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Abstract 

In MDR isolates of Enterobacteriaceae, except Escherichia coli and Shigella spp., 

RamA, locally regulated by RamR, activates the transcription of the tripartite efflux 

pump, AcrAB-TolC. The pump is known to efflux a number of structurally distinct 

antibiotics, dyes, detergents, biocides and host-derived molecules. 

 

TraDIS sequencing of Salmonella enterica serovar Typhimurium SL1344 generated 

gene-deletion mutants, which were interrogated with pMW82-pramA, encoding a 

green fluorescent protein (GFP) fused to the ramA promoter sequence. Disruption of 

the csrA gene in SL1344 resulted in a significant increase in the fluorescence of 

pMW82-pramA, therefore it was hypothesised that CsrA is involved in the regulation 

of RamA and the generation of antimicrobial resistance by upregulation of AcrAB-

TolC. 

 

The aims of this study were to create and characterise a csrA::aph mutant in SL1344. 

The results indicated that the csrA::aph mutant overexpressed the transcriptional 

activators ramA, marA and soxS, but did not overexpress acrA, acrB and tolC, 

compared to SL1344. Consistently, the mutant did not display a MDR phenotype, 

compared to a SL1344 ramR::aph mutant. However, the mutant displayed an inability 

to biofilm. ramR expression was unaffected in the csrA::aph mutant, therefore the 

results suggest CsrA could regulate the expression of ramA by a distinct mechanism 

to that by RamR. 
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1.1 Multi-drug resistance and bacterial efflux 

Multi-drug (MDR) resistance poses a major threat to clinical healthcare, due to the 

difficulties associated with eradicating infections caused by resistant bacteria. Multi-

drug resistant bacteria are those which are capable of surviving in the presence of 

distinct structural classes of therapeutic drugs, at concentrations high enough to kill 

susceptible cells in the population (Ramos, Ales et al. 1996), (Glynn, Bopp et al. 

1998), (Yamasaki, Nikaido et al. 2013). Fewer treatment options are usually available 

for these bacteria (Levy 1998).  

 

Salmonella enterica is an enteric gram-negative pathogen responsible for an 

increasing number of MDR infections in many parts of the world (Su, Chiu et al. 

2004). There are six subspecies of S. enterica and over 2000 different serotypes, 

although the subspecies enterica is most commonly associated with disease (Fierer 

and Guiney 2001). S. enterica colonises the gastrointestinal tract of animals and 

humans, by invading the intestinal epithelial cells and macrophages (RichterDahlfors, 

Buchan et al. 1997), triggering an inflammatory response and leading to the 

dissemination of the organism into the blood. Once spread, S. enterica replicates 

intracellularly, within Salmonella-containing vacuoles (SCVs) (Finlay, Ruschkowski et 

al. 1991), in the phagocytic cells of the liver, kidneys and spleen (Steele-Mortimer, 

Brumell et al. 2002). 

 

S. enterica can cause both gastrointestinal and systemic diseases, and this is 

dependent on the serovar and the host immune status (Fierer and Guiney 2001). 

Although the organism does not always infect and cause disease in animals, 
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transmission of S. enterica to humans through animal contact (Fey, Safranek et al. 

2000), and contaminated water and food (Zhao, Qaiyumi et al. 2003), can enable the 

development of serious, life-threatening infections that require immediate treatment. 

For example, S. enterica serovar Typhimurium phage type DT104 was heavily 

reported in the 1990s as being a highly pathogenic strain that caused a worldwide, 

MDR epidemic, and was thought to have originated from cattle in the United Kingdom 

(Threlfall 2000); although other environmental factors, travel and imported food were 

also likely contributors to the spread of the infection in humans (Mather, Reid et al. 

2013).  

 

Therapeutic compounds used to treat bacterial infections, including those caused by 

S. enterica, are classed as either bacteriostatic or bactericidal. Bacteriostatic 

compounds are designed to interfere with the pathways and proteins that the bacteria 

require for growth and proliferation, such as the tetracycline antibiotics, which inhibit 

successful translation of bacterial proteins by binding to bacterial ribosomes and 

inhibiting their function (Chopra and Roberts 2001). However, when treatment with a 

bacteriostatic compound is removed, the bacteria can usually begin growing again, 

therefore the infection may not be fully eradicated. Bactericidal compounds are those 

which kill the bacteria, including the broad-spectrum glycopeptide antibiotic, 

vancomycin, which interferes with bacterial cell wall synthesis (Jordan 1961), leading 

to lysis of the bacterial cell.  

 

Selective pressure generated from inappropriate or mismanaged antibiotic use is an 

important factor in the development and transmission of resistance, as antibiotic 
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exposure enables bacteria capable of surviving to proliferate and dominate in a 

bacterial population. Antibiotic resistance in bacteria is typically mediated by genes 

coding for proteins that degrade or inactivate antibiotics (Levy 1998). Alternatively, 

spontaneous mutations in one or more of the genes that are the targets of 

therapeutic drugs can facilitate resistance, such as mutations in the genes that 

encode DNA gyrase (gyrA, gyrB) and topoisomerase IV (parE, parC) enzymes, which 

confers a high-level of resistance to broad-spectrum fluoroquinolones (Casin, Breuil 

et al. 2003).  

 

Intrinsic bacterial resistance in bacteria can also be mediated by decreasing bacterial 

membrane permeability (Nikaido and Vaara 1985), (Nikaido 2003), or by increasing 

the expression of efflux pumps, a resistance mechanism which was first described in 

Escherichia coli (Mcmurry, Petrucci et al. 1980). Efflux pumps are protein complexes 

that span the inner and outer bacterial membranes, and are ubiquitous among both 

gram-positive and gram-negative bacteria. They are responsible for the transport of 

various substrates including antibiotics (Li, Livermore et al. 1994), dyes, biocides, 

detergents and host-derived antimicrobials such as bile salts (Thanassi, Cheng et al. 

1997), from the bacterial periplasm and/or cytoplasm to the extracellular space. By 

reducing the intracellular concentration of toxic substrates to sub-lethal levels, 

bacteria can inhibit therapeutic compounds from reaching their target active site, 

therefore escaping eradication by their mechanism of action.  

 

Five classes of bacterial efflux pumps have been characterised to date: Resistance 

Nodulation Division (RND), Major Facilitator superfamily (MFS), Multi-drug and Toxic 
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Compound Extrusion (MATE), Staphylococcal Multi-resistance (SMR) and ATP-

binding cassette (ABC). Examples of the classes of efflux pumps in both gram-

positive and gram-negative bacteria and the types of substrate they export are shown 

in Figure 1.1. In addition to the types of substrate exported, an efflux pump may be 

categorised into one of the five above mentioned groups depending on the energy 

source used for efflux, the number of components involved in the system, and the 

number of transport protein membrane-spanning regions (Piddock 2006).  

 

 
Figure 1.1: Efflux pumps in (A) gram-positive and (B) gram-negative bacteria. Inner and outer bacterial 

membranes are composed of a lipid bilayer (yellow). Example transport protein complexes that are 
part of each class are shown (coloured boxes), in addition to the energy source used for efflux and the 

types of antimicrobial substrates exported (adapted from Piddock 2006). 
 
 

The genome of S. enterica serovar Typhimurium is now known to encode nine efflux 

pumps: AcrAB, AcrD, AcrEF, MdsABC, MdsAB (RND family), EmrAB, MdfA (MFS 

family), MdtK (MATE family) and MacAB (ABC family) (Nishino, Latifi et al. 2006). An 

increase in bacterial efflux activity is proposed to contribute to resistance and 

treatment failure, by preventing therapeutic compounds from reaching their target 

active site. Therefore, an improved understanding of bacterial efflux, and the 

development of antimicrobials that can inhibit efflux may help to alleviate the burden 

of untreatable infections caused by MDR bacteria. 
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1.2 The AcrAB-TolC efflux pump in Enterobacteriaceae 

AcrAB-TolC is an RND efflux pump that has been well studied in E. coli and 

Salmonella, and is thought to be functionally similar in both species, as shown by 

amino acid sequence analysis. Three protein components make up AcrAB-TolC: 

AcrA, AcrB (Ma, Cook et al. 1993) and TolC (Fralick 1996), which together form a 

tripartite complex (Figure 1.2). The energy that drives the efflux of substrates via 

AcrAB-TolC is generated by proton motive force, in which the movement of hydrogen 

ions across an electrochemical gradient drives the substrate from the periplasm 

and/or cytoplasm to the extracellular space. The outer membrane channel, TolC, is 

able to export diverse substrates through its interactions with inner membrane protein 

complexes in addition to AcrAB, such as AcrEF in S. enterica serovar Typhimurium 

(Horiyama, Yamaguchi et al. 2010), MacB and EmrB (Figure 1.1). 

 

The AcrAB-TolC complex must be intact in order to produce antimicrobial resistance. 

Pradel et al (2002)., reported that in the absence of acrAB and tolC, Enterobacter 

aerogenes became significantly more susceptible to chloremphenicol, norfloxacin 

and other antimicrobials, and this was a phenotype that reversed in the presence of 

complemented, plasmid-encoded efflux proteins in the same mutants (Pradel and 

Pages 2002). Similar observations were described following disruption to acrB and 

tolC genes in S. enterica serovar Typhimurium, which led to decreases in minimum 

inhibitory concentrations (MICs) for quinolones and tetracyclines (Baucheron, Tyler et 

al. 2004),  (Eaves, Ricci et al. 2004). Testing fluoroquinolones against acrB-

inactivated S. enterica serovar Typhimurium in combination with a known efflux 

inhibitor, Phe-Arg-β-naphthylamide (PAβN) also significantly reduced the MICs 
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(Baucheron, Imberechts et al. 2002).  

 

 
Figure 1.2: The AcrAB-TolC tripartite efflux pump. Inner and outer bacterial membranes are composed 
of a lipid bilayer (yellow). AcrB (green) is an integral membrane protein located within the cytoplasmic 
membrane, TolC (blue) is an outer membrane protein, which is anchored to AcrB by the membrane 
fusion protein AcrA (orange) - a periplasmic adapter protein (PAP), which spans the inner and outer 

bacterial membranes (Adapted from Pos 2009). 

 

 

Although other efflux systems are capable of exporting compounds including 

clinically-relevant antibiotics, AcrAB-TolC is considered the major efflux pump system 

of clinical relevance in bacteria including E. coli and Salmonella. Deletion of 

homologues of acrB, such as acrD and acrF, which encode AcrD and AcrF, 

respectively, lead to modest increases in antimicrobial susceptibility, compared with 

when genes encoding acrAB-tolC are disrupted (Eaves, Ricci et al. 2004). This is 

likely because AcrAB-TolC has much broader substrate specificity than other efflux 

complexes, and is therefore able to efflux a number of structurally diverse 

compounds. Studies by Oethinger et al., and Baucheron et al., have also suggested 

that efflux via AcrAB-TolC confers a higher level of quinolone resistance than double 

mutations in the DNA gyrase gene gyrA in E. coli and S. enterica serovar 
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Typhimurium DT104 (Oethinger, Kern et al. 2000), (Baucheron, Tyler et al. 2004). 

 

1.3 The AcrAB-TolC efflux pump and pathogenicity 

In addition to the export of various antibiotics, dyes, biocides and detergents, AcrAB-

TolC is capable of exporting host-derived molecules, including bile salts (Thanassi, 

Cheng et al. 1997) and other factors produced by the host immune system, such as 

α-haemolysin (Vakharia, German et al. 2001). In the presence of high bile 

concentrations, higher than those likely to be encountered during infection in a host 

environment, the expression of S. Typhimurium acrAB was shown to increase 

(Prouty, Brodsky et al. 2004). Bacterial efflux of host-derived antimicrobials is likely to 

enhance bacterial survival during initial infection, enabling bacteria to persist in the 

harsh environment of host immune defences.  

 

The interplay between bacterial resistance and pathogenicity is further evidenced by 

experiments in which inactivated acrB or tolC efflux components conferred a defect in 

biofilm formation (Baugh, Ekanayaka et al. 2012). A biofilm is formed when bacteria 

colonise the same space or surface, forming aggregates of cells suspended in an 

extracellular matrix (Costerton, Stewart et al. 1999) and it is thought that over 90% of 

bacteria found in nature exist in a biofilm (Costerton, Cheng et al. 1987). Biofilms are 

complex structures that consist of actively growing bacterial cells and bacteria which 

are metabolically slow or inactive, also known as persister cells. The complex nature 

of biofilms poses a clinical burden because they are difficult to eradicate, and 

therefore considered to be reservoirs of infection. Biofilms enable bacteria to survive 

antibiotics (Stewart 2002) and host-derived factors of the immune system, therefore 
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compared to planktonic bacteria, much higher concentrations of drugs are usually 

needed to remove bacteria within a biofilm. Preventing biofilm formation on surfaces 

in close contact with humans or animals, including contaminated foods, domestic and 

healthcare-associated water supplies and medical devices continues to be an 

important area of research (Donlan 2001).   

 

The composition of biofilm matrix during the formation of competent biofilm is 

dependent on a number of factors, including temperature and growth conditions, 

however S. enterica serovar Typhimurium biofilm matrix is generally composed of 

cellulose and curli fibres (Romling, Bian et al. 1998), (Kikuchi, Mizunoe et al. 2005). 

Curli are proteinaceous amyloid fibres and it has been suggested that curli are 

important for surface attachment (Pawar, Rossman et al. 2005), successful bacterial 

colonisation and biofilm formation (White, Gibson et al. 2006), and have been 

investigated in several Enterobacteriaceae including Salmonella and E. coli. Curli 

production in bacteria can be visualised by plating a bacterial suspension of known 

concentration onto Congo Red medium, the main constituent of which will bind to 

curli fibres that have been synthesised by the bacteria, making the colony appear red 

and rough on the media (Nilsson 2004).  

 

1.4 Regulation of the AcrAB-TolC efflux pump in S. enterica serovar 

Typhimurium 

It is likely that AcrAB-TolC plays an important role in enabling bacteria to survive and 

establish infection, as disruption to acrA, acrB or tolC genes has been associated 

with increased antimicrobial susceptibility and reduced biofilm formation (Pradel and 
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Pages 2002), (Baucheron, Tyler et al. 2004), (Eaves, Ricci et al. 2004), (Baugh, 

Ekanayaka et al. 2012). Inactivation of acrA, acrB or tolC also decreases the ability of 

cells to invade IMT-401 and RAW-264.7 tissue culture cell lines in vitro (Buckley, 

Webber et al. 2006), mirrored by a decrease in the expression of Salmonella 

pathogenicity island (SPI) genes, involved in bacterial pathogenicity (Webber, Bailey 

et al. 2009). Consistent with this, deletion mutants are not able to colonise the gut of 

chickens, to a similar level seen for wild type strains (Buckley, Webber et al. 2006). 

Inactivation of acrA, acrB and tolC also decreases the expression of genes involved 

in colonisation, such as flagella, chemotaxis and anaerobic respiration genes 

(Webber, Bailey et al. 2009).  

 

The regulation of AcrAB-TolC has been best characterised in E. coli, and involves 

local genetic elements, located in the same gene clusters, and global regulatory 

elements, located in other areas of the genome, the latter of which may be involved 

in the regulation of other cellular functions (Figure 1.3). This indicates that there is 

strict transcriptional control over the expression of the efflux system, influenced by 

various environmental stimuli. In Enterobacteriaceae, the expression of acrAB is 

mediated by the local repressor, acrR. Although mutations in this gene have been 

shown to modestly increase resistance to structurally distinct antibiotics (Olliver, Valle 

et al. 2004), mutations in acrR in resistant isolates of S. enterica serovar 

Typhimurium are rare (Piddock, White et al. 2000), suggesting multiple levels of 

regulation are involved in mediating the expression of the efflux system.  

 

The global transcriptional activators of acrAB in Salmonella and other 
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Enterobacteriaceae, are encoded by the genes ramA, marA, soxS and rob (Figure 

1.3). These proteins mediate antibiotic resistance by initiating the transcription of 

acrAB (Perez, Poza et al. 2012). The initiation of acrAB transcription by the efflux 

activator, indole, is dependent on ramA, and not marA, soxS or rob, and it has been 

suggested that RamA is central to the regulation of the AcrAB-TolC multidrug efflux 

system in Salmonella (van der Straaten, Janssen et al. 2004). ramA, however, is not 

present in E. coli and Shigella spp., although marA has been well characterised in E. 

coli and has been suggested to contribute to antimicrobial resistance in E. coli clinical 

isolates (Keeney, Ruzin et al. 2008). It has been suggested that induction of acrAB-

tolC is different in E. coli and Salmonella (Nishino, Nikaido et al. 2009).   

 

RamA is a DNA-binding protein that is a member of the AraC-XylS family of 

transcriptional activators. AraC-XylS regulators are common positive regulators that 

share amino acid sequence homology in their DNA binding domains (Gallegos, 

Schleif et al. 1997). The only negative regulator to date that is part of the AraC-XylS 

family of regulators is celD, renamed chbR, which forms part of the cel operon, 

renamed the chb operon, involved in the metabolism of a chitin disaccharide in E. coli 

(Parker and Hall 1990), (Keyhani and Roseman 1997). RamA binds upstream of 

acrAB and positively regulates the transcription of these genes (Figure 1.3). 



21 

 

 

Figure 1.3: Gene and protein interactions. acrA and acrB are positively regulated by RamA, MarA, 
SoxS and Rob, and negatively regulated by local repressor, AcrR. RamA is thought to be central to the 

regulation of the AcrAB-TolC efflux pump in Enterobacteriaceae, except E. coli and Shigella spp. 
Genes are represented by arrows, and proteins are represented by circles. Gene activation is shown 

by a thin black line and gene repression is shown by a thick black line. 

 

 

Increasing the expression of ramA increases the expression of acrAB, in both clinical 

isolates and laboratory mutants of Salmonella (Nikaido, Yamaguchi et al. 2008), 

(Ricci and Piddock 2009), (O'Regan, Quinn et al. 2009). Overexpression of marA and 

soxS was not observed in the same isolates, suggesting that RamA has a central role 

in the transcriptional regulation of acrAB. Consistently, acrB and tolC inactivation 

causes a significant increase in ramA expression in S. enterica, 1,226.41 and 25.41-

fold, respectively, compared to wild type strains (Webber, Bailey et al. 2009). This 

further suggests that RamA is centrally involved in the regulation of the transcription 

of acrAB in Salmonella. 
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The overexpression of acrAB, as a result of ramA overexpression, correlates with 

increased resistance to multiple drugs, including nalidixic acid, chloremphenicol and 

tetracycline (Ricci and Piddock 2009), where efflux was reported to be increased in 

MDR isolates. Additionally, the induction of ramA through an isopropyl-β-D-

thiogalactopyranoside (IPTG)-inducible ramA plasmid lead to observed increases in 

the antibiotic resistance profile of S. enterica serovar Typhimurium against 

structurally distinct antibiotics, investigated by disk diffusion (van der Straaten, 

Janssen et al. 2004), consistent with acrAB overexpression (Bailey, Ivens et al. 

2010). Further studies carried out by Van der Straaten et al., also reported that 

induced ramA expression in marA-deficient and wild-type E. coli strains, lead to a 

significant increase in observed MDR in both strains, despite the presence of the 

transcriptional activator, marA, again suggesting a more prominent regulatory role for 

RamA in generating resistance to multiple drugs by the upregulation of the AcrAB-

TolC efflux pump (van der Straaten, Janssen et al. 2004).   

 

Additional studies of ramA transcriptional activity identified that this gene is also 

involved in activating the transcription of micF, the gene product of which inhibits the 

synthesis of an outer membrane porin, OmpF (O'Regan, Quinn et al. 2009). This 

protein is involved in making the bacterial membrane less permeable, thereby not 

facilitating the entry of compounds, including clinically-relevant substrates. The 

importance of ramA in conferring drug resistance via active efflux is further evidenced 

by experiments in which the deletion of ramA from the transcriptome of Salmonella is 

not conducive for the selection of spontaneous resistant mutants (Ricci and Piddock 

2009). However, despite this, ramA-deleted mutants do not display hypersuseptibility 
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to the same number of compounds as does the deletion of acrAB or tolC; taken 

together, these data suggest that other intrinsic or acquired resistance determinants 

remain intact despite inactivation of ramA. 

 

Regulation of ramA expression is via its local repressor gene, ramR. This gene was 

first identified by Abouzeed et al., after inactivation and complementation studies, and 

is located upstream of ramA (Abouzeed, Baucheron et al. 2008) (Figure 1.3). 

Yamasaki et al., recently revealed the crystal structure of the RamR dimer and found 

that its dissolved molecular weight in solution is 36kDa, whilst the monomer is 21kDa. 

The RamR dimer and monomer consist of a dimerization domain and a DNA-binding 

domain, composed of nine α-helices in total (α1-9). The accompanying amino acid 

sequence subdivides α7 and α8 into α7a and α7b, and α8a and α8b, respectively, 

due to tortuosity of these α-helices (Yamasaki, Nikaido et al. 2013). RamR binds to a 

region spanning the ramA promoter sequence; this region includes the ramA 

transcriptional start site, a -10 conserved region and two inverted repeats 

(Baucheron, Coste et al. 2012), (Ricci, Busby et al. 2012), (Yamasaki, Nikaido et al. 

2013). 

An increase in ramR expression confers a decrease in the level of cellular RamA, 

and one or more mutations in ramR or the ramR-ramA intergenic region typically 

characterises significant overexpression of ramA (Ricci and Piddock 2009), with 

accompanying MDR in Salmonella isolates (Abouzeed, Baucheron et al. 2008). It is 

thought that RamR binds to the same drugs that are substrates of efflux by AcrAB-

TolC (Yamasaki, Nikaido et al. 2013), therefore in the presence of high levels of toxic 

compounds, the active binding of RamR to these substrates sequesters its ability to 
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repress ramA. This has been investigated by the studies of Yamasaki et al., who 

studied the binding interaction of a putative RamR substrate-recognition site with 

several drugs, including ethidium bromide, chloramphenicol and tetracycline, which 

are known substrates of the AcrAB-TolC system. In total the team concluded that five 

of the compounds studied exhibited binding interactions with the RamR protein. They 

hypothesised that these compounds increase the expression of ramA by binding to 

RamR, and reported a significant increase in ramA expression, as assayed by β-

Galactosidase activity (Yamasaki, Nikaido et al. 2013). In this way, RamR appears to 

act as a bacterial environmental sensor, monitoring the concentrations of multiple 

cytosolic drugs in the immediate bacterial surroundings. Despite these findings, other 

studies in which ramR is inactivated do not lead to excessive ramA expression and 

despite the likely role of bacterial efflux systems in bacterial pathogenesis, ramR 

inactivation had a modest effect on virulence in vivo (Bailey, Ivens et al. 2010). This 

suggests that ramA may be regulated by multiple distinct mechanisms.  

 

1.5 Current knowledge about carbon storage regulator A (csrA) 

In addition to DNA-binding proteins and transcription factors, post-transcriptional 

regulatory systems play a pivotal role in mediating strictly-controlled bacterial gene 

expression in response to extracellular stimuli, and the interactions between bacteria 

and host cells (Romeo 1998).  

The carbon storage regulator A (csrA) gene was initially identified in E. coli K-12 by 

transposon mutagenesis (Romeo, Gong et al. 1993) and is homologous to the 

repressor of secondary metabolites A (rsmA) gene, which has been characterised in 

other bacteria, such as Pseudomonas fluorescens (Agaras, Sobrero et al. 2013) and 



25 

 

Pseudomonas aeruginosa. In P. aeruginosa, the two-component Rsm/Gac network 

has been proposed to be involved in environmental sensing and the activation of 

biofilm formation (Goodman, Kulasekara et al. 2004). In this organism, RsmA is 

thought to increase the expression of genes which contribute to virulence, including 

those that encode bacterial lipases and those linked to bacterial motility (Heurlier, 

Williams et al. 2004). To date, only one csrA gene has been identified on the E. coli 

chromosome, whereas two homologues, rsmA and rsmB have been identified in P. 

flourescens. The reason for this is unclear, however it could reflect the environmental 

niches that P. flourescens colonises and the need for tighter control of bacterial gene 

expression. 

 

CsrA is a 61-amino acid, dimeric RNA-binding protein that binds competitively to 

target mRNAs, usually around their ribosomal binding site, and blocks their 

translation or alters their stability. CsrA competitive binding reduces mRNA access to 

ribosomes, thereby reducing the translation rate of the protein (Figure 1.4). CsrA 

mRNA sequestration can result in an increase or decrease in mRNA expression 

(Romeo, Gong et al. 1993), (Barnard, Loughlin et al. 2004), (Romeo, Vakulskas et al. 

2013), (Seyll and Van Melderen 2013).   
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Figure 1.4: CsrA interactions with CsrC, CsrB and CsrD. The CsrA protein (orange) binds to mRNA 
targets and degrades them or alters their stability. CsrA activity is sequestered by CsrB (blue) and 
CsrC (green), which mimic CsrA mRNA targets, preventing the binding of CsrA to transcripts. CsrB 

and CsrC proteins are regulated by CsrD (yellow). 
 

CsrA is involved in the regulation of central carbon metabolism, and is thought to 

positively regulate glycolysis and negatively regulate glycogen biosynthesis and 

gluconeogenesis. csrA inactivation leads to an observed reduction in the release of 

ATP energy and glucose consumption, and increased expression of pckA 

(phosphoenolpyruvate carboxylase), which is involved in the gluconeogenesis 

pathway (Sabnis, Yang et al. 1995).   

In E. coli, CsrA is thought to be involved in the post-transcriptional regulation of the 

genes involved in competent biofilm formation and a disruption to this gene results in 

the increase of poly-beta-1,6-N-acetyl-d-glucosamine (PGA) extracellular matrix 

(Wang, Dubey et al. 2005). It has been suggested that CsrA both represses and 

activates biofilm formation in E. coli and this is dependent on its role in regulating 

carbon metabolism (Jackson, Suzuki et al. 2002). Additionally, CsrA is thought to 

positively regulate motility in E. coli by increasing the expression of flhDC (FlhD and 
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FlhC proteins) (Wei, Brun-Zinkernagel et al. 2001), involved in the positive 

transcriptional activation of flagellar genes, suggesting that the csrA gene is 

important for colonisation and infection in E. coli. 

 

In S.enterica serovar Typhimurium, CsrA has been suggested to control the 

expression of genes associated with bacterial invasion, including the expression of 

fimbrial genes for cellular attachment (Sterzenbach, Nguyen et al. 2013), and both 

the deletion and overexpression of csrA result in a similar phenotype of reduced 

invasion ability of epithelial cells (Altier, Suyemoto et al. 2000), suggesting that the 

activity of CsrA must be tightly regulated in Salmonella. 

 

The regulation of csrA is via three proteins that modulate CsrA concentration; CsrB, 

CsrC and CsrD (Figure 1.4). The CsrA dimer binds to two small, non-coding sRNA 

molecules, CsrB and CsrC, which contain binding sites for CsrA and antagonise the 

protein by forming ribonucleoprotein complexes with it (Romeo 1998). The binding 

sites include RNA motifs with conserved GGA amino acid sequences, thought to be 

the same sequences that CsrA recognises and binds to on target mRNA molecules, 

blocking access to the Shine-Dalgarno sequence (Dubey, Baker et al. 2003), (Baker, 

Eory et al. 2007). These molecules mimic the real CsrA targets and are therefore 

able to outcompete the binding to these mRNA targets by sequestering CsrA activity 

(Adamson and Lim 2013). CsrB is thought to have greater interaction potential as it 

can bind 18 subunits (9 dimers) of CsrA (Liu, Gui et al. 1997), whilst CsrC can bind 6-

8 subunits (3-4 dimers) (Weilbacher, Suzuki et al. 2003). Increasing the expression of 

csrB and csrC blocks CsrA activity, shown by csrB overexpression and increased 
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glycogen accumulation in E. coli (Liu, Gui et al. 1997), consistent with the role of 

CsrA as a negative regulator of glycogen biosynthesis (Sabnis, Yang et al. 1995). 

Decreasing the expression of the sRNAs enables CsrA to interact with its targets. 

CsrD is involved in regenerating CsrA, by directing degradation of CsrB and CsrC via 

RNAse E and PNPase (Suzuki, Babitzke et al. 2006), (Adamson and Lim 2013) 

(Figure 1.4).  

