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Abstract 

 
The mixed-lineage leukaemia 1 protein is a histone methyl-transferase that deposits the 

gene activating H3K4 trimethyl mark,  and is often mutated in leukaemia. MLL1 is normally 

associated with a cohort of cofactors, but the mechanisms regulating the histone methyl-

transferase activity remain unclear. Here I examine the role of Msk1, a downstream kinase 

of the MAP-kinase pathway, in regulating MLL1 activity. Msk1 is known to deposit the H3S10 

phosphorylation mark, which was found to stimulate MLL1’s methylation activity in vitro. 

Here I demonstrate that MLL1 and Msk1 can be immunoprecipitated and their patterns of 

genomic binding show an overlap at ~30 of sites, suggesting a direct functional interaction. 

In transient MLL1 and Msk1 knock-down cells, known MLL1 target genes were down-

regulated and at a global level, 30% of all responding genes were regulated in the same 

manner. Furthermore, key histone modifications at MLL1 target genes change in Msk1 

knock-down cells, suggesting that  histone cross-talk within the MLL1 complex acts as a 

means of gene regulation.  Finally, cell cycle studies suggest MLL1-Msk1 cross-talk may 

stimulate MLL1-driven gene expression after mitosis. These findings suggest that MLL1 is 

regulated by Msk1 and therefore by extracellular signals via the MAP-kinase pathway. 
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1 Introduction 

Development starts with fertilization, resulting in a stem cell with a unique and individual set 

of genes. This stem cell gives rise to every cell in the final organism, which all carry the same 

genetic information, but vary significantly in their phenotype defined by characteristic 

patterns of gene expression and silencing (Figure 1.1). These patterns are established by 

epigenetic mechanisms that do not alter the DNA sequence and need to be maintained 

through DNA replication, chromatin assembly and DNA condensation in mitosis. Bird defines 

epigenetic events as “the structural adaptation of chromosomal regions so as to register, 

signal or perpetuate altered activity states” (Bird 2007).  Although epigenetic events can be 

short lived, under certain circumstances they need  to be stable to be passed onto daughter 

cells, which led to the hypothesis of the “epigenetic memory” of the cell (Riggs & Porter 

1996). The foundation of all epigenetic mechanisms are proteins that can establish, read, 

modify and erase epigenetic modifications and regulate the access of the transcription 

machinery to the DNA (Inbar-Feigenberg et al., 2013). Several mechanisms are known, 

including DNA methylation (Berger et al. 2009), post-translational histone modification 

(Turner 2005), histone variants (Khorasanizadeh 2004), nucleosome positioning (Schones et 

al. 2008) and ncRNA (ENCODE project Consortium 2012), which work together to establish 

the ‘epigenetic state’ of individual genes and generally the whole cell (Jirtle & Skinner 2007). 

However, epigenetic mechanisms do not only define constitutive gene expression, but also 

contribute to the response to extracellular signalling (Jaenisch & Bird 2003). The epigenome 

therefore has an important regulatory  function and directly links the environment to gene 

activity (Franklin & Mansuy 2010). 
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 Figure 1.1: Development and Epigenetic mechanisms. All the cells in an individual carry the same 

underlying genetic information, which was created at conception.  Despite the common DNA-sequence, 

differentiated cells vary in their phenotype due to different patterns of gene expression. Epigenetic 

mechanisms play an important role in establishing these patterns during development. 
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1.1 Chromatin Organization 

In prokaryotes, genes are in an unrestricted ground state and gene expression is only 

dependent on RNA Polymerase II binding to the promoter. The eukaryotic genome however 

is much more complex than the prokaryotic, with long stretches of non-protein-coding 

sequences. Hence gene expression not only depends on RNA Polymerase II access, but also 

on transcription factor binding and regulatory sequences, which can be several megabases 

away from the promoter (Struhl et al. 1999). In order to initiate transcription ‘transcription 

factories’, a large battery of proteins (e. g. transcription factors), associate at active genes 

and participate in transcription and co-transcriptional RNA processing (Buckley & Lis 2014). A 

key event is the recruitment of RNA Polymerase II and the general transcription factors at 

the core promoter, forming the Pre-Initiation-Complex, in which the polymerase is in a 

poised state. Only after its phosphorylation at the C-terminal domain (Phatnani & Greenleaf 

2006) does Polymerase II leave the complex and  move on to the elongating state (Müller & 

Tora 2014). The complexity of the eukaryotic genome and the gene expression require a high 

level of organization of the DNA in the nucleus.  

Therefore in eukaryotes  the primary role of the nucleus is the storage, retrieval and 

replication of genetic information, which requires the organization and compaction of ~2 m 

of DNA in mammals (Woodcock & Ghosh 2010). In Figure 1.2 the different levels of 

chromatin organisation are shown. The 2nm DNA fibre is wrapped twice around the 

nucleosome, forming an open zigzag string or 11nm fibre, often referred as the “beads on a 

string” structure (Olins & Olins 1974). Adjacent nucleosomes are linked with DNA, which 

varies in length in a cell- and species-specific manner. Nucleosomes subsequently self-

assemble  into the “30nm fibre”, a regular array in which nucleosomes are packed on top of 
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one other (Robinson & Rhodes 2006). The 30nm is the first level of transcriptionally inactive 

chromatin. It has been assumed that chromosomes in interphase consist of either the 11nm 

(active) or 30nm (inactive) chromatin fibre (Gall 1966, Dorigo et al. 2004). Chromatin can be 

further compacted, aided by chaperone proteins, which prevent inappropriate interaction. 

The mechanisms however are unknown (Hansen et al. 2010). In vitro studies on 

chromosomes propose that condensin acts as a scaffolding and interlinking protein, which 

supports higher order structures (Maeshima & Eltsov 2008). During mitosis chromosomes 

are visible. They  are the most condensed form of DNA and about 10,000 times shorter than 

the non-condensed DNA fibres (Felsenfeld & Groudine 2003).  

However, recent reports claim, that this model of hierarchical DNA packaging (which is 

mostly based on in vitro studies) needs to be revised. It is now known that chromosomes are 

divided into hundreds of domains with different protein compositions (Bickmore & van 

Steensel 2013). New technologies (like Chromatin Conformation Capture techniques) have 

found that in vivo chromatin is packed into 11-nm fibres, which form 3-dimensional 

chromatin domains independent of higher order structures (Razin & Gavrilov 2014). It has 

been shown, that interphase chromosomes occupy distinct chromosome territories. These 

‘topological domains’ have well defined boundaries, which are engaged with proteins such 

as the insulator protein CTCF (Bell et al. 1999) and are conserved across different species 

(Dixon et al. 2012). 

In chromatin formation the nucleosome plays a central role, as the basic unit of chromatin 

condensation. It is basically the same in all eukaryotes and is one of the most highly 

conserved structures (Luger et al. 1997). The nucleosome consists of a stretch of DNA, which 

is wound around eight histone proteins. Two copies of each histone protein (H2A, H2B, H3 
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and H4), as shown in Figure 3.2 B, assemble together and form a histone octamer. Around 

this 145-147 base-pairs of DNA are wrapped in a left handed super-helix (Luger et al. 1997). 

The shape and the charge on the nucleosome surface facilitate most of the histone-histone 

and histone-DNA interactions. This makes the nucleosome an essential component for 

higher chromatin structure (Garcia-Ramirez et al. 1992; Chodaparambil et al. 2007). From 

this nucleosome core the N-terminal domains of the histones (“tails”) protrude (Figure 3.3 

A). They are flexible and highly mobile with a large number of charged residues (Banères et 

al. 1997). In low salt conditions they dissociate from their original binding positions on the 

nucleosome and therefore cannot be crystallized. However, in vivo studies have shown that 

they can make contact with other histones (du Preez & Patterton 2013). The N-terminal tails 

can interact within the same nucleosome but also with neighbouring nucleosomes. It is now 

thought that the tails support the formation of the higher order structures and may even be 

involved in  the binding to the DNA or chromatin proteins (Zheng & Hayes 2003). For 

example tails of histone H4 bind to defined regions (‘acidic patches’)  of neighbouring 

nucleosomes and help to compact the higher order structure of chromatin (Kalashnikova et 

al. 2013).  In higher eukaryotes the nucleosome is stabilized by the linker histone H1, which 

sits on top of the core-nucleosome. H1 is positively charged and stabilizes the binding of the 

negatively charged DNA to the nucleosome (Harshman et al. 2013). Furthermore, recent 

findings suggest that histone H1 binding, in concert with the length of linker DNA between 

two nucleosomes, may have an influence on the shape and formation of the 30 nm fibre 

(Routh et al. 2008). 

Although chromatin needs to be highly organized, it also needs to be kept flexible and 

accessible in order to be able to respond to environmental and developmental stimuli (Lange 
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et al. 2011). In general there are two different types of chromatin. In 1928, Heitz observed, 

that some chromatin regions stayed condensed during the cell cycle (Heitz 1928). He called 

those regions heterochromatin (Zacharias 1995). Today it is known, that heterochromatin is 

highly condensed and gene-poor. This is generally distinguished into constitutive 

heterochromatin, in which genes are poorly expressed and found at distinct genomic 

locations (eg. centromeres or telomeres, Tamaru 2010). In addition facultative 

heterochromatin exists, in genomic regions that can adopt an open or compact 

conformation and that are often associated with differentiation. The most prominent 

example for facultative heterochromatin formation is the inactivation of the second X-

chromosomes in female cells (Trojer & Reinberg 2007). Euchromatin on the other hand is 

less condensed and transcriptionally active. It is thought that insulator elements in the DNA 

sequence prevent the interference of hetero- and euchromatin and which also block 

enhancer activity at inappropriate promoters. They are bound by proteins, like CTCF a highly 

conserved zinc-finger DNA binding protein (Bell et al. 1999; Ghirlando et al. 2012). 

It is not yet understood how hetero- and euchromatin domains are formed. Yet nucleosome 

arrays are highly dynamic even in a very condensed state. In a study, which used FRET 

microscopy on fluorescence-labelled nucleosome arrays, it was shown that chromatin 

undergoes conformational fluctuations, exposing sites on the nucleosome (Poirier et al. 

2010). These spontaneous chromatin fibre dynamics allow for the invasion and action of 

DNA processing protein complexes and may allow chromatin conformation changes (Poirier 

et al. 2010). Nevertheless, it is now accepted that the chromatin state influences gene 

transcription (Dillon 2004) and that compaction of chromatin leads to inhibition of 

transcription initiation and elongation by RNA polymerase II (Hansen & Wolffe, 1992) 
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Figure 1.2: Chromatin Organization. (A) The DNA double-helix is first wrapped twice around the 

nucleosome core, the fundamental packaging unit of chromatin, leading to an open “bead on a string” 

structure.  This fibre is then further condensed into the 30-nm fibre and subsequently forms unknown 

higher order structures. Finally the chromosome in mitosis is the most condensed form of chromatin 

(Maeshima & Eltsov 2008).  (B) X-ray crystal structure of the nucleosome core, which consists of histone 

proteins (H2A, H2B, H3 and H4 (Weber & Henikoff 2014, adapted from Luger et al. 1997). 
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1.2 Histone Modifications 

Nucleosomes are an important structural component of chromatin.  However, the histone 

tails, which project from the nucleosome core, are targeted by specialized enzymes that 

deposit modifications on specific amino acid residues after translation (Bhaumik et al. 2007). 

Most common are acetylation of lysines, methylation of lysines and arginines, and 

phosphorylation of serines, threonines or tyrosines. These modifications are small chemical 

groups and are deposited at distinct residues of the histone tails by specialized histone 

modifying enzymes, for example methyltransferases deposit and demethylases remove 

methyl-groups (Figure 1.3 A & B). These enzymes normally work in pairs, in which one class 

of enzymes oppose each others effect. The level of histone modification depends on a 

dynamic equilibrium of the enzymes (Turner 2012). While residues can only be mono-

acetylated or mono-phosphorylated, methylation shows a greater extent of variation.  Lysine 

methylation can differ between mono-, di- or tri-methylation, whereas di-methylated 

arginines can be symmetric or asymmetric (Kouzarides 2007).  However the landscape of 

post-translational modifications is more complex with many more modifications known and 

modifications found on the fold of the N-terminal domains or even within  the globular 

domain (Rothbart & Strahl 2014). By now over 100 modifications are known with a great 

variety of formats  (Xu et al. 2014). For example, peptides can be added to the histone tails, 

like ubiquitin (West & Bonner 1980) or SUMO (Shiio & Eisenman 2003), and complex 

chemical groups like ADP-ribose (Martinez-Zamudio & Ha 2012) or biotin (Camporeale et al. 

2004). However, post-translational modifications can also affect the histone tail itself, like 

deimination (conversion of arginine residues into citrulline, Cuthbert et al. 2004) or histone 

tail clipping (histone H3 is shortened by cleavage after alanine 21, Santos-rosa et al. 2012). 
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It is generally accepted, that histone modifications play an important role in gene regulation, 

though the precise mechanism for all modifications is still elusive (Henikoff & Shilatifard 

2011). Nevertheless, key histone modifications have been studied intensively and are 

associated with specific functions. Histone H3 lysine 9 acetylation (H3K9ac) and histone H3 

lysine 4 tri-methylation (H3K4me3) are generally associated with active genes, whereas 

histone H3  lysine 27 tri-methylation (H3K27me3) is generally associated with silent genes 

(Barski et al. 2007) . ChIP-Seq experiments generated high-resolution maps of these histone 

modifications across the genome, revealing their position across active or silent genes 

(Figure 1.3 C). These experiments showed a spike of H3K4me3 and H3K9ac over the 

promoter region (TSS) of active genes and a lower background level of H3K27me3. In 

contrast, on silent genes H3K27me3 rises slightly, whereas H3K4me3 and H3K9ac abundance 

stays at a background level (Yin et al. 2011).   

In general,  cell type specific gene expression is controlled by the availability of transcription 

factors and their accessibility  to chromatin, which is controlled by epigenetic mechanisms, 

like histone modifications (Schones & Zhao 2008).  So far three theories have been proposed 

to explain their functions.  

(I) Histone tails contain a high percentage of positively charged arginine and lysine residues, 

which facilitates interaction with the negatively charged DNA.  It has been shown that 

acetylation alters the charge of histone tails by neutralizing the positive charge of lysine 

residues. Hyper-acetylation of the histone tails leads to an accumulated effect of charge 

neutralisation of the tails and therefore to an opening of chromatin structure allowing gene 

transcription (Dion et al. 2005). For example, artificially induced hyper-acetylation at H4K16 

inhibited the formation of nucleosome arrays into more compact fibres (Shogren-Knaak et 
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al. 2006).  A similar role has been proposed for phosphorylation, which brings a negative 

charge to the histone tail and therefore may create repulsion between the negatively 

charged DNA and the histone (Mahadevan et al. 1991; Banerjee & Chakravarti 2011).  

(II) Certain histone modifications are associated with specific transcriptional states. 

Acetylation in general is associated with actively transcribed genes, as well as H3K4me3. 

H3K27me3 on the other hand is associated with repressed genes (Lee & Mahadevan 2009).  

In the “histone code” model it is suggested that chromatin binding proteins can be recruited 

by histone modifications as they contain specialized domains, which recognize defined 

histone modifications. Thus different histone modifications can function together to signal 

distinct chromatin states (Strahl & Allis 2000).  

(III) More recently it has been proposed, that histones work as signalling integration 

platforms. There are a variety of histone modifications and most do not seem to have a 

direct functional output. This leads to the suggestion that histone modifications summate 

the response to multiple external signals, which results in only a small directed output. 

Although signals on their own can either activate or inactivate gene expression they are 

interpreted in the context of the histone landscape. Thus,  although every incoming signal 

changes the histone modification landscape, it is proposed that only the entirety of the 

modifications is interpreted,  via recruiting proteins to the DNA  (Badeaux & Shi 2013). 

Histone modifications can be stable and unchanging throughout a cell’s life, or highly 

dynamic and  rapidly changing,  appearing  or disappearing on a nucleosome within minutes 

after an external stimulus  (Kouzarides 2007). For example the inactivation of one X-

chromosome in female mammalian cells is associated with the stable establishment of 

facultative heterochromatin. This is hypoacetylated and hallmarked with H3K27me3, 
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H3K9me2, H4K20me1 and H2AK119ub1, whereas constitutive heterochromatin is 

hypoacetylated and marked with H3K27me1, H3K9me3 and H4K20me3. Nonetheless the 

composition of histone modification on the X chromosome can vary in different regions and 

probably the combination of different modifications signal the chromatin state (Brinkman et 

al. 2006). In contrast, a study on histone modifications in yeast during replication has shown 

that replication is accompanied by dynamically changing modifications, especially histone H3 

and H4 acetylation, such as H3K56ac, which increases from low levels in G1 to high levels in 

S-phase and then drops back (Unnikrishnan et al. 2010).  

Additionally different modifications have different turnovers. Histone methylation usually 

has a slower turnover than acetylation or phosphorylation, which only have a half-life of 1-5 

minutes. Furthermore, silencing marks are more stable than activating histone marks 

(Clayton et al. 2006; Zee et al. 2010). This indicates that long-term changes, as well as 

immediate, short term changes to the chromatin landscape can be mediated by histone 

modifications (Lee & Mahadevan 2009).  
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Figure 1.3: The Nucleosome.  (A) Nucleosomes are histone octamers with ~146 bp DNA wrapped around it. 

Histones have two domains: the globular domain and the N-terminal ‘tail’ domain. The globular domain 

forms the core of the nucleosome, around which the DNA is wrapped, while the tail domains protrude from 

it. (B) Modifications are highly specific for distinct residues on the tails (Ph=phosphorylation, 

Me=methylation, Ac=acetylation, figure by Charlotte Rutledge). (C) ChIP-Seq experiments generate high 

resolution maps of key histone modification distribution across genes. These indicated the average pattern 

of modifications across the transcriptional start site (TSS) (adapted from Barski et al. 2007 and Yin et al. 
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1.3 Histone Crosstalk 

The vast number of histone modifications in a small area implicates that they influence each 

other, providing regulatory cross-talk.  For example histone H3 phosphorylation at serine 10 

(H3S10p) is involved in two opposite chromatin states.  Mitotic chromosomes are highly 

phosphorylated and have very compacted chromatin (Hsu et al. 2000). On the other hand 

active genes are also marked with H3S10p, implicating that it’s readout is influenced by 

other modifications (Mahadevan et al. 1991; Nightingale et al. 2007).  

Cross-talk can take place in various forms (Figure 1.4). It can be limited to one histone tail 

(cis) or can occur between modifications on different histone tails (trans). The outcome of 

the affected modification can be enhanced (positive cross-talk) or can be blocked (negative 

cross-talk) (Nightingale et al. 2006). Finally it can be direct, affecting the histone 

modifications on the tails, or it can be indirect, affecting histone binding proteins (Latham & 

Dent 2007; Fischle 2008).  

The most obvious form of direct cross-talk is shown in Figure 1.4 A. Some residues can be 

modified in different ways. H3K4 can be either acetylated or methylated, so blocking each 

other. Another example of negative direct cross-talk is in ES cells  where key developmental 

genes are kept in a bivalent state by marking them  with the activating H3K4me3 mark, as 

well  as with the repressive H3K27me3 mark, neutralizing the outcome of the individual 

modifications (Bernstein et al. 2006).  

However cross-talk can also involve the enzymes, which deposit modifications. Dot1 is a 

methyltransferase that targets H3K79, yet for efficient methylation, H2BK123 needs to be 

ubiquitinilated (Figure 1.4 B). In contrast, for the ubiquitination of H2B, methylation of 

H3K79 is not required (Ng et al. 2002). 
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In Figure 1.4 C, an example of indirect cross-talk is given. The HP1 protein is an essential 

regulator of epigenetic gene expression and important for chromatin stability during mitosis. 

It can bind to methylated lysine 26 on histone H1.4, though when the same histone is 

phosphorylated at serine 27, HP1 cannot bind anymore (Daujat et al. 2005).  

Another level of complexity in cross-talk was described for the regulation of the FOSL1 gene 

(Figure 1.4 D). After stimulation the FOSL1 enhancer is phosphorylated at H3S10. The  14-3-3 

protein can bind then to the phosphorylated mark and activate the acetyltransferase MOF, 

which deposits H4K16 acetylation. At this point BRD4 can bind to the two marks and trigger 

the release of the paused polymerase II at the FOSL1 promoter (Zippo et al. 2009).  

 Crosstalk of different types of histone modifications acting in a combinatorial manner, 

allows fine-tuning of nuclear events and the integration of different cellular signalling 

pathways at the chromatin level (Zhang & Pradhan 2014). It also enables the histones to 

carry a vast amount of information. For example the first 10 amino acids of histone H3.1 

(ARTKQTARKS) can be targeted by 19 different modifications, some of them exclusive. This 

results in 60 different modified peptides, expanding the number of possible single modified 

histone tails (Schwammle et al. 2014).   More complexity is added by the fact that histone 

modifications also cross-talk to other epigenetic pathways, like DNA methylation and 

ncRNAs (Suganuma & Workman 2011). 
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Figure 1.4: Histone cross-talk. Histone modifications can influence each others functional output. Here are 

some examples given with more details in the text. (A) Negative cross-talk means that one modification 

blocks another one. Here H3K4ac prevents H3K4me3 in cis (on the same histone) (B) Positive cross-talk 

means one modification enhances another modification. Here H2B ubiquitination stimulates Dot1 

methyltransferase activity in trans (on another histone). (C) Cross- talk can be indirect not affecting any 

histone modifications. For example HP1 cannot bind to its normal target H1.4K26 methyl-mark, when 

blocked by the H1.4S27 phospho-mark. (D) Cross-talk can be very complex. Here the 14-3-3 protein binds to 

H3S10p, which then activates MOF, which deposits the H4K16 acetyl-mark. This allows the binding of BRD4 

to H3S10p and H4K16ac.  
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1.4 Readout of histone modifications 

 The histone modification landscape is a flexible, constantly changing environment. This 

requires specialized proteins, which can either deposit histone modifications (‘writer’), 

remove them (‘eraser’) or recognize them (‘reader’) (Strahl & Allis 2000).  The level of 

histone modifications at a locus is therefore determined by the balanced activity of the 

writer and the eraser proteins (Figure 1.3 A). For example, acetylation is deposited by acetyl-

transferases and removed  by deacetylases (Wang et al. 2009). Phosphorylation is set  by 

kinases in response to upstream signalling pathways and opposed by phosphatases (Shimada 

et al. 2010). Lysine methylation is catalysed by methyl-transferases, which nearly all contain 

catalytic SET domains and removed by demethylases  (Black & Whetstine 2013).  Histone 

modifications provide highly selective binding sites for reader proteins, a class of proteins 

that contain different highly conserved domains, which recognize histone modifications at 

certain residues (Mellor 2006).  In Figure 1.5 a selection of them are shown.  

