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Abstract 

The production of ceramic catalyst supports is commonly performed by the extrusion 

of a paste. The rheological properties of the paste as it passes through the extruder 

have a strong influence on the extrudate properties such as porosity and strength, 

which in turn affect the catalytic performance of the final product.  

An assessment of the effect of acid type and strength and powder type on the 

rheological properties of concentrated boehmite slurries has been made.  In 

particular, evidence of gel formation is looked for, and the surface chemistry is 

examined using zeta potential measurements.  Further understanding of the 

observed rheological changes is obtained by performing nuclear magnetic 

resonance studies and cryogenic microscopy.   

The effect of powder properties and acid type and strength on the saturation states 

of a formulation has been examined using mixer torque rheometry.  The prediction of 

saturation states from bulk density measurements is discussed. 

The predictive capability of the mixer torque rheometer with regards extrusion 

formulations is investigated.  The effect of acid type and strength on successful 

extrusion formulations and extrudate properties is discussed. 
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Chapter 1 Introduction 

1.1  Catalysis and Johnson Matthey 

A catalyst is a material which increases the rate of a reaction step with no net 

consumption or generation of the catalyst by the reaction.  Heterogeneous catalysis 

is crucial to a large number of industrial operations, over 90% of global chemical 

processes require or utilise a catalyst.  Johnson Matthey is one of the world‟s leading 

catalyst companies, supplying catalysts across a wide variety of applications 

including emissions control technologies, synthesis gas and hydroprocessing 

catalysts.   

Heterogeneous catalysis most commonly incorporates the use of a solid phase 

catalyst with products and reactants in the liquid or gaseous phase.  The high 

commercial cost of catalytically active materials encourages the use of cheap, inert 

support materials, typically ceramics, in      many applications.  Johnson Matthey 

currently purchases a large portion of the supports required to meet the catalytic 

needs of their customers, however, changes in the market are encouraging the 

production of supports internally.   

1.2  Catalyst Supports  

For a catalyst support to be effective in application it must be highly porous to 

maximise the surface area available for supporting the catalytically active material.  

The pores must be of a suitable size for the supports‟ application and highly inter 

connected to allow for transport of reactants and products to and from active sites.  

The surface chemistry of the support also needs to be suitable for the particular 

active catalyst with which the support is to be loaded.   
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The successful manufacture of a catalyst support is a combination of the material 

formulation and the forming method used.  A wide variety of forming techniques are 

available for support manufacture, including tabletting, granulation and extrusion, of 

which there are a number of types, principally ram extrusion and single or twin screw 

extrusion.  The advantages of the twin screw extrusion process over ram or single 

screw extrusion is that it allows the mixing of a paste and forming into a shape to be 

combined into a single unit step and is suited to continuous operation, which is 

desirable for an industrial process.  Extrusion also allows the formation of a variety of 

shapes by varying the design of the die, as opposed to granulation which is limited to 

the production of spheres.   

1.3  Scope of Investigation 

The aim of this thesis is to investigate the relationship between formulation 

parameters and extrudate properties of an alumina catalyst support, produced by 

twin screw extrusion of an acidic boehmite paste.  In particular, it was desired to 

develop the capability to predict successful extrusion formulations from fundamental 

powder properties and acid strength, allowing plant managers to move towards 

operating on a feed-forward, rather than feedback, control basis, based on 

measurable feed properties, improving the control over issues associated with batch 

to batch variability.   

Chapter 2 presents a more detailed backround and introduction to the prjoject work 

undertaken and description of factors to be considered throughout the project.  A 

review of published literature pertaining to the topic of the thesis is presented in 

Chapter 3.  Chapter 4 contains details of the materials, equipment and methods 

employed.   
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Characterisation of the powder properties such as particle and crystallite size, and 

dispersion and dissolution rates in acid are presented in Chapter 5. 

Chapter 6 presents an assessment of the effect of acid type and strength and 

powder type on the rheological properties of concentrated boehmite slurries.  In 

particular, evidence of gel formation is looked for, and the surface chemistry is 

examined using zeta potential measurements.  Further understanding of the 

observed rheological changes is obtained by performing nuclear magnetic 

resonance studies and cryogenic microscopy.   

The effect of powder properties and acid type and strength on the saturation states 

of a formulation has been examined using mixer torque rheometry, presented in 

Chapter 7.  The prediction of saturation states from bulk density measurements is 

discussed. 

Chapter 8 examines the capability of the mixer torque rheometer to predict 

successful extrusion formulations.  The effect of acid type and strength on successful 

extrusion formulations and extrudate properties is discussed. 

Chapter 9 contains project conclusions and suggestions for further work in the field.  

References can be viewed in Chapter 10.      
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Chapter 2 Background  

2.1  General Introduction and Background 

2.1.1  Alumina 

Aluminium oxides and aluminium hydroxides are commonly called alumina.  Alumina 

exists in many phases, including α, γ, δ, ε, θ, κ, and ρ, and various nomenclatures 

have been developed over the years.  Each of the phases exhibit differences in 

physical and chemical properties, a detailed description of aluminas can be found in 

Wefers and Misra (1987).   Alpha aluminium oxide ( 32OAl ) is also commonly 

called corundum and it is the only thermodynamically stable form of aluminium oxide.  

It is a very abrasive material, which can be formed from the other phases of alumina, 

according to the transformation sequence seen in Figure 2.1, when exposed to high 

temperatures and pressures. This project considers the use of boehmite, 

( )AlOOH as a raw material for the production of alumina catalyst supports.   

 

Figure 2.1: Transformation sequence of aluminas to alpha alumina (adapted from Wefers and 

Misra, 1987) 
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Boehmite or pseudoboehmite is a common choice of raw material for forming of 

catalyst supports.  The term pseudoboehmite refers to a boehmite with which 

additional crystalline water is associated, (discussed further in Section 2.1.3).  A 

large variety of boehmites are commercially available with different properties such 

as particle size distribution, crystallite size and impurity levels, resulting from the 

specific conditions of synthesis, (discussed in Section 3.4).  The wide variety 

available is illustrated by Stoepler and Unger (1983) who performed an investigation 

on extrusion using more than 60 commercially available aluminas, principally 

gibbsites and boehmites.  They found that the degree of crystallinity and the size 

distribution of the aggregates had a significant effect on the properties of the product. 

2.1.2  Manufacture of Boehmites 

Boehmite is produced from the ore bauxite.  This material is converted to alumina 

trihydrate, Al(OH)3 by the Bayer process, developed and patented over 100 years 

ago and described in detail by Hind et al. (1999).  This can then be used to form 

boehmite by the sulphate route, chlorate route or organic route.  The route of 

manufacture has a significant impact on the types and levels of impurities present 

and the specific synthesis conditions can determine the structure and properties of a 

boehmite crystal, (discussed in Section 3.4).   
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Figure 2.2: Routes of boehmite manufacture 

Both the sulphate and chloride routes are acid precipitation methods which involve 

the alumina trihydrates being dissolved in sulphuric or hydrochloric acid respectively 

and precipitated out with a base, typically sodium hydroxide or sodium carbonate.  

Precipitation using nitric acid and ammonium nitrate, results in impurities which are 

volatile and as such can be easily removed.  However, this process is rare due to the 

high cost and formation of an explosive side product, aluminium nitrate.  A study by 

Guzmán-Castillo et al. (2005) indicated that boehmites produced by the sulphate 

route were less crystalline than those produced by the chloride route.  They also 

observed differences in the types of acidity present in each case; boehmites 

produced by the chloride route displayed only Lewis acidity in the gamma phase, 

where as those produced by the chloride route displayed both Lewis and Brönsted 

Lowry sites, the ratio of which was a function of the crystallite size.   

The organic route involves refining the alumina trihydrates to pure aluminium and 

then applying the Ziegler process to the aluminium to produce boehmite.  This is also 

referred to as the alkoxide route and involves four steps; the formation of an organic 

aluminium compound, chain growth of the organic, oxidation and hydrolysis.  This 
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process was originally used to produce long chain alcohols and boehmite was 

formed as a by-product.  Boehmites from the long chain alcohol plants can have up 

to 2000 ppm titania present where as the boehmites from purpose built sites would 

typically have only a few hundred ppm.   

Three boehmite powders have been studied in this project, each manufactured by 

different routes, though all three are precipitated boehmites.  The boehmite G250 is 

manufactured by the sulphate route whilst the boehmite V250 by the chloride route, 

both of these boehmites are spray dried.  The boehmite Dequagel HP is 

manufactured by precipitating aluminium hydroxide with CO2 according to patent 

US4492682.  The acid and base used for washing the precipitate are not specified, 

this boehmite is static dried.   

2.1.3  Structure of Boehmite and Psuedoboehmite  

Wefers and Misra (1987) present a description of the structure of boehmite, 

elucidated from a variety of previous published work, including one of the earliest 

and most commonly cited references regarding the structure of boehmite, Lippens 

(1961).  The crystals consist of double layers in which the oxygen ions are packed 

cubically.  Each of these double layers is composed of chains formed by double 

molecules of Al-OOH, seen in Figure 2.3 extending in the lengthwise direction.  In 

these layers, the hydroxyl ions in one layer are located over the depression which 

occurs between the hydroxyl ions in adjacent layers, seen in Figure 2.4.  The 

primitive unit cell can be seen within the dashed line in Figure 2.4, this was shown by 

Kiss et al. (1980) to comprise of 4 Al-OOH units using Raman spectroscopy.  The 

double layers are linked by hydrogen bonds between neighbouring hydroxyl ions.   
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Pierre and Uhlmann (1986) describe how the oxygen octahedra in boehmite are 

arranged in parallel layers linked by hydrogen bonds. Each of these octahedral 

layers are composed of two octahedral sublayers.  They examined the structure of 

boehmite gels formed from aluminium hydroxide sols using transmission electron 

microscopy (TEM) and scanning electron microscopy (SEM) and present a 

schematic representation of the gel consisting of folded layers of boehmite crystals, 

formed as a result of stacking defects in the octahedral sublayers.   

 

Figure 2.3: A 2-AlOOH molecule (adapted from Wefers and Misra, 1987) 
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Figure 2.4: Structure of boehmite (adapted from Wefers and Misra, 1987) 

Further descriptions and details of the structure of boehmite and psuedoboehmite 

are discussed by Bokhimi et al. (2001) who discuss the relationship between the 

formation conditions of boehmite and the resulting crystallite size.  Lamberov et al. 

(2003) also discuss the effect of synthesis conditions on the physicochemical 

properties of aluminium hydroxides, additional studies into these relationships are 

discussed further in Section 3.4.   

Most authors, (including Zakharchenya, 1996, Wefers and Bell, 1972, Music et al., 

1996 and Assin et al., 1998) agree that boehmite and pseudoboehmite have the 
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same crystal structure, varying only in water content and degree of crystallinity, 

connected to the presence of excess water considered by these authors to be 

located in the hydrogen bonding layer, increasing the d spacing. Pseudoboehmite is 

described by Martens et al. (2001) as a hydrated form of boehmite with a larger d 

spacing. Loong and Ozawa (2004) examined the structure of boehmite and 

pseudoboehmite using small angle scattering (SANS), they identified proton 

delocalisation and disordered OH sites in psuedoboehmite microstructure.     

It is proposed by Bokhimi et al. (2001) that boehmite and pseudoboehmite are the 

same phase of aluminium hydroxide but with different crystallite sizes, shown by 

examining the crystallography of boehmites with crystallite sizes ranging from 1 to 27 

nm.  Other publications such as Baker and Pearson (1974) and Okada et al. (2002b) 

discuss that the difference is due to excess water and lower crystallinity of 

pseudoboehmite. 

Of particular interest in the discussion of boehmite structure is the issue of the 

location of excess water in a pseudoboehmite.  Pseudoboehmite, poorly crystalline 

boehmite and gelatinous boehmite are used interchangeably in literature regarding 

this issue.  The excess water is typically 15-30 wt%.  A review of the proposed 

locations of this water is presented by Wefers and Misra (1987).  Proposed locations 

include as a suface monolayer (Bye and Robinson, 1974) random intercalation 

(Pierre and Uhlmann, 1986) and as a link between the (AlOOH)2 molecules seen in 

Figure 2.3 (Lippens, 1961).  X-ray diffraction patterns show varying degrees of 

increase in the d-spacing, placing the water between the double layers, though the 

largest increase was observed in the b axis (Wefers and Misra, 1987).  This location 

is argued by Guzman Castillo et al. (2001) who compared the crystallite dimensions 
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of boehmite and pseudoboehmite and found the same crystallite structure with a 

difference of only 0.0052 nm in the b axis, a difference which is not large enough to 

support this as the location of excess water.   

Near-infrared spectroscopy can be used to study the water retention capacity of a 

material, and distinguish the energetic states of water within a material, Luukkonen 

(2001).  Quasi elastic neutron scattering (QENS) has also been employed by Mitra et 

al. (2001) to study the dynamics of water contained in the pores of an alumina gel. 

They identified the presence of both localised water, bonded to the surface, and 

delocalised water free to diffuse.   

Evidence of the presence of proton pairs in boehmite was obtained by nuclear 

magnetic resonance absorption spectra by Slade and Halstead (1980).  Details of 

the preparation and structure of this deuterated form of boehmite can be seen in the 

paper by Corbato et al. (1985).   

The surface polarity of peptised aluminas (not boehmite) was studied using gas 

chromatography by Hillerova et al. (1981), who concluded that the polarity varied 

with preparation conditions. The crystallinity of boehmite has been shown by Nortier 

et al. (1990) to affect the surface properties of the resulting gamma alumina.  The 

structure of gamma alumina has been shown to vary depending on whether it has 

been formed from boehmite or gibbsite by Chen et al. (1992) who studied transition 

aluminas using solid state NMR and identified a much higher presence of 

pentahedral aluminium coordination in aluminas formed from boehmite.   
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2.1.4  Size Distribution and Packing Effects 

Particle packing is important in the formation of ceramics by paste extrusion as it will 

affect the rheological behaviour of the paste during processing and also the 

properties such as strength and porosity of the resulting extrudate.  The maximum 

packing fraction, also termed packing limit, of a system is an important parameter to 

consider in paste production and the packing structure is critical in determining the 

resulting pore structure of a formed product.  Particle packing is strongly affected by 

particle size distribution, particle size and surface chemistry.  Particle packing 

behaviour is also known to have a significant effect on the rheology of concentrated 

suspensions and pastes, the influence of particle packing on paste extrusion is 

discussed by Blackburn and Böhm (1993).   

The contact polyhedra formed in particle systems, which were described by Bernal 

(1959), have formed the basis of many packing models developed since. Blackburn 

and Wilson (2008) review the packing theories for powders which are numerous and 

well reported.  Jaeger and Nagel (1992) calculated that the maximum packing 

fraction of a unimodal distribution of spheres, ignoring colloidal interactions, is 0.64.  

Variations in size distribution, size and shape of particles will alter this value.  

Various studies have been performed on the packing of more complicated systems, 

such as the packing of continuous particle size distributions which was considered 

by Bark and Apte (1987), prediction of the maximum packing fraction of a multimodal 

non spherical system by Liu and Ha (2002), and the effect of surface chemistry on 

particle packing in alumina suspensions by Tseng and Wu (2003), A description of 

the effect of particle shape on particle packing is presented by Blackburn and Wilson 
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(2008).  Packing in wet systems was studied by Ye et al. (2008) who developed a 

method which allowed a wet system to be considered as an imaginary dry system.   

The discrete element method simulation technique has been applied by a number of 

authors (Sweeney and Martin, 2003, Chung et al., 2005, Theuerkauf et al., 2006) to 

understanding particle packing.  Limitations of the technique mean that simulations 

fail to replicate real systems, studies focus on unimodal, dry, spherical particles, 

significantly larger than colloids.  Fu et al. (2006) performed a DEM simulation of 

packing for a powder system containing 2000 180 - 300 μm particles.  Their 

simulation was found to be in good agreement with observations made using X-ray 

microtomography, however the study is still a simplification of reality as it only 

considers a small number of spherical particles.  Real particle systms contain a 

much larger number of non spherical particles which may exhibit properties not 

considered in the models, such as cohesivity, which will alter the packing behaviour 

from that predicted by the simulations.   

2.1.5  Dispersion 

Dispersion is known to occur by both mechanical and chemical means.  Figure 2.5 

shows a typical dispersion mechanism in which the agglomerates are first broken 

down by mechanical means into agglomerates, which can be dispersed into primary 

particles by chemical dispersion 
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Figure 2.5: Dispersion mechanism of spray dried particles (a), to agglomerates (b) to 

crystallites (c) (adapted from UOP promotional literature) 

Mechanical breakdown of particles can cause an alteration of the surface chemistry 

by exposing internal surfaces, and thus can encourage breakdown by chemical 

dispersion.  

Boehmite powders can vary significantly in their tendency to disperse by both 

mechanical and chemical means, depending upon the conditions of their 

preparation.  The variation in dispersibility is used as a marketing tool, targeting 

particular boehmite powders to specific markets.   

2.1.6  Porosity 

Pores are classified, according to their size, as either macropores, mesopores or 

micropores.  Macropores are considered to be those pores which are larger than 50 

nm.  Mesopores, also called transitional or intermediate pores, are between 2 nm 

and 50 nm and micropores are those which are smaller than 2 nm.  The origins of 

each of these types of pores are discussed by Johnson and Mooi (1968) who 

consider pores in the micropore range to be inherent within the boehmite crystals, 

the mesopores formed by dehydration during heat treatment steps and macropores 
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are the interparticle voids.   The presence of macropores results in a loss of material 

strength as illustrated by the Griffiths crack theory which relates strength and 

toughness accounting for the presence and size of faults such as pores, (Griffiths, 

1920).  Based on Mooi‟s discussion of pore origin, micropores can be adjusted by 

control of raw material and chemistry affecting the crystallites, and mesopores can 

be controlled by adjustments in the formulation and forming process.  The shapes of 

pores in aluminium oxide systems was studied by De Boer and Lippens (1964), by 

examining the nitrogen adsorption/desorption isotherms and concluded that pores 

with approximately rectangular shaped cross sections or needle-shaped pores were 

formed depending on the crystallinity of the boehmite used and the temperature to 

which samples were heated.   

The control of pore size can be aided by the use of pore formers.  Pore formers are 

effectively any material which will be removed during a post forming step, such as 

organic molecules or combustible solids.  A pore former is also a formulation 

modifier, which are discussed in Section 2.1.7.   

Investigation into the use of pore formers to control pore volume and pore size 

distribution in aluminas has been studied for many years, a review of the methods 

available to control pore size of alumina catalyst supports was presented by Trimm 

and Stanislaus (1986), citing 47 articles already published in this field 25 years ago, 

dating back to 1942, and work is ongoing. 

Basmadjian et al. (1962) and Youssef (1976) added water soluble organic polymers 

to alumina gels.  Youssef (1976) used vinyl pyrolidone polymer in concentrations of 

between 5 and 10 % by weight, resulting in a significant increase in the total pore 



                                     - 35 - 

 

volume.  The increase was proportional to polymer content, but not surface area, as 

the polymer was increasing pore size.  Addition of 5 % increased pore size from 0.4 

nm to 5 nm and addition of 10 % polymer by weight widened pores to 8 nm. The 

pore structure of a molybdena / alumina system was designed by Tischer (1981) 

using cellulose to form macropores and acid as a peptising agent.  They found the 

resulting pore size was affected by the powder used, but independent of the acid 

type and processing conditions.   

Absi-Halabi et al. (1993) found that the presence of ammonia vapour during the 

thermal treatment of boehmite gel enhanced the pore enlargement of the resulting 

alumina, where as the presence of acetic acid caused a suppression of the pore 

enlargement.  The difference was attributed to the effect of the reagants on the 

hydroxylation of the Al-O-Al bonds.   

Work by Han et al. (2003) on the fabrication of bimodal porous alumina ceramics 

involved combining the sponge method and the pore former method to obtain the 

desired pore size distribution.  An aqueous phase was used as a binder and pore 

former and was burnt off after the sponge impregnation method.  This report was 

principally aiming to investigate the effect of sintering temperatures on the strength 

of the formed ceramic foam but it highlights the use of pore formers being used to 

design the pore structure of a material.    Phosphoric acid was successfully used to 

control the pore structure of titanium dioxide materials by Huang et al. (2005) who 

were able to control the modality of the distribution by altering acid concentration, the 

mechanism responsible for the control achieved was not discussed.   
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A series of works performed by Isobe et al. (2006a-d) examined the control of the 

microstructure of extrudates by uni-directionally orienting pores using solid pore 

formers such as nylon 66 fibres, carbon fibres and polyvinylacetate to produce pore 

sizes between 0.4 and 400m, the size of the pore former correlated closely with the 

size of the pore formed.  They achieved excellent pore orientation with pore formers 

and extrusion, though degree of orientation decreased with an increase in pore 

former concentration. The alignment of pores was found to increase the mechanical 

strength and permeability at a constant porosity.  Mechanical strength was also 

increased by reducing the pore size.   

2.1.7  Formulation Modifiers 

Additives may be introduced to formulations to act as a binder or lubricating agent, or 

as mechanical promoters.  It is rare that an additive will have a single effect on a 

formulation, the pore formers discussed in Section 2.1.6 will also act as rheology 

modifiers and additives included to act as a binder may also behave as a pore 

former.  It is important to consider the full effects of any formulation additive, as 

effects may be detrimental, for example, Forzatti et al. (1998) found that an overuse 

of lubricating agents can lead to a severe loss of mechanical strength in the 

extrudate. 

It is often preferable to introduce additives in the solid form to enable premixing with 

the solid component of the extrusion system, helping to ensure a uniform distribution.  

In general these components in their liquid form can be highly viscous and therefore 

difficult to mix uniformly with powders, (Forzatti et al. 1998).  The mixing issues 

associated with the use of additives can complicate and increase the cost of a 
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process considerably, therefore it is preferable to avoid, or minimise, their use 

wherever possible. 

Boehmite is often referred to and used as an extrusion aid, (Sunil Kumar et al., 1997, 

and 1998, Ananthakumar et al., 2001).  The extrusion of boehmite commonly 

incorporates the use of nitric, or another acid which acts as a binder by behaving as 

a peptising agent.  The significance of the acid used on the product properties was 

investigated by Jiratova (1981).  

2.1.8  Forming of Ceramic Catalyst Supports 

Catalysts and catalyst supports can be formed using techniques other than 

extrusion, such as tabletting or granulation.  A review of the production of catalysts 

by granulation has been performed by Holt (2004).  Extrusion is also suitable for 

forming a range of materials, illustrated by the extrusion of zeolites performed by 

Chapman and Blackburn (1991). The use of pillared clays as a raw material for 

producing catalyst supports was assessed by Mohino et al. (2005).  Pillared clays 

are attractive in this application as they offer a high surface area and porosity, 

thermal stability, and suitable surface chemistry after thermal treatment.   

The single screw extrusion of pastes was investigated by Burbidge and Bridgwater 

(1995) who coupled polymer extrusion models with paste rheology to improve the 

description of paste extrusion.  Acknowledgment is made by the authors of the 

discrepancies between screw extrusion of polymers and ceramics, for example the 

materials exhibit the opposite relationship between channel depth and pressure.  

Botten et al.  (2003) successfully developed a model to predict the pressure gradient 

in the extrusion of pastes through a single screw extruder, using the combination of a 

volume conservation equation and force balance solved for pressure as a function of 
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barrel length.  The model was general and could be applied to all channel 

geometries, and all paste-like materials.  Previdi et al. (2006) designed and tested a 

feedback control system for real-time control of polymer flow within a single screw 

extruder.  The regulation achieved by the control system was effective and 

considered a cost effective alternative to mechanical volumetric pumps.  The 

literature pertaining to the use of twin screw extrusion to produce catalyst supports is 

reviewed in Chapter 3. 

The issue of temperature effects on forming operations is not considered by many 

authors.  Tomita et al. (1994) investigated this effect in alumina slurries containing a 

dispersant and concluded that temperature had a significant effect on the absorption 

of the dispersant and therefore on the slurry rheology.  No similar study has been 

published on the effect of temperature on the properties of acidic boehmite slurries 

or pastes.     

A comprehensive review of the shaping of ceramics is presented by Blackburn and 

Wilson (2008), highlighting the importance of understanding paste instability by 

considering the propensity to phase migrate.  Wilson and Rough (2006) present a 

detailed discussion of the curious characteristics of dense pastes, in particular wall 

slip, surface fracture and phase migration,  both of these publications are discussed 

further in Chapter 3. 

2.2   Introduction to Rheological Measurements 

Rheology is defined as the flow of fluids, or deformation of solids, under stress or 

strain.  The rheological properties of a soft material can be measured using a 

rotational rheometer, (though there are other types of rheometer) in which the 
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material of interest is placed between a stationary flat plate and a rotating geometry 

as shown in Figure 2.6.  Geometries can be either flat or cone shaped and are 

available in a range of sizes and materials of construction and surfaces can be 

smooth or serrated. A rheological measurement is made by assessing the strain 

response to shear stress imposed on the sample, or vice versa. 

 

Figure 2.6: Schematic of a rotational rheometer (adapted from ciks.cbt.nist.gov) 

Flow rheometry techniques can be used to determine the flow properties of a 

material such as apparent viscosity and yield stress.  An alternative to this is 

oscillatory rheometry in which the oscillatory motion enables the microstructure of a 

material to be probed. 

2.2.1  Rheological Behaviour of Suspensions 

A simple liquid such as water displays Newtonian rheological behaviour, i.e. the 

viscosity is independent of shear rate.  More complex, structured, liquids can exhibit 

either shear thinning or shear thickening behaviour, i.e. the apparent viscosity 

decreases or increases with shear rate respectively. These are termed power law 

fluids and behave according to equation 2.1 
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1 n

app k  ………………………………………………...………….……..(equation 2.1) 

where app is the apparent viscosity at a particular shear rate, k is a consistency term 

and n  the flow behaviour index; n  > 1 for shear thickening materials and n  < 1 for 

shear thinning materials.  Note that if 1n  the material can be described as 

Newtonian.  Materials with structure such as ketchup or paint are typically shear 

thinning, the imposed shear acts to break down the structure allowing flow to occur 

more easily, resulting in a reduced apparent viscosity.  Similarly materials in which 

shear can act to build up structure can exhibit a higher apparent viscosity when 

shear is imposed, these are shear thickening materials.  

A system of solid particles contained within a liquid medium can be considered as a 

dispersion, suspension, slurry or paste. There are no specific boundaries imposed 

on the use of these terms though each refers to a general range of solids contents 

listed here in order of increasing solids.  The materials considered in this chapter fall 

within the range of suspensions to concentrated slurries.   

At low shear rates suspensions are shear thinning due to the particles becoming 

aligned in the flow regime of the liquid medium and producing less resistance to flow.  

As the shear rate increases the kinetic energy of the particles can be sufficient to 

overcome the energy barrier provided by the repulsive interparticle forces and 

aggregation can occur, (these aggregates can be referred to as jamming clusters), 

leading to shear thickening.  The shear rate at which shear thickening occurs is 

referred to as the „critical shear rate‟ and at this point the shear forces in the system 

are equal to the interparticle forces (Boersma et al., 1990).  This phenomenon has 

the potential to yield quantitative data regarding the interparticle forces within a 
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material however it is not desirable in a formulation intended for an extrusion process 

as it would result in blockages occurring.  Shear thickening can also be caused by an 

increase in the effective solids content of a system by aggregation of particles and 

entrapment of liquid. Particle shape and rotation can also alter the effective solids 

content of a system, with the effect of rotation increasing as the sphericity of particles 

decreases.   

Some materials require a minimum amount of stress to induce flow; such materials 

are referred to as yield stress materials.  Various rheological models exist for 

describing the behaviour of yield stress materials of which the Bingham (equation 

2.2) and Herschel Bulkley (equation 2.3) models are the most common.   

  0 ……………………………………………….….....……………...(equation 2.2) 

nk  0 …………………………………………..……....................……(equation 2.3) 

where  is shear stress, 0 is yield stress,   is the Bingham plastic viscosity, k is the 

Herschel Bulkley consistency coefficient and n  is the rate index (as described for the 

power law equation in equation 2.1).  

The Bingham model considers that beyond the yield stress a material behaves as a 

Newtonian fluid where as the Herschel Bulkley model considers that beyond the 

yield stress the material is pseudoplastic in nature i.e. either shear thinning or shear 

thickening as described previously.  Figure 2.7 shows the typical rheograms 

produced by materials according to each of the models discussed. In this example 

the power law model and Herschel Bulkley model are both displaying shear thinning 

behaviour.   
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Figure 2.7: Typical rheograms 

Another model commonly used is the Cross model (equation 2.4 and Figure 2.8) 

which is a simple but versatile model that can cope with a yield stress yet retain the 

extremes of a finite zero and infinite rate viscosity, (Barnes, 2000).   
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 ……...……………………………………………………..(equation 2.4) 

where   is the apparent viscosity,  is the infinite shear viscosity, 0 is the zero 

shear viscosity, C is the Cross time constant and m is the Cross rate constant.  

0m  for Newtonian materials and 1m  for perfect shear thinning materials.  

The zero shear viscosity is the magnitude of the viscosity at the lower Newtonian 

plateau which can prove valuable in making assessments of suspension and 
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emulsion stability.  The infinite shear viscosity describes how a material is likely to 

behave in very high shear processing situations and the reciprocal of C gives an 

indication of the shear rate at which shear thinning will occur.  The rate constant m is 

dimensionless and is a measure of the degree of shear-thinning.    

 

Figure 2.8: The Cross model (from www.rheologyschool.com) 

Material rheology can be a function of time.  A thixotropic material exhibits a 

reduction in viscosity over time at a constant shear rate and a material which 

displays an increase in viscosity over time at a constant shear rate is called 

rheopectic.   

The concept of yield stress as a real phenomenon is debated within the rheological 

community.  The debate developed from the consideration of how to best measure a 

yield stress fluid as there are various issues associated with the measurement of this 

parameter.  It is argued that yield stress and thixotropy are fundamentally two effects 

from the same cause (Møller et al., 2006), therefore, raising the issue of whether 

yield stress is itself a material property.  In an engineering context the measurement 

of yield stress, or „shear stress at which flow begins to occur‟, is useful when 
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designing equipment such as pumps and material conveying systems.  This is also 

true when considering the flow of material within an extruder as the ability to retain 

shape is a particularly important property of a green extrudate.  As such the 

rheological data and subsequent discussion presented in this chapter is not 

intending to enter into the debate of the fundamental cause, or existence of, yield 

stress but to use this measurement as a description of the materials under 

investigation.   

2.2.2  Challenges of Characterising the Rheological Properties of 

Concentrated Suspensions 

When solids are added to a liquid phase both the rheological properties and the 

measurement of these properties become more complex.  When considering very 

dilute suspensions (solids content < 10 wt%) the Einstein equation (equation 2.5) 

can be applied to predict the viscosity of the suspension from the viscosity of the 

fluid and the volume of particles contained within the suspension. The idea of 

calculating a suspension‟s viscosity in this way was continued by Ball and Richmond 

(1980) who introduced the idea of a crowding factor; this model however is still only 

suitable for relatively dilute suspensions.  The most commonly used expression 

describing the viscosity of suspensions is the Kreiger Dougherty equation (equation 

2.6), which is valid for hard spheres.  Over 100 equations attempting to describe this 

relationship are identified by Rutgers (1962). 

)5.21(0  app ………..…………………………………………………....(equation 2.5)  
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where app is the apparent viscosity, 0 is the viscosity of the liquid phase,    is the 

intrinsic viscosity of the liquid phase, which is a function of the particle shape,   is 

the volume fraction of the dispersed phase and  max is the maximum packing fraction 

of the dispersed phase.  The Kreiger Dougherty relationship describes how the 

viscosity of a suspension will increase with particle loading and that the increase will 

become more significant as the volume fraction approaches the maximum packing 

fraction.  Particle packing theory (discussed previously in Section 2.1.4) shows how 

the maximum packing fraction, and therefore rheological properties, vary with the 

polydispersity of the dispersed phase (Zheng et al., 1995).   

The term wall slip is used to describe the issues caused by the disruption in local 

microstructure which occurs when a concentrated suspension is next to a wall or 

plate.  A particle concentration profile is created from the centre of the sample to the 

wall at which point the concentration is zero.  This results in the presence of a liquid 

rich lubricating layer (slip layer) near the wall, the extent of this effect is dependent 

on the particle size and size distribution and has been studied using total reflection 

infrared spectroscopy by Hartman Kok et al. (2004).  The effect is most apparent 

when the disperse phase has a large unimodal size distribution.  The occurrence of 

wall slip can be identified by performing shear rate variation experiments at a variety 

of gap sizes in parallel plate experiments where a significant variation in the position 

of the curve indicates the occurrence of wall slip.  Wall slip in rotational geometries 

can be mitigated against by using a serrated geometry as the points of serration 

penetrate through the lubricating layer into the bulk of the material (Barnes, 2000).  A 

similar and additional effect occurs with needle shaped particles where the random 

orientation of the particles is disrupted by the presence of a wall which enhances 
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alignment of the particles and reduces the apparent viscosity of the surface layer 

(Barnes, 2000).  The formation of a particle concentration profile across the sample 

means that an appropriate gap size must be selected on an individual sample basis 

for accurate measurements to be taken.  The particle concentration (for spheres) is 

found to equilibrate at a distance of around 5 particle diameters from the wall hence 

an appropriate gap size is considered to be between 5 and 10 times the largest 

particle diameter (Barnes, 2000). 

Measurements performed over a long period of time are liable to experience 

additional problems associated with of evaporation of the liquid phase and settling of 

the solid particles.  There are equipment and techniques available to mitigate each of 

these effects, however, they are not considered relevant due to the short time scale 

of the experiments performed in this project.   

