
KERNEL METHODS FOR TIME SERIES

DATA

by

FENGZHEN TANG

A thesis submitted to
The University of Birmingham

for the degree of
DOCTOR OF PHILOSOPHY

School of Computer Science

College of Engineering and Physical Sciences
The University of Birmingham

June 2015



 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third 
parties. The intellectual property rights of the author or third parties in respect 
of this work are as defined by The Copyright Designs and Patents Act 1988 or 
as modified by any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission 
of the copyright holder.  
 
 
 



Abstract

Kernel methods are powerful learning techniques with excellent generalization capability.

This thesis develops three advanced approaches within the generic SVM framework in the

application domain of time series data.

The first contribution presents a new methodology for incorporating privileged infor-

mation about the future evolution of time series, which is only available in the training

phase. The task is prediction of the ordered categories of future time series movements.

This is implemented by directly extending support vector ordinal regression with implicit

constraints to leaning using privileged information paradigm.

The second contribution demonstrates a novel methodology of constructing efficient

kernels for time series classification problems. These kernels are constructed by repre-

senting each time series through a linear readout model from a high dimensional state

space model with a fixed deterministically constructed dynamic part. Learning is then

performed in the linear readout model space.

Finally, in the same context, we introduce yet another novel time series kernel by

co-learning the dynamic part and a global metric in the linear readout model space, en-

couraging time series from the same class to be represented by close model representations,

while model representations of time series from different classes to be well-separated.
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CHAPTER 1

Introduction

This thesis presents research on kernel methods, a popular family of machine learning

algorithms. Machine learning is a very active subdiscipline within artificial intelligence

that involves study and development of systems which can learn from example data or

past experience, rather than following explicit programming instructions [1, 64, 82]. The

system is often defined as a model with parameters. Learning is the process of optimizing

those parameters using the training data or past experience under a performance criterion

(ideally the expected future performance). In a supervised learning setting, the training

data presented to the system consist of example inputs and their desired outputs provided

by a supervisor. The goal is to learn a mapping from the inputs to outputs. Depending

on the nature of outputs, supervised learning can be classified into regression where the

outputs are continuous and classification where the outputs only take a small number of

discrete values. Recently, a new supervised learning setting that bridges regression and

classification, referred as ordinal regression or ranking, has drawn people’s attention [61,

83,86,88]. Ordinal regression problems are essentially multi-class classification problems,

but a natural order among the multiple categories can be observed [16], for example,

learning to grade the exchange rate of currency. In this setting, the training examples are
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labeled by a finite set of ranks, which exhibits a natural order among different categories.

Consequently, ordinal regression bears resemblance to both regression and classification.

However, in contrast to metric regression, the ranks are of finite and discrete type, and

the exact amounts of difference among ranks are not defined. The existence of ordering

information in the class labels makes ordinal regression also different from classification.

Kernel methods have become very popular in machine learning over last a couple of

decades [6], since they are able to detect non-linear relations in the dataset without losing

efficiency that has previously been reserved for linear algorithms. These methods first

map the data into a high-dimensional feature space where linear relations can then be

discovered [36]. The linear relations in the feature space correspond to non-linear relations

in the input space, given the kernel is defined by a non-linear mapping. Kernels can

evaluate the inner product between the images of the two inputs in a feature space without

explicitly computing their coordinates. Therefore, kernel based non-linear algorithms can

avoid extra computational effort to detect the non-linear relations in the data. Many

linear algorithms such as Fisher discriminant and principal components analysis have their

kernelized extensions [91]. Kernel-based support vector machines (SVMs) are powerful

kernel based learning machines and have gained wide popularity over the last decade.

They have shown to be effective for many problems on numerous applications such as

digit recognition, face detection, speaker identification, time series prediction, and so

on [13].

Recently, kernel methods have received considerable attention in the machine learning

community dealing with structured data, such as image, graphs, texts, or voice signals.

However, as an important ubiquitous data type in science and engineering, time series have

received relatively less research in the kernel literature [26]. In this thesis, we present two

different aspects of improving the generalization performance of kernel methods, especially

SVMs, dealing with time series data. Time series prediction and classification are of

2



particular interest in this work. Time series prediction is to estimate future values from

the past observations within a single sequence while time series classification is to predict

a class label for the entire sequence.

1.1 Motivation

In some learning problems, there exists some additional informative knowledge about

the training examples which is unavailable in the test phase. Such information would

be discarded in the traditional learning paradigm, since traditional learning algorithms

require examples in test phase to be characterized in the same way as in the training stage.

The incorporation of privileged knowledge into the learning process was first proposed by

Vapnik [101, 102], motivated by human learning where a teacher will provide students

not only with examples but also with additional information hidden in the explanations,

comments, comparisons etc. This new advanced learning paradigm is called learning

using privileged information (LUPI) [101]. It has been realized in the context of SVM

framework for both regression and classification through modelling the slack variables

using the privileged information [101,102]. However, LUPI has not been applied in ordinal

regression setting yet. Incorporating privileged information in ordinal regression is very

promising research question in the domain of time series prediction. In some time series

prediction problems, instead of predicting the real future values, we are only interested in

ordered categories of movements – e.g. extreme up, up, down and extreme down. In this

context, an ordinal regression problem can be formed. Moreover, future events present in

the training stage but unavailable during the test phase can form privileged information.

In a different context, classifying time series into predefined classes has received sig-

nificant attention in the kernel literature [11, 17, 65, 108]. Classification of time series is

an important problem arising in many application domains [39, 56, 89]. In this context,

each example is a time series with possibly correlated values. Moreover, in many real

3



applications, the time series are often of variable length and can be very long. Therefore,

classification of time series is quite different from classifying traditional static data. Con-

sequently, classic kernels such as the Gaussian kernel, which were designed for static data,

might fail to provide good similarity measurements. Recently, a new trend has emerged

in the machine learning community, using models that are fitted on parts of data as more

stable and parsimonious data representations. Learning is then performed directly in the

model space, instead of the original data space. For example, Brodersen et al. [11] used a

generative model of brain imaging data to represent fMRI measurements of different sub-

jects through subject-specific models. They subsequently employed SVM on the models’

parameters to distinguish aphasic patients from healthy controls.

Several kernels of this kind, which use generative models to represent the time se-

ries, have been developed, e.g. Fisher kernel [48], autoregressive kernel [26], probability

product kernel [52], or Kullback-Leibler (KL) divergence based kernels [17,65]. However,

these approaches depend on the particular parametric model class. For example, Fisher

kernel maps individual time series into score functions of the single generative model that

is assumed to be able to “explain” most of the data. The generative model employed in

Fisher kernel is often a hidden Markov model (HMM) with a fixed number of states [47].

In some situations the assumption of the particular generative model underlying the data

can be too strong. Yet another approach based on autoregressive kernel [26] uses a vector

autoregressive (VAR) model of a given order to generate an infinite family of features from

the time series. Each time series is represented by its likelihood profile of VAR across all

possible parameter settings (under a matrix normal-inverse Wishart prior). The kernel

function is then defined as the dot product of the corresponding likelihood profiles. Still

several approaches have been developed such as probability product kernels [52], KL di-

vergence based kernels [17, 65] which represent each sequence using a generative model,

opposing to a single model for all sequences employed in the Fisher kernel. However,

4



many of the existing time series kernels such as Fisher kernels [47] and auto-correlation

operators (DACO) kernel [35] are computationally demanding, thus may fail in the appli-

cation of very long time series data. Fisher kernels [47] requires the calculation of metric

tensor (inverse of Fisher information matrix) in the tangent space of the generative model

manifold. The “practical” Fisher kernel used in most of the time replaces the metric

tensor with an identity matrix. This can result in a loss of valuable information in the

data [99]. DACO kernel [35] proposed recently by Gaidon et al. for action recognition,

compares the dynamic aspects of two time series by using the difference between their

auto-correlations. The kernelized DACO inevitably needs to invert a matrix of size re-

lated to the time series length. Thus the kernel can be used for relatively short time series

only. Therefore, computational efficient time series kernels that can deal with time series

of variable (possibly long) length and simultaneously can capture the dynamic aspects of

the time series are in demand.

1.2 Contributions

The key contributions of this thesis are listed as follows:

• Development of a new method that incorporates privileged information

in SVM for ordinal regression.

In particular, extending support vector ordinal regression with implicit constraints

(SVORIM), which classifies data into ordered categories, to the case where privileged

information is available. This approach is applied in predicting future movements of

ordinal scale where future events act as privileged information. Experimentally, the

utility of privileged information improves the generalization performance in ordinal

regression.

• Construction of a novel efficient time series kernel based on reservoir
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models.

The proposed time series kernel is constructed by representing the time series

through linear readout models of the echo state network (ESN) with a shared deter-

ministically constructed reservoir and the difference of two time series will be defined

by the model distance between their corresponding linear readout models. The pro-

posed kernel can naturally handle time series of variable length. Additionally, our

kernel construction for time series do not need the specification of a particular para-

metric model class for the time series because reservoir models are flexible enough

to be used for a variety of data types. Moreover, compared with most time series

kernels, our kernels are computationally very efficient, since only the linear readout

on top of the reservoir needs to be trained and the model distances between lin-

ear readouts can be formulated analytically under some assumptions. Furthermore,

with the recursive least squares algorithm to train the readout mapping of reser-

voir models, our kernels can be operated in an on-line fashion, with the ability to

efficiently handle extremely long time series.

• Learning the deterministically constructed echo state network.

A hybrid algorithm has been developed to learn the deterministically constructed

echo state network with a simple architecture of cycle connection with regular jumps.

Empirically, the proposed algorithm tremendously reduces the computational time

without jeopardizing the generalization performance.

• co-Learning the reservoir model and the metric in linear readout model

space.

Following the previous contribution of kernel construction based on echo state net-

work with a highly constrained dynamic part, we develop a hybrid model-metric

co-learning approach. This approach learns the global metric in the linear readout
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model space, alongside with the shared dynamic part. The learning objective is that

time series from the same class are represented by “close” readouts, while readouts of

time series from different classes are well-separated and simultaneously, the models

should well represent the time series. The existing model based time series kernel

formulations either used a single model fitted on the full data/individual classes,

or fit a full linear dynamic model on each sequence. The models fitted on the full

data/classes can be more complex than those fitted on individual sequences. The

price to be paid is the potential inadequacy of such model to capture individual

variations among the data items. On the other hand, individual sequence models

have to be relatively simple (e.g. with linear dynamics) to keep the model estimation

stable. Our approach tries to span the two extremes in an attempt to keep the best

of both worlds. In our approach, the final representation of a sequence is a linear

readout mapping, but the full underlying model is a non-linear dynamic system.

In this way our methodology reduces the computational demands without the loss

of the computational ability of non-linear models. Moreover, it treats the model

parameters adaptation and model distance designing jointly rather than adapting

the model parameters first and defining the model distance afterwards in two inde-

pendent steps. Furthermore, it has the similar motivation as other discriminative

kernels [99], but differs in its goal of utilizing models that both represent the time

series well and at the same time best separate the time series classes. Extensive

numerical experiments have been conducted to show the superior generalization

performance of the proposed approach.

1.3 Outline of the Thesis

Chapter 2 reviews the basic information and research related to this docu-

ment.
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This chapter begins by a short introduction of time series, followed by a detailed descrip-

tion of SVMs. At the meantime, optimization theory that is used in the SVM framework

such as Lagrangian and Karush-Kuhn-Tucker (KKT) conditions are introduced. Then it

goes on to a brief description of recurrent neural network – a predictive time series model

that will be used in our kernel construction. This chapter ends by a concise depiction of

several exiting kernels that are exclusively designed for time series data.

Chapter 3 introduces a novel method that incorporates privileged informa-

tion in the SVM framework for ordinal regression.

This chapter initially reviews the literature related to the LUPI paradigm in the context

of binary SVM. Then a main focus is given to the proposed algorithm that incorporates

privileged information in the framework of SVORIM, which constructs multiple parallel

separating hyperplanes defined through ordered thresholds. The privileged information

is exploited during training by modelling the slacks through correcting functions for each

of the hyperplanes separating the ordered classes. The primal problem is formulated

and then is transformed into its dual. Evaluation metrics that are used to assess the

performance of our approaches are described and a number of numerical experiments on

benchmark ordinal datasets and real world time series datasets have been conducted with

the aim of verifying the proposed algorithm.

Chapter 4 introduces a novel and efficient time series kernel based on reser-

voir model.

This chapter at first describes the deterministically constructed reservoir models. Then

it presents the methodology of constructing the time series kernel using reservoir model.

The deterministically constructed reservoir models are used as representation of the time

series. Each time series is represented by a linear readout model from the Echo State

Network with a shared dynamic reservoir. In our model representation, the reservoir is

fixed as the same for all the time series. The reservoir will transform the time series into
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a higher dimensional dynamic feature space and the varying aspects of each time series

will be captured through variation in the linear readout models trained in such dynamic

feature spaces using the time series. The distance between two time series is then defined

by the model distance between their corresponding linear readout models. We will show

how the model distance can be calculated analytically or efficiently estimated: under the

assumption of uniformly distributed states, a closed form calculation of distances can be

obtained, while in the case of non-uniformly distributed states, mixture of Gaussians and

sampling techniques are used. The kernel similarity is defined by plugging the model

distance obtained above into the Gaussian function. Moreover, the Fisher kernel based

on reservoir model is introduced. Intensive numerical experiments have been conducted

on UCR time series classification datasets in order to verify the efficiency of the proposed

kernels. Furthermore, a fast version of the proposed kernel is described. This fast ver-

sion is implemented by training the reservoir readouts in an on-line fashion using recursive

least squares method.

Chapter 5 introduces an adaptive model metric co-learning methodology

of constructing kernel for time series data.

An initial investigation of learning the deterministically constructed echo state net-

works is presented. The basic algorithm where the linear readout weights are determined

by linear regression, while the reservoir weights are found using a nonlinear optimization

techniques is described. Readout regularization and an early stopping strategy is pre-

sented in order to obtain good generalization performance. Numerical experiments have

been conducted to verify the efficiency and generalization performance of the proposed

algorithm. A main focus is placed on co-learning the dynamic part of the reservoir model

and the global metric in the linear readout space. The learning objective is to encourage

time series from the same class to have close representations and those from different

class to be well separated, as well as the model provides faithful representation for the
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time series. A number of numerical experiments have been performed on UCR time series

classification datasets in order to assess the performance of the proposed kernel.

Finally, Chapter 6 summarizes the presented work and suggests a future

research plan.

1.4 Publications From the Thesis

• Journal Publications:

– Fengzhen Tang, Peter Tiňo, Pedro Antonio Gutiérrez and Huanhuan Chen:

The Benefits of Modelling Slack Variables SVMs, Neural Computation, 2014,

accepted.

• Conference Publications:

– Fengzhen Tang, Peter Tiňo and Huanhuan Chen: Learning Deterministically

Constructed Echo State Networks. The IEEE World Congress on Computa-

tional Intelligence (IEEE WCCI), 2014, pp. 77 - 83 .

– Fengzhen Tang, Peter Tiňo, Pedro Antonio Gutiérrez and Huanhuan Chen:

Support Vector Ordinal Regression using Privileged Information. In Proceed-

ings of the 2014 European Symposium on Artificial Neural Networks, Compu-

tational Intelligence and Machine Learning (ESANN2014), pp. 253-258

– Huanhuan Chen, Fengzhen Tang, Peter Tiňo and Xin Yao: Model-based Kernel

for Efficient Time Series Analysis. 19th ACM SIGKDD Conference on Knowl-

edge Discovery and Data Mining (KDD’13), Accepted for oral presentation,

2013.
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CHAPTER 2

Background and Related Work

2.1 Introduction

Kernel-based support vector machines (SVMs) are powerful learning machines [100]. They

are effective for many problems on numerous applications such as digit recognition, face

detection, speaker identification and so on [13]. In the application domain of time series,

SVMs have been successfully utilized for both time series prediction [55, 66] and classi-

fication [11, 17, 65, 108]. A time series is a collection of observations made sequentially

through time. Thus, there is temporal ordering within time series, making it different

from other type of statistic data where the observations are usually expected to be inde-

pendent. Consequently, it is non-trivial to apply kernel methods such as SVMs to time

series data.

SVMs have been applied for time series prediction successfully on the basis of the

sliding window method [55, 66]. Time series prediction, which is to predict future values

from the past observations, is an important task of time series analysis. The sliding

window method transforms the time series prediction into classical supervised learning

problem. Given a time series s(1), ..., s(t), ..., s(L), where s(t) is value of time series
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at time stamp t, the method will split the time series into windows of fixed length

and then constructs training examples as input-output pairs, e.g. {(xi, yi)}L−pi=1 , where

xi = (s(i), s(i + 1), ...., s(i + p − 1))T and yi = s(i + p), with the window length p. The

classical supervised learning algorithm such as Support Vector Machine, Relevant Vector

Machine [73] and Gaussian process [9,10] can then be utilized directly on the constructed

examples.

Another important task applied on time series data is classification. In this task, the

problem is to predict a single label y that applies to an entire input sequence (s(1), ..., s(L)).

For example, given a time series of ECG data (the time series of heart rates), the task

is to identify the health condition of the person from whom the time series of ECG data

is measured. In these kind of problems, each training example consists of a pair (xi, yi),

where xi is a sequence xi = (s(1), ...., s(Li)) and each yi is a class label (such as a person’s

health condition– healthy or ill).

This chapter first gives a brief introduction on time series. Basic concepts of time series

and methods of modeling time series are demonstrated. Then it moves on to SVM which

is the basic classifier in this thesis. SVMs for classification are described in details. After

that kernels which are exclusively designed for time series data are reviewed. Finally,

statistic tests for comparing performance of two methods are briefly introduced.

2.2 Time series

A time series is a collection of observations made sequentially through time [20]. When the

observations are taken continuously through time, the time series is said to be continuous,

while the time series is claimed to be discrete when the observations are taken at specific

times, commonly equally spaced intervals. This thesis involves discrete time series, where

the observations are taken at equal intervals, for instance, daily air temperatures, monthly

readings of electricity meter, yearly sales figures and so on. These time series where at

12



every single time one observation is made are called univariate time series. However, there

exist time series where each time multiple observations are measured, for example many

different economic activities such as the retail price index, the level of unemployment and

the gross domestic product are recorded at regular time intervals [20]. This kind of time

series is named as multivariate time series and will be stored in a matrix rather than a

vector that is used to store the univariate time series.

One of the most important methods of describing time series data is the autocorrelation

coefficient, which is the correlation of the time series with a temporally shifted version of

itself [35]. Given a time series of L observations s(1), s(2), ..., s(L), under the assumption

that the time series is stationary, i.e. the mean and variance of the time series are not

changing through time, the sample auto-correlation can be computed as follows:

ρ̂τ =

∑L−τ
t=1 (s(t)− s̄)(s(t+ τ)− s̄)

∑T
t=1(s(t)− s̄)2

, (2.1)

where τ is the time lag and s̄ = 1
L

∑L
t=1 s(t) is the sample mean. The autocorrelation

coefficient is an important tool for describing the properties of a time series statistically

[20]. It contains the information of temporal dependencies in time series. However,

the assumption of stationarity in the calculation of autocorrelation limits its application

to stationary time series. Moreover, autocorrelation coefficient only provides a linear

dependence within the time series.

The autocorrelation is a distinguishing feature in time series, suggesting that future

values of the time series depend, usually in a stochastic manner, on the past observations.

Thus it provides possibilities to predict the future from the past. This raises the problems

of predication or forecasting, an important task of time series analysis. Deterministic

methods, e.g. SVMs [55, 66], artificial neural network (ANN) [31], and recurrent neural

network (RNN) [97], have been applied for time series prediction. However, statisticians
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usually treat a time series as a realization from a stochastic process. Probabilistic models,

for example, autoregressive (AR) model [20], hidden Markov model (HMM) [69], and

linear dynamic system (LDS) [29], are designed to capture the underlying dynamics from

which the observed data are generated and therefore the forecasting will be made.

2.2.1 Autoregressive Models

Autoregressive (AR) models are attractive time series models for they are easy to specify

and estimate [41]. However they are limited to situations where the assumption of linear

dependence is reasonable. Specifically, they are under the assumption that the future

values of time series depend linearly on the finite number of immediate past (possibly

noisy) observations [20]. Denote the observations of the time series measured at time t

as s(t), the autoregressive model of order p, denoted by AR(p) which is parametrized by

a horizon p and a coefficient vector α ∈ R
p, assumes that the time series is generated

according to the following model:

s(t) =
p
∑

i=1

αis(t− i) + ε(t) (2.2)

where ε(t) is white-noise, which means that Eε(t) = 0, var(ε(t)) = σ2 and cov(εi, εj) = 0

for all i 6= j. AR model is essential a multiple regression model but it is regresses on past

values rather than on separate predictor variables. The parameter αi, i = 1, ..., p can be

estimated by maximum likelihood or Bayesian inference [6].

AR models are also under the condition of stationary time series. They can be expected

to yield good short-term forecasts in many situations. The generalization of AR models

to multivariate series is rather straightforward and called vector autoregressive (VAR)

models.
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2.2.2 Hidden Markov Model

Hidden Markov Model is a ubiquitous tool for modeling time series data. It is widely used

in speech recognition, natural language processing and online handwriting recognition [6].

It can be regarded as a probabilistic state-space model with discrete hidden state variable,

trying to represent the sequence of observations by probability distributions. It is mainly

defined by two probability distributions: the observation distribution p(s(t)|z(t)) and

the transition distribution p(z(t)|z(t− 1)) where s(t) is the observation at time t and

z(t) is the hidden state at time t. The probability distribution p(s(t)|z(t)) tells how the

observation relates to the hidden states, i.e. the current observation s(t) is only depend

on the current state z(t) but not on any other states and observations at other time

instances, while p(zt|zt−1) indicates how the states evolve over time, i.e. is the value of

current state zt is dependent only on the previous state zt−1 and independent of all the

states prior to t − 1. This means that the hidden states satisfy the Markov property

and the observations also satisfy a Markov property with respect to the states [38]. By

assuming these Markov properties, the joint probability of a sequence of observations and

states are given as follows:

p(S, Z) = p(z1)p(s1|z1)
T
∏

t=2

p(zt|zt−1)p(st|zt) (2.3)

where S denotes the observation sequence s1, ..., sT and Z denotes the sequence of states

z1, ..., zT .

Suppose that the discrete hidden state variable zt can take on K values which can be

denoted by the integers {1, ..., K}, then the HMM needs to specify a probability distri-

bution over initial state p(z1), the K ×K state transition matrix that defines transition

probability p(zt|zt−1) and emission matrix that defines observation probability p(st|zt).

The problem of learning the parameters in an HMM can be formed as a problem of
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maximization of the following probability:

p(S) =
∑

Z

p(S, Z) (2.4)

by Expectation Maximization algorithm [7, 37, 94]. This is essentially to optimize the

HMM such that it could best explain a given observation sequence. Usually, each prob-

ability in the state transition matrix and in the emission is assumed time independent,

meaning that the matrices do not change in time as the system evolves. Therefore HMM

is also restricted to stationary time series.

2.2.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) represent a class of artificial neural networks, where

the connection topology of the network contains cycles [62]. This cyclic topology cre-

ates a time-dependent internal state for the network and enables the network to exhibit

dynamic behaviour, consequently making RNNs highly promising for dealing with time se-

ries processing problems [62,97]. RNNs can be shown to universally appropriate dynamic

systems, under fairly mild and general assumptions [62].

