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ABSTRACT 

Platelet activation and subsequent thrombus formation are important for 

preventing excessive blood loss at sites of vascular injury, a process termed 

haemostasis.  However, excessive platelet activation at sites of 

atherosclerotic plaque rupture can lead to thrombus formation, which may 

occlude the vessel and cause heart attack or stroke.  The platelet collagen 

receptor GPVI is essential for thrombus formation, but is largely dispensable 

for haemostasis. 

Tetraspanins are transmembrane proteins which compartmentalise the 

membrane through formation of dynamic tetraspanin-enriched microdomains.  

Due to regulation of a wide range of partner proteins, tetraspanins have been 

implicated in many cellular processes, including platelet activation, though 

most platelet tetraspanins have not been characterised. 

The aim of this thesis was to investigate the novel platelet tetraspanin 

Tspan18, using the Tspan18 knockout mouse.  Tspan18 was shown to have a 

role in platelet activation and platelet Ca2+ signalling specifically downstream 

of GPVI.  Tspan18 also appeared to have a role in haemostasis, as Tspan18 

deficient mice displayed a severe bleeding phenotype.  The bleeding was 

shown to be driven by non-haematopoietic cells and is therefore unlikely to be 

platelet-driven.  Additionally, Tspan18-induced Ca2+ mobilisation was shown 

to be dependant on functioning Orai1 Ca2+ channels and a novel interaction 

between Tspan18 and the Orai family was identified.  Together, these findings 

suggest a role for Tspan18 in platelet activation and regulation of Ca2+ 

mobilisation, potentially via interaction with Orai proteins. 
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CHAPTER 1 

GENERAL INTRODUCTION 
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1.1 PLATELETS 

Platelets are small, anuclear blood cells which have roles in many biological 

processes, though the best characterised is their role in haemostasis and 

prevention of blood loss.  Platelets are formed from mature megakaryocyte 

progenitors in the bone marrow, which extend cytoplasmic processes, called 

proplatelets, into the circulation where budding and fragmentation results in 

platelet formation (J. E. Italiano, 2013).  Once in the bloodstream, platelets 

are maintained at the edges of the flow and are therefore in close proximity to 

the endothelial lined vessel wall.  Abnormalities in platelet production can 

cause thrombocytopenia (low platelet count) which is associated with an 

increased risk of bleeding (J. E. Italiano, 2013). 

 

1.1.1 Haemostasis 

At sites of vascular injury, the body prevents excessive blood loss via a 

process called haemostasis.  Damage to a blood vessel induces an 

immediate reaction from surrounding smooth muscle cells, endothelial cells 

and platelets.  This is a highly regulated process, involving several key stages 

which act to reduce blood loss and to initiate the wound healing response. 

Firstly, vasoconstriction occurs via contraction of smooth muscle cells, which 

form the muscular wall of the vessel, causing narrowing of the lumen to 

reduce blood flow (van Hinsbergh, 2012).  One example of the multiple stimuli 

which can induce smooth muscle cell contraction is thromboxane A2 (TxA2), 

which is released by platelets at sites of vascular injury.  This vasoconstrictor 

activates a G-protein coupled receptor, stimulating Gq protein responses, 
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leading to activation of myosin-light chain kinase and induction of muscle cell 

contraction (Wilson, Susnjar, Kiss, Sutherland, & Walsh, 2005). 

Following vasoconstriction, primary haemostasis occurs, which involves 

activation of platelets.  Platelets are maintained in the circulation in an inactive 

state, but at sites of vascular injury they become activated and aggregate 

together to form a platelet plug and therefore stem the loss of blood.  

Formation of this platelet plug, or thrombus, involves activation of multiple 

signalling receptors on the platelet surface, to induce platelet activation, 

shape change, adhesion and aggregation (Broos, Feys, De Meyer, 

Vanhoorelbeke, & Deckmyn, 2011).  These signalling mechanisms are 

discussed in more detail in sections 1.1.2 and 1.1.4. 

The final stage of haemostasis, secondary haemostasis, involves activation of 

the coagulation cascade and formation of a fibrin clot.  Initiation of the 

coagulation cascade is marked by complex formation between plasma 

protease factor VIIa (FVIIa) and tissue factor, which promotes thrombin 

generation (Chou et al., 2004; B Nieswandt, Pleines, & Bender, 2011).  

Thrombin acts not only to promote platelet activation, but also induces fibrin 

formation from fibrinogen.  Finally, cross-linking of fibrin produces a fibrin 

mesh which acts to reinforce the thrombus.  A process called clot retraction 

also occurs, during which actin stress fibres within the platelets contract to 

reduce the size of the clot and to protect the clot from disruption by the blood 

flow (Stegner & Nieswandt, 2011).   

Together, these immediate responses at sites of vascular damage can 

prevent excessive blood loss.  The role that platelets play within this system 
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and the ability to activate quickly is vital for successful haemostasis.  

However, regulation of platelet activation is important to prevent thrombus 

formation and disruption to blood flow at sites away from vascular damage. 

 

1.1.2 Thrombus formation  

The mechanisms underlying thrombus formation are well characterised and 

the impact that platelet activation and thrombus formation has during 

haemostasis is depicted in figure 1.1.  Within an undamaged vessel, the 

endothelium inhibits platelet activation in order to prevent unwanted thrombus 

formation.  For example, endothelial secretion of both prostaglandin I2 (PGI2) 

and nitric oxide (NO) reduce platelet activation (figure 1.1, A).  PGI2 is 

produced in endothelial cells by PGI2 synthase from the precursor 

prostaglandin H2.  PGI2 reduces platelet activation through G-protein coupled 

receptor (GPCR) activation and subsequent G-protein mediated increases in 

cytosolic cyclic adenosine monophosphate (cAMP), which leads to reduced 

intracellular Ca2+ concentration (Mitchell, Ali, Bailey, Moreno, & Harrington, 

2008; Schwarz, Walter, & Eigenthaler, 2001).  NO, also synthesised by 

endothelial cells, inhibits adhesion and platelet aggregation through activation 

of guanylyl cyclase and thus increased cyclic guanylyl monophosphate 

(cGMP), which also reduces intracellular Ca2+ (Mitchell et al., 2008; S 

Moncada & Higgs, 2006).  Additionally, endothelial cells express the ecto-

nucleotidase CD39, which hydrolyses platelet-secreted adenosine 

diphosphate (ADP) into adenosine monophosphate (AMP), thus reducing 

ADP-induced platelet activation (Marcus et al., 1997; van Hinsbergh, 2012).   
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However, following injury to the vessel wall and exposure to the sub-

endothelial matrix, platelets become activated.  An initial interaction between 

exposed collagen and the platelet occurs via the glycoprotein von Willebrand 

factor (vWF), which allows for initial tethering of the platelet to collagen fibres 

within the high shear environment of the vessel (Stegner & Nieswandt, 2011) 

(figure 1.1, B).  This tethering process then allows for an interaction to form 

between the platelet collagen receptor glycoprotein VI (GPVI) and collagen 

(Stegner & Nieswandt, 2011).  Activation of GPVI by collagen binding initiates 

a phosphorylation signalling cascade resulting in platelet activation (Stegner & 

Nieswandt, 2011).  Activated platelets undergo a period of shape change, 

during which rearrangement of the actin cytoskeleton mediates platelet 

adhesion, clot retraction and secretion of secondary mediators.  Positive 

feedback mediators such as ADP and TxA2, which are secreted from platelet 

dense granules, act to potentiate platelet activation and recruit more platelets 

from the blood flow to the site of injury (Stegner & Nieswandt, 2011) (figure 

1.1, C).  Finally, thrombus formation is stabilised via activation of platelet 

surface integrins such as αIIbβ3, which mediates platelet-platelet interactions, 

and α2β1, α5β1 and α6β1 which bind collagen, fibronectin and laminin 

respectively (Stegner & Nieswandt, 2011).  In addition, the platelet plug is 

supported by a mesh of fibrin, which is formed via the cleavage of fibrinogen 

by thrombin, a process driven by the coagulation cascade and secondary 

haemostasis (figure 1.1, D).  The precise mechanisms behind this complex 

process and the interplay which balances inhibitory and activatory signals in 

platelets are discussed in more detail in section 1.1.4. 
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Figure 1.1 – Thrombus formation prevents excessive blood loss at sites of vascular 
injury.  In a quiescent, uninjured vessel, the endothelium releases anti-thrombotic agents such 

as PGI2 and NO to inhibit platelet activation (A).  Following injury to the endothelium, 

components of the basal membrane such as collagen are exposed, and blood cells and plasma 

leak out of the damaged vessel.  Platelets react to the exposed collagen and tether to collagen 

fibres via vWF. Black arrows represent deceleration of the platelets from the flow of blood 

due to this initial tethering stage (outline in more detail in section1.1.4) (B).  The initial 

tethering process slows the platelet and allows an interaction between collagen and GPVI to 

form, which induces platelet activation, shape change and secretion of secondary mediators, 

such as ADP and TxA2 (C).  Integrin activation induces aggregation, and fibrin drives 

formation of the haemostatic plug (D). 

 

1.1.3 Platelets in health and disease 

Although platelet activation has an important role during haemostasis, recent 

research has implicated platelets in several other biological processes and 
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platelet activation and thrombus formation has also been implicated in several 

disease processes.  For example, interaction between platelets and lymphatic 

endothelial cells has been shown to be important for normal development and 

function of the lymphatic system, especially in preventing backflow of blood 

into the lymphatic vessels at lymphovenous junctions.  Podoplanin, expressed 

on the lymphatic endothelium, activates the platelet receptor C-type lectin like 

receptor 2 (CLEC-2), which leads to platelet aggregation and prevents 

leakage of blood components into the lymphatic system (Bertozzi et al., 2010; 

Finney et al., 2012; Hess et al., 2014; Suzuki-Inoue et al., 2010; Uhrin et al., 

2010).  Additionally, at lymphovenous junctions which display impaired valve 

function, thrombus formation within the lymphatic environment can be 

protective against blood-lymphatic mixing (Hess et al., 2014).  CLEC-2 is also 

important in development and maintenance of lymph nodes and in mice with 

platelets deficient in CLEC-2, blood filled lymph nodes and fibrosis was 

observed due to reduced lymph node integrity (Bénézech & Nayar, 2014).  

Platelet CLEC-2 and GPVI mediated signalling has also been implicated in 

maintaining vascular integrity during inflammation, when lymphocytes 

transmigrate through the vessel wall (Boulaftali et al., 2013).  This is 

particularly important in high endothelial venules, through which lymphocytes 

transmigrate to reach the lymph nodes.  Podoplanin-induced CLEC-2 

signalling and platelet activation is important to maintain integrity of these 

vessels (Herzog et al., 2013).  Finally, platelets have also been shown to play 

an important role in facilitating the closure of the ductus arteriosus; a vessel 

between the aorta and the pulmonary artery which must be closed after birth 
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to prevent post natal mortality.  Platelets support remodelling and contribute to 

the thrombotic sealing of this area (Echtler et al., 2010).   

Platelets have also been implicated in poor cancer prognosis, as they can 

coat the surface of tumour cells in the blood stream and are able to facilitate 

adhesion to the vessel wall, tumour growth and metastasis (Lowe, Navarro-

Nunez, & Watson, 2012).  One mechanism which has been widely studied is 

the interaction between platelet CLEC-2 and tumour cell podoplanin.  

Podoplanin is highly expressed on cancer cells and several studies have 

linked podoplanin to increased metastasis and malignant tumour progression 

(Mishima et al., 2006; P. Yuan et al., 2006).  Investigation into activation of 

platelet CLEC-2 by tumour cell podoplanin, implicated a role for CLEC-2 

induced platelet aggregation in tumour growth and metastasis (Suzuki-Inoue 

et al., 2007, 2010).  Interestingly, if podoplanin-induced platelet activation is 

suppressed, then a significant reduction in pulmonary metastasis is observed 

(Miyata et al., 2014), which highlights the potential for therapeutic targeting of 

platelets to combat cancer metastasis.  Platelets also play additional roles in 

cancer progression, for example activation of protease activated receptor 

(PAR) pathways can lead to release of angiogenic factors such as vascular 

endothelial growth factor (VEGF), which promote vessel growth and therefore 

mediates tumour growth (J. E. I. Italiano et al., 2008; Lowe et al., 2012). 

In addition to being necessary during haemostasis, thrombus formation is also 

heavily implicated in both heart attack and stroke, as arterial thrombus 

formation at sites of atherosclerotic plaque rupture can lead to occlusion of 

the vessel.  Formation of atherosclerotic plaques occurs as a result of severe 

inflammation of the endothelium caused by deposits of cholesterol and 
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accumulation of macrophages (Palomo, Toro, & Alarcón, 2008; Sakakura et 

al., 2013).  Progression of plaque formation eventually leads to narrowing of 

the vessel and potential disruption to blood flow.  Rupture of an unstable 

plaque induces thrombus formation, as the surrounding platelets are exposed 

to damaged endothelium and components of the sub-endothelium matrix, all 

of which induce platelet activation and aggregation.  The coagulation cascade 

has also been implicated in atherothrombosis, as coagulation factors such as 

FXI regulates thrombus formation at sites of acutely ruptured plaques (van 

Montfoort et al., 2014), FVIIa contributes to activation of initial thrombus 

formation, and factor XIIa (FXIIa) has been shown to stabilise the thrombus 

during pathological atherothrombosis (Kuijpers et al., 2014).  Culmination of 

thrombosis and the coagulation cascade at sites of plaque rupture can 

produce blood clots which completely occlude the vessel, preventing blood 

flow within the artery and causing heart attack or stoke.  New roles for 

platelets in the early stages of plaque formation are also being investigated.  It 

appears that activated platelets can interact with and activate the endothelium 

at sites prior to plaque formation.  Therefore platelets could potentially be 

promoting inflammation and thus initiating plaque formation (Rondina, 

Weyrich, & Zimmerman, 2013). 

A better understanding of the mechanisms behind platelet activation could 

provide potential future targets for anti-thrombotic therapies for heart attack, 

which is currently one of the principle causes of mortality worldwide (Mendis, 

Puska, & Norrving, 2011). 
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1.1.4 Multiple signalling pathways balance inhibitory and activating 

stimuli in platelets  

Inappropriate platelet activation at sites distant from vascular damage needs 

to be avoided in order to prevent unwanted thrombus formation, therefore 

inhibitory signals to maintain platelets in a ‘resting’ state are vitally important.  

However, it is also crucial that platelet activatory signals are robust enough to 

overcome inhibition of platelet activation when required.  The fine balance of 

these positive and negative signals, which was briefly outlined in section 

1.1.2, involves a multitude of signalling receptors and signal transduction 

pathways. 

One important physiological platelet inhibitor is NO, which is secreted by 

endothelial cells to keep the platelets in a ‘resting’ state within a healthy 

vessel.  Inhibition of platelet activation by endothelial-secreted NO occurs 

predominantly via the cGMP-PKG signalling pathway.  NO diffuses across the 

platelet membrane and activates the NO-sensitive enzyme guanylyl cyclase 

(GC), thus increasing the production of cGMP (Smolenski, 2012).  Increased 

levels of cGMP in the platelet lead to activation of protein kinase G 1 (PKG1), 

which then acts on a range of different substrates; inducing phosphorylation 

and ultimately inhibiting platelet activation.  The importance of PKG1 within 

the inhibitory NO-cGMP pathway was demonstrated by the prothrombic 

phenotype observed in PKG1 knockout mice; mice lacking PKG1 showed an 

increase in platelet adhesion and platelet activation in the presence of NO 

(Massberg et al., 1999).  One example of a PKG1 substrate is vasodilator-

stimulated phosphoprotein (VASP), which has an important role in the 

regulation of actin cytoskeleton dynamics.  Mice lacking VASP show 
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increased adhesion and defective inhibition via the NO-cGMP pathway, 

suggesting that phosphorylation of VASP by PKG1 has an important role in 

platelet inhibition (Massberg et al., 2004).   

PGI2 which is also released by the endothelium is another important inhibitor 

of platelet activation, though it acts through a different mechanism to NO.  

PGI2 binds to a GPCR on the platelet surface and triggers a signalling 

pathway through activation of the associated G-proteins.  Specifically, binding 

of PGI2 leads to activation of the Gs G-protein through promotion of the GTP-

bound active form of the protein (Smolenski, 2012).  Active GTP-bound Gs 

then goes on to activate adenylate cyclase (AC) which stimulates synthesis of 

cAMP.  In a similar mechanism as described for cGMP, cAMP utilises a 

kinase to continue the signalling cascade, specifically activating protein kinase 

A (PKA); upon cAMP binding to the regulatory subunits of PKA, the catalytic 

domains dissociate and go on to phosphorylate its substrates.  Substrates of 

PKA include VASP and also the intracellular Ca2+ store channel protein IP3 

receptors (Smolenski, 2012).  Both PKA and PKG1 act on many different 

substrates and phosphorylation of these substrates ultimately leads to 

modulation of the actin cytoskeleton to prevent platelet shape change and 

regulation of Ca2+ release from intracellular stores to prevent platelet 

activation (Smolenski, 2012).  Despite the need for these inhibitory signals in 

platelets, mechanisms exist to reduce cAMP and cGMP levels in the platelet, 

as balancing these cyclic nucleotides is vital for balancing platelet inhibition 

and activation.  Regulation of cAMP and cGMP occurs mainly through 

degredation via the phosphodiesterase (PDE) family of proteins.  In platelets, 

PDE2 and PDE3 specifically degrade cAMP and PDE5 specifically degrades 
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cGMP (Smolenski, 2012).  Activation of the PDE proteins occurs via a 

negative feedback loop, which helps to keep the cytosolic levels of cAMP and 

cGMP in check.  However, to ultimately be able to induce platelet activation 

when required at sites of vascular damage, strong activatory signals need to 

be produced to overcome these inhibitory effects. 

The process of platelet activation at sites of vascular damage involves 

multiple cell surface receptors.  Investigation into their signalling has 

demonstrated that platelet surface receptors rely on two key downstream 

signalling pathways.  Receptors such as GPVI/FcRγ and CLEC-2 rely on 

tyrosine phosphorylation signalling cascades downstream of immunoreceptor 

tyrosine based activation motif (ITAM) and hemITAM motif activation 

respectively.  Other platelet receptors such as PAR, thromboxane receptors 

(TP) and P2Y receptors are GPCRs which rely on G-protein activated 

signalling pathways (Bernhard Nieswandt & Watson, 2003; Stegner & 

Nieswandt, 2011).  Ultimately, these pathways converge to reduce cAMP and 

increase intracellular Ca2+ which amplifies platelet activation and stabilises 

platelet adhesion through integrin activation, as demonstrated by the diagram 

in figure 1.2.   

Exposure of collagen fibres at sites of vascular damage acts as the initial 

signal to stimulate platelet activation.  However, in arterial shear conditions, 

the platelets must undergo a process of tethering, to decelerate the platelet, 

before direct interaction with collagen and platelet activation can occur.  This 

process is reliant on the adhesive glycoprotein GPIb-V-IX complex, which 

interacts with vWF multimers which become immobilised on exposed collagen 

fibres (M Moroi et al., 1997).  Without this initial stage of platelet tethering, 



 - 13 - 

platelet activation is impaired, as demonstrated by the bleeding disorder 

Bernard-Soulier syndrome, which is caused by the lack or dysfunction of the 

GPIb-V-IX complex (Berndt & Andrews, 2011).  Interaction of GPIb-V-IX with 

vWF not only facilitates tethering of the platelet at the site of injury, but also 

induces weak activation of the integrin αIIbβ3, and can induce intracellular 

Ca2+ mobilisation (Stegner & Nieswandt, 2011).  

Although the capture of platelets from the blood flow is reliant on the GPIb-

vWF interaction, this is not sufficient to provide firm adhesion of the platelet to 

the exposed collagen fibre.  In order to achieve this, strong activation signals 

are required.  The platelet collagen receptor GPVI is able to produce the 

activatory signals required, following capture of the platelet.  GPVI is a 

transmembrane Ig super family receptor, which interacts with collagen fibres 

via glycine-proline-hydroxyproline (GPO) repeats, which induces cross-linking 

of the receptor (Watson, Auger, McCarty, & Pearce, 2005).  Following cross-

linking, GPVI signals via the ITAM motif found in the intracellular tail of the 

associated FcRγ chain, which eventually leads to activation of phospholipase 

Cγ (PLCγ), causing increased cytosolic Ca2+ concentration via release from 

intracellular stores, and influx from the extracellular environment (Bernhard 

Nieswandt & Watson, 2003; Y. a Senis, Mazharian, & Mori, 2014).  The 

complex signalling cascade of this important platelet collagen receptor is 

described in more detail in section 1.1.5 and is represented in figure 1.3.  

Interestingly, mice lacking GPVI/FcRγ do not display vastly prolonged 

bleeding times, which suggests that although this receptor has an important 

role in platelet activation, some level of redundancy with other receptors on 

the platelet surface might occur (B Nieswandt, Schulte, et al., 2001).  
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However, mice lacking GPVI/FcRγ are protected against arterial thrombosis in 

the transient middle cerebral artery occlusion model of stroke and display 

reduced damage to brain tissue due to a reduction in thromboinflammation 

(Kleinschnitz et al., 2007).  This presents GPVI as an attractive target for 

treatment of ischemic coronary disease, as there is the potential to reduce 

artherothrombosis without increasing the risk of bleeding or brain injury after 

reperfusion (Kleinschnitz et al., 2007).  Additionally, GPVI has been implicated 

in inflammation models other than those following pathological vascular 

events such as stroke.  Both GPVI and CLEC-2 have a role in maintenance of 

vascular integrity during inflammation (Boulaftali et al., 2013) and GPVI has 

also been implicated in promotion of inflammation in rheumatoid arthritis 

(Boilard et al., 2010). 

The role of GPVI is not limited to platelet activation through increasing 

cytosolic Ca2+ concentration.  This receptor also has an important role in 

activation of platelet integrins through an ‘inside-out’ mechanism, which 

converts them from inactive to an active state (Y. a Senis et al., 2014).  

Integrins are adhesion receptors, which exist as heterodimeric 

transmembrane proteins made from α and β subunits.  Integrins play a vital 

role in mediating cell adhesion and specifically in platelets, this is important 

during platelet activation and thrombus formation (B Nieswandt et al., 2011; 

Stegner & Nieswandt, 2011).  In a resting platelet, integrins are held in an 

inactive state and have low affinity for their ligands; this is important to prevent 

platelet adhesion away from sites of vascular damage and prevent 

inappropriate platelet adhesion.  Upon activation of platelet surface receptors, 

integrins shift to an active state with high binding affinity for their ligands.  This 
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shift is triggered by inside-out signalling from platelet surface receptors such 

as GPVI, and others including GPCRs and ITAM mechanisms (B Nieswandt 

et al., 2011; Stegner & Nieswandt, 2011).  In addition to the role in adhesion 

that these integrins play on the platelet surface, outside-in signalling 

mechanisms are triggered following binding of integrins to their ligands.  A 

broad variety of cytosolic integrin-binding proteins play a role in promoting 

platelet spreading and clot retraction follwing integrin activation. 

Three different β1 integrins have been identified in platelets; α2β1, α5β1 and 

α6β1.  Activation of α2β1 facilitates firm adhesion of the platelet to exposed 

collagen fibres (Inoue, Suzuki-Inoue, Dean, Frampton, & Watson, 2003).  

Additionally, α5β1 and α6β1 help to further stabilise adhesion of the platelet 

through interactions with fibronectin and laminin respectively (Stegner & 

Nieswandt, 2011).  However, the β1 integrins are suggested to play more of a 

supportive role and are considered not to be essential for firm platelet 

adhesion (B Nieswandt et al., 2011; Stegner & Nieswandt, 2011).  This is 

demonstrated by the lack of severe disruption to thrombus formation following 

loss of α2β1, suggesting that loss of the β1 integrins can be compensated by 

other platelet surface protein which contribute to adhesion (B Nieswandt, 

Brakebusch, et al., 2001).  In addition to the β1 integrins, the platelet surface 

is also populated with two β3 integrins; αIIbβ3 and αVβ3.  The αVβ3 integrin 

is expressed at very low levels on the platelet surface and is poorly 

understood however αIIbβ3 is the most abundant integrin on the platelet 

surface and has been widely studied due to the vital role it plays in thrombus 

formation (B Nieswandt et al., 2011).  Loss of the integrin αIIbβ3 on the 

platelet surface results in increased bleeding and lack of thrombus formation 
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in mice (Hodivala-dilke et al., 1999; Tronik-Le Roux et al., 2000), and 

mutations leading to lack or dysfunction of αIIbβ3 in humans causes the 

bleeding disorder Glanzmann’s thrombasthenia (Sebastiano, Bromberg, 

Breen, & Hurford, 2010).  This demonstrates that loss of this particular integrin 

cannot be compensated through alternative interactions and confirms the 

importance of the role it plays in platelet aggregation.  This particular integrin 

is vital in forming platelet-platelet interactions through association with 

fibrinogen, which forms a bridge with αIIbβ3 integrins on opposing platelet 

surfaces, therefore allowing platelet aggregation and thrombus growth 

(Watson et al., 2005).  It has also been suggested that vWF is another ligand 

for this integrin and that this interaction is important for platelet-platelet 

interactions to occur within high shear environments (Ruggeri, Dent, & 

Saldívar, 1999). 

In addition to the initial activatory signals from GPVI, other platelet surface 

proteins are also important in potentiating platelet activation and driving 

thrombus formation, including G-protein coupled receptors such as the PAR 

receptors, TPα/TPβ receptors and the P2Y1/P2Y12 receptors.  The PAR 

receptors are activated by the prothrombotic agent thrombin, which is 

produced locally at sites of vascular damage through the coagulation 

cascade.  Gq-coupled responses from PAR activation lead to downstream 

phospholipase Cβ (PLCβ) activation and ultimately increased Ca2+ 

concentration through release from intracellular stores (De Candia, 2012).  

G12/13-coupled responses from PAR activation leads to downstream 

activation of Ras homologue gene family member A (RhoA), from its inactive 

guanosine diphosphate (GDP)-bound form into its active guanosine 
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triphosphate (GTP)-bound form (De Candia, 2012).  Once active, this small 

GTPase can trigger phosphorylation events which lead to myosin light chain 

phosphorylation, which has been shown to drive platelet shape change.  The 

process of shape change within the platelet is driven by dynamic changes to 

the cytoskeleton and allows for the normally discoid platelet to spread and 

adhere strongly to exposed collagen fibres.  Changes to the cytoskeleton can 

also drive secretion of secondary mediators, such as ADP and  TxA2, through 

trafficking of platelet dense granules to the plasma membrane (Broos et al., 

2011; Stegner & Nieswandt, 2011). 

Platelet-secreted ADP activates P2Y1 and P2Y12 receptors on the platelet 

cell surface which activate downstream Gq and Gi signalling respectively.  As 

described above, activation of Gq-proteins induces increased Ca2+ 

concentrations through activation of PLCβ.  Activation of Gi-coupled signalling 

inhibits adenylyl cyclase, which normally converts adenosine triphosphate 

(ATP) into cAMP, thus Gi signalling reduces cAMP activity (Jin, Daniel, & 

Kunapuli, 1998).  The action of cAMP inhibits many platelet activatory 

processes such as degranulation leading to secretion, rearrangement of the 

cytoskeleton and increasing intracellular Ca2+ (Schwarz et al., 2001; Stegner 

& Nieswandt, 2011).  Therefore Gi-protein induced inhibition of andenylyl 

cyclase promotes secretion, shape change and platelet activation through 

reduction of cAMP. 

Platelet secreted TxA2 activates TPα/TPβ receptors, which also activate Gq-

proteins.  Therefore activation of TP receptors drives increasing Ca2+ 

concentration and inhibition of cAMP production, as outlined above (Stegner 

& Nieswandt, 2011). 
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P2X1 adenosine triphosphate (ATP)-gated cation channels also contribute to 

platelet activation, through direct flux of Ca2+ into the cell.  Following binding 

of ATP, P2X1 allows flux of Ca2+ and other cations into the platelet.  The Ca2+ 

signal provided by P2X1 receptors is important for platelet shape change, and 

promotion of dense granule secretion (Mahaut-Smith, Jones, & Evans, 2011).  

The activation of P2X1 has also been shown to amplify platelet activation via 

synergy with other platelet receptors and can increase signalling responses to 

low doses of platelet agonists such as thrombin and collagen (Mahaut-Smith 

et al., 2011). 

These platelet receptors, which are shown in figure 1.2, demonstrate some of 

the signalling pathways involved in platelet activation.  Further signalling 

receptors also contribute to platelet activation; CLEC-2 signals in a very 

similar mechanism to GPVI, with the intracellular tail utilising a hemITAM motif 

to initiate tyrosine phosphorylation signalling cascade (May et al., 2009; Y. a 

Senis et al., 2014).  Receptors such as adrenergic receptors, prostaglandin E 

receptor 3 (EP3) and 5-hydroxytimamine 2A receptors signal through G-

protein coupled mechanisms (Broos et al., 2011; Stegner & Nieswandt, 2011).  

Additional receptors which contribute to platelet activation as well as new 

levels of regulation of currently known platelet receptors are still being 

identified.  For example, the selective anion channel pannexin-1 (Panx-1) has 

recently been shown to facilitate Ca2+ mobilisation and platelet aggregation, 

potentially through secondary activation of the P2X1 receptors on the platelet 

surface (Taylor, Wright, Vial, Evans, & Mahaut-Smith, 2014). 

Culmination of signalling from all of these different receptors allows for 

maximal platelet activation, and also promotes regulation of this vital process. 
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Figure 1.2 – Multiple surface receptors contribute to platelet activation and aggregation.  

The primary wave of platelet activation is mediated by adhesion to exposed extracellular 

matrix at sites of injury.  Tethering of the GPIb-IX-V complex to collagen via vWF slows the 

platelet from the blood flow and allows interaction between GPVI and collagen to form.  

Once bound to collagen, GPVI signals via an ITAM motif within the FcRγ chain which 

initiates a phosphorylation cascade resulting in increased cytosolic Ca
2+

, secretion of 

secondary mediators such as ADP and TxA2, platelet activation and activation of integrin 

α2β1 to stabilise adhesion to collagen.  ADP activates the P2Y1 and P2Y12 receptors, 

coupled to Gq and Gi proteins respectively.  TxA2 activates TPα and TPβ receptors, coupled 

to Gq proteins.  Thrombin is generated at sites of vascular injury and as well as contributing 

to fibrin generation, activates the PAR receptors, coupled to Gq and G12/13 proteins.  These 

secondary wave agonists amplify and sustain platelet activation through increasing cytosolic 

Ca
2+

, decreasing cAMP activity and inducing shape change.  Ca
2+

 influx via ATP-gated P2X1 

channels amplifies platelet activation.  Ultimately, this leads to activation of integrin αIIbβ3, 

which mediates platelet-platelet interaction, thus driving aggregation. 

 

1.1.5 Downstream signalling from the platelet collagen receptor GPVI 

The platelet collagen receptor GPVI has two extracellular immunoglobulin (Ig) 

domains and a proline-rich Src homology 3 (SH3)-binding domain within the 

short intracellular tail, to allow for interaction of kinase proteins (Masaaki 

Moroi & Jung, 2004).  The functional receptor is associated with the FcRγ 

chain, which contains an ITAM motif within the intracellular tail, which is 

defined by two YxxL/I motifs separated by 6-12 residues (Horii, Kahn, & Herr, 
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2006; Masaaki Moroi & Jung, 2004).  GPVI itself does not possess intrinsic 

kinase activity, therefore transfer of the signal to induce platelet activation is 

reliant on Src family kinases to complete a complex tyrosine phosphorylation 

cascade (Y. a Senis et al., 2014).  This signalling cascade is outlined in figure 

1.3 and is discussed in more detail below. 