One of the issues with the measurement of yield stress is that of localised shear 

which is also referred to as shear banding.  In a plate-plate type rheometer a 

gradient of shear rate naturally exists across the span of the sample (though this can 

be mitigated against with the use of a cone geometry) which can cause flow to be 

initiated in a portion of the sample rather than the bulk indicating an apparent yield 

stress smaller than if motion was initiated throughout the sample.  This is a similar 

issue to that faced with wall slip; a segregation of the material leading to an 

inaccurate measurement of the bulk properties.   

2.2.3  Controlling the Rheology of Concentrated Suspensions 

Understanding the factors which affect the rheological properties of concentrated 

suspensions allows for attempts at controlling and designing these properties by 

manipulation of the formulation parameters.   
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The solids content contained within a suspension has a significant effect on the 

rheological properties particularly as the maximum packing fraction of the system is 

approached.  Therefore, controlling the value of the maximum packing fraction by 

controlling particle size distribution is one way in which the rheology can be 

controlled.  Research is ongoing in the field of particle packing behaviour and 

maximum packing fractions but it is considered well understood that the maximum 

packing fraction can be increased by increasing the polydispersity of a system as the 

smaller particles can fill the voids between the larger particles.  The degree of 

polydispersity not only affects the magnitude of the apparent viscosity of a system 

but also the degree of shear thinning which it will exhibit due to variations in the 

ability to align with flow regimes.  A system with a very narrow size distribution will 

exhibit the highest degree of shear thinning (Luckham and Ukeje, 1999).     

Considering two systems with an equal mass of particles present and equal degrees 

of polydispersity, but different mean particle sizes, the system with the smallest 

particles will exhibit the highest viscosity due to the increased number of particles 

resulting in an increased number of particle-particle interactions and therefore an 

increased resistance to flow.  This effect is more significant at very low shear rates 

as at higher shear rates the kinetic forces will overcome the interaction forces.   

Variations in particle shape and deformability and the viscosity of the liquid phase 

will also affect the bulk rheological properties of a concentrated suspension.  The 

rheological study performed by Martin et al. (2004) on talc-based paste discusses 

the occurrence of issues in rheological characterisation caused by particle shape.   
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Surface chemistry controls the interaction between, and the aggregation behaviour 

of, the particles.  Zeta potential is a measurement of the charge at a particle‟s shear 

layer which is often considered as a very good approximation to the surface charge.  

A high surface charge (either positive or negative) will result in a stable suspension 

where as at low, or zero, surface charge the system is unstable and the particles are 

liable to aggregate. A loose aggregation of particles can result in a higher effective 

solids content due to entrapment of the liquid medium causing an increase in the 

effective viscosity considered academically previously but proven by Drouin et al. 

(1987).  The pH at which the zeta potential is zero is termed the isoelectric point and 

is the pH at which the highest apparent viscosity of a system would be expected.  

This phenomenon is illustrated very clearly by work reported by Kukolev and 

Karaulov (1963) for inert alpha alumina systems and can be seen in Figure 2.9 (note 

that a zeta potential of nearly 200 mV is a very high charge, 20 mV is considered to 

be a stable charge though there is no indication why this charge is so high).   
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Figure 2.9: Relationship between zeta potential and viscosity of an alpha alumina system 

(adapted from Kukolev and Karaulov, 1963) 

Quemada and Berli (2002) discuss how the arrangement of particles in a colloidal 

dispersion and hence its mechanical and rheological response is determined by the 

nature of the particle interaction forces. As particle size reduces, the electrical double 

layer and steric layer thickness play an increasingly important role.  A similar useful 

review of the colloidal interactions of particles in liquid is presented by Liang et al. 

(2007). 

2.2.4  The Peptisation Reaction between Boehmite and Acid 

The term peptisation has previously been used in open literature in a number of 

contexts.  It can refer to the dispersion of particles by either chemical or mechanical 

means, though in relation to boehmite and acid it is used in the literature to describe 

the reaction between these materials, which is though to result in the formation of a 

gelatinous phase.  One definition of peptisation is: „The term peptisation is 
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sometimes used in a general way to imply the reverse of coagulation, i.e. dispersion, 

especially where the process results in the formation of a colloidal sol.  Peptisation 

is, however, generally restricted to a chemical means of dispersion in which the 

colloidal particles are stabilised by the adsorption of charged ions‟ (Sharp, 2003).  In 

the context of this definition, the interaction chemistry between boehmite and acid is 

more than just peptisation.  This will be considered and discussed further within the 

literature review, Section 4.2.   

2.2.5  Using Oscillatory Rheology to Probe Microstructure 

Oscillatory rheology is a technique that can be applied to examine the microstructure 

of a material.  In some cases it is referred to as mechanical vibrational spectroscopy 

(Barnes, 2000).  Ideally the movements during an oscillatory experiment are very 

small in order to cause minimal disturbance to the microstructure.  An oscillatory 

motion is applied to the material and the rheometer measures the materials‟ 

response to this.  If the response is perfectly in phase with the applied motion the 

material is considered to be perfectly elastic whilst being exactly out of phase implies 

that the material is viscous.  These situations can be described by the spring and 

dashpot models respectively.  The extent to which the response is in or out of phase 

with the input is quantified by considering the storage and loss moduli parameters 

which both vary with the applied frequency.  The storage modulus (also called the 

elastic modulus), G‟, characterises the solid like component and the complementary 

loss modulus (also called the viscous modulus), G‟‟, describes the liquid like 

component within a material.  Other commonly quoted oscillatory parameters are the 

complex modulus, G*, which describes the overall resistance to material deformation 

and the tangent of the phase angle, tan δ, where the phase angle, δ, is the ratio of 
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the viscous modulus to the elastic modulus, or alternatively can be considered as a 

measure of the lag between the input and response.  Combinations of the spring and 

dashpot models in various configurations such as the Maxwell, Kelvin - Voigt and 

Burger models can be used to describe viscoelastic materials.   

2.2.6  Principles of Magic Angle Spinning Nuclear Magnetic 

Resonance (MAS NMR) 

Nuclear magnetic resonance is a key analytical tool in identifying the species formed 

in the reaction between boehmite and acid due to its ability to distinguish the 

atomical coordination environment of a selected species.  The spin behaviour of a 

nucleus within a strong magnetic field can be translated to yield information on the 

coordination number of a particular species. High resolution spectra can not be 

obtained within the solid state due to the dipole-dipole interactions not being 

averaged to zero as they are in the liquid or gaseous phase.  This issue can be 

overcome by spinning at a specific angle (with respect to the magnetic field) of 54 º 

44 `, described as the magic angle,  .  In this situation 31cos2  and the dipole-

dipole interactions can be averaged to zero which allows high resolution spectra to 

be obtained.   

2.2.7  Microscopy 

Microscopy techniques are most effective when applied to a stable, dry, sample and 

often the technique involves a degree of sample preparation, such as gold sputtering 

in the use of scanning electron microscopy (SEM), which could potentially alter the 

structure of the material being observed.  The development of environmental SEM 

(ESEM) allows the examination of samples in a wider range of environments, 

particularly in wet environments, but by far the most exciting technique currently 
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available for examining the microstructure of a material such as those of interest in 

this chapter is cryogenic SEM (cryo-SEM).  This technique allows a sample to be 

cryogenically frozen, then sublimated within the microscope, minimising any effects 

on the existing microstructure of the sample allowing a visual examination of the 

variations in the microstructure and texture of materials.   

2.3 Introduction to Mixer Torque Rheometry 

2.3.1  Principles of Mixer Torque Rheology 

The mixer torque rheometer (MTR) is an instrument which measures the torque 

required to rotate two intermeshing paddles through either a powder or a mixture of 

powder and liquid.  This measurement allows an insight into the state of saturation of 

the material and the wetting properties of the powder and liquid combination, which 

provides valuable information for the formation of pastes by extrusion.  The data 

obtained can also be related to the rheology of the material.   

2.3.2  Saturation States 

A solid material can exist in a variety of saturation states depending on the amount 

of liquid with which it is in contact.  Four states of saturation have been identified, in 

order of increasing liquid content, pendular, funicular, and capillary, by Newitt and 

Conway-Jones (1958), and droplet, by Barlow (1968).  

In the pendular state, discrete liquid bridges are formed between the particles, these 

exhibit strong forces due to surface tension which draws the particles together by 

hydrostatic pressure, resulting in an apparent reduction in the powder volume upon 

liquid addition.  The bridges continue to grow in size, as liquid content is increased, 

until a continuous network of liquid is created which is interspersed with air, this is 
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the funicular state.  The resistance to breaking of the liquid bridges increases with 

increased liquid content as the particles must be separated further in order to break 

the liquid bridge.   

Increasing the contact between liquid and solid causes an increase in the 

cohesiveness of the mass and increase in torque.  The point at which all air is 

expelled from the continuous liquid network is the capillary state of the material.  This 

is the most cohesive state of the mass and there are concave menisci around the 

surface of the agglomerate.  If liquid content is increased any further the discrete 

particles are suspended in a continuum of liquid and the mass can be considered to 

be a slurry, or in the droplet state.   In the droplet state there are no longer any 

internal interfacial forces and only surface tension holds the drop together 

(Luukkonen, 2001). 

Rumpf (1962) shows that the tensile strength of the pendular stage of saturation is 

only a third of that in the capillary condition and that the tensile strength, TS , of an 

agglomerate can be calculated according to equation 2.7.   







cos

1

d
SCTS


 …………………………………………………………..(equation 2.7) 

where, S  is the liquid saturation, C is a shape constant,  is the agglomerate 

porosity,   is the surface tension of the liquid phase, d is the particle diameter and   

is the contact angle between the liquid and solid phases.   The liquid saturation 

depends on the amount of liquid present and the intragranular porosity, according to 

equation 2.8 as presented by Kristensen et al. (1984): 
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where, H is the ratio of the mass of liquid to the mass of solid, ig is the intragranular 

porosity and   is the particle density.  The intragranular porosity is defined as: 
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 1 …………...………………………….…………………………….(equation 2.9) 

where, b  is the bulk density of the packed material and s is the skeletal density of 

the solid phase.   The deficiencies of Rumpf‟s model, such as the lack of a viscous 

dissipation term and assumptions regarding failure mechanisms are discussed in 

Reynolds et al. (2005).   

 

Figure 2.10: States of powder saturation.  (A) – pendular, (B) – funicular, (C) – capillary, (D) – 

droplet. (adapted from Prabhakaran, 2009) 

The extrusion process should be performed in the saturated condition, more 

specifically, at a liquid content just a little higher than the capillary state.  Extruding at 
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this condition provides sufficient liquid for a lubricating layer to surround each of the 

solid particles whilst being sufficiently firm to retain shape post extrusion.   

2.3.3  Mixer Torque Rheology Test Types 

A multiple addition test (MAT) involves charging a dry powder to the mixing chamber 

and adding the appropriate liquid at a specified rate.  An MAT records the change in 

torque required to rotate the paddles through the mixing chamber over time, allowing 

the change in saturation states to be observed and the capillary point of a material 

combination to be located.  A typical curve resulting from such a test can be seen in 

Figure 2.11.  

 

 

Figure 2.11: Typical relationship between liquid content and torque on MTR 

The shape of the curve resulting from a MAT can be used as an indicator of the 

extrusion stability of a formulation by examining the gradient of the curve at the liquid 

content at which extrusion would be performed (between the capillary point and 
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droplet state).  A steep curve suggests that the system may be too sensitive to liquid 

content to maintain the paste formulation in a range suitable for extrusion, a shallow 

curve would indicate a robust system.        

A more accurate assessment of the interaction between a powder and liquid is the 

variable mixing time test (VMT).  This differs from the MAT as the sample cell is 

initially charged with a mixture of liquid and powder rather than dry powder.  No 

further additions of liquid are made during the experiment, and the variation of torque 

with time is measured, allowing examination of the effect of work input on the 

saturation state of a material (the significance of this is discussed in more detail in 

Section 2.3.4).  This technique is considerably more time consuming than an MAT as 

a large number of experiments are required to achieve an understanding across a 

range of liquid contents, however, it can produce a more accurate representation of 

the effect of both work input and liquid content on the saturation state.  Effectively an 

MAT curve of formulations at equilibrium with regard to work input can be derived by 

considering a large set of VMT data.   

The analysis of data obtained from the MTR generally involves examining the 

position (in terms of liquid content, time and the magnitude) of the peak value of the 

mean torque and the peak value of the torque range.  The mean torque describes 

the average resistance of the mass to shearing.  The torque range is a measure of 

the amplitude of oscillations caused by inhomogeneities within the mass.  Figure 

2.12 shows a typical curve produced when an MAT is performed.  
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Figure 2.12: Typical MAT data, Torque vs Liquid Content (blue - torque range, green - mean 

torque, red – software curve fit) 

2.3.4  Effect of Work Input 

The description in Section 2.3.2 of the pendular, funicular, capillary and droplet 

conditions of a powder liquid mixture assumes that the powder and liquid are always 

well-mixed and in equilibrium, but in reality a transition can be made between the 

states of saturation without increasing the liquid content, but by applying work to the 

material.  The act of applying work to a system can increase the particle packing 

density, reducing the voidage between particles.  Therefore a system in the funicular 

state could transform to the capillary state without further liquid addition, by applying 

work to the system, and similarly, a system in the capillary state could transform to 

the droplet state.   

The ability to transform between saturation states with work input, rather than liquid 

addition, means that care must be taken when using MTR data to aid in process 

design and scale up as the work input of the processing equipment must be 
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considered.  It is when considering such issues that VMT data is much more reliable 

than MAT data.  Understanding and analysing VMT data will be discussed further in 

Section 7.3.   

2.3.5  Wettability 

The wettability of a powder liquid system can be characterised by the apparent 

contact angle between the two materials when in equilibrium, it is a function of the 

surface tension of the liquid and the surface roughness of the powder.  Contact 

angles can be measured using the spreading, condensational, immersional or 

capillary rise methods.  In general these methods are more suited to measurements 

of the contact angle between a liquid and planar surface rather than a liquid and 

powder.   

An instrument called a tensiometer has been developed which can measure the 

contact angle between a liquid and powder with a reasonable degree of accuracy, 

depending on the consistency of a powders‟ packing behaviour, using a capillary rise 

method.  This method is based on the work of Laplace (1806), when a wetting liquid 

is present in a narrow channel (capillary) the contact between the liquid and the wall 

will be less than 90 º, therefore the liquid surface forms a concave meniscus.  A 

capillary pressure is exerted on the meniscus due to surface tension and hydrostatic 

pressure effects according to equation 2.10.   

r
P

 cos2
 …………………………………………………..…………….(equation 2.10) 

where, P is the pressure difference between the gas and liquid phases,   is the 

surface tension at the liquid gas interface, r is the capillary radius, and   is the 
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contact angle between the liquid and solid phases. This technique will be discussed 

in more detail in materials and methods, Section 4.3.6.   

2.4   Introdcution to Extrusion 

2.4.1  Extruder Types 

There are various types of extruders, ranging from a simple ram extruder to more 

complex screw extruders.  The principle of extrusion remains the same across all 

extruder types, to exert a force on a material in order to push it through an orifice to 

form a shaped product.  Ram extrusion involves the movement of a plunger through 

a barrel filled with the material to be extruded, the configuration of this equipment, 

seen in Figure 2.13, is such that it is only suited to batch processing, where as 

continuous operation is preferable in industrial processes.  Screw type extruders are 

more suited to continuous operation, particularly the twin screw extruder which is 

capable of mixing a paste and forming an extrudate in a single unit step.  A single 

screw extruder requires a pre-mixed paste as a feed, but can be operated in 

continuous mode.   

 

Figure 2.13: Ram extrusion.  
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2.4.2  Description of an Intermeshing Twin Screw Extruder 

Twin screw extruders consist of two screws, within a barrel, which rotate either in the 

same direction (co rotating) or opposite directions (counter rotating) to each other, as 

shown in Figure 2.14, the term intermeshing refers to the overlapping configuration 

of the screw flights.  Shah and Gupta (2004) present a comparison of the two modes 

of operation with polymeric materials, finding differences such as the maximum 

velocity occurring at a different location in the geometry and improved mixing 

performance in a co-rotating configuration.   A similar study examining the 

differences in the extrusion of ceramic materials, to the authors knowledge, has not 

been published.  A comparison of co and counter rotating extruders has been 

performed by Rauwendaal (2004) who determined that extruder performance is 

dominated by the intermeshing region of the screws, implying that analysis of 

extruders should centre around this region.  He identified the co rotating extruder to 

be most suited to melt blending operations, and the counter rotating to dispersing 

solid fillers in a polymer mix due to the differences in flow regimes in the 

intermeshing region.   

This project studies the use of a co rotating extruder, which is the more widely used 

configuration, (Wiedmann and Holzel, 2007) and all further discussions pertain to 

this equipment configuration.    

  

Figure 2.14: Conveying configuration within a fully intermeshing co rotating (left) and counter 

rotating (right) twin screw extruder (adapted from http://www.mprus.com) 
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The rotating action moves material down the barrel towards a die and generates 

pressure to push the material through the die.  Theoretically, a combination of 

conveying and mixing elements, seen in Figure 2.15, enables powders and liquids to 

be mixed in situ to form a paste.  The screw configuration should contain a suitable 

combination of these to allow the appropriate compromise between mixing and 

pressure generation to be achieved.  As the names suggest, the conveying elements 

primary task is to move material along the barrel, where as the mixing elements 

knead the materials into a paste.   

 

Figure 2.15: Types of screw elements.  left: conveying  right: mixing (30º forward)   

The mixing of materials can be described as distributive or dispersive.  Distributive 

mixing can be considered as the spatial distribution of components and is reasonably 

simple to achieve.  Dispersive mixing involves the mixing at a smaller length scale, 

such as the dispersion of agglomerates, generally more difficult to achieve than 

distributive mixing.  It is discussed by Gramann and Rauwendaal (2004) that mixing 

in a twin screw extruder is achieved in the region between the screw flight and the 

barrel, as this is where elongational flow is present, which is more effective at 

dispersive mixing than shear flow.  A large flight helix angle, seen in Figure 2.16 

along with other screw configuration dimensions, increases the amount of 

elongational flow (Gramann and Rauwendaal, 2004).  The use of mixing elements 

effectively produces a very large flight helix angle, increasing as the degree of 
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stagger is increased, hence, 30 º forwards elements are believed to deliver the 

gentlest mixing action, followed by 60 º forwards, 90 º, 30 º backwards and 60 º 

backwards being considered the most aggressive mixing elements, schematics of 

the degrees of stagger can be seen in Figure 2.17. Literature pertaining to the mixing 

effectiveness and conveying action of screw configurations is discussed in Section 

3.4.4.3.   

 

Figure 2.16: Dimensions of screw geometry, (adapted from 

http://www.slscrewbarrel.com/UploadFile/201063191736307.jpg) 
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Figure 2.17: Mixing elements, 60 º reverse, 30 º reverse, , 90 º, 30 º forwards, 60 º forwards 

(adapted from APV training manual) 

2.4.3  Relationship between Extrusion Parameters 

There are a number of formulation and processing parameters of interest during 

ceramic extrusion, which are interrelated.  Input parameters such as liquid and 

powder feed rates and screw rotation rate can be varied to give a range of 

processing output parameters such as throughput, fill level, residence time, pressure 

generation and torque whilst also enabling the production of a range of paste 

formulations. The variation of an input parameter results in a transition period before 

steady state operation is re-established.  The duration of the transition period is 

related to the residence time under the conditions of operation.  The expected 

qualitative relationships between extrusion input and output parameters mentioned 

above are as follows: 
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An increase in total feed rate at a constant screw speed results in an increase in fill 

level and throughput compared to the original state and both torque and work input 

to the material will increase due to the increase in fill level.  Similarly, if screw speed 

is maintained and total feed rate reduced, the fill level, throughput, torque and work 

input will reduce.  In each case the residence time is not expected to alter.   

Maintaining total feed rate and increasing screw speed will reduce the fill level, 

torque and work input.  The residence time will reduce, and throughput remains 

constant.  Reducing screw speed with a constant feed rate will increase fill level, 

torque, work input and residence time, and throughput will remain constant.   

2.4.4  Controlling Extrudate Properties with Extrusion Parameters 

As discussed in Chapter 1 an effective catalyst support is required to be 

mechanically strong and highly porous with a compromise between these two 

properties often necessary.  Both paste formulation and processing parameters 

affect the resulting product properties. The effect of formulation parameters on 

extrudate properties is discussed in Section 2.4.5.  

The pressure at the die during forming has been considered to be a good indicator of 

the strength of an extrudate and has been used as a control parameter by Russel et 

al. (2003).  However, high pressures can lead to processing issues such as phase 

migration, discussed further in Section 3.4.4.5.  The throughput, torque, fill level and 

paste rheology all affect the pressure generated in an extruder. 

The degree of mixedness of the paste achieved during extrusion can be related to 

product properties, in particular poor dispersive mixing is considered to be 

detrimental to the extrudate properties due to the increased presence of defects.   
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In a chemically active system, the residence time affects the extent to which 

chemical reactions occur, although reactions may continue after forming until further 

processing steps are taken, such as drying.   

2.4.5  Controlling Extrudate Properties with Formulation 

Parameters 

Paste formulations typically include a solid phase and a liquid, binding phase, in this 

study the liquid phase is comprised of water and varying amounts (and type) of acid.  

Additives such as pore formers or rheology modifiers can also be included in a 

formulation as discussed previously in Section 2.1.7, however such additives are not 

used in this study.   

The rheological properties of a paste determine the flow behaviour within the 

extrusion process.  Varying formulation parameters such as solids content, powder 

type or acid content of an acidic boehmite paste alters the rheological properties, 

which in turn affects the resulting extrudate properties.  The results presented in 

Chapter 4 address this issue in more detail.   

The particle packing behaviour is a significant factor in determining the rheological 

properties of a material containing solids, and will affect the extrudate properties 

such as strength and porosity.  This is strongly affected by the particle size 

distribution of the powder and any dispersion, mechanical or chemical, occurring in 

the process which affect this distribution.  The variation of packing of hard spheres 

with size and size distribution is reasonably well understood and is discussed 

previously in Section 2.1.4.  What is not so well understood is how well this theory 

translates to inert particles within a liquid phase and even less so, chemically 

reactive particles in a liquid phase.   
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2.4.6  Characterisation of Pastes for Extrusion 

Characterisation of the rheological properties of suspensions and slurries was 

discussed previously in Section 2.2.1.  The characterisation methods and rheological 

properties of pastes vary quite significantly from those used on more dilute systems.  

Ceramic pastes exhibit many behavioural similarities to soils, hence the studies 

performed on mechanics of soils have been instrumental in the development of 

paste characterisation models.  The extensive use of extrusion in polymer 

processing has also aided studies in the field of ceramic extrusion, though variations 

in polymeric and ceramic flow behaviour mean that care must be taken when 

applying learning from polymeric extrusion to ceramic extrusion.   

The most commonly accepted method of rheologically characterising pastes is the 

Benbow Bridgwater method, the development of which is described in Section 3.4.3.  

The technique involves measuring the force required to extrude a paste through a 

number of (typically 3) cylindrical dies with varying ratios of length to diameter at a 

variety of (typically 5) speeds.  The force required to perform each of these 

extrusions can be used to calculate the parameters as described in equation 2.11.  

The data can be fitted to the Benbow Bridgwater 4 or 6 parameter model.  Equation 

2.11 shows the 4 parameter model, details of the more complicated 6 parameter 

model can be found in Benbow and Bridgwater (1993).   
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where, P = total pressure drop, eP  = pressure drop at die entry, lP  = pressure drop 

along die land, 0 = yield stress,  = velocity factor, V  = paste velocity, 0D = 
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diameter of barrel, D = diameter of die , 0 = wall shear stress,  = wall velocity 

factor, L  = length of die land.  The bulk velocity exponent is a paste parameter that 

determines the dependence of the bulk paste yield stress on the velocity.  Similarly 

the wall velocity exponent is a paste parameter that determines the dependence of 

the wall shear stress on the velocity.  A full discussion of the physical implications of 

these parameters is discussed in Benbow and Birdgwater (1993). Obtaining the 

experimental data required to perform this analysis is laborious and time consuming 

and this method has therefore been considered unsuitable for the large number of 

pastes characterised in this formulation development work.   
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Chapter 3  Literature Review 

3.1  Boehmite Formation and Properties 

3.1.1  Effect of Formation Conditions on Properties of Boehmite  

Martens et al. (2002) propose a model for the crystallite packing in 

pseudoboehmmite in which platelike psuedoboehmite crystallites are stacked in a 

„sharing edges only‟ configuration, a stacking structure which produces pore sizes 

approximately equal to the crystallite size of the hydrolysates, and ageing of the 

hydrolysate allows the crystallites to grow.  Okada et al. (2002b) found that the 

crystallite size of boehmite increased when precipitated at higher pH, higher 

temperature or for a longer ageing time.  Their observations are in agreement with 

previous works by Tottenhorst and Hoffman (1980), Tsukada et al. (1999) and 

Mishra et al. (2000).  The relationship observed between aging time and crystallite 

size has also been reported previously by Music et al. (1999).  The relationship 

between synthesis conditions and physicochemical properties of aluminium 

hydroxides is also discussed by Lamberov et al. (2003). Martens et al. (2002) also 

observe the correlation between crystallite size and ageing time, commenting that 

this relationship is due to an increase in the d spacing with ageing time.   

Tsukada et al. (1999) investigated the effect of the crystallite size of boehmite on 

subsequent thermal phase changes, they report that phase transitions to gamma 

and alpha alumina occur at higher temperatures with larger crystallites.  A similar 

study was performed by Okada et al. (2002) who report on the shift in the 

temperature of the phase change from gamma to theta and theta to alpha, which 

decrease and increase respectively with an increase in crystallite size.  They 

investigated crystallite sizes ranging from 2.9 to 24.4 nm (measured by x ray 
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diffraction) and found that a crystallite size of 5 nm gave the highest specific surface 

area, of interest in the field of catalysis.  This relationship between crystallite size 

and bond length and temperature of phase transformations was also observed by 

Guzman Castillo et al. (2001).   

It has been reported by Okada et al. (2003) that a larger crystallite size of boehmite 

results in an alumina ceramic with a greater sinterability, based on an examination of 

the microstructure of pelleted gamma alumina produced from boehmite. The effect of 

crystallite size on the bond length and bond angles of boehmites has been 

investigated for crystallite sizes between 1 and 27 nm.   The crystal dimensions were 

found to determine the bond length and local symmetry, as crystallite size decreased 

the Al-OH interaction increased and the angle between these bonds tended to a 

tetrahedral system.  Both the hydrogen bond which sustains the crystal structure and 

the bonds between the oxygen atoms and hydroxyls in the octahedra double layer 

are weakened as crystallite size is reduced.  This could explain the previously 

discussed reduction of phase transition temperature at smaller crystallite sizes. 

Guzmán-Castillo et al. (2005) also observed an increase in crystallite size with an 

increase in synthesis temperature.  They studied the effect of the salt used in 

boehmite synthesis on the resulting physicochemical properties and subsequent 

phase transitions.  Boehmites produced by both the sulphate and chloride route 

described in Section 2.1.2 were examined and found that due to residual sulphates 

delaying crystallisation, boehmites manufactured using sulphates generally exhibited 

smaller crystallites than those produced by the chloride route.  The transition 

temperature to gamma alumina and alpha alumina were also affected by the salt 

used in synthesis.   
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The variation of crystallite size of the powders of interest in this project is not 

significant enough to consider the effects discussed by these authors.  All of the 

crystallite sizes are close to 5 nm, previously indicated as the crystallite size with the 

maximum specific surface area by Okada et al. (2002).   

3.1.2  Solubility of Boehmite 

A number of authors report on the solubility of boehmite at high temperatures, most 

recently Benezeth et al. (2008) and previous to that Palmer et al. (2001), Benezeth 

et al. (2001, Panias et al. (2001) and Bourcier et al. (1993).  These authors all 

measure solubility of boehmite, and other mineral materials, under a variety of 

conditions using a hydorgon electrode concentration cell (HECC).  There is however 

no reported data specifically pertaining to the solubility of boehmite in nitric acid at 

room temperature.   

3.1.3  Dispersibility 

The importance of achieving good dispersion on producing a high quality ceramic 

product is highlighted by DeLiso et al. (1988) who examined the dispersion of an 

alumina / zirconia system and related the rheological properties and powder packing 

of this system to the zeta potential curves. 

Alumina dispersions were stabilised with carboxylic acids by Graule et al. (1991) who 

identified that an optimum concentration of dispersant is required to achieve the 

most effective dispersion, as overdosing leads to instabilities due to excess salt 

compressing the diffuse layer.  The dispersion efficiency of carboxylic acids was 

seen to increase with the acid size due to the increased tendency to form chelat 

complexes.  The interaction between boehmite and carboxylic acids was examined 

by Schefe et al. (2009) using X ray adsorption near edge structure spectroscopy 
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(XANES), they found strong bonding between the materials, though the presence of 

phosphorous prevented any bonding suggesting site competition between these 

materials.   

3.2  Rotational Rheology 

3.2.1  Characterisation and Modelling Rheology of Concentrated 

Suspensions 

Characterising the rheological properties of concentrated suspensions is non-trivial 

as discussed in Section 2.2.  It also has significant industrial relevance, such as in 

the food industry and not least in the ceramics industry, where processes such as 

wet grinding, slip casting and spray drying, amongst others, are heavily dependent 

on slurry rheology.  As such this is a topic which has been studied and reported on 

extensively.   

Various reviews of this subject area have been written over the years, including 

Cheng (1984), Chander (1998), Mewis and Wagner (2009) and most recently Holek 

and Mendoza (2010). Many of the issues identified in early reviews have been 

examined and reported on but are still not fully understood.  The difficulty of relating 

the properties of dilute systems to the characteristics of concentrated systems is 

discussed by Chander (1998).   

Many theoretical and numerical works have been performed on the rheology of 

concentrated suspensions examining both the physical and chemical influences on 

rheological properties.  A particularly useful introductory article on the connection 

between particle size, size distribution and rheology has been presented by Fletcher 

and Hill, of Malvern Instruments, (Malvern, UK) which illustrates how a smaller 
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absolute size or higher volume fraction of solids increases viscosity and how 

unimodal systems exhibit a higher viscosity than polydisperse systems.  In addition 

to this article Malvern have also published a user-friendly guide „Ten Ways to… 

Control Rheology by Changing Particle Properties‟ which covers both physical and 

chemical control of rheology.   

A large number of works have studied the effect of particle size distribution on the 

rheological properties of concentrated suspensions of specific materials, for 

example, Dabak and Yucel (1987) studied the effect of particle size distribution and 

concentration on a variety of material systems and Ramal Jr. et al. (2002) found the 

rheological preroperties of refractory castables to be highly affected by variations in 

particle size distribution.     

Models for concentrated suspension rheology typically consider non-reactive hard 

spheres, though the majority of real situations require understanding of anisometric 

shapes and chemically active systems.  Consideration of the effect of deformable 

particles as opposed to hard spheres was made by Frith and Lips (1995) who found 

that the deformability did not significantly affect the high shear limiting viscosity, but 

did affect the dilatant transition.  A similar article by Snabre and Mills (1999) found 

that the deformation – orientation interaction of viscoelastic particles under flow 

increased the maximum packing fraction of particles, leading to non-linear 

rheological behaviour.  The rheology of a dilute suspension of hard spheres in a 

viscoelastic medium was studied by Patankar and Hu (2001) who show the migration 

of particles to the centre line of flow and found the materials to exhibit shear thinning 

behaviour despite the non-shear thinning behaviour of the medium.   
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The examination of fibre suspensions has been considered by Petrie (1999) who 

examined dilute suspensions of fibres to clarify some pre-existing confusions, and 

Pabst et al. (2006) who investigated the rheology of short fibre systems and present 

a simple relationship for the dependence of intrinsic viscosity on aspect ratio which 

approximates to the highly sophisticated Brenner equation (Brenner, 1974), details of 

which can be seen in Pabst et al. (2006), with reasonable precision for many 

practical situations.   

The effect of the solid liquid interface on rheological properties was studied by Van 

Kao (1975) and the effect of surface chemistry by Leong and Boger (1989).  Authors 

who have considered the DLVO (Derjaguin – Landau – Verwey - Overbeek) theory in 

conjunction with rheological properties include Zhou et al. (2001), who report on the 

effect of surface chemistry and particle physics on the rheology of metal oxide 

suspensions, and Johnson et al. (2000) who examined the relationship between 

surface chemistry and rheology of concentrated mineral suspensions of alumina, 

zirconia and kaolin.  The DLVO theory considers the combined effects of the 

attractive van der Waals forces and repulsive double layer forces around a particle.  

Controlling the rheological properties by using dispersants to shift the isoelectric 

point of yttria suspensions has been investigated by Jin et al. (2009), enabling the 

desired rheological properties to be obtained at the required pH.   

Published works relating the rheological properties of concentrated suspensions to 

operating conditions in a variety of processes are also numerous including Anklekar 

et al. (1998) on milling, Tsesekou et al. (2001) on slip casting, tape casting and spray 

drying and He et al. (2004) on wet grinding applications.    
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Ceramic suspensions were investigated by Bergstrom (1998) who found that the 

high shear form of the Cross model, presented in Figure 2.8 and equation 2.4 in 

Section 2.2.1 described the behaviour of the materials adequately.  He also 

commented that the dependence of rheology on volume fraction fitted a modified 

version of the Krieger Doherty model therefore yielding values for the maximum 

packing fraction of the system.  Significant differences were observed in the 

maximum packing value for systems containing particles of difference shapes.   