A simple form of fully recurrent network simply has the previous set of neuron (hidden

unit) activations feeding back into the network, together with the inputs. In order to

simplify the notation here, the bias term will not be explicitly written out, instead, the

corresponding variables will be augmented by adding an element equal to one. The

notation s̃(t) = [s(t); 1] is adopted. The behaviour of such RNN can be described as a

dynamic system mathematically as follows:

z(t) = fz (R z(t− 1) + V s̃(t)) (2.5)

o(t) = fo (W z̃(t)) (2.6)
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where z(t) ∈ R
N is a vector of neuron activations (state vector); s(t) ∈ R

d is the input

vector; o(t) ∈ R
M is the actual output vector of the network ; fz(·) and fo(·) are the

non-linear activation functions, usually tanh(·) or sigmoid function, applied element-wise

and R ∈ R
N×N , V ∈ R

N×(d+1) and W ∈ R
M×(N+1) are three weight matrices. The

weight matrix R collects the connections between internal units, matrix V describes the

connection between the input units and matrix W represents the connections between

internal units and output units. The network is commonly started with the initial state

z(0) = 0.

RNNs can be trained by gradient-descent based algorithms. The gradients can be

estimated using real-time recurrent learning [106] where the gradients are recursively

computed at each time step. The gradients can also be computed using backpropagation

through time [79]. However, the training process of fully RNN is very computationally

expensive and often stuck in local minima [3].

Reservoir Computing (RC) For the purpose of accelerating the training process,

reservoir computing (RC), which represents a class of new approaches of designing RNN,

have been developed. The training techniques applied in RC methods make a conceptual

and computational separation of the whole process into two parts [62, 77]: 1) representa-

tion of temporal structure in the input stream through a non-adaptable dynamic reservoir,

2) a linear recurrence-free readout that produces the desired output from the reservoir.

In these methods, such as echo state networks (ESNs) [49] and liquid state machines

(LSMs) [63], a recurrent neural network is randomly constructed and fixed through the

training process. Such randomly generated and fixed RNN is called dynamic reservoir.

The reservoir is excited by the input signal and maintains a non-linear transformation of

the input history in its state. The desired output is described as a linear combination

of the neuron activations (readout) from the input excited reservoir. Only the readout

weights need to be obtained through training, usually by linear regression using the teacher

17



signal as a target. Therefore RC methods are very computationally efficient. Reservoir

models [62] have been extensively shown to be able to successfully process and model time

series of a surprisingly wide variety of types (from deeper memory deterministic chaotic

systems, to shorter memory stochastic sequences) [76, 96].

Echo State Networks (ESNs) ESN [50,51] is one of the pioneering reservoir comput-

ing methods. It is of simple form but very effective. The network architecture for ESN is

show in Figure 2.1.

..

.
..
.

internal units ouput units    input units

Figure 2.1: The network architecture of ESN. In this architecture, the input units to
internal units are randomly connected and internal units are randomly connected to each
other.

ESN is essentially a recurrent neural network with a randomly generated and fixed

sparse recurrent part (the reservoir) and a very simple linear readout. The ESN reservoir

model can be formulated as:

z(t) = tanh(R z(t− 1) + V s̃(t)), (2.7)

o(t) = W z̃(t), (2.8)

In ESM model, the output neuron activation function is identity function, which suggests

that the output o(t) is a linear function of states z. ESN has a “non-trainable” recurrent

part (“the reservoir”) described by equation (2.7) and a simple linear readout shown as

equation (2.8). Typically, the reservoir weights R and the input weights V to the reservoir

are randomly generated so that the “echo state property” is satisfied. Loosely speaking,
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this means that the reservoir output would be independent of the initial conditions [49].

Training of ESN can be efficiently performed through linear regression [62], which is to

find the least square solutions of a system of linear equations given as follows:

WZ̃ = Y (2.9)

through minimizing a quadratic error of true target Y and the modelWZ̃. As before, Z̃ is

the extended version of Z by adding a constant row equal to one in order to accommodate

a bias term, where Z ∈ R
N×L are all the network states z(t) produced by providing input

s(t). Y ∈ R
M×T are all the true targets y(t). Both matrices are collected during training

period t = 1, ..., L, after the initial wash-out1 [49]. A naive solution of Equation (2.9) is

given as follows:

W = Y Z̃T (Z̃Z̃T )−1 (2.10)

and a more elegant solution with regularization on parameter W , which is known as ridge

regression, is given as follows:

W = Y Z̃T (Z̃Z̃T + λI)−1 (2.11)

where I ∈ R
(N+1)×(N+1) is the identity matrix and λ is a regularization factor.

Ridge regression is a preferable method for learning W in ESN [62]. However it is a

batch learning method. Some applications require even faster model adaptation, where

recursive least squares (RLS), which is a fast online model adaptation method known for

linear systems, can be adopted [51].

ESN has been successfully applied in many time-series prediction task, such as speech

1 The data of z(t) from the beginning of the training run are dismissed, in order to remove the impact
of the initial transients.

19



recognition, dynamic pattern prediction and language modelling [62, 77].

The downside of reservoir models is that their construction is largely driven by a series

of randomized model building stages. Recently, Rodan et al. [76] proposed to use a simple

deterministically constructed cycle reservoir with regular jumps (CRJ). This reservoir

architecture has been shown to be comparable (or better) than the traditional ESN on a

wide variety of time series modelling and prediction tasks [76]. In CRJ the reservoir nodes

are connected in a uni-directional cycle with bi-directional shortcuts (jumps) (Figure 2.2).

All cyclic connections have the same weight denoted by rc, all jumps share the same weight

denoted by rj, and the input connections have the same absolute value denoted by ri with

an aperiodic sign pattern. This results in a sparse and deterministically constructed and

simple coupling reservoir weight matrix R, i.e. R is a very sparse matrix with rc and rj

spread over, e. g. in a network of 10 internal units with 2 as jump size, the matrix R is

of the form as follows:
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Figure 2.2: The network architecture of CRJ. In this architecture, the input units are
connected to internal units by the same weight with aperiodic sign. The internal units
are connected by directed cycle with regular jumps. All the cycle collection weights are
the same and all the jump weights are the same.

2.3 Support Vector Machines

SVMs are very popular supervised learning machines [2, 13, 18, 66, 71]. The basic idea

of SVM is to construct a separating hyperplane as the decision boundary that separates

positive examples from negative ones with maximum margin. To deal with the case

of overlapping classes, SVM formulations utilize non-negative slack variables to tolerate

misclassification in training data. Non-linear class separation structure can be addressed

through the so-called “kernel trick” – kernels map the input data into a higher dimensional

feature space where a linear separation hyperplane can be applied. SVM can be extended

for multi-class classification problems via ad hoc approaches such as one-versus-all or

one-versus-one. It has been extended for ordinal regression by constructing multiple

parallel separating hyperplanes through multiple ordered thresholds [23, 24, 44, 90]. SVM

for ordinal regression is one of the main focuses in this thesis and more detailed description

will be given in Chapter 3. This section first briefly introduces the convex optimization

theory related to SVMs. Then it describes SVM through three classical cases – linear

SVM trained on separable data, linear SVM trained on non-separable data, and non-

linear SVM.

21



2.3.1 Convex Optimization Theory

The determination of model parameters in an SVM amounts to solve a constrained convex

optimization problem. Thus, convex optimization theory that relates to SVMs is briefly

described in this section.

Definition 2.1 (convexity [8]) Function f(x) is called convex if for any two points x

and y in the domain of f , the Jensen inequality

f(ax+ (1− a)y) 6 af(x) + (1− a)f(y), 0 6 a 6 1, (2.12)

holds true.

The secant line of the f(x) passing the points (x, f(x)) and (y, f(y)) is y′ = f(y)−f(x)
y−x

(x′−

y)+f(y). The point ax+(1−a)y, where 0 6 a 6 1, is located any where on the straight

line between x and y (including the points x and y themselves) with the corresponding

secant function value of af(x) + (1 − a)f(y). Therefore, the definition of the convexity

of a function can be interpreted in the way that the function value is no greater than its

corresponding secant function value.

Consider a constrained convex optimization problem in the standard form as in [8]:

minx f0(x) (2.13)

s.t. fi(x) 6 0, i = 1, ..., m, (2.14)

hk(x) = aTkx− bk = 0, k = 1, ..., q, (2.15)

where fi(x), i = 0, 1, ..., m are convex. In other words, a convex optimization problem

requires that the objective function and the inequality constraint functions (2.14) are
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convex, while the equality constraint functions (2.15) are affine (linear). The feasible set

D of the optimization problem (2.13)-(2.15) is given as follows:

D = {x | fi(x) 6 0, i = 1, . . . , m; hk(x) = 0, k = 1, . . . , q;x ∈ R
d}. (2.16)

We assume the feasible set D is nonempty and denote the optimal solution by p∗ (p∗ =

inf{f0(x) | x ∈ D}).

Instead of explicitly enforcing the constraints, Lagrange suggested to take the con-

straints into account by augmenting the objective function with a weighted sum of the

constraints [6, 100], given as follows:

L(x,λ,v) = f0(x) +
m
∑

i=1

λifi(x) +
q
∑

k=1

vkhk(x), (2.17)

where λi and vk are the Lagrange multipliers associated to the i-th inequality constraint

fk(x) 6 0 and the k-th equality constraint hk(x) = 0, respectively. The vectors λ =

(λ1, ..., λm) and v = (v1, ..., vq) are called the dual variables or Lagrange multiplier vectors.

The Lagrangian dual function is defined as follows:

Definition 2.2 (Dual Function [8]) Suppose g : Rm × Rq → R, g is said to be the

dual function of the Lagrangian L(x,λ,v) if it has the minimum value of the Lagrangian

with respect to x: for λ ∈ Rm,v ∈ Rq,

g(λ,v) = inf
x∈Rd
L(x,λ,v) = inf

x∈Rd

(

f0(x) +
m
∑

k=1

λkfk(x) +
q
∑

k=1

vkhk(x)

)

. (2.18)

The dual function yields lower bound on the optimal value p∗ of problem (2.13): For any

λ > 0 and any v, we have g(λ,v) 6 p∗. This property is easy to verify. If x ∈ D and

λ > 0, then we have L(x,λ,v) 6 f0(x). It is straightforward to see from the definition

23



of p∗ that:

g(λ,v) = inf
x∈Rd
L(x,λ,v) 6 inf

x∈D
L(x,λ,v) 6 inf

x∈D
f0(x) = p∗. (2.19)

The dual function gives us a lower bound on the optimal p∗ that depends on the param-

eters λ and v, and the best lower bound is closest to the optimal p∗. This leads to the

optimization problem:

max g(λ,v) (2.20)

s.t. λ > 0.

Denote the optimal value of the Lagrangian dual problem (2.20) as d∗, which by definition

is the best lower bound on p∗ that can be obtained from the Lagrangian dual function,

we trivially always have

d∗ 6 p∗. (2.21)

This property is called weak duality, which means there may be a gap between the optimal

value of the original (primal) problem and the optimal value of the dual function. This

gap is called optimal duality gap. If the equality d∗ = p∗ holds, i.e. the optimal duality

gap is 0, then we can say strong duality holds true. Strong duality suggests that the dual

optimal value obtained from (2.20) exactly equals to the primal optimal value obtained

from (2.13). However, strong duality usually does but not always hold in a convex opti-

mization problem. Further conditions beyond convexity need to be specified to guarantee

strong duality. These conditions are called constraint qualification. One simple constraint

qualification is the Slater’s condition, which is given as follows:

Definition 2.3 (Slater’s Condition [8]) Suppose we have an optimization problem with

inequality constraints fi(x) 6 0, i = 1, ..., m; and equality constraints hk(x) = 0, k =
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1, . . . , q, we say the constraints meet Slater’s condition if there exists an x0 such that

fi(x0) < 0, i = 1, ..., m; hk(x0) = 0, k = 1, . . . , q, (2.22)

holds. The Slater’s condition can be refined when some of the inequality constraints are

linear (affine), as follows:

Definition 2.4 (Refined Slater’s Condition [8]) Suppose we have an optimization prob-

lem with inequality constraints fi(x) 6 0, i = 1, ..., m; and equality constraints hk(x) =

0, k = 1, . . . , q, and the first j inequality constraint functions f1, ..., fj are affine, we say

the constraints meet Slater’s condition if there exists an x0 such that

fi(x0) 6 0, i = 1, ..., j; fi(x0) < 0, i = j + 1, . . . , m; hk(x0) = 0, k = 1, . . . , q. (2.23)

The refined Slater’s condition suggests that affine inequalities do not need to hold with

strict inequality to guarantee strong duality. Thus, the refined Slater’s condition reduces

to feasibility if all the constrains (both of equality and inequality types) are linear.

If a convex optimization problem with differentiable objective and constraint functions

satisfying the Slater’s condition, the optimality of the solution is characterized by Karush-

Kuhn-Tucker (KKT) conditions [8] given as follows:

Definition 2.5 (Karush-Kuhn-Tucker conditions [8]) Consider the convex optimiza-

tion problem demonstrated by equation (2.13). Suppose that the objective function f0(x)

and the constraint functions fi(x) and hk(x) are continuously differentiable at a point

x∗ and x∗ is an optimal solution to problem (2.13) that satisfies Slater’s condition, we

say x∗ meets KKT conditions if there exist Lagrange multipliers λ∗ = (λ∗1, ..., λ
∗
m) and

v∗ = (v∗1, ..., v
∗
q ) such that the corresponding Lagrangian function given by equation (2.17)

satisfies the following conditions:
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(a) Stationality:

∂L(x∗,λ∗,v∗)

∂x
=
∂f0(x∗)

∂x
+
m
∑

k=1

λk
∂fk(x

∗)

∂x
+
p
∑

k=1

vk
∂hk(x

∗)

∂x
= 0, (2.24)

(b) Primal feasibility:

fk(x
∗) 6 0, k = 1, ..., m, (2.25)

hk(x
∗) = 0, k = 1, ..., p, (2.26)

(c) Dual feasibility:

λ∗k > 0, k = 1, ..., m, (2.27)

(d) Complementary slackness:

λ∗kfk(x
∗) = 0, k = 1, ..., m. (2.28)

KKT conditions are also sufficient for the points x∗ and (λ∗,v∗) to be primal and dual

optimal, i.e. if x∗, λ∗ and v∗ are any points that satisfy the KKT conditions (2.24)–(2.28),

then x∗ and (λ∗,v∗) are primal and dual optimal, with strong duality (zero duality gap).

Theorem 2.1 (Karush-Kuhn-Tucker Theorem [8]) Consider the convex optimiza-

tion problem demonstrated by equation (2.13). Suppose that the objective function f0(x)

and the constraint functions fi(x) and hk(x) are continuously differentiable at a point x∗.

The sufficient and necessary condition for x∗ to be an optimal solution to problem (2.13)

is that it meets KKT conditions.

KKT conditions suggest a way to solve the convex optimization problem described in

(2.13) which is to solve the equations defined in KKT conditions.
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2.3.2 Support Vector Machine for Classification

In this section, we review SVM for binary classification problems [13]. Given a training

set of n examples, represented by input-output pairs (xi, yi), xi ∈ Rd, yi ∈ {+1,−1}, the

aim of SVM for classification is to construct a decision boundary (separating hyperplane)

that separates positive examples from the negative ones with maximum margin. SVM

will be described iteratively by three cases: linear SVM trained on separable data, linear

SVM trained on non-separable data and non-linear SVM.

We start with the simplest case where a linear decision boundary can be found with

no error in the training set. The linear decision boundary also known as separating

hyperplane can be defined as w ·x+ b = 0, where w is normal to the hyperplane and b is

the bias term. The task is to find that w and b such that each positive example xi (with

class label yi = +1) satisfy the inequality w · xi + b > 0, while each negative example

xi (with class label yi = −1) satisfy the inequality w · xi + b < 0. However, in order

to enable the classifier to have better generalization performance, during the learning

process, every positive point xi is required to meet the inequality w ·xi + b > +1 (it can

be any positive number but all of them are equivalent since rescaling will not change the

hyperplane) and every negative point xi is required to meet the inequality w ·xi+b 6 −1.

These two types of inequalities can be collectively formulated as one set of inequalities as

yi(w · xi + b) > 1. Only the points which exactly lie on the hyperplanes w · xi + b = +1

or hyperplane w · xi + b = −1 contribute to finding w and b therefore they are called

support vectors. The perpendicular distance between the decision boundary and any of

the support vectors is defined as margin and the margin is simply 1/||w||. The separating

hyperplane can be constructed in many ways. Since an approximation as good as possible

is desired, the separating hyperplane which maximizes the margin is chosen. Maximizing

the margin ||w||−1 is equivalent to minimizing ||w||2. So, the problem of SVM can be
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formulated as an optimization problem with inequality constraints as follows:

min
w,b

1

2
||w||2 (2.29)

s. t. 1− yi(w · xi + b) 6 0, ∀ i, (2.30)

where ||w|| is the Euclidean norm of w. The objective function is convex quadratic and

the constraint functions are linear. Thus, the optimization problem described by equations

(2.29) and (2.30) is a convex optimization problem whose constraints meet the Slater’s

condition. Therefore this optimization problem can be solved using KKT conditions as

demonstrated in Section 2.3.1.

First, the Lagrangian is constructed with Lagrange multipliers αi > 0,

L(w, b,λ) =
1

2
‖ w ‖2 −

n
∑

i=1

αi[yi(w · xi + b)− 1], (2.31)

and then it is minimized with respect to w, b to obtain the dual function. The minimiza-

tion of L(w, b,λ) requires the gradient of L(w, b,λ) with respect to w and b vanish:

∂L(w, b,λ)

∂w
= w −

n
∑

i=1

αiyixi = 0, (2.32)

∂L(w, b,λ)

∂b
= −

n
∑

i=1

αiyi = 0, (2.33)

which gives the following conditions:

w =
n
∑

i=1

αiyixi,
n
∑

i=1

αiyi = 0. (2.34)

Since these are equality constraints, they can be substituted into the Lagrangian (2.31)
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to obtain the Lagrangian dual:

g(α) =
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyjxi · xj −
n
∑

i=1

n
∑

j=1

αiαjyiyjxi · xj +
n
∑

i=1

αi − b
n
∑

i=1

yiαi

=
n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyjxi · xj.

Then, the Lagrangian dual is maximized as suggested in section 2.3.1. This leads to the

following optimization problem:

max
α

n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyjxi · xj

s. t.
n
∑

i=1

αiyi = 0, αi > 0, ∀ i. (2.35)

Since the primal problem (2.29) is a convex optimization problem satisfying constraint

qualification mentioned in Section 2.3.1, the optimal solution of the dual problem (2.35)

will be equivalent to the optimal solution of the primal problem (2.29). Consequently, the

primal optimization will be solved by solving its corresponding dual problem. Once the

optimal α̃ is obtained, w̃ =
∑n
i=1 α̃iyixi and the KKT complementary slackness:

α̃i
(

1− yi(w · xi + b̃)
)

= 0, ∀ i, (2.36)

can be used to determine the optimal bias b̃ by any pattern j for which α̃j 6= 0 through:

b̃ = yj −
n
∑

i=1

α̃iyixi · xj (2.37)

Usually the average over all such points is taken. Finally, the decision function for a new
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input vector x0 is given by:

F (x0) = sgn

(

n
∑

i=1

α̃iyixi · x0 + b̃

)

. (2.38)

The method mentioned above is designed for linearly separable data. When it is applied

to linearly non-separable data, there will be no feasible solution. However, the constrains

can be relaxed when necessary by introducing non-negative slack variables ξi, i = 1, ..., n

and solve:

min
w,b,ξ

1

2
||w||2 + C

n
∑

i=1

ξi

s. t. 1− ξi − yi(w · xi + b) 6 0, ξi > 0, ∀ i, (2.39)

where C ≥ 0 is a hyper-parameter chosen by user. In this case, besides maximizing the

margin, minimizing the violation of the constraints is contained in the objective function.

Still, this is a convex optimization problem satisfying the constraint qualification. Fol-

lowing the same procedure of the separable case, the Lagrangian is constructed with the

presence of two kinds of multipliers αi > 0, βi > 0 in this case:

L(w, b,α,β) =
1

2
‖ w ‖2 +C

n
∑

i=1

ξi −
n
∑

i=1

αi[yi(w · xi) + b− 1 + ξi]−
n
∑

i=1

βiξi. (2.40)

Similarly, the Lagrangian L(w, b, ξ,α,β) is minimized with respect to w, b and ξ. In this

case, besides the gradient of the Lagrangian with respect to w and b is required to vanish

as stated in equations (2.32) and (2.33), the gradient of the Lagrangian with respect to ξ

is required to vanish:

∂L(w, b,α,β)

∂ξi
= C − αi − βi = 0, i = 1, ..., n. (2.41)
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Then besides the conditions described by equation (2.34), another set of conditions is

obtained as follows:

C − αi − βi = 0, i = 1, ..., n. (2.42)

Substitute the conditions (2.34) and (2.42) into the Lagrangian (2.40), the following dual

optimization problem can be formulated:

max
α

n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyjxi · xj

s. t.
n
∑

i=1

αiyi = 0, 0 6 αi 6 C, ∀ i. (2.43)

Problem (2.43) is slightly different from problem (2.35), in the way that multipliers

αi, i = 1, ..., n are upper bounded by C. Consequently, the points with positive slacks

will also contribute to the determination of decision boundary. The formulation that is

used to compute the optimal bias remains the same, i.e. (2.37), but points with Lagrange

multipliers α̃i ∈ (0, C) are chosen to compute the bias. This follows from the KKT

complementary slackness (2.44) and (2.45).

α̃i[yi(w · xi) + b̃− 1 + ξ̃i] = 0, ∀ i, (2.44)

β̃iξ̃i = 0, ∀ i. (2.45)

Any pattern j for which α̃j 6= 0 and ξ̃j = 0 can be chosen to determine the optimal bias

b̃ by equation (2.44). According to Eq. (2.45), ξ̃i = 0 if β̃i 6= 0. From (2.42), we can see

if βi > 0 (meaning that ξi = 0), then αi < C. Thus, we can take any training point for

which 0 < αj < C to compute b̃, again the average over all such points is taken. The

decision function for a new input vector x0 remains the same as (2.38).
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The two learning methods mentioned above can be generalized to the case where the

decision function is non-linear by using the “kernel trick”. Notice that in the training

problems (2.35) and (2.43), the inputs only appears in the form of dot products xi · xj.

Suppose we map the data into higher dimensional space H where a linear separating

hyperplane can be found, using a mapping Φ:

Φ : Rd 7→ H. (2.46)

Then the learning algorithm in space H would only depend on the data through dot

products, Φ(xi) · Φ(xj). If there were a “kernel function” K such that K(xi,xj) =

Φ(xi) ·Φ(xj), there is no need to know the explicit form of mapping Φ. We could simply

use K in the learning algorithm. By introducing the kernels, xi · xj everywhere in the

method designed for the non-separable case is replaced by K(xi,xj). The algorithm

now will produce a linear support vector machine in the H space only roughly taking

the same amount time as it would take to train on the un-mapped data. However, not

every function can be used as a kernel function. The kernels have to posses some special

properties, e.g. satisfying Mercer’s condition [13] or the corresponding Gram matrix needs

to be positive semi-definite. One of the most popular examples of a kernel function is the

Gaussian radial basis function (RBF) K(xi,xj) = e−‖xi−xj‖
2/2σ2

, where σ is a bandwidth

parameter.