The bromo-domain for example bind specifically to acetylated lysines (Sanchez et al. 

2014). This domain was first discovered on the brm-gene in Drosophila and it was recognized 

that this 77 amino-acid motif is found in other eukaryotic regulatory proteins  (Tamkun et al. 

1992). Recognition of acetyl-lysine was thought to be limited to bromo-domains, but more 

recently the  DPF (double PHD finger) domain of human DPF3b, which functions in 

association with the BAF chromatin remodelling complex to initiate gene transcription has 

been associated with binding acetyl marks (Zeng et al. 2010).  

A variety of methylation binding proteins have been described, which is probably due to the 

variety of methyl marks. The chromo-domain of Polycomb and HP1 proteins of Drosophila 

was described as a methyl-binding motif that binds to H3K27me3 (Paro & Hogness 1991). 
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This domain is a member of the ‘royal family’ of domains, a structurally related group of 

folds, which bind methyl groups (Mallette & Richard 2012) and also includes the tudor-

domain and/or the MBT domain. The tudor-domain has been reported to bind to different 

methyl-marks, for example in the SMN protein, which is linked to spinal-muscular atrophy, 

the tudor-domain binds to symmetrically di-methylated arginines (Selenko et al. 2001), 

whereas in the demethylase JMJD2A  the domain binds to methylated H3K4 and H4K20 

(Huang et al. 2006). The MBT (malignant brain tumor) domain can recognize mono- and di-

methylated lysines at various positions on the histone tails. PHD (plant homeo domain) 

fingers (not a tudor domain family member) are found in a variety of different proteins, 

where they interact specifically with H3K4me3 (e. g.  the PHD finger of the chromatin 

remodeller NURF; Wysocka et al. 2006). However, there is some overlap between their 

binding sites as  some domains can recognize the same methylation marks (Bannister & 

Kouzarides 2011).  

Phosphorylation is recognized by the well-conserved 14-3-3 family of phospho-specific 

binding proteins. These are independent dimeric proteins that offer two sites for protein 

binding and  therefore can act as adaptors between phosphorylated histones (H3S10p and 

H3S28p) and the effector protein (Macdonald et al. 2005).  Recently the BIR (Baculovirus IAP 

Repeat) domain of Survivin has been shown to bind to H3T3 phosphorylation 

(Niedzialkowska et al. 2012). 

It has also been described that unmodified histone tails can be recognized by specialized 

PHD fingers and WD40 domains, which would make unmodified histone tails signals in their 

own right. For example the PHD finger of BHC80, a member of the LSD1 demethylase 

complex, binds specifically to H3K4me0 and this interaction is abolished when H3K4 is 
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methylated (Lan et al. 2007). Likewise, the human autoimmune regulator AIRE was also 

shown to interact with the unmodified H3K4  via its PHD fingers (Chakravarty et al. 2009). 

The binding  affinities of binding domains have been shown to be relatively weak, 

which allows rapid ’on-off’ binding (Daniel et al. 2005). Also, binding domains are often 

found in close proximity to each other or contain several copies of a specific reader domain. 

For example, in ING2 a bromo-domain is found next to PHD fingers forming the BPTF 

(bromo-domain and PHD domain transcription factor) domain (Shi et al. 2011). This could 

allow co-binding, which would be expected to  strengthen  the binding of the effector 

protein to chromatin. Furthermore, the combinatorial readout of histone modification can 

modulate and specify the recruitment of reader proteins (Musselman et al. 2012).  
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Figure 1.5: Histone modification binding domains. Histone modifications are recognized by conserved 

binding protein modules, which are highly specific for distinct modifications at specific residues.  Bromo-

domains and DPF domains are known to bind to acetylated residues. Chromo- , Tudor- and MBT domains, 

as well as PHD fingers bind to methyl-marks. Phosphorylated residues are recognized by 14-3-3 proteins. It 

has also been reported that the BIR domain can bind to phospho-marks.   
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1.5 The histone methyltransferase MLL1 

Eukaryotic gene expression is controlled by modification of chromatin structure through the 

enzymatic action of transcriptional regulators. MLL1 modifies chromatin structure by 

regulating the degree of H3K4 methylation (Liedtke & Cleary 2009). As it was first discovered 

about 20 years ago, chromosomal diagnostics of acute lymphoid leukaemia (ALL) and acute 

myeloid leukaemia (AML) patients, showed a recurring chromosomal translocation involving 

chromosome 11, band q23. The gene on this  frequent chromosome break point was 

therefore termed mixed-lineage leukaemia (MLL)  (Ziemin-van der Poel et al. 1991). 

MLL1 is a large protein of 3900 amino-acids, which is cleaved by the Taspase 1 enzyme after 

translation into a 320kDa N-terminus (MLLN) and a 180kDa C-terminus (MLLC), which are 

bound together and form the MLL1 core complex (Yokoyama et al. 2002).  The domain 

structure is complex (Figure 1.6 A). In control of the hetero-dimerization of the MLL1 core 

complex are the FYR-domains on the N- and the C-terminus  (Ansari & Mandal 2010).  MLL1 

also contains multiple domains, which are involved in targeting MLL1 to its target sites. The 

AT-hooks on the N-terminus bind to the minor groove of AT-rich DNA without a specific 

recognition sequence (Zeleznik-Le et al. 1994).  This domain is followed by two subnuclear 

localization signals (SNLs) and further downstream by the methyl-transferase-homology 

(MT) domain, which contains a specialized CxxC region and binds exclusively to non-

methylated CpG islands, a characteristic of transcriptionally active genes (Birke et al. 2002). 

In addition, this region has also been shown to recruit repressing factors, like the polycomb 

repressor proteins HPC2 and BMI1, orthe histone deacetylases HDAC1 and HDAC2 (Xia et al. 

2003). MLL1 also contains reader domains, which bind to modified histones. The PHD-fingers 

bind to methylated lysines and the bromo-domain bind acetylated residues (Daser & 
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Rabbitts 2004). On the C-terminus the TAD and the SET domain can be found. The TAD 

domain is a conserved transcriptional activation domain, which binds to the coactivator CBP 

(Bannister & Kouzarides 1996; Arai et al.  2010). The SET (Suppressor of Variegation, 

Enhancer of Zeste, and Trithorax) domain is responsible for the transcriptional activation and 

holds the HMT activity (Milne et al. 2002; Ruthenburg et al. 2007). SET proteins are highly 

conserved. In Saccharomyces cerevisiae, Set1 is a member of the COMPASS (complex 

proteins associated with Set1) complex, which is essential for the mono, di- and tri-

methylation of histone H3 at lysine4 and therefore the stimulation of transcription in yeast 

(Miller et al. 2001). In  Caenorhabditis elegans,  the SET-1 and SET-2 proteins have been 

identified as nematode counterparts to the yeast SET1 protein (Simonet et al. 2007). In 

Drosophila melanogaster  Trithorax group proteins (TRX, ASH1 and ASH2)  contain SET 

domains  (Petruk et al. 2001), whereas in mammals at least six proteins contain SET 

domains: MLL1, MLL2, MLL3, MLL5, SET1A and SET1B (Wang et al. 2009). After the post-

translational cleavage of MLL1, it is incorporated into a multi-protein complex (Figure 1.6 B). 

The core of the complex consists of MLL1 and the WARD proteins WDR5, Ash2L, RbBP5 and 

DPY-30. The association of these five proteins is sufficient to catalyse the methylation of 

histone 3 (Dharmarajan et al. 2012).  It has been found that RbBP5 is essential to maintain 

mono- and di-methylation of histone H3, whereas Ash2L and DPY-30 are needed for the tri-

methylation.  These proteins are critical for the stability of the MLL1 complex, as in yeast the 

SET1-complex is shown to become unstable when any of the WARD proteins are depleted 

(Ernst & Vakoc 2012).  On the other hand WDR5 can bind H3K4, but does not distinguish 

between its different methylation states. It was therefore thought that WDR5 presents the 

peptide for further methylation to the SET domain (Ruthenburg et al. 2006). The crystal 
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structure of MLL1 with the bound H3K4me3 mark however revealed that this is sterically not 

possible. Moreover WDR5 binding, in contrast to RbBP5 and Ash2L binding, did not stimulate 

methyl-transferase activity (Southall et al. 2009). It was shown that WDR5 binds to a 

conserved arginine containing motif (Win=WDR5 interaction motif) that is essential for the 

assembly of the MLL1 core complex and H3K4 dimethylation activity  (Patel et al. 2008).  

Furthermore, in the complex the acetyl-transferases CBP and MOF can be found. MOF 

specifically acetylates lysine 16 on histone 4, a modification known to relax chromatin 

structure via charge neutralization (Dou et al. 2005). CBP binds to MLL1’s TAD domain and is 

necessary for its  transcriptional activation (Arai et al. 2010). The complex also contains a 

number of proteins involved in targeting. It has been shown that MLL1 recruitment is highly 

dependent on menin (Milne et al. 2005). Later it was found that MLL1 and menin form a 

binding surface for LEDGF, which binds to chromatin via a PWWP domain, a motif 

structurally related to Tudor-/Chromo-domains (Yokoyama & Cleary 2008). The exact 

number of proteins, which are involved in this macromolecular complex it is still unknown 

with numbers ranging between 5 (WARD proteins) and up to 29 protein members 

(Nakamura et al. 2002).  This is probably down to two main reasons. Firstly not all protein 

interactions are stable and it may be that some proteins are only transient members of the 

complex. For example MOF and MLL1 are recruited together (Dou et al. 2005), whereas CBP 

interacts only to activate transcription (Ernst et al. 2001).  Secondly, it may also be that on 

different target sites, different proteins may be involved and/or that these proteins may be 

at the same target site, but not part of the MLL1 complex. In general it can be summarised 

that the MLL complex coordinates three major mechanisms of chromatin biology: 

methylation, acetylation and nucleosome remodelling (Slany 2009).   
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Figure 1.6: MLL domain structure and the MLL complex. (A) MLL1 has a complex domain structure. At the 

extreme end of the N-terminus AT-hooks can be found, next to Subnuclear-location domains, followed by a 

MT domain, with a characteristic CxxC-motif. These domains are involved in the non-specific binding of MLL1 

to the DNA. A PHD-finger cassette for the recognition of methylated lysines and a bromo-domain for binding 

to acetylated histones are located at the N-terminus.  On the C-terminus the SET domain is found, which holds 

the methyl-transferase activity.  After translation the protein is cleaved by the Taspase1 enzyme at its 

cleavage site. The FYRN and FYRC domains are needed for the association of the two termini. In MLL fusion 

proteins the MLL1 protein breaks at a specific site and the truncated N-terminus is fused to a partner protein.  

Lower panel indicates a MLL-fusion protein, where the MLL1 protein is fused to one of  ~70 partner proteins. 

(B) MLL1 is a large protein, which is cleaved into two fragments (MLL
C

 and MLL
N

). They are bound tightly 

together, associate with a cohort of other proteins and form a multi-protein complex. These proteins can be 

involved in targeting (Menin, LEDGF), histone acetylation (CBP, MOF) or methylation (WDR5, RbBP5, Ash2L, 

DPY-30). 
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1.6 MLL1 in leukaemia 

The MLL1 (mixed lineage leukaemia) gene is located on the long arm  of chromosome 11, at  

locus 11q23, which is associated with aggressive types of leukaemia (Kaneko et al. 1982).  

Abnormalities of the MLL1 gene are found in ~70% of infant leukaemia and in ~10% of adult 

acute myeloid leukaemia (AML) (Felix 1998; Krivtsov & Armstrong 2007). Although the 

overall cure rate of children with leukaemia is good (78-85% at 5 years after the completion 

of therapy), the prognosis for leukaemia with MLL1 rearrangements is poor with an 

approximate cure rate of 20%  (Slany 2005; Brassesco et al. 2009).   

So far three mechanisms are known by which abnormalities at this location can transform 

MLL1 into an onco-protein. The most common mechanism is a balanced translocation that 

leads to the formation of fusion-proteins (see Figure 1.6 A). To date, nearly 100 different 

chromosome rearrangements have been described involving 11q23 and ~70 fusion-proteins 

have been characterized. These translocations seem to appear in utero, but it is unknown 

why chromosome 11 tends to break in this restricted 8.3 kb region (Ford 1993; Sim & Liu 

2001).  However, only five translocations occur in more than 66% of clinical cases with MLL 

rearrangements (MLL-AF4, MLL-AF9, MLL-AF10, MLL-ENL and MLL-ELL; Brassesco et al. 

2009).  The fusion-proteins share (with some exceptions) a common protein structure, in 

which only a small part of the N-terminus is conserved and fused together with the partner 

protein  (Zhang et al. 2012). Less common transformations of the MLL1 gene are internal 

tandem duplications within the MLL coding region or amplification of the unaltered MLL1 

gene itself (Basecke et al. 2006).  
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All fusion-proteins lose the C-terminus with the SET domain, which leads to a loss of H3K4 

methylation and one would expect a decrease of target gene expression. However, the 

fusion partners induce transcriptional activity at MLL1 target genes, which leads to a gain of 

function and therefore they are crucial for leukaemogenesis (Dharmarajan & Cosgrove 

2009). Despite the vast numbers of fusion partner proteins, according to Slany, only four 

molecular pathways lead to the oncogenic activation of MLL1 target genes (Slany 2009). (I) 

The most frequent fusion partners (eg MLL-AF4 and MLL-ENL) interact with the EAP 

complex. In this complex DOT1L, a histone H3K79 methyl-transferase, and pTEFb, which 

phosphorylates the C-terminal repeat domain of RNA polymerase II, can be found. (II) Fusion 

partners can be histone acetyltransferases (e.g. MLL-CBP or MLL-EP300) or (III) can bring 

additional methyl-transferase activity (eg MLL-EEN) to the target loci.  (IV) It was also shown, 

that fusion partners supply dimerization domains, which leads to the dimerization of MLL1 

and gene activation by unknown mechanisms (Slany 2009). 

Although the mechanisms may vary, a hallmark of all MLL1 associated leukaemias is the 

irregular expression of MLL1 target genes.  Especially HoxA7 and HoxA9 have been reported 

to be essential for the transformation of myeloid progenitors (Ayton & Cleary 2003). It was 

also shown that besides the up-regulation of these Hox genes, the up-regulation of the Hox  

cofactor Meis1 plays an important role in leukaemogenesis (Zeisig et al. 2004). 
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1.7 MLL1 targets the Hox genes 

MLL1 is an essential protein. Knock-out studies in mice show, that MLL-/- embryos die at 

embryonic day 10.5.  Embryonic lethality is accompanied by retarded growth, 

haematopoietic abnormalities and homeotic transformations of the axial skeleton (Yu et al. 

1995; Yu et al. 1998). It was found that MLL1 is required for the maintenance of normal 

numbers of haematopoietic progenitors and their proper differentiation (Hess et al. 1997). 

These changes were accompanied by altered Hox gene expression and altered levels of 

histone methylation (Terranova et al. 2006). Later it was shown that in the adult, MLL1 also 

maintains haematopoietic stem cells and progenitors (Jude et al. 2007).  Moreover, MLL 

regulates Hox gene expression through direct binding to promoter sequences  (Milne et al. 

2002) and by maintaining Hox gene expression, induces proliferation and differentiation of 

haematopoietic progenitors (Argiropoulos & Humphries 2007). 

The Hox genes encode homeodomain transcription factors, which are critical for the proper 

establishment of regional identities in developing organisms. First discovered in D. 

melanogaster, mutations in the homeotic genes were found to lead to the developmental 

replacement of one body part  by another (Frischer et al. 1986). They are highly conserved 

and in many species are grouped into genomic clusters with a similar organization. As shown 

in Figure 1.7 A, the single Hox gene cluster in fly was multiplied through subsequent gene 

duplication and in vertebrates four paralogous Hox clusters (Hox A, B, C and D) are found 

(Holland 2013).   
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As shown in Figure 1.7 B, the Hox genes are uniquely regulated as a result of their genomic 

organization. Their gene activity depends on their position in the cluster, what is known as 

‘collinearity’ (Lewis 1978; Graham et al. 1989). This can take two forms. Firstly, the Hox 

genes, which are located at the 3’ end of the cluster, tend to be expressed in more anterior 

regions of the organism, whereas genes at the 5’ are expressed in the posterior region. This 

association between the position of the Hox gene in the cluster and its expression in the 

organism is referred to as spatial collinearity (Gaunt et al. 1988). Secondly, genes at the 3’ 

are activated first and progressively the other Hox genes follow, according to their 

consecutive position in the cluster, which is known as temporal collinearity (Izpisua-

Belmonte et al. 1991). Spatial and temporal regulation of the Hox genes occurs in parallel, 

which led to the hypothesis that Hox gene clustering is essential for coordinating the varied 

timing of gene activation. However, studies in mutant mice, in which the HoxD cluster was 

mutated, showed no systematic impact upon subsequent expression patterns, suggesting 

the spatial and temporal regulatory mechanisms could be uncoupled (Tschopp et al. 2009). 

Chromatin plays an important role in the activation of the Hox genes (Figure 1.7 B). In 

the early mouse embryo the Hox genes are transcriptionally inactive and their chromatin is 

heavily marked with H3K27me3. Around day 8.5 the 3’ end of the Hox cluster becomes 

active and the chromatin is marked with H3K4me3. As activation of the Hox genes 

progresses, more and more of the H3K27me3 marks are replaced with H3K4me3. By day 9.5 

the whole cluster is transcriptionally active and covered with H3K4me3 (Montavon & 

Soshnikova 2014). 
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Figure 1.7: Hox genes in fly, mouse and human. (A) In mouse and human 39 Hox genes are found in four 

clusters of Hox A, B, C and D on different chromosomes. Marked in grey are the paralogue genes and their 

corresponding genes in D. Melanogaster. The order of the Hox genes on the chromosome corresponds to 

the order of the body parts that are controlled by them: genes at the 3’ position of the chromosome are 

expressed in anterior body structures whereas the genes in 5’ positons are expressed in posterior body 

structures. Furthermore, Hox genes are expressed in a progressive way, starting with the 3’ genes 

expressed first advancing towards the 5’, which are expressed last (Pang & Thompson 2011). (B) This 

expression is accompanied by changes in chromatin structure. In an inactive state, the whole cluster is 

labelled with H3K27me3, bit upon Hox gene activation they are marked with H3K4me3 (Montavon & 

Soshnikova 2014). 
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1.8 MLL1 in the context of histone modifications 

In general Hox genes are regulated by the Polycomb and Trithorax protein complexes, which 

are highly conserved and work as antagonistic partners in gene expression (Schuettengruber 

et al. 2007).  Although their first and best characterized targets are the Hox genes, they also 

regulate many other genes. Polycomb and Trithorax proteins bind to many more loci making 

them epigenetic master regulators, which have an regulatory impact on cell-cycle control, 

tissue growth and cell proliferation (Zink & Paro 1989; Schumacher & Magnuson 1997; 

Mendenhall & Bernstein 2008; Christophersen & Helin 2010; Kolybaba & Classen 2014).  

Polycomb and Trithorax proteins act as member of large protein complexes, which act 

primarily by depositing or reading, histone modifications like histone methylation, 

ubiquitylation and acetylation. Polycomb proteins repress, while Trithorax proteins activate 

transcription (Klymenko & Müller 2004). For example, tri-methylation of lysine 27 on histone 

3 (H3K27me3) is deposited by PRC2 (polycomb repressive complex 2) and is associated with 

gene silencing (Schwartz et al. 2006), whereas tri-methylation of lysine 4 on histone 3 

(H3K4me3) is deposited by SET proteins and activates gene  expression,  antagonizing 

Polycomb-induced silencing (Tie et al. 2014). In summary the activating and silencing of 

Trithorax and Polycomb proteins is tightly coupled and balanced (Steffen & Ringrose 2014). 

Both Polycomb and Trithorax proteins deposit methyl-marks on chromatin, which requires 

close teamwork with demethylases in order to remove the opposing methyl-mark before 

deposition of a new mark. For example, whereas the UTX and the JMJD3 H3K27 

demethylases are essential for proper development, UTX also associates with the H3K4me3 

histone methyl-transferase MLL2 (Agger et al. 2007). Lid (Little imaginal discs), a jumonji C 

domain-containing protein with trimethyl H3K4 demethylating activity  was shown to 



30 

 

reverse TRX-mediated methylation in Drosophila (Eissenberg et al. 2007). In humans 

JARID1d, another jumonji C-domain-containing protein was found to specifically 

demethylate trimethyl H3K4 and interacts with a Polycomb-like protein (Ring6a/MBLR) to 

bind to chromatin (Lee et al. 2007). 

In mammals MLL1 is one member of the Trithorax protein family, which  depoosits the 

H3K4me3 mark. This makes H3K4me3 and H3K27me3 key histone modifications at MLL1 

target sites (Canaani et al. 2004). In vitro studies with a recombinant MLL1 SET domain found 

that the methyl-transferase activity was stimulated by acetyl- and phospho-marks on the 

same histone (H3K9ac and H3S10p). The effect was biggest when both marks were on the 

histone at the same time, as a phosphoacetyl-mark (H3K9ac-S10p; Nightingale et al. 2007). 

In contrast, two different studies showed the phosphorylation of serine28 on histone 3 

(H3S28p) antagonizes Polycomb protein 2 (PRC2)-mediated silencing and activates target 

genes. This suggests that histone phosphorylation may play a functional role in regulating  

TRX and PCG action. In both studies the phosphorylation mark was deposited by Msk1 

(Gehani et al. 2010; Lau & Cheung 2011).   
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1.9 Msk1 

Msk1 (mitogen–and-stress-activated kinase 1) is a 90 kDA protein, which was described first 

in 1998 as a downstream target of the MAPK (mitogen-activated-protein-kinase) pathways 

(Deak et al. 1998). MAPK are serine-threonine kinases that can react to a range of different 

stimuli on the cell surface and act by consecutive cascade-phosphorylation of downstream 

targets in the cytoplasm and the nucleus  (Edmunds & Mahadevan 2004). In mammals four 

MAPKs are known: ERK (extracellular regulated kinase) 1/2 and 5 and p38. These proteins 

are essential regulators for many regulatory processes, including those on the DNA (Klein et 

al. 2013). Msk1 is a downstream target of the ERK1/2 or the p38 pathway and is universally 

expressed in cells and found in mammals, nematode and fly, but not in yeast or plant (Hauge 

& Frödin 2006).   

