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ABSTRACT 

Space weather can have a negative impact on a number of radio frequency (RF) systems, with 

mitigation by ionospheric and thermospheric modelling one approach to improving system 

performance. However, before a model can be adopted operationally its performance must be 

quantified. Taylor diagrams, which show a model’s standard deviation and correlation, have 

been extended to further illustrate the model’s bias, standard deviation of error and mean square 

error in comparison to observational data. By normalising the statistics, multiple parameters 

can be shown simultaneously for a number of models. Using these modified Taylor diagrams, 

the first known long term (one month) comparison of three model types – empirical, physics 

and data assimilation - has been performed. The data assimilation models performed best, 

offering a statistically significant improvement in performance. One physics model performed 

sufficiently well that it is a viable background model option in future data assimilation schemes. 

Finally, multi-model thermospheric ensembles (MMEs) have been constructed from which the 

thermospheric forecasts exhibited a reduced root mean square error compared to non-ensemble 

approaches. Using an equally weighted MME the reduction was 55% and using a mean square 

error weighted approach the reduction was 48%.  
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1. INTRODUCTION 

None but those who have experienced them can conceive 

of the enticements of science… In a scientific pursuit there 

is continual food for discovery and wonder. 

- Mary Wollstonecraft Shelley, Frankenstein 

 

Space weather refers to “conditions on the Sun and in the solar wind, magnetosphere, 

ionosphere, and thermosphere that can influence the performance and reliability of space-borne 

and ground-based technological systems and can endanger human life or health. Adverse 

conditions in the space environment can cause disruption of satellite operations, 

communications, navigation, and electric power distribution grids, leading to a variety of 

socioeconomic losses.” [National Space Weather Program, 1995]. Variations in solar and 

geomagnetic activity can cause ionospheric variability and radio frequency (RF) systems that 

operate via or through the ionosphere at frequencies of ~2 GHz and below can be severely 

affected. Thus space weather poses a threat to systems such as global navigation satellite 

systems (GNSS), high frequency (HF) communications, space-based Earth observation radars 

and space situational awareness radars. Therefore, comprehensive, global and timely 

specifications of the Earth's ionosphere are required to ensure the effective operation, planning 

and management of these systems. Many techniques have been developed to measure the 

ionosphere; including ground and space-based ionosondes [Titheridge, 1988] and the use of 

global navigation satellite system (GNSS) measurements made with both ground and space-

based receivers [Dow et al., 2005].  

 

Ionospheric models can be used to help mitigate against these effects. There are a wide range 

of ionospheric models in active use and development utilizing a number of modelling 
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techniques. The models can be split into three main categories: empirical, physics-based (i.e. 

solving equations governing the underlying physical system) and data assimilation (an optimal 

combination of one of the first two approaches with ionospheric data). Empirical models are 

widely used due to their relative simplicity and good median performance [e.g. Llewellyn and 

Bent, 1973; Bilitza et al., 1988]. However they are unsuitable for nowcasting or medium term 

(hours to days) forecasting since only very basic data is considered in the modelling procedure. 

In general they do not respond to varying space weather conditions (such as the onset of a 

geomagnetic storm). Physics-based models strive to solve the equations which underpin the 

physical system of the ionosphere [e.g. Richmond et al., 1992; Ridley et al., 2006]. Such models 

also rely on initial and boundary conditions from the thermosphere, plasmasphere and 

magnetosphere, as well as proxies for solar activity, to drive the models. Errors in these 

measurements can introduce errors into the model output. Data assimilation models attempt to 

optimally combine individual measurements and a background model of the ionosphere [e.g. 

Angling and Khattatov, 2006; McNamara et al., 2013]. They rely on the availability of data 

(such as from GNSS stations and ionosondes) and sophisticated statistical techniques to 

combine the data and background model.  

 

To gain insight into the skill of the various ionospheric modelling types and techniques, suitable 

metric(s) are required. The ‘modified Taylor diagram’ [Taylor, 2001; Elvidge et al., 2014], a 

visualization technique for analysing a variety of parameters from multiple models 

simultaneously, is described in this work. Using modified Taylor diagrams, the testing results 

from a variety of different models are presented [McNamara et al., 2013; Elvidge and Angling, 

2014]. Finally, multi-model ensembles (MMEs) are described and used, to show how the 

combination of multiple models can provide improved results [Elvidge et al., 2013]. 
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2. THE IONOSPHERE 

The beauty of the natural world lies in the details. 

- Natalie Angier, The Beauty of the Beastly 

2.1. Introduction  

From approximately 60 km above the Earth's surface to 1500 km [Angling et al., 2013], atoms 

and molecules in the atmosphere are ionised by radiation from the Sun. The process of 

ionisation removes electrons from these atoms and molecules, leaving positively charged ions 

and free electrons in a region of the atmosphere called the ionosphere. The ionosphere is thus 

an ionised gas, i.e. a plasma. Since the ionisation is caused by the Sun, solar activity and 

ionospheric variability are closely linked [Davies, 1990]. 

 

The number of free electrons in a volume, the electron density, depends on the speed of the 

electron production and loss processes [Hunsucker and Hargreaves, 2003]. This can be 

expressed by the following equation: 

 

 ����� = � − � − ∇ ⋅ ����
. (2.1) 

 

Where �� is the electron density, � the production rate, � the loss rate and ∇ ⋅ ����
 the loss 

rate of electrons due to transport (� the electron mean velocity). Chapman [1931] developed a 

simple mathematical model for how ionospheric layers, or regions, form based on the zenith 

angle of the Sun. The Chapman model uses the assumption that ionizing radiation can be 

characterized by a single frequency. It also depends upon there being a balance between the 

formation of free electrons and their loss by recombination (the process by which electrons and 
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ions join together) and that the atmosphere is made up of a single species. Although a simple 

model, it describes the main characteristics of the different regions. The approach is also useful 

for describing the shape of the vertical profile of electron densities in the ionosphere.  

 

2.2. Ionospheric Nomenclature 

When discussing the ionosphere there are a number of abbreviations which are commonly used 

to describe various physical parameters. The main abbreviations are based around the prefixes: 

‘Nm’ (peak electron density), ‘fo’ (ordinary mode (O mode) critical frequency, see Section 2.6 

for further details), ‘fx’ (extraordinary mode (X mode) critical frequency) and ‘hm’(height), 

with suffixes referring to the ionospheric regions: E, F1 and F2.  

 

For example, NmF2 is the peak electron density in the F2 region, foE is the O mode critical 

frequency in the E region and hmF1 is the height of the peak electron density/plasma frequency 

in the F1 region. This naming convention derives from the ionosonde community [Piggott and 

Rawer, 1978] and there are many more names than just the ones mentioned here.  

 

2.3. Ionospheric Structure 

Extreme ultraviolet (EUV) and X-ray radiation from the Sun ionises atoms and molecules in 

the atmosphere, releasing free electrons. Since the density of the atmosphere at high altitudes 

is relatively low, a large number of electrons remain free. It is because of this that the ionosphere 

forms. Increases in the amount of solar radiation, such as during a solar storm, will affect the 

quantity of electron/ion pairs produced.  
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The behaviour of the ionosphere is dependent on processes in the thermosphere and the Earth’s 

magnetic field [Mitchell, 2013]. With increasing altitude, the thermospheric effects decrease, 

and the magnetic field effects become dominant. The direction of the Earth’s magnetic field, 

with respect to the ionosphere, is important in understanding how different geographic regions 

are affected. At low latitudes, the magnetic field is almost horizontal, whereas at high latitudes 

it is vertical. At extremely high latitudes the magnetic field is open to the interplanetary 

magnetic field (IMF), and the full effects of the Sun can be seen. It is because of this that aurora 

generally occur at high latitudes.  

 

The movement of the ionosphere is again dependent upon geographic location. For example, 

near the equator when the zonal electric field is eastwards it causes plasma to move upwards. 

Whereas at high latitudes, the electric field generated by the IMF, �� × �
/��, controls the 

horizontal speed of the ionosphere. A more detailed explanation of ionospheric structure and 

the physics of the ionosphere can be found in Hargreaves [1979]. 

 

The vertical profile of the ionosphere varies both temporally and spatially. It is traditionally 

split into four ‘regions’ or ‘layers’, D, E, F1 and F2 (Figure 1). The characteristics of each 

region is also dependent upon geomagnetic conditions. Each of the regions are described in 

more detail in the following sections.  
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Figure 1. A representation of the ionosphere showing the four regions, and how they vary 

diurnally and with respect to the solar cycle [Angling et al., 2013]. 

 

2.3.1. D Region 

The D region is the lowest ionospheric region, typically occurring between ~60 and ~90 km. 

The region is produced almost entirely by direct ionisation of NO [Mitchell, 2013]. It can be 

seen in Figure 1 that it does not have a distinct peak. During the day the region has a peak value 

of around 2×108 electrons/m3. It disappears at night since the high neutral density results in a 

high recombination rate of the electron/ion pairs. 

 

Increases in solar X-rays (such as during a solar flare), increase D region absorption. Absorption 

is the process by which the energy from radio waves is converted into heat and electromagnetic 

noise [Davies, 1990]. Such increases can potentially lead to sudden ionospheric disturbances 
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(SIDs). The region does not support HF propagation due to the low plasma frequency (see 

Section 2.6). 

 

2.3.2. E Region 

The E region, from ~90 to ~130 km has a peak electron density (NmE) of 1×1011 electrons/m3. 

Soft X-rays (wavelengths between 0.8 nm and 1.4 nm) and ultraviolet radiation (100 nm to 

150 nm) are the main form of ionising radiation of O2 and N2 in this region [Schunk, 1996]. The 

region is solar zenith angle dependent, and as such largely disappears at night. It is the region 

best modelled by a Chapman layer and few modern techniques focus on the region [Solomon, 

2006]. 

 

2.3.3. F Region 

The F region is the densest ionospheric layer and the one which has most impact on radio 

systems. In the day the region splits into two ‘sub’ regions, F1 and F2 (described below), 

whereas at night it collapses to just the single F region. It is formed by O and N2 ionised by 

EUV radiation, with wavelengths between 10 nm and 90 nm [Parsons, 2006]. 

 

The F1 region extends from ~130 km to ~210 km, and typically has a peak electron density 

(NmF1) of approximately 2×1011 electrons/m3. Even though the F1 layer behaves 

approximately as a Chapman layer, its peak values are affected by high solar activity [Rastogi, 

1958]. 
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Extending from ~210 km to ~600 km (the ‘upper bound’ of the ionosphere is not well defined 

and various texts place it between 1000 km and 2000 km [Yau et al., 1996; Angling et al., 2013; 

Mitchell, 2013]), the F2 region generally exhibits the greatest electron density. The NmF2 is 

approximately 1×1012 electrons/m3 in the daytime and drops to 5×1010 electrons/m3 at night. 

The region persists through the night due to the lower collision rate (thus the longer lifetime of 

electron/ion pairs) and transport of electrons from other regions.  

 

The F2 region contains many anomalous features when compared to Chapman layers and can 

be particularly difficult to model (in contrast to the E region). These include the equatorial 

(Appleton) anomaly, which is a region of heightened ionospheric density at ±20o of the 

magnetic equator, and the winter anomaly where the F2 ionisation is lower in the summer than 

the winter. These anomalies, and others, are described more thoroughly in Davies [1990], which 

should also be consulted for a more detailed description of the ionosphere and its processes.  

 

2.4. Storm Time Ionosphere 

Changes in solar activity can have a dramatic impact on electron densities in the ionosphere, as 

well as neutral/ion densities and temperature [Gorney, 1990]. During a geomagnetic storm the 

Earth’s magnetosphere is compressed by the solar wind and electric fields flow along the 

magnetic field lines into the ionosphere [Buonsanto, 1999]. High energy particles also 

precipitate into the ionosphere and thermosphere. The ionosphere responds to these affects in a 

variety of ways, which vary spatially.  Hunsucker and Hargreaves [2003] describe the three 

main stages of an ionospheric storm on electron density across multiple latitudes as: 

 

1. Initial phase – electron density and content increase. 
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2. Main phase – electron density and content decrease below normal values. 

3. Recovery phase – electron density and content gradually return to normal. 

 

In the initial phase increased ionisation, particularly on the dayside D region of the Earth, causes 

SIDs which affect HF signals, degrading radio communication [Belrose and Thomas, 1968]. 

The F region electron density sees a sudden increase due to a decrease in the recombination rate 

which occurs because of a reduction in O2 and N2. In the main phase the electron density drops 

due to an increase in the recombination rate because of an increase of O2 and N2. These changes 

in the recombination rate are caused by changes in the altitude of O2 and N2 which control the 

dominant chemical reactions. The ionosphere then slowly returns to normal during the recovery 

phase. The speed of recovery is slow due to the time-scales of molecular diffusion in the 

atmosphere [Fuller-Rowell et al., 2001]. These effects occur globally, however, there are other 

effects specific to particular ionospheric regions. 

 

In low-latitudes rapid changes in the electric field, inside the magnetosphere, penetrate into the 

F region. This causes sudden downwelling or upwelling which creates instabilities called spread 

F. Also at low latitudes, the dayside eastward and nightside westward electric currents meet 

which can force ionospheric plasma upwards [Knipp, 2011]. 

 

In high latitudes, E region and F region ionospheric effects are most prominent. Electric fields 

mapped along magnetic field lines transport plasma on the dayside to the nightside, across the 

polar cap. This can cause large trails of ionization, which can be further enhanced by particle 

precipitation which is guided by the Earth’s magnetic field lines into the auroral regions. During 

the initial phase of a geomagnetic storm, the polar cap potential increases which can lead to an 



10 

 

expansion of the auroral zone [Kavanagh et al., 2004]. Finally, solar proton events (SPEs), 

which are mainly MeV energised protons, ionize low altitude regions of the polar caps. These 

events are named polar cap absorption (PCA) events.  

 

There are a number of reviews of solar storm effects on the ionosphere and thermosphere 

including: Fuller-Rowell et al. [1994], Lastovicka [1996], Buonsanto [1999], Hunsucker and 

Hargreaves [2003] and Knipp [2011]. These works should be consulted for more details on the 

processes described in this section as well as other, undescribed, phenomena.  

 

2.5. The Plasmasphere 

The plasmasphere is the region above the ionosphere. Its lower boundary is defined as the 

region where protons replace oxygen as the majority species in the atmosphere. This occurs 

between 1000 and 2000 km. It extends to between four and six Earth radii (19000 to 32000 km) 

to the plasmapause. There is very little ion production in this region but ions are produced in 

the ionosphere during the day, and diffuse upwards [Davies, 1990]. Modelling of the 

plasmasphere is particularly important to physics-based models as it is a boundary condition 

for the ionosphere. 

 

2.6. Refractive Index 

How an electromagnetic wave propagates through a medium is dependent upon the refractive 

index of the medium. The ionosphere is a cold, magnetized plasma and how a wave propagates 

through it is described by the Appleton-Hartree-Lassen equation. The Appleton-Hartree-Lassen 

equation (sometimes referred to just as the Appleton [Ratcliffe, 1959], Appleton-Hartree 
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[Budden, 1985], or Appleton-Lassen [Rawer and Suchy, 1976] equation) describes the 

refractive index for electromagnetic wave propagation [Lassen, 1927; Hartree, 1929; Appleton, 

1932; Davies, 1990]. The refractive index (�) can be calculated using the simplified form of 

the Appleton-Hartree-Lassen equation [Angling et al., 2013]: 

 

 �� = 1 − 2��1 − �
2�1 − �
 − ��� ± ���� + 4�1 − �
����. (2.2) 

 

Where  

 � = ����� !"#�, (2.3) 

 �� = ����"# , (2.4) 

 �� = ����"# . (2.5) 

 

and �� is the electron density, �� is the charge of the electron (1.6×10-19 coulomb),  ! is the 

vacuum permittivity (8.85×10-12 farad-meter-1), " is the electron mass (9.11×10-31 kg), # is the 

angular frequency, �� is the longitudinal component of the magnetic field and �� is the 

transverse component of the magnetic field. When a radio wave begins to enter the ionosphere 

the Earth’s magnetic field causes it to split into two characteristic components [Angling et al., 

2013]. The two rays are referred to as ordinary (O) and extraordinary (X) waves. 

