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Abstract 

The aim of the project described in this thesis was to develop a system in house that would be 

capable of providing a technique to enhance the reliability of detection of threat agents such 

as compounds used for chemical warfare and explosives. This was to be done by using a 

combination of an ion mobility spectrometer (IMS) in tandem with a quadrupole mass 

spectrometer (QMS).  When meeting these requirements, the latest electronics and software 

were incorporated in the instrumentation to maximise sensitivity and flexibility. 

By attaching a QMS to an IMS, an extra dimension in specificity is gained whereby a more 

positive identification of a compound is made based on m/z values, thereby providing further 

information on the ion-molecule processes taking place in the IMS.  Flexibility in operation 

was achieved by using the graphical programming language LabVIEW for the software 

aspects, allowing program development and modification to be made more quickly than 

would be the case than if a procedural language such as C++ had been used.  

A special ‘pulse to analogue’ converter developed during the project provided increased 

sensitivity and resolution over earlier systems in regard to obtaining selected mass mobility 

spectra.  

Proof-of-principle measurements are provided that demonstrate the capabilities of the newly 

developed IMS-QMS system in both positive and negative ion modes of operation, with some 

results obtained that are consistent with those from previous investigations.   

Data obtained for various chemicals not previously investigated are also provided. The 

reduced mobilities, mobility and mass spectra are presented for all compounds investigated 

including acetone, methyl salicylate and various nitroaromatic compounds.  
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CHAPTER 1   INTRODUCTION TO THE IMS-QMS SYSTEM   

1.1  Overview   

Within the Molecular Physics Group, the tandem Ion Mobility Spectrometer – Quadrupole Mass 

Spectrometer (IMS-QMS) system described in this thesis was developed in order to aid in 

fundamental studies of the chemical processes occurring in an ion mobility spectrometer [1, 2-4] 

with regard to the detection of trace gases arising from the presence of chemical warfare agents 

(CWAs) [5-9] , explosive compounds [10-17] and drugs [18-28].  Examples of other growing 

areas of application with IMS are: 

 Monitoring industrial processes [29] to check that levels of particular substances given 

off are within permissible limits such as in semiconductor manufacture [30-33], electrical 

circuit breakers [34-36] and in printing [37,38].  

 Monitoring food quality [39-41] and pesticide levels [42-45]. 

 Biological applications in areas such as breath analysis [46-52], detecting bacteria [53,54]  

and pharmaceutical cleanliness [55-58].  

 Monitoring the environment [59-63]. 

These wide- ranging applications of IMS are due to its constructional simplicity and readiness to 

allow miniaturisation and transportation (where all the necessary systems are self contained).  A 

particular advantage of IMS over other types of analytical instruments is that it operates at 

atmospheric pressure, hence avoiding the need for a bulky and expensive vacuum system. The 

technique is very sensitive and is capable of detecting trace amounts of chemical compounds in 
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the parts per billion by volume (ppbv) concentration range within a few seconds and therefore 

provides real time analysis.   

The present research and development described in this thesis forms part of a collaborative 

project with Smiths Detection Ltd, who are based in Watford, U.K.  Smiths Detection is 

considered to be world leader in the design and manufacture of IMS equipment. They produced 

the CAM (Chemical Agent Monitor) [64,65] in the 1980s that was used extensively during 

combat in the 1991 Persian Gulf War.  Since then, over 60,000 CAMS have been introduced into 

military establishments’ worldwide today [66]. 

Although IMS systems are very sensitive they are however, not very specific with regard to the 

identity of a particular chemical owing to their relatively poor temporal resolution.  It is possible 

for several different ions to appear to, or even have, the same drift time and so there is a clear 

requirement to improve their performance in this aspect.  The limited temporal resolution 

inherent in IMS systems makes them prone to giving false alarms known as false positives and 

these occur when a chemical of similar mass and molecular cross-section, i.e. of similar ion 

mobility to a given threat agent, is detected [67].  False negatives can also happen when any 

molecules present, having a high proton affinity, are more easily ionised than the target 

chemical.  This can saturate the system and cause the target response to be suppressed.  These 

effects may be reduced by using chemical dopants. The term dopant (or reagent gas) is used to 

describe a chemical such as acetone or ammonia that is introduced into the reaction region of the 

drift tube in order to modify the ionisation chemistry in the instrument such that it suppresses any 

response from background interferents. [68]   
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The electronic systems for the present IMS and the data acquisition software (using ‘LabVIEW’ 

[69]) for the overall IMS-QMS  system were designed and constructed in the laboratory and are 

described in detail in chapters 2 and 3.  Characterisation of the system is described in chapter 4.  

The intended use of the system for investigating ion-molecule chemical reactions and the results 

obtained from these experiments are discussed in chapters 5 (positive ion mode) and 6 (negative 

ion mode).     

1.2  Combining Ion Mobility Spectrometry with Mass Spectrometry  

The combination of IMS-QMS enables certain limitations of IMS-technique-only systems to be 

overcome [70,71]. In order to be more selective, the identification of the 𝑚/𝑧 of the ions may be 

detected and interpreted resulting in a mass spectrum that can then be related to the compounds 

of interest thus improving the range of characterisation capability.   This then promotes a better 

understanding of the chemical processes involved in IMS systems used for the detection of threat 

agents.  

1.3  Comparison of the IMS technique with other methodologies 

Other comparable techniques that may be used for the detection of volatiles at low 

concentrations are the Selected Ion Flow Tube Mass Spectrometer (SIFT-MS) and Proton 

Transfer Reaction Mass Spectrometer (PTR-MS).   

SIFT [72] (and its predecessor the Flowing Afterglow (FA) [73] method) is generally used as a 

means for measuring kinetics such as absolute rate coefficients.  However, the PTR-MS and IMS 

methods are mainly used as analytical techniques for identifying compounds from their ion-

molecule reactions. 
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With the SIFT method (an improvement on the earlier flowing afterglow method) an electron 

impact ionisation source is used to produce 70 eV [74] electrons that bombard the molecules of a 

reagent gas to produce a soup of parent  and fragment ions in the ionisation region.  A particular 

reactant ion is chosen with the use of a quadrupole mass filter before being admitted into the 

reaction (flow tube) region for reaction with the analyte. The product  and reactant ions are then 

sampled into a mass analyser for identification. The whole system operates at a low pressure of 

around 5 - 10 mBar. 

In recent years SIFT-MS has been developed into an analytical tool, predominantly using H3O
+
, 

O2
+
 and NO

+
 as reactant ions. However, owing to its lower sensitivity and more complicated 

operation compared to PTR-MS, few groups use it for chemical analysis. 

PTR-MS [75] is simpler to operate because a mass filter is not required.  Furthermore, an electric 

field is used to transport the ions in a low pressure drift tube, which eliminates the need for the 

relatively large flow rates of buffer gas encountered with SIFT.  

IMS-MS is similar to PTR-MS in that it is based on drift tube technology. However, unlike PTR-

MS the drift tube operates at atmospheric pressure. Whilst this makes the instrument simpler in 

design compared to PTR-MS, the ion –molecule chemistry is more complicated and restricted 

(e.g. positive ion mode cannot be used for detecting explosives). Nevertheless, it is the dominant 

analytical technique in current use for threat agent detection and therefore it is crucial that the 

ion-molecule chemistry is explored in detail. 

A further advantage is gained over SIFT and PTR-MS in that isomers can be distinguished due to 

their differing cross sections. [76-78] 
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1.4  IMS – MS Systems 

The first IMS-MS system was developed by McDaniel in 1960 at Georgia Tech. [79].  A 

magnetic sector mass analyser was used in this instrument to characterise the ion peaks  in the 

ion mobility spectrum of pure hydrogen.  Since then, instruments have been developed in 

research institutions covering a variety of mass analysers and IMS pressures [80-85].  Figure 1.1 

shows a schematic representation of a basic layout for an IMS interfaced to a QMS. The heating 

jacket around the IMS is necessary to maintain a constant elevated operating temperature.  

  

Figure 1.1  Basic layout of an IMS-QMS system.  The screen is placed close to the faraday plate (FP) to 

shield against unwanted signal due to the electric field from the approaching ion swarm. The ion gate is 

placed midway along the drift tube.     

Quadrupole mass spectrometers are widely used in many areas of science and their principles of 

operation are well documented. The use of IMS systems has however, mainly been confined to 

military and security applications and so for this reason most of the research details on the 

development of modern commercial IMS systems are not available. An introductory explanation 

of the operation of an IMS system is therefore given in the following sections to provide an 

understanding of the basic principles.  
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1.5  An introduction to Ion Mobility Spectrometry (IMS) 

IMS is a technique used to identify low concentrations of particular ions arising from chemical 

compounds introduced in the gas phase into the spectrometer according to their mobility 𝐾.  

Mobility is a property that determines the time (known as the ‘drift time’, 𝑡𝑑,) that it takes for the 

ions to travel along the drift region under the influence of a uniform electric field through a 

buffer gas at a given temperature.  The buffer gas commonly used is purified air at slightly above 

atmospheric pressure.  Figure 1.2 represents a typical drift tube design comprising of a 

cylindrical glass or ceramic tube having circular metallic drift rings clamped along its periphery.   

 

 

Figure 1.2  Basic components of a drift tube. The drift rings provide a linear electric field along the axis 

of the drift tube to impart a drift velocity on the ion swarm. The Bradbury-Nielson (B-N) gate allows a 

pulse of ions to be introduced into the drift region. 

 

The electric field is set up by connecting a voltage divider resistor chain across the series of drift 

rings, as indicated in figure 1.3.  By making all the resistors of equal value (10 MΩ in our 

instrument), a uniform field is set up along the reaction and drift regions.  Further features of the 

drift tube are discussed in more detail in the next section. 

Drift rings                     

Exhaust ports and B-N gate                     
Two part glass cylinder                     
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     Figure 1.3  Ring connections to the resistor chain. All resistors are of equal value. 

1.6  Operating principles of the drift tube 

This section provides a brief overview of the operation of drift tubes typically used in ion 

mobility systems with the main emphasis on the equipment used by the Molecular Physics 

group. 

Within the drift tube typically used in ion mobility systems, the following processes will occur: 

a) The sample analyte representing threat agents to be detected is introduced into the 

forward flow direction of the buffer gas which is normally air that has been passed 

through a molecular sieve to limit the moisture content in the air.  It then flows into 

the IMS reaction region.  

b) Ionisation of predominantly the buffer gas takes place within the reaction region of 

the drift tube causing a series of ion-molecule chemical reactions to occur resulting in 

the production of reactant ions.  Any trace threat molecules that are present under the 

investigation (e.g. DMMP used to simulate nerve agents) will interact with the 

reactant ions to form product ions (ionised sample molecules.)  As they travel along 

the drift tube, ions of different mass, size and shape due to chemical structure (“cross-

section”) reach different drift (terminal) velocities 𝑣𝑑  (cm/s). In a vacuum, the drift 

time for a drift tube length of typically 10 cm through a gradient of 250 V/cm would 

be in the order of microseconds.  However, in an IMS system, the drift pressure is 

0V VHT 

To final ring 

no.16 

To ring no.1 
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around one atmosphere, and so the ion drift time is actually in the order of 

milliseconds since the ions are slowed down by collisions with the buffer gas 

molecules. Note, a restriction must be met regarding the ratio of electric field strength 

𝐸 to gas number density 𝑁, to enable the mobility to be independent of 𝐸/𝑁 for 

allowing comparison of mobility values between different instruments.  The 

restriction is that 𝐸/𝑁 is to be less than two Townsends (where 1 Townsend (Td) = 

10
-17

 V cm
2
). This was first noticed during investigations made by Rutherford and 

Roentgen in the late 19
th

 century when making measurements of the ion mobility of 

air molecules ionised by radiation.   

c) At an appropriate time an ion gate is quickly pulsed open to allow a small pulse of the 

resultant reactant ions and product ions to pass through into the drift region where 

they drift towards a Faraday plate (FP) (shown in figure 1.1) under the influence of 

the electric field applied by the drift rings. In this region separation of different 

species of ions occurs according to their mobility. The flow of buffer gas in this 

region is in the opposite direction to that in the reaction region in order to limit 

neutral threat agents from entering the drift region where they would continue to react 

with the ions. If this occurs, the mobility spectrum shows an ion signal between the 

peaks thereby degrading the temporal resolution and possibly masking any smaller 

peaks. 

d) As the ions discharge at the Faraday plate, various current pulses are produced as a 

function of time according to a given ion(s) mobility. Signal conditioning of the 

pulses is then used to enable subsequent display of the mobility spectrum. 
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The times taken for the various ions to travel down the tube gives an indication of what the 

particular chemical may be when the mobility spectrum is observed.  This allows chemicals to be 

characterised by their ion mobility 𝐾 which is determined from the drift velocity 𝑣𝑑 attained by 

ions in the weak electric field E in the drift tube (typically 200 to 300 V/cm), according to the 

equation, 

 𝑣𝑑 = 𝐾 × 𝐸     (1.1) 

1.7  Ion Mobility Spectrum 

A mobility spectrum shows the arrival times of the ions as current peaks at various drift times. 

The arrival time 𝑡𝑑 of a particular ion peak at the Faraday plate is obtained from the ion mobility 

spectrum, which may contain several peaks and can be said to give the chemicals signature or 

fingerprint.  An example of a positive polarity mobility spectrum is seen in figure 1.4 (obtained 

using our instrument with tertiary butanol at 16 ppbv concentration in pure air) showing the 

reactant ion peak (RIP) H
+
(H2O)n , the protonated monomer MH

+
(H2O)n and the proton bound 

dimer M2 H
+
(H2O)n, where M represents tertiary butanol. The intensity of each peak is related to 

the abundance of the corresponding ion.  

One advantage of ion mobility spectra over conventional mass spectra is that it can be used to 

distinguish different isomers due to their differing geometries in chemical structure and hence 

collisional cross section. 
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1.8  IMS Components. 

As previously mentioned, a typical ion mobility spectrometer is formed from the following 

components: An ionization source, ion gate, drift tube, a collector and corresponding electronics 

for signal acquisition. 

Ionisation source 

Various methods are used to provide a source of ionising radiation such as a corona discharge or 

by the use of radioactive materials.  Corona discharge sources suffer from sputtering which 

requires them to be frequently cleaned or replaced.  A better solution that is commonly used is a 

weak radioactive source (activity around 10mCi) consisting of a 
63

Ni coated cylinder having a 

half life of 100.1 years and emits a constant stream of beta particles (electrons). [86]  Through 

spontaneous disintegration of the radioactive source ( 𝑁𝑖28
63  → 𝐶𝑢29

63  + 𝑒-
), the electrons are 

ejected with a range of very high kinetic energies up to a maximum energy of approximately 67 

Figure 1.4 An example obtained from our system of a typical ion mobility spectrum. M represents the 

analyte, being tertiary butanol in this case.                   
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keV with a mean energy of 17 keV.  Through electron impact ionisation and a series of chemical 

reactions (described later) this produces both positive and negative ions in the reaction region. 

Since a 10 mCi radioactive source is relatively weak (for safety reasons) this sets a limit on the 

amount of ions produced. Therefore, at high sample concentrations, the number of sample 

molecules may exceed the ionisation capacity after which the detector becomes insensitive to 

higher concentrations.  For example, in positive ion mode, when several compounds are 

introduced having similar proton affinities to the target compound, they are ionised in 

accordance with their respective concentrations.  A problem may arise if the target compound 

has a lower proton affinity than those of the interference compounds since they may be more 

easily ionised leaving a depletion of ions for target recognition.  This may cause a false negative 

response such as that mentioned in section 1.1. In this situation, molecules with a high charge 

affinity are more easily ionised than the target chemical, M which causes the response to the 

target to be suppressed.  This effect can be reduced by adding a chemical dopant (reagent gas) 

such as acetone or ammonia into the reaction region allowing the final form of the reactant ions 

to be optimised for selective sample ionisation.   

IMS systems can operate in either positive or negative ion mode depending on the sample for 

detection. In order to do this, the direction of the electric field is arranged to suit (e.g. in positive 

mode to detect cations, the ion source is at a high positive potential (several kV) and the detector 

is virtually at 0V potential).  Nerve agents react efficiently with positive ions in an IMS 

environment whereas for the detection of explosives the IMS must be operated in negative ion 

mode.  This method of ionisation of the sample molecules is known as “Atmospheric Pressure 

Chemical Ionisation” APCI.  In the reaction region where the ions are formed, the high energy 
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electrons from the ionisation source predominantly ionise the nitrogen and oxygen gas molecules 

in the buffer gas (air).  Cations and secondary electrons are formed.  For example; 

N2 + e
-
 (primary) → N2

+
 + e

-
 (primary) + e

-
 (secondary) 

During this process, a steady state of approximately 10
7
 ions per cm

3
 is produced by the 10 mCi 

radiation source. (See Appendix A1.1) 

Positive ion mode 

In the reaction region, the N2
+
 ions are short lived because they rapidly react with other species 

(predominantly O2) and water vapour present in the purified air carrier gas and consequently do 

not appear in the mobility spectrum.  Through a series of ion-molecule reactions the reactant 

(terminal) ions are ultimately produced being predominantly H
+
(H2O)n  (hydrated protons) where 

n typically is 1 to 4. The actual size of the water clusters produced is dependent on the humidity 

in the drift tube. 

If M represents the trace molecule to be detected, and providing that M has a higher proton 

affinity than the water cluster, then the formation of cations follows the route: [66] 

M + H
+
(H2O)n → (MH

+
(H2O)n)*  

        Reactant ion   Cluster ion          

The cluster ion complex may be stabilised by collisions with N2 or another air molecule or 

through a loss of water molecules to form the product ion as follows: 

(MH
+
(H2O)n)*  + N2 → MH

+
(H2O)n + N2   

Or,  (MH
+
(H2O)n)* →MH

+
(H2O)n-x + xH2O   
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The product ion is called a protonated monomer. 

As the concentration of the threat agent M increases, there is a possibility of the formation of a 

proton-bound dimer product ion whereby another sample neutral molecule attaches to the 

protonated monomer,  

i.e.  MH
+
(H2O)n + M → M2H

+
(H2O)n-x + xH2O. 

cluster ion    neutral sample   protonated dimer 

The dimer produces another peak in the IMS spectra.  This observation can reduce the incidence 

of false alarms, since the chance of two different chemicals producing both a monomer and a 

dimer at the same corresponding drift times is less likely than if the monomer drift time only was 

considered. 

Ion Gate 

Once product ions have been formed they enter the drift region in short pulses. This is achieved 

by using an electronically pulsed ion gate. The pulse that triggers the gate operation also triggers 

the data acquisition program to start the timing of the ions from the gate to the Faraday plate.  

A design based on the Bradbury-Neilson gate invented in 1936 is commonly used [87-90] which 

consists of a grid of interdigitated wires as shown in Figure 1.5. When a potential difference is 

applied across the wires (typically 100 V), the ions are deflected through 90º and collide with the 

wires thereby dissipating their charge. The neutrals are then passed through the exhaust port 

along with the contra flowing drift gas. By setting the wires to the same potential (as that of the 

adjacent ring) the ions will pass through the gate and will be carried by the electric field into the 

drift region.  Typically, the gate pulse width is 0.2 ms wide, and operates at a pulse frequency of 
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25 Hz (corresponding to a sampling time of 40 ms).  The time that the gate is ‘open’ is kept short 

to improve ion separation and hence resolution as the ion swarm travels down the drift region. 

(We have found that with gate pulse widths of up to 0.3 ms the full width half maximum 

(FWHM) of the ion peak in the mobility spectrum is relatively independent of pulse width. At 

pulse widths lower than 0.3 ms, there is a rapid fall off in the amplitude of the peak). 

 

Figure 1.5  Alignment of the grids forming the ion gate to allow interdigitation of the wires. 

The ion gate is formed from two etched grids where the wires are offset relative to each other by 

half a grid spacing.  The grids are then aligned one on top of the other (with an intervening 

insulating ring to provide isolation).  One side of the grid is connected to its adjacent ring, the 

other side then being connected to the gate pulse circuit. 

Drift Tube 

In the drift region, the ions travel along the electric field lines from the gate to the collector, 

separating out along the way according to their mobilities. When the ions reach the collector, 

they are discharged and produce an electric current which is then amplified by the corresponding 

circuitry. 
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If the drift tube is too short, this could result in overlapping peaks because ion-separation may be 

insufficient, resulting in poor resolution.  By using long drift tubes better separation of the ions 

can be achieved.  However, as the ions pass down the drift tube, they gradually spread out axially 

and disperse radially due to diffusion and coulombic repulsion [91] from their similarly charged 

neighbours. The overall effect is the loss of ions and broadening of the mobility peaks with a 

subsequent loss in peak intensity. These constraints therefore impose practical limits on the 

dimensional size of the drift region. [92-94] 

The issues of diffusion and resolution are outlined in more detail in section 1.9. 

In our instrument, the construction of the drift tube used (referring to figure 1.2) is such that 

there are 16 rings in total, each 9 mm wide and equally spaced apart at 2 mm separation.  The 

length of the drift region (from gate to FP) is 10.36 cm and with 4.5 kV applied to the high 

voltage connection on the first ring, the electric field gradient is produced along the axis of the 

drift tube is 217 V/cm.   

The temperature of the drift tube is controlled, and set to a temperature of 30 ºC to avoid the 

need to compensate for changes in ambient temperature.  (Miniaturised portable systems such as 

the CAM do not have temperature control in order to conserve power.  Instead, they monitor the 

tube temperature with a thermistor and take this into account at the signal processing stage when 

calculating ion mobility). 

Pressure changes will also affect the signal response times and so must also be taken into account 

when obtaining a reduced mobility.   
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Screen grid 

Just prior to reaching the Faraday plate (FP), the ion swarm pulse passes through a screen 

electrode (a perforated piece of stiff gold plated foil) placed approximately 1.5 mm in front of 

the FP).  The purpose of this is to shield the FP from the electric field produced by the oncoming 

ion swarm, which would otherwise induce an unwanted signal (an image current) that would 

degrade the sharpness of the peaks. In our instrument, the optimum potential applied to the 

screen to allow maximum ion transmission was found to be around +25 V.  A side issue from 

introducing the screen grid is that it forms a microphonic effect with the Faraday plate 

introducing noise interference from any vibrations due to the turbomolecular pumps used on the 

mass spectrometer (see later), which is then superimposed onto the ion response signal.  This can 

be minimised by averaging the data obtained over a number of mobility spectra in order to have 

an acceptable signal to noise ratio (typically taking approximately 20 s to do 500 averages). 

Faraday plate (FP) 

This is the final destination for most of the ions and is located at the end of the drift tube. As the 

ions strike the FP they release their charge.  The number of ions hitting the FP gives a 

proportional signal strength and hence the height of a peak is an indication of the relative 

concentration of the representative chemical. 

The FP is simply a circular metal disk with a laser etched hole of diameter 0.07 mm in the centre 

to produce an orifice that allows a sample of the ions to pass from the drift tube (at atmospheric 

pressure) into the vacuum of the mass spectrometer to enable them to be mass analysed. Only 

about 0.1% of the total ions get through due to the requirement of such a small orifice to 

maintain the pressure differential.  
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(Prior to the ions entering the mass spectrometer, the Faraday plate and screen grid are mounted 

on the inlet to the mass spectrometer chamber, and are supplied from separate voltage sources.) 

The current pulse flowing from the FP is in the order of about 0.1 nA and so must be suitably 

amplified prior to it being digitised to facilitate processing for display of the ion mobility 

spectrum. [95] The amplification process is achieved by converting the current to a proportional 

voltage which is then amplified to produce an output of 1V when the input current is 10 nA. The 

digitisation involves conversion from the analogue voltage into its equivalent binary form using 

a data acquisition card (the type used is the PCI-6014 manufactured by National Instruments). 

[96]  

A mobility spectrum is obtained by averaging over several hundred scans in order to reduce 

unwanted background noise picked up from the turbo molecular pumps such that an acceptable 

signal-to-noise ratio is reached. 

The amplifier and all of the other associated electronics required to operate the IMS were 

designed and built in the laboratory, the details of which are described fully in chapter 2. 

Displaying of mass spectra and ion mobility spectra was accomplished by using a suite of 

programs developed using LabVIEW version7.1 (© National Instruments).  A description of the 

programs and the associated hardware connections is provided in Chapter 3. 

1.9  IMS Performance and limiting factors 

There are two aspects critical to IMS performance which are outlined below: 

Resolving power – the ability of the instrument to distinguish between different ion 

peaks. 
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Sensitivity – this is a measure of the instruments capability to detect low concentrations 

(ppmv to ppbv) of a threat agent as an observable signal above background noise.  

A definition of the resolving power of an IMS instrument usually quoted [97] is:  

𝑅𝑝 = 
𝑡𝑑

𝑡𝑤
           (1.2) 

Where 𝑡𝑑 = drift time of the ion peak and 𝑡𝑤 = width of the ion peak at half its maximum height 

(also called ‘full width at half maximum’ FWHM.) 

For commercial instruments, the value of 𝑅𝑝 is typically 30 to 50 and around 150 for high 

resolution systems [66].  For our system, it was found that 𝑡𝑤 was 0.3 ms when the RIP for water 

clusters arrived at a 𝑡𝑑  of 20.6 ms giving a value for 𝑅𝑝of approximately 69. Since resolution is 

also dependent on gate pulse width and field strength, these parameters need to be taken into 

consideration to optimise the RIP without losing too much signal peak intensity [98]. 

1.10  Theoretical Considerations of IMS Operation 

Within a short time interval an ion may collide with a neutral drift gas molecule which could 

slow or even stop its motion. It then accelerates again until another collision occurs.  The average 

distance that an ion travels between collisions is reflected by its mean free path.  As a result of 

this continuous acceleration and deceleration of individual ions, the ion swarm will eventually 

reach an average terminal speed known as the drift velocity 𝑣𝑑. Thus, the velocity is dependent 

on the collision frequency (ions with larger cross-sections will collide with molecules in the drift 

flow more frequently than ions having smaller cross-sections).  Owing to the large number of 

collisions, the total distance an ion travels through its ‘random walk’ is roughly 50 times that of 
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the gate to the collector [66].  In our instrument, we found that 𝑡𝑑 for H3O
+
 is about 20.6 ms (at 

𝐸 = 217 V/cm, 𝑇 = 30 ºC and 𝑃 = 1006 mbar). The length of the drift region is 10.36 cm and so 

the velocity 𝑣𝑑  is approximately 5 m/s.   

The mobility constant 𝐾 has a specific value for a particular ion under a given set of conditions 

of temperature, pressure and drift gas. It has been found from early experiments on ions in gases 

(around 1934), that the mobility K is independent of the ratio of 𝐸/𝑁 up to about two Townsends 

(Td) (where 1 Td = 10
-17

 Vcm
2
). 𝑁 is the number density of the ions.   However, at values of 

𝐸/𝑁 greater than about 2 Td, mobility does become dependent on 𝐸/𝑁 [66].   For our 

instrument, 𝐸/𝑁 is set at approximately 0.94 Td (see calculation in Appendix A1.2). 

The weak field relationship between 𝐾 and the diffusion coefficient 𝐷 is given by the Einstein 

relationship 𝐾 = 
𝑒𝐷

𝑘𝑇
 where 𝑒 is the charge on the ion, and 𝑘 is Boltzmann’s constant. This 

equation is valid only when the electric field does not cause heating of the ions. To satisfy this 

condition, the energy gained by the ions from the electric field between collisions should be 

much less than their thermal energy.  When this is not the case, the ions are no longer 

thermalised, the diffusive forces are not spherically symmetrical and the Einstein equation 

becomes invalid. 𝐾 then becomes dependant on the ratio 𝐸/𝑁.  

Thus, 𝐸 must be a relatively weak field in order for 𝐾 to be independent of field strength. At 

high field strengths, the drift velocity and hence 𝐾 becomes unpredictable.  

In our instrument, the energy gained by the ions from the electric field is only about 0.013% of 

their thermal energy (see appendix A1.3).  
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1.11  Determining 𝑲 theoretically 

From the theoretical modelling by Revercomb and Mason [99] and McDaniel [100] of ion 

behaviour in an electric field, a fundamental relationship between ion mobility and collision at 

the molecular level is commonly quoted when considering the effect on 𝐾 of various parameters. 

Namely: 

𝐾 = 
3𝑞

16𝑁
(

2𝜋

µ𝑘𝑇
)

1

2
(

1

Ω
)        (1.3) 

 

 

where: 

µ =  
𝑀𝑚

𝑀+𝑚
 is the “reduced mass” of the ion, 𝑚 is the mass of the ion, 𝑀 is the mass of 

the drift gas, 𝑞 is the charge on the ion, 𝑁 is the number density of the drift gas, 𝑘 is 

Boltzmann’s constant, 𝑇 is the absolute temperature, and Ω is the collision cross section 

of the ion in the drift gas. 

 

When 𝑚 >> 𝑀,  µ approximates to 𝑚 and so 𝐾 varies only in inverse proportion to Ω. (The 

cross section Ω is determined from the ions size, shape and polarisability.)   

It is the variation of mobility with ion cross-section that causes the separation of different ion 

species and forms the basis of IMS.  Conversely, when 𝐾 is known, the cross-section of the ion 

can be found from a re-arrangement of equation 1.3. 

1.12  Determining K Practically  

If  𝑉 is the voltage on the drift ring at the start of the drift region relative to ground (at the end of 

the drift region), and 𝐿 is the length of the drift region, then  𝐸 = 
𝑉

𝐿
  , but  𝐾 =  

𝑣𝑑

𝐸
 and so 
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𝐾 = 
𝐿𝑣𝑑

𝑉
 ,   but 𝑣𝑑 =  

𝐿

𝑡𝑑
   which finally gives K = 

𝐿2

𝑉𝑡𝑑
        (1.4) 

With 𝐿 and 𝑉 fixed, we can set a constant b = 
𝐿2

𝑉
 and so 𝐾 = 

𝑏

𝑡𝑑
     

Thus 𝐾 for a particular ion is easily calculated from its arrival time.  

For given operating conditions of pressure and temperature, the ion mass and cross section 

fundamentally determine the mobility of an ionised compound. The normalised operating 

conditions agreed on within the IMS community are at standard temperature and pressure (STP)  

which can be approximated by converting the measured mobility into a ‘reduced mobility’ so 

allowing comparison to be made with 𝐾0 values obtained by other workers in the field where 

different operating conditions may exist.  Temperature and pressure changes will affect signal 

response times and so must be compensated for during signal processing.  The measured 

mobility 𝐾 is then expressed as a reduced mobility 𝐾0 where: 

𝐾0 = 𝐾  
273

𝑇

𝑃

1013
         (1.5).        

 𝑇 represents the temperature of the drift gas in degrees Kelvin and 𝑃 is the pressure inside the 

tube in mbar.  By doing this, comparisons can be made between systems having different 

operating conditions.   

1.13  Effect of errors in measurement of 𝑲𝟎 

Errors in measuring the parameters 𝐸, 𝐿, 𝑇  and 𝑃 are due to various factors which will influence 

the final value obtained for 𝐾0, these being: 
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E – Apart from error in the direct measurement of the applied voltage 𝑉𝐻𝑇, the linearity of the 

electric field depends on the tolerance in value of the series of resistors forming the divider 

chain.  Since high value resistors are difficult to obtain with tolerances < 5%, this will affect the 

homogeneity of the electric field.  

L – It is not straightforward to directly measure the distance between the gate and the FP and so 

it must be inferred from design drawings. The distance is also influenced in operation by thermal 

expansion and clamping pressure on the ‘O-ring’ seals. 

T – Ideally, this represents the actual temperature of the drift gas.  It is not however possible to 

measure this directly using a thermocouple since any additional connections involve dissimilar 

metal-metal contact introducing errors in the overall equivalent thermal voltage presented by the 

thermocouple.  The temperature is therefore measured at the body of the drift tube and so a 

deviation from the actual drift gas temperature may be present. 

P – The pressure of the drift gas may be determined with reasonable accuracy from monitoring 

the pressure of the carrier gas supply as it enters the drift region (the ‘contra flow’).   

Errors in measurement of the parameters are in the order of ±1% for 𝐿, ±2% for 𝑉𝐻𝑇, ±1% for 

𝑡𝑑, ±2% for P and ±1% for T.  The overall error can therefore be calculated and is around ±5% 

to a first approximation.  This figure is in agreement with that given in a paper by Vautz et.al. 

[101].  

The drift time for water clusters in air mentioned in section 1.2.3 for our system was 20.6 ms, 

and using equation 1.3 gives 𝐾  = (10.36)
2
 / (2194 x 0.0206) = 2.38 cm

2
/Vs  (𝑉 was measured as 

2194 V when the applied voltage 𝑉𝐻𝑇 was 4500 V.) 
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At 30 ºC (𝑇 = 273 + 30 = 303 𝐾) and P = 1006 mbar, then from equation 1.5,                                                                     

𝐾𝑜 =  2.38 (
273

303
) (

1006

1013
) = 2.12 ± 5% cm2 V−1 s−1 which is only about 2.8% larger than 

that quoted by Vautz et. al, although their operating temperature was less than that of the present 

study. Within experimental error, the values of 𝐾𝑜 can be considered to be in agreement.  Values 

of 𝐾𝑜will to a certain extent be machine specific.  This is because it is a characteristic of the 

instrument which varies with humidity and temperature of the carrier gas, in turn affecting the 

concentration and size of the water clusters surrounding the ion and hence its mobility.  

1.14  Ion-molecule reactions in the positive ions mode 

In an undoped system, ion mobility peaks seen in the absence of analyte are generally due to 

protonated water clusters being H
+
(H2O)n  where n = 1 to 4 as discussed in chapter 4.  The water 

clusters H
+
(H2O)n signifying the RIP appear in the mobility spectrum as a single peak 

representing the weighted average of their drift times.  This is due to the clusters continually 

switching in size due to break up from collisions with carrier gas molecules and then reclustering 

according to the relationship  

H
+
(H2O)n ⇌ H

+
(H2O)n-1 + H2O. 

The use of chemical dopants 

It was mentioned in section 1.1 that one of the main problems associated with detection of 

chemical warfare agents (CWAs) using ion mobility spectrometry is that it is prone to giving 

“false positives” from environmental compounds having mobilities similar to that of a CWA.   A 

reduction in response to these interfering background chemicals may be gained by using a 
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chemical dopant in the ionising region.  This is the approach taken with IMS systems for military 

and security use.   

With the system undoped and operating in positive mode, the reactant ion peak is formed from 

the protonated water cluster ions H
+
(H2O)n where n = 1 to 4 clusters are dominant.  The proton 

affinity (PA) of water quoted by NIST is 165.2 kcal/mol [102] and any chemical molecule with a 

higher PA will spontaneously react with the protonated water to form a product ion.  In the case 

of higher order water clusters, a proton transfer reaction will take place providing that the PA of 

the neutral cluster is less than that of the analyte molecule [103,104].  This condition can be 

stated as  

H
+
(H2O)n + M → MH

+
 + (H2O)n occurring spontaneously when PA(H2O)n < PA(M), whereby 

the change in enthalpy of reaction ∆H = PA(M) – PA(H2O)n  > 0,  with n = 1, 2, 3 …. is 

exothermic. 

The level of hydration may thus place a limit on the ability to detect certain analytes.  For 

example, the PA of water clusters increases with cluster size as seen in table 1.1 given by Cheng 

[105]. (PA values for water clusters differ slightly between various authors by about 3%.) Thus, 

in a dry system, it may be possible to protonate vapours of say, isopropyl alcohol which has a PA 

of 189.5 kcal/mol when only single water molecules (PA = 173.4 kcal/mol) are present.  For 

higher order water clusters however, their PA is >189.5 kcal/mol and so protonation would then 

not be possible. In most IMS systems particularly those operating at ambient temperatures (as is 

the case with portable military systems where clustering is also inevitable), certain vapours such 

as those arising from explosives are not generally detectable in positive ion mode.  In such cases, 
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the negative ion mode of operation is used where it is found that the electron affinity of the 

analyte provides a more energetically favourable route for a reaction to occur. 

Table 1.1  Proton affinity of water clusters (H2O)n as stated by Cheng [105] 

H
+
(H2O)n , n 1 2 3 4 5 

PA (kcal/mol) 173.4 206.6 213.5 223.7 231 

 

By adding a dopant to the carrier gas, a change in ionization selectivity is achieved.  For 

example, by doping with ammonia (NH3) vapour, the reactant ion will change to (H2O)nNH4
+
, 

which selectively ionizes compounds with a higher PA  than NH3 (204.0 kcal/mol). Thus any 

interferents with PA > H2O and < NH3 that may have been seen in a water chemistry based 

system will now be suppressed in an ammonia based system, hence the incidence of false 

positives due to these interferents will be reduced. 

Dopants currently in use with military IMS systems are monomers of ammonia (PA = 204.0 

kcal/mol) and acetone (PA = 194.1 kcal/mol).  These dopants therefore provide a system that is 

less susceptible to background interferants.  CWAs which are mostly organophosphates having a 

PA  > 210 kcal/mol will thus form product ions from a doped system.  Using a dopant affects the 

ion drift velocity since it will change the size of the cluster ion, i.e. if M represents the sample 

molecule, then in an undoped system, the product  ion would be the protonated monomer 

MH
+
(H2O)n.  But for the same system  with say, acetone doping, there would be instead, the 

protonated acetone associated monomer MAcH
+
(H2O)m where m < n. [66]  Therefore since 

MH
+
(H2O)n will have a smaller cross sectional area than MAcH

+
(H2O)m  (H2O has a mass of 18 

amu whereas Ac being OC(CH3)2 has a mass of  58 amu) it will have a higher drift velocity and 
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hence mobility.  Note, ammonia  NH3 has a mass of 17 amu and so ions formed from using this 

dopant will have a higher drift velocity than in the undoped case.  This effect would be 

advantageous for separating out peaks that may otherwise have overlapped in an undoped 

system.  For example, it can also be used to shift the RIP to a position away from that of the 

target chemical in cases where they otherwise may overlap (causing false negatives).   

Whether doped or undoped, a sufficiently high concentration of sample will produce a proton 

bound dimer in the mobility spectrum. Very high concentrations may lead to the formation of 

trimers. 

1.15  Ion-molecule reactions in the negative ions mode 

In a manner similar to that for the formation of positive ions, negative ions are formed from 

initial collisions of molecules with electrons.  The molecular cross-section is dependent on the 

energy of the electrons and the electron affinity of the molecule [106]. At ambient pressure, beta 

electrons from the 
63

Ni radiation source will be rapidly thermalised to a low energy state. During 

this process, each beta particle ionises a considerable amount of N2 and O2 molecules. For 

example, the ionisation potential of N2 is ~15.6 eV and so with an average energy of 17 keV, 

each beta particle could ionise ~1000 N2 molecules producing ~1000 secondary electrons. In a 

pure nitrogen carrier gas the secondary electrons can be observed in the mobility spectrum [107] 

and act as ‘reactant ions’. The N2
+
 ions however have a very short lifetime and are therefore not 

seen in the mobility spectrum.  

In air, the thermalised electrons attach to oxygen through three body collisions [108] to form O2
-
 

and its hydrates as follows: 

 Z + O2 + e
-
 → O2

-
 + Z 
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Z + H2O + O2
-
 ↔ O2

-
H2O + Z 

Also,  Z + H2O + O2
-
 H2O ↔ O2

-
(H2O)2 + Z 

Where Z represents the stabilising third body which may be N2, O2, H2O or another neutral 

molecule. 

Table 1.2 lists ions seen in previous investigations by Spangler [109] and Carr [110] using IMS-

MS systems.  These are a result of using air with a significant CO2 content. Ions containing Cl
-
 

and CN are from impurities. 

Table 1.2  Reactant anions observed in previous studies by Carr and Spangler [109,110] 

m/z 26 32 35 35 42 46 50 

(Carr) CN
-
 O2

-
 Cl

-         
  CNO

-
 NO2

-
  

(Spangler)  O2
-
 Cl

-         
 (H2O)OH

-
  NO2

-
 (H2O)O2

-
 

        m/z 52 53 60 64 68 76 

(Carr) (H2O)2O
-
  CO3

-
 O4

-
  CO4

-
 

(Spangler)  (H2O)OH
-
   (H2O)2O2

-
 CO4

-
 

 

With an analyte M present, the analyte may react with the reactant ions via charge exchange and 

a loss of water to form product ions as follows: 

M + O2
-
(H2O)n  → MO2

-
(H2O)n*  

MO2
-
(H2O)n* ↔ MO2

-
(H2O)n-1 +

 
(H2O)  although other mechanisms such as proton abstraction 

can also occur, i.e.  

M + O2
-
(H2O)n  → (M−H)

-
 + HO2(H2O)n  
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1.16  Concluding remarks 

In this first chapter, the concept of ion mobility spectrometry has been introduced in general 

along with the advantages of coupling to a mass spectrometer to gain additional information on 

the chemical processes taking place.  Information specific to our instrument was mentioned and 

this will now be greatly expanded on in the following chapters. In chapter 2, the design and 

application of the instrumentation used to control principally the IMS section of the system will 

next be discussed. 
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CHAPTER 2 DEVELOPMENT OF THE IMS-QMS INSTRUMENTATION 

In this chapter, the hardware aspects of the system and its instrumentation developed 

to control the IMS are discussed.  Although the mechanical hardware is mentioned, 

this chapter chiefly concerns the development and application of the electrical and 

electronic parts of the system.                          

2.1  Practical system arrangement 

Figure 2.1 below is a schematic drawing of the Birmingham IMS-QMS system 

showing the drift tube, differential and mass spectrometer regions, and the 

configuration of the air flows.  This is a modification of the system originally used by 

the group for electron attachment studies [111] where a different type of drift tube 

was used, which was found to be unsuitable for our purposes.  

