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Abstract 

In the healthy human the primary driver for neuroplastic change is experience, in the 

form of learning and memory. Visuomotor learning has been shown as an effective 

experimental paradigm for inducing neuroplasticity, which is expressed as changes in 

corticospinal excitability (CSE). The present thesis uses the transcranial magnetic 

stimulation (TMS) stimulus response (SR) curve to assess learning induced changes in 

CSE. The first study presents a means of rapidly acquiring the TMS SR curve. Study 

two compares learning induced modulation of CSE between proximal and distal 

muscles. Study three assesses the influence of hand preference on learning induced 

changes in CSE. The results of study one indicate that it is possible to acquire the TMS 

SR curve in under two minutes. Studies two and three suggest distal muscles have a 

greater capacity for CSE modulation and this modulation of CSE is invariant to hand 

preference. Importantly, there is considerable variability in learning induced modulation 

of CSE. This thesis presents a novel paradigm for rapidly acquiring the TMS SR curve. 

It also highlights an important point for future studies of learning induced 

neuroplasticity – there is considerable variability in the neuroplastic response to a single 

session of visuomotor learning.  
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Chapter I – Preamble  

The purpose of this chapter is to provide the reader with information about the 

organisation of this PhD thesis, the rationale for the research and the goals for the PhD 

projects. 

 

Organisation of This PhD Thesis 

This PhD thesis contains seven chapters and one appendix. This thesis starts by 

presenting the rationale for the research alongside the aims, objectives and research 

questions addressed here. Following there is an introductory chapter which introduces 

the reader to key concepts and terms used throughout the thesis. Chapter III presents the 

reader with summary information for the general methods used to address the research 

questions. Chapters IV, V and VI provide detailed reports for each of the experiments 

that compose this thesis. Chapter VII provides a general discussion of research findings, 

including limitations of the work, considerations and future directions.  

 

Rationale for Research 

Arguably one of the most interesting features of the central nervous system (CNS) is the 

capacity to change it structure and function in response to intrinsic and extrinsic cues. 

Changes in the CNS following prolonged training on activities such as volley ball (Tyè 

et al., 2005), ballet dancing (Nielsen et al., 1993) and playing a musical instrument 

(Meister et al., 2005) are well documented. Neuroplasticity induced by learning 

involves functional changes such as modulation of synaptic efficacy in the corticospinal 

tract and the unmasking of functionally silent neural pathways or structural changes 

including the generation of new synapses and neurones (Taub et al., 2002). This ability 
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of the CNS to adapt is termed ‘neuroplasticity,’ and plasticity underlies our ability to 

adapt existing and/ or acquire novel motor skills as well as the functional recovery seen 

after injury or illnesses like stroke (Thickbroom et al., 2004; Traversa et al., 1997). 

However, there is a dark side to neuroplasticity, it can be maladaptive; excessive 

neuroplasticity is seen in many neurological conditions such as chronic pain (Sessle, 

2000) and dystonias (Classen, 2003). Given that neuroplasticity underlies our ability to 

learn and recover after illness there is great interest in the factors which modulate the 

brains neuroplastic responses and whether these can be harnessed to maximise 

therapeutic effects. 

 

Recent advances in neurophysiology have given us non-invasive means of investigating 

neuroplastic changes (Nitsche & Paulus, 2000; Stefan et al., 2000; Barker et al., 1985; 

Huang et al., 2005). Studies which use these techniques to investigate learning induce 

neuroplastic changes typically report effects at the group level; comparing changes in 

two or more distinct conditions. There has been little systematic study of the individual 

differences in the neuroplastic changes induced by learning and the factors which may 

affect these individual differences. Furthermore, some methods for assessing 

neuroplastic changes, specifically the transcranial magnetic stimulation (TMS) stimulus 

response (SR) curve, need to be improved if they are to be clinically useful. This thesis 

presents a method for rapidly acquiring SR curves in less than two minutes and two 

more experiments, the first compares the neuroplastic response to visuomotor learning 

in proximal and distal muscles and the second examines the influence of hand 

preference on learning induced changes in corticospinal excitability (CSE). Combined 

these studies present valuable information which can be used to inform future studies 
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through aiding power calculations and informing investigators of the efficacy and 

reliability of visuomotor tracking task.  

 

PhD Project Goals 

There is a large focus in the TMS literature toward the study of the differences in 

response of the CNS to neuroplasticity inducing protocols between patient and healthy 

populations. However, one of the most striking aspects of the human CNS response to 

NIBS is the degree to which individuals differ. This has gone largely understudied, 

especially for neuroplasticity induced via motor learning. The overall goal of this thesis 

was to provide a novel method for rapidly acquiring the TMS SR curve and to apply 

this to examine factors which affect learning induced neuroplasticity.  

 

A limitation of the traditional method of SR curve acquisition is the time required to 

collect the necessary data. SR curves are used to measure the state of CSE which is 

known to fluctuate within the time required to acquire a curve, typically in excess of ten 

minutes (Barsi et al., 2008; Malcolm et al., 2006; Pitcher et al., 2003). While the source 

of these fluctuations in CSE is unknown ,it is believed not to arise from autonomic 

(Filippi et al., 2000), cardiac (Ellaway et al., 1998), or respiratory (Ellaway et al., 1998) 

signals. However, the amplitude of MEPs used to construct SR curves is known to be 

mediated by attention (Rosenkranz & Rothwell, 2006; Rosenkranz & Rothwell, 2004) 

and drowsiness (Andersen et al., 2008). Therefore, in order for SR curves to provide an 

accurate reflection of CSE, SR curves should be acquired in the shortest possible time. 

To that end I set out to investigate the feasibility of reducing SR curve acquisition time 
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by determining the optimal inter-stimulus interval (ISI) and minimum number of stimuli 

required to construct a representative SR curve.  

 

Since their introduction in the mid 1990’s, SR curves have become increasingly used in 

studies of motor learning. Typically these studies examine changes in CSE for the first 

dorsal interosseous (FDI) (McAllister et al., 2011; Cirillo et al., 2011). There has been 

little study of whether proximal muscles undergo similar neuroplastic changes 

following visuomotor learning (Lundbye-Jensen et al., 2005) and no within subject 

comparison between the two muscles. Comparing learning induced neuroplasticity in 

the proximal and distal representations of the upper limb might allow us to speculate 

about the contributions of the different regions of the motor cortex involved during 

whole limb movements such as reach to grasp. To that end I set out to compare learning 

induced neuroplasticity in first dorsal interosseous (FDI) and biceps brachii (BB).  

 

Similarly to the influence of muscle choice, the influence of hand preference has been 

understudied specifically in the context of skill learning. The majority of studies report 

no significant differences in learning
 
induced neuroplastic changes between hands 

(Garry et al., 2004; Gallasch et al., 2009). That said, Cirillo et al., (2010) found a 21% 

greater facilitation of motor evoked potentials (MEP) following ballistic motor learning 

in the non-dominant hand despite a 40% greater increase in performance for the 

dominant hand. All three of these studies used a ballistic motor learning task. I set out to 

investigate differences in neuroplastic changes between hands using a visuomotor 

learning task previously shown to modulate CSE (Perez et al., 2004; Lundbye-Jensen et 

al., 2005; Cirillo et al., 2011). The aim of this study was to investigate the influence of 
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hand preference on learning induced modulation of CSE. Additionally, based on 

observations from the previous study, I sought to determine the percentage of people 

who exhibit increased CSE after a single session of visuomotor learning. 
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Chapter II – Introduction 

The following chapter provides an overview of neuroplasticity and its mechanisms, 

followed by a discussion of paradigms used to induce neuroplasticity naturally via 

motor learning, and artificially by non-invasive brain stimulation (NIBS) techniques.  

 

What is Neuroplasticity? 

The CNS has a wide variety of functions including receiving sensory input, storing 

memories, managing motor plans, generating higher conscious thoughts and controlling 

posture and balance (Bennett et al., 2007). One key property of the CNS which enables 

it to achieve such a diverse range of functions is its ability to adapt or change i.e. it is 

plastic (McGaugh et al., 1995). The structure and function of the CNS are able to adapt 

to the task at hand, allowing the acquisition of a new skills. This ability is termed 

‘neuroplasticity,’ and can be defined as “the ability of the CNS to respond to intrinsic 

and extrinsic stimuli by reorganising its structure, function and connections,” (Cramer et 

al., 2011). Neuroplasticity encompasses molecular changes at the level of the synapse 

modifying their functional strength to changes at the systemic level altering structure of 

the nervous system (Bennett et al., 2007).  

 

With regards to the nervous system the term ‘plasticity’ was introduced by noted 

neuroscientist William James (1890) in The Principles of Psychology, here James used 

the term in reference to the ease of modifying human behaviour; 

 

“Plasticity, then, in the widest sense of the word means the possession of a 

structure weak enough to yield to an influence, but strong enough not to yield all 
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at once... Organic matter, especially nervous tissue, seems endowed with a very 

ordinary degree of plasticity of this sort: so that without hesitation lay down our 

first proposition the following, that the phenomena of habit living beings are due 

to the plasticity of the organic materials of which their bodies are composed.”  

-  (James, 1890). 

 

Four years later the plastic nature of the CNS was acknowledged by arguably one of the 

seminal neuroscientists of the past century, Nobel Prize winning Santiago Ramón y 

Cajal (1852 – 1934). Here Cajal suggested an explanation in his Croonian Lecture; La 

Fine Structure des Centres Nervuex of 1894: 

 

Brain gymnastics are not likely to improve the organization of the brain by 

increasing  the number of cells because, as we know, nervous elements have, since 

their  embryological stages, lost their ability to proliferate; but we can admit as 

very plausible that mental exercise induces in the brain regions that are most 

active a  greater development of the protoplasmic mechanisms and of the system 

of (nervous) collaterals. In this way, connections already created between certain 

groups of cells would be significantly strengthened through the multiplication of 

terminal  twigs of the protoplasmic appendices and of the nervous collaterals; but 

also, completely new intercellular connections could be established by the  

neoformation of collaterals and protoplasmic expansions. 

- (Ramòn Y Cajal, 1894 - English translation).  
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Cajal later extended the notion of plasticity providing a neural substrate (Ramòn y 

Cajal, S. 1904 in Pascual - Leone et al., 2005). When examining the acquisition of new 

skills Cajal wrote;  

 

The labor of a pianist [. . .] is inaccessible for the uneducated man as the 

acquisition of new skill requires many years of mental and physical practice. In 

order to fully understand this complex phenomenon it becomes necessary to 

admit, in addition to the reinforcement of pre-established organic pathways, the 

formation of new pathways through ramification and progressive growth of the 

dendritic arborization and the nervous terminals.             

- (Ramòn Y Cajal, 1904 - English translation). 

 

Cajal’s overriding message can be surmised as neuroplasticity is expressed as new 

connections between synapses and/ or changes in the efficacy of transmission across 

existing synapses. This view was overshadowed by Cajal’s later opinion, ‘everything 

may die, nothing may be regenerated’ (Ramòn Y Cajal, 1928). This view of an 

inflexible, unchangeable nervous system prevailed for most of the 20
th

 century only 

being re-examined as evidence of the capacity for CNS plasticity began to grow in the 

mid 20
th

 century. This thesis will first discuss neuroplasticity. 

 

In 1949, Donald Hebb introduced an important model for how memories are encoded at 

the level of the synapse (Hebb, 1949). Hebb suggested that repetitive activation of a 

presynaptic neurone simultaneously with a post synaptic neurone leads to increase in 

the strength of the synaptic connections between both neurones. This led to notion of 
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Hebbian plasticity, surmised as ‘nerves that fire together, wire together,’ and has 

become the cornerstone of neuroplasticity. 

 

Lømo provided the biological substrate for Hebbs theory (Lømo, 1966); Lømo reported 

that tetanic stimulation results in a frequency dependent potentiation of hippocampal 

neurones of anaesthetised rabbits, the results of which led to the theory of long term 

potentiation (LTP) (Lømo, 1966). LTP came to prominence when further studies 

reported that synaptic potentiation following tetanic stimulation outlasts the period of 

stimulation (Bliss & Lømo, 1973; Bliss & Gardner-Medwin, 1973). LTP can be defined 

as a long-lasting, in excess of one hour, increase in synaptic strength following a short 

period of high frequency repetitive stimulation (50 – 200 Hz) (Bailey et al., 1996). 

These changes in synaptic strength arise from increased neurotransmitter release and 

increased receptor expression.  

 

The inverse phenomenon, a reduction in synaptic strength also exists and is termed 

‘long-term depression’ (LTD). LTD is induced following short periods of low 

frequency repetitive stimulation and similarly to LTP depends on NMDA receptors 

(Lovinger, 2010; Kullmann & Lamsa, 2011). Activity dependent LTD in hippocampal 

CA1 slices in vivo was first demonstrated by Lynch et al., (1977) and in the dentate 

gyrus in vivo by Levy and Steward (1979).  

 

Early studies noted two distinct forms of LTD each with a distinct induction mechanism 

(Escobar & Derrick, 2007). Homosynaptic LTD is used in reference to LTD that 

follows synaptic activity and is induced by repetitive low frequency stimulation (Bear, 



 

Chapter II – Introduction  

 

11 | P a g e  

 

1999). Homosyanptic LTD has distinct parallels to LTP; it is input specific, depends 

upon NMDA receptors and it is associative (Mulkey et al., 1993; Christie & Abraham, 

1992; Debanne & Thompson, 1996). Additionally, LTD can be observed when synaptic 

activity or LTP occurs at adjacent synapses (Hulme et al., 2013). This form of LTD is 

known as heterosynaptic LTD and occurs at synapses which are not active. 

Heterosynaptic LTD is most evident in the perforant projections to the dentate, here 

LTP induction in one set of afferents, such as the medial perforant pathway, induces 

heterosynaptic LTD in a separate set of afferents, the lateral perforant pathway (Doyere 

et al., 1997; Abraham et al., 1994).   

 

Bliss and Cooke (2011) put forward five key features of LTP/LTD which make them 

appealing biological substrates for Hebbian plasticity; 

 

I. Rapid induction: LTP/LTD can be induced rapidly by one or more brief tetanic 

stimuli. 

II. Input specificity: LTP/LTD once induced occurs only in synapses which have 

been stimulated. 

III. Associativity: Weak inputs can induce LTP/LTD in the presence of strong 

inputs depending on precise timing. 

IV. Cooperativity: Multiple weak inputs can summate in space and/ or time to 

induce LTP/LTD. 

V. Long-lasting: The effects are immediate and long-lasting.   
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These characteristics of LTP/LTD dictate the function of neural networks and 

computational models based on Hebbian principles and define the benchmark against 

which alternative models of neuroplasticity are assessed.  

 

There are variants of synaptic plasticity which do not conform to the Hebbian form of 

LTP/ LTD. An example of non-classical LTP/ LTD is the Marr-Albus model which 

describes synaptic plasticity between the parallel fibres and purkinje cells in the 

cerebellum (Marr, 1969; Albus, 1971). Here, the synapse undergoes LTD, as opposed to 

LTP, during simultaneous firings of both neurones (Ito, 2006; Ito, 1982). In addition, a 

non-NMDA receptor dependent variant of LTP has been demonstrated in the visual 

cortex (Petrozzino & Connor, 1994; Grover & Yan, 1999). 

 

Metaplasticity 

The Hebbian nature of synaptic plasticity has a notable limitation - it is unstable. This 

instability was first recognised by Bienenstock et al. (1982) who modelled the 

orientation and selectivity of neurones in the visual cortex and noted that neurones in a 

purely Hebbian model would differentiate into synapses saturated by LTP or LTD. 

Bienenstock et al. proposed a theory, now known as BCM theory, where a history of 

high activity in the post-synaptic neurone makes LTP induction more difficult and LTD 

induction easier with the inverse for a history of minimal activity in the post-synaptic 

neurone also true (Bienenstock et al., 1982; Bear, 1995). BCM theory is illustrated 

below in figure 1.     
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The threshold for synaptic plasticity ‘θm’ shifts leftward along the x-axis after a period 

of low synaptic activity and to the right after periods of high synaptic activity. BCM 

theory places a negative feedback loop to changes in synaptic gain preventing excessive 

LTP leading to hyperexcitability (Stanton, 1996). BCM theory, with its sliding 

threshold for LTP/ LTD induction is commonly known as ‘metaplasticity’ - the 

plasticity of synaptic plasticity (Abraham & Bear, 1996). There is experimental 

evidence for BCM theory in the visual cortex; deafferentation changes NMDA receptor 

composition in favour of LTD induction (Philpot et al., 2003; Philpot et al., 2001) while 

experience dependent plasticity alters NMDA receptors in favour LTP induction 

(Kirkwood et al., 1996). There is indirect experimental evidence for BCM theory in the 

hippocampus and in the primary motor cortex (Harms et al., 2008; Whitlock et al., 

2006; Rioult-Pedotti et al., 2000; Rioult-Pedotti et al., 1998). It is notable that prior 

Figure 1. Bienenstock-Cooper-Munrow theory. The y-axis represents changes in synaptic 

strength and the x-axis represents either post-synaptic activity, frequency of stimulation or 

post-synaptic intracellular calcium concentration.    represents the crossover point between 

inducing LTP or LTD, and shifts as a function of the history of previous activity in the post -

synaptic neurone (adapted from Bienenstock et al., 1982). 
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experience dependent plasticity in the primary motor cortex occludes subsequent LTP 

induction.    

 

According to BCM theory, LTP induction shifts    to right making it harder to further 

induce LTP and, as a result reduces the bi-directionality of synaptic plasticity. A 

homeostatic feedback loop is required to return    to baseline. This feedback loop is 

termed ‘homeostatic plasticity’. In homeostatic plasticity the efficacy of synaptic 

transmission scales up after periods of low synaptic activity and down after periods of 

high activity (Turrigiano, 1999; Leslie et al., 2001). This scaling in the efficacy of 

synaptic transmission is related to modifications of the glutamate receptors on the post 

synaptic neurone (Watt et al., 2000; Wierenga et al., 2005) and post synaptic ion 

channels (Misonou et al., 2004). It is important to note that homeostatic plasticity has a 

timeframe in the order of hours and as such is unlikely to play a role in the early phases 

of motor learning and plasticity (Ziemann et al., 2004).     

 

The majority of studies examining synaptic plasticity have been performed using in 

vitro hippocampal preparation. However, recent work using TMS in the conscious 

human has shown that it is possible to modulate synaptic plasticity for periods which 

outlast the stimulation (Chen et al., 1997; Nitsche & Paulus, 2000; Stefan et al., 2000; 

Huang et al., 2005). In a recent study, Huang et al., (2010) used theta burst stimulation 

(TBS), a patterned form of repetitive TMS to study reversal of plastic like effects of the 

stimulation in the conscious human. Huang et al., report it is possible to reverse LTP 

using an inhibitory form of TBS as well as to reverse LTD using an excitatory form of 

TBS. The efficacy of the second, depotentiating/ repotentiating, intervention was time 
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dependent, the intervention was only effective when given one minute after the initial 

intervention, and there was no effect when the second intervention was given ten 

minutes after the first. Additionally, the second depotentiating/ repotentiating 

intervention was ineffective in modulating synaptic plasticity of its own accord.  

 

Structural Plasticity 

Distinct regions of the brain such as the primary motor cortex are capable of 

considerable structural plasticity (Nudo & Milliken, 1996; Pascual - Leone et al., 1995; 

Nudo et al., 1996). Structural plasticity occurs through three mechanisms, the 

unmasking of functionally silent synapses (Isaac et al., 1995; Ward et al., 2006; Atwood 

& Wojtowicz, 1999) synaptogenesis (Geinisman et al., 1991) and neurogenesis (Altman 

& Das, 1967; Eriksson et al., 1998; Bernier et al., 2002). 

 

Much of the early focus around functionally silent synapses arose from a concerted 

effort to understand the early changes that occur during LTP induction. Functionally 

silent synapses are synapses where glutamate release fails to induce an 

observable  α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor 

mediated depolarisation of the post synaptic neurone, although an NMDA receptor 

mediated depolarisation still possible (Kullmann, 1994). Following LTP induction, 

AMPA receptors detect greater quantities of neurotransmitter during synaptic 

transmission (Kullmann, 1994). The changes in receptors which occur on the post 

synaptic neurone during LTP induction could be explained by the insertion of AMPA 

receptors that under basal conditions would remain silent (Kullmann, 1994; Isaac et al., 

1995; Laio et al., 1995).  
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Synaptogenesis is an increase in the number of synapses and/or dendritic spines per 

neurone. Xu et al. (2009) were able to show synaptogenesis after a single session of 

training on a food retrieval task in the rat model. The authors report a strong correlation 

between the number of dendritic spines formed and the number of successful trials in 

the first training session. Synaptogenesis was specific to the motor learning task, 

activity alone did not result in any changes. Furthermore, synaptogenesis was specific to 

the first exposure to the learning task, the rats showed no increase upon re-exposure 

after a period of non-training. However, synaptogenesis could be observed if a second 

novel task was introduced. Changes in synaptogenesis and synaptic morphology have 

further been linked with LTP induction (Bourne & Harris, 2011; Bruel-Jungerman et 

al., 2007; Muller et al., 2002) providing a link back to the principles of Hebbian 

plasticity.  

 

Santiago Ramón y Cajal’s 1928 proposition that ‘everything may die, nothing may be 

regenerated,’ remained a founding principle of clinical neuroscience until the mid 

1990’s. It has been suggested there were four key reasons that neuroscientists were 

resistant to the idea of neurogenesis prior to the 1990’s; the progressive worsening of 

symptoms in neurodegenerative conditions, an adaptive system could disrupt 

established behaviours and the ability to recall memories, additionally the scientific 

methods of the time were inadequate  (Colucci-D'Amato et al., 2006). Neurogenesis is 

defined as the process of generating functional neurones from precursor cells (Ming & 

Song, 2011). Magavi et al., (2000) provided proof of concept for neurogenesis in the 

adult mammalian hippocampus. There is limited evidence for neurogenesis in the 
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neocortex (Bonfanti & Peretto, 2011), striatum (Pytte et al., 2012) and amygdala 

(Canales, 2013). Neurogenesis has also been demonstrated in corticospinal neurones in 

the rat model (Chen et al., 2004). Importantly, the evidence for the role of neurogenesis 

in learning and memory in man remains ambiguous at best (Castilla-Ortega et al., 2011; 

Koehl & Abrous, 2011). 

 

The concept that our higher cognitive functions are attributed to specific regions of the 

brain can be traced back into antiquity however, the theory was not widely accepted 

until the 19
th

 century. Emanuel Swedenborg is widely credited as the first individual to 

write about cortical localisation (Ramstrom, 1910; Norrsell, 2007; Akert & Hammond, 

1962; Gibson, 1967; Toksvig, 1948). In 1740 Swedenborg localised the motor centres in 

a region incorporating the precentral and some of the post central gyrus (Taylor, 2003). 

Although Paul Broca is often credited with localising the speech area to the anterior 

frontal lobes he was not the first, Jean-Baptiste Bouillaud had previously used clinical 

observations and post-mortem findings to argue that speech functions were located in 

the anterior frontal lobes. In 1825 Bouillaud wrote: 

 

“In the brain there are several special organs… In particular, the movements of 

speech are regulated by a special cerebral centre, distinct and independent. Loss 

of speech depends sometimes on loss of memory for words, sometimes of want of 

the muscular movements of which speech is composed…The nerves animating the 

muscles, which combine in the production of speech, arise from the anterior lobes 

or at any rate possess the necessary communications with them.”   

- (Bouillaud S, 1825 in Head, 1963) 
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Importantly, Bouillaud did not identify that the left hemisphere is dominant for speech 

in most people; right-hemispheric lesions rarely lead to speech disorders . Paul Broca, 

openly credited as champion of cortical localisation, emphasised the fact that the speech 

areas are located in the anterior lobes but he also suggested that anterior lobes may be 

response for other functions including; judgement, reflection and abstraction. Broca 

presented his seminal paper on cortical localisation of speech in 1861 (Broca, 1861).  

 

Broca’s localisation of the speech area to the anterior lobes is considered one of the 

most important papers in the history of cortical localisation; its laboratory counterpart, 

the discovery of the motor cortex, has to be of equal value. Here Fristch and Hitzig 

(1870) electrical stimulated the dog cortex and found distinctive cortical regions which 

when stimulated triggered movements in muscles in contralateral limbs. In further 

experiments, Fritsch and Hitzig used the scalpel hand to ablate the area triggering 

forepaw movement, the lesions did not abolish voluntary movements in the forepaw 

however motor control of the forepaw was impaired (Finger, 2010).    