 

The positive part of the plus/minus sign in the denominator of Equation (2.2) refers to the O 

wave whilst the negative part refers to the X wave. If one assumes no magnetic field then a 

relationship between electron density and plasma frequency (%&) is (derived in Appendix A): 
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 %& = 9��� . (2.6) 

 

Thus the frequency at which a wave is reflected or refracted by the ionosphere is dependent 

upon the electron density. Radio waves with frequencies greater than the maximum plasma 

frequency in the ionosphere will be refracted, but nonetheless, pass through the ionosphere 

(such as for communication with satellites). Waves with frequencies less than the maximum 

plasma frequency will be reflected by the ionosphere (such as for over-the-horizon radar 

(OTHR)). Different regions of the ionosphere have local maxima in electron density and thus 

waves can be reflected from different heights of the ionosphere.  

 

2.7. Data Types 

A wide range of measurement techniques have been developed for measuring the ionosphere. 

Examples include the use of GNSS [Hofmann-Wellenhof et al., 2001], ionosondes [Reinisch, 

1996] and incoherent scatter radars [Rishbeth and Williams, 1985]. 

 

2.7.1. Global Navigation Satellite System Data 

A GNSS is a global coverage satellite navigation system. Currently there are only two fully 

operational GNSS systems: the USA's NAVSTAR Global Positioning System (GPS) and the 

Russian Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS). However there are 

two in active deployment; China's BeiDou-2 navigation system (also known as COMPASS) 

and the European Union's GALILEO system. For global coverage, a satellite navigation system 

generally requires a satellite constellation of 20 to 30 satellites. GNSS data products are 
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provided by a number of services including the International GNSS Service (IGS) [Dow et al., 

2009] and EUREF [Bruyninx et al., 2001].  

 

There are a large number of GNSS receivers whose data is available for ionospheric modelling. 

The distribution of receivers from IGS is shown in Figure 2. Despite the large number of GNSS 

receivers, Saharan Africa has no available receivers through IGS, and very few in the Pacific. 

This results in a lack of data in those regions.  

 

 

Figure 2. Distribution of GNSS receivers available from IGS [IGS Central Bureau, 2010]. 

 

GNSS signals can be used to determine the total electron content (TEC) between the satellite 

and a receiver on the ground (or in space for radio occultation (RO)). TEC is the line integral 

of electron density on a path between two points (i.e. between the satellite and the receiver):  

 

 (�) =  + �� ,-, (2.7) 
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where �� is electron density. TEC is often measured by the TEC unit (TECU), which is 

1016 electrons/m2.  

 

A dual frequency (L1 (1575.42 MHz) and L2 (1575.42 MHz)) GNSS receiver can record 

pseudorange (the measured distance between satellite and receiver, assuming the velocity of 

light) and phase for both frequencies. The phase and pseudorange can be used to derive TEC 

from GNSS measurements. The phase TEC (Equation (2.8)) gives a 2. ambiguous result 

(represented by �). Whereas the pseudorange TEC (Equation (2.9)) is a noisy measurement. 

Therefore, generally the TEC is calculated by using the pseudorange TEC to level the phase 

TEC (Equation (2.10)). 

 

     (�)&/01� = %2�%���3� − 32
40.3�%�� − %2�
 + �, (2.8) 

 (�)&1�6789:0;<� = %2�%���=2 − =�
40.3�%�� − %2�
, (2.9) 

               (�) = (�)&/01� − (�)&/01� +  (�)&1�6789:0;<� . (2.10) 

 

 

Where %> for ? = 1,2 is the frequency of signal Li (in MHz), 3> is the phase (expressed in 

metres), B is the unknown ambiguity, => is the pseudorange (in metres) and @ is the mean of @. 

The derivation of Equations (2.8), (2.9) and (2.10) are shown in Appendix B. 
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2.7.2. Ionosondes 

Ionosondes are radars which are used to examine the ionosphere. Ionosondes typically have 

four main components [Lowell Digisonde International, 2014a]: 

• A HF transmitter with frequency coverage from approximately 1 to 40 MHz, 

• A HF receiver (which can track the frequency of the transmitter), 

• An antenna, 

• A computer for data storage and analysis. 

An ionosonde produces an ionogram, which is a graph of virtual height (the apparent height of 

an ionospheric reflections calculated from the time of flight of the radio waves, assuming the 

wave travels at the speed of light) against frequency.  
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Figure 3. A sample ionogram [Lowell Digisonde International, 2014a]. Ionosonde sounding 

frequency is plotted on the x-axis and virtual height on the y-axis. Pixel intensity shows the 

signal amplitude and Doppler shift is plotted as the colour shade. The red-yellow-white scale 

shows the O wave polarization whilst the blue-green-grey scale shows the X wave. 

 

Both the O and X wave can be seen in the ionogram (corresponding to the plus and minus sign 

in Equation (2.2)). The electron density profile (black line) in the ionogram is automatically 

calculated following the algorithm in Reinisch and Huang [1983]. The profile shape can be 

compared with the regions of the ionosphere that have been described previously, i.e. with 

Figure 1. For further discussion on ionograms and how to read them see the “URSI Handbook 

of Ionogram Interpretation and Reduction” [Piggott and Rawer, 1978]. 
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Lowell Digisonde International (LDI), based at Lowell, MA, are a leading constructer of 

ionosondes (the Digisonde). There are currently 65 operational Digisonde stations with a further 

23 planned. Ionosonde data is valuable in many data assimilation models, due to the height 

information which can be provided. Figure 4, in comparison with Figure 2, shows that there are 

far fewer accessible Digisonde stations compared to GNSS stations. Although they are spread 

globally, Australia, central Africa and central Russia have very few stations. This can have a 

serious impact on global ionospheric modelling [McNamara, 2010]. 

 

 

Figure 4. Existing and planned ionosonde stations by Digisonde [Lowell Digisonde 

International, 2014b]. 
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3. IONOSPHERIC MODELS 

I have no data yet. It is a capital mistake to theorise 

before one has data. Insensibly one begins to twist 

facts to suit theories, instead of theories to suit facts. 

- Sherlock Holmes 

 

Even though the ionosphere has been studied for many years, ionospheric modelling is an active 

area of research. This is because better models support the successful operation, planning and 

management of RF systems [Goodman and Aarons, 1990]. There are three main approaches to 

modelling the ionosphere: empirical, physics-based and data assimilation. Each of the 

approaches, and examples of each type, are described in the following sections. 

 

A more detailed discussion of ionospheric empirical models can be found in Bilitza [1990], 

Anderson et al. [1989], Bilitza et al. [1988] and Llewellyn and Bent [1973]; physics-based 

models in Schunk [1996]; and data assimilation models in Bust and Mitchell [2008]. 

 

3.1. Empirical Models 

Empirical models (also often referred to as ‘statistical models’ or ‘median models’) are based 

upon observations, and, as such, they provide little information about the physics of the 

underlying system. Relationships between the variables in the model are usually determined via 

curve fitting techniques [Llewellyn and Bent, 1973; Bilitza et al., 1988; Anderson et al., 1989]. 

 

Although empirical models can be used to provide information about the relationships between 

model variables, they cannot, on their own, be used to determine whether one variable affects 



19 

 

another. Also, without accounting for any of the underlying physical processes, they only allow 

for simple extrapolation into areas where there are no available observations. 

 

However, compared to physics models they are much easier to construct since knowledge of 

the underlying physics is not required. They often provide good median performance, and are 

quick and computationally cheap to run. The empirical models used in this work are the 

International Reference Ionosphere (IRI), NeQuick and NRLMSISE-00, described in the 

following sections. 

 

Other ionospheric empirical models exist which are not described in this work. Such models 

include the Parameterized Ionospheric Model (PIM) developed by the Air Force Research 

Laboratory (AFRL) [Daniell et al., 1995] and the Bent Ionospheric Model [Llewellyn and Bent, 

1973]. IRI and the Bent model have previously been compared by Bilitza et al. [1988]. 

Empirical thermospheric models include the Drag Temperature Model (DTM) [Bruinsma et al., 

2012] and the Jacchia Reference Atmosphere [Jacchia, 1977]. 

 

3.1.1. International Reference Ionosphere (IRI) 

The International Reference Ionosphere (IRI) is the international standard (standard TS16457 

[ISO, 2009]) for the terrestrial ionosphere. It is an international project sponsored by the 

Committee on Space Research (COSPAR) and the International Union of Radio Science 

(URSI) [Bilitza, 2004a]. IRI is an empirical model which uses the statistics of the monthly 

median values of the ionosphere as its basis. Such statistics include the URSI or Consultative 

Committee on International Radio (CCIR) world maps of foF2 and M(3000)F2 (the ratio of the 

maximum usable frequency at 3000 km to foF2). The model also uses plasma frequency profiles 
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to produce values of foF2 and hmF2. Recent improvements in the model have come from the 

inclusion of new ionospheric data, and better descriptions of the global and temporal variations 

of the ionosphere [Bilitza, 2006].  

 

The model has a daytime height range of 65 – 2000 km and a nighttime range of 80 – 2000 km. 

However, the topside of the model (above foF2) is known to overestimate the electron density 

[Ezquer et al., 1998; Bilitza and Williamson, 1999; Triskova et al., 2002]. Bilitza [2004b] 

suggested correction factors for IRI topside based on altitude, latitude and local time. This 

problem can be further overcome by replacing the topside with the more accurate NeQuick 

topside [Coïsson et al., 2009], described in the next section.  

 

3.1.2. NeQuick 

NeQuick 2 is an ionospheric electron density model developed at the Aeronomy and 

Radiopropagation Laboratory (now Telecommunications/ICT for Development Laboratory) of 

the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy, and at the 

Institute for Geophysics, Astrophysics and Meteorology (IGAM) of the University of Graz, 

Austria [Nava et al., 2008]. It is a median model of the ionosphere and the International 

Telecommunication Union Radiocommunication Sector (ITU-R) standard. It has been designed 

to have continuously integrable vertical profiles which allows for rapid calculation of the TEC 

for trans-ionospheric propagation applications. Between 100 km and the peak of the F2 layer, 

NeQuick uses an electron density profile based on five semi-Epstein layers [Epstein, 1930; 

Rawer, 1983] with modelled thickness parameters. Three profile anchor points are used: the E 

layer peak, the F1 peak (if present) and the F2 peak. The anchor points are defined in terms of 

the standard ionosonde parameters foE, foF1, foF2 and M(3000)F2 and the URSI coefficients 
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are often used. A semi-Epstein layer represents the model topside with a height-dependent 

thickness parameter that has been empirically determined. NeQuick can be run up to a height 

of 20000 km, and is used in the Galileo GNSS system to calculate ionospheric corrections 

[Angrisano et al., 2013]. 

 

3.1.3. NRLMSISE-00 

The US Naval Research Laboratory Mass Spectrometer and Incoherent Scatter radar Exosphere 

2000 (NRLMSISE-00), is a global, empirical model of the atmosphere. It uses the 81 day 

average of F10.7 (the solar flux at a wavelength of 10.7 cm (2800 MHz) at the Earth's orbit – 

used as a proxy for solar output [Wright, 2003]), the daily F10.7 solar flux value of the previous 

day, and the daily Ap (which indicates the severity of the magnetic disturbances in near-Earth 

space [Wright, 2003]) to model the density and temperature of a number of atmospheric 

components [Picone et al., 2002]. It is based on the earlier MSIS-86 (Mass Spectrometer and 

Incoherent Scatter radar 1986) [Hedin, 1987] and MSISE-90 (Mass Spectrometer and 

Incoherent Scatter radar Exosphere 1990) [Hedin, 1991] models. 

 

The model outputs number densities of helium, atomic oxygen, molecular oxygen, atomic 

nitrogen, molecular nitrogen, hydrogen and argon, as well as total mass density and the 

temperature at a given altitude. NRLMSISE-00 has been shown to offer a noticeable 

improvement over MSISE-90 [Picone et al., 2002] and Jacchia-70 [Jacchia, 1977]. Although 

it is not an ionospheric model, and does not output electron density, it is included here as it is 

required by the physics-based models described in Section 3.2. 
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3.2. Physics-Based Models 

Physics-based models solve the equations which describe the physical processes in the 

ionosphere/thermosphere. To model atmospheric density the models generally use empirical 

models (such as NRLMSISE-00) to generate an initial condition. Neutral and ion species 

production is then calculated via chemical reaction equations and using solar X-rays and EUV 

conditions. Ion transportation and recombination are also considered. The initial and boundary 

conditions, as well as proxies for solar activity, are the main drivers for the models. There are 

a number of approaches to modelling the physics of the ionosphere, which rely on different 

numerical methods [Purnell, 1976; Augenbaum, 1984; Bott, 1989], and thus exhibit different 

levels of complexity and use a variety of inputs. 

 

Physics models have the potential to provide ionospheric forecasts since, in principle, the 

physics can be used to propagate the model densities from one time step to the next. However, 

Shim et al. [2012] suggested that errors in electron density can be very large due to errors in 

initialization and boundary conditions. This renders them ineffective for real-time services. 

Generally, whilst they accurately show the effect of varying input conditions, it is not easy to 

provide accurate absolute values of the ionospheric parameters unless one has an accurate 

starting point for the modelling [Shim et al., 2012].  

 

The physics-based models used in this work are TIE-GCM and GITM, which are described in 

the following sections. Other thermosphere/ionosphere physics-based models exist which are 

not described here. Such models include the Coupled Thermosphere Ionosphere Plasmasphere 

Electrodynamics Model (CTIPe) developed at the Space Weather Prediction Center [Codrescu 
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et al., 2012] and the Coupled Middle Atmosphere and Thermosphere (CMAT) model from 

University College London [Harris, 2011]. 

 

3.2.1. TIE-GCM 

The National Center for Atmospheric Research (NCAR) Thermosphere Ionosphere Exosphere 

– General Circulation Model (TIE-GCM) is a three-dimensional model of the coupled 

thermosphere ionosphere system [Richmond, 1992]. At each time step the continuity, energy 

and momentum equations are solved for neutral and ion species using a fourth-order, centred 

finite difference scheme [Roble et al., 1988]. TIE-GCM has a user selected latitude and 

longitude grid, and 29 constant-pressure levels, which range in height from approximately 

97 km to 500 km.  

 

The model takes as input the daily F10.7, the 81 day F10.7 average and the Ap. It uses either 

the Weimer or Heelis models for the ionospheric electric fields at high latitudes [Heelis et al., 

1982; Weimer, 2005]. Throughout this work, the Heelis model has been used. The lower 

boundary condition (atmospheric tides) are given by the Global Scale Wave Model (GSWM) 

[Hagan et al., 1999]. Qian et al. [2009] has shown that TIE-GCMs model errors are dependent 

on the quality of its input parameters. 

