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Abstract 

This thesis investigates how nuclear magnetic resonance (NMR) measurements of 

diffusion are used to characterise reverse micelles (RMs) in water-in-oil (w/o) 

microemulsions. The average droplet sizes were determined at varying water to surfactant 

ratios (ω) and droplet volume fractions (ϕd), by converting the diffusion coefficients from 

the surfactant molecules into hydrodynamic radii using the Stokes-Einstein equation. The 

size distributions of AOT/n-octane/water RMs were obtained by the application of a 

constrained form of the inverse Laplace transform. The AOT/iso-octane/water/pentanol 

and CTAB/hexanol/water systems were also studied, where the alcohols act as co-

surfactants. Molecular exchange processes were observed between the RMs and the 

continuous phase, at varying NMR experimental parameters at different ω and ϕd. There 

was a decrease in droplet sizes with the addition of pentanol to the AOT/iso-octane/water 

system, which was observed with consideration to the changes in the viscosity of the 

continuous phase due to the partitioning and exchange of co-surfactant molecules. 

 

Molecular simulations of solvated RMs were set up at the same values of ω as the NMR 

experiments. The simulations, which were constructed with all-atom forcefields, displayed 

the interactions between the molecules in the continuous and dispersed phases and showed 

the RM shape fluctuations and development. The AOT/iso-octane/water/pentanol droplets 

formed split RMs and were smaller than RMs in the AOT/iso-octane/water system at 

values of ω < 20. These observations were reflected in the experimental results. The 

CTAB/hexanol/water droplets formed oblate RMs initially, which continued to fragment 

into smaller droplets, due to hexanol molecules penetrating the micelle interface. 
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1.   Introduction 
 

1.1. Microemulsions and Reverse Micelles 

 

1.1.1. Phase Behaviour of Reverse Micelles and Micelles  

 

Reverse micelles (RMs) are self-assembled, nano-sized water droplets, which are surrounded 

and stabilised by a surfactant layer, in an organic solvent. They are formed at specific ratios of 

water, surfactant and organic solvent in microemulsions. As the concentration ratios vary 

between oil, water and surfactant, there are transitions between varying nano-structures. The 

concentrations at which these transitions occur are mapped in phase diagrams.
1,2

 Phase 

diagrams give information about the critical micelle formation (CMC) and the limiting 

concentrations of when water-in-oil (w/o), (Figure 1.1(a)) or oil-in-water (o/w) (Figure 1.1(c)) 

RMs form. Water-in-oil RMs are formed when the surfactant hydrophobic tail is directed 

towards the continuous organic phase and the hydrophilic headgroup is embedded in the water 

droplet. Micelles and o/w RMs, however, form oil droplets with the surfactant tails embedded 

in the oil droplet and the headgroups directed towards the aqueous continuous phase.
3
 

 

Figure 1.1: A schematic representation of the transition from w/o RMs (a), to bicontinuous 

structures (b) and o/w RMs (c).  

 

At the transition point between w/o and o/w RMs, bicontinuous structures are formed (Figure 

1.1 (b)),
3
 where water channels, rather than discrete droplets are present.  
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In this thesis, the formation, sizes and dynamics of water-in-oil (w/o) RMs, which are 

thermodynamically stable
4
 ranging in droplet size from 1 ‒ 20 nm, are investigated. The 

formation of RMs is driven by the hydrophobic effect, where the amphiphilic nature of the 

surfactant creates a more energetically favourable system between the oil and water 

molecules. In a solution of oil and water, the interfacial tension
5
 is of the order 50 mN m

-1
.  If 

surfactant molecules are added, the interfacial tension decreases to  10
-2 

mN m
-1

, as the 

surfactant molecules are adsorbed between the water-oil interface.
4,5

 Microemulsions are 

formed if the surfactant is capable of lowering the free surface energy, G, of the system to a 

minimum, such that it is counterbalanced by the entropy of dispersion of the droplets.
4,5

 The 

low interfacial tension required to form a microemulsion is governed by the volume and 

surface area of the RMs. The surface area and subsequent volume of the RMs is related to the 

optimum packing conditions of the surfactant molecules needed to minimise the unfavourable 

water-hydrocarbon interactions. The packing parameter, Sp, is given by eq 1.1, where υ is the 

volume of the hydrocarbon tail, 𝑎0 is the surfactant headgroup surface area and 𝑙 is the length 

of a fully extended surfactant tail.
3,5,6

  

 

     
la

S p

0


                                           eq 1.1  

  

 

Micelles are formed when  Sp  <  0.33, which induces, what is conventionally referred to as a 

positive curvature at the water/oil interface, whereas RMs are formed when Sp  >  1,  inducing 

a negative curvature.
3,5,6

  Emulsions form opaque solutions, whereas microemulsions have the 

distinguishing feature of forming transparent solutions and this is due to the small size of the 

RMs,
7
  up to 20 nm, being less than the wavelength of visible light (400 – 700 nm).  The light 

is therefore not scattered by the droplets.
8
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There are a variety of surfactants, including AOT (sodium bis(2-ethylhexyl)sulfosuccinate) 

and CTAB (cetyltrimethylammonium bromide) (Figure 1.2).  

 

Figure 1.2:  The chemical structure of anionic sodium bis(2-ethylhexyl)sulfosuccinate AOT (a) 

and cationic cetyltrimethylammonium bromide (CTAB) (b) highlighting the polar, hydrophilic 

headgroup and a representation of an AOT/water/n-alkane RM (c).  

 

The surfactant mainly used in this study is anionic AOT.  It has been previously characterised 

and well-reported,
1,9-12

  due to its relative stability in solubilising water to form ternary 

microemulsions, without the necessity of a co-surfactant.
13

  The cationic surfactant, CTAB, 

does require a co-surfactant to form microemulsions. The co-surfactant is required to lower 

the interfacial tension to further minimise the unfavourable water-hydrocarbon interactions. 

The addition of a co-surfactant also affects the packing parameters and changes the shape and 
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flexibility of the RM interface, which is dependent on the length and headgroup size of the co-

surfactant molecules.
5
 Common co-surfactants are medium-chain alcohols,

14
 where the 

hydroxyl moiety resides favourably in the RM interface. However, short-chained alcohols, 

methanol and ethanol have been shown to reside within the RM water droplet.
15

  The 

surfactant CTAB more commonly forms quarternary systems,
16,17

 unless the co-surfactant can 

act as a dual-purpose co-surfactant and continuous phase, such as in the CTAB/water/hexanol 

system.
18

  In this microemulsion, the hexanol forms both the co-surfactant  and continuous 

phase.
19

   

 

The common attributes that surfactants possess are hydrophilic headgroups and hydrophobic 

tails (Figure 1.2). The anionic surfactant AOT
1
 (Figure 1.2 (a)) has a double hydrocarbon 

chain and is soluble in alkanes, with a molecular length
1
 of approximately 1.1 nm. The 

cationic CTAB (Figure 1.2 (b)) however, has a single tail and an extended length of 2.8 nm.
20

 

As Figure 1.2 (c) illustrates, Rw denotes the radius of the water droplet, from the centre of the 

droplet to the interface where the water molecules meet the surfactant head. The Rh is the 

hydrodynamic radius, which spans from the centre of the droplet to the interface between the 

surfactant tails and the continuous phase. The thickness of 0.9 nm has been reported for the 

AOT/water RM interface,
21

 which was indicative of minimal oil penetration in the interface. 

The term interphase
5,16,22

 is used to describe the composition and dimensions between the oil 

and water interface and is used when describing the aggregation numbers of RMs, including 

the surfactant molecules with the associated solvated oil molecules.
5
   

 

 

The AOT/water/alkane RM is depicted in Figure 1.2 (c) as a spherical structure, but in reality 

RMs evolve into many different shapes, depending on their composition and size.  Many 

variables in the microemulsions can be changed, which affect the stability of the micellar 
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solutions, including chain length of the organic species in the continuous phase,
23

  counter-

ions from the surfactant,
24

 the chain length, the structure and polarity of the surfactant.
25

  

Many studies have shown how tuning these variables can alter the dynamics of the 

microemulsion, which may ultimately affect reaction rates and outcomes.
24,26

  

 

1.1.2. Applications of Reverse Micelles and Microemulsions 

 

 

There is a lot of interest in reverse micelles (RMs) and microemulsions, as they are used in a 

range of applications, which include oil recovery,
27

  drug delivery
8,28

 and enzymology.
29,30

  

There have been extensive investigations, particularly in drug delivery, to find suitable non-

toxic combinations of surfactants and co-surfactants to transport poorly soluble drugs through 

a variety of topical routes.
28

 There has also been interest in the increased activity of enzymes 

in RMs with varying microemulsion compositions.
29,30

 

 

Other applications include nanoparticle synthesis
31-33

 and biological modelling.
34

 All these 

applications are able to have a degree of control to modify the reaction rate and potentially 

change the reaction outcomes, by adjusting the microemulsion parameters. It is important and 

relevant, therefore, to determine the sizes and probe the dynamics of RMs and to understand 

the location and effects of additives on the RM environment, in order to rationalise reaction 

outcomes.  In nanoparticle synthesis and biological modelling, the reactants are initially 

partitioned between separate microemulsions and may be compartmentalised between 

different phases of the microemulsion, either in the dispersed aqueous or continuous oil 

phases or in the micellar interface.
35,36

 As the RMs collide, they fuse to form dimers and 

reform into droplets.
26

  During this process, the RMs become microreactors, exchanging the 

contents between droplets.
31
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When the autocatalytic Belousov-Zhabotinsky (BZ) reaction
37

 takes place in a microemulsion, 

specifically in AOT/n-octane/water microemulsion, there is the potential to form stationary or 

Turing  patterns, which are used in biological modelling.
34

 However these patterns are only 

observed at specific combinations of microemulsion parameters and reactant concentrations. 

Vanag and Epstein have extensively explored the range of chemical patterns which can be 

produced.
34,38

 The patterns in Figure 1.3 were obtained at the same reactant concentrations but 

at differing microemulsion dilutions, with droplet fractions of 0.6 and 0.4 producing 

respectively the dash waves in Figure 1.3 (a) and the segmented spirals in Figure 1.3(b).
38

     

 

Figure 1.3: Dash waves (a) and segmented spiral patterns (b) that are produced from the 

BZ‒AOT autocatalytic reaction.
38

(Reprinted with permission) 

 

The reactants are partitioned into two separate microemulsions, where they reside in the 

aqueous dispersed phase within the RMs. The rate at which the RMs diffuse and collide in the 

BZ-AOT system affects how quickly the autocatalytic reaction proceeds. As the mixing 

between RMs partitions the reactants with different diffusivities, tailoring the size and dilution 

of the RMs affects the reaction-diffusion process and the reaction outcomes.   

 

Microemulsions are used as a medium to synthesise nanoparticles. The reactants, a metal salt 

and a reducing agent, are partitioned between two microemulsions. The nanoparticles are 

formed in the inorganic phase and the rate of nucleation can be altered, depending on the 
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polarity and structure of the surfactant and the dilution of the microemulsion.
31,33

 The size of 

the nanoparticles can be controlled by the amount of water present in the droplet,
32

 which 

determines the curvature and rigidity of the interface of the templating RMs.  The solvent 

used as the continuous phase can also affect the rate of aggregation of the nanoparticles due to 

the steric stabilisation.
33

  A microemulsion has the capability of producing the sought-after, 

stable and uniform nanoparticles, with a narrow size distribution.
31

 The surfactant CTAB 

(cetyltrimethylammonium bromide)  has been of particular interest because of the capability 

of being an effective template for forming mono-disperse and stable nanoparticles.
31

  

 

1.1.3. Dimensions, Composition and Parameters of Reverse Micelles 

 

The sizes and concentration of RMs are dependent on two main parameters. The ratio of the 

water to surfactant, ω, governs the size of the droplets (eq 1.2) 

 

                        
][

[

surfactant

water ]
                                       eq 1.2 

 

It is well documented
1,11,39

 that as ω increases, the hydrodynamic radii (Rh) of the water 

droplets increase linearly
13

  up to ω ≈ 40.  The other main parameter  is  the droplet volume 

fraction,
1
 ϕd, where Vaq is the volume of water, Vsurf is the volume of surfactant and Voil is the 

volume of the organic continuous phase (eq 1.3). 

 

                  
oilsurfaq

surfaq

d
VVV

VV




        eq 1.3   
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The droplet volume fraction of water is given by eq 1.4 

                                                
oilsurfaq

aq

w
VVV

V


         eq 1.4 

   

For the surfactant AOT, by combining equations 1.3 and 1.4 and assuming the volume of an 

AOT molecule is 640 Å
3
 and a water molecule as 30 Å

3
, then the droplet volume fraction

40
 

can be related to the ω  by eq 1.5. 

 

                   












6.21
1wd            eq 1.5

 

 

Where there is an alcohol present in the microemulsion acting as a co-surfactant, then χ   is 

used to describe the ratio between the surfactant and the alcohol (eq 1.6). 

  

                           
[alcohol]

]surfactant[
             eq 1.6 

 

An alternative expression is used to describe the ratio of co-surfactant and surfactant in 

microemulsions (eq 1.7), an example being the CTAB/pentanol/hexane/water system, where 

pentanol acts as a co-surfactant.
17

 

                           
t][surfactan

]alcohol[
0 P                       eq 1.7 

 

The term reverse (inverse or inverted) micelle is typically used for microemulsions, which are 

at lower water concentrations.  As the water within the droplet is in confinement, it is 

restricted and behaves differently to bulk water.
13,41-43

  Differential scanning calorimetry 
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measurements
13

 showed that at ω < 10, due to the strong binding of the water molecules to the 

surfactant, the droplet water does not freeze and it is only as ω increases, the micellar water is 

observed freezing at temperatures from ‒30 °C.
13

 Electron spin resonance (ESR)
13

 and 

nuclear magnetic resonance  (NMR) techniques
44

 found that 3 types of water exist within the 

RM, described as bound, trapped and free. ESR techniques determined that thirteen water 

molecules are affected by one AOT molecule, with 2 strongly bound to each AOT Na
+
 ion 

and the remaining 11 weakly associated.
13

  However, Maitra
44

 calculated that 6 water 

molecules would be bound to one AOT molecule for ω > 10 and also stated that for ω < 10, 

due to a decrease in the interfacial area of AOT, not all the surfactant molecules would be 

directly in the interface. There would also be a decrease in the number of bound water 

molecules due to packing restrictions.
44

 As the RMs increase in size, the packing restraints 

decrease and the surfactant molecules are all able to reside directly in the interface.
44

 Maitra 

determined the aggregation numbers for the AOT/water/iso-octane RMs at varying ω = 4 – 

50, with the number of AOT molecules ranging from 35 ‒ 1380, respectively.
44

  

 

The term, reverse micelle, is often used to exclusively describe droplets in microemulsions at  

ω < 10. There is a transition
13,42,43

 between ω values of 10 ‒ 15, where true RM structures, 

which are described as rigid macromolecules, cease to exist and the solutions are more 

frequently described as water-in-oil microemulsions.   These conventions are not consistently 

used and the transition point varies for different systems. There are different views on the 

various forms of water and its position in the microemulsion.  It has also been discussed that 

water may be non-negligible in the continuous phase.
14,45

  For systems of AOT/iso-

octane/water at ω > 10, the RM
39

 greatly increase in size up to ω = 60 ‒ 70. As ϕd increases, 

the droplets become more concentrated up to a critical ϕd value, which is unique to different 

systems, known as the percolation point, which is where the RMs lose the stability to form 
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discrete droplets and develop into bicontinuous structures.
46

   Conductivity studies are used to 

monitor the percolation point as the ion transport increases due to the formation of water 

channels. The conductivity of the system therefore increases at the percolation point.
35,47,48

  

Without the addition of water,
39,49

 the Rh of the AOT/ iso-octane RMs  is 15.0  ±  0.3 Å and 

this is independent of the concentration
39

 and stable in the temperature range of 253 to 368 K. 

However, neutron scattering studies have suggested that RMs are never fully dehydrated.
49

  

Levinger et al.
35

 also found when increasing the molarity of AOT above 0.2 M for stock 

solutions of AOT in iso-octane,  aggregates of AOT/octane can form,
35

  which may affect the 

final aggregation number of the resulting RMs. It is therefore important to consider that 

different methods of making microemulsions may affect the characteristics and sizes of the 

resulting RMs.
50

 

 

1.2. Characterisation of Reverse Micelles 

 

 

 

The RMs in AOT/n-octane/water microemulsions are some of the most studied in the 

literature.
51

  There are techniques, which are used to measure various characteristics; 

conductivity measurements are used to measure the percolation point,
52

  reaction kinetics have 

been studied through stopped flow experiments,
40

 and collision frequency through measuring 

reaction rates.
21

  It is difficult, however, to establish how probe molecules or reactants 

actually affect the microemulsion and hence the characteristic one is trying to measure. There 

are a number of papers reporting the Rh of RMs in the AOT/alkane/water systems using 

dynamic light scattering (DLS),
2,35,39,48,53

 fluorescence correlation spectroscopy (FCS),
54

 small 

angle x-ray scattering (SAXS),
41,55,56

 and small angle neutron scattering (SANS),
49

 as a 

function of ω and ϕd. A brief description of these techniques is given to illustrate their 

advantages and limitations when characterising microemulsions.  
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1.2.1. Dynamic Light Scattering (DLS) 

 

Dynamic Light Scattering (DLS), also known as Photon Correlation Spectroscopy (PCS), 

measures the mutual (collective) diffusion coefficient, Dm of particles. It is widely used to 

measure the sizes, and size distributions, of RMs.
2,39,57

  The technique relies on the continuous 

motion of particles in solutions and their diffusive behaviour, according to the size of the 

particles and the viscosity of the solvent. There is a decrease in the rate of diffusion, as the 

particles increase in size. The rate of diffusion is also dependent on the viscosity and 

temperature of the solution. A monochromatic laser light source at a wavelength () of 

approximately 600 nm is fired at the sample and in doing so, the particles scatter the light in 

random directions.
58,59

  The scattered light is measured on a detector (Figure 1.4).  The light 

intensities, which are measured, vary due to destructive and constructive interferences and the 

light intensity fluctuations are obtained from the resultant interferences over a period of time. 

 

 

 

Figure 1.4: A schematic representation of dynamic light scattering. 
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The signal intensity fluctuations are evaluated using a normalised autocorrelation function, 

g
2
(τ) of intensities between times t and (t + τ) (eq 1.8).

58
 

 

                                

 
   

  2

2
.

tI

tItI
g







                        eq 1.8 

 

 

If the signal intensity at time t is compared to itself, then g
2 

(τ) = 1 and there is a perfect 

correlation.
59

 As τ increases, the correlation between the signal intensities at time t and (t + τ) 

reduces and g
2 

(τ) tends towards zero.  When there is no correlation between the compared 

signal intensities then g
2 

(τ) = 0. The time it takes for the auto-correlation function to decay to 

zero depends on the size distribution of the particles. The normalised autocorrelation function, 

g
2 

(τ), is converted to the autocorrelation function of the electric field of the scattered light, 

g
(1)

(τ), using the Siegert relationship (eq 1.9). 

        1
2

12   gg             eq 1.9 

 

From the autocorrelation function,(eq 1.10), the decay rate, Γ, is obtained, where B is an 

instrumental constant
58

 and when the particles are mono-disperse, there will be a single 

exponential decay curve. 

                                       exp1 Bg                                        eq 1.10  

 

For smaller particles, which are moving quickly, a steeper and rapidly decaying exponential 

curve is obtained, with a large decay constant, as the fluctuations in light intensity change 

more rapidly.
58

 For larger particles, a slower exponential decay is obtained, with a smaller 

decay constant. The conversion to a distribution of decay rates is achieved, as the decay rate is 

inversely proportional to the particle diameter and in the case of non-interacting, spherical 
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particles,
60

 eq 1.10 can be written as a sum of exponentials (eq 1.11), where ci represents the 

normalised intensity weight of the particles with the decay rate Γi .
60

 

 

                                      τΓcτg ii

n

i   exp1

1       eq 1.11 

 

By applying the inverse Laplace transform to eq 1.11, it is possible to obtain the distribution 

of decay rates,
60

 that can then be converted to a distribution of diffusion coefficients,
58

 using 

eq 1.12.   

                                          2Dq                                      eq 1.12 

 

where q is the scattering vector given by eq 1.13, where θ is the scattering angle;  λ is the  

wavelength of incident light and n is the refractive index of the solvent. 

 

                                      


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




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


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


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2
sin4 n

q                     eq 1.13 

 

Finally, the Stokes-Einstein relation (eq 1.14) affords the transformation of the diffusion 

distribution into a distribution of Rh, where ɳ is the viscosity of the continuous phase, in 

which the RMs are diffusing, T is the temperature of the microemulsion and kB is the 

Boltzmann constant.  

 

                                           
D

Tk
R B

h
6

           eq 1.14 
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These distributions are often transformed into number distributions in order to facilitate 

particle size analysis.
58,59

  Volume and number distributions can be generated from the 

transformation of the intensity size distributions using Mie Theory,
61-63

 which provides 

methods of calculating how light is scattered from homogeneous spheres.
64

   

 

                              

DLS measurements present both analytical and experimental limitations that have to be 

considered for each studied system.  First, the inversion of data,  through applying the inverse 

Laplace transform to eq 1.11 to obtain the distribution of decay rates is limited.
60

  This is due 

to the fact that the Laplace transform is mathematically ill-conditioned, due to the existence of 

an infinite number of solutions. The inverse Laplace transform is also extremely sensitive to 

experimental errors, therefore any noise present can also be inverted, giving misleading 

results. Accurate data collection is therefore required, which is not contaminated by noise and 

controls are needed on the number of solutions generated. To minimise these issues, a 

constrained form of the inverse Laplace transform is commonly used in DLS. This is 

implemented in a program called CONTIN, which was developed and written by 

Provencher.
65

  Several experimental limitations to DLS are found in microemulsion 

measurements. One issue arises when the microemulsion is too dilute, the signal-to-noise is 

poor but on increasing the concentration, multiple scattering may occur.
61

  DLS is sensitive to 

the presence of dust particles and there have been extensive studies on the effects of dust, as 

they produce bursts of high intensity scattered light.
66,67

  Other problems can arise when the 

dielectric constant of the droplets matches the continuous organic phase, causing the droplets 

to become invisible in light scattering experiments.
54

 This condition is known as optical 

matching and if measurements are taken near this point, it can lead to an underestimation of 

the Rh of RMs.
54

  There is also a variation in the refractive index
68

 of microemulsions as a 

function of ω and ϕd, which can cause errors in calculating the resulting data.
54

  The refractive 



15 

 

indices were measured for AOT/water/heptane microemulsions with values of ω = 0 – 40 and 

ϕd = 0 – 0.7. The refractive index increased as ϕd increased and the increase was more rapid as 

ω decreased. The variation in the refractive index is also an issue for analysing poly-disperse 

systems.
68

 

 

Finally, there are limitations in DLS when performing the size analysis, to produce volume 

and number distributions, where Mie Theory is used in the conversions.
64

 Therefore this 

technique is difficult to use, to determine the correct particle size distributions in systems 

which have poly-dispersed particles or droplets. This is due to the contribution of light 

scattered from the smaller particles being dominated by the light scattered from the larger 

particles, which makes the population of larger particles or droplets appear greater than it 

actually is. Therefore small errors in the data collection can lead to large errors when 

generating the number distributions
60,63

 and hence the conversion to number distributions is 

discouraged.
61

   

 

 

Figure 1.5:  Charts showing the number, volume and intensity distributions for a mixture 

containing an equal number of particles with diameters of 2 and 20 nm.  
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In order to understand the nature of number, volume and intensity distributions, the case of a 

mixture containing equal numbers of 2 nm and 20 nm particles is considered (Figure 1.5). 

Obviously a number distribution will produce 2 peaks of the same intensity, whereas a 

volume distribution will produce a distribution with an integral 1000 times greater for the 

larger particle as the volume of the 20 nm particle is 1000 times greater than the volume of 

the 2 nm particle.  The integral for the intensity distribution for the 20 nm particle, however, 

is 10
6
 times greater than that of the 2 nm particle.  The intensity of the scattered light is 

proportional to the sixth power of the particle diameter, therefore larger particles scatter more 

light than smaller particles.
59

  This illustrates the potential of obtaining erroneous values, 

especially in calculating number distributions, as any error in the intensity distribution will be 

magnified through the conversion.  

 

There have been numerous studies concerning sizing RMs in AOT microemulsions using 

DLS, with the most extensive by  Zulauf and Eicke,
39

 where they observed how droplet sizes 

increased with increasing ω and temperature. Another study illustrated how the changes in 

shapes of the RMs in an AOT/iso-octane/water microemulsions
53

 can be related to the 

variation in the shapes of the size distributions obtained from DLS measurements. These 

observations have been related to deviations from spherical to oblate RMs
53

 as ω decreases. 

DLS has been used to study the changes in the distributions of droplet radii with the addition 

of BZ reactants over varying periods of time
34,38

 and dilution.
69

  The transition between 

bimodal droplet distributions to monomodal distributions was observed  during 24 hrs, with 

another study reporting a transition from a monomodal to a bimodal distribution of droplet 

radii, at ϕd = 0.5, which was near to the percolation point.
69
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1.2.2. Fluorescence Correlation Spectroscopy (FCS) 

 

Fluorescence correlation spectroscopy (FCS) is a light scattering technique. In FCS, the 

molecules within a system are labelled with fluorescent probes
10

 and it is the fluctuations of 

the diffusing fluorescent  particles, that are measured using an autocorrelation function. The 

diffusion coefficient is determined from eq 1.15, where ω0 is the width of the laser beam and 

τd is the average time for a particle to move through the optical probing region.
54

 

              
D

d
4

2

0                                            eq 1.15 

 

 

This technique has advantages compared to the other sizing techniques, as measurements can 

be made at high dilutions. FCS does not suffer from difficulties associated with optical 

matching points and there is the ability to compensate for errors evolving from changes in the 

refractive index,
54

 which can be an issue in DLS.  FCS has also been used to observe the 

dynamics in the AOT/iso-octane/water microemulsion by labelling the RMs with the 

fluorescent molecule (Cy3), which resides within the water droplet and is insoluble in iso-

octane.
70

  The formation of a Cy3-H dimer was found in the smallest RMs. However the 

formation of the Cy3 dimer was observed alongside the formation of transient coalescing RM 

dimers. From the diffusion coefficient of the RM dimer and assuming a prolate ellipsoid 

shape of the transient structures, the size of the coalescing RM was found to be twice the size 

of a single RM.
70

 

 

1.2.3. Small Angle Neutron Scattering (SANS) 

 

Small Angle Neutron Scattering (SANS) technique does not follow the motion of particles 

and therefore differs from DLS and FCS techniques.  In SANS, a beam of neutrons is fired at 
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the sample
23,49,71

 with an intensity I0 and scattered with intensity IS across an area defined by  

r
2
 dΩ, where r is the distance from the sample and dΩ is the angle of the area detected  

(Figure 1.6).
49

  

 

 

Figure 1.6: A schematic representation of small angle neutron scattering (SANS).  

 

Different atomic species scatter the neutrons either coherently or incoherently. The neutrons 

are scattered by the atomic nuclei or the associated magnetic moments from unpaired electron 

spins.
49,71

   Hydrogen atoms scatter neutrons coherently at 180° out of phase with other atomic 

species, which is described by a negative scattering length of -3.74 fm.
23,49

  Deuterium, 

however, scatters neutrons at a length of 6.67 fm, therefore deuterated species are used in 

SANS to obtain contrasting scattering length densities between different molecules.
49,71

   In 

microemulsion systems where the surfactant, alkane solvent and water are composed mainly 

of hydrogen atoms, one of the molecules is typically deuterated to provide adequate contrast 

between the molecules in the system. Typically, D2O is used to form the water droplet within 

the RM,
23,72

 hence the water radius, Rw, is obtained from SANS measurements, rather than the 

hydrodynamic radius, Rh. The ratio of the scattered neutrons to the incident neutrons is 

defined as the differential cross section (DCS) of the sample (eq 1.16), where the scattered 

neutron intensity is measured for an area r
2 

dΩ where r is the distance and dΩ is the angle 

from the sample.   
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The scattering cross section per unit volume is given by eq 1.17. 
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)(             eq 1.17 

 

The scattered intensities are measured in reciprocal space, which is also known as Fourier 

space.
71

  The data is fitted to model solutions whilst in reciprocal space. The intensity of the 

neutrons (DCS) is proportional to the density of the particles in the sample, which is given by 

the product of two structure factors, S(Q) and P(Q), which are the inter-particle and particle 

structure (or form factors), respectively (eq 1.18).
49

  

                                  )()()( QSQPnQ
d

d
p




                    eq 1.18 

 

The aim of a SANS experiment is to determine the structure factors. The particle structure 

factor represents the scattering from a single particle or RM.   The inter-particle structure 

factor is a correlation function between the interaction potentials between the centres of the 

particles,
71

 or RMs and therefore is related to the droplet volume fraction.  The experimental 

timescale of SANS is not effected the motion and diffusion of particles and does not measure 

a time correlation function, as in some of the other techniques. It does, however, have issues 

with calculating the structure factors, particularly, S(Q), where the interactions between the 

particles, or the RMs have to be determined. This is where the assumption that at high 

dilution, S(Q) tends towards unity, is frequently used for microemulsions.
23,49,72

  Both 

structure factors are calculated from repeating measurements with varying contrasts. 

Therefore different deuterated schemes are used with the sample of interest to obtain the 

variation in contrast. Models are then made in order to fit the data.
71

  Usually when making 
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the models, too many unknowns are presented. This is due to the phase information being 

lost, when measuring the scattered intensities in reciprocal space.
73

  Therefore at least one 

approximation or known, such as the shape of the particles is required, to determine another 

structural characteristic, such as the size of the particle.  In the case of measuring the Rw of 

RMs, the hard sphere potential is used.
71

  SANS has been used to observe changes in Rw at 

critical temperatures in the AOT/iso-octane/water RMs
74

 at ω = 40 at varying droplet 

fractions. It was found that the droplet model broke down at ϕd > 0.2. As SANS profiling is 

sensitive to the effects of poly-dispersity, the technique has also been used to detect deviations 

from mono-disperse systems. The poly-dispersity was found to increase as the organic solvent 

was changed from heptane to dodecane.
43

  SANS has therefore been used to deduce that the 

RM structure is dependent on the increase in attractive interactions due to the increase in 

hydrocarbon chain length of the organic solvent.
23,74

 The technique has shown that attractive 

interactions increase with droplet size.
75

  Eastoe et al.
76

 reported a variation in the form factor 

at low droplet fractions, when the counter-ions M
n+

(AOT)n were varied, with rod-like and 

spherical RMs being formed, with transition and alkali metals, respectively. 

 

1.2.4. Small Angle X-ray Scattering (SAXS) 

 

 

Small angle x-ray scattering can measure particles from 1 to 100 nm. In this technique, a 

beam of x-rays is fired through the sample and the variation of electron density scatters the x-

rays at different intensities.  The scattered intensity of radiation, like SANS,  is detected in 

reciprocal space.
77

 Therefore, similarly to the SANS technique, when the scattering intensities 

are collected, phase information is lost, hence the original structure is not completely 

recovered.
77

   The Fourier transform of this data is an average of the scattered x-rays.  Three 

structural aspects are usually desired from SAXS, including the shape, the packing of the 
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particles and the poly-dispersity.
73,77

  Typically two of the structural aspects are known in 

order to obtain information about the other morphological feature of the system.
77

  The issue 

for poly-disperse systems is that it is difficult to resolve the separate sizes, due to the 

averaging of the intensity data.
73,77

 After the scattering data is collected, data corrections are 

performed, to recover the highest quality scattering patterns.
77

 This process separates the 

scattering signals of interest from instrumental and sampling distortions.  The  data is then 

fitted to models to obtain the desired physical parameters.
77

  

 

SAXS has been used to analyse AOT/alkane/water microemulsions and has also shown, 

similar to SANS,
23

  that RMs deviate from the spherical model as the solvent chain length 

increases.
78

 For the AOT/n-octane/water system at ω = 20, the presence of elongated particles 

has been observed using the SAXS technique.
41

 SAXS information has been coupled with 

data obtained from conductivity experiments and DLS, to understand the percolation 

mechanism and the effect of alcohols on the structures in AOT/IPM/water microemulsions.
79

 

From understanding how the scattering intensity curves related to the enlargement of the RMs 

as a function of ω, a decrease in RM size was observed with increasing concentration of the 

alcohol. The variation in the shapes of the scattering curves also indicated the presence of 

dimers and oligomers at different ranges of ω with various alcohols.
79

  

 

1.2.5. Nuclear Magnetic Resonance (NMR)   

 

Nuclear magnetic resonance (NMR) techniques have been used to characterise and study the 

behaviour of RMs and microemulsions and an overview of them is given here. A more in-

depth description of NMR techniques and methodology is provided in chapter 2.  
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Typically, the variation in mobility and motion of the water molecules in RMs has been 

measured through NMR relaxation and diffusion experiments.
12

 The decreasing number of 

water molecules, with decreasing ω disrupts the formation of hydrogen bonding and the 

characteristics of this water confinement are paralleled with how water may behave in 

biological systems,
35,80-82

 such as mitochondria. NMR techniques have shown how the water 

peak in the 
1
H NMR spectrum is observed shifting downfield, as ω increases,  As more water 

is added to the system and the droplet size increases, the chemical shift moves towards that of 

ordinary water.
82

  The observed chemical shift of the water peak is a weighted average of the 

bound and free water, which are in fast exchange with each other, which also produces an 

average diffusion coefficient.
35,80-82

  Wong reported using spectroscopic studies and 

measuring rotational times,
82

 that at ω > 6, the water molecules started to behave as bulk 

water. At low ω values, the water was less mobile due to the ion-dipole interactions with the 

counter-ions,
82

 and it was the decreasing number of water molecules which disrupted the 

hydrogen bonding. The spin-lattice and spin-spin relaxation rates, which are related to the 

motion of the molecules (1/T1) and (1/T2), which are discussed in detail in chapter 2, were 

found to decrease with increasing volume of water. When discussing the diffusion of the 

water molecules, the Lindman equation,
83

 eq 1.19, illustrates how the observed diffusion 

coefficient,  Dobs, is the weighted average of the bound (Dmic) and free water molecules and P 

is the proportion of bound water molecules. 

 

                                freemicobs DPPDD  1                       eq 1.19 

 

NMR techniques measure the self-diffusion coefficients (Ds) of different molecules in a 

system and have the advantages of being able to probe optically opaque, turbid solutions. 

