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Abstract

Dynamics of cavitation microbubbles due to high intensity ultrasound are associated with

important applications in biomedical ultrasound, ultrasonic cleaning and sonochemistry.

Previous numerical studies on this phenomenon were for an axisymmetric configuration. In

this thesis, a computational model is developed to simulate the three dimensional dynamics

of acoustic bubbles by using the boundary integral method. A bubble collapses much

more violently subjected to high intensity ultrasound than when under normal constant

ambient pressure. A few techniques are thus implemented to address the associated

numerical challenge. In particular, a high quality mesh of the bubble surface is maintained

by implementing a new hybrid approach of the Lagrangian method and elastic mesh

technique. It avoids the numerical instabilities which occur at a sharp jet surface as well

as generates a fine mesh needed at the jet surface.

In Chapter 2, we explore microbubble dynamics near a wall subjected to ultrasound

propagating parallel to the wall, where the Bjerknes forces due to the ultrasound and the

wall are perpendicular to each other. The jet direction depends mainly on the dimensionless

standoff distance γ = s/Rmax of the bubble from the wall, where s is the distance between

the wall and the bubble centre at inception and Rmax is the maximum bubble radius.

In Chapter 3, we study the dynamics of ultrasound contrast agents (UCAs), which are

microbubbles stabilized with a thin shell. The effects of the encapsulating shell are



approximated by adapting Hoff’s model for thin-shell contrast agents. The oscillation

amplitude and period reduce significantly due to the coating. A bubble jet forms when the

amplitude of ultrasound is sufficiently large. The effects of shell thickness and viscosity

are analyzed and determined to affect the bubble dynamics, including jet development.

In Chapter 4, the viscous effects on microbubble dynamics are investigated, using the

boundary integral method coupled with the viscous potential flow theory. The viscous

effects are incorporated into the model through including the normal viscous stress and

viscous correction pressure at the bubble surface. The model agrees well with the Gilmore

equation for a spherical bubble for several cycles, and the experimental data and the

axisymmetric model based on the Navier-Stokes equation for transient gas bubble dynamics

near a rigid boundary. The viscous effects in microbubble dynamics are analyzed in terms

of jet velocity, centroid movement, Kelvin impulse, bubble energy and bubble volume, etc.

In Chapter 5, we model and simulate three dimensional toroidal bubble dynamics using

the vortex ring model. The transform from a singly connected bubble to a toroidal bubble

is performed automatically. The potential due to a vortex ring is calculated by using the

Biot-Savart law where the integral from the infinite to the point considered is performed

analytically. We evaluate the numerical model by comparing with the axisymmetric BIM

and the experiment result. We analyse toroidal bubble dynamics subject to buoyancy

near a vertical wall, including jet impacting and rebounding toroidal bubbles with oblique

jetting.
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Chapter 1

Introduction

1.1 Application background

Traditional research on bubble dynamics has been associated with cavitation on fast ship

propellers and turbines, as well as with underwater explosions. About one century ago, the

first cavitation observation was identified in heavy erosion of ship propellers after a short

time in use [98]. Later found that the cavitation may occur in many type of hydraulic and

hydrofoil machineries. The propeller is eroded which may reduce the efficiency and also

underwater noise is produced, all effects unwanted.

The cavitation also occurred when the bubble motion driven by acoustic wave, known as

acoustic cavitation. Recently microbubble dynamics due to ultrasound have become a hot

research topic, because it is associated with important applications in cavitation cleaning,

chemical reactions (sonochemistry) and biomedical ultrasound.

Acoustically driven cavitation is one of the most effective cleaning procedures for electrical

and medical micro-devices [101, 87, 66]. Bubble collapse near a solid surface results

in high-speed liquid jets impinging on the solid, responsible for ultrasonic cleaning. In

sonochemistry, acoustic cavitation is used to promote mixing and reactions [7, 37]. High
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strain rates in the immediate vicinity of a bubble can lead to polymer cleavage. A vigorous

acoustic jet can have important mixing, molecular, and bond-cleavage effects and for

catalysis of heterogeneous chemical reactions.

The medical applications includes extracorporeal shock wave lithotripsy [28, 57, 48, 12,

69, 49], tissue ablating (histotripsy) [99, 21, 22], and oncology and cardiology [70]. In

those applications, cavitation microbubbles absorb and concentrate significant amounts

of energy from ultrasound, leading to violent collapsing, shock waves and bubble jetting

[123]. These mechanisms are also associated in sonochemistry [104, 68, 5] and ultrasound

cavitation cleaning - one of the most effective cleaning processes for electrical and medical

micro-devices [101, 87].

The coated microbubbles are widely used as ultrasound contrast agents (UCAs) in nonde-

structive medical imaging [108]. When injected into the bloodstream they can travel to

all organs of the body. Their high compressibility relative to the surrounding blood and

tissues leads to strong scattering of ultrasound, thereby enhancing blood-tissue contrast in

the resulting image. For this reason, they have gained widespread applications in clinical

diagnostic ultrasound to enhance contrast of cardiographic or radiologic features [30].

While UCAs have been commercially available since 1991 [25, 46], they have more recently

generated interest for use in therapeutic applications, for example, as vehicles for drug

delivery and gene therapy [21] , and thermal and mechanical tissue ablation [54, 130].

UCAs are rapidly evolving from the diagnostic modality into a therapeutic tool [21]. One

important potential application is to use UCAs to deliver a drug/gene. Upon arriving

at a target, the microbubbles are activated by ultrasound, leading to violent collapse.

This violently collapsing bubbles release the drug/gene cargo [14, 53, 61] and also cause

cell membranes nearby to become perforated and thus temporarily leaky, a phenomenon

known as sonoporation [86, 62]. It aids the gene/drug to enter the target cells via diffusion
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and also convection if microjets arise [38, 78]. The relevance of this work in a clinical

context is underscored by the recent experiment of Chen et al. [18]. They observed that

coated ultrasound bubbles in micro-blood-vessels of rat mesentery are often associated

with large non-spherical deformation and high speed liquid jetting.

Bubbles tend to maintain sphericity due to surface tension. When subjected to ultrasound,

its pressure gradient generates non-spherical bubble motion. If the wave is strong enough

a high-speed liquid jet forms towards the end of the collapse phase. Recently, there were

several studies into jetting for acoustic bubbles for an axisymmetric configuration for a

bubble in an infinite liquid by Calvisi et al. [13], Wang and Blake [121, 122], and near

a boundary subjected to ultrasound propagating in the direction perpendicular to the

boundary by Klaseboer and Khoo [58, 59], Fong et al. [40, 39] , Calvisi et al. [13, 12],

Curtiss et al. [22]. This study is concerned with three-dimensional bubble dynamics near

a wall subjected to ultrasound.

1.2 Research review

In order to effectively utilize microbubble in biomedical applications, it is necessary

to understand the interplay between the incident ultrasound and the dynamics of the

encapsulated microbubbles. While several theoretical models have been proposed to model

UCAs, they have been mainly restricted to the case of spherical oscillations [19, 41, 45,

84, 44, 17, 79, 107, 34, 33, 88]. Liu et al. [76] investigated the shape stability of a nearly

spherical bubble encapsulated by a viscoelastic membrane in an ultrasound field. They

derived the equations for the shape oscillation of an encapsulated bubble and predicted

the stability condition.

Nonspherical oscillations of microbubble can clearly arise, particularly at large ultra-

sound amplitudes due to instability of the spherical mode and also in the proximity of
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surfaces, such as surrounding tissues [25, 96, 97, 36, 81]. The manifestation of nonspheri-

cal oscillations has several implications in the context of utilizing UCAs for biomedical

applications.

First, nonspherical surface modes give rise to frequency components subharmonics, har-

monics and ultraharmonics that are not at the incident ultrasound frequency as can the

spherical mode if driven to a nonlinear response [21]. These additional frequency compo-

nents contribute to the signal scattered by UCAs, and are important for distinguishing

the microbubbles from the surrounding tissue, thus enhancing contrast [36]. Experimental

observations of pulsating contrast agents indicate the possibility for parametric excitation

of nonspherical modes [36]. Tsigklifis and Pelekasis [106] studied nonlinear stability of

pulsating contrast agents in the context of axisymmetry using the boundary element

method. They accounted for inertia effects and pressure changes in the host fluid, coupled

with stretching and bending elastic forces in the shell that coats the microbubble.

Second, it is well known that the oscillation of bubbles near a surface can give rise to

phenomena including microstreaming around the bubble [1, 85, 32] and the generation of

high-speed jets during bubble collapse [8, 9]. In the case of a rigid or semi-rigid surface,

these jets form on the distal side of the bubble and are directed toward the surface. If

sufficiently violent, such jets can cause localized damage, as evidenced in ship propellers

affected by cavitation nucleation on the low pressure side and in silicon wafers subject to

ultrasonic cleaning.

Chen et al. [18] observed that coated ultrasound bubbles in microscopic blood vessels of

rat mesentery are often associated with nonspherical deformation and liquid jetting (see

figure 1.1). This phenomenon was also observed by Vos et al. [110, 111]. In this case of

UCAs, a jet may potentially enhance tissue poration or cause mechanical destruction of

cells. Such a mechanism may be desired in the case of tumor destruction, for instance,
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but may be undesirable in cases where tissue integrity must be maintained. In either

case, an understanding of the relationship between the tissue environment, the incident

ultrasound, the mechanical properties of the material encapsulating the UCAs, and the

ensuing microbubble dynamics is critical for utilizing UCAs with maximum efficacy in any

clinical setting.

Figure 1.1: Vascular rupture in rat mesentery involving a liquid jet [18]. The amplitude of
ultrasound is 4 MPa and the vessel diameter is 15 µm. Sketches are shown of the bubble
jet in solid lines and the microvessel in dashed lines.

The complex nature of nonspherical bubble oscillations makes them less amenable to

analytical modeling and invites the application of numerical methods to describe their

dynamics. In this study, we use the boundary integral method to study the dynamics

of coated and uncoated microbubble near a rigid wall subject to ultrasound propagating

parallel and perpendicular to the boundary.

Hsiao & Chahine [47] recently modeled the bubble coating using a layer of Newtonian

viscous fluid. Their model did not consider the elastic features of the coating, which we

believe is an essential feature of bubble coatings since they are viscoelastic materials. Their

model is threedimensional, yet all the cases presented are axisymmetric, where azimuthal

averaging was applied to smooth the value of curvature computed. The complexity of

the phenomenon and the significant challenges involved in modeling them mathematically
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have resulted in this being a very sparsely addressed area, despite the large numbers of

experimental studies on therapeutic ultrasound that have been performed worldwide.

The boundary integral method (BIM) is widely used in simulating bubble dynamics

[8, 9, 15], which is grid free in the flow domain. Acoustic bubble dynamics were simulated

using an axisymmetric BIM model for a bubble in an infinite liquid [13, 121, 122] and

near a boundary subject to ultrasound propagating in the direction perpendicular to

the boundary [58, 59, 40, 39, 22]. In this study we implement the three-dimensional

BIM model for microbubble dynamics subjected to ultrasound. A bubble collapses much

more violently subjected to a high intensity ultrasound than when under normal constant

ambient pressure. As an example, the jet develops much faster when subjected to high

intensity ultrasound and its speed is significantly larger. A few techniques are implemented

to model the associated violent collapse. In this study, a high quality surface mesh is

maintained by implementing a hybrid approach of the Lagrangian method and elastic mesh

technique. The bubble surface is updated using the fourth-order Runge-Kutta method

and interpolated using a polynomial scheme coupled with the moving least square method.

These works were based on the inviscid potential flow theory, but the viscous effects may

not be negligible for micron size bubbles [67, 93, 72].

Transient gas bubble dynamics including viscous effects were simulated based on the Navier-

Stokes equations using the finite volume method or finite element method [93, 56, 83].

Domain simulation of this multi-scaled problem of multiple oscillations is computational

demanding. As such simulations based on the domain approaches are usually carried out

for axisymmetric configurations and for one cycle of oscillation.

Viscous fluid dynamics can be described approximately by potential flows when the

vorticity is small or is confined to a narrow layer near the boundary. It is particularly

useful for a gasliquid two-phase flow with an interface. A key issue in the theory is that
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the shear stress should approximately vanish at a gas-liquid interface, but it does not in

the irrotational approximation. An auxiliary function, the viscous pressure correction to

the potential pressure, has been introduced to address this discrepancy by Joseph et al.

[51, 50]. They argued that the power done by the shear stress due to the irrotational

flow should be equal to the power done by the viscous correction pressure to conserve

the energy of the system. Accurate physical descriptions of the viscous flows have been

provided by the viscous potential theory with the viscous pressure correction, including the

motion of bubbles and drops [50, 51], capillary instability of a liquid cylinder [115, 114],

the decay of free surface waves [50–52], and the Kelvin-Hemholtz instability [55].

This theory was applied for transient bubble dynamics based on the BIM by Lind &

Phillips [71–73] for transient bubbles near a boundary in a axisymmetric configuration, and

by [60, 131] for a bubble rising and deforming in a viscous liquid. In chapter four, we will

model 3D microbubble dynamics in a viscous liquid subject to ultrasound using the viscous

potential theory of Joseph et al. [50, 51] based on the following three considerations.

Firstly, the Reynolds number Re for the liquid flow associate with acoustic microbubble

dynamics appears large. Re = ρR2
0ωM/µ , where R0 is the equilibrium radius of the

bubble,ρ and µ are the density and viscosity of the liquid and ωM is the larger of the

natural frequency of the bubble and the ultrasound frequency. The natural frequency of a

bubble is ωb = 1
R0

√
2p0
ρ

+ 4σ
ρR0

where p0 is the ambient pressure and σ is the surface tension.

It can be estimated that Re ≥ 42 as R0 ≥ 2 µm, using with the following parameters for

water: p0 = 100 kPa, ρ = 1000 kg/m3, µ = 10−3 Pa s and σ = 0.07 N/m. Microbubble

dynamics are thus usually associated with an irrotational flow in the bulk volume but a

thin vorticity layer at the bubble surface.

Secondly, a bubble is approximately spherical during most of lifetime due to surface tension.

In the case of spherical bubbles, viscosity only enters the analysis through the normal
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stress on the surface of the bubble but plays no role in the fluid body, apart from viscous

dissipation. Physically this is realized in the extra work required to expand the bubble

against the additional normal viscous force on the bubble surface [42, 92].

Thirdly, a bubble subject to ultrasound may become nonspherical during a very short

period at the end of collapse [123], when the inertial effects are dominant and the viscous

effects are not significant.

When a bubble collapses in non-spherical environment, a high speed liquid jet often forms.

The jet subsequently penetrates through the bubble forming a toroidal bubble. The liquid

domain is transformed from a singly-connected to a doubly-connected form, which results

in non-uniqueness to the potential problem. The doubly-connected domain can be made

singly-connected by using a vortex sheet by Zhang et al. [134] and Zhang & Duncan [133]

or a branch cut by Best [2]. The vortex sheet model describes the shear layer around the

jet surface, but the associated boundary integral equation is high order and relatively

unstable.

Pedley [90] and Lundgren & Mansour [77] modelled the dynamics of a bubble ring with a

vortex ring inside, started with a circular cross-section. Wang et al. [124, 126] developed

a vortex ring model from these earlier ideas to model toroidal bubbles generated due to

jet impact. In this model, a vortex ring is placed inside the toroidal bubble once the jet

impacts on the opposite bubble surface. The strength of the vortex-ring is equal to the

jump of the potential across the contact point at the time of impact.

Zhang et al. [135] simulated three-dimensional (3D) toroidal bubble dynamics using the

vortex ring model. Wang et al. [113, 112] developed an elastic mesh technique (EMT)

for improving the mesh quality for the simulation of toroidal bubbles. Zhang et al. [132]

simulated the three-dimensional interaction of a toroidal bubble and a free surface using

the vortex ring model.

8



The challenging in the 3D model is largely due to the detailed numerical techniques of

transition from a singly connected bubble to a toroidal bubble, the surface mesh for

toroidal bubble where the liquid hole through the bubble is thin at the beginning of the

toroidal phase, as well as the calculation of the potential due to a vortex ring, etc.

1.3 Thesis overview

In chapter 1, the application background and research of acoustic cavitation bubble

dynamics are reviewed. In Chapter 2, a computational model is developed to simulate the

three dimensional dynamics of acoustic bubbles near rigid boundary by using the boundary

integral method. A few techniques are implemented to improve the numerical model. In

particular, a high quality mesh of the bubble surface is maintained by implementing a

new hybrid approach of the Lagrangian method and elastic mesh technique. It avoids the

numerical instabilities which occur at a sharp jet surface as well as generates a fine mesh

needed at the jet surface. In the Lagrangian approach, the nodes on the bubble surface

are updated with the material velocities at the nodes. This may result in a poor quality

mesh for a non-spherical bubble motion at large amplitude. In the EMT the mesh sizes on

the bubble surface tends to be uniform. The optimum mesh is obtained by using artificial

tangential velocity plus prescribed normal velocity to update the bubble surface. The

artificial tangential velocity is obtained by minimizing the total elastic energy as assumed

that the segments of the mesh have some stored energy. However, non-uniform mesh is

more suitable for a bubble surface with a varying curvature. A finer mesh should be used

for the part of the bubble surface where the curvature radius is small, such as around

the jet surface. We showed that a high quality surface mesh with suitable mesh density

variation can be obtained by implementing a hybrid approach of the Lagrangian method

and elastic mesh technique. We implemented the hybrid approach in all chapters. To

evaluate the numerical model, the convergence test to the mesh size is conducted. The
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numerical model is validated against the Rayleigh-Plesset equation and an axisymmetric

model for spherical and axisymmetric cases, respectively. We then exam bubble dynamics

near a wall subjected to ultrasound, including the bubble shape and Kelvin impulse, jet

shape and velocity, etc. in terms of the dimensionless standoff distance of the bubble from

the wall and the amplitude of ultrasound.

The acoustic radiation forces on gas bubbles are normally referred to as Bjerknes forces

after C. A. Bjerknes and his son V. F. K. Bjerknes, who were the first to report on

such forces [6]. It is conventional to divide the Bjerknes forces into two types, namely,

primary Bjerknes forces, which are experienced by single bubbles due to pressure gradients

in the liquid, and secondary Bjerknes forces, which are responsible for bubble-wall and

bubble-bubble interactions [35]. When acoustic wave propagating parallel to the boundary

Bjerknes force due to the ultrasound (primary Bjerknes) and the wall are perpendicular

(secondary Bjerknes) to each other.

In Chapter 3, we investigate the dynamics of coated bubbles using a BIM model adapted

to account for the effect of the encapsulation. We assume the shell is much thinner than

the bubble radius and is comprised of a linear, incompressible, and viscoelastic solid. We

adapt the Hoff model [44] for spherical bubbles to nonspherical bubbles by replacing the

radius with the inverse of the local mean curvature in the model. The numerical model is

validated by comparing with the modified Rayleigh-Plesset equation for coated spherical

bubbles. Results of numerical analyses for the dynamics of UCAs in an infinite fluid and

near a rigid wall subject to acoustic waves propagating parallel and perpendicular to the

wall, presented respectively, in parameter regimes of clinical relevance.

In Chapter 4, this chapter investigates the viscous effects in bubble dynamics using the

boundary integral method based on the viscous potential flow theory. The viscous effects

are incorporated into the model through including the normal viscous stress in the dynamic
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boundary condition at the bubble surface. The viscous correction pressure of Joseph

[50, 51] is implemented to resolve the discrepancy between the non-zero shear stress of the

irrotational flow at a free surface and the physical boundary condition of zero shear stress.

The 3D model is validated by comparing with the Gilmore equation for spherical bubble

oscillating in a viscous and unbounded fluid, the experiment [86] and the volume of fluid

method (VOF) based on the Navier-Stokes equation [83] for the dynamics of a transient

bubble near a rigid boundary. we analyze bubble dynamics near a rigid boundary subject

to ultrasound travelling perpendicular and parallel to the boundary, respectively.