 

1.6 Research hypothesis and experimental aims 

The primary hypothesis investigated in this study was that CsrA is involved in the 

regulation of RamA in Salmonella enterica serovar Typhimurium SL1344 and 

therefore plays a role in multi-drug resistance by bacterial efflux via AcrAB-TolC, 

which RamA is a known to be a transcriptional activator of.  

This hypothesis arose from Transposon Directed Insertion Site (TraDIS) sequencing, 

carried out by Ricci & Piddock (unpublished data), in which transposons were 

inserted into the genome of SL1344. Single gene-deletion mutants were selected, 

which were interrogated for their effects on the expression of ramA. This was carried 

out by transforming pMW82-pramA, a plasmid containing the cloned ramA promoter 

region fused to a gene encoding a green fluorescent protein (GFP), into the TraDIS 

library of SL1344 mutants. Screening by flow cytometry revealed populations that 

expressed ramA at a higher level than SL1344. Subsequent experiments and DNA 

sequencing revealed that transposon disruption of the csrA gene resulted in a 

significant increase in ramA promoter activity on two separate occasions. Therefore, 

it is proposed that CsrA is involved in the regulation of RamA.  
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The experimental aims of this project were to create and characterise a csrA::aph 

mutant in S. enterica serovar Typhimurium SL1344, investigating the effects of this 

gene disruption on growth, expression of ramA and other genes involved in the 

activation of AcrAB-TolC, the effect on the mutant’s susceptibility to structurally 

distinct antimicrobials that are known substrates of the AcrAB-TolC efflux pump 

(Giraud, Cloeckaert et al. 2000), (Baucheron, Imberechts et al. 2002), (Baucheron, 

Chaslus-Dancla et al. 2004), and the effect of the csrA gene disruption on the strain’s 

ability to produce curli and competent biofilm, both known to be influenced by the 

expression of acrAB-tolC (Baugh, Ekanayaka et al. 2012). The csrA gene disruption 

in SL1344 was constructed using the gene inactivation method described by 

Datsenko and Wanner (Datsenko and Wanner 2000). 
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Table 2.1: Bacterial strains used in the study. 

Laboratory 
Reference 

Bacteria Source and Description Growth 

I633 Escherichia. coli BW25141/pkD4 amp
R
 kan

R
 Datsenko & Wanner LB media supplemented with 50 

µg/mL ampicillin & 50 µg/mL 
kanamycin 

I114 Escherichia. coli VLA 3992/96 Clone 1 LB media not supplemented 

L354 Salmonella 
typhimurium 

SL1344 (VLA) LB media not supplemented 

L642 Salmonella 
typhimurium 

SL1344 pKD46 amp
R 

Datsenko & Wanner plasmid LB media supplemented with 50 
µg/mL ampicillin 

L828 Salmonella 
typhimurium 

ATCC 14028S Nishino lab LB media not supplemented 

L829 Salmonella 
typhimurium 

∆ tolC EG16564 Nishino lab LB media not supplemented 

L1007 Salmonella 
typhimurium 

SL1344 ramR::aph (P22 transduced from L1005)  LB media not supplemented 

L1232 Salmonella 
Typhimurium 

SL1344 + pMW82-ramA promoter 290bp LB media supplemented with 50 
µg/mL ampicillin 

L1361 Salmonella 
Typhimurium 

SL1344 pMW82pacrAB  LB media supplemented with 50 
µg/mL ampicillin 

L1406 Salmonella 
Typhimurium 

SL1344 + pMW82ptolC  LB media supplemented with 50 
µg/mL ampicillin 

L1410 Salmonella 
Typhimurium 

SL1344 + pMW82pramA (261 bp) Amp
R
)  LB media supplemented with 50 

µg/mL ampicillin 

L1412 Salmonella 
Typhimurium 

SL1344 + pMW82pramA (184 bp) (Amp
R
)  LB media supplemented with 50 

µg/mL ampicillin 

L1413 Salmonella 
Typhimurium 

SL1344 + pMW82pramA (95 bp) (Amp
R
)  LB media supplemented with 50 

µg/mL ampicillin 

L1606 Salmonella 
Typhimurium 

SL1344 csrA::aph (Kan
R
) LB media supplemented with 50 

µg/mL kanamycin 

L1607 Salmonella 
Typhimurium 

14028S csrA::aph (Kan
R
) LB media supplemented with 50 

µg/mL kanamycin 

L1608 Salmonella 
Typhimurium 

SL1344 csrA::aph + pMW82-acrAB promoter in SL1344  LB media supplemented with 50 
µg/mL kanamycin & 50 µg/mL 

ampicillin 
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Laboratory 
Reference 

Bacteria Source and Description Growth 

L1609 Salmonella 
Typhimurium 

SL1344 csrA::aph + pMW82-tolC promoter in SL1344 LB media supplemented with 50 
µg/mL kanamycin & 50 µg/mL 

ampicillin 

L1610 Salmonella 
Typhimurium 

SL1344 csrA::aph + pMW82-ramA promoter in SL1344 290bp LB media supplemented with 50 
µg/mL kanamycin & 50 µg/mL 

ampicillin 

L1611 Salmonella 
Typhimurium 

SL1344 csrA::aph + pMW82pramA (261 bp) Amp
R
)  LB media supplemented with 50 

µg/mL kanamycin & 50 µg/mL 
ampicillin 

L1612 Salmonella 
Typhimurium 

SL1344 csrA::aph + pMW82pramA (184 bp) (Amp
R
)  LB media supplemented with 50 

µg/mL kanamycin & 50 µg/mL 
ampicillin 

L1613 Salmonella 
Typhimurium 

SL1344 csrA::aph + pMW82pramA (95 bp) (Amp
R
)  LB media supplemented with 50 

µg/mL kanamycin & 50 µg/mL 
ampicillin 
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Table 2.2: Primers used in the study. 

 

Primer Name Description 5' to 3' sequence 

Kt Internal kan
R
 check primer 

pKD4 reverse 
CGGCCACAGTCGATGAATCC 

K2 Internal kan
R
 check primer 

pKD4 forward 
CGGTGCCCTGAATGAACTGC 

ramA-prom-
BamHI-F 

BamHI-ramA-F ATGGATCCGATACCGGATTGCGCTA 

gfp mut2 R gfp mut2 from pUA66pacp GCTAGTTGAACGCTTCCATC 

Smal ramA promo 
FW 

RamA promo primers for pUA66 
plasmid 

ACGTCCCGGGCACGTTACCCTTATGTCTGG 

AcrApromoterGFP 
F 

AcrA promoter for GFP fusion 
forward 

GCGGGATCCGCTCCCAGATCTCACTGAAT 

TolCpromoterGFP 
F 

TolC promoter for GFP fusion 
forward 

GCGGGATCCGTTTCCCGTGCAATAATTTC 

csrA knock-out 
forward 

csrA KO primers forward ATGCTGATTCTGACTCGTCGAGTTGGTGAGACCCTCATGAGTGTAGGCTGGAGCTGCTTC 

csrA knock-out 
reverse 

csrA KO primers reverse CAGCCTGGATACGCTGGTAGATCTCTTCACGATGGACAGAGGGAATTAGCCATGGTCCAT 

csrA check 
forward 

csrA Kan
R
 check primer forward ATGCTGATTCTGACTCGTCG 

csrA check 
reverse 

csrA Kan
R
 check primer reverse AAGTCATGAAGGGACAACGC 

acrA Forward RT-
PCR primer 

SL1344 acrA Forward RT-PCR 
primer 

GTAATTTCGTTGAGGGAAGTGA 

acrA Reverse RT 
PCR primer 

SL1344 acrA Reverse RT-PCR 
primer 

TCGTAAGTCGCCTGGTAG 

acrB qRT F acrB qRT-PCR F GTCCTCAAGTAGCTTCCT 

acrB qRT R acrB qRT-PCR R GTAATCCGAAATATCCTCCTG 

tolC RT RT F tolC Salmonella Typhimurium 
RT F 

AGTACGACGATAGCAACA 

tolC RT RT R tolC Salmonella Typhimurium 
RT R 

TTAACCATCCCACCTTGA 
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Primer Name Description 5' to 3' sequence 

ramA_RT F Forward RealTime primer for S. 
Typhimurium ramA 

TGAATCAGCCGTTACG 

ramA_RT R Reverse RealTime primer for S. 
Typhimurium ramA 

AGACTCTCCCCTTTGTA 

marA_RT F Foward RealTime primer for S. 
Typhimurium marA 

CAACACTGACGCTATTACTA 

marA_RT R Reverse RealTime primer for S. 
Typhimurium marA 

CAGGTGCCATTTGGAA 

soxS_RT F Forward RealTime primer for S. 
Typhimurium soxS 

CGCATCAGCAGATAATTCAGAC 

soxS_RT R Reverse RealTime primer for S. 
Typhimurium soxS 

ACTTGGAGTAGCCCGATTT 

rob Forward RT-
PCR primer 

SL1344 Rob Forward RT-PCR 
primer 

GGTCATTCGCCAACTATT 

rob Reverse RT-
PCR primer 

SL1344 Rob Reverse RT-PCR 
primer 

GGAAGTATTCTATACCACCG 

rrsH_RT F Forward RealTime primer for S. 
Typhimurium rrsH 

TACCTGGTCTTGACAT 

rrsH_RT R Reverse  RealTime primer for S. 
Typhimurium rrsH 

GACTTAACCCAACATTTC 

ramR RT RT F ramR Salmonella Typhimurium 
RT F 

TTATGTCATCGTTCCGTT 

ramR RT RT R ramR Salmonella Typhimurium 
RT F 

ATCCATTGTTGTTTCAGC 
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2.1 Bacterial strains used in this study 

All bacterial strains used in this study are listed in Table 2.1. 

Unless otherwise stated, all bacterial strains were recovered from storage at -20°C 

on Protectant beads. One to two beads were used to streak each strain to purity onto 

Luria Bertani (LB) agar plates, which were then incubated in a static aerobic 

incubator for 24 hours at 37°C. Plates were checked by eye to ensure they were free 

from contamination and stored at 4°C for up to two weeks. 

LB agar was prepared by autoclaving 17.5 g of powder (Sigma) dissolved in 500 mL 

sterile distilled water (SDW), and once cooled, agar plates were poured aseptically 

and oven dried. Unused plates were stored at 4°C for up to two weeks. 

 

Overnight cultures of the strains used in this study were prepared by aliquoting 10 mL 

sterile LB into sterile 30 mL universal tubes (Sterilin). A single bacterial colony was 

picked from a LB agar plate, into each universal tube. The tubes were incubated in a 

shaking aerobic incubator for 24 hours at 37°C. 

LB broth was prepared by autoclaving 10g of powder (Sigma) dissolved in 500 mL 

SDW. 

 

All bacterial cultures used in this study were grown to an OD600 of ~0.6 – 1 (mid-

logarithmic phase). The OD600 was measured using a spectrophotometer, by 

aliquoting 1 mL of culture into a plastic cuvette, and measuring the optical density 

against 1 mL of media only (blank). 
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2.2 Preparation of plasmids 

All bacterial strains with plasmids used in this study are listed in Table 2.1. 

Unless otherwise stated, overnight bacterial cultures were supplemented with 50 

µg/mL ampicillin (Sigma - powder stored at 4°C), to select for cells carrying the 

plasmid. Plasmid preparations were carried out according to the protocol from 

GeneJET Plasmid Mini Prep Kit (Thermo Scientific), and checked by agarose gel 

electrophoresis. The plasmid preparations were stored at 4°C. 

 

2.3 Polymerase chain reaction (PCR) 

All PCR primers used in this study are listed in Table 2.2. For csrA knock-out primers; 

XBASE (Chaudhuri, Loman et al. 2007) was used to search for the csrA nucleotide 

sequence within the SL1344 genome and primers were designed to amplify a 

kanamycin resistance cassette in E. coli (plasmid pKD4) to replace csrA, with 

flanking homology to the target gene. For csrA check primers; Primer Fox was used 

to design primers to confirm disruption of csrA. All other primers used in this study 

were taken from -20°C storage from the Antimicrobials Research Group primer 

collection. Primers were delivered lyophilised from Invitrogen and were reconstituted 

with nuclease-free water, to a concentration of 100 µM, and stored at -20°C. 

 

The DNA used for PCR amplification was extracted from bacterial cells by preparing 

cell lysates; one bacterial colony was inoculated into 50 µL of SDW, in a sterile 0.8 

mL microtube, and heated for 5 minutes at 95°C using a thermal controller, to release 

the cellular DNA. The microtube was then centrifuged for 2 minutes at 13,000 x g and 

the supernatant containing the DNA was used to prepare the PCR reactions. 
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Unless otherwise stated, the PCR master mixes were prepared with the following 

volumes, with reagents stored at -20°C and thawed on ice; 45 µL of MyTaq Red Mix 

(Bioline - diluted from a 2x stock),1 µL of forward primer (25 µM working stock) and 1 

µL of reverse primer (25 µM working stock), per PCR sample. From the master mix, 

47 µL was aliquoted into sterile 0.8 mL microtubes. Lysate (3 µL) was added to the 

tubes, resulting in a total reaction volume of 50 µL. 

For plasmid preparations; 3 µL of the preparation stored at 4°C was added to 47 µL 

of the PCR master mix. Unless otherwise stated, the PCR conditions were: 95°C for 

5 minutes (denaturation), 95°C for 30 seconds, 50°C for 30 seconds, 72°C for 2 

minutes (annealing), for a total of 35 cycles and 72°C for 10 minutes (extension). A 

negative contamination control was also included in all PCR reactions, containing 47 

µL master mix, 3 µL SDW, and no DNA. 

 

Agarose gel electrophoresis 

A 1% agarose gel was prepared by dissolving 1 g of agarose powder (Sigma) in 100 

mL of 1x Tris-Borate-EDTA (TBE buffer) (AppliChem - diluted from 10x stock), by 

heating. Cooled agarose agar was supplemented with Midori green advanced DNA 

stain (Nippon Genetics, Europe), at a volume of 5 µL per 100 mL agarose agar, and 

the agar was poured across a gel mould. Once set, the gel was removed from the 

mould and loaded into an electrophoresis gel tank and 1 x TBE buffer was added to 

coat the gel completely. Hyperladder 1 KB (5 µL) (Bioline) was loaded into the first 

well of the gel to quantify the DNA products by size. Each PCR reaction (10 µL) was 

loaded into the following wells. Electrophoresis was carried out at 100 V for 30-40 

minutes, and the gel was analysed using Syngene G:Box (Geneflow). 
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For plasmid preparations and PCR purifications; 7 µL of plasmid preparation or PCR 

purification was loaded into sterile 0.8 mL microtubes with 3 µL of 5x DNA loading 

buffer (Bioline). Gel electrophoresis was carried out as previously described. 

 

PCR product purification 

All PCR product purifications were carried out using the QIAquick PCR Purification 

Kit (Qiagen). Briefly; the PCR sample was transferred to a QIAquick spin column and 

collection tube and 200 µL of Buffer PB was added. To bind the DNA to the spin 

column membrane, the tubes were centrifuged at 13,000 x g for ~1 minute. The flow-

through was discarded into disinfectant and the membrane was washed by adding 

750 µL of Buffer PE, and centrifuged at 13,000 x g for 1 minute. The flow-through 

was discarded and the tubes were centrifuged once more to remove the residual 

Buffer PE. DNA was eluted from the membrane by transferring the spin column to a 

sterile 1.5 mL microtube and aliquoting 50 µL of Buffer EB onto the membrane. The 

tubes were centrifuged at 13,000 x g for 1 minute. Gel electrophoresis was carried 

out as previously described. 

 

2.4 Construction of the csrA::aph mutants 

pKD4 plasmid preparation 

The csrA gene was disrupted in SL1344 using the gene inactivation method 

described by Datsenko and Wanner (Datsenko and Wanner 2000). An overnight 

culture of E. coli pKD4, conferring kanamycin resistance by an aminoglycoside 

phosphotransferase, (aph), was prepared in LB supplemented with 50 µg/mL 

ampicillin and 50 µg/mL kanamycin to select for the plasmid and the resistance 
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cassette, respectively, and plasmid preparations were carried out as previously 

described, with analysis by gel electrophoresis. 

 

The PCR was carried out using pKD4 plasmid preparations, using primers to amplify 

the kanamycin cassette with flanking csrA homology (csrA knock-out forward and 

reverse primers, Table 2.2). The csrA-tagged aph cassette PCR product (10 µL) was 

purified and analysed by gel electrophoresis. 

 

Preparation of SL1344 pKD46 competent Cells 

The low copy number plasmid, pKD46, was used as a template to replace the csrA 

gene in SL1344, by inducing recombination in host cells via the phage λ Red 

recombinase enzyme (Datsenko and Wanner 2000). 

An overnight culture of SL1344 pKD46 was prepared in LB supplemented with 50 

µg/mL ampicillin and 100 µL of 1 M Arabinose (for a final Arabinose concentration of 

10 mM), to induce the recombination genes. After 24 hours, 1 mL of bacterial culture 

was inoculated into 50 mL sterile LB, supplemented with 50 µg/mL ampicillin and 100 

µL of 1 M Arabinose (for a final Arabinose concentration of 10 mM). The culture was 

incubated aerobically at 30°C (to prevent plasmid loss), with shaking, until the OD600 

reached mid-log phase (~0.6-1) and the culture was transferred to two sterile 30 mL 

universal tubes, which were kept on ice for ~10 minutes prior to prevent further 

growth of the bacteria. The tubes were centrifuged at 3600 RPM for 10 minutes at 

1°C. The supernatant from each tube was discarded and the cells were washed in 

15% ice cold glycerol 4 times. The pelleted cells were resuspended in 400 µL 15% 

ice cold glycerol by pipetting. Both universal tubes were pooled into one sterile 1.5 
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mL microtube and stored on ice, or at -20°C. 

 

Electroporation of csrA-tagged aph cassette 

SL1344 pKD46 competent cells (45 µL) were added to 5 µL of purified csrA-tagged 

aph cassette, in a pre-cooled electroporation cuvette. A pulse at 2.5 kV/200 ohm, 

lasting ~5 milliseconds, was used to disrupt the bacterial membrane in SL1344, using 

a gene pulser (Bio-Rad). Immediately after the pulse, 950 µL of sterile LB was added 

to the cuvette and the contents were aseptically transferred to a sterile 30 mL 

universal tube. A negative control was included, with 50 µL of competent cells only, to 

ensure that electroporation did not affect the viability of the bacteria. Universal tubes 

were incubated aerobically at 37°C for 2-4 hours to allow the bacteria to recover. 

Following recovery, 100 µL of the negative control was inoculated onto LB agar and 

spread with a disposable L-shaped spreader. Competent cells electroporated with the 

csrA-tagged aph cassette (100 µL) were inoculated onto LB agar supplemented with 

50 µg/mL kanamycin to select for SL1344 cells where successful recombination had 

occurred. All of the remaining cells were transferred to two sterile 1.5 mL microtubes 

and centrifuged at 13,000 x g for 2 minutes to capture all of the remaining bacterial 

cells in the pellet. Each pellet was resuspended in 150 µL of the corresponding 

supernatant. Negative control cells (150 µL) were inoculated onto LB agar 

supplemented with 50 µg/mL ampicillin, to select for SL1344 cells with the pKD46 

plasmid only. Competent cells with the csrA-tagged aph cassette (150 µL) were 

inoculated onto LB agar supplemented with 50 µg/mL kanamycin, as previously 

described. The plates were incubated statically in an aerobic incubator, at 37°C for 

24-48 hours. Single positive colonies were restreaked onto fresh LB agar 
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supplemented with 50 µg/mL kanamycin and re-incubated. 

 

Identification of csrA::aph candidates 

SL1344 cells carrying the csrA-tagged aph cassette were identified by the PCR 

(using csrA check forward and reverse primers, Table 2.2) and the products were 

analysed by agarose gel electrophoresis. Protectant beads of the strain were 

prepared, and the strains were stored at -20°C. 

 

Growth kinetics of the csrA::aph mutant 

Initial cultures of the csrA::aph mutant in LB broth lead to the observation that the 

strain was slow-growing, compared to the wild-type, SL1344. The observed 

phenotype prompted the investigation of the growth kinetics of the csrA::aph mutant 

in LB broth, minimal media with glucose, and minimal media with pyruvate, which 

were compared to SL1344.  

Overnight cultures of both strains in the three mediums were prepared, with the 

csrA::aph mutant cultures supplemented with 50 µg/mL kanamycin. After 24 hours, 

the cultures were diluted to 4% in fresh media (4 µL into 100 µL), in a 96-well flat-

bottomed microtitre tray (MTT), as shown by Figure 2.1. The absorbance (at 600nm) 

of each well was measured for 620 minutes, using a FluoStar Optima (BMG, UK). 

The data was analysed in Microsoft Excel. 
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Figure 2.1: MTT layout for investigating the growth kinetics of the csrA::aph mutant and SL1344 in LB 
broth, minimal media + glucose, and minimal media + pyruvate.  

 

 

2.5 Construction of the csrA::aph mutants with pMW82-pramA, pMW82-pacrAB 

and pMW82-ptolC reporters 

pMW82-pramA, pMW82-pacrAB & pMW82-ptolC plasmid preparations 

Plasmid pMW82-pramA encodes a GFP fused to a DNA fragment carrying the ramA 

promoter sequence. As a csrA deletion had been associated with increased ramA 

expression during previous investigations by Ricci and Piddock (unpublished data), 

the fluorescence of the pMW82-pramA reporter in the csrA::aph mutant was 

investigated and compared to the wild-type strain, SL1344. Additionally, the effect of 

the csrA gene disruption on the fluorescence of acrAB and tolC reporters (pMW82-

pacrAB and pMW82-ptolC), encoding the components of the AcrAB-TolC efflux 

pump, was also investigated. 

Overnight cultures of each reporter construct were prepared in LB supplemented with 

50 µg/mL ampicillin, to select for the plasmids. Plasmid preparations were carried out 

and analysed by gel electrophoresis. 
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Preparation of SL1344 csrA::aph competent cells 

Due to the observed slow growth phenotype, csrA::aph mutant cultures struggled to 

reach mid-log phase on the day of testing, therefore a 50 mL overnight culture was 

prepared in LB, supplemented with 50 µg/mL kanamycin, to be used immediately the 

following day to make competent cells, as previously described, without Arabinose. 

 

Electroporation of pMW82-pramA, pMW82-pacrAB & pMW82-ptolC reporters 

Electroporation was performed using the same conditions as previously described. 

SL1344 csrA::aph cells that had taken up the pMW82-pramA, pMW82-pacrAB or 

pMW82-ptolC constructs were selected on LB agar supplemented with 50 µg/mL 

kanamycin and 50 µg/mL ampicillin (to select for the csrA disruption and the reporter 

construct, respectively). The plates were incubated statically in an aerobic incubator, 

at 37°C for 24-48 hours. Single colonies were restreaked onto fresh LB agar 

supplemented with 50 µg/mL kanamycin and 50 µg/mL ampicillin and re-incubated. 

 

Identification of csrA::aph candidates with pMW82-pramA, pMW82-pacrAB & 

pMW82-ptolC reporters 

Lysate preparations were prepared of candidate csrA::aph mutants that had 

successfully taken up each reporter construct, and SL1344 (negative control) as 

previously described. The PCR reactions were prepared using a set of primers to 

identify the csrA deletion (csrA check forward and reverse primers, Table 2.2), and a 

set of primers to identify if each reporter construct was encoded by the strain (Table 

2.2). The PCR conditions were: 95°C for 5 minutes (denaturation), 95°C for 30 

seconds, 50°C for 30 seconds, 68°C for 2 minutes (annealing), for a total of 35 cycles 
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and 68°C for 10 minutes (extension). 

 

The effect of csrA::aph on the transcription of acrAB, tolC & ramA  

The effect of the csrA disruption to the transcription of acrAB, tolC and ramA was 

investigated and compared with the wild-type strain, SL1344, using fluorescence as 

an empirical measure of promoter activity. 

Overnight cultures of SL1344 and the SL1344 csrA::aph mutant harbouring pMW82-

pramA, pMW82-pacrAB and pMW82-ptolC, were prepared in LB supplemented with 

50 µg/mL kanamycin and 50 µg/mL ampicillin. After 24 hours, the cultures were 

diluted 4% into fresh LB (4 µL into 100 µL LB), in a 96-well flat-bottomed MTT, as 

shown by Figure 2.2. The absorbance (at 600 nm) and fluorescence (excitation at 

492 nm, emission at 520 nm) of each well was measured, using a FluoStar Optima 

(BMG, UK). The data was analysed in Microsoft Excel. 

 

 

 
Figure 2.2: MTT layout for investigating the effect of csrA::aph on the transcription of ramA, acrAB and 

tolC. 
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2.6 The effect of csrA::aph on the expression of acrA, acrB, tolC, ramA, marA, 

soxS, rob & ramR 

RNA preparation 

The global transcriptional activators of acrAB in Enterobacteriaceae are encoded by 

ramA, marA, soxS and rob (Perez, Poza et al. 2012), therefore Real-Time (RT) PCR 

was used to investigate the expression of acrA, acrB, tolC, ramA, marA, soxS, rob 

and ramR - the transcriptional repressor of RamA, in the csrA::aph mutant and 

compared to the wild-type, SL1344. 

The csrA::aph mutant displayed poor growth in minimal media, the standard media 

used to make RNA preparations, therefore triplicate overnight cultures of the 

csrA::aph mutant and wild-type, SL1344, were set up in LB broth. The csrA::aph 

mutant culture was supplemented with 50 µg/mL kanamycin. Triplicate working 

cultures of SL1344 were prepared on the day of testing by inoculating 200 µL of each 

overnight culture into 10 mL sterile LB. The tubes were incubated aerobically at 37°C, 

with shaking, until the cells reached mid-log phase (OD600 ~0.6-1). Triplicate 

overnight cultures of the csrA::aph mutant were used immediately, due to poor 

growth of the strain. 

Each culture (1 mL) was aseptically transferred to a sterile 1.5 mL microtube and the 

tubes were centrifuged at 14,000 x g for 2 minutes. The supernatants were removed, 

and a further 1 mL of culture was added, to increase the concentration of pelleted 

bacteria and RNA yield. The tubes were centrifuged at 14,000 x g for 2 minutes and 

the remaining pellet was resuspended in 100 mL of 3 mg/mL Lysozyme (Sigma) in 

TE buffer, which was prepared from powder stored at -20°C, on the day of testing. 

The resuspended pellets were incubated at room temperature for ~5 minutes, before 
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adding 75 µL of RNA Lysis Buffer and 350 µL of RNA Dilution Buffer (Promega), to 

break down the cellular material and release the bacterial RNA. The tubes were 

inverted to mix the contents and 200 µL of 95% ethanol was added to each tube. 

After pipetting to mix, the contents of each tube were transferred to a spin column 

and collection tube, and centrifuged at 13,000 x g for 1 minute, to elute the RNA onto 

the membrane. The solutions were discarded from the collection tubes and 600 µL of 

RNA wash solution was added to the spin columns. The tubes were centrifuged at 

13,000 x g for 1 minute and the solutions were discarded from the collection tubes. 

A DNase incubation mixture was prepared using the following reagents (stored at -

20°C and thawed on ice), at the following volumes per sample: 40 µL Yellow Core 

Buffer, 5 µL 0.09M mnCl2 and 5 µL DNase I enzyme. DNase incubation mix (50 µL) 

was added to the membrane of each spin column, and was incubated for 15 minutes 

at room temperature to digest contaminating genomic DNA. DNase Stop Solution 

(200 µL) was added to the spin columns and centrifuged at 13,000 x g for 1 minute. 

The solutions were discarded from each collection tube, 600 µL of RNA Wash 

Solution was added and the tubes were centrifuged at 13,000 x g for 1 minute. The 

solutions were discarded from each collection tube, 250 µL of RNA Wash Solution 

was added, and the tubes were centrifuged at 13,000 x g for 2 minutes. The spin 

columns were transferred to sterile RNase-free 1.5 mL microtubes and 100 µL of 

nuclease-free water was added to each membrane. The tubes were centrifuged at 

13,000 x g for 1 minute, to elute the RNA. The RNA preparations were kept on ice 

and stored at -80°C. 
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DNA and RNA quantification 

The DNA and RNA in each RNA preparation was quantified using a Qubit 2.0 

Fluorometer (Invitrogen) and Molecular Probes DNA Labelling and Detection Qubit 

ds DNA and RNA HS Assay Kits (Invitrogen). The kits contained double-stranded (ds) 

DNA or double-stranded (ds) RNA HS buffers and dsDNA or dsRNA HS reagents 

(200x concentrate in Dimethyl Sulfoxide). A master mix was prepared, containing 199 

µL of dsDNA or dsRNA HS buffer and 1 µL of dsDNA or dsRNA HS reagent, per 

sample. Each RNA preparation (1 µL) was added to 199 µL of the master mixture in 

sterile 0.8 mL RNase-free microtubes. In order to calibrate the Qubit 2.0 Fluorometer 

before quantification, 2 DNA standards and 2 RNA standards were also prepared by 

adding 190 µL of the master mix to 10 µL of either dsDNA HS Standard 1 and dsDNA 

HS Standard 2, or dsRNA HS Standard 1 and dsRNA HS Standard 2 (stored at 4°C), 

in sterile 0.8 mL RNase-free microtubes. 