 

 

                    SEM (channeltron)       quadrupole mass spectrometer     drift region   source region 

                                                                                                                                                                                                    

 

 

 

 

 

Figure 2.1  Schematic layout of the IMS-QMS system showing the IMS-QMS interface and 

flow of carrier gas  
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From figure 2.1 it is seen that in the drift tube, carrier gas is introduced as the forward 

flow in the source region, and as the contra flow in the drift region.  The flows then 

pass through orifices drilled along the periphery of the guard ring connected to the ion 

gate, and out through the exhaust port. 

A thermocouple is used to measure the temperature of the outer flange where the 

connections are made for the gas flows and electrical items.  This provides a 

reasonably accurate value of the temperature of the carrier gas in the drift region (see 

appendix A4.11).  

In order to gain maximum signal sensitivity, the channeltron is used in preference to 

the Faraday Plate (FP) within the mass spectrometer. Two issues to be aware of when 

using a channeltron are: 

 Unlike a FP, a channeltron can be saturated when the signal strength is too 

high (or even damaged when excessively high) – which however is very 

unlikely in our system where analyte concentrations are typically in the ppbv 

range, resulting in relatively low signal counts. 

 A FP has an absolute measure of sensitivity, however, the performance of a 

channeltron will gradually diminish over time as the emissivity of its surfaces 

degrades. 

An important consideration is the amount of moisture present in the carrier gas flows.  

In order to remove as much moisture as possible from the carrier gas supply, a 

molecular sieve is connected in series with the source.  In order to determine how 

effective the sieve is, the amount of moisture in ppmv was measured as described in 

the next section. 
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2.2  Measurement of relative humidity in the gas flows 

The relative humidity (RH) is a measure of the amount of moisture present in the air 

and is expressed at a particular temperature as: 

𝑅𝐻 =   
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡  

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒
     𝑋 100 %                                

The ‘Dewpoint’ refers to 100% saturation of the air (corresponding to the 

denominator in the above equation) beyond which on any further cooling, 

condensation will occur.  Since, cooler air can hold less moisture, the relative 

humidity increases as the temperature falls reaching 100% at the dewpoint.  In order 

to measure the RH of the incoming clean air supply to the IMS, a  dewpoint 

measuring instrument “EasiDew” manufactured by Mitchell Instruments was used. 

[112] 

In mass spectrometry, it is considered convenient to quote the moisture content of air 

in ppm by volume (ppmv).  This can then be related to RH by a using conversion 

factor as explained in a technical article by Mitchell Instruments [113]. 

Moisture content of the lab air used 

Using the ‘easidew’ portable hygrometer, the dewpoint (ºC) was measured of the air 

flowing from the molecular sieve. The manufacturers recommended flow rates for 

obtaining an accurate reading are between 1 and 5 l/min, and so the flow rate was set 

at around 1.2 l/min (with 0.3 l/min in the forward flow and 0.6 l/min contra flow) to 

conserve the supply of gas. 



32 

 

After allowing an hour or so for the sensor to become conditioned, the air from the 

molecular sieve gave a reading of -65.8 ºC dp.  which corresponds to a low water 

vapour concentration of 9.1 ppmv. 

Without using the sieve, a reading of 10.6 ºCdp  was obtained which corresponds to a 

high water vapour concentration of 12778 ppmv.  Thus, the molecular sieve 

effectively blocked most of the moisture in the air from reaching the system.   

2.3  Carrier gas considerations 

In Chapter 4 section 4.2.1, the dewpoint of the air in the drift tube is quoted as -65.8 

°Cdp corresponding to 9.1 ppmv of water vapour. This level of moisture enabled the 

production of sufficient reactant ions to allow the system to be characterised.  Since 

then, two factors regarding the gas flows have arisen that require addressing: 

1.  It may be necessary to have moisture levels down to around 2 ppmv for the 

investigations described in this chapter to be made. 

2. It would be better not to have to shut down the system after use (which is 

necessary to avoid using up the bottled compressed air) but to leave the carrier 

gas flows permanently on.  This would keep the system clean by avoiding the 

ingress of contaminants.  It was also seen from the hygrometer readings that it 

took several hours for the moisture content in the system to diminish after 

switch-on of the gas flows and so this concern would also be addressed with a 

permanent flow of carrier gas. 

In light of the long settling time also taken for the system to stabilise electrically after 

switch-on, (see Tests 4.9 and 4.10) the high voltage to the drift tube could then be 

permanently connected (since the system would then no longer require pumping down 
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after use). Clearly, a permanent supply of carrier gas precludes the use of bottles, and 

so a solution would be to pipe compressed air from an oil-free air compressor 

followed by a pressure swing drier to remove most of the moisture before passing 

through molecular sieves to trap any hydrocarbons present and to reduce the moisture 

content further. 

Prior to having this facility of a permanent clean air supply, the investigations 

described in this thesis were made using bottled pure air or nitrogen as the carrier gas. 

The gas was passed through a series of molecular sieves to reduce the hydrocarbons to 

insignificant levels, and the moisture content in the gas flows to a few ppmv.   

2.4  Calculating reduced mobilities 

From mobility spectra, the reduced mobility of the analyte can  readily be determined 

as follows: 

Considering equation 1.4 in chapter 1 (page 21) and calculating K using in our case 𝑇 

= 30℃ = 303 K and 𝐿 = 10.36 cm, the equation for reduced mobility becomes; 

 𝐾0~ 
0.095462

𝑉
 × 

𝑃

𝑡𝑑−𝑡𝑚𝑠 −𝑡𝑓 

          (2.1) 

where 𝑃 is in mbar, 𝑡𝑑 is in ms as measured at the detector (being the channeltron in 

the mass spectrometer), 𝑡𝑚𝑠 is the transit time of the ions through the mass 

spectrometer (i.e. Faraday plate-to-channeltron, ~0.3 ms) and 𝑡𝑓 is the group delay 

time of the reconstruction filter (~0.2 ms when used).  Note, the voltage across the 

drift region (measured at the gate) is 2194 V with 4.5 kV applied across the drift tube 

terminals.  Thus, the voltage across the drift region is  
2194

4.5
 × 𝑉𝐻𝑇 = 487.56 × 𝑉𝐻𝑇 . 
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With VHT in kV, equation 2.1 can be written as:  𝐾0~ 
95.462

487.56×𝑉𝐻𝑇
 × 

𝑃

𝑡𝑑−𝑡𝑚𝑠 −𝑡𝑓 

 

i.e.     𝐾0~
0.1958

𝑉𝐻𝑇
 × 

𝑃

𝑡𝑑−𝑡𝑚𝑠 −𝑡𝑓 

        (2.2) 

2.5  Electronics Development 

This section describes the development processes for the electronics requirements of 

the IMS-QMS system. (The existing electronics for the mass spectrometer was 

manufactured by VG Quadrupoles.)  For the mechanical aspects, an adaption was 

made of a set-up used previously in the group for electron attachment studies. This 

provided all the necessary requirements in terms of a drift tube, a mass spectrometer 

and associated vacuum pumps.  However, an alternative drift tube was used that was 

found to give a better response.  The main needs for which electronic circuitry was 

produced were for: 

 Trigger and gate pulse generation for data acquisition and ion pulse control. 

 Gate pulse interfacing (to the drift tube). 

 Ion current amplification (using an electrometer). 

 Switching the Faraday plate between ion collector and ion lens mode. 

 Control of the drift tube heater. 

 Acquisition of channeltron pulses and processing for tuned mass mobility. 

The signal requirements of the LabVIEW data acquisition programs were also a 

consideration in the design of the electrometer in terms of the voltage level required to 

represent an ion current of 1 nA such that the onboard A/D converter was not 



35 

 

overloaded. The design and rationale for the requirements of the above sections  are 

described in this chapter.   

A common power supply consisting of a stabilised and over-current protected voltage 

supply of ± 12 V was used to power the circuits of all the sections mentioned above, 

except for the gate pulse interface unit, which has its own special power sources 

internally derived from the 230 V input mains supply. 

2.6 Trigger and Gate Pulse Generator 

A block diagram of the principle sections comprising this unit is shown in figure 2.2 

following. 

The trigger output connects to the LabVIEW interface box (where all the connections 

from the peripheral devices are made) and the gate output connects to the gate 

interface unit.  Integrated circuits using the NE555 timer chip manufactured by Texas 

Instruments [114] were used for generating the astable and monostable functions.   

            

 

 

 

             

 

 

Figure 2.2  The functional blocks of the gate pulse generator 
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Figure 2.3 shows the circuit diagram of the basic astable (using IC1), differentiator, 

and the monostable (using IC2) sections developed for this project.  Although more 

stable pulses could be derived from a crystal-controlled digital circuit using logic 

gates, this would be considerably more complex to design and build due to the fine 

variations in, and wide range of, pulse width and frequency required.  By using the 

analogue timer, this enables the requirements of the pulse generator to be met more 

easily.  With regards to stability, the NE555 is quite stable but although inferior to that 

of a crystal, it is of no consequence here since immediately the trigger pulse occurs, 

an accurate scan over 40 ms is taken by using the data acquisition board (NI6014) that 

accompanies LabVIEW.  Subsequent scans only require that the trigger pulse occurs 

at fairly constant intervals of slightly greater than 40 ms.  (If somewhat less than 40 

ms, an extra partial scan is seen in the ion mobility spectrum.)   

 

Figure 2.3  Circuit diagram showing the main operating sections of the pulse generator 

IC1 forms the Astable multivibrator section providing trigger pulses for the LabVIEW 

data acquisition card (DAQ).  It also (when switched to internal trigger) provides via 
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the differentiator circuit, trigger pulses for IC2 which forms the Monostable 

multivibrator section that provides the pulses out to the gate interface unit. C4 

represents the ‘pulse width range extension’ section which is described later. 

Design considerations for the pulse generator 

The frequency of the gate pulses in IMS systems is typically 25 Hz corresponding to a 

time period of 40 ms for the ion mobility spectrum.  For flexibility, it was decided to 

make this variable between 10 and 50 Hz.  Figures 2.4 and 2.5 show how the 

connections are made to the ‘555 timer to obtain Astable and Monostable operation 

respectively.  In the formulae for frequency and time calculations, 𝑅𝑎 = 𝑅𝑣 + 𝑅1  

 

  

 

 
Figure 2.5  Monostable timing 

component connections 

𝑓 = 
1

1.11𝐶(𝑅𝑎+2𝑅𝑏)
     (2.2) 

Figure 2.4  Astable timing 

component connections 

𝑡 = 1.11𝐶𝑅𝑎      (2.3) 
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The actual calculations made for determining the values of the timing components are 

given in appendices A2.1 and A2.2. 

The Differentiator circuit 

Referring back to figure 2.3, the differentiator (shown dotted) is required to produce 

the negative edge to trigger the monostable.  The time constant of 1 nF × 10 KΩ = 10 

µs is more than adequate for the minimum requirement of  a 1 µs trigger pulse width. 

 Enhancements made to improve functionality 

Although the pulse width was initially variable between 1 ms and 5 ms, this range was 

extended by providing selectable range multiplication factors of ×0.1, ×1 and ×10.  

This was accomplished by using two toggle switches to select appropriate values of 

capacitance as shown in figure 2.6.  The ×10 toggle switch was added later to 

investigate the effects of long pulse widths on various parameters (as described in 

chapter 4).  If this extended feature is still desired, a rotary switch could be used in a 

future version of the pulse generator to replace the two toggle switches. 

 

Figure 2.6  Pulse width range extension 
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A switch was used to enable the output to the gate interface unit to be either at 0V, 

connected to the pulse line, or at +5V corresponding to the gate being open, pulsed, or 

closed as shown in figure 2.7.  The pulsed position is used when obtaining mobility 

spectra whereas the open position is used when obtaining mass spectra. 

         

 

 

A further modification was made to provide the capability of external or internal 

triggering of the gate pulse, as shown in figure 2.8.  This was to allow LabVIEW to 

control the time that data acquisition began (an idea that was initially thought 

necessary when developing the tuned ion mass mobility software, but was eventually 

found to be not required for the particular solution that was employed).  The facility to 

have digital control from LabVIEW may, however, be useful for any future 

enhancements to the system and so it has been retained. 

 

Figure 2.8  External/internal trigger selection 

    Selection   Gate operating mode 

    0V    Closed 

    +5V    Open 

    pulses   Pulsed 

 

Figure 2.7  Control of gate operating mode. This provides a choice 

of either pulsed, open or closed gate operation. 
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The circuitry was constructed on two generic ‘555 timer’ printed circuit boards (RS 

number 434-071) from RS Components Ltd. [115] 

2.7  The Gate Interface Unit 

A block diagram of the principle sections of the gate interface unit is shown in figure 

2.9.  Here, it is important to ensure safety of personnel by effectively isolating the 

high voltages associated with the drift tube from the low voltage gate pulse generator 

circuitry.  This is accomplished by using an opto-isolated interface whereby the input 

signals are converted to light by an Infra Red (IR) diode on the low voltage side, and 

then reverted back to electronic signals by a phototransistor on the high voltage side.   

The mains transformer has been flash tested at 5 kV and so is guaranteed by the 

manufacturer to withstand this amount of voltage between its primary and secondary 

windings before breakdown.  This is more than adequate since the highest voltage 

present on the gate is 2.25 kV. The internal power supply provides 110 V dc which 

connects to a variable regulator  to control the voltage supplied to the output stage that 

then switches the voltage applied to the isolated grid in the B-N gate. Hence this 

provides regulated control of the amplitude of the gate pulse.  The reference grid is 

connected to the adjacent drift ring. 30 V dc  is connected across the opto-isolator 

section that contains a built-in Schmitt trigger so that a sharp pulse is obtained to 

operate the output stage. 
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VHT is the high tension voltage supply to the interface circuit.  From this the adjacent 

ring voltage VRING and ionisation source voltage VION  are derived.  VPULSE is the gate 

pulse voltage. 

The following sections provide details of the circuits used to implement each of the 

blocks shown in figure 2.9.   

2.8  Raw dc Power Supply for the Variable Gate Voltage Regulator 

The circuit diagram for this is shown in figure 2.10.  In order to provide isolation from 

the mains supply and to keep the component size to a minimum, two miniature circuit 

Raw dc 

Power 

Supply 

+110V dc  

 +30V dc 

Variable 

Regulator 

    1 to 100V dc 

Regenerative 

output stage. 

Opto-isolated 

interface 

having a 

Schmitt trigger 

drive to output 

stage logic. 

VHT  

in 

Drift tube 

230V  

mains in 

TTL level  

gate pulses 

Switched 

ion 

source 

voltage 

VPULSE  VHT   VRING   VION 

SOUR

CE 

Figure 2.9  Principal sections inside the gate pulse interface unit 
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board mounting 230 V to 24 V step down transformers were used.  They were 

certified as being flash tested at 5 kV which was considered sufficient to withstand the 

voltage differential of around 2.5 kV between primary and secondary windings. 

After rectification and smoothing, shunt regulation using zener diodes was 

incorporated to limit the output voltage to the maximum required by the variable 

regulator. 

 

 

The adjustable regulator used (TL783) takes 15.2 mA (as described in section 2.12).  

To allow nominally 3.5 mA through the zener diodes resistor 𝑅𝑆 can be calculated 

from 𝑅𝑆 = 
(125−103) 𝑉

(15.2+18.7)𝑚𝐴
  kΩ which to the nearest preferred value, is 

approximately 1.2 K 

The capacitor 𝐶𝑑 decouples mains hum which was found to be induced from the 

mains transformer onto the ring adjacent to the gate. 

The 22 kΩ resistor was connected across the output to ensure that the 220 μF output 

capacitor discharges within 30 s (𝐶 × 𝑅=4.8 s) after switch off.  This is to remove any 

possibility of accidental electric shock occurring if the circuitry were to be probed 

Figure 2.10  Raw dc power supply for the gate interface 
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afterwards.  The power dissipated in the discharge resistor is calculated from the 

expression 
𝑉𝑍

2

22𝐾
 (mW) = 482 mW.  As this is close to 0.5 W, a 1 W rating resistor was 

used. 

2.9  Variable Gate Voltage Regulator 

In order to maintain a stable and variable gate voltage, a circuit was used based 

around the 1.25 V to 125 V adjustable regulator type TL783 manufactured by Texas 

Instruments (Farnell order code 959-4582).  The circuit diagram is shown in figure 

2.11.  The current supplied by the regulator to the gate pulsing circuit is negligible and 

so the current demand for this circuit is merely that required for the regulator. 

 

Figure 2.11  Adjustable voltage regulator for the gate pulses  

The output voltage is governed by the equation: 

 𝑉𝑜 = 𝑉𝑟𝑒𝑓(1 + 𝑅2/𝑅1)   where 𝑉𝑟𝑒𝑓 = 1.25 V  (= 𝑉𝑜 − 𝑉𝐴𝑑𝑗)        (2.4) 

The value of R1 is that recommended by the manufacturer in order for the device to 

function correctly in accordance with the above equations  This sets the current 

through R1 (and hence R2) to 
1.25 𝑉

82 Ω
. = 15.2 mA.  (The current into the Adjust 

       TL783 

In      Adjust    

Out 
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terminal is fixed internally at 83 µA and so can be neglected.)  Thus, choosing 𝑉𝑜 = 

100 V and transposing equation 2.4 for output voltage in terms of R2, 

R2 = R1(
𝑉𝑜

𝑉𝑟𝑒𝑓
 − 1) = 82× (

100
1.25

− 1) ~ 6.5 kΩ  

As a potentiometer of this value is not available, a standard value of 10 kΩ was used.  

The effect of using this value is that linear voltage variation is obtained over 65% of 

the range of adjustment, the scale then widening out towards the extremes of 90 to 

100 V. Checking on the power rating required, the maximum power dissipated will be 

when 𝑉𝑜 is 100 V.  i.e. 100 V across 10 KΩ causes  1 watt to be dissipated.  

Consequently, a 1.5 W rated 10 KΩ potentiometer was considered adequate for this 

purpose.   

2.10  Opto-isolated input and regenerative output stage. 

The work undertaken in this section required considerable planning regarding 

development, testing and safety considerations due to the potentially lethal voltages 

present.  Although the gate voltage required to cut off ion current flow effectively is 

around 80 to 100 V, this potential actually sits on approximately VHT/2 along the 

resistor chain due to the position of the gate in the drift tube.  In view of the high 

voltage present, it was decided to isolate the pulses from the pulse generator that 

control the gate interface by using a Schmitt trigger based opto-isolator to maintain 

fast switching speeds.  A special circuit was also devised (see Figure 2.14) so that fast 

field effect transistors (FETS) could be used to provide the gate pulses. 

Generally, fast switching in high voltage or high power semiconductors is desirable 

because a semiconductor switch dissipates the most power during switching, i.e., 



45 

 

while it is in a state between fully "off" and fully "on". By minimizing switching time 

and, therefore, heat losses in the semiconductor, it can be allowed to switch more 

power. However, in this application, self heating is very small and so is not a 

consideration since the gate takes negligible power.  It is necessary though to have a 

high switching speed for the gate pulse in order for the shape to be rectangular at 

widths as small as 100 µs ensuring that the initial ion swarm commences with 

minimal spread (which gradually becomes manifest due to diffusion as it travels along 

the drift tube).   To improve the switching speeds of the MOSFETs, positive 

(regenerative) feedback can be used to form a Schmitt trigger arrangement.   

Figure 2.12 shows a standard Schmitt trigger MOSFET switching circuit providing 

regenerative feedback.  This circuit cannot be used directly since the high voltage 

requirements of the gate would cause breakdown of the MOSFET junctions.  The 

circuit development to overcome this problem is described in the following sections.   

2.11  Circuit development of the output circuit for the gate pulse interface  

The basic function of the circuit is to take an input pulse at TTL levels and to then 

present it as a fast pulse at a voltage level appropriate to cause the gate to control the 

transmission of ions through it.  Figure 2.12 illustrates this idea. 

From experiment (as described in chapter 4), it was found that the voltage required 

across the grids at the gate to block all the ions was in the order of 100 V.   
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Figure 2.12 Basic circuit operation of the opto-isolated input and regenerative output stage. 

Vgate is the potential at the gate grid relative to the adjacent ring voltage, Vring. 

 

Referring to figure 2.12, 𝐸 represents the voltage Vo that is supplied by the variable 

gate voltage generator shown in figure 2.11.  Resistor 𝑅1 limits the current flowing 

through the light emitting diode inside to opto-isolator. This also sets the maximum 

output current from the opto-coupled transistor.  The ratio of output to input currents 

describes the transfer efficiency of the opto-isolator.  The combination of 𝑅3 and the 

zener diode together form a shunt regulator.  This circuitry is necessary to reduce the 

applied voltage 𝐸 to a level suitable for the requirements of the opto-isolator.  Resistor 

𝑅2 sets the maximum current through the transistor to (𝑉𝑧 –  0.6) ÷ 𝑅2.   

Figure 2.13 shows the basic circuit required to establish Schmitt trigger operation 

using complementary enhancement type mosfets.  This arrangement is commonly 

used in CMOS logic gates where junction voltages are low. 

E 
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Figure 2.13  Basic Schmitt trigger using complementary MOS devices 

The input voltage (obtained from the opto-isolator circuitry) swings between VRING 

and VRING + E over a range of 100 V.  If discrete mosfets were used in this circuit 

having a typical maximum gate-to-source voltage VGS(max)  of 20 V, then in its present 

form, the circuit would be unsuitable since breakdown of the gate-to-source junctions 

would occur.  In order to retain the active load configuration for providing maximum 

switching speed, an interface can be designed that limits VGS(max) to say, 10V for 

mosfets U1 to U4. (This covers the switching threshold for enhancement type 

MOSFETS which is between 3V and 4V.)  Even so, mosfets U5 and U6 would still 

have the full rail voltage swing across VGS and so this was also taken into account in 

the re-design of the circuit. 

Considering the input circuit, the interface to switch the mosfets needs to perform as 

shown in figure 2.14. 

E 

(VRING to E) 

VRING 
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Figure 2.14  Interfacing requirements to prevent over-voltage of the gate drive circuitry 

Bearing these requirements in mind, figure 2.15 shows the resulting circuit that was 

finally adopted with the necessary modifications included to overcome the breakdown 

problem. Drives A and B are obtained by using 10 V zener diodes to provide a 10 V 

offset voltage from the supply rails.  The output mosfets are then switched using 

integrated circuit Schmitt triggers supplied by the 10 V offset-to-rail as appropriate to 

polarity.  The switching threshold voltages for the Schmitt triggers are also provided 

by 10V zener diodes. An advantage of using this type of circuit is that CMOS drive 

voltages may be applied directly to the MOSFET gates. The benefit is thus simplified 

drive circuitry and so integrated circuit Schmitt triggers powered from the 10 V limit 

interface are used to fast switch the output mosfets U1 and U2.  All the junction 

voltages are therefore now well below their breakdown levels. 

Figure 2.15 also shows the opto-coupling required for isolation of the TTL level (0 to 

+5 V) input pulses from the common rail (which is held at the ring voltage). 
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Figure 2.15  Input and output stages of the gate control circuit 

2.12  Operation of the gate control circuit 

When the input voltage to the opto-isolator is 0 V, the output transistor T1 will be off.  

By setting the input voltage to +5 V, T1 will turn on. The way in which T1 controls 

the operation of the rest of the circuit is summarised in Table 2.1. 

Table 2.1 Summary of gate control circuit operation 

Input VA VB VC VD U1 U2 Output 

0 V E - 10 
VRING + 

10 
E VRING OFF ON VRING 

+5 V E VRING E - 10 
VRING + 

10 
ON OFF E 

 

The transfer efficiency of the opto-isolator is 25% thus to allow 4 mA maximum to 

flow in its output transistor, the input diode current should be limited to 16 mA. 

Hence, using Ohms law, the current limiting resistor for the opto-isolator diode is 

determined from: 
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(5 V – 1.5 V) ÷ 16 mA giving approximately 220 Ω. (The amplitude of the 

rectangular waveform from the pulse generator is 5 V and the forward voltage drop of 

the input light emitting diode is 1.5 V).   

For supplying the Schmitt triggers, and allowing a minimum current of 3 mA at say E 

= 40V through the zener diodes, this yields a value for resistor RZ of (40 – 10)/3 kΩ = 

10 kΩ.   

Checking the power dissipations at E = 100 V: 

The power in the zener diode = VZ × IZ, but IZ = (100 – 10)/10 mA = 9 mA. 

Therefore PZ = 90 mW and so a 150 mW rated type will suffice. 

The power in the resistor RZ  = IZ
2
 × RZ = 810 mW  and so a 1 W rated type is used.    

The TTL input refers to the transistor-transistor logic compatible output from the 

pulse generator.  The ‘pulse out’ terminal directly connects to the isolated gate 

terminal in the drift tube.  VRING is connected to the terminal for the drift ring 

common to the other side of the gate.  E is the voltage obtained from the adjustable 

regulator (Vo) shown in figure 2.11. 

2.13  Time response of the gate control circuit 

In order to ensure that the circuit of figure 2.15 functioned correctly, its time response 

was measured by applying a 5 V, 10 kHz square wave to the TTL input and observing 

the output pulse on an oscilloscope. The objective of the active load output 

configuration was to produce sharp switching edges.  This was found to be the case 

with rise and fall times in the order of 50 ns.  However, a problem occurred with 

current breakthrough whereby both mosfets were conducting for a short period of 
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time during the changeover in output state.  This effect is due to the relatively slow 

rise time of the output pulse from the optoisolator causing a time delay to be 

introduced when the Schmitt trigger switches. This effectively places an undesirable 

short circuit across the supply E.  Although this problem is difficult to overcome, it 

was circumvented by introducing a passive (resistive) load instead.  Thus, to eliminate 

current breakthrough mosfet U1 was replaced with a 10 KΩ  resistor and it was found 

that the rise time of the output pulse subsequently increased to 2 μs with the fall time 

staying at 50 ns due to U2.  Hence, the disadvantage of a passive load is that it results 

in an increased rise time of the pulse with accompanying losses due power dissipation 

in the resistive load.  The mosfet U2 being an active device, has an ON resistance of 

only a few ohms and so causes rapid discharge of the circuit capacitance to produce a 

very short fall time of the pulse edge.  However, a rise time of 2 μs is only 1% of the 

200 μs pulse width and so is deemed as acceptable in this case. 

From previous trials, it was found that 𝐸 needs to be in the order of 100 V above 

VRING to close the ion gate in positive ion mode. (Only 30 to 40 V was seen to be 

required in negative ion mode.)  This causes a second problem to arise with the circuit 

as it stands in that the collector to emitter voltage of T1 in the opto-isolator is only 

rated at 30 V maximum. The highest value seen for other similar devices is 70 V 

which is still insufficient.  This problem was solved by limiting the collector voltage 

to 10 V by using a zener diode.  Applying these ideas produced a considerable 

simplification to the circuit as is seen in figure 2.16.  The value of 10 KΩ for the load 

resistor RL was chosen as a compromise between rise time and power dissipation.  

With the ion gate in pulsed mode, the duty cycle is determined from gate pulse width 

– to – time between pulses, in this case being 0.2 ms:40 ms = 0.005. Thus the power 

dissipated in RL is only 0.0005E
2
/ RL = 5 mW.  However, with the gate open (dc 
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mode) the power dissipation will be 1 W which would represent a sensible upper 

limit.     

 

Figure 2.16  Simplified version of the gate control circuit 

Referring to figure 2.16, the values of R1 and R2 were chosen to allow sufficient 

current through the zener diodes to keep them in regulation while minimising power 

dissipation in the resistors. The time response of the circuit is given in the timing 

diagrams shown in figure 2.17.  
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Figure 2.17  Switching waveforms for the simplified gate control circuit shown in figure 2.16 

Referring to figures 2.16 and 2.17 together, the effect of the slow rise time of the 

opto-isolator is clearly seen.  This results in an extension of the pulse width of 34 μs 

which is an appreciable portion of 200 μs.  Thus, to get an accurate gate pulse width, 

the calibration of the pulse generator should be that an offset of -34μs should be 

introduced into the timing circuit.  

2.14  An alternative bipolar version of the gate control circuit 

In this approach to obtain fast switching, the idea is to use high voltage bipolar 

transistors instead of mosfets.  Here, regeneration (positive feedback) is used to 

enable a fast switching response in the output stage.  The circuit developed is shown 

in figure 2.18 which is based on a modified discrete bistable multivibrator circuit. 
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 Figure 2.18  Gate pulse interface using a regenerative output stage with bipolar transistors 

IC1 is a CMOS quad NAND gate type CD4093 having Schmitt trigger inputs.  As 

only one of the gates is used (inputs on pins 1 and 2, output on 3), pins 5, 6, 7, 8, 9, 12 

and 13 are tied to 0 V to prevent unwanted oscillation on the unused inputs.  

Transistors T1 and T2 are high voltage types BF422.  Resistor R9 provides positive 

feedback for fast regenerative switching and C2 acts as a “speed up” capacitor to get 

base charge into T1 more quickly.  The values were optimised during the test since 

the circuit was subject to changes in the hFE  (current gain in the common emitter 

mode) of the transistors.  The waveforms obtained are shown in figure 2.19 and are 

based on an input pulse width of 20 μs to see the delays proportionally. (The actual 

pulse width used in the ion mobility experiments is 200 μs.) 
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Figure 2.19  Switching waveforms for the regenerative bipolar output circuit shown in figure 

2.18 

 

Referring to figures 2.18 and 2.19 together, when testing the circuit, it was found that 

changing the value of R4 from 100 KΩ to 330 KΩ reduced the saturation in transistor 

T1 which correspondingly reduced the rise time of VGATE to 8 μs and the fall time to 

0.5 μs.  Further increase in R4 yielded no improvement up to 650 KΩ when T1 came 

out of saturation and its VCE began to rise.  When changing the value of resistor R5 

from 100 KΩ up to 1 MΩ no effective increase in the switching speed of T1 was 

observed and so R5 was also set to 330 KΩ.   

The optimum value for the speed up capacitor C2 across R9 was found to be 100 pF – 

any increase on this caused a corresponding increase in t1 but with little change in t3.  

This gave t1 = 3 μs, t2 = 3 μs and t3 = 6 μs.  A speed up capacitor across R8 had a 

detrimental effect and so was left out, however, 100 pF capacitors across resistors R4  

and R5 reduced t1 to 0.5 μs, t2 to 2 μs and t3 to 5 μs. 
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The effect of C2 on the base of T1 is to drive it on the negative edge excursion to -5 

V, increasing to -6 V when adding C3.  Since this is near the breakdown voltage of 

the base-emitter junction, it is necessary to protect the junction accordingly, and this is 

achieved by clamping the voltage with diode D2 (similarly for T2 with clamping 

diode D1) which safely reduces the negative bias to about -0.6 V.  An additional 

advantage of the diodes is to reduce the recovery times of C2, C3 and C4 to fractions 

of a microsecond. 

Although the circuit of figure 2.18 is somewhat more complicated than that of  figure 

2.16, the overall switching speed is similar, but the pulse width time extension is only 

5 μs now (representing 2.5% of the standard 200 µs gate pulse width used), and so it 

was subsequently chosen for incorporation into the gate interface unit. 

2.15  The Electrometer 

This is basically comprised of a current-to-voltage converter stage followed by a 

voltage amplifier to bring the signal up to a level sufficient for signal processing.  

Current to voltage converter stage (Also known as a Transimpedance Amplifier ) 

Considering  the operational amplifier circuit shown in section 2 of figure 2.20, by 

connecting the feedback resistor from the output to the  inverting input, a small input 

source current 𝐼𝑠 (representing the source current from the Faraday plate) flowing into 

the inverting input must flow through the feedback resistor (because the input 

impedance of the op-amp is many times larger than the value of RF).  

The non-inverting input is connected to ground (0V).  Due to the very high gain of the 

op-amp, the inverting input will also be virtually at 0V thus the input side of RF  is 

held at “virtual ground” potential.  The output voltage will therefore be given by the 



57 

 

equation 𝑉0 = − 𝑉𝑅𝑓  =  −(𝐼𝑠 × 𝑅𝑓). The minus sign indicates that the output voltage 

is an inverted form of the input current waveform. 

Optimizing the current to voltage converter is required due to the stray capacitance 

around the FP and its wiring.  This is symbolised by the equivalent capacitance CS in 

parallel with the input terminals of the op-amp.  The equivalent circuit of the FP as a 

source of current can be represented by a current generator with its associated leakage 

resistance RS as seen in section 1 of figure 2.20. 

 

Figure 2.20  Representation of the equivalent circuit of the FP connected to the current to 

voltage converter 

 

The equivalent capacitance CS causes three detrimental effects to occur in the circuit 

as outlined below: 

1. At high frequencies, CS acts as a shunt across the current source IS, reducing the 

bandwidth of the circuit.  

2. Circuit instability can arise due to the combination of RF and CS acting as a low-

pass filter in the feedback path. This causes a negative phase shift in the feedback 

loop, introducing instability, which can appear as overshoot and ringing.  

Section 1 Section 2 



58 

 

3. It causes a peak in an otherwise flat frequency response. To restore stability the 

low-pass filter arising from RF and CS can be compensated for by adding capacitor CF 

to introduce a high-pass filter with the combination of CF and RS in the feedback path 

to add a positive phase shift to the loop and hence tend to restore stability.  Although 

this reduces the peak, the overall bandwidth is also reduced. This is because CF and 

RF form a low-pass filter in the forward signal path from IS to Vo.  

The feedback capacitor CF across RF is therefore required for optimising the circuit 

frequency response to obtain maximally flat gain.  The value of  CF  is found on test 

since it is not possible to compute a value due to unknown parameters such as source 

capacitance and resistance, and op-amp characteristics. 

In practice, the value of CF is very small and in the configuration used, it was found 

that only a fraction of a pF is required (see section 2.15.5). 

To get a good signal-to-noise ratio (SNR), the TL081 op-amp manufactured by Texas 

Instruments was chosen as it has a low equivalent input noise voltage of 18 nV/√Hz.  

The physical wiring layout is such that inter-lead/component capacitance is reduced to 

a low value in order to keep time constants small to reduce the possibility of positive 

feedback introducing instability into the circuit. When detecting very small currents 

(in the pA range) from the FP, an important consideration is that of preventing circuit 

board leakage currents from interfering with the signal which would cause signal 

voltage drift and offset problems.  This effect can be avoided in two ways: 

(i) By using a grounded guard ring around the input connection to conduct 

any leakage currents away. 
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(ii) By using a ptfe stand-off to isolate the input connections from the main 

circuit board.    

2.15.1  The complete electrometer. 

For flexibility, the electrometer was initially implemented with selectable gain such 

that its range of current measurements could be digitally selected to give 1 V output 

for input currents of 10
-7

, 10
-8

, or 10
-9

 A to meet the voltage level requirements of the 

LabVIEW DAQ interface.  Figure 2.21 shows a block diagram layout of the sections 

comprising the electrometer and its associated connections. 

 

Figure 2.21  Block diagram of the electrometer stages 

The electrometer is contained in an aluminium box to screen it from external signals 

and is mounted in close proximity to the FP and screen to reduce interference from 

external noise sources.  
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Figure 2.22 shows the overall circuit diagram of the electrometer.  Here, a grounded 

guard ring is used as a screen for the input terminals to prevent or minimise leakage 

currents that may otherwise enter from other areas of the board. 

Circuit description of the electrometer 

The first stage built around IC1 is the inverting current to voltage converter which 

converts the ion current from the Faraday plate into a corresponding voltage that is 

then further amplified by the second stage amplifier built around IC2.  This is a 

selective gain (×1, ×10 or × 100) non inverting voltage amplifier.  The feedback 

arrangement differs from the usual single feedback resistor by using a potential 

divider arrangement. The advantage of this is that lower value resistors can be used, 

which are cheaper, have better precision and are less noisy than high value types in 

the Giga Ω range which are also more prone to producing error due to contamination 

from handling. (Moisture from the skin would act as a shunt resistor, considerably 

changing the resistance to an unknown lower value.)  As the first stage gives an 

inverted output, the second stage was chosen to be non-inverting to allow a third 

inverting stage to be used for fine gain control and filtering out of noise from the 

signal. This then produces zero overall phase shift.  In order to minimise the 

possibility of noise pick up or instability by direct switching of the second stage by 

mechanical switches, a 4066 CMOS transmission gate is used to allow isolation 

between the switch contacts and the switching signal.  This furthermore provides the 

possibility of processor software control of the gain if required. 
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Figure 2.22  Circuit diagram of the Electrometer Amplifier for the IMS-QMS system  

      IC1 forms the current to voltage converter. 

      IC2 provides switchable gain ranges via switches S1 and S2. 

      IC3 allows fine gain adjustment via variable resistor R15. 

 



62 

 

Control knob 

 

Conversion ratio 

Amplifier gain control 

The gain of the amplifier is defined by the combinations of switches S1 and S2.  Referring to 

figure 2.22 switch S1 is contained in the 4066 bilateral switch and appears between pins 1 and 2 

with the control of S1 on pin 13. Switch S2 appears between pins 3 and 4 with its associated 

control on pin 5.  

The operation of the gain switch as mounted on the electrometer conversion ratio box is shown 

in figure 2.23. 

 

 

 

Figure 2.23  Operation of the gain control switch 

The fine gain control (R15) is a calibrated 10 turn potentiometer to allow finer control of the gain 

variation between the switched ranges. 

Although this circuit produced good results, in the interests of simplicity and reliability, and after 

a suitable gain value was obtained through testing (that was found to require no further 

adjustment), it was decided that a simpler approach could be taken whereby the converter and 

voltage amplifier were built as separate modules using pre-supplied generic PCBs (RS 

components, stock number 434-065).  A single large value feedback resistor of 100 MΩ was also 

used in the converter instead of the three resistor Tee arrangement used in the original circuit of 

figure 2.22.  This value was found to be quite adequate for the ratio of current to voltage 

conversion necessary and being less than 1 GΩ it does not suffer from the previously mentioned 

10
-8

 A/V 

10
-7

 A/V 

10
-9

 A/V 
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disadvantages associated with high value resistors.  It was found necessary to incorporate an 

offset null potentiometer to provide an output of 0V under quiescent conditions due to inherent 

dc drift of the amplifier. 

2.15.2  Optimising the frequency response of the current-voltage converter 

A test of frequency response showed that the bandwidth was 0 Hz (dc) to 10 kHz within the 3 dB 

points.  Peaking of the output signal began after 1 kHz reaching a maxima at around 5.5 kHz as 

seen in figure 2.24.   

 

Figure 2.24  Frequency response of the current-to-voltage converter 

The time response was observed by feeding the input terminals with 40 mV amplitude pulses via 

a 1 MΩ resistor to inject 40 nA into the input.  When observing the output voltage time response 

to this step input (using a 5 kHz pulse waveform to simulate the ion gate pulse being 200 μs 

wide) ringing was observed on the rising and falling edges of the output pulse. As mentioned in 

section 2.15.1 a small value of capacitance connected across the feedback resistor was used to 
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compensate for the frequency peaking effect to give a flat frequency response while also 

improving the time response.  A calculation for the approximate value of capacitance for the 

compensation capacitor across the feedback resistor was made as follows: 

To halve the response at say 𝑓 = 5 kHz, the capacitive reactance XC of the feedback capacitor 

would need to be the same as RF, i.e. 100 MΩ.  

𝐶= 
1

2𝜋𝑓𝑋𝑐
 = 

1

2𝜋×5×103×100×106 = 0.32 pF 

This value is too small to be obtained as a component and so such a very small value of 

capacitance (fractions of a pF) was fabricated by simply connecting a wire to one side of the 

feedback resistor and then positioning it parallel to the resistor.  This produced a mutual 

capacitance between the wire and resistor RF, the value of which could be altered by simply 

moving the wire a few mm nearer to, or further from the resistor. The effect of finding the best 

position was to produce a flat frequency response from dc, rolling off to a -3 dB point at about 9 

kHz.  When checking the time response, only a small amount of overshoot was observed on the 

rising and falling edges of the output pulse.  The rise time to reach 4 V amplitude was 39 μs 

corresponding to a rate of change of 1.03× 105 V/s.  Note, theoretically, a sine wave 

𝐴𝑠𝑖𝑛(2𝜋𝑓𝑡) requires a minimum slew rate of change 𝑆 of 2𝜋𝑓𝐴  V/s for a full sinusoidal swing 

in peak to peak amplitude equal to the supply voltage.  [The rate of change of voltage (slew rate) 

𝑆 is  
𝑑

𝑑𝑡
 (𝐴𝑠𝑖𝑛(2𝜋𝑓𝑡)) = 2𝜋𝑓𝐴𝑐𝑜𝑠(2𝜋𝑓𝑡) with a maxima at t = 0.  Thus substituting t = 0 gives 

= 2𝜋𝑓𝐴.]  From this, the equivalent frequency to achieve this slew rate is  
𝑆

2𝜋𝐴
 = 

1.03×105

2𝜋×4
 = 
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4.1 kHz which is a reasonable approximation to the cut-off frequency of 9 kHz seen on the 

oscilloscope. 

2.15.3  Faraday plate switch 

This facility enables the Faraday plate to be switched from between being used as an ion 

collector providing a current source (for ion mobility measurements) to acting as an ion lens (for 

ion mass measurements).  An encapsulated reed relay is used to provide isolated switching, with 

leds indicating the chosen mode of operation.  Figure 2.25 shows the circuit diagram of the unit. 