One of the most popular approaches to training support vector machines is sequen-

tial minimal optimization (SMO) [71]. LIBSVM is one of the most widely used library

for support vector machines [19]. Its implementation is based on sequential minimal op-

timization. LIBSVM supports support vector classification in terms of both two-class

and multi-class classification problem. Multi-class classification is implemented by “one-

against-one” strategy, where given k classes, k(k− 1)/2 binary classifiers are constructed.

The classification is determined by a voting scheme, where a point is classified to a class
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with majority votes.

2.4 Kernels for Time Series Data

Another main task of time series analysis is classification, which maps the input sequences

into predefined classes. The major difference between classifying time series data from

static data is that the time series data has high correlation and is often high dimensional

and noisy. Therefore classical machine learning algorithms cannot be directly applied to

time series classification.

Kernel methods for dealing with time series data have received considerable attention

in the machine learning community [80]. A crucial aspect of applying kernel methods on

time series data is to find a good kernel similarity to distinguish between time series. A

simple way is to treat the time series as static vectors, ignoring the time dependence, and

simply employ a linear kernel or Gaussian radial basis kernel [13, 80]. This method can

be simple and efficient provided the time series are short and of equal length. However,

in many real-world applications, the time series of interest are of variable-length and can

be quite long. It is therefore desirable to construct kernels capable of handling (possibly

long) time series of variable length, e.g. dynamic time warping [4], where time series

similarity is quantified through finding an alignment between variable-length time series.

A new trend has emerged in the machine learning community, using models that could

capture the temporal information in the time series data as representations and kernels

are subsequently defined on the fitted models, for example, autoregressive kernels [26],

probability product kernels [52], and KL divergence based kernels [17, 65].

This section will give a brief review on several existing kernels exclusively designed for

time series data.

Dynamic Time Wrapping Based Kernels Dynamic time warping (DTW) measures

the “similarity” between two sequences of variable length by “warping” the time axis of one
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(or both) sequences to achieve a better alignment [4]. An alignment π of length p (|π| = p)

between two sequences x = (xi, ..., xn) and y = (yi, ..., ym) is a pair of increasing p-tuples

(π1, π2) such that 1 = π1(1) <= ... <= π1(p) = n and 1 = π2(1) <= ... <= π2(p) = m

with some requirements, e.g. unitary increments and no simultaneous repetitions [28].

Denoting the set of all possible alignments between x and y as A(x,y), the optimal

alignment π∗ in terms of mean-score given as follows:

π∗ = arg max
π∈A(x,y)

1

|π|S(π) (2.47)

can efficiently computed by dynamic programming algorithms, where S(π) is the DTW

score and defined as S(π) =
∑|π|
i=1 φ(xπ1(i), yπ2(i)), where φ is an arbitrary conditionally

positive-definite kernel such as Gaussian kernel. DTW has been successfully used in

many applications [4, 27, 28]. However, it can sometimes generate unintuitive alignments

by mapping a single point of one time series onto a large subsection of another time series,

leading to inferior results [54]. Since DTW similarity measure is not essentially positive

definite it cannot be directly used in a kernel machine. A time series kernel based on

global alignment, motivated by DTW, has been proposed in [28], with an efficient version

presented in [27]. The kernel takes advantage of the score values of all possible alignments

K(x,y) =
∑

π∈A(x,y)

exp{S(π)} =
∑

π∈A(x,y)

exp







|π|
∑

i=1

φ(xπ1(i), yπ2(i))







(2.48)

instead of a single optimal alignment as presented in [93]. This kernel is proved to be

positive-definite under some mild conditions on φ [28].

Autoregressive Kernels Autoregressive (AR) kernels [26] are probabilistic kernels for

time series data. In an AR kernel, the vector autoregressive model class is used to generate

an infinite family of features from the time series. Given a time series s of dimension
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d and of length L, the time series is supposed to be generated according to the following

vector autoregressive (VAR) model of order p:

s(t) =
p
∑

i=1

Ais(t− i) + ε(t), t = p+ 1, ..., L. (2.49)

where Ai ∈ R
d×d are the coefficient matrices, ε is a centred Gaussian noise with a covari-

ance matrix V ∈ R
d×d. Then, the likelihood function pθ(s) can be formulated as follows:

pθ(s) =
1

2π|V | d(L−p)
2

L
∏

t=p+1

exp



−1

2

(

s(t)−
p
∑

i=1

Ais(t− i)
)T

V −1

(

s(t)−
p
∑

i=1

Ais(t− i)
)



 .

For a given time series s, the likelihood function pθ(s) across all possible parameter

setting (under a matrix normal-inverse Wishart prior ω(θ)) forms a representation of

s. Given two time series si and sj, the kernel is defined as the dot product of the

corresponding sequence representations:

KAR(si, sj) =
∫

θ
pθ(si) · pθ(sj)ω(dθ).

Fisher Kernel The Fisher kernel [47] was proposed to combine the power of generative

modelling with discriminant classifiers such as the Support Vector Machines. It has been

successfully used in numerous applications, see annotated bibliography in [87]. Fisher

kernel assumes that the generative model p(s|θ) can explain all the data. The Fisher

kernel maps each individual data point into a vector in the gradient log-likelihood space

specified by this generative model. The feature vector (Fisher score) Us is the gradient of
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the log-likelihood of the generative model (fit on the data set) for the time series s:

Us = ∇θ log p(s|θ).

The Fisher kernel is then defined as follows:

K(si, sj) = UTsiI−1Usj ,

where I is the Fisher information matrix and defined as follows:

Ii,j = −E

[

∂ log p(s|θ)
∂θi∂θj

]

. (2.51)

The calculation of I can be computationally expensive. A routinely used practical “trick”

is to use the identity matrix in place of I [91], which speeds up the computation at the

cost of losing some important information [91].

Auto-correlation Operators kernel Recently, Gaidon et. al proposed difference

between auto-correlation operators (DACO) kernel [35] in the context of (video) action

recognition. DACO kernel compares the dynamic aspects of two time series si and sj by

using the difference between their auto-correlations and plug the difference into Gaussian

function to compute the final kernel value as follows:

KADCO(si, sj) = exp{−dDACO(si, sj)

2σ2
}, (2.52)

where dDACO(si, sj) =‖ ρ̂(sj )τ − ρ̂(si)τ ‖HS, the distance between their auto-correlations (see

section 2.2) using Hilbert-Schmidt norm, which is defined by ‖ A ‖2HS= Tr(A∗A) where Tr

is the trace function and AT is the transpose of A. The time lag τ needs to be determined

according to the nature of the datasets. In [35], τ was set to be 1 frame, as they argue
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that they dealt with short actions recondition which involves fast motions and potentially

drastic change in a few frames. DACO is well suited to compare the dynamic aspects

in time series and can also be easily kernelized. In the kernelized version the time series

are mapped into the feature space on a element-by-element basis [35]. Such kernelization

makes the kernel more expressive but at the cost of computational complexity (L × L

matrix inversion, where L is the length of the time series).

Kernels mentioned above are specially designed for the comparison of time series data.

These kernels, except DTW based ones, share one common characteristic, which is taking

advantage of time time series models to make use of the time dependency in the time series

data. Autoregressive kernels [26] and Fisher kernels [47] use the generative time series

models, DACO kernels utilize the auto-correlations. Fisher kernel [47] use one generative

model to represent all the data, while autoregressive kernel uses the generative models to

extract infinite many features of the data point. Fisher kernel only looks at the change of

the log-likelihood function under the generative model. If the log-likelihood functions of

the two time series change in the similar way, the two time series are regarded as similar.

It does not consider whether the generative model can characterize the example well or

not. The Auto-regressive kernel looks at the difference of the generative models related to

the two time series under all possible parameters. If the sum of the difference between the

generative models corresponding to the two time series through all the possible parameter

settings is small, the two time series are regarded as similar.

2.5 Statistic Tests

A classical procedure of comparing the performance of two methods is t-test [109], which

is a parametric test under assumptions of normality and equal variances. Kolmogorov-

Smirnv test [95], which is a nonparametric test for the equality of continuous one-dimensional

probability distribution can be used to test the normality of the data. When the results of
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each method reject the normality hypothesis, t-test will be invalid. In this case, Wilcoxon

signed-rank test [105], which is a nonparametric test can be used. Wilcoxon signed-rank

test is equivalent to the dependent t-test, but without the assumption of normality in the

data. The procedure of Wilcoxon signed-rank test is as follows:

• Compute the difference between each pair of scores.

• Rank the differences in order of magnitude neglecting signs and then assign a neg-

ative sign to which correspond to negative difference.

• Calculate the sum of the positive rank numbers W+ and the sum of the negative

rank numbers W−, respectively, and choose W = min(W+, |W−|).

• Use the table of critical values for the Wilcoxon signed-rank test to determine

whether the difference is significant. For instance, given the size of non-zero dif-

ferences is 10, the critical value for a two-tailed test at the 0.05 significance level

is 8. If the computed W is smaller or equal to 8, then the difference is significant,

otherwise not.

2.6 Summary

This chapter provided a review on kernel methods (i.e. SVMs) applied to time series data

in two different contexts: prediction and classification. In the first context, the task is to

forecast the future values from the past observations. The application of SVMs to this

task involves a sliding window method. This method rolls a finite fixed length window

over a given time series (inputs), the future values of the time series serve as targets. In

the second context, the aim is to predict a label that applies to the entire time series.

The crucial aspect is to define a good kernel similarity between the time series, since in

this case the time series (example input) may not be of equal length and possibly very

long. Consequently, classic kernels such as the Gaussian kernel might not be qualified.
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A particular effective way of constructing time series kernel is to fit time models using

the time series and define kernel values on top of the fitted models. Recurrent neural

networks which will be used in our kernel construction were introduced. Kernels which

are exclusively designed to measure the similarity between time series were reviewed.
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CHAPTER 3

Exploiting Privileged Information for Time Series

Prediction

In Chapter 2.3, we reviewed SVM for binary classification problems. In some time se-

ries prediction problems, people are interested in multiple ordered categorical informa-

tion where an ordinal regression problem is formed. Moreover, future events, which are

present in the training stage but not in the test phase, can act as privileged information.

Therefore, we propose a new methodology, called support vector ordinal regression with

implicit constraints using privileged information (SVORIM+), for utilizing the privileged

information to improve generalization performance in ordinal regression. In this chapter,

LUPI paradigm which incorporates privileged information in training process is briefly

described in section 3.2. Section 3.3 demonstrates support vector ordinal regression ap-

proaches, in particular SVORIM. Section 3.4 describes the proposed SVORIM+ method

in details. Section 3.5 is devoted to experiments and the main findings are discussed and

summarized in section 3.6.
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3.1 Introduction

Machine learning algorithms for classification problems map the input x, a set of at-

tribute values into a categorical target value c, which is represented by the class la-

bel [25, 32, 34, 100]. In many practical applications of machine learning, an order may

exist on the class labels (categories). For instance, when learning how to grade future

movements of a financial indicator, instead of predicting the real values, we may only be

interested in ordered categories of movements – e.g. extreme up, up, down and extreme

down. A variety of algorithms (referred to as ordinal regression) have been developed that

explicitly use the class order information, e.g. [22, 24, 34, 45, 59, 88, 90]. A simple method

that enables standard classification algorithms to exploit the ordinal prediction was pro-

posed in [34]. This method first transforms an J-class ordinal problem into J − 1 binary

classification problems and then combines the J − 1 model predictions to estimate the

probabilities of the J original ordinal classes for test instances. This method requires no

modification of the standard binary classification algorithm. However, it cannot capture

the overall structure among the ordinal classes, which may be suboptimal. A direct gener-

alization of support vector machine approach for ordinal regression has been proposed by

finding J−1 parallel class separation hyperplanes such that the input/feature space is par-

titioned into J ranked regions corresponding to the classes [90]. Unfortunately, there is no

guarantee that the thresholds corresponding to these hyperplanes are properly ordered at

the “optimal” solution. Thus, this approach has been further extended in support vector

ordinal regression (SVOR) with explicit and implicit constraints [24] imposing the ordinal

inequalities on thresholds1 (defining the separation hyperplanes), b1 6 b2 6 ... 6 bJ−1.

Traditionally, these ordinal regression algorithms are to learn the decision function

from sample given only by labelled points (xi, yi). However, additional privileged knowl-

1Threshold and bias are quite similar concepts but slightly different in the way of appearing in the
model, i.e. in the model ax+ b = 0, b is called bias while in the model ax− b = 0, b is named threshold.
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edge (represented through ‘privileged space’ X∗ ) may contain substantial information

that might be used when constructing the decision function. Recently, an advanced learn-

ing paradigm, called learning using privileged information (LUPI) has been suggested to

incorporate the privileged knowledge into learning process [101]. This new learning frame-

work is motivated by human learning where a teacher provides students with not only

examples but also additional information hidden in the explanations, comments, compar-

isons, etc. For example, when a student learn a concept at school such as algebra, the

teacher can provide additional explanations at any time. Hopefully, this will make the

student learn faster than if the teacher would only pose questions and give their answers.

However, when later in life, the student faces an algebra problem, or or she will bot be

able to rely on the teacher’s expertise anymore. In the LUPI framework, along with

training inputs x, we may have access to an additional information x∗ about training

examples, but this privileged information x∗ will not be available for inputs x at the test

stage. For instance, in the financial indicator prediction example above, during training

we have access to both the past and future contexts of time instances within the raining

set. An SVM based framework, SVM+, for incorporating privileged information during

training has been suggested in [101,102]. The privileged information is used in SVM+ to

model the slack variables of training inputs through so-called correcting functions. The

SVM+ framework was further extended for the case structured data [60] or multi-tasking

learning [14, 15].

The existing support vector ordinal regression approaches are not able to directly

utilize privileged information during training. Motivated by SVM+ [101], which incorpo-

rates privileged information by modelling the slack variables of training inputs through

so-called correcting functions, we propose to exploit privileged information in support vec-

tor ordinal regression with implicit constraints (SVORIM) by constructing slack variable

models for each parallel separation hyperplane, which will be referred to as SVORIM+.

43



3.2 Learning Using Privileged Information

Commonly, in human learning, a teacher will provide students with not only examples but

also additional information hidden in the explanations, comments, comparisons etc. [101].

Taking this element in human learning into consideration, an advanced learning paradigm,

called learning using privileged information (LUPI) [101], also known as learning using

hidden information [102], has been introduced to deal with this kind of situations where

additional (privileged) information x∗ ∈ X∗ about training examples x ∈ X is known

during training but is unavailable in the test phase. Privileged information appears in

several application domains [101,102], for example in the time series prediction privileged

information is the behaviour of the time series in the future; in cancer prediction using

biopsy images, the privileged information is the pathologist’s report etc.

An extension of SVM learning algorithm, known as SVM+, has been suggested as

a candidate for LUPI in [101, 102]. In SVM+, the slack variables for inputs in X are

determined by a correcting function operating in the privileged space X∗:

ξ(x∗) = w∗ · Φ∗(x∗) + b∗, (3.1)

where Φ∗ is the feature map induced by the kernel operating on X∗, w∗ is the normal

vector to the correcting function, and b∗ is the bias term of the correcting function.

Replacing the slacks in (2.39) by the slack variable model defined above, the primal
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problem becomes:

min
w,w∗,b,b∗

1

2
[‖ w ‖2 +ρ(‖ w∗ ‖2)] + C

n
∑

i=1

[w∗ · Φ∗(x∗i ) + b∗] (3.2)

s. t.

yi[w · Φ(xi) + b] > 1− [w∗ · Φ∗(x∗i ) + b∗], ∀ i, (3.3)

w∗ · Φ∗(x∗i ) + b∗ > 0, ∀ i, (3.4)

where ρ is a hyper-parameter used to control the capacity for the correcting function in

X∗ space. The second term in (3.2) relates to the capacity of the correcting function and

the third term in (3.2) relates to minimization of the slack values. The justification of the

problem has been given in [101]. Generally speaking, if the real slack values were known,

the learning problem become a separable case which has a faster rate of convergence than

the non-separable one. However, a teacher does not know the real slack values. Instead

he can provide privileged information and the admissible set of correcting functions that

contains the correcting function which defines the true slacks. The privileged information

helps to find that correcting function.

By introducing two dual variables α and β, where αi is the i-th element of vector α

that relates to the i-th constraint of the first type (3.3) while βi is the i-th element of

vector β that relates to the i-th constraint of the second type (3.4), the Lagrangian can

be written as follows:

L(w,w∗, b, b∗,α,β) = 1
2
[‖ w ‖2 +ρ(‖ w∗ ‖2)] + C

∑n
i=1[w∗ · Φ∗(x∗i ) + b∗] (3.5)

−∑ni=1 αi{yi[w · Φ(xi) + b]− 1 + [w∗ · Φ∗(x∗i ) + b∗]} −∑ni=1 βi[w
∗ · Φ∗(x∗i ) + b∗],
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with the corresponding dual:

max
α,β

n
∑

i=1

αi −
1

2

n
∑

i,j=1

αiαjyiyjK(xi,xj)

− 1

2ρ

n
∑

i,j=1

(αi + βi − C)(αj + βj − C)K∗(x∗i ,x∗j)

s. t. (3.6)
n
∑

i=1

(αi + βi − C) = 0,
n
∑

i=1

yiαi = 0, αi > 0, βi > 0, ∀ i.

K(xi,xj) and K∗(x∗i ,x∗j) are kernels in X and X∗ spaces, respectively. SVM+ have been

successfully used on a variety of data sets with privileged information, e.g. [60, 74].

3.3 Support Vector Ordinal Regression

SVM has been altered for ordinal regression setting where a natural order exists in multiple

classes known as support vector ordinal regression (SVOR) [23,24,44,90]. While the key

concept of the SVM classifier is the hyperplane separating the positive examples from the

negative ones with maximum margin, SVOR classifier extends this idea by constructing

multiple parallel hyperplanes separating the adjacent classes (in the class order).

Shashua and Levin [90] maximize the margin between the adjacent classes and find

J − 1 thresholds that divide the real line into J consecutive intervals corresponding to

the J ordered categories. The margin can either be the same for all J − 1 separating

hyperplanes, or can be different for each adjacent class separation, in which case the sum

of the margins is maximized.

However, in this approach it cannot be guaranteed that the optimized thresholds will

preserve the category order, i.e. b1 6 b2 6 . . . 6 bj . . . 6 bJ−1.

To address this problem, Chu and Keerthi [23,24] proposed explicit and implicit con-

straints enforcing the inequalities on the thresholds. The explicit constraints directly en-

force order on the adjacent thresholds, while the implicit constraints ensure the threshold
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order implicitly through the data by stipulating that the j-the hyperplane (corresponding

to threshold bj) separates all points from classes ≤ j from all points of classes > j. Ling

and Lin [59] introduced a unified reduction framework from ordinal regression to binary

classification. The explicit and implicit (SVORIM) approaches of [24] can be regarded as

special instances of this framework.

Consider an ordered set of classes {1, 2, ..., J}, following [24], in SVORIM, there are

two sets of slack variables ξ and ν, where ξ collects the slack variables of inputs from lower

categories to the current separating hyperplane, referred as ‘left’ slacks, while ν collects

the slack variables of inputs from upper categories to the current separating hyperplane,

referred as ‘right’ slacks. Then, the primal problem is formulated as follows:

min
w,b,ξ,ν

1

2
‖ w ‖2 +C

J−1
∑

j=1





j
∑

k=1

nk
∑

i=1

ξjki +
J
∑

k=j+1

nk
∑

i=1

νjki



 ,

s.t.

w · Φ(xki )− bj 6 −1 + ξjki, ξ
j
ki > 0,

for j = 1, ..., J − 1, k = 1, ..., j and i = 1, ..., nk, (3.7)

w · Φ(xki )− bj > +1− νjki, νjki > 0,

for j = 1, ..., J − 1, k = j + 1, ..., J, i = 1, ..., nk,

where w is the normal vector of the separating hyperplanes, xki is the i-th example of

k-th category, ξjki and νjki are ‘left’ and ‘right’ slacks, respectively, for the i-th point in

class k with respect to the separating hyperplane between classes j and j + 1 and Φ(x)

is the image of the input x under the feature map defined by the used kernel K(·, ·), nk

is the number of examples in k-th category.

Note that since in SVORIM there is a slack variable for each (data point, decision

boundary) pair, there is no need to have different notations for the ‘left’ and ‘right’ slacks,

ξ and ν, respectively. The left-right slacks are necessary for the explicit constraint for-
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Figure 3.1: Illustration of SVORIM. All the examples are mapped to their function values
w · Φ(x) along the horizontal axis [24].

mulation, but not for the implicit one. Similar to [24] but with only one set of slack

variables, the definition of slack variable in SVORIM is given in Figure 3.1: for a thresh-

old bj , the function values w ·Φ(x) of all samples from all the lower categories should be

less than the lower margin bj − 1 and the function values w · Φ(x) of all samples from

all the upper categories should be greater than the upper margin bj + 1. Slacks of each

sample with respect to every threshold are allowed to relax the constraints. Therefore, in

our approach, we need to model one set of slack variables ξj for each threshold bj (j-the

separating hyperplane).

3.4 SVORIM+ Approach

In this section, we apply the LUPI framework in the SVORIM approach. We chose the

implicit SVORIM formulation instead of the explicit one ( see section 3.3), since in the

explicit SVOR each hyperplane j = 1, 2, ..., J − 1, is constrained by the slacks of patterns

x
j
i and xj+1

i from adjacent classes only. On the other hand, in SVORIM patterns from all

classes contribute to the slacks, thus constraining all separating hyperplanes. Since the key

aspect of incorporating privileged information into SVOR is modelling of slacks via models

operating on the privileged space, the SVORIM framework can provide more flexibility

in using the privileged information through greater number of correcting functions.
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Additionally, it was empirically found in [24] that the explicit constraint approach per-

formed better in terms of the basic zero-one loss (classification error), while the SVORIM

was preferable in terms of Mean Absolute Error (MAE), which is more important in the

context of ordinal regression. Following notation in [101], we will refer to the SVORIM

algorithm with privileged information as SVORIM+.

3.4.1 Primal Problem

Suppose, as in section 3.3, that we have observations classified into J ordered categories

and there are nk examples xki ∈ X, i = 1, ..., nk, in the k-th category, k = 1, 2, ..., J . To

simplify the presentation we assume that each example xki has an associated privileged

information x∗ki ∈ X∗. Extension to the case where only a subset of training examples

has privileged information is straightforward. For points without privileged information

the slack values would be obtained from the optimization programme as in SVORIM.

As there is no need to have a different notation for the “left” and “right” slacks, ξ and

ν, respectively, we rewrite (3.7) as

min
w,b,ξ

1

2
‖ w ‖2 +C

J−1
∑

j=1

J
∑

k=1

nk
∑

i=1

ξjki,

s.t. for j = 1, ..., J − 1,

w · Φ(xki )− bj 6 −1 + ξjki, ξ
j
ki > 0, k = 1, ..., j and i = 1, ..., nk,

w · Φ(xki )− bj > +1− ξjki, ξjki > 0, k = j + 1, ..., J, i = 1, ..., nk.