In Chapter 5, three dimensional bubble dynamics in toroidal phase are modelled based on

the vortex ring model. The transformation from a singly connected bubble to a toroidal

bubble is performed automatically. The potential due to a vortex ring is calculated directly

from Biot-Savart law. The model was validated with the experimental data [74] and

axisymmetric model [126] for a toroidal bubble near a horizontal rigid boundary. We

analyzed toroidal bubble dynamics near a vertical rigid boundary subject to buoyancy

force.

Finally the summary and conclusions of the thesis and possible future developments are

presented in Chapter 6.
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Chapter 2

Three dimensional microbubble

dynamics near a wall subject to

high intensity ultrasound

2.1 Physical and mathematical model

Consider the dynamics of a microbubble near an infinite rigid plane wall subjected to

ultrasound, as shown in figure 2.1. A Cartesian coordinate system O − xyz is adopted

with the origin at the centre of the initial spherical bubble, the z-axis perpendicular to

the wall and the x-axis along the wave direction. The ultrasound is described as a plane

harmonic acoustic wave as follows,

p∞(x, t) = p0 + pa sin(kx− ωt+ φ0), (2.1.1)

where p0 is the hydrostatic pressure, t is time, and k, pa, ω and φ0 are the wave number,

pressure amplitude, angular frequency, and phase shift of the ultrasound. The initial phase

φ0 in this study is chosen as zero unless stated otherwise. We assume that the pressure pb

12



gas

Liquid

Rigid boundary

x

y

z

s

n

Sb

pa

Progressive wave Bubble

Figure 2.1: Configuration and coordinate system for a microbubble near a rigid wall
subjected to ultrasound propagating parallel to the wall.

within the bubble is uniform and consists of the vapour pressure pv and the gas pressure

pg. Assuming that the non-condensing gas is ideal and its expansion and compression

are adiabatic, the bubble pressure is given in terms of the bubble volume V according to

Dalton law as follows [11],

pb = pv + pg = pv + pg0

(
V0
V

)κ
(2.1.2)

where pg0 is the initial gas pressure of the bubble, V0 is the initial bubble volume and κ is

the ratio of specific heats of the gas.

We neglect the viscous effects of the surrounding liquid, since we are concerned with

a violent collapsing bubble subjected to high intensity ultrasound where the Reynolds

number of the liquid flow is large. More complicated models are available in the literature

mainly for an axisymmetric configuration (as an example Yang and Prosperetti [127], in

which heat transfer and viscous effect were taken into account). The compressible effects of

the liquid may cause a substantial energy loss of a bubble system at the end of the collapse

phase and affects the subsequent oscillations of the bubble significantly [121, 122, 119].

However, bubble dynamics during the first oscillation, including the bubble shape and jet

velocity, are not affected significantly by the compressible effects of the liquid [121].

13



We assume that the liquid surrounding the bubble is inviscid, incompressible, and the

liquid flow is irrotational. The fluid velocity u thus has a potential ϕ, u = ∇ϕ which

satisfies Laplace’s equation, ∇2ϕ = 0. Using Green’s second identity the potential ϕ may

be represented as a surface integral over the bubble surface Sb as follows,

c(r)ϕ(r) =

∫
Sb

(
∂ϕ(q)

∂n
G(r , q)− ϕ(q)

∂G(r , q)

∂n

)
dS(q), (2.1.3)

where r is the field point and q is the source point, c(r) is the solid angle and n is the

unit outward normal of the bubble surface Sb.

To satisfy the impermeable boundary condition on the wall, the Green function is given as

follows,

G(r , q) =
1

|r − q |
+

1

|r − q́ |
, (2.1.4)

where q́ is the image of q reflected to the wall.

The kinematic and dynamic boundary conditions on the bubble surface Sb are as follows,

dr

dt
= ∇ϕ on Sb, (2.1.5)

pL = pb − 2σ∇ · n on Sb, (2.1.6)

where pL is the liquid pressure on the bubble surface Sb, σ is the surface tension coefficient,

and ∇ · n is the mean curvature of the bubble surface. Equation (2.1.6) can be written in

terms of the velocity potential ϕ using Bernoulli’s equation,

dϕ

dt
=

p0 + pa sin(kx− ωt+ φ0) + 2σ∇ · n
ρ

+
1

2
|∇ϕ|2 − 1

ρ

(
pv + pg0

(
V0
V

)λ)
on Sb. (2.1.7)
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We choose the reference length R0 (initial radius of the bubble) and the reference pressure

∆p = p0 − pv and introduce the following asterisk (*) for the dimensionless variables,

r ∗ =
r

R0

, (2.1.8a)

t∗ =
t

R0

√
∆p

ρ
, (2.1.8b)

ϕ∗ =
ϕ

R0

√
ρ

∆p
, (2.1.8c)

ε =
pg0
∆p

, (2.1.8d)

σ∗ =
σ

R0∆p
, (2.1.8e)

pa∗ =
pa
∆p

, (2.1.8f)

ω∗ = ωR0

√
ρ

∆p
, (2.1.8g)

k∗ = R0k. (2.1.8h)

The dimensionless dynamic boundary condition on the bubble surface is,

dϕ∗
dt∗

= 1 + pa∗ sin(k∗x∗ − ω∗t∗ + φ0) + 2σ∗∇ · n +
1

2
|∇ϕ∗|2 − ε

(
V0
V

)κ
on Sb. (2.1.9)

However, the standoff distance normalized with respect to the maximum equivalent bubble

radius following the convention,

γ =
s

Rmax

, (2.1.10)

where s is the distance between the wall and the bubble centre at inception, Rmax is the
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maximum radius a bubble initially in equilibrium would attain in an infinite ambient fluid

subject to the imposed ultrasound.

We assume that both the bubble and liquid are initially motionless and the bubble is

assumed in equilibrium with a constant far field pressure p0. This requires the following

balance pressure,

pL|t=0 = p0 = pb|t=0 − 2σ∇ · n , (2.1.11)

where pb|t=0 = pv + pg0 and with the dimensionless form obtained using (2.1.8d) and

(2.1.8e),

ε = 1 + 2σ∗ (2.1.12)

2.2 Numerical modeling

The numerical model is based on the BIM using planer triangular elements. The initial

mesh of the bubble surface is generated from an icosahedron shape by dividing each triangle

into smaller equilateral triangles and projecting the new vertices on the bubble surface

[116]. The integration in (2.1.3) can be expressed as the summation of the integrations

over all the boundary elements. On each element, linear interpolations are used for the

potential ϕ and normal velocity ψ = ∂ϕ/∂n . The diagonal elements of the influence

coefficient matrices are integrated analytically and the non-diagonal elements are calculated

numerically using the Gaussian quadrature [116].
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2.2.1 Bubble surface interpolation

The normal N 0 at a node r i can be approximated by a weighted average of the unit

normals ne
k of its surrounding elements, as shown in figure 2.2,

N 0 =
Ms∑
k=1

wkn
e
k, (2.2.1)

where Ms is the number of the surrounding triangles to the node r i, and wk is the weighted

coefficient for each of the elements. The normal ne
k of each surrounding element can be

regarded as the approximate normal of the surface at the element centre r ek. The weighted

coefficient wk thus should decrease with the distance between r i and r ek . In this work, wk

is chosen to decrease exponentially with the distance,

wk = exp

(
−|r

e
k − r i|
2d

)
, (2.2.2)

where d is the average distance from the surrounding nodes to the node r i.

Thus, the initial unit normal is,

n0 =
N 0

|N 0|
(2.2.3)

Figure 2.2: Sketch of the surrounding elements to the node r i.
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The bubble surface is interpolated using a moving least square method following Zhang et

al. [135] and Wang [118]. A local Cartesian coordinate system, O −XY Z, is introduced,

with its origin O at the point considered, and its Z-axis along the normal direction n0. A

second order polynomial is implemented for the bubble surface as follows,

Z = F (X, Y ) = a1 + a2X + a3Y + a4XY + a5X
2 + a6Y

2 (2.2.4)

The coefficients, aj, j=1, 2, · · · , 6, are determined from the nearest neighboring nodes

within 2d from the node considered. Denote the nearest neighbouring nodes as (Xk, Yk, Zk),

k=1, 2, · · · , Nb, where Nb is the number of the neighbouring nodes. The error function Φ

associated with the moving least-squares method is defined as,

Φ(a1, a2, a3, a4, a5, a6) =

Nb∑
k=1

wk [F (Xk, Yk)− Zk]2 . (2.2.5)

The coefficients aj are determined by setting the derivative of Φ in aj to be zero to minimize

the error function,

∂Φ

∂aj
= 0 for j = 1, 2, · · · , 6, (2.2.6)

Substituting ((2.2.4) and (2.2.5)) into (2.2.6) yields

6∑
j=1

Aijaj = Bi for i = 1, 2, · · · , 6, (2.2.7)
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where Aij and Bi are given in terms of wk and (Xk, Yk, Zk),

Aij =

Nb∑
k=1

wkBkjBki, (2.2.8a)

Bi =

Nb∑
k=1

wkZkBki, (2.2.8b)

Bk1 = 1, Bk2 = Xk, Bk3 = Yk,

Bk4 = X2
k , Bk5 = XkYk, Bk6 = Y 2

k .

for k = 1, 2, · · · , Nb. (2.2.8c)

A more accurate normal is further obtained as follows with the second order interpolation

(2.2.4),

n =
∇f
|∇f |

= ∓ (a2, a3,−1)√
a22 + a23 + 1

, (2.2.9)

where the sign is chosen such that n · n0 > 0 , where n0 is the approximate normal at r i

calculated from (2.2.3).

The mean curvature for the implicit surface f(X, Y, Z) = F (X, Y )− Z = 0 is given as,

∇ · n =
∇f ×H(f)× (∇f)T − |∇f |2 Trace(H)

2 |∇f |3

= −a5 + a6 + a6a
2
2 + a5a

2
3 − a2a3a4

(1 + a22 + a23)
3/2

,

(2.2.10)

where H(f) = ∇(∇f) is the Hessian matrix of f and Trace(H) is the summation of its

diagonal elements [43]. The above interpolation scheme works for the potential distribution

on the bubble surface too, except that Zk in (2.2.5) and (2.2.8b) should be replaced by

the potential ϕk at the node (Xk, Yk, Zk). Denote the interpolation for the potential as

follows,

ϕ(X, Y ) = b1 + b2X + b3Y + b4XY + b5X
2 + b6Y

2, (2.2.11)
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the tangential velocity v τ on the bubble surface can be calculated using the following

formula,

v τ = b2∇X(x, y, z) + b3∇Y (x, y, z), (2.2.12)

where X(x, y, z) and Y (x, y, z) are determined from the transform from the coordinates

(x, y, z) to the local coordinates (X, Y, Z).

2.2.2 Lagrangian time integration

Assume the bubble shape and the potential distribution on it are known at time t. The

normal velocity can be obtained by solving (2.1.3) using the BIM. The tangential velocity is

obtained from (2.2.12). The bubble surface and the potential distribution at the next time

step t+ ∆t are obtained by integrating the kinematic and dynamic boundary conditions

(2.1.5, 2.1.9), respectively. The numerical integrations are performed using the fourth-order

Runge-Kutta scheme (RK4) , which has demonstrated greater stability than lower order

schemes. A varied time-step size ∆t∗ is chosen as follows to save the CPU time,

∆t∗ =
∆ϕ∗

max
∣∣1 + pa∗ sin(k∗x∗ − ωt∗ + φ0) + 2σ∗∇ · n + 1

2
|∇ϕ|2 − ε

(
V0
V

)κ∣∣ (2.2.13)

where ∆ϕ∗ is some constant, the maximum is taken over all nodes on the bubble surface.

With this choice of ∆t∗, the changes in potential at all nodes is bounded above by the

prescribed value ∆ϕ∗.

2.2.3 Elastic mesh technique for improving mesh quality

In the Lagrangian approach, the nodes on the bubble surface are updated with the material

velocities at the nodes. This may result in a poor quality mesh for a non-spherical bubble

motion at a large amplitude. Figure 2.3a provides the computational result using the
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Lagrangian approach for a bubble surface for a typical case, when the bubble jet is

developing. Numerical instabilities occur over the jet surface due to the distorted mesh.

This case is for an ultrasound bubble in an infinite liquid, to be chosen as water in the

calculations in this study, in which the speed of sound is 1500 m s−1. The initial radius for

the bubble is R0 = 4.5 µm, the amplitude and frequency of the ultrasound are pa∗ = 1.6,

f = 300 kHz. The bubble surface is discretized into M = 980 triangular elements with

∆ϕ∗= 0.002 used in (2.2.13) for setting time-step. In all cases considered in this chapter,

the parameters for the liquid and gas are chosen as κ = 1.667, σ = 0.073 N m−1, p0 =

101.3 kPa, pv = 0.023p0 and ρ = 999 kg m−3.

Wang et al.[113, 112] developed an elastic mesh technique (EMT) for improving the mesh

quality for the simulation of bubble dynamics. It is assumed in the EMT that each segment

of a surface mesh is an elastic ribbon and the optimum mesh is found by minimizing the

total elastic energy stored in all segments of the mesh. In this approach, a mesh node at

time t is updated with the normal velocity at the node plus an artificial tangential velocity,

since the bubble surface at the next time t+ ∆t is only determined by the normal velocity

distribution on the bubble surface. The artificial tangential velocity is obtained by the

requirement of minimizing the total elastic energy.

The elastic force fe associated with a segment is a function of the segment length l, i.e.,

the constitutive relation of a segment is defined as follows,

fe = fe(l). (2.2.14)

In this thesis we use fe(l) = kel
3, where ke is the elasticity coefficient. The coefficient ke

will be eliminated in the model subsequently in (2.2.19) and its value does not affect the

computational results.
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The elastic energy Emesh stored in the mesh at the new time step t+ ∆t is,

Emesh =
N∑
i=1

Mi∑
j=1

∫ lij

0

fe(l)dl, (2.2.15)

where the summation is taken over all segments of the mesh, Mi is the number of the

surrounding nodes to the node i, N is the total node number of the mesh, and lij is the

segment length between the two nodes rnewi and rnewj at the next time step t+ ∆t , i.e.

lij =
∣∣rnewi − rnewj

∣∣ = |r i − r j + ∆t(u i − u j)| , (2.2.16)

where u i and u j are velocities at the nodes i and j respectively.

(a) (b) (c)

Figure 2.3: The comparison of the meshes of the bubble surface at t∗ = 5.51 using (a) the
Lagrangian approach, (b) the EMT and (c) the hybrid approach. The parameters used are
R0 = 4.5 µm, pa∗ = 1.6, f = 300 kHz, M = 980, ∆ϕ∗ = 0.002, κ = 1.667, σ = 0.073 N/m,
p0 = 101.3 kPa, pv = 0.023 p0 and ρ = 999 kg/m3.

The optimum mesh can be obtained by minimizing the elastic energy Emesh, therefore the

derivative of Emesh with respect to u i = (ui, vi, wi) must be zero,

∂Emesh

∂ui
= 0,

∂Emesh

∂vi
= 0,

∂Emesh

∂wi
= 0. (2.2.17)
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Substituting 2.2.15 into equation 2.2.17 results in

Mi∑
j=1

(
fe (lij)

lij
|lij|

)
= 0, (2.2.18)

The following iterative scheme is employed to solve (2.2.17),

un+1
i = ψin i + P



(
Mi∑
j=1

f(lnij)
(
r j − r i + ∆tun

j

)
/lnij

)

∆t

Mi∑
j=1

f(lnij)/l
n
ij

 , (2.2.19)

where un
i is the nth iteration of the prescribed velocity at node i, P (v) stands for the

tangent component of a vector v , i.e.

P (v) = v − (v · n i.)n i. (2.2.20)

The optimum prescribed velocity uemt
i for the EMT is obtained by solving (2.2.19) using

iteration. The bubble surface and potential distribution on it are then updated as follows,

δr

δt
= uemt

i (2.2.21a)

δϕ

δt
=
∂ϕ

∂t
+ uemt

i · ∇ϕ =
(
uemt
i − u i

)
· ∇ϕ+

dϕ

dt
. (2.2.21b)

Figure 2.3b shows the bubble surface calculated using the EMT, which avoids the numerical

instabilities occurred in the Lagrangian approach shown in figure 2.3a.

23



2.2.4 Hybrid approach for improving mesh quality

In the EMT the mesh sizes on the bubble surface tends to be uniform but a non-uniform

mesh is more suitable for a bubble surface with a varying curvature. A finer mesh should

be used for the part of the bubble surface where the curvature radius is small, such as

around the jet surface. We implement a hybrid-approach of the Lagrangian and EMT

approaches as follows,

uhybrid
i = Wu i + (1−W )uemt

i , W ∈ [0, 1], (2.2.22)

where W was chosen based on the numerical tests as 0.7, which worked well for all the

cases in this thesis. Figure 2.3c shows the bubble mesh of the hybrid approach, where the

jet surface is smoother and with finer mesh than the EMT (figure 2.3b). The EMT and

the hybrid approach were applied once every 10 time steps.

2.3 Validations of the numerical model

2.3.1 Comparisons with the Rayleigh-Plesset equation

The case considered is for the radial oscillation of a spherical bubble with an initial radius

of R0 = 4.5 µm and an initial pressure of ε = 20.0 in an otherwise quiescent infinite liquid.

The bubble surface is discretized into M = 500 triangular elements with ∆ϕ∗ = 0.01 used

in (2.2.13) for setting time-step. The rest of the parameters are the same as in the case

shown in figure (2.3).

In this case the initial bubble pressure is larger than the constant ambient pressure,

the bubble starts expanding and oscillates subsequently. Figure 2.4 compares the BIM

computational results with the Rayleigh-Plesset equation (RPE) for the bubble radius
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R∗

t∗

Figure 2.4: Comparison of the bubble radius history of the RPE (solid line) with the BIM
model using: (i) the RK4 coupled with the weighted average method (dotted line), (ii)
the Euler method coupled with the polynomial interpolations (dashed line), and (iii) the
RK4 coupled with the polynomial interpolations (circle marks). The parameters used are
R0 = 4.5 µm, ε = 20, pa∗ = 0,M = 500, and the other parameters being the same as in
figure 2.3.

history. The results of three different computations are shown: (i) the RK4 for updating

the bubble surface and the weighted average method for calculating the tangential velocity

on the bubble surface [117] , (ii) the Euler method for updating the bubble surface and the

polynomial interpolations as described in Section 2.2.1 for calculating the curvature and

tangential velocity on the bubble surface, and (iii) the RK4 coupled with the polynomial

interpolations. All three options provided reasonable results for the first two cycles of

oscillation but only option (iii) provided a good result for the third cycle of oscillation.

The RK4 coupled with the polynomial interpolations was thus used in this thesis.

2.3.2 Comparison with an axisymmetric BIM model

We compare the present 3D BIM model with the axisymmetric BIM model by Calvisi

et al. [13] for the case shown in figure 2.3. The results of the 3D model are provided

with three options for advancing the bubble shape and the potential distribution on it by

using (a) the Lagrangian approach, (b) the EMT method and (c) the hybrid approach.
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Figure 2.5 shows the bubble shapes at the end of the collapse phase, when a sharp jet

forms in the wave direction. The three-dimensional results of all the three options agree

with the axisymmetric model, in terms of the bubble shape, jet shape and location. In the

Lagrangian approach (figure 2.5a), some numerical instabilities developed around the jet

surface. In the EMT (figure 2.5b), the mesh is not fine enough at the jet surface. The

hybrid approach is stable, generating a smooth jet surface with a fine mesh over there,

and agrees best with the axisymmetric model (figure 2.5c).

(a) (b) (c)

Figure 2.5: The bubble shapes at the end of the collapse phase at t∗ = 5.53 for the case
shown in figure 2.3 using (a) the Lagrangian approach, (b) the EMT method and (c) the
hybrid approach, compared to the axisymmetric model (dashed line, Calvisi et al. [17])

2.3.3 Convergence to mesh size

We have performed the convergence test of the numerical model for the case shown in

figure 2.3 at various numbers of surface elements, M = 1280, 1620 and 2000, respectively.