 

In 1937 Penfield and Boldrey presented the concept of the sensory and motor 

homunculi (Penfield & Boldrey, 1937). The homunculi are illustrations of the cortical 

areas given over to processing sensory input and controlling motor functions of the 

human body, i.e. part of the cortex is responsible for abducting the index finger or 

receiving sensory input from the palm of the hand. These homunculi are not fixed, they 

are capable of considerable neuroplastic change via the unmasking of functionally silent 

synapses, synaptogenesis and neurogenesis in response to intrinsic and extrinsic cues. 
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Each digiti has a distinct representation on the sensory and motor homunculi however, 

the boundaries are not fixed. Dystonia can be defined as “involuntary sustained muscle 

contractions producing twisting and squeezing movements and abnormal postures,” 

(Evatt et al., 2011) and is suggested to be a disorder of neuroplasticity. Quartarone et 

al., (2003) investigated the plastic response to paired associative stimulation (PAS) in 

participants with writers cramp, a form of task specific focal hand dystonia, compared 

with healthy controls. The volunteers with writers cramp exhibit a larger response to 

PAS. What is more, the response was not focal to abductor pollicis brevis (APB) – 

volunteers with writer’s cramp exhibited a response in FDI as well as APB.   

 

Merzenich et al., (1984) demonstrated that the area representing digit three in the 

squirrel monkey somatosensory cortex shrinks rapidly following amputation. However, 

following a period of sensory discrimination training, the representation of digits two 

and three increased (Jenkins et al., 1990). In the primary motor cortex, Nudo et al. 

(1996) examined structural plasticity following a unilateral ischemic lesion of the 

cortical area responsible for the intrinsic muscles of a hand of adult squirrel monkeys. 

Nudo et al., report a use-dependent change in the cortical representation of the paretic 

hand; the cortical area of paretic hand expanded into the surrounding cortical tissue in 

those forced to use the paretic limb. This expansion of the cortical area responsible for 

the paretic limb was accompanied with increasing skilled functioning of the paretic 

hand. 

 



 

Chapter II – Introduction  

 

20 | P a g e  

 

Studies examining motor learning induced neuroplasticity in man have shown that as 

little as a single session of training on a novel motor task can induce neuroplastic 

changes (Muellbacher et al., 2001; Pascual - Leone et al., 1995; Classen et al., 1998). In 

these studies neuroplasticity was expressed as a change in the excitability of the 

corticospinal connection for the muscles involved in the task. Changes in CSE observed 

in these studies are suggested to occur due to LTP (Muellbacher et al., 2001; Pascual - 

Leone et al., 1995; Classen et al., 1998).  

 

It should be noted that neuroplastic changes in the primary motor cortex are driven by 

the acquisition of a novel motor skill – repetitive use alone is not sufficient to evoke 

neuroplastic changes. Experiments in the animal model have shown neuroplastic 

changes are correlated with performance improvements (Xu et al., 2009; Nudo & 

Milliken, 1996; Jenkins et al., 1990). However, when animals are exposed to tasks 

which require minimal learning there are no observable neuroplastic changes (Kleim et 

al., 2002; Plautz et al., 2000). These results suggest that learning is the primary driver in 

the development of functionally relevant neuroplasticity.  

 

It should be noted that neuroplastic changes associated with novel skill acquisition are 

not limited to supraspinal structures – the spinal cord is capable of neuroplastic change. 

During both maturation as well as later life the spinal cord changes its structure and 

function in response to ascending stimuli from the periphery or descending stimuli from 

supraspinal structures. Similar to plasticity in the brain, spinal cord plasticity involves 

neuronal and synaptic changes mediated by LTP and changes in neuronal morphology 

and excitability (reviewed in Wolpaw & Tennissen, 2001).  
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The acquisition of a novel motor skill is linked with structural and functional changes in 

neuronal circuits of the spinal cord. These changes in spinal circuitry can be probed 

using the spinal stretch reflex or its electrical analogue, the Hoffman or H-reflex 

(Hoffmann, 1910). The spinal stretch reflex is a monosynaptic reflex evoked by a 

mechanical stretch of the muscle spindles. The pathway consists of the Ia afferents from 

the muscle spindle, the synapse onto the motorneurone and the motorneurone itself. The 

H-reflex is evoked using a low-intensity electrical stimulus to an afferent nerve and the 

H-reflex utilises a similar pathway except it bypasses muscle spindle and fusimotor 

activity (Knikou, 2008; Zehr, 2002; Misiaszek, 2003). The pathway used in both these 

reflexes is engaged in both simple and complex behaviours, therefore changes in reflex 

activity will influence behaviour and changes in behaviour will influence reflexes 

(Wolpaw, 2006). 

 

There are many examples in the literature where changes in behaviour have been linked 

to changes in reflex amplitudes (Casabona et al., 1990; Goode & Van Hoven, 1982; 

Nielsen et al., 1993; Rochongar et al., 1979). Nielsen et al., studied the H-reflex in the 

soleus muscle of sedentary, moderately active, extremely active participants as well as 

professional ballet dancers. The authors report reflex amplitudes were largest in the 

most active participants. However, the lowest reflex amplitude were detected in the 

ballet dancers, which were even lower than the sedentary volunteers. The authors 

conclude that this reduction in reflex amplitude occurred due to the regular 

cocontractive postures adopted during ballet dancing. Further lab based studies have 

demonstrated it does not take many years of training to modulate H-reflex amplitudes. 
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Thompson et al., (2009) demonstrated it is possible to up or down-regulate H-reflex 

amplitude volitionally with as little as three, twenty minute training sessions. 

 

Neuroplastic changes which occur following the acquisition of a novel motor skill are 

expressed as changes in CSE. In context of the nervous system the term excitability can 

be traced back to noted neuroscientist Jerzy Konorski who states; 

“The application of a stimulus leads to changes of a twofold kind in the nervous 

system... The first property, by virtue of which the nerve cells react to the 

incoming impulse… we call excitability, and… changes arising… because of this 

property we shall call changes due to excitability. The second property, by virtue 

of which certain permanent functional transformations arise in particular systems 

of neurons as a result of appropriate stimuli or their combination, we shall call 

plasticity and the corresponding changes plastic changes.”  

- (Konorski, 1948) 

 

Here Konorski is describing how the propensity of neurones to fire an action potential, 

there excitability, can change. Since Konorski’s initial proposition studies have gone on 

to suggest LTP or LTP like processes as the casual mechanism behind observed changes 

in excitability (for review see Ziemann et al., 2008). The details of LTP have been 

discussed previously however they can be surmised as an increase in neurotransmitter 

release, insertion of receptors onto the post synaptic membrane and increased sensitivity 

to neurotransmitters (Bennett et al., 2007; Kandel et al., 2000). For ease of 

understanding, CSE is best thought of as a gain function on the efficacy of synaptic 

transmission down the corticospinal tract. An increase in CSE, after an intervention 

such a motor learning, scales up the efficacy of synaptic transmission and leads to an 

increase in MEP amplitude by many studies (Rossini et al., 2008). Likewise, following 

an inhibitory NIBS protocol such as PAS10, there is a lowering of CSE as evidenced by 

a reduction in MEP amplitude (for review see Carson & Kennedy, 2013).      
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Inducing Neuroplasticity 

Neuroplasticity underlies the functional increases seen in the acquisition of a novel 

motor skill. However, NIBS techniques can also be used to induce neuroplasticity. This 

thesis will now go on to introduce some of the common paradigms used to induce 

neuroplasticity.  

 

Motor Learning 

Traditional classifications of learning differentiate between learning explicit and  

implicit knowledge. Motor learning is categorised as implicit learning as complex 

information is learnt without the ability to provide conscious verbal recollection of what 

was learnt. There are few universally accepted definitions of motor learning although 

many groups have attempted to define motor learning with a pragmatic definition; 

 

“Motor learning does not need to be rigidly defined in order to be effectively 

studied. Instead it is better thought of as a fuzzy category that includes skill 

acquisition, motor adaptation, such as prism adaptation, and decision making, 

that is, the ability to select the correct movement in the proper context. A motor 

skill is the ability to plan and execute a movement goal.”   

-  (Krakauer, 2006). 

 

Other groups have opted for a more mechanistic description; 
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“Motor learning takes many forms, including: (1) learning over generations that 

becomes encoded in the genome, is epigenetically expressed as instincts and 

reflexes and contributes to learned (conditioned) reflexes; (2) learning new skills 

to augment your inherited motor repertoire, and adapting those skills to maintain 

performance at a given level; and (3) learning what movements to make and when 

to make them.”  

- (Shadmehr & Wise, 2005). 

 

For the purposes of this thesis, I have chosen to use the broadest definition of motor 

learning; a lasting change in performance shaped by previous experience. This is 

encompassed within the following definition: 

 

“Learning involves changes in behaviour that arise from interaction with the 

environment and is distinct from maturation, which involves changes that occur 

independent of such interaction.”   

- (Wolpert et al., 2003). 

 

A key component of these definitions is that they involve changes in motor performance 

as a function of practice. As performance can be measured in numerous ways depending 

on the goal, intrinsic within each definition is the recognition that optimising 

performance is specific to the task and the goal. Consequently studies of motor learning 

require an understanding of the different paradigms used. 
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Common Motor Learning Paradigms 

There is an increasing number of motor learning paradigms being used and this thesis 

will now go on to review some of the common ones: 

 

Sequence Learning  

Sequence learning was first used in the study of motor learning by Nissen and 

Bullermer (1987) as the serial reaction time task (SRTT). In this task, participants 

perform a repeating series of button presses and their reaction times become 

progressively faster, participants are then presented with a different series of button 

presses and their reaction time is slower. The variance in reaction times between the 

learnt and novel sequences provides an index of motor learning. This task spawned 

numerous variants which attempt to overcome its deficiencies by using mixed or 

probabilistic sequences, non-spatial colour cues and measurements using the 

non-dominant hand or with more complex movements.  

 

Sequence learning is the most established and widely used learning paradigm in the 

study of motor learning. It is not without its limitations which include inability to 

generalise findings and a lack of ecological validity especially when used clinically 

(Muslimovic et al., 2007). Studies involving functional neuroimaging have shown the 

dorsolateral prefrontal cortex, supplementary motor areas and cerebellum are involved 

in this type of learning (Toni et al., 1998; Grafton et al., 1995). 
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Ballistic Motor Learning 

Ballistic motor learning as a motor learning paradigm was first presented by 

Muellbacher et al.,  (2001) who demonstrated that repeated voluntary thumb abductions 

increase peak thumb acceleration. This task has been shown to induce neuroplastic 

changes focal to the primary motor cortex (Muellbacher et al., 2002). Specifically, 

neuroplastic changes were seen in the cortical representation and CSE of the APB 

(Classen et al., 1998; Kaelin - Lang et al., 2005; Lotze et al., 2003; Muellbacher et al., 

2001). Repeated thumb abductions has been linked with changes in activation patterns 

observed on functional magnetic imaging (fMRI) (Karni et al., 1998). 

 

Visuomotor Transformation 

Visuomotor transformation is a broad category of motor learning tasks that involve the 

participant performing a motor task while the visual and/ or sensory feedback is 

transformed using displacements, rotations, inversions, mirroring and depth distortions. 

Learning in this manner combines visual or proprioceptive feedback with motor 

learning (Amiez et al., 2012). Examples of classical visuomotor transformation tasks 

include mirror drawing (Corkin, 1968) and rotor pursuit (Ammons, 1951; Ammons et 

al., 1958). As technology has advanced rotor pursuit tasks have evolved to use styluses 

and computer screens allowing researchers to manipulate the visual feedback 

independent of proprioceptive feedback. This category of learning tasks has been shown 

to involve primary motor cortex, basal ganglia, cerebellum, premotor cortex, 

supplementary motor area, inferior frontal cortex, dorsolateral prefrontal cortex and 

inferior parietal cortex (Chouinard & Goodale, 2009; Yamada et al., 2010).  
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Force Field Adaptation 

Force field adaptations involve the participant wearing a robotic exoskeleton while 

making reaching movements, the resistance provided by the exoskeleton during these 

movements is subsequently altered (Shadmehr & Mussa - Ivaldi, 1994). The dynamics 

of these reaching movements are affected by the force field; early movement trajectories 

are heavily distorted however, with practice, participants learn to make movements 

resembling near normal movements in free space. The mechanism of learning in force 

field adaptations has been explained as a system whereby the CNS builds an internal 

model of the force field and adapts motor behaviours accordingly ‘using a intrinsic 

system of coordinates with sensors and actuators,’ (Shadmehr & Mussa - Ivaldi, 1994; 

Conditt et al., 1997). Studies using neuroimaging have shown that even hours after the 

task has ceased the performance improvement is retained (Bhushan & Shadmehr, 1999). 

There are changes to the cortical activation patterns with notable increases in premotor, 

parietal and cerebellar cortices recruited (Nezafat et al., 2001; Shadmehr & Holcomb, 

1997). Interventional studies have suggested that learning in this manner does not 

depend on the primary motor cortices (Baraduc et al., 2004). 

 

Force field adaptations have been used to study control of the ankle during locomotion. 

Several studies have demonstrated that the lower limb is capable of a motor 

recalibration while walking in a force field during normal gait (Blanchette & Bouyer, 

2009; Noel et al., 2009; Noble & Prentice, 2006; Lam et al., 2006; Fortin et al., 2009; 

Emken & Reinkensmeyer, 2005). Similarly to studies examining the upper limb, the 

movement trajectory of the leg is distorted by the force field, however, with practice, 

participants adapt to the perturbation and restore near normal walking kinematics.    
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Locomotor Adaptation 

Within the field of motor learning there is a large focus towards the upper limb and 

hands; there are limited studies examining motor learning in the core and lower limbs. 

Work with split-belt treadmills and in our lab using split-crank cycling is beginning to 

correct this bias. In split-belt treadmill tasks, participants learn to walk on a treadmill 

with each lower limb on a different belt thereby allowing each leg to walk at different 

rates (Morton & Bastian, 2006). The split-belt treadmill task involves neuroplastic 

adaptations in spinal, supraspinal and cortical structures as well as their descending 

commands. Despite its limited experimental use, data from split-belt treadmill tasks has 

been able to differentiate between the functional networks which control different 

walking cadences (Choi & Bastian, 2007). 

 

Classical Conditioning 

Classical conditioning is a form of motor learning that was discovered accidentally by 

noted physician Ivan Pavlov (Pavlov, 1927). Pavlov discovered that a conditioned 

stimulus (CS) paired with an unconditioned stimulus (UCS) resulted in a motor 

response known as the unconditioned response (UR). If the UCS and CS are repeatedly 

presented in pairs eventually they will evoke a motor reflex response, known as the 

conditioned reflex (CR).  

 

Since Pavlov’s demonstration of classical conditioning the paradigm has evolved into 

the eye-blink classical conditioning reflex (Gormezano, 1966; Telford & Anderson, 

1932; Cason, 1922). Here the CS takes the form of an auditory tone played shortly 
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before the UCS which is either a puff of air delivered to the cornea or an electrical 

stimulus delivered to the superorbital nerve. Repeated exposure to the paired CS and 

UCS results in the participant blinking, the CR.  

 

The physiology and brain structures involved in classical conditioning are well 

understood with central roles attributed to the pontine structures, inferior olives and the 

cerebellar nuclei (Gerwig et al., 2005; Wada et al., 2007; Gerwig et al., 2007). 

Decerebrate animals have been shown capable of acquiring this conditioning (Jirenhead 

et al., 2007) and this form of learning is spared in anterograde amnesia (Clark & Squire, 

1998). Classical conditioning is considered a primitive form of learning relatively 

confined to the brainstem and cerebellum. Classical conditioning paradigms are used to 

study different forms of learning and memory.  

 

Aimed Rapid Movements 

All rapid aiming movements are subject to the psychomotor principle of Fitts Law 

(1954) which describes the inverse relationship between speed and accuracy in reaching 

movements, and it is expressed mathematically as:  

 

          

 

where MT is movement time, ID is index of difficulty, a and b are coefficients 
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where A is distance between the starting point to the centre of the target, and W is the 

width of the target 

 

Fitts Law demonstrates the trade-off between speed and accuracy when making rapid 

pointing actions. In studies of motor learning coefficient b is of interest as it 

approximates to the reduction in movement time for a task with a given degree of 

difficulty (Schmidt & Lee, 2005; Kelso, 1984). Repeated practice is correlated with a 

reduction in this coefficient. It has been suggested that a change in coefficient b reflects 

motor learning (Cohen, 2008). It is important to note that the elderly have a raised b 

(Welford et al., 1969; Goggin & Meeuwsen, 1992), although it is unclear whether this is 

due to changes within the CNS or peripheral mechanical factors. An example of one of 

the inherent limitations of this paradigm is that peripheral mechanical factors affect 

coefficient b, thereby limiting its use in pathophysiological conditions such as 

spasticity.       

 

Explicit Learning in Motor Learning 

Despite anterograde amnesia following a bilateral temporal lobectomy amnesic H.M 

could still acquire novel motor skills (Scoville & Milner, 1957; Corkin, 1968). This 

observation gave rise to the opinion that there is a segregation of the neuronal circuits 

involved in explicit declarative knowledge and implicit motor skills. This segregation 

has been demonstrated for numerous motor learning paradigms including visuomotor 

transformation (Corkin, 1968), sequence learning (Vandenberghe et al., 2006; Reber & 

Squire, 1994) and eye-blink classical conditioning (Woodruff-Pak et al., 1996; Clark & 

Squire, 1998). Importantly, this segregation does not exclude a role for explicit 
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knowledge or simultaneous explicit learning in modulating implicit learning, in fact 

there is evidence of an interaction during sequence learning (Brown & Robertson, 2007; 

Reber & Squire, 1998; Boyd & Winstein, 2004; Vandenberghe et al., 2006). This 

demonstrates the importance of understanding the role of explicit knowledge and 

motivation when designing paradigms to study motor learning (Vandenberghe et al., 

2006; Wilkinson & Jahanshahi, 2007). 

  

Adaptation versus Learning 

Shadmehr and Wise (2005) attempted to sub-classify motor learning paradigms and 

provided a key distinction between the acquisition of a new motor skill and motor 

adaptations;  

 

I. Acquiring a new motor skill involves the expansion of motor repertoire or 

learning of a new motor program which can be generalised onto other tasks. 

II. Adaptation involves the repurposing of an existing motor skill to maintain 

performance.  

 

It is clear that sequence and visuomotor learning examine motor learning while 

force field and locomotor adaptations examine motor adaptation. Difficulty lies in 

classifying paradigms like classical conditioning and ballistic learning. Classical 

conditioning is so hard to classify as it is abstract with no obvious ecological validity. 

Ballistic motor learning resembles motor adaptations though it could be argued that a 

new force vector is learnt.    
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The respective motor learning paradigms rely on different aspects of the sensorimotor 

systems. Questions remain as to whether they work using similar mechanisms of 

neuroplasticity and how these paradigms relate to more ecologically valid forms of 

learning such as learning how to ride a bike, play a musical instrument or 

neurorehabilitation. 

 

Stages of Motor Learning  

The stages of motor learning were first described in 1967 with differing systems 

involved in the respective stages (Fitts & Posner, 1967); 

 

I. Verbal cognitive stage. This is the first stage of motor learning and it has a 

large cognitive component. This stage is characterised by large error and 

variable performance, often termed ‘familiarisation’ and is dependent on 

attention and higher cognition. 

II. Association stage. This is intermediate phase and is often referred to as the 

‘refining phase’. This stage is characterised by decreasing variability in 

performance and errors. This decrease in performance variability is believed to 

be due to the development of associations between sensory cues with 

movements which more closely achieve goals. Most experimental paradigms test 

performance in this phase of learning. 

III. Autonomous stage. This is the final stage of motor learning and is not achieved 

by everyone. This stage is characterised by increasing cognitive and motor 

efficiency with limited decreases in performance variability.  
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The different stages of motor learning rely on different cognitive or motor ‘modules’ 

and so the various stages are likely to rely on different brain regions and different types 

of neuroplastic change. The staged nature of this time course may also be relevant in the 

process of consolidation where memories are becoming more resistant to disruption 

over time; for example ballistic motor learning is initially dependent on the primary 

motor cortex but becomes consolidated after six hours (Muellbacher et al., 2002). 

 

The majority of motor learning paradigms examine the intermediate phase of learning 

but it is important to consider that some participants may be performing at different 

stages depending on their prior familiarity with the task. For some paradigms, for 

example classical conditioning, it is difficult to perceive such a staged process. The 

staged nature of motor learning reflects the dynamic nature of the process whereby 

different processes and cortical structures play a variety of roles at different points 

during the learning process.  

 

The Link between Plasticity and Motor Learning 

It is a commonly held belief that there is a link between motor learning and 

neuroplasticity. Martin et al. (2000) put forward the suggestion that the following five 

criteria must be met to link synaptic plasticity and learning: 

 

I. Correlation: The behavioural parameters of learning should be correlated with 

some but not all of the properties of synaptic plasticity. 
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II. Induction: Learning should be associated with the induction of measurable 

changes in synaptic efficacy at the appropriate synapses and the induction of 

changes in relevant synapses should result in apparent memories. 

III. Occlusion: Saturation of synaptic plasticity in a network should destroy the pattern 

of trace strengths corresponding to established memories and occlude new 

memories. 

IV. Intervention: Blockade or enhancement of synaptic plasticity, achieved by 

pharmacological, genetic or other manipulations, should have commensurate effects 

on learning or memory. 

V. Erasure: Erasure of synaptic plasticity should, at least, shortly after learning 

induce forgetting. 

 

In the animal model, the evidence for correlation comes from the demonstration of 

learning induced functional reorganisation in the primary motor cortex of the monkey 

following learning (Nudo & Milliken, 1996; Nudo et al., 2001; Nudo et al., 1996). The 

evidence for induction comes from the demonstration that LTP induced in a spike 

timing dependent manner in the freely behaving primate primary motor cortex resulted 

in changes in the motor representation of movements (Jackson et al., 2006). The 

evidence for occlusion comes from the demonstration that prior motor learning impairs 

any subsequent LTP induction in the horizontal connections of the primary motor cortex 

(Sanes & Donoghue, 2000; Rioult-Pedotti et al., 2000; Rioult-Pedotti et al., 1998). 

Cortical stimulation paired with motor learning has been shown to promote the re-

emergence of cortical maps (Plautz et al., 2003), additionally pairing cortical 

stimulation and rehabilitative training has been shown to increase functional recovery 
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and promote structural plasticity (Adkins-Muir & Jones, 2003) satisfying the 

intervention criterion. There is a lack of evidence satisfying the erasure criterion. As a 

result of the evidence outlined here I would suggest there is a strong link between 

plasticity and motor learning in animals.  

 

Proof of the relationship between human neuroplasticity and motor learning in man is 

also incomplete according to the criteria set forward by Martin et al., (2000). The 

evidence satisfying the correlation criterion comes from studies showing 

pharmacologically inhibiting and disinhibiting agents are associated with lower rates of 

motor learning (Ziemann et al., 2006; Nitsche et al., 2012). The evidence satisfying the 

induction criterion comes from studies which have shown that basic tasks such as 

sequence learning can be enhanced using TDCS (Nitsche et al., 2003), even some 

complex tasks such as mathematical learning can be enhanced (Snowball et al., 2013). 

Induction is challenging to examine experimentally; induction of artificial plasticity is 

less likely to code information as usefully as effective motor learning which is likely to 

require encoding information across multiple neural networks. The need for multiple 

networks is demonstrated by a study showing how motor practice alters MEPs and 

sensorimotor organisation while paired-associative stimulation only affects MEPs 

(Rosenkranz & Rothwell, 2006). Inducing plasticity in the primary motor cortex 

produces very subtle behavioural changes while by definition most motor learning 

paradigms show much more obvious behavioural changes (Ridding & Ziemann, 2010; 

Muellbacher et al., 2001). There is an abundance of evidence satisfying the occlusion 

criterion of motor learning and neuroplasticity. Ziemann and colleagues examined how 

various paradigms interact with one another and report that prior ballistic motor 
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learning prevents subsequent induction of plasticity via repetitive TMS (rTMS) 

(Ziemann et al., 2004). Stefan and colleagues also showed PAS occlusion after force 

adaptation motor training (Stefan et al., 2006). Visuomotor, ballistic and sequence 

learning have been shown to induce changes in neuronal excitability and structural 

plasticity, this is termed practice-dependent plasticity (Lundbye-Jensen et al., 2005; 

Snowball et al., 2013; Pascual - Leone et al., 1995). These changes in representation are 

thought to be due to changes in synaptic efficacy probably involving LTP analogous to 

animal models of practice-dependent plasticity (Ziemann et al., 2001; Boroojerdi et al., 

2001b). Changes in excitability and plasticity are accompanied with increased blood 

oxygen level dependent (BOLD) signal suggestive of increased neural activity (Lotze et 

al., 2003). fMRI BOLD changes correlate to changes in synaptic plasticity probably 

involving LTP (Ziemann et al., 2001; Boroojerdi et al., 2001b). Taub and colleagues 

demonstrated that an association between increased plasticity and behavioural outcomes 

following constraint induced movement therapy (Mark et al., 2006). Thus I suggest 

there is ample evidence to satisfy the intervention criterion.  The erasure criterion is 

satisfied as Muellbacher et al. (2002) demonstrated that performance improvements 

following ballistic motor learning are abolished by 1 Hz rTMS delivered to the motor 

cortex shortly after training.  