 

Figure 2.25  Switching the Faraday plate operation between electrometer amplifier input and as an 

electrostatic lens. When the green led is on, it indicates that the FP is switched to being used as the IMS 

detector. The red led is on when the FP is switched to being used as a lens for MS measurements 

 

The dc source is obtained from a specially constructed external power supply containing a set of 

stabilised voltage sources used for applying appropriate potentials to various electrodes and 

electrostatic lenses in the IMS-MS system.  Details of this are provided in appendix A2.3. 
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2.16  IMS drift tube heater controller 

In order to ensure that the drift tube is kept scrupulously clean it is automatically baked out at 

100°C using the concentric heater band around the drift tube.  This is accomplished by using an 

external timer switch to bypass the temperature controller which maintains the tube temperature 

at 30°C for normal use. The timer is set to initiate baking out at 7:00 pm and to end the baking 

out process at 6:00 am on the following day.  Precautions are built into the circuit to ensure that 

the drift tube voltage is reduced from 4.5 kV to 3 kV when the tube temperature rises above 

35°C to prevent internal flashover which occurs when 4.5 kV is used at 100°C. This is done by 

using a thermal switch fixed to the outside surface of the heater band.  In view of the importance 

of reliable operation of the thermal switch, two of them are wired in series in case one of them 

fails to operate.  A separate circuit for monitoring the state of the switches is incorporated and 

shown on separate circuit diagrams (figures 2.30 and 2.31 discussed later).  The overall circuit 

diagram for the heater controller is shown in figure 2.26 
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Figure 2.26  Overall circuit diagram of the heater controller 

2.16.1  Circuit operation of the heater controller 

Referring to figure 2.26, the contacts marked ‘30 deg C’ represent a solid state relay (SSR) 

which is controlled by the temperature controller.  An alternative method could be to control the 

input signal to the SSR by using a diode OR gate (thus allowing operation from the switched dc 

signal from the temperature controller OR the constant dc signal required for baking out).  
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However, it was felt that as switching at the zero crossing point of the mains is desirable for 

normal operation, it is unnecessary in the case for baking out (as only two switching operations 

occur) and so the simpler method of directly switching with a relay contact was used.  Note, the 

circuitry associated with Rd1 (i.e. Rd1, R5, L4 and the switched 40 MΩ resistor) are contained 

within the box on which all the high voltage connections to the drift tube are mounted.  

When the relay contacts (RL1/a) short circuit the SSR, it causes the heater to continuously 

receive sufficient power for the temperature of the drift tube to rise to 100 °C.  

Contacts (RL1/b) break the power to the reed relay coil and so the 40 MΩ resistor is brought into 

circuit reducing the voltage to the resistor chain across the drift rings to 3 kV.  This is done to 

prevent any possibility of flash over within the drift tube.  (It was found previously that 

breakdown occurred at 4.5 kV when the temperature was at 100 °C.) 

The circuit is failsafe in that if RL1 fails to operate, the baking process is disabled.  Also, if Rd1 

fails to operate, the tube voltage is kept at the lower voltage of 3 kV preventing any possibility of 

flashover in the drift tube.  The resistor chains in the drift tube and ion source voltage box 

combine to present a total resistance of 80 MΩ and so switching in an extra 40 MΩ in series will 

produce a drop in voltage (using the voltage divider equation) of 4.5 kV × 40/(80 + 40) = 1.5 

kV. Hence 4.5 – 1.5 = 3 kV appears across the drift tube.   

Note, it was seen that at 100 °C, the heater voltage was 69 V with 2.8 A flowing. (Found by 

using a variac (a variable voltage auto transformer) set at an applied voltage of 29% of the mains 

supply to the heater.) 
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(shown in figure 2.24) 

The phasing of the two transformers connected across the mains supply is such that cancellation 

occurs giving a resultant voltage of (77 – 6) = 69 V.  The centre tap provides the supply voltage 

for the rest of the circuit. 

The thermal switches S1 and S2 in figure 2.27 are incorporated in order to prevent the full 4.5 

kV potential from being applied to the drift tube when the system switches to normal (30°C) 

mode while the drift tube remains hot after the baking out process has elapsed. 

2.16.2  Thermal Switch Monitoring 

The basic idea of this is shown in figure 2.27 where the two switches S1 and S2 are wired in 

series so that if one of them fails to operate, the other will provide backup. The integrity of the 

switches is important to prevent flashover during the period when the drift tube cools down.  It 

was therefore decided to incorporate a circuit to monitor the condition of each switch (mentioned 

later).  The operation may be summarised as shown by table 2.2. 

 

Figure 2.27  Series connection of thermal switches for flashover prevention 

Table 2.2  Operation of the thermal switches 

 

 

S1 S2 V1 V2 

closed closed +24 V +24 V 

closed open +24 V 0 V 

open closed 0 V 0 V 

open open 0 V 0 V 
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The transition (or fault) states are shown in red and occur when either switch is in the opposite 

state.  The first of these states where S1 fails to open with S2 (drift tube heating up) is unique for 

V1 = +24 V and V2 = 0 V and so can be detected with a logic circuit.  The second state where S2 

fails to open with S1 is not unique since V1 and V2 = 0 V also occurs in the last state for both 

switches open (i.e. baking out), and so cannot be detected.  The same problem occurs when 

cooling down. 

An alternative method which overcomes these problems is to monitor the state of the switches 

via an isolated circuit and using led indicators.  Figure 2.28 shows the final circuit developed.  

Here, the capacitors serve a dual purpose: 

1.  To block any undesired path for the +24 V supply to the high voltage switch Rd1 

2. To limit the current flowing through the leds L1 and L2. 

As the 9 V ac supply is double insulated from the main controller supply i.e. (no earth 

connection except to the transformer body, and a plastic enclosure), there is no possibility of 

interaction between the heater controller and the thermal switch monitor.  

 
Figure 2.28  Circuit to monitor the state of the thermal switches 

(Rd1 is shown in figure 2.26) 
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A fault diagnosis table relating the led status to the state of the switches is shown in table 2.3.  

The temperature thresholds for operation of the switches (open at 50°C when heating, close at 

35°C when cooling) are used as datum points in the table for defining the cooled or baking 

modes of operation.  

Table 2.3  Switch failure diagnosis 

 T < 35°C T > 50°C 

State L1 L2 Condition Condition 

1 ON ON Normal Malfunction – turn off 
2 ON OFF S2 stuck open S1 stuck closed 

3 OFF ON S1 stuck open S2 stuck closed 

4 OFF OFF Malfunction Normal 

 

The malfunction at state 1 will only occur if both thermal switches simultaneously fail to operate 

during heating towards bake out.  As this is unlikely, it could only happen if one of the switches 

has stuck closed at a previous time and (although indicated on the leds) had not received 

attention.  This particular fault is the most serious though since full HT voltage would then be 

applied to the drift tube with the possibility of flashover while at 100°C after the bake out period 

had elapsed and the system has switched over to normal operating mode.   

The malfunction at state 4 is not so serious since the drift tube is maintained at the lower voltage 

of 3 kV where flashover does not occur.   It will however produce a corresponding error in drift 

time which would also be immediately apparent in the mobility spectrum. 

States 2 and 3 give a warning that one of the switches needs to be replaced and this should be 

done as soon as possible to avoid progression into the malfunction states. 

In order to more closely monitor the operation of the switches, improvements can be made to 

draw attention to a particular switch fault by using two led’s (red and green) to represent the 
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states and to sound an audible alarm when a fault occurs. (Note, the differences in opening and 

closing temperature thresholds of the switches cause an apparent fault during temperature 

changes, but this lasts for a few seconds only as the switching thresholds of each switch are fairly 

accurate.)  Thus, two greens in normal mode or two reds when baking out represent correctly 

functioning switch operation.  A red and a green light permanently on shows a stuck thermal 

switch contact.   

Figure 2.29 shows the layout of the thermal switches and their monitoring leds.  

Table 2.4 is an extension of table 2.3 for diagnosing which switch is faulty according to the 

status of the leds and the operating mode of the system. 

 

 

 

 

Figure 2.29 showing the physical layout of the thermal switches on the heater, and the monitoring led’s 

on the monitor box 

 

 

 

 

 

S1 S2 

S1 S2 

Open   Bake 

Closed  Normal  

(L2) 

(L1) (L3) 

(L4) 
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(Rd1 is shown in figure 2.25) 

Table 2.4  Thermal switch fault diagnosis 

 Condition 

S1 S2 T < 35°C T > 50°C 

  Normal 

S1 and S2 

Malfunction-TURN 

OFF 

    

  S1 and S2 

Malfunction 
Normal 

    

  S2 stuck open S1 stuck closed 

    

  S1 stuck open S2 stuck closed 

 

The final optimised circuit to achieve this is shown in Figures 2.30 and 2.31 which (for 

clarification) show the circuit split into two parts, A and B.) 

 

Figure 2.30  Optimised switch monitoring circuit – part A 
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The bridge rectifiers are encapsulated type W04M which can rectify up to 1 A at a maximum 

reverse voltage of 400 V.  Reed relays Rd2 and Rd3 have a 200 Ω coil resistance and operate 

nominally at 5 V. 

The contacts from the reed relays control the status leds and an audible warning as shown in 

figure 2.31.  An exclusive OR gate is used to monitor for opposite states of Rd2 and Rd3 

contacts.  When this occurs, the mosfet is turned on and the sounder produces an audible warning 

signal indicating the failure of one of the thermal switches to operate.  The cathode of the zener 

diode provides 3.6 V for the power supply to the CD4070 chip and the audible sounder. 

 

Figure 2.31  Optimised switch monitoring circuit – part B 

As only one of the gates is used in the CD4070 quad exclusive OR package, to prevent oscillation on the 

unused inputs the pins were connected as follows: 

0 V to pins 5, 6, 7, 8, and 9.       +3.6 V to pins 12, 13 and 14. 
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A final circuit (although not implemented since this particular fault is very unlikely to occur as it 

would require the contacts of RL1 in figure 2.26 to be sticking), could if so desired, be 

incorporated for automatic and complete turn off of the high voltage switch.  This may be 

achieved by using the circuit shown in figure 2.32.   Here, anomalous operation of the HV switch 

is detected in the bake out condition, which could cause flashover to occur. 

 

Figure 2.32  Flashover prevention circuit 

Relay RL1 latches on via contacts RL1/b when the fault state of controller amber and HV switch 

green leds ON is detected. This permanently removes the +24 V supply to the HV switch via 

contacts RL1/a to prevent flashover until the fault is investigated and cured.   

2.17  Acquisition of channeltron pulses and processing for tuned mass mobility 

In either the selected (tuned mass) or total ions modes, the pulses from the channeltron 

preamplifier represent ions of a particular m/z that are then counted over fixed time intervals.  By 

displaying the counts against time, a mass mobility spectrum is obtained.  Although the 

LabVIEW DAQ card has two onboard timer/counters, they are unsuitable for this application as 
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their accuracy becomes unacceptable when the gating time approaches 1ms.  This was found to 

be due to software overheads taking up a significant part of the timing period (the time required 

to stop the timing task, read the counter and then re-initiate it ready for another measurement).  A 

vi (virtual instrument) is the term used when programming in LabVIEW instead of the more 

conventional “sub program“ and a limitation that precludes their use in this case is that the vi’s 

controlling the counters have a minimum resolution of 1 ms.   

2.17.1  Hardware solution for converting ion counts from the channeltron into an analogue 

of the ion current 

In order to overcome the software limitations of LabVIEW a hardware approach was taken 

whereby the ion count is obtained by using a TTL (transistor-transistor logic) counter. After 

passing the counter output to a digital-to-analogue converter (D/A), the pseudo analogue 

representation can be read into a LabVIEW program.  This is done by treating the output from 

the D/A as a waveform that can be appropriately sampled in time with the fast onboard analogue-

to-digital converter (A/D) used by LabVIEW.  

The pulse count from tuning in to a particular mass lying under the peak in the IMS mobility 

spectrum needs to be read in a short time to achieve sufficient resolution.  Too short a time 

would result in very low counts which may be lost in the background noise count whereas using 

too long a count period although giving a higher count, would result in loss of resolution such 

that two adjacent peaks may blend into one. 

 Assuming a minimum FWHM pulse width of 1 ms in the mobility spectrum, then to have 

acceptable resolution, the count time should be say 0.1ms giving an effective ‘sampling rate’ of 

10 kHz.    The fast A/D converter on the DAQ card (NI1604) can then be used in conjunction 
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with LabVIEW  to sample the waveform at 100,000 samples/sec to regain the original count 

acquired at 0.1 ms intervals.  This would in turn give ten samples per count value ensuring 

sufficient resolution in the resultant spectrum to be displayed.  Once set up, the A/D converter 

does not require any further software commands.   

By acquiring a waveform consisting of 4000 samples at a sampling frequency 𝑓𝑠 = 100 kHz, 

(100 samples/ms) this would allow a plot of the spectrum over a 40 ms time period from the 

initiation of the sampling trigger pulse.  This particular time period therefore results in a 25 Hz 

maximum limit on the trigger pulse repetition rate.  The width of the IMS gate pulses will be in 

the range 0.2 to 0.5 ms. In order to obtain a ‘clean’ tuned mass response, the counts are 

accumulated over many scans so that random noise is averaged out to provide a sufficient signal-

to-noise ratio.  

2.17.2  Hardware considerations 

Using an 8-bit counter over 0.1 ms will produce a maximum count reading of 255. Applying this 

to an 8 bit DAC will give an output voltage of 2.55V.  The output register in the counter holds 

the count reading between each count and so the signal from the continuously converting D/A 

will be in the form of a discontinuous analogue representation of the counts from the channeltron 

as shown in Figure 2.33 below.  This pseudo analogue signal can then be presented to a modified 

version of the IMS software written in LabVIEW that was originally designed to sample a 

continuous signal from the Faraday plate to show when a molecule having a particular 𝑚/𝑧 

forming the peak in the mobility spectrum arrives at its particular drift time.  The main 

differences between the two programs are that for mass mobility the vertical axis will be a 

reading proportional to the ion intensity in counts/s rather than ion current in nA, for ion 



78 

 

mobility.  Also, ‘external mass’ control of the mass spectrometer is required for acquiring counts 

at a particular value of m/z for the ions over the scanning interval (of 40 ms) to get a mobility 

spectrum. 

 

 

        (1)       2        4         3         1         0      Counting intervals, each containing a count value 

 

 

Volts                                                              Pseudo analogue representation of the count values 

                                    0.1 ms      

                                                         

                         Time 

Figure 2.33  Ion count signal from the pulse converter 

A schematic representation of the hardware solution is shown in figure 2.34.  The sections 

following provide circuit diagrams of the implementation of each block along with a brief 

description of how the circuit operates.  More detail is given of the counter control 

(synchronising pulses generator) since this is particular to this application and required 

considerable thought in the design and testing stages. The proceeding section then describes a 

practical validation of how the pulse generator performs over the range of ion intensities 

typically encountered. Finally, a theoretical analysis of the circuit response is made. 
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Figure 2.34  Block diagram of Pulse Count to Voltage Converter. The trigger pulses are derived from a 

crystal oscillator. MS pulses arrive from the channeltron inside the mass spectrometer. 

 

2.17.3  Circuit diagrams and descriptions of the pulse converter stages 

In order to achieve fast switching speeds, TTL gates having a propagation delay of 20 ns were 

used to implement the logic requirements. 

 

Figure 2.35  1 MHz time-base generator 
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In order to maintain an accurate time reference, a crystal-controlled clock pulse generator as 

shown in figure 2.35 is used for the time base.  It operates in the series resonant mode using the 

fundamental frequency of the crystal.  The 330 Ω resistors provide negative feedback to bias the 

inverters into their linear region.  The final inverter acts as a buffer to produce a sharp square 

wave.  

 

Figure 2.36  Two cascaded asynchronous decade counters are used to provide the overall ÷100 operation 

for reducing the clock frequency down from 1 MHz to the sampling frequency of 10 KHz. The decoupling 

capacitors are both 0.1μF and serve to prevent switching spikes caused by other circuits on the power 

supply from causing false counts. 

2.17.4  Sync pulses generator                                                                                                                 

This section controls the operation of the ion pulse counter in terms of triggering, reading the 

count and clearing for the next measurement.  The control pulses need to be as short as possible 

since they take up part of the time for the sampling window.  The operation is best considered by 

use of the timing diagram shown in figure 2.37. The sequence is initiated by the rising edge of 

the 10 kHz clock pulse. 

 

0.1μ 
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                          tm =  20 μs                   ts =  80 μs                                         10 KHz clock waveform 

                          

                                   Stop the count and latch into o/p register → DAC    

     P1                                Resume counting 

 

     P2                               Clear the counter            

 

 

Figure 2.37  Sync pulses generator – timing diagram for displaying the temporal relationship between the 

control pulses P1 and P2. 

Note, the outputs P1 and P2 are not to the same time scale as the input waveform since pulse P1 

is only about  1μs long.  The control pulses P1 and P2 can be obtained from the input waveform 

by producing another timing diagram as seen in Figure 2.38 showing the appropriate time delays 

and waveforms required to implement the circuit shown in Figure 2.39.  Time delays ∆1 and ∆2 

are made short since they form part of the 0.1 ms pulse counting window.  By making them 0.5 

μs long, the reduction in the count time will be only 1%.  Although ∆1 and ∆2 could be obtained 

from gating the output lines of the ÷100 divider stages, it is better if they are of a fixed duration 

independant of the clock pulse frequency from the oscillator.  This allows more flexibility if ever 

a different count time was required by ensuring that suitable delay times are still maintained. 

 

∆2 

∆1 

Input 

100 μs 

Time 
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Figure 2.38  Sync pulse generator waveforms. The output P1 is obtained from the logical expression           

P1 = Input AND E.  ∆1 and ∆2 are time delays (see text), ∆R1 and ∆R2 are their respective recovery times.  

From consideration of the above timing diagram, the circuit shown in Figure 2.39 has been 

produced.  The short time delays ∆1 and ∆2 are formed from the 10 kΩ and 47 pF combination to 

provide a time constant of 0.47 μs.  Fast recovery times  (∆R1 and ∆R2 ) of 0.047 μs are ensued 

by the diode and the 1 kΩ combination shunting the 10 kΩ resistors.  This ensures that the 

derived output P1 from the delays is kept short.   The time delay ∆1 allows time to latch the count 

into the storage register of the counter before clearing ready for the next count.  Although a 

possible race hazard exists due to stopping and latching the count during a transition to the next 

count, (the counter is an asynchronous “ripple through” type) this is not expected to have any 

effect since its occurrence will be infrequent, and will also be lost over the many accumulations 

taken of the count readings.  Time delay ∆2 allows time for the counter to fully clear before 

moving on to the next count. 

P2 

E 

D 

C 

B 

A 

Input 

∆1 

∆2 

∆R1 

∆R2 



83 

 

0

V 

P1 

 

Figure 2.39  P1, P2 sync pulses generator 

Note, the 100 ns contribution of the gates in the 0.1 ms pulse counting period is only 0.1% and so 

is deemed insignificant. 

2.17.5  Pulse count considerations 

By using an 8-bit counter (modulo 8), an output value of 0 to 255 can be read in 0.1 ms.  A 

single count would represent an ion pulse frequency of 10 kHz and 255 counts would correspond 

to a frequency of 2.55 MHz.  Such a high intensity of ion signal would not occur in practice and 

so it was decided that modulo 3 operation of the counter which represents an upper frequency of 

(2
3
-1)× 10 KHz = 70 KHz will be sufficient.  To achieve maximum SNR, the three most 

significant output bit lines from the counter (QA, QB and QC) are passed on to the upper three 

input lines (Bit3, Bit2 and Bit1) of the D/A converter as shown in Figure 2.40.  Bits 4 to 8 of the 

D/A are grounded. 
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Figure 2.40  8-bit Counter and D to A Converter. Note, P1 is connected to CCKEN (counter clock 

enable) and RCLK (register clock), P2 is connected to CCLR (counter clear).  The input pulses connect to 

CCK (the counter clock).  

 

2.17.6  Data acquisition considerations 

Although the 0.1 ms pulse counting interval is crystal controlled, the trigger pulse to the gate is 

derived from a circuit based on the analogue timer chip NE555.  However, this has good stability 

but it is not synchronised with the clock in the pulse converter and so there could be up to 0.1 ms 

uncertainty on where the RIP actually lies with each scan of the mobility spectrum. Although at 

first sight, it may be thought that this would have a large effect on the shape of the RIP, the effect 

is actually much less since the difference in time between the edge of the trigger pulse and that of 

the counter pulse P1 will remain constant over a substantial time period compared to that of the 

counting window, and a difference in arrival time of the RIP of 0.1 ms is only a small fraction of 

the overall drift time.  (If desired, the gate trigger pulse could be derived from the oscillator in 

the pulse converter by dividing the 10 KHz counter clock by 400 to give 25 Hz (40 ms) 

synchronised pulses.)  
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The pulses from the channeltron preamplifier are very short (25 ns wide) and if one of them 

happens to occur within the 2 μs dead time of the 100 μs pulse counting period (for latch, DAC 

and reset), it will be lost.  However, since this still leaves 98% of the time available for seeing 

such pulses, then statistically, the effect is negligible. 

Although the idea of “number of counts/second” is more applicable in dc mode where the gate is 

left open and ions are continually available, this can still be applied to the converter in pulsed 

mode where the output will be in “counts/0.1 ms” that can then be translated to counts/sec by 

multiplying by 104 if so desired.  (When testing the converter, a set of fixed frequencies was 

inputted to check on the accuracy of conversion, i.e. using dc mode as discussed in section 2.18.)   

The ion swarm drifts along the flow tube at around 5 m/s and then due to a drastic pressure 

decrease, undergoes an adiabatic expansion at supersonic speed when passing from the Faraday 

plate into the mass spectrometer. The time taken for the transition of the ions through the mass 

spectrometer ion optics to the channeltron detector although small compared to the drift time, is 

still significant, and the RIP seen in the mass mobility spectrum will be at a slightly longer time 

(~ 0.3 ms) than that of the ion mobility spectrum.   

At lower ion intensities, it may be difficult to differentiate between the low counts over one scan 

since the chance of seeing an ion is dependent on the number of ions present.  Thus by 

accumulating the ion count over many scans, it will be possible to obtain a better profile of the 

ion intensity.  
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2.17.7  Determining the relationship between the count reading given by LabVIEW and the 

frequency of the ion pulses 

The 8-bit counter in conjunction with the 8-bit D/A is capable of a resolution of 10 mV/bit since 

the maximum output from the D/A with all inputs at logic ‘1’ as given in the datasheet is 2.55 V.  

i.e. (28 − 1) × 10 mV= 2.55V.  Modulo 3 however is now being used and the fraction 28/23 is 

256/8 giving a count ratio of 32:1. Thus with the bits as they are now connected (as shown in 

figure 2.40), the output from the D/A will correspondingly be 32×10 mV=0.32 V/bit.  Thus the 

output from the D/A is in the form of the quantum levels of voltage seen in Table 2.5: 

Table 2.5  Relationship between pulse count and D/A output voltage 

QC` QB QA VD/A 
 0  0  0    0 

 0  0  1    0.32 

 0  1  0    0.64 

 0  1  1    0.96 

 1  0  0    1.28 

 1  0  0    1.60 

 1  0  1    1.92 

 1  1  1    2.24 

 

From this, it is seen that the pulse count is given by VD/A ÷ 2.24  × 7  

i.e.    Count = 3.125 VD/A         (2.5) 

With an input pulse frequency of 10 kHz, one pulse will be seen within the 0.1 ms counting 

window which will then produce 0.32 V from the D/A converter.  This will correspondingly be 

shown as a reading of 0.32 on the LabVIEW output screen.  Thus, with 1000 accumulations, the 

reading will be 1000×0.32=320.  
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The bit count will increment with multiples of 10 kHz reaching a maximum of 7 at 70 kHz.        

Note,  intermediate frequencies will produce a “drift” of pulses across the counting window over 

time, resulting in a spread of the integer counts around a mean fractional value.  By accumulating 

over many counts, a close approximation to the actual intermediate frequency will be obtained. 

Let 𝑓𝑖𝑛 = the equivalent counts/sec of an ion of a particular selected mass, and 𝑁𝑎𝑐𝑐 = the 

number of accumulations:   

Now, for the range 𝑓𝑖𝑛(𝑘𝐻𝑧) = 10 to 70, Count =  
𝑓𝑖𝑛(𝑘𝐻𝑧)

10 𝑘𝐻𝑧
        (2.6)   . 

The corresponding reading will be VD/A × 𝑁𝑎𝑐𝑐 

Substituting equation 2.5,  Reading = 
𝐶𝑜𝑢𝑛𝑡 

3.125
 × 𝑁𝑎𝑐𝑐 

Substituting equation 2.6,  Reading = 
𝑓𝑖𝑛(𝑘𝐻𝑧)

31.25
 × 𝑁𝑎𝑐𝑐 

Therefore  𝑓𝑖𝑛(𝑘𝐻𝑧) = 
𝑅𝑒𝑎𝑑𝑖𝑛𝑔

𝑁𝑎𝑐𝑐
 × 31.25       (2.7) 

2.18  Testing and verifying the operation of the pulse converter  

These tests are performed by using a known pulse frequency from a function generator to 

simulate the output from the channeltron pre-amplifier so enabling a steady response to be seen 

when using the ion mass mobility LabVIEW programs. The function generator gave TTL 

compatible pulses that were varied over a range of pulse repetition frequencies covering 10 Hz to 

100 kHz.  The output frequency was set as accurately as possible (within the limits of function 

generator control) by monitoring with a counter/timer while adjusting the frequency control for 
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the best possible reading.  Drift in frequency from the signal generator was seen as a variation in 

the displayed frequency of about 0.1% between readings (given at 0.5s intervals). 

The main error was due to the limits in resolution of frequency adjustment since it is made using 

a potentiometer in the signal generator.  

An initial trial was made with a fixed input count to the converter of nominally 25 kHz (best 

adjustment possible was 24.96 kHZ ) to the pulse converter.  The number of accumulations was 

set at 500.  On the screen, the continuous waveform of counts showed a mean count of 399 ± 10 

counts. i.e. An error of about 2.5%. 

Since the count is directly proportional to the number of accumulations (assuming that the 

counter inside the converter does not overflow), approx 800 counts would be expected with 1000 

accumulations.   

Upon trying this, 798 ± 10 counts were seen, i.e. an error now of 1.25%.  In this case, doubling 

the number of accumulations seems to halve the error in the count.  

With 2000 accumulations, 1596 ± 12 counts were seen, i.e. an error of 0.75%. 

Although this error is not half of that with 1000 accumulations, it is still a further improvement. 

Since an input of 25 kHz produces about 400 counts with 500 accumulations, the relationship 

between the input frequency and the displayed count  can be described as: 

𝐼𝑛𝑝𝑢𝑡 𝑐𝑜𝑢𝑛𝑡𝑠/𝑠𝑒𝑐 (𝑘𝐻𝑧)  =  
𝐷𝑖𝑠𝑝𝑙𝑎𝑦𝑒𝑑 𝑐𝑜𝑢𝑛𝑡

𝑁𝑜.𝑜𝑓 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠
 × 31.25 

This confirms equation 2.7 derived in the previous section. 
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As a check, changing the input frequency to 20 kHz gave 320 ± 2 counts (0.625% error) with 

500 accumulations.   

Thus, applying equation 2.7, 

   𝑓𝑖𝑛(𝑘𝐻𝑧) = 
𝑅𝑒𝑎𝑑𝑖𝑛𝑔

𝑁𝑎𝑐𝑐
 × 31.25 =   

320
500

 × 31.25 which correctly gives 20 kHz. 

Note, increasing to 1000 accumulations gave  640 ± 2 counts (0.31% error) 

In order to see how the converter responds to a range of input frequencies, tests were done with 

500 and 1000 accumulations at frequencies initially between 1 kHz and 100 kHz representing a 

weak signal count up to a strong count. 

2.18.1  Characterisation Measurements   

Here, the performance of the circuitry under controlled conditions is observed whereby the ‘ion 

counts’ are provided by a signal generator.  With the number of accumulations set to 500 the 

results obtained are shown in table 2.6. 

Table 2.6  Count variations with frequency using 500 accumulations 

Result number Input frequency (kHz) 
Mean count and 

variation 
Variation (%) 

1 1 17.7 ± 1.5 8.5 

2 5  82.2 ± 4 4.9 

3 10 161.7 ± 0.3 0.2  

4 15 240 ± 4 1.7 

5 20 320 ± 1.5 0.5 

6 25 401 ± 8 1.2 

7 30 484.4 ± 1.3 0.3 

8 35 562 ± 7 1.3 

9 40 642 ± 0.3 0.5 

10 45 722 ± 6 0.8 

11 50 801.5 ± 1 0.1 

12 100 322.25 ± .25 0.1 
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In order to see what the effect of increasing the number of accumulations would be, results were 

also obtained at 1000 accumulations, as shown in table 2.7. 

Table 2.7  Count variations with frequency using 1000 accumulations 

Result number Input frequency (KHz) 
Mean count and 

variation 
Variation (%) 

13 1 35.4 ± 2.4 6.8 

14 5 164.8 ± 4 2.4 

15 10 323.7 ± 1 0.3 

16 15 481.8 ± 4 0.8 

17 20 640 ± 2 0.3 

18 25 807.1 ± 5 0.6 

19 30 968.2 ± 2 0.2 

20 50 1600 ± 2.5 0.2 

21 100 640 ± 1.5 0.2 

 

For interest, at very low frequencies, the response was as seen in tables 2.8 and 2.9. 

Table 2.8  Count variations at low  frequencies using 500 accumulations 

Result number Input frequency (Hz) 
Mean count and 

variation 
Variation (%) 

22 10 1.8 ± 0.17  9.4 

23 50 2.44 ± 0.68 28 

24 100 3.26 ± 0.9 28 

 

Table 2.9  Count variations at low  frequencies using 1000 accumulations 

Result number Input frequency (Hz) 
Mean count and 

variation 
Variation (%) 

25 10 3.6 ± 3.5   97 

26 50 4.9 ± 0.93 19 

27 100 6.5 ± 1.3 20 

 

It is seen that a transition in the output count occurs between results 11 and 12 (also 20 and 21).  

In order to obtain the transition point, further measurements were taken as shown in table 2.10. 



91 

 

 

Table 2.10  Count variation around the transition frequency range using 500 accumulations 

Result number Input frequency (kHz) 
Mean count and 

variation 
Variation (%) 

28 55 881 ± 4 0.5 

29 60 961 ± 1 0.1 

30 65 1040 ± 7 0.7 

31 70 1119 ± 2 0.2 

32 75 590 ± 30 5.1 

33 80 35 ± 15 43 

34 85 74 ± 10 14 

35 90 153 ± 3.5 2.3 

36 95 235 ± 4.3 1.8 

 

Results 31 to 34 cover the region of counter overflow in the converter where the count decreases 

with increasing input frequency.  Finer readings were taken around this region with the results 

shown in table 2.11 

Table 2.11  Count variation around the transition point using 500 accumulations 

Result number Input frequency (kHz) 
Mean count and 

variation 
Variation (%) 

37 71 1020 ± 19 1.9 

38 72 943 ± 32 3.4 

39 73 833 ± 29 3.5 

40 74 702 ± 18 2.6 

41 75 624 ± 30 4.8 

42 76 490 ± 26 5.3 

43 77 382 ± 20 5.2 

44 78 255 ± 20 7.8 

45 79 136 ± 20 14.7 

46 79.9 64 ± 20 31.3 

47 80.2 30 ± 9 30 

48 80.4 14 ± 8.2 59 

49 80.5 2.6 ± 0.6 23 

50 80.7 6 ± 1.5 25 

51 81 11.2 ± 2.4 21 
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2.19  Comments and discussion of the results obtained   

This particular investigation whereby the instrument is thoroughly characterised, is important as 

it allows the relative accuracy of  peaks having widely different magnitudes to be ascertained, 

and also to determine the practical working range of the pulse converter. 

Considering result no.3, the pulse counting window in the converter produces count values at a 

rate of 10 kHz and so the probability of seeing input counts of 10 kHz that are also coincident 

with the window is high.  Hence the low error associated with this.  (Similarly at 100 kHz.)   

As expected, increasing the number of accumulations generally produces a reduction in the 

amount of variation in counts about the mean. 

Figure 2.41 shows a graph of mean count values against input frequency, where it is seen that 

they closely follow the expected straight line relationship. 

From previous investigations described in chapter 4, at 𝑚/𝑧 = 73, the typical count obtained was 

180 with 500 accumulations.  Using equation 2.7, this corresponds to an input repetition 

frequency of:  

 
180

500
 ×  31.25 =  11.25 kHz  

In this range, the error is <1% and so the pulse conversion technique will clearly give reliable 

results around this region.  From the graph shown in figure 2.42 and taking into account the 

magnitude in the variation of counts, the working range is seen to be from 1 kHz to 70 kHz.  

Also, from fig 2.42 it is seen that over the working range of 10 kHz to 70 kHz, the percentage 

variation about the mean is less than 2%. 
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Figure 2.41  Plot of input frequency to output 

count with 500 accumulations 
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                                                          Figure 2.42  Percentage variation (error) in count with pulse frequency.  
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Below 1 kHz, the error becomes unacceptable for reasonably accurate peak height 

comparisons, as seen in results 22 to 27 shown in tables 2.8 and 2.9.  This is because the 

occurance of pulses seen in the 0.1 ms window becomes less frequent as the pulse repetition 

frequency drops.  In results 22 to 24, the number of accumulations is insufficient to be able to 

distinguish between noise and signal, and no trend is seen.  In results 25 to 27 the counts are 

still virtually down in the noise levels, but are becoming more significant since the error at 10 

Hz is (as expected), much higher than that at 50 or 100 Hz.   

Of interest is to look at the transition from the end of the overflow region to the start of the 

next counting region theoretically starting at 80 kHz.  From result 49 in table 2.11, the lowest 

count of 2.6 occurs at 80.5 kHz.  This error of 0.63% can be attributed to the  effect of the 

combined inaccuracies of the crystal controlling the counting window in the converter and 

that of the counter/timer used to monitor the signal generator frequency. 

Considering the variation in count about the mean, the ‘beats’ are due to pulses at frequencies 

that are not at multiples of 10 kHz which, drifting in time across the counting window, 

appears to produce a peak variation that occurs at the maximum excursion between multiples 

of 10 kHz (i.e. at the mid-point  that occurs with multiples of 5 kHz).  This is covered 

theoretically in greater detail in section 2.20.1 following). Below 10 KHz, the variation 

becomes progressively larger at a steeply increasing rate because less pulses will be seen as 

the frequency of their occurance becomes smaller.   

Considering how the pulse converter operates, a formula relating the maximum working 

frequency to the division ratio of the counter and the repetition rate of the counter window 

can be deduced as:  

𝑓𝑚𝑎𝑥 =  𝑓𝑤𝑖𝑛(2𝑛 –  1)  .......eqn 2.8      
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where 𝑛 is the division ratio of the counter and 𝑓𝑤𝑖𝑛 is the window repetition frequency. 

Therefore, if so desired, the working range could easily be extended to 150 kHz by increasing 

the division ratio of the counter from 3 to 4, and so on.  

At lower counts,  the count at 500 accumulations may be around say, 18 corresponding to an 

input frequency of 1.1 kHz.  The variation in count is seen to be 8.5% at 1 kHz.  This could 

be improved on by increasing the number of accumulations to say, 2000 but the relative 

heights could alternatively be compared by using the mass spectra program where the count 

is made not over 0.1 ms (for arrival time) but nominally over 200 ms per increment of amu 

(for peak height) thus allowing a lot more time for the reading of counts to establish.   The 

main purpose of the count converter is to give the arrival time of mass tuned ion peaks.   

Considering figure 2.41, the psuedo-analogue count output varies linearly with the input 

frequency up to 70 kHz.  After that, counter overflow occurs as shown by the shaded area.  A 

3-stage counter is used in the pulse converter thereby producing an output count of 0 to 7.   

The window frequency is 10 kHz (the counter is allowed to count up during intervals of 0.1 

ms.) and so further increases crossing the 70 kHz threshold progressively produce a 

decrementing count that is aiming for zero.  The up-count then recommences from zero at 80 

kHz. 

The slope of the line representing the counting region 𝑚𝑐 is 16, while that of the overflow 

region  𝑚0 is  -112, thus 𝑚0 = −7𝑚𝑐  .  This is because the change from a maximum count 

of 7 to the minimum of 0 has to take place over the smaller range of 70 kHz to 80 kHz (i.e. 

within a 10 kHz window).  However, 𝑚𝑐 has a positive slope and  presides over the normal 

operating range of 70 kHz and so is reduced by a factor of 7 relative to 𝑚0. 

  



97 

 

Considering equation 2.7 namely 𝑓𝑖𝑛(𝑘𝐻𝑧) = 
𝑅𝑒𝑎𝑑𝑖𝑛𝑔

𝑁𝑎𝑐𝑐
 × 31.25 

The slope 𝑚𝑐  can be predicted by rearranging for  
𝑅𝑒𝑎𝑑𝑖𝑛𝑔

𝑓𝑖𝑛 (𝑘𝐻𝑧) 
   

i.e. 𝑚𝑐 =  
𝑁𝑎𝑐𝑐

31.25  
  = 

500

31.25
 = 16 

Referring to Figure 2.42, it is seen that the region of operation for minimum error is from 10 

kHz to 70 kHz.  Also seen is the previously mentioned ripple caused by the maximum 

excursion from the sides of the 10 kHz windows at the 5 kHz midpoints.  

From 70 to 80 kHz the error accumulates to a maximum of about 60%.  

The lack of detail from 100 Hz to 10 kHz is due to the scarcity of data points taken.  If more 

points had been taken, it may be that a similar response to that over 70 to 80 kHz would have 

been obtained although the accuracy of the results is difficult to acertain because the count 

values are almost down into the noise levels. 

Although extending the counter from modulo 3 to modulo 4 would extend the frequency 

range to 150 kHz and also reduce the error (since there would be 16 quantisation levels 

instead of 8) it seems that the present setting is sufficient as the error is less than 2% over the 

working range of frequencies expected, and the response at 70 kHz would represent a signal 

with a very strong ion count which is above that normally aquired.  

2.20  Theoretical considerations on the response of the pulse count converter to a steady 

input frequency 

The pulse count converter can be more accurately described as ‘a gated digital pulse counter 

to pseudo analogue converter’.  To describe its true response theoretically to a set of digital 
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pulses that are occurring as a continuously changing pulse stream in response to a Gaussian 

shaped input waveform (representing an ion peak in the mobility spectrum) occurring every 

40 ms or so would be a complex task, and unnecessary since: 

a. From the experiments, the converter has been seen to fulfil its requirements for 

obtaining total ions and selected mass mobility spectra. 

b. Characterising the converter by using a set of steady input pulse frequencies (as 

performed in section 2.21) has enabled a theoretical investigation into its response to 

be more readily achieved. 

It is therefore interesting to now consider the theoretical response to a pulse stream of steady 

frequency in order to gain a more fundamental insight into how the system operates.    

The graph previously seen in figure 2.42, shows the response of the converter to a range of 

steady input frequencies for quantifying its operation in this respect. The actual input to the 

converter from the channeltron preamplifier is in the form of a spread of input count values 

within each 0.1 ms time slot, effectively giving an incremental sweep of input frequencies 

over the spectrum to produce a characteristic spectral response. This considerably 

complicates the issue especially at frequencies less than 10 kHz where the chance of seeing a 

pulse gets much less as the frequency reduces and so considerably more accumulations will 

be required to get a number of counts above those arriving from the background of system 

noise.   

Figure 2.42 which gives the frequency-error characteristic of the converter shows that the 

linear relationship between input frequency and output count is only exact when the input 

pulse frequency is an integer i multiple of 10 kHz where 1 ≤  i  ≤ 7.    For intermediate count 

pulse frequencies where i is non integer, an error ripple is seen.  An exact mathematical 

description of the curve may be difficult to derive as it involves consideration of the 
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ε 

𝑇
2⁄  𝑡𝑝 T 0 

probability of the ions impinging on the channeltron in terms of ion intensity. (At low counts, 

it may take several accumulations before an ion is actually seen in a particular sampling 

interval.) To a first approximation however, an idea of what happens may be gained as 

described in the following section.  

2.20.1  The pulse counting window 

Assuming that the window commences when the input pulse commences, then on a temporal 

basis, figure 2.43 represents an input pulse of frequency between 10 and 20 kHz arriving 

within the 𝑇 = 0.1 ms (𝑓𝑠 = 10 kHz) counting window between 𝑡 = 𝑇/2 and 𝑡 = 𝑇. At 

frequencies above 10 kHz, there is 100% probability of seeing a pulse. 

 

 

Figure 2.43  Representing a channeltron pulse arriving within the counting widow 

The interval ε represents the uncertainty in the measurement of the input pulse frequency (𝑓𝑝) 

within the counting period T.  Thus the error between the actual pulse frequency and that 

measured, that is 𝑓𝑝 - 𝑓𝑚 , will be 0 when ε = 0, which occurs at 𝑓𝑝 = 𝑓𝑠 when the pulse occurs 

simultaneously at 𝑡𝑝=T and the harmonics of 𝑓𝑠.  As ε approaches 𝑇 2⁄   the uncertainty will 

become maximum and then drop to zero at 𝑇 2⁄  when a pulse occurs at 𝑇 2⁄  and T, (as seen in 

figure 2.44). (The curves shown in figures 2.44 to 2.46 were obtained using equations derived 

in section 2.23.2 following.) 
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When 𝑡𝑝 < 𝑇
2⁄  there will be two or more pulses occurring, hence giving a smaller value of ε 

(as shown below in figure 2.47). The maxima of ε will similarly reduce at each increasing 

harmonic as seen in figure 2.45. 

 

 

Note, in figure 2.45, only the harmonics and their mid points are plotted.  The curve fit 

produced from Excel agrees with that obtained practically as previously shown in figure 2.42 

where again only the data values at the harmonics and their mid points were obtained.  Had a 

finer frequency range been taken, a more correct representation may have been produced of 

the form depicted in figure 2.46.  

Figure 2.44  showing how uncertainty in measurement of 𝑓𝑝 increases towards 20 kHz 

 

Figure 2.45 showing variation of uncertainty over the range 10 to 70 kHz 

 

                              “Uncertainty Interval” 
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ε 

𝑡𝑝 𝑇
2⁄  𝑇 0 

 

 

 

 

 

 

Here, between the harmonics, the uncertainty correctly follows the form as seen in figure 

2.44. 