The bubble shapes at the end of the collapse phase are shown in figure 2.6, compared

with the corresponding axisymmetric result [13]. As the mesh size reduces, the 3D results

approach well to the axisymmetric result and the jet becomes sharper. The 3D results

are convergent to the mesh size and approaches to the axisymmetric result. The small

discrepancy between the two models is because the mesh size used in the 3D model is

larger than that in the axisymmetric model.
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(a) (b) (c)

Figure 2.6: The bubble shapes at the end of the collapse phase t∗ = 5.53 with various
numbers of surface elements for the case shown in figure 2.3: (a) M=1280, (b) M=1620
and (c) M=2000, compared to the axisymmetric model (dashed line, Calvisi et al. [13])

2.3.4 Evaluation of the hybrid elastic mesh technique

To examine the hybrid EMT, we will compare the volume and Kelvin impulse of the

bubble calculated with and without using the technique. The Kelvin impulse of the bubble

was introduced by Benjamin and Ellis [1], which is defined as the surface integral of the

potential ϕ on the bubble surface Sb,

IK∗ =

∫
Sb

n ϕ∗ dS. (2.3.1)

The Kelvin impulse IK∗ gives an indication of the degree of asymmetry of the bubble’s

motion, which often has the same directions of the jet and the bubble migration [121, 124,

125, 116, 117].

The case considered is for bubble dynamics near a wall subjected to ultrasound propagating

parallel to the wall at γ= 3.75, with the rest of the parameters being the same as in the

case shown in figure 2.3. In this case the bubble is with three dimensional deformations as

to be shown in figure 2.8 in the next section.

If we compare two simulations with and without the hybrid EMT respectively, the results

of the latter are affected by the poor mesh after bubble jetting as shown in figure 2.5. We

will apply the hybrid EMT once every 10 time steps and we compare the results before
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t∗ EV EθK EIK
4.12 0.0002 0.0000◦ 0.0000
5.56 0.0018 0.0011◦ 0.0002
5.58 0.0024 0.0070◦ 0.0023

Table 2.1: The comparison of the results before and after using the hybrid EMT at three
typical times in terms of the relative error of the bubble volume EV , the error for the
direction EθK of the Kelvin impulse, and the relative error for the amplitude EIK of the
Kelvin impulse for a bubble near a wall subjected to ultrasound propagating parallel to
the wall at γ = 3.75, with the rest of the parameters being the same as in the case shown
in figure 2.3.

and after using the hybrid EMT at a specific time. Three typical times are chosen for the

comparison (a) at the maximum volume when the bubble is approximately spherical, (b)

at the start of bubble jetting, and (c) just before jet impact, respectively. Table 2.1 shows

the comparison at the three times in terms of the relative error of the bubble volume EV ,

the error for the direction EθK of the Kelvin impulse, and the relative error for amplitude

EIK of the Kelvin impulse. The changes due to the hybrid EMT are very small and

increase with the deformation of the bubble from a spherical shape.

2.4 Numerical results and discussions

2.4.1 Effects of standoff distance γ

In this section, we perform the numerical studies of microbubble dynamics near a rigid

wall subjected to ultrasound propagating parallel to the wall. To study effects of the

standoff distance of the bubble from the wall, we consider three cases at γ = 0.75, 3.75

and 11.25, respectively, with the rest of the parameters kept the same as in figure 2.3.

The bubble shapes at γ = 0.75 at typical times is shown in figure 2.7. The bubble expands

from figures 2.7a to 2.7b and collapses subsequently. The bottom of the bubble is flattened

by the wall in the later stage of the expansion phase (figure 2.7b). The bubble elongates
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vertically during the collapse phase (figures 2.7(c-e)), as a result that the bottom part of

the bubble surface is attracted by the wall and the rest of the bubble surface collapses. At

the final stage of the collapse phase, a wide high-speed liquid jet forms and is directed

towards the wall (figures 2.7e, f). It takes about 1% of the bubble lifetime from the

beginning of the jet formation to its impact on the opposite bubble surface, which is

much faster than when under a constant normal ambient pressure. For the latter the jet

development at γ=0.75 takes approximately 6% of its lifetime [126].

The bubble shapes at γ = 3.75 at typical times are shown in figure 2.8. The wall attraction

on the bubble is weak compared with the previous case. The bubble expands and collapses

spherically before a high-speed liquid jet develops rapidly towards the end of the collapse

phase (figures 2.8c, d ). The bubble is acted on by the Bjerknes force due to the ultrasound

and the second Bjerknes force due to the wall, which are parallel and perpendicular to the

wall respectively. They are comparable in amplitude in this case. As a result, the jet is at

the bisector direction of the two forces, with the angle between the jet direction and the

wall being about −45◦.

The bubble dynamics at γ = 11.25 (figure 2.9) are similar to that at γ = 3.75 (figure

2.8). The bubble remains spherical for most of its lifetime before a high-speed jet develops

rapidly at the end of the collapse phase. The jet development takes only 0.4% of the

bubble lifetime in the two cases. The jet at γ = 11.25 is approximately in the direction of

the ultrasound (figure 2.9d), since the effects of the wall in this case is negligible.

Figure 2.10 shows the bubble and jet shapes at the end of the collapse phase for the cases

in the range of 0.75 ≤ γ ≤ 11.25, with the rest of the parameters kept the same as in figure

2.3. The jet is directed towards the wall at γ=0.75 (θj ≈ −88◦), rotates anticlockwise to

the direction of the ultrasound with increasing γ as the bubble initiated further away from

the wall, and is approximately along the direction of the ultrasound (θj ≈ 4◦) at γ=11.25.
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(a) t∗ = 0.0 (b) t∗ = 4.0

(c) t∗ = 5.0 (d) t∗ = 5.5

(c) t∗ = 5.58 (d) t∗ = 5.64

Figure 2.7: The bubble dynamics near a wall subjected to ultrasound propagating parallel
to the wall at γ = 0.75, with the rest of the parameters being the same as in the case
shown in figure 2.3. The bubble shapes are during the expansion phase (a-b) and collapse
phase (b-f).
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(a) t∗ = 0.0
(b) t∗ = 4.12

(c) t∗ = 5.56 (d) t∗ = 5.58

Figure 2.8: The bubble dynamics near a wall subjected to ultrasound propagating parallel
to the wall at γ = 3.75, with the rest of the parameters being the same as in the case
shown in figure 2.3. The bubble shapes are during the expansion phase (a-b) and collapse
phase (b-d).

Note that as the jet is slightly asymmetric, its direction θj is estimated from the direction

of its baseline, which is assumed being perpendicular to the jet. The jet width reduces

apparently with the standoff distance γ.

Figure 2.11 depicts the bubble lifetime Tc∗ and the maximum equivalent radius Rmax∗

versus the standoff distance γ for the cases shown in figure 2.10. As the bubble is initiated

further away from the wall, its maximum volume increases while its lifetime decreases.
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(a) t∗ = 0.0 (b) t∗ = 4.1

(c) t∗ = 5.51 (d) t∗ = 5.53

Figure 2.9: The bubble dynamics near a wall subjected to ultrasound propagating parallel
to the wall at γ = 11.25, with the rest of the parameters being the same as in the case
shown in figure 2.3. The bubble shapes are during the expansion phase (a-b) and collapse
phase (b-d).

This is the same as that for bubble dynamics under a constant ambient pressure [66].

In figure 2.12 the direction θK of the Kelvin impulse is compared with the direction θj

of the bubble jet and the direction θc = tan−1(zc/xc) of migration of the bubble centroid

at the end of its lifetime. They are approximately equal for the cases considered. The

Kelvin impulse can thus be used to estimate the directions for the bubble jet and bubble

migration for acoustic bubble dynamics. This figure also shows that the magnitude IK∗ of

the Kelvin impulse reduces with the standoff distance of the bubble from the wall.
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γ=0.75, θj = −88◦ γ=1.5, θj = −80◦ γ=2.25, θj = −69◦

γ=3.0, θj = −57◦ γ=3.75, θj = −45◦

θj

γ=4.5, θj = −35◦

γ=5.25, θj = −27◦ γ=6.0, θj = −23◦ γ=6.75, θj = −17◦

γ=7.5, θj = −15◦ γ=8.25, θj = −13◦ γ=9.0, θj = −11◦

γ=9.75, θj = −9◦ γ=10.5, θj = −6◦ γ=11.25, θj = −4◦

Figure 2.10: The jet direction at the end of the bubble lifetime at various standoff distances
in the range of 0.75 ≤ γ ≤ 11.25. The rest of the parameters are the same as in the case
shown in figure 2.3.
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Figure 2.11: The bubble lifetime Tc∗ and maximum equivalent radius Rmax∗ versus the
standoff distance γ for the cases shown in figure 2.10.

Figure 2.12: The direction θj of the bubble jet, the direction θc of migration the bubble
centroid, the direction θK and the amplitude IK∗ of the Kelvin impulse versus the standoff
distance γ for the cases shown in figure 2.10.

2.4.2 Effects of the ultrasound amplitude

To consider the effects of the ultrasound amplitude, we repeat the cases at γ = 0.75, 3.75,

11.25 (figures 2.7, 2.8, 2.9) at various pressure amplitudes pa∗ =1.5, 1.6, 1.7, 1.8, with the

rest of the parameters kept as the same. The bubble and jet shapes at the end of the

collapse phase for the cases are shown in figure 2.13. Table 2.2 provides the maximum

equivalent bubble radius Rmax∗, bubble lifetime Tc∗, jet direction θj, direction θK and

magnitude IK∗ of the Kelvin impulse.
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γ = 0.75 γ = 3.75 γ = 11.25
pa∗ Rmax∗ Tc∗ θj θK IK∗ Rmax∗ Tc∗ θj θK IK∗ Rmax∗ Tc∗ θj θK IK∗
1.5 2.08 5.53 −88◦ −87◦ 2.7 2.20 5.50 −47◦ −48◦ 0.82 2.23 5.41 −3◦ −2◦ 0.64

1.6 2.20 5.65 −88◦ −87◦ 3.34 2.33 5.58 −45◦ −46◦ 1.13 2.37 5.53 −4◦ −3◦ 0.88

1.7 2.32 5.75 −86◦ −86◦ 3.83 2.46 5.70 −45◦ −44◦ 1.40 2.50 5.65 −4◦ −3◦ 1.12

1.8 2.44 5.85 −85◦ −86◦ 4.02 2.60 5.80 −43◦ −43◦ 1.70 2.65 5.76 −3◦ −3◦ 1.40

Table 2.2: The maximum equivalent radius Rmax∗, the bubble lifetime Tc∗, the jet direction
θj , the angle θK and amplitude IK∗ of the Kelvin impulse at the end of the bubble lifetime
for the cases shown in figure 2.13.

The jet direction does not change significantly with the ultrasound amplitude pa∗, as shown

in figures 2.13 and table 2.2. This suggests that the Bjerknes force due to ultrasound and

the second Bjerknes force due to the wall increase with the amplitude of ultrasound in a

similar way. However, the jet width increases obviously with the ultrasound amplitude

(figure 2.13). As shown in table 2.2, the maximum volume, the lifetime and the Kelvin

impulse of the bubble all increase with the amplitude of ultrasound. The jet direction

θj is approximately the same as the direction θK of the Kelvin impulse for all the cases

considered.
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(a) γ = 0.75

pa∗ = 1.5, θj = −88◦ pa∗ = 1.6, θj = −88◦ pa∗ = 1.7, θj = −86◦ pa∗ = 1.8, θj = −85◦

(b) γ = 3.75

pa∗ = 1.5, θj = −47◦ pa∗ = 1.6, θj = −45◦ pa∗ = 1.7, θj = −45◦ pa∗ = 1.8, θj = −43◦

(c) γ = 11.25
pa∗ = 1.5, θj = −3◦ pa∗ = 1.6, θj = −4◦ pa∗ = 1.7, θj = −4◦ pa∗ = 1.8, θj = −3◦

Figure 2.13: The bubble shapes at the end of the bubble lifetime at γ=0.75, 3.75, 11.25
and pa∗=1.5, 1.6, 1.7, 1.8, respectively. The rest of the parameters are the same as in the
case shown in figure 2.3.

Figure 2.14 shows the histories of the bubble centroid xc∗, zc∗ for the cases shown in

figure 2.13. The bubble moves slightly in the contrary direction to the wave during the

early expansion phase, moves in the direction of the wave since the later expansion phase

and moves rapidly towards the end of the collapse phase. The migration along the wave

direction increases as the bubble initiates further away from the wall.

The bubble moves away from the wall slightly during the expansion phase, moves back

to the wall during the collapse phase and moves rapidly towards the end of the collapse
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γ = 0.75

xc∗

t∗

γ = 0.75

zc∗

t∗

γ = 3.75

xc∗

t∗

γ = 3.75

zc∗

t∗

γ = 11.25

xc∗

t∗

γ = 11.25

zc∗

t∗

Figure 2.14: The histories of the bubble centroid xc∗, zc∗ for the cases shown in figure 2.13.

phase. The migration towards the wall reduces as the bubble initiates further away from

the wall. At γ = 11.25, the bubble only migrates along the wave direction. The migration

of the bubble is not sensitive to the variation of the amplitude pa∗ of ultrasound during a

large part of its lifetime but increases significantly with the amplitude pa∗ towards the

end of the collapse phase along both the x- and z-axes. Since the bubble is made up of

tetrahedron elements, then the bubble centroid can be calculated as,

r c∗ = (xc∗, yc∗, xc∗) =
1

V

∫
V

r ∗ dV ≈
∑

r i∗Vi∑
Vi

, (2.4.1)
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where Vi is the volume of each tetrahedron, r i∗ denotes the centroid position vector of a

certain tetrahedron say i.
∑

is the summation of all the tetrahedrons.

Figure 2.15 shows the speed history of the bubble surface at the position of the jet tip.

It represents the bubble wall speed before the jet forms, which is low as compared to

the jet velocity. The jet velocity rises rapidly towards the end of the collapse phase.

The maximum jet velocity increases with the amplitude pa∗ of the ultrasound, since the

Berjeknes force due to the ultrasound increases with pa∗. The jet velocity also increases

significantly with the standoff distance γ of the bubble from the wall.

(a)

vjet∗

t∗

(b)

vjet∗

t∗

(c)

vjet∗

t∗

Figure 2.15: The histories of the jet velocity vjet∗ at (a) γ=0.75, (b) γ=3.75 and (c)
γ=11.25 resepectively for the cases shown in figure 2.13.

The jet velocity is about 250 m/s at γ = 0.75, pa∗ =1.5 and 950 m/s at γ = 11.25,

pa∗=1.8. The jet velocity of acoustic microbubbles observed here is significantly larger

than the velocity of a boundary-induced jet of cavitation bubbles without the presence
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of ultrasound. The latter is lower than 200 m/s at normal ambient pressure as reported

from many experiments in the literature [65, 105, 109, 91, 74, 128]. Bubble jets due to

ultrasound are difficult to observe, although bubble wall velocities exceeding 700 m/s were

observed experimentally [80].

2.4.3 Effects of the initial bubble radius R0

We examine the bubble behavior at R0 = 3.5, 4.5, 5.5 µm and γ = 3.75 with the rest of

the parameters being the same as in the case shown in figure 2.3. Figure 2.16 shows the

bubble shapes at the end of collapse. The jet direction does not change significantly with

the initial radius R0, while the jet is sharper at a larger initial radius.

Figure 2.17 shows that the bubble at smaller initial radius reacts more strongly with the

acoustic wave. Both the oscillation amplitude of the equivalent bubble radius and the

maximum jet velocity increase inversely with bubble initial radius.

R0 = 3.5 µm, t∗ = 6.742 R0 = 4.5 µm, t∗ = 5.580 R0 = 5.5 µmm, t∗ = 4.794

Figure 2.16: The bubble shapes at the end of the bubble lifetime at γ = 3.75, R0 = 3.5,
4.5, 5.5 µm, and the rest of the parameters are the same as in the case shown in figure 2.3.
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R0

t∗

(a)

vjet∗

t∗

(b)

Figure 2.17: The bubble shapes at the end of the bubble lifetime at γ = 3.75, R0 = 3.5,
4.5, 5.5 µm, and the rest of the parameters are the same as in the case shown in figure 2.3.

2.4.4 Effects of the wave frequency

Three different frequencies f = 250, 300, 350 kHz are considered at γ = 3.75 with the rest

of the parameters are the same as in the case shown in figure 2.3. As shown in figure 2.18

the jet direction at the end of collapse doesn’t change significantly with the frequency but

the jet is sharper at a higher frequency. Figure 2.19 shows that the bubble reacts more

weakly with the acoustic wave at a larger frequency; both the maximum dimensionless

equivalent radius and the jet velocity reduce with the frequency.

f = 250 kHz, t∗ = 6.493 f = 300 kHz, t∗ = 5.580 f = 350 kHz, t∗ = 4.921

Figure 2.18: The bubble shapes at the end of the bubble lifetime at γ = 3.75, f = 250,
300, 350 kHz, and the rest of the parameters are the same as in the case shown in figure
2.3.
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R0

t∗

(a)

vjet∗

t∗

(b)

Figure 2.19: The histories of (a) the equivalent bubble radius R∗ and (b) jet velocity vjet∗
for the cases shown in figure 2.18.

2.4.5 Effects of the initial location φ0 of the bubble in the acous-

tic field

Four different initial phases φ0 = 0, π/2, π, 3π/2 are investigated for the case shown in

figure 2.8. At φ0 = 3π/2, a jet forms but disappears close the ends of the first and second

collapses, and a wide jet forms at the end of the third collapse as shown in the figure

2.20. In the other three cases, the jet forms at the end of the first collapse phase. The jet

direction does not change significantly with the initial phase.

φ0 = 0, t∗ = 5.580 φ0 = π/2, t∗ = 7.330 φ0 = π, t∗ = 9.201 φ0 = 3π/2, t∗ = 12.516

Figure 2.20: The bubble shapes at the end of the bubble lifetime at γ = 3.75 with the
initial phase φ0 = 0, π/2, π, 3π/2, and the rest of the parameters are the same as in the
case shown in figure 2.3.
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2.5 Energy of the bubble system

The energy of a bubble system consists of the potential energy and kinetic energy, which

remains as a constant when the surrounding liquid is incompressible and inviscid and the

bubble system is not subject to an acoustic wave.

The potential energy in the liquid is equal to the work done on the liquid as the bubble

with an constant vapour pressure pv expands infinitely slowly against the ambient pressure

p∞ and the surface tension from zero volume (zero potential energy) to the volume V ,

EpL =

∫ V

0

(p0 − pv + σ∇ · n) dV. (2.5.1)

The potential energy in the bubble gas is produced by infinitely slow, adiabatic compression

from infinite volume (zero potential energy) to volume V ,

EpG = −
∫ V

∞
pgdV = −

∫ V

∞
pg0

(
V0
V

)κ
dV. (2.5.2)

The total potential can be obtained as follows,

Ep = EpL + EpG =
pg0V0
κ− 1

(
V0
V

)κ−1
+ σS + V (p0 − Pv), (2.5.3)

where S is the bubble surface area. The potential energy can be added to an arbitrary

constant, since only the variation of the potential has physical meaning. If we choose the

initial potential energy as the value zero, we have

Ep =
pg0V0
κ− 1

((
V0
V

)κ−1
− 1

)
+ σ (S − S0) + (V − V0) (p0 − pv) , (2.5.4)

where S0 is the initial bubble surface area. The dimensionless form of the potential energy
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is,

Ep∗ =
εV0∗
κ− 1

((
V0∗
V∗

)κ−1
− 1

)
+ σ∗ (S∗ − S0∗) + (V∗ − V0∗) . (2.5.5)

The kinetic energy for the liquid flow field is given as,

Ek∗ =
1

2

∫
Sb

ϕ∗
∂ϕ∗
∂n

ds. (2.5.6)

We have neglected the kinetic energy for the gas flow within the bubble, since the density

of bubble gases is usually three orders of magnitude smaller than the liquid.