Rheological properties of bimodal gibbsite and boehmite suspensions were 

investigated by Bruinsma et al. (1997) using nanometer sized boehmite particles with 

micron sized gibbsite particles in 0.1 M sodium nitrate.  This work confirms that the 

presence of small particles can have a significant effect on the rheological properties 

of suspensions by enabling the solids content to be increased without significantly 

increasing viscosity.  The effect is attributed to the small particles coating the larger 

particles (shown by TEM) and providing steric repulsion.  Addition of boehmite above 

the level required to coat the larger gibbsite particles exacerbates the shear thinning 

behaviour of the material.  This work highlights the importance of fully understanding 

the particle size distribution within a slurry particularly the very small particles which 

may not be detected with standard particle sizing methods.   

The gelling of aluminium soaps has been studied by Wang and Rackaitis (2009).  

The original mechanism for this phenomenon was thought to be similar to that of 

gels formed in the peptisation of boehmite i.e. the formation of polymeric chains with 

aluminium atoms linking along the centre (this is discussed further in Section 3.2.2), 

however, their studies of the rheological properties of gelled aluminium soaps along 

with high resolution microscopy has confirmed this mechanism to be incorrect.  
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Instead the mechanism has been shown to be the formation of spherical micelles 

which aggregate into highly fractal and jammed structures.  Mao et al. (2009) studied 

gelation kinetics of an epoxy resin gel system using oscillatory rheology and 

evaluating the storage modulus as a function of time.  An alternative technique for 

measuring gelation kinetics is laser tweezer microrheology, such as is used by 

Meyer et al. (2006). Dickinson (1999) discusses the accepted models of reversible 

and irreversible gelling of colloidal particles and the arbitrariness of this distinction 

due to its dependence on time scale.  Rheologically a complex real particle gel may 

behave as either a transient network or a covalent cross linked network.  Laxton and 

Berg (2005) studied the use of gel trapping as a technique to stabilise systems 

pertinent to the food industry using a combination of sedimentation and rheometric 

techniques.   

The effect of pH on rheological properties of sodium bentonite suspensions has been 

investigated by Benna et al. (1999).  A vane rheometer was used to measure the 

yield stress which increased significantly as pH reduced below that of the isoelectric 

point.  This was attributed to the edges being positively charged and face-edge 

interactions dominating causing a three dimensional structure to form within the gel 

in a card-house style.  When the medium becomes very acidic the yield stress 

reduces significantly as the high ionic strength causes significant compression of the 

double layers and reduces the face-edge interaction leading to the breakdown of the 

structure. This effect is likely magnified by the structure of the clay being attacked by 

protons.   

The difficulty of measuring yield stress is examined by Møller et al. (2006) who 

propose that the difficulties of measuring yield stress are removed when the 
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thixotropy of a material is also taken into account.  They demonstrate an 

experimental protocol which allows for reproducible data to be obtained and 

conclude that yield stress is not a material property as it is dependent on the shear 

history of a sample and can be accounted for by thixotropy.  It has been 

demonstrated by James et al. (1987) that a variety of yield stress magnitudes can be 

obtained depending on the method used to make the measurement.  The use of a 

vane rheometer to determine the yield stress has been validated for a variety of solid 

like materials (Servais et al., 2003).  Servais et al. used flow visualisation as a 

validation tool.  They validated the use of vane rheology to measure yield stress 

within the linear viscoelastic region, and concentric cylinder or vane rheology to 

determine viscosity at high shear rates.   

Nguyen and Boger (1992) state that: „despite the controversial concept of the yield 

stress as a true material property… there is generally acceptance of its practical 

usefulness in engineering design and operation of processes where handling and 

transport of industrial suspensions are involved.‟  This is the view taken by the 

present author with regards to the work performed and presented by taking 

measurement of yield stress in a consistent manner the results are deemed to have 

validity as a tool for comparing samples.   

Although suspensions are generally known to display shear thinning behaviour shear 

thickening (dilatancy) can also be observed.  It is proposed by Barnes (1989) that all 

suspensions will display shear thickening, however, only some will display this at a 

shear rate measurable in rheometers. In the case of monodisperse systems the 

phenomenon is attributed to an order-disorder transitions.  However, the cause in 

polydisperse systems remains unclear (Boersma et al. (1990)).  It is proposed by 
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Boersma et al. (1990) that shear thickening occurs in the condition when the 

interparticle forces are equal to the shear forces applied to a suspension and the 

shear rate at which this occurs is termed the critical shear rate.  This proposal has 

been experimentally validated on a range of dispersed systems.     

As with rheology the measurement of zeta potential also becomes a more complex 

issue at higher solids contents.  Electrophoretic techniques are limited to dilute, non 

turbid systems.  The development of electroacoustic measurement methods has 

overcome many of the limitations of the electrophoretic techniques.  Greenwood 

(2003) provides a comprehensive review of the measurement of zeta potentials in 

concentrated aqueous suspensions using electroacoustics.   

Johnson et al. (1998) studied the relationship between the zeta potential measured 

by electroacoustic methods and yield stress measured using the vane method as 

described by Nguyen and Boger (1983).  Their data clearly shows the peak yield 

stress occurring at the pH of the isoelectric point.  The correlation between the yield 

stress (normalised to the maximum yield stress) and the zeta potential (squared) 

was used to calculate the interparticle separation according to a model described by 

Scales et al. (1998) and detailed in their publication.  The results suggest that the 

interparticle separation is constant over the range of solids loadings investigated (0.2 

- 0.3).  Their experimental work also highlights the effect of solids loading on the 

measured zeta potential and the effectiveness of the Acoustosizer corrections made 

to compensate for this effect.  
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The effect of temperature on the point of zero charge of an alumina system was 

investigated by Akratopulu et al. (1986) who found that the point of zero charge 

increases with temperature within the range 10 °C and 50 °C  

3.2.2  Previous Examination of Acidic Boehmite Systems 

Acidic boehmite systems have been studied previously by a number of authors using 

a variety of techniques (Drouin et al., 1988, Strenge and Bollman, 1991, Morgado et 

al., 1995, Sunil Kumar et al., 1997 and more).  In general the studies aim to further 

the understanding of the interaction between boehmite and acid, most commonly 

nitric acid though others have been studied, and of the product formed when these 

materials are combined.   

Ramsay et al. (1978) first described the formation of an Al13 cation as a product of 

the reaction between boehmite and nitric acid, and described this as a peptisation 

reaction. Micro electrophoresis, along with light and neutron scattering, was used to 

identify the species present.  This is described as surface chemical changes leading 

to partial dissolution of particles giving rise to the formation of hydrolyzed, polymeric 

cations as detailed by Ramsay et al. (1978).  The polymeric cations are proposed to 

be located on the surface of the particles causing short range repulsion.  A 

complementary study to this work was performed by Drouin et al. (1988) who report 

on the rheological properties and structure of acidic boehmite systems using 

oscillatory rheology, proton NMR, thermoporosimetry and BET measurements.  This 

study by Drouin et al. (1988) confirmed the formation of polymeric cations as 

suggested by Ramsay et al. (1978).   

Jiratova and Janacek (1980) peptised boehmite with sulphuric, hydrochloric, nitric, 

hydrofluoric, trichloroacetic, phosphoric, oxalic, lactic and formic acid.  They 
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concluded that the size of the boehmite particles was directly proportional to the 

amount of peptising agent.  Organic and inorganic acids were considered to peptise 

differently due to the differences in the polarity, essentially inorganic acids are more 

effective as peptising agents due to the higher polarity of the anions which are 

therefore more easily absorbed by the particles.   

Lee and Sohn (1985) prepared and characterised peptised alumina.  They defined a 

peptisation index as the time taken for a specific formulation of 10 wt% solids with a 

specific concentration of formic acid to reach a viscosity of 5000 cp (5 Pa.s) 

measured using a Brookfield viscometer.  However, there is no additional 

characterisation of the materials to confirm the structure or species present when 

this viscosity is reached.   

An alternative definition of peptisability is given by Morgado Jr. et al. (1995) who 

describe the peptisation mechanism as a chemical disaggregation of large particles 

and propose that the degree of peptisation can be indicated by the reduction in the 

average particle size to the submicrometer range.  They investigated the effect of the 

preparation method of boehmite on peptisability and find that the rate of the 

crystallisation, which controls the intercrystallite bond strength, correlated well with 

their measure of peptisability.  

Pierre and Uhlmann (1986) investigated the acidic gelation of aluminium hydroxide 

sols and found that the preparation conditions determined whether the gels were 

crystalline or amorphous.  This work deals with the preparation of boehmite or other 

alumina phases from aluminium hydroxide sols rather than the gelation of boehmite.   
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Beattie et al. (1996) studied the anomalous aggregation behaviour of aluminium 

oxyhydroxides at acidic pHs in the presence of chloride ions.  It was observed that 

boehmite displayed anomalous stability which was not related to the pH and 

electrolyte dependence of the zeta potential.  Gamma alumina was found to display 

similarly anomalous stability, the mechanism of which was attributed to the presence 

of anions due to the addition of salts such as KCl or NaCl.  However, gibbsite was 

found to display normal stability, in that agglomeration occurred even at very low salt 

concentrations. Gamma alumina and boehmite both remain stable at reasonably 

high salt concentrations; once agglomeration begins to occur it is increased by 

increasing the concentration of salt in the formulation.  Similar anomalous stability 

has been observed in silica and rutile systems.  There is no mention in Beattie et al. 

(1996) of the formation of a polymeric cation causing the anomalous stability.   

Van Bruggen et al. (1999) also investigated the anomalous stability of boehmite in an 

acidic system.  This work concludes that the anomalous stability can be attributed to 

the presence of the polymeric cation species previously described.  It is suggested in 

this work that the species form and absorb onto the surface of the boehmite in a 

reversible process in agreement with propositions made by Ramsay et al. (1978) and 

Drouin et al. (1988) with the additional proposition that the species can reversibly 

adsorb and desorb from the surface.   

Evidence of the short range repulsion discussed by those authors proposing the 

presence of polymeric cations on the surface of particles in peptised systems was 

found using atomic force microscopy by Karaman (1997) who studied the interaction 

between alumina coated silica spheres and flat alumina substrates.   
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An investigation into the effect of acid on the flow rheology of boehmite systems was 

performed by Strenge and Bollmann (1991).  Their work examined slurries with a 

solids content of between 35 and 42 % (w/w) and molar ratios of acid to boehmite of 

between 0.03 and 0.08.  Their findings are particularly pertinent to the results 

displayed and discussed in Chapter 5. They reveal that as acid content is increased, 

all else being equal, the apparent viscosity of a boehmite slurry initially reduces, 

passes through a minimum and then increases as more acid is added.  Unfortunately 

they do not present pH data which would have allowed for direct comparisons 

between the data sets.  Their results highlight the shear thinning nature of the 

materials, and a sharp increase in viscosity, was observed as the solids content 

approached that of the maximum packing fraction between 39 and 42 wt% solids.   

Mills and Blackburn (2002) investigated the rheological properties of alumina pastes 

using ram extrusion and found the rheological behaviour to be strongly related to the 

packing behaviour of the particulate phase despite the high moisture content.  

Pastes contained gamma alumina with peptised boehmite, and acetic acid, as a 

binder.  Pastes were observed to age considerably over a time scale of days and an 

increase in acid content was observed to result in a significant reduction of bulk yield 

stress.  Hence the molar ratio of acid to boehmite was kept constant throughout the 

investigation.  The void fraction, relative bulk volume and ratio of particle sizes of 

gamma alumina to boehmite have been considered with reference to conventional 

particle packing theory, and the constraints imposed by the errors in these 

parameters are discussed by the authors.   
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A chemical review performed by Casey (2005) describes and presents schematic 

structures for large aqueous aluminium oxide hydroxide molecules, including various 

phases (ε and δ) of an Al13 cation.   

The zeta potential of boehmites has been studied by relatively few authors.  Jiratova 

(1981) studied the isoelectric point of modified aluminas and found i.e.p values of 

between 4.5 and 9.8 depending on the type and level of impurities present.  They 

also refer to work by Parks (1965) and Stumm et al. (1976) who identified variations 

in the isoelectric point of alumina with crystallographic structure and preparation 

method respectively.  The work of Drouin et al. (1988) quotes the isoelectric point of 

boehmite at pH 8.6, measured with a Laser Zec Meter.  Wood et al. (1990) studied 

the electrochemistry of the boehmite – water interface using electrophoretic 

techniques, and demonstrated that the two pK triple layer site binding model gives a 

good representation of this.  They identified the point of zero charge and isoelectric 

point of boehmite and found these to be at pH 8.5 and 9.1 respectively.   The two pK 

triple layer binding site model is a surface chemistry model which assumes a sorbent 

to be homogeneous with respect to functional groups and particle geometry, 

although these assumptions are often unrealistic it is a popular model.  Further 

details on the equations pertaining to the model can be seen in Lűtzenkirchen 

(1998). 

Two nuclear magnetic resonance studies were performed in the late 80s by Olson 

and Bauer (1986) and Nazar and Klein (1988).  Olson and Bauer identified three 

species present in the system.  The first species was identified as 3

62 )( OHAl ; a 

monomer represented by a single narrow peak that remained constant over time.  

The other two species were not specifically identified but it was shown that one 
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disappeared over time whilst the other grew.  Nazar and Klein supported their 

findings but also found two additional peaks one of which was assigned to a colloidal 

species and the other suggested as 4

8222 )()( OHOHAl .   

Drouin et al. (1988) found a minimum relaxation time at an acid content 

corresponding to the maximum storage modulus using proton NMR which they 

showed was the result of chemical phenomena.   

A detailed study of peptised boehmite systems was performed by Morgado Jr. et al. 

(1997) who examined the materials with both solution and solid state NMR, particle 

size by dynamic light scattering, pH and viscometry.  This work continued to support 

the findings of Olson and Bauer (1986) and Nazar and Klein (1988) in that there 

were no tetrahedrally coordinated species observed.  They confirmed the presence 

of the monomer described by Olson and Bauer.  A mass balance was performed on 

the system showing that the monomer and its hydroylsed version accounted for less 

than 10% of the aluminium present.  A more significant amount of aluminium was 

identified as being present in an unidentified high molecular weight species with 

relatively symmetrical sites this was sensitive to pH.  It is also suggested that this 

species can aggregate.  Solid state NMR performed on freeze dried sols showed no 

significant difference between peptised and non peptised materials. 

The formation of an aluminium gel comprising an Al13 molecule was studied by 

Bradley et al. (1993) who formed aluminium gels by base hydrolysis of Al3+ solutions 

with NaOH, a model of the Al13 unit is described.  They observe a psuedoboehmite 

structure formed as an intermediate when gels formed in this way are aged.  Fresh 
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gels were characterised using solid state NMR and found to contain both 

tetrahedrally and octahedrally coordinated aluminium species.    

There is evidence of mechanically induced chemical changes occurring in aluminas 

which are referred to as mechanochemical changes.  In the process of milling the 

large stresses acting on the particles and high local temperatures at impact points 

have been observed to cause changes from alumina to alumina hydroxide (Stenger 

et al., 2005)) and the surfaces of milled alumina particles have been shown to 

become activated and form AlOOH (Yasuoka, 1992).  Mackenzie et al. (2000) 

monitored the structural changes occurring when boehmite was milled for 60 

minutes, using XRD, thermal analysis and 27Al MAS NMR.  Grinding was not 

observed to cause dehydration of boehmite but did result in a loss in crystallinity of 

the structure and the formation of an amorphous phase displaying pentahedral and 

tetrahedral coordinations.   

Omura et al. (2006) compared the novel technique of wet jet milling to ball milling as 

a method of preparing alpha alumina slurries.  They found that the wet jet mill 

produced a slurry with a lower viscosity compared to that produced by the ball mill 

and that the surface of the particles remained unaltered.  The resulting ceramic had 

a higher green density than those from slurries prepared on a ball mill.  Subsequent 

works support these findings; Hotta et al., 2008, Hotta et al., 2009 and Sato et al., 

2009.  Hotta et al. (2009) found the use of a ball mill resulted in the formation of 

gibbsite at the alumina surface, the use of a planetary ball mill resulted in the 

formation of bayerite at the surface, and confirmed the surface had remained intact 

by wet jet milling.  Sato et al. (2009) presented scanning and transmission electron 

microscopy images showing the variations in the surface.    
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Rosenberg et al. (1995) used cryogenic scanning electron microscopy techniques to 

obtain a direct visualisation of gel texture.  They were able to identify textural 

differences between peptised, non peptised and intermediate alumina pastes.  

Fauchadour et al. (1999) examined cryotechniques applied to transmission electron 

microscopy, a technique intrinsically more suited to dilute systems than scanning 

electron microscopy.  They assessed the effect of three cryofixation techniques on 

the structure of boehmite pastes and concluded that both liquid propane immersion 

cooling and slam freezing resulted in the loss of structural information due to 

rearrangement of the particles by the ice crystals which was not the case when the 

material was cooled by high pressure.   

3.3  Mixer Torque Rheology 

3.3.1  Development and Modelling of Mixer Torque Rheology  

Mixer torque rheometry was initially used to measure the consistency and 

processability of plastics.  Goodrich and Porter (1967) characterised a variety of 

polymers using a Brabender torque rheometer and modelled the torque rheometer 

as two adjacent concentric cylinder rheometers and converted the data obtained 

from a torque rheometer to that from a capillary rheometer for a material exhibiting 

Newtonian behaviour.  Their analysis yielded relationships of the form: viscosity = f 

(torque, rotation speed) and shear stress = f (torque).  This model was extended by 

Blyler and Danne (1967) who presented a general analysis to allow the 

determination of shear rate and viscosity from batch mixer rotor speed and torque 

data, to include non-Newtonian fluids and derived equation 3.1: 

nKNnCM )( ……………………………..………..…………………………(equation 3.1)  



                                     - 86 - 

 

where, M is torque, )(nC  is a constant, N  is roller speed (rpm), and K  and n  are 

parameters such as in the power law equation for fluid rheology as described in 

Section 2.2.2.  They concluded that „log (M) vs. log (N)‟ from the torque rheometer 

and „log ( ) vs. log ( )‟ from a capillary rheometer should exhibit the same slope for 

a polymer melt, where   is shear stress and  is shear rate .  A similar approach 

was taken by Lee and Purdon (1969) but the constant )(nC  used by Blyler and 

Danne (1967) was related to experimentally determined instrumental constants.  Lee 

and Purdon commented that as a consequence of their work the Brabender 

Plastograph could now be regarded as a formal viscometer.  Their approach was 

modified by Marquez et al. (1996) who simplified the calculation of )(nC .  Further 

development on this model was performed by Mallette and Soberanis (1998) who 

employed a third order polynomial and further simlplified the calculation of )(nC .  

Cheng et al. (1999) introduced a reduced )(nC and eliminated the effect of 

geometrical parameters.    

Bousima et al. (1999) have continued the idea of modelling the torque rheometer as 

a concentric cylinder rheometer and introduced the concept of an effective internal 

radius Ri into the )(nC term in equation 3.1.  A significant finding when relating their 

modelling work to real experimental data was that Ri was insensitive to the material 

properties and only affected by the geometry and gearing of the mixing vessel, 

hence the definition of Ri for Newtonian fluids was also found to work for Non-

Newtonian fluids.  All of this work was performed based on examination of polymer 

behaviour, not ceramic pastes.  Cheng et al. (2001) developed a new empirical 

equation describing the rheological parameters of polymer melts in a torque 

rheometer.  They consider the effect of rotor speed, temperature and, unlike 
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previous authors, the apparent degree of fill on torque.  The resulting rheological 

parameters were found to be in good agreement with those measured by capillary 

rheometry, which was not the case with the model developed by Bousima et al. 

(1999), suggesting that the model developed by Cheng et al. (2001) is more 

accurate. 

Xu and Hilmas (2006) recently examined the applicability of Bousima‟s model for the 

torque rheology of ceramic/polymer mixtures and pure ceramic pastes.  Their results 

were not encouraging as they found that the graphical similarity between data 

described by Blyler and Daane no longer held true and that the experimental data 

obtained showed significant deviations from Bousima‟s model.   

There has been much investigation into the use of mixer torque rheometry took place 

in the pharmaceutical industry which has used the technique to investigate the 

granulation properties of pharmaceutical formulations in order to facilitate scale up of 

various processes.  An initial investigation was performed by Rowe and 

Sadeghnejad (1987) on a mixture of microcrystalline cellulose powder and water in 

which the variation of torque observed by the technique was commented on, they 

also observed that steady state equilibrium conditions were attained after 3 - 5 

minutes of mixing.  A number of studies in the following years (Parker, York and 

Rowe, 1990, Parker and Rowe, 1991 and Parker, York and Rowe, 1992), in which 

the authors performed MTR studies along with additional characterisation, began to 

validate the technique as a useful characterisation tool by showing strong 

correlations between the observed rheological properties from the MTR and the 

variations in material properties.   
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During the same period this same group published an article (Hancock, York, Rowe 

and Parker, 1991) assessing the effect of instrument geometry on the 

characterisation of wet masses and found that different gearing resulted in variations 

in the mean torque values, though torque range was unaffected.  This observation 

was attributed to the difference in mixing intensities achieved in each of the 

geometries.  This was further investigated and reported on by Hancock, York and 

Rowe (1992).  All previous work had studied the rheological properties of mixtures 

after a fixed period of time and assumed equilibrium, this investigation allowed 

mixing to continue until an equilibrium torque was observed, which was always within 

12 minutes.  An increase in torque was observed with a more viscous binder but 

varying the surface tension in binders with equal viscosities resulted in no change in 

torque.   

Landin et al. (1995) reported on the nonlinear effects of shaft speed and sample 

weight and found that for small amounts of sample the shaft speed had little effect on 

the mean torque.  Rowe (1996a) reported that the blade orientation has a significant 

effect on the measured torque responses, again attributed to the difference in the 

intensity of mixing achieved, as was the case with the study of the effect of 

instrument geometry.  In this investigation it was also suggested than in order to 

compare torque rheology data with capillary rheometry data the mean torque must 

be converted to shear stress and the shaft speed to shear rate, an observation which 

agrees with the various works published regarding modelling MTR data.   

Work by Hancock (1991) showed that the peak in mean torque always occurred at a 

higher liquid saturation than the peak in torque range, which, along with an 

assumption that the shear from the mixing blades would only shear void and liquid 
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bridges and not fracture powder, led to a number of important conclusions being 

drawn. These were that the torque range peaks when there are both voids and 

capillary bridges present in the wet mass, i.e. at the funicular state of liquid 

saturation.  The mean torque reaches a peak when there are the most capillary 

bridges present, i.e. at the capillary state of liquid saturation.  The further apart these 

two peaks are, the more readily wettable a system is and the magnitude of each of 

these peaks depends on the relative strength of the cohesive and adhesive forces 

within the mass.  A large magnitude of the peak torque range indicates 

heterogeneously distributed interactions between the powder and liquid, i.e. a poorly 

mixed system indicative of poor spreading and wetting.  A high mean torque peak 

implies a strong interaction between the powder and liquid phase with good 

spreading and wetting.   These slightly speculative conclusions were validated with a 

number of model systems comprised of glass ballotini and polymeric binders.    

Rheological models used to analyse mean torque data from a torque rheometer 

have included the logarithmic model, Herschel Bulkley model and Casson model.  It 

was suggested by Landin et al. (1995) that the Herschel Bulkley model was most 

suited to the description of wet masses characterised by torque rheometry, it has 

been demonstrated by Rowe (1996a) that the Casson model is in fact the most 

appropriate.  The Casson model takes the same form as the Bingham model seen in 

Section 2.2.1, with all components raised to the half power.  The application of these 

models has led to calculated values of yield stress and kinematic viscosity being 

consistent with those generated by capillary rheometry (Rowe, 1996b).  All of these 

works have focused on polymeric rather than ceramic systems.   
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Following on from the work detailed above there are a large number of examples 

from the late 90s through to recent years of the technique being used within the 

pharmaceutical field to characterise formulations for granulation, to help with scale 

up of the granulation process and to predict the properties of granulated products 

with some convincing correlations observed, (Landin et al., 1996, Faure et al., 1998, 

Chatlapalli, 1998, and 2002, Soh et al., 2006).  In general these studies concluded 

that the technique was useful as a predictive tool in developing formulations for the 

granulation process.  

A correlation between near infrared spectroscopy (NIR) and MTR data has been 

investigated by Luukkonen (2001).  NIR spectroscopy can be used to study the 

retention capacity of a material, and distinguish the energetic states of water within a 

material.  They found that a plateau in the baseline corrected water bands heights 

from NIR correlated with the maximum torque values reported from MTR 

experiments.  Some differences were observed between the two methods, which 

were attributed to the difference in the amount of shear imposed on the system.  The 

results suggested that NIR could be used for end point detection in real time process 

measurements.  This work also compared the results obtained from capillary 

rheometery and the MTR.  They identify a significant difference in the techniques 

response to an increase in liquid content and comment that the MTR is only able to 

measure the liquid saturation state, not classical rheological parameters such as 

yield stress or viscosity constants.   

3.3.2  Use of Torque Rheology in Ceramics 

There are a limited number of examples of the mixer torque rheometer being used to 

characterise materials outside of the fields of polymers or pharmaceuticals, though of 
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those that are available, the majority pertain directly to the use of boehmite in 

extrusion.   

Tischer (1981) used a torque rheometer as a mixer to prepare boehmite / molybdena 

pastes for ram extrusion.  Acid was used as a peptising agent and the torque was 

observed to correlate with the degree of peptisation, quantified by acid 

concentration.  

Sunil Kumar et al. (1994) produced a ceria zirconia ceramic by extrusion of a 

ceramic polymer mixture.  The formulation for this extrusion was examined using a 

Brabender Plastograph which is essentially a continuous MTR.  The instrument was 

used to identify optimum ceramic loadings at temperatures of 120 and 130 ºC.  

Sunil Kumar et al. (1997) used torque rheology to investigate the properties of an 

alumina boehmite mixture for extrusion.  Sunil Kumar et al. (1998) also published 

work on the extrusion of an alumina – zirconia (12 mol% ceria) composite using 

boehmite as an extrusion aid, however their experimental technique did not involve 

the use of torque rheology methods.   

Ananthakumar et al. (2001) characterised the rheology of alumina paste for 

extrusion, which contained varying amounts of boehmite gel as a binder, using a 

mixer torque rheometer.  In this study the rotor speed was varied from 10 – 40 rpm 

and the apparent viscosity was calculated by dividing the torque by the rotation 

speed.  Ananthakumar and Warrier (2001) studied an extrusion formulation 

containing alumina – aluminium titatate with boehmite as a binder.   Work continued 

in this field with Ananthakumar et al. (2004) publishing work on the effect of 
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boehmite and organic binders on the extrusion of alumina using the Brabender 

Plasticorder to examine the viscosity and torque behaviour of the formulations.   

Liu and Chou (2000) have used viscosity measurements from a Brookfield 

rheometer to determine the critical powder volume concentration (cpvc) for ceramic 

powders (kaolin and alumina) and verified that the cpvc could be used as the 

minimum solids content required for successful extrusion formulations.  They identify 

the cpvc as the maximum volume loading of powder in fluid that yields a stiff paste, 

as defined by Pierce and Holsworth (1965), and calculate the value as the reciprocal 

value of the crowding factor from the Mooney equation relating relative viscosity to 

solids loading.  The critical powder volume concentration is also referred to by Sunil 

Kumar (1994, 1997) where it is identified as the solids loading at which the torque 

value from the mixer torque rheometer begins to increase sharply, although Markhoff 

et al. (1984) defined the cpvc as being the solids loading at which the maximum 

torque occurred.  Due to the apparent inconsistencies in literature and possible 

confusion the term cpvc is not used in discussions within this project.   

As mentioned in Section 3.3.1, the technique has been used recently by Xu and 

Hilmas (2007) to examine a ceramic / polymer mixture for co-extrusion.  Although 

models for polymer materials in MTRs exist and characterisation of ceramic paste 

materials has begun there is currently no successful model of ceramic pastes in a 

mixer torque rheometer.   

3.3.3  Wettability Measurements 

Lazghab et al. (2005) present and compare various methods of measuring the 

wettability of finely divided solids such as spreading, capillary rise, condensational 

and immersional.  They identify the use of capillary rise methods as an attractive 
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option for the measurement of the contact angle of bulk solids, (as opposed to 

individual particle), due to the low cost and ease with which the measurement can be 

taken, though the inability to accurately quantify the packed bed constant can pose a 

serious limitation to the technique.   

3.4  Extrusion 

3.4.1  Extrusion 

Extrusion has been studied and reported on extensively in a variety of fields, 

including food, pharmaceuticals, agriculture and ceramics.  This literature review 

focuses on the extrusion of ceramic materials.   

The first commercially available twin screw extruder was produced and patented by 

Robert Columbo in 1938.  Extruders available today are still of the same form though 

with some improvements in materials of construction and control technology.  A 

more detailed review of the history and development of the twin screw extruder can 

be seen in McGuire (2008).   

Perhaps one of the most impressive and widely used ceramic extrusion products is 

the monolithic ceramic catalyst support which is widely used across the automotive 

industry and in stationary NOx emissions controllers.  Forzatti et al. (1998) studied 

the preparation and characterisation of these and identified the usefulness of 

capillary rheometry in prediciting the extrudability of ceramics pastes. They discuss 

the effect of paste composition on the mechanical properties of the paste, particularly 

the use of organic and inorganic materials to act as binders and mechanical 

promoters respectively.  Das et al.  (2002) characterised cordierite materials using 

the Benbow Bridgwater model, described previously in Section 2.4.6.   
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The use of a twin screw extruder (TSE) as a continuous granulator has been 

investigated by Keleb et al. (2002) who concluded that this was a robust process 

which may offer an alternative to high shear granulation within the pharmaceutical 

industry. This was also investigated by Djuric et al. (2009) who compared the effect 

of two similar twin screw extruders used as continuous granulators on the properties 

of the granules produced.  They found that the equipment used had a significant 

effect on the granule properties, the reasons for which are not fully understood and 

require further investigation, highlighting the difficulties of interchanging between 

extruders.  

The use of a twin screw extruder as a three phase reactor was investigated by 

Moshkabad and Winterbottom (1999) who immobilised palladium on the screw.  

Their results confirmed that the TSE performed as a superior reactor, achieving a 

gas liquid transfer coefficient 10 times greater, than the conventional stirred tank. 

Powell and Blackburn (2010) successfully extruded a 5 layer tubular structure for use 

as a solid oxide fuel cell.  It was considered imperative in this extrusion application to 

unify the rheological properties of the 5 paste streams in order to achieve a 

successful extrusion.   

3.4.2  Extrusion of Boehmite 

Acidic boehmite materials were extruded and examined by Jiratova and Janacek 

(1980) who concluded that the anion affected the specific surface area of the 

resulting extrudate and that the mechanical strength achieved increased with both 

the mixing time and the acidity of the peptising agent.   

The extrusion of molybdena / alumina incorporating boehmite as an extrusion aid 

was performed by Tischer (1981) and Stoepler and Unger (1983).  They identified 
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that „unfavourable extrusion properties can be overcome by addition of boehmite‟. 

Stoepler and Unger (1983) performed a large study examining the behaviour of 60 

commercial aluminas, including boehmites, formed by ram extrusion.  They 

concluded that 6 factors affect the product properties; the degree of powder 

dehydration, particle size and size distribution, shape of aggregates, crystallite size 

and specific surface area.  Chen and Cawley (1989 and 1991) indicated the 

usefulness of boehmite as an extrusion aid for alumina systems.  This was assessed 

further by Sunil Kumar et al. (1997) who studied both gamma and alpha alumina 

systems.  They concluded that boehmite was useful in alumina systems as a binder 

and a sintering aid, with the advantage of avoiding any residual impurities as the 

boehmite becomes part of the alumina matrix.   

The use of boehmite as an extrusion aid in a more complex extrusion system of 

alumina – zirconia (12 mol% ceria) composite was studied by Sunil Kumar (1998).  

The formulation was successfully extruded with boehmite and the addition of 

boehmite was found to improve the particle packing and the sintered density of the 

product.   

A similar study was performed by Prabhakaran et al. (1999) who investigated the 

use of boemhite as a binder in an alumina system, specifically for use in the gel 

casting process.  Both this study and Ananthakumar et al. (2001) concluded that 

boehmite has advantages such as good matrix compatibility, good workability and 

better green strength in an alumina system.   

Kolenda et al. (2003) used a simple squeezing test to assess the extrudablility of a 

paste, with particular focus on whether the test could identify issues with phase 
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migration within a formulation.  They experimented with titanium oxide and boehmite, 

in both cases using nitric acid as a peptising agent to generate repulsive interaction 

forces between primary particles.  It was concluded that the boehmite paste, unlike 

the titanium oxide paste, behaved independently of compression speed in the test 

and exhibited no signs of phase migration, indicating that „this type of paste will not 

generate extrusion problems‟.   

3.4.3  Paste Characterisation  

Cone penetration is a simple technique which can be used to measure the bulk yield 

strength of a material, but fails to give any indication of the flow properties of the 

paste.  This technique is described and employed by Benbow and Bridgwater 

(1987).  Briscoe and Özkan (1997) employed a similar method, the indentation 

hardness test, to characterise the plasticity of alumina pastes.  The use of oscillation 

techniques hold potential to increase the understanding of paste structure and 

behaviour (Chandler et al., 2002), but as yet little is published in this area.   

Squeeze flow has been used to assess the extrudability of pastes by Kolenda et al. 

