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ABSTRACT 
 

Background and clinical context: Type 2 diabetes (T2DM) is associated with an increased risk of 

adverse outcomes over a person’s lifetime. Data routinely recorded in general practice electronic 

patient records could be used to develop risk prediction models to identify those at higher risk and 

target preventative treatment. 

Objective: To develop models to predict the 5-year risk of coronary heart disease (CHD), stroke, 

chronic kidney disease (CKD), and all-cause mortality following a diagnosis of T2DM. 

Methods: Newly diagnosed T2DM patients (1998-2003) registered at a practice contributing data to a 

large UK general practice database (THIN) were included in the analyses. The risk models included 

clinical predictors routinely recorded following diabetes diagnosis plus cardiovascular preventative 

treatments. Missing baseline risk factors were estimated using multilevel regression and imputation. 

Outcomes were modelled as time-to-event. 

Results: 20041 patients diagnosed with T2DM were included. The proportion of variation explained 

by each model (R
2
) was: CHD 0.09; stroke 0.35; CKD 0.34; and mortality 0.58. Hazard ratios for 

modifiable risks in the mortality model were: current smoking 1.65; blood pressure (high/treated) 

1.07; and glycaemic control (HbA1C/%) 1.09 (p<0.01 apart from blood pressure). For non-modifiable 

risks, hazard ratios were: 1.10 age (/year); 1.29 male sex; 1.58 prior CHD; 1.47 prior stroke; and 1.33 

prior CKD. Hazard ratios were similar or lower in the morbidity models other than blood pressure 

(1.80 stroke 1.41-45 CHD/CKD, p<0.05). Raised/treated cholesterol was not a consistent risk factor. 

Conclusion: The models were predictive, particularly for mortality, and suggest that older, male, 

smokers, those with poor blood pressure and glycaemic control and those with cardiovascular co-

morbidity are at highest risk and should be targeted at the point of diagnosis. The models could be 

used to highlight such patients and potentially as an educational tool. 
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CHAPTER 1   

INTRODUCTION TO TYPE 2 DIABETES AND THE VALUE OF 

BEING ABLE TO ASSESS INDIVIDUAL RISK OF IMPORTANT 

OUTCOMES 
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1.1 Introduction 

 

This chapter introduces the disease of interest in this thesis, type 2 diabetes, and the rationale 

for developing diabetes-specific multivariate models to predict the risk of several important 

outcomes in this population. 

 

 

1.2 Type 2 diabetes 

 

Diabetes mellitus is a metabolic disorder of multiple aetiology characterised by chronic 

hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from 

defects in insulin secretion, insulin action, or both. (1) It may be diagnosed as a result of 

screening or the investigation of symptoms such as increased thirst, urine volume, weight loss 

or recurrent infections. The testing process and cutoff values recommended for diagnosis have 

changed over time: one or more blood glucose measurements and oral glucose tolerance test 

alone were recommended until 2011, when glycated haemoglobin (HbA1C), a measure of 

average blood glucose levels over 2-3 months, was included as a method of diagnosis. (2, 3) 

The two most common categories of diabetes are type 1 and type 2. Type 2 is more prevalent 

and is caused by a combination of resistance to insulin action and impaired insulin response. 

(4) As there may be no overt symptoms after onset, it can be present for a number of years 

before it is diagnosed, and once diagnosed it is usually present for the remainder of the 

person’s life. (5) It is also relatively common and incidence and prevalence is increasing in 

countries like the UK.  (6-8)  
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Primary care is central to the management of type 2 diabetes in the UK, and there have been 

national standards of care for people with diabetes since the early 1990s (9, 10) The public 

health and clinical importance of this disease in the UK is evident in the range of diabetes 

related guidelines on its management, the management of related risk factors, and the 

remuneration offered for good quality management in primary care. (11-16) 

Type 2 diabetes, and diabetes in general, is associated with an increased risk of fatal and non-

fatal outcomes over the person’s lifetime, including damage to the eyes, kidneys, nerves, 

heart, and blood vessels. (17-22) These outcomes are costly both to individuals and to health 

services. There are known risk factors associated with these adverse outcomes, including 

blood glucose control, blood pressure, cholesterol, obesity, and smoking which can be 

modified by lifestyle changes and medical management. (23-35) 

Although nephropathy and subsequent chronic kidney disease is a microvascular complication 

of diabetes, the main risks considered in this thesis are macrovascular, that is, the increased 

risk of coronary heart disease, stroke and death that results from atherosclerosis. (17-22) 

Other diabetic-related microvascular diseases such as retinopathy and neuropathy are not 

considered here. 
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1.3 The value of being able to assess risk in a clinical setting 

 

As described in the previous section, some CVD and CKD risks are modifiable or at least the 

rate of decline in function can be reduced by appropriate treatment.  For the most part, these 

are the same risk factors that influence risk in the general population: smoking; blood 

pressure, lipid levels and obesity. (36-38) For people with diabetes, there can be additional 

predictors of risk, including poor blood glucose control. (39) Early intervention that targets 

these individual factors may reduce the risk of serious outcomes like CVD and CKD by 

delaying or preventing their occurrence. 

It may also be a better approach to assess risk factors in combination than in isolation, that is, 

to combine them into a single estimate of risk on which to base treatment decisions. There is 

evidence that blood pressure lowering and statin treatment are beneficial to people with low- 

and high cardiovascular risk (40-42), and that the benefits of treatment are proportional to 

risk. (43)  

Unlike the individual risk assessment, suggested above, risk prediction models can be used to 

assess whole populations, for example in a single general practice, quickly and in a standard 

manner. (38) This cannot be done so easily by individual clinicians, particularly as these risks 

may not be present at the point of diagnosis of diabetes, but may only become clinically 

significant at a later date. 

When applied to whole populations, the use of risk prediction models can help to allocate 

resources to those most likely to benefit as the benefits of treatment are proportional to 

baseline risk. (40-43) These models can stratify the population into groups with a similar level 

of risk and allow an appropriate intensity of treatment to be targeted to appropriate patients.   
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1.4 Why would you want to develop models specific to type 2 diabetes?  

 

The main benefit of developing diabetes-specific models is the ability to include predictors, 

like HbA1C, which are routinely available for this population and are known to have an impact 

on the risk of important outcomes. (39)This maximizes the applicability of these models to 

clinical practice. There are two additional reasons why this may be an appropriate approach to 

model development.  

Firstly, the effect of specific risk factors on risk may differ between diabetic and non-diabetic 

populations. Yudkin and colleagues developed separate models for people with and without 

diabetes based on data from the Framingham Heart Study. (44) The effect of smoking, BP and 

cholesterol on CHD risk differed in these two groups, suggesting that models which combine 

these two groups without including interactions between these risk factors and diabetes may 

result in models which predict risk in non-diabetic populations better than diabetic 

populations. Other analyses of UKPDS data, showed that there is an important distinction 

between age at diagnosis of diabetes and time since diagnosis, and that there is some evidence 

that diabetic dislipidaemia is quantitatively different from dislipidaemia in the general 

population. (45) 

Secondly, the risk of many outcomes is greater in people with diabetes than in the general 

population: 2- to 5-fold for stroke. (46) As patients at highest risk are likely to benefit most 

from intervention, it is therefore important to estimate risk in people with diabetes accurately. 

(43)   
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1.5 Summary 

 

This chapter presented the rationale for developing type 2 diabetes-specific risk prediction 

models. The next chapter describes the previous attempts to develop models that could be 

used in this population. 
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CHAPTER 2   

PREVIOUS ATTEMPTS TO PREDICT RISK  

IN PEOPLE WITH TYPE 2 DIABETES 
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2.1 Introduction 

 

As indicated in the previous chapter, this thesis focuses on the risk of CVD (separately as 

CHD and stroke), CKD and all-cause mortality following a diagnosis of type 2 diabetes. This 

chapter introduces previous models which could be used predict these outcomes. These were 

identified in a rapid review of models published between 1991 and 2012. (47) The models 

presented for CVD and mortality are specific to type 2 diabetes as a large number of examples 

were identified: the models for remaining outcome, CKD, predict risk in the general 

population and make some adjustment for the presence of diabetes as an additional 

independent risk factor. The features of these models are also described: what predictors they 

include and how specific these are to diabetes. The last section describes the range of risk 

factors that should be included in any new models, and the design and methodological 

limitations of existing models. 
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2.2 Rapid review of risk models for CVD, CKD and all-cause mortality 

 

Abstract: To identify all papers that presented a CVD (i.e. CHD or stroke), CKD, or all cause 

mortality prediction model developed in patients with diabetes or that could be applied to 

individuals with type 2 diabetes. 

Methods: Separate online PubMed searches for each outcome of interest 

(http://www.ncbi.nlm.nih.gov/pubmed). A detailed description of the search and selection 

process can be found in appendix 2.1. As there was a recent review of CVD prediction models 

in patients with type 2 diabetes (48), the PubMed search was restricted to the period 1/4/2011-

31/12/2012 to identify any additional studies published since this review. The search period 

for the remaining two outcomes was from 1/1/1991-31/12/2012. In summary, the titles, 

abstracts and full-text of the publications were reviewed to identify eligible models. The 

eligibility criteria for prediction models were as follows:  (a) The prediction model was either 

developed in people with diabetes or included diabetes as a predictor. (b) The outcome of the 

prediction model was CVD or CKD or a CVD/CKD component (i.e., CHD, stroke, end stage 

renal failure, kidney dialysis, kidney transplant), or all-cause mortality. (c) It presented a 

specific prediction rule/model with sufficient information on all variables to calculate the 

CVD, CKD risk or in a different population (beta coefficients of the model or otherwise a 

scoring system/graph/score card/nomogram was provided). Additional papers were then 

identified by reviewing the additional articles associated with studies which met the eligibility 

criteria on the PubMed website. 
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Results: Four systematic reviews were known prior to running the PubMed searches. (48-51) 

A total of 12 models that predicted the risk of incident CVD were identified by the rapid 

review or from these systematic reviews. Ten models which predicted the risk of incident 

CKD in the wider population were identified, but none that predicted the risk of incident CKD 

specifically. Six diabetes-specific models that predicted the risk of all-cause mortality were 

identified. These results and the characteristics of the prediction models are described in more 

detail in the remainder of this chapter. 
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2.3 Previous risk models for CVD, CKD and all-cause mortality 

 

This section introduces the existing risk models for CVD CKD, and all-cause mortality that 

are applicable to people with newly-diagnosed type 2 diabetes. The searches were restricted to 

models which were developed using people with diabetes, and to incident disease, where 

possible. This was possible with CVD and all-cause mortality, but not CKD as no diabetes-

specific models of incident CKD were available for inclusion. The models identified for each 

of the outcomes of interest are described separately, below, and their details are listed in 

tables 2.1 to 2.3. 

 

2.3.1 CVD models:  specific outcomes reported and populations included in 

development 

 

Twelve models that predicted the risk of incident CVD in people with diabetes were identified 

from the literature and are listed in table 2.1. (44-46, 52-60)  Five of these predicted CVD risk 

as their main or only outcome (52-56), five predicted CHD risk alone or in combination with 

CVD as separate outcomes (44, 45, 57, 59, 60), and two predicted the risk of stroke with no 

other outcomes (46, 58).  Three were exclusively UK-based (45, 46, 59): two used data from 

the UKPDS (45, 46) and one from a regional diabetes register in Scotland (59). Of the 

remaining community-based models: three were derived from US populations (44, 52, 60), 

two from Hong Kong (57, 58), and one each from New Zealand,  Austria and Sweden (54-

56). The final model was based on participants in a multi-country drug trial (53). The number 

of outcomes observed was not reported for the two earliest models (44, 45): the remaining 
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observed approximately 200 to 500 outcomes (46, 52-60), and two reported more than 1000 

outcomes (1482 and 6479) (55, 56). Overall, these CVD models were published at a rate of 

approximately one every two years, suggesting that there has been an ongoing interest in the 

prediction of CVD in people with diabetes over the past two decades (1991-2013). 

For completeness, four additional models which predict risk in the general population were 

reviewed to identify how they adjusted for the presence of diabetes in their respective model: 

Framingham, Assign and QRisk and PROCAM. (61-65) In each of these models diabetes was 

entered as a single covariate, effectively as a single adjustment to the overall predicted risk. 

This did not allow the risk of other outcomes to vary between diabetic and non-diabetic 

people, but assumed that the level of factors like age, blood pressure and cholesterol 

influenced CVD risk in the same manner in both groups. As described in the last section, this 

may not be a safe assumption. 

 

2.3.2 CKD models: populations included in development 

 

No previous diabetes-specific models that predicted the risk of incident CKD (CKD Stage 2-

5: eGFR<60 mls/min/1.73m
2
) were identified from the literature. One model was identified 

which predicted the risk of later stages of CKD in people with diabetes, but was not included 

here as it did not also predict earlier CKD stages. (66)  Nine models which predicted the risk 

of incident CKD in the wider population were identified from the literature and are listed in 

table 2.2.(67-75) One of these also predicted end-stage renal failure. (71) Only one of the 

models, based on general practices contributing to the QResearch database was UK-based 

(71): of the remaining community-based models, five were derived from US populations (of 
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which two were from separate hypertension registries) (67, 69, 72, 74, 75), two were from 

Holland (68, 70), and a further one each was derived from a Taiwanese population (73). Most 

models reported between approximately 200 and 2000 observed outcomes (67-70, 73-75), one 

reported 5236 (72), and the largest, based again on the QResearch general practice database, 

reported in excess of 25000 (71). Although the literature search included studies from 1991, 

the earliest study identified was published in 2004. (75) Seven of the nine models were 

published in the two years between 2010 and 2012 (67-73), demonstrating an increased 

interest in the prediction of CKD in recent years. 

 

2.3.3 All-cause mortality models: populations included in development 

 

Six diabetes-specific models that predicted the risk of all-cause mortality were identified from 

the literature. (76-81) These are listed in table 2.3. Three were derived from UK-based 

community populations (the UKPDS, general practices contributing to the GPRD database 

and patients referred to a diabetes service in one location in England). (79-81) Of the 

remaining community-based models, one was from Denmark and one was from Hong Kong. 

(76, 77) The final model was based on a trial population with high CVD risk. (78) The 

UKPDS and clinical trial papers did not report the numbers of deaths that it observed: the 

remaining four models observed either approximately 500 or 2000 deaths (table 2.3). Five of 

the six models were published since 2010. The first, the UKPDS-based model, was published 

about six years earlier, in 2004. The lack of diabetes-specific models identified in the 

intervening years does not suggest that publications have been missed by the literature search. 

Rather, it appears that all-cause mortality does not receive the same amount of interest as 
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other diabetes outcomes like CVD. The UKPDS model was just one of a set of outcome 

models that resulted from this study. (81) The authors of four of the five models since the 

UKPDS publication were specifically interested in the effect of HbA1C on mortality, rather 

than developing a model to predict mortality in a clinical setting, and included the other 

predictors in an attempt to control for confounding. (76-78, 80)  



 

 

Table 2.1 Previous CVD models (individuals with diabetes) 

Lead author 

(reference) 

Year of publication 

(study dates) 

Study population Outcome Sample 

size 

No. of 

events 

Predictors in the model 

Mukamal  (52) 2013 (1989-1999) Patients with diabetes >=65 years from the 
CHS cohort study, three USA regions 

Incident CVD 782  265 Age, smoking status, systolic BP, total cholesterol, HDL 
cholesterol, creatinine, oral/insulin treatment, C-reactive protein, 

LVH on ECG, ankle–brachial index, internal carotid intima–media 

thickness 
Kengne  (53) 2011 (2001-2008) Individuals with type 2 diabetes from 20-

country trial (ADVANCE) (perindopril-

indapamide), aged 55 years or over 

Incident CVD 7168  473 Age at diagnosis, duration of diabetes, sex, pulse pressure, treated 

hypertension, atrial fibrillation, retinopathy, HbA1C, urinary 

albumin/creatinine ratio, non-HDL cholesterol 

Davis  (54) 2010 (1993-1998) Individuals with type 2 diabetes from 

cohort study, Australia 

Incident CVD 1240  185 Age, sex, prior CVD, albumin:creatinine ratio, HbA1C, HDL 

cholesterol, ethnicity 

Elley (55) 2010 (2000-2008) Individuals with type 2 diabetes from 
cohort study (DCS), New Zealand 

Incident CVD  36127  6479 Age at diagnosis, diabetes duration, sex, systolic BP, smoking, 
total:HDL cholesterol ratio, ethnicity, HbA1C, albumin:creatinine 

ratio 

Cederholm (56) 2008 (1998-2003) Individuals with type 2 diabetes from 

national register, aged 18-70, Sweden 

Incident CVD 11646  1482 Age at diagnosis, diabetes duration, sex, smoking, BMI, HbA1C, 

systolic BP, antihypertensive drug use lipid-lowering drug use 

Yang (57) 2008 (1995-2005) Individuals with type 2 diabetes from 

diabetes registry, free of heart failure, 
Hong Kong 

Incident CHD 3521  181 Age, diabetes duration, sex, smoking, eGFR, albumin:creatinine 

ratio, non-HDL cholesterol, total:HDL cholesterol ratio, HbA1C, 
Systolic BP 

Yang  (58) 2007 (1995-2005) Individuals with type 2 diabetes from 
diabetes registry, Hong Kong 

Incident stroke 3668  190 Age, HbA1C,  albumin:creatinine ratio, CHD 

Donnan  (59) 2006 (1995-2004) Individuals with type 2 diabetes and 

complete data from regional register 

(DARTS), Scotland 

Incident CHD 4569  243 Age at diagnosis, duration of diabetes, HbA1C, smoking, sex, 

systolic BP, treated hypertension, total cholesterol, height 

Folsom (60) 2003 (1987-1998) Individuals with diabetes in cohort study 

(ARIC), aged 45-64 years, from four 

communities in USA 

Incident CHD 1500  257 Age, race, smoking, total cholesterol, HDL cholesterol, systolic BP, 

use of antihypertensives, smoking status. BMI, waist:hip ratio, heart 

rate, physical activity, FEV, Keys score, tobacco pack-years, 
creatinine, albumin, factor VII, WBC, LVH, carotid IMTfactor 

VIII, von Willebrand factor 

Kothari (46) 2002 (1977-NR) Individuals with incident type 2 diabetes 

in cohort study (UKPDS), aged 25-65, 
without recent or multiple CHD events, 

UK 

Incident stroke 4549  188 Age at diagnosis, duration of diabetes, sex, smoking, systolic BP, 

total:HDL cholesterol ratio, atrial fibrilation 

Stevens (45) 2001 (1977-NR) Individuals with incident type 2 diabetes 

in cohort study (UKPDS), aged 25-65, 

with no recent history of CHD, UK 

Incident CHD 4540  NR Age at diagnosis, sex, ethnicity, smoking, HbA1C, systolic BP, 

total:HDL cholesterol ratio 

Yudkin (44) 1999 (NR) Individuals with diabetes from 11 cohort 

studies, USA 

Incident CHD NR 

(<2138) 

NR Age, sex, smoking, microalbuminuria, total:HDL cholesterol ratio 



 

 

Table 2.2 Previous CKD models (wider population and predict future risk of, not prevalent CKD) 

Lead author 

(reference) 

Year of 

publication 
(study dates) 

Study population Outcome Sample size Number 

of events 

Predictors in the model 

O'Seaghdha (67) 2012  

(1995-2008) 

Framingham Heart Study participants Incident CKD 2490 229 Age, diabetes, hypertension, baseline estimated glomerular filtration rate, 

albuminuria 

Alssema (68) 2012  

(1989-2005) 

Three population-based cohort studies 

from the Netherlands, aged 28-85 
years, no type 2 diabetes, CVD 

Incident CKD 6780 22% Age, smoking, use of antihypertensives, use of lipid-lowering drugs, BMI, waist 

circumference, family history <65 years of MI/stroke, family history diabetes, 
history of gestational diabetes 

Hanratty (69) 2011  

(2000-2007) 

Hypertension disease registry at 

Kaiser Permanente USA 

Incident CKD 43,305 5236 Age, gender, race/ethnicity, baseline eGFR, baseline and time-varying SBP, HDL 

cholesterol, BMI, diabetes, CHD, CVD, heart failure, PVD 

Halbesma (70) 2011  

(1997-2006) 

PREVEND observational cohort study 

participants, Netherlands 

Incident CKD with 

highest quintile in 
decline in renal 

function 

6809 272 Baseline eGFR, age, urinary albumin excretion, systolic BP, C-reactive protein, and 

known hypertension (diabetes was included in an early version of the model) 

Hippisley-Cox 

(71) 

2010  

(2002-2008) 

QResearch UK general practice 

database 

Incident moderate-

severe CKD. 
Incident end-stage 

kidney disease 

1574749 25320 Age, ethnicity, deprivation, smoking, BMI, systolic blood pressure, diabetes, 

rheumatoid arthritis, cardiovascular disease, treated hypertension, congestive cardiac 
failure, PVD, NSAID use, family history of kidney disease, systemic lupus 

erythematosis, kidney stones 

Hanratty (72) 2010  

(2000-2006) 

Hypertension disease registry, 

Colorado, USA 

Incident CKD 10420 429 Age, sex, race/ethnicity, marital status, language, diabetes, vascular disease, heart 

failure, dyslipidaemia, major psychiatric diagnosis, substance abuse, baseline eGFR 

Chien (73) 2010  
(2003-2009) 

Prospective cohort study, Taiwan Incident CKD 5168 190 Age, BMI, diastolic BP, type 2 diabetes, stroke, postprandial glucose, HbA1C, 
proteinuria, uric acid 

Kshirsagar (74) 2008  

(1987-2003) 

Two community-based cohort studies 

(ARIC, CHS), USA 

Incident CKD 14155 1605 Age, sex, race/ethnicity, anaemia, CVD, diabetes, heart failure, PVD, HDL 

cholesterol 

Fox (75) 2004  

(1978-2001) 

Framingham Heart Study participants Incident CKD 2585 244 Age, sex, baseline eGFR, BMI, smoking, diabetes, systolic BP, hypertension, 

hypertension treatment, total cholesterol, HDL cholesterol, impaired fasting glucose 

 



 

 

Table 2.3 Previous all-cause mortality models (individuals with diabetes) 

Lead author (reference) Year of publication 

(study dates) 

Study population Outcome Sample 

size 

Number of 

events 

Predictors in the model 

Xu (76) 2013 (1998-2009) Diabetic cases from Elderly 
Health Service cohort study 

(age>=65 years), Hong Kong 

All-cause mortality. 
CVD-, CHD- and 

stroke-specific 

mortality 

2137  540 Age, sex, education, smoking, alcohol use, exercise, cardiovascular 
disease history, BMI, total cholesterol, HbA1C 

Skriver  (77) 2012 (2001-2005) Individuals with type 2 

diabetes from single region 

in Denmark 

All-cause mortality 17760  1859 Age, sex, diabetes duration, mean annual HbA1C at baseline, CVD, 

arteriosclerosis, acute complication of diabetes, retinopathy, 

nephropathy, MI, stroke, neuropathy 

Andersson (78) 2012 (2003-2009) Secondary analysis of 

overweight/obese/high CVD 
risk individuals with type 2 

diabetes from SCOUT trial, 

16 countries 

All-cause mortality 7479  NR Age, sex, randomised treatment assignment (sibutramine), diabetes 

duration, history of arterial hypertension, history of congestive heart 
failure, history of cardiovascular disease, history of revascularisation, 

ethnicity, tobacco use, systolic and diastolic blood pressure, heart rate, 

HbA1C, BMI, HDL cholesterol, LDL cholesterol, urine 
albumin/creatinine ratio and use of insulin, metformin, 

thiazolidinediones and sulfonylureas 

Kerr (79) 2011 (1999-2007) Patients referred to type 2 

diabetes service, 
Bournemouth, UK 

All-cause mortality 3781  579 Age, sex, year of diagnosis, HbA1C at 3 months, systolic BP, smoking 

Currie (80) 2010 (1986-2008) GPRD patients with type 2 

diabetes, whose treatment 

was changed to combination 
therapy or insulin and were 

aged 50 years or over 

All-cause mortality 27965  2035 Age, sex, smoking status, cohort (combination therapy or insulin 

initiated), HbA1C, mean total cholesterol, LVD, Charlson Index 

Clarke (81) 2004 (1977-1989) Patients from the UK 

Prospective Diabetes Study, 

newly diagnosed with type 2 
diabetes, aged 25-65 years 

  3642  NR Age, sex, smoking status, HbA1C, total:hdl cholesterol ratio, MI, renal 

failure, amputation 
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2.3.4 Published systematic reviews of CVD and CKD risk models 

 

Four systematic reviews of models used to predict the risk of CVD and CKD were identified: 

the CVD reviews included models which were either specific to diabetes or designed for the 

general population, but included the presence of diabetes as a predictor. (48, 49)  

The CKD model reviews had a wider scope than was required for this thesis. They aimed to 

identify all CKD models applicable to the general population, including those which did not 

list diabetes as a predictor and those which predicted the presence of undiagnosed CKD as 

well as the risk of future CKD. (50, 51)   

The review led by Echouffo-Tcheugui (51) was more optimistic about model quality than that 

led by Collins (50): it focused on the outcome measures reported and suggested that the use of 

predictive models in nephrology was not as well established as it is in other clinical areas. The 

Collins review was more methodological in its critique of the models and found that they 

were often developed using inappropriate methods and were generally poorly reported. 

Collins went on to recommend appropriate approaches to the development and validation of 

prediction models. These are applicable to all prediction models: basing the models on data of 

appropriate quality; selecting predictors based on the literature and clinical guidelines; 

handling missing data and continuous covariates appropriately; internal validation using 

bootstrapping rather than splitting a ‘non-massive’ dataset into two halves (and using the 

second half for validation); and reporting methods and results appropriately. Both of the CKD 

model reviews highlighted the need to externally validate risk prediction models.  Collins also 

pointed out one QResearch paper as an example of good reporting and mentions the 
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validation of the two models reported in this paper in a second large general practice database. 

(71)  

However, both internal and external validation using routinely collected electronic patient 

records rely on the same kind of data that were used to develop these prediction models. The 

predictors and outcomes recorded in routine general practice and used in model development 

are likely to be affected by the same recording bias as routine GP records from any other 

source. These sources are, therefore, too similar to the data used in model development to 

allow their true predictive ability in a clinical setting to be assessed. A more realistic approach 

to the validation of these models for use in clinical settings would be a prospective clinical 

study where the model was used to identify those at high and low risk. The predicted and 

actual level of risk could be compared using data collected from patients participating in the 

study. Any under- or over-estimation of risk could be assessed by prospective data collection 

using linked data from primary and secondary care, death certification and disease-specific 

registries, as appropriate. 
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2.4 What factors do the existing models identify as predictive of the risk of 

CVD, CKD and death? 

 

This section identifies the risk factors that should be included in future models that predict the 

risk of CVD, CKD and mortality in people with type 2 diabetes based on the covariates 

included in previous models. 

 

2.4.1 CVD  

 

Twelve models were developed to predict CVD risk in people with diabetes: some are single 

models which predict overall CVD risk and some are specific to CHD and stroke. (44-46, 52-

60) These models are listed in table 2.1. Table 2.4 provides an overview of the variables 

included in each model. The most common single risk factor was current age/age at diagnosis 

(12 models): this included duration of diabetes in six of the models. The most common group 

of risk factors included were blood test results: cholesterol values (10 models); 

albumin/creatinine/eGFR (9); HbA1C (8); microalbuminuria (1); C-reactive protein (1); and 

carotid IMT factor VII/ factor VII/Von Willebrand factor and WBC count (all mentioned in a 

single model). The next most common single risk factor was smoking (9 models), followed by 

demographic factors: sex (9 models) and ethnicity/race (4).  Systolic BP was included in 8 

models, with pulse pressure, heart rate and ankle-brachial index included in one model each. 

BMI, waist:hip ratio and height appeared in four models. Current drug treatments were 

included in several models: antihypertensives (4 models); oral/insulin treatment (1); and lipid-

lowering drugs (1). The last group of risk factors consisted of comorbidities at baseline: atrial 
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fibrillation (2 models); left ventricular hypertrophy (2); prior CVD event (1); and CHD (1). 

The last two single risk factors were forced expiratory volume (FEV) and Keys score (lipid 

content of diet), each of which appeared in a single model. 

 



 

 

Table 2.4 Variables included in previous CVD models (individuals with diabetes) 

 Mukamal  

(52) 

Kengne  

(53) 

Davis  

(54) 

Elley 

(55) 

Cederholm 

(56) 

Yang 

(57) 

Yang  

(58) 

Donnan  

(59) 

Folsom 

(60) 

Kothari 

(46) 

Stevens 

(45) 

Yudkin 

(44) 

Age, age at diagnosis, diabetes duration X X X X X X X X X X X X 

Blood/ urine test results 

(cholesterol, albumin, creatinine, eGFR, HbA1C, 

microalbuminuria,  C-reactive protein, carotid IMT factor 
VII/ factor VII/Von Willebrand factor,  WBC count) 

X X X X X X X X X X X X 

Smoking X 
  

X X X  X X X X X 

Sex 
 

X X X X X  X  X X X 

Ethnicity/race 
  

X X 
  

  X  X  

Systolic BP, pulse pressure, heart rate or ankle-brachial index X X 
 

X 
 

X  X X X X  

BMI, waist:hip ratio or height 
    

X 
 

 X X    

Current drug treatment  

(antihypertensives, oral antidiabetic / insulin, lipid lowering) 
X X 

  
X 

 
 X X    

Comorbidity 

(atrial fibrillation, left ventricular hypertrophy, prior CVD 

event, CHD, retinopathy) 

X X X 
   

X X  X   

Forced expiratory volume, Keys score, physical activity 
      

  X    
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2.4.2 CKD 

 

Nine models that predicted the risk of future CKD in the general population are listed in table 

2.2. (67-75) Table 2.5 provides an overview of the variables included in each model. These 

included a covariate for diagnosed diabetes in their development (1 model) or in their final 

model (8), or for a history of gestational diabetes (1). Six of the models included measured 

blood pressure or diagnosed hypertension. The most common group of risk factors were blood 

test results: eGFR (5 models); uric acid/urinary albumin/proteinuria (5); cholesterol values/ 

diagnosed hypercholesterolaemia (4); HbA1C/glucose/impaired fasting glucose (3); and C-

reactive protein (1). Demographic variables were the next most common group of risk factors: 

age (all 9 models); sex (4); race/ethnicity/language (4); material deprivation (1); and marital 

status (1). BMI/waist measurement was included in five models and smoking status in three. 

Prior comorbidity was the next most common group of covariates: CVD, heart failure and 

PVD appeared in a model on three occasions each; and anaemia, kidney stones, substance 

abuse, major psychiatric disorder, systemic lupus erythematosis, and rheumatoid arthritis on 

one occasion each.  Drug treatments were also included in several models: antihypertensives 

(2 models); lipid-lowering drugs (1); and NSAID use (1). Family history was the last group of 

risk factors: family history of CVD, kidney disease and diabetes appeared on one occasion 

each. 



 

 

Table 2.5 Variables included in previous CKD models (wider population and predict future risk of, not prevalent CKD) 

 
O'Seaghdha 

(67) 

Alssema 

(68) 

Hanratty 

(69) 

Halbesma 

(70) 

Hippisley-

Cox (71) 

Hanratty 

(72) 

Chien 

(73) 

Kshirsagar 

(74) 

Fox 

(75) 

Diabetes as comorbidity or history of gestational diabetes 
X X X 

 
X X X X X 

Blood pressure or diagnosed hypertension 
X 

 
X X X 

 
X  X 

Blood/ urine test results 
(eGFR, uric acid, urinary albumin, proteinuria, 

cholesterol values or diagnosed hypercholesterolaemia, 

HbA1C, blood glucose, impaired fasting glucose, C-
reactive protein) 

X 
 

X X 
 

X X X X 

Age 
X X X X X X X X X 

Sex 

  
X 

  
X  X X 

Race, ethnicity or language 

  
X 

 
X X  X  

Material deprivation 

    
X 

 
   

Marital status 

     
X    

BMI or waist measurement 

 
X X 

 
X 

 
X  X 

Smoking status 
 

X 
  

X 
 

  X 

Comorbidity  

(CVD, heart failure, PVD, anaemia, kidney stones, 
substance abuse, major psychiatric disorder, systemic 

lupus erythematosis, rheumatoid arthritis) 

  
X 

 
X X X X  

Current drug treatment  

(antihypertensive,  lipid-lowering, NSAID)  
X 

  
X 

 
  X 

Family history (CVD, kidney disease, diabetes) 
 

X 
  

X 
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2.4.3 Mortality 

 

Six models that predicted the mortality risk in the people with diabetes are listed in table 2.2. 

(76-81) Table 2.6 provides an overview of the variables included in each model. Demographic 

variables were the most common group of risk factors included in these models: sex (6 

models); age (6); education (1); and ethnicity (1). All models include CVD as a comorbidity: 

other comorbidities were less commonly included: nephropathy (3 models); heart failure (2); 

amputation, retinopathy, history of arterial hypertension, arteriosclerosis, MI, stroke and 

revascularisation (1 model each). One model included a single covariate covering all acute 

diabetes-related complications and an overall comorbidity score (the Charlson Comorbidity 

Index). Diabetes-specific risk factors were the next most common group: HbA1C (all 6 

models); diabetes treatment type (3); diabetes duration (2); and year of diabetes diagnosis (1). 

Smoking status was the next most common single risk factor (5 models): BMI, another 

lifestyle-related risk factor, was included in just two models, and exercise and alcohol use 

were mentioned together in one further model. Cholesterol level was included in four models 

and blood pressure in two, and a history of arterial hypertension was included in one model. 

There was only one further blood result included in these models: urine albumin/creatinine 

ratio, which appeared in one model. 



 

 

Table 2.6 Variables included in previous all-cause mortality models (individuals with diabetes) 

 
Xu 

(76) 

Skriver  

(77) 

Andersson 

(78) 

Kerr 

(79) 

Currie 

(80) 

Clarke 

(81) 

Sex X X X X X X 

Age X X X X X X 

Education X 
     

Ethnicity 
  

X 
   

Comorbidities 
(CVD, nephropathy, heart failure, amputation, retinopathy, history of arterial 

hypertension, arteriosclerosis, MI, stroke, revascularisation, any acute 

diabetes-related comorbidity, Charlson Comorbidity Index) 

X X X 
 

X X 

HbA1C X X X X X X 

Diabetes treatment type 

  
X 

 
X X 

Diabetes duration, year of diabetes diagnosis 

 
X X X 

  

Smoking 
X 

 
X X X X 

BMI X 
 

X 
   

Exercise, alcohol use X 
     

Cholesterol level X 
 

X 
 

X X 

BP, heart rate 
  

X X 
  

Urine albumin/creatinine ratio 
  

X 
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2.5 What range of risk factors should be considered for use in future models 

that predict the risk of CVD, CKD and death in people with type 2 diabetes? 

 

The three groups of models identified in tables 2.1 to 2.3 can be used to estimate the risk of 

CVD, future CKD and mortality in people with diabetes. They vary in complexity, containing 

from four to 22 covariates. (58, 60, 78) . Some include risk factors which are not routinely 

recorded in primary care, even after a diagnosis of diabetes: lipid content of diet (which is 

also difficult to measure accurately) and von Willebrand factor, for example. (60) Others 

exclude risk factors which would be routinely recorded in primary care, particularly following 

a diagnosis of diabetes, and which are known to be associated with CVD, CKD and mortality 

risk: sex; systolic blood pressure; smoking status, and BMI, for example. (54, 58, 79)   

The variables included in the models above suggest that there is a wide set of potentially 

significant predictors that should be considered for inclusion in any new predictive model for 

these outcomes. These are the demographic, lifestyle, comorbidity, biochemical, treatment, 

and clinically observed risk factors that may be associated with each outcome. The minimum 

specification for any new model should, therefore, include relevant individual predictors from 

each group in this set and should be adequately powered to detect the effect of changes in 

their level on the outcome of interest. 
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2.6 Summary 

 

This chapter introduced existing models which predicted the risk of CVD, CKD and mortality 

which can be used following a diagnosis of type 2 diabetes. The CVD models which were 

developed for use with the general population did not include HbA1C, an important risk factor 

for the outcomes of interest, and by including the presence of diabetes as a single term in their 

models, without interaction terms with other covariates, made a strong assumption that the 

effect of diabetes is independent of other risk factors such as blood pressure, cholesterol and 

comorbidities at baseline. This would tend to limit their ability to accurately estimate risk in 

type 2 diabetes and their utility in UK primary care. Many of the models specific to diabetes 

have attempted to include data which would be routinely available in UK primary care and 

could, therefore, be used in clinical practice in this setting.  However, their utility in this 

setting is limited because they: excluded cases diagnosed at older ages and were based on BP- 

and cholesterol-untreated populations; included only cases with complete risk factors; and 

may not have had the power to detect the effect of important risk factors.  
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CHAPTER 3   

REASONS WHY YOU MIGHT WANT TO USE PRIMARY CARE 

DATA AS OPPOSED TO OTHER DATA SOURCES TO DEVELOP A 

PREDICTIVE MODEL 
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3.1 Introduction 

 

The last chapter introduced previous models that predicted the risk of CVD, CKD and death 

in people with diabetes. These models were derived from a variety of data sources including 

clinical trials, single and aggregated cohort studies, disease registers, and secondary and 

primary care. These data were also from a number of countries and refer to events that 

occurred over the past three decades. Few of these studies, taken individually, would therefore 

be regarded as automatically valid for use in the current UK population without further 

evaluation in this population. A hierarchy of evidence for statistical prediction models is 

suggested below.  It emphasises the importance of the representativeness of the population 

used for development and later external validation of models, rather than the meta-analyses 

and systematic reviews used to assess other types of research question.    

The utility of the possible sources of data for the prediction models of interest are discussed: 

the strengths and weaknesses of the alternatives and the selected data source (a large primary 

care database) are then compared.  
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3.2 Hierarchy of evidence for statistical prediction models 

 

This section suggests a hierarchy of evidence which can be used to assess the utility of 

various sources of data for use in the development of the statistical prediction models of 

interest in this study. These models will predict the risk of CHD, stroke, CKD and all-cause 

mortality in people with newly diagnosed type 2 diabetes, and are intended for use in the UK 

general practice population. 