Figure 2.21 shows the history of the energy of the bubble system versus the equivalent

bubble radius history for the acoustic bubble shown in figures 2.7-2.9. The bubble energy

varies with time unlike being constant when not subject to an acoustic wave; this is due

to the energy transfer between the bubble system and the acoustic wave. The bubble

system absorbs the energy from the ultrasound and tranforms the uniform momentum of

the ultrasound parallel to the wall to the highly concentrated momentum of a high-speed

liquid jet pointing to the wall. This mechanism is assocated with applications to ultrasonic

cleaning, sonochemistry and ultrasound therapeutics as illustrated in the introduction.

Figure 2.21: The histories of the energy E∗ of the bubble system and the equivalent bubble
radius R∗ for the bubble near rigid wall for the case shown in figures 2.7-2.9 for a bubble
at at γ = 0.75, 3.75, 11.25 respectively.
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2.6 Chapter summary

Dynamics of cavitation microbubbles due to high intensity ultrasound are associated with

important applications in biomedical ultrasound, ultrasonic cleaning, and sonochemistry.

Previous numerical studies on this phenomenon were for an axisymmetric configuration.

In this chapter, a computational model is developed to simulate the three dimensional

dynamics of acoustic bubbles by using the boundary integral method. A bubble collapses

much more violently subjected to high intensity ultrasound than when under normal

constant ambient pressure. A few techniques are thus implemented to address the associated

numerical challenge. In particular, a high quality mesh of the bubble surface is maintained

by implementing a new hybrid approach of the Lagrangian method and elastic mesh

technique. It avoids the numerical instabilities which occur at a sharp jet surface as well

as generates a fine mesh needed at the jet surface. The model is validated against the

Rayleigh-Plesset equation and an axisymmetric model. We then explore microbubble

dynamics near a wall subjected to high intensity ultrasound propagating parallel to the

wall, where the Bjerknes forces due to the ultrasound and the wall are perpendicular to

each other. The bubble system absorbs the energy from the ultrasound and transforms

the uniform momentum of the ultrasound parallel to the wall to the highly concentrated

momentum of a high-speed liquid jet pointing to the wall. The liquid jet forms towards

the end of the collapse phase with a significantly higher speed than without the presence

of ultrasound. The jet direction depends mainly on the dimensionless standoff distance

γ = s/Rmax of the bubble from the wall, where s is the distance between the wall and

the bubble centre at inception and Rmax is the maximum bubble radius. The jet is

approximately directed to the wall when γ is 1.5 or smaller and rotates to the direction of

the ultrasound as γ increases. When γ is about 10 or larger, the wall effect is negligible

and the jet is along the acoustic wave direction.
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Chapter 3

Numerical modeling of the 3D

dynamics of ultrasound contrast

agent microbubbles using the

boundary integral method

3.1 Physical and mathematical model

Consider the dynamics of UCAs near an infinite rigid plane wall subject to ultrasound, as

shown in figure 3.1. A Cartesian coordinate system O − xyz is adopted with the origin

at the centre of the initial spherical UCA, the z-axis perpendicular to the wall and the

x-axis along the wave direction. The far-field pressure p∞ is thus modified to include a

sinusoidal term,

p∞(x, t) = p0 + pa sin(kx− ωt) (3.1.1)

where p0 is the hydrostatic pressure, x is the coordinate along the propagation direction of

the wave, t is time, and pa, k and ω are the pressure amplitude, wave number and angular
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frequency, respectively, of the acoustic wave.

x

y

z

Acoustic wave

s

pg

Encapsulated bubble

Rigid wall

ds

P1

P2

Figure 3.1: The configuration and coordinate system for an encapsulated microbubble
near a rigid wall subject to ultrasound propagating parallel to the wall.

The UCA is assumed to be filled with a noncondensible filling gas and diffusion across

the UCA surface is regarded as slow relative to the bubble dynamics and, thus, may be

neglected. From the ideal gas law, we can assume that the gas pressure inside the UCA

obeys a polytropic law, according to

pg = pg0

(
V0
V

)α
, (3.1.2)

where pg and pg0 are the instantaneous and initial gas pressure inside the UCA, respectively,

V and V0 are the instantaneous and initial bubble volumes, respectively, and α is the

polytropic coefficient. For isothermal behavior, α = 1, and for adiabatic behavior, α = κ,

where κ is the ratio of specific heats of the interior gas. Unless otherwise noted, we set κ

= 1.67 (argon) for the simulations presented here. The effects of κ on the dynamics are

investigated in Section 3.4.5. The bubble is assumed to be in a state of equilibrium prior

to the onset of the acoustic wave, which is applied instantly and continuously.

We assume that the fluid surrounding the bubble is inviscid, incompressible and the liquid

flow is irrotational. The fluid velocity v thus has a potential ϕ, v = ∇ϕ which satisfies

Laplace’s equation, ∇2ϕ = 0. Using Green’s second identity, the potential ϕ may be
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represented as a surface integral over the bubble surface Sb as follows,

c(r)ϕ(r) =

∫
Sb

(
∂ϕ(q)

∂n
G(r , q)− ϕ(q)

∂G(r , q)

∂n

)
dS(q), (3.1.3)

where r is the field point and q is the source point, c(r) is the solid angle and n is the

unit outward normal of the bubble surface Sb.

To satisfy the impermeable boundary condition on the wall, Green’s function is given as

follows,

G(r , q) =
1

|r − q |
+

1

|r − q́ |
, (3.1.4)

where q́ is the image of q reflected about the wall.

Hoff’s model [44] provides a normal stress difference ∆P = P2 − P1 (see figure 3.1) across

the shell for spherical coated bubbles, assuming the shell is a linear, incompressible,

viscoelastic solid,

∆P = 12Gs
dsR

2
10

R3
2

(
1− R10

R1

)
+ 12µs

dsR
2
10

R3
2

Ṙ1

R1

(3.1.5)

where R1 and R2 refer to the inner and outer radii of the spherical bubble, respectively, the

subscript 0 refers to the initial state, ds is the equilibrium shell thickness, and Gs and µs

are the shear modulus and shear viscosity of the shell, respectively. The overdot denotes

differentiation with respect to time. The shell is incompressible and the shell thickness

varies to keep the shell volume constant. The constraint of incompressibility is built into

the derivation of equation (3.1.5). For a thin shell, as assumed in this work, this constraint

is approximated by dsiR
2 = dsR

2
0, where dsi is the instantaneous shell thickness.

The UCA radius is about O(1 − 10) µm and the coating thickness is in the range of
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O(1-100) nm. We thus assume that the shell thickness ds is much less than the bubble

radius R (ds << R). The shell is assumed to be infinitesimally thin, thus, R = R1 = R2,

and (3.1.5) becomes,

∆P = 12
ds
R2

0

(
R0

R

)4 [
Gs(R−R0) + µsṘ

]
, (3.1.6)

where R and R0 are the instantaneous and initial bubble radii, respectively.

To adapt the Hoff model [44] to nonspherical bubbles, we treat ∆P as a local quantity

that varies along the bubble surface and replace the radius R with 1/(∇ · n) = Rc, where

∇·n is the local mean curvature and Rc is the radius of the curvature. To incorporate the

influence of ∆P on the bubble dynamics, we include it in the dynamic boundary condition

as follows,

pL = pg − σ∇ · n −∆P, (3.1.7)

where pL is the pressure of the flow on the bubble surface and σ is the surface tension.

Using Bernoulli’s equation along with the far-field pressure term in 3.1.1 and gas pressure

in the bubble 3.1.2, 3.1.7 can be written as,

Dϕ

Dt
=

1

2
|∇ϕ|2 +

1

ρ

(
−pg + p∞(x, t) +

2σ

Rc

+ ∆P

)
, (3.1.8)

where ρ is the liquid density. Equation (3.1.8) is applied locally at every node of the bubble

surface. We argue this simplified model can be used to approximate the essential effects of

the coating for the following reasons. An encapsulated bubble is usually approximately

spherical during most of its lifetime except for a very short period during the end of

collapse when the bubble becomes nonspherical. This model thus provides a good estimate

for the influence of the shell on the bubble, the asymmetric flow and pressure fields prior

to jet development. When liquid jetting starts, the large asymmetric momentum of the
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liquid flow and high pressure of the bubble gas are dominant effects; the elastic and viscous

effects of the thin coating should be secondary effects.

Several models aside from that of Hoff have been developed to describe the dynamics

of spherical, encapsulated microbubbles, perhaps most notably those by de Jong et al.

[27, 26, 23, 24], Church [19], and Sarkar et al. [100]. The Church model was derived

for shells of arbitrary thickness, whereas those by de Jong et al. and Sarkar et al. were

developed for shells of infinitesimal thickness. The Hoff model obtains from that of Church

when the shell thickness is much less than the outer radius, i.e., ds << R20. Both the

Hoff and Church models use properties of the bulk material, e.g., shear modulus and

shear viscosity, whereas those by de Jong et al. and Sarkar et al. use surface rheological

properties that include the surface dilatational viscosity and dilatational elasticity. Our

main interest is in describing the dynamics of thin-shell microbubbles due to their wider

applicability in diagnostic imaging and therapeutic applications. We choose the Hoff model

over that of Church due to its simplicity for the case of a thin shell. The Hoff model is

more applicable for polymer-coated microbubbles, whereas the de Jong et al. and Sarkar

et al. models are more applicable to lipid or surfactant coated microbubbles. However, the

elastic term in the de Jong et al. and Sarkar et al. models is only valid for small oscillations

[31]; the Hoff model is applicable to oscillations of arbitrary amplitude. Furthermore,

unlike the de Jong et al. and Sarkar et al. models, the Hoff model incorporates shell

softening, which reduces the influence of the shell as the bubble expands.

We choose the reference length R0 (initial radius of the bubble) and the reference pressure

p0 to introduce the following dimensionless quantities denoted by an asterisk (*),

r ∗ =
r

R0

, t∗ =
t

R0

√
p0
ρ
, ϕ∗ =

ϕ

R0

√
ρ

p0
, (3.1.9a)

ε =
pg0
p0
, σ∗ =

σ

R0p0
, (3.1.9b)
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pa∗ =
pa
p0
, ω∗ = ωR0

√
ρ

p0
, k∗ = R0k, (3.1.9c)

Gs∗ =
Gs

p0
, µs∗ =

µs
R0
√
ρp0

, ds∗ =
ds
R0

(3.1.9d)

The nondimensionalized kinematic and dynamic boundary conditions on the bubble surface

are,

Dr ∗
Dt∗

= ∇ϕ, (3.1.10a)

Dϕ∗
Dt∗

= 1 +
1

2
|∇ϕ∗|2 − ε

(
V0
V

)κ
+

2σ∗
Rc

+ pa∗ sin (k∗x∗ − ω∗t∗) + ∆P∗. (3.1.10b)

This equation incorporates the essential physics of the problem.

Following convention, the standoff distance is nondimensionalized with respect to the

maximum equivalent bubble radius,

γ =
s

Rmax

, (3.1.11)

where s is the distance between the wall and the bubble centre at inception (see figure

3.1), and Rmax is the maximum radius a bubble initially in equilibrium would attain in an

infinite ambient fluid subject to the imposed ultrasound.

We assume the flow is inviscid potential based on the following reasons: (i) a coated

microbubble is approximately spherical during most of lifetime due to surface tension and

the elastic stress of the coating. It may become nonspherical during a very short period

at the end of collapse when the inertial effects are dominant and the viscous effects are

negligible. (ii) The Reynolds number Re for the liquid flow associated with microbubble

dynamics appears large [76, 106]. As Re is high we assume that the flow is dominated

by inertia in the bulk with viscous effects being non-negligible only within a thin viscous

boundary layer near the bubble [10, 72]. (iii) The fluid viscous shear stress on the coating
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at O(µl ω) = O(102 − 104) Pa is small compared to the elastic stress of the coating in the

tangent plane at O(Gsδ
−1ε) = O(106 − 107) Pa, as fluid viscosity µl = 10−3 Pa s, R0 = 2 -

10 µm, ω = O(105 − 107) and Gs = 0.1 - 0.9 N/m, assuming the strain of the coating ε is

O(10−1) [76, 106].

3.2 Validation for spherical oscillations

Properties of microbubbles, such as their radii, shell thickness and elasticity vary signifi-

cantly among various types of UCAs. In this work, we consider coated microbubbles with

initial radius R0= 4.5 µm, a typical size of UCAs [102]. We fix the shear modulus Gs =

10 MPa, and use three different values of shell thickness and shell viscosity: ds = 10, 15,

20 nm, and µs = 0.0, 0.2, 0.4 Pa s. As an example, thin-shell protein contrast agents (e.g.,

Albunexr) have a shell thickness of about 15 nm. For an experimental contrast agent

with a polymer-coating from Nycomed (mean diameter ∼6 µm and shell thickness ∼5% of

the particle radius), Hoff et al. [45] reported a shear modulus of 10.6 - 12.9 MPa and a

shell viscosity of 0.39 - 0.49 Pa s. To validate this model for the restricted case of spherical

oscillation of a coated bubble, the results were compared to the modified Rayleigh-Plesset

equation used by [45] that accounts for the elastic and viscous effects of the shell. Using

the present notation, this equation is given by,

ρ

(
RR̈ +

3

2
Ṙ

)
= pg0

(
R0

R

)3κ

− p∞(x, t)− 12µs
dsR

2
0

R3

Ṙ

R
− 12Gs

dsR
2
0

R3

(
1− R0

R

)
. (3.2.1)

Note that the terms for the liquid viscosity and time derivative of the liquid pressure are

neglected in the above equation, as we assume an inviscid and incompressible liquid.

Figure 3.2 shows comparisons of the bubble radius time history for a coated and uncoated

bubble as determined from the 3D BIM model and modified Rayleigh-Plesset equation.
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The parameters for the case are R0 = 4.5 µm, f = 300 kHz, pa∗ = 0.8, Gs = 10.0 MPa,

ds = 15 nm, and µs = 0. We chose M = 720 elements on the bubble surface. The

stiffening effects of the shell are evident and reduce the amplitude and period of the bubble

oscillation. The BIM model agrees well with the Rayleigh-Plesset equation for both of

the coated and uncoated bubbles for the first and second cycles of oscillation. After the

second cycle, the uncoated BIM model starts to deviate obviously from the spherical

bubble theory, since the bubble becomes nonspherical in the simulation.

R∗

t∗

Figure 3.2: Comparisons of the bubble radius time history for a coated and uncoated
bubble as determined from the BIM model and modified Rayleigh-Plesset equation. The
parameters used for the both cases are κ = 1.67, σ = 0.073 N/m, ε = 1 + 2σ∗, p0 = 101.3
kPa, ρ = 999 kg/m3, R0 = 4.5 µm, f = 300 kHz,and pa∗ = 0.8. With shell Gs = 10.0
MPa, ds = 15 nm, µs = 0 and without shell ds =0.

3.3 Coated bubble dynamics in an infinite fluid

Consider a coated bubble in an infinite fluid subject to ultrasound, with the pressure

amplitudes pa∗ = 1.6, 1.8, 2.0 and the remaining parameters the same as in figure 3.2. The

coated bubble shapes for three cases are shown in figures 3.3, 3.4, and 3.5, respectively,

in which the ultrasound propagates from left to right. In each case, the bubble expands

spherically (figure 3.3a, 3.4a, 3.5a). The bubble surface distal from the source of the

traveling wave becomes slightly flattened towards the end of collapse for pa∗ = 1.6 (figures
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3.3b, 3.3c). For pa∗=1.8, a jet develops on the proximal surface near the end of collapse

(figure 3.4b), but disappears gradually during the subsequent rebound (figure 3.4c). For

pa∗ = 2.0, a high speed liquid jet forms along the direction of ultrasound propagation near

the end of collapse (figure 3.5c), which subsequently impacts the opposite bubble surface.

The moment of jet impact is conventionally termed the end of collapse. In reality, the

bubble continues to collapse in a toroidal form after jet impact, when the flow domain

becomes doubly-connected. Toroidal bubbles are out of the scope of the present chapter.

The doubly-connected domain can be made singly-connected by using a vortex sheet

[134, 133] or a branch cut [2]. Wang, et al. [125, 126] developed a vortex ring model for

the topological transition of a bubble and the subsequent toroidal bubble.

(a) t∗ = 3.41 (b) t∗ = 4.7 (c) t∗ = 5.2

Figure 3.3: Coated bubble dynamics in an infinite fluid subject to an ultrasound pressure
amplitude of pa∗ = 1.6 with the remaining parameters the same as in figure 3.2. The
direction of ultrasound propagation is from left to right. The bubble shapes are shown at
(a) first maximum volume, (b) first minimum volume, and (c) second maximum volume.
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(a) t∗ = 3.72 (b) t∗ = 5.05 (c) t∗ = 5.38

Figure 3.4: Coated bubble dynamics in an infinite fluid subject to an acoustic pressure
amplitude of pa∗ = 1.8 with the remaining parameters the same as in figure 3.2. The
direction of ultrasound propagation is from left to right. The bubble shapes are shown at
(a) first maximum volume, (b) first minimum volume and (c) second maximum volume.

(a) t∗ = 3.9 (b) t∗ = 5.34

Figure 3.5: Coated bubble dynamics in an infinite fluid subject to an acoustic pressure
amplitude of pa∗ = 2.0 with the remaining parameters the same as in figure 3.2. The
direction of ultrasound propagation is from left to right. The bubble shapes are shown at
(a) maximum volume and (b) the end of collapse.

For bubbles in an infinite liquid, Figure 3.6 shows the corresponding uncoated bubble

shapes at the end of collapse subject to ultrasound pressure amplitudes of pa∗= 1.6, 1.8,

2.0 with the remaining parameters the same as in figures 3.3, 3.4, and 3.5. For all three

uncoated bubble cases, a bubble jet forms at the end of collapse. The threshold of acoustic

pressure amplitude necessary for bubble jetting increases with the bubble coating. A

comparison of figures 3.5b and 3.6c shows that the bubble jet is much sharper for a coated

bubble.
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(a) t∗ = 5.52 (b) t∗ = 5.75 (c) t∗ = 5.95

Figure 3.6: Uncoated bubble shapes at the end of collapse in an infinite fluid subject to
ultrasound for acoustic pressure amplitudes of (a) pa∗ = 1.6, (b) pa∗ = 1.8, and (c) pa∗ =
2.0. The remaining parameters are the same as in figure 3.2 except that Gs = 0 and ds =
0 to negate the effect of the shell. The direction of ultrasound propagation is from left to
right.

3.4 Coated bubble dynamics near a wall subject to

an acoustic wave parallel to the wall

3.4.1 The effect of standoff distance

In this section, we study microbubble dynamics near a rigid wall subject to ultrasound

propagating parallel to the wall. To study the effects of the standoff distance of the bubble

from the wall, we consider three cases at γ = 0.75, 3.75 and 11.25, respectively, for pa∗ =

2.0, with the remaining parameters the same as in figure 3.2. For the case γ = 11.25, the

bubble remains spherical for most of its lifetime, however, a high-speed liquid jet develops

in the direction of the wave at the last stage of the collapse, as shown in figure 3.7. This

case is similar to that of a bubble in an infinite fluid (figure 3.5).

Figure 3.8 shows the bubble shapes at typical times for the case γ = 3.75. The bubble

again remains approximately spherical during the expansion and collapse phases except

for a high-speed liquid jet that develops rapidly towards the end of the collapse phase.

However, the jet is along the bisector of the angle between the perpendicular primary and
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(a) t∗ = 5.34 (b) t∗ = 5.36

Figure 3.7: Jet development of a coated bubble far from a wall subject to ultrasound
propagating parallel to the wall for γ = 11.25, pa∗ = 2.0 with the remaining parameters
the same as in figure 3.2.

secondary Bjerknes forces that are due to the acoustic wave and the wall, respectively

(figures 3.8c, d).

The bubble shapes for γ = 0.75 at typical times are shown in figure 3.9. The bubble surface

proximal to the wall is slightly flattened due to the wall, causing a nonspherical shape

during the last stage of the expansion (figure 3.9b). The bubble collapses nonspherically

and a large liquid jet develops on the distal side of the bubble directed towards the wall.