These methods provide accurate measurements of diffusion coefficients and offer several 
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advantages over the light scattering technique, including being unaffected by the presence of 

dust particles. NMR techniques do not require any optical parameters, such as the refractive 

indices of the molecules, to obtain the diffusion coefficient of the RMs. Therefore 

experimental errors do not occur from optical matching or the mismatch of the refractive 

indices. The sizes of RMs in an AOT/water/octane microemulsion have been previously 

measured using diffusion measurements and converting to Rh , using the Stokes-Einstein 

equation
45

 (1.2.1 eq 1.14) and has been investigated at varying ϕd. An increase in the diffusion 

coefficient, (D) and a decrease in Rh was observed as a function of ϕd.
45

 Other studies have 

measured the micellar water and oil diffusion coefficients
47,84

  and one reported that for a 

system with the AOT/water/iso-octane microemulsion, D values measured with NMR were 

always greater than those obtained from DLS.
47

  The different diffusion coefficients of RMs 

with and without co-surfactants have been investigated through NMR diffusion methods.
14

  It 

has been observed that D for the molecules in the AOT microemulsions were generally slower 

than those systems requiring co-surfactants.
14

  In a recent study,
16

 the Lindman equation (eq 

1.19)  was used to determine the proportions of co-surfactant that was present in the 

continuous phase and interphase of the CTAB/water/hexane/pentanol microemulsion. The 

proportion of co-surfactant in the continuous phase was important to obtain, as changes in the 

viscosity of the system and hence the sizes of the RMs were more accurately determined, 

when using the Stokes-Einstein equation.
16

  Where the average sizes of RMs have been 

obtained from NMR measurements of diffusion, the size distributions of RMs are not 

reported. However, size distributions and the poly-dispersity for polymers,
85

 colloidal 

systems,
86,87

 and porous media
88

  have been determined, using a log-normal distribution 

fitting procedures.  
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1.3. Microemulsion Dynamics and the Challenges of Characterisation 

 

1.3.1. The Diffusion and Exchange Processes in Microemulsions  

 

The structure and dynamics of the AOT/water/octane systems have been investigated 

primarily with scattering methods
2,39,57,89

 and NMR techniques.
10,12

 When comparing the 

different techniques, the experimental observation times must be considered and what can be 

measured within the timescales available, particularly when investigating the diffusion of 

dynamic systems.  The droplet collision rate is an experimental factor, which affects the 

diffusion of the RMs.  DLS and NMR experimental timescales differ
47

 with DLS recording 

experimental auto-correlation times up to 1 ‒ 2 ms, whereas NMR achieves observation times 

from 10 ms.  SANS and SAXS techniques, however, do not measure the motion of the RMs 

and are not affected by the RM collision rate. 

 

The rate of coalescence is determined from the rates of diffusion of the RMs. The rate of 

diffusion is exploited in many particle sizing techniques, as the diffusion of the molecules is 

related to the droplet size and the viscosity of the continuous phase.
2,49,54,57

 The diffusion 

coefficients (D) can therefore be converted to Rh, by applying the Stokes-Einstein equation 

(1.2.3 eq 1.14). However, these techniques measure different diffusion coefficients (D). DLS 

and FCS measure a collective or mutual diffusion coefficient (Dm),
90

 where a single value for 

D is obtained from the motion of the collection of particles within a system in a flux of 

concentration gradients,
91

 where n is the number of particles. (eq 1.20)   

 

                                     nD
t

n
m

2



                                         eq 1.20 
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The self-diffusion coefficient is measured in NMR diffusion techniques. The self-diffusion 

coefficient (Ds) is a measure of the diffusion of separate molecules within a mixture.
49,90,92,93

 

The self-diffusion of a molecule travelling during time t in one dimension is given by eq 1.21, 

where zrms is the root mean square distance.
94

 

 

                                        Dtzrms 2         eq 1.21 

 

Both Dm and Ds have been measured and compared in several studies which characterise and 

size RM at varying ϕd 
48,81

 and temperature.
39,48

 However D of probe molecules has been 

determined using scattering methods, to explore the Ds of RMs.
90,95

 Measurements of D are 

sensitive to inter-droplet interactions or collisions, which cause the obstruction effect.
12,45,81,96

  

The values of Dm and Ds in a system,
93,97,98

 based on the assumption that the particles or in 

this case, the RMs are spheres, only become comparable as ϕd approaches the dilute limit or 

where attractive or repulsive droplet interactions can be neglected.
49

 As the inter-droplet 

dynamics vary with ϕd, ω and temperature, the Ds for RMs, should be determined at infinite 

dilution in order to evaluate self-diffusion without interactions.
93,97,98

  Depending on the ionic 

nature of the surfactant, whether there are attractive or repulsive potential interactions 

between the particles, or RMs,
90,93,98

 the relationship between the diffusion coefficient and ϕd 

varies between the scattering and NMR methods.  

  

 



26 

 

 

Figure 1.7: A schematic showing the variation of Ds and Dm as a function of ϕd for repulsive 

interactions.  

 

Figure 1.7  illustrates how Ds and Dm for particles with a repulsive potential interaction vary 

as a function of ϕd.
90

  It has been found 
2,57,90

 that for particles with attractive interactions, as 

for RMs formed from the anionic AOT surfactant, Ds decreases, as does Dm, but they have 

different quantitative values.
93

  When using the Dm to evaluate RM size, there have been 

studies which implement the infinite dilution law and convert D to D0 using the expression, 

(eq 1.22) 
48,81,89,96

 where D is the observed diffusion coefficient, D0 is the diffusion coefficient 

at infinite dilution, ϕd is the droplet fraction and α is the virial coefficient. 

 

     D = D0 (1+αϕd)           eq 1.22 

 

The virial coefficient is determined from the hydrodynamic interactions and repulsive or long-

range attractive potentials involved in microemulsion systems. Anionic AOT droplets have an 

attractive potential interaction, which has a model α = ‒2 when measuring Ds.
93,98

 There are 

two virial coefficients for a hard sphere particle (solute) model,
99,100

 which evolve from the 

interaction potentials Ur .
99

  The virial coefficient (α) is related to (B) the osmotic pressure,
99
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and  β, which represents the contribution from the frictional coefficient and is dependent on 

the droplet volume fraction of the system. (eq 1.23) 

 

       B                      eq 1.23 

  

There are different derivations and values of β which are outlined by Felderhof.
100

  The virial 

coefficient varies in different systems,
99

 as the osmotic pressure term varies with different 

microemulsion parameters, including the chain length of the alcohol co-surfactant. When 

extrapolating to D0, changes have been observed in the virial coefficient (α)  as a function of 

ω and oil chain length, with α becoming increasingly negative (‒1.1, ‒3.6, ‒5.1) as a function 

of  increasing ω (20, 40 and 60,  respectively).
57

 This was explained by the increasing 

attractive interactions from the increasing size of the RMs.
57

  Nicholson and Clarke
2
 observed 

variation in the poly-dispersity of an AOT/heptane/water microemulsions as a function of ω. 

At ϕd = 0.24, the poly-dispersity increased as a function of ω whereas at ϕd = 0.06, a decrease 

was observed.  

 

Microemulsions are dynamic systems with the RMs continually colliding, fusing and 

reforming,
38

 exchanging the molecular species, which reside in the water cores. Molecular 

exchange takes place in microemulsions between molecules in the interphase and the 

continuous phase and this exchange is reported to take place on a fast timescale in the order of 

microseconds,
21,96

 however it has recently been observed on a millisecond timescale in a 

CTAB/water/pentanol/hexane microemulsion.
16

  Molecular exchange rates have been found 

to depend on the droplet size, temperature and solvent chain length in  the system.
21

  Proton 

exchange between the molecular species
18

 in microemulsions between alcohol co-surfactants 
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and micellar water at varying pH has also been investigated and the results are discussed 

further in 1.3.3. 

 

One schematic representation (Figure 1.8) can be used to explain inter-droplet exchange, 

which is also referred to as solubilisate exchange.   

 

 

Figure 1.8: A schematic representation of the coalescence of droplets and the exchange of 

reactants A and B.  

 

As the droplets collide, they fuse to form an intermediate dimer, where exchange of the 

contents within the water droplets takes place.
101

 The dimer then splits to reform individual 

droplets. The solubilisate
21

 exchange rate takes place on a millisecond to microsecond time 

scale, depending on the microemulsion parameters.
21

  The surfactant AOT is able to form 

stable RMs without a co-surfactant and has been the focus of many studies of exchange rates 

to deduce the rate of droplet coalescence.
21,40,96

  The inter-droplet exchange rates between 

RMs have been measured by monitoring the rate of fast chemical reactions taking place in the 

microemulsion,
21

  as the exchange of material between RMs occurs through droplet collisions. 

The number of micellar encounters taking place is controlled by the diffusion and is typically 

determined from equation 1.24. Smoluchowski
21,84

 derived this relationship to determine the 

rate of coagulation of sols where R is the gas constant, T is the absolute temperature and η is 

the solvent viscosity. (eq 1.24)  
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The Smoluchowski equation accounts for the transient state of encounters,
102

 from time 

dependent diffusion processes, whereas Debye
103

 extended the equation to express the 

collision frequency based purely on the electrostatic interactions and charge effects between 

ions.  Umberger
102

 explored combining both the charge and transient processes to obtain an 

alternative expression for the encounter frequency of two particles in a liquid, (eq 1.25) 

 

       
f

nDRn ba

004
= encounter frequency         eq 1.25 

 

 

where R = rA  +  rB, which is the distance between the two droplets when an encounter occurs 

(Figure 1.9)
102

  with nA and nB being the number of particles of A and B and 𝑓 a factor to 

account for the effect of inter-ionic forces on the rate of diffusion (D).  

 

Figure 1.9: Diagram of a droplet encounter.  

 

 

1.3.2. Intermolecular Forces  

 

The forces which exist between droplets and the interfacial flexibility of the RMs affect the 

collision and exchange rates of RMs and hence the diffusion of the molecules.
79

 In AOT 
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systems, the RMs have attractive interactions. This is due to the interpenetration of the 

surfactant tails from neighbouring RMs.
75

  These interactions are termed as a stickiness 

parameter and increases as a function of ω and therefore the droplet size.
75

 The attractive 

interactions increase as the droplet size increases, due to an enhancement of the attraction for 

larger droplets at short distances in a continuous phase of comparatively small solvent 

molecules.
104

 This increased contact between larger droplets, which  leaves cavities 

containing smaller solvent molecules is called the depletion effect.
104

 The stickiness 

parameter has been reported to decrease as a function of ϕd for RMs where ω = 40, which was 

due to depletion forces and was found to be dependent on the solvent packing fraction.
104

 The 

stickiness parameter was also found to increase, as the length of the solvent chain length 

increased.
104

  

 

1.3.3. The Effects of Additives in Microemulsions 

 

There are numerous studies on the effects of additives on the RM environment.
46,52,105

 

Conductivity measurements are used to determine whether additives assist, retard or have no 

effect on the percolation point,  illustrating whether the additives cause the micellar interface 

to become more or less stable.
46,52,105

  The effects of additives with varying physical attributes 

have been observed
52

 and explained with respect to the effects on packing parameters of RMs 

and the intermolecular  forces.  For example, crown ethers, capture the Na
+
 counterion of the 

AOT surfactant, which screens the headgroup charges, inducing a decrease in the headgroup 

volume and an increase in the percolation point.
52

  Binks
36

 used NMR relaxation 

measurements and molecular simulations of AOT/water RMs, to show that as the droplet size 

increased to ω  > 20,  the Ru(bpy)
2+

 cation moved into the RM interface, rather than being 

present in the micellar water (Figure 1.10).  The exchange processes were therefore 
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increasingly restricted between the cation and water ions, as the droplet size increased, which 

was also evident from a decrease in the T1 relaxation times.
36

  

 

Figure 1.10: A molecular simulation showing a part of the interface of an AOT/water RM. The 

[Ru(bpy)3]
2+

 complexes, water molecules, and sodium ions are shown in spacefilling mode 

with AOT molecules surrounding. The colours of the atoms are: oxygen, red; nitrogen, blue; 

sulfur, yellow; carbon, green; hydrogen, white; and both sodium and ruthenium ions, purple. 

(Reprinted with permission)
36

 

 

 

 DLS has been used to study the changes in the distributions of droplet radii with the addition 

of BZ reactants over varying periods of time.
34,38

  When measuring fresh microemulsions at ω 

= 15 and ϕd = 0.55, near to the percolation point, with acidic additives, a bimodal droplet 

distribution was observed, with droplet sizes of 20 and 2 nm.  However, a transition to a 

monomodal distribution was observed a day later with Rh = 3.6 nm. In another study of 

microemulsions loaded with H2SO4, malonic acid  and NaBrO3, a transition was observed 
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from a monomodal to a bimodal distribution of droplet radii, as ϕd increased near to the 

percolation point.
69

 

 

The effect of alcohols on RMs is of interest, as they are often used as co-surfactants in 

microemulsions. Short-chained alcohols, reside in the micellar water pool, with longer 

chained alcohols being located in the RM interface in AOT/water/n-decane systems.
15

  In an 

AOT/IPM/water system, the alcohols induced an increase in the interfacial flexibility, when 

the alcohol chain-length was decreased and as the alcohol concentration increased.
79

 

Increasing droplet attractive interactions were considered to take place with the reduction of 

the alcohol chain length.
79

  The adsorption of short-chained alcohols in RMs has been 

reported to make the interface more flexible and labile, as the alcohols penetrate between the 

surfactant tails.
84,106

  The rigidity of the interface increases as the alcohol chain length is 

increased,
79

  therefore the percolation point may be assisted or retarded depending on the size, 

shape and concentration of the alcohol. In an AOT/decane/water microemulsion, toluene 

retarded the percolation point, whereas benzoyl alcohol assisted percolation. Toluene 

interacted with the hydrophobic tails of AOT, creating an inhibiting effect,
107

 whereas the 

interfacial adsorption of the benzoyl alcohol caused an effective increase of the surfactant 

headgroup and the decrease of the percolation point. This highlights how the interplay 

between the structure and polarity of the surfactant, the RM size and the physical 

characteristics of the additives affects the stability of RMs.  

 

 

1.3.4. The Determination of pH in Microemulsions 

 

The determination of the pH within RMs has been of interest,  particularly in enzymology, as  

RMs are used to model enzymatic reactions in cellular structures, which occur with changes 
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in pH.
108

  Variations in the pH within RMs, when exploring enzymatic reactions, however, 

can lead to the misinterpretation of results, leading to what has been described as pH 

artifacts.
109

 Therefore, there is a need to understand more about how changes in pH affect 

RMs. However,  measuring the pH within the RMs is difficult, as the standard pH meters 

cannot be used to measure nano-scale water droplets.
110

  The normal conventions of 

describing pH in RMs do not apply, as there are less than 10
7
 water molecules present,

110
 thus  

making the interpretation of measuring the pH difficult, as the IUPAC conventions are not 

applicable.
18,80,110

  Probe molecules have been used to monitor the effect of changing the pH 

on the RM environment. The vanadium complex, [VO2dipic]
‒
 and the free dipic

2‒
,  have been 

used as probes in AOT microemulsions,  as changes in the 
1
H NMR chemical shifts for the 

free dipic
2‒

  occur as a function of pH.
35

  It was found, however, that the vanadium complex 

was residing in the hydrophobic interface, away from the water pool and this unexpected 

observation raised questions about  the effects of the location of the probe.
35

 Studies probing 

the variation in pH of the micellar environment can prove difficult,
111

 as the probes 

themselves may induce changes to the behaviour of the RMs.  Fluorescence pH-sensitive 

probes obtained measurements that suggested RMs act as buffers, as the measured intensity 

remained constant over a wide pH range (1-12). Alternative methods have been employed to 

monitor the changes in pH without a probe molecule.
18

 In the CTAB/hexanol/water 

microemulsion, the exchange processes between hexanol, which is the co-surfactant and the 

continuous phase, and the water pool have been exploited. As the pH decreased the water and 

alcohol peaks coalesced to form a single peak.
18

 This was due to the exchange between the 

water and the hydroxyl hexanol group protons being catalysed by the acid.
18

 The exchange 

rate was also reflected in changes in the T2 relaxation times of the water within the droplet. 
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1.4. Molecular Simulations  

 

 

Molecular simulations are used to model how molecules in a system interact with each other 

with consideration to the intermolecular forces and potential energies, including van der 

Waals forces and hydrogen bonding.
112

 As the droplet size or the composition of the RM 

interface is varied with changes in ω, there may be shape fluctuations in the RMs.
113

 

Furthermore with the addition of a co-surfactant, the flexibility of the interface may change, 

resulting in further changes to the droplet shape and deviations from spherical RMs.  

Molecular simulations are able to show the overall fluctuations in the structures of RMs as the 

molecules move over the simulation time into the most favourable orientations.
114

 The 

capability of monitoring the group or individual molecular movements, also gives the 

potential of probing molecular diffusion and exchange processes.
115

 

 

There are several different forcefields, which have been used to set up the molecular 

simulations for AOT/water/iso-octane RMs. The forcefields define the parameters for each of 

the atoms or groups of atoms in the simulation, including bond lengths, partial charges, 

dihedral angles and van der Waals radii. The most common forcefields used to generate RMs 

have been AMBER (Assisted Model Building and Energy Refinement),
112

 in studies with 

AOT
36,116

 and CTAB
16

 and CHARMM (Chemistry at Harvard Molecular Mechanics)
117,118

 

with studies of AOT.
114,119

  There are variations in how the simulation models are constructed, 

in order to reduce the simulation time and the computer power required. The all-atom 

simulation model utilises all the parameters for all the atoms in the RM,
114

 whereas coarse-

grained model groups clusters of atoms together, such as the tails of the surfactant.
120

 The 

united atom model groups smaller numbers of atoms, such as the H, C, methyl and methylene 

as one and has been used to construct the solvent molecules in a AOT/water/iso-octane 

system,
114

 in order to cut down on the required computer resources and increase simulation 
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times. Martinez et al.
51

 reviewed the developments in molecular simulations for systems 

involving AOT RMs. The investigations showed that the shapes of the RMs in unrestrained 

systems deviated from spherical models, but there was a dependency on the types of 

forcefield used in the initial configurations. This highlights the challenges of applying 

forcefields to micellar systems, as there are so many combinations between the molecular 

species involved, and also a dependency on the density of the systems.
51

  

 

One limitation of molecular simulations with RMs, which involve so many molecules, is that 

they need considerable computer time and resources to generate. Hence many of the 

simulations are run for much shorter periods of time and from preassembled structures.
114

 

However, with  longer simulation times, there is increasing confidence that the RM has 

reached equilibrium, especially with structures that are generated  from preassembled reverse 

micelles.
114

  The minimum simulation time of 2 ns is recommended for pre-assembled reverse 

micelles.  AOT/water/iso-octane systems have previously been simulated up to 425 ns.
114

  

These simulations were started from a random configuration of the molecules. 

 

There are differences in methods of solvating droplets in molecular simulations, as RMs are 

solvated with a wide variety of organic solvents. Although methods have been developed to 

make organic solvent boxes,
121

 they can considerably increase the computer time and 

resources to run the simulations.   A recent study has used a hexane organic solvent box, to 

model a RM in a CTAB/water/pentanol/hexane system. As the solvent box was constructed 

using an all-atom forcefield, there was the capability to observe the dynamics of the alcohol 

co-surfactant and analyse the  exchange between the interface of the RM and the hexane 

continuous phase.
16

  An all-atom iso-octane solvent box has previously been used to solvate 

AOT/water RMs
119

 at ω < 7.  Other molecular simulations of RMs have used solvent 
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molecules constructed with a united-atom forcefield
114

 or have been constructed without the 

solvent molecules.
36

  However, as the latter simulations did not have periodic boundaries, the 

molecular dynamic runs had to be terminated when water molecules escaped from the RM.
36

  

 

Molecular simulations are able to show the potential changes in shapes of RMs and deviations 

from spherical models. Vasquez et al. observed  at ω < 10 the  AOT/water/iso-octane RMs 

equilibrated to form cylindrically shaped structures, but the shapes fluctuated greatly and were 

difficult to characterise geometrically.
114

 At ω ≥ 10, the RM shape fluctuations decreased and 

the RMs became increasingly spherical with increasing water content. The motion of the 

molecules within RMs can also be analysed.  The rotational and translational diffusion data of 

the water molecules within AOT/water/iso-octane RMs has been obtained from coarse 

grained models, supporting the theories that the translational diffusion of water molecules in 

RMs only tend towards the value of bulk water in the centre of the water core as the droplet 

size increases.
120

 Molecular simulations are used to illustrate the different locations, 

proportions and effects of different molecular species in RMs and frequently support 

experimental findings.  One study showed that varying the metal counter-ions associated with 

the surfactant from Na
+
 to Li

+
, K

+
, and Cs

+
 affected the formation of the RM.  As the 

dimensions of the ion decreased, the aggregation energy increased.
116

  A molecular simulation 

has shown how the  Ru(bpy)
2+ 

cation resides within the AOT/water RM interface.
36

  

 

Although there are a considerable number of molecular simulations for the AOT/alkane/water 

RMs, there are less simulations that show the behaviour of CTAB in reverse micelles. One 

study has shown the behaviour and dynamics in the quarternary CTAB/water/pentanol 

/hexane system.
16

  This may be due to the fact in ternary CTAB systems, the co-surfactant 

required to form the RM may also act as the continuous phase, therefore solvating the RM is 
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essential in order to construct and run a molecular simulation for a sufficient time to keep the 

RM intact. The development and use of the organic solvent boxes
16

 has therefore enabled  

RMs which require a co-surfactant to reach equilibrium.  

    

Molecular simulations are an effective way of visualising the shapes of RMs, which can 

provide support and understanding of experimental data.  As the Stokes-Einstein equation is 

commonly used to size RMs and assumes that the RMs are spherical, any deviations from this 

shape are of interest. Molecular simulations provide a method of evaluating the extent of the 

asphericity
114

 of the RMs as a function of time.  The semi-axes of elliptical RMs (Figure 1.11) 

can be determined from equation 1.26,  where I1, I2 and I3 are the principal moments of inertia 

(I1 > I2 > I3) and M is the mass of the RM.
120

 

   

 

Figure 1.11: A diagram showing the semi-axes of an ellipse. 

 

 

The values of the moments of inertia can be readily obtained from molecular simulations. 
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The eccentricity (e) is used as a measure of the asphericity of the RM
120

 and is obtained from 

the ratio between the semi-axes a and c (eq 1.27). If the RM is perfectly spherical, then the 

eccentricity is zero. As the RM increasingly deviates from a spherical shape, either becoming 

a prolate ellipsoidal, oblate ellipsoidal or cylindrical shape, the eccentricity tends towards 1. 

 

                      
2

2

1
a

c
e                       eq 1.27 

 

Molecular simulations give the opportunity to probe the shapes and dynamics of RMs, 

supporting and questioning the results obtained from other characterisation techniques as 

discussed in (1.2).    

 

1.5. Thesis Outline 

 

 

 

The work carried out and presented in this thesis draws upon previous research about the 

chemistry and characterisation of microemulsions. The techniques used to probe these 

chemical systems are reviewed, including the use of molecular simulations to model the 

behaviour of the systems. These topics are reviewed in chapter 1. The main objective of the 

research was to understand how NMR techniques could be used to characterise RMs in 
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microemulsions. Therefore, chapter 2 reviews and covers the principles of NMR, particularly 

methods of measuring molecular diffusion which can be used to probe the behaviour and 

characterise microemulsions. The sizes of RMs have been determined through the conversion 

of diffusion data to hydrodynamic radii, using the Stokes-Einstein equation. In chapter 3, 

however, the size distributions of RMs at varying omega values and including additives were 

determined, using NMR measurements of diffusion with the application of the inverse 

Laplace transform. The results obtained from NMR experiments were compared with other 

techniques, particularly DLS.  Following this, the AOT/n-octane/water microemulsions were 

investigated at lower droplet volume fractions to evaluate droplet sizes at infinite dilution. 

The NMR experimental parameters were also varied, using shorter observational times, to 

explore the dynamics and exchange occurring in microemulsions. These findings are 

discussed in chapter 4.  In chapter 5, the sizes of the RMs in the AOT/iso-octane/water 

/pentanol microemulsion were measured, by determining the proportions and position of the 

pentanol molecules in the microemulsion. Also in chapter 5, there was an investigation into 

the capability of co-surfactant pentanol molecules to monitor variations in pH in RMs.  

Molecular simulations were carried out to support the findings from the NMR experiments 

with RMs formed with AOT/iso-octane/water at varying ω values. AOT/iso-octane 

/water/pentanol droplets were set up to further understand where the pentanol co-surfactant 

molecules reside in the microemulsion and what effects there were on RM shapes and sizes.  

A CTAB/hexanol/water RM was also simulated to investigate the proportion of hexanol in the 

interface and to observe the shape fluctuations of the RM. The molecular simulation research 

is covered in chapter 6.  
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2. Nuclear Magnetic Resonance (NMR) 
 

2.1. Principles of NMR 

 

2.1.1. Nuclear Spin 

 

A nucleus is NMR active if it has nuclear spin (angular momentum). Nuclear spin only arises 

when nuclei have unpaired nucleons, giving a spin quantum number, I which is non-zero.
1,2

 

1
H is the nuclide most commonly used in magnetic resonance I = ½ which has an abundance 

2
 

of almost 100%, but there are other NMR active nuclei, which are commonly used such as 

13
C, with I = ½ and 

2
H, with I = 1.

2-4
 Angular momentum is a vector quantity, having both 

size and direction and a nucleus with angular momentum has an associated magnetic moment 

(µ) (eq 2.1), where γ is a constant, which is known as the magnetogyric ratio.
2,4

 It is a measure 

of the magnetic strength of the nucleus. 

   γI                                                     eq 2.1 

 

When a nucleus is put into an external magnetic field, B0, the nuclear spins align with the 

field. The external magnetic field also removes the degeneracy of the spins, inducing the spins 

to move to different discrete energy levels.
2,4,5

 The number of energy levels is determined by 

the spin quantum number. 
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Figure 2.1: A diagram showing a spinning nucleus precessing in the presence of an applied 

magnetic field (B0). 

 

The application of the static magnetic field, B0, causes the spinning nucleus to precess at a 

specific frequency, known as the Larmor frequency (Figure 2.1). This is related to the 

magnetogyric ratio,
2,3,6

 γ and directly proportional to the strength of B0. The Larmor 

frequency is stated in radians per second (eq 2.2) or Hz (eq 2.3) 

 0B                       eq 2.2                                 

 





2

0B
                      eq 2.3       

In the case of I = ½, there is a distribution of spins between two different energy levels. The 

two spin states are spin up at the lower energy, denoted as α spins, (m = + ½) and spin down, 

at a higher energy level, denoted as β spins (m = -½). A transition from one energy level to 

another is only possible if the energy is exactly equal to the difference between the energy 

levels. This is due the quantised spin states,
2
 with the allowed transitions given by the 
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selection rule ΔmI = ±1. The energy required to move between the levels is related to γ and B0 

(eq 2.4) 





2

0Bh
E                   eq 2.4 

The population of nuclei at the lower energy level is slightly greater than that at the higher 

energy level (Figure 2.2).
4,5

  

 

Figure 2.2: A schematic representation showing the energy levels and populations of spin up 

and spin down nuclei, when I = ½. 

 

The spin populations on the different energy levels can be calculated from eq 2.5  

                                      kT
E

e
N

N






2
1

2
1

                                          eq 2.5 

There is a specific difference in the spin populations at differing energy levels. If the magnetic 

moments from the individual spins are added together, there will be a resultant vector quantity 

of magnetization, (Figure 2.3) with specific size and direction.
4
 This is conventionally known 

as the macroscopic vector of magnetization M0. Manipulating and monitoring the size of this 
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resultant vector of magnetization (the nuclear spins) is a key concept in nuclear magnetic 

resonance.
2
 Vector diagrams can be used to describe the position and relative size of the 

magnetization and is one means to explain and describe NMR experiments but it does have 

limitations.  

 

Figure 2.3:  A schematic diagram showing the summation of the individual magnetic vectors to 

produce the macroscopic vector of magnetization (M0). 

 

The nuclear spins and resultant M0  can be manipulated by the application of a radiofrequency 

pulse (rf).
5
 When a radiofrequency (rf) pulse is applied, the direction and angle of the 

resultant magnetization is affected. Conventionally,
4
 the z axis is in the direction of the 

external magnetic field (B0).  A 90° rf pulse takes the resultant M0 from the z axis down to the 

xy plane, which is also known as the transverse plane. At this angle the spins are in phase and 

are precessing at the same frequency. The pulse angle is related to the strength and duration of 

the radiofrequency pulse.
4
 (eq 2.6) 

 tB1
2

360




                         eq 2.6 

The transition of M0 to the transverse plane, is where an NMR signal is at its maximum 

intensity. The NMR signal is produced as the rotating vector of magnetization induces an 
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oscillating current in the rf coil, which was originally used to apply rf pulses to the system. 

This oscillating current is weak but is adequate to produce the NMR signal.
2
 After an rf pulse 

is applied, the spins will, after a time, go back to the original Boltzmann distribution to the 

different energy levels with the resultant M0 once more in line with B0. The time it takes for 

the spins to regain the Boltzmann distribution is dependent on relaxation processes which are 

specific to different chemical environments.
3-6

 As the spins return to thermal equilibrium, the 

Free Induction Decay (FID) signal is produced.
3-6

 

 

Figure 2.4:  A diagram of free induction decay. 

 

The FID or NMR signal is collected as a function of time (Figure 2.4).
5
  The time signal has 

to be converted to a frequency spectrum, as this is where the potential to distinguish the 

various molecules within a sample is realised, because the different chemical species will 

precess at different frequencies, as they experience different chemical environments. There is 

an inverse relationship between time and frequency
5
 (eq 2.7).  

     
t

1
                                              eq 2.7  

In order to convert time data into frequency data to produce a spectrum, a Fourier transform is 

applied.
3
  The Fourier transform produces two signals in the frequency domain resulting in 

two spectra, which originate from sine and cosine functions (eq 2.8) 
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          dttittff 




  sincos)(                       eq 2.8 

These signals are known as the real (absorption) and imaginary (dispersion) parts of the 

spectrum, respectively. The real part is what is presented in an NMR spectrum.
3
 

 

2.1.2. Chemical Shift 

 

The NMR frequency of the nucleus, as explained in the previous section, is dependent on γ 

and B0, however the protons within a molecule will not precess at exactly the same 

frequencies, as the proton frequency is also dependent on and affected by the local electron 

density distribution.
4
 A static magnetic field B0 induces motion of the electrons in the atoms 

within a molecule. The motion of the electrons then generates another small magnetic field, 

which opposes B0. If a proton is in the proximity of an electronegative atom, the electron 

density around that proton will be reduced and the proton will experience a deshielding effect 

where the magnetic field generated by the electrons is reduced, which in turn augments the 

effect of the applied field, B0 causing the proton to precess at a higher frequency. Chemical 

shifts originate from the deshielding and shielding effects occurring between the nuclei within 

a molecule.
4
 It is why different proton signals can be distinguished within a molecule and 

chemical mixtures can also be probed.
5
 Intramolecular and intermolecular hydrogen bonding 

causes deshielding which affects the chemical shifts of molecules.
4
 Intermolecular hydrogen 

bonding can cause small but significant shifts and these shifts may vary if the hydrogen 

bonding is disrupted by changing the temperature or the dilution of the system.
4
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2.1.3. J   Coupling 

 

J coupling or spin-spin coupling arises from intra-molecular magnetic interactions between 

nuclei
4
 with the bonding electrons between atoms having an effect on the magnetic fields 

between nuclear spins. Taking the example of two protons denoted A and X, where A is in the 

α spin state with a value of m = ½, the magnetic field of X will oppose the external field, 

causing a reduction in frequency, whereas for m= ‒½, the field adds to B0 at X and increases 

the frequency. Therefore for AX protons, there won’t be one peak but two peaks from the 

interaction of proton A with the different spin states
4
 of proton X. The spin-spin coupling 

constant between proton A and proton X is given by eq 2.9 

                                              E = hJAX mAmX                                                         eq 2.9 

where mA and mX are the magnetic quantum numbers and JAX is the coupling constant 

between the two protons.
4
 

 

2.1.4. Relaxation processes 

 

On applying a 90° rf pulse at thermal equilibrium, the α and β states become saturated and 

have an equal population of spins. However, after the rf pulse, the nuclear spins return to their 

original distributions through two different relaxation processes, T1, spin lattice or 

longitudinal relaxation and T2, spin-spin or transverse relaxation.
2,4-6

 In order to achieve the 

resonance condition where the spins are able to make the transition between energy levels, the 

rf pulse must be equal to the Larmor frequency. The relaxation times of the nuclei are 

dependent on a number of factors including inter and intra-molecular interactions between 

species, the tumbling time, τc, of the molecules and the presence of paramagnetic molecules.
6
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T1 is the time for the nuclei to return to the Boltzmann distribution of spin-up (α) and spin-

down (β) nuclei.
6
 Molecular interactions, through space, by dipolar coupling and fluctuations 

in the magnetic field at the Larmor frequency induce transitions between the, α and β states. 

Dipolar coupling occurs as a consequence of the interaction of the magnetic dipoles between 

neighbouring protons and this is dependent on the orientations and distance of the 

neighbouring protons.
3,4

 The distance dependency is 1/r
3
 and the orientation dependency

4
 is 

3cos
2θ-1. The distances and orientation between the protons will depend on how quickly the 

protons move in relation to each other. This is determined by the tumbling of the molecules, 

which is given by 1/τc, where τc is the rotational correlation time. This is the time taken for a 

molecule to rotate through one radian.
3
 Paramagnetic species have unpaired electrons which 

create relatively large magnetic moments and therefore cause a decrease in the relaxation 

time. As discussed previously in section (1.2.5), measurements of relaxation rates 1/T1 and 

1/T2 have been used to monitor the restricted motion in water molecules in RMs at low ω.  

The relaxation rate of the water molecules increased, as the RMs decreased in size and this 

was due to the restricted motion due to the ion-dipole interactions with the surfactant counter-

ions.
7
 

 

On applying a 90° rf pulse, the nuclear spins have phase coherence. However immediately 

after the rf pulse, the spins start to lose their phase coherence. Spins experience slightly 

different magnetic fields and therefore some precess at higher or lower frequencies. The T2 

relaxation value is the time for the spins to completely dephase.
5,6

 The transverse relaxation 

process is a combination of T2, which is intrinsic to the sample and T2B0, which arises from 

fluctuations and inhomogeneties in the magnetic field B0. The T2 time is therefore obtained 
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from a combination of factors and is known as T2
*
 (eq 2.10). Both T1and T2 relaxation 

processes occur simultaneously
5
 with T2 being less or equal to T1. 

    

022

*

2

111

BTTT
                (eq 2.10) 

 

2.2. Relaxation Experiments 

 

2.2.1. T1 Relaxation Inversion Recovery 

 

An inversion recovery experiment measures T1 relaxation time.
3
 An initial 180° pulse flips the 

magnetization vector onto the -z axis (Figure 2.5), thus inverting the spin population. 

 

Figure 2.5: Schematic representation of the pulse sequence of the inversion recovery 

experiment to measure T1 relaxation. 

 

The magnetization vector then proceeds to relax through T1 processes, along the z axis. 

However the magnetization cannot be observed in this axis so after a delay time,  , a 90° 

pulse is applied, which puts the magnetization into the transverse plane (Figure 2.5) when an 

FID is acquired. The pulse sequence is repeated for multiple values of , which is the delay 

time between the 180° and 90° pulse The resulting signal intensity is therefore dependent on 
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the delay time for that experiment. It is essential that τ is long enough so that complete 

relaxation of the protons occurs between the two pulses, so τ is set at 5T1 to ensure full 

relaxation is achieved. The signal intensities taken from specific peak of interest in the NMR 

spectrum are plotted against time ( ) (Figure 2.6).  

