. 

Some of the previous studies conducted by the author’s group (Daniel, 2012a, Daniel, 

2012b and Wang, 2013) show that these fuels have good engine performance, better 

knock suppression ability, compared to gasoline and acceptable engine out emissions.  

However, in order to eventually apply these furan bio-fuels in IC engines, more 

profound knowledge regarding to the fuels’ injection, atomization and flame 

propagation in both static and dynamic conditions is needed. Thus the author is 

motivated by this aim to perform the following studies: macroscopic spray analysis, 

droplet size and velocity analysis, laminar flame propagation analysis and turbulent 

flame behaviour analysis. The main conclusions from this work are presented in this 

chapter, followed by suggestions and recommendations.  

 

8.1 Summary and Conclusions  

8.1.1 Macroscopic Spray Characteristics  

The macroscopic spray characteristics were studied using the high speed imaging 

technique. At the nominal conditions (150 bar injection pressure, 20 oC ambient 

temperature, 1 bar back pressure), it was observed that the spray forms of the 5 fuels 
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were very similar in terms of shape and penetration length. As the back pressure 

increased (other conditions kept the same), the penetration length of all 5 fuels 

decreased significantly due to higher drag force from the air. However, it was found 

that the fuels with higher densities (e.g. MF) tended to have a better resistance to the 

decrease due to their higher inertial. When the ambient temperature went to 60˚C, the 

penetration lengths of all fuels slightly decreased in the absence of “spray collapse”. 

As the ambient temperature further increased to 90˚C, the “collapse” of the spray 

leaded to dramatic decrease of the penetration length for MF, ethanol and gasoline. It 

was also observed that for single component fuels, higher surface tension leaded to 

smaller spray cone angle. For instance, DMF had the highest surface tension at the 

nominal conditions and this leaded to the smallest spray cone angle.  

Overall, the combined effects of the fuels’ properties and the ambient conditions were 

of vital importance to the spray characteristics of the fuel injection. If MF and DMF 

were going to be used in the automotive engine, the differences of these fuels（e.g. 

higher density, higher initial boiling point and relative high surface tension）compared 

to gasoline should be taken into consideration. Because these would have a significant 

effect on the macroscopic spray characteristics which would in turn affect the engine 

performance.  

 

8.1.2 Droplet size and Velocity Measurement  

PDPA was used to measure the droplet size and velocity of the 5 fuels at different test 

conditions. Compared to ethanol, the droplet size of MF and DMF was more similar 
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to that of gasoline and isooctane at different conditions (e.g. varied injection pressures, 

varied back pressures). The reason that ethanol generally had a much bigger droplet 

size was its relatively high surface tension and dynamic viscosity which would result 

in higher Weber number and Reynolds number.  

The order of the droplet size of the 5 fuels varied under different test conditions due to 

the combined effects of inertial force (represented by Reynolds number) and the 

external disruptive aerodynamic force (represented by Weber number).  

The SMD values for both MF and DMF decreased by around 5% at most distances 

when the back pressure increases from 1 bar to 3 bar.  And the SMD values of the 

two fuels increased by around 30% to 50% when the back pressure increased from 3 

bar to 7bar. This meant the dominant factor affecting between 1 bar and 3 bar was the 

increase of the shear force and as the pressure continues to increase the main effect 

became the spray jet deceleration.  

The main effect of the vessel temperature on the droplet size and the velocity was 

linked to the fuel’s flash boiling point. If the vessel temperature was higher than the 

fuel’s flash boiling point, the droplet velocity would fall dramatically due to 

“collapse” of the spray. With the increase of the surrounding temperature, the SMD 

values of MF and DMF decreased. 

Overall, the differences of the fuel properties leaded to different droplet size orders 

for the fuels at different test conditions. It should be note that the alternative fuels, MF 

and DMF, did have similar droplet sizes at various test conditions compared to the 

benchmark gasoline and isooctane. This was a good sign for them to be used in 
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current GDI engines.  