The jet development time is only 0.4% of the oscillation period for the cases γ = 3.75 and

11.25, but is 0.9% for the case γ = 0.75.

Figures 3.10a, 3.10b and 3.10c show the bubble shapes at the end of collapse for a

corresponding uncoated bubble with the same parameters as the previous cases shown in

figures 3.7, 3.8 and 3.9 respectively. The jets are flatter and wider relative to the bubble

size, and the bubble volumes at the end of collapse are smaller for uncoated bubbles

compared to coated bubbles.
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(a) t∗ = 0.0 (b) t∗ = 4.0

(c) t∗ = 5.37 (d) t∗ = 5.39

Figure 3.8: Coated bubble dynamics near a wall subject to ultrasound propagating parallel
to the wall for γ = 3.75, pa∗ = 2.0 with the remaining parameters the same as in figure 3.2.
The bubble shapes are shown during the expansion phase (a-b) and collapse phase (b-d).
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(a) t∗ = 0.0

���
���

�:
Rigid wall

(b) t∗ = 4.0

XXX
XXX

XXy

(c) t∗ = 5.37 (d) t∗ = 5.41

Figure 3.9: Coated bubble dynamics near a wall subject to ultrasound propagating parallel
to the wall for γ = 0.75, pa∗ = 2.0 with the remaining parameters the same as in figure 3.2.
The bubble shapes are shown during the expansion phase (a-b) and collapse phase (b-d).

(a) t∗ = 5.98 (b) t∗ = 6.01 (c) t∗ = 6.05

Figure 3.10: Jet shapes at jet impact for an uncoated bubble near a wall for (a) γ = 11.25,
(b) γ = 3.75 and (c) γ = 0.75, corresponding to the cases shown in figures 3.7, 3.8 and 3.9,
respectively
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Some global dimensionless quantities are compared in table 3.1 for the coated and uncoated

bubble cases shown in figures 3.7 - 3.10 including the maximum value Rmax∗ of the equivalent

bubble radius Req∗ = 3

√
3
4π
V∗ , the oscillation period Tc∗, the jet angle θj, and the angle

θK and amplitude IK∗ of the Kelvin impulse at jet impact. Here θj and θK are measured

relative to the horizontal x-axis in the counterclockwise (positive) direction. For both

coated and uncoated bubbles, the maximum equivalent radius Rmax∗ increases with the

dimensionless standoff distance γ, while the oscillation period Tc∗ and Kelvin impulse

amplitude IK∗ decrease with γ. The Kelvin impulse angles at jet impact are about the

same as the jet directions for all the cases.

The jet direction does not change significantly due to the existence of a bubble coating.

For the bubble with and without a coating, the jet is directed approximately towards the

wall at γ = 0.75 (θj ≈ −86◦), rotates counterclockwise towards the direction of ultrasound

propagation with increasing dimensionless standoff distance γ, and is approximately along

the ultrasound direction (θj ≈ −4◦) for γ = 11.25.

Figure 3.11a, compares the jet velocities history vjet∗ for bubbles with and without a

coating near a rigid wall for the cases shown in figures 3.7 - 3.10 at various values of γ.

For both cases, the jet velocity increases with γ, but increases more significantly for an

uncoated bubble. The jet velocity, however, reduces significantly due to the existence of

a coating. The maximum Mach number at the jet tip reaches 0.8 and is larger than 0.1

γ
Coated Uncoated

Rmax∗ Tc∗ θj θK IK∗ Rmax∗ Tc∗ θj θK IK∗
0.75 2.17 5.42 −86◦ −86◦ 3.4 2.68 6.05 −86◦ −86◦ 5.7

3.75 2.31 5.39 −40◦ −40◦ 1.2 2.86 6.01 −42◦ −43◦ 2.35

11.25 2.35 5.36 −4◦ −5◦ 0.98 2.91 5.98 −7◦ −6◦ 1.92

Table 3.1: The maximum equivalent radius Rmax∗, bubble lifetime Tc∗, jet direction θj,
and angle θK and amplitude IK∗ of the Kelvin impulse at jet impact for the cases shown
in figures 3.7 - 3.10. Here θj and θK are measured relative to the horizontal x-axis in the
counterclockwise (positive) direction.
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(a) (b)

Figure 3.11: (a) Jet velocity vjet∗ versus time t∗ for bubbles with and without a coating for
the cases shown in figures 3.7 - 3.10 with dimensionless standoff distances γ = 0.75, 3.75,
and 11.25. (b) The histories of the average Mach number Mmean and the Mach number of
the jet Mjet for the uncoated case at γ = 11.25.

for about 0.07% of the oscillation period (figure 3.11b), assume the speed of sound in

water is 1500 ms−1. The average Mach number over the bubble surface is small for bubble

dynamics subject to ultrasound [121]. Consequently, the compressible effects should be

insignificant.

3.4.2 The effect of shell thickness

Three different shell thicknesses, ds = 10, 15, and 20 nm, are examined for two initial

standoff distances, γ = 3.75 and 0.75, under ultrasonic forcing with amplitude pa∗ = 2.2

and the remaining parameters the same as in figure 3.2.

Figure 3.12 shows the jet shapes at the end of collapse for the coated bubble near a rigid

wall for γ = 3.75, pa∗= 2.2 and various shell thicknesses. As the shell thickness increases,

the jet direction does not change appreciably but the jet becomes sharper and the bubble

volume at the end of the collapse increases. The direction of the Kelvin impulse θK is very

similar to the jet direction θj at jet impact.

Figure 3.13 shows the time history of the equivalent bubble radius Req∗, jet velocity and

centroid motion for the cases shown in figure 3.12. The expansion phase takes more than
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(a) θj = −40◦, θK = −40◦ (b) θj = −39◦, θK = −40◦ (c) θj = −38◦, θK = −39◦

Figure 3.12: Jet shapes at jet impact for a coated bubble near a rigid wall for γ = 3.75,
pa∗ = 2.2 and shell thickness (a) ds = 10 nm, (b) ds = 15 nm, and (c) ds = 20 nm. The
remaining parameters are the same as in figure 3.2.

two thirds of the oscillation period and the maximum volume reduces about 13% as ds is

increased from 10 nm to 20 nm (figure 3.13a). The bubble wall velocity does not exceed 6

m s−1 until a high-speed liquid jet forms, at which time it increases rapidly. The maximum

jet velocities are 920, 830, and 640 m s−1 for ds = 10, 15, and 20 nm, respectively, so that

the maximum jet velocity is reduced about 30% as ds is increased from 10 to 20 nm (figure

3.13b). The x- and z-components of the centroid movement are approximately equal in

quantity since the primary and secondary Bjerknes forces due to the acoustic wave and

wall, respectively, are comparable in amplitude for this case (figures 3.13c, d). There is

no centroid movement along the y-axis as the bubble is symmetric with respect to the

zx-plane. In the expansion phase, the bubble moves slightly away from the wall and in

the direction opposite the wave propagation direction, but it moves rapidly towards the

rigid wall and along the wave propagation direction during the collapse phase. The bubble

migration along both axes decreases with the shell thickness ds.
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t∗

zc∗

(d)

Figure 3.13: Time histories of (a) equivalent bubble radius Req∗, (b) jet velocity vjet∗, (c)
x-component of the centroid xc∗, and (d) z-component of the centroid zc∗, for the cases
shown in figure 3.12.

The corresponding results for various thicknesses for γ = 0.75 are shown in figures 3.14 and

3.15. The jet direction and bubble shape do not change appreciably with ds but the jet

becomes slightly sharper with increasing ds (figure 3.14). The expansion phase again takes

more than two-thirds of the oscillation period and the maximum volume reduces with ds

in a similar manner as the case for γ = 3.75 (figure 3.15a). The bubble wall velocity does

not exceed 2 m s−1 until a high-speed liquid jet forms that achieves a maximum velocity

of ∼330 m s−1 (figure 3.15b). The maximum jet velocities are 337, 329, and 315, m s−1 for

ds = 10, 15, and 20 nm, respectively, which represents a ∼7% decrease as ds is increased

from 10 nm to 20 nm (figure 3.15b). The centroid movement along the z-axis is much

larger than along the x-axis due to the strong wall attraction in this case (figures 3.15c, d).

In the expansion phase, the bubble moves slightly away from the wall and in the direction
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opposite the wave propagation direction, but it moves rapidly towards the rigid wall and

along the wave propagation direction during the collapse phase.

(a)θj = −85◦, θK = −85◦ (b)θj = −84◦, θK = −85◦ (c)θj = −85◦, θK = −85◦

Figure 3.14: Jet shapes at jet impact for a coated bubble near a wall for γ= 0.75, pa∗ = 2.2
and shell thickness (a) ds = 10 nm, (b) ds = 15 nm, and (c) ds = 20 nm. The remaining
parameters are the same as in 3.2

t∗

Req∗

(a)

t∗

vjet∗

(b)

t∗

xc∗

(c)

t∗

zc∗

(d)

Figure 3.15: Time histories of (a) equivalent bubble radius Req∗, (b) jet velocity vjet∗, (c)
x-component of the centroid xc∗, and (d) z-component of the centroid zc∗, for the cases
shown in figure 3.14.
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3.4.3 The effect of shell viscosity

Figures 3.16 and 3.17 show the bubble shapes at the end of collapse for the cases γ = 3.75

and 0.75, respectively, and various shell viscosities, µs = 0.0, 0.2, and 0.4 Pa · s, subject

to ultrasound with pa∗ = 2.2. The remaining parameters are the same as in figure 3.2.

The jet direction does not change significantly with increasing µs while the jet becomes

sharper. At jet impact, the jet direction θj is approximately along the Kelvin impulse

direction θK and the bubble volume increases with µs for γ= 3.75 (figure 3.16). However,

when the bubble is very near the wall with γ= 0.75, the jet shape and direction, and the

bubble shape at the end of collapse do not change significantly with µs (figure 3.17).

(a)θj = −39◦, θK = −40◦ (b)θj = −39◦, θK = −40◦ (c)θj = −39◦, θK = −40◦

Figure 3.16: Jet shapes at jet impact for a coated bubble near a rigid wall for γ = 3.75,
pa∗ = 2.2 and shell viscosity (a) µs = 0.0 Pa · s, (b) µs = 0.2 Pa · s, and (c) µs = 0.4 Pa ·
s. The remaining parameters are the same as in figure 3.2.

(a)θj = −85◦, θK = −85◦ (b)θj = −84◦, θK = −85◦ (c)θj = −85◦, θK = −85◦

Figure 3.17: Jet shapes at jet impact for a coated bubble near a rigid wall for γ = 0.75,
pa∗ = 2.2 and shell viscosity (a) µs = 0.0 Pa · s, (b) µs = 0.2 Pa · s, and (c) µs = 0.4 Pa ·
s. The remaining parameters are the same as in figure 3.2.
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Figure 3.18: Time histories of (a) equivalent bubble radius Req∗, (b) jet velocity vjet∗, (c)
x-component of the centroid xc∗, and (d) z-component of the centroid zc∗, for the cases
shown in figure 3.16.

Figures 3.18 and 3.19 show the time histories of the equivalent bubble radius, jet velocity,

and centroid movement of the bubble for the cases shown in figures 3.16 and 3.17,

respectively. In both cases, the bubble volume and centroid movement are not sensitive to

the shell viscosity µs. The jet velocity does not change considerably for γ = 0.75 (figure

3.19b), but decreases ∼30% as µs is increased from 0 to 0.4 Pa s for γ = 3.75 (figure

3.18b).
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Figure 3.19: Time histories of (a) equivalent bubble radius Req∗, (b) jet velocity vjet∗, (c)
x-component of the centroid xc∗, and (d) z-component of the centroid zc∗, for the cases
shown in figure 3.17.
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3.4.4 The liquid viscosity effects in the coated bubble

In the theory of viscous potential flow (VPF) [51, 131], viscous effects are calculated by

including the viscous stresses on irrotational flows. The normal stress balance on the

bubble surface (3.1.7), considering the surface tension and normal viscous stress, is given

as follows:

pL = pg − σ∇ · n + 2µ
∂2ϕ

∂n2
−∆P. (3.4.1)

The dimensionless dynamic boundary condition on the bubble surface in 3.1.10b is written

as follows:

Dϕ∗
Dt∗

= 1 +
1

2
|∇ϕ∗|2 − ε

(
V0
V

)κ
+

2σ∗
Rc

− 2

Re

∂2ϕ∗
∂n2

+ pa∗ sin (k∗x∗ − ω∗t∗) + ∆P∗,

(3.4.2)

where Re = R0
√
p0ρ/µl. The term ∂2ϕ

∂n2 can be calculated as follows:

∂2ϕ

∂n2
= n · ∇ϕn = n · ∂

∂n
∇ϕ = nx

∂ϕx
∂n

+ ny
∂ϕy
∂n

+ nz
∂ϕz
∂n

, (3.4.3)

where (nx, ny, nz) are the components of the unit normal vector. ϕx, ϕy, and ϕz satisfy

Laplace’s equation since ϕ satisfies Laplace’s equation. They thus satisfy the boundary

integral equation (3.1.3). As a result, we can replace ϕ in (3.1.3) by ϕx, ϕy, and ϕz to

formulate the boundary integral equations to find the terms ∂ϕx/∂n, ∂ϕy/∂n and ∂ϕz/∂n,

respectively. Subsequently, ∂ϕ2/∂n2 is calculated from (3.4.3).

Figure 3.20a and 3.20b compares the bubble shapes at the moment of jet impact at Re=45,

∞, i.e., with and without viscous effects respectively. The bubble jet becomes sharper

with the viscous effects however the jet direction does not change significantly. Figure
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3.21 compares the time histories of the corresponding jet velocities for the two cases. The

maximum jet velocity reduces about 18% due to the viscous effects and the oscillation

period reduces about 5%.

(a) t∗=5.173 (a) t∗=5.173

Figure 3.20: Coated bubble dynamics near a wall subject to ultrasound propagating
parallel to the wall for γ = 0.75, pa∗ = 2.0 with the remaining parameters the same as in
figure 3.2. The bubble shapes are shown at the end of the collapse phase by considering
fluid viscosity with (a) Re=45, (b) Re =∞.

Figure 3.21: Jet velocity vjet∗ versus time t∗ for the cases shown in figures 3.20.

3.4.5 The effect of the Heat Capacity Ratio, κ

In this section, we explore the effect of varying the heat capacity ratio, κ, of the noncon-

densable interior gas. All prior simulations assumed κ = 1.667, the value for argon. Here,

we examine three additional values, κ = 1.4, 1.25, and 1.08, which correspond respectively

to air, TNT [20], and tetrafluorocarbon, a gas used in some UCAs.
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(a) t∗=5.46

γ=11.25

(b) t∗=5.46 (c) t∗=5.46

(a) t∗=5.46

γ=3.75

(b) t∗=5.46 (c) t∗=5.46

(a) t∗=5.46

γ=0.75

(b) t∗=5.46 (c) t∗=5.46

Figure 3.22: Jet shapes for the bubble near a rigid wall for γ = 0.75, 3.75, and 11.25
and ratio of specific heats (a) κ = 1.4, (b) κ = 1.25, and (c) κ = 1.08. The remaining
parameters are the same as in figure 3.7, 3.8 and 3.9.

Figure 3.22 depicts bubble shapes at the end of the collapse phase for three heat capacity

ratios, κ = 1.4, 1.25, and 1.08, and for different values of γ corresponding to the cases in

figures 3.7, 3.8, and 3.9. The jet direction and bubble shapes do not change appreciably

with κ, but the jet becomes stronger and wider as κ is reduced, particularly for the cases γ
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= 3.75 and 11.25. In some cases, the code breaks down before the jet impacts the opposite

side of the bubble as the jet is strong and highly unstable.

Figure 3.23, shows the maximum equivalent bubble radius, Rmax∗, and maximum jet

velocity, Mvjet∗, for the cases shown in figure 3.7, 3.8, 3.9 and 3.22. In all cases, these

quantities decrease with increasing κ. The decrease in Rmax∗ is approximately constant

and about 10% over the range of κ considered, for all γ. However, the decrease in Mvjet∗

over this range increases significantly with γ.

κ

Rmax∗

(a)

κ

Mvjet∗

(b)

Figure 3.23: The ratio of specific heat κ versus, (a) Maximum equivalent bubble radius
Rmax∗, (b) Maximum jet velocity Mvjet∗ for the γ=0.75, 3.75 and 11.25.
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3.5 Coated bubble dynamics near a wall subject to

an acoustic wave perpendicular to the wall

When the wave propagates perpendicular to a wall, a standing wave is generated if all of

the acoustic energy is reflected from the wall, as assumed here for convenience. A standing

wave oriented perpendicular to the rigid wall (along the z-axis) is described as,

p∞(z∗, t∗) = 1 + pa∗ cos (k∗(z∗ + γ)) sin(w∗t∗ + φ0) (3.5.1)

Here, we choose pa∗ = 2.2 for calculations in this section. Parametric studies are carried

out in terms of the dimensionless standoff distance from a rigid boundary γ, membrane

thickness ds and shell viscosity µs.

3.5.1 Effect of standoff distance γ

Figure 3.24 shows the shapes for a coated bubbles with µs = 0.2 Pa s, ds = 15 nm, Gs

= 10 MPa, φ0 = π, and pa∗ = 2.2, at various standoff distance γ = 0.75, 1.5 and 3.0,

respectively. The rest parameters are the same as in the case shown in figure reffigch2.3.

As the bubble collapses nearer to the boundary, the jet forms early and is wider, because

of the stronger Bjerknes force involved. As a result, the bubble volume at the time of

liquid jet impact decreases with the standoff distance.

Figure 3.25 shows time histories of the global quantities for the above three cases. As

shown in figure 3.25a, the expansion phase takes more than two thirds of the oscillation

period. The maximum value of the equivalent bubble radius Req∗ increases with the

standoff distance (figure 3.25a). As a result, more energy is absorbed from the acoustic

wave as the bubble collapses further from the boundary (figure 3.25b). The maximum jet
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(a) t∗=5.638 (b) t∗=5.634 (c) t∗=5.631

Figure 3.24: Bubble shapes at jet impact for a coated bubble near a wall in a standing
wave for (a) γ = 0.75, (b) γ = 1.5, and (c) γ = 3.0. The parameters for these cases are
pa∗ = 2.2, Gs = 10 MPa, ds = 15 nm, µs = 0.2 Pa-s, and φ = π.

velocity also increases with the standoff distance (figure 3.25d). However, the centroid

movement along the z-axis zc∗ (figure 3.25c) increases as the bubble collapses nearer to

the wall.

(a) (b)

(c) (d)

Figure 3.25: Time histories of (a) equivalent bubble radius Req∗, (b) energy of the bubble
system E∗, (c) z-component of the centroid zc∗, and (d) jet velocity vjet∗ for the cases
shown in figure 3.24.
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3.5.2 Effect of shell thickness

Figure 3.26 shows bubble shapes at the time of jet impact for a bubble initiated at γ =

3.0 for three different shell thicknesses, ds = 0.0, 5.0, and 10.0 nm, and the remaining

parameters the same as in figure 3.24. (Note that a bubble with zero shell thickness is

equivalent to a bubble without a shell.) The jet is wider for the smaller coating thickness.

(a) t∗=6.221 (b) t∗=6.040 (c) t∗=5.844

Figure 3.26: Bubble shapes at jet impact for a coated bubble near a wall in a standing
wave for γ = 3.0 and shell thickness (a) ds = 0.0 nm, (b) ds = 5.0 nm, and (c) ds = 10.0
nm, and the remaining parameters the same as in figure 3.24.

Figure 3.27 shows time histories of the global quantities for the cases shown in figure 3.26

and figure 3.24c. The maximum equivalent bubble radius decreases about 17% as shell

thickness is increased from 0.0 to 15 nm (figure 3.27a). As shell thickness is increased, the

oscillation amplitude reduces and the bubble absorbs less energy from the acoustic wave

(figure 3.27b), migrates less to the boundary (figure 3.27c), and lower jet velocity (figure

3.27d).