Thus far Msk1 and its homologue Msk2 have only one well-established function. As shown in 

Figure 1.8, they regulate gene expression by phosphorylation of either transcription factors 

or histones (Vermeulen et al. 2009). For example, Msk1 and Msk2 are required for the 

phosphorylation of the transcription factors CREB and ATF1. Without this phosphorylation 

CREB and ATF1 cannot properly activate their target genes (Wiggin et al. 2002). Another 

transcription factor targeted by Msk1 is NFκB, which is involved in the immune and 

inflammatory response. Msk1 phosphorylation of NFκB is essential for its transactivation 

capacity (Vermeulen et al. 2003).  Msk1 can phosphorylate histone H3 at serine 28 or serine 

10, however the two marks are not found on one histone tail together and Msk1 does not 

have an intrinsic specificity for one residue, suggesting that Msk1 kinase activity is context-

dependent, potentially reflecting its genomic location (Arthur 2008). Thus far no consensus 

phosphorylation motif has been identified. It is likely that Msk1 cooperates with other 
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proteins, so that only a single site (i.e. S28 or S10) is available for phosphorylation. 

Alternatively the interaction  with partner proteins may modulate Msk1’s substrate 

specificity (Dyson et al. 2005).  

Msk1 is transcribed at basal levels in the cell but kept in an inactivated, non-phosphorylated 

state. After the binding of either ERK1/2 or p38 at the MAPK docking site, the linker and the 

CTK (C-terminal kinase) domain is phosphorylated. The CTK domain auto-phosphorylates the 

rest of the linker domain and the NTK (N-terminal kinase), which leads to an allosteric 

change that activates the NTK domain (Msk1 domain structure and phosphorylation sites are 

shown in Figure 1.9 A). This conformational change leads to a rapid 10-50 fold increase of 

Msk1 activity in the cell (McCoy et al. 2005).  However, how Msk1 is inactivated and whether 

this is coupled to the MAPK pathway is not clear. Thus far no phosphatase that might 

inactivate Msk1 has been identified  (Duda, 2012). 

Besides Msk1 there is one homologue in humans, Msk2. Msk1 and Msk2 share about 76% 

protein identity. The core sequence of Msk1 and Msk2 are essentially the same. As shown in 

Figure 1.9 B  Msk2 lacks the extreme N-terminus (amino acids 1-16) and the extreme C-

terminus (amino acids 574-805) of Msk1 (Blast, Basic local alignment search tool).  

Functionally, only a few differences between Msk1 and Msk2 have been observed. It seems 

that in cells where both homologues are present, they show only minor differences in 

substrate choice, though Msk1 has a shorter activity period after  activation (~30 min) than 

Msk2 (~3 hours) (Duda, 2012). 
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Figure 1.8: Msk1 is a downstream target of the MAPK signalling pathway. In humans four MAPK pathways are 

known, but only two activate Msk1 and its homologue Msk2. A variety of different stimuli at the cell surface 

activate the intra-cellular phosphorylation cascade, which leads to the activation of Msk1/2 in the nucleus.  
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Figure 1.9: Msk1 domain structure and comparison to Msk2. (A) Msk1 is constantly expressed in cells and 

kept in an un-phosphorylated, inactive state. Upstream kinases have to bind to the MAPK docking site and 

activate the C-terminal kinase, which then auto-phosphorylates Msk1 (Phosphorylation sites are indicated 

with blue circles and P).  This activates the N-terminal kinase, which then auto-phosphorylates its tail 

domain for full activation and Msk1 targets (adapted from Duda, 2012). (B) Msk1 and Msk2 show 76% 

sequence identity (BLAST result, visualised with Jalview software: regions of high sequence identity are 

shown in red, those of low identity in orange).  The core sequence of Msk1 and Msk2 are similar, but Msk2 

is shorter than Msk1. The extreme N-terminus (AA 1-18) and the extreme C-terminus of Msk1 (AA 574-802) 

are not present in Msk2. The scissor-symbol in (A) indicates the missing termini, showing that the core-

domain structure is conserved. 
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1.10 Aims 

It is now well established that there is a close link between the chromatin state and the 

activity of genes. Histone modifications provide a layer of epigenetic information that can 

determine the functional state of chromatin. These are deposited by specific chromatin 

modifying enzymes, but also can modulate the activity or the binding of these enzymes. This 

results in a close interaction and inter-dependence between histone modifications and 

chromatin modifying enzymes, providing a network of regulatory information, which can 

integrate information from outside and inside the cell. MLL1 is a conserved histone methyl-

transferase, which deposits H3K4me3, a key regulatory mark in gene expression. This 

complex integrates histone methylation and acetylation, making it a powerful regulator of 

gene activity. Data from our laboratory has previously shown that MLL1’s SET MTase activity 

is stimulated by histone 3 phospho-acetylation (H3K9ac/S10p; Nightingale et al. 2007). 

Acetyl-transferases are members in the MLL1 complex and acetylation is closely linked to 

active genes, however, to date no histone kinase has been associated with MLL1. In 

mammalian cells, two chromatin-associated histone kinases are known, Msk1 and Msk2, to 

play a role in PCG regulation.  

We therefore hypothesized that Msk1 is involved in the regulation of the MLL1 complex. In 

this thesis I explore the nature of the MLL1 and Msk1 interaction and the functional 

implication of this. To investigate the nature of this interaction we examined the 

components of the MLL1 complex and characterize complex subunits. We also set out to 

explore the distribution of MLL1 and Msk1 in vivo and identify genes that were regulated by 

these proteins.  Finally we examined the function of MLL1 and Msk1 through the cell cycle to 

gain a greater understanding of the regulation of MLL1 in a physiological context. 



36 

 

2 Materials and Methods 

2.1 Tissue Culture 

2.1.1 Cultivation of mouse embryonic fibroblasts (MEFs) 

Mouse embryonic fibroblasts (MEFs) are a widely used ‘primary’ cell-line (Smith 2001). Here 

MEFs were isolated from Balb/c wild-type mouse embryos between day 12 – 15 of gestation. 

Normally five E15 embryos were processed at a time. They were isolated, the heads and 

inner red organs removed and then the tissue dispersed in 10ml of 0.05% trypsin-EDTA 

(Gibco). The embryos were minced for ~2 min with a scalpel and then incubated for 20 min 

at 37°C. 10ml of culture medium [DMEM (Gibco), 1/100 penicillin (10000 U/ml, Gibco), 

1/100 streptomycin (10000 U/ml, Gibco), 1/100 L-glutamine (200mM, Invitrogen), 1/100 

MEM non-essential amino acids, Gibco), 1/1000 2-mercaptoethanol (Gibco), 10% v/v foetal 

calf serum (Invitrogen)] was then added and a single cell suspension was generated by 

pipetting vigorously for ~2 min. 8ml of the cell suspension was aliquoted into a 150cm2 flask 

with 20ml MEF Growth Medium, which was passage 1. Cells were incubated at 37°C and 5% 

CO2, and depending on their density were divided 1:4 every 3rd day. Only cells between 

passage 2 and 4 were used.  

 

 

 

 

 



37 

 

2.1.2 Cultivation of LCL cells 

LCLs are a human lymphoblastoid cell line with a normal karyotype, which are routinely used 

for karyotyping (Terrenoire et al. 2010). The cells were grown in RPMI medium [RPMI 1640 

(Gibco), 1/100 penicillin (10000 U/ml, Gibco), 1/100 streptomycin (10000 U/ml, Gibco), 

1/100 L-glutamine (200mM, Invitrogen), 10% v/v foetal calf serum (Invitrogen)]. After three 

to four days, dependent on their density, the cells were divided 1:5 and incubated in fresh 

medium at 37° C and 5% CO2. 

 

2.1.3 Cultivation of SL2 cells 

Drosophila SL2 (Schneider line-2) is a cell line, which was isolated from late embryonic stages 

of Drosophila (Schneider 1972). The cells were cultured in Schneider’s medium [Insect 

Xpress (Lonza), 5% v/v foetal bovine serum (Invitrogen), 1/100 penicillin (10000 U/ml, 

Gibco), 1/100 streptomycin (10000 U/ml, Gibco)]. The cells were incubated at 26°C and 

divided every 5 days 1:10. 

 

2.1.4 Cultivation of HEKs 

Human embryonic kidney cells (HEKs) were generated by the transformation of embryonic 

kidney tissue with the SV-40 virus (Sheint & Enders 1962) and later with the adenovirus type 

12 (Zur Hausen 1967). The cells were cultured in DMEM [DMEM (Gibco), 1/100 penicillin 

(10000 U/ml, Gibco), 1/100 streptomycin (10000 U/ml, Gibco), 1/100 L-glutamine (200mM, 

Invitrogen), 10% v/v foetal calf serum (Invitrogen)]. Every 4 days the cells were divided 1:10 

and incubated in fresh medium at 37°C at 5% CO2. 
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2.2 Transfection methods 

2.2.1 Amplification of transfection vectors 

Three transfection vectors were used: Msk1 knock-down vector (Figure 2.1 A, Origene 

TR504795), MLL1 knock-down vector (Origene, TR517798) and a flag-tagged MLL1 (Figure 

2.1 B, pMSCVneo, supplied from R. Slany, University of Erlangen). Vector DNA needed to be 

amplified and was therefore introduced into E.coli (α-select gold efficiency, Bioline). Vector 

DNA (~20ng) was mixed with 50 μl of E.coli and incubated on ice for 30 minutes prior to a 30 

second heat-shock at 42°C. The bacteria were subsequently cultured in 1 ml LB [1% w/v 

tryptone, 0.5% w/v yeast extract, 1% w/v NaCl] without antibiotics for 1 hour and then 

plated on a LB-plate [1% w/v tryptone, 0.5% w/v yeast extract, 1% w/v NaCl, 1.5% w/v Agar] 

with added ampicillin (final concentration 100 μg/ml, Sigma) and incubated overnight at 

37°C. The next day an isolated clone was picked and cultured in 5ml of LB with added 

ampicillin (final concentration 100μg/ml) and cultured at 37°C with shaking over the day. In the 

evening 500ml of LB medium with ampicillin (final concentration 100μg/ml) were inoculated 

with the day culture and incubated overnight at 37°C with shaking. The next morning the 

bacteria were collected by centrifugation (4000g, 10 minutes, 4°C) and the plasmid DNA 

purified using the GeneElute Plasmid MaxiPrep Kit (Sigma) according to the manufacturer’s 

instructions. 
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Figure 2.1: Vector maps. The maps for the vectors used for transfection are shown. (A)  The pRS vector with 

a shRNA target sequence for either MLL1 or Msk1 knock-down (Origene) is shown. (B) The pMSCVneo 

Vector, which carried the Flag-MLL cDNA is shown.  

A 

B 
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2.2.2 Transfection of MEFs 

MEFs were used to examine the effect of MLL1 and Msk1 knock-downs. For one transfection 

4x106 MEFs were harvested with trypsin and collected by centrifugation (300g, 5 minutes, 

RT), before washing them twice with PBS [phosphate-buffered saline: 1.37M NaCl, 27mM 

KCl, 100mM Na2HPO4, 18mM KH2PO4]. The cells were resuspended in 400μl of transfection 

buffer [10mM HEPES, pH7.5, 135mM KCl, 2mM MgCl2, 5mM EGTA, 25% FBS] and 20μg of 

knock-down vector DNA were added. The cell suspension was transferred into 0.4cm 

cuvettes (BioRAD, Cat# 1652088) and electroporated (300V, 950μF, 1000Ω, BioRad 

GenePulser XCell) prior to being transferred into a 10cm dish with 10ml of MEF growth 

medium and incubated at 37°C and 5% CO2 for 5 hours. Puromycin (Gibco, final 

concentration 10 μg/ml) was added to select for transfected cells and the cells were 

incubated again at 37°C and 5% CO2. MEFs were harvested after a total of 20 hours post-

transfection. 

2.2.3 Transfection of HEKs 

HEKs were used for the expression of FLAG-MLL1 protein and therefore transfected with the 

pMSCV-FLAG-MLL1 vector (Figure2.1). The day before transfection the cells were divided 

and seeded at a density of 4x106 cells per 10cm dish in complete medium [DMEM (Gibco), 

1/100 penicillin (10000 U/ml, Gibco), 1/100 streptomycin (10000 U/ml, Gibco), 1/100 L-

glutamine (200mM, Invitrogen), 10% v/v foetal calf serum (Invitrogen)]. The next day, a mix 

of 15μg vector DNA, 1000μl OptiMEM media (Gibco) and 60μl of Polyethyleneimine (1mg/ml 

stock solution, Polyscience Inc.) per plate was made up, vortexed thoroughly, incubated at 

room temperature for 30 minutes and added drop-wise to the plates.  The cells were 

cultured at 37°C at 5% CO2 for 3 days and then harvested.  
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2.3 Protein Methods 

2.3.1 Preparation of whole cell extract 

Cells were collected and washed three times with ice-cold PBS before the cell pellet was 

resuspended in 500μl lysis buffer [10mM Tris, pH 7.9, 150mM NaCl, 5mM EDTA, 0.5mM 

EGTA, 1mM β-mercaptoethanol, 1% v/v NP40, 25% v/v glycerol]. The cell suspension was left 

on a rotating wheel at 4°C for 30 minutes, before sonicating at high amplitude for one 

minute (Bioruptor, Diagenode). The suspension was then centrifuged at 13000 rpm for 10 

minutes at 4°C, and the supernatant stored at -20°C. 

 

2.3.2 Isolation of histones 

Cells were collected and washed twice with cold PBS, to which 10mM sodium butyrate was 

added. Cells were resuspended in Triton extraction buffer [TEB: 1xPBS, 4mM sodium 

butyrate, 0.5% v/v Trition X-100, 2mM PMSF, 0.02% v/v sodium azide] to a final 

concentration of 107 cells per ml and left on ice for 10 minutes, before centrifuging for 10 

minutes at 2000 rpm at 4°C. The pellet was resuspended in half the volume of TEB and 

centrifuged again at 2000 rpm for 10 minutes at 4°C. The pellet was then resuspended in 0.4 

M HCl at a concentration of 4x107 cells per ml and left on ice for 3 hours at 4°C. After 

centrifugation to pellet the nuclear debris, the supernatant with the solubilized histones was 

removed and stored at -20°C. 
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2.3.3 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

Proteins were separated according to size following the method developed by Laemmli 

(Laemmli, 1970). Samples were loaded on an acrylamide gel, with a concentration 

dependent on the size of the proteins to be separated. Generally 50μg of whole-cell extract 

or 10μg of purified protein was loaded. For the detection of Msk1 (~90kDa MW) and Actin 

(~50kDa MW) a 10% SDS gel [10ml Acrylamide (30%  Acrylamide - 0.8%  Bis), 7.5ml 1.5mM 

Tris, pH 8.8, 300μl 10% w/v SDS, 100μl 10% w/v ammonium persulfate, 30μl TEMED, made 

up to a total volume of 30ml with distilled water]  was prepared. For MLL1 (~300 kDa MW) a 

4% gel was prepared. The resolving gel was overlaid with 100% isopropanol to prevent 

evaporation during polymerisation. This was washed away before the addition of the 

stacking gel [1ml Bis-acrylamide (30% Acrylamide-1.6% Bis), 6.3ml 0.5mM Tris, pH 6.8,  100μl 

10%  w/v SDS, 100μl 10% w/v ammonium persulfate, 10μl TEMED, made up to a volume of 

10ml with distilled water]. Protein samples were resuspended in 10xloading buffer [20% 

SDS, 500mM Tris, pH 7.6, 50% v/v glycerol, 1M DTT, 1mg/ml bromophenol blue], incubated 

at 95°C for 10 minutes and loaded onto the gel through SDS reservoir buffer [50mM Tris, 

0.384M glycine, 0.1% v/v  SDS]. The gel was electophoresed at constant 60mA, for 3 hours in 

a standard vertical electrophoresis unit (Hoefer “SE 600 Ruby”, GE Healthcare) 

 

2.2.4 Staining protein gels 

To visualise proteins in SDS gels they were stained either with Coomassie blue or with silver-

nitrate. For Coomassie blue staining the gel was soaked in Coomassie-solution [1.25% w/v 

Coomassie Brilliant Blue R250 (Sigma), 10% v/v isopropanol, 30% v/v methanol, 10% v/v 
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acetic acid] for 30 minutes. The background was removed by soaking the gel in Destain-

Solution [30% v/v methanol, 10% v/v acetic acid] until only the protein bands were visible.  

For silver staining the gel was soaked overnight in 50% v/v methanol to fix the proteins. For 

the staining solution, Solution A [0.8g Silver nitrate, 2ml distilled water] and Solution B 

[10.5ml 0.36% w/v NaOH, 800μl 14.2M NH4OH] were prepared independently, slowly mixed 

together with constant stirring and finally made up to 50ml with  distilled water. The gel was 

soaked for 15 minutes in the Staining solution and then washed with distilled water for 15 

minutes. The gel was then soaked in the Developing solution [2.5ml 1% w/v citric acid, 50μl 

38% formaldehyde, made up to 500ml  with distilled water] until the protein  bands were 

visible. The reaction was stopped by adding Stopping solution [45% v/v Methanol, 10% v/v 

acetic acid].  

 

2.3.5 Immuno-detection of proteins on nitrocellulose membranes  

Western blotting was performed according to a standard protocol (Towbin et al., 1979). 

Briefly, the separated proteins were transferred  onto a Hybond-C nitrocellulose membrane 

(Amersham) in a Trans-Blot Cell (BioRAD) for three hours (180V, 300mA, 20W) using transfer 

buffer [25mM Tris, 192mM glycine, 20% v/v methanol]. The efficiency of the transfer was 

checked by Ponceau Red (Sigma) staining. The membrane was then incubated for one hour 

at 4°C in blocking buffer [10% w/v dried milk powder, 1xTBS (50mM Tris, pH 7.5, 150mM 

NaCl)]. Primary antibodies were either generated in house or obtained from commercial 

sources (listed below). The membrane was then incubated with the primary antibody diluted 

in blocking buffer at room temperature at the recommended dilution. The membrane was 

typically washed three times, each for 10 minutes, with TBS-T [1xTBS (50mM Tris, pH 7.5, 
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150mM NaCl), 0.1% v/v Tween-20]. The secondary antibody was then added in blocking 

buffer and incubated for one hour at room temperature. The membrane was washed three 

times, each for 10 minutes, with TBS-T. Binding was visualised by using the “Odyssey” (LiCor) 

imaging system, which activates the fluorochrome coupled to the secondary antibody 

(LiCor). 

Antibody Source Dilution/Animal 

Msk1-p Abcam ab81294 1:500 / rabbit 

Msk1-p Abcam ab32190 1:500  / rabbit 

Msk1 Bethyl A302-747A 1:500 / rabbit 

MLLC Millipore  05-765 1:500 / mouse 

MLLN Millipore 05-764 1:500 / mouse 

Msk2 R&D systems MAB2310 1:100 / rat 

Actin Abcam ab1801 1:1000  / rabbit 

Pol II Abcam ab5408  1:1000 / mouse 

NFκB Abcam ab7970 1:1000 / rabbit 

Histone H3K4me3 In house R612 1:500 / rabbit 

Histone H3K9ac In house R607 1:500 / rabbit 

Histone H3K27me3 Millipore 07-449  1:1000 / rabbit 

Histone H3S10p Abcam ab32107 1:2500 / rabbit 

Histone H3K9acS10p Abcam ab12181 1:1000 / rabbit 

Histone H3, C-terminal Abcam ab1791 1:2500 / rabbit 

Licor 2nd,  α-rabbit IgG Rockland  611-131-121 1:5000 / goat 

Licor 2nd,  α-mouse IgG Rockland  610-131-121 1:5000 / goat 

AlexaFluor647 2nd, α-rat IgG Life technologies A-21247 1:500/ goat 

Table 2.1: Antibodies used for Western analysis, including commercial source and used dilutions 
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2.4 Functional analysis 

2.4.1 RNA extraction  

Total RNA was isolated from cells using QIAGEN Kits (RNase free DNase Set and RNeasy 

Minikit) according to the manufacturer’s instructions. RNA was quantified using a Implen 

Nanophotometer and stored at -80°C. 

