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ABSTRACT 
 
Epstein-Barr virus (EBV) encodes two viral BCL-2 homologues, BHRF1 and BALF1. BHRF1 is expressed 

in a subset of EBV-positive Burkitt’s lymphoma (BL) tumours; as BHRF1 is highly anti-apoptotic, 

expression could result in treatment-resistant BL. Little is known about BALF1, including whether 

BALF1 is pro- or anti-apoptotic.  

Interactions between BHRF1 and cellular BCL-2 homologues have not been fully characterised, but 

previous studies have focused on BIM as a key binding partner. We stably expressed wild-type or 

mutant vBCL-2s in EBV-negative BL lines to investigate interactions between BHRF1 and cellular 

BCL-2 homologues. The ability to bind BIM, whilst well documented, had no impact on 

BHRF1-mediated protection. Our data suggests that BHRF1’s protective ability may be mediated 

through binding to BID and BAK. This work also identified two amino acids, located in the binding 

groove of BHRF1, which are highly important for protein function.  

We detected BALF1 expression, at potentially functionally relevant levels, in a wide variety of 

EBV-associated tumour lines. BALF1 mRNA was detectable in lines with highly varied patterns of viral 

gene expression, indicating that expression is not restricted to one part of the viral life-cycle. In BL, 

BALF1 was found to be anti-apoptotic, and co-operated with, rather than antagonized, BHRF1. 
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  Chapter 1 

1.0 Introduction 

1.1 Importance of cell death 

Cell death is important for many processes during development. It sculpts the developing 

embryo by removing whole fields of cells (for example, between the digits), it regulates the 

number of neurons in the nervous system and removes whole unwanted structures (e.g. the 

embryo tail) (1). Cell death is required for homeostasis and for removal of cells which present a 

risk, such as those which have undergone DNA damage, and is the most primitive and 

conserved cellular reaction to viral infection. To recognise the importance of cell death it is 

worth considering the implications of its deregulation. Unscheduled or excessive cell death can 

lead to chronic neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease among 

others (2, 3), whereas repression of death is one of the steps essential for tumorigenesis (4). 

Without cell death the accumulation of cells with errors in DNA replication and genome 

alterations will quickly build up, increasing the likelihood that a cell will acquire all the 

mutations it needs to become cancerous (e.g. sustained proliferation, immune evasion and 

potential for metastasis, to name but a few). Cell death repression is also required for sustained 

growth of cancer cells, and alterations can confer resistance against cancer therapies such as 

cytotoxic agents and radiation (5).  

Deregulation of cell death is also important for viruses and, in order to successfully infect host 

cells, viruses have been forced to develop strategies for avoiding cell death and for keeping the 

cell alive long enough for the viral life cycle to complete. As many viruses have the ability to 

inhibit the induction of cell death through various means, the well known association between 

certain viruses and cancer is not surprising (reviewed in  (6)). 

The understanding of how a virus can interact with, and manipulate, the host cell machinery to 

prevent cell death, will not only lead to improved knowledge of the virus but could ultimately 
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result in more treatments for cell death related diseases, and to better, more targeted, anti-

cancer therapies.  

  

1.2 Forms of Cell death 

Cell death can be divided into two categories: necrosis and programmed cell death. In necrosis, 

cells are killed at random, following irreparable cell damage. They do not follow the normal 

apoptotic pathway but lose membrane integrity and undergo an uncontrolled release of 

cellular contents (7). Of programmed cell death, apoptosis and autophagy are the two main 

categories, although evidence is now emerging to show that in some cases necrosis can be 

regulated by certain death receptor pathways, a form of death known as programmed necrosis 

or ‘necroptosis’ (reviewed in (8)). During autophagy, cellular homeostasis is maintained 

through the recycling of intra-cellular proteins and organelles. This removes damaged or 

unwanted organelles and also provides an energy source when the cell is in nutrient depleted 

conditions, functioning as a survival mechanism (9). However, under certain conditions, 

autophagy can lead to cell death and may be activated or suppressed by components of 

pathways which also regulate apoptosis, such as BCL-2 and BH3 mimetics(9, 10). 

Apoptosis is important during many normal processes including immunity and B cell 

development. During passage through the germinal centre, centroblasts that have acquired 

crippling mutations during somatic hyper-mutation, or lack high affinity antibodies, are 

removed through apoptosis (11). 

Unlike autophagy, entry into apoptosis results in irreversible damage to the cell through the 

action of cysteine-aspartic acid proteases (caspases) and leads to cell death. Cells undergoing 

apoptosis show a series of morphological changes which are, in the most part, similar, 

regardless of cell type or apoptotic agent (12). In the early stages of apoptosis, cells shrink, 
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nuclear chromatin condenses and extracellular matrix attachments start to break down. Later, 

blebbing on the cell surface can be seen to occur and the condensed chromatin begins to 

disassemble. The entire cell, including organelles, condenses and splits into membrane bound 

vesicles known as ‘apoptotic bodies’. These keep cellular contents contained and limit the 

release of potentially harmful enzymes into the cellular matrix. Finally these apoptotic bodies 

are taken up by cells and are broken down through the lysosomal pathway (12). 

The vast majority of apoptotic signals act through two major pathways; the extrinsic, which 

receives extra-cellular signals, and the intrinsic, or mitochondrial, which acts in response to 

internal cell stress. Both of these pathways result in the activation of the caspase cascade and 

death of the cell through the activity of cysteine-aspartic acid proteases. 

 

1.2.1 Extrinsic apoptosis 

The extrinsic apoptosis pathway is initiated by the activation of a death receptor on the target 

cell by binding to a death ligand located on an opposing cell, or free and soluble in the 

extracellular matrix. These death receptors are members of the tumour necrosis factor 

receptor (TNFR) superfamily and bind to the family of tumour necrosis factor (TNF) ligands. 

These death ligands include TNF, FasL and TRAIL and are usually expressed by immune cells 

including macrophages, dendritic cells, T, NK and NKT cells (13). The death ligands interact with 

receptors which contain a conserved intracellular death domain of approximately 80 residues 

but which are otherwise diverse in structure. Six main death receptors are currently known: 

TNFR1 (CD120a), CD95 (Fas/APO-1), DR3 (APO-3, TRAMP, LARD, and WSL1), TRAIL-R1 (DR4), 

TRAIL-R2 (DR5) and DR6 (14). Ligand binding causes multimerization of the trimeric receptors 

and leads to recruitment of Fas-associated death domain protein (FADD) and formation of the 

death induced signalling complex (DISC) (see Figure 1.1).  

3 
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Fas is probably the most studied of the death receptors. Binding of FasL results in the 

formation of Fas trimers and the recruitment of the DISC to the FasR death domain (Figure 

1.1A). FADD is as universal accessory protein, facilitating interaction between receptors 

containing a death domain and cytoplasmic proteins. It is recruited to Fas through interactions 

between the Fas death domain and its own. The N-terminal death effector domain (DED) of 

FADD is unmasked by interaction with Fas allowing it to recruit pro-caspase 8, pro-caspase 10 

and FLICE inhibitory protein (c-FLIP) to the DISC. Other proteins including Daxx, FAP-1, FLASH, 

RIP and FAF-1 are also recruited to the DISC but their function here is largely unknown. Once in 

the DISC pro-caspases 8 and 10 self cleave into caspases 8 and 10.  These are released into the 

cytoplasm and caspase 8 goes on to cleave pro-caspases 3, 6 and 7 (reviewed in (14, 15)). 

Caspase 3 cleaves several substrates including structural proteins, DNA repair enzymes and 

endonuclease inhibitors. It can also induce other caspases, including 6 and 7, resulting in 

amplification of the apoptotic signal.  In cases where there is insufficient Caspase 8 to cleave 

downstream caspases, the cleavage of BID into pro-apoptotic t-BID by Caspase 8 might become 

a major pathway (16). T-BID then goes on to activate apoptosis through the mitochondrial 

pathway and induces release of cytochrome C which leads to cleavage of pro-Caspase 9. Hence 

both the intrinsic and extrinsic apoptotic pathways are linked (15, 16).  

With the exception of TNFR1, the other death receptors propagate the apoptotic signal in a 

similar manner to Fas, through the formation of the DISC. TNFR-1, when bound to its ligand, 

TNFα, mediates signalling involving the formation of two complexes (1 and 2) (Figure 1.1B). 

Complex 1 forms at the membrane and is composed of TNFR-1, TNF, TRADD (TNFR associated 

death domain), TRAF 1/2 (TNFR associated factor) and RIP.  This then signals through the NFκB 

pathway which paradoxically exerts an anti-apoptotic effect by preventing the cleavage of pro-

caspase 3 but also has a role in the regulation of the inflammatory response and immune 
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Figure 1.1: Extrinsic Apoptosis pathway. Only signalling through the Fas pathway and 
TNFR1 have been shown for simplicity although the other receptors function in a 
similar manner to Fas. (A) When activated by FasL the DISC complex forms at the Fas 
death domain (DD). In the case of Fas this contains FADD and RIP among other 
proteins. Interaction with Fas allows FADD to recruit pro-caspases 8 and 10 to the 
DISC. The pro-caspases then cleave and are released to propagate the apoptotic signal 
through cleavage of other pro-caspases or of BID which leads into the mitochondrial 
apoptosis pathway. (B) Activation of TNFR1 results in the formation of two complexes, 
1 and 2. Complex 1 acts on the NFκB and JNK pathways which modulate inflammation 
and the immune response. Components of complex 1 translocate to the cytoplasm and 
bind FADD and Pro-Caspase 8/10 to become complex 2 which leads to caspase 
cleavage. The ratio between expression of complex 1 and 2 is regulated by levels of 
FLIP which are raised by NFκB activation and inhibit complex 2 formation and pro-
caspase 8/10 cleavage. The levels of FLIP can also be lowered by activation of the JNK 
pathway which then promotes apoptosis. This figure is adapted from (14,15).  
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function through transcription factors NFκB and c-Jun. Complex 1 does not contain FADD or 

pro-caspase 8 but can translocate to the cytoplasm where it binds FADD and pro-caspase 8 to 

become complex 2 which goes on to activate pro-caspase 8 and initiate apoptosis (14). Levels 

of FLIP determine the ratio between anti-apoptotic complex 1 and pro-apoptotic complex 2. 

When complex 1 activates the NFκB pathway the levels of FLIP are elevated and act to inhibit 

the formation of complex 2 and apoptosis. If the receptor signalling does not reach the 

threshold required to activate the NFκB pathway then apoptosis is free to occur. TNFα ligation 

can also activate JNK signalling through a series of kinases. JNK acts to increase the degradation 

of FLIP through E3 ubiquitin ligase so promoting the formation of complex 2 and apoptosis (15, 

17, 18). 

 

1.2.2. Intrinsic apoptosis 

The intrinsic or mitochondrial pathway to apoptosis (reviewed in (19)), is initiated in response 

to internal stress and implemented through permeabilisation of the mitochondria. This 

mitochondrial step is regulated by BCL-2 family members, which can act to either induce or 

repress apoptosis (20).  

The intrinsic pathway can be induced in response to a number of cell stimuli including growth 

factor withdrawal, γ-irradiation and various cytotoxic drugs (21). The initiation of this pathway 

leads to loss of mitochondrial structural integrity and the release of pro-apoptotic factors such 

as cytochrome C through outer mitochondrial membrane permeabilisation. Cytochrome C 

promotes the activation of caspase proteases; specifically it interacts with a Caspase 9 

complex, to promote a cascade of initiator and effector caspases. Eventually exposure of 

phosphatydylserine is seen on the outer leaflet of the plasma membrane and, finally there is 

loss of the barrier function of the plasma membrane (12). 
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The intrinsic pathway is regulated by a series of pro- and anti-apoptotic proteins, all of which 

show some homology to BCL-2. These interact to up- or down-regulate apoptosis depending 

on their levels of activation. The anti-apoptotic proteins are localised to the cytoplasmic face 

of the mitochondrial membrane. They include BCL-2 and its close relatives BCLXL  and BCLW, 

and the less conserved MCL1, among others (21, 22). 

The pro-apoptotic proteins are split into two groups which greatly differ in their relatedness to 

BCL-2. The BH3-only proteins have only one BH domain and relatively little homology to BCL-2; 

at least 11 have so far been identified including: BID (BH3-intereacting-domain death agonist), 

BIM (BCL-2 interacting mediator of cell death), BAD (BCL-2 associated death promoter), PUMA 

(P53 upregulated mediator of apoptosis), NOXA and BIK (19). The BH3-only proteins act as 

sensors of cellular stress and pass on signals to the pro-apoptotic multi-domain proteins BAX 

and BAK (BCL-2 associated X protein and BCL-2 antagonist/killer protein) (23). BAX and BAK 

have a much greater homology to BCL-2. In response to apoptotic signals, BAX and BAK form 

homodimers, which regulate the permeability of the mitochondrial membrane. These 

complexes cause large pores to form in the mitochondrial membrane leading to the 

permeabilisation of the mitochondria, the release of cytochrome C and the propagation of the 

caspase cascade (19, 23). The BCL-2 proteins and their interactions will be discussed in more 

detail in section 1.3.  

 

1.2.3 The caspase cascade 

This process of cellular breakdown and dismantling of cellular components is initiated by the 

step-wise activation of caspases. They act to cleave certain cellular polypeptides, including 

some that perform 'housekeeping' roles or cellular repair. The cumulative effect of cleavage of 

downstream polypeptides is to disable repair of cellular components, stop the cell cycle, 
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inactivate anti-apoptotic proteins, encourage breakdown and disassembly of cellular 

structures and to mark the cell for engulfment and disposal (24).  

Caspases are initially found as inactive precursors: apoptotic signals cause them to become 

activated through cleavage at internal aspartic acid residues. This enables healthy cells to keep 

these potentially lethal proteins inactive but allows rapid activation of the caspase cascade 

upon the initiation of apoptosis (see Figure 1.2).  

Caspases are all similar in amino acid sequence and structure. They are composed of three 

domains; an N-terminal pro-domain and a large and small sub-unit (24). There are around 12 

human caspases identified which are split into two groups; initiators and effectors. Initiator 

caspases (caspases 2,8,9,10) initiate the caspase cascade after receiving a signal from the 

various apoptotic pathways. Initiator caspases have a long pro-domain which allows their 

recruitment to receptor complexes and scaffold proteins where they are activated. When 

active, they cleave and activate pro-forms of the effecter caspases (caspases 3,6,7) which are 

then able to cleave several hundred other proteins within the cell to trigger apoptosis (25, 26). 

These effecter caspases have short, or absent, pro-domains and, once activated, are thought 

to carry out the actual demolition of the cell with the help of other destructive enzymes which 

are themselves activated by the caspases. Over 400 proteins have been identified as 

substrates for caspases although only a few of these have been directly linked to markers of 

apoptosis (27). However, many appear to be involved in structural and housekeeping systems 

and hence their cleavage disrupts many vital cellular processes (26, 27).  

During apoptosis, release of cytochrome C leads to the formation of the mitochondrial 

apoptosome, a caspase activating complex in the cytoplasm built around Apaf1. In the 

absence of cytochrome C, Apaf1 exists as a monomer in the cytoplasm. In the presence of 

cytochrome C and ATP, Apaf1 is recruited into the apoptosome scaffold where several Apaf1 
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Figure 1.2: Activation of the caspase cascade through apoptotic pathways. The two 
main apoptotic pathways are shown (I) Extrinsic apoptosis pathway. Activation of  
Fas by Fas ligand causes pro-caspase 8 to be recruited to FADD and activated 
through close proximity with other caspases. Activated caspase 8  cleaves pro-
caspase 3 or BID depending on whether death receptor stimulation has resulted in 
high or low levels of caspase 8 respectively. (II) Intrinsic apoptosis. Apoptotic stimuli 
activate and up-regulate BH3-only proteins which interact with BCL-2 homologues 
and BAX/BAK to cause mitochondrial membrane pore formation. BID can be cleaved 
by caspase 8 to t-Bid which also helps to activate BAX and BAK and provides a link 
with the extrinsic pathway.  (III) Caspase cascade. Cytochrome C is released through 
pores in mitochondria and recruits Apaf1 and caspase 9 to the apoptosome. 
Caspase 9 is activated in the apoptosome  and activates caspase 3 and 7. Caspase 3 
activates downstream caspases to propagate the cascade which eventually leads to 
cleavage of housekeeping proteins and breakdown of the cell.  Adapted from (26) 

(III) Caspase cascade 
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proteins are brought into proximity with a similar number of caspase 9 dimers (28). The 

configuration of the apoptosome holds caspase 9 dimers closely together resulting in auto-

activation due to a low level of catalytic activity in the inactive caspases (29). Caspase 9 then 

activates caspases 3 and 7, caspase 3 goes on to activate caspases 2 and 6 and also activates 

more caspase 9 to continue the cascade (reviewed in (26)). Caspase 8, activated during the 

extrinsic apoptotic pathway (see section 1.2.1), can also directly activate caspase 3, or can 

work through BID to activate the caspase cascade through mitochondrial permeabilisation (16, 

30). 

 

1.3 BCL-2 and its role in apoptosis 

1.3.1 Discovery of BCL-2 

The mechanism of apoptosis is highly conserved between organisms. The first regulators of 

apoptosis were found in Caenorhabditis elegans (C. elegans), known as CED-3 and CED-4, and 

were found to be essential for cell death. A third gene, CED-9, was found to prevent this 

function (31). Pro-apoptotic CED-4 is bound to CED-9 but is released by apoptotic signals and 

the binding of EGL-1. When the activator CED-4 is released it binds to CED-3 to initiate cell 

death.  The first mammalian regulator, BCL-2, or B cell lymphoma 2, was later discovered, due 

to its activation through the (14;18) chromosomal translocation in follicular lymphoma (32-

34). This translocation moved the BCL-2 encoding gene from its normal position of 

chromosome 18 to chromosome 14 and under the control of the immunoglobulin 

transcription enhancer, leading to the over-expression of BCL-2 (33). It was found to enable 

the survival of otherwise cytokine dependent hematopoietic cells in the absence of cytokine 

(35).  
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BCL-2 was discovered to be a structural and functional homologue of CED-9, and is able to 

replace CED-9 in the apoptotic pathway of C. elegans  (36, 37). Unlike other oncogenes known 

at the time, BCL-2 inhibited cell death instead of promoting proliferation. It was found to co-

operate with c-myc to immortalise B cells, with c-myc driving proliferation and BCL-2 

preventing apoptosis (35). 

Other proteins in the C. elegans cell death pathway were later found to be homologues of 

mammalian pro-apoptotic BCL-2 homologues. EGL-1 has mammalian counterparts, the BH3 

only homologues: BIK, BID, BAD, BIM, NOXA and PUMA to name a few. CED-4 was also found 

to be a homologue of Apaf1 (mentioned above). In C. elegans. CED-4 and CED-9 interact 

directly, unlike the mammalian system in which Apaf1 is not sequestered by BCL-2. Once 

released CED-4 goes on to activate the caspase CED-3 (38).  

 

1.3.2 BCL-2 and mammalian pro-survival homologues 

BCL-2 is most highly expressed in foetal and rapidly dividing cells. It seems to be mainly 

involved in survival of immune cells and may act to prevent the death of antigen receptor 

selected B cells. It is important for the survival of mature B and T cells, with BCL-2-/- mice 

suffering from loss of B and T cells through apoptosis, and later complete breakdown of the 

immune system (39). BCL-2-/- mice die of polycystic kidney disease and are stunted and grey. 

This can be reversed by also knocking down BIM, illustrating how the pathway works through 

inhibitory interactions (40).  

The whole BCL-2 pathway takes the form of three different groups, consisting of both pro- and 

anti-apoptotic proteins (see Figure 1.3). All members of the BCL-2 family share homology to at 

least one BCL-2 homology, or BH, domain (22).  

9 
 



Figure 1.3: The three BCL-2 subfamilies. BH 1-4 domains determine the level of 
homology with BCL-2. The α helices (α1-9) which make up these domains are shown. 
BH 1-3 domains of anti-apoptotic BCL-2 proteins form a binding groove for the BH3 
domains of the pro-apoptotic ligands. The carboxy terminal transmembrane domains 
(TM) that target many BCL-2 proteins to intracellular membranes are also shown.  
Anti-apoptotic BCL-2 homologues usually contain at least three BH domains. The 
pro-apoptotic homologues are split in two groups. BAX and BAK are members of the 
multi-domain (or BAX) sub-family which contain three BH domains.  The BH3-only 
sub-family contain only the BH3 domain (ligand domain) which binds the binding 
groove of anti-apoptotic proteins.  Adapted from (22) 
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Most pro-survival members of the BCL-2 family possess at least two BCL-2 α-helical homology 

domains (usually BH1 and BH2) out of the four possible conserved motifs (BH1, BH2, BH3 and 

BH4). They may possess more BH domains depending on their similarity to BCL-2 (36). They 

also possess a C-terminal hydrophobic domain (36, 41) that targets them to intracellular 

membranes. These proteins are localised on the cytoplasmic face of intracellular membranes, 

mostly on the outer mitochondrial membrane but have also been found on the nuclear 

envelope and endoplasmic reticulum. Although the function of nuclear envelope localised 

BCL-2 is not known it has been suggested that BCL-2 present on the endoplasmic reticulum 

may have a role in controlling intracellular calcium levels, which are known to influence 

apoptosis (42, 43). 

The anti-apoptotic group members include 6 proteins but the most studied are BCL-2 and its 

close relatives BCLXL (B-cell lymphoma-extra large), BCLW (BCL-2L2; BCL-2-like protein 2), and 

MCL1, among others. BCL-2, BCLXL and BCLw have been shown to protect cells from a wide 

range of apoptotic stimuli including cytokine deprivation, chemotherapeutic drugs and 

irradiation with UV and γ radiation. Less conserved members of the anti-apoptotic BCL-2 

subfamily, such as MCL1 and A1 (bfl-1), also have a protective effect (22). Although MCL1 is 

able to protect from apoptotic stimuli by binding to BIM it is also easily degraded through 

ubiquitylation, accounting for its short half life when compared to other anti-apoptotic BCL-2 

homologues (44).   

The levels of homology to BCL-2 vary, with the amino acid sequence identities of BCLXL, BCLW 

and MCL1 being 43.8%, 36.5% and 22.5% respectively, but all cause resistance to apoptosis in 

vivo and in vitro (45). Anti-apoptotic proteins form a hydrophobic groove, made up of the BH1, 

2 and 3 domains, which can be bound by pro-apoptotic BCL-2 homologues. The pro-apoptotic 
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proteins expose their BH3 domains after activation and bind the anti-apoptotic proteins by 

inserting this BH3 domain into the hydrophobic groove (43, 46).  

The hydrophobic C domain of anti-apoptotic BCL-2 homologues BCLXL and BCLW occludes the 

binding domain and so must undergo a conformational change to enable binding to 

intracellular membranes (BAX employs a similar mechanism which is discussed later). This 

change may involve displacement of the C terminal domain by binding of BH3-only 

homologues, and enables relocation to intra-cellular membranes. The C terminal domain of 

BCL-2 may be more exposed, explaining why it is more often located on membranes than 

within the cytoplasm (22). 

The levels of anti-apoptotic proteins are heavily regulated both transcriptionally and by 

protein modification and turnover. The production and stability of MCL1 is regulated by 

cytokine levels (47). BCL-2 can be regulated by miRNAs miR-15a and miR-16-1 which directly 

interact with the 3’ UTR of BCL-2 mRNA (48). MiR-15a and miR-16-1 have been found to be 

mutated or down-regulated in the majority of CLL cases (49), as well as some diffuse large B 

cell lymphomas (50). This down-regulation has been shown to lead to an increase in the level 

of BCL-2 and cellular resistance to apoptosis (48). 

Cellular anti-apoptotic BCL-2 proteins may also be regulated post-translationally by apoptosis 

inducing caspases. Bellows and colleagues have found that caspase 3 cleaves BCL-2 proteins at 

Asp-34 and BCL-XL at Asp-61 and 76 to give an N terminally truncated protein that has lost its 

anti-apoptotic function. Mutation of this cleavage site between α helices 1 and 2 increases the 

anti-apoptotic effect of BCL-2. Furthermore cleavage often leads to the release of a pro-

apoptotic C terminal domain which can contribute to cell death by acting upon mitochondria, 

in order to accelerate the caspase cascade. In this way a caspase feed-back loop may form, in 

which caspases activated through routes other than the intrinsic pathway, are able to cleave 
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BCL-2 into a pro-apoptotic product which can then go on to activate more caspases and 

promote apoptosis (51-53). 

 

1.3.3. Pro-apoptotic BCL-2 homologues 

The pro-apoptotic BCL-2 homologues fall into two sub-families, differentiated by their number 

of BH3 domains (see Figure 1.3). The BH3-only sub-family are sensors of cellular stress and 

apoptotic signals, and include BIM, PUMA, NOXA and BID. The second sub-family are the multi-

domain pro-apoptotic homologues, which, when activated, form pores in the mitochondrial 

membrane to release cytochrome C and initiate the caspase cascade. Examples of these 

proteins include BAX and BAK.  

 

1.3.3.1 BH3-only BCL-2 homologues 

The BH3-only proteins have only the BH3 domain and relatively little homology to BCL-2. They 

include BIM, PUMA, BID, BIK, NOXA and BAD, as the most characterised, although at least 11 

have so far been found in mammals (54). The BH3-only proteins are structurally similar but 

each have their own specific pattern of binding (see Figure 1.4). BIM, PUMA and BID bind to all 

the anti-apoptotic BCL-2 homologues and are also the only known BH3-only proteins to 

interact directly with BAX and BAK (20, 55). The other BH3-only proteins do not bind to BAX or 

BAK but have varying abilities to bind the anti-apoptotic homologues (56). BAD is only known 

to be able to bind BCL-2, BCLW and BCLXL, and NOXA binds only to MCL1 and A1 anti-apoptotic 

proteins (57).  

BH3-only proteins respond to signals of cell stress. Different proteins are expressed in different 

cell types. They can be induced/activated by various signals. For example, PUMA and NOXA are 
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Figure 1.4: Binding specificities of the main BCL-2 homologues. The main 
BH3-only BCL-2 homologues have distinct binding specificities for the anti-
apoptotic BCL2 homologues. BIM, PUMA and t-BID bind BCL-2, BCLW, BCLXL, 
MCL1 and A1. BAD binds BCL-2, BCLW and BCLXL. Noxa bind only MCL1 and 
A1. The anti-apoptotic BCL-2 homologues also have specificities for the 
multi-domain proteins although there is some contention surrounding this. 
BCL2, BCLW, BCLXL, MCL1 and A1 most likely bind to BAX whereas only BCLXL 
and A1 bind BAK (20, 74, 359)  
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induced by the tumour suppressor p53 in response to DNA damage (58) and BIM is up-

regulated by transcription factors in response to endoplasmic reticulum stress and growth 

factor deprivation (57, 59). Along with BMF, BIM also appears to monitor the cytoskeleton and 

is sequestered to micro-tubules via dynein motor complexes (22, 60).   

Many of the BH3-only proteins are detectable at reasonably high levels in healthy cells and are 

regulated by post-translational mechanisms. BIM is targeted for ubiquitylation in healthy cells 

by ERK-mediated phosphorylation but is released from this by growth factor withdrawal (57). 

BAD is phosphorylated in healthy cells and held inactive by 14-3-3 scaffold proteins. Its 

activation requires dephosphorylation, at which point it is released to interact with anti-

apoptotic homologues (22). As discussed in 1.2.1 and 1.3.6, BID is cleaved to its active form t-

BID by caspase 8 in response to signals from the extrinsic apoptotic pathway.  

The tumour suppressor role of BH3-only BCL-2 homologues has been illustrated using mice 

with single or double knockouts of BH3-only homologues. These mice display resistance to cell 

death stimuli, including drugs used in chemotherapy, and accelerated tumour development 

(19, 61).  

 

1.3.3.2 Multi-domain pro-apoptotic BCL-2 homologues 

There are only three known pro-apoptotic multi-domain BCL-2 homologues; BAX, BAK and BOK. 

BOK is expressed everywhere but is found at the highest levels in reproductive and brain tissue 

(62), whereas BAX and BAK are more widely expressed. The presence of either BAX or BAK has 

been found to be essential for apoptosis in a range of cell types (43). The multi-domain 

homologues are similar to the anti-apoptotic homologues except for the absence of the BH4 

domain (see Figure 1.3). Originally it was the lack of BH4 which was thought to differentiate 

between pro and anti-apoptotic homologues with otherwise similar structures. However, it is 
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now thought that it is the degree to which BH3 domain is packed within the hydrophobic core 

that makes this distinction. Proteins like BAX, in which the BH3 domain is free to insert within 

the groove of anti-apoptotic homologues, are pro-apoptotic, and it has been shown that 

substituting the BH3 domain of BCL-2 for the BAX BH3 domain causes BCL-2 to become pro-

apoptotic (63).  

BAX and BAK are the most studied of the multi-domain homologues and have interesting 

structural differences which affect their sub-cellular localisation. The c-terminus of BAX, the 

area which contains the trans-membrane localisation sequence, folds in upon itself and is 

hidden within the BAX hydrophobic binding groove. Because of this, BAX is cystolic within 

healthy cells and remains a monomer due to the blockage of the binding groove (57). Under 

apoptotic stimuli BH3-only proteins may interact with BAX in a 'hit and run mechanism' (see 

Figure 1.5) which induces a conformational change in BAX leading to the release of the c-

terminus and BH3 domain, and translocation to the mitochondrial membrane (64). 

Alternatively, BAX and BAK may become active when relieved from the repression of anti-

apoptotic BCL-2 homologues by the activation of BH3-only BCL-2 homologues (65).  

BAK activation may be less complicated. BAK is permanently bound to the outer mitochondrial 

membrane and, in healthy cells, may be held inactive by interactions with anti-apoptotic 

homologues. During apoptosis, the anti-apoptotic proteins are displaced by pro-apoptotic BH3-

only homologues, and BAK is activated (see section 1.3.4). Alternatively, BAK may be activated 

by transient interactions with BH3-only proteins which are then displaced (64). Upon 

activation, the BH3 domain of BAK is exposed and occupies the BH3 binding groove of another 

activated BAK molecule. This forms a symmetrical dimer which interacts with other dimers, 

through the BH3 domains and grooves, to form homo-oligomers (see Figure 1.5) (65, 66). 
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Figure 1.5: Hit and Run method of BAX activation. (A) BAX activation is initiated 
by binding of a BH3-only protein.  This induces a conformational change which 
unfolds the C-terminus and BH3 domain. The BH3-only protein then dissociates 
from BAX which translocates to the mitochondrial membrane. (B) The C-terminal 
domain is inserted with the mitochondrial membrane and BAX or BAK dimerise 
with another BAX or BAK by inserting the BH3 domain into the adjacent binding 
groove on the other molecule. Homo-dimers then come together to form homo-
oligomers. (C) Anti-apoptotic proteins inhibit mitochondrial membrane 
permealisation (MOM) by sequestering BH3-only proteins or holding activated 
BAX/BAK inactive and preventing homo-dimer formation.  From (64) 
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Mitochondrial membrane permeabilisation represents the 'point of no return' in the cell death 

pathway. In healthy cells mitochondria are permeable to small molecules through specific 

channels. Once this permeability increases over a certain threshold, proteins such as 

cytochrome C are released into the cytoplasm. There are two main modes of mitochondrial 

membrane permeabilisation and BAX and BAK are thought to have a role in both. The first is 

permeabilisation through the permeability transition pore (PTP). The PTP regulates the 

exchange of metabolites between the mitochondria and cytosol in order to maintain the trans-

membrane potential needed for oxidative phosphorylation. The PTP opens transiently which 

results in a rapid rise in inner mitochondrial membrane permeability. This, in turn, results in an 

influx of water, due to osmosis, and swelling of the mitochondria. If left unchecked the swelling 

will eventually burst the outer membrane (19). BAX and BAK are thought to bind to members 

of the PTP complex, presumably to prevent closure of the pore, (67). A second mechanism by 

which BAX and BAK permeabilise the outer mitochondrial membrane is through oligomerising 

to form pores. It is not known how many oligomers of BAX or BAK are required for formation 

but there is evidence that a minimum of four BAX molecules were required for cytochrome C to 

pass through artificial membranes whereas complexes of at least eight were seen in dying cells 

(68). BCL-2 homologues have been found to have similarity to the translocation domain of 

diphtheria toxin, which forms a pore through which the killing domain of the toxin is 

translocated from the endosome to the cytosol (69). The pore structure formed by BAX, known 

as lipid pores or α-pores, are also similar to those formed by diphtheria toxin (64). It is not 

known precisely how BAX and BAK pores form but it is thought that conformational changes 

resulting from oligomerisation force pores to open, either through only the c-terminal trans-

membrane domains or through additional insertion of α-helices 5 and 9 across the membrane, 

with α-helix 6 lining the exposed surface (65, 70). 
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1.3.4 BCL-2 homologue interaction 

Until 10 years ago it was believed that apoptosis was determined by the balance between 

levels of pro-apoptotic multi-domain proteins and anti-apoptotic BCL-2 homologues. Increase 

in the levels of pro-apoptotic proteins in response to cell stress would cause the cell to die, 

whereas an increase in anti-apoptotic protein levels would halt apoptosis. This was known as 

the rheostat model. However, apoptosis can occur without changes in the levels of pro and 

anti-apoptotic proteins, so the rheostat model is likely to be an oversimplification. These 

findings indicated the presence of a third family of BCL-2 homologues, which can regulate the 

pro and anti-apoptotic proteins (19). 

This class of proteins was found to be the BH3-only homologues which respond to apoptotic 

stimuli. 

There have been multiple mechanisms that have been put forward to explain precisely the 

complex series of interactions that result in activation of BAX and BAK or act to keep them 

inoperative and several mutually non-exclusive models have been proposed.  

One model, the 'indirect activation model', suggests that BCL-2 anti-apoptotic proteins bind 

and sequester the multi-domain effecter proteins and prevent them from forming pores in the 

mitochondrial outer membrane. BH3-only proteins bind the anti-apoptotic proteins, occupying 

the BH3 binding groove and preventing binding of multi-domain proteins BAX and BAK. This 

theory states that the release of BAX and BAK from the binding of anti-apoptotic proteins is 

enough to enable them to initiate apoptosis (71). However, this does not take into account 

that inactive BAX is cytoplasmic, inert and exists as a monomer, away from the mitochondrial 

localisation of most of the anti-apoptotic homologues (72).  
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It has also been reported that some BH3-only proteins are also able to directly bind BAX and 

BAK (20) and so may have functions other than to sequester the BH3 binding pockets of the 

anti-apoptotic proteins. There is evidence that BAX and BAK are not held inactive by anti-

apoptotic proteins and that their activation requires binding of BH3-only homologues instead 

of release from anti-apoptotic proteins (73). These finding have led to the postulation of a new 

‘two-class’ model for regulation by BH3-only proteins.  

In the ‘two-class’ model, the BH3-only proteins are divided into ‘activators’ (BIM, PUMA and 

BID) and ‘sensitizers’ (BAD, NOXA, BIK and Bmf) (20). 

In unstressed cells, ‘activator’ BH3-only proteins may be bound and held inactive by the anti-

apoptotic proteins. When apoptotic stimuli occur the ‘activator’ proteins are released from the 

anti-apoptotic proteins due to displacement by ‘sensitizer’ proteins. The ‘activator’ BH3-only 

proteins are then able to go on to bind and directly activate multi-domain proteins BAX and 

BAK through binding to their BH3 domain (19, 56). 

This hierarchy of the binding ability BH3-only proteins is now broadly accepted although there 

is still some disagreement over whether BAX and BAK are activated directly (through binding 

by BH3-only proteins) or indirectly (through release of inhibition). Some studies have shown, in 

BIM/BID double knockout mice, that BH3-only activators are not essential for BAX and BAK 

mediated cell death (74). However, others have demonstrated that, not only is anti-apoptotic 

protein repression not enough to indirectly activate BAX and BAK, but that BH3-only 

homologues other than BIM, PUMA and BID may have a reduced ability to directly activate 

BAX/BAK (75).  

