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Abstract

We survey the progress made on the restriction problem since it was first conjectured in

the 1960s by E. M. Stein, in particular the oscillatory-integral approach which culminated

in the Tomas-Stein theorem of 1975. We also examine the connections between the

restriction and Kakeya problems, the latter evolving from a problem posed by S. Kakeya

in 1917. In particular we devise a correspondence between the restriction and Kakeya

set conjectures which is able to compare progress on the two problems in a quantitative

way. Finally we discuss the latest developments which rely on bilinear, and their natural

extension, multilinear, estimates and which have been found to provide the best known

results for their linear counterparts (i.e. on the original problems).
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Chapter 1

Introduction

The restriction conjecture originated in the 1960s with an observation of Elias Stein [22].

He noted that for certain zero-measure sets S, which possess sufficent curvature, the

Fourier transform of Lp functions can be ‘restricted’ for certain 1 6 p < 2.

By ‘restricted’ we mean restricting the Fourier transform

f̂(ξ) =

∫
Rn

e−2πix·ξf(x)dx

to a subset S of Rn. The resulting function we will denote by f̂ |S.

By the Riemann-Lebesgue lemma, if f ∈ L1(Rn) then f̂ is a continuous, bounded

function on Rn which vanishes at infinity. This means that we can meaningfully restrict

this function to any S ⊆ Rn (in particular, to the sets that we are interested in, namely

those of measure zero) in that f̂ |S will have finite Lq norm for any 1 6 q 6 ∞. In other

words, we have ∥f̂∥Lq(S) 6 C∥f∥L1(Rn) for all 1 6 q 6 ∞, where C is a constant.

However, if f ∈ L2(Rn) then, by Plancherel’s theorem f̂(ξ) ∈ L2(Rn) also, so there is

no meaningful way to restrict f̂(ξ) to a set of measure zero. This means that we do not

have ∥f̂∥Lq(S) 6 C∥f∥L2(Rn) for any q. In fact this inequality does not even make sense,

let alone hold, because the left side is not defined.
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Of course, we could restrict the Fourier transform to a set of non-zero measure, for

instance the unit ball B(0, 1). From the Hausdorff-Young inequality we have

∥f̂∥Lq(B(0,1)) 6 C∥f∥Lp(Rn)

for all q 6 p′ and 1 6 p 6 2. What Stein noticed, however, was that the situation is

more interesting when f̂ is restricted to a set of zero measure, but not for any set of zero

measure: given a hyperplane a function can be found which lies in Lp for every p > 1 but

which has infinite Fourier transform on every point of the hyperplane. For instance, the

function

f(x) =
ψ(x2, . . . , xn)

1 + |x1|

where ψ is a bump function, is such a function whose Fourier transform is infinite on the

hyperplane {ξ ∈ Rn : ξ1 = 0}. So we can not meaningfully restrict the Fourier transform

to a hyperplane or even to a compact subset of a hyperplane.

It is when a zero measure set has some curvature that we are able to find some non-

trivial ‘restriction estimates’ of the form

∥f̂∥Lq(S) 6 C∥f∥Lp(Rn).

There are, of course, infinitely many such sets but the ones which have been investigated

the most are the hypersurfaces

Ssphere = {ξ ∈ Rn : |ξ| = 1},

Sparabola = {ξ ∈ Rn : ξn =
1

2
|ξ|2},
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and

Scone = {ξ ∈ Rn : ξn = |ξ|}.

In this investigation we will mostly be concerned with the first of these, henceforth denoted

by Sn−1, primarily because it is the simplest compact, co-dimension 1 submanifold with

non-vanishing Gaussian curvature. It is believed that the conjectured range of exponents

for which the Fourier transform can be meaningfully restricted for Sn−1 is the same as for

any compact hypersurface whose Gaussian curvature is always non-vanishing.

The question which then naturally arises is: what happens for 1 < p < 2? This is the

restriction problem, and the conjectured answer is that we have

∥f̂∥Lq(Sn−1) 6 C∥f∥Lp(Rn)

for

p′ > n+ 1

n− 1
q and p <

2n

n+ 1
.

This has been shown for n = 2 [32] and [16] but is still an open problem for n > 3. In

this thesis we will be investigating the origin of the conjectured bounds and some of the

partial progress achieved in proving them. To describe all of the work that has been done

on this problem would be too ambitious an aim for this MPhil thesis so we restrict our

attention to the oscillatory-integral methods culminating in the Tomas-Stein theorem of

the 1970s [28]. This establishes the bounds

q = 2, 1 6 p 6 2
n+ 1

n+ 3
.

More recent work has involved wave-packet decomposition and has achieved [26]

p′ > n+ 1

n− 1
q, p′ >

2(n+ 2)

n
.
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We will also investigate the geometric-combinatorial methods employed in the more recent

work of Wolff, Bourgain, Tao (see, for instance [27], [11] and [29]) and others which has

been motivated by the, at first sight surprising, connection between the restriction problem

and this problem posed in 1917 by Kakeya [5]:

“In the class of figures in which a segment of length 1 can be turned around

360◦, remaining always within the figure, which one has the smallest area?”

In 1920 Besicovitch solved this problem [5] by showing that one can have such a

figure, called a Besicovitch set, with a line segment in every direction, with arbitrarily

small measure. Further, he showed this for all dimensions n > 2. However, the Kakeya

set conjecture:

“Let E ⊆ Rn be a Besicovitch set. Then dim(E) = n.”

(where dim(E) is the Minkowski dimension, d, defined by lim
δ→0

logδ |Eδ| = n− d, where Eδ

is the δ-neighbourhood of E), remains an open problem for n > 3.

There is an intermediate conjecture, called the Kakeya maximal operator conjecture,

which is implied by the restriction conjecture and which, in turn, implies the Kakeya set

conjecture [24], and, as such, both Kakeya conjectures have been shown for n = 2. The

Kakeya maximal operator conjecture is concerned with the control of the overlap of a

family of tubes of equal size but whose directions form a δ-net of the unit sphere Sn−1

(where δ is a small parameter). Since the tubes belong to Rn but their directions to Sn−1

we have an indication that this problem might be connected to the restriction problem.

There has been significant progress in the last 20 years on the Kakeya maximal oper-

ator conjecture, and hence the set conjecture. The most significant breakthroughs have

been due to Bourgain’s ‘bush’ [6] and Wolff’s ‘hairbrush’ [30] arguments, the latter being

a refinement of the former. The ‘bush’ argument relies on the fact that a collection of

tubes of differing orientations but containing a common point have diminishing overlap
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away from that point, and results in dim(E) > n+1
2
. The ‘hairbrush’, meanwhile, utilises

the disjointness properties of such a collection of tubes which pass through a common

line, and results in dim(E) > n+2
2
.

We will reproduce both of these arguments (the ‘hairbrush’ being postponed until we

have introduced bilinear estimates) and then examine the correspondence between the

respective partial progress made on the restriction and Kakeya set conjectures. Since the

former implies the latter this will provide us with a way to compare what information is

provided about the set conjecture from the ‘direct’ geometrical methods with that implied

by known restriction estimates.

In chapter 4 we discuss the bilinear approach to the restriction and Kakeya conjectures.

Here the concept of transversality (as defined in section 4.1), as well as curvature, is

of central importance (see [25] or [3]). This manifests in the restriction problem by

considering restricting the Fourier transform of functions on two caps contained in Sn−1,

whose normal vectors are sufficiently separated in direction, simultaneously, and in the

Kakeya problem by considering two families of tubes, the members of each of which

have orientations which are sufficiently close to a pair of fixed, linearly independent basis

vectors of Sn−1. There exist bilinear, and, indeed, arbitrarily high-dimensional multilinear,

analogues of the conjectures discussed above and these are responsible for the most recent

progress on the linear versions of the conjectures. In chapter 5 we finish by discussing

some of the latest developments in the field.
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Chapter 2

The Restriction Conjecture

In this chapter we will be looking at the justification of the bounds in the restriction

conjecture. In other words, the best exponents p and q that there can possibly be. We

will then go on to discuss the culmination of the oscillatory-integral approach to the

problem in the 1970s, which was the Tomas-Stein theorem. The ideas expressed in this

chapter are based on those found in [24].

2.1 The Origin of the Bounds in the Restriction Con-

jecture

The restriction conjecture states that ∥f̂∥Lq(Sn−1) 6 C∥f∥Lp(Rn) only when p′ > n+ 1

n− 1
q

and p <
2n

n+ 1
, where Sn−1 is the unit sphere.

2.1.1 The p′ > n+1
n−1q bound

Let S be a surface: S = {(x,Φ(x)) : x ∈ Rn−1, |x| . 1} where Φ : Rn−1 → R is a smooth

function such that Φ(0) = ∇Φ(0) = 0.

Proposition 2.1 Suppose Φ vanishes to order k at 0 for some k > 2, so that Φ(x) =

O(|x|k). Then ∥f̂∥Lq(S) 6 C∥f∥Lp(Rn) only when p′ > n+ k − 1

n− 1
q. In particular p′ >

n+ 1

n− 1
q is necessary for any S.
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Proof. Let ψ be a Schwartz function such that ψ̂ ∼ 1 near the origin. Let f(x1, . . . , xn−1, xn) =

ψ

(
x1

λ
1
k

, . . . ,
xn−1

λ
1
k

,
xn
λ

)
for some λ≫ 1. Observe that ∥f∥Lp ≈ λ

(n+k−1)
kp . (For instance if ψ

is a Gaussian then

∥f∥Lp(Rn) =


∫

Rn

(
e
−
(

x1

λ
1
k

)2

−
(

x2

λ
1
k

)2

−...−(xn
λ )

2
)p


1
p

∥f∥Lp(Rn) =


∫

Rn

e
−p

(
x1

λ
1
k

)2

−p

(
x2

λ
1
k

)2

−...−p(xn
λ )

2


1
p

∼ (λ
1
k .λ

1
k . . . λ

1
k︸ ︷︷ ︸

n-1 terms

.λ)
1
p = λ

n−1+k
kp .)

