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Abstract

The aim of this thesis is to investigate the problem of a rigid plate, inclined at an an-

gle α ∈
(
0, 1

2
π
)

to the horizontal, accelerating uniformly from rest into, or away from,

a semi-infinite expanse of inviscid, incompressible fluid. This work generalises that of

Needham, Chamberlain and Billingham [24], by considering the case of negative plate

accelerations. We use the method of matched asymptotic expansions to investigate the

asymptotic structure of the solution to the free surface evolution problem as t → 0+,

paying particular attention to the innermost asymptotic region encompassing the initial

interaction between the fluid free surface and the inclined accelerating plate.
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Chapter 1

The Physical Problem and

Equations of Motion

In this chapter we introduce the problem of a rigid plate, inclined at an angle α ∈
(
0, 1

2
π
)

to the horizontal, accelerating uniformly from rest into, or away from, a semi-infinite

expanse of inviscid, incompressible fluid. A sketch of this problem is illustrated in Figure

1.1. We begin in §1.1 by detailing the background of the problem, including an outline of

previous studies into similar problems. In §1.2 we formulate the mathematical problem

via the governing hydrodynamic equations along with the associated boundary and initial

conditions, and regularity requirements.

1.1 Review

In this thesis we consider the motion of an inviscid incompressible fluid under the action

of gravity, and bounded above by a free surface. The sudden change in the uniform

motion of the fluid and/or a surface piercing rigid body leads to the localised formation

of a jet-like behaviour in the neighbourhood of the contact point between the free surface

of the fluid and the rigid body as the non-uniform transition takes place. This jet-like

behaviour has significant consequences in practical applications; it can affect the stability
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Figure 1.1: Definition sketch.

of a floating and manoeuvring vessel and can cause damage to a rigid body structure, as

in the case of flood defences being attacked by waves.

In modelling such jet-like behaviour, there are two approaches that are widely used;

investigation of scale-model experiments (see [7], [30]) and the construction of a full nu-

merical solution to the set of governing hydrodynamic equations with corresponding initial

and boundary conditions (see [7], [10]). Numerical studies into the behaviour of such jets

must be based upon the spatial resolution needed to accurately model the jet-like be-

haviour. For example, in [14], the jet forming at the initial intersection of the plate and

free surface has thickness O (−t2 log t) as t → 0+, with t being the time from jet forma-

tion, whilst in [23] the jet forming at the initial intersection of the plate and free surface

has thickness O (t). As discussed by Greenhow [6], when the order of magnitude of the

thickness of such jets is known a priori, then the accuracy and efficiency of numerical

calculation of such flows can be improved. However, as discussed in [9], there can be

considerable difficulty in establishing an estimate for the order of magnitude of thickness

of such jets for a particular problem.

This thesis is a continuation of the work presented in a series of papers by King and
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Needham [14], Needham, Billingham and King [23], and finally Needham, Chamberlain

and Billingham [24]. In King and Needham [14] the case of a vertical rigid plate, acceler-

ated uniformly into a stationary, semi-infinite, horizontal strip of inviscid incompressible

fluid is discussed. The authors found that, in a thin region of size O (−t2 log t) about

the intersection point of the plate and the free surface, vertical motion was dominant as

it became easier for the fluid to rise towards the low-pressure free surface than to move

horizontally by overcoming the fluids’ inertia. In Needham, Billingham and King [23], this

theme was continued by investigating the situation where the initially stationary vertical

plate is impulsively displaced into the horizontal strip of fluid. In this case it was found

that a significantly more violent jet formed than in the case of a uniformly accelerated

plate, with jet momentum flux of O
(
t log2 t

)
as opposed to O

(
t3 log3 t

)
as t → 0+ in

[14]. Subsequently Needham, Chamberlain and Billingham [24] generalised the theory in

[14] by investigating the case of a plate inclined at an angle α ∈
(
0, 1

2
π
)
∪
(

1
2
π, π

)
to the

horizontal, accelerated uniformly into a semi-infinite, horizontal strip of inviscid incom-

pressible fluid, initially at rest. The details of this paper are omitted here, as they will be

discussed throughout this thesis in comparison with the results formulated within.

In addition to the above mentioned series of papers, there have been a number of

studies (both experimental and numerical) by other authors. Notable works include the

following. Greenhow and Lin [7] performed a series of scale-model experiments involving

the impulsive start of a wavemaker, and the high speed entry of a wedge into calm

water. For the former they found that the fluid free surface rises up the vertical face

of the wavemaker, almost becoming parallel, before a jet is ejected at an angle almost

perpendicular to the wavemaker. In the case of high speed wedge entry they found that a

jet formed on the surface of the wedge at the intersection of the wedge and the fluid free

surface. These jets then separate from the wedge and form the beginning of an ellipse with

the fluid free surface. Yang and Chwang [30] investigated the case of a surface piercing,
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vertical plate impulsively accelerated into an expanse of, initially stationary, fluid. Their

scale-model experiments found that water rises up the plate during the initial stages of

plate motion, with good agreements of the numerical solutions found in [29]. Greenhow

[6], performed a numerical investigation into the wedge entry problem. He found that a

jet of fluid rises up the side of the wedge and may then separate from the wedge surface,

which agrees qualitatively with the experiments of [7]. This behaviour is not explained

exactly, but it is suggested by the author that there is an introduction of new free surface

particles between the original intersection between the surface of the wedge and the tip

of the jet, with a modified numerical scheme achieving some success in simulating such

flows.

This thesis aims to extend the work of Needham, Chamberlain and Billingham [24] by

considering the case of a plate, inclined at an angle α ∈
(
0, 1

2
π
)

to the horizontal, accel-

erating uniformly from rest away from a semi-infinite expanse of inviscid, incompressible

fluid. We use the method of matched asymptotic expansions (see, for example, [19]) to

investigate the asymptotic structure of the solution to our problem as t → 0+. We find

that, for dimensionless accelerations σ < 0 with α ∈
(
0, 1

2
π
)
, we can extend the results of

[24] to encompass all accelerations which satisfy µ = 1 + σ tanα > 0.

The outline of this thesis is as follows. In §1.2 we consider the motion of an inviscid

incompressible fluid under the action of gravity, and bounded above by a free surface.

We introduce a coordinate system, which is fixed relative to the inclined accelerating

plate, define the fluid velocity potential φ (x, y, t) and free surface displacement η (x, t)

and establish that conservation of mass leads to the Laplace equation, and construct the

boundary and initial conditions for the problem that we shall call [IBV P ]. Following the

method of matched asymptotic expansions, Chapter 2 contains the construction of the

outer asymptotic region in which (x, y) = O (1) as t → 0+. Here the initial conditions

require that φ, η = o (1) as t → 0+ in the outer asymptotic region and, in particular,
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the boundary conditions require that φ = O (t) and η = O (t2) as t → 0+. We then

introduce the outer region asymptotic expansions and show that, on substitution into

[IBV P ] to obtain [OBV P ], the solution to our governing hydrodynamic equations in the

outer asymptotic region is independent of dimensionless acceleration σ, except in sign and

scalar proportionality. We conclude this chapter by showing that the full regularity con-

ditions fail to be satisfied by the outer region asymptotic expansions in a neighbourhood

of the initial point of interaction of the plate and the free surface. In order to capture the

full regularity in such a neighbourhood, in Chapter 3 we introduce an inner asymptotic

region, in which (x, y) = o (1) as t → 0+. Here we introduce scaled inner region coordi-

nates (X, Y ) = O (1) as t → 0+, and the inner region asymptotic expansions for φ and

η. Substitution of the inner region asymptotic expansions into [IBV P ] yields a nonlinear

harmonic free boundary problem which is solved exactly to leading order in §3.1. Subse-

quently, in §3.2, we introduce translated inner coordinates
(
X,Y

)
and scale the velocity

potential, free surface displacement, and coordinate system in order to achieve the two

linear harmonic boundary value problems termed [BV P ]±, both depending only upon α,

with the + sign corresponding to values of σ < 0 such that µ = 1+σ tanα > 0, and the −

sign corresponding to those σ < 0 with µ < 0. We are then able to remove the free surface

displacement from our problem to obtain two linear harmonic boundary value problems

[PBV P ]±, for ψ (which is related to the velocity potential) alone, depending only upon α.

It is shown that [PBV P ]± admits an exact solution when α = π
2(n+1)

(n = 1, 2, . . . ). The

details of the finite difference scheme used to solve [PBV P ]± are contained within §3.3.

The results for [PBV P ]+ are given in §3.4. Subsequently the results for [PBV P ]− are

shown in §3.5. Here we notice that the angles α = α∗i (i = 1, 2, . . . ) separate pairs of near

resonances, with [PBV P ]− having a stationary point at the intersection of the free surface

and inclined plate at these angles. The remaining case, µ = 0 (σ = − cotα), is analysed

in §3.7.4 when α ∈
(
0, 1

4
π
]
. However the case µ = 0, with α ∈

(
1
4
π, 1

2
π
)
, requires the
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introduction of an inner-inner asymptotic region in which
(
X,Y

)
= o (1) as t→ 0+, and

this is discussed in Chapter 4. The resulting boundary value problem [RBV P ] is solved

numerically using a boundary integral method (which follows directly the approach given

in [24]), the results of which are contained in §4.1.1. The numerical solution motivates the

examination of the structure of solutions to [RBV P ] close to the contact point of the free

surface and the plate, the analysis of which is found in §4.1.2. Finally, in Chapter 5, we

consider whether the problem [IBV P ] is well-posed with respect to perturbations in initial

data in the inner asymptotic region, and further, whether the problem [IBV P ] is stable

with respect to perturbations in initial data in the inner asymptotic region. This work is

split into two sections: §5.1 investigating the case (α, µ) ∈
(
0, 1

2
π
)
× R\

(
1
4
π, 1

2
π
)
× {0},

and §5.2.3 which considers the remaining case (α, µ) ∈
(

1
4
π, 1

2
π
)
×G (δ), with G (δ) being

a o (1) neighbourhood of µ = 0 (σ = − cotα) as δ → 0.

1.2 Equations of Motion

We consider the case of a semi-infinite expanse of inviscid and incompressible fluid, which

is initially at rest and lies above a plane horizontal bed (which is rigid and impermeable)

located at y = −h, bounded above by a horizontal free surface at y = 0, and bounded

on the left by an inclined rigid plate at y = −x tanα, with α ∈
(
0, 1

2
π
)

being the angle

of inclination (exterior to the fluid layer) of the plate with the horizontal. Here (x, y)

denotes the Cartesian coordinate system fixed in space, with x pointing horizontally into

the fluid layer and y pointing vertically upwards, and t > 0 denotes time. From t = 0 the

plate translates in the negative x-direction with constant acceleration a (< 0). The free

surface of the fluid is subsequently located at y = η (x, t), with the contact point between

the free surface of the fluid and the inclined plate denoted by (x, y) = (xp (t) , yp (t)),

with yp (t) = η (xp (t) , t). In addition the intersection point of the inclined plate and the

rigid bed is denoted by (x, y) = (xb (t) ,−h). The situation is illustrated in Figure 1.1.
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Since the fluid is initially at rest it follows from Kelvin’s Circulation Theorem (see, for

example, [2]), that the fluid motion for t > 0 remains irrotational, and so there exists

a velocity potential for the flow which we denote by φ = φ (x, y, t) (see, for example,

[16]). In addition we denote the pressure field of the fluid by p = p (x, y, t) (relative to

atmospheric pressure pa). Dimensionless variables are introduced as follows,

x′ =
x

h
, y′ =

y

h
, η′ =

η

h
,

φ′ =
φ

h
√
gh
, p′ =

p

ρgh
, t′ = t

√
g

h
, σ =

a

g
, (1.2.1)

where ′ denotes dimensionless variables and σ is the dimensionless acceleration of the

plate. Here h, g and ρ are the initial height of the free surface, the acceleration due

to gravity, and the density of the fluid, respectively. Hereafter we drop the primes for

convenience.

For t > 0 it is convenient to introduce the coordinates (x, y), where x = x− s (t), with

s (t) =
1

2
σt2. (1.2.2)

The origin O′ of the (x, y) Cartesian coordinate system, as shown in Figure 1.1, is now

located on the plate. We define the domain occupied by the fluid in the (x, y) plane to

be given, for t > 0, by

D (t) = D1 (t) ∪ D2 (t) , (1.2.3)
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with

D1 (t) =
{

(x, y) ∈ R2 : xp (t) < x 6 xb, −x tanα < y < η (x, t)
}
, (1.2.4)

D2 (t) =
{

(x, y) ∈ R2 : x > xb, −1 < y < η (x, t)
}

; (1.2.5)

where xp (t) = xp (t) − s (t) and xb = cotα, with yp (t) = η (xp (t) , t) = −xp (t) tanα for

t > 0.

Conservation of fluid mass within D (t) (t > 0) requires that the fluid velocity potential

is harmonic on D (t) (t > 0) so that,

∇2φ = 0, (x, y) ∈ D (t) , t > 0, (1.2.6)

where ∇ =
(
∂
∂x
, ∂
∂y

)
is the two-dimensional gradient operator in the (x, y) Cartesian

coordinate system. At the rigid, impermeable bed, where y = −1 with x > xb, we must

have the boundary condition

φy = 0, on y = −1, x > xb, t > 0. (1.2.7)

Similarly, on the impermeable rigid plate, we must have the boundary condition

∇φ · n̂ = σt sinα, on y = −x tanα, xp (t) < x < xb, t > 0, (1.2.8)

with the unit vector normal to the plate (pointing into the fluid) given by n̂ = (sinα, cosα).

The fluid pressure field is given by the unsteady Bernoulli equation, namely,

p+ φt − σtφx +
1

2
|∇φ|2 + y = 0, (x, y) ∈ D (t) , t > 0. (1.2.9)

We are now able to formulate the two boundary conditions on the fluid free surface. The
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dynamic boundary condition requires that the fluid pressure vanishes on the free surface

of the fluid, which, via the unsteady Bernoulli equation (1.2.9), requires,

φt − σtφx +
1

2
|∇φ|2 + η = 0, on y = η (x, t) , x > xp (t) , t > 0. (1.2.10)

The kinematic boundary condition on the fluid free surface requires that the normal

velocity of the free surface is equal to the normal fluid velocity at the free surface. This

leads to,

ηt − σtηx + φxηx − φy = 0, on y = η (x, t) , x > xp (t) , t > 0. (1.2.11)

The far-field boundary conditions require that,

η → 0, as x→∞, t > 0, (1.2.12)

|∇φ| → 0, as x→∞, uniformly for − 1 6 y 6 η (x, t) , t > 0. (1.2.13)

In addition, at the contact point between the fluid free surface and the plate, we require,

η + xp (t) tanα = 0 when x = xp (t) , t > 0. (1.2.14)

Finally, the initial conditions are

φ (x, y, 0) = 0, (x, y) ∈ D (0) , (1.2.15)

η (x, 0) = 0, x > 0. (1.2.16)

Thus, to summarize, we now have the following initial boundary value problem for φ
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and η, namely,

∇2φ = 0, (x, y) ∈ D (t) , t > 0; (1.2.17)

∇φ · n̂ = ṡ (t) sinα, y = −x tanα, xp (t) < x < xb, t > 0; (1.2.18)

φy = 0, y = −1, x > xb, t > 0; (1.2.19)

ηt + [φx − σt] ηx − φy = 0, y = η (x, t) , x > xp (t) , t > 0; (1.2.20)

φt − σtφx +
1

2
|∇φ|2 + η = 0, y = η (x, t) , x > xp (t) , t > 0. (1.2.21)

η + xp (t) tanα = 0, x = xp (t) , t > 0, (1.2.22)

η → 0, as x→∞, t > 0, (1.2.23)

|∇φ| → 0, as x→∞, uniformly for − 1 6 y 6 η (x, t) , t > 0, (1.2.24)

φ (x, y, 0) = 0, (x, y) ∈ D (0) , (1.2.25)

η (x, 0) = 0, x > 0. (1.2.26)

The fluid pressure field p is obtained explicitly from the unsteady Bernoulli equation

(1.2.9). It is convenient to write,

p = pd − y, (x, y) ∈ D (t) , t > 0, (1.2.27)

with pd being the dynamic fluid pressure field, which is given via (1.2.9) as

pd = −φt + σtφx −
1

2
|∇φ|2 , (x, y) ∈ D (t) , t > 0. (1.2.28)

Finally the fluid velocity field (non-dimensionalised with the velocity scale
√
gh), relative

to the fixed origin O, is given by

q = ∇φ, (x, y) ∈ D (t) , t > 0. (1.2.29)
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We will study classical solutions to the initial boundary value problem (1.2.17) -

(1.2.26), hereafter referred to as [IBV P ], which satisfy the following regularity condi-

tions

φ ∈ C
(
G
)
∩ C1 (G ∪ ∂G) ∩ C2 (G) , (1.2.30)

η ∈ C
(
H
)
∩ C1 (H) , (1.2.31)

with

G =
{

(x, y, t) ∈ R3 : (x, y) ∈ D (t) , t ∈ (0,∞)
}
, (1.2.32)

∂G =
{

(x, y, t) ∈ R3 : (x, y) ∈ D (t) \D (t) , t ∈ (0,∞)
}
, (1.2.33)

H =
{

(x, t) ∈ R2 : x ∈ [xp (t) ,∞) , t ∈ (0,∞)
}
. (1.2.34)

The aim of this thesis is to investigate the asymptotic structure of the solution to [IBV P ]

as t→ 0+ via the method of matched asymptotic expansions (see, for example, [19]), and,

in particular, to extend the theory in [24] to the situation when the plate has negative

acceleration, so that σ < 0, with α ∈
(
0, 1

2
π
)
. We begin in Chapter 2 by introducing

two asymptotic regions, and investigating the behaviour in an outer region in which

(x, y) ∈ D (t) = O (1) as t→ 0+. The associated inner regions with (x, y) ∈ D (t) = o (1)

are then discussed in Chapters 3 and 4. Finally, the well-posedness and stability of our

problem with respect to perturbations in the innermost asymptotic region is discussed in

Chapter 5.

11



Chapter 2

Outer Region Asymptotic

Structure to [IBV P ] as t→ 0+ with

α ∈
(
0, 12π

)
In this chapter we begin the asymptotic development of the solution to [IBV P ], as t→ 0+,

in an outer asymptotic region in which (x, y) ∈ D (t) \N (t) as t → 0+, with N (t) being

a o (1) neighbourhood of (x, y) = (0, 0) as t → 0+. Here the gauge function δ (t) will

be determined in the course of the analysis. A definition sketch of the outer asymptotic

region is shown in Figure 2.1. The initial conditions (1.2.25) and (1.2.26) require that φ,

η = o (1) as t → 0+ in the outer asymptotic region. In particular, boundary conditions

(1.2.18) and (1.2.20) require that φ = O (t) and η = O (t2) as t → 0+ in the outer

asymptotic region. Therefore, we introduce the outer region asymptotic expansions in

the form,

φ (x, y, t) = tσ sinαφ (x, y) +O
(
t2
)
, (2.0.1)

η (x, t) = t2η (x) +O
(
t3
)
, (2.0.2)
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Figure 2.1: Definition sketch of the outer asymptotic region

as t → 0+ in the outer asymptotic region, with the factor σ sinα in (2.0.1) included for

algebraic convenience at a later stage. Substituting expansions (2.0.1) and (2.0.2) into

[IBV P ] (with the exception of condition (1.2.22), since the application point (x, y) =

(xp (t) , yp (t)) → (0, 0) as t→ 0+ lies outside the outer asymptotic region), we obtain the

leading order problem in the outer region, for φ, namely

∇2φ = 0, (x, y) ∈ D (0) ; (2.0.3)

∇φ · n̂ = 1, y = −x tanα, 0 < x < cotα; (2.0.4)

φy = 0, y = −1, x > cotα; (2.0.5)

φ = 0, y = 0, x > 0; (2.0.6)∣∣∇φ∣∣→ 0 as x→∞, uniformly for − 1 6 y 6 0; (2.0.7)

with η given, via (1.2.20), as

η (x) =
1

2
σ sinα φy (x, 0) , x > 0. (2.0.8)
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Hence φ is the solution to the linear harmonic boundary value problem (2.0.3) - (2.0.7)

henceforth referred to as [OBV P ] (which is independent of the dimensionless acceleration

σ), and is defined on the fixed, semi-infinite polygonal domain D (0). We require, via

(1.2.30), that the solution to [OBV P ] must have regularity given by

φ ∈ C
(
D (0)

)
∩ C1

(
D (0) \ {(0, 0)}

)
∩ C2 (D (0)) ,∣∣∇φ∣∣ has, at worst, an integrable singularity at (x, y) = (0, 0) . (2.0.9)

Although the possibility of allowing
∣∣∇φ∣∣ to have an integrable singularity at (x, y) = (0, 0)

violates the full regularity conditions (1.2.30) on φ, and (1.2.31) on η (via (2.0.8)), it is

necessary to ensure the existence of a solution to [OBV P ]. The existence and uniqueness

of a solution to [OBV P ] that has regularity required by (2.0.9) is guaranteed by the use of

the Schwarz-Christoffel Conformal Mapping Theorem [5], together with Green’s Theorem

[27]. This approach provides a constructional method for determining the solution to

[OBV P ]. However, it is much more illuminative to use direct eigenfunction expansions

(see, for example, [15]) to represent the solution to [OBV P ]. With the regularity condition

(2.0.9) it follows that there exist real constants An, Bn and Cn, n = 0, 1, 2, . . . , such that

φ (r, θ) =
r sin θ

cosα
+
∞∑
n=0

Anr
(n+ 1

2) πα sin

((
n+

1

2

)
π

α
θ

)
, (2.0.10)

for 0 6 r < cosec α, −α 6 θ 6 0, where x = r cos θ and y = r sin θ, whilst

φ (ρ, ψ) =
ρ cosψ

sinα
+
∞∑
n=0

Bnρ
nπ/(π−α) cos

(
nπψ

π − α

)
, (2.0.11)

for 0 6 ρ < 1, 0 6 ψ 6 π − α, where x− cotα = ρ cosψ, and y + 1 = ρ sinψ, and finally

φ (x, y) =
∞∑
n=0

Cne
−(n+ 1

2)πx sin

((
n+

1

2

)
πy

)
, (2.0.12)
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Figure 2.2: Sketch showing domains of validity for I (2.0.10), II (2.0.11), III (2.0.12), IV
(2.0.13) and V (2.0.14)

for x > cotα, −1 6 y 6 0. Equation (2.0.8) together with (2.0.10) and (2.0.12) now give

that

η (x) =
1

2
σ tanα +

1

2
σ sinα

∞∑
n=0

(
n+

1

2

)
π

α
Anx

(n+ 1
2) πα−1, (2.0.13)

for 0 6 x < cosec α, and

η (x) =
1

2
σ sinα

∞∑
n=0

(
n+

1

2

)
πCne

−(n+ 1
2)πx, (2.0.14)

for x > cosec α.

As in [24] we use the expressions (2.0.10), (2.0.11) and (2.0.12) to obtain numerical approx-

imations for φ and hence η (via (2.0.13) and (2.0.14). These numerical approximations

are calculated by truncating each of the infinite series’ and equating these partial sums

at a number of points in the intersection of domains of validity (a definition sketch of

the intersection of domains can be seen in Figure 2.2). The system of linear equations

obtained by equating these partial sums is then solved to obtain the constants An, Bn and

Cn for n = 0, 1, . . . , N . A value of N = 8 was found to give a sufficient level of convergence

for the numerical results. The coefficient A0, appearing in (2.0.10) and (2.0.13) (which

depends upon α), is of particular interest at a later stage. An analytical expression for
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Figure 2.3: Coefficient A0 (α) against α. A solid line shows the analytical expression
(2.0.15), while numerical approximations are shown as dots

A0, derived in [24], is given by

A0 (α) =
1(

α− 1
2
π
)

sinα

{
2αΓ

(
1
2

+ α
π

)
√
πΓ
(
α
π

) } π
2α

for α ∈
(

0,
1

2
π

)
, (2.0.15)

from which we obtain,

A0 (α) ∼ − 2

πα
e
π
α

log
(√

2
π
α
)

as α→ 0+, A0 (α) ∼
(
α− π

2

)−1

as α→
(

1

2
π

)−
.

(2.0.16)

A graph of the numerically calculated values of A0, together with analytical values given

by (2.0.15), is shown in Figure 2.3. The agreement is excellent, giving confidence in

the numerical solution to [OBV P ]. Equation (1.2.28), together with the outer region

asymptotic expansion for φ in (2.0.1), require that the dynamic fluid pressure field in the

outer asymptotic region must have the outer region asymptotic expansion

pd (x, y, t) = p (x, y) +O (t) , (2.0.17)
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Figure 2.4: Contours of φ for a selection of angles α. Lines separate regions where (2.0.10),
(2.0.11) and (2.0.12) are used

as t→ 0+ in the outer asymptotic region, where

p (x, y) = −σ sinαφ (x, y) , (x, y) ∈ D (0) . (2.0.18)

Thus, in the outer asymptotic region, the level curves of φ correspond, via (2.0.18), to the

leading order isobars of the dynamic pressure field. Finally, we obtain the outer region

asymptotic expansion for the fluid velocity field, via (1.2.29) and (2.0.1), as

q (x, y, t) = tσ sinα∇φ (x, y) +O
(
t2
)
, (2.0.19)
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Figure 2.5: Contours of p/σ for a selection of angles α. Lines separate regions where
(2.0.10), (2.0.11) and (2.0.12) are used

as t→ 0+ in the outer asymptotic region. Thus, at leading order in the outer asymptotic

region, the fluid flow has streamlines which are orthogonal to the level curves of φ.

We now illustrate a selection of numerical results for [OBV P ], selecting the angles

α = π
10
, π

6
, π

4
, and π

3
. At each of these angles we plot the level curves of φ in Figure 2.4,

p/σ in Figure 2.5, and the level curves orthogonal to those of φ (the streamlines) in Figure

2.6. We also plot η/σ against x > 0 at each of these angles in Figure 2.7 and note that

all of these graphs are independent of σ, except in sign and scalar proportionality.

When σ > 0, it is is clear from Figure 2.5 that, for each α considered, there is a build-
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Figure 2.6: Orthogonal contours of φ, which represent streamlines, for a selection of angles
α, with the arrows indicating the direction of ∇φ

up of dynamic pressure close to the base of the inclined plate. This is typical of all angles

investigated, and it is this that leads to the formation of a jet in the inner asymptotic

region, as discussed in [24]. When σ < 0, we see that, for each α plotted, there is a region

of low pressure close to the base of the plate. The effect of this on the free surface, close

to the intersection point of the plate and the free surface will be discussed in Chapter 3.

We see from (2.0.10), (2.0.11), (2.0.13), and (2.0.14), that the leading order terms in

the outer region asymptotic expansions (2.0.1) and (2.0.2) satisfy the required regularity

(1.2.30) and (1.2.31), except in a neighbourhood of the initial location of the intersection

point of the free surface and the plate, at (x, y) = (0, 0) ∈ D (0). Close to (x, y) = (0, 0)
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we have, from (2.0.10) and (2.0.13), that

φ (r, θ) =
r sin θ

cosα
+ A0r

π/2α sin
πθ

2α
+O

(
r3π/2α

)
, (2.0.20)

as r → 0+, with −α 6 θ 6 0, and

η (x) =
1

2
σ tanα + A0

πσ sinα

4α
x

π
2α
−1 +O

(
x

3π
2α
−1
)
, (2.0.21)

as x→ 0+. It follows from (2.0.19) and (2.0.20) that

∣∣∇φ (r, θ)
∣∣ = secα +O

(
r
π
2α
−1
)
, (2.0.22)

as r → 0, with −α 6 θ 6 0. Equation (2.0.21) reveals a weak singularity in η′ (x)

as x → 0+. Further investigation reveals that this singular behaviour as x → 0+ is

compounded in higher-order terms in the outer region asymptotic expansions for η in

20



(2.0.2), and also, as r → 0, in the outer region asymptotic expansion for φ in (2.0.1),

and so the regularity conditions (1.2.30) and (1.2.31) fail to be satisfied by the outer

region asymptotic expansions (2.0.1) and (2.0.2) in a neighbourhood of the initial point

of intersection of the plate and free surface, where (x, y) = o (1) as t → 0+. Therefore

we introduce an inner asymptotic region, in which (x, y) = o (1) as t → 0+, in order

to capture the full regularity in the neighbourhood of the intersection point of the plate

and the free surface. The inner asymptotic region is now considered in detail in the next

chapter.
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Chapter 3

Inner Region Asymptotic

Structure to [IBV P ] as t→ 0+ with

α ∈
(
0, 12π

)
In this chapter we introduce the inner asymptotic region associated with [IBV P ] when

(x, y) = o (1) as t → 0+. Specifically, following Chapter 2, we write (x, y) = O (δ (t))

with δ (t) = o (1) as t → 0+. It then follows from (2.0.2) and (2.0.21) that η = O (t2)

as t → 0+ in the inner asymptotic region, and so, to capture the free surface in the

inner asymptotic region, we must take δ (t) = O (t2) as t → 0+; therefore, without loss

of generality, we set δ (t) = t2. An examination of (2.0.1) and (2.0.20) then requires that

φ = O (t3) as t→ 0+ in the inner asymptotic region, whilst (2.0.17), (2.0.18) and (2.0.19)

require that pd = O (t2) and q = O (t) as t→ 0+ in the inner asymptotic region. Finally,

the intersection point of the free surface and the plate must be captured in the inner

asymptotic region, and so xp (t) = O (t2) as t→ 0+. A sketch of the location of the inner

asymptotic region is illustrated in Figure 3.1.
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Figure 3.1: A sketch of the location of the inner asymptotic region

3.1 Inner Region Problems

Formally we introduce scaled inner region coordinates (X, Y ) by

x = t2X, y = t2Y, (3.1.1)

with (X, Y ) = O (1) as t→ 0+ in the inner asymptotic region. The location of the plate

in the inner asymptotic region is given by Y = −X tanα, whilst the plate and free surface

intersection point is denoted by (X, Y ) = (Xp (t) , Yp (t)), with,

xp (t) = t2Xp (t) , yp (t) = t2Yp (t) , (3.1.2)

and (Xp (t) , Yp (t)) = O (1) as t → 0+ in the inner asymptotic region. We now write the

free surface and velocity potential in the inner asymptotic region as

η (X, t) = t2ηI (X, t) , X > Xp (t) , t > 0; (3.1.3)

φ (X, Y, t) = t3φI (X, Y, t) , X > Xp (t) , −X tanα 6 Y 6 ηI (X, t) , t > 0; (3.1.4)
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with ηI (X, t) , φI (X, Y, t) = O (1) as t→ 0+. The inner region asymptotic expansions are

then introduced as,

ηI (X, t) = η0 (X) + t
π
α
−2η̃ (X) + o

(
t
π
α
−2
)
, (3.1.5)

φI (X, Y, t) = φ0 (X, Y ) + t
π
α
−2φ̃ (X, Y ) + o

(
t
π
α
−2
)
, (3.1.6)

as t → 0+ with (X, Y ) = O (1) in the inner asymptotic region. Finally, it follows from

(3.1.1), (3.1.2), (3.1.3) and (3.1.5) that we expand Xp (t) in the form

Xp (t) = X0 + t
π
α
−2X1 + o

(
t
π
α
−2
)
, (3.1.7)

as t→ 0+, with

Yp (t) = −Xp (t) tanα. (3.1.8)

The free surface in the inner asymptotic region is located at

Y = ηI (X, t) , X > Xp (t) , t > 0, (3.1.9)

whilst the spatial domain in the inner asymptotic region is

DI (t) = {(X, Y ) : X > Xp (t) ,−X tanα < Y < ηI (X, t)} , (3.1.10)

for t > 0, with closure DI (t). A sketch of the inner asymptotic region geometry is given

in Figure 3.2.

