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ABSTRACT  
 

Research described in this thesis was conducted in the United Kingdom and India, and although 

the overall subject was source apportionment of traffic emissions, specific objectives as well as 

research design were different in each case. In the UK, composite PM2.5 traffic profiles were derived 

from ambient measurement data (London and Birmingham), and sensitivity of a chemical mass 

balance (CMB) model to various traffic profiles was tested. In New Delhi (India), ambient PM2.5 

samples were collected at a high-traffic location and characterized for a suite of elemental and 

organic markers. PM10 road dust was characterized in Birmingham and New Delhi, and detailed 

chemical source profiles were prepared for both cities.  

Two composite PM2.5 traffic profiles determined in the UK were found to be similar, although 

lower uncertainties were observed for a tunnel profile compared to a twin-site profile. This has 

important implications in future attempts at preparation of source profiles using ambient data, as 

higher profile uncertainties can introduce error in the receptor models. Upon testing with a CMB 

model, the UK-based, the composite PM2.5 traffic profile was found to quantify the traffic 

contribution consistently, and independent estimates of traffic contribution were found to correlate 

well with the CMB output.  

PM10 road dust loadings (µg/m2) were found to be higher in New Delhi while the concentrations 

for individual species (µg/g) such as Cu, Zn and Sn were higher at a traffic tunnel in Birmingham.  

Crustal material was found to be the biggest contributor to the road dust in both cities while brake 

wear emissions were found to vary based on site type. A trimodal mass size distribution was 

obtained for a heavy traffic site in New Delhi with a majority of the PM mass in the fine range. 

Individual element size distributions were observed to vary, but crustal-associated elements were 

unimodal with peaks in the coarse range, while other elements such as Cu and Zn had dominant 
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peaks in the fine range. Concentrations and size distributions of prevalent non-exhaust tracers (i.e. 

Cu, Sb, Ba) in ambient PM2.5 and PM10 road dust indicated that these elements might not be reliable 

tracers for brake wear emissions in India. 

Ambient PM2.5 concentrations in New Delhi were found to exceed the air quality standards on 

several occasions, especially in the winter. Winter concentrations of individual tracer species were 

much higher, particularly for some PAHs and trace metals. Crustal material was found to be an 

important source in the summer, while wood burning, nitrate and chloride were found to be major 

source contributors in winter. The contribution of traffic emissions varied between 15-25% 

depending on the season.     
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CHAPTER 1- INTRODUCTION  
 

This chapter presents an overview of particulate matter, its sources and impacts with a focus on 

traffic-related PM.  

This chapter is adapted from the following review articles: 

[1] Pant, P. and Harrison, R.M. (2012) Critical review of receptor modelling for particulate matter: 

A case study of India. Atmospheric Environment, 49: 1-12. 

 

[2] Pant, P. and Harrison, R.M. (2013) Estimation of the contribution of road traffic emissions to 

particulate matter concentrations from field measurements: A review. Atmospheric Environment, 

77: 78-97. 
 

Graphical Abstract  
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1.1 Background   
 

Urban air quality features among the major environmental concerns in cities around the globe. A 

recent Global Burden of Disease (GBD) study reported air pollution to have caused 3.1 million 

deaths worldwide in 2010 (Lim et al., 2012). Particulate matter (PM), a group 1 carcinogen (Loomis 

et al., 2013), is one of the key pollutants found in the ambient air, and despite stringent pollution 

control programs, cities across the world often exceed the local and/or national air quality 

standards.  

PM is defined as  

“any non-gaseous (liquid or solid) material which, owing to its small gravitational settling rate, remains 

suspended in the atmosphere for appreciable time periods” (NARSTO, 2004) and;   

“can include solid particles or liquid droplets” (Hinds, 1982).  

It is generated by a range of natural (pollen and spores, crustal/mineralogical dust, sea spray, forest 

fires, volcanic ash, biogenic volatile organic compound (VOC) emissions) and anthropogenic 

sources (fossil fuel combustion, industrial and agricultural processes, biomass/wood combustion, 

waste incineration, construction). In addition, PM can be generated due to chemical reactions 

between gaseous species in the atmosphere, by condensation of gaseous species on small particles 

and by nucleation and/or coagulation. Primary PM typically includes all particles that are directly 

released into the atmosphere whereas secondary PM includes particles which are generated in the 

atmosphere due to gas-to-particle conversion. There is a growing body of literature focusing on 

mechanisms of formation of secondary PM as well as identification and quantification of secondary 

PM in the atmosphere (Derwent and Malcolm, 2000; Lim and Turpin, 2002; Fine et al., 2008; 

Lewandowski et al., 2008; Donahue et al., 2009; Pye and Pouliot, 2012).  
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In terms of chemical composition, PM includes carbonaceous species, sulphate and nitrate, trace 

metals, sea salt, water, crustal dust and biological material (Seinfeld and Pandis, 1998; Calvo et al., 

2013).  The carbonaceous species include organic, elemental and carbonate carbon and while the 

elemental carbon (EC) is predominantly primary, organic carbon (OC) is present in both primary 

and secondary forms (Seinfeld and Pankow, 2003).  

Particle size is the one of the key determinants of the behaviour and impacts of PM. There are 

several ways to determine the particle size with aerodynamic diameter being the most commonly 

used metric for defining particle size. It is defined as  

“the diameter of a sphere of unit density which has the same settling velocity as the particle” (Hinds, 1982).  

Thus, particles with different shapes and densities can have the same aerodynamic diameter. PM 

concentrations can be represented in terms of mass, number or volume, although mass is the most 

commonly used parameter for determining PM concentration. Both particle mass and number, 

however, are important metrics in terms of exposure assessment (Harrison et al., 2010).  Particles 

are often described using the size distributions and such particle size distributions can be expressed 

in terms of mass, number or volume. A typical aerosol size distribution has four modes: nucleation 

(particle diameter less than 10 nm), Aitken (particle diameter between 10 and 100 nm), 

accumulation (particle diameter between 100 nm and 2 µm) and coarse (particle diameter more 

than 2 µm) (Seinfeld and Pandis, 1998). Nucleation, Aitken and accumulation mode particles are 

classed as fine particles with nucleation and Aitken modes comprising ultrafine particles. Particles 

with diameters above 1 µm are classed as coarse particles (Colbeck and Lazaridis, 2010). In simpler 

terms, particles with aerodynamic diameters less than 2.5 µm are classified as fine particles whereas 

particles with aerodynamic diameters more than 2.5 µm are classified as coarse particles. Coarse 

particles are often generated due to mechanical and/or abrasive processes while fine particles are 

typically emitted during combustion (e.g. wood, biomass, and fossil fuels), industrial processes and 
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secondary aerosol formation. The two fractions (coarse and fine) are associated with different 

health effects (NARSTO, 2004; Sehlstedt et al., 2012; Clements et al., 2014). The atmospheric 

residence time of the different PM fractions is quite variable and ranges from minutes to weeks 

(Seinfeld and Pandis, 1998). Particle size distributions can be used to identify particle sources as 

well as to understand the health implication of different source types.  

 

1.1.1 Impacts  
 

There is a large body of research on the impacts of PM on human health and studies have 

conclusively shown that long-term exposure to PM increases mortality and morbidity and can lead 

to respiratory as well as cardiovascular diseases (Pope et al., 2004; Brunekreef et al., 2009; Kappos 

et al., 2004; Pascal et al., 2013). Particle toxicity can vary based on chemical composition and 

specific constituents of PM such as elements (e.g. Cu, Zn, As, Hg, Cd, Ni) and polycyclic aromatic 

hydrocarbons (PAHs) are particularly harmful as they can lead to generation of reactive oxygen 

species (ROS) which then leads to oxidative stress (Kelly, 2003; Maynard, 2004; Ayres et al., 2008; 

Godri et al., 2011; Stanek et al., 2011; Steenhof et al., 2011; Bell, 2012). Biological interactions of 

PM depend on the proportion of soluble and insoluble mass with the water-soluble mass being the 

one of causative factors for PM-induced oxidative stress in human body (Shafer et al., 2010). The 

soluble fraction of metal species can interact with the body (e.g. lung lining fluid) and typically, the 

mineral fraction (often derived from natural sources) has a lower solubility than the processed 

fraction (derived from anthropogenic sources). As a consequence, the processed fraction poses a 

greater health risk compared to the mineral fraction. Upon reaction with macrophages and 

epithelial cells, PM produces ROS, typically through the reduction of oxygen by biological reducing 

agents, with the catalytic assistance of redox-active chemical species (e.g. metals, OC, quinones) 
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(Daher et al., 2012). Oxidative stress, in turn has been linked to causing respiratory infections, 

cardio-pulmonary diseases and cancer (Valavadinis et al., 2008).  

Several epidemiological studies have shown diesel exhaust to be linked with development of 

respiratory diseases and respiratory morbidity (Lloyd and Cackett, 2001). In 2012, the International 

Agency for Research on Cancer (IARC) classified diesel exhaust as a group 1 carcinogen (i.e. 

carcinogenic to humans) and in 2013, PM was also classified as a group 1 carcinogen (Benbrahim-

Tallaa et al., 2012; Loomis et al., 2013).  

PM also has climate effects including its direct role in light scattering and absorption (direct forcing) 

of sunlight and thermal radiation and the indirect role in acting as cloud condensation nuclei (CCN) 

(indirect forcing) (NARSTO, 2004; Prather et al., 2008; Ramanathan and Carmichael, 2008). PM 

can also impair visibility by scattering (e.g. SO4
2-) or absorption of light by the particles (particularly 

dust and elemental/black carbon), and can be measured in terms of light extinction (Chow et al., 

2002). A detailed account on the science of visibility as well as the role of PM is discussed in Watson 

(2002).    

 

1.2 Traffic Particulate Matter  
 

Emissions from road vehicles are of particular interest since they are emitted in the vicinity of 

human activity, and canyon effects can concentrate the pollutant levels, thereby increasing the 

threat to human health (Colville et al., 2001).  

PM emissions from road vehicles include emissions from the tailpipe (exhaust emissions including 

fuel and lubricant combustion and fuel additives) and emissions due to wear and tear of vehicle 

parts such as brake, tyre and clutch and re-suspension of dust (non-exhaust emissions) (Figure 1). 

The particles are generated by different mechanisms and differ in physical and chemical properties 

(Sehlstedt et al., 2012). Non-exhaust emissions contribute mainly to the coarse mode of PM (PM2.5-
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10) while exhaust emissions contribute predominantly to fine PM (aerodynamic diameter < 2.5 µm) 

(Ondov et al., 1982; Lighty et al., 2000; Abu-Allaban et al., 2003; Tervahattu et al., 2006; Thorpe et 

al., 2007; Kam et al., 2012) but this is far from a clear distinction. Combustion processes generate 

small multimodal aerosol particles which are composed of carbon (elemental and organic) and 

inorganic (sulphate, metal oxides) fractions and typically have large surface areas (Lighty et al., 2000; 

Fernandes et al., 2003; Brook et al., 2007). The physical and chemical characteristics of the emitted 

particles are influenced by various parameters including physical conditions during the combustion 

(temperature, humidity), composition of the fuel (sulphur content, cetane number, aromatic 

additives etc.), driving conditions (speed, load), engine age, operation and maintenance conditions 

(Lighty et al., 2000; Yanowitz et al., 2000; Lloyd and Cackett, 2001; Fujita et al., 2007).  

 

 

Figure 1: Sources of road traffic PM emissions 

(based on Rogge et al., 1993a; Pant and Harrison, 2013) 

 

A number of different properties of traffic emissions are studied including physical shape and 

structure, particle size distributions, chemical composition, and temporal and spatial variation 
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(Watson and Chow, 2007). Most of the research as well as policy action in the last few decades has 

largely focused on exhaust emissions, and stringent regulations and technological upgrades have 

resulted in a decline of the percentage contribution of vehicle tailpipe emissions to total ambient 

PM concentrations (Allen et al., 2006; Thorpe and Harrison, 2008; Mathissen et al., 2011). As a 

result, the contribution of non-exhaust PM is becoming more important although detailed 

information on non-exhaust PM emissions is relatively scarce (Amato et al., 2012a; Harrison et al., 

2012a; Denier van der Gon et al., 2013). It has been shown that even with zero tailpipe emissions; 

traffic will continue to contribute to fine and ultrafine particles through non-exhaust emissions 

(Dahl et al., 2006; Kumar et al., 2013). 

 

1.2.1 Exhaust Particulate Matter 
 

Exhaust emissions typically include emissions due to combustion of the fuel, lubricating oil and 

the additives (Rogge et al., 1993a; Pulles et al., 2012). Under ideal conditions, complete combustion 

of the fuel (gasoline or diesel) produces carbon dioxide (CO2) and water (H2O). However, driving 

under real-world conditions results in incomplete combustion, and a complex mixture of 

carbonaceous material (OC and EC), trace metals, VOCs and gases are released. In some cases, 

unburnt fuel and lubricating oil can be released directly via the tailpipe. PM emissions from vehicles 

depend on the engine type and age and maintenance and contain carbon in the form of OC and 

EC with smaller amounts of trace metals and ions (Fraser et al., 1998; Brook et al., 2007; Robert et 

al., 2007a; Fulper et al., 2010; Peltier et al., 2011). Motor vehicles are an important source for 

carbonaceous aerosols particularly for the particles in the fine size range (aerodynamic diameter < 

2.5 µm) (El Haddad et al., 2009; Kam et al., 2012; Keuken et al., 2012) and vehicular exhaust is 

reported to have a bimodal distribution (Ondov et al., 1982). Emissions from diesel and gasoline 

vehicles are different in terms of composition as diesel engines emit both a greater mass of PM and 



8 
 

a larger number of ultrafine particles (UFPs) compared to gasoline vehicles (Rose et al., 2006). 

Typical diesel PM mass concentration is 15-30 mg/m3 compared to approximately 0.1 mg/m3 for 

the gasoline engines (Lighty et al., 2000). Robert et al. (2007a, b) reported that that emission rates 

for ultrafine and fine particles for diesel heavy-duty vehicles (HDVs) are one order of magnitude 

higher than gasoline light duty vehicles (LDVs).  Similarly, Chen et al. (2013) reported 4-times 

higher diesel emission factors (EFs) compared to gasoline EFs in a tunnel environment. Higher 

emissions from the high-emitting (smoker) vehicles have previously been attributed to lubricating 

oil (Fujita et al., 2006). Gasoline engines are known to release a higher fraction of OC while diesel 

engines emit more EC (Watson et al., 1994; Weingartner et al., 1997; Lloyd and Cackett, 2001; 

Ntziachristos et al., 2007) although Sodeman et al. (2005) demonstrated a dominance of EC in the 

ultrafine range in gasoline vehicles. Fraser et al. (1998) proposed the use of EC/TC (total carbon) 

ratio for segregating between gasoline and diesel vehicle emissions since the ratio can vary 

significantly between vehicle types. PM2.5 emissions from diesel and gasoline vehicles tend to be 

rich in different fractions of EC and OC which correspond to the fractions desorbed at different 

temperature ramps during carbon analysis (Watson et al., 1994). While road traffic emissions are 

typically a primary source of PM, recent research has suggested that gasoline and diesel emissions 

are also associated with the production of secondary aerosol (Bahreini et al., 2012).  

Giechaskiel et al. (2014) present a detailed review of traffic emissions’ measurement techniques and 

advancements over the years while a detailed description of diesel particulate matter is presented 

in Maricq (2007). The situation in relation to exhaust emissions from traffic is constantly changing 

as abatement technologies develop. In particular the adoption of diesel particulate filters (DPF) is 

greatly reducing mass emissions.  

Both trace elements and organic compounds are used as source markers for vehicle emissions.  

However, since the removal of lead (Pb) from gasoline, trace metals have proved far less useful as 
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a tracer of engine exhaust (Harrison et al., 2003).  Elemental markers which have been used for 

vehicular emissions include Cu, Mn, Fe, Zn, Ba, Sn, Ni, Mo and Sb (Lough et al., 2005; Almeida et 

al., 2006; Birmili et al., 2006; Dongarra et al., 2009; Fabretti et al., 2009; Gietl et al., 2010; Amato et 

al., 2011a, b). Metals can be emitted from various exhaust-related sources including fuel and 

lubricant combustion, catalytic converters, particulate filters and engine corrosion (Lough et al., 

2005; Pulles et al., 2012; Sysalova et al., 2012; Varrica et al., 2012) but many of these appear most 

likely to arise from non-exhaust sources. Metallic emissions include Fe, Cr, Ni, Sn, Cu, Zn, Mg, Ca 

(diesel); Ca, P, S, Na, K, Mg, Zn (lubricating oil) and Fe, Ca, Ni, Sn, Al, Sb (engine wear, corrosion) 

(Lough et al., 2005; Liati et al., 2013). Metal concentrations from diesel and gasoline vehicles are 

reported to vary over two orders of magnitude and Ba, Cd, Zn, Sb and V in nanoparticles have 

been reported to be strongly associated with diesel fuel whereas Cu, Mn and Sr in the particles <0.1 

µm have been found to be associated with gasoline (Lin et al., 2005; Pulles et al., 2012).   Also, 

since several elements are emitted from multiple sources, it can be difficult to apportion the mass 

based solely on the trace element concentration. For example, V can be emitted from different 

sources including fuel oil combustion, petroleum refinery operations and the V-based selective 

catalytic reactors (Ondov et al., 1982; Pey et al., 2010; Shafer et al., 2012). Similarly, Zn can be 

emitted from vehicle tailpipe as well as from industrial processes, particularly metallurgy and waste 

incineration (Keuken et al., 2010) and Fe can be attributed to crustal material, fuel and coal 

combustion, industrial operations (e.g. steelworks) and non-exhaust vehicular sources (Ault et al., 

2013; Taiwo et al., 2014). Further, the levels of trace elements emitted in the exhaust are very low, 

and great care is needed to distinguish them from non-exhaust traffic emissions and other sources. 

Different authors often attribute metals to different sources which renders precise source 

attribution with trace metals alone very difficult unless detailed local information on source particle 

composition is available (e.g. Pant and Harrison, 2012).   
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Organic compounds released from vehicles are particularly useful markers for conducting receptor 

modelling analyses since such molecular markers help in distinguishing the vehicular emissions 

from other sources. Molecular markers are defined as 

“individual organic compounds which are used to define chemical fingerprints from different sources” (Roy 

et al., 2011).  

The most commonly used molecular markers for vehicular emissions are hopanes and steranes 

which are found in lubricating oil and due to their source, the distribution of hopane emissions 

from vehicles is suggested to be independent of fleet composition (Rogge et al., 1993a; Schauer et 

al., 1996; Cass, 1998; Fraser et al., 1998; Fujita et al., 2007; Lough et al., 2007; He et al., 2008; Roy 

et al., 2011). However, Fujita et al. (2007) reported anomalous results and noted differences in the 

hopane and sterane distributions between gasoline and diesel vehicles, i.e. higher abundance of 

lower molecular weight hopanes and steranes in diesel vehicles compared to an equal distribution 

of low and high molecular weight compounds in case of gasoline vehicles. Older vehicles can 

sometimes produce higher concentration of hopanes and steranes since older vehicles tend to use 

higher quantities of oil. Vehicles are also a major source of n-alkanes, and diesel engines are known 

to emit more n-alkanes compared to gasoline engines (Rogge et al., 1993a). 

It has also been suggested that hopanes and steranes (derived from lubricating oil) and PAHs 

(derived from reactions at high temperature and fuel combustion) are indicative of different 

processes during the organic carbon formation in vehicle engines (Lee et al., 1995; Fujita et al., 

2006; Riddle et al., 2007; Hanedar et al., 2008).   

PAHs are formed as a result of incomplete combustion of fuel sources (e.g. wood, fossil fuels) and 

are emitted from a wide range of sources including vehicles, power plants, refineries, residential 

heaters and fireplaces (wood/coal/gas), natural gas appliances etc. (Li and Kamens, 1993; 

Venkataraman and Friedlander, 1994; Lee et al., 1995; Ravindra et al., 2008). A number of PAHs 
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have been reported to be present in vehicle exhaust including benzo(e)pyrene, benzo(a)pyrene, 

indeno(1,2,3-cd) pyrene, coronene and benzo(ghi)perylene (Rogge et al., 1993a; Lough et al., 2007; 

Riddle et al., 2007). Results from tunnel studies and chassis dynamometer analyses have shown that 

lower molecular weight PAHs such as phenanthrene and fluoranthene are characteristic of diesel-

derived aerosols whereas gasoline engines contributed more to higher molecular weight PAHs such 

as benzo(ghi)perylene, indeno(1,2,3-cd)pyrene and coronene (Smith and Harrison, 1996). Li and 

Kamens (1993) noted that while different sources can emit the same PAHs, the ratios of PAHs 

(referred to as diagnostic ratios) vary across sources and can be used to distinguish between sources. 

For example, the ratio between concentrations of indeno(1,2,3-cd) pyrene to the sum of 

indeno(1,2,3-cd) pyrene and benzo(ghi)perylene is also used for distinguishing between gasoline 

and diesel emissions and the ratio between methylphenanthrenes/phenanthrene has also been used 

for estimation of the contribution of traffic to PAH concentrations in ambient air (Lim et al., 1999; 

Chellam et al., 2005; Ancelet et al., 2011). Emission profiles for PAHs are difficult to generalize 

since they vary across the different vehicle classes (Miguel et al., 1998). Congener1 profiles of PAH 

from road traffic have been derived from tunnel and roadside studies (e.g. Smith and Harrison, 

1996; Nielsen, 1996; Mari et al., 2010). However, PAHs can be altered by atmospheric chemical 

reactions (photochemical degradation) and/or dilution effects, and the concentrations can vary 

based on season (Venkataraman and Friedlander, 1994; Lee et al., 1995). In case of PAHs, gas-

particle phase partitioning also plays an important role in the ambient concentrations of the various 

compounds, and this can be affected by meteorological variables such as temperature, vapour 

pressure and humidity and compound characteristics such as molecular weight (Venkataraman and 

Friedlander, 1994; Lee et al., 1995). For example, at lower temperatures, PAHs tend to be present 

in particle-phase while at higher temperatures, gas-phase is dominant for several PAHs.  

                                                   
1 Congeners refer to one of two or more substances related to each other by origin, structure, or function (IUPAC). 
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1.2.2 Non-exhaust Particulate Matter  
 

Non-exhaust PM comprises the various emissions that do not derive from the tailpipe of a vehicle 

including particles generated due to brake and tyre wear, road surface abrasion, wear and 

tear/corrosion of other vehicle components such as the clutch, and re-suspension of road surface 

dusts (Table 1). Key reasons for needing to understand non-exhaust emissions include their 

inherent toxicity including their tendency to act as 

carriers of heavy metals and carcinogenic components 

(Adachi and Tainosho, 2004; Hjortenkrans et al., 2007; 

Johansson et al., 2009; Amato et al., 2011a) and their 

contribution to exceedances of air quality guidelines 

and standards (Amato et al., 2011a; Denier van der 

Gon, 2013). Several factors are reported to affect non-exhaust emissions including increase in 

vehicle speed (Chen et al., 2006; Gustafsson et al., 2008; Hussein et al., 2008; Mathissen et al., 

2011).  

Several researchers have analysed the chemical composition of brakes (Rogge et al., 1993b; Garg 

et al., 2000; Blau and Meyer, 2003; Kukutschova et al., 2010, 2011) and tyres (Camatani et al., 2001; 

Kumata et al., 2002; Adachi and Tainosho, 2004; Councell et al., 2004; Milani et al., 2004; 

Aatmeeyata and Sharma, 2010; Sadiktis et al., 2012; Dall’Osto et al., 2014). 

 

Table 1: Mechanisms for non-exhaust particle emissions 

Rogge et al., 1993b; Boulter et al., 2005; Wahlin et al., 2006; Thorpe et al. 2007; Amato et al., 2009a; Gietl et al., 2010; Hays et 

al., 2011; Denier van der Gon, 2013) 

Emission type Mechanism Includes 

Direct Abrasion and wear and tear Tyre, brake, clutch, road surface 

Corrosion Vehicle, street furniture 

Indirect Re-suspension (due to tyre shear, 

wind and vehicle turbulence) 
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Harrison et al. (2012a) showed that the size distributions of trace metals were indicative of particle 

sources and Narvaez et al. (2008) reported that although the majority of abrasion particles are in 

the coarse fraction, abrasion can contribute significantly to the fine fraction of PM. Road traffic 

was found to be a key contributor to fine/ultrafine and nano mode particles of Ba, Zn and Pb (Lin 

et al., 2005) and in Barcelona (Spain), 62-96% of elements including Cu, Sb, Ba, Mn and Zn were 

found to be present in the PM1-10 fraction (Perez et al., 2010). A detailed review of the nanoparticle 

emissions from non-exhaust sources including traffic and non-traffic sources is presented in 

Kumar et al. (2013). Thorpe and Harrison (2008) present a more elaborate account of sources and 

properties of non-exhaust emissions. Denier van der Gon et al. (2013) and Amato et al. (2014a) 

summarize the existing knowledge and future directions in the field.   

Typical methods for characterization of road dust and non-exhaust emissions include use of brake 

dynamometer (Garg et al., 2000), rolling resistance testing machine (Hildemann et al., 1991), 

rotating drum method (Camatani et al., 2004), sweep/vacuum collection of particles followed by 

sieving or resuspension (Chow et al., 2003), vehicle chase and use of road dust sampler (Amato et 

al., 2009a) . 

Non-exhaust emissions are typically characterized by trace metals (e.g. Cu, Zn, Ba, Sb, Mn) 

although organic markers (e.g. PAHs, n-alkanes) have been used in some cases (Lough et al., 2006; 

Wahlin et al., 2006; Amato et al., 2009a; Dongarra et al., 2009; Gietl et al., 2010; Oliviera et al., 

2011; Kwon and Castaldi, 2012). A list of key tracers used for source characterization of non-

exhaust emissions is presented in Table 2. However, emissions of trace metal markers are reported 

to vary with the fleet composition, with higher emissions reported for some of the elements for 

HDVs (Grieshop et al., 2006; Mancilla and Mendoza, 2012).  In addition, the profile of trace metal 

concentrations in non-exhaust particulate  matter is unique for every region and varies based on 

parameters such as traffic volume and pattern, vehicle fleet characteristics, driving and traffic 
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patterns and climate and geology of the region (Omstedt et al., 2005; Amato et al., 2011a, b; Duong 

and Lee, 2011; Han et al., 2011). Another important aspect is the variability of tyre and brake 

composition depending on the manufacturer which makes it very difficult to ascertain fleet-wide 

composition other than from environmental measurements (Canepari et al., 2008; Gietl et al., 2010; 

Denier van der Gon et al., 2013).  

Table 2: Key tracers used for non-exhaust PM 

Reference Brake wear Tyre wear Re-suspension 
Adachi and Tainosho 

(2004) 
Fe, Ba, Cu, Sb, Zr Zn - 

Schauer et al. (2006) Fe, Cu, Ba  - 
Grieshop et al. (2006) Cu, Sb, Ba and Ga   
Wahlin et al. (2006) Cr, Fe, Cu, Zn, Zr, Mo, 

Sn, Sb, Ba and Pb 
Al, Si, K, Ca, Ti, Mn, Fe, Zn and Sr (together with 

road dust) 
Canepari et al. (2008) Ba, Fe, Sb, Sr - - 
Dongarra et al. (2009) Cu, Mo, Sb -  
Fabretti et al. (2009) Cu, Zn, Sb, Sn (vehicular 

abrasion) 
- Rb, Sr, Mn, Fe, As 

Bukowiecki et al. (2010) Fe, Cu, Zn, Zr, Mo, Sn, 
Sb and Ba 

  

Pey et al. (2010) - - Fe, Ca, Sb, Sn, Cu, Zn 
Perez et al. (2010) Sb, Cu, Ni, Sn (wear of brake, tire and other parts) Fe 

Amato et al. (2011a) Fe, Cu, Zn, Cr, Sn, Sb OC, S, Zn Al, Ca, Fe, V 
Apeagyei et al. (2011) Fe, Ti, Cu, Ba Zn, Ca, W, K, Fe, Ti, Cr, 

Mo 
- 

Duong and Lee (2011) Ni, Cu Zn  
Ondracek et al. (2011) Cu, Ba, Fe, Zn -  

Sahu et al. (2011a) Zn (brake and tyre wear) -  
Peltier et al. (2011) - - Al, Si, Ti, Fe 

Harrison et al. (2012a) Ba, Cu, Fe, Sb Zn Si, Al 
Spada et al. (2012)  Mn, Fe, Pb, Co, Ni, Cd  

Amato et al. (2013a) Ba, Sb, Cu, Sn, Fe S, Zn, OC Al, Ca, Fe, K 

 

 

One of the major problems in analysis of non-exhaust PM using field data has been the difficulty 

in distinguishing between wear and tear emissions and road dust since the chemical composition is 

often very similar (Bukowiecki et al., 2010).  This may, in any case, not be a clear distinction as 

wear emissions may deposit to the road surface, only to be re-suspended subsequently. Typically, 

particles generated from different sources (brake and tyre wear, mechanical abrasion of pavement 

upon interaction with tyres, soil) are subsequently resuspended due vehicle-induced turbulence or 
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interaction between tyre and pavement. Resuspension strength depends on a number of factors 

including meteorological conditions and traffic characteristics. Gehrig et al. (2010) used mobile 

load simulators to compare the contributions of road abrasion and resuspension emissions, and 

concluded that particle emissions due to abrasion are a function of the state of the pavement 

whereas resuspension is normally higher, and increases with higher dust loads on the road.  

In recent years, several analyses have been undertaken to test mitigation measures for road 

dust/non exhaust emissions. Mixed results have been obtained for the impact of street washing 

activities on PM and while Amato et al. (2009b) observed a reduction, albeit statistically non-

significant, in the concentration of trace metals known to be contributed by non-exhaust traffic 

sources in Spain; Keuken et al. (2010) reported a lack of significant reduction in the non-exhaust 

emissions after street sweeping or washing in the Netherlands. The effect of street-washing is often 

short-lived and Karanasiou et al. (2014) have proposed the use of street-washing in the early hours 

of the morning before the traffic rush-hour, in order to derive maximum dust suppression. Based 

on a study in Spain, Amato et al. (2014b) concluded that the effectiveness of road dust suppressants 

such as MgCl2 and calcium magnesium acetate (CMA) increases with higher road dust loads. A 

similar conclusion was presented by Barratt et al. (2012) based on tests in London, where the effect 

of CMA was found to be the highest in areas with high PM10 dust loads.  

1.2.2.1 Tyre Wear  
 

Tyre wear particles (TWPs) are generated either by shear forces between the tyre tread and the road 

surface or by volatilization/thermal degradation and are predominantly coarse (PM2.5-10) with some 

airborne particles in the smaller size ranges (fine and ultrafine) (Rogge et al., 1993b; Kupiainen et 

al., 2005; Allen et al., 2006; Thorpe and Harrison, 2008; Aatmeeyata and Sharma, 2010; Sehlstedt 

et al., 2012). Kwak et al. (2013) estimated a 3-4 and 4-7% contribution of tyre wear to PM10 and 

PM2.5 respectively under real-world driving conditions. Tyre wear particles are reported to be 
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elongated with rough surfaces based on microscopic analysis (Gunawardana et al., 2011). Unimodal 

( 70-90 nm) and bimodal (< 10 and 30-60 nm) peaks in the nano size range have been reported for 

tyre particles by number under low and high speed conditions respectively (Mathissen et al., 2011).  

Tyre tread, a source of airborne particles, contains natural rubber copolymers such as styrene-

butadiene rubber and polyisoprene rubber, and Zn is added to tyre tread as zinc oxide and 

organozinc compounds to facilitate the vulcanization process. Passenger car tyres in EU are known 

to contain nearly 1% zinc oxide, and rubber, metals and carbon black make up 47%, 16.5% and 

21.5% respectively (Hildemann et al., 1991; Milani et al., 2004; Kreider et al., 2010). However, 

Amato et al. (2012b) reported a large amount of variability in terms of chemical composition of 

brake pads in Spain with high concentrations of sulphides (especially ZnS) across all brake pad 

types.   

The key tracer components of tyre wear include n-alkanes, n-alkanoic acids, PAHs, benzothiazoles 

and trace metals (Rogge et al., 1993b; Reddy and Quinn, 1997; Camatani et al., 2001; Adachi and 

Tainosho, 2004; Boulter et al., 2005; Aatmeeyata and Sharma, 2010). Zn is reported to be nearly 

1% by weight in rubber tyres (Councell et al., 2004) and tyre wear has been reported to be a 

significant source of Zn (Adachi and Tainosho, 2004; Hjortenkrans et al., 2007; Ondracek et al., 

2011). The concentration of Zn was found to be approximately 15 times higher in tyres compared 

to brakes while concentrations of other heavy metals such as Cu and Ba were higher for brake 

materials in Massachusetts (USA) (Apaegyei et al., 2011).  In Spain, Amato et al. (2012b) found 

high concentrations of Cu and Ba in car and motorcycle brake pads. Differences have also been 

observed between tyre tread composition (primarily Zn) and tyre wear (Al, Si, Ca, Fe, Zn, Ti) 

(Adachi and Tainosho, 2004). However, the spatial and temporal trend for Zn was found to be 

different from other roadside tracers in New York (USA), and a very small portion of airborne Zn 

concentration was attributed to tyre wear (Peltier et al., 2011).  Zn is also emitted from brake wear, 
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motor oil and other sources and cannot be used as the only tracer for tyre wear (Lough et al., 2005). 

Benzothiazoles are also used as markers for tyre wear, particularly benzothiazole (BT), 2-hydroxy 

benzothiazole (HOBT), 2-(4-morpholinyl)benzothiazole (24MoBT) and N-cyclohexyl-2-

benzothiazolamine (NCBA) (Kumata et al., 2002; Allen et al., 2006; Wik and Dave, 2009). Among 

the PAHs, pyrene, benzo(ghi)perylene, fluoranthene and phenanthrene are known to be emitted 

from tyres (Boonyatumanond et al., 2007; Kwon and Castaldi, 2012).  Aatmeeyata and Sharma 

(2010) reported that small cars tested in India emitted 378 ng of total PAH/tyre/km while in the 

USA, 200 µg/g of PAHs were found in tyre wear with pyrene, fluoranthene and phenanthrene 

being present in the highest concentrations (Rogge et al., 1993b). Tyre tread wear has also been 

found to contain an average of 0.53 µg/g of dibenzopyrenes, indicating that tyre dust may be a 

significant source of dibenzopyrenes in the environment (Sadiktis et al., 2012).  

Average tread wear for tyres is reported to be between 0.006-0.009 g/km based on the road, tyre 

and vehicle conditions (Rogge et al., 1993b) and tyres can lose up to 10% of their mass during their 

lifetime (Milani et al., 2004).  Speed has been reported as an influential parameter for particle mass 

and number concentrations for tyre wear emissions (Gustafsson et al., 2008; Mathissen et al., 2011). 

