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Abstract

This thesis deals with the existence and description of integer solutions to max-linear

systems. It begins with the one-sided systems and the subeigenproblem. The description

of all integer solutions to each of these systems can be achieved in strongly polynomial

time.

The main max-linear systems that we consider include the eigenproblem, and the

problem of determining whether a matrix has an integer vector in its column space. Also

two-sided systems, as well as max-linear programming problems. For each of these prob-

lems we construct algorithms which either find an integer solution, or determine that none

exist. If the input is finite, then the algorithms are proven to run in pseudopolynomial

time. Additionally, we introduce special classes of input matrices for each of these prob-

lems for which we can determine existence of an integer solution in strongly polynomial

time, as well as a complete description of all integer solutions.

Moreover we perform a detailed investigation into the complexity of the problem of

finding an integer vector in the column space. We describe a number of equivalent prob-

lems, each of which has a polynomially solvable subcase. Further we prove NP-hardness

of related problems obtained by introducing extra conditions on the solution set.
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1. Introduction

1.1 The max-algebra

For a, b ∈ R = R∪ {−∞} we define a⊕ b = max(a, b) , a⊗ b = a+ b and extend the pair

(⊕,⊗) to matrices and vectors in the same way as in linear algebra, that is (assuming

compatibility of sizes)

(A⊕B)ij = aij ⊕ bij,

(A⊗B)ij =
⊕
k

aik ⊗ bkj and

(α⊗ A)ij = α⊗ aij.

We will use ε to denote −∞ as well as any vector or matrix whose every entry is −∞.

A key advantage of working in max-algebra is that it allows us to write problems which

are non linear in conventional linear algebra, as linear problems in the max-algebraic

semiring. Background on the history of max-algebra can be found in Section 1.3.

1.2 Thesis overview

This thesis deal with the task of finding integer solutions to max-linear systems, these are

systems of equations in the max algebra.

The first set of max-linear systems we consider are one-sided systems, these include

the one-sided inequality, A ⊗ x ≤ b, and the one-sided equality, A ⊗ x = b. Both are
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defined for A ∈ Rm×n
and b ∈ Rm

. We also study the max-algebraic eigenproblem and

subeigenproblem, these are A⊗x = λ⊗x and A⊗x ≤ λ⊗x respectively where A ∈ Rn×n

and λ ∈ R. As usual, a vector x 6= ε satisfying A ⊗ x = λ ⊗ x [A ⊗ x ≤ λ ⊗ x] will be

called an eigenvector [subeigenvector] of A with respect to eigenvalue [subeigenvalue] λ.

The problems of finding solutions to each of these four systems are well known [7, 18,

37, 51] and can be solved in low-order strongly polynomial time. However, the question

of finding integer solutions to these problems has, to our knowledge, not been studied yet.

In applications, solutions to one-sided systems typically represent starting times of

processes that have to meet specified delivery times. Eigenvectors guarantee a stable run

of certain systems, for instance a multiprocessor interactive system [37]. Since the time

restrictions are usually expressed in discrete terms (for instance minutes, hours or days),

it may be necessary to find integer rather than real solutions to these systems. It should

be noted that, when all input coefficients are integer, the existing methods for finding

general solutions to these systems will find integer solutions. In this thesis we consider

finding integer solutions to systems with input coefficients from R or R.

In Section 1.4 we summarise the existing theory necessary for the presentation of our

results. In Chapter 2 we show that the description of all integer solutions to one-sided

systems follows almost immediately from existing theory, and therefore integer solutions

to these systems can be found efficiently. Further, for the question of existence of integer

subeigenvectors, we perform a simple transformation of the input matrix that allows us

to use known results about general subeigenvectors to give an efficient description of all

solutions to the integer subeigenproblem. This is then used to determine a class of matrices

for which the integer eigenproblem can be solved efficiently. In general, however, it appears

that the integer eigenproblem is not easily solvable by using known results about real

eigenvectors. We present a number of additional cases when the integer eigenproblem can

be solved in strongly polynomial time, including a generic case we call Property OneIR.
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In fact we can give a full description of all solutions in these special cases; Theorem 2.17

outlines the result for column typical matrices. We also show that the set of integer

eigenvectors of an n× n matrix A is equivalent to the set of integer points in the column

space of some n × k (k ≤ n) matrix easily obtained from A. Further we prove that we

only need to consider this equivalent problem for a matrix of dimension, (n− k)× k.

As an extension of the one-sided systems, we define the integer image problem to be

the problem of determining whether there exists an integer point in the column span of a

matrix. One application of the integer image problem is as follows [31]. Suppose machines

M1, ...,Mn produce components for products P1, ..., Pm. Let xj denote the starting time

of Mj and aij be the time taken for Mj to complete its component for Pi. Then all

components for product Pi are ready at completion time

ci = max(ai1 + x1, ..., ain + xn) i = 1, ...,m.

Equivalently this can be written as Ax = c. In this context, the integer image problem

asks whether there exists a set of starting times for which the completion times are integer

(this can easily be extended to ask for any discrete set of values).

In Chapter 3 we propose a solution method for finding integer points in the column

space of a matrix, Algorithm 3.1 (INT-IMAGE), which we prove to have pseudopolynomial

run time for finite input in Theorem 3.11. It will follow that, for any matrix, integer

solutions to Ax = λx can be found in a finite number of steps. Moreover, if A is irreducible,

the integer eigenproblem can be solved in pseudopolynomial time. We also present special

types of matrices, which includes a new class of matrix we call column typical, for which

the integer image set can be fully described in strongly polynomial time. For column

typical matrices the description is given in Theorem 3.17. We finish the chapter by looking

for equivalent problems to the integer image problem, which include finding integer points
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in convex sets. A number of the results in Chapters 2 and 3 have been accepted for

publication and can be found in [24].

Since none of the methods in Chapter 3 suggest an obvious way of solving the integer

image problem in polynomial time, we examine the complexity of the problem in more

detail in Chapter 4. Theorem 4.11 proves that we can assume without loss of generality

that the matrix is column typical by performing a transformation to a matrix we call the

column typical counterpart. This allows us to consider the existence of an integer image

with at most one active entry per column, a problem that we prove to be NP-hard for

general matrices in Theorem 4.19, but this does not resolve the complexity of the original

problem.

We then move on to considering two-sided max-linear system (TSS). A TSS is of the

form,

A⊗ x⊕ c = B ⊗ x⊕ d

where A,B ∈ Rm×n
and c, d ∈ Rm

. If c = d = ε, then we say the system is homogeneous,

otherwise it is called nonhomogeneous. Nonhomogeneous systems can be transformed to

homogeneous systems [18]. If B ∈ Rm×k
, a system of the form

A⊗ x = B ⊗ y

is called a system with separated variables.

The problems of finding solutions to A ⊗ x = B ⊗ y and A ⊗ x = B ⊗ x have been

previously studied; one solution approach is the Alternating Method [18, 38]. If A and

B are integer matrices, then the solution found by the Alternating Method is integer,

however this cannot be guaranteed if A and B are real.

In Section 5.1 we show that we can adapt the Alternating Method in order to obtain

algorithms which determine whether integer solutions to these problems exist for real
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matrices A and B, and find one if it exists. Note that various other methods for solving

TSS are known [6, 22, 63], but none of them has been proved polynomial and there is

no obvious way of adapting them to integrality constraints. In Section 5.2 we show that,

for a certain class of matrices, which represents a generic case, the problem of finding an

integer solution to both systems can be solved in strongly polynomial time. These are

matrices satisfying a property we call Property OneFP and Theorem 5.14 gives a complete

description of all integer solutions.

If f ∈ Rn
then the function f(x) = fT ⊗ x is called max-linear. Max-linear program-

ming problems seek to minimise or maximise a max-linear function subject to constraints

given by one or two sided systems. Note that, unlike in linear programming, there is no

obvious way of converting maximisation of max-linear functions to minimisation of the

same type of functions and vice versa. We investigate integer solutions to max-linear

programs in Chapter 6.

In Section 6.1 we briefly show that integer solutions to one-sided max-linear programs

(these are max linear programs for which the constraint is a one-sided equality) can easily

be found by adapting known methods which find real solutions. This shows that integer

one-sided max-linear programs are strongly polynomially solvable.

We are more interested in max-linear programs which have constraints in the form of

a TSS. For A,B ∈ Rm×n, c, d ∈ Rm, f ∈ Rn the max-linear program (MLP) is given by

fT ⊗ x→ min or max

s.t. A⊗ x⊕ c = B ⊗ x⊕ d

x ∈ Rn
.

The max-linear programming problem has been used to describe the task of optimising

multiprocessor interactive systems [19]. Here the variables xj correspond to starting times

5



of these systems. If the starting times are restricted to discrete values then the MLP is

transformed to an integer max-linear program (IMLP).

Solution methods to solve the MLP are known, for example in [18, 19] a bisection

method is applied to obtain an algorithm that finds an approximate solution to the MLP

when the input matrices are real. Again, an integer solution is found for any instances of

the MLP with integer entries, but the problem with integrality constraints is very different

if the entries are real. In Section 6.2 we develop two algorithms, 6.19 (INT-MAXLINMIN)

and 6.22 (INT-MAXLINMAX), based on the bisection method which will find an optimal

solution to the IMLP, or determine that none exist. The algorithms are proven to run in

pseudopolynomial time for finite input matrices in Corollaries 6.21 and 6.24. In Section

6.3 we develop a new method for input matrices satisfying Property OneFP. Theorems

6.33 and 6.34 and their corollaries show that the optimal objective value, and a number

of optimal integer solutions to the integer max-linear program can be found in strongly

polynomial time in this case. The material in Sections 6.2 and 6.3 has been published in

[25] and [26].

1.3 Literature review

Papers regarding max-algebra (or tropical algebra) first appeared as early as the 1950’s.

For 20 years authors in many different areas were independently discovering that max

algebra (and other idempotent algebras) were useful in areas such as operations research,

scheduling (see for example [35]) and graph theory (see for example [32]) to name a few.

The publication [37] is considered by many as the first major work on max-algebra, and

it was the first work to develop a ”unified account” of max-algebra. Since then, a huge

number of mathematicians have contributed to the field, in many different areas and on

many different problems, we note here the books [37, 66, 7, 51, 18] which represent only

a small sample of the existing literature.
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Part of the interest in max-algebra is due to the ability to model real world examples

as linear systems. One influence was the study of discrete event systems [33] which, in

conventional algebra, were nonlinear. A number of examples of modelling problems using

max-algebra are given in [7] and include; production/manufacturing; queuing systems;

parallel computation; traffic and others. Job-shop scheduling [37] and cellular protein

production [12] have also been modelled using max-algebra. More recent applications

include a description of how to model the entire Dutch railway system using max-algebra

[51]. Further, tropical geometry is used in Klemperer’s 2008 Product-Mix Auction [53],

used by the Bank of England in the financial crisis.

One of the first problems considered was the question of existence of a solution to the

system A⊗ x = b in [35]. A combinatorial approach to describing the set of all solutions

to A ⊗ x = b can be found in [16]. It is proved in [15] that for every matrix there exist

b for which the equation A ⊗ x = b has no solutions, and b for which there are infinite

solutions. The only other possibility is that the equation has a unique solution; matrices

having a unique solution to A ⊗ x = b for some b are called strongly regular. These

matrices were studied in [14], where the author gives necessary and sufficient conditions

for strong regularity. Given a strongly regular matrix [15] describes the set of all b for

which a unique solution exists.

Another key question is that of finding max-algebraic eigenvalues and eigenvectors.

A full description of the eigenvectors of an irreducible matrix appears in [37], see also

[50, 62]. The results for reducible matrices can be found, for example, in [8]. It was

proved in [36] that the maximum cycle mean is the only possible eigenvalue for finite

matrices. It was later proved that, for a general matrix, the maximum cycle mean is the

largest possible eigenvalue (if one exists) [37].

An O(n3) (actually O(n|E|)) algorithm, called Karp’s algorithm, for computing the

maximum cycle mean was designed and proved in [52]. In [41], the authors address Karp’s
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algorithm, noting that it considers many unnecessary nodes and edges when used. Two

algorithms based on Karp’s original method are proposed, which address this shortfall.

Other methods for finding the maximum cycle mean include the power method for irre-

ducible matrices, [43]. Faster results exist for certain special classes of matrix, for example

there are O(n2) methods for Monge matrices and bivalent matrices [49, 20] and a O(n)

method for circulant matrices [56].

The eigenproblem has also been studied for infinite matrices, see for example, [3].

As an extension of one-sided systems and the eigenproblem, systems of the form A⊗

x⊕ b = λ⊗ x were studied in [29] and, independently, in [54]. The authors describe the

set of all solutions. Note that in [7] and others the existence conditions were established:

that is the description of the least solution (if one exists).

A celebrated result regarding matrix powers in max-algebra is the Cyclicity theorem

[33], which proves that every irreducible matrix is ultimately periodic, and that the period

is equal to the cyclicity. For finite matrices this result appears in [37]. Other results

regarding matrix powers include the study of robust matrices, these are matrices A for

which Akx is an eigenvector of A for all x and some k. The authors of [21] fully characterise

irreducible robust matrices as matrices with period equal to 1, which can be checked in

O(n3) time by results in [48].

The study of two-sided systems began at least as early as the 1980’s, and remains

an active area of research today. An elimination method for solving these systems (and

finding all solutions) appears in [22]. Later, the Alternating method was developed [38].

The Alternating method either finds a solution to a two-sided system or determines that

none exist. The algorithm runs in pseudopolynomial time for integer input matrices. The

method was generalised in [58] to find a solution to the system A(1) ⊗ x1 = A(2) ⊗ x2 =

... = A(k) ⊗ xk and the pseudopolynomial bound for integer input matrices was extended

to cover this more general case. The author also proved that the Alternating method has
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finite runtime for general input matrices.

A method for finding a solution to a two-sided system based on finding upper bound

constraints to subproblems is given in [63] and a pseudopolynomial method based on

calculating the Chebyshev distance between Ax and Bx can be found in [47]. Other

methods for solving TSS are also known, see for example [6, 22, 63]. In [9] the max-atom

problem is studied. This problem is polynomially equivalent to the problem of solving

a two-sided system in max-algebra. It is proved that, for integer input, the max-atom

problem is pseudopolynomial, but no consideration is made to integer solutions for real

input.

Given a tropical polyhedron, represented externally by a system of inequalities in

max algebra (a two-sided system), the authors in [6] presented a method to compute a

description in terms of extreme points. This was first studied in [22]. In [1], it is proved

that determining whether a tropical polyhedron is non empty (that is finding a solution

to a system of the form A⊗x⊕c ≤ B⊗x⊕d) is equivalent to solving a mean payoff game.

This is a well known problem in NP ∩ co-NP, so a polynomial algorithm is expected to

exist but, to date, none has been found.

Convexity in max-algebra is also an active area of research. Many results from clas-

sical convexity have been established; for example analogues of the classical separation

theorems appear in [34] and in fact earlier in [65]; the existence of a tropical convex hull

of a tropical polytope in [42]. A combinatorial view was introduced in [42], which links

also to the area of tropical geometry.

The generalised eigenproblem looks for solutions to A⊗x = λ⊗B⊗x. Since, for fixed

λ, this reduces to a TSS, the area of interest is to describe all generalised eigenvalues. The

problem was first studied in [11], where it is proved that, for symmetric matrices, there is

at most one eigenvalue. Special solvable cases are presented in [40] as well as upper and

lower bounds on the eigenvalues. In [47] the authors present a pseudopolynomial method
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to describe the set of all eigenvalues.

Linked to the study of two-sided systems is the study of max-linear programming

problems. As mentioned previously a bisection method was developed in [18, 19]. Also,

a Newton type algorithm has been designed [46] to solve a more general, max-linear

fractional programming problem by a reduction to a sequence of mean payoff games. In [4]

the authors study tropical linear programming, with constraints of the form A⊗x ≥ B⊗x,

and adapt the simplex algorithm to work in the tropical setting.

There are numerous problems for which max/tropical algebra has been used to shed

light on the solutions in conventional linear algebra. This link between linear algebra and

max-algebra was first observed in [44]. The authors in [29] use max-algebra to describe

the set of all solutions in nonnegative linear algebra to Ax + b = x. In [30] it is proved

that the sequence of the eigencones of successive powers of A is periodic in both max

algebra and conventional, nonnegative algebra. In [28] it is demonstrated that max-

algebra (specifically max-times algebra, which is isomorphic to the max-plus algebra) can

be used to provide a complete description of all solutions to X−1AX ≤ µE in conventional

algebra; previously a full description did not exist.

In [2], eigenvalues are defined as the tropical roots of the characteristic polynomial

of A. The authors prove that the absolute value of the normal eigenvalues of a complex

matrix can be bounded by the tropical eigenvalues of A. This was motivated by a tropical

interpretation of work by Hadamard and Ostrowski which bounds the absolute value of

the product of the complex roots of a complex polynomial by functions of the tropical

roots of an associated tropical polynomial. Also, [55] contains proofs that the tropical

roots of a tropical polynomial can provide a good approximation to the conventional

eigenvalues of a matrix polynomial. The advantage of using tropical algebra here is that

the max-algebraic roots can be calculated in linear time, and can then be used as starting

points for algorithms which search for conventional roots/eigenvalues.
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1.4 Preliminary results

As in conventional algebra, it is common to omit the ⊗ symbol from calculations. We

note here that, except for complexity arguments, all multiplications where the symbol has

been omitted are in max-algebra. In some cases we convert back to using symbols max

and + instead of ⊕ and ⊗ for ease of understanding the calculations, but it should be

understood that we are still working in the max-algebra. When the symbol × is used it

is understood to be conventional multiplication in linear algebra and, similarly, when we

write a
b

we are referring to conventional division or a usual fraction.

We will use the following standard notation. For positive integers m,n, k we denote

M = {1, ...,m}, N = {1, ..., n} and K = {1, ..., k}. A vector/matrix whose every entry

belongs to R is called finite. A vector whose jth component is zero and every other

component is ε will be called a unit vector and denoted ej. The zero vector, of appropriate

size, is denoted 0. If a matrix has no ε rows (columns) then it is called row (column)

R-astic and it is called doubly R-astic if it is both row and column R-astic. Note that the

vector Ax is sometimes called a max combination of the columns of A. For α ∈ R, α−1 is

simply −α in conventional notation.

If A = (aij) ∈ Rn×n
, then λ(A) denotes the maximum cycle mean, that is,

λ(A) = max

{
ai1i2 + ...+ aiki1

k
: (i1, ..., ik) is a cycle, k = 1, ..., n

}

where max(∅) = ε by definition. Note that this definition is independent of whether we

allow cycles to contain repeated nodes [18]. The maximum cycle mean can be calculated

in O(n3) time [18, 52].

The following is well known.
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Lemma 1.1. Let A,B ∈ Rn×n
. Then

A ≤ B ⇒ λ(A) ≤ λ(B).

It is easily seen that λ(αA) = αλ(A) and, in particular, λ(λ(A)−1A) = 0 if λ(A) > ε.

The matrix (λ(A)−1A) will be denoted Aλ. If λ(A) = 0, then we say that A is definite. If

moreover aii = 0 for all i ∈ N then A is called strongly definite.

An n × n matrix is called diagonal, written diag(d1, ..., dn) = diag(d), if its diagonal

entries are d1, ..., dn ∈ R and off diagonal entries are ε. We use I to denote the iden-

tity matrix, I = diag(0, ..., 0), of appropriate size. A matrix Q is called a generalised

permutation matrix if it can be obtained from a diagonal matrix by permuting the rows

and/or columns. Generalised permutation matrices are the only invertible matrices in

max-algebra [18, 37].

Given A ∈ Rm×n
and sets S ⊆M,T ⊆ N , we write A[S, T ] to mean the submatrix of

A with rows from S and columns from T . We denote A[T, T ] by A[T ].

For matrices with λ(A) ≤ 0 we define

A+ = A⊕ A2 ⊕ ...⊕ An and

A∗ = I ⊕ A⊕ ...⊕ An−1.

Further, if A is definite at least one column in A+ is the same as the corresponding column

in A∗ and we define Ã to be the matrix consisting of columns identical in A+ and A∗.

The matrix A∗ is often called the Kleene star. The matrices B̃, B+ where B = Aλ will

be denoted Ãλ and A+
λ respectively. Using the Floyd-Warshall algorithm; see, e.g., [18],

A∗ can be calculated in O(n3) time.

By DA we mean the weighted digraph (N,E,w) where E = {(i, j) : aij > ε} and the

weight of the edge (i, j) is aij. A is called irreducible if DA is strongly connected (that is,
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if there is an i− j path in DA for any i and j). If σ is a cycle in DA then we denote its

weight by w(σ,A), and its length by l(σ). A cycle is called critical if

w(σ,A)

l(σ)
= λ(A).

We denote by NC(A) the set of critical nodes, that is any node i ∈ N which is on a critical

cycle. The digraph with node set N and edge set equal to the edges on all critical cycles

is called the critical digraph and denoted CA.

If A ∈ Rn×n
is interpreted as a matrix of direct-distances in DA, then At (where t is a

positive integer) is the matrix of the weights of heaviest paths with t arcs. Following this

observation it is not difficult to deduce the following two lemmas.

Lemma 1.2. [18] Let A ∈ Rn×n
and λ(A) > ε.

(a) Ãλ is column R-astic.

(b) If A is irreducible then A+
λ , and hence also Ãλ, are finite.

Lemma 1.3. Let A ∈ Rn×n
. If λ(A) = 0 then λ(A+) = 0.

If a, b ∈ R := R ∪ {+∞}, then we define a⊕′ b := min(a, b). Moreover a⊗′ b := a+ b

exactly when at least one of a, b is finite, otherwise

(−∞)⊗′ (+∞) := +∞ and (+∞)⊗′ (−∞) := +∞.

This differs from max-multiplication where

(−∞)⊗ (+∞) := −∞ and (+∞)⊗ (−∞) := −∞.

The pair of operations (⊕′,⊗′) is extended to matrices and vectors similarly as (⊕,⊗).

For a vector γ we use γ(−1) to mean the vector with entries γ−1
i . Similarly, for A ∈

R
m×n

, A(−1) = (a−1
ij ). For A ∈ R

m×n
we define A# = −AT ∈ R

n×m
. It can be shown
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[18, 37] that (A ⊗ B)# = B# ⊗′ A#. If A = (aij) ∈ Rm×n
then Aj stands for the jth

column of A. Given a matrix A ∈ Rm×n
and a vector c ∈ Rm

, we use (A|c) to denote the

m× (n+ 1) matrix obtained from A by adding c as an extra, final, column. The following

observation is easily seen.

Lemma 1.4. Let A ∈ Rm×n
, x ∈ Rn.

(i) If A is row R-astic then A⊗ x is finite.

(ii) If A is column R-astic then A# ⊗′ x is finite.

A set S ⊆ Rn
, is called a max-algebraic subspace if, for any u, v ∈ S and α, β ∈ R,

αu⊕ βv ∈ S.

We use Pn to denote the set of permutations on N . For A ∈ Rn×n
the max-algebraic

permanent is given by

maper(A) =
⊕
π∈Pn

⊗
i∈N

ai,π(i).

For a given π ∈ Pn its weight with respect to A is

w(π,A) =
⊗
i∈N

ai,π(i)

and the set of permutations whose weight is maximum is

ap(A) = {π ∈ Pn : w(π,A) = maper(A)}.

We note here that the set ap(A) is the set of optimal solutions to the assignment problem.

Propositions 1.5-1.12 below are standard results.

Proposition 1.5. [18, 37] If A ∈ Rm×n
and x, y ∈ Rn

, then

x ≤ y ⇒ A⊗ x ≤ A⊗ y and A⊗′ x ≤ A⊗′ y.

14



Corollary 1.6. [18, 37] If A,B ∈ Rm×n
and x ≤ y, then

B# ⊗′ (A⊗ x) ≤ B# ⊗′ (A⊗ y).

Corollary 1.7. [18] If f ∈ Rn
and x, y ∈ Rn

, then

x ≤ y ⇒ fTx ≤ fTy.

Note that, if Ax ≤ b, x ∈ Zn and bi = ε, then the ith row of A is ε. In such a case the

ith inequality is redundant and can be removed. We may therefore assume without loss

of generality that b is finite when dealing with integer solutions to one-sided systems.

Definition 1.8. If A ∈ Rm×n
and b ∈ Rm, then, for all j ∈ N , define

Mj(A, b) = {t ∈M : atj ⊗ b−1
t = max

i
aij ⊗ b−1

i }.

Proposition 1.9. [18, 35, 37] Let A ∈ Rm×n
, b ∈ Rm and x̄ = A# ⊗′ b.

(i) Ax ≤ b⇔ x ≤ x̄

(ii) Ax = b⇔ x ≤ x̄ and ⋃
j:xj=x̄j

Mj(A, b) = M.

By Propositions 1.5 and 1.9 we have the following.

Corollary 1.10. Let A ∈ Rm×n
, b ∈ Rm and x̄ = A# ⊗′ b.

(i) x̄ is always a solution to Ax ≤ b

(ii) Ax = b has a solution ⇔ x̄ is a solution ⇔ A⊗ (A# ⊗′ b) = b.

Since this thesis deals with integer solutions we only summarise here the existing

theory of finite eigenvectors and subeigenvectors. A full description of all solutions to

Ax ≤ b, Ax = b, Ax = λx and Ax ≤ λx can be found e.g. in [18].
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It is known [18] that, if λ(A) = ε, then A has no finite eigenvectors unless A = ε. We

may therefore assume without loss of generality that λ(A) > ε when discussing integer

eigenvectors.

For A ∈ Rn×n
and λ ∈ R we denote

V (A, λ) = {x ∈ Rn : Ax = λx} and

V ∗(A, λ) = {x ∈ Rn : Ax ≤ λx}

Proposition 1.11. [37] Let A ∈ Rn×n
, λ(A) > ε. Then V (A, λ) 6= ∅ if and only if

λ = λ(A) and Ãλ is row R-astic (and hence doubly R-astic).

If V (A, λ(A)) 6= ∅, then

V (A, λ(A)) = {Ãλu : u ∈ Rk}

where Ãλ is n× k for some k ≤ n.

Proposition 1.12. [18] Let A ∈ Rn×n
, A 6= ε. Then V ∗(A, λ) 6= ∅ if and only if

λ ≥ λ(A), λ > ε.

If V ∗(A, λ) 6= ∅, then

V ∗(A, λ) = {(λ−1A)∗u : u ∈ Rn}.

If λ ∈ Z and A is integer, then (λ−1A)∗ is integer and hence we deduce the following.

Corollary 1.13. If A ∈ Zn×n, then Ax ≤ x has a finite solution if and only if it has an

integer solution.

A ∈ Rn×n
is called increasing if aii ≥ 0 for all i ∈ N . Since (Ax)i ≥ aiixi we

immediately see that A is increasing if and only if Ax ≥ x for all x ∈ Rn
. It follows from
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the definition of a definite matrix that aii ≤ 0 for all i ∈ N . Therefore a matrix is strongly

definite if and only if it is definite and increasing. It is easily seen [18] that all diagonal

entries of all powers of a strongly definite matrix are zero and thus in this case

A+ = A∗ = Ãλ.

Hence we have

Proposition 1.14. If A is strongly definite then V (A, 0) = V ∗(A, 0).

Other basic properties that we will need are given below. Note that Lemma 1.16 is

the cancellation law in max-algebra.

Lemma 1.15. [18] Let A,B ∈ Rm×n
, c, d ∈ Rm

. Then there exists x ∈ Rn satisfying

Ax⊕ c = Bx⊕ d if and only if there exists z ∈ Rn+1 satisfying (A|c)z = (B|d)z.

Lemma 1.16. [18] Let v, w, a, b ∈ R, a > b. Then for any real number x we have

v ⊕ a⊗ x = w ⊕ b⊗ x⇔ v ⊕ a⊗ x = w.

Finally, for matrices of compatible sizes [18, 37],

X ⊗ (X# ⊗′ Y ) ≤ Y and (1.1)

X ⊗ (X# ⊗′ (X ⊗ Z)) = X ⊗ Z. (1.2)

In searching for integer solutions to the integer image problem one helpful tool is being

able to identify potential active positions.