 

The relationship between neuroplasticity and motor learning is further complicated by 

the numerous motor learning tasks used within the field and that these different 

paradigms are reliant on different systems making contribution depending on the 

paradigm being used. 
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Artificially Induced Neuroplasticity 

Motor learning is not the only way to induce neuroplasticity, NIBS techniques can also 

be used to induce neuroplasticity. Over the past decade there has been considerable 

interest in using NIBS techniques as adjuncts to augment neuroplasticity induction 

during the learning and/ or rehabilitation processes (for review see Ridding & Rothwell, 

2007). This thesis will now go on to discuss the use of rTMS, TBS, PAS and 

transcranial direct current stimulation (TDCS) to induce neuroplasticity. 

 

TMS is a non invasive means of activating the cortex using a transient magnetic field 

(Barker et al., 1985). When magnetic stimuli are presented at 1 Hz or greater they 

modulate the excitability of the cortex for a period of time after the stimulation ceases; 

with 1 Hz depressing activity and 5 Hz or greater increasing cortical excitability. rTMS 

has been extensively used in the study of motor learning and memory formation (for 

review see Censor & Cohen, 2010). Briefly, rTMS has revealed the sleep dependency 

for offline consolidation of performance gains (Walker et al., 2002; Korman et al., 

2007), the brain areas involved in performance consolidation (Zangen et al., 2005), the 

time course of consolidation (Karni & Sagi, 1993; Korman et al., 2007) and the 

mechanism underlying reconsolidation (Nader & Hardt, 2009).            

     

There has been great interest in the therapeutic application of TMS for neuro- and 

psychiatric rehabilitation (for review see Ridding & Rothwell, 2007). The paradigms 

used in these studies typically involve many stimuli; in excess of 1,000 delivered over 

multiple days for a long period of time (Cortes et al., 2012; Corti et al., 2012; Hao et 

al., 2013). These studies have a severe weakness – there is large inter- and 
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intra-individual variability in how the cortex responds to rTMS (Maeda et al., 2000). 

However, theta burst stimulation or TBS is a recently developed form of patterned 

rTMS (Huang et al., 2005). TBS involves delivering high frequency pulses delivered at 

50 Hz, repeated at 5 Hz. Huang et al. (2005) described two forms of TBS, continuous 

TBS (cTBS) and intermittent (iTBS), both paradigms use subthreshold stimulation 

intensities to modulate CSE. cTBS uses 200 triplet bursts with each burst in the triplet 

delivered at 50 Hz and the triplets delivered at 5 Hz.. iTBS is comparable to cTBS 

however there are breaks of eight seconds after twenty triplets. Both iTBS and cTBS are 

illustrated below in figure 2. The patterned nature of TBS is advantageous over 

conventional rTMS as it uses lower stimulation intensities which raise the spatial 

specificity while the higher frequencies reduce the duration of the stimulation required 

to modulate CSE (Zafar et al., 2008).  

 

 

 

In his 1949 book, The Organisation of Behaviour, Donald Hebb proposed a hypothesis 

to explain the adaptation of neurones during the learning process. Hebbs model of 

synaptic plasticity is summarised in the quote below: 

  

Figure 2. Theta burst stimulation protocols (Adapted from Huang et al., 2005). 
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“When an axon of cell A is near enough to excite a cell B and repeatedly or 

persistently takes part in firing it, some growth process or metabolic change takes 

place in one or both cells such that A's efficiency, as one of the cells firing B, is 

increased.”  

- (Hebb, 1949) 

 

The Hebbian model of synaptic plasticity is undoubtedly one of the seminal theories of 

neuroscience - forming the cornerstone of our understanding of the CNS. PAS is a 

NIBS paradigm based upon the Hebbian model of synaptic plasticity (for review see 

Carson & Kennedy, 2013). PAS involves pairing peripheral electrical stimuli with 

central magnetic stimuli to induce neuroplasticity (Stefan et al., 2000). When the stimuli 

are given at 10 ms ISI PAS has an inhibitory effect whereas a 25 ms ISI has an 

excitatory effect (Stefan et al., 2000). LTP and LTD are suggested as the principle 

mechanism behind the neuroplastic effects seen following PAS. Following the initial 

report of PAS by Stefan et al., (2000) there has been numerous studies examining the 

efficacy of different ISI (Wolters et al., 2005; Kumpulainen et al., 2012), the efficacy of 

PAS in different muscles (Stefan et al., 2000; Carson et al., 2013) and the efficacy of 

PAS in different clinical populations (Monte-Silva et al., 2009; Bologna et al., 2012).   

 

TDCS involves applying weak direct current to the cortex and has been shown to 

modulate CSE for a period of time which outlasts the stimulation (Nitsche & Paulus, 

2000). Cathodal stimulation has inhibitory effects on cortical activity while anodal 

stimulation has excitatory effects. Reis et al., (2009) examined the effect of TDCS on 

the time course of novel skill acquisition over a three month period. Reis et al., report a 
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significantly greater acquisition of the skill in those who had TDCS and this greater 

performance increase was retained for up to three months. A recent meta-analysis of 

randomised control trials examining the use of TDCS during stroke rehabilitation found 

TDCS to be effective for stroke patients in the chronic period with mild to moderate 

motor impairments (Marquez et al., 2013). TDCS has also been shown to be an 

effective adjunct to rehabilitation in a variety of neurological diseases and disorders 

including traumatic brain injury (Dermirtas-Tatlidede et al., 2012) and Alzheimer’s 

disease (Freitas et al., 2011).  

 

Motor learning is a natural means of inducing neuroplasticity, however plasticity can 

also be induce artificially via NIBS paradigms. These paradigms can be rapid cortical 

magnetic stimulation, simple or patterned as well as central magnetic stimulation paired 

with peripheral electrical stimulation. Even the application of simple 1 mA current can 

induce neuroplastic changes. This thesis will move on to discuss methods of assessing 

neuroplasticity. 

 

Assessing Neuroplasticity 

I have previously described how NIBS techniques are used to induce neuroplasticity 

however they can also be used to assess neuroplasticity. This thesis will now go on to 

briefly discuss the use of TMS to assess neuroplastic changes. Additionally although 

they’re not directly used in this thesis it presents a brief explanation of TES, 

TDCS,EEG and fMRI as they are alternate means of assessing neuroplastic changes 

commonly employed in the literature. 
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Transcranial Electrical Stimulation 

Until 1980, stimulating the exposed cortex during neurosurgery was the only means of 

stimulating the corticospinal pathway in man. NIBS was made possible in 1980 when 

Merton and Morton presented transcranial electrical stimulation (TES) (Merton & 

Morton, 1980). TES involves passing a large direct current between two electrodes 

placed over the motor cortex. TES activates corticospinal neurones at either, the cell 

body or the axon hillock (Day et al., 1989a; Day et al., 1987). However, TES has a 

notable floor. Due to the high resistance of the scalp, skin and skull one needs to give a 

high intensity stimulus to activate the corticospinal neurones. These high intensity 

stimuli also activate nocioceptive afferents and facial muscles to cause significant pain 

and discomfort to the participant.   

 

Transcranial Magnetic Stimulation 

Barker et al. (1985) demonstrated it possible to activate the primary motor cortex and 

corticospinal tract non-invasively with a transient magnetic field. This idea was by no 

means new, the first experiments regarding the efficacy of magnetic fields in man date 

back to the work of d’Arsonval in the 1890’s (d'Arsonval A. 1896 in Pascual - Leone et 

al., 2002).  

 

TMS uses a coil carrying a large transient voltage around the coil of wire which induces 

a magnetic flux perpendicular to the direction of travel of the electrical current. If the 

coil is placed on the scalp the magnetic field will induce an electrical current in the 

tissue beneath (Pascual - Leone et al., 2002; Barker et al., 1985). The magnetic field 
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passes painlessly into the cortex and the technique is non-invasive (Pascual - Leone et 

al., 2002).   

 

When applied over the primary motor cortex TMS evokes a MEP in surface 

electromyography (EMG) of the peripheral muscle represented in the area the primary 

motor cortex being stimulated (Day et al., 1989a). Epidural recordings from 

corticospinal neurones demonstrate MEPs consist of two components, a D wave and 

several I waves with more I waves seen at higher stimulation intensities (see figure 3 for 

illustration). D waves represent direct activation of corticospinal neurones while I waves 

represent indirect or trans-synaptic activation of the same neurones (Di Lazzaro et al., 

2004). An MEP is the summation of the discharge of multiple motor units (Cortes et al., 

2012). 

 

 

 

Figure 3. Epidural volleys and motor evoked potentials recorded after a single TMS pulse 

over the primary motor cortex (Adapted from Di Lazzaro et al., 2004). 
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Single pulse TMS can be used to evoke an MEP in the contralateral muscle of interest. 

The threshold for MEP induction, the motor threshold, and MEP amplitude are 

commonly used probes for CSE.  

 

Motor threshold is defined as the minimum stimulation intensity required to evoke a 

MEP in the muscle of interest. Motor threshold can be assessed either in a resting 

muscle (rMT) or an active muscle (aMT). rMT is defined the minimum stimulation 

intensity to evoke MEPs of greater than or equal to 50 µV on 5 out of 10 occasions 

(Rossini et al., 1994). aMT is defined similarly except MEPs must be greater than 200 

µV and clearly distinguishable from the background EMG (Rossini et al., 1994). In 

TMS experiments motor thresholds are commonly used a reference point to standardise 

stimulation intensities between participants. Motor thresholds should be considered as a 

good marker of intrinsic membrane characteristics/ axonal excitability for corticospinal 

neurones (Ziemann et al., 1996; Chen et al., 1997). Motor thresholds are influenced by 

neural inputs to corticospinal neurones, tonic inhibitory or excitatory drives as well as 

the excitability of motor neurones in the spinal cord and neuromuscular junction (Chen 

et al., 1997).         

 

In order to assess changes in CSE, MEP amplitudes are commonly taken before and 

after an intervention such as motor learning. Changes in MEP amplitude may reflect 

changes in synaptic efficacy in the neural circuits recruited by TMS or by more neural 

circuits being recruited by the TMS pulse. Changes in MEP amplitude may also be 

explained by changes in synaptic excitability and/ or intrinsic excitability of the spinal 

motor neurones activated by the TMS pulse. Descending volleys generated using TMS 
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pulses travel along the corticospinal pathway, therefore measures of sub-cortical or 

spinal excitability are commonly combined with TMS to better aid the interpretation of 

changes in MEP amplitudes. Common measures include brain stem or cervicomedullary 

stimulation, H-reflexes and F-waves, however, these techniques are not without their 

limitations. H-reflexes involve electrical stimulation of group 1a afferents (Knikou, 

2008). H-reflexes can be influenced by a host of different mechanisms, rather than 

motor neurone excitability including pre-synaptic inhibition, post activation depression 

and disynaptic reciprocal inhibition (Zehr, 2002; Misiaszek, 2003; Knikou, 2008). 

F-waves reflect activation of a small number of spinal motor neurones and may not 

truly represent all neurones activated by TMS. Cervicomedullary stimulation involves 

passing large electrical currents between the mastoid processes, which is painful. That 

said, cervicomedullary stimulation is suggested to activate similar pathways to TMS 

without the cortical component of TMS (Ugawa et al., 1991; Taylor et al., 2006). 

Cervicomedullary stimulation is considered the gold-standard for assessing subcortical 

changes subcortical excitability (Ugawa et al., 1991).      

   

Since its introduction in the mid 1980’s by Barker et al., (1985) TMS has evolved into 

numerous techniques for assessing and altering the structure and function of the CNS. 

Some of the common TMS techniques have been summarised below in table 1.  
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Measurement Description Reference 

Cortical Mapping Suprathreshold single pulse stimulation 

which relates the size of the motor evoked 

potentials to the position of stimulation. 

 

(Amassian et al., 1989b; Wilson 

et al., 1993; Levy et al., 1991) 

Stimulus Response 

Curves 

Stimulating over motor cortex at various 

intensities and plotting the size of motor 

evoked response against the stimulus 

intensity 

 

(Valls-Solé et al., 1994; 

Boroojerdi et al., 2001a; 

Devanne et al., 1997) 

Short Interval 

Intracortical inhibition  

(SICI) 

 

Subthreshold conditioning pulse 2-3 ms 

before test TMS pulse. 

(Kujirai et al., 1993) 

Long Interval 

Intracortical inhibition  

(LICI) 

 

Suprathreshold conditioning pulse 100 – 

200 ms before test TMS pulse. 

(Valls - Solé et al., 1992; 

Wassermann et al., 1996a) 

Intracortical facilitation 

(ICF) 

 

Subthreshold conditioning TMS pulse 

8-15 ms before test TMS pulse. 

(Kujirai et al., 1993) 

Paired Associative 

Stimulation (PAS) 

Low frequency repetitive peripheral nerve 

stimulation paired timed TMS over 

contralateral motor cortex 

 

(Stefan et al., 2000) 

Short latency afferent 

inhibition (SAI) 

Peripheral conditioning electrical 

stimulation 20-24 ms before test TMS 

pulse. 

(Tokimura et al., 2000) 

Long latency afferent 

inhibition (LAI) 

Peripheral conditioning electrical 

stimulation 50 – 100 ms before test TMS 

pulse. 

 

(Sailer et al., 2002) 

Interhemispheric 

inhibition (IHI) 

Suprathreshold conditioning TMS pulse 

to contralateral motor cortex 8-40 ms 

before test TMS pulse. 

 

(Ferbert et al., 1992) 

Interhemispheric 

facilitation (IHF) 

Near threshold conditioning TMS pulse to 

contralateral motor cortex 10 ms before 

test TMS pulse. 

 

(Mochizuki et al., 2004; Bäumer 

et al., 2006) 

Ipsilateral premotor 

inhibition 

Near threshold conditioning TMS pulse to 

ipsilateral premotor area 6-8 ms before 

test TMS pulse. 

 

(Civardi et al., 2001) 

Interhemispheric 

premotor inhibition 

Near threshold conditioning TMS pulse to 

contralateral premotor area 8-10 ms 

before test TMS pulse. 

 

(Mochizuki et al., 2004; Bäumer 

et al., 2006 

Posterior parietal motor 

inhibition 

Near threshold conditioning TMS pulse  

to ipsilateral motor cortex 3-10 ms before 

test TMS pulse 

 

(Koch et al., 2007) 

Repetitive (rTMS) TMS pulse applied at greater than or 

equal to 1 Hz. 

 

(Wassermann et al., 1996a) 

Theta burst (TBS) High frequency (50 Hz) pulses repeated at (Huang et al., 2005) 

Table 1. Summary of TMS methods 



 

Chapter II – Introduction  

 

46 | P a g e  

 

5 Hz 

 

Quadripulse stimulation Trains of 2-4 monophasic TMS pulses 

delivered at 1.5 ms intervals 

 

(Hamada et al., 2007) 

Subthreshold Inhibition Subthreshold pulses delivered at 1Hz (Davey et al., 1994) 

 

 

TMS has been used extensively to study the CNS. It is beyond the scope of this thesis to 

critically detail all these papers, instead I have chosen to present three seminal papers, 

George et al., (1995), Pascual-Leone et al., (1995), and Amassian et al., (1989a). 

 

Much of the TMS literature is devoted to the therapeutic application of TMS to treat 

depression. Much of this literature can trace its route back to George et al., (1995). In 

this study George et al., targeted rTMS towards the left prefrontal cortex and observed a 

significant increase in mood following treatment with TMS. In this study the authors 

related improvements in mood and the concomitant increase in cerebral blood flow 

following rTMS. Pascual-Leone et al., (1995) presented a seminal paper on the 

neuroplastic response to the acquisition of novel skill. Over the course of a five day 

training programme the authors studied the plastic response to mental and physical 

practice on a sequence learning task. The investigators mapped the cortical 

representation of the finger flexor and extensor muscles using TMS. The authors report 

several interesting phenomenon. First, they note that mental practice alone was 

sufficient to improve performance on the sequence learning task although these 

improvements were significantly less than the physical practice cohort. Secondly, the 

authors report that mental practice of the sequence learning task resulted in similar 

levels of neuroplastic change compared with the physical practice cohort.  TMS has 
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applied to understand how structures within the brain alter function when they are 

knocked out using virtual lesions. The virtual lesion technique was first presented by 

Amassian et al., (1989a) in the visual cortex and Day et al., (1989b) in the motor cortex. 

The virtual lesion technique is best thought of as introducing noise to the system. If a 

population are involved in a given task, applying a TMS pulse is very unlikely to 

selectively stimulate the same population of neurones involved in a given task (Walsh & 

Cowey, 2000). Rather, the TMS pulse introduces neural activity that is random with 

respect to the goal-state of this population of neurones (Walsh & Cowey, 2000). Simply 

put, the virtual lesion technique induces disorder rather order in neuronal processing of 

information. The virtual lesion technique has been used to gleam information regarding 

the temporal relationship between different cortical regions to a specific behaviour 

(Pascaul-Leone et al., 2000).     

 

Electroencephalography and Magnetoencephalography 

The electroencephalogram, or EEG, is a non-invasive means of recording the electrical 

activity of the cortex. The EEG is a recording of the differences in the electrical 

potential between different points on the scalp (Pond, 1967). The rhythmic pattern of 

the EEG is generated by cyclical changes in the membrane potentials of the neurones 

underlying each electrode. The potentials recorded during an EEG arise from the cortex, 

specifically the large pyramidal cells in layers IV and V of the cortex (Pond, 1967). 

Magnetoencephalography is a complimentary technique which detects magnetic 

correlate of the electrical activity of the cortex (Vecchiato et al., 2011). Recently, in an 

attempt to increase the efficacy of TBS, Brownjohn et al., (2014) used EEG to record 

the theta frequency and then, delivered TBS at this individualise frequency. Brownjohn 



 

Chapter II – Introduction  

 

48 | P a g e  

 

et al., compared the individualised TBS with conventional TBS and report that 

individualising TBS does not induce a significantly greater modulation of MEP 

amplitude compared with conventional TBS.     

 

Functional Magnetic Imaging 

fMRI is a common paradigm used to assess neuroplastic changes. BOLD is by far the 

most common fMRI paradigm and has dominated the field since its inception (Arthurs 

& Boniface, 2002). BOLD fMRI uses haemoglobin as a contrast agent, relying on the 

differences in magnetisation between oxy- and deoxyhaemoglobin. BOLD fMRI 

provides an indirect measure of neural activity via the assumed haedynamic correlate. 

The BOLD fMRI signal has several key features; the response of the CNS to a stimulus; 

the relationship between the neural activity and the haemodynamic response, the 

haemodynamic response itself and the way the signal is detected by the scanner. An 

example of the application of fMRI to assess plasticity is the recent study by Saiote et 

al., (2013). Here the authors examined the neuroplastic effects of two different 

transcranial electrical stimulation (TES) paradigms on the early and late phase of motor 

learning. The authors assess the plastic effect of these two interventions use fMRI, the 

authors report changes in brain activation similar to those reported in other studies (for 

review see Kelly et al., 2006) however, authors report that adding high frequency noise 

to the system using TES  facilitates motor learning whereas adding low frequency noise 

hinders motor learning.  
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Summary  

It is possible to change the structure and functioning of the cerebral cortex naturally 

through learning novel skills and artificially via NIBS techniques. The neuroplastic 

changes are suggested to occur via LTP or LTP like processes. This thesis employs 

motor learning and TMS techniques to assess changes in CSE in the healthy human. 

This thesis now moves on to introduce the methods used to assess motor learning and 

learning induced neuroplasticity.
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Chapter III – General Methods 
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Chapter III – General Methods  

This chapter details the TMS SR curve acquisition protocol use in all three studies of 

this thesis as well as the visuomotor learning paradigm used in studies two and three of 

this thesis. The purpose of this chapter is to provide a summary of the methods common 

to one or more experiment in this thesis, to consider the advantages and disadvantages 

of each method and permit the reader to evaluate the results of the studies presented. 

The precise details of each experiment, the rationale, the protocol, findings and 

discussion will be reported in the respective chapters.  

 

All study protocols were approved by the University of Birmingham’s science, 

technology, engineering and mathematics ethics committee (ERN_11-0444) and all 

experimental procedures were conducted in accordance with the declaration of Helsinki 

(World Medical Organisation, 1996). In study one investigated the feasibility of 

reducing the acquisition time of the SR curve. In study two, I used the rapid SR curve 

acquisition protocol to assess learning induced modulation of CSE in proximal and 

distal muscles. Study three investigated the influence of hand preference on learning 

induced modulation of CSE. 

 

All studies in this thesis focused on healthy participants with no history of 

neuromuscular disease. Healthy participants with a mean age of 22 ± 4 years were 

recruited for the studies in this thesis (n=76, 60% female, 58 right hand dominant, 

sample of convenience). Bespoke samples were recruited for each experiment, no 

participants completed more than one experiment. Detailed characteristic for each of the 

study populations is reported in the relevant chapters. Before being allowed to 
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participate in a study, participants were given verbal and written information so as to 

inform consent. Participants were screened for contradictions to TMS using a modified 

version of the TMS adult safety questionnaire, a copy has been included as appendix 

four for clarity (Keel et al., 2001). For studies two and three participants handedness 

was determined using the Edinburgh handedness inventory (Oldfield, 1971). 

Participants were reminded of the right to withdraw from the study at any point without 

reason or fear of repercussion. No adverse events were reported following the use of 

TMS in the studies of this thesis.  

 

Visuomotor Learning  

Studies two and three assessed changes in CSE following a short period of visuomotor 

learning. This particular visuomotor learning task was chosen as it has been previously 

shown to modulate CSE in a wide variety of muscles including FDI, BB and TA (Perez 

et al., 2004; Lundbye-Jensen et al., 2005; Cirillo et al., 2011). However, the task was 

adapted to use isometric force rather than joint position was the input signal. This 

adaptation was chosen as increasing levels of force have shown to increase the level of 

activity within the primary motor cortex (Wexler et al., 1997). Additionally there was a 

pragmatic reason behind the adapation, the necessary goniomoters to study FDI were 

unavailable whereas the force transducers were available.  
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The visuomotor learning task used in this thesis involved tracking waveformsthrough 

isometric contractions of either FDI or BB. For studies involving BB force was 

recorded using a custom made torsion bar (setup shown in figure 4). For studies 

involving FDI force was recorded using the NL 62 - 5 kg force transducer (Digitimer 

Ltd, Welwyn Garden City, UK).  

 

Participants were asked to track a target waveform with a cursor shown on the computer 

screen through isometric index finger abductions or elbow flexions of varying degrees 

of force, the experimental set-up is illustrated below in figure 4. Increasing force made 

the cursor rise, shown as the red dot in figure 4, on the screen and decreasing made it 

fall. Participants were able to control the vertical movement of the cursor, movement in 

the x-axis was pre-defined in the matlab code. At the beginning of the task participants 

were verbally instructed how to complete the task, participants were not allowed to 

practice the task prior to commencing the training. The training protocol used in this 

thesis is illustrated by in centre portion of figure 4. 

 

In each session participants performed five blocks of training, each 4 minutes with 

2 minutes rest between blocks to minimise fatigue. Each training block consisted of 

Figure 4. Experimental setup for visuomotor learning in distal and proximal muscles. 

Participants were asked to track waveforms through isometric elbow flexion and finger 

abductions with varying degrees of force. The target waveform is shown in white and the 

participants trace in red on the centre panel.  Performance was quantified using root mean 

square error between the target and actual traces. Forces were recorded as displayed in the 

left and right panels. Five waveforms were used to assess performance prior to and post 

training. During the training participants were provided with performance feedback in the 

form of a bar chart. The bar chart was updated after each waveform, showing how their 

performance improved across the five training blocks. Thanks go to Mark van de Ruit for the 

figure.      
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tracking 20 waveforms, each lasting 12 seconds. To further minimise fatigue the 

waveform amplitudes were normalised between 0 and 20 % maximal voluntary 

contraction (MVC) for each participant. Furthermore, the first and last second of each 

waveform returned to 0 %MVC. The participant’s performance on the task was assessed 

prior to and post training using separate blocks of assessment waveforms shown in 

figure 4.   