Considering figure 2.47 showing a counting window where 𝑓𝑝 > 20 kHz, the uncertainty ε is 

given by T - c𝑡𝑝 .......(2.8) where c is the number of counts within the window. Thus, in one 

counting period, when 𝑡𝑝 > 𝑇 2⁄  uncertainty ε reduces when 𝑡𝑝 increases as was seen in figure 

2.43.  Conversely, when 𝑡𝑝 < 𝑇 2⁄  uncertainty ε reduces when 𝑡𝑝  decreases as seen in figure 

2.47.  This shows that the point of maximum uncertainty lies immediately before 𝑡𝑝 = 𝑇 2⁄  . 

 

 

Figure 2.47  Representing channeltron pulses at  𝑓𝑝 > 20 kHz 

In order to get improved accuracy, the interval 𝑇 needs to be as long as possible to allow 

more counts to be acquired.  However the time required for peak resolution within the 

spectrum puts a constraint on 𝑇.  To overcome this, an average of the count values obtained 

over many spectra may be performed.  (Hence the value of 0.1 ms for the counting windows 

within a spectrum spanning over 40 ms as explained in section 2.17.1.)  This approach 

Figure 2.46  showing a more correct representation of variation of uncertainty over the range 10 

to 70 kHz 
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effectively widens the counting window by 𝑛 where 𝑛 = number of accumulations taken, 

which also gives the benefit of ‘averaging out’ of spurious noise pulses that would otherwise 

give additional errors in the measured pulse frequency. The effect is to reduce the error in 

measured pulse frequency 𝑓𝑚   as the number of accumulations increases as explained in the 

following sections. 

2.20.2 The effect of increasing the number of accumulations 𝒏 on uncertainty ε  

Note, in this theoretical consideration, it is convenient to take 𝑛 accumulations of the pulses 

which may then be represented as a voltage via a D/A converter. In the practical case, the 

pulse count 𝑐 within the window is converted to a voltage and the voltage values are 

accumulated over 𝑛 spectra, which is equivalent since (in equation 2.5) 𝑉𝐷/𝐴 = 𝑐𝑜𝑢𝑛𝑡 3.125⁄  

and so the end result will be the same in both cases.  

By effectively widening the sampling window to a width of 𝑛𝑇, the uncertainty in 

measurement of 𝑡𝑝 becomes ε = 𝑛𝑇 - c𝑡𝑝, but over n accumulations of spectra, the count 

obtained will be given by c = |nT/𝑡𝑝| thus ε = 𝑛𝑇 - 𝑡𝑝|nT/𝑡𝑝| and in terms of frequency,       

ε = 
𝑛

𝑓𝑤
  - 

1

𝑓𝑝
|

𝑛𝑓𝑝

𝑓𝑊
|  

(A plot of ε vs 𝑓𝑝with 𝑛=1 was used to yield the curve previously shown in figure 2.44.)  

By plotting ε vs 𝑓𝑝 with 𝑛=2, as shown in figure 2.48, it is seen that 𝑓𝑝 = 15 kHz is now 

resolved since three pulses will have been counted terminating at ε = 𝑛𝑇 - c𝑡𝑝 = 0. The peak 

values of ε correspond to the periodic times 𝑡𝑝 of the pulses (following the pulse positions as 

seen in figure 2.47).   

 

 



103 

 

 

 

Similarly, increasing 𝑛 produces a further increase in frequency resolution with a 

proportionate increase in intervals of uncertainty as seen for the case with 𝑛=4 shown in 

figure 2.49.  

 

 

2.20.3  The relationship between measured frequency and actual input frequency 

Considering, the count obtained over n accumulations being c = |n𝑓𝑝/𝑓𝑤|       (2.9)              

the measured frequency 𝑓𝑚 is related to the count by  𝑓𝑚 = 
𝑐

𝑛𝑇
 =  

𝑐𝑓𝑤

𝑛
       (2.10).             

The error in 𝑓𝑚 occurs due to the finite number of accumulations required to get a satisfactory 

Figure 2.48 showing effect of n=2 on the uncertainty ε 

 

Figure 2.49 showing effect of 𝑛=4 on the uncertainty in measurement of 𝑓𝑝 
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degree of accuracy.  This may be seen quantitatively by relating the measured 𝑓𝑚 to the actual 

𝑓𝑝 pulse frequencies by equating equations 2.9 and 2.10 in terms of c, 

 thus, 𝑓𝑚 =   
𝑓𝑊

𝑛
|

𝑛𝑓𝑝

𝑓𝑊
|       (2.11) 

2.20.4  Plotting the error curve 

The number of accumulations 𝑛 required for ε = 0 depends on the particular value of 𝑓𝑝 

relative to the window length 𝑇. In order to calculate 𝑛 an iterative procedure must be used 

whereby 𝑡𝑝 is incremented by 𝑐 counts until the 𝑐th
 count coincides with the end of the 𝑛th

 

counting window (i.e. at ε = 0). An example is given in figure 2.50 below showing an 

accumulation of counting windows where 𝑛𝑇 = c𝑡𝑝 (or 
𝑛 

𝑓𝑤
 = 

𝑐

𝑓𝑝
) after the 4

th
 accumulation. 

Hence 𝑡𝑝 = 4× 𝑇/5 = 0.08 ms when 𝑇 = 0.01 ms giving the measured pulse frequency as 𝑓𝑚 

= 12.5  kHz. This confirms the equations used to produce the graph shown in figure 2.49 

whereby 𝑛=4 also resolves 𝑓𝑝 at 12.5 kHz. 

 

 

 

Figure 2.50 finding the minimum 𝑛 at a particular value of  𝑓𝑝 

When incorporating this into a routine for calculation on a computer, an intermediate value of 

𝑛 is found in a for-next loop from  
𝑐𝑓𝑤

𝑓𝑝
 where 𝑐 is the loop counter (i.e. the pulse count), and 

the count is terminated when 𝑛 becomes an integer (i.e. ε = 0). A program to accomplish this 

(written in Visual BASIC) follows with the user form shown in figure 2.51. 

     1                   2                   3                    4 accumulations 

  1              2              3              4              5 counts                   time 𝑡        
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Private Sub CommandButton1_Click()                                                                                                          

'Program to calculate minimum number of accumulations to resolve 𝒇𝒑  at zero 

uncertainty)                                                                                                               

'declarations and input 

fw = 10 'frequency of counting widow 

fp = Val(TextBox1.Text)  ‘input the pulse frequency 

'calculations 

f = fw / fp  'calc here to avoid repetition in for-next loop 

For c = 1 To 1000  ‘c is the pulse count 

P = Str(c) + "   " 

n = c * f  ‘intermediate value of n 

S = S + Str(n) + " " 

If n = Int(n) Then GoTo endit   'i.e. n – int(n) =0 (e = 0) so ctp = nT 

Next c 

endit: 

'output 

TextBox2.Text = Str(n) 

TextBox3.Text = Str(c) 

End Sub 

 

 

 

 

 

 

 

 

 

Figure 2.51  User form for calculation of least no. of accumulations to resolve 𝑓𝑝 
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Using results from the program, a plot of 𝑛 versus 𝑓𝑝 at intervals of 0.5 kHz is shown in 

figure 2.52 where it is interesting to see that the curve is symmetrical either side of 15 kHz.  

Again, because of the coarse intervals in frequency, the curve is only a partial representation 

of a curve that would be obtained for a much finer range. For example, 𝑓𝑝 = 10.2 kHz 

requires n = 50 to resolve whereas 𝑓𝑝 = 10.1 kHz requires n = 100 to resolve, with 𝑓𝑝 = 10.05 

kHz requiring 𝑛 = 600 to resolve!  

 

 

 

 

 

 

 

 

 

 

The effect of the number of accumulations on the percentage error in measuring 𝑓𝑝 may be 

determined as follows: Consider figure 2.47, then over 𝑛 accumulations, ε = 𝑛𝑇 − 𝑐𝑡𝑝 where 

𝑛𝑇 is the total accumulated window time over which the integer count of 𝑐 pulses 

spaced 𝑡𝑝 apart occurs. 𝑓𝑝 will always be ≥ 𝑓𝑚 since 𝑐𝑡𝑝 ≤ 𝑛𝑇.   

i.e. 
1

𝑐𝑡𝑝
 ≥ 

1

𝑛𝑇
 and so 

𝑓𝑝

𝑐
 ≥ 

𝑓
𝑊

𝑛
   hence 𝑓𝑝 ≥

𝑐𝑓𝑊

𝑛
     thus from equation 2.10, 𝑓𝑝 ≥ 𝑓𝑚 

The fractional error 𝐸𝑓𝑚 in the measured pulse frequency (due to the uncertainty ε) relative to 

the actual pulse frequency can therefore be represented by: 

Figure  2.52 showing the effect of 𝑓𝑝 on 𝑛 at 𝜀 = 0 
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𝐸𝑓𝑚 = 
𝑓𝑝−𝑓𝑚

𝑓𝑝
  =  1 − 

𝑓𝑚

𝑓𝑝
  and substituting equation 2.10,  𝐸𝑓𝑚 = 1 − 

𝑐𝑓𝑤

𝑛𝑓𝑝
   

Also, substituting equation 2.9 for c, 𝐸𝑓𝑚 = 1 − 
𝑓𝑤

𝑛𝑓𝑝
|
𝑛𝑓𝑝

𝑓𝑊
 |  

The error expressed in percent will be: 

𝐸𝑓𝑚 (%) = [1 −  
𝑓𝑤

𝑛𝑓𝑝
|
𝑛𝑓𝑝

𝑓𝑊
 | ] × 100        (2.12 ) 

A plot of 𝐸𝑓𝑚 (the error in measured frequency 𝑓𝑚) against 𝑓𝑝 for particular values of  𝑓𝑊 and  

𝑓𝑝 (normalised to 𝑓𝑊= 10 with 𝑓𝑝 in the range 0.1 to 70) with 𝑛 =1 produces the error curve 

seen in figure 2.53 

 

 

It is seen in figure 2.53 that the shape of the curve follows that of the variation in uncertainty 

shown in figure 2.46. The error at 15 kHz is 33.3% and that immediately before 20 kHz is 

20%. 

Increasing the number of accumulations will have a varying effect on the frequencies being 

resolved as is seen in the cases shown in figures 2.54 (𝑛=2) and 2.55 (𝑛=3). 

Figure 2.53  Variation of error in measured pulse frequency 𝑓𝑚 with 𝑛=1 
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In figure 2.54, it is seen that at 15 kHz the error is now 0 while at 20 kHz it has reduced down 

to 25 %. 

 

 

In figure 2.55, the error at 15 kHz is now 11.1% with that immediately before 20 kHz being 

reduced to 16.3%. Thus the effect of increasing 𝑛 selectively improves frequency resolution 

with a trend converging to the correct value. 

Figure 2.54  Variation of error in measured pulse frequency 𝑓𝑚 with 𝑛=2 

 

Figure 2.55  Variation of error in measured pulse frequency 𝑓𝑚 with 𝑛=3 
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In this section, it was seen that the number of accumulations theoretically required to 

eliminate the error at a particular frequency is finite and relatively small compared to what 

was found when making practical measurements where: 

a. Pulse frequencies are not exact integers or having a value with large fractional parts, 

but may actually have small changes around a particular value of frequency (due to 

circuit instability and drift) requiring considerably more accumulations to resolve (as 

indicated in figure 2.52) 

b. The probability of seeing a pulse at frequencies < 10 kHz within individual spectra 

becomes an inherent factor, and thus the total elimination of error becomes 

impractical.  

c. Extraneous pulses caused by circuit noise require many accumulations to provide an 

adequate S/N ratio.  

A further complication arises where the spectral length is greater than time 𝑇. (So far, only 

accumulations of a single repeating time slot have been used.) In the case where a spectrum is 

sampled comprising of a ‘frame’ of time slots, (e.g. over a spectral length of 40 ms with each 

time slot taking 0.1 ms, there will be 400 time slots in the frame containing the spectral data), 

a continuous pulse stream will therefore be ‘out of sync’ within certain time slots in the 

frame. This may be seen in the example shown in figure 2.56 below where the spectral length 

comprises of four frames.   

 

 

 

     1                   2                   3                    4                    5                   6            frames 

        1                2                   2                   1                  2                 2                  1   counts   time 𝑡        

Figure 2.56 Phase relationship of the pulses between frames 
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Thus, more accumulations will again be required to reduce inter-frame measurement error as 

the frames drift in and out of sync with the pulse stream. This manifests itself as a small 

variation of counts around the correct value when observed in the mobility spectrum (e.g. 

when using a large number of accumulations such as 500). The amplitude of the variation 

was seen to depend on the number of accumulations taken and the test frequency as was 

observed when using the TIMMS program previously to take practical measurements (section 

2.18.1).  

This concludes the section on the theoretical analysis of the behaviour of the pulse converter 

to a pulse stream of set frequency.  It is seen that the equations derived confirm the practical 

results and also allow a more accurate representation of the actual response to the pulse 

stream to be made over that seen in the practical measurements.   

2.21  Reconstruction filter 

This is a low-pass filter that provides a smooth transition between the discontinuities in the 

output waveform obtained from the D/A converter. Thus it produces a better approximation 

to the actual shape of the ion pulse as would be obtained from the faraday plate. 

In order to obtain a ball park figure for cut-off frequency of the filter, the following 

considerations were made: 

The width of the RIP is approximately 0.5 ms at its base.  The shape of the pulse can hence 

be roughly considered as a rectified sinewave of frequency 1 kHz.  Thus, to smooth out 

higher pulse frequencies with minimal attenuation of the RIP, the roll-off of the low pass 

filter could be associated with a 3 dB cut-off point of say, 3 kHz.  The range could be 

extended by using a variable resistor in the C-R circuit to provide an optimum amount of 

filtering.  
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In tests, a passive single pole filter configuration providing a roll-off of 6 dB/octave as shown 

in figure 2.57 was found to provide sufficient smoothing.  

 

 

Figure 2.57  Basic single pole low-pass filter 

Choosing 𝑓𝑐  = 3 kHz and C = 1 µF and rearranging for R, gives 𝑅 =  
1

2𝜋𝐶𝑓𝑐 

 = 530 Ω.  

Therefore a 1 kΩ variable resistor would provide sufficient flexibility in the degree of 

filtering.   

The final version used is shown in figure 2.58 which also incorporates a switch to either bring 

the filter into circuit, or switch it out.  Note, in the OUT position there is very little signal lost 

across the variable resistor due to the very high input impedance of the DAQ card. 

 

Figure 2.58  Final version used for the reconstruction filter 

 

R 

C Cut-off frequency 𝑓𝑐  =  
1

2𝜋𝐶𝑅
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2.22  Ion Pulse Simulator 

This simulates the pulses arriving from the SPC10 channeltron preamplifier to the pulse 

converter.  Its purpose is for fault finding purposes in the absence of signal response when 

viewing mass mobility spectra (i.e. TIMMS or SIMMS).  The simulator enables testing of the 

correct operation of the converter, data acquisition and associated software over a switchable 

frequency range of 1 kHz to 110 kHz in steps of 10 kHz.  The simulator unit is attached to the 

lid of the pulse converter.  The circuit shown in Figure 2.59 is comprised of two sections, 

these being a Schmitt trigger based astable multivibrator to provide the basic rectangular 

wave pulses and a fast monostable to change the waveform into a set of needle pulses 

approximately 40 ns wide. The actual pulses from the preamplifier are 25 ns wide provided 

via a monostable using ECL technology.  As a simpler circuit is gained with using TTL or 

high speed CMOS, this is the chosen method, the slightly longer pulse width of 40 ns being 

sufficient for the simulation. 

 

Figure 2.59  Circuit diagram of the ion pulse simulator 

Supply decoupling of high frequencies/spikes is accomplished by the 10 R – 100 μ 

combination.  In conjunction with the 100 nF timing capacitor, the 12 way switched resistor 

bank comprises of a 12 way rotary switch that selects a resistance value corresponding to a 
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From SPC10 

To DAQ card 
Test 

particular test frequency. Table 2.12 shows the resistance values required for the 

corresponding test frequency. 

Table 2.12 Resistance values required to produce various test frequencies 

Frequency (kHz) Resistance (Ω) Nearest preferred value(s) 

1.0 3120 2200 + 910 

10 630 620 + 10 

20 300 270 + 33 

30 190 180 + 10 

40 133 120 + 12 

50 98 91 + 6.8 

60 76 68 + 8.2 

70 57 56 + 1 

80 47 47 

90 36 33 + 3.3 

100 28 27 + 1 

110 22 22 

 

The 74LS121 monostable multivibrator is triggered by the rising edge of the pulses from the 

74LS14 Schmitt trigger inverter and due to the absence of any timing components, produces 

a needle pulse of approximately 40 ns duration each time it receives a trigger pulse.  The 

switching and interconnections between each circuit within the converter unit are shown in 

figure 2.60. 

  

 

 

 

 

 

Amp 

 Simulator 

 Pulse Converter 

Figure 2.60  Pulse converter and simulator system connections 
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2.23  Concluding Remarks 

In this chapter, it was seen how the electrical requirements for the control of the IMS 

operating parameters were met, taking advantage of new ideas to improve the operation over 

previous systems in terms of: 

 Isolation of the pulses to control the ion gate using opto-isolation allowing greater 

flexibility in terms of gate pulse width and linearity, and increased electrical safety. 

 Development of a novel pulse count to pseudo analogue converter for obtaining 

increased sensitivity in ion mass mobility mode measurements by using the 

channeltron in count mode with pulse count to analogue conversion, rather than using 

the less sensitive Faraday plate inside the mass spectrometer. 

 Incorporation of safety features to prevent flashover when baking out. 

Following on from this, chapter 3 now covers the development of the software functions 

required to control the system. 
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CHAPTER 3   SOFTWARE DEVELOPMENT FOR THE IMS-QMS SYSTEM 

In this chapter, program development for software control of the IMS-QMS system to obtain 

ion mobility and mass spectra is described.  Information is also given on the configuration of 

the hardware used for signal acquisition and data presentation.  Following this, chapter 4 

describes how the system was tested and characterised using the suite of programs that are 

now to be described. 

3.1  A short description of the LabVIEW programming environment 

LabVIEW programs are produced using a graphical programming technique [116].  The 

terminology is different to that normally used when writing software but the ideas are similar.  

Programs written for LabVIEW are called VIs (virtual instruments).  There are two main 

sections involved when writing a VI:  

1.  The Front Panel is the user interface where data is input using controls, and the 

output may be displayed using indicators.  Examples of controls are various types of 

electrical switches. Indicators may be numeric or text boxes, meters, charts and 

graphs. 

2.  The Block Diagram is the actual executable program.  Data passes to and from the 

block diagram via the front panel objects.  On the block diagram, a corresponding 

terminal will appear.  These act as sources or sinks of data.  Additionally, nodes are 

used to control the program flow, or operate on the data.  An example of a node is a 

summing block to add two data values together, or a timer to insert a time delay. 

Nodes can also operate like the functions, operators and loops encountered in normal 

programming. Terminals and nodes are connected together by wires (in a similar 

fashion to connecting electrical elements in a circuit) which are the paths for the data 

to take between the source and destination terminals.  Wire colours relate to the type 



116 
 

of data variable (orange for floating point, blue for integer, green for Boolean and 

purple for string.)  

 Thus, the front panel represents the operating screen for the user and the block diagram is the 

“program code” in graphical form.  

3.2  Program development 

There are four user programs associated with the IMS-QMS system which are identified by 

their filenames (shown in brackets) as follows:  

Ion Mobility Spectra (IMS) – This provides the Ion Mobility Spectrum using the signal 

acquired from the Faraday Plate.   

Mass Spectra (MS) –  produces the Mass Spectrum of the ions obtained from the SEM after 

passing through the quadrupole.  

Total Ions Mass Mobility Spectra (TIMMS) – This provides the Mobility Spectrum for all 

the ions that pass through the quadrupole and is equivalent to the total ion mobility spectrum 

from the FP.  

Selected Ions Mass Mobility Spectra (SIMMS) – shows the Selected (or Tuned) Mass 

Mobility Spectrum which is the ion mobility spectral response based on a single ion m/z 

selected by the quadrupole.  It is here where there could be a difference to the ion mobility 

spectrum obtained from the FP  due to CID occurring in the IMS to MS interface, whereby 

fragments at lower 𝑚/𝑧 may be more pronounced.  

Note, when using these programs it is important to ensure that the following points are  

observed: 

 Program “IMS” requires the FP switch to be in the ‘Amp’ position (Green led on). 

The quadrupole is not used.  The gate switch is to be in the ‘pulsed’ position. Here, 

the FP provides ion current that is fed to the input of the electrometer.  



117 
 

 Program “MS” requires the FP switch to be in the ‘VFP’ position (Red led on).The 

quadrupole is used in ‘external mass’ mode and the gate switch is to be in the ‘open’ 

position.  Here, the FP acts as an electrostatic lens to allow transportation of a sample 

of the ions through the orifice in the FP and into the quadrupole.  

 Program “TIMMS” requires the FP switch to be in the ‘VFP’ position (Red led on) 

with the gate pulsed. The quadrupole is used in ‘internal mass’ mode with ‘total ions’ 

selected and ‘first mass’ selected at 10 amu with a “mass span” of 0.  

 Program “SIMMS” requires the FP switch to be in the ‘VFP’ position (Red led on). 

The quadrupole is used in ‘external mass’ mode, with the gate pulsed.  

The user is given a reminder of what should be done when running a program according to 

the above points. 

3.3  Hardware considerations. 

Before writing the software, the way in which signals are to be acquired needed 

consideration.  In order to display an ion mobility spectrum, it is necessary to read in samples 

of the waveform of the ion current from the Faraday plate over the spectral time length.  This 

is done by using a proprietary DAQ (data acquisition) card (type PCI-6014) supplied by 

National Instruments, who also produced the programming language LabVIEW (version 7.2) 

which was used to write all the necessary software for displaying the various spectra obtained 

from the IMS-QMS system.  The PCI 6014 is a multifunction DAQ device and Figure 3.1 

shows the I/O connector pin assignment for the connector block used to wire the signals from 

the IMS-QMS system to the DAQ card. 

 

 

 

 



118 
 

 

Figure 3.1  Pin assignment for the PCI 6014 DAQ card connector box [96] 

The specifications of prime interest for the DAQ card [96] are: 

Analog Input      Analog Output  

Channels 16 , 8     Resolution 16 bits  

Single-Ended Channels 16    Max Voltage 10 V 

Differential Channels 8    Update Rate 10 kS/s 

Resolution 16 bits     Current Drive Single 5 mA 

Sample Rate 200 kS/s  

Max Voltage 10 V 
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Digital I/O      Counter/Timers  

Bidirectional Channels 8    Counters 2 

Timing Software     Maximum Range 0 V , 5 V  

Logic Levels TTL     Max Source Frequency 20 MHz  

Input Current Flow Sinking , Sourcing  Minimum Input Pulse Width 10 ns 

Output Current Flow Sinking , Sourcing  Pulse Generation Yes 

Current Drive Single 24 mA    Resolution 24 bits 

Maximum Input Range 0 V , 5 V   Logic Levels TTL 

Maximum Output Range 0 V , 5 V 

 

 

Assigning the connections to LabVIEW  

Considering the pin assignments shown in figure 3.1 and the requirements of each program, 

the terminations were assigned as follows: 

Trigger out to LabVIEW      pin 11 TRIG1 (trigger to start analogue I/P)  

                                                 pin 44 DGND (digital ground) - cable screen 

 

Analogue in to LabVIEW     pin 30 ACH3 (analogue I/P+ differential mode)  

(from electrometer)               pin 63 ACH11 (analogue I/P– diff. mode - cable screen 

 

Analogue in to LabVIEW     pin 33 ACH1 (analogue I/P+ differential mode)  

(from pulse converter)          pin 66 ACH9 (analogue I/P– diff. mode - cable screen 

 

Mass output from                  pin 22 DAC0OUT (analogue output) - blue wire  

 LabVIEW to SXP unit         pin 55 AOGND (analogue out ground) - brown (cable screen) 

 

Preamp out from SPC10       pin 37 GPCTR0_SOURCE (counter 0 input pulses) 

pulse count to LabVIEW      pin 4   DGND (digital ground) -cable screen 

 

Trigger in from LabVIEW   pin 16 DIO.6 (digital O/P channel 6)  

 

Unused (spare digital O/P)    pin 50 DGND (digital ground) - cable screen 

 

                                                  
Note, when using the differential input mode (which is recommended for small signals to 

minimise common mode noise), analogue channel pairs are used as ACH(i,  i+8)  where i is 

the positive (non-inverting) input and i+8 is the corresponding negative (inverting) input of 

the particular channel amplifier.   
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3.4  Program operation. 

In the interest of user friendliness and ease of operation, the user interface is designed to be 

similar in appearance with all of the programs although their functions can be quite different.  

The first program to be developed following the construction of the system was IMS as there 

was a requirement to obtain a mobility spectrum in order to check for correct functioning of 

the drift tube and its associated electronics.  

The following sections provide descriptions of the operation and functionality of each 

program. 

 

Figure 3.2  IMS Front Panel 
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Program input 

The incoming data to the program is in the form of a digitised version of the ion current 

sourced by the Faraday Plate (FP).  The sampling rate and number of samples for each 

‘waveform’ acquired (corresponding to a mobility spectrum) are preset inside the block 

diagram and may be changed if so desired by simply inserting a new value into the box 

referring to that particular parameter as explained below.   

User input options 

Referring to figure 3.2 showing the front panel which is the user display, various parameters 

and conditions can be set or recorded by the user.  The IMS operating parameters to be 

inputted are drift tube temperature, pressure, the total voltage across the drift tube, the carrier 

gas used (normally air) and the symbol of the chemical sample being investigated.  These 

parameters are recorded along with the spectral data when the SAVE option is selected.  In 

order to provide a spectrum of acceptable signal-to-noise ratio (S/N) the user can input the 

number of spectra to average over before plotting the final ion mobility spectrum.  The plot 

shows the value of the ion current in nA over the spectral timebase which is preset at 40 ms.  

If it is desired to change this time to another value (e.g. 60 ms) then this is done by displaying 

the block diagram (before running the program) by pressing control E and then changing the 

parameter box for number of samples to take from 4000 to 6000.  With the sampling rate at 

100 kHz, this then provides a total sampling time of 6000÷100000 = 0.06 s or 60 ms. 

Operating modes 

The program operating modes are either single or continuous scans, where in each case an 

averaged mobility spectrum is provided at each scan, and the program may be ended by 

pressing the pink Stop button. The continuous scans mode can be toggled on or off by 
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clicking on the green ‘Continuous Scans’ indicator, saving a spectrum however is not 

possible as this choice is blanked from the screen since it is inappropriate in this mode of 

operation.  In the single scan mode, the spectrum remains visible until the user clicks on the 

blue Re-scan button. 

 The commentary box provides information to the user at various stages of program operation 

when acquiring data or when a choice is to be made.  When the blue SAVE button is clicked 

on at the end of a scan, all of the information gathered by the program is stored in spreadsheet 

format, the file name and location being decided by the user.  The current time and date is 

also automatically included in the file. 

3.4.1  IMS program functionality 

A simplified version of the block diagram for the IMS program is provided by the program 

simple-averaging.vi presented in figure 3.3 to aid in the understanding of the basic ideas 

from which the programs were developed.  Here, a number of individual spectra are acquired 

and averaged to improve the signal to noise ratio of the final spectrum to be displayed. 

Although other signal processing techniques have been investigated and proposed, [117] 

within the present scenario signal averaging although more time consuming, is found to 

provide the best noise extraction and representation of the signal with least distortion and so, 

(as is common in most other IMS systems) is the method chosen for our system. 

Various sections relating to particular “tasks” in the block diagram (the “program”) numbered 

one to three are referred to in the following description of the program operation.  The first 

objective is to set up these tasks to accomplish the desired operation of the hardware 

associated with the program.  Referring to figure 3.3 a description of the tasks now follows. 
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Figure 3.3 Block diagram showing the data aquisition and signal averaging sections of the program IMS 
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Section 1 refers to the DAQmx Create Virtual Channel task which creates a channel.  i.e. it 

deals with setting the following parameters:  

 type of input signal, (AI Voltage) meaning analogue voltage in this instance 

 physical name of the channel (Dev1/ai3) meaning the DAQ card, analogue input 

channel 3 

 triggering mode (pulse_detect) meaning a square wave trigger pulse 

 input terminal configuration (differential) meaning the differential operating mode 

 The minimum and maximum values of the input signal (-1 V and +1 V) 

The data then flows to section 2 which refers to DAQmx Start Digital Edge (Trigger) that 

configures the task to start acquiring samples on the (falling) edge. Here, sub-parameters of 

the above parameters chosen in section 1 are set up as: 

 start on the falling edge of the trigger pulse (Falling–) 

 trigger pulse source (/Dev1/PF10) which is the DAQ card, trigger 1  

The data then passes on to section 3 which refers to DAQmx Timing (Sample clock) for 

configuring the DAQ onboard clock to synchronise the acquisition of the data samples.  It 

sets the source of the sample clock, its rate in samples/s and the number of samples to 

acquire.  Here, the sample mode is set to acquire a finite number of samples (as opposed to 

continuous sampling).  i.e: 

 The clock is located on the DAQ card (OnboardClock) 

 The sampling rate (Rate) is assigned a constant value of 100,000 meaning a 

sampling rate of 100 kHz.  
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 The sampling mode (Finite Samples–) allows a chosen number of samples to be 

acquired between trigger pulses, representing the waveforms to be averaged before 

plotting mobility spectra.   

 The number of samples is chosen here as 4000 and so with a 100 kHz sampling rate 

this allows a mobility spectrum to be acquired over 4000/100000 = 0.04 s or 40 ms.  

From section 3 the data flows into the main while loop at point a whereby 𝑖 increments by 1 

(starting from zero) with each waveform acquired.  In the for-next loop (for 𝑖 = 1 to N) shown 

at c, a value of 1/Rate (i.e. the time interval between samples) is inputted and used to supply 

the time intervals for the graphical display.  In this case, 1/Rate = 10
-5

 s and so the loop 

generates an array of 4000 elements with each one incrementing from the previous by a value 

of 10
-5

.  Thus an array of time values is produced with each value corresponding to the 

averaged Y (amplitude) sub-array value obtained from section 4 which is also contained 

within a for-next loop.  It is here that N waveforms are read in by the DAQmx Read Analogue 

Waveform task (Analog Wfm 1Chan NSamp) and from this, a sub-array of the waveform (Y) 

amplitudes only is obtained.  This Y data matrix then flows into the true case loop where 

using the shift registers (when 𝑖 > 0), the incoming matrices are added together and 

accumulated.  When initially 𝑖 = 0, the false case loop is selected as shown in figure 3.4 

where the sum node is replaced by a direct link as there is only one amplitude matrix.  This is 

passed from the output shift register back into the input one on the next increment ready to be 

summed with the next arriving matrix and so on. 
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Figure 3.4  This figure shows the false case that is selected when 𝑖 = 0 

After N iterations (the number of averages to take) have been completed, the array of data 

containing the accumulated sum of the waveforms appears at point b.  It is then divided by 

the number of averages (plus one to escape an overflow error if the user decided on zero 

averages) to produce the final array of averaged data.  Note, the effect of using N + 1 rather 

than N is insignificant since N  will normally be greater than 500.  The data contained in the 

amplitude and time matrices is then converted to ‘dynamic’ data at point d before finally 

being presented to the ‘Build XY Graph’ vi for display of a mobility spectrum on the front 

panel. 

3.4.2  Saving results in a spreadsheet 

A permanent record of the operating parameters (the ‘header’) and the resulting spectrum 

plotted is gained by saving the settings and the composite XY matrix to a spreadsheet that can 

be later imported to packages such as Excel or Origin.  
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There are several tools provided for achieving this with LabVIEW and the method devised 

for incorporation into the programs is that of writing the data in string form (ascii format) as 

shown by the block diagram in figure 3.5.  Here, the header is first generated as a set of 

delimited (by carriage returns         ) strings representing the operating conditions that are 

then concatenated together and appear at point A.  Following this, the spectral data at point B 

is converted into a two dimensional string array in the correct order representing sampling 

intervals and corresponding ion current, appearing at point C.  The two sets of string data are 

then passed into the conditional case loop where, if the Boolean value from the Save to File 

control is true, the data is written into a spreadsheet file.  

The location of the file is automatically handled by LabVIEW whereby the user is given a 

browse window for selection of where the file is to be stored. 
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Figure 3.5  Writing sets of data strings to a spreadsheet 

A 

B 

C 
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3.5  Descriptions of the programs making up the suite   

In order to preserve clarity and continuation of reading, the complete block diagrams for the 

programs are given in the appendices since they cover several pages. 

3.5.1  Ion Mobility Spectra - IMS.vi 

Figure 3.2 given previously shows a screen shot of the front panel (the human – machine 

interface) of the IMS program.  The corresponding block diagram is shown in Appendix 3.1.  

Referring to these figures and bearing in mind the information given in sections 3.4.2 and 

3.4.3 a summary of the program operation can now be given: 

Following a prompt given by the gate trigger pulse, the program IMS reads a set of samples 

in from the data acquisition card (DAC) which are then internally represented as a 

“waveform”.  The number of samples and sampling rate in this case are preset in the program 

and accessed via the block diagram.  In order to gain a significant improvement in signal-to-

noise ratio (SNR), a user selectable number of waveforms are averaged and then presented in 

a “waveform chart”.  This provides the user with the ion mobility spectrum.  An option to 

save the spectrum to a spreadsheet file is then given otherwise another spectrum can be 

obtained either by initiating manually or by selecting continuous operation which 

automatically updates the spectra as they arrive. 

3.5.2  Total Ions Mass Mobility Spectra - TIMMS.vi 

Figure  3.6 shows a screen shot of the front panel of the TIMMS program and the 

corresponding block diagram is shown in Appendix 3.2. A large section of the program IMS 

is used within this program, which produces a spectrum of the total ions reaching the 

channeltron as they arrive in time.  
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Figure 3.6  TIMMS Front Panel 

Although the output from the channeltron is in the form of digital pulses where their 

frequency is representative of the intensity of the ions (and hence ion current), they are 

converted into an equivalent pseudo-analogue form by the “pulse converter” (described in 

detail in chapter two) so that the analogue acquisition part of the IMS program can be used in 

the same way as is done for plotting ion mobility using the Faraday plate in the drift tube.  

(The only difference being that the analogue input is from another channel as described in 

section 3.3.1.) This procedure is necessary since the speed of operation of LabVIEW was 

found to be inadequate for enabling the data in its raw digital form to be acquired and 

processed sufficiently fast in software.   

3.5.3  Operating the TIMMS program 

Before running the program, the appropriate operating parameters for the mass spectrometer 

need to be entered into the controller as described in appendix A4.5. 
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Program input 

The incoming data to the program is in the form of a digitised version of the pseudo analogue 

signal obtained from the pulse converter unit as detailed in chapter 2, representing the total 

ion count from the channeltron inside the mass spectrometer.  Since this is acquired over a 

similar timebase to that for the IMS program, it provides an alternative display of the ion 

mobility spectrum that is in fact of much better S/N since the microphony effect (described in 

chapter 5) is not present in this case.  As with IMS, the sampling rate and number of samples 

for each ‘waveform’ acquired (corresponding to a mobility spectrum) are preset inside the 

block diagram and may be changed if so desired by inserting a new value into the box 

referring to the particular parameter.   

User input options 

The TIMMS operating parameters (similar to those for the IMS program) are drift tube 

temperature, pressure, the total voltage across the drift tube, the carrier gas used (normally 

air) and the symbol of the chemical sample being investigated.  These parameters are 

recorded along with the spectral data when the SAVE option is selected.  In order to provide 

a spectrum of acceptable signal-to-noise ratio (S/N) the user can input the number of spectra 

to accumulate before plotting the final total ions mass mobility spectrum.  The plot shows the 

value of the ion count in kHz over the spectral timebase which is preset at 40 ms.  If it is 

desired to change this time to another value (e.g. 60 ms) then this is done in a similar fashion 

to that previously given in the description of the IMS program. 

Operating modes 

Referring to figure 3.6, the program operating modes are either single or continuous scans, 

where in each case an accumulated mobility spectrum is provided at each scan, and the 
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program may be ended by pressing the pink Stop button. The continuous scans mode can be 

toggled on or off by clicking on the green ‘Continuous Scans’ indicator, saving a spectrum 

however is not possible as this choice is blanked from the screen since it is inappropriate in 

this mode of operation. 

 The commentary box provides information to the user at various stages of program operation 

when acquiring data or when a choice is to be made.  When the blue SAVE button is clicked 

on at the end of a scan, all of the information gathered by the program is stored in spreadsheet 

format, the file name and location being decided by the user.  The current time and date is 

also automatically included in the file. 

A user variable time offset is built into the program to accommodate for the increase in time 

before detecting the arrival of the ion swarm due to ion transit time through the mass 

spectrometer. This transit time is mass dependant but is generally in the order of 

approximately 0.3 ms for water clusters. The time offset can also be used to allow for the 

extra 0.2 ms introduced by the post-filter mentioned in chapter 2 when it is connected to the 

output of the pulse converter.  In the IMS program, an average over all of the individual 

spectra obtained from each acquisition sequence is plotted in order to improve on S/N ratio as 

there is a direct relationship of 10
-9

 V/A between the ion current and the voltage out from the 

electrometer. However, in the TIMMS program, in order to improve on S/N, the individual 

spectra are accumulated rather than averaged since the numerical value of the digital count (a 

maximum of 7) within each sampling period is much less than the number of accumulations 

(typically 500), and so by accumulating only (so not averaging), the integer nature of the 

resulting count is preserved. The block diagram of the program TIMMS is given in appendix 

3.2 where the similarities in data acquisition to program IMS (appendix 3.1) are apparent. 
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3.5.4  Selected Ions Mass Mobility Spectra - SIMMS.vi 

Figure 3.7 on the following page shows a screen shot of the front panel of the SIMMS 

program and the corresponding block diagram is shown in Appendix 3.3.   

Here, the program TIMMS developed for total ions mass mobility is used with a modification 

so that rather than total ions, the 𝑚/𝑧 of the ions arriving over time may be selected in order 

to identify them in a particular peak.  This allows for the temporal response of a user selected 

single ion 𝑚/𝑧 to be plotted (𝑚/𝑧 73 in this case) as is seen in figure 3.7.  To achieve this, 

the mass spectrometer is put into external mass mode so that it acts as a mass filter whereby 

ions only of a particular mass are transmitted according to the voltage level present on the 

mass select input terminal. (In our instrument, 0 to 10 V d.c. covers a range of 𝑚/𝑧 0 to 600.)   

 

Figure 3.7  SIMMS Front Panel 
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Mass selection is performed in LabVIEW as shown in figure 3.8 where it is seen that at point 

a the desired mass is obtained from the front panel.  The mass value is then divided by 100 

and passed on to the DAQ Assistant where digital to analogue conversion takes place to 

produce a proportional output voltage of 0 to a maximum of +5 V.  This voltage representing 

the required mass is then presented to the mass spectrometer which is configured to be in 

external mass mode and hence it acts as a mass filter for the selected value.  

As with IMS and TIMMS, the sampling rate and number of samples for each ‘waveform’ 

acquired (corresponding to a mobility spectrum) are preset inside the block diagram and may 

be changed if so desired by inserting a new value into the box referring to the particular 

parameter.   

 

Figure 3.8  Mass selection in the SIMMS program 

User input options 

The SIMMS operating parameters are similar to those for the TIMMS program with the 

additional choice of the single mass of the ions for plotting over the timebase. The rest of the 

program operation is in accordance with that described previously for TIMMS. 

A mass mobility spectrum from the SIMMS program is shown in figure 3.9 illustrating a 

water cluster of m/z = 55 Da arriving at 19.9 ms. 

a 



135 
 

 

Figure 3.9  A screenshot of the spectrum provided by the SIMMS program showing the RIP for water 

clusters of 𝑚/𝑧 55 

3.5.5  Mass Spectra - MS.vi 

Figure 3.10 shows a screen shot of the front panel of the MS program and the corresponding 

block diagram is shown in Appendix 3.4.  Unlike in the previous programs whereby mobility 

spectra were plotted, this program gives a mass spectrum of the ions passing through the 

quadrupole.  In contrast to the other programs which operate on analogue data, program MS 

uses the conditioned digital pulses from the channeltron as its input data stream.  The 

representative ion counts over a user selected dwell time at each mass increment are 

displayed over the user selected range of 𝑚/𝑧 to cover the masses of interest.  The size of 

each increment in 𝑚/𝑧 is also user selectable from the figure entered for the number of steps 

(increments) over the mass scan.  An example is given in figure 3.11 showing the mass 

spectrum for water clusters (seen at 𝑚/𝑧 37, 55 and 73) and also contaminants appearing in 

the drift tube at around 𝑚/𝑧 250 and 278 prior to baking out.   
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Figure 3.10  The MS Front Panel 

 

Fig 3.11  A screen shot of the mass spectra program showing water clusters and contaminants before 

baking out 

Operating the MS program 

Before running the program, the operating parameters for the mass spectrometer need to be 

entered into the controller.  These are detailed in appendices A4.6 and A4.7.   

The program works by counting the number of ion pulses arriving from the channeltron 

amplifier at a particular mass over a user-selected dwell time (preset in the program at 0.1 s).  
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Referring to figure 3.10, the ion count is then plotted with the vertical axis scaled in counts/s 

according to the dwell time.  The horizontal axis is scaled in amu according to the mass range 

chosen by the user. 

There are three choices of operating mode : 

 Single scan 

 Multiple scans with averaging  

 Continuous scans 

In all modes, and at any time, a brief click on the orange END button will stop the scan 

process to allow the user to  select a blue button to either ‘Re-scan’ again from the beginning 

using the existing set up for mass range and number of steps in amu for each count, or to 

begin a new scan using a different mass range or number of steps. 

When first running the program, the information on the operating conditions (temperature, 

pressure, voltage, chemical) and mass range/number of steps may be set dynamically (i.e. 

during the scanning process) but do not take effect until the scan cycle has been completed.  