Given a solution x to Ax = b, we say that a position (i, j) is active with respect to x

if and only if aij + xj = bi, it is called inactive otherwise. Further, an element/entry aij

of A is active if and only if the position (i, j) is active. Related to this definition, we call
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a column Aj active if it contains an active entry. We also say that a component xj of x is

active in the equation Ax = Bx if and only if there exists i such that either aijxj = (Bx)i

or (Ax)i = bijxj. Lastly xj is active in fTx if and only if fjxj = fTx.

For a ∈ R the fractional part of a is fr(a) := a − bac. For a matrix A ∈ Rm×n
we

use bAc (dAe) to denote the matrix with (i, j) entry equal to baijc (daije) for all i, j, and

similarly for vectors. We define bεc = ε = dεe = fr(ε). We outline a number of simple

properties of fr(·) below.

Lemma 1.17. Let a, b, c ∈ R, δ ∈ (0, 1) and x ∈ Z. Then

(i) fr(a) ≥ 0 so a ≥ 0⇔ fr(a) ≤ a.

(ii) fr(−a) =


1− fr(a), if a /∈ Z;

0, otherwise.

(iii) fr(a+ b) = fr(fr(a) + fr(b)).

(iv) fr(a− b) = fr(fr(a)− fr(b)).

In fact,

fr(a) > fr(b)⇒ fr(a− b) = fr(a)− fr(b), and

fr(a) < fr(b)⇒ fr(a− b) = 1− fr(b) + fr(a).

(v) ba+ bc > dae ⇒ b > fr(−a).

(vi) bac ≥ da− δe ⇒ δ ≥ fr(a).

(vii) fr(x+ a) = fr(a).

(viii)

b−ac =


−a if a ∈ Z

−1− bac otherwise.
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(ix)

d−ae =


−a if a ∈ Z

1− dae otherwise.

(x) If b+ c ∈ Z, then fr(b) = fr(−c).

(xi) If b+ c ∈ Z, then

fr(a+ c) = fr(a− b).

Proof. Note that (i), (ii), (iii), (vi), (viii) and (ix) follow easily from the definitions.

Further (vii) follows immediately from (vi). We give proofs for the rest.

(iv) First note that, from (ii),

fr(fr(a) + fr(−b)) =


fr(fr(a)− fr(b)), if b ∈ Z;

fr(fr(a) + 1− fr(b)) = fr(fr(a)− fr(b)), otherwise.

Using this and (iii) we get,

fr(a− b) = fr(a+ (−b)) = fr(fr(a) + fr(−b)) = fr(fr(a)− fr(b)).

Now assume fr(a) > fr(b). Then fr(a)− fr(b) ∈ (0, 1). Therefore

fr(a)− fr(b) = fr(fr(a)− fr(b)) = fr(a− b).

Finally suppose fr(a) < fr(b). Then, similarly as above,

fr(b)− fr(a) = fr(fr(b)− fr(a)) = fr(b− a) = fr(−(a− b))

=


1− fr(a− b), if a− b /∈ Z;

0, otherwise.
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But, if a− b ∈ Z, then fr(a) = fr(b) which does not fit our assumption. Hence fr(b)−

fr(a) = 1− fr(a− b).

(v) First a+ b ≥ ba+ bc > dae. If a ∈ Z then, trivially, b > dae − a = 0 = fr(−a).

Otherwise, a /∈ Z and we obtain bac+ fr(a) + b > dae which implies, b > 1− fr(a) =

fr(−a).

(x) Assume b + c ∈ Z, so fr(b + c) = 0. Clearly b ∈ Z ⇔ c ∈ Z and the result holds in

these cases. Assume that b, c /∈ Z.

Case 1: fr(b) > fr(c) > 0.

Here, 0 = fr(b+ c) = fr(b− (−c)) = fr(b)− fr(−c) by (iv).

Case 2: fr(c) > fr(b) > 0.

Now, 0 = fr(b+ c) = fr(b− (−c)) = 1− fr(−c) + fr(b) = fr(c) + fr(b) by (iv) and

(ii).

Case 3: fr(b) = fr(c) > 0.

In this case we conclude fr(b) = 0.5 = fr(c) and therefore also fr(−b) = 0.5 =

fr(−c).

(vi) bac ≥ da− δe ≥ a− δ = bac+ fr(a)− δ ∴ 0 ≥ fr(a)− δ.

(xi) Since b+ c ∈ Z we have fr(c) = fr(−b) from (x). Then

fr(a+ c) = fr(fr(a) + fr(c)) = fr(fr(a) + fr(−b)) = fr(a− b)

using (iii). �
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2. One-sided systems and the integer

eigenproblem

We show that integer solutions to Ax ≤ b, Ax = b and Ax ≤ λx can be found in

(strongly) polynomial time in Proposition 2.1 and Theorem 2.5. Recall that by an integer

solution we mean a finite integer solution. We also give a full description of all integer

eigenvectors of a matrix and present some strongly polynomially solvable cases of the

integer eigenproblem. This includes a generic case we call Property OneIR, and Theorem

2.17 allows us to fully describe all integer solutions in this case. Much of the material

in Sections 2.1, 2.2, the initial part of Section 2.3, Subsections 2.4.1 and 2.4.2 has been

published in [24].

2.1 One-sided systems

Proposition 1.9(i) provides an immediate answer to the task of finding integer solutions

to Ax ≤ b, namely all integer vectors not exceeding A# ⊗′ b. Integer solutions to Ax = b

can also be straightforwardly deduced from Proposition 1.9(ii) and we summarise this in

the next result.

Proposition 2.1. Let A ∈ Rm×n
, b ∈ Rm and x̄ = A# ⊗′ b.

(i) An integer solution to Ax ≤ b exists if and only if x̄ is finite. If an integer solution

exists, then all integer solutions can be described as the integer vectors x satisfying x ≤ x̄.
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(ii) An integer solution to Ax = b exists if and only if

⋃
j:x̄j∈Z

Mj(A, b) = M

where Mj(A, b) is defined in Definition 1.8. If an integer solution exists, then all integer

solutions can be described as the integer vectors x satisfying x ≤ x̄ with

⋃
j:xj=x̄j

Mj(A, b) = M.

Corollary 2.2. Let A ∈ Rm×n
, b ∈ Rm. An integer solution to Ax ≤ b always exists.

We define x̂ = bA# ⊗′ bc. Then, from Proposition 2.1 and (1.2), we conclude:

Corollary 2.3. Let A ∈ Rm×n
, b ∈ Rm

, c ∈ Zn. Then the following hold:

(i) x̂ is the greatest integer solution to Ax ≤ b (provided x̂ is finite).

(ii) Ax = b has an integer solution if and only if x̂ is an integer solution.

(iii) A⊗ bA# ⊗′ (A⊗ c)c = A⊗ c.

Proof. Similar to the proof of Corollary 3.2.3 in [18]. �

Consider the matrix inequality AX ≤ B where A ∈ Rm×n
, B ∈ Rm×k

, X ∈ Rn×k

and let X̂ = bA# ⊗′ Bc. This system can be written as a set of inequalities of the form

Ax ≤ b in the following way using the notation Xr, Br to denote the rth column of X and

B respectively:

AXr ≤ Br, r = 1, ..., k.

This allows us to state the following result.

Corollary 2.4. Let A ∈ Rm×n
, B ∈ Rm×k

, C ∈ Zn×k. Then the following hold:

(i) X̂ is the greatest integer solution to AX ≤ B (provided X̂ is finite), that is A ⊗

bA# ⊗′ Bc ≤ B.
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(ii) AX = B has an integer solution if and only if X̂ is an integer solution.

(iii) A⊗ bA# ⊗′ (A⊗ C)c = A⊗ C.

2.2 Integer subeigenvectors

For A ∈ Rn×n
we define

IV ∗(A, λ) = V ∗(A, λ) ∩ Zn.

Proposition 1.12 enables us to deduce an answer to integer solubility of the subeigenprob-

lem.

Theorem 2.5. Let A ∈ Rn×n
, λ ∈ R.

(i) IV ∗(A, λ) 6= ∅ if and only if

λ(dλ−1Ae) ≤ 0.

(ii) If IV ∗(A, λ) 6= ∅, then

IV ∗(A, λ) = {dλ−1Ae∗z : z ∈ Zn}.

Note here that λ and λ(·) mean two different things, the first being a scalar, the second

a function defining the maximum cycle mean.

Proof. For both (i) and (ii) we will need the following. Assume that x ∈ IV ∗(A, λ).
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Using the fact that xi ∈ Z for every i we get the equivalences below.

Ax ≤ λx

⇔(λ−1A)x ≤ x

⇔(∀i, j ∈ N) xi ⊗ x−1
j ≥ λ−1 ⊗ aij

⇔(∀i, j ∈ N) xi ⊗ x−1
j ≥ dλ−1 ⊗ aije

⇔dλ−1Aex ≤ x.

Thus integer subeigenvectors of A with respect to λ are exactly the integer subeigenvectors

of dλ−1Ae ∈ Zn×n with respect to 0.

(i) Now, from Proposition 1.12, we see that a finite subeigenvector of dλ−1Ae with

respect to λ = 0 exists if and only if λ(dλ−1Ae) ≤ 0.

Further dλ−1Ae is integer so, by Corollary 1.13, we have that a finite subeigenvector

exists if and only if an integer subeigenvector exists.

(ii) If a finite subeigenvector exists then, again from Proposition 1.12, we know that

V ∗(dλ−1Ae, 0) = {dλ−1Ae∗u : u ∈ R}.

But dλ−1Ae and therefore dλ−1Ae∗ are integer matrices, meaning that we can describe

all integer subeigenvectors by taking max combinations of the columns of dλ−1Ae∗ with

integer coefficients.

Observe that it is possible to obtain an integer vector from a max combination of

the integer columns of the matrix with real coefficients, but only if the real coefficients

correspond to inactive columns. However any integer vectors obtained in this way can

also be obtained by using integer coefficients, for example by taking the lower integer part

of the coefficients, and thus it is sufficient to only take integer coefficients. �
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Corollary 2.6. For A ∈ Rn×n
it is possible to decide whether IV ∗(A, λ) 6= ∅ in O(n3)

time.

2.3 Description of all integer eigenvectors

For A ∈ Rn×n
we define

IV (A, λ) = V (A, λ) ∩ Zn.

It appears that the integer eigenproblem cannot be solved as easily as other one sided

systems. We can however describe the set of all integer eigenvectors by using Proposition

1.11.

Proposition 2.7. Let A ∈ Rn×n
, λ(A) > ε. If IV (A, λ) 6= ∅, then λ = λ(A) and Ãλ is

row R-astic (and hence doubly R-astic).

Further

IV (A, λ(A)) = {z ∈ Zn : z = Ãλu, u ∈ Rk}.

Note that we denote IV (A, λ(A)) by IV (A) since all integer eigenvectors correspond

to λ(A).

Proposition 2.7 shows that the problem of finding one integer eigenvector could be

solved by finding a criterion for existence of, and a method for obtaining, an integer point

in a finitely generated subspace (namely the column space of the doubly R-astic matrix

Ãλ). In Section 3.1 we present an algorithm for finding such a point. The algorithm is

pseudopolynomial for finite matrices which, in light of Lemma 1.2, solves the question of

integer eigenvectors for any irreducible matrix.
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2.4 Some strongly polynomially solvable cases of the

integer eigenproblem

2.4.1 Integer matrices

We observe that the problem of integer eigenvectors can easily be solved for matrices over

Z.

Proposition 2.8. Let A ∈ Zn×n. Then A has an integer eigenvector if and only if

λ(A) ∈ Z and Ãλ is row R-astic.

Proof. First assume that x ∈ IV (A). From Proposition 1.11, we know the only eigenvalue

corresponding to x is λ(A). Then Ax = λ(A)x where the product on the left hand side

is integer. To ensure that the right hand side is also integer we clearly need λ(A) ∈ Z.

Further, any integer eigenvector is finite and so Ãλ is row R-astic by Proposition 1.11.

Now assume that λ(A) ∈ Z and Ãλ is row R-astic. Then Aλ ∈ Zn×n, thus all entries

of A+
λ , A∗λ and Ãλ belong to Z. Again, from Proposition 1.11, we know that all finite

eigenvectors are described by max combinations of the columns of Ãλ. Thus we can pick

integer coefficients to obtain an integer eigenvector of A by Lemma 1.4. �

Corollary 2.9. Let A ∈ Zn×n be irreducible. A has an integer eigenvector if and only if

λ(A) ∈ Z.

We cannot assume that this result holds for a general matrix A ∈ Rn×n
as the following

examples show.

Example 2.10. A ∈ Rn×n has an integer eigenvector ; λ(A) ∈ Z.

A =

1.1 1.1

1.1 1.1

 .
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Let x = (1, 1)T ∈ Zn. Then x ∈ IV (A, 1.1) but λ(A) = 1.1 /∈ Z.

Example 2.11. A ∈ Rn×n
with λ(A) ∈ Z ; A has an integer eigenvector.

A =

2.9 3.5

2.5 2.7

 .

Then λ(A) = 3 ∈ Z but Ax is clearly not integer for any integer vector x.

Further, a matrix does not have to be integer to have an integer eigenvalue or eigen-

vector, and integer matrices need not have integer eigenvectors.

Example 2.12. A ∈ Zn×n ; A has an integer eigenvector and an integer eigenvalue.

A =

 −1 2

3 −1

 .

Then λ(A) = 5
2
/∈ Z. By Corollary 2.9 A cannot have an integer eigenvector.

Example 2.13. A has an integer eigenvector and an integer eigenvalue ; A ∈ Zn×n.

A =

1 1

1 0.2

 /∈ Zn×n.

Then A(1, 1)T = 1(1, 1)T and thus A has an integer eigenvector and an integer eigenvalue.

In the above counterexample the matrix A has a large number of integer entries, so

the question arises whether a real matrix with no integer entries can have both integer

eigenvectors and eigenvalues.

Proposition 2.14. Let A ∈ Rn×n
be a matrix such that it has an integer eigenvector

corresponding to an integer eigenvalue, then A has an integer entry in every row.
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Proof. The only eigenvalue corresponding to integer eigenvectors is λ(A), hence, by

assumption, λ(A) ∈ Z. Now let x ∈ IV (A). Then Ax = λ(A)x where the right hand side

is integer. Therefore (∀i ∈ N) max(aij +xj) ∈ Z which implies that for every i ∈ N there

exists an index j for which aij ∈ Z. �

2.4.2 Strongly definite matrices

Theorem 2.5 and Proposition 1.14 allow us to present a solution to the problem of integer

eigenvectors for strongly definite matrices. Since λ(·) is monotone on Rn×n
we have that,

for strongly definite matrices A, the inequality λ(dAe) ≤ 0 is equivalent to λ(dAe) = 0.

This gives the following result.

Corollary 2.15. Let A ∈ Rn×n
be strongly definite.

(i) IV (A) 6= ∅ if and only if

λ(dAe) = 0.

(ii) If IV (A) 6= ∅, then

IV (A) = {dAe∗z : z ∈ Zn}.

2.4.3 A generic case: Property OneIR

Since IV (A, λ(A)) = IV (Aλ, 0) we can assume without loss of generality that A is definite.

Note from Proposition 2.14 that, if Ax = x, then the active entry in each row is integer.

Thus a necessary condition for a definite matrix A to have an integer eigenvector is that

it has at least one integer entry in each row. We will focus on the case when there is

exactly one.

Definition 2.16. Let A ∈ Rn×n
. If A has exactly one integer entry per row we say that

A satisfies Property OneIR. For each i ∈ N we write c(i) to denote the column index of
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the integer entry in row i.

We say that A weakly satisfies Property OneIR if it has at most one integer entry per

row.

Matrices with at most one integer entry in each row represent a generic case since, if

we generate a random matrix (with real entries), the probability of there being more than

one integer entry in each row is zero.

For an integer eigenvector x, we have that (∀j ∈ N) aij + xj ≤ xi with equality only

when j = c(i). This is equivalent to the following set of inequalities;

(∀i, j ∈ N) xi − xj ≥ daije,

(∀i ∈ N) xc(i) − xi ≥ −ai,c(i). (2.1)

Define a matrix W = (wij) by

wij =


max(daije,−aji), if i = c(j);

daije, otherwise.

.

Then the set of inequalities (2.1) is equivalent to saying that W ⊗x ≤ x. Thus we get

the following result.

Theorem 2.17. Let A ∈ Rn×n
be definite, weakly satisfy Property OneIR and let W be

as defined above.

(i) If (∃i ∈ N)(∀j ∈ N)aij /∈ Z then IV (A) = ∅, else

(ii) A satisfies Property OneIR and IV (A) 6= ∅ ⇔ λ(W ) ≤ 0.

Further, if an integer eigenvector exists, then IV (A) = IV ∗(W, 0).

Remark Since finding integer subeigenvectors can be done in strongly polynomial time,

finding integer eigenvectors for matrices weakly satisfying Property OneIR can also be

29



done in strongly polynomial time.

2.5 A strongly polynomial method if n is fixed

Let A ∈ Rn×n
and assume without loss of generality that A is definite. Suppose there

exists a single row, t say, with 2 integer entries and that all other rows have a single

integer entry. Then, since one entry per row is active, there are two possible choices for

the set of active entries with respect to an integer eigenvector.

Let atj and atl be the only integer entries in row t. Define Aδj to be the matrix A but

with (t, j) entry equal to atj − δ where 0 < δ < 1. Similarly define Aδl to be A but with

(t, l) entry equal to atl−δ. In this way both matrices Aδj and Aδl have exactly one integer

entry per row and IV (A) = IV (Aδj) ∪ IV (Aδl). We can find the integer eigenvectors of

both these matrices in strongly polynomial time.

Extending this idea, assume that there are at most 2 integer entries per row, and that

the number of rows with 2 integer entries is d. Then the number of sets of possible active

elements is at most 2d1(n−d) = 2d since we must choose one integer from every row. Let

S1, ..., St, t ∈ N be the (at most 2d) different sets which each contain the positions of a

possible set of active entries with respect to some eigenvector, that is, each Si contains a

different set of positions, one for each row, which correspond to integer entries.

Define ASr to be the matrix obtained from A by subtracting 0 < δ < 1 from every

integer entry except those with indices in Sr. So ASr is a matrix with exactly one integer

entry per row. Then we can calculate IV (A) by calculating each of IV (ASr), 1 ≤ r ≤ t,

which can be done in strongly polynomial time provided that d is a fixed constant.

Example 2.18. Let

A =

 0 1

−2 −0.5

 .

30



We calculate S1 = {(1, 1), (2, 1)} and S2 = {(1, 2), (2, 1)} so

AS1 =

 0 1− δ

−2 −0.5

 and AS2 =

0− δ 1

−2 −0.5

 .

Now, using Theorem 2.17, we calculate the matrices W S1 and W S2
which satisfy

IV (ASr) = IV ∗(W Sr), r = 1, 2.

This gives

W S1 =

 0 2

−2 0

 and W S2 =

 0 2

−1 0

 .

Note that λ(W S2) > 0 so IV ∗(W S2 , 0) = ∅. We conclude that IV (A) = IV ∗(W S1) 6= ∅

since λ(W S1) = 0. Indeed, using Theorem 2.5, {(2, 0)T , (0,−2)T} ⊆ IV (A).

Proposition 2.19. Let d ∈ N.

If A ∈ Rn×n
is a definite matrix such that the number of rows with more than one

integer entry is at most d, then the number of sets Sr, each describing one possible set of

active positions with respect to some integer eigenvector, is t where t ≤ nd. Further

IV (A) =
t⋃

r=1

IV (ASr)

and each of the sets on the right hand side can be calculated in strongly polynomial time

using Theorem 2.17.

Corollary 2.20. Assume n is fixed. Then all integer eigenvectors of A ∈ Rn×n
can be

described in strongly polynomial time.
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2.6 Describing the multipliers of Ã and finding other

special cases

Here we show that the integer eigenproblem can be solved in strongly polynomial time

if every node in DA is critical, or if there are at most two non trivial components of the

critical digraph CA. Note that by a non trivial component we mean a strongly connected

component that contains at least one edge. Recall that NC(A) is the set of critical nodes

of DA. We develop some results about the integer eigenspace of A when NC(A) = C for

some set C with |C| = c ≤ n.

Recall that, from Proposition 2.7, we have

IV (A, 0) = IIm(Ã). (2.2)

First note that, as a consequence of Lemma 1.3, we can assume without loss of gener-

ality that λ(A+) = 0 for the rest of this section.

A consequence of Proposition 4.1.1 in [18] is the following.

Corollary 2.21. Suppose A ∈ Rn×n
is definite. Then IV (A, 0) ⊆ IV (A+, 0).

We begin with the case when all nodes are critical.

Lemma 2.22. Suppose A is definite. If NC = N then V (A, 0) = V ∗(A, 0).

Proof. First note that A+ = A∗ = Ã under our assumptions. Then, from Propositions

1.11 and 1.12,

V (A, 0) = {Ãu : u ∈ Rn} = {A∗u : u ∈ Rn} = V ∗(A, 0).

�
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From this we immediately get that the integer eigenproblem is solvable in strongly

polynomial time if NC = N since the existence and description of integer subeigenvectors

can be achieved in strongly polynomial time by Corollary 2.6.

Corollary 2.23. Suppose A ∈ Rn×n
is definite, NC(A) = N and λ(A+) = 0. Then

(i) IV ∗(A, 0) = IV (A, 0) = IV (A+, 0) = IV ∗(A+, 0).

(ii) IV (A, 0) 6= ∅ ⇔ λ(dAe) = 0.

(iii) IV (A, 0) = {dAe∗u : u ∈ Zn}.

Proof. (i) We only show that IV (A, 0) = IV (A+, 0) as the other equalities follow from

Lemma 2.22 and the fact that A+ is strongly definite. Firstly, by Corollary 2.21 and using

that A+ is strongly definite,

IV (A, 0) ⊆ IV (A+, 0) = IV ∗(A+, 0). (2.3)

Secondly, from (2.2) and using that A+ = Ã,

IV (A, 0) = IIm(A+). (2.4)

Finally, using the fact that λ(A) ≤ 0 implies (∀k ∈ N)Ak ≤ A⊕ ...⊕ An, we have

(A+)+ = A+ ⊕ (A+)2 ⊕ ...⊕ (A+)n

= A⊕ A2 ⊕ ...⊕ An ⊕ A2 ⊕ ...⊕ An2 ⊕ ...⊕ Ann

= A⊕ ...⊕ An = A+

and hence

IV (A+, 0) = IIm((A+)+) = IIm(A+). (2.5)

Combining (2.3), (2.4) and (2.5) gives the result.
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(ii) & (iii) From (i), IV (A, 0) = IV ∗(A, 0). The results now follow from Theorem

2.5. �

In the case when there are at most two non trivial strongly connected components

of CA, IV (A, 0) = IIm(Ã) where Ã has at most two distinct columns. It will be shown

later that the integer image problem is solvable in strongly polynomial time for n × 2

matrices (see Theorem 3.27). Therefore we can solve this case of the integer eigenproblem

in strongly polynomial time also.

We now consider when 2 < |C| < n.

Recall that A ∈ Rn×n
is called a Kleene star if there exists B ∈ Rn×n

such that

A = B∗. In what follows we use the following two results.

Lemma 2.24. [18] If A ∈ Rn×n
is increasing, then

A ≤ A2 ≤ A3 ≤ ...

Lemma 2.25. [18] A ∈ Rn×n
is a Kleene star if and only if A2 = A and aii = 0 for all

i ∈ N .

Proposition 2.26. If A is a Kleene star, then

IIm(A) = IV (A) = IV ∗(A, 0).

Proof. This is clear since IV (A) = IIm(Ã) and Ã = A. �

We now assume that NC(A) = C and |C| = c. The next result describes the multipliers

y for which it could happen that Ãy = x ∈ IV (A, 0).

Theorem 2.27. Let A ∈ Rn×n
be definite, λ(A+) = 0 and NC(A) = C. The following

are equivalent.

(1) IV (A, 0) 6= ∅.
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(2) (∃x ∈ Zn)x = Ãx[C].

(3) (∃u ∈ Zc)A• ⊗ dA+[C]e∗ ⊗ u ∈ Zn−c where A• ∈ R(n−c)×c
is the matrix formed of

the rows of Ã not in A+[C], that is, A• = A+[N − C,C].

Proof. By applying simultaneous permutation of rows and columns to A if necessary we

can assume without loss of generality that A+ and Ã have the form

A+[C] B

A• A+[N − C]

 and

A+[C]

A•

 (2.6)

respectively. Note that A+[C] is strongly definite and A+[N − C] has no zero diagonal

entry.

We first show that A+[C] is a Kleene star. Indeed by Lemma 2.25 we know that

A+ ⊕ I = (A+ ⊕ I)2 and hence, substituting in the form from (2.6) for A+,

A+[C] B

A• A+[N − C]⊕ I

 =

(A+[C])2 ⊕BA• A(1)

A(2) A(3)


for some matrices A(1), A(2), A(3). Therefore A+[C] ≥ (A+[C])2 and further, by Lemma

2.24, A+[C] ≤ (A+[C])2. So we have equality. Finally A+[C] is a Kleene star by Lemma

2.25.

(1)⇒(2)⇒(3):

Suppose that Ax = x for some x ∈ Zn. Then A+x = x by Corollary 2.21, and hence

A•x[C]⊕ A+[N − C]x[N − C] = x[N − C] implying,

A•x[C] ≤ x[N − C]. (2.7)
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Further (∃y ∈ Rc)Ãy = x which means

x[N − C] = A•y. (2.8)

Also, since A+[C] is increasing,

x[C] = A+[C]y ≥ y (2.9)

and, by Proposition 2.26,

x[C] ∈ IIm(A+[C]) = IV (A+[C], 0) = IV ∗(A+[C], 0). (2.10)

Combining (2.7), (2.8) and (2.9) gives

x[N − C] = A•y ≤ A•x[C] ≤ x[N − C].

This, together with (2.10), gives

Ãx[C] =

A+[C]

A•

x[C] =

 x[C]

x[N − C]

 = x

as required. To show this also implies (3) note that

x[C] ∈ IV ∗(A+[C], 0) = {dA+[C]e∗u : u ∈ Zc}.

(3)⇒(1):

Assume (∃u ∈ Zc)A•⊗dA+[C]e∗⊗u ∈ Zn−c and note that dA+[C]e∗u ∈ IV ∗(A+[C], 0) =

IV (A+[C], 0). Therefore ÃdA+[C]e∗ ⊗ u ∈ IIm(Ã) = IV (A, 0). �
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This tells us that, to determine whether an integer eigenvector of A exists, we need

only find such a vector x[C] ∈ IV ∗(A+[C], 0) satisfying A•x[C] ∈ Z(n−c).

Corollary 2.28. We can determine whether an integer eigenvector of A ∈ Rn×n
exists

in strongly polynomial time when |C| ∈ {1, 2, n− 2, n− 1, n}.

Proof. |C| = n is given by Proposition 2.23.

In all cases, to determine whether an integer eigenvector exists it is sufficient to de-

termine whether the matrix A• ⊗ dA+[C]e∗ has an integer image by Theorem 2.27(3).

Let D = A• ⊗ dA+[C]e∗.

When |C| = n − 1 or |C| = 1 it is trivial to decide whether D has an integer image

since D ∈ R1×(n−1)
or D ∈ R(n−1)×1

.

When |C| = n− 2, then D ∈ R2×(n−2)
and we find an integer image of a 2× n matrix

in strongly polynomial time by Theorem 3.27.

Finally, when |C| = 2, D ∈ R(n−2)×2
and we can determine whether an m× 2 matrix

has an integer image in strongly polynomial time using Theorem 3.30. �

2.7 Conclusion

In this chapter we showed that, for the one-sided inequality, one-sided equality and the

subeigenproblem we can determine whether an integer solution exists in strongly polyno-

mial time, and further that all integer solutions can be described in strongly polynomial

time (see Proposition 2.1 and Theorem 2.5).

For the integer eigenproblem it remains open whether it is polynomially solvable. We

gave a number of equivalent problems (integer image of Ã and integer image of a submatrix

of Ã) to the integer eigenproblem.