(3.8)

Therefore, in our approach, we only have one set of slack variables ξj for each threshold

bj (j-th separating hyperplane). Following [101], for xki ∈ X with privileged information

x∗ki ∈ X∗, the slack values are obtained through models (“correcting functions”) of the

form ξjki = w∗jΦ
∗(x∗ki )+b∗j , operating on the privileged space X∗. In total J−1 correcting

functions ξj(x∗) = w∗jΦ
∗(x∗) + b∗j are needed, j = 1, 2, ..., J − 1, one for each decision
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boundary.

In analogy to [101], the primal problem of proposed SVORIM+ can be formulated as:

min
w,b,w∗,b∗

1

2
‖ w ‖2 +

ρ

2

J−1
∑

j=1

(‖ w∗j ‖2) + C
J−1
∑

j=1

J
∑

k=1

nk
∑

i=1

(w∗j ·Φ∗(x∗ki )− b∗j ),

s.t. for every j = 1, ..., J − 1,

w · Φ(xki )− bj 6 −1 + (w∗j ·Φ∗(x∗ki )− b∗j ), for k = 1, ..., j and i = 1, ..., nk,

w · Φ(xki )− bj > +1− (w∗j ·Φ∗(x∗ki )− b∗j ), for k = j + 1, ..., J and i = 1, ..., nk,

w∗j ·Φ∗(x∗ki ) + b∗j > 0 for k = 1, ..., J and i = 1, ..., nk.

(3.9)

Note that unlike in SVORIM, in the proposed formulation of SVORIM+ the slack vari-

ables are reduced to one set per threshold and are replaced by correcting functions defined

in the privileged information space. The term
∑J−1
j=1 (‖ w∗j ‖2) corresponds the capacity

of the correcting functions and is controlled by the parameter ρ ≥ 0, tuned via using

cross-validation.

3.4.2 Dual Problem

Following the standard SVM practice, the primal problem will be transformed into its

(more manageable) dual formulation [6, 8, 100]. Lagrangian for the primal problem can

be formulated as (3.10):
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L =
1

2
‖w‖2 +

ρ

2

J−1
∑

j=1

‖w∗j‖2 + C
J−1
∑

j=1

J
∑

k=1

nk
∑

i=1

(w∗j ·Φ∗(x∗ki ) + b∗j )

−
J−1
∑

j=1

j
∑

k=1

nk
∑

i=1

αjki
(

−1 +w∗j ·Φ∗(x∗ki ) + b∗j −w · Φ(xki ) + bj
)

(3.10)

−
J−1
∑

j=1

J
∑

k=j+1

nk
∑

i=1

αjki
(

−1 +w∗j ·Φ∗(x∗ki ) + b∗j +w · Φ(xki )− bj
)

−
J−1
∑

j=1

J
∑

k=1

nk
∑

i=1

βjki(w
∗
j ·Φ∗(x∗ki ) + b∗j ),

where αjki and βjki are non-negative Larangian multipliers. The KKT conditions for the

primal problem require the following conditions hold true:

∂L
∂w

= w +
J−1
∑

j=1

j
∑

k=1

nk
∑

i=1

αjkiΦ(xki )−
J−1
∑

j=1

J
∑

k=j+1

nk
∑

i=1

αjkiΦ(xki ) = 0, (3.11)

∂L
∂w∗j

= ρw∗j + C
J
∑

k=1

nk
∑

i=1

Φ∗(x∗ki )−
j
∑

k=1

nk
∑

i=1

αjkiΦ
∗(x∗ki ) (3.12)

−
J
∑

k=j+1

nk
∑

i=1

αjkiΦ
∗(x∗ki )−

J
∑

k=1

nk
∑

i=1

βjkiΦ
∗(x∗ki ) = 0,

∂L
∂bj

= −
j
∑

k=1

nk
∑

i=1

αjki +
J
∑

k=j+1

nk
∑

i=1

αjki = 0, ∀j, (3.13)

∂L
∂b∗j

=
J
∑

k=1

nk
∑

i=1

(αjki + β
j
ki − C) = 0, ∀j, (3.14)

αjki > 0, βjki > 0, ∀i, ∀j. (3.15)

According to condition (3.11), we can have the solution of w as follows:

w = −
J−1
∑

j=1

j
∑

k=1

nk
∑

i=1

αjkiΦ(xki ) +
J−1
∑

j=1

J
∑

k=j+1

nk
∑

i=1

αjkiΦ(xki )

=
∑

k,i





k−1
∑

j=1

αjki −
J−1
∑

j=k

αjki



Φ(xki ). (3.16)
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According to condition (3.12), we can have the solution of w∗j as follows:

w∗j =
1

ρ



−C
J
∑

k=1

nk
∑

i=1

Φ∗(x∗ki ) +
j
∑

k=1

nk
∑

i=1

αjkiΦ
∗(x∗ki )

+
J
∑

k=j+1

nk
∑

i=1

αjkiΦ
∗(x∗ki ) +

J
∑

k=1

nk
∑

i=1

βjkiΦ
∗(x∗ki )





=
1

ρ

J
∑

k=1

nk
∑

i=1

(αjki + β
j
ki − C)Φ∗(x∗ki ). (3.17)

By substituting equations (3.16) and (3.17), together with conditions (3.13) and (3.14)

into (3.10), we obtain the dual:

LD = −1

2

∑

k,i

∑

k′,i′





k−1
∑

j=1

αjki −
J−1
∑

j=k

αjki









k′−1
∑

j=1

αjk′i′ −
J−1
∑

j=k′
αjk′i′



K(xki ,x
k′

i′ )

−ρ
2

J−1
∑

j=1

∑

k,i

∑

k′,i′

(

αjki + β
j
ki − C

) (

αjk′i′ + βjk′i′ − C
)

K(x∗ki ,x
∗k′

i′ )

+C
J−1
∑

j=1

J
∑

k=1

nk
∑

i=1

b∗j +
J−1
∑

j=1

j
∑

k=1

nk
∑

i=1

αjki −
J−1
∑

j=1

j
∑

k=1

nk
∑

i=1

αjkib
∗
j −

J−1
∑

j=1

j
∑

k=1

nk
∑

i=1

αjkibj

+
J−1
∑

j=1

J
∑

k=j+1

nk
∑

i=1

αjki −
J−1
∑

j=1

J
∑

k=j+1

nk
∑

i=1

αjkib
∗
j +

J−1
∑

j=1

J
∑

k=j+1

nk
∑

i=1

αjkibj −
J−1
∑

j=1

J
∑

k=1

nk
∑

i=1

βjkib
∗
j )

=
∑

k,i,j

αjki −
1

2

∑

k,i

∑

k′,i′
(
k−1
∑

j=1

αjki −
r−1
∑

j=k

αjki)(
k′−1
∑

j=1

αjk′i′ −
r−1
∑

j=k′
αjk′i′)K(xki ,x

k′

i′ )

− 1

2ρ

r−1
∑

j=1

∑

k,i

∑

k′,i

(αjki + β
j
ki − C)(αjk′i′ + β

j
k′i′ − C)K(x∗ki ,x

∗k′

i′ )

Thus, the learning problem of the SVORIM+ becomes the following optimization problem:
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max
α,β

∑

k,i,j

αjki −
1

2

∑

k,i

∑

k′,i′
(
k−1
∑

j=1

αjki −
r−1
∑

j=k

αjki)(
k′−1
∑

j=1

αjk′i′ −
r−1
∑

j=k′
αjk′i′)K(xki ,x

k′

i′ )

− 1

2ρ

r−1
∑

j=1

∑

k,i

∑

k′,i

(αjki + β
j
ki − C)(αjk′i′ + β

j
k′i′ − C)K(x∗ki ,x

∗k′

i′ ) (3.18)

s.t.
j
∑

k=1

nk
∑

i=1

αjki =
r
∑

k=j+1

nk
∑

i=1

αjki, ∀j

r
∑

k=1

nk
∑

i=1

(αjki + β
j
ki − C) = 0, ∀j

αjki > 0, βjki > 0, ∀i, ∀j

where j runs over 1, ..., J − 1. This optimization problem can be solved by quadratic

programming. Once the optimal solution of the above optimization problem is found, the

value of discriminant function at (a new) input x is:

F (x) =
∑

k,i

(
k−1
∑

j=1

αjki −
r−1
∑

j=k

αjki)K(xki ,x) (3.19)

The correcting functions for each threshold have the form,

ξj(x∗) = fj(x
∗) + b∗j , (3.20)

where fj(x
∗) = 1

ρ

∑J
k=1

∑nk

i=1(αjki + β
j
ki − C)K∗(x∗ki ,x∗), and the bias b∗j is computed by

averaging over −fj(x∗ki ) for all the points which βjki > 0, j = 1, ..., J − 1. The threshold

bj can be computed by any αjki > 0, in the following way:

bj =















F (xki ) + 1− ξj(x∗ki ) k 6 j,

F (xki )− 1 + ξj(x∗ki ) k > j.
(3.21)
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The threshold is taken the average for these points. Then, the predictive ordinal decision

function is defined as:

arg min
i
F (x) < bi. (3.22)

3.5 Experimental Studies

We tested our methodology on 7 data sets of different nature and origin. The input vectors

were normalized to zero mean and unit variance. RBF kernels were used in both X and

X∗ spaces with kernel widths σ and σ∗, respectively. In all experiments of this chapter,the

parameter ranges were as follows: log10 C ∈ {−2,−1, 0, 1, 2}, log10 σ ∈ {−2,−1, 0, 1, 2},

log10 σ
∗ ∈ {−2,−1, 0, 1, 2} and log10 ρ ∈ {−2,−1, 0, 1, 2}. Hyper-parameters were tuned

via grid search based on 5-fold cross validation over the training set. The cvx matlab

optimization routine1 was used an optimization routine.

3.5.1 Evaluation Metrics

In the experiments we used three performance measures:

Mean Zero-one Error (MZE) (misclassification rate) fraction of incorrect predic-

tions,

MZE =

∑n
i I(yi 6= ŷi)
n

, (3.23)

where n is the number of the test examples. I(∗) is the indicator function whose function

value is 1, if the argument ∗ is true, 0 otherwise. yi is the true label of the i-th test

example and ŷi is the corresponding predicted label, yi, ŷi ∈ {1, 2, . . . , r − 1}.

Mean Absolute Error (MAE) average absolute deviation of the prediction from the

true target,

MAE =

∑n
i |yi − ŷi|
n

(3.24)

1http://cvxr.com/cvx
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Macroaveraged Mean Absolute Error (MMAE) specially designed for evaluating

ordinal regression problems with imbalanced classes,

MMAE =
1

J

J
∑

j=1

∑

yi=j |yi − ŷi|
nj

(3.25)

where J is the number of classes and nj is the number of examples of class j.

3.5.2 Benchmark datasets

We employed two benchmark ordinal datasets, Pyrimidines and MachineCPU used in [24].

Following [24], the continuous targets were discretized to 5 ordinal categories (equal-

frequency binning). Each data set was randomly partitioned into training/test splits 10

times independently, yielding 10 re-sampled training/test sets of size 50/24 and 150/59

for Pyrimidines and MachineCPU, respectively. In order to demonstrate the advantage

of the proposed method for incorporating the privileged information, an initial experi-

ment is conducted which categorizes the input dimensions into ‘original’ and ‘privileged’

features in spaces X and X∗, respectively. Feature categorization is driven by a ‘wrapper’

approach. For each data set, we sort the input features in terms of their relevance for

the ordinal classifier (in our case SVORIM). The first most relevant half of the features

will form privileged information, the remaining half will constitute the original space X.

Privileged features will only be incorporated in training of SVORIM+ and will be absent

during the ordinal regression testing.

The average results over 10 randomized data sets splits (trials), along with standard

deviations are shown in Table 3.1. Exploiting the privileged information slightly de-

creases the classification error MZE (by roughly 1%), decreases MAE (roughly by 7%)

and decreases MMAE (with about 13% of improvement for Pyrimidines and 7% for Ma-

chineCPU). To assess the significance of the performance differences, a statistical analysis

was performed. The Kolmogorov-Smirnov (K-S) test, which is a nonparametric test for
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the equality of continuous one-dimensional probability distributions, was used to check

if the hypothesis of normality could be assumed for the results. Normality hypothesis

was rejected for all measures, so the non-parametric Wilcoxon signed-rank test [105] was

applied to check whether the differences were statistically significant. The corresponding

p-value is also included in Table 3.1, revealing that differences in MAE and MMAE were

significant. We stress that both models are using the same set of features during the test

phase, the privileged information being used only during training.

Table 3.1: Test results from 10 trials of the two algorithms on Pyrimidines and Machine
CPU and p-values of the Wilcoxon signed rank test comparing SVORIM and SVORIM+

Dataset Criteria SVORIM SVORIM+ p−value
MZE 0.5834±0.0651 0.5750±0.0756 0.5000

Pyrimidines MAE 0.7875±0.1249 0.7250±0.1306 0.0156•
MMAE 0.9627±0.1609 0.8373±0.1421 0.0039•
MZE 0.4390±0.0611 0.4356±0.0480 0.7656

MachineCPU MAE 0.5220±0.0984 0.4848±0.0599 0.0547◦
MMAE 0.5197±0.0991 0.4808±0.0601 0.0488•

◦: Statistically significant differences with a level of significance of α = 0.15.
•: Statistically significant differences with a level of significance of α = 0.05.

3.5.3 Time series datasets

In this section we employ time series data sets (see Table 3.2), as during the training

information about the immediate future (known in the training phase) can be used as

privileged information. The time series were quantized into a series of categories with

natural order.

FTSE100 is a series of the spreads {s(t)} (shown as Figure 3.2a) obtained from the

daily highest (H(t)) and lowest (L(t)) prices, s(t) = H(t) − L(t) in four-year historical

daily prices between 1 October 2008 and 31 September 2012 on the FTSE 100 downloaded

from Yahoo Finance. The distribution of FTSE100 series is shown in Figure 3.2b, similar
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Table 3.2: Description of the real datasets. d1 is the number of previous values which
function as basic information, and d2 is the number of future values which function as
privileged information.

Dataset training/test d1 d2 # trails
FTSE100 1 year/1 month 5 5 36

Fish 9 folds/1 fold 5 5 10
wine 9 folds/1 fold 5 5 10
SOI 300/200 5 5 7

Laser 500×10/4874 10 10 1
Birth 9 folds/1 fold 5 5 10

to [98], we quantized the real-valued series {s(t)} into a symbolic stream {y(t)} through

y(t) =


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4 (extremely large change) if θ3 6 s(t)
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(a) The series of daily spreads val-
ues of FTSE100

(b) The Distribution of FTSE100
daily spread value series

Figure 3.2: The time series of FTSE100 daily spread values.

Since the extreme cases in reality are much rarer than mild changes, the cut values

θ1, θ2, θ3 were chosen so that classes 1, 2, 3 and 4 contain 10%, 40%, 40% and 10% of

sequence elements s(t).

The Fish data contains 453 monthly values of estimated fish recruitment in the period

1950-1987; Wine data set contains Australian red wine sales in the period of 1980-1991.
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SOI is monthly values of the Southern Oscillation Index (SOI), which indicates the sea

surface temperature of the Pacific, in the period between January 1999 and October 2012.

The Laser data, shown as Figure 3.3a with distribution shown as 3.3b, represents a cross-

cut through periodic to chaotic intensity pulses of a real laser in a chaotic regime. The

sBirth data set contains births per 10,000 of 23 year old women in U.S. in the period of

1917-1975. For each of the four time series, differenced time series {r(t)} was quantized

into a symbolic stream {y(t)} through

y(t) =


















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
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2 (normal down) if θ1 6 r(t) < 0

3 (normal up) if 0 6 r(t) < θ2

4 (extremely up) if θ2 6 r(t)

The cut values θ1 and θ2 were chosen in the same manner as in the FTSE100 experiment.
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Figure 3.3: The time series of Laser.

For FTSE100 and SOI, the training and test set sizes are described in Table 3.2.

We used the rolling window methodology. The models are trained on the first continuous

segment of training set size (e.g. 1 year for FTSE100) and then tested on the data window

of test set size(e.g. 1 month for FTSE100) directly following the training set. The training

window is then moved forward by the test set size. After training, the models are tested

on the new test set directly following the training set, etc.
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For smaller data sets, Fish, Wine and Birth, we used 10-fold cross-validation. For

rather long Laser dataset, we trained an ensemble model consisting of 10 models indepen-

dently trained on 10 non-overlapping folds of the training set (500 points in each fold).

Ensemble approach was used for the reason that this dataset is too large, while the im-

plementation of the proposed approach by quadratic programming can not process large

datasets. Each of the 10 models was validated on the remaining folds. After training, the

ensemble model predicted class labels on the hold-out test set of size 4874 using majority

voting (among the 10 ensemble members, each having equal voting weight). In the case

of a tie (e.g. 5 votes for class 1, 5 votes for class 2), we added validation errors of ensem-

ble members behind each vote and predicted the class voted by ensemble members with

smaller validation error.

The results shown given in Table 4.3, including the results of the Wilcoxon test (the

KS-test rejected the null hypothesis of normality). Exploiting the privileged information

decreases the classification error approximately by 3%, MAE approximately by 5% and

MMAE by about 2%. MAE of SVORIM and SVORIM+ on the Fish recruitment data

are almost the same. This may be because the privileged information is not informative

enough, so that the SVORIM+ solution reduces to the SVORIM one [102]. The improve-

ment on laser data is significant, both the MZE and MAE decreased by up to about

17% and MMAE decreased by up to about 46%, the differences being found statistically

significant.

3.6 Discussion and Conclusion

How to utilize all available information during training to improve generalization perfor-

mance of a learning algorithm is one of the main research questions in machine learning.

This chapter presents a new methodology called SVORIM+, for utilizing privileged infor-

mation of the training examples, unavailable in the test regime, to improve generalization
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Table 3.3: Test Results of the two algorithms on real datasets
Datasets Criteria SVORIM SVORIM+ p−value

MZE 0.5884± 0.1470 0.5640±0.1311 0.0263•
FSTE 100 MAE 0.6799±0.2672 0.6425±0.2291 0.1493◦

MMAE 0.7528±0.2409 0.7294±0.2610 0.0745◦
MZE 0.6428±0.1348 0.6040±0.1155 0.1250◦

Wine MAE 0.7804±0.1336 0.7194±0.1557 0.0156•
MMAE 0.9871±0.1061 0.9258±0.1368 0.0625◦
MZE 0.5672±0.0273 0.5683±0.0474 0.6250

Fish MAE 0.6316±0.0356 0.6260±0.0672 0.6250
MMAE 0.8318 ±0.0297 0.8294±0.0755 0.8125
MZE 0.5724±0.0497 0.5502±0.0344 0.2187

MonthlySOI MAE 0.6354±0.0649 0.6017±0.0470 0.2187
MMAE 0.8549±0.0919 0.8380±0.0548 0.2187
MZE 0.0554 0.0460 0.0098•

Laser MAE 0.0558 0.0460 0.0040•
MMAE 0.0852 0.0454 0.0019•
MZE 0.6333± 0.1076 0.6017± 0.1531 0.5000

Birth MAE 0.7778± 0.1834 0.6972± 0.1708 0.1406◦
MMAE 1.0083± 0.2362 0.8696± 0.2001 0.0156•

◦: Statistically significant differences with a level of significance of α = 0.15.
•: Statistically significant differences with a level of significance of α = 0.05.

performance in ordinal regression.

Support vector ordinal regression algorithms have been developed to exploit the order

structure in J class labels by constructing J − 1 parallel discriminant hyperplanes (in the

feature space), separating the J ranks/classes. The proposed approach incorporates the

privileged information into support vector ordinal regression by constructing correcting

functions for each hyperplane. This approach extends to ordinal regression the original

SVM+ methodology. We formulate the proposed algorithm as a constrained convex opti-

mization problem, which guarantees the global maximization in the optimization process.

The experimental results on several benchmark and time series datasets confirmed that

the generalization performance of SVORIM+ can indeed be superior to that of SVORIM.

This is so even though the test inputs for both approaches are exactly the same - the

only difference is that during the training SVORIM+ is able to model the slack variable

values through correcting functions operating in the privileged space. The improvement
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of the generalization performance is due to utilization of useful additional information in

the form of future evolution of time series (privileged information). As argued in [101]

effectively using such information on time series turns the extrapolation problem into

interpolation one which is easier and more stable to learn. However, compared with

SVORIM, SVORIM+ requires longer training time because SVORIM only needs to solve

an optimization problem of size (J−1)n, while the problem size of SVORIM+ is 2(J−1)n,

which is double of that SVORIM requires. Besides, there are more hyper-parameters to

tune in SVORIM+. Making SVORIM+ training more efficient is a matter for our future

work.

Our work opens the door to application domains where ordinal regression with priv-

ileged information can be readily employed. For example, in automated trading where

only ordered categorical information is often needed [84,97,98], the privileged information

during training can be utilized (as suggested in [101]) in the form of the known future

development of the time series.

Learning using privileged information can be viewed as every special case of learning

with missing data where the same kind of information is consistently missing in test phase,

in contrast to, e.g. missing data at random [46].
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CHAPTER 4

Learning in the Model Space (LiMS) Kernel For

Time Series Classification

In chapter 3, we simply applied Gaussian kernel in our proposed method, since the exam-

ple inputs obtained from the time series are of equal length and very short. However, in

the context of time series classification, the example time series inputs may be of variable

length and possibly very long. Therefore, kernels specially designed for time series are

required. In this chapter, we introduce novel efficient model based kernels for time series

data rooted in the reservoir computation framework. The kernels are implemented by

fitting reservoir models sharing the same fixed deterministically constructed state transi-

tion part to individual time series. Learning is then perform in the reservoir model space.

Reservoir computing models constructed in a simple deterministically manner is briefly

described in section 2.2.3. Section 4.2 proposes time series kernels based on reservoir

models. The experimental results and analysis are reported in Section 4.3. Section 4.4

studies on-line reservoir kernel construction for extremely long time series (more than one

million). Finally, Section 4.5 discusses and concludes the results and main findings.
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4.1 Introduction

Kernel methods have received considerable attention in the machine learning community

dealing with structured data, such as image, graphs, texts or voice signals. However, as

an important ubiquitous data type in science and engineering, time series have received

relatively less research in the kernel literature [26].

There has been active research on quantification of the “similarity” or the “distance”

between time series. However, these measures are not always applicable for kernel ap-

proaches as many of such similarity measures are not positive definite, which is a necessary

basis for the reproducing kernel Hilbert space to be valid.

A simple way to distinguish between two time series of the same length is to treat

the time series as vectors and simply employ a linear kernel or Radial basis kernel. This

method can be simple and efficient provided the time series are short and of equal length.

However, in many real-world applications, the time series of interest are of variable-length

and can be quite long. It is therefore desirable to construct kernels capable of handling

possibly long time series of variable length. For example, in dynamic time warping [4]

time series similarity is quantified through finding an alignment between variable-length

multivariate time series.