Supporters of the indirect mechanism point to the lack of evidence of complexes of BAX/BAK 

and BH3-only proteins such as t-BID and BIM. This could be explained by a 'hit and run' 

mechanism, where the initial insertion of a BH3-only protein into the BAX groove displaces the 
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trans-membrane domain, BAX may then undergo a conformational change to turn the BH3 

domain outwards. This could disrupt the binding to the BH3-only activator but leave the BH3 

domain free to form homo-dimers (see above and Figure 1.5) (65). BAX and BAK are also able 

to undergo auto-activation and, in small quantities, become spontaneously active or may be 

activated by other molecules such as p53 (76).  

As neither the direct nor indirect model completely explain the evidence surrounding the 

activation of BAX and BAK it is likely that elements of both models are correct (77). Dewson et 

al. have suggested a situation which goes some way to unifying the direct and indirect models 

(see Figure 1.6).  

In healthy cells the pool of activator BH3-only proteins and the spontaneously activated 

BAK/BAX are both held inactive by the binding of anti-apoptotic proteins. Apoptotic stimuli 

cause a rise in levels of BH3-only pro-apoptotics. Anti-apoptotic proteins are sequestered by 

'sensitiser' BH3-only proteins and the binding of 'activators' and activated BAX/BAK to anti-

apoptotics is displaced by 'sensitisers'. BAX/BAK are activated by 'activators' through a hit and 

run mechanism and can auto-activate other BAX/BAK molecules. Activated BAX/BAK form 

homodimers at the mitochondrial membrane which come together to form homo-oligomers 

and eventually pores. Mitochondrial permeabilisation occurs and is followed by cell death (65).  

 

1.3.5 BH3 mimetics 

A number of BH3 mimetics are being trialled as potential inhibitors of anti-apoptotic BCL-2 

homologues. Many cancers show increased expression of anti-apoptotic homologues. The BH3 

domains of BH3-only homologues or small synthetic peptides are being screened for their 

affinity to anti-apoptotic homologues and their ability to abrogate BCL-2 function (78). The 

most promising of these is ABT-737, although it is ineffective against over-expression of MCL1 
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Figure 1.6: Combined model for BAX and BAK activation. In healthy cells anti-
apoptotic proteins sequester the ‘activator’ BH3-only proteins. (i) Any spontaneously 
activated BAX or BAK is bound and kept inactive by anti-apoptotics. Apoptotic stimuli 
activate and up-regulate BH3-only homologues, both activators (BIM, PUMA and 
BID) and sensitisers (BAD, NOXA, BIK and BMF). ‘Activators’ bound to anti-apoptotic 
proteins are displaced by ‘sensitisers’ and become free to activate BAX/BAK by the 
hit and run mechanism (ii). (iii) Activated BAX/BAK can perform auto-activation to 
quickly increase the pool of active molecules. Upon activation BAX translocates to 
the mitochondrial membrane. At the mitochondrial membrane activated BAX/BAK 
bind to form homodimers. Foci of activated BAX/BAK form and dimers join to give 
homo-oligomers which eventually aggregate to form pores. Pore formation leads to 
mitochondrial membrane permeabilisation and cell death. Adapted from (65) 
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and does not affect the function of the viral BCL-2 homologues BHRF1 (see section 1.4.1). Many 

cancers can be said to be addicted to over-expression of anti-apoptotic BCL-2 homologues, as 

these are required to sequester the BH3-only homologues activated by apoptotic signals such 

as myc deregulation. Mimetics such as ABT-737 have the ability to displace pro-apoptotics, 

such as BIM, from BCL-2's binding pocket, leaving them free to activate BAX and BAK. In this 

way cancer cells could be said to be primed for death and become very sensitive to apoptotic 

stimuli once the protection of BCL-2 has been removed. For this reason BH3 mimetics are 

unlikely to have as dramatic an effect on normal cells and so may be a good addition to cancer 

therapies (79).    

 

1.3.6 Overlap of extrinsic and intrinsic apoptosis pathways 

Although intrinsic and extrinsic apoptosis appear to occur through separate pathways and are 

initiated by different stimuli, there is a degree of connection between the two. There is 

evidence that over-expression of BCL-2, BCLXL or MCL1 can inhibit TRAIL induced apoptosis 

(80), as can the loss of BAX and BAK expression (81, 82).  Activation of caspase 3 by caspase 8, 

and the propagation of the caspase cascade, depends on the levels of caspase 8 activated by 

extrinsic apoptotic signals. If activated caspase 8 levels are insufficient not enough caspase 3 

will be activated to reach the threshold required for downstream caspase activation. In this 

case cleavage of the BH3-only protein, BID into t-BID may be favoured (16, 30). T-BID then 

goes on to interact with other BCL-2 homologues in the intrinsic apoptotic pathway to induce 

the caspase cascade through mitochondrial membrane permeabilisation and the release of 

cytochrome C. The intrinsic pathway is dependent on the levels of anti-apoptotic BCL-2, 

interaction through BID provides a way in which extrinsic cell death can be controlled by BCL-2 

levels. In certain cell types, e.g. hepatocytes, the levels of caspase 8 are never high enough to 
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cleave sufficient caspase 3 and so activation of the cascade always occurs through the 

formation of the apoptosome. This means that in hepatocytes, all receptor mediated cell death 

is sensitive to BCL-2 levels (83).  

 

1.3.7 Viral BCL-2 homologues 

It is advantageous for viruses to be able to control the apoptotic machinery of the host cell. It 

is important for the virus life cycle to prevent apoptosis that may occur upon infection and 

during viral replication.  

Virus may modulate the apoptotic response through encoding anti-apoptotic viral BCL-2 

homologues. BCL-2 homologues encoded by α and γ herpes virus share a homology of around 

20-30% with each other as well as with cellular BCL-2. They all contain a BH1 domain and most 

contain BH2, with both BH1 and BH2 being essential for the binding of the BH3 domain of BH3-

only proteins and the repression of apoptosis by BCL-2 homologues. The BH3 domain, which 

has a role in the pro-apoptotic functions of BCL-2, is not conserved in the viral homologues 

and, similarly to the cellular BCL-2 homologues, there is no conservation in the BH4 domain 

which may not have a functional role in protein-protein interactions (84).  

The adenovirus E1B 19k gene was the first gene identified that suggested that viruses were 

able to modulate apoptosis to control the outcome of viral infection. Comparison of E1B 19K 

and the BCL-2 gene found that, although the sequence homology to BCL-2 is weak, E1B 19K 

contains conserved BH domains similar to those of BCL-2 (85). Since then, E1B 19K has been 

shown to interact with members of the BCL-2 family (86). Through binding to BAX, E1B 19K can 

block BAX induced apoptosis, and can functionally substitute for BCL-2 during virus infection 

and oncogenic transformation (86, 87).  
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The Fowlpox virus (FVP), the only true poxvirus known to express a BCL-2 homologue, encodes 

a protein similar to cellular MCL1 (88). However, Poxviruses contain several non-BCL-2 anti-

apoptotic proteins such as FLICE-inhibitory proteins (vFLIPs) and caspase inhibitory serpins, 

and so may not require an extensive array of viral BCL-2 homologues. Poxvirus-like African 

swine fever virus (ASFV) encodes A179L, a BCL-2 homologue which can protect from apoptosis 

in both mammalian and Sf9 insect cells through interactions with BAX, BAK, BID and NOXA 

(89). 

There are also many members of the Herpesvirus family which contain structural or functional 

viral BCL-2 homologues. Herpesviruses contain many examples of host-acquired genes which 

drive cell cycle progression and proliferation, often activate the cellular apoptotic machinery 

and so viruses will tend to also encode anti-apoptotic genes to counteract this effect (88). 

Human Cytomegalovirus, or CMV, encodes several proteins that can interfere with apoptosis in 

order to favour proliferation. Viral mitochondria-localised inhibitor of apoptosis, or vMIA, is 

probably the best characterised and has been shown to prevent apoptosis in response to 

death receptor stimulation and cytotoxic agents, although it has very little structural or 

sequence similarity to BCL-2 (90). It is located on the mitochondria and can physically bind 

solely with BAX through electrostatic interactions through the region between the BH2 and 

BH3 domains of BAX. vMIA is able to recruit BAX to the mitochondria where it is neutralised, 

however, it is not able to do the same with BAK (91).  

Members of the Herpesvirus family are separated into alpha, beta and gamma sub-families 

dependant on location of lytic infection, host range and reproductive cycle and growth rate. 

Gamma herpesviruses are the only herpesviruses shown to be associated with cancers so it is 

very interesting that these may encode viral versions of BCL-2. Anti-apoptotic BCL-2 

homologues encoded by the gamma herpesviruses include M11 which is encoded by murine γ-
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HV68 and can protect against a variety of apoptotic stimuli including Tumour Necrosis Factor α 

(TNFα) treatment but, unlike cellular BCL-2, is mainly located in the cytoplasm (92). It has been 

shown to be active during the lytic and latent state of γ-HV68 but knockdown only shows a 

significant effect during the reactivation of the virus from the latent to lytic cycles (93-95). 

Kaposi’s sarcoma associated Herpesvirus (KSHV) is the causative agent of Kaposi’s sarcoma, a 

cancer of the lymphatic endothelium. The KSHV BCL-2 homologue, KSBCL-2, is expressed early 

in lytic cycle and has homology to cellular BCL-2 in the BH1 and BH2 domains (84). It is not 

known if KSBCL-2 maintains the cells during the lytic replication of the virus or if, like M11 of 

murine γ-HV68, it is involved in viral reactivation from latent to lytic cycle (95). 

Like many other herpesviruses, the Epstein Barr virus (EBV) has acquired the ability to avoid 

apoptosis by influencing the intrinsic apoptosis pathway using viral proteins that either 

interact with, or have homology to BCL-2. Unlike other γ herpes viruses, which only encode 

one BCL-2 homologue, EBV encodes two; BHRF1 and BALF1 (see sections 1.4.1 and 1.4.2). Both 

these proteins may be able to protect against apoptosis, although there is contention as to the 

role of BALF1 (41, 96). 

 

1.4 EBV viral BCL-2 homologues and apoptosis 

1.4.1 BHRF1 

Of the two viral BCL-2 homologue encoded by EBV, BHRF1 is the best characterised and has 

been shown to be potently anti-apoptotic (97). In  EBV infected lymphocytes, it is expressed as 

an immediate early lytic cycle gene from its own lytic promoter. Protein and mRNA can be 

detected in the first 24 hours after EBV infection (98).  
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One of the only lesions in which BHRF1 is highly expressed in vivo is oral hairy leukoplakia. This 

is a lesion of tongue mucosa mainly observed in immuno-suppressed patients, in which EBV is 

constantly in lytic cycle, with very few latent gene products detectable (99, 100).  

Interestingly, it has recently been found that, in certain situations, BHRF1 can also be 

expressed in latency due to a deletion of EBNA2 and the restricted transcription from the Wp 

promoter. This leads to expression of EBNAs 1, 3A, 3B, 3C, and a truncated form of EBNA-LP. 

The deletion also places a copy of the Wp promoter immediately upstream of BHRF1 (see 

section 1.9.1). It has also been shown that BHRF1 is present at low levels in totally latent 

populations of LCLs (101, 102). Wp continues to constitutively express at low levels even in 

LCLs in which the Cp promoter has been activated. If BHRF1 can also be driven by the Wp 

promoter then it explains the low level of expression in LCLs, as well as the peak in expression 

shortly after infection, (when expression is mainly from Wp), and the tail off in BHRF1 

expression, as Cp becomes active.   

 

1.4.1.1 BHRF1 protein structure and folding 

The BHRF1 protein contains two central hydrophobic helices, α5 and partially buried α6, 

surrounded by amphipathic α helices, α1, 2, 3, 4 and 7. BHRF1 also contains a C  terminal 

hydrophobic domain which localises it to intra-cellular membranes, mainly the outer 

mitochondrial membrane, similarly to BCL-2 (Figure 1.7A) (103). 

The first α helix corresponds to the BH4 region of BCLXL and, like other anti-apoptotic BCL-2 

homologues, is not well conserved, leading to the conclusion that the BH4 domain is not 

essential for BCL-2 homologue function (46). 
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Figure 1.7: The various domains of BHRF1: (A) an alignment of BHRF1 against 
cellular BCL-2 with BH domains and α helices highlighted to show the regions of 
homology. (B) Structure of (I) BHRF1, (II) BCLXL and (III) KSBCL-2. The hydrophobic 
BH3 binding groove formed by BH1 (α3 and α4) is highlighted in red. The binding 
groove is in a different position and binding is more restricted in BHRF1 than in 
BCLXL and KSBCL-2. Taken from (46) 
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The helices α3 and α4 make up the BH1 domain, which forms the hydrophobic groove, 

essential for binding to the BH3 domains of pro-apoptotic BH3 only and multi-domain proteins 

(104).  

BHRF1 has around 38% sequence homology to BCL-2; however, the extent of its structural 

homology to BCL-2 and BCL-2 homologues is much greater. Both viral and cellular anti-

apoptotic BCL-2 homologues tend to share the same number of α helices, all of similar lengths 

and folded in the same overall structure (Figure 1.7B). However, there are some important 

differences between the viral and cellular BCL-2s (46).  

The hydrophobic groove, essential for the binding of BH3 domains, is shorter and less exposed 

in BHRF1 compared to cellular BCL-2, due to the positions of α3 and α4 (46). In order to bind 

the BH3 domains of cellular proteins, the binding domain undergoes a significant structural 

change at α helices 3 and 4, to widen the groove and allow entry of the BH3 domain (104). 

The loop connecting the α1 and α2 helices in BHRF1 is much shorter, and less conserved, than 

that of BCL-2. In cellular BCL-2 this loop may contains a caspase cleavage site which could 

enable BCL-2 to be cleaved by caspase 3 to release a pro-apoptotic C terminal fragment. In 

contrast, BHRF1, in common with most herpesvirus BCL-2 homologues have been shown to be 

constitutively anti-apoptotic (52) (Figure 1.7A). By this method EBV is able to avoid the cellular 

mechanisms of regulation and constitutively represses apoptosis (105). 

 

1.4.1.2 BHRF1 and protection from apoptotic stimuli 

BHRF1 can protect for a multitude of apoptotic stimuli including DNA damage, growth factor 

withdrawal and viral infection (106, 107). BHRF1 also functions downstream of BID to protect 

from extrinsic stimuli such as TRAIL and FAS induced apoptosis (107, 108). BHRF1 was first 

shown to protect against serum depletion and ionomycin (97). BHRF1 was later shown to 
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protect against apoptosis induced by gamma radiation and common chemotherapeutic drugs, 

including etoposide, doxorubicin, AraC and staurosporin, indicating it as a possible cause of 

chemotherapy resistance in EBV positive malignancy (104, 106). BHRF1 has also been shown to 

protect form apoptosis in vivo. Eµ-myc mice, representative of BL, become resistant to AraC, 

etoposide and cyclophosphamide treatment when inoculated with tumour cells 

overexpressing BHRF1 (104).  

 

1.4.1.3 BHRF1’s interaction with BCL-2 homologues 

There is still much to be discovered about the hetero-dimerisation of viral BCL-2 homologues 

with cellular BCL-2 family proteins, as the hetero-dimerisation of cellular BCL-2 with its pro-

apoptotic homologues is also not totally understood. It is thought that BHRF1 is able to directly 

interact with BAK, BIM, BID and PUMA (84) and may also bind BIK/Nbk and Nip3, members of 

the BH3 only sub-family (105). 

 It is not clear which of BHRF1’s interactions are critical for the inhibition of cell death. One 

hypothesis, which has its limitations, is that BHRF1 may bind to a subset of BIM to repress 

activation of the multi-domain pro-death proteins (109). Previously it was thought that BHRF1 

sequesters all free BIM to prevent it binding to BAK/BAX. However, even under cell stress 

there is still free BIM available in BHRF1 expressing cells. Apoptotic signals may induce a subset 

of BIM to undergo a conformational change in order to activate BAK/BAX, and it could be this 

subset that BHRF1 sequesters to prevent apoptosis. Alternatively, as postulated by Desbien et 

al, BHRF1 could bind a small amount of BIM and cause it to permanently undergo a 

conformational change before releasing it (109). These kind of catalytic interactions have been 

seen with other BCL-2 homologues, such as the hit and run activation of BAX and BAK (65). 

However, Desbien et al. only looked at the binding of BHRF1 to BIM, BAK and BAX, and did not 
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include any other BH3-only BCL-2 homologues (109), despite BHRF1 being shown to also bind 

the BH3 domains of BID and PUMA (84). BHRF1 can protect BIM negative cell lines (110), 

showing that Interaction with BIM cannot be the only mode of BHRF1 protection. These BH3-

BHRF1 interactions need further investigation, understanding how BHRF1 interacts with 

cellular BCL-2 proteins could aid our understanding of the role of EBV in cancer.   

 

1.4.2 BALF1 

Marshall et al. 1999 predicted that the BALF ORF also encodes another viral BCL-2 homologue. 

BALF1 is unusual for the fact that EBV is the only known Herpes virus to contain a second BCL-2 

homologue. It has been suggested that BALF1 may compensate for EBV’s lack of v-FLICE 

inhibitory proteins found in other Herpes viruses (96). Marshall et al. originally showed that 

BALF1 was able to protect cells against apoptosis induced by treatment with anti-Fas, IFN-γ, 

cyclohexamide and tumour necrosis factor α (96). However, Bellows et al. 2002 were later 

unable to show an anti-apoptotic effect for BALF1 in response to sindibis virus induced 

apoptosis and over-expression of BAX (41). Contrary to the findings of Marshall et al. 1999 

they actually found that BALF1 was able to inhibit the function of BHRF1. It was reported that 

BALF1 was able to restore the cell death induced by over-expression of BAX that was otherwise 

repressed by BHRF1, although it did not actually enhance the killing ability of BAX (41). BALF1 

was also able to act on KSBCL-2 but was not able to inhibit the function of cellular BCLXL (41). 

BALF1 has 20% homology to BCLXL and contains the BH1 to BH4 homology domains, although, 

like other vBCL-2s, the BH3 domain is less well conserved. BALF1 actually has a greater 

similarity to cellular BCL-2 and BCLXL than does BHRF1 (96).  

Unlike BHRF1, the BH4 domain of BALF1, a domain with little known function not well 

conserved in vBCL-2s, has a high degree of similarity to that of BCL-2 BH4. BALF1 also lacks a C 
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terminal fragment capable of insertion into membranes and so would be mainly cystolic and 

has been shown not to co-localise with BHRF1 (41). Finally, the BH1 domain glycine, essential 

for anti-apoptotic function in most BCL-2 homologues has been mutated to a serine (96).  

BALF1 is translated from a conserved internal methionine within the BALF gene. The first in 

frame methionine at the beginning of the gene is less well conserved and, in EBV, encodes 

what is known as BALF0 (Figure 1.8) (41). BALF0 has many of the same properties as BALF1, it 

has lost the ability to become pro-apoptotic through caspase cleavage and is able to restore 

cell death repressed by BHRF1. When attempting to separate the roles of BALF1 and BALF0 in 

the abrogation of BHRF1 function in response to serum withdrawal and epotoside, M. Lee and 

S. Hope were unable to determine any difference in function (111). They theorised that an 

anti-apoptotic effect of BALF0 could explain the differing results seen by Marshall et al. 1999 

and Bellows et al. 2002 but found that transfection of epithelial and B cells with plasmids 

expressing either BALF1 or BALF0 caused a loss of viability and increased the number of cells 

undergoing differentiation (111). 

Similarly to BHRF1, the BALF1 gene is also located downstream of a latent promoter and BALF1 

and BALF0 may be expressed during latency, as well as being expressed as an early antigen 

during lytic replication (112).  

It has been suggested that BALF1 is able to interact with BHRF1 in the same manner as a 

cellular BH3 only protein. Bellows et al. showed that BHRF1 co-immunoprecipitated with 

BALF1 but not BALF0, although this result could have been a result of detergents used in the 

preparation of cell lysates and may not occur in vivo. To check this result they looked cellular 

co-localisation of BHRF1 and BALF1 but found that BHRF1 is localised on mitochondrial outer 

membranes whereas BALF1 and BALF0 are localised in the cytoplasm and do not change 

localisation in response to death stimuli (41). Therefore, BALF1 may inhibit the function of 
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Figure 1.8: The open reading frames of BALF1 and BALF0: (A) diagram of 
genome region containing BALF1, boxes indicate the open reading 
frames. (B) diagram in reverse orientation showing BALF1 and BALF0 
transcripts and sizes as well as. Taken from (41) 
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BHRF1 through an indirect mechanism as they have not been found to co-localise in cells and 

co-immunoprecipitation experiments do not show a direct interaction (105). Any regulation of 

BHRF1 function by BALF1 may occur by competition for the same downstream factors, or 

through transient interactions that could bring about alterations to the BHRF1 protein (41, 

105). 

 

1.5 Classification of Epstein-Barr virus 

1.5.1 Scientific Classification 

EBV, officially known as Human Herpes virus 4 (HHV4), belongs to the Herpesviridae family 

within the order Herpesvirales. Herpes viruses are distinct viruses with linear double stranded 

DNA genomes.  

The Herpesviridae family is comprised of primate herpesviruses, eight of which are associated 

with Humans; Herpes simplex virus types 1 and 2, Varicella Zoster, EBV, Human 

cytomegalovirus, Human herpesviruses 6 and 7 and Kaposi’s sarcoma associated herpesvirus. 

EBV is classified as a gamma-herpesvirus. It belongs to the lymphocryptovirus genera, which 

are predominately B cell lymphotrophic, and is the only Human herpesvirus of this genus (113). 

 

1.5.2 The discovery of Epstein-Barr Virus (EBV) 

The characterisation of Burkitt lymphoma (BL) in 1958, by the surgeon Denis Burkitt, was the 

initial step leading to the discovery of the Epstein Barr virus (EBV) (114). His observations led 

him to speculate that the cancer could be the result of an infectious agent, opening up the 

possibility of a viral role in BL development  (115, 116). In 1964 Epstein, Anchong and Barr 

established cell lines from Burkitt lymphoma biopsies and used electron microscopy to show 

28 
 



  Chapter 1 

the presence of herpesvirus-like particles (117). Through collaboration with Walter and 

Gertrude Henle in Philadelphia EBV was officially classified as a new herpesvirus in 1965 (118). 

As research into EBV progressed it was discovered that the virus asymptotically infects 90% of 

the world’s adult population (119).  

In otherwise healthy populations, Walter and Gertrude Henle identified EBV as the causative 

agent of infectious mononucleosis (IM), a clinical manifestation of primary EBV infection in 

adulthood (120). EBV was established as the first virus to cause human cancer after its 

oncogenic properties were demonstrated in vitro and in vivo through the transformation of 

peripheral blood B cells and the formation of tumours in immuno-suppressed primates 

infected with cell free virus (121, 122). Since this time EBV has been identified as a factor in 

many malignancies other than BL.  

 

1.6 Patterns of EBV gene expression in vitro and in vivo 

The EBV genome consists of ~175 kilobase pairs of double-stranded DNA (123), and includes 

~100 open reading frames (124, 125). The vast majority of EBV genes are dedicated to lytic 

infection (124). The virus primarily infects B cells (126-130), though evidence from EBV 

associated malignancies also supports its ability to infect epithelial (131), natural killer (NK) 

(132) and T cells (133). The EBV viral life cycle involves both lytic and a latent stages, both of 

which are supported by B cells (134).  

Lytic infection may occur in tonsillar B cells during viral reactivation or primary infection (135-

138). Broadly speaking, lytic genes can be divided into immediate early, early and late genes 

(124, 125). Immediate early genes include viral transactivators responsible for activating lytic 

infection (BZLF1 and BRLF1) (139, 140), early genes are primarily involved in genome 
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replication e.g. the viral polymerase BALF5 (141-143), while late genes mainly encode 

structural proteins needed to assemble the virus particle (141-143).    

EBV latent genes comprise 6 nuclear antigens (EBNA-LP, EBNA1, EBNA2, EBNA3A, EBNA3B and 

EBNA 3C) (144-147), 3 membrane proteins (LMP1, LMP2A, LMP2B), the BCL-2 homologue 

BHRF1 (101), and a collection of non-coding RNAs (EBERs and BARTs) (148) and viral miRNAs 

(149). EBV is capable of several different types of latent infection, which are classified 

according to the exact latent genes expressed (Figure 1.9) (reviewed in (150)). Following 

primary EBV infection in vivo, the virus establishes a persistent latent infection in memory B 

cells termed Latency 0; in this context, only non-coding RNAs (151, 152) and selected viral 

miRNAs are expressed (153). 

By contrast, expression of all EBV latent genes is termed Latency III (154). Specifically, the six 

EBNA proteins and BHRF1 are transcribed from the C and W promoters (155), while the LMPs 

and non-coding RNAs are transcribed from their own respective promoters (154). This 

particular type of latency is interchangeably referred to as the growth transforming program 

(154), because infecting B cells in vitro results in uncontrolled proliferation and, potentially, the 

generation of immortal cell lines termed lymphoblastoid cell lines (LCLs) (121, 156). A Latency 

III pattern of gene expression has been observed in IM tonsils, supporting the involvement of 

EBV latent genes during primary infection in vivo (157); most of these genes are not expressed 

during long term viral persistence, however, as a result of pressure from the host immune 

system (158). Latency III transcripts are also observed in B cells during post-transplant 

lymphoproliferative disorder (159-161) and AIDS-lymphoma (162-166), consistent with EBV 

proliferation in the absence of the host immune system.  

The Latency II pattern of gene expression is more restricted than Latency III, but more 

expansive than Latency 0. The C and W promoters are inactive though EBNA1 is expressed, 
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Figure 1.9: The three forms of EBV latent antigen expression in B cells: In latency I a 
single EBNA1 antigen is expressed from the Qp promoter, with the only other 
expression being of the BARTs and EBERs. B cells transformed into LCLs in vitro have a 
less restricted form of expression and express all EBNA antigens from the C promoters 
as well as the LMPs, BARTs and EBERs. A low level of expression from the W promoter is 
also present in LCLs. In Wp restricted latency the EBNA2 gene is deleted with the whole 
BamH1 and Y1 and Y2 fragment of the c-terminus of EBNA-LP. EBNA2 is not able to 
activate the C promoter leading to constitutive expression from Wp. LMP promoter 
activation by EBNA2 also does not occur.  This gives a less restricted form of expression 
than in latency I BL, with EBNA1, the EBNA3s, a truncated form of EBNA-LP (tr-EBNA-LP) 
and the BARTs and EBERs expressed. Adapted from (101 and 150) 
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albeit from downstream promoter Q (167), while the LMPs and non-coding RNAs are again 

expressed from their own promoters (167-171). This particular form of gene expression is 

characteristic of Reed Sternberg cells in Hodgkin lymphoma (HL) and epithelial cells of 

nasopharyngeal carcinoma (NPC) (172-174), and may play a role during primary infection in 

vivo as supported by the detection of Latency II gene expression in IM tonsil germinal centre B 

cells (175). 

Finally, the Latency I program involves the expression of EBNA1 is from promoter Q and the 

non-coding RNAs from their respective promoters (167, 176). The detection of Latency I 

expression in replicating B cells in the blood of IM patients supports an involvement of this 

latency program in persistence in vivo (177).  Latency I was first characterized in Burkitt 

lymphoma (BL); a subset of apoptosis resistant BL, termed W-promoter-restricted BL (Wp BL), 

expresses a truncated form of EBNA-LP (t-EBNALP), EBNA1, EBNA3A, -3B, -3C and BHRF1, all 

from Wp (101, 178, 179). The contribution of these additional gene products to apoptosis 

restriction are discussed elsewhere (see section 1.9.1).  

 

1.7 EBV infection and persistence in vivo 

In vivo primary infection with EBV usually occurs at an early age and is asymptotic (180). 

However, infection during adolescence or later can result in a self-limiting lymphoproliferative 

disease known as infectious mononucleosis or IM (181). EBV is spread through salivary contact 

and enters through the lymphoepithelium that lines the oropharynx (182). It is unclear as to 

whether it is oropharangeal epithelial cells or B lymphocytes which are initially infected. 

Evidence points towards an initial infection of B cells followed by virus amplification, infection 

of epithelial cells and shedding of infectious virus into the saliva (183-185). Evidence for B cells 

being the site of EBV persistence comes from X-linked agammaglobulinemia (XLA) patients who 
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lack mature B cells and who show no detectable EBV DNA in either blood or throat washings, 

which should be present with even a low level of epithelial infection (186). However, evidence 

of lytic replication has been observed in tongue epithelium of immune-compromised Aids 

patients (99) and occasionally in immune-competent carriers (187), indicating that infection of 

epithelial cells does have a role in primary infection.  

EBV initially establishes a lytic infection within the oropharynx and a latent infection in 

circulating peripheral B cells. Virus replication within the oropharynx and the proliferation and 

expansion of the B cell pool results in a strong cytotoxic T lymphocyte (CTL) response, 

predominantly against lytic antigens, which is responsible for the symptoms of IM. The 

production of large numbers of CD8+ CTLs leads to hyper-activation of the immune system 

(188, 189); however, this fails to completely clear the infection, and EBV remains detectable in 

throat washings and in a latent form within the B cell pool (122). 

As well as virus replication within the oropharynx IM patients also show infection of the B cell 

pool circulating within the blood stream, typically one in 104 cells (190, 191). It has been shown 

that infection of the B cell system is underway long before any symptoms of IM become 

apparent (192). After amplification of cytotoxic EBV specific T cells has taken place there 

remain some EBV infected B cells which have evaded the immune response and a balance is 

reached with typically 1 in 105-106 peripheral B cells infected (193). 

The targets of EBV are primarily resting naïve B cells, which it then drives to become 

proliferating lymphoblasts (194). The drive towards proliferation by EBV mirrors that which 

occurs through antigen activation (152). Infected tonsillar B cells differ in both morphology and 

antigen expression (195, 196). Most are proliferating LCL-like cells with a latency III pattern of 

expression. However, there are other subsets, which express EBNA2 without LMP1 or have a 
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latency II Hodgkin’s Disease like morphology, known as the default programme, and express 

LMPs without detectable EBNA2 (197). 

Long term, EBV persists in a very restricted form of latency, latency 0, within the memory B cell 

pool (151). Although the mechanism of entry into the memory B cell pool is controversial, the 

widely-accepted germinal centre (GC) model predicts that infection of naive B cells mirrors 

their activation by antigen and drives them towards proliferation (152). Naive B cells are 

activated by antigen stimulation, although, in the case of infection, this activation occurs as a 

result of the growth transforming programme and the Lat III pattern viral gene expression 

(198). Infected B cells are driven to the follicle where formation of the germinal centre occurs 

and viral gene expression is down-regulated to a Lat II Hodgkin-like programme, referred to as 

the default pattern. LMP1 and 2 mimic CD40 ligand binding and activation of the B cell receptor 

(BCR), respectively, to constitutively feed the B cell signals that encourage survival within the 

germinal centre and formation of memory B cells (199). In memory B cells latent gene 

expression is down modulated to latency 0, or ‘the latency programme’, where only EBERs and 

BARTs are expressed (152). 

Another model to explain how EBV establishes itself in memory B cells is that of the direct 

infection of memory B cells without going through the GC (196, 197). X-linked 

lymphoproliferative (XLP) patients, who cannot form germinal centres, still harbour latent EBV, 

indicating that EBV can persist without going through a GC reaction (200). Latent EBV can be 

found in IM patients, within B cell subsets which arise independently of the GC. These include 

non-isotype switched memory B cells (201, 202) and tonsilar B cells, which localise to extra 

follicular sites as opposed to the GC (134, 197). IM derived tonsilar B cells do not express two 

of the GC markers (CD10 and CD77) but express a third (CD38) as a consequence of growth 

activation (201). 
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EBV can reactivate from latently infected memory B cells in vivo and produce plasma cells 

which localise to mucosal surfaces such as the oropharynx (203). A limited number of these 

then reactivate the lytic programme to release virus into the tonsils. Infected epithelial cells 

may play a role in amplifying the amount of virus in the saliva and infection of new B cells 

serves to replenish the reservoir of infected cells (183). 

 

1.8 Apoptosis modulation by EBV 

1.8.1 Apoptosis modulation by lytic cycle antigens 

In latently infected cells, BZLF1, along with BRLF1, is a key regulator of the switch from latent 

to lytic cycle. BZLF1 recognises, and binds to, CpG methylated promoters (204). Upon infection 

EBV immediately establishes a latency in order to restrict antigen expression and avoid the 

host immune response. As the latent phase continues, promoters are slowly methylated and 

are eventually activated by BZLF1 which drives the entry into lytic cycle and productive 

infection (205). To escape the host response that comes with activation of the lytic phase 

BZLF1 has the ability to down-regulate CD74, the invariant chain involved in the translocation 

of MHC class II, which present antigen to CD4+ T cells (206). CD74 also has a role in 

upregulating BCL-2 and BCLXL (207), and so CD74 down-regulation is required for immune 

evasion but also results in increased propensity for apoptosis.  

This increased susceptibility to apoptosis is mainly countered by the expression of the viral 

BCL-2 homologues BHRF1 and BALF1. Together, BHRF1 and BALF1 are essential for preventing 

apoptosis during primary infection (98) and are expressed as early genes to suppress apoptosis 

during lytic cycle (96, 97) (see section 1.4).  
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BARF1is also expressed as an early protein during the lytic cycle. The protein is secreted into 

the extra-cellular matrix and acts as a receptor of human colony stimulating factor 1 (hCSF-1). 

BARF1 modulates the host immune response by antagonising soluble hCSF-1 (208). HCSF-1 has 

a role in differentiation and proliferation and may also modulate the immune response and T-

cell proliferation. (209). While there is evidence that BARF1 can modulate apoptosis and have 

a transforming effect it is also now known to also be expressed during latency(210) and so will 

be discussed in later sections. 

There is some evidence that in a gastric cancer cell background ectopically expressed BARF1 

can influence transcription of certain genes involved in apoptosis and cell growth. These may 

include pro-apoptotic genes such as caspases. BARF1 may induce cells to leave senescence and 

start to proliferate by up-regulation of proliferation promoting genes, FOS and C-JUN (210). 

BARF1 may also be able to activate anti-apoptotic BCL-2 expression in Akata cells and cause 

tumour formation in SCID mice (211).  

It is not known whether it is the intracellular form of BARF1 that up-regulates BCL-2, or if the 

secreted form activates cellular pathways which eventually raise BCL-2 levels. It is also not 

known whether the apparent proliferation inducing abilities of BARF1 are real or whether 

BARF1 merely enables oncogenically transformed cells to proliferate without undergoing 

apoptosis ((212) see Figure 1.10 for detailed overview). 

 

1.8.2 Apoptosis modulation during latency 

When EBV transforms normal B cells into lymphoblastoid cell lines (LCLs) latent gene 

expression is established from the Cp and Wp promoters, with the Cp promoter being highly 

active with a low level of expression from the Wp promoter (101). A wide range of genes are 

expressed including six nuclear antigens, EBNA1, 2, 3a, 3b, 3c and –LP, three membrane 
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Figure 1.10: EBV interactions with the Bcl2 family: EBV interacts with BCL-2 
homologues directly and interferes with cellular apoptotic pathways.  BZLF1 
down-regulates BCL-2 and BCLXL by down-regulating CD74 which aids in avoiding 
the immune response. Pro-survival EBV interactions are shown in green. 
Expression of BHRF1 and BALF1 can counteract BCL-2 and BCLXL down-regulation 
by interacting with cellular pro-apoptotic BCL-2 homologues including BAX and 
BAK and, in the case of BHRF1, also many BH3-only homologues. BARF1 up-
regulates BCL-2 protein. LMP1 inserts into the cell membrane and mimics the 
signalling of activated CD40. LMP1 rapidly, but transiently, up-regulates MCL1 
then activates the NFκB pathway to up-regulate BCL-2 and A1 (BFL-1).  LMP2a 
also up-regulates BCL-2 and BCLXL through Ras activation and the NFκB pathway. 
EBNA2 up-regulates the anti-apoptotic and some pro-apoptotic BCL-2 
homologues. EBNA3a and 3c down-regulate pro-apoptotic BIM through 
epigentic mechanisms.   EBER-1 and 2 inhibit PKR and up-regulate BCL-2 and 
miR-BART5 can down-regulate PUMA. Adapted from (212) 
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proteins, LMP1, 2a and 2b (213), non coding EBER RNAs and BARTs (BamHIA rightward 

transcripts) which encode many miRNAs (101, 176). This unrestricted expression of latent 

antigens has the potential to induce an anti-viral response and to drive infected cells into 

apoptosis. To counteract this, along with having functions involved in proliferation etc. many of 

these proteins also interact, directly or indirectly, with cellular BCL-2 homologues (Figure 1.10). 

