Synthetic sensors for saccharides and glycoproteins

Stephenson-Brown, Alexander James (2015). Synthetic sensors for saccharides and glycoproteins. University of Birmingham. Ph.D.

[img]
Preview
Stephenson-Brown15PhD.pdf
PDF

Download (8MB)

Abstract

The sensing of biological compounds is of vital importance to the screening and diagnosis of disease. The importance of such assays is due to the correlation observed between the observed levels of biological compounds and diseases such as cancer and diabetes mellitus. Compounds such as sugars and proteins are included in this useful class of molecules which can be used to detect pathology. Currently the detection of these compounds is achieved through the use of other biologically derived molecules- typically antibodies and enzymes. However, sensors based on these compounds can be limited in terms of their stability and suitability. Therefore there is a constant drive for novel detection methods for such molecules.
In this context, the aims of the work described herein, are to produce synthetic sensing systems for the selective detection of saccharides and glycoproteins. This work will use principles of nanotechnology and self-assembly to produce surface sensors which exploit the revisable interactions of boronic acids to bind compounds of interest, and which employ surface plasmon resonance spectroscopy to enable the label free reporting of these binding events.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Supervisor(s):
Supervisor(s)EmailORCID
Mendes, PaulaUNSPECIFIEDUNSPECIFIED
Fossey , J.S.UNSPECIFIEDUNSPECIFIED
Preece, Jon AndrewUNSPECIFIEDUNSPECIFIED
Licence:
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Chemical Engineering
Funders: None/not applicable
Subjects: T Technology > TP Chemical technology
URI: http://etheses.bham.ac.uk/id/eprint/5728

Actions

Request a Correction Request a Correction
View Item View Item

Downloads

Downloads per month over past year