 

3.2.2. GITM 

The Global Ionosphere Thermosphere Model (GITM) is a physics-based three-dimensional 

global model that solves the full Navier-Stokes equations for density, velocity, and temperature 

for a number of neutral and charged components [Ridley et al., 2006]. The model also provides 
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the total neutral density, electron density, electron, ion and neutral temperatures, neutral wind 

speed and plasma velocities. For inputs, GITM uses F10.7 solar flux, hemispheric power index 

(HPI) [Emery et al., 2008] (derived from the 3-hour Kp (a proxy for geomagnetic activity, 

similar to Ap [Wright, 2003])), interplanetary magnetic field (IMF) data and solar wind 

velocity. The HPI file format was changed in 2007 [U.S. Dept. of Commerce, NOAA, 2007] and 

GITM requires the pre-2007 format. Data files after this date must be converted to the old 

format before they can be used as input. The model allows the user to select latitude and 

longitude grids and uses a fixed altitude grid for the height profile. 

 

To solve the continuity, energy and momentum equations, GITM uses an advection solver, 

whilst the ion momentum equation is solved assuming a steady state [Ridley et al., 2006]. The 

initial state can be set in three ways: either using an ideal atmosphere (the densities and 

temperature at the bottom of the atmosphere are passed into the model); using NRLMSISE-00 

and IRI, or by using a previous run. GITM inherently allows for non-hydrostatic solutions to 

develop which allows for realistic dynamics in the auroral zones [Ridley et al., 2006].  

 

3.3. Data Assimilation 

As discussed in Section 2.7, there is a wide range of ionospheric data available. This data 

enables a further modelling approach – data assimilation. Data assimilation models aim to 

optimally combine disparate measurements with a background model. A range of assimilation 

methods have been developed; i.e. weighted least squares (WLS) [Plackett, 1950], Kalman 

filters [Kalman, 1960; Houtekamer and Mitchell, 2005], Optimal Interpolation (OI) [Gandin, 

1963; Eddy, 1967] and variational methods [Le Dimet and Talagrand, 1986]. The background 

model may, in principle, be empirical or physics-based. Data assimilation models are not real-
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time, since there is some delay between the data being retrieved and it being assimilated, but 

they can work in ‘near-real-time’ [Angling and Khattatov, 2006]. A review of ionospheric data 

assimilation models can be found in Bust and Mitchell [2008].  

 

In many systems there are usually fewer observations than the number of unknowns, i.e. the 

system is mathematically underdetermined. The observations which are available are subject to 

experimental uncertainty, and often the observed characteristic is not the variable that is directly 

modelled. Therefore an observation operator (A) is used to transform the state space to the 

observation space, i.e. 

 

 B! = AC + D!. (3.1) 

 

Where B! is a vector of observations, C the true state and D! the observation error. 

 

It is common to want to estimate the state of a system from some given information; for 

example, to find the TEC through a particular part of the ionosphere. Ideally, a satellite and 

receiver would be placed at suitable locations, and the TEC directly measured, albeit with some 

measurement error. However, in practice, this is not possible and the value has to be estimated.  

 

The first approach is to just use data from the nearest satellite/receiver pair to the region of 

interest. Secondly, if more than one satellite/receiver pair exist, then both can be used to 

interpolate the information in order to estimate the TEC. This estimation can be improved by 

using more satellite/receiver data. However, depending on a number of factors, including the 

distance of the satellite from the point of interest, each new piece of information should be 
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weighted differently depending on how much the data is “trusted”. Data assimilation is the art 

of optimally combining various sources of information to estimate the true state of the system.  

 

The subject of data assimilation is both wide and varied. The short introduction to the topic 

which follows merely serves to highlight the essence of the field, with a primary focus on 

Kalman filters. There are a number of excellent books on the subject for further reading, 

specifically Rodgers [2000],  Kalnay [2003] and Evensen [2009]. 

 

3.3.1. Least Squares  

A simple approach to data assimilation is to use the method of least squares [Legendre, 1805]. 

The method requires the estimation of the state to be a value that minimises the sum of the 

squares of the error of each term. That is, for � observations, Ω> for ? = 1, �, a variable @0 such 

that: 

 

 F�@0 − Ω>
�G
>H2    is a minimum. (3.2) 

 

This approach is often used for data fitting (constructing curves of best fit to a series of data). 

It is not used in data assimilation models since, in its classic form, does not allow for differently 

weighted data. This means that the result can easily be skewed by outliers. 
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3.3.2. Weighted Least Squares 

To overcome the problem with least squares, discussed in the previous section, a somewhat 

more sophisticated data assimilation technique can be used, weighted least squares (WLS). 

Assuming the data is unbiased, the WLS is formed from a linear combination of observations 

and has the minimum variance of all such combinations. To derive the WLS consider a linear 

combination of two vectors of data, CO (the “background”, so named for consistency in other 

works) and B! (the “observation”), to produce the “analysis”, C0: 

 

 C0 = CO + P�B! − CO
, (3.3) 

 

where P is the so called Kalman gain matrix, and C0, CO and B8 have associated error 

covariance matrices Q, R and S. Equations (3.3) and (3.4) are examples of the equations without 

the observation operator. That is when the number of observations and size of background 

matrix is the same, and the state and observation spaces are the same. To find the WLS, a matrix 

P must be found which minimises the expected error covariance matrix Q associated with CT. 

This is equivalent to minimising the trace of P [Park and Xu, 2013], and is given by: 

 

 P = R�R + S
92. (3.4) 

 

A detailed description of the derivation of Equation (3.4) can be found in Kelly [2013]. 

 

Using the observation operator, as described in Section 3.3, the WLS for vector equations can 

be transformed from the observation space to the state space. For example Equation (3.4) 

becomes: 
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 P = RA��ARA� + S
92.  (3.5) 

 

It is in this form that the equations are usually presented.  

 

If the conditions of the WLS are restricted further, i.e. that the observation errors (residuals) are 

unbiased and have the same variance, then it can be shown to be the best linear unbiased 

estimate (BLUE) [Plackett, 1950]. 

 

3.3.3. Kalman Filters 

Finding the WLS for a variable can be further developed by replacing the unique state C with a 

series of states CU, where � is a time index. There are then a number of methods which one can 

use to solve these equations and create the best analysis. This includes variational assimilation, 

which avoids the inversion required to compute P by considering the analysis as an 

approximate solution to the equivalent minimization problem [Le Dimet and Talagrand, 1986].  

An alternative to variational assimilation is the Kalman filter which is an extension of the least-

squares analysis [Kalman, 1960].  

 

The Kalman filter is a technique used to perform data assimilation, where each background 

state is provided by an “update” step, which starts from the previous analysis [Kalman, 1960]. 

There are a number of conditions and assumptions which are required before using a Kalman 

filter. First, initial background data is required to start the procedure (CO!). A (linear) model 

which describes the evolution of the state, i.e. an approximation of how the state which is being 
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modelled changes over time, is also required (VU). It need not be a perfect description of the 

evolution of the state, since it is combined with data. Finally there are some assumptions made 

about the errors in the system. The errors (model and observation) are assumed to have no bias, 

i.e. �WXUY = 0 and �WD>UY = 0, where XU and D>U are the model and observation errors 

respectively. Also, different types of errors, such as the model and observation errors, are 

independent of each other, �WXUD>UY = 0. 
 

Given a series of states, CU, the Kalman filter will give the optimal (i.e. the minimum mean 

square error) estimate of the state, C0U , using observations B82 , B8� , … , B8U . The filter works in two, 

repeating, steps: 

1. Analysis, 

2. Update. 

The initial conditions, CO! and R!, are the starting state and its corresponding error covariance 

matrix. These are then used to perform the analysis step: 

 

Analysis step. This uses the vector equations for the WLS with the observation operator 

(Equations (3.3) and (3.5)) as well as the error covariance matrix [Kelly, 2013] giving: 

 

 PU = RUA��ARUA� + S
92, (3.6) 

 C0U = COU + P�B8U − ACOU 
, (3.7) 

 QU = �[ − PUA
RU. (3.8) 

 

Where [ is the identity matrix.  
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Update step. Using the values from the analysis step, the update step is used to find the 

background values COU\2 and RU\2 for use in the next analysis step.  

 

 COU\2 = VU,U\2C0U , (3.9) 

 RU\2 = VU,U\2Q]VU,U\2
^� + _U . (3.10) 

 

 

Where _U is the model error covariance matrix. This process is repeated � times, until the 

assimilation is complete.  

 

When using a Kalman filter the error covariance matrices scale with the square of the size of 

the state. For large states this makes them difficult to work with, especially in a reasonable time 

scale. This is the main problem with the Kalman filter. Although it provides the best 

combination of the modelled data it is computationally expensive. To overcome this, and other 

problems (such as the propagation model needing to be linear), a number of variants of the 

Kalman filter have been proposed. Such variants include: the band limited Kalman filter, which 

only saves part of the covariance matrix based on physical correlation lengths [Hajj et al., 

2004]; the extended Kalman filter, which allows the use of non-linear models in the Kalman 

filter [Julier and Uhlmann, 2004]; the ensemble Kalman filter, which replaces the covariance 

matrix by the sample covariance [Evensen, 1994] and the local ensemble Kalman filter which 

performs the analysis around each model grid point [Ott et al., 2004]. 

 

It is apparent that there is a wide range of techniques for data assimilation. This is further 

reflected by the range of models which are based upon assimilative routines. The assimilation 
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models used in this work are EDAM, GPSII and the data ingestion version of NeQuick. Other 

data assimilation models, which are not discussed here, include the Utah State University 

Global Assimilation of Ionospheric Measurements (USU-GAIM) Model [McNamara et al., 

2008] and the Jet Propulsion Laboratory’s Global Assimilative Ionospheric Model (GAIM) 

[Mandrake et al., 2005] which both use data assimilation techniques on top of a physics-based 

background model. Data assimilation is also used in a 3D tomography scheme by the Multi-

Instrument Data Analysis System (MIDAS) [Mitchell and Spencer, 2003; Spencer and 

Mitchell, 2007]. 

 

3.3.4. Electron Density Assimilative Model (EDAM) 

The Electron Density Assimilative Model (EDAM) has been developed at QinetiQ, UK to 

assimilate ionospheric measurements into a background ionospheric model [Angling and 

Khattatov, 2006; Angling et al., 2009]. The background model is provided by IRI-2007 (the 

2007 version of IRI, Section 3.1.1) [Bilitza and Reinisch, 2008]. The EDAM assimilation is 

based on the weighted least squares described in Section 3.3.2. 

 

A magnetic coordinate system (tilted dipole) is used in EDAM and a time step of 15 minutes. 

The electron density differences between the voxels of the analysis and the background model 

are propagated from one time step to the next by assuming persistence combined with an 

exponential decay. The time constant for this decay is set at four hours. Thus if the data feed is 

interrupted, the analysis will decay back to the background model. 

 

EDAM assimilates GNSS slant TEC observations as well as ionosonde information in the form 

of the ionogram virtual height traces [Angling and Jackson-Booth, 2011]. It can also assimilate 
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radio occultation (RO) observations of slant TEC [Angling and Cannon, 2004; Angling, 2008] 

and in situ electron densities, but these capabilities were not used in this work.  

 

3.3.5. GPS Ionospheric Inversion (GPSII) 

The GPS Ionospheric Inversion (GPSII) model uses a recursive data assimilation algorithm 

[Fridman et al., 2006, 2009] that provides an electron density distribution model for a 

geographical area. At each time step of the solution, the resulting electron density model 

matches all ionospheric data accumulated during the model update time interval to within the 

data measurement error. This data-driven modification of the model is determined with the 

Tikhonov method [Tikhonov and Arsenin, 1977]. The Tikhonov method ensures that the 

resulting model is spatially and temporally smooth. 

  

GPSII is able to assimilate absolute and relative TEC data from ground- and space-based GNSS 

receivers, relative TEC data obtained with low Earth orbit (LEO) satellite beacons, in-situ 

electron density measurements and data from vertical incidence ionosondes. GPSII is also able 

to assimilate various HF measurements such as OTHR backscatter ionograms [Fridman et al., 

2012], but these capabilities were not used in this work. GPSII also uses IRI-2007 [Bilitza and 

Reinisch, 2008] (Section 3.1.1) as the background model and the solution update interval is 15 

minutes. 

 

3.3.6. NeQuick Data Ingestion Model 

The empirical NeQuick model was described in Section 3.1.2. However, to provide real time 

3D specifications of the ionospheric electron density, the NeQuick output can be modified using 
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GNSS derived TEC data and profile peak parameters measured by ionosonde values [Nava et 

al., 2006; Buresova et al., 2009]. NeQuick uses an effective ionisation level (Az) as a measure 

of the level of solar activity. In the real time system, Az_foF2 is defined to be the effective 

ionization level that allows NeQuick to reproduce the observed foF2 value at a reference station. 

Then via the Dudeney formula [Dudeney, 1978], an Az_hmF2 value is specified that allows 

NeQuick to reproduce the observed hmF2. These parameters, Az_foF2 and Az_hmF2, are used 

to locally constrain the model peak parameters. The TEC error, as compared to the observation, 

is then minimised by modifying the model’s bottomside thickness (i.e. the slab thickness is 

varied). The three effective parameters (Az_foF2, Az_hmF2 and the slab thickness correction 

factor), are then used to run the model over the area of interest.  

 

This method relies on available and valid data from an ionosonde. Consequently, the data 

ingestion version of the NeQuick model does not provide any output when there is no such 

ionosonde data. This version of the model will be referred to herein as mNeQuick. 

 

3.4. Multi-Model Ensemble Introduction 

The uncertainties in any given model include incomplete physics, errors in initial conditions, 

boundary conditions and parameter values. By combining models together, to form a multi-

model ensemble (MME), it is possible to reduce the impact of these errors and hence increase 

the model forecast skill [Tebaldi and Knutti, 2007]. MMEs are widely used in weather and 

climate modelling, where there have been multiple approaches proposed for constructing the 

ensemble [Krishnamurti et al., 2000; Kharin and Zwiers, 2002]. 
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Tebaldi and Knutti [2007] argue that the expectation that combining results from multiple 

models will offer an improvement is based on the assumption that, if the models are 

independent, errors should cancel. This leads to the idea that the uncertainty in the model 

predictions should decrease as the number of models increases. However, it has been shown 

that different weighting schemes, each based on reasonable criteria, can give different results 

[Hagedorn et al., 2005]. Therefore, Chandler [2013] concluded that, without a formal reasoning 

for a particular weighting method, the choice becomes an added source of uncertainty. Thus, 

simply increasing the number of models in the MME should not continually decrease the 

uncertainty without formally characterising a method for combining the models [Tebaldi and 

Knutti, 2007]. 

 

3.5. Conclusions 

There are a variety of modelling techniques used to describe the ionosphere including: 

empirical, physics-based and data assimilation. These techniques have been described, as have 

associated models. MMEs have also been introduced, which are further described and used in 

Chapter 6. 

 

Before models can be used operationally in RF systems their performance should be measured. 

Relative model performance however is difficult to measure due to the metrics used to quantify 

performance. There are a variety of metrics which can be used to measure the model skill. Also, 

different model parameters will give different skill scores. How this combination of factors to 

judge model performance should be balanced is an important aspect of model comparison. The 

following chapter describes one such approach to model performance, modified Taylor 

diagrams.    



35 

 

4. HOW TO COMPARE IONOSPHERIC MODELS 

He uses statistics as a drunken man uses lamp posts; 

 for support rather than illumination. 

- Andrew Lang  

 

This chapter is an extended version of a paper published in Radio Science [Elvidge et al., 2014]. 

 

4.1. Current Model Comparison Techniques 

Models are used throughout the scientific disciplines, and the comparison of them is critical in 

their evaluation. Intuitively, it seems that the best way to compare two models is to see how 

closely the models reproduce an observation. However, models usually have multiple 

parameters, which themselves are not always directly measureable, and therefore the task is 

often not straightforward. Nonetheless, a number of sophisticated techniques for model 

comparisons have been developed and are used in a variety of fields. Such methods include 

Bayesian model selection [Kass and Raftery, 1996], minimum description length [Rissanen, 

1983], Akaike and Bayesian Information Criterion [Akaike, 1973; Schwarz, 1978] and cross-

validation [Stone, 1974]. 