Understanding the role that EBV latent antigens play in apoptosis will help us better 

understand the many EBV related malignancy in which EBV maintains various patterns of latent 

gene expression.  

 

1.8.2.1 EBNAs 

EBNA mRNAs are transcribed as a long primary transcript from the Wp promoter immediately 

after infection, and then later from the Cp promoter (214, 215). The individual EBNA mRNAs 

are generated by differential splicing of the same ‘rightward’ transcript (reviewed by (216)). 

EBNA1 is a nuclear phospho-protein required for the replication and maintenance of the viral 

genome. It is essential for regulating transcription of the transforming genes and acts by 

maintaining origin recognition complexes which bind to plasmid origins of DNA synthesis, and 

also aids retention of plasmids in the host cell (217). EBNA1 binds to the origin of replication 

oriP to up-regulate transcription from both Wp and Cp promoters (218).  

The switch from Wp to Cp promoters observed in early B cell infection is a result of the 

transactivation of the Cp promoter by the acidic phospho-protein EBNA2 (219). Mutation of 

the EBNA2 binding region upstream of Cp leads to increased transcription of Wp and a 

decrease in transcription from Cp (218).  EBNA2 transcriptionally activates cellular and viral 

genes with a promoter core sequence of GTGGGAA and to the gene by sequence specific 

binding protein, RBP-Jκ, a Notch activated transcription factor (220). The ability to bind RBP-Jκ 
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makes EBNA2 functionally equivalent to Notch (221). Interaction with RBP-Jκ may also lead to 

up-regulation of the anti-apoptotic BCL-2 homologue A1 (222). EBNA2 trans-activates the LMP 

promoters and the cellular growth genes; CD21, CD23 and c-myc (223, 224). 

The EBNA3 family of proteins (EBNA 3a, 3b and 3c) are encoded by a tandem arrangement of 

genes with a similar organisation (146). They act in vitro to activate transcription from the 

LMP1 promoter in the presence of EBNA2 and are also associated with RBP-Jκ indicating a role 

in transcriptional regulation (225-228). This competes with the binding of RBP-Jκ by EBNA2 

enabling EBNA3a and EBNA3c to act as regulators of EBNA2 function (213). EBNA3 proteins 

also bind to chk2/cds1 checkpoint kinase and in doing so can disrupt the G2/M cell cycle 

checkpoint (229). 

EBNA3a and 3c have been found to co-operate to down-regulate the pro-apoptotic protein 

BIM and are essential for immortalisation of B cells (230). This most likely occurs at the 

transcriptional level through epigenetic regulation and CpG methylation. This probably 

provides another mechanism for EBV to overcome the apoptotic effect of Eµ-myc seen in BL 

lines as well as the activation of myc by EBNA2 (231). There is an unconfirmed report that 

EBNA3b also up-regulates the expression of cellular BCL-2, although the mechanism for this is 

not known (232). 

 

1.8.2.2 LMP1 and LMP2a and 2b 

The latent membrane protein LMP1 is essential for transformation, and is transcribed from an 

EBNA2 activated latency III promoter, a latency II STAT regulated promoter and a lytic 

promoter which expresses truncated LMP1 during late lytic cycle (233-235).  

LMP1 has three domains 1) a short N-terminal tail which tethers the protein to the membrane 

and protrudes into the cytoplasm, 2) six trans-membrane loops which may have a role in 
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regulating autophagy (236,) 3) a long C-terminal cytoplasmic region with three domains (CTAR-

1 to -3) (237). These CTAR domains provide docking sites for various adaptor proteins such as 

TRADD, RIP and JAK-3 proteins and signal through a plethora of pathways including NFκB, 

JAK/STAT and JNK (238, 239). In this way LMP1 functions as a viral mimic of the TNFR1 family 

member, CD40 (see Figure 1.1 for an overview of TNFR signalling).  

LMP1 has been shown in vitro to up-regulate anti-apoptotic cellular BCL-2 homologues MCL-1 

and BCL-2. The up-regulation of MCL1 occurs rapidly following LMP1 expression indicting that it 

functions as an immediate response to enable cells to survive until BCL-2 is maximally up-

regulated after around 48-72 hours. MCL-1 up-regulation by LMP1 is transient and falls off 

once BCL-2 is expressed (240). 

LMP1 and cellular BCL-2 are known to act synergistically to overcome growth inhibition 

induced by p53 in B cells (241). This appears to be specific to B cells and is a result of the ability 

of LMP1 to activate NFκB (242). The up-regulation of anti-apoptotic BCL-2 homologues may be 

involved in the selection of memory B cells from the germinal centre pool. These cells have 

been programmed to die unless selected by antigen recognition at which point BCL-2 is thought 

to be up-regulated. EBV may use LMP1 to mimic this process and allow infected cells to survive 

and become memory B cells (241).  

Finally, LMP1 also acts to up-regulate A1. The importance of A1 upregulation may relate to the 

fact that LMP1 regulates itself through induction of the unfolded protein response and 

autophagy, induced by the N-terminal domain and six transmembrane domains(243). However, 

the unfolded protein response and autophagy also have the potential to lead to apoptosis. This 

effect is blocked by the C-terminal domain of LMP1 which up-regulates expression of anti-

apoptotic A1 through its ability to mimic CD40 signalling. In this way reactions to the N-
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terminal and transmembrane domains are prevented from driving the cell into apoptosis (244, 

245). 

The LMP2 family, LMP2a and LMP2b, have similar almost identical structures, with twelve 

trans-membrane domains and a cytoplasmic C-terminus 27 amino acids long. The LMP2s are 

not essential for transformation but LMP2a has been shown to mimic B cell receptor (BCR) 

activation (246). The N-terminal domain of LMP2a engages BCR associated signalling pathways 

and promotes survival (247). This survival effect may be through the NF-κB mediated 

upregulation of Survivin, BCL-2 and BCLXL (248-251). Overall LMP2a appears to maintain EBV 

latency and prevents inappropriate activation of the lytic cycle by blocking B cell receptor 

signals which would lead to virus reactivation but mimicking B cell receptor activation in other 

pathways to maintain cell survival (216, 252). However, LMP2a may also be able to induce lytic 

cycle in the absence of BCR receptor signalling, providing a way to control lytic activation 

independently of the BCR (253).   

(254)LMP2b lacks this N terminal domain needed for LMP2a function, but may have a role in 

down-regulating the level of LMP2a in order to promote activation into lytic cycle (252, 254).  

 

1.8.2.3 EBERs and BARTs 

The non-coding EBER-1 and EBER-2 transcripts are expressed in all forms of latency to the 

extent that they are sometimes used as indicators of latent infection (176). They are small 

RNAs expressed in very high numbers and bind to double stranded RNA. They may interact 

with, and inhibit the double stranded RNA dependent protein kinase (PKR). PKR is induced by 

interferon and activated by double stranded RNAs produced during viral replication, it acts to 

cause shutdown of protein translation in infected cells and may be a form of antiviral response 

(255). Studies of EBER expression in a variety of EBV loss and EBV negative cell lines have 
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shown that EBER expression protects cells from IFNα induced apoptosis various cell lines (256-

258), although this protection may not be solely dependent on PKR (257, 259). EBERs also up-

regulate the expression of BCL-2 through interaction with PKR but the mechanism for this is 

unknown (257). 

 

BARTs are small, non-coding RNAs that are processed into miRNAs and expressed in both 

epithelial and B cells during all forms of latent and lytic cycles. There are at least 21 miRNAs, of 

22–24 nucleotides in length, expressed from BART RNA derived introns (176). BART miRNAs 

have been found to negatively influence the expression of several EBV genes including BALF5 

and LMP1 (260, 261), as well as cellular PUMA (262) by repressing translation or inducing 

mRNA degradation. The 3’ UTR of LMP1 has several complimentary matches to BART miRNAs. 

Binding of these miRNAs can suppress LMP1 expression and prevent over-expression which can 

lead to loss of proliferation and susceptibility to apoptosis (261, 263). Both clusters of BART 

miRNAs down-regulate the pro-apoptotic BCL-2 homologue BIM post-transcriptionally by 

binding to miRNA recognition sites within the 3' UTR (264).  

 

1.8.2.4 BHRF1  

Although traditionally thought to be a lytic cycle antigen, the vBCL-2 homologue, BHRF1, has 

now been shown to be expressed during latency(101). This was first discovered in Wp 

restricted BL lines, in which, latent expression is restricted to the Wp promoter due to deletion 

of a fragment spanning the EBNA2 gene(101). It is known that the Wp promoter remains active 

at low levels in LCLs (218, 265) and BHRF1 was also found to be expressed at low levels in 

LCLs(101).  
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BHRF1 is known to be highly anti-apoptotic(97)(for more detail see section 1.4.1) and to 

protect from a variety of anti-apoptotic stimuli including chemotherapeutic agents(106). This 

could have important implications for the treatment of EBV related malignancies, especially BL, 

in which 15% of endemic cases express the Wp-restricted form of EBV(101).  

 

1.9 Burkitt lymphoma: 

The discovery of endemic Burkitt lymphoma by Denis Burkitt led to the discovery of EBV (see 

section 1.5.3). However, EBV is not required for the development of Burkitt lymphoma. Two 

other forms of BL exist, sporadic and AIDS-associated, which occur worldwide but with a lower 

incidence than endemic BL (266). Whereas endemic BL is nearly always EBV associated, EBV is a 

contributing factor in only 15–80% of sporadic cases, depending on geographic location, and 

40% of AIDS-associated cases (267).  BL is a tumour derived from germinal centre B cells and 

presents slightly differently depending on the form. Endemic BL usually presents in children as 

a tumour on the jaw or within the abdomen, whereas sporadic BL is seen in older children and 

adults, and causes an abdominal mass to form (267). 

All forms of BL share the chromosomal translocation of MYC on chromosome 8 with one of the 

immunoglobulin genes on chromosome 14, 2 or 22. It has been proposed that these 

translocations most likely arise during the germinal centre reaction through the action of AID, 

the enzyme involved in somatic hypermutation and class switch recombination (268). This 

translocation causes the MYC oncogene to become constitutively active and drives cell growth 

and proliferation but also increases sensitivity to apoptosis (269, 270). MYC induces a large 

number of pro-apoptotic genes and inhibits the expression of anti-apoptotics as a failsafe to 

prevent oncogenesis from the over-expression of MYC (271, 272) (reviewed in (273) (Figure 

1.11). 
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Figure 1.11: Myc interactions with the BCL-2 family. Myc can upregulte levels of 
PUMA through direct activation or through activation of p53. Myc can suppress the 
levels of BCL-2 and BCLXL , either directly or through PUMA. Myc provokes the 
mitochondrial localisation of t-BID. Myc may activate BAX directly but also 
contributes to BAX and BAK activation through PUMA and BID. (Adapted from 272) 
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In order to undergo tumorgenesis cells need to aquire other mutations in addition to MYC 

translocation to counteract the apoptotic effect of MYC. These take the form of genetic 

mutations or epigenetic modifications that suppress the apoptotic pathway. In BL cells these 

alterations often occur in p53, with 30% of endemic BL tumours and 70% of BL cell lines having 

mutations in p53(274). Those cells that do have a wild type p53 often have changes at some 

other point in the p53 pathway such as over-expression of MDM2(275) (reviewed in (276)). 

The observation that EBV positive BL is more resistant to apoptosis than BL lines that have 

spontaneously lost EBV indicates that EBV can also contribute to the suppression of MYC 

induced apoptosis (256). In endemic BL only EBNA1 protein is expressed and this has been 

shown to inhibit apoptosis in the absence of the viral genome (277). For example, EBNA1 may 

be able to destabilise p53 or MDM2 by binding the ubiquitin-specific protease USP7 which 

would normally stabilise P53 and MDM2 (278). EBNA1 provides protection for BL lines against 

low levels of apoptotic stimuli. However, the EBERs and BART non-coding RNAs are also 

expressed and have been shown to interact with cell death pathways and down-regulate pro-

apoptotic BCL-2 homologues (see section 1.8.2).  

 

1.9.1 Wp-restricted BL and BHRF1: 

In EBV positive Burkitt lymphoma there are two forms of latency which are quite different from 

latency III seen in LCLs (Figure 1.10). The first, found in cells containing a wild-type EBV 

genome, is known as latency 1 and expresses EBERs and BARTs as well as just one protein, 

EBNA1, from the EBNA1 specific promoter, Qp (148, 279). The second form of latency in BL is 

known as Wp restricted latency where the W promoter is used to express all EBNA proteins, 

except EBNA2, including a truncated form of EBNA-LP and also the BARTs and EBERs (178). Wp 

restricted EBV has arisen by infection of the progenitor cell with a mutant EBV genome 
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containing a deletion of the EBNA2 gene and some upstream and downstream sequences. The 

EBNA2 deletion also removes the whole BamH1 Y fragment as well the Y1 and Y2 exons of the 

C-terminus of EBNA-LP to give a truncated form (178). The deletion of the EBNA2 gene causes 

the W promoter to remain active, as the C promoter is not activated in the absence of EBNA2 

(176). This results in an expression pattern more similar to LCLs than to Lat I BL, with expression 

of EBNA1, the EBNA3s, truncated EBNA-LP, BARTs and EBERs, but not of EBNA2 or the LMPs. 

Similar effects have been observed when the EBNA2 binding region upstream of Cp is mutated 

leading to transcription down-regulated from Cp but up-regulated from Wp (218).  

 The Wp restricted form of latency is expressed in 15% of endemic BL cases, which is high for a 

mutation which is so rare. Expression of the least restricted form of latency (Lat III) in which all 

latent antigens are expressed, increases immunogenicity in vivo and is not compatible with the 

BL phenotype or high c-myc expression in vitro (280, 281). As Wp restricted latency is selected 

for, not against, this indicates that EBNA2 and the LMPs are the source of incompatibility 

between the virus and c-myc driven growth programme (282).  

Wp restricted latency offers much higher protection against cell death caused by factors such 

as environmental stress and apoptosis inducing drugs such as anti-IgM and ionomycin than 

latency 1 infection. When compared to EBV-loss lines latency 1 infection gives only partial 

protection at low doses. This could also explain why a rare mutant such as the EBNA2 deletion 

is found at such high numbers in BL patients (101, 282). 

The heightened protection of Wp lines from apoptosis was initially thought to be the result of 

truncated EBNA-LP or the EBNA3s. Although truncated EBNA-LP may be protective (283), it is 

not detectable in all Wp restricted BLs even though they show a resistant phenotype (179). 

Kelly et al. found that transfection of EBNA3 expressing plasmids into latency I BL lines Sav and 

Akata gave no protection from apoptosis induced by ionomycin and anti-IgM, despite the 

43 
 



  Chapter 1 

ability of EBNA3a and 3c to down-regulate BIM (see section 1.8.2)(101, 230). After the 

discovery of BHRF1 expression in Wp restricted BL, the BHRF1 protein became another possible 

mediator of the apoptotic resistance in Wp BL. The latent expression of BHRF1, is sufficient to 

protect latency I and EBV loss BL lines from apoptosis (101). BHRF1 has also been found to be 

expressed at lower levels in LCLs (101), and is promiscuously expressed immediately after 

infection when Wp is transiently active (98).  

 

The expression of BHRF1 during latency coupled with its strong anti-apoptotic ability may have 

important implications for the treatment of EBV related malignancies. BL usually responds well 

to chemotherapy and yet approximately 10–25% of paediatric and 14–53% of adult patients 

with BL will relapse despite intensive chemotherapy, and face an extremely poor prognosis 

(284). This resistant subset of BL could be a result of latent BHRF1 expression. BHRF1 has been 

shown to render Eµ-myc mice resistant to treatment (104). Treatment of BL could greatly 

benefit from agents which sensitise BL cells to chemotherapy, either to overcome resistance to 

chemotherapy or to avoid using very aggressive treatment regimen on frail patients. More 

knowledge of how BHRF1 protects from apoptosis in BL lines, and how it interacts with cellular 

BCL-2 homologues, could further knowledge into BL pathogenesis and possible mechanisms for 

overcoming resistance to treatment.  

 

1.10 Aims and objectives 

In this work we focused on the ability of the EBV encoded viral BCL-2 homologues, BHRF1 and 

BALF1, to protect from apoptosis.  
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BHRF1 is known to have a strong anti-apoptotic effect(97) and previous studies have shown 

that it is expressed in latent BL lines and could potentially cause BL to be resistant to treatment 

in vivo(101, 285).  

This protein has a 38% sequence homology to cellular anti-apoptotic BCL-2, but a much greater 

structural similarity(46). However, it is not known how similar BHRF1 is to BCL-2 in terms of its 

interactions with cellular pro-apoptotic BCL-2 homologues, and how these mechanisms 

translate into the ability of BHRF1 to protect from different apoptotic stimuli. We aimed to 

determine the ability of BHRF1 to bind cellular pro-apoptotic BCL-2 homologues in an EBV 

negative BL background and the importance of certain BCL-2 homologues for the function of 

BHRF1. To look at binding to cellular BCL-2 homologues we used mutants of BHRF1, kindly 

provided by Dr. Marc Kvansakul. These contain point mutations of several amino acids within 

the binding groove of BHRF1, the area which interacts with the BH3 domains of cellular anti-

apoptotic BCL-2 homologues. 

In chapter 3 we describe the construction of a lentivirus vector, TREX(gene)UTG, from two 

precursor lentivirus plasmids, donated by Dr. Marco Herold(286). 

Cloning and HA tagging of the BHRF1 wild type protein was performed, and protein expression 

from the lentivirus, transduced into two EBV negative BL backgrounds, was characterised. 

In chapter 4 we describe the BHRF1 binding groove mutants. They were expressed using 

lentiviruses in the same manner as the wild type. We tested their ability to protect from 

apoptosis induced by a variety of cytotoxic drugs, working through several different pathways. 

We aimed to determine the ability of BHRF1 to protect from apoptosis when binding to 

specific cellular BCL-2 homologues was prevented. This was achieved through the individual 

binding groove mutations which reduced binding to BCL-2 homologues, and through 

knockdown of pro-apoptotic BCL-2 homologues. In this manner we aimed to determine which 
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BCL-2 homologues were bound by BHRF1 and were important for its anti-apoptotic effect. 

Secondly, we aimed to discover if any of the amino acids mutated in the BHRF1 binding groove 

were essential for its function. 

In chapter 5 we focused on the second viral BCL-2 homologue, BALF1. This protein is not well 

characterised and there is contention as to whether it is pro- or anti-apoptotic, when it is 

expressed, and whether it can inhibit BHRF1(41, 96, 98, 112).  

Firstly, we aimed to determine if BALF1 is expressed during latency, and if so, if this expression 

is restricted to a latency or cell type. Secondly, we aimed to determine if BALF1 was pro- or 

anti-apoptotic, and, thirdly, if BALF1 was able to abrogate the function of BHRF1.  
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2. Materials and methods 

2.1 Cell Culture 

2.1.1 Cell Lines 

The present study used a number of EBV-positive cell lines derived from BL tumours, 

including Latency I BL lines Chep-BL, MutuI-BL cl.59, Sav-BL, Ezema-BL, Akata-BL, Kem-BL 

and Dante-BL (287, 288), Latency III BL lines MutuIII-BL and GlorIII-BL, and Wp-restricted BL 

lines Avako-BL, Salina-BL and Oku-BL (178). EBV-negative cell lines derived from sporadic BL 

tumours included DG75 (289), BL2 (290) and BL41 (291).  

In addition, a number of virus-transformed LCLs were used in this study: X50/7 LCL (292) 

and CD+OKU (178), IM51.1, IM81.1, IM83.1 and IM93.1 (293), and EH LCL1 and EH LCL2 

(294). IM51.1, IM81.1, IM83.1 and IM93.1 are spontaneously transformed B cell lines 

derived from the peripheral blood of infectious mononucleosis patients. EH LCL1 and EH 

LCL2 were obtained by infecting EBV-negative B cells with recombinant 2089 EBV.  

RNA from three lines of EBV positive T/natural killer (NK) cell origin and two lines with 

epithelial cell origin was used, one originating from chronic active EBV (SNK10) and two 

others from T/NK cell lymphomas (SNK1 (295) and SNK6 (296)) (297). SNT8 and SNT16 are T 

cell lymphoma lines which were established from a nasal T cell lymphoma (SNT8) (298) and 

peripheral blood from a case of chronic active EBV (SNT16) (297). C666.1 is an EBV positive 

nasopharyngeal carcinoma line with an epithelial origin and latency II phenotype (299), AGS 

+ EBV is a gastric carcinoma cell line, with an epithelial cell line, infected in vivo with EBV 

(300). RNA from the Hodgkin lymphoma line, L591, was also analysed (301, 302). 

The 293FT cell line (Invitrogen) was used to package lentivirus stocks. 
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2.1.2 Maintenance of Cell Lines 

All cells were grown at 370C with 5% CO2. Adherent cells and suspension cells were grown in 

100mm plates and 25cm2 flasks, respectively. BL lines were maintained in exponential 

growth in RPMI 1640 (Sigma) supplemented with 10% foetal calf serum (FCS) (Biosera), 

20nM bathocupronine disulfonic acid (Sigma), 50mM α-thioglycerol (Sigma), 1mM pyruvic 

acid (GIBCO), 2mM L-glutamine (GIBCO) and penicillin/streptomycin (GIBCO). 293FT cells 

were grown in RPMI 1640 supplemented with 10% heat-inactivated FCS (560C for 1 hour) 

and 200μg/ml G418 (Life Technologies).  

 

2.1.3 Cryopreservation and Recovery of Cell Lines 

Approximately 107 cells were harvested at exponential growth (suspension cells) or 80% 

confluence (adherent cells), and collected by centrifugation at 450 x g. The cells were 

resuspended in ~1ml freezing media (RPMI/40% FCS, 10% dimethylsulphoxide (DMSO) 

and 2mM L-glutamine) and transferred to a sterile freezing vial. Cells were cooled 

gradually at a rate of 1°C per minute, by storage overnight at -80°C in a freezing 

container filled with isopropanol (Mr. FrostyTM). For long-term storage, freezing vials 

were transferred to the gas phase of liquid nitrogen (-180°C).  

When needed, cells were thawed at 37°C for 1–2 minutes, transferred to 15ml of 

pre-warmed media, centrifuged for 5 minutes at 450 x g, resuspended in 10ml media 

and transferred to a 25cm2 flask (suspension cells) or a 100mm plate (adherent cells). 

 

2.2 Quantitative RT-PCR Analysis  
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2.2.1 RNA Extraction 

Approximately 1-3 x 106 cells were collected by centrifugation. RNA isolation was then 

performed using the Nucleospin RNA (Machery-Nagel) mini kit as per manufacturer’s 

instructions, including an optional DNAse I treatment using the DNA-free™ (Ambion) 

kit. RNA samples were eluted in 60μl of nuclease-free H2O (Ambion), concentrations 

assesed using a Nanodrop spectrophotometer (Thermo Scientific), and finally diluted 

to 100ng/μl. All RNA preparations were stored at -80°C. 

 

2.2.2 Reverse transcription 

All cDNA synthesis was performed using the qScriptTM cDNA supermix (Quanta Biosciences) 

kit, as per manufacturer’s instructions. Approximately 500ng input RNA was reverse 

transcribed in a 20μl reaction volume and incubated for 5 minutes at room temperature, to 

allow for optimal primer annealing, followed by 1 hour at 42°C and 5 minutes at 90°C. 

Following synthesis, cDNA was diluted to a total volume of 100 μl, using nuclease-free H2O, 

and stored at -20°C. 

 

2.2.3 QPCR 

Levels of latent BHRF1 and BALF1 transcripts were determined by QPCR, using published 

primers and probes (101). A new assay was designed to detect lentivirus-expressed latent 

BHRF1 transcripts (unpublished). EBV plasmid standard (unpublished data) is a new 

plasmid used to calculate EBV gene copy number; it contains one copy of each EBV 

gene along with a single copy each of the cellular housekeeping genes 

49 
 



  Chapter 2 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase 1 

(PGK1) and Beta-2 microglobulin (B2M). Real time quantitative PCR was performed on an 

Applied Biosystems 7500 machine. All samples were run in triplicate as follows: 10 minutes 

at 95°C, followed by 40 cycles of 15 seconds at 95°C and 60 seconds at 60°C. Serial 

dilutions of either Avako-BL (lentivirus assay) or EBV copy number plasmid 

(unpublished data) (latent BHRF1, BALF1) were run in duplicate on the same plate, in 

order to generate a standard curve for relative quantification. Data was normalized 

to either cellular GAPDH (Assay ID: NM_002046.3), PGK1 (Assay ID: NM_000291.2) 

or B2M (Assay ID: NM_004048.2) expression, using commercially available assays 

(Applied Biosystems). Normalized data were either expressed relative to Avako-BL 

(assigned a value of 1) or EBV copy number plasmid (expressed as copy number).  

 

2.3 Western blotting 

2.3.1 Protein Quantification 

Approximately 7x106 cells were collected by centrifugation, washed twice in ice-cold 

phosphate buffered saline (PBS) and placed on ice. Cells were lysed and proteins solubilised 

via the addition of 50μl Urea buffer (9M Urea, 5mM EGTA, 5mM EDTA, 2-4% CHAPS, 1% 

DTT); cells were further disrupted by sonication for 20 seconds.  

Determination of protein concentration was determined using the Bio-Rad DDC Protein 

Assay. Briefly, aliquots of cell lysates were diluted 5-fold in Urea buffer. Duplicate 5μl 

samples were placed in a 96 well plate; additionally, duplicate 5μl protein standards 

containing 5, 2, 1, 0.5, 0.2 and 0.1mg/ml BSA were loaded in order to generate a standard 
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curve for protein quantification.  Reagents A (25μl) and B (200μl) were added to each well, 

as per manufacturer’s instructions, after which the microplate was left to incubate at RT for 

15 minutes. Absorbance was measured at 630nm using a 96 well plate reader, and protein 

concentration determined against a line of best fit drawn on the BSA standard curve.  

Protein samples were then diluted to a 2 mg/ml concentration using Gel Sample Buffer 

(0.4M sodium 2-mercaptoethanesulfonate (MESNA), 125mM Tris-HCL pH 6.8, 0.004% v/v 

bromophenol blue, 4% v/v SDS and 20% v/v glycerol), and denatured by boiling for 10 

minutes. Samples were either used directly or stored at -20°C. 

 

2.3.2 Protein Electrophoresis and Membrane Transfer 

NuPAGE 4-12% Bis-Tris gels (Invitrogen) were assembled into the XCell SureLock Mini-Cell 

system, as per manufacturer’s instructions, using 1x NuPage MES SDS running buffer 

(Invitrogen) diluted in distilled water. Protein samples were re-solubilised at -80°C for 5 

minutes and 20μg protein added per well. Additionally, 10μl SeeBlue Plus2 Prestained 

Standard (Invitrogen) was added to one well. Protein electrophoresis was performed at 

100V, 250mA for 90 minutes.  

Upon completion, the gel casing was cracked open, and the gel assembled into an XCell II 

blot module (Invitrogen) together with a PVDF membrane, as per manufacturer’s 

instructions. The PVDF membrane was pre-soaked up to 10 seconds in 100% methanol, and 

then in transfer buffer (2.5mM Tris-Base (Fisher Chemicals), 0.192M Glycine (Sigma), 20% 

Methanol) until needed. Protein transfer was performed at 30V for 100 minutes, using 

transfer buffer.  
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2.3.3 Membrane Blocking, Antibody Binding and Detection 

Following transfer, the PVDF membrane was washed 3 times for 5 minutes in PBS with 0.1% 

Tween-20 (PBS-T) and blocked 1 hour in 5% milk diluted with PBS-T on a rocking platform. 

Primary antibodies were diluted in 5% milk PBS-T and incubated with the PVDF membrane, 

either at RT for 2 hours or at 4°C overnight. Following primary antibody binding, membranes 

were washed at least 6 times over 30 minutes. Secondary antibodies conjugated to 

Horseradish peroxidise (Sigma) were diluted n 5% milk PBS-T and incubated with the PVDF 

membrane at RT for 1 hour. Following secondary antibody binding, membranes were 

washed as before (see Table 2.1 for antibodies). 

The PVDF membrane was treated with Amersham ECL western blotting detection reagents 

(GE healthcare), as per manufacturer’s instructions, and loaded into a film cassette together 

with a CL Xposure X-ray film (Thermo Scientific). The film was exposed for an appropriate 

length of time and developed using a Kodak X OMAT 1000 film processor.   

 

2.4 Construction of Plasmid Vectors 

2.4.1 PCR of Cloning Inserts 

Reaction volumes were made up as follows: 500ng of template DNA, 5μl 2mM dNTPs 

(Fermentas), 1U Expand High Fidelity Enzyme Mix and 1X buffer with MgCl2 (Roche), and 

1.5μl each of a 1μM forward and 1μM reverse primer in a final reaction volume of 25μl (see 

Table 2.2). The PCR reaction was run under the following conditions: 94°C for 5 minutes, 

540C for 30 seconds, 35 cycles of 94°C for 60s, 56°C for 60s and 72°C for 1 minute, and a final 

extension of 72°C for 10 minutes. The PCR product was A-tailed using 5U of standard Taq 
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Table 2.2 PCR and sequencing primers 

PCR primers for replication of cloning insert 

HABHRF1  (forward primer) 5’ – 3’ 

GCAGATCTACCATGTACCCATACGATGTTCCAGATTACGCTGCCTATTCAACAAGGG
AGATACTGTTAG 

BHRF1  (forward primer) 5’ – 3’ 

GCAGATCTACCATGGCCTATTCAACAAGGGAGATAC 

BHRF1 (reverse primer) 5’ – 3’ 

AAGAATTCTTAATTAATTAGTGTCTTCCTCTGGAGATAAATAAATAACTAC 

HABALF1  (forward primer) 5’ – 3’  

GCAGATCTACCATGTACCCATACGATGTTCCAGATTACGCTAGGCCAGCCAAGTCT
ACAGATTCTGTG 

BALF1 (reverse primer) 5’ – 3’  

AAGAATTCTTAATTAATTACAAAGATTTCAGGAAGTCAGTCAGGCTG 

Lentivirus specific sequencing primers 5’ – 3’ 

PAC1 FTGW F CAGGGACAGCAGAGATCCAG 

PAC1 R TCTACGTGGCAGCGCTC 

TREX F GCTCGTTTAGTGAACCGTCAGA 
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DNA polymerase (Roche), supplemented with 1μl 25mM MgCl2 and 2mM ATP (Fermentas), 

and incubated at 70°C for 30 minutes.  

 

2.4.2 Restriction Digestion 

PCR-amplified inserts and recipient plasmid vector DNA were cut in single or double digests 

reactions using standard restriction enzymes (Promega or Roche), or Fast Digest restriction 

enzymes (Fermentas). Typically, 1ug of DNA was digested in a 20ul volume comprising 1μl 

(1U) restriction enzyme and a 1x concentration of the corresponding restriction enzyme 

buffer. Reaction volumes were incubated for 30 to 60 minutes (Fast Digest enzymes) or 3 

hours (Standard enzymes) at 37°C.  

Following digestion, cut vector was capped with Alkaline Phosphatase (Roche), which 

selectively cleaves terminal phosphate groups to prevent re-ligation of vector DNA. Briefly, 

cut vector was subjected to two rounds of treatment with 1U of alkaline phosphatase 

incubation at 370C for 30 minutes. Capping was not performed on vectors intended to 

receive oligonucleotides lacking 5′ phosphate groups.  

 

2.4.3 Agarose Gel Electrophoresis 

Following digestion, PCR-amplified inserts and recipient plasmid vector DNA were resolved 

using agarose gel electrophoresis. Agarose gels were made as follows: between 0.8 and 1% 

agarose (Eurogentec) was dissolved in 1x TBE (88.9mM Boric Acid, 2.49mM EDTA and 

88.9mM Tris-Base in distilled water), heated to 1000C, poured into a casting container and 

allowed with gel comb inserted. Digested product was mixed with 6x gel loading dye (30% 
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v/v glycerol, 0.25% w/v bromophenol blue, 0.25% w/v xylene cyanol) and loaded on to the 

gel; an appropriate volume of 1kb plus ladder (Invitrogen) was loaded into one of the wells.  

The gel was run at 80 V in a Flowgen tank containing 1x TBE for an appropriate amount of 

time. Following completion of the run, the gel was soaked for at least 15 minutes in a bath of 

distilled water containing 1-5μl 10mg/ml ethidium bromide (Fisher Scientific). Thereafter the 

DNA was visualised under UV light. Insert bands of correct size were excised and DNA 

extracted using the QIAquick Gel Extraction kit (Qiagen) as per manufacturer’s instructions.  

 

2.4.4 Purification of Vector and Insert DNA 

Gel extracted inserts and cut, capped vector DNA were purified using the High Pure PCR 

product purification kit (Roche), as per manufacturer’s instructions. Purified product 

samples were then made up to a 200μl total volume using DEPC treated nuclease free water 

(Ambion), and then diluted 1:1 with phenol: chloroform: isoamyl alcohol 25:24:1 pH8 

(Sigma). The solution was vortexed for 15 seconds and centrifuged at 16000 x g for 3 

minutes. The upper layer containing DNA (~200 μl) was moved to fresh tube; the remaining 

phenol was diluted 1:1 with fresh DEPC water, and the process was repeated in order to 

obtain a total volume of 400μl DNA in nuclease free water.  

The DNA was then ethanol precipitated by adding 2.5 volumes of 100% ethanol and 1/10 

volumes of 3M Sodium Acetete pH 5.2, followed by freezing at -200C overnight. Next day, 

the solution was centrifuged at 16000 x g for 15 minutes at 40C. The DNA pellet was washed 

in 70% ethanol and allowed to dry at room temperature. DNA pellet was resuspended in 

clean DEPC treated water and the DNA concentration was determined using a Nanodrop 

spectrophotometer (Thermo Scientific).  
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2.4.5 Ligation of Inserts into Plasmid Vectors 

The quantity of vector and insert DNA to be used in the ligation reaction was determined 

using the following calculation: ((ng of vector × kb size of insert) / kb size of vector) x molar 

ratio of insert:vector = ng of insert. Ligation was performed using the T4 DNA Ligase kit 

(Promega). A 10μl total reaction volume with 1x ligation buffer and 1U T4 DNA ligase. 

Ligation mix was incubated for 2-3 hours at room temperature, or overnight at 40C.  

 

2.4.6 Bacterial Transformation with Plasmid  

50% of ligation mix or 500ng plasmid DNA was transformed into either DH5α or One Shot 

Stabl3 chemically competent E. coli cells (both from Invitrogen). Stabl3 cells were used for 

cloning of lentivirus plasmids due to their ability to reduce the frequency of unwanted 

homologous recombination events between the long terminal repeats.  

Half an aliquot of either DH5α or Stabl3 cells was used per transformation. Cells were 

defrosted on ice and a quantity of DNA was added as above. In all cases a DNA-negative 

control was used; where DNA was derived from a ligation reaction, an aliquot of T4 DNA 

Ligase untreated DNA was included to control for inefficient digestion / contamination of 

ligation reagents.  

Cells and DNA were incubated on ice for 30 minutes and then heat shocked at 420C for a 

maximum of 90 seconds. Cells were allowed to recover on ice for 2 minutes before 1ml of LB 

broth (25g/L, Fisher Scientific) was added, after which cells were incubated for 1 hour at 

370C on a shaker. Cells were centrifuged at 16000 x g for 60 seconds and supernatant was 

discarded. Cells were resuspended in a small volume of LB broth and spread onto 100mm 
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plate containing LB Agar (379/L, Fisher Scientific) and 100μg/ml ampicillin (Roche). Plates 

were then incubated at 370C overnight.  Prior to use both LB broth and LB agar were 

sterilised in an autoclave and aseptic technique was used throughout.  