The hierarchy of evidence for models which are intended to predict clinical outcomes differs 

from that required for other types of research question (e.g. the effectiveness of an 

intervention). (82) Merlin and colleagues did not specifically include statistical prediction 

models like those developed in the current study, but did provide a hierarchy for studies 

which aim to identify prognostic factors for disease outcomes. (82) They placed systematic 

reviews of prospective cohort studies at the top of the hierarchy, followed by all-or-none 

studies (a rare situation where all or none of the people with a risk factor experience the 

outcome of interest). This was followed in their hierarchy by secondary analysis of RCT data 

to identify prognostic factors, then retrospective cohort studies (like the current study), and 

finally case series or cohort studies of people at different stages of a disease.  

This hierarchy may be appropriate for studies which aim to identify common prognostic 

factors across a range of clinical settings, countries and time periods, but not those like the 

current study which aim to combine predictive factors into a single statistical model for use in 

a specific population. A more appropriate hierarchy for a statistical prediction model (based 

on the systematic review of CKD prediction models by Collins and colleagues (50)) might be:  
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1) analysis of large population representative of the population in which the model is to be 

applied with validation (in the population in which the model is to be applied); 

2) analysis of small population representative of the population in which the model is to be 

applied (with validation); 

3) analysis of a population less representative of the population in which the model is to be 

applied (with validation); and 

4) analysis of a population different from the population in which the model is to be applied 

(with or without validation). 

The most important features in this hierarchy are the use of a population that is representative 

of the target population for model development; the inclusion (for model development) of a 

population large enough to provide precise estimates of the value of each of the predictors of 

interest; and the additional step of model validation in the target population.  

The next section describes the utility of the available sources of data for use in the 

development of predictive models which are intended for use in current UK general practice.  
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3.3 The utility of prospectively collected data compared with routine data 

 

The possible sources of data for the development of the predictive models of interest in this 

study can be divided into two broad types: prospectively collected study data from trials and 

bespoke cohorts, and routine data from primary and secondary care and from disease 

registers. (82) The utility of these sources can be assessed by the availability and accuracy of 

outcome and predictor data, the features of the population that they cover (representativeness, 

duration of follow-up) and cost. 

Outcome ascertainment: The outcomes of interest in this study were CVD (CHD and 

stroke), CKD and all-cause mortality. Studies which collect data prospectively can be 

designed to ensure that outcomes such as CVD and CKD are collected in a consistent and 

complete manner. This is unlike routine data sources which rely on these kinds of outcomes 

being ascertained and recorded in a consistent manner by a potentially large set of clinicians, 

administrators or clinical coders. Mortality (the fact and date of death, rather than cause), 

however, may be better recorded in routine data, particularly in primary care because of the 

link to payment [section 4.6]. 

Completeness and accuracy of predictor variables: The predictors of interest in this study 

were demographic (age, sex, material deprivation), comorbidities (prior CVD and CKD), 

clinical measurements (BMI, BP, cholesterol, eGFR) and drug treatments (BP-lowering and 

lipid-lowering) as the predictive models were intended for use in UK general practice where 

these data are routinely recorded for all patients or as part of clinical care following a 

diagnosis of type 2 diabetes. (39, 83, 84) Other routine data sources (secondary care and 

diabetes registers) may not collect this full range of predictors (e.g. secondary care may only 
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collect data which are relevant to the reason for referral or hospital admission: diabetes 

registers may not have data on comorbidities at diabetes diagnosis). Unlike prospective 

studies which can arrange for these predictors to be assessed at the same time points and at 

relatively fixed intervals, these same predictors may be missing (not routinely recorded or not 

measured for a particular individual), or recorded at different intervals in routine data sources 

[section 7.5].  Further, the accuracy of measurement may also be greater in prospectively 

collected study data where measurement protocols can be standardised across study sites and 

individual investigators. Routinely recorded data, like BP or weight and height, may not have 

this level of consistency [section 6.6.6]. 

Population: The target population for the clinical predictions models in this study was 

current (numbering approximately 10000) UK general practices. (85) Both prospectively 

collected study data and routine data sources may not be representative of this population: 

prospectively collected study data may not be representative if they are based on data from a 

small set of study sites and secondary care data may only reflect those who were seen in 

hospital for the management of their diabetes or complications arising from it. Given the 

number of practices in the UK, even large primary care databases comprising of hundreds of 

practices may not necessarily be representative of all types of practice (e.g. single-handed), all 

geographical regions, and deprivation. (86) 

Cost versus sample size: In principal prospective studies can recruit similar numbers of cases 

for inclusion in prediction models as studies which use routine data. (87) The limiting factor 

is cost: the cost of data collection is relatively low with routine data (THIN contributing 

practices are provided training on the use of their practice software and some feedback on 

data quality), whereas prospective studies have an ongoing cost associated with collection of 

predictor data and outcomes for the entire duration of the study. 
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The remainder of this section focuses on specific examples of each type of data (prospective 

trial/cohort study data and routine data) which could be used to develop the prediction models 

of interest in this study. Examples are used from previous prediction models to illustrate the 

strengths and weakness of each source. Lastly, the strengths and weaknesses of large primary 

care databases (the source of data selected for this study) are discussed. 

Prospectively collected trial/cohort data: The UKPDS (88) was a data source for three of 

the models identified in the previous chapter (45, 46, 81). The design of this series of studies 

demonstrates how trial and prospective cohort data in general may not be a suitable source for 

the predictive models of interest in this thesis.  

 Long interval between study start and model development/publication: Diabetic 

complications can take many years to develop (45, 89) : this can introduce a delay of 

many years before a sufficient number of outcomes to power a multivariate prediction 

model have been observed. Similarly, if the intention is to develop a model which can 

predict the 5- or 10-year risk of an outcome, then a proportion of the study participants 

must be observed for close to 5 or 10 years. 

 Representativeness: These populations are not necessarily representative of the 

population which is the target for a predictive model. These differences may include the 

duration of diabetes, age at diagnosis, health status, case definition and risk management. 

(45)  

o The UKPDS trial population was limited to people aged 25-65 at diabetes 

diagnosis: this excluded approximately half of the incident type 2 diabetic 

population who were over 65 years at diagnosis. (6)  

o It also excluded people if they had recent or multiple CHD events: data from the 

cohort included in this thesis suggests that over 20% of UK primary care patients 
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have a history of CHD or stroke at diagnosis of type 2 diabetes (table 7.5).  The 

UKPDS prediction models could not, therefore, reliably be used to predict risk in 

this group of patients.  

o The trial also recruited participants from 1977 to 1991, before statins, which 

reduce the risk of CVD when used in primary prevention, were in widespread use 

(fewer than 7000 general practice patients in England were prescribed a statin in 

1991 (90)), and did not include any adjustment for exposure to this or other drugs 

which can reduce the risk of CVD, in particular blood-pressure lowering drugs and 

antiplatelet agents (45, 46, 81).  

Routine data:  Routine data refers to data which have been collected (prospectively) for other 

purposes (usually as part of clinical care) and which are later analysed to answer a research 

question. (91) The possible sources of data for predictive models considered here are 

secondary care data, diabetes registers and primary care data. 

 Secondary care data: Type 2 diabetes mellitus is usually diagnosed and managed in 

primary care in the UK, rather than secondary care. (92-94) Secondary care data on 

patients with diabetes is therefore likely to be restricted to patients who were referred to a 

diabetologist for a particular reason or admitted as an inpatient, and the data items 

collected in secondary care are likely to be relevant to the reason for referral or admission. 

(95) Other secondary care models, like that produced by Kerr (based on data from local 

secondary care led diabetes services data alone) may not reflect the general practice 

population which would be the target for diabetes-specific predictive models. (79) 

 Diabetes registers: Diabetes registers, an example of a disease-specific register, cover 

only relatively small geographic areas in the UK, unlike cancer registries which have 

national coverage and are relatively few in number. (96, 97) The relationship between the 
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risk factors and outcomes may differ from other areas. (86) The health services in these 

areas may also differ from those provided nationally: the presence of a register may result 

in greater contact between primary and secondary services, and the linked registry data 

may be used to improve patient outcomes as well as for research. (98) These may limit the 

representativeness of such diabetes registers as data sources for models which are 

intended for use across the national population. (59) 

 General practice data: If predictive models for CVD, CKD and mortality are to be used 

in a UK primary care setting by GPs, then there are particular advantages to using primary 

care patient records as the main or only source of data: these range from the availability of 

data on risk factors, the applicability of these data to the current population, where the 

models are most likely to be used, and the relevance of the risk factors to clinicians 

working in primary care. (38) There are also weaknesses to these data, only some of 

which can be addressed using appropriate statistical methods. (99) On balance, compared 

with the alternative sources of data and their own strengths and weaknesses, routine 

records from primary care appears to be an acceptable source of data for the prediction 

models of interest in this study. They have specific advantages over alternative sources  

Advantages:  

o Primary care is central to the management of type 2 diabetes. (92-94) 

o There is an increased level of contact and risk factor recording in primary care 

following diagnosis. (12, 13, 84) 

o This increased monitoring and management can provide suitable data for 

prognostic models. (12, 13, 37, 39, 89, 100) 

o Retrospective cohort studies can be carried out in primary care databases which 

include in excess of 500 practices from the UK. (64, 71, 101, 102) This avoids the 
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need for primary data collection from individual practices, and reduces the time 

taken to produce these models. This is particularly relevant for the current study 

which is taking place in the context of a PhD. 

o The effect of new risk factors can be explored if they are routinely recorded in 

general practice: these patient records contain a wider range of health-related 

information than that collected by disease-specific registers and hospital-based 

services. (96, 103) Primary data collected from general practices or other sources 

are usually restricted to a set of predictors identified as relevant at the outset. (104, 

105) Some primary care database owners provide researchers with the full 

electronic patient record for cases of interest (THIN and CPRD, but not 

QResearch): this allows researchers using these data sources to assess the value of 

additional predictors or explain any unexpected results using additional clinical 

data about each case. 

o The data used to develop these models can be more recent, increasing their 

applicability to the current population with diabetes. This is because the three main 

GP databases receive regular data updates from participating general practices. 

(106-108)  In the case of THIN, the gap between data extraction and data being 

ready for research use can be 5 months. (107) The data provided by the database 

owner for this study is no longer current (it dates from 2005), but the same 

modelling can be rerun in more recent data prior to publication to ensure the 

relevance of the prediction models and take advantage of linkage with secondary 

care sources and any improvements in the recording of predictors caused by the 

introduction of QOF. (63, 109) 
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o Clinicians will make decisions based on the data they have collected in routine 

primary care. (39)  

Disadvantages: 

o Large general practice databases may be representative of the wider population in 

terms of age and sex, but their representativeness may vary by region, and they 

may not reflect the full range of practices in the UK (each database contains 

approximately 500 practices (106-108): there are over 10000 practices in the UK 

(85)).  However, there are currently no other larger sources of primary care data, 

so these are the best available source of primary care data for prediction model 

development. Models derived from these sources can also be validated and revised 

using data from dissimilar sets of practices to ensure their representativeness. (64, 

71, 109, 110) 

o There can be wide variability between general practices in the coding and 

recording of the data needed to identify cases, outcomes and risk factors. (111) 

The introduction of QOF and incentives for recording the process of care after a 

diagnosis of diabetes will have led to more consistent recording of some of the 

clinical values of interest: this will benefit predictive models which use more 

recent data for development. (12) Variability in the coding of cardiovascular 

outcomes may lead to models which over or underestimate the risk of these 

outcomes. (112) 

o Clinical predictors such as cholesterol levels can be missing or not recorded for 

some cases close to the baseline (diabetes diagnosis) for the clinical prediction 

models of interest [section 6.6.6]. The exclusion of cases with incomplete risk 

factor data might lead to biased results or models which are not representative of 
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the population of interest [section 6.7.5]. (99, 113)  However there are appropriate 

statistical methods for dealing with these issues, such as the estimation of baseline 

values and multiple imputation [sections 6.6.7 and 6.7.5]. Multiple imputation of 

missing clinical measurements has been used in other clinical prediction models 

which are in current use in general practice and are therefore likely to be an 

acceptable method for dealing with missing data in this study. (64, 71) 

 

3.4 Summary 

 

Although there are alternative sources of data, routine data derived from large primary care 

databases appear to be an appropriate source of data to generate predictive models intended 

for use in UK primary care. The next chapter discusses the kind of information that UK 

primary care and large primary care databases contain with respect to diabetes and related 

outcomes. 
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CHAPTER 4   

INTRODUCTION TO PRIMARY CARE ELECTRONIC PATIENT 

RECORDS AND TO LARGE PRIMARY CARE DATABASES 
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4.1 Introduction 

 

This chapter introduces the electronic patient records held by primary care in the UK and the 

large primary care databases that are derived from them.  The purpose here is to describe how 

practices use their computer systems and the kinds of data that are entered, particularly with 

reference to the diagnosis and management of type 2 diabetes. The chapter then goes on to 

describe what data are available from the three main primary care databases currently 

operating in the UK. It ends by introducing published evidence on the validity of the 

diagnoses of interest in this thesis, namely diabetes, CVD and CKD, and their implications for 

the identification of primary care patients with these diagnoses. 
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4.2 How practices use their systems and the scope of data recorded by practices 

 

Practices with clinical computer systems typically use them in place of paper records during 

patient consultations. (12, 114) These systems allow the practice staff to review the details of 

each patient’s history and care, and to store new information on symptoms, diagnoses, test 

results, and prescribing. (103) They can also provide templates (allowing easy data entry) 

related to the periodic review of specific chronic conditions, e.g. diabetes. These serve as a 

reminder of the information that needs to be gathered during the consultation and past events 

related to that condition. (114) 

The extent to which individual practices make use of all the features of their system probably 

varies from individual clinician to individual clinician and, therefore, from practice to 

practice, depending on the level of experience of the individual members of staff. (115) It may 

not, therefore, be used to its full extent for some time after its installation in a practice.  
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4.3 What data are recorded specifically about diabetes, its management and 

diabetes-related outcomes and when are they recorded? 

 

The electronic patient records of patients with type 2 diabetes can also contain a record of the 

diagnosis and management of their diabetes, and the management of any associated risk 

factors, including relevant outcomes. (6, 12) If the diabetes is diagnosed after the patient 

registered at their practice, this can include information about the diagnosis itself: the date of 

diagnosis, blood glucose control (HbA1C) at diagnosis, and the results of any diagnostic tests. 

(6, 7) Other assessments may be carried out and recorded at this point in order to manage risk 

factors for microvascular and macrovascular complications of diabetes. (39) For CVD risk, 

for example, this would involve measuring blood pressure and BMI; identifying the patient’s 

smoking status; and requesting a blood test to measure cholesterol levels. (39) The initiation 

of drugs to manage diabetes and treat high levels of these risk factors, and subsequent 

prescriptions issued, are also recorded. (103) Blood glucose control, and the levels and 

management of other risk factors may be recorded periodically thereafter (annually or more 

frequently, if required), until the patient leaves their practice or dies. (83, 84, 89) 
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4.4 What are large primary care databases? 

 

Large GP databases are collections of electronic patient records extracted from individual 

general practices and have been used for a variety of research studies. (106, 107) The 

electronic records of individual patients consist of coded data [section 6.2 and table 6.1], and 

in the case of some databases, anonymised free-text recorded by the practice while the patient 

was registered with them. (103, 116)  The records of patients who have died or left each 

practice are also available to researchers, in addition to those who are still registered. There 

are currently three large GP databases in the UK which have been operating for a number of 

years: the General Practice Research database (GPRD), The Health Improvement Network 

(THIN), both based in London, and QResearch, based at the University of Nottingham. (106-

108) Each contains records from several hundred general practices. There are other smaller 

GP databases, such as DIN-LINK, and smaller regional databases such as the Consultations in 

Primary Care Archive (CiPCA) at the University of Keele (which is a subset of QResearch), 

but these are less widely used and are therefore not of primary concern to this thesis. (117, 

118) Any data or methodological issues arising from the use of these smaller databases are 

likely to be similar to those arising in larger databases, and so will not be addressed 

separately. 
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4.5 Which parts of the primary care electronic patient record are made 

available to researchers using large primary care databases? 

 

Typically, only data which are coded (i.e. Read coded symptom/diagnoses/process of care, 

and drugs prescribed) or are in numeric format (numeric observations, drug quantity 

prescribed) are extracted from GP systems and made available for use to researchers. (103) 

This is intended to preserve the anonymity of patients and practices, but as a consequence, 

some information which is recorded by clinical staff and available to them when they view a 

patient’s record, is not accessible to researchers.  

This includes any historical paper records received from practices where the patient was 

registered in the past, letters received from secondary care (often stored electronically as 

scanned files in the clinical computer system) and any free-text comments entered into the 

computer system during patient consultation. (103) These free-text comments can contain 

detail that is not coded by the practice (119-121) (personal experience of unanonymised free-

text while working as supplier of GPRD data). They often include additional observations or 

context explaining the significance of any diagnoses, plans for further investigations or 

treatments, and information gained from specialists, hospital discharge letters and results of 

diagnostic tests). (122-124) By its nature, free-text is a quicker and more flexible way for 

practices to enter data, and may provide more detail from consultations than is typically 

coded. (119) This can limit the ability of researchers to capture important events, like cause of 

death, and may lead to an underestimate of the frequency of important outcomes, for example 

myocardial infarction. (112) 
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4.6 The validity of primary care diagnoses and the recording of death 

 

Three systematic reviews on the validity of primary care data were identified by a literature 

search. (111, 125, 126) These reviewed studies which validated diagnoses recorded in one of 

the large UK general practice databases using: additional data recorded in the database; 

questionnaires sent to general practices; and comparisons with rates from external sources. 

With respect to the diagnoses of interest in this thesis, one of the reviews suggests that 

prevalent diabetes is well recorded (positive predictive value, PPV, over 90%), as is CVD 

(PPV > 90%). (111) None of these reviews reported finding evidence on the validity of CKD 

diagnoses [section 6.5.3]. Another of these reviews aggregated the individual study findings 

by broad disease group and found that a median 88% of cases with an endocrine, nutritional 

and metabolic diagnosis (e.g. diabetes) could be confirmed, and  85% of cardiovascular 

system diagnoses (e.g. CHD and stroke) could be confirmed. (126) The range for the 

proportion of diagnoses confirmed in the individual studies for the two groups above ranged 

from 50%-100%. (126) 

One 2005 paper reviewed the electronic patient records of 12 practices and found that less 

than 4% of patients with a recorded estimate of kidney function (eGFR) in the range for 

chronic kidney disease had a Read code that indicated that they had CKD. (122) This suggests 

that any attempt to identify CKD in primary care, especially in the period covered by the 

study (1998-2003: prior to the introduction of CKD as a QOF domain in 2006), should 

include estimated GFR in addition to Read coded records to identify patients with CKD.  

One study, based on approximately 500 general practices contributing to the QResearch 

database, estimated that about 1% of the UK population had biochemical evidence of diabetes 
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in their general practice, but were either undiagnosed or not recorded (i.e. coded) as having 

diabetes. (127) Two more recent and related studies on the validity of diabetes diagnoses 

recorded  in primary care suggest that approximately 85-90% of practice patients with one of 

a wide set of diagnostic Read codes for diabetes are true diabetes cases. (128, 129) One issue 

highlighted by them, and relevant to this thesis, is the miscoding of people with type 2 

diabetes using a code for type 1 diabetes. This suggests that any study seeking to identify 

general practice patients with type 2 diabetes should include diagnostic codes for type 1 

diabetes.  

Another study, carried out by this author, reviewed the unanonymised records of GPRD 

patients who had a diagnostic code for diabetes to develop a robust method for identifying 

cases of type 1 and type 2 diabetes. (7) We concluded that our case definition for prevalent 

diabetes mellitus should  include a wide set of codes which specified type 1 and 2 diabetes 

and unspecified diabetes mellitus, and exclude codes that specified other types of diabetes 

(gestational, drug-induced, and diabetes due to haemochromotosis). In addition we found that 

it would be necessary to exclude patients whose only mention of diabetes was within one year 

of a pregnancy in order to avoid including women with gestational diabetes only, and those 

who had a code for cystic fibrosis at any time, in order to avoid including non-type 1 and non-

type 2 cases of diabetes. This definition was validated in a subsequent study which identified 

incident cases of type 1 and type 2 diabetes, again using unanonymised GPRD records. (6) A 

stratified sample of 143 potential incident cases was reviewed by hand. Of these 12 (8%) had 

a free-text comment that indicated a new diagnosis and 115 (80%) had no evidence of 

diabetes monitoring or treatment prior to their first diagnostic code for diabetes and 13 (9%) 

were possibly or probably diagnosed in an earlier year. The remaining 3 cases (2%) had 

evidence that they were screened or had ‘borderline’ diabetes. The results of this validation 
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suggested that its method for identifying new cases of diabetes mellitus would include 89% 

who were newly diagnosed cases, 9% who were prevalent cases, and a further 2% who did 

not have diabetes. In order to decrease the risk of including patients without diabetes, we 

subsequently decided (in that study) to exclude patients with codes for other specified types of 

diabetes, e.g. diabetes due to haemochromatosis or malnutrition, and neonatal, secondary or 

‘latent’ diabetes and review by hand the records of all potential cases below the age of 25 who 

did not have evidence of diabetes-specific drug treatment. (6, 7) 

Death is an outcome of interest in this thesis and many studies, but as it is not a diagnosis was 

not included in the above systematic reviews. (111, 125, 126) A comparison of mortality in 

one large primary care database with national England & Wales data in 2001 found that 

overall GPRD mortality rates were within 5% of national rates, that cause of death could only 

be identified in 92% of their sample, and that cardiovascular deaths were probably 

underestimated in the available GP data (GPRD 33% of deaths; England & Wales 40%) 

(130). Therefore, it appears that the accuracy and completeness of cause of death available 

from these databases may not be sufficient for research use. However, the relative (all-cause) 

mortality of people with incident type 2 diabetes has specifically been addressed in a high 

impact journal, suggesting that the level of recording of this outcome in this population is 

acceptable for research use. (131) 
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4.7 Summary 

 

This chapter described the diabetes-related data that are available from primary care and large 

primary care databases. The data made available to researchers through these databases 

contain the coded portion of the full electronic patient record and typically exclude free-text 

that might confirm or refute the diagnoses and outcomes of interest in this thesis. However the 

validity of these diagnoses are likely to be sufficient to answer the research question posed in 

the next chapter, if appropriate definitions of incident diabetes are used and if mortality is 

restricted to all-cause rather than cause-specific deaths.  
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CHAPTER 5  RESEARCH QUESTION 
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5.1 Introduction 

 

This thesis will use a large UK general practice database to carry out a study on the 

epidemiology of type 2 diabetes mellitus. It will develop four separate statistical models 

which will predict the risk of coronary heart disease (CHD), stroke, chronic kidney disease 

(CKD), and all-cause mortality in the five years following diabetes diagnosis. 

 

5.2 Research question 

 

Can routinely collected primary care clinical data be used to predict future risk of CHD, 

stroke, CKD and/or all cause mortality in people with newly-diagnosed type 2 diabetes 

mellitus? 
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CHAPTER 6  METHODS 
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6.1. Introduction 

 

This chapter describes the methods used to develop the risk prediction models for CHD, 

stroke, CKD and all-cause mortality in newly diagnosed patients with type 2 diabetes. It 

begins with an introduction to the data source, the THIN primary care database. It then 

continues on to describe the criteria used to identify eligible practices and cases, the 

definitions of the outcomes of interest, and the methods used to identify baseline clinical 

characteristics and to estimate baseline clinical measurements. The development of the risk 

prediction models themselves is then described, including the approach to handling missing 

data. Finally, the methods used to assess the external and internal validity of the models are 

described. 
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6.2. Data source 

 

This study used electronic patient records from a single large UK primary care database, The 

Health Improvement Network database (THIN). (107) THIN began as a collaboration 

between In Practice Systems Ltd (InPS), the makers of Vision clinical software, and EPIC, 

the Epidemiology and Pharmacology Information Core. It began collecting data from UK 

general practices in 2002 (first collecting all available historical data from each practice and 

then by collecting periodic updates every few months). In common with similar large research 

databases (CPRD (formerly known as the GPRD) and QResearch), it maintains a database of 

anonymised patient records from about 500 voluntary participating practices which use a 

single clinical software system. (107) 

All practices that contribute to THIN use Vision which is a self contained clinical software 

system. (107) At the time of writing, approximately 1800 general practices in the UK use it to 

store and access the clinical records of their patients. It was gradually introduced from 1994 to 

replace the earlier VM practice software. In addition to storing clinical information entered by 

the practices, it is also used to manage scanned paper records from other sources such as 

letters from hospital, patient appointments, and to support clinical audit within the practices. 

Although other practices may use software from different suppliers, and patient data may be 

stored centrally by the system supplier, the use of the software, the way patient information is 

stored, and the functions provided by the systems are essentially the same whichever system 

is used. (114) 

In return for participation, all practices receive regular feedback on the quality and 

completeness of their data, summary reports which can be used for external and internal 
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audits, and free training on the use of their practice software or a payment based on their 

practice list size. (107) 

For the first ever collection, anonymised, coded clinical information is extracted from a tape 

backup of each practice system by InPS. (107) Practices then have the choice to continue with 

this extraction method, or, more recently, to install automated collection software on their 

system for each subsequent collection. These records are then passed to EPIC by InPS where 

they are checked and added to the existing THIN database. As practices do not make use of 

area-based data an additional automated matching exercise is carried out by InPS and 

participating practices periodically to link individual patients to indices of deprivation and 

environmental data such as air quality using their postcode. These data are then 

pseudoanonymised before transfer from each practice and passed to EPIC for inclusion in the 

database. Patients with invalid or missing postcodes cannot be linked to these external 

datasets, so this additional information will be missing from the THIN database. (103) 

A set of consistency checks is run by EPIC on each set of new data. (103) A flagging field is 

added to each demographic, clinical and prescribing event to indicate if it passed a check. In 

the case of demographic data, for example, the fields would show if a patient’s age lies 

outside an acceptable range, or if the recorded date for when they left the practice was before 

the date they first registered at the practice. However, as with other GP database suppliers, 

there is no attempt made to validate the clinical data in any other way that might be important 

for researchers: they do not apply any checks to ensure that clinical measurements fall within 

an acceptable range or identify implausible events for individual patients (e.g. women with a 

code for prostate cancer). (103, 106, 108) However, some clinical system suppliers do 

incorporate range checks for numerical data at the time the data are entered at the practice 
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(e.g. an attempt to enter an adult height outside the range 1-3 meters is queried before it is 

added to the patient record). (103, 106) 

Lastly, in order to ensure that no patient identifiable data is left in the record, the free-text 

comments field associated with each clinical event is filtered. (103) Only phrases which have 

been anonymised by EPIC are allowed to remain in the data that are released to researchers. 

These comments can be searched and anonymised by EPIC by hand if required for a 

particular study. 

Other than the addition of these extra flagging fields and the exclusion of patient identifiable 

comments, there are no modifications made to the data. (103) The data are provided to 

researchers as full, coded demographic, medical and prescription details at individual patient 

level (table 3.1). Within these electronic records, clinical data such as diagnoses are stored as 

5-byte Read-codes, drug prescriptions issued are stored using generic drug names, and clinical 

measurements and test results are linked to a coding system developed by InPS. 

During the period covered by this study, practices that contributed to THIN were similar to 

national practices in terms of age (table 6.2), mortality and patient turnover (table 6.3), but 

tended to be larger (table 6.4), and practices from deprived areas may have been 

underrepresented. (86) 
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Table 6.1 THIN data supplied to researchers 

 

1. Demographics (the PAT data table) 

 Dates patients registered at practices 

 Dates patients left practices 

 Patient registration status (temporary/permanent) 

 Year of birth 

 Gender 
 

THIN Data does not supply the following: name; exact address; exact date of birth; NHS number. 

 

2. Diagnoses  (the MED data table) 

 All conditions and symptoms entered on the practice computer during consultations between the 

GP and patient. Medical conditions are recorded using the Read Clinical Classification version 2. 

 Information on referrals to secondary care, including the specialty of the secondary care service. 

 Secondary care information and other related information received by the practice may be entered 

retrospectively, including: 

o Details on hospital admissions 

o Discharge medication and diagnosis 

o Outpatient consultation diagnosis 

o Investigation and treatment outcomes 
 

3. Prescribing (the THE data table) 

 The GP typically issues prescriptions to patients using their computer: prescribing is logged into 

the system automatically. The prescribing recorded in the computer logs the drug prescribed using 

the Multilex coding system, which automatically creates therapy records for THIN. 

 Acute treatments and medicines for a chronic condition can be temporally linked with a symptom 

or diagnosis although this is not comprehensive in THIN. 

 Details of prescriptions from ongoing outpatient specialist care or over-the-counter drugs may be 

summarised by the GP, but the degree of information depends on its direct relevance to the patient. 
 

4. Additional Health Information (the AHD data table) 

 Commentary from the GP entered into free text fields. This can sometimes contain confidential or 

identifying information: THIN checks and ensures these comments have been anonymised before 

release to researchers. 

 Information on lifestyle and health factors such as smoking and alcohol intake, where recorded by 

the practice. 

 Tests and laboratory results are also accessible. Currently (2011) about 75% of THIN practices are 

electronically linked to pathology laboratories and receive test results electronically.  
 

5. Socioeconomic data (the PVI data table) 

 The majority of patients are linked to postcode-based socioeconomic, ethnicity and environmental 

indicators, for example, Townsend quintile. 

 
Source: http://csdmruk.cegedim.com/our-data/data-content.shtml [accessed 6/11/2013] 

http://csdmruk.cegedim.com/our-data/data-content.shtml
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Table 6.2 Comparison of age distribution of THIN practices with all practices in 

England, 2004 

Age group England* THIN 

   

0 – 4 5% 5% 

5 – 14 12% 12% 

15 – 44 43% 42% 

45 – 64 24% 25% 

65 – 74 8% 8% 

75 – 84 6% 6% 

85 + 2% 2% 

   

Total 100% 100% 

*Source: National data for England from NHS Executive, 2004. 

 

Table 6.3 Comparison of practices contributing to THIN and national data: death rate 

and transfer out rate 

 
THIN National 

 

   

Crude death rate
1 10.3/1000 patients 10.2/1000 persons 

Proportion of patients 

transferring out each year 
7.5% (171160/2276866) 7.7% (3.5m/45m)

 2 

1 Region: UK. Source: Bourke A, Dattani H, Robinson M. Feasibility study and methodology to create a quality-evaluated 

database of primary care data. Informatics in Primary Care. 2004;12(3):171-7. 
2 Region: England. Note: does not include patients who were removed from their practice list following death. Source: 

http://www.connectingforhealth.nhs.uk/about/case/npfitstatus.pdf ( year not given). 
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Table 6.4 Comparison of THIN list size with QOF data for England, 2005 

 

Number of practices Median list size 

Interquartile range 

 Q1 Q3 

     

THIN 315 7185 4514 10106 

QOF* 8484 5396 3119 8259 

*Source: National data from Quality and Outcomes Framework for England, 2004/05. 

 

Table 6.5 Socioeconomic distribution of patients in THIN 

Townsend quintile 
Percentage of 

patients 

As a percentage of patients with known 

socioeconomic status 

   

1 (least deprived) 22 25 

2 19 21 

3 19 21 

4 17 19 

5 (most deprived) 12 13 

Not known 11 - 

Note: Townsend quintile is based on postcode of patient residence. Percentage of patients in each quintile would be 20% if THIN practices 

had same distribution as national practices. 
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6.3. Criteria used to identify eligible practices 

 

Individual THIN practices were eligible for inclusion in this study from one year after the date 

the Vision practice software was installed to ensure that the practice was using the system to 

its full extent. (109, 132) They were also required to have used the system for an additional 

two years following this in order to provide a total minimum duration of continuous clinical 

data of at least three years from each practice. The increased risk of death or diabetes 

complications may take several years to emerge following diagnosis, so a minimum 

observation period of two years (following the diagnosis of diabetes for each case) from each 

practice was believed to be an appropriate requirement. (133) 

Practices which were known to have gaps in their clinical data were also excluded. These 

issues were recorded by the database provider, EPIC, at the time of data collection (for 

example, the practice computer system was not functioning for a period of weeks, so patient 

care may not have been recorded electronically during this period). EPIC also supplied a date 

for each practice, before which each practice may not have routinely recorded patient deaths: 

this is known as the AMR (acceptable mortality recording) date. (132) 

  



 

62 

 

6.4. Criteria used to identify eligible cases 

 

Patients were eligible for inclusion as incident cases of type 2 diabetes if they were registered 

in their practice for at least one year prior to the first Read-coded mention of diabetes, and if 

the diagnosis took place during the study period (1998-2003). The Read codes used in this 

definition are listed in appendix 6. The code lists and case definition were originally 

developed for use in earlier studies [section 4.6]. These were updated to include more recent 

Read codes after consultation with medically qualified colleagues prior to their use in this 

study. Potential cases were excluded if they met any of the additional criteria, listed below.  

 

Exclusion criteria 

1. Diabetes Read-code with a missing date in the patient record: it is possible that the 

diagnosis occurred at some unknown time prior to the first diabetes code with a valid date. 

2. Patient’s practice had their Vision software installed less than one year before the first 

mention of diabetes: the practice may not have been using their computer system to its full 

extent and there may be missing data on other variables of interest. 

3. Women who were pregnant at the time of the diagnosis were also excluded, as they were 

likely to have gestational diabetes. Any later mention of diabetes in the same individuals, 

but not associated with a pregnancy, was included if it met the case definition. 

4. Patients who were under the age of 35 at the time of diagnosis, or who were treated with 

insulin within one year of diagnosis were excluded, as they were likely to have type 1 

diabetes.  This was based on the advice of specialist diabetes colleagues. 
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5. Patients who died or left their practice within three months of diagnosis were excluded as 

their practice would not have had sufficient opportunity to begin long-term management 

of their diabetes, and were unlikely to have recorded clinical measurements recorded 

following diagnosis. 

 

The results of this case identification process are presented in section 7.2. 
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6.5. Outcome definitions 

 

An outcome was defined as the first occurrence of any of the following conditions. The 

number and proportion of cases with each of these outcomes at and following diabetes 

diagnosis is presented in section 7.3. 

 

6.5.1 CHD 

 

The definition of CHD included MI, angina and revascularisation surgery, and any Read code 

which specified CHD without mentioning any of these subtypes or a specific surgical 

procedure (appendix 6). The date of diagnosis for CHD was the date of the first occurrence of 

any of the above Read codes [section 4.6 and table 6.1].  

 

6.5.2 Stroke 

 

The definition of stroke included Read codes for ischaemic stroke, haemorrhagic stroke, and 

codes where stroke was specified, but subtype was not (appendix 6). It did not include 

transient ischaemic attack (TIA). The date of diagnosis for stroke was the date of the first 

occurrence of any of the above Read codes  [section 4.6 and table 6.1]. 
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6.5.3 CKD 

 

Chronic kidney disease was identified using date of the earliest of the following three events: 

a single low eGFR recorded by the practice; Read-coded CKD (appendix 6); and Read-coded 

kidney dialysis (appendix 6) [section 4.6 and table 6.1]. The threshold for low eGFR was set 

at 60 ml/min/1.73m
2
, following the 2005 UK CKD guidelines (table 6.6). Cases with an 

eGFR of less than 60 ml/min/1.73m
2
 were therefore categorised as having Stage 3-5 kidney 

disease from the date of the first such record. The process for deriving eGFR from measured 

creatinine is described in the next section. 
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Table 6.6 Stages of chronic kidney disease 

   

Stage GFR range Description 

1 90+ Normal kidney function
*
 

2 60-89 Mildly reduced kidney function
*
 

3 30-59 Moderately reduced kidney function 

4 15-29 Severely reduced kidney function 

5 <15 or on dialysis Very severe, or endstage kidney failure 

Source: 2005 UK CKD Guidelines (http://www.renal.org/CKDguide/full/CKDprintedfullguide.pdf).  

* These stages are only treated as CKD in the presence of other factors, e.g. proteinuria and were not included in the definition of CKD as a 

comorbidity or an outcome in this study.  

 

6.5.4 Death 

 

The date of death for patients whose practice registration status indicated that they had died 

was identified using the date of death field provided by THIN. This field was created by the 

database suppliers to give researchers a guide to the patient's date of death. (103) The date 

was derived using an algorithm which used data from several locations in patients’ electronic 

record: the date of death recorded using a template for entering the fact and cause of death by 

practice staff; the date this template was filled out if no specific date of death was recorded; 

the date associated with a Read code which indicated that the patient had died; and lastly, if 

no other valid source can be found, the date the patient was recorded as having transferred out 

of their practice. 
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6.6. Baseline characteristics 

 

6.6.1 Demographic 

 

The age of each case at diagnosis of diabetes was estimated using their year of birth (year of 

diagnosis – year of birth) as full date of birth was not available to protect patient identity. 

Each patient was matched to a Townsend deprivation quintile (five groups, ranked from least 

deprived, quintile1, to most deprived, quintile 5) using their postcode of residence by THIN 

as part of the data collection process. (103) Some patients had multiple deprivation scores as 

they moved home while registered at their single practice. The deprivation quintile dated prior 

to their diabetes diagnosis was used as their baseline value in these instances. Broad 

geographical region was also collected by THIN as part of their data collection process. The 

exact location of practices was not made available in order to protect the identity of 

contributing practices. The last demographic factor of interest, patient sex, was recorded by 

practices at the time patients registered. The baseline demographic characteristics of eligible 

cases are presented in section 7.5. 

 

6.6.2 Comorbidities 

 

CHD, stroke and CKD at baseline were identified using the definitions described in the 

previous sections. As patients may have their creatinine estimated for the first time following 

diabetes diagnosis, restricting the definition to results recorded prior to this baseline date may 
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have resulted in an unacceptable level of missing data. Creatinine results up to three months 

after baseline were therefore included and used to estimate baseline CKD status. The 

frequency of each comorbidity at baseline among eligible cases is presented in section 7.5. 