 

2.4.2 Quantitative PCR (qPCR) 

For CChIP analysis, qPCRs was performed with the primers in Table 2.2. “SensiMix SYBR Hi-

Rox” (Bioline) was used. For one reaction 0.25μg of the forward and reverse primers were 

added to 15ng of DNA and 20μl of master mix. PCR samples were pipetted in a 384-well 

optical reaction plate (Applied Biosystems) and loaded into a 7900 HT machine (Applied 

Biosystems). The programme was set up as following: samples were heated at 95°C (15 

minutes), then at 95°C (30 seconds), at 58 °C (30 seconds) and at 72°C (30 seconds). The last 

three steps were performed 40 times.  In order to evaluate primer specificity, a dissociation 

curve was created after each run. qPCR results were analysed by calculating the relative 

expression (2-ΔCt) of the bound fraction compared to the unbound fraction of the same 

CChIP. 
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Gene Name Forward  Reverse  TM 

HoxA4-1   gccgttgttctatcctgctc tgatgcctcactcgtacctg 58°C 

HoxA4-2 agaggcctaggacagacgtg tggatgctgctagccttcag 58°C 

HoxA4-3 tgttggaaggaagccagact aaaatcccccaaactgctct 58°C 

HoxA5-1 atcggctctggctactgaaa agtcgctcccaagctgtaaa 58°C 

HoxA5-2 agccggggaaataaagttgt ggggtcgaattgaggttaca 58°C 

HoxA5-3 gcaagctgctctttctgctt cttctggcctgaggtttctg 58°C 

Table 2.2:  qPCR primer sets for CChIP analysis 

 

2.4.3 Reverse Transcription quantitative PCR (RT-qPCR)  

This method allowed simultaneous RNA reverse transcription and cDNA amplification in one 

step and was performed according to the manufacturer’s instructions. It was used to analyse 

gene expression changes in knock-down cells. The reaction was achieved with commercial 

primers (see table 2.3) and the “Verso 1-step qPCR Syber green mix” (Thermo Scientific). For 

one reaction 0.1μl of enzyme-mix, 5μl of Syber buffer, 0.5μl of RT-enhancer, 1μl of oligos 

and 25ng RNA template were mixed and water added to make up to 10μl. Reactions were 

pipetted in a 384-well optical reaction plate (Applied Biosystems) and loaded into a 7900 HT 

machine (Applied Biosystems). The programme was set up as following: samples were 

heated at 50°C (15 minutes), then at 95°C (15 minutes),  at 95°C (15 seconds), at 58°C (30 

seconds) and at 72°C (30 seconds). The last three steps were performed 40 times. RT-qPCR 

results were analysed by normalizing the expression of genes in knock-down cells to the 

expression of the same genes in control cells (ΔCt). The relative expression of genes was 

calculated by comparing them to the reference gene expression of Actin (2-ΔΔCt). 
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Gene Qiagen primer  Gene Qiagen primer 

β-Actin QT01136772  HoxA7 QT00168707 

Msk1 (Rps6ka5) QT00141554  HoxA9 QT00108885 

Msk2 (Rps6ka4) QT00116760  HoxA10 QT00240212 

Meis1 QT00172557  HoxA11 QT00250404 

HoxA1 QT00248322  HoxA13 QT0027642 

HoxA2 QT0062812  MLL1 QT00240954 

HoxA3 QT00138264  MLL2 QT01075620 

HoxA4 QT00174986  MLL3 QT00310527 

HoxA5 QT00098819  MLL5 QT00279426 

HoxA6 QT00140742    

Table 2.3: Commercial primers used for RT-qPCR 

 

 

2.4.4 Formaldehyde Cross-linking Chromatin Immunoprecipitation (XChIP) 

XChIP was use to define the distribution of MLL1 and Msk1 binding in the genome. For one 

IP 5x106 MEFs were trypsinized (0.05% Trypsin-EDTA, Gibco) and brought into a single-cell 

suspension. The cells were resuspended into MEF growth medium at a final concentration of 

106 cells per ml. The proteins were cross-linked to the DNA by adding formaldehyde drop 

wise to a final concentration of 1% v/v, and incubated at room temperature with gentle 

agitation for 10 minutes. The reaction was stopped by adding 1/10 volume of 2M glycine in 

PBS [137mM NaCl, 2.7mM KCl, 10mM Na2HPO4, 1.8mM KH2PO4] and the cells subsequently 

pelleted by centrifugation for 5 minutes at 300g at 4°C and washed twice with cold PBS. The 

cells were then resuspended in Lysis buffer [1% w/v SDS, 10mM EDTA, 50mM Tris pH 8, 

Protease Inhibitor cocktail (Roche)] to a final concentration of 107 cells per ml and sonicated 

to fragment the chromatin (high power, 30 seconds ON/OFF, 7 cycles, Bioruptor Diagenode). 
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A 100μl input sample was taken to assess the quality of the chromatin.  20μl of Proteinase K 

(20mg/ml) was added to the chromatin and crosslinking reversed by incubation at 65°C for 4 

hours. The DNA was loaded on a 1% agarose gel to verify the size distribution (ideally ~200-

300 bp). The remaining chromatin was diluted 1:2 in Dilution buffer [1% v/v Triton X-100, 

2mM EDTA, 150mM NaCl, 20mM Tris pH 8, protein inhibitor cocktail (Roche)] and IgG coated 

magnetic beads (Thermo Scientific) prepared. For a single immuno-precipitation 15μl of 

beads were washed with citrate-phosphate buffer [CP buffer: 0.47% w/v citric acid, 0.92% 

w/v Na2HPO4] and finally resuspended in 20μl CP buffer with 0.5% w/v BSA. Then 4μg of 

antibody against the desired target protein was added to the beads and rotated for 2 hours 

at 4°C. The beads were then washed with CP buffer and resuspended in 15μl of CP buffer 

with 0.5% w/v BSA, before adding the beads to the quality controlled chromatin. The 

chromatin-beads suspension was rotated for 4 hours at 4°C. The beads were then washed 

twice with low salt buffer [1% v/v Triton X-100, 0.1% w/v SDS, 2mM EDTA, 150mM NaCl, 

20mM Tris pH 8] and twice with high salt buffer [1% v/v Triton X-100, 0.1% w/v SDS, 2mM 

EDTA, 500mM NaCl, 20mM Tris pH 8]. The beads were then incubated for 15 minutes at 

room temperature in 50μl Elution buffer [100mM NaHCO3, 1% w/v SDS]. The supernatant 

was kept and the elution repeated. The second supernatant was pooled with the first and 

cross-linking reversed by adding 20μl proteinase K (20 mg/ml) and incubation at 65⁰C 

overnight. DNA was extracted using a QIAquick PCR purification Kit (QIAGEN) and tested for 

specificity by PCR [95°C (15 minutes), then at 95°C (30 seconds), at 58 °C (30 seconds) and at 

72°C (30 seconds) for a total of 15 cycles]. DNA was sent to GATC Biotech (Konstanz, 

Germany) for library preparation and single-end sequencing. For analysis, SeqMonk software 

(Babraham Bioinformatics) was used. 
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Antibody Source Animal 

Msk1  Abcam ab81294 rabbit 

MLLN Millipore 05-764 mouse 

Histone H3  Abcam ab1791 rabbit 

Table 2.5: Antibodies used for XChIP 

 

2.4.5 Carrier Chromatin Immunoprecipitation (CChIP) 

Carrier ChIP is a technology used to characterise DNA binding in small cell numbers (O’Neill 

et al. 2006). For one IP 2x107 SL2 carrier cells were needed, as well as ~5x105 target cells. 

The cells were harvested and washed twice in cold NB buffer [15mM Tris pH 7.4, 5mM 

MgCl2, 15mM NaCl, 60mM KCl, 0.1mM EGTA, 0.5mM β-mercaptoethanol, 5mM Na-butyrate, 

0.1mM PMSF] and brought to a concentration of 2x107 cells per ml in NB buffer. An equal 

volume of 1% Tween20 in NB buffer was added and 1/200th of 100mM PMSF. The cells were 

stirred on ice for 15 minutes and then homogenised in a glass homogeniser (tight fit) with 1 

stroke per ml of cell suspension, before centrifuging at 2000 rpm for 20 minutes at 4°C. The 

nuclear pellet was then resuspended in 5% sucrose in NB buffer in half of the previous 

volume and centrifuged at 3000rpm for 10 minutes at 4°C. The nuclei were then 

resuspended in the same volume of Digestion buffer [0.32M sucrose, 50mM Tris pH 7.4, 

4mM MgCl2, 1mM CaCl2, 5mM Na-butyrate, 0.1mM PMSF] and the chromatin content 

measured using an Implen Nanophotometer. The nuclei were centrifuged at 2000rpm for 10 

minutes at 4°C and then brought to a final concentration of 0.5mg/ml with Digestion buffer, 

to which micrococcal nuclease (final concentration 50U/ml) was added. This was incubated 

at 37°C for five minutes, before 10μl 0.5M EDTA was added to terminate the digestion and 
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the chromatin placed on ice. It was subsequently centrifuged at 2000rpm for 5 minutes at 

4°C and the supernatant retained (S1) and stored at 4°C.  The pellet was resuspended in 1ml 

of Lysis buffer [1mM Tris pH 7.4, 0.2mM EDTA, 5mM Na-butyrate, 0.2mM PMSF] and 

dialysed (10kDa cut-off dialysis tubing, Sigma) overnight against 2 L Lysis buffer at 4°C 

overnight. The next day the chromatin was centrifuged at 1000g for 10 minutes at 4°C, the 

supernatant (S2) and pellet (resuspended in 200μl Lysis buffer, P) were retained. Chromatin 

integrity was checked on a 1% agarose-gel. Generally S1 and S2 were used and pooled, 10x 

Incubation buffer [50mM NaCl, 20mM Tris pH 7.4, 20mM Na-butyrate, 5mM EDTA, 0.1mM 

PMSF]  was added and made up to 1ml with distilled water. This was subsequently pre-

cleared with 100μl Protein A Sepharose (GE Healthcare) for 1 hour at 4°C. The chromatin 

was centrifuged for 10 minutes at 13000 rpm at 4°C and the pre-cleared supernatant taken 

and the antibody of interest added before incubation overnight at 4°C with slow rotation.  

The volumes of antibodies used were: 

H3K4me3 (R612, in house)   50μl per 100μg of chromatin 

H3K9acS10p (ab12181, Abcam) 10μl per 100μg of chromatin 

H3K27me3 (07-449, Millipore)           10μl per 100μg of chromatin 

The next day 100μl of pre-swollen protein A sepharose beads were added and incubated for 

3 hours at room temperature with rotation. The beads were then centrifuged (13000rpm, 10 

min, 4°C) and the supernatant removed and retained (labelled ‘UNBOUND’). The beads were 

then washed with Buffer A [50mM Tris pH7.4, 10mM EDTA, 5mM Na-butyrate, 50mM NaCl, 

0.1mM PMSF], Buffer B [50mM Tris pH7.4, 10mM EDTA, 5mM Na-butyrate, 100mM NaCl, 

0.1mM PMSF] and Buffer C [50mM Tris pH7.4, 10mM EDTA, 5mM Na-butyrate, 150mM 

NaCl, 0.1mM PMSF], centrifuging the beads for 5 minutes at 2000rpm at 4°C. The pellet was 
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then resuspended in 1% w/v SDS in Incubation buffer and incubated at room temperature 

for 15 minutes with rotation, centrifuged (13000rpm, 5 minutes) and the supernatant kept 

(labelled ‘BOUND1’). The elution was repeated and the supernatant kept (labelled 

‘BOUND2’). Samples BOUND1 and BOUND2 were pooled and the DNA extracted using a 

QIAquick PCR purification Kit (QIAGEN).   

 

2.4.6 FLAG purification  

We use HEK293 cells to overexpress FLAG tagged MLL1 protein and subsequently purify the 

MLL1 complex. HEK293 cells were transfected with an expression vector coding for FLAG-

tagged MLL protein (Figure 2.1 B: pMSCVneo, R. Slany, University Erlangen). After 3 days of 

transfection the cells were harvested and washed twice with TBS [50mM Tris, 150mM NaCl, 

pH 7.4].  The cells were then resuspended in Lysis buffer [1xTBS, 1 mM EDTA, 1% v/v Triton 

X-100], for one 10cm dish 500μl Lysis buffer was used. Cells were stirred on ice for 30 

minutes before they were centrifuged for 15 minutes at 13000 rpm and 4°C. 50μl of anti-

FLAG M2 magnetic beads (Sigma) were added and incubated for 2 hours at room 

temperature with rotation. The beads were then washed with TBS. Washing was monitored 

by measuring the absorbance of the supernatant at 280nm and continued until the 

absorbance of the wash solution was OD280 < 0.05. FLAG-MLL protein was then eluted from 

the beads using 5μg of 3x FLAG peptide (Sigma), diluted in 1ml TBS.  500μl of Elution 

Solution was added to the beads and incubated at 4°C for 30 minutes with rotation. The 

supernatant was collected and another 500μl of Elution Solution added and incubated at 4°C 

for 30 minutes with rotation. The supernatants were pooled and the protein concentrated 

using a Centrifugal Filter Unit (Millipore, Cut-off 30kDa), at 6000rpm for 10 minutes at 4°C. 
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2.4.7 Size exclusion chromatography 

Protein purification by size exclusion chromatography was performed using the Pharmacia 

FPLC system with a BioRad BioSil250 SEC column (7.8x300mm). Prior to loading protein 

samples, the column was equilibrated with TBS  buffer [50mM Tris, 150mM NaCl, pH 7.4], 

and then ~200μg of protein in 50μl TBS loaded. During the gel filtration run defined fractions 

were collected and elution profiles were generated by measuring the OD280 of the flow-

through. The elution profile allowed the identification of peak fractions, which were pooled 

and analysed by SDS-PAGE. 

 

2.4.8 Elutriation of LCLs 

Elutriation is a centrifugal separation technique, which separates cell according to size. This 

allows the separation of cells into different stages of the cell cycle (Kauffman et al. 1990). For 

elutriation the JE-5.0 Elutriation System (Beckman Coulter) was used with an Avanti J-26S XP 

Centrifuge (Beckman Coulter). Elutriation was performed at room-temperature and all used 

buffers were freshly prepared and used at room-temperature. Prior to use the chamber was 

assembled, fitted into the centrifuge rotor, connected to the pump and washed with 70% 

ethanol. The system was sub-sequently washed with 0.75xPBS and finally with EB buffer 

[0.75xPBS, 1% w/v BSA, 5mM EDTA] and any remaining air-bubbles removed. Whilst 

equilibrating the system the LCLs were prepared. The cells were colcemid treated for three 

hours before the elutriation run to arrest cells in the cell cycle. Colcemid (Biochrom), a 

microtubule-depolymerizing agent (Yang et al. 2010), was added to the medium to a final 

concentration of 0.1 μg/ml and incubated for 3 hours. ~400x106 cells were used per run, 

washed with EB buffer and finally resuspended in 10ml EB buffer, before passing them 
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through a cell filter (50μm cut-off) to remove any clumps. The centrifuge was set to 1800 

rpm and the pump to a flow rate of 110 for loading the cells into the system. Fractions of 

200ml were collected before increasing the flow rate. Fractions were collected at a flow rate 

of 11.0, 12.5, 14.5, 16.5 and 18.5 ml/min. The collected cells were centrifuged (1200 rpm, 5 

min at 4°C) and washed twice with cold 1xPBS. 1x106 cells were taken for flow cytometer 

analysis and the remaining cells were either used immediately for further analysis or stored 

as a pellet at -20°C. 

 

2.4.9 Flow Cytometer Analysis (FACS) 

FACS analysis was used to define the ploidy and the cell cycle phase of elutriated cell 

populations. About 1x106 cells were collected by centrifugation (1200 rpm, 5 minutes) per 

analysis. The supernatant was discarded, the cell pellet resuspended in 1ml of 80% 

ethanol/PBS and stored overnight at -20°C. After incubation the cells were centrifuged 

(800rpm, 10 minutes) and washed with cold PBS. The cells were centrifuged again at 800rpm 

for 10 minutes and the pellet resuspended in 500μl PBS with propidium iodide (PI, final 

concentration 0.1 mg/ml). The samples were incubated for 30-60 minutes at room 

temperature and then measured (Cyan ADP, Beckman Coulter). PI is excited at a wavelength 

of 488nm and emits light at 590nm, therefore the PE channel was used to measure PI 

incorporation into the DNA. 
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2.4.10 Immuno-fluorescence Microscopy 

To characterise protein distribution on chromatin, microscopy of immuno-fluorescence 

labelled G1 or G2/M cells was used. For microscopy, the cells were washed twice with PBS 

and counted. The cells were diluted to a concentration of 1x105cells/ml in KCM [120mM KCl, 

20mM NaCl, 10mM Tris/HCl pH 8, 0.5mM EDTA, 0.1% Triton X-100]. Ethanol-washed slides 

were fixed into chambers for the Cytospin (Thermo Scientific, Shandon Cytospin 4). 200μl of 

cells were put in the loading funnels and spun for 10 minutes at 1000rpm at room 

temperature. The slides with the cells were incubated in a bath of KCM for 10 minutes, 

before incubating with the primary antibody. Antibodies were diluted to the recommended 

concentration with KCM+0.1% w/v BSA. The slides were stored in a humidified chamber at 

4°C for one hour. After incubation the slides were washed twice in a bath of KCM for 10 

minutes, before adding the secondary antibody, which was labelled with a fluorochrome. 

The slides were incubated at 4°C for an hour again, prior to being washed twice with KCM 

for 10 minutes, and fixed by incubation in a bath of 4% formaldehyde/KCM for 10 minutes. 

Afterwards the slides were washed with dH2O, mounted with 10μl DAPI in Vectorshield 

solution (1μg/ml, Vector Laboratories) and then sealed with coverslips. 
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Antibody Source Dilution/Animal 

Msk1  Abcam ab32190 1:1000  / rabbit 

MLLN Millipore 05-764 1:1000 / mouse 

Histone H3K4me3 In house R612 1:500 / rabbit 

Histone H3K9ac In house R607 1:500 / rabbit 

Histone H3S10p Abcam ab32107 1:1000 / rabbit 

FITC 2nd, α-rabbit IgG Abcam ab6717 1:1000 / goat 

TRITC 2nd, α-mouse IgG Dako R0270 1:1000/ goat 

Table 2.4: Antibodies used for Immunofluorescence microscopy 

 

2.4.11 Co-immunoprecipitation 

Co-immunoprecipitation was used to verify the interaction of MLL1 complex subunits. It was 

performed in LCLs, HEKs and MEFs. For one IP 1x10
8
 cells were collected and washed twice 

in ice-cold PBS. The final cell pellet was resuspended in 500μl NP40 buffer [1% v/v NP-40, 

10% v/vv glycerol, 50mM Tris pH 7.5, 0.1% w/v sodium azide, 150mM NaCl]. The mixture 

was vortexed and incubated on ice for 20 minutes for cell lysis. Cells were then sonicated 

(high power, 10 seconds, Bioruptor Diagenode), the resultant lysates centrifuged for 20 

minutes at 13000 rpm, and the supernatant kept. Cell lysates were pre-cleared by adding 

Protein A or G sepharose beads, which were soaked overnight in NP40 buffer. The mixture 

was incubated on a rotating wheel for 30 minutes at 4°C before centrifuging at 13000 rpm 

for one minute.  The cleared supernatant was incubated overnight with 15μl of antibody at 

4°C on a rotating wheel.  Then 40μl of sepharose beads were added and incubated for 3 

hours on a rotating wheel at room-temperature. After centrifugation (3000 rpm, 1 minute), 

the supernatant was kept and the beads washed three times with high salt NP40 buffer [1% 

v/v NP-40, 10% v/v  glycerol, 50mM Tris pH 7.5, 0.1% w/v sodium azide, 200mM NaCl]. The 
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beads and the supernatant samples were mixed with SDS-loading buffer [20% w/v SDS, 

500mM Tris, pH 7.6, 50% glycerol, 1M DTT, Bromophenol blue] and analysed by SDS gel and 

Western analysis. 

Antibody Source Animal/Sepharose 

Msk1  Abcam ab81294 rabbit/sepharose A 

MLLN Millipore 05-764 mouse/sepharose G 

MLLC Millipore 05-765 mouse/sepharose G 

NFκB Abcam ab7970 rabbit/sepharose A 

Table 2.5: Antibodies used for Co-IP 

 

2.4.12 Gene Expression Arrays 

 Expression analysis was performed on MEFs using the NimbleGen system according to the 

manufacturer’s “NimbleGen Arrays User’s Guide”.  The array-slide contained 12 individual 

arrayS with 42,576 genes in triplicate on each. Therefore four control samples, four MLL1 

knock-down and four Msk1 knock-down samples were loaded. Firstly, 10μg of RNA per array 

were isolated (RNeasy, Qiagen) and reverse transcribed into cDNA using the cDNA synthesis 

System (NimbleGen). cDNA samples were subsequently labelled with the NimbleGen One-

Color DNA labelling kit. Then the samples were hybridized on the array 

(100718_MM9_EXP_HX12) and washed (NimbleGen Hybridization, Sample Tracking Control 

Kit & NimbleGen Wash Buffer). Finally the array was scanned with the MS 200 Microarray 

Scanner (NimbleGen). Data were processed with R (background correction and 

normalisation), and analysed with MeV (clustering, statistical analysis and visualisation).  

They are freely available, specialized tools to analyse microarray data, which incorporate a 

number of different algorithms. 
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3 Results 

3.1 Characterizing the interaction of MLL1 and Msk1 

MLL1 is a histone methyltransferase, which deposits methyl marks (me1-me3) on lysine 4 of 

histone H3 (H3K4me3). The methylation of histone 3 is involved in gene activation and is 

functionally linked with the acetylation of histone 3 and 4. We have previously shown that 

the processivity of the HMTase activity of the MLL SET domain is stimulated in vitro by 

acetylation together with phosphorylation at H3S10 (Nightingale et al. 2007). H3 acetylation 

is an abundant mark, whereas H3 phosphorylation only appears on a sub-fraction of 

nucleosomes in interphase cells and is deposited by ERK and p38 MAP kinases, which act 

through their downstream kinases Msk1 and 2 (Dyson et al. 2005; Soloaga et al. 2003).  We 

therefore hypothesized that Msk1 deposits the phosphorylation mark at H3S10 to stimulate 

MLL1 activity at specific loci. Here I wanted to explore if MLL1 and Msk1 interact in vivo and 

the nature of the interaction.  

 

3.1.1 Co-Immunoprecipitation experiments with MLL1 and Msk1 

If we assume Msk1 and MLL1 do functionally interact, two scenarios are possible. Firstly, 

MLL1 and Msk1 may act on the same sites on chromatin, but bind independently and do not 

directly interact (Figure 3.1 A, left). Alternatively, Msk1 may be a member (permanent or 

transient) of the MLL1 complex, similar to the histone acetyltransferases MOF or CBP (Figure 

3.1 A, right). We therefore performed co-immunoprecipitation experiments to see if in a 

MLL1 pull-down, Msk1 can be detected and vice versa. Msk1 is constantly expressed in cells, 
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but in an inactive, un-phosphorylated state, and only after phosphorylation is it functionally 

active (Duda  2012).  As Msk1 phosphorylation directly affects the activation status of Msk1, 

we used two different Msk1 antibodies (Figure 3.1 B): (1) A Msk1 antibody (Msk1-p), which 

was directed against the phosphorylated serine 376 residue (for LCLs and HEKs) or serine 

360 (for MEFs) and would bind active Msk1, due to species reactivity. (2) An antibody (Msk1) 

raised against the non-phosphorylated region between residues 752 and 802. This region is 

phosphorylated during the last stages of Msk1 activation and therefore the un-

phosphorylated region represents inactive Msk1 (Arthur 2008). All antibodies used for the 

co-immunoprecipitation experiments [un-phosphorylated Msk1 (Msk1), phosphorylated 

Msk1 (Msk1-p) and MLL1 (N- or C-terminus)] were tested for specificity by Western analysis, 

which also confirmed MLL1 and Msk1 expression in LCLs (Figure 3.1 C). To test the Msk1 

antibodies the same cell lysate was loaded on two adjacent lanes, which were separated 

(dashed line) and one lane was probed with the anti-Msk1 antibody and the other with the 

anti-Msk1-p antibody. The two membrane pieces then were re-joined and scanned together 

in order to highlight binding differences. The Msk1 antibody only detected one band (~90 

kDa), indicating it was specific for non-phosphorylated Msk1.  The Msk1-p antibody 

recognizes both the un-phosphorylated Msk1 (weak band on top), but mainly a double band, 

which is shifted downwards. This is consistent with Msk1 having multiple phosphorylation 

sites, which impacts on the electrophoretic mobility of the protein. These findings indicated 

that both Msk1 antibodies were specific for their targets (Figure 3.1 C, left). In contrast, the 

MLL1 antibodies specificity for the individual MLL termini were low (MLLN is ~320kDa and 

MLLC is ~180 kDa) and only the intact complex (full length MLL is ~430 kDa) was recognized 

reliably with both antibodies (Figure 3.1 C, right). 
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Figure 3.1:  Representation of the Co-IP experiments. (A) MLL1 and Msk1 have two options to interact with 

each other:  they might act independently at the same site on chromatin (left) or they might form a complex 

(right). The Co-IP experiments should address which interaction is more likely. (B) The domain structure of 

Msk1 is shown, as well as known phosphorylation sites. The epitopes for the antibodies against Msk1 used 

for the Co-IP are indicated. (C) Anti-Msk1 (left panel) and the anti-MLL1 antibodies (right panel) used for  the 

experiments were tested by western blotting on whole cell extract for specificity and expression  of MLL1 

and Msk1 in LCLs. Note the altered mobility of phosphorylated Msk1 (*). 
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First the interaction between the phosphorylated Msk1 and MLL1 was examined (Figure 3.2 

A, left). A cell lysate was prepared and a pull-down with the MLLN, the MLLC and NFκB 

antibodies was performed. NFκB was used as a positive control as it is known that it binds 

strongly to Msk1 (Vermeulen et al. 2003). In the pull-down with the MLL antibodies a strong 

clear band of the right size (~90 kDa) could be detected, as well as in the control pull-down 

with NFκB. In the control pull-down a prominent band of smaller size (~55kDa, asterisk), 

which appears as a smear, could also be detected. Furthermore, in the input samples small 

bands of ~25 kDa were found (marked with an asterisk). Later experiments showed that 

these were the heavy or light chain of the used antibodies (data not shown). As the MLL
N
 

and the MLLC antibodies showed no differences, for further experiments only the MLLN 

antibody was used.  