 

2.4.7 Growth of Bacterial Cultures 

Several colonies (individual clones) were picked and grown overnight in a shaking incubator 

at 370C, in 3ml LB broth containing 100μg/ml ampicillin. Plasmid DNA was extracted from 

overnight cultures using the QIAprep Spin Miniprep kit (Qiagen), according to 

manufacturer’s instructions. Desired recombinants were identified using restriction enzyme 

digestion (as above) and DNA sequencing (see section 2.6, later). Correct clones were grown 

up in 400ml LB broth with 100μg/ml ampicillin at 370C overnight in a 4x volume conical flask. 

Plasmid DNA was extracted using a Qiagen Plasmid Maxi kit, as per manufacturer’s 

instructions, and DNA concentration was determined using a nanodrop spectrophotometer. 

Plasmid DNA was then diluted as required in nuclease free water.  

 

2.5 Generation of BL Lines Transduced with Lentiviral Vectors 

2.5.1 Preparation of Lentivirus Stocks 

293FT cells were split into 100mm plates and grown overnight in media without G418, until 

a confluence of 70-90% was reached. 293FT cells were transfected with 4μg lentivirus 

plasmid, 2μg envelope plasmid, pMD2G, and 6μg packaging plasmid, psPAX2, as follows: 

plasmid/packaging DNA and 26 μl Lipofectamine 2000 (Invitrogen) was added to separate 

1.5ml aliquots of Opti-MEM® reduced serum media (Gibco), incubated 5 minutes at 

56 
 



  Chapter 2 

RT, mixed and incubated 20 minutes at RT, added to 293FT cells and left overnight at 

37°C. The next day, Opti-MEM® media was replaced with DMEM media (Invitrogen), 

supplemented with 10% heat inactivated BCS and 1% pyruvic acid. The virus-containing 

culture supernatant was harvested after 3 days, passed through a 0.45μm filter and stored 

at -80°C until required.  

 

2.5.2 Spin Infection of BL Lines with Lentivirus 

Bl41 cells (1x105) were incubated at 37°C for 30 minutes with lentivirus (4ml) and 6μg/ml 

polybrene (Sigma). Cells were then centrifuged for 2 hours (28-30°C) at 2200 RPM (Heraeus 

8155 rotor) and plated out in 24 well plates with fresh media. GFP was analysed by FACS 48-

72 hours post infection (see section 2.7, later). Infection with siRNA lentivuruses (Santa Cruz 

biotechnology) was selected using 10µg/ml puromycin (Invitrogen) after 2 passages in 

culture.  

 

2.6 Sequencing of BHRF1 and BALF1 

All sequencing reactions were performed centrally by the Functional Genomics and 

Proteomics Services (School of Biosciences, University of Birmingham), using an automated 

Applied Biosystems 3730. 100ng of template DNA was added to 3.2pmol primer and made 

up to a total volume of 10ul using deionised water. Several sequencing reactions were using 

the original forward and reverse PCR primer and lentivirus specific sequencing primers (see 

Table 2.2) including PAC1 FTGW F (sequences forward from Pac1 site across insert in FTGW), 

TREX F (sequences forward across insert from within TREX promoter in FTGW), and PAC1 R 
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(sequences backwards across insert in FH1T(gene)UTG and FTGW) (see Table 2.2 for 

sequencing primers). 

 

2.7 FACS and Cell Sorting 

In order to test for the efficiency of lentivirus transduction, as well as stable maintenance of 

lentivirus DNA, cell lines were assessed for GFP and HA-tagged BHRF1 expression. To assess 

GFP expression, cells were centrifuged at 450 x g for 5 minutes, washed in PBS and 

resuspended in 100μl PBS. Measurements were performed using an Accuri C6 flow 

cytometer (BD Biosciences). Where appropriate, cells were sorted for high GFP intensity 

using a MoFlo cell sorter (Dako). 

To assess the expression of HA-tagged BHRF1 expression, cells were first fixed overnight at 

4°C using 1ml IC Fixation Buffer (Invitrogen). The next day, cells were centrifuged at 450 x g 

for 5 minutes, and the IC Fixation Buffer aspirated. Cells were resuspended in 0.2% Triton X-

100 made in PBS, and incubated on ice for 30 minutes to allow for effective cell 

permeabilization. Subsequently, cells were washed in PBS and incubated for 1 hour at 370C 

with anti-HA antibody (Roche) diluted 1/500 in EBV-negative human serum. Cells were 

washed again in PBS and incubated at 370C with the appropriate APC-conjugated secondary 

antibody (1/1000) (Stratech Scientific Ltd). Cells were washed one last time and measured 

using an Accuri C6 flow cytometer. 

 

2.8 Apoptosis Assays 

Approximately 2x106 cells were plated out in 24 well plates in BL media (see section 2.1.2), 

and induced with 1μg/ml doxycycline hyclate (Dox) (Sigma Aldrich). For each sample, a 
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matching Dox untreated sample was also plated out. After 48 hours, an aliquot of cells was 

taken and diluted 1:1 with 0.4% trypan blue (Sigma Aldrich), and 10μl loaded into a TC10 

system dual chamber counting slide (BioRad). Cell number and percentage viability were 

measured using a TC10 automated cell counter (BioRad). A 90% and 70% viability cut-off for 

Akata- and BL41-derived lines respectively was set, with samples below this threshold being 

discarded.  

Induced lines were diluted in BL media to a concentration of 3x105 cells/ml, and 3x104 cells 

plated out, in triplicate, into a flat bottomed 96 well plate. Cells were diluted 1:1 with 

normal BL media, BL media with Dox only, BL media with ionomycin only or BL media with 

Dox and ionomycin. Note that ionomycin was added to a final concentration of 2μg/ml for 

Akata- and 0.5μg/ml for BL41- derived cell lines. Plates were incubated for 48 hours.  

Live cells were stained in the plate with Syto17 (Invitrogen) at a final concentration of 50nM 

and incubated at 370C for 1 hour. Plates were then put on ice and 0.5ng Propidium Iodide 

(PI) (Invitrogen) was added to each well to stain for dead cells. Single and unstained samples 

for Syto17 and PI were also included to aid with colour compensation. Plates were 

maintained on ice and readings for each well were taken for 10000 cells, using an Accuri C6 

flow cytometer (BD Bioscience).  

Syto17 stains only live cells and is detected in FL4, PI is membrane impermeant and excluded 

from live cells; it is detected in FL3. Live cells were defined as Syto17 positive and PI 

negative, early apoptotic cells as Syto17 negative and PI negative, and late apoptotic or dead 

cells as Syto17 negative and PI positive.  

 

2.9 Co-IP Assays 
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Approximately 10 x 106 cells were harvested by centrifugation at 450 x g for 5 minutes, 

washed in PBS and lysed in 500 μl 1% TX-100 Onyx buffer (20mM Tris-HCl, pH7.4; 135 mM 

NaCl; 1.5mM MgCl2; 1mM EGTA; 1% Triton-X 100; 10% glycerol) along with protease 

inhibitors (Roche)(1 tablet per 50ml buffer) for 30 minutes on ice. The mix was centrifuged 

at 13000 x g for 10 minutes, the debris-containing pellet discarded, and the protein-

containing lysate harvested. Sepharose and Protein G beads (Sigma) were washed 4 times in 

1ml lysis buffer and diluted to make a 1:1 slurry. To reduce non-specific binding of proteins 

to antibodies, cell lysate was pre-cleared; briefly, a volume of cell lysate containing protein 

from 5 x 106 was added to 50μl Sepharose Beads and incubated on a wheel for 1 hour at 4°C. 

Subsequently, the lysate-beads mix was centrifuged at 13000 x g for 30 seconds, the beads 

discarded and the supernatant retrieved. The lysate was then incubated with HA.11 

monoclonal antibody (Covance) on a wheel, overnight at 4 0C. Afterwards, 50μl Protein G 

beads were added to the lysate and incubated on a wheel for 1 hour at 4°C. The beads were 

spun down as before and the lysate discarded. The beads were washed 4 x in 1ml Onyx 

buffer (samples were mixed by manually turning the sample tube) and protein eluted from 

the beads by boiling in 2 x Urea buffer containing β-mercaptoethanol. Protein-protein 

complexes can be subsequently assessed using western blot as described above (see section 

2.3). 

 

2.10 Immunofluorescence and Confocal Microscopy 

Cells were harvested by centrifugation at 450 x g for 5 minutes, and washed 3 times with 

PBS. Cells were fixed in 2-4% paraformaldehyde made in PBS (15 Minutes at RT), and spun 

onto a poly-l-lysine slides (sigma) via a cytocentrifuge. The slides were washed with 100mM 

Glycine buffer, in PBS, to remove background fluorescence and permeabilized with 0.5% 
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TritonX-100 made in PBS for 15 minutes. The cell monolayer blocked for 1 hour at 37°C in 1% 

BSA in PBS and then was washed 3 times in PBS. Primary and secondary antibody binding 

was performed at 37°C. Approximately 100μl primary cellular localization antibody anti-HA 

(rat 1/1000, Roche), CoxIV (mitochondria, rabbit polyclonal, 1/500, abcam, ab16056), or 

Calnexin (ER, goat polyclonal, 1/500, abcam, ab93355) was dispensed over the slide and 

incubated for 60 minutes or overnight at 4°C and washed 5 times in agitated PBS. Incubated 

with the appropriate alexa fluor secondary antibody (life technologies) (594, red, or 488, 

green, 1/500) at 37°C for 60 minutes, and washed as before in PBS. Nucleus was stained 

using DAPI (blue). Slides were viewed on LSM510 Zeiss Confocal microscope and co-

localisation was determined statistically using overlap coefficients (303).  
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3. Making lentiviruses to express BHRF1 

3.1 Introduction 

In order to determine how BHRF1 is able to interact with the cellular machinery to protect 

cells from apoptosis, a system was used in which the function of BHRF1 can be studied, in 

isolation, in the background of EBV negative Burkitts lymphoma. This system will also be 

useful when looking at the interactions between BHRF1 and the cellular BCL-2 homologues.  

We chose to express BHRF1 using a lentivirus as these are able to stably integrate into the 

genomes of proliferating and non-proliferating cells and provide long term gene expression.  

The chosen lentiviral system, TREX(gene)UTG (see Figure 3.1), was designed by Dr. Marco 

Herold, modified from a similar vector that he originally published (286). The essential 

features of this new vector are constitutive expression of GFP, which will prove beneficial 

when assessing infection efficiency and sorting of infected cells, and a tetracycline inducible 

promoter, enabling assays to be performed on identical lines in the presence or absence of 

gene expression.  

The TREX(gene)UTG lentivirus system was used to express BHRF1 in order to obtain 

inducible and reversible expression of BHRF1 in an EBV negative background.  This would 

exclude any contribution to the anti-apoptotic phenotype by other EBV gene products such 

as the EBNA3s (230). 

The generation of TREX(gene)UTG vectors for the expression of protein coding genes is a 

two-step process, as described below for the generation of BHRF`1 expressing vectors.  
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Figure 3.1: Map of original vector plasmids. (A) FTGW expresses eGFP under the 
control of a pol II tetracycline inducible promoter, TREX. There is no Tet 
repressor present so the TREX promoter is constitutively active. When the gene 
of interest is inserted between BamH1 and EcoR1 a segment containing GFP is 
lost. (B) FH1t(INSR)UTG plasmid with two expression cassettes highlighted in red. 
Cassette 1 containing pol III H1TetO promoter and IR5 insert is downstream of 
TATA box and between two Pac1 sites (2594 and 2945). Cassette 2 contains TetR 
and eGFP downstream of a constitutively expressed Ubiquitin C promoter. 
During the cloning protocol, cassette 1 is removed and replaced with a cassette 
containing the gene of interest downstream of the TREX promoter from the 
FTGW vector. Cassette 2 is maintained. Both vectors were designed and supplied 
by Marco Herold (286) 
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3.2 Establishing HA-BHRF1 in FH1t-UTG lentiviral system 

We originally received two lentivirus vectors from Marc Herold, FTGW and FH1t(INSR)UTG 

(Figure 3.1). The FH1t(INSR)UTG vector contains a H1 Pol III promoter used to express 

shRNAs for RNA interference (RNAi) (304). For expression of mRNA for protein coding genes 

such as BHRF1, a Pol II promoter is required (305). For insertion of BHRF1 alongside a Pol II 

promoter, we employed an intermediate step using the second lentiviral vector, FTGW. The 

structure of FTGW is unpublished but is very similar to that of FUGW (306). FTGW contains a 

Pol II TREX promoter, with a tet operator for Dox inducible expression, which drives the 

expression of GFP (Figure 3.1A). The TREX promoter is constitutively active, despite the tet 

operator, due to the absence of a tetR gene. To express BHRF1 (the gene of interest) from 

the TREX pol II promoter we replaced GFP with a DNA fragment created using polymerase 

chain reaction (PCR).  

In the second step of the process, we removed the H1 promoter and INSR segment from the 

FH1t(INSR)UTG vector using restriction digestion at internal Pac1 sites. This was replaced 

with the TREX promoter and BHRF1 fragment from the FTGW plasmid. This segment was 

also removed using Pac1, one internal site and one introduced with the BHRF1 PCR product.  

This procedure is described in more detail below. 

The final product is the FTGW(BHRF1)UTG plasmid. The construct contains two cassettes; 

the TREX-gene cassette (highlighted in Figure 3.2A) and the UbiquitinP-TetR-T2A-eGFP 

cassette. In the second cassette the T2A peptide has been placed between codon-optimised 

TetR (Tet repressor) (307) and eGFP to link the two and ensure expression of both products. 

TetR and GFP mRNA are transcribed as one length, joined by T2A, which contains a cleavage 

site, so GFP and TetR are separated after translation, but expressed equally well (308).  
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Figure 3.2: Map of final vector plasmids and method of tetracycline inducible 
expression. (A) FH1t(gene)UTG plasmid with gene of interest expression cassette 
highlighted in red. Cassette containing pol II TREX promoter and gene of interest 
between two Pac1 sites. This cassette was taken from an intermediary vector, in order 
to insert a pol II promoter, and can insert in a forward or reverse, or sense or anti-
sense, orientation in relation to the vector backbone. A second cassette contains TetR 
and eGFP downstream of a constitutively expressed Ubiquitin C promoter and 
connected by a T2A peptide. The viral RNA genome is transcribed from a pol II CMV 
promoter and rev dependent nuclear export of the genome is mediated by the HIV rev 
response element (HIV RRE). The wood-chuck hepatitis virus post-transcriptional 
regulatory element (WPRE) helps to increase transgene expression. (B) Tetracycline 
inducible expression of gene of interest. eGFP and TetR are expressed constitutively 
from the ubiquitin C promoter. In the absence of Doxycycline (a tetracycline 
derivative) TetR binds and inactivates TetO to prevent gene expression. Doxycycline 
binds TetR and releases TetO so the gene can be transcribed from the TREX promoter. 
(286) 
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The first cassette consists of the TREX promoter (Pol II) and Tet regulated operator (TetO) 

downstream of the TATA box, followed by BHRF1 (307).  

Upon infection with this lentiviral vector eGFP and TetR are constitutively expressed from 

the Ubiquitin C promoter. Expression of TetR blocks transcription from the H1-TetO 

promoter in the absence of Dox by binding and inhibiting TetO. In the presence of Dox, Dox 

binds to TetR and inhibits its localisation to TetO, enabling transcription from the TREX 

promoter and expression of the gene of interest. (Figure 3.2B) 

 

3.2.1 Tagging of BHRF1 with haemagglutinin and generation of 

intermediate vectors 

We thought it important to tag BHRF1 as the only BHRF1 antibody to work well in Western 

blot (5B11) performs very poorly in immunofluorescence (IF) and co-immunoprecipitation 

(Co-IP). A PCR reaction with specific primers was used to insert a Haemagglutinin (HA) tag 

onto the 5’ end of the BHRF1 gene (HA-BHRF1), downstream of the ATG start codon. A 3’ 

Pac1 restriction site was also inserted and the whole construct was then flanked by BglII and 

EcoR1 restriction sites on the 5’ and 3’ ends respectively. (Figure 3.3B) The PCR product was 

inserted into the multiple cloning site of commercial vector system (Promega), pGEM®-T 

easy (GenBank® Accession No. X65308), (Figure 3.3A) using A-tailing and blunt end cloning. 

Transformed colonies were identified through blue/white selection and sequenced using 

forward and reverse PCR primers and T7 commercial sequencing primer (alta biosciences). 

An untagged version of BHRF1 was also amplified by PCR at this point to provide a control to 

assess if the tag affected protein function.   
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Figure 3.3: Design of initial PCR product. (A) Vector map of commercial pGEM T 
easy vector from Promega (GenBank® Accession No. X65308). PCR products 
were inserted into the multiple cloning site after A-tailing, using blunt end 
ligation. The multiple cloning site falls within the lacZ gene leading to its 
disruption with the product insertion. In this way plasmids containing inserted 
PCR products can be picked by blue/white selection. (B) PCR primers used for 
addition of HA tag and restriction sites to wild type BHRF1. BglII restriction site 
was added to the 5’ end of BHRF1 along with the HA tag, after the start codon, 
with the forward primer. A control with BglII but no HA tag was also made. 
Pac1 and EcoR1 restriction sites were added to the 3’ end using the reverse 
primer. The same reverse was used for both tagged and control versions of 
BHRF1.  The same primers were used for wild type and all mutant versions of 
BHRF1.   

5 ’- GCAGATCTACCATGGCCTATTCAACAAGGGAGATAC - 3’

5’ – GCAGATCTACCATGTACCCATACGATGTTCCAGATTACGCT
GCCTATTCAACAAGGGAGATACTGTTAG - 3’

5’ – AAGAATTCTTAATTAATTAGTGTCTTCCTCTGGAGATAAA
TAAATAACTAC - 3’

HA-BHRF1 
Forward

BHRF1 
Forward

BHRF1 
Reverse

BglII Start Haemagglutinin tag

EcoR1 Pac1

B

BHRF1HAACCATGBglII EcoR1Pac1
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HA-BHRF1 was removed from pGEM®-T easy using the added BglII and EcoR1 restriction 

sites. The FTGW vector was digested with BamH1 and EcoR1 to remove a 761bp fragment 

containing the eGFP insert but leaving behind the TREX promoter. The HA tagged BHRF1 

construct was ligated into this linearised vector using BamH1/BglII and EcoR1/EcoR1 

complementary ends. This gave a construct containing the 5’ HA-BHRF1 gene with 3’ Pac1 

site, all downstream of the TREX promoter and resulted in a construct referred to as 

FTGWHA-BHRF1 (Figure 3.4). 

Before proceeding to clone the TREXHA-BHRF1 cassette in the final lentivirus backbone the 

ability of the TREX promoter to express BHRF1 was checked using the FTGWHA-BHRF1UTG 

vector. This was introduced into the 293T epithelial cell line by transient transfection and 

transduction (Figure 3.5). 293T cells were used as these tend to be very amenable to 

transfection and transduction and are an ideal line to use for preliminary experiments to 

ensure that expression is possible. Very high levels of BHRF1 mRNA and protein were 

expressed by both transfected and transduced 293 cells. BHRF1 mRNA expression was also 

seen in transduced BL41 cells but at levels much nearer those seen in Wp lines (Figure 3.5A). 

PSG5 BHRF1 was used as a transfection control and gave levels of mRNA and protein similar 

to those seen in Wp lines. It is clear that the TREX promoter has the ability to express BHRF1 

mRNA and this is able to be translated. There is the potential for BHRF1 to be expressed at 

very high levels, although, from the levels of mRNA seen in transduced BL41 cells, this 

expression is likely to be much lower in EBV negative BL lines than in 293s.  

 

3.2.2 Generation of final lentiviral product TREX(HA-BHRF1)UTG  

The HA-BHRF1 downstream of the TREX promoter and Tet operator now forms a new 

cassette which was digested out of the FTGW vector with Pac1 enzyme to give a 1317bp 
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Figure 3.4: Cloning BHRF1 into the intermediate vector: (A) FTGW vector 
was linearised by digestion with BamH1 and EcoR1 restriction enzymes to 
remove a fragment of  761bp containing GFP. HA-BHRF1 was removed 
from pGEMT by digestion with the BglII and EcoR1 restriction sites that 
were introduced with the PCR primers. This BHRF1 fragment was then 
inserted into the linearised vector using the complimentary EcoR1/EcoR1 
and BamH1/BglII sites. (B) Digestion products of various vectors with and 
without BHRF1. To indentify correct ligation products, mini-prepped clones 
were digested with BamH1 and BglII. These enzymes were chosen due to 
an appropriate number of sites and range of digestion product sizes. There 
is a BamH1 site within the BHRF1 fragment so with correct fragment 
insertion a new BamH1 site is added to the vector. These digests enabled 
identification of whole undigested plasmid, linearised plasmid and FTGW-
HABHRF1 plasmid in which ligation has been successful. 
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Figure 3.5: Checking HABHRF1 expression from the FTGWHABHRF1 plasmid. 
Expression of the HABHRF1 PCR fragment was checked in the FTGWHABHRF1 
plasmid, with BHRF1 expressing BL and LCL lines as positive and negative 
controls. Lentivirus plasmids were introduced into the 293 epithelial cell line by 
transient transfection and transduction. (A) Transfected and transduced 293 
cells express high levels of BHRF1 mRNA. Transduced BL41 EBV negative BL 
expresses much lower levels of BHRF1. PSG5 BHRF1 plasmid was used as a 
transfection control and gives more physiological levels. (B) BHRF1 protein is 
over-expressed in transfected and transduced 293s relative to physiological 
levels in Avako and Salina Wp BL. This protein expression corresponds to the 
levels of  mRNA seen in (A).  
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sized fragment. The FH1t(INSR)UTG vector was also digested with Pac1 to remove the shRNA 

insert and H1tTetO, a 351bp sized fragment in total. The FTGW fragment containing HA-

BHRF1 and TREX promoter was ligated into FH1t to give TREX(HA-BHRF1)UTG, in which the 

HA tagged BHRF1 construct should be expressed from the TREX promoter in a Dox regulated 

manner. (Figure 3.6) 

Because the TREX HA-BHRF1 fragment has Pac1 restriction sites on both ends it is possible 

for it to insert in either the forward or reverse orientation in respect to the lentiviral 

backbone. The orientation of the fragment could affect expression and inducibility. For 

example, genes in the forward orientation could be subject to read-through from promoters 

upstream of the inserted cassette leading to expression in the absence of Dox. However, the 

reverse orientation could result in reduced stability and translation of mRNA and hence 

lower protein expression due to the lack of a downstream polyadenylation signal (309). The 

orientation of the inserted cassette can be determined through digestion with BamH1 

(present within BHRF1 sequence) and BglII which give differently sized fragments depending 

on orientation. (Figure 3.6B) This can be confirmed during the sequencing of the final 

TREX(HA-BHRF1)UTG plasmid by identifying the orientation of the cassette in relation to the 

external primer.  

 

3.2.3 Generation of BHRF1 mutant lentiviruses 

Eight mutants of BHRF1 were developed by Marc Kvansakul. These mutants all contained a 

single base change leading to an amino acid substitution within the BH3 binding domain of 

BHRF1 (see chapter 4 for full description). They were originally received from Marc 

Kvansakul in the pGAL-trp vector from which I obtained the BHRF1 sequences. I performed 

cloning for each mutant as described above (Sections 3.2.1-2). As the base change was fairly 
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Figure 3.6: Production of final lentivirus vector. (A) After checking the insertion, 
HABHRF1 FTGW was digested with Pac1 restriction enzyme. It now contains two 
Pac1 sites as one was added with the insertion of the HABHRF1 fragment. This 
digest removes a 1.32kb fragment containing the TREX promoter and HABHRF1. 
This was extracted from an agarose gel and purified. The FH1T(INSR)UTG plasmid 
was also digested with Pac1 to remove a 351bp fragment containing the H1 
promoter and INSR sequences. The TREX-HABHRF1 fragment was ligated  into the 
linearised vector to give a vector labelled TREX(HABHRF1)UTG.  Due to the ligation 
into two Pac1 sites the TREX-HABHRF1 cassette can insert in either the forward or 
reverse orientation.  (B) Vector digests. 500ng of each plasmid was digested with 
the various restriction enzymes used in the cloning procedure. Correct clones were 
again indentified by digestion with BamH1 and BglII. Differences in fragment sizes 
allowed identification of undigested vector, linearised vector and plasmid with 
TREX-HABHRF1 insertion. They also allow differentiation between fragments 
inserted in forward and reverse orientations. For example; the reverse orientation 
gives a distinctive doublet of 642 and 598bp, between the 500 and 650bp marker 
bands, as compared to a single band on 598 in the forward orientation. The 
insertion and orientation of the fragments was confirmed by sequencing with TREX 
(within the TREX promoter), Pac1F (Pac1 site within vector) and Pac1R (Pac1 site 
from fragment) sequencing primers.  
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central in the BHRF1 sequence the same PCR primers as for wild type were used. The 

presence of the mutation was checked by sequencing prior to cloning and after cloning was 

complete. 

 

3.3 Generation of stably infected cell lines 

3.3.1 Production of lentivirus stock 

After confirmation by sequencing, the final TREX(HA-BHRF1)UTG lentivirus was bulked up in 

the Stabl3 chemically competent E.coli strain (Invitrogen), which is designed specifically for 

the cloning of unstable inserts and reduce the frequency of homologous recombination of 

the long terminal repeats (LTRs) found in lentiviruses. Plasmid DNA was then removed and 

purified.  

The HEK 293FT cell line was used for the production of lentiviruses along with the addition of 

psPAX2 packaging plasmid and the pMD2.G envelope plasmid, together making a 2nd 

generation system. At the same time, lentivirus was made using an empty control vector, 

FH1t(empty)UTG, in which the shRNA insert was removed. 

 

3.3.2 Stably infecting cell lines 

Two EBV negative BL lines, BL41 and BL2, were transduced with control, HA-BHRF1 and 

mutant BHRF1 lentiviruses via the spin infection method. Approximately one week post 

transduction the GFP expression of transduced lines was assessed by FACS (Figure 3.7A). The 

initial levels of GFP expression varied widely depending on which virus (for example; empty, 

wild type or different mutants) was used. BL41 was also much easier to infect than BL2, 

which, despite having the apparent advantage of being negative for BIM, seemed to be less 
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Figure 3.7: GFP levels in BL41 and BL2  lentivirus transduced lines. Lines 
were transduced by spin infection with control and HABHRF1 lentivirus. The 
virus expresses GFP constitutively and this can be measured by flow 
cytometry. (A) 48 hours post infection cells were between 60 and 80% 
positive when compared to the uninfected GFP negative lines.  Transduction 
of BL2 lines in particular was not well tolerated to the extent that there were 
not enough BL2 cells infected with TREX(HABHRF1)UTG  to measure by FACS 
after 48h, although transduced cells later grew out after ficoll gradient 
purification. (B) 15 days post transduction, the intensity of GFP expression 
had dropped, the average intensity reduced by a factor of 10. However the 
percentage of GFP positive cells remained similar. (C) In order to increase 
the GFP intensity, a round of super-infection was performed. This resulted in 
two populations, one was the original GFP intensity in which no super-
infection had occurred, the other was a small population which had taken up 
a second round of virus. The GFP intensity of the second population had 
risen by at least a factor of 10.   
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tolerant of the transduction procedure. Levels of GFP also fell over time. Specifically, while 

the percentage of GFP positive cells remained between 60 and 80%, GFP intensity fell by a 

factor of 10. This indicates that much of the GFP expression seen in the first few days post 

infection was derived from virus that had not stably integrated and was subsequently lost 

(Figure 3.7B). 

Initial rounds of transduction only resulted in partial infection of BL41 and BL2. A round of 

super-infection was subsequently performed which resulted in two populations, one of the 

original GFP intensity and another with a mean intensity around 100 times higher (Figure 

3.7C). This was followed by sorting for the top 50% intensity of GFP expression in the highest 

peak using a MoFlo cell sorter. Sorting returned 100% GFP positive cells with a stable mean 

GFP intensity 100 times higher than the original 1st round of infection (Figure 3.8). After 

induction with the tetracycline derivative doxycycline (Dox), these sorted lines expressed 

physiological levels of BHRF1, comparable to those seen in the Wp restricted line Salina 

(Figure 3.9). The same cells cultured in parallel in the absence of Dox, did not express 

detectable levels of BHRF1, although they later became leaky with extended time in culture.  

 

3.4 Assessing BHRF1 expression and function 

Over a series of experiments, protein expression of non tagged BHRF1 and HA-BHRF1 in the 

forward and reverse cassette orientation was found to be broadly similar. Expression levels 

were also comparable to those seen in Salina, a Wp restricted BL line which expresses BHRF1 

at high levels, and so were physiologically relevant, and both HA-tagged and untagged 

BHRF1 expression were tightly regulated by Dox (Figure 3.9). 

The ability of BHRF1 to protect from apoptosis was assessed, in the first instance, using a 

simple FACS assay. Cells were cultured either in the presence or absence of Dox for 48 hours, 
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Figure 3.8: Expression levels after sorting: (A) After super-infection the top 50% of 
the most intense GFP peak were sorted for GFP. After cells had recovered they were 
re-assessed for GFP expression.  Average GFP intensity of BL41 and BL2 lines was 
now stably 10x that of the original transductions. The differences in the scale of GFP 
intensity between (A) and Figure 3.7 are due to a change in the flow cytometer 
used. As these readings are purely relative, the values depend on the intensity of 
the laser. However, using the parental GFP negative controls a comparison can still 
be made. (B) Levels of HA expression determined using APC staining.  HABHRF1 
expression, induced with 1µg/ml Dox for 48h, were 10x higher in BL41 and 5x higher 
in BL2 than the empty vector and no virus parental control. The double peak, as 
with no virus control in BL2,  was occasionally seen and is due to non specific 
background staining with the APC secondary antibody.  
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Figure 3.9: Dox induced expression of BHRF1 protein. BL41 lentivirus 
lines were induced with 1µg/ml Dox for 48h and assessed for expression 
using antibodies to BHRF1 (5B11) and HA. All lines expressed similar 
levels of GFP. HABHRF1 expression in forward and reverse cassette 
orientations was equal to non HA tagged protein over a number of 
experiments.  
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and subsequently were treated with either 0, 0.75 or 1.5 μg/ml ionomycin for 48 hours. Cells 

were harvested and stained with propidium iodide (PI) to enable identification of dead cells. 

Un-induced lines (without the addition of Dox) gave very similar levels of death as the BL41 

parental line (Figure 3.10). BHRF1 is known to confer an anti-apoptotic phenotype at very 

low levels of protein expression, too low for detection by Western blot (101). Expression 

from the TREX promoter is highly inducible, in my experiments no BHRF1 associated 

protection was initially seen in the un-induced lines.  

To confirm that HA-BHRF1 is able to protect from apoptosis at similar levels to endogenous 

BHRF1 from a variety of lines, we used four cytotoxic drugs, which act upon the intrinsic 

apoptosis pathway; ionomycin, anti-IgM, etoposide and roscovitine (see section 4.5), to 

induce death in a panel of Wp BL lines alongside the HA-BHRF1 expressing BL41 line (Figure 

3.11). BL41 parental was used as a BHRF1 negative control. We found that HA-BHRF1, 

expressed by the inducible lentivirus system in BL41, protected against apoptosis to similar 

levels as endogenous BHRF1 expressed in Salina, Oku and Avako BL. This was the case with 

all four drugs tested.  

Levels of apoptosis protection conferred by HA-tagged and untagged BHRF1 were very 

similar to those seen in Salina, so the HA tag clearly does not affect this function. To confirm 

that HA-BHRF1 was still able to localise to the mitochondrial membrane, confocal 

microscopy was performed using antibodies against the HA tag and COXIV (a mitochondrial 

membrane marker) to assess their co-localisation. (Figure 3.12) It is known that BHRF1 is 

localised on the mitochondrial membrane but there are reports that it can also localise to 

the endoplasmic reticulum and nuclear envelope. (310) Localisation to the mitochondrial 

membrane was seen in our assay (Figure 3.12), as well as a small amount of co-localisation 

with the endoplasmic reticulum marker calnexin (data not shown), although we were not 
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Figure 3.10: Effect of HA tag and cassette orientation on the function of BHRF1. 
The anti-apoptotic phenotype of BL41 BHRF1 expressing lines, with Salina-BL and 
parental BL41 as positive and negative controls respectively. Induced (1ug/ml dox 
48h) and uninduced lines were treated with various ionomycin concentrations for 
48h. Cells were harvested and stained with Propidium iodide (PI). GFP (FL1) and PI 
(FL4) were measured by flow cytometry.  Drug treated live green cells (GFP +ve PI 
–ve) were normalised to untreated live green cells.  



Figure 3.11: BL41 BHRF1 expressing lines protect from apoptosis as well 
as Wp lines. BL41 HABHRF1 lines were induced with dox. Apoptosis was 
induced through incubation of cells with four cytotoxic drugs;  1ug/ml 
ionomycin and 6ug/ml anti-IgM for 72 hours and 2.5ug/ml etoposide and 
20ug/ml roscovitine for 48 hours. Values are from three independent 
experiments. 
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Figure 3.12: HABHRF1 localises to the mitochondria. The co-localisation of the HA tag 
of HABHRF1 (red) and a mitochondrial marker, COXIV (green) was looked at using 
confocal microscopy. When two spots were seen to overlap, profile and histogram 
software on the confocal were used to analyse the degree of co-localisation. A line is 
drawn to bisect the points of interest and the fluorescence intensities along that line 
are given for all fluorophores. If the peaks of intensity for two points coincide then 
there is  probable co-localisation. This can also be shown statistically using overlap 
coefficients (303) which calculate the degree to which pixels from each image co-
localise irrespective of signal intensity or photo bleaching. The overlap coefficient for 
HA/CoxIV was 0.9 (complete overlap = 1).  

Overlap 
Coefficient = 0.9 
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able to find any nuclear localisation. However, the microscopy was hampered by the 

extremely small size of BL cells which makes identifying co-localisation difficult.  

The localisation studies, along with the apoptosis assays, indicate that BHRF1 function is not 

affected by the HA tag and that BL41 cells infected with TREX(HA-BHRF1)UTG are a good 

model in which to study BHRF1 function.  

 

3.5 Discussion 

3.5.1 Establishing a lentivirus system for inducible expression of BHRF1 

In order to stably infect EBV negative BL cells I used an inducible lentivirus system developed 

by Herold et al. (286). Lentiviruses are useful in that they can infect dividing and non-dividing 

cells and deliver sustained gene expression through integration into the host genome. 

Lentivirus infection is superior to transient transfection for a variety of reasons, including 

more stable and less variable levels of gene expression. Additionally, the use of lentiviruses 

circumvents the need for possibly cytotoxic transfection reagents and any drugs that may 

potentially be needed for selection. This particular lentivirus also has the benefit of a TREX 

tetracycline inducible promoter, enabling expression to be tightly regulated. The TREX 

system has advantages over other models. For example, there is a less direct model in which 

a fusion protein consisting of the tet repressor and VP16 activating domain is used (311). In 

the absence of tetracycline the fusion protein binds to a tet operator sequence adjacent to a 

simple CMV promoter which is activated by VP16 to induce transcription. When tetracycline 

is added, the tet repressor is prevented from binding the operator and VP16 is no longer in 

contact with the promoter, causing transcription to cease (311). This system requires 

constant tetracycline addition to prevent transcription, needed if the gene of interest is toxic 
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to the cells, and may result in leaky expression if tetracycline is not added at a high enough 

concentration. Induction of expression by withdrawal of tetracycline is also slower than by 

addition. If the protein of interest has a long half life and is likely to remain in the cell after 

transcription has stopped the new phenotype may also be difficult to ascertain. VP16 also 

has the potential to activate other promoters, interfering with the phenotype.  