 

6.6.3 Smoking status 

 

Each case was identified as a smoker or non-smoker on each date where their tobacco 

consumption or status was recorded, or when cessation advice or referral was offered. The 

Read and AHD codes used to identify smoking status are listed in appendix 6. The smoking 

status of each case at diabetes diagnosis (baseline) was initially identified using the last record 

of their smoking status before diagnosis, even if this was some years earlier. If the first record 

of their smoking status after diagnosis indicated that they were a smoker, then they were 

recategorised as a smoker at baseline. This was done even if their last recorded status before 

diagnosis indicated that they were a non-smoker as it was assumed that they did not begin 

smoking following their diagnosis. Cases with no smoking status recorded at any time were 

categorised as non-smokers at baseline. The baseline smoking status of eligible cases is 

presented in section 7.5, and the proportion who continued to smoke following diabetes 

diagnosis is presented in the appendix, in table A7.2. 

The effect of this method was to group ex-smokers with non-smokers, even if they had ceased 

smoking the day before diabetes diagnosis. It might have been more congruent with 

classifications used in other risk models (e.g. Framingham) to have required ex-smokers to 

have quit for at least one year prior to diabetes diagnosis, but smoking status was not recorded 

at regular intervals in the healthy population in UK general practice during the study period. 
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(134) Patients recorded as being an ex-smoker in the year prior to diabetes diagnosis may 

have quit at any time between the preceding record of smoking status and that date: this 

would make it difficult to estimate their actual quit date accurately.  

 

6.6.4 Identification of numeric values associated with clinical measurements  

 

The clinical measurements of interest were eGFR, BMI, HbA1C, total cholesterol and systolic 

blood pressure. These results were stored in the Additional Health Data (AHD) table in the 

THIN database (table 6.1). This table contained the date of the record, a Read code, an AHD 

code and a numeric value or values, along with value labels for each result (e.g. ‘mmHg’). 

The Read- and AHD-codes for the events identified for each risk factor are listed in appendix 

6. Any anonymised free text associated with one of the Read codes of interest was also 

searched for numeric results. Coded and free-text values were excluded if they lay outside a 

range of acceptable values. These ranges were set in consultation with clinical colleagues and 

are shown in table 6.7. The values associated with each label were also viewed as histograms 

as an additional data quality check (figures not shown). Results with labels other than those 

listed in table 6.7 were excluded if their distribution was not similar to results with these more 

standard value labels. The results of this search for additional clinical values in free-text are 

presented in section 7.4. 
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Table 6.7 Acceptable range for numeric values 

  

Creatinine 25-1000 micromol/L (used in eGFR calculation) 

Height 1-3m (if aged 18 years or over) 

Weight not required as BMI range applied after calculation 

BMI 10-60 kg/m
2
 (calculated from height and weight) 

HbA1C  2-20% 

Total cholesterol 0.5-15 mmol/L 

Systolic BP 50-300 mmHg 

  

 

 

6.6.5 Calculation of eGFR 

 

Kidney function was estimated using a formula based on measured creatinine and the age and 

sex of the case. (135) This derived value, estimated glomerular filtration rate (eGFR), is the 

recommended way to measure kidney function as creatinine level alone is affected by non-

renal influences. (100) The eGFR equation corrects for some of these influences, and is more 

sensitive for the detection of CKD than serum creatinine and may be more accurate than 

creatinine clearance. (100) eGFR was created from recorded creatinine values for each case, 

using the abbreviated MDRD equation (135) :  

eGFR = 186 x (creatinine / 88.4)-1.154 x (age)-0.203 x (0.742 if female) x (1.210 if black) ml/min/1.73m
2
  

All patients were assumed to be non-black, as individual data on ethnicity were not routinely 

available in electronic patient records from general practice at the time of the study. (136) 
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6.6.6 Calculation of BMI 

 

BMI values were automatically generated within the Vision system each time the weight of a 

patient was recorded (provided a height value was available). (103) Although there are now 

some internal checks within the Vision system which highlight unexpectedly large or small 

values, at the time of data entry (103), it was observed that automatically generated BMIs 

included in the dataset provided by THIN still contained unfeasibly large values (e.g. BMI 

141 kg/m
2
), or were missing on occasion. Further visual inspection of the data showed that 

these values were based on incorrectly entered height or weight data (e.g. weight entered as 

8684 kg instead of 86.84 kg), were based on height measurements taken when the patient was 

under 18 years, or missing if no height measurement was available at the time weight was 

measured. New BMI values were therefore calculated on each date where their weight was 

recorded. As height is not routinely measured at the time of each weight measurement, the last 

recorded height for each case was used if the measurement was taken when the case was aged 

over 18 years. (103) 

 

6.6.7 Estimation of baseline values for clinical measurements 

 

The level of each of the clinical measurements of interest was estimated at baseline for each 

case using a multilevel model which made use of all results recorded during their follow-up 

period. (137, 138) This was done because clinical risk factors such as cholesterol and blood 

pressure are a target for treatment once the initial diabetes diagnosis has been made, and 
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single measurements which are recorded in the months and years after the date of diagnosis 

may not, therefore, reflect their level at diagnosis.  

In order to validate this complex modelling approach to estimating baseline values, the 

baseline estimates obtained from the multilevel models were compared with a simpler 

method: the mean of the values recorded immediately before diabetes diagnosis and during 

follow-up. For this comparison the cohort was restricted to cases who had the risk factor of 

interest recorded within 90 days of baseline to allow the value predicted for each case by the 

simpler and more complex model to be compared directly with the observed value recorded in 

their patient record. As it was not possible to generate an overall statistic to describe the 

proportion of variation in the data explained by a multilevel model (e.g. R
2
), the residual sum 

of squares (Σ(O-E)
2
 : the observed minus the predicted value, squared, then summed) 

generated by each estimation method was compared using F-tests. 

The results of the modelling of baseline clinical values and the validation are presented in 

section 7.4.  
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6.7. Development of risk prediction models 

 

6.7.1 Introduction 

 

This section presents the methods used to develop the four separate risk prediction models 

(CHD, stroke, CKD and death). The relationship between the baseline characteristics and 

outcomes was assessed using survival models as cases were followed up for differing 

intervals (until they left their practice, died or the end of the study period).  

Each model excluded cases who developed the outcome of interest prior to, or in the first 

three months following diabetes diagnosis, and those who died or left their practice within 

three months of diagnosis. The remaining eligible cases were followed up from three months 

to a maximum of five years. Cases were censored at the earliest of the following dates: 

developed outcome of interest, left practice or died, last collection date from practice, and five 

years following diagnosis. Survival time, the time the case exited from the study was entered 

into each statistical model as the interval in years from the diagnosis of diabetes to the time 

they developed the outcome of interest, deregistered from their practice, or when five years 

had elapsed. 

The results of this modelling are presented in sections 7.6 and 7.7. 
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6.7.2 Choice of survival model 

 

The Weibull survival model was selected as it is frequently used to model survival data and, 

like other parametric models, makes more efficient use of data than a Cox model if its 

underlying assumption (that the fitted model follows a Weibull distribution) is met. (139) In 

particular, estimates of hazard ratios will be more precise than the equivalent Cox model if the 

survival data are observed to follow the Weibull, or other parametric distribution. (139) The 

Weibull distribution used in this study had two parameters, scale and shape, roughly 

equivalent to the intercept and slope in a linear regression. It is related to the simpler 

exponential distribution, which is also used to model survival, but can fit a wider range of 

situations. As with Cox and other survival models, the coefficient produced for each 

explanatory variable included in the Weibull model can be expressed as a hazard ratio (HR).  

The Weibull survival function, S(t), can be described as S(t) = exp(-λt
γ
) where λ (lambda) is 

the scale parameter, γ (gamma) is the shape parameter and t is time. (139) 

The underlying assumption, that the fitted model data followed a Weibull distribution, was 

assessed by comparing observed and expected failures using probability plots generated by 

the pweibull program within Stata. (140) The command fits a two-parameter Weibull model 

to the data and graphs the proportion of cases observed to fail at each point in time with the 

proportion predicted to fail from the model.  

It was not possible to combine the expected failure times for each case on a single probability 

plot as they follow distributions determined by their individual pattern of covariates, such as 

age and sex. Therefore, to allow them to be compared as a unit with the observed failures, 
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they were back-transformed to a common distribution using their observed failure time, and 

their shape and scale parameters from the fitted Weibull model. 

The results of this model checking are presented in section 7.8. 

 

6.7.3 How predictors were included in the survival models 

 

Continuous variables (eGFR, BMI, HbA1C, total cholesterol and systolic blood pressure) were 

entered into the model in their original metric, centred on their mean value, if they met the 

proportional hazards assumption (see below). Binary and categorical variables were also 

checked to see if they met the proportional hazards assumption. Variables which did not meet 

this assumption were transformed, combined with other variables, or included in the models 

as a set of distinct covariates.  

Comorbidities at baseline or during the first 3 months following diagnosis of diabetes were 

included as a series of binary covariates (i.e. one yes/no covariate per comorbidity). A gap of 

three months ensured that outcomes that occurred close to the diabetes diagnosis date, 

because the person was first assessed for the outcome just after they were diagnosed with 

diabetes (e.g. with CKD), were treated differently than events which may have been caused 

by diabetes itself. Each comorbidity was included as a separate predictor in each of the other 

outcome models. For example, stroke was included in the CHD outcome model as ischaemic 

stroke and CHD can share a common underlying pathology. (141, 142) 
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6.7.4 Checking of proportional hazards assumption 

 

The assumption of proportional hazards for each of the predictor variables in the survival 

models was assessed visually using log-log graphs. The intention was that predictors that 

were not observed to be proportional over time would be mathematically transformed, entered 

into the model as a set of distinct variables, or combined in order to meet this assumption. A 

separate log-log graph was generated for each outcome (CHD, stroke, CKD and death) and 

predictor as survival may have differed from model to model for a particular outcome.  

Log-log graphs compare the Kaplan-Meier (KM) estimate of the survivor function on the x-

axis against survival time in logged form, hence the name of this type of graph. They present 

the same data that you would see in a standard KM graph (the lower the line is on the graph, 

the worse the survival probability), but the KM estimate and time are presented in this 

transformed metric to ‘straighten out’ the plots, allowing the viewer to more easily assess if 

the difference in survival for each level of each covariate was constant over time, i.e. that their 

hazards were proportional.  

Hazards can be regarded as proportional if the line for each group remains roughly parallel 

with its neighbours over time, and their levels equally spaced. (139)In groups with large 

numbers of failures, the line tends to be smoother: in groups with smaller numbers of failures, 

for example in the youngest age groups, the line may be more erratic, and consequently it may 

be more difficult to make a judgment about proportionality. 

The results of this checking are presented in section 7.6.2. 
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6.7.5 Handling of missing data 

 

It is now widely accepted that complete case analyses and simple imputation of missing 

values are not appropriate methods for handling missing data especially where a significant 

proportion are missing. (50, 99, 143) Earlier studies with similar aims to the current study 

have either carried out complete case analyses, may have dropped incomplete variables from 

their analyses, or have carried forward previous or carried back later measurements for 

individuals. (55, 59, 144) The weakness of the complete case approaches is that they reduced 

the power of their study to explain their outcomes by dropping cases and variables which 

were associated with the outcomes of interest. They may also cause a systematic bias if the 

relationship between the dependent variables and the outcome for the cases that were retained 

in the analysis differed from the cases that were dropped.  

 

Table 6.8 Types of missing data 

 

Missing completely at random—There are no systematic differences between the missing values 

and the observed values. For example, blood pressure measurements may be missing because of 

breakdown of an automatic sphygmomanometer. 

Missing at random—Any systematic difference between the missing values and the observed 

values can be explained by differences in observed data. For example, missing blood pressure 

measurements may be lower than measured blood pressures but only because younger people may 

be more likely to have missing blood pressure measurements. 

Missing not at random—Even after the observed data are taken into account, systematic 

differences remain between the missing values and the observed values. For example, people with 

high blood pressure who are not adhering to treatment may be more likely to miss clinic 

appointments. 

 

Source: Adapted from: BMJ. 2009 Jun 29;338:b2393. doi: 10.1136/bmj.b2393. 

Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. Sterne JA, White IR, Carlin JB, Spratt 

M, Royston P, Kenward MG, Wood AM, Carpenter JR. 
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Statistical methods for handling missing data in health care databases have been in existence 

for some time (145), but were not available in widely used statistical software packages like 

Stata until recently. (143, 146) Multiple imputation of missing data (MI) has been used in 

other GP database studies, but is relatively complex and computationally intensive in large 

datasets: the high risk of inappropriately applying the process was demonstrated in one study 

published in the BMJ. (64, 147) 

Although the use of multiple imputation may be preferable to simpler techniques, there are 

several stages of model building and decision making for each variable with missing data 

which may result in inaccurate estimates for the missing values being generated. (147, 148) 

Important assumptions have to be met if the imputed data are to be valid; most importantly 

that the missing data are ‘missing at random’ or ‘missing completely at random’ (table 6.8). 

This assumption is not possible to test directly, but knowledge of the reasons why the data are 

missing may support the use of multiple imputation, or suggest that it is not appropriate. (113) 

Multiple imputation creates a number of imputed datasets which can contain different 

imputed values for each missing item. The individual imputed values are derived from one or 

more regression models within the imputation process: it is recommended that these should 

include all available explanatory variables to increase the plausibility of the missing at 

random assumption. (149) The main statistical analysis is then carried out on each of the 

imputed data sets in turn. The results of these analyses are then combined to produce a single 

set of results using ‘Rubin’s rules’. (150) In comparison with a single imputation process, 

multiple imputation generates larger standard errors that reflect the degree of uncertainty due 

to the use of imputation and better reflects the uncertainty due to missing values than a single 

imputed value. (151, 152) 
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Missing baseline values in this study were estimated using an imputation process known as 

multiple imputation by chained equations, implemented in Stata by Royston and colleagues. 

(146) This package (ICE) created a number of complete datasets, where missing baseline 

values were predicted using all available demographic and clinical data, and made an 

allowance for the imprecision of these predictions that was carried through to the final 

prediction models. 

The results of this multiple imputation of missing baseline clinical values and deprivation 

quintile are presented in section 7.5. 
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6.8. External and internal validation of study results 

 

This last section describes how the model results were validated. This consisted of 

comparisons with external studies and an overall statistical measure of each model’s ability to 

explain variation in the outcomes observed in the study cohort.  

 

6.8.1 Comparisons of results with other studies 

 

Each of the demographic variables, clinical values and counts of outcomes used in this study 

were compared with the UKPDS RCT (1977-1991), and studies reporting on the Tayside 

diabetes register (1995-2004), the South Tees diabetes register (1994), and the Poole Diabetes 

Study (1996-1998) where data were available. (46, 88, 153-156) The eligibility criteria for the 

study cohort were adjusted to match these studies where possible, so that comparisons could 

be made on a like-for-like basis. 

The hazard ratios for each model were also compared with the hazard ratios reported by other 

prediction models (tables 2.1 to 2.3). (44-46, 57-60) (67-81) 

External comparisons with the results of other studies are discussed in section 8.4. 
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6.8.2 Overall proportion of variation explained by each model (R
2
) 

 

The proportion of variation explained by each model, also known as the coefficient of 

determination, was assessed using an implementation of the R
2
 statistic called str2ph. (157) 

This was adapted from Nagelkerke's R
2
 statistic for proportional hazard models for censored 

survival data. (158) The R
2 

value can range from 0 to 1. A model with an R
2
 of 1 would 

perfectly predict the outcome for each case.  

These results are presented in section 7.7. 
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CHAPTER 7  RESULTS 
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7.1  Introduction 

 

This chapter presents the results of this study. This includes the results of the case 

identification process and the baseline characteristics of the cases included in the study, and 

comparisons with other studies where possible. The results of the final prediction models 

themselves are then presented.  

The first results presented are for the case identification process: these are presented in the 

form of a CONSORT chart (figure 7.1), The number and proportion of cases with each of the 

outcomes of interest (CHD, stroke, CKD and death) at baseline and in the first three months 

of follow-up (table 7.1), and in the period up to five years following the diagnosis of diabetes 

(table 7.2) are then presented. These data are also summarized in a single Kaplan-Meier type 

graph (figure 7.2). 

The next section presents the results of the estimation and imputation of baseline clinical 

measurements of the study population. Some of the tables and figures can be found in the 

main appendix 7, to avoid presenting too many results in the text (tables A7.1, A7.4-A7.7; 

figures A7.1-A7.11).  However, examples of each set of results are presented in the main text 

(table 7.3; figures 7.3-7.5). Table 7.5 then combines these results with the demographic, 

comorbidity and treatment data to summarise the baseline characteristics of the study 

population in a single table. 

The final section presents the development of the prediction models and the model results 

themselves (tables 7.6 to 7.12). Two examples of the log-log plots used to check the 

proportion hazards assumption for each predictor in each model can be found in figures 7.5 

and 7.6: the remainder can be found in the appendix (figures A7.4 to A7.11).  The probability 
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plot used to check that the choice of a Weibull survival model was appropriate can be found 

in figure 7.7. 
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7.2  Cases identified 

 

7.2.1 Overall results 

 

Figure 7.1 presents the results of the case identification process. Overall, a total of 149492 

potential cases were identified in the 300 general practices contributing to THIN at the time 

the study dataset was created. These practice patients had at least one of the selected Read 

codes for diabetes at some point in their record. A series of exclusions were then applied to 

these potential cases to ensure that the final set of data was as accurate and complete as 

possible (figure 7.1). Most of these exclusions (CONSORT items A-F) identify and exclude 

patients and practices (127601/149492 patients (85%)) that were never eligible for the study 

(the practices did not have research-quality data or the patients were diagnosed outside the 

study period). The remaining exclusion criteria (CONSORT item H) are more conventional 

(patients who did not have type 2 diabetes or who were not followed-up for a minimum 

period following diagnosis): these resulted in 1850/21891 patients (8.5%) being excluded 

from the study cohort. 

The CONSORT chart (figure 7.1) describes the criteria in detail, but broadly potentially 

eligible patients were excluded if they or their practice had one of the features listed below. 
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Data issues at practice and patient level [sections 6.2 and 6.3] 

 Practice had insufficient experience of clinical computer system. 

 Continuous use of system for minimum period. 

 Patient diagnosed with diabetes before practice recording mortality reliably. 

 Patient registration data inconsistent. 

 Patient not registered for minimum period at practice 

 No prescribing data for patient. 

 

Eligibility issues [sections 6.2 and 6.3] 

 Date of diabetes diagnosis not recorded. 

 Patient prescribed antidiabetic treatment before diagnosis. 

 Patient diagnosed before study period or less than one year after registration with practice. 

 Patient diagnosed after end of study period. 

 Patient likely to have type 1 diabetes. 

 Patient left practice/died within 3 months of diabetes diagnosis. 
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Figure 7.1 Case identification: CONSORT chart 

 

 

(A) Assessed for eligibility 

 (n = 149492) (300 practices) 

(B) Practice data issues  

(n = 55983) (38 practices) 
IT system (Vision) in use less than 3 years (n=11332)  

Gaps in data from practice (n=4326)  

Diabetes diagnosis occurred before practice recorded mortality 

reliably (i.e. before practice AMR date) (n=40325) 

(C) Remaining 

(n = 93509) (262 practices) 

(D) Patient data issues  
(n = 24965) 
 

Registration dates inconsistent (n=7806) 

Not registered for at least one year in study period (n=17143) 

No prescribing data (n=16) 

(E) Remaining 

(n = 68544)  

(F) Not incident diabetes within study period 
(n=46653) 

 
No date associated with diagnosis (n=4191) 

Prescribed antidiabetic before diagnosis  (n=3286) 

Diag date before study period/before pat. eligible (n=29014) 

Diagnosis date after end of study period (n=10162) 

 

(G) Remaining 
(n = 21891) 

 

(H) Not Type 2 diabetes or not observed for minimum 

period following diagnosis (n=1850) 
 

Gestational diabetes (n=91) 

Diagnosed <= 35 years old (n=1029) 

Prescribed insulin within 1 year of diagnosis (n=592) 
 

Left practice/died within 3 months of diagnosis (n=138) 

(I) Analysed 
(n = 20041) (262 practices) 
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7.2.2 Exclusions due to practice data issues (CONSORT item B) 

 

A total of 93509 patients remained after practices with specific data issues were excluded 

(37% excluded; 55983/149492). These issues were of two types: issues which affected the 

entire set of data from a practice (clinical computer systems in use less than three years and 

gaps in practice clinical data); and a single issue which depended on the apparent date of 

diagnosis of the practice patient (diabetes diagnosis before practice AMR date). The highest 

number of exclusions in this category was due to the latter issue: a total of 40325 cases were 

excluded to avoid under ascertainment of deaths.  

 

7.2.3 Exclusions due to patient data issues (CONSORT item D) 

 

The second group of exclusions (a further 17% of the original total; 24965/149492) centred 

on data issues which affected the records of individual patients, rather than the whole practice. 

A total of 24956 patients were excluded by these criteria, leaving 68544 patients (46% of the 

original total; 24956/149492). Almost all of those excluded were patients who had either 

inconsistent registration dates (a missing registration date, or a registration date which was 

later than their deregistration date), or were registered for less than one year during the study 

period. A small number of patients (n=16) were observed to have no prescriptions issued at 

any time in their record. They were excluded because they may have been training patients, 

set up by the practice to help staff to learn how to use the IT system.  
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7.2.4 Patients excluded because they were not incident diabetes within the study period 

(CONSORT item F) 

 

The next group of patients to be excluded (31% of the original total; 46653/149492) were 

those who were diagnosed outside the study period, and those where a date of diagnosis could 

not be identified. Of the 46653 patients excluded at this point, the majority (84%; 

39176/46653) were not diagnosed within the study period, and were therefore not incident 

cases of diabetes. The remainder (16%) either had no date associated with the first mention of 

diabetes) or were prescribed antidiabetic medication before the date of the first Read code for 

diabetes. As it can be several years before newly diagnosed cases of type 2 diabetes move 

from diet control to drug treatment, it was not possible to identify the true date of diagnosis of 

these patients. 

 

7.2.5 Patients excluded because they had non-type 2 diabetes or insufficient follow-up 

time (CONSORT item H) 

 

The last set of criteria applied excluded patients that were not cases of type 2 diabetes, or that 

were not followed up for a minimum period of time following diagnosis of type 2 diabetes 

(1%; 1850/149492). Of  these: 91 had gestational diabetes; 1029 were age 35 years or less at 

the time of diagnosis (and therefore likely to be type 1 rather than type 2 diabetes); and 592 

were prescribed insulin within one year of diagnosis (and also likely to have type 1 diabetes). 

At this point all remaining practice patients had incident type 2 diabetes, diagnosed within the 
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study period. The last criterion to be applied excluded 138 cases of type 2 diabetes that left 

their practice or died within three months of their diabetes diagnosis.  

 

7.2.6 Summary of cases identified 

 

Approximately 13% (20041/149492) of the potential cases assessed for eligibility were found 

to be eligible and therefore included in the analysis. Those that were excluded were excluded 

because it was not certain that the THIN database contained complete and contemporary 

records of their care at the time of diagnosis (data issues: 54% (80948/149492)), because they 

were diagnosed outside the study period (not incident diabetes: 31% (46653/149492)), or 

because they did not have type 2 diabetes mellitus or were not observed for a minimum of 

three months following diagnosis (1% (1850/149492)). 

Excluding those who could never be eligible for inclusion in the study cohort (they were 

diagnosed outside study period or their practice did not have research-quality data) 

(127601/149492 patients), a total of 20041/21891 (91.5%) of patients with type 2 diabetes 

were eligible for inclusion in the study cohort. 
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7.3  Outcomes identified 

 

7.3.1 Number of cases with CHD, stroke and CKD at diagnosis of diabetes 

 

Approximately one-third of available cases (38%; 7561/20041) had one or more of the 

morbidity outcomes of interest before diabetes diagnosis (table 7.1). The most common 

comorbidity was CKD (22%), followed by CHD (20%) and stroke (6%). 

 

7.3.2 Number of cases with CHD, stroke and CKD in first three months following 

diagnosis of diabetes 

 

A further 1% (206/20041) of available cases were diagnosed with CHD in the 3 months 

following diabetes diagnosis. Stroke was a much less common outcome in the first three 

months, affecting less than half of 1% of cases. CKD was a relatively common outcome in 

this period, with approximately 1 in 20 (4.7%) new cases of diabetes being diagnosed with 

CKD. The 133 potential cases that died in the first three months following diabetes diagnosis 

were also not eligible for inclusion in the prediction models [section 7.2].  
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Table 7.1 Number of cases with CHD, stroke and CKD at baseline and in first three 

months following diabetes diagnosis 

 
Number of cases with outcome prior 

to diagnosis 
(% of cases) 

   

At baseline   

CHD 3969 (20) 

Stroke 1240 (6) 

CKD 4376 (22) 

   

In first 3 months   

CHD 206 (1.0) 

Stroke 75 (0.4) 

CKD 950 (4.7) 

   

Note: N=20041. 

 

7.3.3 Number of cases eligible for each prediction model and number of outcomes 

observed between three months and five years following diagnosis of diabetes  

 

All 20041 cases that survived and were still registered at their practice for at least three 

months after diagnosis were included in the survival model for death (table 7.2). The 3969 

and the 206 cases who were known to have CHD in the period before or in the first three 

months following diabetes diagnosis were excluded from the survival model for CHD, 

leaving  a total of 15861 cases eligible for inclusion. The 1240 cases and the 75 cases that had 

a stroke in the period before diabetes or in the first three months following diabetes were 

excluded from the survival model for stroke, leaving a total of 18726 cases eligible for 
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inclusion. The 4376 cases and the 950 cases who were known to have CKD in the period 

before diabetes or in the first three months following diabetes were excluded from the 

survival model for CKD, leaving a total of 14704 cases eligible for inclusion in the survival 

model for CKD.  

Table 7.2 also shows that the CKD model had the greatest number of cases with an outcome 

of interest in the follow-up period, with 23% (3294/14704) of cases being diagnosed with 

CKD (stage 3+) in the 3 months to 5 years following diabetes diagnosis. The percentage of 

cases with the outcome of interest in the death, CHD and stroke models was 7.5%, 5.5% and 

1.9% respectively. 

 

Table 7.2 Number of cases eligible for inclusion in each prediction model and number of 

outcomes observed during follow-up 

Model name 

Number of 

cases 

included 

in model 

Number of 

cases with 

outcome 

following 

diagnosis 

(% of 

cases) 

Mean age 

at 

diagnosis 

of diabetes 

Years of follow-up 

Mean (SD) 

       

CHD 15861 879 (5.5) 62 3.1 (1.3) 

Stroke 18726 355 (1.9) 63 3.2 (1.3) 

CKD 14704 3294 (22.4) 61 2.8 (1.4) 

Death 20041 1502 (7.5) 64 3.2 (1.3) 

       

Note: Cases were only eligible for inclusion in each model if they did not already have the outcome of interest at diabetes diagnosis or in the 
first three months following diagnosis. 
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7.3.4 Summary of outcomes observed at diagnosis of diabetes and in the following five 

years 

 

Figure 7.2 shows the proportion of people in the full study cohort (N=20041) who were 

observed to have each of the study outcomes at diabetes diagnosis and the proportion who 

developed each outcome in the five years following diabetes diagnosis.  

CHD: After adjusting for loss of cases to follow-up, 9% of the study cohort were estimated to 

have been diagnosed with, or died from, CHD in the five-year study period. Combining the 

proportion of cases with prior CHD from the original cohort of 20041 with the results of a 

Kaplan-Meier analysis, suggests that a total of 27% of cases with type 2 diabetes died from or 

were diagnosed with CHD by five years following diabetes diagnosis. 

Stroke: A total of 355 of the 18726 cases included in the stroke outcome model were 

diagnosed with, or died from, stroke in the follow-up period. After adjusting for loss of cases 

to follow-up using the Kaplan-Meier failure function, 3% of this cohort were estimated to 

have been diagnosed with, or died from, stroke in the 5-year study period. The combined 

proportion of cases from the original cohort of 20041 who had experienced a fatal or non-fatal 

stroke by five years following diabetes diagnosis was therefore 9%. 

CKD: A total of 3294 of the 14704 cases included in the CKD prediction model were 

diagnosed with CKD (stages 3-5) in the follow-up period. After adjusting for loss of cases to 

follow-up using the Kaplan-Meier failure function, 34% of this cohort were estimated to have 

had developed chronic kidney disease by the end of the 5-year study period. The proportion of 

cases from the original cohort of 20041 who had known CKD by five years following 

diabetes diagnosis was therefore 52%. 
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Death (all-cause): A total of 1502 of the 20041 cases included in the all-cause mortality 

prediction model died in the 5-year follow-up period. After adjusting for loss of cases to 

follow-up using the Kaplan-Meier failure function, 12% of the study cohort were estimated to 

have died in the five-year study period.  
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Figure 7.2 Proportion of study cohort with each outcome of interest at diabetes diagnosis 

and in the following five years 
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7.4  Estimation and imputation of baseline clinical measurements 

 

The clinical measurements/risk factors of interest in this study were eGFR, BMI, HbA1C, total 

cholesterol, and systolic BP. Few additional results were identified by searching for values 

entered into the patient record as free text (0.02% of HbA1Cs; 0.5% of total cholesterols and 

1.7% of systolic BPs). The mean number of values recorded per case for each of the clinical 

measurements in the period between 30 days prior to diagnosis of diabetes and 5 years after 

diagnosis was as follows: HbA1C=4.9; BMI(weight)=5.3; total cholesterol=4.1; systolic 

BP=9.3; eGFR(creatinine)=4.5. The baseline values of these clinical measurements were 

estimated using a multilevel model. The multilevel model for HbA1C is shown in table 7.3. 

The remaining models (systolic BP, BMI, total cholesterol and eGFR) are shown in the 

appendix, in tables A7.4 to A7.7.  

A graphical representation of the observed and modelled trajectory (using the multilevel 

models) for HbA1C and systolic BP over time is presented in Figures 7.3 and 7.4.  The 

equivalent figures for the other clinical values of interest (BMI, total cholesterol and eGFR) 

are presented in figures A7.1 to A7.3. These trajectories for HbA1C and systolic BP are similar 

to those published as part of the UKPDS outcomes model (figure 7.5). For both studies and 

both clinical measurements, the modelled data for cases with the highest and lowest baseline 

values followed a funnel shaped path over the follow-up period, with the greatest changes in 

values in the earlier years. 

The method used to estimate baseline values was internally validated by comparison with an 

alternative, simpler approach: mean value over the follow-up period. The results table is 

presented in table A7.1, rather than here to avoid presenting too many tables in this chapter. 
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For each clinical measure, the residual sum of squares (RSS) using the more complex 

multilevel model was between 24% and 66% lower than the simpler mean of the observed 

values. The difference in the RSS was highly statistically significant for each clinical value 

(p<0.0001), indicating that the multilevel models estimated baseline clinical values better than 

the simpler mean value method. 

The mean estimated value for each of the measurements of interest is presented in table 7.4. 

HbA1C, BMI, total cholesterol and eGFR were missing in 4%-7% of cases: BP was missing 

least often, for just over 1% of cases (260/20041).  No baseline value could be estimated 

using a multilevel model for these cases. Instead, a baseline value for these measurements was 

generated for each of these cases using multiple imputation. The mean imputed value for each 

measurement is also presented in this table. The imputed data were very similar to the 

observed data for each clinical value, except for HbA1C and eGFR. These differences are 

addressed here rather than in the discussion as they relate to the internal validity of the 

imputation process.  

The mean observed and imputed baseline values for HbA1C were 8.3% and 7.8%, 

respectively. However, cases with a recorded HbA1C were twice as likely to be prescribed a 

drug to control their diabetes in the first two months following diagnosis (28% versus 12%, 

respectively). This suggests that it was reasonable to find that baseline HbA1C was higher than 

those whose HbA1C was imputed, and that the differences were not a result of any 

underestimation by the imputation process itself. 

The mean observed and imputed baseline values for eGFR were 71 and 79 ml/min/1.73m2, 

respectively. As with HbA1C, this difference may be explained in part by the characteristics of 

the cases with missing values. Although the two groups had similar baseline blood pressure 
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(144 and 146 mm/Hg), cases with no creatinine result (the basis of the eGFR calculation: if 

the creatinine level was missing, eGFR could not be calculated) present in their clinical record 

were less likely to be prescribed two blood-pressure lowering drugs recommended for use in 

chronic kidney disease. Angiotensin-converting enzyme inhibitors (ACE) were prescribed 

twice as often (53% and 27%) to cases with creatinine recorded, and angiotensin receptor 

blockers (ARB) were prescribed 11 times as often (11% and 1%) to cases with creatinine 

recorded in the follow-up period than cases with missing creatinine. This use of drug 

treatments suggests that their baseline kidney function was poorer, and therefore that their 

eGFR could reasonably be expected to be higher in those who were not treated. This assumes 

that the GP was more likely to record an abnormal eGFR, or that the first blood test was 

carried out in secondary care at the time of diagnosis. 

A summary of the combined values for all these clinical values is presented in a single table in 

the next section (table 7.5), along with other baseline characteristics of the eligible cases.  
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Table 7.3 Multilevel model used to estimate baseline HbA1C 

          

HbA1c (%) coefficient  p          95% CI 
  

   

  

    

  

year of diagnosis 1998 0.214 <0.001 0.126 0.303 

(reference year = 2000) 1999 0.015 0.700 -0.062 0.092 

(1997 and 2004 omitted due  2001 -0.140 <0.001 -0.202 -0.079 

to collinearity) 2002 -0.265 <0.001 -0.323 -0.207 

2003 -0.293 <0.001 -0.349 -0.236 

  

   

  

age at diagnosis 35-44 0.196 <0.001 0.124 0.267 

(reference age group = 55-64) 45-54 0.119 <0.001 0.067 0.170 

65-74 -0.140 <0.001 -0.185 -0.096 

75-84 -0.221 <0.001 -0.275 -0.167 

85-94 -0.259 <0.001 -0.360 -0.157 

95+ -0.358 0.155 -0.852 0.135 

  

   

  

male -0.036 0.038 -0.071 -0.002 

smoker 0.010 0.467 -0.017 0.037 

  

   

  

Townsend quintile (least deprived) 1 -0.107 <0.001 -0.146 -0.068 

(reference quintile = 3) 2 -0.069 <0.001 -0.107 -0.030 

4 -0.003 0.893 -0.041 0.035 

(most deprived) 5  0.083 <0.001 0.042 0.123 

  

   

  

region north -0.009 0.669 -0.049 0.032 

(reference = middle) south 0.066 0.001 0.026 0.107 

  

   

  

comorbidities prior chd 0.006 0.799 -0.038 0.049 

prior chd -0.075 <0.001 -0.112 -0.038 

prior stroke -0.028 0.392 -0.091 0.036 

  

   

  

drug treatments insulin -0.737 <0.001 -0.816 -0.659 

sulphonylurea -0.400 <0.001 -0.423 -0.377 

biguanide -0.427 <0.001 -0.446 -0.408 

acarbose -0.199 0.013 -0.356 -0.042 

meglitinide 0.129 0.020 0.021 0.238 

glitazone -0.485 <0.001 -0.526 -0.443 

statin 0.059 <0.001 0.039 0.078 

other lipid lowering 0.017 0.602 -0.046 0.079 

antianginal(excl. CCB) 0.012 0.546 -0.027 0.052 

aspirin -0.042 <0.001 -0.065 -0.020 

OTC aspirin -0.001 0.993 -0.249 0.247 

other antiplatelet -0.100 0.001 -0.161 -0.039 

angiotensin-II receptor antagonist 0.020 0.277 -0.016 0.057 

ACE inhibitor -0.105 <0.001 -0.128 -0.083 

alphablocker -0.108 <0.001 -0.148 -0.068 

calcium channel blocker -0.035 0.017 -0.063 -0.006 

diuretic 0.038 0.006 0.011 0.066 

  

   

  

slope(change in HbA1C per day) 0.0003 <0.001 0.0003 0.0003 

time(CDF) 3.328 <0.001 3.284 3.372 

intercept  7.520 <0.001 7.450 7.591 
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Figure 7.3 Observed and modelled HbA1C over study period 

 

Figure 7.4 Observed and modelled systolic BP over study period 
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Figure 7.5 UKPDS observed and model estimated systolic blood pressure and HbA1C 

over 15 years 

 

Source: Clarke PM, Gray AM, Briggs A, Farmer AJ, Fenn P, Stevens RJ, Matthews DR, Stratton IM, Holman RR. A model to estimate the 

lifetime health outcomes of patients with type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS) Outcomes Model 

(UKPDS 68) Diabetologia 2004;47:1747-1759. 

 

 

Table 7.4 Distribution of clinical measurements: estimated using multilevel modelling,  

imputed using multiple imputation, and combined 

 Cases Mean value (SD) 

    

HbA1C estimated 19017 8.3 (1.9) 
imputed 1024 7.8 (1.3) 

combined 20041 8.2 (1.9) 
    

BMI estimated 18734 30.2 (5.8) 
imputed 1307 29.4 (4.3) 

combined 20041 30.1 (5.9) 
    

Total cholesterol estimated 19020 5.6 (0.9) 
imputed 1021 5.7 (0.6) 

combined 20041 5.6 (1.0) 
    

SBP estimated 19781 146 (13) 
imputed 260 145 (11) 

combined 20041 146 (13) 
    

eGFR estimated 19193 71 (15) 
imputed 848 80 (10) 

combined 20041 71 (15) 
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7.5  Baseline characteristics of eligible cases 

 

Table 7.5 summarises the baseline demographic and clinical characteristics of the 20041 

eligible cases included in this study in a single table for greater clarity. The demographic 

characteristics of this population and their baseline level of comorbidities were introduced 

earlier in this chapter, and are included here for completeness. 