 

Online performance feedback, in the form of absolute error, was given to control for 

fluctuations in attention during learning. Error feedback was given in the form of a bar 

chart displayed on the computer screen after each waveform. The bar chart was updated 

after each waveform so the participant saw their performance improvement for each 

waveform across all training blocks. The force signal was high pass filtered at 30 Hz, 

amplified x1000, digitised at 4 kHz and stored on a computer for offline analysis. 

Performance was quantified post hoc using the RMS error between the target trace and 

the actual cursor position. 

 

Electromyography 

Surface electrodes (Blue Sensor N, Ambu
®
, Denmark) were placed in a bipolar montage 

over the muscle of interest. Care was taken to ensure accordance with the SENIAM 

guidelines. The EMG signals were band-pass filtered (0.5 - 2 kHz), sampled at 5 kHz, 

and amplified using custom amplifiers. All data were stored on a computer for offline 

analysis.  
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Transcranial Magnetic Stimulation 

For all studies of this thesis motor evoked potentials (MEP) were elicited with a 

biphasic TMS pulse (Magstim Rapid
2
, The Magstim Company, Dyfed, UK) from a 

custom-made 90mm ‘figure of eight’ coil (batwing design; type no. 15411, Magstim 

company, Dyfed, UK). Magnetic stimuli were delivered over the cortical area which 

evoked maximal MEPs in the particular muscle of interest, commonly referred to as the 

‘hotspot’. The coil was positioned over the respective hotspot with the handle pointing 

backwards at an angle of 45° from the midline (Brasil - Neto et al., 1992) inducing a 

posterior-anterior current (Kammer et al., 2001). Coil position and orientation were 

monitored in real time using frameless stereotaxy (Brainsight, Rogue Research Inc). In 

an attempt to control for attention mediated variation in MEP amplitude participants 

were asked to ensure the coil was as close to the hotspot as possible with the aid of 

feedback from the Brainsight system. 

 

Neuronavigation 

In neuroscience many studies apply TMS to stimulate specific regions of neurones and 

observe the functional significance of doing so. However, this poses significant 

challenges for studies which require stimulation over several sessions – how does one 

ensure the same regions of the brain are being stimulated in each session? To overcome 

this confound, the BrainSight neuronavigation system (Rogue Research Inc) was used 

for all studies of this thesis. Here, the participant and the TMS coil wear infrared 

reflective markers to monitor their position in space. The system is calibrated by 

marking sights that are common to the scan and to the participants head, such as the tip 

of the nose. The calibration process defines the position of the head with respect to 
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infrared marker and sights marked during the calibration. BrainSight uses infrared 

markers worn by the participant and the calibration sights together with the infrared 

marker on the coil to monitor, in real-time, the position and orientation of the coil. The 

use of neuronavigation in TMS experiments has been shown to enhance the efficacy of 

stimulation as well as decreasing variability and latency and increase MEP amplitudes 

(Julkunen et al., 2009; Sparing et al., 2008; Rankin & Stokes, 1998; Gugino et al., 

2001).  

 

Safety of Transcranial Magnetic Stimulation  

Single pulse and rTMS are widely considered to be safe and well tolerated in man. 

Tissue heating during single pulse TMS is less than 0.1°C (Ruohonen & Ilmoniemi, 

2002), and the total exposure to the magnetic field during TMS and rTMS is considered 

too small to pose a risk to participants (Rossi et al., 2009). Mild transient headaches are 

the most commonly reported side-effect of TMS (Rossi et al., 2009). A recent study 

examining mild adverse events to TMS reported an incidence of approximately 5% for 

mild headaches in a sample of 1270 TMS sessions (Maizey et al., 2013). The most 

serious adverse event associated with TMS, particularly with regards to high frequency 

rTMS due to its excitatory after effects, is TMS induced seizure. It should be noted that 

these events are rare – a recent review of TMS safety reported 16 incidences of TMS 

induced seizures (Rossi et al., 2009). It is important to highlight that these events 

occurred where participants had a family history of epilepsy or were using 

pro-convulsant medications (Bernabeu et al., 2004; Tharayil et al., 2005). Since the 

introduction of internationally recognised safety guidelines (Wassermann, 1998; 

Wassermann et al., 1996a) and a safety screen for contraindications to TMS (Keel et al., 
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2001) the incidence of TMS induced seizures has dropped markedly. There has been a 

single reported incidence of TMS induced seizure in an otherwise healthy participant 

(Kratz et al., 2011). There has been great interest in using rTMS to treat psychiatric 

disorders, these treatments typically involve many stimuli, delivered on a daily or 

weekly basis. Importantly, there are no document serious adverse events to chronic 

exposure to rTMS (Janiack et al., 2008; Rossi et al., 2009). Given that TMS is in its 

infancy further work is warranted to evaluate the safety of TMS, particularly through 

longitudinal studies.               

 

Stimulus Response Curves 

MEP amplitudes increase in a sigmoidal manner with increasing stimulation intensities; 

this led to the conception of the TMS SR curve (Valls-Solé et al., 1994; Devanne et al., 

1997; Boroojerdi et al., 2001a). Since its introduction in the mid 1990’s the SR curve 

has been increasingly used in studies of motor learning and neurorehabilitation.  

 

SR curves were initially proposed by Devanne et al., (1997). The authors used a binned 

acquisition protocol whereby the SR relationship was established by delivering 

successive magnetic stimuli at increasing stimulator intensity starting just below motor 

threshold and ending when the stimulator’s maximum output was reached (for an 

example of an SR curve acquired using binned acquisition please refer to figure 2 of 

Devanne et al., (1997). MEPs were acquired by recording a set of 5-10 stimuli at 

different stimulation intensity levels grouped in steps of 2-10 % of the maximum 

stimulator output (MSO). The responses for each stimuli intensity level were then 

averaged and a Boltzmann-like model fit to the mean data using a nonlinear least mean-
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square algorithm (Devanne et al., 1997). This protocol for acquiring SR curves has 

become commonplace in motor control and neurorehabilitation research.  

 

Devanne et al., (1997) suggest “the order of the presentation of stimuli has no effect on 

the form of the [stimulus response] relationship or its parameters,” however, recent 

research has begun to question this statement. Möller et al., (2009) examined the effect 

of three different acquisition protocols on the SR curve. Möller et al., used binned 

increasing (similar to Devanne et al., 1997), binned decreasing and a random protocol 

(for an example of an SR curve acquired using binned acquisition please refer to figure 

2 of Devanne et al., (1997). SR curves acquired with the binned decreasing protocol 

were significantly different compared to those acquired with the binned increasing 

protocol while curves acquired with the random protocol ran between the two binned 

protocols. This paper demonstrates it is possible to influence SR curves with the 

acquisition protocol. The random acquisition protocol recommend by Möller et al., 

(2009) was adopted for all studies of this thesis.    

 

Reliability of Transcranial Magnetic Stimulation Stimulus Response Curve 

Carroll et al. (2001) assessed the reliability of SR curves. The authors report ICCs for 

the SR curve parameters ranging between 0.72 and 0.96 based upon this finding the 

authors suggest SR curves are a reliable means of assessing CSE in the passive and 

active muscle. Malcolm et al. (2006) report SR curves in healthy volunteers acquired 

twice in a two week period have an intraclass correlation coefficient of between 0.60 

and 0.83. Carson et al. (2013) recommend using ‘area under the curve’ (AuC) analysis 
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when assessing SR curves in interventional studies. I would suggest SR curves are a 

reliable method for assessing CSE in healthy populations.  

 

Physiology of Transcranial Magnetic Stimulation Stimulus Response Curve 

The parameters SR curve (illustrated in figure 6) reflects aspects of the underlying 

physiology of the CNS. rMT denotes the excitability and membrane channel 

characteristics of the cortico-cortical axons and their excitatory synapses within the 

motor cortex (Ziemann, 2004). The gradient of the sigmoid is suggested to mirror the 

magnitude of the cortical representation and the distribution of excitability within the 

corticospinal projection (Siebner & Rothwell, 2003). AuC analysis has also been used 

to provide a robust measure of the corticospinal output and projection strength (Pitcher 

et al., 2009; Carson et al., 2013; Talelli et al., 2008).  

 

Limitations of Stimulus Response Curves 

The use of single pulse TMS to acquire SR curves is subject to the same limitations as 

cortical mapping i.e. changes in SR curve parameters reflect changes in both excitability 

and cortical topography. Moreover, suprathreshold stimuli evoke compound MEP and 

changes in compound MEP amplitudes reflect changes along the entire corticospinal 

pathway. Changes in MEP amplitude may be mediated by subcortical structures or 

spinal motor neurones. Additionally TMS mapping may detect an uneven expansion of 

the muscles representation on the motor cortex or a change of centre of gravity within 

the map.  

 

Stimulus Response Curve Acquisition Protocol 
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SR curves were collected in all studies of this thesis. The protocol for acquiring SR 

curves is illustrated in figure 5, a representative example has been included as figure 6. 

TMS was delivered using intensities between 80 %rMT and 100 %MSO. The first 

stimulation intensity was chosen at random between the specified limits for each 

participant, with the subsequent stimuli delivered within -5 %MSO to +30 %MSO of 

the previous stimulus. This range was used to ensure the stimulator would not misfire 

when decreasing stimulation intensity at the shorter ISI. rMT was defined as the 

minimum TMS intensity required to evoke a reproducible MEP of greater than 50 µV in 

5 of 10 consecutive trials (Rossini et al., 1994).  

 

 

 

Stimulus Response Curve Fitting 

Figure 5. The procedure for generating a stimulus response curve. TMS is applied over the 

hotspot induces contraction a ‘Motor Evoked Potential’, in the contralateral muscle due to 

excitation of corticospinal and spinal motorneurones (A). The coil position and orientation 

with respect to the hotspot were monitored in real-time using frameless stereotaxy 

(BrainSight, Rogue Research Inc) (B). An exemplar motor evoked potential is shown in the 

upper section of panel (C) The amplitude of the motor evoked potential varies as a function 

of the TMS intensity. This relationship between amplitude and intensities is shown in the 

bottom figure of panel C as the grey dots which represent peak to peak amplitude of motor 

evoked potentials. The black line is the stimulus response curve. Each stimulus response 

curve is characterised by these parameters MEPmin, MEPmax, I50 and Slope.      

Time (S) 
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The MEP was defined as the peak to peak amplitude in the recorded EMG response 

between 20 and 60 ms after the presentation of the stimuli. The MEP amplitudes were 

plotted against stimulation intensity and the relationship modelled using a 

four-parameter Boltzmann sigmoid function:  

 

 

 

where MEPmin and MEPmax are the minimum and maximum asymptotes of the function; 

I50 is the percentage of maximal stimulator output at which the MEP is mid-way 

between MEPmin and MEPmax and S is the steepness of the relationship at I50. The 

parameters of the SR curves are illustrated below in figure 6. MEPmax and MEPmin are 

illustrated by the green and red arrows while the I50 is illustrated by the blue arrow and 

the slope by the yellow line. 
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This model was fitted to our data with a Levenberg-Marquardt nonlinear least mean-

square algorithm. Initial parameters were set to the following: MEPmin = min (MEP(I)), 

MEPmax = max(MEP(I)), I50 = 60 %MSO, and Slope = 5. Parameter constrains were 

applied as follows: MEPmin > 0; 25 < I50 95 %MSO. 

 

Repetitive Transcranial Magnetic Stimulation 

rTMS was used in study one of this thesis to control for the neuromodulatory effects of 

rapid rate stimulation. rTMS is defined as trains of multiple stimuli delivered at greater 

than or equal to 1 Hz (Wassermann, 1998). Experimentally rTMS is used with a wide 

variety of scopes in equally varied situations; examples include to induce plasticity in 

Figure 6. The parameters of the transcranial magnetic stimulation stimulus response curve. 

The red arrow denotes MEPmax, I50 and slope are donated by blue arrow and yellow line 

respectively. MEPmin is represented by the green arrow.  
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attempts to unpick the mechanism behind neuroplasticity (Wang et al., 1996; Ziemann 

et al., 2002) and to induce virtual lesions within the cortex to study the relationship 

between structure and function (Hilgetag et al., 2001; Pascual - Leone et al., 1999).  

The ability to induce physiological effects which outlast the period of stimulation 

differentiates rTMS from single pulse TMS.  

 

The aim of study one was to reduce the acquisition time of the TMS SR curve. 

However, one cannot simply deliver stimuli as fast as possible due to the well-

documented phenomenon whereby low frequency (1 Hz) repetitive TMS (rTMS) 

depresses cortical excitability (Chen et al., 1997; Muellbacher et al., 2000; Tergau et 

al., 1997; Fitzgerald et al., 2002). Consequently, it would be reasonable to postulate that 

SR curves constructed with MEPs that were acquired with short inter-stimulus intervals 

(ISIs) to be depressed. Such a depression would result in a curve with a lower plateau, a 

larger inflection point, and a milder slope. So, to control for the frequency dependent 

modulation of MEP amplitudes, focal rTMS was delivered to the left primary motor 

cortex with a Magstim Rapid
2
 (Magstim Company, Dyfed, UK) using a custom made 

90mm ‘figure of eight’ coil (batwing design; type no. 15411, Magstim company, Dyfed, 

UK). The stimulus was biphasic with a pulse width of 400 µs. The coil position and 

orientation were the same for all single pulse TMS studies. Coil position and orientation 

were monitored in real-time using frameless stereotaxy (Brainsight, Rogue Research 

Inc). I delivered three trains of 180 stimuli at 120% rMT, at a frequency of 1 Hz. This 

protocol is in accordance to the internationally recognised safety guidelines 

(Wassermann, 1998; Wassermann et al., 1996a). 
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Data Normalisation 

To ensure any conclusions drawn from statistical analysis are valid the data should be 

normalised. The process of normalisation allows the investigators to minimise the 

influence of unwanted variability, allowing the investigators to focus on the interesting 

variability. For example, normalising MEPs obtained in the active muscle to the 

maximal compound muscle action potential removes the influence of increase in 

amplitude and allows the team focus on any changes that have occurred as a result of 

activating the muscle.  

 

In study one, MEP amplitudes were normalised to the maximal evoked response (Mmax) 

to a peripheral nerve stimulus in the muscle of interest. This response was obtained 

using an electrical stimulus (Digitimer DS7AH, Digitimer Ltd, Welwyn Garden City, 

UK) delivered to the median or ulnar nerve, for FDI and abductor digiti minimi (ADM) 

respectively, or to Erb’s point (for BB). In all cases, Mmax was determined using 

supramaximal stimuli. The response was quantified as the peak to peak amplitude 

between 2-10 ms after the presentation of the stimulus. For studies two and three, based 

upon feedback from participants that electrical stimulation at Erb’s point was painful, 

the normalisation process was changed. MEP amplitudes were normalised to the 

maximal MEP amplitude. To acquire maximal MEP I delivered 10 stimuli at 100 

%MSO to the hotspot and then averaged the responses. All SR curves within the thesis 

are presented as plots of normalised MEP amplitude against %MSO. Normalising the x-

axis to other factors such as %rMT did not significantly alter the result. 
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Data Analysis 

In all studies involving motor learning performance was quantified as the RMS error 

between the target trace and the actual cursor position. Performance feedback was given 

at the end of each learning block, and analysed post-hoc as a marker of learning. The 

formula for calculating RMS error is shown below.   

 

          √ 
∑          

  
 

 

where x is the force transducer output and y is the target waveform 

 

Individual MEPs were excluded from the construction of SR curves if there RMS EMG 

in the 100 ms prior to stimulation was greater than twice the mean RMS for that data 

set. MEPs were also excluded from SR curve fitting if they lay outside of the 95% 

prediction interval from the calculated curve fit. For study 1 all MEPs were normalised 

against the electrically elicited Mmax. For studies two and three all MEPs were 

normalised to the maximal MEP. The normalisation measure was changed as 

participants reported electrical stimulation at Erb’s point very painful. 

 

To account for variability in background muscle activation, individual MEPs were 

excluded from the construction of SR curves or statistical analysis if their respective 

RMS EMG in the 100 ms prior to stimulation was greater than twice the mean RMS for 

that dataset. SR curves were excluded from the statistical analysis if the r
2
 was less than 

0.7 or the upper plateau was not achieved.  
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All statistical testing was conducted with NCSS 2007 v07.1.4 (Hintze, 2007), and all 

tests were considered significant at an alpha of 0.05. For the studies of this thesis area 

under the SR curve and the parameters of the SR curve were used as the dependent 

variables for statistical analysis. Results are reported as mean ± 1 standard deviation 

(S.D) unless otherwise stated.
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Chapter IV – Rapid Acquisition of Transcranial 

Magnetic Stimulation Stimulus Response Curve

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter was published as Mathias JP, Barsi GI, van de Ruit M and Grey MJ 

(2014). Rapid Acquisition of the Transcranial Magnetic Stimulation Stimulus Response 

Curve. Brain Stimulation 7, 59-65.   
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Abstract  

Transcranial magnetic stimulation is frequently used to construct stimulus response 

(SR) curves in studies of motor learning and rehabilitation. A drawback of the 

established method is the time required for data acquisition, which is frequently greater 

than a participant’s ability to maintain attention. The technique is therefore difficult to 

use in the clinical setting. The aim of this study was to reduce the time of curve 

acquisition by determining the minimum acquisition time and number of stimuli 

required to acquire an SR curve. 

 

SR curves were acquired from first dorsal interosseus (FDI) and abductor digiti minimi 

(ADM) at 6 interstimulus intervals (ISI) between 1.4 and 4 s in 12 participants. To 

determine if low-frequency rTMS might affect the SR curve, MEP amplitudes were 

monitored before and after 3 min of 1 Hz rTMS delivered at 120% of resting motor 

threshold in 12 participants. Finally, SR curves were acquired from FDI, ADM and 

Biceps Brachii (BB) in 12 participants, and the minimum number of stimuli was 

calculated using a sequential MEP elimination process. 

 

There were no significant differences between curves acquired with 1.4 s ISI and any 

other ISI. Low frequency rTMS did not significantly depress MEP amplitude (p=0.87). 

On average, 61 ± 18 (FDI), 60 ± 16 (ADM) and 59 ± 16 (BB) MEPs were needed to 

construct a representative SR curve. 
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This study demonstrates that reliable SR curves may be acquired in less than 2 min. At 

this rate, SR curves become a clinically feasible method for assessing corticospinal 

excitability in research and rehabilitation settings.  
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Introduction 

Transcranial magnetic simulation (TMS) is frequently used to assess the state of 

corticospinal excitability (CSE). Since its introduction in the mid 1990’s, the stimulus 

response (SR) curve has become increasingly used in studies of motor learning and 

neurorehabilitation (Devanne et al., 1997; Valls - Solé et al., 1992; Boroojerdi et al., 

2001a). SR curves are typically acquired by delivering multiple stimuli in 

pseudorandomised bins of stimulation intensity. A full range of stimulation intensities 

are delivered from just below motor threshold until either the motor evoked potential 

(MEP) amplitude plateaus or the maximum stimulator output (MSO) is reached. The 

MEP amplitudes for each stimulus intensity level are then averaged and a 3, 4 or 5 

(Barsi et al., 2008; Malcolm et al., 2006; Pitcher et al., 2003) parameter Boltzmann-like 

model is fit to the mean data using a nonlinear least squares algorithm to produce the 

SR curve (Devanne et al., 1997; Valls - Solé et al., 1992; Boroojerdi et al., 2001a). 

 

A limitation of the traditional method of curve acquisition is the time required to collect 

the data. SR curves are used to measure the state of CSE which is known to fluctuate 

within the time required to acquire a curve, typically in excess of 10 minutes. The 

source of this fluctuation in CSE is not known however it is believed not to arise from 

autonomic (Filippi et al., 2000), cardiac (Ellaway et al., 1998), or respiratory (Ellaway 

et al., 1998) signals. Furthermore, the amplitude of MEPs used to construct SR curves is 

known to be mediated by attention (Rosenkranz & Rothwell, 2006; Rosenkranz & 

Rothwell, 2004) and drowsiness (Andersen et al., 2008). Therefore, in order for SR 

curves to provide an accurate reflection of CSE, SR curves should be acquired in the 

shortest possible time. Additionally, due to their lengthy acquisition time SR curves are 
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not practical in studies of motor learning, where one expects short-term changes in CSE, 

or in the clinical setting. 

 

Commonly, investigators attempt to reduce acquisition time by reducing either the 

number of stimuli per bin or the number of bins (Liepert et al., 2003; Ward et al., 2006; 

Pearce et al., 2012; Ray et al., 2002). However, there has been no systematic study of 

the minimum number of stimuli required for an SR curve. Additionally, the use of 

blocked acquisition protocols has been shown to influence the acquisition of SR curve. 

SR curves acquired using blocked decreasing stimulation intensity protocols were 

shifted significantly to the left suggestive of increased CSE when compared to a 

blocked increasing protocol, showing that it is possible to significantly alter the SR 

curve via the method used to acquire them (Möller et al., 2009). Möller et al. (2009) 

recommend acquiring SR curves using stimulation intensities determined randomly on a 

pulse-by-pulse basis. When seeking to reduce the acquisition time, one cannot simply 

deliver stimuli as fast as possible due to the well-documented phenomenon whereby 

low frequency (1 Hz) repetitive TMS (rTMS) depresses cortical excitability (Chen et 

al., 1997; Muellbacher et al., 2000; Tergau et al., 1997; Fitzgerald et al., 2002). 

Consequently, it would be reasonable to postulate that SR curves constructed with 

MEPs that were acquired with short interstimulus intervals (ISIs) to be depressed. Such 

a depression would result in a curve with a lower plateau, a larger inflection point, and a 

milder slope. MEPs from proximal muscles are also known to have greater variability 

than those of distal muscles (Kiers et al., 1993), and this variability is likely to be 

reflected in the SR curve. Consequently, proximal muscles may require more stimuli 

and thus more time, to produce a curve that accurately reflects CSE.  
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The aim of the present study was to reduce the acquisition time of the SR curve by 

determining the shortest ISI at which stimuli may be presented without depressing CSE 

and by determining the minimum number of stimuli required to acquire an SR curve. To 

determine the influence of ISI on the SR curves I tested the hypothesis that the 

inflection point would increase while angle of the slope and plateau decreases with ISI. 

Second, to control for the effect of frequency dependent depression in CSE I tested the 

hypothesis that 3 minutes of 1 Hz rTMS would depress the amplitude of the MEP. 

Finally, I aimed to determine the minimum number of stimuli required for a 

representative SR curve and I tested the hypothesis that SR curves acquired from 

proximal muscles would require more stimuli than those of distal muscles.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter IV – Rapid acquisition of the TMS SR curve 

 

73 | P a g e  

 

Methods 

Participants 

Healthy participants with a mean age of 21 ± 3 years were recruited for the study 

(n = 36, 18 male, 75% right handed, sample of convenience). All participants were 

screened for TMS safety with a modified version of the TMS adult safety survey (Keel 

et al., 2001) and all gave informed written consent. The study protocol was approved by 

the University of Birmingham Science, Technology, Engineering and Mathematics 

ethics committee (ERN_11-0444) and all experiments were conducted in accordance 

with the Declaration of Helsinki. 

 

Electromyography 

Surface electrodes (Blue Sensor N, Ambu
®
, Denmark) were placed in a bipolar montage 

over the First Dorsal Interosseus (FDI), Abductor Digiti Minimi (ADM), and Biceps 

Brachii (BB). The EMG signals were band-pass filtered (0.5 - 2 kHz), sampled at 

5 kHz, and amplified using custom amplifiers. All data were stored on a computer for 

offline analysis.  

 

Transcranial Magnetic Stimulation 

Motor evoked potentials (MEP) were elicited with a biphasic TMS pulse (Magstim 

Rapid
2
, The Magstim Company, Dyfed, UK) from a custom-made 90mm ‘figure of 

eight’ coil (batwing design; type no. 15411, Magstim company, Dyfed, UK). Magnetic 

stimuli were delivered over the cortical area which evoked maximal MEPs in the 

particular muscle of interest, commonly referred to as the ‘hotspot’. The coil was 

positioned over the respective hotspot with the handle pointing backwards at an angle of 
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45° from the midline (Brasil - Neto et al., 1992) inducing a posterior-anterior current 

(Kammer et al., 2001). Coil position and orientation were monitored in real time using 

frameless stereotaxy (Brainsight, Rogue Research Inc). In an attempt to control for 

attention mediated variation in MEP amplitude participants were asked to ensure the 

coil was as close to the hotspot as possible with the aid of feedback from the Brainsight 

system.       