We now write [IBV P ] in terms of the inner asymptotic region coordinates (X, Y ),
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and the inner asymptotic region variables φI and ηI , to obtain,

∇2
φI = 0, (X, Y ) ∈ DI (t) , t > 0; (3.1.11)

∇φI · n̂ = σ sinα, X > Xp (t) , Y = −X tanα, t > 0; (3.1.12)

tηI,t + 2ηI + [φI,X − σ − 2X] ηI,X − φI,Y = 0,

X > Xp (t) , Y = ηI (X, t) , t > 0; (3.1.13)

tφI,t + 3φI − (2X + σ)φI,X − 2Y φI,Y +
1

2

∣∣∇φI∣∣2 + ηI = 0,

X > Xp (t) , Y = ηI (X, t) , t > 0; (3.1.14)

ηI (Xp (t) , t) = −Xp (t) tanα, t > 0; (3.1.15)

with ∇ = (∂/∂X, ∂/∂Y ). On substituting from (3.1.5), (3.1.6) and (3.1.7) into (3.1.11)

- (3.1.15) we obtain, at leading order, the following nonlinear harmonic free boundary

problem1 for φ0 (X, Y ), η0 (X), and X0, namely

∇2
φ0 = 0, X > X0, −X tanα < Y < η0 (X) ; (3.1.16)

∇φ0 · n̂ = σ sinα, X > X0, Y = −X tanα; (3.1.17)

2η0 + [φ0,X − σ − 2X] η0,X − φ0,Y = 0, X > X0, Y = η0 (X) ; (3.1.18)

3φ0 − (2X + σ)φ0,X − 2Y φ0,Y +
1

2

∣∣∇φ0

∣∣2 + η0 = 0, X > X0, Y = η0 (X) ; (3.1.19)

η0 (X0) = −X0 tanα. (3.1.20)

The problem (3.1.16) - (3.1.20) must be completed by asymptotic matching conditions

between the inner asymptotic region and outer asymptotic region. Following Van Dyke’s

Matching Principle (see, for example, [19]), we obtain

1See Appendix A.1 for derivation
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Figure 3.2: The inner asymptotic region geometry

φ0 (R, θ) ∼ σ tanα R sin θ as R→∞, −α < θ < 0, (3.1.21)

η0 (X)→ 1

2
σ tanα as X →∞, (3.1.22)

where R and θ are polar coordinates given by X = R cos θ, Y = R sin θ. It is readily

established that the exact solution to the leading order problem (3.1.16) - (3.1.22) is

given by

η0 (X) =
1

2
σ tanα, X > X0, (3.1.23)

φ0 (X, Y ) = σ tanα

[
Y − 1

3

(
1

2
+ σ tanα

)]
,

X > X0, −X tanα 6 Y 6
1

2
σ tanα, (3.1.24)

with

X0 = −1

2
σ. (3.1.25)
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This is represented in the inner asymptotic region in Figure 3.3a. We now formulate

the problem at O
(
t
π
α
−2
)
, where it is convenient to shift the origin in the inner asymp-

totic region coordinates. Following Figure 3.3b, we introduce the translated inner region

coordinates
(
X,Y

)
according to,

X = −1

2
σ +X, Y =

1

2
σ tanα + Y , (3.1.26)

and then write

φ̃ = A0 (α)σ sinα φ̂, (3.1.27)

η̃ = A0 (α)σ sinα η̂, (3.1.28)

with A0 (α) given in (2.0.15), and the A0 (α)σ sinα scaling chosen for algebraic conve-

nience. We can now write the problem2 at O
(
t
π
α
−2
)
, for φ̂, η̂ and X1, as

̂̂∇2

φ̂ = 0, X > 0, −X tanα < Y < 0; (3.1.29)̂̂∇φ̂ · n̂ = 0, X > 0, Y = −X tanα; (3.1.30)

π

α
η̂ − 2Xη̂X − φ̂Y = 0, X > 0, Y = 0; (3.1.31)(

1 +
π

α

)
φ̂− 2Xφ̂X + (1 + σ tanα) η̂ = 0, X > 0, Y = 0; (3.1.32)

φ̂
(
R, θ

)
= −R

π
2α cos

π

2α
(θ + α) + o

(
R

π
2α

)
as R→∞, −α < θ < 0; (3.1.33)

η̂
(
X
)

=
π

4α
X

π
2α
−1

+ o
(
X

π
2α
−1
)

as X →∞. (3.1.34)

Here ̂̂∇ =
(
∂/∂X, ∂/∂Y

)
, the final conditions (3.1.33) and (3.1.34) are the matching

conditions with the outer asymptotic region, and we have introduced polar coordinates

2See Appendix A.1 for derivation
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1
2
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(a) Solution of [IBV P ] at leading order in the inner asymptotic region

Y
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′

(X, Y ) =
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2
σ, 1

2
σ tanα

)
(
X,Y

)
= (0, 0)

(b) Coordinate shift in the inner asymptotic region

Figure 3.3: Sketches in the inner asymptotic region
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(
R, θ

)
, given by X = R cos θ, Y = R sin θ. Finally we have

X1 = −A0 (α)σ cosα η̂ (0) . (3.1.35)

We notice that in the boundary value problem (3.1.29) - (3.1.35), the dimensionless

acceleration σ appears only in the dynamic boundary condition (3.1.32) in the form

(1 + σ tanα). Thus, we set µ = 1 + σ tanα and, in the case that µ 6= 0 , we introduce the

following scalings3

φ̂ = |µ|
π
2α ψ, η̂ = |µ|

π
2α
−1 ξ, X = |µ| X̂, Y = |µ| Ŷ . (3.1.36)

The corresponding boundary value problem for ψ
(
X̂, Ŷ

)
and ξ

(
X̂
)

is now independent

of µ, and is given by

∇̂2ψ = 0, X̂ > 0, −X̂ tanα < Ŷ < 0, (3.1.37)

∇̂ψ · n̂ = 0, X̂ > 0, Ŷ = −X̂ tanα, (3.1.38)

π

α
ξ − 2X̂ξX̂ − ψŶ = 0, X̂ > 0, Ŷ = 0, (3.1.39)(

1 +
π

α

)
ψ − 2X̂ψX̂ ± ξ = 0, X̂ > 0, Ŷ = 0, (3.1.40)

ψ
(
R̂, θ

)
= −R̂

π
2α cos

π

2α
(θ + α) + o

(
R̂

π
2α

)
, as R̂→∞, −α < θ < 0, (3.1.41)

ξ
(
X̂
)

=
π

4α
X̂

π
2α
−1 + o

(
X̂

π
2α
−1
)
, as X̂ →∞, (3.1.42)

after which,

X1 = −A0 (α)σ cosα |µ|
π
2α
−1 ξ (0) . (3.1.43)

Here ∇̂ =
(
∂/∂X̂, ∂/∂Ŷ

)
, and

(
R̂, θ

)
are polar coordinates given by X̂ = R̂ cos θ and

Ŷ = R̂ sin θ. In this boundary value problem, the + sign is taken in (3.1.40) when µ > 0,

3See Appendix A.2 for the derivation of these scalings
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and the − sign is taken in (3.1.40) when µ < 0. We refer to these two linear harmonic

boundary value problems as [BV P ]+ and [BV P ]− respectively. We note that α is now

the only parameter remaining in each of [BV P ]+ and [BV P ]−.

3.2 Analysis of [BV P ]±

The full regularity conditions (1.2.30) and (1.2.31) on [IBV P ] require the following reg-

ularity conditions on each of [BV P ]±, namely,

ψ ∈ C1
(
T
)
∩ C2 (T ) , ξ ∈ C1 ([0,∞)) , (3.2.1)

with

T =
{(
R̂, θ

)
: R̂ > 0, −α < θ < 0

}
. (3.2.2)

Before considering the solution of [BV P ]± in detail, we first examine the structure of

solutions to [BV P ]± as X̂, R̂ → 0 and, subsequently, as X̂, R̂ → ∞. We observe that,

from (3.1.40), we have, explicitly,

ξ
(
X̂
)

= ±
(

2X̂ψX̂ −
(

1 +
π

α

)
ψ
)
, X̂ > 0, Ŷ = 0, (3.2.3)

and thus we can eliminate ξ from [BV P ]± to obtain [PBV P ]± for ψ alone, as,

ψR̂R̂ +
1

R̂
ψR̂ +

1

R̂2
ψθθ = 0, R̂ > 0, −α < θ < 0, (3.2.4)

ψθ = 0, θ = −α, R̂ > 0, (3.2.5)

1

R̂
ψθ = ±

(
−π
α

(
1 +

π

α

)
ψ + 2

(
1 +

2π

α

)
R̂ψR̂ − 4R̂

(
R̂ψR̂

)
R̂

)
,

θ = 0, R̂ > 0, (3.2.6)
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with the far-field condition,

ψ
(
R̂, θ

)
= −R̂

π
2α cos

π

2α
(θ + α) + o

(
R̂

π
2α

)
as R̂→∞ for − α < θ < 0, (3.2.7)

and regularity condition (3.2.1). To begin, it is readily established that any pair of

functions ψ = Ψ and ξ = ζ which satisfy (3.2.3) - (3.2.7) must have the asymptotic form,

for some real constants an, bn, (n = 0, 1, 2, . . . ),

Ψ
(
R̂, θ

)
∼

∞∑
n=1

anψ−n

(
R̂, θ

)
R̂−

nπ
α cos

nπ

α
(θ + α)

+ a0ψ
0
0

(
R̂, θ

)
+ b0

(
ψ1

0

(
R̂, θ

)
log R̂ + ψ2

0

(
R̂, θ

))
+
∞∑
n=1

bnψn

(
R̂, θ

)
R̂

nπ
α cos

nπ

α
(θ + α), (3.2.8)

as R̂→ 0, uniformly for −α 6 θ 6 0, after which

ζ
(
X̂
)
∼ ±

{
∞∑
n=1

an (−1)n+1
[(

(2n+ 1)
π

α
+ 1
)
ψ−n

(
X̂, 0

)
X̂−

nπ
α

−2ψ−n,X̂

(
X̂, 0

)
X̂1−nπ

α

]
+ a0

[
−
(

1 +
π

α

)
ψ0

0

(
X̂, 0

)
+ 2X̂ψ0

0,X̂

(
X̂, 0

)]
+ b0

[
2ψ1

0

(
X̂, 0

)
−
(

1 +
π

α

)
ψ2

0

(
X̂, 0

)
+ X̂ψ2

0,X̂

(
X̂, 0

)
−
(

1 +
π

α

)
ψ1

0

(
X̂, 0

)
log X̂ + ψ1

0,X̂
X̂ log X̂

]
+
∞∑
n=1

bn (−1)n
[(

(2n− 1)
π

α
− 1
)
ψn

(
X̂, 0

)
X̂

nπ
α

+2ψn,X̂

(
X̂, 0

)
X̂1+nπ

α

]}
, (3.2.9)

as X̂ → 0. Here ψ±n

(
R̂, θ

)
(n = 1, 2, . . . ), ψ0

0

(
R̂, θ

)
, ψ1

0

(
R̂, θ

)
, ψ2

0

(
R̂, θ

)
are regular

as R̂→ 0, with −α 6 θ 6 0, are determined uniquely term by term in integral powers of
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R̂ as R̂→ 0, and satisfy


ψ±n

(
R̂, θ

)
, ψ0

0

(
R̂, θ

)
, ψ1

0

(
R̂, θ

)
→ 1,

ψ2
0

(
R̂, θ

)
→ 0,

(3.2.10)

as R̂→ 0, uniformly for −α 6 θ 6 0. Specifically,

ψ0
0

(
R̂, θ

)
= 1 + R̂F̂ (θ) +O

(
R̂2
)
, (3.2.11)

as R̂→ 0 for −α 6 θ 6 0, where,

F̂ (θ) = ±
π
(
1 + π

α

)
α sinα

cos (θ + α), −α 6 θ 6 0, (3.2.12)

for [PBV P ]+ and [PBV P ]− respectively. We conclude from the regularity condition

(3.2.1) and the asymptotic form (3.2.8) that any solution to [PBV P ]± must have,

ψ
(
R̂, θ

)
∼ a0ψ

0
0

(
R̂, θ

)
+
∞∑
n=1

bnψn

(
R̂, θ

)
R̂

nπ
α cos

nπ

α
(θ + α), (3.2.13)

as R̂→ 0, uniformly for −α 6 θ 6 0, and some globally determined real constants, a0, bn

(n = 1, 2, . . . ) not all zero, and, via (3.2.1) and (3.2.9),

ξ
(
X̂
)
∼ ±a0

[
−
(

1 +
π

α

)
ψ0

0

(
X̂, 0

)
+ 2X̂ψ0

0,X̂

(
X̂, 0

)]
+
∞∑
n=1

bn (−1)n
{[

(2n− 1)
π

α
− 1
]
ψn

(
X̂, 0

)
X̂

nπ
α + 2X̂

nπ
α

+1ψn,X̂

}
, (3.2.14)
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as X̂ → 0. Similarly we can establish the asymptotic form,

Ψ
(
R̂, θ

)
∼

∞∑
n=1

a∞n ψ
∞
n

(
R̂, θ

)
R̂(n+ 1

2) πα cos

(
n+

1

2

)
π

α
(θ + α)

+ a∞0 ψ
∞
0

(
R̂, θ

)
R̂

π
2α cos

π

2α
(θ + α)

+
∞∑
n=1

b∞n ψ
∞
−n

(
R̂, θ

)
R̂−(n− 1

2) πα cos

(
n− 1

2

)
π

α
(θ + α), (3.2.15)

as R̂ → ∞, uniformly for −α 6 θ 6 0, for some real constants a∞0 and a∞n , b∞n (n =

1, 2, . . . ), after which

ζ
(
X̂
)
∼

∞∑
n=1

â∞n ξ
∞
n

(
X̂
)
X̂(n+ 1

2) πα−1 + â∞0 ξ
∞
0

(
X̂
)
X̂

π
2α
−1

+
∞∑
n=1

b̂∞n ξ
∞
−n

(
X̂
)
X̂−(n− 1

2) πα−1, (3.2.16)

as X̂ → ∞, for some real constants â∞0 and â∞n , b̂∞N (n = 1, 2, . . . ). Here ψ∞±n

(
R̂, θ

)
are

regular as R̂→∞ with −α 6 θ 6 0, and are determined uniquely term by term in powers

of R̂−1 as R̂→∞, and satisfy

ψ∞±n

(
R̂, θ

)
→ 1, as R̂→∞, uniformly for − α 6 θ 6 0. (3.2.17)

Similarly ξ∞±n

(
X̂
)

are regular as X̂ →∞, and are determined uniquely term by term in

powers of X̂−1, and satisfy

ξ∞±n

(
X̂
)
→ 1, as X̂ →∞. (3.2.18)

Specifically, we have,

ψ∞0

(
R̂, θ

)
= 1 +

1

R̂
P1 (θ) +

1

R̂2
P2 (θ) +O

(
1

R̂3

)
, (3.2.19)
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as R̂→∞, uniformly for −α 6 θ 6 0. Here

p1 (θ) = ∓ π

12α sinα

cos
(
π
2α
− 1
)

(θ + α)

cos π
2α

(θ + α)
, (3.2.20)

p2 (θ) = −
π
(
π
2α
− 1
)

cosα

240α sinα sin 2α

cos
(
π
2α
− 2
)

(θ + α)

cos π
2α

(θ + α)
, (3.2.21)

for −α 6 θ 6 0, after which

ξ∞0

(
X̂
)

= 1 +
1

X̂
Q1 +

1

X̂2
Q2 +O

(
1

X̂3

)
, (3.2.22)

as X̂ →∞. Here

Q1 = −
(
π
2α
− 1
)

12α tanα
, (3.2.23)

Q2 =

(
π
2α
− 1
) (

π
2α
− 2
)

360α tanα tan 2α
. (3.2.24)

We may now conclude from (3.2.15) and (3.2.16), that any solution to [PBV P ]± must

have,

ψ
(
R̂, θ

)
∼ −ψ∞0

(
R̂, θ

)
R̂

π
2α cos

π

2α
(θ + α)

+
∞∑
n=1

b∞n ψ
∞
−n

(
R̂, θ

)
R̂−(n− 1

2) πα cos

(
n− 1

2

)
π

α
(θ + α), (3.2.25)

as R̂ → ∞, uniformly for −α 6 θ 6 0, and some globally determined real constants b∞n

(n = 1, 2, . . . ), with

ξ
(
X̂
)
∼ π

4α
ξ∞0

(
X̂
)
X̂

π
2α
−1 +

∞∑
n=1

b̂∞n ξ
∞
−1X̂

−(n− 1
2) πα−1, (3.2.26)
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as X̂ → ∞, and some globally determined real constants b̂∞n (n = 1, 2, . . . ). Thus both

of [PBV P ]+ and [PBV P ]− will admit a solution with regularity (3.2.1) as X̂, R̂ → 0.

Following [24], we observe that both [PBV P ]± admit exact solutions for the angles α =

αn ∈
(
0, 1

4
π
]
, where

αn =
π

2 (n+ 1)
, n = 1, 2, . . . . (3.2.27)

For [PBV P ]+, we have the exact solution at α = αn, (n = 1, 2, . . . ) given by,

ψ
(
R̂, θ

)
=

n+1∑
p=0

apR̂
p cos p (θ + αn), R̂ > 0, −αn 6 θ 6 0; (3.2.28)

with, via (3.2.3),

ξ
(
X̂
)

=
n∑
p=0

ap [2p− (2n+ 3)] cos (pαn)X̂p, X̂ > 0; (3.2.29)

and where,

ap =
−
(

1
2

)
! (n+ 1)!

∏n+1
k=p+1 sin (kαn)

4n+1−pp! (n+ 1− p)!
(
n+ 3

2
− p
)
!
∏n

k=p cos (kαn)
, (3.2.30)

for p = 0, 1, 2, . . . , n, with an+1 = −1. In this case, the near-field constant, a0 in (3.2.13),

for [PBV P ]+, is given by

a0 =
−
(

1
2

)
!
∏n+1

k=1 sin (kαn)

4n+1
(
n+ 3

2

)
!
∏n

k=0 cos (kαn)
. (3.2.31)

For [PBV P ]− we have the exact solution at α = αn (n = 1, 2, . . . ) given by,

ψ
(
R̂, θ

)
=

n+1∑
p=0

(−1)n+1−p apR̂
p cos p (θ + αn), R̂ > 0, −αn 6 θ 6 0; (3.2.32)
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with, via (3.2.3),

ξ
(
X̂
)

=
n∑
p=0

(−1)n−p ap [2p− (2n+ 3)] cos (pαn)X̂p, X̂ > 0; (3.2.33)

and the near-field constant for [PBV P ]−, a0 in (3.2.13), is given by,

a0 =
(−1)n

(
1
2

)
!
∏n+1

k=1 sin (kαn)

4n+1
(
n+ 3

2

)
!
∏n

k=0 cos (kαn)
. (3.2.34)

The simplest case occurs for n = 1 when α = α1 = 1
4
π, with, from (3.2.28), (3.2.29), and

(3.2.30), for [PBV P ]+ we have,

ψ
(
R̂, θ

)
= − 1

60
−
√

2

3
R̂ cos

(
θ +

π

4

)
− R̂2 cos 2

(
θ +

π

4

)
,

R̂ > 0, −π
4
6 θ 6 0, (3.2.35)

ξ
(
X̂
)

=
1

12
+ X̂, X̂ > 0, (3.2.36)

whilst, from (3.2.30), (3.2.32), and (3.2.33), for [PBV P ]− we have,

ψ
(
R̂, θ

)
= − 1

60
+

√
2

3
R̂ cos

(
θ +

π

4

)
− R̂2 cos 2

(
θ +

π

4

)
,

R̂ > 0, −π
4
6 θ 6 0, (3.2.37)

ξ
(
X̂
)

= − 1

12
+ X̂, X̂ > 0. (3.2.38)

In this case, the near field constant is given by

a0 = − 1

60
, (3.2.39)

for both [PBV P ]+ and [PBV P ]−.

We now consider the numerical solution of both [PBV P ]+ and [PBV P ]− in detail.
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3.3 Numerical Method

In this section we outline the numerical method used to provide a numerical solution to

[PBV P ]±. This is based upon a finite difference approach, with the associated linear

algebraic equations solved using MATLAB R© [21].

We first discretise the wedge domain for [PBV P ]± using a five-point stencil in polar

coordinates as illustrated in Figure 3.4. The grid is composed of two regions, within

which we employ a uniform grid-spacing (I and II in Figure 3.4a) with azimuthal grid

spacing ∆θ and radial grid spacings of ∆R̂1 and ∆R̂2 respectively. These two regions are

connected across the arc at R̂ = R̂∗, as shown in Figure 3.4a. Such schemes are discussed

in [18].

O
′

R̂
θ I II

R̂ = ε

R̂ = R̂∗

R̂ = R̂∞

θ = 0

θ = −α

∆R̂
1

∆R̂
2

∆θ1

∆θ2

(a) The discretised wedge

(i− 1, j)

(i, j)

(i+ 1, j)

(i, j − 1)

(i, j + 1)

(i− 1, j)

(i, j)

(i+ 1, j)

(i, j − 1)

(i, j + 1)

(b) The five-point stencil in polar co-
ordinates

Figure 3.4: Discretisation of the wedge with a non-uniform grid
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3.3.1 The Grid

The grid, as shown in Figure 3.4a, is discretised as follows:

(a) Azimuthally:

We write,

θ = θj = − (j − 1) ∆θ, j = 1, 2, . . . , J + 1, (3.3.1)

with ∆θ = α
J

, and J ∈ N to be chosen.

(b) Radially:

We write,

R̂ = R̂i = i∆R̂1, i = 1, 2, . . . , n in I, (3.3.2)

R̂ = R̂i = R̂∗ + (i− n) ∆R̂2, i = n+ 1, n+ 2, . . . , N + 1 in II, (3.3.3)

with

∆R̂1 =
R̂∗

n
, and ∆R̂2 =

(
R̂∞ − R̂∗

)
(N + 1− n)

, (3.3.4)

where n,N ∈ N (with N > n), R̂∗ and R̂∞ are to be chosen.

In what follows we impose the far-field boundary condition (3.2.25) in [PBV P ]± at

R̂ = R̂∞ (� 1). In addition we impose a near-field boundary condition at R̂ = ε (� 1),

the details of which are found in Appendix A.3, which expresses the regularity requirement

(3.2.1) in [PBV P ]± as R̂→ 0.

3.3.2 Finite Difference Approximations

With the notation ψi,j = ψ
(
R̂i, θj

)
we use the centred finite difference scheme with a

five-point stencil (see Figure 3.4b) to approximate the derivatives in [PBV P ]±, giving
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the following discretisations,

∂ψ

∂θ

∣∣∣∣
i,j

=
ψi,j−1 − ψi,j+1

2∆θ
,

∂ψ

∂R̂

∣∣∣∣
i,j

=
ψi+1,j − ψi−1,j

δ
,

∂2ψ

∂R̂2

∣∣∣∣
i,j

=
2

δ

(
ψi+1,j − ψi,j

∆R̂l

− ψi,j − ψi−1,j

∆R̂k

)
,

∂2ψ

∂θ2

∣∣∣∣
i,j

=
ψi,j−1 − 2ψi,j + ψi,j+1

∆θ2
, (3.3.5)

where

δ = ∆R̂k + ∆R̂l and k, l =


(1, 1) , i = 1, 2, . . . , n− 1,

(1, 2) i = n,

(2, 2) i = n+ 1, n+ 2, . . . , N + 1.

(3.3.6)

3.3.3 Linear Algebraic Equations for ψi,j (i = 1, 2, . . . , N + 1;

j = 1, 2, . . . , J + 1)

As detailed in Appendix A.4, we use the aforementioned finite difference approximations

for partial derivatives (3.3.5) in order to generate N (J + 1) linear algebraic equations

to be solved for the unknowns ψi,j (i = 1, 2, . . . , N ; j = 1, 2, . . . , J + 1). We order these

unknowns by grouping along a ray, then incrementing θ to cover the whole domain. It is

convenient to introduce notation in the following way. First, we introduce theN (J + 1)×1

vector v by

v =



ψ1

ψ2

...

ψJ

ψJ+1


with ψj =



ψ1,j

ψ2,j

...

ψN−1,j

ψN,j


(3.3.7)
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After discretisation of the equations and boundary conditions in [PBV P ]±, together with

a suitable regularity condition at R̂1 (see Appendix A.3 for details), we obtain the large,

sparse, linear algebraic system

Av = b. (3.3.8)

Here A is a large, sparse, block tridiagonal matrix of dimension N(J + 1)×N(J + 1) and

b is a N (J + 1)× 1 vector. In particular b is given by

b =



b1

b2

...

bJ

bJ+1


, (3.3.9)

with

bi (j) = 0, i = 1, 2, . . . , J + 1, j = 1, 2, . . . , N − 1, (3.3.10)

bi (N) =


(
ceN + cnNc

fe
N

)
ψ∞1 , i = 1,

cenψ
∞
i/N , i = 2, 3, . . . , J + 1,

(3.3.11)

and A is given by

A =



C + Cf Cs + Cn 0

Cn C Cs

. . . . . . . . .

Cn C Cs

0 Cn + Cs C


, (3.3.12)
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with C, Cf tridiagonal and Cn, Cs diagonal matrices all of dimension N × N , given

by

Cn = diag

(
cn1 +

δ

2∆θR̂1 tan (θj + α)
cw1 , c

n
2 , . . . , c

n
N1
, cnN

)
,

Cs = diag

(
cs1 −

δ

2∆θR̂1 tan (θj + α)
cw1 , c

s
2, . . . , c

s
N1
, csN

)
,

C =



co1 ce1 + cw1 0

cw2 co2 ce2
. . . . . . . . .

cwN−1 coN−1 ceN−1

0 cwN coN


, (3.3.13)

Cf =



1

1− δ

2∆θR̂1 tanα
cfw1

cfo1
1

1− δ

2∆θR̂1 tanα
cfw1

(
cfe1 + cfw1

)
0

cn2c
fw
2 cn2c

fo
2 cn2c

fe
2

. . . . . . . . .

cnN−1c
fw
N−1 cnN−1c

fo
N−1 cnN−1c

fe
N−1

0 cnNc
fw
N cnNc

fo
N


,

(3.3.14)

where cni , c
s
i , c

e
i , c

w
i , c

o
i are the coefficients of the five-point stencil, derived in Appendix A.4,
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and are given by

cwi = R̂2
i δ
∗
(

2

δ∆R̂k

− 1

δR̂i

)
, (3.3.15)

coi = −2R̂2
i δ
∗

(
1

∆θ2R̂2
i

+
1

δ∗

)
, (3.3.16)

cei = R̂2
i δ
∗
(

2

δ∆R̂l

+
1

δR̂i

)
, (3.3.17)

cni = csi =
δ∗

∆θ2
, (3.3.18)

for i = 1, 2, . . . , N with δ∗ = ∆R̂k∆R̂l, and cfoi , cfei , cfwi , also derived in Appendix A.4,

given by

cfwi = −2R̂i∆θ

[
8R̂2

i

δ∆R̂k

− 2R̂i
1

δ

(
1− 2

π

α

)]
, (3.3.19)

cfoi = −2R̂i∆θ

[
π

α

(
1 +

π

α

)
− 2

δ

(
4R̂2

i

∆R̂l

+
4R̂2

i

∆R̂k

)]
, (3.3.20)

cfei = −2R̂i∆θ

[
8R̂2

i

δ∆R̂l

+ 2R̂i
1

δ

(
1− 2

π

α

)]
, (3.3.21)

for [PBV P ]+ (i = 1, 2, . . . , N), and finally

cfwi = 2R̂i∆θ

[
8R̂2

i

δ∆R̂k

− 2R̂i
1

δ

(
1− 2

π

α

)]
, (3.3.22)

cfoi = 2R̂i∆θ

[
π

α

(
1 +

π

α

)
− 2

δ

(
4R̂2

i

∆R̂l

+
4R̂2

i

∆R̂k

)]
, (3.3.23)

cfei = 2R̂i∆θ

[
8R̂2

i

δ∆R̂l

+ 2R̂i
1

δ

(
1− 2

π

α

)]
, (3.3.24)

for [PBV P ]− (i = 1, 2, . . . , N). The large sparse system (3.3.8) is now solved using MAT-

LAB’s mldivide algorithm.
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3.4 Numerical Results for [PBV P ]+

In this section we examine results obtained by solving [PBV P ]+ numerically, as discussed

in §3.3. When solving [PBV P ]+ numerically, we first set the numerical parameters as

discussed in §3.3.1. We begin by setting R̂∞ = 2.5. This value could be optimised, but

it has proven to be sufficient for achieving the far-field form for ψ (3.2.19) and ξ (3.2.22).

This choice of R̂∞ is useful in that it allows comparison with the results in [24], and it

is also small enough to allow us to take ∆R̂1 = ∆R̂2, leaving us free to choose R̂∗ to be

any suitable value in the range ε < R̂∗ < R̂∞. For simplicity we let R̂∗ = 1. We also

choose ε = 10−4, as a sufficiently small value to satisfy regularity required by (3.2.1), via

the near-field condition (A.3.2).

Table 3.1: Convergence of the numerical solution to [PBV P ]+ to the far-field asymptotic

forms (3.2.19) and (3.2.22) for decreasing ∆R̂1, α = 1
4
π and J + 1 = 30. In this case

∆R̂1 = ∆R̂2. This table shows the percentage error between numerically calculated
solutions and the far-field asymptotic forms. Time t (given in seconds) is the calculation
time for a typical run

∆R̂1 ξerror (%) ψerror (%) t (seconds)

5× 10−2 9.59× 10−4 1.49× 10−5 0.0618
1× 10−2 1.92× 10−4 5.88× 10−7 0.0812
5× 10−3 9.63× 10−5 1.47× 10−7 0.115
1× 10−3 1.93× 10−5 5.86× 10−9 0.577
5× 10−4 9.63× 10−6 1.46× 10−9 1.54
1× 10−4 1.93× 10−6 5.89× 10−11 24.4
5× 10−5 9.62× 10−7 1.49× 10−11 91.5
1× 10−5 1.86× 10−7 1.32× 10−12 2280

In Table 3.1 we show the percentage error between numerically calculated solutions to

[PBV P ]+ and the far-field asymptotic forms, (3.2.19) and (3.2.22) for ψ and ξ respectively,

for decreasing values of ∆R̂1. We can see from Table 3.1 that as we decrease the step-size

∆R̂1 by a factor of 10, the percentage error between our numerically calculated solution to

[PBV P ]+ and the far-field asymptotic forms (3.2.19) and (3.2.22) also drops by a factor of
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Table 3.2: Convergence of the numerical solution to [PBV P ]+ to the far-field asymptotic

forms (3.2.19) and (3.2.22) for decreasing ∆θ, α = 1
4
π and ∆R̂1 = ∆R̂2 = 10−3. In this

case ∆R̂1 = ∆R̂2. This table shows the percentage error between numerically calculated
solutions and the far-field asymptotic forms. Time t (given in seconds) is the calculation
time for a typical run. All values rounded to 3 s.f.

J + 1 ∆θ ξerror (%) ψerror (%) t (seconds)

8 1× 10−1 2.54× 10−4 7.71× 10−8 0.171
16 5× 10−2 6.33× 10−5 1.93× 10−8 0.305
79 1× 10−2 2.59× 10−6 7.89× 10−10 1.44
157 5× 10−3 6.57× 10−7 2.00× 10−10 3.95
785 1× 10−3 2.63× 10−8 7.84× 10−12 49.3
1571 5× 10−4 6.55× 10−9 1.87× 10−12 161
7854 1× 10−4 2.63× 10−101 2.74× 10−13 4470

10. However this comes with a run time penalty; it is clear that as we increase the number

of points, the computation time increases considerably. Based on these figures, a radial

grid-spacing of ∆R̂1 = 10−3 was chosen, giving small percentage errors whilst keeping

the time costs of numerically solving [PBV P ]+ at a reasonable level. Similarly, in Table

3.2 we show the percentage error between numerically calculated solutions to [PBV P ]+

and the far-field asymptotic forms, (3.2.19) and (3.2.22) for ψ and ξ respectively, for

decreasing values of ∆θ. We see that as we decrease ∆θ the percentage error drops ten

times as quickly as for ∆R̂1, and, as before, the run time cost increases with decreasing

∆θ. We chose a value of ∆θ = 10−2 as sufficient here.

To begin, we choose angles α = 1
4
π and α = 1

6
π, numerically solve [PBV P ]+ using

the scheme detailed in §3.3 for each angle, and plot the level curves of ψ in R̂ > 0,

−α 6 θ 6 0, (Figure 3.5), the vector field ∇̂ψ in R̂ > 0, −α 6 θ 6 0, (Figure 3.6) and ξ

in X̂ > 0 (Figure 3.7).

The exact solution to [PBV P ]+ for ψ, and corresponding exact solution for ξ, (equa-

tions (3.2.28) and (3.2.29)), are plotted in Figures 3.8, and 3.9 for both α = 1
4
π and

α = 1
6
π. Comparisons show excellent agreement between these exact solutions and the

numerically calculated solutions. Choosing two more angles, namely α = 3
8
π and α = 1

8
π,
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Figure 3.5: Contours of ψ for the numerical solution of [PBV P ]+ with α = 1
4
π and

α = 1
6
π. In each plot a black line shows R̂∞ = 2.5, after which the far-field asymptotic

form (3.2.19) is plotted
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Figure 3.6: The vector field ∇̂ψ for the numerical solution of [PBV P ]+ with α = 1
4
π and

α = 1
6
π

we plot the level curves of ψ in R̂ > 0, −α 6 θ 6 0, (Figure 3.10), the vector field ∇̂ψ in

R̂ > 0, −α 6 θ 6 0, (Figure 3.11) and ξ in X̂ > 0 (Figure 3.12) as before.

Figure 3.13 plots the numerically determined near-field constant a0 (α), as given in

(3.2.13), for [PBV P ]+ against α ∈
(
0, 1

2
π
)
, where the exact values for α = αn in (3.2.31),

are shown as circles. The numerical evidence shows that a0 (α) < 0 for all α ∈
(
0, 1

2
π
)
,

with a0 (α) → 0 as α → 0+, that a0 (α) is monotonically decreasing as α increases, and

that a0 (α) → −1
6

as α → 1
2
π−. We have excellent agreement between the numerically

calculated values and the exact solution (3.2.31). We will denote the numerical solution

to [PBV P ]+ by ψ = ψ+
α

(
R̂, θ

)
, with corresponding solution for ξ, given via (3.2.3),
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Figure 3.7: Graphs of ξ for the numerical solution of [PBV P ]+ with α = 1
4
π and α = 1

6
π.