 

DNase Treatment 

Quantified DNA and RNA in ng/mL per sample was used to calculate the volume of 

RNA, TURBO DNase, buffer and nuclease-free water to use for an additional DNase 

treatment (final reaction volume of 50 µL), to maximise the RNA yield from the 

samples. All reagents were stored at -20°C and thawed on ice. RNA and the above 

reagents were inoculated into sterile RNase-free 0.8 mL microtubes and incubated 

for ~20 minutes in a microtube hotplate set to 37°C. DNase Inactivation Reagent (5 

µL) was added and mixed by pipetting. The tubes were incubated for 5 minutes at 

room temperature and centrifuged for 2 minutes at 10,000 x g. The supernatants 

containing the RNA were transferred to new sterile RNase-free microtubes, and the 
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DNA and RNA in each RNA preparation was re-quantified as previously described. It 

was acceptable to proceed to cDNA synthesis if the DNA was < 5% of each RNA 

preparation. 

 

cDNA synthesis 

Re-quantified DNA and RNA in ng/mL per sample was used to calculate the volume 

of RNA required for cDNA synthesis to proceed with the RT PCR. Random primers, 

deoxyribonucleotide triphosphate (dNTP), 1st Strand Buffer, DTT, RNase Out and 

Super-script (reverse transcriptase) were stored at -20°C and thawed on ice. RNA, 2 

µL random primers, 1 µL dNTP and nuclease-free water were aliquoted into sterile 

1.5 mL RNase-free microtubes, in duplicate, with a total volume of 13 µL per sample. 

The tubes were heated to 65 °C for 5 minutes on a microtube hotplate, then 

incubated on ice for a further 5 minutes. 1st Strand Buffer (4 µL), 1 µL 0.1M DTT, 1 µL 

RNase Out, and 1 µL Super-script were added to one of each duplicate tubes. The 

second set of tubes were non-reverse transcriptase controls, therefore 1 µL 

nuclease-free water was used in place of the Super-script. All tubes were incubated 

at room temperature for 5 minutes, then heated to 50°C for 60 minutes on a 

microtube hotplate. To inactivate the reaction, the tubes were heated to 70°C for 10 

minutes. cDNA preparations were stored on ice or at -20°C. 

 

Real Time PCR (RT-PCR) 

acrA, acrB, tolC, ramA, marA, soxS, rob and ramR gene expression was investigated 

in the csrA::aph mutant and wild-type, SL1344, using RT PCR.  

Master mixes were prepared by adding the following reagents, which were stored at -
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20°C and thawed on ice: 12.5 µL IQtm SYBR Green Supermix (Bio-Rad), 1 µL 

Forward Primer (12 mM working stock) and 1 µL Reverse Primer (12 mM working 

stock), per sample. To make up the reaction volume to 24 µL, 9.5 µL nuclease-free 

water was added, per sample. Master mix (24 µL) and 1 µL of cDNA sample were 

aliquoted into the wells of a RT PCR plate, as shown by Figure 2.3. 

 

 

 
Figure 2.3: RT-PCR plate layout for investigating the effect of csrA disruption on the expression of 

acrA, acrB, tolC, ramA, marA, soxS, rob & ramR. (NTC: non-transcribed control). 

 
 

The plate was pulse-centrifuged and loaded into a RT PCR machine (Bio Rad). The 

PCR conditions were: 95°C for 3 seconds (denaturation), 95°C for 10 seconds, 

57.3°C for 20 seconds, 72°C for 20 seconds (annealing), with a total of 29 cycles. 
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A fluorophore generated fluorescence following each amplification cycle in real-time, 

so it was possible to compare the initial copy number of the genes in the csrA::aph 

mutant and the wild-type, SL1344. The bacterial 16S “house-keeping” gene was used 

to normalise gene expression, as it is consistently expressed in bacteria. A melt curve 

was also included (50°C for 5 seconds and 95°C for 5 seconds). The data was 

analysed in Microsoft Excel. 

 

2.7 Biofilm formation and curli synthesis in the csrA::aph mutant (SL1344) 

Inactivated acrB or tolC efflux components have been associated with a defect in 

biofilm formation (Baugh, Ekanayaka et al. 2012), in addition to an increase in ramA 

expression (Baugh, Phillips et al. 2013). Therefore, a biofilm assay was carried out to 

determine the effect of the csrA disruption on the formation of competent biofilm. 

Overnight cultures were set up of the csrA::aph mutant, wild-type SL1344, 14028S 

(positive biofilm control) and 14028S ΔtolC (negative biofilm control) in sterile LB 

broth. The csrA::aph mutant was supplemented with 50 µg/mL kanamycin. After 24 

hours, the cultures were diluted to an OD600 of ~0.1 in 10 mL sterile LB broth without 

salt, prepared by dissolving 10 g Tryptone, 5 g Yeast Extract and 15 g Biological Agar 

(Oxoid), in 1 L of SDW. Each diluted culture (200 µL) was inoculated into the wells of 

a sterile 96-well MTT, as shown by Figure 2.4. The plate was loosely covered with 

cling film to prevent evaporation, and incubated at 30°C for 48 hours with gentle 

shaking, to allow the formation of biofilm. Following incubation, the liquid culture was 

removed from the wells into a discard pot containing disinfectant solution and the 

wells were rinsed with SDW. A 1% Crystal Violet solution (200 µL) was used to stain 

the biofilm in each well for 15 minutes at room temperature, which was then rinsed 
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away using SDW. A 70% Ethanol solution (200 µL) was added to each well to 

solubilise the dye and the absorbance (at 600nm) of each well was measured using a 

FluoStar Optima (BMG UK). The data was analysed in Excel. 

 

Figure 2.4: MTT layout for investigating biofilm formation in the csrA::aph mutant, SL1344 and 14028S 
positive and negative biofilm controls. 

 
 
 
 

Curli are involved in competent biofilm formation, therefore the production of curli in 

the csrA::aph mutant was investigated alongside biofilm formation. Congo Red agar 

was prepared by autoclaving LB agar without salt, and when cooled, Congo Red was 

added to a final concentration of 40 µg/mL. 

Overnight cultures were set up of the csrA::aph mutant, wild-type SL1344, 14028S 

(positive curli control) and 14028S ΔtolC (negative curli control). The overnight 

cultures were diluted 1:100 in sterile Phosphate Buffered Saline (PBS) (Sigma), and 

four 5 µL aliquots were spotted onto quarterly-divided Congo Red plates, as shown 

by Figure 2.5. A negative contamination control was prepared by spotting four 5 µL 

aliquots of sterile PBS. All plates were incubated aerobically in a static incubator, at 

30°C for 24-48 hours, and analysed for curli morphology using a light microscope. 
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Figure 2.5: Division of Congo Red agar plates for investigating curli synthesis in the csrA::aph mutant. 

 

P22 transduction of the csrA::aph mutant into 14028S  

The positive biofilm control strain used in this study, 14028S, was able to form 

competent biofilm to a high level, therefore P22 transduction was carried out to 

transduce csrA::aph into the 14028S background, with an aim to repeat the biofilm 

and curli assays, and confirm the phenotype caused by csrA disruption. 

A csrA::aph phage stock was prepared as follows; an overnight culture of the 

csrA::aph mutant was prepared in LB broth and after 24 hours, the culture was 

diluted 1:100 in sterile LB broth containing 10mM MgSO4 and 5 mM CaCl2. The 

culture was incubated aerobically at 37°C, shaking, for 30 minutes. SL1344 P22 

phage stock (5 µL) was added and the culture was incubated aerobically for 24 hours 

at 37°C, shaking. The following day, the culture was transferred to a 50 mL sterile 

Falcon tube, and 1 mL chloroform was added. The tube was vortexed and 

centrifuged at 4000 RPM for 10 minutes at 4°C. The supernatant was transferred to a 

sterile glass universal tube to prevent chloroform damage, and 200 µL chloroform 

was added. The csrA::aph P22 phage stock was stored at 4°C. 

An overnight culture of 14028S was prepared in LB broth and after 24 hours, the 
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culture was centrifuged at 4000 RPM for 5 minutes at room temperature. The 

supernatant was discarded and the pellet was resuspended in 10mM MgSO4 and 

5mM CaCl2. Transductions were prepared with different volumes of phage stock, with 

an aim of avoiding bacterial cell lysis, as shown by Table 2.3. 

 

Microtube Volume of 14028S cells 
added (µL) 

Volume of csrA::aph P22 phage stock 
added (µL) 

1 100 0 

2 100 5 

3 100 10 

4 100 50 

5 100 100 

6 100 500 

 

Table 2.3: Volumes of csrA::aph phage used for csrA::aph transduction into 14028S. 

 

The transductions were incubated aerobically at 37°C for 15 minutes and were then 

transferred to sterile 30 mL universal tubes. Sodium Citrate (1 M) and 1 mL sterile LB 

broth were added to recover the cells. The tubes were incubated aerobically for 45 

minutes at 37°C, with shaking. Each transduction (100 µL) was plated in duplicate on 

LB agar (negative control) and LB agar supplemented with 50 µg/mL kanamycin (to 

select for the csrA deletion in 14028S). Plates were incubated aerobically at 37°C for 

24-48 hours. Single positive colonies were restreaked onto fresh LB agar 

supplemented with 50 µg/mL kanamycin and re-incubated. To confirm csrA::aph in 

14028S, a PCR was carried out using primers to identify the csrA deletion, as 

previously described. Biofilm and curli assays were repeated as previously 

described. 
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2.8 Antimicrobial susceptibility of the csrA::aph mutant 

AcrAB-TolC is known to efflux a number of structurally distinct antimicrobial 

substrates (Giraud, Cloeckaert et al. 2000), (Piddock, White et al. 2000) (Baucheron, 

Imberechts et al. 2002), (Baucheron, Chaslus-Dancla et al. 2004), (Eaves, Ricci et al. 

2004),  (Bailey, Ivens et al. 2010), therefore the susceptibility of the csrA::aph mutant 

to substrates of the efflux pump was investigated, and compared to the 

susceptibilities of SL1344, SL1344 ramR::aph and E. coli (Table 2.4). 

 

Antibiotic Potency Storage Solubility Concentrations used for 
testing in µg/mL 

Ciprofloxacin >98 4°C Dissolve in 100 
µL acetic acid, 
then SDW 

1-0.0075 

Nalidixic Acid ≥ 98 -20°C Dissolve in 
SDW 

64-0.5 

Chloremphenicol >98 4°C 
(poisons box) 

Dissolve in 
70% Methanol 

32-0.5 

Tetracycline 95 -20°C Dissolve in 
SDW 

32-0.5 

Ethidium Bromide 95 Room temperature 
(poisons box) 

Dissolve in 
SDW 

2048-32 

 
Table 2.4: Antimicrobial compounds investigated, their potency, storage, solubility and concentrations 

tested. 
 

 
Overnight cultures of each strain were prepared in LB broth. The csrA::aph mutant 

was supplemented with 50 µg/mL kanamycin. After 24 hours, three inoculation 

dilutions were prepared by serial dilution in SDW: 1 x 109 cfu/mL (overnight stock), 1 

x 107 cfu/mL and 1 x 105 cfu/mL. Iso-Sensitest agar (1 L) (Oxoid) was prepared and 

autoclaved on the day of testing. Sterile 30 mL universals and sterile plastic, vented 

petri dishes were labelled for each antibiotic dilution investigated. “Start” and “Finish” 

universal tubes and petri dishes were also labelled; these were absent of antibiotic 

(negative controls), to ensure there was no external contamination during the 
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duration of the study. The volume of antibiotic dilutions added to each sterile 30 mL 

universal to achieve the correct concentration in 20mL Iso agar, is summarised by 

Table 2.5. 

 

Antibiotic concentrations used for testing in 
µg/mL 

Volume of antibiotic stock added per agar 
plate 

0.075 15 µL of 10 µg/mL stock 

0.015 30 µL of 10 µg/mL stock 

0.03 60 µL of 10 µg/mL stock 

0.06 13 µL of 100 µg/mL stock 

0.12 25 µL of 100 µg/mL stock 

0.25 50 µL of 100 µg/mL stock 

0.50 100 µL of 100 µg/mL stock 

1 20 µL of 1000 µg/mL stock 

2 40 µL of 1000 µg/mL stock 

4 80 µL of 1000 µg/mL stock 

8 160 µL of 1000 µg/mL stock 

16 320 µL of 1000 µg/mL stock 

32 64 µL of 10,000 µg/mL stock 

64 128 µL of 10,000 µg/mL stock 

128 256 µL of 10,000 µg/mL stock 

256 512 µL of 10,000 µg/mL stock 

512 1024 µL of 10,000 µg/mL stock 

1024 2048 µL of 10,000 µg/mL stock 

2048 4096 µL of 10,000 µg/mL stock 

 

Table 2.5: Volumes of antimicrobial compounds used to obtain the appropriate concentrations for 
testing. Stocks were prepared by serial 1:10 dilutions from an initial stock of 10,000 µg/mL, which were 

prepared on the day of testing. 
 
 
 

Iso agar (20 mL) was automatically dispensed into each universal tube, and these 

were immediately poured into the appropriately-labelled petri dishes and oven dried. 
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An MIC template was prepared as shown in Figure 2.6. 

 

Figure 2.6: MIC template layout for investigating the antimicrobial susceptibility of the csrA::aph mutant. 

 

A multipoint inoculator was used to dispense 1 µL from the MIC template, onto each 

agar plate. The final concentration of each spot was 1 x 106 cfu/mL, 1 x 104 cfu/mL 

and 1x 102 cfu/mL, respectively (Figure 10). All plates were incubated aerobically at 

37°C for 24 hours, and analysed by eye. The MIC of each antibiotic was defined as 

an 80% or greater reduction in the growth of the bacteria. 
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3.0 Results 

 

 

 

 
 

 

 



58 
 

3.1 Construction of the csrA::aph mutants 

E. coli plasmid pKD4, conferring kanamycin resistance by an aph gene, was used to 

replace the csrA gene in SL1344 with a kanamycin resistance cassette, following the 

gene activation protocol originally described by Datsenko and Wanner (Datsenko and 

Wanner 2000). One set of csrA knock-out primers was designed to amplify the 

kanamycin resistance cassette with flanking regions of homology to the csrA gene 

(csrA-tagged aph cassette), and recombination was stimulated in SL1344 via the low 

copy number plasmid, pKD46, encoding the phage λ Red recombinase enzyme, 

where arabinose was used to induce the enzyme promoter. 

 

Duplicate pKD4 plasmid preparations were analysed by gel electrophoresis, 

producing bands at ~6000 bp (Figure 3.1 A). The DNA in each plasmid preparation 

was quantified using a Qubit 2.0 Fluorometer (Invitrogen); values were 1.22 µg 

DNA/mL (pKD4 preparation 1) and 1.51 µg DNA/mL (pKD4 preparation 2). The PCR 

was used to amplify the csrA-tagged aph cassette in pKD4, and the PCR amplimer 

was confirmed by agarose gel electrophoresis both before and after PCR purification, 

to ensure DNA was not lost during the process. The resulting amplimers were ~1500 

bp in size (Figure 3.1 B). 

 

The csrA-tagged aph cassette was introduced into SL1344 carrying plasmid pKD46 

by electroporation, and confirmed by PCR (Figure 3.1 C). The csrA-tagged aph 

cassette band size was ~1500 bp, as expected.
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                       A                                                                                B                                                           C                                      
 

                  
 
 
 
 

Figure 3.1 A (left): Gel confirmation of pKD4 plasmid preparations (lane 1 and 2). HyperLadder 1KB is annotated to the left of the figure, B (middle): 
PCR confirmation of csrA-tagged aph cassette amplification in pKD4 (lane 1 and 2), C (right): PCR confirmation of SL1344 csrA::aph mutants (lane 1).  
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3.2 Growth kinetics of the csrA::aph mutant 

Following the selection of the csrA::aph mutant on LB agar supplemented with 

kanamycin, it was observed that the mutant displayed a slow-growth phenotype in LB 

broth supplemented with kanamycin. Therefore, the growth kinetics of the csrA::aph 

mutant in LB broth, minimal media with glucose and minimal media with pyruvate 

were investigated and compared to the wild-type strain, SL1344 (Figures 3.2 A, B, 

C). 

In LB broth, the csrA::aph mutant had a longer lag-phase compared to SL1344 and 

struggled to reach mid-log phase (OD600 of ~0.6-1) for the duration of the experiment 

(Figure 3.2 A). Extrapolation of the data suggests that where it took ~90 minutes for 

the OD600 of SL1344 to double (OD600 0.2 to 0.4), the csrA::aph mutant had a much 

longer generation time of ~140 minutes (Table 3.1). A similar trend between the 

strains was observed when they were grown in minimal media with glucose and 

minimal media with pyruvate (Figures 3.2 B and C, Table 3.1), although both strains 

struggled to reach mid-log phase in these media. In minimal media with pyruvate, the 

csrA::aph mutant reached a maximum OD600 of 0.12, after which, cell division ceased 

and cell death began to occur (Figure 3.2 C). Of the three media tested, the 

csrA::aph mutant grew best in LB broth, therefore all further studies involving this 

mutant were carried out in LB media. 

Media Tested SL1344 Generation Time csrA::aph mutant Generation Time 

LB Broth OD600 0.2 – 0.4: 
~90 minutes 

OD600 0.2 – 0.4: 
~140 minutes 

Minimal media with glucose OD600 0.05 – 0.1: 
~50 minutes 

OD600 0.05 – 0.1: 
~350 minutes 

Minimal media with pyruvate OD600 0.05 – 0.1: 
~70 minutes 

OD600 0.05 – 0.1: 
~150 minutes 

 

Table 3.1: Generation times of the csrA::aph mutant and wild-type, SL1344, in LB broth, minimal 
media and glucose and minimal media and pyruvate. Extrapolated from Figure 3.2.
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A                                                                                                                     B 

  
C 

  
 

Figure 3.2 A: Growth of the csrA::aph mutant and SL1344 in LB broth over 620 minutes (n=6, +/- SD), B: Growth of the csrA::aph mutant and SL1344 in 
minimal media with glucose over 620 minutes (n=6, +/- SD), C: Growth of the csrA::aph mutant and SL1344 in minimal media with pyruvate over 620 

minutes (n=6, +/- SD).
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3.3 Identification of csrA::aph candidates with pMW82-pramA, pMW82-pacrAB 

& pMW82-ptolC reporters 

TraDIS sequencing of SL1344 associated a csrA deletion with increased ramA 

expression (Ricci and Piddock, unpublished data), therefore plasmid pMW82-pramA 

encoding a GFP fused to a DNA fragment carrying the ramA promoter was prepared 

to investigate ramA transcription activity in the csrA::aph mutant, compared to the 

wild-type, SL1344. Additionally, strains containing the acrAB and tolC GFP reporter 

plasmids were prepared, to investigate the effect of csrA disruption on the expression 

of genes encoding the AcrAB-TolC efflux pump, of which RamA is a transcriptional 

activator.  

 

The pMW82-pramA plasmid preparation was analysed by gel electrophoresis, 

producing an amplimer at ~5000-6000 bp (Figure 3.3 A). The plasmid was introduced 

into the csrA::aph mutant by electroporation and confirmed by PCR (Figure 3.3 B). As 

expected, the strain had both the csrA deletion (Figure 3.3 B, lane 1) and the 

insertion of pMW82-pramA (Figure 3.3, lane 4). The pMW82-pramA amplimer size 

was ~800-1000 bp, which was not present in the wild-type strain, SL1344 (Figure 3.3 

B, lane 5). The wild-type csrA amplimer size in SL1344 was ~240 bp, reflecting the 

size of the gene (Figure 3.3 B, lane 2). Similarly, pMW82-pacrAB and pMW82-ptolC 

plasmid preparations were analysed by gel electrophoresis (Figure 3.3 C) and 

introduced into the csrA::aph mutant by electroporation, confirmed by PCR. Each 

plasmid was ~800-1000 bp in size (Figure 3.3 D lanes 1 and 4), and not present in 

the wild-type strain, SL1344 (Figure 3.3 D, lanes 2 and 5).
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A                                                                            B                                                                                 C 

                      
                                                                                             D 

                                                                                                
 

Figure 3.3 A: Gel confirmation of pMW82-pramA plasmid preparations (lane 1). HyperLadder 1KB is annotated to the left of the figure, B: PCR 
confirmation of csrA::aph mutants with pMW82-pramA reporter (lane 4), C: Gel confirmation of pMW82-pacrAB & -ptolC plasmid preparations (lane 1 

and 2), D: PCR confirmation of csrA::aph with pMW82-pacrAB & -ptolC reporters (lane 1 and lane 4).  
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The effect of csrA::aph on the transcription of acrAB, tolC & ramA  

Following the construction of SL1344 csrA::aph mutants encoding a GFP fused to the 

promoter regions of acrAB, tolC and ramA, GFP expression and therefore promoter 

activity for each gene, was measured in the csrA::aph mutant and compared to that 

in SL1344 containing the reporter constructs. 

 

The student T-Test was used to test the null hypothesis that fluorescence (AU) was 

equal in the csrA::aph mutant encoding acrAB, tolC and ramA promoters, compared 

to the wild-type, SL1344. As a csrA deletion had been associated with an increase in 

the transcription of ramA prior to this study (Ricci and Piddock, unpublished data), 

and increased ramA expression has been associated with an increase in acrAB-tolC 

expression (Nikaido, Yamaguchi et al. 2008), (Ricci and Piddock 2009), (O'Regan, 

Quinn et al. 2009), it was hypothesised that fluorescence was greater in the 

csrA::aph mutant, therefore a one-tailed distribution was assumed (two-sample 

assuming equal variance). A p-value of less than 0.05 = * significance, less than 0.01 

= ** significance, and 0.001 = *** significance.  

 

The csrA::aph mutant encoding pMW82-pramA emitted fluorescence 2.1 fold higher 

compared to the wild-type strain (5956 AU vs 12504 AU, Figure 3.4), suggesting 

increased transcription of ramA in the csrA-deficient strain (n=6, p-value: 5.03 x 10-

17). Fluorescence in the csrA::aph mutant encoding pMW82-ptolC decreased by 1.9 

fold compared to the wild-type strain (5600 AU vs 3097 AU, Figure 21) and the 

fluorescence generated by the csrA::aph mutant encoding pMW82-pacrAB 

decreased by 3.9 fold (18000 AU vs 4578 AU, Figure 3.4), suggesting decreased 
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transcription of acrAB and tolC in the csrA-deficient strain (n=6, p-values: 6.31 x 10-22 

and 6.83 x 10-28 for tolC and acrAB, respectively. 

 

 

 
Figure 3.4: GFP was fused to DNA fragments carrying the promoter regions of acrAB, tolC and ramA. 

Fluorescence was used as an empirical measure of acrAB, tolC and ramA promoter activity in the 
csrA::aph mutant and the wild-type strain, SL1344. Fluorescence was measured in AU after 192 

minutes  (n=6, +/- SD). 

 

 

3.4 The effect of csrA::aph on the expression of acrA, acrB, tolC, ramA, marA, 

soxS, rob & ramR 

The global transcriptional activators of acrAB in Enterobacteriaceae are encoded by 

ramA, marA, soxS and rob (Perez, Poza et al. 2012), therefore RT PCR was used to 

investigate the expression of acrA, acrB, tolC, ramA, marA, soxS, rob and ramR in 

the csrA::aph mutant and compared to the wild-type, SL1344. ramR expression was 

interrogated in order to confirm whether the apparent high transcription rate of ramA 

(Figure 3.4) was due to a decrease in repression by RamR. 
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Consistent with fluorescence data (Figure 3.4), ramA expression increased in the 

csrA::aph mutant, compared to the wild-type strain (Figure 3.5) (n=6, p-value: 3.5 x 

10-3). The expression of the transcriptional activators marA and soxS also increased 

in the csrA-deficient strain (n=6, p-values: 6.5 x 10-3 and 8.8 x 10-5, for marA and 

soxS respectively). tolC expression decreased modestly in the csrA::aph strain (n=6, 

p-value: 0.05), however acrA and acrB expression was not significantly different 

compared to the wild-type, SL1344 (n=6, p-values: 0.46 and 0.97, for acrA and acrB 

respectively. 

 

 

 
Figure 3.5: RT PCR was used to investigate the expression of acrA, acrB, tolC, ramA, marA, soxS, rob 
and ramR in the csrA::aph mutant and the wild-type strain, SL1344 (n=6, +/- SD). The time point of RT 

PCR was 93 minutes. 
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3.5 Biofilm formation & curli synthesis in the csrA::aph mutant 

Inactivated acrB or tolC efflux components have been associated with a defect in 

biofilm formation (Baugh, Ekanayaka et al. 2012), in addition to an increase in ramA 

expression (Baugh, Phillips et al. 2013). Therefore, the observed increase in ramA 

expression in the csrA::aph mutant prompted the investigation of curli synthesis and 

the formation of competent biofilm, compared to the wild-type, SL1344.  

 

S. enterica strain 14028S was used as a positive control for both biofilm formation 

and curli synthesis in this study, and the 14028S ΔtolC mutant was used as a 

negative control. Inactivation of the components of the AcrAB-TolC efflux pump has 

been shown to inhibit biofilm formation (Baugh, Ekanayaka et al. 2012), which is 

consistent with the results of this study. Biofilm formation decreased in the 14028S 

ΔtolC mutant (negative control), compared to the wild-type, 14028S (positive control), 

from OD600 3.76 to 0.77 (Figure 23) (n=6, p-value: 2.52 x 1011). 

 

Biofilm formation (OD600) decreased in the csrA::aph mutant, compared to the wild-

type strain, SL1344, from OD600: 0.29 to OD600: 0.05 (Figure 3.6) (n=6, p-value: 6.5 x 

10-5). Consistently, the csrA::aph mutant did not appear to produce curli, based on 

the observed phenotype on Congo Red agar (Figure 3.7 D). Under a light 

microscope, the positive control strain curli morphology was red and rough, which is 

characteristic of a strain that produces curli (Figure 3.7 A). Curli production in the 

wild-type strain, SL1344, was not as prominent as the positive control strain, however 

cells appeared rough under a light microscope, suggesting some level of curli 
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synthesis (Figure 3.7 C). The negative control strain morphology was pale and 

smooth, reflecting an inability to synthesise curli (Figure 3.7 B). 

 

 

Figure 3.6: Average biofilm formation in the csrA::aph mutant (SL1344 background) compared to 
SL1344 and 14028S positive and negative controls. Absorbance (at 600nm) was used as a measure 

of biofilm formation. n=6, +/- SD.  
 

    

 

Figure 3.7: Curli biosynthesis in: 14028S positive control (A), 14028S ΔtolC negative control (B), 
SL1344 (C) and the csrA::aph mutant (D), n=4. 

 

 

In order to confirm that csrA was required for competent biofilm formation and curli 
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background was confirmed by PCR (Figure 3.8). The csrA-tagged aph cassette 
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amplimer size was ~1500 bp (Figure 3.8, lanes 1-3), as expected by comparison with 

the control (Figure 3.8, lane 4). 

 

Figure 3.8: PCR confirmation following the transduction of the csrA::aph mutant into 14028S (lane 1, 2 
and 3). HyperLadder 1KB was used and is annotated to the left of the figure. 

 

 

Repeat biofilm and curli assays confirmed previous results; biofilm formation (OD600) 

decreased in the 14028S csrA::aph mutant, compared to the wild-type strain, 14028S, 

from OD600: 1.72 to OD600: 0.06 (Figure 3.9) (n=6, p-value: 2.1 x 10-6). Consistently, 

the 14028S csrA::aph mutant did not appear to produce curli, based on the observed 

phenotype on Congo Red agar (Figure 3.10 C).  
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Figure 3.9: Average biofilm formation in the csrA::aph mutant (14028S background) compared to 
SL1344 and 14028S positive and negative controls. Absorbance (at 600nm) was used as a measure 

of biofilm formation. n=6, +/- SD. 