Other important parameters for tyre tread wear include road surface type (rough vs. smooth), 

vehicle type (front wheel vs. back wheel) and tyre (over or under-inflated) and driving conditions 

(Allen et al., 2006; Gustafsson et al., 2008). For example, asphalt surfaces have been reported to 

cause less tyre wear than concrete pavements and in Arizona, USA, the emission rate for tyre wear 

was found to be 1.4-2 times lower for asphalt pavement compared to concrete pavement (Allen et 

al., 2006). The type of tyre also impacts the magnitude of tyre wear emissions and studded tyres 

are known to cause more emissions compared with summer and friction tyres (Kupiainen et al., 

2005; Gustafsson et al., 2008; Hussein et al., 2008; Schaap et al., 2009). 
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1.2.2.2 Brake wear  
 

Brake wear, including abrasion of brake lining material and brake discs, caused by grinding of brake 

pad constituents (coarse range particles) or volatilization and condensation of brake pad materials 

(fine range particles), is known to release PM directly into the atmosphere and to contribute to the 

trace metal concentration in airborne PM, particularly less than 10 µm (Ondov et al., 1982; Garg 

et al., 2000; Blau and Meyer, 2003; Ingo et al., 2004; Wahlin et al., 2006). Brakes can either be disc 

or drum, though disc brakes are quite commonly used across vehicle types now. A variety of brake 

pads are used worldwide and the distinction is based on the chemical composition with metallic 

(steel-based), semi-metallic, low-metallic and non-asbestos organic (NAO) brake pads being the 

most common types. In Europe, low metallic brake pads are the most commonly used followed 

by the NAO brake pads. Key components of brake pads include fillers, frictional 

additives/modifiers, reinforcing fibres and binder (Chan and Stachowiak, 2004) and the key 

chemical species used include sulphides of metal, abrasives (e.g. silica), barium silicate/sulphate  

(particularly in brake linings) and other metallic particles (as filler material), carbon fibres and 

lubricant (e.g. graphite) (Ingo et al., 2004; Dongarra et al., 2009). Chan and Stachowiak (2004) 

present a detailed review of the chemical constituents of brake pads.  Garg et al. (2000) observed 

an average mass median diameter (median particle diameter based on mass) of 1.49 µm for brake 

wear particles using tests on a brake dynamometer whereas Sanders et al. (2003) reported a mass 

median diameter of 6 µm for brake debris generated during urban driving conditions. Higher brake 

wear related emissions have been reported during rush hour. A higher number of particles are 

released in the braking phase as compared to the acceleration phase (Hussein et al., 2008; Mathissen 

et al., 2011) and various studies have corroborated this observation including Greishop et al. (2006) 

who reported a higher particle number concentration during rush hour where the traffic often 

operates in the stop-and-go mode and Abu-Allaban et al. (2003) who observed higher contribution 
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of brake wear at freeway exit sites compared to other types of roadside sites (Abu-Allaban et al., 

2003).  

Passenger cars have been estimated to emit nearly 44 g/car/year brake dust (Iijima et al., 2007).  

Sanders et al. (2003) reported high concentrations of Fe, Ba and Cu in brake lining wear using 

dynamometer and track tests whereas Adachi and Tainosho (2004) reported Fe to be the most 

abundant metal in brake dust along with other metals such as Ba, Cu, Sb, Zr and Zn, and other 

studies have reported Cu, Zn, Sb and Mo to be present in brake wear emissions (Hjortenkrans et 

al., 2007; Dongarra et al., 2009; Kwak et al., 2013). Varrica et al. (2012) undertook a detailed study 

on Sb in brake dust and reported the most commonly released forms of Sb due to brake abrasion 

to be Sb (III) and Sb (V). However, brake pads are often found to have different composition 

based on the brand, particularly with respect to Cu and Sb (Hjortenkrans et al., 2007; Canepari et 

al., 2008; Hays et al., 2011). Polyalkylene glycol ethers are also reported to be present in brake wear 

particles with small concentrations of n-alkanes and n-alkanoic acids (Rogge et al., 1993b).  

Iijima et al. (2007) reported a unimodal number-based distribution for brake abrasion dust with the 

mode at 1-2 µm while the mass-based distribution had a peak at 3-6 µm. EFs for brake wear have 

been reported by several studies including Garg et al. (2000) who reported a brake wear EF of 3-9 

mg/km for gasoline LDVs and Abu-Allaban et al. (2003) who reported an EF of 0-80 mg/km. 

Wahlin et al. (2006), on the other hand, reported a Cu emission factor of 0.7± 0.2 mg/km/vehicle 

in Copenhagen.  

Sternbeck et al. (2002) proposed the ratio of Cu: Sb (4.6 ± 2.3) as characteristic of brake wear 

particles although differences have been reported at various locations. Such differences can be 

attributed to the difference in the brake pad composition, contributions of metals from other 

sources and in some cases, site characteristics.  
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1.2.2.3 Road Surface Wear and Resuspension  
 

Other sources that contribute to the non-exhaust emissions include corrosion of engine and vehicle 

parts (e.g. engine, paint, body, and chassis), street furniture, road surface, salt and grit (relevant in 

specific locations) and resuspended particles.   

Road dust, of which crustal dust is a key component, consists of primarily coarse-sized particles 

derived from different sources such as traffic, industrial emissions, construction activities, coal 

combustion (including coal fly ash), vegetative detritus and mineralogical dust etc. (Gordon, 1980; 

Kupianinen et al., 2005; Bi et al., 2007; Tanner et al., 2008; Fujiwara et al., 2011). Composition of 

road dust shows spatial as well as temporal variation and it is often difficult to classify dust into 

crustal/resuspended/direct emission etc.  In Monterrey (Mexico), re-suspended dust was found to 

be contributing nearly 20-25% to the PM2.5 EF (Mancilla and Mendoza, 2012). The amount of re-

suspended road dust particles depends on a number of factors including vehicle movement 

(particularly traffic speed), street maintenance, season and associated meteorological parameters 

(e.g. wind speed, relative humidity) and speed of traffic (Etyemezian et al., 2003; Gertler et al., 2006; 

Bi et al., 2007; Thorpe et al., 2007; Bhaskar and Sharma, 2008; Kaunhaniemi et al., 2011; Laidlaw 

et al., 2012; Majumdar et al., 2012). Nicholson (1988) presents a detailed review of the mechanisms 

of resuspension of road dust. Thorpe et al. (2007) reported a strong association between heavy 

duty traffic and re-suspension in the UK with wind speed not found to be a strong influence. In 

addition, precipitation was found to have no influence on the amount of re-suspension. In 

somewhat related research, street-washing has been reported to be ineffective for PM control based 

on experiments in Spain (Karanasiou et al., 2012). However, in Sweden, road wetness was found 

to be an important factor in the amount of re-suspension (Omstedt et al., 2005), but this appears 

related to road sanding and the use of studded tyres in Sweden. It is also important to note that the 

residence time of PM10 on paved roads (travel lanes) has been estimated as a few hours (Etyemezian 
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et al., 2003). In the case of studded tyres, interaction between tyres and the road pavement can 

generate particles less than 0.1 µm (Gustafsson et al., 2008) and such tyres have been shown to 

increase PM10 emissions by a factor of 1.5 (Tervahattu et al., 2006). The type of pavement is another 

important factor for road dust emissions. Granite pavements have been reported to emit more PM 

compared to quartzite pavements (Kupiainen et al., 2005; Gustafsson et al., 2009) and asphalt 

pavement is reported to produce more particles than concrete pavement (Lee et al., 2013). 

Tervahattu et al. (2006) also explained the higher PM10 concentration attributed to use of anti-skid 

aggregate using the sandpaper effect, where the aggregates used to prevent skidding generate PM10 

particles and lead to further particle emissions from the pavement.  Mathematical models have 

been proposed for estimation of PM emissions due to road dust although they do not include 

emissions due to wear of brake/tyre materials (Omstedt et al., 2005; Ketzel et al., 2007; Berger and 

Denby, 2011; Kaunhaniemi et al., 2011). 

Aatmeeyata et al. (2009) reported a bimodal number and mass distribution (0.3 μm and 4-5 μm) 

for PM10 generated due to surface (concrete pavement) and tyre wear. Duong and Lee (2011) 

reported a multi-modal distribution for road dust particles (based on weight) collected from the 

roadside with a majority of the particles between 180-850 µm in Ulsan, Republic of Korea. Chen 

et al. (2006) reported a bimodal (5-10 µm and > 30 µm) mass size distribution for road dust particles 

in Beijing (China). 

Pristane, phytane, hopanes, steranes in addition to unresolved complex mixture (UCM) were 

reported in road dust particles which were found to be enriched in biogenic component by Omar 

et al. (2007). High concentrations of phenanthrene, fluoranthene and pyrene along with high 

molecular weight (4-7 ring) PAHs were reported in road dust samples from several countries in 

Taiwan (Fang et al., 2004; Liu et al., 2007; Han et al., 2009; Hassanien and Abdel-Latif, 2008). 
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Mono- (α- and β-glucose) and disaccharides (sucrose and mycose) have also been used as markers 

for road dust re-suspension for source apportionment (Simoneit et al., 2004a; Omar et al., 2007).    

Several studies in Europe have focused on characterisation of road dust (Boulter etr al., 2005; 

Amato et al., 2009a; Bukowiecki et al., 2010; Pirjola et al., 2010; Amato et al., 2011a; Bardelli et al., 

2011; Amato et al., 2013a). Analysis of PM10 road dust in Spain and Switzerland revelaed much 

higher dust loadings in Spain (Barcelona) and brake wear, tire wear, mineral dust (soil, 

construcution emissions, road wear) and motor vehicle exhaust were identified as the sources 

contributing to PM10 road dust (Amato et al., 2011a). Bardelli et al. (2011) analysed PM road dust 

(<63 µm) in a highway tunnel, and identifed a predominance of phylosilicates, Mn/Fe oxides and 

chlorides and a small organic fraction. Roads and construction sites are reported to have higher 

PM10 dust loads (Amato et al., 2011a). Sjodin et al. (2010) found road wear to be the most important 

source of PM10 emissions in streets as well as background locations in Sweden, which is probably 

a reflection of road sanding and use of studded tyres. Han et al. (2007) analysed suspended dust in 

Beijing and reported concentrations of elements such as Ca, S, Cu, Zn, Ni, Pb, and Cd to be much 

higher than the crustal abundances, and Cu, Zn, Ni, and Pb were attributed to traffic emissions 

together with coal burning. Luo et al. (2011) observed that the concentrations of trace metals 

contributed by vehicle exhaust and tyre abrasion, i.e. Pb, Zn and Cu have been reported to be much 

higher in roadside samples than the concentrations of these elements in background soils in China. 

Duong and Lee (2011) analysed heavy metal contamination in road dust in high traffic areas in 

Korea and concluded that the concentrations of heavy metals are much higher in high traffic areas 

in relation to a background site. Their analysis also confirmed a high degree of correlation between 

the concentration of heavy metals at a specific location and the traffic throughput in the area. 

Amato et al. (2013a) analysed PM10 road dust in Spain and Netherlands and demonstrated 

variations in the resuspension strength for the various emission sources. Significant differences 

were observed between source contributions in Utrecht and Barcelona- in Utrecht, tire and brake 
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wear were found to be major contributors to RD while in Barcelona, tyre wear had the smallest 

contribution. Martuzevicius et al. (2011) analysed street dust and reported that it can be a major 

source for particle-bound PAHs together with other PM. Han et al. (2009) reported a high 

correlation between PAHs and OC in road dust, and traffic emissions were identified as a major 

contributor to PAHs in road dust using diagnostic ratio analysis and Lee et al. (1995) reported the 

impact of traffic emissions on road dust. Elements such as platinum, palladium and rhodium have 

also been reported to be present in road dust and are attributed to the catalytic converters (Prichard 

and Fisher, 2012). Several others studies have been conducted worldwide (Chow et al., 2003- USA; 

Essumang et al., 2006- Ghana; Omar et al., 2007- Malaysia; Tanner et al., 2008-China; Agarwal, 

2009-India; Faiz et al., 2009- Pakistan; Han et al., 2009- China; Apaegyei et al., 2011-USA; Fujiwara 

et al., 2011-Argentina; Gunawardana et al., 2011- Australia). Werkenthin et al. (2014) discuss the 

concentrations of elements in European roadside soils while Wei and Yang (2010) present a similar 

discussion focused on urban and agricultural soils in China.  

 

1.3 Receptor Modelling  
 

The term, source apportionment (SA) describes techniques used to quantify the contribution of 

different sources to concentrations of atmospheric PM as well as other species (e.g. VOCs). There 

are three key approaches for source apportionment including use of emission inventories and 

dispersion models, receptor models and monitoring data (Viana et al., 2008). Dispersion models 

are often used for estimation of a source’s impact on air quality in an area/region and use emission 

rates and dispersion factors together with local topography and meteorology for estimation of 

source impacts (Cooper and Watson, 1980; Henry et al., 1984) whereas receptor models (RMs) are 

used to estimate the contribution of different sources to ambient PM concentrations based on 

measurements and subsequent chemical analysis.  
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Watson and Chow (2007) describe receptor models as models that  

“interpret measurements of physical and chemical properties taken at different times and places to infer the 

possible sources of excessive concentrations and to quantify the contributions from those sources”.  

In other words, such models can be defined as models that utilize physico-chemical speciation data 

to quantify source contributions based on the principle of mass balance. RMs use the information 

on chemical composition at receptor sites and in source emissions to reconstruct the observed 

ambient concentrations and apportion the mass to different emission sources (Henry et al., 1984; 

Gordon, 1988; Hopke, 1991). Such models form a subset of SA techniques and apportion the 

pollutant concentrations based on the measured ambient air data and the knowledge about 

composition of the contributing sources (Henry et al., 1984). Gordon (1988) and Hopke (1991) 

provide a historical perspective of the development of the RMs. The key outputs of the RMs are 

the percentage contributions of different sources to pollutant concentration. These models have 

been used for identification of sources and their respective contributions to airborne particulate 

matter across the world (Harrison et al., 1997; Kumar et al., 2001; Larsen and Baker, 2003; Begum 

et al., 2004; Song et al., 2006; Chowdhury et al., 2007; Guo et al., 2009; Kong et al., 2010; Stone et 

al., 2010; Gu et al., 2011; Clements et al., 2014). Such models provide relevant information for 

development of air pollution management and control programs, validation of dispersion models 

and are particularly helpful in cases where complete emissions inventories are not available (Hopke, 

1991; Watson et al., 2012). 

RMs can be divided into two broad categories: microscopic and chemical. Microscopic methods, 

including optical, scanning electron microscope (SEM) and automated SEM analyses are primarily 

based on the analysis of morphological features of many individual particles in the ambient air 

(Cooper and Watson, 1980). However, they are not very feasible for large-scale use since they do 

not produce quantitative results in most cases.  Chemical methods, on the other hand, utilize the 
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chemical composition of airborne particles for identification and apportionment of sources of PM 

in the atmosphere. Each source has a characteristic emission profile, and differences among the 

profiles can be used for quantitative apportionment of mass to different emission sources 

(Friedlander, 1973). A number of receptor models are used for source apportionment including 

semi-qualitative methods such as enrichment factor (EF) analysis and diagnostic ratio analysis and 

quantitative methods such as Chemical Mass Balance (CMB) model, multivariate statistical models 

such as Principal Component Analysis (PCA) and Positive Matrix Factorization (PMF), Multilinear 

Engine (ME), Constrained Physical Receptor Model (COPREM) and UNMIX and hybrid models 

such as Target Transformation Factor Analysis (TTFA). A detailed classification of the receptor 

models is presented in Figure 2. These models have been used for regulatory purposes since they 

were first used in Oregon, USA in the late 1970s (Gordon, 1988). 

 

 

Figure 2: Types of receptor models 
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With the assumption that the relative concentrations of chemical species are preserved between 

sources and receptors, RMs use the principle of mass conservation for apportionment of PM mass 

to different air pollution sources. Thus, the concentration of a species measured in a particular 

sample can be described as (Hopke, 2003):  

      𝑋ij =  ∑ 𝑔ip 𝑓pj

𝑝

𝑝=1

 +  𝑒ij                                                              (1) 

 

Where  
Xij is the measured concentration of the jth species in the ith sample 
fpj is the concentration of the jth species in material emitted by the source p 
gip is the contribution of the pth source to the ith sample and;  
eij is the portion of the measurement that cannot be fitted by the model (i.e. residual).  
 

Different RMs use different approaches to solve this equation, for e.g., the CMB model uses the 

effective-variance least squares method whereas UNMIX uses eigenvector analysis. Concentrations 

of trace elements (e.g. Si, Fe, Cu), ions (e.g. SO4
2-), EC/OC and organic compounds (e.g. PAHs, 

alkanes, hopanes, alkanoic acids) are used as inputs for the models. 

1.3.1 Factor Analysis Models  
 

The multivariate models identify the emission sources based on inter-relationships between the 

various chemical species (Cooper and Watson, 1980; Thurston and Lioy, 1987).  

There are a number of different methods based on factor analysis including PCA, PMF, UNMIX 

and ME. Such methods do not require a priori information about source emission characteristics 

and are useful in cases where relevant source profiles are not available (Hopke, 2003; Viana et al., 

2008).  In the simplest matrix form, the equation 2 can be represented as (Hopke, 2003):   

𝑋 = 𝐺𝐹′                                                                     (2) 

Where  
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X refers to the matrix of observed species’ concentrations  
G refers to the matrix of factor contributions  
F refers to the matrix of factor loadings  

 

Such methods require a substantial number (at least 50) of separate air samples and work best with 

a large dataset in which the number of samples far exceeds the number of analytical variables. A 

minimum variable to case ratio of 1:3 should be maintained in order to obtain accurate results 

(Thurston and Spengler, 1985). Past knowledge of source chemical profiles is used to assign factors 

to sources, and typically identification of six or seven different sources is a good outcome.  Before 

PMF became widely adopted, PCA was widely used for the same purpose, but is less refined than 

PMF. Although both PCA and PMF are factor analysis tools, PMF is better since it has a non-

negativity constraint, and unlike PCA, it does not produce negative factors. Traditionally, PMF was 

used with trace metal and ion data but some recent studies included organic species in the analysis 

(Heo et al., 2013; Jang et al., 2013). Input data plays an important role in the final results, and care 

has to be taken to ensure that this is of good quality and where possible uncertainties can be 

assigned to individual analytes.  

Hybrid models such as target transformation factor analysis (TTFA) and the constrained physical 

receptor model (COPREM) have been designed to combine the features of CMB and factor 

analysis models with the aim of maximizing the advantages while minimizing the limitations of 

each model (Wahlin et al., 2003; Viana et al., 2008). The Multilinear Engine (ME) program also 

allows the use of source composition data to constrain the model, and can be used in conjunction 

with PMF to introduce source composition data.  

 

1.3.2 Chemical Mass Balance Model  
 

This model was first proposed in the 1970s (Miller et al., 1972; Friedlander, 1973) and has since 

been used for source apportionment studies for PM, PM-OC, PAHs and VOCs across the globe. 
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The CMB model uses the ambient measurement data for chemical species together with the 

associated uncertainty and source profiles for different sources as inputs and the output consists 

of estimates of contribution of each source to the total mass. There are a number of assumptions 

regarding the use of the model including (Gordon, 1980, 1988; Thurston and Lioy, 1987; Watson 

et al., 2002):  

 chemical species do not react with one another and the species composition does not change 
between the source(s) and the receptor(s), i.e. all particles are primary  

 number of species are more than the number of sources  

 all of the potential sources are included the model  

 source profiles are not collinear (i.e. non-similarity) 

 uncertainties are random and non-correlated  

However, particles can undergo physical (condensation/evaporation) and/or chemical 

transformations between the source and receptor (Friedlander, 1973). For example, some PAHs 

such as chrysene, benzo(a)pyrene and benzo(a)anthracene are known to show decay between the 

source and receptor while others such as indeno(123-cd)pyrene and benzo(ghi)perylene are 

relatively stable (Gordon, 1988).  

The CMB model and the multivariate models have their own advantages and disadvantages. While 

the CMB model can theoretically be run with one sample, multivariate methods usually require a 

large number of samples (Thurston and Lioy, 1987). A comparative discussion on the two types of 

models is presented in Table 3.  

It is important to note that while the multivariate models do not require any information on source 

emission composition, the CMB model requires the species abundances (in the form of source 

profiles) in each source as a model input. Source contribution estimates generated using the CMB 

model are also sensitive to the selection of fitting species (McLaren et al., 1996). Thurston and Lioy 

(1987) referred to multivariate models as “hypothesis-generating models” and CMB model as “hypothesis-
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testing models” and recommended the use of multivariate models on chemical speciation data 

followed by CMB analysis for source identification and quantification.  

Table 3: Comparison between CMB and multivariate models 

(based on Gordon, 1980; Henry et al., 1984; Thurston and Lioy, 1987; Gordon, 1988; Harrison et al., 1997; Shrivastava et al.,  

2007; USEPA, 1997; Viana et al., 2008; Belis et al., 2013) 

CMB Model Multivariate Models 
[i] A key prerequisite is detailed information about the 
sources/emission inventories as well as source profiles  
 
[ii] Only one sample is required  
 
[iii] Does not apportion the secondary aerosols 
 
[iv] Cannot take into account the time variation of the 
pollutant concentration or source emission 
 
[v] Only non-reactive, stable tracer species can be used 
 
[vi] Near collinearity among source profiles can result in 
negative source contributions 

[i] Qualitative information about the potential 
sources is enough, useful for areas where detailed 
emission inventories are not available  and source 
profiles are not required 
[ii] Require large numbers of samples 
 
[iii] Unable to account for spatial and temporal 
correlation between emissions (e.g. motor vehicle and 
road dust) or source identified may contain more than 
one source 
 
[iv] Often unable to produce a fine resolution of the 
sources  
 
[v] Some of the models allow negative contributions 
to sources which is physically impossible (e.g. PCA)  
 
[vi] Information like meteorological data, particle size 
etc can be incorporated in the analysis  

 

One of the problems faced by receptor models is multicollinearity which occurs when two or more 

sources have similar emission profiles and it can affect the model estimates (Henry et al., 1984; 

Thurston and Lioy, 1987; Lowenthal et al., 1992). It can also be introduced due to meteorological 

factors such as wind, for e.g., for two factors that are located in the same direction from the 

receptor site (Gordon, 1988).  

The CMB model uses the ambient measurement data for chemical species together with the 

associated uncertainty and source profiles for different sources as inputs, and the output consists 

of estimates of the contribution of each source to the total mass. Source profiles are  

“the mass abundances, i.e. fraction of total mass of chemical species in source emissions, and such profiles 

are generally representative of source categories rather than individual emitters” (Watson et al., 2002).  
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The model has several assumptions including non-reactivity of the chemical species and non-co-

linearity of the source profiles (Watson et al., 2002). In addition, the number of species should be 

greater than the number of sources in order to derive results from the model. This model has been 

used extensively for source apportionment of PM mass (Schauer et al., 1996; Bi et al., 2007; 

Sheesley et al., 2007; Lambe et al., 2009; Stone et al., 2010; Yin et al., 2010; El Haddad et al., 2011; 

Rutter et al., 2011; Guo et al., 2012; Perrone et al., 2012; Green et al., 2013).  

Since PM is composed of both inorganic (trace metals, cations and anions) and organic species, a 

range of source markers are used in receptor modelling studies. A summary is provided in Table 4.  

Traditionally, most studies were carried out using trace elements such as Fe, Zn, Pb, Cr, Al and Ni. 

However, since many of the trace elements are emitted from a range of sources, it was difficult to 

apportion the PM to sources with a high degree of confidence (Lin et al., 2010). In addition, with 

removal of species such as Br and Pb from fuels, such markers cannot be used conclusively for 

source apportionment analyses. In the last two decades, research has focused on the identification 

and development of organic molecular markers for SA since they can be characteristic of sources, 

thus reducing the source ambiguity, and creating markers for sources which are difficult to be 

apportioned solely on the basis of inorganic markers.  

With the idea that molecular marker compounds are emitted by specific sources and can be used 

to distinguish between PM sources, Schauer et al. (1996) proposed CMB modelling using organic 

molecular markers (hereafter referred to as CMB-MM). A number of source-specific organic 

molecular markers have since been proposed for use in CMB modelling. Key molecular markers 

include levoglucosan for wood burning, hopanes and steranes for vehicular emissions, higher n-

alkanes for vegetative detritus, benzothiazoles for tyre wear and cholesterols and lactones for 

cooking (Rogge et al., 1993a, b, d; Schauer et al., 1996; Simoneit et al., 2004a; Lough et al., 2007; 

Heo et al., 2013). A detailed description of various organic markers for different sources has been 
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compiled by Lin et al. (2010). However, it is important to be careful about the chemical stability of 

the organic species that are used in receptor modelling analysis. 

Table 4: Marker species associated with major PM sources 

Source Key markers References 

Sea/Road Salt Na, Cl, Mg Harrison et al. (1996); Pey et al. 
(2010); Belis et al. (2013) 

Mineral/Crustal Dust Al, Ca, Si, Fe, Ti, Mg Harrison et al. (1996); Chow et al. 
(2007a); Stone et al. (2010); 

Ondracek et al. (2011); Peltier et al. 
(2011) 

Traffic EC, Fe, Ba, Zn, Cu, Pb, Sn, Sb, Mo, 
Hopanes, Steranes, PAHs 

Schauer et al. (1996); Birmili et al. 
(2006); Lin et al. (2010); Belis et al. 

(2013); Green et al. (2013) 
Gasoline emissions Coronene, Benzo[ghi]perylene, 

Indeno[123-cd]pyrene 
Schauer et al. (1996); Chellam et al. 
(2005); Chow et al. (2007a); Fujita 
et al. (2007); Pant and Harrison 

(2014) 
Diesel emissions EC, fluoranthene, pyrene Schauer et al. (1996); Chellam et al. 

(2005); Chow et al. (2007a); Riddle 
et al. (2007); Green et al. (2013); 

Pant and Harrison (2014) 
Brake wear Ba, Cu, Sb, Sn, Fe Hildemann et al. (1991); Adachi 

and Tainosho (2004); Hjortenkrans 
et al. (2007); Amato et al. (2009a); 
Gietl et al. (2010); Ondracek et al. 

(2011) 
Tyre wear Zn, Benzothiazole, Organic Zn, 

Benzothiazolamine 
Hildemann et al. (1991); Kumata et 

al. (2002); Adachi and Tainosho 
(2004); Amato et al. (2013a) 

Natural gas emissions Benzo[k]fluoranthene, 
Benzo[b]fluoranthene 

Rogge et al. (1993c) 

Ship emissions/fuel oil 
combustion 

Ni, V Harrison et al. (1996); Belis et al. 
(2013); Green et al. (2013); Cusack 

et al. (2013); Viana et al. (2009) 
Coal combustion Picene, BC, Sulphur , Se Thurston and Spengler (1985); Cass 

(1998); Chowdhury et al. (2007); 
Stone et al. (2010); Davy et al. 

(2011) 
Biomass combustion K, Levoglucosan, Galactosan, 

Mannosan 
Fine et al. (2001); Simoneit (2002); 
Lin et al. (2010); Stone et al. (2010) 

Secondary Inorganic Aerosol NH4
+, SO4

2-, NO3
- Harrison et al. (1996); Belis et al. 

(2013); Green et al. (2013); Cusack 
et al. (2013) 

Vegetative detritus N-alkanes (C29, C31) Rogge et al. (1993d) 
Construction Ca, Al, Sr, Ti Harrison et al. (2003); Chow et al. 

(2003); Amato et al. (2011a) 
Secondary organic aerosol Aromatic diacids, n-alkanoic acids, 

methylthreitrols 
Schauer and Sioutas (2012) 

Road surface wear Na, Mg, Ba Lawrence et al. (2013) 
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CMB model outputs are generally evaluated using several different parameters including:  

[1] Goodness-of-fit parameters- R-square (r2), chi-square (2), degrees of freedom and the percent 

mass explained (i.e. percent of PM mass explained by the model based on measured PM). The r2 

value is calculated through linear regression between the observed and predicted values of fitting 

species. Values closer to 1 indicate that the source contribution estimates are predicted well and 

typically, 0.8-1.0 are considered acceptable. 2  is defined as “the weighted sum of squares of the difference 

between calculated and measured values of fitting species” (USEPA, 1997). A value of zero indicates no 

difference between the calculated and measured values and generally, a value less than 4 is 

acceptable.  

[2] T-stat values- Defined as “the ratio of the source contribution estimate and standard error”, this statistic 

is used to determine the significance of a particular source and a value less than 2 indicates that the 

source is at or below detection limit (USEPA, 1997).  

[3] Calculated/Measured (C/M) ratio- Defined as the ratio between calculated and measured 

concentration) with acceptable values ranging between 0.75-1.5 (USEPA, 1997).  

[4] Residual/Uncertainty (R/U) ratio- Defined as the ratio of signed difference between calculated 

and measured concentration, i.e. residual divided by standard error (uncertainty) with acceptable 

values ranging between -2 to +2 (USEPA, 1997).  

[5] MPIN (modified pseudo inverse normalized) matrix- Refers to the diagnostic matrix which is 

used to identify the influential species for each source type. The matrix defines the contribution of 

individual fitting species in determination of the source contribution estimate and their variance.  

Species with values between 0.5 and 1 are classified as influential species (Chow et al., 2007a).  

It is important to note that while the CMB model works well for attribution of primary organic 

carbon (POC) sources, it is not able to apportion secondary organic carbon (SOC), due to lack of 



33 
 

appropriate source profiles. However, it is very difficult to generate SOC source profiles due to the 

complex chemistry of secondary organic aerosol formation (Bullock et al., 2008). 

 

1.4 Traffic Particulate Matter Measurement and Analysis  
 

Traffic emission profiles can be generated using several different methods including lab-based 

dynamometer studies, tunnel/roadway studies and twin-site studies (Rogge et al., 1993a; Lough et 

al., 2007; He et al., 2008; El Haddad et al., 2009; Yan et al., 2009). Since the twin 

site/tunnel/roadway measurements are carried out in the ambient environment, and for a mixed 

fleet, they are seen to be more representative of real-world emissions. In recent years, significant 

differences have been observed between laboratory-tested and real-world mixed source traffic 

emissions (Lighty et al., 2000; Gertler et al., 2002; Yan et al., 2009; Ancelet et al., 2011). Near 

roadside/kerbside, traffic tunnel and roadway/highway/freeway measurements are reported to be 

more realistic since they represent mixed-fleet emissions under real-world driving conditions 

(Steahlin et al., 1995; Phuleria et al., 2007). Table 5 presents a comparison on measurements made 

using dynamometers and ambient sampling. Ke et al. (2013) used an alternate approach and 

prepared a composite vehicular emission source profile using four different approaches including 

peak analysis, windless model-based regression analysis, PMF and UNMIX.  

Tunnels are often used for analysis of emissions from road vehicles including estimation of 

emission factors and physical and chemical characterization of vehicular emissions (El-Fadel and 

Hashisho, 2000). Several studies have been conducted for measurement of PM emissions in 

roadway tunnels in different parts of the world including the USA (Fraser et al., 1998; Rogak et al., 

1998; Abu-Allaban et al., 2002; Gertler et al., 2002), China (He et al., 2006; He et al., 2008), Europe 

(Stechmann and Dannecker, 1990; Smith and Harrison, 1996; Weingartner et al., 1997; Handler et 

al., 2008; El Haddad et al., 2009; Oliviera et al. 2011; Lawrence et al., 2013; Pio et al., 2013; Alves 
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et al., 2015), New Zealand (Ancelet et al., 2011), Japan (Funasaka et al., 1998), Chile (Caceres et al., 

1998), Brazil (Brito et al., 2013) and Mexico (Mancilla and Mendoza, 2012).  

Use of dynamometers for preparation of source profiles limits the use since the profiles depend on 

the technology, fuel quality used, age and operating conditions of the vehicle (McLaren et al., 1996). 

On the other hand, tunnel/roadway measurements represent a mixture of the emission 

contributions from the vehicle fleet (Phuleria et al., 2007). However, the same has been said for 

the tunnel samples since the results are representative of the vehicles and driving cycles typical of 

the location where the sampling is conducted and cold start emissions are not included (Gertler 

and Pierson, 1996; Yanowitz et al., 2000). A qualitative comparison is presented in Table 5.  

 

Table 5: Comparison between dynamometer and tunnel/roadway measurements 

(Imhof et al., 2005; Phuleria et al., 2006; Phuleria et al., 2007; Handler et al., 2008; He et al., 2008; El Haddad et al., 2009; 

Sanchez-Ccoyllo et al., 2009; Franco et al., 2013)  

Parameter Dynamometer measurements Ambient measurements 
(includes tunnels, roadways) 

Test conditions Precise and controlled conditions 
within laboratory; different test 
cycles and driving conditions can be 
analysed; can include cold-start 
emissions  

Ambient environment- cannot be 
physically controlled; cannot include 
cold-start emissions 
Since sampling in conducted in 
ambient conditions, boundary 
conditions and dilution effects (in 
case of tunnel environment) 
 However, atmospheric conditions 
can vary between tunnel and 
ambient environments 

Representativeness for vehicle 
fleet 

Low since tests are conducted on a 
sub-set of the in-use fleet and 
variations in engine type  
Vehicle age and maintenance and 
mixing of emissions from difference 
vehicles etc. are not accounted for.  
Particle aging effects are not 
accounted for.  

High, since the measurements are 
made in ambient environment and 
for in-use mixed fleet.  

Emission type accounted for  Exhaust  (or non-exhaust based on 
experiment design)  

Exhaust and non-exhaust (difficult 
to separate the two)  
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1.5 Objectives 
 

This thesis was initially intended to focus on chemical speciation and receptor modelling of PM2.5 

in New Delhi (India). However, after one year of delays in instrument procurement and non-

committal response towards sampling set-up, the Indian collaborators decided to step away from 

the project and it was subsequently abandoned. At this stage, the project was reformulated with 

the objective of improving receptor modelling of UK particulate matter.  The only CMB receptor 

modelling study conducted in the UK (Yin et al., 2010) used USEPA SPECIATE profiles in the 

absence of local profiles from UK. However, while the CMB model provided an adequate fit for 

the data, there were uncertainties over the applicability of the North American dynamometer-based 

traffic profiles in the UK context. Receptor models also lacked robust and representative input 

data relating to non-exhaust emissions from road traffic. As a result, the following objectives were 

finalized: 

1.  Characterization of traffic aerosol  (PM2.5) in the UK and preparation of a composite traffic 

profile using different ambient monitoring methods (Chapters 3, 4)  

2. Characterization of PM10 road dust and estimation of source contributions from non-

exhaust sources (Chapter 5)  

These research objectives also complemented other work being carried out by the group focusing 

on characterization of industrial and cooking emissions in the UK.  

In early 2012, opportunities arose for a collaborative project in India, and the funding was approved 

in December 2012. As a result, a PM2.5 speciation and receptor modelling study was undertaken in 

New Delhi in 2013-2014 in collaboration with Indian Institute of Technology-Delhi (India) and 

Desert Research Institute-Reno (USA). At the time of the sampling, further collaboration was 
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sought with Indian Institute of Technology- Kanpur (India) and additional measurements were 

made for size-segregated aerosols in winter 2013.  

Based on these gaps in the literature, the following additional objectives were finalized for this 

thesis:  

3. Characterization of size-segregated aerosol and detailed chemical speciation of PM2.5 in 

New Delhi, India (Chapter 6)  

4. Characterization of PM10 road dust, and preparation of a road dust source profile (Chapter 

5) 

 

1.6 Thesis Structure  
 

The thesis chapters are organized as follows:  

Chapter 2 describes the general methods and procedures used during various sampling campaigns 

including the instrumentation and chemical analysis methods.  

Chapter 3 describes results of a modelling study to assess the sensitivity of the CMB model to 

traffic profiles derived using different methods.  

Chapter 4 describes results from chemical speciation of PM in Birmingham, UK and preparation 

of a chemical profiles for traffic emissions.  

Chapter 5 presents results on chemical characterization and source estimation of PM10 road dust 

in Birmingham (UK) and New Delhi (India).  

Chapter 6 describes details results from chemical speciation of PM at a heavy traffic site in New 

Delhi, India.  

Chapter 7 describes the conclusions from the current study.  

Chapter 8 provides recommendation for future work. 
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CHAPTER 2- MATERIALS AND METHODOLOGY  
 

This chapter describes the various sampling campaigns and the analytical procedures.  

Part of the sampling in Birmingham was carried out in collaboration with Amey (UK) while 

sampling in New Delhi was carried out in collaboration with Central Road Research Institute 

(CRRI) - New Delhi, Desert Research Institute (DRI), USA and Indian Institute of Technology 

(IIT)-Kanpur, India.  