In each graph a square shows R̂∞ = 2.5, after which the far-field asymptotic form (3.2.22)
is plotted
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Figure 3.8: Contours of ψ for the exact solution (3.2.28) of [PBV P ]+ with α = 1
4
π and

α = 1
6
π
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Figure 3.9: Graphs of ξ for the exact solution (3.2.29) of [PBV P ]+ with α = 1
4
π and

α = 1
6
π
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Ŷ

α = π/8

 

 

−160

−140

−120

−100

−80

−60

−40

−20

Figure 3.10: Contours of ψ for the numerical solution of [PBV P ]+ with α = 3
8
π and

α = 1
8
π. In each plot a black line shows R̂∞ = 2.5, after which the far-field asymptotic

form (3.2.19) is plotted

0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

Ŷ
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Figure 3.11: The vector field ∇̂ψ for the numerical solution of [PBV P ]+ with α = 3
8
π

and α = 1
8
π
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Figure 3.12: Graphs of ξ for the numerical solution of [PBV P ]+ with α = 3
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8
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In each graph a square shows R̂∞ = 2.5, after which the far-field asymptotic form (3.2.22)
is plotted
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Figure 3.13: Numerical approximation to the near-field constant a0 (α) for [PBV P ]+

plotted against α. Exact solutions for α = αn (n = 1, 2, . . . , 10) (3.2.31) are shown as
circles

which we denote by ξ = ξ+
α

(
X̂
)

, and numerical evidence shows that ξ+
α

(
X̂
)

is monotone

increasing in X̂ > 0. It follows from (3.2.11) - (3.2.14) that,

ψ+
α

(
R̂, θ

)
= a0 (α)

(
1 +

π
(
1 + π

α

)
α sinα

R̂ cos (θ + α) +O
(
R̂2
))

,

as R̂→ 0, −α 6 θ 6 0, (3.4.1)

ξ+
α

(
X̂
)

= −
(

1 +
π

α

)
a0 (α)

(
1−

π
(
1− π

α

)
α tanα

X̂ +O
(
X̂2
))

, as X̂ → 0, (3.4.2)

with a0 (α) as given in Figure 3.13.

Figure 3.14 plots ξ (0) and ξX̂ (0) against α. We see that as α → 0+, ξ (0) → 0+ and

ξX̂ (0) → 0+, whilst as α → 1
2
π−, ξ (0) → 1

2
and ξX̂ (0) → 0+. We notice that ξX̂ (0) has

a maximum value close to α = 1
4
π. As before, the angles which have exact solutions are

shown as circles, with excellent agreement between exact and numerical values.

In Figure 3.15 |∇̂ψ (0, 0) | is plotted against α ∈
(
0, 1

2
π
)
. We see that as α → 0+,

|∇̂ψ (0, 0) | → 0+, with |∇̂ψ (0, 0) | monotonically increasing, and that |∇̂ψ (0, 0) | → 1−

as α→ 1
2
π−.
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3.5 Numerical Results for [PBV P ]−

In this section we examine the results obtained by solving [PBV P ]− numerically, as

discussed in §3.3. The numerical solution reveals a delicate structure around points α = α∗n

(n = 1, 2, . . . ) with α∗n located at


1
4
π < α∗1 <

1
2
π,

π
2(n+1)

< α∗n <
π
2n
, n = 2, 3, . . . .

(3.5.1)

Following the approach used to solve [PBV P ]+, we first set the numerical parameters

as discussed in §3.3.1. For angles α = αn (n = 1, 2, . . . ) where we have exact solutions,

we choose R̂∞ = 10, which must then be increased as we approach α = α∗n (n = 1, 2, . . . ).

We set ∆R̂2 = c∆R̂1, with c > 0 to be chosen later. As we increase R̂∞ we increase the

multiplier c, in order to keep the run time required to solve [PBV P ]− acceptably small.

As for the solution to [PBV P ]+, we choose R̂∗ = 1 and ε = 10−4.

Table 3.3: Convergence of the numerical solution to [PBV P ]− to the far-field asymptotic

forms (3.2.19) and (3.2.22) for decreasing ∆R̂1, α = 1
4
π, c = 1 and J + 1 = 30. In this

case ∆R̂1 = ∆R̂2. This table shows the percentage error between numerically calculated
solutions and the far-field asymptotic forms. Time t (given in seconds) is the calculation
time for a typical run.

∆R̂1 ξerror (%) ψerror (%) t (seconds)

1× 10−1 49.4 9.89 0.0864
5× 10−2 16.2 5.00 0.0912
1× 10−2 0.808 1.01 0.145
5× 10−3 0.422 0.505 0.241
1× 10−3 0.410 0.101 1.46
5× 10−4 0.428 0.0506 3.66
1× 10−4 0.445 0.0101 58.3
5× 10−5 0.447 0.00506 221

In Table 3.3 we show the percentage error between numerically calculated solutions to

[PBV P ]− and the far-field asymptotic forms, (3.2.19) and (3.2.22) for ψ and ξ respectively,
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Table 3.4: Convergence of the numerical solution to [PBV P ]− to the far-field asymptotic

forms (3.2.19) and (3.2.22) for decreasing ∆θ, α = 1
4
π and ∆R̂1 = 10−3. In this case

∆R̂1 = ∆R̂2. This table shows the percentage error between numerically calculated
solutions and the far-field asymptotic forms. Time t (given in seconds) is the calculation
time for a typical run. All values rounded to 3 s.f.

J + 1 ∆θ ξerror (%) ψerror (%) t (seconds)

8 1× 10−1 4.18 0.101 0.224
16 5× 10−2 1.35 0.101 0.382
79 1× 10−2 0.271 0.101 1.75
157 5× 10−3 0.0239 0.101 4.80
785 1× 10−3 0.0409 0.101 55.0
1571 5× 10−4 0.415 0.101 188

for decreasing values of ∆R̂1. We can see from Table 3.3 that as we decrease the step-size

∆R̂1 by a factor of 10, the percentage error between our numerically calculated solution

to [PBV P ]− and the far-field asymptotic forms (3.2.19) and (3.2.22) also drops by a

factor of 10, albeit with a run time cost associated as before. However there are two main

differences between the errors in solving [PBV P ]+ and [PBV P ]−. The first is that the

percentage errors are several orders of magnitude higher when solving [PBV P ]− than

[PBV P ]+, although they are still acceptably small. The second difference is that once

∆R̂1 gets small enough, the error in calculating ξ begins to increase. We believe this is

due to rounding errors in the numerical solution of (3.2.3) for ξ, and for this reason we

choose a value of ∆R̂1 = 10−3 for our computations. Similarly, in Table 3.4 we show the

percentage error between numerically calculated solutions to [PBV P ]− and the far-field

asymptotic forms, (3.2.19) and (3.2.22) for ψ and ξ respectively, for decreasing values of

∆θ. We see that as we decrease ∆θ the error in calculating ψ does not appear to change,

and, as before we see the same pattern in the error in the calculation of ξ. We choose

∆θ = 5× 10−3 to give acceptably small errors while keeping run time costs down.

As with the solution to [PBV P ]+, we begin by choosing angles α = 1
4
π and α = 1

6
π,

numerically solve [PBV P ]− using the scheme detailed in §3.3 for each angle, and plot the
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Figure 3.16: Contours of ψ for the numerical solution of [PBV P ]− with α = 1
4
π and

α = 1
6
π. In each plot a line shows R̂∞ = 10, after which the far-field asymptotic form

(3.2.19) is plotted
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Figure 3.17: The vector field ∇̂ψ for the numerical solution for [PBV P ]− with α = 1
4
π

and α = 1
6
π

level curves of ψ in R̂ > 0, −α 6 θ 6 0, (Figure 3.16), the vector field ∇̂ψ in R̂ > 0,

−α 6 θ 6 0, (Figure 3.17) and ξ in X̂ > 0 (Figure 3.18). It is of interest to examine

the structure of the level curves of ψ and the vector field ∇̂ψ, in both cases α = 1
4
π and

α = 1
6
π, closer to the tip of the wedge. These are shown in Figures 3.19 and 3.20. For

α = 1
4
π, Figure 3.19a reveals a stationary point (saddle) for ψ on the boundary θ = −1

4
π

when R̂ ≈ 0.24. This leads to a reversal in ∇̂ψ on θ = −1
4
π when the stationary point

is crossed, and a consequent weak reversal in ∇̂ψ · j on θ = 0, as can be seen in Figure

3.20a. For α = 1
6
π, Figure 3.19b reveals that there are now two stationary points (both

saddles) for ψ on the boundary θ = −1
6
π, when R̂ ≈ 0.054 and R̂ ≈ 0.61. Consequently,
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Figure 3.18: Graphs of ξ for the numerical solution of [PBV P ]− with α = 1
4
π and α = 1

6
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In each plot a square shows R̂∞ = 10, after which the far-field asymptotic form (3.2.22)
is plotted
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Figure 3.19: Contours of ψ for the numerical solution of [PBV P ]− close to the tip of the
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(a) α = 1
4π

(b) α = 1
6π

Figure 3.20: The vector field ∇̂ψ for the numerical solution of [PBV P ]− close to the tip
of the wedge with α = 1

4
π and α = 1

6
π. The reversal points are marked with a dot

there are now two reversals in ∇̂ψ on θ = −1
6
π, and two associated weak reversals in

∇̂ψ · j on θ = 0, as can be seen in Figure 3.20b. An investigation of each of the angles

α = αn (n = 1, 2, . . . ) where exact solutions are available (given in (3.2.32) and (3.2.33))

reveals that when α = αn (n = 1, 2, . . . ), then ψ has exactly n stationary points (each

saddle points) on θ = −αn, and consequently, there are n reversals in ∇̂ψ on θ = −αn,

and n associated weak reversals in ∇̂ψ · j on θ = 0. Significantly, each of these reversals

leads to a zero of ξ
(
X̂
)

in X̂ > 0. Thus, when α = αn (n = 1, 2, . . . ), ξ
(
X̂
)

has exactly

n zeros in X̂ > 0, and ξ (0) has sign (−1)n, with ξ
(
X̂
)
→ ∞ as X̂ → ∞. Since ξ

(
X̂
)

is a polynomial of degree n, then this establishes that ξ
(
X̂
)

has exactly (n− 1) turning
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Figure 3.21: Graphs of ξ close to the tip of the wedge for the numerical solution of
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Figure 3.22: Contours of ψ for the exact solution (3.2.32) of [PBV P ]− with α = 1
4
π and

α = 1
6
π

points in X̂ > 0. This is illustrated in Figure 3.21 which graphs ξ
(
X̂
)

for α = 1
4
π and

α = 1
6
π, close to X̂ = 0. We will return to the implications of these observations at a

later stage.

The exact solutions to [PBV P ]− ((3.2.32) and (3.2.33)), when α = 1
4
π and α = 1

6
π

are plotted in Figures 3.22, and 3.23. Comparison between Figures 3.16, and 3.18, and

Figures 3.22, and 3.23 shows excellent agreement.

The case when α = 1
8
π is illustrated in Figures 3.24 - 3.26. As may be anticipated,

Figure 3.24b reveals three stationary points (all saddles) for ψ on the boundary θ = −1
8
π,

when R̂ ≈ 0.0218, R̂ ≈ 0.123 and R̂ ≈ 1.16 respectively, with associated reversals in ∇̂ψ
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Figure 3.23: Graphs of ξ for the exact solution (3.2.33) of [PBV P ]− with α = 1
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α = 1
6
π

0 2 4 6 8 10 12

−12

−10

−8

−6

−4

−2

0

X̂

Ŷ
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(b) Refinements close to the tip of the wedge for α = 1
8π

Figure 3.24: Contours of ψ for the numerical solution of [PBV P ]− with α = 1
8
π. In

Figure 3.24a a line shows R̂∞ = 10, after which the far-field asymptotic form (3.2.19) is
plotted. In Figure 3.24b the stationary points are marked with a dot

on θ = −1
8
π, and in ∇̂ψ · j on θ = 0, as can be seen in Figure 3.25b. The graph of ξ

(
X̂
)

in X̂ > 0, Figure 3.26, now has three zeros and two turning points.
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Figure 3.25: The vector field ∇̂ψ for the numerical solution [PBV P ]− close to the tip of
the wedge with α = 1

8
π. In Figure 3.25b the reversal points are marked with a dot

The near-field constant a0 (α), as given in (3.2.13) for [PBV P ]−, is now investigated

for α ∈
(
0, 1

2
π
)
. A careful numerical study shows, in the case of [PBV P ]−, that a0 (α) has

a delicate structure, which supports our observations earlier for the cases when α = αn

(n = 1, 2, . . . ) and the exact polynomial solution is available. Numerical agreement with

the cases α = αn (n = 1, 2, . . . ) is excellent, and gives us confidence in the determination

of a0 (α) for α ∈
(
0, 1

2
π
)
. The structure of the graph of a0 (α) for α ∈

(
0, 1

2
π
)

is as follows:

1. a0 (α) has a sequence of pairs of near resonances, between which a0 (α) rapidly

changes sign, vanishing at a sequence of points α = α∗n (n = 1, 2, . . . ), which are

decreasing in n and approach zero as n → ∞. Moreover α = α∗n (n = 1, 2, . . . )
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Figure 3.26: Graphs of ξ for the numerical solution of [PBV P ]− with α = 1
8
π, with

refinements close to X̂ = 0. A square shows R̂∞ = 10, after which the far-field asymptotic
form (3.2.22) is plotted. Circles highlight the location of the zeros of ξ

interlace with α = αn (n = 1, 2, . . . ) so that,

π

2 (n+ 1)
= αn < α∗n < αn−1 =

π

2n
, n = 2, 3, . . . , (3.5.2)

with α∗1 ≈ 1.41. Numerical calculations of α∗n for n = 1, 2, . . . , 10 are shown in Table

3.5.

Table 3.5: Numerical calculations of α∗n for n = 1, 2, . . . , 10

n 1 2 3 4 5 6 7 8 9 10
α∗n 1.41 0.739 0.493 0.378 0.303 0.251 0.214 0.186 0.163 0.146

2. Between the near resonance pairs a0 (α) is positive and monotone decreasing for

α ∈
(
α∗1,

1
2
π
)
. Subsequently, a0 (α) is positive, with a single minimum point when

α ∈
(
α∗2n+1, α

∗
2n

)
(n = 1, 2, . . . ), whilst a0 (α) is negative, with a single maximum

point when α ∈
(
α∗2n, α

∗
2n−1

)
(n = 1, 2, . . . ).
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Figure 3.27: A qualitative sketch of the structure of a0 (α) for α ∈
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0, 1
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π
)

A qualitative sketch of a0 (α) for α ∈
(
0, 1

2
π
)

is illustrated in Figure 3.27. Numerical

calculation shows that the consecutive stationary values of a0 (α), between consecutive

near resonance pairs, approach zero as α→ 0+, whilst a0 (α) approaches a finite positive

value as α → 1
2
π−. In addition, as each α∗n (n = 1, 2, . . . ) is crossed, with decreasing α,

the number of stationary points (saddles) of ψ on θ = −α increases by one, whilst the

number of zeros and turning points of ξ
(
X̂
)

in X̂ > 0 increases by one. At α = α∗n, ψ

has a stationary point (saddle) at the tip of the wedge. For α ∈ (α∗2, α
∗
1), ξ

(
X̂
)

has two

turning points when α ∈ (α∗c , α
∗
1) and becomes monotone when α ∈ (α∗2, α

∗
c ]. Numerical

solution indicates that α∗c lies in the range 1.36 < α∗c < 1.41. This structure is detailed in

Table 3.6.

For α ∈
(
α∗1,

1
2
π
)
, ψ has no stationary points, and ξ

(
X̂
)

has no zeros but has a single

minimum point in X̂ > 0. The numerical solution of [PBV P ]−, for angles close to α = α∗n

(n = 1, 2, . . . ), required increasingly large values of R̂∞ to achieve suitable accuracy in the

far-field boundary condition. Numerical approximation to a0 (α), with refinements close

to α = α∗n (n = 1, 2, 3, 4), are shown in Figure 3.28, together with graphs of ξ (0) and

ξX̂ (0) in Figure 3.29. Finally |∇̂ψ (0, 0) | is shown in Figure 3.31.

Denoting the solution to [PV BP ]− as ψ = ψ−α

(
R̂, θ

)
and ξ = ξ−α

(
X̂
)

, the behaviour
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Table 3.6: The number of zeros and turning points in ξ
(
X̂
)

on X̂ > 0, and the number

of stationary points (saddles) of ψ on θ = −α, for α ∈
(
α∗n+1, α

∗
n

)
(n = 1, 2, . . . , 6)

α ∈
(
α∗n+1, α

∗
n

)
† n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

Number of zeros of
ξ
(
X̂
) 0 1 2 3 4 5 6

Number of turning

points of ξ
(
X̂
) 1 †† 1 2 3 4 5

Number of stationary
points of ψ on θ = −α

0 1 2 3 4 5 6

† : α ∈
(
α∗1,

1

2
π

)
,

†† :

{
2 α ∈ (α∗c , α

∗
1) ,

0 α ∈ (α∗2, α
∗
c ] .

close to the tip of the wedge is as follows:

1. α ∈
(
0, 1

2
π
)
\ {α∗n : n = 1, 2, . . . }

It follows from (3.2.8) - (3.2.14) that,

ψ−α

(
R̂, θ

)
= a0 (α)

(
1−

π
(
1 + π

α

)
α sinα

R̂ cos (θ + α) +O
(
R̂2
))

as R̂→ 0, −α 6 θ 6 0, (3.5.3)

ξ−α

(
X̂
)

=
(

1 +
π

α

)
a0 (α)

(
1 +

π
(
1− π

α

)
α tanα

X̂ +O
(
X̂2
))

as X̂ → 0, (3.5.4)

with a0 (α) as given in Figure 3.28.
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Figure 3.28: Numerical approximation to the constant a0 (α) for [PBV P ]− plotted against
α, with refinements close to α = α∗n, (n = 1, 2, 3, 4). Exact solutions for α = αn
(n = 1, 2, . . . , 10) (3.2.34) are shown as circles

2. α ∈ {α∗n : n = 1, 2, . . . }

It follows from (3.2.8) - (3.2.14) that,

ψ−α∗n

(
R̂, θ

)
= b1 (α∗n)

(
R̂

π
α∗n cos

π

α∗n
(θ + α∗n) +O

(
R̂

1+ π
α∗n

))
as R̂→ 0, −α∗n 6 θ 6 0, (3.5.5)

ξ−α∗n

(
X̂
)

= b1 (α∗n)

(
1− π

α∗n

)
X̂

π
α∗n

(
1 +O

(
X̂
))

as X̂ → 0, (3.5.6)

with b1 (α∗n) (n = 1, 2, . . . ) being a globally determined real constant.
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Figure 3.31: Numerical approximation to |∇̂ψ (0, 0) | for [PBV P ]− plotted against α, with
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3.6 Summary of the Solution Structure to the

Boundary Value Problem (3.1.29) - (3.1.34)

We are now able to summarize the results of the previous three subsections in relation to

the boundary value problem (3.1.29) - (3.1.34). We interpret these results in terms of the

parameters α ∈
(
0, 1

2
π
)

and µ ∈ R (with µ = 1 + σ tanα). We have:

1. µ > 0, α ∈
(
0, 1

2
π
)

A solution exists to the boundary value problem (3.1.29) - (3.1.34) with the required

regularity (3.2.1) at
(
X,Y

)
= (0, 0), given by

φ̂
(
R, θ

)
= µ

π
2αψ+

α

(
R

µ
, θ

)
, R > 0, −α 6 θ 6 0; (3.6.1)

η̂
(
X
)

= µ
π
2α
−1ξ+

α

(
X

µ

)
, X > 0; (3.6.2)

with ψ+
α and ξ+

α as given in (3.4.1) and (3.4.2) respectively.
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2. µ < 0, α ∈
(
0, 1

2
π
)
\ {α∗n : n = 1, 2, . . . }

A solution exists to the boundary value problem (3.1.29) - (3.1.34) with the required

regularity (3.2.1) at
(
X,Y

)
= (0, 0), given by,

φ̂
(
R, θ

)
= (−µ)

π
2α ψ−α

(
R

(−µ)
, θ

)
, R > 0, −α 6 θ 6 0; (3.6.3)

η̂
(
X
)

= (−µ)
π
2α
−1 ξ−α

(
X

(−µ)

)
, X > 0; (3.6.4)

with ψ−α and ξ−α as given in (3.5.3) and (3.5.4) respectively.

3. µ < 0, α ∈ {α∗n : n = 1, 2, . . . }

A solution exists to the boundary value problem (3.1.29) - (3.1.34) with the required

regularity (3.2.1) at
(
X,Y

)
= (0, 0), given by,

φ̂
(
R, θ

)
= (−µ)

π
2α∗n ψ−α∗n

(
R

(−µ)
, θ

)
, R > 0, −α∗n 6 θ 6 0; (3.6.5)

η̂
(
X
)

= (−µ)
π

2α∗n
−1
ξ−α∗n

(
X

(−µ)

)
, X > 0; (3.6.6)

with ψ−α∗n and ξ−α∗n as given in (3.5.5) and (3.5.6) respectively.

4. µ = 0, α ∈
(
0, 1

2
π
)

This case has not been treated as yet. However, it is readily established (and

anticipated by the coordinate scalings within (1) - (3) above) that, in this degenerate

case, the solution to the boundary value problem (3.1.29) - (3.1.34), which has least

singular behaviour at
(
X,Y

)
= (0, 0), is simply given by the far-field forms; that is,

φ̂
(
R, θ

)
= −R

π
2α cos

π

2α
(θ + α), R > 0, −α 6 θ 6 0; (3.6.7)

η̂
(
X
)

=
π

4α
X

π
2α
−1
, X > 0. (3.6.8)
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3.7 Reconstructing the Inner Region Asymptotic

Expansions

In this section we reconstruct the inner region asymptotic expansions for the fluid velocity

potential φ, free surface elevation η, dynamic fluid pressure field pd and fluid velocity field q

in terms of the inner region coordinates X, Y , and then consider the behaviour close to the

intersection point of the fluid free surface and the inclined accelerating plate. We consider

the four cases µ > 0 with α ∈
(
0, 1

2
π
)
, µ < 0 with α ∈

(
0, 1

2
π
)
\ {α∗n : n = 1, 2, . . . }, µ < 0

with α ∈ {α∗n : n = 1, 2, . . . }, and µ = 0 with α ∈
(
0, 1

2
π
)

separately.

3.7.1 Case 1: µ > 0 with α ∈
(
0, 1

2π
)

It follows from (3.1.7), (3.1.8), (3.1.25), (3.1.26), (3.1.35), and (3.1.36), that the intersec-

tion point of the plate and the fluid free surface is located at
(
X,Y

)
=
(
Xp (t) , Y p (t)

)
=
(
Xp (t) + 1

2
σ, Yp (t)− 1

2
σ tanα

)
, with

Xp (t) = −t
π
α
−2A0 (α) (µ− 1) cotα cosα µ

π
2α
−1ξ+

α (0) + o
(
t
π
α
−2
)
, (3.7.1)

Y p (t) = t
π
α
−2A0 (α) (µ− 1) cosα µ

π
2α
−1ξ+

α (0) + o
(
t
π
α
−2
)
, (3.7.2)

as t → 0+. We then have, via (3.1.3), (3.1.5), (3.1.23), (3.1.26), (3.1.28), and (3.1.36),

that

ηI
(
X, t

)
=

1

2
(µ− 1) + t

π
α
−2A0 (α) (µ− 1) cosα µ

π
2α
−1ξ+

α

(
X

µ

)
+ o

(
t
π
α
−2
)
, (3.7.3)

for X > Xp (t), as t → 0+. We recall that, in the inner asymptotic region, the fluid free

surface is located at Y = ηI (X, t), so that in the shifted coordinates
(
X,Y

)
, the free

surface is located at

Y = ηI
(
X, t

)
− 1

2
(µ− 1) , (3.7.4)
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for X > Xp (t). Then, from (3.7.3), the free surface in the inner asymptotic region is

located at

Y = Y I

(
X, t

)
= t

π
α
−2A0 (α) (µ− 1) cosα µ

π
2α
−1ξ+

α

(
X

µ

)
+ o

(
t
π
α
−2
)
, (3.7.5)

for X > Xp (t), as t→ 0+. We next have, via (3.1.4), (3.1.6), (3.1.24), (3.1.26), (3.1.27),

and (3.1.36), that

φI
(
X,Y , t

)
= (µ− 1)

[
Y − 1

6
(2− µ)

]
+ t

π
α
−2A0 (α) (µ− 1) cosα µ

π
2αψ+

α

(
X

µ
,
Y

µ

)
+ o

(
t
π
α
−2
)
, (3.7.6)

for X > Xp (t), −X tanα 6 Y 6 Y I

(
X, t

)
as t → 0+. An examination of (1.2.28) and

(3.1.4) requires that we write in the the inner asymptotic region

pd
(
X,Y , t

)
= t2pI

(
X,Y , t

)
, X > Xp (t) , −X tanα 6 Y 6 Y I

(
X, t

)
, t > 0, (3.7.7)

after which we have, via (1.2.28), (3.1.4), and (3.7.6), the inner region asymptotic expan-

sion for the dynamic fluid pressure field as,

pI
(
X,Y , t

)
=

1

2
(µ− 1)

(
1− 2Y

)
+ t

π
α
−2A0 (α) (µ− 1) cosα µ

π
2α

(
2Xψ+

α,X

(
X

µ
,
Y

µ

)
+2Y ψ+

α,Y

(
X

µ
,
Y

µ

)
−
(

1 +
π

α

)
ψ+
α

(
X

µ
,
Y

µ

))
+ o

(
t
π
α
−2
)
, (3.7.8)
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as t→ 0+ with X > Xp (t), −X tanα 6 Y 6 Y I

(
X, t

)
. Finally, in the inner asymptotic

region, the fluid velocity field is given, via (1.2.29), (3.1.4), and (3.7.6), as,

q
(
X,Y , t

)
= t (µ− 1) j + t

π
α
−1A0 (α) (µ− 1) cosα µ

π
2α

(
ψ+

α,X

(
X

µ
,
Y

µ

)
i

+ ψ+

α,Y

(
X

µ
,
Y

µ

)
j

)
+ o

(
t
π
α
−2
)
, (3.7.9)

as t → 0+ with X > Xp (t), −X tanα 6 Y 6 Y I

(
X, t

)
. We now consider the structure

of the inner region asymptotic expansions close to the intersection point of the inclined

plate and the fluid free surface when
(
X,Y

)
= O

(
µ

π
2α
−1t

π
α
−2
)

as t → 0+. We have, via

(3.4.1), (3.4.2), (3.6.1), and (3.6.2), together with (3.7.1) - (3.7.9), that

Xp (t) = t
π
α
−2
(

1 +
π

α

)
A0 (α) a0 (α) (µ− 1) cotα cosα µ

π
2α
−1 + o

(
t
π
α
−2
)
, (3.7.10)

Y p (t) = −t
π
α
−2
(

1 +
π

α

)
A0 (α) a0 (α) (µ− 1) cosα µ

π
2α
−1 + o

(
t
π
α
−2
)
, (3.7.11)

φI
(
R, θ, t

)
= (µ− 1)

[
R sin θ − 1

6
(2− µ)

]
+ t

π
α
−2A0 (α) a0 (α) (µ− 1) cosα µ

π
2α

(
1

+
π
(
1 + π

α

)
µα sinα

R cos (θ + α) +O
(
R

2
))

+ o
(
t
π
α
−2
)
,

for 0 < R� min (1, µ) , −α 6 θ 6 0, (3.7.12)

ηI
(
X, t

)
=

1

2
(µ− 1)− t

π
α
−2
(

1 +
π

α

)
A0 (α) a0 (α) (µ− 1) cosα µ

π
2α
−1
(

1

−
π
(
1− π

α

)
µα tanα

X +O
(
X

2
))

+ o
(
t
π
α
−2
)
,

for 0 < X � min (1, µ) , (3.7.13)

pI
(
R, θ, t

)
=

1

2
(µ− 1)

(
1− 2R sin θ

)
− t

π
α
−2
(

1 +
π

α

)
A0 (α) a0 (α) (µ− 1) cosα µ

π
2α

(
1

−
π
(
1− π

α

)
µα sinα

R cos (θ + α) +O
(
R

2
))

+ o
(
t
π
α
−2
)
,

for 0 < R� min (1, µ) , −α 6 θ 6 0, (3.7.14)
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q
(
R, θ, t

)
= t (µ− 1) j + t

π
α
−1π

α

(
1 +

π

α

)
A0 (α) a0 (α) (µ− 1) cosα µ

π
2α
−1 (cotαi

−j)
(
1 +O

(
R
))

+ o
(
t
π
α
−2
)
,

for 0 < R� min (1, µ) , −α 6 θ 6 0, (3.7.15)

as t → 0+ in the inner asymptotic region, with A0 (α) and a0 (α) as given in Figures

2.3 and 3.13 respectively. We observe from (3.7.12) - (3.7.15) that, in this case, each of

the inner region asymptotic expansions remain uniform up to the contact point, where(
X,Y

)
= O

(
µ

π
2α
−1t

π
α
−2
)
. Thus the asymptotic structure as t → 0+, of the solution to

[IBV P ], is complete in this case. It is worth noting at this stage that, in this case, the

expansions close to the contact point, (3.7.12) - (3.7.15), require
(
X,Y

)
= O

(
µ

π
2α
−1t

π
α
−2
)

and 0 < X, Y � min (1, µ). This requires the following qualification on the asymptotic

structure of [IBV P ] as t→ 0+ in this case, namely,

0 6 t� min (1, λ1 (µ) , λ2 (µ)) , (3.7.16)

where

λ1 (µ) = µ
(1− π

2α )
( πα−2) , (3.7.17)

λ2 (µ) = µ
(2− π

2α )
( πα−2) , (3.7.18)

in µ > 0.

We can now draw the following conclusions concerning the free surface, the fluid

velocity field and the dynamic pressure field in the inner asymptotic region:

(a) The contact point is located at

(x, y) =
1

2
(µ− 1) t2 (− cotα, 1) +O

(
t
π
α

)
, (3.7.19)
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as t→ 0+ (see (3.1.2), (3.1.7), (3.1.8), and (3.1.25)).

(b) The free surface slope at the contact point is given by,

ηx
(
Xp (t) , t

)
= ηI,X

(
Xp (t) , t

)
= t

π
α
−2π

α

(
1− π2

α2

)
A0 (α) a0 (α) (µ− 1) cotα cosα µ

π
2α
−2

+ o
(
t
π
α
−2
)
, (3.7.20)

as t→ 0+ (see (3.4.2) and (3.7.3)). We see that the free surface slope is positive when

(α, µ) ∈
(
0, 1

2
π
)
× (0, 1) and negative when (α, µ) ∈

(
0, 1

2
π
)
× (1,∞). A contour plot

of ηx
(
Xp (t) , t

)
t2−

π
α , as t → 0+, in the (α, µ) plane (with (α, µ) ∈

(
0, 1

2
π
)
× (0,∞))

is shown in Figure 3.32.

(c) The free surface η
(
X, t

)
is given by

η
(
X, t

)
=

1

2
(µ− 1) t2 + t

π
αA0 (α) (µ− 1)µ

π
2α
−1 cosα ξ+

α

(
X

µ

)
+ o

(
t
π
α

)
, (3.7.21)

as t → 0+ for X > Xp (t) (see (3.1.3), and (3.7.3)). It follows from (3.7.21) that

η
(
X, t

)
is monotone increasing in X > Xp (t) when (α, µ) ∈

(
0, 1

2
π
)
× (0, 1), whilst

η
(
X, t

)
is monotone decreasing in X > Xp (t) when (α, µ) ∈

(
0, 1

2
π
)
× (1,∞).

When µ > 1 (σ > 0) examination of (3.7.7) and (3.7.14) reveals that, to leading order

in the inner asymptotic region, the acceleration of the inclined plate induces a constant

dynamic pressure gradient of t2 (µ− 1) j, which drives a vertical jet close to the inter-

section point of the free surface and the plate of height 1
2
t2 (µ− 1). When 0 < µ < 1

(− cotα < σ < 0) we see from (3.7.7) and (3.7.14) that, to leading order in the inner

asymptotic region, the acceleration of the inclined plate induces a constant negative dy-

namic pressure gradient of t2 (µ− 1) j, which causes the free surface, close to the inter-
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Figure 3.32: Contour plot of t2−
π
αηx

(
Xp (t) , t

)
as t→ 0+ on the (α, µ) plane, in the case

µ > 0

section point of the free surface and the plate, to collapse to a height of 1
2
t2 (µ− 1).