Another possibility is to use a generative probabilistic model of the time series data

and then define the time series kernel through model parameters corresponding to different

sequences, e.g. probability product kernel [52], KL divergence based kernels [17, 65] and

Autoregressive kernel [26]. These approaches depend on the particular parametric model

class. For example, Fisher kernel [47] maps individual time series into score functions of

the single generative model that is assumed to be able to ‘explain’ most of the data. Often

an HMM with a fixed number of states is employed. In some situations the assumption

of the particular generative model underlying the data can be too strong. In addition,
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Fisher kernels [47] are computationally expensive because of the calculation of metric

tensor (inverse of Fisher information matrix) in the tangent space of the generative model

manifold. The ‘practical’ Fisher kernel used in most of the time replaces the metric tensor

with an identity matrix. This can result in a loss of valuable information in the data [99].

The requirement of using a single generative model in kernel calculations is relaxed e.g.

in the Autoregressive kernel [26]. Sequences are judged to be similar/dissimilar according

to the corresponding likelihood profile of a vector autoregressive (VAR) model under a

variety of parameter settings (controlled by the prior). In this case it is less crucial that

the VAR model is a faithful model of the data since the base VAR model class is used as

a ‘feature extractor’.

Due to the requirements of many time series applications, the kernel evaluation should

happen in real-time. Therefore, computational complexity of kernel construction and

evaluation can play a critical role in applying kernel methods to time series data. However,

many of the existing time series kernels are computationally demanding. For example

DACO kernel [35] proposed recently by Gaidon et al. for action recognition, compares the

dynamic aspects of two time series by using the difference between their auto-correlations.

The kernelized DACO inevitably needs to invert a matrix of size related to the time series

length. Thus the kernel can be used for relatively short time series only.

To address the problems mentioned above, we propose novel general time series kernels

that can naturally and efficiently handle long time series data of variable length. The core

idea is to transform the time series into a higher dimensional “dynamical feature space”

via reservoir computation models [62] and then represent varying aspects of the signal

through variation in the linear readout models trained in such dynamical feature spaces.

In this way each time series will be represented by the corresponding readout model of the

same fixed reservoir. Hence, unlike in the Fisher kernel, there will be a different dynamic

model for each time series, but all such models will share the same dynamical reservoir.
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The sequence-specific dynamic models will differ only in the corresponding linear readout

models from the reservoir. The intuition is that while the general fixed dynamic reservoir

provides a unique and rich pool of dynamic features for the whole data set, the individual

readout models bring enough flexibility to represent specifics of different time series, thus

providing a platform for wide applicability across time series of different characteristics

and origins.

One can, of course, argue that our approach is yet another variation on model-based

kernel construction for time series based on a particular class of dynamic (reservoir)

models. However, unlike parametric time series models of a particular from, reservoir

models have been extensively shown to be “generic” in the sense that they are able to

represent a wide variety of dynamical features of the input signals, so that given a task at

hand only the linear readout on top of the reservoir needs to be retrained [62]. As stated

above, in our formulation, the underlying dynamic reservoir will be the same for all time

series - the differences in the signal characteristics in different time series will be captured

solely by the linear readout models and will be quantified in the function space of such

models.

There are several advantages of such reservoir based time series kernels:

1. The proposed kernels can naturally handle time series of different length;

2. General reservoir model is flexible enough so that it can be used for a variety of

data types without the need to specify a particular parametric model class for the

time series;

3. Since only the linear readout on top of the reservoir needs to be trained, compared

with most time series kernels, our kernels are computationally very efficient;

4. With recursive least squares algorithm to train readout mapping of reservoir models,

our kernels can be operating in an on-line fashion, with the ability to efficiently
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handle extremely long time series;

5. Under some assumptions, the model distances between linear readouts can be for-

mulated analytically.

4.2 Reservoir Model Based Kernels

This section will introduce new time series kernels based on a general ‘temporal filter’

implemented by echo state network (ESN) with the simple deterministically constructed

reservoir architecture described in section 2.2.3. As shown as figure 4.1, the main idea is

that, provided the reservoir is able to represent a rich set of features of the input time

series, the model-based representation of a particular time series s will be given by the

linear readout mapping f(z) operating on reservoir activations z. The linear readout

mapping is defined as f(z(t)) = Wz(t) + a 1, where the activation z(t) is determined

by the inputs and the previous states as z(t) = tanh(R z(t − 1) + V s̃(t)). As reservoir

architecture is fixed ( R and V are fixed), the norm of the linear readout mapping W

and the bias a can be obtained by linear regression through minimizing the mean square

error (MSE) between the model predictions f(z(t)) and the true targets s(t + 1). The

linear readout mapping of si is denoted by fi(z). The distance between a pair of time

series si and sj is then be calculated using a model distance between the corresponding

readouts fi(z) and fj(z). Finally, the kernel can be constructed using the distance through

exponentiation.

4.2.1 Distance in the Reservoir Model Space

Uniform State Distribution Using Euclidean metric on the readout parameters to

calculate the distance between two readout mappings is not satisfying since one should

1Here, we explicitly write out the bias term, for the purpose of investigating its influence on model
distance between two linear readouts.
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Figure 4.1: Illustration of the time series kernel in the deterministic reservoir model space.
The first stage is to train the readout mapping of reservoir models using time series, i.e.
generate individual points in the model space to represent time series. The second stage
is to construct the kernel by investigating the model distance.

be interested in the model distance in the function space of the readout models, rather

than the distance between the model parameterizations.

We will use the L2 distance in the model space for its intuitive nature [21], although

our framework is general and can be applied to any appropriate function distance between

the readouts. Consider two mappings f1(z) and f2(z), f1, f2 : R
N → R

M , where N is the

number of reservoir units, M is the output dimensionality. Their L2 distance is defined

as:

L2(f1, f2) =
(∫

Z
‖f1(z)− f2(z)‖2 dP (z)

)1/2

(4.1)

where P (z) is a measurement on the input (reservoir) domain Z. Since tanh transfer

function is used to calculate the activation of the neurons, Z = [−1,+1]N .

First, the measurement P (z) is assumed to be uniform. Later this assumption will be

relaxed by considering non-uniform P (z) to reflect the fact that the state space activations

z in the reservoir can follow a more complex distribution.
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The readout model takes the form of an affine mapping:

f(z) = Wz + a, (4.2)

where z = [z1, · · · , zN ]T is the state vector, W is the parameter matrix (M × N) and

a = [a1, · · · , aM ]T is the bias vector.

Consider two readouts from the same reservoir

f1(z) = W1z + a1,

f2(z) = W2z + a2.

Then,

L2(f1, f2) =
(∫

Z
‖Wz‖2 + 2aTWz + ‖a‖2 dz

)1/2

where W = W1 −W2, and a = a1 − a2.

Note that since Z = [−1, 1]N , for any fixed a and W

∫

Z
aTWz dz = 0.

Therefore, it can be shown that (see Appendix A)

L2(f1, f2) =





2N

3

N
∑

j=1

M
∑

i=1

w2
i,j + 2N ‖a‖2





1/2

(4.3)

where wi,j is the (i, j)-th element of W .

In order to compare the difference between model distance in the function space and

Euclidean distance in the function’s parameter space, scaling of the squared model dis-
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tance (L2
2(f1, f2)) by 2−N is applied:

1

3

N
∑

j=1

M
∑

i=1

w2
i,j + ‖a‖2 ,

We can see it differs from the squared Euclidean distance on the readout parameters

N
∑

j=1

M
∑

i=1

w2
i,j + ‖a‖2 ,

by the factor 1/3 applied to the differences in the linear part W of the affine readouts.

Hence, more importance is given to the ‘offset’ than ‘orientation’ of the readout mapping.

Non-uniform State Distribution In the above, we assumed that the probability

distribution of reservoir states z is uniform in Z. As mentioned before, it is likely that

the state probability distribution P (z) will be non-uniform. We denote the corresponding

probability density function as µ(z) and we will introduce two approaches for allowing

general µ(z) - modelling of the probability density function µ by a mixture of Gaussians

and numerical approximation of the integral (4.1) by sampling using bootstrapped input

series.

For non-uniformly distributed states z, a K-component Gaussian mixture model can

be employed to approximate the corresponding density distribution p(z):

p(z) =
K
∑

k=1

πk N (z|ηk,Σk),

N (z|ηkΣk) =
exp

(

−1
2
(z − ηk)TΣ−1

k (z − ηk)
)

(2π)N/2 |Σk|1/2
,

where πk are mixture coefficients with
∑K
k=1 πk = 1, ηk is mean of the k-th component

and Σk is the covariance matrix of the k-th component.
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Then, the distance L2(f1, f2) can be obtained as follows:

L2(f1, f2) =
(∫

Z
||Wz + a||2dP (z)

)1/2

(4.4)

=
(∫

Z

(

zTW TWz + 2aTWz + aTa
)

p(z)dz
)1/2

(4.5)

=

(

K
∑

k=1

πk
(

Tr(W TWΣk) + ηTkW
TWηk + 2aTWηk + aTa

)

)1/2

. (4.6)

More detailed derivation is given in Appendix A.

We employed the mixture model construction proposed by Figueiredo et. al [33]

that automatically selects the appropriate number of mixture components in a top-down

manner.

Alternatively, the integral can be numerically approximated by using reservoir activa-

tions collected while processing the input time series. Assume that for a given time series

s, after the initial wash-out (initial activations upto certain steps need to be dismissed,

in order to wait the effects of the initial state to die out) [49], m state activations are

collected z(1), · · · , z(m). Then,

L2
2(f1, f2) ≈

1

m

m
∑

t=1

‖f1(z(t))− f2(z(t))‖2 . (4.7)

However, in some applications the length of the time series is not sufficient to yield

a good approximation. We therefore adopted the circular block-resampling bootstrap for

time series [58] to construct sufficiently long input series. This bootstrap procedure first

wraps the time series around in a circle, and then extracts L blocks from the wrapped

time series, where L is the length of the original time series, and finally, samples with re-

placement from the obtained set of blocks. The resulting time series is concatenated from

the resampled blocks. The block length in bootstrapping was automatically determined

by following [72], based on spectral estimation via the flat-top lag-windows.
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4.2.2 Time Series Kernels via Reservoir Models

In the above, the function distance between readout mappings of reservoir models is

formulated. Therefore, the three kernels can be defined as follows:

K(si, sj) = exp
{

−γ · L2
2(fi, fj)

}

,

where L2
2(fi, fj) can be Equations (4.3), (4.6) and (4.7) as reservoir (RV ) kernel, Gaussian

mixture model based reservoir (GMMRV ) kernel ,

and sampling based reservoir (SamplingRV ) kernel. γ is the kernel scale parameter.

The main algorithm is summarized below:

Algorithm 1 Model based kernel algorithm (RV, GMMRV, SamplingRV)

1: Input: Set of sequences s1, · · · , sn; parameters (number of reservoir units N ; CRJ
weights (rc, rj, ri); ridge regression parameter λ; kernel scale parameter γ;

2: Output: Kernel (Gram) matrix K.
3: for each time series si, i = 1, · · · , n do
4: Drive the reservoir state evolution with the input sequence si.
5: Fit the linear readout fi using ridge regression for the next item prediction task on
si.

6: end for
7: Calculate the pairwise model distance matrix L2(fi, fj) i, j = 1, · · · , n, via eqs. (4.3)

(RV), (4.6) (GMMRV), or (4.7) (SamplingRV) - Section 4.2.1.
8: Calculate the kernel matrix as K(si, sj) = exp{−γ · L2

2(fi, fj)}.

4.2.3 Fisher Kernel Based on Reservoir Model

Besides the model distance based kernels introduced above, we also considered the Fisher

kernel obtained with the reservoir model (FisherRV ).

Endowing the readout with a noise model yields a generative time series model of the
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form:

z(t) = g(R z(t− 1) + V s(t)),

s(t+ 1) = Wz(t) + a+ ε(t),

Assume the i.i.d. noise model ε(t) follows a Gaussian distribution,

ε(t) = N (0, σ2I).

Then,

P ((s(t+ 1) | s(1..t)) = P ((s(t+ 1) | z(t))

= (2πσ2)−M/2 exp

{

−‖s(t+ 1)−Wz(t)− a‖2
2σ2

}

,

where s(1..t) denotes the time series s(1), s(2), · · · , s(t).

Slightly abusing mathematical notation, the model likelihood p(s(1..L)) given the time

series s of length L can be written as follows:

p(s(1..L)) =
L
∏

t=1

P (s(t) | s(1..t− 1))

=
L
∏

t=1

(2πσ2)−M/2 exp

{

−‖s(t)−Wz(t− 1)− a‖2
2σ2

}

.

Therefore, the partial derivative of log likelihood log p(s(1..L)) can be obtained as

U =
∂ log p(s(1..L))

∂W

=
L
∑

t=1

(s(t)− a) z(t− 1)T −Wz(t− 1)z(t− 1)T

σ2
.

Note that the partial derivative U is an (M × N) matrix. As presented in [91], the
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practical Fisher kernel is defined as the dot product of two corresponding Fisher score

vectors. In our case, the partial derivative U is an (M ×N) matrix. Therefore, element-

wise product is involved. The ‘practical’ Fisher kernel for two time series si and sj with

scores Ui and Uj, respectively, can be formulated as

K(si, sj) =
M
∑

k=1

N
∑

l=1

(Ui ◦ Uj)k,l,

where ◦ is Hadamard (element-wise) product. This definition is equivalent to vectorize

the matrices Ui and Uj first, and then define the Fisher kernel as dot product between

the obtained vectors as in [91]. In practice, the noise variance σ2 can be estimated from

the original time series and the output of the fitted readout model. If the output of the

fitted readout model is denoted as o(t), the noise variance σ2 can be estimated as follows:

σ2 ≈ 1

L− 1

L−1
∑

t=1

||s(t+ 1)− o(t)||2 (4.8)

4.3 Experimental Studies

This section presents experimental results of the proposed kernels, RV, GMMRV, Sam-

plingRV, FisherRV, and other existing time series kernels, including autoregressive (AR)

kernel, Fisher kernel with hidden Markov models (Fisher), and dynamic time warping

based kernel (DTW ).

All hyperparameters, such as the kernel width γ and order p in the AR kernel, number

of hidden states in the HMM based Fisher kernel etc. have been set by 5-fold cross-

validation on the training set. The search ranges for parameters of each algorithm are

detailed in Table 4.1. In the reservoir based kernels, we used a fixed topology reservoir

(cycle with jumps) [76] for all data sets: N = 100, 15 jumps. The cycle weight rc, jump
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Table 4.1: Parameters for all kernels. γ is the parameter in RBF function, ξ in AR kernel
is the weight of the negative definite kernel [26], p is the order of the vector autoregressive
model, state is the number of states for HMM in Fisher kernel, λ is the ridge regression
parameter.

Kernel Parameters Parameter range
DTW γ γ ∈ {10−6, 10−5, · · · , 101},
AR γ, ξ, p γ ∈ {10−6, 10−5, · · · , 101}, ξ ∈ {0.1, 0.2, · · · , 0.9},

p ∈ {1, 2, · · · , 10}
Fisher state state ∈ {1, 2, · · · , 10}

RV, FisherRV, GMMRV, SamplingRV γ, λ γ ∈ {10−6, 10−5, · · · , 101}, λ ∈ {10−5, 10−4, · · · , 101}

weight rj, input weight ri and readout were obtained on the training set. The readout

mapping was trained via ridge regression (hyperparameter λ tuned via cross-validation).

To evaluate the readout model distance in the SamplingRV kernel, except for long time

series in the PEMS data set (Section 4.4), the bootstrapped time series were 5 times

longer than the original ones1.

The implementation of AR kernel was obtained from Marco Cuturi’s website2. Fisher

kernel was obtained Maaten’s website3.

We employ a well-known, widely accepted and used implementation of SVM – LIB-

SVM [19]. In LIBSVM, we use cross validation to tune the regularization parameter C.

The candidates of C were C ∈ {10−3, 10−2, ..., 103}. After model selection using cross-

validation on the training set, the selected model class representatives were retrained on

the whole training set and were evaluated on the test set. Multi class classification is

performed via the one-against-one strategy (default in LIBSVM). Kernel matrices of dif-

ferent kernels were precomputed and presented to SVM using the option of precomputed

kernel in LIBSVM.

1m = 5 |s|, where |s| indicates the length of the time series.
2http://www.iip.ist.i.kyoto-u.ac.jp/member/cuturi/AR.html(12/11/2014)
3http://homepage.tudelft.nl/19j49/Software.html(12/11/2014)
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Figure 4.2: Illustration of three NARMA sequences with different orders (10, 20 and 30).
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Figure 4.3: Illustration of MDS on the model distance among reservoir weights. It shows
the separability of the three time series in the model space.

4.3.1 Synthetic Data

We employed three NARMA time series models of orders 10, 20 and 30, given by:

s(t+ 1) = 0.3s(t) + 0.05s(t)
9
∑

i=0

s(t− i) + 1.5u(t− 9)u(t) + 0.1,

s(t+ 1) = tanh(0.3s(t) + 0.05s(t)
19
∑

i=0

s(t− i) +

+1.5u(t− 19)u(t) + 0.01) + 0.2,
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Figure 4.4: Illustration of the performance of compared kernels with different noise levels.

s(t+ 1) = 0.2s(t) + 0.004s(t)
29
∑

i=0

s(t− i) + 1.5u(t− 29)u(t) + 0.201,

where s(t) is the output at time t, u(t) is the input at time t. The inputs u(t) form an

i.i.d stream generated uniformly in the interval [0, 0.5). We use the same input stream

for generating the three long NARMA time series (60,000 items), one for each order.

The three sequences are illustrated in Figure 4.2. The time series are challenging due to

non-linearity and long memory.

For each order, the series of 60,000 numbers is partitioned into 200 non-overlapping

time series of length 300. The first 100 time series for each order are used as training set,

and the other 100 time series form the test set.

As apparent from Figure 4.2, distinguishing the three NARMA models using the orig-

inal time series may be challenging. However, when viewing the time series through the

model space of fitted reservoir models, the three time series classes become separated, as

illustrated in Figure 4.3 showing 2-dimensional multi-dimensional scaling1 representation

of the pair-wise readout model distances. Multidimensional scaling is a dimension re-

1Multidimensional scaling (MDS) aims to preserve the pairwise distance between points, which is
suitable to preserve the model distance for visualization.
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duction technique which projects points in high-dimensional space into lower dimension,

preserving pair-wise distance between points.

In order to study robustness of the kernels we corrupt the time series with additive

Gaussian noise (zero mean, standard derivation varies in [0.1,0.5]). Figure 4.4 shows the

test set classification accuracy against the noise level. As a baseline we also include results

by SVM operating on the time series directly (300-dimensional inputs) - NoKernel. The

RV reservoir based kernel outperforms the baseline and the other time series kernels.

4.3.2 Benchmark Data

Table 4.2: Description of the data sets

Dataset Length Classes Train Test
Symbols 398 6 25 995
OSULeaf 427 6 200 242
Oliveoil 570 4 30 30

Lighting2 637 2 60 61
Beef 470 6 30 30
Car 576 4 60 60
Fish 463 8 175 175

Coffee 286 2 28 28
Adiac 176 37 390 391

Table 4.3: Comparison of DTW, AR, Fisher (with hidden Markov models), RV, FisherRV,
GMMRV, and SamplingRV kernels on nine benchmark datasets by accuracy. The best
performance for each data set has been boldfaced.

Dataset DTW AR Fisher RV FisherRV GMMRV SamplingRV
Symbols 94.77 91.15 94.42 98.08 95.96 97.31 95.77
OSULeaf 74.79 56.61 54.96 69.83 64.59 56.55 63.33
Oliveoil 83.33 73.33 56.67 86.67 83.33 84.00 90.00

Lighting2 64.10 77.05 64.10 77.05 75.41 78.69 80.33
Beef 66.67 78.69 58.00 80.00 68.00 79.67 86.67
Car 58.85 60.00 65.00 76.67 72.33 78.33 86.67
Fish 69.86 60.61 57.14 79.00 74.29 78.00 85.71

Coffee 85.71 100.00 81.43 100.00 92.86 96.43 100.00
Adiac 65.47 64.45 68.03 72.63 71.61 74.94 76.73
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Table 4.4: CPU Time (in seconds) of DTW, AR, Fisher (with hidden Markov models),
RV, FisherRV, GMMRV, and SamplingRV kernels on nine benchmark datasets.

Dataset DTW AR Fisher RV FisherRV GMMRV SamplingRV
Symbols 1,318 2,868 2,331 202 236 374 808
OSULeaf 6,030 1,375 3,264 98 111 186 447
Oliveoil 295 113 832 11 19 27 43

Lighting2 918 151 1,143 33 46 61 95
Beef 107 54 87 10 17 23 40
Car 679 442 902 27 42 50 84
Fish 3,353 495 1,998 81 96 159 286

Coffee 21 25 145 3 3 7 19
Adiac 550 8131 1,122 201 213 394 699
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Figure 4.5: Comparison of generalization accuracy (a) and CPU time (b) in seconds of
RV, AR, DTW and Fisher kernels on InlineSkate data set.

We used 9 datasets from UCR Time Series Repository [53]. Each data set has already

been split into training and test sets (see Table 4.2).

Table 4.3 reports performance of the time series kernels on the benchmark data in

terms of test set classification accuracy. SamplingRV kernel outperforms the other kernels

on 7 datasets; RV is superior on 2 datasets and DTW outperforms the other kernels on

1 data set. In terms of computation time1, the reservoir kernels are clearly the most

1The computational environment is Windows XP with Intel Core 2 Duo 1.66G CPU and 4G RAM.
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efficient. Table 4.4 shows the average CPU time taken to evaluate the kernels in seconds1.

SamplingRV kernel is obviously the most expensive among the reservoir kernels. Still, it

is faster than its state-of-art competitors.

To further compare the computational effectiveness of the kernels, a relatively large

data set, InlineSkate from UCR time series repository, has been employed. The data set

contains 650 time series (100 training, 550 test) of length 1882, belonging to 7 classes.

The influence of time series length on the classification performance and computational

complexity was studied by considering from each training time series only the first ℓ

elements, with ℓ growing from 300 to 1800 in increments of 300. The resulting accuracy

and CPU times are shown in Figure 4.5. Relatively to the other kernels, the reservoir RV

kernel has the lowest computational cost, while achieving competitive performance.

4.3.3 Multivariate Time Series

Table 4.5: Summary of multivariate (variable length) time series classification problems.
Dataset dim length classes train test
Libras 2 45 15 360 585

handwritten 3 60-182 20 600 2258
AUSLAN 22 45-136 95 600 1865

Datasets used so far involved univariate time series. In this section, we perform clas-

sification on three multivariate time series - Brazilian sign language (Libras), handwritten

characters and Australian language of signs (AUSLAN ). Unlike the other data sets, the

handwritten characters and AUSLAN data sets contain time series of variable length.

Following [26] (previous AR kernel study) we split the data sets into training and test

sets as detailed in Table 4.5.

The results are shown in Figure 4.6. SamplingRV is superior on all three data sets.

RV kernel is outperformed by DTW and AR kernels on Libras and AUSLAN data sets,

1We do not record the cross validation time for SVM.
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Figure 4.6: Comparison of generalization accuracy (a) and CPU time (b) in seconds of
AR, Fisher, DTW, RV and SamplingRV kernels on 3 multivariate time series.

respectively. In terms of CPU time, RV kernel usually uses the least and AR consumes

the most computation time.
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Figure 4.7: Generalization accuracy of on-line RV kernel on PEMS time series.

4.4 On-line Reservoir Kernel

Reservoir readouts can be trained in an on-line fashion using recursive least squares (RLS).