The Fourier transform of this is

f̂(ξ1, . . . , ξn−1, ξn) = λ
(n+k−1)

k ψ̂(λ
1
k ξ1, . . . , λ

1
k ξn−1, λξn).

By the hypothesised conditions on S we see that S contains a ’cap’ of radius ∼ λ−
1
k and

surface measure λ−
n−1
k . If we restrict f̂ to S we see that f̂ ∼ λ

n+k−1
k on this cap. So we

have

∥f̂∥Lq(S) > λ
n+k−1

k λ−
n−1
kq .

So ∥f̂∥Lq(S) . ∥f∥Lp(Rn) is only possible if

λ
n+k−1

k λ−
n−1
kq . λ

(n+k−1)
kp .

(Where we have used the notation A . B to represent A 6 CB where C is an unspecified

constant.) Letting λ→ ∞ we obtain
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n+ k − 1− n− 1

q
6 n+ k − 1

p
,

(n+ k − 1)(1− 1

p
) 6 n− 1

q
,

p′ > q
n+ k − 1

n− 1
.

Since k > 2 we have

p′ > n+ 1

n− 1
q. �

2.1.2 The p < 2n
n+1 bound

Extension Theorems

To see where the p < 2n
n+1

bound comes from we first need to introduce the idea of an

extension theorem: suppose that there exists values of p and q such that

∥f̂∥Lq(Sn−1) 6 C∥f∥Lp(Rn)

holds. In particular we have

sup
∥f∥Lp=1

∥f̂∥Lq(Sn−1) . 1. (2.2)

If we define lf̂ as the bounded linear functional on Lq′ given by

lf̂g = |
∫
gf̂ |

we have that lf̂ is the dual space of f̂ and that ∥lf̂∥op = ∥f̂∥Lq . Now

∥lf̂∥op = sup
g∈Lq′

|lf̂g|
∥g∥Lq′

= sup
∥g∥

Lq′=1

|lf̂g| = sup
∥g∥

Lq′=1

|
∫
gf̂ |,
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so

∥f̂∥Lq = sup
∥g∥

Lq′=1

|
∫
gf̂ |.

and (2.2) becomes

sup
∥f∥Lp=1

sup
∥g∥

Lq′ (Sn−1)
=1

|
∫
f̂(ξ)g(ξ)dω(ξ)| . 1,

where dω is the surface measure of the unit sphere.

We can now reverse the order in which we take the two supremums and apply Parseval’s

theorem:

sup
∥g∥

Lq′ (Sn−1)

sup
∥f∥Lp=1

|
∫
f(x)ĝdω(x)dx| . 1.

We can also reverse the above step where we utilised duality:

sup
∥g∥

Lq′ (Sn−1)

∥ĝdω∥Lp′ . 1,

and therefore

∥ĝdω∥Lp′ . ∥g∥Lq′ .

This is known as an extension theorem. At this point it is convenient to introduce some

notation. Let us denote by RS(p→ q) the restriction estimate

∥f̂∥Lq(S;dω) . ∥f∥Lp(Rn)

and similiarly, by R∗
S(q

′ → p′) the extension estimate

∥f̂dω∥Lp′ (Rn) . ∥f∥Lq′ (S;dω).

If we choose g ≡ 1, we have ∥d̂ω∥Lp′ . 1.We then use a decay estimate for d̂ω, derived

from the method of stationary phase (which we will prove in the next subsection):
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Proposition 2.3 If dω is the surface measure of the unit sphere, then for |x| ≫ 1 we

have

d̂ω(x) = C
e2πi|x|

|x|n−1
2

+ C
e−2πi|x|

|x|n−1
2

+O(|x|−
n
2 ).

So for d̂ω to be in Lp′ we need |x|−p′ n−1
2 to decay faster than |x|−n i.e.

p′
n− 1

2
> n,

p′ >
2n

n− 1
.

2.1.3 The Method of Stationary Phase

To prove Proposition 2.3 we will first need two lemmas, both dealing with the behaviour

of integrals of the form

I(λ) =

∫
eiλϕ(x)ψ(x)dx

(namely oscillatory integrals of the first kind) where λ takes large, positive values, ϕ is

a real-valued, smooth function (the phase) and ψ is complex-valued, and smooth. The

proofs we provide are based on those found in [23].

First we need the following proposition concerning integrals in one dimension, for

a 6 x 6 b

Proposition 2.4 Let ϕ and ψ be smooth functions so that ψ has compact support in

(a, b), and ϕ′ ̸= 0 for all x ∈ [a, b]. then

I(λ) = O(λ−N) as λ→ ∞

for all N > 0.

10



Proof. Let D denote the differential operator

Df(x) = (iλϕ′(x))−1 · df
dx

and let D∗ denote the adjoint operator to D so that ⟨Df, g⟩ = ⟨f,D∗g⟩.

Now

⟨Df, g⟩ =
∫ b

a

1

iλϕ′(x)
f ′(x)g(x)dx,

and so, by integration by parts, we have

⟨Df, g⟩ = −
∫ b

a

f(x)
d

dx

(
g(x)

1

iλϕ′(x)

)
dx,

so

D∗g(x) = − d

dx

(
g(x)

1

iλϕ′(x)

)
dx.

Since DN(eiλϕ(x)) = eiλϕ(x) for every integer N , and
⟨
DNf, g

⟩
=
⟨
f, (D∗)Ng

⟩
, if we put

f(x) = eiλϕ(x) and g(x) = ψ(x) we have

I(λ) =

∫ b

a

DN(eiλϕ(x))ψ(x)dx =

∫ b

a

eiλϕ(x)(D∗)N(ψ(x))dx,

and

|I(λ)| 6
∫ b

a

|eiλϕ(x)(D∗)N(ψ(x))|dx =

∫ b

a

|(D∗)N(ψ(x))|dx = ANλ
−N ,

for some constant AN , for every N , and the lemma is proved. �

Lemma 2.5 Principle of non-stationary phase

Suppose ϕ and ψ are defined as above but with ψ having compact support in Rn and

ϕ having no critical points in the support of ψ where xo is said to be a critical point if

11



(∇ϕ)(xo) = 0. Then

I(λ) =

∫
Rn

eiλϕ(x)ψ(x) = O(λ−N)

as λ→ ∞, for every N > 0.

Proof. By hypothesis, at every point xo in the support of ψ there exists a unit vector η

and a small ball B(xo) centered at xo such that

η · (∇ϕ)(x) > c > 0

for all x ∈ B(xo).We can rewrite I(λ) as the finite sum

∑
j

∫
eiλϕ(x)ψj(x)dx,

where the ψj are smooth and have compact support in one of these B(xo). We have

then reduced the problem to proving the result for each of these integrals. If we choose a

co-ordinate system x1, . . . xn such that x1 lies along η we have

∫
eiλϕ(x)ψj(x)dx =

∫ (∫
eiλϕ(x1,... xn)ψj(x1, . . . xn)dx1

)
dx2 · · · dxn.

Then by proposition 2.4 we see that the integral is O(λ−N) and so the result follows. �

Definition 2.6 A critical point x0 of ϕ is said to be non-degenerate if the symmetric

n× n matrix

∂2ϕ

∂xi∂xj

∣∣∣∣
x0

is invertible.

Lemma 2.7 Principle of stationary phase for non-degenerate stationary points.
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Let xo be a point in Rn. Suppose ϕ is a smooth real function on a neighbourhood of xo

which has a non-degenerate stationary point at xo, but

det(∂i∂jϕ(xo)) ̸= 0,

where ∂i∂jϕ(xo) is the Hessian matrix of ϕ at xo. Then, if ψ is a bump function supported

on a sufficiently small neighbourhood of xo, we have

∫
Rn

eiλϕ(x)ψ(x)dx = Cψ(xo)e
iλϕ(xo)λ

−n
2 +O(λ

−(n+1)
2 )

as λ→ +∞, where C is a constant depending on ϕ.

For the proof of this lemma see [23].

We are now in a position to prove Propn.2.3:

Proof. Propn.2.3

Utilising the radial symmetry of the unit sphere we can put x = λen for some λ≫ 1,

where en is a unit vector in arbitrary direction. The Fourier transform of the surface

measure

d̂ω(x) =

∫
Sn−1

e−2πix·ωdω

then becomes

d̂ω(λen) =

∫
Sn−1

e−2πiλωndω. (2.8)

ωn is just the size of the projection of the vector ω onto en and so takes values in the

range [-1,1], is stationary when ω = ±en and non-stationary otherwise. We thus rewrite

the right of (2.8) as

∫
Sn−1

e−2πiλωnψ+(ω)dω+

∫
Sn−1

e−2πiλωnψ−(ω)dω+

∫
Sn−1

e−2πiλωn(1−ψ+−ψ−)(ω)dω, (2.9)
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where ψ+ and ψ− are cutoff functions supported on a smalll neighbourhood of en and

−en, respectively.

Let us rewrite ωn, in terms of ω = (ω1, . . . ωn−1), as

ωn = (1− |ω|2)1/2,

and call this function Φ(ω). Clearly, Φ(ω) has a non-degenerate stationary point at ω = 0.

Then by Lemma 2.7 the contribution of the first term of (2.9) is

Ce−2πiλΦ(0)λ
−(n−1)

2 +O(λ
−n
2 ),

and since Φ(0) = 1 this is equal to

Ce−2πiλλ
−(n−1)

2 +O(λ
−n
2 ).

Similarly, the second term of (2.9) contributes

Ce2πiλλ
−(n−1)

2 +O(λ
−n
2 ).

By Lemma 2.5 the contribution of the third term in (2.9) is O(λ−N) for any N .

Combining these contributions we arrive at Propn.2.3 �

2.2 The Tomas-Stein Restriction Theorem

Theorem 2.10 If

1 6 p 6 2
n+ 1

n+ 3

then

∥f̂∥L2(Sn−1) . ∥f∥Lp(Rn). (2.11)
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This is known as the Tomas-Stein restriction theorem and is a significant positive

result in the history of progress on the full Restriction Conjecture.