 

 

Figure 3.10: Curli biosynthesis in: 14028S (A), 14028S ΔtolC (B), and the csrA::aph mutant (14028S 
background) (C), n=4. 

 

 

3.6 Antimicrobial susceptibility of the csrA::aph mutant 

The overexpression of acrAB as a result of ramA overexpression correlates with 

MDR and decreases in susceptibility to substrates of the AcrAB-TolC efflux pump 

(van der Straaten, Janssen et al. 2004), (Ricci and Piddock 2009), (Bailey, Ivens et 

al. 2010).  Therefore, the antimicrobial susceptibility of the csrA::aph mutant to 

structurally distinct quinolones (nalidixic acid), fluoroquinolones (ciprofloxacin), 

phenicols (chloremphenicol), tetracycline and ethidium bromide was investigated by 

determining the MIC of each compound, and compared to MICs for the wild-type 
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strain SL1344, SL1344 ramR::aph and E. coli. The compounds tested are known 

substrates of the AcrAB-TolC efflux pump (Giraud, Cloeckaert et al. 2000), (Piddock, 

White et al. 2000) (Baucheron, Imberechts et al. 2002), (Baucheron, Chaslus-Dancla 

et al. 2004), (Eaves, Ricci et al. 2004),  (Bailey, Ivens et al. 2010).  

 

The csrA::aph mutant did not display a MDR phenotype as MICs were +/- 1 dilution 

compared with SL1344 (Table 3.2); the tetracycline MIC range for the csrA::aph 

mutant and SL1344 at 1 x 106 cfu/mL, was 1, whereas the MIC range for the SL1344 

ramR::aph mutant was 4-fold higher, an expected phenotype due to the deletion of 

ramR and the subsequent increase in expression of ramA and induction of AcrAB-

TolC. 

Final concentration of bacteria: 1 x10
6
 cfu/mL 

 
MIC µg/mL  

Strain  
CIP Range 

 
NAL Range 

 
CHL Range 

TET Range 
 

EtBr Range 

SL1344 0.0075 - 0.03 4 - 8 2 - 4 1 2048 

E. coli  0.015 8 8 – 16 2 - 4 2048 

SL1344 ramR::aph 0.06 16 8 4 2048 

SL1344 csrA::aph 0.015 8 2 - 4 1 1024 

              
Final concentration of bacteria: 1 x10

4
 cfu/mL 

 
MIC µg/mL 

Strain  CIP Range NAL Range CHL Range TET Range EtBr Range 

SL1344 0.0075 - 0.015 2 - 4 2 - 4 1 1024 

E. coli  0.0075 8 4 1 1024 

SL1344 ramR::aph 0.03 16 8 - 16 4 2048 

SL1344 csrA::aph 0.0075 4 - 8 2 - 4 0.5 512 

              
Final concentration of bacteria: 1 x 10

2
 cfu/mL 

 
MIC µg/mL 

Strain  CIP Range NAL Range CHL Range TET Range EtBr Range 

SL1344 0.0075 - 0.015 2 - 4 2 - 4 1 1024 

E. coli  0.0075 4 4 1 64 

SL1344 ramR::aph 0.03 16 8 4 2048 

SL1344 csrA::aph 0.0075 2 - 4 1 0.5 128 

 

Table 3.2: MIC results (n=2) for each compound at each cell concentration tested (cfu/mL).  CIP = 
ciprofloxacin, NAL = nalidixic acid, CHL = chloremphenicol, TET = tetracycline and EtBr = ethidium 

bromide. 
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4.0 Discussion 
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4.1 Research hypothesis and experimental aims 

The primary hypothesis that was investigated in this study was that CsrA may be 

involved in the regulation of RamA in S. enterica serovar Typhimurium SL1344, and 

therefore play a role in multi-drug resistance by bacterial efflux via AcrAB-TolC, which 

RamA is a known to be a transcriptional activator of. This hypothesis arose from 

experiments by Ricci & Piddock (unpublished data), in which pMW82-pramA, a 

plasmid containing the cloned ramA promoter region fused to a gene encoding a 

green fluorescent protein (GFP) was introduced into the TraDIS library of SL1344. 

Flow cytometry revealed populations which had greater expression of ramA than the 

wild-type, SL1344. Subsequent experiments followed by DNA sequencing revealed 

that transposon disruption of the csrA gene resulted in a significant increase in GFP 

on two separate occasions. Therefore, it was proposed that CsrA may be involved in 

the regulation of RamA.  

The experimental aims of this project were to create and characterise a csrA::aph 

mutant in SL1344 and investigate the effects of the gene disruption on the 

expression of acrA, acrB, tolC, ramA, marA, soxS, rob and ramR, the mutant’s 

susceptibility to structurally distinct antimicrobials that are known substrates of the 

AcrAB-TolC efflux pump (Giraud, Cloeckaert et al. 2000), (Piddock, White et al. 2000) 

(Baucheron, Imberechts et al. 2002), (Baucheron, Chaslus-Dancla et al. 2004), 

(Eaves, Ricci et al. 2004), (Bailey, Ivens et al. 2010), and the mutant’s ability to 

produce curli and competent biofilm, both known to be influenced by the expression 

of acrB and tolC (Baugh, Ekanayaka et al. 2012).  
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4.2 The effect of the csrA gene on the growth of S. enterica Serovar 

Typhimurium 

The csrA gene was initially identified in E. coli K-12 by transposon mutagenesis, and 

first described as a negative regulator of glycogen biosynthesis during stationary 

phase (Romeo, Gong et al. 1993). The changes in gene expression of csrA and other 

stationary phase genes regulate bacterial physiology and metabolism in response to 

changes in environmental conditions. This enables bacteria to survive and adapt to 

suboptimal conditions, such as nutrient depletion and other poor growth conditions. 

Bacterial cells in the stationary growth phase are more efficient in utilising nutrients, 

and have an increased level of stress resistance compared to exponential phase 

cells, due to coordinated gene expression by global regulatory networks (Gottesman 

1984).  

csrA encodes an RNA-binding protein, CsrA, which  binds to the mRNA sequences 

of its target molecules, preventing them from being accessible to the ribosome and 

ribosomal binding site (RBS). In this way, CsrA is able to modulate the translation of 

specific mRNA, either by altering the stability of the mRNA, or degrading the mRNA 

transcript before it is translated into protein by the ribosome (Romeo 1998), (Dubey, 

Baker et al. 2003).    

CsrA has been shown to bind to specific sequences on mRNA molecules, containing 

GGA motifs and it is thought that CsrA blocks ribosome access to the Shine-

Dalgarno sequence (Dubey, Baker et al. 2003), (Baker, Eory et al. 2007), a sequence 

found upstream of the start codon (AUG) that helps recruit the ribosome to the mRNA 

transcript. The Shine-Dalgarno sequence contains a conserved GGA sequence 
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(Baker, Eory et al. 2007), suggesting that CsrA envelopes this sequence when it is 

actively bound, preventing ribosome access.  

A mutation in the csrA gene has previously been associated with an increase in the 

expression of two genes involved in glycogen synthesis, glgB (glycogen branching 

enzyme) and glgC (ADP glucose pyrophosphorylase), and the regulatory mechanism 

exerted by this gene was apparently independent of the other positive regulators of 

glgC expression (Romeo, Gong et al. 1993). The deletion of the csrA gene also 

resulted in an increase in the expression of genes involved in the gluconeogenesis 

pathway, such as pckA (phosphoenolpyruvate carboxykinase). csrA has also been 

shown to negatively regulate fructose-1,6-bisphosphatase and phospoenolpyruvate 

synthetase of the gluconeogenic pathway, and positively regulate glycolysis enzymes 

including enolase, triose-phosphate isomerase and glucose-6-phosphate isomerase 

(Sabnis, Yang et al. 1995).  

The csrA::aph mutant created in this study had a growth defect, which is likely due to 

the effect of the gene deletion on the utilisation of carbon in SL1344. An investigation 

of the growth kinetics of the csrA::aph mutant and the wild-type, SL1344, revealed 

that in the absence of the csrA gene the strain struggled to reach mid-log phase in 

LB broth and minimal medium containing glucose or pyruvate. LB broth was the most 

nutritious media used and the growth of the csrA::aph mutant was optimal in this 

medium. LB broth contains tryptone, which provides an amino acid source, yeast 

extract, which provides a carbon source, and sodium chloride to maintain osmotic 

balance, whereas minimal medium contains only the minimal requirements for 

bacterial growth (inorganic salts and water), supplemented with a carbon source, 

which in this study was glucose or pyruvate. In E. coli, the csrA gene has been 



76 
 

proposed to be essential for the growth of bacteria in media containing glycolytic 

sources (Romeo, Gong et al. 1993), (Timmermans and Van Melderen 2009), likely 

due to the lack of repression of the enzymes involved in the cellular synthesis of 

glycogen, and the excess glycogen that accumulates in the media. The observations 

in this study, which found that the csrA::aph mutant displayed a long lag phase in 

minimal medium supplemented with glucose, was consistent with data previously 

published for E. coli (Romeo, Gong et al. 1993), (Timmermans and Van Melderen 

2009). 

Although the absence of the csrA gene has been linked to growth defects in 

glycolytic media, in E. coli it has been reported that growth is not affected in media 

containing pyruvate (Timmermans and Van Melderen 2009), as the pyruvate reduces 

the burden of the glycolysis pathway to convert glucose into pyruvate and therefore 

provides the intermediates for the Krebs Cycle or gluconeogenesis, the components 

of which are upregulated in an E. coli csrA::aph mutant (Sabnis, Yang et al. 1995). 

Previous data suggests that it is glycolysis which is impaired in the csrA::aph mutant 

in E. coli, and the accumulation of glycogen affects bacterial viability (Timmermans 

and Van Melderen 2009). However, in the present study the csrA::aph mutant in 

SL1344 was unable to grow in minimal medium supplemented with pyruvate and 

displayed similar growth in this medium compared to minimal media supplemented 

with glucose, therefore it is possible that the phenotype observed in the csrA::aph 

mutant in the presence of pyruvate could be due to some dysregulation in the Krebs 

cycle and gluconeogenic pathways caused by the disruption to the csrA gene in this 

strain.  



77 
 

As the csrA::aph mutant displayed optimal growth in LB broth, this medium was used 

for the duration of the study. Despite this, fresh aerobic cultures of the csrA::aph 

mutant at 37°C struggled to reach mid-log phase on the days of testing, so overnight 

cultures were used for aspects of the study that required the fresh growth of cells to 

mid-log phase. For the background strain, SL1344, overnight cultures were used to 

prepare a fresh culture on the days of testing, and these reached mid-log phase in 

~2-3 hours. 

 

4.3 The effect of the csrA gene on the expression of ramA  

The ramA gene is a member of the AraC/XylS family of transcriptional activators 

(Gallegos, Schleif et al. 1997) and increased ramA expression is associated with an 

increase in the expression of acrA, acrB and tolC, which encode the components of 

the tripartite AcrAB-TolC MDR efflux complex, resulting in multi-drug resistance to 

structurally distinct antimicrobials that are expelled by this pump. RamA regulates 

efflux by AcrAB-TolC in most Enterobacteriaceae, except in E. coli and Shigella spp., 

which encode the homologue, marA (van der Straaten, Janssen et al. 2004), (Bailey, 

Paulsen et al. 2008). 

To confirm data obtained by TraDIS sequencing, which identified that deletion of csrA 

in SL1344 resulted in a significant increase in ramA transcription, pMW82-pramA, a 

plasmid containing a gene encoding a GFP fused to a DNA fragment carrying the 

ramA promoter region (290 bp) was used. Analysis of the fluorescence activity in the 

csrA::aph mutant with pMW82-pramA, showed that the expression of GFP was over 

2 fold higher, compared to the wild-type strain, SL1344 with pMW82-pramA; these 
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data confirmed the TraDIS observation. RT-PCR showed that ramA expression was 

increased in the csrA::aph mutant, confirming the GFP data. Interestingly, expression 

of marA and soxS transcriptional activators was also increased, however as with 

ramA, to date there have been no studies to show that these genes have a binding 

site for, or are regulated by CsrA. 

RamR, a member of the TetR family of transcriptional repressors, is the local 

repressor of RamA. Mutations in ramR are associated with an increase in the 

expression of ramA, the upregulation of the AcrAB-TolC efflux pump, and MDR 

(Abouzeed, Baucheron et al. 2008), (Ricci, Busby et al. 2012). The ramR gene is 

located in the opposite orientation to ramA, and lies upstream of it in S. enterica 

serovar Typhimurium. It is known that the RamR protein binds to the ramA-ramR 

intergenic region, which is located upstream of ramA, resulting in transcriptional 

repression (Abouzeed, Baucheron et al. 2008), (Baucheron, Coste et al. 2012), 

(Ricci, Busby et al. 2012), (Yamasaki, Nikaido et al. 2013). 

 

RT-PCR data indicated that ramR expression was not significantly changed in the 

csrA::aph mutant, suggesting that the increase in ramA expression observed was not 

due to the depression of ramR. It is therefore hypothesised that CsrA binds to ramA 

and negatively regulates the gene at the post-transcriptional level, in a distinct 

mechanism to the transcriptional repression of ramA by RamR. Based on the 

fluorescence data obtained using pMW82-pramA and data to support how CsrA 

interacts with its targets (Barnard, Loughlin et al. 2004), (Romeo, Gong et al. 1993), 

(Romeo, Vakulskas et al. 2013), (Seyll and Van Melderen 2013), CsrA may bind to a 

GGA motif in the ramA promoter sequence and so interferes with the translation of 
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RamA protein. However, it would be necessary to confirm that the csrA::aph mutant 

produces more RamA protein, as high gene expression does not always correlate 

with high protein expression. Unfortunately, due to the time constraints of this project, 

it was not possible to detect the RamA protein in the csrA::aph mutant by Western 

blotting. 

 

4.4 The effect of the csrA gene on the expression of acrAB-tolC  

Salmonella can be MDR as a consequence of the upregulation of efflux via AcrAB-

TolC; this is typically characterised with increased expression of ramA (van der 

Straaten, Janssen et al. 2004), (Bailey, Paulsen et al. 2008). It was therefore 

hypothesized that the csrA::aph mutant constructed in this study would express the 

components of the AcrAB-TolC efflux pump at a higher level compared to the 

parental strain, SL1344, due to the increased ramA expression observed by 

fluorescence analysis. pMW82-pacrAB and pMW82-ptolC were plasmids that 

contained a gene encoding a GFP fused to DNA fragments carrying the acrAB and 

tolC promoter regions, respectively. The fluorescence data suggests that the 

transcription of these genes did not increase in the csrA::aph mutant, which is 

consistent with RT-PCR data. However, the fluorescence data suggests that 

promoter activity for acrAB genes significantly decreased compared to the wild-type 

strain, whereas RT-PCR data showed similar expression profiles of acrA and acrB in 

the csrA::aph mutant and the wild-type strain. The reason for this is unclear, although 

it could be a reflection of a regulatory mechanism affecting the transcription of both 

genes, as both acrA and acrB are required for AcrAB-TolC. However, RT PCR data 

presented in this study is limited by the variation between data points used to 
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calculate the mean fold change in gene expression, suggesting that it may be difficult 

to draw conclusions from this data without further repeats of the assay. MIC data 

provided further evidence that the acrA, acrB and tolC genes were not significantly 

upregulated in the csrA::aph mutant; MICs of a range of antibiotic classes, including 

quinolones, fluoroquinolones, phenicols and tetracycline were determined, in order to 

investigate the effects of the csrA deletion on a broad range of known substrates of 

the AcrAB-TolC efflux pump (Giraud, Cloeckaert et al. 2000), (Piddock, White et al. 

2000), (Eaves, Ricci et al. 2004), (Baucheron, Chaslus-Dancla et al. 2004), (Bailey, 

Ivens et al. 2010), (Baucheron, Imberechts et al. 2002). 

The inactivation of the csrA gene had no measurable effect on the susceptibility of 

SL1344 to the compounds tested and the MIC data obtained was similar to that for 

the parental strain, SL1344 (+/- 1 dilution). The ramR::aph mutant used as a control 

in this study was MDR, so it could be possible that MDR mediated by ramR 

inactivation is a distinct mechanism of antimicrobial resistance via the upregulation of 

AcrAB-TolC; however csrA may play a role in the regulation of ramA expression, 

separate to that of ramR. It would be useful to investigate the expression of csrA in 

the ramR mutant used in this study, to further explore whether there is a relationship 

between csrA and ramR. Alternatively, it could be possible that CsrA binds to ramR, 

inhibiting translation of the RamR protein and therefore leading to an increase in 

ramA expression. The detection of reduced RamR protein in the csrA::aph mutant 

should be confirmed by Western blotting to address this hypothesis further. It would 

also be interesting to overexpress ramR in the csrA::aph mutant, to investigate 

whether ramA is still overexpressed, using the pMW82-pramA reporter and GFP 

expression analysis; ramA expression could increase even higher than that observed 
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in the csrA::aph mutant, suggesting two separate mechanisms of RamA regulation, 

and it would be interesting to investigate how the MICs changed in comparison with 

the ramR-deleted mutant used as a control for the MIC analyses in this study. 

 

4.5 The effect of the csrA gene on pathogenicity  

Previous studies have suggested that post-transcriptional regulators play significant 

roles in mediating the interactions between bacterial pathogens and host cells 

(Romeo 1998). These host-pathogen interactions include the ability to colonise and 

persist in host cells, as well as the secretion of various virulence factors that enable 

bacteria to cause infection (Johansson and Cossart 2003). Post-transcriptional 

regulation allows these mechanisms to be intricately controlled, through the 

mediation of cellular changes that lead to altered gene expression in pathogenic 

bacteria. 

There is an association between AcrAB-TolC, pathogenicity and bacterial resistance 

(Buckley, Webber et al. 2006), as well as biofilm formation (Baugh, Ekanayaka et al. 

2012). Cells in a biofilm consist of those which are actively growing and those which 

have very slow metabolic rates, and this complex association of cells makes them 

difficult targets for eradication, particularly on surfaces such as contaminated food, 

water supplies, and medical devices (Passerini, Lam et al. 1992).  

CsrA has been proposed to globally regulate genes involved in biofilm synthesis in E. 

coli (Wang, Dubey et al. 2005). Its role in competent biofilm formation in SL1344 was 

investigated in this study and the results indicated that the csrA::aph mutant was 

unable to form competent biofilm in SL1344. When the csrA::aph mutant was 
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transduced into the background of a good biofilming strain of Salmonella, 14028S, a 

more prominent difference was seen between the strains when csrA was disrupted. 

In E. coli, the disruption of the csrA gene led to an increase in the synthesis of poly-

beta-1,6-N-acetyl-d-glucosamine (PGA), so it has been proposed that CsrA 

competitively binds to the mRNA of PGA to block the access of the molecule to the 

30S ribosomal subunit. Mutations in the sequences overlapping the Shine Dalgarno 

sequence of the target, proposed to be the CsrA binding site, also lead to a similar 

phenotype (Wang, Dubey et al. 2005).  

The S. enterica serovar Typhimurium biofilm matrix is composed of cellulose and 

curli fibres. As curli are important for surface attachment and successful colonisation 

of a bacterial biofilm, the ability of the SL1344 csrA::aph mutant to synthesise curli 

was investigated; the csrA::aph mutant did not produce curli and the observed 

phenotype on Congo Red correlates with the strains reduced ability to produce 

competent biofilm. When transduced into the strain, 14028S, the csrA::aph mutant 

was also unable to produce curli, which is consistent with the biofilm data.  

High ramA expression has been associated with a decrease in curli production, and 

therefore an inability to form competent biofilm (Baugh, Phillips et al. 2013), which is 

consistent with the results of this study. The csrA gene could provide a link between 

increased ramA expression and decreased curli biosynthesis, however this would be 

difficult to conclude solely from the present study, and would require further 

investigation to elucidate the molecular mechanisms surrounding curli biosynthesis 

during biofilm formation.  
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4.6 Regulation of the csrA gene 

In E. coli, CsrA is regulated by two small non-coding RNAs, CsrB and CsrC, that form 

large ribonucleoprotein complexes with CsrA (Romeo 1998). CsrB and CsrC contain 

binding sites for CsrA, which include conserved GGA amino acid sequences. The 

two small non-coding RNAs mimic CsrA targets, and therefore sequester CsrA 

activity by antagonising its regulatory effects. CsrB is a 366-nucleotide RNA molecule 

(Gudapaty, Suzuki et al. 2001), that can bind up to 18 subunits (9 dimers) of CsrA 

(Liu, Gui et al. 1997), (Romeo 1998). The CsrC protein is smaller and has a lower 

affinity for CsrA, being able to bind up to 6-8 subunits (3-4 dimers) of CsrA, however 

both molecules appear to use the same mechanism to sequester CsrA (Weilbacher, 

Suzuki et al. 2003). csrC disruption leads to an increase in csrB transcription and 

deletion of csrB leads to glycogen deficiency, a similar phenotype to that observed 

when csrA is over-expressed. When csrA was disrupted, CsrB RNA levels decreased 

(Gudapaty, Suzuki et al. 2001). It has been suggested that the level of CsrB is central 

to CsrA activity in the species (Romeo 1998), therefore it would be interesting to 

explore the association between csrB expression and ramA expression in the 

csrA::aph mutant in SL1344. If the expression of csrB decreases following disruption 

of the csrA gene, it is possible that the effects observed in the present study are not 

directly due to csrA disruption, but due to CsrB, and so this could be central to the 

regulation of RamA. One CsrB molecule has ~18 binding units for CsrA (Liu, Gui et al. 

1997), (Romeo 1998), meaning that it is potentially likely that the remaining ~65-85% 

of the protein could interact with other RNA molecules (Gudapaty, Suzuki et al. 2001), 

potentially including ramA. 
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4.7 Conclusions of the study 

The genes under the global control of CsrA are locally regulated; ramA is under the 

control of RamR, so CsrA, like other global regulators, might provide fine tuning of 

bacterial gene expression. Although the majority of studies have been done in E. coli, 

the csrA gene is evolutionarily conserved across distinct groups of bacteria, and 

there are homologues of the csrA gene amongst prokaryotes (Lapouge, Schubert et 

al. 2008). 

The present study demonstrated that disruption of the csrA gene in S. enterica 

serovar Typhimurium led to a significant increase in the expression of ramA, marA 

and soxS (Figure 4.1 A), which are genes known to regulate bacterial efflux via the 

AcrAB-TolC tripartite efflux pump. However, an increase in the expression of these 

genes, did not lead to the increased expression of acrA, acrB and tolC (Figure 4.1 B), 

and the csrA::aph mutant was not MDR to a range of structurally-distinct substrates 

of the AcrAB-TolC efflux pump. The increase in ramA expression was not due to an a 

decrease in ramR expression, which has previously been demonstrated as a distinct 

mechanism of ramA regulation. Therefore the effect of csrA expression to ramA 

expression may be via a separate mechanism from its local repression by RamR. 
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Figure 4.1: Proposed CsrA interactions. A: CsrA appears to be involved in the transcriptional 
repression of ramA, marA and soxS.  B: In a csrA::aph mutant, the expression of the transcriptional 
activators ramA, marA and soxS increases, consistent with an inability to form competent biofilm. 
However, it is not yet clear why this does not lead to an increase in the expression of acrAB-tolC 

genes. 
 
 
 

It is interesting to consider why ramA expression is increased in the csrA::aph mutant, 

without leading to an increase in the expression of acrA, acrB and tolC genes that 

encode the components of the AcrAB-TolC efflux pump. Due to the growth defects 

observed in the strain during this study, and previous data indicating the importance 

of csrA for growth in the presence of various carbon sources, it is possible that RamA 
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could also be involved in the stress response of S. enterica serovar Typhimurium, 

and the increase in ramA expression is a mechanism to compensate for the loss of 

the csrA gene. When the csrA gene was disrupted, the ability to synthesise curli and 

produce competent biofilm was impaired. Mutation in the csrA gene in S. enterica 

serovar Typhimurium has also been associated with an increase in the expression of 

the genes required for successful invasion or mammalian gastrointestinal mucosa 

(Jackson, Suzuki et al. 2002). This suggests that the genes necessary for survival 

may be upregulated in the absence of csrA, likely due to the central role of this gene 

in the global regulation of bacterial gene expression. 

 

4.8 Limitations of the study 

The present study was limited by the growth defect observed in the csrA::aph mutant, 

so it may be difficult to conclude that the increase in ramA expression was due to a 

csrA gene deletion, rather than the effects of poor growth in the strain. When 

preparing cultures of the csrA::aph mutant for testing, overnight cultures that had 

been aerobically incubated at 37°C with shaking for ~18-24 hours had only just 

reached mid-log phase, whereas diluted overnight cultures of SL1344 reached mid-

log phase in ~2-3 hours. It is unclear how the growth kinetics of the csrA::aph mutant 

affected the gene expression of the strain, and the phenotype observed during 

biofilm and curli investigation. Additionally, RNA preparations of the csrA::aph mutant 

for RT-PCR were prepared in LB broth, with static aerobic incubation at 37°C, due to 

difficulties in replicating the growth conditions in minimal media. Therefore it may not 

be possible to directly compare the gene expression data obtained in the present 
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study with other laboratory data involving the expression of similar genes in other 

SL1344 strains. 

The study is also limited by the lack of information about the interactions between 

CsrA, RamA, and potentially RamR, however the study presents novel data that may 

benefit further work. 

 

4.9 Proposed future work 

It would be interesting to investigate how the observations in this study are affected 

by csrA overexpression in S. enterica serovar Typhimurium, because other studies 

have shown that the expression of cell invasion genes remains constant when csrA is 

overexpressed or disrupted (Altier et al. 2000). It would be interesting to examine the 

effect of csrA overexpression on ramA expression, as this could provide further 

insight of the regulatory relationship between csrA and ramA. In a csrA-

overexpressed mutant, it would also be interesting to consider how antimicrobial 

susceptibility and biofilm formation are affected; if the phenotypes of a csrA-deletion 

and csrA-overexpression mutant are similar, this may suggest that bacteria have a 

compensatory mechanism for the loss of csrA, likely because csrA is central to the 

intricate regulation of bacterial gene expression, so it would be necessary to keep 

CsrA levels constant in the cell. 

Additionally, the csrA::aph mutant could be used to investigate how invasion is 

affected in SL1344 when the csrA gene is disrupted. In other studies, increased 

expression of ramA is associated with a significant decline in fitness and survival in 

macrophages (Bailey et al. 2010), so it may be possible to hypothesise that, similarly 
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to a ramA overexpressed strain, the csrA::aph mutant may invade cells poorly. This 

could further ascertain the role of csrA in the stress response in S. enterica serovar 

Typhimurium.  

As previously mentioned, due to time constraints, it was not possible to produce data 

to indicate that the increased expression of ramA in the csrA::aph mutant was 

indicative of increased translation of the RamA protein. Therefore, I propose that the 

confirmation of the RamA protein in this strain would be the primary objective in the 

continuation of the study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



89 
 

 

 

 

5.0 References 

 

 

 

 

 

 



90 
 

Abouzeed, Y. M., S. Baucheron, et al. (2008). "ramR mutations involved in efflux-mediated multidrug 
resistance in Salmonella enterica serovar Typhimurium." Antimicrobial Agents and 
Chemotherapy 52(7): 2428-2434. 

 
Adamson, D. N. and H. N. Lim (2013). "Rapid and robust signaling in the CsrA cascade via RNA-

protein interactions and feedback regulation." Proceedings of the National Academy of 
Sciences of the United States of America 110(32): 13120-13125. 

 
Agaras, B., P. Sobrero, et al. (2013). "A CsrA/RsmA translational regulator gene encoded in the 

replication region of a Sinorhizobium meliloti cryptic plasmid complements Pseudomonas 
fluorescens rsmA/E mutants." Microbiology-Sgm 159: 230-242. 

 
Altier, C., M. Suyemoto, et al. (2000). "Regulation of Salmonella enterica serovar typhimurium invasion 

genes by csrA." Infection and Immunity 68(12): 6790-6797. 
 
Bailey, A. M., A. Ivens, et al. (2010). "RamA, a Member of the AraC/XylS Family, Influences Both 

Virulence and Efflux in Salmonella enterica Serovar Typhimurium." Journal of Bacteriology 
192(6): 1607-1616. 