In special cases (strongly definite matrices, matrices satisfying Property OneIR, ma-

trices with |C| ≤ 2 or |C| ≥ n− 2) we gave methods to determine existence of an integer
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eigenvector in strongly polynomial time. For Property OneIR and strongly definite ma-

trices a full description could be found in strongly polynomial time. Key results in this

chapter include the definition of the special case, Property OneIR, and the complete

description of integer eigenvectors under this assumption, Theorem 2.17.
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3. Integer points in the column space

Being motivated by the description of integer eigenvectors as integer points in the column

space of a matrix, we study in this chapter the integer image problem. We are concerned

with the question of whether, for a given matrix A ∈ Rm×n
, there exists an integer vector

z in the column space of A, which we will call the image of A. We denote

Im(A) = {y ∈ Rm
: (∃x ∈ Rn

)Ax = y} and IIm(A) = {z ∈ Zm : (∃x ∈ Rn
)Ax = z}.

Observe that, if A ∈ Rm×n
has an ε row, then IIm(A) = ∅, and if A has an ε column

then IIm(A)=IIm(A′) where A′ is obtained from A by removing the ε column. Hence it

is sufficient to only consider doubly R-astic matrices for the rest of this chapter.

Key results in this chapter include the algorithm INT-IMAGE, and the proof of its

complexity for finite input matrices, Theorem 3.11. We give a number of special cases

where the existence of an integer image can be determined in strongly polynomial time,

including when m = 2 or n = 2. Additionally we define the class of column typical

matrices, and give a full description of the set of integer images for this class in Theorem

3.17.

Finally we briefly consider the equivalent problem of finding an integer point in a

max-convex hull, giving some sufficient conditions.

The material in Section 3.1 and Subsections 3.2.1 and 3.2.3 has been published in [24].
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3.1 Algorithm to determine if the column space con-

tains an integer vector

We propose the following algorithm, motivated by the Alternating method from [18, 38]:

Algorithm 3.1. INT-IMAGE

Input: A ∈ Rm×n
doubly R-astic, any starting vector x(0) ∈ Zm.

Output: A vector x ∈ IIm(A) or indication that no such vector exists.

(1) r := 1.

(2) z := A# ⊗′ x(r−1), y := A⊗ z.

(3) If y ∈ Zm STOP: y ∈ IIm(A).

(4) x
(r)
i := byic for all i ∈M .

(5) If x
(r)
i < x

(0)
i for all i ∈M STOP: No integer image.

(6) r := r + 1. Go to (2).

Observe that all vectors produced by Algorithm INT-IMAGE are finite due to Lemma

1.4 and the fact that A# ⊗′ u is finite if u is finite since A# is doubly R-astic.

Theorem 3.2. The doubly R-astic input matrix A ∈ Rm×n
has an integer image if and

only if the sequence {x(r)}r=0,1,... produced by Algorithm INT-IMAGE finitely converges.

To prove this theorem on the correctness of the algorithm we first prove a number of

claims and we will also need the following two results. The first follows from Corollary

1.10(ii) and the second from Proposition 1.5.

Lemma 3.3. [37] Assume that u ∈ Rm is in the image of A ∈ Rm×n
. Then

A⊗ (A# ⊗′ u) = u.
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Lemma 3.4. [37] Let A ∈ Rm×n
, x, y ∈ Rm

. If x ≥ y, then

A⊗ (A# ⊗′ x) ≥ A⊗ (A# ⊗′ y).

Claim 3.5. The sequence {x(r)}r=0,1,... is nonincreasing.

Proof. Note that for each x(r) the algorithm attempts to solve Av = x(r) by finding

z = v̄ = A#⊗′ x(r) which, by Corollary 1.10, satisfies Az ≤ x(r). If we have equality, then

the algorithm halts, otherwise the algorithm calculates x(r+1) = bAzc ≤ Az ≤ x(r). �

Claim 3.6. If A has an integer image, then the sequence {x(r)}r=0,1,... is bounded below

by a vector in IIm(A).

Proof. Assume u ∈ IIm(A). Then also γ ⊗ u ∈ IIm(A) for all γ ∈ Z. Pick γ small

enough so that γ ⊗ u ≤ x(0).

Now assume that x(r) ≥ v for some v ∈ IIm(A). Then, using Lemmas 3.3 and 3.4, we

have

x(r+1) = bA⊗ (A# ⊗′ x(r))c ≥ bA⊗ (A# ⊗′ v)c = bvc = v

and thus our claim holds by induction. �

Claim 3.7. If x
(r)
i < x

(0)
i for some r and all i, then A has no integer image.

Proof. If u ∈ IIm(A), then, by Claims 3.5 and 3.6, the sequence {x(r)}r=0,1,... is nonin-

creasing and bounded below. But further, from the proof of Claim 3.6, we can see that

we can choose γ ∈ Z such that:

(i) γ ⊗ u ∈ IIm(A),

(ii) γ ⊗ u ≤ x(r) for all r, and

(iii) there exists i such that (γ ⊗ u)i = x
(0)
i .
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So we have that x
(0)
i = (γ ⊗ u)i ≤ x

(r)
i ≤ x

(0)
i . This implies that the ith component

of every x(r) is the same, and so there is never an iteration where all components of x(r)

properly decrease. �

Proof of Theorem 3.2. If the matrix has an integer image, then the above results

imply that {x(r)}r=0,1,... is nonincreasing and bounded below by some integer image z of

A. Clearly this implies that the sequence {x(r)}r=0,1,... will converge. Further, since it is

a sequence of integer vectors, at each step at least one component must decrease in value

by at least one until, at the latest, it reaches the corresponding value of z, and thus the

convergence must be finite.

If instead the sequence finitely converges, then there exists an s such that for all r ≥ s,

x(r) = x(r+1). It follows that y = A ⊗ (A# ⊗′ x(s)) ∈ Zm. To see this assume not, then

there exists a component i of y which is not an integer, and thus yi < x
(s)
i . But then

x
(s+1)
i = byic < x

(s)
i which is a contradiction.

Thus y ∈ IIm(A). �

It should be observed that Algorithm INT-IMAGE will always terminate in a finite

number of steps. But for finite matrices we can give an explicit bound. In order to analyse

the performance of Algorithm INT-IMAGE for finite matrices we will use a pseudonorm

on Rn. For a vector x ∈ Rn we define

∆(x) = max
j∈N

xj −min
j∈N

xj.

Lemma 3.8. [39] For vectors x, y ∈ Rn and α ∈ R the following hold:

(i) ∆(x⊕ y) ≤ ∆(x)⊕∆(y) and

(ii) ∆(α⊗ x) = ∆(x).
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Proposition 3.9. Let y ∈ Rm be a vector in the image of A ∈ Rm×n. Then

∆(y) ≤
n⊕
j=1

∆(Aj).

Proof. Since y is in the image of A there exists a vector x ∈ Rn such that y = Ax. Then,

using Lemma 3.8, we have that

y =
⊕
j∈N

xjAj ⇒ ∆(y) = ∆

(⊕
j∈N

xjAj

)
≤
⊕
j∈N

∆(xjAj) =
n⊕
j=1

∆(Aj).

�

Proposition 3.10. Let x(r), with r ≥ 1, be a vector calculated in the run of Algorithm

INT-IMAGE. Then ∆(x(r)) <
⊕n

j=1 ∆(Aj) + 1.

Proof. We know that x(r) = byc where y ∈ Im(A). So, by Proposition 3.9, we have

∆(y) ≤
n⊕
j=1

∆(Aj).

To complete the proof it remains to show that ∆(x(r)) < ∆(y) + 1. This is true since

∆(x(r))−∆(y) = max
j=1,...,n

byjc − min
j=1,...,n

byjc − max
j=1,...,n

yj + min
j=1,...,n

yj < 1.

�

We can now prove a bound on the runtime of Algorithm INT-IMAGE for finite input

matrices.

Theorem 3.11. For A ∈ Rm×n and starting vector x(0) ∈ Zm Algorithm INT-IMAGE
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will terminate after at most

D = (m− 1)

(
2

n⊕
j=1

∆(Aj) + 1

)
+ 1

iterations.

Proof. First suppose that A has an integer image. It follows from Claim 3.7 that there

exists an index, k say, such that the algorithm will find an integer image y of A satisfying

yk = x
(r)
k for all r.

Let C =
⊕n

j=1 ∆(Aj). By Proposition 3.9, ∆(y) ≤ C. Thus, for all i, |yi − yk| ≤ C.

Similarly, using Proposition 3.10, for all i, |x(1)
i −x

(1)
k | < C + 1. But then, since yk = x

(1)
k ,

x
(1)
i − yi < 2C + 1.

Now in every iteration where an integer image is not found, we have that there exists at

least one index i 6= k such that x
(r)
i − x

(r+1)
i ≥ 1. This is since if no change occurred then

we would have found an integer image.

There are at most m − 1 components of x(1) that will decrease in the run of the

algorithm and none will decrease by more than 2C+ 1. Further in every iteration at least

one of these components decreases by at least 1. Thus the maximum number of iteration

needed for the algorithm to get from x(1) to y is

(m− 1) (2C + 1) ,

and we need to add one iteration to get from x(0) to x(1).

Now, if the input matrix has no integer image, and after D iterations the sequence

{x(r)}r=0,1,... has not stabilised, then there would have been an iteration where the kth

component decreased, and so the algorithm would have halted and concluded that A has
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no integer image. �

Remark 3.12. Each iteration requires O(mn) operations and so by Theorem 3.11 INT-

IMAGE is a pseudopolynomial algorithm requiring O(Cm2n) operations if applied to finite

matrices, where C =
⊕n

j=1 ∆(Aj).

Remark 3.13. Since |(Ãλ)ij| ≤ nmax |aij|, Algorithm INT-IMAGE can be used to de-

termine whether IV (A) 6= ∅ for irreducible matrices in pseudopolynomial time.

Example 3.14. The algorithm INT-IMAGE is not a polynomial algorithm in general.

This can be seen by considering the matrix

A =


12.5 7.3− k 16.9

1.8 7.3 −7.2

−2.6 0.1 0.9


and starting vector x(0) = (−k, 0, 0)T . For any k ≥ 0 the algorithm first computes

x(1) = (−k, 0,−8)T and then, in each subsequent iteration, either the second entry of

x(r) decreases by 1 or the third entry of x(r) decreases by 1 until the algorithm reaches

the vector (−k, −k − 9, −k − 16)T ∈ IIm(A). So the number of iterations is equal to

1 + | − k − 9|+ | − k − 8|+ 1 = 2k + 19.

In the case that m = 2 however, it can be shown that the algorithm INT-IMAGE will

terminate after at most 2 iterations. In fact a simple necessary and sufficient condition

in this case is given by Theorem 3.27 in the next section.

3.2 Strongly polynomially solvable special cases

Here we describe a number of special classes of matrices for which we can describe the

integer image set in strongly polynomial time. Throughout this section we assume without

loss of generality that A is doubly R-astic
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3.2.1 Column typical matrices

It follows from the definitions that IV (A, 0) ⊆ IIm(A) for any A ∈ Rn×n
. Here we first

present some types of matrices for which equality holds, and further show that, in these

cases, we can describe the subspaces efficiently.

Let A be a square matrix. Consider a generalised permutation matrix Q, that is, a

matrix which is obtained from a diagonal matrix by permuting the rows and/or columns.

It is easily seen that IIm(A) = IIm(A ⊗ Q). Further, from [18] we know that for every

matrix A with maper(A) > ε there exists a generalised permutation matrix Q such that

A⊗Q is strongly definite and Q can be found in O(n3) time. Therefore when considering

the integer image of a matrix with maper(A) > ε, we can assume without loss of generality

that the matrix is strongly definite.

Definition 3.15. A matrix A ∈ Rm×n
is called column typical if, for each j ∈ N , we

have fr(aij) 6= fr(atj) for any i, t ∈M with i 6= t and aij, atj > ε.

Remark 3.16. From Corollary 2.15, λ(dA⊗Qe) = 0 is a sufficient condition for a matrix

A with maper(A) > ε to have an integer image.

Theorem 3.17. Let A ∈ Rn×n
be a column typical matrix.

(i) If maper(A) = ε, then IIm(A) = ∅.

(ii) If maper(A) > ε and |ap(A)| > 1, then IIm(A) = ∅.

(iii) If maper(A) > ε and |ap(A)| = 1 let Q be the unique generalised permutation

matrix such that A⊗Q is strongly definite. Then

IIm(A) = IIm(A⊗Q) = IV (A⊗Q) = IV ∗(A⊗Q, 0).

Proof. First observe that, if A is column typical and Ax ∈ IIm(A), then no two active

elements of A with respect to x can lie in the same column. This is since the vector xjAj

can have at most one integer entry. Further, it is obvious that there will be one active
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element per row. We deduce that there exists a permutation π ∈ Pn such that the active

elements of A with respect to x are ai,π(i) and no others.

(i) Assume maper(A) = ε. Suppose Ax ∈ IIm(A). Then ai,π(i) + xπ(i) ∈ Z for all

i ∈ N which implies that ai,π(i) 6= ε for all i which is a contradiction.

(ii) Assume maper(A) > ε. Suppose Ax = z ∈ IIm(A).

Let σ ∈ Pn be different from π. Then

n∑
i=1

ai,π(i) + xπ(i) >

n∑
i=1

ai,σ(i) + xσ(i). (3.1)

To see this note that not all ai,σ(i) can be active since there exist i, k ∈ N with i 6= k

such that π(i) = σ(k). Therefore, if ak,σ(k) was active, then fr(ak,σ(k)) = fr(ai,π(i)), which

does not happen. Hence we have that

ai,σ(i) + xσ(i) ≤ max
j
aij + xj = ai,π(i) + xπ(i)

for all i ∈ N and there is at least one i for which equality does not hold.

Finally, from (3.1),
n∑
i=1

ai,π(i) >
n∑
i=1

ai,σ(i)

and so ap(A) = {π}.

(iii) Assume maper(A) > ε and |ap(A)| = 1. Let B = A ⊗ Q. Since B is strongly

definite,

IV ∗(B, 0) = IV (B) ⊆ IIm(B),

so it is sufficient to prove that IIm(B) ⊆ IV (B).

Suppose z ∈ IIm(B). Then there exists x ∈ Rn
such that Bx = z and the only active

elements of B with respect to x are bi,π(i). Further from the proof of (ii) we see that π is

a permutation of maximum weight with respect to B meaning π = id.
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We conclude that zi = maxj(bij + xj) = bii + xi = xi for all i ∈ N and therefore

z ∈ IV (B). �

Using Corollary 2.15 we deduce the following.

Corollary 3.18. If A ∈ Rn×n
is column typical, then the question of whether or not A

has an integer image can be solved in strongly polynomial time.

Above we saw that, if the entries in each column of a strongly definite matrix had

different fractional parts, then only the integer (diagonal) entries were active. So we now

consider strongly definite matrices for which the only integer entries are on the diagonal

to see if the results can be generalised to this class of matrices.

Definition 3.19. A strongly definite matrix A ∈ Rn×n
is nearly non-integer (NNI) if the

only integer entries appear on the diagonal.

Lemma 3.20. Let A ∈ Rn×n
, n ≥ 3, be strongly definite and NNI. Then there is no x

satisfying Ax = z ∈ Zn such that aij with i 6= j is active.

Proof. Let A be a strongly definite, NNI matrix. Suppose that there exists a vector x,

satisfying Ax ∈ IIm(A), such that there exists a row k1 ∈ N with an off diagonal entry

active.

So ∃k2 ∈ N, k2 6= k1 such that ak1,k2 is active. Then

ak1,k2 + xk2 ≥ ak1,k1 + xk1 = xk1 . (3.2)

There is an active element in every row so consider row k2. Then ak2,k2 is inactive

because fr(xk2) = fr(−ak1,k2) > 0 due to Lemma 1.17(x) and the fact that ak1k2 /∈ Z but

xk2 + ak1k2 ∈ Z. This means ak2,k2 + xk2 /∈ Z. Further ak2,k1 is inactive since, otherwise,

ak2,k1 + xk1 > ak2,k2 + xk2 = xk2 which, together with (3.2), would imply that the cycle

(k1, k2) has strictly positive weight. This contradicts the definiteness of A.
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Thus ∃k3 ∈ N, k3 6= k1, k2, such that ak2,k3 is active and, similarly as before,

ak2,k3 + xk3 > ak2,k2 + xk2 = xk2 . (3.3)

Consider row k3. Again it can be seen that both ak3,k3 and ak3,k2 are inactive. Further

we show that ak3,k1 is inactive. If it was active then we would have ak3,k1 + xk3 > xk1

which, together with (3.2) and (3.3), would imply that cycle (k1, k2, k3) has strictly positive

weight, a contradiction.

Thus ∃k4 ∈ N, k4 6= k1, k2, k3 such that ak3,k4 is active.

Continuing in this way we see that,

(∀i ∈ N)(∀j ∈ {1, 2, ..., i}) aki,kj is inactive.

But this means that no element in row kn can be active, a contradiction. �

Theorem 3.21. Let A ∈ Rn×n
be a strongly definite, NNI matrix. Then

IIm(A) = IV (A) = IV ∗(A, 0).

Proof. If n = 2 then A is column typical and the statement follows from Theorem 3.17.

Hence we assume n ≥ 3.

IV (A) ⊆ IIm(A) holds trivially. To prove the converse let A ∈ Rn×n
, n ≥ 3, be

strongly definite and NNI. Then, by Lemma 3.20, there is no x satisfying Ax = z ∈ Zn

such that aij with i 6= j is active. Thus only the diagonal elements can be active. Hence

for any z ∈ IIm(A) we have Ax = z for some x with aii = 0 active for all i ∈ N . Therefore

x = z and so z ∈ IV (A). �

Remark 3.22. Obviously, if the matrix A is strongly definite, then A NNI would imply

that A is column typical, and therefore Theorem 3.17(iii) follows from Theorem 3.21.
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However, to obtain the full classification of the integer image space of any column typical

matrix, we do not assume initially that the matrix is strongly definite.

Extensions to matrix powers

We briefly consider the integer image of powers of square, column typical and NNI

matrices.

Observe that, since A2x = z ⇒ A(Ax) = z, the following result holds.

Lemma 3.23. If A is strongly definite then

IIm(A) ⊇ IIm(A2) ⊇ ... ⊇ IIm(An−1) = IIm(An) = IIm(A+) = IIm(A∗).

As a consequence of Theorem 3.17 we have that:

Proposition 3.24. Let A ∈ Rn×n
be strongly definite and column typical.

(i) If maper(A) = ε, then IIm(At) = ∅ for all t ∈ N.

(ii) If maper(A) > ε and |ap(A)| > 1, then IIm(At) = ∅ for all t ∈ N.

(iii) If maper(A) > ε and |ap(A)| = 1 then, for all t ∈ N,

IV (A) = IIm(A) = IIm(At).

Proof.

(i) and (ii): IIm(A) = ∅ ⇒ IIm(Ak) = ∅.

(iii) Using Lemma 3.23, ∀t ∈ N ,

IV ∗(A, 0) = IV (A) = IIm(A) ⊇ IIm(At) ⊇ IIm(A∗) = IV ∗(A, 0)

�
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Further, as a result of Theorem 3.21:

Proposition 3.25. Let A ∈ Rn×n
be strongly definite and NNI. Then, for all t ∈ N,

IV (A) = IIm(A) = IIm(At).

3.2.2 Upper and lower triangular matrices

We say that A is upper triangular if aij = ε whenever i > j, and lower triangular if

aij = ε whenever i < j. We show that, for matrices of this type with finite diagonal, an

integer image always exists, and describe a method to find a single integer image. The

description of all integer images remains open.

We will discuss upper triangular matrices only, the results for lower triangular matrices

follow similar ideas.

Proposition 3.26. Let A ∈ Rn×n
be upper triangular with finite diagonal. Then IIm(A) 6=

∅.

Proof. By induction on n.

If n = 1, then Aa−1
11 = 0 ∈ Z.

So assume that n > 1 and the result holds for smaller matrices.

Let A′ = A[N − {1}] and note that A′ is upper triangular with finite diagonal. Thus,

by induction hypothesis, there exists x′ ∈ Rn−1
such that A′x′ ∈ Zn−1. Now let α be the

smallest integer such that

α ≥
(
a12 ... a1n

)
x′.

Then setting x = (αa−1
11 , x

′T )T gives Ax ∈ Zn as required. �
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3.2.3 When m = 2 or n = 2

We now show that, if either m or n is equal to 2, we can straightforwardly decide whether

IIm(A) = ∅.

Theorem 3.27. Let A = (aij) ∈ R2×n
be doubly R-astic, and dj := a1j − a2j for all

j ∈ N .

(i) If any dj is an integer, then A has an integer image.

(ii) If no dj is integer, then A has an integer image if and only if

(∃i, j ∈ N)bdic 6= bdjc.

Proof. (i) Without loss of generality assume d1 ∈ Z. Then

A⊗ (−a11, ε, ..., ε)
T = (0,−d1)T ∈ Z2.

(ii) Assume without loss of generality that bd1c 6= bd2c, d1 < d2 and that d1, d2 /∈ Z.

Case 1 d1, d2 ∈ R.

Let d = dd1e so that a21 + d > a11 and a22 + d < a12. Then

A⊗ (−a21 − d, −a12, ε, ..., ε)
T = (0,−d)T ∈ Z2.

Case 2 d1 ∈ R, d2 = +∞.

Then a22 = ε and, for t ∈ Z big enough,

A⊗ (−fr(a21), −fr(a12) + t, ε, ..., ε) = (ba12c+ t, ba21c)T ∈ Z2.

Case 3 d1 = −∞, d2 ∈ R.
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Then a11 = ε and, for t ∈ Z big enough,

A⊗ (−fr(a21) + t, −fr(a12), ε, ..., ε) = (ba12c, ba21c+ t)T ∈ Z2.

Case 4 d1 = −∞, d2 = +∞.

Here a11 = a22 = ε and

A⊗ (−fr(a21), −fr(a12), ε, ..., ε)T = (ba12c, ba21c)T ∈ Z2.

For the other direction, assume that d = bdjc < dj for all j ∈ N and suppose, for a

contradiction, that there exists x ∈ Rn
such that Ax = b ∈ Z2. Without loss of generality

we may assume b = (0, b′)T for some b′ ∈ Z.

If −b′ ≤ d, then

(∀j ∈ N) − b′ < dj = a1j − a2j

∴(∀j ∈ N) a1j > a2j − b′

∴(∀j ∈ N) Mj(A, b) = {1}

∴
⋃
j∈N

Mj(A, b) = {1}.

Thus, by Proposition 2.1, no such x exists.

If instead −b′ > d, then, since b′ ∈ Z, we have b′ ≥ bdic + 1 > di. Then, similarly as

above, Mj(A, b) = {2} for all j and we conclude that no such x exists. �

Note that, if di < dj, the condition bdic 6= bdjc means that

(∃z ∈ Z) z ∈ [di, dj].

So an equivalent condition for a finite matrix A to have an integer image is as follows.
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(a1j − a2j, 0) (a1i − a2i, 0)

αjAj

αiAi

αkAk

(z1, z2)

(z1 − z2, 0)

γz

Figure 3.1: Graphical representation for a finite 2× n matrix to have an integer image.

Proposition 3.28. A ∈ R2×n has an integer image if and only if that there exists an

integer between minj a1j − a2j and maxj a1j − a2j.

We represent this condition graphically in Figure 3.1. In Figure 3.1 the solid lines

represent points in Im(A) that are multiples of a single column and the shaded area

represents all the points in Im(A). If there exists z ∈ IIm(A), then also (z1 − z2, 0)T ∈

IIm(A) and the x-coordinate satisfies, for some i and j,

z1 − z2 ∈ [a1j − a2j, a1i − a2i].

Now we deal with matrices for which n = 2. It should be noted that these results were

also independently discovered in [61]. We start with a lemma whose proof is straightfor-

ward.

Lemma 3.29. Suppose A ∈ Rm×2
.

(i) If ∃j ∈ {1, 2} such that (∀i, t ∈M)fr(aij) = fr(atj), then IIm(A) 6= ∅.
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(ii) If ∃γ ∈ R such that A1 = γA2, then IIm(A) 6= ∅ if and only if

(∃j ∈ {1, 2})(∀i, t ∈M)fr(aij) = fr(atj).

Theorem 3.30. Suppose A ∈ Rm×2
is a doubly R-astic matrix not satisfying the condi-

tions in Lemma 3.29. Let l, r be the indices such that

al2 − al1 = min
i∈M

ai2 − ai1 and ar2 − ar1 = max
i∈M

ai2 − ai1.

Let

L̄ = {i ∈M : fr(ai1) = fr(al1)},

R̄ = {i ∈M : fr(ai2) = fr(ar2)},

L = L̄− R̄ and R = R̄− L̄. Denote fr(−al1)− fr(−ar2) by f . Then

(i) If L̄ ∪ R̄ 6= M then IIm(A) = ∅.

(ii) Otherwise IIm(A) 6= ∅ if and only if

⌊
min
i∈L

(ai1 − ai2) + f

⌋
−
⌈

max
i∈R

(ai1 − ai2) + f

⌉
≥ 0.

Proof. We first prove that fr(x1) = fr(−al1) and fr(x2) = fr(−ar2) for any x satisfying

Ax ∈ IIm(A). We do this by showing that both al1 and ar2 are active for any such x and

applying Lemma 1.17(x) to the fact that x1 + al1, x2 + ar2 ∈ Z.

Assume for a contradiction that Ax ∈ IIm(A) but al1 is not active. Then we have

that al1 + x1 < al2 + x2 ∈ Z and therefore

x1 − x2 < al2 − al1 = min
i∈M

ai2 − ai1.
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Moreover there must be an active entry in the first column of A, so ∃t ∈M such that

at1 + x1 ≥ at2 + x2, equivalently x1 − x2 ≥ at2 − at1, a contradiction. A similar argument

works for ar2.

(i) This is now easily seen to be true since for any x with fr(x1) = fr(−al1) and

fr(x2) = fr(−ar2) there will be at least one index i ∈M such that (Ax)i /∈ Z.

(ii) We have already proved that, for any x such that Ax ∈ IIm(A), it is guaranteed

that fr(x1) = fr(−al1) and fr(x2) = fr(−ar2). Therefore, for any candidate x with these

fractional parts, the set L̄ ∩ R̄ contains all the row indices for which we can guarantee

that (Ax)i ∈ Z, since both ai1x1 and ai2x2 will be integer under our assumptions. We

construct a matrix A′ from A by removing all rows with indices in L̄∩ R̄. We also define

sets L′ and R′ to be the sets of row indices in A′ that correspond to the sets L and R

respectively. Observe that

IIm(A) 6= ∅ if and only if IIm(A′) 6= ∅.

Further

{x ∈ R2 : A⊗ x ∈ IIm(A)} = {x ∈ R2 : A′ ⊗ x ∈ IIm(A′)} := X.

Since any x ∈ X has the form

γ1 + fr(−al1)

γ2 + fr(−ar2)


for some γ1, γ2 ∈ Z we can decide whether IIm(A′) 6= ∅ by determining whether there

exists α ∈ Z such that

x =

 fr(−al1)

α + fr(−ar2)

 ∈ X.
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The set L′ (R′) is exactly the set of row indices i for which a′i1 (a′i2) is active for any

x ∈ X. So such an α exists if and only if the following sets of inequalities can be satisfied.


(∀i ∈ L′)ai1 + x1 > ai2 + x2

(∀i ∈ R′)ai2 + x2 > ai1 + x1

⇔


(∀i ∈ L′)ai1 + fr(−al1) > ai2 + fr(−ar2) + α

(∀i ∈ R′)ai2 + fr(−ar2) + α > ai1 + fr(−al1)

⇔max
i∈R′

(
ai1 − ai2 + f

)
< α < min

i∈L′

(
ai1 − ai2 + f

)
.

Therefore IIm(A′) 6= ∅ if and only if there exists an integer

α ∈
[⌈

max
i∈R′

(ai1 − ai2) + f

⌉
,

⌊
min
i∈L′

(ai1 − ai2) + f

⌋]
.

�

Remark 3.31. Note that the proof tells us how to describe all integer images of the matrix

A ∈ Rm×2
, since we can easily describe all α such that

 −fr(al1)

α− fr(ar2)

 ∈ X.

3.3 Integer image and max-convex hulls: a graphical

interpretation

In Proposition 3.28 and Figure 3.1 we viewed the integer image problem for a finite 2×n

matrix as the problem of finding an integer point in an interval. As a consequence of
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Proposition 3.28, we can describe the entire set of integer images for 2 × n matrices as

shown below.