Following cross-linking of GPVI induced by binding collagen, activation of the 

downstream phosphorylation cascade begins with the Src family kinases Lyn 

or Fyn phosphorylating two tyrosine residues within the ITAM motif in the 

cytosolic tails of the associated FcRγ chain (Dütting, Bender, & Nieswandt, 

2012; Stegner, Haining, & Nieswandt, 2014; Zahid et al., 2012).  

Phosphorylation of the ITAM recruits Syk, via 2 Src homology 2 (SH2) 

domains, which enables phosphorylation of Syk by Lyn.  Syk can then go on 

to phosphorylate the linker for activation of T-cells (LAT) and enable formation 

and activation of the LAT signalosome; a scaffold of adaptor proteins which 

recruits PLCγ2 close to the plasma membrane (Dütting et al., 2012; Stegner 

et al., 2014; Zahid et al., 2012).  These adapters include SLP-76 and also 

Gads, which aid in linking LAT to SLP-76 (Hughes et al., 2008).  Completion 

of the LAT signalosome promotes activation of PLCγ2, which in turn produces 

diaceylglycerol (DAG) and inositol trisphosphate (IP3) from hydrolysis of 

phosphatidyl inositol 4, 5 bisphosphate (PIP2).  IP3 can then stimulate flux of 

Ca2+ from the intracellular Ca2+ store, into the cytosol, via IP3 receptors.  In 

turn, depletion of Ca2+ from the intracellular store induces influx of Ca2+ from 

the extracellular environment in a process called store operated Ca2+ entry 

(SOCE) (Smyth et al., 2010; Stegner et al., 2014), which is discussed in more 

detail in section 1.2.  The overall increase in cytosolic Ca2+ induces platelet 
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activation, shape change and secretion via several key Ca2+ activated 

proteins.  For example, the protein kinase C (PKC) isoform PKCα has been 

shown to be important in platelet secretion downstream of increases in Ca2+ 

concentration (Konopatskaya et al., 2009).  PKCα regulates secretion via 

activation of protein kinase D 2 (PKD2) and mutation or loss of either PKCα or 

PKD2 in platelets leads to reduced secretion of dense granules, decreased 

aggregation and decreased thrombus formation (Konopatskaya et al., 2009, 

2011).  The GPVI signalling pathway is vitally important to initiate strong 

activatory signals to promote platelet aggregation through integrin activation, 

shape change and secretion of secondary mediators.  This signalling cascade 

is reliant on Ca2+ signalling to produce platelet activation. 
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Figure 1.3 – The GPVI signalling pathway.  Following GPVI activation by collagen, 

phosphorylation of the ITAM motif in the intracellular tails of the FcRγ chain via Fyn and 

Lyn occurs.  This leads to recruitment of Syk and a downstream phosphorylation cascade 

which induces formation of the LAT signalosome and recruitment of PLCγ2 to the 

membrane.  Active PLCγ2 induces production of IP3, which stimulates flux of Ca
2+

 from the 

intracellular Ca
2+

 store into the cytosol via IP3 receptors.  Depletion of Ca
2+

 from the 

intracellular store induces flux from the extra cellular environment via Orai channels during 

store operated Ca
2+

 entry.  Increased intracellular Ca
2+

 induces secretion of secondary 

mediators, alterations to the actin cytoskeleton to induce shape change, and aggregation.  
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1.2 STORE OPERATED Ca2+ ENTRY 

The process of SOCE facilitates flux of Ca2+ into the cell following depletion of 

intracellular Ca2+ stores and as such is vitally important for sustaining high 

levels of intracellular Ca2+ during signalling events.  The influx of Ca2+ from 

the extracellular environment also enables replenishment of the depleted 

intracellular Ca2+ stores, therefore enabling the cell to undergo future 

signalling events (Smyth et al., 2010).  As Ca2+ acts as a signal transducer in 

many different signalling pathways across multiple cell types, regulation of the 

mechanism of Ca2+ entry is vital, to prevent unwanted signalling activation 

and to ensure enough Ca2+ is available to the cell when required. 

 

1.2.1 Overview of Orai and STIM as key regulators of SOCE 

Many different signalling pathways utilise Ca2+ as a secondary signalling 

mechanism to activate specific responses in the cell.  Following stimulation of 

cell surface receptors, activation of PLC leads to hydrolysis of PIP2, which 

releases IP3 as a soluble messenger.  IP3 can then diffuse through the 

cytoplasm where it binds to the IP3 receptor; a conformational change in the 

receptor occurs, which induces opening of the channel to allow flux of Ca2+ 

into the cytosol (Lewis, 2007; Smyth et al., 2010).  In most cell types, IP3 

receptors are located on the membrane of the endoplasmic reticulum (ER), 

which acts as the intracellular Ca2+ store (Lewis, 2007; Smyth et al., 2010).   

Following depletion of Ca2+ from the ER, subsequent influx of Ca2+ from the 

extracellular environment occurs via a pathway called the Ca2+ release 

activated Ca2+ (CRAC) current, which is reliant on two key proteins: the Ca2+ 
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sensory molecule stromal interaction molecule  (STIM1 and 2) and the CRAC 

channel protein family (Orai1, 2 and 3) (Soboloff et al., 2006). 

In a resting state, STIM proteins are found within the membrane of the ER 

where they bind Ca2+ via the EF hand motif, which holds the protein in a 

folded conformation (for more detail on STIM structure, refer to section 1.2.2).  

Dissociation of Ca2+ from STIM, driven by store depletion, induces a 

conformational change and oligomerization of STIM.  STIM proteins then 

translocate to areas of the ER which are adjacent to the plasma membrane 

and form puncta, which are able to interact with Orai within the plasma 

membrane (Soboloff, Rothberg, Madesh, & Gill, 2012).  Interaction of STIM 

with Orai proteins induces clustering and enables formation of functional pore-

forming channels.  The formation of functional Orai channels is believed to 

require either 4 or 6 subunits, though the exact structure is still debated 

(discussed in more detail in section 1.2.3).  Following formation of the 

functional channel, Ca2+ is able to flux into the cell (Soboloff et al., 2006, 

2012).  Orai channels are highly selective for Ca2+ ions, utilising a selectivity 

filter mechanism which requires important residues both within the pore and 

outside of the pore on the extracellular side of the channel (Hou, Pedi, Diver, 

& Long, 2012). 

Orai channels are not the only Ca2+ channels found on the cell surface, and 

channels of the transient receptor potential cation channel (TRPC) family 

have also been considered as potential CRAC channels (Smyth et al., 2010).  

TRPC channels can associate with STIM proteins and they are sometimes 

activated downstream of PLC stimulation and depletion of intracellular stores.  

However, channels formed by TRPC proteins are less selective for Ca2+ than 
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those formed by Orai1 (Smyth et al., 2010).  The consequence of interaction 

between TRPC with STIM and Orai proteins and the level of coordination 

between them is not fully understood.  However, it is widely accepted that 

when TRPC channels are activated downstream of store depletion, the non-

selective channels which are formed are distinct from CRAC channels (Smyth 

et al., 2010).  The widely accepted mechanism of SOCE is depicted in figure 

1.4 and includes Orai proteins as the primary channel forming unit. 
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Figure 1.4 – The role of STIM and Orai in SOCE.  When Ca
2+

 within the ER lumen binds 

STIM, the protein is held in an inactive conformation.  Activation of IP3 receptors 

downstream of cell surface receptor signalling enables flux of Ca
2+

 out of the ER and into the 

cytosol (A).  Ca
2+

 becomes depleted and dissociates from STIM, inducing a conformational 

change, oligomerization and relocation to areas of the ER close to the plasma membrane (B).  

STIM form puncta close to the plasma membrane and interact with Orai proteins, to induce 

clustering and activation of the channels, to allow flux of extracellular Ca
2+

 into the cell (C). 
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1.2.2 Different isoforms of STIM and Orai 

The STIM family consists of STIM1 and STIM2 and although these two 

isoforms are both widely expressed, STIM1 is localised within the ER 

membrane and the plasma membrane, whereas STIM2 is found only in the 

ER (Smyth et al., 2010).  STIM1 and STIM2 share approximately 65% 

sequence homology and have similar domain structure (Stathopulos, Zheng, 

& Ikura, 2009).  However, oligomerization and activation of STIM2 occurs 

more slowly than STIM1 (Stathopulos, Zheng, Li, Plevin, & Ikura, 2008) which 

is thought to be due to differences in the kinetics of the Ca2+ binding domain 

at the N-terminus of STIM (see section 1.2.3 for more detail on STIM 

structural domains) (Stathopulos et al., 2009).  Additionally, differences in the 

C-terminal domain of STIM1 and STIM2, which are involved in binding Orai1, 

demonstrate the isolated mechanisms of these two isoforms.  The 

phenylalanine residue at position 394 within the C-terminal domain of STIM1 

has been shown to be important for interaction with and activation of Orai1, as 

mutation of this residue to a histidine leads to ineffective association and 

gating of Orai1 (X. Wang et al., 2014).  The equivalent residue within the C-

terminal of STIM2, leucine 394, generates partial interaction and activation of 

Orai1, but not to the full capacity observed for STIM1 (X. Wang et al., 2014).  

Interestingly, a role for STIM2 in replenishing intracellular stores following low 

levels of store depletion has been suggested (Thiel, Lis, & Penner, 2013).  

Whereas STIM1 was activated in response to strong signals (complete store 

depletion), STIM2 was activated in response to weaker stimuli, which 

suggests a potential mode of regulation of SOCE, depending on the level of 

store depletion (Thiel et al., 2013).  Overall, it seems likely that STIM1 is the 
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main regulator of SOCE in the cell, whereas STIM2 has a role in regulating 

basal cytosolic and intracellular store Ca2+ levels. (Baba, Matsumoto, & 

Kurosaki, 2014; Smyth et al., 2010). 

Within the Orai family of transmembrane proteins, there are 3 different 

isoforms; Orai1, Orai2 and Orai3.  All three proteins have similar sequence, 

including conserved residues such as glutamate at position 106, which is 

important for ion selectivity.  All three are also able to reconstitute functional 

channels which are stimulated by store depletion and which are highly 

selective for Ca2+ ions (Gwack et al., 2007).  However, Orai1 is often the more 

highly expressed of the three and has been the most widely studied (Hoth & 

Niemeyer, 2013).  It is not yet clear whether Orai proteins are able to 

heteromultimerise in order to form functional channels, though Orai1 has been 

immunoprecipitated with Orai2 and Orai3, suggesting an interaction, and in 

some cases, loss of Orai1 results in compensation by Orai2 and Orai3 

(Gwack et al., 2007).  However, the extent of cooperation between the 

different isoforms is most probably cell-specific, as Orai2 and Orai3 do not 

always reconstitute channel function in the absence of Orai1.  It is therefore 

difficult to assess the exact roles of the different isoforms in general terms 

(Hoth & Niemeyer, 2013).  Some studies have suggested that Orai3 displays 

structural differences to Orai1, particularly within the intracellular termini 

domains, though the functional effects of these differences and the 

physiological implications have not yet been elucidated (Shuttleworth, 2012). 
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 1.2.3 The molecular mechanism of STIM1 activation  

STIM1 is a single transmembrane protein, with the N-terminal (STIM1-N) 

located within the lumen of the ER acting as a Ca2+ sensor, and the C-

terminal (STIM1-C) located in the cytosol, acting to interact with and stimulate 

Orai channel proteins (X. Yang, Jin, Cai, Li, & Shen, 2012).  STIM1-N 

contains tandem EF-hand motifs which bind Ca2+ in the ER lumen alongside a 

sterile α motif (SAM) (Stathopulos et al., 2009, 2008).  STIM1-C contains the 

STIM1 Orai1 activating region (SOAR), which has been recognised as 

essential for oligomerization and activation of Orai1.  SOAR is comprised of 

two coiled-coil domains, which have been shown to form a STIM1-C 

homodimer which is held in a v-shaped folded conformation by an inhibitory 

helix within the CC1 domain, as shown in figure 1.5 (X. Yang et al., 2012). 

Upon Ca2+ depletion in the ER lumen, dissociation of Ca2+ from the EF hand 

motif exposes hydrophobic regions within the EF-SAM domain, driving 

dimerisation of STIM1-N, which drives the conformational changes required to 

induce ‘unfolding’ of STIM1-C and allow interaction with Orai1, as shown in 

figure 1.5 (Stathopulos et al., 2009, 2008).  It is believed that this occurs 

through dimerisation of the inhibitory helices, which releases the SOAR dimer 

into an unfolded conformation, which is able to span the distance between the 

ER membrane and the plasma membrane (Zhou et al., 2013).  

Oligomerization of STIM1 occurs and interaction with Orai1 induces channel 

formation and Ca2+ influx.  Recently, a positively charged region at the tip of 

the SOAR domain was identified to be vitally important for interaction with and 

activation of Orai1 (X. Wang et al., 2014; X. Yang et al., 2012). 
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1.2.4 The molecular mechanism of Orai1 activation 

The basic structure of Orai1 is relatively well defined, though the mechanisms 

and 3D structure required for clustering and in functional pore formation are 

highly debated.  Orai1 has 4 transmembrane domains (TM1-4) with 

intracellular termini, 2 extracellular regions, and a glycosylation site within the 

second extracellular region at Asparagine 223 (Smyth et al., 2010; Srikanth & 

Gwack, 2012).  The N and C terminals are regarded as important sites for 

associating proteins to interact with Orai1, including interaction of STIM1 

(Srikanth & Gwack, 2012).  The coiled-coil domain within the C terminus of 

STIM1 is particularly important for re-arrangement and co-localisation of Orai1 

subunits with STIM1.  It is widely accepted that TM1 of each Orai1 subunit 

lines the pore of the channel and mutation of arginine 91 within TM1 leads to 

non-functional channels and severe combined immunodeficiency (SCID) in 

humans due to the detrimental effects of reduced Ca2+ signalling on cells of 

the immune system (Feske et al., 2006).  The mutation which occurs (arginine 

91 to tryptophan 91) increases the hydrophobicity between the TM1 and N-

terminal regions, thus causing loss of pore function, without disrupting 

interaction with STIM1 (Feske et al., 2006; Smyth et al., 2010).  Several 

residues are important in ion selectivity of the channel including glutamate 

106, which is found on the extracellular side of the protein and is conserved 

across the family, and which if mutated to aspartate induces a reduction in 

channel selectivity (Smyth et al., 2010).  An additional 3 residues found within 

the extracellular region between TM1 and TM2 are also involved in forming 

the selectivity filter for the channel, though they are not conserved across the 

family (Smyth et al., 2010).   
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The dynamics of multimer formation and the state of resting Orai1 subunits 

within the membrane is widely debated.  For example, some groups have 

demonstrated that functional Orai1 channels are formed from tetramers, as 

outlined in figure 1.5, and that these tetramers may be formed through 

dimerisation of resting Orai1 dimers (Penna et al., 2008).  However, there is 

not a consensus of opinion on the resting state of Orai1 subunits, as some 

groups argue that the multimeric channel could be pre-formed as 

homotetramer in the membrane ready for activation (Madl et al., 2010). 

Similarly, there is also debate over the exact composition of the functional 

Orai1 channels.  Several different experimental techniques, including use of 

preassembled Orai1 multimers (Mignen, Thompson, & Shuttleworth, 2008), 

single-molecule photo-bleaching (Ji et al., 2008) and high resolution 

microscopy (Maruyama et al., 2009), have demonstrated that functional 

channels exist as tetramers, as depicted in figure 1.5.  However more 

recently, another group using crystallography demonstrated that functional 

Orai1 channels exist as hexamers (Hou et al., 2012).  In this study, a detailed 

3D analysis of a functional channel formed from drosophila Orai1, which has 

73% sequence identity to human within the TM domains, was completed.  The 

six TM1 helices formed the lining of the pore and TM2 and TM3 helices were 

packed in closely around this inner ring.  TM4 helices were excluded to an 

outer ring and the TM4 cytoplasmic extensions of neighbouring subunits were 

packed together in pairs via an antiparallel coiled-coil helix arrangement.  This 

was held in place through interaction of hydrophobic residues, isoleucine 316 

and leucine 319, within these regions, believed to provide stability to the 

whole structure (Hou et al., 2012).  However, recent functional analysis of the 
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hexamer structure has raised questions to its true functional relevance 

(Thompson & Shuttleworth, 2013).  These functional studies highlighted that 

the hexamer channels were not selective for Ca2+ ions, as they were 

permeable to both Na+ and Cs+ monovalent ions (Thompson & Shuttleworth, 

2013), which is in sharp contrast to the highly Ca2+-selective nature of Orai 

channels normally.  The hexamer structure which had been proposed was 

confirmed using cross-linking and size exclusion chromatography (Hou et al., 

2012), but further analysis is required to convince the field that this isn’t simply 

a non-selective channel which fails to mimic the true fingerprint of a normal 

CRAC channel.  In summary, although the transmembrane helices 

arrangement and interaction of STIM1 via the TM4 C-terminal extensions is 

widely accepted, the number of Orai subunits required and the resting state of 

the channel is widely disputed.  
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Figure 1.5 – The conformational changes required for STIM1 activation and Orai1 

channel formation.  As shown by the upper panel, Orai1 channels are formed through 

multimerisation of Orai1 units in either tetramer or hexamer complexes.  The TM1 (blue) of 

each subunit lines the pore of the channel and TM4 (yellow) creates the outer ring of the 

structure.  TM4 extensions (yellow) extend into the cytoplasm. As shown by the lower panel, 

STIM1 is held in an inactive, folded conformation when Ca
2+

 is bound to the EF-hand motif 

in the ER lumen, this conformation is stabilised by the inhibitory CC1 domain (A).  When 

activated through dissociation of Ca
2+

 STIM1 dimerises via the EF-SAM domain and STIM1 

extends towards the plasma membrane and oligomerises.  The interaction between STIM1 

SOAR and the TM4 extensions and TM1 membrane-proximal regions of Orai1 promotes 

Orai1 multimerisation and opening of the channel to allow flux of Ca
2+

 into the cell.  Lysine 

rich regions in the C-terminal of STIM1 interact close to the plasma membrane (B). 

 

1.2.5 SOCE is vital for GPVI signalling 

As discussed throughout section 1.1, thrombus formation is heavily reliant on 

Ca2+ signalling, as increases in cytosolic Ca2+ in platelets leads to 

downstream secretion, shape change and aggregation.  Typically, the 

concentration of Ca2+ found in a resting platelet, as with many non-excitable 

cells, is within the region of 100 nM, however this can increase by 10-100 fold 
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during platelet activation (Rink & Sage, 1990).  This large increase in 

intracellular Ca2+ concentration provides the driving force behind many of the 

platelet activatory responses which lead to aggregation, and is made possible 

through the process of SOCE.  Once SOCE channels at the membrane are 

activated, the influx of Ca2+ into the platelet is driven by the large 

concentration gradient of Ca2+ in the blood in comparison to intracellular 

levels.  Typically, circulating free Ca2+ concentrations are within the range of 

1.0 – 1.3 mM and total blood Ca2+ concentration, including bound Ca2+ which 

forms a complex with serum proteins such as albumin, is normally within the 

range of 2.2 – 2.6 mM.  This large difference in extracellular and intracellular 

Ca2+ concentration allows for rapid influx of Ca2+ into the platelet via open 

SOCE channels, and therefore rapid signal transduction and platelet 

activation. 

Influx of Ca2+ from the extracellular environment specifically via SOCE is vital 

in platelets, as demonstrated by the finding that both STIM1 and Orai1 are 

important for normal platelet activation and thrombus formation (Bergmeier et 

al., 2009; Braun et al., 2009; David Varga-Szabo, Braun, et al., 2008).  

Interestingly, it seems that SOCE is especially important in facilitating 

signalling downstream of GPVI, more so than downstream of other platelet 

activatory pathways. 

In platelets, Ca2+ is stored within the dense tubular system, or sarcoplasmic 

reticulum (SR), as well as within lysosome-related organelles (D Varga-

Szabo, Braun, & Nieswandt, 2009).  Although the precise mechanism of store 

release in platelets is not clear, STIM1 has been identified on platelets 

(Grosse et al., 2007; David Varga-Szabo, Braun, et al., 2008) and both STIM1 
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and STIM2 have been shown to be localised to the acidic lysosome-related 

organelles (Zbidi et al., 2011).  STIM1 has been recognised as the primary 

Ca2+ sensor, as platelets deficient in STIM2 did not display marked 

differences in Ca2+ mobilisation, platelet activation or thrombus formation 

(Gilio et al., 2010).  In contrast, platelets deficient in STIM1 had reduced 

release of Ca2+ from the intracellular stores after stimulation with thapsigargin, 

which indicates a reduced Ca2+ store content, and also showed reduced influx 

of Ca2+ via SOCE (David Varga-Szabo, Braun, et al., 2008).  Ca2+ entry in 

response to a range of platelet agonists was also reduced, though 

aggregation of the platelets was only impaired downstream of GPVI 

activation.  The defects observed within GPVI-ITAM reliant processes, and 

normal activation of the platelets through G-protein coupled pathways, 

suggest that STIM1 and SOCE are vitally important downstream of GPVI, but 

might not be vital in activation of platelets through other signalling pathways 

(David Varga-Szabo, Braun, et al., 2008).  During in vivo analysis, mice with 

STIM1 deficient platelets displayed reduced thrombus formation in two 

different models and were also protected from cerebral ischemia in a model of 

stroke (David Varga-Szabo, Braun, et al., 2008) 

Orai1 is also expressed in human and mouse platelets, and Orai1 is more 

highly expressed than either Orai2 or Orai3 (Braun et al., 2009).  To date 

there have been two different mouse models used to study the role of Orai1 in 

platelets; knock out mice lacking expression of Orai1 (Orai1-/-) (Braun et al., 

2009) and knock in mice expressing a loss of function mutant of Orai1 

(Orai1R93W) (Bergmeier et al., 2009). Similarly to STIM1 depletion, loss of 

Orai1 in Orai1-/- mice resulted in reduced SOCE, and reduced Ca2+ 
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mobilisation across a range of platelet agonists, though release of Ca2+ from 

the intracellular stores appeared normal (Braun et al., 2009).  Despite 

defective Ca2+ mobilisation across a range of agonists, Orai1 deficient 

platelets displayed reduced aggregation only downstream of GPVI activation 

(Braun et al., 2009), again suggesting that SOCE is important for platelet 

activation downstream of ITAM-induced signalling but not G-protein coupled 

signalling.  During in vivo analysis, mice with Orai1 deficient platelets were 

protected form arterial thrombus formation, similarly to mice with STIM1 

deficient platelets (Braun et al., 2009).  These findings demonstrating loss of 

Ca2+ mobilisation and aggregation defects suggests that Orai1 is the primary 

SOCE channel in platelets, as Orai2 and Orai3 were not able to compensate 

for the loss of Orai1.  Additionally, the potential role for the Ca2+ channel 

TRPC1 in platelet SOCE has been dismissed, as mice deficient in TRPC1 

show no defect in SOCE, platelet activation or in vivo thrombus formation 

(David Varga-Szabo, Authi, et al., 2008).  Some similarities were observed in 

assessment of the Orai1R93W mice, as Ca2+ mobilisation following stimulation 

by multiple agonists was reduced and SOCE following stimulation with 

thapsigargin was also reduced (Bergmeier et al., 2009).  In results similar to 

those seen with Orai1-/- mice, Orai1R93W mice had normal release of Ca2+ from 

the intracellular stores, but reduced flux of Ca2+ from the extracellular 

environment (Bergmeier et al., 2009; Braun et al., 2009).  However, Orai1R93W 

mice displayed normal aggregation responses across a range of platelet 

agonists, and normal aggregate formation on collagen under flow (Bergmeier 

et al., 2009).  The authors suggested that the release of Ca2+ from the 

intracellular stores would have been sufficient to allow aggregation to occur 
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normally, which is in conflict of the findings with the Orai1-/- mice, which 

displayed defective aggregation downstream of GPVI activation (Bergmeier et 

al., 2009; Braun et al., 2009).  Despite the differences between these two 

models, platelets responses from the Orai1R93W mice such as integrin 

activation, P-selectin exposure and phosphatidyl serine exposure were all 

impaired, which suggests that impairment of Orai1 in platelets and resulting 

reductions in intracellular Ca2+ concentrations does have an impact on normal 

platelet function (Bergmeier et al., 2009).  The differences observed across 

the two models may be a result of the variation in experimental design, or 

could be due to the different methods of mouse model generation.  

Importantly, both studies agree that Orai1 is a major component of SOCE in 

platelets and that without Orai1, platelet Ca2+ signalling is greatly reduced. 

The GPVI-specific defects observed in both STIM1 and Orai1 deficient 

platelets suggest that SOCE is important downstream of ITAM-induced 

signalling, but not G-protein induced signalling.  Platelet aggregation was 

normal downstream of agonists such as thrombin and ADP, which activate G-

protein coupled pathways, despite Ca2+ signalling being reduced in response 

to these agonists.  This could suggest that these pathways rely not only on 

Ca2+ signals during platelet activation, but that another activatory signal could 

be sufficient for aggregation downstream of G-protein signalling in platelets.  

Alternatively, non-GPVI pathways may not require such a large increase in 

Ca2+ concentration in order to activate downstream platelet activation and 

therefore may rely on non-SOCE mechanisms, such as TRPC.  TRPC1 and 

TRPC6 have been shown to have no role in SOCE in platelets, but instead it 

has been suggested they could be activated downstream of other pathways 
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such as DAG (Ramanathan et al., 2012).  Other TRPC channels are known to 

be activated downstream of G-protein mechanisms (Lang, Münzer, Gawaz, & 

Borst, 2013).  Therefore activation of STIM1 and Orai1 deficient platelets by 

non-GPVI agonists may be possible through utilisation of other Ca2+ entry 

mechanisms.  This is an area which needs further clarification, as TRPC 

channels have been shown to form complexes with Orai and STIM proteins, 

therefore these processes are likely to be linked (Jardin, Gómez, Salido, & 

Rosado, 2009; Jardin, Lopez, Salido, & Rosado, 2008; Lang et al., 2013). 
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1.3 TETRASPANINS 

Tetraspanins are a large family of small transmembrane proteins that are 

highly conserved throughout evolution and of which there are 33 members in 

human, displayed in figure 1.6.  These proteins are expressed throughout the 

body and have been implicated in multiple biological processes through 

regulation of specific partner proteins.  In addition to forming interactions with 

partner proteins, tetraspanins interact with each other to form tetraspanin 

enriched microdomains, which act as platforms for optimal signalling, 

adhesion and proteolysis (Stéphanie Charrin, Jouannet, Boucheix, & 

Rubinstein, 2014; Hemler, 2014).   
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Figure 1.6 – The tetraspanin family of identified proteins.  The sequence alignment tool, 

Cluster Omega, was used to compare the amino acid sequence alignment of the 33 human 

tetraspanins.  The data is displayed in the form of a dendogram to show how closely the 

different members of the family are related.  Adapted from Haining et al, 2011. 
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1.3.1 Tetraspanin structure 

As their name suggests, tetraspanin proteins are characterised by four 

transmembrane domains, short intracellular tails and two extracellular loops of 

unequal size, as demonstrated by the diagram in figure 1.7.  The most highly 

conserved area within the tetraspanin family is the cysteine-cysteine-glycine 

(CCG) motif within the large extracellular loop which, along with the 2-6 other 

cysteine residues within this region, form disulphide bonds which maintain the 

structure of the large extracellular loop (Kitadokoro et al., 2001).  Tetraspanins 

also undergo post-translational modifications including palmitoylation at 

cysteine residues within the intracellular loop and cytoplasmic tails at 

membrane proximal regions, N-linked glycosylation within the large 

extracellular loop (up to 3 predicted sites), and ubiquitination of the 

cytoplasmic tails (Stéphanie Charrin et al., 2009). 

Determining the exact 3D structure of tetraspanins has proven to be a difficult 

task and no full atomic resolution structure of a whole tetraspanin exists, 

though a few key studies have attempted to elucidate the structure of these 

proteins.  The cryo-electron microscopy structure of the tetraspanin uroplakins 

(UP) UPIa and UPIb complex has been revealed, which showed that these 

proteins form a compact, rod-like structure which protrudes approximately 3.5-

5 nm above the plasma membrane (Min, Wang, Sun, & Kong, 2006).  The 

rod-like structure was believed to be driven by the tightly bound bundle 

formed by the transmembrane helices.  Additionally, the extracellular region of 

the protein formed a ‘mushroom-like’ structure (Min et al., 2006).  Using 

crystallography, the structure of the large extracellular region of CD81 has 

also been resolved (Kitadokoro et al., 2001), and following this, computational 
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modelling  methods were used to predict the rest of the structure (Michel 

Seigneuret, 2006).  Additionally, structural studies of the importance of the 

large extracellular region of CD81 in ligand interactions has provided further 

information on the functional basis of tetraspanin structure (Rajesh et al., 

2012).  These studies have outlined a tightly packed transmembrane region 

made of left-handed coiled coil helices.  The small extracellular loop emerges 

from transmembrane 1, into transmembrane 2 and is comprised of a β-strand 

which contains a hydrophobic region (figure 1.7).  The large extracellular loop 

connects transmembrane regions 3 and 4 and contains 5 α-helices, which 

form a ‘mushroom-like’ structure (figure 1.7).  The large extracellular loop is 

divided into 2 regions; helices A, B and E make up the membrane proximal 

region, which associates closely with the hydrophobic region of the small 

extracellular loop via a hydrophobic groove, which holds the two extracellular 

regions closely together.  The two smaller helices, C and D, make up the 

variable region of the large extracellular loop, alongside the conserved CCG 

motif.  The disulphide bonds formed between the CCG motif and the 2 

additional cysteine residues in this region holds the variable domain in the 

correct conformation, which is held on the opposite side of the protein to the 

small extracellular loop (figure 1.7).  Although CD81 and UPIa/UPIb share 

only 12-13% sequence identity, these studies suggest a very similar structure, 

which suggests these defining features could be ubiquitous across the 

tetraspanin family.   

Despite these characteristics which are shared across the tetraspanin family, 

the variable region within the large extracellular loop of tetraspanin proteins is 

known to differ greatly.  The variable region of the large extracellular loop, 



 - 41 - 

containing helices C and D, has been shown through sequence alignment and 

subsequent structure prediction to be highly variable in both size and the 

number of cysteine residues present (M Seigneuret, Delaguillaumie, 

Lagaudrière-Gesbert, & Conjeaud, 2001).  This suggests that the variable 

region will differ in 3D structure across the tetraspanin family.  This is 

potentially due to a role for this region in regulating tetraspanin-partner protein 

interactions (María Yáñez-Mó, Barreiro, Gordon-Alonso, Sala-Valdés, & 

Sánchez-Madrid, 2009); the different structures potentially offer specificity to 

each separate tetraspanin.  This is discussed in more detail in section 1.3.2. 
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Figure 1.7 – The conserved structure of tetraspanin proteins.  Proteins from across the 

tetraspanin family are characterised by several conserved structural features.  They have four 

transmembrane regions, labelled 1-4, which are tightly packed to form a rod-like structure.  

They also have intracellular tails, marked in blue, which contain cysteine residues, marked in 

yellow, which are often sites for palmitoylation close to the plasma membrane.  They also 

have a small extracellular loop which links TM1 and TM2, marked in red, and a large 

extracellular loop, marked in green, which contains the variable region believed to be 

important in partner protein binding.  The extracellular loops often contain sites for N-linked 

glycosylation, as marked in purple.  Additionally, all tetraspanins contain a conserved CCG 

motif within the large extracellular loop which, along with other conserved residues, forms 

between 2 and four disulphide bonds, which help to stabilise the structure. 

 

1.3.2 Tetraspanin interactions 

Investigation into tetraspanin function revealed a role for these proteins in 

organisation of membrane proteins into tetraspanin enriched microdomains, 

thus promoting compartmentalisation of the membrane (Stéphanie Charrin, 

Manié, Billard, et al., 2003; Hemler, 2005; Rubinstein, 2011).  Formation of 
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these domains is a complex process, but is believed to occur via two distinct 

levels of interaction. 