 

Stimulus Response Curve Modelling 

SR curves were collected in experiments 1 and 3. MEP amplitudes were plotted against 

stimulation intensity and the relationship modelled using a four-parameter Boltzmann 

sigmoid function:  

 

 

 

where MEPmin and MEPmax are the minimum and maximum asymptotes of the function; 

I50 is the percentage of maximal stimulator output (% MSO) at which the MEP is 

mid-way between MEPmin and MEPmax and S is the steepness of the relationship at I50.  

 

This model was fitted to our data with a Levenberg-Marquardt nonlinear least mean-

square algorithm. Initial parameters were set to the following: MEPmin = min (MEP(I)), 

MEPmax = max(MEP(I)), I50 = 60 %MSO, and Slope = 5. Parameter constrains were 

applied as follows: MEPmin > 0; 25  < I50 95 %MSO. 
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Experimental Protocols 

The Effect of Interstimulus Interval on the Stimulus Response Curve 

In 12 participants, data were acquired to assess the effect of ISI on SR curve acquisition. 

Data were acquired from FDI and ADM at; 1.4, 1.6, 1.8, 2, 3 and 4 s ISI. SR curves 

were acquired using varying stimulation intensities determined pseudorandomly on a 

pulse-by-pulse basis between 80 % resting motor threshold (rMT) until 100 %MSO. 

The first stimulation intensity was chosen at random between the specified limits for 

each participant, with the subsequent stimuli delivered within -5 %MSO to +30 %MSO 

of the previous stimulus. This range was used to ensure the stimulator would not misfire 

when decreasing stimulation intensity at the shorter interstimulus intervals. Each SR 

curve was constructed from 100 MEPs. 

 

Each participant underwent 2 sessions separated by at least 7 days. All participants 

completed both sessions. Three SR curves were acquired from each muscle during each 

visit with a randomised presentation of ISIs to prevent an ordering effect.  

 

Corticospinal Excitability following 1 Hz rTMS 

In 12 participants MEP amplitudes were monitored pre and post a 3 min bout of 

1 Hz rTMS delivered at 120 %rMT to determine if a short bout of rTMS would depress 

CSE. MEPs were elicited pre and post rTMS from the right FDI, using TMS delivered 

at 120 %rMT with an ISI of a 10 s. This protocol was repeated three times in a single 

session with no fewer than 5 min between each train of stimuli to avoid potential 

cumulative effects due to the rTMS. 

 



 

Chapter IV – Rapid acquisition of the TMS SR curve 

 

76 | P a g e  

 

Minimum Number Required for a Stimulus Response Curve 

The minimum number of stimuli required to construct a representative SR curve was 

determined in 12 participants. Data were acquired from FDI, ADM and BB with a 

5 s ISI. SR curve were acquired using varying stimulation intensities determined 

pseudorandomly on a pulse-by-pulse basis between 80% rMT and 100 %MSO. The 

stimuli were pseudorandomised in the same manner as the previous experiment. Each 

SR curve was constructed from 120 MEPs and 3 curves were acquired from each 

muscle.  

 

Data Analysis 

The amplitude of the MEP was defined as the peak to peak amplitude in the recorded 

EMG response between 20 and 60 ms after the presentation of the magnetic stimulus. 

All MEPs obtained with the coil more than 2.5 mm and/or 5° away from the hotspot 

were removed from analysis. In total, I removed 17 MEPs across all experiments as a 

result of this procedure. To account for variability in background muscle activation, 

individual MEPs were excluded from the construction of SR curves if their respective 

root mean square (RMS) EMG in the 100 ms prior to stimulation was greater than twice 

the mean RMS for that dataset. SR curves were excluded from the statistical analysis if 

there r
2
 was less than or equal to 0.7 or the upper plateau was not achieved in the curve. 

To ensure valid statistical comparisons across participants, MEP amplitudes were 

normalised to the maximal evoked response (Mmax) to a peripheral nerve stimulus in the 

muscle of interest. This response was obtained using an electrical stimulus (Digitimer 

DS7AH, Digitimer Ltd, Welwyn Garden City, UK) delivered to the median or ulnar 

nerve (for FDI and ADM, respectively) or to Erb’s point (for BB). In all cases, Mmax 
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was determined using supramaximal stimuli. The response was quantified as the peak to 

peak amplitude between 2—10 ms after the presentation of the stimulus.  

 

Statistical Analysis 

Statistical testing was conducted with NCSS 2007 v07.1.4 (Hintze, 2007), and all tests 

were considered significant at an alpha of 0.05. Results are reported as mean ± standard 

deviation (S.D). 

 

A two-way repeated measures ANOVA (2w-rmANOVA) using within subject factors 

muscle (FDI and ADM) and interstimulus interval (1.4, 1.6, 1.8, 2, 3 and 4 s) was used 

to assess the effect of stimulation frequency on each of the four parameters of SR 

curves. A 2w-rmANOVA using within subject factors time (Baseline, 1 Min Post, 2 Min 

Post and 3 Min Post) x trial number (1, 2 and 3) was used to assess the effect 3 minutes 

of rTMS on the amplitude of MEPs. An iterative data elimination process, illustrated in 

figure 7 was used to determine the minimum number of stimuli required when acquiring 

SR curves.  The minimum of stimuli required for an SR curve was defined as the 

number of stimuli at the iteration in the data elimination process where the new curve fit 

left the 95% confidence intervals calculated for the original curve fit and remained 

outside on three consecutive iterations. A 1w-rmANOVA with the factor muscle (FDI, 

ADM and BB) was used to test the hypothesis that SR curves from proximal muscles 

would require more stimuli than curves from distal muscles. Furthermore, I also 

examined the test-retest reliability of the parameters of the SR curve generated with the 

minimum number of MEPs using the intraclass correlation coefficient (ICC), following 

McGraw and Wong (1996). 
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Figure 7. A representative example of the data elimination process used to calculate the 

minimum number of stimuli. A) All 100 MEPs are used to calculate the SR curve (solid line) 

with 95% confidence interval of the fit (dashed lines). B-E) 84, 68, 52 and 36 data points 

used for the SR curve fit (solid line), superimposed with the original fit’s confidence interval 

(dashed lines). 



 

Chapter IV – Rapid acquisition of the TMS SR curve 

 

79 | P a g e  

 

Results 

The Stimulus Response Curve is Invariant to Interstimulus Interval 

In order to determine the effect of ISI on the SR curve, data were acquired from FDI 

and ADM at six different ISIs. Representative data from a single participant is 

illustrated in figure 8. SR curves were observed to be highly reproducible within and 

between sessions. Statistical analysis revealed the parameters of the SR curve to be 

invariant of ISI; MEPmin (F5, 12 = 0.60, p = 0.70), MEPmax (F5, 12 = 1.31, p = 0.26), I50 (F5, 

12 = 1.34, p = 0.25), Slope (F5, 12 = 0.96, p = 0.44) and r
2
 (F5, 12=1.56, p=0.17).   

 

 

 

A Short Bout of 1 Hz rTMS does not Depress Corticospinal Excitability 

In order to control for the influence of frequency dependent depression in CSE on MEP 

amplitude, MEP amplitudes were compared pre and post 3 min of rTMS. Figure 9A is a 

Figure 8. Representative data from a single participant showing the effect of interstimulus 

interval on the stimulus response curve. All MEP amplitudes were normalised to Mmax. 

Figures (A) and (B) illustrate the data for FDI and ADM, respectively. A two way repeated 

measures ANOVA indicates the SR curve parameters are invariant to interstimulus interval 

for both muscles (p > 0.05). 
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representative dataset from a single participant while figure 9B depicts the grouped 

data. Statistical analysis revealed that 3 min of 1 Hz rTMS did not significantly depress 

CSE as indicated by MEP amplitude (F3,84 = 0.94, p = 0.39), nor was there a cumulative 

effect of the repetitions of the protocol on MEP amplitude (F2, 84 = 0.31, p = 0.82) or any 

interaction time point x trial number (F 3,84 = 0.97, p = 0.45).  

 

 

 

Minimum Number Required for Stimulus Response Curves 

The minimum number of stimuli needed to acquire an SR curve for FDI, ADM and BB 

is shown in figure 10. The box-plot shows the group 25 and 75 percentile (box) with 

mean (thick black line) and 1 S.D. (error bars). Across all participants, the number of 

Figure 9. Mean MEP amplitude before and after a 3 min period of 1 Hz rTMS at 120% rMT. 

All MEP amplitudes were normalised to the electrically elicited Mmax. (A) Representative 

data from 1 participant showing it is possible to reduce MEP amplitude although this effect 

is neither robust nor consistent. (B) Group data showing the lack of effect of 3 minutes of 

rTMS on MEP amplitude (filled circles, open circles and triangles represent the first, second 

and third repeats, respectively) 
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stimuli needed to produce an SR curve was 61 ± 18 (FDI), 60 ± 16 (ADM), and 59 ± 16 

(BB). A 1w-ANOVA comparing the minimum number of stimuli between muscles 

revealed that there was no significant difference between muscles  

(F2,108 = 0.01, p = 0.99). In all cases the correlation was either strong or very strong, 

indicating very good reliability. These results are summarised in Table 1. 

 

 

 

 

 

 

 

 

 

Figure 10. Group results for the minimum number of stimuli needed when acquiring SR 

curves for first dorsal interosseus (FDI), abductor digiti minimi (ADM) and biceps brachii 

(BB). The box-plot shows the group 25 and 75 percentiles (box) with means (thick black 

line) and 1 S.D from the mean (error bars). On average, the number of stimuli needed to 

produce a representative SR curve was 61 ± 18 (FDI), 60 ± 16 (ADM), and 59 ± 16 (BB).   
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Muscle Parameter ICC 

FDI MEPmax 0.87 

Slope 0.76 

I50 0.90 

MEPmin 0.74 

ADM MEPmax 0.91 

Slope 0.90 

I50 0.87 

MEPmin 0.85 

BB MEPmax 0.79 

Slope 0.88 

I50 0.72 

MEPmin 0.83 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Intraclass correlation coefficients describing the test-retest reliability of the 

parameters of three stimulus response curves generated with the minimum number of stimuli 

in a single session in first dorsal interosseus (FDI), abductor digiti minimi (ADM) and bicep 

brachii (BB). In all cases the correlation ranges from strong to very strong, indicating very 

good reliability. 
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Discussion 

The present study demonstrates it is feasible to acquire a reliable SR curves in less than 

2 minutes. This was made possible by reducing the ISI and determining the minimum 

number of stimuli required to acquire an SR curve. To determine the influence of ISI on 

SR curve acquisition I tested the hypothesis that CSE would be depressed with shorter 

ISIs, as evidenced by an increased I50 and decreased slope, and a lower plateau (i.e. 

decreased MEPmax). This hypothesis was not supported by the data, indicating that SR 

curves are invariant to stimuli delivered at or slower than 1.4 s ISI. Due to the 

well-known depressive effect of 1 Hz rTMS on CSE, I also tested the hypothesis that a 

short bout (3 min) of 1 Hz rTMS would decrease MEP amplitude. This hypothesis was 

also not supported by the data, suggesting that low-frequency rTMS requires more than 

3 min to depress CSE. Finally, I aimed to determine the minimum number of stimuli 

required for an SR curve. Due to the greater variability of proximal muscles compared 

with distal muscles (Kiers et al., 1993), I hypothesised that SR curves acquired from 

proximal muscles would require more stimuli. All muscles tested in the present study 

required approximately 60 stimuli to produce a curve and there were no significant 

differences found between muscles. The present study demonstrates that it is possible to 

acquire reliable SR curves with on average 76 stimuli (gross mean + 1 S.D) and that 

these stimuli can be delivered using an ISI equal to or greater than 1.4 s.  

 

How Fast can one Stimulate? 

All participants tolerated the rTMS protocol well and there were no complications at 

any of the stimulation frequencies. However, during pilot testing participants frequently 

reported difficulty maintaining attention when SR curves were acquired using 5 s ISI. 
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Accordingly, to avoid increased MEP variability as a result of CSE arising from 

changes in attention (Rosenkranz & Rothwell, 2006; Rosenkranz & Rothwell, 2004) 

and/or drowsiness (Andersen et al., 2008), I opted to use a maximum ISI of 4 s. In 

addition, participants in our pilot testing reported stimuli delivered at 1 and 1.2 s ISI to 

be uncomfortable, with some participants reporting an increase in anxiety, which has 

previously been shown to increase CSE (Greenberg et al., 2000). For these reasons, the 

minimum ISI in the present study was capped at 1.4 s. 

 

The relationship between ISI and MEP amplitude is well documented, with 1 Hz rTMS 

demonstrated to reduce CSE (Chen et al., 1997; Tergau et al., 1997; Muellbacher et al., 

2000; Fitzgerald et al., 2002). In contrast, when stimuli are delivered at an ISI of less 

than 0.2 s, TMS has been shown to increase CSE (Pascual-Leone et al., 1994; Tergau et 

al., 1997). These studies typically involve long trains of stimuli requiring several 

minutes of constant stimulation at intensities above rMT. For example, Chen et al., 

(1997) demonstrated that 15 minutes of 1 Hz rTMS depressed the amplitude of MEPs 

by approximately 20% for 15 minutes after stimulation was ceased. As our interest was 

reducing SR curve acquisition time, I investigated how the motor cortex would respond 

to 3 minutes of 1 Hz rTMS at 120 %rMT. Our results are consistent with those of 

Maeda et al., (2000), who report being unable to evoke a robust and significant 

depression of CSE following 240 stimuli delivered at 120 %rMT. They attributed their 

result to the relatively small number of stimuli and suggested that, in order to combat 

the inter-individual variability and evoke a consistent depression of CSE, it may be 

necessary to administer in excess of 1,600 stimuli at suprathreshold intensities to 

significantly overcome the variability in the modulatory effects of rTMS on CSE.  
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There is a remote possibility that the test pulses delivered after each short bout of rTMS 

may have reduced or abolished the depressive effect of the rTMS. An example of such 

metaplasticity has been observed by Huang et al. (2010), who used theta-burst 

stimulation (TBS) to abolish corticospinal excitability by presenting an inhibitory TBS 

paradigm one minute after an excitatory TBS paradigm. It is possible that the test pulses 

used to assess corticospinal excitability following each 3 min bout of rTMS similarly 

induced metaplasticity. Whilst I cannot exclude this possibility, I believe a similar effect 

is unlikely because several other studies have used similar test TMS pulses following 

rTMS and have shown changes in corticospinal excitability (Chen et al., 1997; 

Fitzgerald et al., 2002; Maeda et al., 2000). However, in each of these cases, the number 

of stimuli and length of exposure to rTMS was much greater than that used in the 

present study. 

 

The lack of effect of stimulation frequency on the parameters of the SR curve could be 

attributed to the low number of stimuli involved in SR curve acquisition and/ or the 

nature of stimulation during SR curve acquisition. When stimulation intensity is 

randomised, both sub- and suprathreshold stimuli are delivered to the motor cortex. This 

contrasts with stimuli designed to inhibit cortical drive, which are delivered as long 

trains of suprathreshold stimuli, typically in excess of 800 stimuli (Chen et al., 1997; 

Tergau et al., 1997; Muellbacher et al., 2000; Pascual-Leone et al., 1994; Fitzgerald et 

al., 2002; Maeda et al., 2000), which far exceed the number of stimuli required to 

construct the SR curve. As a result, it is very unlikely that stimuli delivered in the 

manner proposed in the present study to obtain an SR curve would depress CSE.  



 

Chapter IV – Rapid acquisition of the TMS SR curve 

 

86 | P a g e  

 

 

Minimum Number of Stimuli Required for the Stimulus Response Curve 

Our data suggest that as few as 32 but as many as 96 MEPs are required to produce an 

SR curve. It is interesting to note that there is considerable overlap in the minimum 

number of stimuli between the proximal and distal muscles assessed here. This 

surprising result suggests that the expected proximal-distal variance in MEP amplitude 

variability does not have an effect on the number of stimuli required to acquire an SR 

curve. Importantly, SR curves generated with the reduced number of stimuli were found 

to be highly reproducible within a single session, with the ICC across all parameters and 

muscles ranging from a strong to very strong correlation. This result suggests that 

rapidly acquired SR curves are a reliable means of assessing CSE. 

 

Benefits of Reduced Acquisition Time 

The present study demonstrates that it is feasible to significantly reduce the time 

required to acquire the SR curve. By reducing acquisition time, the temporal resolution 

of this method is increased such that changes in CSE following motor learning and/or 

rehabilitation may be more accurately determined. A second benefit to reduced 

acquisition time is that attention moderated variations in MEP amplitude (Kamke et al., 

2012) are diminished. Finally, our demonstration that SR curves can be acquired in less 

than two minutes means that the technique becomes much more suitable for use in 

elderly and patients populations where, at present, attention deficits limit the use of 

TMS.  
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Is it possible to further reduce the acquisition time of SR curves? Yes,  I would suggest 

it is possible to further reduce the acquisition time of SR curves. Any further reductions 

in ISI are not the way to proceed as our participants reported SR curves acquired using 

ISIs less than 1.4 s ISI anxiety inducing, and anxiety has been shown to raise 

(Greenberg et al., 2000). Rather, to further reduce the acquisition time of SR curves 

without skewing the curve one needs to reduce the variability within MEPs. The sources 

intra-individual variability within MEPs are well documented, with factors such as coil 

position and orientation (Ellaway et al., 1998), varying desynchronisation of the 

efferent volley (Magistris et al., 1998), stimulation frequency (Maeda et al., 2000), 

stimulation intensity (Fitzgerald et al., 2002) and subthreshold activation of 

corticospinal neurons (Wassermann, 2002), all known to contribute. In order to 

minimise the influence of this variability participants are commonly asked to maintain a 

low level of muscle activation (e.g. 5-10% maximum voluntary contraction) (Rösler, 

2001; Wassermann et al., 1996b). Holding a low level precontraction in the muscle of 

interest has been demonstrated reduce the relative variability and facilitate in MEP 

amplitudes without saturating the response (Carroll et al., 2001; Rösler, 2001; Hess et 

al., 1987). Therefore, one could postulate that the minimum number of stimuli required 

for an SR curve could be further reduced if SR curves are acquired during a stable 

precontraction in the muscle of interest,  however further work is warranted to 

experimentally valid this hypothesis.  

 

Conclusions and Recommendations 

In summary, I have demonstrated the feasibility of acquiring stimulus response curves 

in less than 2 min. The present study demonstrated that it is possible to construct an SR 
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curve with, on average, 76 stimuli (gross mean + 1 S.D), that these stimuli can be 

delivered using an ISI less than or equal to 1.4 s without affecting the acquisition of SR 

curves and that the resulting curves are a reliable means of assessing corticospinal 

excitability. 
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Chapter V – Learning Induced Plasticity in 

Proximal and Distal Muscles 
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Abstract 

Distal muscles have larger cortical representation in the primary motor cortex and more 

corticospinal projections from the primary motor cortex compared with proximal 

muscles. This increased representation and larger projection could suggest a greater 

potential for learning induced changes in CSE for distal muscles compared to proximal 

muscles. The aim of this study was to investigate changes in CSE following visuomotor 

learning in proximal and distal muscles. 

 

In 16 healthy participants, I acquired three stimulus response (SR) curves for first dorsal 

interosseus (FDI) and biceps brachii (BB). All participants were assessed before and 

after an isometric visuomotor tracking task involving either index finger abduction or 

elbow flexion. Motor learning performance was quantified by the root-mean-square 

tracking error across five different waveforms.  

 

Across all participants, tracking error decreased by 23 ± 17% for FDI and 28 ± 17% for 

BB indicating the task was learnt (p<0.05) with no significant difference between 

muscles (p>0.05). CSE changes were variable between muscles; 4 participants exhibited 

increased CSE in FDI and only 2 for BB respectively.  

 

There were a greater number of participants in whom CSE increased for the distal 

muscle whilst motor learning performance was not significantly different between 

muscles. It is important to note that so few participants exhibited increased CSE 

following motor learning suggesting individual differences should be better reported in 
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studies of motor learning involving TMS. In addition, the inter-individual differences in 

the changes in CSE should be further examined. 
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Introduction 

The neural pathways involved in voluntary motor control are constantly changing 

according to the demand from our lives. This capacity for change termed neuroplasticity 

can be defined as “the ability of the CNS to respond to intrinsic and extrinsic stimuli by 

reorganising its structure, function and connections” (Cramer et al., 2011) and it 

underlies our ability to adapt existing behaviours and/ or acquire novel skills through 

practice. Examples of skills shown to induce neuroplastic change include reading 

Braille (Pascual-Leone & Torres, 1993), playing a musical instrument (Schlaug et al., 

1995) and ballet dancing (Nielsen et al., 1993). Experimental studies of motor learning 

have shown that it is possible to induce neuroplastic changes after a single session of 

training on a ballistic learning task (Muellbacher et al., 2001), a sequence learning task 

(Pascual - Leone et al., 1995) and a visuomotor learning task (Perez et al., 2004) 

respectively. Neuroplasticity induced following learning is expressed as a change in the 

efficacy of synaptic transmission in the corticospinal tract for the muscles involved in 

the task. This change in synaptic efficacy is often referred to as a change in 

corticospinal excitability (CSE). 

 

It is unclear whether learning induced changes in CSE are influenced by the anatomical 

and physiological differences between the regions of the primary motor cortex 

controlling proximal and distal muscles of the upper limb. Proximal muscle 

representations are known to have fewer corticospinal projections (Palmer & Ashby, 

1992) and these projections arise from a smaller region of the motor cortex (Penfield & 

Boldrey, 1937; Wassermann et al., 1992). Comparing learning induced changes in CSE 

in the proximal and distal representations of the upper limb might permit us to speculate 
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about the contributions of the different regions of the motor cortex during rehabilitation 

of whole limb movements such as reach to grasp. To date this subject has received little 

examination, only Krutky & Perreault (2007) have attempted to address this issue. They 

trained participants elbow, wrist and finger on a ballistic motor learning task and report 

that induced changes were greatest in distal muscles compared with proximal muscles.    

 

The aim of the present study was to compare learning induced changes in CSE for the 

neural pathways controlling proximal and distal muscles of the upper limb in context of 

visuomotor learning. I tested the hypothesis that there would be a greater change in CSE 

for the neural pathways of finger compared with the BB as indicated by increases in 

area under the curve (AuC), MEPmax, slope and a decrease in I50. To test this hypothesis 

I had participants complete two sessions on a visuomotor tracking task, one on their BB 

the other on the FDI. CSE was assessed using the TMS SR curve.    
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Methods 

Participants 

Healthy participants with a mean age of 22 ± 5 years were recruited for the study (n=17, 

59% female, 14 right hand dominant, sample of convenience). All participants were 

screened for contraindications to TMS using a modified version of TMS adult safety 

screen (Keel et al., 2001). All participants gave informed written consent to participate 

in the study. Participants were excluded from the study if their rMT was greater than 

70% maximal stimulator output (MSO). The study protocol was approved by the 

University of Birmingham Science, Technology, Engineering and Mathematics ethics 

committee (ERN_11-0444) and all experiments were conducted in accordance with the 

Declaration of Helsinki. Participants hand preference was determined using the 

Edinburgh Handedness Inventory (Oldfield, 1971).  

 

Electromyography 

Surface electrodes (Blue Sensor N, Ambu
®
, Denmark) were placed in a bipolar montage 

over FDI and BB muscle in the dominant limb. The electromyography signals were 

band-pass filtered (10 - 1 kHz), sampled at 4 kHz and amplified using custom 

amplifiers. All data were stored on a computer for offline analysis.  

 

Transcranial Magnetic Stimulation 

MEPs were elicited with a biphasic TMS pulse (Magstim Rapid
2
, The Magstim 

Company, Dyfed, UK) from a custom-made 90mm ‘figure of eight’ coil (batwing 

design; type no. 15411, Magstim company, Dyfed, UK). Magnetic stimuli were 

delivered over the cortical area that evoked maximal MEPs in the FDI or BB, referred to 
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as the ‘hot spot’. The coil was positioned over the respective hot spot with the handle 

pointing backwards at an angle of 45° from the midline (Brasil - Neto et al., 1992) 

inducing a posterior-anterior current (Kammer et al., 2001). Coil position and 

orientation were monitored in real time using frameless stereotaxy (Brainsight, Rogue 

Research Inc).  