Corollary 3.32. Let A ∈ R2×n and suppose IIm(A) 6= ∅. Let zU and zL be the largest

and smallest integers respectively contained in the interval

[
min
j

(a−1
1j ⊗ a2j),max

j
(a−1

1j ⊗ a2j)

]
.

Then the set of integer images of A is equal to

{
α

 0

zL

⊕ β
 0

zU

 : α, β ∈ Z
}
.

In this section we study these ideas for general matrices, and show that the integer

image problem links to the problem of finding integer vectors in a max-algebraic convex

hull.

3.3.1 Necessary conditions using intervals

Let A ∈ Rm×n. Recall Im(A) =
{
y ∈ Rm : (∃x ∈ Rn

)Ax = y
}
. Now Im(A) is a subspace

and hence the following result is trivial.

Lemma 3.33. Let A ∈ Rm×n where m ≥ 2. Then x ∈ Im(A)⇔ x−1
1 x ∈ Im(A).

The above lemma allows us to assume without loss of generality that z ∈ IIm(A) has

z1 = 0.

Theorem 3.34. Let m ≥ 2. If an m× n matrix A has an integer image then, for every

z ∈ IIm(A) with z1 = 0,

(∀t ∈M − {1})zt ∈
[

min
j=1,...,n

(a−1
1j ⊗ atj), max

j=1,...,n
(a−1

1j ⊗ atj)
]
.
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Proof. Assume A has an integer image. Thus there exists a vector x = (x1, x2, ..., xm)T ∈

Im(A) where xi ∈ Z, i = 1, ...,m.

By Lemma 3.33, (0, z2, ...zm)T ∈ Im(A) where (∀t ∈M − {1}) zt = xt − x1 ∈ Z.

We will show that

(∀t ∈M − {1}) min
j

(a−1
1j ⊗ atj) ≤ zt ≤ max

j
(a−1

1j ⊗ atj). (3.4)

For the upper bound note that 0 = maxj(αj ⊗ a1j). This means that αj ≤ a−1
1j for all

j. Also,

zt = max
j

(αj ⊗ atj) ≤ max
j

(a−1
1j ⊗ atj)

by our bounds on αj.

For the lower bound in (3.4) assume that zt < minj(a
−1
1j ⊗ atj). Since (0, z2, ..., zm)T ∈

Im(A) we have zt = maxj(αj ⊗ atj). Thus

max
j

(αj ⊗ atj) < min
j

(a−1
1j ⊗ atj).

Which implies,

αj ⊗ atj < a−1
1j ⊗ atj,

∴αj < a−1
1j .

But then max(αj⊗a1j) < 0 which contradicts the fact that (0, z2, ..., zm)T ∈ Im(A). �

Corollary 3.35. Let A ∈ Rm×n. If there exists t ∈M − {1} such that

[
min

j=1,...,n
(a−1

1j ⊗ atj), max
j=1,...,n

(a−1
1j ⊗ atj)

]
∩ Z = ∅,
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then A has no integer image.

We can’t say if and only if in Theorem 3.34, as shown by the following example.

Example 3.36. Let A =


1.4 0.8

2.7 5.6

3.1 3.3

 .

Then 2, 3, 4 ∈ [2.7−1.4, 5.6−0.8] = [1.3, 4.8] and 2 ∈ [3.1−1.4, 3.3−0.8] = [1.7, 2.5]

but A has no integer image because there is no choice of α, β ∈ R such that

α⊗ (1.4, 2.7, 3.1)T ⊕ β ⊗ (0.8, 5.6, 3.3)T ∈ Z.

This is since, with only two multipliers and a column typical matrix, we can set at most

two entries to be integers.

Remark 3.37. Note that if m = 1 then the matrix always has an integer image, in fact

every integer is an image of it. So we must assume that m ≥ 2 in the theorem.

This gives an obvious (but inefficient) idea for an algorithm to determine whether a

given matrix A of size m×n has an integer image. The algorithm would simply test every

set of integer points which are contained within the given intervals to see if they are in

the image space of A.

This would involve checking each integer vector of the form, (z2, ...zm) with

zt ∈
[

min
j

(a−1
1j ⊗ atj),max

j
(a−1

1j ⊗ atj)
]
.

There are at most

m∏
t=2

(⌊
max
j

(a−1
1j ⊗ atj)

⌋
−
⌊

min
j

(a−1
1j ⊗ atj)

⌋
+ 1

)

such vectors, where the plus 1 is due to the possibility that minj(a
−1
1j ⊗ atj) is an integer.
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b2

a2

a1 b1

a2

b2

a1 b1

a2

b2

a1 b1

a2

b2

a1 b1

Figure 3.2: Max-algebraic line segments between (a1, a2)T and (b1, b2)T

3.3.2 The column space is equal to a max-convex hull

We will move away from considering intervals and consider what can be achieved from

considering graphs as in Figure 3.1.

If we use the analogue of the conventional definitions of convexity then we get the

following definitions.

A set S is max-convex if, for any two points in S, the max-algebraic line segment

between the points is also in S. The max-convex hull of the vectors x1, ..., xn ∈ Rn
is the

set { n⊕
i=1

αixi :
n⊕
i=1

αi = 0

}
.

Note that the types of max-algebraic line segments are given in Figure 3.2.

The following result is known, and trivial since Im(A) is a subspace.

Lemma 3.38. Given a matrix A ∈ Rm×n let

B = (a−1
11 ⊗ A1, a

−1
12 ⊗ A2, ..., a

−1
1n ⊗ An) = (bij) ∈ Rm×n.

Then Im(A) = Im(B).

Proposition 3.39. A ∈ Rm×n has an integer image if and only if there exist α1, ..., αn ∈ R
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with α1 ⊕ α2 ⊕ ...⊕ αn = 0 such that

n⊕
j=1

αj ⊗ a−1
1j ⊗



a2j

a3j

...

amj


∈ Zm−1. (3.5)

Remark: Note that this area is the max-algebraic convex hull of the vectors

(a2j ⊗ a−1
1j , a3j ⊗ a−1

1j , ..., amj ⊗ a−1
1j )T , j = 1, ..., n.

Proof. First assume that there exists x ∈ Zm−1 of the form in (3.5). We claim (0, xT )T ∈

IIm(A). Indeed ⊕
j=1n

αj ⊗ a−1
1j ⊗ Aj =

0

x

 ∈ Zm.

For the other direction we now assume that A has an integer image. Then, by Lemma

3.38, B = (a−1
11 ⊗A1, a

−1
12 ⊗A2, ..., a

−1
1n ⊗An) = (bij) ∈ Rm×n has an integer image. Suppose

x = (xj) ∈ IIm(B). By Lemma 3.33, x1 ⊗ x ∈ IIm(B). Thus



0

x2 − x1

...

xm − x1


= α1 ⊗



0

b21

...

bm1


⊕ α2 ⊗



0

b22

...

bm2


⊕, ...,⊕αn ⊗



0

b2n

...

bmn


for some choice of α ∈ R̄. Note that this immediately implies that α1⊕α2⊕, ...,⊕αn = 0.

Further, rows 2 to n are exactly (3.5). �
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1.5 2.5 6.5

2.5

5.5

6.5

The black points are those
obtained by setting two
of the coefficients to ε (or
to small enough real num-
bers that they don’t in-
fluence the solution), the
solid lines are those points
obtained by setting one of
the coefficients to ε. The
shaded region is the points
obtained when all the coef-
ficients play a role.

Figure 3.3: The convex hull from Example 3.40.

Example 3.40. Let

B =


0 0 0

1.5 2.5 6.5

2.5 5.5 6.5

 .

By Proposition 3.39, B has an integer image if and only if there exists an integer vector in

the max-algebraic convex hull of the points (1.5, 2.5)T , (2.5, 5.5)T , (6.5, 6.5)T . Graphically

this is shown in Figure 3.3.

The integer points in the convex hull are: (2, 3)T , (2, 4)T , (2, 5)T , (3, 3)T , (3, 4)T , (3, 5)T ,

(4, 4)T , (4, 5)T , (5, 5)T , (6, 6)T . Thus any point (0, y, z)T where (y, z)T is some pair above

is an integer point in the image of B, as are all integer multiples of these points.

Corollary 3.41. Consider a matrix A ∈ Rm×n. Let C be the max-algebraic convex hull

of the points a−1
1j (a2j, ..., amj),∀j ∈ N. Then,

IIm(A) =

γ ⊗
0

y

 : γ ∈ Z and y ∈ C ∩ Zm−1

 .
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3.3.3 When does the max-convex hull contain an integer point?

We first consider the 3× 3 case and assume without loss of generality that

A =


0 0 0

x1 x2 x3

y1 y2 y3

 (3.6)

and x1 ≤ x2 ≤ x3. So, from Lemma 3.39 and Corollary 3.41, (x, y, z)T ∈ IIm(A) exactly

when (0, y − x, z − x)T are in the max-convex hull of

x1

y1

 ,

x2

y2

 ,

x3

y3

 . (3.7)

Consider the case when y1 ≤ y3 ≤ y2.

We claim that if x3 − x2 ≥ 1 and y2 − y3 ≥ 1 then there exists an integer point in the

max-convex hull.

(x2, y2)

(x3, y3)

≥ 1

≥ 1
Here we have placed the points

(x2, y2), (x3, y3) a distance of at

least 1 apart as required. The

shaded region here is the region

in which the point (x1, y1) can

be located.
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(x2, y2)

(x3, y3)(x1, y1)

≥ 1

≥ 1

Then we know that the bold

lines seen here will form part of

the boundary of the max-convex

hull of the three points, and fur-

ther that the max line between

(x2, y2) and (x1, x1) will not lie

inside the shaded square in this

picture, similarly for the max

line between (x3, y3) and (x1, x1)

Thus in this case the max-convex hull of the three points will contain a square of

dimension at least 1× 1 and this square must contain an integer point.

For other orderings of y1, y2, y3 (when y3 is not the maximum) we can also find, in a

similar way, sufficient conditions for when the max-convex hull will contain a square and

thus an integer vector.

We develop sufficient conditions for a matrix to have an integer image based on when

the max-convex hull of the vectors in (3.7) contains an integer point.

Proposition 3.42. Let A ∈ R3×3 have the form in (3.6) with x1 ≤ x2 ≤ x3. Then each of

the following is a sufficient condition for the max-convex hull to contain an integer point.

(i) y1 ≤ y3 ≤ y2, x3 − x2 ≥ 1 and y2 − y3 ≥ 1.

(ii) y2 ≤ y3 ≤ y1, x3 − x2 ≥ 1 and y1 − y3 ≥ 1.

(iii) y3 ≤ y1 ≤ y2, x3 − x2 ≥ 1 and y2 − y1 ≥ 1.

(iv) y3 ≤ y2 ≤ y1, x3 − x2 ≥ 1 and y1 − y2 ≥ 1.

Proof. Assume that (i) holds. Let α1 = 0, α2 = −fr(y2), α3 = −fr(x3). Then α1⊕α2⊕
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α3 = 0 and

α1 ⊗

x1

y1

⊕ α2 ⊗

x2

y2

⊕ α3 ⊗

x3

y3

 =

x1

y1

⊕
x2 − fr(y2)

by2c

⊕
 bx3c

y3 − fr(x3)


=

bx3c

by2c

 ∈ Z2.

Thus the max-convex hull contains an integer point.

Similar arguments hold for the other cases.

Finally observe that each of the conditions (i)-(iv) guarantee that the max-convex hull

contains a square of dimension 1× 1, and hence an integer point. �

We can now generalize this idea to matrices of any size.

Proposition 3.43. Let A ∈ Rm×n be of the form

A =



0 0 ... 0

a21 a22 ... a2n

a31 a32 ... a3n

am1 am2 ... amn


where a21 ≤ a22 ≤ ... ≤ a2n. For any i ∈ M\{1} let ji be the index such that aiji =

maxj aij. If

(i) jp 6= jq for any p 6= q ∈M\{1}, and

(ii) For all i ∈M\{1}, aiji − fr(aiji) ≥ ait, t 6= ji.

Then there exists an integer point in the max-convex hull.

Proof. Let J = {ji : i ∈M\{1}}.
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For i ∈ M\{1} let αji = −fr(aiji) and set all other αj = 0. Note that this can be

done without conflict since by assumption each ji is unique.

Then α1 ⊕ α2 ⊕ ...⊕ αn = 0 and

n⊕
j=1

αj ⊗



a2j

a3j

...

amj


=
⊕
ji∈J



a2ji − fr(aiji)

a3ji − fr(aiji)
...

amji − fr(aiji)


⊕
⊕
j /∈J



a2j

a3j

...

amj



=



ba2j2c

ba3j3c
...

bamjmc


∈ Zm−1.

This is since we do not increase any value ait when we multiply by αt and so for each row

i (i 6= 1) we know that baijic ≥ ait ≥ αt ⊗ ait for each t 6= ji.

Thus the max-convex hull contains an integer point. �

The above results do not cover the cases when there is more than one row maximum

in the same column, so we will return to the 3× 3 case and assume x1 ≤ x2 ≤ x3.

Case 1: y1 ≤ y2 ≤ y3.

Case 1a: x2 − x1 ≥ 1, y2 − y1 ≥ 1 and x3 − x2 ≥ 1 + y3 − y2.
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(x2, y2)

(x3, y3)
≥ 1 α

α

≥ 1

(x1, y1)

≥ 1

≥ 1

≥ 1

(x1, y1) is located in the

marked region and we can

guarantee that the shaded

area will be within the max-

convex hull of the three

points, and this area will

clearly contain an integer

point.

Case 1b: x2 − x1 ≥ 1, y2 − y1 ≥ 1 and y3 − y2 ≥ 1 + x3 − x2

Similar

Case 2: y2 ≤ y1 ≤ y3 t.

Case 2a: y2 − y1 ≥ 1 and x3 − x2 ≥ 1 + y3 − y2.

(x2, y2)

(x3, y3)

(x1, y1)

α

α

≥ 1

≥ 1

There will be an integer

point in this max-convex

hull.

Case 2b: x2 − x1 ≥ 1 and y3 − y1 ≥ 1 + x3 − x1.

Similar.

We summarise these results in the following proposition.

Proposition 3.44. Let A ∈ R3×3 be of the form

A =


0 0 0

x1 x2 x3

y1 y2 y3

 .
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Assume that x1 ≤ x2 ≤ x3. Then each of the following is a sufficient condition for the

max-convex hull to contain an integer point;

(i) y1 ≤ y2 ≤ y3, x2 − x1 ≥ 1, y2 − y1 ≥ 1 and x3 − x2 ≥ 1 + y3 − y2.

(ii) y1 ≤ y2 ≤ y3, x2 − x1 ≥ 1, y2 − y1 ≥ 1 and y3 − y2 ≥ 1 + x3 − x2.

(iii) y2 ≤ y1 ≤ y3, y1 − y2 ≥ 1 and x3 − x2 ≥ 1 + y3 − y2.

(iv) y2 ≤ y1 ≤ y3, x2 − x1 ≥ 1 and y3 − y1 ≥ 1 + x3 − x1.

Corollary 3.45. Let A ∈ R3×n, n ≥ 3, be of the form

A =


0 0 ... 0

x1 x2 ... xn

y1 y2 ... yn

 .

Assume that x1 ≤ x2 ≤ ... ≤ xn and that yn = maxj yj. Then each of the following is a

sufficient condition for the max-convex hull to contain an integer point.

(i) If ∃j1, j2 ∈ N − {n} with xj2 − xj1 ≥ 1, yj2 − yj1 ≥ 1 and xn − xj2 ≥ 1 + yn − yj2.

(ii) If ∃j1, j2 ∈ N − {n} with xj2 − xj1 ≥ 1, yj2 − yj1 ≥ 1 and yn − yj2 ≥ 1 + xn − xj2.

(iii) If ∃j1, j2 ∈ N − {n} with yj1 − yj2 ≥ 1 and xn − xj2 ≥ 1 + yn − yj2.

(iv) If ∃j1, j2 ∈ N − {n} with xj2 − xj1 ≥ 1 and yn − yj1 ≥ 1 + xn − xj1 .

Proof. Follows from Proposition 3.44 since the max-convex hull of > 3 points from a set

S will contain the max-convex hull of any 3 points from S. �

3.4 Conclusion

We began this section by describing Algorithm 3.1 (INT-IMAGE), which, when given a

finite input matrix, will determine whether an integer image exists in pseudopolynomial

time, see Theorem 3.11. We then moved on to looking for classes of matrices for which

an integer image could be found in strongly polynomial time.
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We showed that, for upper and lower triangular matrices, the question of existence

of an integer point could be solved in strongly polynomial time. For 2 × n and m × 2

matrices we gave necessary and sufficient conditions for the existence of an integer image

which could be checked in strongly polynomial time. A key result was the introduction

of the class of column typical matrices, for which a full description of the set of integer

images could be described in strongly polynomial time, as shown in Theorem 3.17. We

extended this result to the class of nearly non-integer matrices and demonstrated that, for

these matrices the integer image set is equal to the set of integer subeigenvectors, which

can be fully described in strongly polynomial time.

We then described equivalent problems to the integer image problem, in particular the

problem of finding an integer point in a max-convex set, and used this to find sufficient

conditions for a matrix to have an integer image. There is potentially a large amount of

work still to do in investigating integer points in max-convex sets.

A full description of the integer image set remains an open problem. It can be shown

that the integer image space is equal to the intersection of the integer subeigenspaces

of (up to nm) matrices, this can be found in the departmental paper [27]. Although

each of the integer subeigenspaces can be described efficiently, the maximum number of

subeigenspaces is not polynomial.
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4. Investigating the complexity of the

integer image problem

We study the problem of determining whether there is an integer vector in the image of

A,

IIm(A) := {z ∈ Zm : (∃x ∈ Rn
)Ax = z}.

We define X(A) to be the set of vectors x for which Ax belongs to the set of integer

images, that is

X(A) := {x ∈ Rn
: Ax ∈ Zm}.

A related question is whether X(A)∩Zn is nonempty, where Z := Z∪{ε}. We define the

integer image with integer coefficients to be

IIm∗(A) := {z ∈ Zm : (∃x ∈ Zn)Ax = z}.

Note that, since we are looking for integer (finite) vectors, we could assume without loss

of generality that the vector x satisfying Ax ∈ Zm is finite.

Let IIM be the problem of determining whether there exists an integer vector in the

image space of A, that is,

(IIM) For A ∈ Rm×n
, is IIm(A) 6= ∅?

Here we will consider a number of integer image problems, each with an additional
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requirement on the set of integer images. These are detailed in the definition below. The

main two variants are the column typical (CT) variant, and the Property One (P1) variant.

Figure 4.1 outlines the relations between these problems. Recall that, in a column typical

matrix all entries in any columns have different fractional parts (see Definition 3.15). Note

also that the Property One variant, although it refers to the existence of one position in

each row, is not related to the definitions of Property OneIR and Property OneFP found

in this thesis. Property OneFP/OneIR impose a condition on the input matrices having

one entry per row with some property, whereas Property One here refers to a solution

with some property.

Definition 4.1. Given A ∈ Rm×n
we consider the following problems related to the Integer

Image Problem.

(IIM-CT) If A is column typical does there exist x ∈ Rn
such that Ax ∈ Zm?

(IIM-CT-P1) If A is column typical does there exist x ∈ Rn
such that Ax ∈ Zm with

exactly one active entry per row with respect to x?

(IIM-P1) Does there exist x ∈ Rn
such that Ax ∈ Zm with exactly one active entry per

row with respect to x?

(IIM∗) Does there exist x ∈ Zn such that Ax ∈ Zm?

In Section 4.2 we show that determining whether IIm(A) 6= ∅ reduces to checking

whether A is a yes instance of IIM-CT or IIM∗. A key result here is the transformation to

the column typical counterpart, and the proof that this preserves the set of integer images:

Theorem 4.11. From Theorem 3.17 there exist special classes of matrices for which IIM-

CT is strongly polynomially solvable. We will further show that there also exist special

cases for IIM∗. Theorem 4.17 shows that IIM-P1 is NP-hard. What this chapter aims to

demonstrate is that, on the one hand, the integer image problem for general matrices is

closely related to the integer image problem for column typical matrices A ∈ Rm×n
, which

is strongly polynomially solvable if either m ≥ n or we fix the value of m. On the other
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IIM

IIM-P1

IIM∗

(shaded)

IIM-CT

Figure 4.1: Simple relations between the different versions of the integer image problem. Ob-
serve that IIM-CT is identical to IIM-CT-P1 (see Theorem 4.13 for details).

hand IIM-CT and IIM-CT-P1 are polynomially equivalent by Theorem 4.13 and, if we

remove the assumption that the matrix is column typical, IIM-P1 is NP-hard. So we are

in essence approaching the integer image problem from two sides, one a set of problems

in P and the other a set of problems that are NP-hard.

4.1 Preliminaries and simple cases

We denote by P the class of all problems which are solvable in polynomial time. The

class NP and the definition of an NP-hard problem can be found, for example, in [45].

For general problems P1 and P2 we write P1 ≤p P2 to mean that P1 can be reduced to

P2 in polynomial time. Additionally, P1 =p P2 will mean that P1 ≤p P2 and P2 ≤p P1.

It is known that if P1 ≤p P2 and P1 is NP-hard then P2 is NP-hard, if instead P2 ∈ P

then P1 ∈ P .

Recall from Chapter 3 that it is sufficient to only consider doubly R-astic matrices.

73



Recall, from Theorem 3.17 that if A is a square, column typical matrix then the set

of integer images of A can be described in strongly polynomial time. Observe that if

A ∈ Rm×n
is column typical with m ≤ n then

(∃x)Ax = z ⇔ (∃j1, ..., jm ∈ N)(∃x′)A′x′ = z

where A′ ∈ Rm×m
is the matrix formed of columns Aj1 , ..., Ajm . Therefore if A is column

typical with m ≤ n then we could simply check each of the
(
n
m

)
square submatrices of A

to see if they have an integer image. Checking each submatrix can be achieved in O(m3)

time by Theorems 2.5 and 3.17.

Corollary 4.2. For fixed m the integer image problem is solvable in strongly polynomial

time.

4.2 Transformations which preserve the set of integer

images

We present two transformations which allow us to assume some structure on the matrix

for which we are seeking an integer image. In both cases the transformation can be

achieved in strongly polynomial time and we expect that the added structure will help in

finding integer images. Indeed for each type of structure described we find a small class

of matrices for which we can solve the integer image problem efficiently.

4.2.1 Transformation to matrices with one integer per column

First we describe a (strongly polynomial) transformation A → B such that IIm(A) =

IIm∗(B). Further, we show in Theorem 4.5, that if a general matrix A ∈ Rm×n
has at

most one integer entry in each column then we can decide in O(m3 + n) time whether

A ∈ IIM∗.
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Given a matrix A ∈ Rm×n
let Aint be constructed from A by replacing each column

Aj, j ∈ N with m columns,

fr(a1j)
−1Aj, fr(a2j)

−1Aj, ..., fr(amj)
−1Aj.

Example 4.3.

A =


0 1.1

0.5 −2.3

−0.6 −0.9

 , Aint =


0 −0.5 −0.4 1 0.4 1

0.5 0 0.1 −2.4 −3 −2.4

−0.6 −1.1 −1 −1 −1.6 −1


Note that each column takes at least one entry of the matrix and makes it integer.

Observe that for any z ∈ IIm∗(Aint), if the position (i, j) is active then it is necessary

that aij ∈ Z since aij + xj = zi where by definition xj and zi are integer. Therefore the

following result tells us that when considering the integer image problem we can assume

without loss of generality that only integer entries can be active.

Theorem 4.4. IIm(A) = IIm(Aint) = IIm∗(Aint).

Proof. Let Aint have columns Aj(i) where Aj(i) = fr(aij)
−1Aj. We first show that

IIm(A) = IIm(Aint).

Suppose ∃x ∈ Rn
such that Ax = z ∈ IIm(A). Then

z =
⊕
j∈N

Ajxj =
⊕
j∈N

⊕
i∈M

Ajfr(aij)fr(aij)
−1xj

=
⊕
j∈N

⊕
i∈M

Aintj(i) (fr(aij)xj) ∈ IIm(Aint).

For the other inclusion assume that

y = (y1(1), ..., y1(m), y2(1), ..., y2(m), ..., yn(1), ..., yn(m)) ∈ Rmn
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satisfies Ay = z ∈ IIm(A). Then

z =
⊕
j∈N

⊕
i∈M

Aj(i)yj(i) =
⊕
j∈N

⊕
i∈M

Ajfr(aij)
−1yj(i)

=
⊕
j∈N

Aj

(⊕
i∈M

fr(aij)
−1yj(i)

)
∈ IIm(A).

Further it is clear that IIm∗(Aint) ⊆ IIm(Aint). This together with IIm(A) =

IIm(Aint) implies IIm∗(Aint) ⊆ IIm(A). It remains to show IIm(A) ⊆ IIm∗(Aint).

Clearly

(∃x ∈ Rn
)Ax = z ∈ Zm ⇒ (∃y ∈ Zmn)Ainty = z ∈ Zm

since if Aj is active with respect to x then (∃i ∈ M)fr(aij) = fr(−xj) and aij is active,

therefore, using Lemma 1.17(ii),

aij + xj = baijc+ fr(aij) + bxjc+ fr(xj) = baijc+ fr(−xj) + bxjc+ fr(xj) = aintit + dxje

for some t ∈ {1, ..,mn}. This means that xjAj = dxje(fr(aij)−1Aj) = ytA
int
t where

yt = dxje. Hence the result. �

This transformation is expected to be helpful in solving the integer image problem

since it allows us to look for integer images of the matrix for which active positions are

(i, j) where aij ∈ Z. While it remains unknown whether IIM∗ is in P or not we can

describe one class of matrices for which it is solvable in O(m3 + n) time.

Indeed suppose A ∈ Rm×n
has at most one integer entry in each row. Then either

the matrix does not satisfy the necessary condition that every row has an active entry, in

which case IIm∗(A) = ∅, or A has exactly one integer in each row. In this case let I be

the identity matrix with dimension m. Then
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IIm∗(A) 6= ∅ ⇔ (∃x ∈ Zn, y ∈ Zm)Ax = Iy.

We say that a pair of rectangular matrices (A,B) satisfies Property OneFP if, for all

i ∈ M there exists exactly one pair (j, t), j, t ∈ N such that fr(ait) = fr(aij) 6= ε (see

Definition 5.8 for full detail). Note that the pair (A, I) satisfies Property OneFP.

We will prove in Section 5.2 that we can find an integer solution to a two-sided system

in strongly polynomial time if the system satisfies Property OneFP. The following result

is an immediate consequence of Corollary 5.15.

Theorem 4.5. Let A ∈ Rm×n
have exactly one integer entry in each row. Then we can

determine whether IIm∗(A) 6= ∅ in O(m3 + n) time.

Generally however Aint will not satisfy this condition, since it contains at least n

integer entries in each row. We finish this subsection by detailing a few observations

about IIm∗(A) for an arbitrary matrix A.

Proposition 4.6. Suppose A ∈ Rm×n
.

(i) IIm∗(A) ⊆ IIm(dAe)

(ii) IIm∗(A) ⊆ IIm(bAc)

Proof. If Ax = z ∈ Zm where x ∈ Zn then

max
j

(aij + xj) = zi ⇒ max
j

(daije+ xj) = zi.

The other result is also trivial to prove. �

For each i ∈M let

di(A) = max
j∈N
daije − max

j:aij∈Z
aij.

Clearly di(A) ≥ 0 for all i ∈ M . Using this we obtain a simple sufficient condition for

IIm∗(A) 6= ∅.
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Proposition 4.7. Let A ∈ Rm×n
have at least one integer in each row. If (∀i ∈

M)di(A) = 0 then A⊗ 0 ∈ IIm∗(A).

Proof.

(∀i)di(A) = 0⇒ (∀i ∈M)(∃j(i) ∈ N)aij(i) ∈ Z and aij(i) =
⊕
t∈N

ait.

∴



a1j(1)

a2j(2)

...

amj(m)


= A⊗ 0.