 

Figure 2.6: A plot showing the relationship between signal intensity for protons in water as a 

function of τ during an inversion recovery experiment. The red line is the fitting to eq 2.11.  

 

The T1 relaxation time is obtained by fitting the data
5
 to eq 2.11 



Mz  M0 1 2e
t
T1















                          eq 2.11 

 

2.2.2. Hahn Echo Experiment 

 

The T2 relaxation time can be measured through a spin-echo sequence, which was developed 

by Hahn
8
 in 1950. The pulse sequence is shown schematically in Figure 2.7.  
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Figure 2.7: Schematic representation of the pulse sequence of a Hahn spin-echo experiment to 

measure T2 relaxation. 

 

Figure 2.8: A schematic representation of the spin manipulation during the Hahn spin-echo 

experiment; Mz, the magnetization vector represents the spins aligned with B0 (a); the 

magnetization vector is put into the transverse plane after a 90°y pulse (b); the spins start to 

de-phase (c); a 180°x pulse flips the spins (d); the spins are refocused with reduced 

magnetization (e). 

 

The first 90° r.f. pulse puts the magnetization into the transverse plane (Figure 2.8(b)) where 

the nuclei initially have phase coherence, precessing at the same frequency. However the 

spins start to de-phase immediately, due to the inhomogeneities (Figure 2.8(c)), that exist in 

the static and local magnetic fields, generated from inter and intra-molecular interactions.
3
 

After time, , a 180° pulse is applied (Figure 2.8(d)), which flips the magnetization vector into 

the -xy transverse plane. This has the effect that, after the same time, , the magnetization will 
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be refocused (Figure 2.8(e)) and the spins will be re-phased forming the spin echo.
4,5

 On 

refocusing the spins, there will have been a loss of magnetization due to T2 relaxation 

processes, therefore the magnetization will be reduced. The signal acquisition now takes 

place.
3
 The experiment is repeated at varying values of . 

 

In a Hahn echo experiment the effects of molecular diffusion can contribute to the de-phasing 

of the spins. If the spins, during time τ, diffuse to a place where B0 is different, the spins will 

experience a different magnetic field and may not be fully refocused. The loss of 

magnetization will not just due to T2 relaxation, but also the effects of diffusing in an 

inhomogeneous magnetic field. Therefore T2
*
 is measured rather than T2 and this effect 

increases as τ increases. In the cases where molecular diffusion affects the spin echo, the T2 

will be inaccurate. 

 

2.2.3. Carr-Purcell-Meiboom-Gill and T2 Relaxation 

 

The effects of diffusion can be problematic when determining relaxation times as τ increases. 

The Carr-Purcell-Meiboom-Gill (CPMG) experiments are used to measure T2 relaxation time 

by minimising the effects of diffusion by using a short value of τ in a multiple of echoes (n) 

(Figure 2.9). 
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Figure 2.9: The pulse sequence of the CPMG experiment to measure T2 relaxation.  

The signal intensity is dependent on number of experiments (n) or echoes. The T2 relaxation 

rate can be determined from measuring the amplitude of the echoes against time
3
 (Figure 

2.10). 

 

Figure 2.10: A schematic representation of the decreasing amplitudes of the echoes, during the 

CPMG sequence. The T2 relaxation rate is determined from the amplitude of the echoes. 

 

The T2 relaxation time is obtained from fitting the data to an exponential function (eq 2.12), 

using non-linear least squares fitting (Figure 2.11). If molecules of interest in a system have 

two populations which have two different relaxation times, then the data is fitted to a bi-

exponential function. (eq 2.13) 
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Figure 2.11: A plot showing the relationship between signal intensity for protons in water as a 

function of τ during a CPMG experiment. 

 

The duration of τ needs to be short in order to suppress any effects from diffusion.
8
 One 

advantage of the CPMG experiment over the Hahn echo is that the T2 relaxation time can be 

measured with the CPMG sequence rather than the T2
*
.  

  

2.2.4. The Nuclear Overhauser Effect (Cross relaxation) 

 

The nuclear Overhauser effect occurs when two inequivalent protons, denoted in Figure 2.12 

as I and S, have a dipolar coupling through space. The effect can be used to identify inter-

nuclear distances and therefore aids in identifying the positions and stereochemistry of non-
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bonded protons within a molecule.  There are six possible pathways for the spin-lattice 

relaxation to occur between four energy levels. It is the movement of spins and the resulting 

population differences that can give rise to enhanced or inverted proton signals.
4
 The W1 

relaxation mechanisms arise from single spin flipping of nucleus I or S between α and β 

states. The W0 and W2 relaxation pathways, however, occur when both spins flip together, in 

the same direction for W2 pathway and in the opposite direction for W0 pathway. This is 

known as cross relaxation.
4
 

 

 

 

Figure 2.12: A schematic representation of the relaxation pathways available between the 

energy levels for the spins α and β between the coupled nuclei I and S.
4
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2.3. Pulsed Field Gradient Experiments (PFG) 

 

2.3.1. Fundamental Concepts of PFG experiments 

 

The PFG experiments used in this study to size and characterise droplets in microemulsions 

are described here, as well as the techniques available to analyse the data. There are many 

reviews of PFG experiments.
3,9-11

  They describe the variety of experiments which exist to 

probe and measure the diffusion of molecular species. They also outline modifications made 

to the experiments in order to suppress the production of artifacts caused by physical 

phenomena. There are various PFG experiments available to measure molecular diffusion but 

care is needed when choosing the experiment and experimental parameters which will give 

the most accurate and precise data.
9,12

  
1
H NMR pulsed field gradient experiments are used to 

measure the self-diffusion coefficients of molecules.  Using PGSE experiments to illustrate 

the fundamental principles, this method
6
 applies two magnetic field gradient pulses of 

strength G and duration, δ, which are separated by an observation time Δ. 

 

Figure 2.13: A schematic representation showing the spins at different frequencies when a 

magnetic field gradient (dotted arrow) is applied.  
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After a 90° rf pulse the spins are all in phase (Figure 2.13 (a)). When a magnetic gradient is 

applied through a specific direction in a sample, the spins will precess at increasing 

frequencies with increasing magnetic strength
9
 (Figure 2.13 (b)). The magnitude of the 

magnetic field (B) at a distance r is given by equation 2.14, where B0 is the external magnetic 

field strength and G is the magnetic gradient strength. 

rGBrB  0)(                                   eq 2.14 

When the first magnetic gradient is applied, the spins are therefore spatially encoded through 

a helix of phase (Figure 2.13 (b)). In the case where there is no diffusion, after a period of 

time Δ, after applying a second gradient, the spins would be refocused, in the absence of any 

relaxation processes, with the same signal intensity.  However, in the case where there is 

diffusion, where molecular motion is incoherent and random, the molecules are displaced 

from their original positions during the time period Δ. When the second field gradient is 

applied to refocus the spins, there is a distribution of phase shifts in the MR signal due to the 

diffusion of the spins, which results in a reduction of the signal intensity, producing an 

attenuation of the MR signal.
3,6

 PFG experiments have been developed to measure spin 

diffusion from the Hahn spin echo, through to 1965 when Stejskal and Tanner
13

 developed the 

method of pulsing the magnetic gradient. 

 

2.3.2. Pulsed Field Gradient Spin Echo (PGSE) 

 

The pulsed gradient spin echo applies two rf pulses (Figure 2.14). The initial 90° pulse takes 

the M0 down into the transverse plane onto the +x axis, after which the first magnetic field 

gradient pulse is applied (Figure 2.14). 
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Figure 2.14: A schematic representation of the pulsed field gradient spin echo pulse sequence, 

showing the effect of the applied gradients on the spins in the case where there is diffusion. 

 

The following 180° pulse takes the M0 through to the –x axis, where the echo is formed. After 

the second magnetic field gradient pulse is applied the signal is acquired. The MR signal is 

acquired over a range of G values and a diffusion coefficient can be calculated using the 

Stejskal-Tanner relationship (eq 2.15) where S(G) is the signal amplitude at gradient 

amplitude G, S(0) is the signal amplitude at zero gradient and γ is the  magnetogyric ratio. 

 

                                                                                                                           eq 2.15  


















3
exp

)0(

)( 222 
 D

S

S
G

G



66 

 

In order to ensure the signal attenuates to ≤ 1% , the values of G, δ and Δ are varied.
3
 The 

main disadvantage with the PGSE experiment is that after the first 90° pulse, the 

magnetization is stored in the transverse plane during the observation time, Δ . Therefore, 

during this time in the transverse plane, there can be a loss of magnetization through 

relaxation processes. This means that any resulting attenuation of the signal would not evolve 

solely from diffusion processes but also from relaxation. Another issue arising due to the 

magnetization being stored in the transverse plane is J coupling evolution.
14

 This causes peak 

phase distortions, resulting in difficulties when analysing spectra. A method of suppressing J 

modulation has been reported for CPMG experiment by incorporating an extra 90° pulse after 

the initial spin echo to reverse the apparent sense of J modulation.
15

 Another 180° pulse then 

refocuses the modulation caused by the first spin echo.
15

 This double spin echo sequence 

produces a “perfect echo” and can be incorporated in both relaxation and diffusion 

experiments to suppress J modulation.
15

 

  

2.3.3. Pulsed Gradient Stimulated Echo (PGSTE) 

 

In PGSTE experiments (Figure 2.15), a stimulated echo is used, which uses three rf pulses. 

After the first 90° pulse, the magnetization is taken down to the transverse plane, where the 

first magnetic gradient pulse is applied, after which a second 90° pulse is applied, taking the 

M0 to the -z axis (longitudinal axis). After the observation time, Δ, a 90° pulse is applied, 

taking the M0 into the –xy transverse plane, where the final magnetic gradient pulse is applied, 

to refocus the spins. The signal is then acquired. 
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Figure 2.15: A schematic representation of the pulsed field stimulated spin echo pulse 

sequence. 

 

As the magnetization is stored in the longitudinal axis during the relatively long observation 

time, the spins are less susceptible to T2 relaxation which can be the case in PGSE 

experiments. This is beneficial in samples where the T2 is significantly shorter than T1, which 

is frequently the case for protons in surfactant molecules in a reverse micelle.
16

 Another 

advantage of using the stimulated echo experiment compared to the spin echo (PGSE) 

experiment, is that there are less peak distortions which are caused by J-coupling as the 

magnetization is stored in the longitudinal axis rather than the transverse plane.
14

 The 

disadvantage of the PGSTE experiment is that there is a reduction in the signal intensity by a 

factor of 2. The magnetization vector is the summation of two orthogonal parts.  The loss of 

signal occurs, as the second 90° pulse transfers only one part of the magnetization vector from 

the transverse plane to the longitudinal axis, whilst the other is lost through homospoil 

gradients (Figure 2.15) and phase cycling.
3
 Homospoil gradients are required to eliminate 

residual magnetization, which is not brought down to the transverse plane by the original 90° 
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pulse. As the PGSTE experiment produces four spin echoes and the stimulated echo, phase 

cycling is required to eliminate any effects from the echoes.
9
 Phase cycling is used to 

eliminate unwanted signal components
17

 at the end of a cycle. 

 

2.3.4. Bipolar Pulse Pair Stimulated Echo (BPSTE) 

 

As PFG experiments apply magnetic field gradients, they can be subjected to unwanted 

effects, such as eddy currents, which are electrical currents produced from changes in a 

magnetic field.
9,11,18

 Eddy currents become more apparent as the magnitude and the rate at 

which the field strength increases.
1,3,9

 It is then that eddy currents are induced into the metal 

structures surrounding the magnet and the probe.
10,18

  Eddy currents generate their own 

magnetic fields, known as eddy gradients 
11

 with lifetimes of milliseconds, which distort the 

gradient pulses resulting in artifacts in the diffusion data. Various solutions to suppress the 

effects of eddy currents have been explored. Hardware considerations help to negate the 

production and suppress the effects of eddy currents,
10

 including the use of shielded gradient 

coils or small gradient coils in a wide bore magnet however other strategies are often 

required. Varying the shape of the gradient pulses has been used to control the rate at which 

the gradients rise and fall.
9
  Alternatively, pulse sequences have been developed, to delay the 

acquisition until the eddy currents have dispelled.
9
 These are known as longitudinal-eddy-

current-delay (LED) sequences. These are effective if the T1 relaxation time is longer than the 

delay time, which occurs after the second magnetic gradient pulse. One of the most effective 

methods has been to use bipolar pulsed pair (BPP) gradients (Figure 2.16). Instead of a single 

gradient pulse, there are two gradients at half the pulse duration δ/2. 
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Figure 2.16: A schematic representation of the bipolar pulsed pair stimulated spin echo pulse 

sequence (BPPSTE). 

 

The two gradients are, most importantly of opposite polarities and are separated by a 180° 

pulse.
3,9,18

 The eddy gradients produced from the first half pulse prior to the 180° pulse are 

cancelled by the eddy gradients produced from the second half pulse with the opposite 

polarity, thereby suppressing the effect of the eddy currents.
3,9,18

 The Stejskal-Tanner equation 

is modified slightly to account for a gradient pulse recovery delay time (τ), which is required 

for the bipolar pulse pairs.
3,10

 (eq 2.16) 

  

                 eq 2.16 
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2.3.5. The Effect of Cross Relaxation on PFG experiments. 

 

PFG experiments with stimulated echoes (STE) have the advantage of being able to store the 

magnetization on the longitudinal axis to suppress any T2 relaxation effects during the 

diffusion time, however STE experiments and bipolar longitudinal eddy current delay 

(BPLED) sequences have been subject to cross relaxation effects,
9,12,19,20

 where, during the 

diffusion time there can be an exchange of longitudinal spin polarization.
19

 This is due to the 

nuclear Overhauser effect (NOE) and can cause the usual mono-exponential signal decays 

obtained from unrestricted diffusion to become non-exponential decays. The nuclear 

Overhauser effect arises from through-space interactions
9
 between neighbouring water and 

surfactant molecules within the micellar interface. This effect has been observed in other 

macromolecular systems between the water molecules and the matrix forming the 

macromolecular structure.
12,19

 This interaction, which can build up over longer observation 

times
19

  has been found to distort the signal attenuations, in low viscous solutions,
20

 especially 

where Δ > 20 ms  producing artifacts in the subsequent decays. The decays are found to 

become non-exponential with the observation time and this can lead to the incorrect 

conclusions that there is either restricted diffusion or anomalous diffusion occurring within a 

system or that a molecular species is moving at two diffusion coefficients.
9
  It has been found 

that cross relaxation effects become more prominent with increasing observation time (Δ). 

Chen and Shapiro
20

 found that for a system with benzoic acid and human serum albumin, the 

effect of the NOE was not observed at  Δ = 20 ms. Cross relaxation has been observed in 

macromolecular systems between the water protons and the polymer matrix when using 

PGSTE sequences,
21

 whilst  this phenomenon has been observed using bipolar pulsed pair 

(BPP) sequences in molecular capsules.
12

 It is also found in low viscous solutions.
20

 Therefore 
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when measuring the diffusion of molecules in a  macromolecular system, the effects of cross-

relaxation need to be checked for.
21

 

 

2.4. Analysis Techniques for PFG Experiments 

 

When the NMR diffusion data is collected there are different methods and techniques 

available to analyse the diffusion coefficients. The chemical shifts of the different species 

within the mixture are resolved through obtaining the NMR spectrum.
11

 The diffusion data 

can be obtained for separate molecular species within a mixture by analysing peaks of interest 

at the specific chemical shifts, making sure there isn’t masking between two molecular 

species. The diffusion data is obtained by measuring the decreasing peak amplitudes as the 

gradient pulse strength is increased. Alternatively, the integral of the peak of interest can be 

measured. 

 

2.4.1. The Stejskal-Tanner Equation  

 

By plotting the signal attenuation, measured from the PFG experiment against the increasing 

field gradient strength values, a Gaussian decay will be produced. As all the experimental 

parameters are known for the Stejskal-Tanner equation, (eq 2.12), the decay can be fitted with 

non-linear least squares,
22

 using kaleidagraph software,
23

 to obtain the average self-diffusion 

coefficient (Figure 2.17). 
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Figure 2.17: A plot of diffusion data fitted mono-exponentially to the Stejskal-Tanner equation.  

 

When analysing a mixture of chemicals, as with microemulsions, it is beneficial to choose 

peaks which do not overlap or mask one another as this will generate diffusion data for two 

different chemical species and could be mistaken for one chemical species generating two 

diffusion coefficients.  If the molecule of interest is diffusing at two different rates, due to 

being in different environments within a system then the diffusion decay data will fit a bi-

exponential decay curve and it is possible to obtain the two average self-diffusion coefficients 

and their proportions within a system, which is valuable when detecting different sizes of 

particles within a system (Figure 2.18). 
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Figure 2.18: Plots of diffusion data for a system where the molecule of interest is diffusing at 2 

different rates, fitted to a mono-exponential (a) and a bi-exponential fit (b). 

 

The proportions of the two diffusion coefficients are extracted from fitting to the bi-

exponential form of Stejskal Tanner equation, (eq 2.17) where P is the proportion of the 

diffusion coefficient D1. 

 

   eq 2.17 
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An alternative method of recording the diffusion data is by plotting the signal attenuation as a 

function of q
2
, which is given by (γ

2
G

2
δ2(Δ- δ/3)) and fitting to linear least squares (Figure 

2.19). 

 

Figure 2.19:  A plot showing the signal intensity for a PGSTE experiment plotted as a function 

of q
2
.  

 

2.4.2. Inverse Laplace Transform  

 

An alternative method of analysing diffusion data is by applying the inverse Laplace 

transform (ILT) to obtain a distribution of diffusion coefficients. ILTs have been used to 

generate distributions from 1D diffusion PFG experiments with emulsions
24

 and in porous 

media.
25

 There are different methods used for the numerical inversion of data, which are 

reviewed by Mitchell et al.
26

 In the case of 2D diffusion-diffusion exchange experiments 

(DEXSY), a double inverse Laplace transform can also be applied to data which is acquired in 

two-dimensions. The resulting data shows cross-diagonal peaks if a molecular species is 

diffusing at one diffusion coefficient. However, when a molecular species is exchanging 

between two populations diffusing at two different diffusion coefficients, off-diagonal peaks 



75 

 

are observed,
25,27

 hence the dynamics and exchange between molecular species can be probed. 

In ILT, the exponential forms of the time-related data are transformed into distributions, 

where S(t) is the time-related data and R(t) is the probability distribution of the time-related 

data (Figure 2.20) (eq 2.18).
11

   

 

 

Figure 2.20: Charts showing the time-related data, S(t), (a) and the probability distribution of 

the time-related data, R(t), (b). 

                                         eq 2.18 

Borgia et al.
28

 describe how relaxation and diffusion data from NMR experiments are sums of 

exponentially decaying components. This allowed equation 2.18 to be written specifically for 

diffusion data as shown in eq 2.19, where G(Dj) is the distribution of diffusion coefficients 

and i  is the noise generated from the experiment. 

                         iijii εDδΔγδGDGgtS  
3

exp
2

                         eq 2.19 

ILT can generate an infinite number of solutions, as the integral limits indicate (eq 2.18) and 

can produce “mathematically ill-posed problems” by fitting noise. The ill-posed problems 

arise when noise is included as a measurement, multiplying the function of time by an ever 
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increasing exponential function.
11

 This makes the ILT very sensitive to noise and imposes the 

use of constraints in order to obtain accurate data. In this study, the application of non-

negative least squares with a Tikhonov regularisation, is used.
11,26,29

  The equation, 2.19, can 

be discretized into a matrix form, eq 2.20.
11,29,30

 

    EKFM                eq 2.20 

Inversion of eq 2.20  is ill-posed as small changes in M can create large changes in F.
29

 One 

method used to fit the data is to minimize the expression, ‖M - KF‖2 + α‖F‖2. The first term 

in the expression measures the difference between the data and the fit.
29

 The second term is a 

Tikhonov regularisation, which includes the use of the smoothing parameter (α) to calculate 

the smoothness of the inversion and making it less ill-conditioned.
29

 One constraint consists in 

fitting a smoothing parameter, α, in order to control the increasing product of the function of 

time and the exponential function (which in this case is the diffusion data).
28,29

 
 

 

There are also several methods to choose the most appropriate and optimum smoothing 

parameter. The method used in this study was developed by Fordham et al.,
30

 which has been 

previously described as the S-curve method.
29

 The smoothing parameter controls a cut-off 

point to minimise fitting the noise. The optimal value of α is determined by repeating the ILT 

for different α and measuring χ
2
, the error of the fit, as a function of α (Figure 2.21).

11
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Figure 2.21: A chart showing how to obtain the smoothing parameter. 

 

The lowest value of α is chosen before χ
2
 rapidly increases. This increase corresponds to the 

point where the narrowest distribution, G(D) is obtained, without generating spurious peaks 

fitted by the noise.
28,30

 If the chosen α value is too high, it is more prone to noise artifacts, 

whereas if α is too low then it is subject to over-smoothing, where the precision of the 

distribution is compromised.  In addition to the smoothing constraint, conditions concerning 

the nature of G(D) and the noise have to be met (or assumed) in order to obtain quantitative 

diffusion coefficient distributions from the ILT.  The G(D) has to be non-negative and smooth 

and the noise has to be additive, Gaussian and have a zero mean.
10,28,29,31

 Typically, ILT 

analysis produces plots of G(D)D vs log(D), where G(D) is the distribution function with 

respect to D. A modal average diffusion coefficient can be obtained from the maximum of the 

distribution.  In the case of multi-exponential diffusion, the proportions of the diffusion 

coefficients in a distribution are obtained by summing the G(D)D for the individual peaks 

corresponding to each diffusion coefficient.  
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Note that the inverse Laplace transform was discussed in (1.2.1), in relation to Dynamic Light 

Scattering. This technique uses the computer program to constrain the ILT (CONTIN, 

developed by Steven Provencher).
32,33

  The developments in the constrained regularization
28-32

 

provides a method to apply the ILT. Although there are challenges using the ILT, it is 

frequently used as a tool to analyse data and provide distributions of data in DLS
34-36

 and 

NMR
24,37,38

 experiments.  
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3. The Sizing of Reverse Micelles in AOT/n-octane/water 

Microemulsion 

 

3.1. Introduction 

 

Reverse micelles (RMs) are used in a number of applications including biological 

modelling,
1,2

 and nanoparticle synthesis.
3,4

 In these applications, changes in the 

microemulsion parameters, such as the size and dilution of the RMs, determines the rates of 

diffusion, exchange and ultimately the kinetics of the reactions involved in the different 

phases of the microemulsion. Determining and appreciating the sizes of the RMs can lead to a 

better understanding of how the microemulsion parameters affect the outcomes of the 

reactions involved in the applications.  In biological modelling, the autocatalytic Belousov-

Zhabotinsky, (BZ), reaction forms chemical patterns in an AOT/n-octane/water 

microemulsion, but only shows this potential at specific values of ω, ϕd and reactant 

concentrations.  The variation in the concentration of the acidic additive, malonic acid, at 

specific ϕd as Figure 3.1 shows, gives rise to different chemical patterns.  

 

Figure 3.1: The different patterns which can be formed in the BZ-AOT reaction from 0.08 M (a) 

and  0.15 M (b) malonic acid, at ϕd = 0.4 for (a) and ϕd =0.35 (b).  
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In nanoparticle synthesis, the variation in the size of the RMs,
3-5

 which is governed by the 

water to surfactant ratio, is one of the factors which determines the size and polydispersity of 

the nanoparticles. Investigations in adjusting the parameters in CTAB quarternary 

microemulsions have been of particular interest, as CTAB microemulsions form sought-after 

mono-disperse and stable nanoparticles.
3
 

 

The determination of the sizes, structure and polydispersity of RMs is therefore widespread 

and there are many techniques, which are employed to do this. Traditionally dynamic light 

scattering methods (DLS) have been used to size RMs,
6
  but as with all techniques, it has a 

few limitations and drawbacks.
7-10

 In this technique, the diffusion coefficients (D) for the 

particles in a system are obtained from measuring the temporal fluctuations of scattered light 

from the diffusing particles in a liquid suspension. Where the particles are spherical, D is 

converted to the Rh using the Stokes-Einstein relation (eq 3.1), where η is the dynamic 

viscosity of the continuous phase, T is the temperature of the system and kB is the Boltzmann 

constant. 

D

Tk
R B

h
6

      eq 3.1 

DLS also determines droplet size distributions and the polydispersity of the droplets in the 

sample by implementing a constrained form of the inverse Laplace transform. Other 

techniques, which are used to characterise RMs, include fluorescence correlation 

spectroscopy (FCS),
11

 small angle neutron scattering (SANS)
12

 and small angle x-ray 

scattering (SAXS).
13

  NMR spectroscopy has been used to obtain the average diffusion 

coefficients of the molecules in microemulsion systems
14-21

 and converted to obtain an 

average Rh using the Stokes-Einstein relation, but unlike DLS, the inverse Laplace transform 
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(ILT) has not been reported to determine droplet size distributions of RMs.  The ILT has been 

previously used to analyse PFG diffusion data to measure size distributions in porous media,
22

 

polymers 
23,24

 and colloidal systems.
25,26

 The ILT is not regarded as a robust analytical tool 

and has to be used with caution, as it is sensitive to noise and generates many solutions. 

However, the ILT has been used in this study to size RMs in microemulsions in 1-

dimensional diffusion experiments. There is also the potential of probing the exchange 

phenomena in microemulsions by applying the ILT in 2-dimensional NMR experiments, such 

as diffusion-diffusion exchange spectroscopy (DEXSY)
27

 and relaxation-relaxation exchange 

spectroscopy (REXSY).
28

 The diffusion and relaxation measurements, for the surfactant, 

cosurfactant or water molecules in 2D experiments could lead to more understanding of the 

exchange behaviour between the dispersed and continuous phases of the microemulsions.  

 

The changes in droplet sizes as a function of water to surfactant ratio, ω, volume droplet 

fraction, ϕd, composition and solution age were determined for sodium bis(2-ethylhexyl) 

sulfosuccinate AOT/n-octane/water and cetyltrimethylammonium bromide, (CTAB)/hexanol 

/water microemulsions. This was achieved by analysing the diffusion coefficients for the 

surfactant protons in the RMs, which were measured by pulsed field gradient stimulated echo 

(PGSTE) experiments using the Stejskal-Tanner relation (2.3.2 eq 2.15) and by applying the 

inverse Laplace transform to obtain distributions of diffusion coefficients. AOT 

microemulsions have been extensively characterised and are used in many applications. 

CTAB microemulsions have been widely studied in the literature,
29-31

 however it has been 

more challenging to obtain the droplet sizes in these systems, particularly with DLS.
30

 One 

recent study has, however, determined the RM size in the CTAB/water/hexane/pentanol 
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system and has been able to probe the dynamics in this system, using PFG diffusion 

experiments.
32

  

3.2. Experimental 

 

3.2.1. Preparation of AOT/n-octane/water Microemulsions 

 

A stock solution of 1.5 M AOT (sodium bis(2-ethylhexyl) sulfosuccinate; Fluka ≥ 96 % ) in 

n-octane (Acros 97 %) was prepared by dissolving 111.14 g AOT in 70 ml n-octane.  

Microemulsions were prepared at water-to-surfactant ratios of ω = 5.3 – 35, by adding the 

correct volume of water (Nanopure filtered, 18 M) to the 1.5 M AOT solution to produce 

the required  and diluting with n-octane to give d = 0.15. (See Appendix I for further 

details) 

 

3.2.2. Preparation of AOT/n-octane/water Microemulsions with Additives 

 

AOT microemulsions were also prepared with additives and studied as a function of time and 

d.  The first
1,2

 was prepared at ω = 15 and d = 0.55, loaded with H2SO4 (Fisher > 95%) = 0.4 

M and malonic acid (Alfa Aesar 99%) = 0.6 M.  Diffusion measurements were taken at t = 2 h 

and t = 24 h. Another microemulsion
33

 was prepared at ω = 12, and d = 0.5, 0.4, 0.25 and 

0.15 with H2SO4 = 0.25 M, malonic acid = 0.25 M and NaBrO3 (Alfa Aesar 99.5%) = 0.16 M. 

In both preparations, two microemulsions at the required ω were made. Microemulsion 1 

(ME1) contained the acidic additives, malonic acid and H2SO4. Microemulsion 2 (ME2) 

contained the NaBrO3 in the case of the study as a function of d. Aliquots of the separate 

microemulsions were then mixed and the required amount of extra n-octane was added to give 
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d = 0.45.
2
 In the case of the study as a function of time, ME1 contained the acid additives and 

ME2 did not contain any additives.  

 

AOT/n-octane/water/H
+
 microemulsions were prepared to analyse the relaxation times, T1 and 

T2 of water and AOT H3 headgroup protons, with and without acid additives. These were 

made using the same methods previously discussed at ω = 6 ‒ 25, d = 0.45 with H2SO4 

(Fisher > 95%) = 0.12 M and malonic acid (Alfa Aesar 99%) = 0.12 M. The microemulsions 

without acid were prepared in the range of ω = 9.2 ‒ 20 at ϕd = 0.45.  

 

3.2.3. Preparation of CTAB/water/hexanol Microemulsions 

 

CTAB/hexanol/water microemulsion was prepared with CTAB (cetyltrimethylammonium 

bromide; Sigma ≥ 98%), 1-hexanol (Acros 98 %) and water (Nanopure filtered, 18 M)  at ω 

= 7.2, and d = 0.4, giving a 3:1 ratio % w of CTAB/water.
30

 The CTAB was added to the 

hexanol, where initially the CTAB remained undissolved. When the required volume of water 

was added, an endothermic process was observed. The solution then became clear as it 

formed the microemulsion. 

 

3.2.4. NMR Experiments  

All NMR experiments were performed on a Bruker DMX300- spectrometer equipped with a 

7.0 T superconducting magnet, operating at a frequency of 300.13 MHz.   
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3.2.5. NMR Diffusion Measurements 

 

Diffusion measurements were taken 2 hours after the samples were prepared. PGSTE 

experiments were performed at 289 ± 0.3 K. A 10 mm radiofrequency coil was used and a 

total of 64 signal averages were collected with a repetition time of 1s.  Typical parameters 

used in these experiments were: δ = 4 ms, Δ= 100 ms, with a maximum gradient, Gmax = 0.9  

T m
‒1 

and 32 gradient steps, ensuring the signal attenuated so that S(G)/S(0) ≤ 0.01 at Gmax.  

The gradient system was calibrated by measuring the diffusion coefficient of n-octane. A 

value of 1.998  10
‒9 

± 0.002 m
2
s

‒1
 was measured at 289 ± 0.3 K, which is the expected value 

compared to the previously reported temperature dependency of the diffusion coefficient for 

n-octane.
34

 For the AOT microemulsions, diffusion data was collected for proton H3 on the 

AOT molecule (Figure 3.2) and for the CTAB/hexanol/water microemulsions, the data from 

the proton Ha of the CTAB molecule was analysed.  

 

Figure 3.2: The molecular structure and numbering scheme for protons in the AOT molecule 

(a) and CTAB (b) and hexanol (c) molecules. 
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Typical signal-to-noise ratios, calculated as the maximum signal divided by the standard 

deviation of the noise, were around 65 for the H3 peak in the AOT microemulsions. The 

typical signal to noise ratio for the CTAB Ha signal was 1000. Typical PGSTE diffusion data 

at 32 and 256 gradient steps, for the H3 peak in an AOT/octane/water microemulsion, are 

shown in (Figure 3.3). 

 

Figure 3.3: PGSTE diffusion data for the H3 peak in the AOT/n-octane/water microemulsion at 

ω = 15 and ϕd = 0.15, where Δ= 100 ms, δ = 4 ms and G = 0.9 T m
‒ 1

. A total of 32 (a) or 256 

(b) gradient steps were collected, with 64 signal averages. 

 

3.2.6. Analysis of the Diffusion Data 

 

The average diffusion coefficients (D) of all the microemulsions were obtained using the 

Stejskal-Tanner (ST) equation (2.3.2 eq 2.15). Diffusion coefficient distributions were 

determined using the inverse Laplace transformation (ILT).
35,36

  In the ILT analysis, plots of 

G(D)D vs log(D) are produced, where G(D) is the distribution function with respect to D (See 

2.4.2).  A constrained regularization ILT method
23,35-39

 was used, where the smoothing 

parameter was determined. The optimal value of  was obtained by repeating the ILT and 

measuring χ
2
, the error of the fit, as a function of 

38,39
 (See section 2.4.2).  The lowest value 
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of  was chosen, before χ
2
 rapidly increased, corresponding to the point where the narrowest 

distribution was possible, without introducing peaks which were generated by fitting the noise 

(Figure 3.4).
38

  

 

Figure 3.4: A plot of χ
2
 as a function of the smoothing parameter (α) for an AOT/n-

octane/water microemulsion at ω= 5.3 and ϕd = 0.15, with a total of 256 gradient steps.  

 

The hydrodynamic radii, Rh, were determined from an average diffusion coefficient or 

diffusion coefficient distribution, using the Stokes-Einstein relation.  The dynamic viscosity 

values of 0.563 and 5.85 cP were used for n-octane and hexanol, respectively, at T = 290 K. 

Errors were determined from an analysis of the variation between repeated experiments for a 

given system. 

 

3.2.7. Inversion Recovery T1 Relaxation Time  

 

Inversion recovery experiments were carried out to measure T1 relaxation times of the water 

and AOT H3 protons in the AOT/n-octane/water/H
+
 system at varying ω and ϕd = 0.45. T1 
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measurements were also taken for the microemulsion without acid additives.   A 10 mm 

radiofrequency coil was used and measurements were performed at 289 ± 0.3 K. Sixteen 

scans were accumulated for 33 experiments. The repetition time between each scan was 12 s.  

There were 4 signal averages. The 90° r. f. pulse was 12 μs and the 180° pulse was 24 μs. The 

spectral width was 20 kHz.  The signal intensities for specific peaks in the 

AOT/octane/H2O/H
+
 were plotted against  and the T1 relaxation time was found by fitting the 

data to the equation found in section (2.2.1 eq 2.11),  using non-linear least squares. The data 

was processed using Prospa
40

 and Kaleidagraph
41

 software. 

 

3.2.8. Carr Purcell Meiboom Gill (CPMG) T2 Relaxation  

 

CPMG experiments were performed to measure T2 relaxation time of the systems as described 

in section (2.2.3).  A 10 mm radiofrequency coil was used. The spectral width was 20 kHz 

and sixteen scans were accumulated for 16 experiments. τ was set at 1 ms. The repetition time 

between each scan was 12 s. The measurements were performed at 289 ± 0.3 K. The 

amplitude of the echo was plotted against time for specific peaks in the AOT/n-

octane/water/H
+
 system and the T2 relaxation time was found from fitting the data to the 

equations found in section (2.2.2), (eq 2.12), for mono-exponential and (eq 2.13) for bi-

exponential decays.  

3.2.9. Dynamic Light Scattering measurements of AOT/n-octane/water Microemulsion at 

varying ω 

 

DLS measurements were performed on a Delsa-Nano Submicron (Class 1 Laser) Particle Size 

Analyser.  All solutions were filtered prior to measuring with a 0.2 μm PTFE (Acrosdisc CR 
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13, PALL) filter membranes.  The microemulsions were allowed to equilibrate for 300 s at 

290 K and data was accumulated for 100 s with 5 repetitions.  The time domain correlation 

method was used with CONTIN analysis,
35

 which applies a constrained form of the inverse 

Laplace transform to generate the resulting Rh distributions.  A refractive index of 1.3975 was 

used for n-octane with a viscosity of 0.563 cP at 290 K.  DLS measurements were made for 

the AOT/n-octane/H2O samples at ω = 5.3 – 35 with a droplet fraction of d = 0.15.  