 

Graphical Abstract  
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2.1 Overview  
 

In line with the objectives of this thesis, primary data was collected via sampling in Birmingham 

(UK) in 2012 and 2013 and New Delhi (India) in 2013-14 for PMx. In addition, a range of secondary 

datasets from Birmingham and London (UK) were used for data analysis although the sampling 

and chemical analysis was not completed during the PhD program. Datasets from Birmingham 

(2007-2008) and London (2010 and 2011) that have been used in CMB modelling analyses in 

Chapter 6 were collected by Dr. Jianxin Yin and Dr. Johanna Gietl as part of a DEFRA project 

and details of the sampling campaigns and chemical analysis are available in Yin et al. (2010), 

Harrison and Yin (2010), Gietl et al. (2010) and Harrison and Yin (2013). Appropriate references 

have also been included throughout the thesis to highlight these data sources. 

The sampling campaigns and the analytical procedures are detailed in the following sections. 

 

2.2 Sampling Instrumentation 
 

Both ambient and road dust PMx samples were collected in this study in United Kingdom and 

India. Owing to differences in availability of sampling instrumentation, different sampling 

equipment were deployed in India and UK for ambient PM measurements. However, road dust 

samples were collected using the same instrument in both countries. The following sections detail 

the various sampling equipment that were used during the study.    

2.2.1 High Volume Sampler  
 

The instrument uses the filtration/impaction method for collection of PM samples and the size of 

PM collected can be chosen based on the sampler head (Figure 3). Since the instrument uses an 

automated filter exchange mechanism, up to 15 filters can be loaded at a time. 
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 Figure 3: Layout of the high volume sampler (Enviro Technology Services Plc, n.d.) 

 

2.2.2 Low Volume Sampler  
 

In Delhi, PM2.5 samples were collected using the Airmetrics MiniVol™ portable air samplers that 

operate at 5 lpm and collect PM2.5 aerosol fraction using the principle of filtration. Use of low 

volume sampler was more suitable in Delhi since the area records high PM concentrations, and use 

of lower flow rates can help minimize clogging.  

 

2.2.3 Micro Orifice Uniform Deposition Impactor (MOUDI)  
 

Size-segregated aerosol samples were collected using an 8-stage micro-orifice uniform deposit 

impactor (MOUDI) (MSP Corporation, Minneapolis, Minnesota, USA) in Birmingham (rotating 

MOUDI) and New Delhi (non-rotating MOUDI) (Figure 4). The sampler consists of a series of 

impaction plates with decreasing diameters and works on the principle of inertial impaction (Marple 

et al., 1991). Each impaction plate has micro-orifice nozzles and as the jet of air passes through 

each stage, particles larger than the cut size are collected on the impaction plate while particles with 

smaller diameters proceed to the next stage. The cut-off size can be estimated using the Stokes 

Number and for all practical purposes, the Stokes number with 50% collection efficiency is used 
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to calculate the cut-off size. The rotating set-up allows even deposition of the particles across the 

filter. At 30 litres per minute (lpm), samples are collected in the range of 0.18-10 µm (10, 5.6, 3.2, 

1.8, 1.0, 0.56, 0.32 and 0.18 µm). In the event that a flow rate of 30 lpm is not achieved, the cut 

points can be adjusted using the Equation 3.  

𝑪𝒐𝒓𝒓𝒆𝒄𝒕𝒆𝒅 𝑫p =  𝑫p √
𝑭1

𝑭2

                                           (𝟑)                                                                

 

 

Where  
Dp is nominal cut point   
F1 is nominal flow rate (30 lpm)  
F2 is recorded flow rate  
 

 

Using the data obtained from MOUDI samples, a continuous mass size distribution (dM/dlogDp) 

was obtained using the numerical inversion method described in Keywood et al. (1999). This 

approach has previously used in several studies (Allen et al., 2001a; Gietl et al., 2010).  

 

          

 

Figure 4: Layout of the MOUDI sampler (MSP Corporation, n.d.) 
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2.2.4 Road Dust Sampler  
 

For the collection of PM10 road dust samples, a custom-built PM10 dust sampler based on the 

specifications proposed by Amato et al. (2009a) was used (Figure 5). Particles are vacuumed off 

the road with the help of a vacuum pump (flow rate of 25 lpm), and upon entering the sampling 

chamber, heavier particles tend to settle down. Smaller particles in the air flow pass through a 

Negretti elutriation filter (based on the principle of gravitational settling) which allows particles with 

an average density of PM10 to pass through (dependent on the flow rate). These particles are 

subsequently deposited on a filter and can be used for chemical analysis. Each sample was collected 

over an area of 1m2 for a period of 10 minutes. Samples were collected close to the signal-controlled 

pedestrian crossings, and covered both the middle lane and the side lanes.       

  

Figure 5: Road dust sampling set-up (reproduced from Amato et al., 2009a) 

 

2.3 Filter Selection and Artefacts 
 

A wide range of filters are available for chemical speciation and analysis of particulate matter. 

Quartz fibre filters, composed of SiO2, can withstand high temperatures and are the most 

commonly used substrate for analysis of organic species (e.g. carbon, PAHs, alkanes). They are 

more suitable for sample collection using high volume samplers since they are less prone to 

clogging (Chow and Watson, 2012). Polytetrafluoroethylene (PTFE) filters were used for 

gravimetric analysis since they are not prone to absorption of ambient water vapour. 
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Sampling artefacts can occur due to adsorption and volatilization depending on ambient conditions 

(e.g. temperature, RH) and can vary based on filter type. Quartz filters are prone to artefacts which 

can be produced either by the adsorption of gas-phase organic compounds (positive) or 

volatilization of compounds from the filter (negative) (Hildemann et al., 1991). Examples include 

volatilization of NH4NO3 and adsportion of water vapour and gas-phase species.  

High and low-volume samplers have different face velocities and previous studies have concluded 

that low volume samplers have larger positive artefacts (Viana et al., 2006). This is due to the fact 

that the adsorption of gas-phase species is inversely related to face velocity.   

In the current study, no corrections were made for the artefacts. 

 

2.4 Sampling Locations  
 

PM sampling was conducted at four different sites in Birmingham, UK, and at one site in New 

Delhi, India:  

 Birmingham, UK  

o Low-traffic site (University Ring Road South)- University campus (Chapter 5) 

o Urban background site (hereafter referred to as EROS 2) - Located within the 

university campus, but not close to any major sources. (Chapters 3,4)  

o High traffic site (hereafter referred to as BROS3) – Located adjacent to the university 

campus, this is one of the major roads running across Birmingham. (Chapter 5) 

                                                   
2 Elms Road Observatory Site 
3 Bristol Road Observatory Site  
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o Traffic tunnel (hereafter referred to as QT4) - This road tunnel runs through the 

centre of Birmingham city and carries both intra- and intercity traffic. (Chapters 4, 

5) 

 New Delhi  

o Heavy traffic road (hereafter referred to as CRRI) - This site is located next to 

Mathura Road/National Highway 2.  (Chapters 5,6)  

   Details about the site characteristics are presented in individual chapters.  

 

2.5 Sampling Campaigns 
 

Sampling was undertaken in Birmingham (UK) in 2012 and 2013 and in New Delhi (India) in 2013 

and 2014 and the campaigns are summarized in Table 6.  

 

2.5.1 Birmingham, United Kingdom  
 

A two-week intensive sampling campaign was conducted from September 11, 2012 to September 

21, 2012 at the Elms Road Observatory Site (EROS) and the A38 Queensway Tunnel, Birmingham 

(QT).  

PM10 road dust samples were collected in September 2012 at QT and June-July 2013 at campus site 

and BROS.  

 

2.5.2 New Delhi, India  
 

                                                   
4 Queensway Tunnel  
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Two sampling campaigns were undertaken in New Delhi, India in summer (June 15-30, 2013) and 

winter (December 15, 2013- January 15, 2014). PM10 road dust samples were also collected in June 

2013 at the same site using the dust sampler. A summary is provided in Table 6.  

 

Table 6: Overview of the sampling campaigns 

 

 

2.6 Analytical Procedures  
 

Chemical analysis of the samples collected during the campaigns was conducted at the University 

of Birmingham (UK) and Desert Research Institute (USA). Table 7 summarizes the type of analysis 

conducted for each set of samples.  

Samples collected in New Delhi using Minivol samplers were shipped to USA for chemical analysis.  

 

 

City 
 

Site Sampler 
Sample 

type 
Size 

Fraction 

Chemical Analysis 

EC/
OC 

Trace 
Metals 

 
Ions 

Organic 
Markers 

Birmingham 
(UK) 

QT and 
EROS 

High volume 
sampler 

Quartz PM2.5 x 
x 
 

 x 

MOUDI PTFE Various  x   

Road Dust 
Sampler 

PTFE PM10  x   

BROS and 
University 
Ring Road 

(South) 

Road Dust 
Sampler 

Quartz PM10 x   x 

PTFE PM10  x   

New Delhi 
(India) 

CRRI 

Minivol 
Quartz PM2.5 x 

x 
 

 x 

PTFE PM2.5  
x 
 

x  

MOUDI PTFE Various  x   

Road Dust 
Sampler 

PTFE & 
quartz 

 x x  x 
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Table 7: Summary of laboratory analysis of PM samples 

Site 
Sample 

type 
Sampler 

Gravimetric 
Analysis 

Elemental 
Analysis 

Carbon 
Analysis 

Molecular 
Marker 
Analysis 

Birmingham 
(UK) 

PM2.5 
High 

Volume 
Sampler 

UoB UoB UoB UoB 

Size-
segregated 

aerosol 
MOUDI UoB UoB N/A N/A 

Road Dust 
Dust 

Sampler 
UoB UoB UoB UoB 

New Delhi 
(India) 

PM2.5 
Low Volume 

Sampler 
DRI DRI DRI DRI 

Size-
segregated 

aerosol 
MOUDI UoB UoB N/A N/A 

Road Dust 
Dust 

Sampler 
UoB UoB UoB UoB 

 

 

2.6.1 Filter Preparation  
 

The quartz fibre filters were heated in a box furnace at 500º Celsius for 6 hours to remove any 

carbon impurity and then packed in aluminium foil, sealed in bags and stored in a freezer at -20º 

Celsius until sampling.  

The PTFE filters used for collecting MOUDI samples at the QT site were washed with 3M HCl 

followed by ultra high purity (UHP) water and dried in a laminar flow cabinet before sampling.  

All exposed filters were wrapped in aluminium foil (quartz filters) or stored in clean petri dishes 

(PTFE filters), sealed in polyethylene bags and stored in a designated freezer where no other 

chemicals or standards were stored.  

 

2.6.2 Gravimetric Analysis  
 

The PTFE filters were weighed before and after sampling to determine the mass of PM collected 

during the sampling. A Sartorius Model MC5 microbalance (sensitivity- 1 µg) was used for weighing 
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the filters. Before weighing, all filters were equilibrated in humidity (35-45% relative humidity) and 

temperature (25º Celsius) controlled windowless room for 24 hours. An ionizing blower and an α-

particle source (210Po) were used to reduce the effects of static electricity on the filter. Each filter 

was weighed three times and both positive and negative weights were recorded. Average weights 

were calculated using the arithmetic mean of the six recorded values. Sampled mass was calculated 

as the difference between the mass of the filter before and after sampling.  

 

2.6.3 Clean-up Procedures  
 

2.6.3.1 Element/Ion Analysis  
 

All the glass/plastic ware used for the extraction procedure were soaked in 2% high purity HNO3 

(Aristar Grade) for 24 hours and thereafter rinsed with deionised water three times. Afterwards, all 

the glassware/ plastic ware was dried in the oven at 20-25º Celsius.  

The plastic bottles and the LDPE tubes used for extraction of MOUDI samples were cleaned with 

10% HCl, 10 % HNO3 and 0.1 M HCl (clean) in sequential order. The bottles were thereafter 

rinsed with deionised water and dried in a laminar flow cabinet.  Between extractions, the Teflon 

bombs were filled with aqua regia (made with HPLC [high purity] grade HCl and HNO3) and sealed 

with acrylic caps and stored in a fume hood for 24 hours. Thereafter, the bombs were washed with 

M water and filled with 0.1 N HCl (HPLC grade) and heated for 24 hours. The bombs were then 

washed with M  water, dried in the laminar flow cabinet and used again.  

Unless otherwise mentioned, 18.2 M distilled deionised water [DDW] (Elga filtration system) 

was used for cleaning as well as extraction procedures.  
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2.6.3.2 Analysis of Organic Species  
 

All the glassware were soaked in a mild soap solution for 24 hours and thereafter washed with 

deionised water 3 times. Afterwards, all the glassware was dried in the oven at 100° Celsius. Before 

starting the extraction process, all glassware was rinsed with acetone and dichloromethane (DCM) 

three times. All the syringes were rinsed with hexane, DCM and methanol before and after use. 

The CERTAN vials used for storage of standards and preparation of standard mixtures were 

cleaned with DCM, methanol and hexane before use. The vials and inserts (Agilent vial insert 250µl 

glass with polymer feet, 5181-1270) used for storage of samples were cleaned with acetone and 

DCM before use.  

Unless otherwise mentioned, laboratory grade hexane and HPLC grade acetone, DCM and 

methanol were used for all the analyses.  

 

2.6.4 Limit of Detection  
 

Blank filters were analysed with the analytical techniques as described in the sections 5.5-5.8 to 

calculate limit of detection (LoD) using the formula 3*standard deviation.    

 

2.6.5 Analysis of Elements  
 

Two different procedures were used for extraction of trace metals: reverse aqua regia (RAR) for 

total metal concentration and chemical fractionation for one set of samples where both total and 

soluble fractions of metals were determined. Only total metal methods and results are reported 

here. In addition, Si, Al, Fe and S were analysed using XRF since the RAR extraction method is 

not very efficient for these elements.  
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Extraction of the trace metals was performed in 4 ml Nalgene polypropylene bottles using reverse 

aqua regia solution prepared using 2 ml of 189 cm3/L high purity (Aristar Grade) hydrochloric acid 

(HCl) and 66 cm3/L high purity (Aristar Grade) nitric acid (HNO3) per sample (Allen et al., 2001). 

The polypropylene bottles were heated to 100º Celsius for 30 minutes in the hot water bath (Grant 

Y14) followed by mild sonication at 50º Celsius for 30 minutes in an ultrasonic bath (Decon 

F510006 Ultrasonic Bath). The process was repeated once, and the extracts were transferred to 15 

ml polypropylene bottles. In the case of quartz filters, the samples were filtered using 0.45 µm 

Acrodisc syringe filters (Pall Acrodisc, 0.45 µm with Supor Membrane). The extracts were stored 

at 4º Celsius until analysis. In some cases, further dilution was performed before analysis with the 

ICP-MS. Good recovery has been reported for most elements based on this method (Allen et al., 

2001).  

The MOUDI samples collected at QT and EROS were extracted using the chemical fractionation 

methodology to calculate total and soluble concentrations of various elements. To extract the total 

element fraction, exposed filters were placed in Teflon bombs and 1 ml of HF and 3 ml of HNO3 

were added to each sample. The bombs were heated for 24 hours at 150ºC and then the caps were 

removed to allow the HF to dry. Once the samples were dry, 5 ml of 2 M HNO3 and 5 ml of DDW 

were added and the bombs were heated for 24 hours at 150ºC. The samples were then transferred 

into pre-cleaned and labelled LDPE tubes and stored at - 20ºC until analysis. This method has 

previously been used by Shi et al. (2011).  

The samples were analysed for Al, Fe, S and Si using a Wavelength Dispersive X-Ray Fluorescence 

(WD-XRF) instrument (Tiger Bruker S8) prior to chemical extraction and metals such as Cu, Zn, 

Ba, Ti, Sb, Ni, Mn and Ca were analysed using  Inductively Coupled Plasma Mass Spectrometry 

(ICP-MS, Agilent 7500ce with an Octopole Reaction System). Internal standards for the ICP-MS 

analysis include Sc (45), Ge (72), Y (89), In (115) and Bi (209). Calibration curves were prepared 
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using a range of standard solutions (0-100 ppb, and 0-10 ppm).  Filter blanks were analysed with 

the sample batches and the samples were blank corrected. 

The samples from Delhi were analysed for elements from Na to U at DRI using ED-XRF 

(PANalytical Epsilon 5) and calibration was performed using µMatter thin film standards.  

 

2.6.6 Analysis of Ions  
 

10 ml deionised water was added to each sample and the mixture was shaken for 45 minutes using 

a mechanical shaker. The samples were filtered using 0.45 µm Acrodisc syringe filters, transferred 

to IC vials and stored in the refrigerator at 4ºC until analysis. Analysis was performed using a 

Dionex ICS 3000. Calibrations were performed using standards of known concentration in the 

range of 0.05-10 ppm. Filter blanks were analysed with the sample batches and the samples were 

blank corrected. 

The samples from Delhi were analysed for elements for sulphate (SO4
2-), nitrate (NO3

-), chloride 

(Cl-). Ammonium (NH4
+), sodium (Na+) and potassium (K+).  These samples were also analysed 

for carbohydrates (mono- and disaccharides and anhydrosaccharides).  

 

2.6.7 Analysis of Organic Species  
 

Before the extraction, each sample was spiked with 25 µl of the isotopically-labeled internal 

standard mixture including ααα -20R-cholestane-d4 (for hopanes), dibenz(ah)anthracene-d14 (for 

PAHs) and octacosane-d58 (for alkanes). The samples were then extracted using 10-20 ml of DCM 

under mild sonication at 25º Celsius using an ultrasonic bath. The extracts were then filtered 

through pre-cleaned glass wool and sodium sulphate (Na2SO4) columns and collected in pre-

cleaned 30 ml bottles. The samples were then concentrated to 250 µl under a gentle stream of 

oxygen-free nitrogen and transferred to pre-cleaned GC vials. The samples were transferred to 
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amber teflon-lid lined vials, sealed using Parafilm (Laboratory Film M) and stored in the freezer at 

-20º Celsius until analysis. Analysis was undertaken by direct injection of the sample into the GC-

MS system (Agilent GC- 6890N plus MSD-5973N) fitted with an HP-5MS (30 m, 0.25 mm 

diameter, 0.25 µm thickness) column. A number of different classes of compounds including n-

alkanes (11), PAHs (8) and hopanes (9) were analysed using different selective ion monitoring 

(SIM) programs (Table 8). Instrument detection limits are provided in Table 9.  

Quantification of the different compounds was performed using deuterated (internal) standards. 

Six to eight point calibration curves were prepared using pure natural compound standards in the 

concentration range of 1-2000 pg/µl for each class of compounds (r2>0.994 for all compounds). 

Chromatograms were analysed using the Agilent Chemstation software.  

The ion source in the GC-MS system was regularly cleaned and the instrument was tuned with 

perfluorotributylamine (PFTBA) to calibrate the mass analyser and optimize peak (m/z) 

identification.  Filter blanks were analysed with the sample batches and the samples were blank 

corrected.  

At DRI, the samples from Delhi were analysed for straight chain alkanes, PAHs, hopanes and 

steranes using Thermal Desorption-Gas Chromatography-Mass Spectrometry (TD-GC-MS; 

Agilent 6890 GC with Model 5973) with an HP-5MS capillary column (Table 10). Internal 

standards used in the analysis include nC16D34 and nC24D50 for alkanes and phenanthrene-d10 and 

chrysene-d12 for PAHs. No internal standards were used for hopane and sterane analysis.  

Filter punches were taken from the filter sample and injected with the internal standards. Next, the 

punches were cut into smaller pieces and loaded into a Pyrex glass tube and the tube was then 

placed into the injection port. The septum cap was subsequently closed and the sample was 

analysed in SCAN mode using the method described in Table 11. Details about the TD-GC-MS 

methodology are provided in Ho and Yu (2004).   
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Table 8: GC-MS SIM programs for the different compound classes 

GC Condition 
Compound class 

Alkanes, Hopanes PAHs 

Injector temperature (ºC) 300 300  

Initial Oven Temperature (ºC) 60 45 

Initial Oven Hold Time (min) 0 2 

Initial Oven Temperature Ramp Rate (ºC/min) 10 20 

Second Oven Temperature (ºC) 250 150 

Second Oven Hold Time (min) 5 - 

Second Oven Temperature Ramp Rate (ºC/min) 5 4 

Final Oven Temperature (ºC) 300 300 

Final Oven Hold Time (min) 15 10 

Carrier Gas  He  

Carrier Gas flow rate  1mL/min  

Injector Mode  Splitless 

 

MS Condition  Compound class 

Alkanes and Hopanes   PAHs   

Solvent delay (mins) 20 5 

Data Collection 
Mode (SIM)  

Alkanes: 57,  71, 82, 85, 98  
Hopanes: 191   
 
Octacosane-d58: 66  [internal 
standard- alkanes]  
 
aaa-20R-cholestane-d4: 221 
[internal standard- hopanes]  
 
Dwell time: 50-100 millisecond  

Benzo(b,k)fluoranthene, 
Benzo(a,e)pyrene, Perylene: 252 
Indeno (123-cd)pyrene, 
Benzo(ghi)perylene: 276 
Picene, Dibenz(ah)anthracene: 278   
Coronene: 300  
 
Dibenz(ah)anthracene- d14: 292 
[internal standard- PAHs] 
 
Dwell time: 50-100 millisecond 

 

Table 9: Instrument limits of detection 

Compound Instrument LoD (µg/filter) 

Ions  

Chloride  1.5005 

Nitrate  1.5005 

Sulphate 1.5005 

Ammonium 1.5005 

Na+ 0.2362 

K+ 0.1498 

Elements   

Sodium (Na) 3.754 

Magnesium (Mg) 1.134 
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Aluminum (Al) 0.448 

Silicon (Si) 0.361 

Phosphorus (P) 0.118 

Sulfur (S) 0.051 

Chlorine (Cl) 0.049 

Patassium (K) 0.046 

Calcium (Ca) 0.073 

Scandium (Sc) 0.194 

Titanium (Ti) 0.035 

Vanadium (V) 0.008 

Chromium (Cr) 0.038 

Manganese (Mn) 0.083 

Iron (Fe) 0.076 

Cobalt (Co) 0.004 

Nickel (Ni) 0.013 

Copper (Cu) 0.044 

Zinc (Zn) 0.039 

Gallium (Ga) 0.128 

Arsenic (As) 0.015 

Selenium (Se) 0.029 

Bromine (Br) 0.041 

Rubidium (Rb) 0.027 

Strontium (Sr) 0.063 

Yttrium (Y) 0.038 

Zirconium (Zr) 0.101 

Niobium (Nb) 0.067 

Molybdenum (Mo) 0.064 

Palladium (Pd) 0.155 

Silver (Ag) 0.147 

Cadmium (Cd) 0.115 

Indium (In) 0.127 

Tin (Sn) 0.137 

Antimony (Sb) 0.206 

Cesium (Cs) 0.058 

Barium (Ba) 0.063 

Lanthanum (La) 0.043 

Cerium (Ce) 0.042 

Samarium (Sm) 0.086 

Europium (Eu) 0.133 

Terbium (Tb) 0.098 

Hafnium (Hf) 0.395 

Tantalum (Ta) 0.258 

Wolfram (W) 0.361 
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Iridium (Ir) 0.119 

Gold (Au) 0.196 

Mercury (Hg) 0.097 

Thallium (Tl) 0.065 

Lead (Pb) 0.094 

Uranium (U) 0.165 

Carbon  

OC Fraction 1  0.052 

OC Fraction 2 1.29 

OC Fraction 3 3.87 

OC Fraction 4 0.129 

PC via transmittance  0.129 

PC via reflectance  0.129 

EC Fraction 1 0.039 

EC Fraction 2 0.039 

EC Fraction 3 0.039 

 

Species  Instrument LoD (µg/filter) 

Sugars  

Glycerol (C3H8O) 0.410 

Erythritol (C4H10O4) 0.015 

Arabinose (C5H10O5) 1.773 

Xylose (C5H10O5) 0.066 

Arabitol (C5H12O5) 0.525 

Xylitol (C5H12O5) 0.963 

Levoglucosan (C6H10O5) 1.008 

Mannosan (C6H10O5) 0.410 

Galactose (C6H12O6) 1.602 

Fructose (C6H12O6) 0.782 

Glucose (C6H12O6) 0.840 

Inositol (C6H12O6) 0.030 

Sorbitol (C6H14O6) 3.293 

Mannitol (C6H14O6) 0.974 

Trehalose (C12H22O11) 1.148 

Maltitol (C12H24O11) 0.645 

Organic Acids   

Formic acid (CH2O2) 2.152 

Acetic acid (CH4O2) 0.167 

Oxalic acid (C2H2O4) 0.661 

Lactic acid (C3H6O3) 1.774 

Methanesulfonic acid (CH4O3S) 0.672 
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Malonic acid (C3H4O4) 0.193 

Maleic acid (C4H4O4) 6.597 

Succinic acid (C4H6O4) 0.015 

Glutaric acid (C5H8O4) 2.400 

 

Species  Instrument LoD (µg/filter) 

Hopanes  

22,29,30-trisnorneophopane (Ts) (C27) 0.002 

22,29,30-trisnorphopane (C27) 0.002 

αβ-norhopane (C29αβ-hopane) 0.001 

22,29,30-norhopane (29Ts) 0.003 

αα- + βα-norhopane (C29αα- + βα -hopane) 0.003 

αβ-hopane (C30αβ -hopane) 0.002 

αα-hopane (30αα-hopane) 0.002 

βα-hopane (C30βα -hopane) 0.002 

αβS-homohopane (C31αβS-hopane) 0.004 

αβR-homohopane (C31αβR-hopane) 0.004 

αβS-bishomohopane (C32αβS-hopane) 0.004 

αβR-bishomohopane (C32αβR-hopane) 0.004 

22S-trishomohopane (C33) 0.004 

22R-trishomohopane (C33) 0.004 

22S-tretrahomohopane (C34) 0.004 

22R-tetrashomohopane (C34) 0.004 

22S-pentashomohopane(C35) 0.004 

22R-pentashomohopane(C35) 0.004 

Steranes 

ααα 20S-Cholestane (C27) 0.003 

αββ 20R-Cholestane (C27) 0.003 

αββ 20s-Cholestane (C27) 0.003 

ααα 20R-Cholestane (C27) 0.001 

ααα 20S 24S-Methylcholestane (C28) 0.002 

αββ 20R 24S-Methylcholestane (C28) 0.002 

αββ 20S 24S-Methylcholestane (C28) 0.002 

ααα 20R 24R-Methylcholestane (C28) 0.003 

ααα 20S 24R/S-Ethylcholestane (C29) 0.004 

αββ 20R 24R-Ethylcholestane (C29) 0.002 

αββ 20S 24R-Ethylcholestane (C29) 0.002 

ααα 20R 24R-Ethylcholestane (C29) 0.002 

Alkanes  

Pentadecane (n-C15) 0.004 

Hexadecane (n-C16) 0.004 

Heptadecane (n-C17) 0.003 

Octadecane (n-C18) 0.003 

Nonadecane (n-C19) 0.002 

Eicosane (n-C20) 0.002 
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Heneicosane (n-C21) 0.004 

Docosane (n-C22) 0.003 

Tricosane (n-C23) 0.003 

Tetracosane (n-C24) 0.003 

Pentacosane (n-C25) 0.003 

Hexacosane (n-C26) 0.003 

Heptacosane (n-C27) 0.001 

Octacosane (n-C28) 0.003 

Nonacosane (n-C29) 0.004 

Triacontane  (n-C30) 0.004 

Hentriacotane (n-C31) 0.004 

Dotriacontane (n-C32) 0.004 

Tritriactotane (n-C33) 0.003 

Tetratriactoane (n-C34) 0.003 

Pentatriacontane (n-C35) 0.003 

Hexatriacontane  (n-C36) 0.004 

Heptatriacontane (n-C37) 0.004 

Octatriacontane (n-C38) 0.004 

Nonatriacontane (n-C39) 0.004 

Tetracontane (n-C40) 0.004 

PAHs  

Acenaphthylene (C12) 0.011 

Acenaphthene (C12) 0.006 

Fluorene (C13) 0.004 

Phenanthrene (C14) 0.002 

Anthracene (C14) 0.001 

Fluoranthene (C16) 0.001 

Pyrene (C16) 0.002 

Benzo[a]anthracene (C18) 0.003 

Chrysene (C18) 0.002 

Benzo[b]fluoranthene (C20) 0.004 

Benzo[j+k]fluoranthene (C20) 0.001 

Benzo[a]fluoranthene (C20) 0.002 

Benzo[e]pyrene (C20) 0.004 

Benzo[a]pyrene (C20) 0.004 

Perylene (C20) 0.004 

Indeno[1,2,3-cd]pyrene (C22) 0.002 

Dibenzo[a,h]anthracene (C22) 0.004 

Benzo[ghi]perylene (C22) 0.003 

Coronene (C24) 0.003 

Dibenzo[a,e]pyrene (C24) 0.001 

Dibenzothiophene (C12) 0.005 

9-Fluorenone (C13) 0.005 
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1-Methylphenanthrene (C15) 0.004 

2-Methylphenanthrene (C15) 0.005 

9-Methylanthracene (C15) 0.004 

3,6-Dimethyl phenanthrene (C16) 0.005 

Methylfluoranthene (C17) 0.006 

11H-Benzo(a)Fluorene (C17) 0.005 

Retene (C18) 0.006 

Benzo[ghi]fluoranthene (C18) 0.002 

Benzo(c)phenanthrene (C18) 0.004 

Benzo[b]naphtho[1,2-d]thiophene (C16) 0.005 

Cyclopenta[cd]pyrene (C18) 0.001 

Benz[a]anthracene-7,12-dione (C18) 0.005 

Methylchrysene (C19) 0.002 

Benzo(b)chrysene (C22) 0.004 

Picene (C22) 0.005 

 

Table 10: Organic species analysed in samples from Delhi using TD-GC-MS 

Species Class Compounds analysed 

N-alkanes C18- C40 

PAHs Acenaphthylene (Acy), Acenaphthene (Ace), Fluorene (Flu), Phenanthrene (Phe), 
Anthracene (Ant), Fluoranthene (FluA), Pyrene (Pyr), Chrysene (Chr), 
Benzo[a]anthracene (B[a]A), Benzo(c)phenanthrene (BcPhe), Benzo[b]fluoranthene 
(BbF), Benzo[j,k]fluoranthene (BjkF), Benzo[e]pyrene (BeP), Benzo[a]pyrene (BaP), 
Dibenzo[a,h]anthracene (DahA), Perylene (Per), Picene (Pic), Benzo(b)chrysene 
(BbC), Indeno[1,2,3-cd]pyrene (IcdP), Benzo(ghi)perylene (BghiPe),    
Dibenzo(ae)pyrene (DaeP), Coronene (Cor), Retene (Ret), Benz[a]anthracene-7,12-
dione (B(a)AQ), Benzo(ghi)fluoranthene (B(ghi)F), 9-Methylanthracene (9MA), 1 
Methyl phenanthrene (1MPhe), 2 Methyl phenanthrene (2MPhe), 
Benzo(a)fluoranthene (BaF), Methylfluoranthene  (MFluA), Benzo(b)naphtho[1,2-
d]thiophene (BN21T), Cyclopenta[cd]pyrene (CcdP), Dibenzothiophene (Dbt) and 
Methylchrysene (MChr), 11H-Benzo(a)fluorene (11H-BaF), 9-Fluorenone (FluO) 
and 3, 6-Dimethylphenanthrene (DMPhe) 

Hopanes 22,29,30-trisnorneophopane (TNOHO), 22,29,30-trisnorphopane, C29αβ-hopane, 
22,29,30-norhopane , C29αα- + βα –hopane, C30αβ–hopane 30αα-hopane, C30βα –
hopane, C31αβS-hopane (SHHO), C31αβR-hopane (RHHO), C32αβS-hopane 
(SBHHO), C32αβR-hopane (RBHHO), 22S-trishomohopane (STHHO), 22R-
trishomohopane (RTHHO), 22S-tretrahomohopane (STEHHO), 22R-
tretrahomohopane (RTEHHO), 22S-pentahomohopane (SPHHO) and 22R-
pentahomohopane (RPHHO). 

Steranes ααα 20S-Cholestane (ααα 20SC), αββ 20R-Cholestane (αββ 20RC), αββ 20S-

Cholestane (αββ 20SC), ααα 20R-Cholestane (ααα 20RC), ααα 20S 24S-

Methylcholestane (ααα 20S24S MC), αββ 20R 24S-Methylcholestane (αββ 20R24S 

MC), αββ 20S 24S-Methylcholestane (αββ 20S24S MC), ααα 20R 24R-

Methylcholestane (ααα 20R24RMC), ααα 20S 24R/S-Ethylcholestane (ααα 20S 

24R/S EC), αββ 20R 24R-Ethylcholestane (αββ 20R24R EC), αββ 20S 24R-

Ethylcholestane (αββ 20S24R EC), ααα 20R 24R-Ethylcholestane (ααα 20R24R 

EC) 
Sugars Saccharides: Fructose, Glycerol, Mannitol, Inositol, Erythritol, Xylitol, Arabitol, 

Sorbitol, Trehalose, Arabinose, Glucose + Xylose, Fructose, Galactose + Maltitol 
Anhydrosaccharides: Levoglucosan, Mannosan 
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Table 11: GC-MS SIM programs for the different compound classes using TD-GC-MS 

Parameter   Condition  

Injector temperature (ºC) 50 (increased to 275 over 11 minutes to desorb the 
organic species) 

Initial Oven Temperature (ºC) 30 

Initial Oven Hold Time (min) 11 min (during desorption) + 2 minutes 

Initial Oven Temperature Ramp Rate (ºC/min) 10 

Second Oven Temperature (ºC) 120 

Second Oven Hold Time (min) -  

Second Oven Temperature Ramp Rate (ºC/min) 8 

Final Oven Temperature (ºC) 310 

Final Oven Hold Time (min) 20  

Carrier Gas  He 

Carrier Gas flow rate   

Injector Mode  Splitless 

 

2.6.8 Carbon Analysis  
 

Elemental, organic and total carbon were analysed using a 1cm2 punch from the quartz filter sample 

using the Sunset Laboratory Thermo-Optical Carbon Aerosol Analyzer. The EUSAAR2 

(European Supersites for Atmospheric Aerosol Research) protocol was used for the measurement 

of carbon (Cavalli et al., 2010). The instrument uses methane (CH4) gas as an internal standard and 

multi-point external sucrose solution standards were used for quality control.  The carbon fractions 

(organic and elemental) are operationally defined; elemental carbon (EC) refers to “the thermally 

refractory carbon fraction released in oxidising conditions” (He/O2) while the rest of carbon is designated 

as organic carbon (OC) which is released in non-oxidising (He) conditions. In the first phase, the 

sample (filter punch of 1 or 1.5 cm2) was heated in step-wise temperature ramps to 650C (200, 

300, 450 and 650) and using a MnO2 catalyst, the adsorbed vapours were converted into CO2 which 

was subsequently reduced to CH4 in a methanator oven (hydrogen enriched nickel catalyst). The 

concentration of the CH4 was measured using a flame ionization detector (FID). After cooling the 

filter for a short period, the same process was repeated in the second phase with step-wise increase 

in temperature (500, 550, 700 and 850) but under oxidizing conditions (He/O2). The filter sample 
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was continuously measured for light transmission at 678 nm, and the filter transmission value (point 

at which the filter transmission is equal to transmission at the beginning) was used to derive the 

split point. Typically, carbon measured before the split point is referred to as OC and carbon 

measured after the split point is referred to as EC. However, during the temperature ramps, some 

of the organic carbon can undergo charring and form pyrolytic carbon (PC) which is then detected 

as EC. Based on the filter transmission values, the endpoint of PC evolution can be determined. 

At the point where the laser transmission is equal to the transmission value at the beginning, all PC 

is expected to be evolved completely. Internal calibration was performed using a fixed amount of 

CH4 at the end of every sample.    

Instrument detection limits were calculated to be 0.83±0.04 µg/cm2 for OC, 0.0002±0.0000 

µg/cm2 for EC and 0.83±0.04 µg/cm2 for TC.  