 
Bailey, A. M., I. T. Paulsen, et al. (2008). "RamA confers multidrug resistance in Salmonella enterica 

via increased expression of acrB, which is inhibited by chlorpromazine." Antimicrobial Agents 
and Chemotherapy 52(10): 3604-3611. 

 
Baker, C. S., L. A. Eory, et al. (2007). "CsrA inhibits translation initiation of Escherichia coli hfq by 

binding to a single site overlapping the Shine-Dalgarno sequence." Journal of Bacteriology 
189(15): 5472-5481. 

 
Barnard, F. M., M. F. Loughlin, et al. (2004). "Global regulation of virulence and the stress response by 

CsrA in the highly adapted human gastric pathogen Helicobacter pylori." Molecular 
Microbiology 51(1): 15-32. 

 
Baucheron, S., E. Chaslus-Dancla, et al. (2004). "Role of TolC and parC mutation in high-level 

fluoroquinolone resistance in Salmonella enterica serotype Typhimurium DT204." Journal of 
Antimicrobial Chemotherapy 53(4): 657-659. 

 
Baucheron, S., F. Coste, et al. (2012). "Binding of the RamR Repressor to Wild-Type and Mutated 

Promoters of the ramA Gene Involved in Efflux-Mediated Multidrug Resistance in Salmonella 
enterica Serovar Typhimurium." Antimicrobial Agents and Chemotherapy 56(2): 942-948. 

 
Baucheron, S., H. Imberechts, et al. (2002). "The AcrB multidrug transporter plays a major role in high-

level fluoroquinolone resistance in Salmonella enterica serovar typhimurium phage type 
DT204." Microbial Drug Resistance-Mechanisms Epidemiology and Disease 8(4): 281-289. 

 
Baucheron, S., S. Tyler, et al. (2004). "AcrAB-TolC directs efflux-mediated multidrug resistance in 

Salmonella enterica serovar Typhimurium DT104." Antimicrobial Agents and Chemotherapy 
48(10): 3729-3735. 

 
Baugh, S., A. S. Ekanayaka, et al. (2012). "Loss of or inhibition of all multidrug resistance efflux pumps 

of Salmonella enterica serovar Typhimurium results in impaired ability to form a biofilm." 
Journal of Antimicrobial Chemotherapy 67(10): 2409-2417. 

 
Baugh, S., CR Phillips, et al. (2014). "Inhibition of multidrug efflux as a strategy to prevent biofilm 

formation."  
             Journal of Antimicrobial Chemotherapy 69(3): 673-81. 
 
Buckley, A. M., M. A. Webber, et al. (2006). "The AcrAB-TolC efflux system of Salmonella enterica 

serovar Typhimurium plays a role in pathogenesis." Cellular Microbiology 8(5): 847-856. 
 



91 
 

Casin, I., J. Breuil, et al. (2003). "Fluoroquinolone resistance linked to GyrA, GyrB, and ParC 
mutations in Salmonella enterica Typhimurium isolates in humans." Emerging Infectious 
Diseases 9(11): 1455-1457. 

 
Chopra, I. and M. Roberts (2001). "Tetracycline antibiotics: Mode of action, applications, molecular 

biology, and epidemiology of bacterial resistance." Microbiology and Molecular Biology 
Reviews 65(2): 232-+. 

 
Costerton, J. W., K. J. Cheng, et al. (1987). "Bacterial Biofilms in Nature and Disease." Annual Review 

of Microbiology 41: 435-464. 
 
Costerton, J. W., P. S. Stewart, et al. (1999). "Bacterial biofilms: A common cause of persistent 

infections." Science 284(5418): 1318-1322. 
 
Datsenko, K. A. and B. L. Wanner (2000). "One-step inactivation of chromosomal genes in 

Escherichia coli K-12 using PCR products." Proceedings of the National Academy of Sciences 
of the United States of America 97(12): 6640-6645. 

 
Donlan, R. M. (2001). "Biofilms and device-associated infections." Emerging Infectious Diseases 7(2): 

277-281. 
 
Dubey, A. K., C. S. Baker, et al. (2003). "CsrA regulates translation of the Escherichia coli carbon 

starvation gene, cstA, by blocking ribosome access to the cstA transcript." Journal of 
Bacteriology 185(15): 4450-4460. 

 
Eaves, D. J., V. Ricci, et al. (2004). "Expression of acrB, acrF, acrD, marA, and soxS in salmonella 

enterica serovar typhimurium: Role in multiple antibiotic resistance." Antimicrobial Agents and 
Chemotherapy 48(4): 1145-1150. 

 
Fey, P. D., T. J. Safranek, et al. (2000). "Ceftriaxone-resistant salmonella infection acquired by a child 

from cattle." New England Journal of Medicine 342(17): 1242-1249. 
 
Fierer, J. and D. G. Guiney (2001). "Diverse virulence traits underlying different clinical outcomes of 

Salmonella infection." Journal of Clinical Investigation 107(7): 775-780. 
 
Finlay, B. B., S. Ruschkowski, et al. (1991). "Cytoskeletal Rearrangements Accompanying Salmonella 

Entry into Epithelial-Cells." Journal of Cell Science 99: 283-&. 
 
Fralick, J. A. (1996). "Evidence that TolC is required for functioning of the Mar/AcrAB efflux pump of 

Escherichia coli." Journal of Bacteriology 178(19): 5803-5805. 
 
Gallegos, M. T., R. Schleif, et al. (1997). "AraC/XylS family of transcriptional regulators." Microbiology 

and Molecular Biology Reviews 61(4): 393-&. 
 
Giraud, E., A. Cloeckaert, et al. (2000). "Evidence for active efflux as the primary mechanism of 

resistance to ciprofloxacin in Salmonella enterica serovar typhimurium." Antimicrobial Agents 
and Chemotherapy 44(5): 1223-1228. 

 
Glynn, M. K., C. Bopp, et al. (1998). "Emergence of multidrug-resistant Salmonella enterica serotype 

typhimurium DT104 infections in the United States." New England Journal of Medicine 
338(19): 1333-1338. 

 
Goodman, A.L, Kulasekara, B, Rietsch A, Boyd, D, Smith, R.S, Lory, S. (2004). "A signalling network 

reciprocally regulates genes associated with acute infection and chronic persistence in 
Pseudomonas aeruginosa." Developmental Cell 7(5): 745-754. 

 
Gottesman, S. (1984). "Bacterial Regulation - Global Regulatory Networks." Annual Review of 

Genetics 18: 415-441. 



92 
 

 
Gudapaty, S., K. Suzuki, et al. (2001). "Regulatory interactions of Csr components: the RNA binding 

protein CsrA activates csrB transcription in Escherichia coli." Journal of Bacteriology 183(20): 
6017-6027. 

 
Horiyama, T., A. Yamaguchi, et al. (2010). "TolC dependency of multidrug efflux systems in 

Salmonella enterica serovar Typhimurium." Journal of Antimicrobial Chemotherapy 65(7): 
1372-1376. 

 
Jackson, D. W., K. Suzuki, et al. (2002). "Biofilm formation and dispersal under the influence of the 

global regulator CsrA of Escherichia coli." Journal of Bacteriology 184(1): 290-301. 
 
Johansson, J. and P. Cossart (2003). "RNA-mediated control of virulence gene expression in bacterial 

pathogens." Trends in Microbiology 11(6): 280-285. 
 
Jordan, D. C. (1961). "Effect of Vancomycin on Synthesis of Cell Wall Mucopeptide of Staphylococcus 

Aureus." Biochemical and Biophysical Research Communications 6(3): 167-&. 
 
Keeney, D., A. Ruzin, et al. (2008). "MarA-mediated overexpression of the AcrAB efflux pump results 

in decreased susceptibility to tigecycline in Escherichia coli." Journal of Antimicrobial 
Chemotherapy 61(1): 46-53. 

 
Keyhani, N. O. and S. Roseman (1997). "Wild-type Escherichia coli grows on the chitin disaccharide, 

N,N '-diacetylchitobiose, by expressing the cel operon." Proceedings of the National Academy 
of Sciences of the United States of America 94(26): 14367-14371. 

 
Kikuchi, T., Y. Mizunoe, et al. (2005). "Curli fibers are required for development of biofilm architecture 

in Escherichia coli K-12 and enhance bacterial adherence to human uroepithelial cells." 
Microbiology and Immunology 49(9): 875-884. 

 
Lapouge, K., M. Schubert, et al. (2008). "Gac/Rsm signal transduction pathway of gamma-

proteobacteria: from RNA recognition to regulation of social behaviour." Molecular 
Microbiology 67(2): 241-253. 

 
Levy, S. B. (1998). "The challenge of antibiotic resistance." Scientific American 278(3): 46-53. 
 
Li, X. Z., D. M. Livermore, et al. (1994). "Role of Efflux Pump(S) in Intrinsic Resistance of 

Pseudomonas-Aeruginosa - Resistance to Tetracycline, Chloramphenicol, and Norfloxacin." 
Antimicrobial Agents and Chemotherapy 38(8): 1732-1741. 

 
Liu, M. Y., G. J. Gui, et al. (1997). "The RNA molecule CsrB binds to the global regulatory protein 

CsrA and antagonizes its activity in Escherichia coli." Journal of Biological Chemistry 272(28): 
17502-17510. 

 
Ma, D., D. N. Cook, et al. (1993). "Molecular-Cloning and Characterization of Acra and Acre Genes of 

Escherichia-Coli." Journal of Bacteriology 175(19): 6299-6313. 
 
Mather, A. E., S. W. J. Reid, et al. (2013). "Distinguishable Epidemics of Multidrug-Resistant 

Salmonella Typhimurium DT104 in Different Hosts." Science 341(6153): 1514-1517. 
 
Mcmurry, L., R. E. Petrucci, et al. (1980). "Active Efflux of Tetracycline Encoded by 4 Genetically 

Different Tetracycline Resistance Determinants in Escherichia-Coli." Proceedings of the 
National Academy of Sciences of the United States of America-Biological Sciences 77(7): 
3974-3977. 

 
Nikaido, E., A. Yamaguchi, et al. (2008). "AcrAB multidrug efflux pump regulation in Salmonella 

enterica serovar typhimurium by RamA in response to environmental signals." Journal of 
Biological Chemistry 283(35): 24245-24253. 



93 
 

 
Nikaido, H. (2003). "Molecular basis of bacterial outer membrane permeability revisited." Microbiology 

and Molecular Biology Reviews 67(4): 593-+. 
 
Nikaido, H. and M. Vaara (1985). "Molecular-Basis of Bacterial Outer-Membrane Permeability." 

Microbiological Reviews 49(1): 1-32. 
 
Nilsson, M. R. (2004). "Techniques to study amyloid fibril formation in vitro." Methods 34(1): 151-160. 
 
Nishino, K., T. Latifi, et al. (2006). "Virulence and drug resistance roles of multidrug efflux systems of 

Salmonella enterica serovar Typhimurium." Molecular Microbiology 59(1): 126-141. 
 
Nishino, K., E. Nikaido, et al. (2009). "Regulation and physiological function of multidrug efflux pumps 

in Escherichia coli and Salmonella." Biochimica Et Biophysica Acta-Proteins and Proteomics 
1794(5): 834-843. 

 
O'Regan, E., T. Quinn, et al. (2009). "Multiple Regulatory Pathways Associated with High-Level 

Ciprofloxacin and Multidrug Resistance in Salmonella enterica Serovar Enteritidis: 
Involvement of ramA and Other Global Regulators." Antimicrobial Agents and Chemotherapy 
53(3): 1080-1087. 

 
Oethinger, M., W. V. Kern, et al. (2000). "Ineffectiveness of topoisomerase mutations in mediating 

clinically significant fluoroquinolone resistance in Escherichia coli in the absence of the AcrAB 
efflux pump." Antimicrobial Agents and Chemotherapy 44(1): 10-13. 

 
Olliver, A., M. Valle, et al. (2004). "Role of an acrR mutation in multidrug resistance of in vitro-selected 

fluoroquinolone-resistant mutants of Salmonella enterica serovar Typhimurium." Fems 
Microbiology Letters 238(1): 267-272. 

 
Parker, L. L. and B. G. Hall (1990). "Characterization and Nucleotide-Sequence of the Cryptic Cel 

Operon of Escherichia-Coli K12." Genetics 124(3): 455-471. 
 
Passerini, L., K. Lam, et al. (1992). "Biofilms on Indwelling Vascular Catheters." Critical Care Medicine 

20(5): 665-673. 
 
Pawar, D. M., M. L. Rossman, et al. (2005). "Role of curli fimbriae in mediating the cells of 

enterohaemorrhagic Escherichia coli to attach to abiotic surfaces." Journal of Applied 
Microbiology 99(2): 418-425. 

 
Perez, A., M. Poza, et al. (2012). "Effect of Transcriptional Activators SoxS, RobA, and RamA on 

Expression of Multidrug Efflux Pump AcrAB-TolC in Enterobacter cloacae." Antimicrobial 
Agents and Chemotherapy 56(12): 6256-6266. 

 
Piddock, L. J. V. (2006). "Multidrug-resistance efflux pumps - not just for resistance." Nature Reviews 

Microbiology 4(8): 629-636. 
 
Piddock, L. J. V., D. G. White, et al. (2000). "Evidence for an efflux pump mediating multiple antibiotic 

resistance in Salmonella enterica serovar Typhimurium." Antimicrobial Agents and 
Chemotherapy 44(11): 3118-3121. 

 
Pos, K. M. (2009). "Trinity revealed: Stoichiometric complex assembly of a bacterial multidrug efflux 

pump." Proceedings of the National Academy of Sciences of the United States of America 
106(17): 6893-6894. 

 
Pradel, E. and J. M. Pages (2002). "The AcrAB-TolC efflux pump contributes to multidrug resistance in 

the nosocomial pathogen Enterobacter aerogenes." Antimicrobial Agents and Chemotherapy 
46(8): 2640-2643. 

 



94 
 

Prouty, A. M., I. E. Brodsky, et al. (2004). "Bile-salt-mediated induction of antimicrobial and bile 
resistance in Salmonella typhimurium." Microbiology-Sgm 150: 775-783. 

 
Ramos, J. M., J. M. Ales, et al. (1996). "Changes in susceptibility of Salmonella enteritidis, Salmonella 

typhimurium, and Salmonella virchow to six antimicrobial agents in a Spanish hospital, 1980-
1994." European Journal of Clinical Microbiology & Infectious Diseases 15(1): 85-88. 

 
Ricci, V., S. J. W. Busby, et al. (2012). "Regulation of RamA by RamR in Salmonella enterica Serovar 

Typhimurium: Isolation of a RamR Superrepressor." Antimicrobial Agents and Chemotherapy 
56(11): 6037-6040. 

 
Ricci, V. and L. J. V. Piddock (2009). "Ciprofloxacin selects for multidrug resistance in Salmonella 

enterica serovar Typhimurium mediated by at least two different pathways." Journal of 
Antimicrobial Chemotherapy 63(5): 909-916. 

 
RichterDahlfors, A., A. M. J. Buchan, et al. (1997). "Murine salmonellosis studied by confocal 

Microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a 
cytotoxic effect on phagocytes in vivo." Journal of Experimental Medicine 186(4): 569-580. 

 
Romeo, T. (1998). "Global regulation by the small RNA-binding protein CsrA and the non-coding RNA 

molecule CsrB." Molecular Microbiology 29(6): 1321-1330. 
 
Romeo, T., M. Gong, et al. (1993). "Identification and Molecular Characterization of Csra, a Pleiotropic 

Gene from Escherichia-Coli That Affects Glycogen Biosynthesis, Gluconeogenesis, Cell-Size, 
and Surface-Properties." Journal of Bacteriology 175(15): 4744-4755. 

 
Romeo, T., C. A. Vakulskas, et al. (2013). "Post-transcriptional regulation on a global scale: form and 

function of Csr/Rsm systems." Environmental Microbiology 15(2): 313-324. 
 
Romling, U., Z. Bian, et al. (1998). "Curli fibers are highly conserved between Salmonella typhimurium 

and Escherichia coli with respect to operon structure and regulation." Journal of Bacteriology 
180(3): 722-731. 

 
Sabnis, N. A., H. H. Yang, et al. (1995). "Pleiotropic Regulation of Central Carbohydrate-Metabolism in 

Escherichia-Coli Via the Gene Csra." Journal of Biological Chemistry 270(49): 29096-29104. 
 
Seyll, E. and L. Van Melderen (2013). "The Ribonucleoprotein Csr Network." International Journal of 

Molecular Sciences 14(11): 22117-22131. 
 
Steele-Mortimer, O., J. H. Brumell, et al. (2002). "The invasion-associated type III secretion system of 

Salmonella enterica serovar Typhimurium is necessary for intracellular proliferation and 
vacuole biogenesis in epithelial cells." Cellular Microbiology 4(1): 43-54. 

 
Sterzenbach, T., K. T. Nguyen, et al. (2013). "A novel CsrA titration mechanism regulates fimbrial 

gene expression in Salmonella typhimurium." Embo Journal 32(21): 2872-2883. 
 
Stewart, P. S. (2002). "Mechanisms of antibiotic resistance in bacterial biofilms." International Journal 

of Medical Microbiology 292(2): 107-113. 
 
Su, L. H., C. H. Chiu, et al. (2004). "Antimicrobial resistance in nontyphoid Salmonella serotypes: A 

global challenge." Clinical Infectious Diseases 39(4): 546-551. 
 
Suzuki, K., P. Babitzke, et al. (2006). "Identification of a novel regulatory protein (CsrD) that targets 

the global regulatory RNAs CsrB and CsrC for degradation by RNase E." Genes & 
Development 20(18): 2605-2617. 

 
Thanassi, D. G., L. W. Cheng, et al. (1997). "Active efflux of bile salts by Escherichia coli." Journal of 

Bacteriology 179(8): 2512-2518. 



95 
 

 
Threlfall, E. J. (2000). "Epidemic Salmonella typhimurium DT 104 - a truly international multiresistant 

clone." Journal of Antimicrobial Chemotherapy 46(1): 7-10. 
 
Timmermans, J. and L. Van Melderen (2009). "Conditional Essentiality of the csrA Gene in 

Escherichia coli." Journal of Bacteriology 191(5): 1722-1724. 
 
Vakharia, H., G. J. German, et al. (2001). "Isolation and characterization of Escherichia coli tolC 

mutants defective in secreting enzymatically active alpha-hemolysin." Journal of Bacteriology 
183(23): 6908-6916. 

 
van der Straaten, T., R. Janssen, et al. (2004). "Salmonella gene rma (ramA) and multiple-drug-

resistant Salmonella enterica serovar Typhimurium." Antimicrobial Agents and Chemotherapy 
48(6): 2292-2294. 

 
Wang, X., A. K. Dubey, et al. (2005). "CsrA post-transcriptionally represses pgaABCD, responsible for 

synthesis of a biofilm polysaccharide adhesin of Escherichia coli." Molecular Microbiology 
56(6): 1648-1663. 

 
Webber, M. A., A. M. Bailey, et al. (2009). "The Global Consequence of Disruption of the AcrAB-TolC 

Efflux Pump in Salmonella enterica Includes Reduced Expression of SPI-1 and Other 
Attributes Required To Infect the Host." Journal of Bacteriology 191(13): 4276-4285. 

 
Wei, B. D. L., A. M. Brun-Zinkernagel, et al. (2001). "Positive regulation of motility and flhDC 

expression by the RNA-binding protein CsrA of Escherichia coli." Molecular Microbiology 40(1): 
245-256. 

 
Weilbacher, T., K. Suzuki, et al. (2003). "A novel sRNA component of the carbon storage regulatory 

system of Escherichia coli." Molecular Microbiology 48(3): 657-670. 
 
White, A. P., D. L. Gibson, et al. (2006). "Thin aggregative fimbriae and cellulose enhance long-term 

survival and persistence of Salmonella." Journal of Bacteriology 188(9): 3219-3227. 
 
Chaudhuri, R.R., Loman, N.J, et al. (2008). "xBASE2: a comprehensive resource for comparative 

bacterial genomics." Nucleic Acids Research 36: D543-D546. 
 
Yamasaki, S., E. Nikaido, et al. (2013). "The crystal structure of multidrug-resistance regulator RamR 

with multiple drugs." Nature Communications 4. 
 
Zhao, S., S. Qaiyumi, et al. (2003). "Characterization of Salmonella enterica serotype Newport isolated 

from humans and food animals." Journal of Clinical Microbiology 41(12): 5366-5371. 

 



i 
 

 
 

 
Project 2: Exploring the dynamics of Pseudomonas aeruginosa attachment to 

host cells during anti-adhesion therapy 

 

by 

Victoria Attah 

 

Supervisor: Dr Anne-Marie Krachler 

 

 

A research thesis submitted to the University of Birmingham as part of the 

requirements for the degree of MRes in Molecular and Cellular Biology 

 

Host and Pathogen Interactions Group 

Institute of Microbiology and Infection 

School of Biosciences 

University of Birmingham



1 

 

Abstract 

There is an urgent need for alternative therapeutics to treat bacterial infections and 

limit the transmission of resistance. One promising approach is to target bacterial 

virulence, allowing the host immune system to clear the infection. So-called anti-

virulence therapies are thought to generate little selective pressure for the 

development of resistance. 

 

The attachment of bacteria to host cells is considered a prerequisite for bacteria to 

establish and propagate infection. Anti-attachment therapies are well-documented, 

however clinical treatments are currently unavailable. Mathematical modelling is a 

useful tool to model the efficacy of anti-virulence therapies in silico, particularly in 

combination with standard antibiotics. However, computer simulations based on 

theoretical values may limit the specificity of dosing regimens.  

 

The aims of this study were to generate experimental data in support of in silico 

modelling for anti-virulence therapy. This was achieved by exploring the attachment 

of 6 clinical Pseudomonas aeruginosa strains from the Queen Elizabeth Hospital in 

Birmingham to HeLa cells (0 to 5 hours post-infection). Baseline attachment data was 

compared to attachment in the presence of 4-methylumbelliferyl α-D-

mannopyranoside and recombinant GST-MAM7 beads, which present two distinct 

approaches to inhibit bacterial adhesion. Whilst 4-methylumbelliferyl α-D-

mannopyranoside resulted in modest inhibition to attachment, GST-MAM7 beads 

generated interesting data for further study.  
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1.1 Multiple drug resistance and Pseudomonas aeruginosa 

The growing phenomenon of bacterial resistance to antimicrobials poses a key 

problem for the treatment of bacterial infections, due to the limitations for infection 

management (Swartz 1994), (Harris, Torres-Viera et al. 1999). Multi-drug resistant 

(MDR) bacteria are capable of surviving in the presence of distinct structural classes 

of therapeutic drugs, at concentrations high enough to eradicate susceptible cells 

from the population, exerting a selective pressure on these bacteria. This selective 

pressure allows resistant cells to proliferate and dominate in the population, through 

the transfer of genetic material, and therefore infection persists with very few 

treatment options available, particularly for bacteria resistant to multiple therapeutic 

agents (Alonso, Campanario et al. 1999).  

 

Since the discovery of antimicrobials in the 1940s, a combination of mismanagement, 

overuse and exploitation as growth promoters in livestock, are all factors that have 

thought to contribute to the emergence and spread of resistance (Arason, Kristinsson 

et al. 1996), (Kummerer 2004). As a result, the management of antimicrobial 

resistance is a scientific challenge of global significance and as described in a report 

published by The World Health Organisation in April 2014, a “post-antibiotic era” 

could follow, where once treatable bacterial infections will eventually become 

untreatable (WHO, 2014). Consequently, since resistant bacteria were first 

documented in the literature, scientific research has tried to understand the molecular 

and cellular mechanisms of bacterial resistance as well as exploring novel treatments 

for bacterial infections, aimed at preventing its spread. 
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Pseudomonas aeruginosa is a coccobacillus, gram-negative bacterium that is 

ubiquitous in water, soil and most artificial environments and surfaces (Green, 

Schroth et al. 1974). It is also thought that P. aeruginosa makes up the normal skin 

flora of up to 20% of the human population. The organism was first described in 1872 

(Schroeter 1872) and the first pure culture was isolated from human skin wounds in 

1882 (Gessard 1882). Morphological identification of P. aeruginosa involves the 

observation of pearlescent blue-green colonies on nutrient agar, attributed to 

pyocyanin toxins secreted by the organism.  

 

P. aeruginosa is considered to be an opportunistic pathogen of humans and animals 

that is capable of causing infection when host immune defences are low. P. 

aeruginosa infection of healthy tissues is rare, however, nosocomial risk groups for P. 

aeruginosa infection include patients undergoing bone marrow transplants, patients 

with cystic fibrosis or AIDS, and patients with severe burns (Bodey, Bolivar et al. 

1983), (Govan and Nelson 1992), (Mendelson, Gurtman et al. 1994). Strains of P. 

aeruginosa associated with infections are considered toxigenic and tissue-invasive, 

and can gain access to the host through wounds and abrasions in the skin, leading to 

the invasion and colonisation of tissues and organ sites. Specific clinical 

manifestations of infection where P. aeruginosa is the causative agent depend on the 

strain; however, general symptoms include localised inflammation of infected body 

sites and sepsis - leading to chronic illness, which can be fatal if left untreated.  

 

P. aeruginosa is considered to be the most-common gram-negative causative agent 

of hospital-acquired infections, and is associated with 8% of wound infections, 10% 
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of blood stream infections, 12% of urinary tract infections, and 16% of pneumonia, 

therefore is considered a serious pathogen leading to potentially-fatal complications 

caused by secondary infections in immunocompromised and debilitated patients 

(Van Delden and Iglewski 1998).  

 

The ability of P. aeruginosa to cause infection is attributed to surface and secreted 

virulence factors, including those involved in attachment to host cells, colonisation of 

body sites and invasion, as well as those which are involved in tissue damage or 

stimulating an immune response (Feldman, Bryan et al. 1998), (Ran, Hassett et al. 

2003), (Lau, Ran et al. 2004), (Kipnis, Sawa et al. 2006). P. aeruginosa pyocyanin 

toxins cause oxidative stress when administered to Caenorhabditis elegans, which is 

thought to be due to the disturbance of cellular mechanisms in competing cells to 

promote the survival of the organism in niche environments (Ran, Hassett et al. 

2003), (Lau, Ran et al. 2004). P. aeruginosa is able to proliferate in aerobic and 

partial oxygen-depleted conditions, and at temperatures up to 42°C, which may 

additionally enhance its ability to survive and proliferate in the host,  as observed in 

the lungs of cystic fibrosis patients, which are coated in thick mucus that may 

otherwise limit the diffusion of oxygen to bacterial cells (Alvarez-Ortega and Harwood 

2007).  

 

P. aeruginosa is a frequent coloniser of moist artificial environments, including 

catheters and other medical equipment in hospitals and clinical healthcare 

environments, and the organism has been isolated from hospital sinks, drains, floors, 

and vessels containing lotions and creams (Noble and Savin 1966), (Ayliffe, Babb et 
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al. 1974). In 2012, sink taps were identified as the source of a P. aeruginosa 

outbreak in a neonatal intensive care unit, highlighting its ubiquitous presence in 

diverse environments and the potential sources of bacterial contamination that may 

lead to secondary bacterial infections (Breahnach, Cubbon et al. 2012). Additionally, 

P. aeruginosa is capable of surviving and proliferating in distilled water for a 

prolonged amount of time, so has the potential to cause infection in patients 

undergoing respiratory therapies (Carson, Favero et al. 1973). Cross infections can 

occur through direct environmental contact or through carriers, confirming the 

importance of implementing strict disinfection regimes in hospitals. However, despite 

improved hospital practises, including hand hygiene to prevent cross-contamination, 

strict isolation of infected patients and improved wound treatments, up to 60% of 

deaths in hospital burns units are still caused by outbreaks of P. aeruginosa (Van 

Delden and Iglewski 1998).  