The primary tetraspanin interaction occurs between the tetraspanin and its 

specific partner protein.  This is a relatively strong interaction which can 

withstand stringent detergent conditions, such as Triton X-100 (Yauch, 

Berditchevski, Harler, Reichner, & Hemler, 1998) and digitonin (Serru et al., 

1999).  Studies utilising chimeric proteins have helped to highlight which 

tetraspanin domains are important in tetraspanin-partner protein interaction, 

specifically highlighting the role of the variable region within the extracellular 

domain (see section 1.3.1 for more information on tetraspanin structure).  For 

example, the high affinity interaction of the tetraspanin CD81 with the E2 

envelope protein of hepatitis C virus (HCV) requires the variable region 

(Drummer, Wilson, & Poumbourios, 2002; Higginbottom et al., 2000), and the 

variable region within the large extracellular loop of the tetraspanin CD9 is 

important for normal adhesive function of intercellular adhesion molecule 1 

(ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) on endothelial 

cells during leukocyte extravasation (Barreiro, Ovalle, Higginbottom, & Monk, 

2005).  Additionally, transmembrane regions have been implicated as 

important for some tetraspanin-partner protein interactions.  The interaction 

between the tetraspanin uroplakins and their partners relies on 

transmembrane region 3 (Min et al., 2006) and the interaction between the 

tetraspanin CD81 and immunoglobulin super family member 8 (EWI-2) is 

reliant on transmembrane regions 3 and 4 (Montpellier et al., 2011). 

The secondary level of interaction involves clustering of primary tetraspanin-

partner protein complexes together via tetraspanin-tetraspanin interaction.  
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These small complexes are thought to be supported by interactions with lipids 

within the plasma membrane.  Palmitoylation of the intracellular regions of 

tetraspanins enables interaction with the lipid bilayer and reinforces 

tetraspanin-tetraspanin interactions (Stéphanie Charrin et al., 2002; Stéphanie 

Charrin, Manié, Thiele, et al., 2003).  The hypothesis that tetraspanins 

associate with lipids in the membrane is supported by the ability to precipitate 

tetraspanins with cholesterol in biochemical assays (Serru et al., 1999) and by 

the disruption of tetraspanin-tetraspanin interactions in palmitoylation mutants.  

Subsequent formation of large tetraspanin enriched microdomains from these 

small clusters is thought to be a highly dynamic process, which potentially 

occurs as a result of stimuli to induce formation of specialist structures within 

the membrane (Stéphanie Charrin et al., 2009).  These tetraspanin enriched 

microdomains have been shown to be highly dynamic in terms of tetraspanin 

movement into and out of the microdomain (Barreiro et al., 2008; Espenel et 

al., 2008).  Additionally, these microdomains are separate from lipid rafts in 

the membrane (Hemler, 2003).   

Together, this builds an image of tetraspanins as membrane organisers, 

which can interact directly with partner proteins and other tetraspanins.  

These dynamic interactions can drive formation of tetraspanin enriched 

microdomains, and thus regulate partner protein function. 

 

1.3.3 Tetraspanin function 

Tetraspanins have been identified across a range of different cell types and 

have been implicated in a wide variety of cellular processes.  Further 
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investigation into these proteins has revealed use of specific mechanisms in 

order to regulate partner protein function and thus have an impact on 

trafficking, signalling, adhesion and proteolysis within the cell. 

In some cases, tetraspanins have an important role in maturation and 

trafficking of partner proteins to the cell surface.  For example, the tetraspanin 

CD81 is required for cell surface expression of its partner, the B-lymphocyte 

antigen cluster of differentiation 19 (CD19).  in CD81 knockout mice, 

expression of CD19 on the surface of B cells was 50% reduced (Shoham et 

al., 2003) and in human patients lacking CD81 there was complete loss of cell 

surface CD19 (Zelm et al., 2010).  In both cases, this was due to impaired 

trafficking of CD19 from the ER to the golgi.  CD19 is an important co-receptor 

in B-cell receptor signalling and in enhancing B cell activation, therefore lack 

of CD81, which disrupts surface expression of CD19, leads to reduced B cell 

antibody responses in both mouse and human (Shoham et al., 2003; Zelm et 

al., 2010). 

Tetraspanins can also regulate particular signalling processes through 

regulation of their partner proteins.  One example of this is the tetraspanin 

Tspan12, which has been shown to interact with and regulate the Wnt 

receptor Frizzled 4 (Junge et al., 2009).  Following activation, Frizzled 4 

recruits co-receptors such as Lrp5 and downstream signalling activates the 

TCF/LEF family of transcription factors.  This process is particularly important 

in development of the retinal vasculature and mutations in Frizzled 4 or Lrp5 

cause familial exudative vitreoretinopathy (FEVR), in which under 

development of the retinal vasculature causes blindness (Ye, Wang, & 

Nathans, 2010).  Tspan12 does not directly activate or promote signalling of 
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Frizzled 4, but instead is thought to be responsible for promoting clustering of 

the receptor required for downstream signalling (Junge et al., 2009).  The 

importance of this interaction was highlighted when mutations in human 

Tspan12 were also found to cause FEVR and blindness (Nikopoulos et al., 

2010; Poulter et al., 2012). 

Another important function of some tetraspanins is to regulate adhesion, 

which is an important process for many cellular events.  An example of this is 

the role that the tetraspanins CD9 and CD151 play during leukocyte adhesion 

to endothelial cells and therefore subsequent extravasation from the blood 

flow at sites of inflammation.  The endothelial adhesion molecules ICAM-1 

and VCAM-1 are important for interaction with leukocyte integrins to reinforce 

firm adhesion of the leukocyte and to allow extravasation (Nourshargh, 

Hordijk, & Sixt, 2010).  It has been shown that ICAM-1 and VCAM-1 are co-

localised with CD9 and CD151 (Barreiro et al., 2005), and that the 

tetraspanins act to promote formation of nano-platforms on the endothelial cell 

surface which are enriched in ICAM-1 and VCAM-1 and therefore allow more 

efficient leukocyte adhesion (Barreiro et al., 2008).  Knockdown of either 

tetraspanin resulted in decrease surface expression of the adhesion 

molecules, reduce leukocyte adhesion and reduced leukocyte transmigration 

(Barreiro et al., 2005).  Additionally, the tetraspanin CD63 also has a role in 

facilitating leukocyte extravasation through regulation of P-selectin (Doyle et 

al., 2011).  Both CD63 and P-selectin are localised to intracellular organelles 

such as lysosomes and Weibel-Palade bodies and upon activation of the 

endothelium, is rapidly trafficked to the cell surface, when it interacts with P-

selectin glycoprotein ligand 1 (PSGL-1) on leukocytes and thus promotes 
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leukocyte recruitment (M Yáñez-Mó et al., 1998).  In the absence of CD63, P-

selectin expression at the cell surface was reduced, which caused a reduction 

in leukocyte recruitment and delayed extravasation, mimicking the 

phenotypes observed in P-selectin knockout mice (Doyle et al., 2011).  

Together, these studies demonstrate the important roles for tetraspanins in 

regulation of leukocyte recruitment and extravasation during the inflammatory 

response.  In addition to this, there have been multiple studies on the role of 

the tetraspanin CD151 in interaction with and regulation of the integrins α3β1, 

α6β1, and α6β4 (Sterk & Geuijen, 2002).  CD151 directly interacts with these 

laminin binding integrins via association with the α subunit of the integrin 

(Hemler, 2014).  Several modes of action have been documented for the 

mechanism by which CD151 regulates these partner proteins.  For example, 

CD151 limits the diffusion of the α6 subunit in the membrane, thus making the 

integrins more available for functions such as adhesion (X. H. Yang et al., 

2012).  CD151 has also been shown to regulate the distribution and recycling 

of α3 and α6 subunits, which is important during cell migration (Winterwood, 

Varzavand, Meland, Ashman, & Stipp, 2006; X. H. Yang et al., 2008).  The 

role that CD151 plays in regulation of these integrins has resulted in 

implication of CD151 in pathological angiogenesis and tumour cell growth, 

invasion and metastasis (Bailey et al., 2011; H.-X. Wang, Li, Sharma, 

Knoblich, & Hemler, 2011). 

Finally, tetraspanin proteins have also been implicated in regulation of 

proteolysis through interaction with partner proteins such as the ectodomain 

sheddase a disintegrin and metalloprotease domain-containing protein 10 

(ADAM10).  ADAM10 has a wide range of cleavage targets including Notch, 
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which has roles in development, amyloid precursor protein, which is the 

pathogenic peptide which causes Alzheimer’s disease and the endothelial 

junction molecule VE-cadherin amongst many others.  A subfamily of  six 

tetraspanins, termed the TspanC8s (highlighted in figure 1.6) were all shown 

to interact with ADAM10 (Dornier et al., 2012; Haining et al., 2012).  In 

addition to these tetraspanins regulating the maturation and cell surface 

expression of ADAM10, they were also shown to promote its proteolytic 

activity (Prox et al., 2012).  The authors predict that different tetraspanins 

within this subfamily may regulate targeting of ADAM10 to specific substrates 

in the cell and thus regulate proteolytic cleavage events in the cell (Haining et 

al., 2012). 

Tetraspanins are implicated in a wide variety of processes, though it can often 

be difficult to elucidate the exact mechanism for each specific tetraspanin as 

functional redundancy can occur across the family.  However, as 

demonstrated by the examples above, several specific interactions with 

partner proteins have been identified and the exact mechanism of tetraspanin 

regulation elucidated.  Knowledge of the precise mechanisms of tetraspanin 

function and the partner proteins they co-ordinate allows for a better 

understanding of the ‘fine-tuning’ involved in regulation of many different 

cellular events. 

 

1.3.4 Platelet tetraspanins 

Tetraspanins have been identified in platelets, though most of the platelet 

tetraspanins are understudied and their role in platelet activation poorly 
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understood.  Study of megakaryocyte mRNA has suggested that there could 

be as many as 18 tetraspanins in platelets (Macaulay et al., 2007; Protty et 

al., 2009), though only 10 have been identified using proteomics 

(Lewandrowski et al., 2009) and only five (CD9, CD63, CD151, Tspan9 and 

Tspan32) confirmed using specific antibodies (Haining, Yang, & Tomlinson, 

2011; Protty et al., 2009). 

Initial investigation into the role of the tetraspanins CD151 and Tspan32 on 

platelets identified defective thrombus formation in knockout mice for either 

tetraspanin (Goschnick et al., 2006; Lau et al., 2004; Orlowski et al., 2009).  

The CD151 knockouts displayed increased bleeding in vivo, and reduced 

platelet spreading and clot retraction during in vitro assays (Lau et al., 2004).  

Additionally, during in vivo models of thrombus formation through FeCl3 

induced, or laser induced injury, thrombi formed by the CD151 deficient mice 

were small and unstable (Orlowski et al., 2009).  Assessment of the Tspan32 

deficient mice produced very similar results; impaired spreading and clot 

retraction in vitro and reduced thrombus formation in vivo (Goschnick et al., 

2006).  In both cases, it was proposed that the phenotypes observed were 

due to defective signalling from the integrin αIIbβ3, though the exact 

mechanism by which these tetraspanins might control integrin function is not 

known.  It is possible that CD151 and Tspan32 could promote the active 

conformation of the integrin and thus increase activity, or that they might be 

involved in recruitment of other signalling proteins to promote downstream 

signalling.   

Conversely, characterisation of mice lacking either CD9 or CD63 yielded no 

major platelet phenotypes, though a mild increase in thrombus size in the 
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CD9 knockout mice suggested a potential negative regulatory role for this 

tetraspanin (Mangin, Kleitz, Boucheix, Gachet, & Lanza, 2009; Schröder et 

al., 2009).  Such a subtle phenotype seemed surprising considering CD9 is 

the second most highly expressed protein on the cell surface (Protty et al., 

2009), though similar observations have been made for this tetraspanin 

across other cell types in which it is expressed.  An exception to this was 

observed on oocytes, where CD9 appears to play a vital role in fertilisation.  

CD9 deficiency leads to female infertility due to defective sperm-egg fusion, 

an event which is critical for fertilisation (Kaji et al., 2000; Le Naour, 

Rubinstein, Jasmin, Prenant, & Boucheix, 2000; Miyado et al., 2014). 

Although the specific role of most other platelet tetraspanins is yet to be 

investigated, several platelet surface proteins have been identified as 

tetraspanin associated.  The integrin α6β1, the scavenger receptor CD36, the 

choline transporter CD92 and the ectodomain sheddase ADAM10 have all 

been identified as tetraspanin associated proteins on various cell types and, 

through a proteomics approach, have been observed as components of 

tetraspanin microdomains specifically on platelets (Haining et al., 2011).  

Additionally, the platelet collagen receptor GPVI has been identified as being 

tetraspanin associated, though there is no evidence for tetraspanin 

interactions with other important platelet surface proteins such as GPIb, 

αIIbβ3, α2β1 or α5β1 in co-immunoprecipitation experiments (Protty et al., 

2009).  These tetraspanin associated proteins, depicted in figure 1.8, provide 

hints to currently uncharacterised roles for tetraspanins on platelets.  For 

example, the ecto-domain sheddase ADAM10, which is known to interact with 

the TspanC8 subfamily of tetraspanins (discussed in section 1.3.3), is 
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important as a negative regulator of platelet activation, through cleavage of 

receptors such as GPVI and thus cessation of signalling.  The mechanism 

behind regulation of this process may be better understood if the exact role of 

tetraspanins in ADAM10 activation on platelets was known. 

The fine tuning of partner protein function by tetraspanins is important in many 

cell types, and it appears it is also important in platelet function.  The 

emerging roles of tetraspanins on platelets provide greater insight into the 

mechanisms behind platelet activation.  If the specific tetraspanin-partner 

protein interactions on platelets can be elucidated and the mechanisms of 

platelet activation better understood, then future development of more specific 

anti-platelet therapies is possible. 

 

 

Figure 1.8 – Tetraspanin associated proteins in platelets.  Tetraspanin proteins are 

represented in red; the five which have been identified on platelets using antibodies are 

labelled.  The proteins shown in the microdomain have been identified as tetraspanin 

associated in other cell types as well as in a proteomics screen in platelets.  Adapted from 

Haining et al, 2011. 
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1.3.5 Tspan18 

The tetraspanin Tspan18 was initially identified as a novel tetraspanin in an 

mRNA screen of embryonic chick spinal cord and was initially termed 

‘neurospanin’ (Perron & Bixby, 1999).  Northern blot analysis was used to 

monitor fold changes in expression, and up-regulation of Tspan18 was 

observed during development of the brain, especially during the period of 

axon growth, suggesting a potential role for Tspan18 in early development of 

the nervous system (Perron & Bixby, 1999).  Further to this initial study, 

Tspan18 has been implicated in the migration of chick neural crest cells; a 

process which is important during embryogenesis.  Tspan18 was shown to 

regulate cadherin-6B levels; down regulation of Tspan18 via a FoxD3-

dependant mechanism was required to allow down regulation of cadherin-6B 

expression and therefore crest cell migration (Fairchild & Gammill, 2013).  

Migration of neural crest cells is dependant on the process of epithelial-to-

mesenchymal transition (EMT), which allows tightly packed epithelial cells to 

depolarise and become mesenchymal cells capable of migration.  The novel 

role of Tspan18 in this process has implications not only in the mechanism of 

EMT, but also potentially in other migrating mechanisms such as cancer 

metastasis (Fairchild & Gammill, 2013).  

In addition to the role for Tspan18 in the developing nervous system, this 

tetraspanin has been identified as a susceptibility locus for mutations causing 

schizophrenia within the Han Chinese ethnic group (J. Yuan et al., 2013; Yue 

et al., 2011).  In a study using a genome-wide association approach, three 

single-nucleotide polymorphisms (SNPs) within the Tspan18 gene were 

identified to be linked with increased susceptibility for schizophrenia, though 
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the functional role for Tspan18 during pathogenesis of this disorder is not 

known (Yue et al., 2011).  A more recent study confirmed this link with one of 

the SNPs identified, in an independent population (J. Yuan et al., 2013). 

Aside from expression in the nervous system, Tspan18 has also been 

identified in cells of the vasculature, such as endothelial cells, platelets and 

CD4-positive T cells (Bailey et al., 2011; Colombo, 2010; Lewandrowski et al., 

2009; Macaulay et al., 2007; Protty et al., 2009).  The strong endothelial 

expression profile of Tspan18 was revealed during real time polymerase chain 

reaction (PCR) studies on human cells and mouse tissues.  Tspan18 

messenger ribonucleic acid (mRNA) was most highly expressed in human 

umbilical vein endothelial cells (HUVEC) and human microvascular 

endothelial cells (HMEC) in comparison to smooth muscle cells, fibroblasts, 

and in the cell lines PBL, DAMI, DG75, K562, HBP-AII, HEL, MDA-MB-231, 

RAJI, U937, HEK293T, or Jurkat cells (Colombo, 2010).  In mouse tissue, 

Tspan18 mRNA was found to be highest in lung tissue in comparison to brain, 

heart, kidney, liver, muscle, spleen and thymus, which is consistent with a 

preferential expression in endothelial cells (Colombo, 2010).  Additionally, 

analysis of transcriptomic data from serial analysis of gene expression 

experiments indicated that Tspan18 is most highly expressed in endothelial 

cell libraries (Bailey et al., 2011).  Together, these data strongly suggest that 

Tspan18 is expressed in endothelial cells.  Proteomics screens have also 

identified Tspan18 in human platelets (Lewandrowski et al., 2009), human 

and mouse megakaryocytes and CD4-positive T cells (Macaulay et al., 2007; 

Protty et al., 2009).  Also, Tspan18 mRNA has been identified in human and 

mouse platelets (Haining et al., 2012; Rowley et al., 2011).  Together, these 
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real time PCR and proteomics studies suggest that Tspan18 is expressed in 

both endothelial cells and platelets, though there are currently no publications 

which investigate the role of this tetraspanin within the vasculature. 

Interestingly, when assessed alongside a panel of other tetraspanins, only 

expression of Tspan18 was able to induce activity of a Ca2+ responsive 

nuclear factor activated T-cells (NFAT) luciferase reporter; expression of the 

tetraspanins CD9, CD63, CD151, Tspan32 and Tspan9 had no significant 

effect on the reporter (Colombo, 2010).  This work also demonstrated that 

Tspan18 induced NFAT activation independently of non-receptor tyrosine 

kinases of Src, Syk and Btk families, PLCγ, and IP3 receptors; over-

expression of Tspan18 still promoted NFAT activation in specific DT40 

knockout cell lines for these proteins (Colombo, 2010).  Additional functional 

studies demonstrated that the action of Tspan18 mimicked the action of the 

ionophore ionomycin, further implying a role for Tspan18 in regulation of Ca2+ 

mobilisation (Colombo, 2010).  

Although no partner protein has yet been identified for Tspan18, these 

findings suggest that Tspan18 could be interacting with and regulating a Ca2+ 

channel, or other protein involved in Ca2+ entry.  It is therefore possible that 

Tspan18 may have a role in regulation of Ca2+ signalling in cell types such as 

platelets, and thus a role in platelet signalling and activation. 

A useful tool for investigating the role of Tspan18 further is the Tspan18 

knockout mouse.  The Tspan18 knockout mouse was obtained from the 

Mutant Mouse Regional Resource Centre and was originally generated by 

Genentech Inc. and Lexicon Pharmaceuticals Inc.  They aimed to create an 



 - 55 - 

extensive collection of knockouts, providing a resource to screen for new drug 

targets.  In total, a mouse knockout library of 472 secreted and 

transmembrane proteins was produced, including Tspan18 (Tang et al., 

2010).  The Tspan18 gene has a total of 10 exons and the start codon is 

found in exon 4 (NCBI accession NM_183180.1).  To knockout Tspan18, 

homologous recombination was used to target exons 4 and 5 in embryonic 

stem cells derived from strain 129/SvEvBrd (see figure 1.9 for targeting 

strategy).  The resulting chimeras were crossed with C57BL/6J albino mice to 

generate mice which were heterozygous for Tspan18.  These progeny were 

intercrossed to generate wildtype, heterozygous and homozygous mutant 

progeny.  Disruption of Tspan18 was confirmed by Southern hybridisation 

analysis (Tang et al., 2010). 

No notable phenotype was observed during a broad phenotypic screen 

completed by Genentech Inc. which included analysis of development, 

metabolism, and the immune and cardiovascular systems (Tang et al., 2010).  

No in-depth platelet function tests were completed.  A minor increase in 

anxiety response in female knockout mice was observed in an open field test 

when compared to wildtype gender matched littermates (Tang et al., 2010). 
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Figure 1.9 – Targeting strategy involved in generating the Tspan18 knockout mouse by 

homologous recombination.  Blue filled boxes represent coding exons and empty boxes 

represent untranslated regions.  The diagrams shown represent the wildtype Tspan18 gene 

structure (A), the target vector, pKOS-50 (B) and the resulting gene structure after 

homologous recombination (C) (Tang et al. 2010).  Wildtype, mutant and heterozygous 

progeny were identified by PCR of tissue taken from ear clips, using primers outlined in 

chapter 2, section 2.8.2 (D). 
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1.4 PROJECT OBJECTIVES 

The main aim of the work completed in this thesis was to characterise the 

function of the tetraspanin Tspan18 in platelets by using the Tspan18 

knockout mouse and cell line models.  The Tspan18 knockout mouse was 

available from the Mutant Mouse Regional Resource Centre, after being 

generated by Lexicon Pharmaceuticals and Genentech (Tang et al., 2010). 
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2.1 MICE, REAGENTS AND CELL CULTURE 

 

2.1.1 Mice  

Procedures using mice completed at the University of Birmingham, UK, were 

undertaken with the correct approval and licensing from the United Kingdom 

Home Office, under the project licence number 30/2721 and the personal 

licence number IE639FEE9.  Tspan18 deficient mice were generated during 

collaboration between Genentech Inc. and Lexicon Pharmaceuticals Inc. 

(Tang et al., 2010).  The mice were purchased from the Mutant Mouse 

Regional Resource Centre.  The Tspan18 mouse colony was sustained by 

breeding heterozygous pairs which produced Tspan18 wildtype, heterozygous 

and mutant progeny.  Therefore, wildtype littermates were used as controls 

alongside Tspan18 deficient mice in experiments.  C57Bl/6 wild type mice 

were purchased as required from Harlan Laboratories, UK, or Charles River, 

UK.   

 

2.1.2 Plasmids 

The NFAT/activator protein 1 (AP-1) luciferase transcriptional reporter 

construct has been described previously (Shapiro, Mollenauer, Greene, & 

Weiss, 1996; Michael G Tomlinson et al., 2004).  The pEF6 mock vector and 

pEF6-LacZ expression constructs were purchased from Invitrogen.  All N-

terminal FLAG-tagged tetraspanin expression constructs were made by 

cloning the tetraspanins into the pEF6-FLAG vector (Haining et al., 2012; 
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Protty et al., 2009).  The Myc-tagged pCDNA3.1 Orai1, Orai2 and Orai3 

expression constructs and the dominant negative FLAG-tagged MO70 Orai1 

E106Q expression construct were purchased from Addgene (Gwack et al., 

2007). 

 

2.1.3 Antibodies 

Listed in table 2.1 below are details of antibodies used across all experiments 

within this thesis, including the host species and the source. 

Antibody Host 
species 

Source 

Mouse α2 FITC Rat Emfret Analytics  
Mouse αIIb FITC Rat Emfret Analytics 
Mouse α6 FITC Rat Emfret Analytics 
Mouse ADAM10 FITC Rat R&D Systems 
Mouse CD9 FITC Rat Emfret Analytics 
Mouse GPIb FITC Rat Emfret Analytics 
Mouse GPVI FITC Rat Emfret Analytics 
Mouse CLEC-2 FITC Rat Prof. Steve Watson 
Rat IgG2a FITC Rat AbD Serotec  
Human/mouse tubulin 
(DM1A) 

Mouse Sigma  

Phosphotyrosine (4G10) Mouse Millipore 
Mouse IgG1 (MOPC) Mouse Sigma  
Human CD9 Mouse Prof Leonie Ashman 
Human GPIb Mouse Prof Leonie Ashman 
Human ADAM10 Mouse R&D Systems 
Rabbit IgG Rabbit Upstate Cell Signalling 
Human/mouse Orai1-NT 
(4041) 

Rabbit ProSci 

Human/mouse Orai1-CT 
(4281) 

Rabbit ProSci 

FLAG Rabbit Sigma 
FLAG (clone M2) Mouse Sigma 
MYC (9BII) Mouse Cell Signalling Technology 

 

Table 2.1 – Details of all antibodies used in western blotting, flow cytometry and 

immunoprecipitation experiments. 
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2.1.4 Cell culture 

All cells were kept in a humidified incubator at 37oC, 5% CO2.  The DT40 

chicken B cell line was obtained from laboratory stocks and was maintained in 

RPMI media with added supplements: 10% heat inactivated foetal bovine 

serum (FBS), 1% chicken serum, 4 mM glutamine,  100 units/ml penicillin, 

100 µg/ml streptomycin and 50 µM β2-mercaptoethanol (Michael G Tomlinson 

et al., 2004).  The HEK293T human embryonic kidney cell line was obtained 

from laboratory stocks and was maintained in DMEM media with added 

supplements: 10% heat inactivated FBS, 4 mM glutamine, 100 units/ml 

penicillin and 100 µg/ml streptomycin (Haining et al., 2012).  HUVEC were 

isolated by infusing the veins of umbilical cords with collagenase to dislodge 

the cells, or were obtained from Phil Stone (University of Birmingham, UK).  

HUVEC were grown on cell culture plates pre-treated with 0.1% (w/v) gelatine 

diluted in phosphate buffered saline (PBS) and were used up to passage six.  

They were maintained in M199 media with added supplements: 10% heat 

inactivated FBS, 4 mM glutamine, 0.3% bovine brain extract (Maciag, 

Cerundolo, Ilsley, Kelley, & Forand, 1979) (provided by Dr. Victoria Heath, 

University of Birmingham), 90 µg/ml heparin (Sigma), 100 units/ml penicillin 

and 100 µg/ml streptomycin (Kaur et al., 2011).  Human dermal fibroblasts 

were obtained from Dr. Victoria Heath and were maintained in DMEM media 

with added supplements: 10% heat inactivated FBS, 4 mM glutamine, 100 

units/ml penicillin and 100 µg/ml streptomycin (Kaur et al., 2011).   
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2.2 TRANSFECTION 

 

2.2.1 Transfection by electroporation 

DT40 B cells were transiently transfected by electroporation for use in the 

NFAT/AP-1 luciferase reporter assay, as previously described (Michael G 

Tomlinson et al., 2004).  Briefly, cells were suspended at 1.5x107 cells/400 µl 

in serum free media and were incubated with 20 µg NFAT/AP-1 luciferase 

transcriptional reporter (Shapiro et al., 1996; Michael G Tomlinson et al., 

2004), 2 µg pEF6-LacZ (Invitrogen) and 10 µg of either pEF6 mock vector 

(Invitrogen), or pEF6 FLAG-tagged tetraspanin (Haining et al., 2012; Protty et 

al., 2009) for 10 mins before electroporation at 350 V and 500 µF using a 

Gene-Pulser and capitance extender (Bio-Rad).  Cells were incubated for 10 

mins and then suspended in 8 ml complete serum-containing media. 

  

2.2.2 Transfection by polyethylenimine (PEI) 

HEK293T cells were transiently transfected using PEI (Sigma), for use in 

biochemical assays, as described (Ehrhardt et al., 2006; Haining et al., 2012).  

Briefly, cells were set up in complete media 24 hours before transfection.  

Opti-mem serum-free media (Gibco) was incubated with deoxyribonucleic 

acid (DNA) and PEI (1 mg/ml stock) for 10 mins to allow DNA/PEI complexes 

to form.  The mix was added to the cells, which were used for experiments 48 

hours after transfection.  Cell counts, and volume of reagents used are listed 

in table 2.2. 
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Plate Cells Media Opti-mem DNA PEI 

6-well 3 x 105 2 ml 100 µl 1 µg 4 µl 
6 cm 1 x 106 3 ml 300 µl 3 µg 12 µl 
10 cm 3 x 106 10 ml 1 ml 9 µg 36 ml 
15 cm 6 x 106 20 ml 2 ml 18 µg 72 ml 

 

Table 2.2 – Reagents and quantities required for PEI transfection of HEK293T cells. 
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2.3 PLATELET PREPARATION 

 

2.3.1 Mouse platelet preparation 

Both washed platelets and platelet rich plasma were prepared as previously 

described (Hughes et al., 2008).  Briefly, mice at 10-12 weeks old were 

terminally anaesthetised using isoflurane and blood was drawn from the 

exteriorised descending aorta directly into 150 µl acid citrate dextrose (ACD; 

120 mM sodium citrate, 110 mM glucose, 80 mM citric acid) when preparing 

washed platelets, or citrate concentrated solution (4%, Sigma) when 

preparing platelet rich plasma.  Withdrawn blood was then diluted in 200 µl of 

modified Tyrode’s buffer (134 mM NaCl, 0.34 mM Na2HPO4, 2.9 mM KCl, 12 

mM NaHCO3, 20mM HEPES, 5 mM glucose, 1 mM MgCl2, pH 7.3).  Platelet 

rich plasma was extracted from the whole blood by centrifugation; 2 x 6 min at 

200 g to allow separation of platelet rich plasma from red blood cells.  

Washed platelets were prepared with an additional centrifugation step to 

pellet the platelets and separate them from the plasma; 6 min at 1000 g in the 

presence of 1 µg/ml PGI2 (Sigma). PGI2 was used to inhibit platelet activation 

and aggregation through increased cAMP and decreased intracellular Ca2+ 

concentration (Best, Martin, Russel, & Preston, 1977; Salvador Moncada, 

1982).  Platelets were then suspended in modified Tyrode’s buffer, counted 

and concentration adjusted as required. 
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2.3.2 Human platelet preparation 

Preparation of human platelets was approved by the University of Birmingham 

Ethics Committee and donors provided informed consent before donating 

blood, which was taken by a trained phlebotomist (Laura Cronin, Elizabeth 

Haining, or Farhat Khanim). Records of donors and volume of blood taken 

were completed in line with the ethical approval requirements. Washed 

human platelets were prepared as outlined previously (Pearce et al., 2004).  

Briefly, 50 ml of blood from healthy donors was drawn directly into 5 ml 

concentrated sodium citrate to act as an anticoagulant.  5 ml of pre-warmed 

ACD was added to the blood as further anti-coagulant and blood was 

centrifuged at 200 g for 20 min.  The supernatant (platelet rich plasma) was 

extracted and centrifuged at 1000 g for 10 min in the presence of PGI2 (1 

µg/ml).  The platelet pellet was suspended in modified Tyrode’s buffer, 

counted and the volume adjusted as required. 
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2.4 PLATELET FUNCTION ASSAYS 

 

2.4.1 Assessment of mouse blood cell counts 

Blood was drawn from the exteriorised descending aorta of terminally 

anaesthetised mice, as described in section 2.3.1.  A 60 µl sample of whole 

blood was analysed using Pentra 60 whole blood counting equipment (ABX 

Diagnostics).  All cell count readings were normalised for the added volume of 

the ACD and Tyrode’s buffer.  