Filter blanks were analysed with the sample batches and the samples were blank corrected.  

Samples from Delhi were analysed using the DRI Model 2001 Thermal/Optical Carbon analyser 

with the IMPROVE_A protocol (Chow et al., 2007b). Eight carbon fractions (OC1, OC2, OC3, 

OC4, OP, EC1, EC2, EC3) were analysed for each sample.  The temperature profile for the 

measurement corresponds with the different fractions- OC1 (140C), OC2 (280C), OC3 (480C), 

OC4 (580C), OP (580C), EC1 (580C), EC2 (740C) and EC3 (840C). OC is defined as the sum 

of OC1-4 and OP and EC is defined as the sum of EC1-3 minus any OP.  

Measurements conducted using EUSAAR2 and IMPROVE_A protocols can vary, partly due to 

differences in the measurement principle (reflectance/transmittance), as well as differences in 

temperature ramps (Chow et al., 2004). Querol et al. (2013) highlighted the underestimation of EC 

with EUSAAR2 protocol.  
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2.6.9 Quantification of Ambient Concentration  
 

The following formula was used for calculation of ambient air concentrations:  

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑎𝑖𝑟 =
(𝑀 × 𝑉)

𝑣t
                             (4) 

Where  
M is concentration value obtained from the instrument (GC-MS/ICP-MS/IC) 
V is final volume of the sample extract (µl/ml)  
vt  is sampling time *flow rate (calculated based on the instrument)  

 

2.6.10 Data Analysis  
 

Microsoft Excel and SPSS 21.0 were used for data analysis. Receptor modelling was performed 

using the USEPA CMB Model 8.2. Details of the CMB model are described elsewhere (Chapters 

1 and 3).   
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CHAPTER 3- SENSITIVITY OF THE CMB MODEL TO PM2.5 

TRAFFIC PROFILES  
 

This chapter reports results for a chemical mass balance (CMB) model from a comparison of road 

traffic source profiles derived from dynamometer studies and ambient measurement-based 

profiles. Secondary data generated as part of a DEFRA project (Harrison and Yin, 2013) was 

utilized for preparation of a composite PM2.5 traffic profile, and subsequently tested with the CMB 

model.   

This chapter is adapted from the following research paper:  

Pant, P., Yin, J. and Harrison, R.M. (2014) Sensitivity of a chemical mass balance model to different 
molecular marker traffic source profiles. Atmospheric Environment, 82: 238-249.  

 

Graphical Abstract  
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3.1 Introduction  
 

Road traffic is one of the key urban air pollution sources, and in the last few decades a significant 

amount of research has been undertaken in order to understand the emission characteristics as well 

as processes that govern vehicular emissions (Shi and Harrison, 1999; Charron and Harrison, 2003; 

Phuleria et al., 2007; El Haddad et al., 2009).  

In the UK, road traffic emissions contribute nearly 30% of the total PM2.5 and constitute 30-50% 

of the urban and roadside increments of PM (AQEG, 2012). However, there has not been much 

analysis focused on the chemical characterization of traffic PM in the country, and the only 

published receptor modelling study using CMB (Yin et al., 2010) used non-local source profiles. 

AQEG (2012) recommended detailed analysis of exhaust emissions in order to improve the 

understanding of emission characteristics and their potential contribution to ambient PM.   

The objectives of this study include:  

 preparation of an ambient data-based composite traffic emissions profile (PM2.5) 

 assessment of the sensitivity of the CMB model to traffic profiles created using different 

techniques  

 

To the best of our knowledge, this is the first study in the UK (and Europe) to prepare a traffic 

emissions profile based on ambient data.  

 

3.1.1 Chemical Mass Balance Model  
 

As described in Chapter 1, receptor models utilize the PM composition data to determine its 

sources, and quantify their contributions. Such models assume that the concentrations of chemical 

species are preserved between sources and receptors, and use the principle of mass conservation 

for apportionment of PM mass to various air pollution sources. The CMB model uses the ambient 
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measurement data for chemical species together with the associated uncertainty and source profiles 

for different sources as inputs, and the output consists of estimates of the contribution of each 

source to the total mass. The model has several assumptions including non-reactivity of the 

chemical species and non-co-linearity of the source profiles (Watson et al., 2002). In addition, the 

number of species should be greater than the number of sources in order to derive results from 

the model. General principles underlying the model and the assumptions in the models are 

described in Chapter 1. A large number of markers can be used for source apportionment including 

EC, trace metals and organic species. In the case of traffic emissions, EC, PAHs, hopanes and 

several elements including Fe, Cu, Ba and Zn have been used as source markers.  

 

3.2 Methods  
 

PM2.5 samples were collected in Birmingham in 2007-2008 and London (UK) in the years 2010 

(summer) and 2011 (winter) respectively. Both sets of data were collected by Dr. Jianxin Yin and 

Dr. Johanna Gietl under a DEFRA project.   

 

3.2.1 Sampling Locations  
 

3.2.1.1 Urban Background (Birmingham)  
 

The urban background site in Birmingham, Elms Road Observatory Site (EROS), was located in 

an open field within the University of Birmingham campus (further description in Chapter 4).  

3.2.1.2 Rural (Birmingham)  
 

The rural site was located about 20 kilometres west of Birmingham at a distance of about 200 

metres from the A451, a moderate to heavily-trafficked road. The site is surrounded by unused 

land/grass.  
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3.2.1.3 Urban Background (London)  
 

This site was located in a cabin within a school campus in a residential area in west London (7 

kilometres from central London) at a distance of 10 metres from the road. Equipment from the 

national Automatic Urban and Rural Network (AURN) is also hosted at this site.  

3.2.1.4 Urban Roadside (London)  
 

The roadside site was located on the kerbside of a heavily trafficked (ca. 80,000 vehicles per day) 

six-lane highway (A501, Marylebone Road) running through a street canyon in central London. 

The sampling station was located at a distance of 1 metre from the road at height of 3 metres.  The 

site was located opposite the Madame Tussauds Museum and is surrounded by residential and 

commercial buildings. Equipment from the national AURN is also hosted at this site. 

 

3.2.2 Sampling and Chemical Analysis  
 

PM2.5 samples were collected on 150 mm quartz fibre filters using Digitel high volume samplers 

(DHA-80) in summer and winter seasons for a period of 24 hours in London.  In Birmingham, 24 

hour PM2.5 samples were collected for the first 5 days of every month on 20 cm x 25 cm quartz 

fibre filters using a Tisch TE-6070 high volume sampler. In addition, 24 hour PTFE filter samples 

(PM10 and PM2.5) were also collected at all sites using a collocated dichotomous Partisol sampler.  

OC and EC were measured using the Sunset Laboratory Thermal-Optical Carbon Analyser, 

molecular markers including hopanes, straight-chain alkanes, PAHs and levoglucosan were 

measured using GC-MS (Agilent GC-6890N plus MSD5973N) and Al and Si were measured using 

WD-XRF (Philips® MAGIX-PRO automatic sequential wavelength dispersive X-ray Fluorescence 
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spectrometer). Ions (SO4
2-, NO3

-, Cl-) were measured using ion chromatography (Dionex ICS-

2000).  

Further site details for Birmingham and London and chemical analysis procedures are available in 

Yin et al. (2010), Harrison and Yin (2010) and Gietl et al. (2010) respectively. Only PM2.5 samples 

were used for this study.  

The source profile was prepared using collocated samples from kerbside (Marylebone Road) and 

urban background (North Kensington) sites in London. Samples from the Birmingham sites (n= 

28 for each site) and the samples from the urban background site (n= 30) in London were used for 

the CMB analysis. 

 

3.3 Model Parameters  
 

The USEPA CMB 8.2 model was used for the estimation of source contribution to PM2.5-OC. Six 

key sources were included in the model runs including vegetative detritus (Rogge et al., 1993d), 

wood smoke (Fine et al., 2004; Sheesley et al., 2007), natural gas (Rogge et al., 1993c), coal 

combustion (Zhang et al., 2008), road dust (Chow et al., 2003) and traffic (described in the next 

section). Species used in the data analysis include elements (Al, Si), n-alkanes (C25-C35), hopanes 

(trisnorhopane [TNOHO], hopane [HOP], norhopane[NHO], S- and R-homohopanes [S+R 

HHO], S- and R-bishomohopanes [S+R BHHO], and S- and R-trishomohopanes [S+R THHO]), 

PAHs (benzo(a)pyrene [BaP], benzo(b)fluoranthene [BbF], benzo(a)fluoranthene [BkF],  Picene 

[Pic], indeno(123-cd)pyrene [IcdP], benzo(ghi)perylene[BghiPe]) and levoglucosan.  

Model outputs were evaluated using several different parameters. As a first step, goodness-of-fit 

parameters, r2 and chi2 values were checked and a chi-square value less than 4 and r2 value between 

0.8-1.0 were considered acceptable. T-stat values were used to determine the significance of a 
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particular source, and a value less than 2 indicates that the source is at or below the detection limit. 

Other parameters included the species’ C/M ratio and R/U ratio with acceptable values ranging 

between 0.75-1.5 and -2 to +2 respectively. Species that did not fit within the range were removed 

from subsequent runs but a base number of species were always included to ensure that the number 

of species is more than the number of sources. The MPIN (modified pseudo-inverse normalized) 

matrix was used as a diagnostic tool to identify the influential species for each source type with 

influential species showing values between 0.5 to 1 (Chow et al., 2007a). A discussion on the 

parameters is provided in Chapter 1.  

 

3.4 Source Profiles  
 

Selection of appropriate source profiles is one of the critical steps towards obtaining a good fit with 

the CMB model. Source signature refers to the mix of tracer elements and/or molecular markers 

used for identification of sources. Profiles are created using emission samples from a range of 

emitters of a particular source category and conducting physical and chemical analyses to arrive at 

the contributions of each tracer element/compound (Watson et al., 2002). A number of studies 

have reported source profiles for a wide range of sources (Rogge et al., 1993a, b, c, d; Fine et al., 

2004; Zhang et al., 2008; Yan et al., 2009). Sampling methodologies include hot and diluted exhaust 

sampling, ground-based sampling, airborne sampling, grab sampling and re-suspension in 

laboratory (Watson et al., 2002).  

 Source profiles are used for identification of source contributions to particulate matter using CMB 

model as well as to compare and validate results obtained from factor analysis models. The CMB 

model relies to a large extent on the accuracy of the source profiles used as input. However, in the 

absence of locally-relevant source profiles, the source contribution estimates can be prone to 

erroneous results. Further, in recent years, significant differences have been observed between 
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laboratory-tested and real-world mixed source traffic emissions (Ancelet et al., 2011; Yan et al., 

2009). 

The typical components of any source profiles are found to be more-or-less similar although the 

mass abundances vary depending on location and emitter characteristics. For example, soil/road 

dust is often found to contain elements such as Al, Si, Ca and Fe. Thus, different combinations of 

source profiles can provide statistically valid yet completely different solutions (Robinson et al., 

2006a). The selection of source profiles is thus critical to obtaining a good solution from the CMB 

model.   

Traffic emission profiles can be generated using several different methods including lab-based 

dynamometer studies, tunnel studies and twin-site studies (Rogge et al., 1993a; Lough et al., 2007; 

He et al., 2008; El Haddad et al., 2009; Yan et al., 2009). Since the twin site/tunnel/roadway 

(kerbside) measurements are carried out in the ambient environment, and for a mixed fleet, they 

are seen to be more representative of real-world emissions. Details about different methods for 

preparation of road traffic profiles are presented in Chapter 1.  

A number of papers have reported the estimation of the contribution of traffic emissions to total 

PM or a component of PM using twin-site studies (Yan et al., 2009; Bukowiecki et al., 2010; Gietl 

et al., 2010; Oliveira et al., 2010; Pey et al., 2010). With the assumption that all sources other than 

traffic (including any local or regional sources) have the same impact at both roadside and a nearby 

background site, the increment at the roadside site obtained using the equation 5 is used as a local 

traffic increment estimate (Yan et al., 2009; Wang et al., 2010).  

𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡(𝑋) = 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝑋)roadside − 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝑋)background     (5) 

Where  
Concentration(X) refers to the concentration of species X at roadside or background sites  

 



67 
 

3.4.1 Profile derived from Twin-site data  
 

To prepare a dimensionless profile for PM, the ratio of each of the species with respect to PM 

concentration for the same location needs to be calculated (Landis et al., 2007). In this study, a 

similar approach was used, and since it is assumed that the difference between the roadside and 

background site is the traffic increment (as in equation 5), the formula was modified accordingly 

(equation 6).  

𝑆𝑜𝑢𝑟𝑐𝑒 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 (𝑋) =  
𝑋roadside − 𝑋background

𝑂𝐶roadside − 𝑂𝐶background
                                        (6) 

Where  
(X) refers to the concentration of species X at roadside or background sites 

 

Table 12 presents the source profile that was prepared using this approach derived from 

measurements at the heavily-trafficked Marylebone street canyon site (Galatioto and Bell, 2013) 

and the typical urban background site of North Kensington (Bigi and Harrison, 2010).  The source 

profile value represents the species’ mean value and standard deviation refers to the profile 

uncertainty. Daily winter campaign samples (n = 26) were averaged to obtain the profile and the 

average standard error was used as source profile uncertainty. A similar approach has been reported 

by Yan et al. (2009) for preparation of a traffic profile for Georgia, USA. The traffic mix on 

Marylebone Road is broadly representative of UK traffic (Table 13). However, since the profile 

was generated based on a select group of organic markers, and the unique site characteristics at the 

roadside site (Marylebone Road) in London might have introduced some bias in the results.   
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Table 12: Source composition profile for traffic based on twin sites from London (this 

study-TWIN), tunnel site from France (El Haddad et al., 2009-TUN) and 80% of 

concentration data from the roadside site in London (this study-R80) (all values in µg/µg 

of OC) 

 

Compound TWIN (mean ± s.d.) TUN (mean ± s.d.) R80 (mean ± s.d.) 

EC 1.600±1.440 2.72±0.49 1.620±1.440 

TNOHO 0.00005±0.00004 0.00010±0.00001 0.00007±0.00004 

NHO 0.000200±0.00017 0.00036±0.0005  

HOP   0.00014±0.00012 0.00027±0.0005 0.00016±0.00010 

(S+R) HHO  0.00020±0.00018 0.00028±0.00004 0.00026±0.00015 

(S+R) BHHO 0.00030±0.00025 0.00010±0.00002 0.00036±0.00021 

(S+R) THHO 0.00028±0.00022 0.00008±0.00002 0.00029±0.00018 

BghiPe  0.000080±0.000055 0.000003±0.0000002 0.00011±0.00006 

 

 

Table 13: Percentage of fleet for different vehicle types (in vehicle kilometres) 

Road type 
Cars & 
Taxis 

Goods Vehicles 
Buses & 
Coaches 

Light Vans Motorcycles 

Motorways 75.2 11.7 0.45 12.2 0.42 

Rural A roads 78.5 6.7 0.67 13.4 0.78 

Urban A roads 82.1 3.23 1.51 12.1 1.10 

Minor Rural 
Roads 

78.6 2.35 0.88 17.2 0.99 

Minor Urban 
Roads 

81.7 1.29 1.82 13.7 1.50 

Marylebone Road 75.4 1.80 5.81 13.6 3.36 

 

 

Uncertainty for the various organic species in the profile was observed to be much higher 

compared to other published real-world and lab-based profiles. Similar observations of high 

uncertainties in ambient data have been reported by Yan et al. (2009) and Peltier et al. (2011) and 

may reflect in part, different traffic mixes on different days as well as higher uncertainties associated 

with ambient sampling. In addition, since twin-site data uses two different data points, the 

uncertainty is larger.  
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3.4.2 Tunnel Profile  
 

This was derived from measurements in a road tunnel in France reported by El Haddad et al. 

(2009). The profile (Table 12) was prepared by normalizing the species concentration in PM2.5 

against OC concentration in PM2.5 to derive the concentration in terms of µg (species)/µg of OC.  

 

3.4.3 Dynamometer Profiles  
 

Separate source profiles for gasoline, diesel and smoking (high-polluting) engines were taken from 

the work of Lough et al. (2007) derived from measurements of emission from US vehicles made 

using dynamometers. 

 

3.4.4 Comparison of Source Profile with Other Published Profiles  
 

Concentrations of most of the organic markers are broadly similar across the ambient data profiles 

with the exception of PAHs for which the tunnel profile from France reported lower PAH 

concentrations than roadside profiles from the UK and USA (Figure 6). This may be related to the 

very high uptake of diesel vehicles in France.  However, the freeway measurements by Phuleria et 

al. (2007) appear to suggest higher emissions from diesel vehicles. The dynamometer gasoline 

profile was observed to be very similar to the profiles derived from ambient data.  
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Figure 6: Comparison of London profile with other traffic and dynamometer profiles 

(TWIN- profile from this study; TUN- El Haddad et al. (2009); TWIN US- S &W- Yan et al., 2009; DYN-D, G &S- Lough 

et al., 2007) 

 

Ambient concentration data for hopanes from London and Birmingham were compared with a 

wide range of traffic profiles using ratio-ratio plots. Such plots are defined as  

“scatter plots of ratios constructed with data from three species, i.e. two species (which are the target species) 

whose values are normalized using the third reference species” (Robinson et al., 2006a).  

While the aggregation of the ambient data around a point signifies that CMB can produce a good 

result with a single source profile, distribution of data along a diagonal line indicates the need for 

at least two distinct profiles for good results. Plotting the source profiles with ratio-ratio plots using 

specific markers can be useful for determination of the most relevant source profiles and such plots 

have been used previously for comparison of ambient data with source profiles (Subramanian et 

al., 2006; Dutton et al., 2009; Gao et al., 2011).  
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Ambient data for hopanes and EC from London and Birmingham were plotted together with 

source profiles derived from laboratory dynamometer studies, as well as real-world mixed traffic 

emissions collected from the literature (Schauer et al., 1999; Watson et al., 1998; Schauer et al., 

2002; Lough et al., 2007; El Haddad et al., 2009; Yan et al., 2009) as illustrated in Figure 7. The 

composite traffic profile was found to be significantly different from lab-generated source profiles, 

while the comparison with other ambient traffic profiles revealed a similarity between ambient 

measurement data and ambient profiles, although the uncertainty (expressed as the standard 

deviation of daily data) is typically much higher for ambient profiles. The differences between the 

profiles were smaller in the case of homohopanes and bishomohopanes. Differences among the 

various profiles can be attributed to changes in vehicle technology over time and the dynamic fleet 

mix. Significant differences in the source profiles have been reported for different vehicle 

categories (Oanh et al., 2010). Use of different sampling and analytical protocols may also have an 

influence. 

The ambient air data in the case of hopane-EC plots generally fit to a straight line, suggesting a 

variable mixture of two sources, presumably reflecting gasoline and diesel vehicles. However, the 

huge difference in concentrations between the ambient air data and the majority of the 

dynamometer profiles is unexplained.  The diesel dynamometer profiles generally appear to be to 

the left of the gasoline profiles, but lie in a totally different region of the plot to the ambient air 

data.  This may relate to the rapidly evolving technology of diesel vehicles, and the different vehicle 

types studied.  In particular, the reductions in smoke emissions, and hence EC, from diesels will 

have led to increased hopane/EC ratios in newer vehicles.  
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Figure 7: Comparison of source profiles derived from ambient air measurements and 

dynamometer studies using ratio-ratio plots 
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3.5 Estimation of Traffic Particle Mass and Mass Closure  
 

Ambient concentrations measured in London (2010 summer data) and Birmingham (2007 data) 

were analysed using the CMB model to calculate source contributions to PM2.5 OC with the aim of 

comparing the sensitivity of the model to different types of traffic profiles. Three different traffic 

profiles were tested, i.e. dynamometer profiles for diesel, gasoline and smoking engines (hereafter 

referred to as DYN) (Lough et al., 2007), a twin-site London profile (hereafter referred to as 

TWIN) and a France tunnel profile (hereafter referred to as TUN) (El Haddad et al., 2009). The 

smoking engine profile used in the analysis includes off-road engines and Lough et al. (2007) 

reported smoker profiles to impact the estimation of source contribution from gasoline, diesel and 

smoker vehicles. In order to understand the contribution from the smoking engine profile, two 

analyses were conducted for the DYN profile: gasoline and diesel engine only (DYN-GD) and 

gasoline, diesel and smoking engines (DYN-A). For comparison, the average data from each of the 

sites was also run with a traffic profile consisting of 80% of the concentrations of the chemical 

species measured at the roadside site in London (hereafter referred to as R80). For coal 

combustion, wood combustion and road dust, a number of source profiles were tested initially to 

choose the best profile for the ambient measurement data and the selected profiles were then used 

together with different traffic profiles to obtain final results. A number of different source profiles 

were run and the statistical outputs such as standard error and the C/M ratio were assessed for 

each profile.  

Based on equation 7, “other OC” was calculated which is the OC unaccounted for by primary 

sources, and taken to represent secondary OC (SOC) (Yin et al., 2010).  

𝑂𝑡ℎ𝑒𝑟 𝑂𝐶 = 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑂𝐶 − ∑ 𝑆𝐶𝐸𝑠 (𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑠𝑜𝑢𝑟𝑐𝑒𝑠)                    (7) 
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Several other authors have also used the same approach and have also assumed the “Other OC” 

to be SOC (Subramanian et al., 2007; Docherty et al., 2008; Stone et al., 2009). Source contributions 

to PM2.5 mass were then calculated using ratios of PM2.5 mass/PM2.5 OC for each source applied to 

the PM2.5-OC SCEs obtained using CMB modelling as detailed in Yin et al. (2010). These were 

added to estimates of contributions from other sources (marine aerosol, sulphates, nitrates) using 

factors from the Pragmatic Mass Closure Model (Harrison et al., 2003) to test overall PM2.5 mass 

closure. 

In the CMB model, r2 and 2 values were observed to be between 0.96-1.00 and 0.02- 2.70 

respectively. As discussed in chapter 1, values lower than 4 are acceptable. Only the species with 

C/M ratio between 0.75-1.5 and R/U ratio between -2- +2 were used for the model runs. In 

addition, any profiles with a negative source contribution or a tstat <1 were removed from 

subsequent runs and markers for the different sources were monitored using the MPIN matrix 

available in the CMB model runs and were cross-validated with published marker data (Table 14).  

Table 14: Key markers used for the sources for both sites (based on MPIN matrix) 

Source  Key Marker (value of 1.00)   
Vegetative  detritus n-alkanes (A29, A31, A33) 

Wood Smoke Levoglucosan 
Natural Gas Benzo(k)fluoranthene 

Coal combustion Picene, Benzo(e)pyrene 
Road dust Si 

Traffic Benzo(ghi)perylene/ EC/Hopanes 
Diesel engines EC 

Gasoline engines Benzo(ghi)perylene 
Smoking engines Hopanes  

 

 

In the case of the daily data, although overall correspondence was observed between CMB runs 

using DYN and TWIN and TUN in terms of identification of sources and OC mass attribution, 

there were variations in certain cases with higher or lower attribution of a particular source. In 

some cases, however, while for one model, a source was deemed insignificant (tstat value < 2), the 
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other models showed it as a significant source. It is important to note that a tstat value >2 indicates 

95% or more confidence in the estimates.  

Results for apportionment of OC appear in Table 15.  Across all scenarios, the total traffic 

contribution to OC varied as DYN-A> TWIN> DYN-GD> TUN. The DYN-A profile attributed 

more OC to vehicles (including off-road engines) than the DYN-GD, TWIN and TUN profile. 

However, at both the urban background and rural sites in Birmingham, the results were comparable 

between DYN-A and TWIN profiles and DYN-GD and TUN profiles. Interestingly, while the 

TWIN profile used benzo(ghi)perylene as the key marker for traffic, the TUN profile used EC as 

the key marker. In the case of DYN profiles, EC, hopanes and benzo(ghi)perylene were observed 

to be the key markers for diesel, smoking and gasoline engines respectively. In the case of the 

London data, the DYN-A scenario causes the primary sources in the model to account for > 100% 

of OC without any SOC, which is clearly implausible.  In the Birmingham data, the choice of profile 

does not impact greatly on the outcome. The R80 profile produced very similar results to the 

TWIN profile (Table 15; Figure 8).  The traffic SCEs using TUN and DYN-A and DYN-GD were 

also compared against the traffic SCE using TWIN profile, and while good correlation was 

observed for urban background sites (r2>0.75), the correlation was much weaker in case of the 

rural site (r2~ 0.25-0.35).  

When mass closure of PM2.5 is attempted including other major sources using the coefficients 

reported by Harrison et al. (2003), closure is generally good, especially for the Birmingham data 

(Figure 9). The DYN-A run attributes a larger PM2.5 mass to road traffic than the other profiles, 

especially in the London data. Predictably, as for OC results, the total PM2.5 mass apportioned to 

traffic varied as DYN-A> TWIN> DYN-GD> TUN. Overall mass closure is good for both urban 

and rural sites and winter and summer seasons (Table 15). Results for the R80 profile are not 
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discussed for PM2.5 since very similar SCEs were observed for this profile compared to the TWIN 

profile.  

The CMB/Pragmatic Mass Closure Model resolved the PM mass reasonably well with all profiles 

with 89.8- 129.7% of PM2.5 mass resolved across all data sets (Table 15, Figure 9) and the DYN-

GD profile models the highest percentage mass across all sites. In general, all the CMB models 

(based on dynamometer profiles and the composite profiles) were able to apportion approximately 

similar OC mass, although dynamometer-based profiles apportioned a higher percentage of OC 

mass to traffic. 
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Figure 8: Source contribution estimates for OC at different sites 
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Figure 9: Source attribution of PM2.5 mass based on CMB result 

 

Subramanian et al. (2007) postulated that over-apportionment of OC mass can occur either due to 

missing primary sources or due to sampling artefacts. Between the three profiles, the lowest total 

OC mass was attributed by the TUN profile runs across all sites. In terms of resolution of the 

traffic source, CMB runs with dynamometer and composite profiles showed some differences. If 

only gasoline and diesel sources are considered (i.e. using DYN-GD), the TWIN profile had the 

maximum mass apportioned to the traffic source and the TUN profile had the minimum mass 

apportioned to traffic. However, with the inclusion of the smoking engine profile in DYN set of 

profiles, DYN-A apportioned the highest mass to the traffic source. Further, the tstat values for the 

DYN-A (tstat > 5 across all cases for diesel and smoking engine profiles) and TUN (tstat > 6 across 

all cases) profiles were consistently higher than the TWIN model (tstat between 2-3 in most cases). 

The lowest standard error was recorded for the DYN profiles (A & GD) which correlates with the 
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lower uncertainties associated with these profiles. Higher uncertainties in the case of TWIN and 

TUN profiles can be attributed to the errors associated with ambient measurements. Between the 

TWIN and TUN profiles, the standard error was lower in the case of the TUN profile. In some 

cases, the tstat for the traffic and gasoline had a value of less than 2 in the case of TWIN and DYN 

(A & GD) profiles respectively rendering the traffic source insignificant. No runs had tstat <2 for 

traffic in the case of the TUN profile. The R80 profile, run as a test yielded results very similar to 

the TWIN profile (Table 15, Figure 8).  

The MPIN matrix data for runs was also analysed to assess and cross-compare the influential 

species (defined as species with a value >0.7 in the matrix) for the different traffic profiles (Table 

14). While in the case of DYN profiles (A & GD), the same markers (EC for diesel engine, hopanes 

for smoking engine and benzo(ghi)perylene for gasoline engine, value = 1 across all runs) were 

consistently found to be influential across all runs, different species were recorded as influential in 

the case of the TWIN and TUN profiles. Overall, the TWIN profile showed a value of 1 for 

benzo(ghi)perylene across the runs and the TUN profile showed a value of 1 for EC. In both cases, 

the other key sets of markers, i.e. EC and hopanes were found to be influential across most runs. 

Similar results were reported by Chow et al. (2007a). There were cases, however, where EC and/or 

trisnorhopane were over- or underestimated, and in those cases, the key marker varied. 

Benzo(ghi)perylene and hopane were estimated correctly in most cases. For the TUN profile, n-

alkanes (A25 and 26) were also recorded as influential species in some cases. Interestingly, in the 

case of TUN profile runs, interference between the vegetative detritus and traffic profile was 

observed, and in many runs, the vegetative detritus SCE was insignificant or zero although positive 

SCEs were recorded using TWIN and DYN (A & GD) profiles.   

In a CMB sensitivity study, Sheesley et al. (2007) observed the biomass profile to impact the 

contribution estimate for traffic. Test runs were then conducted with the TUN profile excluding 
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the n-alkane data, but the SCEs for traffic were found to be more or less similar to the original 

runs. The other OC mass and the total mass apportioned, however, changed slightly as a result of 

positive SCEs for vegetative detritus. Lower percentages of mass were apportioned to traffic during 

the summer season by the model with both types of profile. Similar observations have been 

reported for the USA (Subramanian et al., 2007; Bullock et al., 2008) and Europe (El Haddad et 

al., 2011) where SOC has been reported to be higher in the summer season due to increased 

photochemical activity. Also, a higher percentage of SOC was estimated for the rural site compared 

to the urban background site, which is also reflected in the higher OC/EC ratio for the rural site. 

 

3.6 Model Performance  
 

The results obtained from the CMB model were tested against independent estimates as illustrated 

in Figure 10.  

 

Figure 10: Assessment of model performance using different metrics 
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Table 15: Traffic mass estimate (µg/m3) and total percentage (%) explained using different traffic profiles for (a) OC and (b) PM2.5 

(a) OC 

 

Site (season) 

   

OC mass apportioned to traffic   Total % OC mass apportioned 

DYN-A DYN-GD TWIN TUN R80 DYN-A DYN-GD TWIN TUN R80 

Urban background site, London 

(Summer) 

1.87 0.73 1.63 0.58 1.63 102 67.5 68.0 35.1 68.0 

Urban background site, Birmingham  1.63 0.80 1.29 0.64 1.29 73.2 43.2 63.2 39.5 63.1 

Urban background site, Birmingham 

(Summer)  

1.43 0.69 1.15 0.58 1.15 61.4 37.5 53.5 34.6 53.5 

Urban background site, Birmingham 

(Winter)  

1.91 0.89 1.93 0.74 1.93 90.6 50.1 94.1 46.1 94.1 

Rural site, Birmingham  1.33 0.55 1.21 0.48 1.01 77.1 46.3 75.6 42.3 67.7 

Rural site, Birmingham (Summer) 1.34 0.44 1.21 0.67 1.21 79.2 48.3 71.3 52.0 75.6 

Rural site, Birmingham (Winter)  1.26 0.66 1.10 0.48 1.10 76.2 48.1 70.5 39.4 70.5 
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(b) PM2.5  

 

Site (season) 

  

PM2.5 mass apportioned to traffic   Total % PM2.5 mass apportioned 

DYN-A DYN-GD TWIN TUN R80 DYN-A DYN-GD TWIN TUN R80 

Urban background site, London (Summer) 2.98 1.61 2.69 0.96 2.69 123 130 119 122 119 

Urban background site, Birmingham  2.61 1.61 2.13 1.61 2.13 104 108 106 97.5 106 

Urban background site, Birmingham (Summer)  2.39 1.50 1.90 1.50 1.90 108 111 109 100 109 

Urban background site, Birmingham (Winter)  2.93 1.70 3.18 1.70 3.18 94.7 101 98.1 89.9 98.1 

Rural site, Birmingham  2.06 1.13 2.00 0.80 1.67 111 116 113 116 114 

Rural site, Birmingham (Summer) 1.97 0.89 2.00 2.00 2.00 119 113 122 124 121 

Rural site, Birmingham (Winter)  2.07 1.36 1.81 0.79 1.81 101 106 103 106 103 
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3.6.1 Comparison of CMB Traffic Estimates with an Estimate based upon EC  
 

Assuming road traffic to be the dominant source of EC, traffic emission estimates were obtained 

for PM2.5-OC and PM2.5 mass using EC*0.35 and EC*1.35 respectively based on Pio et al. (2011).  

The traffic SCE outputs for PM2.5-OC and PM2.5 from the CMB model with different traffic profiles 

were compared against the EC traffic emission estimates (Table 16). The most similar estimates 

for primary vehicular emissions were observed for DYN-GD with the estimates being highly 

correlated (r2 > 0.85) with the traffic estimates obtained using EC for the Birmingham sites. For 

DYN-A, the dynamometer profiles produced a much higher estimate for the traffic contribution 

and this was due to a high SCE for the smoking engine profile. However, not all of that SCE is 

necessarily derived from road traffic as the source profile for the smoking engine includes off-road 

vehicles which are a significant contributor to PM2.5 in the UK (AQEG, 2012). Poor correlation 

was observed for all the profiles at the rural Birmingham site with correlation coefficients ranging 

between 0.26-0.41. The estimates obtained using the TWIN profiles showed similar correlation 

with the EC estimate compared to the estimates from the TUN profile.  

 

3.6.2 Comparison of Estimates of SOC  
 

Organic carbon can be present in the atmosphere as primary organic carbon (POC) (directly 

emitted) or SOC (formed by atmospheric chemistry). Generation of SOC source profiles is 

rendered difficult due to the complex chemistry of secondary organic aerosol formation (Bullock 

et al., 2008) and diversity of composition.  As a result, while the CMB model works well for 

attribution of POC sources such as biomass combustion and traffic, it is not able to apportion 

SOC due to lack of availability of appropriate source profiles (Stone et al., 2009; Guo et al., 2012; 

Schauer and Sioutas, 2012).   Consequently, as in Yin et al. (2010), the CMB model was run to 
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account for known primary sources of OC, and the difference between the sum of POC and 

measured total OC was attributed to SOC. 

EC is released directly into the atmosphere and can be used to estimate relative amounts of primary 

and secondary OC. One of the simplest approaches involves use of the ratio between OC and EC. 

Higher OC/EC ratios are expected in the conditions where SOC is dominant and the highest 

OC/EC ratios are reported in rural and remote sites (Pio et al., 2011). The EC-tracer method 

involves the use of EC as a tracer for POC, allowing SOC to be calculated (Turpin and Huntzicker, 

1995; Castro et al., 1999; Lee and Russell, 2007; Sheesley et al., 2007; Pio et al., 2011). Minimum 

ratios of OC/EC are taken as representative of primary OC (although they may be an over-estimate 

(Pio et al., 2011) and OC above that ratio is taken to be SOC.  Given that the EC tracer method is 

liable to under-estimate SOC (Pio et al., 2011), an excess of “other OC” over SOC might be 

expected, but in most cases the “other OC” is similar to, or less than the SOC.   

The method as outlined by Castro et al. (1999) was used (equation 8) and estimates of daily SOC 

were made for each of the sites. 

𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑂𝐶 = 𝑇𝑜𝑡𝑎𝑙 𝑂𝐶 − (𝐸𝐶 ∗ (
𝑂𝐶

𝐸𝐶
) min)                                                                 (8) 

Where  
Total OC refers to the concentration of OC  
EC refers to the concentration of EC  
(OC/EC) minimum refers to the minimum OC/EC gradient 

The quality of fit between the estimates of SOC from the CMB model and the EC tracer method 

was evaluated by regression analysis (Table 17).  In the Birmingham (urban background), London 

(urban background-summer) and Birmingham (rural) datasets, the three estimates are in broad 

agreement. 

