Sindall, Rebecca Clare (2015). Increasing the efficiency of anaerobic waste digesters by optimising flow patterns to enhance biogas production. University of Birmingham. Ph.D.
|
Sindall15PhD.pdf
Download (12MB) |
Abstract
Anaerobic digestion is used to stabilise sewage sludge and produce biogas. Whilst the need to mix digesters is well-recognised, the level of mixing required and its effects on biogas production are not clear. Here, the effects of mixing speed in mechanically-mixed lab-scale digesters on biogas production are considered.
For the first time, positron emission particle tracking was used to visualise flow patterns in lab-scale digesters at different mixing speeds. Computational fluid dynamics models were then built to identify the turbulence characteristics. Four lab-scale digesters were run for four months at different mixing speeds and key indicators of digester stability and microbiological population were recorded alongside gas production.
Increased mixing speed leads to higher levels of turbulence and in these digesters, increasing the mixing speed reduces the stability of the methane generation process and accordingly has a detrimental effect on the gas production. Similarly, the abundance of methanogenic communities was adversely affected by increasing mixing speeds. However, the unmixed digester produced less biogas than the digester mixed at a low speed, due to uncontrolled digestion. As such, for these digesters, minimal mixing represents the ideal scenario.
By considering the velocity gradient in the digester as a surrogate for turbulence, a threshold of 6 8 s-1 was identified. Below this threshold, increased mixing was beneficial but increasing mixing above the threshold was detrimental to digester stability and gas production.
Type of Work: | Thesis (Doctorates > Ph.D.) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Award Type: | Doctorates > Ph.D. | |||||||||
Supervisor(s): |
|
|||||||||
Licence: | ||||||||||
College/Faculty: | Colleges (2008 onwards) > College of Engineering & Physical Sciences | |||||||||
School or Department: | School of Engineering, Department of Civil Engineering | |||||||||
Funders: | Engineering and Physical Sciences Research Council | |||||||||
Subjects: | T Technology > TA Engineering (General). Civil engineering (General) T Technology > TD Environmental technology. Sanitary engineering |
|||||||||
URI: | http://etheses.bham.ac.uk/id/eprint/5636 |
Actions
Request a Correction | |
View Item |
Downloads
Downloads per month over past year