 

2.4.2 Assessment of cell surface expression of platelet receptors 

Blood was drawn from the exteriorised descending aorta of terminally 

anaesthetised mice, as described in section 2.3.1.  5 µl of whole blood was 

stained for 30 min at room temperature with fluorescein isothiocyanate 

(FITC)-conjugated anti-mouse antibodies (Emfret), at a dilution of 1:10 in 

Tyrode’s buffer, as directed by the manufacturer’s guidelines.  Samples were 

analysed on a fluorescence activated cell sorting (FACS) Caliber (BD 

Biosciences) and platelets were gated by size on forward and side scatter and 

fluorescence was measured as geometric mean fluorescence intensity, which 

was normalised against an IgG control antibody using Cellquest Pro software.  
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2.4.3 Light transmission aggregometry 

Washed mouse platelets were prepared as described in section 2.3.1 and 

suspended at 2x108 platelets/ml ready for aggregation, as previously 

described (Hughes et al., 2008; Y. A. Senis et al., 2009).  Briefly, aggregation 

was measured in glass cuvettes, using a volume of 300 µl at 37°C with 

stirring.  Initial resting platelet readings were taken for 1 min, followed by 

stimulation by injection of 3 µl agonist (100 x concentrations).  Aggregation 

was measured by light transmission using aggregometer model 460VS 

(Chronolog, Lab Medics) and measurements recorded using a chart reader 

(Chronolog, Lab Medics). 

 

2.4.4 Measurement of platelet secretion  

Secretion of secondary mediators from platelet dense granules during 

aggregation was assessed via binding of platelet secreted ATP to an added 

firefly luciferin/luciferase premix (chromolume, Chrono-Log Corporation).  

Firefly luciferase is an enzyme which catalyses the chemical reaction which 

leads to the generation of light from luciferin.  The reaction, which is described 

by the equation below, requires ATP to produce lucifryl adenylate from 

luciferin.  In turn, oxyluciferin is formed in an excited state; as it returns to the 

ground level, a photon of light is emitted.  Therefore, the amount of ATP 

secreted from the platelets can be measured through the amount of light 

detected.  ATP concentration was calculated using an ATP standard to 

calibrate the measurements (Hughes et al., 2008; Y. A. Senis et al., 2009). 



 - 68 - 

 

 

2.4.5 Platelet spreading 

Analysis of platelet spreading was undertaken as previously described 

(Hughes et al., 2008; Y. A. Senis et al., 2009).  Briefly, glass cover slips were 

coated with collagen related peptide (CRP) (10 µg/ml) or Fibrinogen (100 

µg/ml) overnight.  Cover-slips were blocked with 5mg/ml of denatured and 

filtered fatty acid free bovine serum albumin (Sigma) for 1 hour.  Washed 

mouse platelets were prepared as described in section 2.3.1, suspended at 

2x107 platelets/ml and incubated on the cover-slips for 45 min at 37°C in the 

presence of 10 µM indomethacin (Sigma) and 2 U/ml apyrase (Sigma) to 

inhibit platelet aggregation.  Platelets spread on fibrinogen coated cover-slips 

were also activated with 1 unit/ml thrombin.  Non-adherent platelets were 

washed away with phosphate buffered saline (PBS) and cover slips were 

fixed with 4% paraformaldehyde in PBS for 10 min.  Platelets were imaged 

using a 60X Plan APO 1.4NA oil immersion objective with a TE2000 (Nikon) 

microscope with Digital Sight DS-Qi1MC camera (Nikon) using NIS elements 

AR software (Nikon).  The area of single, in focus platelets was measured 

using thresholding in ImageJ Software for 150 platelets per condition. 

 

 

Luciferin + ATP Luciferyl adenylate + PPi 

Luciferyl adenylate + O2 Oxyluciferin + AMP + light 

Luciferase 
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2.4.6 Aggregate formation under flow 

Blood was drawn from the exteriorised descending aorta of terminally 

anaesthetised mice into 300 µl modified Tyrode’s buffer with heparin and 

PPACK (134 mM NaCl, 0.34 mM Na2HPO4, 2.9 mM KCl, 12 mM NaHCO3, 

20mM HEPES, 5 mM glucose, 1 mM MgCl2, pH 7.3, 15 u/ml heparin, 40 µM 

PPACK) to prevent thrombin generation (Hughes et al., 2010).  Flow cells in a 

24-well plate format (Fluxion) were coated with 30 µg/ml collagen for one hour 

and blocked with 5 mg/ml of denatured and filtered fatty acid free bovine 

serum albumin (Sigma) at 4°C overnight.  Blood was incubated with DiOC6 

membrane dye (0.2 µM) (Molecular Probes) at 37°C for 10 minutes and then 

perfused through the flow cell at shear rates of 300, 1000 or 3000 s-1 at 37°C 

using the Bioflux 200 microfluidic flow system (LabTech).  Images were 

continuously taken by fluorescence microscopy with a TE2000 (Nikon) 

microscope with Digital Sight DS-Qi1MC camera (Nikon) using NIS elements 

AR software (Nikon), using a 40x plan APO 1.4 NO oil immersion DIC 

objective. 

 

2.4.7 Platelet Ca2+ signalling measurements 

Washed mouse platelets prepared as outlined in section 2.3.1, were 

suspended at 1x108 platelets/ml in modified Tyrode’s buffer and incubated 

with Fura2-AM (Invitrogen) (10 µM) and pluronic F-127 (Molecular Probes) 

(0.2 µg/ml) for 30 min at 37 oC (Inoue et al., 2003).  Platelets were then 

washed in the presence of PGI2 (1 µg/ml) by centrifugation at 1000 g for 6 min 

to removed excess dye.  Platelets were suspended at 1x108 platelets/ml in 
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modified Tyrode’s buffer and 600 µl used for Ca2+ measurements, taken in a 

LS50B luminescence spectrometer (Perkin Elmer) in which excitation was 

alternated between 340 nm and 380 nm and measurements taken at 509 nm.  

Quantitative evaluation of Ca2+ concentration was calculated from the raw 

ratio values following calibration and use of the equation outlined below.  

Calibration of each value was achieved by obtaining the maximum and 

minimum ratio values.  The maximum value was measured after lysing the 

platelets with 0.1% Triton X-100 in the presence of 1.5 mM Ca2+.  The 

minimum value was measured after addition of 20mM ethylene glycol 

tetraacetic acid (EGTA) to chelate the Ca2+ in the media.   The Grynkiewicz 

equation was used to convert the raw data 340/380 nm ratio values into Ca2+ 

concentration values (Grynkiewicz, Poenie, & Tsienb, 1985).  The equation is 

defined below, where Kd = the dissociation constant of fura-2 (224 nM), R = 

measured fluorescence ratio value, Rmax = maximum ratio value, Rmin = 

minimum ratio value, Sf2/Sb2 = the ratio of fluorescence intensity at 380 nm in 

the absence of Ca2+ and at Ca2+-saturation. 

 

 

2.4.8 Platelet phosphotyrosine blotting 

Measurement of phosphorylation downstream of platelet surface receptor 

activation was completed as previously described (Hughes et al., 2008; Y. A. 

Senis et al., 2009).  Briefly, washed mouse platelets were prepared as 

[Ca2+] = Kd  x                     x 
(R – Rmin) 

(Rmax – R) 

(Sf2) 

(Sb2) 
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described in section 2.3.1 and suspended at 5x108 platelets/ml.  Lotrafiban 

(10 µm), indomethacin (10 µm), and apyrase (2 units/ml) were included in the 

suspension buffer to inhibit platelet aggregation.  Platelets were held at 37°C 

in a water bath without stirring, activated with CRP for 90 or 300 seconds and 

samples of 50 µl taken for resting and stimulated platelets.  Samples were 

lysed in an equal volume of 2x reducing sample buffer (0.1 M Tris pH 6.8, 4% 

sodium dodecyl sulphate (SDS), 20% glycerol, 5% 2 β-mercaptoethanol in 

dH20 containing bromophenol blue), separated by SDS- polyacrylamide gel 

electrophoresis (PAGE) using 4-12% gradient gels (Invitrogen) and visualised 

by western blotting as described in section 2.7.1, using an anti-

phosphotyrosine 4G10 antibody. 
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2.5 IN VIVO ASSAYS 

 

2.5.1 Tail bleeding 

The tail bleeding assay was used to assess haemostasis and was completed 

as described previously (Senis et al., 2009).  Litter-matched mice at 8-10 

weeks old were administered 0.05 mg/kg of the analgesic buprenorphine by 

subcutaneous injection prior to maintenance under continued isoflurane 

anaesthesia.  3 mm of the tail tip was removed using a razor blade and the tail 

left to hang freely without disruption.  Resulting blood drops were collected 

into pre-weighed 1.5 ml microfuge tubes.  The assay continued for 20 min, or 

until a maximum blood loss of 15% as estimated by weight (blood loss 

allowed = (mouse weight*0.15*70)/30, where a single drop of blood is 

estimated to be 30µl and total blood volume is assumed to be 70 µl/g.  For 

example, for a mouse weighing 20g: 20*0.15*70/30 = 7 drops allowed) was 

reached, or until bleeding ceased (judged as no blood fall for 5 min).  To end 

the procedure, the tail tip was cauterised. 

 

2.5.2 Thrombus formation following chemical injury 

This experiment was completed in Wurzburg, Germany, as previously 

described (Braun et al., 2009).  Briefly, platelets of mice were fluorescently 

labelled with Dylight-488 conjugated anti-GPIX Ig derivative.  Injury was 

induced to mesenteric arterioles by topical application of FeCl3 (20%) for 10 s.  
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Adhesion and aggregation of platelets was measured by fluorescence 

microscopy until complete occlusion of the vessel or a final time of 40 min. 

 

2.5.3 Thrombus formation following mechanical injury 

This experiment was completed in Wurzburg, Germany, as previously 

described (Braun et al., 2009).  Briefly, an ultrasonic flow probe was placed 

around the abdominal aorta of anaesthetised mice and thrombosis was 

induced by a single firm compression with forceps.  Blood flow was monitored 

until complete occlusion occurred; otherwise experiments were stopped 

manually after 30 minutes.   

 

2.5.4 Generating chimeric mice 

To generate chimeric mice with Tspan18 wildtype haematopoietic cells and 

knockout non-haematopoietic cells, and vice versa, an irradiation approach 

was used, as previously described (Hughes et al., 2010).  Briefly, the drinking 

water of 6-week old C57BL/6 wild type or Tspan18 deficient mice was treated 

with the antibiotic Baytrill for 1 week to reduce the risk of infection during the 

experiment.  The mice were then lethally irradiated with two separate doses at 

500 Gy, 3 hours apart.  One hour after the second dose of irradiation, the 

mice were injected via the tail vein with embryonic liver cells suspended in 

PBS, which had been harvested at embryonic day E16.5 and stored as a 

single cell suspension in freezing solution (90% FBS, 10% DMSO) at -80 oC.  

Mice were left to recover over a period of 6 weeks to allow reconstitution of 



 - 74 - 

the haematopoietic system from the injected cells.  Genotyping of 

haematopoietic and non-haematopoietic cells was used to confirm success of 

the experiment, as outlined in sections 2.8.1 and 2.8.2.  Embryonic liver was 

selected for injecting in to the irradiated mice, as full and long term 

reconstitution of the multiple lineages within the haematopoietic system, 

including erythrocytes, T-cells, mast cells and macrophages, has been 

observed following transplant of foetal liver (Ema & Nakauchi, 2015; 

Forrester, Bernstein, Rossant, & Nagy, 1991).  The embryonic stem cells 

which are derived from foetal liver have been shown to have the ability to 

reconstitute the haematopoietic system, and are relatively easy to harvest in 

significant quantities in comparison to other sources of stem cells such as 

bone marrow.  As such, many studies within the field of platelet function 

testing have utilised this method of haematopoietic reconstitution (Hess et al., 

2014; Hughes et al., 2010; Suzuki-Inoue et al., 2010). 
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2.6 NFAT/AP-1 LUCIFERASE REPORTER ASSAY 

 

2.6.1 Measurement of luciferase signalling 

NFAT activity was monitored using a reporter assay, as described previously 

(Michael G Tomlinson et al., 2004).  DT40 cells were transfected as described 

in section 2.2.1 and after 16 hours, cells were counted, suspended at 2x106 

cells/ml and 50 µl aliquoted into triplicate wells in a 96-well plate.  An equal 

volume (50 µl) of media containing agonist was added to each well; cells were 

either left unstimulated, were stimulated with 50 ng/ml Phorbol 12-myristate 

13-acetate (PMA) (Merck Millipore) and 1 µM ionomycin (Merck Millipore), or 

were inhibited with 2 mM cyclosporin A (Merck Millipore) for 6 hours.  After 

incubation, cells were lysed in 11 µl harvest buffer (10% Triton X-100, 1 mM 

DTT, 200 mM potassium phosphate buffer; 450 mM K2HPO4, 46 mM KH2PO4) 

for 5 min.  100 µl from each well was transferred to an opaque 96-well plate 

and 100 µl assay buffer added (10 mM ATP, 20 mM MgCl2 in 0.2 M 

potassium phosphate buffer); luciferase activity was measured in a plate-

reading Mithras LB940 luminometer (Berthold Technologies) after injection of 

50 µl luciferin (1 mM) (Cambridge Bioscience).  

Luciferase activity data were normalised for transfection efficiency to β-

galactosidase activity using a kit (Applied Biosystems) as described 

previously (Michael G Tomlinson et al., 2004).  Briefly; cell pellets of 1x106 

cells were lysed in 80 µl lysis buffer for 5 mins.  Lysed cells were incubated 

with galacton reaction buffer in the dark for 1 hour and activity was measured 
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in a plate-reading Mithras LB940 luminometer (Berthold Technologies) after 

injection of light emission accelerator. 

Data was not normally distributed due to normalisation of the values to β-

galactosidase activity; therefore data were transformed into logarithmic values 

for analysis.  As a result, positive and negative error bars were calculated 

separately, to avoid presenting misleading quantities due to the logarithmic 

data.  For graphical representation, data were converted back into linear 

values. 

 

2.6.2 Analysis of protein expression following measurement of 

signalling 

For analysis of protein expression, whole cell lysate samples were separated 

by SDS-PAGE and analysed by western blot.  To prepare the samples, frozen 

DT40 whole cell pellets were lysed in 20µl lysis buffer (1% Triton X-100, 

10mM Tris pH 7.5, 150mM NaCl, 1mM EDTA, 0.02% sodium azide) 

containing 1% protease inhibitor cocktail (Sigma) per 1 x 106 cells for 30 

minutes on ice.  The supernatant was mixed with 2x non-reducing SDS-PAGE 

sample buffer (0.1 M Tris pH 6.8, 4% SDS, 20% glycerol in dH20 containing 

bromophenol blue), boiled for 5 min and 40µl of each sample was loaded into 

a 12% gel and separated by SDS-PAGE electrophoresis.  The gels were 

transferred onto an Immobilon FL PVDF membrane (Millipore), as described 

in section 2.7.1.   
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2.7 BIOCHEMICAL ASSAYS 

 

2.7.1 Western blotting 

For visualisation of protein expression, gels from SDS-PAGE electrophoresis 

were transferred onto either methanol activated Immobilon FL low 

fluorescence membranes (Millipore) for development using the Odyssey infra-

red scanner, or methanol activated Immobilon FL PVDF membranes for 

development on film.  Membranes were blocked in 5% milk or 3% bovine 

serum albumen (BSA) (First Link, UK) in TBST (20 mM Tris, 137 mM NaCl, 

0.1% Tween, pH 7.6) for at least 1 hour, incubated with primary antibody (1 

µg/ml) diluted in 3% BSA in TBST overnight, washed in TBST, and incubated 

with secondary antibody diluted in 3% BSA in TBST for 2 hours.  Immobilon 

FL membranes were blotted with secondary antibodies conjugated to infra-red 

dye (IR dye) 800 CW or 680 (LI-COR Biosciences) and were scanned using 

the Odyssey infra-red scanner (LI-COR Biosciences).  PVDF membranes 

were blotted with HRP-conjugated secondary antibodies (Pierce), developed 

using Pierce ECL western blot substrate (Thermo Scientific) and exposure to 

film. 

 

2.7.2 Immunoprecipitation in HEK293T cells 

Immunoprecipitation in HEK293T cells was completed as previously 

described (Haining et al., 2012).  Briefly, transfected HEK293T cells in 6-well 

plates were lysed in either 1% cold Triton X-100 (1% Triton X-100, 10 mM Tris 
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pH 7.5, 150 mM NaCl, 1 mM EDTA, 0.02% sodium azide) or 1% digitonin (1% 

digitonin, dissolved in 100% methanol, diluted 1:10 in lysis buffer; 10 mM Tris 

pH 7.4, 150 mM NaCl, 0.02% NaN3) for 30 min on ice.  Insoluble material was 

removed by centrifugation at 20,000 g 10 min, and the supernatant incubated 

with rotation for 1.5 hours at 4oC with protein G sepharose 4B beads 

(Invitrogen), which had been coupled to an anti-FLAG M2 antibody; 20 µl 

beads and 1 µg antibody per sample, incubated with rotation at 4oC overnight.  

After incubation, the beads were washed 4 times with 1 ml lysis buffer, and 

mixed with 50 µl non-reducing SDS-PAGE sample buffer.  Samples were 

boiled for 5 min, 20 µl was loaded onto 12% gels and separated by SDS-

PAGE gel electrophoresis.  Gels were transferred onto an Immoblin FL 

membrane as outlined in section 2.7.1. 

 

2.7.3 Immunoprecipitation in human platelets 

Immunoprecipitation using human platelets was completed as previously 

described (Haining et al., 2012).  Briefly, platelets were prepared as described 

in section 2.3.2 at a density of 1 x 109 platelets/ml.  500 µl platelets were lysed 

in 500 µl 2x Brij97 lysis buffer (2% Brij97, 20 mM Tris pH 7.5, 150 mM NaCl, 2 

mM CaCl2, 2 mM MgCl2, 0.02% sodium azide) containing 20 µl protein 

sepharose G beads for pre-clearing, with rotation at 4oC for 1 hour.  Following 

lysis, the immunoprecipitation protocol and gel loading was completed as 

described in section 2.7.2. 
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2.7.4 Biotinylation  

Sulfo-NHS-LC-biotin reacts with amine groups and therefore labels lysine 

residues and the primary amine at the N-terminus of proteins.  The reagent is 

largely membrane impermeable, thus predominantly labels cell surface 

proteins.  Biotin was used to label HEK293T cells, as described previously 

(Haining et al., 2012; Y. A. Senis et al., 2009).  Briefly, transfected HEK293 T 

cells in a 6-well plate were first washed 3 times with PBS, then 1 ml of sulfo-

NHS-LC-biotin (Pierce) (1 mg/ml) was added and incubated on a rocker for 30 

min at room temperature.  The biotinylation reaction was quenched using 

glycine (100 mM), the cells were harvested and either lysed and treated as 

outlined in the immunoprecipitation protocol outlined in section 2.7.2, or were 

used as whole cell lysates, without immunoprecipitation. 

 

2.7.5 Cell surface cross-linking 

3, 3’-dithiobis[sulfosuccinimidylpropionate] (DTSSP) (Pierce) was used as a 

membrane impermeable chemical cross-linker, as previously described 

(Haining et al., 2012).  It consists of amine-reactive groups at either end, 

linked by a spacer of 1.2 nm in length.  Therefore, if two cell surface proteins 

are closely associated, with either their N-termini or lysine residues in close 

proximity, these proteins will be covalently cross-linked together by DTSSP.  

The spacer can subsequently be cleaved with reducing agents.  Transfected 

HEK293T cells were washed with PBS and treated with 2 mM DTSSP on a 

rocker at 4°C for 30 min.  0.1 M glycine solution was added to each well to 
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quench the cross-linking reaction.  Samples were lysed and 

immunoprecipitation completed as outlined in section 2.7.2. 

 

2.7.6 Enzyme linked immunosorbent assay (ELISA) 

Blood was drawn from the exteriorised descending aorta of terminally 

anaesthetised mice, as described in section 2.3.1, using only sodium citrate 

as an anticoagulant.  Plasma was separated from the whole blood by 

centrifugation at 1000 g for 10 min.  Following extraction, plasma samples 

were stored at -80oC until use.  Measurement of plasma concentration of vWF 

and FVIII was achieved using kits containing pre-coated micro-titre plates, 

following the manufacturer’s guidelines (Bioassay Technology Laboratory and 

My Biosource, respectively).  At completion of the assay, the plates were read 

at 450 nm using a microtitre plate reader (Anthos Zenyth 340rt).  

Concentration was calculated by extrapolation from a five-point standard 

curve generated with provided standard solutions of known concentration.   
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2.8 PCR 

 

2.8.1 Genotyping mouse tissue 

For identification of littermates and to provide tissue for genotyping, tissue 

was clipped from the ears of 1-2 week old mice and stored at -20oC until use.  

Tissue samples were incubated at 55oC overnight with 500 µl lysis buffer (100 

mM Tris-HCl, 5 mM EDTA, 0.2% SDS, 200 mM NaCl) with 5 µl proteinase K 

(Sigma).  After incubation, samples were centrifuged at 10,000 g for 2 min to 

pellet the insoluble material, and the supernatant was added to an equal 

volume of isopropanol to precipitate the DNA.  Samples were centrifuged at 

20,000 g for 20 min, the supernatant aspirated and the pellet suspended in 50 

µl DNAse free water.  DNA samples were incubated at 50 oC for 30 min and 

stored long term at 4 oC.  Each 20 µl PCR reaction contained 10 µl RedTaq 

master mix (Sigma), 7.4 µl water, 1.6 µl primers (Lexicon, primer sequences 

outlined in table 2.3), and 1 µl DNA.  The following PCR program was used: 5 

min at 95oC, followed by 35 cycles of 1 min at 95oC, 1 min at 58oC, 1 min at 

72oC, and a final 5 min at 72oC.  PCR products were run on 2% agarose gels 

and visualised using SYBR safe DNA gel stain (Life Technologies). 

 

2.8.2 Genotyping from mouse blood 

For assessment of chimeric mice, genotyping analysis of haematopoietic cells 

was necessary to confirm successful reconstitution of the haematopoietic cells 

from the transplanted cells.  Blood samples were taken from the mice 6 weeks 
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post irradiation and were incubated with 1 ml ACK red cell lysis buffer (150 

mM NH4Cl, 10 mM KHCO3, 0.1 mM Na2EDTA, pH 7.2) for 5 min at room 

temperature before being centrifuged to pellet the intact white blood cells; the 

supernatant was discarded and the cell pellet saved.  This process was 

repeated three times to remove all traces of red blood cells from the sample.  

The lysis, DNA extraction and PCR protocol outlined in section 2.8.1 was then 

used. 

Wildtype specific (absent in targeted allele) 

5’ primer name DNA498-24 
3’ primer name DNA498-13 

Predicted band size 376 bp 
5’ primer sequence 5’ – AGGATGGGATAACTGTCTGG 

3’ – primer sequence 5’ – GCAGCGCATCGCCTTCTATC 

Mutation specific (absent in wildtype allele) 

5’ primer name Neo3A 
3’ primer name DNA498-13 

Predicted band size 227 bp 
5’ primer sequence 5’ – GCAGCGCATCGCCTTCTATC 

3’ – primer sequence 5’ – GCAGCGCATCGCCTTCTATC 
 

Table 2.3 – An outline of primer sequences of the primers used in PCR for genotyping of 

mouse tissue. 

 

2.8.3 Real time quantitative PCR 

Following siRNA knock down in HUVEC, 48 hours after transfection the cells 

were harvested and split to be used for experiments or for analysis by RT-

PCR.  RNA was extracted from HUVEC using a Total RNA Purification Kit 

(Norgen Biotek), according to the manufacturer’s guidelines, and the resulting 

yield of RNA was measured using a spectrophotometer (Nanodrop).  To 

generate the template required for the real-time PCR reaction, cDNA was 

generated from the extracted RNA using a High Capacity cDNA Reverse 
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Transcriptase kit (Invitrogen), which required the following PCR program to 

generate the cDNA: 25oC for 10 min, 37oC for 120 min, 85oC for 5 min.  The 

cDNA product was stored at -20oC short-term before use in the RT-PCR 

reaction, which utilised FAM-TAMRA TaqMan hydrolysis probes (Applied 

Biosciences) and GAPDH as the internal house keeping control gene.  RT-

PCR samples were analysed using an ABI Prism 700 Sequence Detection 

system (Applied Biosciences) and the following PCR program: 50oC for 2 min, 

95oC 10 min, followed by 44 cycles of 95oC for 15 sec, 60oC for 1 min.  MIQE 

guidelines were followed (Bustin et al., 2009); water controls were included to 

check for contamination and the efficiency of each experiment, which was 

required to be within 10% of the house keeping gene to be considered valid, 

was calculated from standard curves, generated from 2-fold serial dilutions of 

the cDNA in the PCR reaction mix. 

To calculate relative mRNA expression in each sample, the cycle threshold 

values (Ct) for Tspan18 were compared to the Ct of the housekeeping gene, 

GAPDH.  Ct marks the point of intersection between the amplification curve 

and the threshold line and was set at the exponential phase of amplification.  

To calculate the expression ratio of the gene of interest and to control for 

differences in efficiency of amplification across experiments, the Pfaffl method 

was used, for which the equation is outlined below (Pfaffl, 2001). 

 

 

Ratio =  

(E target)  

(E ref)  

∆Ct target  

∆Ct ref 
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Where E target is the real time PCR efficiency of the target gene (in this case, 

Tspan18) and E ref is the real time PCR efficiency of the housekeeping gene 

(in this case, GAPDH).  The ∆Ct target is the Ct of control – knockdown sample 

for the target gene (Tspan18) and the ∆Ct ref is the Ct of control – knockdown 

sample for the housekeeping gene (GAPDH) (Pfaffl, 2001). 
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2.9 ENDOTHELIAL FUNCTION ASSAYS 

 

2.9.1 siRNA Transfection of HUVEC 

HUVEC were transiently transfected using RNAiMAX (Invitrogen) and short 

interfering RNA (siRNAs) (Ambion) to knock-down proteins of interest during 

endothelial functional assays, as previously described (Kaur et al., 2011).  In 

brief, cells were set up in complete media 24 hours before transfection.  A 

duplex mix, containing siRNA duplex (20 µM stock) and Opti-mem serum-free 

media, and a lipofectamine mix, of lipofectamine (RNAiMAX) and Opti-mem, 

were incubated for 10 mins.  The two mixes were combined and incubated for 

a further 10 mins.  The cells were washed twice with PBS and the 

duplex/lipofectamine mix with additional Opti-mem media added to the plate.  

The cells were incubated at 37oC for 4 hours before the media was changed 

to complete HUVEC media without antibiotics.  Cells were used in endothelial 

functional assays 48 hours after transfection.  Cell counts, amount of DNA 

and volume of reagents used are listed in the table below (Kaur et al., 2011). 

Plate 
size 

Cells 
plated 

siRNA mix 
siRNA        Opti-mem 

Lipofectamine mix 
RNAiMAX    Optimem 

Final 
volume 

6-well 1.75 x 
105 

2.5 µl 167.5 µl 6-well 3 µl 1 ml 

6 cm 3.6 x 
105 

3.6 µl 241.4 µl 6 cm 4.3 µl 2 ml 

10 cm 1 x 106 10 µl 670 µl 10 cm 12 µl 4 ml 
 

Table 2.4 – Reagents and quantities required for siRNA knock down in HUVEC 
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2.9.2 Scratch wound assay 

HUVEC were seeded at 3.5 x 105 cells per well of a gelatine-coated 6-well 

plate 24 hours before transfection, using siRNA, as described above.  48 

hours after transfection, HUVEC monolayers were wounded with a plastic 

pipette tip and cell migration was monitored using a 20X objective with a 

TE2000 (Nikon) microscope with Digital Sight DS-Qi1MC camera (Nikon) 

using NIS elements AR software (Nikon).  Images were taken every 15 

minutes for 12 hours and migration of the cells to close the wound was 

assessed using ImageJ software (Kaur et al., 2011).  Samples were taken to 

analyse knockdown efficiency by real time PCR, as described above. 

 

2.9.3 Co-culture tube formation assay of angiogenesis 

Fibroblasts were grown to confluence in a 12-well plate.  HUVEC which had 

been transfected with siRNA, as described above, 24 hours previously were 

plated on top of the fibroblast culture at 3 x 104 cells/ml, using 1 ml per well.  

For six days the cells were left to grow, being given fresh media every other 

day.  Following this incubation period, the tubes formed by the HUVEC were 

stained; cells were washed with PBS and fixed using 1 ml chilled ethanol 

(70%) for 30 min.  Fixed cells were then incubated with anti-human CD31 

antibody (1.29 µg/ml) in 400 µl buffer (1% BSA in PBS) at 37 oC for 40 min.  

Cells were washed with PBS, and incubated with anti-mouse IgG alkaline 

phosphatase (Sigma) (1:500) in 400 µl buffer (1% BSA in PBS) at 37 oC for 40 

min.  Cells were washed with PBS then dH2O before addition of 500 µl 

SigmaFast BCIP/NBT substrate (Sigma) dissolved in dH2O and were 
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incubated at room temperature for 25 min.  The reaction was stopped by 

washing with excess dH2O.  The plates were then imaged using a light 

microscope and tubule formation was assessed using AngioSys software 

(Kaur et al., 2011). 
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CHAPTER 3 

TSPAN18 REGULATES GPVI INDUCED PLATELET 

ACTIVATION AND PLATELET Ca2+ SIGNALLING 
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3.1 INTRODUCTION 

 

3.1.1 Tspan18 is a platelet tetraspanin 

The expression of tetraspanins in platelets has been studied using several 

techniques including proteomics, mRNA analysis, and use of antibodies to 

confirm and quantitate protein expression (Haining et al., 2011).  One specific 

proteomics screen demonstrated that Tspan18 is one of the tetraspanins 

expressed on human platelets (Lewandrowski et al., 2009).  Additionally, 

Tspan18 has been identified at the mRNA level in human and mouse 

megakaryocytes (Macaulay et al., 2007; Protty et al., 2009) and human and 

mouse platelets (Haining et al., 2012; Rowley et al., 2011).  Aside from 

platelets, Tspan18 has also been identified in endothelial cells (Colombo, 

2010) and CD4+ T-cells (Protty et al., 2009), at the mRNA level, however a 

lack of antibodies has limited further investigation into its expression profile. 

Selected platelet tetraspanins have been investigated using knockout mouse 

models and some have been implicated in regulation of platelet activation.  

For example, mice lacking either CD151 or Tspan32 displayed impaired 

platelet function.  This was proposed to be caused by defective signalling from 

the major platelet integrin αIIbβ3 (Goschnick et al., 2006; Lau et al., 2004; 

Orlowski et al., 2009; Wright et al., 2004).  However, investigation into the 

CD9 and CD63 knockout mice yielded no major platelet phenotype except a 

mild increase in thrombus size in the CD9 knockouts (Mangin et al., 2009; 

Schröder et al., 2009).  The role of Tspan18 in platelet function has not yet 

been investigated.   
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When characterising platelet function, genetically modified mouse models are 

often used, as the effectiveness of in vitro assays is limited by the inability to 

culture or transfect these cells (B Nieswandt, Aktas, Moers, & Sachs, 2005).  

Therefore, to assess the role of Tspan18 in platelets, the Tspan18 knockout 

mouse was used.  The Tspan18 knockout mouse was obtained from the 

Mutant Mouse Regional Resource Centre and was originally generated by 

Genentech Inc. and Lexicon Pharmaceuticals Inc, as outlined in section 1.3.5 

(Tang et al., 2010). 
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3.2 AIMS 

The aim of this chapter was to assess the role of Tspan18 in platelet function 

and haemostasis by using Tspan18 deficient mice.  Both in vivo models and 

well defined in vitro assays were used to ascertain whether Tspan18 has a 

role in platelet activation or haemostasis. 
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3.3 RESULTS 

 

3.3.1 Normal blood cell numbers and expression of platelet surface 

receptors in Tspan18 deficient mice 

To evaluate blood cell counts in the Tspan18 deficient mice, blood was taken 

from anaesthetised mice and analysed using the Pentra 60 from ABX 

Diagnostics.  No significant difference was observed between Tspan18 

deficient and wildtype mice for platelet count, platelet volume, white blood cell 

count, or red blood cell count (figure 3.2, A-D).  Examination of the different 

white blood cell populations also distinguished no difference between 

Tspan18 deficient and wildtype mice (figure 3.2, E). 