Townsend quintile was missing for missing for a total of 7% of cases and was imputed at the 

same time as the missing clinical values. Following imputation, cases were distributed 

relatively evenly across the deprivation quintiles, with the most deprived quintile slightly 

underrepresented (16% of cases). Smoking status at baseline could not be determined for less 

than 1% of cases: these had no information on smoking present at any point in their clinical 

record. Cases with missing smoking status were assumed to be non-smokers at baseline, 

rather than estimated using the multiple imputation process. A total of 24% of cases were 

identified as smokers at baseline using this method. Blood pressure lowering drugs were the 

most commonly prescribed group of cardiovascular drugs at diagnosis of diabetes (58%). 

Aspirin, prescribed by practices or bought over the counter by patients, was the next most 

commonly used drug (23% and 2%, respectively). Lipid-lowering drugs were the least 

frequent drug group, being prescribed to 14% of cases at baseline. 
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Table 7.5 Baseline characteristics of eligible cases 

 

Cases         20041 

Male         10821  (54%) 

Mean age in years      63.9  (SD 12.4) 

Mean follow up time in years     3.2  (SD 1.5) 

 

Deprivation    Q1 (least deprived)  21% 

     Q2   20% 

     Q3   23% 

     Q4   20% 

     Q5 (most deprived)  16% 

 

Comorbidities      Cases (%) 

     CHD   3969  (20) 

     Stroke   1240  (6) 

     CKD   4376  (22) 

Current smokers      4890  (24%)  

 

Clinical measurements     Mean (SD) 

     HbA1C  %  8.2  (1.9) 

     BMI    30  (6) 

     Total cholesterol 5.6  (1.0) 

     Systolic BP  146  (13) 

     eGFR   71  (15) 

        Median (IQR) 

     HbA1C  %  7.7  (6.7 – 9.8) 

     BMI   29  (26 - 33) 

     Total cholesterol 5.6  (5.1 - 6.2) 

     Systolic BP  145  (137 - 154) 

     eGFR   72  (60 - 81) 

  

Drug treatments      Cases (%) 

     BP lowering  11624 (58) 

     Lipid lowering  2806 (14) 

     Aspirin (prescribed) 4609 (23) 

     Aspirin (OTC)  401 (2) 
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7.6  Development and checking of the statistical prediction models 

 

7.6.1 Predictors included in the models 

 

Individuals were entered into the model in their original metric where they met the 

proportional hazards assumption [section 6.6]. For example, age was entered as age at 

diagnosis of diabetes (centred on the mean age of cases), and gender was entered as one if 

male, zero if female.  

Comorbidities at baseline or during the first 3 months following diagnosis of diabetes were 

included as a series of binary covariates (i.e. one yes/no covariate per comorbidity). A gap of 

3 months ensured that outcomes that occurred close to the diabetes diagnosis date, because the 

person was first assessed for the outcome just after they were diagnosed with diabetes (e.g. 

with CKD), were treated differently than events which may have been caused by diabetes 

itself. The other outcome models (death, stroke) were treated in a similar way for simplicity. 

Each comorbidity was included as a separate covariate in each of the other outcome models. 

For example, stroke was included in the CHD outcome model as ischaemic stroke and CHD 

can share a common underlying pathology.  

In the light of the observed sharp increases in the use of BP- and cholesterol-lowering drugs 

in the period immediately following diagnosis of diabetes (table A7.3) and the limited 

precision of estimated baseline SBP (limited to broad ranges of SBP, e.g. 90-119, 120-140, 

and 140+ mmHg) (figures A7.1 and A7.2), a conservative decision was made to enter 

baseline SBP and total cholesterol into the model as binary covariates. Specifically, cases with 

high SBP (140+ mmHg) (the point at which BP-lowering treatment is likely to begin) and 
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those who were already on BP lowering treatment at baseline were merged into a single 

group: cases who had past exposure to high blood pressure (as evidenced by their current 

treatment) and those who were currently exposed to high blood pressure. The comparison 

group, therefore, was cases who had normal SBP (<140 mmHg) and were not on BP-lowering 

treatment at baseline. A similar decision was made with respect to total cholesterol: cases with 

baseline total cholesterol of 4 mmol/L (the point at which cholesterol-lowering treatment is 

likely to begin) or higher were combined into a single group with cases who were on 

cholesterol-lowering treatment at baseline. The comparison group in this instance was cases 

who had a total cholesterol of less than 4 mmol/L and were not on cholesterol-lowering 

treatment at baseline.  

Estimated GFR at baseline was not used in the all-cause mortality, CHD and stroke models as 

CKD was already entered as a binary comorbidity. Its effect on the overall R
2
 (table 7.12) for 

the CKD model was, however, assessed in an additional CKD model where it was entered as 

a set of binary covariates, with cutoffs set to reflect the stages set out in the UK CKD 

guidelines (stage1: >=90 mL/min/1.73m2; stage 2: 60-89; stage 3: 30-59; and stages 4-5: 

<=29). 

Lastly, baseline HbA1C and BMI were entered as continuous covariates, centred on their mean 

value for the cohort. Unlike SBP and cholesterol, these were not likely to be treated at 

baseline, and the estimates of baseline values produced by the multilevel models appeared to 

tally well with the observed data (figures A7.2 and A7.3), allowing their effects to be assessed 

more conventionally. 
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7.6.2 Model checking: proportional hazards assumption for each predictor 

 

The purpose of testing the assumption of proportional hazards for each covariate included in 

each outcome model was to verify that they have been appropriately specified (parameterised) 

before being included in the survival models. The log-log plots for age and sex for each 

outcome of interest are presented in figures 7.6 and 7.7. The remaining plots are presented in 

the appendix, in figures A7.4 to A.7.11 to avoid presenting too many results in this chapter. 

Continuous covariates, such as age and BMI, were recast into distinct groups for this check, 

as the shape of each curve cannot readily be observed with a large number of closely spaced 

lines. Hazards can be regarded as proportional if the line for each group remains roughly 

parallel with its neighbours over time, and their levels equally spaced. 

Age: Figure 7.6 shows a decreasing probability of survival with increasing age for each 

outcome model (death, CHD, stroke and CKD). The curves were parallel and there was a 

constant ratio between the curves for each age group over time, except for the youngest and 

oldest age groups, who had relatively small numbers of outcomes in the follow-up period. 

Even though it only appeared to meet the proportional hazards assumption for the 

intermediate age groups, age was kept as a continuous covariate in each survival model. 

Sex: Figure 7.7 shows a similar probability of survival at each time point during follow-up for 

males and females for the death, CHD and stroke models. The survival probability differed in 

cases eligible for inclusion in the CKD model, but the groups remained parallel over time, 

suggesting that the hazard for each sex was proportional. 
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Figure 7.6 Log-log plots: age at diagnosis of diabetes 

 

Note: Both axes are on logarithmic scales. 
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Figure 7.7 Log-log plots: sex 

 

Note: Both axes are on logarithmic scales.  
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Smoking: Figure A7.4 shows that the risk of failure over time among cases who smoked at 

baseline was similar to that of non-smokers in each outcome.  The proportional hazards 

assumption was met and smoking was included in each outcome model unaltered. 

Comorbidities: Figures A7.5 to A7.7 show the plots for CHD, stroke and CKD as model 

predictors. The presence of each comorbidity was associated with a worse outcome for each 

of the outcomes of interest. There is no plot for a particular comorbidity (CHD, stroke or 

CKD) when it is the outcome of interest: these cases would not be eligible for a survival 

model where the outcome is the first ever diagnosis of CHD, stroke or CKD, respectively. 

Events in the period prior to diabetes diagnosis and in the first three months were combined as 

the study follow-up period began at three months following diagnosis. The plots for these 

comorbidities (CHD, stroke and CKD) remained roughly parallel over time. These figures 

show the proportion of cases observed to fail over time among those eligible for each outcome 

model. Each of these plots shows that the proportion surviving remains roughly parallel over 

the follow-up period. The proportional hazards assumption was, therefore, met and these 

covariates were entered into the survival models unaltered. 

Clinical measurements and drugs: Figures A7.8 to A7.11 show the plots for the clinical 

value covariates, including those which were a product of the interaction with drug treatment 

(total cholesterol and systolic BP). The plots show that the covariates are roughly proportional 

over time and that the proportional hazards assumption was met. Drug treatments for high 

blood pressure and cholesterol at baseline, but not those initiated after diabetes diagnosis were 

included in each model for the following reasons: 

 Levels of BP and lipid-lowering drug (lipid lowering) treatment were already relatively  

high at baseline (table 7.5) and treatment rates rapidly increased following diagnosis (table 

A7.3), reducing any difference in the exposure to harm in the follow-up period between 
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cases with a high but untreated baseline risk factor and those whose risk factor was low, or 

already treated.  

 Any attempt to include treatments in the period following diagnosis, including those used 

to manage blood glucose, risked including an immortal time bias, as the case had to be 

alive to be prescribed a drug. (159) 

 

7.6.3 Potential predictors considered but not included in the models  

 

Year of diagnosis, geographical area and deprivation were also considered for inclusion in the 

survival models as they may plausibly predict the risk of death or diabetic complications. 

It was decided not to include year of diagnosis in the survival analyses for the following 

reasons: 

 Baseline HbA1C was already included in the model, and the effect of lowering the 

threshold for diagnosis would be reflected in lower HbA1C at diagnosis. The inclusion of 

year of diagnosis in addition to HbA1C in survival models would, therefore, tend to lessen 

the apparent impact of HbA1C in the risk of death and other outcomes. On balance, the 

effect of HbA1C was of more interest than year of diagnosis. 

 The study period for incident cases of diabetes was relatively short (1998-2003): the 

background age-specific risk of death, CHD, stroke and CKD in the wider population was 

unlikely to have changed in such a short period, lessening the need to control for its effect. 

(160)  
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 The number of practices contributing to the study cohort varied from year to year: any 

observed year-on-year differences in the risk of death and the other study outcomes may 

be due to differences between practices, rather than year of diabetes diagnosis. 

 

On balance, as with year of diagnosis, a decision was made to drop geographical area and 

deprivation in favour of the clinically relevant variables for the reasons described below: 

 Geographical region and deprivation are proxies for other, unmeasured, health related 

variables such as lifestyle, and access to and use of health services.  

 They are both area-based measures, and do not refer to the individual case in the study 

cohort.  

 Clinically relevant variables such as BMI and smoking refer directly to the individual case 

and are known to be on the causal pathway for the outcomes of interest in this study. 

 

7.6.4 Interactions included in models 

 

Baseline systolic BP and total cholesterol were categorised into binary covariates indicating if 

a case had a high level of each risk factor at baseline.  High systolic BP and treatment with 

BP-lowering drugs were combined into a single binary covariate in order to meet the 

proportional hazards assumption, as they did not meet it individually. The rationale for this 

grouping, other than it meets the proportional hazards assumption, is that it creates two 

groups: those who were exposed to high BP in the past and the remaining cases who were not. 

The effects of high baseline cholesterol and baseline lipid-lowering (lipid lowering) 

treatments were assessed independently as they both met the proportional hazards assumption. 
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As they were closely related, their combined effect was also assessed in an interaction term in 

each model.  
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7.7  Prediction model results 

 

Tables 7.6 to 7.9 contain the results of the prediction model for each of the study outcomes: 

CHD, stroke, CKD and all-cause mortality. The first set of covariates in each table are 

demographic variables, the second are smoking/comorbidities, and the third are baseline 

clinical measurements and selected drug treatments. The hazard ratios (HRs), p-values, and 

the 95% confidence intervals for each of the HRs are displayed for each covariate included in 

each model. Table 7.11 combines these results into a single table to allow the HRs to be 

compared across models. 

 

7.6.5 CHD prediction model results 

 

Table 7.6 shows the results of the CHD model. Male sex (HR 1.36; 95% CI 1.18- 1.56) and 

higher age at diagnosis (HR 1.02 per year of age; 95% CI 1.01-1.03) were significantly 

associated with an increased risk of being diagnosed with CHD in the period from three 

months to five years following diabetes diagnosis. Smoking at diagnosis was also significant 

and increased the risk of CHD (HR 1.26; 95% CI 1.08-1.46). The effect of stroke and CKD, 

diagnosed at any time up to three months after diabetes had similar, but not statistically 

significant, HRs of 1.09 and 1.13, respectively (95% CI 0.84-1.42 and 0.97-1.33, 

respectively). Higher HbA1C, higher BMI, and high SBP/BP treatment at baseline all appeared 

to increase the risk of CHD (HRs 1.07, 1.02 and 1.41, respectively) (95% CI 1.03-1.11, 1.00-

1.03 and 1.13-1.76, respectively). High baseline cholesterol and lipid lowering treatment, 

however, were not statistically significant.  
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Table 7.6 CHD prediction model 

  Hazard ratio p 95% CI 

       

Male  1.36 *** <0.001 1.18 1.56 

Age at diagnosis of 

diabetes (per year)  
1.02 *** <0.001 1.01 1.03 

Smoker at 

diagnosis  
1.26 ** 0.002 1.08 1.46 

Comorbidities 

prior to diabetes or 

in first 3 months 

following diabetes 

Stroke 1.09  0.501 0.84 1.42 

CKD 1.13  0.117 0.97 1.33 

Clinical 

measurements and 

treatments at 

diagnosis  

HbA1C
1 

1.07 *** <0.001 1.03 1.11 

BMI
1 

1.02 * 0.015 1.00 1.03 

SBP >= 140 mmHg or 

drug treated BP 
1.41 ** 0.002 1.13 1.76 

Total cholesterol >= 4 

mmol/L  
1.38  0.530 0.50 3.83 

 Total cholesterol >= 4 

mmol/L and on lipid 

lowering drug 

0.98  0.975 0.25 3.79 

 On lipid lowering drug 1.79  0.396 0.47 6.84 

* p<.05; ** p<.01; *** p<.001 

1. Changes in hazard ratios are shown per 1% increase in HbA1C and per 1 kg/m2 increase in BMI.   
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Table 7.7 Stroke prediction model 

  Hazard ratio p 95% CI 

       

Male  1.15  0.190 0.93 1.42 

Age at diagnosis of 

diabetes (per year)  
1.06 *** <0.001 1.05 1.07 

Smoker at 

diagnosis  
1.42 ** 0.005 1.11 1.81 

Comorbidities 

prior to diabetes or 

in first 3 months 

following diabetes 

CHD 1.50 ** 0.001 1.17 1.93 

CKD 1.17  0.152 0.94 1.48 

Clinical 

measurements and 

treatments at 

diagnosis  

HbA1C
1 1.01  0.756 0.95 1.07 

BMI
1 0.99  0.235 0.96 1.01 

SBP >= 140 mmHg or 

drug treated BP 
1.80 * 0.015 1.22 2.90 

Total cholesterol >= 4 

mmol/L  
0.90  0.855 0.29 2.83 

Total cholesterol >= 4 

mmol/L and on lipid 

lowering drug 

1.22  0.781 0.29 5.08 

On lipid lowering drug 0.63  0.521 0.16 2.57 

* p<.05; ** p<.01; *** p<.001 

1. Changes in hazard ratios are shown per 1% increase in HbA1C and per 1 kg/m2 increase in BMI.   
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7.6.6 Stroke prediction model results 

 

Increased age at diagnosis of diabetes was significantly associated with the risk of stroke in 

the first 5 years following this index event (HR 1.06; 95% CI 1.05-1.07), and male sex 

showed a positive hazard ratio, but was not statistically significant (HR 1.15; 95% CI 0.93-

1.42) (table 7.7). Smokers at baseline also showed a significantly increased risk of stroke (HR 

1.42; 95% CI 1.11-1.81). CHD, diagnosed at any time up to three months after baseline, 

showed a significant positive association with the risk of stroke (HR 1.50; 95% CI 1.17-1.93). 

Of the clinical measurements / treatments included in the model, only high SBP/BP treatment 

at baseline was significantly associated with the risk of stroke (HR 1.80; 95% CI 1.22-2.90). 

 

7.6.7 CKD prediction model results 

 

Unlike previous outcomes, the risk of CKD was lower in males than females (HR 0.52; 95% 

CI 0.48-0.56) (table 7.8). As seen in the other survival models, older age at diagnosis of 

diabetes appeared to be significantly associated with an increased of the outcome of interest 

(HR 1.06; 95% CI 1.06-1.06). Both CHD and stroke as comorbidities significantly increased 

the risk of CKD (HRs 1.21 and 1.14, respectively) (95% CI 1.11-1.33 for CHD), although the 

estimate for stroke came very close to non-significance (95% CI 1.001-1.289 for stroke). All 

the clinical measurement covariates with the exception of high total cholesterol and lipid 

lowering treatment at baseline were significantly associated with an increased risk of CKD. 

The HRs for HbA1C, BMI, and high SBP/BP treatment at baseline were 1.03, 1.01 and 1.45, 

respectively (95% CI 1.01-1.05, 1.00-1.02 and 1.28-1.65, respectively).  
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Table 7.8 CKD prediction model 

  Hazard ratio p 95% CI 

       

Male  0.52 *** <0.001 0.48 0.56 

Age at diagnosis of 

diabetes (per year)  
1.06 *** <0.001 1.06 1.06 

Smoker at 

diagnosis  
1.10  0.019 1.02 1.19 

Comorbidities 

prior to diabetes or 

in first 3 months 

following diabetes 

CHD 1.21 *** <0.001 1.11 1.33 

Stroke 1.14 * 0.048 1.00 1.29 

Clinical 

measurements and 

treatments at 

diagnosis  

HbA1C
1 

1.03 ** 0.002 1.01 1.05 

BMI
1 

1.01 ** 0.003 1.00 1.02 

SBP >= 140 mmHg or 

drug treated BP 
1.45 *** <0.001 1.28 1.65 

Total cholesterol >= 4 

mmol/L  
1.46  0.180 0.84 2.52 

Total cholesterol >= 4 

mmol/L and on lipid 

lowering drug 

0.64  0.164 0.34 1.20 

On lipid lowering drug 1.69  0.096 0.91 3.14 

* p<.05; ** p<.01; *** p<.001 

1. Changes in hazard ratios are shown per 1%  increase in HbA1C and per 1 kg/m2 increase in BMI. 
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7.6.8 All-cause mortality prediction model results 

 

Table 7.9 shows the results of the mortality model, that is, where the outcome of interest was 

all-cause mortality between 3 months and 5 year following a diagnosis of type 2 diabetes. Of 

the demographic covariates, male sex (HR 1.29), older age (HR 1.09), and smoking (HR 1.65) 

significantly increased the risk of death (95% CI 1.16-1.42, 1.09-1.10 and 1.46-1.87, 

respectively). All three comorbidities were significantly associated with an increased risk of 

death. In descending order of hazard ratio there were: CHD (HR 1.60), stroke (HR 1.47) and 

CKD (HR 1.33) (95% CI 1.40-1.80, 1.30-1.70 and 1.19-1.49, respectively).  Of the clinical 

measurement at baseline only HbA1C, BMI and lipid lowering treatment were significantly 

associated with the risk of death. Of these, only higher levels of HbA1C were positively 

associated with increased risk of death (HR 1.09; 95% CI 1.06-1.12). Increased BMI appeared 

to be associated with a small reduction in risk per unit BMI (HR 0.98; 95% CI 0.97-0.99) in 

this model.  

Table 7.10 shows the effect of total cholesterol and lipid-lowering treatment in more detail. 

Of these three related binary covariates (total cholesterol>=4 mmol/L, on lipid lowering drug, 

and the interaction term for these two covariates), only lipid lowering drug treatment was 

statistically significant. The relationship between total cholesterol and lipid lowering 

treatment and the risk of death was not simple or clear because of this: having either high 

cholesterol or being on lipid lowering treatment at baseline appeared to lower the risk of 

death. The effect of having both of these factors (treated but still high cholesterol), however 

was still associated with a lower risk of death than having normal and untreated cholesterol 

levels.  
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Table 7.9 All-cause mortality prediction model 

  Hazard ratio p 95% CI 

       

Male  1.29 *** <0.001 1.16 1.42 

Age at diagnosis of 

diabetes  (per year)  
1.09 *** <0.001 1.09 1.10 

Smoker at 

diagnosis  
1.65 *** <0.001 1.46 1.87 

Comorbidities 

prior to diabetes or 

in first 3 months 

following diabetes 

CHD 1.60 *** <0.001 1.40 1.80 

Stroke 1.47 *** <0.001 1.30 1.70 

CKD 1.33 *** <0.001 1.19 1.49 

Clinical 

measurements and 

treatments at 

diagnosis  

HbA1C
1 

1.09 *** <0.001 1.06 1.12 

BMI
1 

0.98 ** 0.002 0.97 0.99 

SBP >= 140 mmHg or 

drug treated BP 
1.07  0.547 0.86 1.34 

Total cholesterol >= 4 

mmol/L  
0.61  0.080 0.35 1.06 

 Total cholesterol >= 4 

mmol/L and on lipid 

lowering drug 

1.69  0.138 0.84 3.41 

 On lipid lowering drug 0.41 * 0.012 0.21 0.82 

* p<.05; ** p<.01; *** p<.001 

1. Changes in hazard ratios are shown per 1% increase in HbA1C and per 1 kg/m2 increase in BMI.   
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Table 7.10 Combined effect of cholesterol and lipid lowering drugs on hazard ratios for 

all-cause mortality 

 
On lipid lowering treatment at diagnosis 

no yes 

    

Total 

cholesterol at 

diagnosis 

low (< 4 mmol/L) 1.00 0.41 

high (>= 4 mmol/L) 0.61 0.71 

    

Note: Numbers are hazard ratios in comparison with cases with total cholesterol < 4 mmol/L and not on lipid lowering treatment at diagnosis 

of diabetes. This comparison group has a hazard ratio of 1.00. 
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7.6.9 All prediction model results combined 

 

Table 7.11, below, presents the results of the models in a single table to facilitate later 

comparison of the results for each predictor across models.  

 

Table 7.11 Hazard ratios for all prediction models 

 CHD Stroke CKD 
All-cause 

mortality 

         

Fixed risks         

Male 1.36 *** 1.15  0.52 *** 1.29 *** 

Age 1.02 *** 1.06 *** 1.06 *** 1.10 *** 

         

CHD   1.50 ** 1.21 *** 1.58 *** 

Stroke 1.09    1.14 * 1.47 *** 

CKD 1.13  1.18    1.33 *** 

         

Modifiable risks         

Smoker 1.26 ** 1.42 ** 1.10 * 1.65 *** 

HbA1C 1.07 *** 1.01  1.03 ** 1.09 *** 

BMI 1.02 * 0.99  1.01 ** 0.98 ** 

High SBP / treated BP 1.41 ** 1.80 * 1.45 *** 1.07  

         

High total cholesterol  1.38  0.90  1.46  0.61  

Chol. high and treated 0.98  1.22  0.64  1.69  

Treated cholesterol 1.79  0.63  1.69  0.41 * 

* p<.05; ** p<.01; *** p<.001 

Note: Changes in hazard ratios are shown per 1%  increase in HbA1C and per 1 kg/m2 increase in BMI. 
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7.7 Proportion of variation explained by each model 

 

The proportion of variation in the data explained by each complete model was summarised 

using the R
2
 statistic (table 7.12). Additional models were run for some outcomes in addition 

to the planned ones: these are shown in brackets. 

The R
2
 for each main outcome model varied between a maximum of 0.58 (all-cause mortality) 

and 0.09 (CHD). Both stroke and CKD performed similarly, with R
2
 of 0.35 and 0.34, 

respectively.  

Given the low R
2
 for CHD, additional models were run to assess if this was due to the 

outcome including both hard and soft/intermediate outcomes. The R
2
 for separate myocardial 

infarction (MI) and stable angina models performed better than the combined CHD model, 

with R
2
 of 0.20 and 0.13, respectively.  

The effect of including eGFR in the CKD outcome model was assessed separately from the 

main CKD model. The R
2
 almost doubled from 0.34 to 0.66 after its inclusion. 
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Table 7.12 Proportion of variation in the data explained by the survival models 

Model name R
2 

  

CHD 0.09 

(MI only) 0.20 

(angina only) 0.13 

  

Stroke 0.35 

  

CKD 0.34 

(with eGFR) 0.66 

  

All-cause mortality 0.58 
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7.8 Model checking: goodness of fit of Weibull model 

 

The suitability of the choice of a Weibull distribution to model each of the study outcomes 

was assessed using probability plots (figure 7.8). These probability plots compared the 

proportion of observed failures (death, CHD, stroke, CKD) with those expected (fitted) using 

a separate Weibull model for each outcome of interest. The Weibull model was an appropriate 

choice of survival distribution if the plotted line (of observed versus fitted failures) lay along 

the diagonal, and did not grossly deviate from it at any point. 

Death: There were 1502 deaths observed among the 20041 cases included in the death model. 

The plotted comparison of observed and expected deaths lay along the diagonal, showing a 

small deviation to either side of it at two points, before returning to the diagonal. Overall, the 

number of deaths derived from the model closely matched that observed in the data.  

CHD: There were 879 cases of CHD diagnosed during follow-up among the 15861 people 

included in the CHD model. The plotted comparison of observed and expected occurrence of 

CHD lay along the diagonal, and did not systematically deviate from it at any point. 

Therefore, the number of expected CHD diagnoses derived from the model closely matched 

that observed in the data.  

Stroke: There were 355 strokes observed during follow-up among the 18726 people included 

in the stroke model. As with the CHD model, the plotted comparison of observed and 

expected strokes lay along the diagonal, and did not systematically deviate from it at any 

point. Therefore, the number of expected strokes derived from the model closely matched that 

observed in the data. 
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CKD: There were 3294 cases of CKD observed during follow-up among the 14704 people 

included in the CKD model.  The plotted comparison of observed and expected CKD 

occurrence lay along the diagonal, but did deviate from it at two points, before returning to 

the diagonal. At the point where 25% of the failures occurred in the data, the model predicted 

that approximately 30% of the cases would fail and at the point where 75% of failures were 

observed to occur, the model predicted about 70%. These differences are relatively small, and 

show the model both underestimating and overestimating failures at different points, but not 

grossly deviating from the centre line without returning to it. Therefore, the fitted Weibull 

model was an adequately close fit to the observed data, and accepted as a suitable choice for 

modelling CKD outcomes.  

The Weibull model was accepted as a suitable choice of distribution to model each of the 

study outcomes. On the occasions where it deviated from the observed data, the differences 

were relatively small, and the model did not consistently over- or underestimate the number of 

outcomes observed. 
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Figure 7.8 Probability plots of observed failures vs. fitted Weibull model 
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CHAPTER 8  DISCUSSION 
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8.1  Introduction 

 

This thesis concerns the development of four separate statistical models which can be used to 

predict the risk of coronary heart disease, stroke, chronic kidney disease, and all-cause 

mortality in the five years following a diagnosis of type 2 diabetes. The study used data from 

a large UK general practice database and included demographic variables, clinical predictors 

routinely recorded following diabetes diagnosis, and blood pressure and cholesterol-lowering 

treatments to populate the models. 

This chapter discusses these models, focussing on their validity in comparison with existing 

models and their clinical utility. It begins with the main findings from each model [section 

8.2] and the study’s strengths and weaknesses [section 8.3]. This is followed by: detailed 

external comparisons to establish the generalisability of the study cohort in terms of 

demography and clinical features [section 8.4.1]; detailed comparisons of the estimates 

(hazard ratios) derived for each risk factor included in the current models with existing 

prediction models [section 8.4.2]; and comparisons of the population included and statistical 

methods with existing models [section 8.5], and approaches to missing data [section 8.6].  

The last sections of this chapter discuss the implications of the results of this study. They 

identify which risk factors are most clinically important [section 8.7.1], and discuss the 

clinical utility of the models [section 8.7.2] and their implications for policy [section 8.8]. The 

very last section [section 8.9] describes the overall study conclusions.  
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8.2  Main findings 

 

Age, sex and past medical history were important but fixed predictors of future risk. The 

hazard ratios for these non modifiable risk factors were: 1.02-1.10 for age (per year); 0.52-

1.36 for male sex; 1.21-1.58 for CHD; 1.09-1.47 for stroke; and 1.13-1.33 for CKD. Key 

modifiable predictors were: smoking; weight; blood pressure; and glycaemic control. The 

hazard ratios for these risk factors were: current smoking 1.10-1.65; weight (per unit BMI) 

0.98-1.02; blood pressure high or treated 1.07-1.80; and glycaemic control (HbA1C %) 1.01-

1.09. The proportion of variation explained by each model (R
2
) was: CHD 0.09; stroke 0.35; 

CKD 0.34; and mortality 0.58.  

The most clinically useful model might be the mortality model as it accounted for a large 

proportion of the variability in outcomes (R
2
=0.58). This model found that age, sex and past 

medical history were associated with the risk of death, as were smoking, glycaemic control, 

BMI and high/treated blood pressure. The stroke and CKD models accounted for a moderate 

amount of the variation in outcomes observed (an R
2
 of 0.35 and 0.34, respectively). The 

stroke model found that age, prior CHD, smoking and high/treated blood pressure were 

significant predictors of future stroke risk. The CKD model found that male gender, age, prior 

CHD and stroke were significant predictors of future CKD risk, as were smoking, glycaemic 

control, BMI and high/treated blood pressure. The CHD model had the smallest R
2
 (0.09). 

Although it included known risk factors for CHD, the model accounted for little of the 

variation in outcomes between individuals and would not, therefore, be useful in clinical 

practice. 

These results will be discussed in more detail in the individual sections below. 
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8.2.1 Prediction models 

 

The main outputs from this thesis were the four prediction models. This section considers the 

results of each model in turn in terms of the individual risk factors that were significant in 

each model. 

 

All-cause mortality prediction model: Perhaps the most successful of the models developed 

was that for all-cause mortality (table 7.11). This explained the majority of the variation (R
2
= 

0.58) in outcomes, more than any of the other models reported here (table 7.12). Possible 

explanations for this are discussed below [section 8.2.2]. This high R
2
 also suggests that this 

model could be used in clinical practice to predict all-cause mortality risk, after appropriate 

validation [section 8.7.2]. 

People who smoked at the time of diagnosis had an increased risk of death of almost two-

thirds (65%). Of the modifiable risk factors assessed across the four models, smoking was the 

only one to be significant in each case and had hazard ratios of sufficient size to make it 

perhaps the first target for intervention by clinicians.  

There was a 9% increase in the risk of death in the follow-up period for every 1% increase in 

baseline HbA1C. Higher HbA1C at diagnosis of diabetes implies that the case had been 

exposed to high levels of blood glucose prior to diagnosis, possibly for several years, and 

therefore was at increased risk of vascular damage. (161) This may in turn increase the risk of 

death from CHD and stroke (and the risk of renal and eye disease, and neuropathy). An RCT 

based in eastern England which carried out population-based diabetes screening among high-

risk individuals reported a lower baseline HbA1C than was observed in this study (6.8% and 
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8.2%, respectively), suggesting that population screening might detect the disease at an earlier 

stage and so allow earlier intervention (table 7.5). (162) The key clinical message is that the 

association between higher baseline HbA1C and serious outcomes observed in this study 

suggests a rationale for screening for diabetes, in that diagnosis earlier in the disease process 

could be associated with lower risk. NICE guidelines are already in place which address this. 

(163) These suggest that individuals at high risk of diabetes should have a blood test, and be 

reassessed every three years if they test negative. However a recent paper reporting 10-year 

outcomes from the ADDITION-Cambridge RCT found that a single round of screening did 

not reduce all-cause or cardiovascular mortality in the screened group. (164) Population 

screening for diabetes alone might not, therefore, be a cost-effective means to reduce these 

outcomes in the diabetic population, even if it led to a lower HbA1C at diagnosis. As the 

authors suggested, a programme which assessed cardiovascular risk in addition screening for 

diabetes might be effective at reducing serious cardiovascular outcomes. This would benefit 

both the non-diabetic and diabetic population, and is a model used by NHS Health Check 

programme. (165) 

The effect of increased BMI at baseline was also significant, but appeared to be protective: for 

every additional five units of BMI at baseline, the risk of death decreased by 10%. A similar 

protective effect of obesity on all-cause mortality was observed in a recent pooled analysis of 

five cohort studies. (166) The possible explanation for this unexpected effect given by the 

authors was that normal weight individuals with diabetes have a different genetic profile than 

overweight or obese individuals, and that these individuals are at risk of other diseases 

associated with higher mortality. (167)  The observed effect of lower BMI on mortality in the 

current study could not be explained by three major diseases associated with higher mortality: 

overt CHD, stroke and CKD, as these were adjusted for in the model. If lower BMI 
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individuals are at higher risk of diseases other than diabetes it might, therefore, be due to 

disease other than these three (cancer, for example), or diseases which were diagnosed after 

diabetes. It may also be that newly diagnosed cases of type 2 diabetes with high BMI were 

younger, or diagnosed at an earlier stage in the disease than those with lower BMI, and 

therefore at decreased risk of death in the first five years. Higher BMI is a known risk factor 

for diabetes and this is reflected in the diabetes risk scores recommended by NICE to identify 

individuals who should be tested for diabetes. (163, 168-170) Therefore clinicians may 

consider diabetes more frequently in individuals with higher BMI. (163)  Asymptomatic 

individuals may only have their diabetes diagnosed by random screening or when they are 

diagnosed with another disease. (163, 171-174) 

Of the remaining clinical measurements / treatments included in the model, only high SBP/BP 

treatment at baseline showed the positive association that might be expected with the risk of 

death, although its effect was non-significant. This is not unexpected given that even in the 

BP Lowering Treatment Trialist’ Collaborative meta-analysis of antihypertensive medication, 

the relationship between treatment and mortality (in comparison to major cardiovascular 

events) was not consistent. (175) The relationship between total cholesterol and lipid lowering 

treatment and the risk of death in the current study was not simple or clear: having either high 

cholesterol or being on lipid lowering treatment at baseline appeared to lower the risk of death 

(table 7.8). The effect of having both of these factors (treated and high cholesterol), however 

was still associated with a lower risk of death than being untreated and having a normal 

cholesterol level. Given that only one of these risk factors was statistically significant (the 

main effect for lipid lowering treatment), it is not clear if any valid inferences about their 

effect on death can be drawn from combining these results or whether these results were a 

chance effect or confounded by other factors not included in the model. If these hazard ratios 
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were an accurate reflection of reality, however, the explanation may be that patients with 

higher baseline cholesterol levels were more likely to be initiated on statins and, as a result, 

have a lower risk of future CVD, including stroke. 

Of the fixed risk factors, males were at significantly higher risk of death in the follow-up 

period than females (29% more) (table 7.9). Prior comorbidity (CHD, stroke and CKD) each 

increased the risk of death by one-third to one-half. As the effect of these is additive, a person 

with all three of these comorbidities would have a 140% increased risk of death compared to a 

person free of all three comorbidities. Both of these findings are consistent with other data 

from the literature. (79-81, 176, 177) 

 

CHD prediction model: In comparison to all cause mortality, the CHD model performed 

badly and most of the observed variability was not explained by the model (table 7.12). Of the 

modifiable risk factors, smoking was a prominent predictor of CHD risk: the risk of CHD for 

people who smoked at the time of diagnosis was 26% higher than for non-smokers, lower 

than the equivalent figure for all-cause mortality (65%) (table 7.11). As described in section 

6.7.1, the CHD cohort excluded cases from the CHD survival analysis that had prior overt 

CHD (n=3969: approximately 20% of those included in the mortality cohort). This may have 

resulted in the exclusion of many cases with the highest levels of exposure to smoking, and 

therefore the highest risk of developing CHD: these cases may have developed CHD earlier 

than those with lower or no tobacco exposure. (178) Baseline data for smoking status was 

only presented for the mortality cohort in the results chapter (table 7.5), so this possible 

explanation cannot be supported here by evidence of a higher prevalence of smoking at 

baseline for the mortality cohort, compared with the CHD cohort. 
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Higher HbA1C, higher BMI and high SBP/BP treatment at baseline were all associated with a 

significantly increased risk of CHD (a 7% and 2% increase per unit HbA1C and BMI, 

respectively, and a 41% increase for high SBP/BP treatment). The effect of HbA1C was 

similar to that for all-cause mortality (HR 1.09), and the effect of increased baseline BMI was 

positively associated with an increased risk of the outcome, unlike all-cause mortality, where 

increased BMI appeared to be protective. This suggests that HbA1C and BMI should both be 

addressed in clinical practice in order to reduce CHD risk. Higher BMI also appeared to be a 

stronger predictor of CHD than stroke (HR 1.03 and 1.01, respectively) (table 7.11): this is 

consistent with evidence from the wider population that higher BMI has a greater effect on 

CHD risk than stroke risk. (179)  

The effect of high SBP/BP treatment at baseline on risk of CHD (HR 1.41; 95% CI 1.13-1.76) 

was greater than that for mortality (HR 1.07; 95% CI 0.86-1.34), and unlike mortality, its 

effect was statistically significant. This suggests that BP is a more important target for 

treatment in order to reduce CHD risk than all-cause mortality, and fits well with trial data for 

the general population. (175) 

The effect of high cholesterol and cholesterol-lowering drugs was to increase CHD risk, but 

the effect was non-significant and opposite to that observed for mortality. Again, this apparent 

difference may be explained in part by the exclusion of cases with overt CHD prior to, or 

within 3 months of diabetes diagnosis. Most CHD diagnoses occurred prior, or very close to, 

the diabetes diagnosis, rather than in the remaining follow-up period (3969 and 879, 

respectively). The effect of BP, cholesterol and drug treatment may have differed in those 

who developed overt CHD prior to the diagnosis of diabetes, compared to those who 

developed CHD following diabetes diagnosis, and this may have led to the observed 

differences between the CHD and mortality models for these risk factors. (180) Despite this 
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non-significant result for cholesterol on CHD risk, clinicians should not ignore this risk factor 

when attempting to reduce risk in people with Type 2 diabetes: there is ample evidence that 

cholesterol level is a risk factor from population-based trials. (41, 42) 

In terms of non-modifiable risks, males were at significantly higher risk of CHD than females 

(36%), similar to that observed for all-cause mortality (table 7.11). This was also similar to 

the risk observed in the wider Framingham population (a 44% higher lifetime risk for males at 

age 70 years). (181) However the risk of CHD increased less with increased age at diagnosis 

than was observed in the all-cause mortality model: it increased by about 20% for each 10 

year increase in age for CHD, but doubled for each 10 year increase for all-cause mortality. 