Table 16: Comparison of the traffic estimates from the CMB model with the traffic estimate 

obtained using EC 

Site (season) OC PM2.5 
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r2  r2  

Urban background, London (Summer)  

DYN-GD 0.99 y = 1.28x + 0.01 1.00 y = 0.75x + 0.01 

DYN-A 0.94 y = 1.45x + 1.04 0.98 y = 0.80x + 1.24 

TWIN  0.71 y = 1.55x + 0.37 0.71 y = 0.66x + 0.60 

 TUN 0.84 y = 0.61x + 0.29 0.84 y = 0.26x + 0.48 

Urban background, Birmingham (Summer)  

DYN-GD 0.87 y = 1.31x + 0.00 0.95 y = 0.76x - 0.03 

DYN-A 0.78 y = 2.37x + 0.33 0.89 y = 1.09x + 0.37 

TWIN  0.67 y = 1.93x + 0.14 0.67 y = 0.83x + 0.23 

 TUN 0.73 y = 0.79x + 0.14 0.73 y = 0.34x + 0.23 

Rural, Birmingham (Summer)  

DYN-GD 0.97 y = 1.21x - 0.00 0.92 y = 0.73x - 0.10 

DYN-A 0.41 y = 1.12x + 0.88 0.61 y = 0.71x + 0.91 

TWIN  0.26 y = 1.00x + 0.55 0.26 y = 0.43x + 0.91 

 TUN 0.16 y = 0.32x + 0.37 0.16 y = 0.14x + 0.62 

Note:  y = CMB model estimate; x = estimate derived from EC concentration 

 

Table 17: Comparison of the Other OC estimate from the CMB model with the SOC 

estimate obtained using EC tracer method 

Site (season) r2  

Urban background, London (Summer)   

DYN-A 0.81 y = 0.92x - 0.69 

TWIN  0.70 y = 0.83x + 0.07 

 TUN 0.73 y = 0.80x + 0.74 

Urban background, Birmingham (Summer)   

DYN-A 0.92 y = 0.86x - 0.52 

TWIN  0.91 y = 0.86x - 0.10 

 TUN 0.90 y = 0.90x + 0.49 

Rural, Birmingham (Summer)   

DYN-A 0.76 y = 0.79x - 1.22 

TWIN  0.69 y = 0.73x - 0.71 

 TUN 0.92 y = 0.88x - 0.67 

 

 

3.7 Conclusions  
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It is evident from Figure 6 that PM2.5 traffic profiles of molecular markers measured in the field 

show generally broad agreement. However, as Figure 7 shows, where plotted as normalised 

abundance (marker/EC), the field data can differ by orders of magnitude from dynamometer data, 

and the variation between dynamometer studies is typically greater than that between field 

measurements. Perhaps surprisingly, both, however, give broadly similar estimates of traffic PM2.5 

mass with the CMB model. Those from the composite PM2.5 profile (TWIN) are probably better, 

as judged from the estimates from the EC tracer method, and the mass closures. Correlations of 

the traffic estimates using the TWIN profile against those obtained using EC were broadly similar 

to those obtained using the DYN (A & GD) profiles. The estimates from TUN profile, however, 

were much more weakly correlated, particularly at the rural site. This could be due to the 

interference between the traffic and vegetative detritus sources for TUN model runs as explained 

in the previous section.  It is possible that other tunnel profiles more representative of the UK 

might perform better. It was also observed that selection of species for inclusion in the profile can 

determine the overall modelling output, both for estimation of the traffic source and the overall 

model output.  

Based on the current analysis, it can be concluded that both the dynamometer and composite (twin-

site) profiles can provide reasonable estimates of the traffic contribution. In cases where 

dynamometer profiles are not available, composite profiles can be used to estimate traffic 

contribution to OC or PM mass. However, it is important to bear in mind that the high uncertainty 

associated with the composite traffic profile can impact upon CMB model output since the model 

takes into account both the profile uncertainty and the ambient data uncertainty. Further, traffic 

source profiles based on ambient data can cause mis-apportionment of other sources since similar 

compounds are often reported from different sources, for e.g. PAHs from different combustion 

sources. Thus, it is important to select species for the profile in such a way that interference with 

other sources would be minimal. Another consideration for the use of ambient data for preparation 
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of source profiles is the impact of oxidation of marker species in the atmosphere (Robinson et al., 

2006b). This can also impact the model output as it is assumed that the species are chemically 

stable.   
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CHAPTER 4- PARTICULATE MATTER IN BIRMINGHAM, UK  
 

 

This chapter presents results of the measurement campaign for PMx (PM2.5 and size-segregated PM) 

in Queensway Tunnel (QT) and at Elms Road Observatory Site (EROS), Birmingham in 2012. The 

campaign was undertaken with an aim to characterize the vehicular emissions in a tunnel 

environment and compare them to typical urban background values and to prepare a composite 

mixed fleet profile for traffic emissions.  

Sampling was carried out in collaboration with Amey, UK.   

 

 

Graphical Abstract  
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4.1 Introduction  
 

Road transport constitutes an important source of PM emissions in urban areas, and motor vehicles 

are an important source for carbonaceous aerosols particularly for the particles in the fine size 

range (aerodynamic diameter < 2.5 µm) (Kam et al., 2012; Keuken et al., 2012). Health risk (in 

terms of toxicity) associated with air pollutants has been linked to concentrations of transition 

metals and PAHs, both of which are present in high concentrations in traffic emissions (Ayres et 

al., 2008). PM and diesel engine emissions have been classified as group 1 carcinogens by the IARC, 

and several recent studies have linked vehicular emissions to adverse health effects (HEI, 2010; 

Godri et al., 2011; Slezakova et al., 2013).   

Only a few studies have focused on the characterization of PM emissions from road traffic in the 

UK. Between late 1990s and early 2000s, several papers reported on concentrations of PAHs in 

near-road environment (e.g. Smith and Harrison, 1996) but there are a very limited number of 

studies focusing on analysis of molecular markers in high traffic environments in the UK (Harrad 

et al., 2003; Yin et al., 2010). Recent research literature has focused on sources such as wood 

burning and secondary PM (Harrison et al., 2012b; Fuller et al., 2014; Charron et al., 2013) barring 

Lawrence et al. (2013) who reported composition of PM10 in a road tunnel in Hatfield (UK). The 

only receptor modelling study from the UK highlighted the need for generation of local 

representative source profiles to overcome the uncertainty introduced by profiles from North 

America (Yin et al., 2010). An ambient composite traffic profile was subsequently generated using 

existing data from UK sites and tested against dynamometer profiles with the CMB model 

(discussed in Chapter 3).  During this study, both ambient PM2.5 and road dust PM10 traffic 

emissions were characterized, but the data on road dust characterization in presented in Chapter 5. 

As discussed in Chapter 1, traffic emissions can be characterized using a suite of methods including 

dynamometer analysis and ambient measurements. Source profiles prepared using ambient data 
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offer the advantage of being representative of the on-road fleet, and they reflect emissions in the 

real-world conditions better than dynamometer-based profiles. However, factors such as variations 

in speed and fleet characteristics (i.e. proportion of HDVs and LDVs) can cause variability in the 

ambient measurements.  

There have been studies focused on traffic emissions’ characterization in tunnel environment in 

Europe including Austria (Laschober et al., 2004; Handler et al., 2008), Handler et al. (2008), France 

(El Haddad et al., 2009; Fabretti et al., 2009), Italy (Zanini et al., 2006), Portugal (Oliviera et al., 

2011; Almeida-Silva et al., 2011; Pio et al., 2013; Alves et al., 2015), Sweden (Wingfors et al., 2001) 

and UK (Luhana et al., 2004; Lawrence et al., 2013).    

The objectives of this study were: 

 to characterize PM2.5 emissions from mixed road traffic in a typical road tunnel in UK and;  

 to prepare a composite road traffic (exhaust) source profile.    

 

4.2 Methodology 
 

Sampling was conducted at the A38 Queensway Tunnel (QT) and the Elms Road Observatory Site 

(EROS), Birmingham, United Kingdom between September 11 and 21, 2012.  

4.2.1 Sampling Locations  
 

4.2.1.1 A38 Queensway Tunnel, Birmingham (QT)  
 

This tunnel is one of the major road tunnels in Birmingham and runs in the North/South direction. 

It is a 544 metres long twin bore tunnel with two lanes on each side and has a cross-sectional area 

of 25 m2. Average vehicle speed in the tunnel is 50 kilometres/hour and the modal split is presented 

in Figure 11. An estimated 89000 vehicles travel through the tunnel each day (Azzi, 2012). The 

tunnel is ventilated naturally.  
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The samplers were placed in the emergency layby area directly adjacent to the road at a distance of 

1.5 m in the southbound lane. At the time of the sampling, the tunnel was closed at the night for 

maintenance work in the northbound lane between 10 pm and 6 am. The site has been used for 

PM measurements previously (Birmili et al., 2006).  

 

 

 

 

Figure 11: Site locations and modal split at A38 Queensway Tunnel (Azzi, 2012) 

 

Motorcycles

Cars/Taxis

Buses/Coaches
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The modal split at the site (Figure 11) was found to be similar to the country average- cars and 

taxis (82.1%), buses and coaches (1.51%), light vehicles (12.09%), goods vehicles (3.23%) and 

motorcycles (1.10%) (DfT, 2013). The fuel split at the national level is nearly 70:30 for gasoline 

and diesel. Data on the fuel split was not available for the tunnel or the background site (DfT, 

2013).   

4.2.1.2 Elms Road Observatory Site (EROS)  
 

This is an urban background site located in an open field within the University of Birmingham 

University (52.45◦ N; 1.93◦W). The site is about 3.5 km southwest of the centre of Birmingham. 

There are no significant PM sources in the vicinity, and nearest anthropogenic sources are a nearby 

railway and some moderately trafficked roads. Occasionally, agricultural machinery is used in the 

open field. There is little residential accommodation within 300m. The site has been used as an 

urban background site in a number of previous research studies (Yin et al., 2010; Pant and Harrison, 

2014).  The samplers were placed at a height of ~1.5 m from ground level next in an open field.  

 

4.2.2 Sampling 
 

 Ambient air samples were collected for PM using high volume sampler (n=12 at each site) and 

MOUDI (integrated 48 hour size-segregated aerosol, (n=4 at QT and n=3 at EROS). A description 

of the sampling instruments is provided in Chapter 2.  

Integrated 24 hour PM2.5 (PM with aerodynamic diameter <2.5 µm) samples were collected using 

the high volume samplers (Digitel DHA-80) on pre-baked quartz filters while integrated 48 hour 

size-segregated PM samples were collected using 8-stage rotating MOUDI (Model 100, MSP 

Corporation, Minneapolis, Minnesota, USA) using 47 mm PTFE and 37 mm quartz back-up filters. 

Both samplers were collocated at QT and EROS and measurements were conducted 

simultaneously.   
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PM mass data was obtained from collocated dichotomous samplers at both sites.  

Average wind speed during the sampling period was 4.8±1.23 m/s with a predominant south, 

south-west direction. 

 

4.2.3 Analytical methods  
 

The analytical procedures are described in Chapter 2.  

 

The quartz filter samples collected from HVS were analysed for Ti, V, Cr, Mn, Cu, Zn, Sn, Sb and 

Ba using ICP-MS. Size-segregate aerosol samples (PTFE filters with a quartz back-up filter) were 

analysed for Al, Si, Fe by WD-XRF and ICP-MS was used to analyze the digested samples for Ti, 

V, Cr, Mn, Cu, Zn, Sb, Pb and Ba.  

The quartz filter samples were used to analyse OC and EC using the carbon analyser and GC-MS 

was used to analyse PAHs (BbF, BkF, BeP, BaP, IcdP, Pic, BghiPe and Cor), alkanes (C24-C35) 

and hopanes (TNOHO HOP, NHO, S,R- HHO, S, R-BHHO and S, R- THHO).  

4.2.4 Data Analysis  
 

Data analysis has been carried out using Microsoft Excel and SPSS (Version 21). Species with blank 

concentrations more than 10% were not included in the analysis (Cr was excluded). Missing or 

concentrations below detection limits were replaced with 0.5*detection limit.  Species’ correlation 

analysis was conducted using SPSS based on Pearson Correlation and the correlation values 

reported in the text are for p<0.01 unless otherwise mentioned.  

Using the data obtained from MOUDI samples, a continuous size distribution was obtained using 

the numerical inversion method described in Keywood et al. (1999). This approach has previously 

used in several studies (Allen et al., 2001a; Gietl et al., 2010).  
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4.3 Results  

4.3.1 Concentrations  

4.3.1.1 Particulate Matter  
 

Average 24-h PM2.5 (fine) and PM2.5-10 (coarse) concentrations were observed to be 56.1 and 46.9 

µg/m3 at QT and 2.38 and 2.88 µg/m3 at EROS. Average PM10 and PM2.5 concentrations at the 

urban background site in Birmingham (AURN Site number UKA00479) were recorded as 

9.13±4.46 and 8.65±3.27 µg/m3 for the same time.  

A bimodal particle size distribution (PSD) was observed for PM mass at both sites with peaks in 

coarse and accumulation modes (Figure 12). The observation is broadly similar to previous studies 

across site types in the UK (Allen et al., 2001; Gietl et al., 2010; Harrison et al., 2012; Taiwo et al., 

2014). At QT, 62.4% of the total PM was in the fine range (PM2.5 and less) while at EROS, 80.2% 

of the PM mass was in the fine range. In comparison, Lawrence et al. (2013) reported 65% of the 

total PM in the fine range in the Hatfield Tunnel (UK).  

Differences in the estimation of the fine fraction of PM (aerodynamic diameter < 2.5 µm) can vary 

due to differences in cut-points of the sampling equipment. In the case of the dichotomous 

sampler, a virtual impactor separates the PM2.5 (fine) fraction from PM2.5-10 (coarse) fraction. In the 

case of MOUDI, however, differences in flow rate can lead to variation in the cut-point, and hence 

the distribution between fine and coarse fractions.  
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Figure 12: Average mass size distribution for PM at QT and EROS (based on MOUDI) 

(solid line- QT (primary axis), dashed line-EROS (secondary axis); in µg/m3) 

 

4.3.1.2 Carbon  
 

At QT, average 24-hour OC and EC concentrations were observed to be 16.8 and 16.9 µg/m3 

respectively while at EROS; the concentrations were 1.45 and 0.70 µg/m3 (Table 18, Figure 13). 

OC and EC were strongly correlated at EROS (r2=0.91, p<0.01) but significant correlation was 

not observed at QT.   

 

Table 18:  Summary of carbon concentration (PM2.5) at QT and EROS (µg/m3) 

Species 
QT EROS 

Mean  S.D.  Minimum Maximum Mean  S.D.  Minimum Maximum 

OC  16.8 3.29 11.7 22.9 1.45 0.76 0.44 3.12 

EC 16.9 2.38 14.1 22.0 0.70 0.55 0.16 1.89 

 

EC is used as a marker for traffic, and is found in the atmosphere as a primary species. Previous 

research has utilized the ratio between OC and EC to determine the influence of traffic. A high 
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OC/EC ratio indicates higher contribution of OC, indicating lower traffic emissions whilst a low 

OC/EC ratio indicates a high contribution from traffic emissions. The OC/EC ratio was observed 

as 0.997±0.16 for QT and 2.72±1.45 for EROS. This is consistent with previously reported studies. 

He et al. (2008) observed a ratio of 0.49±0.04 for PM2.5 emissions in a traffic tunnel (~20% HDVs) 

in China while Ancelet et al. (2011) observed the OC/EC ratio of 1.7 PM2.5 emissions in a tunnel 

in New Zealand.  

 

Figure 13: Concentration of OC and EC (PM2.5) at QT and EROS 

 

 

 

4.3.1.3 Elements  
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considering that the current study focused on PM2.5 while the measurements in Hatfield were 

conducted on PM10, and Ba and Sb, markers for brake wear, are expected to be present in higher 

concentrations in the coarse fraction of PM. Concentrations observed in QT were also found to 

be similar to concentrations reported elsewhere in Europe with the exception of V which was 

found to be present in much lower concentrations in QT (Laschober et al., 2004; Fabretti et al., 

2009).  

 

 

Figure 14: Concentration of the elements (PM2.5) at QT and EROS (ng/m3) 
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from non-exhaust emissions (Funasaka et al., 1998; He et al., 2008; Ancelet et al., 2011). It should 

be noted, however, that this observation cannot be directly interpreted as true for all types of road 

traffic emissions since contributors to PM emissions in a tunnel will differ from those in a normal 

roadway environment and that both chemical composition and emission factors will be different.  

Ratios between different elements can be used to distinguish between different sources. Various 

authors have proposed characteristic Cu/Sb ratio for brake wear particles including 4.6 ± 2.3 in 

USA (Sternbeck et al., 2002) and 7.0±1.9 in Europe (PM10)
 (Amato et al., 2009a). In the current 

study, the Cu/Sb ratio was observed to be 8.95 ± 0.92 for QT and 6.84 ± 5.34 for EROS and 

broadly falls within the proposed ratios. Gietl et al. (2010) reported the Cu/Sb ratio of 9.1 (PM2.5) 

for a heavy traffic road (Marylebone Road) in London (UK) while Lawrence et al. (2013) reported 

the ratio value to be 7.2 (PM10) for a tunnel site in UK.  In comparison, Brito et al. (2013) reported 

a Cu/Sb ratio of 8.2 for PM2.5 in a road tunnel in Sao Paulo, Brazil and Amato et al. (2011a) reported 

a ratio of 8.0 at a roadside site in Spain. The Cu/Zn ratios were observed to be 1.05 ± 0.13 and 

0.31 ± 0.28 at QT and EROS respectively. Pulles et al. (2012) reported a Cu/Zn ratio of 0.13 for 

gasoline and 0.35 for diesel fuel in the UK.  The higher ratio value at QT indicates a source other 

than exhaust emissions. 

 

Table 19: Correlation coefficients (Pearson correlation) between elemental species (PM2.5) 

(only correlations above 0.5 are reported; QT-green and EROS-yellow; *refers to significance at 0.05 and **refers to significance at 0.01) 

 Ti V Mn Cu Zn Sn Sb Ba Ca 

Ti 1 .987** .976** .965** .992** .937** .916** .900** .980** 

V  1 .967** .946** .980** .928** .928** .895** .957** 

Mn   1 .992** .989** .985** .973** .967** .934** 

Cu .782**   1 .981** .992** .958** .975** .940** 

Zn    .544 1 .959** .938** .931** .962** 

Sn     .725* 1 .976** .991** .896** 

Sb      .717* 1 .979** .848** 

Ba    .545  .679* .862** 1 .852** 
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Ca         1 

 

 

4.3.1.4 Organic Species  
 

Hopanes  

Hopanes are used as markers for traffic emissions, and are typically released during the combustion 

process. They are normally found in lubricating oil used for vehicles, and thus cannot be used to 

distinguish between diesel and gasoline vehicles. Total hopane concentration in PM2.5 was observed 

to be 19.6±5.2 µg/m3 at QT and 0.62±0.48 µg/m3 at EROS. HOP and NHO were the most 

abundant hopane species at both sites (Table 20).  

Table 20: Concentration of hopane congeners (PM2.5) at QT and EROS (ng/m3) 

Species 
QT EROS 

Mean  S.D.  Minimum Maximum Mean  S.D.  Minimum Maximum 

TNOHO 1.10 0.25 0.75 1.54 0.04 0.02 0.02 0.07 

NHO 4.49 1.13 2.94 6.55 0.12 0.09 0.09 0.30 

HOP  6.49 1.70 4.12 10.03 0.17 0.11 0.11 0.39 

SHHO 1.65 0.46 1.07 2.57 0.09 0.03 0.05 0.13 

RHHO 1.46 0.42 0.96 2.35 0.11 0.02 0.06 0.14 

SBHHO 1.49 0.45 0.93 2.43 0.05 0.09 0.09 0.26 

RBHHO 1.12 0.32 0.78 1.79 0.05 0.09 0.08 0.21 

STHHO 1.01 0.31 0.70 1.68 0.02 0.05 0.04 0.12 

RTHHO 0.79 0.23 0.51 1.29 Not detected in any sample 

 

Alkanes  

Alkanes are emitted from natural as well as anthropogenic sources. Lower alkanes are typically 

associated with combustion emissions while higher alkanes, particularly the odd-numbered alkanes 

(C29, C31, C33) are associated with biogenic (vegetative emissions). The alkane profiles for the 

sites are markedly different. Traffic emissions-associated alkanes such as C24 and C25 were the 

most abundant in PM2.5 at QT while C27 and C29 were the most abundant at EROS (Table 21). 

Higher alkanes were present in much smaller concentrations at QT.  
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Table 21: Concentration of alkane (PM2.5) congeners at QT and EROS (ng/m3) 

Species 
QT EROS 

Mean  S.D.  Minimum Maximum Mean  S.D.  Minimum Maximum 

C24  142 0.34 95.5 195 0.40 0.21 0.22 0.63 

C25 127 1.11 81.9 186 0.50 0.28 0.29 0.82 

C26 67.8 0.23 44.3 97.4 0.37 0.21 0.23 0.61 

C27 43.8 0.56 26.2 57.4 0.54 0.22 0.40 0.80 

C28 26.1 0.28 12.6 36.7 0.31 0.18 0.18 0.51 

C29 48.5 1.01 32.2 62.9 0.66 0.3 0.44 0.99 

C30 29.4 1.55 17.8 44.8 0.21 0.1 0.14 0.34 

C31 40.7 1.66 24.9 56.6 0.50 0.28 0.29 0.82 

C32 27.1 2.22 13.1 43.4 0.16 0.003 0.16 0.17 

C33 28.8 3.88 15.0 47.1 0.35 0.23 0.16 0.61 

 

PAHs 

Table 22 provides a summary of PAH concentrations in PM2.5 at both sites. BbF and BkF were 

found to be the most abundant PAHs.  The ratio between BghiPe and IcdP (1.56 for QT and 1.42 

for EROS) was similar to previously reported values. Pic and DbaA were detected in less than 20% 

of the samples, and this is plausible since these PAHs are typically associated with coal combustion.   

Table 22: Concentration of PAH (PM2.5) congeners at QT and EROS (ng/m3) 

Species 
QT EROS 

Mean  S.D.  Minimum Maximum Mean  S.D.  Minimum Maximum 

BbF 2.16 0.54 1.27 2.97 0.07 0.07 0.03 0.21 

BkF 1.55 0.31 0.80 2.00 0.07 0.05 0.04 0.14 

BeP 1.75 0.28 1.28 2.02 0.08 0.07 0.05 0.22 

BaP 0.95 0.29 0.41 1.36 0.06 0.04 0.05 0.14 

Per 0.24 0.06 0.18 0.34 0.05 0.01 0.06 0.07 

IcdP 0.32 0.06 0.22 0.46 0.05 0.04 0.04 0.13 

DahA detected in less than 20% samples 0.02 0.02 0.00 0.04 

Pic detected in less than 20% samples 0.02 0.02 0.00 0.04 

BghiPe 0.50 0.08 0.39 0.65 0.07 0.03 0.06 0.14 

Cor 0.14 0.02 0.11 0.18 0.05 0.01 0.05 0.07 
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4.3.2 Size Distributions  
 

The size distribution of a particular element or compound not only influences the potential health 

impact (in terms of respiratory deposition – Harrison et al., 2010), but also influences the extent of 

atmospheric dispersion (Allen et al., 2001). Size distributions, measured in terms of mass, number 

or surface area, are helpful for determining sources of PM, and can be used to analyse the potential 

health impact (Harrison et al., 2000). In a traffic environment, a number of factors can influence 

the size distribution including, but not limited to vehicle fleet mix, road type and grade, 

meteorological conditions (e.g. season type) and distance from the road (Zhu et al., 2006; Beddows 

et al., 2009; Hays et al., 2011; Song and Gao, 2011).   

For individual elements, the size distributions were observed to be markedly different. Some 

elements showed similar size distributions at both sites (e.g. Fe, Si) while others had distinct 

distributions at both sites (e.g. Al, Cu). Figure 15 presents the size distributions for the various 

elements at QT and EROS. Unimodal size distributions were observed for Si and Al with peaks in 

the coarse mode (~3-4 µm) at QT and EROS although an additional accumulation mode peak was 

observed for Al (~0.2 µm) at EROS. The accumulation mode peak observed in the case of Al was 

also observed by Taiwo et al. (2014) and could potentially be attributed to railway emissions. Fe 

showed bimodal size distribution at both sites, with primary (~3 µm) and secondary peaks (~0.5-

0.6 µm) in coarse and accumulation modes respectively. Fe is associated both with crustal dust but 

brake wear is another important source. Mn also showed a bimodal size distribution although the 

coarse mode peaks was predominant at QT. At EROS, the primary peak was in the accumulation 

mode with a smaller, secondary peak in the coarse range.  Zn was found to be unimodal at QT but 

bimodal at EROS.   
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At QT, primary peaks for Cu, Sb and Ba were found to be very similar (~2-3 µm) which have been 

associated with brake and tyre wear (Gietl et al., 2010).  While Ba and Sb showed unimodal size 

distributions, Cu had a smaller accumulation mode peak. However, at EROS, Ba showed a bimodal 

size distribution with peaks in the accumulation and coarse modes. For Pb, accumulation and 

coarse mode peaks were observed at both sites with the primary peak in the coarse mode (~3 µm) 

at QT and in the accumulation mode (~0.6 µm) at EROS. Size distribution for V was very similar 

to Pb at EROS with the primary peak in accumulation mode.  
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Figure 15: Size distribution for various elements at QT and EROS (based on MOUDI) 
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(solid line- QT, dashed line-EROS; primary axis for QT and secondary axis for EROS; Al, Si, Fe in µg/m3 and others in ng/m3) 

 

Analyses of the fine/coarse ratios can also aid in understanding the contributions of natural and 

anthropogenic sources to a particular element. Soil-associated elements including Al, Si and Fe 

were found to have a higher fraction of coarse mass at both QT and EROS. It is important to note 

that Fe is also emitted from brake pads in the coarse mode, and the total Fe concentration is due 

to a combination of crustal and non-exhaust sources. However, all the other elements were 

predominantly in the fine fraction at EROS (Figure 16). At QT, on the other hand, Pb and Zn had 

a high fraction of fine mass while Sb, Ba and Cu had high fraction (>50%) of coarse mass. Coarse 

fraction of Sb and Ba can be associated with brake wear emissions. A higher percentage of elements 

in the fine fraction at EROS, with very similar peaks in the accumulation mode, could potentially 

be due to the emissions from the railway tracks in the vicinity. Elements such as Al, Fe, Cu, Zn 

and Ca are reported to be rich in emissions from railways (wheels, brake pads, rails etc.) with PM 

peaks in the fine range (0.25-0.6 µm) from brake discs used in railways (Abbasi et al., 2011). Braking 

action upon approach to the university and wear and tear of wheels, brakes and rail tracks can 

contribute to fine particle emissions in the vicinity of the site. In addition, most trains running 

along this route are electric, and particles can be released due to wear and tear of the power lines. 

However, further research is necessary to understand the possible contribution of railways to 

ambient PM levels in Birmingham.  
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Figure 16: Fraction of fine and coarse PM for elements at QT and EROS 

 

4.3.3 Traffic Enrichment  
 

In order to understand the contribution of traffic on the species’ concentrations, traffic enrichment 

was calculated for the various species based on the equation 9 (Amato et al., 2011b).  PM2.5 

measurement data was used for this analysis.  
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𝑅𝑜𝑎𝑑𝑠𝑖𝑑𝑒 𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 = (
𝐶(𝑋)t − 𝐶(𝑋)ub

𝐶 (𝑋)t
) ∗ 100                                          (9) 

Where  
Ct is concentration of species X (in PM) at QT (t-tunnel)   
Cub is the concentration of species X (in PM) at EROS (ub-urban background)  

 

In case of elements, more than 80% increment was observed for all the measured elements between 

EROS and QT with the highest increments for elements such as Sn (98.7%), Ba (98.2%) and Cu 

(97%) and lowest increment for Mn (82.1%) in PM2.5. Surprisingly, the roadside enrichment for Zn 

in PM2.5 was lower than the other elements.  

In case of carbon (PM2.5), enrichment of 95.9% and 91.4% was observed for EC and OC 

respectively. Alkanes showed the highest enrichment among the molecular marker species, with 

almost 100% enrichment.  

This approach has been used previously to understand the enrichment due to traffic emissions in 

urban areas with respect to background locations by Oliviera et al. (2010) and Amato et al. (2011b) 

although the level of enrichment was lower compared to the results from this study.  

 

4.3.4 Composite Traffic Source Profile  
 

For vehicular emissions, source profiles are typically generated using dynamometer-based 

sampling. However, as discussed in Chapter 1, composite (i.e. mixed gasoline and diesel) profiles 

can also be generated using ambient measurements. Source profiles can be prepared with respect 

to PM as well as OC. USEPA SPECIATE 4.4 profiles are typically listed as the weight percentage 

of total PM mass and the related uncertainty.  

Ambient profiles can be prepared using tunnel/roadway measurements, and one of the methods 

uses the assumption that the roadside increment (i.e. the difference in concentration between the 

roadside and background concentrations of PM and its constituents represent the traffic emissions’, 
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and the increment is used to prepare a source profile (µg/ µg OC). The approach is discussed in 

detail in Chapter 3.  QT and EROS measurements for key traffic markers were used in the following 

equation to generate the profile (Table 23).  

𝑃𝑟𝑜𝑓𝑖𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 =  
𝐶𝑜𝑛𝑐𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑋)QT − 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑋)EROS

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑂𝐶)QT − 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑂𝐶)EROS
                             (10) 

Where  
Concentration (X)QT/EROS refers to concentration of species X at QT/EROS  
Concentration (OC)QT refers to concentration of species OC at QT  

The tunnel profile was compared against the twin-site profile reported in Chapter 3 and other  

traffic profiles including ambient measurement- based (France- El Haddad et al., 2009; USA- Yan 

et al., 2009) and dynamometer-based profiles (Lough et al., 2005). The profile was found to be 

broadly similar to the other ambient data-based profiles (Figure 18).  

Coefficient of divergence (CoD), a self-normalizing statistic, is often used to understand the degree 

of similarity between PM observations across sites (Wongphatarakul al., 1998). CoD values range 

from 0 to 1; values closer to zero indicate a higher degree of similarity while values closer to one 

indicate dissimilarity. Recently, the statistic has been also used to calculate the degree of similarity 

between source profiles (Kong et al., 2011). For the current study, CoD was calculated using the 

following formula (Wongphatarakul al., 1998):  

 

𝐶𝑂𝐷 = √
1

𝑛
∑

(𝑥𝑖𝑗 − 𝑥𝑖𝑘)2

(xij+xik)2

𝑘

𝑖=1

                                         (11) 

Where  
xij  is the concentration of species i in profile j 
xik  is the concentration of species i in profile k 
n is the number of species used in calculation 
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In order to understand the stability of the species, ratios of individual values to mean values were 

calculated, and a value of 1 represents absolute similarity. The variation within the different 

compound classes is presented in Figure 17. Hopane species and EC exhibit the least amount of 

variability, while several elements (e.g. Mn) exhibited highest degree of variability. Higher variability 

in case of elements can be due to the various emission sources (including soil, non-exhaust and 

exhaust emissions) which can lead to higher uncertainties while hopanes are emitted as exhaust 

emissions. The data indicates that carbonaceous species are more stable for use as markers for the 

exhaust emissions, and are better suited for use in receptor modelling. 

Table 23: Composite PM2.5 traffic profile based on tunnel measurements (µg/ µg OC) 

Species Class Species Concentration Uncertainty 

Carbon EC 1.0487 0.1724 

Elements 

Ca 0.1007 0.0516 

Ti 0.0011 0.0005 

V 0.0001 0.00003 

Mn 0.0015 0.0008 

Cu 0.0062 0.0019 

Zn 0.0057 0.0023 

Sn 0.0013 0.0004 

Sb 0.0007 0.0002 

Ba 0.0044 0.0011 

Alkanes 
C24 0.0093 0.0025 

C25 0.0083 0.0024 

Hopanes 

TNOHO 0.0001 0.00001 

NHO 0.0003 0.00004 

HOP 0.0004 0.0001 

HHO 0.0002 0.00003 

BHHO 0.0002 0.00002 

THHO 0.0001 0.00002 

PAHs 

IcdP 0.00002 0.00001 

BghiPe 0.00003 0.00001 

Cor 0.00001 0.00000 
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Figure 17: Variations within species classes in the tunnel profile (PM2.5) (individual colours represent 

samples) 

 

 

Figure 18: Comparison of tunnel profile with other ambient and dynamometer-based 

profiles 

(all profiles for PM2.5, R- ambient (UK [R] and USA[R]- twin-site, France[R]-tunnel) and D- dynamometer)  
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Highest similarity was observed for the two UK profiles (CoD= 0.32) while the highest variation 

was observed for the UK tunnel profile and the USA dynamometer profile (CoD= 0.65) (Figure 

19). While EC and hopane congener concentrations were relatively similar across profiles, 

differences were observed in concentrations of BghiPe, and alkanes. Some difference in PAH 

concentrations is expected due to the differences in fleet composition (diesel/gasoline split) across 

the countries. The lowest concentration of BghiPe was observed in France, where the diesel: 

gasoline split is nearly 50:50. In addition, differences in concentrations can result from variations 

in vehicle fleet and the age of vehicles.   

 

 

Figure 19: Comparison between the tunnel profile and other reported source profiles 
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4.4 Conclusions  
 

PM2.5 samples (total and size-segregated) were analysed at a road tunnel and an urban background 

site in Birmingham (UK). The samples were analysed for traffic-associated elements and molecular 

markers and significant enrichment was observed both for elemental and organic species at the 

tunnel site.    

Si and Fe were found to be the most abundant elements in PM2.5 in the tunnel, and Cu, Zn and Ba 

were the most abundant trace elements. Unimodal size distribution as observed for Si and Al at 

QT but a smaller secondary peak was also observed for Al at EROS. Analysis of size distribution 

data indicates the potential impact from the nearby railway tracks at EROS, but this needs to be 

analysed further. Characteristic coarse-mode peaks were observed for tracers of non-exhaust 

emissions- Cu, Sb and Ba, indicating the contribution of non-exhaust emissions. The Cu/Sb ratio 

was found to be broadly similar to previously reported characteristic ratio for brake –wear 

emissions.  

A composite PM2.5 traffic source profile was prepared using the Lenschow approach (Lenschow et 

al., 2001), and compared against the other profile prepared for UK (Chapter 3). Overall, the profile 

prepared using the tunnel measurement was similar to the other UK composite PM2.5 profile as 

well as other reported profiles. However, a key difference was the lower uncertainty estimates for 

the individual species for this profile compared to the other profile prepared using the ambient 

measurements at ambient sites. High uncertainties associated with species in a source profile can 

introduce errors during receptor modelling with CMB, as the statistics associated with the model 

are dependent on the uncertainty estimates. Preparation of source profile using monitoring data 

from tunnels offers an advantage over monitoring data from other ambient sites  (e.g. kerbside) 

since the influence of other sources as well as meteorology is limited. For example, Boogard et al. 
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(2011) reported variations in PM concentrations due to differences in wind speed and direction 

and/or vehicle speed in the Netherlands, particularly in street canyons.  

This is the first, and one of the few studies that have focused on characterization of exhaust 

emissions in a road tunnel in the UK. The source profile prepared as a part of this study can be 

used for future receptor modelling studies as well as for improvement of emission inventories in 

UK and possibly in Europe.   

Comparison of the profile from this study with the profile discussed in Chapter 3 indicates distinct 

advantage in the case of tunnel emissions’ profile in the lower uncertainties associated with the 

individual species. 
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CHAPTER 5- PM10 ROAD DUST IN INDIA AND UK  
 

 

Road dust emissions (PM10 fraction) were characterized and source profiles were prepared for UK 

and India. In addition, contributions of the key sources of PM10 road dust- brake wear, tyre wear 

and re-suspended dust were quantified using an empirical source estimation method. 