This way of operation has been chosen so that the default values may be used to avoid 

repetition each time the program is run over several similar experiments. The blue option 

buttons for ‘New-scan’ ’Re-scan’ and ‘SAVE’ are inhibited during the scan plotting process. 

Single scan mode 

To aid in simplicity of operation, in this mode, the parameters for averaging of scans are not 

displayed. 

After a scan has been completed the user is given the options of re-scanning, performing a 

new scan or saving the mass spectrum along with the mass parameters and operating 

conditions to a spread sheet.  The date and time of saving are also recorded in common with 

the previously described programs.  A choice of operating in one of the other modes may also 

be made. 
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Multiple scans with averaging mode 

Here, the user sets the initial number of running averages (number of scans – 1) to take and a 

reading of the number of scans performed is then displayed as the process proceeds.  At any 

time during the process the user may dynamically increase the number of averages chosen.  

After the process has completed, further scans may if desired be added to the averaging 

process.  As in the single scan mode, the blue buttons may then be used as appropriate. 

Continuous scans 

In this mode, to aid in simplicity of operation the averaging parameters and blue option 

buttons are not displayed.  The program then repeatedly displays scans of mass spectra until 

the user either ends the program or dynamically selects single scan mode before the present 

scan has completed, where the blue option may again be used as appropriate. 

 Basic operation of the MS program MS.vi 

The overall block diagram is relatively complex compared to the previous programs but the 

essential features for selecting the scan parameters and acquiring the ion counts are relatively 

easy to follow and are described as follows: 

Referring to figure 3.12, this shows the part of the block diagram that deals with the selected 

scan parameters from the front panel, being first mass, last mass and number of steps.  

 

Figure 3.12  Setting up the mass range over which the mass spectrum is plotted 

a 
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The step size (i.e. the increment in mass (amu) between each point plotted in the mass 

spectrum) is found by subtracting the start mass from the end mass to give the mass range, 

and then dividing the mass range by the number of steps.  This is displayed on the front panel 

when the program executes.  The plotting parameters are defined according to the minimum 

and maximum values of X (horizontal) and Y (vertical) as seen at point a. 

The section that deals with the actual acquisition of the ion count at a particular mass over a 

pre-determined dwell time is shown in Figure 3.13.    

Referring to figure 3.13, the current mass requires to be divided by 100 (as seen at point a) 

before passing on to the DAQ Assistant in order to convert to a voltage suitable for passing 

on to the mass spectrometer electronics when in external mass mode.  6 V dc would 

correspond to 600 amu in this case.  The current mass also acts as the scan parameter defining 

the current X position (as seen at point b).  The time frame relating to dwell time then follows 

where the start task for the counter appears at point c, this initiates the counter clearing the 

count to zero. Within the while loop, the task for counting the incoming pulses relating to the 

ions is seen at point d and the dwell time over which this counting process continues is 

controlled by the Elapsed Time function (at point e) according to the value of the user set 

dwell time.  After time-out, the process ends when the stop task (point f) executes which halts 

the counter, and the count value is passed on to the next stage of the process where it is stored 

in an array and displayed on the mass spectrum output screen.  Depending on the number of 

steps chosen the counting tasks repeat at the next mass and so on until the final mass is 

processed and the complete mass spectrum is displayed.    

  

a 
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Figure 3.13   Obtaining the ion count over a pre-determined dwell time 

  

a 

b 

c 

d 
f 

e 



141 
 

 

The rest of the program deals with the users requirements in terms of whether to display 

concurrent spectra (run continuously) or display once and stop, or whether to average over a 

number of spectra, whether to store the mass spectrum to a spreadsheet etc. in a similar 

fashion to the other programs previously described.  

Appendix A3.1 gives the entire ‘listing’ of the block diagrams associated with the program 

suite. 

Since the development of the suite of programs described in this chapter, a different version 

of the IMS program has been published [118] although in comparison, the present version 

described is in the authors opinion more user friendly albeit not directly giving a reduced 

mobility calculation (as is a feature of the other program). This could be incorporated in a 

future revision of the present IMS program.  
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CHAPTER 4   CHARACTERISING THE IMS-QMS SYSTEM 

4. 1  System tests   

Having completed the assembly of the IMS-QMS system and associated operational and data 

capture software, it was necessary to determine its performance and response to various 

changes in operating parameters.  This was done by examining the ions in d.c. mode 

(continuous transmission) for mass spectra, and pulsed gate mode for mobility spectra.  It is 

important to know how these responses vary with changes in parameters such as operating 

voltages (drift tube, screen grid and Faraday plate).  

In order to determine the best conditions of operation and to maximise the sensitivity of the 

instrument, a set of tests were carried out using clean air for the carrier gas.   When these tests 

were initiated, the drift tube was operated at the ambient temperature of the lab, but 

subsequently, it was decided to operate at a fixed temperature of 30 ℃ to reduce any errors 

caused by ambient temperature fluctuations during measurements [119].  The pressure inside 

the drift tube (influenced by ambient weather conditions) was noted at the start of each test.  

When refitting the IMS drift tube after any dismantling was required, it was baked out over a 

few days at 100 ℃ to remove contaminants arising from exposure to the ambient lab air. 

Recalling Chapter 3, the LabVIEW programs developed and used with various tests were: 

 IMS – for obtaining Ion Mobility Spectra from the Faraday Plate 

 SIMMS – for obtaining a Selected Ion Mass Mobility Spectrum 

 TIMMS – for obtaining a Total Ions Mass Mobility Spectrum (Note, this program was 

a later development used with the tests described in Chapter 5) 

 MS – for obtaining Mass Spectra 
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4.2  Testing Rationale 

Referring to the list of tests performed (listed in section 4.3 below), tests 4.1 and 4.2 describe 

the initial investigations made in dc mode (i.e. with the gate open for ion flow) using the IMS 

system only, shortly after it had been assembled.  The fundamental operating parameters such 

as drift tube voltage and screen grid voltage required optimising in terms of ion transmission, 

in preparation for use with the mass spectrometer. 

Following this, the operation in pulsed mode was investigated with optimisation of signal-to-

noise ratio (S/N) in conjunction with ion transmission.  Aspects of this are covered in tests 

4.3 to 4.7.  Within this, test 4.6 highlights an extra delay in drift time that is encountered 

when the ions traverse the mass spectrometer before being detected at the channeltron, rather 

than at the Faraday Plate. 

As all systems of this type require a settling time after switch on, the operation of the system 

over a few hours was observed as detailed in tests 4.8 and 4.9. 

Finally, test 4.10 shows the fragmentation of water clusters caused by various potential 

differences in the region between the FP and the cone at the entry to the mass spectrometer. 

Note, some tests were performed with assumed values for parameters that were not under test 

at the time, but were required however as ‘default values’ in order for the test to proceed. 

In order to get a satisfactory SNR over a mobility spectrum (see test 4.4), an average over 

500 spectra was generally taken when using the IMS and SIMMS programs. 

4.3  List of Tests Performed   

Note, the capital letters in square brackets refer to the program(s) used with the test. 

Test 4.1 – The effect of varying the drift tube voltage on the ion current (dc mode). [IMS] 

Test 4.2 – The effect of varying the screen grid voltage on the ion current (dc mode). [IMS] 

Test 4.3 – The effect of varying the gate pulse width on the RIP. [IMS] 
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Test 4.4 – The effect of averaging on the quality of the ion mobility spectrum. [IMS] 

Test 4.5 – Investigating the microphony effect between the screen and the Faraday plate [IMS] 

Test 4.6 – The effect of varying the screen grid voltage on the RIP amplitude. [IMS, SIMMS] 

Test 4.7 – Effects on RIP (drift time and height) when varying the drift tube voltage. [IMS]  

Test 4.8 – Observing the change in ion mobility spectrum with time. [IMS] 

Test 4.9 – Observing the change in mass mobility spectrum with time. [SIMMS] 

Test 4.10 – The effect of varying the Faraday plate-to-cone voltage on the mass spectra. [MS]  

The following sections describe the results from each of these tests.  

Test 4.1 – The effect of varying the drift tube voltage on the ion current (dc mode). 

The relevant parameters relating to the test are summarised below in table 4.1.  This format is 

also applied to all of the other tests described in this chapter. 

 

 

 

 

 

This test was performed with the screen grid nominally set at 24 V.  This value was obtained 

from pre-test results, but is expanded on in Tests 4.2 and 4.5.  The program IMS was used. 

Although the ion current is continuous, 500 averages were taken at each measurement in 

order to get a better SNR.  

Test Parameters (Fixed) 

𝐼𝑀𝑆 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (℃) 23 

𝑉𝑆𝐶𝑅𝐸𝐸𝑁 (𝑉) 24 

𝐹𝑤𝑑 𝑓𝑙𝑜𝑤 (𝑙/𝑚𝑖𝑛) 0.25 

𝐶𝑜𝑛𝑡𝑟𝑎 𝑓𝑙𝑜𝑤 (𝑙/𝑚𝑖𝑛) 0.5 

Test Parameters (Variable) 

𝑇𝑢𝑏𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝑚𝑏𝑎𝑟) 998 

𝐺𝑎𝑡𝑒 𝑚𝑜𝑑𝑒 𝑜𝑝𝑒𝑛 

Table 4.1 listing the test parameters  
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Figure 4.1  Plot of ion current vs drift voltage 

Discussion 

Considering the graph shown in figure 4.1, the current appears to rise in a linear fashion but 

then gradually approaches a maximum value (due to the limit of ionising beta radiation which 

imparts a corresponding limit of ion density).  Although the total charge summed over all the 

ions is independent of tube voltage (since that is determined by the energy and flux of the β 

particles in the radioactive source), it seems that the ions are being lost at lower voltages, 

possibly caused by radial diffusion and Coulombic repulsion.  At higher voltages the ion 

plume may be more ’stretched’ since the ions will be moving more quickly and so the amount 

of radial diffusion/cm and Coulombic repulsion should be  correspondingly less. This effect 

is rather more complicated since in the reaction region close to the ion source, Coulombic 

repulsion towards the walls of the drift tube is a dominant factor and so more ions will be 

pulled out at higher voltages since the radial distance covered by the ions when diffusing will 

be shorter due to the increase in longitudinal acceleration at higher voltages.  Along the drift 

region past the gate, both Coulombic and radial diffusional effects take place. [120]. A 

compromise must be met between temporal resolution (ability to separate the peaks) at lower 

voltage (although individual peaks would also be broadened) and higher signal intensity at 
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high voltages. As a compromise, an electric field strength of 200 to 250 V/cm is generally 

used in IMS systems, being 212 V/cm in our case. 

Test 4.2– The effect of varying the screen grid voltage on the total ion current (dc 

mode).  Program used:  IMS  

Test Parameters (Fixed) 

𝑇𝑢𝑏𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (℃) 20 

𝑇𝑢𝑏𝑒 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 (𝑘𝑉) 4.5 

𝐹𝑤𝑑 𝑓𝑙𝑜𝑤 (𝑙/𝑚𝑖𝑛) 0.25 

𝐶𝑜𝑛𝑡𝑟𝑎 𝑓𝑙𝑜𝑤 (𝑙/𝑚𝑖𝑛) 0.5 

 

Referring to figure 4.2, as the voltage on the screen grid increases, the current from the FP 

rises non-linearly towards a limiting value  of 800 pA.  From the curve, a reasonable choice 

for the operating voltage to provide a nominal ion transmission is at approximately 30 V.  

Note, for minimal field distortion, this corresponds to a screen grid-to-FP separation of         

30 𝑉

212 𝑉 𝑐𝑚⁄
 = 0.14 cm which is in good agreement with the physical separation of around 0.1 

cm in the drift tube. 

 

 

 

 

 

 

 

 

Test Parameters (Variable) 

𝑇𝑢𝑏𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝑚𝑏𝑎𝑟) 998 

𝐺𝑎𝑡𝑒  𝑚𝑜𝑑𝑒 𝑜𝑝𝑒𝑛 

Figure  4.2  Plot of ion current vs screen voltage 
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Discussion 

Again, a maximum limit (or saturation point) for the ion current occurs due to the finite 

amount of ionising radiation that is available from the ion source.  Apart from screening the 

Faraday plate from the electric field due to the approaching ion swarm, varying the voltage 

on the screen grid will also change the strength of the electric field between the screen and 

the Faraday plate.  When the positive voltage on the screen is low, the repulsion of the ions 

will be small thus causing many of the ions to collide with the screen and dissipate their 

charge, leaving a small remainder to get through to the FP (thus effectively acting as a 

potential barrier).  As the voltage is increased, repulsion of the ions away from the screen will 

correspondingly occur allowing more of them to pass through the holes in the screen, until a 

point is reached where the field caused by the screen-to-FP voltage is the same as that due to 

the ring electrodes, where maximum transmission is reached.  Note, the presence of the grid 

will still cause some reduction in current due to its sheer physical size in the ion path 

compared to that of the ions, and so some collisional loss will be inevitable.     

Test 4.3– The effect of varying the gate pulse width on the RIP intensity 

Program used:  IMS  

Test Parameters (Fixed) 

𝑇𝑢𝑏𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (℃) 23 

𝑇𝑢𝑏𝑒 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 (𝑘𝑉) 4.5 

𝑉𝑆𝐶𝑅𝐸𝐸𝑁 (𝑉) 25 

𝐹𝑤𝑑 𝑓𝑙𝑜𝑤 (𝑙/𝑚𝑖𝑛) 0.25 

𝐶𝑜𝑛𝑡𝑟𝑎 𝑓𝑙𝑜𝑤 (𝑙/𝑚𝑖𝑛) 0.5 

𝐺𝑎𝑡𝑒 𝑝𝑢𝑙𝑠𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝐻𝑧) 25 

 

 

It is expected that the amplitude of the RIP current peaks should increase linearly with gate 

pulse width since the amount of charge transmitted by the gate per second (the current) is 

directly controlled by the width of the gate pulse.  

Test Parameters (Variable) 

𝑇𝑢𝑏𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝑚𝑏𝑎𝑟) 998 

𝑉𝑆𝐶𝑅𝐸𝐸𝑁 (𝑉) 24  
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Discussion 

Looking at the graph in figure 4.3, it can be seen that the relationship is in fact far from linear 

and so clearly, other factors are involved when the width of the gate pulse is changed.  The 

shape of the curve shown in blue through the data points resembles that of a somewhat 

distorted rising exponential function of the form  𝑖 = 𝐼 (1 − 𝑒−
𝑡

𝜏) , where 𝑖 is the amplitude 

of the RIP current,  𝐼 is the maximum current (pA) available, 𝑡 is the  gate pulse width time 

(ms), and 𝜏 is the ‘time constant’imposed by the drift tube characteristics. 

 

Figure 4.3  Plot of RIP vs gate pulse width 

The nearest fit to the data using the exponential function previously stated is that of the curve 

shown in green where  𝑖 = 390 (1 − 𝑒−
𝑡

2.2)  and so the results are only an approximation to 

this type of equation.  To improve the fit, further terms are required.  However, there would 

not be much point in persuing this further since gate widths larger than 0.5 ms are not 
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 normally encountered in practice and the extention of up to 20 ms was chosen for 

investigative purposes only. 

The complex and interacting factors having an influence on the shape of the curve can be  

attributed mainly to diffusional/space charge effects along the drift region, and ion retention 

in the gate.   

Common gate pulse widths  

As mentioned, the range of gate pulse widths more appropriate to practical IMS systems 

(obtained from a compromise between resolution and sensitivity) is commonly found to be 

approximately 0.2 to 0.5 ms.  It is interesting to note the response over the range 0.2 to 0.8 ms 

where here, as seen in figure 4.4, a polynomial relationship of the form y = -336.29x2 + 581.16x 

- 34.561 offers the best fit between 𝑖 and 𝑡  as shown in figure 4.5.  

 
 

 

       

        

        

        

        

        

        

        

        

        

        

        

        

        

        

         Figure 4.4  -  Magnified section of Figure 4.3 
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In relation to the effect of gate width on resolution, Siems et al [53] consider that 0.1 to 0.2 

ms provides the best results.  In their instrument, (which has a drift tube of similar size to 

ours), with a drift voltage of 2kV, the resolution at a gate pulse width of 0.1 ms is about 45 

dropping to 40 at 0.2 ms.  At 0.5 ms, their resolution had further dropped to 25. However, 

sensitivity is considerably reduced at 0.1 ms and so as a compromise on resolution and 

sensitivity, a gate pulse width of 0.2 ms to 0.3 ms is suitable, which is also that generally 

chosen for the pulse width most commonly used in other IMS systems.   

Test 4.4  The effect of averaging on the quality of the ion mobility spectrum.        

Program used:  IMS with a varying number of averages 

Here, the IMS ion mobility program is used to obtain the spectra.  In order to obtain a 

satisfactory SNR an average over a number of spectra is taken and here, the result on the 

definition of the RIP is observed over an increasing number of averages. Note, the 

improvement in SNR is proportional to the square root of the number of averages taken. ( i.e. 

to improve the SNR by a factor 𝑛, it is necessary to average over 𝑛2 spectra) [121]. 

Considering the signal taken from the Faraday plate, it is interesting to observe the 

progression in improvement of signal-to-noise ratio (S/N) as the number of averages of the 

spectra taken is increased.  Note, in the spectral plots, the amplitude scale is reduced as the 

number of averages increases to maintain optimum scaling.  The reactant ion peak (RIP) is 

composed of water clusters formed from the moisture content of the air used for the drift gas. 

The noise pickup is caused by the microphony effect due to the vicinity of the screen grid to 

the Faraday plate.  An alternating voltage is induced between the screen and Faraday plate 

from capacitance changes caused by the vibration from the two turbomolecular pumps (about 

1 KHz in frequency) and the beats due to slight speed differences between the pumps are seen 

as an amplitude modulation of the induced noise signal.  A modification suggested by Smiths 
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Detection was to improve the S/N by doming the screen grid to make it more rigid and 

therefore much less susceptible to mechanical vibrations from the pumps.  Although this was 

attempted, it was very difficult to achieve owing to the springiness of the material used for 

the screen grid and consequently no significant improvement was seen after reassembly. 

When using the SIMMS (selected mass ion mobility spectrum) program, the microphony 

effect is not present because the ion signal is obtained from the channeltron and not the 

Faraday plate.  The IMS spectra shown in figures 4.5 to 4.8 were obtained using the 

following  parameters: 

Test Parameters (Fixed) 

𝑇𝑢𝑏𝑒 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 (𝑘𝑉) 4.5 

𝑉𝑆𝐶𝑅𝐸𝐸𝑁 (𝑉) 24 

𝐹𝑤𝑑 𝑓𝑙𝑜𝑤 (𝑙/𝑚𝑖𝑛) 0.25 

𝐶𝑜𝑛𝑡𝑟𝑎 𝑓𝑙𝑜𝑤 (𝑙/𝑚𝑖𝑛) 0.5 

𝐺𝑎𝑡𝑒 𝑝𝑢𝑙𝑠𝑒 𝑤𝑖𝑑𝑡ℎ (𝑚𝑠) 2 

 

 

Figure 4.5  IMS spectrum with two averages 

Test Parameters (Variable) 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝑚𝑏𝑎𝑟) 1010 

𝑇𝑢𝑏𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (℃) 20 
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Referring to figure 4.5, the RIP is indistinguishable from the noise.  In figure 4.6, the node 

and antinode of the beat frequency between the turbomolecular pumps can be seen. 

Figures 4.5 to 4.8 illustrate how simple averaging of multiple scans can produce a large 

improvement in signal-noise ratio.  Note, when scanning over four hundred averages for 

figure 4.8 the time taken to do this was 400 × (60 ms scan time) = 24 s.  

                                                                                             RIP is starting to emerge 

 

Figure 4.6  IMS spectrum with ten averages 
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Figure 4.7  IMS spectrum with one hundred averages 

 

Figure 4.8  IMS spectrum with five hundred averages 

The spectrum shown in figure 4.8 now has an acceptable S/N ratio of 2.7÷0.05 = 54 or 

(expressed in decibels) 20×log54 ~35 dB.   
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Test 4.5 – Investigating the microphony effect of the voltage between the screen grid 

and the Faraday plate 

Program used:  IMS  

This test was conducted under various conditions and is separated into parts 1 and 2 

Part 1  Observations made under quiescent (no signal) conditions at low and high 

pressures 

 

 

 
 
Initially looking at the signal from the Faraday plate with no applied voltages to the drift tube 

(apart from the screen voltage to set up a charge between the screen grid and Faraday plate 

for obtaining microphony) with the pressure at 1 mbar (shut down pressure), the noise current 

was ~ 30 pA on average with peaks at ~ 70 pA.  When the pressure was increased to 

atmospheric (normal operating pressure) at 1002 mbar, the noise reduced to ~ 5 pA on 

average with peaks at ~ 10 pA.  This is because at low pressure, it is easier for the screen grid 

to vibrate in sympathy with the vibration from the turbo pumps.  At high pressure, the 

viscosity effect due to increased density of molecules causes a greater resistance to motion 

due to the increased frequency of collisions.  This also confirms the idea that the noise arises 

from the microphony effect from the screen grid to FP.  It was found that switching on the 4.5 

kV tube voltage and the gate interface unit had no effect on the noise level.   However, when 

the gate operating mode was switched to ‘pulsed’ a signal was seen in the mobility spectrum.  

This signal was the differentiated 0.2 ms gate pulse (seen as sharp complementary switching 

spikes of -100 pA and +120 pA amplitude) due to capacitive coupling between the gate and 

Test Parameters (Fixed) 

𝑇𝑢𝑏𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (℃) 23 

𝐹𝑤𝑑 𝑓𝑙𝑜𝑤 (𝑙/𝑚𝑖𝑛) 0.25 

𝐶𝑜𝑛𝑡𝑟𝑎 𝑓𝑙𝑜𝑤 (𝑙/𝑚𝑖𝑛) 0.5 

Test Parameters (Variable) 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝑚𝑏𝑎𝑟) 1 𝑎𝑛𝑑 1002 
𝑉𝑆𝐶𝑅𝐸𝐸𝑁 (𝑉) 24  
𝐺𝑎𝑡𝑒  𝑚𝑜𝑑𝑒 𝑜𝑝𝑒𝑛 − 𝑝𝑢𝑙𝑠𝑒𝑑 



155 
 

the Faraday plate.  This signal is very useful as it provides a timing reference when making 

drift time measurements. 

Part 2  Optimising the SNR from observations made under signal conditions 

Test Parameters (Fixed) 

𝑇𝑢𝑏𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (℃) 30 

𝑇𝑢𝑏𝑒 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 (𝑘𝑉) 4.5 

𝐹𝑤𝑑 𝑓𝑙𝑜𝑤 (𝑙/𝑚𝑖𝑛) 0.25 

𝐶𝑜𝑛𝑡𝑟𝑎 𝑓𝑙𝑜𝑤 (𝑙/𝑚𝑖𝑛) 0.5 

𝐺𝑎𝑡𝑒 𝑝𝑢𝑙𝑠𝑒 𝑤𝑖𝑑𝑡ℎ (𝑚𝑠) 0.2 

 

       Table 4.2  Optimising SNR 

 

 

 

 

 

 

 

Each reading shown for average noise and RIP current was an average of three results. 

Discussion 

Referring to Table 4.1, it is seen that the screen grid voltage to give the best signal-to-noise 

(S/N) ratio is nominally at 24 V.  At 30 V, there is a 4% increase in current but the S/N 

deteriorates by 35%.  In dc mode (test 4.2) it was seen that the nominal value for the 

maximum ion current of 800 pA was at 30 V and at 24 V the current was 750 pA, which is a 

reduction of only 6%.  Note, slightly higher RIP currents were observed during subsequent 

Test Parameters (Variable) 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝑚𝑏𝑎𝑟) 1002 

𝑉𝑆𝐶𝑅𝐸𝐸𝑁 (𝑉) 0 to 40 

𝐕𝐒𝐂𝐑𝐄𝐄𝐍(𝐕) 𝑨𝒗𝒆 𝒏𝒐𝒊𝒔𝒆 (𝒑𝑨) 𝑹𝑰𝑷 𝒄𝒖𝒓𝒓𝒆𝒏𝒕 (𝒑𝑨) 𝑺/𝑵 𝒓𝒂𝒕𝒊𝒐 

10 5 50 10 

12 5 50 10 

14 5 60 12 

16 5 65 13 

17 5 70 14 

18 5 70 14 

19 5 70 14 

20 5 75 15 

21 5 75 15 

22 5 75 15 

23 5 76 15.2 

24 5 77 15.4 

25 6 78 13 

26 7 78 11.1 

30 8 80 10 
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tests following baking out of the drift tube at 100 ℃ since ions that would have been lost to 

impurities were now available. 

Test 4.6 – The effect of varying the potential difference between the screen grid and FP 

on the amplitude of the RIP       

Programs used:  IMS and SIMMS  

Test Parameters (Fixed) 

𝑇𝑢𝑏𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (℃) 30 

𝑇𝑢𝑏𝑒 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 (𝑘𝑉) 4.5 

𝑉𝑆𝐶𝑅𝐸𝐸𝑁 (𝑉) 24 

𝐹𝑤𝑑 𝑓𝑙𝑜𝑤 (𝑙/𝑚𝑖𝑛) 0.25 

𝐶𝑜𝑛𝑡𝑟𝑎 𝑓𝑙𝑜𝑤 (𝑙/𝑚𝑖𝑛) 0.5 

𝐺𝑎𝑡𝑒 𝑝𝑢𝑙𝑠𝑒 𝑤𝑖𝑑𝑡ℎ (𝑚𝑠) 0.2 

    

The basis of this test is to look at the effect on the amplitude of the RIP when the system is 

used in the selected ion mass mobility mode (i.e. using counts) as a comparison to that made 

in the previous test that used ion current.  This can also be considered to give the same result 

as that when looking at the total ion count because (due to switching of the water clusters 

along the drift region), the water clusters appearing at different masses will overall have the 

same drift time. 

Referring to table 2 following, 𝑡𝑊 is the width of the RIP at half maximum.  The RIP was 

obtained using the SIMMS program rather than IMS since in this mode of operation, the SNR 

is significantly improved as the signal is now unaffected by microphony from the screen-to 

Faraday plate. 

 

 

 

Test Parameters (Variable) 

𝑉𝐹𝑎𝑟𝑎𝑑𝑎𝑦 𝑝𝑙𝑎𝑡𝑒 (𝑉) 20 

𝑉𝐶𝑂𝑁𝐸  (𝑉) 14 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝑚𝑏𝑎𝑟) 991 

𝑇𝑢𝑛𝑒𝑑 𝑚𝑎𝑠𝑠 𝑚/𝑧 (𝐷𝑎) 73 
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Table 4.3  RIP characteristics for various screen-to Faraday plate voltages                                                                                 

 
 
𝑉𝑠𝑐𝑟𝑒𝑒𝑛 ≤ 𝑉𝐹𝑃  

𝑉𝑠𝑐𝑟𝑒𝑒𝑛 (𝑉) 𝑉𝑠𝑐𝑟𝑒𝑒𝑛−𝐹𝑃 (𝑉) 𝐶𝑜𝑢𝑛𝑡 𝑡𝑑  (𝑚𝑠) 𝑡𝑊 (𝑚𝑠) 
16 -4 4 21.5 1 

17 -3 16 21.2 0.9 

18 -2 40 20.8 0.9 

19 -1 70 20.45 0.5 

20 0 90 20.36 0.5 

 
 
𝑉𝑠𝑐𝑟𝑒𝑒𝑛 > 𝑉𝐹𝑃 

21 1 95 20.34 0.4 

22 2 100 20.32 0.4 

23 3 118 20.27 0.36 

24 4 120 20.23 0.32 

25 5 115 20.1 0.32 

26 6 110 20.1 0.32 

 

Discussion 

From the results shown in Table 4.2, it can seen that a screen voltage of 24 V provides an 

optimum result with the gate in pulsed mode, and that the ion transmission is actually reduced 

at voltages above this.  This is convenient since it is in agreement with the nominal value 

selected in test 5.5 for an optimum SNR.   

SIMMS time offset 

When comparing RIP results from using the SIMMS program to the RIP in the ion mobility 

spectrum under the same conditions, it was noticed that the drift times for the RIP in the ion 

mobility and mass mobility modes were separated by an offset of +0.3 ms when working in 

the selected mass ion mobility mode.  This factor must be taken into account when 

conducting further tests or experiments.  This can be attributed to several causes such as: 

Electronic:  Delay in the pulse converter unit (a few microseconds). 

Slight differences in processing time between the IMS and SIMMS LabVIEW 

programs (fractions of a millisecond). 
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Spatial: Delay caused from the extra path taken from the Faraday plate to the 

channeltron in the mass spectrometer, which is considered to be the main 

contribution to the delay, (approximately 0.3 ms).  [122] 

 

Test 4.7 – Effects on RIP (drift time and amplitude) with varying drift tube voltage.  

Program used:  IMS  

Test Parameters (Fixed) 

𝑇𝑢𝑏𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (℃) 23 

𝑉𝑆𝐶𝑅𝐸𝐸𝑁 (𝑉) 24 

𝐹𝑤𝑑 𝑓𝑙𝑜𝑤 (𝑙/𝑚𝑖𝑛) 0.25 

𝐶𝑜𝑛𝑡𝑟𝑎 𝑓𝑙𝑜𝑤 (𝑙/𝑚𝑖𝑛) 0.5 

𝐺𝑎𝑡𝑒 𝑝𝑢𝑙𝑠𝑒 𝑤𝑖𝑑𝑡ℎ (𝑚𝑠) 0.2 

 

The voltage applied to the drift tube was varied in steps of 100V from 2 kV up to 4.5 kV 

(flashover in the drift tube was found to occur beyond about 5 kV). 

From theory given in chapter 1, the ion mobility 𝐾 at constant temperature and pressure is:  

K =  
𝐿2

𝑉𝑡𝑑
       (1.4) 

Thus, when 𝑡𝑑 is plotted against (𝑉𝐻𝑇)-1
 a straight line relationship should be obtained from 

the results. 

Discussion 

The graph shown in Figure 4.11, shows that there is an inverse relationship between drift 

time and drift tube voltage. 

Considering validity of the results, At 4.5 kV, 𝑡𝑑= 20.6 ms.  

Therefore at the extreme of 2 kV, 𝑡𝑑 should theoretically be 20.6(4.5/2) = 46.4 ms. 

Test Parameters (Variable) 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝑚𝑏𝑎𝑟) 1003 

𝐺𝑎𝑡𝑒 𝑚𝑜𝑑𝑒 𝑝𝑢𝑙𝑠𝑒𝑑 



159 
 

From the results, at 2 kV, 𝑡𝑑 = 45.8 ms.  This is only about a 1 difference, so to a first 

approximation allowing for experimental error, the results show a good agreement with those  

predicted from theory. 

Similarly, at 4 kV, 𝑡𝑑   = 23.1 ms  at 3 kV 𝑡𝑑 should be 23.1(4/3) = 30.8 ms. 

From the results, 𝑡𝑑 = 30.6 ms at 3 kV (about 0.7% error) and so the equation holds over the 

full range of variation in V. 

Velocity of the ion swarm 

 

Figure 4.9 Effect of drift tube voltage on drift time 

The arrival time as seen in Figure 4.9 is influenced by a set of complex interactions due to 

collisions with the neutral gas molecules slowing down the ions, and accelerations due to the 

electric field.  This results in an overall ‘constant’ drift velocity dependent on the mass, shape 

and cross-section of the ion, the pressure and temperature in the drift tube, and the type of 

buffer gas used.  At proportionally lower voltages, the acceleration after a collision will be 

less than at higher voltages and so over the mean free path of the ion, the time between 
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collisions will proportionally increase (since its velocity is less).  Thus 𝑡𝑑   will have an 

inverse relationship to V as was seen in the results 

Effect of drift tube voltage on the amplitude of the reactant ion peak (RIP)  

Considering the amplitude of the RIP current from the FP as shown in Figure 4.10, this is 

seen to initially increase in proportion to drift voltage, but with a reducing rate of change with 

further increases in voltage. This again is due to the ion signal reaching its maximum value – 

resulting in the non-linear ‘drift tube resistance’ effect also seen when in dc mode as 

discussed in test 4.1.  The curve seen in figure 4.10 shows that the RIP gradually reaches a 

plateau corresponding to the maximum ion collection efficiency. 

  

 

A further complication that affects the amplitude of the RIP is caused by the increasing 

resolution available at higher voltages.  The reason for this is that as the voltage increases, 

peak broadening decreases because the shorter drift time reduces the amount of diffusional 

spreading. Thus, at low drift voltages, diffusion is the main factor in determining peak width 

since the ion swarm drifts at a lower velocity which allows more time for diffusional spread 
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than with higher voltages (where the initial gate pulse width becomes the main factor to cause 

pulse spread). 

In terms of resolution, Chapter 1 of this thesis (section 1.2.6) shows that the resolution of our 

instrument is ~ 69.  In the investigation made by Siems et al [123] on factors affecting 

resolution, they looked at the effect of changing the drift tube voltage.  The length of the drift 

region in the drift tube they used (11.6 cm long) is similar to ours (10.5 cm long).    They 

found that there is a maximum drift voltage (around 1.6 kV) which gives the best resolution. 

Above this value, the resolution steadily decreases, but below this value the resolution falls 

off more rapidly. However, it is usual to operate at a higher voltage as a compromise between 

resolution and sensitivity (a similar compromise to that found in test 4.3).  From figure 4,10, 

it can be seen that the ion current approaches its limit at around 4.5 kV (which produces 2.25 

kV across the drift region).  Thus, a suitable compromise may be to have 2 kV across the drift 

region by applying 4 kV to the drift tube.    

Test 4.8 – Investigating the change in ion mobility with time  

Program used:  IMS  

Test Parameters (Fixed) 

𝑇𝑢𝑏𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (℃) 30 

𝑇𝑢𝑏𝑒 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 (𝑘𝑉) 4.5 

𝑉𝑆𝐶𝑅𝐸𝐸𝑁 (𝑉) 24 

𝐹𝑤𝑑 𝑓𝑙𝑜𝑤 (𝑙/𝑚𝑖𝑛) 0.25 

𝐶𝑜𝑛𝑡𝑟𝑎 𝑓𝑙𝑜𝑤 (𝑙/𝑚𝑖𝑛) 0.5 

𝐺𝑎𝑡𝑒 𝑝𝑢𝑙𝑠𝑒 𝑤𝑖𝑑𝑡ℎ (𝑚𝑠) 0.2 

 

Clean lab air was passed through an undoped molecular sieve and so the ionisation products 

were based on water chemistry producing protonated water clusters. The RIP current was 

seen to vary around a mean value and so several readings were taken at each time interval 

with the average value being recorded. 

Test Parameters (Variable) 

𝑇𝑢𝑏𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝑚𝑏𝑎𝑟) 999 
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Results and discussion 

Considering the shape of the curves shown in figures 4.11 and 4.12, the cause of the transient 

effect is not fully understood.  The effect appeared to diminish significantly after about three 

hours, where a steady state condition was reached of RIP current ~ 80 pA, with a drift time 

𝑡𝑑  =  20.3 𝑚𝑠.  

 

 

 

 

 

Figure 4.11  Variation of RIP current with elapsed time 

 

 

 

 

 

 

Figure 4.12  Variation of drift time with elapsed time 

This effect indicates that we should wait for around four hours for the system to settle after 

switch on.  Note, subsequent to these tests being performed, a modification was made to 
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produce a stable drift voltage independent of the drift ring resistors forming the divider chain 

and this was found to remove the effect. (See appendix A4.13.) 

Test 4.9 – Investigating the change in ion mass mobility with time 

Program used:  SIMMS  

Test Parameters (Fixed) 

𝑇𝑢𝑏𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (℃) 30 

𝑇𝑢𝑏𝑒 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 (𝑘𝑉) 4.5 

𝑉𝑆𝐶𝑅𝐸𝐸𝑁 (𝑉) 24 

𝐹𝑤𝑑 𝑓𝑙𝑜𝑤 (𝑙/𝑚𝑖𝑛) 0.25 

𝐶𝑜𝑛𝑡𝑟𝑎 𝑓𝑙𝑜𝑤 (𝑙/𝑚𝑖𝑛) 0.5 

𝐺𝑎𝑡𝑒 𝑝𝑢𝑙𝑠𝑒 𝑤𝑖𝑑𝑡ℎ (𝑚𝑠) 0.2 

 

 This test examines the change in the mobility over time, of the predominant water cluster 

ions in the RIP having 𝑚/𝑧 73, and can be compared to the previous test 4.8 which looked at 

the RIP in the ion mobility spectrum, which is made up of several masses (including 𝑚/𝑧 73) 

due to variable amounts of water clustering on the ions as they drift down the tube.  The 

results of this investigation are shown in table 4.4 below. 

 

 

 

 

 

 

 In order to get an idea of how much background noise was present in the mass spectrometer, 

an initial observation was made on the quiescent noise count level with the operating voltage 

Test Parameters (Variable) 

𝑉𝐹𝑎𝑟𝑎𝑑𝑎𝑦 𝑝𝑙𝑎𝑡𝑒 (𝑉) 20 

𝑉𝐶𝑂𝑁𝐸  (𝑉) 14 

𝑇𝑢𝑏𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝑚𝑏𝑎𝑟) 1017 

𝑇𝑢𝑛𝑒𝑑 𝑡𝑜 𝑚/𝑧 (𝐷𝑎) 73 

Time interval (min) Peak RIP count Drift time td (ms) 

0 26 20.23 

10 27 20.30 

20 28 20.35 

30 29 20.40 

45 30 20.50 

65 31 20.55 

85 31 20.63 

125 31 20.65 

Table 4.4    Variation of drift time and RIP count over time 
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of the channeltron set to 0V.  Over 0 to 40 ms drift time, the observed random noise level was 

consistantly low at around 1.7 counts.  

Discussion        

It can be seen from table 4.4 that again, there is a similar gradual increase in drift time and 

peak count to that encountered in test 4.8 over the two hour period before eventually settling 

down (after three hours) to around 20.6 ms and 31 counts.  A possible explanation for this 

delay in the response may be that it is caused by a ‘charging’ effect. This could be due to the 

fact that the drift rings are on the outside of the glass drift tube and thereby introduce a 

capacitance between the ion cloud and the rings with the glass acting as the dielectric.  The 

initial ‘displacement current’ required for charging up this capacitance would be supplied by 

the charge on the ions as they are extracted from the swarm by electrostatic attraction to the 

inner surface of the drift tube, thus resulting in a lower amplitude of the current pulse from 

the FP and consequently, a lower ion count from the channeltron. 

The difference in drift times between tests 4.8 (ion mobility) and 4.9 (selected mass ion 

mobility) is 0.3 ms due to the time taken for the ions to transit through the quadrupole and 

can be compensated for in the SIMMS program where a variable negative time offset is 

incorporated.  

Test 4.10 – The effect of varying the voltage between the Faraday plate and cone on the                                                                                                                                                                                                                     

mass spectra of the water cluster ions  

Program used:  MS  

This test was performed in order to determine the optimum FP-to cone voltage that gives the 

best compromise between ion transmission and cluster ion fragmentation. 
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The protonated water clusters H
+
(H2O)n formed at atmospheric pressure in the drift tube can 

be fragmented due to collision-induced dissociation (CID) after passing through the pinhole 

in the Faraday plate (FP) and into the region of low pressure between the FP and the cone in 

the IMS - quadrupole interface [124].  Because the pressure is much lower, the mean free 

path is now much longer than in the drift tube.  Therefore the ions can reach considerably 

higher velocities (due to the electric field between the FP and cone) before colliding and so 

the energy they gain is also considerably larger than that provided by the electric field in the 

drift region (where their thermal energy is constant). Thus the larger clusters after the pinhole 

will fragment into smaller water clusters, which in turn may continue to fragment down to the 

reactant ion as: 

H
+
(H2O)n  → H+

(H2O)n-1 + H2O  → H
+
(H2O)n-2 + (H2O)2 …etc         

Note, as a rough guide to mean free path lengths, for neutral air at room temperature the 

mean free path as quoted by Harris [125] is: 

 𝜆 = 
6.4×10−3

𝑃
 cm where 𝑃 is the pressure in mbar.  

Thus,  𝜆~6.3 × 10−6 cm at atmospheric pressure and is ~640 cm at 10−5 mbar.  (The mean 

free path will be considerably less in proportion for the ions in the drift tube, due to their 

Test Parameters (Fixed) 

𝑇𝑢𝑏𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (℃) 30 

𝑇𝑢𝑏𝑒 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 (𝑘𝑉) 4.5 

𝑉𝑆𝐶𝑅𝐸𝐸𝑁 (𝑉) 25 

𝐹𝑤𝑑 𝑓𝑙𝑜𝑤 (𝑙/𝑚𝑖𝑛) 0.25 

𝐶𝑜𝑛𝑡𝑟𝑎 𝑓𝑙𝑜𝑤 (𝑙/𝑚𝑖𝑛) 0.5 

𝐺𝑎𝑡𝑒 𝑝𝑢𝑙𝑠𝑒 𝑤𝑖𝑑𝑡ℎ (𝑚𝑠) 0.2 

𝑉𝐶𝑂𝑁𝐸  (𝑉) 14 

Test Parameters (Variable) 

𝑉𝐹𝑎𝑟𝑎𝑑𝑎𝑦 𝑝𝑙𝑎𝑡𝑒 (𝑉) 14 TO 28 
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increased cross section caused by their charge providing an additional electrostatic effect 

between themselves and any potentially colliding polarised neural molecules). 

The effect of changing the ion acceleration voltage between the Faraday plate and cone will 

be to vary the fragmentation i.e. the amounts of water clusters having a particular degree of 

clustering across the region (with greater fragmentation ocurring with increasing voltage).  

Using the mass spectra program MS, observations were made on the water clusters seen at 

𝑚/𝑧  37, 55 and 73. 