In RLS, the readout weights W are recursively updated at every time step t (Detailed
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derivation is given in Appendix B):

k(t) =
Λ(t− 1) z̃(t)

z̃T (t) Λ(t− 1) z̃(t) + ς

Λ(t) = ς−1
(

Λ(t− 1)− k(t) z̃T (t) Λ(t− 1)
)

W (t) = W (t− 1) + [s(t+ 1)− o(t)] kT (t),

where k(t) stands for the innovation vector; s(t + 1) and o(t) correspond to the desired

(next-item prediction) and calculated (readout) output; Λ(t) is the error covariance ma-

trix. ‘Forgetting parameter’ 0 < ς < 1 is usually set to a value close to 1.0. In this work

ς is set by cross validation.

This enables us to construct and refine reservoir kernels on-line, as more and more

data become available. This can be particularly convenient in situations where individual

items to be classified (time series) are not fixed, but appear in an on-line manner.

After observing sufficiently long initial segments of the time series it is possible to

train the classifier and perform initial classification. As more and more data arrives, the

reservoir kernels can be updated recursively, without the need to re-construct the kernels

from scratch.

We illustrate this approach on a set of long series PEMS-SF (UCI machine learning

repository) with 440 time series of length 138,672. The data reports the occupancy rate

of different car lanes of San Francisco freeways within 15 months. The generalization

performance of on-line RV kernel is reported in Figure 4.7. As expected, the generalization

improves monotonically with increasing amount of data. On full data RV kernel achieves

86.13% accuracy. This compares favourably with the best reported performance levels

(82% ∼ 83%) [26] among a variety of time series kernels, such as AR, global alignment

kernel [28], splines smoothing kernel [57] and Bag of vectors kernel [43].
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4.5 Discussion and Conclusion

In this chapter efficient kernels have been proposed to tackle the challenges in time series

classification through kernel machines. Instead of constructing the kernel directly in the

original data space, this paper introduces a ‘kernel in the deterministically constructed

reservoir model space’ that represents each time series as a reservoir model with the

common dynamic part.

We demonstrated the application of the distance definition in the (function) model

space of linear readout models. The model distance is different from the Euclidean dis-

tance of the readout parameters, indicating that more importance is given to the ‘offset’

than ‘orientation’ of the readout mapping. We also estimated the model distance by

using either sampling methods or a Gaussian mixture model when the reservoir state

distribution is non-uniform.

The proposed kernels were compared with other competitors on synthetic and bench-

mark data sets. The results confirm the effectiveness of reservoir based kernels. The

on-line reservoir kernels proposed in Section 4.4 can process extremely long time series

efficiently.

In general, the simple RV kernel that build upon the closed form of distance in model

space is the most efficient1. However, it is obtained under the (rather unrealistic) as-

sumption of uniform state distribution and the tolerable increase in computational cost

by the SamplingRV kernel is well offset by the increase in the classification accuracy. The

GMMRV kernel can also be analytically obtained via approximating the state distribu-

tion by a Gaussian mixture. Of course, the quality of this kernel depends on how well the

state distribution is captured by the Gaussian mixture model used.

It is interesting that the Fisher kernel based on the reservoir model achieves better

1It is worth noting that there also exist fast implementations of non-kernelized variations of DACO
and global alignment kernels.
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performance than the Fisher kernel based on the HMM model with continuous (Gaussian

distributed) emissions. The principal difference between the reservoir model and HMM

is that in the reservoir model the state space is infinite (uncountable) with deterministic

input-driven dynamics. In HMM the state space is finite and latent, with probabilistic

state transitions.

In conclusion, reservoir model based time series kernels can achieve competitive per-

formance in terms of both generalization accuracy and computational time, without the

need for explicit specification of the parameterized model class for the time series data.

This is potentially of great benefit in cases of very large data sets of long time series

where the underlying parametric model is unknown. Reservoir kernels stand and fall on

the ability of the particular dynamic reservoir to generate a rich pool of dynamical fea-

tures sufficiently representing the variety of time series occurring in a given task. If the

echo state property - a cornerstone of reservoir modelling - is not an appropriate mod-

elling assumption, the reservoir kernels cannot be expected to perform well. However,

as has been demonstrated numerous times, for most real-world data the fading memory

assumption (encapsulated in the echo state property) is appropriate.

The kernels designed in this chapter can be viewed as an special instance of model-

based kernels. These kind of time series kernels are constructed upon time series models.

Time series models act as representations of data and kernel similarity is then build using

the model representations. Other time series model such as hidden Markov model (HMM)

can replace the reservoir model in the kernel construction and the distance between two

model representation needs to change accordingly.
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CHAPTER 5

Adaptive LiMS Kernel For Time Series Classification

The previous chapter presented the model based kernels for time series classification based

on the echo state network with a simple deterministically constructed reservoir structure.

In this chapter, we present an adaptive model based time series kernel, termed model-

metric co-learning (MMCL). This methodology is also developed within the framework

of learning in the model space - each data item (sequence) is represented by a predictive

model from a carefully designed model class. The difference is that this method co-learns

the dynamic reservoir and a global metric in the linear readout model space. Before we

introduce this MMCL methodology in section 5.3, we demonstrate an initial investigation

on learning the dynamic reservoir in the deterministically constructed echo state network

in section 5.2. Finally, Section 5.4 discusses and concludes the main findings.

5.1 Introduction

So far approaches to model based sequence classification either used a single model fitted

on the full data (i.e. Fisher kernel [47])/individual classes [89], or fit a full linear dynamic

model on each sequence [81]. The models fitted on the full data/classes can be more

complex than those fitted on individual sequences. The price to be paid is the potential
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inadequacy of such a model to capture individual variations among the data items. On

the other hand, individual sequence models have to be relatively simple (e.g. with lin-

ear dynamics) to keep the model estimation stable. We propose a new hybrid approach

spanning the two extremes in an attempt to keep the best of both worlds. Following the

core idea presented in the previous chapter, we represent individual sequences through

linear readout models from an adaptive high-dimensional non-linear state space model

with a highly constrained dynamic part. The dynamic part is the same for all data items

and acts as a temporal filter providing a rich pool of dynamic features that can be selec-

tively extracted by individual (static) linear readout mappings representing the sequences.

Alongside learning the dynamic part, we also learn the global metric (distance function)

in the readout model space. The overall goal is to adapt the shared dynamical system

and metric tensor on the readout maps (standing for the sequences) so that sequences

from the same class are represented by ‘close’ readouts, while readouts of sequences from

different classes are well-separated. We term our methodology model-metric co-learning

(MMCL).

The MMCL framework for sequence classification builds on ideas of model based

representation for sequences [17] and discriminative learning [11,99] but differs mainly in

three aspects: First, the final representation of the sequences is linear readout mapping,

but the full underlying model is a non-linear dynamic system. In this way our methodology

reduces the computational demands without the loss of the computational ability of non-

linear models. Second, it treats the model parameters adaptation and model distance

designing jointly, rather than adapting the model parameters first and defining the model

distance afterwards in two independent steps. Third, it has the similar motivation as other

discriminative kernels [99], but differs in its goal of utilizing models that both represent

the time series well and at the same time best separate the time series classes.
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5.2 Learning the Deterministically Constructed Echo

State Networks

Echo state network [50,51], a very simple form of reservoir computing method, has already

been introduced in section 2.2.3. The randomization of generating the reservoir in ESN

cause it to be poorly understood, as a result leaving the room for further investigation on

what exactly a reservoir structure leads to good performance for a given problem [42,68,

78]. A simple cycle reservoir (SCR) introduced in [77] shows comparable performances to

the traditional randomized ESN. One extension of the cycle reservoir by adding regular

bidirectional jumps (shortcuts) (CRJ) introduced in [76] has shown superior performance

to those of the traditional randomized reservoir models in non-linear system identification,

real time series prediction and speech recognition [76]. Moreover, the characterizations of

the selected reservoir model is well understood.

However, in the original CRJ model introduced in [76], the parameters that govern the

design of reservoir are tuned by costly and potentially unstable cross-validation technique

using an exhaustive grid search method. Furthermore, the selected parameters from grid

search may not be the optimal, because of the discretization of the continuous parameters.

We propose a hybrid optimization strategy to learn the parameters in the CRJ net-

work. The linear output weights of the network are determined by ridge regression, while

the reservoir weights are found using a nonlinear optimization technique. Regularization

on the output weights and early stopping strategy have been incorporated in this proposed

training strategy. The experimental results show that the new learning method tremen-

dously improves the computational efficiency and can achieve comparable, sometimes even

better, performance to the original cross-validation CRJ fitting.
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5.2.1 Basic Algorithm

The mathematical formulation of the deterministically constructed CRJ model is given

as follows:

z(t) = tanh(R z(t− 1) + V s(t)), (5.1)

o(t) = Wz(t) (5.2)

where z(t) ∈ R
N , s(t) ∈ R

d and o(t) ∈ R
M are the state vector, input vector and output

at time t, respectively; R is a (N × N) dynamic coupling matrix; V ∈ R
N×d and W

∈ R
M×N are the input and output weight matrices 1, respectively. The function tanh is

applied element-wise on the resulting matrix. Here, we allow that the dimensionality of

the input vector can be different from the dimensionality of output vector, making the

model more flexible.

As mentioned in section 2.2.3, in the CRJ architecture, all cyclic connections have the

same weight denoted by rc, all jumps share the same weight denoted by rj, and the input

connections have the same absolute value denoted by ri with an aperiodic sign pattern.

Thus, the dynamic coupling matrix R is determined by two free parameters rc and rj,

where ri determines the input weight matrix V . Consequently, only three free parameters,

rc,rj, and ri, need to be learned during training.

The problem of training the network can be formulated as a problem of the minimiza-

tion of an error function E. For convenience, rc, rj and ri are grouped together into a

single vector r. We choose the sum-of-squares error function when training the network.

Assuming the network is running from time step 1 up to time step L, the sum-of-squares

1We can add the state vector z(t) with a constant element (e.g. 1) and W with a column to account
for the bias term. To simplify the presentation, we omit the bias term.
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error is given as follows:

E =
L
∑

t=1

||o(t)− y(t)||2 (5.3)

where y(t) ∈ R
M is the target at time step t and || · || denotes the Euclidean norm. Since

the value of the sum-of-squares error function depends on the number of patterns, we

consider a normalized error function for assessing the performance of the trained network.

As suggested in [5], we choose the normalized mean square error function as follows:

Ẽ =
〈||o(t)− y(t)||2〉
〈||y(t)− 〈y(t)〉||2〉 (5.4)

where 〈·〉 denotes the empirical mean.

The network we considered here is a recurrent network with linear output units. Since

the dependence of the network mapping on the final-layer weight is linear, the partial opti-

mization of sum-of-squares error function with respect to these weights can be performed

by linear methods. The computational effort involved in linear methods is often very

much less than that required for general non-linear optimization. Therefore, we adopt a

hybrid procedure for optimizing the weights in the network, where linear method is used

for obtaining the final layer weights, and non-linear method is used for acquiring all the

other parameters [103].

The error function E is a quadratic function of W . For any given value r, where

r = {rc, rj, ri} , we can perform a one-step exact minimization with respect to the W

using linear regression, in which r is held fixed. The gradient of E with respect to W is

as follows (details are given by C.1):

∂E

∂W
= 2

L
∑

t=1

(o(t)− y(t))zT (t) (5.5)

If we collect the network states z(t), for a given r, into a matrix Z and the target values

y(t) in a vector (matrix if the output is multi-dimensional) Y , by making the gradient of

89



E with respect to W equal to zero, the output weights can be computed as follows:

W = Y ZT (ZZT )−1 (5.6)

where Y = [y(1), ...,y(L)] and Z = [z(1), ..., z(L)] respectively. Since the output weights

W are regarded as a function of r and can be chosen using Equation (5.6), we can regard

E as a nonlinear function of r only and a nonlinear function optimization method, e.g.

conjugate gradient descent [5], is employed to find these weights by minimizing E with

respect to r. The gradient of E with respect to r is computed using real-time recurrent

learning [106].

Since the total error is the sum of the errors at the each time steps, we can compute

the gradient by summing up the gradient at each time step via (details see Appendix C.1)

∂E

∂θ
= 2

L
∑

t=1

(o(t)− y(t))TW
∂z(t)

∂θ
(5.7)

The gradient of z(t) with respect to θ, where θ = rc, rj or ri, can be computed iteratively

as:

∂z(t)

∂rc
= sech2(Rz(t− 1) + V s(t)). ∗

(

R
∂z(t− 1)

∂rc
+
∂R

∂rc
z(t− 1)

)

, (5.8)

∂z(t)

∂rj
= sech2(Rz(t− 1) + V s(t)). ∗

(

R
∂z(t− 1)

∂rj
+
∂R

∂rj
z(t− 1)

)

, (5.9)

∂z(t)

∂ri
= sech2(Rz(t− 1) + V s(t)). ∗

(

∂V

∂ri
s(t) +R

∂z(t− 1)

∂ri

)

, (5.10)

where sech is Hyperbolic secant function and .∗ stands for element-wise matrix multiplica-

tion (MATLAB notation). As usual in real time recurrent learning, the initial conditions
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for the update equations can be set to:

∂z(0)

∂rc
= 0,

∂z(0)

∂rj
= 0,

∂z(0)

∂ri
= 0. (5.11)

The reservoir weights r are obtained using a non-linear optimization algorithm while

the output weights W are regarded as a function of r and are chosen using Equation

(5.6). Every time the value of r is changed, the weights W need to be recomputed. Thus,

the optimization strategy in this section proceeds the training process on two timescales:

Longer timescale, where the weights r are adjusted to minimize the error function, and a

short timescale, where the output weights are changed to minimize the error as a function

of the weights r alone.

The hybrid optimization strategy of combining linear methods and non-linear methods

together is chosen here mainly for two reasons [5]: First, the dimensionality of the effective

search space for the non-linear algorithm is reduced to only 3 parameters. Thus, it is

possible that the time taken for the nonlinear optimization scheme to find a minimum of

the error will be reduced. Second, the network obtained in this way is always in a state

where the error is at a global minimum in the space of output weights. This may help

the network to reach a minimum more rapidly and to reach a shallow local minimum less

often. The approach can be characterized as a group-coordinate-wise descent on the error

function, where the parameters are divided into two groups - output readout weights and

the reservoir/input weights.

5.2.2 Readout regularization

If the training set contains noise, the network with an access of many free coefficients

tends to generate mappings which have a lot of curvature and structure, as a result of

over-fitting to the noise on the training data. In order to avoid over-fitting, we introduce

a quadratic regularization term in the error function to encourage smoother network
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mapping, as follows:

Er =
L
∑

t=1

||o(t)− y(t)||2 + λ||W ||2 (5.12)

where || · || is the Frobenius norm. L2 regularization is used here in order to be consistent

with ridge regression mentioned in Section 2.2.3. The redundant weights of the network

will get smaller as the training proceeds. Ideally, the structure of the network will be sim-

plified while the accuracy remains. Thus, the generalization ability can be improved [67].

We only penalize the output weights W , since the input weights V and cycle connection

weights R have already been pruned when the highly constrained reservoir is designed.

Hence, addition of regularization term will not change the optimization of the reservoir

weights r. The output weights W will be computed as follows :

W = Y ZT (ZZT + λI)−1 (5.13)

which is known as ridge regression [92]. The regularization parameter λ can be tuned

via cross-validation. The regularization will not change the partial derivative of E with

respect to θ where θ = rc, rj or ri. More details are presented in Appendix C.2.

5.2.3 Early Stopping

Another way to improve the generalization ability is the procedure of early stopping [5,6].

The non-linear optimization process of learning the parameter r corresponds to an iterative

reduction of the error function with respect to the training dataset. For many of the

optimization algorithms, e.g. conjugate gradient descent, the value of the error function

is a nonincreasing function of the iteration index. However, the error measured with

respect to a dataset independent of the training, i.e. a validation set, often decreases

first and then increases as the network starts to over-fit. Therefore, in order to have a

good generalization ability, training needs to be stopped at the point of the smallest error
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with respect to the validation dataset, rather than the minimum point with respect to

the training set.

We leave out a validation set. The training process is terminated when the error

measured on the validation set starts to increase, in order to optimize the generalization

performance of the network.

The overall structure of the training process is briefly demonstrated in Algorithm 2 .

Algorithm 2 The algorithm of the training process

1: Initialize rc, rj and ri.
2: repeat
3: Generate CRJ model using rc, rj and ri to obtain the state matrix X, and then

compute the linear readout weight W using Equation (5.13).
4: Assess the performance of the network on the validation set Dvalidation via the

normalized mean square error Ẽ(Dvalidation).
5: Update the reservoir parameters rc, rj and ri using non-linear optimization algo-

rithm, such as conjugate gradient descent.
6: until Ẽ(Dvalidation) starts to increase.

5.2.4 Experimental Studies

In this section, we evaluate our proposed algorithm on a variety of time series prediction

tasks. The topology of the network was fixed, with 50 internal units and with the jump

size of 15. For comparison, the original CRJ had the same network topology, but the

cycle connection weight rc, jump weight rj and input weight ri were chosen via cross-

validation through exhaustive grid search and the linear readout weights were fitted using

ridge regression. The range of reservoir weights are: rc, rj and ri ∈ {0.01, 0.05, 0.1, 0.2,

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. Not every combination of the parameters leads to a

network that satisfies the echo state property, but the optimum or selected parameters

do. Standard randomized ESN with the same number of internal units was considered.

The linear readout weights of ESN was also learned using ridge regression. The range of

the ridge regression parameter is: λ ∈ {0.0001, 0.001, 0.01, 0.1, 1, 10, 100}. For ESN, we
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reported the average performance for 10 trials. Since, CRJ and TCRJ are deterministically

methods, we only report one result1.

Synthetic data We first tested our algorithm with a nonlinear system identification

task, i. e. a 10th-order NARMA system [51], given by:

s(t+ 1) = 0.3s(t) + 0.05s(t)
9
∑

i=0

s(t− i) + 1.5u(t− 9)u(t) + 0.1,

where s(t) is the output at time t, u(t) is the input at time t. The inputs u(t) form an i.i.d

stream generated uniformly in the interval [0, 0.5]. The current output depends on both

the input and the previous output. The time series is challenging due to non-linearity and

long memory. To make the task harder, we added zero mean and 0.01 variance Gaussian

noise to the output stream. The networks were trained to predict output s(t) based on

u(t).The NARMA sequence has a length of 4000 items where first 2000 were used for

training, the following 1000 for validation and the remaining 1000 for testing.

Then the nonlinear Mackey Glass chaotic time series model was used to generate a

time series on which we evaluated the proposed algorithm. The series is a solution of the

following equation:

dx(t)

dt
= −ax(t) +

bx(t− τ)
1 + x10(t− τ) (5.15)

where a, b and τ are the parameters of the equation. We used the Mackey-Glass series

with parameters a = 0.1, b = 0.2, τ = 30 and the initial condition x(τ) = 1. A length of

4000 items of this time series was generated and zero mean and 0.05 variance Gaussian

noise is added to it. As we did for NARMA sequence, the first 2000 items were used for

training, the following 1000 for validation and the remaining 1000 for testing.

The experimental results on these two artificial time series are presented in Tables 5.1

1 we use coarse grid search to initialize the reservoir parameters in TCRJ. The time for initialization
is included when presenting the experiments
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and 5.2. Table 5.1 shows that our proposed algorithm of learning the reservoir parameters

in CRJ slightly outperforms the method of obtaining the reservoir parameters in CRJ

through exhaustive grid search in terms of generalization error. As shown in Table 5.2,

our proposed algorithm is much better than that of the original CRJ in terms of the

computational time, decreasing by 70% to 80%.

Table 5.1: Normalized mean square error of the artificial time series

Dataset ESN CRJ Learned CRJ
NARMA 0.2539±0.0308 0.1019 0.0981
MG 0.0900±0.0004 0.0900 0.0884

Table 5.2: Computational time (s) of the artificial time series

Dataset ESN CRJ Learned CRJ
NARMA 279 4594 1632
MG 280 4648 962

Real-world Time Series Datasets Three real time series downloaded from the web-

site 1 have been used to evaluate the proposed algorithm.

Darwin-SLP represents the monthly values of the Darwin sea level pressures from

1882 to 1998. This series is of length 1400 and a key indicator of climatological patterns.

The first 1000 patterns were used for training, the following 200 patterns were used for

validation and the remaining 200 patterns were used for test.

Oxygen Isotope Level (OIL) series contains measurements of relative abundance of

oxygen isotope to oxygen from the deep ocean cores from various geographical locations

over a period of about 2.5 million years, whose geological time variations relate to patterns

of variation in global ice volume and ocean temperature [104]. This series contains 866

patterns. Given the limited size of the dataset, 5-fold cross validation were performed to

tune the parameters, instead of “train-validation-test” approach. The first 600 patterns

1http://isds.duke.edu/ m̃w/ts˙data˙sets.html (12/11/2014)
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were used for training and the rest 266 patterns were used for test.

SOI is a series of monthly values of the Southern Oscillation Index during 1950-1995.

This series consists of 540 observations on the SOI computed as the difference of the

departure from the long-term monthly mean sea level pressures at Tahiti in the South

Pacific and Darwin in Northern Australia. As we did for OIL, 5-fold cross validation were

used to tune the parameters. The first 400 observations were used for training and the

remaining 140 observations were used for test.

The experimental results on these three real time series are presented in Tables 5.3

and 5.4. As shown in Table 5.3, the proposed methodology appears to have compara-

ble generalization ability to the original CRJ model where the reservoir parameters was

obtaining through an exhaustive grid search method. The computational time of the

proposed algorithm is much less than that of the original CRJ model.

Table 5.3: Normalized mean square error of the Darwin-SLP, OIL and SOI time series

Dataset ESN CRJ TCRJ
Darwin-SLP 0.2467(0.0174) 0.1780 0.1843
OIL 0.2214(0.0008) 0.2094 0.2076
SOI 0.5613(0.0039) 0.5374 0.5374

Table 5.4: Computational time (s) of the Darwin-SLP, OIL and SOI time series

Dataset ESN CRJ learned CRJ
Darwin-SLP 230 3539 726
OIL 167 2470 781
SOI 122 1622 381

Three datasets from UCR Time Series Repository [53] were used for the evaluation

of our proposed algorithm. These datasets are briefly described in Table 5.5. They are

mainly used for time series classification. Here we use the sequences to demonstrate

predictive power of our models, so each sequence is divided into training, validation and

test part as indicated in Table 5.5. The results presented in Tables 5.6 and 5.7 are the
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average results over the test parts of the sequences considered. The experimental results

on the UCR time series presented in Tables 5.6 and 5.7 shows similar trends as we find

before.

Table 5.5: Description of the UCR time series. L is the length of each sequences in the
datasets and n is number of sequences in the datasets.