(2003), the test was considered valuable in the task of formulating pastes for 

extrusion.  They describe the use of a two parameter model suitable for describing 

the extrusion of pseudoplastic ceramic pastes. Tang and Kalyon (2004) combined 

capillary and squeeze flow methods to determine the Herschel Bulkley parameters 

and the relationship between wall slip velocity and wall shear stress.  Although the 

combination of the techniques was an improvement on using a single technique, it 

was still found to be difficult to elucidate all 5 desired parameters from the 

experimental data.   



                                     - 97 - 

 

The radial flow of pastes and gels was examined by Bates and Bridgwater (2000) 

using flow visualisation techniques and squeeze flow.  They observed almost 

uniform radial outflow, with some velocity variations in the outermost material.  The 

strains created in the material were found to result in the loss of contact between the 

paste and the wall, identified by the lack of a pressure signal from pressure 

transducers located in the plates. 

The most commonly accepted method of characterising pastes for extrusion is by 

studying capillary flow and applying the Benbow Bridgwater equation, displayed in 

Section 2.4.6 and described in detail in Benbow and Bridgwater (1993). This model 

developed from some earlier work performed by Ovenston and Benbow (1968) 

investigating the effects of die geometry on the extrusion behaviour of clay like 

materials.  They confirmed the occurrence of plug flow in dies with a uniform cross 

section, i.e. square entry dies, but found the description of flow in conical entry dies 

more complicated.  Flow in conical entry dies was shown to be described by the 

same mechanics as those applicable in understanding square entry dies by Benbow 

(1971), this meant that for either category of die geometry the relationship between 

pressure gradient and volume output rate can be described by 3 material constants 

which could be adequately determined by ram extrusion through a number of dies.  

The results of this work were used as the design basis for numerous dies for the 

manufacture of catalyst supports.   

Around the same time, Worrall and Khan (1972) used ram extrusion as a tool for 

characterising the plasticity of clay materials, though they recognised the limitation of 

the technique not fully describing all the parameters contributing to plasticity.   
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The relationship between paste formulations and extrusion parameters was 

investigated by Benbow et al. (1987, 1988) using a ram extruder.  They identified two 

important extrusion parameters, the yield value and wall stress, and illustrated the 

considerable effect of the particle size distribution and liquid phase content on the 

extrusion parameters.  The popularity of the model is evident from the extensive 

published works which use this model to characterise materials, a list of examples 

can be seen in Wilson and Rough (2006).  The model was referred to in over 40 

published articles within a ten year period from 1994 to 2004.  The equation has its 

flaws and critiques of the model can be found in Blackburn et al. (2000) and 

Basterfield et al. (2005)    

Horrobin and Nedderman (1998) used the large deformation elastic plastic finite 

element method to examine the pressure drop at the die entry region and predicted 

pressure drops which were in good agreement with the experimental data.  They 

discuss that the uniaxial yield stress is overestimated by the Benbow Bridgwater 

equation due to the over simplification in assuming the variable to be independent of 

geometry.  However, they employed a rate independent model, therefore assuming a 

velocity factor of zero, which is not applicable to the real extrusion of pastes.   

Draper et al. (1999) examined the effect of paste preparation method on the resulting 

rheological properties.  They minimised the effect of solids content by applying the 

equation described by Chong (1971), similar to the Kreiger Doherty equation 

discussed in Section 2.2.2, which allows the prediction of the viscosity of a 

concentrated suspension from the solids content, maximum packing fraction and 

binder viscosity.  In order to apply this technique the maximum packing fraction was 

calculated by preparing pastes at various solids contents and characterising using 
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the Benbow Bridgwater method.  This allowed the authors to prepare pastes of 

similar consistencies with different formulations.  The Herschel Bulkley model was 

found to accurately describe the rheological properties of these pastes.   

The stress relaxation of an alumina paste, (a ceramic catalyst mimic) was shown by 

Chou et al. (2003) to be rapid, resulting in residual stresses which were in good 

agreement with the Benbow Bridgwater model, unlike the behaviour of a talc paste, 

which was also studied by Martin et al. (2004), who also found the rheological 

properties a talc paste difficult to characterise.   

3.4.4  Studies of the Extrusion Process 

3.4.4.1 Understanding Flow in Extrusion  

Ram extrusion is a comparatively simple process compared with screw extrusion, 

lending itself to characterisation techniques that are more difficult to apply to a twin 

screw extruder.  

Götz et al. (1993) used nuclear magnetic resonance (NMR) to detect structural 

changes and flow patterns in extrusion pastes.  They were able to confirm the 

occurrence of phase migration and identify the presence of a radial moisture profile 

across the barrel.  They also confirmed that prior to the die entry region only 

displacement and compression occur, not shear, with the exception of shear 

deformation in close proximity to the barrel wall.  The ability of NMR to distinguish 

between free and bound water as they exhibit different magnetic relaxation times, 

and to indicate bond type was used as an indication of the occurrence of „so-called 

peptisation‟, with results suggesting that the strongest bound water was present on 

the solid surface, indicating that the material was a gel.  They describe their raw 

material as an oxide ceramic based on alpha alumina.  Götz et al. (1994) confirmed 
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the use of NMR to establish velocity profiles in concentrated suspensions and 

pastes.   

The use of magnetic resonance imaging to study the velocity profiles in a ram 

extruder has been applied by Barnes et al. (2006).  They observed variations in the 

flow regime which were dependent on distance from the die.   Plug flow with slip at 

the barrel wall was observed away from the die, then as the die was approached the 

flow converged towards the centre of the barrel and stagnant static zones were 

observed adjacent to the walls.  The shape of the velocity profile was found to be 

material dependent, but independent of ram speed and die length within the range 

studied. The build up of stagnant zones as the die is approached is also considered 

to be possible in a twin screw extruder, though a similar study has not been 

performed on this equipment.   

Wildman et al. (1999) used positron emission particle tracking (PEPT) to monitor the 

flow of pastes in a ram extruder, the barrel was constructed from nylon to allow the 

tracking of particles.  Irradiated glass ballotini tracking particles were placed at 

intervals across the barrel diameter and flow into the die monitored.  Finite element 

analysis was applied to quantify the stress and strain rate, the strain rate was shown 

to be greatest at positions closest to the barrel wall.   

PEPT is not a technique which readily lends itself to studying extrusion as the 

majority of extruder barrels are thick metal which prevents or affects the receiving of 

the radioactive signal from the tracer.  A collaborative European research project 

(Collaborative publicity article, 2009) has successfully tracked the flow of polymer 

through a twin screw extruder in real time and under realistic processing conditions.  
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The successful application of this technique will lead to significant advancements in 

the field of modelling twin screw extrusion.  Previous attempts to fully understand the 

flow of materials within a twin screw extruder have included the use of acrylic 

barrels, viewing windows and stop-start techniques.  The issue of metal absorbing 

the gamma photons was overcome by the installation of a section (100 mm in length) 

of aluminium in the barrel which is reasonably transparent to photons.   

3.4.4.2 Residence Distributions 

A large number of studies have been conducted examining the residence time 

distribution (RTD) within twin screw extruders, particularly within the food and 

pharmaceutical industries.  The first consideration of RTDs, i.e. flow through a vessel 

not being either plug flow or perfectly mixed, was made by Danckwert (1953), a 

useful outline of which is reviewed in McGuire (2008).  One of the earliest studies of 

the RTD of a twin screw extruder was performed by Eise et al.  (1983) who used an 

iron tracer coupled with conductivity measurements to assess the RTD of a polymer 

melt system.  A significant change in the approach of considering residence 

distributions was made by Gasner et al. (1999) and Gao et al. (1999), both of whom 

identified that residence time distribution was not always a valid measure due to 

volume variations (fill level) and that an accurate understanding of the residence 

distribution should involve the normalisation of data to account for this.  Data was 

normalised with respect to screw speed by Gasner et al. (1999) to produce a 

residence revolution distribution (RRV) and with respect to volumetric flow rate by 

Gao et al.  (1999) to produce a residence volume distribution, (RVD).  

A full discussion of the importance of normalising data and an illustration of the 

inaccuracies resulting from erroneously analysed data can be found in McGuire 
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(2008) who comments that a full understanding of the extrusion process requires 

consideration of all three distributions.   

Unfortunately many studies on the residence distribution of a twin screw extruder 

have continued to focus entirely on the RTD with no consideration of the degree of 

screw fill or data normalisation.  Examples of such studies up to 2008 are detailed in 

McGuire (2008), more recent examples include Kumar et al. (2008), Baron et al. 

(2010) and Villmow et al. (2010).   

One of the principle reasons for studying residence distributions in a process is to 

elucidate an understanding of the degree of mixing occurring.   Many published 

works study the effect of screw geometry and operating parameters on the RTD of a 

twin screw extruder, and draw conclusions from the resulting data regarding the 

factors affecting the degree of mixing achieved.  There is conflict in the conclusions 

drawn and concern regarding the accuracy of conclusions based on the 

aforementioned issue of normalising data.  Further discussion regarding these 

conclusions and the effect of equipment and operational parameters on mixing are 

discussed in Section 3.4.4.3.   

3.4.4.3 Mixing and Agglomerate Breakdown  

As discussed previously in Section 2.4.2 mixing can be considered as either 

distributive or dispersive.  Gramann and Rauwendaal (2004) showed distributive 

mixing is achieved by elongational flow, caused by changes in cross sectional area.  

Distributive mixing can occur in the radial or axial direction in a twin screw extruder, 

i.e. across the screw cross section or along the barrel length.  Section 3.4.4.2 

presented literature studying the effect of screw configuration and operational 

parameters on mixing in twin screw extruders, inferred by examining the residence 
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time distribution, an unsatisfactory analysis which does not produce robust 

conclusions. 

The publication by Vainio et al. (1995) is an example of using RTD to evaluate 

mixing effectiveness and being found to be a poor indicator.  This study concluded 

that radial mixing was achieved with kneading elements and axial mixing was 

achieved with conveying elements, and particularly with reverse elements 

introducing backflow.  

Van Zuilichem et al. (1999) studied the mixing effectiveness of screw elements using 

a combination of flow visualisation and RTD measurements in an extruder with a full 

length translucent barrel.  They found a significant difference in the mixing behaviour 

of a kneading paddle and a reverse element, with reverse elements causing 

stagnancy not observed in flow within kneading paddles.  In a block of kneading 

paddles the most significant mixing action is achieved by the first kneading paddle, 

with flow through a long block of paddles tending towards plug flow.  Axial mixing 

was found to be unaffected by screw speed and paste rheology, probably due to 

operating in a flooded regime, but was affected by screw geometry.  A similar 

conclusion was drawn by Gao et al. (1999) that axial mixing is independent of 

operational parameters, again they ran at a flooded regime. Carneiro et al. (1999) 

showed how the positioning of a reverse element downstream of kneading blocks 

creates greater eddie formation and improved both radial and axial mixing. 

The dependence of the behaviour of screw sections on other screw sections remains 

undetermined, with contradictory studies being performed by Shearer and 

Tzoganakis (2001 a, b), one claiming that sections behave independently of each 
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other and the other concluding that the behaviour of a section is affected by the 

upstream configuration.   

Mixing studies performed by McGuire (2008) concluded that the most effective 

configuration for distributive mixing was 4 d of 30 ° backwards kneading elements, 

where d is the barrel diameter.  He defined a parameter for characterising the degree 

of distributive axial mixing achieved, defined by the volume of paste in which the first 

2/3 of tracer were contained, hence neglecting the „tail‟ commonly observed in tracer 

experiments.  Mixing effectiveness is referred to in the review of ceramic shaping 

Blackburn and Wilson (2008) who highlight that mixing is best achieved by large 

strains rather than high strain rates. 

Agglomerates have been shown to have a detrimental effect on the final strength of 

an extruded ceramic (Lange, 1989), and also significantly effects the flow behaviour 

(Benbow et al., 1987).  The breakdown of agglomerates can effectively be 

considered as dispersive mixing of particles.   

Böhm and Blackburn (1994) and Wildman and Blackburn (1998) studied 

agglomerate breakdown using coloured agglomerates and optical microscopy, 

concluding that the breakdown of agglomerates was position (therefore shear rate) 

independent, but that the distributive mixing which followed was position (shear rate) 

dependent.  Böhm and Blackburn (1994) also identified that agglomerate breakdown 

could be identified by monitoring pressure signals, though this analysis is limited by 

the qualitative nature of the data produced.   

X-ray imaging of thin slices of material was used by Ess et al. (1984) to distinguish 

between agglomerates and the bulk paste, a technique which was extended into 3D 
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by McGuire et al. (2007) who demonstrated x-ray tomography, a technique 

developed for medical imaging, to be a useful tool in the imaging of extrusion pastes.  

They found that a TSE was more effective at achieving agglomerate breakdown than 

a Z-blade mixer / ram extrusion process.  The volume of agglomerates broken down 

was found to be dependent on, and the final size of the broken agglomerates 

independent of, the operating conditions of the extruder.   

3.4.4.4 Wall Slip 

Understanding slip flow requires a quantification of the slip velocity and the 

dimensions of the slip layer. The pioneering study of wall slip was performed by 

Mooney (1931) who developed a model for calculating slip velocity which is now 

commonly accepted and remains the most popular model used to describe this 

phenomenon.  The model considers slip flow as an abnormally large velocity 

gradient adjacent to the confining wall.  The approach is relatively simplistic as it 

unrealistically considers the slip layer to be of uniform thickness and composition.  

Despite the long standing acceptance of the Mooney model, it has been shown in a 

number of studies, including Khan et al.  (2001) to be unsuitable, producing negative 

values of slip velocity.  Various adjustments have been made to the model, such as 

the Jastrezebski modification, which in some cases has been used preferentially to 

the classical Mooney model, however there is no physical grounding behind the 

Jastrezebski approach and it is strongly recommended by Martin and Wilson (2005) 

that use of this approach cease.  They advocate the use of the Tikhonov 

regularization of the Mooney model, described in their publication.     

The Hatzikiriakos method, proposed by Hatzikiriakos and Dealy (1992) is 

advantageous compared to the Mooney approach as it requires data from only one 
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capillary.  This method was successfully employed by Huzzard and Blackburn (1998) 

to study the slip flow in concentrated alumina suspensions, although some irrational 

values of slip velocity were obtained at very low shear rates.    

The slip layer is proposed by Yilmazer and Kalyon (1991) to have a width of the 

same order of magnitude as the diameter of particles contained in the material.  The 

width of the slip layer has generally received much less attention than calculation of 

the slip velocity.  Wilson and Rough (2006) display images obtained by magnetic 

resonance velocity imaging to directly visualise the occurrence of wall slip and 

present a discussion of their studies of wall slip.   

3.4.4.5 Phase Migration  

The application of stress to a paste system can result in the preferential 

displacement of the liquid phase, resulting in liquid maldistribution and a variation in 

the pastes moisture profile. This effect, often termed phase migration, has been 

identified and observed by authors including Yaras et al. (1994) and Burbidge et al. 

(1995). Phase migration occurs due to the fact that the stresses imposed on a paste 

system are unevenly distributed by the phases, being predominantly borne by the 

liquid phase (Martin et al., 2004). 

Yu et al. (1999) confirmed the maldistribution of liquid by sectioning, weighing and 

drying an extruded paste.  The use of a squeezing test was demonstrated to be 

successful in distinguishing between pastes which exhibited significant phase 

migration and those that did not (Kolenda et al., 2003).  

Rough et al. (2002) developed a model to predict phase migration based on a liquid 

drainage model.  Patel et al. (2009) assessed the validity of using a modified version 
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of the Cam – Clay model (from soil mechanics theory) to describe the maldistribution 

of liquid in a system comprising glass spheres in a highly viscous Newtonian fluid.  

The model was shown to be acceptable but with significant room for refinement.  

Phase migration was shown to be dependent on the speed of extrusion, formulation 

and to a lesser extent, the extruder geometry.   

3.4.4.6 Controlling Extrusion 

Chen et al. (1998) and Böhm and Blackburn (1994) report that fluctuations in the 

pressure signals observed at the die were indicative of the quality of the paste.  The 

fluctuations are identified by Amarasinghe and Wilson (1998) as being due to either 

the release of entrapped gas, the rupture of agglomerates, poor mixing or surface 

fracture.  The use of signal processing methods to characterise the ram extrusion 

process using pressure data was investigated by Amarasinghe and Wilson (1998) 

with positive results.  Russel et al. (2003) continued this investigation assessing the 

suitability of various statistical techniques for the analysis of such data, they found 

that outliers resulting from the rupture of air pockets of agglomerate breakdown 

could be identified and that the signal noise could be related to the mixedness of the 

paste.    A further study by Russel et al. (2004) assessed the applicability of such 

analysis developed for the ram extrusion process to a twin screw extrusion process 

and found a good correlation between the results and extrudate quality, though with 

some limitations due to the sensitivity of the analysis.   

A feed forward control approach, using pressure as a controlled extrusion variable, 

has been explored by Li and Bridgwater (2000) who assessed the use of an artificial 

neural network (ANN) for predicting the extrusion pressure in a ram extruder.  They 

found that the ANN model was capable of predicting the extrusion pressure well, so 
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long as the influential extrusion parameters were accurately identified.  In the 

prediction of the mean extrusion pressure they identified the following input 

parameters; the paste composition, the ratio of the die land to the die diameter, and 

the extrudate velocity.  The application of a back propogation training process using 

these parameters and a set of „training data‟ resulted in very good predictions of the 

mean extrusion pressure.   

Köster and Thommes (2010) discuss the usefulness of torque measurements as a 

tool for monitoring twin screw extrusion, they reveal a linear relationship between 

torque and water content in a wet extrusion process, though the material studied is 

not specified.   

3.4.4.7 Modelling 

The geometry of self wiping twin screw extruder screw elements is described 

mathematically by Booy (1978); this work has formed the basis of much of the 

subsequent modelling work on extruders.  This description, and details of modelling 

performed up to 2008 can be seen in McGuire (2008).  The twin screw extruder has 

been considered and modelled by McGuire (2008) who examined the effect of screw 

speed, flow rate and paste rheology on the pressure drop across reverse elements.  

The model was validated using a variety of pastes and is considered accurate 

enough to be useful in the design process.  The model developed to predict fill level 

was not considered to be so accurate.  Barrera et al. (2008) performed 3-D 

modelling of flow curves in co rotating TSE elements and found a good match 

between their model and experimental data.   

Vergnes and Berzin (2000) describe the issues associated with modelling reactive 

systems within a twin screw extruder, more specifically, the requirement to couple 
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flow simulation in a complex geometry with reaction kinetics and evolutionary 

rheological behaviour.  They have developed models with good accuracy based on 

continuum mechanics for systems for which accurate kinetic data and rheokinetic 

laws exist.  The use of such models is advantageous in dealing with scale up 

problems, even when imperfections exist.   

A series of studies on the velocity distributions of liquids within various regions of a 

twin screw extruder have been performed by Bakalis and Karwe (1996, 1997, 1998 

and 2002). Velocity distributions and volume flow rates through the nip and 

translational regions of a twin screw extruder have been studied by Bakalis and 

Karwe (2002).  Two velocity components were measured simultaneously, using laser 

Doppler anemometry, over a range of mass flow rates (controlled by screw speed, 

ensuring that the fill level was maintained) and it was found that the volume flow rate 

in the nip region was roughly four times higher than in the translational region.   
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Chapter 4 Materials and Methods 

4.1  Material Characterisation 

4.1.1   Materials  

Boehmite powder G250 was provided by BASF (Germany), V250 from UOP (USA) 

and Dequagel HP from Dequenne Chimie (Belgium).  

BET surface area measurements were performed on Micromeritics ASAP 2420 and 

Micromeritics Tristar 3000 instruments using the ASTM method D 4222-83 using 

around 0.5 g of powder. The sample was initially outgassed using dry nitrogen at 140 

ºC for a minimum of 1 hour before cooling to 77 K using dry nitrogen. The nitrogen 

adsorption desorption isotherm was measured between the relative pressures (P/P0) 

0.0035-0.95 and P0 was measured at every point on the isotherm. The surface area 

was calculated by the Brunauer–Emmett–Teller (BET) method between pressures 

0.05 and 0.2 using 5 data points.  The equipment accuracy is within 0.5% with 

regards pressure measurement and ± 0.25 °C with regards temperature. 

The BET surface areas for the boehmites G250, V250 and Dequagel HP, measured 

as described above, were 340, 280 and 300 m2g-1 respectively, with an approximate 

error of ± 30 m2g-1 based on variations in data observed over a range of samples.  

The losses on drying at 110 ºC measured on 2 g (± 0.01 g) of sample using a Mettler 

Toledo HG63 moisture analyzer were 8.3, 6.6 and 8.4 % respectively.  Manufacturer 

quotes repeatability on a 2 g sample as ± 0.05%.  

Demineralised water, unless otherwise specified, was produced by an Elga Option 3 

water purifier.  Dilute nitric and acetic acid were both produced from the respective 

concentrated acid provided by Alfa Aesar. 
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4.1.2  Particle Size and Shape  

Three methods, each described below, have been used to measure the particle size 

distribution of the „as received‟ boehmite powders.   

A Malvern Mastersizer 2000 with a Hydro 2000g wet dispersion unit, pump speed 

was 1250 rpm, stirrer speed 500 rpm and no ultrasonics were used for dispersion.  

The optical properties in the selected operating procedure were; refractive index of 

the particles of 1.78, absorption index of 0.01 and refractive index of the medium 

(water) of 1.33.  Three measurements were performed on each sample with a 5 

second delay between measurements.  The Malvern Mastersizer 2000 was also 

used with a Scirocco dry dispersion unit.  The vibratory feeder was set at 50 % of the 

maximum with dispersive air pressure of 0.25 bar.  The optical properties in the 

selected operating procedure were; refractive index of the particles of 1.78 and 

absorption index of 0.01.  Measurement time was 15 seconds, with 15,000 

measurement snaps and background time was 30 seconds with 30,000 background 

snaps.   

Particle size distribution and sphericity were measured using a Sympatec dynamic 

image analyser.  The lens allowed detection of particles between 5 and 1705 μm.  

The pixel resolution (1024 x 1024 pixels) and frame rate of 500 frames per second 

result in shape evaluation not being possible on particles less than 20 μm.  

Dispersion was performed by an Oasis VIBRI feeder at 25 %, 2 bar pressure and 71 

mbar vacuum.  Revolution and cascade were both zero. Calculations were 

performed on QICPIC software in EQPC calculation mode.   
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4.1.3  X-ray Diffraction 

A Seimens D5000 diffractometer has been used to measure the crystallite size of 

boehmite.  The powdered sample was pressed into a sample holder and loaded into 

the autosampler.   The copper K alpha wavelength was 1.5406 angstroms, 2 theta 

started at 2 º and finished at 70 º using a step size of 0.02 º and step time of 1 

second.  X ray current was 30 mA and voltage 40 kV.  Eva Version 8.0 and 

PDFMaint Version 8.0, both from Bruker were used to determine the phases present 

and crystallite size was calculated using Topas Version 2.0, also from Bruker.  

Instrument reproducibility and accuracy are both quoted as ± 0.0005 ° by the 

manufacturers. 

4.1.4  Rate of Dissolution of Boehmite in Nitric Acid 

A solution containing 25 g (± 0.01 g)of boehmite powder (G250 or V250) or 12.5 g (± 

0.01 g) of powder (Dequagel HP) and 250 ml (± 0.5 ml) of demineralised water was 

manually titrated with 10 wt% nitric acid to a pH of just slightly below the desired pH 

(2 or 4) measured with a VWR 662 1762 pH probe.  The pH of the solution was then 

maintained at pH 2 or 4 with the use of a Schott TA50 plus autotitrator and 10 wt% 

nitric acid.  The conductivity was measured using a Hanna instruments MI 8733 

conductivity meter.  The experiment was monitored for 8 hours, recording the time 

elapsed (± 1 minute), pH (± 0.1 pH unit), volume of acid required to maintain pH (± 

0.1 ml) and conductivity (± 1 %).  In the case of Dequagel HP the volume of acid 

required to maintain pH has been altered to account for the presence of a smaller 

mass of powder.   
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4.1.5  Dispersibility of Boehmite in Acid  

Acidic solutions of 5 wt% boehmite were prepared by addition of 10 g (± 0.01 g) of 

powder to 165 ml (± 0.2 ml) of demineralised water and 25 ml (± 0.2 ml) 1.0 M nitric 

or acetic acid.  The solution was sheared for 5 minutes (± 10 s) using a Silverson 

mixer fitted with a high shear work head, as shown in Figure 4.1.  20 ml (± 0.2 ml) of 

the sheared solution was centrifuged at 3000 rpm (± 200 rpm) for 20 minutes (± 10 s) 

using an MSE Centaur 2.   The supernatant was collected by pouring immediately 

after centrifuging and calcined at 1000 ºC (± 10 °C) for 3 hours (± 10 mins).  The 

temperature was increased at a rate of 5 ºC min-1 and cooled at a natural rate.   

 

Figure 4.1: High shear work head for Silverson mixer 

4.1.6  Adsorption of Vapour 

A Dynamic Vapour Sorption Advantage was used to measure the boehmites‟ ability 

to uptake moisture.  The instrument was purged with nitrogen for 24 hours prior to 

the commencement of an experiment.  The balance (accurate to 1 μg) was tared 

with a clean empty sample pan and 10 - 20 mg of sample charged to the pan.  The 

sample pan was handled with tweezers to minimise the risk of contamination or 

equipment damage.  The sample was dried at 120 ºC in 0 % relative humidity 

(accurate to ± 0.5 % relative humidity) for 2 hours to ensure complete moisture 

removal prior to uptake measurements.   A double cycle was performed on each 

powder at 30 ºC.  The relative humidity was varied from 10 % to 90 % and back to 10 
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% in increments of 10 %.  Full equilibration was allowed at each humidity step, 

requiring the mass to remain constant to 0.001 g for 5 minutes.   

4.2  Rheological Study and Gel Investigation 

4.2.1  Sample Preparation   

Samples have been prepared by milling on a Fritsch Planetary Micro Mill Pulverisette 

7. Milling was performed at speed setting 7 with 3 media present in each of the 

vessels.  The internal dimensions of the mill pots were 40 mm x 50 mm and the 

media were spherical with a diameter of 15 mm.  The pots and media were both 

Fritsch “Syalon”, 90 % silicon nitride.   Powder was weighed using a Mettler Toledo 

PR5002 Datarange balance located within a dust booth and liquids measured using 

2.5, 5 or 10 ml plastic syringes from Beckton Dickinson.  6 g (± 0.1 g) of the 

appropriate boehmite powder was charged to the mill pot (with the media already in 

place) followed by 14 ml (± 0.2 ml) of liquid, containing the appropriate amount of 

dilute acid to obtain the desired overall acid content, producing samples containing 

30 wt % (± 0.6 wt%) boehmite.  Milling was carried out for 1, 14, 15, 30, 45, 60 and 

90 minutes (± 10 s) for samples prepared with the boehmite G250 and for 1, 4 and 

30 minutes (± 10 s) for samples prepared with the boehmites V250 and Dequgael 

HP.  

4.2.2   Rheological Measurements 

Rheological characterisation was performed using an AR 2000 from TA Instruments, 

Crawley, UK.  A Julabo AWC100 chiller unit was used to control the peltier plate 

temperature which was maintained at 20 ºC. A 40 mm stainless steel cross hatched 

(serrated) plate with solvent trap was used for measurements (with solvent trap in 

place but no solvent present).  The gap size was 1000 μm.   The cross hatched plate 
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was used to mitigate against the occurrence of wall slip, a standard check for wall 

slip performing experiments at a variety of gap sizes was carried out to confirm that 

the occurrence of wall slip under these experimental conditions was minimal.   

Both varied shear rate (shear rate ramp) and constant shear rate (shear rate hold) 

experiments were performed on each sample.  Varied shear rate experiments were 

performed first, ramping from 0.001 s-1 to 1000 s-1 over a period of 1 minute each 

way, completing a total of 3 cycles.  No pre-shear was performed and a 30 second 

equilibration time was allowed prior to commencement of the first shear rate ramp.  

The shear rate hold was performed without reloading of the sample.  The sample 

was held at a shear rate of 1000 s-1 for either 3 or 5 minutes.  The sample was pre-

sheared at 100 s-1 for 1 minute, in accordance with suggestion by the instrument 

manufacturers, TA Instruments, to remove any memory the material may have of the 

shear rate ramp performed previously.  Another 30 second equilibration time was 

allowed prior to the commencement of the shear rate hold.   

Where oscillatory measurements have been made both varied shear stress (stress 

sweep) and varied frequency (frequency sweep) experiments were performed.  A 

shear stress sweep was performed first, sweeping from an oscillatory stress of 0.01 

Pa to 100 Pa in log mode at a frequency of 0.1 Hz, recording 3 points per decade.  

No pre-shear was performed and a 30 second equilibration time was allowed.  This 

allowed identification of the linear viscoelastic region in which the frequency sweep 

could be performed.  The frequency sweep was performed without reloading of the 

sample.  A frequency sweep was performed at a frequency of 0.1 Hz from 0.01 to 

100 Hz in log mode taking 10 points per decade.  No pre-shear was performed and a 

30 second equilibration time was allowed.   
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4.2.3   pH and Particle Size  

pH measurements have been taken with a variety of probes over the course of the 

experiments.  In each case a calibration was performed using Thermo Electron 

Corporation perpHect® pH buffers (pH 4 ± 0.01 @ 25ºC, pH 7 ± 0.01 @ 25ºC and 

pH 10 ± 0.02 @ 25ºC).  The probes used include a VWR 662-1759 and an Orion 

PI10/S8 serial number 21054/001 with an Orion Research model 701A/digital 

Ionalyser meter, and a VWR 667-1761 probe with a Jenway 3051 pH meter.  In 

some cases additional measurements were taken using pH strips from Alfa Aesar 

readable to 0.2 - 0.3 pH.  Any quantitative analysis on pH data has been performed 

using the measurements made with a probe rather than a pH strip.     

Particle size was measured using a Malvern Mastersizer X with a MS17 presentation 

unit and a 100 mm lens (which will detect particles between 0.5 and 180 μm).  All 

samples were dispersed in demineralised water for analysis.  The presentation unit 

settings were: pump at 50 %, stirrer at 50 % and ultrasonics at 10 % of maximum 

values.  The optical properties in the selected presentation code (2QJD) were; 

refractive index of the particles of 1.7290, absorption index of 1.000 and refractive 

index of the medium of 1.3300.  Microscopy images confirmed the presence of 

particles smaller than 0.5 μm, the use of a 45 mm lens would have allowed particles 

down to 0.1 μm to be viewed, this would however have not considered particles 

larger than 80 μm.   

4.2.4   Zeta Potential 

A Colloidal Dynamics Zetaprobe was used.  The conductivity, electroacoustic 

spectral analysis (ESA) and pH probes were calibrated according to standard 

calibration procedure prior to carrying out the experiments.  The ESA probe was 
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calibrated using a solution of potassium α-silicotungstate (KSiW). Potentiometric 

titrations were performed on each of the 3 boehmite powders with 1.0 M nitric acid, 

1.0 M acetic acid and 1.0 M sodium hydroxide.  Titrations were performed from the 

material‟s natural pH in demineralised water (from an Elga Purelab Option purifier) to 

pH 0.5 for the acidic titrations and pH 11 for the basic titration in increments of 0.5 

pH.  An equilibration time of 2 minutes was allowed for each measurement.  A 

preliminary study was performed to confirm this as a suitable equilibration time.  

Dispersions containing ~1 wt% powder were prepared by weighing ~2.5 g accurately 

to 0.001 g using a Sartorious type 1425 balance into a glass 250 ml volumetric flask 

which was then filled with demineralised water from an Elga Purelab Option purifier.  

The sample was stirred at 250 rpm throughout the titration to prevent settling.  The 

temperature was not controlled during the measurements, though temperature 

readings were recorded throughout.   

4.2.5   Nuclear Magnetic Resonance 

Samples have been prepared by milling on a Fritsch Planetary Micro Mill Pulverisette 

7. Milling was performed for 30 minutes at speed setting 7 with 3 media present in 

each of the vessels.  The internal dimensions of the mill pots were 40 mm x 50 mm 

and the media were spherical with a diameter of 15 mm.  The pots and media were 

both Fritsch “Syalon”, 90 % silicon nitride.   Powder was weighed using a Mettler 

Toledo PR5002 Datarange balance located within a dust booth and liquids measured 

using 2.5, 5 or 10 ml plastic syringes from Beckton Dickinson.  6 g the boehmite 

G250 was charged to the mill pot (with the media already in place) followed by 14 ml 

of liquid, either demineralised water or 1.0 M nitric acid, producing samples 
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containing 30 wt % boehmite.  Samples were dried at room temperature for 72 hours 

and crushed once dry.   

NMR studies were performed by John Hanna and Gregory Rees of the Magnetic 

Resonance Group at Warwick University.  Measurements were performed on a 600 

MHz Chemagnetic magnet with a Bruker Avance II console and a Bruker MAS 4 mm 

probe with a spinning speed of 10 kHz.  3600 scans were completed per sample. 

Calibration was completed with 1.1 M aluminium nitrate (0.00 ppm) solution and the 

Magic Angle was confirmed with yttrium aluminium garnet.  Later samples were 

doped with various amounts of MgO to dry them and hence quantitative aluminium 

comparison is not possible so all the peaks present have been normalised to 1 to 

allow for comparison.    

The spectra were fitted using DMFIT to achieve a comparison and then simulated 

with pNMRsim and GSIM to check no anomalies or errors were gained when fitting. 

The agreement between all three programs suggest an accurate fit and the 

simulation confirmed this – errors have not been considered as this is an average fit 

of all the samples run. 