The TREX system overcomes these problems in that transcription is induced, rather than 

repressed, by addition of tetracycline. However, we have still found this promoter to be 

slightly leaky in the absence of tetracycline, or its derivative doxycycline (Dox). This was not 

apparent when the cell lines were used for experiments but became particularly noticeable 

in lines of high passage, or cells that had undergone crisis such as storage in nitrogen. Due to 

the highly protective nature of BHRF1 there is most likely a selection advantage over time, or 

during periods of crisis, for any cells that express BHRF1 in the absence of Dox.  

BHRF1 mRNA and protein were expressed from the FTGWHA-BHRF1 vector at very high 

levels in 293 epithelial cells (Figure 3.6). The high expression levels may have been due to a 

combination of 293s being highly amenable to transfection and infection, and the 

constitutive expression from the TREX promoter in this plasmid. This would allow BHRF1 

mRNA and protein to build up in the cells. Transduction of FTGWHA-BHRF1 into BL41 EBV 

negative BL line gave mRNA levels closer to those seen in Wp-restricted BLs due to the 

apparent resistance of this line to infection. 

During the first few days after initial transduction of BL41 and BL2 with TREX(HA-

BHRF1)UTG, a large percentage of cells expressed high intensities of GFP. However, after the 

first few days the intensity of the GFP expression began to fall and had to be boosted by 

rounds of super-infection. (Figure 3.7) This is most likely due to partial integration of the 

lentivirus, with any virus that has not integrated being lost over time and subsequent rounds 
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of cell division.  After sorting for cells expressing a high intensity of GFP, levels of expression 

became much more stable over time.  

BL2 was more difficult to infect to a high level of GFP intensity than BL41 and persistently 

express lower levels of BHRF1 than BL41, even after sorting. This may be due to the 

sensitivity of the cells to adverse conditions and decreased tolerance of the transduction 

procedure leading to the death of any cells that have been highly infected. It is also known 

that, depending on the area of insertion into the genome, promoter silencing in lentiviruses 

can occur due to DNA methylation and other epigenetic modifications (312). It has been 

found with this vector system that some genes cannot be expressed (personal 

correspondence, G. Kelly, October 2010) which could be due to epigenetic promoter 

changes and may explain the inefficiency of expression in BL2.   

 

3.5.2 BHRF1 function is not affected by the HA tag or cassette 

orientation 

Once BL41 cells were transduced with TREX(HA-BHRF1)UTG, and were stably expressing a 

high level of GFP, various lines were tested to check the phenotype of BHRF1. (Figure 3.9) 

The orientation of the TREX-HA-BHRF1 cassette could affect the control, and efficiency, of 

BHRF1 expression. The forward, or sense, and the reverse, or anti-sense, orientations of the 

cassette both have their pros and cons.  Insertion in the forward orientation could result in 

promiscuous expression of BHRF1 due to read-through from the upstream viral CMV 

promoter. Alternatively reverse orientation may be detrimental due to our decision not to 

include an internal polyA sequence in the cassette. This was decided because of the risk that 

introducing a new polyadenylation signal could severely reduce the viral titre due to 
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premature termination during virus replication. However, a polyA tail is required for efficient 

production of mRNA as it aids in export from the nucleus and affects stability in the 

cytoplasm. The PolyA sequence is also particularly important for coding mRNAs in that it 

may improve recognition by the ribosomes and hence translation (312, 313). Because of the 

risk of truncation, lentivirus backbones now often contain an alternative to a polyA 

sequence just upstream of the 3'LTR to aid in stabilising of the viral RNA. In the case of 

FTGW and FH1t(INSR)UTG this is the Woodchuck hepatitis-virus Post-transcriptional 

Regulatory Element (WPRE).  This can also help to stabilise mRNAs from the expression 

cassettes if they are in the sense orientation in relation to the WPRE.  

BHRF1 was HA tagged by PCR in order to aid in both protein detection and additional assays 

such as co-immunoprecipitation (Co-IP) and confocal microscopy. The only monoclonal 

BHRF1 antibody we have found to work well in Western blot (5B11) performs very poorly 

when used in immunoflourescence (IF) and Co-IP, and for this reason it was highly desirable 

that a tagged form of BHRF1 be used.  

 When adding a tag to a protein coding sequence, there is the potential that protein folding 

and hence function could be affected. The HA tag was inserted at the N terminal end 

immediately after the start codon. This was due to a C terminal hydrophobic domain which 

localises the protein to intra-cellular membranes, mainly the outer mitochondrial membrane 

similarly to BCL-2 (46, 103). 

The N terminus of BHRF1 contains the α1 helix, within four codons of the transcription start 

site, which is homologous to the BH4 domain in cellular BCL-2 proteins (46). It could 

potentially interfere with folding at this site, especially if the α1 helix is internalised within 

the protein structure. However, the BH4 domain has been shown not to be well conserved 

between cellular BCL-2 homologues, leading to the conclusion that it is not important for 
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function. The binding groove of BHRF1 also does not start until the α2 helix, quite a way 

downstream of α1 and so is unlikely to be affected by additions at the N terminus (104). 

(Figure 1.7) 

The effect of the HA tag and orientation of the expression cassette on BHRF1 function and 

expression was tested by measuring BHRF1's ability to protect from cell death induced by 

ionomycin, a common apoptosis inducing drug. BHRF1 expression was not affected by the 

orientation of the expression cassette and the HA tagged protein functioned just as well as 

the un-tagged version regardless of orientation. (Figure 3.9) Both tagged and untagged 

proteins provided similar levels of protection to those seen in Salina, a Wp restricted BL line 

expressing high levels of BHRF1, showing that the protein performs naturally, despite the 

absence of the surrounding elements of the EBV genome, and that the HA tag does not 

significantly affect protein folding. HA-BHRF1 protected BL41 lines from a variety of 

cytotoxic drugs to similar levels as endogenous BHRF1 expressed in Salina, Avako and Oku-

BL Wp restricted Burkitts (Figure 3.11). HA-BHRF1 is also able to localise to the 

mitochondrial membrane, an ability central to its function (310).  

Overall, this demonstrates that the TREX(HA-BHRF1)UTG lentivirus is a good system for 

artificially expressing BHRF1 in EBV negative BL lines. It is tightly inducible, with marked 

difference in expression and phenotype between induced and un-induced lines. 

Physiological levels of BHRF1 expression have been achieved and this system can now be 

used to study aspects of BHRF1 function and interaction with other BCL-2 homologues.  
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4. BHRF1 binding groove mutations and their ability to protect from 

apoptosis 

4.1 Introduction 

In earlier sections we discussed the structure of BHRF1 in relation to cellular BCL-2, and the 

way in which its function relates to the highly conserved BH3 binding groove.  

 We have acquired eight different functional mutants of BHRF1 from Dr. Kvansakul which 

have been previously characterised using isothermal titration calorimetry (ITC) and yeast 

expression as described in Dr. Kvansakul’s recent paper (104). These contain point mutations 

all within the conserved BH3 binding groove of BHRF1. The binding groove is encoded within 

the 1st BH domain and is essential for the binding of BHRF1 to the BH3 domains of pro-

apoptotic homologues.  By changing one or two nucleotides within the groove, and hence 

causing an amino acid substitution, we can affect the ability of BHRF1 to bind certain pro-

apoptotic BCL-2 homologues such as BIM, PUMA, BID, BAX and BAK. 

The ability of BHRF1 to bind the BH3 domains of certain pro-apoptotic BCL-2 homologues 

should affect its ability to protect from apoptosis. According to the various models for 

cellular BCL-2 homologue interaction, a loss of binding to pro-apoptotic homologues should 

lead to an increase in apoptosis as BHRF1 would no longer be able to hold BAX and BAK 

inactive or sequester the BH3-only proteins.  

So far these mutants have only been characterised in a yeast based expression system. In 

order to gain a more accurate picture of BHRF1 binding properties in vivo the mutants must 

first be expressed in a B cell system and characterised in vitro. To be able to tease out how 

the changing ability of BHRF1 to bind various BCL-2 homologues results in  differing levels of 
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protection from intrinsic apoptosis, the mutants were ectopically expressed in EBV negative 

BL backgrounds using the inducible lentivirus vector characterised in the preceding chapter. 

 

4.2 BHRF1 binding groove mutations 

The amino acid candidates for mutation were determined by Kvansakul et al. through 

structural analysis of BHRF1 bound to BIM and BAK (104) and from an extensive review of 

the literature.  

The mutants were originally characterised in a yeast based expression system by Mark 

Kvansakul. Previously this group characterised the ability of a C-terminally truncated form of 

BHRF1 to bind the BH3 domains of pro-apoptotic BCL-2 homologues; BIM, PUMA, BID and 

BAK, with varying levels of affinity, using isothermal titration calorimetry (ITC) (104). These 

findings were further corroborated using co-immunoprecipitation of full length BHRF1 and 

pro-apoptotic BCL-2 homologues in a mammalian cell background. They also confirmed 

these results using a yeast based expression system, where death is induced by the over-

expression of BAX and BAK (method described in (104) and (314)). This kind of system is 

useful in that it removes any effects due to the presence of cellular BCL-2. Yeast does not 

contain any known BCL-2 homologues or undergo apoptosis. However, in the budding yeast 

Saccharomyces cerevisiae expression of BAX and BAK induces a form of caspase mediated 

cell death (315). An artificial intrinsic apoptotic pathway can then be reconstituted in yeast to 

test the ability of certain BCL-2 homologues to protect from BAX/BAK mediated cell death. 

The ability of BHRF1 to bind the BH3 domains of BIM, PUMA, BAX, BAK and BID was altered 

by mutating a single amino acid within the binding groove. Changes to amino acids within 

the BHRF1 binding groove can affect the ability of BHRF1 to bind the BH3 domain of cellular 

BCL-2 homologues. For example, changing the R100 amino acid has been shown to prevent 
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the formation of a conserved salt bridge with amino acids D67 and D83 on the BIM and BAK 

BH3 domain respectively, hence reducing the ability of BHRF1 to bind BIM and abolishing its 

ability to bind BAK (104, 109). 

The locations of the main mutated amino acids are shown in Figure 4.1A, which shows the 

structure of BHRF1 bound to the BH3 domain of BAK. The binding groove of BHRF1 falls 

between the α3 and α5 helix (Figure 4.1B) and the amino acid changes cluster in this area. 

Table 4.1 shows the nucleotide changes which lead to specific single amino acid 

substitutions. The mutant name refers to the amino acid change and the location within the 

sequence, e.g. T68G gives T (threonine) to G (glycine) at location 68. The mutants will be 

referred to in this manner from here onwards. In Table  4.1 the base changes are highlighted 

in red and lead to amino acid substitutions which, in some cases, results in significant 

changes in  amino acid properties, for example, R93D and R100D substitutes a positively to a 

negatively charged side chain and T68G substitutes a polar (hydrophilic) to a non-polar 

(hydrophobic) residue.  

So far, these mutants have only been characterised using ITC and expression in a yeast based 

system. Table 4.2 shows the binding data of the various mutants as found by Mark Kvansakul 

using ITC. This technique gives a dissociation constant (Kd) which is used to describe the 

affinity between a ligand (BH3 domain) and a protein binding domain (BHRF1 binding 

groove). It is given as the molar concentration of the ligand at which the binding site on the 

protein is half occupied. The smaller the dissociation constant the tighter the binding 

between ligand and protein, i.e. the higher the affinity, the lower the concentration of ligand 

needed to saturate the protein binding site.   

The individual mutations cause the ability of BHRF1 to bind BH3 peptides from BIM, PUMA, 

BID, BAK and BAX to vary widely. For example, the R100D mutation causes the complete loss 
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Figure 4.1: Locations of mutations within the  BHRF1 binding groove. (A) Locations 
of amino acids to be mutated. Diagram shows the structure of BHRF1 bound to the 
BH3 domain of BAK (orange helix). Amino acids to be mutated are labelled in black 
and locations are highlighted in colour. G99 amino acid was also chosen for 
mutation but is located on the reverse of BHRF1 as it is shown in this orientation. 
From (104). (B) BHRF1 amino acid sequence. BHRF1 binding domain (bold) is 
located between the  α3 and α5 helixes and includes the BCL-2 homology domain 1 
(BH1). Amino acids which will be mutated and are important for BCL-2 homologue 
binding are highlighted in red. (Adapted from (46)) 

A 

B 
MAYSTREILLALCIRDSRVHGNGTLHPVLELAARETPLRL

SPEDTVVLRYHVLLEEIIERNSETFTETWNRFITHTEHVD

LDFNSVFLEIFHRGDPSLGRALAWMAWCMHACRTLCCNQS

TPYYVVDLSVRGMLEASEGLDGWIHQQGGWSTLIEDNIPG

SRRFSWTLFLAGLTLSLLVICSYLFISRGRH

5                   α1                 21

45                   α2 60 63         α3 72

80      α4       89 99                   α5 117

123                α6             137 α6’  146              α1  

Transmembrane domain

BH2

BH1

BH3

BH4



Mutant 
name 

DNA mutation Amino acid change 

T68G ACT > GGT Threonine 68 to glycine 

R71W AGA > TGG Arginine 71 to tryptophan 

F72W TTT > TGG Phenylalanine 72 to tryptophan 

E89G GAG > GGG Glutamic acid 89 to glycine 

R93D CGT > GAT Arginine 93 to aspartic acid 

G99A GGG > GCG Glutamic acid 99 to alanine 

R100D CGC > GAC Arginine 100 to aspartic acid 

L102I TTG > ATT Leucine 102 to isoleucine 

Table 4.1:  BHRF1 mutants and amino acid changes.  Base changes within  
BHRF1 change amino acids within the groove which binds the BH3 domain of 
pro-apoptotic BCL-2 homologues. The amino acid candidates for mutation were 
determined by Kvansakul et al. 2010, through structural analysis of BHRF1 
bound to BIM and BAK and through the literature. (104) 



Table 4.2: Binding affinities of BHRF1 mutants to cellular BCL-2 homologues. 
Given as dissociation constant (Kd) found using isothermal titration calorimetry 
(ITC) with a C terminally truncated  form of BHRF1 and the BH3 domains of BCL-2 
homologues. Kd is given in nM which represents the concentration of ligand 
needed to occupy 50% of the protein binding sites. The higher the concentration, 
the less strongly the ligand binds. NB represents cases in which no binding occurs. 
Fold change in the strength of binding of mutant compared to WT  is given in 
brackets. Data from Mark Kvansakul.  

BAX BAK BID PUMA BID BAX BAK PUMA 

Mutant BIM BAX BAK PUMA BID 

WT 18±2 1400±184 150±69 70±4 109±1 

T68G 9±1 
(up 2x) 

NB 491±129 
(down 3x) 

309±200 
(down 4.5x) 

102±2 
(no change) 

R71W 25±3 
(no change) 

288±6 
(up 5x) 

94±1 
(up 1.5x) 

n/a 132±4 
(no change) 

F72W NB NB NB 282±46 
(down 4x) 

NB 

E89G 930±6 
(down 51.5x) 

6050±637 
(down 4x) 

NB 604±117 
(down 8.5x) 

315±8 
(down 3x) 

R93D 10±2 
(up 1.5x) 

2340±481 
(down 1.5x) 

731±52 
(down 5x) 

78±6 
(no change) 

NB 

G99A 83±21 
(down 5x) 

NB 4400±1970 
(down 29.5x) 

177±16 
(down 2.5x) 

NB 

R100D 275±75 
(down 15.5x) 

NB NB 394±95 
(down 5.5x) 

NB 

L102I 13±3 
(no change) 

NB 180±58 
(no change) 

33±21 
(up 2x) 

34±6 
(up 3x) 
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of binding to BAK, BAX and BID, and the binding to BIM and PUMA to reduce by 15 and 5 

fold respectively (Table 4.2).  F72W completely loses binding to every BCL-2 homologue 

tested, except for PUMA, for which the binding affinity is reduced 4 fold. G99A also has 

reduced binding to BIM and PUMA (a 4.5 and 2.5 fold reduction respectively), has lost 

binding to BID and BAX and has negligible binding to BAK (Table 4.2).  

ITC also has the limitations of looking only at peptides in solution, which may not be 

physiologically relevant. Whilst this data is informative, it is difficult to truly determine the 

effect that each mutation will have on the ability of BHRF1 to protect from apoptosis in a 

physiological setting, such as a lymphoma cell.  

To determine how loss or improvement of BHRF1 binding to certain BCL-2 homologues 

affects the function of BHRF1 these mutants need to be investigated in a more physiological 

system.  

 

4.3 Expressing mutants of BHRF1 in EBV negative BL cell lines 

To investigate the interaction of BHRF1 and the various BHRF1 mutants with cellular BCL-2 

homologues the HA tagged wild type and mutants were cloned into the dox-inducible 

lentivirus system described in chapter 3. This then enabled the stable infection of BL41 and 

BL2 EBV negative lines so that their function could be assayed in the absence of other viral 

factors that could contribute to the degree of apoptosis protection. As in section 3.3.2, the 

BHRF1 mutants were transduced into BL41 and BL2 cells, over rounds of infection and super-

infection, and then sorted for the top 50% GFP intensity.   

In this vector system, GFP along with the tet repressor, is expressed constitutively from an 

independent promoter, and so is a useful marker for levels of transduction. The GFP 

intensities of the BL41 (Figure 4.2) and BL2 (Figure 4.3) BHRF1 mutant lines are all similar to 
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Figure 4.2: GFP levels in BL41 lines sorted for the top 50% of GFP intensity. The 
first plot shows uninfected GFP negative parental BL41 (red) compared the 
levels of GFP in the empty (green) and BHRF1 wild type (blue) lentivirus 
infected BL41 lines. The next eight plots show the levels of GFP named mutant 
(black) compared to wild type BHRF1 (blue). GFP expression in generally 
similar between the mutants and BHRF1 wt except for in two mutants 
(HAT68G and HAR93D).  

HAR100D 
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HAF72W HAE89G HAR93D 

HAG99A HAR100D HAL102I 

Figure 4.3: GFP levels in BL2 lines sorted for the top 50% of GFP intensity. As in 
figure 4.2 the first plot shows uninfected GFP negative parental BL2 (red) 
compared the levels of GFP in the empty (green) and BHRF1 wild type (blue) 
lentivirus infected BL2 lines. The next eight plots show the levels of GFP named 
mutant (black) compared to wild type BHRF1 (blue). GFP expression is again 
similar between the mutants and BHRF1 wt except for in HAR71W. This mutant 
later underwent a second round of sorting to bring the GFP levels down to those 
seen in the other mutants and wt. Generally all GFP levels were lower than 
those seen in BL41 lines which reflects the nature of BL2 to be less tolerant of 
virus transduction. 
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the BHRF1 wt, with the only significant exceptions being BL2 + HA-BHRF1 R71W and BL41 

HA-BHRF1 F72W and R93D. If the difference in GFP intensity translates into difference in 

protein expression, levels can be altered by Dox titration.  

The level of GFP intensity in BL2 lines is generally lower than BL41 lines. This correlates with 

what was seen in Figure 3.8 and was discussed in section 3.5.1. The HA levels were 

measured by FACs using HA-APC staining, and are given as the percentage of GFP positive 

cells which are also HA positive (Figure 4.4Ai and Bi) and the mean fluorescence intensity 

(MFI) of APC staining in cells which are also GFP positive (Figure 4.4Aii and Bii). Percentages 

of HA staining were fairly stable in BL41 lines but were more variable between the mutants 

in BL2. They varied between 71% and 93% in BL41 (Figure 4.4Ai) and 24% and 61% in BL2 

lines (Figure 4.4Bi).  

BL2 expression of HA tagged BHRF1 and mutants is around 2–3 fold lower than BL41 (Figure 

4.4Aii and Bii). This is confirmed in Figure 4.5 in which western blotting has been used to 

measure BHRF1 protein expression. There is some, but not complete correlation, between 

Figure 4.5 and Figure 4.4Aii and Bii. For example, BL41HAR93D has a high MFI and protein is 

highly expressed; however, BL2 R71W has a low MFI but higher protein levels. This may be 

due to variable levels of death in the cells to be harvested for protein. In the case of protein 

samples all cells are taken regardless of viability whereas with FACs, only the live population 

is measured. However, it could also be due to the nature of cell staining for flow cytometry 

which can be influenced by conditions such as fixation, antibody concentrations and 

background fluorescence. Levels of BHRF1 expression in BL2 lines are approximately 50% 

lower than in BL41 by Western blot. Expression levels in BL41 lines are similar to the 

physiological levels of BHRF1 seen in Salina Wp BL. Although the BL2 levels are lower than 

this it is known that very little BHRF1 expression is needed to see a phenotype. This lower 
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Figure 4.4: HA levels in (A) BL41 and (B) BL2 lines stained with APC, expressed as 
percentage of HA positive, GFP positive cells. (Ai) Induced HA positive cells in 
BL41 vary between 71% and 92%, with staining in un-induced lines being around 
10 to 20% as expression is slightly  leaky. (Bi) Levels of HA in BL2 lines are lower 
than BL41 but more tightly regulated. (Aii and Bii) mean fluorescence intensity 
(MFI) of induced and uninduced BL41 and BL2 lines respectively. MFI for APC in 
cells which are also GFP positive.  
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Figure 4.5: BHRF1 protein expression levels in BL41 and BL2 lines. BHRF1 protein 
expression was measured using the 5B11 BHRF1 antibody. (A) levels of BHRF1 in 
BL41  lines compared to Salina Wp BL. Lines were induced with concentrations 
of Dox between 0.5 and 1 µg/ml. Levels of expression are similar to Salina and 
so should have physiological levels of protection. (B) Levels of BHRF1 expression 
in BL2 lines compared to Salina BL and  wt HABHRF1 in BL41. The protein 
expression in BL2 is around 50% lower than in BL2 but levels between the 
mutants are consistent which should improve the ease of interpretation.  
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level could actually be an advantage as it may allow more differentiation between the 

phenotypes of the different mutants if the lines are not saturated by high levels of BHRF1, 

giving very high levels of apoptosis protection.  

Finally, the levels of HA expression in un-induced BHRF1 transduced BL41 lines are higher 

than the empty line (Figure 4.4A), indicating that there is some leaky expression from the 

TREX promoter. This is undetectable by Western blot but could affect the phenotype of the 

un-induced lines, as is known from LCLs, where only a very small amount of BHRF1 is 

required to exert a protective effect (101). 

 

4.4 A Flow cytometry assay to assess levels of apoptosis 

In order to determine the level of apoptosis protection conferred on BL41 and BL2 by 

mutated versions of BHRF1, an assay to accurately measure levels of drug induced apoptosis 

must be used. We decided to use a flow cytometry assay previously used by Kelly et al. in 

our group (101). This assay also has the advantage of distinguishing between populations of 

cells in the early and late stages of apoptosis. The assay uses two stains; Syto16 and 

propidium iodide (PI), to distinguish live and dead cells. Syto16, used by Kelly et al, is a green 

stain detected in the FL1 channel. As many of the cell lines used in our experiments were 

GFP positive we used Syto17, a red version of Syto16. 

The Syto stains are membrane permeable molecules which are actively pumped into healthy 

cells and fluoresce when bound to DNA/RNA (316). Upon apoptosis, specifically the initiation 

of the caspase cascade which follows mitochondrial membrane permeablisation, there is a 

loss of Syto fluorescence, perhaps due to caspase mediated nucleic acid breakdown or 

chromatin condensation which may lead to a decrease in Syto binding sites (317).   
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P.I. is a red stain detected in FL2 and FL3, which fluoresces when bound to nucleic acids. It is 

impermeable to cell membranes and so only will only stain dead or dying cells in which the 

membrane has begun to break down.  

Together, these two stains can differentiate between live (Syto17 positive, P.I. negative), 

early apoptotic (Syto17 negative/dim, P.I. negative) and late apoptotic/dead (Syto17 

negative, P.I. positive). Figure 4.6A shows the gating used to define these populations, with 

Syto17 (FL4) on the X axis and P.I. (FL3) on the Y axis. The shift in population size, from 

mainly live to mainly late apoptotic/dead, can be seen in Figure 4.6B showing BL41 and 

Salina cell lines induced into apoptosis using ionomycin. Time points were measured over a 

period of 48 hours and indicate a pronounced shift towards the Syto17 negative, P.I. positive 

population, particularly in BL41 which is more sensitive to apoptosis. Interestingly, the early 

apoptotic (Syto17 negative/dim, P.I. negative) population remains relatively small over the 

full 48 hours. This population most likely represents the population described by Cohen et al. 

in which chromatin condensation has occurred but no DNA cleavage is observed (318). In 

thymocytes this population was observed to be at its highest 1 to 2 hours after treatment 

with 10µM etoposide, cells then progressed to apoptosis and DNA cleavage by 4 hours (318). 

This increase very early after drug treatment may explain why we don't see a larger Syto17 

negative/dim, P.I. negative population, as the earliest time point in our assay was taken at 

10 hours. Cohen et al. labelled these cells as pre-apoptotic whereas here they are referred 

to as early apoptotic. However, it is not known if this population are fated to die or if they 

can remain in this population or even revert to a normal live phenotype. Because it is 

ambiguous whether this population is genuinely apoptotic we decided to concentrate on the 

definitely live (Syto17 positive, P.I. negative) and late apoptotic/dead (Syto17 negative, P.I. 
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Figure 4.6: Flow cytometry assay to determine levels of apoptosis and to distinguish 
between late apoptotic, early apoptotic and live populations. Two stains were used 
to distinguish between live and apoptotic cells. Cells were stained with P.I. 
(propidium iodide) immediately before readings were taken. P.I. stains  late 
apoptotic, or necrotic, cells. Cells were stained with syto17 one hour prior to taking 
readings. Syto17 requires uptake by active transport and so only stains live cells. (A)  
example gating of cells using Syto17 (X axis) and P.I. (Y axis) to give live (Syto17 
positive, P.I. negative), early apoptotic (Syto17 negative/dim, P.I. negative) and late 
apoptotic (Syto17 negative, P.I. positive) populations. (B) Cell death in Salina Wp 
restricted BL and EBV negative BL41 lines induced by 1ug/ml ionomycin over a 
period of 48h. Over the various timepoints BL41 cells can be seen to move from the 
live Syto17 positive population, through early apoptosis and into P.I. positive late 
apoptosis. Salina undergoes very little apoptosis over the 48 hours due to the 
protective effect of EBV and maintains a background population of late apoptotic 
cells but very few cells enter early apoptosis.  
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positive). This should not change the overall pattern of death as the early apoptotic 

population remains consistently low between different drugs and cell lines.  

 

4.5 Sensitivity of BHRF1 positive and negative BL41 and BL2 lines to 

Apoptosis inducing drugs 

 

4.5.1 Ionomycin and anti-IGM 

Cell death was induced using a variety of drugs which activate the apoptotic pathway. 

Initially we used the calcium ionophore, ionomycin. This induces influx of Ca2+ ions across 

the cell membrane to raise the level of intra-cellular calcium (319). Increase in intra-cellular 

Ca2+ ions is a well known inducer of apoptosis through various mechanisms including the 

activation of calmodulin, by binding to calcium, which then goes on to activate targets 

involved in apoptosis (320), and by activation of calcium dependent endonucleases (321, 

322).  

In order to resolve small differences in apoptosis protection conferred by different BHRF1 

mutants we aimed to find a drug concentration that would give between 60 and 80% 

apoptosis in the most sensitive cell lines, namely empty and parental BL41 and BL2, and 

around 20% or less apoptosis in the most resistant lines, namely wild type BHRF1 infected 

BL41 and BL2. Parental lines, and Dox induced empty and HA-BHRF1, in a BL41 and BL2 

background, were treated for 72 hours with 1–6µg/ml ionomycin. Cells were stained with 

Syto17 and P.I. and readings for 10000 cells were taken by BD Accuri flow cytometer (Figure 

4.7A). Figure 4.7B shows that all concentrations of ionomycin used gave high levels of 

apoptosis in BL41 (above 80% in BL41 and BL41 empty lentivirus cell lines). In BL2 death was 
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Cells split 1 in 3 with fresh BL media 
and induced with  1ug/ml doxycyclin. 

Cells were incubated for 48 hours. 

3 x 105 cells were transferred to 96 well 
plate and topped up with fresh BL 

media with doxycyclin or media with 
doxycyclin and drug.  

Cells were incubated for 48 to 72 hours 
depending on the drug. 

Cells harvested and stained with 
Syto17 and P.I. 

10000 cells analysed by flow 
cytometry.  

Figure 4.7: (A) Protocol of apoptosis assay. (B) Apoptosis assay to determine the 
concentration of ionomycin. Cells were incubated with drug for 72 hours and 
treated as in (A). Concentrations of 1ug/ml and 3ug/ml ionomycin were used on 
BL41, and 1ug/ml, 3ug/ml and 6ug/ml on BL2 cell lines, which proved more 
resistant to death. Parental, TREX(empty)UTG and TREX(HABHRF1)UTG infected 
lines were tested. Empty and HABHRF1 lentivirus infected lines were induced 
with dox. We aimed to find a drug concentration that would give between 60 
and 80% apoptosis in empty and parental BL41 and BL2, and around 20% 
apoptosis in wild type BHRF1 expressing BL41 and BL2.  From this data 
concentrations of 1ug/ml and 6ug/ml were used for BL41 and BL2 lines 
respectively.   
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still high but this cell line appears to be more resistant to apoptosis than BL41, perhaps 

because it lacks expression of one of the main pro-apoptotic BCL-2 homologues, BIM (290). 

There was around 58-70% apoptosis induced by 1µg/ml ionomycin in BL2 parental and 

empty lentivirus cell lines compared to above 80% death in BL41 lines treated with the same 

concentration. However, when the concentration was raised to 3ug/ml ionomycin staining 

showed similar levels of apoptosis in BL2 and BL41. Death was seen to increase with 

increasing drug concentration in BL2 but was so high in BL41 that no increase in death could 

be seen in the parental and TREX(empty)UTG vector lines although slight increases could be 

seen in HA-BHRF1 BL41 lines (Figure 4.7B). In both BL41 and BL2 lines the expression of HA-

BHRF1, significantly increased the protection from apoptosis with around 20% apoptosis 

induced by the highest concentration of ionomycin in both backgrounds. In both BL41 and 

BL2, infection with the TREX(empty)UTG lentivirus had no affect on the apoptotic phenotype 

when compared to the parental cell line.  

Based on these experiments we decided to use a concentration of 1µg/ml and 6µg/ml 

ionomycin for BL41 and BL2 respectively. The 6µg/ml concentration was used over the 

3µg/ml as we suspected that higher levels of death in the HA-BHRF1 expressing lines would 

be needed to distinguish between small differences in the mutants. 

Anti-IgM is another well known apoptosis inducing drug. Cross-linking with anti-IgM 

stimulates the B cell receptor on IgM positive cells. Activation of IgM causes generation of 

inositol trisphosphate (InsP3) which causes the release of Ca2+ ions from intra-cellular stores 

and apoptosis progresses through activation of caspases 2, 3 and 9 and in a similar manner 

as when activated by ionomycin  (320, 323, 324).  
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In lines treated with anti-IgM, the presence of the TREX(empty)UTG lentivirus made no 

difference to apoptosis sensitivity when compared to the parental line (Figure 4.8). Again, 

the BL2 parental line is around 20% more resistant to apoptosis than the BL41 line.  

A concentration of 6ug/ml and 10ug/ml anti-IGM was used for BL41 and BL2 respectively. 

This gives a similar level of apoptosis to ionomycin after 72 hours in BL41. However, in BL2 

the levels of induced apoptosis are lower, around 60% in the parental and empty lines, 

although the levels of death in the HA-BHRF1 expressing lines still approach the desired level 

(20%). Hence, these levels are still within the useful range for determining differences 

between the apoptosis resistance of different cell lines.  

 

4.5.2 Etoposide and Roscovitine 

To examine BHRF1 mediated protection to apoptosis mediated by other mechanisms, we 

used etoposide and roscovitine, whose mechanisms are well characterised and which have 

previously been used to study EBV mediated resistance to apoptosis. (230, 325, 326).  

Etoposide is a DNA topoisomerase inhibitor which activates p53 dependent apoptosis late in 

the cell cycle, at the G2/M checkpoint, after duplication of DNA (326). It acts by forming a 

complex with DNA and the topoisomerase II enzymes and prevents DNA religating; in doing 

so, it forms double stranded breaks in the DNA (327). Roscovitine is a selective cyclin 

dependent kinases (Cdk) inhibitor which induces apoptosis independently of the p53 

pathway (328, 329). Increases in the concentration of etoposide and roscovitine cause a 

corresponding increase in the percentage of induced apoptosis (Figure 4.9A and B). Again, 

BL2 is more resistant to apoptosis and will require higher drug concentrations to give similar 

levels of death.  
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Figure 4.8: Determining concentrations for anti-IgM. Apoptosis assay was 
performed as in figure 4.7. Empty and HABHRF1 lines were induced with 1µg/ml 
dox. % cell death is the percentage of cells induced into late apoptosis by drug 
treatment. Cells were incubated with 5µg/ml, 6µg/ml and 10µg/ml anti-IGM for 
72 hours. Apoptosis was induced in BL41 (A) and BL2 (B) cell lines. Based on this 
data concentrations of 6µg/ml and 10µg/ml anti-IGM were used for BL41 and 
BL2 respectively.  
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Figure 4.9: Determining concentrations for etoposide and roscovitine. Apoptosis 
assay was performed as in figure 4.7. Empty and HABHRF1 lines were induced 
with 1µg/ml dox. % cell death is the percentage of cells induced into late 
apoptosis by drug treatment. Cells were incubated with (A) 1µg/ml, 2.5µg/ml, 
3.5µg/ml and 7µg/ml etoposide for 48 hours and (B)  10µg/ml, 20µg/ml and 
30µg/ml roscovitine for 48 hours. Based on this data concentrations of 2.5µg/ml 
and 3.5µg/ml etoposide and 12ug/ml and 20ug/ml roscovitine were used for 
BL41 and BL2 respectively.  
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Cells were treated with roscovitine and etoposide for 48 hours instead of 72 hours as was 

used for anti-IgM and ionomycin. These time periods and initial concentrations had been 

tried and tested by other members of our group in similar cell lines (330), and were taken as 

a starting point. The dose response assays were then used to optimise the drug 

concentrations for our assays. 

From these experiments we decided to use concentrations of 2.5ug/ml and 3.5ug/ml 

etoposide for 48 hours to induce death in BL41 and BL2 lines respectively. A concentration 

of 20ug/ml roscovitine was chosen for both BL41 and B2 lines which were incubated with 

drug for 48 hours. All of these concentrations gave between 60 and 80% apoptosis in the 

parental and empty lines, and between 10 and 20% apoptosis in the HA-BHRF1 Dox induced 

lines. 

Figure 4.10 shows the same assays performed on un-induced HA-BHRF1 lines without dox 

which, therefore, should not express BHRF1. These lines are also slightly protected from 

apoptosis compared to the empty vector.  

This data highlights that both BL41 and BL2 lines have leaky expression of HA-BHRF1 in the 

absence of Dox, and that this expression is functionally significant in that it can provide 

protection from apoptosis. This justifies our decision to exclude un-induced HA-BHRF1 lines 

from future assays. 

 

4.6 The effect of mutated HA-BHRF1 on protection from apoptosis 

To look at the effect that mutating BHRF1 has on its ability to protect from apoptosis we 

incubated BL41 and BL2 lines infected with wild type and mutant HA-BHRF1 expressing 

lentiviruses, induced with Dox, and then exposed to the four apoptosis-inducing drugs used 
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Figure 4.10:  Leaky expression of HABHRF1 in uninduced lines. Lines not induced 
with dox still protect from apoptosis in a dose dependent manner in (A) a BL41 
background and (B) a BL2 background compared to the empty vector control. 
Apoptosis assay was performed as in figure 4.7. % cell death is the percentage of 
cells induced into late apoptosis by drug treatment with ionomycin, anti-IgM, 
etoposide and roscovitine.  
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in Figures 4.7, 4.8 and 4.9. Cells were counted and assayed for viability prior to drug 

treatment using trypan blue and only cell cultures that were over 80% viable were used. 