 

Stimulus Response Curves 

SR curves were acquired using a computer-controlled semi-automated procedure (for 

detailed explanation see Mathias et al., 2014). Briefly, SR curves were acquired using 

varying stimulation intensities determined pseudorandomly on a pulse-by-pulse basis 

between 80 %rMT until 100 %MSO. All curves were acquired in less than 2 min. rMT 

was defined as the minimum stimulation intensity required to elicit MEPs of greater 

than or equal to 50 µV on 5 out of 10 occasions in the relaxed muscle (Rossini et al., 

1991). MEP amplitudes were plotted against stimulation intensity and the relationship 

modelled using a four-parameter Boltzmann sigmoid function:  

 

 

 

where MEPmin and MEPmax are the minimum and maximum asymptotes of the function, 

I50 is the %MSO at which the MEP is mid-way between MEPmin and MEPmax and S is 

the steepness of the relationship at I50.  
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The visuomotor training task used in the present study was based upon a task previously 

shown to increase CSE (McAllister et al., 2011; Perez et al., 2004; Lundbye-Jensen et 

al., 2005). The task involved tracking a target waveform with a cursor shown on the 

computer screen through isometric of varying degrees of force. At the beginning of the 

task participants were verbally instructed how to complete the task, participants were 

not allowed to practice the task prior to commencing the training.  

 

In each session participants performed five blocks of training, each block lasting 4 min 

with 2 min rest between blocks to minimise fatigue. Each training block consisted of 

tracking twenty waveforms, each lasting twelve seconds. To minimise the influence of 

fatigue the waveform amplitudes were normalised to 20 %MVC for each participant, 

furthermore, the first and last second of each waveform returned 0 %MVC. The 

participants performance on the task was assessed prior to and post training using 

separate blocks of five assessment waveforms.   

 

For studies of involving FDI, participants were seated in a comfortable chair with the 

hand outstretched approximately 20 cm in front of them and the distal inter-phalangeal 

joint placed against the force transducer (NL 62 - 5 kg, Digitimer Ltd, Welwyn Garden 

City, UK) and secured in place with Velcro. A drawing of the experimental set-up has 

been included as figure 11 for clarity. For studies involving BB, participants were 

seated in a comfortable chair with their forearm supported in a custom rig. Participants 

were instructed to keep their wrist in the neutral position during the learning. A strap 

was attached over the wrist to secure the arm in place. Force was recorded using a 
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custom made torsion bar. The force signal was high pass filtered at 30 Hz, amplified 

x1000, digitised at 4 kHz and stored on a computer of offline analysis. 

 

 

 

Online performance feedback in the form of absolute error was given to control for 

fluctuations in attention during the learning. Error feedback was given in the form of a 

bar chart displayed on the computer screen after each waveform. The bar chart was 

updated so after each waveform so the participant saw their improvement in 

performance across each training block for each waveform.         

 

Protocol 

Participants completed two sessions examining learning induced changes in CSE in 

proximal and distal muscles. Participants were randomly allocated to either proximal 

muscle (Biceps Brachii) or FDI in the first session. At the beginning of each session, I 

determined participant’s MVC and rMT for muscle studied. To examine 

learning-induced changes in CSE I acquired three TMS SR curves prior to and post 

Figure 11. Experimental setup for visuomotor learning in Biceps Brachii and First Dorsal 

Interosseous. Participants were instructed to track the waveforms (white line in centre 

section) using isometric of the relevant muscles (track shown as red line). The training 

paradigm consisted of 5 assessment waveforms delivered either side of 5 blocks of training. 

Each training block consisted of 20 waveforms delivered in a random order. Performance 

was quantified as the absolute error between the target and actual waveform. T hanks to Mark 

van de Ruit for the figure. 
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training in all participants. To control for the influence of fatigue I acquired MVC after 

training as well. Participants completed the protocol on the other muscle no less than 

seven days after their first session.      

 

 

Data Analysis 

In order to assess learning during the visuomotor tracking task I used RMS error 

between the actual and target force. RMS error is reported as the sum of RMS error 

between target and actual waveforms across all points of each waveform.  A lower RMS 

error in the post training assessment was used as a marker of learning (Perez et al., 

2004; Cirillo et al., 2011; Lundbye-Jensen et al., 2005).  

 

The MEP amplitude was defined as the peak-to-peak amplitude in the recorded EMG 

response between 20-60 ms after the presentation of the magnetic stimulus. To account 

for variability in background muscle activation, individual MEPs were excluded from 

the construction of SR curves if their respective RMS EMG in the 100 ms prior to 

stimulation was greater than twice the mean RMS for that dataset. SR curves were 

excluded from the statistical analysis if r
2
 was less than 0.7 or the upper plateau of the 

curve was not visible. The dependent variables used in the statistical analysis of 

learning induced changes in CSE were AuC, MEPmax, I50 and slope. MEP amplitudes 

were normalised to MaxMEP. To acquire MaxMEP I delivered 10 stimuli at 100 

%MSO to the hotspot and then averaged the responses. 

 

Statistical Analysis 
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Statistical testing was conducted with NCSS 2007 v07.1.4 (Hintze, 2007) and all tests 

were considered significant at an alpha of 0.05. Results are reported as mean ± S.D. 

 

To assess examine visuomotor learning I used a 2w-rmANOVA with factors muscle 

(proximal, distal) x time (pre training, post training) on the RMS error in the baseline 

and post assessment sections of the visuomotor learning. To assess learning induced 

changes in CSE I used a 2w-rmANOVA with factors muscle (proximal, distal) x 

time (pre training, post training) on AuC, MEPmax, I50 and slope following learning. To 

control for the effect of fatigue I used a 2w-rmANOVA with factors muscle 

(proximal, distal) x time (pre training, post training) on MVC. Intra-individual 

variability in learning induced changes in CSE was assessed using intraclass correlation 

coefficients (ICC) on the change in AuC, MEPmax, I50 and slope between muscles.  
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Results 

Motor Learning 

In order to determine whether motor learning had occurred performance data were 

collected from the FDI and BB of 16 participants. A representative example of the 

improvement in visuomotor tracking has been included below as figure 12A. Statistical 

analysis revealed that performance significantly improved (i.e. mean RMS error 

decreased) as a result of training (F1,15 = 61.21, p =<0.001) illustrated in figure 12B. 

However there was no effect for muscle (F1,15 = 3.32, p =0.09) or interaction 

time x muscle (F1,15 = 0.68, p =0.42). 

 

 

 

 

Figure 12. The improvement in visuomotor tracking in proximal and distal muscles. A) A 

representative example of the improvement in visuomotor tracking from the FDI of a single 

participant. The solid grey line shows the target waveform the participant was asked to track, 

the dotted line shows the participants performance prior to training and the solid black line 

shows the performance after training. B) Group data showing the improvement in 

performance in BB and FDI of 16 participants. Filled circles represent the dominant hand 

and open circles the non-dominant hand. Performance significantly improved after training 

(p = <0.001) however there was no significant differences in performance improvements 

between muscles (p =0.09). 

*  
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Learning Induced Changes in Corticospinal Excitability 

In order to determine the plastic effect of motor learning on CSE SR curves were 

acquired prior to and post training from the BB and FDI of 16 participants. Auc was 

used as the primary marker of neuroplastic change, while changes in MEPmax, I50, slope 

and AuC served as secondary markers of changes in CSE. Group AuC is represented in 

figure 13. The expected increase in CSE was observed to be variable. Statistical analysis 

of the grouped data showed a significant effect for muscle on AuC 

(F1,15 = 8.59, p = 0.01). There was no significant effect for time nor an interaction effect 

for any of the dependent variables assessed here. The results of the 2w-rmANOVA are 

summarised in table 3.    

 

   Time Muscle Time x Muscle 

AuC F1,15 = 

0.74 
p = 0.40 F1,15 = 

8.59 
p = 0.01* F1,15 = 

0.70 
p = 0.41 

MEPmax F1,15 = 

0.75 
p = 0.40 F1,15 = 

2.47 
p = 0.14 F1,15 = 

0.82 
p = 0.38 

I50 F1,15 = 

0.18 
p = 0.68 F1,15 = 

22.3 
p = <0.001** F1,15 = 

0.01 
p = 0.93 

Slope F1,15 = 

0.31 
p = 0.59 F1,15 = 3.9 p = 0.067 F1,15 = 

0.69 
p = 0.42 

 

Learning induced changes in CSE were observed to variable, variability was greatest in 

BB. Our data suggest there is an internal inconsistency in the corticospinal response to 

visuomotor training of the proximal and distal muscles of the same limb - an increase in 

CSE following training on BB was not indicative of an increase for FDI following FDI 

training and vice versa. SR curves for BB were observed to be more variable compared 

with FDI. This variability is illustrated by the larger S.D. for BB in figure 19. There 

Table 3. Summary of statistically analysis for learning induced changes in corticospinal 

excitability for FDI and BB. * denotes p = <0.05 ** denotes p = <0.01.  
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were no significant correlations between the changes in any of the parameters assessed 

in either muscle.  

 

 

 

 

It is logical to ask whether this internal inconsistency in the corticospinal response to 

visuomotor learning stems from increased variability in our measure of CSE for 

proximal muscles. Furthermore, ICC analysis on the dependent variables prior to 

learning in BB points towards a high degree of reliability in our measure of CSE 

[MEPmax (ICC = 0.95, p = 0.08), I50 (ICC = 0.84, p = 0.056), slope (ICC = 0.641, p = 

0.06) and AuC (ICC = 0.972, p = 0.13).

Figure 13. The effect of visuomotor learning on area under the Stimulus Response Curve. 

Statistical analysis showed a significant effect for muscle on AuC (F1,15 = 8.59, p = 0.01).  

MEP amplitudes are normalised to the corresponding averaged max MEP.  
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Figure 14. The effect of visuomotor learning on corticospinal excitability. Closed circles represent baseline measures and open post tra ining. Results 

are reported as mean ± 1S.D. Top row represents data from FDI, the bottom BB respectively. A) represents MEP max B) represents I50 C) represents 

slope and D) represents area under the curve.  
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In order to control for the effect of fatigue on CSE I recorded MVC from FDI and BB 

prior to and post training in all 16 participants. Group mean plus individual MVC prior 

to and after training is illustrated in figure 15. MVC did not decrease as a result of 

learning [FDI (pre training 34.6 ± 9.4, post training 36.4 ± 9.0), BB (pre training 

222.6 ± 62.9, post training 226.3 ± 58.9)]. Statistical analysis revealed that no 

significant difference in MVC as a result of training (F2, 31 = 0.74, p = 0.72).It is logical 

to ask whether any of the factors known to modulate plastic change influenced the 

results presented here. Using the data within the TMS adult safety screen, logistical 

regression analysis was used to examine the effect of caffeine consumption, gender and 

sleep deprivation on the plastic changes associated with visuomotor learning. The 

results are summarised below in table 4. 

 

Factor B SE Wald Sig. Exp (B) 

Gender 0.219 .415 .486 .459 .89 

Caffeine .109 0.241 .205 .65 1.12 

Sleep deprived .241 .315 .588 .443 .786 

Figure 15. Changes in maximal voluntary contraction following visuomotor learning. Grey 

lines represent data from each participant and black lines represent group data. A) Represent 

data from BB and B) represents. Statistical analysis revealed there was no change in 

maximal voluntary contraction after visuomotor training (p = 0.72).   

Table 4. Logistic regression analysis of factors which may affect plastic changes in proximal 

and distal muscles. 

BB FDI 
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Discussion 

This study set out to investigate whether proximal muscles have the same capacity for 

learning induced increases in CSE as distal muscles of the upper limb. To that end, SR 

curves were acquired from BB and FDI prior to and post training in 16 healthy 

participants. Changes in AuC, MEPmax, slope, and I50 were used as markers of use 

dependent plasticity. I tested the hypothesis that there would be a greater change in CSE 

for the neural pathways of finger compared with the BB as indicated by increases in 

AuC, MEPmax, slope, and a decrease in I50.Our data do not support this hypothesis, I 

observed no statistically significant changes in any parameters assessed here for either 

muscle as a result of training. The present study highlights an important point – a single 

session of visuomotor tracking, as described in the present study, is not a reliable means 

of modulating CSE in all participants, this variability is illustrated in figure 14.    

 

The present study specifically compares motor skill learning induced changes in CSE in 

both proximal and distal muscles. Previous studies have shown that learning induced 

changes in CSE are graded with the largest change in distal muscles of the upper limb 

following training on a ballistic motor learning task (Krutky & Perreault, 2007). 

However, the present study I observed no such gradient. Most notably I observed a 

degree of variability the corticospinal response to motor learning, illustrated in figure 

14. This variability is underreported in the field and certainly warrants further 

examination.    

 

In the present study I observed greater variability for learning induced changes in CSE 

for BB, it is likely the differences between the regions of the motor cortex controlling 
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proximal and distal muscles of the upper limb contributed to this variability. There are 

three key differences between the regions of the cortex given over to the control of 

distal and proximal muscles. First, large amounts of the motor cortex are given over to 

control over distal muscles, whereas relatively small amounts are devoted to control of 

proximal muscles (Penfield & Boldrey, 1937; Wassermann et al., 1992). Second, the 

corticospinal projection to distal muscles of the upper limb is much greater compared 

with more proximal muscles (Palmer & Ashby, 1992) and third, these corticospinal 

projections are known to play a greater role in control of the hand compared with the 

more proximal muscles (Turton & Lemon, 1999). Different regions of the motor cortex 

may have varying capacity for learning induced neuroplasticity, studies involving TMS 

induced changes in CSE (Martin et al., 2006) and use-dependent changes in 

interhemispheric inhibition (Sohn et al., 2003) were shown to be more effective in distal 

muscles of the upper limb compared with proximal muscles.   

 

It is important to state I am not suggesting that learning induced modulation of CSE do 

not occur in the corticospinal structures which control of proximal muscles. In the 

present study I have shown an improvement in performance following a single measure 

of training with BB, previous research has shown this to be a good marker of motor 

learning (Perez et al., 2004; Lundbye-Jensen et al., 2005; McAllister et al., 2011). 

Previous studies have shown that prolonged skilled use of the proximal musculature in a 

sporting context leads to an expansion of their representation on the motor cortex (Tyè 

et al., 2005). Experimental studies of motor learning have shown that the proximal 

musculature of the upper limb is capable of neuroplastic change during reach to grasp 

movements in a force field (Shadmehr & Mussa - Ivaldi, 1994) following a similar dose 
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of training to the present study. The variable findings in the present study could be 

explained by the possibility that changes in CSE following visuomotor learning with 

different muscles occur with different time, alternatively that learning induced changes 

in CSE for proximal muscles are not readily observable using TMS.  

 

Learning induced neuroplasticity may occur in other cortical regions and neural 

pathways when proximal muscles are trained. The prefrontal cortex has been suggested 

to play an important role in the acquisition of a novel motor skill (Shadmehr & 

Holcomb, 1997). Additionally, there are numerous indirect and ipsilateral neural 

pathways involved in the control of proximal muscles. Neural pathways which have the 

potential to play a role in learning induced changes in proximal muscles include small 

diameter corticospinal pathway (Colebatch et al., 1990), corticobulbospinal pathway 

(Colebatch et al., 1990) and corticoreticulospinal pathway (Ziemann et al., 1999) 

respectively. Had any learning induced plasticity occurred in these pathways it would 

not have been assessed in the present study. These pathways are involved in generating 

the response to ipsilateral TMS, consequently there may be some value in assessing the 

response to ipsilateral TMS after motor learning.    

 

I acknowledge the possibility that brief exposure to the visuomotor learning paradigm, 

28 min in total, used in the present study may have been insufficient to modulate CSE 

for the neural structures and pathways controlling BB compared with those control FDI 

respectively. In short, there may be different dose response characteristic between FDI 

and BB for learning induced modulation of CSE. Previous research has shown that BB 

is capable of neuroplastic change following continued exposure to a paradigm similar to 
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that used in the present study (Lundbye-Jensen et al., 2005), further research is 

warranted to compare the dose response characteristics for distal and proximal muscles 

of the upper limb.    

 

What is interesting, yet poorly understood, is why CSE decreased for some participants 

following a protocol designed to raise it. Several factors including age, gender, attention 

and genetics are known to influence synaptic plasticity (for review see Ridding & 

Ziemann, 2010). In order to minimise the influence of these factors I used a randomly 

selected sample of convenience, selected from a narrow age range and used only healthy 

participants. In recent study of TMS induced changes in CSE Hamada et al., (2013) 

suggest an alternative explanation for the variability in CSE changes. Hamada et al., 

suggest the variability is due, at least in part, to different interneurone networks 

stimulated at different times of the day in different people (Hamada et al., 2013). The 

authors report a significant correlation between induced changes in CSE and MEP 

latency following a TMS pulse which induces an anterior-posterior current across the 

central sulcus. This correlation accounted for approximately 50% of the variability in 

the response. Whether the same postulation, MEP latencies following TMS pulses, 

which induce an anterior-posterior current across the central sulcus, could predict 

learning induced changes in CSE is certainly an interesting proposition and warrants 

further examination. However, I also acknowledge the possibility that any changes in 

CSE were within the measurement error of the SR curve acquisition method. 

 

Fluctuations in participants’ attention within and between sessions has to be considered 

as a potential confound for this experiment. Attention has previously been shown to 
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modulate MEP amplitudes (Ellaway et al., 1998; Funase et al., 1999) and the magnitude 

of PAS induced changes in CSE (Rosenkranz & Rothwell, 2006; Stefan et al., 2004). In 

the present study SR curves were acquired in less than two minutes, minimising the 

opportunity for fluctuations in attention to influence the SR curve. To control for 

attention mediated fluctuations in CSE the participants were provided real-time 

feedback of coil position and orientation and instructed to keep the coil in the correct 

position and orientation during SR curve acquisition. To control for fluctuations in 

attention during the motor learning task participants were provided with online feedback 

of tracking error in the respective waveforms.    

 

Conclusions 

In summary the findings presented here suggest that studies assuming that CSE is 

modulated following a single session of visuomotor learning may be misleading and 

further work to examine the dose response relationship between motor learning changes 

in CSE is warranted. Additionally, I observed no relationship in CSE modulation 

following learning in the BB and FDI in the same limb – an increase in CSE for FDI 

was not indicative of an increase for BB and vice versa. The mechanism behind this 

asymmetrical response remains to be determined.
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Chapter VI – Hand Preference and Learning 

induced Plasticity 
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Abstract 

Learning-induced changes in corticospinal excitability (CSE) are variable both between 

and within participants. However, apart from Muellbacher et al., (Exp Brain Res. 136, 4 

2001) who demonstrated that changes in CSE following ballistic motor learning are 

variable, the topic has received little rigorous examination. The aim of this study was to 

evaluate the inter- and intra-individual variability in learning-induced changes in CSE. 

 

I assessed CSE using the transcranial magnetic stimulation (TMS) stimulus-response 

(SR) curves. SR curves were acquired from first dorsal interosseus in the dominant and 

non-dominant hands of 21 healthy participants before and after training. In this study, 

training involved a visuomotor tracking task that has previously been shown to induce 

changes in CSE (Perez et al., Exp Brain Res. 159, 2 2004). The participants’ hands were 

tested in a random order and the sessions were separated by 7 days. A reduction in 

tracking error served as a marker of learning. 

 

Tracking error significantly decreased in all participants and in both hands as a result of 

learning (p<0.05). However, learning-induced changes in CSE were observed to be 

variable. CSE was seen to increase, remain the same or decrease in 50%, 30% and 20%, 

of the participants respectively. Additionally, there were no significant differences in 

the SR curve parameters between the dominant and non-dominant hands after training 

(p>0.05 for all parameters).  

 

This study highlights an important consideration for future studies of motor learning; 

CSE does not increase for everyone following visuomotor tracking. There is 
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considerable variability in the magnitude and direction of learning induced changes in 

CSE and these changes are independent of hand dominance.  
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Introduction 

During the acquisition of a novel motor skill, playing the piano for example, there is an 

increase in corticospinal excitability (CSE) for muscles involved in the task (Pascual - 

Leone et al., 1995; Nudo et al., 1996; Classen et al., 1998; Muellbacher et al., 2001; 

Perez et al., 2004; Lundbye-Jensen et al., 2005). This effect is typically reported at a 

group level, there is a paucity of evidence regarding the variability in CSE modulation 

following motor learning at the level of the individual. This is an important factor to 

consider as it has implications for therapeutic interventions in neurorehabilitation.      

 

To the best of my knowledge there has been little systematic study into the variability in 

the neuroplastic response to motor learning. Muellbacher et al., (2001) observed no 

increase in MEP amplitude 30 min after training on a ballistic motor learning task in 4 

out of 10 participants.  

 

Importantly, non-invasive brain stimulation (NIBS) techniques such as theta burst 

transcranial magnetic stimulation (TBS) (Huang et al., 2005) and paired associative 

stimulation (PAS) (Stefan et al., 2000) are known to modulate CSE, this modulations is 

said to utilise similar mechanisms to motor learning induce modulation of CSE, namely 

long-term potentiation (Cooke & Bliss, 2006). Changes in CSE following NIBS is used 

as a marker of neuroplasticity, akin to learning induced neuroplasticity, however, not 

everyone expresses increases in CSE following TBS or PAS respectively. Reports 

estimate that 50 - 62.5% of people express increases in CSE following TBS (McAllister 

et al., 2013; Martin et al., 2006) and 52 - 75% following PAS (Vallence et al., 2013; 

Müller-Dahlhaus et al., 2008) respectively. If learning induced and NIBS changes in 
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CSE do share a common mechanism it would be reasonable to expect similar levels of 

variability in learning induced changes in CSE.         

 

The evidence examining the significance of hand preference on neuroplasticity is 

equivocal. At an anatomical level, studies involving MEG and magnetic resonance 

imaging have shown the cortical representation of distal hand muscle in the dominant 

hand are greater compared to the non-dominant hand (Guye et al., 2003; Volkmann et 

al., 1998). Studies involving transcranial magnetic stimulation (TMS) have shown 

asymmetries in resting motor threshold (rMT) and intracortical inhibition between 

hemispheres (Triggs et al., 1999; Civardi et al., 2000). However, these asymmetries do 

not translate to a functional level. The majority of studies found no significant 

differences in learning
-
induced and NIBS- induced changes in CSE between 

hemispheres (Ridding & Flavel, 2006; Garry et al., 2004; Gallasch et al., 2009). That 

said, Cirillo et al., (2010) found a 21% greater facilitation of motor evoked potentials 

(MEP) following ballistic motor learning in the non-dominant hand despite a 40% 

greater increase in performance for the dominant hand. As a result, further study is 

warranted to examine the significance of hand preference on learning-induced changes 

in CSE.  

 

The aim of the present study was to investigate any inter- and intra-individual 

variability in learning-induced changes in CSE. I sought to determine the percentage of 

people who exhibit increased CSE after visuomotor learning. Secondly, I hypothesised 

that learning induced changes in CSE would be invariant to hand preferences. 
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Methods 

Participants 

Healthy participants with a mean age of 22 ± 3 years were recruited for the study (n=21, 

60% female, 20 right hand dominant, sample of convenience). All participants were 

screened for contraindications to TMS using a modified version of TMS adult safety 

screen (Keel et al., 2001). All participants gave informed written consent to participate 

in the study. Participants were excluded from the study if resting motor threshold (rMT) 

was greater than 70% maximal stimulator output (MSO). The study protocol was 

approved by the University of Birmingham Science, Technology, Engineering and 

Mathematics ethics committee (ERN_11-0444) and all experiments were conducted in 

accordance with the Declaration of Helsinki. Participants hand preference was 

determined using the Edinburgh Handedness Inventory (Oldfield, 1971).  

 

Experimental Protocol 

Participants completed two sessions examining the variability in changes in CSE 

following motor learning. Participants were randomly allocated to either dominant or 

non-dominant hand in the first session. At the beginning of each session, I determined 

the participant’s maximal voluntary contraction (MVC) and rMT for first dorsal 

interosseous (FDI). To examine learning-induced changes in CSE I acquired three TMS 

stimulus response (SR) curves prior to, and post training in all participants. To control 

for the effect of fatigue on the muscle maximal compound muscle action potentials 

(Mmax) were acquired prior to, and post training in all participants. Participants 

completed the protocol on their other hand no less than seven days after their first 

session.  The experimental protocol is illustrated in figure 16.      
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Electromyography 

Surface electrodes (Blue Sensor N, Ambu
®
, Denmark) were placed in a bipolar montage 

over FDI muscle. The electromyography signals were band-pass filtered (10 - 1 kHz), 

sampled at 4 kHz and amplified using custom amplifiers. All data were stored on a 

computer for offline analysis.  

 

Transcranial Magnetic Stimulation 

MEPs were elicited with a biphasic TMS pulse (Magstim Rapid
2
, The Magstim 

Company, Dyfed, UK) from a custom-made 90mm ‘figure of eight’ coil (batwing 

design; type no. 15411, Magstim company, Dyfed, UK). Magnetic stimuli were 

delivered over the cortical area that evoked maximal MEPs in the FDI, commonly 

Figure 16. Schematic representation of the experimental protocol with measures obtained 

prior to and post training. Baseline measures include assessment of maximal compound 

muscle action potentials (Mmax), maximal voluntary contraction (MVC) and resting motor 

threshold (rMT). TMS stimulus response curves were acquired as I have described 

previously (for detailed explanation see Mathias et al., 2014). Performance assessment 

consisted of tracking five unseen waveforms, example waveforms are shown in the box. 