This belongs to IIm(A) since the left hand side is an integer vector. �

4.2.2 Transforming to column typical matrices

Here we show that, for the problem of determining if IIm(A) 6= ∅, we may assume without

loss of generality that A is column typical with m ≤ n. It follows that in order to solve

the problem of whether or not a matrix has an integer vector in its column span it is

sufficient to find a method for column typical matrices only.

First observe that if A ∈ Rm×n
is column typical and Ax ∈ Zm then each column Aj

contains at most one active entry with respect to x. Since every row contains an active

entry it is necessary that at least m columns are active in this equation. We conclude:

Observation 4.8. Suppose A ∈ Rm×n
is column typical with m > n. Then IIm(A) = ∅.

Suppose without loss of generality in this subsection that A ∈ Rm×n
is doubly R-astic

and no two columns in A are the same. Let

J ct(A) = {j ∈ N : Aj is column typical}.
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If j ∈ N − J ct(A) then define

Ictj = {i ∈M : ∃t ∈M, t 6= i such that fr(aij) = fr(atj)}

otherwise set Ictj = {∅}.

Definition 4.9. The column typical counterpart, Act, of A is the

m× (
∑
j∈N

|Ictj |)

matrix obtained from A by replacing each column Aj with |Ictj | columns as follows:

If Ictj = {∅} then add one copy of Aj. Otherwise for each i ∈ Ictj add a column with

entries 
atj − δt if t ∈ Ictj − {i}

atj otherwise.

(4.1)

The values δi, i ∈M will satisfy 0 < δi < 1 and be chosen to ensure that each new column

has entries with different fractional parts.

Example 4.10. The columns



0

0

0.5

0

0.5

0.2


and



0

0.1

0.2

0.3

0.4

0.5


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would be replaced by



0 0− δ1 0− δ1 0− δ1 0− δ1

0− δ2 0 0− δ2 0− δ2 0− δ2

0.5− δ3 0.5− δ3 0.5 0.5− δ3 0.5− δ3

0− δ4 0− δ4 0− δ4 0 0− δ4

0.5− δ5 0.5− δ5 0.5− δ5 0.5− δ5 0.5

0.2 0.2 0.2 0.2 0.2


and



0

0.1

0.2

0.3

0.4

0.5


where 0 < δs < 1 are such that the new matrix is column typical.

The columns in Act which replace Aj are called the counterparts of Aj. For now we

suppose that δi ∈ (0, 1), i ∈M satisfy the following assumptions:

(A1) δi are distinct;

(A2i) (∀j ∈ N)(∀i, t ∈M)fr(aij) 6= fr(atj) & aij, atj > ε⇒ fr(aij − atj) > δi, δt;

(A2ii) (∀i ∈M)(∀j, p ∈ N)fr(aij) 6= fr(aip) & aij, aip > ε⇒ fr(aij − aip) > δi;

(A3) (∀i ∈M)(∀j ∈ N)fr(aij) 6= 0 & aij > ε⇒ δi < min(fr(aij), fr(−aij)).

Theorem 4.11. Let A ∈ Rm×n
be doubly R-astic and Act be the column typical counter-

part of A where δi, i ∈M satisfy A1-A3. Then Act is column typical and

IIm(A) = IIm(Act).

This will be proved in Section 4.5, where we also prove that δi, i ∈M satisfying A1-A3

can be found efficiently. It will follow that Act can be constructed in O((mn)2) time.

Remark 4.12. Given a matrix A ∈ Rm×n
we could first construct B = Act ∈ Rm×mn

and

then C = Bint ∈ Rm×m2n
. Then IIm(A) = IIm∗(C) and further the candidates for active

position of C are (i, j) such that cij ∈ Z of which there is exactly one per column since C
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is column typical (it inherits the property from B). Finally note that this transformation

can be constructed in strongly polynomial time.

4.3 Problems that are polynomially equivalent to IIM

We show that IIM, IIM-CT and IIM-CT-P1 are polynomially equivalent, and therefore

belong to the same complexity class.

Theorem 4.13. IIM-CT-P1∈ P ⇔ IIM-CT∈ P ⇔ IIM∈ P , i.e.

(i) IIM-CT-P1 =p IIM-CT.

(ii) IIM-CT =p IIM.

Proof.

(i) We show that if A is column typical then A has an integer image if and only if A

has an integer image in which there is exactly one active entry per row.

The sufficient direction is clear. So assume that A has an integer image z. Then

∃x ∈ Rn
such that Ax = z. If there exist t, j ∈ N such that aij and ait are both active for

some i ∈M then the vector x′ obtained from x by replacing xt by ε also satisfies Ax′ = z.

This is because A is column typical meaning there is at most one active entry in every

column and so removing At from the system will not affect active entries in any other

row. In this way we can construct a vector x′′ such that Ax′′ = z and A has exactly one

active entry per row.

(ii) IIM-CT ≤p IIM is trivial. We show IIM ≤p IIM-CT. Let A ∈ Rm×n
. Let Act ∈

Rm×k
, k ≤ mn be the column typical counterpart of A (see Definition 4.9).

We have IIm(A) 6= ∅ ⇔ IIm(Act) 6= ∅.

Therefore A is an instance of IIM-CT if and only if Act is an instance of IIM-CT-P1

and Act can be constructed in O((mn)2) time. �
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Corollary 4.14. To show that IIM is NP-hard or IIM ∈ P it is enough to consider

either IIM-CT-P1 or IIM-CT.

We know from Theorem 3.17 that checking whether a square matrix is in IIM-CT

is achievable in strongly polynomial time. But this does not imply that IIM for square

matrices is polynomially solvable since in transforming a matrix to its column typical

counterpart we increase the number of columns.

4.4 Related NP-hard problems

In this section we consider modifications of the integer image problem which we can prove

to be NP-hard. The hardness of these related problems does not imply hardness of IIM,

that question remains open. We begin with IIM-P1, which asks for an integer image with

exactly one active position per row (see Definition 4.1). Recall that X(A) is the set of

vectors x for which Ax ∈ IIm(A).

We will use the following key result.

Proposition 4.15. Fix α ∈ (0, 1). Let A ∈ {0, α−1}m×n be a matrix in which each column

has at least one zero entry. If z ∈ IIm(A) then

(i) for any x ∈ X(A) such that Ax = z all active entries of A are integer (zero),

(ii) z is a constant vector, and

(iii) if Aj, j ∈ N contains an active position then (i, j) is active for all i ∈ M such

that aij = 0.

Proof. Assume (∃z ∈ Zm)(∃x ∈ Rn
)Ax = z.

(i) Suppose aij = α−1 is active, so xj = ziα /∈ Z. By assumption there exists a zero

entry in every column so let t be an index such that atj = 0. Then atjxj /∈ Z, so atj is
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inactive and there exists l such that atl is active. Hence we have

α−1xj =zi,

0xj <zt,

ailxl ≤zi and

atlxl =zt.

From the first two equations we obtain zi = α−1xj < xj < zt and therefore zi1 ≤ zt.

Using this and the last two equations we get

atlxl = zt ≥ zi1 ≥ ailxl1.

This implies that atl ≥ ail1, a contradiction with |aila−1
tl | ≤ α < 1.

(ii) Suppose there exists x ∈ Rn
such that Ax = z ∈ Zm where (∃i, t ∈ M)zi 6= zt.

Without loss of generality assume that zi > zt, in fact zi ≥ zt1. Let aij, atl be active

entries in rows i and t respectively. Note that by (i), aij = 0 = atl, meaning xj = zi and

xl = zt. But then

Ajxj = Ajzi ≥ Aj(zt1) = (1Aj)zt > Alzt = Alxl

which implies that Al is inactive. This is a contradiction since atl is active.

(iii) Denote S = {j : There exists an active entry in Aj}. Fix j ∈ S and suppose

aijxj = zi. Then by (i), xj = zi and hence

Ajxj = Ajzi ≤


z1

...

zm

 =


zi
...

zi


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where the final equality is obtained using (ii). Finally for all t ∈M such that atj = 0 we

have atjxj = zi, therefore every integer (zero) entry in Aj is active. �

It is important to observe that any matrix A ∈ {0, α−1}m×n with at least one zero

entry in each column has an integer image if and only if there is a zero in every row, which

occurs if and only if 0 ∈ IIm(A). In fact

IIm(A) 6= ∅ ⇔ IIm(A) = {γ0 : γ ∈ Z}.

Thus when we consider whether the matrix has an integer image that also satisfies some

specified property (number of active entries per row or column for example) this property

will be determined by the vector x such that Ax = 0. Note that it can be assumed that

x ∈ {0, ε}n where the finite components correspond to active columns of A.

We will use a reduction from the following NP-hard problem.

(Monotone 1-in-3 SAT): 1-in-3 SAT is a modification of the SAT problem in which each

clause has 3 literals and we ask whether there exists a satisfying assignment such that

exactly one literal in each clause is TRUE. The monotone version of the problem satisfies

the additional condition that each clause contains only unnegated variables. Note that

without loss of generality each literal appears in at least one clause.

Remark 4.16. 1-in-3 SAT is problem L04 in [45], where it is noted that it remains

NP complete even if no clause contains a negated literal. The result follows from the

classification of NP-hard satisfiability problems in [60].

Theorem 4.17. Monotone 1-in-3 SAT≤p IIM-P1.

Proof. Let F = C1 ∧ ... ∧ Cm where every clause contains 3 unnegated literals from

{y1, ..., yn}.
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Construct an m× n matrix A = (aij) as follows: For some α ∈ (0, 1),

aij =


0 if yj ∈ Ci

α−1 otherwise.

Note that A can be constructed in strongly polynomial time.

Example 4.18. For F = (y1 ∨ y2 ∨ y3) ∧ (y1 ∨ y3 ∨ y4) we obtain

A =

0 0 0 α−1

0 α−1 0 0

 .

Now assume there exists z ∈ Zm such that (∃x ∈ Rn
) Ax = z.

Since A satisfies the conditions of Proposition 4.15 we know that there exists γ ∈ Z

such that z = γ0 and active entries are integer, thus x ∈ Zn. Further for all j ∈ S,

aij = 0⇒ aij is active

where S = {j : There exists an active entry in Aj}.

If Ax = z with exactly one active entry per row then y = (y1, ..., yn)T is a satisfying

assignment of F with exactly one TRUE literal per clause where

yj =


1 if j ∈ S

0 otherwise.

On the other hand if F has a satisfying assignment y in which exactly one literal in
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each clause is satisfied then for all j ∈ N let

xj =


0 if yj = 1

ε else.

The vector x = (x1, ..., xn) ∈ Rn
is such that Ax = 0 and there is exactly one active entry

per row.

Therefore F has a satisfying assignment with exactly one TRUE literal per clause if

and only if A has an integer image with exactly one active entry per row. �

Corollary 4.19. IIM-P1 is NP-hard.

Remark 4.20. Consider the following problems related to IIM.

(IIM-P2) Does there exist x ∈ Rn
such that Ax ∈ Zm with exactly two active entries per

row with respect to x?

(IIM-P3) Does there exist x ∈ Rn
such that Ax ∈ Zm with at most two active entries per

row with respect to x?

(IIM-P4) Given t ∈ N does there exist x ∈ Rn
such that Ax ∈ Zm with at most t active

columns of A with respect to x?

(IIM∗-P1) Does there exist x ∈ Zn such that Ax ∈ Zm with exactly one active entry per

row with respect to x?

These problems can all be shown to be NP-hard using similar methods and reducing

from either Monotone 1-in-3 SAT, the NP-hard problem Monotone NAE-3-SAT (every

clause contains 3 unnegated literals and we ask whether there exists a satisfying assignment

for which no clause contains only TRUE literals) or the Minimum Cardinality Cover

problem (given a universe U , a family S of finite subsets of U and a positive integer t,

does there exist a subfamily C ⊆ S, |C| ≤ t such that C is a cover of U).
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The proofs for IIM-P2 and IIM∗-P1 use Monotone 1-in-3 SAT, the proof for IIM-P3

uses Monotone NAE-3-SAT, and the minimum cardinality cover problem is reduced to

IIM-P4.

4.5 Proving the validity of column typical counter-

parts

We prove the results from Subsection 4.2.2 which we repeat below.

Theorem 4.11 states: Let A ∈ Rm×n
be doubly R-astic and Act be the column typical

counterpart of A where δi, i ∈M satisfy A1-A3. Then Act is column typical and

IIm(A) = IIm(Act).

Further δi, i ∈ M satisfying A1-A3 can be found efficiently and Act constructed in

O((mn)2) time where assumptions A1-A3 are as follows.

(A1) δi are distinct;

(A2i) (∀j ∈ N)(∀i, t ∈M)fr(aij) 6= fr(atj) & aij, atj > ε⇒ fr(aij − atj) > δi, δt;

(A2ii) (∀i ∈M)(∀j, p ∈ N)fr(aij) 6= fr(aip) & aij, aip > ε⇒ fr(aij − aip) > δi;

(A3) (∀i ∈M)(∀j ∈ N)fr(aij) 6= 0 & aij > ε⇒ δi < min(fr(aij), fr(−aij)).

The purpose of the values δi, i ∈M is to guarantee that the column typical counterpart

of A is indeed column typical, and also that it retains the same integer image as A. The

idea is to alter the entries of A by small enough values so the the image set is unchanged,

so we will eventually choose δi ≤ g for some upper bound g dependent on A. Further,

we will prove that g will be chosen to not only to alter any entries in a column with the

same fractional part, but also in such a way that no new entries share a fractional part.

The assumption A2ii is used to prove that the column typical counterpart has no two

columns the same, which is then used in the proofs that Act is column typical, and shares
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its integer image with A. Assumptions A1, A2i and A3 are key to the proof that the

fractional parts of entries in any column of Act are indeed different.

4.5.1 Proof of Theorem 4.11

Recall (from Subsection 4.2.2) that we assume A ∈ Rm×n
has no two identical columns.

Further, that the columns in Act which replace Aj are called the counterparts of Aj.

Proposition 4.21. If A has no two identical columns then all columns of Act are different

when δi, i ∈M are chosen according to assumptions A1-A3 .

Proof. If Actj1 and Actj2 are both counterparts to Aj and j1 6= j2 then by definition

Actj1 6= Actj2 .

Assume then that Actc(j) and Actc(p) are counterparts of Aj and Ap respectively, j 6= p.

Since Aj 6= Ap there exists i such that aij 6= aip. We prove that actic(j) 6= actic(p)by showing

aij − δi 6= aip − δi,

aij − δi 6= aip and

aij 6= aip − δi.

The first is immediate, the second and third are proved in the same way. To see that the

third statement holds assume, for a contradiction, that aij = aip − δi.

Case 1: fr(aip) = 0

Here, fr(aij) = fr(−δi) = 1− δi since fr(δi) = δi. But then either δi = 1 (if aij ∈ Z),

which is a contradiction, or δi = fr(−aij) by Lemma 1.17(ii), which conflicts with A3. So

this case does not occur.

Case 2: fr(aip) > 0
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By A3, fr(aip) > δi. Further, using A2 and Lemma 1.17(iv),

aip > aij = aip − δi > baipc ⇒ fr(aip) > fr(aij) and

fr(aij) = fr(aip − δi) = fr(aip)− δi.

But then, again by Lemma 1.17(iv),

δi = fr(aip)− fr(aij) = fr(aip − aij),

a contradiction with A2ii. �

We first show that our assumptions imply that Act is column typical.

Claim 4.22. If 0 < δi < 1, i ∈M satisfy A1-A3, then Act is column typical.

Proof. Assume that Act is not column typical, thus ∃j ∈ N − J ct(A). Then there exist

i, t ∈M, i 6= t such that

fr(aij − δi) = fr(atj − δt). (4.2)

Since δi 6= δt we conclude, that fr(aij) 6= fr(atj). Assume without loss of generality

that fr(aij) > fr(atj), then fr(aij) ≥ δi = fr(δi) by A3. Therefore, using Lemma

1.17(iv),

fr(aij − δi) = fr(aij)− δi and fr(atj − δt) =


fr(atj)− δt; if fr(atj) > 0;

fr(−δi) = −δt; otherwise.

Case 1: fr(atj) > 0

Substituting the above into (4.2) we obtain, using fr(aij) > fr(atj) and Lemma

1.17(iv),

fr(aij − atj) = fr(aij)− fr(atj) = δi − δt ⇒ δi > fr(aij − atj)
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which contradicts A2.

Case 2: fr(atj) = 0

From (4.2) we get fr(aij) − δi = 1 − δt (since fr(aij) > fr(atj) = 0), which implies

1− δt < fr(aij). But then δt > 1− fr(aij) = fr(−aij), a contradiction with A3. �

We now show that the image set is unaffected by the transformation.

We set

r =
∑
j∈N

|Ictj |.

First assume that z ∈ IIm(A) 6= ∅. So there exists x ∈ X(A) such that Ax = z. Observe

that the vector

x′ = (x1, ..., x1, x2, ..., x2, ..., xn, ..., xn)T ∈ Rr

(where each xj, j ∈ N is repeated |Ictj | times) satisfies Actx′ = z.

For the other direction assume that z ∈ IIm(Act), x ∈ X(Act) and let

c(1), ..., c(m) ∈ {1, ..., r}

be indices of m active columns of Act such that

m⊕
t=1

Actc(t)xc(t) = z. (4.3)

So c(1), ..., c(m) represent a list of m active columns Actc(1), ..., A
ct
c(m) in Act with respect to

z. Note that there is exactly one active entry in each of the columns in the list as they

are column typical.

We prove that there exists some x′ ∈ Rn
such that Ax′ = z by considering two cases:

when the list of these m active columns in Act contains at most one counterpart of each

column Aj, j ∈ N and when it contains more than one counterpart to some column Aj.
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To do this we first need the following claim on the active entries of columns in the list.

Claim 4.23. Let c(1), ..., c(m) represent a list of m active columns of Act satisfying

(4.3). For each t ∈ {1, ...,m} there exists an index p(t) such that the new list of columns

Actp(1), ..., A
ct
p(m) satisfies

m⊕
t=1

Actp(t)yp(t) = z

for some y ∈ X(Act) where the active entry of each Actp(t) has not been altered when moving

from A to Act.

Proof.

Fix t ∈ {1, ...,m} and suppose Actc(t) is a counterpart to Aj for some j ∈ N . Further

suppose that the active entry in Actc(t) is in row i. If actic(t) = aij then let p(t) = c(t) and

yp(t) = xc(t).

If instead actic(t) = aij − δi then we know |Ictj | ≥ 2 and

Actc(t)xc(t) ≤ z

with equality only in row i. Defining µ = xc(t) − δi, we obtain

(aij − δi) + (µ+ δi) = zi,

asj + (µ+ δi) < zs ∀s /∈ Ictj and

(asj − δs) + (µ+ δi) < zs ∀s ∈ Ictj − {i}.

Therefore
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aij + µ = zi,

asj + µ < zs ∀s /∈ Ictj and

(asj − δs) + µ < zs ∀s ∈ Ictj − {i}.

But this means that there exists a counterpart of Aj in Act, say Actp , such that

Actp µ ≤ z

with equality only for zi and active entry actip = aij. So set p(t) = p in our choice of

columns, and yc(t) = xc(t) − δi.

Repeat this for each column in the list. For any unassigned entry of y set yl = xl.

This results in a new list of m distinct columns Actp(t), t ∈ {1, ...,m} such that

m⊕
t=1

Actp(t)yp(t) = z

and having active entries which are unaltered from A. It immediately follows that Acty = z

and hence y ∈ X(Act). �

Hence we can assume that Ax = z, and further that there is a list of m active columns

Actc(t), t ∈ {1, ...,m} satisfying (4.3) with active entries unaltered by some δi, i.e. entries

such that actij = aij. We use this to describe x′ ∈ Rn
such that Ax′ = z.

Case 1: (∀j, l ∈ {1, ...,m}, j 6= l) Actc(j) and Actc(l) are counterparts to different columns in

A.

By rearranging columns in A if necessary, we can assume without loss of generality

that Actc(t), t ∈ {1, ...,m} is a counterpart to At.
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Define x′ ∈ Rn
by x′t = xc(t), t ∈ {1, ...,m} and ε otherwise. Observe that Ax′ ≥ z

since if actic(j) is active in Act with respect to x then, actic(j)+xc(j) = actic(j)+x′j = aij+x
′
j = zi.

It remains to show Ax′ ≤ z.

Assume there exists i ∈M , t ∈ {1, ...,m} such that ait + x′t > zi. Then, by definition

of Act, ait − δi = actic(t) and actic(t) is inactive in Actx = z. Note that Actc(t) is active in (4.3)

so there exists i′ ∈ M, i′ 6= i such that acti′c(t) + xc(t) = zi′ and additionally acti′c(t) = ai′t by

our assumptions on the active entries.

Case 1a: fr(ait) 6= fr(ai′t)

We have

ait + x′t > zi > actic(t) + xc(t) = ait − δi + x′t. (4.4)

Since zi ∈ Z we deduce

bait + x′tc ≥ dait − δi + x′te.

Lemma 1.17(vi) gives δi ≥ fr(ait + x′t). Further ai′t + x′t = zi′ implies fr(x′t) = fr(−ai′t).

Therefore, using Lemma 1.17(iiv),

δi ≥ fr(ait + x′t) = fr(fr(ait) + fr(−ai′t)) = fr(ait − ai′t)

but this is a contradiction with assumption A2i on δi.

Case 1b: fr(ait) = fr(ai′t)

Using ait+x
′
t > zi and ai′t+x

′
t = zi′ we get that ait+x

′
t ∈ Z and therefore ait+x

′
t ≥ zi+1.

But then actic(t) + δi + xc(t) ≥ zi + 1 which is a contradiction with actic(t) + xc(t) ≤ zi as it

suggests δi ≥ 1.

In both subcases we reach a contradiction and therefore Atx
′
t ≤ z. Since this argument

holds for all i we conclude Ax′ ≤ z and then that Ax′ = z as required.

Case 2: (∃j ∈ N)(∃s, t ∈ {1, ...,m}) Actc(s) and Actc(t) are counterparts of Aj.

We would like to argue that the same idea as in Case 1 holds here, however to do this
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we must show that when we go from Actc(s) and Actc(t) back to Aj the components xc(s) and

xc(t) do not cause a problem.

Both columns have a single active entry in different rows, i1 and i2 say.

So, using our assumptions on the active entries,

ai1j + xc(s) = acti1c(s) + xc(s) = zi1 and ai2j + xc(t) = acti2c(t) + xc(t) = zi2 ,

∴ acti1c(s) + xc(s) ≥ acti1c(t) + xc(t) and acti2c(s) + xc(s) ≤ acti2c(t) + xc(t).

Note that if p, q ∈ {1, ...,m} and Ac(p), Ac(q) are counterparts to the same column in A

then

(∀i ∈M)|actic(p) − actic(q)| ∈ {0, δi}.

Using this we obtain

xc(t) − xc(s) ≤ acti1c(s) − a
ct
i1c(t)

≤ δi1 and xc(s) − xc(t) ≤ acti2c(t) − a
ct
i2c(s)

≤ δi2

∴ −δi1 ≤ xc(s) − xc(t) ≤ δi2 .

Substituting xc(s) = zi1 − ai1j and xc(t) = zi2 − ai2j gives

−δi1 ≤ zi1 − ai1j − zi2 + ai2j ≤ δi2 .

Case 2a: 0 = zi1 − ai1j − zi2 + ai2j.

Then fr(ai1j) = fr(ai2j) and, more importantly, 0 = zi1−ai1j−zi2 +ai2j = xc(s)−xc(t)

so xc(s) = xc(t) and there will be no conflict in choosing x′j. We detail this later.

Case 2b: 0 < zi1 − ai1j − zi2 + ai2j ≤ δi2 .

Then since δi2 < 1 and fr(ai2j) 6= fr(ai1j) we have (using Lemma 1.17(vii),

δi2 ≥ zi1 − ai1j − zi2 + ai2j = fr(zi1 − ai1j − zi2 + ai2j) = fr(ai2j − ai1j).
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But this is a contradiction with assumption A2i on δ. So this case does not occur.

Case 2c: 0 < zi2 − ai2j − zi1 + ai1j ≤ δi1 .

Similarly as in Case 2b we can reach a contradiction on the size of δi1 .

Since only Case 2a can occur we conclude that the active entries of Actc(s) and Actc(t)

correspond to entries of Aj with the same fractional part, and xc(s) = xc(t). This proves

that there is no conflict moving from multipliers xc(s) and xc(t) to a single multiplier xj.

In general, given a list Actc(1), ..., A
ct
c(m) satisfying (4.3) with active entries unaltered by

any δi, we construct x′ ∈ Rn
as follows:

For each j ∈ N

(1) If no column corresponding to Aj in Act is in the list then let x′j = ε.

(2) If exactly one column, Actc(j) say, corresponding to Aj is in the list set x′j = xc(j).

(3) If more than one column corresponding to Aj in Act is in the list then choose any

of them, Actc(j′) say, and set xj = xc(j′).

Finally Ax′ = z can be shown using similar arguments as in Case 1; Ax′ ≥ z because

Ax′ ≥ Actx = z and Ax′ ≤ z because otherwise there would exist i, t such that

ait + x′t > zi ≥ actic(t) + xc(t) ≥ ait − δi + x′t,

which is exactly (4.4) and so we can follow the same argument to reach a contradiction

with assumption A2i on δi.

This ends the proof of Theorem 4.11.

4.5.2 The choice of δi

Given A ∈ Rm×n
we show how to choose 0 < δi < 1, i ∈M satisfying A1-A3 in O((mn)2)

time.

We achieve this by showing there exists g ∈ (0, 1) such that any choice of δi, i ∈ M

satisfying (∀i)δi < g will satisfy A2 and A3. It follows from A2 and A3 that satisfying
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A1 is trivial.

We consider how to choose δi such that A2 and A3 hold.

Let

F = {fr(aij) : i ∈M, j ∈ N} − {0, ε},

F ′ = {fr(−aij) : i ∈M, j ∈ N} − {0, ε} and

G = {fr(f + f ′) : f ∈ F, f ′ ∈ F ′} − {0, ε}.

So |F |, |F ′| ≤ mn and |G| ≤ (mn)2.

Consider satisfying A2:

To satisfy A2i for each column j of A we need to exclude any fr(aij − atj) 6= 0 from

our choice of δi. By Lemma 1.17

fr(aij − atj) = fr(fr(aij)− fr(atj))

and hence these excluded values are contained in G. The same argument holds for rows

so A2ii is also satisfied by excluding values from G.

To satisfy A3 we additionally exclude the values from F ∪ F ′ from our choice of δi.

Now let g be the minimum of the at most (mn)2 + 2mn values from

F ∪ F ′ ∪G.

Then any choice of distinct δi satisfying 0 < δi < g will satisfy our assumptions.
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4.6 The integer image problem and the assignment

problem

It follows from the results in this chapter that, to solve the integer image problem in

polynomial time, it would be enough to find a polynomial time method for finding an

integer image of a column typical matrix with integer active entries, that is, find z ∈

IIm∗(A) for a column typical, rectangular matrix A (see Remark 4.12). We define the

problem IIM∗-CT as follows.

(IIM∗-CT) If A is column typical does there exist x ∈ Zn such that Ax ∈ Zm?

Here we look at links between IIM∗-CT and the assignment problem for rectangular

matrices.

Recall from Theorem 3.17 that, when the matrix is square and column typical, if an

integer image exists then the active entries form a permutation of maximum weight. An

immediate consequence of that theorem is Lemma 4.24 below.

Lemma 4.24. Let A ∈ Rn×n
be column typical. If IIm∗(A) 6= ∅ then maper(A) ∈ Z.

Now, given A ∈ Rm×n
and f ∈ (0, 1) define A(0,f) := (bij) where

bij =


aij; if aij ∈ Z,

baijc+ f ; otherwise.

Recall that X(A) := {x ∈ Rn
: Ax ∈ Zm}. The following lemma is trivial to prove.

Lemma 4.25. Let A ∈ Rm×n
and f ∈ (0, 1). Then IIm∗(A) = IIm∗(A(0,f)) and X(A) =

X(A(0,f)).

Further, note that, if A ∈ Rn×n
is column typical then there will be at most one

integer entry in each column of A(0,f), and therefore if z ∈ IIm∗(A) = IIm∗(A(0,f)) then
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the active entries of A(0,f) form a permutation.

Proposition 4.26. Let A ∈ Rn×n
be column typical and f = n

n+1
. Then IIm∗(A) 6= ∅ if

and only if maper(A(0,f)) ∈ Z.