4.2.6   Cryomicroscopy 

Water-based and acidic slurries and pastes were prepared and viewed on the 

cryomicroscope.  Slurries were prepared on a DAC 150 FVZ-K speed mixer, 

supplied by Synergy Devices Limited, manufactured by Hauschild.  Samples were 

mixed for 15 minutes at a speed setting of 20.  45 mm x 48 mm plastic mill pots were 

used with three 15 mm Fritsch “Syalon” 90 % silicon nitride media.   
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Rheological characterization of samples prepared for cryomicrsocopy was performed 

on a TA Instruments AR2000 as described in Section 4.2.2. 

Samples were frozen by immersing in liquid ethane and transferred to the 

microscope using the Baltec Cryo system.  Observations were first made at –138 ºC, 

then the temperature was raised to –110 ºC prior to cutting the dome of the frozen 

sample using a baltec cryo-plane.  Analysis was performed in the frozen condition, 

and then sublimated at 60 ºC for 10 – 20 minutes.   

Samples were examined in a Zeiss ultra 55 field emission electron microscope 

equipped with in lens secondary electron and backscattered detectors. Two imaging 

modes were used: compositional analysis and low resolution general imaging, and 

high resolution low voltage imaging.  Compositional analysis and low resolution 

general imaging was performed at an accelerating voltage of 10 – 20 kV, with a 30 

micron aperture at a working distance of 7 – 8 mm using standard secondary 

electron and standard backscattered electron detectors.  High resolution low voltage 

imaging was performed at an accelerating voltage of 3.6 kV, with a 20 – 30 μm 

aperture at a working distance of 2 – 3 mm using in-lens secondary electron and in-

lens backscattered electron detectors.   

4.3  Mixer Torque Rheometry 

4.3.1  Description of Torque Rheometer Equipment  

The instrument used as a torque rheometer was the Brabender Absorptometer „C‟ 

with a Schott Titronic Universal Piston Burette (Model TZ 3160, systematic error 0.1 

%, random error 0.05 %) were used along with a Julabo F34 temperature control 
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unit.  Powder samples were weighed using an Ohaus ARD110 top pan balance 

accurate to 0.1 g.    

The mixing chamber and paddles are shown in Figures 4.2, 4.3 and 4.4, the 

chamber has a capacity of 100 ml, with a chamber width of 70 mm and depth of 45 

mm.  There is no lid on the chamber allowing for expansion of material as mixing is 

performed.  The mixing paddles are driven by a fixed ratio gearbox producing paddle 

rotations at a ratio of 2:1.   

 

Figure 4.2: MTR sample chamber           

 

Figure 4.3: MTR mixing paddles and back plate 
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Figure 4.4: MTR mixing paddles, back plate and sample chamber 

4.3.2  Taguchi Experimental Design 

Taguchi orthogonal array factorial design was used to ascertain the relevance of 

parameters in the technique.  The effect of five, two level factors on two outputs was 

assessed, these factors and the conditions of the levels can be seen in Table 4.1. 

The experiments were designed according to an L8 Taguchi matrix (shown in Table 

4.2).  Each experiment consisted of charging the mixing chamber with 20 g of the 

appropriate powder and adding the specified liquid at the required rate and 

temperature.  The torque required to rotate the paddles at the specified rotation rate 

was measured.  The matrix in Table 4.3 summarises the experimental conditions 

examined as a result of combining the parameters in Table 4.1 with the array in 

Table 4.2. A deficiency of the Taguchi experimental design method is that the 

interaction between two variables is not considered in the analysis, however it allows 

the effect of a large number of variables to be examined in a small number of 

experiments, allowing further experiments to be focussed on the most influential 

parameters.   
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Table 4.1: The 5, 2 level factors assessed by experimental design  

Variable 

Number 

Parameter Units Condition 1 Condition 2 

1 Temperature ºC 10 20 

2 Paddle rotation rate Rpm 50 150 

3 Liquid addition rate ml.min-1 1 10 

4 Powder type n/a Boehmite Alpha alumina 

5 Acid strength M 0 1 

 

Table 4.2: Variable conditions in Taguchi experimental matrix 

Experiment 

Number 
Variable Number 

 1 2 3 4 5 6 7 

1 1 1 1 1 1 1 1 

2 1 1 1 2 2 2 2 

3 1 2 2 1 1 2 2 

4 1 2 2 2 2 1 1 

5 2 1 2 1 2 1 2 

6 2 1 2 2 1 2 1 

7 2 2 1 1 2 2 1 

8 2 2 1 2 1 1 2 
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Table 4.3: Taguchi designed experiments 

Experiment 

Number 
Temperature 

Paddle 

Rotation 

Rate 

Liquid 

Addition 

Rate 

Powder 

Type 

Acid 

Strength 

 ºC Rpm ml.min-1  M 

1 10 50 1 Boehmite 0 

2 10 50 10 Alpha 

alumina 

0 

3 10 150 1 Boehmite 1 

4 10 150 10 Alpha 

alumina 

1 

5 20 150 1 Alpha 

alumina 

0 

6 20 150 10 Boehmite 0 

7 20 50 1 Alpha 

alumina 

1 

8 20 50 10 Boehmite 1 

 

4.3.3  Test Type and Formulations 

4.3.3.1 Multiple Addition Test 

During the multiple addition test 20 g (± 0.01 g) of dry powder was charged to the 

mixing chamber and liquid added at a specified rate (4 ml.min-1) to the chamber 

whilst recording the torque required to rotate the paddles through the powder at a 

rate of 125 rpm.  The temperature was maintained at 20 ºC. The duration of the 

experiment varied, with the end point being determined when a peak mean torque 

had been observed and fallen to 50 % of the peak value.   

A range of formulations has been examined using the multiple addition test 

described here, similar to those discussed and characterised by rotational rheometry 

presented in Chapter 6.  Formulations included the combination of three boehmite 
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powders, (G250, V250 and Dequagel HP) with a variety of liquid phases; water, a 

variety of concentrations of nitric acid (0.36 M, 0.72 M and 1.0 M) and 1.0 M acetic 

acid.  Repetitions of experiments was not possible due to equipment availability.   

4.3.3.2 Variable Mixing Time Test 

The variable mixing time test involves charging the mixing chamber with 20 g of the 

required powder and commencing paddle rotation to take background torque 

measurements.  The specified amount of liquid phase (which varied in each 

experiment) was dosed to the mixing bowl at a rate of 99.9 ml.min-1 using the Schott 

piston burette as described in Section 4.3.1, or by hand and the time at which the 

dose was added was recorded.  The torque required to rotate the paddles at a rate 

of 125 rpm was measured for a period of time at 20 ºC. The time period varied for 

each experiment.  The software would stop the experiment if a peak was observed in 

the torque magnitude and torque magnitude then reduced to only 50 % of the peak 

torque.  Alternatively the operator could stop the experiment if the results showed 

visually that an equilibrium torque magnitude had been achieved.   

The formulations selected for the variable mixing time tests were based on the 

results from the multiple addition tests.  Four tests were performed on each of the 15 

combinations of powder and liquid.  A formulation exactly comparable to that at 

which the peak mean torque occurred in the multiple addition test, (i.e. at 100 % of 

the liquid content of the MAT peak mean torque), and three further formulations 

containing 90, 80 and 70 % of the liquid content of the MAT peak mean torque were 

measured.  In each case the molar ratio of acid to boehmite was maintained at a 

value equal to that at the peak mean torque in the MAT, in order to minimise the 

number of variables across the experiments.    
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4.3.4  Densities of Powders 

Poured and tapped bulk densities were measured using a plastic 250 ml volumetric 

measuring cylinder, with a diameter of 30 mm, and a Mettler Toledo PB8001 – L 

balance, accurate to 0.1 g.   A measured mass of powder was poured into the 

cylinder and the volume recorded to calculate the poured bulk density.  The cylinder 

containing the known mass of powder was tapped 2000 times on a Copley JV 2000, 

the volume measured and used to calculate the tapped bulk density.  Additional 

experimental data confirmed that no significant further compaction occurred when 

tapped for a further 2000 taps.  Density measurements made in this way are 

accurate to ± 0.5 gm-3. 

Skeletal density was measured using a Micromeritics AccuPyc 1330 helium 

pycnometer.  Samples were prepared by drying at 115 ºC overnight prior to 

measurements being made.   

4.3.5  Contact Angle Measurements 

A Dataphysics Tensiometer with Dataphysics glass tubes with frit bottoms was used 

to measure the contact angle of water, 1.0 M nitric acid and 1.0 M acetic acid on 

each of the three boehmite powders of interest.   
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Figure 4.5: A Dataphysics Tensiometer 

5 frit bottomed glass tubes, with a diameter of 10 mm were filled with the same, 

known mass of powder (± 0.01 g) measured using a Mettler Toledo XP205 balance.  

These were mounted on a device designed to allow all tubes to be tapped at the 

same time on a JBT tapping machine.  The tubes were tapped 5000 times, 

examined and the volume of each tube recorded using the scale on the tubes.   The 

tubes were then tapped a further 5000 times and the volume recorded.  In the case 

of Dequagel HP the tubes were tapped a further 5000 times as adequate 

consistency of packing was not obtained with only two sets of taps.  This is in 

disagreement with the consistent packing observed whilst performing tapped bulk 
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density tests, described previously in Section 4.3.4, this is believed to be due to the 

significant differences in the diameter of the tapping column and the difference in the 

significance edge effects on packing caused by this.   

The packing consistency of each powder was assessed by characterising a full set of 

five tapped tubes with hexane as the test liquid.  This also allowed calculation of a 

value containing the effective pore radius term of the Washburn equation (equation 

2.10 in Section 2.3.5) as hexane is completely wetting (i.e. contact angle can be 

assumed to be 0 º) and the surface tension is known.  By establishing the effective 

pore radius for a particular powder the contact angle with various liquids can be 

measured.   

 

Figure 4.6: Schematic of tensiometer 

Samples for subsequent tests with each of the liquids of interest were prepared 

using the same method of loading and tapping in sets of 5.  The first 2 tubes were 

tested with hexane to ensure consistency of the term incorporating the effective pore 

radius.  The further 3 tubes were tested with the liquid of interest.  Calculations of 

contact angles were performed using the Dataphysics SCAT 32 software. 
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4.3.6  Reduction in Volume of Powders upon Liquid Addition 

The reduction in powder volume upon the addition of liquid has been discussed 

previously in the Section 2.3.2 and is attributed to the capillary forces between the 

liquid and powder.  Attempts have been made to quantify this phenomenon within 

each of the powders of interest, though these have been mainly unsuccessful with 

the equipment available.  A qualitative analysis of the degree to which the 

phenomena occurs has been successfully performed on the powders.  An equal 

volume of each powder was charged to a small glass vial.  An equal volume of water 

was added to each of the vials and visual assessment made of the change in 

volume.   

4.3.7  pH of Formulations in Capillary Saturation State 

The nature of the MAT in the MTR does not allow for pH measurements to be made 

during the experiment.  Each of the formulations at the MAT peak mean torque were 

reproduced using a Fritsch Planetary Micro Mill Pulverisette 7 as described in 

Section 4.2.1 at speed 7 with 3 media present for 15 minutes.  This level of work 

input allowed the formulation to be pushed slightly past the capillary point into a thick 

slurry state allowing a pH measurement to be taken using a Jenway 3051 pH meter.    

4.3.8  Effect of Particle Size Distribution on Torque Rheology Data 

Some additional measurements were required when the Brabender Absorptometer 

was permanently unavailable.  These measurements were performed on a Caleva 

Mark 1 MTR.  This instrument is similar in design principle to the Brabender 

Absorptometer, though the mixing chamber is fitted with a lid causing containment of 

the sample, rather than allowing expansion.  Additions and measurements are made 

in a discrete rather than continuous mode. 19 additions of 1.5 ml of liquid were made 
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with 2 minutes of mixing and 20 seconds of data logging between each addition.  A 

Haake recirculating water bath, Type 001-0505, was used to maintain the mixing 

chamber temperature at 20 ºC for all experiments.  

Comparison between the MAT of an „as received‟ and milled powder sample was 

made in order to investigate the effect of particle size distribution.  A Fritsch 

Planetary Micro Mill Pulverisette 7 as described in Section 4.2.1 at speed 7 with 3 

media present was used to prepare the milled sample by dry milling 6 g in each pot 

for 15 minutes.   

Particle size distribution was measured using a Malvern Mastersizer 2000 with a 

Hydro 2000g wet dispersion unit.  Pump speed was 1250 rpm, stirrer speed 500 rpm 

and no ultrasonics were used in the dispersion unit.  The optical properties in the 

selected operating procedure were; refractive index of the particles of 1.78, 

absorption index of 0.01 and refractive index of the medium of 1.33.  Three 

measurements were performed on each sample with a 5 second delay between 

measurements.   

4.4  Extrusion 

4.4.1  Forming of Extrudates 

In order to limit the number of uncontrolled variables pastes were prepared on a twin 

screw extruder and extruded using a ram extruder, allowing the study to focus on the 

effects of paste formulation rather than extrusion conditions. 

An APV intermeshing co rotating twin screw extruder was used with a barrel 

diameter (d) of 19 mm, and length 40 d.  The distance between the screw centres 

was 15 mm and the liquid feed port was 20.5 d from the die end.   The barrel is 
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constructed of carbide coated stainless steel and the screws of nitron 60 stainless 

steel. The full length of the barrel is chilled using pressure hoses and a combination 

of mains water and chilled water from an Industrial Cooling Systems chiller unit.  The 

length of barrel upstream of the liquid feed point is chilled with mains water and 

downstream of the liquid feed point with water supplied by the chiller unit.  A Watson 

Marlow 505S peristaltic pump was used to supply the liquid feed.  Initially a 

Brabender volumetric powder feeder with a twin screw and stirring agitator was 

used, which was replaced with a gravimetric feeder with the same configuration 

(Brabender Congrav S) to improve accuracy in later experiments.  Table 5.1 shows 

which formulations were produced with which powder feeder.  Both the liquid and 

powder feeders were calibrated with the appropriate materials prior to extrusion of 

each formulation.   

 

Figure 4.7: The twin screw extruder 
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Table 4.4: Feeder type used for each formulation 

Volumetric feeder Gravimetric feeder 

G250 and water G250 and acetic acid 

G250 and 0.36 M nitric acid V250 and water 

G250 and 0.72 M nitric acid V250 and 0.36 M nitric acid 

G250 and 1.0 M nitric acid V250 and 0.72 M nitric acid 

Dequagel HP and 0.72 M nitric acid V250 and acetic acid 

Dequagel HP and 1.0 M nitric acid Dequagel HP and water 

 Dequagel HP and 0.36 M nitric acid 

 Dequagel HP and acetic acid 

 

The screw configuration used can be seen in Figure 4.8. Each square indicates 1 

screw diameter of the screw length (i.e. 19 mm).  „c‟ indicates a conveying section.  

A number denotes a mixing section with paddles staggered at the degrees indicated 

by the number, staggered in the forwards (f) direction. 

 

Figure 4.8: Screw configuration 

The screw speed of the extruder was maintained at 125 rpm, (though this value had 

a tendency to drift between 120 and 130 rpm).  During start up a wet formulation was 

extruded, ensuring low torques were maintained, the solids content of the 

formulation was then gradually increased by reducing the liquid flow rate resulting in 

an increase in torque.  Solids content was increased until a paste with a suitable 
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consistency for extrusion was formed, (this was determined visually with previous 

experience of successful extrusion pastes).    

As discussed in Section 3.4.4.2 the measurement and analysis of the residence time 

distribution of an extruder is non-trivial.  An indication of residence time was made by 

implementing a step change to each process input and observing the time taken for 

the change to take effect at the die end.  The residence time observed in this way at 

100 rpm indicated that a change in any feed rate took full effect at the die end within 

3 minutes.  Based on this, an equilibration time of 5 minutes was allowed between 

changes made and sample collection.   

Pastes were collected from the twin screw extruder in plastic bags and sealed to 

remain air tight until formed into extrudates using a ram extruder later the same day. 

Extrudates were formed by ram extrusion on an Instron 5500r with an 85 hole, 1.2 

mm trilobe die, with a land length of 12.7 mm.  Internal barrel diameter was 35 mm 

and the length 250 mm though only ~100 mm of this length could be utilised on each 

extrusion run due to physical constraints of the equipment. 

The paste was loaded into the barrel either by rolling into balls with a diameter 

slightly less than that of the barrel or by pouring through a funnel, depending on the 

consistency.  Wetter pastes tended to be rolled and drier, granular feeds poured.  

The loaded barrel was then placed on the load frame, consistently at its maximum 

height to ensure repeatability across all samples.  Extrusion was performed at a 

speed of 0.5 mms-1 until the barrel was almost empty.  The force of extrusion was 

recorded when displacement from the initial position was 50 mm (extrusion tended to 

commence at a displacement of around 30 mm).  Where possible three barrels of 
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each formulation were extruded allowing repeat measurements.  The resulting 

extrudates were transferred to a drying tray gently by hand.  The barrel and die were 

not cleaned between extrusions of the same formulation.  When changing between a 

formulation the die was removed, the barrel, plunger and die washed in warm water, 

cooled in cold water and dried before being reassembled for extrusion of the next 

formulation.   

Extrudates were dried and calcined in an oven with extraction capability.  Prior to 

being placed in the oven the extrudates were left to air dry overnight in the lab.  

Drying was performed by ramping temperature to 110 ºC at a rate of 5 ºCmin-1, 

holding at 110 ºC for 2 hours, then ramping at 5 ºCmin-1 to 550 ºC, holding for 2 

hours and reduced back to 20 ºC at a natural cooling rate. 

4.4.2  Characterisation of Extrudates 

Crush strength measurements were performed on an Engineering Systems CT5, 0.5 

tonne testing machine using a 50 kg load cell and 25 mm platens.  Each extrudate 

length was measured using digital callipers. In some cases samples snapped rather 

than crushed, identifiable by a very low force and by visual inspection upon raising 

the platen.  This was most likely due to curvature of the extrudates, this data has not 

been included in the quoted crush strength.  Strength measured in this way is quoted 

as Nmm-1 rather than Nmm-2 as the second length dimension is ambiguous and 

varies for different catalyst support shapes, this unit for strength is standard within 

the catalyst industry. 

Loss on attrition tests were performed using attrition tubes.  Approximately 50 ml of 

extrudates were accurately weighed using a Mettler Toledo PR 5002 Datarange 

balance and placed in a stainless steel attrition tube with an internal diameter of 38 
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mm and length 250 mm.   The tubes were tumbled at 60 rpm for 30 minutes on 

equipment designed in house.  Fines below 1 mm were separated using a mesh 

sieve and weighed accurately to calculate the mass loss during the attrition test.  

Fines below 1 mm were also removed prior to the test commencing to ensure 

accurate measurement of the loss experienced.  In some cases attrition testing was 

not considered practical as the extrudates were clumps rather than individual 

extrudates.    

Nitrogen physisorption measurements were performed on Micromeritics ASAP 2420 

and Micromeritics Tristar 3000 instruments using the ASTM method D 4222-83 using 

around 0.5 g of powder. The sample was initially outgassed using dry nitrogen at 140 

ºC for a minimum of 1 hour before cooling to 77 K using dry nitrogen. The nitrogen 

adsorption desorption isotherm was measured between the relative pressures (P/P0) 

0.0035-0.95 and P0 was measured at every point on the isotherm. The surface area 

was calculated by the Brunauer–Emmett–Teller (BET) method between pressures 

0.05 and 0.2 using 5 data points. The pore size distribution is based on adsorption 

using the the Barrett, Joyner and Halenda (BJH) method, as desorption is 

complicated by network and percolation effects. The pore volume is taken at the final 

point on the isotherm which is typically 0.995 P/P0. The average pore diameter is 

calculated from the BET area using the equation 4V/A where V is the pore volume 

and A is the BET area.   

4.4.3  Particle Size Distribution Profile of Twin Screw Extruder 

An intermeshing co-rotating twin screw extruder with chiller unit as described in 

Section 4.4.1 was used.  The screw configuration was designed and altered to 

ascertain the effect of each type of configuration on the particle size distribution.  
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Extrusion was performed with the boehmite G250 and water.  Configuration 6 was 

also profiled using the boehmite G250 and 1.0 M nitric acid. 

Six screw configurations were designed, as seen in Figure 4.9.  Each square 

indicates 1 screw diameter (19 mm) of the screw length, „c‟ indicates a conveying 

section.  A number indicates the degrees at which the paddles in a mixing section 

are staggered, either forwards or backwards, denoted by f or b respectively.  Grey 

shading indicates a sample collection at the end of the screw element shaded.  

Particle size measurements were also made at the liquid feed point for 

configurations 1-5.   

 

Figure 4.9: Screw configurations for particle size distribution profile 

The combination of screw configurations 1 and 2 allowed assessment of the effect of 

each type of mixing section prior to and following each other type of mixing section, 

this would allow assessment of whether a less aggressive mixing element would 

have an effect at all if following a more aggressive mixing element.  Screw 

configurations 3 and 4 only contain conveying elements and mixing sections with a 



                                     - 136 - 

 

90° stagger.   Comparison of the profiles of these two configurations would yield 

information about the comparative effectiveness of a number of short mixing section 

compared with one long mixing section.  Configuration 5 is theoretically the most 

aggressive mixing configuration, containing a number of 60° backwards mixing 

elements.  Screw configuration 6 is of historical interest within the company.    

The operating conditions of the extruder during particle size distribution profile 

experiments is given in Table 4.5.   

Table 4.5: Extruder operating conditions during particle size distribution profile experiments 

Configuration 

Number 
Throughput Solids Content Screw Speed 

 kghr-1 wt % Rpm 

1, 2, 3 4.49 51.5 153 

4 4.89 53.4 188 

5 4.79 54.5 184 

6 4.89 53.4 160 

 

Particle size distributions were measured using a Malvern Mastersizer 2000 with a 

Hydro 2000g wet dispersion unit.  Pump speed 1250 rpm, stirrer speed 500 rpm and 

no ultrasonics were used in the dispersion unit.  The optical properties in the 

selected operating procedure were; refractive index of the particles of 1.78, 

absorption index of 0.01 and refractive index of the medium of 1.33.  Three 
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measurements were performed on each sample with a 5 second delay between 

measurements.  Pastes from the die end were collected and air dried overnight in a 

fume cupboard and characterised by nitrogen physisorption on a Micromeretics 

ASAP 2420 and Micromeretics Tristar 3000 as described previously in Section 4.4.3. 



                                     - 138 - 

 

Chapter 5 Material Properties 

5.1  Particle Size and Shape  

Significant discrepancies are observed in the size distributions reported by each of 

the analytical techniques employed.   

The differences observed for the boehmites G250 and V250 (both spray dried 

powders) are similar, the results vary with the dispersion technique employed; when 

measured using wet dispersion a single peak at ~100 μm is observed, where as 

results obtained for both powders using both dry dispersion techniques indicate a 

particle size an order of magnitude smaller than this.  This could be due to sample 

presentation by wet dispersion failing to achieve appropriate dispersion, or causing 

agglomeration of primary particles.  Alternatively, dry dispersion may be causing the 

breakdown of particles.   
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Figure 5.1: PSD of G250 using wet dispersion and Malvern Mastersizer 
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Figure 5.2: PSD of G250 using dry dispersion and Malvern Mastersizer 
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Figure 5.3: PSD of V250 using wet dispersion and Malvern Mastersizer 
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Figure 5.4: PSD of V250 using dry dispersion and Malvern Mastersizer 
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The discrepancies observed with the boehmite Dequagel HP appear to be linked to 

the measurement method rather than the dispersion technique.  Results obtained on 

the Malvern using either dispersion technique display similar PSD‟s, a bimodal 

distribution with peaks in the same positions (at 3 and 300 μm) but differing in 

magnitudes, dry dispersion indicates a larger volume of the smaller particles is 

present.  However, in the Sympatec only the larger peak is observed, with no 

evidence of particles below 10 μm, this is most likely due to a physical limitation of 

the technique, as the lens in the equipment is unable to observe particles below 5 

μm.   

  Particle Size Distribution  
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Figure 5.5: PSD of Dequagel HP using wet and dry dispersion and Malvern Mastersizer 

Particle shape can be described by sphericity, circularity, roundness, or aspect ratio.  

Descriptions of these terms can be found in Bowman et al. (2000).  Particle shape 

here has been described in terms of the aspect ratio, which is the ratio of the length 

of a particle to the width.  A sphere or a cube would exhibit an aspect ratio of 1, the 

measurement does not take account of the shape of the surface, simply the 

characteristic lengths between surfaces.  The results displayed in Figure 6.8 show 

each of the powders have similar aspect ratios, between 0.72 and 0.82 across the 



                                     - 141 - 

 

size range of 20 – 200 μm.  Limitations of the technique render measurements below 

20 μm too unreliable to be considered for analysis. The boehmites G250 and V250 

exhibit an increase in aspect ratio as the particle size increases within this size 

range, with G250 consistently displaying a higher aspect ratio.  The aspect ratio of 

Dequagel HP reduces as size increases within this range.  A wider range of aspect 

ratios is present in particles larger than 200 μm in all boehmite powders.     

 

Figure 5.6: Aspect ratio of boehmite powders 

5.2  Crystallite Size 

Crystallite sizes of each of the boehmite powders, as measured by X-ray diffraction, 

are shown in Table 5.1.  Note that all of the crystallite size, which is the size of the 

primary units forming the particle, are around 5 nm, which is discussed by Okada et 

al. (2002) as providing the highest specific surface area, therefore most suitable for 

catalytic applications.  The effect of crystallite size on various properties of boehmite 
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has been discussed in Section 3.1, however, the size variation of less than 1 nm 

between these three powders is not considered large enough to have significant 

effects, when considered that the ranges investigated and reported in the literature 

discussed in Section 3.1 were generally larger than 20 nm.     

Table 5.1: Crystallite size of boehmite powders measured by X-ray diffraction 

 G250 V250 Dequagel HP 

Crystallite size 

(nm) 
4.7 5.1 5.6 

 

X-ray diffraction inherently measures the shortest dimension of a crystal, given that 

boehmite is known to contain needle-shaped crystallites (Wefers and Misra, 1987).  

The use of transmission electron microscopy has not been suitable for measuring 

crystallite size of these materials as the vacuum conditions required for the sample 

presentation results in a phase transformation of boehmite to gamma alumina.  

5.3  Dissolution Rate of Boehmite in Nitric Acid 

The dissolution of boehmite results in the release of OH- groups into solution, 

increasing the pH.  Therefore the rate of acid addition required to maintain a 

constant pH indicates the rate at which boehmite powders dissolve at a given pH.  

The conductivity of the solutions increases steadily with the addition of acid, 

indicating the presence of more ions, as boehmite dissolves and releases Al3+ ions 

and OH- ions,  although the OH- ions are neutralised by the addition of H+ ions the 

Al3+ ions are still present and contributing to conductivity.    
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Figure 5.7 shows the volume of acid required to maintain a solution containing 10 

wt% boehmite at pH 2.  Initially the powders G250 and V250 show very similar 

behaviour, though beyond ~180 minutes V250 continues to dissolve at a faster rate 

than G250.  The boehmite Dequagel HP dissolves initially at a faster rate than the 

other two boehmites and requires more acid to maintain pH 2 over the whole time 

period.  The gradient of the curve suggests that further acid dissolution would have 

occurred had the experiment continued.  This is in contrast to the results obtained for 

dissolution at pH 4, seen in Figure 5.8.  The final gradient indicates that no further 

dissolution of boehmite is occurring.  The initial rate of dissolution however is faster 

at pH 4 than at pH 2, which may be due to a mass transfer limitation at pH 2, this is 

supported by the increase in viscosity observed at pH 2, presented in Chapter 6. 
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Figure 5.7 Dissolution rate of boehmite in nitric acid at pH 2 
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Figure 5.8: Dissolution rate of boehmite in nitric acid at pH 4 

5.4  Acid Dispersibility 

A well dispersed powder will contain a large portion of small particles which will 

remain stable in the supernatant during centrifuging.  Figures 5.9 and 5.10 display 

the dispersibility of each boehmite powder, described by the percentage of the 

original mass of material present in the supernatant after centrifuging.  These figures 

also contain data on the dispersibility implied by the shift in the solids content at the 

capillary point with pH exhibited on the MTR, discussed in Chapter 7.  This value is 

quoted as the difference in the solids content at the capillary point measured on the 

MTR using water and 1.0 M acid, a large shift in this value implies significant acid 

dispersion.  This simplified calculation assumes a linear relationship between pH and 

solids content at the MAT peak and ignores the variation in pH‟s between the 
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powders. 
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Figure 5.9: Dispersibility of boehmite with nitric acid  
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Figure 5.10: Dispersiblity of boehmite with acetic acid 

According to the dispersibility test performed the boehmite Dequagel HP is the most 

readily dispersed with nitric acid and the boehmite G250 has a comparable degree of 
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dispersibility.  The boehmite V250 is much less dispersible with nitric acid.  Each of 

the boehmites are significantly less dispersible in acetic acid than nitric acid.  The 

boehmite G250 is the most dispersible in acetic acid, with Dequagel HP and V250 

displaying comparably low dispersiblity.   

The dispersibility implied by the MTR results show that the boehmite G250 is the 

most readily dispersed by nitric acid, followed by the boehmite Dequagel HP, this is 

in contrast with the results of the dispersibility test.  The MTR data implies the 

boehmite V250 to be the least dispersible in nitric acid, which is in agreement with 

the results of the dispersibility test.   

The dispersibility of each powder in acetic acid measured by the dispersibility test 

and implied from MTR results show good agreement, with the boehmite G250 being 

the most dispersible, followed by Dequagel HP and V250 being the least dispersible.   

5.5  Adsorption of Vapour by Boehmite Powders 

Table 5.2 shows the rate of vapour adsorption by each boehmite powder.  Boehmite 

G250 is capable of adsorbing the largest percentage of its own dry mass in water 

vapour and adsorption occurs at the fastest rate.  The V250 powder has the lowest 

adsorption capacity but adsorbs at a high rate and Dequagel HP adsorbs at a slow 

rate compared to the other two powders but adsorbs more than V250.  These results 

suggest that there are more open pores and less resistance to mass transfer in the 

G250 powder than the other two powders.   
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Table 5.2: Adsorption of vapour by boehmite powders 

 G250 V250 Dequagel HP 

mass gain (as % 

of dry mass) 
42.2 37.2 40.5 

Rate of mass 

uptake (gmin-1) 
6.5x10-3 5.0x10-3 3.7x10-3 
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5.6  Conclusions 

The particle size distribution measured for each powder varies with measurement 

technique and dispersion method.  Boehmites G250 and V250 exhibit particle size 

distribution differences under different sample presentation methods and the 

boehmite Dequagel HP shows variations with the measurement technique.  The 

sphericity of each of the powders, described by aspect ratio is similar, with aspect 

ratios between 0.72 and 0.82 for particles between 20 and 200 μm.     

The crystallite size of each of the powders, measured by X ray diffraction vary by 

only 1 nm between all powders,  This is insignificant compared to the ranges of 

crystallite sizes studied in the literature discussed in Section 3.1.   

The boehmite Dequagel HP displayed a faster initial rate of dissolution in nitric acid 

at pH 2 than the boehmite powders G250 and V250, which displayed similar initial 

dissolution rates.  All three boehmite powders display a very similar initial dissolution 

rate in nitric acid at pH 4.  The dissolution rate at pH 4 is faster than at pH 2, which is 

thought to be due to a mass transfer limitation effect at pH 2, supported by the 

rheological changes observed and discussed previously in Chapter 6.   

All boehmite powders have been shown to be more readily dispersed by nitric acid 

than acetic acid.  The boehmite powder V250 is the least dispersible in both acids.  

The correlation between the dispersibility measured by the dispersibility test and the 

dispersibility implied by the magnitude of shift in the MTR capillary point strongly 

suggests that chemical dispersion is responsible for the observed shift.   
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Chapter 6: Identifying and Examining the Gelatinous 

Product of Peptisation  

6.1  Rheological Characterisation  

The Rheological Advantage Data Analysis software has been used to fit the 

experimental data obtained from samples milled for 1 minute to the Herschel Bulkley 

(HB) model, (equation 6.1).   

nk  0 ………………………………………………………….………...(equation 6.1) 

where  is the measured stress, 0 is the yield stress, k is a constant relating to the 

viscosity,   is the shear rate and n is the rate index.   

The model has been fitted to the data obtained from the second increasing ramp in 

shear rate of each experimental set as calculation of a yield stress is more accurate 

from initiation rather than cessation of flow and the 1st increasing shear rate ramp 

tends to exhibit atypical behaviour due to material memory. Table 6.1 shows the 

standard error calculated in fitting the model, a reasonable fit is considered to be a 

standard error less than 20 (TA Instruments, 2010).  Standard error, expressed as a 

percentage of the data range, is calculated by the software according to equation 

6.2.   

 

 

100
2

2






range

n

xx cm

…………………….……………………………….…(equation 6.2) 
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where, mx  is the measured value, cx  is the calculated value and n  is the number of 

data points.   

Many of the samples prepared exhibit a good fit to the HB model, indicated by the 

green data in Table 6.1, those not displaying a good fit to the model are indicated in 

red italic.  The sample prepared with the boehmite V250 and water shows a 

particularly bad fit to the HB model, this sample however shows a reasonable fit to 

the Cross model, described in Section 2.2.2, with a standard error of 17.0.  Similarly, 

the most acidic samples prepared with the boehmite V250 and nitric acid display 

poor fits to the HB model but good fits to the Cross model.  Samples containing the 

boehmites G250 and Dequagel HP also exhibit a good fit to the HB model at lower 

acid contents (including samples prepared with water) and poor fits at the highest 

acid contents where the Cross model is a better description of the data.  The 

standard errors based on fitting data to the Cross model can be seen in Table 6.5.   