 

3.3. Results and Discussion 

 

3.3.1. 
1
H NMR Spectra  

 

The 
1
H NMR spectra for the AOT/n-octane/water and CTAB/hexanol/water microemulsions 

are shown (Figure 3.5). 

 

Figure 3.5:
  1

H NMR spectra of AOT/n-octane/water (a) and CTAB/hexanol/water (b) 

microemulsions.
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The AOT/n-octane/water
42

 and CTAB/hexanol/water
30

 microemulsions have been 

characterised in the literature using the peak assignments obtained from NMR spectroscopy. 

The corresponding peak assignments are shown in (Table 3.1(a)) for the AOT/n-octane/water 

and (Table 3.1(b)) for the CTAB/hexanol/water microemulsions. The peaks of interest are the 

AOT H3 proton (δ = 4.52 ppm) and water (δ = 4.84 ppm) in the AOT/n-octane/water 

microemulsion.  

peak assignments δ / ppm 

H8, H8', H10, H10', H(octane) 1.29 

H5, H5', H6, H6', H7, H7', H9, H9', H(octane) 1.70 

H1 4.61 

H1' 3.54 

H3 4.52 

H3' 4.38 

H4, H4' 1.99 

H2O 4.84 

  (a) 

peak assignments δ / ppm 

Hf 5.09 

H2O 4.48 

Hg 3.54 

Hb 3.42 

Ha 3.22 

Hc 1.79 

Hh 1.56 

Hd, Hi, Hj, Hk,  1.34 

He, Hl 0.94 

  (b) 

Table 3.1: 
1
H NMR peak assignments for AOT/n-octane/water (a) and CTAB/hexanol/water (b) 

microemulsions. 

The water peak at δ = 4.84 ppm shifts as a function of ω.  As ω increases, the water peak 

shifts downfield, also revealing an AOT H1 proton, which is masked by the water peak at ω = 
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5.3. This is due to the water peak being an average of the rapidly exchanging bound and free 

water and as the RM size increases, the micellar water behaves more like bulk water, resulting 

in a chemical shift downfield, tending towards the chemical shift of ordinary water.
43

  The 

two peaks with higher signal intensity at δ = 1.29 ppm and δ = 1.70 ppm are from n-octane. 

The octane peaks mask the proton signals from the AOT surfactant tails. This made it difficult 

to measure the diffusion coefficient of the n-octane in the continuous phase. The peaks of 

interest in the CTAB/hexanol/water microemulsion were the CTAB surfactant headgroup Ha 

proton (δ = 4.52 ppm), as this proton would reside in the micelle interface and the water peak 

at (δ = 4.48 ppm). The hexanol proton, Hg (δ = 3.54 ppm) was also analysed. This peak was 

unaffected by masking of other protons in the system. 

 

3.3.2. DLS Measurements of Droplet Sizes in the AOT/n-octane/water Microemulsions at 

varying ω 

 

The analysis of the Dynamic Light Scattering (DLS) data for the samples in AOT/n-

octane/water microemulsions gave average droplet sizes shown in Table 3.2. 

ω Number distribution  

Rh / nm 

Volume distribution 

Rh / nm 

Intensity distribution 

Rh / nm 

5.3 1.20 1.75 9.6 

15 1.65 2.40 13 

25 3.15 4.60 33 

35 3.90 5.60 16 

 

Table 3.2: The mean average Rh values from the number, volume and intensity distributions of 

AOT/n-octane/water microemulsions at varying ω and ϕd = 0.15 obtained from DLS 

measurements. 
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Figure 3.6: The number distributions (a) volume distributions (b) and the intensity distributions 

(c) of AOT/n-octane/water microemulsions at varying ω and ϕd = 0.15 obtained from 

Dynamic Light Scattering (DLS) measurements. 

 

The number distributions for the AOT/n-octane/water microemulsions obtained from DLS 

measurements are shown (Figure 3.6). The conversion from the intensity distributions to 

number distributions involves dividing by d
6
, where d is the diameter, resulting in number 

distributions, which are not smooth and Gaussian, but are transformed to a weighted 

distribution, with a rapid increase in the relative amplitudes at lower values of Rh giving a 

sharp rise to a peak maximum. Therefore the conversion from intensity to number 

distributions, particularly when using a logarithmic scale, results in a change from Gaussian 
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shaped intensity distribution to non-Gaussian shaped number distributions. The values 

obtained from the number distributions from the DLS measurements are significantly lower 

than those obtained from the PGSTE experiments. This may be due to errors being generated 

when transforming from the intensity to number distributions (Table 3.2). The American 

Society for Testing and Materials (ASTM)
44

 recommend not converting from intensity to 

number distributions, as any noise from the original data produces uncertainties.  

Measurements at low concentrations also produce more signal-to-noise. The original intensity 

of light is obtained from an expression involving the scattering form factor P which varies 

between 4 orders of magnitude.
8
  In order to convert into the volume distributions, the 

intensity is divided by d
3
P, where d is the diameter, and then divide again by d

3
 in order to 

obtain the number distribution. Any noise from the original data is magnified to give 

erroneous results
8
 which may have occurred in these experiments. The data can also be 

skewed, when a small number of large particles are present.
7
 This may have been the cause of 

the higher value for the intensity distribution at ω = 25. 

 

3.3.3. The Diffusion Data and Droplet Sizes of AOT/n-octane/water RMs at varying ω 

 

The average diffusion coefficients were obtained for RMs in the AOT/n-octane/water 

microemulsion for ω = 5.3 ‒ 35 at ϕd = 0.15, by fitting the diffusion data from the surfactant 

headgroup proton   H3 to the Stejskal-Tanner equation.  As the H3 surfactant proton resides in 

the interface of the RM, this provides a measure of the diffusion coefficient (D) of the RM. 

The Rh of the RMs were obtained by using the Stokes-Einstein relation. The values for the 

diffusion coefficient and Rh are shown in Table 3.3 
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ω D / 10
‒11  

m
2
s

‒1
 Rh / nm 

 
5.3 5.88 ± 0.49 6.6 ± 0.56 

15 4.86 ± 0.4 7.8 ± 0.60 

25 4.07 ± 0.3 9.3 ± 0.63 

35 3.49 ± 0.2 10.9 ± 0.65 

 

Table 3.3: The average diffusion coefficient and corresponding Rh for AOT/n-octane/water 

microemulsions at varying ω, ϕd =0.15. The diffusion coefficients were obtained from fitting 

the diffusion data to the Stejskal-Tanner (ST) equation. 

 

The diffusion coefficient increases as the ω decreases and therefore due to the inverse 

relationship between the diffusion coefficient and Rh, the Rh decreases as ω decreases (Figure 

3.7). The errors were calculated from an average deviation from 3 separate experiments. 

 

Figure 3.7: Plots of the average diffusion coefficients (a) and Rh (b) for H3 in the RM of AOT/n-

octane/water microemulsions, at varying ω at ϕd = 0.15. The diffusion coefficients were 

determined using the 32 gradient step PGSTE data and fitted to the ST equation. The lines are 

drawn for guidance only. 
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The inverse Laplace transform (ILT) produced a distribution of diffusion coefficients which 

were then converted to a distribution of RM sizes using the Stokes-Einstein equation.  

 

 

Figure 3.8: Plots of the diffusion coefficient distributions (a) and droplet size distributions 

using 32 gradient steps for H3 in the RM for AOT/n-octane/water microemulsions, at varying 

ω and ϕd = 0.15, using the ILT. 

 

Figure 3.9: Plots of the droplet size distributions using 256 gradient steps. 
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The size distributions were obtained for both experiments with 32 (Figure 3.8) and 256 

gradient steps (Figure 3.9). The comparison of the RM size distributions using 32 or 256 

gradient steps, showed good agreement between the Rh values produced. Analysis of the 

distribution maxima (mode average) for the PGSTE experiments analysed using the ILT, with 

32 and 256 gradient steps, is shown in Table 3.4. The experiments with 256 gradient steps 

were carried out to generate more data points giving an increase in the accuracy of the 

resulting distributions when applying the ILT. The DLS technique obtains many data points to 

generate the Rh distributions. It was therefore important to increase the number of gradient 

steps in the PGSTE experiments. 

ω 

 

 

D/10
‒11 

m
2
s

‒1
   (32 steps) Rh/ nm             

 

D/10
‒11 

m
2
s

‒1
 (256 steps) Rh/ nm  

5.3 5.71 6.5 ± 0.5 5.91 6.3 ± 0.5 

15 4.99 7.5 ± 0.7 4.80 7.8 ± 0.7 

25 4.15 9.1 ± 0.8 4.20 8.9 ± 0.8 

35 3.18 11.8 ± 2 2.55 14.7 ± 2 

 

Table 3.4: The mode average diffusion coefficients and corresponding Rh obtained from the 

distribution maxima for AOT/n-octane/water microemulsions at varying ω and ϕd = 0.15. 

 

It is clear that the width of the distributions is dependent on the number of gradient steps, 

(Figure 3.8 and Figure 3.9)   as well as the parameters used in the ILT analysis, such that the 

(α) value used with 256 steps produced narrower distributions. Therefore, data for the 

polydispersity of the microemulsion cannot be obtained from the distributions, as the 

distribution widths are determined from experimental and analysis parameters. The 

experiments with 256 gradient steps enabled an increase in the smoothing parameter, α. This 

resulted in a narrower distribution being produced, without fitting to noise. Although the 

distribution widths change from the experiments at 32 and 256 gradient steps, the average Rh, 
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taken from the peak maxima of the distributions (Table 3.4) were found not to change 

significantly.  

 

The results from the PFG diffusion measurements were compared with other methods 

reported in the literature, mainly from light scattering techniques (Figure 3.10). There are a 

number of papers reporting the Rh of RMs in this system using dynamic light scattering 

(DLS),
43,45-48

 fluorescence correlation spectroscopy (FCS),
11

 small angle x-ray scattering 

(SAXS),
13,49,50

 and small angle neutron scattering (SANS),
12

 as a function of ω and ϕd. Using 

these methods, the sizes that are typically reported are in the range of Rh = (2.5 – 9.5 nm) for 

ω = (5.3 ‒ 35). It is clear that the Rh determined from the PGSTE data are larger. 

 

Figure 3.10: Plot of droplet size dependence on ω for values reported in the literature using 

DLS,
43,45-47

 FCS,
11

 and SAXS
13,49,50

 methods. (*The values given for Rh were determined using 

the rw value reported in ref.13 with 2× 1.5 nm added to account for the width of the surfactant 

layer around the water core). 

 

The origins of these differences arise from the droplet volume fraction of the microemulsions 

in the PFG experiments being higher than the DLS experiments. As the droplet fraction 
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increases the diffusing RMs will collide and interact more frequently. This creates an 

obstruction effect, which will cause the diffusion coefficient to decrease, which results in an 

over-estimation of the Rh.
14

  The interaction between the RMs is observed in the variation of 

D which is described by two mechanisms.
51

 The first mechanism arises from the RM 

excluding a fraction of the total volume for the diffusing molecule, leading to a lengthening of 

the diffusion paths, which is called the “obstruction path”.  The second mechanism concerns 

the direct interaction between the RMs and molecules in the microemulsion, which leads to a 

further decrease in D. In the case of AOT, there is an attractive interaction between the RMs, 

which leads to a further decrease in D with increasing concentration. The shapes of the RMs 

can also affect the obstruction effect, with oblate structures having different diffusive and 

obstructive properties from spherical and prolate structures, which have similar properties.
51

 

An assumption was made that a droplet volume fraction of 0.15 was low enough to minimise 

RM interactions.
52

  However, Caboi et al.
14

 reported that the RM interactions are minimised at 

ϕd < 0.1. The SAXS technique does not measure the motion of particles and is therefore not 

affected by RM obstruction effects, which is an explanation why the values from SAXS are 

lower than the PFG experiments. DLS and FCS techniques, however, do measure the motion 

of the RMs and are therefore affected by RM collisions and obstruction. The droplet volume 

fraction of 0.15 was used in the DLS experiments (Section 3.3.2) as this was the minimum 

dilution that could be used to obtain an auto-correlation function with a viable decay (See 

1.2.1). Further dilution resulted in inadequate or no decay resulting in invalid data. Further 

discrepancies may lie in errors from the PGSTE associated with the exchange of surfactant 

molecules during the observation time (Δ) between droplets of different sizes. There may also 

be errors in the DLS data, which arise from the conversion from intensity to number 

distributions.
8
 The use of number distributions is discouraged as errors generated from the 
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intensity distributions can be magnified by a factor of 10
6
 by the time the number distribution 

is calculated.
8
  

 

3.3.4. The Diffusion Data and Droplet Sizes of CTAB/hexanol/water RMs 

 

The diffusion coefficient and droplet size distribution for the CTAB/hexanol/water 

microemulsion at ω = 7.2, ϕd = 0.4 were determined using PGSTE experiments (Figure 3.11). 

A diffusion coefficient of 3.87 × 10
‒11 

m
2
s

‒1
 was obtained, resulting in Rh = 0.93 nm from 

fitting to the Stejskal-Tanner (ST) equation and D = 4.05 × 10
‒11 

m
2
s

‒1
 obtained from the ILT 

analysis, resulting in Rh = 0.9 nm. The droplet size was obtained from the peak maximum of 

the droplet size distribution (Figure 3.11). A bi-exponential decay was obtained by fitting the 

diffusion data for the hexanol Hg proton to the Stejskal-Tanner relation, resulting in 32% of 

the hexanol diffusing at  8.69 × 10
‒11

 m
2
s

‒1
 and 68% diffusing at 1.59 × 10

‒10 
m

2
s

‒1
. The 

hexanol molecules act as both the co-surfactant
53

 and the solvent, which is partitioned 

between the RM and the continuous phase in a dynamic equilibrium. This is due to the 

surfactant CTAB not forming a microemulsion without a co-surfactant. This is why the two 

diffusion coefficients are observed for the hexanol molecule. As found in these experiments, 

the smaller proportion of hexanol, at 32%  resides in the interface.
53

 It would be expected that 

the diffusion coefficient of the hexanol in the micelle interface would be comparable with the 

CTAB headgroup diffusion coefficient, however the hexanol was observed diffusing at a 

faster rate. The slower hexanol diffusion coefficient is therefore a weighted average of the 

molecules exchanging between the continuous phase and the interphase.
32

 When using the 

Lindman equation (1.2.5 eq 1.19) an estimate of 20% of the hexanol molecules reside in the 
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interface. This was calculated by using the Dmic from the CTAB diffusion coefficient and Dfree 

from the faster hexanol diffusion coefficient.  

 

Figure 3.11: Droplet size distribution for RMs in the CTAB/hexanol/water microemulsion at ω 

=7.2 and ϕd = 0.4. Size distributions were produced by applying the Stokes-Einstein relation 

to diffusion coefficient distributions produced by inverse Laplace transformation of the 

PGSTE data for CTAB Ha proton. 

 

Previous droplet sizes of 1.1 nm were obtained for a CTAB/hexanol/water microemulsion 

(2.6:1 ratio % w of CTAB: water), using the technique of fluorescence quenching.
54

  

However, there is no DLS data available in the literature as one study illustrates, it has proved 

difficult to obtain reliable data.
55

 There were further investigations into the shape and size of 

the CTAB/hexanol/water RMs, using molecular simulations. When applying the Stokes-

Einstein equation, a spherical shape is assumed, therefore any variation from this needed to be 

ascertained. Molecular simulations were set up for ω = 7.2, to provide further insight into the 

molecular interactions and shape fluctuations of the CTAB/hexanol/water RMs. The results of 

the molecular simulations are discussed in Chapter 6. 
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3.3.5. Variation of the Rh of AOT /n-octane/water Microemulsions with Additives 

 

The effect of additives on the size and stability of the RMs was investigated for two AOT/n-

octane/water microemulsions. The AOT/n-octane/water microemulsions at ω = 15 and d = 

0.55 and loaded with H2SO4 (0.4 M) and malonic acid (0.6 M)  were observed as a function of 

time, with D being measured at 2 and 24 hours after initial preparation (Figure 3.12). 

 

Figure 3.12: Droplet size distributions for RMs in the AOT/n-octane/water microemulsion 

loaded with [H2SO4] = 0.4 M and [malonic acid] = 0.6 M at ω =15, ϕd = 0.55.  

 

Whilst the droplet sizes for the AOT/n-octane/water microemulsion were larger than the 

literature values found from scattering methods, the values for the microemulsions with 

additives compared well with the values observed previously, investigated by Vanag et al. 

determined with DLS.
1,2
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Figure 3.13:  Distribution of Rh of water nanodroplets. Curves 1and 2 were obtained in light-

scattering experiments for fresh and one day old microemulsions (ω =15, ϕd = 0.5) 

respectively, loaded with H2SO4 (0.4 M) and MA (0.6 M). Copyright (2003) by The American 

Physical Society.
1,2

 

 

This system had been known to produce a bimodal droplet size distribution which became 

monomodal over a period of time (t ≥ 24 h). Likewise in the PGSTE experiments, a bimodal 

distribution was observed at t = 2 h, which became monomodal after 24 h. In the fresh sample 

which was measured after 2 hours, two peaks were observed at 1.3 and 25.8 nm, which 

compares closely to the values observed by Vanag et al. with peaks at 2 and 20 nm (Figure 

3.13).
1,2

 At 24 h, after mixing, the sample became unimodal with a single peak observed at 

25.1 nm. This value, is significantly higher than that observed in the DLS measurements
1,2

 

where a unimodal distribution was observed, with a peak maximum at 2.6 nm (Figure 3.13). 

The size distributions for RMs previously obtained in a system by Alvarez et al.
33

 are shown 

in Figure 3.14. This microemulsion was loaded with H2SO4 = 0.25 M, malonic acid = 0.25 M 

and NaBrO3 = 0.16 M and similar to the observations of Alvarez et al.
33

 as there was a 

transition from bimodal to unimodal size distributions as a function of volume fraction, rather 

than time. Bimodal behaviour was observed at of 0.5 with Rh of 2.4 and 42.1 nm for the two 
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peaks, whereas Alvarez et al.
33

  observed two distributions with peak maxima centred at 2 ‒ 3 

nm and 20 ‒ 30 nm.
33

 

 

Figure 3.14: Droplet size distributions for RMs in the AOT/n-octane/water microemulsion 

loaded with [H2SO4] = 0.25 M and [malonic acid] = 0.25 M and [NaBrO3] = 0.16 M at ω 

=12 and ϕd = 0.15 ‒ 0.5. 

 

As ϕd was reduced, the system became unimodal and droplet sizes of 13.8 nm (ϕd = 0.40), 9.1 

nm (ϕd = 0.25) and 5.2 nm (ϕd = 0.15) were observed.  Uni-modal distributions have also been 

observed by DLS; however the peak for the distribution presented by Alvarez et al.
33

 was 

lower at 2 ‒ 3 nm. It was also not reported if the DLS data was the number, volume or 

intensity distributions. Whilst the values for the Rh show an agreement with previous DLS 

measurements, the actual distributions of droplets differ. This may be due to how the 

diffusion coefficients of the RMs are determined and what the PGSTE experiments actually 

measure. More investigations are required on the effects of acidic additives on the formation 

of RMs. 
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3.3.6. Scaling of the Rh of AOT/n-octane/water Microemulsions 

 

The differences between the number distributions of Rh values in the bimodal systems 

obtained from the DLS and the NMR techniques may be due to what the techniques actually 

measure. In the DLS technique, the intensity distributions are converted to number 

distributions using the Mie Theory.
56

 PGSTE data, therefore, should also be scaled to produce 

a droplet size number distribution. As the PGSTE signal is integrated over all the surfactant 

molecules, the surfactant molecules in the larger droplets will contribute more to the 

distribution of D than the smaller droplets.  The scaling procedure should be applied 

particularly in bimodal systems where the size ranges correspond to droplets with different 

numbers of surfactant molecules. Therefore in bimodal systems, for larger droplets, which 

contain more surfactant molecules, it is necessary to take this into account by scaling to 

produce a number distribution. The droplet sizes are determined from the diffusion 

coefficients of the surfactant molecules, which are all located in the RMs. As the AOT 

surfactant molecules surround the water core, then the number of AOT molecules Ns, will 

increase proportionally with rw
2
, which is the radius of the water core. In order to account for 

this, the relative amplitude (G(D)) is divided by Ns. This must be carried out for each droplet 

size within the droplet distribution to produce the number distribution. This scaling method, 

however, needs a priori knowledge. In order to determine Ns for the AOT/n-octane/water 

microemulsions, the size of the droplet core, rw, was calculated
11

 for each value of Rh, using 

eq 3.2.  

 3
1

23 3 wwh δrrR      eq 3.2 
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and the size parameters which had been previously determined for the AOT/iso-octane/water 

microemulsions by Maitra (Table 3.5).
43,57

 The value of 1.5 nm was used for the thickness of 

the surfactant layer
11

 in equation 3.2. 

ω Ns Rh / nm rw / nm 
4 35 2.5 1.0 

6 50 2.8 1.4 

8 72 3.2 1.6 

10 98 3.4 1.9 

12 129 3.7 2.2 

14 176 4.0 2.6 

16 215 4.2 2.9 

18 257 4.3 3.2 

20 302 4.4 3.5 

25 447 5.2 4.3 

30 613 6.2 5.1 

35 778 7.6 5.8 

 

Table 3.5: Size parameters for the AOT/iso-octane/water system.
43,56 

There are limitations when scaling by the factor Ns as this needs a priori information. The 

number of surfactant molecules expected in the interface at each Rh is required as a function 

of rw.
43,57 

This information is available for well-characterised systems such as AOT/water/iso- 

octane but for systems involving CTAB, this information is unavailable. An alternative 

technique to scale the distributions would be to use rw
2
 as a scaling factor, with an offset value 

to account for the AOT surfactant aggregation number in the absence of water (Nagg).  

Previous studies have shown this aggregation number to be 22 for AOT in iso-octane.
58

 

Therefore the scaling factor will be (rw
2
+Nagg). However this does assume that the area 

occupied by the head of the surfactant (as) at the interface of the water core, remains the same 

for all droplet sizes. This assumption has also been made by other studies.
11,59

 In order to 

obtain the numbers of RMs at particular sizes, this factor must be scaled.  The limitations in 

the mechanisms for scaling size distributions for RMs means that these methods should be 

applied with caution, specifically in the second case, as (as) of the surfactant head does vary 
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as a function of the droplet size.
60

 As the size of the RM changes, the radius of curvature 

changes, which affects the packing of the surfactant molecules and the interfacial tension of 

the RM.
61,62

 As Ruckenstein et al.
63

 previously discussed, the area of a molecule in the 

interface is dependent on the curvature of the RM. Another study,
64

 showed that there was a 

rapid increase in the surface area of the RM up to a limiting value ω > 16.5, where the 

packing parameter became independent of the droplet size and the area of the surfactant 

headgroup remained similar.   

 

Figure 3.15: Droplet size distributions for RM in AOT/n-octane/water microemulsions loaded 

with (a) [H2SO4] = 0.4 M, [malonic acid] = 0.6 M at ω =15,ϕd = 0.55 (unscaled data from 

Figure 3.12 ) and (b) [H2SO4] = 0.25 M and [malonic acid] = 0.25 M and [NaBrO3] = 0.16 

M at ω =12 and ϕd = 0.15 ‒ 0.5 (unscaled data from Figure 3.14) Rh values are given for data 

that is unscaled (  ), scaled by Ns (  ) and scaled by (rw
2
+22 )(  ). 

 

Another consideration is that as the RM size decreases, particularly for ω < 10, studies have 

shown the shape of the RM becomes more elliptical, which affects the area the surfactant 

head occupies at the RM interface. The intermolecular forces between the dispersed and 

continuous phase also vary as the droplet size changes and this may also affect the area of the 
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surfactant head at the interface.
63

 Using both scaling techniques, the number distributions 

were obtained for the AOT microemulsions with additives (Figure 3.15). The distributions 

now show a higher proportion of smaller droplets compared with the unscaled distributions. 

The average sizes, using the mode, are also slightly smaller. It must be noted though, that 

changes in droplet shapes as the droplet size increases are not considered in these scaling 

procedures and the RMs at each ω are assumed to be spherical. Hence these scaling 

procedures may not be applicable in these cases and alternative and more appropriate methods 

need to be investigated and developed.  The need for a scaling factor has implications for the 

accuracy of the average diffusion coefficients determined from the ST equation and their 

application, when determining droplet sizes in multimodal systems, as the use of the average 

diffusion coefficient in determining the Rh for unimodal systems may be sufficient but this 

may not be the case for multimodal systems as the signal from the surfactant molecules in 

larger droplets will contribute more towards the diffusion data than molecules from smaller 

droplets. In the ST analysis the relative contributions are not given as a function of droplet 

size, hence there is no direct mechanism where the data can be directly scaled, without prior 

knowledge of the droplet size distribution. Therefore this shows that MR measurements of 

average diffusion coefficients should be treated with caution for multimodal systems.  

 

3.3.7. Relaxation T1 and T2 for AOT/n-octane/water Microemulsions at varying ω with 

Acidic Additives 

 

The T2 and T1 relaxation times of the H3 AOT headgroup proton and the water molecules 

were measured (Section 3.2.7 and 3.2.8, respectively). There was no significant difference in 

the T1 relaxation between the microemulsions with or without the acidic additives for the 

water or the AOT H3 protons (Figure 3.16). The T1 relaxation for the AOT H3 proton 
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remained constant, as a function of ω, whereas the T1 relaxation for the water protons 

increased in the microemulsions, with and without acidic additives, as a function of ω. The 

trend of increasing T1 with ω with the micellar water has been reported previously.
42

  The 

relaxation time T1 increases as a function of ω due to the increase in free water within the 

droplet. As the droplet size increases, the water in the droplet behaves more as bulk water and 

the mobility of the water protons increases, hence the increase in T1.
65,66

 

 

 

Figure 3.16: Plot of T1 relaxation times for the water and AOT protons in AOT /n-octane/water 

microemulsions with and without [H2SO4] = 0.12 M and [malonic acid] = 0.12 M.  

 

The T2 relaxation time increased as a function of ω for the water protons in both the acidic 

and non-acidic microemulsions, (Figure 3.17 (a)) following the same trend as for the T1 

relaxation times with an increase in T2, due to increased mobility of the water molecules, and 

a decrease in the dipolar coupling. There are two T2 relaxation times for the AOT H3 protons, 

with and without malonic and sulfuric acid (Figure 3.17 (b)), indicating there are two 

populations of AOT in the microemulsion. The T2 relaxation contributions for the AOT 
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molecules at varying ω were between 8 and 10% for the longer T2 relaxation time from the 

free AOT molecules in the continuous phase with 90% of the AOT with the shorter T2 time 

from the AOT molecules in the RMs. There was little variation in the contributions from the 

interfacial and free AOT at varying ω or between the microemulsions with and without acid. 

To further investigate the exchange processes, experiments could be carried out at varying τ to 

analyse any changes in the contributions of free and interfacial AOT.  

 

The higher value of T2 may originate from the AOT monomers present in the continuous 

phase with the faster overall rotational motion, relaxing at a slower rate through decreased 

dipolar coupling. The lower value of T2 may originate from slower tumbling AOT molecules 

residing in the micelle interface, which have restricted mobility, producing an increase in 

dipolar coupling and shorter relaxation time. In the RMs, the T2 values with acid and without 

acid are the same at ω = 9.2, but at ω ≥ 15, the AOT protons in the RM with acid have 

increased T2, suggesting that the acid additives cause more restriction on the motion of the 

RMs. The T2 times for the AOT monomers are shorter with the acid additives, which would 

again indicate that the acid causes restriction on the motion of AOT molecules in the 

microemulsion.  However at ω = 5.3, there is an increase in  T2 times for the AOT molecules 

in the RM and continuous phase compared to larger values of ω, with acid additives because 

of the increased motion and dynamics of the smaller droplets.   The addition of malonic and 

sulfuric acid causes disruption to the motion of the RMs at ω ≥ 15, resulting in an increase in 

the dipolar coupling and hence the decrease in T2 relaxation. More studies are required at 

varying acid concentrations and at more values of ω and ϕd.  
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Figure 3.17: Plots of T2 relaxation times for the water (a) and AOT (b) protons in AOT/n-

octane/water systems with and without  [H2SO4] = 0.12 M and [malonic acid] = 0.12 M.  

 

3.4. Conclusions 

 

The droplet size distributions for RMs in AOT and CTAB microemulsions were determined 

by applying the inverse Laplace transform and using the Stokes-Einstein relation to NMR 

measurements of diffusion for the surfactant protons residing in the RM interface. These 

measurements are complementary to the methods previously used to size RMs.  However, 

RM sizes in the AOT/n-octane/water microemulsion were found to be larger compared to 

those measured by optical methods, particularly at lower ω values. These differences were 

due to ϕd being too high, such that the increase in the concentration and collision rate of the 

droplets caused an obstruction to the diffusion of the RMs. Diffusion measurements are 

therefore required at lower ϕd in order to suppress the obstruction effects and measure D 

which are tending towards infinite dilution.   

 

The polydispersity of the microemulsions cannot be obtained from the distribution widths, 

which are generated by the ILT; however, it is possible to use these methods to compare 
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changes in size distributions as a function of ω, ϕd and composition.  In the bimodal systems, 

scaling factors were investigated which enabled number distributions to be generated and, 

when used, were shown to shift the distributions towards smaller droplet sizes, reducing the 

average droplet size.  The appropriate use of scaling factors requires further investigation.  
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4. Using NMR Measurements of Diffusion to Investigate the 

Dynamics of Microemulsions 

 

4.1. Introduction 

 

In the previous chapter, the hydrodynamic radii of water-in-oil reverse micelles (RMs) in the 

AOT/n-octane/water microemulsion were determined at varying water to surfactant ratio ω 

values at ϕd = 0.15. Rh increased as a function of ω, as expected, but the Rh values were higher 

than those obtained from scattering methods, particularly at lower ω values.
1,2

  The reasons 

for the differences between the Rh values obtained from scattering techniques and PFG 

methods are explored here.  Scattering methods measure the mutual diffusion coefficient 

(Dm), which describes the collective diffusion of particles in a system and the overall net 

movement of molecules is governed by the flux which is proportional to the concentration 

gradient. PFG techniques, however, measure the self-diffusion coefficients (Ds) of the 

separate molecular species present within a system.
3-5

 The various scattering techniques used 

to measure the sizes of RMs
1,2,5,6

 include, dynamic light scattering, (DLS), fluorescence 

correlation spectroscopy, (FCS), small angle neutron scattering (SANS) and small angle x-ray 

scattering (SAXS). The literature values for Rh of RMs from these techniques were reported at 

lower droplet volume fractions (ϕd). However, ϕd is not always stated in studies of sizing 

RMs.  More often, the molarity of the AOT/octane is directly stated, resulting in a variation of 

the droplet volume fraction measured at different omega values
2,7

 Zulauf et al.
2
 in a DLS 

study of AOT/iso-octane/water used a range of ϕd = 0.02 ‒ 0.08,  whereas others have used  ϕd 

= 0.11 ‒ 0.13 in using a 0.02 M AOT/iso-octane stock solution.
7
  Measuring the diffusion 

coefficient at ϕd < 0.15 is necessary, as measurements of diffusion are sensitive to inter-
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droplet interactions or collisions. This is known as the obstruction effect.
8-11

 One explanation 

for the differences in the resulting Rh values between scattering techniques and our PFG 

experiments was that the obstruction effect had not been taken into account, therefore further 

measurements at ϕd ≤ 0.15, were made at various values of ω and at different temperatures.   

The self-diffusion coefficients of the RMs were calculated at infinite dilution,
3,12,13

 

implementing eq 4.1 to extrapolate D to D0
9,10,14,15

 (1.3.1), where D is the observed diffusion 

coefficient, D0 is the diffusion coefficient at infinite dilution, ϕd is the droplet fraction and α is 

the virial coefficient. 

     D = D0 (1+αϕd)          eq 4.1 

The virial coefficient originates from the friction and the osmotic pressure of the system 

which are determined from the hydrodynamic interactions and is therefore directly related to 

ϕd.  The conversion of the diffusion coefficient to Rh, using the Stokes-Einstein equation, 

assumes that the RMs are spherical and the viscosity of the microemulsion is governed solely 

by the organic solvent in the continuous oil phase. These assumptions can lead to errors when 

evaluating Rh, depending on the microemulsion parameters, due to changes in the shape, 

viscosity and dynamics at varying ω and ϕd. The dynamics and behaviour of the AOT/n-

octane/water microemulsions were probed by measuring the diffusion coefficient as a 

function of observation times (Δ) in the PFG experiments at varying ω, ϕd. and temperature.
11

 

The effect of changing the viscosity of the continuous phase on the resulting Rh of the RMs 

was also explored. Consideration was given to the type of PFG experiment used and the range 

of accessible experimental timescales available.
9,10
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4.2. Experimental 

 

4.2.1. Preparation of Reverse Micelles 

 

A stock solution of 1.5 M AOT (sodium bis(2-ethylhexyl) sulfosuccinate (Fluka 96%) in n-

octane (Acros 97%) was prepared by dissolving 27.79 g AOT in 17.5 ml n-octane. The n-

octane was purified by stirring octane with concentrated sulphuric acid in a ratio of 4:1 over a 

period of 4 days. Microemulsions were prepared at water-to-surfactant ratios of ω = 5.3 ‒ 35 

by adding the correct volume of water (Nanopure filtered, 18 M) to the 1.5 M AOT solution 

to produce the required  and diluted initially with the appropriate volume of n-octane to give 

d = 0.45. The mixtures were shaken for at least 30 seconds until a transparent microemulsion 

formed and were used within a 24 hour period.  Aliquots were taken from this solution and 

diluted further with n-octane, giving a range of volume droplet fractions d = 0.05 ‒ 0.2.  

Diffusion measurements were taken 1 hr after the samples were prepared. 

 

4.2.2. Pulsed Field Gradient (PFG) Experiments  

 

All the Pulsed Field Gradient (PFG) experiments were performed at temperatures between 

289 ‒ 298 K on a Bruker DMX300 spectrometer equipped with a 7.0 T superconducting 

magnet, operating at a frequency of 300.13 MHz. Pulsed Field Gradient Stimulated Echo 

(PGSTE) experiments were carried out with a 25 mm radiofrequency coil, using a micro2.5 

probe. PGSTE and Bipolar Pulsed Pair Stimulated Echo Experiments (BPSTE) experiments 

have been used with BPSTE for experiments with short Δ. In order to achieve shorter 

observation times, to observe if there was any variation in the diffusion coefficient as a 

function of Δ, higher gradient strengths were accessed up to 9 T m
‒1 

(900 G cm
‒1

) on the 
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DIFF30 probe, compared to 0.9 T m
‒1 

(90 G cm
‒1

), which was the maximum gradient 

accessible on the micro2.5 probe.  When using the DIFF30 probe, PGSTE experiments 

produced artifacts, due to the production of eddy currents induced by the higher gradient 

strengths, therefore BPSTE experiments were used to suppress this effect. 