   

 Graphical Abstract  
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5.1 Introduction  
 

Particulate matter (PM) emissions from road vehicles include exhaust and non-exhaust (wear 

and tear of vehicle parts, re-suspension of dust)  emissions (Pant and Harrison, 2013). Non-

exhaust emissions are more abundant in the coarse size fraction and can deposit on the roadside 

and can subsequently be resuspended due to vehicle activity. Road dust (RD) consists primarily of 

coarse-sized particles derived from sources such as wear and tear of vehicle components (brakes, 

tyres and clutches) and road surface, engine corrosion, tailpipe emissions, crustal dust and other 

emission sources. However, similarity in composition between emission sources such as brake wear 

and road dust and other emissions which can deposit on the road before being resuspended renders 

it difficult to distinguish the contribution of the various sources (Bukowiecki et al., 2010).  RD can 

be a significant source of trace metals, particle-bound PAHs and other chemical species. Several 

studies on RD have reported elemental and organic marker concentrations in different size 

fractions (Han et al., 2007; Morillo et al., 2007; Agarwal, 2009; Amato et al., 2009a; Faiz et al., 2009; 

Duong and Lee, 2011; Gunawardana et al., 2011; Martuzevicius et al., 2011). Crustal dust/soil are 

characterized by elements such as Si, Al, Ti, Mn and Fe while non-exhaust emissions are typically 

characterized by trace metals such as Cu, Ba, Sb, Sn (brake wear) and Zn (tyre wear) (Wahlin et al., 

2006; Gietl et al., 2010). However, several authors have also used molecular markers including 

PAHs, n-alkanes and benzothiazoles (Lough et al., 2005; Kwon and Castaldi, 2012). A detailed 

description of non-exhaust emissions is provided in Chapter 1, section 1.2.2.  

Enrichment of both elements and organic species has been reported in RD samples compared to 

background soils worldwide (Han et al., 2007; Liu et al., 2007; Agarwal, 2009; Duong and Lee, 

2011; Luo et al., 2011; Peltier et al., 2011).  

It is important to note that the concentration profile for contaminated soil as well as non-exhaust 

emissions is unique for every region and can vary based on several parameters such as traffic 
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( volume and pattern, fleet characteristics), road surface type and climate and geology of the region 

(Omstedt et al., 2005; Amato et al., 2011a; Kwak et al., 2013). Most of the research as well as 

policy action in the last few decades has largely focused on exhaust emissions, and with a decline 

in percentage contribution of vehicle exhaust emissions to ambient PM, the contribution of non-

exhaust PM is becoming important (Thorpe and Harrison, 2008; Denier van der Gon et al., 2013). 

Detailed accounts of sources and properties of non-exhaust emissions and ambient measurements 

of non-exhaust components are provided elsewhere (Luhana et al., 2004; Thorpe and Harrison, 

2008; Pant and Harrison, 2013; Amato et al., 2014a).  

Much of the reported research so far has been conducted on suspended road dust (bulk 

PM fraction) with a very few studies focused on the characterization and source apportionment 

of the PM10 fraction of road dust (Wahlin et al., 2006; Amato et al., 2009a; Han et al., 2009; 

Amato et al., 2011a). Since RD is a significant source of PM, it is important to prepare detailed 

source emission profiles. Both India and UK lack detailed chemical source profiles for the road 

dust source. For Delhi, source profiles for PM10  road dust (paved, unpaved and soil) were 

published as part of a larger study but the molecular markers were not analysed in detail (Sethi and 

Patil, 2008).  

The aims of this study include:  

 characterization of the chemical composition of PM10 road dust 

 preparation of PM10 road dust source profiles for Birmingham (UK) and New Delhi 

(India) and  

 quantification of the contribution of the non-exhaust sources to the dust in Birmingham 

and New Delhi 
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To the best of our knowledge, this is the first study to undertake detailed elemental as well as 

molecular marker characterization of the PM10 fraction of road dust both in India and the UK. 

 

5.2 Methodology  
 

5.2.1 Sampling Sites  
 

Samples were collected at three sites in Birmingham and at one site in New Delhi. Figure 20  

provides the modal split at the sites B-D (DfT, 2014; Goel, 2014).  

 

University South Road, UoB Campus, Birmingham (Site A): This site is located within the 

university campus. 

A38 Bristol Road, Birmingham (Site B): This is one of the major arterial roads in south-west 

Birmingham with a dual carriageway with 32,000 vehicles/day (DfT, 2014).  

A38 Queensway Tunnel (QT), Birmingham (Site C): This is one of the major road tunnels in 

Birmingham and runs in the North/South direction. It is a 544 metres long twin bore tunnel with 

two lanes on each side. Average vehicle speed in the tunnel is 50 kilometres/hour and an estimated 

89000 vehicles travel through the tunnel each day (Azzi, 2012).  

CRRI, New Delhi (Site D): Samples were collected adjacent to the Mathura Road/National 

Highway 2. Mathura Road is one of the major arterial roads in Delhi with an average traffic flow 

of 170,000 vehicles per day (Goel, 2014). Buses, LDVs, and two- and three-wheelers are not 

restricted but trucks (diesel, BS-III) are not allowed between 0730 to 1100 hours and 1700 to 2130 

hours while buses (Delhi Police, 2014). 
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Figure 20: Modal split at the sites in Birmingham (UK) and New Delhi (India) 

 

5.2.2 Sampling  
 

Road dust samples were collected at Site C (QT) in September 2012 using the dust sampler 

(Chapter 2, Section 2.2.4). Samples were also collected at Sites A and B (University Road-South 

and Bristol Road) in July 2013 and at Site D (Delhi) in June 2013.  At Sites A, B and D, samples 

were collected on quartz (QM-A Whatman 47mm) and PTFE (47mm) filters (n= 10 for each type) 

while at Site C, samples were collected with PTFE filters only (n=10). Samples were collected on 

both sites of the road close to the traffic junction, and at least two samples were taken in the middle 

lane (Figure 21).  
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Figure 21: Layout for road dust sample collection 

 

5.2.3 Analytical Methods  
 

Samples were analysed using methods described in Chapter 2.  

The PTFE filter samples were analysed for Al, Si, Fe for sites A-D by WD-XRF and the samples 

from Site C were also analysed for S. ICP-MS was used to analyze the digested samples for Ti, V, 

Cr, Mn, Cu, Zn, Sb and Ba. In addition, samples for sites A, B and D were analysed for Sn and Ca 

while samples for site C were analysed for Ni, and Cd. 

The quartz filter samples from Sites A, B and D were used to analyse OC and EC using the carbon 

analyser and GC-MS was used to analyse PAHs (BbF, BkF, BeP, BaP, IcdP, Pic, BghiPe and Cor), 

alkanes (C24-C35) and hopanes (TNOHO HOP, NHO, S, R- HHO, S, R-BHHO and S, R- 

THHO).  

 

5.3 Results  
 

5.3.1 Mass Loadings 
 

Average mass loadings were observed to be 16.9 ± 12.9 mg/m2, 9.3 ± 5.6 mg/m2, 12.1 ± 

9.3 mg/m2 and 72.9 ± 24.3 mg/m2 for sites A, B, C and D respectively. The mass loading for PM10 

was found to be much higher in New Delhi (India) compared to Birmingham (UK). An average 

mass loading of 9 mg/m2 has been reported for the city centre in Barcelona (Spain) while mass 
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loadings of 2.4-21.6 mg/m2  have been reported for different site types across Spain (Amato et al., 

2009a; 2013a). In Zürich, average mass loading was observed to be 0.7 ± 0.4 mg/m2 in a tunnel 

and 1.3 ± 1.3 mg/m2 in one of the street canyons while in Utrecht, the loading was reported to 

be 3.6 mg/m2 (Amato et al., 2011a; Amato et al., 2013a). Elemental concentrations are presented 

in Figure 22, and average mass loadings for elements and organic species are presented in Table 

24. 

 

Figure 22: Concentrations of various elements in PM10 road dust at Sites A-D (µg/g)   

 

Mass loadings (µg/m2) for all the species were found to be higher in case of Site D (New Delhi) 

compared to the Birmingham sites (Sites A, B and C) while the concentrations (µg/g) were found 

to be highest in the road tunnel environment in Birmingham (Site C). Si had the highest 

concentration among the crustal elements, and Zn and Cu were the most abundant traffic-related 

elements at Sites B and C whereas Zn and Ba were the most abundant in case of Site D. Spada et 

al. (2012) reported similar results with higher concentrations of Cu, Zn, Pb, Ba, Sn and Sb in 

road dust samples from tunnel compared to roads in Houston (USA). Concentrations (µg/g) of 

traffic-associated elements (Cu, Zn, Ba) were lower in Birmingham as well as Delhi compared to 
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the results reported for Barcelona and Zürich by Amato et al. (2011a) although concentrations for 

Mn and Fe were broadly similar. The site in Delhi had a higher proportion of HDVs as well as 

unpaved surfaces, and these could be contributing to the higher mass loading. Previous studies have 

reported higher dust loadings for areas with HDVs (Abu Allaban et al., 2003; Amato et al., 2013a). 

Between the road and tunnel sites in Birmingham, concentrations were consistently higher at Site 

C (tunnel) compared to the road site (Site B) with the exception of Al whose concentration was 

higher at Site B. The sampling site on campus presented an anomaly. While the site had a very low 

volume of traffic compared to the other Birmingham sites, the PM mass loading as well as 

concentrations were comparable to Site B (a high-traffic road). This could partly be explained by 

the higher percentage of medium duty and HDVs plying on the road and the parking lot in the 

vicinity, but further analysis is required.  

Table 24: Average mass loadings of various species in the PM10 road dust (in µg/m2) 

(a) Metals  

Species Site A Site B Site C Site D 

PM10 (mg m-2) 16.9 ± 12.9  9.34 ± 5.56  12.1 ± 9.3  72.9 ± 24.3 

Ti 12.0±10.3 3.82±2.62 8.0±4.28 33.8±9.81 

Cu 5.5±4.33 4.22±2.64 11.1±5.04 12.1±4.61 

Zn 15.8±11.9 8.69±5.56 37.8±19.2 50.9±22.0 

Ba 5.4±4.33 3.89±2.21 8.83±4.06 31.0±11.5 

Sb 0.69±0.55 0.82±0.48 1.52±0.72 1.04±0.37 

Mn 8.95±7.19 5.39±3.58 7.87±3.83 31.9±11.4 

V 0.53±0.43 0.29±0.18 0.52±0.27 2.53±0.88 

Cr 0.92±0.60 0.85±0.44 1.69±0.86 4.10±1.33 

Cd na* na 0.13±0.05 na 

Ni na na 1.19±0.83 na 

Sn 0.7±0.6 0.58±0.36 na 0.90±0.38 

Al 201±154 696±359 712±280 2696±355 

Si 814±624 2322±1250 2785±1075 8907±1468 

Fe 580±459 496±339 2785±1075 2258±855 

Ca 489±392 278±169 na 3632±1307 

S 12.0±10.3 na 101±41 na 
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(b) Carbonaceous Species  

Species Site A Site B Site D 

OC 218±142 570±213 1774±404 

EC 0.51±0.61 88±47 317±86 

TNOHO 0.09±0.05 0.95±0.31 1.20±1.25 

HOP 0.36±0.31 3.29±1.29 5.75±5.98 

NHO 0.67±0.57 5.88±1.66 7.00±5.95 

SHHO 0.24±0.17 1.82±0.60 2.65±2.30 

RHHO 0.22±0.14 1.56±0.55 2.42±2.05 

SBHHO 0.28±0.16 1.77±0.37 2.65±2.24 

RBHHO 0.25±0.07 1.32±0.28 1.91±1.65 

STHHO 0.21±0.15 1.26±0.29 2.12±1.77 

RTHHO 0.20±0.09 0.90±0.21 1.61±1.33 

C24 0.03±0.01 0.18±0.08 0.31±0.27 

C25 0.15±0.03 0.66±0.20 0.37±0.32 

C26 0.12±0.03 0.35±0.26 0.40±0.25 

C27 0.33±0.12 0.99±0.48 0.98±0.58 

C28 0.39±0.19 1.42±0.85 0.95±0.62 

C29 0.29±0.09 1.55±0.91 1.53±1.40 

C30 0.11±0.03 0.67±0.27 0.40±0.46 

C31 0.31±0.20 0.96±0.10 0.92±0.82 

C32 0.23±0.08 1.01±0.21 0.31±0.26 

C33 0.18±0.05 1.02±0.11 0.39±0.30 

BbF 0.07±0.05 0.57±0.16 1.92±1.15 

BkF 0.10±0.07 0.62±0.16 1.44±0.68 

BaP 0.09±0.06 0.42±0.10 0.97±0.53 

BeP 0.08±0.05 0.48±0.14 1.24±0.54 

Picene BDL** 0.03±0.04 0.18±0.14 

IcdP 0.09±0.03 0.38±0.09 1.17±0.58 

BghiPe 0.09±0.03 0.40±0.08 1.08±0.53 

Cor 0.03±0.03 0.16±0.05 0.34±0.17 

 

Results obtained in the current study were also compared with previously reported values of 

road dust from USA (Apeagyei et al., 2011), Europe (Morillo et al., 2007; Amato et al., 2009a; 

Sadiktis et al., 2012), China (Han et al., 2009; Wei et al., 2009; Wang et al., 2011), South Korea 

(Duong and Lee, 2011) and Ghana (Essumang et al., 2006) (Figure 23). Concentrations of most 

elements were within the reported range and corresponded with previously reported values. 

Concentrations for brake wear-related elements such as Sb and Ba were lower in case of New 
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Delhi compared to Birmingham as well as other European sites while Ca concentration in Delhi 

(Site D) was found to be higher than other reported studies. Ca has been used as a marker for 

construction activity (Chen et al., 2012). The concentration of Sn was found to be higher in 

Birmingham compared to New Delhi whereas concentrations of other traffic-related elements such 

as Cu, Ba, Zn and Sb were found to correspond with other reported datasets. However, in this 

study, the concentration of Ti was significantly lower across all sites compared to previously 

reported concentrations. For the organic species, concentrations were found to be close to the 

higher range of the previously reported values. In the case of Delhi, correspondence was seen 

between current observations and previously reported concentrations.  

It is important to note that elemental concentrations can vary based on the type of tyres, brakes 

and pavement used at the site type. For example, summer tyres create a lower dust loading (tyre 

dust) compared to non-studded and studded tyres. Although both Birmingham and New Delhi use 

summer tyres all year round, the composition of tyres and pavement types are expected to be 

different. Chemical composition of brakes and tyres is expected to be different in UK and India. 

In addition, concentrations of elements such as Si, Al and Fe can vary based on local crustal 

composition. For example, Fe was found to be 3.4%, 5.3%, 7.3% and 3.1% for Sites A, B, C and 

D respectively while Al was found to be 1.3%, 7.8%, 7.2% and 3.98%. Chen et al. (2012) reported 

the abundance of Fe and Al as 2% and 3.5% in China while Amato et al. (2011a) reported Fe 

abundance of 4.6%, 5% and  5.8%  and  Al  abundance  of  2.8%,  8%  and  13.6%  for  Zurich,  

Barcelona  and  Girona respectively.  
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Figure 23: Comparison of (i) elemental and (ii) molecular marker concentrations found in 

current study with previous studies  
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5.3.2 Correlation Analysis  
 

Based on Pearson correlation analyses, two major groups of elements were identified for sites 

B and C, each with statistically significant correlations among the elements in the group: crustal 

elements including Al, Si and Fe ( group 1)  and traffic-related elements such as Cu, Zn and Sb 

(group 2). In Beijing (China), Chen et al. (2012) reported four groups: crustal elements (Al, Fe, Ca, 

Ti), salt (K, Mg, Na), sulphur and other trace elements. At site C, Ni was not found to be correlated 

to either group. Nickel is typically attributed to industrial and fuel oil emissions and has also been 

attributed to engine metal wear and tear (Hays et al., 2011). In UK, Pulles et al. (2012) reported a 

high Ni concentration in gasoline.  

Ca showed a high correlation with the traffic-associated elements at sites A and B. At site D, high 

correlation was observed between Zn, Cu and Ba but it was weaker for Sn. Antimony (Sb), on 

the other hand, was not found to be correlated to other traffic-associated elements. Interestingly, 

while Ti was found to be correlated to traffic-related elements at Sites A, B and C, a higher 

correlation was observed for Ti with Al and Si at Site D. The traffic-related elements could not be 

subdivided into tyre/brake wear categories based on correlation analysis. PAHs showed very high 

correlation to one another (r2 >0.98).  

 

5.3.3 Enrichment Factor Analysis  
 

To further understand the sources of the elements, enrichment factors (EFs) were calculated based 

on continental crust concentrations using Al as the reference element (Taylor and McLennan, 

1995) (Figure 24). EFs above 10 imply contribution from anthropogenic emissions.   

𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 𝐹𝑎𝑐𝑡𝑜𝑟 (𝑋) =  

{
𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝑋)

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒)
} 𝑠𝑎𝑚𝑝𝑙𝑒

{
𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝑋)

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒)
} 𝑐𝑟𝑢𝑠𝑡𝑎𝑙

                                  (12) 
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Where  
Concentration (X) refers to concentration of species X in sample/earth’s crust  
Concentration (Reference) refers to concentration of Al in sample/earth’s crust 
 

Use of Al as the reference element was based on previous studies in Birmingham that identified 

minimal traffic-associated increment for Al (Birmili et al., 2006). Corresponding to the correlations 

observed in the dataset, highest EFs were observed for Cu, Zn, Sb, Cr and Sn. Other studies have 

also reported high EFs for Ba, Cr, Cu and Sb (Birmili et al., 2006; Dongarra et al., 2009; Oliviera et 

al., 2011). The highest enrichment factors were observed Cd (~1000), Sb (>100) and Sn (~100), 

particularly at Site A. In Delhi, while Cd had a high enrichment, Sn and Ba (tracers of brake wear) 

were not highly enriched. Zn was not significantly enriched at any of the sites.  High enrichment 

of Sb, Sn and Cu at Site A indicates high contribution from brake wear, and this is plausible since 

the site is located close to a parking area, and vehicles are also parked along the road. Si, Ti and V 

showed hardly any enrichment and are likely contributed by soil.   

 

Figure 24: Enrichment factors for PM10 road dust for sites A-D 
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5.3.4 Elemental Ratios 
 

Ratios between different elements can be used to distinguish between different sources. Various 

authors have proposed characteristic Cu/Sb ratio for brake wear particles including 4.6 ± 2.3 in 

USA (Sternbeck et al., 2002) and 7.0±1.9 in Europe (Amato et al., 2009a). In comparison, this 

ratio is 125 for upper continental crust (UCC) indicating much higher concentration of Cu in the 

crust compared to Sb. It is important to note that this ratio can vary based on the Cu content of 

the brakes, which differs among manufacturers (Pant and Harrison, 2013). Ratio of Cu/Sb from 

brake pads also varies based on the type of material used; for example, NAO brake lining 

material typically has a Cu/Sb ratio of 11.5 (Iijima et al., 2007) whereas the ratio is 1.33 for semi-

metallic brake pad material (Schauer et al., 2006).  

In the current study, the overall Cu/Sb ratio was observed to be 8.19±1.32 for Site A, 5.14±0.30 

for Site B, 7.50±0.79 for Site C and 11.5±0.82 for Site D. The ratio values fall within the proposed 

characteristic ratio for the traffic locations (Sites B and C) in Birmingham indicating the 

contribution of brake wear particles to the PM10 fraction of road dust and are similar to the Cu/Sb 

ratio of 7.5 reported for low-metallic brake discs in USA (Schauer et al., 2006).  However, a 

higher ratio was observed in the case of Site D (India) which could either be due to other sources 

of Cu in the area or differences in the composition of brake pads. Brake pad composition is known 

to vary across geographical regions (Amato et al., 2012b; Pant and Harrison, 2013).  

A summary of other elemental ratios is provided in Figure 25. In order to understand the 

contribution of crustal material at different sites, the average Si/Al and Fe/Al at the three sites were 

compared to the ratios in the upper continental crust (UCC). The Si/Al ratio was found to be similar 

across sites (3.3-3.9) and corresponded with the average UCC composition (3.9). However, Fe was 

found to be enriched across all sites with maximum enrichment at Site B. In the UK, Fe is expected 

to be emitted from brake discs with some contribution from soil. In the case of Delhi, Fe is 
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known to be present in high concentration in soil in Delhi due to the ferrogenous quartzite found 

in the Aravalli Hills (Sarin et al., 1979; Pant and Harrison, 2012). An average Fe/Al ratio of 0.55-

0.63 has been reported for soil in the Indian plains (Sarin et al., 1979; Sudheer and Rengarajan, 

2012). Thus, it can be concluded that crustal material is the primary source of the Si and Al 

concentrations across sites while Fe has both crustal and anthropogenic sources.   

Pulles et al. (2012) reported a Cu/Zn ratio of 0.13 for gasoline and 0.35 for diesel fuel in the UK. 

Interestingly, the ratio value of 0.35 is also reported for upper continental crust (UCC) (Taylor and 

McLennan, 1995). This highlights the potential difficulty in ascertaining the sources of elements 

such as Cu in road dust on the basis of elemental ratios alone.  

 

Figure 25: Elemental ratios in upper continental crust (UCC) and Sites A-D for PM10 road 

dust 

 

5.3.5 PM10 Road Dust Source Profiles  
 

Source profiles (as weight% of PM) were generated for the road traffic sites in Birmingham 

(Sites B and C) and New Delhi (Site D) (Table 25). Site A was not included in the preparation of 

the source profile since the site is not representative of a high-traffic location.  
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Previously reported source profiles for road dust and various non-exhaust emission sources were 

compared against data obtained at Sites A-D in order to get a qualitative understanding of source 

contributions (Figure 26). Concentrations obtained for Sites A to D were compared against a 

range of source profiles including tyre wear, brake wear and construction. 

 

Table 25: Source profiles for PM10 road dust at heavy traffic sites in Birmingham (Sites B 

and C) and New Delhi (Site D) (% w/w) 

Species  
Site B  Site C Site D  

Concentration Uncertainty  Concentration Uncertainty  Concentration Uncertainty  

OC  7.91 4.80     1.82 1.69 

EC 0.13 0.41     0.51 0.29 

Si 25.8 2.78 28.2 8.98 13.0 3.04 

Al 7.82 0.99 7.22 2.34 3.98 1.04 

Ca 3.24 1.62     5.00 0.64 

Fe 5.25 0.70 7.32 2.00 3.11 0.49 

Ti 0.044 0.023 0.078 0.029 0.047 0.005 

Mn 0.062 0.031 0.077 0.025 0.044 0.005 

Cu 0.050 0.023 0.108 0.032 0.016 0.002 

Sb 0.010 0.005 0.014 0.003 0.001 0.000 

Ba 0.046 0.023 0.087 0.027 0.042 0.005 

Sn 0.007 0.004     0.001 0.000 

Cr 0.010 0.005 0.017 0.007 0.006 0.001 

V 0.003 0.002 0.005 0.002 0.003 0.000 

Zn 0.101 0.047 0.366 0.142 0.068 0.009 

Cd    0.001 0.001     

Ni     0.012 0.009     

S    0.99 0.29     

BbF  0.004 0.002     0.004 0.003 

BkF 0.004 0.002     0.003 0.002 

BeP 0.003 0.002     0.002 0.001 

BaP 0.002 0.001     0.002 0.002 

IcdP 0.002 0.001     0.002 0.002 

BghiP 0.002 0.001     0.002 0.002 

Cor 0.001 0.000     0.001 0.000 

C25 0.004 0.003     0.000 0.000 

C26 0.003 0.003     0.001 0.001 

C27 0.006 0.004     0.001 0.001 
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C28 0.009 0.005     0.001 0.000 

C29 0.011 0.009     0.002 0.002 

C30 0.005 0.004     0.000 0.001 

C31  0.006 0.003     0.001 0.001 

C32 0.006 0.002     0.000 0.000 

C33 0.006 0.002     0.000 0.000 

NHO 0.023 0.014     0.011 0.015 

HOP 0.040 0.020     0.013 0.015 

SHHO 0.013 0.007     0.005 0.006 

RHHO 0.011 0.006     0.004 0.005 

SBHHO 0.012 0.005     0.005 0.006 

RBHHO 0.009 0.002     0.004 0.004 

 

The profiles used for comparison were extracted from the USEPA SPECIATE 4.3 database and 

other published literature.  In  the case  of  elements,  profiles  included  paved road dust [highway 

(ref. 3565), tunnel (ref. 4112410)] and road dust [Mexico] (ref. 4106) from the SPECIATE5 

database, brake and tyre wear from USA (Schauer et al., 2006), paved road dust from India (Sethi 

and Patil, 2008) and data from other cities including Anshan (China) (Han et al., 2009), Hong 

Kong (Ho et al., 2003), Barcelona (Spain) (Amato et al., 2009a) and Beijing (China) (Chen et al., 

2012). Concentrations of various elements were broadly similar to other PM10 profiles while the 

brake wear and tyre wear profiles were found to vary from the road dust profiles observed in the 

current study, particularly for marker elements such as Cu, Sb and Ba. Previously reported PM10 

road dust profile for Delhi was found to be different from the current profile. Detailed inferences 

regarding the differences could not be drawn due to unavailability of detailed sampling information 

for the other profile. Concentrations of several elements including Si, Al, Ca and Ba were much 

lower in case of the other profile, while concentrations were lower for the current profile for Sn, 

OC and EC and comparable for Ti, Fe and Zn. The Si/Al ratio was found to be lower than the 

UCC value of 3.9 for the Indian profile while Cu/Sb ratio at 21.5 was much higher compared to 

                                                   
5 USEPA SPECIATE- http://cfpub.epa.gov/si/speciate/ehpa_speciate_browse.cfm  

http://cfpub.epa.gov/si/speciate/ehpa_speciate_browse.cfm
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the profiles generated in this study. The OC/EC ratios were, however, comparable (3.6 for current 

study, 3.3 for the other profile).  
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Figure 26: Comparison of species concentration (weight %) observed for PM10 road dust in 

the current study and (i) source emissions and (ii) road dust elsewhere 

 

5.3.6 Source Apportionment of PM10 Road Dust  
 

Recently, a novel method was proposed for the estimation of source contribution of non-exhaust 

sources using Ba, Zn and Si as source markers for brake dust, tyre dust and crustal dust 

respectively (Harrison et al., 2012a). The empirical factors are derived from UCC data (for Si) 

and ambient measurements and emission inventory data for brake and tyre wear emissions. 

The factors (91 for Ba, 50 for Zn and 3.6 for Si) were used to estimate the contribution of brake 

dust, tyre dust and crustal dust to the total PM10 mass. It is important to note that Zn is emitted 

from various sources include engine emissions and brake dust, and it is possible that using Zn as a 

tyre wear source results in an over-estimation of the tyre dust emissions. In Asia, Zn has also been 

associated with 2-stroke gasoline engine emissions and emissions from the galvanization industry 

(Begum et al., 2011). In the case of Delhi, Fe was used as the source marker for crustal dust due 

to its high abundance in crustal material. In addition, a factor of 1.35 was used for EC to estimate 

the contribution of vehicular exhaust (Pio et al. 2011).  

Results of the source estimations are presented in Table 26. Nearly 100% of the mass is 

estimated using the factors for the traffic sites in Birmingham (Sites B and C). However, only 

25% of the mass is explained at the low-traffic site (Site A). The site is also unique since the total 

traffic volume is much lower than the other sites but with a significant contribution from medium 

and heavy duty vehicles. The site had the lowest Si/Fe ratio, and Fe showed a significant 

enrichment at this site (enrichment factor of 5.90), and the use of Fe as the crustal marker increases 

the mass apportioned to crustal dust/soil to 79%. However, further analysis of local soil samples 

is required to confirm the use of Fe as a local crustal dust marker. 
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For site C (tunnel), the contribution of tyre wear was calculated to be 15.6% which might be an 

over-estimation since Zn is emitted from other sources as well. The contribution of brake wear, 

on the other hand, was higher for Site B where the traffic operates in a stop and go manner. 

Table 26: Source contributions of various non-exhaust sources to PM10 road dust across 

sampling sites (in %) 

Site ID Site characteristics Brake 
Wear (Ba) 

Tyre Wear 
(Zn) 

Re-
suspension 
(Si/Fe**) 

Vehicle 
Exhaust  

Total Mass 
Estimated 

Site A Low traffic volume, 
mostly HDVs 

2.9 4.7 17.4 0.004 25.0 

Site B High traffic volume, 
stop-and-go traffic, 
mixed LDVs and 

HDVs 

3.8 4.7 89.5 1.3 99.3 

Site C High traffic volume, 
smooth traffic flow 
with stop-and-go 

during congestion, 
LDVs >> HDVs 

6.6 15.6 82.8 * 105 

Site D High traffic volume, 
stop-and-go traffic, 
mixed LDVs and 

HDVs 

3.9 3.5 71.2 0.59 79.2 

*EC was not estimated at Site C; **Si used in case of Sites A, B and C and Fe used in case of Site D.   

 

In the case of Delhi, 79.2% of the total mass is estimated but if Si is used as the source marker 

for crustal dust, only 51% of the total PM10 mass is estimated. This indicates that this estimation 

method cannot be used universally, and it is important to adjust the markers/factors according 

to the local soil characteristics. Other sources which could have important contributions in the 

case of Delhi are construction activity and deposition from other sources which are currently not 

included in the estimation. Vehicle exhaust was found to contribute a very small percentage to the 

total RD PM10 mass which is plausible since most of the vehicle exhaust particles are in the smaller 

size fraction and are less likely to deposit.  
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Chen et al. (2012) estimated soil dust, construction-related particles, vehicle exhaust, particle 

deposition and coal burning-associated particles as the key sources for road dust in Beijing while 

Amato et al. (2013b) estimated brake wear, tyre wear, crustal dust and vehicle exhaust to contribute 

27%, 16%, 37% and 20% in Barcelona and 39%, 41%, 12%, 8% in Utrecht. 

To compare the attribution of the crustal mass using Si (as described above) against an independent 

estimate, crustal mass was reconstructed using the concentrations of Al, Si, Fe, Ca and Ti using the 

equation (13) (Chan et al., 1997).  

𝐶𝑟𝑢𝑠𝑡𝑎𝑙 𝑚𝑎𝑡𝑡𝑒𝑟 = 1.16 (1.90𝐴𝑙 + 2.15𝑆𝑖 + 1.41𝐶𝑎 + 1.67𝑇𝑖 + 2.09𝐹𝑒)                        ( 13) 

 

Where  
Al, Si, Ca, Ti, Fe are expressed in concentration (weight %) 
 

Results (Figure 27) indicate good correlation between measured and reconstructed mass in all cases 

(r2 > 0.85), although a large intercept in case of Site D indicates contributions from other sources.    

As with the source apportionment, it can be seen that the amount of mass apportioned as crustal 

matter is quite low at Sites A and D. This may be related to the varied soil composition at different 

locations. Hence, it is important to analyse uncontaminated soil samples (bulk and PM10 fraction 

where possible) to determine the local chemical composition which can be then be used to adjust 

the crustal mass factor. 
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Figure 27: Correlation between observed and reconstructed PM10 road dust mass 

 

 

5.4 Conclusions  
 

Non-exhaust emissions constitute an important source of PM emissions in urban areas, and the 

chemical composition as well as contribution can vary from region to region. Since there are a 

number of different contributing sources, it is often difficult to estimate the contribution of 

different sources to the total dust levels. In this study, an attempt was made to undertake detailed 

characterization of PM10 road dust fraction and the empirical method proposed for the estimation 

of contribution of non-exhaust sources was applied successfully to the dataset. 

Source profiles generated for sites in Birmingham and New Delhi correspond well with previously 

reported road dust profiles although differences were observed between elements concentrations 

in UK and India. This can be attributed to the difference in soil composition as well as the chemical 

composition of source type (tyre and brake pads) and potential influence from other sources. 
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Comparison carried out between elemental and PAH ratios for road dust PM and ambient PM 

reveal that the ratios can be quite similar between road dust and ambient PM, particularly in the 

case of coarse PM. Also, elemental ratios provide much better chance at segregating between 

road dust and ambient PM concentrations compared to PAH ratios. It seems that elemental 

markers are better suited to study road dust and non- exhaust emissions. 

The empirical factors generated by Harrison et al. (2012a) were found to be able to generate 

reliable estimation of source contributions for the areas where they are empirically calculated (i.e. 

high-traffic areas in UK), but the apportionment was not very good for the low traffic site in 

Birmingham and the Indian site. Low mass closure in Delhi is perhaps due to the different sources 

that influence the dust concentrations in Delhi, as well as due to differences in the overall 

concentrations of different elements, and their sources (further discussion Chapter 6). It is 

therefore necessary to adjust the factors before using them for analysis in other regions. 

Contribution of brake wear was very similar between Sites B and D, both of which are 

heavily-trafficked roads with stop-and-go traffic. The low apportionment of PM mass in case of 

Site A is peculiar, and further analysis is required to understand the source contributions at this 

site.  

The dataset generated in this study can also be used in receptor modelling studies. It is worth 

noting that the contribution of non-exhaust emissions to ambient PM concentration varies 

based on site characteristics, and data generated with pilot studies in specific areas/site types 

cannot be used to generalize the role and quantitative contribution of non-exhaust emissions to 

ambient air quality. An important issue which was not addressed in the current study is the 

variability contributed by the sampling methodology in the overall estimation of non-exhaust 

emission contributions since different sampling methods can provide very different results, and 

in the future, it is important to inter-compare various methods. 
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CHAPTER 6- PARTICULATE MATTER IN INDIA  
 

Sampling in New Delhi was carried out in collaboration with Dr. Anuradha Shukla (CRRI, New 

Delhi) and Professors Judith C. Chow and John G. Watson (DRI, Reno). Pre-sampling preparation, 

sampling and data analysis has been conducted by Pallavi Pant and chemical analysis of the Minivol 

filters was conducted at DRI, Reno (USA). Size-segregated samples were collected in collaboration 

with Dr. Anubha Goel (IIT-Kanpur, India). Sampling as well as analysis was conducted by Pallavi 

Pant. 

Sections of this chapter are derived from:   

[1] Pant, P., Harrison, R.M. (2012) Critical Review of Receptor Modelling for Particulate Matter: A 

Case Study of India. Atmospheric Environment, 49:1-12. 

[2] Guttikunda, S.K., Goel, R. and Pant, P. (2014) Nature of air pollution, emission sources and 

management in the Indian cities. Atmospheric Environment, 95: 501-510.  
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6.1 Introduction  
 

Given the rapid rates of urbanization in Indian cities, air pollution is increasingly becoming a critical 

threat to the environment and to the quality of life among the urban population in India. PM 

concentrations are often found to exceed the National Ambient Air Quality Standards (NAAQS) 

and recent studies have identified PM as one of the key public health risks, particularly in urban 

areas (Lim et al., 2012; Guttikunda and Goel, 2013; Trivedi et al., 2014). Major sources of air 

pollution in India have been identified as vehicular emissions, industrial emissions, coal 

combustion, biomass burning, road dust, waste burning, construction,  oil combustion and sea salt 

(Chowdhury et al., 2007; CPCB, 2010; Guttikunda and Calori, 2013; Gargava et al., 2014).  

There is a growing body of literature on source apportionment of PM in India using receptor 

modelling with both elements and organic markers and a detailed review of source apportionment 

analysis in India is presented in Pant and Harrison (2012). Most studies have focused on total 

suspended particulate matter (TSP) and PM10 but there is an increasing number of studies focused 

on fine PM (aerodynamic diameter <2.5 µm) (Chowdhury et al., 2007; Tiwari et al., 2009; 

Chakrobarty and Gupta, 2010; Khare and Baruah, 2010; Gummeneni et al., 2011; Joseph et al., 

2011; Kirillova et al., 2014; Sudheer et al., 2014). In terms of geographic distribution across the 

country, most studies focus on big cities such as Delhi (Balachandran et al., 2000; Khillare et al., 

2004; Srivastava and Jain, 2007; Tiwari et al., 2009; Khillare and Sarkar, 2012; Kirillova et al., 2014; 

Trivedi et al., 2014), Mumbai (Kumar et al., 2001; Chelani et al., 2008; Kothai et al., 2008), Chennai 

(Srimuruganandam and Shiva Nagendra, 2011), Hyderabad (Gummeneni et al., 2011; Guttikunda 

et al., 2013) and Kolkata (Gupta et al., 2007; Kar et al., 2010). The Central Pollution Control Board 

(CPCB) also conducted a detailed dispersion and receptor modelling analysis in six cities across 

India (CPCB, 2010).  In comparison, there are very few analyses in smaller cities/towns (e.g. Mouli 

et al., 2006; Kulshrestha et al., 2009; Chakrobarty and Gupta, 2010; Masih et al., 2010; Giri et al., 
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2013). Figure 28 presents a summary of receptor modelling studies from different cities in India. 