To assess expression of the cell surface receptors which are important in 

platelet activation, flow cytometry was used.  Blood was taken from 

anaesthetised mice, stained with FITC-tagged antibodies for specific platelet 

surface proteins and mean fluorescence intensity values were corrected with 

an Ig control stain.  Tspan18 deficient platelets displayed normal expression 

of GPIb, the integrins α6 and αIIb, the metalloproteinase ADAM10, the 

tetraspanin CD9, and the signalling receptors, GPVI and CLEC-2 (figure 3.3). 

Taken together, these data suggest that Tspan18 does not have a role in 

blood cell production or regulation of surface expression of the platelet 

surface proteins tested. 
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Figure 3.1 - Whole blood cell counts in Tspan18 deficient mice are normal.  Blood was 

collected from anaesthetised mice and analysed by whole blood counting on a Pentra 60 from 

ABX diagnostics.  Platelet count (A), platelet volume (B), white blood cell count (C), and red 

blood cell count (D) were assessed.  Data were analysed by T-test.  Error bars represent the 

standard error of the mean from 30 pairs of mice.  White blood cell populations were also 

measured (E), and these data were normalised by arcsin transformation and analysed by two-

way analysis of variance (ANOVA) with Bonferroni post-test.  Error bars represent the 

standard error of the mean from 30 pairs of mice. 
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Figure 3.2 – Platelets from Tspan18 deficient mice express normal levels of the major 
platelet surface receptors.  Blood was collected from anaesthetised mice, stained with FITC-

tagged antibodies for specific platelet surface proteins, and analysed by flow cytometry.  

Representative overlay traces are shown; green = wildtype platelets, pink = Tspan18 deficient 

platelets, and black = control Ig staining for wildtype platelets (control Ig staining for 

Tspan18 deficient platelets yielded the same results, data not shown) (A).  The mean 

fluorescence intensity values from 5 pairs of mice were collated and the mean +/- standard 

deviation values are displayed (B).  All data were analysed by T-test. 
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3.3.2 Tspan18 deficient platelets display disrupted aggregation 

downstream of GPVI 

To assess platelet activation and aggregation in Tspan18 deficient platelets, 

light transmission aggregometry (LTA) was used.  LTA, or Born 

aggregometry, is considered to be the gold standard in platelet function 

testing and relies on the principle that more light can transmit through a 

suspension of aggregated platelets, than a suspension of resting platelets 

(Born, 1962).  The percentage aggregation of platelets can therefore be 

assessed in terms of percentage light transmission.  Use of agonists which 

activate specific platelet surface receptors enabled assessment of specific 

signalling pathways important in platelet activation.  Analysis of both washed 

platelets and platelet rich plasma was completed.  Washed platelets provided 

a clean system in which to assess platelet function, without additional effects 

of plasma factors, as the platelets were washed out of the plasma and into 

buffer.  Platelet rich plasma allowed analysis of platelet activation by the 

agonist ADP, which activates P2Y receptors which become desensitised upon 

washing, and also provided more physiological conditions. 

Initially, platelets were washed out of whole blood into modified Tyrode’s 

buffer and stimulated with CRP (provided by Dr. R. Farndale), which is a 

synthetic peptide of GPO repeats cross-linked at N- and C- terminal cysteine 

or lysine residues.  This peptide specifically activates platelets via the platelet 

collagen receptor GPVI (Farndale, 2006).  In response to an intermediate 

dose of CRP, Tspan18 deficient platelets displayed defective aggregation.  In 

response to a high dose of CRP, Tspan18 deficient platelets were able to 

aggregate, but a delayed response in aggregation was observed (figure 3.4).  
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The reduction in aggregation was significant when compared to wildtype 

platelets at both intermediate and high doses of CRP, though the phenotype 

was not as severe at high doses of agonist (figure 3.4).  Washed platelet 

aggregation was also assessed downstream of signalling pathways other than 

GPVI, using agonists which activate other platelet surface proteins.  Thrombin 

(Sigma) is a potent platelet agonist, which stimulates platelet activation 

through cleavage of the PAR family of GPCRs (Brass, 2003; De Candia, 

2012).  CLEC-2 Ab (provided by Prof. S. Watson) activates the C-type lectin 

receptor CLEC-2 on platelets via a Src and Syk tyrosine kinase family 

dependant mechanism (Eble et al., 2006; May et al., 2009).  Collagen 

(HORM) (Nycomed Austria) can activate platelets indirectly, via vWF and the 

GPIb-V-IX complex, or directly via the integrin α2β1 and the platelet surface 

receptor GPVI (Farndale, 2006; Bernhard Nieswandt & Watson, 2003).   

When stimulated by thrombin, CLEC-2 antibody or collagen, washed Tspan18 

deficient platelets displayed normal aggregation; no difference was observed 

in comparison to wildtype platelets (figure 3.5).  Analysis of Tspan18 deficient 

platelet response to doses of collagen lower than 1 µg/ml were attempted, but 

the lack of response from wildtype platelets at such low doses prevented 

further investigation (data not shown). 

Following platelet activation, secretion of secondary mediators is an important 

step in driving thrombus formation, as it provides positive feedback to activate 

and recruit more platelets to the growing thrombus.  Secretion of ATP from 

dense granules was measured via addition of a luciferin/luciferase mix to the 

platelet solution and measurement of luminescence output.  Consistent with 

the aggregation data, secreted ATP was significantly reduced in Tspan18 
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deficient platelets in comparison to wildtype controls when activated with the 

GPVI-specific agonist, CRP, at either intermediate or high doses (figure 3.6, 

A).  However, when Tspan18 deficient platelets were stimulated with 

thrombin, CLEC-2 antibody or collagen, secretion was normal across multiple 

doses of agonist (figure 3.6, B-D). 

When aggregation was assessed in platelet rich plasma, the Tspan18 

deficient platelets again demonstrated defective aggregation downstream of 

CRP, at several different doses of agonist (figure 3.7).   Aggregation in 

platelet rich plasma was also assessed downstream of other platelet agonists.  

PAR4 peptide (AYPGKF) (provided by Dr. R. Farndale) was used as a 

thrombin substitute.  ADP (Sigma) induces platelet activation via two GPCRs; 

P2Y1 and P2Y12 activate phospholipase C and suppress cAMP formation 

respectively, thus leading to platelet activation (Jin et al., 1998; Zhang et al., 

2001).  In response these other agonists, Tspan18 deficient platelets 

aggregated completely normally (figure 3.8, A-B).  Interestingly, a minor 

defect in aggregation was observed in Tspan18 deficient platelets to a low 

dose of collagen, the physiological ligand of GPVI (figure 3.8 C).  This 

suggests that Tspan18 deficient platelets are more susceptible to defects in 

platelet rich plasma, than when they have been washed out of the plasma, as 

no defects were observed following collagen stimulation in washed platelets. 

Together, these data outline a defect during platelet aggregation and 

secretion, specifically downstream of the platelet collagen receptor, GPVI, 

which could be partially rescued through high doses of agonist.  This is 

evidence of a mild but specific fault in platelet activation within the GPVI 
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signalling pathway and suggests a role for Tspan18 in GPVI-induced platelet 

activation. 
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Figure 3.3 – Washed Tspan18 deficient platelets display reduced aggregation 
downstream of GPVI.  Blood was collected from anaesthetised mice; platelets were isolated 

from the whole blood and washed in modified Tyrode’s buffer.  Washed platelets were 

activated with two different doses of CRP and aggregation was measured via light 

transmission with stirring, a representative trace is shown in the upper panels.  Collated data 

of % aggregation at minute intervals were assessed and is shown in the lower panels.  All data 

were normalised by arcsin transformation and analysed by two-way ANOVA with Bonferroni 

post-test (* denotes P < 0.05, ** denotes P < 0.01 and *** denotes P < 0.001).  Error bars 

represent the standard error of the mean from 5-9 pairs of mice.  
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Figure 3.4 – Washed Tspan18 deficient platelets display normal aggregation to 
thrombin, CLEC-2 mAb and collagen.  Blood was collected from anaesthetised mice; 

platelets were isolated from whole blood and washed in modified Tyrode’s buffer.  Washed 

platelets were activated with thrombin (A), CLEC-2 antibody (B), or collagen (C).  

Aggregation was measured via light transmission with stirring, representative traces are 

shown in the upper panels.  Collated data of % aggregation at minute intervals were assessed 

and is shown in the lower panels.  All data were normalised by arcsin transformation and 

analysed by two-way ANOVA with Bonferroni post-test.  Error bars represent the standard 

error of the mean from 3-7 pairs of mice.  Note that no wildtype platelet response was 

observed at doses of collagen lower than 1 µg/ml (data not shown).  
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Figure 3.5 – Washed Tspan18 deficient platelets display reduced secretion downstream 
of GPVI.  Blood was collected from anaesthetised mice; platelets were isolated from whole 

blood and washed in modified Tyrode’s buffer.  Following activation with CRP (A), collagen 

(B), thrombin (C) or CLEC-2 antibody (D), secretion of ATP from platelet dense granules 

was measured using an added firefly luciferin/luciferase mix (chromolume, Chrono-Log 

Corporation).  All data were analysed by T-test (*** denotes P < 0.001, * denotes P < 0.05).  

Error bars represent the standard error of the mean from 3-9 pairs of mice.  
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Figure 3.6 – Tspan18 deficient platelets in platelet rich plasma display defective 
aggregation downstream of GPVI activation.  Blood was collected from anaesthetised 

mice; platelets were isolated from whole blood and collected as platelet rich plasma.  Platelets 

were activated with CRP.  Aggregation was measured via light transmission with stirring, 

representative traces are shown in the upper panels.  Collated data of % aggregation at minute 

intervals were assessed and is shown in the lower panels.  All data were normalised by arcsin 

transformation and analysed by two-way ANOVA with Bonferroni post-test (* denotes P< 

0.05).  Error bars represent the standard error of the mean from 3-4 pairs of mice.  
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Figure 3.7 – Tspan18 deficient platelets in platelet rich plasma display normal 

aggregation to PAR4 peptide and ADP, but mildly defective aggregation to collagen.  
Blood was collected from anaesthetised mice; platelets were isolated from whole blood and 

collected as platelet rich plasma.  Platelets were activated with PAR4 peptide (A), ADP (B), 

or collagen (C).  Aggregation was measured via light transmission with stirring, 

representative traces are shown in the upper panels.  Collated data of % aggregation at minute 

intervals were assessed and is shown in the lower panels.  All data were normalised by arcsin 

transformation and analysed by two-way ANOVA with Bonferroni post-test (** denotes P < 

0.01).  Error bars represent the standard error of the mean from 4-5 pairs of mice.  
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3.3.3 Tspan18 deficient platelets display disrupted spreading 

downstream of GPVI 

To further investigate the role of Tspan18 in platelet function, a platelet 

spreading assay was used, in which the ability of platelets to spread on 

immobilised agonist was assessed.  As previously, blood was taken from 

anaesthetised mice and the platelets washed out from the whole blood into 

modified Tyrode’s buffer.  Platelets were then spread on glass cover slips pre-

treated with immobilised agonist before being fixed, imaged and analysed for 

surface area using ImageJ software. 

When Tspan18 deficient platelets were exposed to cover slips coated in CRP, 

a significant reduction in the area spread was observed when compared to 

wildtype control platelets (figure 3.9, A).  However, when Tspan18 deficient 

platelets were exposed to cover slips coated with fibrinogen, no difference in 

the area spread was observed (figure 3.9, B). 

Taken together with the data from the aggregation experiments, this outlines a 

clear disruption to platelet function specifically downstream of CRP 

stimulation, suggesting defective signalling within the GPVI signalling 

pathway. 
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Figure 3.8 – Washed Tspan18 deficient platelets display reduced spreading downstream 

of GPVI.  Blood was collected from anaesthetised mice; platelets were isolated from whole 

blood and washed in modified Tyrode’s buffer.  Washed platelets were exposed to cover slips 

coated with CRP (A) or fibrinogen (B) and the area of the adhered platelets was measured.  

Representative images are shown.  All data were analysed by T-test (*** denotes P < 0.001). 

Error bars represent the standard error of the mean from 4 pairs of mice (150 platelets were 

analysed per mouse). 
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3.3.4 Protein tyrosine phosphorylation induced by GPVI is normal in 

Tspan18 deficient platelets 

Following the observations from the platelet function tests that outlined a 

potential role for Tspan18 in regulation of platelet activation via GPVI, it was 

important to assess whether Tspan18 had a role in regulation of signalling 

from the GPVI receptor itself.  Once activated, GPVI signals via an ITAM motif 

within the associated FcRγ chain, which leads to a complex phosphorylation 

cascade (Bernhard Nieswandt & Watson, 2003; Watson et al., 2005).  

Therefore, functionality of GPVI can be assessed by measuring downstream 

phosphorylation.  Blood was taken from anaesthetised mice; platelets were 

isolated from the blood, washed in modified Tyrode’s buffer and stimulated 

with CRP.  Samples were taken into reducing sample buffer, separated by 

SDS-PAGE and western blotted with an anti-4G10 antibody to show 

phosphorylated tyrosine residues.  To quantitate phosphorylation, band 

intensity was measured using the Odyssey infra red imaging system (LICOR). 

No observable difference was noted in the pattern of tyrosine phosphorylation 

following GPVI stimulation between Tspan18 deficient and wildtype platelets.  

This was true for basal levels of phosphorylation and at two time points post-

stimulation (figure 3.10, A).  No difference was observed after measurement 

of band intensity of the band observed at approximately 72 kDa, which 

corresponds to phosphorylated Syk, at any of the time points across three 

different doses of agonist (figure 3.10, B).  Similarly, no significant difference 

was observed after measurement of the band at 135 kDa, which corresponds 

to phosphorylated PLCγ (figure 3.10, C).  However, close inspection of the 

intensity of the pp135 band after stimulation with 3 µg/ml CRP may suggest 
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an increase in phosphorylation in Tspan18 deficient platelets in comparison to 

wildtype. This may warrant further investigation, though does not appear to 

suggest a major phenotype. 

These data demonstrate normal signalling from GPVI, which implies that 

Tspan18 may be having an effect further downstream in this signalling 

pathway. 
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Figure 3.9 – Protein tyrosine phosphorylation induced by GPVI is normal in Tspan18 

deficient platelets.  Blood was collected from anaesthetised mice; platelets were isolated 

from whole blood and washed in modified Tyrode’s buffer.  Platelets were activated with 

three different doses of CRP.  Samples were taken at several time-points, separated by SDS-

PAGE and blotted with an anti-phosphotyrosine antibody, 4G10.  A representative blot from 

5 separate experiments is shown (A).  The band at pp72, corresponding to phosphorylated 

Syk (B) and pp 135 corresponding to phosphorylated PLCγ (C), were quantitated using the 

Odyssey infra-red (LICOR) imaging system.  All data were normalised by logarithmic 

transformation and analysed by two-way ANOVA with Bonferroni post-test.  Error bars 

represent the standard error of the mean from 5 separate experiments. 
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3.3.5 Tspan18 deficient platelets have reduced SOCE and reduced global 

Ca2+ signalling 

It has been shown previously that platelet activation, and specifically the GPVI 

signalling pathway, is reliant on SOCE (Braun et al., 2009; David Varga-

Szabo, Braun, et al., 2008).  Additionally, previous studies, using cell line over 

expression models had suggested a role for Tspan18 in Ca2+ signalling 

(Colombo, 2010).  Therefore, it is possible that the defects observed in 

platelet activation in Tspan18 deficient platelets were caused by defective 

Ca2+ signalling.  To investigate the potential role for platelet Tspan18 in 

SOCE, Ca2+ signalling was measured in Tspan18 deficient platelets.  Blood 

was taken from anaesthetised mice and platelets were isolated and washed in 

modified Tyrode’s buffer.  Platelets were then loaded with the Ca2+ sensitive 

fluorescent dye, Fura2-AM and Ca2+ measurements were taken using a 

luminescence spectrophotometer.   

Initial investigation into the role of Tspan18 in Ca2+ signalling in platelets 

focussed on platelet response following agonist stimulation.  Platelets were 

suspended in Tyrode’s buffer containing 1.5 mM Ca2+ and were stimulated 

with different platelet agonists.  Ca2+ measurements were taken to measure 

Ca2+ influx following platelet stimulation.  After stimulation with CRP or 

collagen, a significant reduction in the rate of Ca2+ mobilisation was observed 

in Tspan18 deficient platelets (figure 3.11, A).  Additionally, the maximal Ca2+ 

concentration observed was significantly reduced in Tspan18 deficient 

platelets in comparison to wildtype platelets (figure 3.11, B).  However, both 

the rate of Ca2+ influx and the maximal Ca2+ concentration achieved in 
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Tspan18 deficient platelets was normal after stimulation with thrombin (figure 

3.11).   

This suggests that Ca2+ mobilisation and influx of Ca2+ from the extracellular 

environment appears to be reduced in Tspan18 deficient platelets 

downstream of GPVI activation. 

To more specifically investigate the potential role of Tspan18 in SOCE, the 

platelets were treated with thapsigargin (Sigma) which acts to induce 

emptying of the intracellular Ca2+ stores via inhibition of sarco/endoplasmic 

reticulum Ca2+-ATPase (SERCA) Ca2+ ion pumps in the endoplasmic and 

sarcoplasmic reticulum, thus preventing Ca2+ flux back into the stores (Lytton, 

Westlin, & Hanley, 1991).   

Initially, the platelets were suspended in Ca2+-free media and were stimulated 

the thapsigargin to measure release of Ca2+ from intracellular stores.  

Following stimulation with thapsigargin, 1.5 mM Ca2+ was added back to the 

extracellular buffer to allow SOCE to occur.  Throughout the experiment, the 

cytosolic Ca2+ concentration was measured to monitor release of Ca2+ from 

the intracellular stores and influx from the extracellular environment .  The rate 

of entry of Ca2+ from the extracellular environment was reduced to 0.0026 s-1 

in Tspan18 deficient platelets, in comparison to 0.0038 s-1 in the wildtype 

control platelets (figure 3.12, A).  However, the final, maximal change in Ca2+ 

concentration was not significantly different between Tspan18 deficient and 

wildtype platelets (figure 3.12, B).   

The reduction in Ca2+ entry from the extracellular environment was preceded 

by a reduction in the release of Ca2+ from the intracellular stores.  This was 
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observed following thapsigargin treatment in the presence of Ca2+ free media, 

prior to Ca2+ being added back to the extracellular buffer.  The rate of release 

of Ca2+ from the stores was reduced to 0.010 s-1 in Tspan18 deficient platelets 

when compared to a rate of 0.022 s-1 in wildtype control platelets (figure 3.13, 

A).  Although a reduction in the rate of Ca2+ release from the stores was 

observed, there was no significant difference in maximal concentration of Ca2+ 

achieved in Tspan18 deficient platelets (figure 3.13, B).  This suggests that 

Tspan18 deficient platelets have mildly defective release of Ca2+ from 

intracellular stores, resulting in slower accumulation of Ca2+ in the cytosol 

following thapsigargin stimulation. 

Together, these data suggest defective release of Ca2+ from the intracellular 

store and defective SOCE in Tspan18 deficient platelets.  However, this Ca2+ 

signalling defect appears to only limit platelet activation and Ca2+ signalling 

downstream of GPVI.  It is therefore not surprising that no major difference in 

maximal Ca2+ concentration was observed after such a strong stimulus as 

thapsigargin. 
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Figure 3.10 – Global Ca
2+

 signalling is reduced in Tspan18 deficient platelets 

downstream of GPVI.  Blood was collected from anaesthetised mice; platelets were isolated 

from whole blood and washed in modified Tyrode’s buffer.  The platelets were loaded with 

the Ca
2+

 sensitive dye Fura-2 AM and Ca
2+

 measurements taken using a luminescence 

spectrophotometer.  Platelets were stimulated with CRP, collagen or thrombin as indicated, in 

the presence of 1.5 mM extracellular Ca
2+

. Average data from 4 separate experiments were 

fitted to a non-linear regression using an exponential one-phase association equation (A).  

Rate constants (K) were compared using an F-test (*** denotes P < 0.01).  The maximal 

change in [Ca
2+

] was also calculated (B). Data were analysed by T-Test (* denotes P < 0.05).  

Error bars represent the standard error of the mean from 4 separate experiments.   
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Figure 3.11 – Store operated Ca
2+

 entry is reduced in Tspan18 deficient platelets.  Blood 

was collected from anaesthetised mice; platelets were isolated from whole blood and washed 

in modified Tyrode’s buffer.  The platelets were loaded with the Ca
2+

 sensitive dye Fura-2 

AM and Ca
2+

 measurements taken using a luminescence spectrophotometer.  Platelets were 

stimulated with thapsigargin (TG) to induce emptying of the intracellular Ca
2+

 stores and Ca
2+ 

was then added back to the extracellular media at 1.5 mM to allow SOCE to occur. Average 

data from 5 separate experiments were fitted to a non-linear regression using an exponential 

one-phase association equation (A).  Rate constants (K) were compared using an F-test (*** 

denotes P < 0.001).  The maximal change in [Ca
2+

] was calculated (B).  Data were analysed 

by T-Test.  Error bars represent the standard error of the mean from 5 separate experiments.   
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Figure 3.12 - Release of Ca
2+

 from intracellular stores is reduced in Tspan18 deficient 

platelets within Ca
2+

 free media. Blood was collected from anaesthetised mice; platelets 

were isolated from whole blood and washed in modified Tyrode’s buffer.  The platelets were 

loaded with the Ca
2+

 sensitive dye Fura-2 AM and Ca
2+

 measurements taken using a 

luminescence spectrophotometer.  Platelets were treated with thapsigargin (TG) to induce 

emptying of the intracellular Ca
2+

 stores. Average data from 5 separate experiments were 

fitted to a non-linear regression using an exponential one-phase association equation (A).  

Rate constants were compared using an F-test (*** denotes P < 0.001).  The maximal change 

in [Ca
2+

] was also calculated (B). Data were analysed by T-Test.  Error bars represent the 

standard error of the mean from 5 separate experiments.   
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3.3.6 Aggregate formation under flow is normal for Tspan18 deficient 

platelets 

While in vitro platelet function tests which utilise washed platelets or platelet 

rich plasma are well characterised and provide a detailed view of specific 

signalling pathways involved in platelet activation, other assays can be 

employed to provide a more physiological view of platelet function.  One 

assay which better mimics in vivo conditions of platelet aggregation is the flow 

adhesion assay, which was completed using the Bioflux system from Fluxion.  

Platelets were fluorescently stained in whole blood, which was perfused 

through collagen-coated capillaries and aggregate formation was monitored 

using fluorescence microscopy.  The blood was perfused through the 

capillaries at rates of 300 s-1 (to represent venous shear) or 1000 s-1 (to 

represent arterial shear). 

No difference was observed in the dynamics of aggregate formation between 

blood from Tspan18 deficient mice and wildtype mice for either the high or low 

shear rates tested (figure 3.14, A and figure 3.15, A).  Additionally, there was 

no difference in the final area of the flow cell covered by platelet aggregates 

when quantified using ImageJ software (figure 3.14, B and figure 3.15, B). 

The lack of phenotype observed in this in vitro flow adhesion assay is 

consistent with the largely normal aggregation to collagen which was 

observed (figure 3.5). 
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Figure 3.13 – Aggregate formation under arterial shear conditions in the Tspan18 
knockout platelets is normal.  Whole blood from wildtype and Tspan18 deficient mice was 

perfused over a collagen-coated flow cell (30 µg/ml) using the Fluxion Bioflux system at a 

shear rate of 1000s-1.  Representative fluorescence images at minute-interval time points 

show normal aggregate formation by the Tspan18 deficient platelets (A).  Coverage of the 

flow cell by aggregates was measured at minute intervals, using thresholding in ImageJ (B).  

Data were normalised by arcsin transformation and analysed by two-way ANOVA with 

Bonferroni post-test.  Error bars represent standard error of the mean from 3 pairs of mice.  
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Figure 3.14 – Aggregate formation under venous shear conditions in the Tspan18 
knockout platelets is normal.  Whole blood from wildtype and Tspan18 deficient mice was 

perfused over a collagen-coated flow cell (30 µg/ml) using the Fluxion Bioflux system at a 

shear rate of 300s-1.  Representative fluorescence images at minute-interval time points show 

normal aggregate formation by the Tspan18 deficient platelets (A).  Coverage of the flow cell 

by aggregates was measured at minute intervals, using thresholding in ImageJ (B).  Data were 

normalised by arcsin transformation and analysed by two-way ANOVA with Bonferroni post 

test.  Error bars represent standard error of the mean from 3 pairs of mice.  
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3.3.7 Thrombus formation in vivo is normal in Tspan18 deficient mice  

To provide further physiological assessment of the role of Tspan18 in vivo, 

two different models of thrombus formation were used to provide assessment 

of thrombus formation and the dynamics of thrombus growth.  These were 

carried out by Ina Theilmann in the lab of Bernard Nieswandt, Wurzburg, 

Germany. 

The first model used was mechanical injury of the abdominal aorta, during 

which the exposed vessel was injured using forceps and blood flow was 

monitored with a Doppler flow-meter.  Previous studies have demonstrated 

that thrombus formation in this model is mainly triggered by collagen (Braun et 

al., 2009; Grüner et al., 2005).  No significant difference in vessel occlusion 

was observed in Tspan18 deficient mice in comparison to wildtype control 

mice (figure 3.16). 

The second model used was the FeCl3 injury model, in which exteriorised 

mesentery arterioles were exposed to chemical injury by topical application of 

FeCl3.  The platelets were labelled with a fluorescent stain and thrombus 

formation monitored via fluorescence microscopy.  This model of thrombus 

formation has previously been shown to be a highly thrombin dependant 

process, as loss of GPVI is only partially protective against thrombus 

formation (Braun et al., 2009; Renné et al., 2005).  There was no difference 

observed in the onset of thrombus formation, as the first thrombi appeared in 

Tspan18 deficient mice at a similar time as in wildtype mice (figure 3.17, A).  

Additionally, there was no difference in the time to complete occlusion of the 

vessel (figure 3.17, B). 
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These in vivo models provided an insight into the physiological affects of 

Tspan18 deficiency on thrombus formation, showing that Tspan18 does not 

play a role in thrombus formation in these particular in vivo models.    
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Figure 3.15 – Thrombus formation in vivo is normal in Tspan18 deficient mice following 

mechanical injury.  Mice were anaesthetised, the abdominal aorta was exposed and the 

vessel was mechanically injured through a single firm compression with forceps.  Blood flow 

was monitored with a Doppler flow meter and time until complete occlusion of the vessel 

measured.  Each symbol represents one individual.  Data were analysed by T-test.  Data 

collated by Ina Theilmann from the Nieswandt laboratory, Wurzburg, Germany, as part of a 

collaboration. 
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Figure 3.16 – Thrombus formation in vivo is normal in Tspan18 deficient mice following 
chemical injury.  Mice were anaesthetised and the mesentery was exteriorised through an 

abdominal incision.  Platelets were fluorescently labelled (Dylight 488 conjugated anti-GPIX 

Ig derivative).  Small mesenteric arterioles were exposed to FeCl3 induced chemical injury via 

topical application.  The time for appearance of the first thrombi (A) and the time until 

complete occlusion of the vessel (B) were measured using fluorescence intravital microscopy.  

Representative fluorescence images before and after injury are shown (C).  Each symbol 

represents one individual.  Data were analysed by T-test.  Data collated by Ina Theilmann 

from the Nieswandt laboratory, Wurzburg, Germany, as part of a collaboration. 
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3.3.8 Haemostasis is disrupted in Tspan18 deficient mice 

To provide a broad analysis of haemostasis in the Tspan18 deficient mice, a 

tail bleeding assay was used.  Given the observation of normal thrombus 

formation in Tspan18 deficient mice and the relatively mild platelet phenotype 

observed, a major disruption to haemostasis was not predicted.  Mice were 

anaesthetised, 3 mm was amputated from the tip of the tail and blood loss 

was monitored over a maximum period of 20 minutes.  Due to restrictions on 

the Home Office licence permitting this work, the mice were limited to a 

maximum loss of 15% of total blood, calculated by bodyweight. 

The Tspan18 deficient mice bled significantly more than wildtype littermates 

(figure 3.18).  Additionally, several of the Tspan18 deficient mice bled 

severely enough to cause premature termination of the assay by cauterisation 

of the wound, to prevent blood loss excessive to that permitted by the licence.  

The phenotype observed could therefore have been more severe if the assay 

had been permitted to continue.  The Tspan18 deficient mice appear to show 

a heterogeneous population, in which some individuals bleed but other 

individuals did not bleed, whereas the wildtype mice demonstrate a 

homogenous population in which the variance is small, and none of the mice 

bleed.  The variable phenotype observed is discussed in more detail in 

section 3.4 (discussion of this chapter) and in chapter 5. 

These data demonstrate a clear disruption to haemostasis in Tspan18 

deficient mice, despite only a mild platelet functional defect and normal 

thrombus formation in vivo. 
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Figure 3.17 – Impaired haemostasis in the tail bleeding assay in Tspan18 deficient mice.  

The tail tip of anaesthetised mice was amputated and amount of blood lost was measured.  

Each symbol represents an individual.  Data were analysed by Fisher’s exact test; individuals 

were ranked as ‘bleeding’ or ‘not bleeding’ where ‘bleeding’ was defined as one or more drop 

of blood, equivalent to 30 µl lost (*** denotes P < 0.001).  Data displayed is either the % of 

total permitted blood loss (A); each mouse was permitted to lose a maximum of 15% of total 

blood determined by body weight, due to restrictions on the Home Office animal licence, or 

as total volume of blood lost with a bracket to indicate termination of the assay for individuals 

which lost 100% of permitted blood (B). 
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3.4 DISCUSSION 

 

The main aim of the work in this chapter was to characterise the role of 

Tspan18 in platelets by using the Tspan18 knockout mouse.  When platelet 

function was assessed, defective aggregation, secretion and spreading was 

observed, specifically downstream of the platelet collagen receptor GPVI, 

though induction of tyrosine phosphorylation from GPVI itself was normal.  

Additionally, Ca2+ signalling following CRP stimulation and SOCE were 

reduced in Tspan18 deficient platelets.  Together, these data suggested a role 

for Tspan18 in platelet activation, potentially via regulation of Ca2+ signalling, 

specifically downstream of GPVI.  In addition to the specific, yet mild, defect in 

platelet activation, the Tspan18 deficient mice displayed a severe disruption to 

haemostasis, as they bled significantly more than wildtype controls.  

Additionally, thrombus formation was shown to be normal in two different in 

vivo models.  

Although the precise role of Tspan18 on platelets is not known, the data 

presented in this chapter suggest a specific function for this tetraspanin in 

regulation of the GPVI signalling pathway.  As the GPVI signalling pathway is 

reliant on Ca2+ signalling, and specifically SOCE (Braun et al., 2009; David 

Varga-Szabo, Braun, et al., 2008), it is possible that Tspan18 could regulate 

Ca2+ signalling, or more specifically, SOCE in platelets.  This hypothesis is 

supported by previous studies on Tspan18 which reported a potential role for 

Tspan18 in Ca2+ signalling in a cell line over-expression system (Colombo, 

2010).   
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Interestingly, some of the functional defects observed in Tspan18 deficient 

platelets replicated similar observations made in platelets deficient for the 

SOCE channel Orai1.  The mice used to study Orai1 in platelets were 

generated as chimeras; lethally irradiated wildtype mice, which received a 

transplant of Orai1-/- or control cells to reconstitute the haematopoietic system, 

as the whole body knockouts displayed early lethality and growth retardation, 

making study of platelets difficult (Braun et al., 2009).  Similar to the results 

described in this chapter, Orai1 deficient platelets displayed defective 

aggregation specifically downstream of GPVI, and also a reduction in SOCE 

and Ca2+ signalling following activation by platelet agonists (Braun et al., 

2009).  These similarities suggest that Tspan18 and Orai1 could share a 

common signalling pathway, and that Tspan18 could have a role in interaction 

with and regulation of Orai1 or another member of the SOCE pathway.   