2.2.1 The TT ∗ Method

An operator T is bounded from Lp to L2 if and only if its square TT ∗ is bounded from

Lp′ to Lp:

square (2.11), ∫
|f̂(ξ)|2dω(ξ) . ∥f∥2Lp ,⟨
f̂ , f̂dω

⟩
. ∥f∥2Lp ,⟨

f̂ , f̂ ∗ d̂ω
⟩

. ∥f∥2Lp .

Since the Fourier transform is a unitary operator

⟨
f̂ , f̂ ∗ d̂ω

⟩
=

⟨
f,

(
f̂ ∗ d̂ω

)∨⟩
=
⟨
f, f ∗ d̂ω

⟩
. ∥f∥2Lp .

From Hölder’s inequality

∥f · f ∗ d̂ω∥L1 6 ∥f∥Lp∥f ∗ d̂ω∥Lp′

so it suffices to prove

∥f ∗ d̂ω∥Lp′ . ∥f∥Lp .

2.2.2 Proof of the Tomas-Stein Restriction Theorem using Com-

plex Interpolation

We can very nearly prove the Tomas-Stein restriction theorem using real interpolation,

we will only be missing the endpoint p =
2(n+ 1)

n+ 3
. Due to the limitations on what can
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be included in a thesis of this scope we refer the reader to [24] for the proof with complex

interpolation which achieves the endpoint. This subsection also follows [24].

The fundamental idea that Tomas had in [28] was to break-up d̂ω dyadically: if we

define ϕ(x) to be a radially symmetric bump function equal to 1 at x = 0 with compact

support and then

ψk(x) = ϕ(2−kx)− ϕ(21−kx)

so that each ψk(x) has size 1 and is supported on the annulus |x| ≈ 2k, we have

1 = ϕ(x) +
∑
k>0

ψk(x)

for all x. Thus we can rewrite f ∗ d̂ω as

f ∗ d̂ω = f ∗ (ϕd̂ω) +
∑
k>0

f ∗ (ψkd̂ω),

and, by the triangle inequality

∥f ∗ d̂ω∥Lp′ 6 ∥f ∗ (ϕd̂ω)∥Lp′ +
∑
k>0

∥f ∗ (ψkd̂ω)∥Lp′ .

So it will suffice to bound the right side of this inequality by ∥f∥Lp .

Now, since dω is finite with compact support d̂ω is a smooth function and so ϕd̂ω will

also be a smooth function with compact support. So we have the necessary control via

Young’s inequality:

∥f ∗ ϕ(d̂ω)∥Lp′ 6 ∥ϕd̂ω∥Lr∥f∥Lp

where

1

p′
+ 1 =

1

p
+

1

r
.
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Now consider the terms in the summation. The strategy employed for these is to find

(L1, L∞) and (L2, L2) estimates and then interpolate between them.

From Proposition 2.3 we have

|d̂ω| . |x|−
n−1
2 ,

and since each ψk is supported on the annulus |x| ≈ 2k we have

∥ψkd̂ω∥L∞ . 2−
(n−1)k

2 ,

and so by a trivial application of Young’s inequality we have

∥f ∗ (ψkd̂ω)∥L∞ . 2−
(n−1)k

2 ∥f∥L1 .

Which is the (L1, L∞) estimate.

The (L2, L2) estimate we will show is

∥f ∗ (ψkd̂ω)∥L2 . 2k∥f∥L2 . (2.12)

To show this we start with a simple property of convolution kernels, K:

∥f ∗K∥L2 = ∥f̂ ∗K∥L2 = ∥f̂ K̂∥L2 6 ∥K̂∥L∞∥f̂∥L2 = ∥K̂∥L∞∥f∥L2 ,

where we have used Plancherel’s theorem in the first and final steps. So showing (2.12)

is equivalent to showing

∥ψ̂kd̂ω∥L∞ . 2k,

∥ψ̂k ∗ dω∥L∞ . 2k,
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(by elementary properties of the inverse Fourier transform and convolution), or

|ψ̂k ∗ dω(x)| . 2k

for all x.

From the definition of the ψk we have

ψk(x) = ψo(2
−kx),

and so we have (again by elementary properties of the Fourier transform)

ψ̂k = 2nkψ̂o(2
kx).

Since ψo is a Schwartz function, ψ̂o is also, and so we must have

|ψ̂k(x)| .
2nk

(1 + 2k|x|)N
,

for all positive integers N . So we are reduced to showing

∣∣∣∣ 2nk

(1 + 2k|x|)N
∗ dω(x)

∣∣∣∣ . 2k.

The kernel
2nk

(1 + 2k|x|)N
acts to ‘blur’ the surface measure to a thickness ∼ 2k. So this

convolution will still have L1 norm approximately 1 but since it is now supported on an

annulus with thickness 2−k it must have size ∼ 2k (see [24]).

We now use Riesz-Thorin interpolation which states [18] that for a linear operator T ,

if we have

∥T (f)∥Lqo 6Mo∥f∥Lpo ,

18



and

∥T (f)∥Lq1 6M1∥f∥Lp1 ,

then we have

∥T (f)∥Lq 6M1−θ
o M θ

1∥f∥Lp ,

for all 0 < θ < 1, where

1

p
=

1− θ

po
+

θ

p1
,

1

q
=

1− θ

qo
+
θ

q1
.

In our case, then, we have

qo = ∞, po = 1, q1 = 2, p1 = 2,Mo = 2−
(n−1)k

2 and M1 = 2k.

Therefore,

1

p
= 1− θ

2
and

1

q
=
θ

2
so q = p′.

Also,

M1−θ
o M θ

1 = 2
(n−1)k(θ−1)

2 2θk = 2
k

(
(n−1)( 2

p′ −1)

2
+ 2

p′

)
.

Since we are dealing with the infinte sum

∑
k>0

M1−θ
o M θ

1∥f∥Lp ,

to ensure the control by ∥f∥p that we want we require the exponent of 2 to be < 0. In

other words
(n− 1)( 2

p′
− 1)

2
+

2

p′
< 0,
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which simplifies to

1

p′
<

n− 1

2n+ 2
,

or

p <
2n+ 2

n+ 3
.
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Chapter 3

The Kakeya Conjectures

The ideas expressed in this and the following sections are based on those found in [21]

and [31]. As mentioned in the introduction, Kakeya’s original problem was to do with

finding the minimum area required to rotate a unit line segment by 360◦. Through

Besicovitch’s work this led to the Kakeya set conjecture which is concerned with the

dimension of a set with a line segment in every direction. We will introduce another

conjecture, the Kakeya maximal operator conjecture, which implies the set conjecture,

and through which the best progress on the latter has been made. We will then examine

the link between the restriction conjecture and the Kakeya maximal operator conjecture,

and show that the former implies the latter. Finally, we will look at the progress made on

the Kakeya maximal operator conjecture in the 1990s and compare this with that which

is implied by the earlier progress made on the restriction conjecture.

3.1 The Kakeya Maximal Operator Conjecture

This conjecture has two (equivalent) forms:

Conjecture 3.1 (Kakeya Maximal Operator) For δ > 0, ω ∈ Sn−1 and a ∈ Rn let T ω
δ (a)

denote the tube in Rn, centred at a, oriented in the ω direction, of length 1 in that direction

and cross-sectional radius δ.
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Let f ∈ L1
loc(Rn), then the Kakeya maximal operator is defined as

f ∗
δ (ω) := sup

a∈Rn

1

|T ω
δ (a)|

∫
Tω
δ (a)

|f |,

and it is conjectured that

∥f ∗
δ ∥Lp(Sn−1) . δ−ε∥f∥Lp(Rn), (3.2)

for all ε > 0 and for n 6 p 6 ∞.

We also have the trivial inequality:

∥f ∗
δ ∥L∞ 6 δ−(n−1)∥f∥L1 ,

and interpolating between this and the Kakeya maximal operator conjecture gives us the

family of conjectures

∥f ∗
δ ∥Lq . δ−(1−n

q
)(n−1)−ε∥f∥Lp (3.3)

for q > n and 1
p
6 1− n−1

q
(which also means p′ 6 n

n−1
).

Definition 3.4 The set of orientations {ω} where ω ∈ Sn−1 is said to be δ-separated if

|ω − ω′| > δ for all ω, ω′ ∈ {ω}.

The dual form of the conjecture is

Conjecture 3.5 (Kakeya Maximal Operator (Dual Form)) Let T be any collection of

tubes of length 1 and cross-sectional radius δ (and henceforth referring to such tubes as

δ-tubes) whose orientations are δ-separated. Then

∥∥∥∥∥∑
T∈T

χT

∥∥∥∥∥
Lp

. δ
n−1
p

−ε(#T)
1
p ,
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for

n

n− 1
6 p 6 ∞.

3.1.1 The n = 2 case

The conjecture has been proved in the case n = 2 by Córdoba [24]. Noting that

#T =
1

δn−1

∑
T∈T

|T |,

we can rewrite the Kakeya maximal operator conjecture as

∥∥∥∥∥∑
T∈T

χT

∥∥∥∥∥
L

n
n−1

. δ−ε

(∑
T∈T

|T |

)n−1
n

,

and we have

Theorem 3.6 (Kakeya Maximal Operator Conjecture with n = 2)

∥∥∥∥∥∑
T∈T

χT

∥∥∥∥∥
L2

. (log1/δ)1/2

(∑
T∈T

|T |

)1/2

.

Proof. Squaring the left hand side:

∥∥∥∥∥∑
T∈T

χT

∥∥∥∥∥
2

L2

=

∫ (∑
T∈T

χT (x)

)2

dx,

=

∫ ∑
T∈T

∑
T ′∈T

χT (x)χT ′(x)dx,

=
∑
T∈T

∑
T ′∈T

|T ∩ T ′|.

It suffices to prove ∑
T ′∈T

|T ∩ T ′| . (log1/δ)|T |.
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Now suppose the tubes T and T ′ have orientations whose angles differ by ∼ 2−k for some

δ . 2−k . 1. Elementary geometry then yields

|T ∩ T ′| . 2kδ|T |.

It now suffices to show that

log1/δ∑
k=0

∑
T ′∈T,∠(T,T ′)∼2−k

2kδ . log(1/δ).