73



(a) (b)

(c)
(d)

Figure 3.27: Time histories of (a) equivalent bubble radius Req∗, (b) energy of the bubble
system E∗, (c)z-component of the centroid zc∗, and (d)jet velocity vjet∗, for the cases shown
in figure 3.26 and 3.24c.

3.5.3 Effect of shell viscosity

Figure 3.28 shows bubble shapes at the time of jet impact for a bubble initiated at γ =

3.0 for two different shell viscosities, µs = 0.0 and 0.4 Pa s, and the remaining parameters

the same as in figure 3.24. The bubble volume at the time of jet impact increases with

shell viscosity while the jet becomes sharper.

Figure 3.29 shows time histories of the energy of the bubble system and the jet velocity for

the cases shown in figures 3.28 and 3.24c. The results show that the maximum energy of

the bubble system decreases about 10% and the jet velocity at the impact time decreases

about 23%, when the shell viscosity increases from 0.0 to 0.4 Pa s. Our results (not

included here) also show that the equivalent bubble radius, the centroid movement along

the z-axis and the Kelvin impulse do not change significantly with the shell viscosity.
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(a) t∗=5.650

x∗

(b) t∗=5.612

x∗
Figure 3.28: Bubble shapes at jet impact for a coated bubble near a wall in a standing
wave for γ= 3.0 and shell viscosity (a) µs = 0.0 Pa-s and (b) µs = 0.4 Pa-s, and the
remaining parameters the same as in figure 3.24.

(a) (b)

Figure 3.29: Time histories of (a) the energy of the bubble system E∗, and (b) the jet
velocity vjet∗, for the cases shown in figures 3.28 and 3.24c.

3.6 Chapter summary

Ultrasound contrast agents (UCAs) are microbubbles stabilized with a shell typically of

lipid, polymer or protein and are emerging as a unique tool for noninvasive therapies

ranging from gene delivery to tumor ablation. While various models have been developed

to describe the spherical oscillations of contrast agents, the treatment of nonspherical

behavior has received less attention. However, the nonspherical dynamics of contrast

agents are thought to play an important role in therapeutic applications, for example,

enhancing the uptake of therapeutic agents across cell membranes and tissue interfaces,

and causing tissue ablation. In this chapter, a model for contrast agent dynamics based
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on the boundary integral method is described. The effects of the encapsulating shell are

approximated by adapting Hoff’s model for thin-shell contrast agents. A high-quality

mesh of the bubble surface is maintained by implementing a hybrid approach of the

Lagrangian method and elastic mesh technique. The numerical model agrees well with a

modified Rayleigh-Plesset equation for coated spherical bubbles. Numerical analyses for

the dynamics of UCAs in an infinite liquid and near a rigid wall are performed in parameter

regimes of clinical relevance. The oscillation amplitude and period reduce significantly due

to the coating. A bubble jet forms when the amplitude of ultrasound is sufficiently large,

as occurs for bubbles without a coating; however, the threshold amplitude required to

incite jetting increases due to the coating. When a UCA is near a rigid boundary subject

to acoustic forcing, the jet is directed towards the wall if the acoustic wave propagates

perpendicular to the boundary. When the acoustic wave propagates parallel to the rigid

boundary, the jet direction has components both along the wave direction and towards the

boundary that depend mainly on the dimensionless standoff distance of the bubble from

the boundary. The jet directions for the coated and uncoated bubble are similar but the

jet width and jet velocity are smaller for a coated bubble. The effects of shell thickness

and viscosity are analyzed and determined to affect the bubble dynamics, including jet

development.
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Chapter 4

Three dimensional acoustic

microbubble dynamics with viscous

effects

4.1 Physical and mathematical model

Consider the dynamics of a microbubble near an infinite rigid plane wall subject to

ultrasound, as shown in figure 2.1. A Cartesian coordinate system o− xyz is adopted with

the origin at the centre of the initial spherical bubble, the z-axis perpendicular to the wall

and the x-axis along the wave direction. The far-field pressure p∞ is thus modified to

include a sinusoidal term,

p∞(x, t) = p0 + pa sin(kx− ωt), (4.1.1)

where p0 is the hydrostatic pressure, x is the coordinate along the propagation direction of

the wave, t is time, and pa, k and ω are the pressure amplitude, wavenumber and angular

frequency of the acoustic wave, respectively.
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We assume that the pressure pb within the microbubble consists of the vapour pressure pv

which assumes it is fixed and small, and non-condensing gas pressure pg:

pb = pv + pg = pv + pg0

(
V0
V

)κ
, (4.1.2)

where pg0 is the initial gas pressure of the bubble, V0 is the initial bubble volume and κ is

the ratio of specific heats of the gas.

We assume that the fluid surrounding the bubble is incompressible and the flow is

irrotational. The fluid velocity v thus has a potential ϕ, v = ∇ϕ, which satisfies Laplace’s

equation, ∇2ϕ = 0. Using Green’s second identity the potential ϕ may be represented as

a surface integral over the bubble surface S as follows:

c(r)ϕ(r) =

∫
S

(
∂ϕ(q)

∂n
G(r , q)− ϕ(q)

∂G(r , q)

∂n

)
dS(q), (4.1.3)

where r is the field point and q is the source point, c(r) is the solid angle and n is the

unit outward normal of the bubble surface Sb directed from liquid to gas. To satisfy the

impermeable boundary condition on the wall, the Green function is given as follows,

G(r , q) =
1

|r − q |
+

1

|r − q́ |
, (4.1.4)

where q́ is the image of q reflected to the wall.

In the theory of viscous potential flow (VPF), viscous effects are calculated by including

the viscous stresses on irrotational flows. The normal stress balance on the bubble surface,

considering the surface tension and normal viscous stress, is given as follows:

pL + 2σ∇ · n − 2µ
∂2ϕ

∂n2
= pb, (4.1.5)
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where µ is viscosity of the liquid, pL is the liquid pressure on the bubble surface, σ is the

surface tension coefficient and ∇ · n is the local mean curvature of the bubble surface.

This is called the viscous potential flow solution (VPF) [51].

The tangential stress at the bubble surface should be zero as a result of the relatively low

viscosity of the gas inside the bubble. However, the shear stress due to the irrotational

velocity is non-zero. To resolve the above discrepancy a viscous pressure correction is

introduced at the free surface by [51], which perform the equal power between the liquid

to the gas. The power done by the liquid to the gas on a surface element dS on the free

surface due to the irrotational shear stress is dW = v τ · τs dS and the power done by the

pressure correction Pvc is dW = −vn Pvc dS. Thus we have,

−vn Pvc = v τ · τs. (4.1.6)

Joseph & Wang [51] introduced the pressure correction globally as follows,

∫
S

−vn Pvc dS =

∫
S

v τ · τs dS. (4.1.7)

This model is called the viscous correction of VPF (VCVPF) [51]. The computation results

in this chapter are based on VCVPF unless stated otherwise.

The relation (4.1.7) is not sufficient to calculate the viscous pressure correction Pvc at any

point on the bubble surface. Joseph & Wang [51] assumed that the viscous correction

pressure Pvc is proportional to the normal stress τn induced by the irrotational velocity,

Pvc = −Cτn = −2µC
∂2ϕ

∂n2
, (4.1.8)

where the constant C is unknown constant.
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To calculate normal stress τn, ∂2ϕ
∂n2 needed can be calculated as follows:

∂2ϕ

∂n2
= n · ∇ϕn = nx

∂ϕx
∂n

+ ny
∂ϕy
∂n

+ nz
∂ϕz
∂n

, (4.1.9)

where (nx, ny, nz) are the components of the unit normal vector. ϕx, ϕy, and ϕz satisfy

Laplace’s equation since ϕ satisfies Laplace’s equation. They thus satisfy the boundary

integration equation (4.1.3). As a result, we can replace ϕ in (4.1.3) by ϕx, ϕy, and ϕz to

formulate the boundary integral equations to find the terms ∂ϕx/∂n, ∂ϕy/∂n, and ∂ϕz/∂n

respectively. Subsequently, ∂2ϕ
∂n2 is calculated from (4.1.9).

It is inconvenient to calculate τs directly in a three dimensional problem to obtain Pvc

or C using (4.1.6) or (4.1.7). This is achieved indirectly by introducing that the rate of

energy dissipation D in the irrotational flow is equal to the power on the bubble surface

[131]

D =

∫
S

v · σ · n dS =

∫
S

vn τndS +

∫
S

v τ · τs dS = p1 + p2 = ptotal, (4.1.10)

where σ is stress tensor and p1, p2 and ptotal are the powers of normal stress, shear stress

and total power on the bubble surface respectively. Substituting (4.1.7) in (4.1.10)

D =

∫
S

vn τndS +

∫
S

−vn Pvc dS = ptotal. (4.1.11)

Substituting (4.1.8) in (4.1.11) yields,

D = (1 + C)

∫
S

vn τn dS = 2µ(1 + C)

∫
S

∂ϕ

∂n

∂2ϕ

∂n2
dS, (4.1.12)

where τn = 2µ ∂2ϕ/∂n2 is the normal viscous stress.
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On the other hand, the dissipation rate D can be approximated accurately in the surface

integral for the irrotational flow [63],

D ≈ µ

∫
S

∂

∂n
|u |2 dS

= 2µ

∫
S

(
ϕx
∂ϕx
∂n

+ ϕy
∂ϕy
∂n

+ ϕz
∂ϕz
∂n

)
dS (4.1.13)

Using (4.1.12) and (4.1.13), one can have the unknown C as follows:

C =

∫
S

(
ϕx
∂ϕx
∂n

+ ϕy
∂ϕy
∂n

+ ϕz
∂ϕz
∂n

)
dS∫

S

∂ϕ

∂n

∂2ϕ

∂n2
dS

− 1. (4.1.14)

The surface integrals of (4.1.14) are calculated by using the linear interpolation of ϕx,

ϕy, ϕz,∂ϕx/∂n, ∂ϕy/∂n, ∂ϕn/∂n and ∂2ϕ/∂n2 on each triangular element on the bubble

surface S.

With the pressure correction Pvc introduced, the normal stress balance on the bubble

surface in VCVPF becomes,

pL + Pvc + 2σκ− 2µ
∂2ϕ

∂n2
= pb, (4.1.15)

We choose the reference length R0 (initial radius of the bubble) and the reference pressure

∆p = p0 − pv. The dimensionless kinematic and dynamic boundary conditions on the

81



bubble surface are as follows:

dr ∗
dt∗

= ∇ϕ∗ (4.1.16a)

dϕ∗
dt∗

= 1 +
1

2
|∇ϕ∗|2 − ε

(
V0
V

)κ

− 2
∇ · n
We

− 2(1 + C)

Re

∂2ϕ∗
∂n2

+ pa∗ sin(k∗x∗ − ω∗t∗), (4.1.16b)

where the dimensionless variables are denoted with the subscript ’*’, the Reynolds number

Re and weber number We are defined as Re = R0

√
∆p ρ/µ, We = ∆pR0/σ, where ρ and

µ are density and viscosity of the liquid.

Following the convention the standoff distance is nondimensionalized with respect to the

maximum equivalent bubble radius Rmax,

γ =
s

Rmax

, (4.1.17)

where s is the distance from the bubble centre at inception to the wall (see figure 2.1).

4.2 Validations of the numerical model

4.2.1 Comparison with the Gilmore equation

We compare firstly with the spherical bubble theory for a spherical bubble oscillating in

an infinite fluid. The parameters for the case are chosen as R0 = 4.5 µm, ε = 100, p0

= 101.3 kPa, ρ = 999 kg/m3, κ = 1.67, σ = 0.073 N/m, and pa∗=0. A relatively small

value of Re=10 is chosen to see the viscous effects in terms of radial oscillation. Figure

4.1 compares the bubble radius time histories as determined from the BIM model and
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Gilmore equation (GE). The BIM model agrees excellently with the GE for the first six

cycles of oscillation. The amplitude and period of the oscillations decreases obviously

due to the viscous damping effects. The maximum radius decreases with cycles and the

minimum radius increase with cycles. The accumulation viscous effects are significant for

microbubbles in multiple cycles of oscillation.

t∗

Req∗

Figure 4.1: Comparison of the time histories of the bubble radius as determined from the
3D BIM model and Gilmore equation. The parameters used for the case are R0 = 4.5 µm,
ε = 100, p0 = 101.3 kPa, ρ = 999 kg/m3, κ = 1.67, σ = 0.073 N/m, pa∗=0 and Re = 10.

4.2.2 Comparison with the experiment and the Navier-Stokes

model

Ohl et al. [86] carried out carefully controlled experiments for laser-induced cavitation gas

bubble dynamics near a rigid boundary in water at γ = 1 and Rmax=1 mm, capturing the

detailed behaviour with a high-speed camera. Minsier et al. [83] simulated this case using

the axisymmetric model for the Navier-Stokes equations, with the initial conditions of R0

= 0.2 mm and pg0 = 42 bar, Tamb=300 K and Tc0 =1998 K, where Tamb is the ambient

temperature in the liquid and Tc0 is the difference between the temperature at the centre

of the bubble and the ambient temperature. The initial pressure inside the bubble is
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determined such that the bubble reaches a maximum radius of 1 mm. We will compare

the BIM with the experiment [86] and axisymmetric model based on the Navier-Stokes

equation [83].

In the 3D BIM, the same initial pressure as [83] is chosen however a slightly bigger initial

radius R0 = 0.224 mm is used in order the maximum bubble radius reach 1 mm. This

difference is due to the fact that some thermodynamic energy is set in the model by [83].

The ratio of specific κ in cavitation bubble was empirically determined in the literature [4]

κ=1.4 and the rest of parameters are p0 = 101.3 kpa, ρ = 998 kg m−1, and µwater = 0.001

kg m−1 s−1.

The experimentally bubble images were accurately reproduced by both the two numerical

models during the expansion phase, collapse phase and jet formation as shown in figure

4.2. The rigid boundary at γ = 1.0 is located at the lower borders of the frames. The

bubble first expands in a spherical shape except the lower part of the bubble surface is

flattened by the rigid boundary at the end of expansion (figure 4.2A). It then collapses,

with the lower part kept attached to the rigid boundary and the rest of the bubble surface

collapses approximately spherically (figure 4.2B). A liquid jet forms and develops rapidly

at the top of the bubble surface pointing to the rigid wall near the end of collapse (figure

4.2C). The oscillation periods of the two computational models are close to each other but

both are slightly larger than the experimental data.
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9 μs 53 μs 113 μs

A. Expansion phase

169 μs134 μs 213. μs

B. Collapse phase
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230 μs217 μs

C. Collapse phase: jet formation

Figure 4.2: Comparison of the bubble shapes as obtained from the experiment ([86], in
the first row of each phase), an axisymmetric model based on the Navier-Stokes equation
([83], in the second row) and the 3D BIM (in the third-row). The bubble shapes are shown
during (A) the expansion phase, (B) the collapse phase and (C) the jet formation. The
rigid boundary is located at the lower borders of frames. The parameters in the 3D BIM
model are chosen as R0 = 0.224 mm, pg0=42 bar, γ = 1.0, µwater = 0.001 kg/(m s), p0 =
101.3 Kpa, ρ = 998 kg m−1, and κ = 1.4.
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We next compare the 3D BIM based on the VCVPF with the axisymmetric model based

on the Navier-Stokes equation [83] for bubble collapses in water with viscosity µwater =

0.001 kg/(m s) and in an oil with viscosity µoil = 0.05 kg/(m s), respectively at very close

to the rigid wall at γ = 0.6. Figures 4.3A, 4.3B show the bubble shapes in the collapse

phase at typical time in water and oil, respectively. The two models are in good agreement

in terms of timing, bubble shape and bubble volume in both liquids. The impact time and

jet size and shape of the 3D BIM model agree well with the axisymmetric model based on

the Navier-Stokes equation for both of the two cases.

tBIM=114 μs

ϕ
tNS=112 μs tNS=172 μs tBIM=172 μs tNS=219 μs tBIM=217 μs tNS=225.8 μs tBIM=233 μs

tNS=112 μs tBIM=113 μs tNS=172 μs tBIM=170 μs tNS=229.9 μs tBIM=235 μstBIM=222 μstNS=221 μs

A. Numerical results in water

B. Numerical results in oil

Figure 4.3: The comparison of the bubble shapes near a rigid boundary at γ = 0.6 calculated
using the 3D BIM and axisymmetric model based on the Navier-Stokes equations [83],
dash line) in the liquid with viscosity, (A)µwater = 0.001 kg/ (m s) and (B)µoil = 0.05 kg/
(m s) respectively. The rigid boundary is located at the bottoms of the frames.

Figure 4.4 shows the comparison of the maximum jet velocities versus the dimensionless

initial standoff distance γ of the bubble in oil from the rigid boundary, obtained using

the axisymmetric model of the Navier-Stokes equation [83] and the 3D BIM model. We

have consider three 3D BIMs based on the classical potential flow theory (PF), the viscous

potential flow theory (VPF), considering the normal viscous stress of the potential flow,
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and the viscous correction of VPF (VCVPF). The results of all the three BIM models

agree with the Navier-Stokes equation in magnitude and trend in general. The maximum

jet velocity reduces due to the normal viscous stress and reduces further due to the

viscous pressure correction. The results of VCVPF are most closer to the results of the

Navier-Stokes equation among the three BIM models.

Figure 4.4: Comparison of the maximum jet velocities versus the dimensionless stand-off
distance γ for a bubble in oil from a rigid wall, obtained using the axisymmetric model
based on the Navier-Stokes equation [83] , 3D BIM models based on the potential flow
theory (PF), the viscous potential flow theory (VPF) and the viscous correction of VPF
(VCVPF).

4.3 Microbubble dynamics near a wall subject to ul-

trasound parallel to the wall

We analyze the dynamics of a microbubble near a rigid boundary subject to ultrasound

propagating parallel to the boundary. The bubble is assumed at the equilibrium pressure

ε = 1 + 2/We initially and the acoustic parameters are chosen as pa∗ = 1.6 and f = 300

kHz. The standoff distance of the bubble from the boundary is chosen as γ = 12.0, 4.0

and 1.0, respectively. The parameters used are κ = 1.4, σ = 0.055 N/m, p0 = 100 kPa, ρ
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= 1000 kg/m3, R0 = 4.5 µm. The parameters are chosen for blood relevant to biomedical

applications. The corresponding Reynolds number is Re = 13. Two other values of the

Reynolds number Re = 50 and ∞ have been examined, to investigate the influence of

viscous effects.

A high-speed liquid jet develops towards the end of collapse as shown in figure 4.5. The

bubble is subject to the Bjerknes force due to the acoustic wave along the wave direction

and the second Bjeknes force pointing to the boundary. The liquid jet is along the wave

direction at γ = 12 (figure 4.5A), as the effect of the boundary is negligible in this case.

The jet is along the bisector of the two Bjerknes forces at γ= 4.0 (figure 4.5B) when the

two forces are comparable, and is pointing to the boundary at γ = 1.0 as the second

Bjerknes force is predominant in this case (figure 4.5C).

In all cases of γ, the jet becomes thinner when the Reynolds number Re decreases from

50 to 13, while it does not change significantly when Re decreases from ∞ to 50. The jet

becomes thinner due to the viscous effects, which are not significant as Re is larger than

50. The oscillation period reduces slightly with the viscous effects.

Figure 4.6 depicts the time histories of the equivalent bubble radius, jet velocity, centroid

movement along the x-axis and z-axis, energy E∗ and magnitude of Kelvin impulse IK∗

of the bubble, for the cases shown in figure 4.5B. The maximum bubble radius increases

about only 6% when Re increases from 13 to ∞ (figure 4.6a). The maximum jet velocity

increases substantially from 930 m/s to 1310 m/s with Re (figure 4.6b). The centroid

movement, the energy and the Kelvin impulse of the bubble increase with Re (Figures

4.6c-f). These trends are associated the strong viscous damping effects at a lower Re

number.
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Re = 13, t∗ = 5.65

A. γ = 12

Re = 50, t∗ = 5.74 Re =∞, t∗ = 5.77

Re = 13, t∗ = 5.64

B. γ = 4.0

Re = 50, t∗ = 5.72 Re =∞, t∗ = 5.80

Re = 13, t∗ = 5.84

C. γ = 1.0

Re = 50, t∗ = 5.90 Re =∞, t∗ = 5.93

Figure 4.5: Bubble shapes at jet impact for a bubble near a wall at the dimensionless
standoff distances (A) γ = 12, (B) γ = 4.0, (C) γ = 1.0, subject to ultrasound propagating
parallel to the wall at pa∗ = 1.6 and f = 300 kHz, at the Reynolds number Re = 13, 50,
and ∞. The remaining parameters are c = 1540 m/s, κ = 1.4, σ = 0.055 N/m, p0 = 100
kPa, = 1000 kg/m3, R0 = 4.5 µm.