To validate the binding, the co-IP was reversed (Figure 3.2 A, right). A pull-down with Msk1-p 

was performed and the western probed for MLL1N. The western showed a clear MLL1 band. 

This finding supports the hypothesis that MLL1 and Msk1 interact.  

However, this experimental set up, did not rule out that the interaction between MLL1 and 

Msk1 was bridged by chromatin. In order to release the proteins from the DNA a high 

concentration of ethidium bromide (50μg/ml) was added (Lai & Herr, 1992; Schröter  et al., 

1985). Under these conditions (Figure 3.2 B), phosphorylated Msk1 was still detected in the 

MLL pull-down (A) and MLL1 could be still observed in the Msk-p pull-down (B).  
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Figure 3.2: Co-Immunopreciptiation experiments for MLL1 and Msk1. (A) Co-IP experiments were 

established in LCLs. Left: A cell extract was prepared and MLL
N
, MLL

C 
and NFκB were pulled down with 

antibodies. The beads and their corresponding Input samples were loaded on a 12% gel.  It is known that 

Msk1 and NFκB bind, so this IP was used as a positive control. Right: A Co-IP for Msk-p was performed and 

the beads and the supernatant sample were loaded on a 4% gel. (B) Co-IP including ethidium bromide. 

During the preparation of the cell extract 50 μg/ml ethidium bromide was added to release chromatin 

proteins from the DNA. Asterisks  indicate the IgG heavy (55 kDa) or light (25 kDa) chain of the antibodies. 
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In the next experiment, the interaction between the non-phosphorylated Msk1 (inactive) 

and MLL1 was examined and therefore the immuoprecipitation repeated with the antibody 

that recognized non-phosphorylated Msk1 (Figure 3.1 B). In the pull-down with MLLN a 

strong band for Msk1 was detected (Figure 3.3 A, left), which also showed up in the positive 

NFκB pull-down. In the reverse experiment however, only a very weak Msk1 pull-down could 

be detected (Figure 3.3 A, right).  The experiment was repeated with ethidium bromide 

added to the lysates (Figure 3.3 B).  This confirmed that Msk1 could be detected in the MLL1 

pull-down, but no MLL1 could be detected in the pull-down with non-phosphorylated Msk1. 

The interpretation of these findings are not clear, as it could suggest that MLL1 interacts 

with Msk1 in its active, phosphorylated form, but as not in the inactive non-phosphorylated 

form. However it is also possible that the antibody disrupts the MLL1-Msk1 interaction.  

In order to validate and expand these Co-IP results, IPs with MLL
N
 and Msk1-p were repeated 

in different human and murine cell lines, with ethidium bromide (50μg/ml) added to the cell 

lysates. As shown in Figure 3.3 C and D, experiments using human HEKs and mouse 

embryonic fibroblasts confirmed the binding of MLL1 and Msk1-p.  
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Figure 3.3:  Co-immunoprecipitation for MLL1 and Msk1. (A) The Co-IP experiment was repeated using an 

antibody that recognizes un-phosphorylated Msk1. In the MLL1 pull-down Msk1 could be detected, but only 

a weak MLL1 band in the Msk1 pull down. (B) The experiment was repeated with 50μg/ml ethidium bromide 

in the cell extract. Msk1 could be detected in the MLL1 pull -down, but in the Msk1 pull-down no MLL1 could 

be detected. (C) The Co-IP experiments were repeated in MEFS and HEKs. Ethidium bromide was added to 

all cells extracts. In all tested cell lines Msk1-p could be detected in the MLL1 pull-down. (D) In the reverse 

experiments MLL1 could be detected in the Msk1-p pull-downs. 
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3.1.2 FLAG-tagged MLL1 complex 

In a second approach to characterize the putative MLL1 and Msk1 interaction, we over-

expressed FLAG-tagged MLL1 (pMSCVneo vector was a gift of Slany, University of Erlangen) 

in HEK cells and purified the associated protein complex. HEK cells were transfected with the 

FLAG-MLL1 encoding vector or with a GFP containing vector to control transfection 

efficiency (Figure 3.4 A) and transfected cells were shown to express FLAG MLL1 by western 

analysis (Figure 3.4 B).  

In the next step the transfected cells were harvested, lysed and the MLL1-Flag protein 

purified using α-FLAG IgG coated beads.  A concentrated sample was run on a size exclusion 

gel filtration column to analyse the purity of the immuno-precipitated complex protein 

(Figure 3.4 C). As a control a background sample was run (supernatant of the concentration 

process). A single peak was detected in the elution profile of the FLAG purified protein 

sample (fractions 15-16, 3.75-4.5ml, marked with an asterisk), which couldn’t be detected in 

the background profile. However, in the fractions 26-36 (6.5-9 ml) multiple peaks could be 

detected in both elution profiles, which are likely to reflect non-specific binding of proteins 

to the beads (MW ~30 kDa). 
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Figure 3.4:  Overexpression of FLAG-MLL1 in HEK293s. (A) HEK cells were serum starved overnight, before 

incubation for 7 hours with transfection medium. After 3 days the cells were collected. Cells transfected 

with a GFP expressing vector were controlled for transfection efficiency with fluorescence-microscopy. (B)  

The transfected cells were checked for FLAG expression. A single band was detected, which was absent in 

non-transfected cells (Control). Actin was used as a loading control. (C) A concentrated sample and 

background sample (supernatant of the concentrated protein) was run on a size-exclusion gel-filtration 

column to control the quality of the purified protein. A  unique peak in the FLAG-protein elution profile 

(fraction 15-18, asterisk), is likely to be a large molecular weight complex. In fraction 26-36 multiple peaks 

can be found in both elution profiles, which are likely to be non-specific protein binding to the beads 
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The purified protein complex was loaded on a gel and stained to visualize protein bands 

(Figure 3.5 A).  A number of bands (~10x) could be detected, which we assumed were the 

MLL1 complex components. The protein was then analysed by western (Figure 3.5 B). The 

membrane was firstly probed with an antibody against the FLAG-tag and visualized a band at 

the top of the membrane, in both the Input and the purified protein sample (left panel). 

Secondly an antibody against Msk1 (phosphorylated) was used and visualized a band in the 

upper third of the membrane, in both (Input and purified protein) sample (middle panel). 

Lastly the membrane was probed with an NFκB antibody, as this is a known interaction 

partner of Msk1. This detected a band in the Input sample but not in the purified protein 

complex. The smear between the Msk1 band and the NFκB band (marked with *) was cross-

reaction of the NFκB antibody (right panel). 

Taken together these results strongly support, that MLL1 does interact with Msk1 directly. 

The interaction is unlikely to be bridged by chromatin and may be limited to the active, 

phosphorylated form of Msk1. This suggested that active Msk1 is probably a member of the 

MLL1 complex. However, it is not yet clear if the MLL1-Msk1 interaction is a transient 

interaction or whether Msk1 is a permanent member of the MLL1 complex.  
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Figure 3.5: MLL1-FLAG complex. (A) The MLL-complex was isolated by FLAG-bead purification. On a SDS gel 

stained with silver-nitrate, a number of bands can be detected (indicated at the side with bars) (B) Western 

blotting, FLAG-tagged MLL (left), an Msk1 can be detected in the FLAG-bead pull-down (middle). In contrast, 

NFκB (a known interaction partner of Msk1) cannot be detected in the purified complex. 
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3.2 MLL1 and Msk1 binding in vivo 

In the previous experiments, we used immunoprecipitation and purification of FLAG-tagged 

MLL1 complex to investigate MLL1 and Msk1 interaction. These co-immunoprecipitation 

experiments suggested that MLL1 interacts strongly with Msk1. Moreover, analysis of a 

FLAG–purified MLL1 complex showed that Msk1-p can be found in the purified MLL1 

complex. Following these experiments we wanted to examine the distribution of MLL1 and 

Msk1 binding in vivo and therefore used a Chromatin-immunoprecipitation followed by 

sequencing (ChIP-Seq) approach in mouse embryonic fibroblasts (MEFs).  

 

3.2.1 Establishing an XChIP protocol for MEFs 

We chose MEFs because these are primary non-transformed cells with a normal karyotype, 

and are therefore a good model to study MLL1 and Msk1 binding under normal physiological 

conditions. Chromatin-immunoprecipitation for DNA-bound transcription factors requires 

cross-linking to the DNA. The cells were therefore treated with formaldehyde and the 

extracted chromatin was fragmented with sonication. This step was crucial, as sequencing 

requires chromatin fragments of ~250 bp. Sonication optimization (7 cycles, high intensity) 

resulted in a narrow spread of DNA fragments ranging from 100-500bp, with the majority in 

the 200-300bp range (Figure 3.6 A). Every batch of chromatin was validated in this way 

before use, as appropriate chromatin fragment sizes are essential for immunoprecipitation 

and subsequent library preparation.  
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For the immunoprecipitation the same antibodies were used as for the co-IPs (Chapter 3.1), 

one directed against the N-terminal domain of MLL1 and one directed against the 

phosphorylated serine 360 of Msk1 (activated Msk1, Figure 1.9 A). Additionally an antibody 

against the histone H3 C-terminal tail was used as a positive control. This domain is not 

known to contain modifications, so binding is assumed to be unaltered by histone 

modification.  To control for non-specific binding, a ‘mock’ immunoprecipitation was 

performed, in which no antibodies were used. The precipitated chromatin was analysed in a 

short PCR (15 cycles) for amplification of two genes: HoxA4, a known MLL1 target gene and 

GAPDH as a reference gene (Figure 3.6 B). The pull-down with the H3-tail antibody (positive 

control, lane 1) showed amplification for both genes, indicating that the precipitation was 

efficient. Furthermore, the no-antibody pull-down (negative control, lane 4) showed no 

amplification of the two genes, indicating that non-specific binding was minimal. In contrast, 

chromatin pulled down with the MLL1 antibody amplified HoxA4, but not GAPDH. Likewise 

chromatin pulled down with the Msk1 antibody, showed strong amplification of HoxA4, but 

only a weak one for GAPDH. This suggested both precipitations were successful and pulled 

down known target genes. Immunoprecipitated DNA was subsequently sent to GATC Biotech 

for library preparation and 50bp single-end sequencing on the Illumina HiSeq2000. A 

coverage of 113,852,000 sequenced reads in the Msk1 library and 82,796,700 sequenced 

reads in the MLL1 library was achieved.  
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Figure 3.6: Chromatin preparation for Next Generation Sequencing. (A) Chromatin was fixed with 

formaldehyde and then sonicated. For sequencing small chromatin fragments ~250 bp were needed. 7 cycles 

(30 sec on/off) at high intensity resulted in chromatin between 100 and 500 bp, but with the majority of 

fragments between 200-300 bp. (B) In order to control the quality of the pull down, a positive  control 

(antibody that recognizes the histone H3 C-terminal tail) and a negative control (no antibody control)  were 

performed. A PCR was performed on the precipitated DNA to validate the antibody binding efficiency. HoxA4 

was chosen, as it is a known MLL1 target gene. No binding was observed in the negative control (lane4), 

binding of Msk1 and MLL1 at HoxA4 was observed (lane2 & 3 upper panel), whilst no or little binding was 

detected in the GAPDH reference gene (lane2 & 3, lower panel. The primers were placed over the TSS of the 

two genes. 
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3.2.2 Analysis of the sequencing results of MLL1 and Msk1 

For the analysis the Galaxy/Cistrom server  was used (https://usegalaxy.org). In Figure 3.7 A, 

a screen-shot of the raw data is shown (wiggle plot). The ChIP-Seq data of MLL1, Msk1 and 

H3K4me3 for primary MEFs (Karolchik et al., 2014; Rosenbloom et al., 2013; Data generated 

by B. Ren, Ludwig Institute for Cancer Research) are shown over the Mus musculus HoxA 

cluster [Chromosome 6, 52,100,000 – 52,200,000], including known RNA products from 

these loci and major transcription start sites (TSS). The peak profile of H3K4me3 shows high 

enrichment and well defined peaks. The profiles of MLL1 and Msk1 show less enrichment 

and a more ‘spiky’ appearance, but appear to bind preferably to TSS where H3K4me3 can be 

detected. The first step was to identify regions, which were significantly enriched for reads. 

Therefore a peak detection algorithm (‘peak caller’) was run. In Galaxy it is based on the 

MACS peak caller for peak detection.   

In order to compare regions bound by MLL1 or Msk1 and the H3K4me3 distribution, a Venn 

diagram was created (Galaxy tool, Figure 3.7 B). All binding sites of MLL1, Msk1 and 

H3K4me3 identified with the ‘peak caller’ were compared (Figure 3.7 B). The analysis 

showed overlap between  MLL1 and Msk1 binding sites (2090 binding sites), however, the 

majority of sites were occupied by either MLL1 only (2060 sites) or Msk1 only (3646 sites). 

These data, showing a 30-40% overlap, between the sites, represent compelling data that 

the two proteins can act in tandem to regulate genes. The data also showed that the general 

MLL1/Msk1 binding  does not correlate with H3K4me3 , which was more abundant. 
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Figure 3.7: Sequencing Analysis – peak identification. (A) Screen Shot raw peak data over the HoxA cluster 

is shown. In order to identify high confidence binding of MLL1, Msk1 and H3K4me3 (Rosenbloom et al. 2013; 

Karolchik et al. 2014) to the genome, the MACS14 ‘peak caller’ algorithm was run. (B) Venn-diagram, 

comparing the binding sites of MLL1, Msk1 and H3K4me3, identified by the ‘peak caller’. MLL1 and Msk1 

show an overlap of a subgroup of peaks (~20%). However, the majority of MLL1 and Msk1 do not correlate 

nor does it correlate with H3K4me3. 
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In the next step  a probe trend plot was created (Figure 3.8).  Probe trend plots show an 

average pattern or distribution of reads across known TSS sites (Glaxy/Cistrone CEAS tool). 

Here the average read pattern over each TSS (-5000 and +5000bp to each side) bound by 

MLL1 and Msk1 were analysed (Figure 3.8 A).  The trend plot showed that MLL1 and Msk1 

bind preferentially on the TSS, but that they also can be found over the adjacent 1000bp, 

with a broad peak of binding from ~-500 to +1000. The two profiles are extremely similar 

and show profiles typical for TSS binding factors.  In comparison the trend plot for H3K4me3 

is shown (Figure 3.8 B), with a typical methylation peak over the TSS (compare Figure 1.3). 

However, while MLL1/Msk1 seem to bind directly over the TSS (indicated by black line), this 

position seems to be non-methylated, probably due to nucleosome redistribution by bound 

transcription factors at the TSS. H3K4me3 is mainly found ~-500bp  (small peak) and 

~+500bp from the TSS (large peak). 

In the next step of the analysis the two peak data set (MLL1 binding vs. Msk1 binding) were 

compared, with the focus on the peaks that were bound by both MLL1 and Msk1. In Figure 

3.9 the scatter plot is shown. The R-value of the correlation is 0.91, indicating that the 

binding patterns of MLL1 and Msk1 on the shared peaks were simillarly strong.  
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Figure 3.8: Sequencing Analysis – TSS probe analysis. (A) The probe trend plot shows the average 

distribution of reads across TSS loci. It covers the region -5000 bp and +5000 bp around the TSS and shows an 

enrichment of MLL1 and Msk1 binding over the TSS. The black line represents the TSS. (B) Here the same 

analysis was done for H3K4me3. H3K4me3 is enriched ~-500 and +500 bp from the TSS, but not on the TSS 

itself. Data from Encode, generated by B. Ren, Ludwig Institute for Cancer Research (Rosenbloom et al. 2013; 

Karolchik et al. 2014) 
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Figure 3.9: An analysis of MLL1 and Msk1 binding correlations. Significant binding of MLL1 and Msk1 were 

identified with the ‘MACS peak caller’. It showed that MLL1 and Msk1 binding strength on the shared peaks 

correlates highly.  
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In this analysis MLL1 and Msk1 were cross-linked to the DNA in order to study their 

distribution of binding under physiological conditions and to identify MLL1 and Msk1 target 

genes. We have shown that MLL1 and Msk1 binding strongly correlate, but this also  

matches with the distribution of H3K4 tri-methylation in chromatin. These findings support 

our previous results that indicated there is a physical interaction between MLL1 and Msk1. 

The sequencing results confirmed the Hox genes are MLL1 target genes, although not the 

entire cluster was bound, consistent with the previous  analysis of MLL1 target genes.   
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3.3 Characterising the functional impact of MLL1 and Msk1 

regulation 

In the last section we established that MLL1 and Msk1 physically interact and bind to the 

same sites in the genome. In this section we examine if these proteins have a common 

regulatory effect at MLL1 target genes, using a MLL1 and Msk1 knock-down approach. 

In Figure 3.10 an overview of the experiments is shown. Firstly a transient shRNA-mediated 

knock-down of MLL1 and Msk1 needed to be established. We chose to use MEFs to allow 

comparison with the binding experiments that have been described. Transient knock-down 

was used rather than a stable knock-out, as we wanted to characterize the immediate 

changes in gene expression in response to MLL1 and Msk1 down-regulation as these are 

likely to reflect direct effects. In the next step we assessed if these knock-downs led to a 

change in the expression of known MLL1 target genes (i.e. HoxA locus; Hess 2004). Previous 

data have shown that MLL1 and Msk1 bind a large number of sites in the genome (Chapter 

3.2). Therefore changes in expression on a genome-wide scale were studied using a 

microarray approach. In the final experiment two representative MLL1 target genes, HoxA4 

and HoxA5 were examined in knock-down cells to characterize the changes of key MLL1-

associated histone modifications (H3K4me3, H3K27me3 and H3K9acS10p) in response to 

reduced levels of MLL1 and Msk1. 
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Figure 3.10: Experimental design/workflow. (1) A transient knock-down for MLL1 and Msk1 in MEFs 

needed to be established. (2) The functional impact was validated, as the HoxA cluster was screened for 

changes in expression in response to the knocked down proteins. (3) Microarray analysis was performed to 

examine the effect of MLL1 and Msk1 KD on gene expression on a global level. (4) Genes impacted by MLL1 

and Msk1 knock-down were correlated to MLL1/Msk1 genomic binding and two HoxA genes were screened 

for changes in key histone modifications. 
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3.3.1 Establishment of a transient knock-down of MLL1 and Msk1 in MEFs 

The focus of this part of the study was to evaluate the functional impact of MLL1 and Msk1 

on gene regulation in a physiological context. We decided to work with mouse embryonic 

fibroblasts (MEFs), as these primary cells have no genomic alterations (e.g. oncogenes or 

virus-infection) and as embryonic derived cells, they express HoxA genes, known MLL1 target 

genes (Hanson et al. 1999).  

Initial experiments established conditions to transfect these cells with MLL1 and Msk1 siRNA 

knock-down vectors (Origene, Msk1: TR504795, MLL1: TR517798) which deliver 4-5 shRNA 

vectors per kit and a GFP- containing vector, which was used as a control. Once the vector is 

in the target cell it expresses short hairpin RNA, which is processed into siRNA that interacts 

with the RISC complex. This subsequently results in the cleavage of the target mRNA, 

resulting in reduced transcript and protein abundance (Macrae et al. 2006). Initially a range 

of different transfection methods were tested using the GFP vector, including lipofectamine 

(Sigma), X-fect (Clontech) and electroporation (Gene pulser XCell, BioRad). Evaluation of 

transfection efficiency using GFP fluorescence showed that all methods showed good cell 

viability (80% - 95%), however the transfection efficiency was low in all methods (for  

electroporated MEFs: Figure 3.11). This Indicates a shift in the main peak of GFP positive 

cells, but only ~20%  of the cells were highly transfected, whereas with X-fect and 

lipofectamine only ~10% were GFP-positive (data not shown). Therefore electroporation was 

used in subsequent experiments.  
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Figure 3.11: Establishing MEF transfection protocols. (A) Cell viability was controlled with light microscopy 

and trypan blue staining. Separation of live cells (attached to the plastic) and dead cells (floating) was 

possible. Here electroporated cells are shown. With optimised conditions, cell survival of 80% was achieved 

(B) The transfection efficiency of GFP was controlled by FACS analysis with cell count on y-axis and GFP 

fluorescence indicated on the x-axis. Lower panel indicates quantification of the cells in the R2 gate, which 

corresponds to cells. A shift in the measured peak could be detected, however the rate of highly transfected 

was around 22%. 
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We initially established the protocol for Msk1. In the next step the available shRNA vectors 

were tested for the best reduction of the target transcript. Out of the five available vectors 

only one showed a significant reduction of Msk1 RNA levels (data not shown) and was 

chosen for further experiments.  