Practical considerations and results 

To obtain the results more quickly than using a mass scan over say 𝑚/𝑧 30 to 75, it was 

found to be more convenient to use the mass spectra program over the ranges 36 – 38, 54 – 

56, 72 – 74 separately over 40 steps (giving a step size of 0.05 amu). An average reading over 

three scans was taken at each mass.  The screen voltage VSCN was set at +30 V for optimum 

ion transmission since the S/N ratio in the IMS mode of operation is not a consideration here, 

and the voltage on the FP maximised at +28 V.  (The ion current is depleted at smaller 

screen-to-FP voltages as was found in test 4.3.) This allows a 14 V variation in FP-to-cone 

voltage with the cone held at 14 V. 

The amount of fragmentation caused by FP-to-cone voltage changes is obtained from the 

results shown in the plot of counts for the clusters at various voltages as given in figure 4.13. 

Also from the results in figure 4.13, the branching ratios may be obtained by plotting the 

fraction formed by the count at each m/z to the sum of the counts, at a particular voltage, as 

shown in figure 4.14.  

A plot of the total ions over the voltage range shows the transmission characteristics as seen 

in figure 4.15. 
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By extrapolating back to VFP-CONE = 0 V, the distribution of the clusters in the drift region just 

before the FP may be determined from consideration of figure 4.14 showing the branching 

ratios of the cluster ions.  (It is not physically possible to see the ions at VFP-CONE = 0 as the 

transmission through the pinhole in the FP is then virtually zero.) 

 

Figure 4.13  Counts over VFP-CONE = 1 to 14 V 

 

 

Figure 4.14  Branching Ratios for VFP-CONE =  1 to 14 V 
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Figure 4.15  Total Ion transmission 

Discussion 

Looking at figure 4.15, the FP-to-cone voltages that give maximum ion transmission are 

around 7 to 11 V.  However, considering figure 4.13, fragmentation also occurs at 7 V where 

the number of ions at m/z = 73 decreases as those at m/z = 37 and 55 continue to increase. 

From figure 4.15, at 6 V, there is a reduction in ion count of approximately 150000 to 115000 

ie 23%.  Thus, as a compromise between best transmission and the onset of fragmentation, a 

voltage of say, 6.4 V may be considered appropriate.   

Of interest, fragmentation of m/z = 55 is then seen at approximately 9 V.  At this point, the 

number of ions at m/z = 37 increases sharply due to the increased contribution from 

fragmentation of both sets of cluster ions at higher masses.    

From figure 4.14, it can be seen that fragmentation occurs immediately as the voltage is 

increased from 1 V (at 0 V, there is an absence of ion transmission).  Clearly, for the 
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branching ratios to be meaningful, they must also be considered alongside the corresponding 

ion transmission shown in figure 4.13.  in order to see if the number of ions at a particular 

branching ratio is in fact significant.   

This process of compromise between transmission/fragmentation may be required to be done 

when other types of reactant ions are used.  

This concludes the tests required to examine the relevent parameters of the IMS-QMS system 

and their interactions to sufficiently characterise the system in readiness for its use in the 

investigation of ion-molecule reactions. 
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Chapter 5   CHARACTERISATION OF THE IMS-QMS SYSTEM                                

IN POSITIVE ION MODE    

5.1  Introduction          

This chapter relates to how the IMS-QMS system was characterised by using it to enable 

investigations to be made into the response of various compounds used as analytes in the 

positive ions mode of operation. Initially, analytes that had been previously investigated by 

other workers in the IMS community were chosen in order to confirm the correct operation of 

the system by comparing results. These particular compounds were: 

o Tertiary butanol (C4H10O) – used to compare with earlier studies in order to 

prove the system. 

o Acetone (C3H6O) – a common IMS dopant in CWA detectors, again used here 

to characterise the system and also as a precursor to investigating diacetone as 

an analyte. 

New measurements were then made using compounds not previously investigated with a 

tandem IMS-MS system, those being: 

o Diacetone – used here in order to compare the structure of the acetone dimer 

with that of the diacetone monomer. 

o Dipropylene glycol methyl ether (DPGME) – used to safely simulate a target 

CWA for confidence testing of an IMS system 

The strategy employed to obtain the required information from each investigation was to:   

 Use the peaks(s) in the total ions mobility spectrum from the channeltron electron 

multiplier to adjust the analyte concentration to give the characteristic three peaks 

representing RIP, monomer and dimer. 

 Look at the mass spectra to observe the individual components of the chemical under 

investigation. 
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 Look at the selected mass mobility spectra for the mass components of interest seen in 

the mass spectrum to determine which particular ions make up the mobility peaks 

seen in the total ions spectrum. 

5.1.1  Analyte Sample Preparation 

Various techniques may be used to appropriately introduce analyte into an IMS system [126] 

with the method chosen for the present experiments being “headspace sampling with a 

syringe”.  A sample containing the analyte to be investigated was presented to the IMS via a 

syringe mounted in a syringe drive allowing sample vapours to be injected into the forward 

flow of carrier gas.  Various concentrations of analyte may be presented by varying the 

setting for the rate of delivery from the syringe drive.  The glass syringe used for the 

experiments was of diameter 23 mm with a nominal volume of 30 mm
3
.  A dilution rig (see 

appendix 5.4 for details of use) was used to dilute the liquid analyte sample down to a level 

of dilution suiting the flow rates of the syringe drive and carrier gas for obtaining the desired 

concentration in the gas flow(s) in the IMS.  To prepare, the liquid analyte is initially poured 

into a container which is then fitted to the dilution rig with the dilution chamber pumped 

down to vacuum.  In order to remove any air and impurities from the sample, a freeze-pump-

thaw cycle can be made, or alternatively the sample can be exposed to vacuum to pump out 

the headspace. The sample valve is then opened to allow the sample vapours to produce an 

initial pressure in the system.  Introducing pure air at a greater pressure then allows an initial 

dilution to be made.  Alternatively, if the sample is initially prepared in a syringe mixed with 

pure air taken from the IMS system, then by knowing the partial pressure of the saturated 

vapour, the initial concentration of the analyte can be calculated as detailed in the following 

experiments.  By using the dilution rig in conjunction with the dilution chart given in 

appendix 5.6 the final concentration required in the syringe is obtained. 
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Appendix A5.1 shows how the calculation of syringe flow rate required to give a final 

concentration in the forward gas flow is determined.  A short computer program (syringe.bas) 

given in appendix 5.2 then enables quick calculations of syringe delivery rate to be made 

given the concentration of analyte in the syringe (drawn from the dilution rig) and the carrier 

gas flow rate in the forward direction.  Throughout the investigations, the reduced mobility 

𝐾0 for a particular ion was determined using equation 2.2 (see chapter 2, section 2.4) namely: 

 𝐾0 ~ 
0.1958

𝑉𝐻𝑇
× 

𝑃

𝑡𝑑 −𝑡𝑚𝑠−𝑡𝑓
   cm

2
 V

-1
 s

-1   With 𝑉𝐻𝑇 measured in kV, P in mbar,              

and (𝑡𝑑 −𝑡𝑚𝑠 − 𝑡𝑓) in ms. 

5.2  Investigation using tertiary butanol in an undoped system 

In this detailed experiment to characterize and prove the system further, known 

concentrations of the analyte were used to produce a total ions spectrum showing ion 

mobilities for the three peaks typically seen in IMS systems, these being:  

 The RIP   H
+
(H2O)n  where n = 1 to 4 

 The tertiary butanol monomer MH
+
(H2O)n-1  

 The tertiary butanol dimer M2H
+
(H2O)n-1  

Also included in the results is a comparison of the system response with that from some 

earlier studies made by Bell et. al. on an IMS-QMS system. [127]  

Tertiary butanol is also known as 2-methyl-2-propanol and its formula is (CH3)3COH. The 

analyte sample was injected into the forward flow of the IMS system by piercing a septum 

with a syringe operated by a variable delivery rate syringe drive in the manner previously 

described in section 5.1.1. 
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5.2.1  Determining the flow rate of the syringe drive for a given concentration. 

In a saturated mixture, the analyte sample vapour forms from its partial pressure, a 

concentration of  
𝑃𝑠

𝑃𝑎
 where 𝑃𝑠 is the partial pressure of the sample and 𝑃𝑎 is the total pressure 

of one atmosphere (1013 mBar).   

Tertiary butanol has a partial pressure of 41.3 mBar at 20℃.  Thus its concentration when its 

vapour is saturated in air at this temperature is 41/1013 = 40.8 × 10−3 or 4.08 × 104 ppmv.  

If this is the concentration in a syringe , then to get a lower concentration of say, 10 ppbv, a 

dilution rig can be used.  Note, in the dilution rig, the sample pressure is raised to just below 

its SVP to avoid condensation. After n dilutions of one tenth in the dilution rig, the 

concentration will fall to Cn = C0× 10−𝑛.  In ppmv notation, Cn = C0× 106−𝑛 ppmv.  For 

example, two stages of ÷ 10 dilution using the dilution rig could initially be made to reduce 

the concentration  down to 408  ppmv.  This would then be followed by injection of the 

diluted analyte/air mixture into the forward flow of air to the drift tube via a syringe driven 

by the syringe drive.  To determine the syringe drive flow rate applicable for the required 

final concentration, the formula (derived in appendix A5.1) was used in the computer 

program ‘syringe.bas’ (see appendix A5.2). In this case (using a 30 ml volume syringe) the 

program yielded a low value of 0.1 ml/hour.  When initially performing the investigation it 

was found that the forward flow of air past the sample injection point was extracting the 

sample at a similarly low rate due to the pressure gradient, as it was observed that even with 

the syringe drive switched off, some sample was still entering the system. A better solution 

was then to reduce the concentration in the syringe even further so that a higher syringe drive 

rate could be used. Using the dilution rig, repeated dilutions were made to yield a final value 

of 7.9 ppmv in the pressure vessel, from which the sample was drawn off into the syringe via 

a septum.  
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5.2.2   Resultant spectra for water clustered tertiary butanol  

The carrier gas (pure air of zero grade (99.9999% purity thereby giving <0.1 ppm of 

hydrocarbon pollutants) was passed through a moisture trap to reduce the moisture content 

down to approximately 3 ppmv.  The forward flow rate was 300 ml/min and the contra flow 

rate was 500 ml/min.  The IMS temperature was maintained at 30℃. 

The resulting spectra are shown in the following figures.  Initially, spectra were obtained with 

no sample present to ensure that the mass and ion mass mobility spectra of the water cluster 

ions were as expected as seen in figures 5.2.1 and 5.2.2. 

 

Figure 5.2.1 Mass spectrum for the water RIP H
+
(H2O)n showing cluster ion peaks at n = 2 to 4 

In figure 5.2.1, m/z 37, 55 and 73 are due to the expected protonated water clusters H
+
(H2O)n 

where n = 2, 3, and 4.  The peak at m/z 69 may be due to a trace impurity (e.g. isoprene C5H9 

m/z 68) present in the newly fitted moisture trap for the carrier gas.  (The peak was found to 

disappear a few days after this experiment). The corresponding RIP in the total ions mass 

mobility spectrum is shown in figure 5.2.2 following. 
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Figure 5.2.2  TIMMS spectrum for the protonated water clusters shown in figure 5.2.1 

It is seen in figure 5.2.2 that only one peak  (the RIP) due to the protonated water clusters is 

seen.  A low concentration of tertiary butanol was then introduced into the forward flow via a 

syringe drive.  Using a syringe drive delivery rate of 15 ml/hour (corresponding to a 

concentration of around 16 ppbv) produced the spectrum seen in figure 5.2.3 where the water 

clusters forming the RIP are depleted as the small concentration of tertiary butanol has 

reacted with some of them to produce further ions being the: 

 protonated hydrated monomers  MH
+
(H2O) at m/z 93 and MH

+
(H2O)2 at m/z 111 

 protonated dimer M2H
+
 at m/z 149 

 protonated hydrated dimer M2H
+
(H2O) at m/z 167   

where M represents the tertiary butanol analyte molecule (CH3)3COH. 

 

Figure 5.2.3 Mass spectrum with tertiary butanol injected at a rate of 15 ml/hour 
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Figure 5.2.4  Mass spectrum with tertiary butanol injected into the forward flow at a rate of 20 

ml/hour 

Figure 5.2.4 shows the mass spectrum when the concentration was increased by 33% when 

setting the syringe delivery rate to 20 ml/hour. Virtually all of the reactant ions are used up 

and the system is said to be saturated.  The effect is to produce a broad peak in the total ions 

mass mobility spectrum as seen in figure 5.2.5.  The peak at m/z 133 in figure 5.2.4 is 

assumed to result from an impurity. 

  

Figure 5.2.5  Total ions mass mobility spectrum with syringe rate set at 20 ml/hour 

Reducing the syringe flow rate back to 15 ml/hour resulted in a mobility spectrum which 

contains the RIP, protonated monomer and protonated dimer ions as shown in figure 5.2.6. 
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Figure 5.2.6  Total ions mass mobility spectrum with syringe rate set at 15 ml/hour 

Figure 5.2.6 shows a mobility spectrum with the preferred proportions of ion peaks that aid in 

the identification of a chemical. (More information is present to provide a better ‘fingerprint’ 

than in the case of figure 5.2.5).  In order to identify which ions are in the peaks, tuned (or 

‘selected’) mass mobility spectra  were obtained for each of the dominant m/z peaks shown in 

figure 5.2.3, with the syringe delivery rate set to 15 ml/hour. The corresponding spectra are 

shown in figures 5.2.7 to 5.2.13 below.  Note, the concentration of tertiary butanol in the 

forward flow at this setting is approximately 16 ppbv showing that the system is very 

sensitive. 

 

Figure 5.2.7  Selected mass ion mobility spectrum for m/z 55, H
+
(H2O)3 

K0 = 2.11  
K0 = 1.83   

K0 = 1.56   
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Figure 5.2.7 confirms that the protonated water cluster H
+
(H2O)3 m/z 55 component of the 

RIP occurs at 20.8 ms 

 

Figure 5.2.8  Selected mass ion mobility spectrum for m/z 69, (impurity) 

The peak shown in figure 5.2.8 corresponding to 𝑚/𝑧 69 although occuring at a time similar 

to the RIP is considered to be due to an impurity, possibly isoprene having protonated 𝑚/𝑧 of 

69.  Figure 5.2.9 below for m/z 73 which is the protonated water cluster H
+
(H2O)4 confirms 

that the RIP is at 20.8 ms since it coincides with that for m/z 55 (but with a higher count rate) 

indicating that the water clusters are constantly switching along the drift region.  It is also 

seen from figure 5.2.3, that m/z 73 is the dominant water cluster ion.  

 

Figure 5.2.9  Selected mass ion mobility spectrum for m/z 73, H
+
(H2O)4 
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Figures 5.2.10 and 5.2.11 show that the protonated monomers of t.b. with interchanging 

water cluster sizes (H2O and (H2O)2)  occur at similar times. 

 

Figure 5.2.10  Selected mass ion mobility spectrum for m/z 93, MH
+
(H2O) 

 

Figure 5.2.11  Selected mass ion mobility spectrum for m/z 111, MH
+
(H2O)2 

Figures 5.2.12 and 5.2.13 show that the protonated dimer and the protonated hydrated dimer 

occur at similar times, again indicating that the water cluster H2O is attaching and detaching 

with the t.b. dimer along the drift tube. 
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Figure 5.2.12  Selected mass ion mobility spectrum for m/z 149, M2H
+ 

 

 

Figure 5.2.13  Selected mass ion mobility spectrum for m/z 167, M2H
+
(H2O) 

Figure 5.2.14 reproduces the IMS spectrum that Bell et.al. [127] obtained for tertiary butanol  

and comparing this with figure 5.2.6 it is seen that the clarity of the peaks from our system 

shows a distinct improvement.  Figure 5.2.15 shows their tuned mass ion mobility spectra can 

be compared directly to figures 5.2.10 to 5.2.12 obtained from our system, again showing 

significantly improved results.  In figures 5.2.14 and 5.2.15, tertiary butanol is identified as 

ROH where R refers to the CH3 methyl group within the molecule. 
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2.11      1.83         1.56 

 

 Figure 5.2.14  IMS spectra for tertiary butanol from earlier studies [48] 

 

Figure 5.2.15  Tuned mass ion mobility spectra for tertiary butanol from earlier studies [48]  

 

5.2.3  Reduced mobilities 

From the results obtained using the SIMMS program, the drift time of the peaks may be 

converted into reduced mobilities using equation 2.2.  Note, only 0.3 ms is subtracted from 

the drift times to take account of the transit time of the ions through the mass spectrometer, as 

2.11 1.83 

1.56 2.11 1.83 
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the reconstruction filter was switched out.  The operating conditions were P = 1014 mbar, 

with VHT = 4.5 kV and the moisture content in the air at 3 ppmv. 

For the H
+
(H2O)n water RIP, 𝑡𝑑 = 20.8 – 0.3 ms and therefore 𝐾𝑜 = 2.11 cm

2
/Vs. 

When introducing tertiary butanol the drift time of the monomer MH
+
(H2O)n was at 23.5 ms 

corresponding to a 𝐾𝑜 of 1.85 cm
2
/Vs. A dimer M2H

+
(H2O)n occurred at 27.3 ms giving a 𝐾𝑜 

of 1.56 cm
2
/Vs.  When comparing these values with those obtained by Bell as shown in 

figure 5.2.14, it is seen that they are in close agreement. 

5.3  Investigation using acetone (Ac) in an undoped system 

The chemical formula for acetone is CH3COCH3 and so its mono-isotopic nominal 

protonated mass is 59 Da. In this experiment the sample concentration range covered was 

from roughly 10 ppbv to 1 ppmv.  In order to obtain these low concentrations the dilution rig 

was again used to provide an initial low concentration that was followed by injection of the 

diluted acetone/air mixture into the forward flow of air to the drift tube via a syringe drive.  

The rate of delivery from the syringe drive was adjusted in order to provide the final 

concentration required. 

5.3.1  Determining the flow rate of the syringe drive  

Using the Antoine equation [128,129] (see appendix A5.7) at 22 ℃ the partial pressure of 

Acetone is 272.6 mbar, thus (assuming standard atmospheric pressure) when a sample was 

prepared in pure air within a syringe containing a wad of cotton wool soaked in acetone the 

initial concentration would be 272.6÷1013 = 0.269.  However, on this occasion, a sample 

vial containing liquid acetone was fixed to the inlet of the dilution rig (see appendix A5.4, 

figure A5.1) and after several dilutions a final  concentration of 85 ppmv in pure air was 

obtained.  This was then expelled into a 30 ml glass syringe.  The syringe drive flow rate 
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applicable for the required final concentration was again determined using the program 

‘syringe.bas’.  

5.3.2  Resultant spectra for acetone 

Before starting the experiment, as an initial check, the water RIP was recorded and found to 

be as seen in previous experiments. 

The sample was then introduced via a septum into the forward flow.  A low concentration of 

acetone of about 85 ppbv was present in the forward flow when adjusting the syringe flow 

rate to 15 ml/hour.  The corresponding mass spectrum is shown in Figure 5.3.1 

 

Figure 5.3.1  Mass spectrum for acetone sample at 85 ppbv in pure air 

Table 5.3.1  Mass assignments for the peaks seen in figure 5.3.1 

m/z 55 59 73 77 95 117 

ions W3
+
 Ac

+
 W4

+
 AcW

+
 AcW2

+
 Ac2

+
 

Ac = Acetone,  W = Water,  + refers to protonation (H
+
) 

From table 5.3.1 it can be seen that the spectrum shows peaks corresponding to water 

clusters, acetone and hydrated acetone.  A TIMMS spectrum was then obtained as shown in 
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figure 5.3.2 in order to see the temporal relationship between the m/z components.  This 

shows ion mobilities for the three peaks:  

 The RIP   H
+
(H2O)n  where n = 2 to 4 (as determined from figure 5.2.1) 

 The acetone monomer Ac H
+
(H2O)n-1  

 The acetone dimer Ac2 H
+
  

  

Figure 5.3.2  Total ions mass mobility spectrum at a syringe rate of 15 ml/hour 

The assignments of the peaks are shown in table 5.3.2  The small peak appearing at about 22 

ms is due to a slight impurity present in the system (which was also seen when initially 

checking the RIP before sample introduction).  

 𝑡𝑓  = 0 since the reconstruction filter was not used and 𝑡𝑚𝑠 =0.3 ms.                                     

The tube pressure  𝑃 = 1018 mbar. 

Table 5.3.2  Ion assignments for the peaks shown in figure 5.3.2 

Drift time (ms) Reduced mobility K0 (cms
2
/Vs) Component 

23.0 2.16 Water RIP 

23.8 2.09 Hydrated monomer 

25.7 1.94 Dimer 
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Confirmation of the peak assignments (other than known water cluster ions at m/z 55 and 73) 

was made by taking selected ion mass mobility spectra, as summarised in table 5.3.3. 

Table 5.3.3  Temporal values of the masses shown in Figure 5.3.1 

m/z Drift time (ms) Mass assignment Identity 

59 24.1 and 26.0 Ac
+
 Monomer 

77 24.1 AcW
+
 Hydrated monomer 

95 24.1 AcW2
+
 Hydrated monomer 

117 26.0 Ac2
+
 Dimer 

 

At a higher concentration where a dimer is formed it is seen in figure 5.3.3 that two peaks 

occur at 𝑚/𝑧 59.  The peak at 24.1 ms is due to the acetone monomer whereas that at 26.0 ms 

can be attributed to dissociation of the protonated dimer in the region of the interface between 

the high pressure IMS and the low pressure QMS. 

 

Figure 5.3.3  Selected ion mass mobility spectrum at m/z 59 with dimer present 

In an earlier acetone investigation made by Watts [130] the reduced mobility values obtained 

are summarised in table 5.3.4 in comparison with our values. It is seen that although they fall 

within 5 % of each other, this is outside the commonly accepted range of ±2% between 
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different IMS systems [131]. The reason for this must be due to drift since in the tertiary 

butanol investigation, our values of  K0 were seen to be in excellent agreement with those of 

Bell et.al. [127] who used the same apparatus as Watts [130]. Using the then obtained value 

of K0 =2.11 for the RIP, Watts’s value of 2.08 is 1.4% below, indicating drift within their 

system. Our value of 2.16 is 2.36% above, again indicating a drift problem (which was later 

cured – see appendix A4.13). 

Table 5.3.4 Results from an acetone study made by Watts [51] 

Component Reduced mobility K0 

(cms
2
/Vs) 

from present study 

Reduced mobility K0 

(cms
2
/Vs)  

According to Watts 

Deviation 

% 

Water RIP 2.16 2.08 3.7 

Hydrated  

monomer 

2.09 2.01 3.8 

Dimer 1.94 1.85 4.6 

 

An excess of sample was then introduced such that it caused saturation (loss of RIP) as seen 

in figure 5.3.4. 

 

Figure 5.3.4  Mass spectrum obtained at a higher concentration of acetone 
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Here, it is seen that the protonated dimer is the dominant peak.  A TIMMS spectrum was then 

taken as shown in figure 5.3.5 where it is seen that the concentration has progressively 

increased so that only the protonated dimer is now present. 

 

Figure 5.3.5 Total ions mass mobility spectrum showing presence of the protonated acetone dimer 

only with high sample concentration 

SIMMS spectra appropriate to this condition show dissociation at m/z 59 (290 counts/s) in 

figure 5.3.6 and a strong arrival peak (1300 counts/s) for the dimer in figure 5.3.7 

 

Figure 5.3.6 showing dissociation of the protonated acetone dimer at m/z 59, no monomer is seen 

 



188 

 

 

Figure 5.3.7 showing the majority of the dimer at m/z 117 

5.4  Investigation using diacetone in an undoped system 

Also known as 4-methyl-2-Pentanone, 4-hydroxy, the molecular formula for diacetone is 

C6H12O2 and so it has a protonated mass of 117 Da.  Using the Antoine equation with 

coefficients obtained from the NIST [102] web site, it is seen that diacetone has a 

significantly lower partial pressure (1.96 mbar at 22℃ ) than that of acetone (272.6 mbar at 

22℃ ) and so appropriately less sample dilution was made, again using the dilution rig.   

As a check on the system, a TIMMS spectrum was initially obtained in the absence of 

sample, and the results were as expected. Mass spectra were then taken at two levels of 

sample concentration with the corresponding results  shown in figures 5.4.1 and 5.4.2. 
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Figure 5.4.1  Mass spectrum of diacetone at low concentration 

 

 

Figure 5.4.2  Mass spectrum of diacetone at higher concentration producing a dimer 

From the masses seen, table 5.4.1.gives the chemical assignment for the ions where; 

W = water (H20), Ac = acetone, M = diacetone, + means protonated (i.e. H
+
) 
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Table 5.4.1  Ion mass assignments 

m\z 55 59 73 77 95 117 135 175 233 251 

ion W3
+
 Ac

+
 W4

+
 AcW

+
 AcW2

+
 M

+
 MW

+
 Ac3

+
 M2

+
 M2W

+
 

Total ions mass mobility spectra were also taken at similar extremes of concentration as 

shown in figures 5.4.3 and 5.4.4. 

 

Figure 5.4.3 TIMMS spectrum at lower diacetone concentration with absence of dimer 

 

 

Figure 5.4.4 TIMMS spectrum at higher concentration of diacetone showing predominance of dimer 
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To determine which ions are present in the TIMMS peaks, SIMMS spectra were taken at the 

masses shown in table 5.4.1.  From the SIMMS spectra, table 5.4.2 allocates the drift times to 

each mass. 

Table 5.4.2  Drift times for selected ion masses    

m\z 59 73 77 95 117 135 175 233 

td (ms) 26.0 23.3 24.1 24.1 26.0 27.3 30.9 35.3 

 

Considering the drift times shown in table 5.4.2, it is seen that ions at m/z 59 and m/z 117 

both appear at the same time, although as is seen in figure 5.4.1, the intensity at m/z 117 is 

much higher.  The ions at m/z 59 can be accounted for as being due to CID of the diacetone 

ions in the IMS-QMS interface causing them to break up.  Relating the drift times of the other 

ions to the peaks seen in the TIMMS spectra allows them to be described as given in table 

5.4.3.  The drift times also agree with those shown in table 5.3.3 in the previous investigation 

using acetone (as would be expected under the same atmospheric conditions). 

Table 5.4.3  Ion mass assignments for the peaks shown in the TIMMS spectra of figures 5.4.3 and 

5.4.4 

 

td (ms) 23.3 24.1 26.0 30.9 35.3 

ions H
+
(H2O)n H

+
(H2O)nAc H

+
(M)  H

+
(Ac)3 H

+
(M)2 

 

K0 cm
2
/Vs 

2.16 2.09 1.94 1.63 1.42 

                                                                            

The peaks at 24.1 and 30.9 ms are due to an acetone component.  This may probably have 

formed as a product of the diacetone sample when in the ionisation region of the drift tube. 

Since the TIMMS spectrum for water only (initially obtained in the absence of sample, 

showed only the water RIP and a small contaminant at a lower drift time, this indicates that 

there was no acetone left over in the system from the previous investigation).  

(VHT = 4 kV, P = 1018 mbar) 
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5.5 Investigation using DPGME in an undoped system 

Introduction 

Dipropylene glycol methyl ether is a commercial solvent and is a mixture of four geometric 

isomers two of which are in dominant proportions. The structures of these two are shown in 

the figures 5.5.1 and 5.5.2 below. 

 

Its structural formula is CH3(OCH3H6)2OH giving its nominal mass as 148 and so when 

protonated, its m/z will be 149. 

DPM(A) is present in 40-45% and DPM(B) in 40-50% with the remainder comprising the 

minor isomers.  An important use of DPGME is also as a ‘confidence tester’ when sprayed 

into the inlet port of an IMS detector in order to test the detection capability of the system.  In 

this case it acts to safely provide a peak in the ion mobility spectrum occurring at a similar 

drift time to that of an organophosphate nerve agent .  There does not appear to be any studies 

made on the ion-molecule reactions occurring in an IMS-MS system and so this surprisingly 

represents the first time that the reaction processes have been reported. 

The operating conditions during the experiment were tube pressure P = 1002 mbar, tube 

temperature T = 303 K, with the voltage applied to the drift tube VHT = 4.0 kV. 

Figure 5.5.1  Molecular 

structure of DPM(A) 

 

Figure 5.5.2  Molecular 

structure of DPM(B) 
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Resultant spectra for DPGME 

Figure 5.5.3 shows the TIMMS spectrum obtained when a high concentration of sample was  

present.  It is seen that the system is ‘saturated’ as the RIP is completely removed.   

 

Figure 5.5.3  TIMMS spectrum at high concentration of DPGME 

The mass spectrum as seen in figure 5.5.4 shows a dominant peak at m/z 297 indicating that  

the peak seen in figure 5.5.3 is comprised of the proton bound dimer.  A small peak at m/z 

149 is also seen that corresponds to the protonated monomer.  SIMMS spectra were taken at 

these masses as shown in figures 5.5.5 and 5.5.6.  Interestingly they both appear at the same 

drift times.  This indicates that the peak seen at m/z 149 is due to CID of the protonated dimer 

in the interface between the IMS and QMS regions.  The other small peak appearing at m/z 

315 is due to a water cluster attaching to the dimer.  (Table 5.1.1 shows the ion mass 

assignments.) 
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Figure 5.5.4 Mass spectrum for DPGME showing that dimer is dominant 

 

Figure 5.5.5  SIMMS for DPGME showing drift time at m/z 297 

 

Figure 5.5.6  SIMMS showing drift time of DPGME at m/z 149 

 



195 

 

Spectra were then taken at a sufficiently low concentration to give the characteristic three 

peaks in the TIMMS spectrum as seen in figure 5.5.7. 

 

Figure 5.5.7  TIMMS spectrum at a lower analyte concentration of DPGME 

The mass spectrum corresponding to this is given in figure 5.5.8 

 

Figure 5.5.8  Mass spectrum of DPGME at lower concentration 

Table 5.5.1 gives the chemical assignments to each of the masses seen in the spectrum of 

figure 5.5.8 (apart from the well known water cluster ions at m/z 55 and 73). 
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Table 5.5.1  Ion mass assignments 

m/z 149 167 185 279 297 315 

Assignment MH
+
 MH

+
(H2O) MH

+
(H2O)2  [M2-H2O]H

+
 M2H

+
 M2H

+
(H2O) 

 

The peak seen at m/z 279 was unexpected as it corresponds to a loss of water from the dimer, 

whereas only water adducts had been seen in the previous investigations we have made using 

other analytes.  However, looking at figures 5.5.1 and 5.5.2 it is seen that there are three sites 

in the molecule where oxygen is located, and a proton could (more favourably) attach to the 

hydroxyl (OH) group to exothermically form H2O, the energy being released by the resulting 

loss of water.  

Spectra were then taken as the concentration diminished further such that the dimer was 

diminished, as seen in figures 5.5.9 and 5.5.10. 

 

 

 

 

 

 

 

 

 

Figure 5.5.9   

Total Ions Mass mobility 

spectrum at diminishing 

concentration of DPGME 

 

Figure 5.5.10   

Mass spectrum at diminishing  

concentration of DPGME  
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A further set of spectra were then obtained as the concentration of analyte reduced to a level 

where the RIP became dominant as shown by figures 5.5.11 to 5.5.13. 

 

Figure 5.5.11  TIMMS showing dominant RIP at 23.1 ms 

 

 

 

Figure 5.5.12  SIMMS for DPGME at m/z 149 
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Figure 5.5.13 SIMMS for DPGME at m/z 279 

By using the results from the selected ions mobility spectra shown in figures 5.12, 5.13 and 

5.5, at m/z 149, 279 and 297 respectively, the reduced mobilities were calculated and are 

summarised in table 5.5.2.  When taking the SIMMS spectrum at m/z 279 as seen in figure 

5.5.13, the peak has a very low count rate of 23 counts/s which is approaching circuit noise 

levels, and so the value of its drift time is approximate in this case.   

Table 5.5.2  Ion assignments summarizing the results from the DPGME investigation 

m/z td K0 Identity 

149 29.3 1.69 MH
+
 

279 38.8 1.27 [M2-H2O]H
+
 

297 38.4 1.29 M2H
+
 

 

After the initial appearance of the protonated monomer MH
+
, a sufficiently high 

concentration of M allows the process to continue to form the excited proton bound dimer. 

This can then lose energy through a three body process of collisional stabilization with N2 to 

leave the dimer M2H
+
, which is the dominant channel.  In addition (as seen in table 5.5.1 at 

m/z 279) there is also a small branching ratio associated with a bimolecular channel resulting 

in the loss of H2O from the (M2H
+
)* complex. 
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i.e.  

MH
+
 + M  → (M2H

+
)*  

 

5.6  Summary and review 

A review of the results from the experiments is given in table 5.5.3 below. Where possible, 

the hydrated product ions are not included, since the mobilities of the protonated analyte ions 

are mainly of interest. 

Table 5.5.3  Listing of ions obtained when operating the IMS in the  positive ion mode with their 

results  

Compound Product ions Mass (𝒎/𝒛) 𝑲𝟎 (cm
2
/Vs) 

Clean air RIP   H
+
(H2O)n 19, 37, 55, 73  2.11 

Tertiary butanol  

(t.b.) 

MH
+
(H2O)n 

M2H
+
 

93 

149 

1.85 

1.56 

Acetone                

(Ac) 

AcH
+
(H2O)n 

Ac2H
+
 

59 

117 

2.09 

1.94 

Diacetone         

(DiAc) 

DiAcH
+

 

DiAc2H
+
 

117 

233 

1.94 

1.42 

Dipropylene glycol 

methyl ether  

(DPGME) 

(DPGME)H
+
 

(DPGME–H2O)H
+
 

(DPGME)2H
+
 

149 

279 

297 

1.69 

1.27 

1.29 

 

N2 
M2H

+
 + N2* 

[M2-H2O]H
+
 + H2O 
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Chapter 6   CHARACTERISATION OF THE IMS-QMS SYSTEM                                     

IN NEGATIVE ION MODE 

6.1  Introduction  

This chapter complements chapter 5 in that it describes investigations made using the negative 

ion mode of operation again using clean air as the carrier gas.  This mode is more suited to the 

detection of explosive threat agents since their proton affinities (PA) are generally less than the 

PAs  for (H2O)n (n ≥ 2) and so are not able to be detected in the positive ion mode. However, 

they readily react with negative ions. 

The analytes used in the present investigations were: 

o methyl salicylate (MS) – used as a safe confidence tester in IMS systems for detection of 

nerve agents.  

o 1,3 dinitrobenzene (1,3 DNB) – used in the manufacture of explosives, solvents and dyes.  

o 2,4 dinitrotoluene (2,4 DNT) – used in the manufacture of TNT and polyurethane foams. 

o 2,6 dinitrotoluene (2,6 DNT) – similar characteristics to 2,4 DNT but is less used. 

o 1,3,5 trinitrobenzene (1,3,5 TNB) – used as a high explosive in commercial mining. 

o 2,4,6 trinitrotoluene (2,4,6 TNT) – used as a high explosive and as the standard measure 

of explosive power. 

o hexachloroethane – used as a dopant in IMS detectors to generate Cl
-
 ions in order to 

enhance selectivity (used here in conjunction with the TNT investigation). 

Initially the spectra of the RIP were recorded, followed by investigations using the above 

compounds.  Two of the compounds (MS and 1,3-DNB) to our knowledge have not previously 

been investigated on an IMS-MS system and so the results from these are new. 

In chapter 5, headspace from a syringe was the chosen method to introduce analyte into the 

system. However, due to the low volatility of explosives, in the following experiments the 
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headspace from a heated vial containing a small sample of the analyte is used to interface with 

the forward flow entering the ionisation region of the drift tube.  

6.2  Ion spectra observed in clean air using the present system 

The following procedures allow a comparison to be made with the ions seen in the present 

system and those obtained by Spangler and Carr [109,110] shown in table 1.2 of chapter 1 and 

for convenience, given again in this chapter.  After putting the mass spectrometer into negative 

ion mode (see appendix A6.1 for the connection diagram) the voltages on the electrostatic lenses 

were adjusted in order to provide optimum sensitivity, the values being given in appendix A4.6.  

The operating conditions of the drift tube were:  VHT = 4 kV,  P = 1012 mbar and T = 30℃  

A total ions mobility spectrum (see figure 6.2.1) was obtained using the TIMMS program. 

It was thought that the small peak at 21.2 ms shown in figure 6.2.1 was due to a slight impurity 

in the system.  However, the drift times of the various ion masses making up the RIP as shown 

shown in table 6.2.2 obtained using the SIMMS program, were all found to coincide with that for 

the total ions peak of 22.5 ms.  Thus they are all components resulting from switching reactions 

based around the O2
-
 reactant ion molecule.  The small peak was not noticed in the SIMMS 

spectra and so it is concluded that it is an artefact from the mass spectrometer when put into total 

negative ions mode. (The peak does not occur when put in positive ions mode). It cannot be 

attributed to a software problem since the SIMMS and TIMMS data acquisition routines are 

identical. As a further check, the spectrum obtained from the Faraday plate using the IMS 

program showed an absence of this small peak. 
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Figure 6.2.1 TIMMS spectrum showing RIP in clean air in negative ion mode  

Using 𝐾0~
0.1958

𝑉𝐻𝑇
 × 

𝑃

𝑡𝑑−𝑡𝑚𝑠−𝑡𝑓
 (equation 2.2) with 𝑉𝐻𝑇 = 4 kV and  𝑃 = 1012 mbar, 

 𝑡𝑚𝑠 = 0.3 ms and 𝑡𝑓 = 0 (the reconstruction filter was not required), the peak at 22.5 ms equates 

to a reduced mobility K0 of 2.23 cm
2
/Vs (to within 5% - see section 1.2.8 in chapter 1).  

This figure is in good agreement with that given in a recent paper by Vautz et al [101] of 2.22 

cm
2
/Vs and quoted by them as “the result of many years of experience in ion mobility 

measurements” although they do not state the temperature and humidity at which the 

measurement was taken, but it is implied in another set of their results as being 23℃ and so a 

similar amount of water clustering to our system would be present.  Both ion mobility values are 

however somewhat higher (~ 3%) than that given by Spangler [109] of 2.16 cm
2
/Vs.  The 

corresponding mass spectrum is seen in figure 6.2.2.   



203 

 

 

Figure 6.2.2  𝑚/𝑧 of the RIP components in the negative ion mode 

The 𝑚/𝑧 values of the ions seen in the mass spectrum (summarised in table 6.2.1) correspond 

with those seen by Spangler and Carr (repeated below from chapter 1) although a smaller 

number were seen in our system, probably due to the greater purity of the air used as the carrier 

gas at present. 

The ion at m/z 94, which was not observed by Spangler and Carr may be due to a greater level of 

moisture residing in our IMS - QMS system than that with the systems of Spangler and Carr 

which were operated at higher temperatures. 

Table 1.2  Reactant anions observed in previous studies by Carr and Spangler   

m/z 26 32 35 35 42 46 50 

(Carr) CN
-
 O2

-
 Cl

-         
  CNO

-
 NO2

-
  

(Spangler)  O2
-
 Cl

-         
 (H2O)OH

-
  NO2

-
 (H2O)O2

-
 

        m/z 52 53 60 64 68 76 

(Carr) (H2O)2O
-
  (CO)O2

-
 O4

-
  (CO2)O2

-
 

(Spangler)  (H2O)OH
-
   (H2O)2O2

-
 (CO2)O2

-
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Table 6.2.1  Reactant anions observed in the present IMS-QMS system 

m/z 32 46 50 60 68 76 94 

Ion O2
-
 NO2

-
 (H2O)O2

-
 (CO)O2

-
 (H2O)2O2

-
 (CO2)O2

-
 (H2O)(CO2)O2

-
 

 

6.3  Investigations using analytes 

The following investigations complete the experimental research for this thesis and some are 

believed to be unique in that their ion-molecule reactions have not previously been studied on an 

IMS-MS system and so the results can be used to further explain the chemistry behind the 

reactions. 

6.4  Investigation using methyl salicylate (MS) as the analyte 

Methyl salicylate (C8H8O3), 𝑚/𝑧 152, is more familiarly known as ‘Wintergreen Oil’ and is 

naturally produced by many plant species (wintergreens in particular) hence its common name. It 

is used as a fragrance and also in rubbing ointments for treating joint and muscular pain. In IMS 

systems, it acts as a safe confidence tester to simulate nerve agents and mustard gas due to its 

similar ion mobility.  

In the investigation, the parameters were: VHT = 4 kV,  P = 1008 mbar,  T = 30℃ (303 K) 

The mass spectrum shown in figure 6.4.1 was obtained at a low concentration of MS. The peaks 

at m/z 32, 50 and 60 indicate that the concentration of MS was insufficient to completely deplete 

the reactant ion signal.  It is interesting that the product ion peak appears at m/z 151 whereas the 

actual parent 𝑚/𝑧 of MS is 152 amu.   Thus a proton has been abstracted from the neutral 

molecule.   

i.e. O2
-
(H2O)n + MS → (MS – H)

-
 + HO2.(H2O)n 
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Figure 6.4.1  Mass spectrum for a low concentration of methyl salicylate  

A selected ion mass mobility spectrum (SIMMS) at 𝑚/𝑧 151was obtained and is shown in figure 

6.4.2.  The drift time of 31.9 ms corresponds to a reduced ion mobility of 1.56 cm
2
/Vs.  

 

Figure 6.4.2  SIMMS spectrum of MS at m/z 151 for MS        
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The TIMMS spectrum is shown in figure 6.4.3 where the small peak at 21.6 ms is due to the 

artefact previously mentioned. In addition to the main MS monomer peak at 31.9 ms, two other 

peaks are seen corresponding to the RIP at 23.0 ms and possibly an impurity at 24.4 ms. 

