Mambrini, Andrea (2015). Theory grounded design of genetic programming and parallel evolutionary algorithms. University of Birmingham. Ph.D.
|
Mambrini15PhD.pdf
PDF - Accepted Version Download (1MB) |
Abstract
Evolutionary algorithms (EAs) have been successfully applied to many problems and applications. Their success comes from being general purpose, which means that the same EA can be used to solve different problems. Despite that, many factors can affect the behaviour and the performance of an EA and it has been proven that there isn't a particular EA which can solve efficiently any problem. This opens to the issue of understanding how different design choices can affect the performance of an EA and how to efficiently design and tune one. This thesis has two main objectives. On the one hand we will advance the theoretical understanding of evolutionary algorithms, particularly focusing on Genetic Programming and Parallel Evolutionary algorithms. We will do that trying to understand how different design choices affect the performance of the algorithms and providing rigorously proven bounds of the running time for different designs. This novel knowledge, built upon previous work on the theoretical foundation of EAs, will then help for the second objective of the thesis, which is to provide theory grounded design for Parallel Evolutionary Algorithms and Genetic Programming. This will consist in being inspired by the analysis of the algorithms to produce provably good algorithm designs.
Type of Work: | Thesis (Doctorates > Ph.D.) | ||||||
---|---|---|---|---|---|---|---|
Award Type: | Doctorates > Ph.D. | ||||||
Supervisor(s): |
|
||||||
Licence: | |||||||
College/Faculty: | Colleges (2008 onwards) > College of Engineering & Physical Sciences | ||||||
School or Department: | School of Computer Science | ||||||
Funders: | None/not applicable | ||||||
Subjects: | Q Science > QA Mathematics > QA76 Computer software | ||||||
URI: | http://etheses.bham.ac.uk/id/eprint/5928 |
Actions
Request a Correction | |
View Item |
Downloads
Downloads per month over past year