Proof. Suppose maper(A(0,f)) ∈ Z and let π ∈ ap(A(0,f)). We observe first that

∀i, aiπ(i) ∈ Z. To see this note that

∑
i∈N

aiπ(i) =
∑
i∈N

baiπ(i)c+
t× n
n+ 1

where 0 ≤ t ≤ n is the number of i such that aiπ(i) /∈ Z and t×n
n+1
∈ Z⇔ t = 0.

It remains to show that there exists z ∈ IIm∗(A) = IIm∗(A(0,f)) for which aiπ(i) are

active. Note that, since A was column typical, A(0,f) has exactly one integer entry in each

row and column. Let A′ be the matrix obtained by rearranging the rows and columns of

A(0,f) so that the integer entries are on the diagonal, and then subtract the diagonal entry

from each entry in its respective row. Observe that A′ is a matrix with zero diagonal, and

no other integer entries. Further maper(A′) = 0 and, importantly,

IIm∗(A(0,f)) 6= ∅ ⇔ IIm∗(A′) 6= ∅.

We claim that A′ is strongly definite, indeed if λ(A′) > 0 then there would exist a

permutation σ such that w(σ,A′) > 0 which is a contradiction with the value ofmaper(A′).

Hence A′ is a NNI matrix (see Section 3.2.1 for the definition). Then, by Theorem 3.21,

IIm(A′) = IIm∗(A′) = IV ∗(A′, 0) = IV ∗(dA′e, 0).

To finish the proof we show that IV ∗(dA′e, 0) 6= ∅ by showing that λ(dA′e) = 0.

If not, there exists a cycle τ such that w(τ, dA′e) > 0. Since every entry of dA′e is
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integer this means

w(τ, dA′e) ≥ 1. (4.5)

On the other hand, because fr(a′ij) ∈ {0, f} we have

w(τ, dA′e) ≤ w(τ, A′) + n× (1− f) ≤ 0 +
n

n+ 1
< 1,

a contradiction with (4.5).

The other direction follows from Lemma 4.24. �

We can extend this result to the rectangular case as shown below.

Corollary 4.27. Let A ∈ Rm×n
be column typical with m ≤ n and f = m

m+1
. Then

IIm(A) 6= ∅ if and only if there exists N ′ ⊆ N with |N ′| = m such that maper(A(0,f)[M,N ′]) ∈

Z.

Therefore we could solve the integer image problem by solving the following problem:

IRAP: Given A ∈ Rm×n
, m ≤ n, does there exist N ′ ⊆ N with |N ′| = m such that

maper(A[M,N ′]) ∈ Z?

Unfortunately IRAP is NP-hard as shown by a reduction from Partition, the proof of

which is due to R. Burkard [13]. Note that Partition is NP-hard and an instance of the

problem is defined as follows.

Partition: Given a1, ..., a2k, b ∈ N with

2k∑
i=1

ai = 2b

does there exist I ⊆ {1, ..., 2k}, |I| = k, such that

∑
i∈I

ai = b?
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Proposition 4.28. Partition ≤p IRAP.

Proof. Take any a1, ..., a2k, b ∈ N with
∑2k

i=1 ai = 2b. Let

A =



a1
b

a2
b
· · · a2k

b

a1
b

a2
b
· · · a2k

b

...
...

...

a1
b

a2
b

. . . a2k
b


∈ Rk×2k.

Observe that, for any square submatrix of A, every permutation has the same weight.

Therefore there exists a square submatrix of A with integer max-algebraic permanent if

and only if

∃I ⊆ {1, ..., 2k}, |I| = k, such that
∑
i∈I

ai
b
∈ Z.

Since 1 ≤
∑

i∈I ai ≤ 2b− 1 we have

∑
i∈I

ai
b
∈ Z⇔

∑
i∈I

ai = b.

HenceA has a submatrix with integer max-algebraic permanent if and only if a1, ..., a2k, b

are an instance of Partition. Clearly A can be constructed in strongly polynomial time.

�

Finally we observe that, although the above discussion is more evidence of a fine line

between easily solvable cases of the integer image problem and NP-hard problems it tells

us nothing about the complexity of the integer image problem itself.

4.7 Conclusion

We have shown in Theorems 4.11 and 4.13, that the problem of determining whether

a matrix has a non empty set of integer images can be reduced to the problem of de-
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termining whether a column typical matrix has a non empty set of integer images. If

the matrix has m ≥ n then the column typical version of the problem can be solved in

strongly polynomial time, which, on the one hand, gives hope that maybe the integer im-

age problem is polynomially solvable. On the other hand we show that similar problems

are hard. The problem of finding an integer image of a column typical matrix is equiva-

lent to determining whether a column typical matrix has an integer image for which there

is exactly one active entry per row. The complexity of this problem for column typical

matrices remains unresolved but if we remove the assumption that the matrix is column

typical, we find that the problem of determining whether a general matrix has an integer

image with exactly one active entry per row is NP-hard, see Corollary 4.19. A graphical

representation of the results in this chapter are shown in Figure 4.2.

IIM

IIM-P1: NP-hard

IIM∗

(shaded)

IIM-CT=IIM-CT-P1:
Strongly polynomially solvable if m ≥ n;

Same complexity class as IIM

Figure 4.2: The known complexity results about the variants of the integer image problem.
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5. Two-sided systems

Recall that a TSS with separable variables has the form Ax = By. A general TSS has

the form Ax ⊕ c = Bx ⊕ d which can be written, without loss of generality, in the form

A′y = B′y by Lemma 1.15 . In this chapter we investigate integer solutions to Ax = By

and Ax = Bx. We adapt existing methods for finding real solutions to TSS and develop

Algorithms SEP-INT-TSS and GEN-INT-TSS to decide whether an integer solution to

these TSSs exist. We then describe a generic case, called Property OneFP, for which we

can describe all solutions and determine existence in strongly polynomial time, as proved

in Theorem 5.14. The material in Sections 5.1 and 5.2 has been published in [25].

5.1 Algorithm to find integer solutions to two-sided

systems

In this section we show that the Alternating Method [18, 38] can be easily adapted to

design algorithms that determine whether integer solutions to Ax = By or Ax = Bx exist,

and if so find one. We first detail an algorithm to solve systems with separated variables

and then a second algorithm to solve general systems. Since the justification behind the

construction of the two algorithms in this section is similar to the arguments in [18, 38]

we only outline the key results here, full details are available in the departmental paper

[23].

If the ith row of either A or B is ε then we have (Ax)i = ε = (By)i which, since x and
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y are finite, means that the ith row of the other matrix is also ε. Thus we may remove the

redundant ith equation from the equality. If instead either of A or B has an ε column then

this column may be removed without affecting the solution. Hence we assume without

loss of generality that A,B are doubly R-astic.

For any matrix Y ∈ Rm×n let

K(Y ) :=

⌈
max{|yij| : i ∈M, j ∈ N}

⌉
. (5.1)

We propose the following algorithm to find integer solutions to the system with sepa-

rated variables.

Algorithm 5.1. SEP-INT-TSS

Input: A ∈ Rm×n
, B ∈ Rm×k

doubly R-astic, any starting vector x(0) ∈ Zn.

Output: An integer solution (x, y) to Ax = By or indication that no such solution

exists.

1. r := 0.

2. y(r) := bB# ⊗′ (A⊗ x(r))c.

3. x(r + 1) := bA# ⊗′ (B ⊗ y(r))c.

4. If xi(r + 1) < xi(0) for all i ∈ N then STOP (no solution).

5. If A⊗ x(r + 1) = B ⊗ y(r) then STOP (solution found).

6. Go to 2.

Theorem 5.2. [23] Algorithm SEP-INT-TSS is correct and terminates after

O(mn(n+ k)K(A))

operations, if applied to instances where the matrix A is finite.

The following statement is obvious.
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Proposition 5.3. Let A,B ∈ Rm×n
. The problem of finding x ∈ Zn satisfying Ax = Bx

is equivalent to finding x ∈ Zn, y ∈ Rm such that

A
B

x =

I
I

 y

where I ∈ Rm×m
.

We propose the following algorithm to find integer solutions to Ax = Bx.

Algorithm 5.4. GEN-INT-TSS

Input: A′, B′ ∈ Rm×n
doubly R-astic, I ∈ Rm×m

, any starting vector x(0) ∈ Zn.

Output: A solution x ∈ Zn to A′x = B′x or indication that no such vectors exist.

1. r := 0, A :=

A′
B′

, B :=

I
I

.

2. y(r) := B# ⊗′ (A⊗ x(r)).

3. x(r + 1) := bA# ⊗′ (B ⊗ y(r))c.

4. If xi(r + 1) < xi(0) for all i ∈ N then STOP (no solution).

5. If A⊗ x(r + 1) = B ⊗ y(r) then STOP (solution found).

6: Go to (2).

Theorem 5.5. [23] Algorithm GEN-INT-TSS is correct and terminates after

O(K(A′|B′)mn(m+ n))

operations, if applied to instances where both of the matrices A′, B′ are finite.
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5.2 Problem is strongly polynomially solvable in a

generic case

In this section we give a generic condition on the matrices A,B which, if satisfied, means

that we can determine in strongly polynomial time whether an integer solution to any

TSS exists, and if so find one. We then show that the method for these matrices can be

extended to find integer solutions to any TSS, but at a cost to efficiency.

Recall that we assume without loss of generality that A,B are doubly R-astic.

5.2.1 Property OneFP

The key observation in this section is the following result.

Proposition 5.6. Let A ∈ Rm×n
, B ∈ Rm×k

. If an integer solution to Ax = By, or (if

n = k) Ax = Bx, exists then

(∀i ∈M)(∃j ∈ N, t ∈ K) fr(aij) = fr(bit) and aij, bit ∈ R.

Proof. Assume x ∈ Zn, y ∈ Zk satisfy Ax = By. Then

(∀i ∈M) max
j

(aij + xj) = max
j

(bij + yj) ∈ R.

Note that these values are finite since the matrices are doubly R-astic. Therefore, for each

i, there exist r(i), r′(i) ∈ N such that

fr(ai,r(i) + xr(i)) = fr(bi,r′(i) + yr′(i))

and ai,r(i), bi,r′(i) ∈ R. But fr(ai,r(i) +xr(i)) = fr(ai,r(i)) and fr(bi,r′(i) +yr′(i)) = fr(bi,r′(i)).

Hence

(∀i)(∃j ∈ N, t ∈ K) fr(aij) = fr(bit).
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Definition 5.7. Let A ∈ Rm×n
and B ∈ Rm×k

. We say that the pair (A,B) satisfies

(a) Property ZeroFP if there exists i ∈M such that there is no pair of finite entries

(aij, bit) with the same fractional part.

(b) Property One+FP if for each i ∈ M there is at least one pair of finite entries

(aij, bit) with the same fractional part.

By Proposition 5.6 a necessary condition for a TSS to have an integer solution is that

the input matrices satisfy Property One+FP . We will restrict our attention to matrices

A and B that have exactly one pair of entries with the same fractional part in each row.

Under this assumption note that, without loss of generality, we may assume entries sharing

the same fractional part are integer valued (this is since we may subtract a constant from

each row of the system without affecting the answer to the question), and that no other

entries in the equation for either matrix are integer.

Definition 5.8. Let A ∈ Rm×n
, B ∈ Rm×k

. We say (A,B) satisfies Property OneFP if

for each i ∈M there is exactly one pair (r(i), r′(i)) such that

air(i), bir′(i) ∈ Z, and

for all i ∈M , if j 6= r(i) and t 6= r′(i), then

aij, bit > ε⇒ fr(aij) 6= fr(bit).

Remark 5.9. Note that this definition allows for multiple ε entries in each row, for

example the pair (I, I) satisfies Property OneFP with r(i) = i = r′(i) for all i.

Given a TSS we say that the system satisfies Property OneFP if the pair of input

matrices satisfy Property OneFP
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The aim of this section is to show that when the pair (A,B) satisfies Property OneFP

the problem of finding integer solutions can be solved in strongly polynomial time.

We argue that matrices (A,B) satisfying either Property ZeroFP or Property OneFP

represent a generic case. This is since the probability of two randomly generated real

matrices A ∈ Rm×n
, B ∈ Rm×k

having multiple entries sharing the same fractional part is

zero. Of course, for integer matrices, the existing methods [18] for finding real solutions to

the systems discussed will find integer solutions, and hence the interesting case to consider

is indeed when the input matrices are not integer.

From the proof of Proposition 5.6, in each row, active entries with respect to an integer

solution have the same fractional part. Since, under Property OneFP, there are exactly

one pair of entries per row with the same fractional part, the following is immediate.

Corollary 5.10. Let A ∈ Rm×n
, B ∈ Rm×k

satisfy Property OneFP . Then the entries

ai,r(i) [bi,r′(i)] are the only possible candidates for active entries in the matrix A [B] with

respect to any integer vector x [y] satisfying Ax = By.

5.2.2 Systems with separated variables

Let A ∈ Rm×n
, B ∈ Rm×k

. First we consider the question of whether there exist x ∈

Zn, y ∈ Zk such that Ax = By when (A,B) satisfies Property OneFP.

Observe that

Ax = z(−1) = By ⇔ diag(z)Ax = 0 = diag(z)By.

Proposition 5.11. Let A ∈ Rm×n
, B ∈ Rm×k

satisfy Property OneFP. Then (x, y) is an
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integer solution to Ax = By if and only if there exists z ∈ Zm such that (x, y) satisfy

diag(z)⊗ A⊗ x = 0 and (5.2)

diag(z)⊗B ⊗ y = 0. (5.3)

Proposition 5.12. Let A ∈ Rm×n
, B ∈ Rm×k

satisfy Property OneFP. Suppose z ∈

Zm satisfies (5.2) and (5.3) for some integer vectors x, y. If there exists a column of

diag(z)A containing more than one integer entry then these entries are equal. Similarly

for diag(z)B.

Proof. Assume z satisfies (5.2). Then for each i the entry ai,r(i) is the only active

entry of A in the ith row (equivalently zi + ai,r(i) is the only active entry in the ith row of

diag(z)A). This implies that if there exist i, t ∈M such that r(i) = r(t) then

zi + ai,r(i) + xr(i) = 0 = zt + at,r(t) + xr(t) ⇒ zi + ai,r(i) = zt + at,r(t).

�

Proposition 5.13. Simultaneously solving (5.2) and (5.3) is equivalent to the problem

of finding z ∈ Zm satisfying

(∀i, t ∈M) zi − zt ≥ dat,r(i)e − ai,r(i) and

(∀i, t ∈M) zi − zt ≥ dbt,r′(i)e − bi,r′(i).

Proof. Consider (5.2). We have that, for each i, the integer entry ai,r(i) + zi is the only

possible active entry of diag(z)A with respect to an integer vector x. From Proposition 2.1,

an integer solution to (5.2) exists exactly when the integer column maxima of diag(z)A
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cover all rows. A similar argument holds for (5.3). Hence we require that

ai,r(i) + zi > at,r(i) + zt for t 6= i and at,r(i) /∈ Z, (5.4)

ai,r(i) + zi = at,r(i) + zt for at,r(i) ∈ Z, (5.5)

bi,r′(i) + zi > bt,r′(i) + zt for t 6= i and bt,r′(i) /∈ Z and

bi,r′(i) + zi = bt,r′(i) + zt for bt,r′(i) ∈ Z.

For any other column (those not containing integer entries) we do not get any additional

constraints since we may set the corresponding entry of x or y to be small enough so that

the column has no effect on the product Ax or By.

This set of inequalities is equivalent to

(∀i, t ∈M) ai,r(i) + zi ≥ dat,r(i)e+ zt and (5.6)

(∀i, t ∈M) bi,r′(i) + zi ≥ dbt,r′(i)e+ zt. (5.7)

To see this note that (5.4) and (5.5) imply (5.6). For the other direction assume that (5.6)

holds. If at,r(i) /∈ Z then we have ai,r(i) + zi > at,r(i) + zi as required. If instead at,r(i) ∈ Z

then r(t) = r(i) and from (5.6) we have

ai,r(i) + zi ≥ dat,r(i)e+ zt and at,r(t) + zt ≥ dai,r(t)e+ zi

which together imply equality. Similar arguments hold for the inequalities with entries

from B.

The result is obtained by rearranging inequalities (5.6) and (5.7). �
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Let W = (wij) ∈ Zm×m where

wij = max

(
daj,r(i)e − ai,r(i), dbj,r′(i)e − bi,r′(i)

)
.

Then, by Proposition 5.13, to decide if Ax = By has an integer solution, we need to

determine whether there exists z ∈ Zm satisfying

(∀i, j ∈M)zi − zj ≥ wij

⇔ (∀i) max
j

(wij + zj) ≤ zi

⇔ W ⊗ z ≤ z.

This is exactly the condition for z ∈ IV ∗(W, 0) which can be checked using Theorem 2.5.

We have therefore proved the following result.

Theorem 5.14. Let A ∈ Rm×n
, B ∈ Rm×k

satisfy Property OneFP. For all i, j ∈M let

wij = max(daj,r(i)e − ai,r(i), dbj,r′(i)e − bi,r′(i)).

Then an integer solution to Ax = By exists if and only if λ(W ) ≤ 0. If this is the case

then Ax = By = z−1 where z ∈ IV ∗(W, 0) and x and y can be found using Proposition

2.1.

From Theorem 5.14 and Corollary 2.6 we obtain the following corollary which shows

that, for systems satisfying Property OneFP, integer solutions to TSS can be fully de-

scribed in strongly polynomial time.

Corollary 5.15. For A ∈ Rm×n
, B ∈ Rm×k

satisfying Property OneFP it is possible to

decide whether an integer solution to Ax = By exists in O(m3 + n+ k) time.
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5.2.3 General two-sided systems

We now consider finding integer solutions to Ax = Bx under the condition that (A,B)

satisfy Property OneFP. The following statement is obvious.

Proposition 5.16. Let A,B ∈ Rm×n
satisfy Property OneFP. The problem of finding

x ∈ Zn such that Ax = Bx is equivalent to finding x ∈ Zn, y ∈ Zn such that

A
I

x =

B
I

 y.

Observe that, if (A,B) satisfies Property OneFP, then so does (Â, B̂) where

Â =

A
I

 , B̂ =

B
I

 .

Thus to solve a general two-sided system satisfying Property OneFP we may convert it

into a system with separated variables and solve using Theorem 5.14. By Corollary 5.15

we have:

Corollary 5.17. For A,B ∈ Rm×n
satisfying Property OneFP we can decide whether an

integer solution to Ax = Bx exists in O((m+ n)3) time.

Remark 5.18. The transformation described in Proposition 5.3 is not suitable here since

it has y ∈ R whereas, to use Theorem 5.14, we want to be able to look for integer solutions.

Conversely, the transformation described in Proposition 5.16 is not suitable to use when

discussing the Alternating Method since we need at least one of the matrices to be finite

for our complexity arguments to hold.
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5.2.4 Some special cases

We now give a couple of cases where we can give simpler conditions, both are described

for systems with separated variables.

The first case occurs when we have r(1) = ... = r(m) or r′(1) = ... = r′(m). We

assume without loss of generality that the former occurs.

Proposition 5.19. Assume that A ∈ Rm×n
, B ∈ Rm×k

satisfy Property OneFP. Suppose

further that r(1) = ... = r(m) = p. Let A′ and B′ be the matrices obtained from A and B

by max-multiplying the ith row by a−1
ip . Then an integer solution to Ax = By exists if and

only if

B′ ⊗ b(B′)# ⊗′ 0c = 0.

Proof. Observe that an integer solution to Ax = By exists if and only if an integer

solution to A′x = B′y exists.

Assume first that x, y are integer vectors satisfying A′x = B′x. Now, from Corollary

5.10, we know that the active entries in A′ with respect to x are the zero entries in column

p. Thus A′ ⊗ x = (xp, xp, ..., xp)
T .

Therefore B′y = (xp, xp, ..., xp)
T which implies that B(x−1

p ⊗ y) = 0 and hence, using

Corollary 2.3 we know that B′ ⊗ b(B′)# ⊗′ 0c = 0.

For the other direction assume that B′⊗b(B′)#⊗′ 0c = 0. Choosing x ∈ Zn such that

x = (x1, ...xp−1, 0, xp+1, ..., xn)T with xj small for j 6= p gives us that A′ ⊗ x = 0 and thus

setting y = b(B′)# ⊗′ 0c gives A′ ⊗ x = B′ ⊗ y as required. �

Remark 5.20. If r(1) = ... = r(m) = p and r′(1) = ... = r′(m) = q then the only

candidates for active entries are found in columns Ap and Bq. So if Ax = By then

xpAp = yqBq and the other components of x and y are small enough not to affect the

outcome. Thus a solution to Ax = By exists if and only if Ap is a max-multiple of Bq.
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The second case occurs when A,B are square, satisfy Property OneFP, and for one

matrix the active entries are spread over all columns. Without loss of generality assume

that it is matrix A, so {r(1), ..., r(m)} = M .

Proposition 5.21. Assume that A,B ∈ Rm×m
satisfy Property OneFP. Suppose further

that r(i) 6= r(t) for all i, t ∈ M with i 6= t. Let A′ be obtained from A as follows: For

each i max-multiply each entry of row i by a−1
i,r(i) and permute the columns so that the zero

entries appear on the leading diagonal. If

λ(dA′e) 6= 0

then no integer solution to A⊗ x = B ⊗ y exists.

Proof. Let B′ be obtained from B by max-multiplying each entry of row i by a−1
i,r(i).

Assume an integer solution to Ax = By exists. Then an integer solution to A′x = B′y

exists and the active entries in A′ are the zeros on the diagonal by Corollary 5.10. Thus

(A′x)i = aii + xi = xi and hence x ∈ IV ∗(A′, 0). By Theorem 2.5 we have λ(dA′e) = 0.

�

5.2.5 A strongly polynomial algorithm for general matrices with

fixed m

We end this section by giving a brief description of how the solution method for systems

satisfying Property OneFP could be adapted to find integer solutions to any TSS, but

that in doing so we may lose efficiency. Since we can convert any general two-sided system

into a system with separated variables we discuss systems with separated variables only.

Let A ∈ Rm×n
, B ∈ Rm×k

and suppose (A,B) satisfies Property One+FP. In this case

for each row i of Ax = By we will have a number of pairs (air(i,s), bir′(i,s)), some integer

s ≤ nk, such that fr(air(i,s)) = fr(bir′(i,s)). Observe that for any x ∈ Zn, y ∈ Zk satisfying
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Ax = By we can identify a single pair of active entries for each row of the equation, and

hence the pair (x, y) is also an integer solution to the system Ax = B−y where (A,B−)

satisfies Property OneFP and B− is obtained from B by slightly decreasing each inactive

entry in B with respect to y.

In general Ax = By if and only if there exists an m-tuple (k1, ..., km), ki ∈ {1, ..., k},

a real number 0 < δ � 1 and a matrix B− = (b−ij) ∈ Rm×k
with

b−ij =


bij, if j = ki;

bij ⊗ δ−1, otherwise

such that Ax = B−y.

Hence given a pair (A,B) satisfying Property One+FP we can generate a number of

pairs (A,B(t)), t ∈ N such that x, y is an integer solution to Ax = By if and only is there

exists t such that Ax = B(t)y. Note that each B(t) is obtained from B by decreasing

the value of all but one element, bir′(i,s), per row and the pairs (A,B(t)) satisfy Property

OneFP. We can therefore determine whether an integer solution to Ax = B(t)y exists in

strongly polynomial time.

Unfortunately in the worst case there could be as many as nk pairs per row and thus

(nk)m matrices to check, so the complexity of this method is O(m3nmkm). However we

can say that, for fixed m, a strongly polynomial method for finding integer solutions to

TSS exists.

5.3 Conclusion

We began by constructing Algorithms 5.1 (SEP-INT-TSS) and 5.4 (GEN-INT-TSS) which,

for finite input matrices, can determine whether an integer solution to Ax = By and

Ax = Bx respectively, exist. Further we proved that these algorithms run in pseudopoly-
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nomial time for finite input matrices.

We defined a class of TSSs for which the entire set of integer solutions could be

described in strongly polynomial time, a key result being Theorem 5.14. This was any

TSS for which the pair of input matrices satisfied Property OneFP. We used this class

of matrices to show that, for fixed m, it is possible to find integer solutions to TSSs in

strongly polynomial time.

Further research could be done to find more strongly polynomially solvable cases, and

to give an efficient full description of all integer solutions to a TSS. It is also known, see

[27], that the set of integer solutions to a TSS can be written as an intersection of the

solution sets of one sided systems. While the set of integer solutions to each of these

simpler systems can be described in strongly polynomial time, the number of systems

involved in the description is too large to determine whether an integer solution to the

original TSS existed efficiently.

At the time of writing, for two-sided systems which do not satisfy the generic prop-

erty, it is unknown whether an integer solution, or indeed any solution, can be found in

polynomial time. If we remove the integrality requirement, then it is known that finding

a solution to a max-algebraic two-sided system is equivalent to finding a solution to a

mean payoff game [10]. Mean payoff games are a well known class of problems in NP ∩

co-NP, it is expected that a polynomial solution method will be found in the future.

115



6. Integer max-linear programs

In this chapter we investigate integer solutions to max-linear programming problems. We

briefly consider the case when the constraints are in the form of a one-sided equality,

showing that methods for finding real solutions can be adapted to find integer solutions,

and that the optimal objective value, and an optimal solution, can be found in strongly

polynomial time. The main focus of this chapter is problems with two-sided constraints.

Using Algorithm 5.4 (GEN-INT-TSS) for solving TSSs, we describe a bisection method

to find an optimal solution to an integer max-linear program in pseudopolynomial time,

this is Algorithms INT-MAXLINMIN and INT-MAXLINMAX. Finally, we consider the

IMLP where the input matrices satisfy Property OneFP. Key results are Theorems 6.33

and 6.34, which describe the optimal objective value and find an optimal solution to finite

input systems in strongly polynomial time. These results are then used to prove that,

for any input matrix, the problem is strongly polynomially solvable if the input matrices

satisfy Property OneFP.

Recall that, in max-algebra, we have to consider the maximisation problem and the

minimisation problem independently, as there is no easy way to switch between them.

All of the material in Sections 6.2 and 6.3 has been published in [25] and [26].
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6.1 One-sided constraints

Let A ∈ Rm×n
b ∈ Rm

, c ∈ Rn
. We will assume throughout this section that A is doubly

R-astic. The one-sided max linear program (OMLP) is stated below.

cT ⊗ x→ min or max (OMLP )

s.t A⊗ x = b

x ∈ Rn

When we additionally require that x ∈ Zn we have the one-sided integer max-linear

program (OIMLP). We will show that the OIMLP is strongly polynomially solvable.

We use OMLPmax and OMLPmin to denote the problems maximising and minimising

the objective function respectively. Similarly for OIMLP.

6.1.1 Preliminaries

It is known how to solve the OMLP, one solution method is found in [18] and we outline

the results here.

Recall Proposition 1.9 and that x̄ satisfies x ≤ x̄ for any feasible x. Thus, since the

objective function cT ⊗ x is isotone the following is immediate.

Proposition 6.1. [18] OMLPmax has a solution if and only if x̄ is an optimal solution.

We now consider OMLPmin. The algorithm from [18] to solve the problem of mini-

mizing the objective function (given that the feasible set is non empty) given below. It is

proved in [18] that this algorithm requires O(mn) operations.

Algorithm: ONEMAXLINMIN

Input: A, b, c.

Output: Optimal solution x to OMLPmin
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1. Calculate x̄ and Mj = {i ∈M : x̄j = bi ⊗ a−1
ij }, j ∈ N.

2. Without loss of generality let c1 ⊗ x̄1 ≤ c2 ⊗ x̄2 ≤ ... ≤ cn ⊗ x̄n.

3. J := {1}, r := 1.

4. If ⋃
j∈J

Mj = M

then STOP. Solution x exists with xj = x̄j for j ∈ J and xj small enough otherwise.

5. r := r + 1, J := J ∪ {r}.

6. Go to 4.

In step 4, for a component xj, j /∈ J to be small enough it means that it does not

contribute to the objective function value, thus any xj with xj ≤ c
(−1)
j ⊗cr⊗xr will ensure

that cr ⊗ x̂r = cr ⊗ xr ≥ cj ⊗ xj.