This may be due to the exclusion of cases with prior CHD from the CHD outcome model 

hence potentially resulting in a lower risk cohort. This highlights the difficulty in making 

comparisons across different models which are derived from different subsets of a larger 

cohort. It would have been possible to develop a set of models using a common cohort, 

allowing direct comparisons of hazard ratios. However, this would have resulted in the 

exclusion of at least 20% of patients (table 7.5), and produced models which could not be 

applied to a significant proportion of newly diagnosed patients with diabetes. On balance, it 

seemed better to ensure that the models were representative of the diabetic population than to 

ensure that hazard ratio estimates were directly comparable across models. 

Overall the CHD model performed the worst of the three models. The explanation for the 

relatively low R
2
 for this model was explored by running two additional sub models (table 

7.12). The definition of CHD included both the soft/intermediate outcome of stable angina – 

which mainly relies on a clinical diagnosis – and the harder outcome of myocardial infarction 

(MI): the impact of each of the risk factors may therefore have differed for each of these two 

outcomes. The two sub models showed improved R
2
 (0.20 and 0.13 for MI and stable angina, 
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respectively), suggesting that this was the case. Unfortunately, this approach could not be 

used in place of the main CHD model as only a proportion of the CHD outcomes could 

reliably be assigned to either MI or stable angina. 

It is likely that the CHD-specific model presented here (R
2
 0.09) could be improved if a 

reliable method could be found to split CHD outcomes into MI and angina. This might be 

achieved by linkage of GP and secondary care records or if there was an improvement in 

coding in general practice [section 8.3.2 weaknesses]. (112) Until such time as these can be 

achieved, this CHD model has relatively limited clinical utility [section 8.8 data issues]. 

 

Stroke prediction model: Considering modifiable risks, the effect of smoking at baseline 

was significantly associated with an increased risk of stroke, as it was with mortality and 

CHD (table 7.11). Smokers were at 42% higher risk of stroke in the period from 3 months to 5 

years following the diagnosis of diabetes, reinforcing the importance of smoking cessation as 

a key clinical intervention. 

Of the remaining modifiable risk factors included in the stroke model, only high SBP/BP 

treatment at baseline achieved statistical significance (95% CI 1.22-2.90). The effect of this 

was to increase the risk of stroke in the follow-up period by about 80%. This is almost twice 

as high as the HR observed in the CHD model (HRs 1.80 and 1.41, respectively). This is 

similar to the difference between the effect of blood pressure on CHD and stroke outcomes 

seen in studies on both non-diabetic and diabetic populations. (40, 182) The point estimate for 

the hazard ratio for blood pressure on future stroke was also the highest seen for any risk 

factor in any of the models and reinforces the importance of blood pressure control in 

preventing stroke. 
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The effect of high cholesterol, lipid lowering drugs and the interaction between the two were 

not significant, but, as with mortality, they showed a similarly counter-intuitive pattern of 

exposures that would be expected to increase risk, appearing to be protective. (41) It is not 

clear if this highlights a general issue inherent to the use of routine primary care patient data, 

or one specific to modelling chronic diseases like diabetes. It may be more likely to be the 

latter, as higher cholesterol levels predicted higher CVD risk in a study using one of the large 

GP databases in a statin-unexposed ‘healthy’ population (64, 109). In diabetes, patients with 

high cholesterol at diagnosis are likely to be treated with statins: the proportion prescribed 

lipid lowering drugs in this study rose from 19% at diagnosis to 42% at one year following 

diagnosis (table A7.3). High cholesterol at diabetes diagnosis, therefore, is likely to be 

associated with initiation of a statin in the period following diagnosis, and a subsequent 

reduction in risk. This may explain the apparent protective effect of high untreated cholesterol 

at baseline observed in this model (HR 0.90). 

Unlike all the other models (table 7.11), the effect of male sex on stroke risk was not 

statistically significant (95% CI 0.93-1.42), though the direction of the hazard ratio was 

consistent with an increased risk of stroke for males (HR 1.15). The effect of age was 

significant, however, as it was with all the other models discussed so far: it increased by 6% 

for every additional year of age at diagnosis of diabetes. 

Overall, the R
2
 for the 5-year stroke model (R

2
 0.35) was at a similar level to a 10-year CVD 

prediction model (QRISK1) developed for the wider population, which reported an R
2
 of 0.33 

and 0.36 for men and women respectively. (63) This suggests that this model could be used in 

clinical practice to predict stroke risk, after appropriate validation [section 8.7.2]. 
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CKD prediction model: Higher HbA1C, higher BMI and high SBP/BP treatment at baseline 

were all associated with a significant increased risk of CKD (a 3% and 1% increase per unit 

increase in HbA1C and BMI, respectively, and a 45% increase in risk for high SBP/BP 

treatment). This pattern of risk is similar to that observed in the CHD outcome model (7%, 

2% and 41% increases, respectively). Also, as observed in the CHD outcome model, the 

effect of high baseline cholesterol, lipid lowering treatment and their interaction was non-

significant, but followed the expected direction: exposures which implied high levels of total 

cholesterol in the past were associated with an increased risk of CKD diagnosis in the follow-

up period. 

The effect of increased age at diagnosis was significant and increased the risk of being 

diagnosed with CKD in the follow-up period by 6% for each year of age (table 7.8). This is 

similar to that observed in the earlier outcome models (table 8.6), and may not be surprising 

given that the CKD risk is strongly related to age, even in the healthy population (71, 183). 

Unlike the other models, however, the effect of male gender was protective (and significant): 

males were at 48% lower risk of CKD in the follow-up period than females.  This is 

consistent with the observed prevalence of stage 3-5 CKD in the general population, where it 

is approximately twice as common in females as males (7.3% and 3.5%, respectively). (184) 

As seen in each of the other models (table 7.11), existing comorbidities, diagnosed at any time 

up to the first 3 months following diabetes diagnosis, increased the risk of the outcome (in 

this case CKD). CHD and stroke increased the risk of CKD by 21% and 14%, respectively.  

Overall, the R
2
 for the 5-year CKD model (R

2
 0.34) was similar to that reported for a CVD 

risk model which was used in clinical practice. (63) This suggests that this model could be 

also be used in clinical practice to predict CKD risk, after appropriate validation [section 
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8.7.2] and perhaps after the inclusion of baseline eGFR as an additional predictor [section 

8.2.2].  

 

Comparison of hazard ratios between models in this study: The observed differences in 

hazard ratios for the same variables between the four models may have two explanations 

(table 7.11). Firstly, the cohorts are not directly comparable, as they each excluded cases with 

the outcome of interest. Also, as CHD, stroke and CKD can have a similar underlying disease 

process, atherosclerosis, the effect of excluding cases with an overt outcome of interest, may 

also exclude cases at risk of the other outcomes in this study. Secondly, other than differences 

caused by case selection, there are likely to be real differences in the effect of covariates, such 

as blood pressure levels at baseline, on each outcome. (40) Lastly, it is important to keep in 

mind when interpreting the hazard ratios for individual covariates, that it is the hazard ratio 

for that variable after all the other covariates have been taken into account. So, for example, 

the hazard ratio for smoking already takes into account the impact of sex and vice versa. 

These models, however, do demonstrate that there are a set of known fixed and modifiable 

risk factors which predict future CVD and CKD risk, and risk of death, within 5 years 

following diabetes diagnosis. Age, gender and comorbid CHD, stroke and CKD predicted 

risk: where their hazard ratios were not statistically significant, they were in the expected 

direction. Smoking, higher HbA1C and high/treated SBP were positively associated with 

increased risk of each outcome, though not always statistically significant. The effect of 

higher BMI predicted an increased risk of CHD and CKD outcomes, but was protective for 

stroke (but not statistically significant) and mortality. The clinical importance of each of these 
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risk factors is discussed below [section 8.7.1 what risk factors make most difference?; section 

8.8 policy implications: clinical issues].    

 

8.2.2 Differences in proportion of variation in outcomes explained by the models 

 

The proportion of variation explained by each of the survival models (the R
2
) varied widely, 

from a maximum of 0.58 for all-cause mortality, to a minimum of 0.09 for the CHD outcome 

model (table 7.12). For clinical populations like the study cohort, with wide age ranges and 

outcomes which are strongly age related, much of the explanatory power of the model will 

reside in the age and age-related variables (e.g. comorbidities present at diabetes diagnosis). 

Age at diagnosis was, therefore, probably the biggest contributor to the proportion of 

variation explained by each of the models. 

A likely explanation for the relative success of the mortality model compared with the other 

outcomes, and CHD in particular, is the completeness and accuracy of recording of each 

outcome in primary care electronic patient records [section 4.6]. Morality in another UK 

primary care database was within 5% of national rates suggesting that the fact of death is well 

recorded in primary care. (130) The definition of CHD used in this thesis, however, was a 

composite outcome which included myocardial infarction (MI) and angina. A sensitivity 

analysis which developed separate models for these outcomes showed that the separate 

models predicted a much greater proportion of variation when separated (R
2
: MI 0.20; angina 

0.13) than when combined (R
2
 0.09) (table 7.12), suggesting that the risk factors had a 

different effect on MI and angina. Even as separate models, they explained one-third or less of 

the variation in outcomes when compared with the mortality model. A recent paper on MI 
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which linked GP, secondary care and disease registry data found that 18% of the MIs 

recorded in the patients’ primary care records could not be validated in the other data sources, 

and a similar proportion of MIs found in the secondary care and registry data could not be 

matched to events recorded in the primary care data. (112) This suggests that there is a 

substantial amount of underrecording and misrecording of MIs and, potentially, other acute 

events such as stroke in primary care electronic patient records. This is likely to have reduced 

the ability of the CHD and stroke models to accurately predict CHD and stroke outcomes, and 

led to the observed low R
2
 observed for the CHD model. The CKD model explained a similar 

proportion of variation as the stroke model (stroke 0.35; CKD 0.34), but would have been 

substantially improved by the inclusion of eGFR at baseline (R
2
=0.66) (table 7.12). This was 

greater than the R
2
 for the mortality model, suggesting that any future versions of the model 

should include baseline eGFR as a predictor. 

 

8.2.3 Clinical characteristics of people newly diagnosed with type 2 diabetes 

 

A byproduct of the decision to develop risk models from the point of diagnosis of diabetes 

was that it also provided estimates of their clinical characteristics at this point (table 7.5). 

These results included comorbidities already present at diabetes diagnosis, clinical 

measurements and current drug treatments. As such it provides a snapshot of the 

characteristics of people diagnosed in the UK in the study period, 1998-2003, and can serve as 

a baseline for comparisons with more recent periods. As the outcomes of interest for the 

prediction models are mainly vascular-related, it is worth noting that one in five already had 

overt vascular-related disease at diabetes diagnosis (mainly CHD and CKD), and that some 
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drug treatments for primary or secondary prevention of CVD were already used by many 

practice patients by the time their diabetes was diagnosed (table 7.5). Of these the most 

common was BP lowering, with 6 in 10 cases already being treated at diagnosis. Patients 

already treated at baseline and those who began BP lowering treatment after diagnosis were 

likely to experience improved outcomes, as shown in previous studies in the diabetic and 

general population. (185, 186) Aspirin was also being used, but was less common at 1 in 4 

cases, perhaps reflecting its use in secondary rather than primary prevention. Given the 

disagreement reported between systematic reviews of aspirin use in primary prevention in 

people with diabetes, it is uncertain if initiation for primary prevention prior to diabetes 

diagnosis would have any benefit over initiation after diagnosis. (24, 187) Lipid lowering 

treatments were the least commonly used CVD prevention drugs at baseline, used by just over 

1 in 8 cases. Given that prolonged statin use is likely to produce larger absolute reductions in 

vascular events, patients initiated on a statin prior to diabetes diagnosis may have seen more 

reduction in outcomes than those who were initiated after diabetes diagnosis. (188) 
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8.3  Study strengths and weaknesses 

 

8.3.1 Strengths 

 

The study cohort was drawn from practices that were representative of the UK population 

and, therefore, was likely to be representative of patients with newly diagnosed diabetes. 

(189-192) Further, a minimal number of potential cases were excluded from the study cohort, 

increasing the likelihood that it was representative of the wider population of patients with 

type 2 diabetes. Only 8.5% of potentially eligible patients were excluded from the study 

cohort: where patients were excluded it was because they did not appear to have type 2 

diabetes or were not followed-up for a minimum of three months following diabetes 

diagnosis.  

The prediction models included risk factors which are known to predict the outcomes of 

interest and which are routinely recorded in general practice. This should ensure that the 

models are applicable to current UK general practice and that the data required to calculate 

these risks are available to practice staff. Some risk factors which may have predicted risk but 

were not routinely recorded in general practice during the period covered by this study were 

HDL cholesterol, waist:hip ratio and ethnicity. The lack of completeness in the recording of 

these risk factors prevented their inclusion in these models. The completeness of recording of 

HDL, and other laboratory results, will have improved since the introduction of electronic 

links with laboratories. (103) The recording of ethnicity for newly registered patients was 

incentivised in QOF, and has led to an improvement in the completeness of recording of 

ethnicity since the end of the period covered by this study. (193, 194) The recording of waist: 
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hip ratio in UK general practice for people with type 2 diabetes, however, is still not high: in a 

currently unpublished study using the THIN primary care database only 18% of patients with 

type 2 diabetes had a waist:hip ratio recorded at any time in their electronic patient record. 

The models presented here are, therefore, as complete as possible, although future updates, 

using more recent clinical data may allow the inclusion of HDL cholesterol and ethnicity as 

predictors. 

The case definition was developed in earlier primary care database studies published by this 

author. (6, 7) The principal authors of that study had full access to the unanonymised free-text 

comments of practice staff. This allowed them to identify a set of Read codes with high 

sensitivity and specificity. This should have ensured that important groups of cases were not 

systematically excluded from the study cohort and have minimised the risk of including 

practice patients who did not have diabetes mellitus. 

The prediction models developed in this study are likely to predict risk more accurately in 

patients with newly diagnosed (incident) type 2 diabetes than other models which were 

developed using prevalent diabetes cases. (44-46, 52-60, 76-81) This study showed that some 

risk factor levels, particularly HbA1C, total cholesterol and systolic BP show steep declines in 

the first years after diagnosis, and that cases became more homogenous over time (figures 7.3, 

A7.2 and 7.4). Previous models which used risk factor data from the years following 

diagnosis are likely to systematically underestimate the level of these risk factors at diabetes 

diagnosis and will, therefore, overestimate the effect of these risk factors on outcomes 

[section 8.9.1 paragraph 4]. This implies that the models presented here could provide a more 

accurate estimate of risk in people with newly diagnosed diabetes than these other models, 

and would, therefore, be more useful in a clinical setting as they would help target treatment 

to those at highest risk. 
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8.3.2 Weaknesses 

 

The time period covered by this study predates the introduction of the Quality and Outcomes 

Framework. Since the mid-2000s general practices in the UK have been financially 

incentivised to meet targets for the monitoring and treatment of patients with diabetes and 

other diseases which are associated with increased cardiovascular risk. This is reported to 

have improved the management of type 2 diabetes compared with the period before its 

introduction (although the initial rate of improvement was not sustained). (16) The clinical 

areas that were incentivised included the control of blood pressure, cholesterol, and HbA1C. 

These three areas saw improvements in risk factor control from 1998 (pre-QOF) compared 

with 2005: a more than doubling in the proportion of patients meeting their target in the case 

of blood pressure and cholesterol. The prediction models developed in this study may 

therefore overestimate the underlying risk of outcomes in people diagnosed with diabetes in 

recent years: patients diagnosed in the post-QOF period will have achieved better control of 

risk factors, and therefore better outcomes following diagnosis than the patients who were 

included in this study. 

The median follow-up period following diagnosis was relatively short at three years: this led 

to a decision to limit the prediction models to five years, to avoid making predictions past five 

years using data from relatively few patients. This may reduce the utility of the prediction 

models in clinical practice as many, though not all, clinical guidelines focus on the level of 

risk over 10 years. (195) Despite this, a five-year period for people in their 60s (the mean age 

at diabetes diagnosis) may be an appropriate time period over which to report results, and five 

year risk is used in the New Zealand risk guidelines. (195) The distinction between five and 

ten year risk may be less important than the distinction between short-term and lifetime risk, 



 

147 

 

and how risk is communicated to patients. (196-199) Short-term risk equations may also 

preferentially identify people who have already accrued substantial risk and miss others who 

might benefit from early preventative treatment, and risk estimates need to be understood by 

patients. (200-205) Identifying the most appropriate risk tools and methods for risk 

communication in patients with type 2 diabetes is beyond the scope of this thesis, but these 

papers suggest that the restriction of the risk models presented here to five years rather than 

ten is less important clinically than how and when the risks are presented, and how patients 

are engaged in their own care. 

Patient turnover may have influenced the results reported in this thesis.  In general practice 

turnover is around 7% per annum on average, though it can be as high as 25% in some areas. 

(206) Also, over half of all home moves in people aged 80 years or over between the 1991 

and 2001 Censuses were from private to communal establishments and were often associated 

with the onset of a chronic illness. (207) Prediction models based on general practice data, 

where cases are censored when they leave their practice, rely on the assumption that the rate 

of failures (e.g. death) is the same in those who are censored as those who remain at their 

current practice until the end of the study period. The above national data suggests that this 

may not be a safe assumption, especially for the oldest age groups, and that the models 

developed in this study may have underestimated the risk of death and the association 

between baseline cardiovascular disease and death. Despite this potential weakness, however, 

the 5-year risk of death in the presence of baseline CVD was very high: 58% higher in 

patients with CHD than without, and 47% higher in patients with stroke than without (table 

7.11). Work is currently in progress to link the THIN database to national death records on 

cause of death and hospital records, including events that occur after patient deregistration. It 

will, therefore, be possible in the future to ascertain if patients who are censored when they 
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deregister experience outcomes at a different rate than those who remain registered, and the 

extent of any systematic bias that this might have caused in prediction models developed 

using GP data. 

Relatively few (18%, 3643/20041) of the cases in the study cohort had all their clinical 

measurements recorded (that is, coded in their electronic patient record) within 90 days of 

diabetes diagnosis [section 7.4]. The extent of this missing data meant that additional 

computationally intensive and time-consuming steps had to be taken in selecting appropriate 

methods for dealing with these missing values, increasing the time taken to develop the 

models and decreasing the precision of the estimates (HRs) reported [sections 6.6.3 to 6.6.7]. 

The prediction models presented in this study were developed in parallel for convenience. 

Separate models with their own sets of covariates and interactions may have better predicted 

the individual outcomes, but this would have increased the amount of time taken to build 

these models. As the main aim of the study was to demonstrate that risk factors routinely 

recorded in general practice predict risk in this clinical group, it was decided that a common 

set of predictors would be sufficient to achieve this.  The CHD prediction model would also 

have been improved if it had been possible to separate all CHD outcomes into MI and angina 

subtypes (including those who had both subtypes), as would the CKD model if baseline eGFR 

had been included (table 7.12). Linked primary care and hospital inpatient and outpatient data 

has recently (2013) been made available to researchers using THIN. (107) These might allow 

researchers to distinguish between angina and MI in future models using this linked data 

source. 

The direction of some hazard ratios in some of the prediction models has not been fully 

explained. Higher BMI appeared to be protective for all-cause mortality but increased both 
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CHD and CKD risk: further development of these risk models individually would allow non-

linear effects of BMI to be tested (e.g. using fractional polynomials), though this might be a 

non-trivial task as missing BMI data was multiply imputed for some cases. (208) It may also 

be that this association is clinically plausible: this was discussed earlier in this chapter 

[section 8.2 all-cause mortality prediction model]. The effects of high baseline total 

cholesterol and cholesterol treatment were not statistically significant in three of the four 

models: the point estimates appeared to show increased CHD and CKD risk and a protective 

effect for stroke and all-cause mortality. Further development of these models separately, as 

with BMI, could include a non-linear effect of total cholesterol on each outcome if, like BMI, 

a way to include the multiply imputed missing data can be found. (208) 

Although published after the literature searches carried out as part of this thesis, a recent BMJ 

paper on the validity of acute MI diagnoses recorded in primary care suggests that these 

diagnoses have a positive predictive value of only 92% when compared with a disease 

registry data. (112) Given its relevance to this thesis, it was decided to include it here as it has 

implications for the ascertainment of CHD as a comorbidity and outcome in studies using 

primary care data such as this. The authors conclude that linked primary care, death 

certification, hospital and disease registry data are required to avoid biased ascertainment of 

acute MI outcomes. These kinds of external data were not available at the time the models in 

this thesis were developed, but, as mentioned above, linked data is being introduced for use 

with THIN primary care records. Future studies could make use of some of these data sources 

to validate existing GP data or identify additional outcomes.  
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8.4  Comparison with other cohorts, models and study designs 

 

This section compares the results of and methods used in the current study with previous 

studies with respect to the generalisability of its results to other UK patients with newly 

diagnosed type 2 diabetes and the external validity of the results.  

The first set of comparisons are intended to establish the generalisability of the current study 

cohort to other patients with newly diagnosed Type 2 diabetes in terms of demography, 

comorbidity and frequency of outcomes. The studies used in these comparisons were UK-

based where possible.  

The next set of comparisons was intended to externally validate each prediction model, that is, 

the hazard ratios for the demographic and clinical predictors included in each model. The 

models used for comparison were based on cohorts of cases with newly diagnosed type 2 

diabetes where possible. 

The last part of this section addresses two major methodological differences between the 

current study and the other prediction model studies identified from the literature. The first of 

these differences was the decision to restrict the cohort to cases who were observed from the 

point of diabetes diagnosis. The second was the method for dealing with missing data adopted 

in the current study. 
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8.4.1 Cohort comparisons: baseline levels of risk factors and frequency of outcomes 

 

In order to understand whether or not the results in this thesis are generalisable, baseline 

levels of risk factors and subsequent frequency of outcomes were compared to the literature. 

Tables 8.1 to 8.3 provide comparisons between the current study cohort and previous studies. 

These comparisons consist of the baseline demographic and clinical characteristics of people 

with newly diagnosed type 2 diabetes, and the frequency of selected outcomes at and 

following diabetes diagnosis. The present study cohort was restricted to specific subgroups 

where required to provide like-for-like comparisons between the published results and the 

other studies. Some external studies reported results for type 1 and type 2 diabetes combined, 

or data for prevalent rather than newly diagnosed diabetes cases. These are indicated in the 

tables, where applicable. 

Demography - age and gender of cases: As can be seen from the hazard ratios in the 

models, age and sex are amongst the most important risk factors found. Table 8.1 compares 

the age and sex of the study cohort with results from external studies in order to judge 

generalisability and comparability of results. The mean age at diagnosis of diabetes in the 

current study cohort was the same as that for the Poole study (both were 64 years), and higher 

than that for the South Tees study (58 years). (153, 209) The younger age of the South Tees 

cohort is likely to be explained by the inclusion of cases with type 1 diabetes. The mean age at 

diagnosis in the current study was also similar or the same as that found in the UKPDS (55 

and 53, respectively) and Tayside studies (63 and 62, respectively), once the current study 

cohort was restricted to match the external studies. (59, 133) 
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The proportion of cases that were male in the study cohort was similar to that found in the 

South Tees study (54% and 56%, respectively). (153) The proportion of cases that were male 

in the UKPDS and Tayside studies were also similar to that found in the current study, once 

the study cohort was restricted to match the external studies’ inclusion criteria. (59, 133) 

The similar results reported for this and other cohorts of patients with diabetes suggest that 

the study cohort was representative of the wider population of patients with type 2 diabetes in 

terms of age and gender. Given the limited age range included in the UKPDS, it is also likely 

that the current study cohort was in fact more representative of the wider population of people 

with type 2 diabetes. These imply that the models developed in this study would be useful in 

clinical practice: they would accurately estimate the risk at diabetes diagnosis of these 

outcomes in the wider population of people with type 2 diabetes.  
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Table 8.1 Comparisons with previous studies: age and gender of cases 

 Study Note 
Study 

period 
  

      

    Mean (SD) 

Age Current study  (all ages) 1998-2003 64 (12) 

 South Tees (153) * 1994 58  

 Poole (209)  (all ages) 1996-1998 64 (13) 

      

 Current study  (ages 35-65) 1998-2003 54.5 (8) 

 UKPDS (133) (ages 25-65) 1977-1991 53.3 (9) 

      

 Current study (excl. prior CHD) 1998-2003 62.6 (13) 

 Tayside (59) (excl. prior CHD) 1995-2004 61.7 (12) 

      

 
   

Percentage 

of cases 
 

Male Current study (all cases) 1998-2003 54  

 South Tees (153) * 1994 56  

      

 Current study  (ages 35-65) 1998-2003 59  

 UKPDS (133) (ages 25-65) 1977-1991 61  

      

 Current study (excl. prior CHD) 1998-2003 52  

 Tayside (59) (excl. prior CHD) 1995-2004 52  

      

* Included type 1 diabetes. Included prevalent cases of diabetes.  
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Prevalence of comorbidities at diagnosis of diabetes: Co-morbidities had a large influence 

on prognosis in the models developed in this thesis, particularly in the mortality model. Table 

8.2 compares the prevalence of CHD, stroke and CKD at diabetes diagnosis in the current 

study cohort with external studies. 

The prevalence of CHD in the current study cohort (19.8%) was much higher than that 

reported for the DAI study in Italy (3.3%) and the study by Uusitupa in Finland (38%), but 

was very similar to the Ruigomez GPRD study, once the age range of the current study was 

restricted to match that used in the GPRD study (17.3% and 17.0%, respectively). (210-212) 

The prevalence of stroke found in the French drug trial reported by Cathelineau was 

substantially lower than that found in the current study (1.6% and 6.2%, respectively). (213) 

After the restriction of the current study to the age range, the prevalence of stroke in the 

UKPDS was lower than that that found in the current study (0.8% and 3.0%, respectively). 

(46) However, it is not clear from the report if the 37 UKPDS stroke cases were the complete 

prevalent stroke population, or if others had been excluded at an earlier point. This may be 

likely as the original UKPDS study excluded cases with more than one previous major 

vascular event. (88) Lastly, the Ruigomez GPRD study reported a similar prevalence of prior 

stroke after restriction of the current cohort (4.7% and 4.4%, respectively). (212)  
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Table 8.2 Comparisons with previous studies: prevalence of comorbidities at diagnosis 

of diabetes 

 Study Note 
Study 

period 

Percentage 

of cases 

     

CHD Current study  (all ages) 1998-2003 19.8 

 DAI, Italy (210)  1998-1999 3.3 

 Uusitupa, Finland (211)  1979-1981 38 

     

 Current study (ages 30-74) 1998-2003 17.0 

 Ruigomez, GPRD (212) (ages 30-74) 1990-1992 17.3 

     

Stroke Current study  (all ages) 1998-2003 6.2 

 Cathelineau, Fra.  (213)  1992-1995 1.6 

     

 Current study (ages 35-65) 1998-2003 3.0 

 UKPDS (46)  (ages 25-65) 1977-1991 0.8 

     

 Current study (ages 30-74) 1998-2003 4.4 

 Ruigomez, GPRD (212) (ages 30-74) 1990-1992 4.7 

     

CKD Current study  (all ages) 1998-2003 22 

 South Tees (153) * 1994 32 

 Wolverhampton (214) ** 2002-2003 30 

 Israel (215) ** 1999-2003 29 

     

 Current study (ages 30-74) 1998-2003 16 

 Ruigomez, GPRD (212) (ages 30-74) 1990-1992 1.3 

     

* Included type 1 diabetes. Included prevalent cases of diabetes. 

** Included prevalent cases of diabetes.  
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The prevalence of CKD at diagnosis of diabetes was 22% in the study cohort. The South Tees 

study reported a higher CKD prevalence (32%) in a cross-sectional cohort which included all 

diabetes cases in a region (both newly diagnosed (incident) diabetes cases and prevalent cases 

which had been diagnosed in previous years). (153) A similar CKD prevalence was reported 

in a study that used a regional diabetes register in Wolverhampton (30%), and among 269 

prevalent diabetes cases in Israel (29%). (214, 215) These higher figures are consistent with 

the expected decrease in eGFR within individuals over time following a diagnosis of diabetes. 

The Ruigomez GPRD study reported a substantially lower prevalence of CKD than the 

current study, even after restriction of the current cohort (1.3% and 16%, respectively). (212) 

However, its definition of CKD required a diagnosis of albuminuria, proteinuria, renal failure, 

diabetic nephropathy or metabolic disorder, which will have only included cases where there 

was evidence of significant chronic kidney damage or established renal failure. 

Although there were differences between the prevalence of comorbidities with non-UK 

studies, the prevalence of CHD, stroke and CKD was similar to that reported in more recent 

UK data. The strength of this evidence is weakened, however, for CHD and stroke, as both 

sets of results came from the GPRD: there was an overlap of approximately 50% in the 

practices contributing to that database and THIN. 

Comorbidities were found to be highly predictive of each outcome in this study and were 

common at diabetes diagnosis. Unlike the clinical trials and observational studies from the 

UK and other countries, the models developed in this study included patients regardless of 

their health status and age, and provide UK-wide coverage. The current study models are 

more likely to be representative of patients seen in UK clinical practice in terms of 

comorbidity and age than these other studies, and more likely to accurately estimate baseline 

risk in the UK, resulting in models which can better predict risk in clinical practice. 
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Proportion of cases with outcomes in follow-up period: Table 8.3 compares the proportion 

of cases with each outcome in the current study with results reported for similar studies. A 

total of 5.5% of cases were diagnosed with or died from CHD during the follow up period in 

the current study (mean follow-up: 3.0 years). One study using the Tayside diabetes register 

reported that 5.3% of their incident cases of diabetes developed CHD during their 4.1 year 

follow-up period. (155) This is roughly equivalent to 3.6% over the period observed in the 

current study. This lower figure may be explained in part or in full by the younger age of the 

Tayside cohort (64 years and 55 years at diagnosis). 

A total of 1.9% of cases were diagnosed or died from a stroke during the follow-up period 

(mean follow-up: 3 years). The estimated percentage of stroke outcomes in the UKPDS 

cohort was 1.2% over the first three years. (46) The equivalent percentage for the current 

study was close to this, once it was restricted to match the UKPDS age range (0.9%). The 

incidence of stroke also fell in the wider population between the period covered by the 

UKPDS and the current study (from 1981-84 to 2002-04). (216) This 29% decrease in 

incident stroke in the wider population is very similar to the difference between stroke 

occurrence in the UKPDS cohort and the current study (25%). 

There was one non-UK study that reported changes in eGFR over time, but no studies 

reported the proportion of cases developing CKD after diagnosis of diabetes, so it was not 

possible to externally validate these particular results from the current study. (217)  

A total of 7.5% of current study cases died during the follow-up period (mean follow-up: 3 

years) (table 7.5). The Poole Diabetes Study reported that 20% of their incident cases of 

diabetes died during their 7.5 year follow-up period. (156) This is roughly equivalent to 8% of 

cases dying over a three year period, close to that observed in the current study. 
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The number of outcomes observed in the study cohort for CHD, stroke and all-cause mortality 

was similar to other published studies that used UK data: where differences were observed, 

they could be accounted for by differences in the age of each study population (CHD), or by 

differing study periods (stroke). This suggests that the study cohort was representative of the 

wider population of people with type 2 diabetes and, therefore, appropriate to use to assess 

prognosis. 
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Table 8.3 Comparisons with previous studies: proportion of cases with outcomes in 

follow-up period 

 Study Note Study period 
Percentage of 

cases 

     

CHD Current study  (all ages) 1998-2003 5.5  

 Tayside (155)   3.6 * 

      

Stroke Current study  (all ages) 1998-2003 1.9  

      

 Current study (ages 35-65) 1998-2003 0.9  

 UKPDS (46) (ages 25-65) 1977-1991 1.2 ** 

      

CKD (No external comparisons available) 

      

Death Current study  (all ages) 1998-2003 7.5  

 Poole (156)   8.0 *** 

     

* Percentage estimated at 2.8 years based on percentage reported by study at 4.1 years (5.3%). 

** Percentage estimated at 3 years based on percentage reported by study at 10.5 years (4.2%). 
*** Percentage estimated at 3 years based on percentage reported by study at 7.5 years (20%). 
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8.4.2 Model comparisons: comparison of hazard ratios with other diabetes-specific and 

non-diabetes specific risk models  

 

Introduction: This section attempts to externally validate the estimates of individual model 

predictors in the current study using comparisons with the estimates reported for earlier 

models. The hazard ratios for each of the current study models are listed in tables 8.4 to 8.7, 

along with equivalent results from other study models. The features of the comparison study 

populations are also listed where they differed from the current study in important ways, and a 

full list of the predictors included in each external model is provided as these also differed 

from study to study. It would have also been useful to compare the proportion of variation 

explained by each model (the R
2
), but these data were only reported in the current study. 

It should be noted that where a predictor reported by the external models does overlap with 

one from the current study, any dissimilarity in their values could be due to a number of 

factors. Each model is multivariate and includes a distinct set of predictors, spans different 

time periods, national populations and can be restricted to specific age-ranges. They also 

differ in terms of the target population: some are aimed at the wider population and include 

non-diabetics, and others include cases with type 1 diabetes or prevalent cases of type 2 

diabetes. Therefore, unless those differences are repeated across a set of external models, it is 

unlikely that robust explanations for these differences can be identified. Despite this 

limitation, these external comparisons may provide general confirmatory or contradictory 

evidence about the expected importance or strength of specific predictors, and may also serve 

to highlight strengths or weaknesses of the current and external models in terms of 

generalisability to current clinical settings.  
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Three models derived from the UKPDS feature in the hazard ratio comparisons below. (45, 

46, 81) They provide concrete examples of the difference between the current study cohort 

and external study cohorts. The UKPDS included cases diagnosed with diabetes between 

1977 and 1991: the equivalent period for the current study was 1998-2003. The UKPDS was 

also restricted to cases aged 25 to 65 years at diabetes diagnosis: over half the incident cases 

of diabetes included in the current study cohort were aged over 65 years. The UKPDS models 

predict outcomes between 4 and up to 15 years following diabetes diagnosis: the current study 

was developed on outcomes observed between three months and five years following 

diagnosis.  

In summary, the current study models for CHD, stroke and all-cause mortality included 

calendar periods, follow-up periods and age ranges not included in the UKPDS models: it is 

quite possible that estimates for an individual predictor may differ, yet both accurately 

described the effect of the predictor on the types of cases included in their respective cohort. It 

also indicates that the current study models for these outcomes are likely to be representative 

of the current UK population with type 2 diabetes, and, in particular, are valid for estimating 

risk in the years immediately following diabetes diagnosis, unlike the equivalent UKPDS risk 

models. It could, therefore, be argued that the models derived in this thesis are more pertinent 

to current clinical practice than other models including those from UKPDS. 

CHD: Five CHD risk prediction models specific to people with diabetes were identified from 

the literature (table 8.4). (44, 45, 57, 59, 60) None of these models used the full set of 

covariates included in the current study model. All but one (45) included prevalent diabetes 

cases, and two included younger cases only (aged 45-64 and 25-65 years, respectively). (45, 

60) Comparisons were, therefore, restricted to studies which reported hazard ratios for one or 

more overlapping predictors.  
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Three studies reported hazard ratios for age, male sex and current smoking. (45, 57, 59) One 

of these studies also reported a hazard ratio for HbA1C. (45) A further one reported hazard 

ratios for current smoking and BMI. (60) The values reported by the Donnan model (59) for 

this and all common predictors were opposite to that reported by all other studies, including 

the current study.  It may be that this is related to their reporting model coefficients rather 

than more readily interpretable estimates such as hazard ratios. No further comparisons with 

this study will be made in this text to avoid unnecessary repetition of its counterintuitive 

results. 

The hazard ratio for male sex in the current study was 1.36 (95% CI 1.18-1.56): this was in 

the same direction but differed in level from the results reported for the two other studies: 

Yang (HR 2.01; 95% CI 1.66-2.63) and Stevens (HR 1.69; 95% CI 1.52-1.88). (45, 57) This 

was lower than the hazard ratio reported by both studies. However the Yang model was 

developed with a Hong Kong population which may not be directly comparable with the UK 

population and the 95% CI estimated by the current study overlapped with that of the model 

reported by Stevens suggesting that the observed differences were not statistically significant. 

The hazard ratio for each additional year of age in the current study was 1.02: this was similar 

to the results reported by both studies that reported comparable data. (45, 57) The Yang model 

(57) reported a hazard ratio of 1.03 (95% CI 1.01-1.04) for age and the Stevens model 

reported a hazard ratio of 1.06 (95% CI 1.05-1.07). The estimate for the current study did not 

lie within the 95% confidence interval reported by the Stevens model.  The inclusion of stroke 

as a predictor in the current model, but not in the Stevens model may account for some of this 

difference: the risk of stroke increases with age, and it’s inclusion in a multivariate model 

with age would tend to reduce the hazard ratio for age itself.  
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The hazard ratio for smokers in the current study was 1.26. The hazard ratio for the other 

models also indicated that smoking increased the risk of CHD (45, 57, 60). The estimate 

reported by Yang was 1.55 (96% CI 1.08-2.22), by Folsom was 1.05 for males and 1.57 for 

females (95%CIs nor reported); and by Stevens was 1.35 (95% CI 1.11-1.59), respectively. In 

each case the estimate reported by the current study lies within the 95% confidence interval 

reported by the comparison studies or the gender-specific estimates that they reported. 

Comparable results for HbA1C and BMI were reported by a single study each. (45, 60) The 

hazard ratio for a 1% increase in HbA1C in the current study was 1.07. This is close to, but still 

outside, the lower boundary of the 95% confidence interval for the estimate reported by 

Stevens (HR 1.18; 95% CI 1.11-1.25). (45) The hazard ratio for a 1 kg/m
2
 unit increase in 

BMI was 1.02 in the current study. Folsom (60) reported a hazard ratio of 0.95 for BMI for 

both men and women, but their model included waist to hip ratio which may have led to a 

lower hazard ratio for BMI than would have been produced by a model with BMI alone. 