With a few exceptions, the HB model fits the data produced by the samples prepared 

with acetic acid.  The sample prepared with the boehmite G250 showing a poor fit to 

the HB model also does not fit the Cross model.  Examination of the data suggested 

that the poor fit may be due to anomalous behaviour at very low shear rates, 

however, altering the limits of the model fit to exclude data below 0.1 s-1 did not 

improve the accuracy of the fit.  Similarly the samples prepared with the boehmite 

Dequagel HP and acetic acid that do not fit the HB model do not fit the Cross model, 

displaying standard errors of >50 in each case.  No other rheological model has 

been found to fit these data sets.   
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The trend of poor fits of the HB model to the samples indicates the poor applicability 

of the model to chemically altered, or gelled, systems.  The samples which do fit the 

Hershel Bulkley model can all be considered as classical colloidal suspensions.  

They all exhibit very low yield stresses (which can be approximated to 0 Pa in the 

majority of cases) and as such these materials could be adequately modelled by the 

power law model as described in Section 2.2.2.  The apparent small yield stresses 

could be a due to the analysis being performed on the second shear rate ramp, the 

structure will have been broken down during the first shear rate ramp and may not 

have had sufficient time to rebuild prior to commencing the second ramp.  Analysis 

has not been performed on the first shear rate ramp as this data consistently 

displays atypical behaviour.   Some samples display an apparent negative yield 

stress, a physical impossibility; however these occur in samples which exhibit a poor 

fit to the model and as such can be ignored.   

The viscosity term of the HB model describes the magnitude of the plastic viscosity, 

or the consistency.  All samples which fit the HB model have viscosity constant 

values which approximate to 0, as do those which do not fit the model prepared with 

water or acetic acid. 

The rate index term in the HB model describes deviation from Newtonian behaviour 

of a material.  When the rate index is 1 the behaviour beyond the yield stress is 

Newtonian, and the material is effectively behaving according to the Bingham model.  

A value of < 1 describes a shear thinning material and n > 1 a shear thickening 

material.  As such the samples are expected to have a rate index < 1, however, this 

is not the case.  The majority of samples display a rate indec of 1, indicating 

Newtonian behaviour.    
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Table 6.1: Standard error in data fitting to Herschel Bulkley model  

molar ratio 
of acid to 
boehmie nitric acid acetic acid 

  G250 V250 Dequagel HP G250 V250 Dequagel HP 

water 7 100 6 7 100 6 

0.02 4 6 5 8 5 5 

0.036 6           

0.048 9 4 10 50 5 20 

0.06 2 4 3 6 5 30 

0.072 4           

0.084 50 50 6 5 5 90 

0.096 60           

0.1     100 7   5 

0.13   200   10 5 6 

0.25       10   7 

 

Table 6.2: Yield stress (Pa) according to Herschel Bulkley model 

molar ratio 
of acid to 
boehmie nitric acid acetic acid 

  G250 V250 Dequagel HP G250 V250 Dequagel HP 

water 0 100 0 0 100 0 

0.02 0 0 0 0 0 0 

0.036 0           

0.048 0 0 0 2 0 0 

0.06 0 0 0 0 0 1 

0.072 0           

0.084 -900 -40,000 0 0 0 2 

0.096 400           

0.1     800,000 0   0 

0.13   -2,000   0 0 0 

0.25       0   0 
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 Table 6.3: Viscosity constant, k, according to Herschel Bulkley model  

molar ratio 
of acid to 
boehmie nitric acid acetic acid 

  G250 V250 Dequagel HP G250 V250 Dequagel HP 

water 0 0 0 0 0 0 

0.02 0 0 0 0 0 0 

0.036 0           

0.048 0 0 0 0 0 0 

0.06 0 0 0 0 0 1 

0.072 0           

0.084 900 40,000 0 0 0 0 

0.096 100           

0.1     800,000 0   0 

0.13   3,000   0 0 0 

0.25       0   0 

 

Table 6.4: Rate index according to Herschel Bulkley model 

molar ratio 
of acid to 
boehmie nitric acid acetic acid 

  G250 V250 Dequagel HP G250 V250 Dequagel HP 

water 1 1 1 1 1 1 

0.02 1 1 1 1 1 1 

0.036 2           

0.048 1 1 1 1 1 1 

0.06 1 1 1 1 1 1 

0.072 1           

0.084 0 0 1 1 1 1 

0.096 -1000           

0.1     0 1   1 

0.13   0   1 1 1 

0.25       1   1 
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Table 6.5: Standard error in data fitting to Cross model 

molar ratio 
of acid to 
boehmie nitric acid acetic acid 

  G250 V250 Dequagel HP G250 V250 Dequagel HP 

water ~ 17 ~ ~ 17 ~ 

0.02 ~ ~ ~ ~ ~ ~ 

0.036 ~           

0.048 ~ ~ ~ 78 ~ >50 

0.06 ~ ~ ~ ~ ~ >50 

0.072 ~           

0.084 15 ~ ~ ~ ~ >50 

0.096 2           

0.1     9 ~   ~ 

0.13   17   ~ ~ ~ 

0.25       ~   ~ 

 

 

 

Figure 6.1:  Example of a flow curve showing a good fit to the Hershel Bulkley model.  Sample 

prepared with boehmite G250 and water 
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Figure 6.2: Example of a flow curve showing a bad fit to the Herschel Bulkley model.  Sample 

prepared with boehmite G250 and 0.084 moles of acid per mole of boehmite 

Figure 6.1 and 6.2 show typical flow curves produced by samples which show a 

good fit and a bad fit to the Herschel Bulkley model respectively.   In Figure 6.1 there 

is consistency between the increasing and decreasing shear rate ramps at low shear 

rates, with the exception of the first up ramp which displays a slightly lower viscosity 

at low shear rates.  It is normal for the initial up ramp to display slightly anomalous 

behaviour.  At high shear rates there is evidence of a degree of slip occurring, 

suggested by the hysteresis between the up and down ramps.   The shape of the 

curve indicates that the slip does not occur as the shear rate is increased; these 

curves consistently show a progression towards Newtonian behaviour at high shear 

rates.  As the shear is reduced a sudden reduction is observed in the viscosity, 

implying the material has slipped against the geometry or plate.  The red curves 

showing the increasing shear rate ramp in Figure 6.2 show shear thinning behaviour 

at high shear rates and a consistent viscosity at lower shear rates.  This sample 
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displays a significant and consistent hysteresis between the increasing and 

decreasing shear rate ramps.  

Due to the issues and inconsistencies of the application of rheological models to the 

range of data obtained an alternative method quantifying yield stress and apparent 

viscosity has been used to allow analysis of the trends in behaviour.  As discussed 

previously in Sections 2.2.3 and 3.2.1 there are issues surrounding the accurate 

measurement of a yield stress value, the „yield stress‟ has been quoted as the stress 

at which the shear rate is 0.1 s-1 indicating a certain amount of movement is 

occurring within the sample.  The viscosity discussed is the apparent viscosity at 

1000 s-1, quoted as the average viscosity from the shear rate hold performed at 1000 

s-1 for 3 or 5 minutes.  It is possible that measuring the apparent viscosity at such a 

high shear rate may have broken down any existing material structure, however, the 

use of a high shear rate can minimize the effects of wall slip (Ekere et al., 2001).   
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Figure 6.3: G250 and nitric acid, 1 minute mix 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9

pH

A
p

p
a

re
n

t 
v

is
c
o

s
it

y
 /

 P
a

.s

0

100

200

300

400

500

600

Y
ie

ld
 s

tr
e
s

s
 /

 P
a

apparent viscosity

yield stress

Figure 6.4: V250 and nitric acid, 1 minute mix 
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Figure 6.5: Dequagel HP and nitric acid, 1 minute mix 

The variation of apparent viscosity at 1000 s-1 with nitric acid content is similar for all 

three boehmite powders studied.  In water the pH is ~8, a small addition of acid (0.02 

moles of acid per mole of boehmite) results in a significant decrease in the pH with 

minimal alteration to the rheological properties, particularly for samples prepared 

with boehmite G250 and Dequagel HP, though boehmite V250 exhibits a most 

significant alteration of rheological properties. This is due to the dispersive effect of 

acid on boehmite which is examined and discussed previously in Chapter 5.  Further 

addition of acid, reducing pH below 2, results in an increase in both apparent 

viscosity and yield stress of the materials.  Both the increase in yield stress and 

apparent viscosity at 1000 s-1 with nitric acid content indicate the existence of a 

microstructure which is present at both high and low shear rates in strongly acidic 

conditions.  Boehmites V250 and Dequagel HP both display more of an increase in 
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apparent viscosity at 1000 s-1 than in yield stress, where as the yield stress of the 

acidic G250 sample increases more than the apparent viscosity at 1000 s-1.  
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Figure 6.6: G250 and acetic acid, 1 minute mix 
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Figure 6.7: V250 and acetic acid, 1 minute mix 
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Figure 6.8: Dequagel HP and acetic acid, 1 minute mix 
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The results observed with acetic acid differ from those observed with nitric acid.  

Initial addition of 0.02 moles of acid per mole of boehmite results in a significant 

reduction in pH, however, with further additions of up to 0.13 moles of boehmite the 

pH reduces in only very small increments due to the weak nature of acetic acid.  No 

increase in apparent viscosity or yield stress is observed at the lowest pHs, as a low 

enough pH has not been reached for any transitional chemistry to occur.  It is not 

certain whether the change in rheological properties observed with nitric acid would 

be observed with acetic acid if the pH of the slurry could be reduced sufficiently.  

6.2   Surface Chemistry Effects 

-20

-10

0

10

20

30

40

0 2 4 6 8 10 12 14

pH

Z
e

ta
 P

o
te

n
ti

a
l 
/ 

m
V

0.0

0.2

0.4

0.6

0.8

1.0

A
p

p
a

re
n

t 
v

is
c
o

s
it

y
 a

t 
1

0
0
0

 s
-1

 /
 P

a
s

Zeta Potential (mV)

Viscosity (Pa.s)

Figure 6.9: Zeta potential and rheology of boehmite G250 (milled 1 minute) 

It is evident from the data presented in Figure 6.9 that the expected correlation 

between zeta potential and apparent viscosity at 1000 s-1 is not observed, as the 

apparent viscosity increases under conditions at which the surface chemistry implies 
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a more stable suspension.  This data indicates that observed rheological changes of 

boehmite slurries at acidic pHs are not a result of surface charge effects.   

The boehmites have produced zeta potential curves with an interesting shape shown 

in Figure 6.10.  Only one data set has been collected for each powder at basic pHs 

using sodium hydroxide (shown with block symbols), where as titrations were 

performed with both nitric and acetic acid to acidic pHs (shown with open and block 

symbols respectively).  Each titration was performed starting with the boehmite 

dispersed in demineralised water and titrating in one direction, slight variations in the 

pH of the demineralised water has resulted in a gap in the data at around pH 6-7.  At 

basic pHs the materials display typical behaviour, and all exhibit similar isoelectric 

points, shown in Table 6.6.  The pH of each of the boehmites in water is similar 

(between 6.5 and 7.5), though their zeta potential at this condition varies, with G250 

and V250 both exhibiting a low zeta potential indicating an unstable suspension 

whilst Dequagel HP has a high zeta potential.  As the pH reduces from 7 to 4 (using 

either nitric or acetic acid) the behaviour becomes atypical as zeta potential reduces.   

In all cases the zeta potential reaches a minimum at ~ pH 4 and rises to a zeta 

potential indicating a stable suspension below ~ pH 2.   

Table 6.6: Isoelectric points of boehmites 

Powder G250 V250 Dequagel HP 

pH of i.e.p 9.5 10.0 9.7 
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Figure 6.10: Zeta potential of boehmites  

The anomalous behaviour of the zeta potential between pH 3 and 7 can be 

rationalised by the occurrence of dissolution - adsorption chemistry such as that 

expected in the gelation of boehmite by acid.  The proposed mechanism is that at 

weakly acidic pHs the surface dissolves into the solution, reducing the positive 

charge on the surface.  As the concentration of ions in solution increases they form 

polymeric cationic species which can readsorb onto the surface resulting in an 

increase in the positive charge at the surface.  Compression of the double layer in 

highly concentrated ionic solutions will exacerbate the extent of this effect as the 

apparent charge on the surface appears reduced under these conditions.  The 

conductivity of each solution increases sharply below pH 2 when the titration was 

performed with nitric acid and below pH 4 when the titration was performed with 
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acetic acid.  The increase in conductivity indicates the presence of free ions in the 

solution.   

6.3  Particle Packing Effects 

There is no significant change in mean particle size or particle size distribution with 

pH, seen in Figures 6.14 - 6.16.    A direct examination of the relationship between 

rheological parameters and particle size for each of the 6 systems under 

investigation has revealed that there is no strong correlation between these 

parameters and therefore particle size is not responsible for the observed rheological 

changes in acidic samples. 

6.4  Rate of pH Change  

The initial rate of reaction between boehmite and nitric acid has been calculated by 

considering the change in pH between samples milled for 1 and 4 minutes.  In all 

cases it can be considered that boehmite is in excess.  The rates calculated by this 

method have low accuracy due to the time taken for measurements to be made 

(loading and unloading sample from the mill) combined with the inherent issues 

associated with measuring the pH of a concentrated suspension.   

Results displayed in Figure 6.11 confirm that a faster rate of consumption of nitric 

acid occurs at higher initial acid contents.  All 3 boehmite powders display similar 

rates of acid consumption under these preparation conditions up to an initial acid 

content of ~ 0.08 moles of acid per mole of boehmite at which point the boehmite 

G250 exhibits a significant increase in the rate of consumption.  Note that this 

coincides with the initial acid content at which significant variation in the rheological 

behaviour of concentrated suspensions prepared with this boehmite are observed.  
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The boehmite V250 also exhibits a significant rate increase at an initial acid content 

of 0.13 moles of acid per mole of boehmite, though the boehmite Dequagel HP 

consumes at a consistently low rate.   

The rate of consumption of acetic acid is extremely slow when compared with those 

of nitric acid, though there is a clear increase in rate with initial acid contents.  In this 

case all powders display very similar reaction rates.   

 

Figure 6.11: Rate of consumption of nitric acid by boehmite  
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Figure 6.12: Rate of consumption of acetic acid by boehmite  

The pH data collected for the boehmite G250 prepared with nitric acid has been 

fitted to the first order kinetic model (equation 6.3). It was found that the model fits 

well for samples with an initial acid content of above 0.06 moles of acid per mole of 

boehmite.   

][1

 Hkrate …………………………………………………………..………(equation 6.3) 

where 1k is the rate constant and ][ H is the concentration of hydrogen ions.  A 

second order model fit (equation 6.4) was also attempted, though with the exception 

of one formulation the first order model was found to be a better fit, this data is 

shown in Figure 6.13 and Table 6.7.   

2

2 ][  Hkrate ………………………..………………………………………(equation 6.4) 
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where 2k is the rate constant and ][ H is the concentration of hydrogen ions.  This 

indicates that the rate of consumption of acid is first order with respect to the 

concentration of acid present, at least in cases where initial acid content is at least 

0.06 moles of acid per mole of boehmite.  In formulations containing less acid than 

this an additional phenomena such as mass transfer limitations may be contributing 

to the observed rate of consumption.  The observed differences in rates may simply 

be due to whether or not the acid is present in excess.   

Similar model fitting was not feasible with the other powders and acetic acid as pH 

measurements at 1, 4, and 30 minutes result in a consistently high value of r2, simply 

due to the clustered nature of the data.  

 

Figure 6.13: Fitting pH data for G250 and nitric acid to first order kinetic model 

 

 

 



                                     - 168 - 

 

 

Table 6.7: Fitting pH data for G250 and nitric acid to first and second order kinetic models  

Molar ratio of acid to 

boehmite 

r2 first order kinetics r2 second order kinetics 

0.036 0.53 0.57 

0.048 0.45 0.60 
0.060 0.69 0.97 

0.072 0.99 0.82 

0.084 0.97 0.95 

0.096 0.94 0.82 

 

6.5  Effect of Increasing Milling Time 

The most comprehensive study of the effect of mixing time on rheological properties 

has been performed on the boehmite G250 with nitric acid, where milling durations of 

1, 4, 15, 30, 45, 60 and 90 minutes have been investigated.  The results of this study 

can be seen in Figure 6.14.   
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Figure 6.14: Relationship between pH and apparent viscosity for G250 with nitric acid samples 

at various milling times  

The effect of milling time on the rheological properties of slurries is dependent on the 

pH of the slurry.   Samples at pH 8 - 9 prepared with water and samples below pH 3 

exhibit an increase in apparent viscosity at 1000 s-1 as milling time is increased.  

Within the pH range of 3 – 5, where apparent viscosity at 1000 s-1 is very low, the 

effect of milling time on the apparent viscosity at 1000 s-1 varies.  
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Figure 6.15: Relationship between apparent viscsoity and milling time for G250 samples at  

variety of pH’s 

The volumetric moment mean, d(4,3), has been quoted in Figure 6.16 as a 

description of the particle size of the samples as the measurement technique used is 

volumetric and particle volume is significant to the rheological properties.  The use of 

the surface area moment mean, d(3,2), seen in Figure 6.17, can also be considered 

valid and produces similar conclusions, though the particle size increase at low pH 

and long milling time is not as evident from this data.  Figure 6.18 presents a better 

visualisation of the increase in particle size at low pH and long milling times, these 

apparent increases in particle size are thought to be due to the presence of large 

gelatinous species which remain intact during the measurement technique.   
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Figure 6.16: Relationship between particle size and pH for G250 samples at various milling 

times 

 

Figure 6.17: Relationship between particle size and pH for G250 samples at various milling 

times 
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Figure 6.18: Relationship between particle size and milling time for G250 samples at various 

pH’s  

The increase in apparent viscosity at 1000 s-1 in samples prepared with water as 

milling time is increased is observed with each of the boehmite powders being 

investigated and is accompanied by an increase in pH which indicates dissolution of 

the boehmite under these conditions (boehmite releases OH- groups when it 

dissolves).  Dissolution will alter the rheology of the liquid phase and there is also a 

considerable reduction in the mean particle size and the width of the particle size 

distributions, shown in Table 6.8, both of which will contribute significantly to the 

observed increase in apparent viscosity.   
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Table 6.8: Effect of milling time on apparent viscosity and size distribution of samples 

prepared with water 

 G250 V250 Dequagel HP 

Milling 

Time 

d 

(4,3) 
Width 

Apparent 

Viscosity 

at 1000 s-

1 

d 

(4,3) 
Width 

Apparent 

Viscosity 

at 1000 s-

1 

d 

(4,3) 
Width 

Mins m  m  Pa.s m  m  Pa.s m  m  

1 37.6 80.0 0.24 21.1 53.8 0.029 38.6 123 

4 20.3 45.4 0.30 13.8 30.4 0.036 15.9 59.6 

15 11.3 25.4       

30 10.3 25.4 0.68 8.90 16.9 0.072 3.40 5.30 

45 10.6 25.6       

60 9.8 26.8       

90 12.5 29.4       

 

The increase in apparent viscosity at 1000 s-1 with milling time at pH below 3 is 

evident in Figure 6.15; also, samples prepared with the same initial acid content 

have a higher pH after an extended period of milling implying the consumption of 

acid.   The particle size reduces progressively with milling time for all acid 

concentrations in which the initial pH (pH of the sample milled for 1 minute) is greater 

than 1, however, samples in which the initial pH was less than 1 (increasing to ~ 2 

after 90 minutes of milling) showed evidence of very large particles (d [90] ~ 170 

m ) being present after 30 minutes of milling and increasing in size up to 90 minutes 

of milling.  This combined with the consumption of acid strongly supports the theory 

of the formation of a polymeric species by acidic dissolution and the resulting 

species being responsible for the observed thickening at acidic pHs.  The large 
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particles observed may be the polymeric species or agglomerates of smaller 

particles formed due to agglomeration aided by the gelatinous phase.   

The ambiguity of trends within the pH region of 3 - 5 suggests that there are a 

number of competing phenomena occurring and that no single effect is dominant in 

this range.  A combination of mean particle size and size distribution alteration, 

chemical formation and mechanical breakdown of a polymeric gelatinous phase, 

change in binder viscosity and solids content due to the dissolution of boehmite and 

alteration in particle shape and deformability could be responsible for the observed 

results.  Mean particle size and width of distribution both decrease steadily with 

milling time within this pH range.  There is no direct measurement of the dissolution 

of boehmite or of chemical formation or mechanical breakdown of the gelatinous 

phase, therefore we cannot be sure to what extent the occurrence of these 

phenomena is relevant under these conditions.  The sphericity of each of the 

boehmite powders „as received‟ has been measured and is displayed and discussed 

in Chapter 5 however, the process of milling will alter the sphericity and 

measurements of milled samples have not been made preventing any further 

detailed discussion regarding this relationship.   

Boehmites V250 and Dequagel HP exhibit very similar trends in rheological 

properties to G250 in suspensions prepared with nitric acid when milled for only 1 

minute, a similarity which extends to the behaviour observed when milled for longer 

durations with a few exceptions.   
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Figure 6.19: Relationship between apparent viscosity and pH for samples prepared with V250 

and acetic acid at various milling times 

Samples prepared with the boehmite V250 and acetic acid exhibit a reduction in 

apparent viscosity at 1000 s-1 with an increase in milling time shown in Figure 6.19.  

The same trend is observed with acetic acid in samples prepared with the boehmite 

Dequagel HP and to a lesser extent with the boehmite G250.  This is believed to be 

due to the dispersive effect of acetic acid in these conditions.  The mean particle size 

and particle size distribution width both decrease with time as expected, which 

should result in an increase in viscosity, the resulting reduction in viscosity indicates 

that the dispersive effects are dominant.   

The data obtained for samples prepared by milling for 30 minutes has been fitted to 

the HB model in the same way as the data obtained from the samples prepared by 

milling for 1 minute described in Section 4.2.1.  It can be seen from the data 

displayed in Table 6.9 that the model fails to fit all samples prepared with water and 
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samples with high nitric acid content for each of the powders.  The model 

parameters can be seen in Tables 6.10 – 6.12.  The model fails in each case at a 

lower initial molar ratio of acid to boehmite than the samples prepared by milling for 1 

minute, which suggests that the additional mechanical energy input has assisted the 

phenomenon which causes the materials to show a poor fit to the HB model for 

concentrated suspensions.  All of the samples prepared with acetic acid display good 

fits to the HB model.  As was the case with the previous data fitting, the model 

appears to fit samples which exhibit very low yield stresses, approximating to zero in 

the majority of cases, seen in Table 6.10.  Samples which are not adequately 

described by the HB model generally display an improved fit to the Cross model, as 

was the case with the 1 minute samples.   

 Table 6.9: Standard error of 30 minute samples according to Herschel Bulkley model  

molar ratio 
of acid to 
boehmie nitric acid acetic acid 

  G250 V250 Dequagel HP G250 V250 Dequagel HP 

water 20 60 60 20 60 60 

0.02   4 6 8 5 8 

0.036 9           

0.048 7 4 10 6 3 8 

0.06 6 70 10 10 6 7 

0.072 30           

0.084 70 50 20 9 7 6 

0.096 20           

0.1     100 9   7 

0.13   60   8 5 7 

0.25       6   6 
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Table 6.10: Yield stress (Pa) of 30 minute samples according to Herschel Bulkley model  

molar ratio 
of acid to 
boehmie nitric acid acetic acid 

  G250 V250 Dequagel HP G250 V250 Dequagel HP 

water 7 50 2 7 50 2 

0.02   0 0 0 0 0 

0.036 0           

0.048 0 0 0 0 0 0 

0.06 0 -40,000 0 0 0 0 

0.072 -50           

0.084 -700,000 -400,000 -5 0 0 0 

0.096 800           

0.1     -1,000,000 0   1 

0.13   -700,000   0 0 1 

0.25       0   0 

 

Table 6.11: Viscosity constant, k, of 30 minute samples according to Herschel Bulkley model  

molar ratio 
of acid to 
boehmie nitric acid acetic acid 

  G250 V250 Dequagel HP G250 V250 Dequagel HP 

water 5 0 10 2 0 10 

0.02   0 0 0 0 0 

0.036 0           

0.048 0 0 0 0 0 0 

0.06 1 40,000 0 0 0 0 

0.072 90           

0.084 700,000 400,000 10 0 0 0 

0.096 40           

0.1     1,000,000 0   0 

0.13   700,000   0 0 0 

0.25       0   0 
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Table 6.12: Rate index of 30 minute samples according to Herschel Bulkley model  

molar ratio 
of acid to 
boehmie nitric acid acetic acid 

  G250 V250 Dequagel HP G250 V250 Dequagel HP 

water 0 2 0 0 2 0 

0.02   1 1 1 1 1 

0.036 1           

0.048 1 1 1 1 1 1 

0.06 1 0 1 1 1 1 

0.072 0           

0.084 0 0 0 1 1 1 

0.096 0           

0.1     0 1   1 

0.13   0   1 0 1 

0.25       1   1 

 

6.6  Oscillatory Rheology, Examining the Microstructure  

As discussed in Section 2.2.6 oscillatory rheology, sometimes called mechanical 

vibrational spectroscopy, can be used to examine the microstructure of a material.  A 

small selection of samples within the range characterised previously by flow rheology 

has been prepared and studied with oscillatory rheology in an attempt to confirm the 

proposed gelatinous microstructure.  All of the samples examined by oscillatory 

rheology have been prepared by milling for 30 minutes and the pH has been 

measured to allow comparison with samples characterised by flow rheology.   

As described in Section 4.2.2 a stress sweep was performed on each sample initially 

to determine an appropriate stress within the linear viscoelastic region (LVR) at 

which the frequency sweep could be performed.  Many of the samples studied did 

not show a clear or stable LVR over the stress range examined.  Issues such as the 

moduli increasing constantly over the range of frequencies examined, one modulus 
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being stable and the other varying, and generally noisy data have affected locating 

the LVR.   

Only a selection of samples exhibited an LVR, these were the samples prepared with 

each of the 3 boehmites and water, and the samples prepared with the boehmite 

V250 and nitric acid.  Acidic samples prepared with the boehmites G250 and 

Dequagel HP, and samples prepared with V250 and acetic acid, did not display an 

LVR.  The non linear viscoelastic nature of the samples prepared with acid can be 

attributed to structure deformation and / or destruction under shear, or continued 

formation of the gelatinous species.  The absence of an LVR indicates the dynamic 

nature of the materials and prevents any further analysis of those samples.  

The storage and loss moduli from frequency sweeps of samples exhibiting an LVR 

have been examined.   The loss tangent, tan δ, is the ratio of the loss modulus to the 

storage modulus, G‟‟/G‟.  When the loss tangent is greater than 1 the material has a 

higher loss modulus than storage modulus i.e., is liquid-like.  Conversely, a loss 

tangent of less than 1 implies a gel-like structure.  The loss tangent for all samples 

displaying a linear viscoelastic region in the stress sweep can be seen in Figure 

6.20.  The vast majority of data displays a loss tangent of less than 1, implying a gel 

like structure, with the exception of the sample containing V250 and a molar ratio of 

0.048 nitric acid which displays liquid like behaviour up to a frequency of ~30 rads-1.  

It is possible that the samples produced with water are displaying gel like behaviour 

due to the lack of chemical dispersion resulting in a structured material.  The addition 

of a small amount of acid to the boehmite V250 results in a liquid-like response due 

to the chemical dispersion of particles.  Further addition of acid results in a gel like 
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material, potentially due to the formation of a gelatinuous phase between the 

boehmite and the acid.   

 

Figure 6.20: Loss tangent of samples displaying a linear viscoelastic region 

6.7  Solid State Al Nuclear Magnetic Resonance 

Samples prepared under low and high energy input and low and high acid content 

have been examined.   

All samples prepared with low energy input displayed a single peak, similar to that 

seen in the red curve in Figure 6.21 indicating a purely tetrahedral coordination 
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regardless of the acid strength with which the sample was prepared.  This suggests 

that by chemical action alone no transition of coordination, or formation of a 

polymeric cation, was achieved.   

 

Figure 6.21: Al NMR data 

Samples prepared under the same high energy conditions as those characterised 

rheologically displayed a second peak indicating the presence of octahedral and a 

five co-ordinated aluminium species (trigonal bi pyramidal).  The additional peak 

cannot be confidently attributed to the presence of a polymeric cation as it may be 

due to a coordination change in boehmite due to a phase change induced by 

mechanochemical means.   
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The lack of coordination change observed in the samples prepared under low energy 

input suggest that the change is due to mechanochemical changes rather than 

chemical polymerisation of the aluminium species.   

6.8  Cryogenic Scanning Electron Microscopy (Cryo-SEM) 

Concentrated slurries were prepared, characterised rheologically and examined by 

cryo-SEM.  One slurry was prepared with only water, and one contained 0.06 moles 

of nitric acid per mole of boehmite.  The rheological characterisation in Figures 6.22 

and 6.23 shows the significant variation in rheological properties exhibited by the two 

samples.  The sample prepared with water displays much higher repeatability in the 

varied shear rate experiments and a lower apparent viscosity at 1000 s-1.  The 

sample containing acid displays a much higher apparent viscosity at 1000 s-1, 

suggesting a more structured material, and exhibits a small degree of hysteresis 

during the varied shear rate experiment implying the breakdown and rebuilding of 

structure as shear is applied.   
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Figure 6.22: Rheological characterisation of samples prepared for examination by cryo-SEM. 

(Viscosity presented is apparent viscosity at 1000 s
-1

)    
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Figure 6.23: Rheological characterisation of samples prepared for examination by cryo-SEM.   

The images seen in Figure 6.24 to 6.28 are currently, to the author‟s knowledge, the 

best images of their kind.  A similar study was performed by Rosenberg et al. (1995) 

showing alterations in the microstructure of boehmite slurries in the presence of acid 

but the images shown here are at a significantly higher magnification.   

Figures 6.24 and 6.25 show each of the samples in a sublimed condition.  Figure 

6.24 shows the sample prepared with water only with distinct individual particles 

which shows a very different structure to the sample prepared with acid, seen in 

Figure 6.25.  When prepared with water the sample clearly contains discrete 
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particles of around 5 μm and below, including evidence of particles in the sub micron 

range.  When prepared with acid, Figure 6.25, the sample still shows evidence of 

discrete particles but with less distinct edges than in Figure 6.24, and the continuous 

phase between the particles appears to have structure.  This structure is a network 

structure which is typical of polymeric species.  The apparent directionality in the 

network of the continuous phase structure is an artefact of the technique, the 

continuous phase has been pushed to the boundaries by the fast cooling ice, forming 

a 3 dimensional network.  There is also evidence of the presence of smaller discrete 

sub micron particles.   

Figures 6.26 and 6.27 also show the samples in the sublimed state, at a higher 

magnification than Figures 6.24 and 6.25.  A distinct particle a few μm in size can be 

seen in the top right corner of Figure 6.26, and other smaller distinct particles are 

evident across the top of the image.  In the centre of the image we can see evidence 

of finely dispersed particles, unexpected as this sample was prepared with only 

water.   Although this image is evidence of fine dispersion occurring in a sample 

containing no acid, the majority of the sample showed discrete particles as seen in 

Figure 6.25, rather than finely dispersed material. 

A closer examination of the structure of the continuous phase observed in Figure 

6.25 can be seen in Figure 6.27.  On the right hand side of the image the presence 

of discrete submircon particles within the continuous network can be seen, and the 

continuous network itself is shown to have a strand-like structure towards the edges 

created by the sublimation process.     
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Figure 6.28 focuses on the boundary between a particle and the continuous network 

observed previously in Figure 6.25.  The particle surface can be seen at the top of 

Figure 6.28 and the network of continuous phase at the bottom of the image with the 

transition between the discrete and continuous phases across the centre of the 

image.  There is a gradual transition in the nature of the structure from full particle 

surface to strands within the continuous network.   

EDX analysis of these materials confirms the presence of aluminium and oxygen.   

 

Figure 6.24: Boehmite and water 
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Figure 6.25: Boehmite and acid 

 

Figure 6.26: Boehmite and water 
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Figure 6.27: Boehmite and acid 

 

Figure 6.28: Boehmite and acid, interface between remaining particle and amorphous ‘gelled’ 

phase. 
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6.9  Conclusions  

Both initial acid content and milling duration result in alteration of the rheological 

properties of acidic concentrated boehmite suspensions.  A combination of 

rheological characterisation, zeta potential, pH and particle size distribution data has 

shown that neither the zeta potential, nor particle size changes with acid content can 

explain the observed increase.    

It is believed that the observed increase in apparent viscosity at 1000 s-1 and yield 

stress of acidic concentrated boehmite suspensions is due to the formation of a 

gelatinous phase of polymeric cations by partial dissolution of boehmite and that 

these species can adsorb onto particle surfaces.  This proposal has been reached, 

not only by examining and eliminating possible rationalisations, but is also supported 

by the zeta potential and pH measurements showing surface chemistry changes and 

consumption of acid.  A dissolution – readsorption mechanism is proposed for the 

interaction between boehmite and acid in which the boehmite surface is dissolved at 

low acid concentrations and polymeric cationic species are formed in solution at 

higher acid concentrations and readsorb onto the boehmite surface.   

Results show that increasing the sample preparation time enhances the 

phenomenon, likely due to a combination of the particle size distribution alterations 

brought about by milling making additional surface area available for the dissolution 

and mechanical activation and phase changes as a result of milling.   