Similar trends have been observed at γ = 12.0 and 1.0 in table 4.1, where Rmax∗, Vjet∗, Xc∗,

Zc∗, Ikmax∗, and Emax∗ are the maximum equivalent bubble radius, jet velocity, centroid

movement along x-axis, centroid movement along z-axis, magnitude of the Kelvin impulse,

and energy at jet impact, respectively. The maximum equivalent bubble radius Rmax∗

reduce about 6% as Re changes from ∞ to 13 at both γ due to the viscous effects. The

central movement reduces with the viscous effects. Ikmax∗ reduces about 35% and 40%
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Time histories of (a) the equivalent bubble radius R∗, (b) jet velocity vjet∗, (c)
x-component of the centroid xc∗, (d) z-component of the centroid zc∗, (e) energy E∗, and
(f) magnitude of the Kelvin impulse IK∗ of the bubble for the cases shown in figure 4.5B.

at γ=12 and γ=1 respectively with the change in Re. Emax∗ also reduces about 38% and

25% with the change in Re for both γ respectively. The changes for all the quantities are

relatively large as Re changes from 50 to 13, but much smaller Re changes from ∞ to 50.
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Re
γ = 12.0 γ = 1.0

Rmax∗ Vjet∗ Xc∗ Zc∗ Ikmax∗ Emax∗ Rmax∗ Vjet∗ Xc∗ Zc∗ Ikmax∗ Emax∗
13 2.385 103.9 0.374 -0.036 0.71 102.0 2.253 26.3 0.071 -2.0315 4.38 92.1

50 2.496 138.2 0.398 -0.041 0.96 146.8 2.347 28.2 0.103 -2.1971 6.53 114.8

∞ 2.537 146.5 0.426 -0.067 1.09 163.1 2.381 28.3 0.101 -2.0315 7.30 122.0

Table 4.1: The maximum equivalent bubble radius Rm, and jet velocity vjet∗, bubble
centroid displacement zc∗ along the z-axis, magnitude of Kelvin impulse Ik∗, and bubble
energy E∗ at jet impact for the cases of shown in figure 4.5(A, C).

4.4 Microbubble dynamics near a wall subject to ul-

trasound perpendicular to the wall

When the wave propagates perpendicular to a wall, a standing wave is generated if all of

the acoustic energy is reflected from the wall, as assumed here for convenience. A standing

wave oriented perpendicular to the rigid wall (along the z-axis) is described as,

p∞(z∗, t∗) = 1 + pa∗ cos(k∗(z∗ + γ)) sin(ω∗t∗ + φ0). (4.4.1)

Here, parametric studies are carried out in terms of the dimensionless standoff distance

from a rigid boundary γ = 2.0, 1.0 and the Reynolds numbers Re = 13, 50, ∞; with wave

pressure amplitude pa∗=1.4. The rest parameters are the same as in the section 4.3.

Figure 4.7 shows bubble shapes at impact time at γ = 2.0, 1.0 with Re = 13, 50 and ∞.

In all cases the jet directed to the rigid boundary. The jet becomes sharper due to viscous

effect at γ = 2.0 (figure 4.7A). In both cases the bubble migration to the wall is slowed

down obviously due to the viscous effects.

Table 4.2 provides the maximum equivalent bubble radius Rmax∗, and the jet velocity Vjet∗,

centroid movement along z-axis towards the rigid wall Zc∗, magnitude of Kelvin impulse
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Re = 13, t∗ = 5.538

A. γ = 4.0

Re = 50, t∗ = 5.601 Re =∞, t∗ = 5.633

Re = 13, t∗ = 5.646

B. γ = 2.0

Re = 50, t∗ = 5.708 Re =∞, t∗ = 5.715

Figure 4.7: Bubble shapes at jet impact for a bubble near a wall at the dimensionless
standoff distance subject to in a standing wave (A) γ = 2 and (B) γ =1, subject to
ultrasound propagating perpendicular to the wall at the Reynolds number Re = 13, 50
and ∞. The remaining parameters are the same as in figure 4.5.

Ikmax∗, and bubble energy Emax∗ at jet impact for the cases of figure 4.7. The Rmax∗ and

Vjet∗ reduce about 6% and 17% respectively, as Re changes from ∞ to 13 at both γ due

to the viscous effects. The Zc∗ is also about 18% and 22% decrease at γ=2.0 and 1.0

respectively. The rate is larger at γ=1 as the wall attraction is stronger. The magnitude

of the Kelvin impulse Ikmax∗ and bubble energy Emax∗ at jet impact reduce also due to the

viscous effects. The changes for all the quantities are relatively large as Re changes from

50 to 13, but much smaller Re changes from ∞ to 50. This suggests the viscous effects are

small as Re is 50 or larger.
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Re
γ = 2.0 γ = 1.0

Rmax∗ Vjet∗ Zc∗ Ikmax∗ Emax∗ Rmax∗ Vjet∗ Zc∗ Ikmax∗ Emax∗
13 2.07 32.50 -0.70 1.05 61.35 2.02 22.61 -1.85 2.72 56.80

50 2.17 38.72 -0.83 1.83 82.32 2.11 27.56 -2.29 4.32 74.94

∞ 2.20 39.17 -0.85 2.17 90.85 2.14 28.01 -2.37 4.92 85.05

Table 4.2: The maximum equivalent bubble radius Rm, and jet velocit vjet∗, bubble centroid
displacement zc∗ along the z-axis, magnitude of Kelvin impulse Ik∗, and bubble energy E∗
at jet impact for the cases of shown in figure 4.7.

4.5 Chapter summary

Microbubble dynamics subject to ultrasound are associated with important applications in

biomedical ultrasonics, sonochemistry and cavitation cleaning. This chapter investigates

the phenomenon using the boundary integral method based on the viscous potential flow

theory. The viscous effects are incorporated into the model through including the normal

viscous stress in the dynamic boundary condition at the bubble surface. The viscous

correction pressure of Joseph (2004, 2007) is implemented to resolve the discrepancy

between the non-zero shear stress of the irrotational flow at a free surface and the physical

boundary condition of zero shear stress. The model agrees well with the Gilmore equation

for a spherical bubble oscillating in a viscous liquid for several cycles. It agrees with both the

experimental data and the axisymmetric simulation based on the Navier-Stokes equation

for transient bubble dynamics near a rigid boundary. We further analyze microbubble

dynamics near a rigid boundary subject to a ultrasound wave travelling perpendicular

and parallel to the boundary, respectively, in parameter regimes of clinical relevance. The

viscous effects in acoustic microbubble dynamics are analyzed in terms of the jet velocity,

centroid movement, Kelvin impulse, bubble energy and bubble volume, etc.
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Chapter 5

Simulation of three-dimensional

toroidal bubble using vortex ring

model

5.1 BIM modelling for singly connected bubbles

Consider the dynamics of a gas bubble adjacent an inclined wall, as shown in figure 5.1.

A Cartesian coordinate system O − xyz is adopted with the origin at the centre of the

initial spherical bubble and the z-axis along buoyancy force. The separation of the centre

of the initial spherical bubble from the wall is denoted as s. The angle between the wall

with the x-axis is β.

We assume that the liquid surrounding the bubble is inviscid, incompressible and the

liquid flow is irrotational. The fluid velocity v thus has a potential ϕ, v = ∇ϕ, which

satisfies Laplace’s equation, ∇2ϕ = 0. The potential ϕ may be represented as a surface

integral over the bubble surface Sb as follows, using Green’s second identity:
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Figure 5.1: Configuration and coordinate system for the gas bubble near a rigid wall.

c(r)ϕ(r) =

∫
Sb

(
∂ϕ(q)

∂n
G(r , q)− ϕ(q)

∂G(r , q)

∂n

)
dS(q), (5.1.1)

where r is the field point and q is the source point, c(r) is the solid angle and n is the

unit outward normal of the bubble surface Sb.

To satisfy the impermeable boundary condition on the wall, the Green function is given as

follows,

G(r , q) =
1

|r − q |
+

1

|r − q́ |
, (5.1.2)

where q́ is the image of q reflected to the wall.

Assuming that the expansion and contraction of the bubble gas is adiabatic, the liquid

pressure pL on the bubble surface is given by,

pL = pv + pg0

(
V0
V

)κ
on Sb (5.1.3)

where pv is vapour pressure, pg0 is the initial gas pressure of the bubble, V is the bubble

volume and V0 is its initial value, and κ is the ratio of specific heats of the gas. The the
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surface tension coefficient is neglected in this study.

The kinematic and dynamic boundary conditions on the bubble surface Sb are as follows,

dr

dt
= ∇ϕ on Sb, (5.1.4)

dϕ

dt
=
p∞ − pL

ρ
+

1

2
|∇ϕ|2 − gz on Sb (5.1.5)

where p∞ is the hydrostatic pressure, g is the gravitational acceleration, and d/dt the

material derivative following particles on the bubble surface.

We choose the reference length Rm (maximum radius of the bubble) and the reference

pressure ∆p = p∞ − pv. The dimensionless dynamical boundary condition 5.1.5 becomes,

dϕ

dt
= 1 +

1

2
|∇ϕ|2 − δ2z − ε

(
V0
V

)κ
on Sb (5.1.6)

where δ =
√
ρgRmax/∆p is the buoyancy parameter, ε = pg0/∆p is the normalized initial

bubble pressure, and γ = s/Rmax is the dimensionless separation distance of the bubble

from the wall.

5.2 3D vortex ring model for toroidal bubbles

5.2.1 Impact modelling

When a bubble collapses nonspherically, a liquid-jet forms and impacts on the opposite

bubble surface. Jet impact often occurs at a single point, since the curvature radius of the

jet front is usually smaller than the curvature radius of the opposite bubble wall at the

impact point. Although jet impact may be more complex in reality, we restrict it to this
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idealized model. In fact jet impact may occur at a small area when the curvature radii of

the jet and the opposite surface at the impact point are equal or at a ring when the jet

front is flat.

A numerical cut is needed to transform a singly connected bubble to a toroidal bubble.

We firstly sort two impact nodes, N on the jet tip and S on the opposite bubble face (as

represented in white dot in figure 5.2a). To make this sorting automatically, the following

two conditions are used: (i) the distance between the two nodes S and N are less than,

say 0.5ds, where ds is the average element size of the bubble surface. and (ii) the angle

between the normal vectors at the two nodes is larger than π/2, to make sure that they

are on the opposite sides of the bubble surface. In figure 5.2a only two ring of neighbour

elements for the impact points N and S presented. The angle of view in figure 5.2a, b is

45◦ and the distance between impacts points in figure 5.2a exaggerated for clarification.

The nodes S and N and their surrounded elements (filled in red in figure 5.2a) will be

deleted to create a hole (figure 5.2b). A local coordinate O −XY Z is introduced with its

origin at the node N , and its Z-axis passing the node S. Denote the surrounding node set

to the node N as N1N2 · · ·Nm and the surrounding node set to the node S as S1S2 · · ·Sn.

If the numbers of the two grid sets do not match, say m < n, additional nodes are inserted

along the longest line segments among N1N2 · · ·Nm to bring the numbers m and n to

par. The two surrounding set of nodes are reordered according to the azimuth (angle θ),

and named n1n2 · · ·nn and s1s2 · · · sn respectively. A new set of nodes is then created to

replace both of them as follows,

x knew = (xnk
+ x sk) /2, k = 1, 2, · · · , n (5.2.1)

The liquid hole through the bubble is thin at the beginning of the toroidal phase. A much

finer mesh is thus needed for toroidal bubble. We divide each triangular element of the
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hole
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Figure 5.2: Illustration of the numerical transition of bubble shape and the vortex-ring
model: (a) Before impact, two rings of the surrounding elements to the impact points
N and S, (b) After impact, the surrounding elements of the hole, (c) the surface mesh
of a toroidal bubble with remaining potential φ, and (d) the refined surface mesh of the
toroidal bubble by splitting each elements into four elements.

Figure 5.3: Swapping of two triangles ABC and CBD sharing an edge CB to two triangles
ABD and ADC: (a) before edge swapping (b) after edge swapping.

mesh after jet impact into 4 smaller triangles as shown in figures (5.2c) and (5.2d). We

use the edge swapping to improve the mesh, as shown in figure 5.3. It changes the shared

edge of a pair of adjacent triangles without moving the nodes to improve the quality of

the triangular element. The optimal shape of a triangular element is equilateral triangle.
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Consider a triangular elements ABC with minimum angle α (figure 5.3a). Searching for a

triangle say BCD, which shares edge BC with the triangle ABC . The new triangles ACD

and ABD are created by swapping the edge BC by AD (figure 5.3b), if all angles in the

new triangles greater than α. The number of connected nodes around considered node

may be changed. In this study we restrict each node have 4 to 8 neighbour nodes.

5.2.2 Vortex ring model

After the jet impacts the opposite bubble surface the liquid domain becomes doubly-

connected, so that the solution to Laplace’s equation becomes non-unique. The doubly-

connected domain can be made singly-connected by, for example, using a branch cut [2]

or a vortex sheet [135, 134, 133]. Wang, et al. [124] developed a vortex ring model for

toroidal bubbles, which avoids the treatment of the branch-cut.

In the vortex ring model, a vortex ring is put inside the toroidal bubble after jet impact

and its strength Γ is equal to the jump of the potential ϕ across the contact point at the

time of impact. Thus,

Γ =

∫
c

∇ϕ · dr = ϕN − ϕS, (5.2.2)

where ϕN and ϕS are potentials at the impact point. The circulation Γ is invariant in

time as the potential satisfies Laplace’s equation. The potential ϕ is now decomposed as

follows,

ϕ = ϕvr + φ, (5.2.3)

where ϕvr is the potential of the vortex-ring. With the potential jump being accounted by

the vortex ring using (5.2.2), the remnant potential φ is continuous in the flow field. The

induced velocity v vr of the vortex ring can be obtained analytically using the Biot-Savart

law, and the corresponding velocity potential is further obtained by the line integral of
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the velocity from the far field, to let the potential of the vortex ring to vanish at infinity.

Using (5.1.4, 5.1.5,5.1.6) and 4.1.3, one can obtain the boundary value problem for the

remnant potential φ as follow,

∇2φ = 0, (5.2.4a)

dr

dt
= v vr +∇φ, on Sb (5.2.4b)

dφ

dt
= 1− v vr · (v vr +∇φ) +

1

2
|v vr +∇φ|2 − ε

(
V0
V

)κ
− δ2z. on Sb (5.2.4c)

The above governing equations for the remnant potential φ are in the same form as the

equations for the potential ϕ for the pre-toroidal bubble. φ thus can be solved using the

BIM approach developed for ϕ.

5.2.3 Calculation of the potential due to a vortex ring

The velocity field induced by a vortex ring v vr is given by the Biot-Savart law,

v vr(r) = ∇ϕvr =
Γ

4π

∮
c

dc(q)× (r − q)

|r − q |3
, (5.2.5)

where dc is along the vortex ring c, r is the field point.

Zhang et al. [135] calculate the potential due to a vortex ring based on the result in Milne

and Thompson [82] using the solid angle formula,

ϕvr(r) =
Γ

4π

∫
Sc

∂G (r , q)

∂n
dS(q), (5.2.6)

where Γ is the circulation of a vortex ring, Sc is any surface enclosed by the vortex ring.

This integral has a discontinuity across the disk Sc, and so using this approach directly
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leads to unacceptable errors at nodes close to or on the discontinuity.

The precise location of the vortex ring is immaterial in principle as long as it lies completely

within the toroidal bubble. It is chosen at the mean position of the cross-section of the

bubble surface at θ = constant. The vertex ring C (θ) can be expressed as follows in the

local cylindrical coordinate OXY Z:

C (θ) = (Cx(θ), Cy(θ), Cz(θ)) , θ ∈ [0, 2π] . (5.2.7)

The potential velocity due vortex ring is calculated by integrating of the velocity of (5.2.5)

in the local coordinate system OXY Z. The potential due to the vortex ring at any point

X = (X, Y, Z) can be calculated from the line integration along the Z-axis from either

(X, Y,∞) or (X, Y,−∞) to (X, Y, Z),

ϕvr (X, Y, Z) =

∫ Z

±∞
v vr(X ) ·KdZ

=
Γ

4π

∫ Z

±∞

∮
C(θ)

dC (θ)× (X −C (θ))

|X −C (θ)|3
·KdZ

=
Γ

4π

∮
C(θ)

∫ Z

±∞

dC (θ)× (X −C (θ))

|X −C (θ)|3
·KdZ,

(5.2.8)

where the order of integration is changed since the curve C (θ) for the line integral does

not depends on Z and the integral limits for integration in Z does not depends on θ. The

integrant function can be expressed as,

dC (θ)× (X −C (θ))

|X −C (θ)|3
·K =

dCXRY − dCYRX

(R2
X +R2

Y +R2
Z)

3/2
, (5.2.9)
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where dC (θ) = (dCX , dCY , dCZ) on the curve C (θ) does not depend on Z; R = X −

C (θ) = (RX , RY , RZ) = (X − CX , Y − CY , Z − CZ) . RX and RY do not depend on Z

but RZ = Z − CZ depends on Z. Thus we have,

∫ Z

±∞

dC (θ)× (X −C (θ))

|X −C (θ)|3
·KdZ

= (dCXRY − dCYRX)

∫ Z

±∞

dZ

(R2
X +R2

Y +R2
Z)

3/2

= (dCXRY − dCYRX)

∫ RZ

±∞

dRZ

(R2
X +R2

Y +R2
Z)

3/2

= (dCXRY − dCYRX)

(
RZ

(R2
X +R2

Y ) (R2
X +R2

Y +R2
Z)

1/2

)∣∣∣∣∣
RZ=RZ

RZ=±∞

.

=

(
dCXRY − dCYRX

R2
X +R2

Y

)(
RZ

(R2
X +R2

Y +R2
Z)

1/2
∓ 1

)
.

(5.2.10)

This yields,

ϕ±vr (X ) =
Γ

4π

∮
C (θ)

(
dCXRY − dCYRX

R2
X +R2

Y

)(
RZ

(R2
X +R2

Y +R2
Z)

1/2
∓ 1

)
, (5.2.11)

where “+” of “±” is corresponding for the line integration from (X, Y,+∞) to (X, Y, Z)

and “-” the line integration from (X, Y,−∞) to (X, Y, Z). To determine the correct value

of the potential, the bubble surface is divided in two sub surfaces named SU and SL as

clarified in the figure 5.4. Therefore, in the equation 5.2.11 “-” of “±” is used for X ∈ SU

and “+” of “±” X ∈ SL.