 

Ionospheric model comparison, though, is still mostly accomplished via more basic techniques. 

In general, ionospheric models are usually compared, parameter by parameter, directly with 

observations. Means, standard deviation of differences and the root mean square (RMS) errors 

are commonly compared for individual model parameters.  
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McNamara et al. [2013] compared models by considering the RMS errors, means and standard 

deviation values, separately, for a month long test period. In one case the analysis was split 

between day and night time results. Other examples include Shim et al. [2011] who compare 

model performance by using four different metrics: the RMS error, prediction efficiency 

(comparing the ratio of the modelled RMS error and of a reference model RMS difference (in 

this case the mean value of the observation)), ratio of the maximum change in amplitude and 

the ratio of the maximum amplitude. Angling and Khattatov [2006] compared two ionospheric 

models by again investigating the RMS error, the mean error and by discussing the time series 

plots of the tested parameters (foF2 and hmF2). 

  

How to present such results is also a challenge. Time series figures of a particular parameter 

from multiple models can be confusing, and fail to easily deliver the required information 

(Figure 5). The alternative approach is to either separate similar figures into individual plots, or 

list the results in tables; neither provide satisfactory solutions. 

 

 

Figure 5. Observed (black curve) and modelled (colour curves) of hmF2 at a particular testing 

site. Reproduced from Shim et al. [2011]. 
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4.2. Taylor Diagrams 

Taylor diagrams can be used to graphically summarise how closely a set of patterns (in this 

case a set of models) match observations [Taylor, 2001]. This is achieved by plotting the 

standard deviation of the time series of each model parameter and the correlation (the Pearson 

product-moment correlation) between the time series of the model values and the observations. 

Taylor also noted the geometric connection between correlation, standard deviation and the 

centred-pattern RMS difference. The centred-pattern RMS difference is the mean removed 

RMS difference, calculated thus: 

 

 �� = 1� F`�"; − "a
 − ],; − ,̅^c�,G
;92  (4.1) 

 

where � is the centred-pattern RMS difference, "; is the time series of the model parameter 

that is being tested and ,; is the time series of the observation data. These statistics are related 

by 

 

 �� = de� + d7� − 2ded7f. (4.2) 

 

Where de and d7 are the standard deviations of the model and observation respectively and f 

is the correlation coefficient. �, f, de and d7 can then be plotted on the same diagram. 

 

Care should be taken to distinguish between the RMS difference and centred-pattern RMS 

difference as used in Taylor diagrams. The centred-pattern RMS difference is a mean-removed 

RMS difference and cannot be equated with the RMS difference. Although in the literature, 
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where Taylor diagrams are used, it often is; for example Freidenreich et al. [2004], AchutaRao 

and Sperber [2006], Miller et al. [2006], Maraun et al. [2010] and Mote and Salathe [2010]. If 

two models have no bias, then a reduction in centred-pattern RMS difference implies a 

reduction in the RMS difference. So, with this assumption, works which erroneously state there 

is a reduction in RMS difference, when in fact the Taylor diagram shows there is only a 

reduction in centred-pattern RMS difference, are valid. However this assumption fails if either 

model has any bias.  

 

Taylor diagrams address one of the problems discussed in Section 4.1; that of comparing only 

one parameter at a time. The diagrams allow different parameters to be plotted together by 

normalising (i.e. making dimensionless) their standard deviations. This allows for visualization 

of multiple parameters simultaneously, giving a better overall picture of the models 

performance. The diagrams are often used in the study of climatology, and their associated 

models [Maurer et al., 2002; Chang and Hanna, 2004; Gleckler et al., 2008; Kobayashi et al., 

2014]. 

 

Figure 6 is an example of a Taylor diagram. 
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Figure 6. Example Taylor diagram for models ‘A’ through ‘H’. The dashed line (labelled 

observed), shows the standard deviation of the observations. The dotted line semi-circles, 

originating from the intersection of the observed standard deviation (dashed line) and the 

horizontal axis, show the centred pattern RMS value. Considering a specific model, the radial 

distance from the origin shows the models’ standard deviations and the azimuthal angle 

corresponds to the correlation between the model and the observation. 
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4.3. Modified Taylor Diagrams 

Many of the characteristics of Taylor diagrams are extremely useful for ionospheric model 

comparison. However they do have the confusion of centred-pattern RMS difference and no 

way of showing model bias. Presented here are modifications to such diagrams to address these 

issues.  

 

It can be shown (Equations (4.3) to (4.5)), that the centred-pattern RMS difference is equal to 

the standard deviation of the model error (model minus observation).  

 

 �� = 1� F`�"; − "a
 − ],; − ,̅^c�,G
;92  (4.3) 

       = 1� F`�"; − ,;
 − ]"a − ,̅^c�,G
;92  (4.4) 

       = 1� F`�"; − ,;
 − ]" − ,gggggggg^c�.G
;92  (4.5) 

 

The standard deviation of the model error is a more familiar term in model testing, and is used 

in place of centred-pattern RMS difference henceforth. 

 

Bias is an important feature in modelling, and the ability to show this on the diagram would be 

useful. One approach suggested by Taylor [2001] is to add lines, whose length is equal to the 

bias, to each data point. An alternative approach, used as a modification here, is to show the 

bias of the models via a colour scale. Naturally, the bias, like the standard deviation, must also 

be normalized in order to plot multiple parameters on a single diagram. It should also be noted 
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that the mean square difference between a model and the data can be calculated by adding in 

quadrature the bias and the standard deviation of the errors. 

 

Figure 7 shows an example Taylor diagram, with the modifications described in this section 

(herein referred to as ‘modified Taylor diagrams’). The radial distance of a data point from the 

origin is a model’s normalised standard deviation (in this instance normalised by the standard 

deviation of the observation) and the azimuthal angle corresponds to the correlation between 

the model and observation. The dashed line (labelled ‘Observed’), shows the normalised 

standard deviation of the observation (i.e. unity). The dotted-lined semi-circles, originating 

from the intersection of the observed standard deviation (dashed line) and the horizontal axis, 

show contours of the standard deviation of the model error. The model bias is shown with a 

colour scale and the mean square error of the model can be found by adding in quadrature the 

bias and standard deviation of the errors. Different symbols represent different models, whereas 

the labels represent different parameters. In this way models can be compared for a range of 

parameters simultaneously. Finally, the normalisation factor, required to retrieve the original 

parameter values, is shown in the top right. 

 

Figure 7 is a modified Taylor diagram for three different models, with four parameters, 

presenting five different pieces of statistical information. A table to represent the same quantity 

of data would require 60 entries.  

 

4.4. Conclusions 

Taylor diagrams have been modified in order to show model bias, standard deviation of errors 

and a method of calculating the mean square error. In this chapter modified Taylor diagrams 
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have been presented and described as a method for ionospheric model comparison. They 

provide an easy and intuitive way of presenting multiple statistics for a range of parameters 

when comparing a model to observation data.  

 

Modified Taylor diagrams are used in Chapter 5 for a series of ionospheric model comparisons. 

 

 

 

Figure 7. Example modified Taylor diagram.   
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5. MODEL COMPARISONS 

To compare is not to prove. 

- French Proverb 

 

The work presented here is an extended version of that published in McNamara et al. [2013] 

and Elvidge and Angling [2014]. 

 

As well as metric(s) to measure model performance, such as those presented by modified Taylor 

diagrams described in Section 4.3, common testing scenarios are required. Shim et al. [2011] 

described nine different testing scenarios and used them to compare the three main model types: 

empirical, physics-based and data assimilation. They compared the ability of the models to 

specify NmF2, hmF2 and vertical drift, with respect to data from incoherent scatter radars.  

 

Although nine scenarios were used, they were all relatively short; ranging from one to two and 

a half days. The time-step was 15 minutes, and therefore a fairly small number of data points 

were used in the calculation of the metric statistics. This leads to two main statistical problems. 

First, a small number of data points can result in large confidence intervals for the estimate of 

the statistics. Secondly there is an increased chance that the time series may be non-stationary.  

 

An h% confidence interval, for a given parameter, is an interval in which, for a large number 

of samples, the probability that the confidence interval contains the parameter is h%. The upper 

and lower confidence intervals of the mean are given by: 
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 Confidence Interval = ± �∗d√� , (5.1) 

 

where �∗ is the critical value (a t-table value depending on the confidence level required), d is 

the standard deviation of the sample, � is the sample size and the positive part is for the upper 

confidence interval and the negative for the lower [Sheskin, 2004]. It can therefore be seen that 

the confidence intervals decrease as a factor of the square root of the sample size. 

 

For estimates of the standard deviation, confidence intervals are defined as [Sheskin, 2004]: 

 

 Lower Limit = d × y � − 1[�z{� |h2 , � − 1} , 
 

(5.2) 

 Upper Limit = d × y � − 1[�z{� |1 − h2 , � − 1} . (5.3) 

 

 

Where d is the standard deviation, � is the sample size, [�z{� is the inverse {� distribution 

and h is the confidence level. Thus, the greater the sample size the closer to the standard 

deviation the confidence intervals are. 

 

A comparison of empirical, physics-based and data assimilation models are presented here for 

a much longer test scenario than used by Shim et al. [2011]. The study is also part of the first 

extensive analysis of EDAM results where ionogram traces have been assimilated and 

independent ionosondes used to provide truth data. An earlier study addressed only a single day 
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of data and was limited to an examination of the residual errors [Angling and Jackson-Booth, 

2011].  

 

5.1. Testing Scenario 

The models under test can all be used for global specification. However, the models’ regions of 

effective coverage are restricted to areas where data is available. This test concentrates on 

observations from the four ionosondes (Digisonde DPS-4D [Reinisch et al., 2009]) in the 

Republic of South Africa (RSA) (Figure 8 and Table 1). 

 

 

Figure 8. Locations of the four Republic of South Africa ionosondes. Louisvale and Hermanus 

are ~700 km from Grahamstown. Madimbo is ~1300 km from Grahamstown.  
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Table 1. Locations of ionosonde data assimilated in the test. 

Short Name Long Name Latitude Longitude 

GR13L Grahamstown -33.3 26.5 

HE13N Hermanus -34.4 19.2 

LV12P Louisvale -28.5 21.2 

MU12K Madimbo -22.4 30.9 

For this study only the Grahamstown (GR13L) ionograms and sub-Saharan GNSS data were 

assimilated. In particular, the GNSS sites listed in Table 2 were used. Their positions are shown 

in Figure 9 and Table 2. 

 

Table 2. GNSS stations assimilated in the test. 

Short Name Long Name Latitude Longitude 

ABPO Antananarivo                                  -19.0 47.2 

ADIS Addis Ababa 9.0 38.8 

HARB Pretoria -25.9 27.7 

HNUS Hermanus -34.4 19.2 

HRAO Hartebeesthoek -25.9 27.7 

MAL2 Malindi -3.0 40.2 

MAUA Maun -19.9 23.5 

MFKG Mafikeng -25.8 25.5 

NKLG N’Koltang 0.4 9.7 

NURK Kigali -1.9 30.1 

RBAY Richardsbay -28.8 32.1 

RCMN Nairobi -1.2 36.9 

REUN La Reunion -21.2 55.6 

SEY1 La Misere -4.7 55.5 

SUTH Sutherland -32.4 20.8 

TDOU Thohoyandou -23.1 30.4 

WIND Windhoek -22.6 17.1 

ZAMB Lusaka -15.4 28.3 
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Figure 9. Location of the Sub-Saharan Africa GNSS stations used in this test. 

 

Hermanus (HE13N), Louisvale (LV12P) and Madimbo (MU12K) ionograms were used to 

provide the ground truth observations. It is these observations against which the models are 

tested.  

 

The whole month of September 2011 was used for the test period and each model ran with a 15 

minute time step. Thus a maximum of 2880 data points are available to estimate the monthly 

statistics. September 2011 showed a large amount of solar and geomagnetic variability. The 

daily sunspot number ranged from 47 to 173 and the Ap exceeded the storm threshold (29 

[Space Weather Prediction Center, 2009]) on five days (Figure 10). 

 



48 

 

 

Figure 10. Time series plot of the sunspot number (red) and Ap (blue) for September 2011. Ap 

values above 29 exceed the storm threshold as defined by the Space Weather Prediction Center 

[2009]. 

 

5.2. Filtering Observations and Model Results 

All the ionosonde observations were automatically processed (autoscaled) by ARTIST-5 

[Galkin and Reinisch, 2008]. Although the RSA ionosondes are well maintained and ARTIST-

5 is a significant advance on earlier versions of ARTIST, there are still some autoscaling 

mistakes. These mistakes can lead to unphysical results and procedures have been adopted to 

prevent them from distorting the results of the present study: 
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• foF2 values greater than 15 MHz produced by the ionosonde were ignored. This value 

was chosen as it equates to a two sigma error from the greatest IRI value across the 

month.  

• hmF2 of greater than 500 km or less than 200 km were removed as they are likely to be 

unphysical.  

When a data point is removed from one parameter, the corresponding value is removed from 

all of the other time series. 

 

Large errors in the data assimilation models can arise in two ways: undetected bad data can be 

assimilated, or good data can be assimilated badly. The first case includes the effects of 

undetected autoscaling errors. These can cause model errors directly and persist for a number 

of hours. Due to memory in the assimilative models, EDAM, GPSII and mNeQuick are all 

affected by these errors. 

 

For EDAM, a small number of cases appear to be affected in the second way; i.e. reasonable 

virtual height profiles are assimilated, but result in grossly non-physical vertical electron 

density structures within the EDAM grid. As with the bad data case, the poor results can take a 

significant time to decay out of the assimilation, which leads to clumping of the outliers. It is 

not yet clear why such non-physical results occasionally arise in EDAM from the assimilation 

of good data. McNamara et al. [2013] chose to filter the EDAM results (for calculation of the 

RMS error) by excluding values that lay outside the two-sigma errors in the IRI values. 

However no such filtering has been applied to the results presented here.  
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It should also be noted that mNeQuick only produces results when valid ionosonde data is 

present, and as a result the mNeQuick model has far fewer data points than the others (2215 of 

a maximum of 2880 points, 77%).  

 

It will be shown later, in Section 5.5, that both GITM and TIE-GCM sometimes produce 

unphysical results. These have been filtered out of the final statistics by removing hmF2 values 

greater than 500 km and less than 200 km. For GITM only, foF2 values less than 1 MHz have 

also been removed. It is not yet clear why GITM produces these unphysical electron density 

results for the nighttime foF2. Further discussion of the phenomena can be found in Section 

5.5. 

5.3. Observations 

Table 3 shows the number of valid data points provided by the RSA ionosondes for September 

2011, subject to the filtering described in Section 5.2. Figure 11 and Figure 12 show the time 

series plots of foF2 and hmF2 from the Grahamstown ionosonde. 

 

Table 3. Number of valid data points produced by the ionosondes in the RSA for September 

2011 subject to the filtering described in Section 5.2. 

Station Valid data points (out 

of 2880) 

Percentage of valid 

points 

Grahamstown (GR13L) 2492 86.5% 

Hermanus (HE13N) 2758 95.8% 

Louisvale (LV12P) 2793 97.0% 

Madimbo (MU12K) 2428 84.3% 
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Figure 11. Reported foF2 time series from the Grahamstown ionosonde in the RSA, subject to 

the filtering described in Section 5.2. 