However, for each k there are only O(δ−12−k) tubes T ′ whose orientations are within

O(2−k) of that of the tube T . Hence the result follows. �

3.1.2 The Origin of the Bound in the Kakeya Maximal Operator

Conjecture

In an analogous way to that by which the Knapp example demonstrated the p′ >
n+ 1

n− 1

bound in the restriction conjecture there is a simple example which demonstrates the

p >
n

n− 1
bound in the Kakeya maximal operator conjecture:

Let T be a maximal δ-separated set of δ-tubes all centred at the origin. Consider a

point x0 ∈ Rn. Clearly if |x0| 6 δ/2 then x0 is in every tube. Now consider only tubes in

a particular plane through the origin. For δ/2 6 |x0| 6 1/2 the angle subtended between

the line from the origin to x0 and the centre line of a tube on whose edge x0 lies is δ/2
|x0| .

The angle between adjacent tubes is δ/2 so the number of tubes in which x0 lies is 1/|x0|.

Then considering the whole family of tubes we can see that the number of tubes x0 is in

is 1
|x0|n−1 . In other words

∑
T∈T

χT (x) ≈

 δ−(n−1) if |x| 6 δ
2

|x|−(n−1) if δ
2
6 |x| 6 1

2

.

24



Now

∥
∑
T∈T

χT∥
n

n−1

L
n

n−1 (Rn)
= C +

∫
δ/26|x|61/2

(
|x|−(n−1)

) n
n−1 ∼ log(1/δ),

and ∫
|
∑
T∈T

χT |
n

n−1 ≈
∫

|
∑
T∈T

χT |1 = δn−1(#T),

so we can not have

∥
∑
T∈T

χT∥Lp(Rn) . δ
(n−1)

p (#T)
1
p

for any p <
n

n− 1
.

3.2 The Kakeya Set Conjecture

We first need to introduce some definitions:

Definition 3.7 (Besicovitch Set) A besicovitch set is defined to be a subset of Rn which

has a unit line segment in every direction

Definition 3.8 (Minkowski Dimension) A set E in Rn has Minkowski dimension d if

lim
δ→0

logδ |Eδ| = n− d, where Eδ is the δ-neighbourhood of E.

Then

Conjecture 3.9 (Kakeya Set) All Besicovitch sets have Minkowski dimension n.

3.2.1 The Kakeya Maximal Operator Conjecture Implies the

Kakeya set Conjecture

Starting with

∥f ∗
δ ∥Lp(Sn−1) 6 Cεδ

−ε∥f∥Lp(Rn)

consider a zero measure Kakeya set E. Let Eδ be the δ-neighbourhood of E and let

f = χEδ
.

25



Then f ∗
δ (ω) = 1 for all ω ∈ Sn−1. So that ∥f ∗

δ ∥Lp(Sn−1) ≈ 1, and ∥f∥Lp(Rn) = |Eδ|
1
p so

|Eδ|
1
p > C−1

ε δε.

So all Besicovitch sets have Minkowski dimension n.

3.3 The Restriction Conjecture Implies the Kakeya

Maximal Operator Conjecture

This exposition follows that found in [24]. Let us assume that the restriction conjecture

holds, in other words

∥f̂dω∥Lp′ (Rn) . ∥f∥Lq′ (Sn−1)

for all p′ >
2n

n− 1
and p′ > n+ 1

n− 1
q. So we can say

∥f̂dω∥
L

2n
n−1+ε . ∥f∥

L
2n
n−1

,

for all ε > 0. If we localise f̂dω to a large ball B(0, R) we have

∥f̂dω∥Lp′ (B(0,R)) . R
n
p′ ∥f̂dω∥L∞ . R

n
p′ ∥f∥L1 . R

n
q′ ∥f∥

L
2n
n−1

,

or

∥f̂dω∥
L

2n
n−1+ε

(B(0,R))
. R

n
q′ ∥f∥

L
2n
n−1

.

So by Hölder’s inequality we have (see [9])

∥f̂dω∥
L

2n
n−1 (B(0,R))

. Rε∥f∥
L

2n
n−1

. (3.10)

Let us return to the Knapp example: put fσ to be the characteristic function of a 1√
R
-cap
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on the sphere, centred at a point σ in Sn−1. This has Fourier transform

f̂σdω(x) =

∫
|θ−σ|< 1√

R

e2πix·θdθ.

We now want to identify those points which are contained within a tube which is in the

direction of σ. We do this by breaking up x into the component (x ·σ)σ parallel to σ and

the component (x − x · σ)σ perpendicular to sigma. We then define the tube T 0
σ to be

those points where the parallel component has magnitude < R
100

and the perpendicular

component has magnitude <
√
R

100
.

If x ∈ T 0
σ then

|x · (θ − σ)| = |x||θ − σ| cosϕ,

6 x2
cosϕ

1√
R

cosϕ,

6
√
R

100

1√
R
,

6 1

100
.

Where ϕ is (90◦ - the angle subtended by x and σ), and x2 is the component of x perpen-

dicular to σ. So since |x · (θ − σ)| is small we can rewrite

∣∣∣f̂σdω(x)∣∣∣ ∼
∣∣∣∣∣
∫
|θ−σ|< 1√

R

e2πix·σdθ

∣∣∣∣∣
and since the integrand does not depend on θ the integral will equal the measure of the

domain (up to a constant) which is

(
1√
R

)n−1

= R−n−1
2 .

The Kakeya maximal operator conjecture only refers to the orientations of a collection

of tubes, not their positions. So if a collection of such tubes T 0
σ is to meet the requirements

of that conjecture they will need to be able to be translated arbitrarily. We can satisfy
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this by multiplying fσ by a phase in order to translate f̂σdω arbitrarily. This means that

for any translate Tσ of T 0
σ we can find a function fTσ having size 1 on the arbitrary 1√

R

cap, center σ such that f̂Tσdω has size R−n−1
2 on Tσ.

If we now define Ω = {σ} to be a collection of such caps (i.e. a 1/
√
R-separated subset

of Sn−1) we can also define T to be the collection of
√
R×R tubes which have direction

σ for all σ ∈ Ω. For each T ∈ T let fT be the characteristic function of a cap multiplied

by the necessary phase such that f̂Tdω has size R−n−1
2 on T .

If we substitute the function

f̂dω =
∑
T∈T

εT f̂Tdω,

where the εT are random ±1s, into Khinchin’s inequality

E

∥∥∥∥∥
N∑
k=1

εkgk

∥∥∥∥∥
p′

Lp′

 ∼

∥∥∥∥∥(
N∑
k=1

|gk|2)
1
2

∥∥∥∥∥
p′

Lp′

we get

E
(∥∥∥f̂dω∥∥∥ 2n

n−1

L
2n
n−1 (B(0,R))

)
∼

∥∥∥∥∥(∑
T∈T

|f̂Tdω|2)
1
2

∥∥∥∥∥
2n
n−1

L
2n
n−1 (B(0,R))

.

With the above estimate on f̂Tdω this becomes

E
(∥∥∥f̂dω∥∥∥ 2n

n−1

L
2n
n−1 (B(0,R))

)
&
∥∥∥∥∥R−n−1

2 (
∑
T∈T

χ2
T )

1
2

∥∥∥∥∥
2n
n−1

L
2n
n−1

,

and on substituting into (3.10) (noting that f = 1 on a #T of caps of size R−n−1
2 so

∥f∥
L

2n
n−1

∼
(
R−n−1

2 #T
)n−1

2n
) we have

∥∥∥∥∥R−n−1
2 (
∑
T∈T

χ2
T )

1
2

∥∥∥∥∥
2n
n−1

L
2n
n−1

. RεR−n−1
2 #T, (3.11)

28



R−n

∥∥∥∥∥∑
T∈T

χT

∥∥∥∥∥
n

n−1

L
n

n−1

. RεR−n−1
2 #T,

∥∥∥∥∥∑
T∈T

χT

∥∥∥∥∥
n

n−1

L
n

n−1

. RεR
n+1
2 #T,

(Note that each tube has volume |T | ∼
(√

R
n−1
)
R = R

n+1
2 ),

∥∥∥∥∥∑
T∈T

χT

∥∥∥∥∥
n

n−1

L
n

n−1

. Rε
∑
T∈T

|T |,

∥∥∥∥∥∑
T∈T

χT

∥∥∥∥∥
L

n
n−1

. Rε

(∑
T∈T

|T |

)n−1
n

.

If we set the tubes T to have length 1 and thickness δ we have

∥∥∥∥∥∑
T∈T

χT

∥∥∥∥∥
L

n
n−1

. δ−ε(δn−1#T)
n−1
n ,

and so arrive at the end-point of the Kakeya maximal operator conjecture

∥∥∥∥∥∑
T∈T

χT

∥∥∥∥∥
L

n
n−1

. δ
(n−1)2

n
−ε(#T)

n−1
n . (3.12)

3.4 Progress on the Kakeya Maximal Operator Con-

jecture

We can show [24] via what is known as factorisation theory and which utilises the rota-

tional symmetry of the sphere, that (3.12) is equivalent to

∥
∑
T∈T

χT∥L n
n−1

. δ−ε.
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Also, since the tubes are δ-separated in direction there can only be δ1−n of them and so

this value is the maximum number of tubes there can be overlapping at any point, in

other words

∥
∑
T∈T

χT∥L∞ . δ1−n.

Interpolating between these two yields the family of conjectures

∥
∑
T∈T

χT∥Lp . δ
n
p
−(n−1)−ε. (3.13)

The goal of work on the Kakeya conjectures is to prove this for as low a p as possible and,

ultimately, for p = n
n−1

.

Since the restriction conjecture implies the Kakeya maximal operator conjecture it is

reasonable to assume that the partial results obtained for the former will yield informa-

tion on the latter and hence the Kakeya set conjecture. We will ascertain just how much

information in the next subsection. In the 1990s Bourgain in [6] and Wolff in [30] found

ways to attack the Kakeya conjectures directly. These involved the geometric considera-

tions of a collection of, possibly overlapping, δ-tubes. Bourgain was able to show that we

have (3.13) for p = n+1
n−1

and Wolff for p = n+2
n
. We give Bourgain’s argument below but

we postpone Wolff’s until we have discussed bilinear estimates in the next chapter.