 

Figure 6.4.3  TIMMS spectrum of MS 

The concentration of analyte was then increased such that the RIP disappeared in order to 

investigate what secondary ion-molecule reactions take place. The resulting mass spectrum is 

shown in figure 6.4.4 where it is seen that new peaks at m/z 199, 212 and 332 occur.  Increasing 

the concentration further resulted in the mass spectrum shown in figure 6.4.5 where m/z 212 

becomes the dominant product ion. 
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Figure 6.4.4  Mass spectrum at higher concentration of MS analyte 

 

 

Figure 6.4.5  Mass spectrum at higher concentrations of M.S. showing dominance of m/z 212  

Selected ion mass mobility spectra were obtained for all the masses seen and the overall results 

are given in table 6.4.1 which shows the ion mass assignments, their drift times and reduced 

mobilities. 
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Table 6.4.1  Ion 𝑚/𝑧, drift times, relative intensities and calculated K0 values at low concentration of MS. 

The dominant peak at 𝑚/𝑧 151 is set to an arbitrary scale of 100  

m/z 32 46 50 60 94 151 166 

ion O2
-
 NO2

-
 (H2O)O2

-
 CO(O2)

-
 (H2O)CO(O2)

-
 (M-H)

-
 ? 

td (ms) 23.0 21.6 23.0 21.6 23.0 31.9 31.9 

Arb. units 27 7 16 13 8 100 5 

K0 (cm
2
/Vs) 2.17 2.32 2.17 2.32 2.17 1.56 1.56 

 

m/z 184 199 212 332 

ion M O2
-
 ? MCO(O2)

-
 ? 

td 31.9 28.4 28.8 36.7 

Arb. units 8 20 6 6 

K0 1.56 1.76 1.74 1.36 

                                                                              

The identities of the ions at m/z 166, 199 and 332 are unknown. 

Common groups are identified by the same drift time.  Since they represent different m/z values 

within these groups, they must have arisen from CID in the IMS-QMS interface. The peaks 

occurring at td = 23.0 ms are due to the RIP.  The remaining peaks seen at higher drift times stem 

from the analyte.  

6.5  Investigating 1,3 DNB  

1,3 dinitrobenzene  has the chemical formula C6H4N2O4 with an m/z of 168 Da.  It is a man-

made substance used to make explosives, and is also used in the manufacture of solvents and 

dyes. Yellow in colour, it is a crystal-like solid at room temperature and has no odour or taste. At 

a very high temperature, it will explode. 1,3-DNB is formed during the manufacture of the 

explosive trinitrotoluene (TNT). Its vapour pressure is very low being 0.003 mbar at 25℃. 

In the experiment, the conditions were: P = 996 mbar, VHT = 4 kV and T = 30℃ 
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Before introducing the analyte, the mass spectra of the RIP was taken to check for 

contamination.  It was seen that the 𝑚/𝑧 of the ions detected were as expected and the 

contamination was low.   

The headspace from a vial containing the analyte was then introduced into the forward flow of 

carrier gas (pure air) into the IMS. A mass scan was then taken, the resulting spectrum being 

shown in Figure 6.5.1.  It is seen that the predominant peak is at m/z 168 corresponding to M
-
. 

 

 

A TIMMS spectrum was then taken as shown in figure 6.5.2 where again, no RIP is seen, and the 

peak due to the high concentration of analyte dominates. 

 

 

Figure 6.5.1  Mass spectrum of 1,3 DNB 
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Figure 6.5.2  Total ion mobility spectrum of 1,3 DNB 

A SIMMS scan at m/z 168 is shown in figure 6.5.3 where the same drift time as that seen in 

figure 6.5.2 confirms that the peak is indeed due to 1,3 DNB. 

 

Figure 6.5.3  Selected ion mass mobility spectrum at m/z 168 for 1,3 DNB 

The vial containing the sample was then removed and TIMMS spectra were observed over a 

period of  2½ hours. During this time, the predominant peak due to the analyte ions gradually 
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diminished although its drift time remained unchanged, while the RIP became dominant with 

only a small amount of analyte ions remaining as seen in figure 6.5.4. 

 

Figure 6.5.4  TIMMS showing reversion to RIP after 2½ hours   

 Using the drift time of 29.3 ms for 1,3 DNB, its reduced mobility K0 is calculated to be 1.68 

cm
2
/Vs 

Using a commercial IMS, Kanu & Hill 2007 [132] quote K0 = 1.71cm
2
/Vs which, being < 2% 

difference, is in good agreement with our value. 

6.6  Investigating  2,6-DNT  

This organic compound 2,6-dinitrotoluene has the formula CH3C6H3(NO2)2 with an 𝑚/𝑧 of 182 

Da. It is a pale yellow crystalline solid with similar physical characteristics to 2,4 DNT.  The 

measurement conditions were:  P = 992 mbar, VHT = 4.0 kV, T = 30℃ and tGATE = 0.3 ms.  

Sampling the headspace from the analyte into the forward flow of the IMS produced the 

following mass spectra:  
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Figure 6.6.1 Mass scan for 2,6 DNT   

Homing in on the peak seen in figure 6.6.1 by scanning over 178 to 183 amu at high resolution 

produced the spectrum shown in figure 6.6.2 where it is seen that the peak shown in figure 6.6.1 

is of course composed of two peaks, the first at 𝑚/𝑧 181 (representing [M-H]
-
) and the second 

peak at 𝑚/𝑧 182 resulting from the 𝐶 
13  isotope.  

 

Figure 6.6.2 Expanded view of the mass peak around 181 amu for 2,6 DNT. 

The total ions mobility spectrum was then obtained as seen in figure 6.6.3 where only one peak 

is seen occurring at 30.3 ms. 
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Figure 6.6.3 TIMMS scan for 2,6 DNT 

The drift time of 30.3 ms corresponds to reduced mobility 𝐾𝑜 = 1.62 cm
2
/Vs for [M-H]

-
.  Ewing et al. 

[135] quote 1.61 cm
2
/Vs whereas Kanu and Hill 2007 [132] quote 𝐾𝑜 = 1.67 cm

2
/Vs, (literature value = 

1.65 cm
2
/Vs) which are less than 2.5% different. 

 

6.7  Investigating 2,4 DNT  

The organic compound 2,4-dinitrotoluene is an isomer of 2,6 DNT and so has the same formula 

CH3C6H3(NO2)2 and hence the same 𝑚/𝑧 of 182 Da. It is a pale yellow crystalline solid used as a 

precursor to trinitrotoluene (TNT) for which it is a gelatinizing and waterproofing 

agent, although it is more commonly produced as a precursor to toluene diisocyanate used to 

produce polyurethane foams.  Its vapour pressure is 0.0051 Torr at 20℃. 

In the experiment, the conditions were: P = 992 mbar, VHT = 4 kV and T = 30℃ 

The headspace from a vial containing the analyte was introduced into the forward flow of carrier 

gas into the IMS. When taking a TIMMS spectrum (figure 6.7.1) it was seen that unlike with 2,6 

DNT where only one peak was seen, there were now two peaks separated by 1 ms. 
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Figure 6.7.1  TIMMS for 2,4 DNT  

 

The region around 29 to 32 ms is expanded below in figure 6.7.2 to show the two peaks present; 

 

Figure 6.7.2  Expanded view of TIMMS for 2,4 DNT 

A low resolution mass scan was then taken, the resulting spectrum being shown in Figure 6.7.3.  

Here, it is seen that the predominant peaks are at m/z 181/182 and m/z 196/197. The peaks at 

𝑚/𝑧 196/197 remain unassigned. 
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In order to see the peaks more clearly, a high resolution mass scan was taken over the range 180 

to 183.5amu as seen in figure 6.7.4. 

 

Figure 6.7.4  Exploded view of the peaks obtained around 181 amu for 2,4 DNT 

 

Clearly the peak at 𝑚/𝑧 182 is much higher than could be accounted for from the 𝐶 
13  isotope for 

𝑚/𝑧 181, and therefore it has a dominant contribution from M
-
. This raises the question as to 

why M
-
 is observed for 2,4 DNT but not for 2,6 DNT.  

Figure 6.7.3  Mass scan for 2,4 DNT 
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Turning our attention now to the peak seen around m/z 196 in figure 6.7.1, a high resolution plot 

over 195 to 199 amu produced the spectrum shown in figure 6.7.5 

 

Figure 6.7.5  Exploded view of the peaks obtained around 196 amu for 2,4 DNT   

 

A low resolution selected mass mobility scan was taken at m/z 181 as seen in figure 6.7.6 where 

two peaks are seen.  These correspond to the peaks at m/z 181 and 182. 

 

Figure 6.7.6 SIMMS scan at m/z 181 for 2,4 DNT   

 



217 

 

The drift times of 30.0 and 31.0 ms correspond to reduced mobility values of Ko = 1.63 cm
2
/Vs 

for [M-H]
- 
and 1.58 cm

2
/Vs for M

-
. 

The values given in the paper by Spangler and Lawless [133] are 1.67 cm
2
/Vs and 1.61cm

2
/Vs 

respectively which are 2.5% higher than our values.  However, it is generally recognised that 

reduced mobility values within different IMS systems are at best accurate to around 2% [131] 

and so on this basis, there is good agreement with published data. 

Tuning to m/z 196 produced the spectrum seen in figure 6.7.7 

 

Figure 6.7.7 SIMMS scan at m/z 196  for 2,4 DNT   

From figure 6.7.7, only a single peak for m/z 196 is seen at a drift time of 31.0 ms, which is 

similar to the drift time of the peak selected at m/z 182 corresponding to M
-
, as seen in figure 

6.7.6.  Therefore we propose that m/z 196 is M
-
.N2. 

In contrast to the results from the 2,6 DNT investigation where only one peak was observed in 

the TIMMS and MS spectra, the 2,4 DNT analyte shows two mass peaks and two mobility peaks 

corresponding to [M-H]
-
 and M

-
. A later investigation into 2,4,DNT showed that the second peak 
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is concentration dependent since it disappeared as the concentration of analyte diminished. One 

possibility for this is a secondary ion reaction: 

[DNT−H]
-
 + DNT → DNT

-
 + [DNT−H]   

 

6.8  Investigating 1,3,5 TNB  

1,3,5-Trinitrobenzene (TNB) is classified as a high explosive. It is fairly explosive in liquid 

form but extremely explosive as a dry powder where it will detonate under strong shock. Its 

colour ranges from clear to light yellow. TNB is used mainly in mining and military use. Another 

use is as an agent to vulcanize natural rubber.  Its molecular formula is C6H3N3O6 with an 𝑚/𝑧 of 

213 Da. During the experiment, the operating pressure was 998 mbar, VHT = 4.0 kV and tGATE = 

0.4 ms. A TIMMS spectrum was obtained as seen in figure 6.8.1 where there is a good balance 

between the RIP and the analyte monomer and an unidentified peak  at 37.2 ms. 

 

Figure 6.8.1  TIMMS scan for TNB    

A mass scan was then taken as shown in figure 6.8.2  
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Figure 6.8.2 MS scan for TNB   

 

The dominant peak was at m/z 213 corresponding to [M]
-
. 

Tuning to m/z 213, a SIMMS scans was taken which showed two peaks as seen in figure 6.8.3. 

 

 

Figure 6.8.3  SIMMS scan at m/z 213 for TNB    

The peak at 32.7 ms is assigned to be the monomer ion whereas that at 37.0 ms may result from 

the dimer ion TNB2
-
 which fragments as a result of CID to TNB

-
 and TNB after exiting the FP. 

m/z 274 
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The FP to cone voltage was then reduced to 5.6 V and a mass scan taken, but no masses 

corresponding to the dimer were observed. It was noticed however, that m/z 274 increased as 

VFP-cone was reduced. 

Taking a SIMMS scan at m/z 274 and with VFP at -5.6 V instead of the usual -9 V gave the 

spectrum shown in figure 6.8.4. 

 

Figure 6.8.4  SIMMS scan for TNB at m/z 274 

After a one hour break, a mass scan was taken as shown in figure 6.8.5, to see if any significant 

changes had occurred. 

  

Figure 6.8.5  MS scan for TNB 
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Here, it is seen that the peak at m/z 274 is more prominent than when seen in the earlier mass 

scan shown in figure 6.8.2, its identity is not known but most probably results from CID of the 

dimer. Looking at the signal from the FP shows the amplitude of the peaks in their true 

proportions. (See figure 6.8.6).   

 

Figure 6.8.6  IMS scan for TNB    

 

The drift times of the peaks at 23.8, 32.7 and 37.2 ms correspond to reduced mobility values of 

𝐾0  = 2.20 cm
2
/Vs for the RIP and 1.60 cm

2
/Vs for M

-
 The peak at 37.2 ms which we have 

tentatively identified to be the dimer has 𝐾0 = 1.31 cm
2
/Vs.  

6.9  Investigating TNT  

2,4,6 trinitrotoluene (TNT) is a yellow solid with the formula C6H2(NO2)3CH3. Its mass is 227 

amu.  It is best known as a useful explosive material and its explosive yield is used as the 

standard measure of strength for bombs and other explosives.  
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The operating conditions during the experiment were:  

P = 990 mbar, tGATE = 0.3 ms, VHT = 4.0 kV.  Pure air was initially used for the carrier gas. 

A sample of the headspace from the analyte was introduced into the forward flow of carrier gas 

for the IMS and a mass scan was then taken (shown in figure 6.9.1) where a peak at m/z 226 

corresponding to [TNT-H]
-
 is seen.  

The peaks seen in figure 6.9.1 arise from the following ions: 

 RIP assigned to m/z 32 to 94 

 [TNB]
- 
 at m/z 213 (now regarded as an ‘impurity’ from a previous investigation) 

 [TNT-H]
- 
 assigned to m/z 226, resulting from proton abstraction 

 Unidentified ion at m/z 288 

  

Figure 6.9.1 MS scan of 2,4,6 TNT in air  

A TIMMS scan was then taken as seen in figure 6.9.2 where the major peak corresponds to the 

reactant (RIP) ions at 23 ms. 
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Figure 6.9.2 TIMMS scan of 2,4,6 TNT in air  

A selected mobility scan done at m/z 226 amu confirmed that the peak at 31.6 ms was due to 

[TNT-H]
-
 ions as seen in figure 6.9.3. It also indicates that in figure 6.9.1, the higher mass peak 

around 𝑚/𝑧 288 again seen at 36.3 ms is formed from some CID of a TNT
-
 cluster in the IMS-

MS interface region. 

 

Figure 6.9.3 SIMMS scan at m/z 226 in air 
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From the drift time of 31.6 ms corresponding to the peak for [TNT-H]
-
, the reduced ion mobility 

𝐾0 is 1.55 cm
2
/Vs 

The temperature was then increased to 70℃ which caused (via the safety switch) VHT to be 

reduced to about 3 kV with a corresponding increase in drift time.  Figure 6.9.4 shows a mass 

scan taken at this temperature. Comparing the spectrum with that of figure 6.9.1 at 30℃, it is 

seen that the peak at m/z 226 shows increased volatility of the analyte and reduced water content 

in the source gas as evidenced by the peak at m/z 50 (corresponding to (H2O)O2
-
). 

 

Figure 6.9.4 MS scan for 2,4,6, TNT in air at 70℃ source gas temperature 

A TIMMS scan was then taken with the temperature of the source gas increased to 86℃ (figure 

6.9.5) where a significant increase of analyte and reduction of RIP is seen. 
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Figure 6.9.5 TIMMS scan for 2,4,6 TNT in air at 86℃ 

6.10  Investigating the use of the dopant hexachloroethane in nitrogen 

In order to dope the system to get chloride ions so that the results could be compared with those 

from other workers, [135,136] hexachloroethane (C2Cl6) vapours were admitted into the forward 

flow of the drift tube with pure nitrogen being used in place of air for the carrier gas. When 

taking a high resolution mass scan, peaks corresponding to Cl
-
 (the dominant peak) and Cl2

-
 were 

seen in addition to the small peak arising from residual [TNT-H]
-
.  Although it may seem 

unusual for Cl2
-
 to be formed from C2Cl6, it is often noticed that Cl2

- 
is produced following 

electron attachment to polychlorinated compounds [134]. 

A TIMMS scan was then taken as seen in figure 6.10.1. The small peak immediately following 

that at 20.4 ms is probably due to the formation of Cl2
-
 ions while that at 31.5 ms is from the 

residual TNT vapours in the system. 
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Figure 6.10.1 TIMMS scan for N2 with C2Cl6 dopant  

The reduced ion mobility 𝐾0 for the peak at 31.5 ms in figure 6.10.1 which corresponds to [TNT-

H]
-
  is 1.55 cm

2
/Vs.  For the new chlorine based reactant ions, Cl

-
(H2O)n at 20.4 ms has 𝐾0 = 

2.40 cm
2
/Vs and Cl2

- 
at 21.2 ms has 𝐾0 = 2.31 cm

2
/Vs.  

A low resolution mass scan was then taken as shown in figure 6.10.2.  The peak at m/z 226 

corresponds to [TNT – H]
-
 formed from the reaction Cl

-
 + TNT → [TNT – H]

-
 + HCl 

 

Figure 6.10.2  Low resolution MS scan for N2 with C2Cl6 dopant  

Cl
-
(H2O)n 
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Considering the peaks seen comprising the new RIP, further high resolution mass scans at each 

peak were taken and these are shown in figures 6.10.3 to 6.10.5. Note, the product ion peak in 

nitrogen is still at m/z 226 being [TNT-H]
-
.  

 

The peaks at 𝑚/𝑧 35 and 37 seen in figure 6.10.3 correspond to the isotopes of Cl
-
 in the ratio 

3:1 (correctly following the abundance of the isotopes of chlorine at 𝑚/𝑧 35 and 37 being 75% 

and 25% respectively ).  In figure 6.10.4, the peaks at m/z 53 and 55 correspond to hydrated 

chlorine ions being (H2O)Cl
-
 again in the isotopic ratio 3:1.  

 

 

Figure 6.10.3 MS scan around m/z 35 for N2 with C2Cl6 dopant 

 

Figure 6.10.4  MS scan around m/z 53 for N2 with C2Cl6 dopant 
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The peaks seen in figure 6.10.5 correspond to Cl
-
, Cl2

-
 and Cl

-
.(H2O)2 as identified below in table 

6.10.1. 

 

Figure 6.10.5  MS scan around m/z 72 for N2 with C2Cl6 dopant 

 

m/z 70 71 72 73 74 75 

ion 𝐶𝑙2 
35 -

 𝐶𝑙  
35 (H2O)2

-
 𝐶𝑙  

35 . 𝐶𝑙  
37 -

 𝐶𝑙  
37 (H2O)2

-
 𝐶𝑙2 

37 -
 H. 𝐶𝑙2 

37 -
 

 

The values of 𝐾0 calculated as 1.55 cm
2
/Vs for [TNT − H]− in both air and nitrogen compare 

favourably with that of 1.54 cm
2
/Vs reported by other workers, e.g. [135,136]. 

6.11  Investigating TNT in pure nitrogen with no dopant present 

After removing the hexachloroethane dopant source, the temperature of the drift tube was raised 

to 86 ℃.  The  system was then left to bake out under nitrogen carrier gas for three hours.  After 

cooling down back to 30℃ a mass scan showed no presence of Cl
- 
ions. TNT vapours were then 

admitted into the system.  Only free electrons were available now for reactions and just two 

peaks were seen in the mass scan at 𝑚/𝑧 213 corresponding to a residue of TNB
-
 left over from a 

Table 6.10.1  Identification of 𝑚/𝑧 ions for N2 with C2Cl6 dopant as seen in figure 6.10.6 
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previous investigation, and m/z 227 corresponding to the non-dissociative electron attachment to 

TNT, whereby 𝑒− +  TNT → TNT−.  A low resolution mass scan was made over the range 𝑚/𝑧 

210 to 230 covering TNB
-
 and TNT

- 
as shown in figure 6.11.1.  

 

Figure 6.11.1  Mass scan around m/z 211 to 230 for N2 (no dopant present) 

A high resolution mass scan around 𝑚/𝑧 224 to 229 gave the spectrum seen in figure 6.11.2. At 

this higher resolution, the dominant peak at 𝑚/𝑧 227 is from TNT
-
 whereas that at 𝑚/𝑧 226 is 

from [TNT-H]
-
 (probably formed from a reaction involving some residual air present in the 

system). 

 

Figure 6.11.2 Mass scan around m/z 225 to 229 for N2 (no dopant present) 
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The system was then again doped with hexachloroethane  where it was seen (as shown in figure 

6.11.3) that the dominant peak had shifted back to 𝑚/𝑧 226 with the smaller peak now at 𝑚/𝑧 

227 due to the 𝐶 
13  isotope. 

 

 

In the mass spectra, the peak seen at 𝑚/𝑧 213 corresponding to TNB
-
 has arisen from a trace of 

TNB remaining from the previous experiments conducted. 

6.12  Summary and review  

For TNT the following were found: 

 Attachment of free electrons only results in TNT
-
.  

 Reactions with O2
-
(H2O)n produce a single peak at [TNT-H]

-
 through proton abstraction 

 Reactions involving the Cl
-
 dopant producing Cl

-
, Cl2

-
 and Cl

-
.H2O reactant ions also 

produce a single peak at [TNT-H]
-
, again through proton abstraction 

Comparing results from investigations in both positive and negative ions mode, it is seen that: 

Figure 6.11.3  Mass scan around m/z 224 to 228 for N2 with dopant 
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 In both positive and negative ions mode, the RIP is of a similar mobility, probably due to 

the humidity of the carrier air producing a similar number of water clusters around the 

core H3O
+
 or O2

-
 ion. 

 In both modes, the amplitude (counts/s) of the ion signal from the channeltron is also of a 

similar magnitude, indicating that a similar amount of cations and anions are being 

produced in the ionising region. 

 In the positive ions mode, the reaction pathway was observed to be through proton 

transfer. 

 In the negative ions mode, reaction pathways were seen to be either from electron 

transfer, or from proton abstraction, as confirmed in section 1.2.11. 

A review of the results from the experiments is given in table 6.12.1. 

Table 6.12.1  Listing of analytes used in the  negative ion mode with their results  

Compound Carrier Product ions Mass (𝒎/𝒛) 𝑲𝟎 (cm
2
/Vs) 

Clean air Air RIP   O2
-
(H2O)n  2.10 

Methyl salicylate 

(MS) 

Air (MS – H)
-
 151 1.55 

1,3 Dinitrobenzene 

(1,3 DNB) 

Air DNB
-
 168 1.68 

 

2,4,Dinitrotoluene 

(2,4 DNT) 

Air (DNT –H)
-
 181 1.58 

 

2,6 Dinitrotoluene 

(2,6 DNT) 

Air (DNT –H)
-
 181 1.61 

1,3,5 Trinitrobenzene 

(1,3,5 TNB) 

Air TNB
-
 213 1.61 

Dimer 1.31 

2,4,6 Trinitrotoluene 

(2,4,6 TNT) 

 

Air             

N2 +C2Cl6 

N2 

(TNT – H)
-  

(TNT – H)
-  

  

 TNT
-
        

226                  

226 

227     

1.55                 

1.55 

1.53 

Hexachloroethane 

(C2Cl6) 

N2 Cl
-
(H2O)n   

Cl2
-
 

35, 53, 71           

70 

2.40                

2.31 
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Chapter 7  REVIEW AND DISCUSSION OF FUTURE WORK   

7.1  Review of achievements made with the IMS-QMS system. 

Use of opto-isolators: 

In chapter 2 the design requirements and their implementation were discussed for 

improvements in flexibility of operation of the IMS and IMS-QMS system. One of the first 

considerations was to allow improvement in operation in terms of safety, by the use of opto-

isolators for coupling of 5 V gate pulses to the ion gate (being at a high potential of several 

kV) rather than following the usual method of using a coupling capacitor (which poses the 

risk of dielectric breakdown, and also degradation of the square wave gate pulse). 

Hardware intermediary for obtaining selected and total ion mass mobility spectra  

Bearing in mind the requirements for obtaining total and selected ion mobility spectra using 

LabVIEW a special interface was designed (the pulse count to pseudo analogue converter) 

for incorporating into the system, along with a complete theoretical description of its 

operation.    

Software development for acquiring spectra, using LabVIEW  

Chapter 3 gave details of the software development using LabVIEW.  Since this was 

implemented, a paper has been produced by others offering a program for operating an IMS 

system alone (also using LabVIEW) [118] that gives similar functionality to that already 

developed (but not being so user friendly as the version described here). However, to date, no 

software has been offered to operate an IMS-QMS system using LabVIEW and with the 

application of the count converter mentioned above, this aspect represents a unique 

contribution to knowledge/understanding in this area.  
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Experiments resulting in analyte spectra not previously obtained  

In chapters 5 and 6, experiments are described that characterise the system, with some results 

providing a unique contribution to knowledge of the behaviour of particular analytes on an 

IMS-QMS system.  These particular analytes are: 

In positive ion mode: diacetone and dipropylene glycol methyl ether (DPGME) 

In negative ion mode: methyl salicylate, 1,3,5-trinitrobenzine (1,3,5 TNB) and 

hexachloroethane  

7.2  Factors that have arisen since the design and use of the system 

The main outcome from an IMS system apart from a mobility spectrum, is the determination 

of the reduced mobility of our analyte. Questions relating to the validity of stated values of 

𝐾0 for particular analytes are discussed below. 

Consideration of Reduced Mobility and Correction Factor in its calculation 

At present, there are no standards laid down for IMS systems and so the literature values of 

𝐾0 are taken from a variety of sources where the operating conditions may be quite different 

in terms of drift tube design, humidity and operating temperature. When quoted, they are 

usually accompanied with the operating temperature and drift gas composition used at the 

time of measurement.   

According to the theoretical mobility equation as given in section 1.2.6 of chapter 1, 

assuming no clustering of the ions occurs, 𝐾 ∝ 
1

𝑁√𝑇
  . Since pressure 𝑃 ∝ 𝑁, then scaling 

down to normalise for 𝐾0 is appropriate for 𝑃 but is clearly not for 𝑇 where a reciprocal 

square root relationship exists. Thus, it can be seen that the actual value of 𝐾 when measured 

under standard conditions would most likely be different to that of 𝐾0 when calculated from a 
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mobility value obtained at a higher temperature, and so it is to be expected that the range of 

reduced mobility values quoted in literature would be wider for analytes having drift times 

that are more affected by operating temperature than others.   

Therefore, simply stating that reducing the mobility 𝐾 down to 𝐾0 in proportion to give the 

equivalent mobility at standard conditions by multiplying 𝐾 by  
𝑇0×𝑃

𝑃0×𝑇
 may be an incorrect 

assumption, as the non linear effect of operating temperature on drift time and hence mobility 

is not considered. Thus an ion mobility value for an analyte measured at 30℃ may be 

significantly different when measured at say, 150℃ due to the increased number of collisions 

of ions with the more energetic buffer gas impeding the progress of the ions down the drift 

tube. 

Some analytes exhibit only a small change in mobility over a certain temperature range, 

whereas ion clusters for example, will be affected significantly by temperature. This is seen  

for example, in Shumates table of reduced mobility values [137], where the degree of water 

clustering (which is strongly affected by operating temperature), causes a range in 𝐾0 of 2.08 

to 2.67 for the ion clusters H
+
(H2O)5 to  H

+
(H2O). 

Several suggestions for a reference analyte have been made in the literature, some being more 

suitable than others [138] but no firm decision has yet been forthcoming although the main 

criteria would clearly be insensitivity of mobility to operating temperature. [139].   

Revised calculation of reduced mobility 

Since completing the experiments described in chapters 5 and 6, a modification has been 

made to the system to remove unwanted variations in drift time (see appendix A4.13).  This 

has resulted in the drift voltage being now half that of the applied voltage to the drift tube, 

resulting in the following modification to the equation for calculating 𝐾0: 
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In chapter 2, equation 2.1 gives 𝐾0 ~ 
0.09546 ×𝑃

 𝑉𝑑 ( 𝑡𝑑−𝑡𝑚𝑠−𝑡𝑓) 
 with drift tube temperature at 30℃. 

Where  𝑉𝑑 = total voltage applied to the drift tube, 𝑡𝑑 = drift time of the ions, 𝑡𝑚𝑠 = transit 

time of the ions through the mass spectrometer, and 𝑡𝑓 = group delay time through the 

reconstruction filter. 

With 𝑉𝑑 = 
𝑉𝐻𝑇

2⁄  the above equation becomes;   

𝐾0 ~ 
0.191×𝑃

 𝑉𝐻𝑇 ( 𝑡𝑑−𝑡𝑚𝑠−𝑡𝑓) 
 ..... equation 7.1  

(Generally we operate at 𝑉𝐻𝑇 = 4 kV) 

7.3  Future improvements  

Incorporation of a calibration factor  

In military IMS equipment, a calibration factor is incorporated to take account of variations 

in calculated ion mobility due to mechanical differences caused by manufacturing tolerances 

affecting the operating conditions.  This calibration factor is exclusive to that particular 

instrument and would be incorporated into the software for calculating the reduced mobility 

of the detected sample. In this thesis, the mobilities found over the experiments have mostly 

been in good agreement with literature values but to improve confidence, a calibration factor 

could similarly be incorporated into our system to allow an adjustment to be made to correct 

for system changes. 

A way of determining the appropriate correction factor could be as follows: 

Fundamentally, drift velocity 𝑣𝑑 = 𝐾𝐸 = 
𝐿

𝑡𝑑
 (see section 1.2.7 in chapter 1) 
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Hence 𝐾𝑡𝑑 = 
𝐿

𝐸
 which is a constant, thus  𝐾𝑡𝑑 = 𝐾𝐹𝑡𝑑𝐹  

where, 𝐾𝐹 = mobility of reference analyte used for the calibrant and 𝑡𝑑𝐹 is its 

respective drift time found at a particular temperature and pressure. 

If 𝐹 is the calibration factor and putting 𝐹 = 𝐾𝐹𝑡𝑑𝐹, then the corrected value of 

mobility 𝐾 is 
𝐹

𝑡𝑑
 (at the same temperature and pressure) 

Similarly, the equivalent reduced mobility value could be found using 𝐾0 = 
𝐹0

𝑡𝑑
  

where 𝐹0 = 𝐾0𝐹𝑡𝑑𝐹 with 𝐾0𝐹 being the literature reduced mobility of the reference analyte.  

This is similar to the form seen in literature when discussing calibration [131].  

Once the factor 𝐹 has been found, it can be used to modify the calculation of 𝐾0 such that 

equation 7.1 now simply becomes  𝐾0 ~ 
𝐹0

  𝑡   
 where 𝑡 =  𝑡𝑑 − 𝑡𝑚𝑠 − 𝑡𝑓 

Note,  𝐹0 is only applicable at the drift tube pressure when it was determined, and would need 

to be determined again if the pressure changes. The next section describes a way of taking 

pressure variations into account. 

Direct display of 𝑲𝟎 on mobility spectra 

In our system, the pressure is not regulated.  Variations in ambient pressure of between 980 

mbar to 1020 mbar have been observed on different days when conducting experiments.  This 

range of 40 mbar covers a variation of minus 3.3% to plus 0.7% around the standard pressure 

of 1013 mbar, and may cause significant inaccuracy in the automatic determination of 𝐾0 

unless it is taken into account. Hence, since 𝐹0 was found at a certain pressure, say, 𝑃𝑡𝑒𝑠𝑡, this 
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needs to be taken into account in subsequent experiments to avoid having to find a new value 

when the pressure changes.  To do this, an output from the drift pressure gauge is required to 

be presented to the software so that any deviation from  𝑃𝑡𝑒𝑠𝑡 can be taken into account. This 

facility also provides the capability of direct calculation of 𝐾0 and its display on the x-axis 

instead of the less informative drift time shown at present. Let γ be the factor that takes into 

account 𝑃 at the time of measurement.  

For example, if the pressure gauge gives an output 𝑉𝑃 of 0 to 10 V over the range 0 to 2000 

mbar, then if 𝑃𝑡𝑒𝑠𝑡 = say 998 mbar, this would correspond to a voltage of 4.99 V. Since an 

increase in pressure produces a proportionate decrease in 𝐾0, then the calculation for reduced 

mobility would be 𝐾0 = 
𝐹0

  𝑡   
 × 

𝑉𝑝

4.99
   

Hence, 𝐾0 = 
γ

t
      where  γ = 

𝐹0×𝑉𝑃

4.99
 

Using LabVIEW it therefore becomes a straightforward matter to include an arithmetic block 

within the graph plotting section in the v.i. to operate on 𝒕 producing a direct readout of 

reduced mobility on the x-axis.   

Generation of carrier gas (pure air) 

The measurements described in chapters 5 and 6 were made using compressed pure air from 

gas cylinders. It would be more desirable to replace the use of cylinders with a ‘gas 

generator’ consisting of an oil-free air compressor with filtration. Apart from cheaper running 

costs, the system would always be in a state ready for immediate measurements to be taken. 

(With cylinders, to conserve gas when not in use, the system is closed down and the drift tube 

is isolated from the gas supply and pumped down.)  
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Monitoring drift voltage 

A factor affecting the accuracy in calculation of ion mobility from drift time is the value of 

the voltage across the drift region. It was seen in chapter 4, test 4.7, figure 4.11 that the drift 

time is proportional to the reciprocal of drift voltage. It is therefore desirable to ensure that 

the value of the drift voltage is correct in order to make a confident calculation of 𝐾0.  The 

pressure and temperature in the drift tube are already monitored on our instrument, but it is 

proposed now that a display of the drift voltage would be beneficial in promoting confidence 

in the ion mobility values obtained from the system. It would also be useful as a system 

diagnostic in case of malfunction.  The voltage monitor would need to be in the form of a 

very high input resistance (say 10 GΩ) EHT voltmeter to cause minimal change in drift 

voltage from the initial design value. (Recall from chapter 1 that the resistance across the drift 

region via the rings totals 80 MΩ.)  A design for such an instrument is given in appendix 7.1. 

Software implementation of the pulse converter using a microcontroller 

This would allow optimisation of the operating parameters with the following advantages: 

 Communication with the control computer for automatic control of gate pulse width 

and frequency setting according to the spectral length and analyte mass. 

 Synchronisation of gate pulse and acquisition timing which may reduce the number of 

accumulations required and hence time for detection. 

Improvements on pumping to eliminate the microphony effect manifest in the IMS 

spectra 

In order to significantly reduce the pick-up from vibration caused by the turbo molecular 

pumps, they could be replaced with the new magnetic bearing type which produce much less 

vibration (but cost significantly more to buy), or diffusion pumps could be used which 

present no vibration at all.  Diffusion pumps however, because of their nature, may possibly 
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introduce some oil contamination which would pose a serious problem since the whole IMS 

drift tube assembly would then have to be taken apart and meticulously cleaned. 

Accurate incorporation of transit time of ions through the quadrupole 

A useful study may be to investigate the transit time of ions from the Faraday plate to the 

channeltron as a function of their mass.  A general value of 0.3 ms was used in the 

investigations since this was observed to be the time taken for the water RIP. It may vary 

though between ions over a mass range of say 𝑚/𝑧 32 to 400 (covering the typical masses of 

analytes being investigated in our system) up to around 0.5 ms. Taking this into account 

would then enhance the accuracy of the calculation of 𝐾0.  

Further signal processing of spectral data 

It may be that fewer averages will be needed if some post filtering is made using a digital 

filter having say, a Bessel response (which combines a maximally flat step response in the 

time domain with good roll-off in the frequency domain). A v.i. to accomplish this is 

provided within the LabVIEW component library. 

Simplified drift tube  

A drift tube made using monolithic resistive glass such as that made by Photonis [140] would 

remove the need for drift rings. This would yield several improvements such as much 

reduced production cost, a superiorly homogenous drift field and absence of surface charging 

effects.  

Alternative ionisation source 

Although a radioactive source is highly convenient for ionisation purposes, it is deemed as 

hazardous and in order to circumvent the extensive safety procedures and certification 

involved, other methods have been implemented [141]. Photo ionisation by UV light has 
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been used [142] but this method yields a limited ionisation current and hence poorer 

sensitivity. Increasingly, the employment of a direct current (d.c.) corona discharge source is 

found [143] and the ionisation current is typically an order of magnitude higher than that 

provided by a 
63

N radioactive source, but these eventually require replacement due to 

contamination from sputtering of the electrodes. Their lifetime may however be considerably 

extended by pulsing the electrodes [144]. 

7.4  Newly emerging applications 

The advantages of the IMS-QMS system over SIFT and PTRMS systems were discussed in 

chapter 1, section 1.3. Other radically different approaches have been developed such as 

‘electronic noses (e-noses)’ and even the use of bees but their application is restricted as they 

lack the selectivity and broadness of the methods already discussed.   

There are ever increasing uses now being found for IMS systems, and in addition to the 

general areas mentioned in chapter 1, section 1.1, some of the more unusual approaches being 

found are for: 

 Detection of diseases in wood [145] 

 Monitoring the fermentation process in beer [146] 

 Diagnosis of pathological conditions in animals [147] 

 Determining cocaine contamination of banknotes from around the world [148] 

 Monitoring the atmosphere on board the International Space Station [149] 

7.5  Potential applications for the newly developed IMS-QMS system 

The new science that can be developed from the use of the IMS-QMS system relates to an 

improvement in the understanding of the ion-molecule reactions occurring in atmospheric 

(high pressure) IMS systems, which can be fed back to develop the technology for it to 
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achieve its full potential. In pursuit of this, further work is planned for the immediate future 

to include: 

 Supplementary investigations into explosive agents to include the compounds TNT, 

TNB, DNB and DNT. 

 Study of the ion-molecule reactions of compounds used for anaesthetic purposes 

(enflurane C2HCl5 and isoflurane C2Cl6) in areas such as operating theatres. 

Appendix 8 provides details of proposed papers arising from these and previous 

investigations using the system. 

Apart from ongoing investigations for homeland security purposes, other potential areas 

offering possible investigation are in the monitoring of landfill gas emissions and also further 

investigations into the effects of dopants on selectivity. 

7.6  Final comments 

The development of the IMS-QMS system in the molecular physics laboratory has been a 

challenging and very interesting project. To see it being put to use for obtaining spectra is 

most satisfying and it is hoped that it proves to be a valuable addition to the facilities 

available in the department for continuing research into the applications of IMS. 
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APPENDICES 

Appendix 1         

A1.1 – Estimation of ion density and current 

It is useful to have an idea of what ion signals can be expected when using a FP in an IMS 

system for the development of the data aquisition hardware and capture. To approximate this, 

we start with a calculation of the ion density within the ion source.  

The radioactive source producing beta particles has a strength of 10 mCi  (= 37 x 10
7
 Bq ) 

hence a disintegration rate 𝐷 of 37 x 10
7 

/s . The mean energy of the β particles is 17 keV. 

[12]  Thus the particles are ejected from the source with sufficient energy to ionise many 

molecules such as nitrogen which has an ionisation potential of 15.6 eV.  

If I = amount of ionisation produced from a β particle then 

𝐼 =  
𝑚𝑒𝑎𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝛽 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

𝑖𝑜𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑜𝑓 𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛
=  

17×103 𝑒𝑉

15.6 𝑒𝑉 
   = 1.1 × 103 ions per β particle. 

The volume of the cylindrical 
63

Ni ionisation source is ~ 0.8 𝑐𝑚3 and so in every second, the 

amount of cations (n+) produced per unit volume is 

𝐷×𝐼

𝑉
 = 

37×107×1.1×103

0.8 𝑐𝑚3   = 5.1 × 1011 𝑐𝑚−3𝑠−1 

Anions are also being produced through electron attachment. Although the net overall charge 

of the plasma is zero, there is a reservoir of cations and anions available to be extracted into 

ionisation region of the drift tube. The rate at which cations are being formed is balanced by 

the rate at which they are being lost by the processes of  extraction by the electric field and 

recombination with the anions. 



243 
 

In order to estimate the average density of ions with time, the recombination rate must be 

considered.   

If n+ is the density of cations (ions/cm
3
) and n- is the density of anions in the plasma source, 

then the rate at which cations are lost through recombination is given by the differential 

equation  
𝑑

𝑑𝑡
(n+) lost= −𝑘(n+)(n-)  where 𝑘 is the cation - anion recombination coeficient. 

At equilibrium, n+ = n-   

and so  
𝑑

𝑑𝑡
(n+) lost = −𝑘 (n+)

2
    where a typical value for k is 10

-6
 cm

3
s

-1
   [150] 

In steady state the rates of ion production and recombination are balanced. The number of 

cations/cm
3
 is found from: 

𝐷×𝐼

𝑉
 = 𝑘 (n+)

2. Therefore n+ = √
𝐷×𝐼

𝑉𝑘
 .  Substituting in relevent 

numbers gives n+  = [5.1 × 10
17

]
½
  =  7.14 × 10

8
 ions  

The drift velocity of the ions as they are extracted from the radiation source by the electric 

field is around 500 cm/s and so in 1 s, the volume swept through is the cross-sectional area of 

the source (=0.8 cm
2
) × 500 cm  = 400 cm

3
. The number of ions in this volume flowing /s is 

therefore 7.14 × 10
8
 ions cm

-3
 s

-1× 400 cm
3
 = 2.9× 10

11
 s

-1
. 

The ion current = 2.9× 10
11

 × 1.6 × 10−19 ~4.6 × 10−8 𝐴  (46 𝑛𝐴)    

This  simple calculation has not taken into account possible losses in the drift tube (e.g. at the 

gate and through diffusion). Further more, the calculation does not take into account 

extraction of the ions from the ion source. Nevertheless, we can expect at best tens of nA 

from the FP.  Correspondingly all elecronics were designed on the assumption that typically 

nA need to be detected. Experimentally, we recorded a current from the FP of approximately 

1nA. 
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A1.2 – Calculation of 𝑬/𝑵 within the drift tube 

The gas number density 𝑁 of the drift gas can be related to its pressure and temperature as 

follows: 

At STP, 𝑇0 = 273.15 𝐾,  𝑃0 = 1013 mbar and 1 𝑚𝑜𝑙𝑒 of gas contains 𝑁𝐴molecules 

occupying 22.414 𝑙 where Avogadros number 𝑁𝐴 = 6.022 × 1023 molecules/mol.   