The use of oscillatory rheology to confirm the gelatinous nature of the microstructure 

was inconclusive due to the absence of a linear viscoelastic region in the shear 
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stress sweep performed on the majority of the samples, indicating that samples 

exhibit dynamic characteristics.   

Examination of the coordination of the aluminium species by MAS NMR has 

identified alterations in the coordination, however, it can not be ascertained whether 

this is due to the presence of the proposed polymeric cation or a mechanochemical 

phase change resulting from the high energy sample preparation technique.   

Cryo-SEM has confirmed textural differences between boehmite slurries prepared 

with and without acid.  These are the first images of these materials to clearly show 

such differences and support the proposal of the formation of a polymeric species in 

acidc boehmites.  The continuous phase formed in the presence of acid visually 

appears to be polymeric in nature, and a clear image of the alterations in texture at 

the interface between a discrete particle and the continuous phase has been 

captured.   
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Chapter 7 Mixer Torque Rheometry 

7.1  Taguchi  

The data obtained from the Taguchi experimental matrix has been processed to 

ascertain the influence of each of the five input variables on each of the two 

responses, i.e. 10 influences are assessed.  Each influence is calculated as the 

difference between the average response with the variable set at value 2 and the 

average response with the variable set at value 1.  A negative value of influence 

gives qualitative information about the relationship between the variable and output, 

implying that the output is higher when the variable is in condition 1.  To compare the 

significance of each variable on each output the influences have been normalised to 

the highest influence value for each output.   

Table 7.1: Outputs from Taguchi experiments, effect of variable 1 on output A 

Experiment Number Variable 1 Output A 

1 1 A1 

2 1 A2 

3 1 A3 

4 1 A4 

5 2 A5 

6 2 A6 

7 2 A7 

8 2 A8 

 

Influence of variable 1 on output A (equation 7.1); 

4

)4321(

4

)8765( AAAAAAAA 



……………………….……..….(equation 7.1) 
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Table 7.2: Influence of all variables on output A, magnitude of peak mean torque 

Variable Influence Normalised influence 

3 Liquid addition rate ml.min-1 -812 1 

5 Acid strength M -741 0.91 

4 Powder type  260 0.32 

1 Temperature ºC -69 0.08 

2 Paddle rotation rate rpm -31 0.04 

 

Table 7.3: Influence of all variables on output B, liquid content at peak mean torque 

Variable Influence Normalised influence 

4 Powder type  51.4 1 

5 Acid strength M 17.9 0.35 

3 Liquid addition rate ml.min-1 11.7 0.23 

1 Temperature ºC 10.8 0.21 

2 Paddle rotation rate rpm -9.4 0.18 

 

The calculated influences show that temperature and paddle rotation rate have the 

least significant influence on both of the observed outputs.  With regards the paddle 

rotation rate, this is in agreement with results observed by Landin, Rowe and York 

(1995).  The temperature difference investigated in these experiments was expected 

to have a low influence on the outputs as the range examined was considered small, 

but within the operating window of interest in the project.  This confirms that there is 

no significant concern with temperature drifting within this range during the 

experiments.    

In the case of output A, the magnitude of the peak mean torque, both the addition 

rate of the liquid and the type of liquid have the most significant influence. The 

powder type is significantly more influential than temperature or paddle rotation rate 

but considerably less so than the liquid conditions.   Output B, the liquid content at 



                                     - 193 - 

 

which the peak mean torque occurs, is predominantly influenced by the type of 

powder used, the other four variables all have a comparably small effect on the 

results.   

A higher peak mean torque is achieved at a slow liquid addition rate due to the 

improvement this allows in the mixedness of the material.  The use of acid rather 

than water, or boehmite rather than alpha alumina, produces a higher peak mean 

torque, in both cases this is likely due to the chemical interaction occurring between 

the materials and the resulting structure alteration as observed and discussed 

previously in Chapter 6.  The normalised influences of temperature and paddle 

rotation rate on the magnitude of the peak mean torque are small enough to consider 

their influence in either direction as negligible over the range investigated for each 

parameter.   

Boehmite requires more liquid per mass of powder to reach the peak mean torque 

than alpha alumina and this is the most dominant factor on this response.  The use 

of acid rather than water enables the peak mean torque to be reached at a lower 

liquid content, the apparently low significance of this influence is likely to be due to 

the lack of chemical interaction between liquid and powder in the formulations 

containing alpha alumina. The peak mean torque occurs at lower liquid contents 

when the liquid is added slowly or the paddles rotated quickly due to the increase in 

effective mixing reducing the interparticle voids.  An increase in temperature results 

in more liquid required to reach the capillary point, but the variation is not significant.   

The findings from this experimental design allowed further experiments, assessing 

the rheology of various formulations, to be performed at constant temperature, 
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paddle rotation rate and liquid addition rate with confidence that these parameters 

would have minimal influence on the experimental results.  

7.2  Multiple Addition Tests 

7.2.1 Position of Mean Torque Peak 

The peak mean torque and the peak torque range have been determined for the 

multiple addition tests performed on each of the formulations.  Both the position (in 

terms of solids content) and the magnitudes of these peaks are considered.  As 

discussed previously the peak mean torque indicates the material is in a capillary 

state of saturation, the peak torque range indicates the funicular state of saturation.   

In addition to the position of these peaks, the shape of the curve, and more 

specifically the area under the curve up to the peak mean torque is considered, this 

is a description of the work applied to the material.   

Figure 7.1 shows the position of each of the peaks occurring in the 15 multiple 

addition tests performed.  Solids contents have been corrected for loss on drying.   
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Figure 7.1: Peak mean torque positions for all formulations from MATs 

The highest solids concentration at the capillary point is displayed by the boehmite, 

G250.  The boehmite V250 forms a capillary state under the wettest conditions out of 

the three powders.  This trend displayed by the powders is consistent across the 

range of the liquids tested.   The reasons for the change in solids content with pH are 

discussed further in Section 7.2.4.  

Error bars have not been included in this data set as it was not possible to perform 

repeat measurements on the equipment.  Errors in weighing of powder are ± 0.01 g, 

based on human error.  Errors in dispensing of the liquid phase are ± 0.01 ml, based 

on instrument error.  Errors in the position of the peak are ± 4 % based on previous 

work performed during commissioning and method development on a similar 

material.   
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7.2.2 Prediction of Capillary Point with Water 

It is theoretically possible to predict the volume of water required to form the capillary 

saturation state by calculating the volume of voids present in the mass of powder, 

this can be calculated from the bulk and skeletal densities.  The bulk density 

measurement accounts for all voids in the material, including both inter and intra 

particle voids, and also closed pores.  Inter particle voids are those between particles 

and intra particle voids the porosity with the particles.  The inclusion of closed pores 

in this measurement means that the available pore volume may be over estimated.  

Using the simple relationships that density is mass per volume and the total volume 

is comprised of only powder volume or void volume the following calculations can be 

made:  

bulk

bulk
bulk

V

m
  and 

skeletal

skeletal
skeletal

V

m
   ……………………..……..……(equation 7.2 and 7.3) 

where,   is density, m  is mass and V  is volume.  Both bulk and skeletal mass are 

20 g and the bulk and skeletal densities of each of the powders have been 

measured, hence bulk and skeletal volumes can be calculated.   

Once bulk and skeletal volumes have been calculated for each of the powders 

examined the void volume ( voidsV ) can be calculated according to equation 7.4. 

voidsskeletalbulk VVV  …………………………………………….………..…….(equation 7.4) 

The resulting solids content expected at the capillary state calculated for each of the 

powders using this method can be seen in Table 7.4 along with the experimental 

results obtained from the multiple addition tests with water. 
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The poured bulk density of boehmite G250 0.5 g.cm-3 (500 kg.m-3) and of V250 and 

Dequagel HP, 0.3 g.cm-3 (300 kg.m-3).  The tapped bulk density of boehmite G250 is 

0.6 g.cm-3 (600 kg.m-3) and of V250 and Dequagel HP, 0.4 g.cm-3 (400 kg.m-3).    The 

skeletal density of all three boehmite powders is 2.7 g.cm-3 (2700 kg.m-3).   

Table 7.4: Variation between expected and actual solids content at MAT peak,                

(*correction made for loss on drying) 

 

Measured 

solids 

content at 

capillary 

point * 

Expected solids content 

at capillary point 

Discrepancy between 

expected and measured 

solids content 

Poured 

bulk 

density 

Tapped 

bulk 

density 

Poured 

bulk 

density 

Tapped 

bulk 

density 

 wt% wt% wt% wt% wt% 

G250 43.5 38.0 43.6 5.5 -0.1 

V250 38.1 25.2 33.0 12.9 5.1 

Dequagel  

HP 
41.3 25.2 33.0 16.1 8.3 

 

There is a discrepancy observed between the calculated and measured solids 

content at the capillary saturation state of the powders and the magnitude of the 

discrepancy varies between the powders.  The discrepancy is significantly reduced 

when the tapped bulk density is used as opposed to the poured bulk density, 

indicating that the tapped bulk density behaves as a better predictor for the packing 

of powders in a mixer torque rheometer.  Although the powder is charged to the 
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mixing chamber by pouring, the work input and rearrangement of particles by 

mechanical means validates the use of the tapped bulk density rather than the 

poured bulk density.    

With the exception of the prediction of boehmite G250 from tapped bulk density, 

which is almost exact, the calculation consistently predicts a lower solids content 

than that measured, i.e. the volume of voids accessible to the liquid is being over 

predicted.   

This discrepancy can be related to the phenomenon of a powder reducing in volume 

upon addition of liquid.  Laboratory tests have been unable to quantify this effect but 

a qualitative trend between the powders has been observed which supports the 

trend in the magnitude of the discrepancies in Table 7.4.  The boehmites Dequagel 

HP and V250 shrink significantly upon the addition of water whereas the shrinkage 

observed with the boehmite G250 was minimal.  This phenomenon can be related to 

the cohesiveness of the powders.  A cohesive powder will exhibit inefficient packing 

as the cohesive forces prevent complete settling of particles into a densely packed 

system.  Examination of the Hausner ratio measured for the powders of interest 

gives support to this theory.  The Hausner ratio is the ratio of the tapped bulk density 

to the poured bulk density, a large Hausner ratio implies a cohesive powder which is 

more liable to packing adjustment.  The least cohesive powder (G250, Hausner ratio 

1.29) exhibits minimal volume reduction upon liquid addition and a low discrepancy 

is the predicted capillary point, where as the more cohesive powder (Dequagel HP, 

Hausner ratio 1.35) displays a considerable reduction in volume and a much larger 

discrepancy in the prediction.   Boehmite V250 has an intermediate Hausner ratio of 
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1.32 and displayed a discrepancy between that of the boehmites G250 and 

Dequagel HP.     

An additional consideration to be made regarding the inaccuracy of this prediction is 

the variation in particle packing and packing density as a result of changes in particle 

size distributions resulting from mechanical work input.  The technique used to 

measure tapped bulk density is not thought to alter size distribution, however, the 

MTR has been shown to affect particle size distribution, results can be seen in 

Section 7.2.5. 

7.2.3 Comparison of Effect of Nitric Acid and Acetic Acid 

The MAT mean peak torque results in Figure 7.1 show a strong correlation between 

the pH and the solids content of a material in the capillary state for all powders.   The 

data for both nitric and acetic acid lie upon the same trend line for a given powder, 

suggesting that the phenomena responsible for the shift is not anion specific.   

7.2.4 Mechanisms Responsible for Shift in Position of Peak Torque 

Figure 7.1 shows that the solids content at the capillary point increases as pH 

decreases, i.e. at lower pH the liquid content required to reach the capillary state is 

reduced.   

A reduction in the liquid content required to reach the capillary state can be achieved 

either by reducing the pore volume (or accessible pore volume) or increasing in bulk 

density.  Bulk density can be increased by either mechanical or chemical means.  

The wettability, or contact angle of a powder – liquid combination can also effect the 

position of the peak torque.    
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A reduction in pore volume could take place by gelation within the pores or at pore 

entrances resulting in a reduction of the available intraparticle pore volume.  Nitrogen 

pore volumes of each of the powders have been measured; G250 = 0.59 cm3g-1 

(5.9x10-4 m3kg-1).  , V250 = 0.82 cm3g-1 (8.2x10-4 m3kg-1) and Dequagel HP = 0.42 

cm3g-1 (4.2x10-4 m3kg-1).  The difference in void volume resulting from a complete 

removal of the intraparticle pore volume would be significant.    

Rotational rheology performed and discussed in Chapter 6 on slurries containing 30 

wt% solids and varying amounts of acid displayed an increase in apparent viscosity 

and yield stress at high acid contents which was attributed to the gelation of 

boehmite by nitric acid.  It has been considered that the acid content at which the 

changes occur, and the magnitude of the changes could be used as an indication of 

a powder‟s tendency to gel with nitric acid and that this could be used to explain the 

observed variations in the extent to which the powder responds to the variation in 

acid concentration within the MTR experiments.  In actuality, the gelation behaviour 

of each of the powders observed within the rotational rheology results is very similar, 

both in terms of acid content at which a viscosity increase is observed, and the 

magnitude of the observed increase, this, combined with the issue of variations of 

MAT data with work input, has prevented any further quantitative analysis being 

performed in this area.   

As discussed previously in Section 2.3.4, the application of work can increase bulk 

density of powder systems by improving the packing of particles. As seen in Figure 

7.2, total work input in a multiple addition test is greater when the mean peak torque 

occurs at a lower solids content due to the additional time taken to add the liquid (as 

rate of liquid addition is constant).  This is in opposition to the fact that, all other 
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factors being equal, an increase in work input would result in a drier peak due to the 

improvements in the particle packing of the system, therefore the work input to the 

material does not explain the observed trend in the position of the capillary point with 

pH, i.e. for any given powder, at pH ~ 8 the solids content at the capillary point is 

lower than at pH ~ 5, despite the fact that this point took longer to reach (due to the 

constant liquid addition rate), implying a higher work input, which would act to 

increase the particle packing and reduce the volume of voids to be filled by liquid. 

The total work input at each of the capillary points has been calculated by measuring 

the area under the curve up to the capillary point.     
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Figure 7.2: Relationship between work input and solids content at peak torque (capillary point) 

The relationship between pH and work input can be seen in Figure 7.3.  These 

results highlights the most significant issue with this technique, i.e. that work input 

varies for each of the peak mean torque positions recorded and as discussed in 

Section 2.3.4, work input can move the position of the peak mean torque.   
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Figure 7.3: Magnitude of work input to reach multiple addition test peak 

Chemical dispersion can increase the closeness of packing in a similar way to 

mechanical dispersion.  Qualitatively this would result in a closer packed, drier 

material at the capillary state with an increase in acid strength, which is in agreement 

with observations.  Closer packing due to the presence of acid is also possible by the 

mechanism of acid dissolution of boehmite resulting in „rounding off‟ of the particles, 

combined with particle size reduction, resulting in a more effectively packed system.  

Cryo-SEM images, seen in Chapter 6, confirm the „rounding off‟ of particles.  The 

relative dispersiblity of each of the boehmite powders has been measured using an 

industry standard dispersibility test, as performed by a boehmite manufacturer, this 

technique is described and discussed previously Section 5.4.  The results indicate 

that variations in the dispersibility of the powders in acid go some way to explaining 
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the shift observed in the solids content at the capillary point with pH, but it is likely 

that at least one other phenomena is also involved.    

Boehmite is more readily wettable with dilute acid than with water as acid has a 

lower surface tension than water.  In a more wettable system the liquid phase will 

spread over the solid phase at a faster rate which directionally, due to the inherent 

nature of the MAT, would result in less liquid addition required to form the capillary 

state, i.e. a peak mean torque with a higher solids content than a less wettable 

system.  In addition to this, the coverage of powder with liquid results in formation of 

liquid bridges with capillary forces which may pull the particles closer together and 

reduce the void volume to be filled by liquid to produce the capillary state.   

As discussed in Section 2.3.5 the contact angle between a liquid and a powder can 

be used as a measure of the wettability of a system.  Measurement of this using the 

DataPhysics tensiometer described in Section 4.3.7 had varying degrees of success 

with each of the powders. The powder packing consistency of boehmites G250 and 

V250 was found to be acceptable with packing errors of 7 and 3 % respectively (less 

than 10 % is considered to be an acceptable error in this technique).  However, the 

Dequagel HP was found to have a packing error of 16 % when packed according to 

the standard technique, increasing to 33 % when a further 5000 taps were used to 

pack the powder.  This high packing error means that the data obtained for this 

powder was considered to be unviable for analysis.   

The contact angles found for water with the boehmites G250 and V250 were 62 º 

and 50 º respectively, indicating that V250 is a more readily wettable powder, which 

would imply a higher solids content at the capillary point as discussed previously.  
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This is not in agreement with the observed MAT results shown in Figure 7.1, 

showing that this material parameter is not responsible for the observed variations in 

solids content at the capillary point.  There is no previously published data for the 

contact angle of water with boehmite powder for these values to be compared to, 

though Hsiang et al. (2007) used boehmite as a surface modifier with anatase and 

found that the addition of boehmite increased the contact angle of the materials 

significantly.   

Contact angles with 1.0 M nitric and 1.0 M acetic acid were calculated to be close to 

90 º (the limit of the instruments‟ measurement range) in all cases, indicating a non-

wetting system.  Visually these experiments were observed to uptake a small 

amount of liquid through the glass frit into the powder but no capillary rise occurred, 

on cleaning of the samples this bottom layer of powder and liquid was found to be a 

thick continuous phase rather than a two phase system.  Therefore the contact 

angles calculated by the software for these systems are not valid; the implication of 

non-wetting behavior from these results is simply due to the lack of liquid uptake due 

to blocking of the test tube due to the reactive nature of the materials.       

According to literature (Hancock, 1991) the distance between the peak torque range 

and the mean torque peak can be used as an indication of the wettability of a 

system. It is claimed that a large distance between these points indicates a readily 

wettable system.  Examination of the data produced in this experimental work shows 

that the peak torque range, indicating the occurrence of the funicular saturation 

state, occurs at almost the same position as the capillary state in all cases, 

suggesting that the boehmite / acid system is non-wettable in all formulations 
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examined.   This is not thought to be the case and raises doubts regarding the 

validity of such an analysis.   

Considering each of the phenomena which could explain the observed trends in 

change of MAT peak mean torque position with pH, it is possible that a combined 

effect of reduction in pore volume due to gelation, closer packing due to chemical 

dispersion and increased wettability explain the observed gradients.  Alterations in 

packing due to mechanical energy input cannot explain the increased solids content 

at the capillary point as already discussed.   

7.2.5 Magnitude of Peak Torque 

On first inspection the peak mean torque magnitudes appear very similar, with a 

mean of 0.99 Nm and a standard deviation of 0.27 Nm.  However, on closer 

inspection each powder shows a trend of increasing torque with solids content, and a 

shift in torque occurs between the different powders.   
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Figure 7.4: Magnitude of torque at capillary point of multiple addition tests 

The data displayed in Figure 7.4 indicates that for any particular powder the 

magnitude of peak mean torque is higher when the peak mean torque occurs at a 

higher solids content, which has already been shown to increase with acid content.  

The results obtained with acetic acid indicate that this effect is not anion specific. 

The variation of the magnitude of peak mean torque across the range of powders 

appears counter intuitive; the boehmite G250 shows the highest concentration of 

solids at the peak but the lowest magnitude of torque.  Although boehmite V250 

peaks at the wettest formulations, it shows the highest magnitude of torque 

compared to the other two powders.   

The variation between powders can be rationalised by examining the particle size 

distributions.  A formulation containing an equal amount of solids, but with a smaller 

mean particle size than another, will have a larger number of particles and a larger 
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number of liquid bridges, with a higher curvature and therefore greater strength in 

the capillary state. 

To verify this hypothesis, MATs with water were performed on „as received‟ and 

milled boehmite G250.  Particle size distributions were measured before and after 

the MAT (experimental details in Section 4.3.8).  The data shown in Figure 7.5 

confirms that a higher torque is observed at the capillary point in the material with a 

smaller particle size.  The results shown in Figure 7.6 also showed that the mixer 

torque rheometer results in a reduction of particle size, something that is assumed 

not to be the case in Hancock (1991).   

 

 Figure 7.5: Effect of size distribution on mixer torque rheology 
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Figure 7.6: Particle size distributions of samples pre and post milling and MTR 

7.3  Variable Mixing Time Tests 

7.3.1 General Comments on VMT Results 

When a variable mixing time (VMT) test is performed on a formulation with 

significantly more liquid content than is required to reach a capillary saturation state 

the torque will increase quickly as the materials are mixed into a paste then 

decrease as the material transforms into the slurry state by mechanical energy and 

repacking of the particles.  As the formulation gets closer to an equilibrium capillary 

state the torque will increase more gradually as more work input is required to 

increase the particle packing density to a state which allows the capillary condition 

with the amount of liquid present.  A drier formulation taking longer to peak is 

illustrated very clearly by the V250 and water system, which can be seen in Figure 

7.7.  A formulation close to that which is in the capillary state at equilibrium will not 

only take longer to reach peak mean torque, but will also produce a higher peak.   A 

formulation which has insufficient liquid present to achieve the capillary state of 

saturation will exhibit a steady climb in torque, reaching a plateau as equilibrium is 

reached and work input can improve the particle packing no further.  When the 

formulation is too dry to achieve capillary saturation a lower liquid content will 
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achieve equilibrium more quickly and at a lower torque than a material with a higher 

liquid content.  

Not all of the experiments were performed for long enough for an equilibrium state to 

be achieved, due to a combination of time limitations on the equipment and 

consideration of the mixing time of interest, based on the residence time of the 

extrusion process this investigation pertains to (around 5 minutes).  Despite 

equilibrium state not being reached the shape of the curve up to, and at the point of, 

the experiments‟ termination can provide valuable information about the saturation 

state of the formulation.  A quantitative reconstruction of the torque vs. liquid content 

curve produced from an MAT has not been possible with the data collected, but the 

results have been given qualitative consideration.  A more accurate reconstruction 

would require variable mixing time tests to be performed on significantly more than 4 

liquid contents for each powder liquid combination. 

7.3.2 Comparison of Formulations 

Each of the data sets displays trends as discussed above, some material 

combinations display much stronger, more typical trends than others.  Figures 7.7 – 

7.9 show some typical behaviour as discussed above for particular samples. 

Boehmite V250 and water produced clear data, shown in Figure 7.7, with a low level 

of noise in which each of the experiments reached an equilibrium torque.  The 

results clearly show the equilibrium mean torque and time to reach equilibrium 

increasing as liquid content is decreased.  There is also more noise as the 

formulation becomes drier.  The continuing increase in the magnitude of the 

equilibrium mean torque indicates that the formulation which produces the capillary 

saturation state at equilibrium has less than 70 % of the liquid content indicated by 
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the mean peak torque in the MAT.   Figure 7.7 shows each of the formulations 

reaching a plateau, with the driest formulation taking the longest time to reach the 

equilibrium.  The variations in the shape of the curves prior to the plateau are 

attrributed to variations in the mixing, particularly evident in the behaviour of the red 

curve which displays an apparent plateau between 30 and 150 s, this is due to poor 

initial mixing of the materials.   
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Figure 7.7: VMT data for V250 and water at different liquid contents (% in legend indicates the 

liquid content as a % of that shown to produce the capillary saturation state in the multiple 

addition test) 

The data produced by boehmite Dequagel and water can be seen in Figure 7.8.  The 

samples prepared with 100 % of the liquid content of the MAT peak mean torque 

quickly increased in torque and then moved into the saturated state due to the 

excess liquid, hence the short sharp peak followed by a low torque.  When the 



                                     - 211 - 

 

moisture content was reduced to 90 % of the liquid content of the MAT peak mean 

torque, the torque increased steadily for ~ 400 seconds before the excess liquid and 

work input caused the formulation to transform into the droplet state and torque 

reduced.  At 80 % and 70 % the torque increased steadily to a value higher than that 

of the 90% sample and remained at a constant high torque for over 600 seconds of 

mixing before reducing indicating the materials have formed the slurry state.   
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Figure 7.8: VMT data for Dequagel and water at different liquid contents (% in legend indicates 

the liquid content as a % of that shown to produce the capillary saturation state in the multiple 

addition test) 

A further example of a typical curve produced using this technique is that produced 

by Dequagel HP and acetic acid seen in Figure 7.9.  Similar curves were also 

produced by Dequagel HP with 0.72 M nitric acid and 1.0 M nitric acid.  As the 

formulation becomes drier, it takes longer, i.e. more work input is required, for the 
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torque to peak and drop as the saturated state is reached.  With 70 % of the liquid 

content required to reach the peak mean torque in the VMT, the torque almost 

equilibrates, the shape suggests that the saturated state has been reached as the 

torque is gradually reducing with time.   
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Figure 7.9: VMT data for Dequagel HP and acetic acid at different liquid contents (% in legend 

indicates the liquid content as a % of that shown to produce the capillary saturation state in 

the multiple addition test) 

The shapes of the curves displayed in Figures 7.7 - 7.9 are all different, the data in 

Figure 7.7 suggests that the sample prepared with 70% of the liquid content of the 

MAT peak is approaching an equilibrium condition at the level of work input provided, 

however more data curves would be needed to suggest how close to the capillary 

condition this material is.  In Figure 7.8 none of the samples prepared display an 

equilibrium condition, the continued work input results in each of the samples 

forming the slurry state.  Similarly, all but the driest of samples in Figure 7.9 show a 
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material moved into the slurry state by work input, the sample prepared with 70% of 

the liquid content of the MAT peak appears to be approaching an equilibrium but, as 

was the case in Figure 7.7, there is no way of knowing how close to the capillary 

condition this material is.   

For many of the material systems the combination of the high degree of noise, and 

the experimental setting to automatically end the experiment when torque fell to 50% 

of a previous max, led to many of the VMT experiments being stopped before an 

equilibrium was reached, therefore much of the data has had to be disregarded.  

This situation has meant that a quantitative analysis has not been performed on the 

data.  In order to perform an informative reconstruction of the MAT curve a larger 

data set similar to that in Figure 7.7 would have to be collected. 

7.4  Comparison of MTR Characterisation with Rotational 

Rheology 

MTR data can be converted to give an apparent viscosity by converting speed of 

rotation into a shear rate and torque into a shear stress.  This has been calculated 

for each of the mean peak torques obtained and also for various other specific data 

points, for which a comparable formulation has been assessed using rotational 

rheology, to allow a comparison between the results obtained in each technique.   







app …………………………………..……………………….…………...(equation 7.5) 

Volume

Torque

Area

Force
 ……………………...……………………,.……………..(equation 7.6) 
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where, torque is the measured torque on the MTR and volume is the volume of 

material within the mixing chamber at the time of the measurement.   

anceDist

Velocity
 ……………………………….……..………..………..……..….(equation 7.7) 

where, velocity is taken as the tip velocity of the fastest moving paddle and distance 

is taken as the clearance between the paddle and the wall of the mixing chamber 

(0.001 m), though in reality the mixing action of the MTR causes compression and 

expansion of the material within a changing gap.  The tip velocity is calculated 

according to equation 7.8 

60

2 rrs
Velocity


 ……………………………………………….….…………(equation 7.8) 

where, rs  is the paddle rotation rate (125 rpm) and r  is  the paddle radius (0.015 m), 

resulting in a shear rate of 196 s-1.   

The apparent viscosities at 196 s-1 obtained by performing the calculation described 

on the capillary point of each of the formulations examined can be seen in Figure 

7.10.  The apparent viscosity generally increases as pH reduces, it is not clear 

whether this is due to the increase in solids content which accompanies this change, 

or the increase in the presence of acid.  It is not possible with the data available to 

decouple these two parameters.   
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Figure 7.10: Apparent viscosity at 196 s
-1

, from MTR capillary point data 

A more interesting calculation would be the apparent viscosity at 196 s-1 of the 

formulations in the MTR at 30 wt% solids, which would allow a more direct 

comparison with the rotational rheology data discussed in Chapter 6.  Unfortunately 

the procedure of the MAT is such that the formulation commences at 100 wt% solids 

and reduces over time.  In all cases the peak mean torque was observed at a solids 

content higher than 30 wt% and the experiment ceased when the torque value 

reduced to 50 % of the maximum, still at a solids content higher than 30 wt%, 

therefore this direct comparison is not possible.   
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7.5  Conclusions 

7.5.1  Taguchi Experiments 

Taguchi experimental design has been used to determine the effect of five input 

variables (powder type, liquid type, liquid addition rate, paddle rotation rate and 

temperature) on two output parameters (magnitude of the peak mean torque and the 

solids content at the peak mean torque). It was found that the liquid type and liquid 

addition rate had the most significant influence on the magnitude of the peak mean 

torque and the powder type had the most significant influence on the solids content 

of the peak mean torque.  Paddle rotation rate and temperature were found to have 

low impact on both output parameters.   

7.5.2  Comparison of Formulations 

The bulk and skeletal densities of each powder have been used to predict the solids 

content at the capillary point found from MATs with water.  The tapped bulk density 

was found to give a more accurate prediction than the poured bulk density, attributed 

to the work input and particle rearrangement performed by the action of the mixing 

paddles.  The discrepancies between the predicted and measured solids content 

have been related to the cohesiveness (indicated by the Hausner ratio) of each of 

the boehmite powders.   

The solids content at the capillary point increased as the pH of the binder phase was 

reduced, this affect appears to be non anion specific.  A number of possible 

mechanisms have been identified as being responsible for the shift in capillary point; 

reduction of available pore volume due to blockage of intraparticle pores, 

improvements in particle packing by mechanical work input or chemical dispersion 

and differences in the wettability of a powder liquid system.   



                                     - 217 - 

 

The nature of the test means that work input cannot be used to rationalise the 

observed trends in the MAT data, though the dispersive action of acid on boehmite 

supports the alteration of particle packing by chemical dispersion.  The highly porous 

nature of the powders means significant variations in the solids content at the 

capillary point are possible by making the intraparticle pore volume inaccessible by 

blocking of pores.   

Contact angles between boehmites G250 and V250 and water have been 

successfully measured as 62° and 50° respectively, though measurements with the 

boehmite Dequagel HP or acid were unsuccessful.  As it has not been possible to 

take contact angle measurements with acid, it is not clear whether a change in 

wettability is responsible for the variation in the position of the capillary point as acid 

content is altered.  The indication that the boehmite V250 is a more readily wettable 

powder than the boehmite G250 implies a higher solids content at the capillary point 

according to the theory discussed in Section 7.2.4, which is not in agreement with 

the experimental observations, therefore this phenomenon can not be used to 

rationalise the observed differences between the powders.     

The variation of the magnitude of torque at the capillary point for each of the 

powders can be rationalised by differences in the particle size distributions.  

Variations in size distribution have been shown to affect the results obtained in an 

MAT, and the size distribution of a powder has also been shown to be altered during 

a MAT.   

Much of the VMT test data obtained was redundant for detailed analysis as the 

experiments had not continued into an equilibrium state.  Those data sets which 
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displayed equilibrium conditions showed higher torques, reached more slowly, when 

a drier formulation was tested.  VMT tests at much smaller increments of liquid 

content would need to be performed to reconstruct a torque vs. solids content 

relationship as produced by the MAT.    

7.5.3  Comparison of MTR Results and Rotational Rheology Data 

Conversion of torque measurements to apparent viscosity has allowed a comparison 

to be made between rotational rheology data and MTR data.  The apparent 

viscosities calculated in the MTR are at a shear rate of 196 s-1.  Apparent viscosities 

at the capillary point range from 40 – 110 Pa.s.   

The data required to calculate the apparent viscosity of slurries with 30 wt% solids is 

not available, preventing direct comparison with the rotational rheology data 

discussed in Chapter 6.   

7.5.4  Relevance of MTR Results to Extrusion Formulations 

The issue of work input affecting the state of saturation of a material formulation has 

been discussed at various points within this chapter.  There are significant 

differences between the work applied by a twin screw extruder and an MTR, 

therefore a direct correlation between the prediction of capillary point from a MTR 

and a successful extrusion formulation on a twin screw extruder is not expected.  

Further examination of this relationship is performed in Chapter 8.  
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Chapter 8 Extrusion 

8.1  Extrusion Formulations 

Solids content and acid content are inherently related for a particular powder type 

and acid strength combination.  The relationship between these parameters can be 

seen in Figure 8.1. This data is not of significant interest in its own right, however this 

figure isw designed to aid with the visualisation of the relationship between acid 

content and solids content throughout this set of experiments, as this will help with 

understanding the following discussions. As it has not been possible to accurately 

measure the pH of the extrudates produced the acid content is described as the 

molar ratio of acid to boehmite, assuming full dissociation of acid, (an accurate 

assumption for nitric acid, not for acetic acid due to acid strength) and corrected for 

the mass loss during drying of the boehmite powders.  Solids contents reported have 

also been corrected for the mass loss during drying.   

Figure 8.1 shows that the boehmite Dequagel HP is extruded at the highest solids 

content with water, 0.36 M nitric acid and 1.0 M acetic acid.  Extrusions with 0.72 M 

and 1.0 M nitric acid occur at very similar solids content to boehmites G250 and 

Dequagel HP.  In general the boehmite V250 is extruded at the lowest solids 

content.  This graph is comparable to Figure 7.1 showing the solids content at the 

peak mean torque identified by the MTR as a function of pH, a comparison between 

these data sets is presented and discussed in Section 8.2.   
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Figure 8.1: Relationship between solids content and acid content of extruded formulations 

Figures 8.2 and 8.3 show the relationship between the formulation parameters 

(solids content and acid content) and a production parameter (torque on twin screw 

extruder).  Figure 8.2 reveals that for a particular system (a combination of a 

particular powder and liquid) an increase in solids content results in an increase in 

the extrusion torque, highlighted for certain systems with enlarged data points and 

best fit lines.  This relationship is in agreement with the observations reported by 

Köster and Thommes (2010).  Figure 8.3 shows that for any particular system, an 

increase in the acid content (note that the scale is molar ratio of acid to boehmite, 

not pH) results in a decrease in the extrusion torque, a result which can be 

rationalised by considering the reduction in solids content which inherently 
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accompanies the increase in acid content when using the same acid strength, as 

shown previously in Figure 8.1.   