 

 

 

 

Figure 12. Reported hmF2 time series from the Grahamstown ionosonde in the RSA, subject to 

the filtering described in Section 5.2. 
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The foF2 values show a general increase over the course of the month. This is due at least partly 

to the corresponding increase in the F10.7 over the same time period (Figure 13). The trend in 

F10.7 can be fitted with a third order polynomial. The increase in F10.7 is believed to be the 

main cause for the non-stationarity of the foF2 time series.  

 

 
 

Figure 13. Black line is the observed F10.7 values over September 2011, the red line is a 3rd 

order polynomial fitted to the data. 

 

The stationarity of the hmF2 and h(0.8foF2) time series is not dependent on F10.7, and instead 

depends on neutral winds and electric fields [Kelley, 2009]. The wind and electric field 
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variability is less severe during the test scenario, and, as such, the hmF2 time series is at least 

weakly stationary.  

 

A time series is weakly stationary (or second-order stationary) if its mean is constant and the 

covariance depends only on the lag [Chatfield, 1991], i.e. 

 

                        �W���
Y = �, (5.4) 

 )�zW���
, ��� + �
Y = ���
. (5.5) 

 

Where ���
 denotes a random variable at time �, � is the mean and � is the lag.  

 

In order to apply the statistical techniques used in modified Taylor diagrams (Sections 4.2 and 

4.3) the time series must be at least weakly stationary. Therefore a linearly scaled version of 

the fitted polynomial shown in Figure 13 was removed from the time series data to detrend it. 

The same trend was removed from each models’ foF2 time series. The stationarity of all the 

time series was then tested using an Augmented Dickey-Fuller (ADF) test [Dickey and Fuller, 

1979]. However before the test could be applied, the periodicity of each time series must be 

removed [Chatfield, 1991]. To accomplish this each model time series had the associated IRI 

time series removed from it, i.e. before applying the ADF test to the EDAM foF2 time series, 

the IRI foF2 time series was subtracted from the EDAM time series.   

 

The critical value of the ADF test with a 95% confidence interval with a sample size greater 

than 500 is -3.96 [Enders, 2009]. That is, if a model time series has a critical value less than 

this the time series can be assumed to be stationary. The ADF critical values, before and after 
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the detrending are shown in Table 4. The hmF2 and h(0.8foF2) series are stationary without 

any detrending. 

 

Table 4. Results from the ADF test for the model time series. For each foF2 time series, the 

value is greater than the critical value for the 95% confidence level (-3.96). However, after 

detrending, the time series is stationary.  

 foF2 hmF2 h(0.8foF2) 

Before 

detrending 

After 

detrending 

As is As is 

EDAM -2.52 -7.02 -14.50 -11.98 

GPSII -3.13 -8.79 -16.67 -13.36 

mNeQuick -2.96 -8.00 -16.18 -15.11 

GITM -3.90 -4.01 -20.00 -23.21 

TIE-GCM -2.03 -4.23 -5.37 -21.25 

 

 

The autoscaled values of hmF2 are subject to the uncertainties of ionogram autoscaling and the 

conversion from the ionogram to the plasma frequency profile. Thus it can be difficult to 

quantify the level of uncertainty that exists in the ARTIST values of hmF2. Therefore the profile 

altitude at a plasma frequency of 80% of foF2 (64% of NmF2) is included as another validation 

parameter (h(0.8foF2)). h(0.8foF2) is expected to suffer from less natural and processing noise 

than hmF2, and has the advantage that it is a point on the F2 profile that is more relevant than 

hmF2 to HF radio propagation on oblique paths. 
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5.4. Comparison of IRI, EDAM, GPSII and mNeQuick 

In this section, comparisons of an empirical model (IRI), and three data assimilation models 

(EDAM, GPSII and mNeQuick) are compared at each of the three truth sites (Hermanus, 

Louisvale and Madimbo). 

 

5.4.1. Accuracy of Model Values at Hermanus  

Figure 14 is the modified Taylor diagram using the Hermanus (HE13N) ionosonde for the truth 

data. It leads to a number of immediate conclusions: EDAM is slightly better than both GPSII 

and mNeQuick at specifying the values of foF2 since EDAM has a significantly stronger 

correlation, and a standard deviation closer to that of the observation. However GPSII shows 

no bias whereas EDAM and mNeQuick show a small negative bias. All three models show 

noticeable improvement over IRI.  

 

The statistical significance between time series correlations can be found using the Fisher r-to-

z transformation [Fisher, 1915, 1921]. For a large number of data points, as in this study, very 

small changes in correlation can be significant. A Z value of greater than or equal to |1.96| when 

comparing two correlations implies they are significantly different at the 95% level [Kenny, 

1987]. A table of the differences in correlation and corresponding Z values for the foF2 time 

series, using the Fisher r-to-z transformation, is shown in Table 5. Only the difference in 

correlation between mNeQuick and GPSII is not significant. Similar calculations can be done 

for the hmF2 and h(0.8foF2) time series.  
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Table 5. Z values from comparing the correlation coefficients for foF2 for each of the four 

models. Values greater than or equal to |1.96| are significant at the 95% level.  

 IRI EDAM GPSII mNeQuick 

Diff. Corr. Diff. Corr. Diff. Corr. Diff. Corr. 

IRI - - -0.030 -29.41 -0.023 -18.40 -0.024 -19.18 

EDAM 0.030 29.41 - - 0.006 11.01 0.006 10.23 

GPSII 0.023 18.40 -0.006 -11.01 - - -0.006 -0.186 

mNeQuick 0.024 19.18 -0.006 -10.23 0.006 0.186 - - 

 

 

It can be further seen (Figure 14) that the standard deviation of model errors for mNeQuick in 

hmF2 is smaller than that of GPSII, EDAM and IRI (with the latter pair being very similar). 

The mNeQuick hmF2 value also has very little bias (~1 km) compared to IRI (~7 km), EDAM 

(~9.5 km) and GPSII (~6.5 km). Consequently mNeQuick shows considerable improvement 

over the other three models.  

 

Using traditional analysis methods, such as the comparison of the root mean square error of 

EDAM and IRI (25 km and 23 km respectively) it can be erroneously concluded that EDAM is 

“defaulting” to its background values; as was reported in McNamara et al. [2013]. However it 

can be seen in Figure 14 that the EDAM hmF2 values offer an improvement in correlation over 

IRI, with a worse bias. Also, the modified Taylor diagram shows that EDAM tends to 

overestimate the range of hmF2 values, whilst IRI underestimates the range. This can be 

concluded since the hmF2 standard deviation is greater than unity for EDAM and less than 
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unity for IRI. Therefore the diagram shows that EDAM is not defaulting to the IRI values, and 

is manipulating them, even if it does not statistically improve them. 

 

For the h(0.8foF2) parameter, Figure 14 reveals that EDAM slightly outperforms GPSII and 

mNeQuick, since it has a standard deviation very close to the observed value, and a smaller 

bias. The EDAM, GPSII and mNeQuick h(0.8foF2) values have similar correlation and all offer 

considerable improvement over IRI. 
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Figure 14. Modified Taylor diagram to show the model bias and standard deviation of errors. 

The azimuthal angle represents correlation, the radial distance the standard deviation and the 

semicircles centred at the ‘Observed’ marker the standard deviation of the errors. The colour 

scale shows the bias (mean of model minus mean of truth). To plot multiple parameters each 

quantity is normalized, the original values can be reformed using the corresponding ‘factors’ 

in the top right of the diagram. The diagram shows the second-order statistics for IRI, EDAM, 

GPSII and mNeQuick at Hermanus for the parameters foF2, hmF2 and h(0.8foF2). 

 

McNamara et al. [2013] noted the large variation in the EDAM hmF2 results between day and 

night. Figure 15 shows the second-order statistics for EDAM with the day (08UT – 15UT), 
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night (20UT – 03UT) and dawn/dusk (03UT – 08UT and 15UT – 20UT) plotted separately. 

These times are chosen to correspond to the analysis performed in McNamara et al. [2013]. 

From the modified Taylor diagram it is apparent that EDAM performs much worse at day and 

night than at the combined dawn/dusk period; though the dawn/dusk period shows a large 

positive bias in h(0.8foF2) compared to the other times. EDAM performs worse at night due to 

the large relative errors in ionosonde measurements and worse during the day since the models 

are bound by the minimum expected errors set by travelling ionospheric disturbances (TIDs) 

[Francis, 1975; Hunsucker, 1982; Hocke and Schlegel, 1999]. On the other hand, at dusk and 

dawn, the modelling is dominated by the rapidly changing solar illumination conditions. For 

example, as the sun sets, and the radiance of X-rays and EUV drops considerably, the foF2 

values sharply fall. These rapidly changing conditions are accounted for accurately by the 

models. 
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Figure 15. Modified Taylor diagram for Hermanus with second-order statistics split between 

day (08UT - 15UT), night (22UT - 5UT) and dawn/dusk (03UT – 08UT and 15UT – 20UT) for 

EDAM. The details of how to read the diagram are described in Figure 14. 

 

Figure 16 again shows a modified Taylor diagram for the study period (September 2011); 

however, in this case, the second-order statistics for EDAM are plotted individually for each 

day of September. The over-plotted ovals show the grouping of each of the parameters (foF2, 

hmF2 and h(0.8foF2)). The foF2 daily values all have a similar correlation and standard 

deviation, as do the h(0.8foF2) values, albeit with slightly more variation. However the hmF2 

values have a much larger spread, in standard deviation, correlation and bias. This accounts for 
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the poor hmF2 results EDAM exhibit in the whole month analysis (Figure 14). McNamara et 

al. [2013] commented that the poor EDAM results were likely to be due to large outliers. 

However Figure 16 shows that outliers are not skewing the result and that EDAM performs 

relatively poorly throughout the month. A similar modified Taylor diagram can be plotted for 

GPSII (Figure 17). This contains the same over-plotted ovals as in Figure 16, so a direct 

comparison between the EDAM and GPSII parameters can be made. As expected, the foF2 and 

h(0.8foF2) results are similar. However GPSII’s hmF2 values have much less variability than 

EDAM, which results in GPSII’s considerable improvement in hmF2 over EDAM at 

Hermanus. Figure 18 shows the individual days for mNeQuick which shows a close grouping 

of each parameter; though there is an outlier for h(0.8foF2) (in terms of correlation and standard 

deviation, corresponding to September 6th) and two outliers (in terms of bias, corresponding to 

19th & 20th September). The individual day modified Taylor diagram for IRI (Figure 19) 

provides an interesting insight into the IRI results. It can be seen that the variability of the 

heights (both hmF2 and h(0.8foF2)) are always underestimated by IRI whereas the variability 

of foF2 is, in all but three cases, overestimated. This is because IRI overestimates the nighttime 

hmF2 values, and underestimates the daytime hmF2. It is not currently clear why IRI does this, 

or if it is generally true, and further investigation is required. Figure 16 and Figure 19 also 

provide insight into the effectiveness of the EDAM assimilation. Since IRI is the background 

model to EDAM we would expect EDAM’s use of data to improve the results in specifying the 

ionosphere. It can be seen from comparing Figure 16 and Figure 19 that this is true for foF2 

and h(0.8foF2). However, for hmF2, EDAM is “pushing” the results in the right direction, but 

by too much. Hence the values go from less than unity to greater than unity (in standard 

deviation) with no obvious improvement in correlation or bias. 
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Figure 16. Modified Taylor diagram of the second order statistics for EDAM at Hermanus. 

Each day of the test study (September 2011) is plotted individually. The details of how to read 

the diagram are described in Figure 14. 

 

hmF2 

h(0.8foF2) 

foF2 
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Figure 17. Modified Taylor diagram of the second order statistics for GPSII at Hermanus. Each 

day of the test study (September 2011) is plotted individually. The over plotted ovals are the 

same as in Figure 16. The details of how to read the diagram are described in Figure 14. 

 

hmF2 

h(0.8foF2) 

foF2 
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Figure 18. Modified Taylor diagram of the second order statistics for mNeQuick at Hermanus. 

Each day of the test study (September 2011) is plotted individually. The details of how to read 

the diagram are described in Figure 14. 
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Figure 19. Modified Taylor diagram of the second order statistics for IRI at Hermanus. Each 

day of the test study (September 2011) is plotted individually. The details of how to read the 

diagram are described in Figure 14. 
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5.4.2. Accuracy of Model Values at Louisvale 

Figure 20 shows the modified Taylor diagram for the Louisvale (LV12P) station. EDAM, 

GPSII and mNeQuick are very similar at specifying the foF2 values both in terms of standard 

deviation and correlation, although all are worse than at Hermanus.  

 

This decrease in performance is to be expected since approximate correlation lengths depend 

on whether the stations are north-south of each other or east-west (Table 6 [McNamara, 2009]). 

The Louisvale station is ~735 km north-west of Grahamstown, compared to Hermanus which 

is ~700 km west.  

 

Table 6. Suggested correlation lengths for use with global models. Reproduced from Table 3 in 

McNamara [2009]. 

Solar Activity North-South 

(km) 

East-West 

(km) 

High 1000 1500 

Low 700 1000 

 

 

Analysis of foF2 in the modified Taylor diagram (Figure 20) shows that although the 

performances are statistically similar, the models respond to the data differently: the standard 

deviation for GPSII and mNeQuick is greater than the observation whereas for EDAM it is 

lower. This implies that the EDAM range of values for foF2 is smaller than that observed, whilst 

GPSII and mNeQuick have a greater range. 
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For hmF2, EDAM shows a considerable improvement over its results for Hermanus in terms 

of standard deviation, albeit with a slightly worse correlation. EDAM shows a better standard 

deviation than both GPSII and mNeQuick (though with a greater bias) whereas GPSII and 

mNeQuick have a stronger correlation. The mNeQuick model is the only one of the three to 

show no significant bias. The investigation from McNamara et al. [2013] concluded that the 

EDAM errors did not show any improvement over IRI; this conclusion was based solely on 

analysis of the RMS errors. However it can be seen from the modified Taylor diagram that 

EDAM does, in fact, offer an improved correlation and standard deviation over IRI.  

 

Finally, Figure 20 shows a reversal in performance in the h(0.8foF2) parameter as compared to 

Hermanus. mNeQuick and GPSII both outperform EDAM; considerably in terms of standard 

deviation and slightly with regards to correlation. However, all three again show an 

improvement over IRI.  
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Figure 20. Modified Taylor diagram for IRI, EDAM, GPSII and mNeQuick at Louisvale for the 

parameters foF2, hmF2 and h(0.8foF2). The details of how to read the diagram are described 

in Figure 14. 

 

5.4.3. Accuracy of Model Values at Madimbo 

The Madimbo station is just under 1300 km to the north of the assimilated Grahamstown station 

so it was expected that this station would show the worst results (see discussion in Section 

5.4.2). The modified Taylor diagram for this station is shown in Figure 21.  



69 

 

At this station, GPSII outperforms EDAM and IRI in all parameters, except the error standard 

deviation, and mNeQuick in foF2 and hmF2. mNeQuick shows a negative bias in all 

parameters.  In foF2, GPSII is clearly the best, with mNeQuick second, whilst EDAM offers 

no improvement in the RMS error over IRI. However EDAM does shows a significant 

improvement, at the 95% confidence level, in correlation over IRI (as discussed at the start of 

Chapter 5). It can be seen from the modified Taylor diagram that EDAM has a smaller (than 

unity) normalised standard deviation, whilst IRI’s is greater than unity. This again shows that 

EDAM is not defaulting to the IRI values, and is still modifying its background model.  

 

In hmF2 EDAM shows a very small improvement over IRI, with GPSII and mNeQuick clearly 

outperforming the others, except for the error standard deviation. Finally, for the h(0.8foF2) 

parameter, EDAM and IRI are almost identical (the points are inseparable), and the mNeQuick 

and GPSII parameters are also very similar. 
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Figure 21. Modified Taylor diagram for IRI, EDAM, GPSII and mNeQuick at Madimbo for the 

parameters foF2, hmF2 and h(0.8foF2). The details of how to read the diagram are described 

in Figure 14. 