3.7.2 Case 2: µ < 0 with α ∈
(
0, 1

2π
)
\ {α∗n : n = 1, 2, . . . }

It follows from (3.1.7), (3.1.8), (3.1.25), (3.1.26), (3.1.35), and (3.1.36), that the inter-

section point of the plate and the free surface is located at
(
X,Y

)
=
(
Xp (t) , Y p (t)

)
=
(
Xp (t) + 1

2
σ, Yp (t)− 1

2
σ tanα

)
, with

Xp (t) = −t
π
α
−2A0 (α) (µ− 1) cotα cosα (−µ)

π
2α
−1 ξ−α (0) + o

(
t
π
α
−2
)
, (3.7.22)

Y p (t) = t
π
α
−2A0 (α) (µ− 1) cosα (−µ)

π
2α
−1 ξ−α (0) + o

(
t
π
α
−2
)
, (3.7.23)

as t → 0+. We then have, via (3.1.3), (3.1.5), (3.1.23), (3.1.26), (3.1.28), and (3.1.36),

that

ηI
(
X, t

)
=

1

2
(µ− 1)

+ t
π
α
−2A0 (α) (µ− 1) cosα (−µ)

π
2α
−1 ξ−α

(
X

(−µ)

)
+ o

(
t
π
α
−2
)
, (3.7.24)
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for X > Xp (t), as t → 0+. We now have, from (3.7.4) and (3.7.24), that in the shifted

coordinates
(
X,Y

)
, the free surface in the inner asymptotic region is located at

Y = Y I

(
X, t

)
= t

π
α
−2A0 (α) (µ− 1) cosα (−µ)

π
2α
−1 ξ−α

(
X

(−µ)

)
+ o

(
t
π
α
−2
)
, (3.7.25)

for X > Xp (t), as t→ 0+. We next have, via (3.1.4), (3.1.6), (3.1.24), (3.1.26), (3.1.27),

and (3.1.36), that

φI
(
X,Y , t

)
= (µ− 1)

[
Y − 1

6
(2− µ)

]
+ t

π
α
−2A0 (α) (µ− 1) cosα (−µ)

π
2α ψ−α

(
X

(−µ)
,
Y

(−µ)

)
+ o

(
t
π
α
−2
)
, (3.7.26)

for X > Xp (t), −X tanα 6 Y 6 Y I

(
X, t

)
as t → 0+. The inner region asymptotic

expansion for the dynamic fluid pressure field is given, via (1.2.28), (3.1.4), (3.7.7), and

(3.7.26), as

pI
(
X,Y , t

)
=

1

2
(µ− 1)

(
1− 2Y

)
+ t

π
α
−2A0 (α) (µ− 1) cosα (−µ)

π
2α

(
2Xψ−

α,X

(
X

(−µ)
,
Y

(−µ)

)
+2Y ψ−

α,Y

(
X

(−µ)
,
Y

(−µ)

)
−
(

1 +
π

α

)
ψ−α

(
X

(−µ)
,
Y

(−µ)

))
+ o

(
t
π
α
−2
)
, (3.7.27)

as t→ 0+ with X > Xp (t), −X tanα 6 Y 6 Y I

(
X, t

)
. Finally, in the inner asymptotic

region, the fluid velocity field is given, via (1.2.29), (3.1.4), and (3.7.26), as

q
(
X,Y , t

)
= t (µ− 1) j + t

π
α
−1A0 (α) (µ− 1) cosα (−µ)

π
2α

(
ψ−
α,X

(
X

(−µ)
,
Y

(−µ)

)
i

+ ψ−
α,Y

(
X

(−µ)
,
Y

(−µ)

)
j

)
+ o

(
t
π
α
−2
)
, (3.7.28)
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as t → 0+ with X > Xp (t), −X tanα 6 Y 6 Y I

(
X, t

)
. We now consider the structure

of the inner region asymptotic expansions close to the intersection point of the inclined

plate and the fluid free surface when
(
X,Y

)
= O

(
(−µ)

π
2α
−1 t

π
α
−2
)

as t → 0+. We have,

via (3.5.3), (3.5.4), (3.6.3), and (3.6.4), together with (3.7.22) - (3.7.28), that

Xp (t) = −t
π
α
−2
(

1 +
π

α

)
A0 (α) a0 (α) (µ− 1) cotα cosα (−µ)

π
2α
−1 + o

(
t
π
α
−2
)
,

(3.7.29)

Y p (t) = t
π
α
−2
(

1 +
π

α

)
A0 (α) a0 (α) (µ− 1) cosα (−µ)

π
2α
−1 + o

(
t
π
α
−2
)
, (3.7.30)

φI
(
R, θ, t

)
= (µ− 1)

[
R sin θ − 1

6
(2− µ)

]
+ t

π
α
−2A0 (α) a0 (α) (µ− 1) cosα (−µ)

π
2α

(
1

+
π
(
1 + π

α

)
µα sinα

R cos (θ + α) +O
(
R

2
))

+ o
(
t
π
α
−2
)
,

for 0 < R� min (1,−µ) , −α 6 θ 6 0, (3.7.31)

ηI
(
X, t

)
=

1

2
(µ− 1)

+ t
π
α
−2
(

1 +
π

α

)
A0 (α) a0 (α) (µ− 1) cosα (−µ)

π
2α
−1
(

1

−
π
(
1− π

α

)
µα tanα

X +O
(
X

2
))

+ o
(
t
π
α
−2
)
,

for 0 < X � min (1,−µ) , (3.7.32)

pI
(
R, θ, t

)
=

1

2
(µ− 1)

(
1− 2R sin θ

)
− t

π
α
−2
(

1 +
π

α

)
A0 (α) a0 (α) (µ− 1) cosα (−µ)

π
2α

(
1

−
π
(
1− π

α

)
µα sinα

R cos (θ + α) +O
(
R

2
))

+ o
(
t
π
α
−2
)
,

for 0 < R� min (1,−µ) , −α 6 θ 6 0, (3.7.33)
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q
(
R, θ, t

)
= t (µ− 1) j + t

π
α
−1π

α

(
1 +

π

α

)
A0 (α) a0 (α) (µ− 1) cosα (−µ)

π
2α
−1 (cotαi

−j)
(
1 +O

(
R
))

+ o
(
t
π
α
−1
)
,

for 0 < R� min (1,−µ) , −α 6 θ 6 0, (3.7.34)

as t→ 0+ in the inner asymptotic region, with A0 (α) and a0 (α) as given in Figures 2.3 and

3.28 respectively. We observe from (3.7.31) - (3.7.34) that in this case, each of the inner

region asymptotic expansions remain uniform up to the contact point, where
(
X,Y

)
=

O
(

(−µ)
π
2α
−1 t

π
α
−2
)

. Thus the asymptotic structure, as t→ 0+, of the solution to [IBV P ],

is complete in this case. It is worth noting at this stage that in this case the expansions

close to the contact point, (3.7.31) - (3.7.34), require
(
X,Y

)
= O

(
(−µ)

π
2α
−1 t

π
α
−2
)

and

0 < X, Y � min (1,−µ). This requires the following qualification on the asymptotic

structure of [IBV P ] as t→ 0+ in this case, namely,

0 6 t� min (1, λ1 (µ) , λ2 (µ)) , (3.7.35)

where

λ1 (µ) = (−µ)
(1− π

2α )
( πα−2) , (3.7.36)

λ2 (µ) = (−µ)
(2− π

2α )
( πα−2) , (3.7.37)

in µ < 0.

Also, we have, in particular,

(a) The contact point is located at

(x, y) =
1

2
(µ− 1) t2 (− cotα, 1) +O

(
t
π
α

)
, (3.7.38)
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as t→ 0+ (see (3.1.2), (3.1.7), (3.1.8), and (3.1.25)).

(b) The free surface slope at the contact point is given by,

ηx
(
Xp (t) , t

)
= ηI,X

(
Xp (t) , t

)
,

= t
π
α
−2π

α

(
1− π2

α2

)
A0 (α) a0 (α) (µ− 1) cotα cosα (−µ)

π
2α
−2

+ o
(
t
π
α
−2
)
, (3.7.39)

as t → 0+ (see (3.5.4) and (3.7.24)). We see that the free surface slope is positive

when (α, µ) ∈
(
α∗2n, α

∗
2n−1

)
× (−∞, 0) (n = 1, 2, . . . ) and negative when (α, µ) ∈(

α∗2n+1, α
∗
2n

)
×(−∞, 0) (n = 1, 2, . . . ) and (α, µ) ∈

(
α∗1,

1
2
π
)
×(−∞, 0). A contour plot

of ηx
(
Xp (t) , t

)
t2−

π
α , as t→ 0+, in the (α, µ) plane (with (α, µ) ∈

(
0, 1

2
π
)
× (−∞, 0))

is shown in Figure 3.33.

(c) The free surface η
(
X, t

)
is given by

η
(
X, t

)
= t2

1

2
(µ− 1) + t

π
αA0 (α) (µ− 1) cosα (−µ)

π
2α
−1 ξ−α

(
X

(−µ)

)
+ o

(
t
π
α

)
,

(3.7.40)

as t → 0+ for X > Xp (t) (see (3.1.3), and (3.7.24)). It follows from (3.7.40) that

η
(
X, t

)
is initially decreasing with a single turning point for α ∈

(
α∗1,

1
2
π
)
. For

α ∈ (α∗c , α
∗
1), η

(
X, t

)
is initially increasing, with two turning points. For α ∈ (α∗2, α

∗
c ],

η
(
X, t

)
is monotone increasing. For α ∈

(
α∗2n+1, α

∗
2n

)
(n = 1, 2, . . . ) η

(
X, t

)
is ini-

tially decreasing and has (2n− 1) turning points. Finally, for α ∈
(
α∗2n, α

∗
2n−1

)
(n = 2, 3, . . . ) η

(
X, t

)
is initially increasing, and has (2n− 2) turning points.

When µ < 0 (σ < − cotα) with α ∈
(
0, 1

2
π
)
\ {α∗n : n = 1, 2, . . . }, examination of

(3.7.7) and (3.7.33) reveals that, to leading order in the inner asymptotic region, the
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Figure 3.33: Contour plots of t2−
π
αηx

(
Xp (t) , t

)
as t→ 0+ on the (α, µ) plane in the case
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1
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π
)

and α ∈
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∗
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)
(n = 1, 2, . . . , 5)
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acceleration of the inclined plate induces a constant negative dynamic pressure gradient

of t2 (µ− 1) j, which causes the free surface, close to the intersection point of the free

surface and the plate, to collapse to a height of 1
2
t2 (µ− 1).

3.7.3 Case 3: µ < 0 with α ∈ {α∗n : n = 1, 2, . . . }

It follows from (3.1.7), (3.1.8), (3.1.25), (3.1.26), (3.1.35), and (3.1.36), that the inter-

section point of the plate and the free surface is located at
(
X,Y

)
=
(
Xp (t) , Y p (t)

)
=
(
Xp (t) + 1

2
σ, Yp (t)− 1

2
σ tanα∗n

)
, with

Xp (t) = −t
π
α
−2A0 (α∗n) (µ− 1) cotα∗n cosα∗n (−µ)

π
2α∗n
−1
ξ−α∗n (0) + o

(
t
π
α
−2
)
, (3.7.41)

Y p (t) = t
π
α
−2A0 (α∗n) (µ− 1) cosα∗n (−µ)

π
2α∗n
−1
ξ−α∗n (0) + o

(
t
π
α
−2
)
, (3.7.42)

as t → 0+. We then have, via (3.1.3), (3.1.5), (3.1.23), (3.1.26), (3.1.28), and (3.1.36),

that

ηI
(
X, t

)
=

1

2
(µ− 1) + t

π
α∗n
−2
A0 (α∗n) (µ− 1) cosα∗n (−µ)

π
2α∗n
−1
ξ−α∗n

(
X

(−µ)

)
+ o

(
t
π
α∗n
−2
)
, (3.7.43)

for X > Xp (t), as t → 0+. We now have, from (3.7.4) and (3.7.43), that in the shifted

coordinates
(
X,Y

)
, the free surface in the inner asymptotic region is located at

Y = Y I

(
X, t

)
,

= t
π
α∗n
−2
A0 (α∗n) (µ− 1) cosα∗n (−µ)

π
2α∗n
−1
ξ−α∗n

(
X

(−µ)

)
+ o

(
t
π
α∗n
−2
)
, (3.7.44)
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for X > Xp (t), as t→ 0+. We next have, via (3.1.4), (3.1.6), (3.1.24), (3.1.26), (3.1.27),

and (3.1.36), that

φI
(
X,Y , t

)
= (µ− 1)

[
Y − 1

6
(2− µ)

]
+ t

π
α∗n
−2
A0 (α∗n) (µ− 1) cosα∗n (−µ)

π
2α∗n ψ−α∗n

(
X

(−µ)
,
Y

(−µ)

)
+ o

(
t
π
α∗n
−2
)
,

(3.7.45)

for X > Xp (t), −X tanα∗n 6 Y 6 Y I

(
X, t

)
as t → 0+. The inner region asymptotic

expansion for the dynamic fluid pressure field is given, via (1.2.28), (3.1.4), (3.7.7), and

(3.7.45), as

pI
(
X,Y , t

)
=

1

2
(µ− 1)

(
1− 2Y

)
+ t

π
α∗n
−2
A0 (α∗n) (µ− 1) cosα∗n (−µ)

π
2α∗n

(
2Xψ−

α∗n,X

(
X

(−µ)
,
Y

(−µ)

)
+2Y ψ−

α∗n,Y

(
X

(−µ)
,
Y

(−µ)

)
−
(

1 +
π

α∗n

)
ψ−α∗n

(
X

(−µ)
,
Y

(−µ)

))
+ o

(
t
π
α∗n
−2
)
, (3.7.46)

as t→ 0+ with X > Xp (t), −X tanα∗n 6 Y 6 Y I

(
X, t

)
. Finally, in the inner asymptotic

region, the fluid velocity field is given, via (1.2.29), (3.1.4), and (3.7.45), as

q
(
X,Y , t

)
= t (µ− 1) j + t

π
α∗n
−1
A0 (α∗n) (µ− 1) cosα∗n (−µ)

π
2α∗n

(
ψ−
α∗n,X

(
X

(−µ)
,
Y

(−µ)

)
i

+ ψ−
α∗n,Y

(
X

(−µ)
,
Y

(−µ)

)
j

)
+ o

(
t
π
α∗n
−2
)
, (3.7.47)

as t→ 0+ with X > Xp (t), −X tanα∗n 6 Y 6 Y I

(
X, t

)
. We now consider the structure

of the inner region asymptotic expansions close to the intersection point of the inclined

plate and the fluid free surface when
(
X,Y

)
= O

(
(−µ)

π
2α∗n
−1
t
π
α∗n
−2
)

as t→ 0+. We have,
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via (3.5.5), (3.5.6), (3.6.5), and (3.6.6), together with (3.7.41) - (3.7.47), that

Xp (t) = o
(
t
π
α∗n
−2
)
, (3.7.48)

Y p (t) = o
(
t
π
α∗n
−2
)
, (3.7.49)

φI
(
R, θ, t

)
= (µ− 1)

[
R sin θ − 1

6
(2− µ)

]
+ t

π
α
−2A0 (α∗n) b1 (α∗n) (µ− 1) cosα∗n (−µ)

− π
2α∗n

(
R

π
α∗n cos

π

α∗n
(θ + α∗n)

+O
(
R

π
α∗n

+1
))

+ o
(
t
π
α
−2
)
,

for 0 < R� min (1,−µ) , −α∗n 6 θ 6 0, (3.7.50)

ηI
(
X, t

)
=

1

2
(µ− 1)

+ t
π
α∗n
−2
A0 (α∗n) b1 (α∗n) (µ− 1) cosα∗n (−µ)

− π
2α∗n
−1
X

π
α∗n
(
1 +O

(
X
))

+ o
(
t
π
α
−2
)
,

for 0 < X � min (1,−µ) , (3.7.51)

pI
(
R, θ, t

)
=

1

2
(µ− 1)

(
1− 2R sin θ

)
+ t

π
α∗n
−2

(
π

α∗n
− 1

)
A0 (α∗n) b1 (α∗n) (µ− 1) cosα∗n (−µ)

− π
2α∗n

(
R

π
α∗n cos

π

α∗n
(θ + α) +O

(
R

π
α∗n

+1
))

+ o
(
t
π
α
−2
)
,

for 0 < R� min (1,−µ) , −α∗n 6 θ 6 0, (3.7.52)

q
(
R, θ, t

)
= t (µ− 1) j + t

π
α∗n
−1 π

α∗n
A0 (α∗n) b1 (α∗n) (µ− 1) cosα∗n (−µ)

− π
2α∗n (cosα∗ni

− sinα∗nj)
(
R

π
α∗n
−1

+O
(
R

π
α∗n

))
+ o

(
t
π
α∗n
−1
)
,

for 0 < R� min (1,−µ) , −α∗n 6 θ 6 0, (3.7.53)

as t→ 0+ in the inner asymptotic region, with A0 (α) as given in Figure 2.3, and b1 (α∗n)

a globally determined real constant. We observe from (3.7.50) - (3.7.53) that, in this

case, each of the inner region asymptotic expansions remain uniform up to the contact
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point, where
(
X,Y

)
= O

(
(−µ)

π
2α∗n
−1
t
π
α∗n
−2
)

. Thus the asymptotic structure, as t→ 0+,

of the solution to [IBV P ] is complete in this case. It is worth noting at this stage that,

in this case, the expansions close to the contact point require
(
X,Y

)
= o

(
t
π
α∗n
−2
)

and

0 < X, Y � min (1,−µ). This requires the following qualification on the asymptotic

structure of [IBV P ] as t→ 0+ in this case, namely,

0 6 t� min (1, λ1 (µ)) , (3.7.54)

where

λ1 (µ) = (−µ)
1

π
α∗n
−2
, (3.7.55)

in µ < 0.

Also, we have, in particular,

(a) The contact point is located at

(x, y) =
1

2
(µ− 1) t2 (− cotα∗n, 1) +O

(
t
π
α∗n

)
, (3.7.56)

as t→ 0+ (see (3.1.2), (3.1.7), (3.1.8), and (3.1.25)).

(b) The free surface slope at the contact point is given by,

ηx
(
Xp (t) , t

)
= ηI,X

(
Xp (t) , t

)
= o

(
t
π
α∗n
−2
)
, (3.7.57)

as t→ 0+ (see (3.5.4) and (3.7.43)).
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(c) The free surface η
(
X, t

)
is given by

η
(
X, t

)
= t2

1

2
(µ− 1) + t

π
α∗nA0 (α∗n) (µ− 1) cosα∗n (−µ)

π
2α∗n
−1
ξ−α∗n

(
X

(−µ)

)
+ o

(
t
π
α∗n

)
, (3.7.58)

as t→ 0+ for X > Xp (t) (see (3.1.3), and (3.7.43)).

When µ < 0 (σ < − cotα∗n) with α ∈ {α∗n : n = 1, 2, . . . }, examination of (3.7.7) and

(3.7.52) reveals that, to leading order in the inner asymptotic region, the acceleration of

the inclined plate induces a constant negative dynamic pressure gradient of t2 (µ− 1) j,

which causes the free surface, close to the intersection point of the free surface and the

plate, to collapse to a height of 1
2
t2 (µ− 1).

3.7.4 Case 4: µ = 0 with α ∈
(
0, 1

2π
)

This case has not been treated as yet. However, as discussed in §3.6, it is readily estab-

lished that in this degenerate case, the solution to the boundary value problem (3.1.29)

- (3.1.34), which has least singular behaviour at
(
X,Y

)
= (0, 0), is simply given by the

far-field forms. In this case we have, via (3.6.7) and (3.6.8), that

Xp (t) = o
(
t
π
α
−2
)
, (3.7.59)

Y p (t) = o
(
t
π
α
−2
)
, (3.7.60)

φI
(
R, θ, t

)
= −

(
R sin θ − 1

3

)
+ t

π
α
−2A0 (α) cosα R

π
2α cos

π

2α
(θ + α) + o

(
t
π
α
−2
)
,

for R > 0, −α 6 θ 6 0, (3.7.61)

ηI
(
X, t

)
= Y I

(
X, t

)
− 1

2
= −1

2
− t

π
α
−2A0 (α) cosα

π

4α
X

π
2α
−1

+ o
(
t
π
α
−2
)
,

for X > 0, (3.7.62)
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pI
(
R, θ, t

)
= −1

2

(
1− 2R sin θ

)
− t

π
α
−2A0 (α) cosα R

π
2α cos

π

2α
(θ + α) + o

(
t
π
α
−2
)
,

for R > 0, −α 6 θ 6 0, (3.7.63)

q
(
R, θ, t

)
= −tj− t

π
α
−1 π

2α
A0 (α) cosα R

π
2α
−1
(

sin
(

1− π

2α

)
θi

− cos
(

1− π

2α

)
θj
) (

1 +O
(
R
))

+ o
(
t
π
α

+1
)
,

for R > 0, −α 6 θ 6 0, (3.7.64)

as t→ 0+ in the inner asymptotic region. In this case we observe, from (3.7.61) - (3.7.64),

that each of the inner region asymptotic expansions remain uniform up to the contact

point, when
(
X,Y

)
= o

(
t
π
α
−2
)

provided 0 < α 6 1
4
π. However, for 1

4
π < α < 1

2
π, a

weak nonuniformity in derivatives
(
ηI,X ,

̂̂∇φI) persists close to the contact point and, in

particular, when X, Y = O

(
t

( πα−2)
2(1− π

4α )

)
as t→ 0+. In this case an inner-inner asymptotic

region will be required when X, Y = O

(
t

( πα−2)
2(1− π

4α )

)
as t→ 0+ in order to correctly capture

the behaviour of the free surface at the contact point.

When 0 < α 6 1
4
π, we can draw the following conclusions concerning the free surface,

the fluid velocity field, and the dynamic pressure field in the inner asymptotic region:

(a) The contact point is located at

(x, y) = −1

2
t2 (− cotα, 1) + o

(
t
π
α

)
, (3.7.65)

as t→ 0+.

(b) The free surface slope at the contact point is given by

ηx
(
Xp (t) , t

)
= ηI,X

(
Xp (t) , t

)
=


o
(
t
π
α
−2
)
, 0 < α < 1

4
π,

−A0( 1
4
π)√

2
t2 + o (t2) , α = 1

4
π,

(3.7.66)

81



as t→ 0+.

(c) The free surface η
(
X, t

)
is given by

η
(
X, t

)
= −1

2
t2 − t

π
αA0 (α) cosα

π

4α
X

π
2α
−1

+ o
(
t
π
α

)
, (3.7.67)

as t→ 0+ for X > Xp (t) (see (3.1.3), and (3.7.62)).

When 1
4
π < α < 1

2
π, we consider the inner-inner asymptotic region, where X,Y =

O

(
t

( πα−2)
2(1− π

4α )

)
as t→ 0+, in the next chapter.
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Chapter 4

Inner-Inner Region Asymptotic

Structure to [IBV P ] as t→ 0+

In this chapter we introduce the inner-inner asymptotic region associated with [IBV P ]

when
(
X,Y

)
= o (1) as t → 0+, for µ = 0 with α ∈

(
1
4
π, 1

2
π
)
. Specifically, following

Chapter 3, we write
(
X,Y

)
= O (∆ (t)) with ∆ (t) = o (1) as t → 0+ in the inner-inner

asymptotic region. It then follows from (3.7.62) that Y I = 1
2

+ ηI = O
(
t
π
α
−2∆ (t)

π
2α
−1
)

as t→ 0+ in the inner-inner asymptotic region. The free surface must be captured in the

inner-inner asymptotic region. This requires

∆ (t) = O
(
tΓ
)
, with Γ =

(
π
α
− 2
)

2
(
1− π

4α

) , (4.0.1)

as t→ 0+. A sketch of the location of the inner-inner asymptotic region is illustrated in

Figure 4.1.
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4.1 Inner-Inner Region Asymptotic Structure for

µ = 0 with α ∈
(

1
4π,

1
2π
)

Formally we introduce scaled inner-inner asymptotic region coordinates (x̃, ỹ) by

X = tΓ x̃, Y = tΓ ỹ, (4.1.1)

with (x̃, ỹ) = O (1) as t → 0+ in the inner-inner asymptotic region. The location of the

plate in the inner-inner asymptotic region is given by ỹ = −x̃ tanα, whilst the plate and

the free surface intersection point is denoted by (x̃, ỹ) = (x̃p (t) , ỹp (t)), with,

Xp (t) = tΓ x̃p (t) , Y p (t) = tΓ ỹp (t) , (4.1.2)

and (x̃p (t) , ỹp (t)) = O (1) as t→ 0+ in the inner-inner asymptotic region. An examina-

tion of (3.7.61) and (3.7.62) reveals that ηI = −1
2

+O
(
tΓ
)

and φI = 1
3
− tΓ ỹ+O

(
t2Γ
)

as

t→ 0+ in the inner-inner asymptotic region. We now write the free surface and velocity

potential in the inner-inner asymptotic region as

ηI (x̃, t) = −1

2
+ tΓηII (x̃, t) , x̃ > x̃p (t) , t > 0; (4.1.3)

φI (x̃, ỹ, t) =
1

3
− tΓ ỹ + t2ΓφII (x̃, ỹ, t) ,

x̃ > x̃p (t) , −x̃ tanα 6 ỹ 6 ηII (x̃, t) , t > 0; (4.1.4)
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with ηII (x̃, t), φII (x̃, ỹ, t) = O (1) as t → 0+. The inner-inner region asymptotic expan-

sions are then introduced as,

ηII (x̃, t) = η̃0 (x̃) + o (1) , (4.1.5)

φII (x̃, ỹ, t) = φ̃0 (x̃, ỹ) + o (1) , (4.1.6)

as t → 0+ with (x̃, ỹ) = O (1) in the inner-inner asymptotic region. Finally, it follows

from (4.1.1) - (4.1.3), and (4.1.5) that we expand x̃p (t) in the form

x̃p (t) = x̃0 + o (1) , (4.1.7)

as t→ 0+, with

ỹp (t) = −x̃p (t) tanα. (4.1.8)

The free surface in the inner-inner asymptotic region is located at

ỹ = ηII (x̃, t) , x̃ > x̃p (t) , t > 0, (4.1.9)

whilst the spatial domain in the inner-inner asymptotic region is

DII (t) = {(x̃, ỹ) : x̃ > x̃p (t) , −x̃ tanα < ỹ < ηII (x̃, t)} , (4.1.10)

for t > 0, with closure DII (t). A sketch of the inner-inner asymptotic region geometry is

given in Figure 4.2.

We now write [IBV P ] in terms of the inner-inner asymptotic region coordinates (x̃, ỹ),
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O
′

Y

X

Inner Region

Inner-Inner Region

O (t2)

O (t2)

O
(
tΓ
)

O
(
tΓ
)

Figure 4.1: A sketch of the location of the inner-inner asymptotic region for µ = 0, with
α ∈

(
1
4
π, 1

2
π
)

x̃

ỹ

O
′

(x̃p (t) , ỹp (t))

ỹ = −x̃ tanα

ỹ = ηII (x̃, t)

DII (t)

Figure 4.2: The inner-inner asymptotic region geometry for µ = 0, with α ∈
(

1
4
π, 1

2
π
)
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and the inner-inner asymptotic region variables φII and ηII , to obtain,

∇̃2φII (x̃, ỹ) = 0, (x̃, ỹ) ∈ DII (t) , t > 0; (4.1.11)

∇̃φII · n̂ = 0, x̃ > x̃p (t) , ỹ = −x̃ tanα, t > 0; (4.1.12)

(Γ + 2) ηII + [φII,x̃ − (Γ + 2) x̃] ηII,x̃ − φII,ỹ + tηII,t = 0,

x̃ > x̃p (t) , ỹ = ηII (x̃, t) , t > 0; (4.1.13)

(2Γ + 3)φII − (Γ + 2) (x̃φII,x̃ + ỹφII,ỹ) +
1

2
φ2
II,x̃ +

1

2
φ2
II,ỹ + tφII,t = 0,

x̃ > x̃p (t) , ỹ = ηII (x̃, t) , t > 0; (4.1.14)

ηII (x̃p (t) , t) = −x̃p (t) tanα, t > 0; (4.1.15)

with ∇̃ = (∂/∂x̃, ∂/∂ỹ). On substituting from (4.1.5) - (4.1.7) into (4.1.11) - (4.1.15)

we obtain, at leading order, the following nonlinear harmonic free boundary problem for

φ̃0 (x̃, ỹ), η̃0 (x̃), and x̃0, namely

∇̃2φ̃0 = 0, x̃ > x̃0, −x̃ tanα < ỹ < η̃0 (x̃) ; (4.1.16)

∇̃φ̃0 · n̂ = 0, x̃ > x̃0, ỹ = −x̃ tanα; (4.1.17)

γη̃0 +
[
φ̃0,x̃ − γx̃

]
η̃0,x̃ − φ̃0,ỹ = 0, x̃ > x̃0, ỹ = η̃0 (x̃) ; (4.1.18)

(2γ − 1) φ̃0 − γ
(
x̃φ̃0,x̃ + ỹφ̃0,ỹ

)
+

1

2
φ̃2

0,x̃ +
1

2
φ̃2

0,ỹ = 0, x̃ > x̃0, ỹ = η̃0 (x̃) ; (4.1.19)

η̃0 (x̃0) = −x̃0 tanα; (4.1.20)

with

γ = Γ + 2 =
1

1− π
4α

. (4.1.21)

The problem (4.1.16) - (4.1.20) must be completed by asymptotic matching conditions

between the inner-inner asymptotic region and the inner asymptotic region. Following
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Van Dyke’s Matching Principle (see, for example, [19]), we obtain,

φ̃0 (r̃, θ) = A0 (α) cosα r̃
π
2α cos

π

2α
(θ + α) + o

(
r̃
π
2α

)
as r̃ →∞, −α < θ < 0, (4.1.22)

η̃0 (x̃) = −A0 (α) cosα
π

4α
x̃

π
2α
−1 + o

(
x̃

π
2α
−1
)

as x̃→∞, (4.1.23)

where r̃ and θ are polar coordinates given by x̃ = r̃ cos θ, ỹ = r̃ sin θ. To remove A0 (α)

from the problem, we introduce the following scalings,

φ̃0 = κ2ψ̂, η̃0 = κξ̂,

x̃ = κx̂, ỹ = κŷ, r̃ = κr̂, x̃0 = κx̂0, (4.1.24)

with, recalling that A0 (α) < 0 for α ∈
(

1
4
π, 1

2
π
)
,

κ = (−A0 (α) cosα)
1
2
γ , (4.1.25)

illustrated in Figure 4.3. The corresponding boundary problem for ψ̂ and ξ̂ is dependent

only upon α and is given by

∇̂2ψ̂ = 0, x̂ > x̂0, −x̂ tanα < ŷ < ξ̂ (x̂) ; (4.1.26)

∇̂ψ̂ · n̂ = 0, x̂ > x̂0, ŷ = −x̂ tanα; (4.1.27)

γξ̂ +
[
ψ̂x̂ − γx̂

]
ξ̂x̂ − ψ̂ŷ = 0, x̂ > x̂0, ŷ = ξ̂ (x̂) ; (4.1.28)

(2γ − 1) ψ̂ − γ
(
x̂ψ̂x̂ + ŷψ̂ŷ

)
+

1

2
ψ̂2
x̂ +

1

2
ψ̂2
ŷ = 0, x̂ > x̂0, ŷ = ξ̂ (x̂) ; (4.1.29)

ξ̂ (x̂0) = −x̂0 tanα; (4.1.30)
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Figure 4.3: Graph of κ (α) against α calculated exactly via (2.0.15) and (4.1.25)

ξ̂ (x̂) =
π

4α
x̂

π
2α
−1 + o

(
x̂

π
2α
−1
)

as x̂→∞; (4.1.31)

ψ̂ (r̂, θ) = −r̂
π
2α cos

π

2α
(θ + α) + o

(
r̂
π
2α

)
as r̂ →∞, −α < θ < 0; (4.1.32)

where ∇̂ is now defined by ∇̂ = (∂/∂x̂, ∂/∂ŷ), and (r̂, θ) are polar coordinates given

by x̂ = r̂ cos θ, ŷ = r̂ sin θ. This boundary value problem is similar to that studied by

Needham et al [24] for α ∈
(

1
2
π, π

)
. We will now outline the method used to construct

numerical solutions to this boundary value problem. We begin by defining the position

of the free boundary parametrically in terms of arc length s, with s = 0 at the contact

point of the plate and the free boundary and s increasing as we move away from the plate

along the free boundary, giving

x̂ = x̂ (s) , ŷ = ŷ (s) , ξ̂ = ξ̂ (s) , for s > 0, (4.1.33)

along the free boundary ŷ = ξ̂ (x̂) for x̂ > x̂0. The free boundary conditions (4.1.28) and
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(4.1.29) become

∇̂ψ̂ · n̂ = γ (x̂′ŷ − x̂ŷ′) , on (x̂, ŷ) = (x̂ (s) , ŷ (s)) with s > 0. (4.1.34)

1

2
Φ
′2 − γ (x̂x̂′ + ŷŷ′) Φ

′
+ (2γ − 1) Φ− 1

2
γ2 (x̂′ŷ − x̂ŷ′)2

= 0,

on (x̂, ŷ) = (x̂ (s) , ŷ (s)) with s > 0. (4.1.35)

Here ′ denotes d/ds, n̂ = (−ŷ′ (s) , x̂′ (s)) is the unit normal on the free boundary point-

ing out of the fluid and Φ = ψ̂ (x̂ (s) , ŷ (s)). Additionally, we also have the arc-length

condition given by

x̂′
2

+ ŷ′
2

= 1, s > 0. (4.1.36)

It is convenient at this stage to introduce a rotated (x, y)1 coordinate system oriented so

that the y-axis lies parallel to (and points up) the plate, with the x-axis pointing into the

fluid. A sketch of the rotated coordinate system is given in Figure 4.4. The associated

coordinate transformation is

x = x̂ sinα + ŷ cosα, y = −x̂ cosα + ŷ sinα, (4.1.37)

with the free boundary now located at y = ξ̃ (x) (x > 0) and, in parametric form, at

(x, y) = (X (s) , Y (s)) (s > 0), and the plate located at x = 0 (−∞ < y <∞). The

boundary value problem (4.1.26) - (4.1.29) may now be written (invoking symmetry in

the y-axis, via (4.1.27), as,

∇̂2ψ̂ = 0, −∞ < x <∞, −∞ < y < Y (s) , (s ∈ R) ; (4.1.38)

n̂ · ∇̂ψ̂ = γ
(
Y X

′ −XY ′
)
, x = X (s) , y = Y (s) , (s ∈ R) ; (4.1.39)

1This notation should not be confused with the original coordinate system used in Chapter 1
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x̂

ŷ

r̂

θ

O
′

x
y

r

θ

(x, y) = (0, Y (0))

(x, y) = (X (s) , Y (s))

y = ξ̃ (x)

n̂ = (−Y ′ (s) , X ′ (s))

Figure 4.4: The inner-inner asymptotic region rotated coordinate system for µ = 0, with
α ∈

(
1
4
π, 1

2
π
)

1

2
Φ
′2 − γ

(
XX

′
+ Y Y

′
)

Φ
′
+ (2γ − 1) Φ− 1

2
γ2
(
X
′
Y −XY ′

)2

= 0,

x = X (s) , y = Y (s) , (s ∈ R) ; (4.1.40)

X
′2 + Y

′2 = 1, x = X (s) , y = Y (s) , (s ∈ R) ; (4.1.41)

X (s) = s+ o (s) as |s| → ∞; (4.1.42)

Y (s) = − cotα |X (s)|+ π

4α (sinα)
π
2α

|X (s)|
π
2α
−1 + o

(
|X (s)|

π
2α
−1
)
as |s| → ∞; (4.1.43)

ψ̂
(
r, θ
)

= −r
π
2α cos

π

2α

(
θ +

1

2
π

)
+ o

(
r
π
2α

)
as r →∞, −α− 1

2
π < θ < α− 1

2
π; (4.1.44)

where n̂ =
(
−Y ′ (s) , X ′ (s)

)
, and

(
r, θ
)

2 are polar coordinates given by x = r cos θ,

y = r sin θ. The boundary value problem (4.1.38) - (4.1.44), henceforth referred to as

[RBV P ], can now be solved numerically using a boundary integral method, which follows

2These should not be confused with the outer region polar coordinates used in Chapter 2
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directly the approach given in [24], and so further details are not reproduced here.