Some recent work has also focused on unique sources such as funeral pyres (Chakrobarty et al., 

2013) and festive biomass burning (Deka and Hoque, 2014) and specific chemical components of 

PM such as brown carbon (Srinivas and Sarin, 2014) and WSOC (Kirillova et al., 2014). 

 

Figure 28: Summary of receptor modelling studies across India 
(from Guttikunda et al., 2014) 

 

A majority of the PM source apportionment studies have been conducted using trace element 

markers (Balachandran et al., 2000; Kumar et al., 2001; Kothai et al., 2008) and in some cases, 

inorganic tracers have been used in conjunction with OC and EC (Gupta et al., 2007; Tiwari et al., 

2009; Chelani et al., 2010; Sharma et al., 2013). The use of organic molecular markers for PM source 

apportionment has only been reported in recent years (Chowdhury et al., 2007; Fu et al., 2010; 

Masih et al., 2010; Giri et al., 2013; Herlekar et al., 2012; Li et al., 2014).   

India is a very large and diverse country, and unsurprisingly the receptor modelling studies have 

drawn widely differing conclusions.  Even within individual Indian cities, different authors have 
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come to widely varying conclusions over source attribution and apportionment, and this may to 

some extent be a result of using different sampling locations.  Most studies have identified vehicle 

emissions and soil/road dust as a major contribution to the fine and coarse fractions respectively, 

but differentiation of these from industrial emissions and other sources such as construction 

activity has been poor. Based on a detailed review of SA literature from India, the following key 

gaps were identified:  

1. Failure in most cases to distinguish vehicle exhaust from non-exhaust vehicle emissions, 

particularly resuspension of road dust, and/or inability to differentiate regional crustal 

sources (e.g. desert dust) from local wind-blown soils and from resuspended road dust.  

Making a distinction between road dust and local soils can be difficult under any 

circumstances if the soils are polluted by vehicle emissions or the road dusts contain a 

significant soil contribution.  However, separating these sources, and in particular 

quantifying the vehicle exhaust contribution alone, and differentiating regional crustal 

sources from local soils and road dust, is crucial, as the policy response depends heavily 

upon these insights. 

2. There has, to date, been insufficient use of organic molecular markers.  While these alone 

will not answer all source apportionment questions, they are an important tool in receptor 

modelling and could help to improve both CMB and multivariate model studies. 

3. There has been insufficient use of size fractionation of PM.  Most studies have focused 

upon TSP or PM10, therefore not benefiting from the additional insights to be gained from 

separating coarse from fine particles, and in doing so achieving a crude separation of 

crustal/soil/road dust/construction sources from those associated with high-temperature 

processes (fuel combustion, metallurgical industries, etc.) and gas-to-particle conversion of 

secondary pollutants. 



142 
 

4. Most studies pay little attention to secondary pollutants.  Sulphate, which in developed 

countries is almost exclusively secondary, tends to be attributed to local primary sources, 

and regional transport processes are largely ignored.  Similarly, nitrate receives little 

attention despite its complex atmospheric chemistry and frequent association with regional 

processes in developed countries (Abdalmogith and Harrison, 2005).  Secondary organic 

aerosol may be an important contributor to PM mass in India as the conditions exist to 

facilitate its formation from both anthropogenic and biogenic precursors, but the literature 

largely ignores it. 

 

6.1.1 Delhi  
 

Delhi is one of the most polluted cities across the world and concentrations of air pollutants are 

often found to exceed the NAAQS. Delhi is reported to have 29 planned industrial areas and five 

factory complexes with a range of industries including food and beverages, metal and alloys, leather 

and leather products, chemicals, paper and others (Delhi Statistical Handbook, 2013). Delhi has 

two coal thermal power plants and four natural gas power plants and the sulphur content in the 

coal used in power plants in Delhi typically ranges between 0.35% and 0.50% (Chowdhury et al., 

2007). Indian coal is typically high in ash content. 

Diesel is used for both road transport (cars, utility vehicles, HDVs) and industry (power back-up, 

mobile phone towers, miscellaneous) while gasoline is mostly used for road transport. Public 

transport in the city runs on CNG (including buses, small commercial vehicles and auto-rickshaws) 

while private vehicles run on diesel, gasoline, CNG and LPG. A number of brick kilns are also 

reported to operate in areas around Delhi (Guttikunda and Calori, 2013). A range of different 

cooking fuels are used in Delhi including LPG, kerosene, firewood, cow dung cake, coal, crop 

residues, biogas and electricity with nearly 90% households using LPG (Delhi Statistical Handbook, 
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2013). Estimated source contributions from the different sectors are described in Figure 29. While 

on one hand, Sahu et al. (2011b) reported road transport as the biggest contributor to PM2.5 

emissions (30.25 Gg/yr) followed by residential emissions (18.65 Gg/yr), dust (18.35 Gg/yr) and 

industry (16.29 Gg/yr); Guttikunda and Calori (2013) identified transport, power plants and 

domestic emissions as the three biggest contributors. In South Delhi, where the sampling site is 

located, transport, diesel generators and road dust were identified as the biggest contributors to 

PM (Figure 29).   

 

Figure 29: Emission inventory for PM2.5 in New Delhi (Guttikunda and Calori, 2013) 

 

Several studies have been undertaken for source apportionment of suspended particulate matter 

(SPM), PM10 and PM2.5 using receptor modelling in Delhi and a majority of those have used factor 

analysis (PCA), PCA-MLR, diagnostic ratio, enrichment factor etc. However, several recent studies 

have used PMF and CMB models for source apportionment.  A large percentage of the PM has 

been attributed to vehicular emissions, road dust, coal combustion and domestic emissions in 

several studies (Balachandran et al., 2000; Khillare et al., 2004; Chowdhury et al., 2007; Sharma et 

al., 2007; Chelani et al., 2010; Tiwari et al., 2013). Goyal et al. (2010) have reported diesel vehicles 

to contribute nearly 28% of the total particulate matter in Delhi. Other sources identified for PM 

emissions in Delhi include industrial emissions, open refuse burning and construction (Khillare et 
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al., 2004; Mönkönnen et al., 2004; CPCB, 2010; Khillare and Sarkar, 2012; Guttikunda and Calori, 

2013).  

 

6.2 Methodology 

  

6.2.1 Sampling Site 
 

Mathura Road is one of the major arterial roads in Delhi with an average traffic flow of 170,000 

vehicles per day (Figure 30). Other sources of PM include residential burning and an industrial hub 

about three kilometres from the sampling site (Okhla Industrial Area). While there are no 

restrictions on two- and three-wheelers, trucks (diesel, BS-III, 350 ppm sulphur) are not allowed 

between 0730 to 1100 hours and 1700 to 2130 hours while buses, light duty vehicles (LDVs) and 

are not restricted (Delhi Police, 2014, Figure 31). It is important to note that Bharat Standard IV 

(BS-IV, 50 ppm sulphur) standards are applicable to the vehicles within Delhi while vehicles from 

outside Delhi are often BS-III (equivalent of Euro III- 350 ppm sulphur). 

 

Figure 30: Modal split at the sampling location in Delhi (Goel, 2014) 
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Figure 31: Temporal variation in traffic flow at the sampling location in Delhi (Goel, 2014) 

 

New Delhi has sub-tropical climate with hot summers and moderately cold winter (October to 

January). Usually, S-SW winds are prevalent in summer and N-NW winds are prevalent in winter 

(Yadav and Rajamani, 2006). During the summer sampling period (June 15-30, 2014), the average 

temperature and relative humidity (RH) were recorded as 31.4 ± 4.02C and 67.5 ± 20.5 

respectively while during the winter sampling period (December 15, 2013-January 15, 2014), the 

average temperature and relative humidity (RH) were recorded as 13.4 ± 2.70C and 80.8 ± 8.1 % 

respectively. During the sampling period in winter (December 15, 2013- January 14, 2014), 

fog/haze was reported on most days with calm wind conditions. Average rainfall in the months of 

June and December was recorded as 151 and 6.8 mm respectively. 
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6.2.2 Sampling 

  
Two sampling campaigns were undertaken in New Delhi, India in summer (June 15-30, 2013) and 

winter (December 15, 2013- January 15, 2014). Collocated Minivol samplers were used to collect 

twelve hour PM2.5 samples (filter change at 1200 and 2400) on quartz and PTFE filters. All samples 

were analysed at the Environmental Analysis Facility, Desert Research Institute (Reno, Nevada, 

USA). The samplers were placed at height of 2 m from ground level at a distance of 50 metres 

from the road. 

Between 17 December and 21 December, 2013, a set of four 6-hour samples (0000- 0600, 0600-

1200, 1200-1800, 1800-2400 hours) were collected on PTFE filters using an 8-stage rotating 

MOUDI. The instrument operated between 28-30 litres/minute. These samples were analysed at 

the University of Birmingham. 

 

6.2.3 Analytical Methods 

 
 The samples were analyzed using procedures described in Chapter 2. Elements from Na to U were 

analysed using ED-XRF, cations and anions were analysed using ion chromatography, EC and OC 

were analysed using DRI carbon analyzer and carbonaceous species were quantified using TD-GC-

MS.  

A total of 28 samples were used in the final analysis for summer season and 15 samples were used 

for the winter season.  

MOUDI samples were analysed using WD-XRF for Si, Al, Fe and S and extracted samples were 

analysed for Cu, Zn, Ca, Mn, Sb, V and Pb.   
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6.2.4 Data Analysis  
 

Data analysis has been carried out using Microsoft Excel and SPSS (Version 21). Several species 

were detected in less than 20% of the samples and are not included in further analysis. Missing or 

concentrations below detection limits were replaced with 0.5*detection limit.  Species’ correlation 

analysis was conducted using SPSS based on Pearson Correlation and the correlation values 

reported in the text are for p<0.01. Reduced major axis (RMA) regression analysis has been used 

in most cases due to similar uncertainties of the different species. 

 

6.3 Results  
 

6.3.1 Concentrations  

6.3.1.1 Particulate Matter  
 

The 12-h average concentration in summer was observed to be 58.2±35.0 µg/m3 with a maximum 

PM2.5 concentration of 179.5 µg/m3 while in winter; the average concentration was 262±99.9 µg/m3 

with a maximum of 424.9 µg/m3 (details in Table 27). Comparative concentrations were reported 

by Chowdhury et al. (2007) for summer (49 ± 0.6 µg/m3) and winter (231±1.6 µg/m3). Trivedi et 

al. (2013) have reported PM2.5 concentrations of 86.4±26.8 µg/m3 and 221.1±94.7 µg/m3 for 

summer and winter respectively in Delhi while Giri et al. (2013) reported PM2.5 concentration of 

115±36 µg/m3 for winter in Raipur. The concentrations exceeded the NAAQS PM2.5 24-h standard 

(60 µg/m3) on several occasions during the sampling campaigns in summer and winter.  

 

 

 



148 
 

Table 27: Summary of PM2.5 in summer and winter 

Sample 
type 

Species 
Summer Winter 

Mean S.D. Minimum Maximum Mean S.D. Minimum Maximum 

12-h 
integrated 
samples 

PM2.5 

(µg/m3) 
58.2 35.0 10.7 179.5 262 99.9 108.8 424.9 

 

Concentrations in winter were consistently higher compared to summer and this can be due to the 

differences in meteorological parameters as well as variations in source strengths. Significant 

difference between PM concentrations in summer and winter have been recorded previously 

(Guttikunda and Gurjar, 2012; Yadav et al., 2013; Tiwari et al., 2014). 

6.3.1.2 Size Distributions  
 

Several studies in India have focused on the particle size distributions including mass size 

distributions (Khemani et al., 1982; Balachandran et al., 2000; Venkataraman et al., 2002; Reddy et 

al., 2007; Chelani et al., 2010), number size distributions (Mönkkönen et al., 2005), or both (Sharma 

and Patil, 1992; Mönkkönen et al., 2004; Baxla et al., 2009). Several authors have reported bimodal 

mass size distributions in Indian cities including Pune (Khemani et al., 1982; Ernest Raj et al., 2002; 

Venkataraman et al., 2002), Mumbai (Sharma and Patil, 1992) and Agra (Kulshrestha et al., 1998). 

However, Sharma and Patil (1992) also reported a trimodal mass size distribution at a mixed 

traffic/industrial site in Mumbai. Several authors have reported higher concentrations of particles 

in winter season (Khemani et al., 1982; Venkataraman et al., 2002; Mönkkönen et al., 2005; Baxla 

et al., 2009; Deshmukh et al., 2012). 

Using the data obtained from MOUDI samples, a continuous size distribution was obtained using 

the numerical inversion method described in Keywood et al. (1999). This approach has previously 

used in several studies (Allen et al., 2001a; Gietl et al., 2010).  
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Based on MOUDI samples, a trimodal size distribution was observed across all four 6-h periods 

with two modes in the accumulation range (0.15 µm and ~0.55 µm) and one mode in the coarse 

range (3.0 µm) (Figure 32). The overall pattern of the size distribution was found to be similar 

across all sampling times and overall, lowest concentrations were observed during early morning 

hours (0600-1200) which correspond with the lowest traffic volume along Mathura Road while 

highest concentrations were observed during the afternoon (Figure 31).  

A majority of PM mass was found to be in the fine range (75.5%) compared to the coarse range 

(24.5%).  Other studies have reported similar results in Delhi (82.9%- fine and 17.1% coarse) and 

Raipur (60.6%- fine and 39.4% coarse) (Balachandran et al., 2000; Deshmukh et al., 2012).  

 

Figure 32: Average mass size distribution (based on MOUDI) for PM in New Delhi 

Elemental size distributions show an interesting pattern (Figure 33).Species associated with crustal 

matter such as Si, Al and Fe were observed to have a unimodal mass size distribution with the 

primary (and only) peak (~3.0-4.0 µm) in the coarse range while Ca showed a primary peak in the 

coarse mode and a secondary peak in the accumulation mode (0.9 µm) (Figure 33). Cu was found 

to be unimodal with the primary peak in the accumulation mode (~0.5 µm). Other species 
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associated with anthropogenic emissions such as Zn and Pb showed a bimodal size distribution 

with primary and secondary peaks in the accumulation mode (~0.7 µm for Zn and ~0.55 µm for 

Pb {primary}; ~0.15 µm {secondary}). Mn showed a bimodal size distribution with the primary 

peak in the accumulation mode and a secondary peak in the coarse mode (~3.0 µm) and S had a 

bimodal distribution with both the primary and secondary peaks in the accumulation mode. V, 

interestingly, showed the primary peak in the coarse mode (3.0 µm) and two secondary peaks in 

the accumulation mode (~0.18 and 0.55 µm). Based on an emission inventory analysis, sources of 

V in PM10 include power plants and industries (Gargava et al., 2014). This could explain the primary 

peak of V as coming from coal fly ash, with smaller contributions from industrial and traffic 

emissions in the fine range. In the case of Sb, a majority of the Sb concentration was found to be 

in the accumulation range.  A summary is provided in Table 28.  
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Figure 33: Average mass size distributions for elements based on MOUDI samples 

 

Table 28: Summary of mass size distributions for elements in New Delhi 

Element  Size distribution   Primary Peak  Secondary Peak 

Si Unimodal Coarse (4 µm)  

Al Unimodal Coarse (~3.5 µm)  

Fe Unimodal Coarse (~3.5 µm)  

Ca Bimodal Coarse (4 µm) Accumulation (0.9 µm) 

Cu Bimodal Accumulation (~0.55 µm) Accumulation (0.15 µm) 

Zn Bimodal Accumulation (0.7 µm) Accumulation (0.15 µm) 

Pb Bimodal Accumulation (~0.55 µm) Accumulation (0.15 µm) 

Mn Bimodal Accumulation (~0.65 µm) Coarse (3 µm) 
S Bimodal Accumulation (0.9 µm) Accumulation (~0.15 µm) 

V Trimodal Coarse (3 µm) Accumulation (~0.15,0.55 µm) 

Sb Bimodal Accumulation (0.7 µm) Accumulation (~0.15 µm) 

 

 

In the current study, the fine/coarse ratios (fine refers to <2.5 µm and coarse >2.5 µm) for size-

segregated aerosols were observed to be less than 1 for Al, Si, Fe, Ca, V and Mn while the ratio 

was greater than 1 for the other elements (Figure 34). Coarse particles are typically generated due 

to mechanical processes (Pant and Harrison, 2013).  In this case, elements typically associated with 

soil/crustal material such as Si, Al, Ca and Fe were found to be dominant in the coarse range, 

indicating their predominant soil origin. Two other elements, Mn and V were also found to have a 

lower fine/coarse ratio compared to other elements associated with anthropogenic activities which 

indicates dominance of the soil source compared to other anthropogenic sources. Elements such 
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as Cu, Zn, Pb and S were predominantly found in the fine range, and can be associated with traffic 

and industrial emissions as well as emissions due to waste burning. Interestingly, Gargava et al. 

(2014) reported wood combustion as the dominant source for Pb. Both intrastate and interstate 

traffic is allowed on Mathura Road, and some of the interstate vehicles, particularly HDVs run on 

high-sulphur fuel. In addition, there is an industrial zone at a distance of about 3 kilometres from 

the sampling site (Okhla Industrial Area). Pb was found to be present in very high concentrations, 

and possible sources include industrial emissions and small-scale Pb-battery recycling units. An 

interesting difference is the absence of peaks for elements such as Cu and Sb in the coarse range 

which have been associated with non-exhaust emissions (Iijima et al., 2007; Gietl et al., 2010). 

It is important to note that the sample size for this analysis was very small and only represent winter 

aerosol composition. Fine and coarse partitioning of the individual elements can be different in 

case of other seasons.  

 

Figure 34: Percentage of elements in fine (<2.5 µm) and coarse (>2.5 µm) ranges 

 

6.3.1.3 Carbon  
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Both in summer and winter, OC3 and OP had the highest concentrations among the organic 

carbon fractions while EC1 had the highest concentration among the elemental carbon fractions 

(Figure 35). EC3 was detected in less than 20% samples in both seasons. A summary is presented 

in Table 29. Typically, EC2 and OC1 are associated with diesel vehicles while EC1, OC2 and OC3 

are dominant in gasoline vehicles (Watson et al., 1994).  

OC and EC were found to be reasonably correlated both in summer (r2= 0.76) and winter (r2= 0.72) 

indicating common sources such as road traffic and biomass burning. Both OC and EC were also 

correlated well with PM2.5 mass in summer although no correlation was observed in winter. Both 

OC and EC were correlated well with the other carbon fractions. 

 

Figure 35: Seasonal variation of PM2.5 carbon fraction concentrations at CRRI 

 

In winter, however, OC was correlated with six fractions (OC1, OC2, OC3, OC4, OP, and EC1) 

but the correlation was not significant for EC2. In the case of EC, a higher correlation was seen 

for EC1 (r2= 0.92) compared to EC2 while no correlation was observed for EC and OP.  

If the concentration of OC is expressed as a function of concentration of EC using RMA 
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winter) (Figure 36). The intercept is greater than 4 µgC/m3 in both cases indicating contributions 

from other sources to OC.  R-square values for summer and winter are 0.58 and 0.52 respectively.  

EC is released directly into the atmosphere and can be used to estimate relative amounts of primary 

OC (POC) and secondary OC (SOC). Higher OC/EC ratios are expected in the conditions where 

SOC is dominant and the EC-tracer method involves the use of EC as a tracer for POC, allowing 

SOC to be calculated (Turpin and Huntzicker, 1995; Castro et al., 1999; Pio et al., 2011). 

Table 29: Summary of PM2.5 carbon fractions at CRRI, New Delhi (in µg/m3) 

Species 
Summer Winter 

Mean  S.D.  Minimum Maximum Mean  S.D.  Minimum Maximum 

OC1 0.57 0.85 0.01 2.91 13.6 7.98 3.80 29.4 

OC2 3.70 1.62 1.42 7.14 22.1 8.73 10.3 38.2 

OC3 6.05 2.48 2.20 13.1 28.2 9.95 15.2 48.3 

OC4 2.94 1.56 0.62 6.62 16.6 7.22 8.37 33.4 

OP 4.36 2.80 0.33 12.3 24.0 10.8 13.2 46.2 

OC 17.6 8.38 5.18 36.4 104 40.6 53.3 196 

EC1 8.98 8.05 0.33 39.9 67.3 26.9 19.6 101 

EC2 3.14 2.14 0.60 9.99 2.93 2.65 1.02 11.2 

EC3 detected in <20% samples detected in <20% samples 

EC 7.76 7.05 0.60 31.4 46.3 18.9 12.0 78.9 

TC 25.4 14.50 5.77 67.7 150 55.8 70.3 250 

 

 

Figure 36: Relationship between PM2.5 OC and EC in summer and winter 
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Minimum ratios of OC/EC are taken as representative of primary OC (although they may be an 

over-estimate (Pio et al., 2011) and OC above that ratio is taken to be SOC.  The method as outlined 

by Castro et al. (1999) was used and estimates of SOC were calculated (Figure 37, discussed in 

Chapter 3). 

𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑂𝐶 = 𝑇𝑜𝑡𝑎𝑙 𝑂𝐶 − (𝐸𝐶 × (
𝑂𝐶

𝐸𝐶
) minimum)          (14) 

Where  
Total OC refers to the concentration of OC  
EC refers to the concentration of EC  
(OC/EC) minimum refers to the minimum OC/EC gradient 

 

The minimum ratios were estimated as 0.93 for summer and 1.63 for winter, and were used to 

calculate the contribution from primary and secondary OC for both seasons.  The average 

contribution of POC was estimated to be 41% in summer and 72.3% in winter while the SOC was 

estimated to contribute 66.7% in summer, and 33.1% in winter.   

 

Figure 37: Estimation of minimum PM2.5 OC/EC ratio using the EC tracer method 
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6.3.1.4 Ions 
 

A summary of ion concentrations observed for PM2.5 during the two seasons is presented in Table 

30. Sulphate (SO4
2-) and ammonium (NH4

+) were found to be the most abundant ions in summer 

with average contributions of 17.1% and 8.5% to PM2.5 mass (Figure 38). Higher abundance of 

SO4
2- in summer and nitrate (NO3

-) in winter is consistent with previous observations in the region 

(Satsangi et al., 2013). In winter, NH4
+ was the most abundant ion followed by NO3

- contributing 

12.4% and 11.8% to PM2.5 mass. NO3
- and SO4

2- were found to be correlated in summer (r2= 0.69) 

as well as in winter (r2= 0.70) and high correlation was also observed between sulphate and NH4
+ 

in summer and (r2= 0.85) and winter (r2= 0.80). SO4
2- (r2= 0.60) and NO3

- (r2= 0.55) were also 

moderately correlated with PM mass in summer but no correlation was observed in winter. 

Chloride (Cl-) was not found to be correlated with any of the other ions in summer while in winter, 

it was correlated with NH4
+ (r2= 0.56).  Higher concentrations were observed for all ions in winter 

but soluble Na was present in broadly similar concentrations in both seasons with a winter/summer 

ratio of less than 2. On the other hand, Cl-, NO3
- and NH4

+ showed the highest winter/summer 

ratios. It is worth noting that particulate nitrate (often present as NH4NO3) is semi-volatile and at 

high temperatures, NO3
- might be present in volatile form, thus showing a lower particulate 

concentration. In winter, low temperature and high relative humidity favour the occurrence of 

ammonium nitrate in particle form. Further, since occurrence of NH4NO3 is RH dependent 

beyond the deliquescence point, nitrate concentrations can vary significantly across seasons. 

Seasonal variations in concentrations of ions have also been reported by Sudheer et al. (2014).   

Cl- and NO3
- have been reported to be emitted during wood combustion and soluble K is widely 

used as a marker for biomass combustion (Kleeman et al., 1999; Simoneit et al., 2004b; Watson et 

al., 2008).  In India, Patil et al. (2013) reported high abundance of Cl- and K+ in wood combustion, 

open burning and coal combustion while NH4
+, NO3

-   and Cl- are reported to be abundant in 
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industrial emissions.  The high winter concentration of Cl- could be due to the increased burning 

(wood, coal, waste) in the winter season.  

 

Figure 38: Seasonal variation of PM2.5 ion concentrations at CRRI 

 

Ion equivalency was estimated using Cl-, SO4
2-, NO3

- (anions) and NH4
+ (cation) for both seasons 

to understand the neutralization of the ions in the atmosphere (Figure 39). The anions were found 

to be more or less neutralized by NH4
+ in both seasons.    

Table 30: Summary of PM2.5 ion concentrations at CRRI, New Delhi (in µg/m3) 

Species 
Summer Winter 

Mean  S.D.  Minimum Maximum Mean  S.D.  Minimum Maximum 

Chloride  2.14 1.54 0.56 6.70 27.8 18.1 7.21 68.1 

Nitrate  4.37 2.14 1.04 8.79 32.8 20.1 0.21 76.7 

Sulphate 9.97 6.25 1.74 27.5 26.1 15.3 7.66 59.1 

Ammonium 4.94 2.87 0.94 12.4 34.2 17.0 13.0 64.0 

Soluble Na 0.41 0.38 0.01 1.56 0.64 0.30 0.20 1.18 

Soluble K  0.86 0.49 0.13 2.40 3.83 1.63 1.51 6.50 
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Figure 39: RMA regression between ammonium and sum (nitrate, sulphate, chloride) in 

PM2.5 

 

6.3.1.5 Elements  
 

Sulphur (S), Na and Si were found to be most abundant elements in PM2.5 in summer while Cl, Na 

and S were the most abundant in winter (Table 31, Figure 40). Concentrations of several elements 

including Cl, Pb, Fe and Zn were found to be more than five times higher in winter compared to 

summer. Elements typically associated with soil/mineral dust showed the lowest winter/summer 

ratios (e.g. Si- 0.95; Ca- 0.80) while several other species showed a 1.5 to 4 times increase in 

concentrations in winter (e.g.- Cr- 1.41; Mn- 2.69; S- 3.14; Zn- 3.27; Cu- 4.74).  

Pearson correlation analysis was used to understand the correlations among different elements. Zn 

was found to be moderately correlated with Pb (r2= 0.57) and Br (r2= 0.57) in summer, while a strong 

correlation was observed in winter for Pb (r2= 0.83). Previous studies have also reported correlation 

between Zn and Pb, and Tiwari et al. (2013) used these as markers for traffic source and Chen et 
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used as markers for biomass burning (Cheng et al., 2013) but no correlation was observed between 

these two species in Delhi.  

Al, Si, Ca, Ti, Mn and Fe have been used as markers for crustal dust/soil (Cass, 1998; Chow et al., 

2003; Viana et al., 2008; Pant and Harrison, 2012). In summer, Si was strongly correlated with Al 

(r2= 0.91), Fe (r2= 0.97), Ca (r2= 0.99), Ti (r2= 0.96), Sr (r2= 0.83) and moderately correlated with Mn (r2= 

0.51) and K (r2= 0.59) and weakly correlated with Ni (r2= 0.43). In winter, Si was strongly correlated 

with Fe (r2= 0.81), Ca (r2= 0.94), Ti (r2= 0.88) but Al was not found to be correlated with the other soil-

associated elements but with Cl (r2= 0.96), Br (r2= 0.94) and moderately correlated with Cu (r2= 0.78), 

Zn (r2= 0.58), K (r2= 0.56). This is possibly due to anthropogenic sources of Al, particularly from 

industries.  

Na was found to be strongly correlated to S (r2= 0.88), and moderately correlated with Pb (r2= 0.79) 

and K (r2= 0.78) in summer.  Mg was strongly correlated with Sn (r2= 0.84) and moderately correlated 

with Na (r2= 0.74) and Co (r2= 0.68) in summer while in winter, it was moderately correlated with Cl 

(r2= 0.68).  

Pb was strongly correlated with Zn (r2= 0.83), As (r2= 0.82), K (r2= 0.82) and moderately correlated 

with S (r2= 0.66) and Na (r2= 0.79). In summer, Pb was moderately correlated with S (r2= 0.62), Br (r2= 

0.50), Zn (r2= 0.56), Cu (r2= 0.75) and V (r2= 0. 57). Arsenic (As) was also correlated with Zn (r2= 0.81) 

in winter though these elements were not found to be correlated in summer. As and Pb are also 

reported to be emitted from waste burning (Watson et al., 2008). V and Ni are associated with 

industrial emission as well as oil combustion (Viana et al., 2008). Pb, Fe, Zn and K have also been 

associated with industrial emissions (Sahu et al., 2011b; Moreno et al., 2013; Patil et al., 2013; Farao 

et al., 2014). K and Br have also been reported from wood smoke (Kleeman et al., 1999; Fine et 

al., 2001) while Zn has been associated with incineration (Harrison et al., 1997; Moreno et al., 2013) 
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and industrial burning (Duvall et al., 2012). Pb and Mg are also reported to be rich in kerosene 

combustion (Patil et al., 2013). 

 

Figure 40: Seasonal variation of element concentrations in PM2.5 at CRRI 

 

While the correlations in the summer season are largely indicative of traffic and industrial sources, 

an additional source, most likely, combustion (including biomass, coal and waste) is affecting 

elemental concentrations in the winter season.  Zn and Cl can also be emitted due to coal 

combustion, and waste incineration (Perrino et al., 2011).  

Elements such as Cu, Ba, Sb and Sn have been associated with brake wear (Pant and Harrison, 

2013) but in Delhi, these were not found to be correlated to each other in summer. Species 

associated with brake wear such as Cu and Ba typically exhibit a coarse mode peak at 3.2-5.6 µm 

(Gietl et al., 2010). However, in Delhi, these peaks were not observed. This is important for future 

studies, as this would imply that elements such as Cu and Ba cannot readily be used as markers for 

non-exhaust emissions in India.  

0.001

0.01

0.1

1

10

100

N
a

M
g

A
l

S
i S C
l

K C
a

S
c

T
i V C
r

M
n

F
e

C
o

N
i

C
u

Z
n

A
s

S
e

B
r

R
b S
r Y Z
r

N
b

M
o

P
d

A
g

C
d In S
n

S
b

C
s

B
a

L
a

C
e

S
m E
u

T
b

W
o T
l

P
b

U
r

C
o

n
c
e
n

tr
a
ti

o
n

 (
µg

/
m

3
)

Summer Winter



161 
 

Table 31: Summary of elemental concentrations in PM2.5 at CRRI, New Delhi (in µg/m3) 

Species 
Summer Winter 

Mean  S.D.  Minimum Maximum Mean  S.D.  Minimum Maximum 

Na 2.39 2.91 0.10 13.43 9.27 6.82 0.52 23.19 

Mg detected in <20% samples 1.61 1.49 0.16 5.03 

Al 0.81 0.72 0.08 3.03 1.73 0.87 0.63 3.74 

Si 1.88 1.87 0.02 7.80 1.79 0.67 0.77 2.94 

P detected in <20% samples detected in <20% samples 

S 3.02 2.20 0.01 9.67 9.49 7.27 2.42 26.9 

Cl 0.37 0.61 0.01 2.70 19.19 13.88 0.00 53.2 

K 0.84 0.55 0.01 2.02 3.03 1.14 0.86 5.18 

Ca 0.78 0.75 0.004 3.27 1.11 0.46 0.33 1.85 

Sc 0.08 0.14 0.005 0.74 0.06 0.09 0.03 0.34 

Ti  0.07 0.06 0.003 0.25 0.07 0.04 0.005 0.13 

V 0.01 0.01 0.0004 0.02 0.01 0.01 0.001 0.03 

Cr 0.01 0.01 0.0003 0.05 0.01 0.02 0.00 0.06 

Mn 0.03 0.03 0.0003 0.11 0.08 0.07 0.01 0.29 

Fe 0.71 0.63 0.02 2.52 1.15 0.33 0.53 1.57 

Co 0.001 0.001 0.0003 0.006 detected in <20% samples 

Ni 0.004 0.003 0.0003 0.01 0.01 0.01 0.0003 0.02 

Cu 0.02 0.01 0.001 0.05 0.07 0.07 0.01 0.28 

Zn 0.20 0.19 0.01 0.75 0.64 0.38 0.23 1.47 

Ga detected in <20% samples detected in <20% samples 

As 0.004 0.001 0.001 0.005 0.04 0.04 0.002 0.17 

Se 0.007 0.003 0.001 0.01 0.00 0.00 0.001 0.00 

Br 0.02 0.01 0.002 0.06 0.08 0.06 0.01 0.19 

Rb 0.005 0.004 0.001 0.01 0.01 0.004 0.002 0.01 

Sr 0.009 0.006 0.002 0.02 0.02 0.02 0.01 0.07 

Y 0.01 0.004 0.0002 0.01 0.01 0.001 0.003 0.01 

Zr 0.015 0.011 0.0003 0.03 0.01 0.01 0.002 0.01 

Nb 0.01 0.008 0.0003 0.02 detected in <20% samples 

Mo 0.01 0.01 0.0002 0.02 0.01     0.003    0.0002  0.01 

Pd 0.03 0.02 0.001 0.04 0.02 0.01 0.005 0.02 

Ag 0.03 0.02 0.002 0.07 0.02 0.01 0.01 0.02 

Cd detected in <20% samples 0.02 0.004 0.01 0.02 

In 0.03 0.01 0.001 0.04 0.01 0.01 0.002 0.02 

Sn 0.03 0.02 0.01 0.10 0.02 0.01 0.005 0.03 

Sb 0.041 0.023 0.0002 0.07 detected in <20% samples 

Cs 0.02 0.02 0.005 0.10 detected in <20% samples 

Ba 0.03 0.03 0.004 0.13 0.01 0.01 0.01 0.04 

La 0.04 0.06 0.01 0.31 detected in <20% samples 
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Ce 0.04 0.10 0.01 0.49 0.11 0.24 0.01 0.88 

Sm 0.17 0.40 0.005 2.13 0.13 0.30 0.01 1.11 

Eu 0.09 0.09 0.03 0.35 0.15 0.36 0.02 1.34 

Tb 0.08 0.10 0.03 0.43 0.10 0.26 0.01 0.96 

Hf detected in <20% samples detected in <20% samples 

Ta detected in <20% samples detected in <20% samples 

W 0.08 0.04 0.0003 0.12 0.06 0.06 0.01 0.25 

Ir detected in <20% samples detected in <20% samples 

Au detected in <20% samples detected in <20% samples 

Hg     detected in <20% samples 

Tl 0.01 0.01 0.0002 0.02 detected in <20% samples 

Pb 0.08 0.06 0.003 0.27 0.60 0.65 0.08 2.51 

U 0.034 0.018 0.002 0.05 0.02 0.01 0.003 0.03 

 

 

6.3.1.6 Carbonaceous Species  
 

A comprehensive set of organic species were measured using TD GC-MS including PAHs, 

hopanes, steranes and alkanes using methods described in Chapter 2. Across all species’ classes, 

concentrations were observed to be higher in winter compared to summer. Several species were 

not detected in summer.  

PAHs: PAHs are typically emitted as a by-product of combustion (including road traffic, solid fuel 

combustion, coal combustion, industries and agricultural burning) and are found both in gas- and 

particulate-phases (Smith and Harrison, 1996; Cass, 1998; Chow et al., 2004). Total pPAH 

concentration in PM2.5 was observed to be 6.04 ng/m3 in summer and 119.1 ng/m3 in winter. 

Several species including Pic, DaeP, Cor were detected only in winter samples (Figure 41). Acy was 

the most abundant species in summer followed by Ace while in winter, Chr was the most abundant 

species followed by BaP. PAHs were strongly correlated with OC (r2= 0.80), EC (r2= 0.90) and 

hopanes (r2= 0.83) in summer and moderately correlated with alkanes (r2= 0.69). A summary of 

seasonal concentrations is presented in Table 32.  