There were few prior CHD models which produced comparable hazard ratios. Where they did 

there were some differences which could not be directly accounted for (age, HbA1C): both of 

these were from the UKPDS model reported by Stevens. (45) However, overall, these 

comparisons suggest that the CHD prediction model created as part of the current study 

produced equivalent results to other prediction models based on UK data  

Stroke: Two stroke risk prediction models specific to people with diabetes were identified 

from the literature (table 8.5). (46, 58) As with CHD no other model used the full set of 

covariates included in the current study model. The inclusion of CHD and CKD (outcomes 

which increase with age) as predictors, therefore, might tend to result in a lower hazard ratio 

for age itself in the current model compared with models which did not include them.  
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Yang (58) reported comparable results for age, prior CHD and HbA1C, while Kothari (46) 

reported age, male gender and current smoking. The hazard ratio for male gender was positive 

(HR 1.15) but not statistically significant in the current study. Yang (58) did not report an 

estimate for the effect of gender indicating that it, like the current study, was not statistically 

significant. The equivalent result for Kothari (46) was 1.42 (95% CI 1.09-2.06). This 95% 

confidence interval was relatively wide and overlapped with the estimate from the current 

study, suggesting that the observed difference was non-significant.  

The hazard ratio for age in the current study was 1.06. The equivalent result from the Yang 

model (58) was 1.07 (95% CI 1.06-1.08), and the result from the Kothari (46) model was 1.09 

(95% CI 1.07-1.12). The estimate for the current study lay within the 95% confidence 

intervals reported by both Yang and Kothari.  

The current study and the Kothari (46) stroke model produced similar estimates of the effect 

of current smoking. The hazard ratio for smoking in the current study was 1.42. This was 

within the 95% confidence intervals reported by the Kothari model (HR 1.55; 95% CI 1.08-

2.01). The hazard ratio for prior CHD in the current study (HR 1.50) was also within the wide 

95% confidence intervals reported by Yang (58) (HR 1.76; 95% CI 1.15-2.69).  

A 1% increase in HbA1C did appear to increase the risk of stroke to a small extent (HR 1.01) 

in the current study, but was not statistically significant. HbA1C did not achieve statistical 

significance in the stepwise selection method used to develop the model reported by Kothari 

(46) either, but was significant and positive in the model reported by Yang  (HR 1.09; 95% CI 

1.02-1.08), although the lower boundary of the 95% confidence interval indicated that its 

importance may be small in clinical practice (a 2% increase in the risk of stroke for each 

additional unit increase in HbA1C). 
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Overall, gender did not seem to influence the risk of stroke in the current study model: the 

results of the two other comparable models did not contradict this. (46, 58) A similar pattern 

was seen for age, smoking and HbA1C: the effect of each of these was to increase risk and 

there was an overlap between the confidence intervals for the current and comparison studies 

suggesting that any observed differences were non-significant. This suggests that the current 

study model for stroke has face validity, at least for the set of predictors that could be 

compared. 

CKD: Only three of the nine CKD prediction models identified in the literature search 

analysed their data as a time-to-event/ survival model (table 8.6). (67-75) The remaining six 

used a logistic model which does not produce directly comparable results. (67, 68, 70, 72, 74, 

75) Of the three models which reported their results as hazard ratios (69, 71, 73), two reported 

at least one predictor which overlapped with the current study. (69, 73).  

Male gender was associated with an increased risk of CKD in the current study and the 

prediction model published by Hanratty. (69) The hazard ratio was higher in the current study 

(HR 0.52) than in the Hanratty model (HR 0.63; 95% CI 0.59-0.66) and did not overlap with 

its 95% confidence interval. The effect of age was published by both remaining studies: the 

hazard ratio for each year increase in age in the current study was 1.06. This is the same as 

that reported by Hanratty (HR 1.06; 95% CI 1.05-1.07), and was slightly lower but 

overlapped the 95% confidence interval reported by Chien (HR 1.08; 95% CI 1.07-1.10). (73) 

The effect of prior CHD was similar in both the current study (HR 1.21) and Hanratty (HR 

1.24; 95% CI 1.15-1.33). The effect of prior stroke in the current study (HR 1.14) was also 

similar to that reported by Hanratty (HR 1.08; 95% CI 0.95-1.22), and substantially lower 

than, but within the wide 95% confidence intervals reported by Chien (HR 3.46; 95% CI 1.27-

9.38). The effect of the last common predictor, increasing BMI in the current study, like age, 
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was the same as that reported by Hanratty (HR 1.01 for both), and within the 95% confidence 

intervals reported by Chien (HR 1.12; 95% CI 1.01-1.12).  

Despite the differences in the populations used in the current study and in the models used in 

these comparisons, similar results were seen for age, prior CHD and BMI. The sole study 

which produced comparable results for male gender was in the same direction but 

approximately 20% higher than the current study. This level of difference may be accounted 

for by other differences between the study populations and the predictors included in each 

model. Overall, this suggests that the current study model for CKD has face validity, at least 

for the set of predictors that could be compared. 

All-cause mortality: As previously discussed, the results from the current study for mortality 

appeared to be the most robust. Six other all-cause mortality prediction models intended for 

use in the diabetic population were identified from the literature (table 8.7). (76-81) Two of 

these models had two predictors in common with the current study (79, 80), and a further two 

had just one predictor in common (HbA1C). (76, 78) The Skriver model (77) reported results 

for HbA1C as a set of categorical predictors rather than a single continuous one, and the Clarke 

model (81) published a logistic model for mortality, and so were not comparable with the 

current study. 

Male gender was associated with a similar increased risk of death in the current study (HR 

1.29) and the prediction models published by Kerr (HR 1.20; 95% CI 1.0-1.5) and Currie (HR 

1.34; 95% CI 1.26-1.43), and lay between the 95% confidence intervals for each of these 

studies. (79, 80) The hazard ratio for each additional year of age in the current study was 1.09: 

this was very close to the ratio of 1.08 (95% CI 1.08-1.09) published by Currie.  
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The impact of smoking on the risk of death in the current study (HR 1.65) was lower than that 

reported by the Kerr model (HR 2.1; 95% CI 1.5-2.8) which, like the current study, included 

incident cases of type 2 diabetes. (79) The comparison group in the Kerr model was never-

smokers, unlike the current study, where it was with ex- and current smokers. This and the 

overlap of the confidence intervals from the Kerr study with the current study estimate 

probably go some way to explaining differences in the hazard ratio estimate between the two 

studies.  

The hazard ratio for a one unit increase in HbA1C on the risk of death in the current study was 

1.09, less than that reported for the Xu (HR 1.13; 95% CI 1.06-1.20) (76) and Andersson (HR 

1.16; 95% CI 1.09-1.23) (78) models, but overlapped with their 95% confidence intervals. 

Overall, the estimates reported for the current study model for all-cause mortality were 

equivalent to the other similar models for comparable predictors. (76-81) The one instance 

where they were dissimilar (smoking), may be explained by differences in the way smoking 

status was categorised.  This suggests that this prediction model has face validity when 

compared with equivalent models, at least for this common set of predictors. 

Summary: A total of 16 comparable models were identified from the literature: between two 

and six external models for each of the current study models. (44-46, 57-60, 69, 71, 73, 76-

81) Only four of the 16 external model cohorts consisted of newly diagnosed cases of type 2 

diabetes (45, 46, 79, 81); six used prevalent cases of type 2 diabetes (57-60, 77, 78, 80), two 

used prevalent type 1 and type 2 cases (44, 76), and three included people without diabetes 

(69, 71, 73).  

The most commonly reported comparable predictors from these earlier studies were age, 

gender and smoking status. (45, 46, 57, 59, 60, 69, 73, 79, 80) Comorbidities at baseline 
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(CHD and stroke, but not CKD), HbA1C, and BMI were reported for between three and six 

external models. (45, 58, 60, 69, 73, 76, 78, 81) No other studies reported results for the effect 

of systolic BP, cholesterol or drugs used in their treatment in a form which could be compared 

with the current study models, and none included the level and treatment of all these risk 

factors. Given the importance of blood pressure and cholesterol as risk predictors (table 7.11) 

and the prevalence of these treatments at diagnosis of diabetes (table 7.5), this suggests that 

the current models would also be more useful in clinical practice. 

The results for the effect of age, gender and current smoking at baseline in the current study 

models were in the same direction and on a similar scale to the estimates published in earlier 

models. The effect of CHD and stroke as comorbidities was also similar to that reported by 

other models. The estimate for HbA1C on the risk of CHD, stroke and all-cause mortality was 

lower than that reported by other studies: it lay within the reported confidence intervals in the 

comparison studies for all-cause mortality, but just outside those for CHD and stroke. 

Comparisons of the effect of BMI on risk were not as consistent as for other predictors:  it 

was higher than the sole external model for CHD that reported a hazard ratio for BMI 

(Folsom) (60), but the same as or within confidence intervals of the two external models for 

CKD prediction. However this difference may be explained by the predictors included in each 

model: in addition to BMI, the Folsom model included waist to hip ratio. This may have led 

to a lower hazard ratio for BMI than would have been produced by a model with BMI alone 

and explain the difference between the results of the two models. 

Overall, despite the many sources of variation between the models generated in the current 

study and external models, the effect of age, gender, smoking, prior CHD and stroke did not 

differ consistently. However, where they did differ, the size of the difference was relatively 

small and may plausibly be due to differences in the membership of their respective cohorts. 
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It was, unfortunately, not possible, however, to externally validate the current study hazard 

ratios for CKD as a comorbidity or the blood pressure and cholesterol-related predictors.  

These predictors (systolic BP, total cholesterol and their respective drug treatments) were 

entered into their respective models as categorical terms with treatment interaction. It would 

have been useful to validate these estimates as many are relatively large (a 7%-69% change in 

risk over 5 years) but were not statistically significant. It remains unclear, as a result, if they 

are likely to be useful predictors of future risk and it is unlikely that a future study could 

achieve substantially greater power to give a clinically useful, suitably precise, estimate for 

these predictors (as the current study used one of the UK’s three large GP databases as the 

data source). 

Although the four prediction models produced by the current study appear to have face 

validity following comparisons with prior prediction models, their external validity hasn’t 

been established. It would be necessary to go beyond the scope of the current study to validate 

it using a second set of primary care data or by using it prospectively in clinical practice 

[section 8.7.2]. 



 

 

Table 8.4 Comparison of hazard ratios with other CHD prediction models specific to people with diabetes 

Lead author 

(reference) 

Study population Hazard ratios Predictors in model 

Male Age Smoker Stroke CKD HbA1C BMI SBP 
>= 140 

mmHg 

or drug 
trt. BP 

Total chol. 
>= 4 mmol/L 

Total chol. 
>=4 

mmol/L 

and on lipid 
lower.drug 

On lipid 
lowering 

drug 

 

              

Current 

study 

Incident type 2 diabetes 

(age 35+) 

1.36 1.02 1.26 1.09 1.13 1.07 1.02 1.41 1.38 0.98 1.79 (see column titles) 

Yang (57) Prevalent type 2 diabetes  
(free of heart failure) 

2.01 1.03 1.55 - - - - - - - - Age, diabetes duration, sex, 
smoking, eGFR, albumin:creatinine 

ratio, non-HDL cholesterol, 

total:HDL cholesterol ratio, HbA1C, 
Systolic BP 

Donnan  (59) Prevalent type 2 diabetes 

with complete risk factor 
data 

0.73 0.97 0.76 - - - - - - - - Age at diagnosis, duration of 

diabetes, HbA1C, smoking, sex, 
systolic BP, treated hypertension, 

total cholesterol, height 

Folsom (60) Prevalent type 2 diabetes,  
(aged 45-64 years) 

(men and women modelled 

separately) 

- - 1.05(m) 
1.57(f) 

- - - 0.95(m) 
0.95(f) 

- - - - Age, age-squared, race, smoking, 
total cholesterol, HDL cholesterol, 

systolic BP, use of 

antihypertensives, smoking status. 
BMI, waist:hip ratio, heart rate, 

physical activity, FEV, Keys score, 

tobacco pack-years, creatinine, 
albumin, factor VII, WBC, LVH, 

carotid IMT factor VIII, von 

Willebrand factor 
Stevens (45) Incident type 2 diabetes  

(aged 25-65, no recent 

history of CHD)  
(model data was from 4 

years post diagnosis) 

1.69 1.06 1.35 - - 1.18 - - - - - Age at diagnosis, sex, ethnicity, 

smoking, HbA1C, systolic BP, 

total:HDL cholesterol ratio, duration 
of diabetes 

Yudkin (44) Prevalent type 1, type 2 

diabetes 
(model coefficients/ hazard 

ratios not published) 

- - - - - - - - - - - Age, sex, smoking, 

microalbuminuria, total:HDL 
cholesterol ratio 



 

 

Table 8.5 Comparison of hazard ratios with other stroke prediction models specific to people with diabetes 

Lead author 

(reference) 

Study population Hazard ratios Predictors in model 

Male Age Smoker CHD CKD HbA1C BMI SBP 
>= 140 

mmHg 

or drug 
treated 

BP 

Total chol. 
>=4 

mmol/L 

Total 
cholesterol 

>= 4 mmol/L 

and on lipid 
lowering drug 

On lipid 
lowering 

drug 

 

              

Current study Incident type 2 diabetes 
(age 35+) 

(1.15) 1.06 1.42 1.50 (1.17) (1.01) (0.99) 1.80 (0.90) (1.22) (0.63) (see column titles) 

Yang  (58) Prevalent type 2 diabetes 

 

n/s 1.07 n/s 1.76 - 1.09 - - - - - Age, HbA1C,  albumin:creatinine 

ratio, CHD, sex, smoking, SBP, 

total:HDL cholesterol ratio 

Kothari (46) Incident type 2 diabetes  

(aged 25-65, no recent or 
multiple CHD events, 

followed-up from 4 years 

after diabetes diagnosis) 

1.42 1.09 1.55 - - - - - - - - Age at diagnosis, duration of 

diabetes, sex, smoking, systolic BP, 
total:HDL cholesterol ratio, atrial 

fibrilation 

 

  



 

 

Table 8.6 Comparison of hazard ratios with other CKD prediction models for wider population 

Lead author 

(reference) 

Study population Hazard ratios Predictors in model 

Male Age Smoker CHD Stroke HbA1C BMI SBP 

>= 140 
mmHg 

or drug 

trt. BP 

Total 

chol. >= 
4 

mmol/L 

Total 

chol. >= 
4 mmol/L 

and on 

LLD 

On 

lipid 
low. 

drug 

(LLD) 

 

              

Current study Incident type 2 

diabetes (age 35+) 

0.52 1.06 (1.10) 1.21 1.14 1.03 1.01 1.45 (1.46) (0.64) (1.69) (see column titles) 

Hanratty (69) Hypertensive adults 0.63 1.06 - 1.24 1.08 - 1.01 - - - - Age, gender, race/ethnicity, baseline eGFR, 
SBP, HDL cholesterol, BMI, diabetes, CHD, 

CVD, heart failure, PVD 

Chien (73) Wider population - 1.08 - - 3.46 - 1.06 - - - - Age, BMI, diastolic BP, type 2 diabetes, stroke 

Hippisley-Cox (71) Wider population 
(ages 35-74) 

(fractional polynom. 

or categorised 
values reported) 

- - - - - - - - - - - Age, ethnicity, deprivation, smoking, BMI, 
SBP, diabetes type, rheumatoid arthritis, CVD, 

treated hypertension, congestive cardiac failure, 

PVD, NSAID use, FH of kidney disease, 
systemic lupus erythematosis, kidney stones 

 
Studies where a logistic model was used to predict future risk (no direct comparisons with hazard ratios from current study possible) 

Lead author (ref) Study population Predictors in model 

   
O'Seaghdha (67) Wider population (ages 30-62) Age, diabetes, hypertension, baseline estimated glomerular filtration rate, albuminuria 

Alssema (68) No type 2 diabetes, no CVD (ages 25-85) Age, smoking, use of antihypertensives, use of lipid-lowering drugs, BMI, waist circ., FH <65 years of MI/stroke, FH diabetes, hist. of gest. 

diabetes 

Halbesma (70) Wider population (ages 28-75) 

 

Baseline eGFR, age, urinary albumin excretion, systolic BP, C-reactive protein, and known hypertension 

Hanratty (72) Hypertensive adults (age 21+) Age, sex, race/ethnicity, marital status, language, diabetes, vascular disease, heart failure, dyslipidaemia, major psychiatric diag., substance abuse, 

baseline eGFR 

Kshirsagar (74) Wider population (ages 45+) Age, sex, race/ethnicity, anaemia, CVD, diabetes, heart failure, PVD, HDL cholesterol 

Fox (75) Wider population (ages 30-62) Age, sex, baseline eGFR, BMI, smoking, diabetes, systolic BP, hypertension, hypert. treatment, total chol., HDL, impaired fasting glucose 



 

 

Table 8.7 Comparison of hazard ratios with other all-cause mortality prediction models specific to people with diabetes 

Lead author 

(reference) 

Study population Hazard ratios Predictors in model 

Male Age Smoker CHD Stroke CKD HbA1C BMI SBP >= 
140 

mmHg or 

treat. BP 

Total 
chol. >= 

4 

mmol/L 

Tot. chol. 
>= 4 &  

on LLD 

On 
lipid 

low. 

drug  

 

               

Current study Incident type 2 

diabetes 

(age 35+) 

1.29 1.09 1.65 1.60 1.47 1.33 1.09 0.98 (1.07) (0.61) (1.69) 0.41 (see column titles) 

Kerr (79) Incident type 2 

diabetes 

1.20 - 2.10 - - - - - - - - - Age group, sex, year of diagnosis, HbA1C 

category at 3 months, systolic BP, smoking 

Currie (80) Prevalent type 2 

diabetes, on 

combination oral 
antidiabetic treatment 

or insulin 

(aged 50+) 

1.34 1.08 - - - - - - - - - - Age, sex, smoking status, cohort (combination 

therapy or insulin initiated), HbA1C, mean total 

cholesterol, LVD, Charlson Index 

Xu,(76) Prevalent type 1 and 

type 2 DM (age 65+) 

- - - - - - 1.13 - - - - - Age, sex, education, smoking, alcohol use, 

exercise, CVD, BMI, total cholesterol, HbA1C 

Andersson (78) Prevalent type 2 

diabetes, high BMI 
and high CVD risk 

 

- - - - - - 1.16 - - - - - Age, sex, randomised treatment assignment 

(sibutramine), diabetes duration, history of: 
arterial hypertension/congestive heart 

failure/CVD/revascularisation, ethnicity, 

tobacco use, SBP, DBP, heart rate, HbA1C, 
BMI, HDL chol., LDL chol., urine 

albumin/creatinine ratio and use of insulin, 

metformin, thiazolidinediones and 
sulfonylureas 

Skriver (77) Prevalent type 2 

diabetes (HR for 
HbA1C categories 

reported only) 

- - - - - - - - - - - - Age, sex, diabetes duration, mean annual 

HbA1C at baseline, CVD, arteriosclerosis, acute 
complication of diabetes, retinopathy, 

nephropathy, MI, stroke, neuropathy 
               

Study where a logistic model was used to predict future risk (no direct comparisons with hazard ratios from current study possible) 

Lead author (ref) Study population Predictors in model 

Clarke (81) Incident type 2 diabetes (aged 25-65) Age, sex, smoking status (ever vs never), HbA1C, total:HDL cholesterol ratio, MI, renal failure, amputation 
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8.5 Other analysis methods 

 

Understanding the relevance of the present study requires comparison to the methods used 

elsewhere as well as the comparative results. Sixteen of the 23 studies identified from the 

literature used time-to-event statistical models like the current study. (44-46, 57-60, 69, 71, 

73, 76-81) The remaining seven used logistic models. (67, 68, 70, 72, 74, 75, 81) The use of 

time-to-event models for the current study was appropriate for the source data, and better than 

the use of logistic models, given the censoring of outcomes when patients move practice. 

(103) It allowed patients who left their practice before the end of the five-year follow-up to be 

included in the analyses, and the observed survival time to be used in place of a simpler, less 

informative, binary outcome. As a result the time-to-event models made better use of the 

available data, and were powered to estimate the effect of each predictor with greater 

precision than their logistic counterparts in the literature. 

Only four of the 13 previous prediction models, which were specific to diabetes, modelled 

risk from the point of diabetes diagnosis (incident cases). (45, 46, 79, 81) The remaining nine 

included cases who had been diagnosed at some time in the past (prevalent cases): the level of 

their risk factors were estimated at the time of their entry into follow-up, rather than at the 

diagnosis of diabetes. (44, 57-60, 76-78, 80) Where diabetes duration was included as a 

predictor in four of these nine models, it was entered as a single covariate, with no 

interactions between it and other covariates. (57, 59, 77, 78) Data from the current study show 

how high levels of HbA1C (figure 7.3) and cholesterol (figure A7.2) at diagnosis of diabetes 

declined substantially in the first few years as treatment was initiated. Models that derived 

their HbA1C and cholesterol data from prevalent cases of diabetes did not make any allowance 

for this feature of the data (at a minimum by including an interaction term for HbA1C 
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/cholesterol and time since diagnosis). (44, 57-60, 76-78, 80) If used with newly diagnosed 

case of diabetes, these models are likely to overestimate the effect of HbA1C and total 

cholesterol on outcomes [section 8.3.1, paragraph 4 and section 8.9.1 paragraph 4]. This is 

consistent with the somewhat higher hazard ratios for HbA1C reported by these studies and 

reinforces the clinical utility of the current study (tables 8.5 and 8.7). (58, 73, 76)  

A similar effect may also be present in the UKPDS-derived CHD prediction model which 

used incident cases of diabetes and the average of HbA1C at one and two years following 

diabetes diagnosis (table 8.4) (45):  they also reported higher hazard ratios for HbA1C than 

were estimated in the current study CHD model. This implies that the current study models, 

with their inclusion of clinical values at diagnosis of diabetes, would be more accurate 

estimates of future risk when used with patients with newly diagnosed diabetes than previous 

models. It could be a useful tool for use with patients with newly diagnosed diabetes to 

identify and target preventative treatment at those with highest risk, and to advise these 

patients of their likely prognosis.  

The use of risk factor levels at baseline to predict future risk over relatively short periods (five 

years) may be appropriate for predictors which are subject to treatment (HbA1C), or more 

intensive treatment (cholesterol and blood pressure). However, if the follow-up period was to 

be extended to more than 10 years in future models, account would need to be taken of 

regression dilution, where exposure levels at baseline do not reflect the relationship between 

exposure levels in later periods and subsequent risk. (218) For shorter follow-up periods 

baseline risk levels may accurately reflect the accumulated exposure to the risk factor, than 

measurements from later periods. Future models that follow cases from the point of diagnosis 

for periods of 10 years or more may, therefore, benefit from the use of multiple measurements 

for each of these risk factors: a single measurement at diabetes diagnosis which reflects past 
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(untreated or less aggressively treated) exposure, and one or more additional measurements 

separated by several years to identify and account for any regression dilution effect. (218) 
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8.6 Other approaches to missing data 

 

8.6.1 The strengths and weakness of the approach used in the current study 

 

The extent of missing data in this study meant that care had to be taken in selecting 

appropriate methods for dealing with it. Relatively few (18%, 3643/20041) of the cases in the 

study cohort had all their clinical measurements recorded (that is, coded in their electronic 

patient record) within 90 days of diabetes diagnosis (table A7.1). After modelling their level 

using later values, baseline clinical measurement data was still missing for between 1% and 

7% of cases [section 7.4]. The current study used two methods in combination to deal with 

missing baseline clinical measurements (HbA1C, systolic BP, total cholesterol, BMI, 

eGFR/creatinine) and Townsend deprivation quintile. This involved estimating the baseline 

level of clinical measurements for cases using data from later time periods using a set of 

multilevel models [section 6.6.7] and using multiple imputation to estimate  the level of the 

missing data where it could not be estimated using these multilevel models [section 6.7.5]. It 

had the following strengths and weaknesses. 

Strengths: (a) The proportion of cases with missing clinical values was minimised by 

thorough data cleaning and inclusion of data recorded as free text. (b) Patients’ own data were 

used to estimate their baseline clinical value levels, rather than treating it as missing and 

imputing from the values recorded from complete cases.  (c) The multiple imputation process 

made an allowance for the imprecision of its estimates which was reflected in the confidence 

intervals for the hazard ratios for clinical values in the final prediction models. 
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Weaknesses: (a) The free text search (looking for clinical values added as text) was time-

consuming and did not identify a significant number of new values [section 7.4]. (b) The 

model to estimate baseline systolic BP did not produce very accurate estimates of baseline 

values (figure 7.4): systolic BP had to be entered into the survival models as a binary rather 

than a continuous predictor as a consequence of this [section 7.6.1]. This reduced the ability 

of the outcome models to identify the relationship between this predictor and each of the 

outcomes of interest.  

Only 18% of patients with newly diagnosed type 2 diabetes between 1998 and 2003 had all 

their clinical measurements recorded within 90 days of diagnosis (table A7.1) It is possible 

that the recording of these values in electronic patient records close to the time of diagnosis 

has improved following the introduction of electronic linkages to laboratories and QOF, 

although it appears that recording did not improve for newly diagnosed cases as much as for 

prevalent diabetes cases in the period up to 2007. (12, 103) This suggests that missing 

baseline data would still be an issue if the models presented here were used in current clinical 

practice. Practices would have to either impute missing values or measure them directly when 

using these models to estimate risk for an individual. This would be possible in an individual 

patient setting, where BP could be measured during the consultation, but it might require a 

new blood test to estimate total cholesterol or eGFR, increasing the burden on practice staff 

and delaying the risk assessment. Alternatively, these data may already be to hand in the form 

of a scanned hospital letter, in which case they would only need to be entered by hand into the 

appropriate section of the electronic patient record.  

An alternative to using actual measured values from an individual would be to impute missing 

values using estimates from the wider population or from the cohort used to derive the 

prediction models. (219, 220) This would also be required if estimating risk for a large group 
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of individuals simultaneously. The current models do not yet provide a means of doing this, 

but one could be incorporated in the software used to estimate risk at a later stage. Whatever 

the final source of data for these imputations, it would be valuable if the uncertainty 

surrounding the precision of a risk estimate derived for an individual patient using imputed 

data could be reported by the clinical software. This could be reported as an upper and lower 

estimate of risk which would be wider for a patient where one or more values were imputed, 

and narrower where none were missing.  

 

8.6.2  The approach used in earlier prediction models  

 

Ten of the 23 prediction models reported using at least one method for dealing with missing 

predictor data. (45, 46, 59, 60, 71, 72, 78-81) One of them reported using three separate 

methods for handling missing data. (71) The most common method used was complete-case 

analysis. (45, 46, 59, 60, 78, 79, 81) Aside from reducing the power of a prediction model, 

this approach may cause bias and is not recommended unless the proportion of missing data is 

low [section 6.7.5]. (99, 221)  

Single imputation: Single imputation (using a population mean value or a default category) 

was used in two studies.(71, 72). The multilevel models used in this study estimated baseline 

values more accurately than the mean of the observed values for each case [section 7.4], 

suggesting that this method was preferable to mean imputation. It would not have been 

appropriate to use the alternative single imputation method (a default category) (71) in this 

study as it would have assumed that all cases from the current study with missing Townsend 

deprivation quintile could safely be assigned to a single default quintile as the population as a 
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whole was relatively evenly distribution across deprivation levels.  This approach would have 

assigned cases with missing Townsend to the quintile with the greatest number of cases, and 

led to an systematic underestimation of the effect of deprivation on outcomes, and 

overestimated the precision of these estimates. 

Last value carried forward / last value carried back: Last value carried forward was used 

in one (80) and the closest in time to baseline of last value carried forward and last value 

carried back was used in a second prediction model identified from the literature. (71)  It may 

be unsafe to use these simple approaches as they treat risk factors recorded at different times, 

perhaps years apart, as if they were all recorded on the same date and not correlated with one 

another. It also assumes that there was no risk of recording bias. For example, some risk 

factors may be first recorded as part of the investigation of an outcome of interest, for 

example a family history of gastrointestinal cancer or higher levels of alcohol use may be first 

recorded when cancer is suspected. (101) The inclusion of these records, close to the cancer 

diagnosis, would tend to overestimate the relationship between family history/alcohol use and 

the risk of that cancer. 

The multilevel models used in this study were more likely to produce accurate estimates than 

these two other simple methods as: (i) they took into account the relatively large changes in 

the levels of some risk factors following diabetes diagnosis (figures 7.3, 7.4 and A7.2; and (ii) 

the level of some risk factors would not have been routinely measured prior to diabetes 

diagnosis (HbA1C, creatinine) and were not part of routine screening in the healthy population 

(total cholesterol). The implication of the approach to missing baseline values adopted in this 

study is that the values entered into the analyses used to produce the prediction models were 

more likely to represent their true value at baseline than other approaches. These values are 
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more likely to be close to the actual baseline levels experienced by patients at diagnosis, and 

therefore produce more accurate estimates of future risk in clinical practice. 

Multiple imputation: Multiple imputation, as used in the current study and one of the other 

models (71) is currently regarded as an appropriate approach to missing covariate data in 

predictive models. (50, 99, 143) It does rely on the assumption that data are missing at 

random: this may hold for risk factors where practice patients would be expected to have this 

recorded routinely (e.g. total cholesterol in patients with type 2 diabetes), but may not hold for 

the healthy population (i.e. where cholesterol screening is not routine). However, the use of 

multiple imputation in the latter situation did not appear to have systematically under- or 

overestimated total cholesterol levels in those with missing data in one CVD prediction model 

based on the healthy population. (64) 

 

8.6.3 Approaches which may be available for future studies 

 

More efficient approaches to missing baseline data would remove the need to fill them in 

using two separate processes, but none have yet emerged. Standard multiple imputation, as 

used in this study, uses non-missing observations from others to impute an individual’s 

missing data, and does not make use of that individual’s non-missing observations in other 

time periods. The two-fold fully conditional specification algorithm appears to offer a partial 

answer to the need to estimate baseline levels of risk factors, but requires that individuals 

have a recorded value before and after baseline. (222) These will not always be available, 

particularly for risk factors which are recorded more frequently following diagnosis of 

diabetes (e.g. HbA1C, total cholesterol), and so only provides a partial solution. Ongoing 
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work, led by University College London, to develop imputation models for missing data in 

primary care databases may provide a more comprehensive approach like that outlined above. 

(223) This could be used in future prediction models like those in this study.  
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8.7 Clinical implications 

 

8.7.1 What risk factors make most difference and what opportunities are there for  

risk to be reduced? 

 

The results presented in table 7.11 show the relationship between each of the risk factors and 

the risk of CHD, stroke, CKD and all-cause mortality. Modifiable risk factors are considered 

here first. 

Smoking: Smoking was common and had a significant influence in all of the models: one-

quarter of patients were smokers at baseline (table 7.5), and half of these still smoked at five 

years following diagnosis (table A7.2). The risk of all four outcomes was higher in smokers 

(65% higher in for all-cause mortality) (table 7.11), suggesting that intensive smoking 

cessation interventions would be appropriate in aiming to reduce the risk of all four outcomes 

in individual patients.   

BMI: BMI at diagnosis was high for a large proportion of cases (median BMI=29 kg/m
2
) 

(table 7.5) and did not change substantially over the five years following diagnosis (figure 

A7.1). Higher baseline BMI increased the risk of CHD and CKD significantly: a 3.18kg (7lbs/ 

half-stone) increase in weight was associated with a relatively modest 3% and 1.5% increase 

in the 5-year risk of CHD and CKD, respectively (table 7.11). The greatest reductions in risk 

may, therefore be obtained by the 25% of patients whose baseline BMI was in excess of 33 

kg/m
2
. Given that weight loss is associated with a lowering of CVD risk and better glucose 

control (26, 29), this suggests that there are significant further opportunities to reduce risk by 

interventions aimed at weight loss, for example early referral to patient education 

programmes. (224) 
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HbA1C: Higher HbA1C at diagnosis of diabetes was a statistically significant predictor for 

CHD and CKD, and highest for all-cause mortality (9% risk increase for each 1% HbA1C 

increase) (table 7.11). Following diagnosis, mean HbA1C decreased significantly in the 

subsequent six months among the groups with the highest levels at diagnosis (HbA1C 9.5%+ 

and HbA1C 7.5%-9.4%) (figure 7.3). A similar pattern was seen in the UKPDS (figure 7.5), 

though their data were reported from one year following diagnosis rather than diabetes 

diagnosis itself. (81) These early reductions in the current study were maintained in the 

following five years, but there was a small and observable annual increase in all HbA1C 

groups from one year following diagnosis (figure 7.3). By five years, only the group with the 

lowest initial HbA1C (baseline HbA1C of under 6%) remained under the current NICE target of 

6.5%. (43)  This indicates that initial improvements in HbA1C control were not followed up by 

further successful attempts at control after the first year and that more aggressive and 

sustained blood glucose control may be indicated for those with higher baseline HbA1C (i.e. 

those with HbA1C>6%: the majority of cases). Further reductions in HbA1C in the period after 

the first year following diagnosis should lead to reductions in the risk of major outcomes. (28)  

Systolic BP:  Hypertension at diagnosis (high systolic BP or treated BP) was associated with 

an increased risk of CKD and CHD and was highest for stroke (an 80% increase in risk) (table 

7.11). This was similar to that observed in the literature, where BP was a more important risk 

factor for stroke than CHD. (40) More than half of patients had a high SBP (>=140 mmHg) at 

baseline (table 7.5). Average systolic BP slowly declined in this group over the follow up 

period but was still high at the end of the fifth year (figure 7.4). A similar progression can be 

seen in data reported by the UKPDS (figure 7.5). This indicates that there is opportunity for 

improved management of this risk factor from diabetes diagnosis to at least five years, which 

should have the effect of reducing the risk of the above diabetic complications. (27, 29, 32, 



 

185 

 

34) Such reductions would also impact on microvascular disease and hence are doubly 

important. (225) 

Total cholesterol: High total cholesterol at diagnosis (>=4 mmol/L) was associated with an 

increased risk of CHD and CKD, but was not statistically significant (table 7.11). More than 

three-quarters of patients had high total cholesterol at baseline (25
th

 percentile 5.1 mmol/L) 

(table 7.5). Average total cholesterol levels did decline over the five-year follow-up for 

patients with a baseline cholesterol of 5 mmol/L or higher, but did not fall below the cutoff of 

4.5 mmol/L by the end of this period (figure A7.2). Table A7.3 also shows that the prevalence 

of lipid-lowering drug use increased from 19% of patients at baseline to 42% at one year 

following diagnosis, but does not provide any data past this point. However, the high total 

cholesterol observed at five years in those with the highest baseline levels (figure A7.2) 

indicates that there was scope for further reductions in cholesterol levels and, therefore, risk 

of diabetic complications from improved drug and lifestyle changes. (27, 29, 32, 34) 

Prior comorbidity: Prior comorbidity (CHD, stroke or CKD) at diagnosis of diabetes was 

relatively common: more than one in five patients had at least one comorbid condition (table 

7.5). These also had a large effect on the risk of death in the first five years (table 7.11). 

Patients with two of these comorbidities had approximately twice the risk of death as patients 

free from them. Although not modifiable, the increased risk of major outcomes following 

diabetes diagnosis should be recognised in this group: these patients could be flagged for 

intensive treatment to reduce risk. (38, 39) In addition to this, a substantial number of 

additional patients (5%) were found to have CKD in the three months following diabetes 

diagnosis (table 7.1), presumably when their creatinine level was first measured as part of 

routine diabetes care. (39) This suggests that there may be a benefit in checking creatinine 

earlier, possibly when patients are being assessed for diabetes or in patients with pre-diabetes, 
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as it would allow treatment to preserve kidney function to be initiated at an earlier stage in the 

disease. 

Given the high risk of CVD, CKD and death in patients with prior comorbidity, an argument 

can also be made in favour of routinely screening these patients for diabetes [section 8.8  

policy implications: clinical issues]. 

 

8.7.2 What is the clinical utility of the risk prediction models developed in this study?  

 

The clinical utility of the models presented in this thesis is assessed here in terms of how they 

could be used in clinical practice to improve health outcomes. The final part of this section 

describes a possible use of the models in a likely clinical setting, once they were validated and 

improved in the manner suggested below. 

Broadly, a clinically useful model should: predict the risk of an important health outcome; 

provide thresholds for action; trigger the use of available and safe interventions to reduce risk; 

and be cost-effective. (226) In addition to helping clinicians make treatment decisions about 

individual patients, risk models may help patients understand their risk of disease and 

motivate them to initiate behavioural change or improve adherence to prescribed treatments. 