3.4.1 Bourgain’s Bush Argument

This subsection is motivated by [1]. Let

Eµ = {x :
∑
T∈T

χT (x) > µ}.
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Observe that

∫
Eµ

∑
T∈T

χT (x) > µ|Eµ| ⇔
∑
T∈T

|T ∩ Eµ| > µ|Eµ| ⇔
1

#T
∑
T∈T

|T ∩ Eµ| >
µ|Eµ|
#T

.

Now let us discard those tubes which contain less than a certain amount of Eµ: define

T̃ = {T ∈ T : |T ∩ Eµ| >
µ|Eµ|
10n#T

}.

Now we can observe that

∫
Eµ

∑
T∈T̃

χT =
∑
T∈T̃

|T ∩ Eµ| =
∑
T∈T

|T ∩ Eµ| −
∑

T∈TrT̃

|T ∩ Eµ| >
(
10n − 1

10n
µ|Eµ|

)
& µ|Eµ|.

So

1

|Eµ|

∫
Eµ

∑
T∈T̃

χT & µ.

This means that, on the average over Eµ, there are at least & µ tubes overlapping so we

can identify a point, xo, in Eµ which must be contained in at least & µ tubes. If we let

T̃xo = {T ∈ T̃ : xo ∈ T},

we know #T̃xo & µ. T̃xo is the ‘bush’ after which this argument is named.

We are looking to bound |Eµ| from below by saying that there must be at least that

much Eµ which is contained in a set of tubes whose regions containing the Eµ are disjoint.

T̃xo is a δ-separated set of tubes so to ensure the disjointness that we require we must

take a subset of T̃xo . Let us define
̂̃Txo to be a δ/(µ|Eµ|)-separated subset of T̃xo , having

cardinality & µ(µ|Eµ|)n−1. If we now choose an r such that, for a ball B(xo, r),

|T ∩B(xo, r)| .
µ|Eµ|
#T

,

31



for all T ∈ T̃xo , then for such an r we have

|T ∩ Eµ ∩B(xo, r)
c| & µ|Eµ|

#T
,

for all T ∈ T̃xo . If we now restrict our attention to
̂̃Txo we see that the sets on the

left of this inequality are disjoint. Each of these sets has measure & µ|Eµ|
#T and we have

& µ(µ|Eµ|)n−1 of them, so we can say

|Eµ| &
µ|Eµ|
#T

µ(µ|Eµ|)n−1,

or, putting #T = δ−(n−1)

|Eµ| & µn+1|Eµ|nδn−1,

δ & µ
n+1
n−1 |Eµ|.

Define new, dyadic, sets Ẽµ:

Ẽµ = {x : µ 6
∑
T∈T

χT (x) < 2µ}.

Note that |Ẽµ| 6 |Eµ|. Now

∫ (∑
T∈T

χT (x)

)n+1
n−1

dx =
∑
µ

∫
Ẽµ

(∑
T∈T

χT (x)

)n+1
n−1

dx,

.
∑
µ

µ
n+1
n−1 |Ẽµ|.

The number of dyadic µ is logarithmic in δ so

∫ (∑
T∈T

χT (x)

)n+1
n−1

dx / µ
n+1
n−1 |Ẽµ|.
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Where A / B means A 6 Cεδ
−εB for every ε > 0. So we have

∫ (∑
T∈T

χT (x)

)n+1
n−1

dx / δ,

or ∥∥∥∥∥∑
T∈T

χT

∥∥∥∥∥
L

n+1
n−1

. δ
n−1
n+1

−ε,

i.e. (3.13) for p = n+1
n−1

.

3.5 The Correspondence between partial restriction

and partial Kakeya Estimates

Following a similar argument to that found in section (3.3) but without assigning values

to the exponents p′, q′ enables us to analyse the correspondence between the respective

progress made on the restriction and Kakeya set conjectures.

Let T be a collection of tubes satisfying the assumptions of the Kakeya maximal

operator conjecture (i.e. T is an arbitrary collection of δ-tubes whose orientations are

δ-separated). For T ∈ T let T̃ = δ−2T . So T̃ = (T̃ ) is a collection of δ−1 × δ−2 tubes.

As in section (3.3), for each T̃ ∈ T̃ there exists a function fT̃ on S such that |f̂T̃dσ| ∼

δn−1 on T . After applying Khinchin’s inequality and utilising ∥f∥Lq′ ∼ (δn−1#T)1/q′ we

arrive at the analogue of (3.11)

∥∥∥∥∥∥δn−1(
∑
T̃∈T̃

χ2
T̃
)1/2

∥∥∥∥∥∥
p′

Lp′

. (δn−1#T)p′/q′ .

Now ∫
Rn

|
∑
T̃∈T̃

χT̃ (x)|
p′/2dx =

∫
Rn

|
∑
T∈T

χT (δ
2x)|p′/2dx,
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and

x ∈ T̃ ⇔ δ2x ∈ T

so if we let y = δ2x we have

∫
Rn

|
∑
T∈T

χT (δ
2x)|p′/2dx =

∫
Rn

|
∑
T∈T

χT (y)|p
′/2δ−2ndy = δ−2n∥

∑
T∈T

χT∥p
′/2

Lp′/2 .

So we have

δ(n−1)p′−2n

∥∥∥∥∥∑
T∈T

χT

∥∥∥∥∥
p′/2

Lp′/2

. δ
(n−1)p′

q′ (#T)p′/q′ ,

δ
2(n−1)− 4n

p′

∥∥∥∥∥∑
T∈T

χT

∥∥∥∥∥
Lp′/2

. δ
2(n−1)

q′ (#T)2/q′ ,

∥∥∥∥∥∑
T∈T

χT

∥∥∥∥∥
Lp′/2

. δ
2(n−1)( 1

q′−1)+4n/p′
(#T)2/q′ . (3.14)

Now, let E be a Besicovitch set and Eδ be the δ-neighbourhood of E. Then there exists

a maximal δ-separated family T of δ-tubes with T ⊆ Eδ for all T ∈ T. In particular∪
T∈T

⊆ Eδ. We then observe, by Hölder’s inequality,

1 ≈
∑
T∈T

|T | =
∫ ∑

T∈T

χT =

∫
Eδ

(
∑
T∈T

χT )χEδ
6 ∥
∑
T∈T

χT∥Lp′ |Eδ|
1
p .

Where the first inequality follows since |T | = δn−1 and T = δ−(n−1) and the volume of any

overlap of two tubes will be O(δn). If we now substitute (3.14) (noting that the conjugate

exponent of p′/2 is (p′ − 2)/p′, and that #T = δ−(n−1)) we obtain

1 6 δ
2(n−1)( 1

q′−1)+ 4n
p′ −

2(n−1)

q′ |Eδ|
p′

p′−2 ,

|Eδ|
p′

p′−2 > δ
2(n−1)− 4n

p′ ,
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and, after some algebra,

|Eδ| > δ
2n− 2p′

p′−2 .

If we express this in the form

|Eδ| > δ
n−( 2p′

p′−2
−n)

we can see that the Minkowski dimension of E is given by dim(E) = 2p′

p′−2
− n.

We can use this relationship to deduce what known restriction estimates tell us about

the dimension of Besicovitch sets and also to calculate what restriction estimates we would

require to recover known bounds on the dimension of such sets.

If we substitute the Stein-Tomas exponent p′ = 2(n+1)
n−1

we have

2p′

p′ − 1
− n =

4(n+1)
n−1

2(n+1)
n−1

− 2
− n =

4(n+ 1)

2(n+ 1)− 2(n− 1)
− n =

4(n+ 1)

4
− n = 1.

In other words, the Minkowski dimension of a Besicovitch set is at least 1, so the Stein-

Tomas restriction estimate tells us nothing about the Kakeya Set conjecture.

Bourgain’s ‘bush’ argument tell us that dim(E) > n+1
2
. To recover this bound from a

restriction theorem would require a p′ exponent such that

n+ 1

2
=

2p′

p′ − 2
− n,

p′ =
2(3n+ 1)

3(n− 1)
.

Similarly for Wolff’s ‘hairbrush’ argument dim(E) > n+2
2
, which would require a p′

exponent such that

n+ 2

2
=

2p′

p′ − 2
− n,

p′ =
2(3n+ 2)

3n− 2
.
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Since both of these values of p′ are less than the best known bound in the restriction

conjecture (namely p′ > 2(n+2)
n

) for all n > 3 we see that Bourgain’s and Wolff’s ‘direct’

geometrical methods have made more progress in attacking the set conjecture than is

implied by known restriction estimates.

36



Chapter 4

Bilinear Estimates

The concept of using bilinear estimates in the restriction problem dates back to the 1970s

but the modern approach is based on the work of Bourgain in the 1990s in [6], [7], [8], [9]

and [10]. Until very recently (the 2010 paper of Bourgain and Guth [12]) it was via

bilinear estimates that the best linear estimates were obtained. Our approach is based

largely on [27]: we first consider the bilinear analogue to the restriction conjecture and

justify its best possible exponents; we then use the approach from [12], as interpreted

in [3] to show that the bilinear conjecture implies the linear conjecture. Finally we look

at bilinear analogue of the Kakeya maximal operator conjecture, which is the best way

to introduce the best known Kakeya estimate derived from Wolff’s ‘hairbrush’ argument.

4.1 Bilinear Restriction Estimates

The material in this section is based on [24]. The origins of the study of bilinear restriction

estimates were ‘L4’ or bi-orthogonality theory investigated in such places as [13], [15],

and [17]. The basic idea is to rewrite, by an application of Plancherel’s theorem, an

expression such as ∥f̂dω∥L4 as

∥f̂dω∥L4 = ∥f̂dωf̂dω∥
1
2

L2 = ∥fdω ∗ fdω∥
1
2

L2 .
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This enables us to rewrite the extension estimate

∥f̂dω∥L4 . ∥f∥Lq′ (S;dω),

as

∥fdω ∗ fdω∥
1
2

L2 . ∥f∥Lq′ (S;dω).