 

The parameters used in the PGSTE experiments were typically,  δ = 4 ms,  Δ= 100 ms, with a 

maximum gradient, Gmax, 0.9 T m
‒1

 with 32 or 256 gradient steps, ensuring the signal 

attenuated so that S(G)/S(0) at Gmax was ≤ 0.01 and 128 signal averages were collected with a 

repetition time of 1s.  The temperature of the sample was maintained using the Bruker 

Variable Temperature (BVT 1000_VT Unit) control. The samples were left to equilibrate at 

the required temperature for at least 20 minutes. Samples were measured at the higher 

temperature, 298 K, first and then the temperature was lowered.
2
  To minimise convection 

effects during the PFG experiments at higher temperatures (298 K) and lower droplet volume 

fractions, ϕd = 0.05, 3 mm NMR tubes (Wilmad) were used. The diffusion data was collected 

for each system measuring the proton resonance, H3, in the headgroup of the AOT surfactant.   

 

BPSTE experiments were performed at 298 ± 0.2 K with a 5 mm radiofrequency coil using a 

DIFF30 probe.  Typically 64 or 256 signal averages were collected, with 64 signal averages 

collected for microemulsions where ϕd > 0.15.  Parameters used in these experiments were δ = 

1.5 ms, Δ = 10 ‒ 100 ms, with a maximum gradient, Gmax, from 1.5 – 9 T m
‒1

 and Gmin = 0.02 

T m
‒1

 with 32 gradient steps at a repetition time of 1.5 s. The BPSTE experiments were run 

using TOPSPIN 1.3 software.
16

 The temperature of the sample was maintained using the 

water bath which regulates the temperature of the probe.  
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4.2.3. Viscosity Measurements 

 

The viscosities of mixtures of AOT/n-octane between 0 ‒ 0.1 M were measured using a 

Cannon-Fenske routine viscometer (size 25), which measures kinematic viscosities over the 

range 0.5 – 2 cSt. The viscometer and solutions were immersed in a water-bath maintained at 

298 K and were initially allowed to equilibrate for 40 minutes. The density of the solutions 

was measured, which allowed the conversion from kinematic to dynamic viscosity
17

 (eq 4.2) 

           



v         eq 4.2 

where ν is the kinematic viscosity, μ  is the dynamic viscosity and ρ is the density. The 

viscosity and density measurements were repeated 3 times.  

 

4.3. Results and Discussion 

 

4.3.1. Variation of the Droplet Volume Fraction  

 

The diffusion coefficient for the H3 proton in the AOT/n-octane/water microemulsion at ω = 

15 was measured at decreasing ϕd = 0.05 ‒ 0.3 at 289 K at G = 0.9 T m
‒1

, δ = 4 ms and Δ = 

100 ms (Figure 4.1 (a)) using PGSTE experiments. The self-diffusion coefficient (Ds) 

increased as ϕd decreased, which has been observed previously in microemulsion systems.
8,10
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Figure 4.1: A plot of the self-diffusion coefficient D1 (a) and droplet sizes (Rh) (b) in AOT/n-

octane/water microemulsions at ω = 15, at 289 K, with G = 0.9 T m 
‒1

, δ = 4 ms and Δ = 100 

ms, analysed fitting to the Stejskal-Tanner equation.  

 

Also, as expected, due to the inverse relationship between the diffusion coefficient and Rh 

using the Stokes-Einstein equation, the Rh decreased as ϕd decreased (Figure 4.1 (b)).  

However, at ϕd = 0.05, when fitting the diffusion data to the Stejskal-Tanner (ST) equation,  

the AOT molecules were observed diffusing at two different rates. This gave rise to a 

population that was bimodal, where D1 = 7.2 × 10
‒11

 m
2
s

‒1
 and D2 = 1.12 × 10

‒9
 m

2
s

‒1
 with 

relative contributions of 89% and 11% respectively (Table 4.1). The same values were 

obtained when applying the inverse Laplace transform (ILT). 
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ϕd 

 

 

D1/ 10
‒11  

 m
2
s

‒1
 D2 / 10

‒11  
 m

2
s

‒1
 Rh

(1)
/ nm   

 

ɳ 

 

 

 

 

Rh
(2)

/ nm   

 
0.05            7.2 (89%) 112 (11%) 5.32  0.34 

0.1 5.7 ‒ 6.6 ‒ 

0.15 4.6 ‒ 8.2 ‒ 

0.2 3.2 ‒ 11.7 ‒ 

0.25 2.4 ‒ 15.6 ‒ 

0.3 1.7 ‒ 22 ‒ 

 

Table 4.1: Summary of diffusion data and Rh values for the AOT/n-octane/water microemulsion 

at ω = 15; 289 K. The data was analysed by fitting to the Stejskal-Tanner relation. 

 

The slower diffusion coefficient (D1) is expected from AOT situated in the RM interface. 

However, what is the origin of the faster diffusion coefficient, (D2), which is up to twice the 

order of magnitude than D1?  One possible explanation is that the D2 originates from AOT 

monomers, which are present in the continuous phase.  The continuous phase, n-octane, has a 

self-diffusion coefficient of 1.988 × 10
‒9

 m
2
s

‒1
 at 289  K and the diffusion coefficient  for 

AOT H3 proton, for a solution of 0.15 M AOT in n-octane = 2.32 × 10
‒10

 m
2
s

‒1
. The value for 

D2 in the system ω = 15, ϕd = 0.05 lies at the same order of magnitude at 1.12× 10
‒9

 m
2
s

‒1
 

(Table 4.1), between the values of the diffusion coefficient of pure n-octane and 0.15 M AOT 

in n-octane, showing that AOT monomers may be present at a concentration < 0.15 M in the 

n-octane continuous phase.  There are two possible explanations for the presence of the AOT 

monomers at the higher dilution. There may be a change in the composition of the 

microemulsion
11,18

 with the intermolecular forces between the droplets changing as the system 

becomes more dilute.  Another possible explanation for the presence of AOT monomers is 

that as the concentration of the microemulsion changes, so do the dynamics of the system and 

the exchange processes between monomer and interfacial AOT are being observed.  
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Due to potential compositional changes, it has been suggested
11

 that when extrapolating to D0, 

it is not advisable to use low droplet volume fractions. However, when extrapolating the 

values for ω = 15 (Table 4.1) and omitting the data point at ϕd = 0.05, the resulting D0 = 7.6 × 

10
‒11

 m
2
s

‒1
, and the virial coefficient (α) = ‒2.68 resulting in Rh = 4.9 nm. The extrapolation, 

with the data point at ϕd = 0.05, resulted in D0 = 8.01×10
‒11

 m
2
s

‒1
, virial coefficient (α) = 

‒2.76 with Rh = 4.6 nm, giving a 2% increase in the virial coefficient and 5.4% increase in D0. 

The virial coefficient for an ionic surfactant such as AOT, which has attractive inter-particle 

interactions, is ‒2.  This is taken from a model system where the Ds and the hydrodynamic 

interactions are calculated based on the hard sphere model.
3
  The experimental value obtained 

for the system, ω =15 was α = ‒2.68, which is in good agreement with the theoretical model 

value.  Zulauf  et al.
2
  obtained Rh = 3.6 nm at ω = 11 and Rh = 5 nm at ω  =  22, at a range of 

ϕd  = 0.02 ‒ 0.08, with another study obtaining Rh = 4.5 nm at ω =15 from dynamic light 

scattering measurements.
19

  The DLS measurements from the literature were made at the 

higher temperature of 298 K, so the experimental measurements from this study cannot be 

directly compared with the diffusion coefficient values from the literature, as they were 

measured at the lower temperature of 289 K. The comparison illustrates, however, that Rh 

values become more comparable between scattering and NMR methods at similar ϕd, as the 

obstruction effect is minimised.   

 

Further PGSTE experiments were carried out at ω = 5.3 ‒ 35, with the same experimental 

parameters and conditions that were used to investigate the AOT/water/n-octane 

microemulsion at ω = 15 (Table 4.2), (Figure 4.2). This was to observe how the diffusion 

coefficient of AOT H3 changed at varying ω at lower ϕd, with the possibility of extrapolating 

to D0 (eq 4.1). This would enable the determination of Rh without obstruction effects and 
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further comparison with the values from scattering methods.  However, at ω = 25 and 35, two 

diffusion coefficients were obtained at ϕd = 0.05 from fitting to the Stejskal-Tanner equation 

and applying the ILT (Figure 4.2).  

ω ϕd 

 

 

AOT AOT Rh
 
/
 
nm   

 

ɳ 

 

 

 

 

water 

  D1 / 10
‒11  

 m
2
s

‒1
 D2 / 10

‒11  
m

2
s

‒1
  D / 10

‒11  
 m

2
s

‒1
 

5.3  0.05           11.5 ‒   3.27         18.5 

  0.1             7.4 ‒   5.08         11.1 

  0.15             5.5 ‒   7.5   6.52 

15  0.05           7.2 (89% )  112 (11%)   5.32           9 

  0.1             5.7 ‒   6.6   7.78 

  0.15             4.6 ‒   8.2  5.4 

25  0.05            5.34 (79%)  103 (21%)   7.04   7.54 

  0.1            4.51 (88%)     37 (12%)   8.34   6.15 

  0.15             3.84 ‒   9.8 5.3 

35  0.05            4.97 (84%)    87 (16%)   7.56  5.89 

  0.1             3.92 ‒   9.6  4.95 

  0.15             3.11 ‒  12          4.1 

 

Table 4.2: Summary of AOT H3 and water diffusion data, analysed fitting to the Stejskal-

Tanner relation with the resulting Rh values for the AOT/n-octane/water microemulsion at 

289 K.  
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Figure 4.2: Plots of the diffusion coefficients for AOT H3, with D1 associated with the RM and 

D2 (a) and D1 (b) for AOT/n-octane/water at ω=5.3 ‒ 35 at 289 K. G = 0.9 T m 
‒1

, δ = 4 ms 

and Δ = 100 ms. 

ω α D0 / 10
‒11

 m
2
s

‒1
 R0 

5.3 ‒4.2 14.1 2.7 

15 ‒2.8 8.01 4.6 

25 ‒2.5 6.06 6.2 

35 ‒2.8 5.68 6.6 

 

Table 4.3:  A table showing the calculated virial coefficients from the plot shown in Figure 

4.2(b), with the estimated values of D0 and corresponding R0. 

 

The expected trend of a decreasing self-diffusion coefficient (Ds) as a function of ϕd was 

observed. For ω = 15 ‒ 35, D2, the faster diffusion component ranged from 3.7 × 10
‒10

 m
2
s

‒1
 

to 1.12 × 10
‒9

 m
2
s

‒1
. However, the system remained monomodal at ω = 5.3. Extrapolating to 

infinite dilution (eq 4.1) for the system ω = 5.3, resulted in D0 = 14.1 × 10
‒11

 m
2
s

‒1
 with a 

virial coefficient, α = ‒4.2 resulting in Rh = 2.7 nm. Light scattering measurements have 

reported ω = 5; Rh = 2.9 nm.
19

  However there is a difference between the experimental and 
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literature values for the virial coefficient (α) (Table 4.3). This may be due to a proportion of 

AOT monomer at ϕd = 0.05, causing changes to the viscosity of the system, with an increase 

in frictional forces, or a decrease in the osmotic pressure between the RMs and the continuous 

phase, leading to a decreasing rate of change of the diffusion coefficient. The decrease in α at 

ω = 5.3 may also be due to a change in the attractive potential interactions between the 

surfactant molecule tails.
20,21

 As ϕd decreases, there is a decrease in attractive interactions, as 

there is less micellar overlap and less interpenetration of surfactant tails. The attractive 

interactions between RMs are short-range and result from London dispersion, van der Waal 

inter-atomic forces.
22

  As RMs overlap there is a favourable decrease in the concentration of 

oil molecules in the overlapping region. However, as RMs fuse together, a repulsive 

interaction starts to dominate due to the increase in surfactant molecules and restricted 

volume.
22,23

 There is a linear increase of attractive interactions with the size of RMs, as there 

is an increase in the overlap between RMs.
22-24

  The rate at which the attractive interactions 

decrease, as ϕd decreases, is greater for the RMs at ω = 5.3 leading to a greater rate of 

decrease in the frictional coefficient of the smaller RMs, hence α becomes more negative than 

for RMs at ω > 10. The AOT monomer may not be observed at ω = 5.3 because at ω < 10, as 

the RMs diffuse at a faster rate
20

 the inter-droplet and molecular exchange may occur at an 

increased  rate than systems at ω >10.  

 

At all ω and ϕd values, the water molecules were observed diffusing at one rate, including the 

systems where two diffusion coefficients were obtained for the AOT molecules  at ϕd = 0.05. 

The water diffusion coefficient increased as ω increased and the values were consistently 

higher than the corresponding AOT values. The diffusion coefficient values of water (Table 

4.2) are averages of the water molecules which are in fast exchange between the free and the 
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bound water within the droplet and droplet interface.
25

  The  free water behaves increasingly 

like bulk water as the RM size and ω increases.
25

  It has been previously suggested that the 

reason for water diffusion coefficients being consistently higher than the surfactant is that 

there is “non-negligible” water between the droplets
7,26

 which leads to the possibility of free 

water being present in the continuous phase. 

 

 It is known that the diffusion coefficient values obtained from scattering and NMR methods 

are different,
10

  as are the values in virial coefficients at varying ω.
27

  It is often discussed in 

the literature that  RMs at ω < 10  have different characteristics than those at ω > 10, with 

more rigid, less flexible interfaces and closer to being spherical than those at ω > 10.
9,18,28

  At 

higher values of ω, the surfactant interface is more flexible
9,18,20

 and  undergoes more shape 

fluctuations with increasing size.
29

  The inter-relating factors of size, interfacial tension and 

intermolecular forces, effect the behaviour and dynamics of RMs and may explain the 

differences in the rate of change of the diffusion coefficient observed in RMs above and 

below ω = 10.  When extrapolating to D0, using D1 at varying ω= 15 ‒ 35, α were more 

comparable with the literature value, which is interesting, as these systems have a second 

diffusion coefficient D2 for the AOT H3 protons. 

 

The variation of the diffusion coefficient as a function of ϕd was also investigated at a shorter 

observation time of 10 ms, using a BPSTE experiment at δ = 1.5 ms (Figure 4.3). The systems 

at ω= 15 and 25 were investigated. At the higher temperature of 298 K, the H3 AOT proton 

for ω = 5.3 at varying ϕd could not be analysed, as a shift in the water peak masked the H3 
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AOT peak of interest.  The data was noisier than the measurements at Δ = 100 ms, observed 

in (Figure 4.2). 

 

Figure 4.3: Plots of the diffusion coefficients of AOT H3, D1 (RM) and D2 (monomer)(a) and D1 

(b) for AOT/n-octane/water system at ω=15 and 25 with δ =1.5 ms, Δ = 10 ms at 298 K. 

 

Two diffusion coefficients were observed at both ω = 15 and 25 at ϕd = 0.05 ‒ 0.2, which 

means that at the shorter observation time, Δ = 10 ms, the AOT monomer is observed at 

higher ϕd and not just at ϕd = 0.05, as observed in the experiments performed at Δ = 100 ms. 

Therefore there was the possibility that molecular exchange processes were observed between 

the AOT in the continuous phase and the RMs at lower Δ. The PFG parameters used in the 

experiments have a significant effect on the experimental outcomes. The diffusion 

coefficients at all values of ω and ϕd are slightly higher than obtained at Δ = 100 ms at T = 

289 K (Figure 4.2) due to an increase in the temperature. The values are however in line with 

those obtained from scattering methods.  
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As AOT monomers are present in the continuous phase, the viscosity of the continuous phase 

may change from that of pure n-octane, which would affect the resulting values of Rh using 

the Stokes-Einstein equation. The effect of the presence of AOT monomers in the continuous 

phase was calculated for the AOT/water/n-octane microemulsion at ω = 15 and 25 for volume 

fractions 0.05 and 0.15. The viscosities of AOT in octane mixtures were measured at 298 K in 

the range of [AOT] = 0 ‒ 0.1 M and a significant variation was observed in the viscosity from 

0.51 ‒ 0.58 cP (Figure 4.4). 

 

Figure 4.4: A plot of the viscosity versus concentration for AOT in n-octane at 298 K. 

 

The dynamic viscosities of the continuous phase were calculated, accounting for the 

percentage of AOT monomer present and the values of Rh were calculated using the BPSTE 

experiments at Δ = 10 ms (Table 4.4).  It was found that the change in Rh was not significant 

but there was a slight decrease in all systems. The decrease in Rh was greater at higher droplet 

fractions, decreasing by 11.5% and 7.3% for ω = 15 and 25 at ϕd = 0.15 and 4.3% and 3% for 

ω = 15 and 25 at ϕd = 0.05, respectively. 
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Table 4.4 : Values of the Rh for AOT/n-octane/water microemulsions, Rh (a) with 100% n-

octane and Rh (b) with the viscosity calculated from the free AOT monomer present in the 

continuous phase. *The proportion of AOT present in the continuous phase (CP).  

 

The intrinsic viscosity of microemulsions has been previously explored at varying ω,   ϕd and 

temperatures.
14,30

   Fletcher reported that changes in viscosity do not have a significant effect 

on the inter-droplet dynamics of the AOT system,  and this is reflected in this study.
31

  

 

The values of Rh for RMs in the AOT/n-octane/water become more comparable with the 

literature values from scattering experiments, as ϕd is decreased.  However, decreasing ϕd and 

diluting the microemulsion in order to extrapolate to infinite dilution, D0 has previously been 

thought not just to lead to a decrease in the obstruction effect, but to changes in the 

composition of the microemulsion.
11,18

  Therefore with two diffusion coefficients for AOT 

molecules evident at ω > 5.3 at lower droplet fractions, this produced issues when 

extrapolating to D0.  It is evident, however, that comparing the results obtained from the 

PGSTE with the BPSTE experiments, where δ and Δ were decreased, there were changes in 

the resulting diffusion data and therefore what was actually being measured. Two diffusion 

coefficients were obtained at all ϕd, from the AOT molecules in the RMs and the AOT 

monomer present in the continuous phase. There is the possibility that exchange processes 

ω 

 

ϕd 

 

 

D /10
‒11  

m
2
s

‒1 
Rh

(a)
/ nm  

 

ɳ 

 

 

 

 

*%[AOT] CP [AOT] / M  

  

ɳ /cP 

 

Rh
(b)

/nm 

15 

 

0.15 5.1 8.42 40 0.104 0.574 7.45 

15 0.05 8.4 5.11 40 0.031 0.530 4.89 

25 0.15 3.9 11.0 30 0.057 0.546 10.2 

25 0.05 6.5 6.61 40 0.023 0.523 6.41 
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were being observed between the AOT in the RMs and continuous phase. The experimental 

parameters, δ and Δ, as well as the choice of PFG experiment, have a more significant bearing 

on what may be probed in microemulsions.
32-34

 There was no significant change in Rh when 

accounting for the free AOT monomer present in the continuous phase and changes in the 

viscosity of the systems.  

 

4.3.2. Variation of the Gradient Pulse Length δ 

 

In order to minimise the effect of potential molecular exchange processes between the AOT in 

the RMs and the AOT in the continuous phase, which were observed when lowering Δ, the 

value of δ was varied from δ = 4 ms (G = 0.9 T m
‒1

) to δ = 1.5 ms (G =2.61 T m
‒1

) in PGSTE 

experiments keeping Δ constant at 100 ms.   

 

Figure 4.5: Plots of the signal attenuation for the H3 proton in the AOT molecule for an 

AOT/water/n-octane microemulsion at ω = 25; ϕd =0.15 and Δ = 100 ms at δ = 4 ms showing 

a mono-exponential (a) and δ = 1.5 ms showing a mono-exponential (      ) and bi-exponential 

fit (      ) (b). 
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A change was observed in the signal attenuation for the H3 proton in the AOT molecule 

(Figure 4.5) with a mono-exponential decay obtained from the experiment at δ = 4 ms and a 

bi-exponential decay obtained from the experiment at δ = 1.5 ms. It is important to note these 

experiments were run in succession with the same sample and the only changes in the 

experimental parameters were δ and G. In these experiments where ϕd = 0.15, obstruction 

effects as well as exchange processes are taking place, the shorter gradient pulses and 

increasing G encodes the positions of the molecules with increased sensitivity.  Although both 

experiments were at the same Δ of 100 ms, the shorter gradient pulse of 1.5 ms encodes the 

positions of the ensemble of spins moving at shorter displacements. The longer gradient pulse 

of 4 ms encodes the spins over longer displacements and may be more sensitive to the 

obstruction effects and exchange processes taking place within this time span. Price
35

 

commented that the obstruction effect can be viewed as a type of restricted diffusion. 

Malmborg et al.
36

 conducted investigations on restricted diffusion with emulsions and found 

that the diffusion coefficient of molecules moving through the porous system varied as a 

function of the gradient pulse length. The change from mono-exponential to a bi-exponential 

decay for AOT is minimal but as Figure 4.5 (b) shows, the mono-exponential fit for the 

experiment at δ = 1.5 ms was poor. The diffusion coefficient value at δ = 4 ms was 4.72 × 

10
‒11

 m
2
s

‒1
 and at δ = 1.5 ms there were two values at D1 = 4.66 × 10

‒11
 m

2
s

‒1
 (83%) and D2 = 

4.21×10
‒10

 m
2
s

‒1
 (17%). The decrease in δ therefore affects the signal attenuation. 
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Figure 4.6: Plots of the signal attenuation for the water molecules in an AOT/water/n-octane 

microemulsion at ω = 25; ϕd =0.15 at δ = 4 ms, with a mono-exponential fit (a) and δ = 1.5 

ms (b) showing a mono-exponential (       ) and bi-exponential fit (      ). 

 

The diffusion coefficients for the water protons at δ = 4 ms were 5.43 × 10
‒11

 m
2
s

‒1
 and at δ = 

1.5 ms, again two diffusion coefficients were observed at D1 = 5.56 × 10
‒11

 m
2
s

‒1
 (84%) and 

D2 = 2.65 × 10
‒10

 m
2
s

‒1
 (16%) (Figure 4.6). 

 

4.3.3. Variation of Diffusion Coefficients as a Function of Observation Time  

 

In order to further explore exchange processes occurring between the AOT molecules 

between the RMs and continuous phase, shorter observation times were implemented, using 

higher gradient strengths. Most of the literature values for the diffusion coefficients for 

AOT/water/n-octane microemulsions were made prior to the development of diffusion 

probes.
37,38

 These probes have since given the capability of accessing higher gradient 

strengths on spectrometers (up to 9 T m
‒1 

(900 G cm
‒1

). The PGSTE experiments produced 
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artifacts at Δ < 20 ms, with the diffusion coefficient increasing rapidly with the data from the 

experiments at 10 ms unable to be analysed. This was due to the effect of eddy currents 

induced by the higher gradient strengths,
39,40

  therefore BPSTE experiments were used. 

Shorter δ were also applied with δ = 1.5 ms compared to δ = 4 ms from previous experiments.  

At the higher temperature of 298 K, the H3 AOT peak of interest for ω = 5.3 at varying ϕd 

could not be measured (4.3.1) so the systems at ω =15 and 25 at ϕd = 0.05 and 0.15 were 

analysed. For all ω values at all ϕd, two diffusion coefficients were obtained and consistently 

observed for the H3 AOT proton, with D2 consistently greater than D1 by 1.5 orders of 

magnitude.   The literature value for the diffusion
41

 of the n-octane, which constitutes the 

continuous phase, at 298 K is 2.356 × 10
‒9

 m
2
s

‒1
.  As the observation time decreased, the 

diffusion coefficient and (Figure 4.7(a)) the percentage contribution from the AOT monomers 

increased.  
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Figure 4.7: Plots of the diffusion coefficients for the AOT molecule D1 (a) and D2 (b) and water 

D1 (c) and D2 (d) for AOT/n-octane/water at varying ϕd at ω=15 and 25 at 298 K.  

 

The D1 for the AOT molecules in the microemulsion at ω = 15 and 25 at ϕd = 0.05 ‒ 0.15 

(Figure 4.7 (a)) decreased as the observation time (Δ) decreased with a corresponding increase 

in D2. As previously suggested,
37

  if the diffusion in microemulsions is unrestricted then the 
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diffusion coefficient should remain constant with decreasing Δ.  Also if the obstruction effect 

was minimised at shorter observation times for ϕd = 0.05 and 0.15, an increase and not a 

decrease in the diffusion coefficient of the RMs was expected. However as the faster diffusion 

coefficient D2 is changing with observation time, this is further evidence that the exchange 

processes between the AOT molecules are being observed. Two T2 relaxation times have been 

observed in AOT/n-octane/water microemulsions with the AOT monomer T2 = 0.2 s and AOT 

in the RM interface being approximately 0.06 s (ω = 20), then also with shorter observation 

times, an increasing proportion of the faster D2 for AOT is observed (Table 4.5).  

 ω =15; ϕd = 0.15 ω =15; ϕd = 0.05 ω =25; ϕd = 0.15 ω =25; ϕd = 0.05 

Δ / ms % D1 % D2 % D1 % D2 % D1 % D2 % D1 % D2 

100 76 24 64.6 35.4 76 24 65 35 

50 70 30 65.7 34.3 73 27 68.3 31.7 

20 68 32 59.4 40.6 69.8 30.2 65.8 34.2 

10 62 38 60.2 39.8 68.1 31.9 62 38 

 

Table 4.5: A table showing the % contribution of AOT from the RM and monomer for ω = 15 

(a) and ω = 25 (b) at varying Δ and ϕd = 0.05 and 0.15. 

 

Similar trends were observed with the water diffusion coefficients with two values at ω = 15 

and 25; ϕd = 0.05 ‒ 0.15, with D1 for the water molecules, as expected being consistently 

higher than the D1 for the AOT molecules.  As water exchanges on a fast timescale, two 

diffusion coefficients were unexpected. However, these results show that AOT and water 

molecules may not just be present in the RMs.  The presence and nature of free AOT 

monomers within the microemulsion has been previously discussed.
42

 Exchange processes in 

microemulsions are reported and described using  different models with molecular exchange 

between surfactant monomers and RMs occurring on a microsecond timescale.
31

 However a 
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recent report has observed molecular exchange occurring on a millisecond timescale in a 

CTAB quarternary microemulsion.
43

 There is the possibility, therefore, that molecular 

exchange processes are also being observed here on a millisecond timescale. The inter-droplet 

exchange (solubilisate exchange) occurs on a millisecond timescale, depending on the size 

and concentration of the droplets.
31

   Based on the models of Zana, 
9,44

 dimers are temporarily 

formed when droplets collide, increasing in size before splitting into RMs again. As this 

occurs, free AOT monomers  may be released.
9
  Therefore an alternative consideration is that 

as the observation time is decreased, the equilibrium between the formation of RMs and 

dimers and the release of the AOT monomer through collisions is being observed.  At shorter 

observation times, D2 is observed in all the systems because the time for the inter-droplet and 

molecular exchange is further reduced and the obstruction effect is further minimised.
9,20,45

  

 

At a longer observation time, Δ = 400 ms, a mono-exponential fit to the ST relation, was 

obtained, resulting in an average of the AOT diffusion coefficients for the RMs and the 

monomer (Table 4.6). 

ω ϕd D / 10
‒11

 m
2
s

‒1
 Rh / nm 

15 0.05 12.00 3.57 

15 0.15 7.42 5.80 

25 0.15 6.16 6.97 

 

Table 4.6: Values of diffusion coefficients and Rh for AOT/n-octane/water microemulsion at ω 

= 15 and 25 at varying ϕd at 298 K and Δ = 400 ms. 

 

The diffusion coefficient values  at Δ = 400 ms, (Table 4.6) where mono-exponential fittings 

to the Stejskal-Tanner equation were observed, should be a weighted average of the AOT D2 
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in the RM and D1 in the continuous phase, as stated by Lindman’s Law. When the values and 

proportions for the system at ω = 15 ϕd = 0.15, were applied to Lindman’s Law, the calculated 

Dobs at varying observation times differed and were not comparable to the experimental value 

at Δ = 400 ms.  

 

Alternative explanations for the bi-exponential behaviour were explored with respect to the 

type of PFG experiments used, with the possibility of the results being the product of cross 

relaxation processes, also known as the nuclear Overhauser effect.
32,33,46

 The presence of 

cross-relaxation processes
32

  was considered as a potential cause of artificially creating the bi-

exponential trends in the AOT and water diffusion data.  The  nuclear Overhauser effect may 

arise from through-space interactions
32

 between adjacent water and surfactant  molecules 

within the RM interface
32

 and has been observed in macromolecular systems when Δ > 20 

ms.
46

  In the case of these experiments, however, the non-exponential behaviour in the signal 

decays became more prominent with decreasing Δ, contrary to what is found in the literature. 

 

4.3.4. Variation in temperature in AOT/n-octane/water System 

 

The variation of temperature has an interesting influence on the dynamics of the 

AOT/water/n-octane microemulsions. The diffusion coefficients were therefore obtained and 

the resulting Rh values were determined at ω = 15 and varying ϕd, at the small range of 

temperatures T = 289 ‒ 298 K. The viscosity of n-octane at varying temperatures was 

determined from plotting ln(ɳ) against 1/T (K
-1

)  data obtained from literature sources (Figure 

4.8).
47
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Figure 4.8:  A plot of ln viscosity (ɳ) against the reciprocal of the temperature for n-octane.  

 

A linear plot was produced, from which the viscosity at a specific temperature could be 

obtained.  In section (4.3.1) bi-exponential decays and bimodal distributions were observed 

for ω = 15 at the lower droplet fraction, ϕd   = 0.05 at 289 K. When increasing the temperature 

for this system to 298 K, the system transformed to a mono-modal system with an increase in 

the diffusion coefficient and corresponding decrease in Rh (Table 4.7 and Figure 4.9).  

ϕd 

 

 

D / 10
‒11  

 m
2
s

‒1
 Rh

 
/ nm 

 

ɳ 

 

 

 

 

0.15 5.51 ± 0.4 7.79 

0.1 7.61 ± 0.6 5.64 

0.05 12.4 ± 1.1 3.46 

 

Table 4.7 : Calculated Rh values for ω = 15 at varying droplet volume fractions at 298 K at G 

= 0.9 T m
‒1

, δ= 4 ms and Δ= 100 ms. 
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Figure 4.9: Plots of the diffusion coefficients D1 and D2 (a) and D1 (b) for AOT/n-octane/ water 

microemulsions at ω = 15 and ϕd = 0.05 at varying temperatures. G = 0.9 T m
‒1

, δ = 4 ms, 

and Δ = 100 ms.   

 

When extrapolating to infinite dilution at ω = 15 and 298 K, D0 = 15 × 10
‒11

 m
2
s

‒1
, the virial 

coefficient, α = ‒ 4.47 and Rh = 3 nm, compared to α = ‒2.26 and Rh = 4.6 nm at 289 K 

(4.3.1).
19  Light scattering measurements (DLS) report ω = 15; Rh = 4.5 nm (Refer to 4.3.1).  

The value of α is not in agreement with the model literature value of ‒2, as observed with ω = 

5.3 at 289 K (4.3.1). As ϕd decreases, the diffusion of the RMs and AOT molecules increases 

at a greater rate at 298 K than at 289 K. This may be due to there being less surfactant-

surfactant interactions,
24

 as there is less overlap between the RMs, as previously discussed in 

section 4.3.1 (pg 128).  As ϕd decreases, there is a decrease in the attractive interactions 

between the RMs, with a greater rate of decrease in the frictional coefficient with increasing 

temperature, hence α becomes increasingly negative. 
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Figure 4.10: Plots showing the diffusion coefficient distributions (a) and Rh distributions (b)   

for AOT/n-octane/water microemulsions at ω=15 ϕd = 0.05 at different temperatures using 

the ILT. 

 

The application of the ILT mirrors what is observed when fitting the diffusion data to the 

Stejskal-Tanner relation. The plot of diffusion coefficient distributions shows the transition to 

a single distribution at 298 K (Figure 4.10 (a)). Rather than changes in the structure or 

composition of the microemulsion as discussed in (4.3.1), these results further support the 

explanation that the dynamics of the system is changing as the temperature is increased, 

resulting in an increase in molecular and inter-droplet exchange. The viscosity of the 

microemulsions changes with temperature and interestingly when measuring Rh and the 

diffusion coefficient distributions for the ω = 15, ϕd = 0.15 AOT/water/n-octane 

microemulsion at T = 289 ‒ 298 K, the Rh values obtained were the same. This is due to the 

rate of increase in the diffusion coefficient for the microemulsion specifically at the droplet 

volume fraction, 0.15 is the same as the apparent rate of decrease in the viscosity in the 

continuous phase at 289 ‒ 298 K (Table 4.8 and Figure 4.11). 
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ϕd 

 

 

298 K 

 

 

293 K 289 K 

 

 

 

 

 

 D/10
‒11  

m
2
s

‒1
 Rh / nm D/10

‒11  
m

2
s

‒1
 Rh / nm D/10

‒11  
m

2
s

‒1
 Rh / nm 

0.05 12.4 7.797 3.46 

5.64 

3.46 
 

7.43 ‒ 7.00 ‒ 

0.10 7.71   5.64 6.13 6.45 5.70 7.25 

0.15 5.51 7.797 7.79 

5.64 

3.46 
 

5.03 7.86 4.76 7.89 

 

Table 4.8:  The diffusion coefficients and Rh values for ω = 15 at varying ϕd and temperature. 

 

Figure 4.11: Plots showing the diffusion coefficient distributions (a) and Rh distributions (b) for 

the system ω = 15; ϕd =0.15 at varying temperatures.  

 

Therefore as the droplet fraction increases to ϕd   = 0.15, in the system ω = 15, the change in 

temperature, although the range is limited here, has less impact on the resulting Rh for the 

RMs than at ϕd  = 0.05. 

 

For the system at ω = 35 at ϕd   = 0.05, with larger RMs, the faster diffusion coefficient, D2 

was observed throughout the range of temperatures. The system did not become monomodal 

at 298 K, which was observed in the system ω = 15; ϕd  = 0.05. Indeed no significant change 
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was observed in D1 and resulting values of Rh from 289 – 298 K (Table 4.9) but there was a 

significant increase in D2 with increasing T. 

T/ K 

 

 

D1 /10
‒11 

m
2
s

‒1
 (ST) D2 /10

‒11 
m

2
s

‒1
 (ST) Rh

 
/ nm  (ST) 

 

ɳ 

 

 

 

 

289 4.9 87 7.7 

298 5.12 190 8.4 

(a) 

T/ K 

 

 

D1 /10
‒11  

m
2
s

‒1
 (ILT) D2 /10

‒11  
m

2
s

‒1
(ILT) 

 

Rh / nm (ILT) 

289 4.83 76 7.8 

298 5.23 140 8.2 

(b) 

Table 4.9: Tables of diffusion coefficients and Rh values for the AOT H3 in the AOT/n-octane 

/water at ω = 35; ϕd =0.05 at 289 ‒298 K. The data was analysed by fitting to the ST relation 

(a) and applying the ILT (b). 

 

The proportions of D2 and D1 (Table 4.9) suggest that there is an increase in free AOT at the 

lower temperature of 289 K. However, further experiments are needed to explore variations in 

temperature at wider ranges of ω and ϕd. 