Datasets L n Train/Validation/Test
CinC-ECG-torso 1639 40 1000/300/339
InlineSkate 1882 100 1000/400/482
MALLAT 1024 55 600/200/224

Table 5.6: Normalized mean square error of the UCR time series

Dataset ESN CRJ learned CRJ
CinC-ECG-torso 0.0060(0.0154) 0.0054(0.0149) 0.0054(0.0150)
InlineSkate 0.0310(0.0695) 0.0104(0.0313) 0.0056(0.0134)
MALLAT 0.0175(0.0138) 0.0152(0.0166) 0.0117(0.0147)

Table 5.7: Computational time (s) of the UCR time series

Dataset ESN CRJ learned CRJ
CinC-ECG-torso 155(1.51) 2488(28.14) 398(117.78)
InlineSkate 150(5.10) 2237(11.37) 372(81.56)
MALLAT 165(1.92) 2379(142.64) 353(23.18)

In this section, two synthetic time series, three real time series and three UCR time

series datasets were used to test our algorithm compared with the original exhaustive

search CRJ model and standard randomized ESN model. All the experimental results

show the same trend that learning the parameters in CRJ model has comparable perfor-

mance (sometimes even better) to choosing the parameters via exhaustive search in terms

of generalization ability, and also learning the parameters is much more computational

efficient.

The proposed algorithm does not jeopardize the generalization performance on all

the datasets used in this section with the exception of Darwin-SLP time series. It may
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be because the error surface of this time series contains many shallow local minimums

and the learning algorithm was stuck in one of the very bad local minimum, while the

exhaustive search method reach the relative global minimum (global minimum on the

discretized parameter space). One possible solution of this problem in the proposed

approach is to add a small random value to the obtained R each step, hoping to jump out

of the local minimal. However, the generalization performance of our proposed algorithm

on Darwin-SLP time series is still much better than that of standard randomized ESN

model.

The proposed algorithm tremendously reduces the computational time in the exper-

iments, compared with the original exhaustive search CRJ model. The proposed hybrid

optimization strategy keeps the computational advantage of ESN in terms of efficient com-

putation of linear readout weights by the separation of the optimization of linear readout

weights from the weights govern the structure of the reservoir. The readout weights are

computed in linear techniques and as a result, the error of the network is always at a

global minimum in the space of output weights, helping the network to reach a minimum

fast. Since the output weights are solved using linear algorithm, the parameters left for

non-linear optimization are reduced. The reduction of the search space for the non-linear

optimization methods will lead to less number of iteration to terminate the training. Be-

sides, the early stopping strategy potentially helps to reduce the computational time and

improve the generalization performance.

5.3 Metric-Model Co-learning

In this section, the MMCL approach for time series classification is presented. The same as

previous chapter, a high-dimensional parameterized non-linear state space model rooted

in ESN with a simple deterministically constructed dynamic coupling structure [76] is used

as the core model class for sequence representation. Still, each sequence is represented
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Figure 5.1: Illustration of the parameterized state space models used in this work. The
parameterized state space model has a fixed topology, i.e. a uni-directional cycle with
bi-directional jumps. There are only three parameters in this model: the cyclic connection
weights rc > 0; the jumps weight rj > 0; and the input weight ri > 0. The input weight
matrix V only contains ri, and the state transition matrix R contains rc and rj .

by the corresponding linear readout mapping acting on top of the common shared non-

linear dynamical system. However, in this section, the difference between two sequences

is measured through the distance of their linear readout weights weighted by a metric

tensor. The shared dynamical system, as well as the metric tensor in the readout space

are learned simultaneously.

The N -dimensional dynamical model we employ has the following form:

z(t) = tanh(R z(t− 1) + V s(t)), (5.16)

o(t) = Wz(t) (5.17)

where z(t) ∈ R
N , s(t) ∈ R

M and o(t) ∈ R
M are the state vector, input vector and output

at time t, respectively; R is a (N × N) dynamic coupling matrix; V ∈ R
N×Mand W

∈ R
M×N are the input and output weight matrices1, respectively. We will refer to (5.16)

as the state transition mapping (STM).

1As usual, we add the state vector z(t) with a constant element (e.g. 1) and W with a column to
account for the bias term. However, in order to simplify the presentation, we omit the bias term.
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Provided the non-autonomous dynamics (5.16) is able to represent a rich set of features

of the given time series, a particular time series s can be represented by the linear readout

mapping parameterized byW (eq. (5.17)) operating on reservoir activations z, specifically

fitted to s on the next-item prediction task o(t) ∼ s(t+1) by minimizing the mean squared

error (MSE) between the model predictions o(t) and targets s(t+1). The non-linear state

space model used in this paper is illustrated in Figure 5.1.

In the original CRJ, the weights rc, rj , ri were determined by cross-validation using

grid search, which is computationally extensive in practice. In this contribution, given

a sequence classification task, we aim to learn these parameters (common for the whole

data set) so that (1) a faithful modeling of individual sequences is achieved (by allowing

individualized readout mappings from the common state transition mapping), (2) the

sequence classes in the space of readout models are well separated. (1) reflects the model

representability of the proposed approach, i.e. the readout mappings should represent

each sequence well, while (2) demonstrates the class separability of the approach, i.e the

distance function in the readout model space should separate each class well. We will

learn the weights (rc, rj, ri) using real time recurrent learning as Section 5.2 and metric

tensor1 on an appropriate cost functional reflecting (1) and (2) above.

5.3.1 Cost Functional

We vectorize2 parameters W of the readout mapping given by equation (5.17) into the

parameter vector w. Assume we are given a set of n labelled sequences {sm, ym}nm=1.

Using the fixed common state transition mapping (eq. (5.16)), each sequence sm will be

represented by the linear readout mapping parameterized by wm. The readout is trained

on the next item prediction on sm via ridge regression. The readout weights wm are

1This can be viewed as metric learning [107] in the readout model space.
2For multivariate time series with dimensionality M , the linear readout weight matrix W is

a M × N matrix. In this case, we vectorize the matrix W into a column vector w =
[w11, ..., wM1, ..., w1N , ..., wMN ]T .
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thus determined by the model parameters r = (ri, rc, rj), as well as the sequence sm. To

simplify the notation, in the following this dependence1 will not be made explicitly.

Representability:

A good non-linear state space model parameterized by r = (ri, rc, rj) should minimize

the representability cost with respect to all (i.e. n) training sequences:

Qp(r) =
n
∑

m=1

(

Lm−1
∑

t=1

||om(t)− sm(t+ 1)||2 + λ||Wm||2
)

, (5.18)

where Lm is the length of sequence sm, and om is the output mapping (eq. (5.17)) deter-

mined by wm (vectorized Wm). This equation aims to minimize the difference between

actual output o(t) and desired output s(t+ 1)

Separability:

We aim to learn a global metric A such that sequences from the same class are close to

each other in the readout model space and sequences in different classes are far away in

the readout model space. Given a training sequence sm, following [40], we introduce a

conditional distribution over training sequence indexes q 6= m:

pA(q|m) =
e−dA(m,q)

∑

k 6=m e−dA(m,k)
, m 6= q,

where

dA(m, q) = (wm −wq)TA(wm −wq) (5.19)

is the squared distance between readout parameter wm andwq under the (global) positive

semi-definite metric A. If all readouts in the same class were mapped to a single point and

1The readout weightswm is a function of the model parameters r and the sequence sm as the variables.
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infinitely far from points in different classes, we would have the ideal distribution [40]:

p0(q|m) ∝















1 if ym = yq

0 if ym 6= yq
.

We optimize the non-linear state space model (eq. (5.16)) and the metric A such that

pA(q|m) is as close as possible to p0(q|m) with respect to KL divergence:

min
A

n
∑

m=1

DKL [p0(q|m)‖pA(q|m)] ,

s.t.A is positive semi-definite.

where DKL(p||q) =
∑

i p(i) log p(i)
q(i)

.

n
∑

m=1

DKL [p0(q|m)‖pA(q|m)] =
n
∑

m=1

n
∑

q=1

p0(q|m) log
p0(q|m)

pA(q|m)

=
n
∑

m=1

n
∑

q=1

p0(q|m) log p0(q|m)−
n
∑

m=1

n
∑

q=1

p0(q|m) log pA(q|m) (5.20)

The first term in (5.20) is constant. Since p0(q|m) = 0 when yq 6= ym and
∑n
q=1 p0(q|m) = 1

(the property of probability), the second term in (5.20) can be rewritten as follows:

−
n
∑

m=1

n
∑

q=1

p0(q|m) log pA(q|m) = −
n
∑

m=1

∑

q=1

p0(q|m) log
e−dA(m,q)

∑

k 6=m e−dA(m,k)

= −
n
∑

m=1

n
∑

q=1

p0(q|m)



−dA(m, q)− log
∑

k 6=m

e−dA(m,k)





=
n
∑

m=1

n
∑

q=1

p0(q|m)dA(m, q) +
n
∑

m=1

n
∑

q=1

p0(q|m) log
∑

k 6=m

e−dA(m,k)

=
∑

{(m,q):ym=yq}

dA(m, q) +
n
∑

m=1

log
∑

k 6=m

e−dA(m,k)
n
∑

q=1

p0(q|m)

=
∑

{(m,q):ym=yq}

dA(m, q) +
n
∑

m=1

log
∑

k 6=m

e−dA(m,k)
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This results in a separability cost1 Qs(r,A) equal to

∑

{(m,q):yq=ym}

dA(m, q) +
n
∑

m=1

log
∑

k 6=m

e−dA(m,k). (5.21)

Overall cost functional:

Using the representation (eq. (5.18)) and separation costs (eq. (5.21)), respectively,

we finally construct the cost functional to be minimized by the state space model with

parameters r and metric A:

Q(r, A) = Qs(r,A) + ηQp(r) (5.22)

where parameter η > 0 controls the tradeoff between the representability Qp and the

separability Qs. In practice we first minimize Q(r, A) (via gradient descent) and then

project the resulting A onto the space of positive semi-definite matrices using eignvalue

decomposition [40].

Gradients of Q with respect to STM parameters r and metric tensor A read (θ stands

for ri, rc or rj):

∂Q

∂θ
=
∂Qs
∂θ

+ η
∂Qp
∂θ

(5.23)

1assuming equally probable classes and ignoring constant terms
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where

∂Qs
∂θ

=
∑

{(m,q):yq=ym}

(wm −wq)T (A+ AT )

(

∂wm
∂θ
− ∂wq
∂θ

)

(5.24)

−
n
∑

m=1

∑

q 6=m e
−(wm−wq)TA(wm−wq) (wm −wq)T (A+ AT )

(

∂wm
∂θ
− ∂wq
∂θ

)

∑

k 6=m e
−(wm−wk)TA(wm−wk)

=
n
∑

m,q

(p0(q|m)− pA(q|m)) (wm −wq)T
(

A+ AT
)

(

∂wm
∂θ
− ∂wq
∂θ

)

(5.25)

and according to previous section (more details are presented in Appendix C.2):

∂Qp
∂θ

=
n
∑

m=1

Lm−1
∑

t=1

2 (om(t)− sm(t+ 1))T Wm
∂z(t)

∂θ
(5.26)

∂Q

∂A
=
∂Qs
∂A

(5.27)

=
∑

{(m,q):yq=ym}

(wm −wq) (wm −wq)T (5.28)

+
n
∑

m=1

∑

q 6=m e
−(wm−wq)TA(wm−wq) (wm −wq) (wm −wq)T

∑

k 6=m e−(wm−wk)TA(wm−wk)

=
n
∑

m,q

(p0(q|m)− pA(q|m)) (wq −wm) (wq −wm)T . (5.29)

According to the previous section, the readout parameters Wm representing sequence

sm are obtained as follows:

Wm = Ym Z
T
m(Zm Z

T
m + λI)−1.

where Zm = [zm(1), · · · , zm(Lm−1)] is the (N×(Lm−1)) STM state matrix storing state

activations obtained while processing sm as columns, Ym = [sm(2), · · · , sm(Lm)] is the
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target matrix for the next-item prediction task and η > 0 is a regularization parameter.

To ease the presentation, we omit the sequence index m in the following derivations. We

have

∂W

∂θ
= Y

∂ZT

∂θ
(ZZT + λI)−1 + Y ZT

∂(ZZT + λI)−1

∂θ

= Y

(

∂Z

∂θ

)T

(ZZT + λI)−1 − Y ZT (ZZT + λI)−1∂(ZZ
T + λI)

∂θ
(ZZT + λI)−1

= Y

(

∂Z

∂θ

)T

(ZZT + λI)−1

−Y ZT (ZZT + λI)−1





∂Z

∂θ
ZT + Z

(

∂Z

∂θ

)T


 (ZZT + λI)−1

where

∂Z

∂θ
=

[

∂z(1)

∂θ
,
∂z(2)

∂θ
, ...,
∂z(L)

∂θ

]

(5.30)

and ∂z(t)
∂θ

is given by (5.7).

∂w

∂θ
= vec

(

∂W

∂θ

)

(5.31)

The model-metric co-learning can be achieved by alternating between performing state

space model learning (eq. (5.23)) and metric learning in the readout model space (eq.

(5.29)) to obtain a tradeoff between representability and separability1. This strategy is

adopted for the reason that the two group of parameters representing different concepts.

It is not optimal but a reasonable appropriation to the optimal.

1The learning process is implemented using minimize function provided by the website:
http://www.di.ens.fr/˜mschmidt/Software/minFunc.html(12/11/2014)
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5.3.2 Sequence Classification

Having determined the appropriate STM and global metric tensor on the readout pa-

rameters, we can use any convenient distance-based classifier, e.g. kNearest Neighbour

(kNN). The (squared) distance between two sequences sm and sq is simply dA(m, q) in eq.

(5.19) , where, as explained above, the feature vector wm of a sequence sm is obtained by

ridge regression from the dynamical system generated using the learned parameters ri, rc

and rj with the task of predicting the next item of the sequence. Of course, one can also

adopt a kernel classification framework (e.g. SVM) using a sequence kernel

K(sm, sq) = exp {−γ dA(m, q)} , (5.32)

where γ > 0 is a scale parameter. In our experiments we employ both kNN operating in

the readout space and SVM with the kernel defined in (5.32).

5.3.3 Experimental Studies

Table 5.8: Parameter search ranges for methods employed in the experiments. p is the
order of the vector autoregressive model, ξ is an AR kernel parameter [26], #states is
the number of states for HMM in Fisher kernel, λ is the ridge regression regularization
parameter, η is the trade-off parameter. ri, rc and rj are parameters of the deterministic
state space mode used in RV kernel.

Parameters Parameter range

AR ξ, p
ξ ∈ {0.1, 0.2, · · · , 0.9},
p ∈ {1, 2, · · · , 10}

Fisher #states #states ∈ {1, 2, · · · , 10}
RV ri,rc,rj, λ ri,rc,rj ∈ {0.01, 0.05, · · · , 1}

λ ∈ {10−5, 10−4, · · · , 101}
MMCL

λ, η λ ∈ {10−5, 10−4, · · · , 101}
η ∈ {0, 10−1, · · · , 10}

We compare our MMCL framework with several state-of-the-art methods for sequence
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classification such as dynamic time warping (DTW) based kernel [4], autoregressive kernel

(AR) [26], the Fisher kernel (Fisher) [47] and the reservoir kernel (RV). The RV kernel can

be viewed essentially as the MMCL kernel, expect for the dynamic parameters ri, rc, rj

are simply set by costly cross-validation without any regard for class separability and

metric tensor learning. The AR, Fisher, RV and DTW based kernels were used in a

SVM classifier.

In MMCL, the dynamic state space topology was fixed to N = 50 and 10 jumps

(making the jump length 5). The jump length could be set by cross-validation as in [76],

but to demonstrate the power of the framework, we simply fixed the topology for all

experiments without pre-testing.

All (hyper) parameters, such as the MMCL trade-off parameter λ, order p in the AR

kernel, number of hidden states in the HMM based Fisher kernel, regularization parameter

η for ridge regression etc. have been set by 5-fold cross-validation on the training set. We

employ a well-known, widely accepted and used implementation of SVM – LIBSVM [19].

In LIBSVM, we use cross validation to tune the slack-weight regularization parameter C.

After model selection using cross-validation on the training set, the selected model class

representatives were retrained on the whole training set and were evaluated on the test

set. Multi class classification is performed via the one-against-one strategy (default in

LIBSVM). The SVM parameters, kernel width γ in eq. (5.32) and C, were tuned in the

following ranges: γ ∈ {10−6, 10−5, · · · , 101}, C ∈ {10−3, 10−2, · · · , 103}. We also tested

our MMCL method using a kNN classifier where k ∈ {1, 2, · · · , 10}. We refer to SVM

and kNN classifiers built within the MMCL framework as MMCL-SVM and MMCL-kNN,

respectively. The search ranges for the parameters are detailed in Table 5.8.
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Figure 5.2: (a) is the illustration of three NARMA sequences with different orders (10,
20 and 30). (b) describes the classification accuracies on the synthetic (test) data set.

Synthetic Data We employed three NARMA time series models of orders 10, 20 and

30, given by:

s(t+ 1) = 0.3s(t) + 0.05s(t)
9
∑

i=0

s(t− i)

+1.5u(t− 9)u(t) + 0.1,

s(t+ 1) = tanh(0.3s(t) + 0.05s(t)
19
∑

i=0

s(t− i)

+1.5u(t− 19)u(t) + 0.01) + 0.2,

s(t+ 1) = 0.2s(t) + 0.004s(t)
29
∑

i=0

s(t− i)

+1.5u(t− 29)u(t) + 0.201,

where s(t) is the output at time t, u(t) is the input at time t. The inputs u(t) form an

i.i.d stream generated uniformly in the interval [0, 0.5). We use the same input stream

for generating the three long NARMA time series (60,000 items), one for each order. The

time series are challenging due to non-linearity and long memory (see Figure 5.2).

For each order, the series of 60,000 numbers is partitioned into 200 non-overlapping
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time series of length 300. The first 100 time series for each order are used as a training

set, and the other 100 time series form the test set. In order to study robustness of the

kernels we also corrupt the time series with additive Gaussian noise (zero mean, standard

derivation varies in [0.1,0.5]). Figure 5.2 shows the test set classification accuracy against

the noise level. As a baseline, we also include results of SVM directly operating on

the time series (300-dimensional inputs) - NoKernel. The MMCL based kernel method

MMCL-SVM outperforms the baseline as well as all the other methods.

Univariate Benchmark Data We used 7 data sets from the UCR Time Series Repos-

itory [53]. Each data set has already been split into training and test sets (see Table

5.9). Table 5.9 reports performance of the studied methodologies on the benchmark data

in terms of test set classification accuracy. The MMCL methods outperform the other

algorithms on most of the data sets, except for being inferior to or on a par with AR

kernel and RV kernel on Lightning2 and Coffee data sets, respectively, MMCL-SVM is

superior to the simpler MMCL-kNN on 5 data sets.

Table 5.9: Description of the data sets (left) and the performances (right). The best
performance (test set classification accuracy) for each data set is boldfaced. Note that
in 4 out of the 7 datasets (OSULeaf,Oliveoil, Fish and Adiac) both MMCL techniques
outperform others.

Dataset Length Classes # Train # Test DTW AR Fisher RV MMCL-kNN MMCL-SVM
OSULeaf 427 6 200 242 74.79 56.61 54.96 69.83 88.02 85.12
Oliveoil 570 4 30 30 83.33 73.33 56.67 86.67 86.67 93.33
Lightning2 637 2 60 61 64.10 77.05 64.10 77.05 70.49 75.41
Beef 470 6 30 30 66.67 78.69 58.00 80.00 63.33 82.67
Fish 463 8 175 175 69.86 60.61 57.14 79.00 88.57 87.43
Coffee 286 2 28 28 85.71 100.00 81.43 100.00 89.29 100.00
Adiac 176 37 390 391 65.47 64.45 68.03 72.63 72.30 73.40

As shown in Table 5.9, our methodology was slightly inferior to other algorithms on

some datasets, e.g. Lightning2. The Lightning2 dataset contains time series of power

spectra related lightning. The classes can be characterized by pronounced low-memory

features of the power spectra series such as those corresponding to sharp turn-on of radia-
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tion, gradual increase in power series, or sudden spikes etc. Such time series features can

be naturally captured by AR models and thus we hypothesize that for this particular data

set, the AR kernels provide a strong distinguishing platform for lightning classification.

Multivariate Time Series The data sets used so far involved univariate time series.

In this section, we perform classification on three multivariate time series - Brazilian sign

language (Libras), handwritten characters and Australian language of signs (AUSLAN ).

Unlike the other data sets, the handwritten characters and AUSLAN data sets contain

time series of variable length. Following [26] (previous AR kernel study) we split the data

into training and test sets as detailed in Table 5.10.

The results are shown in Table 5.10. The MMCL based MMCL-SVM is superior on

two data sets with slightly worse, but comparable performance to Fisher kernel on the

Libras dataset.

Table 5.10: Summary of multivariate (variable length) time series classification problems
(left) and the performances (right). The best performance (test set classification accuracy)
for each data set is boldfaced. For the handwritten and AUSLAN datasets both MMCL
variants outperform the other techniques.

Dataset dim length classes # train # test DTW AR Fisher RV MMCL-kNN MMCL-SVM
Libras 2 45 15 360 585 94.02 91.79 94.93 93.25 94.19 94.87
handwritten 3 60-182 20 600 2258 88.67 73.30 87.52 89.41 91.31 91.41
AUSLAN 22 45-136 95 600 1865 97.00 76.53 94.74 96.00 97.05 97.80

In order to investigate MCML further, we performed model learning only (without

metric learning) and (as expected) observed similar performance levels to those of RV

(model parameters optimized by cross validation). We have also decoupled the model and

metric learning. This naturally resulted in an inferior performance. Independent learning

might ignore possible coupling between the provider of dynamical features (dynamical

system) and the static readout models.

In terms of the learned parameters (ri, rc, rj), we have checked their values on our

datasets with and without metric learning. Interestingly enough, in general, metric learn-
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ing lead to increased ri and rj . Cycle weights rc differed by a comparatively smaller

amount. The increased input loads ri force the dynamical system to operate in saturation

regimes of the tanh function (see eq. (5.16)). This can increase class separability of state

space representations of sequences from different classes. Large jump weight rj in effect

broadens frequency spectrum of the non-autonomous dynamical system. While a cyclic

coupling only [75] can capture slow dynamical regimes, introduction of jumps leads to

broadening the sensitivity of the system to faster changes in the input stream.

5.4 Discussion and Conclusion

This chapter focuses on the learning in the model space approach where each data item

(sequence) is represented by the corresponding model from a carefully designed model

class retaining both reasonable flexibility to represent a wide variety of sequences and a

relatively small number of free parameters. The model class used is a special form of state

space model. The dynamic part of the model - state transition mapping - has only three

free parameters that are learnt and then fixed for each data set. Individual sequences in

the data set are then represented by the corresponding (static) linear readouts from the

state space (fixed STM).

Given a particular data set, we learn both the appropriate state space model and

metric in the readout model space. Since we consider sequence classification, learning is

guided by two criteria: representability and class separability of the readout models.

On 11 sequence classification data sets the sequence kernels constructed using our

methodology (and applied in SVM) were on a par or outperformed the other four studied

methods - DTW based kernels, autoregressive kernel, the Fisher kernel based on hidden

Markov model with Gaussian emissions, and the reservoir kernel with manually chosen

state transition parameters by cross validation using grid search and without metric learn-

ing in the readout space.
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Since in our framework each sequence is represented as a model in the readout model

space with a learnt global metric tensor, any distance based classifier can be used. As a

baseline we employed kNN. Except for the Coffee, Lightning2 and Libras data sets, kNN

achieved comparable or better performance than the four alternatives.