6.1.2 One-sided integer max-linear programs

The methods for the OMLP are easily adaptable to solve the OIMLP using Proposition

2.1.

Define x̂j = bx̄jc for all j ∈ N . Then any feasible x ∈ Zn satisfies x ≤ x̂.

An immediate corollary of Proposition 6.1 and Corollary 2.3 follows.

Corollary 6.2. OIMLPmax has a solution if and only if x̂ is an feasible solution. If this

is the case then x̂ is an optimal solution.

Corollary 6.3. Solving OIMLPmax requires at most O(mn) operations.

Proof. We need to calculate x̂ and then check whether A ⊗ x̂ = b. If it is then x̂ is a

solution, if it is not then no feasible solution exists. Calculating x̄ requires (2m− 1)n =

O(mn) operations, taking the integer part to get x̂ requires n operations. The final check

requires O(mn) operations. �
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To solve the minimization case we propose a simple change Algorithm ONEMAXLIN-

MIN; calculating x̂ instead of x̄. We define OISmin to be the set of optimal solutions to

OIMLPmin, and M ′
j = {i ∈ M : x̂j = bi ⊗ a−1

ij }. This gives us the following algorithm to

solve OIMLPmin.

Algorithm 6.4. OIMLPMin

Input: A, b, c.

Output: Optimal solution x ∈ OISmin, or indication that the feasible set is empty.

1. Calculate x̂ and M ′
j, j ∈ N. If Ax̂ 6= b STOP; no feasible solutions.

2. Order cj ⊗ x̂j, j ∈ N : Without loss of generality let

c1 ⊗ x̂1 ≤ c2 ⊗ x̂2 ≤ ... ≤ cn ⊗ x̂n.

3. J := {1}, r := 1.

4. If ⋃
j∈J

M ′
j = M

then STOP. Solution x exists with xj = x̂j for j ∈ J and xj small enough otherwise.

5. r := r + 1, J := J ∪ {r}.

6. Go to 4.

Again, for xj, j /∈ J to be small enough in step 4 we could have xj ≤ c
(−1)
j ⊗ cr ⊗ xr.

Theorem 6.5. Algorithm OIMLPMin is correct and its complexity is O(mn2).

Proof.

Correctness: From Corollary 2.3 a feasible solution exists if and only if x̂ is feasible.

From Proposition 2.1, any feasible solution x ∈ Zn satisfies xj ≤ x̂j and has xj = x̂j for

j ∈ J such that
⋃
j∈JMj = M . It is key here to note that, if xj is active in Ax = b, then
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xj = x̂j. It follows that, if cT ⊗ x = cj ⊗ xj, then xj = x̂j (xj is active in Ax = b) because

we can reduce the value of any xt which is inactive in Ax = b while remaining feasible.

Therefore, the value of cT ⊗ x is determined by the active entries of x with respect to

Ax = b, whose value is predetermined. Since we are looking for the minimum possible

value, we begin with the smallest values of cj⊗xj first, and test whether a feasible solution

exists with just these minimum values active. If yes, we are done, if not we add the next

smallest value to our candidates for active entries, and repeat.

Complexity: Step 1 requires O(mn) operations since calculating x̂ needs (2m− 1)n+

n and calculating each of n M ′
js require m comparisons. Step 2 requires O(n log n)

operations to calculate n products of the form cj ⊗ xj and then order them. The loop

4,5,6 requires O(mn) and is repeated at most n times (after n times J = N and so there

is nothing left to consider). �

Remark: From Corollary 6.3 and Theorem 6.5 we have that OIMLP is strongly

polynomially solvable.

6.2 Two-sided constraints

In this section we develop algorithms to solve the integer max linear program for problems

with finite entries, so we assume throughout that A,B, c, d, f are finite. Recall that the

IMLP has the form

fT ⊗ x = f(x)→ min or max

s.t. Ax⊕ c = Bx⊕ d

x ∈ Zn.

We will write IMLPmax to mean the integer max-linear program which maximises f(x) :=

fTx, and IMLPmin to denote the program minimising fTx, where f ∈ Rn. For A,B ∈
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Rm×n, c, d ∈ Rm we denote

S = {x ∈ Rn : Ax⊕ c = Bx⊕ d},

IS = S ∩ Zn,

ISmin = {x ∈ IS : f(x) ≤ f(z) ∀z ∈ IS},

ISmax = {x ∈ IS : f(x) ≥ f(z) ∀z ∈ IS}.

The method described here is based on the bisection method used to find real optimal

solutions to max-linear programs described in [18].

In [18] Proposition 6.6 below explains why it is valid to use a bisection method to

solve the MLP.

Proposition 6.6. [18] If x, y ∈ S, f(x) = α < β = f(y) then for every γ ∈ (α, β) there

is a z ∈ S satisfying f(z) = γ.

Proposition 6.6 is not strong enough to justify using a bisection method for problems

with integrality requirements since it does not ensure that z ∈ IS. We can however

construct a similar argument which serves this purpose.

Proposition 6.7. Let x, y ∈ IS with f(x) = α < β = f(y). Then for all γ ∈ (α, β) with

fr(γ) = fr(β) there exists z ∈ IS such that f(z) = γ.

Proof. Take λ = 0 and µ = γ⊗β−1 ∈ Z. Let z = λ⊗x⊕µ⊗y. Now S is a max-convex

set [18] and so since λ⊕ µ = 0 we have z ∈ S ∩ Zn = IS. Finally

f(z) = λ⊗ f(x)⊕ µ⊗ f(y) = α⊕ γ = γ.

�
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We also need the following results. The first follows from the cancellation rule, Lemma

1.16.

Lemma 6.8. [18] Let α, α′ ∈ R, α′ < α and f(x) = fT ⊗x, f ′(x) = f ′T ⊗x where f ′j < fj

for every j ∈ N . Then the following holds for every x ∈ R: f(x) = α if and only if

f(x)⊕ α′ = f ′(x)⊕ α.

Since the result holds for real vectors x it clearly also holds for integer x. Using this

and the cancellation law we can check whether f(x) attains some value α as detailed in

the following proposition.

Proposition 6.9. f(x) = α for some x ∈ IS if and only if the following integer max-

linear system has a solution:

A⊗ x⊕ c = B ⊗ x⊕ d,

f(x)⊕ α′ = f ′(x)⊕ α,

x ∈ Zn,

where α′ < α and f ′j < fj for every j ∈ N .

We know from Section 5.1 that we can decide whether a two-sided system has a

solution by applying Algorithm GEN-INT-TSS.

6.2.1 When the objective function is unbounded

We now consider the question of when optimal solutions exist. We denote the minimum

and maximum of f by fmin and fmax respectively. Without loss of generality we assume

that c ≥ d. Following the work in [18], we denote M> = {i ∈M : ci > di}. Let

Lr = min
t∈N

(ft ⊗ cr ⊗ b−1
rt )
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and

L =

⌊
max
r∈M>

Lr

⌋
. (6.1)

Note that L = −∞ if M> = ∅.

Lemma 6.10. If c ≥ d then f(x) ≥ L for every x ∈ IS.

Proof. From Lemma 10.2.9 in [18] we have that the result holds for every x ∈ S. �

Theorem 6.11. [18] Consider MLPmin. Then fmin = −∞ if and only if c = d.

Proof. If c = d then αx ∈ IS for all x ∈ Zn and α ∈ Z with α small enough. Letting α

tend to −∞ gives the first direction. If c 6= d then L > −∞ and so we can apply Lemma

6.10. �

For the upper bound we need the following results.

Lemma 6.12. Let c ≥ d. If x ∈ IS and (Ax)i > ci for all i ∈M then x′ = αx ∈ IS and

(Ax′)i ≤ ci ⊗ 1 for some i ∈M where

α =

⌈
max
i∈M

(
ci(Ax)−1

i

)⌉
. (6.2)

Proof. Assume x ∈ IS. Then Ax = Bx since Ax > c ≥ d. From the choice of α we get

that

(A(αx))i = α(Ax)i ≥ ci

for all i ∈M . Further, since A(βx) = B(βx) for any β ∈ Z, we have x′ ∈ IS.

Finally let t ∈M be an index at which the value of α is attained. Then

(A⊗ x′)t = dct ⊗ (A⊗ x)−1
t e(A⊗ x)t ≤ ct ⊗ (Ax)−1

t ⊗ 1⊗ (Ax)t ≤ ct ⊗ 1.

�
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Let

U =

⌈
max
r∈M

max
j∈N

(fj ⊗ a−1
rj ⊗ cr ⊗ 1)

⌉
. (6.3)

Lemma 6.13. If c ≥ d then the following hold:

(i) If x ∈ IS and (Ax)r ≤ cr ⊗ 1 for some r ∈M then f(x) ≤ U .

(ii) If Ax = Bx has no integer solution then f(x) ≤ U for every x ∈ IS.

Proof. (i) For all j ∈ N we have that arj ⊗ xj ≤ cr ⊗ 1. Thus

f(x) = max
j∈N

(fj ⊗ xj) ≤ max
j∈N

(fj ⊗ a−1
rj ⊗ cr ⊗ 1) ≤ U.

(ii) If IS = ∅ then there is nothing to prove so assume that x ∈ IS. Since A⊗x 6= B⊗x

there exists r ∈M such that (A⊗ x) ≤ cr ≤ cr ⊗ 1 and so we can apply (i). �

Theorem 6.14. Consider IMLPmax. Then fmax = +∞ if and only if Ax = Bx has an

integer solution.

Proof. Without loss of generality c ≥ d. If Ax = Bx does not have an integer

solution then we know from Lemma 6.13 that fmax is bounded from above. Conversely,

if Az = Bz, z ∈ Zn then for all large enough α ∈ Z we have

A(αz) = B(αz) ≥ c ≥ d.

Thus (αz) ∈ IS and f(αz)→ +∞ as α→ +∞. �

So far we have shown that we can determine immediately when fmin is unbounded

and can check whether fmax is unbounded, for example by applying the Algorithm GEN-

INT-TSS. We now need to argue that when the objective function value is bounded there

exist integer vectors for which fmax and fmin are attained.
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6.2.2 Attainment of optimal values

For all j ∈ N let

hj =

⌊
min

(
min
r∈M

(a−1
rj ⊗ cj),min

r∈M
(b−1
rj ⊗ dj), f−1

j ⊗ L
)⌋

,

h′j =

⌊
min

(
min
r∈M

(a−1
rj ⊗ cj),min

r∈M
(b−1
rj ⊗ dj)

)⌋
, (6.4)

h = (h1, ..., hn)T and h′ = (h′1, ..., h
′
n)T . Observe that h′ is finite and h is finite if and only

if fmin > −∞.

A direct consequence of Propositions 10.2.14 and 10.2.16 in [18] is the following result.

Proposition 6.15. Let h and h′ be as defined above.

(i) For any x ∈ IS the vector x′ = x⊕ h ∈ IS satisfies x′ ≥ h and f(x) = f(x′).

(ii)For any x ∈ IS the vector x′ = x⊕ h′ ∈ IS satisfies x′ ≥ h′ and f(x) ≤ f(x′).

Corollary 6.16. Let h and h′ be as defined above.

(i)If fmin > −∞ and IS 6= ∅ then

fmin = min
x∈IS

f(x)

where IS = IS ∩ {x ∈ Zn : hj ≤ xj ≤ f−1
j ⊗ f(x̄), j ∈ N}.

(ii) If fmax < +∞ then

fmax = max
x∈IS′

f(x)

where IS
′
= IS ∩ {x ∈ Zn : h′j ≤ xj ≤ f−1

j ⊗ U, j ∈ N}.

Proof. Similar to the proof of Corollary 10.2.12 and Corollary 10.2.17 in [18] �

We can therefore conclude that, provided the objective function value is bounded, a

feasible solution implies the existence of an optimal solution. We summarise this below.
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Corollary 6.17. If IS 6= ∅ and fmin > −∞ [fmax < +∞] then ISmin 6= ∅ [ISmax 6= ∅].

Finally we need a finite lower bound on fmax since L will not work in the case when

c = d.

Corollary 6.18. Let L′ = bf(h′)c. If x ∈ IS then x′ = x ⊕ h′ is such that f(x′) ≥ L′

and hence fmax ≥ L′.

6.2.3 The algorithms

Algorithm when minimising the objective function

For minimisation we know that an optimal solution exists provided c 6= d. We first check

whether fmin = L using Proposition 6.9, if so we are done, if not then we find any feasible

x0 using the Algorithm 5.4 (GEN-INT-TSS) and, if necessary scale it using (6.2) so that

f(x0) ≤ U . Then we know that fmin ∈ (L, f(x0)]

Once we know that, for any x ∈ IS, f(x) satisfies

L ≤ f(x) ≤ f(x0) = U

we can set

Θ = {θ : θ ∈ (L,U ] and fr(θ) = fr(U)}

and apply a bisection method on the set Θ as follows.

1. Order θi ∈ Θ from smallest to largest and test whether the middle value, θ, is

attained for any x ∈ IS.

2. If it is then we have a new upper bound; f(x) ≤ θ.

3. If it is not then we have a new lower bound; f(x) > θ.

In 3 we use the fact that if θ is unattainable then no value in (L, θ] is attainable. To

see this note that, if there exists α ∈ (L, θ] attainable then by Proposition 6.7 all values
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in (α, U) with fractional part equal to that of U work, but θ satisfied this condition and

was not attainable. In each case we have halved the number of values that we need to

test.

Using this idea, we obtain the following algorithm for solving IMLPmin.

Algorithm 6.19. INT-MAXLINMIN

Input: A,B ∈ Rm×n, c, d ∈ Rm, c ≥ d, c 6= d, f ∈ Rn.

Output: x ∈ IS such that f(x) = fmin.

1. Calculate L from (6.1). If L = f(x) for some x ∈ IS then STOP, fmin = L.

2. Find an x0 ∈ IS. If (A ⊗ x0)i > ci for all i ∈ M then scale x0 by α defined in

(6.2).

3. L(0) := L,U(0) := f(x0), r := 0.

4. Θ := {θ : θ ∈ (L(r), U(r)] and fr(θ) = fr(U(r))}, η := |Θ|. If η = 1 go to 9.

5. Take θ ∈ Θ ∩
[
L(r)+U(r)

2
− 1

2
, L(r)+U(r)

2
+ 1

2

]
.

6. Check whether f(x) = θ for some x ∈ IS and if so find one.

If yes then U(r + 1) = θ, L(r + 1) = L(r).

If no then U(r + 1) := U(r), L(r + 1) = θ.

8. r := r + 1, go to 4.

9. Find the smallest γ ∈ (L(r), U(r)] such that (∃j)fr(fj) = fr(γ) and f(x) = γ for

some x ∈ IS (by checking each of the, at most n values). Output fmin = γ and x.

Note that, in the run of Algorithm INT-MAXLINMIN, whenever the algorithm checks

whether f(x) = θ for some given θ and x ∈ IS, it solves the TSS described in Proposition

6.9. Solving the TSS can be done by any known method.

Theorem 6.20. Algorithm INT-MAXLINMIN is correct and terminates after at most

O(log(dU − Le)) iterations.
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Let

K̄ =

⌈
max{|aij|, |bij|, |ci|, |di|, |fj| : i ∈M, j ∈ N}

⌉
.

Observe that L,L′, U ∈ [−3K̄, 3K̄].

Corollary 6.21. If the Algorithm GEN-INT-TSS is used to perform the checks in steps

1, 6 and 8 then Algorithm INT-MAXLINMIN has complexity O(mn(m+ n)K̄ log K̄).

Proof. The number of iterations is O(log(dU − Le)) ≤ O(log 6K̄) = O(log K̄). Each

iteration uses Algorithm GEN-INT-TSS which, from Corollary 5.5, requires

O(K(X|Y )m′n′(m′ + n′))

operations where K(X|Y ) is defined in (5.1), m′ = m+ 1, n′ = n+ 1 and

X =

A c

fT α′

 , Y =

 B d

f ′T α

 .

We can choose α′ and f ′ so that α− 1 ≤ α′ ≤ α, fj − 1 ≤ f ′j ≤ fj and hence K(X|Y ) ≤

K̄+1. Therefore the number of operations in a single iteration is O(K̄mn(m+n)). �

Algorithm when maximising the objective function

For maximisation we cannot assume that c 6= d since this is not the criterion for fmax

to be unbounded. We must first check that fmax < +∞ by verifying that Ax = Bx has

no integer solution, which can be done using Algorithm GEN-INT-TSS. We then check

whether fmax = U (where U is defined in (6.3)) using Proposition 6.9. If not then we find

any feasible solution x0 and, set x0 := x0 ⊕ h′ so that f(x0) ≥ L′.

Further when maximising it is no longer enough to only check values in the interval

with a single fractional part. This is because the upper bound is not attained, and so we
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can no longer guarantee that the optimal value shares its fractional part with U . However

we do know that there are only a finite number of possible fractional parts that could be

attained, these are fr(fi) for all i because fT ⊗ x for x ∈ Zn can only take its fractional

part from the elements of f . Once we know, for all x ∈ IS, L = f(x0) ≤ f(x) ≤ U we

proceed as follows.

1. Let [J, J + 1) be an interval contained halfway between L and U .

2. Test each of the (at most n) values in this interval that share the same fractional

part as a component of f to see whether they are attained by some x ∈ IS,

3. If one exists then the largest becomes a new lower bound.

4. If none in the interval are attained then Proposition 6.7 guarantees that no value

higher than J can be attained and thus we have a new upper bound.

Continue in this way, each time approximately halving the length of the interval until

U − L ≤ 2. In this case the interval [J, J + 1) may not be contained entirely in (L,U)

and so testing points in this smaller interval is no longer efficient since we will check

unnecessary points, or find L again. So instead check the remaining ≤ 2n possible points

and choose the one with smallest value.

We obtain the following algorithm for IMLPmax.

Algorithm 6.22. INT-MAXLINMAX

Input: A,B ∈ Rm×n, c, d ∈ Rm, c ≥ d, f ∈ Rn.

Output: x ∈ IS such that f(x) = fmax.

1. Calculate U from (6.3). If U = f(x) for some x ∈ IS then STOP, fmax = U .

2. Check whether Ax = Bx has an integer solution. If yes STOP, fmax = +∞.

3. Find an x0 ∈ IS. Set x0 := x0 ⊕ h′ as defined in (6.4).

4. L(0) := f(x0), U(0) := U, r := 0.

5. If U − L ≤ 2 go to 8. Else let J := 1
2
(U(r) + L(r)).

6. Using a bivalent search find the biggest σ ∈ [J, J + 1) such that (∃j)fr(fj) = fr(σ)
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and f(x) = σ for some x ∈ IS.

If none exist then U(r + 1) := J, L(r + 1) = L(r).

Otherwise U(r + 1) = U(r), L(r + 1) = σ.

7. r := r + 1, go to 5.

8. Using a bivalent search find the biggest γ ∈ (L(r), U(r)) such that (∃j)fr(fj) =

fr(γ) and f(x) = γ for some x ∈ IS.

If none exist then STOP, fmax = L(r).

Otherwise STOP, fmax = γ.

Note that, in the run of Algorithm INT-MAXLINMAX, whenever the algorithm checks

whether f(x) = θ for some given θ and x ∈ IS, it solves the TSS described in Proposition

6.9. Solving the TSS can be done by any known method.

Theorem 6.23. Algorithm INT-MAXLINMAX is correct and terminates after at most

O(log(U − L′)) iterations where L′ = bf(h′)c.

Corollary 6.24. If the Algorithm GEN-INT-TSS is used to perform the checks in steps 1,

6 and 8 then Algorithm INT-MAXLINMAX has complexity O(mn(m+n) log(n)K̄ log(K̄)).

Proof. The same as the proof of Corollary 6.21 with L replaced by L′ but here we have

that each iteration uses the Algorithm GEN-INT-TSS at most log(2n) times. �

Remark 6.25. We note here that, for systems satisfying Property OneFP (see Definition

5.8), the use of Algorithm GEN-INT-TSS in both Algorithm INT-MAXLINMIN and INT-

MAXLINMAX can be replaced checking the conditions in Theorem 5.14. In this case these

algorithms for the IMLP become polynomial, details are contained in [25].
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6.3 Strongly polynomial algorithm for IMLP under

Property OneFP

The aim of this section is to develop strongly polynomial methods for solving IMLPmin

and IMLPmax under the assumption that Property OneFP holds. Recall that the IMLP

has the form

fT ⊗ x→ min or max

s.t. Ax⊕ c = Bx⊕ d, (6.5)

x ∈ Zn,

where A,B ∈ Rm×n, c, d ∈ Rm, f ∈ Rn. We can write the constraints of the IMLP as

(
A|c
)x

0

 =

(
B|d
)x

0

 (6.6)

x ∈ Zn.

Recall A(−1) := −A ∈ R
m×n

. From Theorems 6.11 and 6.14 we have, fmin = −∞

if and only if c = d and fmax = +∞ if and only if there exists an integer solution to

Ax = Bx.

We will need the following immediate corollary of Theorem 2.5.

Corollary 6.26. If A is integer and λ(A) ≤ 0, then

IV ∗(A, 0) = {A∗z : z ∈ Zn}.

Recall from Proposition 5.6 that a necessary condition for the existence of an integer
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solution to either Ax = By or Ax = Bx is that

(∀i ∈M)(∃j ∈ N, t ∈ K) fr(aij) = fr(bit) and aij, bit ∈ R.

Further, under the assumption that Property OneFP holds, we denote the positions of

the pairs of entries with the same fractional parts in row i by (r(i), r′(i)). We also assume

without loss of generality that the entries (ai,r(i), bi,r′(i)) are integer and no other entries

in the equation for either matrix are integer.

From Corollary 5.10, the entries ai,r(i) [bi,r′(i)] are the only possible active entries in the

matrix A [B] with respect to any integer vector x [y] satisfying Ax = By. Additionally

general systems can be converted into systems with separated variables by Corollary 5.16

and that this conversion will preserve Property OneFP. So Corollary 5.10 holds accordingly

for general systems. Hence we restrict our attention to the case of separated variables.

6.3.1 Consequences of Property OneFP

Let z = (xT , 0)T ∈ Zn+1. By Proposition 5.16, the constraint (6.6) is equivalent to the

condition that there exists y ∈ Zn+1 such that (z, y) is an integer solution to A′z = B′y

where

A′ :=

A|c
I

 ∈ R(m+n+1)×(n+1)
, B′ :=

B|d
I

 ∈ R(m+n+1)×(n+1)
.

This is since if (z, y) is an integer solution to A′z = B′y then so is (z−1
n+1z, z

−1
n+1y) where

z−1
n+1z = (xT , 0)T and z−1

n+1y = y−1
n+1y = (xT , 0)T .

Proposition 6.27. Let A,B ∈ Rm×n, c, d ∈ Rm. If there exists a row in which the

matrices (A|c) and (B|d) do not have entries with the same fractional part, then the

feasible set of IMLPmin is empty.

Proof. It follows from Proposition 5.6. �
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For the rest of the section we will assume that the pair ((A|c), (B|d)) satisfies Property

OneFP, and hence so does (A′, B′). Note that an example is provided at the end of this

section to clarify many of the concepts that will be introduced in what follows.

Corollary 6.28. Let A′, B′ be as defined above. Let

W := (wij) ∈ Z(m+n+1)×(m+n+1)

where for all i, j ∈ {1, ...,m+ n+ 1},

wij := (a′i,r(i))
−1da′j,r(i)e ⊕ (b′i,r′(i))

−1db′j,r′(i)e.

Then a feasible solution to IMLP exists if and only if λ(W ) ≤ 0. If this is the case, then

A′z = B′z

where zj = γ−1
m+j for any γ ∈ IV ∗(W, 0) and j ∈ {1, ..., n+ 1}.

Proof. Existence follows from Theorem 5.14.

Assume that λ(W ) ≤ 0, hence for all γ ∈ IV ∗(W, 0)

A|c
I

 z = γ(−1) =

B|d
I

 y.

Let µ ∈ Zn+1 be defined by µj = γm+j, j = 1, ..., n + 1, and note that since γ is finite so

is µ. Then

Iz = µ(−1) = Iy.

�
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Remark 6.29. (i) For A′, B′ as defined above, W can be calculated in O((m+n)2) time,

λ(W ) in O((m+ n)3) time and W ∗ in O((m+ n)3) time.

(ii) Clearly wii = 0 for all i ∈ {1, ...,m+ n+ 1}, and so λ(W ) ≥ 0. Hence an integer

solution to the TSS exists if and only if λ(W ) = 0.

This matrix W , constructed from A′ and B′, will play a key role in the solution of the

IMLP. To construct the ith row of W we only consider columns A′r(i) and B′r′(i). Define

A′′ := (A|c) and B′′ := (B|d). Observe that the ith row is equal to H(i)T for

H(i) = (a′i,r(i))
−1

dA′′r(i)e
Ir(i)

⊕ (b′i,r′(i))
−1

dB′′r′(i)e
Ir′(i)

 , (6.7)

Also,

H(i)t > ε for all i ∈ {1, ...,m+ n+ 1}, t ∈ {1, ...,m}

since A and B are finite. Further when i ∈ {m + 1, ...,m + n + 1}, i = m + j say, then

r(i) = j = r′(i) and Ii,r(i) = 0 = Ii,r′(i). Hence

H(i) =

dA′′j e
Ij

⊕
dB′′j e

Ij

 =

dA′′j e ⊕ dB′′j e
Ij

 .

Therefore the matrix W ∈ Zm+n+1
has the formP Q

R I


where P ∈ Zm×m, Q ∈ Zm×(n+1)

, R ∈ Z(n+1)×m, I ∈ Z(n+1)×(n+1)
.

Moreover each row of Q has either one or two finite entries: for a fixed i ∈ {1, ...,m},
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the entries wij, j ∈ {m+ 1, ...,m+ n+ 1} are obtained by calculating

max(da′j,r(i)e − a′i,r(i), db′j,r′(i)e − b′i,r′(i))

where

a′j,r(i), j ∈ {m+ 1, ...,m+ n+ 1}

form a unit vector, as do

b′j,r′(i), j ∈ {m+ 1, ...,m+ n+ 1},

so at least one will be finite and, if r(i) 6= r′(i), there will be exactly two.

From Corollary 6.28 we have

x
0

 = z = µ(−1)

where µ is the vector of the last n+ 1 entries of some γ ∈ IV ∗(W, 0). By Corollary 6.26,

γ = W ∗ω for some integer vector ω. Let V = (vij) be the matrix formed of the last n+ 1

rows of W ∗, so that µ = V ⊗ ω for ω ∈ Zm+n+1, equivalently

x
0

 = z = V (−1) ⊗′ ω(−1). (6.8)

Now (6.8) can be split into two equations, one for the vector x and one for the scalar

0. Further we would like the second equation to be of the form mintwt = 0 for ease of

calculations later. This leads to the following definition.

Definition 6.30. Let V (0) be the matrix formed from V (−1) by max-multiplying each finite

column j by vm+n+1,j, and then removing the final row (at least one finite column exists
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by Property OneFP). Let U ∈ R1×(m+n+1)
be the row that was removed.

Note that U contains only 0 or +∞ entries.

Proposition 6.31. Let A,B, c, d, V (0) and U be as defined in (6.5) and Definition 6.30.

Then x ∈ Zn is a feasible solution to IMLP if and only if it satisfies

x = V (0) ⊗′ ν

where 0 = U ⊗′ ν

for some ν ∈ Zm+n+1.

Proof. By Corollary 6.28 x is feasible if and only if (xT , 0)T = µ(−1) where µ is the vector

containing the last n + 1 components of some γ ∈ IV ∗(W, 0). By the above discussion

this means that x
0

 = V (−1) ⊗′ w(−1) =

V (0)

U

⊗′ ν.
�

We will first consider (in Subsection 6.3.2) solutions to IMLP when W ∗, and hence

also V (0) and U , are finite. In Subsections 6.3.4 and 6.3.4 we deal with the case when W ∗

is not finite.

Before this we summarise key definitions and assumptions that will be used throughout

the remainder of this section, for easy reference later.

Assumption 6.32. We assume the following are satisfied.

(i) A,B ∈ Rm×n, c, d ∈ Rm.

(ii) A′′ := (A|c), B′′ := (B|d) and

A′ :=

A|c
I

 , B′ :=

B|d
I

 .