Notice that there is no Fourier transform in this estimate, rendering the determination of

its truth accessible to more direct methods than those used thus far. This elimination of

the Fourier transform is only possible when we are dealing with an even integer exponent

p in ∥f̂dω∥Lp , but this approach can be applied, to a lesser extent, for all values of p:

∥f̂dω∥Lp′ . ∥f∥Lq′ (S;dω),

is equivalent to

∥f̂dωf̂dω∥Lp′/2 . ∥f∥Lq′ (S;dω)∥f∥Lq′ (S;dω),

which is a special case of the bilinear estimate

∥f̂1dωf̂2dω∥Lp′/2 . ∥f1∥Lq′ (S;dω)∥f2∥Lq′ (S;dω),

which is itself a special case of

∥f̂1dωf̂2dω∥Lp′/2 . ∥f1∥Lq′ (S1;dω)
∥f2∥Lq′ (S2;dω)

, (4.1)

i.e. an extension estimate which is true for arbitrary pairs of smooth, compact hypersur-

faces S1, S2 and all smooth f1, f2 supported on S1, S2, respectively. Let us denote (4.1)

by

R∗
S1,S2

(q′ × q′ → p′/2).
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So we can see that linear estimates are just special cases of bilinear ones. For every linear

estimate R∗
S(q

′ → p′) there is a corresponding bilinear estimate R∗
S,S(q

′ × q′ → p′/2) but

the converse is not true. The following example, found in [24] illustrates this.

Example

First let us define the concept of transversality:

Definition 4.2 We say that the k-tuple S1, . . . , Sk is transversal if there exists a constant

c > 0 such that

|v1 × · · · × vk| > c,

for all choices of unit normal vectors v1, . . . , vk to S1, . . . , Sk respectively.

Let S1 := {(ξ1, 0) : ξ1 ∈ R} and S2 := {(0, ξ2) : ξ2 ∈ R} denote the x and y axes

respectively in R2. Then we have f̂1dω1(x, y) = f̂1(x) and f̂2dω2(x, y) = f̂2(y) and so we

only have R∗
S1
(q′ → p′) and R∗

S2
(q′ → p′) if p′ = ∞, since f̂1dω1 does not decay in the

y-direction and f̂2dω2 does not decay in the x-direction.

However, since

f̂1dω1f̂2dω2(x, y) = f̂1(x)f̂2(y),

and

∥f̂1(x)f̂2(y)∥L2(R2) = ∥f̂1(x)∥L2(R2)∥f̂2(y)∥L2(R2),

by the 1-dimensional Plancherel theorem we have

∥f̂1(x)∥L2(R2)∥f̂2(y)∥L2(R2) . ∥f1∥L2(S1)∥f2∥L2(S2),

and so we do have the bilinear extension estimate R∗
S1,S2

(2× 2 → 2).
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Note that we do not have R∗
S1,S1

(2 × 2 → 2) or R∗
S2,S2

(2 × 2 → 2). So the bilinear

extension estimate relies on the transversality of S1 and S2.

Note also that we do not have the linear estimate R∗
S(2 → 4) since we must have

p′ > n+1
n−1

q so in this case we need p′ > 3q but p′ = 4 and q = 2.

4.1.1 Knapp Example in the Bilinear Setting

The reason why a larger range of exponents p, q is permissable in the bilinear setting can

be seen by applying the Knapp example in the bilinear setting as was done in the linear

case. If we try to directly replicate the Knapp example in the linear case, i.e. by putting

f1 and f2 equal to the respective characteristic functions of spherical caps S1, S2 of area

λ−(n−1) then f̂1dω and f̂2dω both have size ∼ λ−(n−1) on tubes T1, T2 of volume ∼ λn+1.

However, since S1 and S2 are transversal the intersection of T1 and T2 will be ∼ λn. So

∥f̂1dωf̂2dω∥Lp′/2(Rn) . ∥f1∥Lq′ (S1)
∥f2∥Lq′ (S2)

,

becomes

(λ−(n−1)p′+n)2/p
′ . λ

−2n−1
q′ ,

and on letting λ→ ∞ we have

−(n− 1) +
n

p′
6 −n− 1

q′
,

which, after some algebra, gives

n

p′
6 n− 1

q
.

However, by modifying the Knapp example (as detailed in theorem 4.7) we can obtain
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Conjecture 4.3 (Bilinear Restriction) If S1, S2 are transversal and have non-vanishing

Gaussian curvature,

p 6 2n

n+ 1
; (4.4)

n+ 2

p′
+
n

q′
6 n; (4.5)

n+ 2

p′
+
n− 2

q′
6 n− 1 (4.6)

then R∗
S1,S2

(q′ × q′ → p′

2
) holds.

Theorem 4.7 The above exponents are the best possible.

Proof. If we take f1 to be the characteristic function of S1 and f2 to be the characteristic

function of S2 but multiplied by some phase (which we will ascertain). The ideas that

resulted in proposition 2.3 can be extended to all hypersurfaces, S, of non-zero Gaussian

curvature (see [23]). In particular we have

|ψ̂dω(x)| . |x|−
n−1
2

where ψ ∈ C∞
0 (Rn) whose support intersects S in a compact subset of S. So for any

λ ≫ 1 we can find a cube C such that |f̂1dω| ∼ λ−
n−1
2 on C. We can also choose the

phase which we multiply f2 by to ensure |f̂2dω| ∼ λ−
n−1
2 on C also. If we substitute these

estimates into (4.1) we obtain

λ−
n−1
2 λ−

n−1
2 |C|

2
p′ . 1.

Now if we substitute |C| ∼ λn and let λ→ ∞ we have

2n

p′
6 n− 1,
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from which (4.4) follows.

To prove (4.5) we use the ‘squashed caps’ example from [27]: if we now take as our caps

tubes of dimensions 1/R× 1/R× 1/
√
R× · · · × 1/

√
R (i.e. the usual 1/

√
R cap but with

one dimension ‘squashed’ down to 1/R) with their long sides parallel and, as usual, f1 and

f2 to be the characteristic functions of these caps, then we have |f̂1dω| ∼ |f̂2dω| ∼ R−n/2

on a R × R ×
√
R × · · · ×

√
R box in Rn. Again substituting these estimates into (4.1)

yields

R−n
2R−n

2 (R2(R
1
2 )n−2)

2
p′ . (R−1(R−1/2)n−2)

2
q′ ,

R−nR
n+2
p′ . R

− n
q′ ,

which, on taking R → ∞ gives us (4.5).

For (4.6) we use the ‘stretched caps’ example, also found in [27]: if we now take f1

and f2 to be the characteristic functions (possibly multiplied by a phase) of

Si ∩ (R2 ×Bn−2(0,
1√
R
)), i = 1, 2,

respectively, where Bn−2(0,
1√
R
) is the ball in Rn−2, centre 0, radius 1/

√
R, then, by

stationary phase estimates again, we have

f̂1dω ∼ R−n−2
2 |x|−

1
2

on a large portion of the slab

R2 ×Bn−2(0,

√
R

C
),

for some constant C (similarly for f̂2dω). So by choosing a phase to translate f̂1dω and

f̂2dω sufficiently we have

f̂1dω ∼ f̂2dω ∼ R−n−2
2 R− 1

2 = R−n−1
2 ,
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on

B2(0,
R

C
)×Bn−2(0,

√
R

C
).

Substituting these estimates into (4.1) we get

R−n−1
2 R−n−1

2 (R
n+2
2 )

2
p′ . R−n−2

2q R−n−2
2q ,

and on taking R → ∞ we get

−(n− 1) +
n+ 2

p′
6 −n− 2

q
,

which is (4.6). �

4.1.2 The Bilinear Restriction Conjecture Implies the Linear

Restriction Conjecture

Definition 4.8 We define Φ : Q → R, where Q is the cube [−1, 1]n−1, to be an elliptic

phase function, if, for fixed n > 2 and A > 0, ∥∂αΦ∥L∞ 6 A for all 0 6 |α| 6 N , where N

is a large constant, Φ(0) = ∇Φ(0) = 0, and, for all x ∈ Q the eigenvalues of the Hessian

matrix of Φ at x, ∂i∂j(x), are contained in the interval [1 − ε0, 1 + ε0], for a constant

0 < ε0 ≪ 1.

Any smooth, compact, convex surface of non-vanishing curvature (in particular the

unit sphere) can be comprised of finitely many graphs of elliptic phase functions (after an

affine transformation) [27].

The implication of the linear conjecture by the bilinear one involves a technical com-

plication that requires a version of the bilinear conjecture that behaves well under scaling

of the surfaces over which the Fourier transform is taken (see [27] and [2] for details).
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Hence we also define the operator R∗ : L1(Q) → L∞(Rn) by

R∗f(x, xn) =

∫
Q

e−2πi(x·y+xnΦ(y))f(y)dy,

in other words, an extension operator associated with the surface {(y,Φ(y) : y ∈ Q)}.

Since the conditions for R∗
S1,S2

(q′×q′ → p′

2
) to hold are weaker than those for R∗

S(p
′ →

q′) to hold we can not expect the former to unconditionally imply the latter. However,

the following theorem does enable us to infer linear estimates from bilinear ones. The

proof we give is based on that found in [3], which is an interpretation of the method found

in [12].

Theorem 4.9 (Tao-Vargas-Vega 1998)

Suppose that S is as in definition 4.8 and that S1 and S2 are transversal subsets of S.

If p <
2n

n+ 1
and p′ > n+ 1

n− 1
q and the conjectured bilinear inequality

∥R∗f1R∗f2∥Lp̃′/2(Rn)
. ∥f1∥Lq̃′ (S1)

∥f2∥Lq̃′ (S2)
,

holds for all (p̃′, q̃′) in a neigbourhood of (p′, q′), then the conjectured linear inequality

∥R∗f∥Lp′ (Rn) . ∥f∥Lq′ (dω),

holds for (p′, q′).