Our results may seem surprising, especially given the rather simple structure of the

state transition part. We emphasize that the STM employed does not necessarily have to

provide a platform for the best sequence modelling. For that, the imposition of the same

fixed STM for the whole data set may indeed be too restrictive. However, the task at

hand is sequence classification and the requirements on the STM are of a different nature:

allowing state space processing of sequences so that the corresponding linear readouts

coincide as much as possible for sequences of the same class, while keeping the separation

of the distinct classes. This, as demonstrated in our experiments, is indeed possible using

a fixed STM. The optimal STM for the classification purposes is learnt alongside the

metric tensor on linear readouts from the filter that enhances the within-class collapsed

representations and between-class separation.

The superior performance of MMCL methodology comes at a price - relatively high

computational complexity. In each iteration of gradient descent in MMCL, the complex-

ity is O(n2M2 + nML), where n is the number of sequences, M is the dimensionality of

the time series, and L is the length of sequences (detailed information is given by C.3).

However, this tolerable computational cost is well offset by the high classification accu-

racy and the saving of effort for tuning parameters in the state space model using cross

validation with grid search.
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CHAPTER 6

Conclusion and Future Work

This chapter summarizes the work presented in this thesis and discusses the potential

future work.

6.1 Summary

How to utilize all available information within data during training to improve generaliza-

tion performance of a learning algorithm is one of the main research questions in machine

learning. This thesis presented different concepts of using available information within

data to improve the generalization performance of kernel methods, particularly SVMs, in

the application domain of time series data. The first contribution in this thesis utilized

privileged information of the training examples, unavailable in the test regime, to improve

generalization performance in SVM for ordinal regression via smooth modelling of slack

variables. The second contribution constructed an efficient time series kernel based on

reservoir model, capable of capturing the temporal dependence within the time series, to

improve the generalization performance of the kernel machine. Moreover, we presented

yet another novel model based kernel similarity by co-learning the dynamic reservoir and a

global metric in the linear readout space, leading to improved generalization performance.
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In many time series prediction problems, the task is to predict ordered categories of

movements instead of the real values. In this context, ordinal regression which explicitly

utilizes the ordering information exists in class labels can be applied. Within the ordinal

regression framework, we proposed to exploit additional privileged information, which is

only available during training stage but unavailable for test, to improve the generalization

performance. Naturally, future events in the time series present in the training stage but

unavailable in the test phase can form privileged information. We implemented the pro-

posed algorithm by incorporating the LUPI framework [101] into SVORIM [24]. SVORIM

exploits the order structure in class labels by constructing multiple parallel separating hy-

perplanes defined through ordered thresholds. The proposed algorithm utilizes privileged

information by constructing correcting functions for each separating hyperplane. Conse-

quently, the slack variables are computed by privileged information through correcting

functions in our algorithm, opposing to original SVORIM where slack variables are ob-

tained during the optimization procedure. Our work confirms the success of the LUPI

framework and poses questions on the effect of smooth modelling of slack variables in

SVM framework.

In time series classification, where the task is to predict a single label that applies to

the whole sequence, we developed two novel methodologies of constructing time series ker-

nels. We introduced the idea of constructing kernels in the deterministically constructed

reservoir model space, instead of directly in the original data space. Each time series

is represented as a reservoir model with a common dynamic part. The shared dynamic

reservoir acts as a temporal filter providing a rich pool of dynamic features that can be

selectively extracted by linear readout mappings. The linear readout model works as

the final representation of the time series but the full underlying model is a non-linear

dynamic system. Thus, our methodologies reduce the computational demands without

the loss of the computational ability of non-linear models. Then, we defined our kernel
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similarity in the linear readout model space.

In our first kernel design, the distance between two time series is computed as the

model distance between their corresponding linear readout mappings. The model dis-

tance is different from the Euclidean distance of the readout parameters, indicating that

more importance is given to the “offset” than “orientation” of the readout mapping. We

also estimated the model distance when the reservoir state distribution is non-uniform by

approximating the probability density distribution of the states using a Gaussian mixture

model. We also considered sampling methods in the case of non-uniformly distributed

reservoir states. Moreover, We constructed Fisher kernel based on reservoir model. Fur-

thermore, we realized a fast version of our kernel by training the readouts in on-line

manner reservoir, in order to process extremely long time series efficiently.

The numerical experiment has been conducted to compare the proposed kernels with

other competitors on synthetic and benchmark data sets. The results confirmed the

efficiency of our proposed kernels. These kernels can achieve superior performance in

terms of both generalization accuracy and computational time. Our proposed kernels

favour very large data sets of long time series where the underlying parametric model is

unknown. However, if the example time series in the data sets is very short, i.e. the length

of the time series is less than 10, our kernels may fail to provide a good similarity measure

for the time series. Certain number of observations of the time series are required to

obtain a good model representation. However, this is not a problem for Sampling kernel

since bootstrap techniques was used to stretch the time series. Similar trick can be used

to avoid this problem for other kernels.

In our second kernel design, we proposed to learn both the shared dynamical reser-

voir and a global metric tensor in the linear readout space during the training process.

Learning is guided by two criteria: representability and separability. Representability

requires the model representation of the time series to faithfully represent the each time
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series while separability demands the sequences from the same class to have close model

representations, while model representations of sequences from different classes to be well-

separated. The two criteria are fulfilled simultaneously through optimizing an objective

function of their weighted sum. This method treats the model parameters adaptation

and model distance designing jointly rather than adapting the model parameters first

and defining the model distance afterwards in two independent steps. Empirically, this

method outperformed the reservoir kernel with manually chosen state transition parame-

ters by cross validation using grid search and without metric learning in the readout space.

Before presenting this kernel design, we demonstrated the initial investigation on learning

the dynamical system of the deterministically constructed echo state network. Experi-

mentally, we obtained competitive performance but better efficiency compared to using

cross validation presented in [76]. This kernel design gives better generalization perfor-

mance than the first one, but comes at a price - relatively high computational complexity.

Since this method provides a distance measure between time series, we also applied the

obtained distance in a distance based classifier, i.e. kNN. Experimental results shows very

promising performance.

6.2 Future Work

This work could be further extended in several directions. In particular, we consider the

following topics for future research:

• Our LUPI approach opens the door to application domains where ordinal regression

with privileged information can be readily employed. For example, in automated

trading where only ordered categorical information is often needed [84, 97, 98], the

privileged information during training can be utilized (as suggested in [101]) in the

form of the known future development of the time series. However, the proposed

algorithm is not very efficient. Making it training more efficient is a matter for
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future work.

• We notice that in the time series prediction using ordinal regression, the class dis-

tribution are highly unbalanced i.e. 10% belongs to class 1, 40% belongs to class

2, 40% belongs to class 3 and 10% belongs to class 4. Extend our work to incor-

porate unbalancing learning techniques may potential improve the generalization

performance of the learner.

• The proposed new time series kernels can obtain very promising generalization per-

formance on both uni-variant and multi-variant time series data. However, the

proposed kernel may produce inferior performance or even may fail to perform the

learning task if the dimension of the sequence is too large, for example video se-

quence. Our future work is to extend our kernels for video sequence classification

using some dimension reduction techniques such as random projection [30].

• In our MMCL model, we projected the matrix A in the distance metric obtained in

each iteration onto the space of positive semi-definite matrices as in [40]. However,

instead of performing the projection, we can alter our method by substituting A =

ΩTΩ, where Ω is an arbitrary real matrix of the same size as A [85]. Then instead

of updating A, we can update Ω. The resulting A will be positive semi-definite,

since µTAµ = µTΩTΩµ = (ΩTµ)2 > 0 for all µ. And we can even push this further

by limiting the rank of matrix Ω to reduce the computational time, as suggested

in [12].
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APPENDIX A

Model Distance Calculation

The model distance of f1 and f2 under the uniform distribution of activation states is
computed as follows:

L2(f1, f2) =
(∫

Z
||Wz + a||2dz

)1/2

=
(∫

Z
(Wz + a)T (Wz + a)dz

)1/2

=
(∫

Z
||Wz||2 + zTW Ta+ aTWz + ||a||2dz

)1/2

.

Since zTW Ta is a number thus zTW Ta =
(

zTW Ta
)T

= aTWz. Therefore,

L2(f1, f2) =
(∫

Z
||Wz||2 + 2aTWz + ||a||2dz

)1/2

.

Because Z ∈ [−1, 1]N , then

∫

Z
2aTWzdz = 2aTW

∫

Z
zdz = 0.

Thus

L2(f1, f2) =
(∫

Z
||Wz||2dz +

∫

Z
||a||2dz

)1/2

=







∫

Z

M
∑

i=1





N
∑

j=1

wi,jzj





2

dz + ||a||2
∫

Z
dz







1/2

=





∫

Z

M
∑

i=1

N
∑

j=1

w2
i,jz

2
j dz +

∫

Z

M
∑

i=1

N
∑

j=1

∑

k 6=j

wi,jwi,kzjzkdz + 2N ||a||




1/2

=





∫

Z

M
∑

i=1

N
∑

j=1

w2
i,jz

2
j dz + 2N ||a||





1/2

=





2N

3

N
∑

j=1

M
∑

i=1

w2
i,j + 2N ‖a‖2





1/2

.
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The model distance of f1 and f2 under the non-uniform state probability distribu-
tion where the probability density function of the states are modelled by K-component
Gaussian mixture model, is computed as follows:

L2(f1, f2) =
(∫

Z
||Wz + a||2dP (z)

)1/2

=
(∫

Z

(

zTW TWz + 2aTWz + aTa
)

p(z)dz
)1/2

=

(

∫

Z

(

zTW TWz + 2aTWz + aTa
)

K
∑

k=1

πkN (z|µk,Σk)dz
)1/2

=

(

K
∑

k=1

πk

∫

Z

(

zTW TWz + 2aTWz + aTa
)

N (z|µk,Σk)dz
)1/2

=

(

K
∑

k=1

πkEN (z|µk,Σk)(z
TW TWz + 2aTWz + aTa)

)1/2

=

(

K
∑

k=1

πk
(

EN (z|µk,Σk)(z
TW TWz) + 2aTWEN (z|µk,Σk)(z) + aTa

)

)1/2

.

If x ∼ N(µ,Σ), the expected value of the squared form is as follows [70] (page 42):

E(xTAx) = Tr(AΣ) + µTW TWµ.

Thus,
EN (z|µk,Σk)(z

TW TWz) = Tr(W TWΣk) + µTkAµk. (A.1)

Therefore

L2(f1, f2) =
K
∑

k=1

πk
(

Tr(W TWΣk) + ηTkW
TWηk + 2aTWηk + aTa

)

. (A.2)
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APPENDIX B

Derivation of Recursive Least Squares Updates for W

Recall that the linear readout mapping of echo state network is given as follows:

o(t) = W z̃(t), t = 1, ..., L (B.1)

By denoting the true target s(t+ 1) as y(t), the recursive least squares (RLS) is to find
the parameter W recursively in time to minimize the sum of the squared error given as
follows:

ε(t) =
t
∑

i=1

ς t−i||e(i)||2 (B.2)

where e(i) = y(i) − o(i) = y(i) − W (t)z̃(i), and 0 < ς < 1 is the forgetting factor
that is used to reduce the influence of the old data. By denoting y′(i) =

√
ς t−iy(i) and

z′(i) =
√
ς t−iz̃(i), ε(t) can be rewritten as follows:

ε(t) =
t
∑

i=1

ς t−i||y(i)−W (t)z̃(i)||2 =
t
∑

i=1

||y′(i)−W (t)z′(i)||2

Through standard least squares method in the new variable y′(i) and z′(i), the following
equation:

W (t) =

(

t
∑

i=1

y′(i)[z′(i)]T
)(

∑

i=1

z′(i)[z′(i)]T
)−1

= Ψ(t) · Φ−1(t) (B.3)

where

Φ(t) =
t
∑

i=1

ς t−iz̃(i)z̃T (i) (B.4)

Ψ(t) =
t
∑

i=1

ς t−iy(i)z̃T (i) (B.5)

121



can be obtained. SinceW (t) = Ψ(t)·Φ−1(t) is required to be computed recursively in time
using the information already available at time t−1, i.e. W (t) = Ψ(t−1) ·Φ−1(t−1), the
variable Ψ(t) and Φ(t) need to be written as function of Ψ(t−1) and Φ(t−1), respectively.

Φ(t) =
t
∑

i=1

ς t−iz̃(i)z̃T (i) = ς
t−1
∑

i=1

ς t−1−iz̃(i)z̃T i+ z̃(t)z̃T (t) = ςΦ(t− 1) + z̃(t)z̃T (t)

Ψ(t) =
t
∑

i=1

ς t−iy(i)z̃T (i) = ς
t−1
∑

i=1

ς t−1−iy(i)z̃T i+ y(t)z̃T (t) = ςΨ(t− 1) + y(t)z̃T (t)

According to the rule (A + CBCT )−1 = A−1 − A−1C(B−1 + CTA−1C)−1CTA−1 [70], the
inverse of Φ(t) can be computed as follows:

Φ−1(t) = [ςΦ(t− 1) + z̃(t)z̃T (t)]−1 = ς−1Φ−1(t− 1)

−ς−1Φ−1(t− 1)z̃(t)
(

I1 + z̃T (t)ς−1Φ−1(t− 1)z̃(t)
)−1
z̃T (t)ς−1Φ−1(t− 1)

= ς−1Φ−1(t− 1)− ς
−2Φ−1(t− 1)z̃(t)z̃T (t)Φ−1(t− 1)

1 + ς−1z̃T (t)Φ−1(t− 1)z̃(t)

= ς−1Φ−1(t− 1)− ς
−1Φ−1(t− 1)z̃(t)z̃T (t)Φ−1(t− 1)

ς + z̃T (t)Φ−1(t− 1)z̃(t)

Denoting Λ(t) = Φ−1(t) and k(t) = Λ(t−1) z̃(t)
z̃T (t) Λ(t−1) z̃(t)+ς

, we can have

Λ(t) = ς−1Λ(t− 1)− ς−1k(t)z̃T (t) Λ(t− 1) (B.6)

It is easy to prove that k(t) = Λ(t)z̃(t). The prove is given as follows:

Λ(t)z̃(t) = Φ−1(t)z̃(t)

= ς−1Φ−1(t− 1)z̃(t)− ς
−1Φ−1(t− 1)z̃(t)z̃T (t)Φ−1(t− 1)

ς + z̃T (t)Φ−1(t− 1)z̃(t)
z̃(t)

=
Φ−1(t− 1)z̃(t) + ς−1Φ−1(t− 1)z̃(t)z̃T (t)Φ−1(t− 1)z̃(t))

ς + z̃T (t)Φ−1(t− 1)z̃(t)

−ς
−1Φ−1(t− 1)z̃(t)z̃T (t)Φ−1(t− 1)z̃(t)

ς + z̃T (t)Φ−1(t− 1)z̃(t)

=
Φ−1(t− 1)z̃(t)

ς + z̃T (t)Φ−1(t− 1)z̃(t)
=

Λ(t− 1)z̃(t)

ς + z̃T (t)Φ−1(t− 1)z̃(t)
= k(t)

Commonly k(t) is known as innovation vector, while Λ(t) is called the error covariance
matrix.

Since W (t−1) = Ψ(t−1)Φ−1(t−1), then Ψ(t−1) = W (t−1)Φ(t−1). Consequently,
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the recursive updates of W (t) can be obtained as follows:

W (t) = Ψ(t) · Φ−1(t) = Ψ(t) · Λ(t) =
(

ςΨ(t− 1) + y(t)z̃T (t)
)

Λ(t)

=
(

ςW (t− 1)Φ(t− 1) + y(t)z̃T (t)
)

Λ(t)

=
(

W (t− 1)(Φ(t)− z̃(t)z̃T (t)) + y(t)z̃T (t)
)

Λ(t)

=
(

W (t− 1)Φ(t)−W (t− 1)z̃(t)z̃T (t)) + y(t)z̃T (t)
)

Λ(t)

=
(

W (t− 1)Φ(t) + (y(t)−W (t− 1)z̃(t)) z̃T (t)
)

Λ(t)

= W (t− 1)Φ(t)Λ(t) + (y(t)−W (t− 1)z̃(t)) z̃T (t)Λ(t)

= W (t− 1) + (y(t)− o(t))kT (t).
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APPENDIX C

Derivatives Calculation in MMCL

C.1 Derivatives of Error Function

The error in (5.18) can be rewritten as follows:

E =
L
∑

t=1

M
∑

i=1

(oi(t)− yi(t))2 =
L
∑

t=1

M
∑

i=1





N
∑

j=1

wijzj(t)− yi(t)




2

(C.1)

The partial derivative of E with respect to wij can be computed as follows:

∂E

∂wij
= 2

L
∑

t=1

(oi(t)− yi(t))zj(t) (C.2)

To simply the presentation, we can rewrite the derivative in a vectorized way as follows:

∂E

∂W
= 2

L
∑

t=1

(o(t)− y(t))zT (t) (C.3)

Collecting network outputs o(t), desired outputs y(t) and the state vectors z(t) where
t = 1, ..., L into matrices O = [o(1), ..., o(L)], Y = [y(1), ...,y(L)] and Z = [z(1), ..., z(L)]
respectively, the partial derivative of W becomes:

∂E

∂W
= 2(O − Y )ZT = 2(WZ − Y )ZT (C.4)

W is obtained by making the partial derivative of E with respect to W given by (C.4),
equivalently (C.2), equal to 0 and is regarded as a function of r = [rc, rj , ri]

T . Thus, the
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partial derivative of E with respect to θ (θ = rc, rj or ri) can be computed as follows:

∂E

∂θ
= 2

L
∑

t=1

M
∑

i=1

(oi(t)− yi(t))(
N
∑

j=1

wij
∂zj(t)

∂θ
+
N
∑

j=1

∂wij
∂θ
zj(t))

= 2
L
∑

t=1

M
∑

i=1

(oi(t)− yi(t))
N
∑

j=1

wij
∂zj(t)

∂θ
+ 2

L
∑

t=1

M
∑

i=1

(oi(t)− yi(t))
N
∑

j=1

∂wij
∂θ
zj(t)

= 2
L
∑

t=1

M
∑

i=1

N
∑

j=1

(oi(t)− yi(t))wij
∂zj(t)

∂θ
+ 2

M
∑

i=1

N
∑

j=1

T
∑

t=1

(oi(t)− yi(t))zj(t)
∂wij
∂θ

= 2
L
∑

t=1

M
∑

i=1

N
∑

j=1

(oi(t)− yi(t))wij
∂zj(t)

∂θ

Note the coefficients before ∂wij
∂θ

, i.e.
∑L
t=1(oi(t) − yi(t))zj(t) is essentially equal to zero

because we compute W by making it so. Again, we can rewrite the partial derivative in
a vectorized form:

∂E

∂θ
= 2

L
∑

t=1

(o(t)− y(t))TW
∂z(t)

∂θ
(C.5)

C.2 Derivatives of Regularized Error Function

The regularized cost function (5.12) can be rewritten as follows:

Er =
L
∑

t=1

M
∑

i=1





N
∑

j=1

wijzj(t)− yi(t)




2

+ λ
M
∑

i=1

N
∑

j=1

w2
ij (C.6)

The partial derivative of Er with respect to wij will be computed as follows:

∂Er
∂wij

= 2
L
∑

t=1

(oi(t)− yi(t))zj(t) + 2λwij (C.7)

As (C.4), this equation can be rewritten as follows:

∂Er
∂W

= 2(WZ − Y )ZT + 2λW (C.8)
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Similarly, W can be obtained by making equation (C.8) or equivalently (C.7) equal to 0.
Thus, the partial derivative of E with respect to θ can be computed as follows:

∂Er
∂θ

= 2
L
∑

t=1

M
∑

i=1

(oi(t)− yi(t))(
N
∑

j=1

wij
∂zj(t)

∂θ
+
N
∑

j=1

∂wij
∂θ
zj(t)) + 2λ

M
∑

i=1

N
∑

j=1

wij
∂wij
∂θ

= 2
L
∑

t=1

M
∑

i=1

(oi(t)− yi(t))
N
∑

j=1

wij
∂zj(t)

∂θ
+ 2

L
∑

t=1

M
∑

i=1

(oi(t)− yi(t))
N
∑

j=1

∂wij
∂θ
zj(t)

+2λ
M
∑

i=1

N
∑

j=1

wij
∂wij
∂θ

= 2
L
∑

t=1

M
∑

i=1

N
∑

j=1

(oi(t)− yi(t))wij
∂zj(t)

∂θ

+2
M
∑

i=1

N
∑

j=1

(

T
∑

t=1

(oi(t)− yi(t))zj(t) + λwij

)

∂wij
∂θ

= 2
L
∑

t=1

M
∑

i=1

N
∑

j=1

(oi(t)− yi(t))wij
∂zj(t)

∂θ

Thus, we can see that regularization will not change the ∂Er
∂θ

and remains the same as
(5.7) given as follows:

∂Er
∂θ

= 2
L
∑

t=1

(o(t)− y(t))TW
∂z(t)

∂θ
(C.9)

C.3 Time Complexity Analysis
Before we give the time complexity of our MMCL model, we list the following prelimi-
naries: the time complexity of the product between n × p matrix and p × m matrix is
O(npm); the time complexity of the product between n×p matrix and p dimensional vec-
tor is O(np); and the time complexity of the product between two p dimensional vectors
is O(p)1.

In each iteration of gradient descent in MMCL, we need to calculate ∂Q
∂A

and ∂Q
∂θ

,

where θ = ri, rc or rj. The calculation of ∂Q
∂A

need O(n2M2N2) steps, where n is the
number of time series in the data sets, M is the dimensionality of the time series and N
is the dimensionality of the reservoir state vector. Since the reservoir structure is fixed
in our methodologies, i.e. N is a constant, the time complexity of ∂Q

∂A
can be simplified

as O(n2M2). Similarly, the time complexity of ∂Q
∂θ

is O(n2M2 + nML), where L is the
length of the time series. Thus, the overall time complexity of calculating the required
gradients is O(n2M2 + nML).

1http://www.seas.ucla.edu/˜vandenbe/103/lectures/flops.pdf(16/11/2014)
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[88] S.Fouad and P. Tiňo. Adaptive metric learning vector quantization for ordinal
classification. Neural Computation, 24(11):2825–2851, 2012.

[89] F. Sha and L. K. Saul. Large margin hidden markov models for automatic speech
recognition. In Advances in neural information processing systems (NIPS), 2007.

[90] A. Shashua and A. Levin. Ranking with large margin principle: Two approaches.
In Advances in Neural Information Processing System 15, pages 937–944, 2003.

[91] J Shawe-Taylor and N. Cristinanini. Kernel methods for patten analysis. Cambridge
University press, 2004.

[92] Z. Shi and M. Han. Ridge regression learning in esn for chaotic time series prediction.
Control and Decision, 22(3):258–267, 2007.

[93] H Shimodaira, K.-I Noma, M. Nakai, and S. Sagayama. Dynamic time-alignment
kernel in support vector machine. In Advances in Neural Information Processing
System 14, volume 2, pages 921–928, 2002.

[94] R. H. Shumway and D. S. Stoffer. An approach to time series smoothing and
forecasting using EM algorithm. Journal of Time Series Analysis, 3(4):253–264,
1982.

137



[95] M. A. Stephens. Edf statistics for goodness of fit and some comparisons. Journal
of the American Statistical Association, 67(347):730–737, 1974.
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