As it was a transient knock-down only a short-lived reduction in RNA levels was                                                                                  

expected. We therefore examined the reduction of Msk1 RNA levels over an extended time 

scale and found that at ~12 hours post-transfection Msk1 RNA abundance was at the lowest 

and after ~24 hours this had recovered. However, even at the maximal knock-down, ~40% of 

Msk1 transcripts remained (Figure 3.12 A). 

We suspected that low transfection efficiency was the reason why the knock-down levels 

were so low, as the majority of the cells were only poorly transfected. As these shRNA mir 

vectors contained a puromycin resistance cassette (Figure 2.1.A), we used this antibiotic to 

select for the transfected cells. MEFs were transfected and rested for six hours to allow the 

cells to recover and reattach to the culture flasks. Then they were treated with puromycin, 

and 20 hours after transfection the cells were collected for analysis. As shown in Figure 3.12 

B, the living cells remained bound to the flask, whereas dead cells  became detached and 

could be removed. qPCR analysis of the puromycin-selected cells showed that after 24 hours 

Msk1 RNA was still reduced by ~50% while the untreated cells had fully recovered (Figure 

3.12 C). 
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Figure 3.12: Establishing Msk1 knock down protocol. (A) The knock-down was transient and therefore the 

time-point with the maximal effect needed to be identified. For a control, cells were mock-transfected with a 

GFP vector. Cells were collected at the indicated time-points post transfection (n=2). Msk1 RNA levels were 

lowest after ~12 hours (about 35%) but recovered completely after 24 hours.  (B) As transfection efficiency 

was low (~20%) transfected cells were treated with puromycin to the non-transfected cells. The surviving cells 

remain attached to the flask, whereas dead cells would float in the medium. Images were taken 24 hours after 

transfection. (C) Cells that were treated with puromycin showed significantly lower Msk1 transcript levels 

after 24 hours than those that were not treated, indicating that non-transfected cells are susceptible to 

puromycin-induced killing. 
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In order to see, if the changes Msk1 in transcript abundance would result in a change of 

protein level, western blots were performed. Previous studies suggest that protein levels 

reduce slower than RNA levels and that 20 hours post-transfection is likely to be the optimal 

time for reduced Msk1 protein knock-down, so the cells were harvested at this time point 

(both treated and untreated with puromycin) and analysed (Figure 3.13 A). The membrane 

was first probed with an antibody against Msk1 and then with an antibody against β-actin to 

control for loading. Cells, which were not selected with puromycin had only minimally lower 

Msk1 protein levels than the mock-transfected cells (Control). In contrast, puromycin-

selected cells had extremely efficient Msk1 knock-down (~99% KD).This suggest that poorly 

transfected cells, which would buffer the observed reduction of RNA or protein levels, die 

during antibiotic selection and only highly transfected cells survived. 

Next, the specificity of the Msk1 knock-down was confirmed. In order to exclude off-target 

effects, the impact of the knock-down on a similar gene/protein to Msk1 was examined. 

Msk2 is a mammalian homologue of Msk1, which shares ~76% sequence identity and was 

therefore chosen to verify the sequence specificity of the shRNA. In Figure 3.13 B Msk1 and 

Msk2 transcript abundance was analysed 20 hours after transfection. Msk1 RNA levels were, 

as seen before, reduced to ~40% whereas Msk2 transcript levels were comparable with 

mock transfected cells (Control). Subsequent western analysis confirmed that only Msk1 was 

affected, as Msk2 levels remained stable (Figure 3.13 C). 
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Figure 3.13: Establishing the Msk1 knock-down protocol. (A) Knock-down cells treated with puromycin 

showed a significant lower level of Msk1 protein after 20 hours. Msk1 abundance in GFP-control transfected 

cells (Control) and those in KD cells either untreated (Msk1) or treated with puromycin (Msk1 KD & Puro) 

are shown. Actin is used as a loading control. The extent of knock-down is shown below the blots. (B) 

Evaluating knock-down specificity. Cells were harvested after 20 hours correlating with the lowest protein 

levels. At this time point Msk1 transcript levels were still reduced by ~60% whereas Msk2 transcript levels 

were comparable to mock-transfected cells (control). Error bars indicate SD (n=3). (C) After 20 hours Msk1 

protein is efficiently knocked-down, whereas Msk2 protein levels were unaltered. 
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Having established the conditions for the Msk1 knock-down, these were applied to the MLL1 

knock-down.  For MLL1 knock-down, four vectors were provided (Origene), which were 

tested and the most efficient chosen for succeeding experiments. In the next step, MLL1 

transcript levels were monitored over time.  Similar to the Msk1 knock-down, MLL1 RNA 

levels were lowest ~12 hours after transfection (~20% of original level) and fully recovered 

after 24 hours when not treated with puromycin (Figure 3.14 A).  

Next the specificity of the MLL1 shRNA was controlled by analysing the transcript 

levels of the MLL1 homologues MLL2, MLL3 and MLL5 in MLL1 knock-down cells.  As shown 

in Figure 3.14 B, MLL1 levels were reduced about 60%, whereas the MLL1 homologues had 

comparable transcript levels to the mock-transfected cells (Control). Finally, the level of 

MLL1 protein in the knock-down cells was determined. We treated transfected cells with 

puromycin and harvested the cells 20 hours post transfection (Figure 3.14 C).  These were 

the same conditions as used for the Msk1 knock-down, however, the MLL1 protein levels 

were only reduced by ~60%. Analysis of transfected cells at later time-points (30 and 48 

hours after transfection), found MLL1 protein at ~40% of control cell levels (Figure 3.14 D).  

Furthermore, the selected cells did not cope with the reduced levels of MLL1 and no viable 

cells were found 72 hours after transfection, even when cells were incubated in medium 

without puromycin. For the following experiments MLL1 knock-down cells were treated with 

puromycin after 6 hours and harvested after 20 hours as for the Msk1 knock-down protocol.  
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Figure 3.14: Establishing MLL1 knock-down protocol. (A) As the knock-down was transient, cells were 

harvested at indicated time-points. MLL1 transcripts were maximally knocked down at ~12 hours post 

transfection and recovered by 24 hours. (B) In order to test the specificity of the MLL shRNA vector, the 

transcript levels of MLL2, MLL3 and MLL5 were analysed in MLL1 knock-down cells. At 20 hours after 

transfection and treatment with puromycin, MLL1 transcript levels were ~40% of control lev els, whereas 

MLL2, MLL3, MLL5 and control cell transcript levels were ~100%. Transcript abundance was compared with 

the MLL1 transcript levels in mock-transfected (Control) cells, which was normalized to 1.0 (C) Under the 

same conditions MLL1 protein was reduced by 63%. RNA Polymerase II (Pol II) was used as a loading 

control. (D) Cells harvested 30 or 48 hours post-transfection showed no further reduction in MLL1 protein 

levels.  
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3.3.2 Changes of MLL1 target genes in knock-down cells 

In the previous section conditions were established to create cells with significantly reduced 

levels of either MLL1 (~63% knock-down) or Msk1 (~99% knock-down). These cells were then 

studied for changes of expression at MLL1 target genes. We focussed on the HoxA genes and 

Meis1, as MLL1 is known to play an essential role in haematopoiesis through the 

maintenance of Hox gene expression (Argiropoulos & Humphries 2007b). Likewise, in MLL 

rearranged leukaemias, several HoxA genes and the oncogene Meis1 are consistently up-

regulated (Horton et al., 2005; Orlovsky et al., 2011).   

In order to capture changes in expression, RNA from knock-down and mock-transfected cells 

was isolated and analysed with qPCR. In Figure 3.15 A, a cartoon of the HoxA cluster is 

shown, which consists of 11 genes in mouse. In MLL1 knock-down cells, the expression of 

nearly all HoxA genes was down-regulated.  Hox genes at the edge of the cluster (HoxA 1, 2 

and HoxA 11, 13) showed only a moderate reduction of transcript levels (~30%).  Similarly 

HoxA 7 and 9 were down-regulated by ~40%, whereas the greatest impact was seen on the 

expression of HoxA 3, 4, 5, 6 and 10, which were reduced by ~70% (Figure 3.15 B). A 

strikingly similar response was observed in Msk1 knock-down cells (Figure 3.15 C). HoxA 1, 2 

and 11 showed no or moderate reduction in expression, HoxA 9 was down-regulated by 

~40%, whereas all the other HoxA gene transcripts were reduced by 50-60%. These findings 

suggest Msk1 contributes to the regulation of these known MLL1 target genes. However, 

Meis1 expression was not changed in MLL1 or in Msk1 knock-down cells. We next examined  

whether this was consistent across the genome. 
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Figure 3.15: Effect of MLL1 or Msk1 knock-down on HoxA and Meis1 gene expression. The Hox genes are 

well known MLL1 target genes. Therefore the effect of MLL1 and Msk1 knock-down on HoxA genes was 

examined. (A) Cartoon of the murine HoxA cluster. (B) The changes of expression in MLL1 knock-down cells 

at 20 hours post-transfection. (C) The changes of expression in Msk1 knock-down cells at 20 hours post 

transfection.  Transcript levels in mock-transfected cells (Control) are set at 1.0. Transcript abundance was 

normalized to β-actin and is presented +/- SD (n=3). Red asterisks indicate significantly down-regulated 

genes (paired t-test, p<0.05*, p<0.01**, p<0.001 ***). 
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3.3.3 Changes of gene expression on a genome wide level in knock-down cells 

Our findings that the HoxA genes were down-regulated in MLL1 or Msk1 knock-down cells in 

a comparable manner suggested that MLL1 and Msk1 are functionally connected, at least at 

the HoxA loci. Our genome-wide analysis (Chapter 3.2) showed that MLL1 and Msk1 bind to 

a number of same sites in the genome, suggesting these proteins regulated a larger number 

of genes beyond the HoxA locus.  Therefore changes in gene expression on a genome-wide 

scale were examined.  

For this analysis the 100718_MM9_EXP_HX12 microarry from NimbleGen was used. 

This slide contains 12 individual arrays, each representing 42,576 probes in triplicate. Four 

samples for each knock-down and mock-treated cells were prepared. RNA was extracted, 

reverse-transcribed into cDNA and labelled with Cy5. The labelled samples were hybridized 

onto the arrays and scanned.  In the first step of the analysis, the quality of the scan was 

validated (Figure 3.16 A). Ideally the same amount of cDNA should hybridize to each array 

and give comparable fluorescence signals. However signal intensity can vary due to slightly 

different loading, inefficient hybridization or differential scanning quality on different parts 

of the slide. Hence, for each array the range of signal readings was analysed. These are 

presented as box and whisker plots, where the median of the box-plots represents the 

average density of the scan and the intensity of 75% of the features on the array lie within 

the box. In this format, the maximum and the minimum intensities lie at the end of the 

whiskers. Two arrays showed a significant difference in signal intensity from the other 

samples, suggesting that there was a problem with either the labelling or hybridization (e.g. 

Control2 & Msk2, Figure 3.16 A). For further analysis these two samples were excluded 

(Graph 1 and 2). In order to make the arrays comparable a quantile normalisation was 
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performed using the RMA (Robust-Multi-Array Average) pre-processing methodology 

implemented in R (Krause & Olson 2000). This normalization process adjusts for systematic 

errors arising from differences in the method or dye intensity to make further analysis 

meaningful (Graph 3).  The normalised data were then analysed by principal component 

analysis (Figure 3.16 B), which is a mathematical algorithm that identifies patterns in the 

data sets, by identifying maximal trends, called principal components (Ringnér 2008). The 

analysis showed that the four samples for the MLL1 knock-down cells were closely clustered 

near the origin, indicating that they were quite similar (Figure 3.16 B). In contrast the three 

samples from Msk1 knock-down cells were mainly located to the lower left quadrant, 

whereas the three samples from control cells were located mainly in the upper left 

quadrant, and showed a wider variation between the data sets. However, this was 

acceptable, as each cell-condition formed a cluster with a defined territory.  

In order to identify differentially expressed genes between the control and the knock-down 

cells, SAM (significance analysis of microarrays) analysis was performed in MeV (Tusher et al. 

2001). The results of changes in expression were represented in a heat map (Figure 3.17 A). 

At the top of the heat map, a hierarchical tree diagram is shown, which visualizes the 

relationship between the data sets and shows that the three cell conditions are significantly 

different from each other. Each line represents a gene, which showed a change of 

fluorescence during scanning in the different cell types. These changes in fluorescence 

intensity correlate with changes in expression. In total 3912 genes were statistically different 

between the knock-down and the control cells (fold change cut-off: FC>2). The colouring 

scale is relative, in which higher gene expression is marked in red and lower gene expression 

in green. 
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Figure 3.16: Microarray analysis of MLL1 and Msk1 knock-down cells. (A) In the first step the microarry 

scans were quality controlled. Two extreme outliners were excluded from the analysis (Con2 & Msk2: 

compare panels 1 and 2) and all remaining samples were normalized (panel 3). (B) A Principal Component 

Analysis was performed to evaluate the differences between the three groups: Control (1, 3 & 4), MLL KD 

(1, 2, 3 & 4) and Msk KD (1, 3 & 4). 



92 

 

 

 

 

 

Figure 3.17: Significance analysis of gene expression changes for MLL1 and Msk1 KD. (A) To analyse a SAM 

(Significance analysis of microarrays) was performed to find significant changes between patterns of gene 

expression in Control, MLL1 knock-down and Msk1 knock-down cells. Gene expression changes are indicated 

by colour intensity of a range from 2.7 down (green) to 2.7 up (red). Samples are clustered by hierarchical 

tree at the top of the plot. (B) In total 3912 genes changed and could be clustered into five groups. The 

number of genes in each cluster is indicated on the right, the hierarchical tree on the left. (C)  Out of these 

3912 genes only 19% were down-regulated in both MLL1 and Msk1 knock-down cells (Cluster 3) and only 

11% were up-regulated in both knock-downs (Cluster 5). This indicates the majority of genes respond 

differently to MLL1 or Msk1 knock-down. 
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Approximately ~9% of the genes on the microarray (3912 genes) showed changes in 

expression and could be clustered into five groups (using SOTA algorithm in MeV, Figure 3.17 

B). Interestingly, of these genes, only ~11% were up-regulated and 19% down-regulated 

together in both knock-downs when compared with the control cells (Figure 3.17 C). This 

indicates that the majority of genes respond differently to MLL1 or Msk1 knock-down, 

suggesting they are regulated differently.  

In order to understand which cellular processes are affected by the knock-down of MLL1 and 

Msk1, the genes were functionally annotated using DAVID.  DAVID is a biological data-base 

and analytical tool, which compares a gene list in a list to the data base in order to correlate 

the genes to known biological functions (Huang et al. 2008). The gene list for each cluster 

was analysed individually and only genes with a FDR (false-discovery-rate) of lower than 15% 

were considered (Figure 3.18 and 3.19). This identified five clusters: 

In cluster 1 genes were grouped which were down-regulated in only Msk1 knock-down cells. 

These genes were functionally enriched with the cell cycle, chromosome condensation and 

DNA repair.  

Cluster 2 contains genes which were up-regulated in only MLL1 knock-down cells. Although 

280 genes were in this cluster, only 66 genes could be connected to a specific function (eg. 

21 genes to cellular stress-response). This suggests that these changes in gene expression 

were indirect responses to the changes in the cell, or are unlikely to be a coordinated 

response to the knock-down. 

In cluster 3 genes were down-regulated in both MLL1 and Msk1 knock-down cells. Most of 

these genes were involved in regulation of MAPK activity (81 genes), the immune response 

(57 genes) and related functions (e.g. cytokine activity, 16 genes). MAPKs are known to have 
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a regulatory influence on the immune response (Liu, Shepherd, & Nelin, 2007;  Arthur & Ley, 

2013), so the down-regulation of these genes in Msk1 knock-down cells is expected. This 

also supports a co-regulatory function of MLL1 and Msk1. However, a large number of these 

genes are also annotated with cellular maintenance (e.g. sugar/lectin binding, 42 genes).  

Cluster 4 genes were up-regulated in Msk1 knock-down cells and were found to be related to 

MLL1 and Msk1 function. For example histone protein genes (79 genes), transcription 

associated genes (72 + 55 + 33 genes) or protein kinases (15 genes) were up-regulated. This 

could be a cellular reaction to compensate for the loss of Msk1, which is an important kinase 

and involved in many cellular processes.  

Finally, cluster 5 genes were up-regulated in MLL1 and Msk1 knock-down cells. These genes 

were all associated with cellular maintenance (e.g. homeostatic processes, 35 genes).  

In order to verify the microarray findings, qPCR analysis of selected genes were performed to 

confirm their up- or down-regulation. Two candidate genes, which were up-regulated and 

two, which were down-regulated in each knock-down were chosen. For the MLL1 knock-

down Il1b and Ly9 (down-regulated) and Hemt1 and Hsph1 (up-regulated) and for the Msk1 

knock-down Ttk and Kif20b (up-regulated) and Ifnar2 and Tet3 (down-regulated) were 

examined. The results are shown in Figure 3.20 and confirmed the microarray data.  
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Figure 3.18: Cluster and gene annotation analysis I. Each gene cluster was then analysed with DAVID, a tool 

for functional annotation of gene lists.  The changes in gene expression in the cluster is shown in the left 

box and the associated annotations with their corresponding hits in the right box (false discovery rate cut-

off: 15%, Enrichment>1.5). Significant biological associations and the number of genes involved are shown. 

Plots indicate the range of gene expression changes between control (1-3), MLL1 KD (1-4) and Msk1 KD (1-

3)  data set. The purple line indicates the average. 
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Figure 3.19: Cluster and gene annotation analysis II. Each gene cluster was then analysed with DAVID, a 

tool for functional annotation of gene lists.  The changes in gene expression in the cluster is shown in the 

left box and the associated annotations  with their corresponding hits in the right box (false discovery rate 

cut-off: 15%, Enrichment>1.5). Significant biological associations and the number of genes involved are 

shown. Plots indicate the range of gene expression changes between control (1-3), MLL1 KD (1-4) and Msk1 

KD (1-3) data set. The purple line indicates the average. 
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Figure 3.20: Validation of microarray data by qPCR. To validate the gene up-/down-regulation data from 

microarray analysis, gene expression changes in Msk1 and MLL1 knock-down cells were analysed by qPCR. 

Two genes that were up-regulated (Hemt1 and Hsph1) and two that were down-regulated (Il1b and Ly9) in 

MLL1 knock-down cells, furthermore, two genes that were up-regulated (Ifnar2 and Tet3) and two that were 

down-regulated (Ttk and Kif20b) in Msk1 knock-down cells, were tested. Graphs indicate transcript 

abundance normalized to β-actin and indicate +/- SD (n=3). All changes were statistically significant (paired    

t-test, p<0.05). Data were normalised to gene expression levels in control cells (Control=1).  
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This analysis characterised the changes in gene expression induced in response to the knock-

down of MLL1 and/or Msk1. In general, annotated genes reflected MLL1- and Msk1-related 

functions (eg. cellular response to stress, cluster 2).  Notably, it seemed that the Msk1 knock-

down had a more dramatic effect on gene expression than MLL1: 543 were down- and 1883 

up in Msk1 knock-down cells, whereas only 280 genes changed expression upon MLL 

knockdown. This may reflect the extent of knock-down, as MLL knock-down was less 

efficient than Msk1, however, a large number of affected genes were not annotated with a 

specific function in DAVID, indicating a limitation of this type of analysis. Finally DAVID 

cannot distinguish between changes in gene expression in direct response to the knock-

down and indirect effects which reflect secondary and tertiary changes resulting from the 

initial response. 
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3.3.5 Changes of histone modifications on MLL1 target genes in MLL1 and Msk1 knock-

down cells 

We established that knock-down of MLL1 and Msk1 induces changes in gene expression at a 

large number of genes with a diversity of cellular functions.  As MLL1 works as a 

transcriptional activator by modulating histone modification, we then examined if down-

regulation of MLL1 or Msk1 would induce changes in the histone modification of target loci. 

Previous studies showed that MLL1 deposits H3K4me3 (Wang et al. 2009) and is stimulated 

by H3K9ac/S10p in vitro (Nightingale et al. 2007). MLL1 is a mammalian trithorax protein 

(TRX), regulators which are counter-acted by polycomb proteins (PCG), which deposit 

H3K27me3. For these reasons, these three marks were examined on the MLL1 target genes 

HoxA 4 and 5 in context of MLL1 or Msk1 knock-down cells. These genes were chosen 

because they showed large reductions in RNA levels in MLL1 and Msk1 knock-down cells 

(Figure 3.15) and we assumed that any changes in histone modifications would be the 

easiest to detect at these loci.  

In order to study the distribution of modifications, a carrier Chip (CChIP) approach was used, 

as this technique requires a small number of target cells (i.e. 1x105), in this case knock-down 

cells. Target cells were mixed with SL2 Drosophila cells to bulk up the cellular material and 

minimise the loss of target chromatin during the procedure. It was important to use a 

Drosophila cell line as this prevents non-specific amplification of the carrier at the end of the 

ChIP procedure. Cells were processed similar to native ChIP, allowing the digestion of 

chromatin with micrococcal nuclease, which resulted in chromatin fragments between 

~100bp and ~500bp (Figure 3.21) 
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Figure 3.21: Chromatin Isolation from knock-down cells. For the ChIP analysis, knock-down cells were 

mixed with Drosophila SL2 cells (“carrier cells”) and the chromatin was digested with micrococcal nuclease, 

resulting in the typical ‘chromatin ladder’.  Mono-di- and tri-nucleosomes are labelled, as is a 100bp ladder. 

S1, S2 and P are fractions of chromatin obtained during the chromatin precipitation procedure (see Chapter 

2.4.5 Carrier Chromatin Immuno-precipitation). Only S1 and S2 were used for immuno-precipitation. 
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This allowed higher resolution analysis of the target genes than using cross-linked 

chromatin, which normally generates ~500bp fragments. In Figure 3.22 A and 3.23 A, the 

primers for HoxA4 and 5 are shown. These were designed to amplify a reference area at the 

promoter 5’ to the TSS (primers 1), to amplify the TSS (primers 2), or an intra-genic region at 

the end of at the gene (primers 3). All primers were tested prior to the experiment for 

specificity to murine DNA.  