If 𝑛 = the number of moles of drift gas in a volume 𝑉 and 𝑁 = number density of the drift 

gas, then 𝑁 = 
𝑛

𝑉
 .  Therefore at STP, 𝑁0 = 

𝑁𝐴

𝑉0
 = 

6.022×1023

22.414×103 𝑐𝑚3 = 2.687 × 1019 /𝑐𝑚3 

The gas law states that 𝑃𝑉 = 𝑛𝑅𝑇 and so substituting 𝑛 = 𝑁𝑉 produces 𝑃 = 𝑁𝑅𝑇 

Therefore the ratio 
𝑃0

𝑃
 = 

𝑁0𝑇0

𝑁𝑇
  hence 𝑁 = 

𝑁0𝑇0

𝑃0
 × 

𝑃

𝑇
   

But as stated above, 𝑁0 = 
𝑁𝐴   

𝑉0
  therefore  𝑁 =  

𝑁𝐴𝑇0

𝑉0𝑃0
 × 

𝑃

𝑇
 

Using a typical pressure and temperature of 1006 𝑚𝑏𝑎𝑟 and 303.15 𝐾 gives:  

𝑁 = 
6.022×1023×273.15×1006

22.414×1013×303.15
 = 2.404 × 1019 / 𝑐𝑚3  

The field strength 𝐸 = 212 V/cm, therefore  
𝐸

𝑁
 = 

212

2.404×1019 = 8.82 × 10−18 𝑉𝑐𝑚2 

= 0.882 𝑇𝑑  
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A1.3 – Comparison between thermal and drift kinetic energies of an ion 

Consider a hydronium ion 𝐻3𝑂+ of 𝑚/𝑧 = 19.  Assuming thermal equilibrium, the average 

thermal KE of the ion is 𝐾𝐸𝑎𝑣 = 
3

2
 𝑘𝑇     where 𝑘 = Boltzmanns constant (= 8.167 × 10−5 

eV/K).  When the temperature 𝑇 is 303.15 𝐾 (30℃ being the drift tube operating 

temperature) then:  

𝐾𝐸𝑎𝑣 = 
3

2
 × 8.617 × 10−5 × 303.15 𝑒𝑉 = 0.039 𝑒𝑉 

The overall KE aquired from the electric field after reaching a steady state drift velocity 𝑣𝑑 is 

given by 𝐾𝐸𝑓𝑖𝑒𝑙𝑑 = 
1

2
 𝑚𝑣𝑑

2  and from experiment, it was seen that 𝑣𝑑 = 5 𝑚/𝑠.  

Virtually all of the hydronium ions will react with the water clusters and a typical cluster size 

of 𝑚/𝑧 = 73 (predominantly seen in the mass spectra discussed in chapter 5) can be 

considered. 

𝑚/𝑧 =  73 corresponds to a molecular mass of 73 × 1.66 × 10−27Kg = 12.18 × 10−26Kg.  

Therefore: 

𝐾𝐸𝑓𝑖𝑒𝑙𝑑 = 
1

2
 × 12.18 × 10−26 × 52 = 15.23 × 10−25𝐽𝑜𝑢𝑙𝑒𝑠 

But 1 𝑒𝑉 = 1.602 × 10−19 𝐽 and so 𝐾𝐸𝑓𝑖𝑒𝑙𝑑 = 
15.23×10−25

1.602×10−19  = 9.50 × 10−6 𝑒𝑉 

and the ratio of  𝐾𝐸𝑓𝑖𝑒𝑙𝑑 to 𝐾𝐸𝑎𝑣 is then 
9.50×10−6

0.039
 × 100% = 0.024%. 

i.e. the ions remain thermal 
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APPENDIX 2 

A2.1  Determining the component values for the trigger and gate pulse generator 

The astable section 

The frequency range is to be 10 Hz to 40 Hz. 

Referring to resistors 𝑹𝒂and 𝑹𝒃 previously shown in chapter 2, 

figure 2.3, then for the pulse waveform the timing formulae are: 

 𝑡𝑚 = 0.7(𝑅𝑎 + 𝑅𝑏)𝐶  and  𝑡𝑠 = 0.7𝑅𝑏𝐶 

Therefore the pulse repetition frequency, 𝑓 = 
1.44

(𝑅𝑎+2𝑅𝑏)𝐶
  ..............(2A.1) 

Choosing a value for 𝐶 = 0.47 μF and 𝑡𝑠 = 10 ms, then 𝑅𝑏 = 
𝑡𝑠

0.7𝐶
 = 

10×10−3

0.7×0.47×10−6 = 

30.4 kΩ. 

Thus at a frequency of 10 Hz,  𝑡𝑚+ 𝑡𝑠 = 100 ms ∴ 𝑡𝑚 = 90 ms  

Transposing the above equation for 𝑡𝑚, 

𝑅𝑎 = 
𝑡𝑚

0.7𝐶
 − 𝑅𝑏 = 

90×10−3

0.7×0.47×10−6 − 30.4 K = 243 kΩ 

At 40 Hz,  𝑡𝑚+ 𝑡𝑠 = 25 ms ∴ 𝑡𝑚 = 15 ms  

∴ 𝑅𝑎 = 
15×10−3

0.7×0.47×10−6 − 30.4 K = 15.2 kΩ 

Referring to figure 2.3 it is seen that 𝑅𝑎 = 𝑅𝑣 + 𝑅1 

Thus, with 𝑅𝑣 = 0 (at 𝑓 =40 Hz), 𝑅1 = 𝑅𝑎 = 15.2 𝑘Ω leaving 𝑅𝑣 = 243 – 15.2 = 227.8 kΩ 
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Clearly this is not a standard value, so choosing 𝑅𝑣 to be a 100 kΩ linear law potentiometer, 

the respective values of the other components need to be scaled accordingly. 

If the resistor values are scaled down, then the capacitor value must be scaled up in 

proportion to keep the required times unchanged.  

Thus, if 𝑅𝑎 is halved, then C must be doubled. 

Let 𝑅𝑎 = 243/2 = 121.5 kΩ, then with 𝑅𝑣 = 100 kΩ,  𝑅1 = 121.5 – 100 = 21.5 kΩ 

Similarly, 𝑅𝑏 = 30.4 /2 = 15.2 kΩ 

The final component values (to nearest preferred value) are therefore: 

𝑅𝑣 = 100 K   𝑅1 = 22K 𝑅𝑏 = 15 K 𝐶 =0.94 μF (two 0.47 μF capacitors in parallel) 

A2.2  The monostable section 

The gate pulse duration range is to be 0.2 ms to 4 ms. 

Referring to 𝑅𝑎 previously shown in Fig 2.4 then for the pulse shown below,  𝑡𝑚 = 1.1𝑅𝑎𝐶   

 

                                     

Choosing a value for 𝐶 = 0.47 μF, then with 𝑡𝑚 = 4 ms, 𝑅𝑎 = 
𝑡𝑚

1.1𝐶
 = 

4×10−3

1.1×0.47×10−6  

= 7.8 kΩ.  When setting 𝐶 = 0.047 μF, 𝑅𝑎will be 10× 7.8 = 78 kΩ 

At  𝑡𝑚 = 0.2 ms,  𝑅𝑎 = 
0.2×10−3

1.1×0.047×10−6 = 3.9 kΩ 

At  𝑡𝑚 = 4 ms, (20×0.2)  𝑅𝑎 = 3.9 kΩ ×20 = 78 kΩ 

𝑡𝑚  
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Thus, the range of variation in 𝑅𝑎 is (78 – 3.9) K = 74.1 kΩ 

If again a 100 kΩ pot is used, then the scaling ratio will be 100/74.1 = 1.35 for the resistors, 

and 1/1.35 = 0.74 for the capacitor(s). 

Thus, 𝑅1= 3.9 kΩ ×1.35 = 5.27 kΩ and 𝐶 = 0.47 μF × 0.74 = 0.35 μF 

The final component values (to the nearest preferred value) are therefore: 

𝑅𝑣 = 100 kΩ   𝑅1 = 5.2kΩ  

and 𝐶 =330 nF in parallel with 22 nF (making approximately 0.35 μF) 
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A2.3  Lens Power Supply Unit 

 

Figure A2.3.1  Schematic diagram of the lens PSU 

In figure A2.3.1 the regulator REG is formed as shown in figure A2.3.2. 

               

 

Figure A2.3.2 showing composition of REG 

Referring to figure A2.3.2, the current into the adj terminal is 83 µA, and R2 is suggested in  

the data sheet [35] to be 82 Ω. From the data sheet, the output voltage is found from: 

VOUT = Vref(1 + R2/R1) where VREF = 1.25 V, thus for VOUT = 40V,  

40 = 1.25(1 + R2/82) giving R2 = 2542 Ω (2K7 to npv).  

TL783 

in    out                  
    adj 

Vin >48 V 
(actually 63 V) 

12.5 mA 
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Using a value of 2K7 gives VOUT = 1.25(1 + 2700/82) = 42.4 V (which when measured was 

actually +42.1 V and -42.3 V). Note, WR2 = 42.4
2
/2700 = 0.67 W so a 1 W rating resistor was 

used. 

Lens voltage adjustment 

The voltage can be adjusted from the positive and negatives extremes as shown in figure 

A2.3.3. 

 

Figure A2.3.3. Circuit for lens voltage adjustment.  The wire to the DVM is coloured purple.  

A modification was made to boost the positive voltage to enable lens F2 to reach 65 V, as 

shown in figure A2.3.4. 

  

Figure A2.3.4 showing circuit for F2 boost 
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At the FP amplifier box, the screen grid supply is further filtered to remove 50 Hz noise 

picked up by the screened supply lead. Since the current drawn is negligible, a relatively high 

resistor value can be used, as shown in figure A2.3.5. 

 

Figure A2.3.5 showing the 50 Hz noise filter to the screen grid 

At 50 Hz, the reactance of the capacitor Xc = 3 kΩ and so a 100:1 reduction in noise is made. 

When connecting an oscilloscope to the screen, a 1.5 mV p-p ripple was seen.  This is 

equivalent to  1.5× 10−3 × 10−7A/V ie 0.15 nA noise equivalent. 

The front panel consists of five push buttons and voltage adjustment pots to select which lens 

output to view on the digital panel meter, as seen in figure A2.3.6. 

 

 

 

 

Figure A2.3.6 showing the layout of the front panel of the lens PSU 

Internal wiring to the output socket on the lens PSU, and the plug connecting to the FP 

amplifier box and quadrupole lenses 

The outputs from the PSU appear on a 9–way ‘D’ socket as shown in figure A2.3.7.  

 

 S1             S2             S3              S4           S5 

    DVM 
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Figure A2.3.7 showing the pin arrangement (rear solder view) of the 9-way ‘D’ type output socket on 

the lens PSU 

Table A2.3.1 lists the assignments of the pins for wiring from the internal supplies to the 9-

way ‘D’ type socket at the rear of the lens. 

Table A2.3.1 

Pin 1 2 3 4 5 6 7 8 9 

Button S1 0V S2 n/c S3 S4 n/c S5 n/c 

Lens 
Scn. Grid Gnd FP - Cone 

Lens 1 

Fc 

- Lens 2 

F2 

- 

Wire Brown Black Red - Yellow Green - Blue - 

 

The lens voltages appear on the pins of the 9–way ‘D’ type plug at the end of the connecting 

cable going to the FP amplifier box as shown in figure A2.3.8. 

 

 

Table A2.3.2 lists the assignments of the pins in the ‘D’ type plug on the connecting cable 

connecting to the FP amplifier box. 

Table A2.3.2 

Pin 1 2 3 4 5 6 7 8 9 

Button S1 0V S2 n/c S3 S4 n/c S5 n/c 

Lens Scn. Grid Gnd FP - Cone 
Lens 1 

Fc 
- 

Lens 2 

F2 
- 

Wire White Screen of cable Purple - Black Blue - Brown - 

 

 

 

6       7      8      9      

1        2      3       4       5 

9       8       7      6      

5        4       3       2       1 
Figure A2.3.8 showing the pin arrangement 

(rear solder view) of the 9-way ‘D’ type 

output plug on the connecting lead (FP 

amplifier box end). 
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APPENDIX 3  (note, all the programs are on a cd included with the thesis) 

A3.1  LabVIEW program IMS.vi – first section  
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LabVIEW program IMS.vi – second section 
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A3.2 LabVIEW program TIMMS.vi – first section 

 

 



256 
 

LabVIEW program TIMMS – second section 
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A3.3 LabVIEW program SIMMS.vi – first section 
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LabVIEW program SIMMS.vi – second section 
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A3.4 LabVIEW program MS.vi – first section 
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LabVIEW program MS.vi – second section 
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LabVIEW program MS.vi – third section 
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A3.5  Averaging over several spectral scans with the MS program 

 Select ‘Single Scan’ mode 

 Switch ‘Averaging’ on 

 Press the ‘New Scan’ button (this sets the initial average to zero and acquires the first 

scan) 

 Set the required number of averages 

 Press the ‘Re Scan’ button to average over the scans 
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APPENDIX 4 

A4.1  Bringing the drift tube up to atmospheric pressure using lab air (with the drift tube 

pumped down, rotary and turbo pumps working.)                 

 

1. Initiate gas flows: 

a) Ensure forward/contra flow valves are shut off. 

b) Power up the mass flow controllers 

c) Open the compressed air valve. 

d) Slowly open the forward and contra flow valves and monitor the tube pressure. 

e) When the pressure reaches 1010 mbar open the green exhaust valve. 

f) Check the flow rates on the mass flow controllers 

 

2. Switch on: 
a) Lens power supply (if not already on) 

b) 12V power supply 

c) Gate interface unit 

d) HV power supply (set to 4 kV) 

e) SXP unit 

f) RF controller 

g) Pulse pre-amplifier 

 

3. Configure the SXP unit and set the Faraday Plate Switch as required. 

(See appendix sections 5A.6 or 5A.7 for the SXP settings). 

 

Shutting Down.  (Tube evacuates via the orifice in the FP). 

 

4. Switch off: 

a) Pulse pre-amplifier 

b) RF Controller 

c) SXP unit 

d) HV power supply 

e) Gate interface unit 

f) 12 V power supply 

g) Lens power supply (leave on to stabilise if using over a period of days) 

 

5. Evacuate the drift tube. 

a) Close the green exhaust valve and immediately shut off the forward and contra 

flows. 

b) Remove the power to the mass flow controllers. (Otherwise with no flow through 

them their control valves will be permanently energised causing them to get hot.),  
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A4.2  Bringing the IMS-MS system up to atmosphere and shutting down 

1. Bring the IMS drift tube up to atmospheric pressure (see appendix 5A.2) 

2. Press STOP on Turbo 1 controller 

3. Wait approx 1 minute 

4. Press STOP on Turbos  2 and 3 controllers 

5. Wait approx 1 minute 

6. Close Rotary 1 valve 

7. Wait approx 1 minute 

8. Close Rotary 2 and rotary 3 valves 

9. Turn off the rotary pumps 

10. Open the air valve on Turbo 1 

11. Switch off the turbo fans 

The MS system will now gradually vent up to atmospheric pressure. 

 

Turning on the system and pumping down 

1. Switch the turbo fans on 

2. Close the air valve on Turbo 3 

3. Turn on rotary pumps 3,2 and 1 

4. Slowly open the valves on rotary pumps 3 and 2 

5. Wait 1 minute 

6. Open the valve on rotary pump 1 

7. Wait until the pressure is < 10
-1

 mbar 

8. Turn on Turbo 3 

9. Turn on Turbo 2 

10. Wait 1 minute 

11. Turn on Turbo 1 

Close the green valves on the IMS system to seal against carrier gas flows 
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A4.3  Changing the set point on the mass flow controllers 

 Press Main, (shows the totalised flow), Total, Control Set up 

 Press Input until the select symbol > points to Local  

 Press select until Set is pointed to 

 Use Up and Down to get the required set point 

 To exit, press Control Set up, Menu 
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A4.4  Wiring changes for selecting the ion polarity 

Positive ion mode 

 Connect the bnc lead between the socket marked 𝑴 at the rear of the quadrupole and 

the socket marked MULTIPLIER at the rear of the rf controller. 

 On the PCDU box, connect the 0 Ω link (marked LINK) to the socket marked EI/P 

 

Negative ion mode 

 Connect the 22 MΩ link (marked BIAS) to the socket marked M at the rear of the 

quadrupole. 

 On the PCDU box, connect the bnc lead between the socket marked EI/P and the 

socket marked MULTIPLIER at the rear of the rf controller. 
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A4.5  IMS-QMS Settings – Positive ion mode 

VGATE = 100 V 

Parameter  Keyboard combination (Other Parameters)  Keyboard 

combination 

Polarity = +  V (ions) F1 

Lens 2 = -26 V V  F4 

Ext mass ON  V   F5 

  (On for spectra display with LabVIEW, OFF for spectra display on SXP) 

Focus = 0 V  Z (source) F6  Scale               B (spectrum) F5 

Pole bias = 0 V X (filter) F1  Gain range   C (detector) F3 

Resolution  X  F2,F3 

Total ions OFF X  F5 

SEM = 2500 V C (detector) F2 

 

On multi-power supply    

Screen = 25 V  (Nominal for IMS)     The best lens settings were found by tuning 

FP = 20 V  (Variable for MS)  with the TIMMS program, using 500 accumulations 

Cone = 14 V    (gave 40 ±4 counts). (Using water chemistry.) 

FC = -15 V      

F2 = -25 V 

 

 

 

    

 

 

              

To obtain total ions mass mobility spectra (using the TIMMS program): 

 

Parameter  Keyboard combination 

Ext mass   OFF V (ions) F5 

Total ions ON  X (filter) F5 

First mass = 10 amu B (spectrum)    F1   (for total ion count of all with masses > 10 amu) 

Mass span = 0  B (spectrum)    F2    
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A4.6  IMS-QMS Settings – Negative ion mode 

VGATE = 30 V 

Parameter  Keyboard combination (Other Parameters)  Keyboard 

combination 

Polarity = –  V (ions) F1 

Lens 2 = 6 V  V  F4 

Ext mass ON  V   F5 

  (On for spectra display with LabVIEW, OFF for spectra display on SXP) 

Focus = 12 V  Z (source) F6  Scale               B (spectrum) F5 

Pole bias = 34 V X (filter) F1  Gain range   C (detector) F3 

Resolution  X  F2,F3 

SEM = 2800 V C (detector) F2 

 

On multi-power supply    

Screen = -37 V  (Nominal for IMS)     The best lens settings were found by tuning 

FP = -12V  (Variable for MS)  with the TIMS program, using 500 accumulations 

Cone = 0 V    which gave 150counts. (Using water chemistry.) 

FC = 20 V      

F2 = 65 V 

 

 

 

    

 

              

To obtain total ions mass mobility spectra (using the TIMMS program): 

 

Parameter  Keyboard combination 

Ext mass   OFF V (ions) F5 

Total ions ON  X (filter) F5 

First mass = 10 amu B (spectrum)    F1   (for total ion count of all with masses > 10 amu) 

Mass span = 0  B (spectrum)    F2    
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A4.7 Calibrating the SXP unit.  (0 to 600 amu) 

The 10 turn pots are located behind the front panel on the r.f. controller. Undo the two upper 

screws only and hinge the panel downwards. 

Layout of the calibration control potentiometers 

                             

                 LR      Mass   Scale  LM               ∆M      RES       

                           Slope  Offset 

                

Operation: 

LR Affects the peak width in the lower third of mass range.  Adjust at around 28 amu. 

 

Mass Slope Sets the position of the high mass peaks.  Adjust at around 614 amu. 

 

Scale Offset Sets the position of the low mass peaks. 

 

LM Affects peak width (no further information available) 

 

∆M Adjusts peak width (0 – 100%) uniformly over the whole mass range. 

             Adjust on a central peak (around 264 amu) 

 

RES Affects the peak width with progressively more effect at higher masses. 

            Adjust at around 502 amu. 

 Note: It may be required to re-adjust  ∆M afterwards and to re-check the mass 

adjustments. 

 

 

 

 

Taken from SXP Elite Operator Manual page IV-59. 
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A4.8  Removing the IMS drift tube from the system 

Preparatory: 

 Ensure that all voltage sources are turned off (including the heater). 

 Ensure that the drift tube is at atmospheric pressure. 

 To allow easier access to the drift tube, disconnect and remove the ±12 V power 

supply and the gate pulse generator.  Unplug all of the high voltage connectors from 

the connector box and ion voltage selector unit, and remove the gate interface unit. 

Procedure: 

1. Disconnect the contra flow at the pressure gauge T piece leaving the 6 cm long pipe 

attached to the drift tube flange. 

2. Disconnect the forward flow at the sample inlet T piece leaving the 8 cm long pipe 

attached to the drift tube 

3. Disconnect the exhaust at the drift tube flange 

4. If required, remove the six 2.5 mm Allen bolts from the IMS flange and withdraw the 

ionsation source assembly. 

Caution!  RADIATION HAZARD - β rays are emitted from the open end of the 

radiation source, so position it accordingly on the bench to prevent exposure. 

5. Unscrew the eight ½ inch bolts on the flange (support the flange when removing the 

last (top) bolt and carefully withdraw the drift tube assembly. 

Removing the screen grid 

Wearing gloves to minimise contamination: 

1.  Remove the solder from the electrical connection tag. 

2. Remove the three M2 mounting screws along with their insulators. 

3. Withdraw the screen grid and insulating washer.  (This may require holding the 

soldering iron on the joint to ensure that the wire is disconnected). 
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Domed face away 

from the F.P. 

Attaching the screen grid 

Attach in reverse order to the above, but ensure that the orifice in the Faraday plate is central 

with the hole in the screen grid so that ion flow is not impeded.  To assist in location of the 

insulating washer, it may be found easier to fix the screen grid onto the Faraday plate by first 

passing the screw-insulators through the holes in the screen grid and then attaching the 

insulating washer to the grid via the screws. The assembly can then be placed against the 

Faraday plate in the alignment shown and screwed into position. 

 

 

   

 

       Faraday plate                     Insulating washer                       Screen grid       

 

 

Figure A4.1 showing the screen grid to FP order of assembly 

 

 

 

 

 

Insulator M2 screw 

Connecting 

wire 
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A4.9  IMS to Quad pressure chart 

At one stage, when looking for a leak in the IMS system, it was necessary to be able to know 

what the pressure in the drift tube was when pumping down when a pressure gauge was not 

present.  It was however still possible to monitor the pressure in the quadrupole region and so 

a look-up chart was prepared as shown in figure A4.2 below.  It is interesting to see that the 

relationship follows a linear trend. 
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Figure A4.2    IMS to Quad pressure chart 
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A4.10  Important points to observe when shutting the system down. 

 

 

 

 

 

 

 

 

 

 

Vacuum Chamber 

Rotary Pump 

C 

A 

B 

Penning  

 

Turbo 

pump 

Or  

Pirani 

10
-5

 to 

10
-6

 mbar 

10
-2

 to 

10
-3

 mbar 

Initially Pumping Down from 

Atmosphere 

 Ensure that valves A and C 

are closed, and that valve B is 

set to the ‘roughing’ position.  

All pressure gauges should be 

switched off. 

 Switch on the rotary pump 

and slowly open valve A. 

 Switch on the Pirani pressure 

gauge.  

 Providing that the reading is 

less than 10
-1

 mbar, turn on 

the  cooling water and turn 

valve B to the ‘backing ‘ 

position. 

 Switch the turbo pump on.  

 Open valve C 

 Switch on the Penning gauge.      

If the pressure is >10
-4

 mbar, 

check for leaks.  A good 

pressure is < 10
-5

 mbar. 

Roughing Backing 

 

Precautions to take when shutting down.  

Before switching the turbo pump off:  

 Switch the Penning gauge off to prevent failure at higher pressures. 

 Switch the turbo pump off and leave the cooling water on for 30 min before turning the 

water supply off. 

If it is then required to switch the rotary pump off: 

 First close valve C and wait until the turbo pump is cool, then close valve A to prevent 

oil from the rotary pump being sucked into the rest of the system by the vacuum. 

 Switch off the Pirani gauge to prevent burnout of the filament at higher pressures. 

 Switch the rotary pump off. 
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A4.11  IMS temperature comparison/calibration 

The sealant for the interface between the thermocouple inside the drift tube to the temperature 

controller is silicon sealant which although providing an airtight seal, appeared to be 

continuously out gassing causing severe contamination inside the drift tube, probably most 

severely when baking out under vacuum. (An earlier unsuccessful attempt to use special low 

out gassing araldite failed since the araldite would not stick to the thermocouple cable, and so 

an airtight seal was not obtained.)  It was also found shortly after that there had been an oil 

leak in the air compressor supplying the department severely contaminating the air lines with 

oil vapour and this was probably the source of the contamination all along.  It was therefore 

decided to dispense with the compressor and use bottled compressed air of high purity 

instead.   

By correlating the temperature of the outside of the heating jacket with that of the drift tube, 

the internal thermocouple can then be removed and the outside thermocouple fixed to the 

heating jacket can then be used instead.  By using a suitable calibration curve, the controller 

can therefore be set at a value to give the required temperature.  To obtain a calibration curve, 

the data shown in table A4.1was taken.  All the reading are in degrees centigrade.  Readings 

are referenced to T2c since this is the controlling variable.  ∆ represents the error in the 

reading given by the controller.  It is seen from table 5A.12.1 that the error increases with 

rising temperature from around 2 ℃ to 5 ℃. 

Taking ∆ into account, table A4.1 can be constructed to provide the calibration curve by 

plotting the controller reading Tj against T2 (internal) where Tj is now the temperature of the 

heating jacket as given by the controller.  Thus, T2 = Tj - ∆    
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Table A4.1  Controller temperature readings against actual drift tube and heating jacket temperatures   

Dual electronic thermometer Controller 

T1 (external) T2 (internal) T2c (controller) T2c – T2(int) = ∆ 

24 26 28 2 

25 27 30 3 

27 28 31 3 

28 30 32 2 

30 32 35 3 

35 37 40 3 

42 46 50 4 

44 51 55 4 

47 56 60 4 

49 62 65 3 

54 66 70 4 

61 76 80 4 

68 85 90 5 

72 95 100 5 

78 104 110 6 

84 115 120 5 

 

A plot of [T1(external) + ∆] against [T2 (internal)] (+∆ since T1 (external is now provided by 

the controller, which reads too high by an amount ∆) will then produce the calibration curve. 

Renaming [T1 (external) + ∆] to TCONTROLLER and [T2 (internal)] to TDRIFT TUBE and will 

provide table A4.2: 

Table A4.2  Variation of indicated temperature with actual drift tube temperature 

TCONTROLLER TDRIFT TUBE TCONTROLLER TDRIFT TUBE 

26 26 51 56 

28 27 52 62 

30 28 58 66 

30 30 65 76 

33 32 73 85 

38 37 77 95 

46 46 84 104 

47 51 89 115 
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Calibration curve 

Exporting table A4.2 into excel produced the curve shown in figure A4.3 

 

    Figure A4.3  Relationship between indicated temperature on the controller and actual drift gas 

temperature 
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A4.12  Parameter values relative to a normally working system 

 

In order to ensure at any time that then system is operating normally, the following nominal 

measurements are provided. 

 

Pressure values: 

Drift tube: 1010 mbar        Quad: 4.2x10
-5

 mbar 

           3 mbar                   1.7x10
-5

 mbar  

 

VHT set to 4.5 kV draws 0.057 mA from supply   

 

With tGATE = 0.2 ms and 500 accumulations/averages: 

 

At 30 ºC: (with 40:40 res.) 

    SIMMS mass mobility spectrum 1000 counts/s at m/z = 73, td = 20.9 ms 

    IMS ion mobility spectrum 0.1 nA peak, td = 20.6 ms. 
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A4.13  Modification to ring connections to eliminate the drift problem 

The ring voltage was set by the chain of resistors connected across the rings to set up a 

homogenous electric field, in this case (the gate ring being half way along the chain) being 

effectively sourced from VHT via 80 MΩ. In order to hold the ring voltage at a steady value, it 

is better to derive it from a relatively low resistance source.  This was accomplished 

bypassing the chain with a potantial divider comprising two high stability 10 MΩ resistors as 

shown in figure A4.4. 

 

Figure A4.4 Modification to ring circuit 

Total ring resistance = 160 MΩ, Voltage splitter = 20 MΩ total so current through splitter is 

eight times that through the ring resistors, holding Vring constant. 

Thus Vring = 
𝑉𝐻𝑇

2
 . If 𝑉𝐻𝑇 = say, 5 kV max, then power dissipated in 10 MΩ  = 

(2.5×103)2

10×106  

= 0.63 W, so use a 2W rating, e.g. Tyco HB03 series (element voltage up to 15 kV), RS stock 

number is 296-0702. 

After completing the modification, it was found in subsequent investigations using analytes 

that the drift problem no longer existed. 
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𝒇𝟐 𝒇𝒔 

𝒇𝒇 + 𝒇𝒔 𝒇𝒇 

APPENDIX 5 

A5.1  Determining the syringe flow rate required to give a final concentration in the gas 

flow to the drift tube 

 

 

                                                                      

                                                                                                        𝒇𝒇 = forward flow rate           

                                                                     𝒇𝒔 = syringe flow rate                 

                                                                   𝒇𝒇 + 𝒇𝒔 = combined flows into the drift tube  

Figure A5.1 - Flows relating to concentration in the inlet system 

Considering the layout shown in figure A5.1, in one second, the corresponding volumes 

swept through will be 𝑣𝑓, 𝑣𝑠 and 𝑣𝑓 + 𝑣𝑠 respectively.  Volume 𝑣𝑓 contains the purified air 

carrier gas and volume 𝑣𝑠  contains the mixture of concentration 𝐶𝑎  expelled from the syringe. 

The concentration 𝐶𝑎 is found from the volume that the analyte vapour takes up in the syringe 

𝑣𝑎  divided by the syringe volume 𝑣𝑠 i.e. 𝐶𝑎 =  
𝑣𝑎

𝑣𝑠
 .      

Hence, in the forward flow, the total volume flowing in one second will be (𝑣𝑓 + 𝑣𝑠), and the 

final concentration 𝐶𝑓 will therefore be 𝑣𝑎/(𝑣𝑓 + 𝑣𝑆).    

Thus, 
𝐶𝑓

𝐶𝑎
 = 

𝑣𝑎

𝑣𝑓+𝑣𝑠
 × 

𝑣𝑠

𝑣𝑎
 = 

𝑣𝑠

𝑣𝑓+𝑣𝑠
  hence 𝐶𝑓 = 𝐶𝑎  × 

𝑣𝑠

𝑣𝑓+𝑣𝑠
  

but flow rate is swept volume per unit time, thus  𝐶𝑓 = 𝐶𝑎 × 
𝑓𝑠

𝑓𝑓+𝑓𝑠
 

The syringe flow rate can be found by transposing the above equation to give: 

(𝑣𝑓 + 𝑣𝑠) 

(𝑣𝑠) 

(𝑣𝑓) 
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𝑓𝑠 = 𝑓𝑓 × 
𝐶𝑓

𝐶𝑎−𝐶𝑓
    

 Using this formula, the corresponding computer program ‘syringe.bas’ for calculating the 

syringe flow rate for a required final concentration is given in Appendix 5.2. 

 

A5.2 - Program to calculate syringe flow rate for a required sample concentration in the 

drift flow gas 

‘syringe.bas    'D C Howse  

CLS 

PRINT "program to calculate syringe drive flow rate for a required concentration" 

PRINT “===================================================" 

PRINT 

INPUT "Analyte concentration in the syringe (ppmv)"; Ca 

'convert to ppbv 

Ca = Ca * 1000 

INPUT "Final concentration required in the forward flow (ppbv)"; Cf 

INPUT "Forward flow (ml/minute)"; Ff 

'convert forward flow to ml/hour 

Ff = Ff * 60 

'calculate syringe flow rate 

Fs = Ff * Cf / (Ca - Cf) 

PRINT "Set syringe flow rate to "; INT(Fs * 100) / 100; " ml/hour" 
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A5.3  Program to calculate reduced ion mobility 

 

‘K0.bas   D C Howse 

CLS 

'reduced mobility calculation 

PRINT "Calculation of reduced mobility" 

PRINT "===============================" 

PRINT : PRINT "Assuming T = 30 deg C and Drift tube voltage = 4.5 kV" 

PRINT 

INPUT "Drift tube pressure (mbar) "; P 

INPUT "drift time (ms) "; td 

'convert td to seconds 

td = td / 1000 

'Voltage applied to drift tube (V) is 4.5 kV 

'Hence drift voltage =4.5/2 = 2.25 kV 

V = 2250 

'Temperature = 30 + 273 = 303 deg Kelvin 

T = 303 

'Length of drift region L = 10.36 cm 

L = 10.36 

'calc field strength E 

E = V / L 

'calc mobility K 

K = L / (E * td) 

PRINT : PRINT "Mobility = "; INT(K * 100) / 100 

'calc reduced mobility K0 

K0 = K * 273 / T * P / 1013 

PRINT "Reduced mobility K0 = "; INT(K0 * 100) / 100 
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A5.4  Sample Dilution using a Pressure Vessel 

Figure A5.2 shows the layout of the apparatus used to obtain gas samples.  The basic idea is 

to pump down the system to 0 mbar, then to fill with sample vapours to a pressure Ps where 

Ps > 1 atmosphere to facilitate filling of a syringe.  Nitrogen is then introduced up to a total 

system pressure of Pt.  The sample concentration in the system will then be Ps/Pt. 

Operational sequence 

To get an initial dilution after connecting in the sample vial assembly, the following steps are 

taken: 

 Ensure that all valves A - E are closed 

 Switch on the vacuum pump 

 Open A, C and E to pump the system down to a reading of 0 mbar on the pressure 

gauge 

 Close A to isolate the vacuum pump 

 Close C and open D 

 Open C and let the partial pressure due to the sample vapours in the system rise to a 

given value 𝑷𝟏 

 Close C and D 

 Open B to fill the system with nitrogen to a pressure 𝑷𝟐  

 Close B 

 Close E  

 Open A and C and pump out the system up to the dilution chamber 

The sample concentration in the dilution chamber based on partial pressures is therefore 
𝑷𝟏

𝑷𝟐
 

Important 

 Before switching the vacuum pump off, to avoid oil being drawn into the system, 

disconnect the nitrogen connection and open valve B to vent the system (up to the 

dilution chamber) to atmosphere. 

 

 Before disconnecting the sample vial assembly, ensure that valve C is closed to isolate 

the inlet. 
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To obtain a second dilution 

The previous sequence will end with valves B and E closed and the system pumped down to 

0 mbar.  

 Open A to pump the system down (as the first chamber may have lost vacuum)  

 Close C and then A to isolate the vacuum pump  

 Open E to cause the chambers to share the gas from the dilution chamber 

 Open A and pump down to required pressure 𝑷𝟑 

 Close A 

 Open B to fill the system up to the dilution chamber with N2 to a pressure 𝑷𝟒 

 Close B 

 Close E  

 Open A and pump out 

The sample concentration based on partial pressures is given by: 𝐶2 = 
𝑃1

𝑃2
  × 

𝑃3

𝑃4
  

Explanation 

The gas law states: 𝑃𝑉 = 𝑛𝑅𝑇 hence 𝑃 ∝ 
𝑛

𝑉
  where 𝑛 = number of moles of the gas, and so 

for a fixed volume, 𝑃 ∝ 𝑛 ....(1) 

If the total pressure 𝑃𝑡𝑜𝑡 is made up of partial pressures, for example 𝑃𝑠 for an acetone sample 

and 𝑃𝑎𝑖𝑟 for the supporting air, then 𝑃𝑡𝑜𝑡 = 𝑃𝑠 + 𝑃𝑎𝑖𝑟 

The concentration of acetone 𝐶 is therefore 
𝑛𝑠

𝑛𝑡𝑜𝑡
 = 

𝑃𝑠

𝑃𝑡𝑜𝑡
 (from equation (1)) 

In the first dilution, let the initial sample pressure be 𝑃1 and the total pressure 𝑃𝑡𝑜𝑡 be  𝑃2 . 

Then for the first dilution, the concentration 𝐶1 = 
𝑃1

𝑃2
 

For a second dilution, the first chamber is pumped down to zero mbar and then the dilution 

chamber is used to fill the first chamber.  The total pressure will now drop to 𝑃3  and the 

partial pressure due to the sample  = 𝑃3 × 𝐶1 since the concentration is unchanged. 
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Nitrogen is then let in to increase the total pressure to 𝑃4 and the concentration will now 

become: 

𝐶2 = 
  𝑃3×𝐶1

𝑃4
 =  

𝑃3

𝑃4
 × 

𝑃1

𝑃2
 

Similarly, for a third dilution, 

𝐶3 = 
𝑃5

𝑃6
 ×

𝑃3

𝑃4
 × 

𝑃1

𝑃2
   and so. 

 

 

 

 

 

 

Figure A5.2  Layout of the dilution rig 
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A5.5  Sample Concentration using a Diffusion tube 

If sample vapours diffuse out of the end of the tube at 𝐷 g/min into a flow of 𝐹 l/min, the 

concentration can be said to be 
𝐷

𝐹
 g/l ....(1).   

However, the concentration is required as a volumetric ratio and so the sample rate D requires 

conversion into litres of sample/min.  The number of moles/min 𝑁 of 𝐷 g/min is 
𝐷

𝑅
 where 𝑅 

is the relative formula mass of the sample.  Eg. For CO2, R = 44 g/mole. 

𝑁 moles of any gas will take up a volume of 𝑁 × 22.4 l at STP. Therefore the volume taken 

up in one minute by 
𝐷

𝑅
 moles is 

𝐷

𝑅
 × 22.4 litres 

Thus, from equation (1), the volumetric concentration 𝐶 is now 
𝐷

𝑅
 × 

22.41

𝐹
 ....(2) 

Where:  D = sample diffusion rate out of the diffusion tube (g/min) 

   R = relative formula mass of the sample (g/mole) 

   F = flow rate of the carrier gas (l/min) 
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A5.6  Dilution Chart 

Sample dilution using the dilution rig (pressure vessel technique) 

Chemical  ....................   Date  .............................. 

First dilution 

P1 = ................mbar 

P2 = ................mbar 

Concentration = P1 / P2 x 10
6
 ppmv  

Thus C1 = ...................ppmv 

Second dilution 

P3 = ................mbar 

P4 = ................mbar 

Concentration = C1 x  P3 / P4 ppmv  

Thus C2 = ...................ppmv 

Third dilution 

P5= ................mbar 

P6 = ...............mbar 

Concentration = C2 x P5 / P6 ppmv 

Thus C3 = ...................ppmv 
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A5.7  Calculation of vapour pressure using the Antoine equation 

This equation describes the relationship between vapour pressure and temperature for pure 

chemicals.  Thus, the vapour pressure may be found from: 

    𝑙𝑜𝑔10 𝑝 = 𝐴 − 
𝐵

𝐶+𝑇
 

Where 𝑝 is the vapour pressure in bar, 𝑇 is the temperature in Kelvin and 𝐴, 𝐵 and C are 

specific constants for the chemical.  Vapour pressure is dependent only on temperature. 

The equation gives a good approximation over a specific temperature range. 

From the National Institute of Standards and Technology (NIST) Chemistry WebBook site 

(webbook.nist.gov/chemistry/) the constants may be found by selecting ‘formula’ and then 

typing in the chemical formula and then looking up under ‘phase change’ data. 

Example 

For acetone (C3H6O) the ‘Antoine Equation Parameters’ for temperatures between 259.16 

and 507.6 Kelvin are given as; 

𝐴 = 4.42448 𝐵 = 1312.253 𝐶 = -32.445 

The operating temperature T is 295.15 K (22℃) and substituting these values into the formula 

gives log(P) = -0.571 

Anti-logging gives 𝑝 = 0.2687 bar or 268.7 mbar. 
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Appendix 6 

A6.1  Quadrupole Connections for Ion Modes  – A Pictorial Summary 

Positive Ions Mode     Negative Ions Mode 

 

 

 

 

 

 

 

 

 

 

 

Figure A6.1  Quadrupole Connections for Ion Modes   
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Appendix 7 

A7.1  High input impedance kilovoltmeter 

A circuit to achieve this function is shown in figure A7.1 below.  The input impedance is 

approximately 10 GΩ.  The 1 MΩ variable resistor is a trimmer to adjust for a correct 

reading. With 4 kV in, the output voltage to the DVM will be 4 V.  

Input current = 4kV/10G= 0.4 µA. 

The op-amp needs to be a low input bias current type, e.g. LF351 (50 pA i/p bias current). 

 

Figure A7.1  Circuit diagram for a high input impedance kilovoltmeter 

 

 

 

𝑉𝑜𝑢𝑡 = 
𝑉𝑖𝑛

1000
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Appendix 8 

Publications in preparation 

1.  Development of a sampled pulse count to analogue converter for display of ion 

mobility spectra using an Ion Mobility Spectrometer – Mass Spectrometer 

This paper culminates from the work done throughout this thesis.  After an initial 

introduction and description of the system, focus is made mainly on the development of the 

novel pulse count to pseudo analogue converter that was designed for acquiring selected ions 

mass mobility spectra. 

2. Investigations into the detection of nitro aromatic explosives using an IMS – QMS 

system 

Concerning homeland security, a description is given in this paper of the results obtained 

from further investigations on the explosives TNT, TNB, DNT and DNB using the IMS-

QMS system. 

3. An Investigation into  anaesthetic compounds and the chlorinated ethanes, enflurane 

and isoflurane. 

Here, results are given from investigations made with the use of the IMS-QMS system on 

compounds found in the medical community.  

4. A software suite developed using LabVIEW for use with a tandem Ion Mobility 

Spectrometer – Mass Sectrometer system 

In this paper, a review of the programs used for data acquisition and display of spectra will be 

given that highlights the user friendliness of the human-machine interface obtained when 

using the graphical programming language LabVIEW to control an IMS-MS system. 
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