4.1.1 Numerical Results for [RBV P ]

Numerical solutions to [RBV P ], rotated back so as to be presented in terms of (x̂, ŷ), are

plotted in Figures 4.5 - 4.11. The numerical solution demonstrates that the free surface

ŷ = ξ̂ (x̂) is monotone increasing in x̂ > x̂0, for all angles α ∈
(

1
4
π, 1

2
π
)
, with the gradient

of the free surface at the contact point ξ̂x̂ (x̂0) decreasing with increasing α ∈
(

1
4
π, 1

2
π
)
,

and approaching zero as α → 1
2
π. In Figure 4.5 we demonstrate the good agreement of

the numerical solution with the far-field asymptotic form in [RBV P ] (4.1.31). In Figure

4.6 we present the free surface ξ̂ (x̂) against x̂ for the numerical solution of [RBV P ], for

a selection of angles α ∈
(

1
4
π, 1

2
π
)
. Figure 4.8 plots

∣∣∣ξ̂ (x̂0)
∣∣∣ cosec α, the distance from the

origin of the (x̂, ŷ) coordinate system to the contact point of the free surface and the plate,

against α ∈
(

1
4
π, 1

2
π
)
, whilst Figure 4.7 shows the numerical approximations to x̂0, ξ̂ (x̂0),

with correspondingly x̃0 and η̃0 (x̃0) shown in Figures 4.9 and 4.10 respectively. In Figure

4.7c ξ̂x̂ (x̂0) is plotted against α ∈
(

1
4
π, 1

2
π
)
. Finally Figure 4.11 shows the behaviour of

the free surface ξ̃ (x)− ξ̃ (0) against x, presented in the rotated (x, y) coordinate system,

very close to the plate for a typical angle α = 1.56.

We see in Figure 4.7b that ξ̂ (x̂0) has a minimum at α ≈ 1.22, where ξ̂ (x̂0) ≈ 0.392,

and that ξ̂ (x̂0) → 1
2

as α → 1
2
π−, which agrees with the findings of Needham et al

[24]. We notice that the free surface meets the plate with a constant angle of 1
2
π, for all

α ∈
(

1
4
π, 1

2
π
)
, a condition which we investigate in detail in §4.1.2. It follows from this

that the gradient of the free surface at the contact point must be given by

ξ̂x̂ (x̂0) = tan

(
1

2
π − α

)
. (4.1.45)

In Figure 4.7c we plot the numerical approximation to the gradient of the free surface

ξ̂x̂ (x̂0) at the contact point, against α ∈
(

1
4
π, 1

2
π
)
, and compare this with tan

(
1
2
π − α

)
.

92



We notice the introduction of some noise into our solutions as α→ 1
4
π, this is due to the

difficulty in obtaining converging solutions as α → 1
4
π. Finally, as shown in Figure 4.11,

the numerical solution indicates that ξ̂ (x̂) oscillates very rapidly very close to the contact

point x̂ = x̂0. The amplitude of the oscillations is very small, decreasing to zero at the

contact point, whilst the frequency of the oscillations increases, becoming unbounded as

the contact point is approached. This structure is verified in the following section.
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alpha = 1
alpha = 0.9

Figure 4.5: Graph of ξ̂ (x̂) against x̂, showing agreement with the far-field asymptotic
form (4.1.31), for the numerical solution of [RBV P ] with α =

(
0.9, 1

2
π
)
. For each angle

a square shows s = 250, after which the far-field asymptotic form (4.1.31) is plotted
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Figure 4.6: Graphs of ξ̂ (x̂) against x̂ for the numerical solution of [RBV P ]. Figure 4.6a
plots solutions with α ∈

(
0.9, 1

2
π
)
, while Figure 4.6b plots solutions with α ∈

(
1.1, 1

2
π
)

for clarity. For each angle a black line shows the location of the plate
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Figure 4.7: Numerical approximations to x̂0 (α), ξ̂ (x̂0 (α)) and ξ̂x̂ (x̂0 (α)) for [RBV P ]

plotted against α ∈
(

1
4
π, 1

2
π
)
. In Figure 4.7c the line ξ̂x̂ (x̂0 (α)) = tan

(
1
2
π − α

)
is plotted

in red
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the (x̂, ŷ) coordinate system to the contact point of the free surface and the plate against
α ∈
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Figure 4.9: Graph of x̃0 (α) against α calculated numerically
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Figure 4.10: Graph of η̃0 (x̃0 (α)) = −x̃0 (α) tanα against α calculated numerically
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Figure 4.11: Graph of ξ̃ (x)− ξ̃ (0) against x for the numerical solution of [RBV P ] close
to the plate for a typical angle α = 1.56, with coordinates rotated so that the plate is
located at x = 0
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4.1.2 Analysis of [RBV P ] as x → 0, Close to the Contact Point

of the Free Surface and the Plate

Motivated by the numerical solution in Section 4.1.1, we examine the structure of solutions

to [RBV P ] close to the contact point of the free surface and the plate, as (x̂, ŷ) →(
x̂0, ξ̂ (x̂0)

)
. It is convenient to work in the rotated coordinate system (x, y), and the

corresponding limit is then (x, y)→
(

0, ξ̃ (0)
)

. In terms of the rotated coordinates (x, y)

[RBV P ] is given by

∇2ψ̂ = 0, x > 0, −∞ < y < ξ̃ (x) ; (4.1.46)

ψ̂x = 0, x = 0, ∞ < y < ξ̃ (0) ; (4.1.47)

γξ̃ +
[
ψ̂x − γx

]
ξ̃x − ψ̂y = 0, x > 0, y = ξ̃ (x) ; (4.1.48)

(2γ − 1) ψ̂ − γ
(
xψ̂x + ξ̃ψ̂y

)
+

1

2
ψ̂2
x +

1

2
ψ̂2
y = 0, x > 0, y = ξ̃ (x) . (4.1.49)

The free surface in the inner-inner asymptotic region is located at y = ξ̃ (x), x > 0,

and the contact point is given by (x, y) =
(

0, ξ̃0

)
, with ξ̃0 = ξ̃ (0). As (x, y) →

(
0, ξ̃0

)
,

(4.1.46) - (4.1.49) admit the asymptotic forms

ξ̃ (x) ∼ ξ̃0 as x→ 0, (4.1.50)

ψ̂ (x, y) ∼ γξ̃2
0

(
(2− 3γ)

2 (2γ − 1)
+ 1

)
+ γξ̃0y as (x, y)→ (0, 0) , (4.1.51)

where we have written y = y − ξ̃0, and ξ̃0 remains a globally determined constant, which

has been determined by the numerical solution in Section 4.1.1, and is illustrated in Figure

4.12. We observe that ξ̃0 > 0 for each α ∈
(

1
4
π, 1

2
π
)
.
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Figure 4.12: Graph of ξ̃0 for the numerical solution of [RBV P ] plotted against α ∈(
1
4
π, 1

2
π
)

We now consider the correction terms to ξ̃ (x) and ψ̂ (x, y) as (x, y)→ (0, 0). We write

ξ̃ (x) = ξ̃0 + ξ̃1 (x) , (4.1.52)

ψ̂ (x, y) = γξ̃2
0

(
(2− 3γ)

2 (2γ − 1)
+ 1

)
+ γξ̃0y + ψ̂2 (x, y) , (4.1.53)

with ξ̃1 (x) = o (1) and ψ̂2 (x, y) = o (x, y) as (x, y)→ (0, 0). Substitution of (4.1.52) and

(4.1.53) into (4.1.46) - (4.1.49), leads to the linear harmonic problem for ψ̂2 (x, y), namely,

∇2
ψ̂2 = 0, x > 0, y < 0, (4.1.54)

ψ̂2,x = 0, x = 0, y < 0, (4.1.55)

(γ − 1) ξ̃0ψ̂2,y + (2γ − 1)
[
ψ̂2 − xψ̂2,x

]
+ γx2ψ̂2,xx = 0, y = 0, x > 0, (4.1.56)

with ψ̂2 (x, y) = o (x, y) as (x, y)→ (0, 0). Thereafter ξ̃1 (x) is given by

ξ̃1 (x) = − 1

γ (γ − 1) ξ̃0

[
(2γ − 1) ψ̂2 (x, 0)− γxψ̂2,x (x, 0)

]
, x > 0, (4.1.57)

with ξ̃1 (x) = o (1) as x → 0. To analyse the harmonic problem (4.1.54) - (4.1.56) it is
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convenient to introduce the complex variable z = x+ iy, after which we write

ψ̂2 (x, y) = Re (f (z)) , z ∈ D, (4.1.58)

with D being the quadrant x > 0, y < 0, and f : D → C being analytic in D and

continuous in D, which guarantees that ψ̂2 (x, y) is harmonic in D. Condition (4.1.55)

then requires that

Re (f ′ (iy)) = 0, y < 0, (4.1.59)

and, condition (4.1.56) is satisfied when,

Re
[
γx2f ′′ (x) +

[
i (γ − 1) ξ̃0 − (2γ − 1)x

]
f ′ (x) + (2γ − 1) f (x)

]
= 0, x > 0, (4.1.60)

which is a second order linear ordinary differential equation for f (x) with x > 0, and has

an irregular singular point at x = 0. We require a solution to (4.1.60) with f (x) = o (1)

and f ′ (x) bounded as x→ 0. The WKB-type structure (see, for example, [15]) of (4.1.60)

as x→ 0 leads us to look for a solution in the form

f (x) = exp (g (x)), x > 0, (4.1.61)

with,

g (x) = k0x
−1 + k1 log x+ o (1) as x→ 0, (4.1.62)

with k0, k1 ∈ C being constants. Substitution of (4.1.61) and (4.1.62), into (4.1.60), gives

k0 = i

(
1− 1

γ

)
ξ̃0, k1 = 4− 1

γ
. (4.1.63)
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Thus f (x) satisfies the regularity conditions as x→ 0 (since γ > 2 for α ∈
(

1
4
π, 1

2
π
)
). We

thus take,

f (z) = A exp

{
i

(
1− 1

γ

)
ξ̃0

1

z
+

(
4− 1

γ

)
log z + o (1)

}
, z ∈ D, (4.1.64)

as |z| → 0 with A ∈ C an arbitrary constant. It remains to apply condition (4.1.59). This

is satisfied in taking arg (A) = 1
2
π
(

4− 1
γ

)
, after which we have

f (z) = B exp

{
i

(
1− 1

γ

)
ξ̃0

1

z
+

(
4− 1

γ

)
log z +

1

2
π

(
4− 1

γ

)
+ o (1)

}
, z ∈ D

(4.1.65)

as |z| → 0, with B ∈ R a globally determined constant. Substitution of (4.1.65) into

(4.1.58) then gives

ψ̂2

(
r, θ
)
∼ Br4− 1

γ exp

{(
1− 1

γ

)
ξ̃0r
−1 sin θ

}
cos

[(
1− 1

γ

)
ξ̃0r
−1 cos θ

+

(
4− 1

γ

)(
θ +

1

2
π

)]
, (4.1.66)

as r → 0, uniformly for θ ∈
[
−1

2
π, 0
]
, with r = |z| and θ = arg (z). We observe

that ψ̂2

(
r, θ
)

= o (1) as r → 0, uniformly for θ ∈
[
−1

2
π, 0
]
, as required (since ξ̃0 > 0

and
(

1− 1
γ

)
> 0 for α ∈

(
1
4
π, 1

2
π
)
). Also, since

(
2− 1

γ

)
> 0 for α ∈

(
1
4
π, 1

2
π
)
, then

∇ψ̂2

(
r, θ
)
→ 0 as r → 0, uniformly for θ ∈

[
−1

2
π, 0
]
. Finally, substitution of (4.1.66)

into (4.1.57), gives

ξ̃1 (x) ∼ B
1

γ
x3− 1

γ sin

[(
1− 1

γ

)
ξ̃0

1

x
+

1

2
π

(
4− 1

γ

)]
, (4.1.67)

as x→ 0, and thus

ξ̃x = ξ̃1,x ∼ −B
(γ − 1)

γ2
ξ̃0x

1− 1
γ cos

[(
1− 1

γ

)
ξ̃0

1

x
+

1

2
π

(
4− 1

γ

)]
, (4.1.68)
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Figure 4.13: The correction term to the free surface ξ̃1 (x) (4.1.67) plotted against x close
to the contact point of the free surface and the plate, with α = 1.56 and B = 0.08 for
comparison with Figure 4.11

as x → 0. We note that, since
(

1− 1
γ

)
> 0 for α ∈

(
1
4
π, 1

2
π
)
, then ξ̃1 (x) = o (1) and

ξ̃1,x (x)→ 0 as x→ 0. In particular, we have, via (4.1.68), that ξ̃x (x)→ 0 as x→ 0, and

so the contact angle between the free surface and the plate is 1
2
π for all α ∈

(
1
4
π, 1

2
π
)
,

which is in agreement with the numerically calculated solutions in Figure 4.6. Finally

Figure 4.13 plots the free surface correction term ξ̃1 (x) against x close to the plate, with

α = 1.56 and B = 0.08, for comparison with the numerical solution shown in Figure 4.11.

We see very good agreement between the asymptotic form of ξ̃1 (x) and the numerically

calculated form of ξ̃ (x) − ξ̃ (0), confirming the structure of the free surface close to the

contact point of the free surface and the plate.

4.1.3 Reconstructing the Inner-Inner Region Asymptotic

Expansions

In this section we reconstruct the inner-inner region asymptotic expansions for the fluid

velocity potential φ, free surface elevation η, dynamic fluid pressure field pd and fluid

velocity field q in terms of the inner-inner region variables x̃, ỹ, and then consider the be-

haviour close to the intersection point of the fluid free surface and the inclined accelerating
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plate.

It follows from (4.1.7), (4.1.8), (4.1.24) and (4.1.25), that the intersection point of the

plate and the fluid free surface is located at (x̃, ỹ) = (x̃p (t) , ỹp (t)), with

x̃p (t) = (−A0 (α) cosα)
1
2
γ x̂0 (α) + o (1) , (4.1.69)

ỹp (t) = − (−A0 (α) cosα)
1
2
γ tanα x̂0 (α) + o (1) , (4.1.70)

as t→ 0+. We then have, via (4.1.3), (4.1.5), (4.1.24) and (4.1.25), that the free surface

in the inner-inner asymptotic region is located at

ỹ (x̃, t) = ηII (x̃, t) = (−A0 (α) cosα)
1
2
γ ξ̂

(
x̃

κ (α)

)
+ o (1) , (4.1.71)

for x̃ > x̃p (t), as t→ 0+. We next have, via (4.1.4), (4.1.6), (4.1.24) and (4.1.25), that

φII (x̃, ỹ, t) = (−A0 (α) cosα)γ ψ̂

(
x̃

κ (α)
,

ỹ

κ (α)

)
+ o (1) , (4.1.72)

for x̃ > x̃p (t), −x̃ tanα 6 ỹ 6 ηII (x̃, t) as t → 0+. An examination of (1.2.28), (3.1.4)

and (4.1.4), requires that we write in the inner-inner asymptotic region

pd (x̃, ỹ, t) = −1

2
t2 + tγ ỹ + t2γ−2pII (x̃, ỹ, t) ,

x̃ > x̃p (t) , −x̃ tanα 6 ỹ 6 ηII (x̃, t) , t > 0, (4.1.73)

after which we have, via (1.2.28) and (4.1.72), the inner-inner asymptotic expansions for
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the dynamic fluid pressure field as,

pII (x̃, ỹ, t) = (−A0 (α) cosα)γ
[
(1− 2γ) ψ̂

(
x̃

κ (α)
,

ỹ

κ (α)

)
+γ

(
x̃ψ̂x̃

(
x̃

κ (α)
,

ỹ

κ (α)

)
+ ỹψ̂ỹ

(
x̃

κ (α)
,

ỹ

κ (α)

))
−1

2

(
ψ̂2
x̃

(
x̃

κ (α)
,

ỹ

κ (α)

)
+ ψ̂2

ỹ

(
x̃

κ (α)
,

ỹ

κ (α)

))]
+ o (1) , (4.1.74)

as t → 0+, with x̃ > x̃p (t), −x̃ tanα 6 ỹ 6 ηII (x̃, t). Finally, in the inner-inner asymp-

totic region, the fluid velocity field is given, via (1.2.29), (3.1.4), (4.1.4), and (4.1.72),

as,

q (x̃, ỹ, t) = −tj + tγ−1 (−A0 (α) cosα)γ
(
ψ̂x̃

(
x̃

κ (α)
,

ỹ

κ (α)

)
i

+ψ̂ỹ

(
x̃

κ (α)
,

ỹ

κ (α)

)
j

)
+ o

(
t2γ−1

)
, (4.1.75)

as t→ 0+ with x̃ > x̃p (t), −x̃ tanα 6 ỹ 6 ηII (x̃, t).

We can now draw the following conclusions concerning the free surface, the fluid

velocity field, and the dynamic pressure field in the inner-inner asymptotic region:

(a) The contact point is located at

(x, y) = −1

2
t2 (− cotα, 1)

− tγ (−A0 (α) cosα)
1
2
γ tanα x̂0 (α) (− cotα, 1) + o (tγ) , (4.1.76)

as t→ 0+ (see (4.1.2), (4.1.7), (4.1.8), (4.1.24), and (4.1.25)).
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(b) The free surface slope at the contact point is given by, following (4.1.45),

ηx (x̃p (t) , t) = ηII,x̃ (x̃p (t) , t) ,

= tan

(
1

2
π − α

)
+ o (1) , (4.1.77)

as t→ 0+.

(c) The free surface η (x̃, t) is given by,

η (x̃, t) = −1

2
t2 + tγ (−A0 (α) cosα)

1
2
γ ξ̂

(
x̃

κ (α)

)
+ o (tγ) , (4.1.78)

as t → 0+ for x̃ > x̃p (t) (see (3.1.3), (4.1.3), and (4.1.71)). It follows from (4.1.78)

that η (x̃, t) is monotone increasing in x̃ > x̃p (t) for all α ∈
(

1
4
π, 1

2
π
)
.

(d) The fluid velocity field at the contact point q (x̃p (t) , ỹp (t) , t) is given by,

q (x̃p (t) , ỹp (t) , t) = ∇φ (x̃p (t) , ỹp (t) , t) ,

= −tj + tγ−1 (−A0 (α) cosα)
1
2
γ
(
ψ̂x̃ (x̂0 (α) ,−x̂0 (α) tanα) i

+ ψ̂ỹ (x̂0 (α) ,−x̂0 (α) tanα) j
)

+ o
(
tγ−1

)
, (4.1.79)

as t→ 0+ (see (3.1.4), (4.1.4), (4.1.69), (4.1.70), and (4.1.72)).

4.2 Discussion

At this stage we have completed the asymptotic structure to [IBV P ] as t→ 0+ for each

pair (α, µ) ∈
(
0, 1

2
π
)
×R, where µ = 1 + σ tanα. We began in an outer asymptotic region

in which (x, y) = O (1) as t → 0+. As discussed in Chapter 2 the leading order terms in

the outer region asymptotic expansions for φ and η satisfy the required regularity except

in a neighbourhood of the initial location of the intersection point of the free surface
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and the plate, at (x, y) = (0, 0) ∈ D (0). In order to capture the full regularity in the

neighbourhood of the intersection point of the plate and the free surface we introduced an

inner asymptotic region in which (x, y) = O (t2) as t→ 0+. The structure of the solution

to [IBV P ] in the inner asymptotic region is as follows:

(a) (α, µ) ∈
(
0, 1

2
π
)
× (0,∞)

In the inner asymptotic region we have solved [PBV P ]+ numerically for each pair

(α, µ) ∈
(
0, 1

2
π
)
× (0,∞). As discussed in Section 3.7.1 we have drawn the following

conclusions concerning the free surface, fluid velocity field, and dynamic pressure field

in the inner asymptotic region:

(i) The contact point is located at

(x, y) =
1

2
t2 (µ− 1) (− cotα, 1) +O

(
t
π
α

)
, (4.2.1)

as t→ 0+.

(ii) The free surface slope at the contact point is given by,

ηx
(
Xp (t) , t

)
= t

π
α
−2π

α

(
1− π2

α2

)
A0 (α) a0 (α) (µ− 1) cotα cosα µ

π
2α
−2

+ o
(
t
π
α
−2
)
, (4.2.2)

as t → 0+, with A0 (α) given in (2.0.15) and plotted in Figure 2.3, and a0 (α)

plotted in Figure 3.13. We see that the slope of the free surface is positive for

those pairs (α, µ) ∈
(
0, 1

2
π
)
×(0, 1), and negative when (α, µ) ∈

(
0, 1

2
π
)
×(1,∞).

(iii) The free surface η
(
X, t

)
is given by

η
(
X, t

)
=

1

2
t2 (µ− 1)+ t

π
αA0 (α) (µ− 1)µ

π
2α
−1 cosα ξ+

α

(
X

µ

)
+o
(
t
π
α

)
, (4.2.3)
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as t→ 0+ for X > Xp (t), with

Xp (t) = t
π
α
−2
(

1 +
π

α

)
A0 (α) a0 (α) (µ− 1) cotα cosα µ

π
2α
−1 + o

(
t
π
α
−2
)
.

(4.2.4)

Numerical solution of [PBV P ]+, after which we obtain ξ+
α , indicates that η

(
X, t

)
is monotone increasing in X > Xp (t) when (α, µ) ∈

(
0, 1

2
π
)
× (0, 1), and is

monotone decreasing in X > Xp (t) when (α, µ) ∈
(
0, 1

2
π
)
× (1,∞).

(iv) The fluid velocity field at the contact point q
(
Xp (t) , Y p (t) , t

)
is given by

q
(
Xp (t) , Y p (t) , t

)
= t (µ− 1) j

+ t
π
α
−1π

α

(
1 +

π

α

)
A0 (α) a0 (α) (µ

−1) cosα µ
π
2α
−1 (cotα i −j) + o

(
t
π
α
−1
)
, (4.2.5)

as t→ 0+ in the inner asymptotic region.

When µ > 1 the acceleration of the inclined plate, to leading order in the inner asymp-

totic region, induces a positive constant dynamic pressure gradient of t2 (µ− 1) j,

which drives a jet close to the intersection point of the free surface and the plate, and

directed up the plate, of height 1
2
t2 (µ− 1). When 0 < µ < 1, to leading order in

the inner asymptotic region, the acceleration of the inclined plate induces a constant

negative dynamic pressure gradient of t2 (µ− 1) j, which causes the free surface, close

to the intersection point of the free surface and the plate, to collapse down the plate

to a height of 1
2
t2 (µ− 1).
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(b) (α, µ) ∈
{(

0, 1
2
π
)
\ {α∗n : n = 1, 2, . . . }

}
× (−∞, 0)

In the inner asymptotic region we have solved [PBV P ]− numerically for each pair

(α, µ) ∈
{(

0, 1
2
π
)
\ {α∗n : n = 1, 2, . . . }

}
× (−∞, 0). Pairs of near resonances occur in

a small neighbourhood of α = α∗n (n = 1, 2, . . . ). Away from the near resonance pairs,

we draw the following conclusions regarding the free surface, fluid velocity field, and

dynamic pressure field in the inner asymptotic region, namely:

(i) The contact point is located at

(x, y) =
1

2
t2 (µ− 1) (− cotα, 1) +O

(
t
π
α

)
, (4.2.6)

as t→ 0+.

(ii) The free surface slope at the contact point is given by,

ηx
(
Xp (t) , t

)
= t

π
α
−2π

α

(
1− π2

α2

)
A0 (α) a0 (α) (µ− 1) cotα cosα µ

π
2α
−2

+ o
(
t
π
α
−2
)
, (4.2.7)

as t → 0+, with A0 (α) given in (2.0.15) and plotted in Figure 2.3, and a0 (α)

plotted in Figure 3.28. The slope of the free surface at the contact point is

positive for those pairs (α, µ) ∈
(
α∗2n, α

∗
2n−1

)
× (−∞, 0) (n = 1, 2, . . . ), and

negative when (α, µ) ∈
(
α∗2n+1, α

∗
2n

)
× (−∞, 0) (n = 1, 2, . . . ) and (α, µ) ∈(

α∗1,
1
2
π
)
× (−∞, 0).
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(iii) The free surface η
(
X, t

)
is given by

η
(
X, t

)
= t2

1

2
(µ− 1) + t

π
αA0 (α) (µ− 1) cosα (−µ)

π
2α
−1 ξ−α

(
X

(−µ)

)
+ o

(
t
π
α

)
,

(4.2.8)

as t→ 0+, for X > Xp (t), with

Xp (t) = −t
π
α
−2
(

1 +
π

α

)
A0 (α) a0 (α) (µ− 1) cotα cosα (−µ)

π
2α
−1 + o

(
t
π
α
−2
)
.

(4.2.9)

Numerical solution of [PBV P ]−, after which ξ−α is obtained via (3.2.3), shows

that η is initially decreasing with a single turning point for those pairs (α, µ) ∈(
α∗1,

1
2
π
)
× (−∞, 0). For those pairs (α, µ) ∈ (α∗c , α

∗
1) × (−∞, 0), η is initially

increasing with two turning points. For those pairs (α, µ) ∈ (α∗2, α
∗
c ]× (−∞, 0),

η is monotone increasing. For those pairs (α, µ) ∈
(
α∗2n+1, α

∗
2n

)
× (−∞, 0)

(n = 1, 2, . . . ) η is initially decreasing with (2n− 1) turning points. Finally, for

those pairs (α, µ) ∈
(
α∗2n, α

∗
2n−1

)
×(−∞, 0) (n = 1, 2, . . . ) η is initially increasing

with (2n− 2) turning points.

(iv) The fluid velocity field at the contact point q
(
Xp (t) , Y p (t) , t

)
is given by

q
(
Xp (t) , Y p (t) , t

)
= t (µ− 1) j + t

π
α
−1π

α

(
1 +

π

α

)
A0 (α) a0 (α) (µ

−1) cosα (−µ)
π
2α
−1 (cotα i −j) + o

(
t
π
α
−1
)
, (4.2.10)

as t→ 0+ in the inner asymptotic region.

Finally, for pairs (α, µ) ∈
{(

0, 1
2
π
)
\ {α∗n : n = 1, 2, . . . }

}
× (−∞, 0), we see that, to

leading order in the inner asymptotic region, the acceleration of the inclined plate

induces a constant negative dynamic pressure gradient of t2 (µ− 1) j, which, close
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to the intersection point of the free surface and the plate, causes the free surface to

collapse to a height of 1
2
t2 (µ− 1).

(c) (α, µ) ∈ {α∗n : n = 1, 2, . . . } × (−∞, 0)

Here, in the inner asymptotic region, [PBV P ]− has a stationary point at the intersec-

tion point of the free surface and the inclined accelerating plate. Each angle α = α∗n

(n = 1, 2, . . . ) separates the two near resonances in each near resonance pair. At these

near resonance pairs, we draw the following conclusions regarding the free surface,

fluid velocity field, and dynamic pressure field in the inner asymptotic region, namely:

(i) The contact point is located at

(x, y) =
1

2
t2 (µ− 1) (− cotα∗n, 1) + o

(
t
π
α∗n

)
, (4.2.11)

as t→ 0+.

(ii) The free surface slope at the contact point is given by,

ηx
(
Xp (t) , t

)
= o

(
t
π
α∗n
−2
)
, (4.2.12)

as t→ 0+.

(iii) The free surface η
(
X, t

)
is given by

η
(
X, t

)
= t2

1

2
(µ− 1) + t

π
α∗nA0 (α∗n) (µ− 1) cosα∗n (−µ)

π
2α∗n
−1
ξ−α∗n

(
X

(−µ)

)
+ o

(
t
π
α∗n

)
, (4.2.13)

as t→ 0+ for X > Xp (t), with Xp (t) = o
(
t
π
α∗n
−2
)

, and A0 (α∗n) given in (2.0.15)

and plotted in Figure 2.3.
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(iv) The fluid velocity field at the contact point q
(
Xp (t) , Y p (t) , t

)
is given by

q
(
Xp (t) , Y p (t) , t

)
= t (µ− 1) j + o

(
t
π
α∗n
−1
)
, (4.2.14)

as t→ 0+.

Finally, to leading order in the inner asymptotic region, we have that the accelera-

tion of the inclined plate induces a constant negative dynamic pressure gradient of

t2 (µ− 1) j, which causes the free surface, close to the intersection point of the free

surface and the plate, to collapse to a height of 1
2
t2 (µ− 1).

(d) (α, µ) ∈
(

1
4
π, 1

2
π
)
× {0}

In this degenerate case, the solution to the boundary value problem (3.1.29) - (3.1.34)

in the inner asymptotic region which has least singular behaviour at the contact point(
X,Y

)
= (0, 0) is simply given by the far-field forms. This requires the introduction

of an inner-inner asymptotic region, in which
(
X,Y

)
= o

(
tΓ
)
, with Γ =

( πα−2)
2(1− π

4α)
as

t→ 0+, in order to capture the full regularity at the contact point.

From Section 4.1 we are able to draw the following conclusions regarding the free

surface, fluid velocity field, and dynamic pressure field in the inner-inner asymptotic

region, namely:

(i) The contact point is located at

(x, y) = −1

2
t2 (− cotα, 1)

− tγ (−A0 (α) cosα)
1
2
γ tanα x̂0 (α) (− cotα, 1) + o (tγ) , (4.2.15)

as t→ 0+, with γ = Γ +2 = 1
1− π

4α
, A0 (α) given in (2.0.15) and plotted in Figure

2.3, and x̂0 (α) plotted in Figure 4.7a.

111



(ii) The free surface slope at the contact point is given by

ηx (x̃p (t) , t) = tan

(
1

2
π − α

)
+ o (1) , (4.2.16)

as t→ 0+.

(iii) The free surface η (x̃, t) is given by

η (x̃, t) = −1

2
t2 + tγ (−A0 (α) cosα)

1
2
γ ξ̂

(
x̃

κ (α)

)
+ o (tγ) , (4.2.17)

as t→ 0+ in x̃ > x̃p (t), where x̃p (t) = κx̂o (α)+o (1), with κ (α) = (−A0 (α) cosα)
1
2
γ

plotted in Figure 4.3.

(iv) The fluid velocity field at the contact point q (x̃p (t) , ỹp (t) , t) is given by

q (x̃p (t) , ỹp (t) , t) = −tj + tγ−1 (−A0 (α) cosα)
1
2
γ
(
ψ̂x̃ (x̂0 (α) ,−x̂0 (α) tanα) i

+ ψ̂ỹ (x̂0 (α) ,−x̂0 (α) tanα) j
)

+ o
(
tγ−1

)
, (4.2.18)

as t→ 0+.

Finally, we see that the acceleration of the inclined plate induces a constant nega-

tive dynamic pressure gradient of −tγj, which causes the free surface, close to the

intersection point of the free surface and the plate, to collapse to a height of −1
2
t2.

(e) (α, µ) ∈
(
0, 1

4
π
]
× {0}

In this degenerate case, the solution to the boundary value problem (3.1.29) - (3.1.34)

in the inner asymptotic region is simply given by the far-field forms, which remain

uniform up to the contact point of the free surface and the inclined accelerating plate.

Here, we draw the following conclusions concerning the free surface, fluid velocity field,

and the dynamic pressure field in the inner asymptotic region:
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(i) The contact point is located at

(x, y) = −1

2
t2 (− cotα, 1) + o

(
t
π
α

)
, (4.2.19)

as t→ 0+.

(ii) The free surface slope at the contact point is given by

ηx
(
Xp (t) , t

)
=


o
(
t
π
α
−2
)
, 0 < α < 1

4
π,

−A0( 1
4
π)√

2
t2 + o (t2) , α = 1

4
π,

(4.2.20)

as t→ 0+, with A0 (α) given in (2.0.15) and plotted in Figure 2.3.