Training was divided into five blocks which consisted of tracking 20 waveforms, each 12 

seconds long and the waveforms were presented in a random order in each block. Each 

training block was punctuated by 2 minutes of rest. Each block on the training line represents 

a waveform. Performance was assessed after training using the same waveforms in the 

performance assessment prior to training.    
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referred to as the ‘hot spot’. The coil was positioned over the hot spot with the handle 

pointing backwards at an angle of 45° from the midline (Brasil - Neto et al., 1992) 

inducing a posterior-anterior current (Kammer et al., 2001). Coil position and 

orientation were monitored in real time using frameless stereotaxy (Brainsight, Rogue 

Research Inc). For all TMS assessments the hand was fully supinated and fixed with 

Velcro to a firm board.  

 

Stimulus Response Curves 

SR curves were acquired using the rapid method I have described previously (for 

detailed explanation see Mathias et al., 2014). Briefly, SR curves were acquired using 

varying stimulation intensities determined pseudorandomly on a pulse-by-pulse basis 

between 80 %rMT until 100 %MSO. rMT was defined as the minimum stimulation 

intensity required to elicit MEPs of greater than or equal to 50 µV on five out of ten 

occasions in the relaxed muscle (Rossini et al., 1994). MEP amplitudes were plotted 

against stimulation intensity and the relationship modelled using a four-parameter 

Boltzmann sigmoid function:  

 

 

 

where MEPmin and MEPmax are the minimum and maximum asymptotes of the function; 

I50 is the %MSO at which the MEP is mid-way between MEPmin and MEPmax and S is 

the steepness of the relationship at I50.  
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Maximal Compound Muscle Action Potentials 

In order to control for the effect of fatigue on the trained muscle I recorded Mmax 

following a peripheral nerve stimulus. This response was obtained using an electrical 

stimulus (Digitimer DS7AH, Digitimer Ltd, Welwyn Garden City, UK) delivered to the 

median nerve. Mmax were determined using supramaximal stimuli. The response was 

quantified as the peak to peak amplitude between 2-10 ms after the presentation of the 

stimulus. In order to ensure valid statistical comparisons all motor evoked potentials 

were normalised to the Mmax acquired pre training. 

 

Visuomotor Training 

The visuomotor training task used in the present study was based upon a task previously 

shown to increase CSE (McAllister et al., 2011; Perez et al., 2004; Lundbye-Jensen et 

al., 2005). The participants hand was fully supinated on the board and the distal inter-

phalangeal joint placed against the force transducer (NL 62 - 5 kg, Digitimer Ltd, 

Welwyn Garden City, UK) and secured in place with Velcro. Participants were asked to 

track a target waveform with a cursor shown on the computer screen through isometric 

index finger abductions of varying degrees of force, the experimental set-up is 

illustrated below in figure 16. At the beginning of the task participants were verbally 

instructed how to complete the task, participants were not allowed to practice the task 

prior to commencing the training.  

 

In each session participants performed five blocks of training, each block lasting 4 min 

with 2 min rest between blocks to minimise fatigue. Each training block consisted of 

tracking twenty waveforms, each lasting 12 s. To further minimise the influence of 
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fatigue the waveform amplitudes were normalised to 20 %MVC for each participant, 

furthermore, the first and last second of each waveform returned 0 %MVC. The 

participant’s performance on the task was assessed prior to and post training using 

separate blocks of five assessment waveforms shown in figure 16.   

 

Online performance feedback in the form of absolute error was given to control for 

fluctuations in attention during learning. Error feedback was given in the form of a bar 

chart displayed on the computer screen after each waveform. The bar chart was updated 

after each waveform so the participant saw their performance improvement across for 

each waveform across all training blocks. Figure 22C illustrates performance feedback. 

The force signal was high pass filtered at 30 Hz, amplified x1000, digitised at 4 kHz 

and stored on a computer of offline analysis.          

 

 

 

Figure 17. The experimental set up for visuomotor learning in first dorsal interosseous. The 

participant tracked the white with isometric contractions of varying degrees of force 

(tracking shown as red line). Performance was quantified as the RMS error between the 

target and participants trace.  Thanks go to Mark van de Ruit for the figure.  
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Data Analysis 

In order to assess learning during the visuomotor tracking task I used root mean square 

(RMS) error between the actual and target force. RMS error is reported as the sum of 

RMS error between target and actual waveforms across all points of each waveform.  A 

lower RMS error in the post training assessment was used as a marker of learning 

(Perez et al., 2004; Cirillo et al., 2011; Lundbye-Jensen et al., 2005).  

 

The MEP amplitude was defined as the peak to peak amplitude in the recorded EMG 

response between 20 and 60 ms after the presentation of the magnetic stimulus. To 

account for variability in background muscle activation, individual MEPs were 

excluded from the construction of SR curves if their respective RMS EMG in the 

100 ms prior to stimulation was greater than twice the mean RMS for that dataset. SR 

curves were excluded from the statistical analysis if r
2
 was less than 0.7 or the upper 

plateau of the curve was not visible. AuC was used as primary outcome measure in the 

present study as it reliably characterises the whole SR curve (Carson et al., 2013). 

MEPmax, I50 and slope parameters were used as secondary outcome measures.  

 

Statistical Analysis 

Statistical testing was conducted with NCSS 2007 v07.1.4 (Hintze, 2007) and all tests 

were considered significant at an alpha of 0.05. Results are reported as mean ± S.D. 

 

To assess examine visuomotor learning I used a two-way repeated measure analysis of 

variance (2w-rmANOVA) with factors hand preference (left, right) × time 

(pre training, post training) on the RMS error in the baseline and post assessment 
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sections of the visuomotor learning. To assess learning induced changes in CSE a 

2w-rmANOVA with factors hand preference (left, right) × time (pre training, post 

training) was used to assess changes in AuC, MEPmax, I50 and slope following learning. 

To control for the effect of fatigue on the trained muscle I used a 2w-rmANOVA with 

factors hand preference (left, right) × time (pre training, post training) on Mmax 

amplitudes. Intra-individual variability in learning induced changes in CSE was 

assessed using intraclass correlation coefficients (ICC) on the change in AuC and 

change in the MEPmax, I50 and slope parameters of the SR curve between hands.  
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Results 

All procedures were well tolerated and no adverse events were recorded in the present 

study. Data from the non-dominant hands of 2 participants is missing as they were lost 

to follow-up after the first session, their data has been included for analysis were 

appropriated.  

 

Motor Learning 

In order to determine whether learning had occurred, data were collected from dominant 

and non-dominant FDIs of 21 participants. A representative example of the 

improvement in visuomotor tracking has been included as figure 18A. Statistical 

analysis of all data revealed a significant effect for time on RMS error (F1,19 = 31.93, 

p = <0.001) illustrated in figure 18B. However, there was no main effect for hand 

preference (F1,19 = 1.94, p =0.18) or an interaction time x hand preference 

(F1,19 = 3.42, p = 0.08).  
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Learning Induced Changes in Corticospinal Excitability 

In order to determine effect of motor learning on CSE, SR curves were acquired prior to 

and post training from FDI in the dominant and non-dominant hands of 21 participants. 

AuC was used as the primary marker of neuroplastic change, changes in MEPmax, I50, 

slope were used as secondary markers of changes in CSE. Group changes in AuC are 

illustrated in figure 19. The expected increases in CSE as a result of learning were 

observed to be variable. Statistical analysis revealed a main effect for time on AuC 

(F1,20 = 4.77, p = 0.04) and main effects for hand preference on MEPmax 

(F1,20  = 7.26, p = 0.01) and AuC (F1,20 = 8.56, p = <0.01). There was no interaction 

between factors, the results of the 2w-rmANOVA are summarised in table 4.  

 

 

Figure 18. The improvement in visuomotor tracking. A) A representative example of the 

improvement in visuomotor tracking from the dominant hand of a participant. The solid grey 

line shows the target waveform the participant was asked to track, the dotted line shows the 

participants performance prior to training and the solid black line shows the performance 

after training. B) Group data showing the improvement in performance in the dominant and 

non-dominant hands of 21 participants. Filled circles represent the dominant hand and open 

circles the non-dominant hand. Performance significantly improved after training (p = 

<0.001) however there was no significant differences in performance improvements between 

hands (p =0.18). 

* 
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   Time Hand Preference Time x Hand Preference 

AuC F1,20 = 

4.77 
p = 0.04* F1,20 = 

8.56 
p = <0.01** F1,20 = 

2.43 
p = 0.13 

MEPmax F1,20 = 

3.23 
p = 0.09 F1,20 = 

7.26 
p = 0.01** F1,20 = 

2.98 
p = 0.09 

I50 F1,20 = 

0.58 
p = 0.46 F1,20 = 

0.01 
p = 0.92 F1,20 = 

0.19 
p = 0.67 

Slope F1,20 = 

0.44 
p = 0.51 F1,20 = 

0.11 
p = 0.75 F1,20 = 

0.17 
p = 0.68 

 

Learning induced changes in CSE were observed to be variable within individuals and 

are illustrated in figure 20. Learning-induced changes in CSE were observed to be 

variable, with MEPmax increasing, remaining the same or decreasing in 50%, 30% and 

20%, of the participants respectively. There were no significant correlations between the 

change in RMS error and change in AuC for either hand [dominant hand 

(r = 0.35, p = 0.12), non-dominant hand (r = 0.95, p = 0.68)]. ICC analysis on the 

change in the dependent variables showed a high degree of variability between hands 

[MEPmax (ICC = 0.274, p = 0.240), I50 (ICC = 0.228, p = 0.284), slope (ICC = 0.189, p = 

0.321) and AuC (ICC = 0.195, p = 0.877)]. There was no correlation between rMT and 

change in AuC (r = 0.01, p = 0.95). 

Table 5. Summary of statistical analysis for learning induced changes in CSE and hand 

preferences. * denotes p = <0.05, ** denotes p = ≤0.01.  
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Figure 19. The effect of visuomotor learning on corticospinal excitability of the dominant 

and non-dominant hand. Data presented here is group mean area under the curve. There were 

no significant effects for time point and hand preference or any time point by hand 

preference interactions. Individual data is presented in figure 20  
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Figure 20. The effect of visuomotor learning on corticospinal excitability. Close circles represent baseline measures and open post trai ning. Results 

are reported as mean ± 1S.D. Top row represents data from the dominant hand and the bottom represents data from the non-dominant hand. A) 

represents MEPmax B) represents I50 C) represents slope and D) represents area under the curve. Data for the non -dominant hands of two participants 

is missing as they were lost to follow up. 
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It is logical to ask whether this intra-individual variability in the corticospinal response 

to motor learning, illustrated in figure 20, stems from unreliability in our TMS measure 

of CSE. ICC analysis of rMT between hands indicates a high reliability (ICC = 0.637, 

p = 0.04). Furthermore, ICC on the dependent variables at prior to learning between 

hands points towards a high degree of reliability in our measure of CSE [MEPmax 

(ICC = 0.45, p = 0.027), I50 (ICC = 0.613, p = <0.01), slope (ICC = 0.345, p = 0.058) 

and AuC (ICC = 0.782, p = <0.001)]. Further, logistical regression analysis was used to 

determine the caffeine consumption, gender and sleep deprivation on CSE changes.   

 

Factor B SE Wald Sig. Exp (B) 

Caffeine .72 .71 1.019 .313 1.074 

Gender .81 .69 0.899 .542 .995 

Sleep deprived .77 .74 1.087 .297 1.08 

Table 6. Logistic regression analysis of factors which may have influence plastic change in 

visuomotor learning 
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To control for the effect of fatigue on the trained muscle I acquired Mmax from FDI of 

the dominant and non-dominant hands prior to and post training in 21 participants. 

Statistical analysis revealed Mmax amplitudes to invariant to visuomotor learning 

(F2,31 = 1.24, p = 0.73) illustrated below as figure 21. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Changes in the maximal compound muscle action potentials following 

visuomotor learning. Grey lines represent data from each participant and black lines 

represent group data. A) represent data from the dominant hand and B) represents the 

non-dominant hand. Statistical analysis revealed there were no significant changes in the 

neuromuscular junction after visuomotor training (p = 0.73).   
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Discussion 

The novel finding of this study is that there is both intra- and inter-individual variability 

in magnitude of learning induced changes in CSE in the context of skill learning. I 

sought to determine the percentage of people who exhibit increased CSE after 

visuomotor learning as indicated by increased AUC, MEPmax and slope with a 

concomitant decrease in I50. MEPmax and AuC increased, remained the same or 

decreased in 50%, 30% and 20% of the participants respectively. Whereas I50 increased, 

remained the same or decreased in 20%, 45% and 35% of participants respectively and 

slope increased, remained the same or decreased in 30%, 40% and 30% of participants 

respectively. Learning induced modulation of CSE was invariant of hand preference. 

Interestingly, in those who exhibit an increase in CSE following visuomotor learning, 

an increase in CSE for the dominant hand did not predict an increase in CSE for the 

non-dominant hand following visuomotor learning and vice versa. To examine the 

intra-individual variability in the corticospinal response to motor learning I tested the 

hypothesis that changes in CSE following motor learning would be invariant of hand 

preference. Our data support this hypothesis, ICC analysis on the change in the 

parameters between hands revealed no significant correlations.  

 

Hand Preference and Learning induced changes in Corticospinal Excitability 

In the present study I observed no significant differences in the capacity for CSE 

modulation between hands following visuomotor learning. The neurophysiological 

asymmetries between hands are well documented (for review see Hammond, 2002), yet 

these differences do not clearly translate to the functional level. Several studies have 

reported no significant differences in changes in CSE modulation between hands 
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following PAS and motor learning respectively (Ridding & Flavel, 2006; Garry et al., 

2004; Gallasch et al., 2009). Whereas, Cirillo et al., (2010) observed a significantly 

greater increase in CSE for the non-dominant hand following training on a ballistic 

motor learning task. In the present study I observed no significant differences in CSE 

modulation between hands. These differences in results between the present study and 

Cirillo et al., (2010) may be due to the paradigms used in the respective studies. 

Visuomotor motor tracking, used in the present study, is a much more complex task 

involving multiple cortical regions whereas ballistic learning involves numerous 

repetitions of a single planar movement arising from one muscle. The nature of the 

movements is very different between tasks, as the name implies, ballistic learning 

involves very brisk, rapid movements which a repeated throughout the session. 

Visuomotor learning involves lots of gradual increases in force with varying rates of 

change, perhaps standardising the rate of force increase across all waveforms in the 

current experiment would have induced comparable results?    

 

Inter-individual Variability 

Previous studies have shown that visuomotor tracking is an effective means of 

modulating CSE however these changes are typically reported at a group level (Cirillo 

et al., 2011; Perez et al., 2004; McAllister et al., 2011; Lundbye-Jensen et al., 2005). 

The present study points toward a large degree of inter-individual in the magnitude of 

learning induced changes in CSE (see figure 20). This high degree of variability is 

reflected in the non-significant effects and lack of interaction between factors 

summarised in table 4. The response rates observed in the present study, approximately 

50% of participants, is comparable to changes in CSE induced following NIBS (Martin 
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et al., 2006; McAllister et al., 2013; Müller-Dahlhaus et al., 2008; Sale et al., 2007). 

Further, similar to Sale et al., (2007) who studied plasticity induced by PAS, I observed 

no correlation between changes in AuC and rMT suggesting this variability is not a 

consequence of greater variability in the MEP.         

 

What is interesting, yet poorly understood, is why CSE decreased for some participants 

following a protocol designed to raise it. Several factors including age, gender, attention 

and genetics are known to influence synaptic plasticity (for review see Ridding & 

Ziemann, 2010). In order to minimise the influence of these factors I used a randomly 

selected sample of convenience, selected from a narrow age range and used only healthy 

participants. It is without doubt these factors, despite our best efforts to control them, 

have influenced the results in the present study although I would suggest any impact 

from these parameters is minimal. In recent study of TMS induced changes in CSE 

Hamada et al., (2013) suggest an alternative explanation for the variability in CSE 

changes. Hamada et al., suggest the variability is due, at least in part, to different 

interneurone networks stimulated at different times of the day in different people 

(Hamada et al., 2013). The authors report a significant correlation between induced 

changes in CSE and MEP latency following a TMS pulse which induces an 

anterior-posterior current across the central sulcus. This correlation accounted for 

approximately 50% of the variability in the response. Whether the same postulation, 

MEP latencies following TMS pulses, which induce an anterior-posterior current across 

the central sulcus, could predict learning induced changes in CSE is certainly an 

interesting proposition and warrants further examination.   
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Intra-individual Variability 

My data suggest there is an internal inconsistency in the corticospinal response to 

visuomotor learning – an increase in CSE following motor learning for the dominant 

hand does not mean the non-dominant hand will respond in the same way and vice 

versa.  

 

The internal inconsistency in the corticospinal response to visuomotor learning cannot 

be explained by differences in the basal level of CSE between hemispheres. Although 

Daligadu et al., (2013) reported differences between in the TMS SR curve of the 

dominant and non-dominant, I failed to observe similar findings. In the present study 

ICC analysis of the SR curves between hands at baseline was high (ICC ≥ 0.35). 

Further, the factor time in the 2w-rmANOVA analysing changes in CSE was only 

significant for AuC. Combined, this suggests no differences in CSE between hands 

prior to learning. That said it is important to highlight that the SR curves were collected 

using different methodologies. In the present study I used a rapid acquisition method 

over a range of intensities (Mathias et al., 2014) whereas Daligadu et al., (2013) used a 

binned acquisition protocol which has previously been shown to influence the SR curve 

(Möller et al., 2009).  

 

Additionally, differences in performance changes between the hands cannot explain the 

internal inconsistency in the corticospinal response to visuomotor learning. In the 

present study I observed no significant differences in the change in tracking error 

between hands and there was no significant correlation between changes in performance 

and changes in CSE.          
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The internal inconsistency in the corticospinal response to learning induced changes in 

CSE could possibly be explained by different characteristics for learning induced 

modulation of CSE between the dominant and non-dominant hands. Previous studies 

have shown that learning induced changes in CSE are subject to dose response 

relationship, with more training sessions inducing larger changes in CSE (Lundbye-

Jensen et al., 2005; Pascual - Leone et al., 1995). However, both studies report 

significant modulation of CSE after a single session of motor learning. I have to 

acknowledge the possibility that a single session of training might be insufficient for 

modulating CSE between hands.  

 

Fluctuations in participants’ attention within and between sessions has to be considered 

as a potential confound for this experiment. Attention has previously been shown to 

modulate MEP amplitudes (Ellaway et al., 1998; Funase et al., 1999) and the magnitude 

of PAS induced changes in CSE (Rosenkranz & Rothwell, 2006; Stefan et al., 2004). In 

the present study SR curves were acquired in less than two minutes, minimising the 

opportunity for fluctuations in attention to influence the SR curve. To control for 

attention mediated fluctuations in CSE I asked the participants were provided real-time 

feedback of coil position and orientation and instructed to keep the coil in the correct 

position and orientation during SR curve acquisition. To control for fluctuations in 

attention during the motor learning task participants were provided with online feedback 

of tracking error in the respective waveforms.    
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It would be remiss not to highlight that, in the hand preference study the population 

tested was predominantly right hand dominant according to the Edinburgh Handedness 

Inventory. This is without doubt a limitation of this work. In an attempt to minimise the 

influence of this, I regressed the change in AuC onto the laterality quotient (the degree 

of handedness)  

 

 

Conclusions 

In summary, this study confirm the suggestions that visuomotor learning is an effective 

means of modulating CSE at the group level but is variable at the  level of individual 

participants. Further, there is an inconsistency in the corticospinal response to 

visuomotor learning between hemispheres - an increase in CSE following visuomotor 

learning for the dominant hand is not indicative of an increase in CSE following 

visuomotor learning in the non-dominant hand and vice versa. The findings presented 

here suggest that studies assuming that CSE is modulated following a single session of 

visuomotor learning may be misleading and further work to examine the dose response 

relationship between motor learning changes in CSE is warranted. The mechanism 

behind this asymmetrical response remains to be determined.
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Chapter VII - General Discussion 

Structure of the chapter 

The purpose of this chapter is to provide an integrated discussion of research contained 

within this thesis, discussions specific to each experiment can be found in the relevant 

chapters. This chapter starts by presenting a summary statement of the principles results 

for this thesis. It moves on to present an integrated discussion of the findings contained 

within the work. This chapter suggests how the work adds value to the literature, and 

impacts on future research practices. In the interest of completeness further 

experimental questions are suggested and the chapter finishes with some concluding 

remarks.   

 

Summary statement of results 

This thesis contains three experimental chapters. The aim of the first study in this thesis 

was to reduce the acquisition time of the TMS SR curve. The principle results of this 

chapter are that the SR curve is invariant to ISI, on average, 76 stimuli are required to 

construct a representative SR curve and 3 min of rTMS does not have a reliable 

neuromodulatory effect. This means that SR curves can be acquired in less than 2 min: 

76 stimuli delivered with a 1.4 s ISI leads to a 106 s acquisition time. The final two 

chapters sought to examine the influence of hand preference and muscle choice on 

learning induced neuroplasticity. Both experiments report a non-significant effect for 

hand preference and proximal-distal muscles on plasticity induced following 

visuomotor learning.     
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Rapid acquisition of TMS SR curve  

This work provides proof of concept for reducing the TMS SR curve acquisition time in 

healthy control participants. It provides a novel means of rapidly acquiring the 

necessary data to construct a TMS SR curve in less than two minutes. ICC analysis of 

SR curves constructed using the minimum number of stimuli indicates this is a reliable 

means of acquiring TMS SR curves. 

 

Despite the well documented increased variability in MEPs for proximal muscles (Rossi 

et al., 1999) ICC analysis indicates that SR curves can be reliably constructed with 76 

stimuli in BB, similarly to FDI and ADM. Given the inclusion/ exclusion criteria and 

SR curve acquisition protocol used in this study (rMT had to be ≤ 70 %MSO) this result 

is not surprising. Assuming a participant had a rMT of 50% MSO and acquiring SR 

curves as described would mean there would be 1.09 MEPs per %MSO. This 

measurement density may explain why the average minimum number is very similar for 

all muscles examined. 

 

It would be remiss not to document some of the participant feedback obtained during 

the ISI experiment and technical considerations which arose during the development 

work. During pilot testing SR curves were acquired using a 1.0 and 1.2 s ISI and 

participants reported this to be uncomfortable and anxiety inducing. As anxiety has been 

shown to influence CSE (Greenberg et al., 2000) the decision was made to drop these 

protocols from our investigations. On a technical note, it may be possible to further 

reduce the acquisition time of SR curves. Typical parameters of the TMS pulse include 

a rise time of the order 0.1 ms, a peak field of approximately 1 Tesla (depending on a 
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number of factors including local anatomy and coil geometry) and a magnetic field of 

several hundred joules. The circuitry used to generate the magnetic field pulses is 

usually based on a capacitor discharge system with typical peak coil currents in the 

range of several kiloamps and discharge voltages of up to a few kilovolts. There is an 

important trade-off with shorter ISIs, the stimulator will misfire more (receive a trigger 

but not deliver a stimulus) when trying to drop to a lower intensity. Misfires occur due 

to the capacitors in the stimulator not fully discharging before any subsequent triggers 

arrive. Using the biphasic Magstim Rapid
2
 it is possible to reduce the incidence of 

stimulator misfires by imposing limits in the code controlling the stimulator which 

mean any subsequent stimuli cannot be more than -10 %MSO of the previous intensity. 

However, this restricts investigators to biphasic pulses which have been shown to 

influence rMT and MEP amplitude (Sommer et al., 2006). This is an important 

technical point should any teams attempt to further reduce the acquisition time of the 

TMS SR curve.  

 

This experiment demonstrates the proof of principle for reducing the acquisition time of 

the TMS SR curve in healthy participants and refers to the method as a ‘clinically 

feasible means of acquiring TMS SR curves’. It is important to highlight that in this 

context clinically feasibility refers to the acquisition time of the TMS SR curve not to 

using the rapid acquisition protocol in clinical populations. The method presented here 

has not been validated in elderly or clinical populations and we know that ageing and 

disease states alter TMS SR curves (Cacchio et al., 2009, 2011; Smith et al., 2011, 

Pitcher et al., 2003). Prior to being used in any clinical or elderly populations the 

acquisition protocol needs to be validated, there must be a comparison of the rapid 
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acquisition and the conventional binned acquisition protocol in the elderly and disease 

states.  