 

5.5. Comparisons Including TIE-GCM and GITM 

The physics-based models tested in this chapter are not specifically ionospheric models. The 

models are atmospheric models, and include neutral and ion species, as well as temperature and 

velocity. Electron density values are calculated simply as the sum of the ion densities. Unlike 

IRI they are not calibrated with ionospheric measurements (i.e. the CCIR coefficients). The 

model comparison is shown in Figure 22. 
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In foF2, TIE-GCM and GITM both have similar correlations with the observations. However 

TIE-GCM gives a standard deviation of less than unity, implying the model tends to 

underestimate the range of values for foF2, whilst GITM is greater than unity, i.e. it over 

estimates the range. TIE-GCM has a smaller standard deviation of errors (model minus 

observation, ~1.25 MHz), whereas GITM’s standard deviation of errors is ~2 MHz. GITM also 

has a negative bias in foF2.  

 

For hmF2 the model performance is more spread. IRI and TIE-GCM have similar RMS errors 

when specifying hmF2; however it can be seen from the modified Taylor diagram that they are 

different. The standard deviation of errors are very similar however IRI has no noticeable bias 

whereas TIE-GCM has a large positive bias (~30.8 km). In terms of correlation IRI and TIE-

GCM are similar. Finally, GITM performs poorest in terms of correlation with the observation 

and standard deviation of errors. 

 

For h(0.8foF2), TIE-GCM produces a standard deviations close to the observation, closer than 

both IRI and GITM. The TIE-GCM result has a correlation of ~0.62 and shows a positive bias 

(in line with its hmF2 results). GITM however shows very little correlation with the observation 

(~0.47) and a negative bias. IRI gives a standard deviation less than unity but has a better 

correlation and mean square error than both TIE-GCM and GITM. 
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Figure 22. Modified Taylor diagram for IRI, EDAM, GPSII, mNeQuick, GITM and TIE-GCM 

at Hermanus for the parameters foF2, hmF2 and h(0.8foF2). The details of how to read the 

diagram are described in Figure 14. 

 

The tested physics models both perform worse than the empirical and data assimilative models 

tested in the previous sections. However the models still perform fairly well, especially TIE-

GCM. This indicates that such models could be used as a background model in data assimilation 

schemes for ionospheric forecasts in the future.  
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GITM regularly produces nighttime foF2 values of less than 1 MHz. Therefore, as described in 

Section 5.2, the results have had a filter applied to them to remove unphysical results. However 

even with these values removed the GITM results still look unphysical at night (Figure 23). 

This, at least in part, explains GITMs poor performance as compared to the other models.  

 

 

Figure 23. Time series of GITM’s foF2 values across the month of September 2011. The 

nighttime values have unphysical characteristics. 

 

5.6. Comparisons Including Model Combinations 

As introduced in Section 3.4, expecting model performance to improve by combining results is 

based on the assumption that errors should cancel. Simple combinations are discussed here. 

More formal multi-model ensembles will be discussed in Chapter 6.  
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A naïve approach to model combination is to simply take two time series (i.e. the EDAM and 

GPSII foF2 values above Hermanus) and take the mean of the two at each time step. The new 

combination time series can then be compared to the observations. The results of combining 

four model time series (IRI, EDAM, GPSII and mNeQuick) for foF2, hmF2 and h(0.8foF2) are 

shown in Figure 24. The combined result is labelled ‘C’. 

 

 

Figure 24. Modified Taylor diagram for IRI, EDAM, GPSII, mNeQuick and the average 

combination of their parameter time series at Hermanus for the parameters foF2, hmF2 and 

h(0.8foF2). The details of how to read the diagram are described in Figure 14. 
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It is clear that combining the parameters does no harm to the results. Across all three of the 

tested parameters the combination offers a statistical improvement in correlation compared to 

the individual models, except for EDAM in foF2. In terms of bias, this approach leads to the 

combination bias being the average of the contributing model bias. Consequently, the 

combination performs worse than some of the models, and better than others. In foF2 the 

combination performs similarly to EDAM, the best of the tested models. In both hmF2 and 

h(0.8foF2) the combination has a slight positive bias with a standard deviation of less than 

unity. This is due to IRIs small standard deviation as compared to the observations. The model 

parameters which have made up the combination have a large spread in hmF2 and h(0.8foF2). 

Thus the improvement in correlation, and providing standard deviations close to unity (much 

closer than some of the constituent models) shows the technique provides valuable results. 

 

However, for models to be useful to operational RF systems, the whole electron density profile 

is often required, rather than just the three parameters tested so far. Therefore, the EDAM and 

GPSII full electron density profiles across the month have been combined to produce a new 

profile; i.e. at each altitude (90 – 400 km, in 4 km steps) the electron density values from EDAM 

and GPSII have been averaged (Figure 25).  

 

The modified Taylor diagram of the results (Figure 26) shows that for this type of combination 

the correlation of all parameters’ are improved, again except for EDAM’s foF2. For foF2, the 

combination is comparable to the EDAM results, but with a standard deviation closer to the 

observation. In hmF2, the combination is considerably better than EDAM, and offers an 

improvement in correlation over GPSII. Finally for h(0.8foF2) the combination improves on 

GPSII the most, but also offers an improvement over EDAM.  
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Figure 25. Example electron density height profile, black solid line is from EDAM and dashed 

line from GPSII. The red solid line is the average of the two. 

 

Figure 26. Modified Taylor diagram for EDAM, GPSII and the average combination of their 

height profiles at Hermanus for the parameters foF2, hmF2 and h(0.8foF2). The details of how 

to read the diagram are described in Figure 14. 
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5.7. Conclusions 

Before statistical analysis can be performed, and models compared, care should be taken to 

ascertain the stationarity of the time series in question. This can be accomplished by using the 

Augmented Dickey-Fuller (ADF) test. It has been found for this test scenario that the hmF2 and 

h(0.8foF2) time series do not require detrending, however the foF2 time series does.  

 

Empirical, physics-based and data assimilation models have been tested for a one month test 

scenario. The three assimilative models, EDAM, GPSII and mNeQuick all show improvement 

over IRI. Even though EDAM does not statistically improve upon IRIs hmF2 values, GPSII 

and mNeQuick do. It has been shown that the poor EDAM hmF2 results are not due to any 

single day outliers, and that the dawn/dusk time period is better modelled than day or night. 

The expected decrease in model performance, as a factor of distance from the assimilated 

ionosonde site, has also been shown.  

 

TIE-GCM has been shown to perform only slightly worse than IRI, and comparable for hmF2. 

Since IRI is currently used as the background model for a number of data assimilation models 

(e.g. EDAM and GPSII), these results suggest that TIE-GCM could be used as a physics-based 

background model for future data assimilation models. It is advantageous to use a physics-based 

background model so that the electron densities can be more accurately propagated forward in 

time, providing forecasts. GITM, on the other hand, has performed worse than TIE-GCM, at 

least partly due to its unphysical results.  

 

Finally, combining both model parameters and profiles has shown to make a statistical 

improvement in the model results. A more sophisticated method of model combination is that 
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of multi-model ensembles (MMEs). This approach uses a combination of model results to 

reinitialise a physical model and is the subject of Chapter 6. 
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6. MULTI-MODEL ENSEMBLES 

The whole is more than the sum of its parts. 

- Aristotle, Metaphysica 

 

As shown in Sections 5.5 and 5.6, combining model results can lead to an improved 

performance. A more sophisticated approach than the simple model combination already 

discussed is that of multi-model ensembles (MMEs). By combining the number density of 

individual ions, neutrals, temperatures and velocities, the model errors may be reduced.  

 

There are many approaches to constructing an MME [Krishnamurti, 1999; Rajagopalan et al., 

2002; Barnston et al., 2003]; two are described in this chapter. The MMEs are compared to the 

individual model runs and also used as the initial conditions in the physics-based model TIE-

GCM. The MME should have lower number density errors, and thus initializing a model with 

the improved conditions should result in improved forecasting capabilities. 

 

The work presented in this chapter is an expanded version of Elvidge et al.[2013]. 

 

6.1. Atmospheric Neutral Densities 

NASA predicts that, by 2030, orbital collisions could become frequent enough to cause a 

cascade, known as the Kessler Syndrome [Kessler et al., 2010], with the potential to prevent 

the use of low Earth orbit (LEO) [Koller, 2012]. One way to prevent the Kessler Syndrome is 

to more accurately predict orbital trajectories to better plan satellite collision avoidance 

manoeuvres. A key component in orbital trajectory predictions is an accurate description of the 

upper atmospheric environment, in particular the ionosphere-thermosphere, since drag due to 
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atmospheric density is one of the main forces that affect the orbit of satellites and space debris. 

The neutral air density from 200 to 1000 km altitude can change by 80% diurnally as well as 

by two to three orders of magnitude during geomagnetic storms; sometimes in just a few hours 

[Sutton et al., 2005]. The upper atmosphere forecast models currently in use for orbit prediction 

are empirical [NASA Space Vehicle Criteria (Environment), 1973], and include NRLMSISE-

00, the Jacchia Reference Atmosphere [Jacchia, 1977] and the NASA/MSFC Global Reference 

Atmospheric Model-1999 Version [Justus and Johnson, 1999] . They are finely tuned, but when 

applied to satellite orbit forecasts they can result in large uncertainties in the orbital parameters 

(positional errors on the order of kilometres after a day [Vallado and Finkleman, 2008; 

McLaughlin et al., 2011]). 

 

Techniques exist to improve the predictability of the upper atmospheric environment, for 

example bootstrapping [Sunil Rao, 2000]. However MMEs are used here to enhance the 

prediction of the full ionosphere-thermosphere system. The main objective is to minimize the 

effects of model errors and bias, and improve the prediction of the physical phenomena using 

the ensemble. 

 

6.2. Test Scenario 

The time period for this neutral density study was from August 28th 2009 to September 1st 

2009. This was during solar minimum, where it is thought there is the largest difference in 

reported densities between the models [Godinez, 2013]. At solar minimum the impact of the 

solar input parameters on the models is relatively small, and thus other internal and external 

dynamics dominate the evolution of the ionosphere-thermosphere densities. This particular time 

period was chosen since it included a geomagnetic storm which took place on August 30th. The 
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Ap index reached a high of 67 between 15UT and 18UT August 30th, whilst staying below 10 

at other times. The F10.7 showed little variability throughout the whole test period (Figure 27). 

 

 

Figure 27. Ap and F10.7 for the neutral density MME test study, August 28th – September 1st 

2009. The spike in Ap is due to a geomagnetic storm. 

 

6.3. Models and Observations 

The models tested in this scenario are NRLMSISE-00 (described in Section 3.1.3 [Picone et 

al., 2002]), TIE-GCM (Section 3.2.1 [Roble et al., 1988; Richmond et al., 1992]) and GITM 

(Section 3.2.2 [Ridley et al., 2006]). In this test the models were run with a 30 minute time step.  

 

The models have a wide variety of outputs as shown in Table 7. It is important to note that the 

models do not have every output in common. This plays an important part when constructing 

an MME (discussed in Section 6.7.1.). The inputs for each model, described in Chapter 3, are 

presented in Table 8. 
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Table 7. NRLMSISE-00, TIE-GCM and GITM model outputs. mmr is the mass mixing ratio.  

NRLMSISE-00 TIE-GCM GITM 

He (cm-3)  He (m-3) 

O (cm-3) O (mmr) O (m-3) 

O2 (cm-3) O2 (mmr) O2 (m
-3) 

N (cm-3) N (mmr) N (m-3) 

N2 (cm-3) N2 (mmr) N2 (m
-3) 

Ar (cm-3)   

H (cm-3)  H (m-3) 

 NO (mmr) NO (m-3) 

 O+ (cm-3) O+ (m-3) 

 O2
+ (cm-3) O2

+ (m-3) 

  N+ (m-3) 

  N2
+ (m-3) 

 NO+ (cm-3) NO+ (m-3) 

 Ne (cm-3) Ne (m
-3) 

Neutral temp. (K) Neutral temp. (K) Neutral temp. (K) 

 Ion temp. (K) Ion temp. (K) 

 Electron temp. (K) Electron temp. (K) 

 Neutral meridional wind (cms-1) Neutral velocity (east) (ms-1) 

 Neutral zonal wind (cms-1) Neutral velocity (north) (ms-1) 

 Neutral vertical wind (cms-1) Neutral velocity (up) (ms-1) 

  Ion velocity (east) (ms-1) 

  Ion velocity (north) (ms-1) 

  Ion velocity (up) (ms-1) 

  O velocity (up) (ms-1) 

  O2 velocity (up) (ms-1) 

  N velocity (up) (ms-1) 

  N2 velocity (up) (ms-1) 

  NO velocity (up) (ms-1) 
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Table 8. NRLMSISE-00, TIE-GCM and GITM model (solar proxy) inputs.  

NRLMSISE-00 TIE-GCM GITM 

81 day average F10.7 81 day average F10.7  

Daily F10.7 Daily F10.7 Daily F10.7 

Ap Ap  

  Hemispheric power index 

 

 

 

6.3.1.  CHAMP 

The performance of each model is compared against the density fields derived from the 

CHAllenging Minisatellite Payload (CHAMP) satellite [Reigber et al., 2002, 2003]. CHAMP 

was in operation from July 2000 to September 2010 and the reported neutral densities are 

derived from accelerometer data as described by Sutton [2009]. At launch CHAMP had an 

orbital period of roughly 90 minutes and recorded neutral densities approximately every 45 

seconds. The time series of the derived neutral densities for this test are shown in Figure 28.  

 

For the test the observational data from CHAMP was restricted to the closest matching time to 

the model time series. The 30 minute time step is approximately one third of the CHAMP orbital 

period, which is the cause of the apparent oscillation in the CHAMP neutral densities (Figure 

28). 
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Figure 28. Neutral densities, derived from CHAMP accelerometer data for August 28th – 

September 1st 2009. The time step of the x-axis is 30 minutes, which was approximately one 

third of the CHAMP orbital period. This is the cause of the apparent oscillation in the neutral 

densities. 

 

6.4.  Model Comparison 

To compare NRLMSISE-00, TIE-GCM and GITM with CHAMP, the output of each model 

was mapped to the CHAMP position using trilinear interpolation. Figure 29 shows the modified 

Taylor diagram for total neutral density for NRLMSISE-00, GITM and TIE-GCM compared to 

the CHAMP observations. Figure 30 is the time series plot of neutral density of the models and 

CHAMP.  
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Figure 29. Modified Taylor diagram for NRLMSISE-00 (MSIS), TIE-GCM and GITM for 

neutral density, compared with CHAMP. The details of how to read the diagram are described 

in Figure 14.  
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Figure 30. Plot showing the neutral density observation data from CHAMP (black) with the 

three model outputs, NRLMSISE-00 (orange), GITM (red) and TIE-GCM (blue) for the study 

period. 

 

The NRLMSISE-00 empirical model results, as expected, show a good mean approximation to 

the observed state. However the model shows a larger variability in its output than the CHAMP 

observations. GITM shows a slight negative bias but has a standard deviation value close to the 

observations, i.e. the range of values that GITM produces have a similar range to the 

observations. Overall GITM performs the best of the three models in terms of the model mean, 

standard deviation and RMS values but worse in terms of correlation. GITM seems to show 

some reaction to the storm, with a noticeable increase in neutral density just after the peak in 

observed neutral densities (Figure 30). TIE-GCM has a more pronounced discrepancy between 

model results and observation. It has a positive bias and a standard deviation much larger than 
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that of the observations. However it does have the strongest correlation of the models and shows 

some reaction to the storm. Although there is no increase in the maximum reported values, there 

is an increase in the minimum values (Figure 30). 