(iii) The free surface η
(
X, t

)
is given by

η
(
X, t

)
= −1

2
t2 − t

π
αA0 (α) cosα

π

4α
X

π
2α
−1

+ o
(
t
π
α

)
, (4.2.21)

as t→ 0+ for X > Xp (t), with Xp (t) = o
(
t
π
α
−2
)
.

(iv) The fluid velocity field at the contact point q
(
Xp (t) , Y p (t) , t

)
is given by

q
(
Xp (t) , Y p (t) , t

)
= −tj + o

(
t
π
α
−1
)
, (4.2.22)

as t→ 0+.

Finally, we see that the acceleration of the inclined plate induces a constant nega-

tive dynamic pressure gradient of −t2j, which causes the free surface, close to the

intersection point of the free surface and the plate, to collapse to a height of −1
2
t2.
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The delicate structure in the inner region, particularly when µ 6 0, leads us to ask the

following two related questions:

(I) Is the problem [IBV P ] well-posed with respect to perturbations in initial data in

the inner asymptotic region?

and, when the answer to question [I] is positive,

(II) Is the problem [IBV P ] stable with respect to perturbations in initial data in

the inner asymptotic region?

We consider these two questions in detail in the next Chapter.
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Chapter 5

Well-Posedness and Stability of

Problem [IBV P ]

To analyse the well-posedness and stability of the problem [IBV P ] with respect to per-

turbations in initial data in the innermost asymptotic region, we introduce a perturbation

to the trivial initial data in [IBV P ] in the following form, adjusting the initial conditions

in [IBV P ] to

φ (x, y, 0) = 0, x > 0, −x tanα < y < η (x, 0) , (5.0.1)

η (x, 0) = δη0

(
x

δr

)
, x > 0, (5.0.2)

with 0 < δ � 1 and

η0 (λ) =


η0 (λ) , 0 6 λ 6 1,

0, λ > 1,

(5.0.3)

where η0 (1), η′0 (1) = 0, and η0 continuous with continuous derivatives. We wish to con-

sider the interaction of the initial perturbation in the free surface with the structure of

[IBV P ] in the innermost region as t→ 0+, and r > 0 will be chosen to achieve this. The

problem [IBV P ] will be referred to as well-posed when the solution to the perturbed prob-
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lem approaches the solution to [IBV P ] as δ → 0, uniformly on ST =
⋃

t∈[0,T ]

D (t) × {t},

for each T > 0. In addition, when [IBV P ] is well-posed, we refer to [IBV P ] as stable

when the solution to the perturbed problem approaches the solution to [IBV P ] as t→∞,

uniformly in D (t); otherwise [IBV P ] is said to be unstable.

5.1 The Case
(
(α, µ) ∈

(
0, 1

2π
)
× R

)
\
((

1
4π,

1
2π
)
× {0}

)
Following an examination of (3.1.1) along with (3.1.3), (3.1.5), and (3.1.23), we require

t
π
α ∼ δ and t2 ∼ δr, which, as δ → 0, requires

t = O
(
δ
α
π

)
, (5.1.1)

with

r =
2α

π
. (5.1.2)

In what follows, we will refer to the initially perturbed modification of [IBV P ] (equations

(1.2.17) - (1.2.26)) as [IBV P ]′, and we will address [IBV P ]′ as δ → 0 with t = O
(
δ
α
π

)
.

Thus we write

t = δ
α
π τ, (5.1.3)

with τ = O (1) as δ → 0. We can now write [IBV P ]′ in terms of x, y, φ, η, τ and δ,

which becomes,

∇2φ = 0, (x, y) ∈ D (τ) , τ > 0; (5.1.4)

∇φ · n̂ = δ
α
π τ (µ− 1) cosα, y = −x tanα, xp (τ) < x < xb, τ > 0; (5.1.5)

φy = 0, y = −1, x > xb, τ > 0; (5.1.6)

ητ +
[
δ
α
πφx − δ

2α
π τ (µ− 1) cotα

]
ηx − δ

α
πφy = 0,

y = η (x, τ) , x > xp (τ) , τ > 0; (5.1.7)
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φτ − δ
2α
π τ (µ− 1) cotα φx + δ

α
π

1

2
|∇φ|2 + δ

α
π η = 0,

y = η (x, τ) , x > xp (τ) , τ > 0; (5.1.8)

η + xp (τ) tanα = 0, x = xp (τ) , τ > 0; (5.1.9)

η → 0, as x→∞, τ > 0; (5.1.10)

|∇φ| → 0, as x→∞, uniformly for − 1 6 y 6 η (x, τ) , τ > 0; (5.1.11)

φ (x, y, 0) = 0, (x, y) ∈ D (0) ; (5.1.12)

η (x, 0) = δη0

(
δ−

2α
π x
)
, x > 0; (5.1.13)

with η0 : R→ R as given by (5.0.3).

The structure of the solution to [IBV P ] as t → 0+ indicates that there will be two

asymptotic regions in the solution to [IBV P ]′ as δ → 0 with τ = O (1). In the outer

asymptotic region we have (x, y) ∈ D (τ) = O (1) as δ → 0 with τ = O (1), and we

consider this first.

5.1.1 Outer Asymptotic Region

In this section we begin the asymptotic development of the solution to [IBV P ]′, as δ → 0

with τ = O (1), in an outer asymptotic region in which (x, y) ∈ D (τ) \N (τ) as δ → 0,

with N (τ) being a O (ν (δ)) neighbourhood of (x, y) = (0, 0), such that ν (δ) = o (1) as

δ → 0. Here the gauge function ν (δ) will be determined in the course of the analysis.

The initial conditions (5.1.12) and (5.1.13) require that φ, η = o (1) as δ → 0 in the outer

asymptotic region. In particular, the plate boundary condition (5.1.5) and kinematic

boundary condition (5.1.7) require that φ = O
(
δ
α
π

)
and η = O

(
δ

2α
π

)
as δ → 0 in the

outer asymptotic region. A definition sketch of the outer asymptotic region is shown in

Figure 5.1.
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O′

y

x

α

D (τ) \N (τ)

Outer Region

N (τ)
O (ν (δ))

O
(ν

(δ
))

Figure 5.1: Definition sketch of the outer asymptotic region for the case
(α, µ) ∈

(
0, 1

2
π
)
× R\

(
1
4
π, 1

2
π
)
× {0}

We now introduce the outer region asymptotic expansions in the form,

φ (x, y, τ) = δ
α
π (µ− 1) cosα φ̂ (x, y, τ) +O

(
δ

2α
π

)
, (5.1.14)

η (x, τ) = δ
2α
π η̂ (x, τ) +O

(
δ

3α
π

)
, (5.1.15)

as δ → 0 in the outer asymptotic region, with the factor (µ− 1) cosα in (5.1.14) included

for algebraic convenience at a later stage. Substituting expansions (5.1.14) and (5.1.15)

into [IBV P ]′ (with the exception of condition (5.1.9) since the application point (x, y) =

(xp (τ) , yp (τ)) lies outside the outer asymptotic region), we obtain the leading order

problem in the outer asymptotic region for φ̂, namely

∇2φ̂ = 0, (x, y) ∈ D (0) , τ > 0; (5.1.16)

∇φ̂ · n̂ = τ, y = −x tanα, 0 < x < cotα, τ > 0; (5.1.17)

φ̂y = 0, y = −1, x > 0, τ > 0; (5.1.18)
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φ̂τ = 0, y = 0, x > 0, τ > 0; (5.1.19)∣∣∣∇φ̂∣∣∣→ 0 as x→∞, uniformly for − 1 6 y 6 0, τ > 0; (5.1.20)

φ̂ (x, y, 0) = 0, (x, y) ∈ D (0) ; (5.1.21)

with η̂ given, via (5.1.7), (5.1.13), and (5.1.15), by

η̂τ (x, τ) =
1

2
(µ− 1) cosα φ̂y (x, τ) , x > 0, τ > 0; (5.1.22)

η̂ (x, 0) = 0, x > 0. (5.1.23)

We next introduce φ (x, y) and η (x) by writing

φ̂ (x, y, τ) = τφ (x, y) , (5.1.24)

η̂ (x, τ) = τ 2η (x) . (5.1.25)

The resulting problem for φ and η, obtained after substituting (5.1.24) and (5.1.25) into

(5.1.16) - (5.1.21) is the same as [OBV P ], which was solved and discussed in Chap-

ter 2. We thus have that φ and η are given, for some real constants An, Bn and Cn

(n = 0, 1, 2, . . . ), by

φ (r, θ) =
r sin θ

cosα
+
∞∑
n=0

Anr
(n+ 1

2) πα sin

((
n+

1

2

)
π

α
θ

)
, (5.1.26)

for 0 6 r < cosec α, −α 6 θ 6 0, where x = r cos θ and y = r sin θ, whilst

φ (ρ, ψ) =
ρ cosψ

sinα
+
∞∑
n=0

Bnρ
nπ/(π−α) cos

(
nπψ

π − α

)
, (5.1.27)
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for 0 6 ρ < 1, 0 6 ψ 6 π − α, where x− cotα = ρ cosψ, and y + 1 = ρ sinψ, and finally

φ (x, y) =
∞∑
n=0

Cne
−(n+ 1

2)πx sin

((
n+

1

2

)
πy

)
, (5.1.28)

for x > cotα, −1 6 y 6 0, after which

η (x) =
1

2
(µ− 1) +

1

2
(µ− 1) cosα

∞∑
n=0

(
n+

1

2

)
π

α
Anx

(n+ 1
2) πα−1, (5.1.29)

for 0 6 x < cosec α, and

η (x) =
1

2
(µ− 1) cosα

∞∑
n=0

(
n+

1

2

)
πCne

−(n+ 1
2)πx, (5.1.30)

for x > cosec α. It follows from (5.1.26) and (5.1.29) that, as (x, y)→ (0, 0), we have

φ (r, θ) =
r sin θ

cosα
+ A0 (α) r

π
2α sin

πθ

2α
+O

(
r

3π
2α

)
,

as r → 0+, with − α 6 θ 6 0; (5.1.31)

η (x) =
1

2
(µ− 1) + A0 (α)

π

4α
(µ− 1) cosα x

π
2α
−1 +O

(
x

3π
2α
−1
)
,

as x→ 0+, (5.1.32)

where r and θ are polar coordinates given by x = r cos θ, y = r sin θ, and A0 (α) as given

in (2.0.15) and displayed in Figure 2.3.

As before, (5.1.32) reveals a weak singularity in η′ (x) as x → 0+. This singular

behaviour as x→ 0+ is compounded in higher-order terms in the outer region asymptotic

expansion for η in (5.1.15), and also, as r → 0, in the outer region asymptotic expansion

for φ in (5.1.14), and so the regularity conditions (1.2.30) and (1.2.31) fail to be satisfied

by the outer region asymptotic expansions (5.1.14) and (5.1.15) in a neighbourhood of

the initial point of intersection of the plate and free surface, where (x, y) = o (1) as δ → 0.
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Therefore, in order to capture the full regularity in the neighbourhood of the intersection

point of the plate and the free surface, we introduce an inner asymptotic region, in which

(x, y) = o (1) as δ → 0. The structure of the inner asymptotic region is now considered

in detail in the next section.

5.1.2 Inner Asymptotic Region

In this section we introduce the inner asymptotic region associated with [IBV P ]′ when

(x, y) = o (1) as δ → 0. Specifically, following Section 5.1.1 we write (x, y) = O (ν (δ))

with ν (δ) = o (1) as δ → 0. It then follows from (5.1.15), (5.1.25) and (5.1.32) that

η = O
(
δ

2α
π

)
as δ → 0 in the inner asymptotic region, and so, to capture the free surface

in the inner asymptotic region, we must take ν (δ) = O
(
δ

2α
π

)
as δ → 0; therefore,

without loss of generality, we set ν (δ) = δ
2α
π . An examination of (5.1.14), (5.1.24) and

(5.1.31) then requires that φ = O
(
δ

3α
π

)
as δ → 0 in the inner asymptotic region. Finally,

the intersection point of the free surface and the plate must be captured in the inner

asymptotic region, and so, xp (τ) = O
(
δ

2α
π

)
as δ → 0. A sketch of the location of the

inner asymptotic region is illustrated in Figure 5.2.

Formally we introduce scaled inner region coordinates (X, Y ) by

x = δ
2α
π X, y = δ

2α
π Y, (5.1.33)

with (X, Y ) = O (1) as δ → 0 in the inner asymptotic region. The location of the plate in

the inner asymptotic region is given by Y = −X tanα, whilst the plate and free surface

intersection point is denoted by (X, Y ) = (Xp (τ) , Yp (τ)), with,

xp (τ) = δ
2α
π Xp (τ) , yp (τ) = δ

2α
π Yp (τ) , (5.1.34)

and (Xp (τ) , Yp (τ)) = O (1) as δ → 0 in the inner asymptotic region. We now write the
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free surface and velocity potential in the inner asymptotic region as

η (X, τ) = δ
2α
π ηI (X, τ) , X > Xp (τ) , τ > 0; (5.1.35)

φ (X, Y, τ) = δ
3α
π φI (X, Y, τ) , X > Xp (τ) , −X tanα 6 Y 6 ηI (X, τ) , τ > 0;

(5.1.36)

with ηI (X, τ) , φI (X, Y, τ) = O (1) as δ → 0. The inner region asymptotic expansions are

then introduced as,

ηI (X, τ) = η̃0 (X, τ) + δ1− 2α
π η̃1 (X, τ) + o

(
δ1− 2α

π

)
, (5.1.37)

φI (X, Y, τ) = φ̃0 (X, Y, τ) + δ1− 2α
π φ̃1 (X, Y, τ) + o

(
δ1− 2α

π

)
, (5.1.38)

as δ → 0 with (X, Y ) = O (1) in the inner asymptotic region. Finally, it follows from

(5.1.33), (5.1.34), (5.1.35) and (5.1.37) that we expand Xp (τ) in the form

Xp (τ) = X0 (τ) + δ1− 2α
π X1 (τ) + o

(
δ1− 2α

π

)
, (5.1.39)

as δ → 0, with

Yp (τ) = −Xp (τ) tanα. (5.1.40)

The free surface in the inner asymptotic region is located at

Y = ηI (X, τ) , X > Xp (τ) , τ > 0, (5.1.41)

whilst the spatio-temporal domain in the inner asymptotic region is

DI (τ) = {(X, Y ) : X > Xp (τ) ,−X tanα < Y < ηI (X, τ)} , (5.1.42)
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O′

y

x

α

Outer Region

Inner Region
O
(
δ

2α
π

)

O
( δ

2
α π

)

(xp (τ) , yp (τ))

Figure 5.2: A sketch of the location of the inner asymptotic region for the case
(α, µ) ∈

(
0, 1

2
π
)
× R\

(
1
4
π, 1

2
π
)
× {0}

for τ > 0, with closure DI (τ). A sketch of the inner asymptotic region geometry is given

in Figure 5.3.

We now write [IBV P ]′ in terms of the inner asymptotic region coordinates (X, Y ),

and τ , and the inner asymptotic region variables φI , ηI , and Xp, to obtain,

∇2
φI = 0, (X, Y ) ∈ DI (τ) , τ > 0; (5.1.43)

∇̂φI · n̂ = τ (µ− 1) cosα, X > Xp (τ) , Y = −X tanα, τ > 0; (5.1.44)

ηI,τ + [φI,X − τ (µ− 1) cotα] ηI,X − φI,Y = 0,

X > Xp (τ) , Y = ηI (X, τ) , τ > 0; (5.1.45)

φI,τ − τ (µ− 1) cotα φI,X +
1

2

∣∣∣∇̂φI∣∣∣2 + η = 0,

X > Xp (τ) , Y = ηI (X, τ) , τ > 0; (5.1.46)

ηI (Xp (τ) , τ) = −Xp (τ) tanα, τ > 0; (5.1.47)

φI (X, Y, 0) = 0, X > X0 (0) , −X tanα 6 Y 6 ηI (X, 0) ; (5.1.48)

ηI (X, 0) = δ1− 2α
π η0 (X) , X > X0 (0) ; (5.1.49)
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X

Y

O′

(Xp (τ) , Yp (τ))

Y = −X tanα

Y = ηI (X, τ)

DI (τ)

Figure 5.3: The inner asymptotic region geometry as δ → 0 for the case (α, µ) ∈
(
0, 1

2
π
)
×

R\
(

1
4
π, 1

2
π
)
× {0}

with ∇̂ = (∂/∂X, ∂/∂Y ). On substituting from (5.1.37) - (5.1.39) into (5.1.43) - (5.1.49)

we obtain, at leading order, the following nonlinear harmonic evolution free boundary

problem for φ̃0 (X, Y, τ), η̃0 (X, τ), and X0 (τ), namely

∇̂2φ̃0 = 0, X > X0 (τ) , −X tanα < Y < η̃0 (X, τ) , τ > 0; (5.1.50)

∇̂φ0 · n̂ = τ (µ− 1) cosα, X > X0 (τ) , Y = −X tanα, τ > 0; (5.1.51)

η̃0,τ +
[
φ̃0,X − τ (µ− 1) cotα

]
η̃0,X − φ̃0,Y = 0,

X > X0 (τ) , Y = η̃0 (X, τ) , τ > 0; (5.1.52)

φ̃0,τ − τ (µ− 1) cotα φ̃0,X +
1

2

∣∣∣∇̂φ̃0

∣∣∣2 + η̃0 = 0,

X > X0 (τ) , Y = η̃0 (X, τ) , τ > 0; (5.1.53)

φ̃0 (X, Y, 0) = 0, X > 0, −X tanα 6 Y 6 0; (5.1.54)

η̃0 (X, 0) = 0, X > 0; (5.1.55)

η̃0 (X0 (τ) , τ) = −X0 (τ) tanα, τ > 0. (5.1.56)
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The problem (5.1.50) - (5.1.56) must be completed by asymptotic matching conditions

between the inner asymptotic region and outer asymptotic region. Following Van Dyke’s

Matching Principle (see, for example, [28]), we obtain

φ̃0 (R, θ, τ) ∼ τ (µ− 1)R sin θ as R→∞, −α < θ < 0, τ > 0; (5.1.57)

η̃0 (X, τ) ∼ 1

2
τ 2 (µ− 1) as X →∞, τ > 0, (5.1.58)

where R and θ are polar coordinates given by X = R cos θ, Y = R sin θ. Although

the problem (5.1.50) - (5.1.56) is nonlinear, the simple nature of the matching conditions

mean that it is readily established that the exact solution to the leading order problem is

given by

η̃0 (X, τ) =
1

2
τ 2 (µ− 1) , X > X0 (τ) , τ > 0, (5.1.59)

φ̃0 (X, Y, τ) = τ (µ− 1)Y +
1

6
τ 3 (1− µ) (2µ− 1) ,

X > X0 (τ) , −X tanα 6 Y 6
1

2
τ 2 (µ− 1) , τ > 0, (5.1.60)

with

X0 (τ) = −1

2
τ 2 (µ− 1) cotα, τ > 0. (5.1.61)

This is represented in the inner asymptotic region in Figure 5.4a. We now formulate

the problem at O
(
δ1− 2α

π

)
, where it is convenient to introduce the coordinates

(
X,Y

)
,

according to

X = −1

2
τ 2 (µ− 1) cotα +X, Y =

1

2
τ 2 (µ− 1) + Y , (5.1.62)

as shown in Figure 5.4b. We obtain the following linear, harmonic evolution problem for
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Y = η0 (X, τ) = 1
2
τ 2 (µ− 1)

Y

X
O′

(X0 (τ) , Y0 (τ))

=
(
−1

2
τ 2 (µ− 1) cotα,

1
2
τ 2 (µ− 1)

)
φ0 (X, Y, τ) = τ (µ− 1)Y

+1
6
τ 3 (1− µ) (2µ− 1)

(a) Solution of [IBV P ]
′

at leading order in the inner asymptotic region

Y

X
O′

X

Y

O

(X, Y ) =
(
−1

2
τ 2 (µ− 1) cotα,

1
2
τ 2 (µ− 1)

)
(
X,Y

)
= (0, 0)

(b)
(
X,Y

)
coordinate system in the inner asymptotic region

Figure 5.4: Sketches in the inner asymptotic region for τ > 0, as δ → 0, for the case
(α, µ) ∈

(
0, 1

2
π
)
× R\

(
1
4
π, 1

2
π
)
× {0}
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φ̃1

(
X,Y , τ

)
, η̃1

(
X, τ

)
and X1 (τ), namely,

∇2
φ̃1 = 0, X > 0, −X tanα < Y < 0, τ > 0; (5.1.63)

∇φ̃1 · n̂ = 0, X > 0, Y = −X tanα, τ > 0; (5.1.64)

η̃1,τ − φ̃1,Y = 0, X > 0, Y = 0, τ > 0; (5.1.65)

φ̃1,τ + µη̃1 = 0, X > 0, Y = 0, τ > 0; (5.1.66)

φ̃1

(
R, θ, τ

)
= −τA0 (α) (µ− 1) cosα R

π
2α cos

π

2α
(θ + α) + o

(
R

π
2α

)
,

as R→∞, −α < θ < 0, τ > 0; (5.1.67)

η̃1

(
X, τ

)
= τ 2A0 (α)

π

4α
(µ− 1) cosα X

π
2α
−1

+ o
(
X

π
2α
−1
)
,

as X →∞, τ > 0; (5.1.68)

φ̃1

(
X,Y , 0

)
= 0, X > 0, −X tanα 6 Y 6 0; (5.1.69)

η̃1

(
X, 0

)
= η0

(
X
)
, X > 0. (5.1.70)

Here∇ =
(
∂/∂X, ∂/∂Y

)
, (5.1.67) and (5.1.68) are the matching conditions with the outer

asymptotic region, and we have introduced polar coordinates
(
R, θ

)
, given by X = R cos θ,

Y = R sin θ. Finally we have

X1 (τ) = −η̃1 (0, τ) cotα, τ > 0. (5.1.71)

It is now convenient to write

η̃1

(
X, τ

)
= η̃1

(
X, τ

) ∣∣∣
0

+ ξ
(
X, τ

)
, (5.1.72)

φ̃1

(
X,Y , τ

)
= φ̃1

(
X,Y , τ

) ∣∣∣
0

+ ψ
(
X,Y , τ

)
, (5.1.73)

where η̃1

∣∣∣
0

and φ̃1

∣∣∣
0

are the solution to (5.1.63) - (5.1.68) in the case of zero initial data,

as discussed in Chapter 3. Rewriting the problem (5.1.63) - (5.1.70) in terms of ξ and ψ,

127



we obtain

∇2
ψ = 0, X > 0, −X tanα < Y < 0, τ > 0; (5.1.74)

∇ψ · n̂ = 0, X > 0, Y = −X tanα, τ > 0; (5.1.75)

ξτ − ψY = 0, X > 0, Y = 0, τ > 0; (5.1.76)

ψτ + µξ = 0, X > 0, Y = 0, τ > 0; (5.1.77)

ψ
(
R, θ, τ

)
→ 0 as R→∞, −α < θ < 0, τ > 0; (5.1.78)

ξ
(
X, τ

)
→ 0 as X →∞, τ > 0; (5.1.79)

ψ
(
X,Y , 0

)
= 0, X > 0, −X tanα 6 Y 6 0; (5.1.80)

ξ
(
X, 0

)
= η0

(
X
)
, X > 0. (5.1.81)

We begin our investigation of the problem (5.1.74) - (5.1.81) in the case (α, µ) ∈
(
0, 1

2
π
)
×

(R\ {0}). We seek solutions of the form

ψ
(
X,Y , τ

)
= e−λτψ

(
X,Y

)
, (5.1.82)

ξ
(
X, τ

)
= e−λτξ

(
X
)
, (5.1.83)

with λ ∈ C, which leads to the linear harmonic boundary value problem for ψ, given by

∇2
ψ = 0, X > 0, −X tanα < Y < 0; (5.1.84)

∇ψ · n̂ = 0, X > 0, Y = −X tanα; (5.1.85)

ψY − kψ = 0, X > 0, Y = 0; (5.1.86)

ψ, ∇ψ bounded as R→∞, uniformly for − α < θ < 0; (5.1.87)
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with k = −λ2/µ (for µ 6= 0), after which we obtain ξ from

ξ
(
X
)

=
λ

µ
ψ
(
X, 0

)
, X > 0. (5.1.88)

Here, according to the regularity conditions (1.2.30) and (1.2.31), we require that solutions

to (5.1.84) - (5.1.87), ψ : G∞ → C, have regularity

ψ ∈ C1
(
G∞
)
∩ C2 (G∞) , (5.1.89)

with

G∞ =
{(
X,Y

)
: −X tanα < Y < 0, X > 0

}
. (5.1.90)

The linear harmonic problem (5.1.84) - (5.1.87) is a spectral problem with spectral pa-

rameter k ∈ C, which we refer to as [SP (k)]. It is clear that [SP (k)] has the trivial

solution for each k ∈ C. Further, let ψk : G∞ → C be a nontrivial solution to [SP (k)],

then it is straight forward to establish the following:

(i) k ∈ R+

ψk
(
R, θ

)
=
(
cke

ikR cos θ + dke
−ikR cos θ

)
ekR sin θ

+ ak
1

R
π
2α

cos
π

2α
(θ + α) +O

(
1

R
π
2α

+1

)
, (5.1.91)

as R→∞ uniformly for −α 6 θ 6 0. Here, ck, dk, ak ∈ C are non-zero constants.

(ii) k = 0

ψ0

(
R, θ

)
= a0 + b0

1

R
π
α

cos
π

α
θ +O

(
1

R
2 π
α

)
, (5.1.92)

as R→∞ uniformly for −α 6 θ 6 0. Here a0, b0 ∈ C are non-zero constants.
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(iii) k ∈ C\ (R+ ∪ {0})

ψk
(
R, θ

)
= ak

1

R
π
2α

cos
π

2α
(θ + α) +O

(
1

R
π
2α

+1

)
, (5.1.93)

as R→∞ uniformly for −α 6 θ 6 0. Here, ak ∈ C is a non-zero constant.

Our object now is to classify the spectrum of [SP (k)]. We define the spectrum of

[SP (k)] to be S, where

S = {k ∈ C : [SP (k)] has a non-trivial solution} . (5.1.94)

The set of eigenvalues of [SP (k)] is Sd, where

Sd =
{
k ∈ C : ∃ a non-trivial solution to [SP (k)] with ψ → 0 as R→∞

}
, (5.1.95)

and the continuous spectrum of [SP (k)] is Sc, where

Sc =
{
k ∈ C : ∃ a non-trivial solution to [SP (k)] with ψ 9 0 as R→∞

}
, (5.1.96)

with the limits as R→∞ considered as uniform for −α 6 θ 6 0. We observe that

S = Sc ∪ Sd. (5.1.97)

Following Needham [25], together with the use of (5.1.91) - (5.1.93) above we can establish

that,1

Sc = R+, Sd = ∅, (5.1.98)

1See Appendix A.5 for the details of the classification of the spectrum of [SP (k)]
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and so

Sk = R+. (5.1.99)

We now introduce Sλ ⊆ C, where

Sλ =
{
λ ∈ C : λ2 = −µk, k ∈ S

}
. (5.1.100)

Following (5.1.99), for µ > 0, we have,

Sλ = S+
λ =

{
λ ∈ C : λ = ±i√µk

1
2 , k ∈ R+

}
, (5.1.101)

whilst, for µ < 0, we have

Sλ = S−λ =
{
λ ∈ C : λ = ±

√
(−µ)k

1
2 , k ∈ R+

}
= R. (5.1.102)

Now, the linear evolution problem (5.1.74) - (5.1.81) is:

(a) Well-posed and stable when Re (λ) > 0 for all λ ∈ Sλ.

(b) Well-posed and unstable when there exists M ∈ R such that Re (λ) > M for all

λ ∈ Sλ, and there exists λ∗ ∈ Sλ such that Re (λ∗) < 0.

(c) Ill-posed when there exists a sequence {λn}n∈N, with λn ∈ Sλ for all n ∈ N, such that

Re (λn)→ −∞ as n→∞.

It now follows directly from (5.1.101) and (5.1.102) that the linear evolution problem

(5.1.74) - (5.1.81) is

(I) Well-posed and stable when µ > 0.

(II) Ill-posed when µ < 0.
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We conclude that [IBV P ] is well-posed and stable when (α, µ) ∈
(
0, 1

2
π
)
× R+, whilst

[IBV P ] is ill-posed when (α, µ) ∈
(
0, 1

2
π
)
× R−.

We next consider the problem (5.1.74) - (5.1.81) in the case (α, µ) ∈
(
0, 1

4
π
]
× {0},

where we obtain, from (5.1.74) - (5.1.81), the linear harmonic evolution problem for ψ

given by

∇2
ψ = 0, X > 0,−X tanα < Y < 0, τ > 0; (5.1.103)

∇ψ · n̂ = 0, X > 0, Y = −X tanα, τ > 0; (5.1.104)

ψτ = 0, X > 0, Y = 0, τ > 0; (5.1.105)

ψ
(
R, θ, τ

)
→ 0 as R→∞, −α < θ < 0, τ > 0; (5.1.106)

ψ
(
X,Y , 0

)
= 0, X > 0, −X tanα 6 Y 6 0; (5.1.107)

after which we obtain ξ from

ξτ = ψY
(
X, 0, τ

)
, X > 0, τ > 0, (5.1.108)

ξ
(
X, 0

)
= η0

(
X
)
, X > 0. (5.1.109)

It is straightforward to show that the only solution to the problem (5.1.103) - (5.1.109)

is given by the initial conditions,

ψ
(
X,Y , τ

)
= 0, X > 0, −X tanα 6 Y 6 0, τ > 0, (5.1.110)

ξ
(
X, τ

)
= η0

(
X
)
, X > 0, τ > 0, (5.1.111)

and thus the linear evolution problem (5.1.74) - (5.1.81) is well-posed and stable for all

pairs (α, µ) ∈
(
0, 1

4
π
]
× {0}. We conclude that [IBV P ] is well-posed and stable when

(α, µ) ∈
(
0, 1

4
π
]
× {0}.
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We now consider the well-posedness and stability of [IBV P ] for those pairs (α, µ) ∈(
1
4
π, 1

2
π
)
× G (δ), with G (δ) being a o (1) neighbourhood of µ = 0 as δ → 0.

5.2 The Case: (α, µ) ∈
(

1
4π,

1
2π
)
× G (δ)

In this section we investigate the well-posedness and stability of the problem [IBV P ]

with respect to perturbations in initial data for those pairs (α, µ) ∈
(

1
4
π, 1

2
π
)
×G (δ), with

G (δ) being a o (1) neighbourhood of µ = 0 as δ → 0. We write

µ = ν (δ)µ, (5.2.1)

where µ = O (1) and ν (δ) = o (1) as δ → 0. Here the gauge function ν (δ) will be

determined in the course of the analysis.

Following an examination of (4.1.1) and (4.1.3), we require tγ ∼ δ and tγ ∼ δr, which,

as δ → 0, requires

t = O
(
δ1/γ

)
, (5.2.2)

where γ = 1
1− π

4α
, with

r = 1. (5.2.3)

In what follows, we will refer to the initially perturbed modification of [IBV P ] as [IBV P ]′′,

and we will address [IBV P ]′′ as δ → 0 with t = O
(
δ1/γ

)
. Thus we write

t = δ1/γτ, (5.2.4)

with τ = O (1) as δ → 0. We can now write [IBV P ]′′ in terms of x, y, φ, η, τ and δ,
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which becomes,

∇2φ = 0, (x, y) ∈ D (τ) , τ > 0; (5.2.5)

∇φ · n̂ = δ1/γτ (ν (δ)µ− 1) cosα, y = −x tanα, xp (τ) < x < xb, τ > 0; (5.2.6)

φy = 0, y = −1, x > xb, τ > 0; (5.2.7)

ητ +
[
δ1/γφx − δ2/γτ (ν (δ)µ− 1) cotα

]
ηx − δ1/γφy = 0,

y = η (x, τ) , x > xp (τ) , τ > 0; (5.2.8)

φτ − δ2/γτ (ν (δ)µ− 1) cotα φx + δ1/γ 1

2
|∇φ|2 + δ1/γη = 0,

y = η (x, τ) , x > xp (τ) , τ > 0; (5.2.9)

η + xp (τ) tanα = 0, x = xp (τ) , τ > 0; (5.2.10)

η → 0, as x→∞, τ > 0; (5.2.11)

|∇φ| → 0, as x→∞, uniformly for − 1 6 y 6 η (x, τ) , τ > 0; (5.2.12)

φ (x, y, 0) = 0, (x, y) ∈ D (0) ; (5.2.13)

η (x, 0) = δη0

(
δ−1x

)
, x > 0; (5.2.14)

with η0 : R→ R as given by (5.0.3).

The structure of the solution to [IBV P ] as t → 0+ indicates that there will be three

asymptotic regions in the solution to [IBV P ]′′ as δ → 0 with τ = O (1). In the outer

asymptotic region we have (x, y) ∈ D (τ) = O (1) as δ → 0 with τ = O (1), and we

consider this first.

5.2.1 Outer Asymptotic Region

In this section we begin the asymptotic development of the solution to [IBV P ]′′, as δ → 0

with τ = O (1), in an outer asymptotic region in which (x, y) ∈ D (τ) \N (τ) as δ → 0,

with N (τ) being a O (ν (δ)) neighbourhood of (x, y) = (0, 0), such that ν (δ) = o (1) as
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Figure 5.5: Definition sketch of the outer asymptotic region for the case
(α, µ) ∈

(
1
4
π, 1

2
π
)
× G (µ)

δ → 0. Here the gauge function ν (δ) will be determined in the course of the analysis.