Suppose that the simple closed curve C = C1−C2 +C3, where C1, C2, and C3 are oriented
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Figure 5.4: Illustration of calculation of the potential due vortex ring and position of
vortex ring.

curves from (X, Y, Z → ∞) to (X, Y, Z), from (X, Y, Z → −∞) to (X, Y, Z), and from

(X, Y, Z → −∞) to (X, Y,→∞) respectively, and C3 is half of a circle, as shown in figure

5.4. We have,

∫
C1

∇ϕvr · dl = ϕ+
vr(X ),

∫
C2

∇ϕvr · dl = ϕ−vr(X ), and

∫
C3

∇ϕvr · dl = 0. (5.2.12)

Thus,

ϕ+
vr (X )− ϕ−vr (X ) = − Γ

4π

∮
C (θ)

(
dCXRY − dCYRX

R2
X +R2

Y

)

=


0 as

√
X2 + Y 2 ≥ C(θ)

Γ as
√
X2 + Y 2 < C(θ)

(5.2.13)

Suppose (Ck
X , C

k
Y , C

k
Z) k = 1, 2, · · ·M are points along the vortex ring C . Then, the line
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integral in 5.2.11 may be calculated numerically as follows:

ϕ±vr (X ) =
Γ

4π

M−1∑
k=1

(Y − Ck
X)(Ck+1

X − Ck
X)− (X − Ck

Y )(Ck+1
Y − Ck

Y )

(X − Ck
X)2 + (Y − Ck

Y )2(
(Z − Ck

Z)√
(X − Ck

X)2 + (Y − Ck
Y )2 + (Z − Ck

Z)2
∓ 1

)
(5.2.14)

5.3 Validations of the numerical model

5.3.1 Comparison with experiment

The first validation case is to compare the 3D BIM results with an experimental data of

Lindau & Lauterborn [74] for a laser-generated bubble near a wall at the maximum radius

Rmax = 1.5 mm and the dimensionless standoff distance γ = 0.8. Other computational

parameters are chosen following Pearson et al. [89] as ε = 600, δ = 0.0 and κ = 1.4.

Figure 5.5 shows the 3D BIM results for the motion of a cavitation bubble at typical times.

The bubble is initially with a very high pressure and expands spherically, reaching its

maximum volume at t∗ = 1.11 (figure 5.5b), when the lower part of the bubble surface

is flattened against the wall (figure 5.5c). Towards the last stage of collapse a liquid

jet starts at t∗ = 2.06 (figure 5.5d), which develops rapidly and impacts shortly at the

opposite bubble surface at t∗ = 2.168 (figure 5.5e). The bubble becomes toroidal after jet

impact (figure 5.5e) and collapse continuously from figures 5.5f 5.5i. As the lower side of

the bubble ring is in contact with the wall, the jet pushes out of the bubble ring after it

impacts on the wall.

Figure 5.6 shows the experimental images of Lindau & Lauterborn [74] at the corresponding

time steps, where jet impact is visible around frames 4-5. The bubble evolves to a circular
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bubble ring with a circular cross section as noticed in the calculation.

t*=0.0
(a)

t*=1.11
(b)

t*=1.97
(c)

t*=2.06 (d) t*=2.168 (e) t*=2.171 (f)

t*=2.208 (g) t*=2.210 (h) t*=2.235 (i)

Figure 5.5: Evolution of a bubble near a rigid boundary characterized by ε = 600, κ =
1.4, δ = 0, γ = 0.8 with the angle of elevation is 45◦.
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Figure 5.6: The final stages of collapse of a laser-generated bubble near a rigid boundary
characterized by Rmax = 1.5 mm, and γ = 0. 8 with the angle of elevation is 45◦ [74]. The
fame size is 1.68 mm × 1.15 mm, interframe time 1 µs, exposure time 200 ns.

5.3.2 Comparison with axisymmetric model

We next compare the 3D BIM with the axisymmetric BIM (Wang et al. [126]) for a bubble

near a rigid wall characterized by γ = 2, ε = 100 and δ = 0.0. The jet impact occurs in

3D model at t∗ = 2.118 with a circulation Γ = -4.1. The corresponding results obtained

using the axisymmetric BIM code are t∗ = 2.126 and Γ = -4.3. The small differences in

the timing and the circulation should be due to the lower resolution used in the 3D model.

Figure 5.7 compares the bubble shapes at typical times between the two models, where

the results of the axisymmetric BIM are shown in dash line. The bubble shapes of the 3D

results agree well with the asymmetric BIM at jet impact (figure 5.7a), and during the

early rebounding phase (figure 5.7b). Figure 5.7c shows the agreement between for the

bubble radius history between the 3D BIM (dotted) and the axisymmetric BIM.
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(c)

(a) 3D BIM: t*=2.118,
Axsymmetric BIM: t*=2.126

(b) 3D BIM: t*=2.128,
Axsymmetric BIM: t*=2.134

Figure 5.7: The comparison of the 3D bubble shapes and axisymmtric profile during (a) jet
impact, (b) toroidal phase, at a typical times. (c) The comparesion of the bubble radius
history between the two models. The case charecterised by ε=100, δ=0.0, and γ=2.0.
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5.4 Computational results

Best & Blake [3] proposed a criterion for determining the directions of the jet and bubble

migration for bubble dynamics near a rigid boundary using the Kelvin impulse theory.

They observed that the buoyancy force and the Bjerknes attraction of the rigid boundary

are comparable in magnitude when γδ = 0.442. We simulated bubble dynamics near a

vertical rigid wall, for three cases at γ = 3 and ε = 100 with three different buoyancy

parameters δ = 0.1, 0.147, and 0.2. These three cases correspond to γδ= 0.3, 0.442 and

0.6, respectively.

ϕ

(b) t*=2.110

Fb

FW

(a) t*=2.105

φ

(c) t*=2.122

ϕ

(d) t*=2.157

ϕ

Figure 5.8: The toroidal bubble dynamics near a vertical wall characterised by γ = 3.0, δ
= 0.1, and ε = 100: (a) at jet impact, (b) at the minimum bubble volume, and during the
rebounding phase from (b-d).

The bubble shapes at γδ = 0.3(< 0.442) at a typical times steps are shown in figure 5.8.

The jet impacts the opposite bubble surface at t∗ = 2.105 (figure 5.8a). A vortex ring is
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put in the bubble ring with the circulation of Γ = 3.43. The bubble continues collapsing

for a short period, reaching the minimum volume at t∗ = 2.110 (figure 5.8b). It then

rebounds with the bubble jetting becomes narrow (figure 5.8c, 5.8d). The jet direction is

about 30◦ to the horizontal plane, as shown in figure 5.8a.

(a) t*=2.101

φ
(b) t*=2.104

ϕ

(c) t*=2.12

ϕ
(d) t*=2.166

ϕ

Figure 5.9: The toroidal bubble dynamics near a vertical wall characterised by γ = 3.0,
δ = 0.147, and ε = 100: (a) at jet impact and (b) at the minimum bubble volume, and
during the rebounding phase from (b-d).

The bubble shapes at typical times for the case at γδ ≈ 0.442 are shown in figure 5.9.

The jet impacts the opposite bubble surface at t∗ = 2.101 (figure 5.9a). The circulation

of the vortex ring for this case is Γ=3.37. The bubble collapses continuously for a short

period after jet impact, reaching minimum volume t∗=2.104 (figure 5.9b). The bubble

then rebounds and the jet becomes thin (figures 5.9c, d). The jet direction is about 50◦ to

the horizontal plane.

The bubble shapes at typical times for the case at γδ = 0.6(> 0.442) are depicted in figure
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5.10. A wide liquid jet impacts on the opposite bubble surface towards the end of collapse

at t∗=2.100 (figure 5.10a). The circulation in this case is Γ=3.2. The jet direction is with

the angle about 70◦ to the horizontal plane, since the stronger buoyancy force is associated

with this case comparing with the last two cases. The bubble reaches minimum volume in

very short period time after jet impact at t∗=2.122. The bubble then rebounds and jet

becomes thin (figures 5.10c, d).

(a) t*=2.10
φ

(b) t*=2.105

ϕ

(c) t*=2.122
ϕ

(d) t*=2.166

ϕ

Figure 5.10: The toroidal bubble dynamics near a vertical wall characterised by γ = 3.0, δ
= 0.2, and ε = 100: (a) at jet impact, (b) at the minimum bubble volume, and during the
rebounding phase from (b-d).
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5.5 Chapter summary

It is challenging to simulate three dimensional toroidal bubble dynamics, which are

associated with strong numerical instabilities due to jet impact, topological transition,

and bubble rebound. A few of developments are described in this chapter to improve the

vortex ring model for three dimensional toroidal bubbles. A high quality mesh of the

bubble surface is maintained by implementing a new hybrid approach of the Lagrangian

method and elastic mesh technique. The transform from a singly connected bubble to a

toroidal bubble is performed automatically. A finer mesh is generated by splitting each of

triangles into four triangles after jet impact, to describe the local geometry associated a

hole through the bubble penetrated by the bubble. The potential due to a vortex ring is

calculated by using the Biot-Savart law where the integral from the infinite to the point

considered is performed analytically. We evaluate the numerical model by comparing with

the axisymmetric BIM and the experiment result. We analyse toroidal bubble dynamics

subject to buoyancy near a vertical wall, including jet impacting and rebounding toroidal

bubbles with oblique jetting.
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Chapter 6

Summaries, conclusions and future

work

6.1 Summaries and conclusions

In this thesis, a robust computational model has been developed for simulation of three-

dimensional microbubble dynamics near a rigid wall subjected to high intensity ultrasound

based on the potential flow theory and the boundary integral method. A few techniques

were implemented to model the associated violent collapse. The bubble surface and

potential distribution on it were updated using the fourth order Runge-Kutta method.

The bubble surface and potential distribution were interpolated using a polynomial scheme

coupled with the moving least square method for calculating the surface curvature and

tangential velocity on the surface. A high quality surface mesh was maintained by

implementing a hybrid approach of the Lagrangian method and elastic mesh technique.

We have performed numerical studies with the above numerical model for (i) microbubble

dynamics near a wall subject to high intensity ultrasound, (ii) dynamics of ultrasound

contrast agents (UCAs) subject to high intensity ultrasound, (iii) microbubble dynamics
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with viscous effect and (iv) toroidal bubble dynamics. In parts (ii-iv) the numerical model

has been further developed for the phenomena considered.

(i) Microbubble dynamics near a wall subject to high intensity ultrasound

In chapter two, we explored microbubble dynamics near a wall subjected to ultrasound

propagating parallel to the wall. The model agrees well with the Rayleigh-Plesset equation

for spherical bubbles and the numerical results converge to that for an axisymmetric model

for axisymmetric cases. Numerical analyses were carried out for the phenomenon for the

dimensionless standoff distance of the bubble at inception from the wall in the range of,

0.75 ≤ γ ≤ 11.25, and the dimensionless amplitude of pressure of the ultrasound in the

range of, 1.5 ≤ pa∗ ≤ 1.8. Some interesting features were observed as follows:

1. The bubble system absorbs the energy from the ultrasound and transforms the

uniform momentum of the ultrasound parallel to the wall to the highly concentrated

momentum of a high-speed liquid jet pointing to the wall. As compared without

the presence of ultrasound, the jet develops much faster and with a significantly

higher speed. This mechanism is associated with applications to ultrasonic cleaning,

sonochemistry and ultrasound therapeutics as illustrated in the introduction.

2. The direction of the jet depends mainly on the dimensionless standoff distance γ.

It is directed towards the wall when the bubble is close to the wall as γ is about

1.5 or smaller, and rotates to the wave direction as γ increases. When γ is about

10 or larger, the wall effects are negligible and the jet is along the direction of the

ultrasound. When γ is about 3.5, the Bjerknes forces due to the ultrasound and the

wall respectively are comparable and the jet is directed along the bisector of the two

directions.

3. The jet width decreases with the standoff distance γ while the jet velocity increases

with γ.
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4. The jet direction does not change significantly with the amplitude and frequency

of the ultrasound, but its velocity increases with the amplitude and decreases with

the frequency. The jet is relatively sharper for a larger bubble and/or subject to an

ultrasound at a higher frequency.

5. The bubble centroid moves towards the wall and along the ultrasound direction. This

motion increases with the amplitude of the ultrasound. When the bubble initiates

nearer to the wall, its migration to the wall increases and its migration along the

ultrasound decreases.

6. The bubble jet and the motion of the bubble centroid are roughly along the direction

of the Kelvin impulse of the bubble. The Kelvin impulse increases with the amplitude

of the ultrasound and the closeness of the bubble to the wall.

(ii) Dynamics of ultrasound contrast agents (UCAs) subject to high intensity

ultrasound

In chapter three, Nonspherical deformation of ultrasound contrast agents and associated

bubble jetting are important in biomedical applications because they can cause breakup

and thereby shorten the residence time of contrast agents or facilitate drug release from

carrier capsules. A three-dimensional model of ultrasound contrast agents (UCAs) subject

to high intensity ultrasound has been developed based on the boundary integral method.

The effects of a thin encapsulating shell are approximated by adapting Hoffs model.

The model has been validated against a modified Rayleigh-Plesset equation for spherical

oscillations of a coated bubble.

Numerous parametric studies were performed for a coated bubble in an infinite fluid as

well as near a rigid wall subject to ultrasound propagating both parallel and perpendicular

to the wall. In the latter case, a standing wave is generated due to the reflection of the

acoustic wave from the rigid wall. Simulations of the dynamic response of a coated bubble
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subject to ultrasound lead to the following observations:

1. For a coated bubble subject to ultrasound, some of the energy is absorbed by the

coating while it deforms and the bubble dynamics are less violent compared to an

uncoated bubble. The existence of a coating thus reduces the maximum volume and

period of oscillation significantly, while increasing the minimum volume at the end

of collapse. The coating also makes the jet shape sharper and decreases the Kelvin

impulse and jet velocity.

2. When the amplitude of the ultrasound is sufficiently strong, a coated bubble deforms

nonspherically at the end of the collapse and a jet develops along the acoustic wave

direction when the bubble is in an infinite liquid. The threshold of the ultrasound

amplitude required to excite jetting is increased due to the presence of a coating,

again since some of the energy is absorbed by the coating.

3. When the bubble is near a wall and subject to ultrasound propagating parallel to the

wall, the direction of the jet depends mainly on the dimensionless standoff distance γ

for both coated and uncoated bubbles. This is because that the bubble dynamics are

attenuated due to existence of the coating however the two Bjerknes forces reduce

at a similar rate due to existence of the coating. The jet is directed towards the

wall when the bubble is close to the wall (when γ is about 1.5 or smaller), and

rotates toward the acoustic wave direction as increases. When is about 10 or larger,

the wall effects are negligible and the jet is almost entirely along the acoustic wave

direction. When γ is about 3.75, the primary and secondary Bjerknes forces due

to the ultrasound and the wall, respectively, are comparable and the jet is directed

along the bisector of the two directions.

4. The jet becomes sharper and the jet velocity and maximum volume increase with the

dimensionless standoff distance γ, analogous to bubble dynamics without a coating.
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5. The jet velocity, maximum volume and centroid movement decrease with shell

thickness, and the rate of decrease increases with dimensionless standoff distance, γ.

This demonstrates that the bubble dynamics are predominantly determined by the

secondary Bjerknes force when the bubble is close to the rigid boundary.

6. As the shell viscosity is increased, the maximum volume and centroid movement of

the bubble do not change significantly, but the jet velocity decreases. This suggests

that the energy dissipated by the bubble coating is not significant globally, but is

significant at the jet location where the strain is large.

7. For all cases of both coated and uncoated bubbles, the jet direction is approximately

along the direction of the Kelvin impulse at the end of collapse, as the two Bjerknes

forces reduce in a similarly way as bubble dynamics are attenuated by the coating.

(iii) Microbubble dynamics with viscous effect

Microbubble dynamics are usually associated with an irrotational flow in the bulk volume

but a thin vorticity layer at the bubble surface. This phenomenon has thus been studied

in chapter four using the boundary integral method (BIM) based on the viscous potential

flow theory. The viscous effects are incorporated into the model through the normal stress

balance at the bubble surface. In addition, the viscous correction pressure [50, 51] is

implemented to resolve the discrepancy between the nonzero shear stress of the irrotational

flow at a free surface and the physical boundary condition of zero shear stress.

The BIM model agrees well with the Gilmore equation for a spherical bubble oscillating in

a viscous liquid for several cycles at Re = 10. It agrees with the experimental data for

transient bubble dynamics near a rigid boundary. We compared the maximum velocity

of the bubble jet at Re = 200 calculated using the axisymmetric VOF model [83] and

the BIMs based on the inviscid potential flow theory (IPF), viscous potential flow theory

(VPF) and the viscous correction of VPF (VCVPF), respectively. The results of all the
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three BIMs correlate with the VOF in general. The jet velocity obtained using the VPF

is smaller than the IPF and the jet velocity obtained using the VCVPF is smallest and

closest to the VOF.

We analyse dynamics of bubbles at the size of micrometres near a rigid boundary subject to

ultrasound in parameter regimes of clinical relevance and observed the following features.

1. The bubble absorbs and concentrates energy from ultrasound, resulting violent

collapsing and jetting. This generates a rapid local flow of liquid around the bubble,

which induces oscillating normal and shear stresses at membranes nearby, thus have

the potential to enhance permeability of lipid bilayers.

2. The jet is directed to the boundary when the ultrasound propagates perpendicular

to the wall. When the ultrasound propagates parallel to the wall, the jet is directed

towards the wall when the standoff distance is small (γ ≤ 1.5), along the acoustic

wave direction as γ ≥ 10 and along the bisector of the two directions around γ ≈ 4.

3. When the bubble is located near the boundary, the jet velocity decreases significantly,

being about 1000, 260 m/s at γ = 4, 1 respectively for the cases considered; the

radius of the middle cross-section of the jet increases, being about 5% R0, 20% R0

at γ = 4, 1 respectively, where R0 is the initial bubble radius.

4. Significant viscous effects are associated with acoustic microbubble dynamics, which

cause the decreasing of the maximum volume, oscillation period, Kelvin impulse of

the bubble and the energy of the bubble system. The direction of bubble jetting

does not change significantly due to the viscous effects but the jet velocity decreases

and the jet becomes thinner. The changes are relatively large as Re changes from

50 to 13, but much smaller as Re changes from ∞ to 50. This suggests the viscous

effects are small as Re is 50 or larger.
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(iv) Toroidal bubble dynamics

In chapter five we simulated three-dimensional toroidal bubble using vortex ring model. It

is challenging to simulate three dimensional toroidal bubble dynamics, which are associated

with strong numerical instabilities due to jet impact, topological transition, and bubble

rebound. A few of developments are described in chapter five to improve the vortex ring

model for three dimensional toroidal bubbles. The transform from a singly connected

bubble to a toroidal bubble is performed automatically. A finer mesh is generated by

splitting each of triangles into four triangles after jet impact, to describe the local geometry

associated a hole through the bubble penetrated by the bubble. The potential due to a

vortex ring is calculated by using the Biot-Savart law where the integral from the infinite

to the point considered is performed analytically. We evaluate the numerical model by

comparing with the axisymmetric BIM and the experiment result. We analyse toroidal

bubble dynamics subject to buoyancy near a vertical wall, including jet impacting and

rebounding toroidal bubbles with oblique jetting.
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6.2 Possible future developments

We have developed a robust computational model for simulation of three-dimensional

microbubble dynamics considering the viscous effects. This model can be applied for more

complex phenomena. One of the possible development is to model the interaction of a

few bubbles, which are associated with wide applications [75, 94, 29, 64, 103]. It will be

interesting and challenging to model coalescence two bubbles.

Another development is to model acoustic microbubble dynamics in a tube, which is

associated with important biomedical applications [75, 16, 95, 103, 129]. The high speed

liquid jet has clear potential to damage/penetrate the boundary. However, in the real

situation, the jet speed will be attenuated or re-directed by the elastic deformation of

the vessel boundary. The elasticity deformation of the vessel boundary should thus be

modelled.

In the current study we assume that the liquid is incompressible, since the Mach number

associated with bubble dynamics is usually small. However compressibility effects may

not be not negligible in some cases particularly at the end of violent collapse, which is

associated with emission of shockwaves [66]. Wang & Blake [121, 122], and Wang [119, 120]

recently developed the weakly compressible flow theory for bubble dynamics. In the theory,

the flow in the inner region near the bubble is approximately incompressible to second

order in terms of the Mach number, and the flow in the outer region far away is obtained

analytically. The compressible effects are appeared in the far field condition for the inner

solution. We thus can develop the current three dimensional incompressible model to

include the compressible effects using the weakly compressible flow theory.
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