 

The results show that the models suffer from errors and biases, and are unable to exactly match 

the observed density field from CHAMP. In particular, all three models underestimate the peak 

during the storm. Therefore, in order to provide better forecasting abilities, techniques can be 

used to combine the model output to minimize the impact of model errors and bias.  

 

6.5. Rationale of MMEs 

The idea of improving model forecasts by combining two or more independent models is based 

upon a short note by Thompson [1977]. Since then, MMEs have been extensively used in the 

climatology community with great success [Tracton and Kalnay, 1993; Harrison et al., 1995; 

Vislocky and Fritsch, 1995; Doblas-Reyes et al., 2000, 2005; Evans et al., 2000; Fritsch et al., 

2000; Palmer and Shukla, 2000; Palmer et al., 2000; Hagedorn et al., 2005].  

 

An MME works on the idea that model forecasting can be improved by combining independent 

models [Thompson, 1977]. Model errors arise in a variety of forms and include computational 

errors in physics model solvers [Hagedorn et al., 2005]. For example, many well understood 

physical systems use series of partial differential equations to describe that system. Yet, in order 

to solve them, they have to be reduced to finite-dimensional ordinary differential equations to 

be integrable on a computer. Whilst necessary, this reduction introduces inaccuracies.  
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In order to understand why an MME approach is useful, it is helpful to consider three example 

scenarios. Figure 31, based on the cartoon in Hagedorn et al. [2005], is a simplified 

visualization of the scenarios for two models (the red and black lines). Scenario 1 is where the 

models lie above and below the true state at time ( and an equally weighted MME would 

provide the best result. In scenario 2 one of the models (black) provides the best estimate, and 

the MME can only be worse. However, the MME would still be better than the other model 

(red). Also, in practice, models provide multiple output parameters, and different models can 

be better at different aspects. Finally, in the 3rd scenario, neither model is very good, and again 

the MME would be better than one model, but worse than the other.  

 

It is important to note that it is impossible for the MME to be worse than all of the individual 

models [Hagedorn et al., 2005]. 
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Figure 31. Idealized visualization of the basic MME scenarios, based on the cartoon in 

Hagedorn et al. [2005]. Two models are shown (red and black lines) for when 1) the MME 

would produce the best estimate, 2) one model provides the best estimate and 3) no model 

provides a good estimate.  

 

However, it is clear that the MME cannot give a result better than the best model in all 

circumstances. For a hypothetical perfect model of a system the MME would always add worse 

information. However in reality such perfect models do not exist and successful MMEs should 

look to use independent, skilful models. It is important to use independent models since models 

with similar error characteristics can find such characteristics amplified in the MME. Also, if 

one model is shown to consistently perform worse than all other models, then this should be 

excluded from the MME as it does not add useful information [Hagedorn et al., 2005]. 
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The main issue with equally weighted ensembles is that in all cases other than the first example 

scenario in Figure 31 they perform worse than the one best model. To overcome this problem, 

weighted MMEs can be constructed [Krishnamurti, 1999; Pavan and Doblas-Reyes, 2000; 

Rajagopalan et al., 2002]. However constructing model weights can be difficult, especially 

with small sample sizes [Kharin and Zwiers, 2002; Hagedorn et al., 2005]. 

 

6.6. Constructing an MME 

6.6.1. Equally Weighted MME 

 

There are a number of difficulties in constructing an MME [Krishnamurti, 1999; Pavan and 

Doblas-Reyes, 2000; Rajagopalan et al., 2002], including the fact that different models do not 

all share common output variables. Another problem is that there may not be observational data 

for each parameter, making it difficult to assess model performance for all parameters. One way 

to resolve the latter problem is to not take model performance into account and use an equally 

weighted average. Even such a simple method has been shown to increase model skill [Barnston 

et al., 2003; Palmer et al., 2004; Hagedorn et al., 2005; Weisheimer et al., 2009].  

 

6.6.2. Weighted MME 

Alternatively, the MME can use different weights for each model. There are different 

approaches for estimating the weights to be applied to individual models [Krishnamurti et al., 

2000; Pavan and Doblas-Reyes, 2000; Rajagopalan et al., 2002; Tebaldi and Knutti, 2007]; 

however all depend on some measure of model skill. For example Tebaldi and Knutti [2007] 
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state that the skill of a (climate) model should not be judged from its ability to predict the future, 

but instead from its ability to predict mean conditions, variability, and transient changes.  

 

In the absence of existing MME work in the ionospheric literature, the mean square error has 

been used, 

 

 ��?-- = ��� = ��� + d�
. (6.1) 

 

Where � is the mean of the time series of errors (model time series minus observation time 

series) and d the standard deviation of the same.  

 

6.7. Using the MME for Improved Atmospheric Density Modelling 

6.7.1. MME Construction 

 

The weighting method described in Section 6.6.2 was developed based on the models' mean 

conditions and variability. The mean square error (MSE; Equation (6.1)) of the models’ neutral 

density time series compared to the CHAMP observations were used to judge model skill. 

Before calculating the MSE the model time series were restricted to times of low geomagnetic 

activity. Fuller-Rowell and Rees [1981] define quiet geomagnetic conditions as when the Kp 

index is between 0 and 1. In this study an Ap value of 3 was chosen, which corresponds to a 

Kp of 1-. However, restricting the time series greatly reduces the number of data points (from 

240 to 50). This means the weights may not be generally applicable to the full time series 

[Hagedorn et al., 2005].  
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Figure 32 is the modified Taylor diagram of NRLMSISE-00, TIE-GCM and GITM when the 

time series is restricted to low geomagnetic times. It is clear that each of the models perform 

better than for the whole time series (Figure 29). This is especially clear for the correlation 

between the model and observation time series. Each of the models still show their respective 

biases and the difference in standard deviation of each model is greater than previously.  

 

 

Figure 32. Modified Taylor diagram of NRLMSISE-00 (MSIS), TIE-GCM and GITM for the 

neutral density test. The model time series have been restricted to times when the Ap was less 

than or equal to 3. These time series are used to generate the weighted MME. 
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The model weights were based upon the model skill (Equation (6.1)) at specifying total neutral 

density at quiet times. The inverse of the model skill was used to weight the models, so that the 

model with the lowest MSE was weighted most heavily. That is, given the model skill of 

NRLMSISE-00, GITM and TIEGCM, ��, �� and �� respectively, the weighting of model ? 
was calculated using: 

 

 Weighting of model i = 1
�> | 1�� + 1�� + 1��}. 

(6.2) 

 

 The model skill and weighting are given in Table 9. 

 

Table 9. Model skill and associated weighting (calculated by the inverse of model skill, 

Equation (6.2)) for use in the weighted MME. 

 Model Skill Weight 

NRLMSISE-00 3.03 × 109�� 23.7% 

GITM 1.06 × 109�� 67.5% 

TIE-GCM 8.15 × 109�� 8.80% 

 

 

Figure 33 and Figure 34 show the neutral density time series of the observations, average and 

weighted MME. Figure 35 is the modified Taylor diagram for NRLMSISE-00, GITM, TIE-

GCM and the average and weighted MME. Using the figures it is clear that the average MME 

performs better than all of the individual models. The weighted MMEs statistics are closer to 

the observations for everything but correlation, in which TIE-GCM is the best. However the 
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difference in correlation between the equally weighted MME and TIE-GCM is not statistically 

significant (using Fisher’s r-to-z transformation discussed in Section 5.4.1, with a Z-score of 

1.161). This is due to the relatively small sample size; a five day study, with a time step of 30 

minutes, results in just 240 data points (compared to 2880 used in the study in Chapter 5).  

 

The average MME however does show some bias, whereas the weighted MME does not. The 

weighted MME provides variability very close to that of the CHAMP observations. However 

the storm period is not modelled as well as the equally weighted average as it tends to 

underestimate the density. This is probably due to the fact that GITM tends to underestimate 

the true state during the storm, whilst being heavily favoured in the weighting scheme (67.5%), 

which is based on quiet times (Figure 32). 
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Figure 33. The CHAMP derived neutral densities are shown in black. In green are the neutral 

density values found from the average MME.  
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Figure 34. The CHAMP derived neutral densities are shown in black. In purple are the neutral 

density values found from the weighted MME. 
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Figure 35. Modified Taylor diagram for NRLMSISE-00 (MSIS), TIE-GCM, GITM and TIE-

GCM started with an MME for neutral density, compared with CHAMP. The details of how to 

read the diagram are described in Figure 14. 

 

It has been shown, in this example, that combining model results leads to increased skill at 

matching the CHAMP derived data. In the following section this reduced uncertainty in 

atmospheric densities is used to provide the initial conditions of a forecast run of a model. This 
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approach has been previously shown to increase model forecast skill [Tebaldi and Knutti, 

2007]. 

 

6.7.2. Using the MME as the Initial Conditions for TIE-GCM 

The main objective of this section is to reduce the uncertainty in the initial conditions and thus 

increase the forecast skill of TIE-GCM. In order to use an MME as the initial conditions for a 

physics-based model (i.e. TIE-GCM) more than just the combined neutral density is required. 

The MME of each density required by TIE-GCM (Table 7), has to be calculated. Where 

possible the density for each model species required by TIE-GCM (i.e. oxygen; O) was found 

by combining the densities from NRLSMSE-00, GITM and TIE-GCM. However, for certain 

species (i.e. nitrogen oxide; NO) not all the models provide a density (in this case NRLMSISE-

00). In these cases, just the models which do provide a density value were used. In case TIE-

GCM has a density which no other model provides, the original data is used on its own. A 

similar approach is used for the temperatures and velocities.  

 

To combine densities, temperatures and velocities from multiple models the data must be 

interpolated to common latitude, longitude and altitude grids. To achieve that, the NRLMSISE-

00 and GITM grids were trilinearly interpolated to the TIE-GCM grid. The grids were then 

combined to form an MME.  

 

For the new TIE-GCM run the model was restarted using the MME grid as the initial conditions. 

TIE-GCM was then run for six hours with the model output recorded every 30 minutes. After 

this period TIE-GCM was again restarted using the MME grid for the next six hour period. For 

this forecast run the model only used Ap and F10.7 in the initial conditions. It was not updated 
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at each time step. This was so a true forecast could be simulated. Figure 36 is a flow chart of 

the process used to run TIE-GCM with the MME as its initial conditions for a six hour forecast, 

and Figure 37 is the procedure used for this test scenario. 
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Figure 36. Flow chart of the procedure for running TIE-GCM using the MME as its initial 

conditions for a six hour forecast.  
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Figure 37. Procedure for finding the TIE-GCM forecast using an MME as its initial conditions 

for the August 28th – September 1st 2009 neutral density study. The “run TIE-GCM MME 

forecast” process refers to the procedure described in Figure 36. 

 

Figure 38 shows the modified Taylor diagram for neutral density compared to the CHAMP 

observations for the original TIE-GCM run, the NRLMSISE-00 (MSIS), GITM results and the 

results of rerunning TIE-GCM using both the average and weighted MME as the initial 
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condition every six hours. Figure 39 is the reported time series of neutral densities from the 

CHAMP observations, the original TIE-GCM run, the equally weighted combination MME and 

the results of rerunning TIE-GCM using the MME. 

 

Using the MME as the initial condition in TIE-GCM provides a clear improvement in all 

statistical parameters, compared to any of the contributing models. Initially the model is well 

above the observations (Figure 39), but this is due to the large initial values in the MME (caused 

by the GITM ‘spin up’ time, along with the already large TIE-GCM and NRLMSISE-00 

values). However after approximately 20 hours the reported densities show very low bias and 

have variability close to the observations. In particular, the post-storm period is modelled very 

accurately. The average MME initial conditions for TIE-GCM run does not significantly 

improve upon the original TIE-GCM correlation, but has significantly improved the bias and 

standard deviation of the model. The new TIE-GCM run (using the average MME) offers an 

improvement (in bias and correlation) upon the neutral density MME calculated after the 

models were run (Figure 35). This is since the physics of one model, given initial conditions 

with lower errors, can propagate densities better than the average of three models, each with 

poor initial conditions.  

 

None of the contributing models, nor the MMEs, model the peak of the storm period (~65 hours 

after August 28th 2009) with any accuracy. The best the models can do is to try and model the 

post-storm period as best as possible. This is since the models do not react as sharply to the 

increase in Ap (in terms of reported neutral densities) as compared to reality.  
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Using the MME as the initial conditions to TIE-GCM offers a 55% reduction of the RMS error 

compared to the initial TIE-GCM runs from Section 6.4. 

 

Figure 38 also includes the results from using the weighted MME as the initial condition every 

six hours in TIE-GCM. The time series plot is shown in Figure 40. These figures show that 

using the weighted combination MME as the initial condition for TIE-GCM also provides 

significant improvement. Before the storm onset the new TIE-GCM run gives a non-biased 

result with a standard deviation close to that of the observations. However directly after the 

storm the output does not follow the density values so well; for the remaining 50 hours (from 

hour 70 to 120) the TIE-GCM result shows a smaller variability than that of the observations. 

 

Compared to the TIE-GCM initialised with the average MME the weighted MME performs 

much worse. Although the bias, and variability, is better than any of the contributing models 

the correlation is poor. Indeed, the correlation is very similar to the most heavily weighted 

model, GITM. However using the weighted MME as the initial condition still offers 

considerable improvement, especially with regards to the parameter that has been used to judge 

the model skill, the mean square error. The weighted MME TIE-GCM run gives a 48% 

reduction in the RMS error compared to the original TIE-GCM run.  
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Figure 38. Modified Taylor diagram for NRLMSISE-00 (MSIS), TIE-GCM, GITM and for TIE-

GCM using the MME (both average and weighted) for its initial conditions every six hours, 

compared with the CHAMP observations. The details of how to read the diagram are described 

in Figure 14.  
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Figure 39. Top panel shows the neutral density from the CHAMP observations, from the 

original TIE-GCM run and the equal combination MME. The bottom panel shows the CHAMP 

observations and the new TIE-GCM output, using the MME as the initial condition every six 

hours. 
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Figure 40. Top panel shows the neutral density from the CHAMP observations, from the 

original TIE-GCM run and the weighted MME. The bottom panel shows the CHAMP 

observations and the new TIE-GCM output, using the MME as the initial condition every six 

hours. 

 

6.8. Conclusions 

The work presented in this chapter shows the possibility of using multi-model ensembles 

(MMEs) to enhance the forecast skill of ionosphere-thermosphere models. Three models were 

used: an empirical model (NRLMSISE-00) and two physics-based models (TIE-GCM and 

GITM). The models' output density has been compared against density fields from CHAMP, 
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where all models have large errors compared to the observations. To improve the density 

estimation, an MME averaging technique has been applied and tested. Two approaches for the 

MME were used, a simple average MME where all models have the same weight, and a 

weighted MME, where each model is weighted according to its skill. The results show a 

significant improvement in both cases. The MME was then used to initialize one of the physics-

based models (TIE-GCM) to try and improve its forecast skill. As with the previous case, the 

first experiment uses an MME with a simple average as the initial conditions to TIE-GCM. This 

initialization shows a 55% reduction in RMS error over the TIE-GCM run. The weighted MME 

performs worse than the simple ensemble average MME, offering an approximate 48% 

reduction in RMS error. There are a number of reasons for this worse performance, including 

that the weighting scheme uses the model quiet time to generate the model weights which is 

then applied across all time periods. This is consistent with Hagedorn et al. [2005] who argued 

that for small data sets the only way to generate a good MME is to use the average. 