To prove this theorem we need the following proposition of Bourgain and Guth:

Proposition 4.10 Let {Sα} be a partition of S by caps of diameter approximately 1/K

(where K is a large parameter), so F =
∑
α

Fα where Fα = F · χSα. Then

|F̂dω(ξ)|p′ . K2(n−1)p′
∑

dist(Sα1 ,Sα2 )&1/K

|F̂α1dω(ξ)F̂α2dω(ξ)|
p′
2 +

∑
α

|F̂αdω(ξ)|p
′
.
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Proof. (Motivated by [3]). For a given ξ ∈ Rn either

(1) there exist α1, α2 with dist(Sα1 , Sα2) & 1/K such that

|F̂α1dω(ξ)|, |F̂α2dω(ξ)| > K−(n−1)max
α

|F̂αdω(ξ)|,

or

(2) there exists α0 such that whenever dist(Sα0 , Sα) & 1/K

|F̂αdω(ξ)| < K−(n−1)max
α

|F̂αdω(ξ)|.

If (1) then

|F̂dω(ξ)| 6
∑
α

|F̂αdω(ξ)| . Kn−1max
α

|F̂αdω(ξ)|,

6 K2(n−1)| ̂Fα1(ξ)dω(ξ)|1/2| ̂Fα2(ξ)dω(ξ)|1/2,

6 K2(n−1)

 ∑
dist(Sα1 ,Sα2 )&1/K

|F̂α1dω(ξ)F̂α2dω(ξ)|
p′
2

 1
p′

.

If (2) then

|F̂dω(ξ)| 6
∑
α

|F̂αdω(ξ)|,

6
∑

α:dist(Sα,Sα0 ).1/K

|F̂αdω(ξ)|+
∑

α:dist(Sα,Sα0 )&1/K

|F̂αdω(ξ)|,

. max
α

|F̂αdω(ξ)|+Kn−1K−(n−1)max
α

|F̂αdω(ξ)|,

.
(∑

α

|F̂αdω(ξ)|p
′

)1/p′

.

So we can conclude that

|F̂dω(ξ)|p′ . K2(n−1)p′
∑

dist(Sα1 ,Sα2)&1/K

|F̂α1dω(ξ)F̂α2dω(ξ)|
p′
2 +

∑
α

|F̂αdω(ξ)|p
′
,

�
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We are now in a position to prove theorem 4.9. We prove it for p′ = q′ > 2n
n−1

which

implies the linear restriction conjecture for the full range of conjectured exponents.

Proof. (theorem 4.9) Integrating the inequality from Proposition 4.10 in ξ ∈ Rn we have

∥F̂dω∥p
′

Lp′ . K2(n−1)p′
∑

dist(Sα1 ,Sα2 )&1/K

∥F̂α1dωF̂α2dω∥
p′
2

L
p′
2

+
∑
α

∥F̂αdω∥p
′

Lp′ . (4.11)

Let C = C(R) denote the best constant in the inequality

∥F̂dω∥Lp′ (B(0,R)) 6 C∥F∥Lp′ (dω)

for all R ≫ 1 and all F ∈ Lq′(dω). The purpose of using R here is to ensure the finiteness

of C. Our aim is to show that C <∞ uniformly in R.

This inequality scales as ( [4] and [12])

∥R∗Fα∥Lp′ (B(0,R)) 6 CK
2n
p′ −(n−1)∥Fα∥Lp′ (dω).

Note that we are now utilising the properties of the operatorR∗, introduced at the start of

this subsection, which are important in overcoming some technical difficulties associated

with this scaling (see [2], [4] and [12]).

With this inequality and F =
∑
α

Fα we can rewrite (4.11) (now in terms of R∗F ):

∥R∗F∥p
′

Lp′ 6 cK2(n−1)p′
∑

dist(Sα1 ,Sα2 )&1/K

∥F̂α1dωF̂α2dω∥
p′/2

Lp′/2 + cCK
2n
p′ −(n−1)∥F∥p

′

Lp′ .

Note that the power of K in the second term on the right, 2n
p′

− (n − 1) is negative. So

we can set K to make the second term equal to an arbitrarily small constant, a. Now by
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the hypothesis of theorem 4.9 it follows that

K2(n−1)p′
∑

dist(Sα1 ,Sα2 )&1/K

∥F̂α1dωF̂α2dω∥
p′/2

Lp′/2 6 A∥g∥p
′

Lp′ ,

for some constant A = A(K). So, by the definition of C we have C 6 cA+Ca and hence

C <∞ uniformly in R as required. �

4.2 Bilinear Kakeya Estimates

This exposition is based on the material found in [4, 27]. Suppose T1,T2 are families of

δ-tubes (as defined in conjecture 3.5) in Rn. We allow the tubes within a single family to

be parallel. However, we assume that for j = 1, 2 the tubes in Tj have long sides pointing

in directions belonging to some sufficiently small fixed neighbourhood of two, different,

standard basis vectors in Sn−1. We say such families of tubes are transversal.

Denote by K(q × q → p/2) the bilinear Kakeya estimate

∥∥∥∥∥
(∑

T∈T1

χT

)(∑
T∈T2

χT

)∥∥∥∥∥
Lp/2(Rn)

. δ
2n
p
− 2(n−1)

q′ (#T1)
1
q (#T2)

1
q .

As for the restriction conjecture there is a bilinear analogue of the Kakeya maximal

operator conjecture:

Conjecture 4.12 (Bilinear Kakeya) If 1
p
< n−1

n
and n−2

q
+ 2

p
6 n−1 then K(q×q → p/2)

holds.

Theorem 4.13 The above exponents are the best posssible

Proof. The first bound is obtained in a directly analogous way to that for the linear case

in subsection 3.1.2.

To show the necessity of the other bound we adapt the ‘stretched caps’ example used

to show (4.6). If we restrict our attention to the tube R × Bn−2 then we will just be
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considering, at most, (#T)δn−2 = δ1−nδn−2 = δ−1 tubes from each family and we will

have, also for each family,
∑
T∈T

χT ∼ 1 on a region of volume ∼ δn−2.

Inserting these estimates into K(q × q → p/2) yields

δ
2(n−2)

p . δ
2n
p
− 2(n−1)

q′ δ
−2
q ,

1 . δ
2n
p
− 2(n−1)

q′ − 2
q

2(n−2)
p ,

taking δ → 0 we obtain

n

p
− n− 1

q′
− 1

q
− n− 2

p
6 0,

n− 2

q
+

2

p
6 n− 1. �

4.2.1 Wolff’s ’Hairbrush’ Argument

We progress as in [27]. In this subsection we will use the notation A . B to denote the

estimate A 6 Cεδ
−εB.

Theorem 4.14 For all n > 2 we have

K

(
n+ 2

n+ 1
× n+ 2

n+ 1
→ n+ 2

2n

)
.

Proof. We have to show that

∥∥∥∥∥
(∑

T∈T1

χT

)(∑
T∈T2

χT

)∥∥∥∥∥
L

n+2
2n (Rn)

. δ
2n
p
− 2(n−1)

q′ (#T1#T2)
n+1
n+2 ,

. δ
2n2

n+2
− 2(n−1)

n+2 (#T1#T2)
n+1
n+2 ,

. δ2
n2−n+1

n+2 (#T1#T2)
n+1
n+2 . (4.15)
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It will suffice to show the weak-type bound

∣∣∣∣∣
{(∑

T∈T1

χT

)(∑
T∈T2

χT

)
& α

}∣∣∣∣∣ . α−n+2
2n δ

n2−n+1
n (#T1#T2)

n+1
2n . (4.16)

since (4.15) can be recovered by integrating this over all α of polynomial size. (4.16) will

follow from the estimate

|E| . (α1α2)
−n+2

2n δ
n2−n+1

n (#T1#T2)
n+1
2n , (4.17)

where E is defined as

E = {x :
∑
T1∈T1

χT1(x) > α1,
∑
T2∈T2

χT2(x) > α2},

since

{
x :

(∑
T∈T1

χT (x)

)(∑
T∈T2

χT (x)

)
> α

}
⊆

∪
1.2k1.δ−(n−1)

{
x :
∑
T∈T1

χT (x) & 2k1 ,
∑
T∈T2

χT (x) & 2−k1α

}

(i.e. α1 = 2k1 and α2 = 2−k1α), and so

∣∣∣∣∣
{(∑

T∈T1

χT

)(∑
T∈T2

χT

)
& α

}∣∣∣∣∣ . ∑
1.α1.δ−(n−1)

∣∣∣∣∣
{∑

T∈T1

χT & α1,
∑
T∈T2

χT & α

α1

}∣∣∣∣∣ ,
.

∑
1.α1.δ−(n−1)

α
n+2
2n δ

n2−n+1
n (#T1#T2)

n+1
2n ,

. α
n+2
2n δ

n2−n+1
n (#T1#T2)

n+1
2n .

Let

T̃i = {Ti ∈ Ti :
∑
Tj∈Tj

|Tj ∩ Ti ∩ E| >
10−dα1α2|E|

#Tj

},
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for i = 1, j = 2 and i = 2, j = 1.

We observe that [1]

∫
E

∑
T1∈T̃1

χT1

∑
T2∈T2

χT2 &
α1α2|E|
#T1

⇔ 1

T2

∑
T2∈T2

∑
T1∈T̃1

|T1 ∩ T2 ∩ E|

 & α1α2|E|
#T1#T2

.

Now we can say ∫
E

∑
T1∈T̃1

χT1

∑
T2∈T̃2

χT2 & α1α2|E|,

and this implies ∑
T2∈T̃2

 ∫
T2∩E

∑
T1∈T̃1

χT1

 & α1α2|E|.

Hence there exists a tube T 0
2 ∈ T̃2 (the ‘handle’ of the brush) such that

∫
T 0
2∩E

∑
T1∈T̃1

χT1 &
α1α2|E|
#T̃2

,

∫
T 0
2

∑
T1∈T̃1

χT1 &
α1α2|E|
#T2

.

By affine invariance we can take the handle as the vertical tube through the origin.

