Firkin, Adam (2015). Connectivity of Hurwitz spaces for \(L\)\(_2\)(7), \(L\)\(_2\)(11) and \(S\)\(_4\). University of Birmingham. Ph.D.
Firkin15PhD.pdf
PDF - Accepted Version Restricted to Repository staff only Download (1MB) |
Abstract
For a finite group G and collection of conjugacy classes C = (\(C\)\(_1\),…,\(C\)\(_r\)). The (inner) Hurwitz space, H\(^i\)\(^n\)(\(G\), C), is the space of Galois covers of the Riemann sphere with monodromy group isomorphic to \(G\) and ramification type C. Such a space may be parameterized point wise by tuples, g = (\(g\)\(_1\),…,\(g\)\(_r\)) of \(G\), known as Nielsen tuples, such that \(g\)\(_1\)…\(g\)\(_r\) = 1 and \(\langle\)\(g\)\(_1\),…,\(g\)\(_r\)\(\rangle\) generate \(G\). The action of the braid group upon these Nielsen tuples is in a one-to-one correspondence with the connected components of Hurwitz spaces.
The aim of this thesis is to calculate the connected components of the Hurwitz space for the groups \(L\)\(_2\)(7), \(L\)\(_2\)(11) and \(S\)\(_4\) for any given type in the case of \(L\)\(_2\)(\(p\)) and a particular class of types for \(S\)\(_4\), using the method described. Furthermore, we establish that if two orbits exist we can distinguish these orbits via a lift invariant within the covering group \(SL\)\(_2\)(7) and \(SL\)\(_2\)(11) for \(L\)\(_2\)(7) and \(L\)\(_2\)(11) respectively, and any Schur cover for \(S\)\(_4\).
Type of Work: | Thesis (Doctorates > Ph.D.) | ||||||
---|---|---|---|---|---|---|---|
Award Type: | Doctorates > Ph.D. | ||||||
Supervisor(s): |
|
||||||
Licence: | |||||||
College/Faculty: | Colleges (2008 onwards) > College of Engineering & Physical Sciences | ||||||
School or Department: | School of Mathematics | ||||||
Funders: | Engineering and Physical Sciences Research Council | ||||||
Subjects: | Q Science > QA Mathematics | ||||||
URI: | http://etheses.bham.ac.uk/id/eprint/5702 |
Actions
Request a Correction | |
View Item |
Downloads
Downloads per month over past year