 

A possible improvement would be to use two different weighting schemes, one for quiet times 

and one for storm times. Alternatively a weighting scheme that is dependent on location as well 

as conditions could be beneficial. A further approach would be to change the weighting scheme 

altogether and adopt Reliability Ensemble Averaging (REA) that is often used to generate 

MMEs in climatology studies [Giorgi and Mearns, 2002]. Also, in order to verify the results 

that have been presented here longer test scenarios should be used to reduce the uncertainties 

in the statistics.   
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7. CONCLUSIONS AND FUTURE WORK 

I do not mind if you think slowly, but I do object 

when you publish more quickly than you can think. 

- Wolfgang Pauli 

 

Space weather can affect RF systems in many ways. Affected systems include global navigation 

satellite systems (GNSS), high frequency (HF) communications, space-based Earth observation 

radars and space situational awareness radars. Ionospheric models are often used to mitigate 

negative effects.  

 

In order to characterise individual model performance, and thereby choose the best model for 

mitigating space weather effects, suitable metric(s) and common testing scenarios are required. 

A review of current model comparison techniques both in the ionospheric literature, and wider 

scientific community has been discussed. Problems with current methods of model comparison 

and with the visualization of model results, in the ionospheric literature, have been described. 

A method to overcome a number of these problems as been suggested, in the form of modified 

Taylor diagrams.  

 

Taylor diagrams have been used in the climatology and weather community since their 

introduction in 2001. However no reference to their use in the ionospheric literature could be 

found. Taylor diagrams do however have two main problems which the modifications presented 

here have addressed. First, Taylor diagrams do not show if a model has any bias, which is an 

important consideration when comparing model performance. Secondly, Taylor diagrams use 

the little known “centred-pattern RMS difference”, the mean-removed RMS difference. 

However it is not well understood and in a number of publications it is incorrectly used 
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interchangeably with the RMS difference. It has, however, been shown that the centred-pattern 

RMS difference is equivalent to the standard deviation of the model errors (model time series 

minus observation time series). This is a more common modelling parameter, and avoids some 

confusion. The modified diagrams also allow one to find the full mean square error by adding 

in quadrature the model bias and the error standard deviation. Finally, the normalisation factor 

has been included in the diagrams to allow the reader to reconstitute statistical values which 

have been normalised in order to plot multiple parameters on one diagram. 

 

Using modified Taylor diagrams IRI, EDAM, GPSII, the data ingestion version of NeQuick 

(mNeQuick), NRLMSISE-00, TIE-GCM and GITM have been compared. This is the first 

known comparison of the three main model types (empirical, data assimilation and physics-

based) for a long test study (one month). The comparison discussed the importance of stationary 

time series before calculating statistics. Using modified Taylor diagrams the data assimilative 

models, EDAM, GPSII and mNeQuick have been shown to offer significant improvements in 

foF2 and h(0.8foF2) when compared to IRI. For hmF2, GPSII and mNeQuick improve upon 

IRI. EDAM, however, does not statistically improve upon IRI. It has been shown, though, that 

EDAM is not defaulting to its background model (IRI-2007) and is making changes to its 

electron density grid. TIE-GCM has been shown to perform comparably to IRI in terms of 

hmF2, albeit with a large positive bias, but worse in both foF2 and h(0.8foF2). However, the 

model performs sufficiently well that it is believed that the model could be used as background 

model for future data assimilation models. GITM performed the worst of the tested models, 

which is at least partly due to the unphysical electron densities which the model produces at 

night. 
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The ideas of combining the model parameter time series and electron density profiles were also 

discussed. It has been shown that these two simple combination methods provide significant 

improvements over the models used to construct the combination. It was this improvement 

which inspired using model combinations, or ensembles, as initial conditions in forecast runs 

of the physics-based model, TIE-GCM. 

 

The suitability of multi-model ensembles (MMEs) for use in ionospheric/thermospheric 

modelling has been described. The two main approaches for constructing them have been 

demonstrated. For a neutral density study during solar minimum, MMEs have been shown to 

offer statistical improvements over the contributing models, when their outputs are compared 

to CHAMP observations. These improved conditions have then been used as the initial 

conditions for TIE-GCM. It has been shown that using the average (i.e. equally weighted) MME 

caused a 55% reduction in the RMS error for neutral densities. The weighted MME exhibited 

less of an improvement. The RMS error was reduced by 48%, but the model results showed 

very poor correlation with the observation.  

 

Future work should be carried out on a number of fronts. First, more standardized testing 

scenarios should be published, allowing models to be further tested and compared. This will 

help to highlight which modelling approaches are most useful for operational RF systems. 

Secondly, for MMEs a variety of work should be done to advance the field. Longer test studies 

(on the order of a month), would increase the confidence of the statistics. Increasing the number 

of models used to construct the MME would also help to reduce the errors in densities even 

further, potentially leading to better forecasts. Finally, addressing the problems of the weighted 

MME should be undertaken. The weighting scheme could be based on more times, rather than 
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just quiet times. Also, it could be varied spatially. Furthermore, other weighting techniques such 

as reliability ensemble averaging (REA) (currently used in the climatology literature) could be 

used. 
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APPENDIX A. THE RELATIONSHIP BETWEEN ELECTRON  

DENSITY AND PLASMA FREQUENCY  

 

The Appleton-Hartree-Lassen equation describes the refractive index for electromagnetic wave 

propagation in a cold, magnetized, plasma [Lassen, 1927; Hartree, 1929; Appleton, 1932; 

Davies, 1990]. The refractive index (�) can be calculated using the simplified form (no 

collisions) of the Appleton-Hartree-Lassen equation [Angling et al., 2013]: 

 

 �� = 1 − 2��1 − �
2�1 − �
 − ��� ± ���� + 4�1 − �
����. (A.1) 

 

Where  

 

 � = ����� !"#�, (A.2) 

 �� = ����"# , (A.3) 

 �� = ����"# , (A.4) 

 

and �� is the electron density, �� is the charge of the electron (1.6 × 1092� coulomb),  ! is the 

vacuum permittivity (8.85 × 1092� farad-meter-1), " is the electron mass (9.11 × 109�2 kg), 

# is the angular frequency, �� is the longitudinal component of the magnetic field and �� is 

the transverse component of the magnetic field.  The positive part of the plus/minus sign in the 

denominator refers to the O wave whilst the negative part refers to the X wave.  

 

Under the assumption of no magnetic field, �� = �� = 0:  
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 �� = 1 − �, (A.5) 

       = 1 − ����� !"#�. (A.6) 

 

 

Then, since plasma frequency is defined as: 

 

 #&� = ����� !" , (A.7) 

   

Equation (A.7) can be substituted into Equation (A.6) to give:  

 

 1 − ����� !"#� = 1 − #&�#�. (A.8) 

   

Converting angular frequency to frequency (# = 2.%) and rearranging the formula, the 

conversion between plasma frequency and electron density can be arrived at:  

 

 �� ⋅ ���4.� !" = %&�. (A.9) 

   

That is, the electron density (in electrons/m3) multiplied by a constant, is equal to the square of 

the plasma frequency (in Hz). This constant is ~80.616 m3s-2, which is often approximated to 

81 and Equation (A.9) is usually written thus:  

 

 %& = 9��� . (A.10) 

   

A more detailed discussion of the Appleton-Hartree-Lassen equation can be found in Davies 

[1990].  
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APPENDIX B. ESTIMATION OF TEC FROM  

GNSS MEASUREMENTS 

 

In a dispersive medium, such as the ionosphere, the angular frequency, #, and angular wave 

number, �, are not proportional. The dispersion relationship is defined as [Crawford, 1968]: 

 

 #� = ���� + #&�, (B.1) 

   

where � is the speed of light and #& the angular plasma frequency. From Section 2.6, #& =
2.%& and %&� = 80.6��. These results can be combined with the phase and group velocity to 

find the total electron content (TEC). The phase and group velocity are defined as [Xu, 2007]:  

 

 Phase Velocity = z&/ = #� , (B.2) 

 Group Velocity = z<: = �#�� . (B.3) 

 

Converting angular frequency to frequency (# = 2.%), 

 

 z&/� = #��� , (B.4) 

         = 4.�%��� . (B.5) 

 

Rearranging Equation (B.1) in terms of ��, converting to frequency and substituting into 

Equation (B.5): 
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 z&/� = 4.�%�
�#� − #&��� �, 

(B.6) 

        = 4.�%�
�4.�%� − 4.�%&��� �, 

(B.7) 

        = ��
�1 − �%&% ���. 

(B.8) 

 

 

The refractive index of a medium is defined as the ratio of the speed of the wave in a vacuum 

to the speed in the medium (in this case the ionosphere), that is �&/ = ���� where �&/ is the 

phase refractive index. Using z&/ as found in Equation (B.8) �&/ can be written as: 

 

 �&/ = �

�
  �

¡1 − ]%& %⁄ ^� £
¤

, 
(B.9) 

 = y1 − �%&% ��. (B.10) 

 

Since 
¥�¥ ≪ 1, the first order Taylor expansion approximation √1 −  � ≈ 1 − 2�  � can be used. 

Using %& = 80.6�� (Section 2.6) the phase refractive index in terms of frequency and electron 

density can be found: 

 



116 

 

 �&/ ≈ 1 − 12 �%&% ��, (B.11) 

         = 1 − 12 �80.6��%� �, (B.12) 

         = 1 − 40.3%� �� . (B.13) 

 

To find the group refractive index, in terms of frequency and electron density, rearrange 

Equation (B.1) in terms of # and differentiate: 

 

    # = ]���� + #&�^2�, (B.14) 

 �#�� = 12 ]���� + #&�^92� ⋅ 2���, (B.15) 

        = �������� + #&�. (B.16) 

 

Recall from Equation (B.3) that z<: = ¨©¨ª  thus: 

 

 z<: = �������� + #&�. (B.17) 

   

As before substitute Equation (B.1) (rearranged in terms of ��) into Equation (B.17) to get: 
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z<: = ��¡#� − #&���
¡���#� − #&�
�� + #&�

. (B.18) 

   

Replacing angular frequency with frequency, and cancelling down, Equation (B.18) becomes: 

 

 z<: =  �y1 − �%&% ��. (B.19) 

   

Since the group refractive index is �<: = ��«¬, 

 

 �<: = �
�y1 − �%&% ��, 

(B.20) 

         = ­1 − �%&% ��®92�. (B.21) 

 

Again, since 
¥�¥ ≪ 1, the approximation �1 −  �
9°̄ ≈ 1 + 2�  � can be used and thus: 

 

 �<: = 1 + 12 �%&% ��, (B.22) 

         = 1 + 40.3%� �� . (B.23) 
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Using the refractive index one can find the difference between the measured range and the 

geometric range (a refractive index of 1). That is, the difference between a ray travelling along 

the same path but experiencing a refractive index of 1: 

 

 Δ²³ = + � ,- − + ,-, (B.24) 

 Δ&/ = +�� − 1
 ,-. (B.25) 

 

Then substituting the phase and group refractive indices from Equation (B.13) and Equation 

(B.23) into Equation (B.25) and using the definition of TEC from Equation (2.7): 

 

 Δ>8;8,&/ = + �´1 − 40.3%� ��µ − 1�  ,-, (B.26) 

                 = − 40.3%� + ��  ,-, (B.27) 

                 = − 40.3%� (�). (B.28) 

 

 Δ>8;8,<: = + �´1 + 40.3%� ��µ − 1�  ,-, (B.29) 

                 = 40.3%� + ��  ,-, (B.30) 

                 = 40.3%� (�). (B.31) 

 

Thus there is a phase advance when passing through the ionosphere, and a group delay. 
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It should be noted that �<: ≥ �&/ implies z<: ≤ z&/. Consequently for �&/ ≤ 1, z&/ = �;�� ≥
�, i.e. the phase velocity travels faster than the speed of light. However, no information is 

transmitted with the phase and as such Special Relativity is not violated.  

 

A GNSS can measure both the phase and pseudorange for a signal passing through the 

ionosphere. An estimation of the TEC can be found using a linear combination of either the 

pseudorange or phase measurements from two frequencies, such as L1 and L2 for GPS. 

 

Firstly, using the pseudorange, let [> = �!.�¥̧° (�) (i.e. Δ>8;8,<: from Equation (B.31)) for ? = 1,2 

and thus: 

 

 =2 = ¹2 + [2   and   =� = ¹� + [�, (B.32) 

   

where => is the pseudorange of signal Li and ¹> is the delay due to geometric range, clock bias 

and the troposphere for each signal. Multiplying Equation (B.32) by its corresponding signal 

frequency gives: 

 

 %2�=2 = %2�¹2 + %2�[2, (B.33) 

 %��=� = %��¹� + %��[�. (B.34) 

 

Taking the difference of Equation (B.33) and (B.34), with the assumption the L1 and L2 signals 

travel along the same path and as such ¹2 = ¹�, and noting that: 
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 %2�[2 = %2� ⋅ 40.3%2� (�), (B.35) 

          = 40.3 ⋅ (�), (B.36) 

          = %��%�� 40.3 ⋅ (�), (B.37) 

          = %��[�, (B.38) 

 

gives, 

 

 %2�=2 − %��=� = �%2� − %��
¹. (B.39) 

   

Rearranging to make =� the subject of Equation (B.39): 

 

 =� = %2�
%�� =2 − ¹ �%2�

%�� − 1�, (B.40) 

 

Then, since ¹ = =2 − [2, substitute this into Equation (B.40), 

 

          =� = %2�
%�� =2 − �=2 − [2
 �%2�

%�� − 1�, (B.41) 

          =� = =2 + [2%2�
%�� − [2, (B.42) 

 =2 − =� = [2 �1 − %2�
%���. (B.43) 
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Substituting the definition of [2 into Equation (B.43) gives 

 

 =2 − =� = 40.3%2� (�) �1 − %2�
%���, (B.44) 

   

and thus the pseudorange TEC is given by: 

 

 (�)&1�6789:0;<� = %2�%���=2 − =�
40.3�%�� − %2�
. (B.45) 

   

Using the pseudorange TEC estimate can result in poor results since pseudorange is a noisy 

measurement. On the other hand using phase to calculate the TEC gives ambiguous results. The 

approach usually taken is to use the noisy pseudorange measurement to level the ambiguous 

phase TEC results. 

 

 The observed phase is defined similarly to the pseudorange (Equation (B.32)), but [> is now 

defined as − �!.�¥̧° (�) (i.e. Δ>8;8,&/ from Equation (B.28)), that is: 

 

 32 = ¹ + [2 + º2�2.�2
   and    3� = ¹ + [� + º��2.��
, (B.46) 

 

Where 3> is the phase and 2.�> is the phase ambiguity. Then following the same argument as 

from Equation (B.33) to (B.44), phase TEC is defined as: 
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 (�)&/01� = %2�%��]3� − 32 − 2.�º2�2 − º���
^40.3�%�� − %2�
 , (B.47) 

   

where 2.�º2�2 − º���
 is the bias due to the ambiguity. The bias can be rewritten as a constant 

and this leaves the final phase TEC equation as: 

 

 (�)&/01� = %2�%���3� − 32
40.3�%�� − %2�
 + Α, (B.48) 

   

where, Α is the unknown ambiguity. Then, levelling the ambiguous phase TEC with the 

pseudorange TEC, by subtracting the mean of the TEC phase, and adding the mean of the 

pseudorange TEC one can find the TEC equation: 

 

 (�) = (�)&/01� − (�)&/01� + (�)&1�6789:0;<� . (B.49) 

   

In practice, the pseudorange TEC measurement is not without biases, usually due to receiver 

noise. These biases can be calculated for using a differential code bias (DCB). 
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