The initial conditions (5.2.13) and (5.2.14) require that φ, η = o (1) as δ → 0 in the outer

asymptotic region. In particular, the plate boundary condition (5.2.6) and kinematic

boundary condition (5.2.8) require that φ = O
(
δ1/γ

)
and η = O

(
δ2/γ

)
as δ → 0 in the

outer asymptotic region. A definition sketch of the outer asymptotic region is shown in

Figure 5.5.

We now introduce the outer region asymptotic expansions in the form,

φ (x, y, τ) = −δ1/γ cosα φ̂ (x, y, τ) +O
(
δ2/γ

)
, (5.2.15)

η (x, τ) = δ2/γ η̂ (x, τ) +O
(
δ3/γ

)
, (5.2.16)

as δ → 0 in the outer asymptotic region, with the factor − cosα in (5.2.15) included for

algebraic convenience at a later stage. Substituting expansions (5.2.15) and (5.2.16) into

[IBV P ]′′ (with the exception of condition (5.2.10) since the application point (x, y) =
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(xp (τ) , yp (τ)) lies outside the outer asymptotic region), we obtain the leading order

problem in the outer asymptotic region for φ̂, namely

∇2φ̂ = 0, (x, y) ∈ D (0) , τ > 0; (5.2.17)

∇φ̂ · n̂ = τ, y = −x tanα, 0 < x < cotα, τ > 0; (5.2.18)

φ̂y = 0, y = −1, x > 0, τ > 0; (5.2.19)

φ̂τ = 0, y = 0, x > 0, τ > 0; (5.2.20)∣∣∣∇φ̂∣∣∣→ 0 as x→∞, uniformly for − 1 6 y 6 0, τ > 0; (5.2.21)

φ̂ (x, y, 0) = 0, (x, y) ∈ D (0) . (5.2.22)

with η̂ given, via (5.2.8), (5.2.14), and (5.2.16), by

η̂τ (x, τ) = −1

2
cosα φ̂y (x, τ) , x > 0, τ > 0; (5.2.23)

η̂ (x, 0) = 0, x > 0. (5.2.24)

Notice that the problem (5.2.17) - (5.2.24) is the same as (5.1.16) - (5.1.23) when µ = 0,

which was studied in Section 5.1.1. Following Section 5.1.1, we introduce φ (x, y) and

η (x) by writing

φ̂ (x, y, τ) = τφ (x, y) , (5.2.25)

η̂ (x, τ) = τ 2η (x) . (5.2.26)

The resulting problem for φ and η, obtained after substituting (5.2.25) and (5.2.26) into

(5.2.17) - (5.2.22) is the same as [OBV P ], which was solved and discussed in Chap-

ter 2. We thus have that φ and η are given, for some real constants An, Bn and Cn
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(n = 0, 1, 2, . . . ), by

φ (r, θ) =
r sin θ

cosα
+
∞∑
n=0

Anr
(n+ 1

2) πα sin

((
n+

1

2

)
π

α
θ

)
, (5.2.27)

for 0 6 r < cosec α, −α 6 θ 6 0, where x = r cos θ and y = r sin θ, whilst

φ (ρ, ψ) =
ρ cosψ

sinα
+
∞∑
n=0

Bnρ
nπ/(π−α) cos

(
nπψ

π − α

)
, (5.2.28)

for 0 6 ρ < 1, 0 6 ψ 6 π − α, where x− cotα = ρ cosψ, and y + 1 = ρ sinψ, and finally

φ (x, y) =
∞∑
n=0

Cne
−(n+ 1

2)πx sin

((
n+

1

2

)
πy

)
, (5.2.29)

for x > cotα, −1 6 y 6 0, after which

η (x) = −1

2
− 1

2
cosα

∞∑
n=0

(
n+

1

2

)
π

α
Anx

(n+ 1
2) πα−1, (5.2.30)

for 0 6 x < cosec α, and

η (x) = −1

2
cosα

∞∑
n=0

(
n+

1

2

)
πCne

−(n+ 1
2)πx, (5.2.31)

for x > cosec α. It follows from (5.2.27) and (5.2.30) that, as (x, y)→ (0, 0), we have

φ (r, θ) =
r sin θ

cosα
+ A0 (α) r

π
2α sin

πθ

2α
+O

(
r

3π
2α

)
,

as r → 0+, with − α 6 θ 6 0; (5.2.32)

η (x) = −1

2
− A0 (α)

π

4α
cosα x

π
2α
−1 +O

(
x

3π
2α
−1
)
, as x→ 0+; (5.2.33)

where r and θ are polar coordinates given by x = r cos θ, y = r sin θ, and A0 (α) as given

in (2.0.15) and displayed in Figure 2.3.
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As before, (5.2.33) reveals a weak singularity in η′ (x) as x → 0+. This singular

behaviour as x→ 0+ is compounded in higher-order terms in the outer region asymptotic

expansion for η in (5.2.16), and also, as r → 0, in the outer region asymptotic expansion

for φ in (5.2.15), and so the regularity conditions (1.2.30) and (1.2.31) fail to be satisfied

by the outer region asymptotic expansions (5.2.15) and (5.2.16) in a neighbourhood of

the initial point of intersection of the plate and free surface, where (x, y) = o (1) as δ → 0.

Therefore, in order to capture the full regularity in the neighbourhood of the intersection

point of the plate and the free surface, we introduce an inner asymptotic region, in which

(x, y) = o (1) as δ → 0. The structure of the inner asymptotic region is now considered

in detail in the next section.

5.2.2 Inner Asymptotic Region

In this section we introduce the inner asymptotic region associated with [IBV P ]′′ when

(x, y) = o (1) as δ → 0. Specifically, following Section 5.2.1 we write (x, y) = O (ν (δ))

with ν (δ) = o (1) as δ → 0. It then follows from (5.2.16), (5.2.26) and (5.2.33) that

η = O
(
δ2/γ

)
as δ → 0 in the inner asymptotic region, and so, to capture the free surface

in the inner asymptotic region, we must take ν (δ) = O
(
δ2/γ

)
as δ → 0; therefore,

without loss of generality, we set ν (δ) = δ2/γ. An examination of (5.2.15), (5.2.25) and

(5.2.32) then requires that φ = O
(
δ3/γ

)
as δ → 0 in the inner asymptotic region. Finally,

the intersection point of the free surface and the plate must be captured in the inner

asymptotic region, and so, xp (τ) = O
(
δ2/γ

)
as δ → 0. A sketch of the location of the

inner asymptotic region is illustrated in Figure 5.6.

Formally we introduce scaled inner region coordinates (X, Y ) by

x = δ2/γX, y = δ2/γY, (5.2.34)

with (X, Y ) = O (1) as δ → 0 in the inner asymptotic region. The location of the plate in
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Figure 5.6: A sketch of the location of the inner asymptotic region for the case
(α, µ) ∈

(
1
4
π, 1

2
π
)
× G (δ)

the inner asymptotic region is given by Y = −X tanα, whilst the plate and free surface

intersection point is denoted by (X, Y ) = (Xp (τ) , Yp (τ)), with,

xp (τ) = δ2/γXp (τ) , yp (τ) = δ2/γYp (τ) , (5.2.35)

and (Xp (τ) , Yp (τ)) = O (1) as δ → 0 in the inner asymptotic region. We now write the

free surface and velocity potential in the inner asymptotic region as

η (X, τ) = δ2/γηI (X, τ) , X > Xp (τ) , τ > 0; (5.2.36)

φ (X, Y, τ) = δ3/γφI (X, Y, τ) , X > Xp (τ) , −X tanα 6 Y 6 ηI (X, τ) , τ > 0;

(5.2.37)

with ηI (X, τ) , φI (X, Y, τ) = O (1) as δ → 0. The inner region asymptotic expansions are
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then introduced as,

ηI (X, τ) = η̃0 (X, τ) + δ(
π
α
−2)/γ η̃1 (X, τ) + o

(
δ(

π
α
−2)/γ

)
, (5.2.38)

φI (X, Y, τ) = φ̃0 (X, Y, τ) + δ(
π
α
−2)/γφ̃1 (X, Y, τ) + o

(
δ(

π
α
−2)/γ

)
, (5.2.39)

as δ → 0 with (X, Y ) = O (1) in the inner asymptotic region. Finally, it follows from

(5.2.34), (5.2.35), (5.2.36) and (5.2.38) that we expand Xp (τ) in the form

Xp (τ) = X0 (τ) + δ(
π
α
−2)/γX1 (τ) + o

(
δ(

π
α
−2)/γ

)
, (5.2.40)

as δ → 0, with

Yp (τ) = −Xp (τ) tanα. (5.2.41)

The free surface in the inner asymptotic region is located at

Y = ηI (X, τ) , X > Xp (τ) , τ > 0, (5.2.42)

whilst the spatio-temporal domain in the inner asymptotic region is

DI (τ) = {(X, Y ) : X > Xp (τ) ,−X tanα < Y < ηI (X, τ)} , (5.2.43)

for τ > 0, with closure DI (τ). A sketch of the inner asymptotic region geometry is given

in Figure 5.7.

We now write [IBV P ]′′ in terms of the inner asymptotic region coordinates (X, Y ),

and τ , and the inner asymptotic region variables φI , ηI , and Xp, to obtain,

∇̂2φI = 0, (X, Y ) ∈ DI (τ) , τ > 0; (5.2.44)

∇̂φI · n̂ = −τ cosα + ν (δ) τµ cosα, X > Xp (τ) , Y = −X tanα, τ > 0; (5.2.45)

140



X

Y

O′
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Figure 5.7: The inner asymptotic region geometry as δ → 0 for the case (α, µ) ∈
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4
π, 1

2
π
)
×

G (δ)

ηI,τ + [φI,X + τ cotα] ηI,X − φI,Y − ν (δ) τµ cotα ηI,X = 0,

X > Xp (τ) , Y = ηI (X, τ) , τ > 0; (5.2.46)

φI,τ + τ cotα φI,X +
1

2

∣∣∣∇̂φI∣∣∣2 + η − ν (δ) τµ cotα φI,X = 0,

X > Xp (τ) , Y = ηI (X, τ) , τ > 0; (5.2.47)

ηI (Xp (τ) , τ) = −Xp (τ) tanα, τ > 0; (5.2.48)

φI (X, Y, 0) = 0, (X, Y ) ∈ DI (0) ; (5.2.49)

ηI (X, 0) = δ1−2/γη0

(
δ2/γ−1X

)
, X > X0 (0) ; (5.2.50)

with ∇̂ = (∂/∂X, ∂/∂Y ). On substituting from (5.2.38) - (5.2.40) into (5.2.44) - (5.2.50)

we obtain, at leading order, the following nonlinear harmonic evolution free boundary

problem for φ̃0 (X, Y, τ), η̃0 (X, τ), and X0 (τ), namely

∇̂2φ̃0 = 0, X > X0 (τ) , −X tanα < Y < η̃0 (X, τ) , τ > 0; (5.2.51)

∇̂φ0 · n̂ = −τ cosα, X > X0 (τ) , Y = −X tanα, τ > 0; (5.2.52)
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η̃0,τ +
[
φ̃0,X + τ cotα

]
η̃0,X − φ̃0,Y = 0, X > X0 (τ) , Y = η̃0 (X, τ) , τ > 0; (5.2.53)

φ̃0,τ + τ cotα φ̃0,X +
1

2

∣∣∣∇̂φ̃0

∣∣∣2 + η̃0 = 0, X > X0 (τ) , Y = η̃0 (X, τ) , τ > 0; (5.2.54)

φ̃0 (X, Y, 0) = 0, X > 0, −X tanα 6 Y 6 0; (5.2.55)

η̃0 (X, 0) = 0, X > 0; (5.2.56)

η̃0 (X0 (τ) , τ) = −X0 (τ) tanα, τ > 0. (5.2.57)

The problem (5.2.51) - (5.2.57) must be completed by asymptotic matching conditions

between the inner asymptotic region and outer asymptotic region. Following Van Dyke’s

Matching Principle (see, for example, [28]), we obtain

φ̃0 (R, θ, τ) ∼ −τR sin θ as R→∞, −α < θ < 0, τ > 0; (5.2.58)

η̃0 (X, τ) ∼ −1

2
τ 2 as X →∞, τ > 0; (5.2.59)

where R and θ are polar coordinates given by X = R cos θ, Y = R sin θ. Although

the problem (5.2.51) - (5.2.57) is nonlinear, the simple nature of the matching conditions

mean that it is readily established that the exact solution to the leading order problem is

given by

η̃0 (X, τ) = −1

2
τ 2, X > X0 (τ) , τ > 0, (5.2.60)

φ̃0 (X, Y, τ) = −τY − 1

6
τ 3, X > X0 (τ) , −X tanα 6 Y 6 −1

2
τ 2, τ > 0, (5.2.61)

with

X0 (τ) =
1

2
τ 2 cotα, τ > 0. (5.2.62)

This is represented in the inner asymptotic region in Figure 5.8a. We now formulate

the problem at O
(
δ1− 2α

π

)
, where it is convenient to introduce the coordinates

(
X,Y

)
,
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Y = η0 (X, τ) = −1
2
τ 2

Y

X
O′

(X0 (τ) , Y0 (τ))

=
(

1
2
τ 2 cotα,−1

2
τ 2
)

φ0 (X, Y, τ) = −τY − 1
6
τ 3

(a) Solution of [IBV P ]
′′

at leading order in the inner asymptotic
region

Y

X
O′

X

Y

O
′

(X, Y ) =
(

1
2
τ 2 cotα,−1

2
τ 2
)

(
X,Y

)
= (0, 0)

(b)
(
X,Y

)
coordinate system in the inner asymptotic region

Figure 5.8: Sketches in the inner asymptotic region for τ > 0, as δ → 0, for the case
(α, µ) ∈

(
1
4
π, 1

2
π
)
× G (δ)
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according to

X =
1

2
τ 2 cotα +X, Y = −1

2
τ 2 + Y , (5.2.63)

as shown in Figure 5.8b. We obtain the following linear, harmonic evolution problem for

φ̃1

(
X,Y , τ

)
, η̃1

(
X, τ

)
and X1 (τ), namely,

∇2
φ̃1 = 0, X > 0, −X tanα < Y < 0, τ > 0; (5.2.64)

∇φ̃1 · n̂ = 0, X > 0, Y = −X tanα, τ > 0; (5.2.65)

η̃1,τ − φ̃1,Y = 0, X > 0, Y = 0, τ > 0; (5.2.66)

φ̃1,τ = 0, X > 0, Y = 0, τ > 0; (5.2.67)

φ̃1

(
R, θ, τ

)
= τA0 (α) cosα R

π
2α cos

π

2α
(θ + α) + o

(
R

π
2α

)
as R→∞, −α < θ < 0, τ > 0; (5.2.68)

η̃1

(
X, τ

)
= −τ 2A0 (α)

π

4α
cosα X

π
2α
−1

+ o
(
X

π
2α
−1
)

as X →∞, τ > 0; (5.2.69)

φ̃1

(
X,Y , 0

)
= 0, X > 0, −X tanα 6 Y 6 0; (5.2.70)

η̃1

(
X, 0

)
= 0, X > 0. (5.2.71)

Here∇ =
(
∂/∂X, ∂/∂Y

)
, (5.2.68) and (5.2.69) are the matching conditions with the outer

asymptotic region, and we have introduced polar coordinates
(
R, θ

)
, given by X = R cos θ,

Y = R sin θ. Finally we have

X1 (τ) = −η̃1 (0, τ) cotα, τ > 0. (5.2.72)

It is straightforward to show that, in this degenerate case, the solution to the problem

(5.2.64) - (5.2.71) with least singular behaviour at
(
X,Y

)
= (0, 0) is simply given by the
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far-field forms, that is

φ̃1

(
R, θ, τ

)
= τA0 (α) cosα R

π
2α cos

π

2α
(θ + α),

R > 0, −α < θ < 0, τ > 0; (5.2.73)

η̃1

(
X, τ

)
= −τ 2A0 (α)

π

4α
cosα X

π
2α
−1
, X > 0, τ > 0. (5.2.74)

We see from (5.2.73) and (5.2.74) that a weak nonuniformity in derivatives
(
ηI,X ,∇φI

)
persists close to the contact point and, in particular, when X, Y = O

(
δ
π
2α
−1
)
. This

requires the introduction of an inner-inner asymptotic region, in which X, Y = O
(
δ
π
2α
−1
)

as δ → 0. The structure of the inner-inner asymptotic region is now considered in detail

in the next section.

5.2.3 Inner-Inner Asymptotic Region

In this section we introduce the inner-inner asymptotic region associated with [IBV P ]′′

when
(
X,Y

)
= o (1) as δ → 0, with α ∈

(
1
4
π, 1

2
π
)
. Specifically, following Section 5.2.2, we

write
(
X,Y

)
= O (∆ (δ)) with ∆ (δ) = o (1) as δ → 0 in the inner-inner asymptotic region.

It then follows from (5.2.38), together with (5.2.60) and (5.2.74) that Y I = 1
2
τ 2 + ηI =

O
(
δ(

π
α
−2)/γ∆ (δ)

π
2α
−1
)

as δ → 0 in the inner-inner asymptotic region. The free-surface

must be captured in the inner-inner asymptotic region. This requires

∆ (δ) = O
(
δ
π
2α
−1
)
, (5.2.75)

as δ → 0. A sketch of the location of the inner-inner asymptotic region is illustrated in

Figure 5.9.

Formally, we introduce scaled inner-inner asymptotic region coordinates (x̃, ỹ) by

X = δ
π
2α
−1x̃, Y = δ

π
2α
−1ỹ, (5.2.76)
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Figure 5.9: A sketch of the location of the inner-inner asymptotic region for the case
(α, µ) ∈

(
1
4
π, 1

2
π
)
× G (δ)

with (x̃, ỹ) = O (1) as δ → 0 in the inner-inner asymptotic region. The location of the

plate in the inner-inner asymptotic region is given by ỹ = −x̃ tanα, whilst the intersection

point of the plate and the fluid free surface is denoted by (x̃, ỹ) = (x̃p (τ) , ỹp (τ)), with,

Xp (τ) = δ
π
2α
−1x̃p (τ) , Y p (τ) = δ

π
2α
−1ỹp (τ) , (5.2.77)

for τ > 0, with (x̃p (τ) , ỹp (τ)) = O (1) as δ → 0 in the inner-inner asymptotic region.

An examination of (5.2.38) and (5.2.39), together with (5.2.60), (5.2.61), (5.2.73), and

(5.2.74) reveals that ηI = −1
2
τ 2 +O

(
δ
π
2α
−1
)

and φi = 1
3
τ 3− δ π

2α
−1τ ỹ+O

(
δ
π
α
−2
)

as δ → 0

in the inner-inner asymptotic region. We now write the free surface and velocity potential

in the inner-inner asymptotic region as

ηI (x̃, τ) = −1

2
τ 2 + δ

π
2α
−1ηII (x̃, τ) , x̃ > x̃p (τ) , τ > 0; (5.2.78)

φI (x̃, ỹ, τ) =
1

3
τ 3 − δ

π
2α
−1τ ỹ + δ

π
α
−2φII (x̃, ỹ, τ) , (x̃, ỹ) ∈ DII (τ) , τ > 0; (5.2.79)
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with ηII (x̃, τ), φII (x̃, ỹ, τ) = O (1) as δ → 0. The inner-inner region asymptotic expan-

sions are then introduced as,

ηII (x̃, τ) = η̂0 (x̃, τ) + o (1) , (5.2.80)

φII (x̃, ỹ, τ) = φ̂0 (x̃, ỹ, τ) + o (1) , (5.2.81)

as δ → 0, with (x̃, ỹ) = O (1) in the inner-inner asymptotic region. Finally it follows from

(5.2.77) - (5.2.78), and (5.2.80) that we expand x̃p (τ) in the form

x̃p (τ) = x̃0 (τ) + o (1) , (5.2.82)

as δ → 0, with

ỹp (τ) = −x̃p (τ) tanα. (5.2.83)

The free surface in the inner-inner asymptotic region is located at

ỹ = ηII (x̃, τ) , x̃ > x̃p (τ) , τ > 0, (5.2.84)

whilst the spatio-temporal domain in the inner-inner asymptotic region is

DII (τ) = {(x̃, ỹ) : x̃ > x̃p (τ) , −x̃ tanα < ỹ < ηII (x̃, τ)} , (5.2.85)

for τ > 0, with closure DII (τ). A sketch of the inner-inner asymptotic region geometry

is given in Figure 5.10.

An examination of the plate boundary condition (5.2.6) along with (5.2.76) and

(5.2.79) then requires that ν (δ) = O
(
δ
π
2α
−1
)

(from which it follows that G (ν) = O
(
δ
π
2α
−1
)
),
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Figure 5.10: The inner-inner asymptotic region geometry as δ → 0 for the case
(α, µ) ∈
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π, 1

2
π
)
× G (δ)

and so, without loss of generality, we choose

ν (δ) = δ
π
2α
−1. (5.2.86)

We are now able to write [IBV P ]′′ in terms of the inner-inner asymptotic region coor-

dinates (x̃, ỹ), and τ , and the inner-inner asymptotic region variables φII , ηII and x̃p, to

obtain,

∇̃2φII = 0, (x̃, ỹ) ∈ DII (τ) , τ > 0; (5.2.87)

∇̃φII · n̂ = τµ cosα, x̃ > x̃p (τ) , ỹ = −x̃ tanα, τ > 0; (5.2.88)

ηII,τ + φII,x̃ηII,x̃ − τµ cotα ηII,x̃ − φII,ỹ = 0, x̃ > x̃p (τ) , ỹ = ηII (x̃, τ) , τ > 0; (5.2.89)

φII,τ − τµ cotα φII,x̃ +
1

2

∣∣∣∇̃φII∣∣∣2 = 0, x̃ > x̃p (τ) , ỹ = ηII (x̃, τ) , τ > 0; (5.2.90)

ηII (x̃p (τ) , τ) = −x̃p (τ) tanα, τ > 0; (5.2.91)
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φII (x̃, ỹ, 0) = 0, (x̃, ỹ) ∈ DII (0) ; (5.2.92)

ηII (x̃, 0) = η0 (x̃) , x̃ > x̃p (0) ; (5.2.93)

with ∇̃ = (∂/∂x̃, ∂/∂ỹ). On substituting from (5.2.80) - (5.2.82) into (5.2.87) - (5.2.93)

we obtain, at leading order, the following nonlinear harmonic evolution free boundary

problem for φ̂0 (x̃, ỹ, τ), η̂0 (x̃, τ) and x̃0 (τ), namely

∇̃2φ̂0 = 0, x̃ > x̃0 (τ) , −x̃ tanα < ỹ < η̂0 (x̃, τ) , τ > 0; (5.2.94)

∇̃φ̂0 · n̂ = τµ cosα, x̃ > x̃0 (τ) , ỹ = −x̃ tanα, τ > 0; (5.2.95)

η̂0,τ + φ̂0,x̃η̂0,x̃ − τµ cotα η̂0,x̃ − φ̂0,ỹ = 0, x̃ > x̃0 (τ) , ỹ = η̂0 (x̃, τ) , τ > 0; (5.2.96)

φ̂0,τ − τµ cotα φ̂0,x̃ +
1

2

∣∣∣∇̃φ̂0

∣∣∣2 = 0, x̃ > x̃0 (τ) , ỹ = η̂0 (x̃, τ) , τ > 0; (5.2.97)

η̂0 (x̃0 (τ) , τ) = −x̃0 (τ) tanα, τ > 0; (5.2.98)

φ̂0 (x̃, ỹ, 0) = 0, x̃ > x̃0 (0) , −x̃ tanα < ỹ < η̂0 (x̃, 0) ; (5.2.99)

η̂0 (x̃, 0) = η0 (x̃) , x̃ > x̃0 (0) . (5.2.100)

The problem (5.2.94) - (5.2.100) must be completed by asymptotic matching conditions

between the inner-inner asymptotic region and the inner asymptotic region. Following

Van Dyke’s Matching Principle (see, for example, [28]), we obtain,

φ̂0 (r̃, θ, τ) = τA0 (α) cosα r̃
π
2α cos

π

2α
(θ + α) + o

(
r̃
π
2α

)
as r̃ →∞, −α < θ < 0, τ > 0; (5.2.101)

η̂0 (x̃, τ) = −τ 2A0 (α)
π

4α
cosα x̃

π
2α
−1 + o

(
x̃

π
2α
−1
)

as x̃→∞, τ > 0; (5.2.102)

where r̃ and θ are polar coordinates given by x̃ = r̃ cos θ, ỹ = r̃ sin θ. Finally we have

x̃0 (τ) = −η̂0 (x̃0 (τ) , τ) cotα, τ > 0. (5.2.103)
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It is now convenient to introduce the variables ψ and ξ, according to

φ̂0 (x̃, ỹ, τ) = ψ (x̂, ŷ, τ) + µτỹ − 1

3
µ2τ 3, (5.2.104)

η̂0 (x̃, τ) = ξ (x̃, τ) +
1

2
µτ 2, (5.2.105)

with the forms of (5.2.104) and (5.2.105) chosen for algebraic convenience at a later stage.

We now write the problem (5.2.94) - (5.2.102) in terms of ψ and ξ as

∇̃2ψ = 0, x̃ > x̃0 (τ) , −x̃ tanα < ỹ < ξ (x̃, τ) +
1

2
µτ 2, τ > 0; (5.2.106)

∇̃ψ · n̂ = 0, x̃ > x̃0 (τ) , ỹ = −x̃ tanα, τ > 0; (5.2.107)

ξτ + ψx̃ξx̃ − τµ cotα ξx̃ − ψỹ = 0, x̃ > x̃0 (τ) , ỹ = ξ (x̃, τ) +
1

2
µτ 2, τ > 0; (5.2.108)

ψτ − τµ cotα ψ̂x̃ +
1

2

∣∣∣∇̃ψ∣∣∣2 = 0, x̃ > x̃0 (τ) , ỹ = ξ (x̃, τ) +
1

2
µτ 2, τ > 0; (5.2.109)

ξ (x̃0 (τ) , τ) = −x̃0 (τ) tanα− 1

2
µτ 2, τ > 0; (5.2.110)

ψ (x̃, ỹ, 0) = 0, x̃ > x̃0 (0) , −x̃ tanα < ỹ < ξ (x̃, 0) ; (5.2.111)

ξ (x̃, 0) = η0 (x̃) , x̃ > x̃0 (0) ; (5.2.112)

ψ (r̃, θ, τ) = τA0 (α) cosα r̃
π
2α cos

π

2α
(θ + α) + o

(
r̃
π
2α

)
as r̃ →∞, −α < θ < 0, τ > 0; (5.2.113)

ξ (x̃, τ) = −τ 2A0 (α)
π

4α
cosα x̃

π
2α
−1 + o

(
x̃

π
2α
−1
)

as x̃→∞, τ > 0. (5.2.114)

Finally we introduce the coordinates (x̂, ŷ), according to

x̂ = x̃+
1

2
µτ 2 cotα, ŷ = ỹ − 1

2
µτ 2. (5.2.115)

We obtain the following nonlinear harmonic evolution free boundary problem for ψ (x̂, ŷ, τ),
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ξ (x̂, τ) and x̂0 (τ), namely

∇̂2ψ = 0, x̂ > x̂0 (τ) , −x̂ tanα < ŷ < ξ (x̂, τ) , τ > 0; (5.2.116)

∇̂ψ · n̂ = 0, x̂ > x̂0 (τ) , ŷ = −x̂ tanα, τ > 0; (5.2.117)

ξτ + ψx̂ξx̂ − ψŷ = 0, x̂ > x̂0 (τ) , ŷ = ξ (x̂, τ) , τ > 0; (5.2.118)

ψτ +
1

2

∣∣∣∇̂ψ∣∣∣2 + µξ = 0, x̂ > x̂0 (τ) , ŷ = ξ (x̂, τ) , τ > 0; (5.2.119)

ξ (x̂0 (τ) , τ) = −x̂0 (τ) tanα, τ > 0; (5.2.120)

ψ (x̂, ŷ, 0) = 0, x̂ > x̂0 (0) , −x̂ tanα < ŷ < ξ (x̂, 0) ; (5.2.121)

ξ (x̂, 0) = η0 (x̂) , x̂ > x̂0 (0) ; (5.2.122)

ψ (r̂, θ, τ) = τA0 (α) cosα r̂
π
2α cos

π

2α
(θ + α) + o

(
r̂
π
2α

)
as r̂ →∞, −α < θ < 0, τ > 0; (5.2.123)

ξ (x̂, τ) = −τ 2A0 (α)
π

4α
cosα x̂

π
2α
−1 + o

(
x̂

π
2α
−1
)

as x̂→∞, τ > 0; (5.2.124)

where r̂, and θ are polar coordinates given by x̂ = r̂ cos θ and ŷ = r̂ sin θ, and ∇̂ =

(∂/∂x̂, ∂/∂ŷ)2, with

x̂0 (τ) = x̃0 (τ) +
1

2
µτ 2 cotα. (5.2.125)

The initial boundary value evolution problem (5.2.116) - (5.2.124), henceforth referred

to as [EBV P ], can now be solved numerically using a boundary integral method, which

follows the approach discussed in Chapter 4, with implicit time-stepping to evolve the

solution in time.

In solving [EBV P ] numerically we must specify the initial free surface profile. For the

2Notation not to be confused with that used in Chapter 3.
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following results we have chosen ξ (x̂, 0) to be given by

ξ (x̂, 0) = η0 (x̂) =


0.02 (1− cos 2πx̂) , 0 6 x̂ 6 1,

0, x̂ > 1.

(5.2.126)

Numerical solutions of [EBV P ] are plotted in Figures 5.11 - 5.14. In Figure 5.11 we

present the comparison between the free surface ξ (x̂, τ) calculated with zero initial data

(shown in each plot as a dotted red line) and the free surface ξ (x̂, τ) calculated with the

initial free surface profile given in (5.2.126) (shown in each plot as a solid blue line) for

the case α = 1.4, with µ = 1. It is clear to see, as predicted by the theory presented in

Section 5.1.2, that, when initially perturbed, the free surface ξ (x̂, τ) collapses to the self-

similar solution, indicating that the problem [EBV P ] is well-posed and stable in this case.

This behaviour is typical of all pairs (α, µ) tested in the range (α, µ) ∈
(

1
4
π, 1

2
π
)
× R+,

and of all initial free surface profiles η0 (x̂) tested. As we decrease µ and choose values

with µ < 0 we are unable to obtain numerically any converged solutions to [EBV P ].

This indicates that the problem [EBV P ] is ill-posed, which is in agreement with the the

theory presented in Section 5.1.2. In Figure 5.12 we present the comparison between the

free surface ξ (x̂, τ) calculated with zero initial data (shown in each plot as a dotted red

line) and the free surface ξ (x̂, τ) calculated with the initial free surface profile given in

(5.2.126) (shown in each plot as a solid blue line) for the case α = 1.4, with µ = 0. Here

we see that the continuation of the numerical solution when µ = 0 indicates that the

case µ = 0 separates the regions where the problem [EBV P ] is well-posed (µ > 0) and

ill-posed (µ < 0). Finally, Figures (5.13) and (5.14) demonstrate the good agreement of

the numerical solution with the far-field asymptotic form in [EBV P ] (5.2.124).

152



0 2 4
0

0.1

0.2

0.3

0.4
τ = 0

x̂

ŷ
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Figure 5.11: Graph of the evolution of ξ (x̂, τ) against x̂ for the numerical solution of
[EBV P ], for increasing values of τ with µ = 1 and α = 1.4. In each plot a black line
shows the location of the plate, a dotted red line shows the solution for the case of zero
initial data, and a blue line shows the solution when the initial data is as given in (5.2.126)
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Figure 5.12: Graph of the evolution of ξ (x̂, τ) against x̂ for the numerical solution of
[EBV P ], for increasing values of τ with µ = 0 and α = 1.4. In each plot a black line
shows the location of the plate, a dotted red line shows the solution for the case of zero
initial data, and a blue line shows the solution when the initial data is as given in (5.2.126)
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Figure 5.13: Graph of the evolution of ξ (x̂, τ) against x̂, showing agreement with the
far-field asymptotic form (5.2.124) for the numerical solution of [EBV P ], with µ = 1,
α = 1.4, and increasing values of τ as given in Figure 5.11. In each plot a black line shows
the location of the plate, and blue lines show the solution when the initial data is as given
in (5.2.126)
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ŷ
=
ξ

(x̂
,τ

)

Figure 5.14: Graph of the evolution of ξ (x̂, τ) against x̂, showing agreement with the
far-field asymptotic form (5.2.124) for the numerical solution of [EBV P ], with µ = 0,
α = 1.4, and increasing values of τ as given in Figure 5.12. In each plot a black line shows
the location of the plate, and blue lines show the solution when the initial data is as given
in (5.2.126)
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5.3 Discussion

We have now completed the analysis of the well-posedness and stability of the problem

[IBV P ] with respect to perturbations in initial data in the innermost asymptotic region

as t → 0, for each pair (α, µ) ∈
(
0, 1

2
π
)
× R, where µ = 1 + σ tanα. We introduced a

perturbation to the trivial initial data in [IBV P ] of the form

φ (x, y, 0) = 0, x > 0, −x tanα < y < η (x, 0) , (5.3.1)

η (x, 0) = δη0

(
x

δr

)
, x > 0, (5.3.2)

with 0 < δ � 1 and

η0 (λ) =


η0 (λ) , 0 6 λ 6 1,

0, λ > 0,

(5.3.3)

where η0 (1), η′0 (1) = 0 and η0 continuous with continuous derivatives. We have not as

yet included the effects of surface tension in our model. We believe that, for those cases

where [IBV P ] is ill-posed with respect to perturbations in initial data in the innermost

asymptotic region, the inclusion of weak surface tension terms in our model will result

in the governing initial boundary value problem becoming well-posed and unstable with

respect to perturbations in initial data in the innermost asymptotic region.