        

The TMS SR curve is a plasticity assessment technique with very few safety risks, SR 

curves are being applied in a growing number of diverse situations. For example, SR 

curves have been used to assess plasticity after learning (Perez et al., 2004; 

Lundbye-Jensen et al., 2005), to identify mechanism of NIBS induced plasticity (Maeda 

et al., 2000, 2002), and to prognosticate recovery after stroke (Cacchio et al., 2011; 

Huyn et al., 2013; Harris-Love et al., 2013) each of these studies used a different 

acquisition protocol. These acquisition protocols remain commonplace within the 

literature (examples include Smith et al., 2010; Boudreau et al., 2013; Crupi et al., 

2013) despite the demonstration that they influence the SR curve (Möller et al., 2009). 

To ensure rigorous findings and facilitate comparison of data from separate studies 

methodological standardisation is required. Standardising the method for acquiring the 

TMS SR curve could improve data validity and make it easier to compare data between 

studies. The standardisation protocol described utilises the protocol shown to be optimal 

by Möller et al., builds upon that to reduce the acquisition time and overcomes the 

variability in the minimum number of stimuli required.  

 

Non-significant effect of hand preference and muscle choice on neuroplasticity 

A multitude factors combine to result in plastic change, factors include age, lifestyle, 

gender and history of synaptic activity. In light of the non-significant effect of training 

on neuroplasticity presented in both the learning experiments it seems opportune to 

discuss some of these factors and their potential influence on the learning experiments.  
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Age and neuroplasticity 

The decline in memory and capacity for learning associated with ageing is well 

documented. Furthermore, studies have provided a biological substrate for this effect, 

suggesting the ageing process influences an individual’s capacity for synaptic plasticity 

– in particular LTP (for review see Barnes, 2003). Several studies have used inhibitory 

PAS to study the capacity of the aged motor cortex for plasticity and it is widely 

accepted the capacity for plasticity decreases with age. For example, Müller-Dahlhaus 

et al., (2008) report the magnitude of inhibitory PAS effect was greatest the young 

participants compared to the elderly. Fathi et al., (2010) expanded on this, conducting a 

three way comparison between young, middle aged, and elderly cohorts and report 

significant LTP like responses following inhibitory PAS in the young and middle aged 

cohort. Fathi et al., were unable to elicit the expected inhibition of CSE in the elderly 

participants. Tecchio et al., (2008) report similar findings, however the authors report 

there was evidence for change in the elderly, post menopausal, women. It should be 

noted that any influence of age on plastic changes in the present work is minimal as all 

populations were drawn from samples of convenience (undergraduate students) with 

very narrow age ranges.   

 

Similar findings have been reported when examining the use of SR curves in the 

assessment of plasticity. Pitcher et al., (2003) conducted a large study (n = 42) to 

examine, amongst other factors, the effect of ageing on the TMS SR curve. The authors 

note that trial to trial variability in MEP amplitudes was greatest in the elderly cohort, 

especially at intensities near rMT. However, there was no significant effect of age on 
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rMT, maximal MEP amplitudes or maximal slope of the TMS SR curve. The authors 

attribute these ageing related differences to either a decrease in the number of spinal 

alpha motor neurones being activated synchronously by the TMS pulse, or activation of 

similar number of spinal alpha motor neurones in a less synchronous manner which 

results in phase cancellation in the surface EMG. It is worth noting that the ageing 

related changes were greatest in the post menopausal women, suggesting these changes 

are a result of the loss of menstrual hormones after the menopause. Smith et al., (2011) 

explored this gender related ageing differences further through recruiting exclusively 

male young and elderly cohorts. The authors examined SR curves from the left and right 

hands of these male cohorts and report no effects for age or hand preference or any 

interaction for any of the SR curve parameters. Smith et al., conclude that male 

corticospinal SR characteristics are not altered by advancing age and that previously 

reported age-related changes in motor cortical excitability assessed with TMS are likely 

due to changes inherent in the female participants only. Future studies should consider 

females reproductive status when recruiting participants.  

 

Gender and neuroplasticity 

There is a wealth of evidence regarding the effect of gender on plasticity in the animal 

model (for review see Srivastava et al., 2013) which suggests gender is potentially a 

powerful determinant of neuroplasticity yet there is a lack of studies in the human. 

There is insufficient evidence to offer a grounded opinion as to whether gender 

significantly influences learning induced plasticity in the healthy human. Logistic 

regression analysis revealed gender did not significantly influence the outcome in either 
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learning experiment. However, these are relatively small samples, further work with 

larger samples is required to explore this potentially exciting area. 

 

Hand preference and neuroplasticity      

The neurophysiological asymmetries between hands are well documented (for review 

see Hammond, 2002), yet these differences do not clearly translate to the functional 

level. Several studies have reported no significant differences in changes in CSE 

modulation between hands following PAS and motor learning respectively (Ridding & 

Flavel, 2006; Garry et al., 2004; Gallasch et al., 2009). Whereas, Cirillo et al., (2010) 

observed a significantly greater increase in CSE for the non-dominant hand following 

training on a ballistic motor learning task. In the hand preference study presented in this 

thesis there was no significant difference in CSE modulation between hands. This 

variation in results between the present study and Cirillo et al., (2010) may be due to the 

paradigms used in the respective studies. Visuomotor motor tracking, used in the 

present study, is a much more complex task involving multiple cortical regions whereas 

ballistic learning involves numerous repetitions of a single planar movement arising 

from one muscle. That said the hand preference study of this thesis did not report 

significant findings. 

 

Lifestyle and neuroplasticity 

This thesis will focus on three aspects of lifestyle which have shown to influence 

neuroplastic change sleep, diet (in particular caffeine intake) and physical activity. 

These factors were chosen as they have been the subject of the widest debate. 
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A lack of sleep has been strongly linked to difficulties with cognition as well as changes 

in physiological processes. Concerning plasticity, in vitro studies have shown that sleep 

deprivation alters plasticity homeostasis, making LTP induction more difficult and 

enhances the ease of LTD induction (Kopp et al., 2006; Campbell et al., 2002; 

McDermott et al., 2003). Using TMS in man many studies point toward an increase in 

CSE with prolonged periods of waking (De Gennaro et al., 2007; Huber et al., 2013; 

Kreuzer et al., 2011). That said, the evidence is not univocal, studies have failed to 

replicate these findings (Manganotti et al., 2001; Manganotti et al., 2006) or report 

conflicting results (Civardi et al., 2001). Logistic regression analysis revealed that sleep 

deprivation did not significantly influence the outcome in either learning experiment. 

Due to the limitations of the TMS adult safety screen it is not possible to quantify the 

degree of sleep deprivation or whether participants routinely went with little sleep. 

Substantiating these important factors may reveal a powerful modulator of learning 

induced plasticity.                

 

The evidence concerning the effect of caffeine on CSE in mixed. In order to discuss this 

evidence in relation to the work presented here this thesis will first tackle the effect of 

caffeine on the lower motor neurone and then the upper motor neurone. Concerning 

lower motor neurones, the effects of caffeine on lower motor neurones have commonly 

been studied using the H-reflex and F-wave. Caffeine is said to increase the level 

excitatory neurotransmitter released, in addition to lowering motor neurone activation 

threshold (Williams et al., 1987). Two studies have report no significant modulation of 

H-reflex amplitude following caffeine intake (Eke-Okoro, 1982; Kalmar & Cafarelli, 

1985) as well as no significant modulation of the F-wave following caffeine 
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consumption (Cerqueria et al., 2006). Concerning upper motor neurones, TMS has 

commonly been employed to examine the effect of caffeine on the CNS. In a recent 

review, de Carvalho et al., (2010) report that caffeine has no effect on MEP amplitude, 

central motor conduction time or motor threshold (Cerqueria et al., 2006; Orth et al., 

2005; Kalmar & Cafarelli, 2004). However, at intensities around aMT large doses of 

caffeine have been shown to significantly alter the cortical silent period (a measure of 

inhibitory interneuron activity). In both learning experiments presented here, logistic 

regression revealed there was no significant relationship between caffeine intake and 

plastic change. That said there is no information on the dose of caffeine participants had 

ingested in the past previous 24 hours. To properly examine the effect of caffeine 

consumption on learning induced plasticity, information in greater depth around the 

participants’ routine caffeine consumption, time of dose and since dose as well as dose 

of caffeine consumed is required.              

 

There is a growing body of good evidence which suggest regular physical activity can 

modify an individual’s capacity for plasticity (for review see Erickson & Kramer, 2009) 

as well as improving memory and learning (for review see van Praag, 2009). Whilst the 

precise mechanism behind this increase in the capacity for neuroplastic change in active 

individuals remains unclear, it is likely to be multi-factorial including changes in 

cerebral blood flow (Xiong et al., 2009), angiogenesis (Swain et al., 2003) as well as 

increased expression of neurotrophic factors (Klintsova et al., 2004). Working in the 

healthy human Cirillo et al., (2009) demonstrated that individuals who regularly 

undertake aerobic exercise exhibit a larger change in CSE following inhibitory PAS 

compared with sedentary individuals. Unfortunately there is no data on the exercise 
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habits of those who participated in both learning experiments, it is possible this could 

have influenced the outcome by shifting the homeostatic balance in synaptic plasticity 

in the primary motor cortex.            

 

Attention and neuroplasticity 

It is possible that the variability observed in the present study could be a result of 

fluctuations in attention. Attention has previously been shown to modulate CSE (Kamke 

et al., 2012; Rosenkranz & Rothwell, 2004; Stefan et al., 2004) and both learning 

experiments consisted of two experimental sessions each two hours. In the experiments 

presented in this thesis we attempted to control attention by instructing the participant to 

use visual feedback to ensure the coil remained over the hotspot. Another factor which 

could modulate attention and plasticity is time of day.  

  

There is a large body of literature examining how time of day interacts with attention 

(for review see Kraemer et al., 2000). Time of day has been shown to significantly 

modulate plasticity induced following PAS (Sale et al., 2007). PAS is more effective at 

inducing plasticity in the afternoon or evening compared with the morning (Sale et al., 

2008; Sale et al., 2007). The authors attribute this circadian modulation to fluctuations 

in cortisol levels across the day. The same team sought to determine whether time of 

day significantly influences plasticity induced following motor learning (Sale et al., 

2013). Sale et al., (2013) trained 22 participants on a ballistic motor learning task at 

0800 and 2000 hours in the same day and they quantified neuroplastic changes using 

TMS. Sale et al., (2013) report a significant effect of training on MEP amplitudes, 

however, there was no significant effect for time of day on MEP amplitude. It is 
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important to highlight, to the best of my knowledge, this is the only study examining the 

effect of time of day on neuroplasticity induced following motor learning. It goes 

without saying further is warranted to substantiate this finding.       

 

Brain Derived Neurotrophic Factor and neuroplasticity 

Studies have shown that individuals with mutations of the gene controlling brain 

derived neurotrophic factor (BDNF) have altered responses to motor learning (Kleim et 

al., 2006) and to TBS (Cheeran et al., 2008). This thesis did not control for this 

particular mutation, so there is potential that it may have impacted upon the results. 

However, in some participants, visuomotor learning induced a plastic change for one 

muscle but not the other. Opening the suggestion that plasticity induction in the health 

human is a multi-faceted mechanism rather than a single magic bullet. Further work is 

required to explore this.    

 

Prior and parallel voluntary motor activity and neuroplasticity 

There has been huge interest in the therapeutic combination of learning induced and 

NIBS induced plasticity under the assumption that the learning induced plasticity is 

augmented by the NIBS paradigm; this combined therapy results in greater plastic 

change and a greater functional recovery.  

 

Experiments in the animal model have shown that history of synaptic activity in the 

target brain region can influence the plastic response to any subsequent plasticity 

inducing protocols. For example, Christie & Abraham (1992) demonstrated that reliable 

induction of associative LTD in the dentate gyrus of the rat can be significantly 
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improved by priming with theta frequency stimulation. There are a wealth of studies 

demonstrating that priming the system with one form of stimulation can significantly 

enhance the effect of a second (for review see Cassidy et al., 2014). A history of 

synaptic activity arising from voluntary behaviours has been shown to influence 

plasticity. Ziemann et al., (2004) demonstrated that training on a ballistic motor learning 

task modified the subsequent response to PAS. The ballistic motor learning increased 

the response to inhibitory PAS and reduced the response to excitatory PAS. Similar 

priming effects have been reported for submaximal isometric tracking task (Stefan et 

al., 2006). Whilst the influence of previous synaptic activity can never be truly excluded 

when working with humans, all participants underwent a period of compulsory before 

testing. It is certainly an interesting proposal, whether prior voluntary activation 

significantly influence learning induced plasticity and it requires further examination. 

 

To summarise thus far, learning induced plasticity is a multi-faceted process mediated 

by, at least, some of the factors described. To harness the power of plasticity induction 

and maximise patient benefit as well as understanding the mechanism more basic 

science studies of factors such as Estrogens status modulates plasticity, how exercise 

and diet modulate plasticity and whether the CNS can be primed using NIBS to increase 

plasticity induction.             

 

Did the motor task impact the result? 

This section of the thesis will discuss whether the learning task used in the work 

presented here influenced the plastic change. Previous studies have shown that this task 

is capable of modulating CSE (Perez et al., 2004; Lundbye-Jensen et al., 2005; Cirillo 
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et al., 2011). Participants in the work in this thesis received the same training dose as 

described in Lundbye-Jensen et al., (2005) who report a significant change in CSE for 

BB after a single session of training. So, it would be reasonable to have expected a 

plastic change in the present work.  

 

In the present studies the learning task was adapted so that participants made isometric 

rather than actual movements to control the cursor. This adaptation was chosen for 

pragmatic reasons however there is a possibility it influenced the expected neuroplastic 

change. Whilst it is difficult to offer a grounded reason as to why this adaptation might 

have influenced the outcome, the potential has to be acknowledged. Further studies 

examining CSE changes in static and dynamic movements and well as eccentric and 

concentric contractions are warranted.  

 

The visuomotor learning paradigm used in this body of work involved lots of gradual 

increases in force with varying rates of change, perhaps standardising the rate of force 

increase across all waveforms in the current experiment or adapting the paradigm so the 

participant has to make basic style movements would lead to results comparable to 

those reported in previous studies. McAllister et al., (2011) standardised the maximal 

movement speed to 40°/S and the authors report significant neuroplastic changes as a 

result of training. Standardising the rate of force change brings this paradigm closer to 

ballistic motor learning may induce a more reliable plastic change.  

 

The design of the learning experiment presented in this thesis lends itself to the 

suggestion that there was a carry-over effect between sessions which may have 
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influenced any neuroplastic change. There are three counter arguments to this 

supposition. First, there was no difference in the slope of the learning curves for each 

experiment. Second, in both experiments participants were randomly allocated to one of 

the two conditions which should prevent any ordering effect. Third, there were no 

statistically significant differences in the performance improvements between sessions. 

  

Are stimulus response curves the best method to assess neuroplastic change? 

There is a large body of evidence which have used SR curves to show changes in CSE 

following motor learning (Perez et al., 2004; Lundbye-Jensen et al., 2005) and NIBS 

(Maeda et al., 2000, 2002). However, these studies are not without fault. In many of 

these studies SR curves are typically acquired by delivering multiple stimuli in 

pseudorandomised bins of stimulation intensity. A full range of stimulation intensities 

are delivered from just below motor threshold until either the motor evoked potential 

(MEP) amplitude plateaus or the maximum stimulator output (MSO) is reached. The 

MEP amplitudes for each stimulus intensity level are then averaged and a 3, 4 or 5 

(Barsi et al., 2008; Malcolm et al., 2006; Pitcher et al., 2003) parameter Boltzmann-like 

model is fit to the mean data using a nonlinear least squares algorithm to produce the 

SR curve (Devanne et al., 1997; Valls - Solé et al., 1992; Boroojerdi et al., 2001a). The 

use of blocked acquisition protocols has been shown to influence the acquisition of SR 

curve. SR curves acquired using blocked decreasing stimulation intensity protocols 

were shifted significantly to the left suggestive of increased CSE when compared to a 

blocked increasing protocol, showing that it is possible to significantly alter the SR 

curve via the method used to acquire them (Möller et al., 2009). Möller et al. (2009) 
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recommend acquiring SR curves using stimulation intensities determined randomly on a 

pulse-by-pulse basis. 

 

Despite the work done in chapter three, building on the good work of Möller and 

colleagues, the rapid TMS SR curve acquisition protocol is not without fault. The large 

standard deviation in the minimum number of stimuli required for TMS SR curves has 

to be acknowledged as a potential limitation of this study. One could suggest that the 

lack of consistent plastic induction in the learning experiments was due to the SR curves 

being insensitive to plastic change in some participants – they had too few stimuli to 

detect any changes for the individual they were acquired in. Whilst this has to be 

acknowledged, the minimum number of stimuli determined in the first experimental 

chapter (figure 7 illustrates how the minimum number of stimuli was calculated) is the 

group mean + 1 S.D of a large dataset (108 SR curves), suggesting the SR curves should 

have been acquired using the minimum number of stimuli in 68% of cases. 

Furthermore, ICC analysis of the SR curves constructed using the minimum number of 

stimuli indicates a high degree of reliability.         

 

One potential approach to overcome this weakness would be to combine TMS SR 

curves with TMS CSE maps. Unlike TMS SR curves, in which many different intensity 

stimuli are delivered over the same cortical site, CSE maps are constructed by 

stimulating many different cortical sites at a single intensity. The two techniques are 

commonly applied to investigate neuroplastic changes which accompany motor learning 

(Boudreau et al., 2013; Suzuki et al., 2012; Lundbye-Jensen et al., 2005; Wassermann 

et al., 1992). While the two techniques measure complimentary factors there are some 
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important differences. SR curves will detect area changes in CSE maps, they will not 

detect changes in the distribution of excitable elements or uneven expansion of the CSE 

maps (Ridding & Rothwell, 1997; Mano et al., 1995; Traversa et al., 1997). It is 

possible that any plasticity induced by the visuomotor task was expressed as a change in 

the distribution of excitable elements and as such, not detected by TMS SR curves.  

 

Is variability in learning induced plasticity something we should worry about? 

No. The results presented here are not entirely unexpected; studies of NIBS induced 

plastic change report similar levels of variability (Cheeran et al., 2014, Maeda et al., 

2000, Muller-Dahlhaus et al., 2008). Learning induced and NIBS induced neuroplastic 

changes have been suggested to share a common mechanism, namely LTP, and there is 

a growing body evidence for variability in the plastic response to NIBS (for review see 

Ridding and Ziemann, 2010). Understanding variability will increase the integrity of 

field by ensuring adequate numbers of participants, easier replication of study findings, 

help translate findings into larger pre-clinical and clinical trials. The work presented 

here offers insight into the complexity of studying LTP like induced plasticity in the 

waking human, and showing factors which can influence the response.  

 

Utility of this work to future practice/ research 

The technique for rapidly acquiring TMS SR curves described in this thesis steers the 

field in the correct direction for TMS assessments of plasticity. The technique can be 

easily adopted by other groups to study plastic changes in healthy young populations. 

Additionally, rapid TMS SR curve provides a more accurate measure of plasticity as the 

influence of fluctuations in attention is reduced. The technique has clinical potential – 2 
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minutes for to acquire the necessary data is acceptable for the patient. However it has to 

be noted that before the technique is used in clinical populations it requires validation. 

The learning experiments presented here highlight the variability in learning induced 

plasticity, aiding power calculations and informing investigators of the efficacy and 

reliability of visuomotor tracking task. 

 

Future experiments 

There are multiple studies comparing the efficacy of the different NIBS paradigms to 

induce neuroplastic changes (Zafar et al., 2008; Goldsworthy et al., 2012; Simis et al., 

2013). Yet, despite the variety of motor learning paradigms within the field there have 

been no studies comparing their efficacy to induce neuroplasticity. It would be 

interesting to compare the ability of some of the common motor learning paradigms 

such as ballistic learning, visuomotor learning and sequence, to induce neuroplastic 

changes in healthy volunteers. Identifying the optimal motor learning paradigm for 

inducing neuroplastic changes in the healthy human could serve to further our 

understanding of how neuroplasticity is induced and ultimately lead to therapeutic 

interventions.     

 

There may be some value in comparing the neuroplastic response of two intrinsic hand 

muscles, where the neurophysiological asymmetries are much less, to visuomotor 

learning. A negative finding here – asymmetrical responses for two intrinsic hand 

muscles is a very interesting prospect as it opens the door to speculation over the 

relative weighting given to the BDNF polymorphisms in the process of plasticity 

induction. 
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Building upon the TMS SR curve work presented here there is significant value in fully 

automating the SR curve acquisition method. Automating SR curve acquisition is one 

way to overcome the variability in the minimum number of stimuli. This could be 

achieved by automating the code used in this work to fit the SR curve during acquisition 

and to stop stimulating when the curve stops deviating from 95 % CI for example. 

Further work is needed to identify suitable criteria to stop stimulating if SR curves are 

to be fully automated.  

 

To direct the course of future experimentation one question that could be asked is 

whether the learning the visuomotor tracking task used in this thesis is truly a learning 

task. Ecologically valid forms of learning such as playing a musical instrument or 

learning to ride a bike take a long time to become proficient, with timescales typically in 

order the of weeks to years. In the present task, performance was optimised within a 

single session suggesting this task may reflect adaptation as opposed to learning. An 

alternative approach may be to use an alternative paradigm which is functionally and 

ecologically valid; there may be some value in examining learning to use chopsticks. In 

China alone, 1.4 billion people disposable chopsticks (Sprague & Stuart, 2008) making 

the task ecologically valid and functional. Other characteristics which make this task an 

appealing paradigm is that it is engaging, challenging, progressive and speaking from 

personal experience difficult and not a skill that can be acquired in a single session.   
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Concluding remarks 

This thesis presents evidence that learning induced plasticity is variable in the healthy 

human, the level of variability is comparable to the reports of variability in NIBS 

induced neuroplasticity. This thesis provides a novel means, which has clinical 

potential, for assessing CSE changes. This thesis also highlights an important point - a 

single session of visuomotor tracking as described in this thesis is not sufficient to 

reliably induce plasticity in everyone. Further work is required to validate the rapid SR 

curve acquisition method in pathophysiological conditions. 
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Transcranial Magnetic Stimulation† (TMS) Adult Safety Screen* 
If you agree to take part in this study, please answer the following questions. The information you 
provide is for screening purposes only and will be kept completely confidential. 

CIRCLE or CROSS OUT 

Have you ever suffered from any neurological or psychiatric conditions? . . . . . . . . . . . . YES / NO 
If YES please give details (nature of condition, duration, current medication, etc) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Have you ever suffered from epilepsy, febrile convulsions in infancy  
or had recurrent fainting spells?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  YES / NO 

Does anyone in your immediate or distant family suffer from epilepsy? . . . . . . . . . . . . . YES / NO 
If YES please state your relationship to the affected family member. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Do you suffer from migraine? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  YES / NO 

Have you ever undergone a neurosurgical procedure (including eye surgery)?  . . . . . .  YES / NO 
If YES please give details.  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Do you have an implanted device such as a cardiac pacemaker, medication pump  
or cochlear implant?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . YES / NO 

Do you have any metal in your head (outside the mouth) 
such as shrapnel, surgical clips, or fragments from welding or metalwork?. . . . . .  YES / NO 

Are you currently taking any medication (prescribed or unprescribed)? . . . . . . . . . . . .  YES / NO 
If YES please give details. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Are you currently undergoing anti - malarial treatment?  . . . . . . . . . . . . . . . . . . . . . . . . YES / NO 

Have you ingested any alcohol in the last 24 hours? . . . . . . . . . . . . . . . . YES / NO 

Have you had any coffee or other sources of caffeine in the last hour? . . . . . . . . . . . . YES / NO 

Have you used recreational drugs in the last 24 hours? . . . . . . . . . . . . . . . . . . . . . . . .  YES / NO 

Did you have very little sleep last night? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . YES / NO 

Have you already participated in a TMS experiment today? . . . . . . . . . . . . . . . . . . . . .  YES / NO 

Have you participated in more than one TMS experiment in the last 6 months? . . . . . . .  YES / NO 

Is there any chance that you could be pregnant? . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  YES / NO 

Do you need further explanation of TMS and its associated risks? . . . . . . . .  YES / NO 

Date of Birth _____/_____/_____ 
 

 

Signed: ............................................................................Date: …................................. 

Name (in block letters): ..................................................................………..................... 

† For use with single-pulse TMS, paired-pulse TMS, or repetitive TMS. 
* Modified TASS based on Keel JC, July 2000. 
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