 

In 2000, the first wild-type P. aeruginosa strain was sequenced. The complete 

genome, which still remains one of the largest prokaryotic genomes sequenced to 

date, indicated that P. aeruginosa ability to adapt to niche environments is likely 

attributed to the high number of encoded proteins that are involved in virulence, 

transport and regulation (Stover, Pham et al. 2000). Additionally, 0.3% of the P. 

aeruginosa genome encodes genes which are involved in resistance to 

antimicrobials and around 10% of the P. aeruginosa genome encodes genes located 

in pathogenicity islands (PAIs). PAIs are encoded chromosomally or 

extrachromosomally in pathogenic gram-positive and gram-negative bacteria, but are 

generally absent from non-pathogenic species, and enable P. aeruginosa to acquire 
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genes, termed mobile genetic elements, including those that confer resistance to 

multiple antimicrobial compounds. These mobile elements are acquired through 

horizontal gene transfer, including phage, plasmid or transposon transfer events, and 

can occur between bacteria of the same species and bacteria of different species 

(Frost, Leplae et al. 2005).  

 

The most widely used therapeutic compounds used to treat bacterial infections, 

including those caused by P. aeruginosa, are classed as either bactericidal or 

bacteriostatic, based upon their mechanism of action. Bactericidal compounds 

eradicate bacteria by interfering in essential pathways and include antiseptics, 

disinfectants and antibiotics, whereas bacteriostatic compounds inhibit cell growth 

and proliferation by interfering with cellular metabolism, protein synthesis or DNA 

replication, impaired for as long as the compound is present. The antibiotic class 

known as the beta-lactam antibiotics are considered bactericidal, because they target 

the cross-linking mechanism of gram-positive cell walls, leading to lysis of the 

bacterial cell (Tomasz 1979), whereas the tetracyclines are considered bacteriostatic, 

as they bind to ribosomes to prevent the translation of specific proteins targeted for 

their virulence (Chopra and Roberts 2001).   

 

P. aeruginosa has both intrinsic and acquired antimicrobial resistance determinants, 

and their simultaneous expression contributes to MDR, and to the failure of 

antimicrobial treatments (Hancock 1998). Acquired bacterial resistance may arise 

from a spontaneous mutation, which is passed on via horizontal or vertical transfer, 

leading to a dominant resistant phenotype at sites of infection. Acquired resistance 
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determinants include antibiotic-inactivating enzymes such as aminoglycoside 

modifying enzymes (AMEs), metallo-beta-lactamases (MBLs), extended spectrum-

beta-lactamases (ESBLs), and cephalosporinases, and confer high levels of 

resistance to aminoglycosides, beta-lactamases and cephalosporins, respectively 

(Doi, Ogura et al. 1968), (Tomasz 1979), (Rodriguez-Martinez, Poirel et al. 2009). 

Resistance to the fluoroquinolone antibiotics is also mediated by mutations in the 

DNA gyrase target enzyme, gyrA, and topoisomerase IV enzyme, parC (Nakano, 

Deguchi et al. 1997).  

 

P. aeruginosa intrinsic bacterial resistance can be mediated by the constitutive 

expression of efflux pumps, which span the inner and outer bacterial membranes. 

Studies have shown that efflux pumps are expressed at a low, baseline level in wild-

type P. aeruginosa strains, and expression significantly increases when the bacteria 

are exposed to antibiotics (Poole 2001). P. aeruginosa resistance is associated with 

the expression of MexAB-OprM and MexXY-OprA efflux pumps, which form part of 

the Resistance Nodulation Division (RND) family of transporters. The role of RND 

efflux pumps in bacterial resistance has been well-characterised in many gram-

negative bacteria (Poole 2004), (Piddock 2006). It is interesting to consider that 

overexpression of one efflux pump, as a result of exposure to one antibiotic, 

additionally offers bacteria resistance to other antibiotics that are substrates of the 

same pump. For example, quinolone antibiotics are the substrate for all Mex efflux 

pumps, and therefore resistance to this compound may indirectly affect the 

susceptibility of bacteria  to other compounds (Kohler, MicheaHamzehpour et al. 

1997). This is likely to affect the range of treatments available to treat resistant P. 
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aeruginosa infections, and may further enable additional target mutations to develop 

against specific antibiotics. Reduced expression of outer membrane porins, which 

alter membrane permeability to substrates, also confers a low level of antimicrobial 

resistance, such as a decrease in the expression of the OprD porin, which is involved 

in the uptake of hydrophilic carbapenems. OprD and MexEF are oppositely regulated 

by a common regulatory mechanism, therefore increased efflux pump expression is 

associated with decreased porin expression, highlighting the complexity of resistance 

gene regulation in bacteria (Kohler, MicheaHamzehpour et al. 1997).  

 

Due to intrinsic and acquired resistance, treatments for resistant P. aeruginosa 

infections may be limited and depend on frontline antimicrobials, including imipenem 

and meropenem (Kesado, Hashizume et al. 1980), (Edwards, Turner et al. 1989). 

Imipenem is a broad-spectrum antibiotic that targets and inhibits the synthesis of the 

bacteria cell wall, and is usually given as a combinational therapy with cilastatin, 

which prevents its degradation by dehydropeptidase 1 in the stomach. Imipenem 

forms part of a subgroup of beta-lactams, called carbapenems and is effective 

against many bacteria that are resistant to other beta-lactams, including P. 

aeruginosa. Meropenem has a similar mechanism of action to Imipenem, however is 

not deactivated by dehydropeptidase 1, so can be administered alone.  

 

1.2. Pseudomonas aeruginosa biofilms 

P. aeruginosa is capable of forming competent biofilm, which likely contributes to the 

success of the pathogen in causing device-associated infections in healthcare 

environments. A biofilm is defined as an organised structure of different bacterial 
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species suspended in an extracellular matrix, initiated by attachment to a surface 

(Costerton, Stewart et al. 1999). Biofilms are much more efficient at colonising 

surfaces, and due to the close proximity of bacteria within a biofilm, increased 

communication is thought to occur via a phenomenon known as quorum sensing, 

which allows the bacterial population to respond to extracellular signals, by secreting 

small molecules that enable them to rapidly adapt to their environment (Davies, 

Parsek et al. 1998). Biofilms are difficult to remove, particularly the bacteria within the 

body of the biofilm, as the structure offers a higher level of protection for the cells 

within. Higher concentrations of antimicrobials are generally needed to eradicate 

bacteria within a biofilm, compared with planktonic bacteria, therefore biofilms likely 

act as reservoirs of infection (Donlan 2001). Although there are instances were 

bacterial biofilm is considered symbiotic for the bacteria and the host, as has been 

explored in Escherichia coli in the large intestine, which produces vitamin K, biofilm 

becomes a problem of clinical-relevance when it is implicated in the colonisation of 

medical devices. In this way, biofilm formation is often considered a prerequisite for 

device-associated complications and secondary infections. Biofilm may enhance the 

spread of resistance between bacterial species, as it is thought that resistance genes 

can be transferred more readily between bacteria within a biofilm (Savage, Chopra et 

al. 2013), which is particularly important when considering the treatment of biofilm 

with low concentrations of antimicrobial compounds that may select for resistance. 

Due to the complexity, little is known about the molecular mechanisms surrounding 

the trigger for P. aeruginosa to switch to a biofilm phenotype, which would likely 

impact on future approaches to treat biofilms (Sauer, Camper et al. 2002). 
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1.3 Pseudomonas aeruginosa virulence and pathogenicity 

The genome of P. aeruginosa encodes a number of genes which play a role in the 

virulence and pathogenicity of the organism. For example, genes encoding flagella 

make P. aeruginosa strains more virulent than non-flagellated strains (Montie, 

Doylehuntzinger et al. 1982). Virulence factors may be intrinsically encoded on the 

bacterial chromosome, or acquired from mobile genetic elements, and in order to 

evade the host immune response many bacteria deliver extracellular toxins and 

effector proteins to the host cytosol that can damage or change the cellular activities 

to benefit the pathogen. These proteins are transported into host cells by type III, 

type IV and type VI secretion systems and the process is dependent on bacterial 

contact with the host cell (Galan and Collmer 1999).  

 

Toxin A is encoded by more than 85% of P. aeruginosa clinical isolates (Pollack, 

Taylor et al. 1977), and in vivo, injection of Toxin A into mice has been shown to 

prevent protein synthesis from occurring in host tissues. Strains of Pseudomonas 

lacking this toxin injected into a mouse infection model caused a reduced amount of 

tissue damage, compared to those strains where Toxin A was intact (Ohman, Sadoff 

et al. 1980). However, Blackwood et al (1983) demonstrated that Toxin A is not 

required to establish bacterial infection, suggesting that Pseudomonas hosts an array 

of strategies to colonise, establish and propagate infection (Blackwood, Stone et al. 

1983). For example, cell surface polysaccharides including lipopolysaccharide (LPS) 

are important for outer membrane integrity and maintaining a barrier between the 

bacterial cell and the environment, and may play additional roles in host-pathogen 

interactions and biofilm formation. 
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Gene expression of a number of bacterial genes is known to occur via quorum 

sensing (Whiteley, Lee et al. 1999), whereby bacteria are able to respond to stimuli in 

their environment. The phenomenon is dependent on reaching a critical threshold of 

signalling molecule, referred to as an autoinducer. Various autoinducers have been 

identified in bacteria, including small peptides and organic molecules such as the N-

acylhomoserine lactones in gram negative bacteria (Williams, Bainton et al. 1992). 

Typically, as the cell density of the bacterial population increases, the concentration 

of the autoinducer signalling molecule increases, triggering a co-ordinated response 

resulting in the induction or inhibition of specific protein synthesis. Quorum sensing is 

known to mediate bacterial defence against other competing organisms in niche 

environments, enhance nutrient access under stress conditions, as well as signal the 

escape of cellular populations from survival risks (Williams, Winzer et al. 2007). This 

suggests that quorum sensing provides fine tuning of transcriptional regulation, 

enabling bacteria to sense and respond to their environment rapidly. Quorum sensing 

has been shown to be involved in the regulation of a number of bacterial virulence 

genes, including proteases, elastases and pyocyanin, as well as those required for 

competent biofilm formation (Table 1.1). 

Acylated homoserine lactone 

Alkaline protease  

Catalase  

Elastase  

Toxin A  

Hydrogen cyanide  

Lectins  

Pyocyanin  

Rhamnolipid  

Secretion protein  

Superoxide dismutase  

 
Table 1.1: Known P. aeruginosa quorum sensing-regulated virulence genes (Gambello, Kaye et al. 

1993), (Hassett, Ma et al. 1999), (Toder, Ferrell et al. 1994), (Pessi and Haas 2000), (Winzer, 
Falconer et al. 2000), (Brint and Ohman 1995), (Ochsner and Reiser 1995), (Chapon-Herve, Akrim et 

al. 1997). 
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1.4 Pseudomonas aeruginosa attachment to host cells 

In order to persist in the harsh environment within a human host, bacteria must be 

able to withstand being cleared from the body. The ability of bacteria to attach to host 

cells has long been known to be an important initial step in the colonisation and the 

establishment of infection, as attachment allows the bacteria to deploy their 

repertoire of virulence factors into the host cytosol (Galan and Collmer 1999), (Hayes, 

Aoki et al. 2010), (Krachler and Orth 2013). Uropathogenic E. coli (UPEC), a primary 

cause of urinary tract infections, interacts with cells in the urinary tract to facilitate 

attachment (Leffler and Svanborgeden 1981), and oral and respiratory bacteria must 

adhere to host cells strongly, in order to withstand sheer forces and mechanisms of 

mucosal flow. 

 

Bacteria attach to host cells via cell surface proteins, called adhesins. Adhesins are 

one of many virulence factors that facilitate attachment by acting as surface 

recognition molecules, anchoring the bacteria to other cells or surfaces (Figure 1.1). 

Attachment allows pathogens to overcome shear forces and remain in the 

environment they benefit from. Adhesins are species-specific and different adhesins 

may target different receptors on particular cells or surfaces, and may have different 

receptor specificities. Inhibition of specific adhesins has been shown to alter the 

virulence of bacteria (Hahn 1997); therefore it is likely that these molecules play an 

important role in the establishment of bacterial infection. Furthermore, exploring the 

dynamics of adhesin gene expression has revealed that specific adhesins are 

expressed at different phases of infection, therefore, bacteria secrete multiple 

adhesins to facilitate efficient attachment, emphasising the sophistication of this 
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complex process. Adhesins play a significant role in bacterial virulence, as initial host 

cell attachment is required for the delivery of secreted toxins and effector proteins to 

disarm host defences and propagate infection. Neisseria gonorrhoeae attachment to 

polymophonuclear neutrophils enables the bacteria to escape from phagocytosis, 

and therefore allows the spread of the bacterium in the host (Densen and Mandell 

1978).  

 

 
Figure 1.1: Host-pathogen attachment: bacterial cells (orange) synthesise adhesive proteins (red), 

which bind to specific receptors on host cells (purple), facilitating attachment.  
 

 

In gram-negative bacteria, bacterial adhesion to host cells is mediated by the 

expression of lectins, which are proteins found at the tips of bacterial fimbriae or pili. 

These carbohydrate-specific proteins allow bacteria to recognise mannose-

containing glycoproteins on host cell surfaces (Sharon and Lis 1989). Around 90% of 

UPEC strains encode fimbriae that recognise receptors on the bladder epithelium, 

which initiates host-cell binding. In vivo, lectin binding to seromucinous glands in the 

lungs and epithelial cells in the pancreas has also been observed (Kirkeby, 

Wimmerova et al. 2007).  
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FimH is a D-mannose sensitive adhesin that has been best characterised by 

extensive study in a number of bacteria, found at the fibrial tip of Type 1 fimbriae 

(Figure 1.2). FimH is a 29 kDa protein, composed of 279 amino acids, and subunits 

are localised according to the chaperone/usher pathway (Sauer, Remaut, et al. 2004). 

FimH facilitates binding to host cells which contain mannose residues, involved in 

human metabolism, including intestinal epithelial cells, red blood cells, and 

neutrophils. The FimH protein forms carbohydrate-protein complexes through the 

recognition and reversible binding to specific carbohydrates containing mannose, 

forming tight receptor-ligand bonds (Sharon and Lis 1989).  

 

Figure 1.2: Assembly of Type 1 fimbriae. The bacterial membrane is composed of a lipid bilayer 
(yellow), in which FimD is anchored. Adapted from (Crespo, Puorger et al. 2012). 

 

As FimH is not stable in its pure form, it was first crystallised in complex with FimC, a 

protein required for the biogenesis of type 1 fimbriae, in 1999 (Choudhury, Thompson 

et al. 1999). The crystal structure of the complex revealed that FimH is composed of 

two domains, a lectin domain and a pilin domain, composing amino acids 1 to 156 

and 160 to 279, respectively, and connected via a tetra-peptide loop. It was later 

shown that the interaction of the two domains resulted in two possible conformations 
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of FimH. The C-terminal pilin domain is responsible for anchoring FimH to the pilus, 

whereas the N-terminal lectin domain consists of a mannose binding pocket, 

facilitating surface recognition and reversible binding of the protein to host cells. 

Depending on the interaction of the two domains, binding efficiency to mannose 

residues changes; tight domain interaction result in a mannose binding pocket with a 

greater affinity for mannose, compared with loose domain interaction via a short 

linker chain, which results in a mannose binding pocket that is more closed, therefore 

reducing the binding efficacy to carbohydrates. It has been shown that FimH 

mannose affinity increases during conditions of increased mechanical force 

(Yakovenko, Sharma et al. 2008), which is unlike other receptor-ligand binding that 

generally becomes weaker during the onset of force. This phenomenon is referred to 

as “catch bond” and likely enhances the survival of pathogenic bacteria in the host, 

due to the harsh environmental conditions at various body sites. Therefore, high 

mannose-binding enables bacteria to anchor onto host cells to avoid clearance. 

 

Many adhesion factors identified in pathogenic bacteria are expressed during 

different phases of infection and from different environmental triggers, and therefore 

may not be required during the early attachment of bacteria to host cells (Boekema, 

Van Putten et al. 2004), (Lebreton, Riboulet-Bisson et al. 2009). Krachler et al., 

hypothesised that all bacteria share a common mechanism for attachment, which 

allows further specific expression and secretion of other adhesins and virulence 

factors to initiate the spread of infection (Krachler, Ham et al. 2011). 
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Mammalian cell entry (mce) domains were first identified in the genome of 

Mycobacterium tuberculosis and are expressed on the bacterial cell surface. 

Although there is currently no crystal structure available for mce, the role of mce 

domains in enhancing virulence was observed when cloned into non-pathogenic E. 

coli, which enabled the bacterium to invade HeLa cells, evade phagocytosis, and 

survive inside human macrophages for at least 24 hours (Arruda, Bomfim et al. 1993). 

The genome of M. tuberculosis encodes 4 homologous mce domains: mce1, mce2, 

mce3 and mce4 (Chitale, Ehrt et al. 2001), which are expressed differently 

depending on the bacterial growth phase. It was suggested that mce1 is expressed 

dominantly during early growth phases, evidenced by the inability of recombinant 

mce2 alone to cause invasion of HeLa cells, despite a 67% homology to mce1 

(Chitale, Ehrt et al. 2001). However, multiple mce operons have been shown to be 

expressed in animal tissue infected with M. tuberculosis, suggesting that multiple 

mce domains may contribute to successful bacterial infection (Kumar, Bose et al. 

2003).   

 

Multivalent adhesion molecule 7 (MAM7) is an outer membrane protein containing 7 

mce domains (Krachler, Ham et al. 2011). The C-terminal is localised to the 

extracellular space and the first 44 N-terminal amino acids are predicted to form a 

transmembrane helix, thought to be important in anchoring MAM7 to the outer 

membrane of bacteria. Deletion of MAM7 in non-cytotoxic V. parahemolyticus 

resulted in a reduction of attachment to epithelial cells and macrophages in vitro, 

from 80% to 35-45%, suggesting the protein is involved in bacterial attachment to 

host cells, further evidenced by heterologous expression of non-native MAM7 in a 
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poorly-adherent V. parahemolyticus strain, which resulted in greater attachment to 

these cells. In vivo, deletion of MAM7 in V. parahemolyticus resulted in a non-

pathogenic phenotype following infection of C. elegans, whereas infection with the 

wild-type bacterium resulted in worm death within 13 days (Krachler, Ham et al. 

2011). Taken together, the data suggests that MAM7 contributes to bacterial 

virulence by enhancing adhesion to host cells. Furthermore, Krachler et al., suggest 

that there is a positive correlation between the number of mce domains that MAMs 

have in bacteria, and the efficiency of host cell attachment, determined by the 

competitive index (CI). The CI for strains containing 1 mce domain was 0.27, 

whereas the CI for strains containing 6 or 7 mce domains was 0.8, implying a greater 

attachment potential of bacterial strains with more than one mce domain (Krachler, 

Ham et al. 2011). It is interesting to consider that all bacteria have at least 1 mce 

domain, whereas gram-negative bacteria have evolved 6 or more mce domains. It is 

likely that those bacteria which depend on host cell attachment for survival and 

proliferation can compete with other organisms in harsh environments with high 

efficiency adhesion to host cells. Examples of these bacterial species may include 

those that colonise the oral and respiratory tracts.  

MAM7 is thought to bind to fibronectin and phosphatidic acid receptors on host cells, 

with the interaction being much stronger for the latter, although binding affinity for 

phosphatidic acid significantly decreases when there are 5, 6 or 7 mce domains 

(Krachler, Ham et al. 2011). This suggests other mechanisms may mediate tight host 

cell binding during bacterial adhesion to host cells. 
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1.5 Anti-attachment therapy 

The rapid spread of antimicrobial resistance draws attention to the requirement for 

alternative treatments for bacterial infections. It has been suggested that a promising 

novel strategy is one that will not select for resistant bacteria. One of the potential 

approaches includes attenuating bacteria by targeting virulence, including the 

prevention of cell adhesion or the delivery of toxins to the host cell.  

Attachment of bacteria to host cells is a fundamental process for bacteria to establish 

infection (Galan and Collmer 1999), (Hayes, Aoki et al. 2010), (Krachler and Orth 

2013), therefore presents a potential target for a universal range of bacterial species. 

Approaches include inhibitors that mimic host cell receptors, which bind to bacteria, 

and those that mimic bacterial ligands, which bind to host cells, competitively 

reducing the bacterial-host cell interaction potential (Figure 1.3). Natural compounds 

with anti-adhesive properties, including cranberry juice, are effective in preventing 

UTIs, therefore engineered treatments may be beneficial for the treatment of a 

number of bacterial infections. It is thought that anti-attachment-based therapies may 

limit the spread of bacterial resistance because bacterial viability would remain 

unaffected, therefore the urgency to develop resistance diminishes. Furthermore, 

targeting bacterial attachment to host cells aims to promote the clearance of non-

attached bacteria by the host immune system, causing no harm towards the host or 

the bacteria.  
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Figure 1.3: Strategies for inhibiting pathogen attachment to host cells. (A): bacterial cells (orange) are 
unable to attach to host cells (purple) due to the presence of recombinant proteins (yellow) that bind to 

the host cells, (B): bacterial cells (orange) are unable to attach to host cells (purple) due to the 
presence of proteins that mimic host cell receptors (yellow).  

 

 

Anti-adhesin antibodies have been successful in generating acquired in-host 

immunity and reducing infection of UPEC strains (Bidhendi, Sattari et al. 2007), and 

as adhesins are located on the bacterial cell surface, they are readily accessible to 

antibodies and therefore may be effective targets for vaccines. The primary structure 

of FimH is 99% conserved amongst bacteria, therefore FimH is thought to be a 

promising target for anti-adhesion therapy; vaccinations using FimH to immunise the 

host have been explored and in vivo, FimH immunisation was shown to prevent E. 

coli UTI (Langermann, Palaszynski et al. 1997), (Langermann, Mollby et al. 2000). 

Furthermore, it has been suggested that a novel anti-adhesion strategy could be an 

inhibitor which binds to FimH to maintain the protein in its low affinity state. Rodriguez 

et al., used X-ray crystallography and site-directed mutagenesis to explore mutations 

in the lectin domain of FimH that would allow the protein to remain in its low affinity 

state (Rodriguez, Kidd, et al. 2013). However, other studies have shown that E. coli 
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FimH conversion from a high affinity to a low affinity state may be beneficial for 

infection by shedding antibodies from the immune response that are bound to it 

(Tchesnokova, Aprikian et al. 2011), which highlights the complexity of FimH 

interactions in the host. 

 

Low molecular weight carbohydrates have been shown to inhibit the interaction 

between the bacterial lectin, FimH, and the host cell. X-ray crystallography and 

substrate binding studies have shown that α-D-mannosides bind to bacterial FimH 

with high affinity (Fitos, Heremans et al. 1979), (Kotter, Krallmann-Wenzel et al. 

1998), (Bouckaert, Berglund et al. 2005), (Sperling, Fuchs et al. 2006). The highest 

binding affinity is associated with long chain mannosides, thought to be because the 

ligands interact more strongly with the hydrophobic amino acid residues that line the 

mannose-binding pocket (Han, Pinkner et al. 2010). Furthermore, such aromatic α-

glycosides are more effective inhibitors of attachment of E. coli to guinea pig ileal 

epithelial cells than methyl α-mannosides (Firon, Ashkenazi et al. 1987), suggesting 

a promising strategy for FimH inhibition. 

 

1.6 Mathematical model of resistance and anti-attachment therapy 

Anti-virulence treatments are not available clinically, therefore mathematical 

modelling is a practical tool to assess their viability in silico. One such model has 

been developed in the Department of Chemistry, at the University of Birmingham 

(Ternent, unpublished). Initial simulations explore the conditions required for the 

emergence of resistant bacteria in a bacterial population of susceptible and resistant 

cells, typical of localised bacterial infections. The model simulation is based on four 

variables: the number of susceptible bacteria in the population, the number of 
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resistant bacteria in the population, the antibiotic selected for a single-dose treatment, 

and the immune cells recruited to the site of infection (considered to be proportional 

to the number of bacteria at the site of infection). The model allows the determination 

of the conditions required for resistant bacteria to become dominant in the infection 

population, and therefore the conditions required for current treatment failure due to 

the development of bacterial resistance. Further simulations present a model for the 

clearance of an infection using an anti-virulence treatment only, which successfully 

eliminates the resistant population of bacteria at the site of infection, due to the 

fitness cost associated with maintaining a resistant phenotype. The final simulation 

presents a model for a combinational treatment approach, whereby dosing with an 

antibiotic and an anti-virulence, competitive-replacement compound, is able to 

successfully eliminate both the susceptible and resistant bacterial population at an 

infection site. However, the simulated data suggests that the limiting factor is the 

dose of the anti-virulence compound in removing the resistant population of bacteria, 

because every bacterial strain, infection and patient are different. A high dose of an 

anti-virulence treatment would flood the infection site, however is likely to be 

expensive, and potentially harmful to the host. Therefore dosing regimens must be 

tailor-made so they are strain and site-specific. Many of the parameters described for 

the model are estimated values, and therefore may not be accurate; experimental 

values should therefore be determined, in order to establish when treatment would 

be effective in an individual, and at what concentration and doses the anti-virulence 

therapy would be successful.  
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1.7 Research hypothesis and experimental aims 

The primary aim of this project was to generate experimental data in support of in 

silico modelling for anti-virulence therapy at the University of Birmingham (Ternent, 

unpublished). Six clinical isolates of P. aeruginosa were obtained from an outbreak at 

the Queen Elizabeth hospital in Birmingham (laboratory strain numbers: 985, 992, 

1004, 1007, 1008 and 1009); isolates 992 and 1004 were isolated from the water 

supply in the outbreak ward, and isolates 985, 1007, 1008 and 1009 were isolated 

from a patient at various times during a two week antibiotic treatment. Attachment of 

the strains to HeLa cells was explored from 0 to 5 hours, and baseline attachment 

data was compared to attachment in the presence of 4-methylumbelliferyl α-D-

mannopyranoside and recombinant GST-MAM7 beads, which present two distinct 

approaches to inhibit bacterial adhesion.  

 

Prior to beginning this project, there was no significant difference between the growth 

rates of all six isolates, all six isolates were resistant to imipenem (>8 µg/mL) and 

sensitive to meropenem, with the exception of isolate 1004, which was resistant to 

meropenem (>8 µg/mL). Interestingly, isolate 1004 showed a significant increase in 

attachment to the macrophage cell line J774 in vitro, although the assay itself was 

not able to discriminate between bacterial attachment and macrophage phagocytosis 

(unpublished data).  
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Table 2.1: Bacterial strains used in the study. 

 

Table 2.2: Mammalian cells used in the study. 

Cell Line Source and Description Growth 

HeLa Mammalian (human) epithelial cells Dulbeccos modified Eagle Medium, 
supplemented with 10% foetal bovine 

serum, 5% L-glutamine and 5% penicillin-
streptomycin 

 

Laboratory 
Reference 

Bacteria Source and Description Growth 

985 Pseudomonas aeruginosa Burns Unit, Queen Elizabeth Hospital, Birmingham (clinical, patient) LB media not supplemented 

992 Pseudomonas aeruginosa Burns Unit, Queen Elizabeth Hospital, Birmingham (clinical, water) LB media not supplemented 

1004 Pseudomonas aeruginosa Burns Unit, Queen Elizabeth Hospital, Birmingham (clinical, water) LB media not supplemented 

1007 Pseudomonas aeruginosa Burns Unit, Queen Elizabeth Hospital, Birmingham (clinical, patient) LB media not supplemented 

1008 Pseudomonas aeruginosa Burns Unit, Queen Elizabeth Hospital, Birmingham (clinical, patient) LB media not supplemented 

1009 Pseudomonas aeruginosa Burns Unit, Queen Elizabeth Hospital, Birmingham (clinical, patient) LB media not supplemented 
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2.1 Bacterial strains used in this study 

All bacterial strains used in this study are listed in Table 2.1. 

All bacterial strains were recovered from storage at -80°C in liquid cyoprotectant. A 

sterile 1 µL inoculation loop was used to streak each strain to purity onto Luria 

Bertani (LB) agar plates, which were then incubated in a static aerobic incubator for 

24 hours at 37°C. Plates were checked to ensure they were free from contamination. 

LB agar was prepared by autoclaving 25 g of LB power (Sigma) and 12g (1.2%) of 

agar (Sigma) in 1000 mL sterile distilled water (SDW), and once cooled, agar plates 

were poured aseptically and air dried. Unused plates were stored at 4°C for up to two 

weeks. 

 

Overnight cultures of the bacterial strains used in this study were prepared by 

aliquoting 5 mL of sterile LB into sterile 15 mL tubes. A single bacterial colony was 

picked from a LB agar plate, into each tube. The tubes were incubated in a shaking 

aerobic incubator for 24 hours at 37°C. 

LB broth was prepared by autoclaving 12.5 g of powder (Sigma), dissolved in 500 mL 

SDW. 