 

From the data presented, it is clear that microemulsions are sensitive to changes in 

temperature depending on the size and ϕd of the microemulsion. As the droplet size increased 

from ω = 15 to 35, the effects of increasing temperature decreased as two diffusion 

coefficients were observed at all temperatures at ϕd  =  0.05, with no significant change in D1 

and resulting Rh at ω = 35. Also the variation in the droplet size decreased as a function of the 

droplet volume fraction with increasing temperature. Many studies have shown that 

microemulsions are affected by changes in temperature.  Zulauf et al.
2
 commented that 
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reversible phase changes in the AOT/water/n-octane system were previously observed at T <  

293 K in microemulsions where ω > 10. 

 

4.4. Conclusions 

 

This work has shown that molecular exchange in AOT/n-octane/water microemulsion is 

slower than previously believed and has been observed in this work on a millisecond rather 

than a microsecond timescale.  At certain ω, ϕd and Δ it is possible to observe two diffusion 

coefficients for the AOT and water molecules. This indicates therefore that AOT and water 

may not be present only within the RM, but may be released in the continuous phase through 

molecular and inter-droplet exchange.  The parameters used in PFG experiments are 

important to consider, as they are sensitive to exchange processes, as observed when 

decreasing the value of δ. The variation in the droplet volume fraction was observed to have 

less effect as the droplet size increased. Potential changes in the viscosity of the continuous 

phase have been found not have a significant effect on the resulting Rh in the AOT/n-

octane/water system, whereas changes in temperature of the microemulsions, particularly at 

decreasing values of ω and ϕd , affected the dynamics and exchange processes of the systems.  
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5. The Characterisation of a Quarternary Microemulsion Using 

NMR Measurements of Diffusion 

5.1. Introduction 

 

Previous chapters have mainly explored how PFG experiments are used to probe the 

characteristics of the ternary microemulsion AOT/water/n-octane. The focus here is the 

investigation of the quarternary microemulsion, AOT/water/iso-octane/pentanol. In various 

applications of microemulsions, including nanoparticle synthesis,
1-3

 reactants and different 

chemical species are added to the systems, which can alter the characteristics, sizes and the 

pH of RMs. The quarternary AOT microemulsions, which include alcohols are of specific 

interest in drug targeting and delivery
4
 because the variation in the type and concentration of  

the alcohol gives a varying degree of control on the solubility and hence the appropriate 

routes for drug administration.
5
 Conductivity measurements

6,7
 have been previously used to 

characterise quarternary microemulsions, by observing the changes in percolation with 

varying alcohols at different concentrations. Zhang et al.
7
 reported changes in droplet sizes 

with the addition of alcohols, using small angle x-ray scattering and rationalised this variation 

by considering the changes in packing parameters, interfacial flexibility and attractive 

interactions. However, contrary to this, DLS measurements have previously shown that there 

are no significant changes to the sizes of RMs with the addition of alcohols as co-surfactant.
8
   

Therefore, it was important to initially characterise the AOT/water/iso-octane/pentanol 

system, using PFG experiments and methods which have been previously developed.
9
 This 

was to understand the location and the relative proportions of the pentanol within the system, 

as alcohol molecules may be located in the micelle interface as a co-surfactant or in the 

organic continuous phase. Studies have shown that the position of molecules in the RMs 



151 

 

depends on not only the size and shape of a molecule, but also on the size of the RM.
10

  

Recent studies of a CTAB quarternary microemulsion have shown that different exchange 

processes of the alcohol co-surfactant exist within the RM interphase.
9
 The exchange 

processes determine the proportions of co-surfactant in the interphase, which affects the 

viscosity of the continuous phase.
9
  If the changes in the viscosity are not accounted for this 

can lead to an underestimation of Rh. The correct proportions of the alcohol present in the 

interphase are calculated from using Lindmans Law
9,11

 (eq 5.1) 

                        freemicobs DPPDD  1                            eq 5.1 

where, Dobs is the average diffusion coefficient which is observed, Dmic is the diffusion 

coefficient of the molecules in the RM and Dbulk is the diffusion coefficient of the molecules 

in the continuous phase. The initial characterisation of the AOT/water/pentanol/iso-octane 

microemulsion, using PFG experiments, gave an understanding of how the alcohol molecules 

changed the size, behaviour and dynamics of the RMs. 

 

As well as characterising the AOT/water/iso-octane/pentanol system, the capability of the 

pentanol molecules as reporter molecules to monitor the pH and chemistry within the micellar 

water core was explored. This was achieved by observing NMR spectra at varying pH and ϕd 

to monitor the coalescence of the water and pentanol hydroxyl peaks and analysing the 

diffusion coefficients as a function of pH to observe any variation in the behaviour of system. 

Investigating the effect of varying the pH in the aqueous phase of the microemulsion has 

proved challenging,
12

 as the water droplet environment does not follow the familiar pH 

conventions.
13

 This is due to the RMs having nano-scale dimensions and the water pool not 

behaving as bulk water. Traditional methods of measuring pH using a pH meter are therefore 
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not appropriate. Variations in the pH within RM, particularly when exploring enzymatic 

reactions, can lead to the misinterpretation of results,
14

  hence more understanding is needed 

of how changes in pH affect RMs.
13

  Previously, NMR techniques have measured the 

variation in the RM proton relaxation times to successfully monitor chemical exchange in the 

CTAB/hexanol/water microemulsion at varying pH values, using hexanol, which resides in 

the RM interface as the co-surfactant, as well as acting as the continuous phase.
15

 At 

microemulsion parameters of ω < 10, ϕd = 0.45, as the pH decreases, there is an increase in 

the number of fast exchanging protons with the alcohol molecules. The increase in fast 

exchanging protons produces changes in the position of peaks in the NMR spectrum of the 

microemulsion, as the alcohol hydroxyl proton and water peaks coalesce, giving the potential 

to monitor changes in pH. More recently, the changes in 2D HSQC spectra of the 
1
H and 

15
N 

resonances from proteins encapsulated within the micellar pool have been observed and used 

to monitor changes in pH of RMs.
16

  The location of molecules in microemulsions depends on 

a number of factors, including the molecular size, shape and solubility of the surfactant and 

co-surfactant, as well as the microemulsion parameters, ω and ϕd. Pulsed field gradient (PFG) 

experiments were used to measure the diffusion coefficients of the molecules to understand 

the behaviour of the pentanol and the effect on the AOT/water/iso-octane microemulsion at 

varying ω and ϕd.  
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5.2. Experimental 

 

5.2.1. Preparation of AOT/water/iso-octane/pentanol Microemulsions at varying pH 

 

A 1 M stock solution of AOT (sodium bis(2-ethylhexyl) sulfosuccinate; Fluka ≥ 96% ) in iso-

octane was prepared by adding 11.12 g of AOT to 15.5 ml of iso-octane (2,2,4-

trimethylpentane (Sigma Aldrich ≥ 99%). The microemulsions were made by adding the 

appropriate amounts of water (Nanopure filtered, 18 M) to 1 ml of stock solution to obtain 

ω values of 5.3 ‒ 25. The appropriate amounts of pentanol (Sigma Aldrich ≥ 99%) were 

added to obtain χ = 0.75, where χ = [AOT] / [pentanol].  These solutions were diluted to ϕd = 

0.45, 0.25 and 0.15 by adding the correct amounts of iso-octane. For a microemulsion of ω = 

5.3, χ = 0.75 and ϕd = 0.45,  0.145 ml pentanol, 0.0954 ml water  and 0.138 ml iso-octane 

were added to 1 ml of stock 1 M AOT in iso-octane. To obtain a solution at ϕd = 0.25, 1.24 ml 

extra iso-octane was added. See APPENDIX II for details of microemulsions at other ω 

values. The solution was mixed for at least 30 seconds until it became transparent, indicating 

the formation of the microemulsion. The pH of the water was adjusted by adding 0.1 M 

NaOH (Fluka ≥ 97%) and 0.05 M H2SO4 (Fischer ≥ 98%). The pH was measured with a 

combination glass electrode (Radleys) connected to a digital pH-meter (Orion 720A). The 

system was calibrated, using buffer solutions at pH 4 and 7 (Sigma Aldrich).  

 

5.2.2. Pulsed Field Gradient Stimulated Echo (PGSTE) Experiments  

 

PGSTE experiments were performed as described in 3.2.5. Parameter ranges used in these 

experiments were typically:  = 3 ‒ 4 ms,  = 80 - 100 ms, with a maximum gradient, Gmax, 

0.9 T m
‒1 

with 32 gradient steps, ensuring the signal attenuated so that S(G)/S(0) at Gmax was 
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≤ 0.01. The samples were left to equilibrate at the required temperature for a minimum of 20 

minutes. The diffusion data was collected for the proton resonances, including the headgroup 

H3 proton of the surfactant and the pentanol α proton, He next to the hydroxy group.  These 

protons were expected to reside near or in the interface of the RM, being close to hydrophilic 

moieties. The numbering scheme for the proton signals in the NMR spectra for the AOT/iso-

octane/water/pentanol microemulsion is shown in Figure 5.1.    

 

Figure 5.1: The numbering scheme for the protons in AOT (a), pentanol (b) and iso-octane (c). 

 

5.2.3. Viscosity 

 

The viscosity of pentanol/iso-octane mixtures at varying molarities (0 – 1.8 M) was measured 

using a Cannon-Fenske routine viscometer (size 25), which measures kinematic viscosities 

over the range 0.5 – 2 cSt. The viscometer and solutions were immersed in a water-bath 

maintained at 293 ± 0.5 K and were initially allowed to equilibrate for at least 40 minutes. 

The density of the solutions was measured, which allowed the conversion from kinematic to 

dynamic viscosity (4.2.3 eq 4.2). Measurements were repeated five times and averaged.  
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5.3. Results and Discussion 

 

5.3.1. NMR Spectra for the AOT/iso-octane/water/pentanol Microemulsions 

 

The 
1
H NMR spectrum for the AOT/iso-octane/water/pentanol microemulsion is shown in 

Figure 5.2  with the corresponding peak assignments shown in Table 5.1. The AOT/iso-

octane/water/pentanol microemulsion has been characterised using values previously obtained 

from NMR spectroscopy.
10,17

 The water peak (δ = 4.4 ppm) shifts as a function of ω as 

explained in (3.3.1) but the spectrum also changes as a function of pH, and is dependent on 

the microemulsion parameters ω and ϕd. The changes in 
1
H NMR spectra due to changing pH 

have been reported previously in CTAB ternary and quarternary microemulsions.
15

 At lower 

pH values with increasing acidity within the system, coalescence of the pentanol hydroxyl 

(4.50 ppm) and water peaks (4.37 ppm) occurs, resulting in a coalesced single peak. 

 

Figure 5.2: 
1
H NMR spectrum for AOT/iso-octane/water/pentanol at ω = 5.3, ϕd = 0.45, χ  = 

0.75. 
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peak assignments δ / ppm 

H8, H8', H10, H10', Ha, Hw,Hz 1.00 

Hy 1.21 

H5, H5', H6, H6', H7, H7', H9, H9', 1.34 

Hb, Hc 1.44 

Hd 1.62 

H4 H4' 1.66 

Hx 1.74 

H1' 3.20 

He 3.63 

H3' 4.05 

H3 4.20 

H1 4.37 

H2O 4.37 

 OH(pentanol) 4.50 

 

Table 5.1:
 1

H NMR peak assignments for the
 1

H NMR spectrum for the AOT/iso-octane/water 

/pentanol microemulsion shown in Figure 5.2. 

 

5.3.2. Diffusion Measurements of AOT/iso-octane/water With and Without Pentanol 

 

 

The values for DAOT in the AOT/iso-octane/water microemulsion were comparable with those 

in the AOT/n-octane/water microemulsion at ϕd = 0.15 (Table 5.2 and reported in (3.3.3)). 

These measurements were taken to clarify there were no significant differences in DAOT and 

hence the calculated sizes of the RMs in using branched or straight chained forms of octane as 

the oil. Comparisons of results between the systems with the two forms of octane could then 

be made. 
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ω DAOT /10
‒11

 m
2
s

‒1
 (iso-octane) DAOT /10

‒11 
 m

2
s

‒1
 (n-octane) 

5.3 6.1 5.9 

15 5.2 5.0 

 

Table 5.2: A table showing the diffusion coefficients for AOT H3 protons in AOT/water/iso-

octane and AOT/water/n-octane systems. 

 

The diffusion coefficients of DAOT and Dwater (Table 5.3) in the AOT/iso-octane/water/ 

pentanol microemulsion decreased as a function of ω, at ϕd = 0.15, which was also observed 

in the AOT/iso-octane/water system. At ω > 25, AOT/iso-octane/water/pentanol 

microemulsions remained opaque, indicating that the solutions had not formed a water-in-oil 

microemulsion. 

ω DAOT /10
‒10 

 m
2
s

‒1
  Dwater /10

‒10  
m

2
s

‒1
  D1pent/10

‒10  
m

2
s

‒1
  D2 pent /10

‒10  
 m

2
s

‒1
  

5.3 1.2 1.7 1.1 5.6   (88%) 

9.3 1.05 1.5 1.05 7.2   (81%) 

15 0.80 1.1 0.7 6.6   (87%) 

20 0.69 0.92 0.5 7.0   (81%) 

 

Table 5.3: A table showing the diffusion coefficients for AOT, water and pentanol in the 

AOT/water/pentanol/iso-octane microemulsion at varying ω at ϕd = 0.15, T = 293 K at Δ = 

80 ms and δ = 4 ms. 

 

The values for DAOT in the system with pentanol were greater compared to those with the 

same ω in the AOT/iso-octane/water system without pentanol (Table 5.3). At ω = 5.3, a 100% 

increase in the diffusion coefficient was observed from DAOT = 6 × 10
‒11

 m
2
s

‒1
 without 

pentanol to 1.2 × 10
‒10

 m
2
s

‒1
 with pentanol. At ω = 15, a 60% increase was observed from 
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DAOT = 5 × 10
‒11

 m
2 

s
‒1

 to 8 × 10
‒11

 m
2 

s
‒1

 in microemulsions with pentanol. The Dwater was 

consistently higher than DAOT, which is a trend also observed in comparable systems without 

pentanol and as the ω increased, the difference between the DAOT and Dwater values decreased 

(Table 5.3). The RMs are diffusing at a faster rate due to the presence of the pentanol altering 

the dynamics of the system. One consideration is that the droplet volume fraction for this 

system is calculated by assuming all the pentanol is present in the RM interface. A proportion 

of the pentanol molecules in the continuous phase would have the effect of decreasing ϕd and 

increasing the diffusion coefficient DAOT, with a relative decrease in the obstruction effect. On 

recalculating the droplet fraction accounting for the correct proportion of pentanol residing in 

the interface, the droplet volume fraction changed from 0.15 to approximately 0.12 (Table 

5.4).  

ω Adjusted ϕd 

5.3 0.11 

9.3 0.125 

15 0.126 

 20 0.130 

 

Table 5.4: A table showing the adjusted ϕd at varying ω, calculated from the proportion of 

pentanol present in the continuous phase.  

 

The changes in the droplet volume fractions are unlikely to account for the increase in the 

diffusion coefficient DAOT in the systems with pentanol, which is up to 100% in ω = 5.3, as 

there is a 35%  increase in DAOT for in the systems without pentanol when diluting from ϕd = 

0.15 to 0.1 for ω = 5.3 (See  4.3.1).  It is important to consider the exchange processes,
9
  

which are occurring between the pentanol molecules located in the continuous and dispersed 
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phases to fully appreciate the proportion of pentanol which is in the continuous phase and 

therefore the changes in the viscosity of the system. This can be determined from the 

diffusion data of the pentanol molecules (Figure 5.3). 

 

Figure 5.3: Plot of the diffusion coefficients of the pentanol molecules in AOT/iso-octane/water/ 

pentanol systems as a function of ω at ϕd = 0.15, analysed fitting to the Stejskal-Tanner 

equation.  

 

In the AOT/iso-octane/water/pentanol microemulsion, two diffusion coefficients were 

consistently observed for the pentanol molecules with the faster diffusing pentanol (D2), 

observed in greater proportions > 80%,  than the slower diffusing pentanol molecules (D1) at 

each ω value (Table 5.3). The slower diffusion coefficient D1 of pentanol is compatible with 

the values of DAOT and decreased as a function of ω, which also correlated with DAOT (Table 

5.3). This is regarded as the proportion of pentanol acting as a co-surfactant, which is situated 

in the RM interface. One study exploring the partition equilibria between RMs and alcohols at 

ω = 30 using PFG experiments observed one Dpentanol. However these PFG measurements 

were taken at longer observational times,
18

  Δ = 140 ms than applied here at Δ = 80 ms.  
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 When comparing the values of the fast pentanol diffusion coefficient D2 with the diffusion 

coefficient measured for mixtures of pentanol/iso-octane at 0 - 1.1 M (Figure 5.4), which 

would be the diffusion coefficient of the continuous phase, the values differ significantly. The 

concentration of the pentanol in the continuous phase was 0.32 M in the system at ω = 5.3. 

The diffusion coefficient for the equivalent molarity of the pentanol/iso-octane mixture 

(Figure 5.4(a)) was determined as 12.5 × 10
‒10

 m
2 

s
‒1

. This value is significantly higher than 

experimental value obtained for the pentanol molecules in the continuous phase (D2), which 

was 5.6 × 10
‒10

 m
2 

s
‒1

. The differences in the diffusion coefficients may be partly due to the 

obstruction effect, as discussed in (4.1), as the RMs occupy space within the system, causing 

the pentanol self-diffusion coefficient to decrease due to excluded volume.
18

  

 

 

Figure 5.4:  A plot showing the self-diffusion coefficient of the pentanol molecules (a) and 

dynamic viscosity of pentanol/iso-octane mixtures (b) at varying molarities at 293 K. 

 

However, as reported recently,
9
 the higher value, D2, for the bulk pentanol present in the 

continuous phase is an average value of the pentanol molecules in fast exchange between the 
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interphase and the continuous phase. Lindman’s relation (eq 5.1) can be used to calculate
9
 the 

proportions of co-surfactant present in the interphase and continuous phase knowing the 

diffusion coefficients of the pentanol molecules, including Dobs, which is the average 

diffusion coefficient (D2) and Dmic from the molecules in the RM and Dbulk, which is 

determined from (Figure 5.4(a)).  The viscosity of the continuous phase was then obtained 

from the dynamic viscosity measurements of pentanol/iso-octane mixtures measured at 293 K 

(Figure 5.4(b)), resulting in a more accurate size determination for the RMs.  

 

The proportions of pentanol in the continuous phase decreased after analysing the exchange of 

the pentanol molecules. This resulted in a decrease in the viscosities for each of the systems 

(Table 5.5).  

ω % pentanol in CP  [pentanol]/M η /cP Rh / nm 

5.3 34.41  0.1303 0.499 3.58 

9.3 40.34 0.1353 0.500 4.08 

15 40.11 0.1175 0.497 5.59 

20 37.91 0.1001 0.496 6.27 

 

Table 5.5: A table showing the Rh values for the RMs in the AOT/water/pentanol/iso-octane 

microemulsion at varying ω at ϕd = 0.15, determining the viscosity with consideration to the 

percentage of pentanol in the continuous phase. 

 

The Rh values of the RMs with pentanol were calculated and compared with the sizes of RM 

without pentanol (Figure 5.5). 
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Figure 5.5: Plots of the diffusion coefficients DAOT (a) and Rh (b) of the RMs in AOT/iso-

octane/water and AOT/iso-octane/water/pentanol microemulsions at varying ω at ϕd = 0.15. 

 

The resulting Rh values at varying ω at ϕd = 0.15 with pentanol were smaller than the RMs in 

microemulsions at varying ω and ϕd = 0.15 without pentanol (Table 5.5, Figure 5.5). At ω = 

5.3, in the systems without pentanol Rh = 6.71 nm and 3.58 nm with pentanol, a 46.6% 

decrease, whereas at ω = 15, Rh = 7.93 nm and
 
5.59 nm, constituting a 29.5% decrease. 

 

Alcohols are regularly used as a co-surfactant in microemulsion systems.
19,20

  This is due to 

the hydroxyl group being attracted towards the micellar water droplet, as well as the potential 

to be soluble in the organic phase. The degree to which the alcohol penetrates the micellar 

interface is dependent on the alcohol chain length
18

 and it has been found that where short 

chain alcohols, ethanol and methanol tend to reside within the micellar pool,
21

 alcohols with 

longer chains are located in the interface and the continuous phase.
22

 In the AOT/iso-

octane/water microemulsion, the pentanol molecules have the potential to act as a co-

surfactant and are partitioned between the RMs and the continuous phase,
18,23

 as the small 
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molar volume of pentanol allows it to be part of the interface. This affects the curvature and 

hence the size of the RMs decreases.
7
  The faster diffusion coefficients for AOT in the 

systems with pentanol compared those without (Figure 5.3(a)), giving evidence that the 

pentanol is causing the formation of smaller RMs. Previous studies, using small angle x-ray 

scattering and a DLS study to measure the sizes of RMs in the AOT/iso-octane/water/pentanol 

system, showed that the addition of alcohols caused changes in droplet sizes,
22

 with a 

decrease in Rh reported with alcohols with chain lengths > butanol.
7,22

 The decrease in Rh is 

due to an increase in the curvature and rigidity of the interface. Zhang et al.
7
 explained that as 

the pentanol molecules can solubilize within the AOT surfactant tails, this will push the 

surfactant headgroups closer together, hence increasing the rigidity of the RMs.
7,24

 The 

addition of co-surfactants changes the packing parameters (Sp) of RMs, which can change the 

curvature by having to accommodate the increased volume of surfactant headgroups.
25,26

 (See 

1.1.1)  The inclusion of micellar pentanol will increase the total interfacial RM surface area, 

which causes a decrease in Rh with an increase in the number of droplets.
7
  

 

The PFG diffusion measurements established that the majority of the pentanol resides in the 

interphase with a smaller proportion of pentanol in the continuous phase, which results in a 

decrease in the viscosity of the continuous phase. However after determining the change in 

viscosity due to the exchange processes of pentanol, smaller Rh were obtained in the 

AOT/pentanol/water/iso-octane RMs, than those without the alcohol at ϕd = 0.15. There is a 

possibility that RMs develop into different shapes and do not exist as spheres. Zhang et al.
7
 

suggested there may be changes in shape to ellipsoidal RMs  in AOT/alcohol /water/alkane 

systems using SAXS. Any changes in shape may be another factor in explaining why smaller 

Rh values are obtained with added pentanol. In order to investigate these ideas further and to 
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observe how the pentanol may affect the RM interface, molecular simulations were set up for 

single RMs at varying ω with and without pentanol in the continuous phase. The changes in 

size and shape were monitored and the findings are discussed in Chapter 6. As well as 

characterising the AOT/pentanol/water/iso-octane system, it was interesting to explore what 

other information could be obtained about the chemistry within the micellar water core at 

varying pH. 

 

5.3.3.  Investigating the pH of Microemulsions  

 

One development from characterising the AOT/iso-octane/pentanol/water microemulsion was 

exploring if the pentanol could be used as reporter molecules to monitor the changes in the pH 

of the water core. The spectra of the AOT/iso-octane/pentanol/water microemulsion at ω = 

5.3, ϕd = 0.45 were recorded between pH of 1.9 ‒ 3.4.  As the pH decreased, the hydroxyl 

proton and water peaks coalesce, producing a single peak at δ = 4.40 ppm (Figure 5.6). This 

has been previously observed in the CTAB/hexanol/water microemulsion.
15

  It is important to 

note that the solutions required a longer time to become transparent and form the 

microemulsion as the acidity increased. 
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Figure 5.6: NMR spectra of AOT/pentanol/water/iso-octane at ω = 5.3 ϕd = 0.45, χ = 0.75 at 

pH 1.9 ‒ 3.4. 

 

pH DAOT /10
‒10  

 m
2
s

‒1
  Dwater /10

‒10  
m

2
s

‒1
  D1 pent /10

‒10  
m

2
s

‒1
  D2 pent /10

‒10  
m

2
s

‒1
  

1.9 0.37 0.8 0.36 2.4   (74%) 

2.4 0.43 0.76 0.32 2.3   (85%) 

2.9 0.5 0.75 0.31 2.0   (86%) 

3.4 0.47 0.77 0.37 2.1   (81%) 

 

Table 5.6: A table showing the diffusion coefficients of AOT, water and pentanol in the 

AOT/water/pentanol/iso-octane microemulsion at varying pH at ω = 5.3, ϕd = 0.45 with the 

percentage of pentanol diffusing at the faster rate (D2). 

 

However, as Table 5.6 shows, the diffusion coefficient for the water, AOT or the pentanol 

molecules remained the same, within error, as a function of increasing pH. The proportions of 

the pentanol also remained the same, which would suggest that the viscosity of the system 
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was also consistent as the pH decreased. Therefore there was no significant change in the size 

of the RMs as the pH changed.  The investigation of a range of AOT/water /pentanol/iso-

octane microemulsions at varying ϕd and ω at varying pH was carried out, to monitor any 

similar observations. 

 

5.3.4. Measurements at varying ϕd and ω at varying pH 

 

The coalescence of the hydroxyl proton and the water peaks was investigated at ω = 5.3 at a 

lower droplet fraction of ϕd = 0.25 in order to explore changes in the droplet size as a function 

of pH, with a decreasing obstruction effect.  The coalescence point was observed at pH = 2.4, 

in the system at ϕd = 0.45, with the OH and water peaks resolving into 2 separate peaks at pH 

= 3.4. At ϕd = 0.45, the two separate water and hydroxyl peaks at δ = 4.37 ppm and 4.50 ppm 

were consistently observed as the pH was increased further up to pH = 9.4 (Figure 5.7(a)).  

This was not observed, however, at lower droplet volume fractions. At ϕd = 0.25, (Figure 

5.7(b)), a single coalesced water and hydroxyl peak was observed at all pH values, up to pH = 

9.4 and the resolution of two peaks from OH and water was not observed. This was also 

observed at ϕd = 0.15.  
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Figure 5.7: 
1
H NMR spectra of AOT/pentanol/water/iso-octane at ω = 5.3 and χ = 0.75 at ϕd = 

0.45 (a) and 0.25 (b).  

 

As there was more iso-octane in the system at ϕd = 0.25, there would be less inter-droplet and 

molecular exchange between the RMs in a more dilute system, with a relatively less number 

of droplets than at ϕd = 0.45. Hence, it was expected that with increasing pH, the two peaks of 
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the water and hydroxyl of the pentanol would be observed. However from the diffusion 

coefficient values in Table 5.7, at ϕd = 0.25, the DAOT, Dpentanol and Dwater are higher than at ϕd 

= 0.45. There is no significant change of DAOT as a function of increasing pH for both ϕd = 

0.25 and 0.45 (Table 5.7(a) and (b), respectively). 

pH DAOT /10
‒10  

m
2
s

‒1
  Dwater /10

‒10  
m

2
s

‒1
  D1 pent /10

‒10  
m

2
s

‒1
  D2 pent /10

‒10  
m

2
s

‒1
  

3.4 0.41 0.79 0.37  2.1 (81%) 

4.4 0.37 0.62 0.35  2.2 (87%) 

5.4 0.31 0.51 0.32  2.0 (91%) 

8.4 0.34 0.75 0.30  2.0 (90%) 

9.4 0.35 0.60 0.27  1.9 (91%) 

  (a) 

pH DAOT /10
‒10  

m
2
s

‒1
  Dwater /10

‒10  
m

2
s

‒1
  D1 pent/10

‒10 
m

2
s

‒1
  D2 pent/10

‒10  
m

2
s

‒1
  

3.4 0.93 1.33 0.89  3.9 (88%) 

4.4 0.92 1.35 1.07  4.2 (86%) 

5.4 0.85 1.38 0.99  3.9 (87%) 

8.4 0.80 1.16 0.86  3.8 (89%) 

9.4 0.85 1.44 1.13  4.0 (87%) 

  (b) 

Table 5.7: Tables showing the diffusion coefficients of AOT, water and pentanol in the 

AOT/water/pentanol/iso-octane microemulsions at ω = 5.3 at ϕd = 0.45 (a) and ϕd = 0.25(b). 

 

The diffusion coefficient and proportions of pentanol in the continuous phase (D2) at systems 

ϕd = 0.45 were similar at all measured pH and this was also observed in the system at ϕd = 

0.25. However the faster diffusion coefficient, D2 for the pentanol in the continuous phase 

increased in the system where ϕd = 0.25, compared to ϕd = 0.45.  The D1 of the pentanol and 
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the DAOT were compatible, diffusing at similar rates at all pH values, indicating D1 

corresponded to the diffusion of the interfacial pentanol. 

   

Measurements at ω = 15, ϕd = 0.15 were made at varying pH. The diffusion coefficients for 

AOT, pentanol and water show the expected trends, which were observed at ω = 5.3, with the 

DAOT comparable with D1 for the pentanol molecules.  

pH DAOT /10
‒10  

m
2
s

‒1
  Dwater /10

‒10  
m

2
s

‒1
  D1 pent /10

‒10  
m

2
s

‒1
  D2 pent /10

‒10
m

2
s

‒1
  

1.5 0.78 1.08 0.81 6.4 (87%) 

1.9 0.79 1.09 0.80 6.2 (88%) 

2.4 0.83 1.17 0.77 6.7 (89%) 

2.9 0.81 1.17 0.69 6.4 (89%) 

3.4 0.78 1.03 0.67 6.3 (89%) 

3.9 0.81 1.16 0.66 6.3 (89%) 

4.6 0.80 0.97 0.77 6.6 (88%) 

 

Table 5.8: A table showing the diffusion coefficients of AOT, water and pentanol in the 

AOT/water/pentanol/iso‒octane microemulsion at ω = 15, pH = 1.5 - 4.6 at ϕd = 0.15. 

 

The diffusion coefficients for the system at ω = 15, ϕd = 0.15 (Table 5.8) are of a similar 

magnitude to those at ω = 5.3, ϕd = 0.25, except the D2 pentanol, which is higher than D2 at ω 

= 5.3, ϕd = 0.25. Hence, with faster diffusion coefficients than those at ω = 5.3, ϕd = 0.45, the 

similar result of a single coalesced hydroxyl and water peaks was obtained. When the 
1
H 

NMR spectrum was recorded for a neutral pH sample at ω = 15, ϕd = 0.45, the hydroxyl and 

water peaks were observed separately. It has been found previously that the exchange rate 

between RMs decreases as a function of ω,
27

 therefore a range of higher droplet fractions at  
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ω = 15 should have been explored to determine at what ϕd the water and hydroxyl peaks are 

observed. 

 

One important consideration why the average single coalesced peak is observed at ϕd = 0.25 at 

all pH values is that the relative proportions of the molecules in the continuous phase change 

as ϕd is varied. The ratio of AOT: pentanol in all systems at varying ϕd was kept constant, χ = 

0.75, however as the ϕd decreased, the concentration of iso-octane increased in the system and 

the concentration of pentanol decreased. The pentanol is partitioned between the interface and 

the continuous phase, so as the pentanol concentration decreased in the continuous phase, 

there would also be a decrease in the quantity of hydrogen bonding taking place between the 

pentanol molecules. As the hydrogen bonding decreased, there would have been a change in 

the chemical shift
28

 of the hydroxyl proton peak in the 
1
H NMR spectrum. Oakes

29
 previously 

explained how the hydroxyl proton chemical shift moves downfield with increasing alcohol 

concentration, due to the changes in hydrogen bonding, in a study of alcohol and water 

mixtures. The changes in chemical shift will also be relevant in the varying concentrations of 

water and alcohol within a microemulsion. Therefore the hydroxyl proton peak is not 

observed as the change in the chemical shift occurs with decreasing ϕd , the  hydroxyl peak is 

masked by the water peak, which is further upfield.  

 

Another consideration why the average single coalesced peak is observed at all pH at ϕd = 

0.25, may be due to the RMs and the continuous phase diffusing at a faster rate compared to 

ϕd = 0.45 (Table 5.7). Therefore with increasing pH although there are decreasing numbers of 

protons, the exchange between the pentanol hydroxyl group and the water at ϕd = 0.25 is at 
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such an increased rate that the exchange rate overcomes the pH change within the RM. There 

are limiting values of diffusion coefficients, governed by specific droplet volume fractions 

and ω, where the exchange between water and pentanol is at a rate, which is sensitive to pH 

changes within the RMs.  Pileni et al.
30

 observed a decrease in the number of collisions and 

exchange processes between RMs, with an increase in the number of droplets, using small 

angle x-ray scattering. Although the RMs at the parameters ϕd = 0.45 have increased surface 

to volume ratio than at lower droplet fractions, the diffusion and exchange rate may decrease 

such that the pH can be probed using pentanol molecules. The  decrease in droplet attractions 

with ϕd for larger RMs, which is known as the depletion model,
31

 may also be applicable to 

the system at ω = 15. Diffusion measurements need to be made at ω = 15, ϕd = 0.45 and 

further investigations at droplet fractions between 0.25 and 0.45 to find the limiting values of 

ϕd , where the resolution of the hydroxyl and water  peaks occurs.   

 

5.4. Conclusions 

 

In the microemulsion system AOT/water/iso-octane/pentanol, the diffusion coefficient of 

AOT RMs was greater than that of the AOT/water/iso-octane microemulsion, without 

pentanol. At all ω and ϕd values studied, the pentanol molecules were observed to be diffusing 

at two diffusion coefficients. The slower D1 was from the interfacial pentanol, as the DAOT 

values were comparable with the slow D1 values of the pentanol. The faster D2 was an 

average of the pentanol exchanging between the interphase and the pentanol located in the 

continuous phase. The viscosity of the continuous phase decreased when the proportion of 

pentanol in the continuous phase was accounted for, which resulted in an increase in the sizes 
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of the RMs.  The resulting Rh values were, however, still smaller than the systems without 

pentanol.  

The pH of the AOT/water/iso-octane/pentanol microemulsion may be measured using 

pentanol as a reporter molecule, but at higher droplet volume fractions. The coalescence of 

the hydroxyl and water peak was observed as a function of pH in the microemulsion at ω = 

5.3 at ϕd = 0.45. However at lower droplet volume fractions, the coalesced hydroxyl/water 

peak was consistently observed with increasing pH.  Further measurements are required for 

the system at ω = 5.3 between 0.45 > ϕd > 0.15 to discover the limiting values of ϕd and pH, to 

explore the correlations between the diffusion coefficients of the different molecules in the 

microemulsion, where the resolution of the water and the hydroxyl peaks occurs. Further 

diffusion measurements are also required, where the concentration of pentanol is consistent in 

the continuous phase at varying ϕd, to ensure that the chemical shift of the hydroxyl peak is 

minimal.  The diffusion of the molecules within quarternary microemulsions needs to be 

explored with a variety of alcohols with varying chain lengths. The capabilities of alcohol 

molecules to monitor changes in pH within RMs will then be fully appreciated. 
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6. Molecular Simulations of Reverse Micelles 

 

6.1. Introduction 

 

Molecular simulations have the capability of probing and visualising how molecules interact 

with each other in microemulsions. Therefore molecular simulations give the opportunity to 

observe fluctuations and changes in the shapes of reverse micelles (RMs) and analyse the 

dynamics and behaviour of the molecules within these self-assembling systems. This is 

particularly important with modelling RMs as it can determine any potential deviations from a 

spherical shape, which is the assumed shape when evaluating the sizes of RMs, using the 

Stokes-Einstein equation. If the shape is known, however, modified forms of the Stokes-

Einstein relation can be used by incorporating shape factors to determine more accurately the 

dimensions of the macromolecular structures.
1
 Molecular simulations were set up to study the 

motion, dynamics and behaviour of the molecules within AOT/iso-octane/water, AOT/iso-

octane/water/pentanol and CTAB/hexanol/water single RMs. Models of AOT/iso-octane 

/water RMs have been investigated before,
2-5

  however the effect of adding pentanol to this 

microemulsion system has, to the best of our knowledge, not been reported in the literature. 