In Figure 3.23 B the results for the ChIP on HoxA4 are shown. As expected, H3K4me3 levels, 

both 5’ (HoxA4.1) or at the end of the gene (HoxA4.3), are low and are not altered in the 

different cell conditions. In contrast, a peak of this mark is seen over the TSS in control cells 

and is reduced in MLL1 (-40%) and Msk1 (-50%) knock-down cells. T-test analysis indicates 

this is a significant decline in both MLL1 (p=0.040) and Msk1 knock-down cells (p=0.010) 

A similar pattern of enrichment is seen for H3K9ac/S10p, with low levels of H3K9ac/S10p in 

the upstream region and at the end of the gene. Likewise, enrichment was observed over 

the TSS in the mock-transfected cells, which was diminished in MLL1 (-50%, p=0.009) and 

Msk1 (-40%, p=0.010) knock-down cells. 

Finally, no enrichment of H3K27me3 was observed either 5’ or 3’ to the gene, or over the 

TSS. Interestingly a small increase in this mark (ca. 1.5 fold), which is significant (p=0.005) is 

seen in MLL1 knock-down cells. In Msk1 knock-down cells the same trend was observed 

(p=0.046). 

Similar results were seen for HoxA5 (Figure 3.23 B). H3K4me3 abundance is low both 

upstream (HoxA5.1) and at the end of the gene (HoxA5.3) in the different cells. However, 

over the TSS (HoxA5.2) an enrichment of H3K4me3 was observed in control cells, which was 

reduced in MLL1 (-60%, p=0.003) and Msk1   (-50%, p=0.002) knock-down cells.  
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Similarly, for H3K9ac/S10p, an enrichment over the TSS observed in mock-transfected cells, 

was diminished in MLL1 (-50%, p=0.014) and Msk1 (-40%, p=0.019) knock-down cells. 

Finally, no enrichment of H3K27me3 was observed upstream (5’) or the end of the gene 

under the different cell conditions. Over the TSS no enrichment was observed in mock-

transfected cells, but in knock-down cells a small increase in H3K27me3 levels were seen. 

However these changes were not statistically significant (MLL1 p=0.413 and Msk1 p=0.183). 

In general, these experiments show that knock-down of MLL1 and Msk1 changes the histone 

modification landscape at MLL1 target genes. Furthermore, the changes in MLL1 knock-

down cells were analogous to those in Msk1 knock-down cells. Moreover it confirmed the 

antagonistic action of the trithorax (i.e. H3K4me3 and H3K9ac/S10p levels down) and 

polycomb group proteins (ie. H3K27me3 up) at these MLL1 targets. These findings support 

the hypothesis that MLL1 and Msk1 work in concert to regulate gene expression using 

epigenetic mechanisms. 
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Figure 3.22: Effect of MLL1 and Msk1 knock-down on H3K4me3, H3K27me3 and H3K9ac/S10p distribution 

at HoxA4. (A) Gene map for HoxA4 (boxes = exons). Primers were designed to screen multiple sites on the 

HoxA4 gene (representative MLL1 target gene). (B) MEFs were transfected with a Msk1 or a MLL1 knock-

down construct. After 20 hours the cells were harvested and CChIP analysis of H3K4me3, H3K27me3 and 

H3K9ac/S10p was performed. Graphs present these modifications at three sites over the HoxA4 gene, with 

the abundance in mock transfected cells normalized to 1.0. Red asterisks mark significant changes in 

modification levels (paired t-test, p<0.05*, p<0.01**, p<0.001 ***). 
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Figure 3.23: Effect of MLL1 and Msk1 knock-down on H3K4me3, H3K27me3 and H3K9ac/S10p distribution 

at HoxA5. (A) Gene map for HoxA5 (boxes = exons). Primers were designed to screen multiple sites on the 

HoxA5 gene (representative MLL1 target gene). (B) MEFs were transfected with a Msk1 or a MLL1 knock-

down construct. After 20 hours the cells were harvested and CChIP analysis of H3K4me3, H3K27me3 and 

H3K9ac/S10p was performed. Graphs present these modifications at three sites over the HoxA5 gene, with 

the abundance in mock transfected cells normalized to 1.0. Red asterisks mark significant changes in 

modification levels (paired t-test, p<0.05*, p<0.01**, p<0.001 ***). 
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3.4 MLL1 and Msk1 during the cell cycle 

 Previous studies have linked MLL1 to cell cycle regulation and our analysis of the 

distributions of MLL1 and Msk1 binding indicated that both proteins bind to genes, which 

are functionally linked to the cell cycle (see Chapter 3.3, Figure 3.18 and 3.19).  This argues 

for a regulatory impact of MLL1 and Msk1 on the cell cycle, however, previous reports 

disagree about MLL1 function during the cell cycle. Several studies suggest that MLL1 may 

have an active role in cell cycle progression. For example MLL1, in concert with menin, has 

been shown to regulate cyclin-dependent inhibitors (Milne et al. 2005). This was consistent 

with observations that MLL1 abundance oscillates throughout the cell cycle, with peaks in 

G1/S and M-phase, but remains associated with chromatin even at its lowest levels  during 

mitosis (Caslini et al. 2000; Liu et al. 2007).  In contrast, another study showed that MLL1 is 

displaced during mitosis (Ennas et al. 1997) and that H3K4me3, although still found in 

condensed chromatin, changes dynamically during the cell cycle (Mishra et al. 2009). More 

recently, it has been suggested that MLL1 retention at gene promoters during mitosis 

accelerates transcription reactivation following mitotic exit (Blobel et al. 2009).  Taken 

together, there is controversy whether MLL1 is displaced during mitosis and MLL1’s impact 

on cell cycle progression. Therefore we examined the dynamics of MLL1 and Msk1 during 

the cell cycle, focussing on their association to chromatin as well as the dynamics of key 

histone modifications associated with the MLL1 complex.  
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3.4.1 Elutriation of LCLs 

Elutriation is a technique to separate particles, which are in suspension, according to their 

size. As shown in Figure 3.24 A, a specialized elutriation rotor is needed. In this rotor an 

elutriation chamber is fitted. The rotor is spun at a constant speed, which is dependent on 

the average cell size, creating a centrifugal force. Cells are injected in a constant flow of 

buffer, which can be adjusted by altering the pump speed. The cells thus move with the fluid 

through the elutriation chamber, creating a counter flow to the centrifugal force (Figure 3.24 

B).  The cells initially enter the chamber with a lower flow rate, which loads them into the 

chamber (Figure 3.24 B). In this stress field of two counteracting forces the cells are aligned, 

with the bigger cells accumulating at the bottom of the chamber and the smaller ones 

towards the exit. By increasing the pump speed, the flow rate of the buffer can be increased 

and this drives the cells out of the chamber and different fractions can be collected  (Grant & 

Morrison 1979; Banfalvi 2011).  

In the different stages of the cell cycle the cells vary in size (e.g. G1 cells are smaller than G2 

cells), therefore elutriation can be used to isolate fractions of cells at different stages of the 

cell cycle (Kauffman et al. 1990). However, the shape of the cells can influence their 

streaming behaviour. For this reason, the elutriation buffer contains a relatively low salt 

concentration (0.75 x PBS), which causes the cells to swell up and adopt a rounder 

morphology equalizing irregularities on the cell surface. The elutriation buffer also contained 

BSA and EDTA to prevent cells sticking to each other, or the walls of the elutriation system. 

In this study we used LCLs, a human lymphoblastoid cell line with a normal karyotype, that 

grows in suspension and can be cultured in large volumes.  
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Figure 3.24: The elutriation system. (A) During elutriation cells are separated according to their size, 

density and shape. The separating chamber is fixed in a centrifuge and the cells are pumped through it with 

a stream of buffer that runs in the opposite direction of sedimentation. (B) Two opposing forces (the 

centrifugal force and the counter flow) create a force field in the separating chamber, in which the cells align 

according to their characteristics. Generally smaller cells will sediment at the front and bigger ones towards 

the back of the chamber. By increasing the pump speed (=counter flow) cell fractions can be eluted from the 

chamber in a controlled manner (The JE-5.0 Elutriation System, Beckman-Coulter Handbook). 
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LCLs were loaded into the chamber at a pump speed of 11 ml/min. Fractions of 200 ml were 

collected and then the pump speed was increased.  In total five fractions were collected at a 

pump speed of 11.0, 12.5, 14.5, 16.5 and 18.5 ml/min. These were kept on ice during 

collection, before subsequent analysis by FACS analysis to confirm that the cells were in the 

expected cell cycle stage.  In Figure 3.25, a representative FACS analysis of one elutriation 

run is shown.  In the top panel, a FACS profile of unsorted LCLs is shown (Asynchronous). In 

this sample ~42% of the cells were in G1 (red box) and only ~16.5% were in G2/M (blue box).  

In the first collected fraction (Fraction 11.5 ml/min, Panel 2) ~67% of the cells were in G1 

and ~12% in G2/M. With increased pump speed the number of G1 cells decreases and the 

number of G2/M cells increases. In the last collected fraction (Fraction 18.5 ml/min, Panel 6) 

only ~11% of the cells were in G1 and ~70% of the cells were in G2/M.  For further analysis 

the 11.5 ml/min (G1) and the 18.5 ml/min (G2/M) fractions were collected and compared to 

unsynchronized LCLs. In the initial experiments the LCLs were untreated. However, when 

examining the G2/M phase under the microscope, only ~10 % of the cells in the fraction 

were actually in M-phase. In order to increase the proportion of cells in mitosis, LCLs were 

treated with colcemid for 3 hours prior to sorting, which increased the proportion of cells in 

M-phase to ~30% (Data not shown).  
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Figure 3.25:  Representative FACS analysis of elutriated cells. The collected cell fractions were 

dependent on the pump speed (11-18.5 ml/min). Cells were treated with propidium iodide, which stains the 

DNA quantitatively, and FACS analysed. Graphs indicate cell number (y-axis) against PI fluorescence/cell 

ploidy (x-axis). The cell-cycle profiles are shown, with G0/G1 cells gated in the red box and G2/M cells in the 

blue box. In the table the proportion of cells in these cell cycle stages are shown. A sample of cells was taken 

before elutriation (Asynchronous) for reference. Generally the cell fraction harvested at 11 ml/min was used 

as the G1 sample and the cell fraction harvested at 18.5 ml/min as the G2/M sample. 
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3.4.2 Analysis of MLL1 and Msk1  

In the first part of the analysis, fractions were collected and cell lysates prepared for western 

analysis, to examine cell-cycle dependent changes in MLL1 or Msk1 abundance. In Figure 

3.26 A, a representative western blot is shown. We loaded an asynchronized sample, a G1- 

and a G2/M-enriched sample and subsequently probed for MLLN, Msk1-p and β-Actin, which 

acted as a loading control.  However, no significant changes were detected. In 3.26 B the 

quantitated and normalized results of three experiments are shown, confirming that both 

proteins had stable levels throughout the different stages of the cell cycle.  

In a second part of this analysis, we examined the association of the two proteins with 

chromatin at different stages of the cell cycle. We used immuno-fluorescence microscopy to 

visualize the binding of these proteins in cells in G1 (Figure 3.27) and on mitotic 

chromosomes (Figure 3.28). In order to eliminate non-specific binding of the secondary, 

fluorescence-labelled antibody, we performed a no-primary antibody control (Figure 3.27 A 

and 3.28 A). No non-specific signal was detected either on cells in G1, or on mitotic 

chromosomes. In G1 cells, MLL1 and Msk1 show a strictly nuclear location, as their binding 

corresponded to the counter staining of the DNA with DAPI. Both proteins bind throughout 

the nucleus with no specific prevalence. A similar situation was observed on mitotic 

chromosomes. MLL1 and Msk1 bind with an ‘overall’ coverage of the chromosomes, 

indicating that the two proteins remain associated with the chromatin, even at its most 

condensed form during mitosis. The red and green stained patches were artefacts, as cell 

debris tends to absorb the secondary antibodies and those patches were not observed on all 

mitotic chromosomes.  
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Figure 3.26: MLL1 and Msk1 abundance during the cell cycle.  (A) Whole cell lysates of cell-cycle enriched 

fractions were analysed by western. The western was probed for MLL1, Msk1-p and for loading control with 

β-Actin. Representative blots are shown (B) The experiment was repeated three times and the westerns 

were quantified. No significant differences in the two cell cycle stages could be detected for MLL1 or Msk1. 

Significant changes are marked with asterisks (paired t-test, p<0.05*, p<0.01**, p<0.001 ***). 
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Figure 3.27: Nuclear distribution of MLL1 and Msk1 in G1 phase. (A) Secondary antibody specificity control. 

DNA was counter-stained with DAPI (left).  Cells in G1 phase were stained with the secondary α-mouse IgG 

(red, middle) or α-rabbit IgG (green, right) antibody to check for non-specific cross reactions. (B) Cell cycle 

specific fractions were collected and prepared for immuno-fluorescence microscopy. Red=MLL1, 

Green=Msk1, Blue=DAPI (100 x magnification).   
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Figure 3.28: MLL1 and Msk1 distribution on mitotic chromosomes. (A) Secondary antibody specificity 

control. DNA was counter-stained with DAPI (left). Cells in M-phase were stained with the secondary α-

mouse IgG (red, middle) or α-rabbit IgG (green, right) antibody to check for non-specific cross reactions. (B) 

Cells fractions were collected and immediately prepared for Immuno-fluorescence microscopy.  

Chromosome 1 is shown enlarged. Red=MLL1, Green=Msk1, Blue=DAPI (100 x magnification).   



114 

 

3.4.3 Analysis of histone modifications 

In a subsequent analysis, we examined the global changes in histone modification 

abundance involved in MLL1 function in the different stages of the cell cycle. Histones were 

acid-extracted and analysed by western blotting. We examined the ‘active marks’ H3K4me3 

and H3K9ac, which are deposited by components of the MLL1 complex (Slany 2009a) and 

analysed H3K27me3, a ‘silencing mark’, deposited by Polycomb proteins, as PRC2 (polycomb 

repressive complex 2) is proposed to be activated by dense chromatin (Yuan et al. 2012).  

Furthermore H3S10p was examined as mitotic chromatin is  marked with this modification 

(Hsu et al. 2000; Hauf et al. 2003) and therefore functioned as an internal control. Finally 

H3K9acS10p was examined because this modification stimulates the SET activity of MLL1 

(Nightingale et al. 2007). Western blots were labelled with an anti-histone H3 C-terminal 

antibody, which was used as a loading control. Representative westerns are presented in 

Figure 3.30 A and the results of three individual experiments, which were normalized to an 

unsorted, asynchronous cell population, are shown in Figure 3.30 B. We found  H3K4me3 

abundance is  comparable  in the G1  and the G2/M  cells, as were H3K27me3  and  for 

H3K9ac. In contrast, H3K9ac/S10p was significantly elevated in G2/M (~+ 35%, paired t-test: 

p=0.049) and as expected, H3S10p levels were highly elevated in G2/M cells (~+170%, paired 

t-test: p=0.000).   
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Figure 3.29: Histone modification abundance during the cell cycle.  (A)  Histones were extracted from cell-

cycle enriched fractions and analysed by western. The western was probed for key MLL-related histone 

modifications. Histone H3 C-terminal was used as a loading control. Representative blots are shown. (B)  The 

experiment was repeated three times and the westerns quantified. Most histone modifications showed no 

differences in the different cell cycle stages. Only H3S10p showed enrichment during G2/M. Significant 

changes are marked with asterisks (paired t-test, p<0.05*, p<0.01**, p<0.001 ***).  



116 

 

In a first analysis we explored the pattern of histone modification on the chromatin in G1 

and mitotic cells using immuno-flourescence-microscopy [Figure 3.30 (H3K4me3 and H3K9ac 

in G1), Figure 3.31 (H3K27me3 and H3S10p in G1), Figure 3.32 (H3K4me3 and H3K9ac in M-

phase) and in Figure 3.33 (H3K27me and H3 S100 in M-phase)].   

In G1 phase H3K4me3, H3K27me3 and H3K9ac are associated with the chromatin 

throughout the  nucleus. However, whilst H3K9ac showed an ‘all-over’ distribution, 

H3K4me3 and H3K27me3 showed a ‘speckled’ distribution with binding hotspots that do not  

correlate with DAPI dense regions. H3S10p was less abundant in the nucleus and showed 

concentration to a few areas. 

 On the mitotic chromosomes H3K4me, H3K27me3 and H3K9ac  bind in distinct patterns to 

the chromosomes, revealing highly methylated or acetylated areas, which have been 

described in detail previously (Terrenoire et al. 2010). The H3K4me3 and H3K9ac banding 

pattern seem to correlate. For example on chromosome 1, which is shown enlarged in Figure 

3.31, a highly stained pole on the top of the p-arm, a distinctive band on the q-arm right 

beneath the centromere and diffuse staining on the q-arm for both modifications are 

observed. In contrast, H3K27me3 showed a  distinctivly different distribution. The pole of 

the p-arm is highly stained, several weaker bands on the p- and the q-arm can be observed 

and only the  centromere is depleted completely of H3K27me3. Finally H3S10p is detected 

all over the chromosome, with highly stained caps on the p- and the q-arm and the 

centromere.  
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 Figure 3.30:  H3K4me3 and H3K9ac distribution in G1 phase cells. Cells fractions were collected and 

prepared for immuno-fluorescence microscopy. Green=indicated histone modification, Blue=DAPI 

(Magnification: 100x). 
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Figure 3.31: Histone modifications on mitotic chromosomes. Cells fractions were collected and 

immediately prepared for Immuno-fluorescence microscopy. Chromosome 1 is shown enlarged. 

Red/Green=indicated histone modification, Blue=DAPI (Magnification: 100x). 



119 

 

 

 
Figure 3.32: H3K4me3 and H3K9ac distribution on mitotic chromosomes. Cells fractions were collected and 

prepared for immuno-fluorescence microscopy. Chromosome 1 is shown enlarged. Green=indicated histone 

modification, Blue=DAPI (Magnification: 100x). 
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Figure 3.33: H3K27me3 and H3S10p distribution on mitotic chromosomes. Cells fractions were collected 

and prepared for immuno-fluorescence microscopy. Chromosome1 is shown enlarged. Red/Green=indicated 

histone modification, Blue=DAPI (Magnification: 100x). 
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Taken together, we have shown that the MLL1 and Msk1 abundance does not change in G1 

or G2/M and is comparable to the protein levels found in unsynchronized cells. Furthermore, 

MLL1 and Msk1 were associated with chromatin in G1 as well as with mitotic chromosomes, 

the most condensed form of chromatin. Neither proteins show any local preferences on the 

chromatin, but bind throughout equally the chromatin in G1 and on the chromosomes. 

Likewise, H3K4me3, H3K9ac and H3K27me3 do not show any differences in abundance in 

any stage of the cell cycle, but the distribution pattern changes (from an overall binding to 

chromatin in G1, to specific banding patterns on chromosomes). H3S10p was  noticeably 

different.  It showed a vast upregulation during G2/M on both western blots and microscopy 

slides. In G1  cells the mark showed localization to discrete areas, while on mitotic 

chromosomes the mark was found all over them. Interestingly H3K9acS10p was elevated in 

G2/M cells, but not in G1. However, the antibody was not suitable for microscopy analysis 

and therefore no conclusion on its distribution in chromatin can be made.  
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4 Discussion 

Chromatin and histone modifications play an important role in many physiological, cellular 

processes, like development (Pengelly et al. 2013),  response to external stimuli (Tittel-Elmer 

et al. 2010) and disease (Burke & Bhatla 2014). It has been established, that certain histone 

modifications are associated to certain gene activation states. For example acetylation and 

tri-methylation of histone H3K4 are associated with the active gene state and tri-methylation 

of histone H3K27 with a repressive gene state (Kouzarides 2007). A large number of proteins 

are known to deposit (‘writer’), remove (‘eraser’) or recognise (‘reader’) specific histone 

modifications, with crucial functions in physiological or pathological contexts (Jakovcevski & 

Akbarian 2012).  

 

4.1 Epigenetic regulation by MLL1 

The histone methyltransferase MLL1 (mixed lineage leukaemia 1) is an epigenetic writer 

protein, which is often mutated in leukaemia, especially in childhood acute myeloid 

leukaemia (AML) (Krivtsov & Armstrong 2007).  Studies with MLL1-/- mice have shown that 

the homozygous knock-out of MLL1 is embryonically lethal, making MLL1 an essential 

epigenetic modifier (Hess et al. 1997). The MLL1 protein functions within a large multi-

protein complex, which regulates the degree of histone H3K4 methylation deposited at 

target genes (Patel et al. 2009), however it is not yet known how MLL1 is targeted to its sites 

(Ansari & Mandal 2010). The SET domain of MLL1 is primarily a mono-methyltransferase and 

only in collaboration with the conserved group of WARD proteins (WDR5, Ash2L, RbBP5 and 
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DPY-30) H3K4me1 can be sequentially catalysed further (Dharmarajan & Cosgrove 2009). 

Although these proteins form the MLL1 core complex and are essential for proper histone 

H3K4 methylation in vitro, many more proteins (~30) have been associated with the MLL1 

complex (Nakamura et al. 2002). The complete MLL1 complex acts on chromatin by 

methylation and acetylation (Slany 2009).  In MLL1-associated leukaemias the MLL1 protein 

is disrupted by chromosomal translocation, which leads to the formation of fusion-proteins 

and a disruption of the MLL1 protein complex (Ford, 1993). The C-terminus of MLL1 is lost 

and with it the SET domain, resulting in the a mis-regulation of MLL1 target genes (Ayton & 

Cleary 2003). Well known MLL1 target genes are the Hox genes, which are key transcription 

factors during development and haematopoiesis (Hess et al. 1997; Jude et al. 2007). 

MLL1 is a mammalian Trithorax protein, which in concert with Polycomb proteins regulate 

their target genes by methylation of chromatin. Trithorax proteins deposit the ‘activating’ 

H3K4me3 mark and Polycomb proteins deposit the ‘silencing’ H3K27me3 mark, antagonizing 

each other’s function (Steffen & Ringrose 2014). Here we examine the role of Msk1, a 

histone kinase, as a potential member and co-regulator of the MLL1 complex. 
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4.2 Is the Histone kinase Msk1 involved in MLL1 regulation? 

Msk1 (mitogen-and-stress-induced kinase1)  is a downstream kinase of the MAPK pathway 

(Deak et al. 1998), which phosphorylates either transcription factors or histones (Duda  

2012).  It has been shown, that Msk1 is involved in the activation of immediate-early (IE) 

genes (Thomson et al. 2001) and it has been suggested, mainly based on work in yeast, that 

MAPKs might be functional components of transcriptional complexes, which might recruit 

additional factors to chromatin (Alepuz et al. 2001; Thomson et al. 2001). 