(227) Risk prediction models may also be used at a population level, to allocate resources to 

those at highest risk [section 1.3]. (38, 105, 228, 229) 

The models presented in this thesis predicted the risk of three important outcomes, namely 

CVD, CKD and death. Clinically- and cost-effective interventions to reduce these risks are 

available in UK general practice - the likely setting where these models would be used 

[section 1.2]. The risk of these outcomes is higher in people with type 2 diabetes [section 1.4] 
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but could be reduced by lifestyle changes and medical management [section 1.2] which are 

relatively cheap (as generically prescribed drugs) and available (e.g. the DESMOND patient 

education programme) to patients in the UK. (230) It is also possible that better understanding 

of prognosis on the patients’ part might lead to more effective implementation of such 

interventions. (200-202, 204, 231) 

However, the models presented here do not currently have thresholds for action (e.g. prescribe 

statin/ BP lowering drugs to all patients with greater than 20% 5-year risk of CVD or death), 

and their cost-effectiveness, if they were used in UK general practice, is not known. Further 

work, beyond the scope of this thesis, would be required to validate their clinical utility and 

impact in these particular respects. (232-235) 

Simply reporting the limitations of previous attempts to predict risk in people with type 2 

diabetes and the potential superiority of the new models, described earlier [sections 1.4, 2.3, 

2.4, 3.3], is insufficient to recommend their adoption at this stage. The models do provide 

estimates of absolute risk, and the calibration plots presented in section 7.8 and the proportion 

of variation (R
2
) statistics [section 7.7] suggest that the models may perform at least as well as 

other risk models currently used in UK clinical practice. (234) Additional research would also 

be required to quantify (e.g. measures of discrimination, calibration, and (re)classification) 

and externally validate their performance prior to adoption for use in clinical practice. (232-

234, 236, 237) 

An early use of the models in general practice might be to rank newly diagnosed type 2 

diabetes patients by risk of CVD/CKD and death so that those at the highest risk could be 

allocated early assessment or additional interventions to manage their risk factors. This would 

be an alternative approach to the current incentives to general practices which focus on 
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individual risk factors. (84) The risk models would be relatively straightforward to implement 

in current clinical systems by third parties or the system suppliers, using the coded clinical 

data that they contain to populate the risk equations: this has been done elsewhere. (104, 238) 

The cost of making these models available in all UK practices using each clinical system 

would, therefore, not be significantly higher than installing it in a single practice. In such an 

application, the models would only to be required to discriminate between low and high risk 

patients. (239) The risk of misclassification for any individual patient (a high risk individual 

being misclassified as low risk or vice versa) would also be minimised in this application, as 

individual risks factors would eventually be addressed in routine care, probably at the time of 

their diabetes annual review. CVD and CKD risk are known to increase with age: older 

patients with newly diagnosed type 2 diabetes may already be on appropriate treatments to 

reduce these risks, or may be initiated on treatment without having their individual risk 

calculated. These models may, therefore, be most useful in younger patients to stratify and 

treat them according to their overall risk, rather than the level of their individual risk factors. 
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8.8 Policy implications 

 

The previous section indicated that there were additional clinical opportunities available to 

reduce the level of modifiable risk factors in the years following diabetes diagnosis [section 

8.7.1] and discussed their clinical utility [section 8.7.2]. The identification of future CVD, 

CKD and mortality risk among patients with newly diagnosed diabetes, and more aggressive 

management of risk factors in the years immediately following diagnosis should result in 

improved health outcomes [sections 1.3, 1.4]. The prediction models created in this study may 

prove particularly useful for this task as they were developed for this specific patient group 

[section 2.5], use risk factors which should be routinely available at diabetes diagnosis 

[section 4.3], and predict the risk of important clinical outcomes [section 1.2]. This section 

describes the implications of these and the other results presented in this thesis for policy 

makers. These are separated into two subsections: clinical issues and data issues. 

 

Clinical issues: In addition to the opportunities available to reduce the level of modifiable 

risk factors in clinical practice in the years following diabetes diagnosis [section 8.7.1], there 

was also a high level of co-morbidity at diabetes diagnosis: unrecognised CKD along with 

previous stroke and CHD were frequently present at baseline (table 8.2). Assuming that these 

trends continued past the end of the study period (circa 2004) and are still common among 

patients diagnosed in more recent periods, approximately 10 years since the introduction of 

QOF, then there may be scope for additional national guidelines or incentives specific to 

patients newly diagnosed with Type 2 diabetes. This may be true even if the management of 

prevalent Type 2 diabetes appears to have improved since the introduction of QOF as the 
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management of this subgroup of newly diagnosed patients may not have improved to the 

same extent. (12, 13, 240) 

The high levels (5%) of previously unrecognised CKD found in the first three months 

following a diagnosis of type 2 diabetes (table 7.1), and the fact that progression to CKD 

stages 3-5 occurred in one-third of patients overall, may suggest that targeted routine 

screening for CKD should be carried out at an earlier point, for example in patients with 

impaired glucose tolerance/impaired fasting glucose.  Earlier identification of patients at risk 

of CKD and CKD itself could lead to earlier treatment initiation, delay further decline in 

kidney function, and reduce the risk of end-stage renal failure. (100) 

A comparison of the trends in HbA1C following diagnosis between the UKPDS (1977-1991) 

and the current study (1998-2003) for the first five years following diabetes diagnosis appears 

to show that blood glucose management had improved greatly, even before the introduction of 

financial incentives for diabetes management as part of QOF in 2004 (figures 7.3, 7.5). (13) 

There was little change in BMI in the five years following diagnosis, irrespective of baseline 

BMI (figure A7.1) [section 8.7]. This suggests that there are significant further opportunities 

to reduce risk by weight reduction, for example utilizing early referral to patient education 

programmes such as DESMOND which can offer support and advice on weight loss and other 

diabetes-relates issues to newly diagnosed patients. (230) 

Pre-existing CHD and stroke were relatively common at diabetes diagnosis and were strong 

predictors of future stroke, CKD and mortality (table 7.11). Given the existence of effective 

treatments, this suggests that these patients should be targeted for intensive treatment, 

irrespective of the level of their other clinical risk factors. (39) An argument can also be made 

in favour of routinely screening these patients for diabetes. This would allow their diabetes to 
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be identified at an earlier stage and damage associated with prolonged exposure to high blood 

glucose levels to be prevented through earlier intervention. 

 

Data issues: The current study shows the importance of reporting a full set of covariates. Of 

the six previous all-cause mortality prediction models identified in this thesis (table 2.3), three 

carried out multivariate prediction models but only two reported results for the effect of 

HbA1C on mortality (table8.6). A further single model to predict CHD risk reported its results 

as coefficients, rather than more easy to interpret hazard ratios (table 8.4). (59)  When 

transformed into hazard ratios, male sex, increasing age and smoking could be seen to reduce 

the risk of future CHD, rather than to increase the risk as was observed by all the other models 

reviewed. (current study) (45, 57, 60) The reporting of full model results in a transparent 

format can allow flawed data or analyses to be identified and corrected. (64, 147) Reporting 

recommendations for predictive models should include reporting of model results for the full 

set of covariates and reporting those results in a transparent form (e.g. HRs not coefficients)  

in order to  avoid selective non-reporting of results which do not fit previously published 

results. 

Complex prediction models with a wide range of clinical predictors, which may include some 

with missing data, do not necessarily result in better or more useful models than simpler 

alternatives. The inclusion of predictors with missing data in this study led to complex data 

preparation and analysis (baseline prediction models and multiple imputation), that may not 

have been radically better than simpler demographic models.  The availability of existing 

large UK primary care databases models makes the development of predictive models easier 

as they contain sufficient patients and outcomes to power a wide range of models. However, 
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they may appear to produce models which predict risk in UK populations better than models 

that are based on old or foreign data. This improved performance may only be because they 

have up to date data on the underlying risk in the population than the alternative sources. 

Reporting recommendations for predictive models should therefore report a summary statistic 

like R
2
 or similar statistics for a basic and full model to allow the absolute value of the 

additional predictors derived from clinical data to be assessed. 

A recent BMJ paper on the validity of acute MI diagnoses recorded in primary care suggests 

that these diagnoses have a positive predictive value of only 92% when compared with a 

disease registry data and that perhaps 25% of diagnoses were missing from primary care. 

(112) The authors conclude that linked primary care, death certification, hospital and disease 

registry data are required to avoid biased ascertainment of acute MI outcomes. These kinds of 

external data were not available at the time the models in this thesis were developed, but, as 

mentioned above, linked data is being introduced for use with THIN primary care records. 

(107) Future studies could make use of these data to validate existing GP data or identify 

additional outcomes [section 8.2.2].  
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8.9 Overall conclusions 

 

Routinely collected primary care data can be used to predict future risk of coronary heart 

disease, stroke, chronic kidney disease, and all-cause mortality in people with newly-

diagnosed type 2 diabetes mellitus. This last section of the discussion summarises the 

information that supports this main conclusion.  It highlights the reasons why the current 

models may be more valid and clinically useful than previous models in a UK general practice 

setting. This includes their applicability to newly diagnosed patients with type 2 diabetes, the 

inclusion of predictors routinely available in general practice, the ease with which they can be 

updated in the future, and their management of missing baseline data. The section continues 

with a description of what might be usefully be communicated to patients, based on the study 

results, and ends with a summary of the study’s scope, key findings, clinical utility, and 

recommends  appropriate next steps in model development and validation. 

 

8.9.1 How the prediction models developed in this study differ from past models 

 

They are more applicable to newly diagnosed cases of type 2 diabetes: More than 20 

models, identified from the literature, can be used to predict the risk of future CVD, CKD and 

death in people with type 2 diabetes (tables 2.2 to 2.3). Prediction models for CVD and all-

cause mortality specific to people with diabetes which were developed using prevalent cases 

of diabetes are likely to overestimate risk when used with newly diagnosed cases of type 2 

diabetes as the levels of HbA1C, systolic blood pressure and total cholesterol decline in the 

years immediately following diagnosis [section 7.4]. Other models, developed using incident 
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(newly diagnosed) cases of diabetes were either derived from the UKPDS cohort and can only 

be used from four years following diabetes diagnosis (45, 46), or included year of diagnosis 

as a predictor and, therefore, can only be used with cases diagnosed between 1999 and 2007 

(79). Some (for CKD risk) were intended for use with the general population (table 2.2): 

where these included diabetes as a predictor, they assumed that the effect of diabetes did not 

depend on the level of other risk factors, that duration of diabetes did not influence risk, and 

that diabetes control (HbA1C) did not influence risk. (67, 69, 71-75) 

This implies that the current study models, with their inclusion of clinical values at diagnosis 

of diabetes could provide more accurate estimates of future risk when used with patients with 

newly diagnosed diabetes than previous models. Of the four models presented, the most 

useful might be the all-cause mortality prediction model which appeared to explain a large 

proportion of the variability in clinical outcomes (R
2
=0.58) This model, and the stroke and 

CKD prediction models, could be useful tools for use with patients newly diagnosed with 

diabetes: to identify and target preventative treatment at those with highest risk; and to advise 

patients of their likely prognosis. 

They include a set of predictors available in general practice and can be easily updated: 

This study developed four separate prediction models which can be used with recently 

diagnosed cases of type 2 diabetes. These models predict the risk of CHD, stroke, CVD and 

all-cause mortality up to five years following diabetes diagnosis. They include a range of 

demographic and clinical predictors including some clinical measurements which are 

routinely assessed in patient with type 2 diabetes (HbA1C, eGFR). These models can be easily 

updated to include cases diagnosed since 2004 (the end of the study period) using more recent 

primary care data, as has been done for the QRISK model. (109) This would allow the models 

to be extended to predict outcomes up to 10 years following diagnosis, and would provide 
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more precise estimates of risk in the first five years. Updates to these models could also 

include additional predictors not included in this study. 

They handled missing data better than existing prediction models: The prediction models 

identified from the literature used a variety of approaches to handling missing baseline 

clinical measurements [section 8.6.2]. This included methods which may have introduced 

bias: complete-case analysis, single imputation using population mean values, and last value 

carried forward or back. (50, 145, 149, 221) One model which predicted risk in the general 

population did use a recommended approach, multiple imputation, but it was used in 

conjunction with last value carried forward/back. If this approach was used to develop a risk 

prediction model using data from patients with newly diagnosed type 2 diabetes it would 

systematically underestimate baseline risk levels:  most of these values would be carried back 

from periods months after the diagnosis of diabetes, after lifestyle changes or new drug 

treatments had been initiated [section 6.6.7, table 7.4, table A7.1].  

The approach adopted in this study was to estimate these baseline clinical measurements 

using multivariate models and then to use multiple imputation to fill in baseline values which 

could not be estimated [section 7.4]. This avoided introducing bias from the use of complete 

case, single imputation and last value carried forward/back approaches, and provided more 

accurate baseline estimates than single imputation and last value carried forward/back (table 

A7.1). The values that were multiply imputed at the next step in the process were probably 

also more accurate as a result. This process can be used in other studies where accurate 

baseline values need to be estimated, and can be used with longitudinal records where there 

are no data available prior to baseline, unlike more recent approaches such as the two-fold 

fully conditional specification algorithm. (241) 



 

196 

 

8.9.2 What to tell patients 

 

Some of the risk of these major complications of diabetes cannot be altered (e.g. prior 

comorbidities), but their impact can be lessened by early interventions which reduce risk, such 

as drug treatments and lifestyle changes. (23-35) For all patients at high risk, there may be 

initial reductions in important risk factors such as HbA1C, cholesterol and blood pressure once 

treatment is started, but they may well need to be followed up by further aggressive treatment 

to achieve and sustain treatment targets and reduce the risk of complications. Lastly, smoking 

is known to be associated with an increased risk of CVD and death among people with and 

without diabetes. (34, 35, 81) Because people with diabetes are at a higher risk of these and 

other significant outcomes, it is important to reduce as many risk factors as possible at the 

same time: this includes smoking. However, over half of people who smoked at diagnosis are 

still smoking five years later, so they may need increased support to quit and remain non-

smokers.  

 

8.9.3 Study summary 

 

Routinely collected primary care data can be used to predict future risk of coronary heart 

disease, stroke, chronic kidney disease, and all-cause mortality in people with newly-

diagnosed type 2 diabetes mellitus. This thesis developed four models which could be used to 

predict the risk of these outcomes in the five years following a diagnosis of type 2 diabetes.  

They may predict risk more accurately in the years following diabetes diagnosis than existing 

models: these were either developed using risk factors recorded some years after diagnosis, 
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included risk factors not routinely recorded in general practice or excluded important risk 

factors which are routinely recorded, or were developed for use in the wider population. 

This study used data from a large UK general practice database and included risk factors 

which are known to predict these outcomes to populate the models: demographic variables, 

clinical predictors routinely recorded following diabetes diagnosis, and blood pressure and 

cholesterol-lowering treatment. Some of these models could, therefore, be used in a general 

practice setting to identify and target preventative treatment, and as educational tools to 

advise people newly diagnosed with type 2 diabetes of their likely prognosis. 

Across models, the key modifiable predictors identified were: smoking; weight; blood 

pressure; and glycaemic control. The most clinically useful model might be the mortality 

model as it accounted for a large proportion of the variability in outcomes (R
2
=0.58). This 

model found that age, sex and past medical history were associated with the risk of death, as 

were smoking, glycaemic control, BMI and high/treated blood pressure. The stroke and CKD 

models accounted for a moderate amount of the variation in outcomes observed (an R
2
 of 0.35 

and 0.34, respectively). The stroke model found that age, prior CHD, smoking and 

high/treated blood pressure were significant predictors of future stroke risk. The CKD model 

found that male gender, age, prior CHD and stroke were significant predictors of future CKD 

risk, as were smoking, glycaemic control, BMI and high/treated blood pressure. The CHD 

model had the smallest R
2
 (0.09). Although it included known risk factors for CHD, the 

model accounted for little of the variation in outcomes between individuals and would not, 

therefore, be useful in clinical practice. 

The cohort of patients used to populate the models appear to be representative of the wider 

UK population of people with type 2 diabetes, and unlike some previous models included 
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patients of all ages and health statuses. However incentives introduced as part of QOF since 

the end of the study period (1998-2003) may have improved the management of newly 

diagnosed diabetes in the years following diagnosis and may have resulted in improved 

outcomes in more recent years. It would therefore be prudent to update and extend these 

models using more recent clinical data and to assess their predictive validity in one or more 

external populations, particularly in comparison with existing risk models available in clinical 

practice.  
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Appendix 2    

 

Rapid review methods 

 

Appendix 2.1 Methods and search terms used to identify previous CVD, CKD and all-

cause mortality prediction models 

 

Aim 

To identify all papers presenting a CVD or CKD prediction model developed in patients with diabetes or that can 

be applied to individuals with type 2 diabetes. 

 

CVD 

1. Use van Dieren’s existing systematic review. 

2. Run van Dieren’s search again in PubMed to identify any additional studies published in period 2011-2012. 

3. Check PubMed suggested papers for papers identified in steps 1 & 2. 

 

CKD and all-cause mortality 

1. Run PubMed search to identify studies published in period 1991-2012. 

2. Check PubMed suggested papers for papers identified in step 1. 

 

 

Eligibility criteria 

1. The prediction model was either developed in people with diabetes or included diabetes as a predictor.  

2. The outcome of the prediction model was CVD or CKD or a CVD/CKD component (i.e., CHD, stroke, end 

stage renal failure, kidney dialysis, kidney transplant).  

3. It presented a specific prediction rule/model with sufficient information on all variables to calculate the 

CVD CKD risk in a different population (beta coefficients of the model or otherwise a scoring 

system/graph/score card/nomogram was provided). 

 

Exclusion criteria 

1. Non-human studies. 

2. Articles in languages other than English. 

3. Studies presenting a prediction model developed in patients with previous CVD/CKD. 

4. Studies focusing on the added predictive value of new risk factors to an existing prediction model. 

5. Studies where full text was not available. These could not have presented sufficient information on all 

variables to calculate CKD risk. 

 

Screening process 

1. Screen on title. 

2. Screen on abstract. 

3. Screen on full text. 
 



 

201 

 

 

 

Search terms for CVD 

 

(( 

Validat$ OR Predict$.ti. OR Rule$)  

OR  

(Predict$ AND (Outcome$ OR Risk$ OR Model$))  

OR  

(Decision$ AND (Model$ OR Clinical$ OR Logistic Models/))  

OR  

(Prognostic AND (History OR Variable$ OR Criteria OR Scor$ OR Characteristic$ OR Finding$ OR 

Factor$ OR Model$))  

OR  

(“risk score”[All fields] OR "prediction model"[All fields] OR "prediction rule"[All fields] OR "risk 

assessment" [All fields] OR "algorithm"[All fields] 

))  

 

AND 

(cardiovascular OR coronary OR cerebrovascular OR heart OR stroke)  

AND  

(diabetes OR "diabetes mellitus" OR "type 2 diabetes")  

NOT  

(Animals[MeSH] NOT Humans[MeSH]) 
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Search terms for CKD 

 

(( 

Validat$ OR Predict$.ti. OR Rule$)  

OR  

(Predict$ AND (Outcome$ OR Risk$ OR Model$))  

OR  

(Decision$ AND (Model$ OR Clinical$ OR Logistic Models/))  

OR  

(Prognostic AND (History OR Variable$ OR Criteria OR Scor$ OR Characteristic$ OR Finding$ OR 

Factor$ OR Model$))  

OR  

(“risk score”[All fields] OR "prediction model"[All fields] OR "prediction rule"[All fields] OR "risk 

assessment" [All fields] OR "algorithm"[All fields] 

))  

 

AND 

(CKD OR kidney OR nephr OR dialysis OR transplant OR replacement OR "end stage") 

AND  

(diabetes OR "diabetes mellitus" OR "type 2 diabetes")  

NOT  

(Animals[MeSH] NOT Humans[MeSH]) 
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Search terms for all-cause mortality 

 

 

(( 

Validat$ OR Predict$.ti. OR Rule$)  

OR  

(Predict$ AND (Outcome$ OR Risk$ OR Model$))  

OR  

(Decision$ AND (Model$ OR Clinical$ OR Logistic Models/))  

OR  

(Prognostic AND (History OR Variable$ OR Criteria OR Scor$ OR Characteristic$ OR Finding$ OR 

Factor$ OR Model$))  

OR  

(“risk score”[All fields] OR "prediction model"[All fields] OR "prediction rule"[All fields] OR "risk 

assessment" [All fields] OR "algorithm"[All fields] 

))  

 

AND 

(death  OR mortality) 

AND  

(diabetes OR "diabetes mellitus" OR "type 2 diabetes")  

NOT  

(Animals[MeSH] NOT Humans[MeSH]) 
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Appendix 6   

 

Read codes used to identify cases of Type 2 diabetes mellitus 

 

Note: This list includes codes specific to Type 2 diabetes, codes which do not specify 

diabetes type, and codes for Type 1 diabetes. These are used in combination with other 

criteria to identify cases of Type 2 diabetes: age at diagnosis >= 35 years and no insulin 

treatment within one year of diagnosis.  

 

Read code Description 

  
13AB.00 Diabetic lipid lowering diet 

13AC.00 Diabetic weight reducing diet 

13B1.00 Diabetic diet 

1434.00 H/O: diabetes mellitus 

14F4.00 H/O: Admission in last year for diabetes foot problem 

2BBF.00 Retinal abnormality - diabetes related 

2BBL.00 O/E - diabetic maculopathy present both eyes 

2BBP.00 O/E - right eye background diabetic retinopathy 

2BBQ.00 O/E - left eye background diabetic retinopathy 

2BBR.00 O/E - right eye preproliferative diabetic retinopathy 

2BBS.00 O/E - left eye preproliferative diabetic retinopathy 

2BBT.00 O/E - right eye proliferative diabetic retinopathy 

2BBV.00 O/E - left eye proliferative diabetic retinopathy 

2BBW.00 O/E - right eye diabetic maculopathy 

2BBX.00 O/E - left eye diabetic maculopathy 

2G51000 Foot abnormality - diabetes related 

2G5A.00 O/E - Right diabetic foot at risk 

2G5B.00 O/E - Left diabetic foot at risk 
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2G5C.00 Foot abnormality - diabetes related 

2G5E.00 O/E - Right diabetic foot at low risk 

2G5F.00 O/E - Right diabetic foot at moderate risk 

2G5G.00 O/E - Right diabetic foot at high risk 

2G5H.00 O/E - Right diabetic foot - ulcerated 

2G5I.00 O/E - Left diabetic foot at low risk 

2G5J.00 O/E - Left diabetic foot at moderate risk 

2G5K.00 O/E - Left diabetic foot at high risk 

2G5L.00 O/E - Left diabetic foot - ulcerated 

3881.00 Education score - diabetes 

3882.00 Diabetes well being questionnaire 

3883.00 Diabetes treatment satisfaction questionnaire 

42W..00 Hb. A1C - diabetic control 

42W..11 Glycosylated Hb 

42W..12 Glycated haemoglobin 

42W1.00 Hb. A1C < 7% - good control 

42W2.00 Hb. A1C 7-10% - borderline 

42W3.00 Hb. A1C > 10% - bad control 

42WZ.00 Hb. A1C - diabetic control NOS 

42c..00 HbA1 - diabetic control 

66A..00 Diabetic monitoring 

66A1.00 Initial diabetic assessment 

66A2.00 Follow-up diabetic assessment 

66A3.00 Diabetic on diet only 

66A4.00 Diabetic on oral treatment 

66A5.00 Diabetic on insulin 

66A8.00 Has seen dietician - diabetes 

66A9.00 Understands diet - diabetes 

66AA.11 Injection sites - diabetic 
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66AD.00 Fundoscopy - diabetic check 

66AG.00 Diabetic drug side effects 

66AH.00 Diabetic treatment changed 

66AI.00 Diabetic - good control 

66AJ.00 Diabetic - poor control 

66AJ.11 Unstable diabetes 

66AJ100 Brittle diabetes 

66AJz00 Diabetic - poor control NOS 

66AK.00 Diabetic - cooperative patient 

66AL.00 Diabetic-uncooperative patient 

66AM.00 Diabetic - follow-up default 

66AN.00 Date diabetic treatment start 

66AO.00 Date diabetic treatment stopp. 

66AP.00 Diabetes: practice programme 

66AQ.00 Diabetes: shared care programme 

66AR.00 Diabetes management plan given 

66AS.00 Diabetic annual review 

66AT.00 Annual diabetic blood test 

66AU.00 Diabetes care by hospital only 

66AV.00 Diabetic on insulin and oral treatment 

66AW.00 Diabetic foot risk assessment 

66AX.00 Diabetes: shared care in pregnancy - diabetol and obstet 

66AY.00 Diabetic diet - good compliance 

66AZ.00 Diabetic monitoring NOS 

66Aa.00 Diabetic diet - poor compliance 

66Ab.00 Diabetic foot examination 

66Ac.00 Diabetic peripheral neuropathy screening 

8A12.00 Diabetic crisis monitoring 

8A13.00 Diabetic stabilisation 
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8CA4100 Pt advised re diabetic diet 

8H2J.00 Admit diabetic emergency 

8H3O.00 Non-urgent diabetic admission 

8H4F.00 Referral to diabetologist 

8H7C.00 Refer, diabetic liaison nurse 

8H7f.00 Referral to diabetes nurse 

8HKE.00 Diabetology D.V. requested 

8HLE.00 Diabetology D.V. done 

8HME.00 Listed for Diabetology admissn 

8HVU.00 Private referral to diabetologist 

9N1v.00 Seen in diabetic eye clinic 

9NM0.00 Attending diabetes clinic 

9OL..00 Diabetes monitoring admin. 

9OL..11 Diabetes clinic administration 

9OL1.00 Attends diabetes monitoring 

9OL2.00 Refuses diabetes monitoring 

9OL3.00 Diabetes monitoring default 

9OL4.00 Diabetes monitoring 1st letter 

9OL5.00 Diabetes monitoring 2nd letter 

9OL6.00 Diabetes monitoring 3rd letter 

9OL7.00 Diabetes monitor.verbal invite 

9OL8.00 Diabetes monitor.phone invite 

9OL9.00 Diabetes monitoring deleted 

9OLA.00 Diabetes monitor. check done 

9OLA.11 Diabetes monitored 

9OLZ.00 Diabetes monitoring admin.NOS 

C10..00 Diabetes mellitus 

C100.00 Diabetes mellitus with no mention of complication 

C100000 Diabetes mellitus, juvenile type, no mention of complication 
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C100011 Insulin dependent diabetes mellitus 

C100100 Diabetes mellitus, adult onset, no mention of complication 

C100111 Maturity onset diabetes 

C100112 Non-insulin dependent diabetes mellitus 

C100z00 Diabetes mellitus NOS with no mention of complication 

C101.00 Diabetes mellitus with ketoacidosis 

C101000 Diabetes mellitus, juvenile type, with ketoacidosis 

C101100 Diabetes mellitus, adult onset, with ketoacidosis 

C101y00 Other specified diabetes mellitus with ketoacidosis 

C101z00 Diabetes mellitus NOS with ketoacidosis 

C102.00 Diabetes mellitus with hyperosmolar coma 

C102000 Diabetes mellitus, juvenile type, with hyperosmolar coma 

C102100 Diabetes mellitus, adult onset, with hyperosmolar coma 

C102z00 Diabetes mellitus NOS with hyperosmolar coma 

C103.00 Diabetes mellitus with ketoacidotic coma 

C103000 Diabetes mellitus, juvenile type, with ketoacidotic coma 

C103100 Diabetes mellitus, adult onset, with ketoacidotic coma 

C103y00 Other specified diabetes mellitus with coma 

C103z00 Diabetes mellitus NOS with ketoacidotic coma 

C104.00 Diabetes mellitus with renal manifestation 

C104.11 Diabetic nephropathy 

C104000 Diabetes mellitus, juvenile type, with renal manifestation 

C104100 Diabetes mellitus, adult onset, with renal manifestation 

C104y00 Other specified diabetes mellitus with renal complications 

C104z00 Diabetes mellitus with nephropathy NOS 

C105.00 Diabetes mellitus with ophthalmic manifestation 

C105000 Diabetes mellitus, juvenile type, + ophthalmic manifestation 

C105100 Diabetes mellitus, adult onset, + ophthalmic manifestation 

C105y00 Other specified diabetes mellitus with ophthalmic complicatn 
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C105z00 Diabetes mellitus NOS with ophthalmic manifestation 

C106.00 Diabetes mellitus with neurological manifestation 

C106.11 Diabetic amyotrophy 

C106.12 Diabetes mellitus with neuropathy 

C106.13 Diabetes mellitus with polyneuropathy 

C106000 Diabetes mellitus, juvenile, + neurological manifestation 

C106100 Diabetes mellitus, adult onset, + neurological manifestation 

C106y00 Other specified diabetes mellitus with neurological comps 

C106z00 Diabetes mellitus NOS with neurological manifestation 

C107.00 Diabetes mellitus with peripheral circulatory disorder 

C107.11 Diabetes mellitus with gangrene 

C107.12 Diabetes with gangrene 

C107000 Diabetes mellitus, juvenile +peripheral circulatory disorder 

C107100 Diabetes mellitus, adult, + peripheral circulatory disorder 

C107200 Diabetes mellitus, adult with gangrene 

C107300 IDDM with peripheral circulatory disorder 

C107400 NIDDM with peripheral circulatory disorder 

C107y00 Other specified diabetes mellitus with periph circ comps 

C107z00 Diabetes mellitus NOS with peripheral circulatory disorder 

C108.00 Insulin dependent diabetes mellitus 

C108.11 IDDM-Insulin dependent diabetes mellitus 

C108.12 Type 1 diabetes mellitus 

C108.13 Type I diabetes mellitus 

C108000 Insulin-dependent diabetes mellitus with renal complications 

C108011 Type I diabetes mellitus with renal complications 

C108012 Type 1 diabetes mellitus with renal complications 

C108100 Insulin-dependent diabetes mellitus with ophthalmic comps 

C108111 Type I diabetes mellitus with ophthalmic complications 

C108112 Type 1 diabetes mellitus with ophthalmic complications 
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C108200 Insulin-dependent diabetes mellitus with neurological comps 

C108211 Type I diabetes mellitus with neurological complications 

C108212 Type 1 diabetes mellitus with neurological complications 

C108300 Insulin dependent diabetes mellitus with multiple complicatn 

C108311 Type I diabetes mellitus with multiple complications 

C108312 Type 1 diabetes mellitus with multiple complications 

C108400 Unstable insulin dependent diabetes mellitus 

C108411 Unstable type I diabetes mellitus 

C108412 Unstable type 1 diabetes mellitus 

C108500 Insulin dependent diabetes mellitus with ulcer 

C108511 Type I diabetes mellitus with ulcer 

C108512 Type 1 diabetes mellitus with ulcer 

C108600 Insulin dependent diabetes mellitus with gangrene 

C108611 Type I diabetes mellitus with gangrene 

C108612 Type 1 diabetes mellitus with gangrene 

C108700 Insulin dependent diabetes mellitus with retinopathy 

C108711 Type I diabetes mellitus with retinopathy 

C108712 Type 1 diabetes mellitus with retinopathy 

C108800 Insulin dependent diabetes mellitus - poor control 

C108811 Type I diabetes mellitus - poor control 

C108812 Type 1 diabetes mellitus - poor control 

C108900 Insulin dependent diabetes maturity onset 

C108911 Type I diabetes mellitus maturity onset 

C108912 Type 1 diabetes mellitus maturity onset 

C108A00 Insulin-dependent diabetes without complication 

C108A11 Type I diabetes mellitus without complication 

C108A12 Type 1 diabetes mellitus without complication 

C108B00 Insulin dependent diabetes mellitus with mononeuropathy 

C108B11 Type I diabetes mellitus with mononeuropathy 
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C108B12 Type 1 diabetes mellitus with mononeuropathy 

C108C00 Insulin dependent diabetes mellitus with polyneuropathy 

C108C11 Type I diabetes mellitus with polyneuropathy 

C108C12 Type 1 diabetes mellitus with polyneuropathy 

C108D00 Insulin dependent diabetes mellitus with nephropathy 

C108D11 Type I diabetes mellitus with nephropathy 

C108D12 Type 1 diabetes mellitus with nephropathy 

C108E00 Insulin dependent diabetes mellitus with hypoglycaemic coma 

C108E11 Type I diabetes mellitus with hypoglycaemic coma 

C108E12 Type 1 diabetes mellitus with hypoglycaemic coma 

C108F00 Insulin dependent diabetes mellitus with diabetic cataract 

C108F11 Type I diabetes mellitus with diabetic cataract 

C108F12 Type 1 diabetes mellitus with diabetic cataract 

C108G00 Insulin dependent diab mell with peripheral angiopathy 

C108G11 Type I diabetes mellitus with peripheral angiopathy 

C108G12 Type 1 diabetes mellitus with peripheral angiopathy 

C108H00 Insulin dependent diabetes mellitus with arthropathy 

C108H11 Type I diabetes mellitus with arthropathy 

C108H12 Type 1 diabetes mellitus with arthropathy 

C108J00 Insulin dependent diab mell with neuropathic arthropathy 

C108J11 Type I diabetes mellitus with neuropathic arthropathy 

C108J12 Type 1 diabetes mellitus with neuropathic arthropathy 

C108y00 Other specified diabetes mellitus with multiple comps 

C108z00 Unspecified diabetes mellitus with multiple complications 

C109.00 Non-insulin dependent diabetes mellitus 

C109.11 NIDDM - Non-insulin dependent diabetes mellitus 

C109.12 Type 2 diabetes mellitus 

C109.13 Type II diabetes mellitus 

C109000 Non-insulin-dependent diabetes mellitus with renal comps 



 

212 

 

C109011 Type II diabetes mellitus with renal complications 

C109012 Type 2 diabetes mellitus with renal complications 

C109100 Non-insulin-dependent diabetes mellitus with ophthalm comps 

C109111 Type II diabetes mellitus with ophthalmic complications 

C109112 Type 2 diabetes mellitus with ophthalmic complications 

C109200 Non-insulin-dependent diabetes mellitus with neuro comps 

C109211 Type II diabetes mellitus with neurological complications 

C109212 Type 2 diabetes mellitus with neurological complications 

C109300 Non-insulin-dependent diabetes mellitus with multiple comps 

C109311 Type II diabetes mellitus with multiple complications 

C109312 Type 2 diabetes mellitus with multiple complications 

C109400 Non-insulin dependent diabetes mellitus with ulcer 

C109411 Type II diabetes mellitus with ulcer 

C109412 Type 2 diabetes mellitus with ulcer 

C109500 Non-insulin dependent diabetes mellitus with gangrene 

C109511 Type II diabetes mellitus with gangrene 

C109512 Type 2 diabetes mellitus with gangrene 

C109600 Non-insulin-dependent diabetes mellitus with retinopathy 

C109611 Type II diabetes mellitus with retinopathy 

C109612 Type 2 diabetes mellitus with retinopathy 

C109700 Non-insulin dependent diabetes mellitus - poor control 

C109711 Type II diabetes mellitus - poor control 

C109712 Type 2 diabetes mellitus - poor control 

C109800 Reaven's syndrome 

C109900 Non-insulin-dependent diabetes mellitus without complication 

C109911 Type II diabetes mellitus without complication 

C109912 Type 2 diabetes mellitus without complication 

C109A00 Non-insulin dependent diabetes mellitus with mononeuropathy 

C109A11 Type II diabetes mellitus with mononeuropathy 
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C109A12 Type 2 diabetes mellitus with mononeuropathy 

C109B00 Non-insulin dependent diabetes mellitus with polyneuropathy 

C109B11 Type II diabetes mellitus with polyneuropathy 

C109B12 Type 2 diabetes mellitus with polyneuropathy 

C109C00 Non-insulin dependent diabetes mellitus with nephropathy 

C109C11 Type II diabetes mellitus with nephropathy 

C109C12 Type 2 diabetes mellitus with nephropathy 

C109D00 Non-insulin dependent diabetes mellitus with hypoglyca coma 

C109D11 Type II diabetes mellitus with hypoglycaemic coma 

C109D12 Type 2 diabetes mellitus with hypoglycaemic coma 

C109E00 Non-insulin depend diabetes mellitus with diabetic cataract 

C109E11 Type II diabetes mellitus with diabetic cataract 

C109E12 Type 2 diabetes mellitus with diabetic cataract 

C109F00 Non-insulin-dependent d m with peripheral angiopath 

C109F11 Type II diabetes mellitus with peripheral angiopathy 

C109F12 Type 2 diabetes mellitus with peripheral angiopathy 

C109G00 Non-insulin dependent diabetes mellitus with arthropathy 

C109G11 Type II diabetes mellitus with arthropathy 

C109G12 Type 2 diabetes mellitus with arthropathy 

C109H00 Non-insulin dependent d m with neuropathic arthropathy 

C109H11 Type II diabetes mellitus with neuropathic arthropathy 

C109H12 Type 2 diabetes mellitus with neuropathic arthropathy 

C109J00 Insulin treated Type 2 diabetes mellitus 

C109J11 Insulin treated non-insulin dependent diabetes mellitus 

C109J12 Insulin treated Type II diabetes mellitus 

C109K00 Hyperosmolar non-ketotic state in type 2 diabetes mellitus 

C10E.00 Type 1 diabetes mellitus 

C10E.11 Type I diabetes mellitus 

C10E.12 Insulin dependent diabetes mellitus 
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C10E000 Type 1 diabetes mellitus with renal complications 

C10E011 Type I diabetes mellitus with renal complications 

C10E012 Insulin-dependent diabetes mellitus with renal complications 

C10E100 Type 1 diabetes mellitus with ophthalmic complications 

C10E111 Type I diabetes mellitus with ophthalmic complications 

C10E112 Insulin-dependent diabetes mellitus with ophthalmic comps 

C10E200 Type 1 diabetes mellitus with neurological complications 

C10E211 Type I diabetes mellitus with neurological complications 

C10E212 Insulin-dependent diabetes mellitus with neurological comps 

C10E400 Unstable type 1 diabetes mellitus 

C10E411 Unstable type I diabetes mellitus 

C10E412 Unstable insulin dependent diabetes mellitus 

C10E500 Type 1 diabetes mellitus with ulcer 

C10E511 Type I diabetes mellitus with ulcer 

C10E512 Insulin dependent diabetes mellitus with ulcer 

C10E600 Type 1 diabetes mellitus with gangrene 

C10E611 Type I diabetes mellitus with gangrene 

C10E612 Insulin dependent diabetes mellitus with gangrene 

C10E700 Type 1 diabetes mellitus with retinopathy 

C10E711 Type I diabetes mellitus with retinopathy 

C10E712 Insulin dependent diabetes mellitus with retinopathy 

C10E800 Type 1 diabetes mellitus - poor control 

C10E811 Type I diabetes mellitus - poor control 

C10E812 Insulin dependent diabetes mellitus - poor control 

C10E900 Type 1 diabetes mellitus maturity onset 

C10E911 Type I diabetes mellitus maturity onset 

C10E912 Insulin dependent diabetes maturity onset 

C10EC00 Type 1 diabetes mellitus with polyneuropathy 

C10EC11 Type I diabetes mellitus with polyneuropathy 
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C10EC12 Insulin dependent diabetes mellitus with polyneuropathy 