The solvent boxes of iso-octane and hexanol used to solvate the RMs were set up using all-

atom parameter forcefields. The use of organic all-atom solvent boxes has been previously 

used to construct AOT/water/iso-octane RMs
6
 at ω < 7 and recently in RM molecular 

simulations with the quarternary CTAB/water/pentanol/hexane system.
7
  The united-atom 

solvent boxes have been used more frequently to minimise the computer time and resources.
8
 

However the all-atom solvent boxes provide more accurate molecular simulations.  The 

molecular interactions between the continuous phase and the RMs can be observed, especially 
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in the CTAB/hexanol/water RM, where the hexanol has a dual role of co-surfactant and 

solvent.  

 

In the AOT/iso-octane/water/pentanol system, a proportion of pentanol resides in the 

interface.
9-11

  It has been reported that the pentanol affects the flexibility and rigidity of the 

interface causing a change in the packing parameter which results in a change of the shape 

and size of the RMs.
9,11

 The PFG diffusion measurements of the AOT/iso-octane/water/ 

pentanol system (5.3.2) showed a significant increase in diffusion coefficients of the AOT 

molecules (DAOT) compared to DAOT in  the system without pentanol. It was also observed that 

as ω increased the difference between DAOT in the system with or without pentanol decreased. 

The proportions of pentanol in the interface and the resulting effect on the RM size and shape 

were explored through the molecular simulations. 

 

NMR measurements of diffusion were also used to evaluate the size of CTAB/hexanol/water 

RMs. It has proven a challenge to probe the size of the RMs in this particular system, as 

unlike RMs formed from AOT, it has not been possible to characterise the CTAB/hexanol 

/water RMs using scattering methods.
12,13

  The Rh was determined as 1 nm, (3.3.4) which was 

small compared to the extended length of the CTAB molecule of ≈ 2.8 nm.
14

  In exploring the 

sizes of the CTAB/hexanol/water RMs using PFG experiments, it was not possible to know if 

the shape deviated from a spherical model, making it inappropriate to use the Stokes-Einstein 

equation to calculate Rh. A recent molecular simulation study of a CTAB/hexane/water 

/pentanol RM, illustrated that an oblate, rather than spherical RM was formed. These 

molecular simulations also gave the opportunity to quantify the aggregation number, 
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including the number of co-surfactant pentanol molecules.
7
  Therefore in this study, the 

CTAB/hexanol /water droplet molecular simulation was set up, which has not been previously 

reported, to observe shape fluctuations and to estimate the proportions of hexanol, which are 

partitioned between the interface and the continuous phase.  

 

In the molecular simulations, as single droplets are modelled, it is not possible to include 

inter-droplet interactions, therefore the effects of these encounters cannot be accounted for. 

The time and duration of the simulations can be challenging, as shorter simulations may not 

provide the full picture of the RM in equilibrium.
3,8

  However, molecular simulations provide 

a valuable insight into the interactions between molecules within a reverse micellar 

environment and changes in the surfactant interface, the RM shapes and aggregation numbers 

at varying microemulsion parameters. 

 

6.2. Experimental 

 

6.2.1. Molecular Mechanics 

 

Molecular simulations for the AOT/iso-octane/water, AOT/iso-octane/water/pentanol and 

CTAB/hexanol/water droplets were set up, with methods which have been used previously.
15

 

This involves the application of the combined ff03
16

 and gaff
17

 forcefields in AMBER (v12)
18

  

using a Silicon Graphics interface. The droplets were minimised for a varied number of cycles 

depending on the size of the droplet, until AMBER had reported the energy gradients had 

reached appropriate levels of RMS < 2 kcal mol
‒1

 Å
‒1

 (8.36 kJ mol
‒1

Å
‒1

)and Gmax < 1×10
2
  

kcal mol
‒1

 Å
‒1

 (418 kJ mol
‒1

Å
‒1

). The energy gradient terms, Gmax, and RMS (root mean 
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square of the first derivative of a potential energy term) are values of force that exist between 

the molecules in a simulation. During the minimisation process, as the molecules move into 

most favourable positions and orientations, the  Gmax and RMS values decrease and stabilise, 

signifying that the forces and therefore the interactions between the molecules have reached 

the most favourable and minimal energy possible. The droplets were minimised to the lowest 

optimized energies in preparation for equilibration dynamic runs of up to 30 ns. Periodic 

boundaries were applied with an EWALD cut-off at 12 Å, which is the distance where the 

interactions between the charges were no longer calculated. All the simulations were run at 

300 K. 

 

6.2.2. The Preparation of Solvent Boxes 

 

Methods to make solvent boxes for organic solvents  have been previously developed.
19

 A 

hexanol solvent box was constructed by initially arranging an array of 4913 hexanol 

molecules in a cubic box of 100 Å, which resulted in a density of 0.8136 g cm
‒3

. The ordered 

hexanol box was initially minimised for 100000 cycles at constant volume. The minimized 

hexanol box was equilibrated for 1000 ps at constant volume, to ensure the positions of the 

molecules were randomised. The resulting box boundaries were set at 100 Å with the box 

being saved as an off file using the AMBER command saveoff. An iso-octane solvent box of 

100 Å, containing 3648 molecules, was prepared by modifying the existing hexanol solvent 

box. The iso-octane box was minimised until the energy gradients were at the optimal values 

of RMS = 3.45 × 10
‒2

 kcal mol
‒1

 Å
‒1

 (0.14421 kJ mol
‒1

Å
‒1

) and Gmax = 2.61 kcal mol
‒1

 Å
‒1

 

(10.91 kJ mol
‒1

Å
‒1

). 
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6.2.3. The Preparation of the Droplets 

 

The AOT/iso-octane/water reverse micelle (RM) simulations were initially set up as a control 

to compare with RMs with added pentanol. The water droplet was formed by solvating a 

single water molecule using the AMBER LEAP program.
15

 This was achieved from 

solvateshell command with the Rw of the droplets being 1.4 nm, 2 nm and 3 nm. The water 

droplet was surrounded with AOT surfactant molecules, which were distributed and 

orientated randomly using a  purpose-built code, written by Dr. J. Wilkie,
20

  which was built 

specifically for the formation of RMs so that the surfactant headgroups face towards the 

micellar water and the surfactant tails face away. An initial AOT molecule was placed at a 

distance, r, from the surface of the water droplet, with the other AOT molecules being placed 

at the same radial distance from the water droplet surface but at random spherical polar 

coordinates, at varying polar (θ) and azimuthal (ϕ) angles, thus creating a spherical shell of 

AOT molecules surrounding the water molecules.
15

 New molecules are retained and added to 

the surfactant layer provided that the random positioning does not result in atoms falling 

within 1.5 Å of any other atom already added to the surfactant layer. Molecules with atoms 

within 1.5 Å of other atoms in the surfactant layer are discarded and another random position 

is chosen. The addition of molecules to the surfactant layer terminates when the number of 

consecutive fails is more than twice the number of molecules already added to the surfactant 

layer. The ω was calculated from the resulting numbers of surfactant and water molecules 

(Table 6.1)  and  were approximately the same as the range of values which were explored 

experimentally with the model values at  ω  =  7.1,  12.8,  23.6  and experimental ω values =  

5.3, 15, 25. The precise reproduction of ω values proved challenging. The droplet was 

solvated with the iso-octane solvent box as prepared in (6.2.2), using the loadoff command. 

Sodium counter-ions were added to ensure the overall charge on the droplet was neutral. The 
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droplet was then minimised alleviating bad interactions between the molecules. This initial 

minimisation was continued at constant pressure until the density of the droplet stabilised 

(Table 6.2).  This ensured that any gaps present between the layers of molecules on initial 

construction of the droplet would be eliminated and the minimisation at constant volume 

could proceed without voids appearing in the droplets. Three droplets were constructed at 

varying ω values and were repeated two times, using a random number generator to give 

different velocities to all of the atoms at the start of the simulations. 

ω 7.1 12.8 23.6 

H2O  353 1060 3658 

AOT  50 83 155 

octane  1676 3458 5645 

total 2079 4601 9458 

 

Table 6.1:  A table of the number of molecules in the AOT/water/iso-octane RMs at varying ω 

ω minimisation time / ps no. of steps density   tstart  density   tfinal 

7 500 250000 0.4743 0.7347 

13 500 250000 0.5133 0.7193 

24 945 242400 0.5389 0.7204 

 

Table 6.2: A table of minimisation times and resulting densities for AOT/iso-octane/water 

droplets at varying ω values  

 

AOT/iso-octane/water/pentanol RMs were prepared using the same methods and procedures 

as of the AOT/iso-octane/water RMs,
15,18

 with the number of molecules in each RM shown in 

Table 6.3. After adding the surfactant layer, a layer of pentanol molecules was added, using 

the same procedure. The droplet was then solvated with the iso-octane solvent box (6.2.2). 
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The initial minimisations were at constant pressure until the density of the droplets stabilised 

(Table 6.3). A total of three droplets were constructed at varying ω values and repeated twice.  

ω 7.4 11.8 23.3 

H2O  369 1086 3642 

AOT  50 92 156 

octane  2813 5348 8009 

pentanol 480 670 1023 

total 3712 7196 12830 

 

Table 6.3:  A table showing the number of molecules in the AOT/pentanol/water/iso-octane 

RMs 

CTAB/hexanol/water RMs were constructed using the same method as the AOT/water/iso-

octane RMs. However, after surrounding the water droplet with a layer of CTAB surfactant, a 

layer of hexanol was added prior to solvating with a hexanol solvent box (Table 6.4). After 

the minimisation at constant pressure the resulting droplet density stabilised at 0.8025 g cm
‒3

. 

ω 7.2 

H2O  1980  

CTAB  279 

hexanol  4697  

total 6956 

 

Table 6.4: A table showing the number of molecules in the CTAB/hexanol/water RM at ω = 7.2 

 

The time taken to carry out the simulations was dependent on the number of molecules and 

therefore the size of the droplet.  Smaller droplets such as AOT/water/iso-octane at ω = 7, 

required 2 days to simulate 1ns, whereas 2 days were needed to simulate 0.5 ns for the larger 
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RMs, AOT/pentanol/water/iso-octane at ω = 24. The longest computational times were for 

ctab/hexanol/water droplets, where less than 0.5 ns of simulation time was obtained in 2 days.  

6.2.4.  Analysis  

 

The program Visual Molecular Dynamics (VMD)
21

 and InsightII
22

 were used to visualise and 

to obtain the moments of inertia of the RMs. The values of the semi-axes, a,b and c could 

then be evaluated, using eq 6.1, where I1, I2 and  I3 are the moments of inertia and M is the 

mass of the RM.
5
 

                                   

 

 

 22

3

22

2

22

1

5

1

5

1

5

1

cbMI

caMI

baMI







                                  eq 6.1   

The eccentricity was then calculated using eq 6.2, to determine if the RMs were e = 0 for 

perfectly spherical RMs, or tending towards e = 1 for prolate or oblate ellipsoidal RMs or 

cylindrical RMs.
5
  

                                     
2

2

1
a

c
e                  eq 6.2    

The computer program  InsightII
22

 was used to determine the number and types of molecules 

present in the area around surfactant and the water molecules at distances of 3, 5 and 7 Å. 

This provided an estimation of the number of interfacial hexanol molecules of the 

CTAB/water/ hexanol RM.  It also enabled the position and numbers of pentanol molecules to 

be determined in the micellar interface in the AOT/water/iso-octane/pentanol RMs.  
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6.3. Results and Discussion 

 

6.3.1. AOT/iso-octane/water Droplets 

 

The AOT/iso-octane/water RMs (Figure 6.1) shows AOT (yellow) as a space-filled CPK 

representation and water (blue) as a space-filled van der Waals representation.  At t = 28 ns 

and ω = 7.1, 12.8 and 23.6, the semi-axes a = 26.1, 32.5 and 43.6 Å and the semi-axes c = 

18.4, 25.9 and 39.2 Å with the eccentricities of e = 0.7, 0.6 and 0.4 respectively, indicating the 

RMs were ellipsoidal. 

 

Figure 6.1:  Images of the AOT/iso-octane/water RMs at ω = 7.1 (a), 12.8 (b), and 23.6 (c)  

showing the AOT (yellow) and water (blue) molecules with at t = 28 ns. 
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semi-axis / Å ω = 7.1 ω = 12.8 ω = 23.6 

a 25.1 ± 1.2 

 

32.2 ± 1.1 44.2 ± 1.0 

b 22.2 ± 0.7 29.1 ± 0.8 41.6 ± 0.7 

c 19.8 ± 0.9 26.8 ± 0.7 39.1 ± 0.9 

eccentricity 0.6 ± 0.08 0.55 ± 0.07 0.46 ± 0.06 

 

Table 6.5: A table showing the mean average lengths of the semi-axes and the eccentricities for 

the AOT/iso-octane/water RM at varying ω. 

 

The average length of the semi-axes and the standard deviations for the RMs at ω = 7.1, 12.8 

and 23.6 are shown in Table 6.5.  The Rh of AOT/iso-octane/water RMs from PFG 

experiments at ω = 5.3 were 2.6 nm at infinite dilution (4.3.1), which is comparable with the 

values determined in the molecular simulations at ω = 7.1 (Table 6.5). The plots showing the 

variation in the lengths of the semi-axes and the eccentricities for ω = 7.1, 12.8 and = 23.6 are 

shown in Figure 6.2. 

 

The plot of the length of the semi-axes as a function of time for the droplet at ω = 7.1 (Figure 

6.2 (a)) showed larger fluctuations with semi-axes a and c than semi-axis b. The fluctuations 

also correlated with each other (Figure 6.2(a)) indicating that the RM is oscillating between an 

oblate and more spherical shape. This is reflected in the eccentricity (Figure 6.2(b)), reaching 

a maximum of 0.8 at t = 5.5 ns, forming an oblate shape and a minimum of 0.36 at t = 18 ns, 

tending towards a spherical shape. The molecular simulation, however, needs to be 

equilibrated for a significantly longer duration to determine if the fluctuations in the 

eccentricity are cyclic. 
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Figure 6.2:  Plots showing the lengths of the semi-axes and the eccentricities obtained from the 

molecular simulations of the AOT/iso-octane/water RM at ω =7.1 (a) and (b), ω = 12.8 (c) 

and (d) and ω = 23.6 (e) and (f).  
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There were greater shape fluctuations observed at ω = 7.1 than at ω = 12.8 and 23.6 as 

observed from (Figure 6.2 (c ‒ f)) with the eccentricity decreasing and becoming more 

spherical with as a function of ω (Figure 6.3). 

 

Figure 6.3: A plot showing the eccentricity of RMs as a function of ω. 

 

Molecular simulations of the AOT/iso-octane/water RMs at ω < 5 have been previously 

reported as increasingly elliptical in shape.
8,23

 Vasquez et al.
8
 also observed greater 

fluctuations or oscillations in shape at values of  ω < 5 in the AOT/iso-octane/water system 

and attributed this to the increasing dynamic behaviour of the RM with decreasing ω. These 

molecular simulations were different to those used here as the CHARMM27 forcefield
8
 was 

used and a united atom approach was used to construct an 8-atom iso-octane solvent 

molecule,  rather than using the whole solvent molecule of 26 atoms, as used to construct the 

solvent box in this study.  In a previous molecular simulation study of AOT/water droplets at 

a comparable ω of 8.3, the RMs were observed to be perfectly spherical.
15

  This was without 

the addition of a solvent. Therefore, it may be that the solvent also influences the curvature of 

the interface. As the RM decreases in size, the chains of the branched iso-octane may cause 

restriction to how the AOT surfactant headgroup embeds in the interface, hence influencing 
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the curvature. It would be interesting to observe how the solvent n-octane affects the shape of 

the RM in the AOT/water/n-octane system at ω < 10, as this unbranched and more flexible 

solvent molecule may be more sterically favourable with the surfactant tails in the interface 

and have less influence on restricting the curvature of the RM. All the molecular simulations 

in the literature are based on using iso-octane or no solvent boxes.  

 

There was no free AOT monomer observed throughout the molecular simulations of the 

AOT/water/iso-octane RMs, with the surfactant consistently remaining in the interface. This 

is contrary to what was observed in previous experiments (4.3.1) where at ω > 10 and low 

droplet fractions of 0.05, two populations of AOT molecules were observed diffusing at two 

different rates (4.3.1). The two populations of AOT molecules were interpreted to be from the 

RM and from monomers, which were present in the continuous phase. One explanation why 

no AOT monomers were observed in the molecular simulations at ω = 12.8 and 23.6, may be 

due to the simulation being a single RM and the free AOT observed in the previous 

experiments being the result of micellar collisions. Alternatively the molecular simulation 

may need longer equilibration times as the molecular exchange observed in (4.3.3) was 

observed on a millisecond timescale.  

ω No. of water molecules  % 

7.1 3 0.9 

12.8 8 0.8 

23.6 13 0.3 

 

Table 6.6: A table of the number of water molecules in the continuous phase observed after 30 

ns.  
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There was a decrease in the percentage of free water molecules observed in the continuous 

phase with increasing ω (Table 6.6). The presence of water in the iso-octane continuous phase 

seems surprising, as it is contrary to what is expected. The polar water molecules would take a 

natural preference to reside in the RM core, rather than in the non-polar solvent. Therefore, 

the observation of free water molecules here may be the result of a limitation within the 

simulation.   

 

6.3.2. AOT/ iso-octane/water/pentanol Droplets 

 

The AOT/water/iso-octane and AOT/water/iso-octane/pentanol RMs were intended to be 

constructed at the same ω, so that the systems could be compared. The number of water 

molecules in the AOT/water/iso-octane/pentanol RMs differed slightly from the AOT/water 

/iso-octane RMs, due to the nature of the solvateshell command. There was, therefore, a slight 

variation in the ω values. There was also limited control on the number of pentanols added. 

The AOT/water/iso-octane/pentanol RMs formed different shapes and displayed different 

behaviour than the RMs in the AOT/water/iso-octane systems (6.3.1). The molecular 

simulations at ω = 7.4 illustrated the RM initially developing from an oblate ellipsoid to a 

prolate ellipsoid RM (Figure 6.4), with a proportion of pentanol molecules affecting the 

packing at the interface.  Oblate ellipsoids have 2 longer and 1 shorter semi-axes (a=b>c), 

whereas prolate ellipsoids have one longer and 2 shorter semi-axes (a>b=c). 
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Figure 6.4: An AOT/iso-octane/water/pentanol RM at ω = 7.4. The AOT molecules (yellow) 

and water (blue) molecules are shown in a CPK space-filling representation. Free water 

molecules are shown in the continuous phase. 

 

semi-axis Mean average / Å Standard deviation / Å 

a 43.27 9.9 

b 19.97 1.9 

c 16.99 1.34 

eccentricity 0.89 0.08 

 

Table 6.7: A table showing the mean average lengths for the semi-axes in the AOT/iso-

octane/water/pentanol RM at ω = 7.4 up to 28 ns. 
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Figure 6.5: Plots showing the lengths of the semi-axes (a) and the eccentricity (b) obtained for 

the AOT/iso-octane/water/pentanol RM at ω = 7.4.  

 

There was a slight decrease in semi-axes b and c and a sharp increase being observed in semi-

axis a from 23.5 to 60 Å, which is also indicated by an increase in the standard deviation and 

a sharp increase in the eccentricity to 0.9  (Table 6.7 and Figure 6.5(a)).  At t = 32 ns, the 

droplet split into two smaller droplets. As smaller droplets were formed from the splitting of 

the original RM, the ω value of 7.4 changed to 8.5 and 4 for the smaller droplets due to the 

variation in the ratio of surfactant to water molecules. The lengths of the droplets semi-axes 

changed to 3.5 nm and 1.5 nm respectively with the semi-axes b and c remaining constant at 

1.8 and 1.5 nm, indicating that the larger droplet remained prolate, whereas the smaller 

droplet was more spherical in shape.  
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Figure 6.6: An AOT/iso-octane/water/pentanol RM at ω = 7.4 at t = 13.5 ns. The AOT 

molecules (yellow) and water (blue) molecules are shown in a CPK space-filling 

representation. The pentanol molecules (red) are shown as a van der Waals representation. 

 

Chen et al.
24

 discussed how when the packing parameter, Sp > 1, then RMs are formed with a 

negative curvature (See 1.1.1). Alcohols can cause an increase in negative curvature, 

depending on the chain length.
11

 In the case of pentanol, the headgroup surface area (𝑎0) will 

have less effect than the volume of the tail group (υ) on the packing factor relationship, (Sp) = 

υ / (𝑎0𝑙).
11,24-26

  Therefore as there is an increase in Sp and the negative curvature, there is the 

formation of smaller droplets.
24

 The pentanol molecules are more densely populated at the 

ends of the RM, where there is a higher curvature (Figure 6.6). The molecular simulation 

needs more time to observe if the oblate droplet at ω = 8.5 splits further to make two droplets 

similar to the spherical droplet of ω = 4, tending towards a monodisperse rather than 

polydisperse microemulsion. 
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Over the simulation period, the number of pentanol molecules in the interface varied as shown 

in Figure 6.7, resulting in a pentanol : AOT ratios stabilising at 1 : 1.2 before the droplet split 

occurred. 

 

 

Figure 6.7:  A plot showing the ratios of AOT: pentanol and the number of pentanol molecules 

within the given distance of the AOT molecules at ω = 7.4. The red line indicates where the 

droplet split. 
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At ω = 11.8, similar behaviour was observed as with the droplet at ω = 7.4. At t = 16 ns, the 

RM split into 2 smaller droplets as shown in Figure 6.8 and Figure 6.9.  There was an increase 

in semi-axis a from 32 to 59 Å, with the RM changing from an ellipsoidal to a transitional 

rod-like RM, over a shorter period of 15 ns, with the eccentricity tending towards 1 (Figure 

6.10). The increase in semi-axis a, shown in Figure 6.10 from t = 16 ns, therefore includes the 

distance between the two droplets. 

 

Figure 6.8: Images of the AOT/iso-octane/water/pentanol RM at ω = 11.8, showing the AOT 

(yellow) and water (blue) molecules, shown in van der Waals representations. 
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Figure 6.9: An image showing the AOT (yellow - CPK) and pentanol molecules (red-van der 

Waals representations) within a 5 Å distance of the water molecules (blue-CPK) in the 

splitting AOT/iso-octane/water/pentanol RM, at ω = 11.8 and t = 15.5 ns. Pentanol and water 

molecules are shown present in the continuous phase.  

 

Figure 6.10: Plots showing the lengths of the semi-axes (a) and eccentricity (b) for the AOT/ 

iso-octane/water/pentanol RM at ω = 11.8 up to 15 ns. The dotted line indicates the time at 

which the droplet split.  
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The ω values of the smaller droplets were determined as 10.2 and 12.5 with semi-axis a = 2 

nm and 2.5 nm respectively. The values for semi-axes b and c were 2.82 nm and 2.27 nm 

respectively, which were similar to semi-axis a, indicating that the smaller droplets formed a 

spherical shape after splitting. It has been previously reported that smaller RMs are formed in 

AOT/water/alkane microemulsions with pentanol as a co-surfactant, than those without 

pentanol.
9,11

 The AOT/water /pentanol/iso-octane systems were investigated and characterised 

in chapter 5 and it was found that the RMs diffused at a faster rate than the systems without 

pentanol. The changes in viscosity were determined after considering the molecular exchange 

taking place between the pentanol molecules in the RM interface and continuous phase using 

methods previously developed.  However, the Rh values were still smaller for RMs with 

pentanol compared to those in the AOT/water iso-octane systems. The formation of smaller 

droplets in the AOT/pentanol/water/iso-octane systems at ω = 7.4 and 11.8 may be an 

explanation for observing faster diffusion coefficients for the interfacial AOT molecules from 

the NMR experiments in (5.3.1). The changes in the diffusion coefficients may also be due to 

a variation in the viscosity of the continuous phase due to the presence of pentanol.  

 

 

 

 



196 

 

 

Figure 6.11: A plot showing the AOT: pentanol ratios and the number of pentanol molecules 

within the given distance of the AOT molecules at ω = 11.8 with the red line indicating when 

the droplet split. 

 

The ratios of AOT: pentanol molecules at distances of 3, 5 and 7 Å from the AOT molecules 

are shown in Figure 6.11.  Before the droplet split, there was a slight increase in the number 

of pentanols in the interface at 15 ns. As the two droplets formed, there was an initial decrease 

in the number of interfacial pentanol molecules.  The two droplets are comparable in size with 

droplet 1 and 2 formed from 44 and 48 AOT molecules, respectively, with a ratio of AOT: 

pentanol molecules of approximately 1 : 2 (Table 6.8).  

Time /ns No. of interfacial 

pentanol molecules 

droplet 1 

 

No. of interfacial 

pentanol molecules 

droplet 2 

Ratio       

AOT: pentanol 

droplet 1 

Ratio       

AOT: pentanol 

droplet 2 

15.5 89  94 1 : 2.02 1 : 1.95 

20 73 88 1 : 1.66 1 : 1.83 

25 86 87       1 : 1.95 1 : 1.81 

28 71 85 1 : 1.61 1 : 1.77 

30 76 78 1 : 1.72 1 : 1.62 

 

Table 6.8:  A table showing the number of pentanol molecules within 5Å of the AOT molecules.  
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The ratio of AOT: pentanol in droplet 1 fluctuates over time but there is a decrease in the ratio 

in both droplets (Table 6.8). The simulations needed more time to reach a steady state, to 

establish the final numbers of interfacial AOT and pentanol.  

 

At ω = 23.3, there was less fluctuation in the overall RM shape, than with the RMs at ω < 12 

over the simulation period of 30 ns (Table 6.9, Figure 6.12 and Figure 6.13). 

 

Figure 6.12: An AOT/iso-octane/water/pentanol RM at ω = 23.3. The AOT (yellow) and 

pentanol molecules (red) are within 5 Å of water molecules (blue). 

semi-axis mean average / Å standard deviation / Å 

a 58.3 4.7 

b 50.9 2.3 

c 42.9 2.4 

eccentricity 0.66 0.08 

 

Table 6.9: A table showing the mean average lengths for the semi-axes in the AOT/iso-

octane/water/pentanol RM at ω = 23.3. 
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Figure 6.13: Plots showing the lengths of the semi-axes (a) and eccentricity (b) for the AOT/iso-

octane/water/pentanol RM at ω = 23.3. 

 

The formation of smaller droplets was observed breaking away from the original RM (Figure 

6.12). Therefore as ω increased, the RM retained more of its original form. This may be one 

explanation why the difference between diffusion coefficients in systems with and without 

pentanol decreases at higher ω values, which was observed in the PFG experiments in 5.3.1.   

 

More water molecules were observed in the continuous phase (Table 6.10) compared to the 

RM without pentanol (Table 6.6) in the system for all the droplets, with a decrease of 84, 81 

and 89% of water molecules in the AOT/water/iso-octane RMs compared to AOT/water/iso-

octane /pentanol RMs at the same ω values. There may be two reasons for there being more 

water in the continuous phase, one being that as the pentanol makes the interface more 

flexible and the increase in the negative, inward curvature may have the effect of forcing 

water molecules out of the core of the droplet. The water will also move into the continuous 
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phase more favourably, than in the system without pentanol, as hydrogen bonds are formed 

between the water and pentanol molecules.  Clusters of pentanol and water molecules can be 

observed in the continuous phase in Figure 6.9. 

ω No. of water molecules  % 

7.4 21 5.7 

11.8 45 4.1 

23.3 97 2.7 

 

Table 6.10: A table of the number of water molecules in the continuous phase observed after 30 

ns.  

 

6.3.3. CTAB/hexanol/water Droplets 

 

The CTAB/hexanol/water droplet changed from a spherical to an oblate shape after 27.5 ns, 

as observed from the images showing the RM with CTAB and water molecules only (Figure 

6.14). A significant proportion of water molecules moved into the continuous phase of 

hexanol molecules over the simulation period. 

 

Figure 6.14: Images of the CTAB/hexanol/water RM at ω = 7.2, showing the CTAB (green) and 

water (blue) molecules viewing along the x (a), z (b) and y (c) axes at t = 27.5 ns.  
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Figure 6.15: Plots showing the lengths of the semi-axes (a) and eccentricity (b) for the 

CTAB/water/hexanol RM at ω = 7.2   

 

The eccentricity of the droplet increased from 0.4 to 0.88 over the simulation time (Figure 

6.15(b)) with the semi-axes a and b increasing to 65 and 56 Å, respectively, with semi-axis c 

remaining stable at 31 Å (Figure 6.15(a)). The splitting of the droplet into smaller droplets is 

reflected by the continuing steady increase in the length of the semi-axes a and b. The 

molecular simulations need to be continued for longer periods to reach a steady state. The 

hydrodynamic radius of the CTAB/hexanol/water RMs obtained from NMR diffusion 

measurements was 1 nm, which is smaller than the semi-axes observed here. However one 

explanation for this may be that the development of smaller RMs continues from the original 

droplet over longer simulation times. A smaller droplet shown in Figure 6.16, shows the 

CTAB (green) and hexanol (purple) molecules forming the interface of the droplet around the 

water molecules (red and white).  
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Figure 6.16: An image of a smaller droplet formed from a CTAB /hexanol/water RM. (CTAB = 

green; hexanol = purple in CPK representation;water = red / white molecules as a van der 

Waals representation. 

 

This droplet has a radius of approximately 1.8 nm, which is more comparable with the Rh 

determined from the NMR diffusion measurements. It has a ω value of 4, being formed of 8 

CTAB molecules and 32 water molecules with 18 hexanol molecules forming the co-

surfactant, with a CTAB : hexanol ratio of 1: 2.25.  
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A second droplet constructed at the same value of ω also illustrates how the RM changed 

from an oblate shape into forming smaller droplets (Figure 6.17). The new ω values for the 

smaller droplets, 1 to 4, (Figure 6.17) were 4, 4.2, 4.2 and 2.7, respectively.  

 

 

Figure 6.17: A repeated CTAB/water/hexanol simulation, showing the formation of smaller 

droplets 1- 4; green = nitrogen atoms from CTAB molecules; blue = hydrogen atoms from 

water molecules. 
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As well as exploring the shape and behaviour of the RM the molecular simulation was also 

used to observe the number of hexanol molecules which were present in the interface as the 

co-surfactant (Table 6.11).  

radius / Å CTAB hexanol ratio of CTAB:hexanol interfacial water 

3 279 1133 4.1 1473 

5 279 1402 5.0 1688 

7 279 1865 6.7 1713 

 

Table 6.11: A table showing the number of hexanol and water molecules within a given radius 

of the CTAB molecules at t = 20 ns. 

 

This was achieved by isolating and counting the number of hexanol molecules within a 

distance of 3, 5 and 7 Å of the CTAB nitrogen atom, encompassing the molecules at varying 

thickness of the interface (Figure 6.18). These methods have been used previously in CTAB 

quarternary systems to determine the number of interfacial co-surfactant molecules.
7
 

 

Figure 6.18: Images of the CTAB/hexanol/water droplet, with hexanol molecules (purple) at a 

radius within 5 Å of CTAB nitrogen atoms. CTAB shown (green) (a) and CTAB hidden (b) 
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The ratio of CTAB : hexanol in the interface was determined as 1 : 6 and 1 : 6.7, from 

analysing the number of pentanol molecules at distances of  5 Å and 7 Å from the CTAB 

nitrogen atoms. The formation of smaller droplets from splitting of the original RM is due to 

hexanol molecules moving into the micellar water, as observed at a 1 nm slice shown at 5 nm 

through the yz plane (Figure 6.19).   Further analysis on molecular simulations at longer times 

is required to determine the number of interfacial hexanol molecules. 

 

Figure 6.19: Images of the the CTAB/hexanol/water droplet at 25 ns showing the water 

molecules forming fragmenting droplets(a), and the hexanol and water molecules (b) through 

the zy plane and a  slice through the centre of the droplet at 5 nm in the xy plane (c). The slice 

at 5 nm shows the hexanol molecules (purple) residing centrally through the RM. 

CTAB;green, water;blue  

 

6.4. Conclusions 

 

The molecular simulations demonstrated the molecular interactions between the RM, solvent 

and co-surfactant molecules in the continuous phase and the effects on the resulting RM shape 

fluctuations.   The molecular simulations of the AOT/iso-octane/water showed that the RMs 
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were ellipsoidal in shape with the eccentricity decreasing as a function of ω. When pentanol 

was added to the system to form the AOT/iso-octane/water/pentanol RMs, a proportion of 

pentanol was observed present in the interface and initially at ω < 12, rod-like RMs were 

formed, before splitting into two smaller droplets. The formation of smaller droplets, as well 

as changes in the viscosity of the continuous phase, may be one explanation why faster 

diffusion coefficients were observed for AOT molecules in AOT/water/pentanol/iso-octane 

RMs in (5.3.2) compared to RMs without pentanol. At higher ω, the AOT/water/pentanol 

/iso-octane RM was ellipsoidal and over the simulation period of 30 ns, smaller clusters of 

AOT/water/pentanol were observed breaking away into the continuous phase.  

 

The CTAB/hexanol/water droplets initially formed an oblate shape. Smaller droplets were 

then observed forming and breaking away from the original RM, with Rh values more 

comparable with the values determined from the PFG experiments in (3.3.4). The ratio of 

CTAB : hexanol in the interface was determined at 1: 6. Due to using an all-atom solvent box, 

which was necessary as the hexanol is the co-surfactant as well as the continuous phase in the 

system, the molecular simulations required significant computer time and resources. 

Therefore CTAB/hexanol/water droplets need longer simulation times to reach the 

equilibration point and to observe whether more small droplets are formed from the original 

droplet. A more complete analysis of the aggregation numbers and sizing of the 

CTAB/hexanol/water droplets can then take place. 
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7. Concluding Remarks and Further Work 
 

 

The sizes and dynamics of AOT/n-octane/water, CTAB/hexanol/water and AOT/iso-

octane/water/pentanol reverse micelles (RMs) were probed using PFG measurements of 

diffusion. Where many studies have explored the diffusion behaviour of the water molecules 

in RMs, the work in this thesis has analysed the diffusion of the surfactant molecules. The 

molecular exchange of surfactant and co-surfactant molecules has also been observed, when 

changing the PFG experimental parameters. As well as determining the average sizes of 

RMs, the inverse Laplace transform (ILT) has also been implemented to obtain size 

distributions in 1D diffusion experiments. Therefore diffusion, relaxation and  exchange 

processes can now be further explored using 2D diffusion exchange spectroscopy 

(DEXSY)
1-3

 and relaxation exchange spectroscopy (REXSY)
1
 experiments, which also 

implement the ILT.  