The levels of apoptosis were again measured using flow cytometry and staining with P.I. and 

Syto17.  Any background levels of death were subtracted from death in the drug treated line 

to give levels of apoptosis induced with drug. The induced apoptosis was expressed relative 

to levels of apoptosis in the empty line so that death in the empty control equalled 1. Three 

technical replicates were taken for each cell background and each drug. An average was 

taken of the three replicates and a paired Student's T test was performed, with a 95% 

confidence interval, to determine whether the level of apoptosis induced in the mutants 

differs significantly from the wild type. Each experiment was performed at least three times 

and on different dates; averages of the technical replicates for each of the three 

experiments were taken and combined, an average of these three points was taken to give 

the mean of three experiments presented below. 

 

4.6.2 Ionomycin and anti-IGM 

BL41 and BL2 lines were treated for 72 hours with 1ug/ml and 6ug/ml ionomycin and 6ug/ml 

and 10ug/ml of anti-IGM respectively. Figure 4.11 shows three replicates of apoptosis assays 

with ionomycin in BL41 (left panels) and BL2 (right panels) HA-BHRF1 mutants.   

As expected, HA-BHRF1 wild type has a significant level of protection from ionomycin-

induced apoptosis compared to the empty lentivirus in both cell backgrounds.  

The only mutants that show a mean of three experiments with significant changes in 

protection from ionomycin induced apoptosis, compared to wild type, are G99A and R100D 

(Figure 4.11). However, there are some changes in levels of apoptosis that are not significant 
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Figure 4.11: Apoptosis assays with ionomycin. 1µg/ml and 6µg/ml ionomycin were 
used to induce apoptosis in BL41 and BL2 empty, wild type BHRF1 and mutant BHRF1 
expressing cell lines (dox treated).  Lines were incubated with drug for 72 hours. 
Apoptosis is expressed as the percentage of cells induced into late apoptosis (above 
the background level of apoptosis with no drug) relative to the percentage of 
apoptosis in the empty line, so that the level of apoptosis in the empty line = 1. Three 
assays per drug were performed and an average of the three was taken. The 
significance of differences in relative apoptosis between wild type and mutant was 
tested with a paired T-test with a 95% confidence interval. When results were 
significant they were labelled on the graph.  
Error bars represent the standard deviation of three technical replicates in each 
separate experiment. When the means were taken (black bars) error bars represent 
standard deviation three experimental replicates.  
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but are consistent over the three replicates. In BL41, F72W has lost some protection when 

compared to wild type, and R93D is frequently slightly more protected than wt BHRF1.  

Although mutants in BL41 and BL2 have a similar ability to protect from apoptosis as wild 

type, this ability may be slightly decreased, in both mutants and wild type, in BL2. When 

comparing the levels of induced apoptosis relative to empty in a BIM positive (BL41) vs a 

BIM negative (BL2) background, two of the mutants, R71W and L102I, show a significant 

decrease in the ability to protect from apoptosis, relative to empty, in BL2 (P=0.004 and 

0.0268 respectively). It may be that by losing the ability to bind BIM they have lost some of 

their survival advantage.  

When anti-IgM cross-linking was used to induce apoptosis in a BL41 and BL2 there was a 

similar pattern of sensitivity to apoptosis, both between BL41 and BL2 lines and compared to 

the pattern of ionomycin induced death (Figure 4.12A). Like the lines treated with 

ionomycin, the G99A and R100D mutants were the most sensitive to apoptosis. However, 

when looking at the mean of three experiments in the BL41 background, this sensitivity was 

significantly different from wild type in the case of R1OOD, but G99A narrowly failed to 

reach significance (P=0.06).  

In the BL2 background all mutants except for G99A and R100D show similar levels of 

resistance to anti-IGM induced apoptosis as wild type. There was no significant difference 

between the mutants in BL41 and in BL2.  

 

4.6.3 Etoposide and Roscovitine 

BL41 and BL2 lines were treated for 48 hours with 2.5ug/ml and 3.5ug/ml etoposide 

respectively (Figure 4.12B) or with 12ug/ml and 20ug/ml roscovitine (Figure 4.12C). The 
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Figure 4.12: Apoptosis assays with anti-IGM, etoposide and roscovitine. 
(A) 6µg/ml and 10µg/ml anti-IGM (B) 2.5µg/ml and 3.5µg/ml etoposide 
and (C) 12µg/ml and 20µg/ml roscovitine, were used to induce apoptosis 
in BL41 and BL2 empty, wild type BHRF1 and mutant BHRF1 expressing 
cell lines.  Lines were incubated with drug for 48 hours. Apoptosis was 
measured and analysed as in figure 4.12 and significance of differences 
between wild type and mutants was measured with paired T tests. Data 
is mean of three separate experiments. 
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percentage of mutant BHRF1 cells induced into apoptosis was expressed relative to the 

percentage apoptosis in the empty line.  

When apoptosis was induced with etoposide (Figure 4.12B), G99A and R100D again lose 

protection from apoptosis. When the mean of three experiments is taken this increase in 

sensitivity is significant for both mutants in BL2 and for G99A in BL41, although R100D 

narrowly failed to reach significance (P=0.07).  

G99A and R100D are also consistently more sensitive to roscovitine induced apoptosis. This 

is significant across the mean of three assays in BL2 but not in BL41 due to the high standard 

deviation (Figure 4.12C). In BL41 F72W also shows a significant difference to wild type across 

three assays and is much more sensitive to apoptosis induced by roscovitine than by any 

other drug. This difference is not as pronounced in BL2 background and is not significant.  

 

4.6.4 BHRF1 G99A and R100D mutant protection 

From these assays it appears that the mutants which most consistently affect BHRF1's ability 

to protect from apoptosis are G99A and R100D. The G99 and R100 amino acids both lie 

within the BH1 domain of BHRF1. From Table 4.2 it is clear that BHRF1 binding to various 

cellular BCL-2 homologues has been significantly decreased if not completely lost due to 

these mutations.  G99A has completely lost binding to BAX and BID with binding to BIM, 

PUMA and BAK being decreased 4.5, 2.5 and 29 fold respectively. R100D has lost binding to 

BAX, BAK and BID. R100D binding to BIM has decreased 25 fold and there is also a 5.5 fold 

decrease in binding to PUMA. It is clear that a 25 fold reduction would have a huge impact 

but it is less clear if a 5.5 fold reduction may or may not make a large difference to binding 

ability.  
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These mutations decrease the ability of BHRF1 to protect from apoptosis induced by all four 

drugs tested. From Table 4.3 the percentage protection from apoptosis of G99A and R100D 

has decreased by around 30 to 50% in the case of each drug, in both cell backgrounds. G99A 

and R100D show a remarkably similar degree of loss of function, particularly considering 

differences in expression levels (Figure 4.5A).  

The loss of protection in G99A and R100D is expected from the binding data which shows 

undetectable binding, or substantial decreases in binding, to all BCL-2 homologues analysed. 

However, from the binding data (Table 4.2) we could expect G99A to be more resistant to 

apoptosis than R100D due to a greater decrease in binding affinity for BCL-2 homologues 

conferred by the R100D mutation. From Figure 4.5 it can be seen that expression of 

HAR100D in BL41 is noticeably higher than HAG99A. This might possibly explain the 

apparent lack of difference in apoptosis protection between HAR100D and HAG99A in BL41. 

However, in BL2 there is no difference between expression of HAG99A and HAR100D (Figure 

4.5) and the protection conferred by these mutants is similar when treated with all the drugs 

tested (Table 4.3).  

 

4.6.5 BHRF1 F72W mutant protection 

According to the binding data (Table 4.2) the F72W mutation causes the loss of binding to all 

BCL-2 homologues tested except for PUMA, which has decreased binding affinity by four 

fold. From this data we would expect F72W to have lost a lot of its protection from 

apoptosis. However, from the apoptosis assay data the F72W mutation provides similar 

protection as wild type BHRF1 in both BL41 and BL2 lines treated with ionomycin and 

etoposide (Table 4.3). In anti-IgM treated BL41, F72W is consistently less protective than 

wild type BHRF1 in all three assays, although this did not reach significance. The average 
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Ionomycin Anti-IGM Etoposide Roscovitine 

BL41 BL2 BL41 BL2 BL41 BL2 BL41 BL2 

BHRF1 95.9% 85.3% 89% 83.7% 64.3% 79.9% 63.7% 59.9% 

F72W 89.3% 88.3% 69.2% 71.9% 70.3% 80.6% 17.7%* 42.2% 

R93D 96.9% 80.2% 79.2% 75.7% 77.1% 87.1% 71.6% 53% 

G99A 44.7%* 34.8%* 49.4% 30.6%* 25.6%* 35.9%* 31.8%* 12.3%* 

R100D 53.2%* 37.3%* 67.4%* 32.9%* 32.6% 46.6%* 22.8%* 10.4%* 

Table 4.3: Protection from apoptosis conferred by BHRF1 and mutants. Protection 
is expressed as a percentage relative to empty in which the percentage protection 
is 0%. 100% protection would indicate that only the background level of cell death 
was present and that no apoptosis had been induced by drug treatment.  BL41 and 
BL2 lines were treated for 72h with 1µg/ml and 6µg/ml ionomycin, and 6µg/ml and 
10µg/ml anti-IGM, respectively. They were treated for 48h with 2.5µg/ml and 
3.5µg/ml etoposide and 20µg/ml roscovitine. A number of BHRF1 mutants, 
showing consistent changes in apoptosis protection over several experiments, were 
picked out for further study.  In each case these values are the mean of three 
separate experiments. 
Mutants in which the level of protection from apoptosis in significantly different 
from BHRF1 wild type are indicted by an *.  
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percentage protection from apoptosis in F72W is similar to the protection conferred by 

R100D, around 20% lower than the wild type. In anti-IGM treated BL2 F72W mutation gives 

more similar protection to wild type BHRF1. This could indicate that BL2 is more PUMA 

dependent than BL41 due to the loss of BIM.  

In roscovitine treated BL41 lines the F72W mutation does cause a significant and large 

increase in the sensitivity to apoptosis, and reduces protection from apoptosis by 46%. This 

is similar to the loss of protection seen with R100D, the other mutant which consistently 

causes a large loss of protection and has lost binding to BAX, BAK and BID (Table 4.2). 

However, R100D has retained a small amount of binding to BIM.  

When apoptosis is induced with roscovitine, F72W retains ability to protect in BL2 but not in 

BL41. This is most likely because, without any expression of BIM, BL2 is more dependent on 

PUMA to induce apoptosis.  

 

4.7 The levels of most cellular BCL-2 homologues are not affected by 

the expression of mutated BHRF1  

The sensitivity of cells to apoptosis can be influenced by the overall levels of the members of 

the pro and anti-apoptotic cellular BCL-2 family proteins. Therefore this needs to be 

considered when looking at the effect of expressing the viral BCL-2 homologue, BHRF1, in 

cells. The protein levels of cellular BCL-2 homologue may have the potential to affect the 

apoptosis sensitivity of the BHRF1 expressing cell lines. Cellular BCL-2 homologue levels may 

also have an effect on the function of BHRF1, since it works through interacting with these 

proteins.   

From Figure 4.13 it can be seen that the expression of most BHRF1 mutants does not affect 

the levels of the majority of the cellular BCL-2 family proteins. An exception to this is BIM, a 
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pro-apoptotic BH3 only homologue, and known binding partner of BHRF1.  The levels of BIM 

protein in BL41 fall in the presence of wild type BHRF1 compared to empty lentivirus. This 

can also be seen in some of the mutants; R71W, R93D and L102I. From the binding data 

(Table 4.2) all these mutants have strong binding to BIM, with a dissociation constant of 

between 10 and 25 Kd, compared to wild type with 18 Kd. It is interesting that, from the 

binding data, T68G should bind strongly to BIM (with dissociation constant of 9 Kd) yet there 

is no reduction in the BIM levels seen in the T68G infected cell line when compared with 

mutants such as F72W and R100D, which should have very low binding to BIM.  This pattern 

is followed by BL41 cell lines transduced on different dates (Figure 4.14). The levels of BIM 

are significantly higher in the BL41 parental and BL41 empty lines. This is also the case for 

F72W, G99A and R100D mutants which bind weakly to BIM and show higher BIM levels by 

Western blot. Lower BIM levels are seen in R93D and wild type, which bind strongly to BIM; 

however, at the time T68G was not included in the selection of cell lines.  

A denaturing gel was used and hence, these differences in BIM level are most likely not due 

to direct binding to BIM but may alter BIM levels by some indirect mechanism. 

 

4.8 Co-immunoprecipitation does not show BHRF1 binding to most 

BCL-2 homologues  

Figures 4.15 and 4.16 relate to the co-immunoprecipitation of BHRF1 and the cellular BCL-2 

homologues. BL41 cells expressing wild type or mutated BHRF1 were induced with Dox. 

Pellets were harvested and 10 million cells were lysed with 1% Triton X-100 Onyx buffer. 

Figure 4.15 shows the protein expression in the lysed lines prior to co-immunoprecipitation. 

BIM shows the same pattern of expression levels as seen in Figure 4.13. 
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Figure 4.14: Levels of cellular BIM BCL-2 homologue is reduced by strong 
binding to BHRF1. Blots are shown for two separate sets of cell lines made 
on two different dates. Protein was recovered for each set of lines, run on 
Western blot and blotted for antibodies specific to BIM, BHRF1 and 
calregulin. Positive controls; BL41 and Salina, were included in the panel. 
BIM negative BL2 was used as a negative control for BIM.  
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Figure 4.16: Co-IP of HABHRF1 and HABHRF1 mutant 
expressing BL41 lines. 10 million cells were lysed in 1% Triton 
X-100 Onyx buffer. BHRF1 was immuno-precipitated using 
anti-HA antibody. The protein was eluted by boiling in urea 
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arrow. 
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A Co-IP using an anti-HA antibody bound to protein G beads was performed on the lysate 

from 10 million cells and protein from the equivalent of 3 million cells was run on a Bis-Tris 

gel for Western blotting (Figure 4.16). The results of the Co-IP indicate that BHRF1 does 

interact with BIM and that this is also the case for most of the mutants. As expected BHRF1 

wild type, T68G, R71W and R93D all bind BIM. Considering the amount of HAR93D bound by 

the beads and the indication of strong binding given by the dissociation constant of 10Kd 

(see Table 4.2), we might expect R93D to have bound more BIM compared to the wild type 

and other mutants. However, these levels, and those of T68G and R71W, appear similar.  

Two unexpected results come from F72W and E89G. From the dissociation constants (Table 

4.2) the F72W mutation has caused total loss of the ability to bind BIM. This is clearly not the 

case as there is a similar level of BIM protein precipitated using HAF72W as there is using the 

HA tagged wild type BHRF1. From the ITC data E89G should also have very weak binding to 

BIM, with a Kd of 930 vs 18 for wild type BHRF1. However, although there was a large 

amount of HAE89G protein in the lysate and bound by the HA beads, there is also a lot of 

BIM protein precipitated. This is most obvious when compared to R93D. This mutant was 

precipitated with HA antibody at a similar level to E89G and should bind BIM strongly (with a 

Kd of 10). However, significantly more BIM is precipitated with E89G than with R93D. When 

we look at the BIM levels in the lysate, it can be seen that these lower levels of precipitation 

are not due to weak binding but to the barely detectable levels of BIM in the R93D line. 

Despite these extremely low levels, R93D BHRF1 co-immunoprecipitated detectable levels of 

BIM, indicating strong binding. 

While the strength of binding between BIM and E89G and F72W BHRF1 is not as high as 

between BIM and wild type or R93D BHRF1, it is still higher than indicated by the binding 

table.    
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There was no precipitation of BHRF1 with any of the other BCL-2 homologues. This was 

surprising as it is known that BHRF1 binds PUMA and BAK (109). The levels of BHRF1 in our 

assay were comparable to those seen in Wp restricted BLs, and yet at these physiological 

levels no binding to PUMA, BID or BAK was observed. The Co-IP assay was very difficult to 

perform consistently and to interpret, especially considering that there were often low and 

variable expression levels of wild type and mutated BHRF1. Over several assays attempted, 

using several different methods, we were able to see BIM precipitated but no other BCL-2 

homologue precipitation was evident.    

 

4.9 The effect of repression of BCL-2 homologues on BHRF1's ability to 

protect from apoptosis 

Although we did not find any binding to PUMA or BAK with our Co-IP assay, this binding has 

previously been reported by others (109). However, other Co-IP assays were usually 

performed in lines artificially expressing high levels of BCL-2 homologues or BHRF1, or in cell 

types other than human B cells(84, 104, 109). In our assays both HA-BHRF1 and the BCL-2 

homologues were expressed at physiological levels. It may be that our assay is not sensitive 

enough to pick up the low levels of immunoprecipitation seen with physiological levels of 

BHRF1. However, these interactions may still have a functional role despite us being unable 

to detect them.  To investigate if BHRF1 function relies on the presence of individual BCL-2 

homologues, and how mutation affects BHRF1 function, BIM, PUMA, BAX and BAK were 

repressed individually using short hairpin RNAs (shRNAs). These shRNA plasmids were 

bought as commercial constructs from Santa Cruz Biotechnology Inc, and hence the shRNA 

sequences are unknown. The products consisted of a pool of three to five lentiviral plasmids 

encoding target specific 19-25 (plus  hairpin) nucleotide sequences designed to knockdown 
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target gene expression. These lentiviruses were transduced into wild type and mutant 

BHRF1 expressing BL41 lines. Stably transduced lines were selected using 10ug/ml 

puromycin and constitutively expressed shRNAs, leading to repression of target expression. 

A scrambled shRNA expressing lentivirus, containing a sequence which will not lead to the 

specific degradation of any cellular message, was used as a negative control for knockdown.   

Figure 4.17 shows the knockdown with BIM, PUMA, BAX and BAK in several BHRF1 mutant 

BL41 lines, compared to the scrambled shRNA control lines (Figure 4.17 A-D respectively). 

Overall, good knockdown was achieved. PUMA and BAX were knocked down to 

undetectable levels in all mutants and BIM knockdown was complete for BIM-S and BIM-L 

isoforms, whereas expression was of BIM-EL was significantly reduced.  Knockdown of BAK 

was only partial, but expression was significantly lower in all mutants when compared to the 

scrambled shRNA control (Figure 4.16D). Unfortunately, we did not have sufficient time to 

achieve knockdown of BID.  

The ability of BHRF1, and its mutants, to protect against cell death in lines negative for BIM, 

PUMA, BAX or BAK, was assessed using the apoptosis assay described in section 4.4. 

Apoptosis was induced using ionomycin, anti-IGM, etoposide and roscovitine. Induced 

apoptosis in the shRNA lines, with knockdown of BCL-2 homologues, was expressed relative 

to the levels of induced apoptosis in the scrambled shRNA control lines. This gives the 

change in apoptosis protection resulting from the knockdown of specific BCL-2 homologues.  
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4.9.1 Mutant BHRF1 expressing lines with and without scrambled 

shRNA give a similar pattern of apoptosis protection 

Figure 4.18 compares the levels of induced apoptosis in BL41 BHRF1 mutant lines used 

previously (BL41) and BL41 BHRF1 mutant lines with scrambled shRNA (Scram shRNA). The 

scrambled shRNA lines should give similar results to the BL41 BHRF1 mutant parental lines. 

The patterns of protection between the mutants are similar, as are levels of apoptosis 

induced by all drugs. The empty BL41 and BL41 scrambled shRNA lines give between 60 and 

80% death with all drugs used, levels which were also seen in previous apoptosis assays. 

Apoptosis levels vary slightly when death is induced with anti-IGM, with levels of induced 

apoptosis being around 10% lower in scrambled shRNA lines. However, scrambled shRNA 

lines follow the same pattern of loss or gain in protection as BL41 lines, dependent upon the 

mutation.  

 

4.9.2 Knockdown of BIM, PUMA, BAX and BAK changes the ability of 

some BHRF1 mutants to protect from apoptosis 

The sensitivity to induced apoptosis of the various BCL-2 homologue knockdown lines is 

shown in Figure 4.19 to 4.23. Figure 4.19 shows the levels of apoptosis, induced by four 

drugs in the BL41 empty lines expressing scrambled, BIM, PUMA, BAX or BAK shRNAs. These 

levels can be variable, especially when apoptosis is induced with anti-IgM and roscovitine 

which have lost much of their ability to induce apoptosis in PUMA and BAK negative lines. 

Because of this variability, the mutants were expressed relative to the corresponding 

knockdown line containing the BHRF1 negative (empty) vector. Figures 4.20 to 4.23 show 
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Figure 4.18: BHRF1 mutant lines protect at similar levels with and without 
scrambled shRNA. Comparison of BL41 BHRF1 mutant lines (BL41) and BL41 
BHRF1 mutant lines expressing scrambled shRNA (Scram shRNA). The mean 
of three assays, in which apoptosis was induced using four different drugs. 
Death was induced with 1µg/ml, 6µg/ml, 2.5µg/ml and 12µg/ml of 
ionomycin, anti-IgM, etopside and roscovitine respectively. Percentage of 
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Figure 4.20: Ionomycin induced apoptosis in BHRF1 wild type and mutant 
expressing lines with BCL-2 homologue knockdown. BIM, PUMA, BAX and BAK 
were knocked down in the BL41 BHRF1 empty, wild type and mutant lines, 
using shRNA expression. Ability of these lines to protect from apoptosis was 
tested using 1µg/ml ionomycin. Data is expressed as level of induced apoptosis 
relative to empty. Scrambled (A), BIM (B), PUMA (C), BAX (D) and BAK (E) lines 
are shown separately. Data is mean and standard deviation of three 
experimental replicates. 
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Figure 4.21: Anti-IgM induced apoptosis in BHRF1 wild type and mutant expressing 
lines with BCL-2 homologue knockdown. BIM, PUMA, BAX and BAK were knocked 
down in the BL41 BHRF1 empty, wild type and mutant lines, using shRNA 
expression. Ability of these lines to protect from apoptosis was tested using 
6µg/ml anti-IgM. Data is expressed as level of induced apoptosis relative to empty. 
Scrambled (A), BIM (B), PUMA (C), BAX (D) and BAK (E) lines are shown separately. 
Data is mean and standard deviation of three experimental replicates. G99A PUMA 
shRNA line (C) was not tested because of problems with cell viability.  
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Figure 4.22: Etoposide induced apoptosis in BHRF1 wild type and mutant expressing 
lines with BCL-2 homologue knockdown. BIM, PUMA, BAX and BAK were knocked 
down in the BL41 BHRF1 empty, wild type and mutant lines, using shRNA 
expression. Ability of these lines to protect from apoptosis was tested using 
2.5µg/ml etoposide. Data is expressed as level of induced apoptosis relative to 
empty. Scrambled (A), BIM (B), PUMA (C), BAX (D) and BAK (E) lines are shown 
separately. Data is mean and standard deviation of three experimental replicates. 
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Figure 4.23: Roscovitine induced apoptosis in BHRF1 wild type and mutant expressing 
lines with BCL-2 homologue knockdown. BIM, PUMA, BAX and BAK were knocked 
down in the BL41 BHRF1 empty, wild type and mutant lines, using shRNA expression. 
Ability of these lines to protect from apoptosis was tested using 12µg/ml roscovitine. 
Data is expressed as level of induced apoptosis relative to empty. Scrambled (A), BIM 
(B), PUMA (C), BAX (D) and BAK (E) lines are shown separately. Data is mean and 
standard deviation of three experimental replicates. G99A shRNA was not tested with 
PUMA shRNA (C) because of problems with cell viability. 
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levels of apoptosis in shRNA expressing lines (A to E) relative to the level of apoptosis in the 

empty vector. Apoptosis was induced by a different drug in each Figure.  

BIM shRNA lines provide very similar patterns of protection to scrambled shRNA (Figures 

4.20 to 4.23 A and B) lines, and hence, BL41 BHRF1 lines without shRNA lentivirus. This 

agrees with the result seen in BIM negative BL2 expressing BHRF1 mutants (see Figures 4.11 

and 4.12). However, assays performed with other shRNAs do show deviation from this 

standard pattern of protection.  

The data can be more easily analysed if it is also expressed relative to the levels of apoptosis 

in the corresponding scrambled shRNA line. This indicates any changes in levels of apoptosis 

that may result from the knockdown of cellular BCL-2 homologues.  

Figures 4.24 to 4.27 show the change in levels of induced apoptosis, normalised to empty 

vector, in the shRNA expressing lines compared to the scrambled shRNA. Data was 

expressed relative to empty, as in Figures 4.20-4.23, and then normalised to apoptosis levels 

in the scrambled shRNA to give the change in apoptosis due to the knockdown of each BCL-2 

homologue, with no change being equal to 1.  This means that the increase or decrease in 

apoptosis due to BCL-2 homologue knockdown can be seen clearly.  

A t-test with a 95% confidence interval was performed to determine if apoptosis in the BCL-2 

shRNA expressing lines were significantly different from the corresponding scrambled 

control lines. Because of the nature of the experiments, (inducing apoptosis simultaneously 

in a variety of cell lines) there was often variation in the absolute level of induced apoptosis 

in assays performed on different dates. This led to high standard deviations in some cases so 

not every change in apoptosis level was statistically significant.  

The data from Figures 4.24 to 4.27 has been summarised in Figure 4.28 to aid comparison. 

 

96 
 



anti-IgM

em
pty

bhrf1 f72
w

r93
d

g99
a

r10
0d

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Etoposide

em
pty

bhrf1 f72
w

r93
d

g99
a

r10
0d

0.0

0.5

1.0

1.5

2.0

2.5

3.0

BL41 lines + Bim shRNA

 
 

 
 

 
 

 
 

Roscovitine

em
pty

bhrf1 f72
w

r93
d

g99
a

r10
0d

0.0

0.5

1.0

1.5

2.0

2.5

3.0

BL41 lines + Bim shRNA

Ionomycin

em
pty

bhrf1 f72
w

r93
d

g99
a

r10
0d

0.0

0.5

1.0

1.5

2.0

2.5

3.0
 

 
 

 
 

 
 

 

BIM shRNA 

Figure 4.24: Apoptosis induced in BHRF1 mutant lines with BIM knockdown. 
BIM was knocked down in the BL41 BHRF1 empty, wild type and mutant 
lines, using shRNA expression. Ability of these lines to protect from apoptosis 
was tested using 1µg/ml ionomycin, 6µg/ml anti-IGM, 2.5µg/ml etoposide 
and 12µg/ml roscovitine. Data was expressed relative to empty, as in Figure 
4.19-4.22, and then normalised to apoptosis levels in the scrambled shRNA 
to give the change in apoptosis due to the knockdown of BIM, with no 
change being equal to 1. Level of apoptosis in the scrambled lines are 
indicated as 1 by the dotted line. Mean and standard deviation  is of three 
experimental replicates. A t-test with a 95% confidence interval was 
performed to determine significant changes from the level of apoptosis in 
the scrambled due to BIM knockdown. * = significant (P=0.05-0.01), ** = very 
significant (P=0.01-0.001), *** = extremely significant (P=0.001-0.0001) 
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Figure 4.25: Apoptosis induced in BHRF1 mutant lines with PUMA 
knockdown. PUMA was knocked down in the BL41 BHRF1 empty, wild type 
and mutant lines, using shRNA expression. Ability of these lines to protect 
from apoptosis was tested using 1µg/ml ionomycin, 6µg/ml anti-IGM, 
2.5µg/ml etoposide and 12µg/ml roscovitine. Data was expressed relative to 
empty, as in Figure 4.19-4.22, and then normalised to apoptosis levels in the 
scrambled shRNA to give the change in apoptosis due to the knockdown of 
PUMA, with no change being equal to 1. Level of apoptosis in the scrambled 
lines are indicated as 1 by the dotted line. Mean and standard deviation  is of 
three experimental replicates. G99A shRNA was not tested with anti-IgM or 
roscovitine because of problems with cell line viability. A t-test with a 95% 
confidence interval was performed to determine significant changes from the 
level of apoptosis in the scrambled due to PUMA knockdown. * = significant 
(P=0.05-0.01), ** = very significant (P=0.01-0.001), *** = extremely 
significant (P=0.001-0.0001) 
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Figure 4.26: Apoptosis induced in BHRF1 mutant lines with BAX knockdown. 
BAX was knocked down in the BL41 BHRF1 empty, wild type and mutant 
lines, using shRNA expression. Ability of these lines to protect from apoptosis 
was tested using 1µg/ml ionomycin, 6µg/ml anti-IGM, 2.5µg/ml etoposide 
and 12µg/ml roscovitine. Data was expressed relative to empty, as in Figure 
4.19-4.22, and then normalised to apoptosis levels in the scrambled shRNA 
to give the change in apoptosis due to the knockdown of BAX, with no 
change being equal to 1. Level of apoptosis in the scrambled lines are 
indicated as 1 by the dotted line. Mean and standard deviation  is of three 
experimental replicates. A t-test with a 95% confidence interval was 
performed to determine significant changes from the level of apoptosis in 
the scrambled due to BAX knockdown. * = significant (P=0.05-0.01), ** = very 
significant (P=0.01-0.001), *** = extremely significant (P=0.001-0.0001) 
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Figure 4.27: Apoptosis induced in BHRF1 mutant lines with BAK knockdown. 
BAK was knocked down in the BL41 BHRF1 empty, wild type and mutant 
lines, using shRNA expression. Ability of these lines to protect from apoptosis 
was tested using 1µg/ml ionomycin, 6µg/ml anti-IGM, 2.5µg/ml etoposide 
and 12µg/ml roscovitine. Data was expressed relative to empty, as in Figure 
4.19-4.22, and then normalised to apoptosis levels in the scrambled shRNA 
to give the change in apoptosis due to the knockdown of BAK, with no 
change being equal to 1. Level of apoptosis in the scrambled lines are 
indicated as 1 by the dotted line. Mean and standard deviation  is of three 
experimental replicates. A t-test with a 95% confidence interval was 
performed to determine significant changes from the level of apoptosis in 
the scrambled due to BAK knockdown. * = significant (P=0.05-0.01), ** = very 
significant (P=0.01-0.001), *** = extremely significant (P=0.001-0.0001) 
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Figure 4.28: Heat map showing levels of apoptosis protection in BHRF1 
mutant expressing BL41 lines with BCL-2 homologue knockdown. BIM, 
PUMA, BAX and BAK were knocked down in the BL41 BHRF1 empty, wild 
type and mutant lines, using shRNA expression. Ability of these lines to 
protect from apoptosis was tested using ionomycin, anti-IgM, etoposide and 
roscovitine. Data was expressed relative to empty and normalised to 
scrambled shRNA lines as in Figures 4.19 to 4.22. Change in apoptosis levels 
relative to those in scrambled are shown in colour where 1 (grey) is the same 
level of apoptosis as seen in scrambled lines. Red spectrum gives increase in 
apoptosis and decrease in protection, vice versa for blue spectrum.  
Significant differences from scrambled are indicated by * (P<0.05). * = 
significant (P=0.05-0.01), ** = very significant (P=0.01-0.001), *** = 
extremely significant (P=0.001-0.0001) 



  Chapter 4 

4.9.3 The effect of BIM and PUMA shRNA on protection 

BIM knockdown (Figure 4.24) did not result in any significant changes from levels of 

apoptosis in lines with scrambled shRNAs. This was the case when apoptosis was induced 

with any of the four drugs. Although there appeared to be a general decrease in the 

apoptosis induced in G99A mutant line, this was not significant.  

PUMA knockdown (Figure 4.25) resulted in no significant differences from scrambled lines 

when apoptosis was induced with etoposide. However, there was a significant decrease in 

apoptosis induced in f72W with anti-IGM. From the raw data (figure 4.19) anti-IGM induces 

generally less apoptosis in PUMA knockdown lines than in scrambled control (approximately 

15% decrease in apoptosis in the empty line). There was a general increase in the apoptosis 

sensitivity of the PUMA knockdown R93D line, although this was only significant for 

ionomycin due to high standard deviations. Finally, there was also a very significant 2-fold 

increase in wild type BHRF1 apoptosis induced by roscovitine. This was despite the levels of 

cell death induced by the other drugs remaining equal to scrambled in wild type BHRF1 lines. 

Unfortunately we were unable to complete the panel of drugs for G99A BHRF1 + PUMA 

shRNA due to problems with the viability of this cell line which was eventually lost due to 

bacterial infection. Hence, only data for etoposide and ionomycin induced apoptosis are 

shown.   

 

4.9.4 The effect of BAX and BAK shRNA on protection 

Individual knockdown of both BAX and BAK leads to a drop in apoptosis induced in the 

empty lines (Figure 4.19). BAX or BAK knockdown decreased the levels of apoptosis induced 
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by all drugs, but particularly by ionomycin and anti-IgM (a drop of around 30% for both 

drugs compared to scrambled shRNA) (Figure 4.19). 

Levels of apoptosis induced in G99A and R100D BAX shRNA lines remain similar to those 

seen with scrambled shRNA (Figure 4.26). However, there are significant decreases in 

protection when apoptosis is is induced in F72W with ionomycin and anti-IGM, and in R93D 

with all four drugs.  

Wild type BHRF1 also shows a decrease in protection against ionomycin and anti-IGM 

induced apoptosis, although neither of these results are significant.  

When BAK is knocked down BHRF1 and its mutants lose much of their ability to protect 

against etoposide and roscovitine induced death (Figures 4.22E and 4.23E). Levels of 

apoptosis in the BHRF1 and BHRF1 mutant lines approach the levels seen in the empty 

vector when apoptosis is induced with these two drugs. 

In the case of roscovitine induced apoptosis, levels of death induced in the empty vector fall 

by approximately 60% when BAK is knocked down (Figure 4.19). This could decrease the 

differences in apoptosis level seen between BHRF1 and empty, a limitation that must be 

considered as it could artificially inflate any loss of protection when BHRF1 mutants are 

expressed relative to empty. However, etoposide induces around 60% apoptosis in the 

empty BAK shRNA line, yet there is still very little protection from etoposide induced 

apoptosis by BHRF1 or the mutants.  

As with BAX shRNA, BAK shRNA expression causes R93D BHRF1 to consistently lose the 

ability to protect from apoptosis when compared to scrambled shRNA (Figure 4.27). This loss 

of protection ranges from significant to extremely significant when death is induced with 

roscovitine, etoposide and anti-IgM. With anti-IgM the loss of protection is extreme, with 

approximately a 12-fold increase in apoptosis compared to the scrambled shRNA line. 
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F72W BHRF1 significantly loses the ability to protect against roscovitine and anti-IgM 

induced apoptosis. BHRF1 wild type, G99A and R100D also significantly lose protection 

against roscovitine induced apoptosis, although, as mentioned above, this could be inflated 

by the general low levels of cell death induced by roscovitine in BAK knockdown lines. 

However, a significant loss of BAK shRNA R100D BHRF1 protection is also seen when 

apoptosis is induced with ionomycin, so this result could be valid.   

 

4.10 Discussion 

4.10.1 Isothermal titration calorimetry data may not be accurate in a 

physiological system 

The binding affinity of BHRF1 and its mutants for cellular BCL-2 homologues BIM, PUMA, 

BAX, BAK and BID, was determined by Kvansakul et al. using isothermal titration calorimtery 

(ITC) (104). This was performed in solution using truncated proteins and BH3 domain 

peptides and so may not be accurate in a cellular system.  

There may not always be a clear correlation between ITC generated thermodynamic data 

and protein-ligand binding in a physiological system. When Ladbury et al. compared 

thermodynamic data with structural information for protein-ligand binding they found that 

there was occasionally low correlation between thermodynamic data and structural data, 

especially when the protein was highly folded and contained a buried binding site. They go 

on to state that the thermodynamics of an interaction in isolation may not provide useful 

information in describing complex formation, but instead should be used as a guide and 

validated using other data (reviewed in (331)). The correlation between ITC data and binding 

in a cellular system has not been researched specifically in relation to BHRF1. However, the 
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BHRF1 protein does have a complex, highly folded structure which undergoes distinct 

morphologically changes when binding occurs (46) and so, while ITC is a useful tool when 

determining BHRF1-BCL-2 homologue interactions, we must also remember its limitations. 