136



(iii) The pair (A′′, B′′) satisfies Property OneFP (and therefore also (A′, B′)).

(iv) W is constructed from A′, B′ according to Corollary 6.28.

(v) Without loss of generality λ(W ) = 0.

(vi) V is the matrix containing the last n+ 1 rows of W .

6.3.2 Finding the Optimal Solution to IMLP When W ∗ is Finite

Theorem 6.33. Let A,B, c, d satisfy Assumption 6.32 and V (0) be as in Definition 6.30.

If W ∗ is finite, then the optimal objective value fmin is attained for

xopt = V (0) ⊗′ 0.

Proof. By Proposition 6.31, we know that any feasible x satisfies x = V (0) ⊗′ ν where,

by the finiteness of W ∗ (and also V (0)), we have U = 0 and hence

ν1 ⊕′ ...⊕′ νm+n+1 = 0.

Therefore x ≥ V (0)⊗′ 0 for any feasible x and further V (0)⊗′ 0 is feasible. The statement

now follows from the isotonicity of fTx, see Corollary 1.7. �

Theorem 6.34. Let A,B, c, d satisfy Assumption 6.32 and V (0) be as in Definition 6.30.

If W ∗ is finite, then the optimal objective value fmax is equal to

fT ⊗ V (0) ⊗ 0.

Further let y := V (0) ⊗ 0 and j be an index such that fmax = fjyj. If i is such that

yj = V
(0)
ji , then an optimal solution is xopt = V

(0)
i .

Proof. By Proposition 6.31, we know that any feasible x satisfies x = V (0) ⊗′ ν where,
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by the finiteness of W ∗ (and also V (0)), we have U = 0 and hence

ν1 ⊕′ ...⊕′ νm+n+1 = 0.

If νj = 0, then x ≤ V
(0)
j and therefore all feasible x satisfy x ≤ y = V (0) ⊗ 0. Note that y

may not be feasible.

By isotonicity, fTy ≥ fTx for any feasible x. We claim that there exists a feasible

solution x for which they are equal. Suppose that fTy = fjyj. Let i be an index such

that v
(0)
ji = yj. By setting νi = 0 and all other components to large enough integers we

get a feasible solution x̄ such that x̄j = yj. In fact x̄ = V
(0)
i . Hence

fjx̄j = fjyj = fTy ≥ fT x̄ ≥ fjx̄j,

which implies fTy = fT x̄ as required. �

It follows from Theorems 6.33 and 6.34 that, if λ(W ) ≤ 0 and W ∗ is finite, then an

optimal solution to IMLPmin and IMLPmax always exists.

6.3.3 Criterion for Finiteness of W ∗

Theorems 6.33 and 6.34 provide explicit solutions to IMLP, which can be found in O((m+

n)3) time by Remark 6.29 in the case when W ∗ is finite. We now consider criteria for W ∗

to be non-finite and show how we can adapt the problem in this case so that IMLP can

be solved using the above methods in general.

Proposition 6.35. Let A,B, c, d satisfy Assumption 6.32.

Let ej ∈ Rm+n+1
be the jth unit vector. The following are equivalent:

(i) W ∗ contains an ε entry.

(ii) There exists j ∈ {1, ..., n+ 1} such that W ∗
m+j = em+j .

(iii) There exists j ∈ {1, ..., n+ 1} such that Wm+j = em+j.
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(iv) There exists j ∈ {1, ..., n + 1} such that neither A′′j nor B′′j contain an integer

entry.

Further the index j satisfies the condition in (ii) if and only if j satisfies the condition

in (iii) if and only if j satisfies the condition in (iv).

Proof. Recall that W has the form P Q

R I


where P ∈ Zm×m, Q ∈ Zm×(n+1)

, R ∈ Z(n+1)×m, I ∈ Z(n+1)×(n+1)
.

(ii)⇒(i): Obvious.

¬(iii)⇒ ¬(i): Assume that, for all j, Wj 6= ej. We know that the first m columns of

W are finite and, by assumption, every column of Q contains a finite entry. This means

that W 2 will be finite and thus so will W ∗.

(ii)⇔(iii): We show Wm+j = em+j if and only if W 2
m+j = em+j. Fix j such that

Wm+j = em+j. Then clearly W 2
m+j = em+j and hence (iii)⇒(ii). Although (ii)⇒ (iii)

follows from above we need to also prove that the same index j satisfies both statements.

To do this we suppose that W 2
m+j = em+j. Then for all i ∈ {1, ...,m} with i 6= j we have

(
wi,1 . . . wi,m

)
⊗


w1,m+j

...

wm,m+j

⊕
(
wi,m+1 . . . wi,m+n+1

)
⊗ Ij = ε

where wi,1, ..., wi,m ∈ R. Thus

w1,m+j = ... = wm,m+j = ε

and hence Wm+j = em+j.
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(iii) ⇔ (iv): By the structure of W , (iii) holds if and only if Q contains an ε column.

Fix j ∈ {1, ..., n+ 1}. Now, for any i ∈M ,

qij = ε

⇔ wi,m+j = ε

⇔ a′m+j,r(i) = ε = b′m+j,r′(i)

⇔ r(i) 6= j and r′(i) 6= j

⇔ a′′ij, b
′′
ij /∈ Z.

Therefore Q contains an ε column if and only if neither A′′ = (A|c) nor B′′ = (B|d)

contain an integer entry. �

Observe that, for each j ∈ {1, ..., n+1}, either W ∗
m+j = em+j or W ∗

m+j is finite. Further

W ∗
t is finite for all t ∈M since P and R are finite.

Corollary 6.36. Let A,B, c, d satisfy Assumption 6.32. W ∗ is finite if and only if for all

j ∈ {1, ..., n+ 1} either (A|c)j or (B|d)j contains an integer entry.

6.3.4 IMLP When W ∗ is Non-Finite

Theorems 6.33 and 6.34 solve IMLP when W ∗ is finite. In this case U = 0 and we took

advantage of the fact that νi ≥ 0 held for every component of ν. However, if W ∗
m+j = em+j

for some j ∈ N , then Uj = +∞ and so νj will be unbounded. This suggests that feasible

solutions x = V (0)⊗′ν are not bounded from below and introduces the question of whether

fmin = ε in these cases. We define the set J to be

J := {j ∈ N : Neither Aj nor Bj contain an integer entry}.

Clearly this definition of J is independent of whether or not c and d contain integer
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entries, this is necessary because, by the discussion above, only values νj with j ∈ N may

be unbounded (note that Um+n+1 = 0 regardless of whether or not W ∗ is finite). In the

following sections we will use it to identify ’bad’ or inactive columns of A and B which

can be removed from the system. First, we consider the case J = ∅, under which all νi

are bounded even though W ∗ may not be finite.

Observe that J = ∅ if and only if U = 0. Further it can be verified that the results

in Theorems 6.33 and 6.34 hold when the assumption that W ∗ is finite is replaced by an

assumption that U = 0, in fact the same proofs apply without any alterations. The case

J = ∅ is therefore solved as follows.

Proposition 6.37. Let A,B, c, d satisfy Assumption 6.32 and V (0) be as defined in Def-

inition 6.30. Suppose J = ∅.

(1) For IMLPmin, the optimal objective value fmin is attained for

xopt = V (0) ⊗′ 0.

(2) For IMLPmax, the optimal objective value fmax is equal to

fT ⊗ V (0) ⊗ 0.

Further let y := V (0) ⊗ 0 and j be an index such that fmax = fjyj. If i is such that

yj = V
(0)
ji then an optimal solution is xopt = V

(0)
i .

It remains to show how to find solutions to IMLPmin and IMLPmax in the case when

U 6= 0, i.e. when W ∗ is not finite and J 6= ∅. We do this in the following subsections.

IMLPmin When W ∗ is Non-Finite

If J 6= ∅, then we aim to remove the ’bad’ columns Aj, Bj, j ∈ J from our program and

use Theorem 6.33 to solve the problem. The next result allows us to do this when J ⊂ N .
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It will turn out that in this case, under Assumption 6.32, an optimal solution always

exists, this will be shown in the proof of Proposition 6.40 below. The case J = N will be

dealt with in Proposition 6.42.

Proposition 6.38. Let A,B, c, d satisfy Assumption 6.32 and f ∈ Rn.

Suppose ∅ 6= J ⊂ N . If an optimal solution x exists, then fmin = fjxj for some

j ∈ N − J .

Proof. Suppose x is a feasible solution of IMLPmin such that fTx = fmin but fmin 6= flxl

for any l ∈ N − J . Let

J̄ := {t ∈ J : fmin = ftxt}.

Observe that, for all t ∈ J̄ , neither At nor Bt contain an integer entry and so, by Propo-

sition 5.10, xt is not active in the equation Ax ⊕ c = Bx ⊕ d. Thus the vector x′ with

components

x′j =


xj if j /∈ J̄

xjα
−1 otherwise

for some integer α > 0 is also feasible but fTx′ < fTx, a contradiction. �

Hence we can simply remove all columns j ∈ J from our system and solve this reduced

system using previous methods. Formally, let g be obtained from f by removing entries

with indices in J . Let A−, B− be obtained from A and B by removing columns with

indices in J , so A−, B− ∈ Rm×n′

where n′ = n− |J |. By IMLP1 and IMLP2 we mean the

integer max-linear programs:

142



(IMLP1) min fT ⊗ x = f(x)

s.t. Ax⊕ c = Bx⊕ d (6.9)

x ∈ Zn

and

(IMLP2) min gT ⊗ y = g(y)

s.t. A−y ⊕ c = B−y ⊕ d (6.10)

y ∈ Zn′

where by assumption the pair ((A|c), (B|d)) satisfies Property OneFP, and therefore so

does ((A−|c), (B−|d)).

To differentiate between solutions to IMLP1 and IMLP2 the matrices W , W ∗, V (0), U

will refer to those obtained from A,B, c, d . When they are calculated using A−, B−, c, d

we will call them Ŵ , Ŵ ∗, ˆV (0), Û .

In order to prove that an optimal solution always exists we recall the following results

which tell us that, for any IMLP, the problem is either unbounded, infeasible or has an

optimal solution. Recall

IS = {x ∈ Zn : Ax⊕ c = Bx⊕ d},

ISmin = {x ∈ IS : f(x) ≤ f(z) ∀z ∈ IS} and

ISmax = {x ∈ IS : f(x) ≥ f(z) ∀z ∈ IS}.
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From Theorems 6.11 and 6.14 ,

fmin = −∞⇔ c = d and fmax = +∞⇔ (∃x ∈ Zn)Ax = Bx.

Proposition 6.39. [25] Let A,B, c, d, f be as defined in (6.5). If IS 6= ∅, then fmin >

−∞⇒ ISmin 6= ∅ and fmax < +∞⇒ ISmax 6= ∅.

Proposition 6.40. Let A,B, c, d satisfy Assumption 6.32 and f ∈ Rn. Let A−, B−, g be

as defined in (6.10). Suppose ∅ 6= J ⊂ N . Then fmin = gmin, xopt can be obtained from

its subvector yopt by inserting suitable ’small enough’ integer components and IMLP2 can

be solved by Theorem 6.33.

Proof. First, observe that an optimal solution to IMLP2 always exists since Û = 0, so

all components of ν are bounded below. This implies that feasible solutions to IMLP2,

and therefore also IMLP1, exist. So, by Proposition 6.39, IMLP1 either has an optimal

solution or fmin = ε. If fmin = ε, then, by Theorem 6.11, c = d which under Property

OneFP means that c, d ∈ Zm and there are no integer entries in A or B. This is impossible

since J 6= N .

Suppose xopt is an optimal solution to IMLP1 and let y′ be obtained from xopt by

removing elements with indices in J . Using Property OneFP, we know that components

xoptj , j ∈ J are inactive in Ax⊕c = Bx⊕d. Further, from Proposition 6.38, we can assume

also that xoptj , j ∈ J are inactive in fmin (can decrease their value if necessary without

changing the solution). Hence

fmin = fTxopt = gTy′

and

A−y′ ⊕ c = Axopt ⊕ c = Bxopt ⊕ d = B−y′ ⊕ d.
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So y′ is feasible for IMLP2. If y′ is not optimal then gmin = gTy′′ < fmin for some

feasible (in IMLP2) y′′ . But letting x′ = (x′j) where for j ∈ J , x′j corresponds to y′′j

and x′j, j /∈ J are set to small enough integers, we obtain a feasible solution to IMLP1

satisfying fTx′ = gmin < fmin, a contradiction. Therefore y′ = yopt. A similar argument

holds for the other direction.

We now show how to solve IMLP2. By Proposition 6.31, feasible solutions to IMLP2

satisfy

y = V̂ (0) ⊗′ ν,

0 = Û ⊗′ ν and

ν ∈ Zm+n′+1.

Case 1: There exists an integer entry in either c or d.

Observe that IMLP2 can be solved immediately by Theorem 6.33 since Ŵ ∗ is finite.

Case 2: Neither c nor d contain an integer entry.

Now Ŵ ∗ is not finite. However Û is finite and

V̂
(0)
m+n′+1 =


+∞

...

+∞

 .

All other columns of V̂ (0) are finite. The single +∞ column contains no finite entries and

will never be active in determining the value of a feasible solution. Hence any feasible

solution y still satisfies y ≥ V̂ (0) ⊗′ 0 and yopt = V̂ (0) ⊗′ 0 as in the proof of Theorem

6.33. �

Corollary 6.41. Let A,B, c, d satisfy Assumption 6.32 and f ∈ Rn. Let A−, B−, g and
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V̂ (0)be as defined in (6.10). If ∅ 6= J 6= N , the optimal objective value fmin of IMLP1 is

equal to gTyopt for

yopt = V̂ (0) ⊗′ 0.

The final case for IMLPmin is when J = N .

Proposition 6.42. Let A,B, c, d satisfy Assumption 6.32 and f ∈ Rn. Suppose J = N .

If c = d, then fmin = −∞. If instead c 6= d, then IMLPmin is infeasible.

Proof. Follows from Theorem 6.11 and the fact that entries in columns with indices in

J are never active. �

IMLPmax When W ∗ is Non-Finite

We will now discuss IMLPmax when J 6= ∅. The case when neither c nor d contains an

integer is trivial and will be described in Proposition 6.46. We first assume that either c

or d contain an integer entry. Here we cannot make the same assumptions about active

entries in the objective function as in the minimisation case:

Example 6.43. Suppose we want to maximise (0, 1)Tx subject to

 0 −1.5

−0.5 −1.5

x⊕

−0.5

0

 =

 0 −1.6

−0.6 −1.6

x⊕

−0.6

0

 .

Note that J = {2}. It can be seen that the largest integer vector x which satisfies this

equality is (0, 1).

Therefore fmax = 2, the only active entry with respect to fTx is x2 and 2 ∈ J .

Instead, we give an upper bound y on x for which fmax = fTy and we can find a

feasible x′ where fTx′ attains this maximum value. For all j ∈ J we have Uj = +∞ and

also V
(0)
j non-finite since L∗m+j = em+j. We will therefore adapt the matrix V (0) to reflect

this.
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Definition 6.44. Let V̄ be obtained from V (0) by removing all columns j ∈ J .

Proposition 6.45. Let A,B, c, d satisfy Assumption 6.32 and f ∈ Rn. Let V̄ be as

defined in Definition 6.44. Suppose either c or d contains an integer and ∅ 6= J ⊆ N .

Then the optimal objective value fmax is equal to fTy for

y = V̄ ⊗ 0.

Further let j be an index such that fmax = fjyj and i satisfy yj = V̄ji. Then an optimal

solution is xopt = V̄i.

Proof. From Proposition 6.31 any feasible x satisfies

x = V (0) ⊗′ ν

0 = min
i∈T

νi

ν ∈ Zm+n+1

where

T = {1, ...,m+ n+ 1} − {m+ j : j ∈ J}.

Note that T is the set of indices t for which Ut = 0 and |T | = m+ n+ 1− |J |.

Consider an arbitrary feasible solution x′ = V (0) ⊗′ ν ′. Let µ′ be the subvector of ν ′

with indices from T . Then

x′ = V (0) ⊗′ ν ′ ≤ V̄ ⊗′ µ′ ≤ V̄ ⊗ 0 = y

since mini µ
′
i = 0. Therefore fTx′ ≤ fTy.

We claim that there exists a feasible x such that fTx = fTy and hence it is an optimal

solution with fmax = fTy. Indeed let j ∈ N be any index such that fTy = fjyj. Let i ∈ T
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be an index such v
(0)
ji = yj. Then by setting νi = 0 and νj, j 6= i to large enough integers

we obtain a feasible solution x̄ = V
(0)
i which satisfies fT x̄ = fTy. �

Proposition 6.46. Let A,B, c, d satisfy Assumption 6.32 and f ∈ Rn. Suppose neither

c nor d contain an integer entry. If there exists x ∈ Zn such that Ax = Bx, then

fmax = +∞. If no such x exists, then IMLPmax is infeasible.

Proof. Follows from Theorem 6.14 and the fact that c 6= d since they do not have any

entries with the same fractional part. �

We conclude by noting that all methods for solving the IMLP under Property OneFP

described in this section are strongly polynomial.

Corollary 6.47. Given input A,B, c, d satisfying Assumption 6.32 and f ∈ Rn, both

IMLPmin and IMLPmax can be solved in O((m+ n)3) time.

Proof. From A,B, c, d we can calculate V (0), V̄ and U in O((m + n + 1)3) time by

Remark 6.29. Then V (0) ⊗′ 0, V (0) ⊗ 0 or V̄ ⊗ 0 can be calculated in O(n(m + n + 1))

time. From this we can calculate fmin or fmax in O(n) time. Finally, for IMLPmax we can

find an optimal solution in O(m+ n+ 1) time.

In the cases described in Proposition 6.46, we can perform the necessary checks in

O((m+ n)3) time. �

6.3.5 An Example

Suppose we want to find fmin and fmax subject to the constraints x ∈ Z4 and

 3 0.5 −1.7 −2.5

−3.7 −1.9 −2.1 −3.7

x⊕

−0.3

−1

 =

1.4 1.1 1 −1.3

0.8 1 −1.3 −2.2

x⊕

−0.2

−2.4

 .
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Note that J = {4} and

A− =

 3 0.5 −1.7

−3.7 −1.9 −2.1

 and B− =

1.4 1.1 1

0.8 1 −1.3

 .

We first construct A′ and B′, these are



3 0.5 −1.7 −2.5 −0.3

−3.7 −1.9 −2.1 −3.7 −1

0 ε ε ε ε

ε 0 ε ε ε

ε ε 0 ε ε

ε ε ε 0 ε

ε ε ε ε 0



and



1.4 1.1 1 −1.3 −0.2

0.8 1 −1.3 −2.2 −2.4

0 ε ε ε ε

ε 0 ε ε ε

ε ε 0 ε ε

ε ε ε 0 ε

ε ε ε ε 0



.

Then

W =



0 −2 −3 ε −1 ε ε

1 0 ε −1 ε ε 1

3 1 0 ε ε ε ε

2 1 ε 0 ε ε ε

1 −1 ε ε 0 ε ε

−1 −2 ε ε ε 0 ε

0 −1 ε ε ε ε 0



and W ∗ =



0 −2 −3 −3 −1 ε −1

1 0 −2 −1 0 ε 1

3 1 0 0 2 ε 2

2 1 −1 0 1 ε 2

1 −1 −2 −2 0 ε 0

−1 −2 −4 −3 −2 0 −1

0 −1 −3 −2 −1 ε 0



.

Note that λ(W ) = 0 and hence feasible solutions exist, further W ∗
2+4 = e2+4 as ex-

pected from Proposition 6.35. Now, using Definitions 6.30 and 6.44,
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V̄ =



−3 −2 −3 −2 −3 −2

−2 −2 −2 −2 −2 −2

−1 0 −1 0 −1 0

1 1 1 1 1 1


and V̂ (0) =


−3 −2 −3 −2 −3 −2

−2 −2 −2 −2 −2 −2

−1 0 −1 0 −1 0



(recall that V̂ (0) is calculated from A−, B− as defined in (6.10)).

Suppose fT = (0,−1, 1, 0). We first look for fmin.

By Corollary 6.41 we have that

gmin = (0,−1, 1)⊗ (V̂ (0) ⊗′ 0) = (0,−1, 1)⊗ (−3,−2,−1) = 0.

Hence fmin = 0 and xopt = (−3,−2,−1, x4)T for any small enough x4.

Now we look for fmax.

By Proposition 6.45 we have that

fmax = fT ⊗ y = (0,−1, 1, 0)⊗ (−2,−2, 0, 1)T = 1.

Following the proof of this proposition, we see that the optimum is attained either for i = 3

or i = 4. For i = 3 this relates to columns 2, 4 or 6 of V̄ and hence the optimal solution

can be obtained by setting either ν2, ν4 or ν6 to 0. This yields xopt = (−2,−2, 0, x4)T for

any small enough x4. If we instead choose i = 4, then we conclude that any column of V̄

admits an optimal solution.

Finally, observe that V̂ (0) can be obtained from V̄ by removing rows with indices in

J . This is since A− and B− differ from A and B only in columns with indices from J ,

meaning that Ŵ = W [N − J ] and Ŵ ∗ = W [N − J ]∗.
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6.4 Conclusion

We began, in Section 6.1 by showing that the OIMLP can be solved in strongly polynomial

time by a simple adaptation to known solution methods for the OMLP.

We studied in detail the IMLP with two-sided constraints. First we constructed Algo-

rithms 6.19 (INT-MAXLINMIN) and 6.22 (INT-MAXLINMAX) which, for finite input,

solved the IMLP in pseudopolynomial time when Algorithm 5.4 (GEN-INT-TSS) was used

to find feasible points. The key to the algorithms was Proposition 6.6. Both algorithms

apply a bisection method to reduce the range of optimal objective function values, but

in each iteration Algorithm INT-MAXLINMIN checks only one value whereas Algorithm

INT-MAXLINMAX needs to check up to n values. It is shown in [25] that, if the system

satisfies Property OneFP, we could instead use Theorem 5.14 to find feasible solutions.

In this special case the Algorithms INT-MAXLINMIN and INT-MAXLINMAX solve the

IMLP in polynomial time.

Finally, in Section 6.3, we presented a strongly polynomial method to determine

whether an integer optimal solution exists to a max-linear program when the input ma-

trices satisfy Property OneFP. We gave a necessary condition for existence of an integer

feasible solution and further showed that, under this condition, an integer optimal solution

always exists. We described how to find an optimal solution in strongly polynomial time

for finite input in Theorems 6.33 and 6.34. We then used these results to describe the

optimal objective function value, and find an optimal solution, to any IMLP satisfying

Property OneFP. Our solution methods can be used to describe many possible integer

optimal solutions to the system.
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7. Conclusions and future work

In this thesis we explored integer solutions to a range of max-algebraic systems of equations

and inequalities. We showed in Proposition 2.1 and Theorem 2.5 that finding integer

solutions to the one-sided systems Ax ≤ b, Ax = b, and Ax ≤ λx is no more difficult than

finding real solutions, and thus that existing theory can be used to describe the entire set

of integer solutions to these systems in almost linear time.

For the integer eigenproblem we used existing results to show that the integer eigenvec-

tors of A are equivalent to the points in the integer image of Ãλ. We proved that we could

in fact consider the integer image of a smaller matrix in Theorem 2.27. However this was

not enough to conclude whether such a vector exists. To solve the problem of existence

for the integer eigenproblem we developed Algorithm 3.1 (INT-IMAGE) which, in a finite

number of steps, finds a vector in the integer image of a matrix or determine that the

integer image was empty. If the input matrix was finite we proved that the algorithm ran

in pseudopolynomial time, see Theorem 3.11, and therefore concluded that we could solve

the integer eigenproblem for irreducible matrices in pseudopolynomial time. We observed

that, if an integer eigenvector of a matrix A exists, then there must be an integer entry

in every row of A. In light of this we defined the class of matrices satisfying Property

OneIR and, for matrices having at most one integer entry per row, presented a strongly

polynomial method to describe all integer eigenvectors in Theorem 2.17. It remains an

open problem to find a polynomial algorithm to solve the integer eigenproblem when the

matrix has rows containing more than one integer entry.
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We introduced the definition of a column typical matrix and proved, in Theorem 3.17,

that, for matrices of this type, we can determine whether the integer image is non-empty

(and describe all integer solutions) in strongly polynomial time. In the case when an

integer image exists, we showed that the set of integer images of a column typical matrix

was equivalent to the set of integer eigenvectors. We went on to define a slightly more

general set of matrices, NNI matrices, for which the integer image set is equivalent to

both the set of integer eigenvectors and the set of integer subeigenvectors.

We noted that the integer image problem can be viewed as the problem of finding

an integer point in a max-algebraic convex hull. In Section 3.3 we briefly explored some

sufficient conditions for when a max-algebraic convex hull contains an integer point. This

is a clear area that would benefit from further research.

Although the complexity of the integer image problem remains unknown, we explored

the complexity of related problems. Specifically we showed that we could assume without

loss of generality that the matrix is column typical by describing a strongly polynomial

transformation to a column typical counterpart, see Theorem 4.11. For column typical

matrices we can further assume that, if an integer image exists, then one exists with at

most one active entry per column. We defined the problem of finding an integer image

with exactly one active entry per row to be the P1 variant of IIM. Theorem 4.19 proves

that IIM-P1 is NP-hard. One area of future research would be to determine whether

IIM-P1 with column typical input remains NP-hard, or whether a strongly polynomial

method exists for column typical matrices with m ≤ n.

We studied integer solutions to the TSSs Ax = By and Ax = Bx. We began by

considering the Alternating Method, which is a known algorithm to find real solutions to

these systems. We presented an adaptation to the Alternating Method that allowed us to

create Algorithms 5.1 (SEP-INT-TSS) and 5.4 (GEN-INT-TSS) which determine whether

integer solution to TSS exist in a finite number of steps. If the input matrices are finite
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then, by Corollaries 6.21 and 6.24, the algorithms terminate after O(mn(n + k)K(A))

and O(K(A′|B′)mn(m+ n)) respectively and are thus pseudopolynomial.

We then considered cases when we could find integer solutions to TSSs in strongly

polynomial time. We defined when a system satisfies Property OneFP and argued that it

represented a generic case. For systems satisfying Property OneFP , the results in Theo-

rem 5.14 allow us to describe all integer solutions in strongly polynomial time. We argued

that this method could be extended to solve general systems but that this would only

be strongly polynomial if m was fixed. It remains an open problem to find a polynomial

method for any general system, or to determine if the problem is NP-hard.

The last problem that we considered was the IMLP. We adapted the Bisection Method,

a known algorithm to find real solutions to the MLP, to produce Algorithms 6.19 (INT-

MAXLINMIN) and 6.22 (INT-MAXLINMAX) which find an integer solution to IMLPmin

and IMLPmax respectively in pseudopolynomial time when the input matrices are finite.

These algorithms can be proven to have polynomial runtime under certain input condi-

tions, which include Property OneFP [25]. Additionally, we constructed a new method for

systems satisfying Property OneFP. This method allowed us to find the optimal objective

function value and a number of optimal solutions to both the IMLPmin and IMLPmax in

strongly polynomial time, see Theorems 6.33 and 6.34 and their corollaries.

Other max-linear systems also exist. Currently, nothing is known about integer solu-

tions to the max-algebraic supereigenproblem, Ax ≥ λx. At the time of writing there is

not much literature on supereigenvectors in max-algebra, but the paper [64] considers the

problem for irreducible matrices. The generalised eigenproblem, Ax = λBx is another

possible area of future research. For fixed λ the problem reduces to a two-sided system,

but the description of all generalised eigenvalues with respect to any integer solution x

remains open.

Another direction for future research would be to consider finding extended integer
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solutions to each of the max-linear systems studied here, that is solutions with entries

from Z = Z ∪ {ε}. It should be noted that the methods for finding integer solutions to

the one-sided systems and the subeigenproblem can be readily extended to give results on

finding Z-solutions with the same complexity [27]. For the eigenproblem, image problem

and TSSs it is possible to extend the methods for special cases (Property OneIR, NNI

matrices, Property OneFP) found when looking for integer solutions to obtain strongly

polynomial methods for finding Z-solutions in these generic cases, details appear in [27].

For general matrices the question of determining existence of Z-solutions remains open.
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