 

DEXSY experiments
1-3

 are useful when there are two populations of a molecule diffusing at 

two different rates, which are partitioned and exchanging between different phases, such as 

the co-surfactant and surfactant molecules in microemulsions.  A DEXSY experiment 

comprises of two PGSE pulse sequences separated by a mixing time, τ, whereby two 

diffusion coefficients are obtained and are compared.
1
  The mixing times can be varied and 

the diffusion behaviour monitored. If there is one population of molecules diffusing at a 

single rate then cross-diagonals will be observed on a (D1, D2) map, formed from applying 

the ILT, to give 2D distributions of diffusion coefficients.
2,3

 However if there are two 

populations of molecules diffusing at two different rates, then after specific mixing times, 
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off-peak diagonals would be observed.
2,3

  If the experiments are repeated at different mixing 

times then exchange rates between the molecules can be determined.  REXSY experiments
1
 

have the same format and analysis as DEXSY experiments, however two CPMG pulse 

sequences measure two relaxation times,  which separated by a mixing time (τ). If a 

molecular species has two populations which have two T2 relaxation times, due to existing 

in different phases of a system, then like the DEXSY experiments, off-diagonal peaks would 

be observed on a (T2,T2) map
1,4

 and the exchange rates between the phases could be 

determined. The molecular exchange processes of the surfactant molecules, AOT and 

CTAB between the dispersed and continuous phases need further investigation. The 

diffusion behaviour of the co-surfactant pentanol in the AOT/iso-octane/water has been 

explored in this thesis.   However as the attractive interactions increase as a function of 

alcohol chain length,
5
  the variation and trends in diffusion  and exchange of the molecules 

in AOT systems with varying alcohols could be probed and further rationalised.  

 

NMR techniques were used to explore the acid-catalysed chemical exchange in the 

AOT/iso-octane/water/pentanol microemulsion, where the coalescence of the water and the 

pentanol hydroxyl peaks were observed with decreasing pH at specific ϕd. However as the 

system was diluted, the composition of the continuous phase changed and further work is 

now required to keep the composition of the continuous phase constant in the systems at 

varying ϕd, which could include using titrations to ensure that the ratios of alcohol co-

surfactant to alkane solvent is consistent in microemulsions at varying ω.  Further 

investigations can then take place to observe the capability of pentanol molecules to monitor 

the changes of the pH in RMs at ω ≥ 10. 
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The molecular interactions between the dispersed and continuous phases have been 

observed in molecular simulations of the RMs from the systems, which were explored in the 

PFG experiments. It was important to use all-atom forcefields to construct the solvent boxes 

in molecular simulations of RMs, particularly when the solvent acts as the co-surfactant, as 

in the CTAB/hexanol/water system. The effects of the solvent and co-surfactant molecules 

on the fluctuations of shapes could be fully observed. The molecular simulations of the RMs 

in the AOT/iso-octane/water system showed that the RMs became more spherical as a 

function of ω and the RMs at comparable ω with added pentanol developed into cylindrical 

shapes, before splitting into smaller RMs. The results from the PFG experiments were in 

agreement with the molecular simulations.   The CTAB/hexanol/water RMs were initially 

oblate, but smaller droplets were observed forming, as the hexanol co-surfactant penetrated 

the micelle interface. The molecular simulations need to be continued for longer times, so 

the system reaches equilibrium and the final number and sizes of smaller droplets can be 

determined. The CTAB/hexanol/water RMs could be constructed at varying ω, to compare 

the droplet sizes and shapes. Molecular simulations could also be run with AOT/n-

octane/water/pentanol to compare the resulting shapes of the droplets with the AOT/iso-

octane/water/pentanol system. The effects of different shaped solvent molecules penetrating 

the RM interface and any resulting changes in shape or size could be rationalised. Molecular 

simulations with different alcohols could be carried out to compare the changes in shapes or 

droplet sizes resulting from alcohols with different chain lengths. As there are more 

computer resources available, fully solvated RMs using organic solvent boxes constructed 

from all-atom forcefields can be simulated to probe systems at varying compositions, with 

different additives and at varying pH values. Hence, the shapes, sizes, aggregation numbers 

and molecular exchange processes can be probed in a wider range of microemulsions.  
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APPENDIX  I   

 

The preparation of AOT/n-octane/water microemulsions 

 

To make a 1.5 M stock solution of AOT/n-octane, dissolve 111.14 g  into 70 ml of n-

octane. Scale amounts as appropriate. Note that the solution above needs to be left 

overnight to dissolve.  

The solutions for all values of ω are made at ϕd = 0.45, based on a stock solution of 1.5 M. 

The solutions are then diluted to the appropriate ϕd by adding extra octane. The origins of 

this method come from work with BZ-AOT reactions where reactants had to be initially 

partitioned and then diluted to the appropriate ϕd . 

Table of concentrations for the AOT/water/n-octane microemulsions 

To add to 6 ml of 1.5 M AOT/n-octane stock solution. Scale as appropriate. 

ω Volume of water/ ml Volume of octane / ml to make ϕd = 0.45  

5.3 0.8673 2.913 

15 2.454 4.852 

25 4.091 6.855 

35 5.727 8.853 

 

To dilute 1 ml of the solutions made at ϕd = 0.45, the following ratios were calculated, 

ϕd Volume n-octane/ ml 

0.25 0.8 

0.2 1.25 

0.15 2 

0.1 3.5 

0.05 8 
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APPENDIX II  

  

The preparation of AOT/iso-octane/water/pentanol microemulsions 

 

To make a 1 M stock solution of AOT/iso-octane, dissolve 11.12 g of AOT into 15.5 ml of 

iso-octane. 

Table of concentrations for the AOT/water/iso-octane/pentanol microemulsions  

These concentrations are added to 1 ml of 1 M AOT/iso-octane stock solution. 

ω Vol. of 1 M AOT/iso-octane / ml Vol. water/ml octane / ml         

ϕd = 0.45  

octane / ml            

ϕd = 0.15 

5.3 1 0.0954 0.138 2.895 

9.2 1 0.1674 0.249 3.303 

15 1 0.2702 0.352 3.885 

20 1 0.3604 0.462 4.396 

25 1 0.4504 0.572 4.906 

 

In 1 ml of 1 M AOT/iso-octane, there is 0.37988 ml AOT and 0.62012 ml of iso-octane 

To make solutions where χ = 0.75,   0.145 ml pentanol were added. 
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APPENDIX III 

 

The findings that have been discussed in Chapter 3 and the conclusions that have been 

drawn have been presented in the Journal, Langmuir, in a paper entitled “Sizing of Reverse 

Micelles in Microemulsions using NMR Measurements of Diffusion”.  

A copy of the paper can be found overleaf. 

dx.doi.org/10.1021/la300796u  

 

 



Sizing of Reverse Micelles in Microemulsions using NMR
Measurements of Diffusion
Susan J. Law and Melanie M. Britton*
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ABSTRACT: This paper reports the size of reverse micelles
(RMs) in AOT/octane/H2O and CTAB/hexanol/H2O micro-
emulsions using magnetic resonance (MR) pulsed field
gradient (PFG) measurements of diffusion. Diffusion data
were measured using the pulsed gradient stimulated echo
(PGSTE) experiment for surfactant molecules residing in the
RM interface. Inverse Laplace transformation of these data
generated diffusion coefficients for the RMs, which were
converted into hydrodynamic radii using the Stokes−Einstein
relation. This technique is complementary to those previously used to size RMs, such as dynamic light scattering (DLS) and
small-angle X-ray scattering (SAXS), but also offers several advantages, which are discussed. RM sizes, determined using the
PGSTE method, in the AOT (sodium bis(2-ethylhexyl) sulfosuccinate) and CTAB (cetyltrimethylammonium bromide)
microemulsions were compared with previous DLS and SAXS data, showing good agreement. Methods for determining number
distributions from the PGSTE data, through the use of scaling factors, were investigated.

■ INTRODUCTION

Reverse micelles (RMs) are composed of nanosized water
droplets sequestered by surfactants in a continuous organic
phase. These self-assembled structures form thermodynamically
stable droplets of water ranging in intramicellar diameter from
approximately 1 to 20 nm, depending on the molar water-to-
surfactant ratio (ω).1 The aqueous core of RMs provides a
highly adaptable environment for a variety of chemical and
biochemical reactions,2,3 protein extraction,4 synthesis of
nanoparticles,5 as well as providing a model for biological
systems.6,7 For all of these applications, an understanding of the
structure, size and polydispersity of the RMs is important, as
well as an understanding of how these vary with ω and/or the
presence of additional ions and molecules.
Dynamic light scattering (DLS), also known as photon

correlation spectroscopy or quasi-elastic light scattering, is an
extremely popular method8 used for determining the size of
RMs, as their hydrodynamic radii are typically in the
submicrometer range. In DLS, the temporal fluctuations of
light scattered by diffusing particles in liquid suspension are
measured, which are sensitive to the diffusive motion of the
particles. Analysis of the scattered light yields the diffusion
coefficients (D) of the particles in suspension, which leads,
where particles are spherical, to the hydrodynamic radii (Rh)
using the Stokes−Einstein relation, eq 1:

πη=D k T R/(6 )B h (1)

where η is the viscosity of the pure solvent, T is the
temperature, and kB is the Boltzmann constant.
While DLS is widely used to probe the size and size

distributions of submicrometer-sized particles, proteins, and
RMs, it is known to have a few limitations and drawbacks.9−12

It can struggle to find the correct particle size distributions in
systems, which contain polydispersed particles or droplets,
where their sizes range over several orders of magnitude. In
these systems, the contribution of light scattered from smaller
particles can be swamped by the light scattered by larger
particles. The technique is also sensitive to the presence of dust
particles, which produce bursts of high-intensity scattered light,
as the larger, unwanted light-scatterers move through the
illuminated sample.10,11 Thus it becomes necessary to either
completely remove all dust particles from the sample by
filtration or perform additional analysis of the data.11 However,
this can sometimes require considerable effort and is sometimes
not desirable or possible. Other problems arise when the
dielectric constant for the droplet matches the continuous
organic phase, a condition called the optical matching point,
where the droplets become invisible in light scattering
experiments.13 Also, extreme caution is required in the
transformation of the DLS data into number distributions,
which are the distributions typically reported. DLS generates an
intensity-weighted size distribution, which is converted in a
volume distribution, using Mie theory14 and then further
transformed into a number distribution. Unfortunately, when
using this method, small errors in data collection can lead to
large errors in the number distribution10,15 and is particularly a
problem when the polydispersity of the sample is high.16

Hence, conversion into number distributions is discouraged.17

An alternative method for measuring the diffusion
coefficients of RMs is the magnetic resonance (MR) pulsed
field gradient (PFG) experiment.18,19 This method is known20
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to provide accurate measurements of D and, while its analysis is
analogous to the DLS method, requiring the inverse Laplace
transform (ILT) and Stokes−Einstein relation to generate
particle size distributions from diffusion measurements, it offers
several advantages over DLS. First, MR methods are able to
probe optically opaque or particularly turbid solutions. MR
measurements are unaffected by the presence of dust particles
or by the dielectric constant13,21 of the constituents of the
microemulsion. MR can also distinguish between different
molecular species in a sample. A few studies have been reported
in the literature6,22−28 that measure the diffusion coefficients of
RMs using PFG experiments, probing the restricted diffusion of
molecules inside the emulsion droplet. These experiments have
typically yielded single, averaged diffusion coefficients for the
RMs by measuring the surfactant or cosurfactant signal and
fitting the data to the Stejskal−Tanner relationship29 (eq 2),
which have then been converted into a single average value for
the droplet size using the Stokes−Einstein relation. Droplet size
distributions have been generated from PFG data for
emulsions, by Ambrosone et al.30 using a nonlinear least-
squares fitting procedure and a “generating function” series.
Other emulsion droplet sizing studies31−33 use log-normal
distribution fitting procedures or regularisation methods based
on the distribution area or second derivative of the
distribution.34 However, to date, no studies have been reported
where droplet size distributions have been determined using
PFG methods for RMs in a microemulsion. Yet, PFG
measurements have been successfully combined with the ILT
to measure size distributions and polydispersity for poly-
mers,35,36 colloidal systems,37,38 and porous media.39

In this paper, we demonstrate for the first time the
application of PFG measurements with the ILT, to produce
droplet size distributions of RMs in sodium bis(2-ethylhexyl)
sulfosuccinate (AOT) and cetyltrimethylammonium bromide
(CTAB) microemulsions. Using this method, we investigate the
change in droplet size as a function of the water-to-surfactant
ratio, ω, volume droplet fraction, ϕd, composition and solution
age. While this paper has focused on the RMs formed using
AOT or CTAB surfactants, the methods described in this paper
can be readily adapted to investigate the size and distributions
for a variety of micelle, RM, and microemulsion systems. These
methods could also be developed into two-dimensional
techniques,40 providing insight into the dynamics of these
systems, mixing of material between droplets, and the exchange
of surfactant or water molecules between droplets.

■ EXPERIMENTAL SECTION
Reverse Micelle Preparation. A stock solution of 1.5 M AOT

(Fluka, ≥96%) in n-octane (Acros, 97%) was prepared by dissolving
111.14 g of AOT in 70 mL of n-octane. Microemulsions were prepared
at water-to-surfactant ratios of ω = 5.3−35 and at a droplet fraction of
ϕd = 0.15, by adding the correct volume of water (Nanopure filtered,
18 MΩ) to the 1.5 M AOT solution to produce the required ω and
diluting with n-octane to give ϕd = 0.15. By using a droplet fraction of
0.15, it is not necessary to make any correction for collisions, as would
be the case in more concentrated solutions. Diffusion measurements
were taken 2 h after the samples were prepared. Additional AOT
microemulsions were also prepared, which included additives and were
studied as a function of time and ϕd. The first

41,42 was prepared at ω =
15 and ϕd = 0.55, loaded with H2SO4 (Fisher >95%) = 0.4 M and
malonic acid (Alfa Aesar 99%) = 0.6 M. Diffusion measurements were
taken at t = 2 h and t = 24 h. The second43 was prepared at ω = 12 and
ϕd = 0.5, 0.4, 0.25, and 0.15, and was loaded with H2SO4 = 0.25 M,
malonic acid = 0.25 M, and NaBrO3(Alfa Aesar 99.5%) = 0.16 M.

Lastly, a CTAB/hexanol/water microemulsion was prepared with
CTAB (cetyltrimethylammonium bromide; Sigma ≥98%) and 1-
hexanol (Acros 98%) at ω = 7.2, and ϕd = 0.4, giving a 3:1 w % ratio of
CTAB/H2O.

44

Pulsed Gradient Stimulated Echo Experiments. 1H NMR
pulsed gradient stimulated echo (PGSTE) experiments20 were used to
measure the diffusion coefficients of the surfactant molecules in the
RMs. This method applies two magnetic field gradient pulses of
strength G and duration δ, which are separated by an observation time
Δ.45 In the case of diffusion, where molecular motion is incoherent,
molecular displacements over the time scale Δ produce a distribution
of phase shifts in the MR signal, resulting in an attenuation of the MR
signal. The MR signal is acquired over a range of G values, and a
diffusion coefficient can be calculated using the Stejskal−Tanner
relationship:

γ δ δ= − Δ −⎜ ⎟
⎡
⎣⎢

⎛
⎝
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where S(G) is the signal at gradient amplitude G, and S(0) is the signal
at zero gradient. In PGSTE experiments, a stimulated echo20 is used,
which stores the magnetization along the longitudinal axis during the
relatively long observation time, making it less susceptible to T2
relaxation. This is beneficial in samples where the T2 is significantly
shorter than T1, which is frequently the case for protons in surfactant
molecules in an RM. The stimulated echo experiment also has the
advantage over the equivalent spin echo (PGSE) experiment, of not
being so affected by peak distortions caused by J-coupling.46

PGSTE experiments were performed on a Bruker DMX300-
spectrometer equipped with a 7.0 T superconducting magnet,
operating at a frequency of 300.13 MHz. A 10 mm radiofrequency
resonator was used, and measurements were performed at 289 ± 0.3
K. A total of 64 signal averages were collected with a repetition time of
1s. Typical parameters used in these experiments were δ = 4 ms, Δ =
100 ms, with a maximum gradient, Gmax, of 0.9 T m−1, and 32 or 256
gradient steps, ensuring the signal attenuated so that S(G)/S(0) at
Gmax was ≤0.01. The gradient system was calibrated by measuring the
diffusion coefficient of n-octane. A value of 1.998 ± 0.01 × 10−9 m2 s−1

was measured at 289 ± 0.3 K, which is the expected value compared to
the previously reported temperature dependency of the diffusion
coefficient for n-octane.47 Diffusion data was collected for each system
using a proton resonance that was in or near the headgroup of each
surfactant. In the case of the AOT microemulsions, proton H3 on the
AOT molecule was used (Figure 1a), and, in the case of the CTAB

Figure 1. Molecular structure and numbering scheme for protons in
the AOT (a), CTAB (b), and hexanol (c) molecules.
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microemulsion, proton Ha on the CTAB molecule was used (Figure
1b). Using these data, average diffusion coefficients were obtained
using the Stejskal−Tanner relationship (eq 2), while diffusion
coefficient distributions were determined using the ILT.48,49 In the
ILT analysis, plots of G(D)D vs log(D) are produced, where G(D) is
the distribution function with respect to D. A constrained
regularization ILT method35,48−52 was used, which assumed G(D)
was non-negative and smooth, and the noise was additive, Gaussian,
and had a zero mean. The regularization parameter used was α, which
measured the smoothness of G(D). The optimal value of α, was
determined by repeating the ILT and measuring χ2, where χ is the fit
error, as a function of α.51,52 The lowest value of α was then chosen,
before χ2 rapidly increased, corresponding to the point where the
narrowest distribution was possible, without introducing spurious
peaks generated by fitting the noise.51 Typical signal-to-noise ratios,
calculated as the maximum signal divided by the standard deviation of
the noise, were around 65 for the H3 peak in the AOT microemulsions
and 1000 for the Ha peak in the CTAB microemulsions. Typical
PGSTE diffusion data, for the H3 peak in an AOT/octane/water
microemulsion, are shown in Figure 2. Hydrodynamic radii, Rh, were

determined from an average diffusion coefficient or diffusion
coefficient distribution using the Stokes−Einstein relationship (eq
1). Viscosity values of 0.563 and 5.85 cP were used for n-octane and
hexanol, respectively, at T = 290 K. Errors were determined from
analysis of the variation between repeated experiments for a given
system.
Dynamic Light Scattering. DLS measurements were performed

on a Delsa-Nano Submicrometer (Class 1 Laser) Particle Size
Analyzer. All solutions were filtered prior to measuring with a PTFE
filter membrane (VWR). The microemulsions were allowed to
equilibrate for 300 s at 290 K, and data was accumulated for 100 s
with five repetitions. The time domain correlation method was used
with CONTIN analysis.48 A refractive index of 1.3975 was used for n-
octane with a viscosity of 0.563 cP at 290 K. DLS measurements were
made for the AOT/n-octane/H2O samples at ω = 5.3 − 35 with a
droplet fraction of ϕd = 0.15. The number distribution is reported.

■ RESULTS
1H NMR spectra for the AOT/n-octane/water and CTAB/
hexanol/water microemulsions are shown in Figure 3. These

microemulsions have been previously characterized by NMR
spectroscopy44,53 and peak assignments for these spectra are
given in Table 1 for the AOT microemulsion and Table 2 for

Figure 2. PGSTE diffusion data for the H3 peak in an AOT/n-octane/
H2O microemulsion at ω = 15 and ϕ = 0.15, where Δ = 100 ms, δ = 4
ms, and Gmax = 0.9 T m−1. A total of 32 (a) or 256 (b) gradient steps
were collected, with 64 signal averages.

Figure 3. 1H NMR spectra of AOT/n-octane/H2O (a) and CTAB/
hexanol/H2O (b) microemulsions.

Table 1. 1H NMR Peak Assignments for AOT/n-Octane/
H2O Microemulsion

peak assignments δ/ppm

H8, H8′, H10, H10′, H(octane) 1.29
H5, H5′, H6, H6′, H7, H7′, H9, H9′, H(octane) 1.70
H1 4.61
H1′ 3.54
H3 4.52
H3′ 4.38
H4, H4′ 1.99
H2O 4.84

Table 2. 1H NMR Peak Assignments for CTAB/Hexanol/
H2O Microemulsion

peak assignments δ/ppm

Hf 5.09
H2O 4.48
Hg 3.54
Hb 3.42
Ha 3.22
Hc 1.79
Hh 1.56
Hd, Hi, Hj, Hk, 1.34
He, Hl 0.94
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the CTAB microemulsion. Figure 4a gives the average diffusion
coefficients for AOT surfactant molecules in the AOT/n-

octane/water system, following fitting of the PGSTE data to
the Stejskal−Tanner equation (eq 2). As the surfactant
molecule resides in the interface of the RM, these diffusion
coefficients provide a measure of the diffusion coefficient of the
RM. By using the Stokes−Einstein relation (eq 1), droplet sizes
for the RMs were calculated, as a function of ω, and are
presented in Figure 4b. Analysis of the DLS data for the
samples reported in Figure 4 gave average droplet sizes of 1.2 ±
0.3 nm at ω = 5.3; 1.65 ± 0.5 nm at ω = 15; 3.15 ± 0.8 nm at ω
= 25 and 3.9 ± 1.1 nm at ω = 35.
ILT of PGSTE data produces a distribution of diffusion

coefficients (Figure 5a), which have been converted into a
distribution of molecular sizes (Figure 5b,c) using the Stokes−
Einstein equation (eq 1). Analysis of the distribution maxima
for the 32 gradient step (Figure 5b) PGSTE data produced Rh
values of 6.5 ± 0.5 nm at ω = 5.3; 7.5 ± 0.7 nm at ω = 15; 9.1
± 0.8 nm at ω = 25; and 11.8 ± 2 nm at ω = 35. Rh values for
the 256 gradient step (Figure 5c) PGSTE experiments yielded
values of 6.3 ± 0.5 nm at ω = 5.3; 7.8 ± 0.7 nm at ω = 15; 8.9
± 0.8 nm at ω = 25; and 14.7 ± 2 nm at ω = 35.
The effect of additives on the size and stability of RMs was

investigated by measuring diffusion coefficients and determin-
ing droplet size distributions for two AOT/n-octane/water
microemulsions loaded with H2SO4 (0.4 M) and malonic acid
(0.6 M)42 or H2SO4 (0.25 M), malonic acid (0.25 M), and
BrO3

− (0.16 M)43 as a function of time and droplet fraction,
respectively. These systems are known42,43 to produce bimodal
droplet size distributions, which become unimodal after time42

(t ≥ 24 h) or lower droplet fraction43 (ϕd < 0.5). Droplet size

distributions determined using PGSTE measurements are
presented in Figure 6 for the system previously investigated
by Vanag et al.42 for fresh and 24 h old samples. Figure 7 shows
the size distributions of RMs in the system previously
investigated by Alvarez et al.,43 at varying droplet fractions.

Figure 4. Plots of the average diffusion coefficient (a) and
hydrodynamic radii (b) for RMs in AOT/n-octane/H2O micro-
emulsions, at varying ω and ϕd = 0.15. The diffusion coefficients were
determined using the 32 gradient step PGSTE data from the H3
proton on the AOT headgroup and fitted to the Stejskal−Tanner
equation. Figure 5. Plots of the diffusion coefficient distributions (a) and droplet

size distributions using 32 gradient steps (b) and 256 gradient steps
(c) for RMs at varying ω in AOT/n-octane/H2O microemulsions at
ϕd = 0.15. The diffusion coefficients were determined using the
PGSTE data for the H3 proton on the AOT headgroup, using the ILT.
RM size distributions were generated from the diffusion coefficient
distributions using the Stokes−Einstein relation.

Figure 6. Droplet size distributions for RMs in the AOT/n-octane/
H2O microemulsion loaded with [H2SO4] = 0.4 M and [malonic acid]
= 0.6 M at ω = 15 and ϕd = 0.55 at 2 and 24 h after preparation. Size
distributions were produced by applying the Stokes−Einstein relation
to diffusion coefficient distributions produced by ILT of the PGSTE
data for AOT H3 proton. 32 gradient steps were used.
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Finally, the diffusion coefficients and droplet size distribu-
tions for the CTAB/hexanol/water microemulsion (ω = 7.2
and ϕd = 0.4) determined using PGSTE experiments, are
presented in Figure 8. A droplet size of 0.9 nm was determined
from the droplet size distribution.

■ DISCUSSION
Comparison of the RM size distributions using 32 or 256
gradients steps shows good agreement between the Rh values
produced. Yet, it can be seen, when comparing panels b and c
of Figure 5, that the width of the distribution is dependent on
the number of gradient steps acquired. As the width of the
distributions are sensitive to the number of gradient steps
collected, as well as the parameters used in the ILT, such as the
α value, we do not suggest that these results can be used to
determine the polydispersity of the RMs. However, even
though the distribution widths are seen to change, the Rh values
were not found to change significantly with these.
Comparisons between our Rh values were made with those

previously reported. RMs in AOT/octane/water microemul-
sions are some of the most studied in the literature, with a
number of papers reporting their size using DLS,54−59 small-
angle X-ray scattering (SAXS),60−62 and fluorescence correla-
tion spectroscopy (FCS),13 as a function or ω and ϕd. The sizes
typically reported using these methods are on the order of 2.5−

9.5 nm for ω values of 5−35 (Figure 9). By comparing our
PGSTE-determined droplet sizes with our DLS data and the

data previously reported, it is clear that our hydrodynamic radii
are larger. The origins of these differences are, as yet, unclear.
These discrepancies could lie in errors in the PGSTE data
associated with exchange of surfactant molecules, during the
observation time (Δ), between droplets of difference sizes.
However, as previous investigations of AOT/octane/water
microemulsions do not indicate the presence of larger RMs, it
seems unlikely that the error can arise simply from exchange. It
is possible that differences between PGSTE and DLS methods
could lie in the errors introduced during the conversion of DLS
data to number distributions. Indeed, the use of number
distributions is discouraged,17 although they are frequently
reported in the literature. Yet, this does not explain why our
values are larger than those determined by FCS and some
SAXS studies. Further investigation is required.
While our droplet sizes for the AOT/octane/water micro-

emulsions are larger than those previously reported, our values
for the microemulsions containing additives actually compare
well. In these systems, bimodal size distributions are produced,
as have been previously observed42,43 in DLS measurements. In
the system studied by Vanag et al.,42 the bimodal behavior was
observed in fresh samples, which become unimodal with time.
This behavior is also observed in the PGSTE data. In the fresh
sample, there were peaks at 1.3 and 25.8 nm, which compares
closely with the values observed by Vanag et al. of 2 and 20 nm.
At 24 h after mixing, the sample was unimodal, with an average
droplet size of 25.1 nm. This value is, however, significantly
higher than that observed by DLS, which measured a size
distribution centered at 3.6 nm. In the system previously
studied by Alvarez et al., a transition from bimodal to unimodal
size distributions was observed as a function of volume fraction,
rather than time. Bimodal behavior was observed at a ϕd value
of 0.5, with Rh values of 2.4 and 42.1 nm for the two peaks. This
behavior was previously observed by DLS, with peaks centered
at 2−3 nm and 20−30 nm.43 As ϕd was reduced, the system
became unimodal, and droplet sizes of 13.8 nm (ϕd = 0.40), 9.1
nm (ϕd = 0.25) and 5.2 nm (ϕd = 0.15) were observed.
Unimodal distributions have also been observed by DLS;
however, the peak for the distribution presented in ref 43 was
lower at 2−3 nm, although the volume fraction for the data was
not reported.
While the RM sizes show general agreement with previous

DLS measurements, there are differences with the distribution
of droplets. The origins of this lie in how the diffusion
coefficients of the RMs are determined and what the PGSTE
measures. Just as DLS measures intensity distributions, which

Figure 7. Droplet size distributions for RMs in the AOT/n-octane/
H2O microemulsion loaded with [H2SO4] = 0.25 M, [malonic acid] =
0.25, and 0.16 M [NaBrO3] at ω = 12, at ϕd = 0.15−0.5. Size
distributions were produced by applying the Stokes−Einstein relation
to diffusion coefficient distributions produced by inverse Laplace
transformation of the PGSTE data for AOT H3 proton. 32 gradient
steps were used.

Figure 8. Droplet size distribution for RMs in a CTAB/hexanol/H2O
microemulsion at ω = 7.2 and ϕd = 0.4. Size distributions were
produced by applying the Stokes−Einstein relation to diffusion
coefficient distributions produced by inverse Laplace transformation
of the PGSTE data for CTAB Ha proton. 32 gradient steps were used.

Figure 9. Plot of droplet size (Rh) dependence on ω for values
reported in the literature using DLS,56−59 FCS,13 and SAXS60−62

methods. *The values given for Rh were determined using the rw value
reported in ref 62 with 2 × 1.5 nm added to account for the width of
the surfactant layer around the water core.
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are then converted into number distributions, so PGSTE data
should also be scaled to produce a number distribution of
droplet sizes. Such scaling is necessary where the droplet size
ranges corresponded to a range of droplets containing different
amounts of surfactant molecules. Thus, if larger droplets
contain greater numbers of surfactant molecules, it is necessary
to take this into account. Hence, the droplet size distributions
need to be scaled in order to produce a number distribution.
In our experiments, droplet sizes are determined from

diffusion coefficients calculated from the PGSTE data of the
surfactant molecules, which are dominated by the diffusion rate
of the RM (where all surfactant molecules are located in the
RM). The surfactant molecules surround the water core of the
RM, so their number, Ns, is expected to increase proportionally
with rw

2 , where rw is the radius of the water core. As the PGSTE
signal is integrated over all surfactant molecules, it means that
surfactant molecules in larger droplets will contribute more to
the distribution of diffusion coefficients than smaller droplets.
In order to correct the droplet size distributions for this, it is
necessary to divide the relative amplitude by the number of
surfactant molecules, Ns, contributing to the PGSTE decay for
each droplet size (Rh). Calculation of Ns provides a method for
scaling the PGSTE data, leading to a number distribution of
RM droplet sizes. In order to determine Ns, the size of the
droplet core, rw, was first calculated for each value of Rh using
eq 3 and a value of 1.5 nm for δ, the thickness of the surfactant
layer.13

δ= +R r r( 3 )h w w
3 2 1/3

(3)

Using the size parameters determined previously54,63 for the
AOT/iso-octane/water system (Table 3), Ns was determined,

as a function of rw, for each value of Rh in the droplet size
distributions. Number distributions were then generated by
dividing the relative amplitude by Ns at each value of Rh. A
limitation with this method, however, is that it requires prior
characterization of the system. An alternative method to scale
the distributions would be to simply use rw

2 as a scaling factor
and include an offset to take into account the surfactant
aggregation number in the absence of water. Previous studies
have determined the aggregation number for AOT in iso-
octane to be 22.64 Using this, number distributions were
produced by scaling the data by (rw

2 + 22). This scaling,
however, assumes that the area (as) occupied by the surfactant
headgroup at the water core interface remains constant over the

range of droplet sizes observed, an assumption made by other
studies.13,21

Using both Ns and (rw
2 + 22) scaling methods, number

distributions were produced for the AOT microemulsions
containing additives, which are presented in Figure 10. These

distributions now show a higher proportion of smaller droplets,
compared to the unscaled distributions. The average RM sizes
for each mode are also slightly smaller. It should be noted that
this method of scaling may not be applicable in these systems,
as it assumes the larger droplets are also spherical, which may
not be the case. Further work is required to determine which is
the most appropriate scaling for these systems. However,
regardless of the precise details of the scaling used, our method
for determining number distributions of RMs in micro-
emulsions has advantages over the methods used for
determining size distributions in macroemulsions, which
probe the restricted diffusion of molecules contained inside
the droplets and hence require a scaling proportional to a3,
where a is the droplet radius.34

The need for a scaling factor also has further implications for
the accuracy of average diffusion coefficients calculated using
the Stejskal−Tanner equation, and their use in determining
droplet sizes in multimodal systems. While the use of average
diffusion coefficients may be sufficient to determine Rh for
unimodal systems, they will struggle in multimodal systems. In
multimodal systems, the signal from surfactant molecules in
larger droplets will contribute more toward the diffusion data
than molecules from smaller droplets. In the Stejskal-Tanner
analysis, relative contributions are not produced as a function of

Table 3. Size Parameters for the AOT/Iso-octane/Water
System Taken from Ref 54

ω Ns Rh/nm rw/nm

4 35 2.5 1.0
6 50 2.8 1.4
8 72 3.2 1.6
10 98 3.4 1.9
12 129 3.7 2.2
14 176 4.0 2.6
16 215 4.2 2.9
18 257 4.3 3.2
20 302 4.4 3.5
25 447 5.2 4.3
30 613 6.2 5.1
35 778 7.6 5.8

Figure 10. Droplet size distribution for RMs in an AOT/n-octane/
H2O microemulsion loaded with (a) [H2SO4] = 0.4 M and [malonic
acid] = 0.6 M at ω = 15 and ϕd = 0.55 (unscaled data from Figure 6)
and (b) [H2SO4] = 0.25 M, [malonic acid] = 0.25 and 0.16 M
[NaBrO3] at ω = 12 and ϕd = 0.5 (unscaled data from Figure 7). Rh
values are given for data that is unscaled (), scaled by Ns (- - - -),
and scaled by (rw

2 + 22) (········).
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droplet size, therefore, there is no mechanism by which the data
can be directly scaled, particularly without prior knowledge of
the droplet size distribution. Thus, this shows that MR
measurements of average diffusion coefficients, should be
treated with caution for multimodal systems.
The last system investigated using this method was the

CTAB/hexanol/water microemulsion. While this microemul-
sion has been widely studied in the literature, droplet sizes of
RMs in this system have been significantly less well
characterized than AOT microemulsions. In this system, Rh
was calculated to be 0.9 nm, which compares well with previous
droplet size measurements,65 where a droplet size of 1.1 nm
was measured for a CTAB/hexanol/water microemulsion
(2.6:1 ratio % wt of CTAB/H2O)).

■ CONCLUSION

In this paper, we report the first application of MR
measurements of diffusion to produce, using the ILT and
Stokes−Einstein relation, droplet size distributions for RMs in
AOT and CTAB microemulsions. Our measurements are
complementary to the methods previously used to size RMs
and yield values similar to those produced by DLS. However,
RM sizes in the AOT/n-octane/water microemulsion were
found to be larger compared to those measured by optical
methods, particularly at lower ω values. While we do not
suggest that our data should be used to determine the
polydispersity of RM sizes, it may be possible to use these
methods to compare changes in size distributions as a function
of ω, ϕd, or composition. Scaling factors were investigated that
enabled number distributions to be generated and, when used,
were shown to shift the distributions toward smaller droplet
sizes, reducing the average droplet size. The suitability and need
for these scaling factors, however, needs further investigation.
Finally, while this paper has focused on MR methods to

measure RM sizes, we would like to add that these experiments
can easily be adapted into two-dimensional techniques, such as
diffusion-relaxation correlation spectroscopy (DRCOSY)66 and
diffusion−diffusion exchange spectroscopy (DEXSY).40 In
these experiments, data is acquired in two-dimensions, followed
by two-dimensional Laplace transformation,52 enabling corre-
lations between diffusion and relaxation behavior, for either
surfactant or water molecules, which could lead to greater
insight into the behavior of these dynamic structures.
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