 

All bacterial cultures used in this study were used to prepare Multiplicity of Infection 

(MOI) stocks of 10 and 1. MOI refers to the ratio of bacterial cells to the cells under 

study. For the duration of this study, an MOI of 10 denotes a stock preparation of 10 

bacterial cells for every HeLa cell.  

Overnight cultures were diluted 1:10 in colourless, non-supplemented Dulbeccos 

Modified Eagle Medium (DMEM) (Sigma) and the OD600 was measured using a 
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spectrophotometer (Eppendorf), by aliquoting 1 mL of each diluted culture into a 

plastic cuvette. The optical density was measured against 1 mL of colourless DMEM 

only (blank). The dilution factor required for an MOI of 10 was calculated using the 

formula 3 / OD600, which gave the volume of bacteria required in µL, per mL of 

colourless DMEM. The dilution factor required for an MOI of 1 was calculated as 

above, with the volume of bacteria in µL divided by 10. 

 

2.2 Mammalian cells used in this study 

All mammalian cells used in this study are listed in Table 2.2. 

All mammalian cells used in this study were handled in a class II biosafety cabinet. 

HeLa cells were recovered from storage in liquid nitrogen in DMSO (Sigma), and 

quickly thawed by placing the cryovial into a water bath set at 37°C. The outside of 

the cryovial was sprayed with 70% ethanol and wiped with a paper towel. The 

thawed HeLa cells were resuspended in 9 mL of pre-warmed DMEM, supplemented 

with 10% Fetal Bovine Serum (FBS), 1% L-glutamine and 1% penicillin-streptomycin 

(all Sigma), in a sterile 50 mL tube (BD Falcon). The tube was centrifuged at 500 x g 

for 5 minutes at room temperature to separate the DMSO from the HeLa cells. The 

supernatant from each tube was discarded and the pellet containing the HeLa cells 

was resuspended in 10 mL of pre-warmed DMEM. The cells were inoculated into a 9 

cm tissue culture dish (BD Falcon) and incubated in a static incubator for 24 hours at 

37°C, 5% CO2. After 24 hours, the culture dish was checked using a light microscope 

to ensure the cells had attached and formed a monolayer on the culture surface. The 

DMEM was removed from the culture dish and replaced with 10 mL of fresh, pre-

warmed DMEM. The dish was incubated as previously described and checked daily 
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using a light microscope until the cells reached the desired confluency for sub-

culturing and preparation for study (~70-80%). 

 

When HeLa cells in culture reached the desired confluency for splitting, the serine 

protease Trypsin (Sigma) was used to detach HeLa cells from the surface of the 

tissue culture dish. DMEM was removed from the tissue culture dish using an 

automated aspirator vacuum fitted with a sterile glass pipette, and 1 mL of phosphate 

buffered saline (PBS) (Oxoid) was inoculated onto the edge of the dish by tilting, to 

wash the cell monolayer. The dish was gently agitated to ensure the PBS covered 

the cell surface, and was immediately removed. One mL of Trypsin was inoculated 

onto the edge of the dish by tilting and the dish was gently agitated to ensure 

complete coverage of the cell surface. The dish was incubated in a static incubator 

for 5-10 minutes at 37°C, 5% CO2. The dish was checked during the incubation 

period using a light microscope to ensure the Trypsin had caused detachment of 

cells from the tissue culture surface. Once detached, 9 mL of fresh, pre-warmed 

DMEM was inoculated onto the dish using an automatic pipette and a disposable 10 

mL stripette (Costar), to stop the Trypsin reaction.  

For maintenance: HeLa cells were split using the ratio 1:10. One mL of HeLa cells 

were inoculated into 9 mL of pre-warmed DMEM in a new sterile 9 cm tissue culture 

dish labelled with the appropriate passage number. For the duration of this study, the 

HeLa cell passage number did not exceed 20. The cells were incubated in a static 

incubator at 37°C, 5% CO2 and checked daily until ~70-80% confluency was reached, 

after which the cells were split as previously described. 
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For testing: Following Trypsin treatment, resuspended HeLa cells were transferred to 

a 50 mL tube for counting using a haemocytometer (BS.748, Hawksley, Improved 

Neubauer). Before use, the haemocytometer and cover slide were sterilised by 

spraying with 70% ethanol and wiping with a paper towel. Once assembled, 15 µL of 

HeLa cells were inoculated into the haemocytometer. Each large square in the 

chamber holds a volume of 0.1 µL, therefore the number of cells in 4 chambers was 

counted, divided by 4 to obtain an average cell count per large square, and multiplied 

by 104 in order to calculate the number of HeLa cells per mL (1000 µL) of DMEM. 

Unless otherwise stated, the seeding density of HeLa cells used for the duration of 

this study was 1.5 x 105 / mL. The dilution factor was calculated using the formula  

Cs x Vs = Cf x Vf (where C is the concentration, V is the volume, s is the start and f is 

the final). A HeLa cell stock of 1.5 x 105 / mL was prepared using pre-warmed DMEM 

in a sterile 50 mL tube. Unless otherwise stated, 1 mL of 1.5 x 105 / mL HeLa cells 

was inoculated into each well of a 24-well microtitre tray (MTT) (Greiner bio-one) 

using an automatic pipette and a disposable 10 mL stripette. MTTs were incubated in 

a static incubator at 37°C, 5% CO2 for 24 hours. 

 

2.3 Bacterial infection and attachment assays 

Overnight bacterial cultures were prepared as previously described, and an MOI of 1 

or 10 was prepared. HeLa cells were seeded into 24-well MTTs, as previously 

described and following 24 hours incubation, cells were checked using a light 

microscope to ensure they reached the desired confluency for testing. Existing 

DMEM was removed from MTTs using an automated aspirator vacuum fitted with a 

sterile glass pipette, and 1 mL of PBS was inoculated into each well using an 
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automatic pipette and a disposable 10 mL stripette, to remove residual DMEM from 

the HeLa cells. The MTTs were incubated for 5-10 minutes at room temperature, 

before removing the PBS. Each bacterial strain (1 mL) at MOI 10 or 1 was inoculated 

into the wells of the MTTs, as shown in Figure 2.1. The plates were centrifuged at 

1000 x g for 5 minutes at room temperature, and the infection assay was carried out 

immediately at time points of 1, 0.5, 1, 1.5, 2, 3, 4 and 5 hours.  

 

 

 

Figure 2.1: MTT layout for investigating the dynamics of P. aeruginosa attachment to HeLa cells. The 
attachment of six P. aeruginosa strains was investigated over 5 hours. 

 

At each time point, bacteria that were attached to the HeLa cell monolayer were 

recovered and enumerated: Non-adherent bacteria were removed from the wells 

using a manual pipette set to 1000 µL, and the wells were washed three times with 1 

mL of sterile PBS. This was added and removed using a manual pipette set to 1000 

µL, ensuring the HeLa cell monolayer was not disturbed by gently tilting the MTT. To 

recover attached bacteria, the HeLa cells were lysed using 1 mL of 0.05% Triton x 

100, by repeated pipetting. A stock solution of 0.1% Triton x 100 (Sigma) was 

prepared in sterile PBS and diluted 1:2 for study. To enumerate attached bacteria, 

serial 1:10 dilutions were prepared by removing 20 µL from each lysed well of the 
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MTT, into 180 µL of sterile PBS in sterile 0.8 mL tubes (Sarstedt). Optimal bacterial 

dilutions were derived experimentally in order to enumerate the bacteria accurately 

and obtain colonies in the countable range (depending on MOI and time point, 

generally 1:100 – 1:10,000). The appropriate bacterial dilution (100 µL) was 

inoculated onto a labelled LB agar plate and spread evenly using an L-shaped 

etilever (Sarstedt). Once dry, the LB agar plates were inverted and incubated in a 

static aerobic incubator for 24 hours at 37°C. Plates were checked to ensure they 

were free from contamination and colonies were counted either by eye, or using an 

automated colony counter. Colony forming units (CFUs) per mL were calculated by 

multiplying the number of colonies on each plate by the dilution factor, and as 100 µL 

was enumerated, this number was then multiplied by 10.  

All bacterial cultures used in this study were tested at an MOI of 10 and 1.  

Input Controls: In order to calculate the concentration of bacteria added to HeLa cell 

monolayers at Time = 0, the stock solution of each strain (at MOI 10 or MOI 1) was 

diluted and plated onto LB agar as described above, in order to calculate the input 

concentration for each experiment. 

 

4-methylumbelliferyl α-D-mannopyranoside 

Low molecular weight carbohydrates have been shown to inhibit the interaction 

between the bacterial lectin, FimH, and the host cell, particularly α-D-mannosides 

which have been shown to bind to bacterial FimH with high affinity (Fitos, Heremans 

et al. 1979), (Kotter, Krallmann-Wenzel et al. 1998),  (Bouckaert, Berglund et al. 

2005), (Sperling, Fuchs et al. 2006).  
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In this study, 4-methylumbelliferyl α-D-mannopyranoside was used to explore the 

dynamics of bacterial attachment to HeLa cells, as it has previously been shown to 

be a potent inhibitor of bacterial adhesion mediated by FimH (Firon, Ashkenazi et al. 

1987), (Nagahori, Lee et al. 2002). It was hypothesised that this compound would 

bind to the P. aeruginosa FimH molecule with high affinity, and compromise 

attachment to HeLa cells via this mechanism. As a result, the approach was intended 

to reduce the attachment of bacteria to HeLa cells in comparison to baseline 

attachment.  

A 0.01 mg / mL stock of 4-methylumbelliferyl α-D-mannopyranoside was prepared 

from powder (stored at 4°C) in Dimethyl sulfoxide (DMSO) (Sigma). A final 100 µM 

concentration of 4-methylumbelliferyl α-D-mannopyranoside was prepared directly in 

bacterial MOI 10 and 1 stocks, with the infection and attachment assays carried out 

as previously described (Figure 2.2). The 0.01 mg / mL stock was stored at 4°C in foil 

to protect it from the light. Data was compared to attachment in the absence of 4-

methylumbelliferyl α-D-mannopyranoside using the Student T-Test (1-tailed 

distribution, 2-sample equal variance). Bacterial input controls were included as 

previously described. 

 

Figure 2.2: MTT layout for investigating the dynamics of P. aeruginosa attachment to HeLa cells in the 
presence of 4-methylumbelliferyl α-D-mannopyranoside. The attachment of six P. aeruginosa strains 

was investigated over 5 hours. 
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Multivalent adhesion molecule 7 (GST-MAM7 beads) 

MAM7 is a small protein expressed by many bacteria, and hypothesised to be a 

common initial binding factor for many gram-negative pathogens. Recombinant 

MAM7 tagged with gluthathione S-transferase (GST), immobilised and coupled to the 

surface of inert polymer beads has been shown to be effective in reducing bacterial 

attachment to host cells, through competitive binding to phosphatidic acid and 

fibronectin host receptors (Krachler, Ham et al. 2012). Therefore, this approach was 

used to explore the changes in P. aeruginosa attachment to HeLa cells, compared to 

GST-only-coupled polymer beads. It was hypothesised that recombinant MAM7 

would bind to target receptors and reduce bacterial attachment to the HeLa cells.  

GST-MAM7 and GST beads were aliquoted into sterile 0.8 mL tubes and stored at -

20°C. A final concentration of 500 nM peptide was prepared directly in bacterial MOI 

10 and 1 stocks, using 2 µL of beads per 1 mL bacterial stock, with the infection and 

attachment assays carried out as previously described (Figure 2.3). GST-MAM7 and 

GST attachment data were compared using the Student T-Test (1-tailed distribution, 

2-sample equal variance). Bacterial input controls were included as previously 

described. 
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Figure 2.3: MTT layout for investigating the dynamics of P. aeruginosa attachment to HeLa cells in the 
presence of GST-MAM7 beads and GST beads. The attachment of six P. aeruginosa strains was 

investigated over 5 hours. 
 
 

2.4 Immunostaining  

To investigate HeLa cell morphology during infection with P. aeruginosa, 

Immunostaining and fluorescence microscopy were used to explore the HeLa 

phenotype at 1 hour and 5 hours post-infection, in the presence of GST-MAM7 and 

GST beads.  

Immunostaining: Coverslips (VWR International) were sterilised by spraying both 

sides with 70% ethanol and allowed to dry on a paper towel. Each coverslip was 

placed into the well of a sterile 6-well MTT (Greiner bio-one) using forceps. Confluent 

HeLa cells were detached from tissue culture dishes and counted, as described in 

2.2, and 2 mL of HeLa cells at a concentration of 1.5 x 105 / mL was inoculated into 

each well of the MTT containing a coverslip. MTTs were incubated in a static 
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incubator at 37°C, 5% CO2 for 24 hours. Following incubation, DMEM was removed 

from each well using an automated aspirator vacuum fitted with a sterile glass pipette, 

and 1 mL of phosphate buffered saline (PBS) was inoculated onto the edge of the 

dish by tilting, to wash the cell monolayer. The infection assay was carried out as 

previously described, at time points of 1 and 5 hours (Figure 2.4).  

 

At each time point, non-adherent bacteria were removed from the wells using a 

pipette and washed three times using 1 mL of sterile PBS. The coverslip was washed 

by tilting the plate and adding the PBS away from the coverslip. The cells on the 

coverslip were fixed by pipetting 1 mL of 3.2% formaldehyde solution directly onto 

each coverslip and storing the MTTs at 4°C overnight. A 50 mL solution of 3.2% 

formaldehyde was prepared from a 37% stock solution (stored at 4°C) (Sigma) by 

adding 5 mL to 5 mL of sterile PBS and 40 mL of deionised water (dH2O).  

 

 

Figure 2.4: MTT layout for immunostaining preparation of P. aeruginosa attachment to HeLa cells in 
the presence of GST-MAM7 and GST beads. 
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Following incubation, the formaldehyde was removed from each well and the HeLa 

cell monolayer on each coverslip was permeabilised to allow the uptake of 

fluorescent stains for imaging, by inoculating 1 mL of 0.1% Triton X-100 into each 

well. The plates were incubated for 5 minutes at room temperature. The Triton X-100 

was removed from each well, and each coverslip was washed once by tilting the 

plate and adding 1 mL sterile PBS away from the coverslip, which was removed. 

 

Hoechst and phalloidin cell-permeable stains were used for fluorescence microscopy. 

Hoechst is typically used to stain DNA and nucleic acids in mammalian cells, whilst 

phalloidin is typically used to stain actin fibres in mammalian cells. A dye solution was 

prepared in the ratio of 0.1% Hoechst and 1% phalloidin (Biotium) in sterile PBS and 

200 µL was inoculated directly onto each coverslip. The MTTs were incubated for 10 

minutes at room temperature to allow the uptake of the dyes. Each coverslip was 

washed twice by tilting the plate and adding 1 mL of sterile PBS away from the 

coverslip. The coverslips were washed a third time with dH2O, which was not 

removed from the wells until mounting, to prevent the coverslips from drying.  

For mounting; a glass slide (Thermoscientific) was labelled and one drop of mounting 

solution was added to the centre. The corresponding coverslip was removed from the 

6-well MTT using forceps and gently blotted onto a paper towel, avoiding the 

disturbance of the HeLa monolayer. The coverslip was placed over the mounting 

solution, ensuring that the HeLa cell monolayer was inserted between the coverslip 

and the glass slide. The process was repeated until all coverslips had been mounted. 

The slides were kept inside a dark box prior to microscopy to prevent light damage.  
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Fluorescence microscopy 

NIS Elements Imaging Software was used to image each coverslip prepared as 

described. Before opening the computer programme, the Nikon Eclipse Ti-S 

microscope, camera and light source (Nikon Intensilight C-HGFI) were switched on. 

A 60 x 1.40 Oil Lens was used for microscopy, requiring each coverslip to be 

immersed in one drop of non-drying immersion oil (Cargille Laboratories) before 

mounting onto the microscope. Representative areas of each coverslip were selected 

for imaging using hoechst (UV filter) and phalloidin (green filter) stains, in addition to 

Differential Interference Contrast (DIC). Exposure was adjusted appropriately 

between filters. Images were exported and Image J software was used to overlay 

hoechst and phalloidin images. 
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3.0 Results 
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3.1 Attachment of P. aeruginosa to HeLa cells in the presence and absence of 

4-methylumbelliferyl α-D-mannopyranoside 

P. aeruginosa attachment to HeLa cells was explored at 0, 0.5, 1, 1.5, 2, 3, 4 and 5 

hours, at baseline and in the presence of 100 µM of 4-methylumbelliferyl α-D-

mannopyranoside, a low molecular weight carbohydrate that has been shown to 

inhibit the interaction between bacterial FimH and host cells (Firon, Ashkenazi et al. 

1987), (Nagahori, Lee et al. 2002).   

 

At a ratio of bacterial cells to HeLa cells of 10:1 (MOI 10), P. aeruginosa attachment 

to HeLa cells at baseline increased positively from 0 to 5 hours in all bacterial strains 

tested (for strain 985 (n=3): bacterial attachment at 0 hours = 5.67 x 105/mL and 

bacterial attachment at 5 hours = 1.36 x 107/mL) (Figure 3.1). In the presence of 4-

methylumbelliferyl α-D-mannopyranoside, P. aeruginosa attachment to HeLa cells 

appeared reduced at each time-point compared to the baseline, in all bacterial strains 

tested (for strain 985 (n=3): baseline bacterial attachment at 0 hours = 5.67 x 105/mL 

and bacterial attachment in the presence of 4-methylumbelliferyl α-D-

mannopyranoside at 0 hours = 1.70 x 105/mL) (Figure 3.1).  

The student T-Test was used to test the null hypothesis that the attachment of P. 

aeruginosa to HeLa cells was equal in the presence and absence of 4-

methylumbelliferyl α-D-mannopyranoside, at each time point. It was predicted that 

bacterial attachment in the presence of 4-methylumbelliferyl α-D-mannopyranoside 

would be lower than in its absence, therefore a one-tailed distribution was assumed 

(two-sample assuming equal variance). A p-value of less than 0.05 = * significance, 

less than 0.01 = ** significance, and 0.001 = *** significance. 
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Figure 3.1: Attachment in colony forming units (CFUs) per mL, of P. aeruginosa strain 985 at an MOI of 10 (left) and an MOI of 1 (right) to HeLa cells 
over 5 hours, in the presence and absence of 100 µM of 4-methylumbelliferyl α-D-mannopyranoside (n=3, +SD).  

Mean input (MOI 10): 1.70 x 10
6
/mL, (MOI 1): 6.30 x 10

5
/mL. 

 
 
 

  

Figure 3.2: Attachment in colony forming units (CFUs) per mL, of P. aeruginosa strain 992 at an MOI of 10 (left) and an MOI of 1 (right) to HeLa cells 
over 5 hours, in the presence and absence of 100 µM of 4-methylumbelliferyl α-D-mannopyranoside (n=3, +SD).  

Mean input (MOI 10): 3.37 X 10
6
/mL, (MOI 1): 1.93 x 10

5
/mL. 
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Figure 3.3: Attachment in colony forming units (CFUs) per mL, of P. aeruginosa strain 1004 at an MOI of 10 (left) and an MOI of 1 (right) to HeLa cells 
over 5 hours, in the presence and absence of 100 µM of 4-methylumbelliferyl α-D-mannopyranoside (n=3, +SD).  

Mean input (MOI 10): 5.77 x 10
6
/Ml, (MOI 1): 3.70 x 10

5
/mL. 

 

  

  

Figure 3.4: Attachment in colony forming units (CFUs) per mL, of P. aeruginosa strain 1007 at an MOI of 10 (left) and an MOI of 1 (right) to HeLa cells 
over 5 hours, in the presence and absence of 100 µM of 4-methylumbelliferyl α-D-mannopyranoside (n=3, +SD).  

Mean input (MOI 10): 1.12 x 10
7
/mL, (MOI 1): 2.13 x 10

5
/mL. 
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Figure 3.5: Attachment in colony forming units (CFUs) per mL, of P. aeruginosa strain 1008 at an MOI of 10 (left) and an MOI of 1 (right) to HeLa cells 
over 5 hours, in the presence and absence of 100 µM of 4-methylumbelliferyl α-D-mannopyranoside (n=3, +SD).  

Mean input (MOI 10): 8.93 x 10
6
/Ml, (MOI 1): 2.03 x 10

5
/mL. 

 
 

  

Figure 3.6: Attachment in colony forming units (CFUs) per mL, of P. aeruginosa strain 1009 at an MOI of 10 (left) and an MOI of 1 (right) to HeLa cells 
over 5 hours, in the presence and absence of 100 µM of 4-methylumbelliferyl α-D-mannopyranoside (n=3, +SD).  

Mean input (MOI 10): 1.01 x 107/Ml, (MOI 1): 2.72 x 10
5
/mL.
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Strain 985 showed the most significant decreases in attachment at multiple time 

points ((n=3): 0.5 hours p = 0.01, 1 hour p = 0.01, 2 hours p = 0.01, 4 hours p = 0.01 

and 5 hours p = 0.02) (Figure 3.1). Other strains showed modest decreases in 

attachment at few time points (strain 992 (n=3): 0.5 hours p = 0.05, 1 hour p = 0.02 

and 5 hours p = 0.02 (Figure 3.2), strain 1004 (n=3): 0.5 hours p = 0.05, 1 hour p = 

0.02, 5 hours p = 0.02 (Figure 3.3), strain 1007 (n=3): 5 hours p = 0.05 (Figure 3.4), 

strain 1008 (n=3): 0 hours p = 0.02, 5 hours p = 0.03 (Figure 3.5), strain 1009 (n=3): 

0 hours p = 0.03, 0.5 hours p = 0.03 and 5 hours p = 0.02 (Figure 3.7)).  

 

At MOI 1, P. aeruginosa attachment to HeLa cells at baseline increased positively 

from 0 to 5 hours in all bacterial strains tested, as previously described (for strain 985 

(n=3): bacterial attachment at 0 hours = 1.77 x 105/mL and bacterial attachment at 5 

hours = 1.18 x 106/mL) (Figure 3.1). At this MOI, the presence of 4-methylumbelliferyl 

α-D-mannopyranoside appeared to have a more modest effect on P. aeruginosa 

attachment to HeLa cells, and at some time points studied, attachment increased in 

its presence (strain 985 (n=3): baseline bacterial attachment at 5 hours = 1.18 x 

106/mL and bacterial attachment in the presence of 4-methylumbelliferyl α-D-

mannopyranoside = 2.24 x 106/mL) (Figure 3.1). 

 

Using the student T-Test to determine significance, only two data points were 

deemed statistically significant (strain 1007 (n=3): baseline bacterial attachment at 

1.5 hours = 1.57 x 105/mL and bacterial attachment in the presence of 4-

methylumbelliferyl α-D-mannopyranoside = 6.8 x 104/mL, with a p-value of 0.05 

(Figure 3.4), and strain 1008 (n=3): baseline bacterial attachment at 0 hours = 1.10 x 
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105/mL and bacterial attachment in the presence of 4-methylumbelliferyl α-D-

mannopyranoside = 4.23 x 104/mL, with a p-value of 0.05) (Figure 3.5). 

 

Input Controls: In order to calculate the concentration of bacteria added to HeLa cell 

monolayers at Time = 0, the stock solution of each strain (at MOI 10 or MOI 1) was 

enumerated in order to calculate the input concentration for each experiment. For 

each bacterial strain tested, input controls were consistently lower than bacteria 

enumerated at 5 hours (for strain 985 (MOI 10): Input = 1.70 x 106/mL, baseline 

bacterial attachment at 5 hours = 1.36 x 107/mL, (MOI 1): Input = 6.30 x 105/mL, 

baseline bacterial attachment at 5 hours = 1.18 x 106/mL (Figure 3.1).  

 

 

3.2 Attachment of P. aeruginosa to HeLa cells in the presence of GST-MAM7 

and GST beads 

P. aeruginosa attachment to HeLa cells was explored at 0, 0.5, 1, 1.5, 2, 3, 4 and 5 

hours, at baseline (GST beads), and in the presence of GST-MAM7 beads, which 

have been shown to inhibit the interaction between bacterial MAM7 and host cells 

through competitive binding of recombinant MAM7 (Krachler, Ham et al. 2012).  

 

At MOI 10, P. aeruginosa attachment to HeLa cells at baseline (GST beads) 

increased positively from 0 to 5 hours in all bacterial strains tested (for strain 985 

(n=2-3): bacterial attachment at 0 hours = 1.40 x 105/mL and bacterial attachment at 

5 hours = 7.40 x 106/mL) (Figure 3.7). In the presence of GST-MAM7 beads, P. 

aeruginosa attachment to HeLa cells between 0 hours and 1.5 hours was not 
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significantly changed (strain 985 (n=2-3): bacterial attachment at 0 hours = 1.70 x 

105/mL, 0.5 hours = 1.42 x 105/mL, 1 hour = 1.21 x 105/mL and 1.5 hours = 2.45 x 

105/mL. However, attachment decreased between 1.5 hours and 5 hours in all 

bacterial strains tested (for strain 985 (n=2-3): bacterial attachment at 2 hours = 8.61 

x 103/mL, 3 hours = 1.70 x 103/mL, 4 hours = 1.27 x 103/mL and 5 hours = 2.78 x 

103/mL (Figure 3.7).  

 

The student T-Test was used to test the null hypothesis that the attachment of P. 

aeruginosa to HeLa cells was equal in the presence and absence of GST-MAM7 

beads, at each time point. It was predicted that bacterial attachment in the presence 

of GST-MAM7 would be lower than in the presence of control GST beads, therefore 

a one-tailed distribution was assumed (two-sample assuming equal variance). A p-

value of less than 0.05 = * significance, less than 0.01 = ** significance, and 0.001 = 

*** significance.  

 

Strains 985, 1008 and 1009 showed statistically significant decreases in attachment 

at all time-points between 1.5 and 5 hours (for strain 985 (n=2-3): 2 hours p = 0.01, 3 

hours p = 0.05, 4 hours p = 0.05 and 5 hours = 0.01 (Figure 3.7), for strain 1008 

(n=2-3): 2 hours p = 0.01, 3 hours p = 0.05, 4 hours p = 0.05 and 5 hours p = 0.001 

(Figure 3.11), for strain 1009 (n=2-3): 2 hours p = 0.05, 3 hours p = 0.01, 4 hours p = 

0.05 and 5 hours p = 0.001 (Figure 3.12). Other strains showed a decrease in 

attachment that was not significant at all time points (Figures 3.8-3.10). 
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Figure 3.7: Attachment in colony forming units (CFUs) per mL, of P. aeruginosa strain 985 at an MOI of 10 (left) and an MOI of 1 (right) to HeLa cells 
over 5 hours, in the presence of GST-MAM7 beads and GST beads (n=1-3, +SD). 

Mean input (MOI 10): 1.10 x 10
6
/mL, (MOI 1): 2.89 x 10

5
 /mL 

 

  
 

Figure 3.8: Attachment in colony forming units (CFUs) per mL, of P. aeruginosa strain 992 at an MOI of 10 (left) and an MOI of 1 (right) to HeLa cells 
over 5 hours, in the presence of GST-MAM7 beads and GST beads (n=1-3, +SD). 

Mean input (MOI 10):1.39 x 10
6
/mL, (MOI 1): 2.74 x 10

5
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Figure 3.9: Attachment in colony forming units (CFUs) per mL, of P. aeruginosa strain 1004 at an MOI of 10 (left) and an MOI of 1 (right) to HeLa cells 
over 5 hours, in the presence of GST-MAM7 beads and GST beads (n=1-3, +SD). 

Mean input (MOI 10): 1.76 x 10
6
/mL, (MOI 1): 4.60 x 10

5
/mL 

 

  
 

Figure 3.10: Attachment in colony forming units (CFUs) per mL, of P. aeruginosa strain 1007 at an MOI of 10 (left) and an MOI of 1 (right) to HeLa cells 
over 5 hours, in the presence of GST-MAM7 beads and GST beads (n=1-3, +SD). 
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Figure 3.11: Attachment in colony forming units (CFUs) per mL, of P. aeruginosa strain 1008 at an MOI of 10 (left) and an MOI of 1 (right) to HeLa cells 
over 5 hours, in the presence of GST-MAM7 beads and GST beads (n=1-3, +SD). 