We have drawn the following conclusions regarding the well-posedness and stability of

the problem [IBV P ] with respect to perturbations in initial data in the innermost region:

(a) (α, µ) ∈
(
0, 1

2
π
)
× R+

Here, the initial boundary value problem [IBV P ] is well-posed and stable with re-

spect to perturbations in initial data in the inner asymptotic region as t → 0+. We

anticipate that the inclusion in our model of the effect of weak surface tension will
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not qualitatively change the structure of the solution in this case.

(b) (α, µ) ∈
(
0, 1

2
π
)
× R−

Here, the initial boundary value problem [IBV P ] is ill-posed with respect to perturba-

tions in initial data in the inner asymptotic region as t→ 0+. We anticipate that the

inclusion of weak surface tension in our model will result in the governing initial value

problem [IBV P ] becoming well-posed but unstable with respect to perturbations in

initial data in the inner asymptotic region.

(c) (α, µ) ∈
(
0, 1

4
π
]
× {0}

Here, the initial boundary value problem [IBV P ] is well-posed and stable with re-

spect to perturbations in initial data in the inner asymptotic region as t → 0+. We

anticipate that the inclusion in our model of the effect of weak surface tension will

not qualitatively change the structure of the solution in this case.

(d) (α, µ) ∈
(

1
4
π, 1

2
π
)
× (G (δ) ∩ R+)

Here, the initial boundary value problem [IBV P ] is well-posed and stable with respect

to perturbations in initial data in the inner-inner asymptotic region as t → 0+. We

anticipate that the inclusion in our model of the effect of weak surface tension will

not qualitatively change the structure of the solution in this case.

(e) (α, µ) ∈
(

1
4
π, 1

2
π
)
× (G (δ) ∩ R−)

Here, the initial boundary value problem [IBV P ] is ill-posed with respect to pertur-

bations in initial data in the inner-inner asymptotic region as t→ 0+. We anticipate

that the inclusion of weak surface tension in our model will result in the govern-

ing initial value problem [IBV P ] becoming well-posed but unstable with respect to

perturbations in initial data in the inner-inner asymptotic region.
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Chapter 6

Conclusions

In this thesis we have studied the problem of a rigid plate, inclined at an angle α ∈(
0, 1

2
π
)

to the horizontal, accelerating uniformly from rest, into or away from a semi-

infinite expanse of inviscid, incompressible fluid, via the method of matched asymptotic

expansions.

We began in an outer asymptotic region in which (x, y) = O (1) as t → 0+. Here, we

have established that the leading order terms in the outer region asymptotic expansions

for the velocity potential φ (2.0.1), and the free surface elevation η (2.0.2), satisfy the

required regularity (1.2.30) and (1.2.31), except in a neighbourhood of the initial location

of the intersection point of the free surface and the plate, at (x, y) = (0, 0). This motivated

the introduction of an inner asymptotic region, in which (x, y) = o (1) as t→ 0+, in order

to capture the full regularity in this neighbourhood.

The results for the solution of the governing initial boundary value problem ([IBV P ]),

as t → 0+ in the inner asymptotic region, fall into four distinct cases depending upon α

and µ = 1 + σ tanα (with σ being the dimensionless acceleration of the inclined plate).

1. (α, µ) ∈
(
0, 1

2
π
)
× (0,∞)

Here, we have solved [PBV P ]+ numerically for each α ∈
(
0, 1

2
π
)
. We establish that,

when µ > 1, the free surface in the inner asymptotic region is monotone decreasing.
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For 0 < µ < 1, the free surface in the inner asymptotic region is monotone increasing.

2. (α, µ) ∈
{(

0, 1
2
π
)
\ {α∗n : n = 1, 2, . . . }

}
× (−∞, 0)

Here, we have solved [PBV P ]− numerically for each α ∈
(
0, 1

2
π
)
\ {α∗n : n = 1, 2, . . . }.

Pairs of near resonances occur in a small neighbourhood of α = α∗n (n = 1, 2, . . . ).

Away from the near resonance pairs, for those α ∈
(
α∗1,

1
2
π
)
, the free surface has one

turning point and is initially decreasing. For angles α ∈ (α∗c , α
∗
1) the free surface

has two turning points and is initially increasing. For angles α ∈ (α∗2, α
∗
c ] the free

surface is monotone increasing. For angles
(
α∗2n+1, α

∗
2n

)
(n = 1, 2, . . . ), the free sur-

face has (2n− 1) turning points and is initially decreasing. For angles
(
α∗2n, α

∗
2n−1

)
(n = 2, 3, . . . ), the free surface has (2n− 2) turning points and is initially increasing.

3. (α, µ) ∈ {α∗n : n = 1, 2, . . . } × (−∞, 0)

Here, [PBV P ]− has a stationary point at the intersection point of the free surface

and the inclined plate. Each angle α = α∗n (n = 1, 2, . . . ) separates the two near

resonances in each near resonance pair.

4. (α, µ) ∈
(
0, 1

4
π
)
× {0}

In this degenerate case, the solution to the boundary value problem (3.1.29) -

(3.1.34) in the inner asymptotic region is simply given by the far-field forms (3.2.19)

and (3.2.22), which remain uniform up to the intersection point of the free surface

and the inclined accelerating plate.

5. (α, µ) ∈
(

1
4
π, 1

2
π
)
× {0}

In this degenerate case, the solution to the boundary value problem (3.1.29) -

(3.1.34) in the inner asymptotic region which has least singular behaviour at the con-

tact point is simply given by the far-field forms (3.2.19) and (3.2.22). This required

the introduction of an inner-inner asymptotic region, in which
(
X,Y

)
= o

(
tΓ
)
, with

Γ =
( πα−2)

2(1− π
4α)

as t→ 0+, in order to capture the full regularity at the contact point.
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Here,we have solved [RBV P ] numerically for each α ∈
(

1
4
π, 1

2
π
)
. We establish that

the free surface in the inner-inner asymptotic region is monotone increasing, and

meets the plate with a constant angle of 1
2
π for all α ∈

(
1
4
π, 1

2
π
)
.

We have also analysed the well-posedness and stability of the problem [IBV P ] with

respect to perturbations in initial data in the innermost asymptotic region. We have

drawn the following conclusions:

1. (α, µ) ∈
(
0, 1

2
π
)
× R+

Here, the initial boundary value problem [IBV P ] is well-posed and stable with

respect to perturbations in initial data in the inner asymptotic region as t → 0+.

We anticipate that the inclusion in our model of the effect of weak surface tension

will not qualitatively change the structure of the solution in this case.

2. (α, µ) ∈
(
0, 1

2
π
)
× R−

Here, the initial boundary value problem [IBV P ] is ill-posed with respect to per-

turbations in initial data in the inner asymptotic region as t → 0+. We anticipate

that the inclusion of weak surface tension in our model will result in the govern-

ing initial value problem [IBV P ] becoming well-posed but unstable with respect to

perturbations in initial data in the inner asymptotic region.

3. (α, µ) ∈
(
0, 1

4
π
]
× {0}

Here, the initial boundary value problem [IBV P ] is well-posed and stable with

respect to perturbations in initial data in the inner asymptotic region as t → 0+.

We anticipate that the inclusion in our model of the effect of weak surface tension

will not qualitatively change the structure of the solution in this case.
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4. (α, µ) ∈
(

1
4
π, 1

2
π
)
× (G (δ) ∩ R+)

Here, the initial boundary value problem [IBV P ] is well-posed and stable with

respect to perturbations in initial data in the inner-inner asymptotic region as t→

0+. We anticipate that the inclusion in our model of the effect of weak surface

tension will not qualitatively change the structure of the solution in this case.

5. (α, µ) ∈
(

1
4
π, 1

2
π
)
× (G (δ) ∩ R−)

Here, the initial boundary value problem [IBV P ] is ill-posed with respect to pertur-

bations in initial data in the inner-inner asymptotic region as t→ 0+. We anticipate

that the inclusion of weak surface tension in our model will result in the govern-

ing initial value problem [IBV P ] becoming well-posed but unstable with respect to

perturbations in initial data in the inner-inner asymptotic region.

The asymptotic solution to [IBV P ] as t→ 0+ for those pairs (α, µ) ∈
(
0, 1

2
π
)
× R is

now complete.

6.1 Future Work

The work presented in this thesis has posed a number of questions which remain unan-

swered. Regarding the physical problem, that [IBV P ] is ill-posed with respect to per-

turbations in initial data in the innermost asymptotic region for the case µ < 0 suggests

that we should include the effects of surface tension in our model. We anticipate that

the introduction of surface tension should result in a well-posed problem in the innermost

asymptotic region, but that [IBV P ] will be unstable with respect to perturbations in

initial data.

In terms of the plate inclination angle α, we have not yet considered the cases α = 1
2
π

(the extension of the work done by King and Needham [14]), or α ∈
(

1
2
π, π

)
(the extension

of the work done by Needham et al [24]). These remain to be investigated.
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We believe that an interesting topic of future work concerns the case of an inclined

vibrating plate accelerating uniformly from rest away from a semi-infinite expanse of in-

viscid incompressible fluid. With the vibration of the plate chosen such that we see several

periods of oscillation in the inner asymptotic region, we believe that some interesting re-

sults could be achieved. Here, the inclusion of surface tension terms will be essential in

ensuring the existence of structure in the solution of the free surface. This problem more

closely models that of a ship accelerating from rest in a body of water, with vibrations in

the hull generated by its engine.
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Appendices

A.1 Derivation of Problems in the Inner Asymptotic

Region
This appendix details the derivation of problems in the inner asymptotic region. We have
introduced in Section 3.1 the scaled coordinates

x = t2X, y = t2Y, (A.1.1)

along with the scaled variables

η (X, t) = t2ηI (X, t) , X > Xp (t) , t > 0; (A.1.2)

φ (X, Y, t) = t3φI (X, Y, t) , (X, Y ) ∈ DI (t) , t > 0; (A.1.3)

xp (t) = t2Xp (t) , t > 0; (A.1.4)

and the asymptotic expansions

ηI (X, t) = η0 (X) + t
π
α
−2η (X) + o

(
t
π
α
−2
)
, (A.1.5)

φI (X, Y, t) = φ0 (X, Y ) + t
π
α
−2φ (X, Y ) + o

(
t
π
α
−2
)
, (A.1.6)

Xp (t) = X0 + t
π
α
−2X1 + o

(
t
π
α
−2
)
, (A.1.7)

as t → 0+ in the inner asymptotic region. To begin we substitute (A.1.1) - (A.1.7) into
the Laplace equation (1.2.17), to give

O (1) : ∇2
φ0 = 0, X > X0,−X tanα < Y < η0 (X) ; (A.1.8)

O
(
t
π
α
−2
)

: ∇2
φ = 0, X > X0,−X tanα < Y < η0 (X) . (A.1.9)

where ∇ =
(
∂
∂X
, ∂
∂Y

)
. Similarly, along the plate we obtain,

O (1) : ∇φ0 · n̂ = σ sinα, X > X0, Y = −X tanα; (A.1.10)

O
(
t
π
α
−2
)

: ∇φ · n̂ = 0, X > X0, Y = −X tanα. (A.1.11)
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On substitution of (A.1.1) - (A.1.7) into the kinematic boundary condition (1.2.20) we
arrive at

2t
(
η0 + t

π
α
−2η
)

+
(π
α
− 2
)
t
π
α
−1η − 2Xt

(
η0X + t

π
α
−2ηX

)
+ t
(
φ0X + t

π
α
−2
(
φ0XY η + φX

)
− σ

) (
η0X + t

π
α
−2ηX

)
− t
(
φ0Y + t

π
α
−2
(
φ0Y Y η + φY

))
+ o

(
t
π
α
−1
)

= 0,

on Y = η0 (X) , X > X0, t > 0. (A.1.12)

Collecting terms in (A.1.12) we arrive at,

O (t) : 2η0 − (2X + σ − φ0X) η0X − φ0Y = 0 on Y = η0 (X) , X > X0. (A.1.13)

O
(
t
π
α
−1
)

:
(π
α

+ η0Xφ0XY − φ0Y Y

)
η + (φ0X − 2X) ηX

+ η0XφX − φY = 0 on Y = η0 (X) , X > X0. (A.1.14)

Next, substitution of (A.1.1) - (A.1.4) into the dynamic boundary condition (1.2.21) gives,

3t2φI + t3φIt − 2t2XφIX − 2t2ηIφIY − σt2φIX +
1

2
t2
(
φ2
IX + φ2

IY

)
+ t2ηI = 0,

on Y = ηI (X, t) , X > Xp (t) , t > 0. (A.1.15)

Now we substitute from (A.1.5) - (A.1.7) into (A.1.15) to obtain

3t2
(
φ0 + t

π
α
−2
(
φ0Y η + φ

))
+
(π
α
− 2
)
t
π
αφ

− 2t2
(
X +

1

2
σ

)(
φ0X + t

π
α
−2
(
φ0XY η + φX

))
− 2t2

(
η0 + t

π
α
−2η
) (
φ0Y + t

π
α
−2
(
φ0Y Y η + φY

))
+

1

2
t2
(
φ2

0X + 2t
π
α
−2
(
φ0XY η + φX

)
+ φ2

0Y + 2t
π
α
−2
(
φ0Y Y η + φY

))
+ t2

(
η0 + t

π
α
−2η
)

+ o
(
t
π
α

)
= 0 on Y = η0 (X) , X > X0, t > 0. (A.1.16)

Collecting terms in (A.1.16) gives,

O
(
t2
)

: 3φ0 − 2

(
X +

1

2
σ

)
φ0X − 2η0φ0Y +

1

2

∣∣∇φ0

∣∣2 + η0 = 0,

on Y = η0 (X) , X > X0. (A.1.17)
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O
(
t
π
α

)
:

(
1 +

π

α

)
φ+

(
φ0X − 2

(
X +

1

2
σ

))
φX + (φ0Y − 2η0)φY

+

(
φ0Y − 2

(
X +

1

2
σ

)
φ0XY − 2η0φ0Y Y + φ0Xφ0XY

+φ0Y φ0Y Y + 1

)
η = 0 on Y = η0 (X) , X > X0. (A.1.18)

Finally, we substitute from (A.1.1), (A.1.2), (A.1.4), (A.1.5) and (A.1.7) into the contact
point boundary condition (1.2.22). We arrive at,

η0 + t
π
α
−2 (η0XX1 + η) + tanα

(
X0 + t

π
α
−2X1

)
+ o

(
t
π
α
−2
)

= 0,

when X = X0, t > 0. (A.1.19)

Collecting terms in (A.1.19) gives,

O (1) : η0 +X0 tanα = 0 at X = X0. (A.1.20)

O
(
t
π
α
−2
)

: η + (η0X + tanα)X1 = 0 at X = X0. (A.1.21)

Collecting together (A.1.8), (A.1.10), (A.1.13), (A.1.17) and (A.1.20) we arrive at the
harmonic free boundary problem (3.1.16) - (3.1.20) for φ0 and η0. Similarly collecting
together (A.1.9), (A.1.11), (A.1.14), (A.1.18) and (A.1.21), and using (3.1.23) - (3.1.25)
for η0, φ0 and X0, together with the scaling (3.1.27) and (3.1.28) we arrive at the linear
harmonic boundary value problem (3.1.29) - (3.1.32) and (3.1.35) for φ̂, η̂ and X1.

A.2 Scaling of the Boundary Value Problem (3.1.29)

- (3.1.35) to Obtain [BV P ]±

This appendix contains the derivation of scalings (3.1.36), which reduce the boundary
value problem (3.1.29) - (3.1.35) to [BV P ]±. When µ 6= 0 we write

φ̂ = |µ|n ψ, R = |µ|m R̂, X = |µ|m X̂,
Y = |µ|m Ŷ , η̂ = |µ|l ξ, (A.2.1)

where µ = 1+σ tanα and l,m, n are to be chosen. The Laplace equation (3.1.29) and the
plate boundary condition (3.1.30) are invariant under the scaling (A.2.1). The kinematic
boundary condition (3.1.31) remains invariant under the scaling (A.2.1) provided we take

l +m− n = 0. (A.2.2)

To remove µ from the dynamic boundary condition (3.1.32), we must take

l − n = −1. (A.2.3)
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Finally, the far-field conditions (3.1.33) and (3.1.34) remain invariant under the scaling
(A.2.1) provided we take

π

2α
m− n = 0, (A.2.4)

l −
( π

2α
− 1
)
m = 0. (A.2.5)

We have four linear algebraic equations (A.2.2), (A.2.3), (A.2.4) and (A.2.5) which must
be satisfied by l, m and n. In echelon form, the system of linear algebraic equations
becomes, 

1 1 −1
0 1 0
0 0 1
0 0 0


 l
m
n

 =


0
1
π
2α

0

 , (A.2.6)

which has the unique solution,

l =
π

2α
− 1, m = 1, n =

π

2α
. (A.2.7)

With the above choices for l, m and n, the scaling (A.2.1) reduces the boundary value
problem (3.1.29) - (3.1.35) to [BV P ]±.

A.3 The Near-Field Boundary Condition for the

Numerical Solution of [PBV P ]±

This appendix contains the formulation of a suitable regularity condition representing
(3.2.1), required for numerical solution of [PBV P ]±. We numerically implement the

regularity condition (3.2.1) on [PBV P ]± as R̂→ 0 by requiring, via (3.2.11), that,

ψθ + R̂ tan (θ + α)ψR̂ = O
(
R̂2
)
, (A.3.1)

as R̂ → 0, uniformly for −α 6 θ 6 0. Numerical implementation of (A.3.1) is achieved
by requiring

ψθ + R̂ tan (θ + α)ψR̂ = 0, (A.3.2)

at R̂ = ε, −α 6 θ 6 0, with ε > 0 chosen to be sufficiently small. Thereafter the near-field
constant a0 for [PBV P ]±, respectively, can be approximated using the finite difference
scheme discussed in §3.3.

A.4 Finite Difference Approximations

This appendix details the discretisation of [PBV P ]±, and thus the formulation of the
decoupled large sparse system of linear algebraic equations outlined in §3.3.
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A.4.1 The Laplace Equation

Using (3.3.5) we discretise the Laplace equation and apply associated discretised condi-
tions at the boundaries. In the wedge we discretise Laplace’s equation to give

2

δ

(
ψi+1,j − ψi,j

∆R̂l

− ψi,j − ψi−1,j

∆R̂k

)
+

1

R̂i

(
ψi+1,j − ψi−1,j

δ

)
+

1

R̂2
i

(
ψi,j−1 − 2ψi,j + ψi,j+1

∆θ2

)
= 0, (A.4.1)

which rearranges to

cwi ψi−1,j + coiψi,j + ceiψi+1,j + cni ψi,j−1 + csiψi,j+1 = 0, (A.4.2)

for i = 1, 2, . . . , N,N + 1 j = 1, 2, . . . , J, J + 1 where cni , c
s
i , c

e
i , c

w
i , c

o
i are the coefficients of

the five-point stencil given by

cwi = R̂2
i δ
∗
(

2

δ∆R̂k

− 1

δR̂i

)
, (A.4.3)

coi = −2R̂2
i δ
∗

(
1

∆θ2R̂2
i

+
1

δ∗

)
, (A.4.4)

cei = R̂2
i δ
∗
(

2

δ∆R̂l

+
1

δR̂i

)
, (A.4.5)

cni = csi =
δ∗

∆θ2
, (A.4.6)

with δ∗ = ∆R̂k∆R̂l. We note that at the boundaries, where i = 1, N + 1, j = 1, J + 1, we
must discretise and apply the boundary conditions (3.2.5), (3.2.6), (3.2.25) and (A.3.2).

A.4.2 Plate Boundary Condition

For discretised points on the plate we apply the Neumann boundary condition (3.1.38) to
generate an equation for ψi,J+2 in terms of interior points, given by

ψi,J+2 = ψi,J , i = 1, 2, . . . , N + 1, (A.4.7)

which reduces (A.4.2), when j = J + 1, to

cwi ψi−1,J+1 + coiψi,J+1 + ceiψi+1,J+1 + (cni + csi )ψi,J = 0, (A.4.8)

for i = 2, 3, . . . , N − 1.
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A.4.3 Free Surface Boundary Condition

Discretisation of (3.2.4) gives

π

α

(
1 +

π

α

)
ψi,1 + 2R̂i

(
1− 2

π

α

)(ψi+1,1 − ψi−1,1

δ

)
+

4R̂2
i

2

δ

(
ψi+1,1 − ψi,1

∆R̂l

− ψi,1 − ψi−1,1

∆R̂k

)
± 1

R̂i

(
ψi,0 − ψi,2

2∆θ

)
= 0, (A.4.9)

which rearranges to,(
cwi + cni c

fw
i

)
ψi−1,1 +

(
coi + cni c

fo
i

)
ψi,1

+
(
cei + cni c

fe
i

)
ψi+1,1 + (csi + cni )ψi,2 = 0, (A.4.10)

for i = 2, 3, . . . , N − 1, with

cfwi = ∓2R̂i∆θ

[
8R̂2

i

δ∆R̂k

− 2R̂i
1

δ

(
1− 2

π

α

)]
, (A.4.11)

cfoi = ∓2R̂i∆θ

[
π

α

(
1 +

π

α

)
− 2

δ

(
4R̂2

i

∆R̂l

+
4R̂2

i

∆R̂k

)]
, (A.4.12)

cfei = ∓2R̂i∆θ

[
8R̂2

i

δ∆R̂l

+ 2R̂i
1

δ

(
1− 2

π

α

)]
. (A.4.13)

A.4.4 Far-field Boundary Condition

At R̂ = R̂∞ we apply the far-field boundary condition (3.2.25), giving

ψN+1,j = −R̂
π
2α∞ cos

π

2α
(θj + α)∓ 12α sinα

π
R̂

π
2α
−1

∞ cos
( π

2α
− 1
)

(θj + α)

+
3 (2α− π)

20α
R̂

π
2α
−2

∞ cos
( π

2α
− 2
)

(θj + α), (A.4.14)

which rearranges to

cwNψN−1,j + coNψN,j + cnNψN,j−1 + csNψN,j+1 = −ceNψN+1,j, (A.4.15)

for j = 2, 3, . . . , J . At the intersection (i, j) = (N, 1) we combine (A.4.2), (A.4.10) and
(A.4.15) to give (

cwN + cnNc
fw
N

)
ψN−1,1 +

(
coN + cnNc

fo
N

)
ψN,1

+ (csN + cnN)ψN,2 = −
(
ceN + cnNc

fe
N

)
ψN+1,1. (A.4.16)
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Similarly, at the intersection point (i, j) = (N, J + 1) we combine (A.4.2), (A.4.8) and
(A.4.15), giving

cwNψN−1,J+1 + coNψN,J+1 + (cnN + csN)ψN,J = −ceNψN+1,J+1. (A.4.17)

A.4.5 Near-Field Boundary Condition

We apply condition (A.3.2), in discretised form, to (A.4.2), which gives

co1ψ1,j + (ce1 + cw1 )ψ2,j +

(
cn1 +

δ

2∆θR̂1 tan (θj + α)
cw1

)
ψ1,j−1

+

(
cs1 −

δ

2∆θR̂1 tan (θj + α)
cw1

)
ψ1,j+1 = 0, (A.4.18)

for j = 2, 3, . . . , J . Combining (A.4.2), (A.4.8) and (A.4.18) we get, at the intersection
point (i, j) = (1, J + 1),

co1ψ1,J+1 + (ce1 + cw1 )ψ2,J+1 + (cn1 + cs1)ψ1,J = 0, (A.4.19)

and, at the intersection point (i, j) = (1, 1), we combine (A.4.2), (A.4.10) and (A.4.18) to
obtain, [

c0
1 +

1

1− δ

2∆θR̂1 tanα
cfw1

cfo1

]
ψ1,1

+

ce1 + cw1 +
1(

1− δ

2∆θR̂1 tanα
cfw1

) (cfe1 + cfw1

)ψ2,1

+ [cn1 + cs1]ψ1,2 = 0. (A.4.20)

Thus, via (A.4.2), (A.4.8), (A.4.10), (A.4.15), (A.4.16), (A.4.17), (A.4.18), (A.4.19) and
(A.4.20), we arrive at the large, sparse linear algebraic system (3.3.8).

A.5 Classification of the Spectrum of [SP (k)]

This appendix details the classification of the spectrum of [SP (k)]. In Section 5.1.2 we
define the spectral problem [SP (k)] to be given by

∇2
ψ = 0, X > 0, −X tanα < Y < 0; (A.5.1)

∇ψ · n̂ = 0, X > 0, Y = −X tanα; (A.5.2)

ψY − kψ = 0, X > 0, Y = 0; (A.5.3)

ψ, ∇ψ bounded as R→∞, uniformly for − α < θ < 0; (A.5.4)
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with k = −λ2/µ (for µ 6= 0), and we require that solutions to [SP (k)], ψ : G∞ → C, have
regularity given by (5.1.89). We define the spectrum of [SP (k)] to be given by

S = {k ∈ C : [SP (k)] has a non-trivial solution} . (A.5.5)

The set of eigenvalues of [SP (k)] is Sd, where

Sd =
{
k ∈ C : ∃ a non-trivial solution to [SP (k)] with ψ → 0 as R→∞

}
, (A.5.6)

and the continuous spectrum of [SP (k)] is Sc, where

Sc =
{
k ∈ C : ∃ a non-trivial solution to [SP (k)] with ψ 9 0 as R→∞

}
, (A.5.7)

with the limits as R → ∞ considered as uniform for −α 6 θ 6 0. Finally, we observe
that

S = Sc ∪ Sd. (A.5.8)

We now determine Sk. Following Needham [25], we obtain the following results.

Theorem 1

S ⊆ {k ∈ C : Re (k) > 0} ∪ {0} = R+. (A.5.9)

Proof. The proof requires that, for each k ∈ C\R+, we establish that [SP (k)] has only
the trivial solution. Let k ∈ C\R+, and let ψ : G∞ → C be a solution to [SP (k)]. Green’s
theorem (see, for example, [12]), along with the regularity (5.1.89), and (A.5.1), gives that∫∫

GR∗

{
∇ψ∗ · ∇ψ

}
R dR dθ =

∫
∂G

{
ψ
∗ (∇ψ · n̂)} dS, (A.5.10)

where GR∗ = G∞\ (R∗,∞)× [−α, 0], and ∂G =
{(
R, θ

)
: 0 6 R 6 R∗, θ = 0

}
∪
{(
R, θ

)
: R = R∗, −α < θ < 0

}
∪
{(
R, θ

)
: 0 6 R 6 R∗, θ = −α

}
. It follows from (A.5.10)

and (A.5.2) that

∫∫
GR∗

(∣∣ψR∣∣2 +

∣∣∣∣ 1

R
ψθ

∣∣∣∣2
)
R dR dθ =

0∫
−α

(
Rψ

∗
ψR

)
R=R∗

dθ +

R∗∫
0

(
ψ
∗ 1

R
ψθ

)
θ=0

dR,

(A.5.11)

which becomes, using (A.5.3),

∫∫
GR∗

(∣∣ψR∣∣2 +

∣∣∣∣ 1

R
ψθ

∣∣∣∣2
)
R dR dθ − k

R∗∫
0

(∣∣ψ∣∣2)
θ=0

dR =

0∫
−α

(
Rψ

∗
ψR

)
R=R∗

dθ, (A.5.12)
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for each R∗ > 0. We now introduce u and v, where

u
(
R, θ

)
= Re

[
ψ
(
R, θ

)]
, v

(
R, θ

)
= Im

[
ψ
(
R, θ

)]
, (A.5.13)

after which we obtain from (A.5.12)

∫∫
G∗R∗

(∣∣ψR∣∣2 +

∣∣∣∣ 1

R
ψθ

∣∣∣∣2
)
R dR dθ − k

R∗∫
0

(∣∣ψ∣∣2)
θ=0

dR

=
1

2
R∗

d

dR∗


0∫

−α

(∣∣ψ∣∣2
R=R∗

dθ
)+ iR∗

0∫
−α

(uvR − uRv)R=R∗ dθ. (A.5.14)

Taking the real part of (A.5.14) gives

∫∫
GR∗

(∣∣ψR∣∣2 +

∣∣∣∣ 1

R
ψθ

∣∣∣∣2
)
R dR dθ − Re (k)

R∗∫
0

(∣∣ψ∣∣2)
θ=0

dR

=
1

2
R∗

d

dR∗


0∫

−α

(∣∣ψ∣∣2
R=R∗

)
dθ

 , (A.5.15)

for each R∗ > 0. Using (5.1.93) we can now write the right-hand side of (A.5.15), in the
limit R∗ →∞, as

1

2
R∗

d

dR∗


0∫

−α

(∣∣ψ∣∣2
R=R∗

dθ
)

=
1

2
R∗

d

dR∗


0∫

−α

(
|ak|2

1

R∗
π
α

cos2 π

2α
(θ + α) +O

(
1

R∗
π
α

+1

))
dθ

 ,

= −π
4
|ak|2

1

R∗
π
α

+O

(
1

R∗
π
α

+1

)
, (A.5.16)

which is bounded as R∗ →∞. Since Re (k) 6 0, is then follows from (A.5.15) that

∫∫
GR∗

(∣∣ψR∣∣2 +

∣∣∣∣ 1

R
ψθ

∣∣∣∣2
)
R dR dθ 6

1

2
R∗

d

dR∗


0∫

−α

(∣∣ψ∣∣2
R=R∗

dθ
) , (A.5.17)

and so the left-hand side of (A.5.17) is bounded and non-decreasing as R∗ →∞, and thus
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has a finite non-negative limit as R∗ →∞, so that

lim
R∗→∞

∫∫
GR∗

(∣∣ψR∣∣2 +

∣∣∣∣ 1

R
ψθ

∣∣∣∣2
)
R dR dθ = β, (A.5.18)

for some β > 0. However, it now follows from (A.5.17), (A.5.18) and (A.5.16) that β 6 0,
and so we conclude that β = 0. We then have from (A.5.18) that

lim
R∗→∞

∫∫
GR∗

(∣∣ψR∣∣2 +

∣∣∣∣ 1

R
ψθ

∣∣∣∣2
)
R dR dθ = 0, (A.5.19)

for all R∗ > 0. The condition (A.5.19) (along with regularity (5.1.89)) then requires
that ψ

(
R, θ

)
= C for all

(
R, θ

)
∈ [0,∞) × [−α, 0], for some constant C ∈ C. However,

since k 6= 0, we have from (A.5.3) that C = 0, so that ψ
(
R, θ

)
= 0 for all

(
R, θ

)
∈

[0,∞)× [−α, 0], which is the trivial solution, and the proof is complete. �

Theorem 2

S ⊂ R+ ∪ {0} . (A.5.20)

Proof. Let k ∈ R+\ (R+ ∪ {0}),and ψ : G∞ → C be a solution to [SP (k)]. We must show
that ψ is the trivial solution. We have from (5.1.93) that

ψk
(
R, θ

)
= ak

1

R
π
2α

cos
π

2α
(θ + α) +O

(
1

R
π
2α

+1

)
, (A.5.21)

as R→∞, uniformly for −α 6 θ 6 0. We also have from (A.5.14), that

Im (k)

R∗∫
0

(∣∣ψ∣∣2)
θ=0

dR +R∗
0∫

−α

(uvR − uRv)R=R∗ dθ = 0, (A.5.22)

∫∫
GR∗

(∣∣ψR∣∣2 +

∣∣∣∣ 1

R
ψθ

∣∣∣∣2
)
RdRdθ − Re (k)

R∗∫
0

(∣∣ψ∣∣2)
θ=0

dR

=
1

2
R∗

d

dR∗


0∫

−α

(∣∣ψ∣∣2)
R=R∗

dθ

 . (A.5.23)
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Now, via (A.5.21) we have that,

lim
R∗→∞

R∗
0∫

−α

(uvR − uRv)R=R∗ dθ = 0. (A.5.24)

It then follows from (A.5.22), since Im (k) 6= 0, that,

lim
R∗→∞

R∗∫
0

(∣∣ψ∣∣2)
θ=0

dR = 0, (A.5.25)

and so,

R∗∫
0

(∣∣ψ∣∣2)
θ=0

dR = 0, (A.5.26)

for all R∗ > 0. Next, considering (A.5.23), (A.5.26), and (A.5.16), we have that

lim
R∗→∞

∫∫
GR∗

(∣∣ψR∣∣2 +

∣∣∣∣ 1

R
ψθ

∣∣∣∣2
)
RdRdθ = 0. (A.5.27)

It then immediately follows that ψ
(
R, θ

)
= 0, for all

(
R, θ

)
∈ [0,∞) × [−α, 0], which is

the trivial solution, and the proof is complete. �

In fact S = R+ ∪ {0}. Clearly, 0 ∈ S, since when k = 0, ψ
(
R, θ

)
= 1 for all(

R, θ
)
∈ [0,∞)× [−α, 0], solves [SP (0)]. Moreover John [11] has established that k ∈ S

for all k ∈ R+, and in addition that, Sc = R+ ∪ (0) whilst Sd = ∅.
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