However, the phenotypes observed in Orai1 deficient platelets were more 

severe than those observed for Tspan18 deficient platelets; a reduction in 

Ca2+ signalling was observed downstream of all platelet agonists, not just 

CRP, and there was a disruption to thrombus formation in vivo, as assessed 

by the mechanical injury method (Braun et al., 2009).  The cause for this 

difference in severity of phenotypes may be due to the level of regulation that 

Tspan18 might provide within the SOCE pathway.  It could be possible that 

Tspan18 is important in fine-tuning the process of SOCE, rather than entirely 

regulating its function.  In which case, removal of Tspan18 could disrupt the 

efficiency of Ca2+ entry, but might not inhibit it completely, leading to less 

severe phenotypes.  This could also explain the subtle phenotype observed in 

reduced SOCE following stimulation by thapsigargin in Tspan18 deficient 
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platelets.  In comparison to Orai1 deficient platelets, the alteration in SOCE is 

markedly reduced (Bergmeier et al., 2009; Braun et al., 2009).  Again, if 

Tspan18 has a role in fine-tuning the mechanism of extracellular Ca2+ entry 

via Orai1, then it’s removal may well disrupt Ca2+ entry without blocking it 

completely.  Removal of Orai1 removes the ability of Ca2+ to enter the cell 

from the extracellular environment, whereas removal of Tspan18 may just 

disrupt this process resulting in a lower rate of Ca2+ flux rather than complete 

inhibition of this process.  Differences observed across different studies are 

not an uncommon occurrence; previous studies on the role of Orai1 in 

platelets have not always produced similar results.  A model utilising a loss of 

function mutant for Orai1 (Orai1R93W) demonstrated a reduction in Ca2+ 

mobilisation in Orai1R93W platelets, but did not report the same platelet 

functional defects observed in Orai1-/- deficient platelets (Bergmeier et al., 

2009).  This demonstrates how variations in experimental design and 

differences across different mouse models can lead to differences in severity 

and appearance of specific phenotypes. 

The potential role of Tspan18 in platelet Ca2+ signalling needs further 

investigation, as although the Ca2+ signalling experiments undertaken in this 

chapter highlighted a disruption to Ca2+ mobilisation in the absence of 

Tspan18, the exact role of this tetraspanin could not be determined.  In the 

presence of physiological levels of extracellular Ca2+ (1.5 mM), Tspan18 

deficient platelets had a reduced SOCE capacity when stimulated with the 

GPVI agonists CRP and collagen.  When Ca2+ measurements were taken 

following stimulation with platelet agonists in Ca2+-free media, the signal could 

not be detected above the background noise, therefore no conclusions could 
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be drawn on the release of Ca2+ from intracellular stores following agonist 

stimulation (data not shown).  However, in experiments utilising thapsigargin 

in Ca2+-free media and then in the presence of 1.5 mM Ca2+, a reduction in 

both intracellular store release and influx of Ca2+ from the extracellular 

environment was observed.  This may suggest that Tspan18 has a role at 

several different levels of Ca2+ signalling in platelets, and future experiments 

to provide a more in depth analysis of the Ca2+ signalling in Tspan18 deficient 

platelets would be useful. 

Additionally, following the observations made during measurement of Ca2+ 

signalling in the platelets, it may be useful to repeat the aggregation 

experiments and the measurement of protein phosphotyrosine induction 

experiment in the presence of physiological levels of Ca2+.  These 

experiments were completed in Tyrode’s buffer without added Ca2+, and as 

such more severe phenotypes could potentially be masked.  If Tspan18 has a 

role in SOCE, as suggested by the changes in Ca2+ signalling following 

thapsigargin stimulation, then completing aggregation analysis in the 

presence of extracellular Ca2+ might demonstrate a more severe difference in 

the aggregation capability of Tspan18 deficient and wildtype platelets due to 

the lack of Ca2+ influx from the extracellular environment.  This might also 

explain the slight difference in phosphotyrosine signalling observed for band 

pp135.  The importance of taking extracellular Ca2+ into consideration in 

future experiments is further supported by the results observed during the 

aggregation experiments conducted in PRP.  Defective aggregation was 

observed at higher does of CRP and at low doses of collagen in PRP, 

whereas defective aggregation in washed platelets was less severe.  PRP 
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contains more extracellular Ca2+, as the platelets have not been washed out 

of the plasma.  It is therefore possible that the additional extracellular Ca2+ in 

PRP demonstrates a more marked phenotype within the Tspan18 deficient 

platelets, suggesting a SOCE defect. 

Perhaps the most surprising result within this chapter was that despite normal 

thrombus formation and only a mild platelet functional phenotype in Tspan18 

deficient mice, these animals had a severe disruption to haemostasis.  It is 

unlikely that the increase in bleeding was caused by platelet functional 

defects, as the platelet phenotypes were so mild in the Tspan18 deficient 

mice, and mice lacking GPVI display only moderate bleeding (B Nieswandt, 

Schulte, et al., 2001).  Additionally, the tail bleeding data clearly represents 

the Tspan18 deficient mice as a heterogeneous population, in which some 

individuals bleed and some do not, as the variance in the population was 

large.  This is despite the fact that the disruption to platelet activation was 

consistently observed across all individuals, showing a clearly homogenous 

response.  This suggests that another cell or tissue might be the driving force 

behind disrupted haemostasis.  Other cells such as the endothelium, which is 

responsible for release of clotting factors such as vWF (Kanaji, Fahs, Shi, 

Haberichter, & Montgomery, 2012) and FVIII (Everett, Cleuren, Khoriaty, & 

Ginsburg, 2014), and vascular smooth muscle cells, which regulate 

vasoconstriction (Wilson et al., 2005), play vital roles in haemostasis.  This 

suggests that Tspan18 could be important in one or more of these cell types 

in regulation of haemostasis, in addition to its role in the GPVI signalling 

pathway.   
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Key questions still need to be addressed in order to better understand the role 

of Tspan18 within the vasculature.  Firstly, the potential role for Tspan18 in 

Ca2+ signalling and SOCE needs further investigation in order to better 

understand the role of Tspan18 in the GPVI signalling pathway.  Secondly, 

the role of this tetraspanin in non-haematopoietic cells needs to be evaluated 

in order to assess the potential affect that Tspan18 could be having on 

haemostasis.  The work in the following chapters aimed to investigate both of 

these areas further. 
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CHAPTER 4 

TSPAN18 ACTIVATES Ca2+ SIGNALLING AND INTERACTS 

WITH THE STORE OPERATED Ca2+ ENTRY CHANNEL ORAI1 

 

 

 

 

 

 

 

 



 - 133 - 

4.1 INTRODUCTION 

 

4.1.1 Store operated Ca2+ entry 

Following receptor activation at the cell surface, the primary phase of Ca2+ 

mobilisation occurs via release of Ca2+ from intracellular stores, often the ER, 

via IP3 receptors (Berridge & Irvine, 1984; Smyth et al., 2010).  Reduced Ca2+ 

concentration within the ER induces influx of Ca2+ from the extracellular 

environment during the secondary phase of Ca2+ mobilisation, known as 

SOCE.  SOCE is important in maintaining sustained levels of Ca2+ in the cell 

and for replenishing depleted intracellular Ca2+ stores (Smyth et al., 2010).  

SOCE relies on STIM1 which acts as a Ca2+ sensor in the ER, and the Orai 

family of proteins (Orai1, 2 and 3), which are vital as the pore-forming 

subunits of channels at the plasma membrane (Smyth et al., 2010).  Upon 

depletion of Ca2+ in the ER, a conformational change and oligomerization of 

STIM1 occurs, followed by rearrangement of STIM1 in the ER to punctate 

structures close to the plasma membrane (Liou, Fivaz, Inoue, & Meyer, 2007).  

An interaction between STIM1 and Orai at the plasma membrane induces 

multimerisation of Orai allowing formation of functional channels and flux of 

Ca2+ from the extracellular environment into the cell (Hou et al., 2012).  As the 

basic outline of Ca2+ signalling and SOCE in figure 4.1 demonstrates, 

increases in intracellular Ca2+ concentration can then activate downstream 

targets such as calcineurin, leading to NFAT activation and transcription. 
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4.1.2 The NFAT/AP-1 luciferase reporter assay 

The NFAT/AP-1 luciferase reporter assay is a useful tool for providing highly 

sensitive measurements of Ca2+ signalling.  This transcriptional reporter 

utilises promoters for both NFAT and AP-1, and is therefore maximally 

activated by combined Ca2+ and mitogen-activated protein kinase (MAPK) 

signalling pathways (M G Tomlinson et al., 2007).  The NFAT promoter of this 

reporter is activated by increased intracellular Ca2+, which induces activation 

of the protein phosphatase calcineurin via the Ca2+ binding protein 

calmodulin.  When activated, calcineurin dephosphorylates cytosolic NFAT 

within the serine rich region in the C-terminal tail, exposing a nuclear 

transduction signal.  NFAT then translocates to the nucleus, where it interacts 

with other transcription factors and regulates gene transcription (Crabtree & 

Olson, 2002).  The AP-1 promoter is activated downstream of the MAPK 

signalling cascade.  Formation of AP-1 occurs via heterodimerisation of the 

transcription factors c-Jun and c-Fos, after upstream phosphorylation by the 

JNK and ERK pathways respectively (Karin, 1995).  In cells transfected with 

the NFAT/AP-1 luciferase reporter, culmination of the MAPK and Ca2+ 

signalling pathways leads to AP-1 and NFAT activation; transcription of 

luciferase occurs and the magnitude of signalling assessed through addition 

of luciferin and measurement of luminescence (figure 4.1).  The use of PMA 

to activate the MAPK pathway via PKC and RasGRP (Landau, 1982; Tognon 

et al., 1998) and ionomycin to raise free intracellular Ca2+ levels (Liu & 

Hermann TE, 1978) can activate the reporter (figure 4.1).  The use of 

cyclosporin A, an immunosuppressant drug used after transplantation, to 

inhibit calcineurin and prevent phosphorylation and nuclear translocation of 
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NFAT (Handschumacher, Harding, Rice, Drugge, & Speicher, 1984; Mattila et 

al., 1990) inhibits the reporter (figure 4.1). 
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Figure 4.1 – Model of NFAT/AP-1 reporter activation.  Measurement of Ca
2+

 and MAPK 

signalling pathways within cells is possible using the NFAT/AP-1 luciferase reporter assay.  

Use of PMA and ionomycin can induce activation of MAPK and Ca
2+

 pathways respectively, 

leading to luciferase transcription.  The calcineurin inhibitor, cyclosporin A, inhibits 

downstream NFAT activation and therefore also luciferase transcription. 

 

4.1.3 Tspan18 in NFAT activation and Ca2+ signalling 

In previous studies using the NFAT/AP-1 luciferase reporter assay, Tspan18 

was shown to be unique across a panel of six different tetraspanins, including 

CD9, CD63, CD151, Tspan32 and Tspan9, in its ability to activate NFAT 

signalling in DT40 B-cell and Jurkat T-cell lines (Colombo, 2010).  It was 

confirmed that Tspan18 activated the luciferase reporter via the NFAT 

promoter, rather than the AP-1 promoter, which suggested a role for Tspan18 
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in upstream Ca2+ signalling (Colombo, 2010).  This work also demonstrated 

that Tspan18 induced NFAT activation independently of non-receptor tyrosine 

kinases of Src, Syk and BtK families, PLCγ, and IP3 receptors; over-

expression of Tspan18 still promoted NFAT activation in specific DT40 

knockout cell lines for these proteins (Colombo, 2010).  The activation of 

NFAT by Tspan18 was also observed, using fluorescence microscopy, in 

HeLa cells containing green fluorescent protein (GFP)-tagged NFAT; 

translocation of activated NFAT-GFP to the nucleus was increased in cells 

transfected with Tspan18 in comparison to mock transfected cells (Tomlinson, 

unpublished data).  Together, these data suggested a role for Tspan18 in 

regulation of Ca2+ signalling downstream of Ca2+ release from intracellular 

stores. 

The work in the previous chapter outlined a role for Tspan18 within the GPVI 

signalling pathway and therefore in platelet activation, and although the 

precise mechanism was not elucidated, the data again suggested a role for 

this tetraspanin within the Ca2+ signalling pathway.  Although previous studies 

have implicated Tspan18 in regulation of Ca2+ signalling, the precise 

mechanism of action and the potential partner protein(s) of this tetraspanin 

are still not known. 
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4.2 AIMS 

There were three key aims driving the work in this chapter.  Firstly, to identify 

whether a specific domain within the extracellular region of Tspan18 is 

important for activation of a Ca2+-responsive NFAT reporter.  Secondly, to 

determine whether Orai1 is important for Tspan18 induced activation of the 

NFAT reporter, and finally to determine whether Tspan18 interacts with the 

SOCE proteins STIM1 or Orai.  The NFAT/AP-1 luciferase reporter assay was 

used to identify the domains of Tspan18 which are important in NFAT 

activation and to determine whether Tspan18 requires Orai1 in this process.  

An immunoprecipitation approach was used to identify potential Tspan18 

interacting proteins within the SOCE signalling pathway. 
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4.3 RESULTS 

 

4.3.1 Importance of the Tspan18 variable region in Tspan18 induced 

activation of a Ca2+ sensitive reporter in DT40 B cells 

Findings from previous studies (Colombo, 2010), demonstrated that Tspan18 

was specific across a panel of tetraspanins in its ability to activate an 

NFAT/AP-1 transcriptional reporter.  This work also suggested that Tspan18 

activated the reporter through regulation of Ca2+ mobilisation.  To investigate 

this further, and to confirm these findings, the NFAT/AP-1 reporter was used. 

Tspan18 was expressed alongside the Ca2+ responsive NFAT/AP-1 luciferase 

reporter in DT40 B cells.  Cells were left unstimulated, inhibited with the 

calcineurin inhibitor cyclosporin A, or were treated with PMA and ionomycin 

as a positive control; PMA activates the MAPK signalling pathway and thus 

the AP-1 promoter and ionomycin activates Ca2+ signalling which leads to 

downstream NFAT activation, culminating in maximal activation of the 

reporter.  In agreement with the preceding data, expression of Tspan18 

induced a substantial increase in NFAT activation in unstimulated cells (figure 

4.2, A).  This increase was significant in comparison to both a mock 

transfection, which contained only an empty vector (pEF6) as a negative 

control, and to expression of another tetraspanin, CD9.  When cells were 

treated with cyclosporin A, NFAT activation was inhibited, even when 

Tspan18 was expressed, demonstrating that Tspan18 is dependant on 

calcineurin (figure 4.2, A).  Maximal activation of the reporter was observed in 

all transfections after treatment with PMA and ionomycin (figure 4.2, B).  To 
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confirm protein expression of the FLAG-tagged tetraspanin constructs, 

samples were separated by SDS-PAGE electrophoresis and western blotted 

with an anti-FLAG antibody (figure 4.2, C).   

In agreement with previous findings, these data demonstrate the ability of 

Tspan18 to activate NFAT and also highlights the dependence of this process 

on calcineurin, suggesting a role for Tspan18 in Ca2+ signalling. 

Previous studies attempted to investigate which domains of Tspan18 were 

important in activating NFAT by using a chimeric construct.  In the chimera, 

the transmembrane and intracellular regions of human Tspan18 were 

replaced with those of CD9.  This chimera was able to activate NFAT 

(Colombo, 2010), demonstrating the importance of the extracellular region of 

Tspan18 in NFAT activation. 

In order to locate more specifically which domain of Tspan18 is important for 

NFAT activation, a new chimera was made, in which only the variable region 

within the large extracellular loop of Tspan18 was present and the rest of the 

protein was CD9 (figure 4.3, A).  The chimera, Tspan18 or CD9 were 

expressed alongside the NFAT/AP-1 luciferase reporter in DT40 B-cells and 

cells were left unstimulated, or treated with PMA and ionomycin as previously 

described.  Expression of the chimera induced an increase in NFAT activation 

similar to that observed when Tspan18 was expressed, and which was 

significant in comparison to both mock transfected control and CD9 (figure 

4.3, B).  Maximal activation of the reporter was observed in all conditions after 

treatment with PMA and ionomycin (figure 4.3, C).  As previously, similar 

protein expression of the FLAG-tagged tetraspanin constructs was confirmed 
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by SDS-PAGE electrophoresis and western blotting (figure 4.3, D).  An 

opposite chimeric construct was also made, in which the variable region of 

CD9 was swapped into the structure of Tspan18.  However, this construct 

could not be successfully expressed in the DT40 B cells (data not shown); 

therefore the ability of this construct to activate the NFAT luciferase reporter 

could not be assessed. 

These data demonstrate the importance of the variable region of Tspan18 in 

activation of Ca2+ signalling, and suggest that only this region is required to 

induce NFAT activation, in the context of an intact tetraspanin.   
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Figure 4.2 – Tspan18 activates a Ca
2+

 responsive NFAT luciferase reporter in DT40 B 
cells.  DT40 B cells were transfected via electroporation with an NFAT-luciferase reporter, β-

galactosidase expression construct, and either empty vector control, FLAG-tagged CD9, or 

FLAG-tagged Tspan18.  Cells were left unstimulated or treated with the calcineurin inhibitor 

cyclosporin A (A), or were stimulated with PMA and ionomycin (B).  Luciferase activity was 

measured in a luminescence plate reader after addition of luciferin.  All data were corrected 

for β-galactosidase values, normalised by logarithmic transformation, and analysed by one-

way ANOVA and Tukey’s multiple comparison test (** denotes P < 0.01, *** denotes P < 

0.001).  Error bars represent the standard error of the mean from 3 separate experiments and 

were calculated asymmetrically due to logarithmic manipulation of the data; all values were 

converted back to linear values for presentation.  Whole cell lysates from all experiments 

were separated by SDS-PAGE and western blotted with an anti-FLAG antibody; a 

representative blot is shown (C).  
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Figure 4.3 - The variable region of Tspan18 is sufficient to activate NFAT, in the context 
of an intact tetraspanin.  A chimeric construct was made from CD9 and Tspan18, which 

included the variable region from the large extracellular loop of Tspan18 (A).  DT40 B cells 

were transfected via electroporation with NFAT-luciferase reporter, β-galactosidase 

expression construct, and either empty vector control, FLAG-tagged CD9, FLAG-tagged 

Tspan18, or FLAG-tagged chimera.  Cells were left unstimulated (B), or were stimulated with 

PMA and ionomycin (C).  Luciferase activity was measured in a luminescence plate reader 

after addition of luciferin.  All data were corrected for β-galactosidase values, normalised by 

logarithmic transformation, and analysed by one-way ANOVA and Tukey’s multiple 

comparison test (*** denotes P < 0.001).  Error bars represent the standard error of the mean 

from 6 separate experiments and were calculated asymmetrically due to logarithmic 

manipulation of the data; all values were converted back to linear values for presentation.  

Whole cell lysates from all experiments were separated by SDS-PAGE and western blotted 

with an anti-FLAG antibody; a representative blot is shown (D).  This work was completed in 

collaboration with an undergraduate student, Adam Peall. 
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4.3.2 Dominant negative Orai1 inhibits Tspan18 induced NFAT activation 

Data from previous studies had outlined a role for Tspan18 in Ca2+ signalling 

downstream of release of Ca2+ from intracellular stores, but upstream of 

calcineurin activation (Colombo, 2010).  The resulting hypothesis therefore, 

was that Tspan18 might have a role in regulation of SOCE.  To investigate the 

potential role of Tspan18 in SOCE, a dominant negative form of the SOCE 

channel Orai1, which has a mutation in the mouth of the channel causing loss 

of specificity for Ca2+, was used (Gwack et al., 2007).  In order to form 

functional pore-forming channels, Orai1 proteins cluster into multimer units 

(Hou et al., 2012; Mignen et al., 2008).  Therefore expression of dominant 

negative Orai1 disrupts functional channel formation and reduces SOCE. 

DT40 B-cells were transfected with the NFAT/AP-1 luciferase reporter and 

either Tspan18, dominant negative Orai1, Tspan18 and dominant negative 

Orai1, or dominant negative Orai1 and active calcineurin as a positive control.  

As previously, cells were left unstimulated, or were treated with PMA and 

ionomycin.  Expression of Tspan18 alone induced a significant increase in 

NFAT activation above mock transfected control, as shown previously.  

However, when dominant negative Orai1 was co-expressed, a complete 

inhibition of Tspan18 induced NFAT activation was observed (figure 4.4, A).  

Dominant negative Orai1 also inhibited PMA and ionomycin signalling (figure 

4.4, B); the predicted reduction of Ca2+ influx into the cell, caused by the 

mutated channel, would lead to reduced downstream calcineurin activation 

and therefore failure to activate the NFAT promoter of the reporter.  When 

active calcineurin was expressed, an increase in NFAT activation was 

observed in both unstimulated (figure 4.4, A), and PMA/ionomycin treated 
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cells (figure 4.4, B), even though dominant negative Orai1 was present.  The 

active calcineurin provided a positive control by bypassing the need for 

functioning Orai1 channels and increased Ca2+ concentration, therefore 

directly inducing NFAT activation.  As previously, protein expression of FLAG-

tagged Tspan18 and Myc-tagged dominant negative Orai1 was confirmed by 

SDS-PAGE electrophoresis and western blotting (figure 4.4, C). 

This finding demonstrates the dependence of Tspan18 on functioning Orai1 

channels in order to induce Ca2+ signalling and NFAT activation.  This lends 

further evidence to the hypothesis that Tspan18 may regulate SOCE. 
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Figure 4.4 - Dominant-negative Orai1 inhibits Tspan18-induced NFAT activation.  DT40 

B cells were transfected via electroporation with NFAT-luciferase reporter, β-galactosidase 

expression construct, and either empty vector control, FLAG-tagged Tspan18, or Myc-tagged 

dominant negative (DN) Orai1.  As a positive control, active calcineurin was used.  Cells 

were left unstimulated (A) or stimulated with PMA and ionomycin (B).  Luciferase activity 

was measured in a luminescence plate reader after addition of luciferin.  All data were 

corrected for β-galactosidase values, normalised by logarithmic transformation, and analysed 

by ANOVA and Tukey’s multiple comparison test (** denotes P < 0.01, *** denotes P < 

0.001).  Error bars represent the standard error of the mean from 6 separate experiments and 

were calculated asymmetrically due to logarithmic manipulation of the data; all values were 

converted back to linear values for presentation.  Whole cell lysates from all experiments 

were separated by SDS-PAGE and western blotted with an anti-FLAG antibody and an anti-

Myc antibody; a representative blot is shown (C).  This work was completed in collaboration 

with a Masters student, Tammy Lloyd. 
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4.3.3 Tspan18 interacts with the Orai family of Ca2+ channels 

To identify Tspan18-interacting proteins, focussing on potential partners from 

within the SOCE pathway, an immunoprecipitation approach was used.  

HEK293T cells were transfected with Myc-tagged Orai1, Orai2, Orai3, or 

STIM1 and either an empty vector negative control (pEF6), or FLAG-tagged 

Tspan18.  Two different Orai1 constructs were used; Orai1 (a) and Orai1 (b).  

The cells were lysed in 1% digitonin lysis buffer, which is well established for 

identification of tetraspanin partner proteins (Haining et al., 2012).  Following 

immunoprecipitation for the FLAG tag of Tspan18, samples were separated 

by SDS-PAGE and western blotted for the Myc tag of the proteins of interest.  

Band intensity was quantitated using the Odyssey infra-red imaging system 

(LI-COR).  An interaction was detected between Tspan18 and Orai1, Orai2 

and Orai3 when blotting immunoprecipitation samples with an anti-Myc 

antibody (figure 4.5, A).  The relative band intensities demonstrated a 

significant increase above mock transfected control when Tspan18 was co-

expressed with either of the Orai1 constructs, Orai2, or Orai3 (figure 4.5, 

panel B).  The relative band intensity relating to the interaction between 

Tspan18 and Orai1 was much higher than that observed with Orai2 or Orai3 

(figure 4.5, panel B).  However, Orai2 and Orai3 were not expressed as highly 

as Orai1 in this system, as shown by the whole cell lysate anti-Myc western 

blot (figure 4.5, A).  No interaction was observed between Tspan18 and the 

SOCE sensory molecule STIM1.  Whole cell lysate samples blotted for the 

Myc tag confirmed expression of Orai1, Orai2, Orai3, and STIM1 and a FLAG 

blot confirmed expression of Tspan18 (figure 4.5, A).   
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The data presented here reveals an interaction between Tspan18 and the 

Orai channel family of SOCE proteins, which reinforces the hypothesis that 

Tspan18 may have a role in regulation of the SOCE pathway. 
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Figure 4.5 – Tspan18 interacts with the Orai family of Ca
2+

 channels.  HEK293T cells 

were transfected using PEI with Myc-tagged Orai1, Orai2, Orai3 or STIM1 and either an 

empty vector control or FLAG-tagged Tspan18.  Cells were lysed in 1% digitonin and 

immunoprecipitated with an anti-FLAG antibody.  Samples were separated by SDS-PAGE 

and both immunoprecipitated and whole cell lysate samples blotted with anti-FLAG and anti-

Myc antibodies, representative blots are shown (A).  The blots were visualised using the 

Odyssey infra-red imaging system (LI-COR) and band intensity quantitatively measured (B).  

All data were normalised by logarithmic transformation and analysed by T-test (* denotes P < 

0.05, ** denotes P < 0.01).  Error bars represent standard error of the mean from 3 separate 

experiments. 
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 4.3.4 Tspan18 forms a robust interaction with Orai1 

Further study into the interaction between Tspan18 and Orai proteins was 

limited to Orai1.  Orai1, rather than Orai2 or Orai3 has been previously shown 

to maintain the role of SOCE channel in platelets (Braun et al., 2009).  As 

such, it was considered the most relevant potential partner protein in this 

project, and the most suitable to take forward into further studies. 

To assess whether Tspan18 was unique in forming an interaction with the 

SOCE channel Orai1, an immunoprecipitation experiment in HEK293T cells 

was employed across a panel of different tetraspanins.  The tetraspanins 

tested were CD9, CD63, CD151, Tspan32, Tspan9, Tspan18 and the 

Tspan18-CD9 chimera.  After the HEK293T cells were transfected with Myc-

tagged Orai1 and a FLAG-tagged tetraspanin, samples were lysed and 

blotted and band intensity quantitated, as described previously.  The 

previously identified interaction between Tspan18 and Orai1 was observed 

and an interaction was also detected between the chimera and Orai1 when 

immunoprecipitation samples were blotted with an anti-Myc antibody (figure 

4.6, A).  When either Tspan18 or the chimera was expressed, the band 

intensity was significantly increased above mock transfected control 

containing empty vector (pEF6) (figure 4.6, B).  However, the relative band 

intensity for the interaction between the chimera and Orai1 was reduced from 

the interaction between Tspan18 and Orai1, by approximately 75%.  

Additionally, a weak band was observed when Tspan32 was co-expressed 

alongside Orai1; relative band intensity was low, but still demonstrated a 

significant increase above control, suggesting that Orai1 may also be 

interacting with Tspan32.  However, CD9, CD63, CD151 and Tspan9 did not 
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interact with Orai1 in this experiment.  To act as a positive control, the well 

characterised tetraspanin-partner protein interaction between CD9 and CD9P-

1 was used (S Charrin et al., 2001; Serru et al., 1999).  CD9P-1 was 

successfully co-immunoprecipitated with CD9 (figure 4.6 A) and this was 

significant in comparison to mock transfected control (figure 4.6 B). 

To assess how robust these interactions were, the experiment was repeated 

under more stringent lysis conditions.  As previously, the panel of tetraspanins 

were expressed in HEK293T cells alongside Orai1.  Samples were then lysed 

in 1% triton X-100 lysis buffer with 0.1% SDS, which disrupts tetraspanin 

microdomains and most weak interactions, including some tetraspanin-partner 

protein interactions (Stéphanie Charrin et al., 2009; Haining et al., 2012).  

Following immunoprecipitation and western blotting, band intensity was 

quantitated as described previously.  Only the interaction between Orai1 and 

Tspan18 was maintained under stringent lysis conditions as the interactions 

with Tspan32 and the chimera were disrupted (figure 4.7, A) and this was 

significant when quantitated (figure 4.7, B).  The interaction between CD9 and 

CD9P-1 was also lost in these stringent lysis conditions. 

To further characterise the nature of the interaction between Tspan18 and 

Orai1 a cross-linking experiment was used.  This allowed for comparison of 

this interaction with the well characterised interaction between Tspan14 and 

ADAM10 (Dornier et al., 2012; Haining et al., 2012), which was used as a 

positive control.  It also allowed for further analysis of the interaction between 

the chimera and Orai1.  Prior to lysis in 1% triton X-100 with 0.1% SDS and 

immunoprecipitation, the cells were treated with either the cell surface cross-

linker DTSSP, or PBS control.  DTSSP is a membrane impermeable chemical 
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cross-linker, linked by a spacer of 1.2 nm in length; if two cell surface proteins 

are closely associated, these proteins will be covalently cross-linked together 

by DTSSP, which can subsequently be cleaved with reducing agents.  

Samples were western blotted and band intensity measured as previously 

described.  Following pre-treatment with DTSSP, the maximal level of 

interaction between Tspan18 and Orai1 was observed, whereas with pre-

treatment with only PBS, there was a 50% decrease in band intensity which 

represented the interaction between Tspan18 and Orai1 (figure 4.8, A).  

Despite the reduction in band strength, the relative band intensity was still 

significantly increased from the control (figure 4.8, panel B).  The interaction 

with the chimera and Orai1 was almost entirely lost in the stringent lysis 

conditions without the presence of the chemical cross-linker.  Similarly, the 

interaction between ADAM10 and Tspan14 was almost entirely lost under 

stringent lysis without cross-linking. 

Taken together, these data show that both Tspan18 and the chimera interact 

with the SOCE channel Orai1 and that this interaction is relatively specific 

across a panel of different tetraspanins.  Additionally, the data demonstrates 

that the interaction between Tspan18 and Orai1 is very robust, being able to 

withstand stringent lysis conditions beyond that of the well characterised 

interactions between CD9 and CD9P-1 and Tspan14 and ADAM10.  The 

cross-linking experiment also highlights the cell surface localisation of this 

interaction, as DTSSP, which is membrane impermeable, enhances the 

interaction.  Finally, the data also demonstrates that the chimera has a 

reduced affinity for Orai1, as stabilisation of the interaction via cross-linking is 

required under stringent lysis conditions. 
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Figure 4.6 – Tspan18 interacts with Orai1.  HEK293T cells were transfected using PEI 

with Myc-tagged Orai1 or CD9P-1 and either an empty vector control, or a FLAG-tagged 

tetraspanin.  Cells were lysed in 1% digitonin and immunoprecipitated with an anti-FLAG 

antibody.  Samples were separated by SDS-PAGE and both immunoprecipitated and whole 

call lysate samples blotted with anti-FLAG and anti-Myc antibodies, a representative blot is 

shown (A).  The blots were visualised using the Odyssey infra-red imaging system (LI-COR) 

and band intensity quantitatively measured (B).  All data were normalised by logarithmic 

transformation, and data for Orai1 immunoprecipitation were analysed by one-way ANOVA 

and Dunnet’s post test and data for CD9P-1 immunoprecipitation were analysed by T-test (** 

denotes P < 0.01, ***denotes P < 0.001).  Error bars represent standard error of the mean 

from 3 separate experiments. 
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Figure 4.7 – Tspan18 interacts with Orai1 under stringent lysis conditions.  HEK293T 

cells were transfected using PEI with Myc-tagged Orai1 or CD9P-1 and either an empty 

vector control, or a FLAG-tagged tetraspanin.  Cells were lysed in 1% triton with 0.1% SDS 

and immunoprecipitated with an anti-FLAG antibody.  Samples were separated by SDS-

PAGE and both immunoprecipitated and whole call lysate samples blotted with anti-FLAG 

and anti-Myc antibodies, a representative blot is shown (A).  The blots were visualised using 

the Odyssey infra-red imaging system (LI-COR) and band intensity quantitatively measured 

(B).  All data were normalised by logarithmic transformation, data for Orai1 

immunoprecipitation were analysed by one-way ANOVA and Dunnet’s post test and data for 

CD9P-1 immunoprecipitation were analysed by T-test (** denotes P < 0.01).  Error bars 

represent standard error of the mean from 3 separate experiments.  
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Figure 4.8 – A comparison of the Tspan18-Orai1 interaction under weak and stringent 
lysis conditions.  HEK293T cells were transfected using PEI with Myc-tagged Orai1 or 

ADAM10 and either an empty vector control or a FLAG-tagged tetraspanin.  Cells were 

incubated with either the chemical cross-linker DTSSP or PBS, then lysed in 1% Triton X-

100 lysis buffer containing 0.1% SDS and immunoprecipitated with an anti-FLAG antibody.  