Now let

T̃0
1 = {T1 ∈ T̃1 : T1 ∩ T 0

2 ̸= ∅},

(these are the ’bristles’ of the brush). Then we can observe that

|T1 ∩ E| & λ1δ
n−1, (4.18)
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for all T1 ∈ T̃0
1; and that

#T̃0
1 & δ−1α1λ2, (4.19)

where

λj =
αj|E|

#Tjδn−1

for j = 1, 2. Let β range dyadically between λ1 . β . 1 and for each such beta let Γβ be

the cylindrical region

Γβ = {(y, yn) : |y| ∼ β}.

Thus we can rewrite (4.18):

∑
λ1.β.1

|T1 ∩ E ∩ Γβ| & λ1δ
n−1

for all T1 ∈ T̃0
1.

Now, we have 1 6 α1, α2 6 δ−(n−1) since 1 6 #T1,#T2 6 δ−(n−1) so

(α1α2)
−n+2

2n δ
n2−n+1

n > δ(n−1)(n+2
2n )−n2−n+1

n .

If |E| 6 δn
10
, then

|E| 6 δ(n−1)(n+2
2n )−n2−n+1

n 6 (α1α2)
−n+2

2n δ
n2−n+1

n

and there would be nothing to prove, so without loss of generality we can assume |E| >

δn
10
.

We can therefore say that, since #T1δ
n−1 6 1,

λ1 =
α1|E|

#T1δn−1
> δn

10

,
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and so there are O(log(1/λ1)) such dyadic βs, and therefore there exists a β such that

|T1 ∩ E ∩ Γβ| &
λ1δ

n−1

log(1/λ1)
,

which is the same as

|T1 ∩ E ∩ Γβ| & λ1δ
n−1. (4.20)

Further, we can refine T̃0
1 so that (4.20) holds for all T1 in the refined T̃0

1; henceforth this

β is considered fixed.

The tubes in T̃0
1 are δ-separated in direction. It will suit our purposes to work with

a set of directions of greater separation: we define T̂0
1 to be any δ/β-separated subset of

T̃0
1. Note that we have the estimates

#T̂0
1 & βn−1#T̃0

1 (4.21)

and

β & λ1. (4.22)

Let Θ be a δ/β-net of the unit sphere Sn−2 in Rn−1. For each T ∈ T̂0
1, we can isolate

an element θ = θT of Θ by imposing the condition

|θ − ω

|ω|
| . δ/β (4.23)

where ω is the angular separation of T from the basis vector to which the directions of

the family T1 belong to a neighbourhood of. Recall that |ω| ∼ 1 for all T ∈ T̂0
1. From

simple geometrical considerations and since each T ∈ T̃0
1 intersects T 0

2 we see that, for
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each T ∈ T̃0
1, T ∩ Γβ is contained in the slab Πθ given by

Πθ = {(y, yn : |y| ∼ β, |
y

|y|
− θ| . δ/β}.

Define T̂0
1,θ as

T̂0
1,θ = {T ∈ T̂0

1 : θT = θ}.

We consider the quantity

Q =

∫
E∩Πθ

∑
T∈T̂0

1,θ

χT .

We will estimate Q in two different ways: firstly, from the fact that, for each T ∈ T̃0
1,

T ∩ Γβ is contained in the slab Πθ and (4.20) we have

|T1 ∩ E ∩ Πθ| & λ1δ
n−1

for all T1 ∈ T̂0
1,θ. If we sum this over the tubes T̂0

1,θ we have

Q & #T̂0
1,θλ1δ

n−1. (4.24)

We can also estimate Q using the Cauchy-Schwarz inequality:

Q . |E ∩ Πθ|1/2

 ∫
|E∩Πθ|

 ∑
T∈T̂0

1,θ

χT


2

1/2

.

If we now square both sides and rewrite the integrand as the sum of the diagonal and
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off-diagonal term we have

Q2

|E ∩ Πθ|
.

 ∫
|E∩Πθ|

∑
T∈T̂0

1,θ

χT

+
∑

T∈T̂0
1,θ

∑
T ̸=T ′

|T ∩ T ′ ∩ E ∩ Πθ|. (4.25)

We observe that the first term on the right is just Q. By some elementery geometry [20]

we have

|T ∩ T ′| . δn

|ω − ω′|+ δ
,

where ω and ω′ are the directions of T and T ′. Thus (4.25) becomes

Q2

|E ∩ Πθ|
. Q+

∑
T∈T̂0

1,θ

∑
T ≠T ′

δn

|ω − ω′|
.

Now, we can place an upper bound on the number of tubes from one indexing set, T ′,

that have angular separation less than a given parameter from a member of the other

indexing set T . This comes from our condition (4.23): for each T , the number of T ′ such

that |ω − ω′| ∼ 2−j is at most 1/(2jδ/β) for any j. If we let 2j range over δ/β . 2j . 1

we can rewrite the above estimate, involving a double summation, as one involving just

one:

Q2

|E ∩ Πθ|
. Q+

∑
δ/β.2j.1

#T̂0
1,θ

1

2jδ/β

δn

2−j
,

and since the number of such j is logarithmic, this is simply

1

|E ∩ Πθ|
. 1

Q
+

#T̂0
1,θβδ

n−1

Q2
.

Combining this with (4.24) we have

1

|E ∩ Πθ|
. #T1

α1|E|#T̂0
1,θ

+
#T2

1T̂0
1,θβδ

n−1

α2
1|E|2(T̂0

1,θ)
2
,
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1

|E ∩ Πθ|
. α1|E|#T1 +#T2

1βδ
n−1

α2
1|E|2#T̂0

1,θ

.

Using the hypothesis (4.22) we obtain

|E ∩ Πθ| &
α2
1|E|2#T̂0

1,θ

#T 2
1 βδ

n−1
,

|E ∩ Πθ| &
λ21#T̂0

1,θδ
n−1

β
.

Since the Πθ are essentially disjoint we have

|E| & λ21#T̂0
1δ

n−1

β
.

From (4.21) and (4.22) we have

|E| & βn−2λ21#T̃0
1δ

n−1,

|E| & #T̃0
1λ

n
1δ

n−1,

or

|E| & #T̃0
1

(
α1|E|
#T1

)n

δ−(n−1)2 .

Combining with (4.19) this yields

|E| & αn+1
1 α2|E|n+1δ−(n−1)2−n

(#T1)n#T2

.

By a completely symmetrical argument we arrive at

|E| & αn+1
2 α1|E|n+1δ−(n−1)2−n

(#T2)n#T1

.
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If we take the geometric mean of the last two estimates and rearrange we, finally, have

|E| . (#T1#T2)
n+1
2n (α1α2)

n+2
2n δ

n2−n+1
n . �
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Chapter 5

The Latest Developments in the

Field

As stated in the introduction, the role of curvature in the restriction problem has been

central since Stein’s observations in the 1960s. The bilinear approach of the 1990s sought

to exploit this role in a more geometric way than had been attempted previously by

incorporating the concept of transversality. Indeed, for n = 2, only transversality is

required for the bilinear restriction problem: curvature is no longer required (see [3]).

However, for n > 3, the roles of curvature and transversality are ‘intertwined’ and we

can no longer dispense with the curvature hypothesis. This naturally leads, see [4], to a

multi -linear approach, i.e. k-linear, where 2 6 k 6 n.

For the case k = n, i.e. the n-linear case we have the following analogue of the bilinear

restriction conjecture:

Conjecture 5.1 (Multilinear restriction) If S1, . . . , Sn are transversal then for 1
q
6 n−1

2n

and 1
q
6 n−1

n
1
p′

we have

∥f̂1dω · · · f̂ndω∥L q
n (Rn)

. ∥f1∥Lp(S1) · · · ∥fn∥Lp(Sn).

Note that curvature does not feature in this conjecture.
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The following ‘weak’ version of this conjecture was proved in [4]

Theorem 5.2 (Near optimal multilinear restriction) With the same hypotheses as Con-

jecture 5.1, for each ε > 0 we have

∥f̂1dω · · · f̂ndω∥L q
n (B(0,R))

. Rε∥f1∥Lp(S1) · · · ∥fn∥Lp(Sn),

for all R > 1.

A slight refinement of this theorem is, see [3],

Theorem 5.3 (Refinement of theorem 5.2) With the same hypotheses as theorem 5.2

there exists a constant κ <∞ such that

∥f̂1dω · · · f̂ndω∥L q
n (B(0,R))

. (logR)κ∥f1∥Lp(S1) · · · ∥fn∥Lp(Sn),

for all R > 1.

Similarly there is a multilinear analogue of the Kakeya maximal operator conjecture:

Theorem 5.4 (Multilinear Kakeya) If n
n−1

6 p 6 ∞ then, for transversal families of

tubes T1, . . . ,Tn we have

∥∥∥∥∥∥
n∏

j=1

∑
T∈Tj

χT

∥∥∥∥∥∥
L

p
n (Rn)

.
d∏

j=1

(δ
n
p#Tj).

This was proved up to the end-point in [4] and for the end-point in [19] and [14]. As was

shown in subsection 3.3 the linear restriction conjecture implies the linear Kakeya maximal

operator conjecture. It is not known if the reverse implication holds but, interestingly,

it was shown in [4] that at the n-linear level theorems 5.3 and 5.4 are equivalent. The
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same Rademacher-function argument can be applied to show that the n-linear restriction

conjecture implies the n-linear Kakeya maximal operator conjecture.

Until 2010 the best linear restriction estimates were obtained via bilinear ones. In [12]

Bourgain and Guth devised a mechanism for which linear estimates can be obtained from

multilinear ones and which is able to use input from progress on the Kakeya problem

(i.e. Wolff’s best Kakeya estimate). For instance, following a similar argument to that in

the proof of theorem 4.9 they were able, using the trilinear restriction conjecture in three

dimensions, to show that, for C the best constant in

∥f̂dω∥Lq(B(0,R)) 6 C∥f∥Lp(dω),

we have

C 6 c3K
power + c2(K

′)powerK
1
2
− 1

qK
6
q
−2C + c1(K

′)
6
q
−2C,

where c1, c2 and c3 are constants and K,K
′ are sizes of caps. Taking K ′ and K sufficiently

large gives C < ∞ uniformly in R ≫ 1 for p > q and q > 3.3. This, to date, is the best

linear estimate in 3 dimensions.
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