From our data, although the ITC data for the majority of mutants (Table 4.2) is supported by 

the co-immunopreciptiation data (Figures 4.15 and 4.16) and apoptosis assay data (Figures 

4.11 and 4.12), there are some mutants for which the ITC data does not agree with our 

findings. The most pronounced of these are E89G and F72W. 

The ITC data for these two mutants states that F72W has lost binding to all BCL-2 

homologues tested except for PUMA, with which strength of binding has decreased 4-fold. 

E89G binds BIM, PUMA and BID but the strength of binding is decreased by 51, 8.6 and 2.8-

fold respectively, with only negligible binding to BAX (Table 4.2). 

When we look at the protection from apoptosis conferred by BHRF1 with a F72W or E89G 

mutation we would expect it to be low. In the case of F72W it should be similar, if not lower, 

than R100D. However, for both F72W and E89G, we see that protection is high and 

approaches that of wild type (Figure 4.11 and 4.12, Table 4.3).  

The co-immunoprecipitation (Co-IP) data (Figure 4.16) shows F72W binding to BIM, which, 

although weaker than wild type, is definitely present. E89G appears to bind strongly to BIM. 

When you look at the levels of E89G BHRF1 in the lysate they are very high, but similar to 

those in R93D. From the ITC data (Table 4.2) R93D binds more strongly to BIM than wild type 

(18 vs 10Kd) and has similar level of binding to BIM as E89G, considering the low BIM levels 

in the R93D lysate. From the combination of the Co-IP and binding data we can be fairly sure 

that F72W and E89G bind more strongly to BIM than is indicated by the ITC data. 
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4.10.2 BHRF1 may affect the level of BIM protein 

Western blots performed to measure the levels of BCL-2 homologues in the various BHRF1 

mutant lines led to an interesting observation (Figure 4.14). The levels of BIM change 

dependent on the BHRF1 mutant. Wild type or mutated BHRF1 with strong binding to BIM 

by ITC and CoIP showed lower levels of BIM than the empty vector or mutants which bind 

BIM weakly (such as G99A and R100D). This effect was only seen with BIM and was 

consistent across cell lines made on different dates, particularly in the case of empty vector 

and wild type and R93D BHRF1 (Figure 4.14).  

Desbien et al. saw an increase in BIM levels when cell were induced into apoptosis through 

cytokine withdrawal (109). This could explain the varying levels that we see. The mutants 

that are less protected, such as G99A and R100D, could be slightly more apoptotic than their 

well protected counterparts and hence, could show raised levels of BIM. However, before 

any assays were performed, including harvesting for protein, cells were tested for viability 

using trypan blue staining and were consistently found to be above 80% viable.  

A second explanation could be that these variable levels of BIM are a result of complex 

formation with BHRF1 which could sequester free BIM. However, a denaturing gel was used 

for Western blots, which disrupts complexes and protein-protein interactions. Hence it is 

unlikely that the varying levels of BIM seen by Western blot would be due to free BIM being 

sequestered by BHRF1 as this should be released by denaturing during blotting.   

EBNA3A and EBNA3C are known to down-regulate BIM at the transcriptional level (230). 

However, it has also been shown that infection of EBV negative BL lines with EBV can lead to 

lower levels of BIM protein due to phosphorylation of BIM by activated ERK (332).   

Despite an extensive literature search we found no evidence that BHRF1 specifically, was 

able to down-regulate BH3-only BCL-2 homologues either at the transcriptional level or 
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through protein degradation. It could be that, as postulated by Desbien et al, BHRF1 induced 

a permanent conformational change in BIM before dissociating from binding (109). This 

conformational change could then lead to BIM degradation or a reduction in protein half-

life.  

 

4.10.3 BHRF1 may act through binding to BCL-2 homologues other than 

BIM 

In our co-immunoprecipitation experiments (Figure 4.16) we were only able to observe 

binding of BHRF1 to BIM. However, the binding ITC data provided by Marc Kvansakul 

indicates that BHRF1 may also be able to bind BAX, BAK and BID.  

Others have shown co-immunoprecipitation data in which BHRF1 binds to BAK and PUMA 

(84, 104, 109). These assays were not carried out in a BL system and were mainly performed 

in 293FT cells (104) or murine T (109) or B cells (84). They may also be performed on lines 

artificially expressing high levels of pro-apoptotic BCL-2 homologues (104). However, they do 

use a similar method to our assay.  

BHRF1 must bind more homologues than BIM as it is still able to protect in a BIM negative 

system. It may be that, low levels of BCL-2 homologues in the lysate, together with the 

biochemical consequences of lysing cells and solubilising membrane complexes with 

detergent, have rendered our assay insufficiently sensitive to pick up binding of BHRF1 to 

PUMA and BAK. Because of these limitations, it may be valid to look for any functional 

changes in BHRF1 protection when BCL-2 homologues are removed from the system. These 

differences could indicate binding partners of BHRF1 that the Co-IP assay was not sensitive 

enough to pick up.  
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4.10.4 BHRF1 and its mutants protect from apoptosis induced by 

various cytotoxic drugs 

In our apoptosis assays we showed that BHRF1, ectopically expressed from a lentivirus, in 

EBV negative lines BL lines has a similar protective effect to that seen in Wp restricted BL 

lines naturally expressing BHRF1 during latency (Figure 3.11). 

We used four cytotoxic drugs which work through different pathways to induce apoptosis: 

Ionomycin is a calcium ionophore which induces influx of Ca2+ ions across the cell membrane 

to raise the level of intra-cellular calcium (319). Increase in intra-cellular Ca2+ ions is a well 

known inducer of apoptosis through various mechanisms including the activation of 

calmodulin, by binding to calcium, which then goes on to activate targets involved in 

apoptosis (320), and by activation of calcium dependent endonucleases (321, 322).  

Ionomycin induces endoplasmic reticulum (ER) stress and appears to raise BIM levels 

preferentially over the levels of other BH3-only BCL-2 homologues such as BID and PUMA 

(333). 

Anti-IgM crosslinking stimulates the B cell receptor on IGM positive cells. Activation of IgM 

causes generation of inositol trisphosphate (InsP3) which causes the release of Ca2+ ions 

from intra-cellular stores and apoptosis progresses through activation of caspases 2, 3 and 9, 

and in a similar manner as when activated by ionomycin (320, 323, 324). Hence, death will 

occur through both mitochondria dependent (intrinsic) and independent (extrinsic) 

pathways although the main BH3-only BCL-2 homologue involved in inducing apoptosis has 

been reported to be BIM (334).  

Etoposide acts as a topioisomerase inhibitor. Topioisomerases modulate DNA topology to 

resolve knots and tangles in the DNA, by creating transient double strand breaks in the DNA 

backbone, spanned by a protinaceous bridge (335). Topioisomerase inhibitors convert 
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topioisomerase into physiological toxins and stabilise the transient breaks, this introduces 

high numbers of double strand breaks that are then converted into permanent breakages by 

the replication machinery. When these breaks are present at high enough levels they trigger 

the DNA damage response which may eventually lead to cell death by apoptosis (327). DNA 

damage leads to the activation of p53 by phosphorylation and cells eventually undergo 

apoptosis through activation of the BH3-only homologue PUMA.  

Deletion of PUMA has been shown to protect cells against etoposide induced apoptosis (58), 

although this effect is not as complete as when p53 is lost or BCL-2 is overexpressed (336, 

337). Although PUMA is the main mediator of DNA damage induced apoptosis (58) p53 may 

also induce apoptosis by activating NOXA, and possibly BID, BAX and BAK (338-342). 

Roscovitine is a cyclin dependent kinase inhibitor which acts through both the p53 and NF-

κB pathways (343). Activation of p53 can lead to cell cycle arrest and apoptosis, whereas 

activation of NF-κB is associated with survival through the prevention of caspase activation.  

Roscovitine inhibits repression of p53 activation by MDM2 (344). Dey et al. found that 

roscovitine induced apoptosis through TNFα signalling and the extrinsic pathway (see Figure 

1.1 for overview of extrinsic pathway) while, at the same time, down-regulating NF-κB and 

its target genes such as FLIP and BCLXL (343).  

NF-κB and FLIP repress caspase activation. NF-κB prevents activation of caspase 3 and FLIP 

represses activation of caspases 8 and 10. Caspase 3 activation leads to apoptosis through 

the extrinsic pathway. Caspases 8 and 10 activate caspase 3 and also induced cleavage of the 

BH3 only protein BID to activated t-BID. When BID is activated apoptosis can also progress 

through the intrinsic pathway (reviewed in (15)). 

BHRF1 protected from apoptosis induced by all of these drugs (Figures 4.11 and 4.12). 

Interestingly, the pattern of protection conferred by the BHRF1 mutants did not change 
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depending on which drug was used. When death was induced by drugs which favour 

activation of different members of the BCL-2 homologue family, we might have expected 

more variation in the levels of protection conferred by mutants with disrupted binding to 

members of this family.  

 

4.10.5 BHRF1 may act mainly through binding to BAK 

It is known that BHRF1 is able to bind BAK, but recently attention has turned towards its 

ability to bind BH3-only homologues as the main means by which it represses apoptosis 

(104, 109, 345). However, from our data, with exception of F72W BHRF1, the ability of 

BHRF1 and its mutants to protect from a variety of cytotoxic drugs remains the same 

regardless of the particular pathway activated (Figures 4.11 and 4.12). These cytotoxic drugs 

induce apoptosis through the activation and up-regulation of different BH3-only BCL-2 

homologues. As the mutants cause loss of binding to various BH3-only homologues 

depending on the mutation, we could expect their ability to protect from apoptosis to 

change depending on the drug used to induce apoptosis. However, regardless of the drug, 

the protection conferred by BHRF1 mutants, in relation to wild type and other mutants, is 

always similar (except for F72W BHRF1 discussed in section 4.6.5), (Table 4.3). 

For this pattern to remain the same it is likely that BHRF1 is acting through the same binding 

partners regardless of the drug used. A possible candidate from the BH3-only family is BIM, a 

highly promiscuous BCL-2 homologue, activated by most cell death stimuli (346). 

Alternatively, binding to the BH3-only BCL-2 homologues may not be responsible for the 

large differences in apoptosis protection seen between wild type BHRF1 and some of its 

mutants (mainly G99A and R100D). 
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BHRF1 is known to bind BAK (109) and may be able to bind BAX. These proteins receive 

death signals propagated by activation of the BH3-only proteins and respond by forming 

pores in the mitochondrial membrane. If BHRF1 could prevent BAX and BAK from being 

activated, it could repress apoptosis regardless of which BH3-only proteins are active, by 

binding to just two BCL-2 homologues.   

From the shRNA experiments, BAK knockdown has the greatest effect of all the BCL-2 

homologues knockdowns tested. The levels of death in the empty vector shRNA lines (Figure 

4.19) are lower, as expected, when BAX or BAK are knocked down. In ionomycin, anti-IgM 

and etoposide induced apoptosis, death most likely occurs through activation of both BAX 

and BAK as knockdown of one or the other does not change levels of death and they appear 

interchangeable. However, when death is induced with roscovitine, apoptosis occurs mainly 

through BAK rather than BAX, as levels of apoptosis drop when BAK is knocked down.  

Knockdown of BAK causes significant loss of BHRF1 function when apoptosis is induced with 

roscovitine (Figure 4.27). This indicates that BHRF1 was protecting through binding to BAK 

and cannot protect as efficiently from apoptosis occurring through BAX despite the overall 

levels of death being lower. This loss of protection is not as significant when apoptosis is 

induced by the other drugs in BAK shRNA lines. This may be because death occurs equally 

through BAX and BAK when induced with these drugs and so differences in protection with 

and without BAK would not appear so large.  

When BAX is knocked down there is a significant decrease in the ability of F72W and R93D 

BHRF1 to protect against anti-IgM, etoposide and roscovitine induced apoptosis (Figure 

4.26). This may indicate that these two mutants are more able than wild type to bind BAX.  

BAX knockdown does not significantly change the ability of wild type BHRF1 to protect from 

apoptosis. BHRF1 may not bind BAX but still has a somewhat protective effect when 
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mitochondrial membrane permeabilisation is occurring solely through this BCL-2 

homologue. This may be due to its ability to prevent BAX activation by binding upstream 

BH3-only BCL-2 homologues. 

This data indicates that BHRF1 may have its main effect by binding to BAK but may also 

prevent BAK and BAX activation though interaction with BH3-only BCL-2 homologues. 

Therefore, elucidating the BH3-only binding partners of BHRF1 may also be important for 

determining the way by which it exerts it protective effect.  

 

4.11 Apoptosis protection by BHRF1 is not dependent upon binding to 

BIM 

Although BHRF1 has been found to bind several pro-apoptotic cellular BCL-2 homologues 

(including PUMA, BAK and BID), binding to BIM is thought to be the main BCL-2 homologue 

through which BHRF1 exerts its anti-apoptotic effect (84, 109). 

In our assays we expressed BHRF1, and its mutants, in both a BIM positive (BL41) and BIM 

negative (BL2) EBV negative Burkitt lymphoma line.  

When apoptosis was induced with four cytotoxic drugs (ionomycin, anti-IGM, etoposide and 

roscovitine) higher doses were required to induce significant levels of apoptosis in the BL2 

cell lines (Figures 4.7, 4.8 and 4.9). However, this is to be expected when one of the most 

promiscuous pro-apoptotic BH3-only BCL-2 homologues is removed from the system.  

Despite BIM being one of the main binding partners of BHRF1 (84, 104, 109), the ability of 

BHRF1 to protect from apoptosis did not change between a BIM positive (BL41) and BIM 

negative (BL2) background (Figures 4.11 and 4.12). This result is supported by data from the 

BIM shRNA lines, where an shRNA was used to knockdown BIM expression. Protection 
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conferred by BHRF1 and its mutants did not change between the scrambled shRNA control 

lines and those containing BIM shRNA (Figure 4.24).  

This indicates that BIM must be replaced by other cellular BCL-2 homologues which are also 

bound by BHRF1 in a very similar manner. The ability of BHRF1 to bind BIM is still important 

but may be replaced by binding to other BCL-2 homologues. These results indicate that 

there is some functional redundancy between the pro-apoptotic BCL-2 homologues. This 

result is supported by others who have remarked upon the redundancy of BH3-only BCL-2 

homologues and have shown that, when one homologue is deleted, another often takes its 

place (347, 348). This seems a likely explanation when considering the importance of the 

process for disease prevention and the complexity of the pathway.  

Viral BCL-2 homologues are important for the maintenance of virus infected cells and aid the 

virus during transformation and re-entry into lytic cycle by blocking death receptor signalling 

(108) and suppressing the apoptotic response. Although BHRF1 is not essential for 

transformation or re-entry into lytic cycle (349, 350) EBV contains a repertoire of apoptosis 

modulating proteins, such as LMP1 and the EBNA3s (see section 1.7), highlighting the 

importance of this process for the virus life cycle. Because of this need for apoptosis 

suppression BHRF1 may need to be more efficient, and efficiently bind a greater number of 

BH3-only proteins, than cellular anti-apoptotic BCL-2 homologues.  

 

4.12 R100 and G99 are key amino acids for BHRF1’s ability to bind 

cellular BCL-2 homologues 

The ability of BHRF1 to bind cellular BCL-2 homologues is known to affect its ability to 

protect cells from apoptosis (109).  
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Several mutants of BHRF1, each containing a single mutated amino acid within the BH3 

binding groove, were expressed in an EBV negative Burkitt lymphoma background, and their 

ability to protect these cells against apoptosis was tested.  

Our apoptosis data indicates that the most essential amino acids relating to BCL-2 

homologues binding and hence, protection from apoptosis, are R100 and G99. These amino 

acids are analogous to those required for hydrophilic interactions between BIM and BCL-XL 

(351). BHRF1 with a G99A or R100D mutation consistently loses protection from apoptosis in 

all apoptosis assays, regardless of drug or individual BCL-2 homologue knockdown (Figures 

4.11, 4.12 and 4.20 to 4.23). Khanim et al. also mutated amino acids in the BH1 domain, 

including G99 and R100, and showed a loss of protection from Cis-platin (310).  Desbien et 

al. 2009, a key paper for our work, mutated G99 and R100 to give G99A and R100A, which 

was found to lead to a decrease in BIM and BAK binding (109).  

Desbien et al. favour BIM as the main cellular BCL-2 homologue through which BHRF1 acts. 

However, whereas they found that shRNA knockdown of BIM fully protected HT-2 mouse T 

cells from IL2 withdrawal induced apoptosis; we did not find this in B cells. Knockdown of 

BIM in BL41 slightly increased resistance to death induced by cytotoxic drugs but was not 

completely protective (Figures 4.19 to 4.24). 

Desbien et al. found that G99A led to a reduced ability to protect both immature B cells from 

apoptosis induced by B cell receptor cross-linking, and a loss of HT-2 T cell protection from 

IL2 withdrawal. R100A retained some of its protective effect in HT-2 cells and was as 

effective as wild type in B cells. When they immunoprecipitated BHRF1 and the G99A and 

R100A mutants, using FLAG tagged whole proteins, they found that wild type and R100A 

bound BIM, but G99A did not. Binding of R100A to BIM-EL and L was found to be slightly 
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decreased and G99A almost completely lost binding to both BIM isoforms. Both mutations 

lost all binding to BAK. (109). 

In our system G99A and R100D mutated BHRF1 have equally lost ability to protect from 

apoptosis, both in a BIM positive and BIM negative background. We also did not see any 

binding of R100D BHRF1 to BIM by co-immunoprecipitation (Figure 4.16), which correlates 

with the apoptosis assay results. This could be a result of the difference in amino acid 

substitution (R is replaced by a D in our assay, rather than an A) which could disrupt binding 

to a greater degree.   

Desbien et al. conclude that BHRF1 prevents death through binding to BIM and not through 

BAK. However, they do see that BHRF1 binds only a small proportion of the total BIM within 

a cell. Desbien et al. suggest that BHRF1 could be binding a conformational subset of BIM. 

However, from our results the presence or absence of BIM makes no difference to 

protection from apoptosis, hence, BIM may not be the main BCL-2 homologue bound by 

BHRF1, explaining the low levels of binding. 

 

4.13 BHRF1 mediated resistance to Etoposide induced death is 

independent of BIM and PUMA 

Etoposide causes DNA damage which leads to the activation of p53 by phosphorylation 

(327), causing cells to undergo apoptosis through activation of the BH3-only homologue 

PUMA. Although PUMA is the main mediator of DNA damage induced apoptosis (58) p53 

may also induce apoptosis by activating NOXA, BID, BAX and BAK (338-342). 

When using a drug which induces DNA damage it is important to know the p53 status of the 

cell lines used, as p53 is often mutated or inactivated in cancer cell lines. Most BLs have 

aberrations in the p53 pathway, through either mutation of p53, deletion of p14ARF or over-
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expression of MDM2. BL2 is known to have wild type p53 but over-expresses the p53 

inhibitor MDM2 (275). Etoposide is able to phosphorylate p53 and prevent complex 

formation with MDM2 (352). Wade et al. also showed that BL41 is able to die by etoposide 

induced apoptosis (326) despite having a mutated form of p53 (353). However, activation of 

PUMA is p53 dependent (354). It has been found that, in p53 independent apoptosis 

induced by DNA damage, BID may be the main BH3-only BCL-2 homologue through which 

the apoptotic signal is propagated (355). 

When apoptosis is induced with etoposide in BL2 cells there is no significant difference in 

the pattern of protection compared with other apoptosis inducing drugs (Figure 4.12). This 

indicates that, despite different pathways being activated, death is induced by similar BCL-2 

homologues. 

In BL41 lines treated with etoposide cells will die through p53 independent apoptosis mainly 

mediated by BID. If BID is the only BH3 only BCL-2 homologue which is active it explains why 

protection is generally lower, relative to empty, when apoptosis is induced with etoposide. 

From the ITC data, binding of BHRF1 to BID is generally weaker than binding to BIM (109 vs 

18Kd) so BHRF1 may have less of a protective effect. This general decrease in protection is 

true for all mutants except G99A and R100D (which have weak binding to BIM and BID). 

When PUMA is knocked down using shRNAs there is no significant change in protection 

against etoposide induced death conferred by BHRF1 or its mutants (Figure 4.25). The 

percentage of cell death induced by etoposide treatment also does not change between 

PUMA positive and PUMA knockdown BL41 empty lines. These results indicate that 

apoptosis induced by etoposide in BL41 is, indeed, independent of PUMA. If BHRF1 is not 

protecting BL41 lines from etoposide induced apoptosis by binding to PUMA then this effect 

is likely achieved through binding to other BCL-2 homologues such as BID.  
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4.14 F72W mutated BHRF1 significantly loses protection to roscovitine 

induced death in BL41 but not in BL2 

Roscovitine is a cyclin dependent kinase inhibitor which acts through both the p53 and NF-

κB and the extrinsic pathway (343). P53 activation leads to up-regulation of PUMA and 

activation of the extrinsic pathway leads to cleavage of BID to active t-BID. 

It is through the intrinsic pathway that BHRF1 would have its protective effect. Both BL2 and 

BL41 are protected from roscovitine induced apoptosis by BHRF1 and many of its mutants.  

Again, the pattern of protective ability between the mutants is similar to that seen in other 

drugs, and is similar between BL41 and BL2 (Figure 4.11 and 4.12).  

G99A and R100D significantly lose protection against roscovitine in BL2 and have greatly 

reduced protection in BL41. However, in BL41, F72W has significantly lost apoptosis 

protection to the extent that there is no significant difference in the apoptosis protection of 

F72W and G99A and R100D (Table 4.3). In contrast, in BL2 lines the protection provided by 

F72W is not significantly different from wild type, and is significantly more than the low 

protection provided by R100D (P=0.0099).  

This is most likely because, BL2 contains wild type p53 alleles (275); roscovitine acts through 

both the intrinsic pathway and via activation of p53. In BL2 it can overcome the high levels of 

MDM2 to activate p53, and also down-regulate NF-κB. In BL41, in which p53 is mutated 

(353), it can only act through down-regulation of NF-κB and associated proteins. If this is the 

case, then BL2 would die by a similar pathway to that seen in etoposide and mainly through 

activation of PUMA. Death in BL41 would occur through the extrinsic pathway and the 

associated activation of the BH3 only protein BID, and in turn, activation of BAX and BAK.  
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F72W has no binding to BID by ITC. This would explain the low levels of protection from 

F72W BHRF1 in BL41 but not in BL2. It may be that, in the absence of BIM, BL2 is more 

dependent on PUMA than BL41. If BHRF1 F72W is able to bind PUMA strongly then it may 

have a more protective effect in BL2 than in BL41.  

Mutants other than F72W, G99A, R100D and R93D have some degree of binding to BID by 

ITC. Apoptosis data supports this, except in the case of R93D. These mutants are able to 

protect from roscovitine induced death in both BL41 and BL2 and, therefore, must be able to 

bind both BIM and PUMA.  

 

In conclusion, BIM binding was not found to be essential for death in B cells when apoptosis 

was induced by four different cytotoxic drugs acting through different pathways. Removing 

BIM from the system did not change the ability of wild type BHRF1 or any of the BHRF1 

mutants to protect from apoptosis, indicating that this protection was mediated by binding 

to other BCL-2 homologues.  

Only two BHRF1 mutants consistently lost protection from apoptosis, highlighting the 

importance of the G99 and R100 amino acids for BHRF1 binding. The loss of function of 

these two mutants was similar across all drugs used. These cytotoxic drugs induce apoptosis 

through activation of different BH3-only BCL-2 homologues but always act through BAX and 

BAK. Hence, as patterns of protection were constant regardless of drug and activated BH3-

only protein, BHRF1 may be acting mainly through binding to BAK and BAX. Smaller 

differences between the mutants, which change when BCL-2 homologues are knocked 

down, may be due to binding of BH3-only BCL-2 homologues. When death is induced by DNA 

damage, protection by BHRF1 is not dependent on binding to PUMA, and may occur mainly 

through binding of BHRF1 to BID, BAK and BAX. When these BCL-2 homologues are not 
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bound strongly apoptosis may be mediated by other BH3-only proteins in a hierarchy of 

binding in which the BH3-only proteins have overlapping functions and a degree of 

redundancy.  
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5. BALF1, latency and protection from apoptosis 

 

5.1 Introduction  

EBV is the only γ-herpesvirus known to encode two viral BCL-2 homologues. Together these 

two homologues are essential for efficient B cell transformation but have been shown to be 

individually functionally redundant (98).  

The first of these, BHRF1, has been extensively studied and is discussed in the previous 

chapters. However, very little is known about the second viral BCL-2 homologue, BALF1. 

Despite it being discovered in 1999 (96), there is still disagreement over the function of 

BALF1, to the extent that no consensus has yet been reached as to whether it is pro- or anti-

apoptotic. 

We first looked to see if BALF1, primarily a lytic protein, was expressed in latency in a similar 

manner to BHRF1. In order to try to elucidate the role of BALF1 in BL and apoptosis, we used 

the previously described dox inducible lentivirus system, made by Herold et al. (286), to 

express HA tagged BALF1 in EBV negative and Wp restricted BL lines. 

 

5.2 BALF1 is expressed during latency 

It is known that, similarly to BHRF1, BALF1 is important during B cell transformation, and 

together BALF1 and BHRF1 are essential for regulation of apoptosis during initial infection 

(98). Recently BHRF1 was also found to be expressed in latently infected BL cells (101). 

Similarly to BHRF1, expression of BALF1 was originally thought to be restricted to lytic cycle, 

but it is possible that BALF1 is also expressed during latency, either as an anti-apoptotic BCL-
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2 homologue, similar to BHRF1 (96), or alongside BHRF1 in order to regulate its function 

(41). 

We used qPCR to look for expression of BALF1 in EBV positive B cell lines with various latent 

profiles (Figure 5.1). A panel of seven latency I BL lines was used alongside five BL lines with 

Wp restricted expression. Eight lines with latency III expression were used, including two Lat 

III BL lines and 6 LCLs. Lat III BLs were defined as the product of a latency I BL line which has 

drifted  into latency III as a result of the lack of immune surveillance in culture. LCLs are 

latency III lines produced from in vitro EBV-induced transformation of normal B cells. We 

also looked at BHRF1 expression in the same lines for comparison. The assays used the same 

standard DNA containing single cDNA copies of BALF1 and BHRF1, and so levels of detected 

mRNA can be directly compared. 

As expected, the levels of BHRF1 are highest in the Wp restricted lines, with no expression in 

latency I and detectable but low levels of expression in the latency III lines. This agrees with 

the results of Kelly et al. when BHRF1 was first found to be expressed in Wp restricted 

latency (101). BALF1 is expressed at between 0 and 0.1 copies per copy of PGK 

(housekeeping control used for comparison), levels >10 fold lower than the levels of BHRF1 

in the Wp BL lines. However, expression of BALF1 is at a similar level to that observed for 

BHRF1 in latency III lines and LCLs. It is known that BHRF1 is able to protect LCLs from 

apoptosis and has a protective effect at low levels undetectable by Western blot (101), so 

these levels may be high enough for BALF1 to have a functional role in these lines.  

The pattern of BALF1 expression is much less restricted than that of BHRF1. BHRF1 

expression in latency is restricted exclusively to Wp lines and, at low levels, latency III lines. 

BALF1 is expressed, albeit at lower levels, in the majority of cell lines tested.  
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Figure 5.1: Levels of BHRF1 and BALF1 expressed in latent EBV positive cell lines. 
Levels of mRNA expression were measured using qPCR and a plasmid standard which 
gives absolute copy number. Levels were then normalised to cellular control (B2M). 
Levels of latent BHRF1 and BALF1 in individual lines can therefore, be directly 
compared. LCLs defined as a latency III lines produced from EBV infection in vitro, 
whereas  Lat III BL are the result of a Latency I line drifting into latency III as a result of 
the lack of immune regulation.  AMBZKO is an LCL negative for BZLF1, and, as such, 
must be 100% latent. Results are a mean of 3 technical replicates ±sd. 
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5.3 BALF1 is expressed in non B cell lines 

As BALF1 is expressed across all forms of latency in B cell lines we used qPCR to look at 

expression in non B cell lines (Figure 5.2). We analysed BHRF1 expression for comparison.  

Three lines of EBV positive T/natural killer (NK) cell origin were used, one originating from 

chronic active EBV (SNK10) and two others from T/NK cell lymphomas (SNK1 (295) and SNK6 

(297, 298). SNT8 and SNT16 are T cell lymphoma lines which were established from a nasal T 

cell lymphoma (SNT8) (298) and peripheral blood from a case of chronic active EBV (SNT16) 

(297). 

These T and NK lines were all EBNA1 and LMP1/2 positive but lacked expression of EBNA2 

indicating that they display a latency II phenotype (297).  

In addition to the T/NK cell lines, c666 (299), an EBV positive nasopharyngeal carcinoma line 

with an epithelial origin and latency II phenotype was tested. A gastric carcinoma cell line, 

infected in vitro with EBV (AGS + EBV) (300) was also tested. AGS + EBV has an epithelial cell 

origin and expresses a latency I pattern of EBV gene expression. Finally, the Hodgkin 

lymphoma line L591 (301, 302) was included in the analysis. This line has a latency III 

phenotype, in contrast with Hodgkin lymphoma in vivo. 

As in Figure 5.1, BHRF1 shows expression restricted to B cell lines with a Wp or latency III 

pattern of gene expression but is not expressed in other forms of latency. Detectable 

expression is seen in Salina a Wp BL line, Mutu, a lat III B cell line and L591, a Hodgkin 

lymphoma line, also latency III. BHRF1 expression is not detectable in other cell types. 

In contrast, BALF1 has more widespread expression. It is expressed at variable levels in all 

forms of latency, (latency I, II, III and Wp). Expression of BALF1 mRNA is not dependent on 

cell type, with expression seen in T/NK cells (particularly in SNK6), epithelial cells and B cells. 

Expression levels of BALF1 were similar to the levels of BHRF1 seen in Lat III lines and LCLs.    
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Figure 5.2: Levels of BHRF1 and BALF1 expression in latent EBV positive non-BL 
lines. Levels of BHRF1 and BALF1 were measured in two EBV positive Lat II T cell 
lines (SNT8 and SNT16), four EBV positive Lat II NK cell lines (NK92, SNK10, SNK1 
and SNK6), two epithelial cell lines; one EBV positive Lat II nasopharyngeal 
carcinoma line (c666), and one EBV positive Lat I gastric carcinoma line (AGS+EBV). 
B cell lines used were two EBV positive Lat III lines, Mutu III and L591 (Hodgkin 
lymphoma line), one Lat I BL (Akata BL) and one Wp restricted BL (Salina BL). 
Levels of mRNA expression were measured using qPCR and a plasmid standard 
which gives absolute copy number. Levels were then normalised to cellular control. 
Levels of latent BHRF1 and BALF1 in individual lines can therefor, be directly 
compared. Results are mean of 3 technical replicates ± sd. 
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  Chapter 5 

 

5.4 BALF1 protects from apoptosis 

Using the inducible lentivirus system described in Chapter 3, we expressed HA tagged BALF1 

in the EBV negative BL41 cell line. This lentivirus constitutively expresses GFP as a marker for 

infection. EBV negative BL41 and the Wp restricted cell lines, Avako and Oku were 

transduced several times with empty control and HA-BALF1 lentiviruses and then sorted for 

the 50% highest GFP expressing cells. The GFP expression of these lines is shown in Figure 

5.3. BL41 HABALF1 line was compared to the GFP expression of the BL41 HA-BHRF1 wild 

type used in earlier chapters. Despite several round of super-infection and sorting the GFP 

levels in BL41 HA-BALF1 lines are factor of 10 times lower than those in HABHRF1. In 

contrast, Avako and Oku BL were also transduced with HA-BALF1 and show higher levels of 

GFP expression, similar to those seen in BL41 HA-BHRF1. It is notable that Avako and Oku 

both express BHRF1 which could have a protective effect during transduction.  

The protein expression of BALF1 transduced lines was tested using Western blot (Figure 5.4). 

As there is no antibody to BALF1, expression was determined using an antibody against the 

HA tag. The expression of HA tagged BALF1 is very high in the Avako and Oku Wp lines. 

However, in BL41 lines, although we can see low expression of HA tagged BHRF1, expression 

of HA-BALF1 protein was below the level of detection by blotting. Detection of HA-BHRF1 by 

the 5B11 anti-BHRF1 antibody, as opposed to the anti-HA antibody, shows much stronger 

expression (Figure 5.4B) indicating that the failure to detect HA-BALF1 may be partly due to 

the sensitivity of the anti-HA antibody. There may also be lower levels of transduction in the 

BL41 lines. It is known that BHRF1 can protect from apoptosis at levels of expression 

undetectable by Western blot (101). If BALF1 has a similar ability, a phenotype for BALF1 
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Figure 5.3: Levels of GFP expression in lentivirus transduced lines. EBV negative BL41 
(A) and EBV positive, Wp restricted, Avako (Bi) and Oku (Bii) BL, were transduced 
with empty control and HABALF1 expressing lentivirus. This lentivirus (discussed in 
chapter 3) contains a GFP marker which is constitutively expressed. As described in 
chapter 3, the lentivirus transduced lines went through several rounds of super-
infection and sorting.  GFP expression was analysed by flow cytometry. GFP negative 
parental lines are  shown in red, and empty control lentivirus lines in blue. In BL41 
lines (A) BL41 HABALF1 (orange) and BL41 HABHRF1 (black) were compared. In Avako 
(Bi) and Oku (Bii) BL lines, the respective Wp line transduced with HABALF1 lentivirus 
(green) was compared to BL41 HABALF1 (orange).   
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Figure 5.4: BALF1 protein expression. (A) BALF1 expression was measured 
using an anti-HA antibody to the HA tag, as there is no antibody available for 
BALF1. BALF1 was transduced into various lines using lentiviruses for stable 
expression. HABALF1 is expressed highly in Oku and Avako BL. HABALF1 is not 
detectable in BL41, however, HABHRF1 expression is also low. (B) BHRF1 
expression in BL41, and Oku and Avako BL lines. There are similar levels of 
BHRF1 in BL41 lentivirus transduced line and Oku and Avako Wp despite the 
low expression of HA in the same BL41 BHRF1 line shown in (A). 
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mediated protection may be apparent despite our inability to detect BALF1 protein 

expression. 

We induced protein expression with 1µg/ml dox for 48 hours and then induced apoptosis 

with four cytotoxic drugs; ionomycin, anti-IgM, etoposide and roscovitine, using 

concentrations of 1, 6, 2.5 and 12 ug/ml respectively. We then performed an apoptosis assay 

as described in section 4.4. Data was expressed as the amount of apoptosis induced by drug 

treatment, relative to the apoptosis induced in the corresponding empty vector cell line. P 

values with a 95% confidence interval were used to show significant differences between 

levels of apoptosis in the empty vector and BALF1 or BHRF1 expressing lines. 

As can be seen in Figure 5.5, BALF1 significantly protects BL41 lines from apoptosis induced 

with all four cytotoxic drugs tested. Protection is similar to BHRF1 when death is induced 

with anti-IgM, etoposide and roscovitine. When death is induced with ionomycin the BL41 

BHRF1 cell line is very highly protected, the BALF1 expressing line is less protected but levels 

of induced apoptosis are still significantly lower when compared to the empty control line. 

As HA-BALF1 was undetectable by Western blot, this data shows that, similarly to BHRF1, 

BALF1 can protect even when protein levels are so low as to be undetectable with the 

antibodies used.   

 

5.4.1 BALF1 can protect Wp BL lines more than endogenous BHRF1 

alone 

Bellows et al. have previously shown that BALF1 may be able to abrogate the anti-apoptotic 

function of BHRF1 (41). To reinvestigate this we expressed HA tagged BALF1 in Oku and 

Avako Wp restricted BL lines which already express high levels of endogenous BHRF1. These 
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Figure 5.5: BALF1 protects from apoptosis induced by cytotoxic drugs. BALF1 
protects BL41 cells to similar levels as BHRF1. Death was induced with 1ug/ml, 
6ug/ml, 2.5ug/ml and 12ug/ml ionomycin, anti-IgM, etoposide and roscovitine 
respectively. Data is expressed relative to the respective empty lines. P values 
were considered significant if less than 0.05; * significant (P=0.01 to 0.05), ** 
very significant (P=0.001 to 0.01), *** extremely significant (P=0.0001 to 0.001), 
and show difference in apoptosis level from empty vector control.  Data is the 
mean of three technical replicates ±sd.    
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lines were induced into apoptosis using the four cytotoxic drugs referred to in the previous 

section. Again, apoptosis was expressed as induced death relative to the apoptosis induced 

in the empty control line. P values showing significant differences in death between BALF1 

and empty lines are given with a 95% confidence interval (Figure 5.6). 