Samples were separated by SDS-PAGE and both immunoprecipitated and whole call lysate 

samples blotted with anti-FLAG and anti-Myc antibodies, a representative western blot is 

shown (A).  The blots were visualised using the Odyssey infra-red imaging system (LI-COR) 

and band intensity quantitatively measured (B).  All data were normalised by logarithmic 

transformation and analysed by one-way ANOVA and Tukey’s multiple comparison test (** 

denotes P < 0.01, *** denotes P < 0.001).  Error bars represent standard error of the mean 

from 4 separate experiments.  
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4.3.5 Tspan18 preferentially interacts with de-glycosylated Orai1 

Orai1 has an N-linked glycosylation site at N223 in the extracellular loop 

between the third and fourth transmembrane domains (Prakriya et al., 2006).  

The glycosylated form of Orai1 was identified due to the appearance of a 

band at a higher molecular weight than predicted from the amino acid 

sequence when western blotting for Orai1; deglycosylated Orai1 is observed 

at approximately 35 kDa and the glycosylated form at 45 kDa (Gwack et al., 

2007; Prakriya et al., 2006).  The interaction observed between Tspan18 and 

Orai1 in the immunoprecipitation experiments conducted in this chapter 

occurred only with a form of Orai1 at approximately 35 kDa (see figures 4.5 – 

4.8). 

To test whether Tspan18 preferentially interacts with de-glycosylated Orai1, 

Tspan18 or empty vector control (pEF6) were expressed in HEK293T cells 

alongside Orai1.  Samples were then lysed in 1% digitonin, treated with 

PNGase F (Sigma); an endoglycosidase, which cleaves N-linked 

glycoproteins at the link between asparagine and N-acetylglucosamines 

(Maley, Trimble, Tarentino, & Plummer, 1989) or PBS control, 

immunoprecipitated and western blotted as described previously.  Following 

treatment with PNGase and immunoprecipitation for the Myc tag of Orai1 to 

enrich for this protein, only one band of approximately 35 kDa was observed 

(figure 4.9), representing de-glycosylated Orai1.  However, without treatment 

with PNGase, two bands were observed at approximately 35 and 45 kDa 

(figure 4.9), representing glycosylated and de-glycosylated Orai1 respectively.  

When samples were immunoprecipitated for the FLAG tag of Tspan18 rather 

than the Myc tag of Orai1, only the lower molecular weight band at 
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approximately 35 kDa, representing de-glycosylated Orai1 was observed, with 

or without pre-treatment with PNGase (figure 4.9).   

This clearly shows the two forms of Orai1; glycosylated and de-glycosylated 

and also demonstrates that Tspan18 only interacts with de-glycosylated 

Orai1. 
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Figure 4.9 – Tspan18 interacts with the de-glycosylated form of Orai1.  HEK293T cells 

were transfected using PEI with Myc-tagged Orai1 and either an empty vector control or 

FLAG-tagged Tspan18.  Cells were lysed in 1% digitonin and immunoprecipitated with an 

anti-FLAG antibody.  Samples were split and half treated with PNGase to cleave all N-linked 

glycosylations.  Samples were separated by SDS-PAGE and both immunoprecipitated and 

whole cell lysate samples blotted with anti-FLAG and anti-Myc antibodies.  A representative 

western blot is shown from two separate experiments. 
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4.4 DISCUSSION 

 

The research completed in this chapter was focussed around three key aims; 

to investigate which region of Tspan18 was important for activation of the 

Ca2+-responsive NFAT reporter, which has been previously investigated 

(Colombo, 2010), to assess the role of Orai1 in Tspan18-induced NFAT 

reporter activation, and to identify whether Tspan18 interacted with Orai or 

STIM proteins. The data presented in this chapter demonstrated that the 

variable region within the large extracellular loop of Tspan18 is sufficient to 

activate the NFAT reporter.  Also, that Tspan18 is dependant on functioning 

Orai1 to induce Ca2+ signalling.  Additionally, an interaction between Tspan18 

and the Orai family of Ca2+ entry channels was observed; this interaction 

appeared to occur preferentially with only the de-glycosylated form of Orai1 

and does appear to occur at the cell surface, within the HEK293T cell over-

expression system.  Together, these data strongly suggest a role for Tspan18 

in regulation of SOCE via interaction with the Ca2+ channel Orai1. 

The observation that the Tspan18-CD9 chimera was able to activate the 

NFAT reporter, confirmed that the variable region alone is sufficient to 

replicate the function of Tspan18 in the context of an intact tetraspanin.  This 

could suggest that an interaction forms between Tspan18 and its partner 

protein via this variable region and that this interaction could be responsible 

for downstream Ca2+ signalling and NFAT activation.  This would not be a 

novel idea within the tetraspanin field, as the variable region within the large 

extracellular loop across the tetraspanin family has often been suggested as 
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the most likely region for protein-protein interactions (Stipp, Kolesnikova, & 

Hemler, 2003).  Several examples have been shown where the variable 

region of a tetraspanin is vital for normal function of the partner protein; 

association of CD151 with specific integrins occurs via a region within the 

large extracellular loop (Kazarov, Yang, Stipp, Sehgal, & Hemler, 2002), the 

high affinity interaction of CD81 with the E2 envelope protein of HCV requires 

the variable region (Higginbottom et al., 2000), and the variable region within 

the large extracellular loop of CD9 is important for normal adhesive function of 

ICAM-1 and VCAM-1 on endothelial cells during leukocyte extravasation 

(Barreiro et al., 2005). 

Despite the functional ability of the chimera to activate the NFAT reporter, the 

interaction between Orai1 and the chimera was not maintained under 

stringent lysis, suggesting that this interaction was not as robust as that 

between Tspan18 and Orai1.  This implies that domains other than the 

variable region of Tspan18 may be important in either maintaining a strong 

interaction with Orai1, or regulating the localisation of the tetraspanin to allow 

maximal interaction with Orai1.  Domains other than the variable region within 

the large extracellular loop of tetraspanins have been shown to be important 

in interaction with partner proteins.  For example, the transmembrane region 3 

of the tetraspanin uroplakins is important for partner protein interaction (Min et 

al., 2006) and the EWI-2 interaction with the tetraspanin CD81 is reliant on 

transmembrane regions 3 and 4 (Montpellier et al., 2011).  Therefore, 

domains from CD9 within the chimera could be partially disrupting the 

interaction. 
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The interaction between Tspan18 and Orai1 appeared to occur at the cell 

surface, as demonstrated by the cross-linking experiment.  The cell surface 

cross-linker used, DTSSP, is membrane impermeable, therefore the increase 

in band intensity representing the Tspan18-Orai1 interaction under cross-

linked conditions must represent cell surface interaction only.  Tspan18 has 

previously been observed at the cell surface in stably transfected Jurkat T 

cells, using a surface biotinylation approach (Tomlinson, unpublished data).  

Together this suggests that Tspan18 may be interacting with and regulating 

Orai1 at the cell surface, though further investigation is required to 

characterise the nature of the interaction and the effect it has on Orai1 

function. 

The observation that Tspan18 interacts with the SOCE channel Orai1 

supports the hypothesis that Tspan18 is involved in regulation of Ca2+ 

signalling; however the precise mechanism is still not known.  Typically, 

tetraspanins regulate the function of their partner proteins in one of several 

key mechanisms.  The TspanC8 sub family of tetraspanins, which all interact 

with the metalloproteinase ADAM10, regulate the biosynthesis and maturation 

of this protein (Dornier et al., 2012; Haining et al., 2012; Prox et al., 2012).  It 

has also been speculated that these tetraspanins could be taking ADAM10 to 

specific locations in the cell.  The tetraspanins CD9 and CD151 interact with 

and regulate the endothelial adhesion molecules ICAM-1 and VCAM-1 by 

clustering these proteins to form adhesive platforms for optimal leukocyte 

capture and extravasation at points of inflammation (Barreiro et al., 2008, 

2005).  Also, analysis of the lateral mobility of tetraspanins within the plasma 

membrane has shown highly dynamic interactions within tetraspanin enriched 
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microdomains, which could therefore impact on the lateral mobility of partner 

proteins (Espenel et al., 2008).  The mechanism by which Tspan18 may 

regulate Orai1 could involve any of these processes.  It is possible that the 

interaction observed between the chimera and Orai1 is due to a clustering 

mechanism.  For example, the formation of complexes between Tspan18 and 

Orai1 as well as interactions formed between the chimera and Tspan18 could 

allow association of the chimera with Orai1 through incorporation into the 

tetraspanin microdomain.  Therefore, the less direct interaction between the 

chimera and Orai1 may result in a less robust interaction which cannot 

withstand stringent lysis conditions.  

It is interesting that Tspan18 only interacts with de-glycosylated Orai1, and 

this observation could provide clues to the mechanism by which Tspan18 

regulates this Ca2+ channel.  One hypothesis is that the interaction between 

these proteins occurs early in the biosynthesis of Orai1, prior to addition of 

post-translational modifications.  However, the interaction between Tspan18 

and Orai1 might not be limited to a role in early-stage biosynthesis.  It has 

been shown that the de-glycosylated form of Orai1 is fully functional in its 

localisation and in its ability to allow flux of Ca2+ into the cell (Gwack et al., 

2007).  It could be possible that interaction with Tspan18 protects Orai1 from 

glycosylation and that de-glycosylated Orai1 has a specific and separate 

function in the cell.  As the role of glycosylation on Orai1 and the affects that 

glycosylation has on its function have not yet been elucidated, it is difficult to 

predict why Tspan18 preferentially interacts with only the de-glycosylated 

form of this Ca2+ channel. 
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Further work is required to fully elucidate the mechanism by which Tspan18 

may be regulating its partner protein, Orai1. 
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CHAPTER 5 

THE HAEMOSTASIS DEFECT IN TSPAN18 KNOCKOUT MICE 

IS DUE TO TSPAN18 DEFICIENCY IN NON- HAEMATOPOIETIC 

CELLS  
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5. 1 INTRODUCTION 

 

5.1.1 Tspan18 is an endothelial tetraspanin 

Investigating the expression profile of Tspan18 is difficult due to the lack of 

antibodies; however Tspan18 expression can be monitored at the mRNA 

level.  One study, which utilised publicly available large scale transcriptomic 

data from serial analysis of gene expression experiments, revealed that 

Tspan18 is more highly expressed in endothelial versus non-endothelial 

libraries (Bailey et al., 2011).  Other studies using quantitative real time PCR 

identified Tspan18 at higher levels in human endothelial cells such as HUVEC 

and HMEC than other cell types such as smooth muscle cells, fibroblasts, 

hepatocytes, and cell lines of haematopoietic and non-haematopoietic origin 

(Colombo, 2010).  Additionally, real time PCR on a range of mouse tissues 

including brain, heart, kidney, liver, lung, muscle, spleen and thymus, found 

Tspan18 mRNA levels to be highest in lung, suggesting an endothelial 

expression profile (Colombo, 2010).  However, the role of Tspan18 on 

endothelial and other non-haematopoietic cells has not been studied. 

 

5.1.2 The role of non-haematopoietic cells in haemostasis 

The process of haemostasis is regulated not only by platelet activation and 

thrombus formation, but also by contributions of non-haematopoietic cells, 

including endothelial cells and smooth muscle cells.  Vasoconstriction occurs 

at sites of injury to narrow the vessel and reduce blood flow, thus reducing 
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blood loss (van Hinsbergh, 2012).  This process requires the contraction of 

vascular smooth muscle cells, which is regulated by vasoconstrictive agents 

and through activation of the nervous system (van Hinsbergh, 2012).  Just 

one example of the multiple stimuli which acts as a vasoconstrictor is TxA2.  

TxA2 is released by platelets and induces contraction of vascular smooth 

muscle via activation of a G protein coupled pathway leading to increased 

intracellular Ca2+ concentrations, activation of myosin light chain kinase and 

muscle cell contraction (Wilson et al., 2005).  The nervous system can also 

induce vasoconstriction, through production and release of norepinephrine 

from stimulated neurons of the sympathetic nervous system (Thomas, 2011).  

Norepinephrine can then go on to stimulate smooth muscle cell contraction, 

through increasing intracellular Ca2+ concentration, thus driving 

vasoconstriction (Thomas, 2011).  

The endothelium can provide both negative signals to regulate haemostasis in 

normal vessels, and positive signals to promote thrombus formation at sites of 

vascular injury.  The endothelium can inhibit platelet activation through 

release of inhibitory molecules such as PGI2 and NO, and through expression 

of cell surface receptors, such CD39, which hydrolyses platelet-released ADP 

to prevent platelet activation (Becker, Heindl, Kupatt, & Zahler, 2000; Marcus 

et al., 1997; van Hinsbergh, 2012).  When necessary, the endothelium can 

stimulate platelet activation and the clotting cascade via release of clotting 

factors such as vWF and FVIII.  vWF mediates the adhesion of platelets to the 

exposed sub-endothelial matrix at sites of vascular injury.  A small amount of 

vWF is produced in megakaryocytes and is stored in α-granules in platelets, 

to be released upon platelet activation (Blann, 2006).  However, the majority 
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of vWF is stored in, and released from Weibel-Palade bodies within 

endothelial cells (Blann, 2006).  Endothelial vWF alone has been shown to be 

sufficient to support haemostasis (Kanaji et al., 2012), and interestingly, 

exocytosis of the contents of Weibel-Palade bodies, following vessel injury, is 

regulated by increased intracellular Ca2+ signalling (Rondaij, Bierings, Kragt, 

van Mourik, & Voorberg, 2006).  The clotting factor, FVIII is closely associated 

with vWF via a direct interaction which acts to stabilise FVIII in the blood 

stream (Everett et al., 2014).  Upon activation initiated by a response to injury, 

FVIII dissociates from vWF and promotes the clotting cascade via interaction 

with other clotting factors.   

 

5.1.3 Use of chimeric mice to investigate the role of Tspan18 in 

haemostasis  

As described in the first results chapter, Tspan18 deficient mice displayed a 

severe disruption to haemostasis, as they bleed significantly more than 

wildtype mice in a tail bleeding assay.  This is despite normal thrombus 

formation in vivo and only a mild platelet functional defect.  Additionally, the 

bleeding observed appears more severe than that documented for either 

GPVI deficient mice (B Nieswandt, Schulte, et al., 2001), or mice with Orai1 

deficient platelets (Braun et al., 2009), which suggests that the platelet defects 

alone can not explain the haemostasis phenotype observed.  To investigate 

the role of non-haematopoietic cells in haemostasis, it is possible to use 

chimeric mice with different haematopoietic and non-haematopoietic 

compartments.  To generate chimeric mice, whole embryonic livers were 
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harvested from the embryos of pregnant Tspan18 wildtype or Tspan18 

deficient mice.  A single cell suspension was generated from the whole liver 

and transplanted into lethally irradiated C57BL/6 wildtype or Tspan18 deficient 

mice to reconstitute the haematopoietic system.  Therefore, mice with 

Tspan18 deficient platelets and wildtype endothelium (and other non-

haematopoietic cells) as well as mice with Tspan18 deficient endothelium 

(and other non-haematopoietic cells) and wildtype platelets were generated. 
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5.2 AIMS 

The aim of this chapter was to investigate the mechanism behind the bleeding 

phenotype observed in the Tspan18 deficient mice.  By generating chimeric 

animals with wildtype haematopoietic cells and Tspan18 knockout non-

haematopoietic cells, and vice versa, the role of haematopoietic and non-

haematopoietic Tspan18 in haemostasis could be assessed. 
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5.3 RESULTS 

 

5.3.1 Non-haematopoietic cells appear to drive the disruption to 

haemostasis in Tspan18 deficient mice 

To investigate the role of Tspan18 in haemostasis and to elucidate the effects 

of platelet Tspan18 as opposed to non-haematopoietic Tspan18, chimeric 

mice were generated from both C57BL/6 wildtype mice and Tspan18 deficient 

mice, using lethal irradiation and injection of embryonic liver cells to 

reconstitute the haematopoietic system, as outlined in section 5.1.3.  The tail 

bleeding assay was then repeated. 

When assessed using the tail bleeding assay described in chapter 3, the 

C57BL/6 recipient mice did not bleed, whether they had Tspan18 wildtype or 

Tspan18 deficient platelets and other haematopoietic cells (figure 5.1).  When 

Tspan18 deficient chimeras with either knockout or wildtype haematopoietic 

cells were tested, a significant increase in bleeding was observed.  The 

bleeding mimicked the pattern observed for the Tspan18 whole body 

knockout mice, in which a heterogeneous population was observed, as some 

of the mice bled and some did not (figure 5.1).  The chimeric mice were bled 

alongside 8 litter matched pairs of whole body Tspan18 wildtype or knockout 

animals as controls and, as previously, the Tspan18 deficient mice displayed 

an increase in bleeding and a highly heterogeneous population was observed 

whereas the wildtype mice did not bleed (figure 5.1).   

These data demonstrate that mice with Tspan18 wildtype non-haematopoietic 

cells do not have a disruption to haemostasis, whereas mice with Tspan18 
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knockout non-haematopoietic cells display a disruption to haemostasis, 

regardless of the genotype of the haematopoietic cells.  This suggests that the 

platelets in the Tspan18 deficient mice do not drive the bleeding phenotype, 

therefore suggesting a non-haematopoietic driving force behind the bleeding 

observed.  

Genotyping analysis of post-transplant blood samples was carried out to 

assess success of the reconstitution of the haematopoietic system from the 

transplanted cells.  Genomic DNA was isolated from white blood cells and 

used for PCR using primers specifically for wildtype Tspan18 (visualised at 

376 bp) and gene targeted Tspan18 (visualised at 227 bp).  In recipients of 

wildtype embryonic liver cells, only a band at 376 bp was visualised, 

representing wildtype Tspan18.  In recipients of knockout embryonic liver 

cells, only a band at 227 bp was visualised, representing disrupted Tspan18 

(figure 5.2).  This demonstrated successful reconstitution of the 

haematopoietic system from the transplanted cells, and that generation of the 

chimeric animals had been achieved.  Bands at both 376 bp and 227 bp were 

observed for tail tip tissue harvested from the mice post-transplant (figure 

5.2).  The appearance of both bands suggests both Tspan18 wildtype and 

deficient cells were present, which would be expected, as some blood 

contamination could have occurred during harvesting of this tissue which 

would mean that both haematopoietic and non-haematopoietic cells may have 

been present. 
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Figure 5.1 – Normal haemostasis in the tail bleeding assay in C57BL/6 chimeric mice, 
but impaired haemostasis in Tspan18-/- chimeric mice.  The tail tip of anaesthetised mice 

was amputated and amount of blood lost was measured.  Each symbol represents an 

individual.  Data were analysed by Fisher’s exact test; individuals were ranked as ‘bleeding’ 

or ‘not bleeding’ where ‘bleeding’ was defined as one or more drop of blood, equivalent to 30 

µl lost (* denotes P < 0.05, *** denotes P < 0.001).  Data displayed is either the % of total 

permitted blood loss (A); each mouse was permitted to lose a maximum of 15% of total blood 

determined by body weight, due to restrictions on the Home Office animal licence, or as total 

volume of blood lost with a bracket to indicate termination of the assay for individuals which 

lost 100% of permitted blood (B).  Non-chimeric mouse data is a reproduction of all collated 

data for Tspan18 wildtype and knockout individuals, including 8 pairs which were bled in 

parallel to the chimeric mice. 
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Figure 5.2 – Validation of Tspan18 chimeric mice by genotyping.  6-week old wildtype 

C57BL/6 (A) or Tspan18-/- (B) recipient mice were lethally irradiated prior to injection with 

embryonic liver cells from either Tspan18 deficient or wildtype mice.  The mice recovered 

over 6 weeks to enable reconstitution of the haematopoietic system from the transplanted 

cells.  Tissue samples were taken before transplantation and blood and tissue samples were 

taken after reconstitution of the haematopoietic system.  Genomic DNA was isolated from the 

samples and the PCR products run on a gel to visualise Tspan18 wildtype and gene targeted 

bands (wildtype Tspan18 PCR product is visualised at 376 bp and disrupted Tspan18 PCR 

product visualised at 227 bp).  A representative gel is shown. 
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5.3.2 Plasma levels of endothelial-derived clotting factors vWF and FVIII 

are normal in Tspan18 deficient mice 

One known impact that the endothelium has on haemostasis is biosynthesis 

and release of specific clotting factors which, as described earlier, can act to 

promote platelet activation and the clotting cascade.  As demonstrated by the 

data presented earlier in this chapter, non-haematopoietic cells appear to be 

driving the bleeding observed in Tspan18 deficient mice.  Tspan18 is 

expressed in endothelial cells; therefore it is possible that an endothelial-

derived defect is driving the bleeding. 

To investigate the cause of the potentially endothelial-driven bleeding in the 

Tspan18 deficient mice, plasma concentrations of specific clotting factors 

were measured by ELISA.  Blood was taken from anaesthetised mice and the 

plasma was separated by centrifugation.  Mouse plasma concentration of 

vWF was measured using pre-coated micro-titre ELISA plates from BT-

Laboratory and mouse plasma concentration of FVIII was measured using 

pre-coated micro-titre ELISA plates from My Biosource.  The plasma 

concentration of both vWF and FVIII was found to be normal in plasma from 

Tspan18 deficient mice when compared to plasma from wildtype mice (figure 

5.3 A and B). 

Therefore endothelial Tspan18 does not appear to have a role in regulation of 

the basal levels of plasma vWF or FVIII.  This suggests that either another 

mechanism, involving endothelial, or other non-haematopoietic cells, could be 

causing the bleeding in the Tspan18 deficient mice, or that Tspan18 might 

have a more complex role in regulating the function of these clotting factors; 
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the latter could be regulation of their release upon injury by Tspan18, which, 

in the case of vWF, has been previously shown to be a Ca2+ dependant 

mechanism (Rondaij et al., 2006).  
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Figure 5.3 – Tspan18 deficient mice have normal levels of plasma vWF and FVIII.  

Blood was taken from anaesthetised mice and the plasma was isolated from whole blood by 

centrifugation.  Concentration of vWF and FVIII was assessed by ELISA, using pre-coated 

micro-titre plates from BT-Laboratory for vWF (A) or My Biosource for FVIII (B).  Error 

bars represent the standard error of the mean from 4 pairs of mice.  All data were analysed by 

T-test. 
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5.3.3 Knockdown of Tspan18 in HUVEC appears to disrupt endothelial 

cell function 

As a preliminary investigation into the potential role of Tspan18 on endothelial 

cells, in vitro assays using HUVEC were employed.  Expression of Tspan18 

was disrupted using two different siRNA duplexes in comparison to a control 

siRNA duplex. Optimisation of knockdown is outlined in appendix 2. 

The first method of assessing endothelial cell function was the scratch wound 

assay; a confluent monolayer of HUVEC was wounded using a pipette tip and 

the migration of the cells to close the wound was monitored using time-lapse 

microscopy.  In HUVEC which had been treated with the Tspan18 siRNA.1 

duplex, a significant reduction in wound closure was observed at 6 and 12 

hours post-wounding, in comparison to cells treated with the control siRNA 

(figure 5.4 A-C).  Tspan18 knock down for both duplexes was assessed by 

real-time PCR, in comparison to the control siRNA (figure 5.4, D). 

The second endothelial function assay was a co-culture tube-formation assay, 

in which HUVEC were cultured alongside fibroblasts and the formation of 

tube-like structures was assessed (figure 5.5, A).  The number of junctions 

formed appeared to be reduced in HUVEC treated with either Tspan18 siRNA 

duplex (figure 5.5, C), though the length of the tubules and the number of 

tubules formed appeared mainly undisrupted (figure 5.5, A and D).  Tspan18 

knock down for both duplexes was assessed by real-time PCR, in comparison 

to the control siRNA (figure 5.5, E).  
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Figure 5.4 – Tspan18 knockdown disrupts endothelial function in a scratch wound 
assay.  Tspan18 expression was disrupted in HUVEC using siRNA.  The HUVEC were 

grown to be confluent before scratching a wound through the monolayer of cells with a 

pipette tip.  Time-lapse microscopy was used to monitor the migration of the cells to close the 

wound; representative images are shown (A).  Images were analysed using ImageJ software at 

6 (B) and 12 (C) hours post-wounding, to quantitatively measure wound closure.  All data 

were normalised by arcsin transformation and analysed by one-way ANOVA with Dunnet’s 

multiple comparison (* denotes P < 0.05, ** denotes P < 0.01).  Relative Tspan18 mRNA 

levels were assessed by real time PCR (D).  Error bars represent the standard error of the 

mean from 3 separate experiments. 
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Figure 5.5 – Tspan18 knockdown disrupts endothelial function in a tube formation 

assay.  Tspan18 expression was disrupted in HUVEC using siRNA and the HUVEC were 

seeded onto fibroblasts in a co-culture environment and cultured for 6 days to allow tube-like 

structures to form.  The HUVEC were then fixed and stained for CD31, using an alkaline 

phosphatase conjugated secondary antibody for visualisation under a light microscope.  

Representative images are shown (A).  The images were analysed by thresholding; the length 

of tubules (B), number of junctions (C) and number of tubules (D) were measured.  Relative 

mRNA levels were assessed by real time PCR (E).  Error bars represent the standard error of 

the mean from 2 separate experiments. 
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5.4 DISCUSSION 

 

The main aim of the work in this chapter was to investigate the role of 

Tspan18 in haemostasis and to investigate whether non-haematopoietic 

derived dysfunction was the cause of disrupted haemostasis in the Tspan18 

deficient mice.  Chimeric mice derived from C57BL/6 wildtype animals 

displayed no bleeding phenotype, whether they had wildtype or Tspan18 

deficient haematopoietic cells.  However, chimeric mice derived from Tspan18 

deficient animals displayed an increase in bleeding, whether they had 

wildtype or Tspan18 deficient haematopoietic cells, suggesting that the 

disrupted haemostasis in Tspan18 deficient mice is driven by defects in non-

haematopoietic cells.  Interestingly, Tspan18 is known to be expressed in 

endothelial cells; a cell type which plays multiple roles in haemostasis.  It is 

therefore possible that endothelial Tspan18 has a role in regulation of 

haemostasis.  However, the bleeding was not caused by disruption to basal 

plasma concentration of endothelial released vWF or FVIII.  Preliminary 

investigation into the role of Tspan18 on endothelial cells appeared to 

highlight a role for Tspan18 in endothelial cell migration and tube formation, 

though further experiments are required to confirm these results. 

The generation of chimeric mice, using embryonic foetal liver cells to 

reconstitute the haematopoietic system enabled the roles of Tspan18 in 

haematopoietic and non-haematopoietic cells within the process of 

haemostasis to be investigated. Use of foetal liver to reconstitute the 

haematopoietic system in mice is a widely used method, as embryonic stem 
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cells from the liver are able to provide long term reconstitution across the 

range of haematopoietic cell lineages (Ema & Nakauchi, 2015; Forrester et 

al., 1991).  Use of PCR to genotype the chimeric mice demonstrated that the 

reconstitution method was successful and that only a minimal, if any, 

population of original haematopoietic cells remained after irradiation.  Use of 

this method to drawn conclusions on the role of Tspan18 in haemostasis 

relies on the assumption that the platelets derived from the embryonic liver 

stem cell lineages have the same biology and function as those which were 

derived from the original adult mouse stem cells, prior to irradiation.  In order 

to better understand this, platelet function tests such as those completed in 

chapter 3, could be completed on the reconstituted platelets from the chimeric 

mice, to assess whether they function in the same way as normal adult 

platelets. 

Interestingly, the severity of bleeding observed in either Tspan18 deficient 

mice or the chimeric mice derived from Tspan18 deficient mice appears to 

vary widely across the population.  This is in contrast to the largely consistent 

results observed for Tspan18 wildtype mice, which do not bleed.  The unequal 

variance between these populations represents the heterogeneity within the 

Tspan18 knockout mice.  Why there would be such a high levels of variance 

within this population is not known, but it suggests that certain individuals are 

more susceptible to bleeding than others.  Similar results have been observed 

for the tail bleeding assay previously, as mice deficient in the tyrosine 

phosphatase CD148 demonstrated a bimodal distribution of bleeding (Y. A. 

Senis et al., 2009).  Additionally, a similar distribution was also observed for 

GPVI deficient mice which had been generated on a mixed 129 x1 / SvJ x 
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C57Bl/6J background (Cheli et al., 2008).  Through use of a genome wide 

single-nucleotide polymorphism screen, a modifier locus was identified, which 

was shown to affect the extent of disruption to haemostasis following GPVI 

deficiency (Cheli et al., 2008).  Interestingly, the Tspan18 knockout mice were 

also generated on a mixed background (Tang et al., 2010).  Therefore, the 

bimodal distribution of bleeding observed in the Tspan18 knockout mice could 

be the result of contribution of a modifier locus.  Alternatively, the bimodal 

population could be the result of another factor, for example affects of the 

environment.  If the bleeding phenotype is weak, but is exacerbated by stress, 

for example, then the increase in bleeding could be observed only in some 

individuals, when stress becomes a secondary factor. 

As Orai1 has been identified as a novel partner protein for Tspan18 (see 

chapter 4), it is possible that Tspan18 is regulating Orai1 and Ca2+ signalling 

in endothelial cells.  A disruption to endothelial Ca2+ signalling due to Tspan18 

deficiency could impact on endothelial function and may drive the bleeding 

phenotype observed.  However, it is also possible that Tspan18 could be 

interacting with a different partner protein and altering endothelial cell function 

in a different way.  It would be interesting to assess the Orai1 endothelial cell 

specific knockout mouse for disruptions to haemostasis and to see whether 

these mice might phenocopy the results observed for Tspan18 knockout mice. 

Although the basal plasma concentration of vWF and FVIII appear to be 

normal in Tspan18 deficient mice, it is still possible that Tspan18 has a role in 

regulation of one or both of these clotting factors.  Deficiency or defective 

function of vWF is the cause of the bleeding disorder von Willebrand disease 

(vWD) and it might be possible that although the basal concentrations of vWF 
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are normal in Tspan18 deficient mice, there might be another defect which 

has not yet been investigated.  For example, the release of this clotting factor 

following injury could be impaired, therefore studying basal plasma 

concentration alone cannot provide definitive evidence that these factors are 

functioning normally in the blood.  It has been previously shown that release 

of vWF from Weibel-Palade bodies following injury, occurs via a Ca2+ 

regulated process (Rondaij et al., 2006).  It is therefore feasible that although 

basal plasma levels of vWF are normal in the Tspan18 deficient mice, release 

of vWF from the endothelium following injury may well be disrupted, due to 

disrupted Ca2+ signalling, and could be causing the bleeding phenotype 

observed.  An investigation into the injury-induced release of these clotting 

factors in Tspan18 deficient mice is required before a role for Tspan18 in 

regulation of vWF or FVIII function can be dismissed completely.  