Mean input (MOI 10): 1.36 x 10
6
/mL, (MOI 1): 1.60 x 10

5
/mL 

 

  
 

Figure 3.12: Attachment in colony forming units (CFUs) per mL, of P. aeruginosa strain 1009 at an MOI of 10 (left) and an MOI of 1 (right) to HeLa cells 
over 5 hours, in the presence of GST-MAM7 beads and GST beads (n=1-3, +SD). 
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At MOI 1, P. aeruginosa attachment to HeLa cells at baseline (GST beads) increased 

positively from 0 to 5 hours in all bacterial strains tested, as previously described (for 

strain 985 (n=1-2): bacterial attachment at 0 hours = 2.20 x 104/mL and bacterial 

attachment at 5 hours = 2.34 x 106/mL) (Figure 3.7). At this MOI, the presence of 

GST-MAM7 beads had a similar effect on P. aeruginosa attachment to HeLa cells as 

has been described for MOI 10 (for strain 985 (n=1-2): bacterial attachment at 2 

hours = 3.45 x 102/mL, 3 hours = 1.17 x 103/mL, 4 hours = 2.05 x 102/mL and 5 hours 

= 2.90 x 102/mL (Figure 3.7). 

 

The student T-Test was used to determine significance where 2 data points were 

available (strain 985 (n=2): 4 hours p = 0.05 (Figure 3.7) and strain 1008 (n=2): 5 

hours p =0.05 (Figure 3.11). 

 

Input Controls: for each bacterial strain tested, input controls were consistently lower 

than bacteria enumerated at 5 hours at baseline (GST beads) (for strain 985 (MOI 

10): Input = 1.10 x 106/mL, baseline bacterial attachment at 5 hours = 7.10 x 106/mL, 

(MOI 1): Input = 2.89 x 105/mL, baseline bacterial attachment at 5 hours = 2.34 x  

106/mL (Figure 3.7). 
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3.3 Immunostaining and fluorescence microscopy of P. aeruginosa attachment 

to HeLa cells in the presence of GST-MAM7 and GST beads 

 

Immunostaining and fluorescence microscopy were used to explore the changes in 

HeLa cell morphology at 1 and 5 hours post-infection with P. aeruginosa strains, in 

the presence of GST-MAM7 and GST beads. This was carried out to investigate the 

decrease in P. aeruginosa attachment in the presence of GST-MAM7 beads (Figures 

3.7-3.12). The hoechst cell-permeable stain was used to stain DNA (blue) and the 

phalloidin cell-permeable stain was used to stain actin fibres (red).  

 

Non-infected HeLa cells were included for comparison (Figure 3.13). In all strains 

tested during the study, P. aeruginosa infection in the presence of GST-only beads 

led to modest actin stress-fibre formation in HeLa cells at 1 and 5 hours post-

incubation, compared to the non-infected HeLa cells (phalloidin red stain, figures 

3.14-3.15, 3.18-3.19, 3.22-3.23, 3.26-3.27, 3.30-3.31 and 3.33-3.34). For strains 985 

and 992 in the presence of GST beads, stress fibre formation appeared increased at 

5 hours post-infection, compared to 1 hour post-infection (Figures 3.14-3.15 and 

3.18-3.19).  

HeLa cell morphology during P. aeruginosa infection in the presence of GST-MAM7 

beads was not significantly changed compared to GST-only beads, however actin 

stress fibre formation visualised at 5 hours appeared modestly decreased in some 

strains compared to the observed phenotype at 5 hours in the presence of GST 

beads (Figures 3.16-3.17, 3.20-3.21, 3.24-3.25 and 3.28-3.29).  

In all strains tested in the presence of GST beads, the proportion of bacterial cells 

attached to the HeLa cell monolayer increased between 1 and 5 hours, however in 
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the presence of GST-MAM7 beads, fewer bacteria were seen attached to the HeLa 

monolayer at 5 hours (DIC images), which is consistent with attachment data 

(Figures 3.7-3.12). No significant changes in hoechst DNA-binding was observed in 

the presence of GST-MAM7 and GST beads, suggesting that the GST-MAM7 beads 

had no significant effect on the HeLa cell phenotype during attachment inhibition. 
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Figure 3.13: Non-infected HeLa cells and immunostaining with hoechst (DNA) and phalloidin (actin). Left to right: DIC image, phalloidin-stained image, 

hoechst-stained image, and overlaid phalloidin & hoechst-stained images. 
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Figure 3.14: Infection of HeLa cells with P. aeruginosa strain 985 (MOI 10) containing GST beads for 1 hour and Immunostaining with hoechst (DNA) 

and phalloidin (actin). Left to right: DIC image, phalloidin-stained image, hoechst-stained image, and overlaid phalloidin & hoechst-stained images. Red 

arrow indicates visible bacterial cells and blue arrow indicates the GST beads. 60 x magnification. 

 

 

 

    

Figure 3.15: Infection of HeLa cells with P. aeruginosa strain 985 (MOI 10) containing GST beads for 5 hours and Immunostaining with hoechst (DNA) 

and phalloidin (actin). Left to right: DIC image, phalloidin-stained image, hoechst-stained image, and overlaid phalloidin & hoechst-stained images. Red 

arrow indicates visible bacterial cells and blue arrow indicates the GST beads. 60 x magnification. 
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Figure 3.16: Infection of HeLa cells with P. aeruginosa strain 985 (MOI 10) containing GST-MAM7 beads for 1 hour and Immunostaining with hoechst 

(DNA) and phalloidin (actin). Left to right: DIC image, phalloidin-stained image, hoechst-stained image, and overlaid phalloidin & hoechst-stained 

images. 60 x magnification. 

 

 

 

    

Figure 3.17: Infection of HeLa cells with P. aeruginosa strain 985 (MOI 10) containing GST-MAM7 beads for 5 hours and Immunostaining with hoechst 

(DNA) and phalloidin (actin). Left to right: DIC image, phalloidin-stained image, hoechst-stained image, and overlaid phalloidin & hoechst-stained 

images. 60 x magnification.  
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Figure 3.18: Infection of HeLa cells with P. aeruginosa strain 992 (MOI 10) containing GST beads for 1 hour and Immunostaining with hoechst (DNA) 

and phalloidin (actin). Left to right: DIC image, phalloidin-stained image, hoechst-stained image, and overlaid phalloidin & hoechst-stained images. 60 x 

magnification. 

 

 

 

    

Figure 3.19: Infection of HeLa cells with P. aeruginosa strain 992 (MOI 10) containing GST beads for 5 hours and Immunostaining with hoechst (DNA) 

and phalloidin (actin). Left to right: DIC image, phalloidin-stained image, hoechst-stained image, and overlaid phalloidin & hoechst-stained images. Red 

arrow indicates visible bacterial cells and blue arrow indicates the GST beads. 60 x magnification. 



65 

 

    

Figure 3.20: Infection of HeLa cells with P. aeruginosa strain 992 (MOI 10) containing GST-MAM7 beads for 1 hour and Immunostaining with hoechst 

(DNA) and phalloidin (actin). Left to right: DIC image, phalloidin-stained image, hoechst-stained image, and overlaid phalloidin & hoechst-stained 

images. 60 x magnification.  

 

 

 

    

Figure 3.21: Infection of HeLa cells with P. aeruginosa strain 992 (MOI 10) containing GST-MAM7 beads for 5 hours and Immunostaining with hoechst 

(DNA) and phalloidin (actin). Left to right: DIC image, phalloidin-stained image, hoechst-stained image, and overlaid phalloidin & hoechst-stained 

images. 60 x magnification.  
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Figure 3.22: Infection of HeLa cells with P. aeruginosa strain 1004 (MOI 10) containing GST beads for 1 hour and Immunostaining with hoechst (DNA) 

and phalloidin (actin). Left to right: DIC image, phalloidin-stained image, hoechst-stained image, and overlaid phalloidin & hoechst-stained images. 60 x 

magnification. 

 

 

 

    

Figure 3.23: Infection of HeLa cells with P. aeruginosa strain 1004 (MOI 10) containing GST beads for 5 hours and Immunostaining with hoechst (DNA) 

and phalloidin (actin). Left to right: DIC image, phalloidin-stained image, hoechst-stained image, and overlaid phalloidin & hoechst-stained images. 60 x 

magnification. 
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Figure 3.24: Infection of HeLa cells with P. aeruginosa strain 1004 (MOI 10) containing GST-MAM7 beads for 1 hour and Immunostaining with hoechst 

(DNA) and phalloidin (actin). Left to right: DIC image, phalloidin-stained image, hoechst-stained image, and overlaid phalloidin & hoechst-stained 

images. 60 x magnification. 

 

 

 

    

Figure 3.25: Infection of HeLa cells with P. aeruginosa strain 1004 (MOI 10) containing GST-MAM7 beads for 5 hours and Immunostaining with hoechst 

(DNA) and phalloidin (actin). Left to right: DIC image, phalloidin-stained image, hoechst-stained image, and overlaid phalloidin & hoechst-stained 

images. 60 x magnification. 



68 

 

    

Figure 3.26: Infection of HeLa cells with P. aeruginosa strain 1007 (MOI 10) containing GST beads for 1 hour and Immunostaining with hoechst (DNA) 

and phalloidin (actin). Left to right: DIC image, phalloidin-stained image, hoechst-stained image, and overlaid phalloidin & hoechst-stained images. 60 x 

magnification. 

 

 

 

    

Figure 3.37: Infection of HeLa cells with P. aeruginosa strain 1007 (MOI 10) containing GST beads for 5 hours and Immunostaining with hoechst (DNA) 

and phalloidin (actin). Left to right: DIC image, phalloidin-stained image, hoechst-stained image, and overlaid phalloidin & hoechst-stained images. 60 x 

magnification. 
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Figure 3.28: Infection of HeLa cells with P. aeruginosa strain 1007 (MOI 10) containing GST-MAM7 beads for 1 hour and Immunostaining with hoechst 

(DNA) and phalloidin (actin). Left to right: DIC image, phalloidin-stained image, hoechst-stained image, and overlaid phalloidin & hoechst-stained 

images. 60 x magnification. 

 

 

 

    

Figure 3.29: Infection of HeLa cells with P. aeruginosa strain 1007 (MOI 10) containing GST-MAM7 beads for 5 hours and Immunostaining with hoechst 

(DNA) and phalloidin (actin). Left to right: DIC image, phalloidin-stained image, hoechst-stained image, and overlaid phalloidin & hoechst-stained 

images. 60 x magnification. 
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Figure 3.30: Infection of HeLa cells with P. aeruginosa strain 1008 (MOI 10) containing GST beads for 1 hour and Immunostaining with hoechst (DNA) 

and phalloidin (actin). Left to right: DIC image, phalloidin-stained image, hoechst-stained image, and overlaid phalloidin & hoechst-stained images. 60 x 

magnification. 

 

 

 

    

Figure 3.31: Infection of HeLa cells with P. aeruginosa strain 1008 (MOI 10) containing GST beads for 5 hours and Immunostaining with hoechst (DNA) 

and phalloidin (actin). Left to right: DIC image, phalloidin-stained image, hoechst-stained image, and overlaid phalloidin & hoechst-stained images. 60 x 

magnification. 
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Figure 3.32: Infection of HeLa cells with P. aeruginosa strain 1008 (MOI 10) containing GST-MAM7 beads for 1 hour and Immunostaining with hoechst 

(DNA) and phalloidin (actin). Left to right: DIC image, phalloidin-stained image, hoechst-stained image, and overlaid phalloidin & hoechst-stained 

images. 60 x magnification. 
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Figure 3.33: Infection of HeLa cells with P. aeruginosa strain 1009 (MOI 10) containing GST beads for 1 hour and Immunostaining with hoechst (DNA) 

and phalloidin (actin). Left to right: DIC image, phalloidin-stained image, hoechst-stained image, and overlaid phalloidin & hoechst-stained images. 60 x 

magnification. 

 

 

    

Figure 3.34: Infection of HeLa cells with P. aeruginosa strain 1009 (MOI 10) containing GST beads for 5 hours and Immunostaining with hoechst (DNA) 

and phalloidin (actin). Left to right: DIC image, phalloidin-stained image, hoechst-stained image, and overlaid phalloidin & hoechst-stained images. 60 x 

magnification. 
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Figure 3.35: Infection of HeLa cells with P. aeruginosa strain 1009 (MOI 10) containing GST-MAM7 beads for 1 hour and Immunostaining with hoechst 

(DNA) and phalloidin (actin). Left to right: DIC image, phalloidin-stained image, hoechst-stained image, and overlaid phalloidin & hoechst-stained 

images. 60 x magnification. 

 

 

    

Figure 3.36: Infection of HeLa cells with P. aeruginosa strain 1009 (MOI 10) containing GST-MAM7 beads for 5 hours and Immunostaining with hoechst 

(DNA) and phalloidin (actin). Left to right: DIC image, phalloidin-stained image, hoechst-stained image, and overlaid phalloidin & hoechst-stained 

images. 60 x magnification. 
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4.1 Research hypothesis and experimental aims 

The aim of this project was to generate experimental data in support of in silico 

modelling for anti-virulence therapy (Ternent, unpublished), by exploring the 

attachment of six clinical P. aeruginosa isolates to HeLa cells - a cell type which is 

likely to be encountered prior to infection. The isolates were obtained from the Queen 

Elizabeth hospital in Birmingham  following an outbreak in the Burns Unit; isolates 

992 and 1004 were taken from the water supply, and isolates 985, 1007, 1008 and 

1009 were isolated from a patient at various times during a two week antibiotic 

treatment.  

Prior to this study, there was no significant difference between the growth rates of all 

six P. aeruginosa isolates and MIC data suggested that all six isolates were resistant 

to imipenem (>8 µg/mL) and sensitive to meropenem, with the exception of isolate 

1004, which was resistant to meropenem (>8 µg/mL) and interestingly showed high 

macrophage attachment compared to the other strains (unpublished data).  

 

During this study, attachment of each P. aeruginosa strain to HeLa cell monolayers 

was explored in the presence and absence of 4-methylumbelliferyl α-D-

mannopyranoside and GST-MAM7 beads, which present two distinct approaches to 

reduce bacterial attachment to host cells. Anti-adhesion therapy presents a novel 

approach for the treatment of bacterial infections, which is thought to generate little to 

no selective pressure for the development of resistance; however as clinical 

therapies are currently unavailable, in silico modelling is a useful tool for analysing 

their efficacy.  
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4.2 The effect of 4 methylumbelliferyl α-D-mannopyranoside on the attachment 

of P. aeruginosa to HeLa cells 

Functional characterisation of the P. aeruginosa genome has identified an array of 

genes which are central to virulence and pathogenicity (Stover, Pham et al. 2000), 

including those required for attachment to host cells. Bacterial attachment to host 

cells is considered a prerequisite for infection because adhesion allows the delivery 

of extracellular toxins and effector proteins to the host cytosol that enable the 

establishment and spread of infection. Attachment is mediated by a complex network 

of proteins, including adhesins, which act as cell recognition molecules to secure 

bacteria onto host cells (Sharon and Lis 1989). This is particularly important for 

bacteria that must overcome shear forces to remain in the human body, including 

those that invade the urinary and respiratory tracts. Inhibiting the expression of 

specific adhesins has been shown to attenuate bacterial virulence and therefore 

provides a promising strategy for the development of anti-virulence treatment. 

 

The initial aim of this study was to explore baseline P. aeruginosa attachment to 

HeLa cells over the course of a 5 hour infection and incubation period, with 

enumeration of attached bacteria in CFUs/mL at 0, 0.5, 1, 1.5, 2, 3, 4 and 5 hours. 

After establishing the baseline dynamics of P. aeruginosa attachment, 4-

methylumbelliferyl α-D-mannopyranoside was explored as an anti-attachment 

compound to target and bind P. aeruginosa FimH. The FimH protein is a D-mannose 

sensitive adhesin, located at the tip of Type 1 fimbriae in many bacteria, and 

therefore presents a universal target for a number of bacteria. FimH anchors the 

bacterial cell to the host cell through binding to cell surface mannose residues 
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specifically recognised by the protein. The specificity of the binding enables the 

formation of tight carbohydrate-protein complexes (Sharon and Lis 1989).  

 

Through the addition of 100 µM of 4-methylumbelliferyl α-D-mannopyranoside to 

bacterial stocks of MOI 10 and MOI 1 prior to infection of HeLa cells, it was 

hypothesised that the compound would antagonise P. aeruginosa FimH and 

therefore reduce attachment to the epithelial cells. At MOI 10 for all bacterial strains 

under study, the presence of 4-methylumbelliferyl α-D-mannopyranoside resulted in a 

decrease in attachment at all time-points studied, however few data points were 

statistically significant as calculated by the student T test. At MOI 1, the observed 

trend was similar, however less data points were statistically significant. Taken 

together, it is unclear if 4-methylumbelliferyl α-D-mannopyranoside was effective in 

reducing the attachment of P. aeruginosa to HeLa cells and the data obtained in this 

study suggests that more repeats are necessary to generate statistically sound data. 

Previous studies of adhesin gene expression revealed that specific adhesins are 

expressed at different phases of infection; therefore, bacteria secrete multiple 

adhesins to facilitate efficient attachment and it is possible that FimH is not essential 

for attachment in the P. aeruginosa strains tested between 0 and 5 hours post 

infection in vitro. It would be interesting to inactivate FimH in the strains to further 

explore this possibility. Furthermore, it has been suggested that although FimH binds 

to mannose receptors on host cells with high specificity, it is likely that FimH binds to 

other ligands, depending on the environment, such as E. coli attachment to the 

urinary tract, and in biofilms. This suggests that bacteria are adaptable depending on 

environmental stressors, which could include the potential inhibition of attachment to 
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host cells. Alternatively, at a concentration of 100 µM, 4-methylumbelliferyl α-D-

mannopyranoside may not be effective in reducing attachment of P. aeruginosa to 

HeLa cells, which highlights the importance of tailoring potential anti-virulence 

therapies for specific bacterial infections. It would be interesting to compare the 

efficacy of 4-methylumbelliferyl α-D-mannopyranoside in reducing the attachment of 

other pathogenic bacterial species to HeLa cells, because FimH could be a 

potentially universal bacterial target for therapy. Previous studies using a similar anti-

attachment compound indicated that a high inhibitor concentration was required to 

inhibit haemoagglutination of horse red blood cells by E. coli (Nagahori, Lee et al. 

2002), and it is likely that anti-adhesion compounds are more effective if the ligands 

or receptors are in excess of the bacterial cells to maximise competitive replacement 

at the site of infection. At unfavourable ratios, the anti-adhesive is unable to 

discriminate between bacteria that have already bound to host cells, therefore any 

unbound molecules would be cleared during the removal stage of the infection and 

attachment assay. Clinically, this suggests that use of anti-attachment therapy alone 

may only be beneficial as a prophylactic treatment as opposed to an on-going 

infection, where bacteria are already attached to host cells.  

 

4.3 The effect of GST-MAM7 beads on the attachment of P. aeruginosa to HeLa 

cells 

The second approach tested to reduce P. aeruginosa attachment to HeLa cells in this 

study was to mimic P. aeruginosa MAM7. GST-MAM7 beads have been effective in 

reducing adhesion to host cells in a number of bacteria by competitive replacement 

and binding to phosphatidic acid and fibronectin host cell receptors (Krachler, Ham et 
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al. 2012). In this study, the efficacy of GST-MAM7 beads was compared to a control 

of GST-only beads. The data generated indicates that between 0 and 1.5 hours post-

infection with each P. aeruginosa strain, there were modest differences in attachment 

in the presence of GST-MAM7 beads. However between 1.5 hours and 2 hours post-

infection with each bacterial strain tested, attachment decreased, suggesting that P. 

aeruginosa was somehow caused to detach from the HeLa cells at the later time 

points. Despite the observed decrease, few data points were statistically significant 

as calculated by the student T test, owing to the variability between the data points 

used to calculate the mean log value. This highlights a limitation in the assay as the 

number of colony forming units counted for each time point was not always 

consistent, and would therefore benefit from further repeats to generate statistically 

sound data and confirm the observations in this study. Although bacterial viability 

was not confirmed for the detached bacteria, previous studies involving GST-MAM7 

beads have not described any cytotoxicity from the beads - further confirmed by the 

inclusion of GST-only beads in the study, which do not follow this trend of decreased 

attachment between 0 and 5 hours.  

 

Immunostaining and fluorescent microscopy was carried out in order to explore HeLa 

cell morphology during P. aeruginosa attachment at 1 and 5 hours, in the presence of 

GST-MAM7 beads, compared with GST-only beads. In all strains under study, the 

presence of GST-only beads led to an acceleration in actin stress-fibre formation in 

HeLa cells at 5 hours, compared to 1 hour post-infection. DIC images showed that 

the proportion of bacterial cells attached to HeLa cells at 5 hours increased in the 

presence of GST-only beads, suggesting that the GST-MAM7 beads reduced 
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bacterial attachment to the cells at 5 hours. Where GST-MAM7 beads were used 

during infection, no significant changes in HeLa cell morphology were seen that 

would suggest cell death; no significant changes in hoechst DNA-binding was 

observed in the presence of GST-MAM7 and GST beads, furthermore, observed 

changes in HeLa cell morphology in the presence of GST-MAM7 and GST beads 

were subtle. Taken together, the present study was unable to identify the cause of P. 

aeruginosa detachment between 1.5 and 2 hours-post infection in the presence of 

GST-MAM7 beads. Similarly to FimH, it is possible that P. aeruginosa MAM7 was not 

required for initial bacterial attachment at 0-1.5 hours. It would be interesting to study 

the gene expression profile of MAM7 during different time-points of the assay to 

explore this hypothesis further. A longer incubation time (5 hours +) may provide 

optimal visualisation of the effect of GST-MAM7 beads on the HeLa phenotype 

during infection, compared with GST beads. Additionally, it would be interesting to 

count the number of GST-MAM7 beads bound to each HeLa cell during this assay 

using fluorescently labelled beads, to better explore the efficacy of the beads in 

reducing bacterial attachment to HeLa cells. 

 

4.4 Conclusions of the study 

The data generated during this study has contributed to the development of in silico 

modelling for anti-virulence therapy. Bacteria that are resistant to antibiotics, 

particularly frontline treatments, are an increasing threat to healthcare, particularly in 

nosocomial environments where patients are generally immunocompromised and 

exposed to a variety of opportunistic bacteria capable of causing secondary 

infections. Since their discovery, the pipeline of new antibiotics is becoming 
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increasingly thin, therefore it has been suggested that the focus of new treatments for 

bacterial infections should shift from discovering new antibiotics, to the discovery of 

therapeutics with novel targets. One of these strategies aims to promote clearance 

via the host immune system through inhibition of bacterial virulence. Examples 

include preventing the delivery of virulence toxins to the host cytosol, targeting the 

regulation of virulence genes to reduce their expression, and preventing bacterial 

attachment to host cells.  

Mathematical modelling can be used to explore the efficacy and viability of anti-

virulence therapies in silico (Ternent, unpublished). Theoretical data suggests that 

anti-virulence therapy is likely to be of clinical benefit when administered in 

combination with suitable antibiotics that aim to clear the susceptible population of 

cells. In silico modelling can be used to identify optimal treatment regimes; however 

every infection, bacterial strain and patient are different, therefore strategies and 

treatment doses must be tailored to the specific conditions of the host. As many of 

the parameters described in the model are estimated values, they are not accurate. 

Consequently, further experimental data must be generated in order to fully establish 

more accurate parameters for the model, to enable pathogen-specificity, patient-

specificity and infection site-specificity. This will enable the model to establish when 

treatment would be effective in an individual, and at what concentrations the 

treatment would be effective. 

 

4.5 Limitations of the study 

During infection and attachment assays, the mean concentration of each bacterial 

strain inoculated at time = 0 (input control) was consistently lower than the bacteria 



82 
 

recovered at 5 hours, which suggests that for the duration of this assay, P. 

aeruginosa was proliferating. As a result, the assay was unable to determine how 

proliferation affected attachment from 0 to 5 hours. It is possible that the increase in 

attachment observed throughout the study was due to the proliferation of bacteria 

that were already attached at an earlier time point. In order to explore this further, a 

preliminary assay was carried out in which each P. aeruginosa strain was inoculated 

onto a HeLa cell monolayer and incubated for 30 minutes at 37°C, 5% CO2. 

Following incubation, bacterial suspensions were removed and each well filled with 1 

mL of pre-warmed colourless DMEM, before carrying out the infection assay as 

previously described. This assay was conducted in order to determine the rate of 

proliferation of P. aeruginosa attached at 30 minutes post-infection. Unfortunately, 

due to the time constraints of the project and the requirement of further assay 

optimisation, the data is incomplete and therefore not included in this project.  

Alternatively, to measure the percentage of attached bacteria at each time point 

during the assay, it would be useful to enumerate detached bacteria at each time 

point, and use the values to calculate the percentage of attached bacteria at each 

time point. However, this may be inaccurate because non-attached bacteria would 

need to be removed from the 24-well MTT after each PBS wash, which may dilute 

the bacteria too much to be plated accurately. Centrifugation to pellet the bacteria 

and resuspending in a reduced volume may also distort the results, due to additional 

manipulation steps, where cells may be lost. 

During Immunostaining and fluorescence microscopy during this study, it was 

important to consider the effect of photobleaching on each slide, resulting in a 

reduction in the time a sample can be observed. Photobleaching was minimised as 



83 
 

much as possible, by storing slides in a dark box when not in use and minimising 

illumination during fluorescence analysis. Additionally, poor image resolution limited 

the visualisation of images and Epifluorescence may be favourable for future studies. 

 

4.6 Proposed further work 

The current study aimed to explore the dynamics of P. aeruginosa attachment to 

HeLa cells as 2D monolayers, which may not be an accurate representation of how 

the strains behave when encountered with the cells within a host organism. 

Specifically, the data generated during the infection and attachment assays may vary 

considerably if the cells were in a multicellular environment and under sheer forces 

that more closely mimic the environment P. aeruginosa is likely to encounter in the 

host organism. 

For example, FimH mannose affinity increases during conditions of increased 

mechanical force, which may enhance the ability of bacteria to anchor onto host cells 

to avoid clearance (Yakovenko, Sharma et al. 2008). It would be interesting to 

complement the data obtained during this study with infection and attachment of 3D 

cell cultures that more closely mimic an infection site. 

 

Expression of bacterial adhesins are induced as a result of different environmental 

factors; therefore it would be interesting to explore how bacterial attachment is 

affected by altering a number of environmental variables including temperature and 

pH. Although the study temperature used during the duration of this project was 37°C, 

which is the typical body temperature of the host organism, further insights into the 

dynamics of bacterial attachment could be gained from repeat assays at a range of 
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temperatures. Similarly, bacteria must be able to withstand acidic pH in the stomach, 

so it would be interesting to explore how pH correlates with the attachment of P. 

aeruginosa to host cells.  

 

If there was more time during this study, further exploration of the interactions 

between GST-MAM7 beads and bacterial attachment could have been achieved by 

fluorescently-labelling the 6 P. aeruginosa strains and carrying out live-cell imaging 

over the 5 hour infection period. The technique would have been useful to study 

binding of 4-methylumbelliferyl α-D-mannopyranoside to the bacteria, in addition to 

how the GST-MAM7 beads reduced attachment of the strains between 1.5 and 2 

hours post-infection. Alternatively, fluorescent reporter genes tagged to FimH and 

MAM7 in the P. aeruginosa strains may be useful in studying whether gene 

expression increased at particular time-point during infection and therefore when 

treatment with the respective attachment inhibitor may be most optimal. However, 

such further work may not reveal more about the changes to HeLa cell morphology 

over the infection period. It would be possible to explore the cytotoxic effect of the P. 

aeruginosa strains during the infection period using a lactate dehydrogenase (LDH) 

release assay because infection would cause the HeLa cells to lyse and release LDH 

into the culture medium, which can then be used as a measure of invasion. Krachler 

et al (2012) reported that the cytotoxicity of P. aeruginosa in the presence of GST-

MAM7 reduced from 76% to 4% (Krachler, Ham et al. 2012), so may provide 

additional data for this study. Alternatively, Trypan blue staining may be useful to 

determine the relative live and dead HeLa cells during the infection period. 
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In this study, 4-methylumbelliferyl α-D-mannopyranoside showed modest promise in 

reducing the adhesion of P. aeruginosa to HeLa cells, however it would be interesting 

to explore the efficacy of multiple attachment inhibitors with different targets, for 

example 4-methylumbelliferyl α-D-mannopyranoside and GST-MAM7 beads, and 

how these affect P. aeruginosa attachment during the same infection assay.  
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