Figures 8.2 and 8.3 also both illustrate how a wide variety of solids contents can be 

extruded at a given extrusion torque depending on the particular powder type and 

acid strength.  In particular, very high solids content extrudates can be produced at 

low extrusion torques using the boehmite Dequagel HP compared with the 

boehmites G250 and V250.   

The close particle packing required to produce an extrudate with a high solids 

content can be achieved by either mechanical work input or chemical dispersion of 

agglomerates.  The low extrusion torque, implying low mechanical work input, 

suggests that the mechanism responsible for achieving the close packing in the 

boehmite Dequagel HP is chemical dispersion of agglomerates.  The dispersiblity 

test presented and discussed in Section 5.4 confirms that the boehmite Dequagel 

HP is the most susceptible to dispersion by nitric acid. 
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Figure 8.2: Relationship between torque of twin screw extruder and solids content 

 

Figure 8.3: Relationship between torque of twin screw extruder and acid content  
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Photos of samples could not be included, however photos of typical extrudates 

similar to those produced in this work, of various qualities, can be seen in Benbow 

and Bridgwater (1993).   

8.2  Comparison of MTR Predictions and Extrusion 

Formulations 

Table 8.1 shows the difference between the solids content shown to form the 

capillary state suitable for extrusion by the MTR (results presented and discussed 

previously in Chapter 7) and the solids contents found to produce extrudable pastes 

by twin screw extrusion.  This is essentially the difference between the data 

displayed in Figure 8.1 and Figure 7.1, calculated using equation 8.1. The capillary 

point on the MTR is a defined position, where as the twin screw extrusion data is 

subjective and the highest solids content is the closest to the capillary point.  The 

highest solids content extruded is used in the calculation as any value below this 

would be entirely arbitrary as it is known to be below the capillary point.   

CPHSC MTRTSE  …………………………………………………………….....(equation 8.1) 

where, HSCTSE  is the highest solids content extrusion performed on the twin screw 

extruder and CPMTR is the solids content at the capillary point found by the multiple 

addition test performed on the MTR. 

A discrepancy between the MTR and twin screw extrusion results was expected, due 

to the difference in the amount of work applied to the material in each process.  The 

MTR consistently predicted a lower solids content than those successfully extruded, 

implying a lower work input from the MTR than the TSE.  Neither is the work input 



                                     - 224 - 

 

applied by each of the techniques consistent across the range of formulations, as the 

work input is related to the torque which varies in each case.  As discussed in 

Section 2.3.4, the work input to a system affects a materials‟ state of saturation by 

altering the particle packing behaviour.  

A comparison of the work input per unit mass (Nmkg-1) using the MTR and the TSE 

has been attempted using equations 8.2 and 8.3 respectively.  However, the torque 

reading taken from the TSE is not a true measure of torque, it is a comparative value 

derived from the voltage drawn by the extruder in operation.  Independent torque 

measurements from the extruder shaft would be required to make a true comparison 

of the torques drawn in each of these techniques.   

m

sWI
WI c

m

.
 …..………..…………………………….………………..………(equation 8.2) 

m

rT
WIm 

.
 …...………………………………………………………………....(equation 8.3) 

where, mWI is work input per unit mass, cWI is the work input to the capillary point 

measured on the MTR, m is the mass of sample present in the MTR, s  is the MTR 

paddle rotation rate, T  is the extrusion torque, r  is the extruder screw speed and 

m is the total mass flow rate of material in the extruder.   

Table 8.1 shows that the discrepancies observed are < 20 %.  In general the 

boehmite G250 exhibits the smallest discrepancy and Dequagel HP the largest, 

which can be explained by the difference in cohesiveness.  This variation in powder 

behaviour has been discussed previously in Section 7.2.2 when attempting to predict 

the solids content at the capillary point by considering the bulk and skeletal powder 
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densities.  Cohesiveness affects a powder‟s susceptibility to particle packing 

alteration by either mechanical energy input or liquid addition.  The Hausner ratios, 

as previously discussed in Section 7.2.2, shows that qualitatively G250 is the least 

cohesive powder, therefore the least susceptible to packing alterations.  On this 

principle the results shown in Table 8.1 are as expected.   

The discrepancy reduced as the strength of nitric acid is increased.  The use of 1.0 

M acetic acid results in a discrepancy similar to that exhibited with water for the 

boehmites G250 and Dequagel HP, and a much larger discrepancy with the 

boehmite V250.  Assuming that the work input is the principal cause of the 

discrepancy this result suggests that this effect becomes less significant as the 

formulation becomes more acidic, i.e. chemical alteration of the system reduces the 

significance of the effect of mechanical energy input on the particle packing.   

Table 8.1: Discrepancy between predicted solids content of extrusion formulation by MTR and 

actual solids content extrused on TSE, wt % 

  Water 0.36 M 

nitric acid 

0.72 M 

nitric acid 

1.0 M 

nitric acid 

1.0 M 

acetic acid 

G250 8 6 2 0 6 

V250 3 7 7 
Not 

performed 
12 

Dequagel HP 17 17 7 7 16 
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8.3  Conditions of Extrusion 

Figure 8.4 shows the relationship between twin screw extrusion torque and ram 

extrusion force.  An increase in the torque required to produce a paste on the twin 

screw extruder unsurprisingly results in an increase in the force required to form 

extrudates on the ram extruder.   The fact that the data does not lie on one master 

curve suggests that the relationship is formulation dependent.  Best fit lines for each 

data set intersect the x-axis at around 7 % maximum torque suggesting this as a 

base line torque value for the extruder operating with an empty barrel.   
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Figure 8.4: Relationship between torque on TSE and force on ram extruder 

8.4  Physical Properties of Extrudates 

8.4.1 Crush Strength  

Figures 8.5 and 8.6 show the relationship between formulation parameters (solids 

content and acid content) and extrudate crush strength.  An increase in solids or acid 
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content results in an increase in crush strength, presumed to be due to an 

improvement in particle packing and the binding action of the gelatinous phase 

formed in an acidic boehmite paste (discussed in Chapter 5) respectively.  

Figures 8.7 and 8.8 show the relationship between processing parameters (torque 

during twin screw extrusion and ram extrusion force) and extrudate crush strength.  

Strength appears to be almost independent of the torque on the TSE, and only 

increases very slightly with ram extrusion force for each powder liquid combination.   

It was expected that a high extrusion force would produce a strong extrudate, 

however, this relationship is not evident from the results.   

The relationship between strength and porosity is discussed in Section 8.5.2, 

strength is significantly affected by presence of surface defects, illustrated by 

Griffiths Crack theory which relates strength and toughness and takes into 

consideration the size of a surface fault.  It has been considered to use the Weibull 

modulus to examine the probability of failure of the samples, however the sample 

size was not sufficiently large.    

These results show that the formulation has a more significant effect on the crush 

strength of an extrudate than the processing parameters.  The nature of the 

experiments performed means that each of the parameters remain interrelated, a 

clearer understanding of the factors affecting crush strength could be elucidated by 

examining the parameters individually.     
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Figure 8.5: Effect of solids content on extrudate strength 

0

5

10

15

20

25

30

35

0.00 0.01 0.02 0.03 0.04 0.05 0.06

Molar Ratio of Acid to Boehmite

S
tr

e
n

g
th

 /
 N

/m
m

G250 and water G250 and 0.36 M nitric acid
G250 and 0.72 M nitric acid G250 and 1.0 M nitric acid
G250 and 1.0 M acetic acid V250 and water
V250 and 0.36 M nitric acid V250 and 0.72 M nitric acid
V250 and 1.0 M acetic acid Dequagel HP and water
Dequagel HP and 0.36 M nitric acid Dequagel HP and 0.72M nitric acid
Dequagel HP and 1.0 M nitric acid Dequagel HP and 1.0 M acetic acid
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Figure 8.7: Effect of twin screw extruder torque on extrudate strength 
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8.4.2 Porosity 

Figure 8.9 shows how the total pore volume of an extrudate, measured by nitrogen 

adsorption, varies with solids content of the extruded paste.  An increase in solids 

content causes a small reduction of pore volume, which asymptotes at around 0.5 

cm3g-1, though Dequagel HP exhibits a consistently low pore volume of between 0.3 

and 0.5 cm3g-1.   Similar trends are displayed in the total pore volume obtained by 

mercury intrusion, analysis has focused on pore volume measured by nitrogen 

adsorption.   
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  Figure 8.9: Porosity as a function of solids content 

The pore size distributions are similar for a particular system (specific combination of 

powder and liquid), regardless of solids content.  However, some sample sets exhibit 

behaviour as displayed in Figure 8.10, indicating a reduction in pores 10 – 20 nm in 

size, accompanied by an increase of pores 2 - 6 nm in size, as solids content is 
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increased.  Although this shift appears to be small it is believed to be real by the 

author based on the number of samples whitch exhibit this shift, not only within this 

project but other similar samples to which the author has had access.  This shift 

suggests an increase in the closeness of packing, reducing the volume of larger 

pores and increasing the volume of smaller pores.  An increase in solids content 

under the operating conditions used to produce these samples is inherently 

accompanied by a reduction in the ratio of acid to boehmite; hence the shift cannot 

be attributed to an increase in chemical dispersion, rather an improvement in 

packing density due to the physical presence of more particles.   

None of the samples exhibit a plateau as the limits of the technique are reached, 

implying there is further pore volume present in pores less than 1.7 nm, not detected 

by nitrogen adsorption. Cumulative pore size distributions of the mesoporous range 

(2 – 50 nm) are displayed.  The volume of pores between 50 – 300 nm removed 

from the raw data is minimal, less than 0.06 cm3g-1 in all cases.  All powders exhibit 

a reduction in total pore volume as acid strength is increased.   
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Figure 8.10: Cumulative pore size distribution for Dequagel HP and 0.36 M nitric acid 

extrudates as a function of solids content 

The effect of acid type and strength on the pore size distribution, within the 

mesoporous size range, of each of the boehmite powders can be seen in Figures 

8.11 - 8.13.  Each of the pore size distributions displayed for comparison are those of 

the sample extruded at the highest solids content for each combination of powder 

and liquid.  In Figure 8.11, the pore size distribution of extrudates produced with 

G250 shows a steady shift and reduction of pore volume as the acid strength is 

increased.  Extrudates produced with V250, shown in Figure 8.12, exhibit a 

significant change in the pore size distribution when acid is used to produce the 

extrudates compared to those prepared with water, however, increasing the strength 

of acid further does not have a significant effect.  Extrudates produced with 

Dequagel HP, shown in Figure 8.13, display very similar pore size distributions when 

prepared with water, 0.36 M nitric acid or 1.0 M acetic acid and a reduction in the 
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volume of pores smaller than 10 nm in samples prepared with stronger nitric acid.  

For each of the boehmite powders the pore size distribution with 1.0 M acetic acid 

lies in between those with 0.36 M and 0.72 M nitric acid, as was the case in the MAT 

peak position and pH shown in Figure 7.1.  This suggests that the mechanism 

responsible for the shift in pore size distribution is not anion specific.     

Reduction in the pore volume with an increase in acid strength is attributed to an 

increase in the chemical dispersion of boehmite agglomerates (dispersiblity of 

boehmites is discussed previously in Chapter 5) reducing the particle size and 

increasing the particle packing density.  This is supported by an increase in the pore 

volume of the smallest pores, < 2.2 nm, as shown in Figure 8.14 and a reduction in 

the average pore size as shown in Figure 8.15. 
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Figure 8.11: Pore size distributions for G250 extrudates with all binders 
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Figure 8.12: Pore size distribution for V250 extrudates with all binders 
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Figure 8.13: Pore size distribution for Dequagel HP extrudates with all binders 
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Figure 8.14: Pore Volume < 2.2 nm 
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Figure 8.15: Change in pore size with nitric acid strength 
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The shape of the extrudates‟ pore size distributions varies depending on the powder 

feed. Comparisons can be seen in Figure 8.16 and 8.17 of extrudates produced with 

water and 0.72 M nitric acid respectively.  Extrudates produced with the boehmite 

V250 exhibit a significant volume of pores larger than 10 nm compared with those 

produced with G250, which has a greater volume of large pores than Dequagel HP.    
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Figure 8.16: Pore size distribution for all boehmite powders with water 
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Figure 8.17: Pore size distribution for all boehmite powders with 0.72 M nitric acid 

The variation of the surface area of extrudates with strength of nitric acid can be 

seen in Figure 8.18.  Although there is a variation in the surface area, this data 

displays no evidence of a strong relationship between surface area and acid 

strength.  The surface area of extrudates produced with 1.0 M acetic acid were 

within the same range as those produced with nitric acid, with values of 300, 272 and 

267 m2g-1 for the powders G250, V250 and Dequagel HP respectively.  
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Figure 8.18: Variation of extrudate surface area with nitric acid strength 

 It is well understood that there is a compromise to be made between strength and 

porosity when considering catalyst supports.  Figure 8.19 shows the specific 

compromise between crush strength and total pore volume measured by nitrogen 

adsorption for the materials under investigation.  The data implies a significant 

loss in crush strength as pore volume, measured by nitrogen adsorption, is 

increased slightly.  Alternatively, this can be viewed as significant increase in 

crush strength as the total pore volume is decreased only slightly by the use of 

acid.  Extrudates produced with the boehmite G250 shows the clearest 

relationship between strength and pore volume.  Those produced with V250 

show a higher strength than those produced with G250 for comparable pore 

volumes.  Extrudates produced with the boehmite Dequagel HP exhibit a wide 

range of crush strengths with minimal variation in pore volume (note pore volume 
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is significantly lower than extrudates produced with either of the other two 

boehmite powders) depending on the acid strength and type.  The compromise 

between crush strength and pore volume appears to be powder specific, with 

results for extrudates produced with each powder lying on an individual curve for 

all acid types and strengths.   A study of the mechanical srength of ceramics has 

been performed by Li et al.  (2004) who identify the importance of this parameter 

and explore the mechanics of typical failure.  The relationship between pores and 

strength of materials is described by Griffiths (1920) and developments in this 

area have been made by the concrete industry, for example Liang et al. (2011) 

who provide a model, developed from the basis of Griffith‟s theory, predicting the 

strength of concrete with consideration of the porosity.  Such specific 

advancements within the ceramic field can not be found in the literature. 
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Figure 8.19: Compromise between strength and porosity 
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8.4.3 Attrition Resistance 

The extrudates produced all exhibit a high attrition resistance, with low mass loss 

experienced during the attrition test.  Tables 8.2 – 8.4 show the percentage of mass 

lost in particles < 1 mm.  

Extrudates prepared with the boehmite G250 display very low mass loss on attrition, 

with the exception of those produced with water.  Similarly low mass losses are 

exhibited by extrudates prepared with the boehmite V250.  Extrudates produced with 

the boehmite Dequagel HP display a much lower resistance to attrition, with the 

majority of samples losing > 1 % in fines during the test.  As shown in Section 8.4.1 

these samples also displayed very low crush strength. 

Table 8.2: Attrition resistance of extrudates produced with boehmite G250 

Liquid 
Solids content 

(wt%) 

Acid content 

(molar ratio of 

acid to boehmite) 

Attrition loss (%) 

Water 47.1 0 11.1 

 48.1 0 2.5 

 49.1 0 1.4 

 50.2 0 3.6 

 51.6 0 10.9 

0.36 M nitric acid 49.2 0.015 0.4 

 50.2 0.015 0.3 

 50.8 0.014 0.6 

 51.3 0.014 0.6 

 50.8 0.014 0 

 52.2 0.013 0.4 

 53.5 0.013 1.6 

0.72 M nitric acid 52.4 0.026 0.5 

 54.2 0.024 0.7 

1.0 M nitric acid 51.5 0.037 0.5 

 53.3 0.034 0.4 

1.0 M acetic acid 52.6 0.035 0.1 

 55.6 0.031 0.2 
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Table 8.3: Attrition resistance of extrudates produced with boehmite V250 

Liquid 
Solids content 

(wt%) 

Acid content 

(molar ratio of 

acid to boehmite) 

Attrition loss (%) 

Water 41.2 0 0.5 

0.36 M nitric acid 43.2 0.022 n/a 

 50.6 0.016 0.3 

0.72 M nitric acid 44.2 0.041 0.2 

 49.8 0.032 0.5 

1.0 M acetic acid 43.6 0.058 n/a 

 49.4 0.045 0.5 

 52.1 0.040 0.2 

 53.6 0.037 0.2 

 

Table 8.4: Attrition resistance of extrudates produced with boehmite Dequagel HP 

Liquid 
Solids content 

(wt%) 

Acid content 

(molar ratio of 

acid to boehmite) 

Attrition loss (%) 

Water 55.4 0 n/a 

 57.2 0 3.7 

 58.1 0 9.4 

0.36 M nitric acid 59.8 0.008 2.9 

 60.7 0.008 0 

 61.8 0.007 6.6 

0.72 M nitric acid 50.9 0.025 0.9 

 53.6 0.022 0.6 

1.0 M nitric acid 51.2 0.034 n/a 

 54.8 0.029 1.3 

1.0 M acetic acid 59.1 0.023 1.5 

 61.7 0.020 2.0 

 62.3 0.020 2.8 

 

8.5  Particle Size Distribution Profile of Twin Screw Extruder 

The particle size distribution of pastes prepared with the boehmite G250 and water 

along six screw configurations was examined, one configuration was also profiled 
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using 1.0 M nitric acid as the liquid phase.   Details of the configurations examined 

and operating conditions can be seen in Section 4.4.3.   

The particle size distributions suggest that neither the mixing or conveying elements 

are very effective at reducing particle size.  In each case there is evidence of particle 

size reduction occurring in the short distance of conveying elements between the 

liquid feed point and the first mixing elements, position 1 and position 2, as displayed 

in Figure 8.20 for configuration 1, (no particle size distributions were measured 

upstream of the liquid feed point).  There is little further reduction in particle size 

along the barrel, see position 12 (at the die end) in Figure 8.20.  
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Figure 8.20: PSD profile of TSE using configuration 1, positions can be seen in Figure 5.7 (in 

experimental section)  

Each of the 6 configurations investigated result in very similar size distributions at the 

die, seen in Figure 8.21, with the exception of configuration 5, which exhibits a 

distribution with a larger proportion of smaller particles than the other distributions.  

The change in size distribution between the penultimate and final positions of 

configuration 5 can be seen in Figure 8.22.  The penultimate position in configuration 

5 displays a particle size distribution similar to the final distribution of the other 
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configurations, seen in Figure 8.23.  Between the penultimate and final position the 

material passes through 2 d of 60 º backwards elements.  This is theoretically the 

most aggressive mixing section in all of the configurations, though 60 º backward 

elements have been used in lengths of 1 d, which did not cause such significant 

particle size reduction.  This suggests that only this most aggressive mixing element 

is capable of reducing the particle size distribution below that exhibited at the final 

stage of the other configurations.  The use of 5 d of 90 º mixing elements in 

configuration 3 did not show a reduction as significant as that achieved by 

configuration 5.  
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Figure 8.21: Final particle size distributions of all 6 configurations with water  
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Figure 8.22: Penultimate and final measurement in configuration 5 
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Figure 8.23: Final particle size distributions of all 6 configurations with water, using 

penultimate data from configuration 5  

Although, as discussed in Section 8.2, absolute values of torque cannot be 

calculated, a comparison between each configuration can be made based on the 

derived value reported by the instrument.  Configuration 5, which produced the most 

significant particle size reduction, drew the lowest torque.  This confirms that the 

particle size reduction is due to the action of the mixing elements in the configuration 

rather than additional mechanical energy input.   

It has been considered that the similarities between the particle size distributions 

may be due poor dispersion during presentation of the sample for measurement.  

Pastes have been redispersed in demineralised water to allow measurements to be 

taken using the wet dispersion unit and Malvern Mastersizer as described in Section 

4.1.2.  Work performed by McGuire et al. (2007) using X ray tomography to examine 

the particle size of zirconia particles after twin screw extrusion and found that all 

particles, initially ~60 μm, were reduced to below 5 μm in size.  The work presented 

here suggests that only a portion of the particles ~30 μm in size are reduced to 

below 10 μm.   
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Extrudate samples produced from configurations 1 - 5 all show very similar pore size 

profiles, seen in Figure 8.24 (data is not available for configuration 6).  The similarity 

of the pore size distributions supports the possibility that the particle size 

distributions may be as similar as the results displayed in Figure 8.23 suggest.   
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Figure 8.24: Pore size distribution of configurations 1 – 5 

A much more significant reduction in particle size was observed in the sample 

prepared with 1.0 M nitric acid compared with the samples prepared with water, as 

shown in Figure 8.25, due to the chemical dispersion of boehmite particles by acid.  

Unfortunately, there is no pore size distribution available for the extrudates prepared 

with acid.   
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Figure 8.25: Final particle size distributions achieved with water and 1.0 M nitric acid 

All of the distributions contain particles of 3-4 μm and 20-30 μm, the shape and 

change of the particle size distribution suggests that the mechanism of size reduction 

within the twin screw extruder is the breakdown of 20-30 μm agglomerates to 

particles which are 3-4 μm in size.   
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8.6  Conclusions  

Extrudates have been successfully produced with each of the powder liquid 

combinations.   A large variety of formulations can be produced at a particular 

extrusion torque.  In general the torque increases with an increase in solids content.  

Increasing acid content results in a reduction of torque, likely due to the change in 

the rheological properties caused by the addition of acid. 

There is a discrepancy between the solids content predicted to form the capillary 

saturation state, using the mixer torque rheometer (MTR) discussed in Chapter 7, 

and the solids contents of successful extrusion formulations due to the difference in 

the work input of the equipment and the effect this can have on the saturation state 

of a system as discussed previously in Chapter 7.  The MTR consistently predicts a 

lower solids content at the capillary saturation state than those formulations 

successfully extruded, implying less work is inputted by the MTR compared to the 

TSE.  The discrepancies are all < 20 wt%.  The least cohesive powder, G250, 

exhibits the smallest discrepancy, as this is the least susceptible to packing density 

increases by work input.  The discrepancy is also reduced when acid strength is 

increased, as the effect of acid begins to dominate over the physical effect of work 

input.  Despite the discrepancy the author believes the MTR to be a useful tool for 

predicting successful extrusion formulations, particularly in cases in which there is an 

understanding of the differences in work input between the equipment and the effect 

that work input has on the material system.   

The force required to extrude a paste on the ram extruder is related to the torque 

required to produce the pastes on the TSE, however, the relationship appears to be 
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formulation dependent as the data points for each system lie on an individual curve, 

there is no single master curve.   

Extrudate crush strength is affected by formulation parameters (solids content and 

acid content) rather than process parameters, (extrusion torque and extrusion force) 

although it was previously thought that a high torque would produce a strong 

extrudate.    

Total pore volume is reduced by increasing the solids content for a particular powder 

liquid combination.   In many cases the pore size distribution shape remains similar 

as solids content increases, though some distributions exhibit a shift which implies 

an increase in the packing density at higher solids content.  The nature of the 

experiments inherently results in a reduction of the acid to boehmite ratio as the 

solids content is increased, so the observed improvement in packing is not due to an 

increase in chemical dispersion, but a physical phenomenon.  The pore volume is 

also reduced when acid strength is increased, and the shift in pore size distributions 

suggest an improvement in packing density, as the volume of the smallest pores 

increases, in this case due to chemical dispersion.  The average pore size reduces 

with acid strength.  The shape of the pore size distributions varies with powder type.  

Variations in BET surface area do not display a trend related to acid strength.  

The compromise between crush strength and pore volume appears to be powder 

specific, with results for extrudates produced with each powder lying on an individual 

curve for all acid types and strengths.  An increase in crush strength is achieved as 

the total pore volume is decreased only slightly by the use of acid, particularly for 

extrudates produced with the boehmite G250 which shows the clearest relationship 
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between strength and pore volume.  Those produced with V250 show a higher 

strength than those produced with G250 for comparable pore volumes.  Extrudates 

produced with the boehmite Dequagel HP exhibit a wide range of crush strengths 

with minimal variation in pore volume depending on the acid strength and type.  The 

extrudates displaying the best combination of pore volume and crush strength were 

produced with the boehmite V250 and acetic acid.     

Extrudates produced with G250 and V250 exhibit very high resistance to attrition, 

with the exception of extrudates prepared with G250 and water.  Dequagel HP has 

much lower resistance to attrition.   

Pastes prepared with G250 and water on a TSE all showed very similar particle size 

distributions at the die end regardless of the screw configuration used, with the 

exception of configuration 5, incorporating 2 d of 60 ° backwards elements which 

resulted in further size reduction.  The similarity in particle size distribution is 

accompanied by very similar pore size distributions of the dried samples.  The use of 

nitric acid in the formulation results in a much more significant reduction of particle 

size, with the distribution still displaying a bimodal form with particles at 3 and 30 μm, 

but with more particles at 3 μm.   
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Chapter 9: Conclusions and Further Work 

9.1 Conclusions 

The interaction between boehmite and acid (nitric and acetic), and the products of 

this interaction, have been investigated using rheological methods, (rotational, 

oscillatory and mixer torque), nuclear magnetic resonance and cryomicroscopy.  The 

capability of a mixer torque rheometer to predict successful extrusion formulations 

has been assessed.  The effect of formulation parameters on the resulting extrudate 

properties has been evaluated.   

Three boehmite powders have been studied, each produced by different 

manufacturing processes.  The crystallite size of each of the powders, measured by 

X ray diffraction, varies by only 1 nm between all powders.  

9.1.1  Effect of Acid on Boehmite Slurries 

Rheological studies of acidic boehmite slurries observed a significant increase in 

apparent viscosity and yield stress below pH 4, this result was only observed with 

nitric acid as acetic acid did not produce slurries with a low enough pH.  

Measurement of the zeta potential and particle size distribution of acidic boehmite 

slurries confirmed that the observed rheological changes were not due to surface 

charge or particle size distribution changes.  It is proposed that the observed 

rheological changes in acidic concentrated boehmite suspensions are due to the 

formation of a gelatinous phase of polymeric cations by partial dissolution of 

boehmite and that these species can adsorb onto particle surfaces.  The variation of 

zeta potential with pH is in agreement with the occurrence of a dissolution 

readsorption mechanism. 
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The use of oscillatory rheology to confirm the gelatinous nature of the microstructure 

has been inconclusive due to the absence of a linear viscoelastic region.  

Examination of the coordination of the aluminium species by magic angle spinning 

nuclear magnetic resonance (MAS NMR) has identified alterations in the 

coordination, however, this is most likely due to a mechanochemical phase change 

resulting from the high energy sample preparation technique and does not confirm 

the presence of a the proposed polymeric cation.  Cryogenic scanning electron 

microscopy (Cryo-SEM) has confirmed textural differences between boehmite 

slurries prepared with and without acid.  The continuous phase formed in the 

presence of acid visually appears to be polymeric in nature, and a clear image of the 

interface between a particle and the continuous phase has been captured.   

Additional slurry preparation (milling) time enhanced the observed rheological 

changes, possibly due to the particle size distribution alterations caused by milling 

and the exposure of additional surface area for dissolution, mechanical activation 

and phase changes during milling.  Slurries produced with each of the three 

boehmite powders displayed very similar rheological behaviour.   

The interaction between boehmite and acid has also been assessed by examining 

variations in the solids content required to form the capillary saturation state as 

measured by the mixer torque rheometer.  The solids content at the capillary point 

increased as the pH of the binder phase was reduced, this effect was non anion 

specific.  Improvement in particle packing density due to chemical dispersion was 

identified as the primary mechanism responsible for the observed change.  Other 

possible mechanisms such as reduction of available pore volume due to blockage of 

interparticle pores, improvements in particle packing by mechanical work input and 
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differences in the wettability of a powder liquid system were also explored. The 

correlation between the dispersibility of boehmite in nitric acid measured by the 

dispersibility test and the dispersibility implied by the magnitude of shift in the solids 

content at the capillary point as measured by mixer torque rheometry strongly 

suggests that chemical dispersion is responsible for the observed shift.   

The variation of the magnitude of torque at the capillary point for each of the 

powders has been attributed to differences in the particle size distributions.  

Variations in size distribution have been shown to affect the results obtained by 

mixer torque rheometry, and the size distribution of a powder has also been shown 

to be altered during an MTR experiment.   

Much of the variable mixing time (VMT) test data obtained was redundant for 

detailed analysis as the experiments had not continued into an equilibrium state.  

Those data sets which displayed equilibrium conditions showed higher torques, 

reached more slowly, when a drier formulation was tested.  VMT tests at much 

smaller increments of liquid content need to be performed to construct a detailed 

view of the relationship between torque and solids content.   

The dissolution rate of boehmite in nitric acid at pH 4 is faster than at pH 2, which is 

thought to be due to a mass transfer limitation effect at pH 2, due to the rheological 

changes observed.  All boehmite powders have been shown to be more readily 

dispersed in nitric acid than acetic acid.  The boehmite powder V250 is the least 

dispersible in both acids.   
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9.1.2  Predictive Capability 

Tapped bulk density was found to be a good predictor for the solids content forming 

the capillary saturation state measured by MTR for powders with low cohesivity.  

Predictions were less accurate for more cohesive powders due to the low packing 

density and the susceptibility to packing rearrangements upon the addition of liquid.    

This prediction was not expected to produced such accurate results as particle 

packing is strongly affected by particle size distribution which has been found to alter 

during an MTR experiment, but is unlikely to be altered during tapped bulk density 

measurements due to the low energy input of this measurement technique. 

The capillary saturation state identified by mixer torque rheometry experiments was 

found to give predictions within 20 wt% solids for successful extrusion formulations.  

The MTR consistently predicted solids contents lower than those successfully 

extruded, implying a lower work input using this equipment.  The least cohesive 

powder, G250, exhibits the smallest discrepancy, as this is the least susceptible to 

packing density alteration by work input.  The discrepancy is also reduced when acid 

strength is increased, as the effect of acid begins to dominate over the physical 

effect of work input. 

9.1.2  Extrusion Behaviour and Extrudate Properties 

Extrudates have been successfully produced with each of the boehmite powders and 

water, nitric acid up to 1.0 M and 1.0 M acetic acid.   A large variety of formulations 

can be produced at a given extrusion torque.  Increasing acid strength results in a 

reduction of torque, likely due to the change in the rheological properties caused by 

the addition of acid. 
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The force required to extrude a paste on the ram extruder is related to the torque 

required to produce the pastes on the TSE, however, the relationship is formulation 

dependent. 

Extrudate crush strength is affected by formulation parameters (solids content and 

acid content) rather than process parameters, (extrusion torque and extrusion force). 

Total pore volume is reduced by increasing the solids content for a particular powder 

liquid combination, pore size distributions imply an increase in the packing density at 

higher solids content.  The nature of the experiments inherently results in a reduction 

of the acid to boehmite ratio as solids content is increased, therefore the observed 

improvement in packing is not due to an increase in chemical dispersion.   

The total pore volume is reduced when acid strength is increased, and the shift in 

pore size distributions suggest an increaes in packing density, as the volume of the 

smallest pores increases, in this case due to chemical dispersion.  The average pore 

size reduces as acid strength is increased.  The shape of the pore size distributions 

varies with powder type.  Variations in the BET surface area do not display a trend 

related to acid strength.  

The compromise between crush strength and pore volume appears to be powder 

specific, with results for extrudates produced with each powder producing an 

individual curve for all acid types and strengths.  An increase in crush strength is 

achieved as the total pore volume is decreased slightly by the use of acid, 

particularly for extrudates produced with the boehmite G250 which shows the 

clearest relationship between strength and pore volume.  The extrudates displaying 
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the best combination of pore volume and crush strength were produced with the 

boehmite V250 and acetic acid.     

Extrudates produced with boehmite powders G250 and V250 exhibit very high 

resistance to attrition, with the exception of extrudates prepared with G250 powder 

and water.  Extrudates produced with the boehmite Dequagel HP have much lower 

resistance to attrition.   

Pastes prepared with boehmite powder G250 and water on a TSE all showed very 

similar particle size distributions at the die end regardless of the screw configuration 

used, with the exception of configuration 5, incorporating 2 d of 60 ° backwards 

elements which resulted in further size reduction.  The use of nitric acid results in a 

much more significant reduction of particle size.   

9.2 Further Work 

The primary focus of this thesis has been on the effect of acid strength and type on 

boehmite slurries, pastes and extrudates.  For a more complete understanding of the 

area the effect of powder properties on the interaction with acid should be studied, 

this would require a more systematic approach to the raw materials used for 

investigation as the powders used in this stuffy have numerous differences, it is 

difficult to be sure which characteristics are responsible for any differences 

observed.  A full investigation should incorporate a focus on the effect of operational 

parameters on extrudate properties on specific formulations.   

An ongoing issue with the analysis of the data produced during this project has been 

the lack of ability to decouple the mechanical and chemical effects.  The inability to 

accurately quantify the work input of the sample preparation and  
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Although there is no definitive boundary between a concentrated slurry and a paste, 

it is generally true that the measurement of rheological properties of materials with 

lower solids content are less complex to characterise and predict.  The most widely 

used and well developed paste characterisation technique was considered too 

laborious for the large volume of samples studied.  A better understanding of the 

paste properties which are most relevant to extrusion behaviour would allow the 

development of an analysis technique to characterise new formulations.   
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