The role for Tspan18 in endothelial cells may not involve regulation of vWF or 

FVIII, but may include regulation of another aspect of endothelial function in 

haemostasis. For example, the endothelium can act to reduce thrombus and 

clot formation via inhibition of platelet adhesion and activation (van Hinsbergh, 

2012).  Release of PGI2 by endothelial cells promotes anti-thrombotic effects 

by inhibiting platelet activation (Becker et al., 2000; Salvador Moncada, 1982; 

van Hinsbergh, 2012).  Endothelial cells can also release NO, which aids in 

the platelet-inhibitory actions of PGI2 (van Hinsbergh, 2012).  In order to 

assess whether the levels of NO or PGI2 are disrupted and are causing 

defective haemostasis, plasma concentrations could be measured.  For 

example, to investigate plasma NO levels, a spectrophotometric approach 

could be used, in which plasma NO can be reduced to NO2 for detection by 
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Griess reagent, which induces a colour change in response to high NO2 and 

is therefore used for colorimetric detection of nitrite in samples (Giustarini, 

Rossi, Milzani, & Dalle-Donne, 2008). 

Both the scratch wound assay and the tube formation assay were used to 

assess the effect on endothelial cell function following knockdown of Tspan18. 

In both cases, knockdown of Tspan18 appeared to disrupt endothelial cell 

function, as a reduction in wound closure and a reduction in tube formation 

was observed following disruption of Tspan18.  This suggests that Tspan18 

has a role in regulating normal endothelial cell function, but further work is 

required to confirm these results and to investigate whether endothelial 

Tspan18 has a role in haemostasis, or whether it is involved in another 

endothelial cell process. 

It is possible that the mechanism by which Tspan18 regulates haemostasis 

could be separate from the endothelium, and may involve regulation of other 

cell types, such as vascular smooth muscle.  The fine balance of positive and 

negative regulation of haemostasis is clearly disrupted in Tspan18 deficient 

mice; however to fully understand the mechanism by which Tspan18 may be 

regulating haemostasis, further investigation is required.  Ideally, generation 

of an antibody for Tspan18 is required to be able to confirm the expression 

profile of this tetraspanin and therefore better hypothesise in which cell types 

it may be having an effect.  An antibody against this tetraspanin would also 

enable investigation of endogenous protein and allow assessment of the 

Tspan18-Orai1 interaction at the endogenous level, rather than within an 

over-expression system.  It would be interesting to investigate whether 

Tspan18 interacts with partner proteins other than Orai1, and whether the 
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disruption to haemostasis observed is due to defective Ca2+ signalling and 

SOCE, or whether there is another mechanism.  Ca2+ signalling experiments 

in endothelial cells and other Tspan18 expressing cells would be useful to 

investigate this question. 
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CHAPTER 6 

GENERAL DISCUSSION 
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6.1 Summary of key findings 

The main aim of this thesis was to characterise the role of the tetraspanin 

Tspan18 in platelet function.  Generation of the Tspan18 knockout mouse in a 

large scale mouse knockout project (Tang et al., 2010) provided the means to 

characterise the role of Tspan18 in platelets, and use of cell line models 

enabled investigation into the mechanism of Tspan18 action and identification 

of potential binding partners.  Characterisation of Tspan18 deficient platelets 

highlighted a very specific role for Tspan18 in regulation of platelet activation 

downstream of collagen receptor GPVI signalling, as Tspan18 deficient 

platelets displayed defective aggregation, secretion and spreading 

downstream of the GPVI-specific agonist CRP.   Additionally, Tspan18 

deficient platelets had a reduced ability to mobilise Ca2+ following stimulation 

with CRP or collagen and following emptying of intracellular Ca2+ stores, the 

latter suggesting a SOCE defect.  The Tspan18 deficient mice did not display 

any defect in thrombus formation in the two in vivo models tested, but a large 

increase in bleeding was observed in Tspan18 deficient mice compared to 

wildtype controls.  This bleeding defect was concluded to most probably be 

caused by defective non-haematopoietic function, leading to a disruption to 

coagulation, rather than as a direct result of the mild platelet defects.  During 

in vitro analyses, the variable region within the large extracellular loop of 

Tspan18 was shown to be important for Tspan18 to induce an increase in 

activation of a Ca2+ responsive reporter.  Additionally, through use of a 

dominant negative form of the SOCE channel Orai1, the ability of Tspan18 to 

induce increased intracellular Ca2+ was shown to be dependant on functioning 

Orai1 channels.  Finally, through an immunoprecipitation approach, a novel 
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partner protein was identified for Tspan18, as a robust interaction formed 

between Tspan18 and Orai1, for which the variable region was important.  

Taken together, these data highlight a novel tetraspanin-partner protein 

interaction that may outline a role for Tspan18 in regulation of Ca2+ entry by 

regulation of Orai1.  In terms of platelet activation, Tspan18 appears to be 

particularly important in Ca2+ signalling downstream of GPVI activation.  The 

ability of Tspan18 to activate Ca2+ is unique across a panel of different 

tetraspanins (Colombo, 2010) and the interaction between Tspan18 and Orai1 

was specific.  It is unlikely that other tetraspanins would be able to 

compensate for the role of Tspan18, as there are no close relatives to 

Tspan18 with similar sequence and there is no evidence for the closest 

relative, Tspan1, expression on platelets.  The findings in this thesis therefore 

potentially represent a highly specific and unique mechanism. 

 

6.2 The interaction between Tspan18 and Orai1 

The interaction that was observed between Tspan18 and Orai1 is a novel 

tetraspanin-partner protein interaction which has not been observed 

previously.  Although the interaction appeared to be highly robust, as it was 

able to withstand stringent lysis conditions, the interaction consistently only 

occurred with the low molecular weight form of Orai1, corresponding to de-

glycosylated Orai1 (Gwack et al., 2007; Prakriya et al., 2006).  The reason 

behind the specificity of Tspan18 interacting with only de-glycosylated Orai1 is 

unknown, though it is not the first time that Orai1 interacting proteins have 

been shown to preferentially interact with the de-glycosylated form.  During 
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immunoprecipitation experiments using over-expressed Orai1 and STIM1 in 

HEK293T cells, STIM1 was shown to interact with the lower molecular weight 

form of Orai1 (Vig et al., 2006).  Additionally, in experiments using soluble 

STIM1 fragment peptides to identify the regions of STIM1 which are important 

for activation of Orai1, it was shown that a region within the C-terminal of 

STIM1, named the CRAC activation domain (CAD), was sufficient to interact 

with Orai1 and induce channel opening (Park et al., 2009).  When the CAD 

peptide was over-expressed in HEK293T cells alongside Orai1 and 

immunoprecipitation employed, the interaction was observed between CAD 

and the low molecular weight form of Orai1 (Park et al., 2009).  Interestingly, it 

is not only the interaction between Orai1 and STIM1 which has demonstrated 

a preference for the lower molecular weight of the Ca2+ channel.  In a study 

which outlined a role for secretory pathway Ca2+-ATPase (SPCA2) in store-

independent activation of Orai1, immunoprecipitation experiments for both 

endogenous and over-expressed protein demonstrated that the interaction 

which formed was between SPCA2 and the low molecular weight form of 

Orai1 (Feng et al., 2010).  As of yet, there has been no explanation for the 

specific interaction between only the low molecular weight form of Orai1 and 

it’s binding partners.  However, the occurrence of this interaction across 

multiple binding partners and within experiments studying both over-

expressed and endogenous protein, suggests that the interaction of Tspan18 

with only de-glycosylated Orai1 is unlikely to be a co-immunoprecipitation 

artefact. 

Further evidence for the interaction of Tspan18 with Orai1 was outlined 

through use of a cross-linking assay in chapter 4.  The use of a membrane 
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impermeable surface cross-linker increased the signal observed for the 

interaction between Tspan18 and Orai1 and stabilised the interaction between 

the Tspan18/CD9 chimeric construct and Orai1.  This suggests that the 

interaction between Tspan18 and Orai1 is preserved at the cell surface. 

It is interesting that Tspan18 also appeared to interact with the other members 

of the Orai family; Orai2 and Orai3.  However, the extent of these interactions 

were not investigated as far as the interaction with Tspan18 and Orai1, 

therefore it is not possible to discern the importance or relevance of these 

interactions.  It is possible that Tspan18 only interacts with Orai2 and Orai3 

indirectly, mediated by a common interaction with Orai1.  It would be possible 

to test to robustness of these interactions using more stringent lysis 

conditions. 

 

6.3 The mechanism of Tspan18 action 

Despite the functional studies completed in both cell line models and the 

Tspan18 deficient platelets which suggested a role for Tspan18 in Ca2+ 

mobilisation, the mechanism of action of this tetraspanin is still unknown.  As 

Tspan18 has been shown to interact with Orai1, it is reasonable to 

hypothesise that the interaction between Tspan18 and this Ca2+ channel 

could be regulating its function and thus effecting Ca2+ flux into the cell, as 

outlined in figure 6.1 A.  However, exactly how Tspan18 is regulating Orai1 is 

more difficult to predict, as there are several viable mechanisms which may 

occur. 



 - 190 - 

Firstly, as outlined in figure 6.1 B, Tspan18 could be regulating the 

biosynthesis, trafficking and therefore expression of Orai1.  Tetraspanins have 

previously been observed regulating the expression and biosynthesis of their 

partner proteins.  For example, the tetraspanin CD81 is required for trafficking 

of its partner, CD19, from the ER to the golgi and thus regulates the cell 

surface expression of CD19 (Shoham et al., 2003; Zelm et al., 2010).  

Additionally, the TspanC8 subfamily of tetraspanins have all been shown to 

interact with ADAM10, regulating its maturation, cell surface expression and 

proteolytic activity (Dornier et al., 2012; Haining et al., 2012; Prox et al., 

2012).  As other tetraspanins have been shown to interact with their partner 

proteins early during their biosynthesis, it is possible that Tspan18 interacts 

with Orai1 early in biosynthesis, within the ER or the golgi, and thus has a role 

in regulating its expression at the cell surface.  SOCE is known to be highly 

sensitive to expression levels of both STIM and Orai proteins.  Over-

expression studies have shown that an imbalance of these proteins can 

disrupt SOCE, as over-expression of Orai without STIM, or visa versa, 

disrupts SOCE and reduces Ca2+ influx into the cell (Mercer et al., 2006; 

Soboloff et al., 2006).  This clearly demonstrates the need for balance of both 

STIM and Orai expression for SOCE to occur optimally.  Tspan18 could have 

a role in maintaining the correct levels of Orai1 in the cell for optimal SOCE.  

In order to begin to assess the potential role of Tspan18 in regulation of Orai1 

expression, Orai1 antibodies were characterised for use in western blotting 

and immunoprecipitation experiments, as outlined in appendix 3.  Two 

commercially available Orai1 antibodies were shown to western blot over-

expressed human Orai1 protein in transfected HEK293T cells, but the level of 
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endogenous Orai1 in mouse platelets was either too low to detect, or the 

antibodies might not detect mouse Orai1 as well as human Orai1 (appendix 

figure 3a).  Initial characterisation of the antibodies for immunoprecipitation 

was completed in human platelets (appendix figure 3b).  To test the 

hypothesis that Tspan18 regulates the expression levels of Orai1, these 

antibodies could now be used for immunoprecipitation of Orai1 from wildtype 

and Tspan18 deficient platelets, followed by western blotting to detect 

endogenous expression levels in the presence and absence of Tspan18.  

Additional techniques, such as flow cytometry could also be utilised to assess 

the cell surface expression of Orai1 in Tspan18 knockout vs wildtype 

platelets, to assess the correct surface localisation of the protein as well as 

overall expression.  However, this would rely on the use of good antibodies to 

the extracellular region of Orai1, which are not currently available. 

Another feasible hypothesis, depicted in figure 6.1 C, is that Tspan18 may be 

regulating and facilitating the clustering of Orai1.  One key example of 

tetraspanin proteins which facilitate clustering of their partner protein is the 

role that CD9 and CD151 play in regulation of ICAM-1 and VCAM-1, which 

are vital during leukocyte extravasation during inflammation.  These 

tetraspanins promote formation of nano-platforms of these endothelial 

adhesion molecules, by clustering ICAM-1 and VCAM-1 to allow more 

efficient adhesion and transmigration of leukocytes (Barreiro et al., 2008, 

2005; Nourshargh et al., 2010).  Tspan18 could potentially be facilitating 

formation of functional Orai1 channels through clustering of Orai1 monomers 

in the membrane.  As discussed in detail in chapter 1, the formation of Orai1 

channels is not well characterised.  Some groups have suggested that Orai1 
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channels are formed of 4 separate subunits (Ji et al., 2008; Maruyama et al., 

2009; Mignen et al., 2008) and some have proposed 6 subunits are required 

(Hou et al., 2012).  Some studies have outlined the presence of preformed 

channels in the membrane, which only require activation to allow Ca2+ influx 

into the cell (Madl et al., 2010), whereas other groups suggest that resting 

Orai1 is found as a dimer and that dimerisation of these dimers must occur for 

channel activation (Penna et al., 2008).  It is possible that Tspan18 could be 

associated with Orai1 monomers and have a role in the regulation of 

clustering these monomers into higher order complexes to promote formation 

of Orai1 channels.  Alternatively, Tspan18 could be involved in channel 

activation rather than channel formation, by providing a platform for preformed 

Orai1 channels to cluster, therefore inducing formation of Orai1-rich puncta to 

allow maximal Ca2+ influx.  When activated, STIM1 proteins form puncta in 

areas of the ER which are adjacent to the plasma membrane (Smyth et al., 

2010).  This creates a platform for optimal interaction with Orai1 channels to 

induce Ca2+ influx.  It is possible therefore that Tspan18 enables formation of 

similar Orai1 puncta in the plasma membrane to further enhance and drive 

channel activation and Ca2+ mobilisation.  To test these hypotheses, 

fluorescence microscopy could be employed in cells transfected with tagged 

Orai1 to monitor puncta formation.  This method has been used widely to 

study Orai1 clustering events and to elucidate the role of several different 

regulatory proteins in SOCE (Giurisato et al., 2014).  Use of cells deficient in 

Tspan18 through siRNA knockdown would enable measurement of Orai1 

puncta formation in the absence of Tspan18. 
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Alternatively, Tspan18 could be regulating Orai1 through an entirely distinct 

mechanism.  The dynamic interactions formed within tetraspanin enriched 

microdomains within the membrane not only regulate compartmentalisation of 

the membrane, but can also affect the lateral mobility of specific membrane 

proteins (Espenel et al., 2008).  If interaction with Tspan18 alters the lateral 

mobility of Orai1, this might alter potential interaction events between Orai1 

monomers and thus affect the efficiency of functional channel formation.  The 

ability to measure the minute details of membrane dynamics has been 

developed through use of single particle tracking analysis (Sako, Minoghchi, & 

Yanagida, 2000; Schütz, Kada, Pastushenko, & Schindler, 2000).  This 

method utilises fluorescence microscopy to monitor the dynamics of single 

molecules within the membrane and enables measurement of diffusion 

coefficients, modes of motion and special and temporal behaviour of those 

molecules (Sako et al., 2000; Schütz et al., 2000).  This technique has been 

utilised to demonstrate the highly dynamic nature of tetraspanin microdomains 

through monitoring the membrane dynamics of the abundantly expressed 

tetraspanin CD9 (Espenel et al., 2008).  This technique could be utilised to 

monitor Orai1 lateral mobility and behaviour within the membrane in the 

presence or absence of Tspan18, to investigate whether Tspan18 has a role 

in regulation of the membrane dynamics of this Ca2+ channel. 

Finally, it is possible that Tspan18 plays a role in incorporation of Orai1 into 

tetraspanin enriched microdomains which also contain GPVI.  The platelet 

collagen receptor GPVI has been shown to be tetraspanin associated, so it is 

reasonable to assume it may be enriched in some tetraspanin microdomains 

(Protty et al., 2009).  The importance of SOCE and especially the proteins 
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Orai1 and STIM1 have been highlighted in platelet activation downstream of 

GPVI signalling, though platelet activation via G-protein coupled processes 

does not appear to be so dependant on SOCE (Braun et al., 2009; David 

Varga-Szabo, Braun, et al., 2008).  Therefore, there might be a currently 

uncharacterised mechanism which would explain the requirement for Orai1 

specifically in GPVI induced platelet activation.  If Tspan18 is responsible for 

bringing Orai1 into the microdomain with GPVI, this may allow for a platform 

for optimal signalling to occur, where downstream phosphorylation cascades 

function efficiently and in close proximity, allowing for maximal Ca2+ influx and 

platelet activation.  However, platelet responses such as integrin activation 

and P-selectin exposure have also been previously shown to be Orai1-

dependant processes, but not specific to GPVI pathways (Bergmeier et al., 

2009).  This suggests that Orai1 might be important across multiple platelet 

pathways, not just the GPVI pathway, though how exactly Tspan18 fits into 

this mechanism is as yet unknown. 
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Figure 6.1 – Potential mechanisms of Tspan18 regulation of Orai1.  Tspan18 interacts 

with the CRAC channel Orai1, though the mechanism by which Tspan18 regulates Orai1 is 

unknown.  The interaction between Tspan18 and Orai1 suggests that Tspan18 may have a role 

in regulation of channel formation or channel activation and therefore effect intracellular Ca
2+

 

concentrations (A).  Tspan18 could be acting to regulate the biosynthesis and trafficking of 

Orai1 and therefore might be important for the correct cell surface expression of Orai1 (B).  

The Tspan18-Orai1 interaction may facilitate clustering of Orai1 within the plasma membrane 

and therefore enhance and assist in the formation of functional Orai1 channels to allow flux of 

Ca
2+

 into the cell (C). 

 

6.4 The role of Tspan18 on non-haematopoietic cells 

Although the main aim of this thesis was to characterise the role of Tspan18 

in platelets, some of the results observed implicated Tspan18 in other, non-

haematopoietic cell types.  The work using chimeric mice, outlined in detail in 

chapter 5, demonstrated that the bleeding phenotype observed in the 

Tspan18 deficient mice was due to defects in non-haematopoietic cells rather 
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than the platelets.  However, it still not known which cell types might be 

implicated in this disruption to haemostasis and the mechanism has not been 

elucidated. 

It is possible that the bleeding defects observed in the Tspan18 deficient mice 

are caused by defective endothelial or smooth muscle cell function.  

Endothelial cells play multiple roles in haemostasis, not least through release 

of pro- and anti-thrombotic agents and coagulation factors, and smooth 

muscle cells are important during the process of vasoconstriction to reduce 

blood flow and limit blood loss (Thomas, 2011; van Hinsbergh, 2012).  

Tspan18 has been previously identified in endothelial cells through both 

SAGE analysis and by real time PCR of mouse tissues and human cells 

(Bailey et al., 2011; Colombo, 2010).  Therefore it is possible to hypothesise 

that endothelial Tspan18 could have role in regulation of haemostasis.  During 

preliminary investigation into the potential roles of Tspan18 in endothelial cells 

(outlined in chapter 5), knockdown of Tspan18 in HUVEC caused defective 

migration in a wound closure assay and defective tube formation in a co-

culture assay.  These data suggest that Tspan18 does have a role in 

maintaining normal endothelial cell function, but exactly what that role is and 

what effects this might have on endothelial function in vivo is still to be 

investigated. 

One known impact that endothelial cells have on haemostasis is the release 

of the clotting factors vWF and FVIII from Weibel-Palade bodies in response 

to vascular injury (Blann, 2006).  The response of endothelial cells to injury to 

release these clotting factors is believed to be a Ca2+ dependant process 

(Rondaij et al., 2006).  Therefore it is possible that injury-induced release of 



 - 197 - 

vWF and FVIII from Weibel-Palade bodies in endothelial cells is regulated by 

Tspan18 and might be defective in the Tspan18 deficient mice, causing the 

increase in bleeding.  It is not necessarily the case that basal levels of these 

clotting factors would be affected, which could explain why normal basal 

plasma levels of vWF and FVIII were observed in the Tspan18 deficient mice. 

An interesting recent investigation also highlighted the importance of the 

endothelium in driving the coagulation cascade by providing a surface for the 

prothrombinase complex to form (Ivanciu, Krishnaswamy, & Camire, 2014).  

The multiple steps within the coagulation cascade ultimately lead to formation 

of thrombin, which cleaves fibrinogen to form fibrin, which acts to stabilise the 

forming clot against disruption by the blood flow (Stegner & Nieswandt, 2011).  

Two important factors involved in this process are factor Xa (FXa) and factor 

Va (FVa), which drive thrombin formation.  A recent study demonstrated that 

formation of prothrombinase from these factors is supported by the damaged 

endothelium rather than being entirely driven by the activated platelet cell 

surface as previously assumed (Heemskerk, Mattheij, & Cosemans, 2013; 

Ivanciu et al., 2014).  This description of coagulation on the endothelial cell 

surface, distinct from the platelet thrombus, provides another mechanism by 

which endothelial cells regulate haemostasis.  This process involves exposure 

of phosphatidylserine by the activated endothelium to provide the surface for 

prothrombinase activation (Ivanciu et al., 2014).  Exposure of 

phosphatidylserine is a Ca2+ dependant process, which could therefore 

potentially be regulated by endothelial Tspan18. 
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6.5 Future directions 

Having identified a novel tetraspanin-partner protein interaction, the most 

immediate investigation following this thesis should focus on elucidating the 

mechanism of regulation of Orai1 by Tspan18.  As discussed in section 6.3, 

the potential role of Tspan18 in regulation of Orai1 expression is already 

being investigated through immunoprecipitation and western blotting methods 

using the Tspan18 deficient platelets.  There are also experiments using 

fluorescence microscopy which could be used to investigate other potential 

mechanisms of action such as cellular localisation and clustering.  Future 

experiments to further investigate the complex interplay of Tspan18 in Ca2+ 

signalling are also required, to elucidate whether this tetraspanin has roles in 

both release of Ca2+ from intracellular stores and SOCE, or whether it’s 

function is limited to just one area of this signalling pathway.  The additional 

experiments outlined in section 3.4, such as completion of platelet function 

testing in the presence of extracellular Ca2+ would help to clarify these 

questions. 

Having described a comprehensive characterisation of the role of Tspan18 in 

platelet function in this thesis, it would also be interesting to investigate the 

roles of Tspan18 in other cell types.  Perhaps the most obvious direction to 

move the project next would be to complete a full characterisation of the role 

of Tspan18 in endothelial cells.  Previous studies have demonstrated 

Tspan18 expression in endothelial cells, and as shown by the preliminary 

work at the end of chapter 5, Tspan18 may have a role in normal endothelial 

cell function.  It would be interesting to further investigate the potential role of 

endothelial Tspan18 in the bleeding phenotype observed in the Tspan18 
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knockout mouse, but would also be useful to analyse other aspects of 

endothelial cell function.  For example, the role of Tspan18 in vascular 

development, vascular integrity and angiogenesis could be investigated.  

Interestingly, Tspan18 has been implicated in migration of chick neural crest 

cells due to regulation of cadherin 6B expression (Fairchild & Gammill, 2013).  

The potential role for Tspan18 in regulation of endothelial cell migration and 

thus angiogenesis should therefore be investigated.  Interestingly, cadherin 6 

is expressed on platelets, and has a potential role in platelet activation as a 

possible ligand for the integrin αIIbβ3 (Dunne et al., 2012).  Preliminary 

investigation into cadherin 6 expression on Tspan18 deficient platelets using a 

commercially available antibody to measure surface expression by flow 

cytometry was unsuccessful (data not shown).  It would be interesting to 

follow this up with an antibody that works to investigate the potential role for 

Tspan18 in regulation of cadherin 6 expression in platelets. 

It is possible that Tspan18 has a wider expression profile and that it also plays 

roles in other cell types.  In order to better investigate the expression profile of 

Tspan18 and to elucidate in which cell types it might be important, the 

expression profile of Tspan18 must be better characterised.  In order to 

achieve this, ideally generation of a Tspan18 antibody is required.  This would 

allow assessment of endogenous protein expression levels.  Additionally, the 

Tspan18 knockout mouse is a useful tool in further characterising the 

expression profile of Tspan18.  Due to the lactose operon (Lacz) which is 

included in the target vector used to generate the knockout mouse, 5-bromo-

4-chloro-3-indolyl-β-D-galactopyranoside (Xgal) staining could be employed to 

measure in which tissues Tspan18 would have been expressed.  Lacz 
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encodes for the β-galactosidase enzyme, therefore wherever Tspan18 would 

have been expressed in the mouse tissues, β-galactosidase will be expressed 

instead.  This enzyme hydrolyses X-gal to form a blue compound; therefore X-

gal staining produces blue staining in tissues which would have expressed 

Tspan18.   

As outlined in section 1.3.5, Tspan18 has already been studied in the 

development of the nervous system and has also been identified as a 

susceptibility locus for schizophrenia (J. Yuan et al., 2013; Yue et al., 2011).  

It could be interesting to further investigate the role of Tspan18 in the 

developing brain and to elucidate whether Tspan18 mutations which lead to 

schizophrenia lead to defective Orai1 and reduced Ca2+ signalling. 

In order to complete the Tspan18 story, the mechanism of Tspan18 action 

must be elucidated and the extent that it regulates other cell types must also 

be investigated.  At first hand, it appears that Tspan18 may not provide a 

potential new drug target for thrombosis for treatment of heart attack and 

stroke, due to the haemostatic defects observed.  However, not all of the 

Tspan18 deficient mice bled which, as discussed in chapter 5, may be due to 

a potential genetic modifier effect.  If this can be better understood, then 

perhaps Tspan18 would offer an attractive target, to be able to specifically 

target Orai1 and Ca2+ signalling downstream of GPVI during platelet 

activation, without disruption to multiple other cell types. 
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APPENDIX 1 

 

Tspan18 knockout mice have normal body weight and normal heart 

weight. 

As a basic assessment of overall health and development of the Tspan18 

deficient mice, litter matched pairs at 8-9 weeks old were weighed.  There 

was no difference in the bodyweight of Tspan18 deficient mice and wildtype 

mice (appendix figure 1a).  Additionally, as a basic assessment of cardiac 

health, the hearts of litter matched pairs at 10-12 weeks old were weighed.  

There was no difference in the weight of hearts of Tspan18 deficient mice and 

wildtype mice (appendix figure 1b). 
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Appendix figure 1a – Bodyweight of the Tspan18 deficient mice is normal.  Litter 

matched pairs of wildtype and Tspan18 deficient mice were weighed at 8-9 weeks old.  Data 

were analysed by T-test.  Each symbol represents an individual. 
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Appendix figure 1b –Tspan18 deficient mice have normal heart weight.  Hearts were 

harvested from litter matched pairs of wildtype and Tspan18 deficient mice at 10-12 weeks 

old.  Tissue was blotted to remove excess blood and hearts weighed.  Data were normalised to 

total bodyweight for each individual, and analysed by T-test.  Each symbol represents an 

individual. 
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APPENDIX 2  

 

Optimisation of siRNA knockdown of Tspan18 in HUVEC 

As a preliminary investigation into the potential role of Tspan18 on endothelial 

cells, in vitro assays using HUVEC were employed.  Expression of Tspan18 

was disrupted using two different siRNA duplexes in comparison to a control 

siRNA duplex. 

To optimise knockdown of Tspan18, HUVEC were harvested either 48, 72, or 

96 hours post-transfection, Tspan18 mRNA was assessed via real time 

quantitative PCR.  Both duplexes induced the highest level of knockdown 48 

hours post transfection, and no difference was observed in Tspan18 

expression between non-transfected cells and a control siRNA duplex 

(appendix figure 2). 
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Appendix figure 2 – Optimisation of Tspan18 knockdown in HUVEC using siRNA.  
Expression of Tspan18 was disrupted using two different siRNA duplexes, compared with 

non-transfected cells and a control siRNA duplex.  HUVEC were transfected with siRNA 

duplexes using RNAiMAX and were harvested 48, 72, or 96 hours post-transfection.  

Tspan18 expression was assessed via real time PCR.  Relative mRNA levels of Tspan18 in 

each sample are shown.  Error bars represent the standard error of the mean from 3 separate 

experiments. 
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APPENDIX 3 

 

Characterising Orai1 antibodies 

To better investigate the impact of Tspan18 on Orai1 and to be able to 

monitor endogenous levels of Orai1, rather than rely on over-expression 

systems, a suitable Orai1 antibody was required. 

To characterise Orai1 antibodies for use in western blotting, HEK293T cells 

were transfected with two different Myc-tagged human Orai1 constructs.  

Cells were then lysed, samples separated by SDS-PAGE electrophoresis and 

protein expressed assessed by western blotting.  Two different Orai1 

antibodies were tested; ProSci 4281 (Orai1-CT), raised against a 16 amino 

acid region at the carboxyl terminus of Orai1, and ProSci 4041 (Orai1-NT), 

raised against an 18 amino acid region at the amino terminus of Orai1.  

Expression of Orai1 in the HEK293T cells was confirmed by blotting with an 

anti-Myc antibody.  Blotting with either of the Orai1 antibodies detected bands 

corresponding to the correct molecular weight for Orai1 when HEK293T cells 

were transfected with either Orai1 construct, whereas no corresponding 

bands were observed in the non-transfected control sample (appendix figure 

3a).  To assess whether endogenous levels of Orai1 could be detected by 

western blotting, washed mouse platelets were prepared, lysed, separated by 

SDS-PAGE electrophoresis and blotted with the Orai1-CT antibody.  Several 

non-specific bands were observed and no clear band corresponding to the 

molecular weight of Orai1 could be distinguished (appendix figure 3a, B).  The 
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inability to distinguish the endogenous levels of Orai1 was probably due to the 

low levels of endogenous Orai1 present in mouse platelets. 

To attempt to detect endogenous levels of Orai1, an immunoprecipitation 

approach was used.  To characterise the Orai1 antibodies for 

immunoprecipitation, human platelets were used rather than mouse platelets, 

as they are abundant and readily available. 

Human platelets were isolated from the blood and washed into modified 

Tyrode’s buffer.  The platelets were lysed, immunoprecipitated, and samples 

were separated by SDS-PAGE and western blotted.  Immunoprecipitation for 

CD9 was completed alongside those for Orai1, as a positive control, and both 

MOPC and Rab IgG were used as negative controls.  A band of 

approximately the correct molecular weight for Orai1 was observed after 

blotting with the Orai1-CT antibody following immunoprecipitation with either 

Orai1 antibody, and was also observed when blotting the platelet whole cell 

lysate (appendix figure 3b).  Immunoprecipitation for CD9 resulted in 

enrichment of this tetraspanin. 
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Appendix figure 3a - Characterising Orai1 antibodies for use in western blotting.  
HEK293T cells were transfected using PEI with Myc-tagged Orai1.  Whole cell lysate 

samples were separated by SDS-PAGE and western blotted with either an Orai1 antibody, an 

anti-Myc antibody to check expression, or a tubulin antibody to control for loading (A).  

Mouse platelets were isolated from the whole blood and lysed in sample buffer.  Samples 

were separated by SDS-PAGE and western blotted with an Orai1 antibody (B).  

Representative blots are shown from 3 separate experiments.  
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Appendix figure 3b – Characterising Orai1 antibodies for immunoprecipitation.  Human 

platelets were isolated from the blood and lysed in Brij97 lysis buffer.  Samples were 

immunoprecipitated as labelled above, separated by SDS-PAGE and western blotted as 

labelled above.  A representative blot from 2 separate experiments is shown. 



 - 210 - 

APPENIX 4 

 

Published papers 

Bailey R.L., Herbert J.M., Khan K., Heath V.L., Bicknell R. and Tomlinson 

M.G., 2011. The emerging role of tetraspanin microdomains on endothelial 

cells. Biochemical Society Transactions, 39(6), pp.1667–1673 

Haining E.J., Yang J., Bailey R.L., Khan K., Collier R., Tsai S., Watson S.P., 

Frampton J., Garcia P. and Tomlinson M.G., 2012. The TspanC8 subgroup of 

tetraspanins interacts with A disintegrin and metalloprotease 10 (ADAM10) 

and regulates its maturation and cell surface expression. The Journal of 

biological chemistry, 287(47), pp.39753–65 
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