Overexpression of BALF1 significantly increases the anti-apoptotic protection in both Oku 

and Avako Wp BLs against all four drugs tested. BALF1 expression reduces death by around 

10% in anti-IgM and etoposide treated Oku and Avako and in ionomycin treated Oku. There 

is a greater protection of around 30–60%, or over, in BALF1 expressing Avako lines treated 

with ionomycin, and both Oku and Avako lines treated with roscovitine.  

 

5.5 BALF1 shows similarity to important domains in BHRF1 and BCLXL 

Multiple sequence alignment was performed of BALF1, BHRF1 and BCLXL (Figure 5.7). The 

BHRF1 amino acids which have been mutated in this thesis are highlighted in red and 

important amino acids for binding of BCLXL and BH3 domains, as found by Lama and 

Sankararamakrishnan (356) (R139, Q111, E129 and L130), are highlighted in blue. The BH3 

domains, α-helices, and BH3 binding domain of BHRF1, as found by Huang et al. (46), are 

also shown.  

BALF1 shows homology to BHRF1 and BCLXL in the BH4 and BH1 domains but not in the BH2 

or BH3 domains. The sequence corresponding to the trans-membrane domain of BHRF1 and 

BCLXL is also poorly conserved and may be partially truncated. BALF1 not only shows 

homology to the BH domains, but also some of the individual amino acid residues important 

for BHRF1 and BCLXL binding to BH3 domains. BALF1 shows homology to R71 of BHRF1, 

which is also analogous to Q111 in BCLXL. There is no homology to BHRF1 E89 but there is to 

the residue next to it; I90 which is analogous to BCLXL L130, also important for BH3 binding 
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Figure 5.6: BALF1 and BHRF1 protect from apoptosis. BALF1 protects Wp BL lines to a 
greater extent than endogenous BHRF1 alone. Data is expressed relative to the 
respective empty lines. P values were considered significant if less than 0.05; * 
significant (P=0.01 to 0.05), ** very significant (P=0.001 to 0.01), *** extremely 
significant (P=0.0001 to 0.001), and show difference in apoptosis level from empty 
vector control.  Data is the mean of three technical replicates ±sd.  
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Figure 5.7: BALF1 is homologues to BHRF1 and BCLXL. BALF1, BHRF1 and BCLXL were 
aligned using  multiple sequence alignment. Bcl2 homology domains of BHRF1 are 
highlighted in grey, BHRF1 α-helices are also shown and the BHRF1 binding domain is 
shown in bold (46). BHRF1 amino acids mutated in this thesis are highlighted in red. 
Important amino acids for the interactions of BCLXL with BH3 domains, as found by (354), 
are highlighted in blue. Important residues which show homology are highlighted with a 
red box. * = a fully conserved residue, : = partial conservation with strongly similar 
properties, . = partial conservation with similar properties.  
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(356). Interestingly, the two BHRF1 residues which we have shown to be highly important 

for BH3 binding (see section 4.12); G99 and R100, also show a degree of conservation in 

BCLXL and BALF1, with R100 showing total conservation across the three proteins. BHRF1 

R93, an amino acid whose mutation to D93 did not cause BHRF1 to lose the ability to bind 

BH3 domains, is not conserved. However, both BCLXL and BALF1 have aspartic acid (D) at the 

corresponding location, which may explain why the R93D mutation had little affect on the 

function of BHRF1. 

 

5.6 Discussion 

BALF1 was first characterised in 1999 by Marshall et al. (96) and was found using a homology 

search of the EBV genome with BCLXL as a comparison. Marshall et al. found that BALF1, 

transfected into HeLa cells, could protect against apoptosis induced with anti-Fas antibody, 

interferon gamma and the topioisomerase inhibitor, camptothecin, to similar levels as BCLXL. 

They also found that BALF1 co-immunoprecipitated with BAX and BAK, indicating that it 

functioned in a similar manner to BHRF1 (96).  

Altmann and Hammerschmidt have shown that expression of either BHRF1 or BALF1 are 

essential for efficient transformation, but that they are interchangeable (98). This indicates 

that BALF1 may have a similar function to BHRF1. 

Bellows et al. were the next to publish work focusing on the function of BALF1 (41). In 

contrast to Marshall et al. they failed to find an anti-apoptotic function for BALF1, and found 

that BALF1 did not protect epithelial cells against Sindbis virus induced death. They also 

found that BALF1 expression conferred no protection to DG75 cells induced into apoptosis 

through BAX over-expression. They tested both BALF1 and BALF0 (initiated at different 

methionines in the same reading frame within the BALF sequence) co-transfected into CHO 
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cells with BHRF1 or Kaposi’s sarcoma virus vBCL-2; KSBCL-2. BALF1 and BALF0 were found to 

antagonise BHRF1 and KSBCL-2 and prevent them from protecting from apoptosis induced 

by BAX over-expression. BALF1, but not BALF0, was found to precipitate with BHRF1 and 

KSBCL-2, but not BCLXL.  However, they did not see co-localisation of BHRF1 and BALF1. 

Whereas BHRF1 localises to the mitochondrial membrane BALF1 was found to be localised in 

the cytosol (41). From Figure 5.7 showing a multiple alignment of BHRF1, BCLXL and BALF1, it 

is clear that, unlike BHRF1 and BCLXL, BALF1 has a truncated transmembrane domain. This is 

the domain that localises anti-apoptotic BCL-2 homologues to the mitochondrial membrane 

so, without it, it is likely that BALF1 would be localised in the cytosol.  

Unlike Bellows et al. (41) we did not find that BALF1 antagonised the function of 

endogenous BHRF1 but instead increased the protection of Wp lines from apoptosis. Our 

findings agree with those of Marshall et al. (96) and the recent paper by Hsu et al. (357). Hsu 

et al. found that BALF1 could protect 293 cells from serum starvation and increased cell 

survival through inhibition of apoptosis and not cell cycle progression (357). Hsu et al. also 

found that BALF1 promotes tumour formation in nude mice and promotes metastasis.  

We also found that BALF1 had an anti-apoptotic effect, although not as strong as that of 

BHRF1. However, in our assays, BALF1 provided protect from apoptosis despite us being 

unable to detect HA-BALF1 protein expression with anti-HA antibody. However, we did 

achieve high levels of HA-BALF1 protein expression in Wp lines.  

Good levels of GFP expression, and hence transduction, were much more difficult to achieve 

in BL41 using BALF1 lentivirus, as opposed to BHRF1 lentivirus. This appears to be a common 

problem, and difficulties in achieving stable clones with BALF1 expression were also 

experienced by Lee and Hope (111), although in contrast to our work, they did not find that 

BALF1 or BALF0 had a protective effect.  
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A difference between our work and published studies on BALF1 is that we are the only group 

who have stably expressed BALF1 using a lentivirus. Other studies expressed BALF1 using 

transient transfection of a variety of plasmid vectors such as pcDNA (357), pBABE (112) and 

pEGFP (96). One of the reasons we chose to use lentiviruses, as opposed to transient 

transfection, was that both transfection and transduction are disruptive processes and 

involve a loss of cell viability. However, unlike transfection, in which gene expression is 

transient and cells must be harvested quickly, stably transduced cells have long term gene 

expression. This means that we can allow the cells time to recover from the transfection 

process and regain viability, an advantage when performing cell death assays in already 

sensitive cell lines such as EBV negative BL.  Some of the variation between BALF1 cell death 

assays in these papers could be due to variability caused by the transfection process. In the 

Bellows paper, in which BALF1 was shown to antagonise BHRF1 (41), it was not clear if a 

control was used in the co-transfection experiments. Co-transfection of two plasmids often 

results in reduced cell viability, if a control plasmid was not used this could explain the loss 

of viability in BALF1/BHRF1 transfected cells as opposed to cells transfected with BHRF1 

alone.  

Although our findings support those published in the literature, some caution is required 

when interpreting the results. The difficulty we found when transducing the BL lines with 

BALF1 lentivirus, and the subsequent rounds of sorting that were undertaken to achieve 

stable infection, may have had the unintentional result of selecting for cells with a more 

resistant phenotype. By its nature sorting subjects cells to apoptotic stimuli, and by growing 

up the few GFP positive cells returned we may have also been selecting for apoptosis 

resistance. An empty plasmid was included as an attempt to control for these factors, 

however, stable infection was not as difficult with this lentivirus as with that containing 
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BALF1. If BALF1 is in fact pro-apoptotic, explaining the difficulties in achieving good levels of 

expression, leaky expression from the lentivirus may drive cells towards apoptosis, with any 

cells remaining having a more apoptosis-resistant phenotype.  

To support our results we could try to achieve transient transfection of BL lines with small 

BALF1 plasmids as performed in other studies looking at the function of BALF1. Although, for 

reasons discussed above, this method is not ideal for use with apoptosis assays, it could 

provide short-lived high levels of BALF1 expression without the need for sorting, and hence, 

remove some of the potential selection pressure. Another option may be to use custom 

shRNAs to knock down BALF1 in lines in which it is already expressed. We have shown that 

expression of BALF1 is promiscuously expressed in several forms of latency, however, 

expression levels are low, and so sensitive assays would be needed to detect knockdown and 

differences in apoptosis sensitivity. These techniques could allow us to answer the question 

of whether BALF1 is pro- or anti-apoptotic but stable cell lines may be needed before we can 

look at how BALF1’s function relates to BHRF1.   

With so little literature to compare it is still difficult to determine if BALF1 is indeed anti-

apoptotic. However, the results of Bellows et al. have not been confirmed by other 

publications, or our own work. The majority of the work on BALF1 has found it to be anti-

apoptotic (96, 112, 357) although a mechanism for this ability is unknown.  

Our results confirm those of Cabras et al. 2005 who found that BALF1 was expressed during 

latency in BL and NPC samples (112). They showed that BALF1 was able to protect NIH3T3 

against apoptosis induced with different serum concentrations, and maintained growth. We 

also found that BALF1 was expressed in a wide range of BL lines as well as lines from a non B 

cell background, including lines with an epithelial and NK/T cell origin (Figure 5.2).  
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BHRF1 is only expressed during latency in a select few cell types and not in NPC (358). 

Expression of high levels of latent BHRF1 in BL is not due to ‘normal’ EBV expression, but is 

instead due to a deletion which has gained more prevalence through providing a selection 

advantage (101). Although BHRF1 is found in latency III B cell lines and LCLs, it is not 

expressed in latency I or latency II, the forms of latency expressed in most EBV related 

malignancies. The physiological levels of BALF1 mRNA are similar to those of BHRF1 mRNA in 

LCLs and so may be high enough to provide a phenotype. Expression of low levels of BALF1 

could, therefor, provide a protective effect in latency types which do not express BHRF1.  
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6.0 Conclusions and future work 

In this thesis we investigated the mechanism by which the EBV encoded viral BCL-2 

homologue, BHRF1, interacts with the cellular BCL-2 family of proteins to confer apoptosis 

protection in EBV negative BL cell lines. We also investigated whether the second vBCL-2 

homologue, BALF1 is a pro- or anti-apoptotic protein. 

Chapter 3 described how we expressed BHRF1 in EBV negative BL lines using the 

FTGW(insert)UTG lentivirus system to create stable, dox inducible, cell lines. These cell lines 

expressed physiologically relevant levels of BHRF1, similar to those observed in Wp 

restricted BL lines, and gave a similar protective phenotype. 

The BHRF1 binding groove mutants were originally made by Marc Kvansakul and 

characterised using ITC in a similar manner as described in (104). We expressed them in an 

EBV negative BL background to look at BHRF1 binding ability in a cellular system.  

Few papers have been published which specifically look at the key amino acids for BCL-2 

homologue binding. There have been a small number of mutational studies performed on 

the BHRF1 binding groove (46, 104, 109) but these used a limited number of mutations.  

Studies into the binding of BHRF1 to the BH3 domains of various BCL-2 homologues have 

been performed but these are mainly in solution or use truncated peptides rather than 

whole proteins, and so may not be physiologically relevant (84, 104). 

 

6.1 The interaction of BHRF1 with cellular BCL-2 homologues  

Previous literature has indicated that BHRF1 acts mainly through binding to BIM (109). 

However, in this thesis we have shown that BHRF1 functions through a variety of BH3 only 

BCL-2 homologues and binding to BIM is not the sole critical interaction for BHRF1 function. 
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From the binding and the apoptosis assay data in chapter 4, we can postulate that BHRF1 

interacts with cellular pro-apoptotic BCL-2 homologues in a hierarchy of binding, with others 

taking the place of those which are inactive or have been knocked down.  

From the knockdown studies, BHRF1 appears to bind a hierarchy of BCL-2-homologues 

(Figure 6.1). BHRF1 appears to act mainly through BAK and the BH3-only protein t-Bid. 

Although BHRF1 binds strongly to BIM, binding to BIM is not essential for it to function as an 

anti-apoptotic protein, as knockdown of BIM does not change BHRF1’s ability to protect 

from apoptosis induced by any of the cytotoxic drugs tested. BHRF1 was able to protect 

from death induced by DNA damage, but this was not dependent on the presence of PUMA 

and so protection may be more dependent on binding to BAK and t-BID. Although 

interactions with NOXA could play a role we did not look at this BH3-only homologue in our 

assays. Interactions between BHRF1 and PUMA or BAX are not essential for the anti-

apoptotic activity of BHRF1, although the loss of binding to BIM, or BIM deletion, may make 

BHRF1 more dependent on binding to PUMA.  

The activation of different drug pathways, which in turn activate different BH3-only BCL-2 

homologues, does not change the protective ability of BHRF1 wild type or its mutants. 

Therefore, it is likely that BHRF1 acts mainly downstream of the BH3-only proteins. BHRF1 

may be working through the multi-domain BCL-2 homologues BAX and BAK. As several 

publications (23, 104, 109) show BHRF1 binding to BAK but not to BAX, its action may mainly 

be to bind BAK and keep it inactive. However, we have also shown that BHRF1 is still partially 

protected from ionomycin and anti-IgM induced death when BAK is knocked down, 

indicating that it also working through other BCL-2 homologues, most likely the BH3-only 

homologues (Figure 6.1).   
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Figure 6.1: Impact of BCL-2 homologue binding on BHRF1 function. In our 
assays we found that binding to a hierarchy of BCL-2 homologues had 
varying degrees of impact on the function of BHRF1. Binding to BAK and BID 
had the greatest impact on BHRF1 function, followed by binding to PUMA, 
BIM and BAX, the loss of which did not greatly affect the function of BHRF1. 
Weight of lines represent the degree to which binding is needed for BHRF1 
function. 
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Comparing the interactions of BHRF1 with the interactions of cellular anti-apoptotic BCL-2 

homologues may help us determine how BHRF1 is able to protect from apoptosis (see Figure 

1.4 and section 1.3.3). The pattern of BHRF1 binding to pro-apoptotic homologues appears 

to be most similar to BCLXL. BCLXL interacts with BIM, PUMA, t-Bid, BAK and BAX in a similar 

manner to BHRF1. BHRF1 has been shown to closely resemble BCLXL in its structure and 

interactions, with around 32% sequence homology in its carboxy terminus (359), but much 

higher homology in its structure and folding (46, 104).  

Recent research has moved away from BHRF1’s interactions with BAX and BAK, and has 

focused on the BH3-only proteins, BIM in particular (109). However, here we have shown 

that BHRF1’s interaction with BIM is not the sole critical interaction for BHRF1 to function. In 

fact the loss of BIM had no impact on the ability of BHRF1 to protect from apoptosis. From 

this research it is difficult to pin point one interaction with a sole cellular BCL-2 protein that 

is critical for BHRF1 function. However, our data suggests that it is BHRF1’s ability to bind 

multiple cellular BCL-2 family proteins that allows it to provide high level protection from a 

diverse range of apoptotic stimuli. If we were to try to highlight any interactions then our 

data would suggest that the function of BHRF1 is much more reliant on the ability to bind 

other anti-apoptotic homologue such as BID and BAK than BIM. From our data, BHRF1 does 

not exert its anti-apoptotic effect through mainly binding to BIM, and more focus needs to 

be placed on binding to the other pro-apoptotic homologues if the system is to be properly 

understood.  

  

6.2 Limitations and further experiments 

We looked at the ability of BHRF1 to bind various BCL-2 homologues and protect from 

apoptosis in a BL background when eight of the key binding groove amino acids were 
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mutated. Kvansakul et al. had previously characterised the binding affinity of these mutants 

to five pro-apoptotic BCL-2 homologues; BAX, BAK, BIM, PUMA and Bid, using ITC.  

While our data reliably showed that the key residues required for BHRF1 function are G99 

and R100, and the ITC data showed that mutations at these sites causes loss or reduction in 

binding to the majority of BCL-2 homologues tested, we were unable to confirm this loss of 

binding by co-immunoprecipitation (Co-IP). 

Our Co-IP assays provided good results for BIM but we were not able to detect binding of 

WT BHRF1 to other BCL-2 homologues. This therefore, made assessing the binding of the 

mutants to these cellular BCL-2 proteins impossible. There are a variety of factors that can 

affect the results of Co-IP assays including the concentration of proteins in the lysate, the 

sensitivity of the antibody and the type of buffer used to lyse the cells. In fact, the type and 

concentration of the detergent used in lysis can lead to variability between methods and 

may even induce dimerization (41, 360). Co-IP assays may also miss transient binding and 

the method may disrupt weaker interactions (361). In these experiments it is likely that the 

low, but physiological, levels of BHRF1 restricted the analysis. Therefore the Co-IP assays, did 

not provided sufficient information on the binding abilities of the BHRF1 mutants to all 

cellular BCL-2 family proteins to draw firm conclusions. 

We therefore turned to the ITC data to assess the binding ability of the BHRF1 mutants. This 

method uses truncated proteins in solution, and we found the data to be useful, but not 

completely concordant with the results, in a cellular system. In most cases the ITC data was 

consistent with protective ability of the BHRF1 mutant, for example G99A and R100D 

consistently showed significant loss of binding to all cellular BCL-2 proteins tested. However, 

there were some discrepancies in which the protective phenotype of the mutant was at 

odds with the ITC data (e.g. F72W which protected almost as well as wild type but was 
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predicted by ITC to have lost or greatly reduced binding to the majority of BCL-2 homologues 

tested). Therefore it may be necessary to study these particular mutants in a different 

system in which we overexpress BHRF1 and carry out Co-IPs.  

Since there are at least 11 BH3-only BCL-2 homologues which have been discovered so far 

(54) as well as the multi-domain pro death homologues BAX and BAK, it is maybe not 

surprising that we found that the ability of BHRF1 to function as an anti-apoptotic protein 

was not attributed to an interaction with only one cellular BCL-2 protein. Rather our data 

have shown that there is a degree of redundancy between the pro-apoptotic BCL-2 

homologues. When we used siRNAs to knockdown of expression of some of these 

homologues we saw very little difference in the ability of BHRF1 to protect against 

apoptosis. In fact, there very little change to BHRF1’s anti-apoptotic ability when BIM, a BH3-

only BCL-2 homologue previously thought to be the main binding partner of BHRF1 (109), is 

knocked down, or when the BHRF1 protein is expressed in BIM negative lines.  This indicates 

that BHRF1 can bind and neutralise an array of cellular BCL-2 pro-apoptotic proteins and 

thereby protect from a diverse range of apoptotic stimuli that induce the intrinsic pathway 

via different routes. It has been shown previously that BHRF1 can protect in BIM positive 

and negative lines (101, 110, 179) so BIM does not play an essential role in the anti-

apoptotic function of BHRF1. From our knockdown studies, and the induction of apoptosis 

through different pathways, it is apparent that BHRF1 may act through binding to both BAX 

and BAK. Uren et al. found that anti-apoptotic BCL-2 homologues, including BHRF1, could 

protect from apoptosis induced by expression of BH3-only proteins that they could not bind, 

indicating a role in binding to BAX/BAK instead of BH3-only BCL-2 homologues (23).   

To improve our ability to interpret the apoptosis assay data we could try the experiments in 

parallel in a less complex system. There are several systems that have been used to explore 
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the binding of BCL-2 anti-apoptotic proteins to the pro-apoptotic BCL-2 homologues. Many 

of these methods employ truncated peptides, representative of the binding domains of the 

BCL-2 homologues, and a substitute for initiation of apoptosis, such as liposome 

permeabilization (56), BH3 profiling and permeabilization of cell free mitochondria (20). 

These assays have similar disadvantages to those inherent in ITC, in that interactions are 

shown using truncated proteins in a cell-free system, and may give results that are not 

relevant inside the cell. A cellular system could possibly be developed in which no 

endogenous BCL-2 homologues exist, and the pathway could be reconstructed to the 

desired complexity. An assay which comes close to this involves reconstructing the intrinsic 

apoptosis pathway in yeast. This method was used by Kvansakul et al. alongside ITC (104) 

and was useful for circumnavigating the complications of having endogenous BCL-2 protein 

in the system and removed the need to use detergents which could disrupt binding (360). 

Although the budding yeast Saccharomyces cerevisiae does not undergo apoptosis or 

express any BCL-2 family members, overexpression of BAX and BAK is lethal and kills through 

the activation of permeabilization of mitochondrial membranes and impairment of 

mitochondrial biogenesis (315, 362). Full length BCL-2 homologue cDNAs can be cloned into 

yeast to test their ability to prevent BAX/BAK induced death. It has been shown that co-

expression of BCL-2, MCL1, BCLXL and A1 with BAX/BAK can protect yeast from death (315). 

Kvansakul et al. also showed that BHRF1 can protect from BAK, but not BAX, induced death 

in this system (104). It is possible to reconstruct the whole intrinsic apoptosis pathway in 

yeast, including anti-apoptotic and BH3-only BCL-2 homologues. This can be achieved by 

expressing BAX/BAK, BH3-only and pro-apoptotic BCL-2 homologues from inducible or 

repressible promoters so that expression can be induced by addition of galactose or dox, for 

example (362). In this way, expression of the various classes of the BCL-2 homologues can be 
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timed and levels of expression can be varied through titration of the inducing agent. Using 

this model, NOXA, BIF, BMF and BID have been shown to activate BAX/BAK indirectly by 

inhibition of BCL-2 and BCLXL (362) and BIM has been shown to induce death through 

inhibition of BCLXL (363).  

In order to determine the binding abilities of the mutants, we could over-express them in 

the same EBV negative BL system using a different promoter and lentivirus system. While 

these high levels would not be physiologically relevant and would not yield useful apoptosis 

data, they might be high enough to detect binding by CO-IP. 

It would be interesting to combine yeast assays with our apoptosis data from a BL 

background, and could help to confirm some of our observations of a hierarchy of BHRF1 

binding to BCL-2 homologues. However, due to the high number of cellular BCL-2 

homologues, which would all need to be expressed in conjunction with either BAX or BAK, a 

full panel of yeast assays would be a large undertaking, especially if we also wanted to 

include the BHRF1 mutants.   

Another option would be to continue the knockdown studies. In this thesis we used a mix of 

commercial lentivirus plasmids (Santa Cruz Biotechnology Inc), expressing up to five 

different shRNAs sequences, to stably knockdown BIM, PUMA, BAX and BAK. These plasmids 

eventually gave good levels of knockdown but required several rounds of super infection 

and had the disadvantage of being drug selectable with no marker for expression. With 

more time we would have gone on to express several BCL-2 shRNAs in tandem to further 

simplify the system. Ideally we would also have included Bid in the panel of knockdowns. 

However, due to time constraints and issues with achieving good levels of knockdown we 

were unable to include it. As BHRF1 appears to favour binding to t-BID when death is 
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induced by several different drug pathways, it would be interesting to see the effect that 

removing BID from the system would have on BHRF1’s ability to protect.  

 

6.3 EBV and implications for the treatment of BL 

As BHRF1 expression has been shown to render Eµ-myc mice resistant to treatment(104), 

the expression of BHRF1 could have implications for  the treatment of BL. 

BL is a highly aggressive B cell lymphoma characterised by a translocation, commonly 

between chromosomes 8 and 14, which leads to upregulation of the MYC oncogene (270, 

364). C-Myc overexpression sensitises cells to apoptotic stimuli under unfavourable growth 

conditions (271). In the majority of BL cell lines and a significant percentage of BL biopsies, 

the pro-apoptotic effect is usually counteracted by mutation of the tumour suppressor p53, 

or elements of the p53 pathway (274, 275). In Eµ-myc mice (a model for BL) mutations in the 

p53 pathway are extremely common (365). EBV is also thought to have a role in suppressing 

MYC driven apoptosis, and can regulate apoptosis through a variety of mechanisms (see 

section 1.7.2 for details).  

BL is one of the fastest growing malignancies, with a doubling time of around 25 hours, and 

so is treated aggressively with intensive combination chemotherapy (284, 366, 367). Despite 

being highly aggressive, BL is also sensitive to apoptosis as a result of the myc translocation, 

and chemotherapy can achieve remission, for at least a year, in 75–89% of paediatric 

patients and 47–86% of adults (284). For relapsed patients the prognosis is less optimistic, 

although around 25% of paediatric patients may achieve long-term survival with a 

combination of rituximab and haematopoietic stem cell transplantation (368). If first line 

treatment does not work or the tumour relapses then there are very few other treatment 

options available. Furthermore, many HIV positive individuals cannot tolerate the intense 
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chemotherapy required for BL and opt out of treatment. Therefore there is a need for new 

and targeted treatments for BL. 

There is very little data on whether endemic and sporadic EBV have a different prognosis. 

They are histologically indistinguishable(369) and are currently both treated using the same 

chemotherapy regimes(284). Failure of first-line treatment results in poor prognosis in all 

forms of BL and relapse occurs in approximately 15–20% of patients.  

It is not known if this subset of patients who fail to respond to treatment carry a version of 

EBV positive BL which harbours a Wp restricted form of EBV as opposed to the more 

common latency I form.  Our data would strongly suggest that BLs that express BHRF1 are 

refractory to chemotherapy. The expression of BHRF1 during latency by Wp restricted EBV 

would result in a potent anti-apoptotic response. In Burkitt-like lymphomas (a form of B-cell 

lymphoma partway between BL and diffuse large B cell lymphoma, which may, or may not, 

have the myc, and other, translocations) it has been shown that possessing the c-myc 

translocation alongside an IgH/BCL-2 fusion (which mimics BHRF1 over-expression in Wp 

restricted BL), increases resistance to treatment and drastically decreases patient survival 

(370, 371). In a study of 13 Burkitt-like lymphoma patients, with myc and BCL-2 

translocations, none survived beyond 7 months, despite aggressive chemotherapy (370).   

In our work, we have seen a dramatic increase in cell survival upon treatment with apoptosis 

inducers when BHRF1 was expressed to physiological levels in EBV negative lines. 

Furthermore, these BHRF1 expressing EBV negative lines were equally well protected from 

apoptosis as their Wp restricted counterparts. This indicates that it is solely BHRF1 which 

gives Wp restricted BL its drug resistant phenotype.  

Because BHRF1 may increase the apoptosis resistance of a cancer which requires highly 

aggressive chemotherapy, inhibition of BHRF1 could prove beneficial and may enable the 
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intensity of chemotherapy to be reduced in some cases. This could improve treatment 

outcomes in all subtypes of BL.  

 

As many of the most treatment resistant cancers have been found to express high levels of 

the BCL-2 anti-apoptotic proteins, work is underway to find ways of suppressing their 

expression or inhibiting their function (reviewed in (372)). Inhibition of BCL-2 expression 

with antisense RNA has shown promise and one such compound, oblimersen sodium, has 

been tested in Phase III clinical trials(373, 374). However, doubt has been thrown over the 

mechanism of oblimersen, as CpG motifs, included the antisense RNA, activate toll-like 

receptor 9 and trigger an inflammatory response which also results in tumour cell killing 

(375).   

BH3 mimetics have shown promise as BCL-2 inhibitors in recent years and could also be used 

to inhibit BHRF1. These target the protein-protein interactions of BCL-2 homologues. They 

mimic the BH3 domains of BH3-only homologues and bind to the hydrophobic cleft of anti-

apoptotic BCL-2 proteins. The BCL-2 proteins are antagonised and release pro-apoptotic BCL-

2 family proteins leading to cell death (reviewed in (376)).  

One such BH3 mimetic, ABT-737, and its oral version ABT-263, inhibits BCL-2, BCLXL and 

BCLW, but not MCL1 or A1 (377, 378). ABT-737 and ABT-263 have shown promising results in 

Phase I/II clinical trials but are less effective against cancers which express high levels of 

MCL1 and A1, tumours which initially respond well to ABT-737 have been shown to 

upregulate MCL1 and A1 expression after an extended period of treatment (379). In these 

cancers the effect of ABT-737 can be enhanced by inhibition of MCL1 and A1 using shRNAs 

(379) or through upregulation of BH3 only BCL-2 homologues which antagonise MCL1 and 
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A1, such as BIM and PUMA (reviewed in (380)). Hence, a combination of therapy types is 

likely to be beneficial. 

Targeting widely expressed cellular BCL-2 proteins can lead to on-target toxicity in normal 

cells that are dependent on these proteins. For example platelets were severely affected by 

ABT-263 because they are dependent on BCL-XL for survival(381, 382). ABT-263 was 

redesigned to produce ABT-199 that is more effective against BCL-2 than BCL-XL and this 

toxicity was reduced (383). 

An advantage of using BH3 mimetics to target a viral BCL-2 family protein such as BHRF1, is 

that higher doses of drug may be used because there should be no toxicity on normal cells. 

Despite its similarity to BCLXL, BHRF1 has been shown to be completely insensitive to ABT-

737 (104). Hence, ABT-737 may not be as effective in BL.  

When designing BH3 mimetics specific to BHRF1, data from our work could aid in 

determining basic requirements for the molecule. For example, we have shown the binding 

to the G99 and R100 amino acids in the BHRF1 hydrophobic groove is extremely important 

for the formation of BH3/BHRF1 complexes. Complex formation was not dependent on 

binding to the T68, R71, E89, R93, L102, and to some extent the F72, amino acids. Designing 

a compound with strong binding to these 6 amino acids, or increased affinity for G99 and 

R100, would drastically increase the strength of binding to BHRF1, outcompeting the BH3-

only proteins and rendering BHRF1 inactive.  We have also shown that BHRF1 binds strongly 

to BIM, although it may mainly act through BID and BAK. Basing any sequences on the BH3 

domains of these proteins could be a good place to begin in the construction of a BH3 

mimetic for BHRF1.  

In a recent publication, Procko et al. have designed a BHRF1 mimetic, BINDI, using 

computational design with the BIM BH3 domain as a guide (384). The BIM BH3 domain was 
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grafted onto the BHRF1 binding groove and then surrounding residues of the BH3 domain, 

and scaffold protein, were modified, to provide optimal binding and fit. BINDI as been shown 

to have very high affinity and specificity for BHRF1, these levels of binding may be higher 

than any other drug, protein or peptide designed to bind BCL-2 homologues. In Ramos-AW 

cell lines (EBV positive, expressing low levels of BHRF1) BINDI induced cytochrome C release 

from mitochondria. However, there was also some affect of BINDI on mitochondria isolated 

from EBV negative Ramos, indicating that BINDI may retain some off target effect (384). 

Procko et al. also did not look at the effect of BINDI in Wp restricted BL which express higher 

levels of BHRF1 than LCLs of Lat BLs (101). However, they did show that BINDI, in 

combination with cyclophosphamide and bortezomib, was able to slow transformation and 

tumour progression in nude BALB/c mice with subcutaneous xenografts of Ramos-AW. BINDI 

extended survival to 24 days as opposed to 16 days with chemotherapy only (384). This 

research, although very preliminary as a treatment for BL, has shown that it is possible to 

computationally design proteins that will then have an in vivo effect. It will be interesting to 

see extended research on the properties of BINDI in vitro and in vivo, especially in relation to 

its ability to sensitise Wp restricted BL to treatment.  

 

6.4 BALF1 and resistance to apoptosis 

BALF1 is the second vBCL-2 homologue expressed by EBV and its function is still 

controversial.  

Expression of either BALF1 or BHRF1 has been shown to be essential during transformation 

(98). However, it is not known if BALF1 is pro- or anti-apoptotic. There are reports that 

BALF1 has a pro-apoptotic function and may antagonise BHRF1 in a similar manner to the 

way in which cellular pro-apoptotic BCL-2 homologues antagonise their anti-apoptotic 
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counterparts(41). However, we found that BALF1 was able to protect BL cells from 

apoptosis, and increased the protection already conferred by BHRF1 expression. These 

results are supported by several other studies (96, 357).  

Considering the wealth of published information on BHRF1, it is surprising that BALF1 is not 

better studied, especially considering the rarity of two BCL-2 homologues being expressed 

by the same virus. An extensive literature search revealed only 5 primary publications which 

explore the function of BALF1 (41, 96, 98, 112, 357). In an otherwise extensively studied 

virus there is a real dearth of information surrounding a protein which could have 

implications, not only for EBV biology, but also for EBV associated malignancy.  

In part, this lack of information may be due to the absence of tools to assess BALF1’s 

expression and function, such antibodies and siRNAs, for example, as well as the difficulty in 

achieving stable and long-term BALF1 expression (111). In our studies we used a lentivirus to 

express a HA tagged version of BALF1 in BL cell lines. This proved difficult to transduce into 

cell lines but once stable transduction was achieved, Wp restricted BL lines expressed HA-

BALF1 to very high levels and we were able to see a protective effect in addition to that 

provided by endogenous BHRF1.  

Unfortunately our experiments were limited by time constraints. However, these cell lines 

could provide a very useful resource for the study of BALF1 function. With the HA tag they 

enable easy detection of the BALF1 protein and can be used for co-immunoprecipitation and 

immunofluorescence assays. With expression of BHRF1 and BALF1 in the same system it 

could be interesting to look at their similarities and differences in terms of interactions with 

cellular BCL-2 homologues and their ability to protect against various cytotoxic drugs.  
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6.5 BALF1 expression and the implication for EBV related malignancy 

We found that BALF1 was expressed in B cell lines during EBV latency. Unlike BHRF1, BALF1 

mRNA was expressed during Wp restricted latency, latency I, and III. Due to the lack of any 

antibodies to BALF1, we were unable to look for BALF1 protein expression in these lines. 

However, BALF1 mRNA was expressed to similar levels as those of BHRF1 mRNA seen in 

LCLs, which is known to be high enough to affect phenotype (101). 

BALF1 expression is not restricted to B cells. Cabras et al. showed BALF1 to be expressed in 

BL cell lines and NPC biopsies (112). In an extensive panel of cell lines we showed BALF1 to 

be expressed over a wide range of malignancies, and all forms of EBV latency.  

This unrestricted pattern of expression means that BALF1 could potentially be much more 

physiologically relevant for EBV related malignancy than BHRF1, which has a restricted 

pattern of expression and is rarely found expressed in anything but Wp restricted BL and 

LCLs (101). Furthermore, BALF1 has been shown to increase tumour formation in nude mice, 

and cell movement and invasion in cell culture which could translate in increased metastatic 

potential(357). Hence, abrogation of the anti-apoptotic function of BALF1 would have 

implications for the treatment of all EBV related malignancies, not only BL. However, 

without the knowledge of how BALF1 achieves its effect, whether through interactions with 

cellular pro-apoptotic proteins as a vBCL-2 homologue as its sequence homology 

suggests(96), or through other mechanisms such as upregulation of transcription factors like 

NF-κβ, a known ability of BCL-2 (385) , it would be extremely difficult to design a treatment 

to repress BALF1’s function. Further study into the basic function and binding of BALF1 could 

be very beneficial. There remains the opportunity for future research to have an extensive 

impact on the understanding of the virus and its associated malignancies.  
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