The findings, (I) that phosphorylation stimulates MLL1’s SET activity (Nightingale et al. 2007), 

(II) that Msk1 induced phosphorylation lead to a loss of Polycomb-mediated gene silencing 

(Lau & Cheung 2011), (III) that Msk1 is  involved in the activation of IE genes (Drobic et al. 

2010) and (IV) that in yeast, MAPKs can be part of transcriptional complexes (Edmunds & 

Mahadevan 2004), lead to the hypothesis, that Msk1 is involved in the regulation of MLL1 

activity.  

Here we tested this hypothesis. In the first set of experiments the interaction of MLL1 and 

Msk1 was explored. These experiments were complemented with an analysis of the genomic 

distribution of MLL1 and Msk1, followed with a third set of experiments, which examined 

the functional impact of MLL1 and Msk1 on gene activity. A final experiment examined 

changes in MLL1 and Msk1 abundance and key histone modifications during the cell cycle. 
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4.3 Do MLL1 and Msk1 physically interact?  

MLL1 forms a multi-subunit complex and many proteins have been found to interact with it 

(Nakamura et al. 2002).  One possibility how Msk1 might contribute to MLL1 regulation is by 

directly interacting with MLL1 and even be a component of the complex. To address this, co-

immunoprecipitation experiments were carried out. However, both proteins are known to 

bind to chromatin. Therefore it needed to be considered that MLL1 and Msk1 might not 

interact directly, but might bind to adjacent sites in chromatin.  Initial experiments were 

carried out in a human cell line. It showed that MLL1 and the phosphorylated, active form of 

Msk1 can be pulled down together (Figure 3.2). In order to release chromatin-bound 

proteins from the DNA, ethidium bromide was added to the lysis buffer but the proteins still 

efficiently co-immumoprecipitated. This indicated a direct interaction between MLL1 and 

Msk1, which was independent of chromatin. However, pull-downs with MLL1 and non-

phosphorylated Msk1 were not as conclusive. Although Msk1 was detected in the MLL1 pull-

down, MLL1 was not detected in the Msk1 pull-down.  This can be interpreted in two ways: 

It might be that MLL1 interacts preferably with the activated Msk1, but not with the un-

phosphorylated, inactive form. It is also possible that this specific epitope is important for 

MLL1/Msk1 interaction, which the bound antibody interrupts.  In order to extend these 

findings co-IP experiments were repeated in other cell types (human and mouse), which 

confirmed the interaction of MLL1 and phosphorylated Msk1. A potential problem with co-IP 

experiments is the non-specific protein binding to the IP antibody and/or the beads. 

Although the cell lysate was pre-cleared and the beads were washed with higher ionic 

strength buffer to disrupt non-specific binding, some back-ground has to be expected. We 
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observed antibody contamination, showing up as a ~25kDa (light chain) or a ~50kDa (heavy 

chain) on a SDS gel, as seen in Figure 3.2, that obscure the results. 

To examine the question from another angle, FLAG-tagged MLL1 was over-expressed in 

HEK293 cells and then purified using beads, to which anti-FLAG-antibodies were cross-linked. 

The FLAG-tag is a small peptide (DYKDDDDK), which was engineered not to disturb the 

protein function of the tagged protein and to prevent non-specific binding. Here the FLAG-

tag was fused to the N-terminus of MLL1 and introduced into the cells using a gentle 

transfection method (no cell death occurred). Cells were lysed and the protein precipitated, 

washed with low-ionic strength buffer and eluted with 3xFLAG peptide, to ensure the 

integrity of the MLL1 complex. Complex purity was characterized by gel-filtration.  Although 

the sample contained a lot of small protein contamination (Figure 3.5 C), a single peak in the 

FLAG-prep (Figure 3.5 C, indicated with *) was observed, corresponding to a large molecular 

weight complex. This peak corresponded to a complex of several large moleculat weight 

proteins (Figure 3.5 A, indicated with arrow). For western analysis the complex was run on a 

4-12% gradient gel to obtain better separation of the complex components. The membrane 

was probed with anti-FLAG, anti-Msk1p and anti-NFκB antibody. NFκB (a strong interaction 

partner of Msk1 (Vermeulen et al. 2003)) was only found in the input suggesting that the 

protein complex did not contain non-specific proteins. FLAG-MLL 1 protein and the 

phosphorylated Msk1 were also found in the complex, suggesting that Msk1 is a stable 

member of the MLL1 complex. However, to confirm this, a large amount of MLL1-complex 

needs to be purified and separated over the gel-filtration column, so that components can 

be characterized by mass-spectroscopy. Furthermore, these results do not reveal if Msk1 is a 

permanent member of the MLL1 complex or if this is a transient interaction. 
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4.4 Do MLL1 and Msk1 bind to the same genomic sites? 

The first set of experiments indicated that MLL1 and phosphorylated Msk1 interact with 

each other and that Msk1 might be a member of the MLL1 complex. This suggested that the 

two proteins would be found at the same genomic sites. We addressed this directly by cross-

linked chromatin immunoprecipitation. Proteins were cross-linked to chromatin and MLL1 

and phosphorylated Msk1 were immunopreciptiated. The bound DNA was inserted into 

libraries for high-throughput sequencing on the Illumina Next-generation HiSeq2000 

Sequencing platform. Direct comparison of the distribution of MLL1 and Msk1 binding 

showed an overlap of MLL1 and Msk1 binding sites at a third of binding sites (~35%). These 

binding sites were compared with H3K4 tri-methylation of histones, which showed a small 

correlation of H3K4me3 with MLL1 and Msk1 (~2% overlap). A trend-plot over transcription 

start sites (TSS) revealed a peak of MLL1 and Msk1 over the TSS, substantiating the 

proposition that Msk1 is a member of the MLL1 complex. The scatterplot analysis, which 

compared MLL1 and Msk1 binding strength at their shared binding sites, showed a strong 

correlation for their binding  signals, which strengthens the hypothesis 

Functional annotation analysis of these genes with DAVID did not reveal unique groups of 

genes. Only three groups (Translation, 3 counts, 0.37 fold enrichment; Regulation of 

transcription, 4 counts,  0.21 fold enrichment; Phospho-protein, 10 counts, 0.17 fold 

enrichment) were flagged, but they all had quite low enrichments and a high false-discovery-

rate (FDR ~32) and were therefore not statistically significant.  

Nevertheless, it was shown that MLL1 and Msk1 bind to a number of sites in the genome 

and can be found at a subgroup of binding sites. These findings support the hypothesis that 

Msk1 can be a member of the MLL1 complex. 
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4.5 What is the functional impact of MLL1 and Msk1 interaction? 

Having established an interaction between MLL1 and Msk1, the functional impact of this 

interaction was examined by knocking these regulators down in vivo. A transient knock-

down in primary cells was chosen, as they would best represent the early changes in gene 

transcription in a physiological context. This was also the only way to do the experiment as   

the transfected cells started to die at around day 2 post-transfection and stable knock-

downs in CCEER (embryonic stem cell line) for MLL1 or Msk1 were not viable. However, 

while the Msk1 knock-down resulted in substantial reduction in protein levels (reduced by 

~99%), MLL1 levels were not reduced by more than ~63%. Even after three days post knock-

down, when ~70% of the transfected cells were dead, MLL1 levels remained stable, 

indicating that lower levels of MLL1 cannot be tolerated. Therefore cells with partial knock-

down of MLL1 were used for further experiments.  

Initially we examined the impact of knock down at known MLL1 target genes. The HoxA 

genes were chosen as they are important genes in development and haematopoiesis and are 

known to be de-regulated in leukaemia. This showed a significant reduction in gene 

expression for most HoxA genes, especially those in the middle of the cluster (HoxA 2-11), an 

effect seen in both knock-downs. These findings suggest that both MLL1 and Msk1 

contribute to HoxA gene regulation.  It is known that Hox genes are regulated in clusters and 

that genes in a cluster can cross-regulate each other, leading to the effect of collinearity 

(Montavon & Duboule 2013). Apparently MLL1 and Msk1 binding and H3K4 methylation at a 

few sites in the HoxA cluster is sufficient to regulate the majority of the cluster. The 

expression of the oncogene Meis1, which is often mis-regulated in leukaemias was also 
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examined, but no changes in expression were found, suggesting that MLL1/Msk1 do not 

regulate this gene.  

As we have shown previously, MLL1 and Msk1 bind to many sites in the genome, therefore 

in the next experiment the global impact of MLL1 and Msk1 on gene regulation was 

examined using microarray analysis. Although 3912 genes changed their expression in MLL1 

or Msk1 knock-down cells, only 11% of these genes were down-regulated in both MLL1 and 

Msk1 knock-down cells and only 19% were up-regulated together.  The majority of genes 

showed different responses to MLL1 or Msk1 knock-down. This could have a number of 

reasons. (I) Msk1 modifies chromatin, but also transcription factors and is known to bind to 

other proteins, like NFκB or CREB (Arthur 2008). It is therefore likely that Msk1 knock-down 

would also functionally impact other genes beyond MLL1 targets. In fact 63% of the 

responding genes change their expression only in the Msk1 knock-down. (II) The MLL1 

protein levels were only reduced by about 60-70%. As a certain level of MLL1 seems to be 

required for cell survival, it could be that the effect on MLL1 target genes is buffered. (III) 

Finally a number of MLL1 and Msk1 homologues exist in cells. It is possible that these 

proteins are redundant with MLL1 and Msk1 and permit cell functionality.  

Nevertheless, these results showed that down-regulation of MLL1 and Msk1 lead to the 

same response in a significant number of genes, indicating a coordinated action of the two 

proteins.  However, the fact that the majority of gene expression changes occurred only in 

one knock-down cell type (63% of genes only changed in Msk1 knock-down cells) suggest 

that MLL1 and Msk1 do not have an exclusive interaction. This finding is consistent with the 

results of the ChIP-Seq experiments which showed that MLL1 and Msk1 share ~35% of their 

genomic binding sites. 
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As MLL1 and Msk1 are both chromatin modifiers, the impact of their knock-down on key 

histone modification on MLL1 target genes was examined. HoxA4 and 5 were chosen 

because they showed a substantial reduction of transcription levels in knock-down cells 

(Figure 3.15) and we reasoned this would make the detection of changes in histone 

modifications easier. Primers were designed to cover three areas: a control area 5’ to the 

gene, the TSS and a region 3’ at the end of the gene. Levels of histone modification in knock-

down cells were compared to mock-transfected cells. Although the changes were subtle, 

several trends could be detected, some of which were statistically significant. We found 

H3K4me3 and H3K9ac/S10p levels would drop at TSS in knock-down cells, whereas 

H3K27me3 levels would rise. These findings showed the impact of MLL1 and Msk1 gene 

regulation at an epigenetic level. The reduction of HoxA4 and HoxA5 was accompanied by 

the reduction of H3K4me3 (deposited by MLL1) and H3K9ac/S10p (deposited by Msk1 and 

CBP, a member of the MLL1 complex). As a consequence the levels of H3K27me3 (deposited 

by Polycomb proteins counter-balancing Trithorax proteins) showed a trend to increase. This 

transcriptional ON/OFF switch by Trithorax and Polycomb protein has been described for 

other target genes as well, for example at Drosophila’s Ubx gene (Papp & Müller 2006). It 

was found that in the repressive state the Ubx gene was bound by Polycomb proteins and 

tri-methylated at H3K27, whereas in the active state this mark was absent and Trithorax 

protein binding at the promoter was observed in concert with H3K4 tri-methylation at this 

region (Papp & Müller 2006). 
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4.6 Do MLL1 and Msk1 change during the cell cycle? 

The sequencing and microarray experiments indicated that a number of genes, which are 

bound by MLL1 and Msk1 and change their expression in knock-down cells, were associated 

with the cell cycle (Figure 3.21). Furthermore, previous reports associated MLL1 the cell 

cycle. However there has been controversy concerning how MLL1 is regulated. Data suggest 

that MLL1 is either evicted from chromatin during mitosis (Ennas et al. 1997, Mishra et al. 

2009) or that  it  stays on chromatin throughout the cell cycle stages  were it was (Caslini, 

Shilatifard, et al. 2000), and having an active role in cell-cycle regulation (Milne et al. 2005, 

Liu et al. 2007, Blobel et al. 2009). We therefore decided to examine MLL1 and Msk1 protein 

abundance in different cell cycle stages, as well as their association to chromatin. In parallel, 

key histone modifications associated with MLL1 function were examined. In order to 

separate cells in different stages of the cell cycle, elutriation was used, a method, which 

separates cells according to their different size and shape at different cell cycle stages. This 

method has the advantage that cells were treated the same way for the same time.  

We found that on a global level MLL1 and (phosphorylated) Msk1 protein levels in G2/M and 

G1 were comparable to an unsorted cell population (Figure 3.5.3). We subsequently 

analysed cells at a single cell level for MLL1 and Msk1 nuclear occupancy. In G1 the two 

proteins were found throughout the nucleus, indicating even binding of MLL1 and Msk1 

throughout chromatin, which was in accordance with our distribution data. The most 

condensed form of chromatin, metaphase chromosomes during mitosis, were examined and 

showed that MLL1 and Msk1 binding throughout the DNA as well. This indicated that MLL1 

and Msk1 are not excluded from the chromatin during mitosis, however, the resolution of 

the microscope was not high enough to distinguish if MLL1 and Msk1 remain bound to the 
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chromatin or if they align on the outside of the chromosome in the perichromosomal layer 

(chromosome periphery). It has been proposed that this layer may act like a skin protecting 

the chromosome surface and is enriched in nuclear proteins (Ohta et al. 2011). 

We then examined the key histone modifications associated to MLL1 function. At a global 

level, H3K4me3 did not show any differences in G1 and G2/M compared to unsynchronized 

cells (Figure 3.5.6).  Neither did H3K27me3. H3K9ac levels were slightly higher in both G1 

and G2/M, presumably due to gene activity in these cell populations (~60% of G2/M were in 

G2 phase and H3K9 acetylation is a general mark of active transcription). In contrast, H3S10 

phosphorylation levels were highly enriched in G2/M (~+170%). This is consistent with the 

known H3S10p function as a marker of mitotic chromatin (Hsu et al. 2000) and therefore 

functioned as an internal control, as significant changes in histone modifications could be 

detected although only ~30% of the cells in the G2/M population were in mitosis. The dual 

mark, H3K9acS10p, showed no enrichment in G1 cells, but in the G2/M population an 

enrichment of ~35% was observed. When the histone modifications were examined at a 

single cell level by fluorescence microscopy, these showed a shift from an overall 

distribution for H3K4me3, H3K27me3 and H3K9ac with some hotspots in G1 cells, to a 

banding pattern in mitotic chromosomes  that has been described  before (Terrenoire et al. 

2010). In contrast, whereas H3S10p was only found in few areas in G1 cells, mitotic 

chromosomes showed an all-over distribution (Figure 3.32 and 3.32).  No data were 

generated for H3K9acS10p as the antibody was not compatible with immunofluorescence. In 

summary we have shown that MLL1 and Msk1 binding is stable throughout cell cycle and 

that both stay closely associated to chromatin during mitosis. Although H3K4me3 levels 

were not changed in G1 or G2/M, H3K9acS10p levels were up-regulated in mitosis, 
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suggesting this may have a potential role for MLL1 to restart transcription after mitosis. This 

is consistent with proposals that MLL1 functions as a ‘mitotic bookmarker’ (Kadauke & 

Blobel 2013), as MLL1 is bound to chromatin during mitosis and showes a mitosis-specific 

shift in genomic occupancy of MLL1, in favour of genes highly expressed in interphase. Those 

changes should promote rapid transcriptional activation to facilitate M/G1  transition (Blobel 

et al. 2009) . Our results support this hypothesis and suggest that Msk1 might deposit the 

H3K9ac-associated H3S10p mark, which stimulates MLL1’s SET activity and therefore 

promote transcriptional activation. 

4.7 How do the results support our hypothesis? 

The aim of this thesis was to examine whether Msk1 contributes to MLL1 function. As 

discussed, the data indicate that Msk1 is a potential member of the MLL1 complex. Not only 

were they precipitated together, they also correlate to sub-set of genomic sites on 

chromatin. It was further shown that MLL1/Msk1 occupy many sites independently and 

supported by expression studies, which showed that a subset of genes are regulated by both 

MLL1 and Msk1, but the majority of genes are not, suggesting that the MLL1/Msk1 

interaction is not exclusive and that Msk1 regulates genes independently of MLL1. 

Moreover, we show that MLL1 and Msk1 are likely to regulate gene expression by depositing 

histone marks (H3K4me3 by MLL1 and H3K9ac/S10p by Msk1). Finally the elutriation 

experiments indicated that the MLL1 complex (with Msk1) remains associated with 

chromatin during the cell cycle and that, although H3K4me3 is stable throughout the cell 

cycle, the H3K9ac/S10p mark is elevated during mitosis, offering a possible mechanism of 

how MLL1 might promote gene reactivation at the mitosis-interphase change.  
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Figure 4.1: Msk1 is a member of the MLL1 complex. Our results indicated that Msk1 can be a member of the 

MLL1 complex. We suggest that Msk1 deposits the H3S10p mark, which together with the H3K9ac mark 

stimulates H3K4me3 depositing by MLL1. Our data showed that in a cell cycle context this combination of 

marks may help exit of mitosis, supporting the hypothesis that MLL1 is a bookmarker during mitosis. This 

suggests that MLL1 activity can be directly regulated in response to MAPK signalling. 



135 

 

4.8 Perspectives 

So far it is not completely understood how MLL1 is regulated. However, given the 

connection of MLL1 with leukaemia, this is an essential question that needs to be addressed. 

In the progress of understanding MLL1 function we found that MLL1 binds to many genomic 

sites (~4000 sites, Chapter 3.2.2). This finding is consistent with previously reported ChIP-

ChIP data, which also showed that MLL1 occupanc y correlated with Pol II promoter 

occupancy(Guenther et al. 2005). We would like to investigate this interaction further using 

ChIP-Seq. As Pol II can be  paused (CTD domain is non-phosphorylated), or actively 

elongating (CTD domain is phosphorylated) (Phatnani & Greenleaf 2006), different 

antibodies could be used to distinguish whether MLL1 binding correlates with paused or 

elongating RNA Polymerase II. This study is underway. 

Our results also showed that the MLL1 distribution correlated with the Msk1 distribution on 

a third of sites and that MLL1 interacts physically with Msk1. These data suggest that they 

are found in one complex. The nature of this interaction remains elusive. It is known that in 

vitro a stable core complex of MLL1 and the WARD proteins (WDR, Ash2L, RbBP5 and Dpy-

30) is needed to support the enzymatic activity for H3K4 methylation (Ernst & Vakoc 2012). 

However, such a core complex is not the same as a stable functional complex in vivo, where 

not only the enzymatic function is needed, but also targeting and regulating elements. It has 

been established, that MLL1 forms a multi-protein complex on chromatin (Nakamura et al. 

2002, Steward et al. 2006, Patel et al. 2009), yet studies of MLL1 complex components have 

been controversial. For example, menin has been reported to be a stable member of this 

complex (Yokoyama et al. 2005), but a recent study on B-cell differentiation suggested that 

only a subgroup of genes are co-regulated by  MLL1 and menin, whilst a larger proportion of 
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genes are regulated through distinct pathways (Li et al. 2013). Those discrepancies give rise 

to questions about the composition of the MLL1 complex itself. It is possible that the MLL1 

complex consists of different proteins, depending on the cell type, or stage of 

differentiation, or even on the target site or stage of transcription. Current technologies only 

allow the investigation of cell populations, which are heterogeneous in respect to cell-cycle 

stage and state of transcription even in a single cell type, making it impossible to address this 

problem in the moment. However target site dependent MLL1 complex composition would 

explain why menin (Li et al. 2013), or here Msk1 seem to co-regulate only a small proportion 

of MLL1 target genes. Polycomb proteins, which also work as histone methyl-transferases, 

are known to form a small core complex with possible additional components (Aldiri & 

Vetter 2012). PRC2 (polycomb repressive complex 2) contains four core components: EZH 

1/2, SUZ12, EED and RBBP7/4. However on most PRC2 target sites PCL (Wang et al. 2004), 

AEBP2 (Kim et al. 2009) and JARID2 (Li et al. 2010) can be found. Although the precise 

function of these additional components is not yet completely understood (ie they are not 

essential for methyltransferase activity) it has been suggested that they modulate PRC2 

activity and promote DNA binding (Margueron & Reinberg 2011). A similar situation may be 

applicable for MLL1. 

It also remains elusive if Msk1 is a stable member of the MLL1 complex. CBP, an 

acetyltransferase within the MLL1 complex only interacts transiently to activate transcription 

(Ernst et al. 2001). Likewise, it is possible, that Msk1 only interacts with MLL1 after stress-

signals from the cell surface. A transient interaction with MLL1 to activate MLL1 target genes 

is consistent with the known Msk1 interaction of Msk1 and NFκB (Vermeulen et al. 2003) or 

CREB (Deak et al. 1998). Msk1 is activated upon cell-surface stimulation and phosphorylates 
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p65, which leads to the binding of NFκB p65 to its target sites and the interaction of CBP 

(Reber et al. 2009). Msk1 also phosphorylates and activates CREB dependent transcription. 

Whilst the significance of CBP to CREB activation by PKA is established, it is less clear if they 

are also involved in Msk1-dependent CREB activation (Naqvi et al. 2014). However, it 

emerges that CBP is a common co-activator for MLL1, NFκB and CREB, which leads to the 

speculation if CBP might mediate Msk1 dependent activation.  

Our data also showed that MLL1 and Msk1 interaction leads to cross-talk of histone 

modifications at MLL1 target genes. H3K9ac is deposited by acetyltransferases found in the 

MLL1 complex and H3S10p is added by Msk1. In vitro it was shown that these two marks 

together stimulate MLL1’s SET domain to deposit the H3K4me3 mark (Nightingale et al. 

2007). The down-regulation of MLL1 led to a decrease in the H3K4me3 mark and the 

H3K9ac/S10p mark. The same was observed for a down-regulation of Msk1, supporting our 

hypothesis that there is a close functional interaction between MLL1 and Msk1 and 

suggesting histone cross-talk is a means to activate MLL1. We haven’t investigated the 

possibility that Msk1 might phosphorylate MLL1 first to activate it and later after 

recruitment to chromatin, histone H3 to stimulate MLL1 activity further. It has been shown 

that MLL1 can be regulated by direct phosphorylation (Liu et al. 2010) and this course of 

events may explain why Msk1 only phosphorylates a small proportion of histone H3, 

although Msk1 itself doesn’t have any preferences in substrate choice in vitro (Arthur 2008).  
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