163 
 

Heavy duty vehicles typically emit low molecular weight PAHs including anthracene, methyl- and 

dimethyl- phenanthrenes and fluoren-9-one (Rogge et al., 1993a; Sjorgen et al., 1996; Miguel et al., 

1998). Species such as BN1NT, Flu, Phen have been used as markers for diesel vehicle emissions 

while methylphenanthrenes have been associated with evaporative emissions from fuel (Harrison 

et al., 1996; Jang et al., 2013). PAHs such as benzo(ghi)perylene, indeno(1,2,3-cd)pyrene and 

coronene have previously been used as markers for gasoline traffic emissions (Cass, 1998; Phuleria 

et al., 2007; Pant and Harrison, 2013). Flu, Acy, Ant, Phe, Pyr, BeP, BaP, Ret are typically used as 

markers for wood combustion (Cass, 1998; Fine et al., 2001; Simoneit, 2002; Jang et al., 2013) while 

Ant, Phe, BaA and Chr are used as markers for coal combustion (Harrison et al., 1996). Several 

species such as Ant, CcdP and BN1NT have been attributed to different sources in different 

studies. For example, Larsen and Baker (2003) reported the use of CcdP as a tracer for gasoline 

emissions while Jang et al. (2013) used it as a marker for coal combustion. Previous studies from 

India have associated pyrene with domestic fuel emissions (kerosene, dung etc.) and coal 

combustion, BaP with wood combustion and BghiPe and IcdP with traffic emissions (Kulkarni 

and Venkataraman, 2000; Sharma et al., 2007) while BaAQ has been associated with residential 

natural gas emissions (Cass, 1998).   

If the summer and winter concentrations are compared, species such as Phe (11.6), BaA (54.7) 

associated with coal and biomass combustion show very high winter/summer ratios while others 

associated with traffic such as BghiPe (6.86) and 2MPhe (2.50) have comparatively lower 

winter/summer ratios. This indicates additional sources in proximity of the sampling site during 

winter season which is consistent with emission inventory analyses. High winter/summer ratios 

have been reported previously by Sharma et al. (2007) for Delhi. In addition to source types, the 

different temperature regimes across seasons can also influence the partitioning of the species in 

the gas- and particle- phases for PAHs (Smith and Harrison, 1996).  
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Figure 41: Seasonal variation of PAH congener concentrations in PM2.5 at CRRI 

 

One of the qualitative approaches for assessment of PAH source is the diagnostic ratio (DR) 

analysis where ratios of different PAHs are used for identification of contributing sources. Ratio 

of IcdP/IcdP+BghiPe is used as an indicator for diesel/gasoline or coal emissions (Ravindra et al., 

2008). The ratio was observed to be 0.38 in summer and 0.46 in winter indicating the contribution 

from vehicular emissions. Ratio of BaA/BaA+Chr can also be used to distinguish between 

diesel/gasoline/wood combustion and in the present case, the ratio was observed to be 0.18 for 

summer and 0.39 for winter which corresponds with diesel emissions (Kavouras et al., 2001).   
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Table 32: Summary of PAH congener concentrations in PM2.5 at CRRI (in ng/m3) 

Species 
Summer Winter 

Mean  S.D.  Minimum Maximum Mean  S.D.  Minimum Maximum 

PAHs          

Acy 1.69 1.71       0.001  5.25 5.51 2.14 0.001 7.62 

Ace 0.71 0.52 0.18 1.91 4.94 3.53 0.40 9.80 

Flu  detected in <20% samples 2.34 1.93 0.001 4.91 

Phe 0.38 0.34 0.000 1.71 4.39 1.68 2.20 7.30 

Ant detected in <20% samples 2.04 0.75 1.00 3.10 

FluA 0.36 0.25 0.0002 1.33 3.01 3.82 0.30 10.1 

Pyr 0.35 0.32 0.0003 1.53 1.06 1.20 0.30 3.30 

FluO 0.37 0.10 0.29 0.75 3.36 1.26 2.00 5.80 

Dbt 0.06 0.11 0.001 0.29 detected in <20% samples 

1MPhe 0.22 0.09 0.001 0.41 0.80 0.25 0.50 1.30 

2MPhe 0.24 0.09 0.001 0.48 0.61 0.11 0.50 0.90 

9MA detected in <20% samples 1.40 1.40 0.001 3.23 

B[a]A 0.15 0.25 0.0005 1.04 8.01 3.20 3.90 13.2 

Chr 0.65 0.61 0.0003 2.95 12.5 4.18 6.50 18.6 

BbF 0.53 0.32 0.001 1.69 6.61 4.62 1.50 16.0 

BjkF 0.27 0.36 0.0002 0.93 7.22 2.13 3.10 12.0 

BaF  0.10 0.16 0.0003 0.55 3.29 1.51 1.50 5.10 

BeP 0.42 0.39 0.0006 1.61 6.40 2.06 3.40 9.6 

BaP 0.19 0.27 0.0006 0.91 8.73 3.34 5.10 14.3 

Per  detected in <20% samples 2.68 0.80 1.90 4.00 

IcdP 0.26 0.22 0.0003 0.94 2.39 1.59 0.0003 4.79 

DahA detected in <20% samples 0.47 0.47 0.001 1.13 

BghiPe 0.42 0.27 0.000 1.05 2.88 2.42 0.0004 6.19 

Cor detected in <20% samples 2.54 2.06 0.0005 5.52 

DaeP detected in <20% samples detected in <20% samples 

DMPhe detected in <20% samples 0.39 0.41 0.001 1.08 

MFluA detected in <20% samples 1.49 1.88 0.001 6.88 

11H-BaF detected in <20% samples 1.84 1.73 0.70 6.80 

Ret 0.22 0.19 0.001 0.65 3.80 2.28 0.4 8.10 

B(ghi)F 0.14 0.31 0.0003 1.27 4.53 1.44 2.5 7.10 

BcPhe detected in <20% samples 2.16 0.78 1.1 3.40 

BN21T detected in <20% samples 0.83 0.26 0.4 1.20 

CcdP detected in <20% samples 8.59 2.37 4.7 13.2 

B(a)AQ detected in <20% samples 0.81 0.93 0.001 2.80 

MChr detected in <20% samples 1.04 0.41 0.4 1.60 

BbC detected in <20% samples detected in <20% samples 

Pic detected in <20% samples 0.45 0.53 0.001 1.22 
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Hopanes and steranes: Total hopane concentration in PM2.5 was observed to be 2.54 ng/m3 in 

summer and 30.2 ng/m3 in winter. RHHO (C31αβR-hopane) was the most abundant species in 

both seasons (Figure 42). A summary is presented in Table 33.  

Hopanes were found to be strongly correlated to alkanes (r2= 0.88) and PAHs (r2= 0.88) in winter 

although no correlation was observed with OC and EC. In summer, hopanes were strongly 

correlated with EC (r2= 0.88) and PAHs (r2= 0.83) and moderately correlated with OC (r2= 0.78) and 

alkanes (r2= 0.74).  While hopanes are typically used as markers for traffic exhaust emissions (as 

discussed in Chapter 1), several hopane species are also found to be abundant in coal burning 

emissions (Oros and Simoneit, 2000; Zhang et al., 2008). The ratio between S/S+R homohopanes 

was identified as 0.05 for lignite and 0.08 for brown coal (Oros and Simoneit, 2000). In Delhi, the 

values for this ratio were calculated as 0.11 for summer and 0.05 for winter, indicating the potential 

contribution from coal/lignite burning as an additional hopane source. Lignite is used for electricity 

generation in thermal power plants in India, and coal can also be used for cooking and/or heating, 

particularly in poorer areas and slums.  

In the case of steranes, ααα20RC was the abundant sterane in summer while αββ20S24REC was 

the most abundant species in winter. Total sterane concentrations in summer and winter were 0.57 

and 3.95 ng/m3 respectively. αββ20S24SMC showed a very high winter/summer ratio (15.2) while 

ααα20RC and ααα20R24REC showed winter/summer ratios less than 2. Steranes were strongly 

correlated with hopanes (r2= 0.81) and EC (r2= 0.86) in summer and in winter, the correlation was 

moderate both in case of hopanes and steranes at p<0.05.   
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Figure 42: Seasonal concentrations of hopane and sterane congeners in PM2.5 at CRRI 

 

Table 33: Summary of hopane and sterane congener concentrations in PM2.5 at CRRI (in 

ng/m3) 

Species 
Summer Winter 

Mean  S.D.  Minimum Maximum Mean  S.D.  Minimum Maximum 

Hopanes          

TNNHO detected in <20% samples 1.66 0.64 0.66 2.39 

TNOHO detected in <20% samples 0.22 0.32 0.0003 0.76 

C29αβ-hopane 0.36 0.57 0.0002 1.93 0.99 1.82 0.0002 4.65 

22,29,30-norhopane  detected in <20% samples 5.41 2.95 0.80 9.48 

C29αα- + βα -hopane detected in <20% samples 0.42 0.27 0.0004 0.73 

C30αβ -hopane 0.39 0.50 0.0003 1.86 2.84 2.13 0.24 5.74 

30αα-hopane detected in <20% samples 2.40 2.11 0.44 6.58 

C30βα -hopane detected in <20% samples 0.52 0.39 0.0003 1.23 

SHHO 0.08 0.19 0.0005 0.74 0.30 0.62 0.0005 1.55 

RHHO 0.64 0.68 0.0005 2.72 6.27 1.65 4.16 9.22 

SBHHO detected in <20% samples detected in <20% samples 

RBHHO 0.14 0.15 0.0005 0.59 1.42 0.40 0.80 1.98 

STHHO 0.16 0.15 0.0005 0.53 1.32 0.41 0.84 2.09 
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RTHHO 0.07 0.10 0.0006 0.33 1.02 0.53 0.45 2.18 

STEHHO 0.04 0.09 0.0005 0.34 0.50 0.65 0.001 1.97 

RTEHHO 0.02 0.04 0.0005 0.14 0.22 0.18 0.001 0.49 

SPHHO 0.07 0.09 0.0005 0.35 0.71 0.31 0.38 1.45 

RPHHO detected in <20% samples 0.06 0.07 0.001 0.16 

Steranes          

ααα 20SC detected in <20% samples detected in <20% samples 

αββ 20RC detected in <20% samples 0.48 0.31 0.0004 0.88 

αββ 20SC  detected in <20% samples 0.55 0.26 0.21 0.96 

ααα 20RC 0.36 0.79 0.0002 3.09 0.24 0.21 0.0002 0.55 

ααα 20S24S MC detected in <20% samples detected in <20% samples 

αββ 20R24S MC detected in <20% samples 0.28 0.28 0.0003 0.63 

αββ 20S24S MC 0.04 0.08 0.0003 0.25 0.58 0.15 0.26 0.72 

ααα 20R24RMC detected in <20% samples detected in <20% samples 

ααα 20S 24R/S EC detected in <20% samples 0.24 0.34 0.0005 0.78 

αββ 20R24REC detected in <20% samples 0.44 0.14 0.22 0.64 

αββ 20S24REC detected in <20% samples 0.94 0.34 0.53 1.37 

ααα 20R24R EC 0.17 0.40 0.0002 1.49 0.21 0.37 0.0002 1.25 

 

 

Alkanes: Alkanes were the most abundant class among the organic species in PM2.5 and the 12-h 

average alkane concentration was observed to be 48.2 ng/m3 in summer and 382.3 ng/m3 in winter. 

C20-31 homologues were the most abundant while C39 and C40 were not detected in either season 

(Table 34).  

Fu et al. (2010) also did not detect C36-40 homologues in winter and C39-40 in summer in Chennai 

(India) in PM10. The dominant homologues were C26, C27 and C25 in summer and C29, C22 and 

C31 in winter (Figure 43). The winter/summer ratios were highest for the lower homologues (C18-

C23) and C34-35.   

Wood and biomass combustion is quite common in Delhi during the winter period when wood is 

used not only as a cooking fuel but also for heating (Fu et al., 2010; Yadav et al., 2013). In addition, 

old tyres, furniture (often plastic) and other waste materials are often burnt in the open. Long chain 

alkanes (e.g. C36) are also reported to be emitted from open waste burning (Fu et al., 2010; Alves 



169 
 

et al., 2012).  Alkane emissions (n<25) from the vehicles can be attributed to unburnt engine oil in 

case of gasoline vehicles and fuel as well as lubricating oil in case of diesel vehicles  and older 

vehicles are often high emitters of n-alkanes (Rogge et al., 1993a).  

Alkanes were found to be correlated well with OC (r2= 0.79), and hopanes (r2= 0.74) and moderately 

correlated with PAHs (r2= 0.69) and EC (r2= 0.60) in summer. In winter, however, no correlation was 

observed with OC and EC although strong correlation was observed with hopanes as well as PAHs 

(r2= 0.88 in both cases).   

Carbon Preference Index (CPI), the ratio of odd to even numbered homologues, can be used to 

estimate the relative contribution of anthropogenic and biogenic sources. Due to the odd carbon 

number preference in case of vegetative material, higher ratio values are associated with biogenic 

contribution. In this case, the index value was 1.09 for summer and 1.22 for winter indicating a 

significant contribution from anthropogenic sources in both seasons.   

 

Figure 43: Seasonal concentrations of straight chain alkane species in PM2.5 at CRRI 
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Table 34: Summary of alkane concentrations (C15-C40) in PM2.5 at CRRI (in ng/m3) 

Species 
Summer Winter 

Mean  S.D.  Minimum Maximum Mean  S.D.  Minimum Maximum 

C15 detected in <20% samples 3.60 1.82 0.001 6.5 

C16 2.49 1.11 1.44 6.21 3.31 0.99 2.05 4.9 

C17 0.05 0.23 0.000 1.22 2.78 1.56 0.0005 5.7 

C18 0.32 0.56 0.003 1.83 2.90 1.55 0.0004 5.7 

C19 0.05 0.28 0.000 1.46 3.25 1.89 0.0003 6.5 

C20 0.63 1.01 0.002 3.39 23.3 15.3 1.83 54.8 

C21 1.35 1.55 0.004 4.70 29.6 17.1 4.22 62.5 

C22 1.39 1.66 0.003 5.56 31.6 9.66 21.6 50.9 

C23 1.93 2.22 0.003 6.61 29.4 8.50 19.6 44.2 

C24 4.14 3.88 0.003 14.4 28.5 9.85 17.9 49.1 

C25 5.00 5.00 0.003 18.2 27.3 9.90 16.3 47.3 

C26 5.35 5.02 0.003 20.2 24.7 7.98 14.5 37.5 

C27 5.08 4.15 0.001 17.0 24.2 8.03 14.8 39.4 

C28 4.03 3.44 0.003 13.1 19.2 8.56 0.0005 29.7 

C29 4.96 4.28 0.004 17.6 31.9 19.0 0.0005 58.8 

C30 3.05 2.31 0.004 9.15 16.3 11.7 0.0006 33.7 

C31 4.76 2.81 0.004 12.3 30.1 18.7 0.0005 62.7 

C32 1.24 1.39 0.004 4.60 6.06 7.65 0.0006 26.5 

C33 1.55 1.27 0.003 4.21 12.1 10.7 0.0004 35.8 

C34 0.45 0.83 0.000 2.64 11.1 7.54 0.0004 21.3 

C35 0.38 0.70 0.003 2.24 13.3 7.33 6.94 28.7 

C36 detected in <20% samples 4.87 7.91 0.001 23.4 

C37 detected in <20% samples 2.19 3.19 0.001 9.4 

C38 detected in <20% samples 0.79 1.10 0.001 2.3 

C39 detected in <20% samples detected in <20% samples 

C40 detected in <20% samples detected in <20% samples 

 

 

Sugars: In ambient air, saccharides are typically associated with biological material (e.g. soil organic 

matter) and arabitol and mannitol have been proposed as markers for fungal spores (Simoneit et 

al., 2004a; Buaer et al., 2008). Glycerol, a polyol, was the only saccharide species detected in both 

summer and winter with a winter/summer ratio of 26.5. Most of the other saccharides were 

detected in less than 20% of the samples and not discussed in detail (Table 35, Figure 44).  
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Figure 44: Seasonal concentrations of sugar species in PM2.5 at CRRI (µg/m3) 

  

Anhydrosaccharides such as levoglucosan and mannosan are typically associated with 

wood/biomass combustion (Simoneit et al., 2004b; Alves et al., 2012). Both levoglucosan and 

mannosan were only detected in the winter season and had a strong correlation (r2= 0.84) (Figure 

44). Fu et al. (2010) reported a levoglucosan/mannosan ratio of 16.4 which is comparable to the 

ratio observed in the current study (16.07). Levoglucosan was also strongly correlated with OC (r2= 

0.91) and Cl- (r2= 0.87). Correlation with K+ was comparatively weaker, and not significant at p<0.01. 

Cow dung burning has also been identified as a source of levoglucosan in India, but K is typically 

not released from cow dung combustion (Fu et al., 2010). A recent study focused on water-soluble 

organic carbon (WSOC) has also highlighted the important of biomass combustion as a source of 

OC in Delhi (Kirillova et al., 2014).   

Diacids: Several organic acids including oxalic acid, lactic acid and glutaric acid were found to be 

present in both seasons (Figure 45). While oxalic acid was found to be the abundant species in both 

seasons, formic acid had the highest winter/summer ratio of 3.14. Biogenic sources have been 
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set is consistent with the absence or low concentrations of other biogenic material-related 

molecular markers.  

Table 35: Concentrations of sugar species in PM2.5 at CRRI (in µg/m3) 

Species 
Summer Winter 

Mean  S.D.  Minimum Maximum Mean  S.D.  Minimum Maximum 

Sugars           

Levoglucosan detected in <20% samples 6.57 3.23 2.15 12.0 

Mannosan detected in <20% samples 0.42 0.27 0.06 1.04 

Glycerol 0.05 0.01 0.03 0.08 1.39 1.78 0.46 7.13 

Inositol detected in <20% samples detected in <20% samples 

Erythritol detected in <20% samples detected in <20% samples 

Xylitol detected in <20% samples detected in <20% samples 

Arabitol detected in <20% samples 0.23 0.31 0.07 1.14 

Sorbitol detected in <20% samples detected in <20% samples 

Trehalose detected in <20% samples detected in <20% samples 

Mannitol  detected in <20% samples detected in <20% samples 

Arabinose  detected in <20% samples detected in <20% samples 

Glucose + Xylose  detected in <20% samples detected in <20% samples 

Galactose +Maltitol  detected in <20% samples detected in <20% samples 

Fructose  detected in <20% samples detected in <20% samples 

 

 

Figure 45: Seasonal variation in concentrations of organic acids in PM2.5 at CRRI 
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Table 36: Summary of organic acid concentrations in PM2.5 in summer and winter (in 

µg/m3) 

Species 
Summer Winter 

Mean  S.D.  Minimum Maximum Mean  S.D.  Minimum Maximum 

Diacids          

Lactate  0.30 0.22 0.06 0.89  0.32 0.03 1.23 

Acetate detected in <20% samples  0.33 0.02 0.97 

Formate 0.20 0.09 0.06 0.30  0.37 0.26 1.34 

MSA detected in <20% samples  0.31 0.09 1.23 

Succinate detected in <20% samples  0.27 0.002 0.66 

Glutarate 0.41 0.15 0.33 0.83  0.26 0.33 1.02 

Malonate detected in <20% samples detected in <20% samples 

Maleate detected in <20% samples detected in <20% samples 

Oxalate 0.52 0.28 0.09 1.13 1.50 1.49 0.00 4.33 

 

 

6.3.2 Enrichment Factor Analysis 
 

In order to further understand the sources of the elements (crustal vs. anthropogenic), enrichment 

factors (EFs) were calculated based on continental crust concentrations using Al as the reference 

element (Taylor and McLennan, 1995) (Figure 46).  

  

𝑬𝑭 (𝑿) =  

{
𝑪𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏(𝑿)

𝑪𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏(𝑹𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆)
} 𝒔𝒂𝒎𝒑𝒍𝒆

{
𝑪𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏(𝑿)

𝑪𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏(𝑹𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆)} 𝒄𝒓𝒖𝒔𝒕𝒂𝒍
                                   (𝟏𝟓) 

Where 
Concentration (X) refers to the concentration of species X in sample/crust  
Concentration (reference) refers to the concentration of Al in sample/crust  

 

EF values of 10 or higher are considered to indicate significant anthropogenic contribution. In this 

case, high enrichment factors (>100) were observed for elements such as Cu, Zn, Sb, Cd, Sn, As 

and Pb both in summer and winter, with higher enrichment observed in winter. On the other hand, 

Si, Sr, Se, Ba, Ca, Fe, Mn, Mg and V were found to have low EFs indicating crustal contribution. 
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This correlates with the size distributions for Mn and V where coarse mode was found to be 

dominant. Ti, typically associated with crustal matter, was also found to be enriched in both seasons 

although contrary to most of the other elements, the enrichment was higher in summer. Cd, As, 

Pb, Sb and Ti were found to be highly enriched in both seasons. Cd is primarily emitted from 

industries (smelting), waste incineration and recycling of electronic waste but is also associated with 

traffic emissions (Amato et al., 2011b).  Arsenic (As) is used as a marker for coal combustion, and 

Pb and Zn are also emitted from waste incineration.  

 

Figure 46: Enrichment factors for select elements in PM2.5 

 

6.3.3 Mass Closure  
 

In order to understand the relative contribution of the different species, mass closure was 

attempted for PM2.5 mass with seven components including woodsmoke, traffic, other OM, 

secondary aerosol (ammonium chloride, ammonium nitrate and ammonium sulphate) and mineral 

dust/soil. Crustal material was estimated using concentrations of elements- Si, Al, Ca, Fe and Ti, 

based on Chan et al. (1997) [discussed in Chapter 5, equation 15]. Organic matter (OM) was 
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estimated from OC using a factor of 1.2 in case of traffic OM, and 1.5 in case of other OM. The 

factors used in the mass closure equation are listed in Table 37.  

Nearly 100% of the mass was estimated in both cases [94.2% in summer and 114.7% in winter] 

and the results are described in Figure 47. 

Sulphate (25.1%) and crustal material (17.5%) had higher contributions in summer while nitrate 

(12.8%) had a higher contribution to PM2.5 in winter. Lower concentration of nitrate in summer 

can be explained by the volatility at higher temperatures while higher crustal matter in summer is 

attributed to desert dust as well as local dust sources which are frequently resuspended in dry and 

windy conditions. Traffic was found to contribute 23% to PM2.5 in summer and 16% in winter, 

while woodsmoke was found to contribute 23% in winter.  

 

Table 37: Estimation factors used for PM2.5 mass closure  

Source  Component Estimation factor  Reference  

Woodsmoke  

OM (PM2.5) 11.2*levoglucosan  Harrison et al. (2012) 

OC  7.35*levoglucosan  Puxbaum et al. (2007) 

EC  0.2*woodsmoke PM2.5  Harrison et al. (2012) 

Traffic  

OC  0.35*EC  
Pio et al. (2011) 

PM2.5 1.35*EC  

OM (PM2.5) Traffic PM2.5*1.2  Chow et al. (2002) 

Secondary 
Ions  

(NH4)2SO4 1.38*Sulphate  
Harrison et al. (2003); molar 

ratios  
(NH4)NO3  1.33*Nitrate  

(NH4)Cl  1.51*Chloride 

Dust  Crustal Mass  
1.16(1.90Al+ 2.15Si+ 1.41Ca+1.67Ti+ 

2.09Fe)  
Chan et al. (1997)  
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Figure 47: Mass closure for PM2.5 at CRRI 
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days in winter. Several elements including Cu, Zn, Sb, Pb, Cd and As were found to be significantly 

enriched in PM2.5 and complex correlations were observed between elemental species. In the case 

of molecular markers, several species were detected only in winter. Alkanes were found to be the 

most abundant class of organic species followed by PAHs and hopanes.  

Concentrations were found to be significantly higher in winter compared to summer. Pollutant 

concentrations can be affected both by meteorology and source strength. There is a significant 

difference in the average temperature between summer and winter seasons in Delhi, and this could 
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chemical reactions in the presence of sunlight (e.g. photodegradation of PAHs) (Venkataraman 

and Friedlander, 1994; Smith and Harrison, 1996; Alves et al., 2012). In combination with higher 

wind speeds, and inversion layer; this can lead to better dispersion of pollutants in the summer 

season. However, in winter, there is much less solar radiation, and the weather conditions are often 

‘calm’ in Delhi indicated by zero or very low wind speeds. Further, the inversion layer height is 

typically much lower in winter. A combination of such meteorological factors can thus contribute 

to a build-up of pollutants, leading to higher concentrations. Another important aspect is the role 

of additional sources in the winter season. During the winter season, biomass/waste combustion 

is often used as a source of heating across the city, a lot of which occurs under uncontrolled 

conditions in the open areas. Increase in species associated with waste combustion (Pb, Zn, C35, 

C36) indicates the potential contribution from this seasonal source at the sampling site. However, 

in the absence of detailed emission inventories, it is difficult to attribute the elemental 

concentrations to specific sources.  

The dataset can be used to generate quantitative source contribution estimates for summer and 

winter seasons. A small set of PM2.5 source profiles is available for India (Patil et al., 2013). 

However, the profiles only include inorganic and carbon data and it is important to assess the 

sensitivity of the species as well as profiles before the modelling exercise is conducted. This activity 

could not be carried out due to limited time, but will be conducted in the future.   
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CHAPTER 7- CONCLUSIONS  
 

This thesis presents results from characterization and source estimation of PMx in New Delhi 

(India) and Birmingham (UK).  

In Birmingham (UK), PM2.5 was measured in a high-traffic environment (tunnel) and an urban 

background site while in New Delhi (India); PM2.5 measurements were made at a high-traffic site. 

PM10 road dust was analysed in both cities. Chemical composition data was used to prepare source 

profiles for PM2.5 composite traffic in the UK and PM10 road dust in UK and India.     

PM (size-segregated and PM2.5) was characterized at a traffic tunnel (QT) and an urban background 

site (EROS) in Birmingham, UK. Significant enrichment was observed at QT across various 

species’ classes compared to EROS for PM2.5. A bimodal mass size distribution (derived from 

MOUDI) was observed at both sites, with differences in the split among coarse and fine fractions. 

Analysis of the elemental size distributions indicated potential influence from the railways (wear 

and tear, braking) at EROS.    

Two different ambient monitoring-based datasets (discussed in Chapters 3 and 4) were used for 

preparation of composite traffic PM2.5 profiles (e.g. tunnel profile- Figure 48). The underlying 

principle is the same in both cases, i.e. calculation of a traffic increment for individual species 

followed by the normalization of the increments with respect to traffic increment for OC, resulting 

in a profile (µg/µg OC). The two UK profiles (tunnel-based and kerbside-based) were found to be 

similar (CoD= 0.32), and the highest dissimilarity was observed for the USA dynamometer profiles.  
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Figure 48: Source profile (µg/ µg OC) for composite traffic emissions for UK 

  

CMB modelling was conducted for PM2.5 at three different sites in the UK (two in Birmingham, 

one in London), and results were cross-compared with independent estimates for traffic 

contribution to PM (EC*1.35, Pio et al., 2011) and SOC contribution (EC tracer method, Turpin 

& Huntzicker, 1995). Overall correlation was similar for the twin-site and dynamometer profiles, 

with the twin-site profile performing better in some cases (results summarized in Table 38. Thus, 

it can be concluded that composite traffic profiles can be used to generate reliable SCEs, and offer 

a reliable alternative to dynamometer profiles.  
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Table 38: Traffic mass estimate (µg/m3) using different traffic profiles 

(values in parentheses refer to the total % PM2.5 explained with each profile run) 

Site (season) 

 

PM2.5 mass apportioned to traffic 

DYN-A DYN-GD TWIN TUN R80 

UB site, London (S) 2.98 (123) 1.61 (130) 2.69 (119) 0.96 (122) 2.69 (119) 

UB site, Birmingham  (A) 2.61 (104) 1.61 (108) 2.13 (106) 1.61 (97.5) 2.13 (106) 

UB site, Birmingham (S)  2.39 (108) 1.50 (111) 1.90 (109) 1.50 (100) 1.90 (100) 

UB site, Birmingham (W)  2.93 (94.7) 1.70 (101) 3.18 (98.1) 1.70 (89.8) 3.18 (98.1) 

Rural site, Birmingham (A) 2.06 (111) 1.13 (116) 2.00 (113) 0.80 (116) 1.67 (114) 

Rural site, Birmingham (S) 1.97 (119) 0.89 (113) 2.00 (122) 2.00 (124) 2.00 (121) 

Rural site, Birmingham (W)  2.07 (101) 1.36 (106) 1.81 (103) 0.79 (106) 1.81 (103) 

Note: S- summer, W- winter, UB- urban background, A- annual   

While a number of studies have undertaken analysis of road dust in the UK and India, there is no 

data on the PM10 (thoracic) fraction which is the health-relevant fraction for the non-exhaust 

emissions. Understanding the chemical composition of the PM10 road dust is the first step towards 

improving the understanding of this source. PM10 road dust fraction was characterized at different 

traffic locations in Birmingham, UK and at one location in New Delhi. Highest dust loading 

(µg/m2) was observed for New Delhi (72.9 ± 24.3 mg/m2) while the highest concentrations (µg/g) 

were observed for the tunnel site in the UK. PM10 road dust source profiles were prepared for 

Birmingham and New Delhi (Figure 49).  

The PM10 road dust dataset was subsequently used for estimation of source contributions using an 

empirical method proposed by Harrison et al. (2012a). While the method was successfully applied 

to high-traffic locations in the UK (nearly 100% mass reconstruction), the results were not 

satisfactory for the low-traffic site in Birmingham and the site in New Delhi (Figure 50).  

Overall, the crustal/soil contribution was the largest across sites while brake and tyre wear 

contributions were found to vary based on site type. The Si/Fe ratio was found to be the lowest at 

the low-traffic site in Birmingham, and peculiar site characteristics, as well as possible variations in 
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the local soil composition could be the cause for the low apportionment at this site. High Cu/Sb 

ratios and low enrichment of Ba at the site in New Delhi indicated that the markers used for non-

exhaust brake wear emissions in Europe may not be suitable for use in India. Analysis of the 

ambient size-segregated PM in New Delhi seemed to confirm this observation; since the 

characteristic peak (3.2.-5.6 µm) associated with brake wear was not observed in New Delhi. In 

addition, there might be other contributing sources, including construction dust which are not 

accounted for in the current estimation. 

Since the source estimation is empirical, it can potentially be used in any city and can serve as a 

useful method for estimation of non-exhaust emissions in urban area.  However, it is important to 

assess the local soil chemistry (contribution of key crustal elements such as Si/Al) to use the correct 

factors and analysis of bulk brake pad dust and tyre dust can be used to derive locally-relevant 

ratios for improved quantification.  

 

Figure 49: Source profiles for PM10 road dust in Birmingham (UK) and New Delhi (India) 
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Figure 50: Source contributions of various non-exhaust sources to PM10 road dust across 

sites A-D (in %) 

 

In New Delhi, PM2.5 concentrations were found to exceed the NAAQS (24-h average concentration 

of 60 µg/m3) on several days in summer and most days in winter. PM was found to be trimodal 
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higher contributions in the summer while nitrate and secondary OM had higher contributions in 

the winter.   

Table 39: Mass closure for PM2.5 in New Delhi (values in %) 

Source category Summer  Winter  

Woodsmoke  23.2 

Traffic  23.0 16.1 

Other OM  18.0 21.3 

(NH4)2SO4 25.1 10.5 

(NH4)NO3 10.6 12.8 

(NH4)Cl  5.88 12.3 

Crustal Material  17.5 3.87 

 

While this is one of the first studies to undertake detailed chemical composition of PM2.5 as well as 

size-segregated aerosols in India, the study did have some limitations. Since the samples were 

collected at one site only, it was difficult to discern the influence of traffic with respect to other 

sources. In addition, due to time and cost constraints, sampling was conducted for a short period 

of time, resulting in a relatively small dataset. This renders the application of multivariate analysis 

tools such as PMF difficult.  A larger number of sampling sites and longer sampling periods would 

enable analysis of the data using multiple methods including CMB and PMF. It is also clear that 

the knowledge of source influences and source-specific marker species from Europe and North 

America may not be directly applicable in Asian cities. This has also been highlighted in a recent 

study from Taiwan (Lin et al., 2014). Levels of PM as well as its chemical constituents are much 

higher in Delhi compared to European cities, and in the absence of stringent regulations, several 

source often go undetected.  
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CHAPTER 8- FUTURE DIRECTIONS  
 

8.1 United Kingdom  
 

This thesis has focused on development of traffic profiles (PM2.5) for the UK based on ambient 

data, and the successful application of a CMB model using the composite traffic profile. Based on 

the traffic profiles generated in this study (traffic-PM2.5 and road dust-PM10), updated estimates for 

the contribution of exhaust and non-exhaust sources to ambient PM concentrations can be 

generated.  Ambient data-based source profiles can be used as inputs for receptor modelling, and 

represent a cost and time-effective alternative to generate local source profiles.  

While it is well known that PM causes adverse health effects, the health hazards posed by PM 

emitted from different sources can vary based on the characteristics of the emitted particles since 

toxicity varies based on the chemical composition (de Kok et al., 2006). Detailed understanding of 

the metal solubility (fraction of metal present in soluble form that can be absorbed across a 

biological membrane) and the redox activity potential (in terms of concentration of ROS) are 

therefore important in order to understand the health effects posed by the heavy-metal rich non-

exhaust emissions. As highlighted out in Amato et al. (2014a), there is a lack of detailed evidence 

on the role of non-exhaust emissions in adverse health effects. Detailed analysis such as the one 

carried out in this study (Chapter 5) can provide relevant information to design studies focused on 

exposure assessment and ecotoxicology.  While there are a few published studies on soluble and 

insoluble fraction of PM mass emitted by traffic (solubility can impact the bioavailability), there is 

little information on the oxidative potential of traffic PM, particularly non-exhaust PM. A recent 

study in London concluded that the potential to cause oxidative stress was high for tyre and brake-

wear generated particles (Yanosky et al., 2012).  A pilot project is currently being carried out to 
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understand the risks of oxidative stress upon exposure to road dust in collaboration with Dr. 

Krystal Godri (University of Toronto).  

Specific recommendations for future work include: 

 Detailed analysis of metal bioavailability associated with non-exhaust emissions and health 

risks and impacts   

 Assessment of mitigation options  for non-exhaust emissions’ control (following Barratt et 

al., 2012, Amato et al., 2014b)  

8.2 India  
 

Detailed chemical characterization and mass closure of PM2.5 in New Delhi has highlighted the 

influence of local (often undocumented) sources, particularly in the winter. Several health-relevant 

species are present in the ambient air in very high concentrations (e.g. Pb), and warrant further 

analysis. As a next step, a detailed CMB-based receptor modelling analysis will be undertaken to 

quantify source contributions using Indian profiles (Patil et al., 2013) and other locally-relevant 

profiles. 

As a follow-up to the project in New Delhi, Indian Institute of Technology-Delhi (IIT-Delhi) is 

considering setting up a state-of-the-art facility for PM speciation and analysis. Several different 

agencies including the Delhi Pollution Control Committee (DPCC), Central Pollution Control 

Board (CPCB) and the Indian Institute of Tropical Meteorology (IITM) currently conduct online 

measurements in New Delhi at different sites. However, access to data is often restricted. 

Harmonization of sampling equipment, rigorous quality assurance and quality control (QA/QC) 

and a central data sharing facility will help contribute towards an improved understanding of the 

air quality in Delhi and improve researchers’ access to the data and its usability.  

Specific recommendations include:  
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 Continuous PM sampling and speciation to determine seasonal and annual trends  

 Preparation of detailed emission inventories for PM and its constituents, particularly 

elements  

 Inter-comparison of sampling equipment used by different agencies, and establishment of 

common protocols for sampling and data validation  

 Assessment of relevant source markers, particularly for local sources (e.g. solid waste 

combustion)  
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