  

8.1.3 Laminar Flame Propagation  

Schlieren photography was used to study the laminar burning characteristics of MF 

and DMF compare to that of isooctane. The unstretched flame speed of MF was up to 

30% faster than that of DMF and up to 50% faster than that of isooctane. 

Unsurprisingly, the laminar burning velocity of MF was also found to be the highest 

amongst the 3 fuels (around 15%-25% faster than DMF and 30%-45% faster than 

isooctane). It was also found that the flame of MF was not as stable as the other fuels 

due to its higher diffusion-thermal instability, which is characterized by its shorter 

Markstein length; and its higher hydrodynamic instability, which is characterized by 

its slightly higher density ratio and the smaller flame thickness. 

 

In summary, the unstretched flame speed and the laminar burning velocity of MF 

were significantly faster than that of DMF and isooctane. This was very important for 

the understanding of the combustion behavior of MF in the engine cylinder, including 

its faster propagation speed, higher pressure rise rate and good knock suppression 

capability as reported in the literature.   

 

8.1.4 Turbulent Flame Behaviour in a Modern GDI Engine  

The combustion characteristics of DMF and MF compared with isooctane were 

studied in a DISI optical engine using OH-LIF and high speed imaging combined 
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with in-cylinder pressure measurement and heat release analysis. Four empirical 

functions have been constructed.  

For combustion in the engine cylinder, MF behaved very differently compared to the 

other two fuels. It had the fastest flame area growth rate and the highest peak flame 

speed in the cylinder at different loads compared to the other fuels. The correlation of 

the flame speed data with the previous laminar flame speed data indicated that the 

laminar flame characteristics of the fuels played a key role on affecting the in-cylinder 

flame propagation. 

At both loads (IMEP 4.5 bar and 5.5 bar), the area of the OH distribution of MF has 

the highest peak and earliest emerging timing; DMF has the second highest. Their 

MFB and OH-LIF results were correlated with a fitting function with an exponent of 

2/3. The function showed that OH signal matched the MFB data well; thus OH can 

indicate the MFB of the three fuels in relative values.  

Overall, the combustion of MF was much faster than that of DMF and isooctane at the 

same load and this was discovered from both the flame images and the heat release 

analysis. The four functions constructed revealed the close link between the flame in 

2-D form and the combustion parameters in the cylinder (e.g. heat release, MFB). 

They offered alternative ways to estimate the combustion process and combustion 

parameters in the cylinder (e.g. heat release, MFB) using photography method (e.g. 

high speed imaging and OH LIF) rather than using the pressure data. 
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8.2  Future Work 

This work studied the characteristics of the furan bio-fuels, in particular MF and DMF, 

on the aspects of spray and combustion. In order for these fuels to become 

commercialized, more research is required to gain more understanding of the 

behaviour of the spray and combustion. The author here presents some 

recommendations for future work.  

 

8.2.1  Spray Characteristics 

The spray characteristics of the furan bio-fuels can be studied in an optical engine 

using various techniques (e.g. PLIF, high speed imaging) in order to discover their 

macroscopic spray characteristics under real engine conditions. Comparison can be 

made between these fuels and gasoline. The effect of the engine operating conditions 

on the spray can be explored. These data can be used to explain the combustion and 

emissions’ behaviour. Also, this research can be useful for the design of engines, 

especially for the furan bio-fuels.  

 

8.2.2 Laminar Flame Propagation  

The present work studied the laminar burning characteristics under 1 bar condition 

and different initial temperatures using schlieren photography. However, more work 

can be done to understand the laminar burning characteristics under diluted conditions 

or pressurized conditions. These tests can provide more fundamental knowledge for 
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MF and DMF.  

 

8.2.3 Combustion Behaviour in the Engine 

The NOx emissions for MF and DMF are worse than those of gasoline and ethanol, 

even though they have advantages on knock suppression and efficiency (Wang, 2013). 

In order to utilize these fuels in an IC engine, EGR could be used as the NOx 

reduction method. Thus, the study of EGR on the combustion behaviours can be 

carried out. It is important to understand the EGR rate and the turbulent flame 

propagation in the engine.   
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