C10ED00 Type 1 diabetes mellitus with nephropathy 

C10ED11 Type I diabetes mellitus with nephropathy 

C10ED12 Insulin dependent diabetes mellitus with nephropathy 

C10EE00 Type 1 diabetes mellitus with hypoglycaemic coma 

C10EE11 Type I diabetes mellitus with hypoglycaemic coma 

C10EE12 Insulin dependent diabetes mellitus with hypoglycaemic coma 

C10EF00 Type 1 diabetes mellitus with diabetic cataract 

C10EF11 Type I diabetes mellitus with diabetic cataract 

C10EF12 Insulin dependent diabetes mellitus with diabetic cataract 

C10EH00 Type 1 diabetes mellitus with arthropathy 

C10EH11 Type I diabetes mellitus with arthropathy 

C10EH12 Insulin dependent diabetes mellitus with arthropathy 

C10EJ00 Type 1 diabetes mellitus with neuropathic arthropathy 

C10EJ11 Type I diabetes mellitus with neuropathic arthropathy 

C10EJ12 Insulin dependent diab mell with neuropathic arthropathy 

C10EK00 Type 1 diabetes mellitus with persistent proteinuria 

C10EK11 Type I diabetes mellitus with persistent proteinuria 

C10EL00 Type 1 diabetes mellitus with persistent microalbuminuria 

C10EL11 Type I diabetes mellitus with persistent microalbuminuria 

C10EM00 Type 1 diabetes mellitus with ketoacidosis 

C10EM11 Type I diabetes mellitus with ketoacidosis 

C10EN00 Type 1 diabetes mellitus with ketoacidotic coma 

C10EN11 Type I diabetes mellitus with ketoacidotic coma 

C10EP00 Type 1 diabetes mellitus with exudative maculopathy 

C10EP11 Type I diabetes mellitus with exudative maculopathy 

C10F.00 Type 2 diabetes mellitus 

C10F.11 Type II diabetes mellitus 

C10F000 Type 2 diabetes mellitus with renal complications 
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C10F011 Type II diabetes mellitus with renal complications 

C10F100 Type 2 diabetes mellitus with ophthalmic complications 

C10F111 Type II diabetes mellitus with ophthalmic complications 

C10F200 Type 2 diabetes mellitus with neurological complications 

C10F211 Type II diabetes mellitus with neurological complications 

C10F300 Type 2 diabetes mellitus with multiple complications 

C10F311 Type II diabetes mellitus with multiple complications 

C10F400 Type 2 diabetes mellitus with ulcer 

C10F411 Type II diabetes mellitus with ulcer 

C10F500 Type 2 diabetes mellitus with gangrene 

C10F511 Type II diabetes mellitus with gangrene 

C10F600 Type 2 diabetes mellitus with retinopathy 

C10F611 Type II diabetes mellitus with retinopathy 

C10F700 Type 2 diabetes mellitus - poor control 

C10F711 Type II diabetes mellitus - poor control 

C10F800 Reaven's syndrome 

C10F811 Metabolic syndrome X 

C10F900 Type 2 diabetes mellitus without complication 

C10F911 Type II diabetes mellitus without complication 

C10FA00 Type 2 diabetes mellitus with mononeuropathy 

C10FA11 Type II diabetes mellitus with mononeuropathy 

C10FB00 Type 2 diabetes mellitus with polyneuropathy 

C10FB11 Type II diabetes mellitus with polyneuropathy 

C10FC00 Type 2 diabetes mellitus with nephropathy 

C10FC11 Type II diabetes mellitus with nephropathy 

C10FD00 Type 2 diabetes mellitus with hypoglycaemic coma 

C10FD11 Type II diabetes mellitus with hypoglycaemic coma 

C10FE00 Type 2 diabetes mellitus with diabetic cataract 

C10FE11 Type II diabetes mellitus with diabetic cataract 
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C10FF00 Type 2 diabetes mellitus with peripheral angiopathy 

C10FF11 Type II diabetes mellitus with peripheral angiopathy 

C10FG00 Type 2 diabetes mellitus with arthropathy 

C10FG11 Type II diabetes mellitus with arthropathy 

C10FH00 Type 2 diabetes mellitus with neuropathic arthropathy 

C10FH11 Type II diabetes mellitus with neuropathic arthropathy 

C10FJ00 Insulin treated Type 2 diabetes mellitus 

C10FJ11 Insulin treated Type II diabetes mellitus 

C10FK00 Hyperosmolar non-ketotic state in type 2 diabetes mellitus 

C10FL00 Type 2 diabetes mellitus with persistent proteinuria 

C10FL11 Type II diabetes mellitus with persistent proteinuria 

C10FM00 Type 2 diabetes mellitus with persistent microalbuminuria 

C10FM11 Type II diabetes mellitus with persistent microalbuminuria 

C10FN00 Type 2 diabetes mellitus with ketoacidosis 

C10FN11 Type II diabetes mellitus with ketoacidosis 

C10FP00 Type 2 diabetes mellitus with ketoacidotic coma 

C10FP11 Type II diabetes mellitus with ketoacidotic coma 

C10FQ00 Type 2 diabetes mellitus with exudative maculopathy 

C10FQ11 Type II diabetes mellitus with exudative maculopathy 

C10G.00 Secondary pancreatic diabetes mellitus 

C10K.00 Type A insulin resistance 

C10M.00 Lipoatrophic diabetes mellitus 

C10y.00 Diabetes mellitus with other specified manifestation 

C10y000 Diabetes mellitus, juvenile, + other specified manifestation 

C10y100 Diabetes mellitus, adult, + other specified manifestation 

C10yy00 Other specified diabetes mellitus with other spec comps 

C10yz00 Diabetes mellitus NOS with other specified manifestation 

C10z.00 Diabetes mellitus with unspecified complication 

C10z000 Diabetes mellitus, juvenile type, + unspecified complication 
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C10z100 Diabetes mellitus, adult onset, + unspecified complication 

C10zy00 Other specified diabetes mellitus with unspecified comps 

C10zz00 Diabetes mellitus NOS with unspecified complication 

Cyu2.00 [X]Diabetes mellitus 

Cyu2300 [X]Unspecified diabetes mellitus with renal complications 

F171100 Autonomic neuropathy due to diabetes 

F345000 Diabetic mononeuritis multiplex 

F35z000 Diabetic mononeuritis NOS 

F372.00 Polyneuropathy in diabetes 

F372.11 Diabetic polyneuropathy 

F372.12 Diabetic neuropathy 

F372000 Acute painful diabetic neuropathy 

F372100 Chronic painful diabetic neuropathy 

F372200 Asymptomatic diabetic neuropathy 

F381300 Myasthenic syndrome due to diabetic amyotrophy 

F381311 Diabetic amyotrophy 

F3y0.00 Diabetic mononeuropathy 

F420.00 Diabetic retinopathy 

F420000 Background diabetic retinopathy 

F420100 Proliferative diabetic retinopathy 

F420200 Preproliferative diabetic retinopathy 

F420300 Advanced diabetic maculopathy 

F420400 Diabetic maculopathy 

F420500 Advanced diabetic retinal disease 

F420600 Non proliferative diabetic retinopathy 

F420700 High risk proliferative diabetic retinopathy 

F420800 High risk non proliferative diabetic retinopathy 

F420z00 Diabetic retinopathy NOS 

F440700 Diabetic iritis 
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F464000 Diabetic cataract 

G73y000 Diabetic peripheral angiopathy 

K01x100 Nephrotic syndrome in diabetes mellitus 

K01x111 Kimmelstiel - Wilson disease 

Kyu0300 [X]Glomerular disorders in diabetes mellitus 

L180500 Pre-existing diabetes mellitus, insulin-dependent 

L180600 Pre-existing diabetes mellitus, non-insulin-dependent 

L180700 Pre-existing malnutrition-related diabetes mellitus 

L180X00 Pre-existing diabetes mellitus, unspecified 

Lyu2900 [X]Pre-existing diabetes mellitus, unspecified 

M037200 Cellulitis in diabetic foot 

M271000 Ischaemic ulcer diabetic foot 

M271100 Neuropathic diabetic ulcer - foot 

M271200 Mixed diabetic ulcer - foot 

N030000 Diabetic cheiroarthropathy 

N030011 Diabetic cheiropathy 

N030100 Diabetic Charcot arthropathy 

R054200 [D]Gangrene of toe in diabetic 

R054300 [D]Widespread diabetic foot gangrene 

ZV65312 [V]Dietary counselling in diabetes mellitus 
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Read codes used to identify pregnancy 

 

Note: First 100 codes from list of 3154 presented here to demonstrate range of codes in full 

table. 

 

Read code Description 

  
13H7.00 Unwanted pregnancy 

13H7.11 Unwanted child 

13H8.00 Illegitimate pregnancy 

13S..00 Pregnancy benefits 

13S..11 Maternity allowances 

13SZ.00 Pregnancy benefit NOS 

1514.00 Estimated date of confinement 

1514.11 Due to deliver - EDC 

1514.12 Estimated date of delivery 

27...00 Obstetric examination 

271..00 O/E - gravid uterus size 

271..11 O/E - fundus size - obstetric 

271..12 O/E - uterus size - obstetric 

272..00 O/E - fetal presentation 

272..11 O/E - lie of fetus 

272..12 O/E - presenting part 

2726.00 O/E -fetal presentation unsure 

272Z.00 O/E - fetal presentation NOS 

274Z.00 O/E - fetal station NOS 

275..00 O/E - fetal movements 

2751.00 O/E - no fetal movements 

2752.00 O/E - fetal movements seen 
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2753.00 O/E - fetal movements felt 

2754.00 O/E - fetus very active 

2755.00 O/E - fetal movemnt.diminished 

275Z.00 O/E - fetal movements NOS 

276..00 O/E - fetal heart heard 

2761.00 O/E - fetal heart not heard 

2762.00 O/E - fetal heart < 40 

2763.00 O/E - fetal heart 40-80 

2764.00 O/E - fetal heart 80-100 

2765.00 O/E - fetal heart 100-120 

2766.00 O/E - fetal heart 120-160 

2767.00 O/E - fetal heart 160-180 

2768.00 O/E - fetal heart 180-200 

2769.00 O/E - fetal heart > 200 

276A.00 O/E - fetal heart -type 1 dips 

276B.00 O/E - fetal heart -type 2 dips 

276Z.00 O/E - fetal heart NOS 

27A..00 O/E - VE - descent of P. part 

27A..11 O/E - VE - descent of fetus 

27A..12 O/E - VE - presenting part 

27B..00 O/E - viable fetus 

27Z..00 Obstetric examination NOS 

3188.00 Placental localisation 

3885.00 Edinburgh postnatal depression scale 

444..00 Feto/placental hormones 

4441.00 Feto/placent. hormones abnorm. 

4442.00 Feto/placen. hormones normal 

4443.00 Placental lactogen - HPL 

4443.11 HPL - Human placental lactogen level 
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4443000 Human placental lactogen level normal 

4443100 HPL - Human placental lactogen abnormal 

4444.00 Serum oestriol level 

4444.11 Human placental lactogen 

4444.12 Placental lactogen 

4445.00 Placental function test 

4445000 Placental function test normal 

4445100 Placental function test abnormal 

444Z.00 Feto/placental hormones NOS 

4453.00 Serum pregnancy test positive 

4654.00 Urine pregnancy test positive 

4H...00 Amniotic fluid examination 

4H...11 Liquor examination 

4H1..00 Amniotic fluid exam. - general 

4H11.00 Amniotic fluid sent for exam. 

4H12.00 Amniotic fluid - nil abnormal 

4H13.00 Amniotic fluid - abnormality 

4H1Z.00 Amniotic fluid exam. gen. NOS 

4H2..00 Amniotic fluid appearance 

4H21.00 Amniotic fluid - clear 

4H22.00 Amniotic fluid - blood stained 

4H23.00 Amniotic fluid -meconium stain 

4H2Z.00 Amniotic fluid appearance NOS 

4H3..00 Amniotic fluid microscopy 

4H31.00 Amniotic fluid microscopy -NAD 

4H32.00 Amniotic fluid microsc. - abn. 

4H33.00 Amniotic fluid cell content OK 

4H3Z.00 Amniotic fluid microscopy NOS 

4H4..00 Amniotic fluid chemistry 
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4H41.00 Amniotic fluid chemistry: NAD 

4H42.00 Amniotic fluid chemistry: abn. 

4H43.00 Amniotic fluid L/S ratio 

4H43.11 Lecithin - amniotic 

4H43.12 Sphingomyelin -amniotic 

4H44.00 Amniotic fluid palmitic acid 

4H45.00 Amniotic fluid cholinesterase 

4H4Z.00 Amniotic fluid chemistry NOS 

4H5..00 Amniotic fluid AFP 

4H51.00 Amniotic fluid AFP normal 

4H52.00 Amniotic fluid AFP equivocal 

4H53.00 Amniotic fluid AFP abnormal 

4H5Z.00 Amniotic fluid AFP NOS 

4H7..00 Amniotic fetal cell study 

4H71.00 Amniotic fetal cell study: NAD 

4H72.00 Amniotic fetal cell abnormal 

4H73.00 Amniotic fetal cell: mongol 

4H7Z.00 Amniotic fetal cell study NOS 

4HZ..00 Amniotic fluid exam. NOS 

4JL3.00 Amniotic fluid for organism 
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Read codes used to identify cases of CHD 

 

Read code Description 

  14A3.00 H/O: myocardial infarct <60 

14A4.00 H/O: myocardial infarct >60 

14A5.00 H/O: angina pectoris 

14AH.00 H/O: Myocardial infarction in last year 

14AJ.00 H/O: Angina in last year 

14AL.00 H/O: Treatment for ischaemic heart disease 

322..00 ECG: myocardial ischaemia 

3222.00 ECG:shows myocardial ischaemia 

322Z.00 ECG: myocardial ischaemia NOS 

323..00 ECG: myocardial infarction 

3232.00 ECG: old myocardial infarction 

3233.00 ECG: antero-septal infarct. 

3234.00 ECG:posterior/inferior infarct 

3235.00 ECG: subendocardial infarct 

3236.00 ECG: lateral infarction 

323Z.00 ECG: myocardial infarct NOS 

44H3.00 Cardiac enzymes abnormal 

44H3000 Cardiac enzymes abnormal - first set 

5543.00 Coronary arteriograph.abnormal 

662K.00 Angina control 

662K000 Angina control - good 

662K100 Angina control - poor 

662K200 Angina control - improving 

662K300 Angina control - worsening 

662Kz00 Angina control NOS 
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790H300 Revascularisation of wall of heart 

792..00 Coronary artery operations 

792..11 Coronary artery bypass graft operations 

7920.00 Saphenous vein graft replacement of coronary artery 

7920.11 Saphenous vein graft bypass of coronary artery 

7920000 Saphenous vein graft replacement of one coronary artery 

7920100 Saphenous vein graft replacement of two coronary arteries 

7920200 Saphenous vein graft replacement of three coronary arteries 

7920300 Saphenous vein graft replacement of four+ coronary arteries 

7920y00 Saphenous vein graft replacement of coronary artery OS 

7920z00 Saphenous vein graft replacement coronary artery NOS 

7921.00 Other autograft replacement of coronary artery 

7921.11 Other autograft bypass of coronary artery 

7921000 Autograft replacement of one coronary artery NEC 

7921100 Autograft replacement of two coronary arteries NEC 

7921200 Autograft replacement of three coronary arteries NEC 

7921300 Autograft replacement of four of more coronary arteries NEC 

7921y00 Other autograft replacement of coronary artery OS 

7921z00 Other autograft replacement of coronary artery NOS 

7922.00 Allograft replacement of coronary artery 

7922.11 Allograft bypass of coronary artery 

7922000 Allograft replacement of one coronary artery 

7922100 Allograft replacement of two coronary arteries 

7922200 Allograft replacement of three coronary arteries 

7922300 Allograft replacement of four or more coronary arteries 

7922y00 Other specified allograft replacement of coronary artery 

7922z00 Allograft replacement of coronary artery NOS 

7923.00 Prosthetic replacement of coronary artery 

7923.11 Prosthetic bypass of coronary artery 
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7923000 Prosthetic replacement of one coronary artery 

7923100 Prosthetic replacement of two coronary arteries 

7923200 Prosthetic replacement of three coronary arteries 

7923300 Prosthetic replacement of four or more coronary arteries 

7923y00 Other specified prosthetic replacement of coronary artery 

7923z00 Prosthetic replacement of coronary artery NOS 

7924.00 Revision of bypass for coronary artery 

7924000 Revision of bypass for one coronary artery 

7924100 Revision of bypass for two coronary arteries 

7924200 Revision of bypass for three coronary arteries 

7924300 Revision of bypass for four or more coronary arteries 

7924400 Revision of connection of thoracic artery to coronary artery 

7924500 Revision of implantation of thoracic artery into heart 

7924y00 Other specified revision of bypass for coronary artery 

7924z00 Revision of bypass for coronary artery NOS 

7925.00 Connection of mammary artery to coronary artery 

7925.11 Creation of bypass from mammary artery to coronary artery 

7925000 Double anastomosis of mammary arteries to coronary arteries 

7925011 LIMA sequential anastomosis 

7925012 RIMA sequential anastomosis 

7925100 Double implant of mammary arteries into coronary arteries 

7925200 Single anast mammary art to left ant descend coronary art 

7925300 Single anastomosis of mammary artery to coronary artery NEC 

7925311 LIMA single anastomosis 

7925312 RIMA single anastomosis 

7925400 Single implantation of mammary artery into coronary artery 

7925y00 Connection of mammary artery to coronary artery OS 

7925z00 Connection of mammary artery to coronary artery NOS 

7926.00 Connection of other thoracic artery to coronary artery 
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7926000 Double anastom thoracic arteries to coronary arteries NEC 

7926100 Double implant thoracic arteries into coronary arteries NEC 

7926200 Single anastomosis of thoracic artery to coronary artery NEC 

7926300 Single implantation thoracic artery into coronary artery NEC 

7926y00 Connection of other thoracic artery to coronary artery OS 

7926z00 Connection of other thoracic artery to coronary artery NOS 

7927.00 Other open operations on coronary artery 

7927500 Open angioplasty of coronary artery 

7928.00 Transluminal balloon angioplasty of coronary artery 

7928.11 Percutaneous balloon coronary angioplasty 

7928000 Percut transluminal balloon angioplasty one coronary artery 

7928100 Percut translum balloon angioplasty mult coronary arteries 

7928200 Percut translum balloon angioplasty bypass graft coronary a 

7928y00 Transluminal balloon angioplasty of coronary artery OS 

7928z00 Transluminal balloon angioplasty of coronary artery NOS 

7929.00 Other therapeutic transluminal operations on coronary artery 

7929000 Percutaneous transluminal laser coronary angioplasty 

7929100 Percut transluminal coronary thrombolysis with streptokinase 

7929111 Percut translum coronary thrombolytic therapy- streptokinase 

7929200 Percut translum inject therap subst to coronary artery NEC 

7929300 Rotary blade coronary angioplasty 

7929400 Insertion of coronary artery stent 

7929y00 Other therapeutic transluminal op on coronary artery OS 

7929z00 Other therapeutic transluminal op on coronary artery NOS 

792B.00 Repair of coronary artery NEC 

792B000 Endarterectomy of coronary artery NEC 

792By00 Other specified repair of coronary artery 

792Bz00 Repair of coronary artery NOS 

792C.00 Other replacement of coronary artery 
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792C000 Replacement of coronary arteries using multiple methods 

792Cy00 Other specified replacement of coronary artery 

792Cz00 Replacement of coronary artery NOS 

792D.00 Other bypass of coronary artery 

792Dy00 Other specified other bypass of coronary artery 

792Dz00 Other bypass of coronary artery NOS 

792y.00 Other specified operations on coronary artery 

792z.00 Coronary artery operations NOS 

88A8.00 Thrombolytic therapy 

88A8.11 Fibrinolysis 

8B27.00 Antianginal therapy 

8B3k.00 Coronary heart disease medication review 

8B63.11 Aspirin prophylaxis - IHD 

G3...00 Ischaemic heart disease 

G3...11 Arteriosclerotic heart disease 

G3...12 Atherosclerotic heart disease 

G3...13 IHD - Ischaemic heart disease 

G30..00 Acute myocardial infarction 

G30..11 Attack - heart 

G30..12 Coronary thrombosis 

G30..13 Cardiac rupture following myocardial infarction (MI) 

G30..14 Heart attack 

G30..15 MI - acute myocardial infarction 

G30..16 Thrombosis - coronary 

G30..17 Silent myocardial infarction 

G300.00 Acute anterolateral infarction 

G301.00 Other specified anterior myocardial infarction 

G301000 Acute anteroapical infarction 

G301100 Acute anteroseptal infarction 
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G301z00 Anterior myocardial infarction NOS 

G302.00 Acute inferolateral infarction 

G303.00 Acute inferoposterior infarction 

G304.00 Posterior myocardial infarction NOS 

G305.00 Lateral myocardial infarction NOS 

G306.00 True posterior myocardial infarction 

G307.00 Acute subendocardial infarction 

G307000 Acute non-Q wave infarction 

G307100 Acute non-ST segment elevation myocardial infarction 

G308.00 Inferior myocardial infarction NOS 

G309.00 Acute Q-wave infarct 

G30A.00 Mural thrombosis 

G30B.00 Acute posterolateral myocardial infarction 

G30X.00 Acute transmural myocardial infarction of unspecif site 

G30X000 Acute ST segment elevation myocardial infarction 

G30y.00 Other acute myocardial infarction 

G30y000 Acute atrial infarction 

G30y100 Acute papillary muscle infarction 

G30y200 Acute septal infarction 

G30yz00 Other acute myocardial infarction NOS 

G30z.00 Acute myocardial infarction NOS 

G31..00 Other acute and subacute ischaemic heart disease 

G310.00 Postmyocardial infarction syndrome 

G310.11 Dressler's syndrome 

G311.00 Preinfarction syndrome 

G311.11 Crescendo angina 

G311.12 Impending infarction 

G311.13 Unstable angina 

G311.14 Angina at rest 
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G311000 Myocardial infarction aborted 

G311011 MI - myocardial infarction aborted 

G311100 Unstable angina 

G311200 Angina at rest 

G311300 Refractory angina 

G311400 Worsening angina 

G311500 Acute coronary syndrome 

G311z00 Preinfarction syndrome NOS 

G312.00 Coronary thrombosis not resulting in myocardial infarction 

G31y.00 Other acute and subacute ischaemic heart disease 

G31y000 Acute coronary insufficiency 

G31y100 Microinfarction of heart 

G31y200 Subendocardial ischaemia 

G31y300 Transient myocardial ischaemia 

G31yz00 Other acute and subacute ischaemic heart disease NOS 

G32..00 Old myocardial infarction 

G32..11 Healed myocardial infarction 

G32..12 Personal history of myocardial infarction 

G33..00 Angina pectoris 

G330.00 Angina decubitus 

G330000 Nocturnal angina 

G330z00 Angina decubitus NOS 

G331.00 Prinzmetal's angina 

G331.11 Variant angina pectoris 

G332.00 Coronary artery spasm 

G33z.00 Angina pectoris NOS 

G33z000 Status anginosus 

G33z100 Stenocardia 

G33z200 Syncope anginosa 
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G33z300 Angina on effort 

G33z400 Ischaemic chest pain 

G33z500 Post infarct angina 

G33z600 New onset angina 

G33z700 Stable angina 

G33zz00 Angina pectoris NOS 

G34..00 Other chronic ischaemic heart disease 

G340.00 Coronary atherosclerosis 

G340.11 Triple vessel disease of the heart 

G340.12 Coronary artery disease 

G340000 Single coronary vessel disease 

G340100 Double coronary vessel disease 

G341.00 Aneurysm of heart 

G341.11 Cardiac aneurysm 

G341000 Ventricular cardiac aneurysm 

G341100 Other cardiac wall aneurysm 

G341111 Mural cardiac aneurysm 

G341200 Aneurysm of coronary vessels 

G341300 Acquired atrioventricular fistula of heart 

G341z00 Aneurysm of heart NOS 

G342.00 Atherosclerotic cardiovascular disease 

G343.00 Ischaemic cardiomyopathy 

G344.00 Silent myocardial ischaemia 

G34y.00 Other specified chronic ischaemic heart disease 

G34y000 Chronic coronary insufficiency 

G34y100 Chronic myocardial ischaemia 

G34yz00 Other specified chronic ischaemic heart disease NOS 

G34z.00 Other chronic ischaemic heart disease NOS 

G34z000 Asymptomatic coronary heart disease 
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G35..00 Subsequent myocardial infarction 

G350.00 Subsequent myocardial infarction of anterior wall 

G351.00 Subsequent myocardial infarction of inferior wall 

G353.00 Subsequent myocardial infarction of other sites 

G35X.00 Subsequent myocardial infarction of unspecified site 

G36..00 Certain current complication follow acute myocardial infarct 

G360.00 Haemopericardium/current comp folow acut myocard infarct 

G361.00 Atrial septal defect/curr comp folow acut myocardal infarct 

G362.00 Ventric septal defect/curr comp fol acut myocardal infarctn 

G363.00 Ruptur cardiac wall w'out haemopericard/cur comp fol ac MI 

G364.00 Ruptur chordae tendinae/curr comp fol acute myocard infarct 

G365.00 Rupture papillary muscle/curr comp fol acute myocard infarct 

G366.00 Thrombosis atrium,auric append&vent/curr comp foll acute MI 

G37..00 Cardiac syndrome X 

G38..00 Postoperative myocardial infarction 

G380.00 Postoperative transmural myocardial infarction anterior wall 

G381.00 Postoperative transmural myocardial infarction inferior wall 

G382.00 Postoperative transmural myocardial infarction other sites 

G383.00 Postoperative transmural myocardial infarction unspec site 

G384.00 Postoperative subendocardial myocardial infarction 

G38z.00 Postoperative myocardial infarction, unspecified 

G3y..00 Other specified ischaemic heart disease 

G3z..00 Ischaemic heart disease NOS 

Gyu3.00 [X]Ischaemic heart diseases 

Gyu3000 [X]Other forms of angina pectoris 

Gyu3100 [X]Other current complicatns following acute myocard infarct 

Gyu3200 [X]Other forms of acute ischaemic heart disease 

Gyu3300 [X]Other forms of chronic ischaemic heart disease 

Gyu3400 [X]Acute transmural myocardial infarction of unspecif site 
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Gyu3500 [X]Subsequent myocardial infarction of other sites 

Gyu3600 [X]Subsequent myocardial infarction of unspecified site 

SP00300 Mechanical complication of coronary bypass 
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Read codes used to identify cases of stroke 

 

Read code Description 

  

G6...00 Cerebrovascular disease 

G60..00 Subarachnoid haemorrhage 

G600.00 Ruptured berry aneurysm 

G601.00 Subarachnoid haemorrhage from carotid siphon and bifurcation 

G602.00 Subarachnoid haemorrhage from middle cerebral artery 

G603.00 Subarachnoid haemorrhage from anterior communicating artery 

G604.00 Subarachnoid haemorrhage from posterior communicating artery 

G605.00 Subarachnoid haemorrhage from basilar artery 

G606.00 Subarachnoid haemorrhage from vertebral artery 

G60X.00 Subarachnoid haemorrh from intracranial artery, unspecif 

G60z.00 Subarachnoid haemorrhage NOS 

G61..00 Intracerebral haemorrhage 

G61..11 CVA - cerebrovascular accid due to intracerebral haemorrhage 

G61..12 Stroke due to intracerebral haemorrhage 

G610.00 Cortical haemorrhage 

G611.00 Internal capsule haemorrhage 

G612.00 Basal nucleus haemorrhage 

G613.00 Cerebellar haemorrhage 

G614.00 Pontine haemorrhage 

G615.00 Bulbar haemorrhage 

G616.00 External capsule haemorrhage 

G617.00 Intracerebral haemorrhage, intraventricular 

G618.00 Intracerebral haemorrhage, multiple localized 

G61X.00 Intracerebral haemorrhage in hemisphere, unspecified 

G61X000 Left sided intracerebral haemorrhage, unspecified 
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G61X100 Right sided intracerebral haemorrhage, unspecified 

G61z.00 Intracerebral haemorrhage NOS 

G62..00 Other and unspecified intracranial haemorrhage 

G620.00 Extradural haemorrhage - nontraumatic 

G621.00 Subdural haemorrhage - nontraumatic 

G622.00 Subdural haematoma - nontraumatic 

G623.00 Subdural haemorrhage NOS 

G62z.00 Intracranial haemorrhage NOS 

G63..00 Precerebral arterial occlusion 

G63..11 Infarction - precerebral 

G630.00 Basilar artery occlusion 

G631.00 Carotid artery occlusion 

G631.12 Thrombosis, carotid artery 

G632.00 Vertebral artery occlusion 

G633.00 Multiple and bilateral precerebral arterial occlusion 

G63y.00 Other precerebral artery occlusion 

G63y000 Cerebral infarct due to thrombosis of precerebral arteries 

G63y100 Cerebral infarction due to embolism of precerebral arteries 

G63z.00 Precerebral artery occlusion NOS 

G64..00 Cerebral arterial occlusion 

G64..11 CVA - cerebral artery occlusion 

G64..12 Infarction - cerebral 

G64..13 Stroke due to cerebral arterial occlusion 

G640.00 Cerebral thrombosis 

G640000 Cerebral infarction due to thrombosis of cerebral arteries 

G641.00 Cerebral embolism 

G641.11 Cerebral embolus 

G641000 Cerebral infarction due to embolism of cerebral arteries 

G64z.00 Cerebral infarction NOS 
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G64z.11 Brainstem infarction NOS 

G64z.12 Cerebellar infarction 

G64z000 Brainstem infarction 

G64z100 Wallenberg syndrome 

G64z111 Lateral medullary syndrome 

G64z200 Left sided cerebral infarction 

G64z300 Right sided cerebral infarction 

G64z400 Infarction of basal ganglia 

G66..00 Stroke and cerebrovascular accident unspecified 

G66..11 CVA unspecified 

G66..12 Stroke unspecified 

G66..13 CVA - Cerebrovascular accident unspecified 

G660.00 Middle cerebral artery syndrome 

G661.00 Anterior cerebral artery syndrome 

G662.00 Posterior cerebral artery syndrome 

G663.00 Brain stem stroke syndrome 

G664.00 Cerebellar stroke syndrome 

G665.00 Pure motor lacunar syndrome 

G666.00 Pure sensory lacunar syndrome 

G667.00 Left sided CVA 

G668.00 Right sided CVA 

G669.00 Cerebral palsy, not congenital or infantile, acute 

G67..00 Other cerebrovascular disease 

G670.00 Cerebral atherosclerosis 

G670.11 Precerebral atherosclerosis 

G671.00 Generalised ischaemic cerebrovascular disease NOS 

G671000 Acute cerebrovascular insufficiency NOS 

G671100 Chronic cerebral ischaemia 

G671z00 Generalised ischaemic cerebrovascular disease NOS 
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G672.00 Hypertensive encephalopathy 

G673.00 Cerebral aneurysm, nonruptured 

G673000 Dissection of cerebral arteries, nonruptured 

G673100 Carotico-cavernous sinus fistula 

G674.00 Cerebral arteritis 

G674000 Cerebral amyloid angiopathy 

G675.00 Moyamoya disease 

G676.00 Nonpyogenic venous sinus thrombosis 

G676000 Cereb infarct due cerebral venous thrombosis, nonpyogenic 

G677.00 Occlusion/stenosis cerebral arts not result cerebral infarct 

G677000 Occlusion and stenosis of middle cerebral artery 

G677100 Occlusion and stenosis of anterior cerebral artery 

G677200 Occlusion and stenosis of posterior cerebral artery 

G677300 Occlusion and stenosis of cerebellar arteries 

G677400 Occlusion+stenosis of multiple and bilat cerebral arteries 

G678.00 Cereb autosom dominant arteriop subcort infarcts leukoenceph 

G67y.00 Other cerebrovascular disease OS 

G67z.00 Other cerebrovascular disease NOS 

G68..00 Late effects of cerebrovascular disease 

G680.00 Sequelae of subarachnoid haemorrhage 

G681.00 Sequelae of intracerebral haemorrhage 

G682.00 Sequelae of other nontraumatic intracranial haemorrhage 

G683.00 Sequelae of cerebral infarction 

G68W.00 Sequelae/other + unspecified cerebrovascular diseases 

G68X.00 Sequelae of stroke,not specfd as h'morrhage or infarction 

G6W..00 Cereb infarct due unsp occlus/stenos precerebr arteries 

G6X..00 Cerebrl infarctn due/unspcf occlusn or sten/cerebrl artrs 

G6y..00 Other specified cerebrovascular disease 

G6z..00 Cerebrovascular disease NOS 
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Read codes used to identify cases of CKD 

 

Dialysis codes 

 

Read code Description 

  
14V2.11 H/O: kidney dialysis 

7L1A.00 Compensation for renal failure 

7L1A.11 Dialysis for renal failure 

7L1A000 Renal dialysis 

7L1A011 Thomas intravascular shunt for dialysis 

7L1A100 Peritoneal dialysis 

7L1A200 Haemodialysis NEC 

7L1Ay00 Other specified compensation for renal failure 

7L1Az00 Compensation for renal failure NOS 

7L1B.11 Placement ambulatory dialysis apparatus - compens renal fail 

7L1B000 Insertion of ambulatory peritoneal dialysis catheter 

7L1B100 Removal of ambulatory peritoneal dialysis catheter 

7L1By00 Placement ambulatory apparatus- compensate renal failure OS 

7L1Bz00 Placement ambulatory apparatus- compensate renal failure NOS 

7L1C.00 Placement other apparatus for compensation for renal failure 

7L1C000 Insertion of temporary peritoneal dialysis catheter 

7L1Cy00 Placement other apparatus- compensate for renal failure OS 

7L1Cz00 Placement other apparatus- compensate for renal failure NOS 

8882.00 Intestinal dialysis 

SP01500 Mechanical complication of dialysis catheter 

SP05613 [X] Peritoneal dialysis associated peritonitis 
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TA02.00 Accid cut,puncture,perf,h'ge - kidney dialysis/oth perfusion 

TA02000 Accid cut,puncture,perf,h'ge - kidney dialysis 

TA02011 Accidental cut/puncture/perf/haem'ge during renal dialysis 

TA12000 Foreign object left in body during kidney dialysis 

TA12011 Foreign object left in body during renal dialysis 

TA22000 Failure of sterile precautions during kidney dialysis 

TA22011 Failure of sterile precautions during renal dialysis 

TA42000 Mechanical failure of apparatus during kidney dialysis 

TA42011 Mechanical failure of apparatus during renal dialysis 

TB11.00 Kidney dialysis with complication, without blame 

TB11.11 Renal dialysis with complication, without blame 

U641.00 [X]Kidny dialysis caus abn reac pt/lat comp no misad at time 

Z1A..00 Dialysis training 

Z1A1.00 Peritoneal dialysis training 

Z1A1.11 PD - Peritoneal dialysis training 

Z1A2.00 Haemodialysis training 

Z1A2.11 HD - Haemodialysis training 

Z919.00 Care of haemodialysis equipment 

Z919100 Priming haemodialysis lines 

Z919200 Washing back through haemodialysis lines 

Z919300 Reversing haemodialysis lines 

Z919400 Recirculation of the dialysis machine 

Z91A.00 Peritoneal dialysis bag procedure 

Z91A100 Putting additive into peritoneal dialysis bag 

ZV45100 [V]Renal dialysis status 

ZV56.00 [V]Aftercare involving intermittent dialysis 

ZV56000 [V]Aftercare involving extracorporeal dialysis 
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ZV56011 [V]Aftercare involving renal dialysis NOS 

ZV56100 [V]Preparatory care for dialysis 

ZV56y00 [V]Other specified aftercare involving intermittent dialysis 

ZV56y11 [V]Aftercare involving peritoneal dialysis 

ZV56z00 [V]Unspecified aftercare involving intermittent dialysis 

ZVu3G00 [X]Other dialysis 

  
 

CKD codes 

 

Read code Description 

  K05..00 Chronic renal failure 

K05..11 Chronic uraemia 

K05..12 End stage renal failure 

K050.00 End stage renal failure 

K06..00 Renal failure unspecified 

K06..11 Uraemia NOS 

K060.00 Renal impairment 

K060.11 Impaired renal function 
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Appendix 7    

 

Validation of method used to estimate baseline clinical values 

 

Table A7.1 Validation of method used to estimate baseline clinical values: comparison of 

simple mean and multilevel model results 

 Cases 

Observed and estimated 

baseline mean value (SD) 
F-test 

Observed 

Mean 

value 

model 

Multilevel 

model 

RSS for 

mean 

value 

model 

RSS for 

multilevel 

model 

df for 

multilevel 

model 

F-value 

(p) 

         

SBP 3643 146 142  146 849746 648467 40 28 

  (21) (14) (14)    (<0.0001) 

         

HbA1C 3643 8.6 7.3  8.0 17187 7205 40 125  

  (2.4) (1.2) (1.6)    (<0.0001) 

         

BMI 3643 30.8 30.3  30.5 8590 4170 39 98  

  (6.0) (5.7) (5.7)    (<0.0001) 

         

Total 3643 5.7 5.0  5.5 4835 1656 40 173 

cholesterol  (1.3) (0.9) (1.0)    (<0.0001) 

         

eGFR 3618 72 71  71 212206 126256 40 61  

  (17) (16) (15)    (<0.0001) 

         

Note: Cohort restricted to cases with observed clinical value within 90 days of diagnosis of diabetes. RSS = residual sum of squares. df = 

degrees of freedom  
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Graphs used to compare observed and modelled risk factors 

 

Figure A7.1 Observed and modelled BMI over study period 
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Figure A7.2 Observed and modelled total cholesterol over study period 
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Figure A7.3 Observed and modelled eGFR over study period 
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Log-log plots used to assess PH assumption for each prediction model  

 

Figure A7.4 Log-log plots: smoker at diagnosis of diabetes 

 

Note: Both axes are on logarithmic scales.  
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Figure A7.5 Log-log plots: CHD prior to diabetes or in first 3 months following diabetes 

 

Note: Both axes are on logarithmic scales. 
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Figure A7.6 Log-log plots: stroke prior to diabetes or in first 3 months following 

diabetes 

 

Note: Both axes are on logarithmic scales. 
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Figure A7.7 Log-log plots: CKD prior to diabetes or in first 3 months following diabetes 

 

Note: Both axes are on logarithmic scales.  
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Figure A7.8 Log-log plots: HbA1C 

 

Note: Both axes are on logarithmic scales.  
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Figure A7.9 Log-log plots: BMI 

 

Note: Both axes are on logarithmic scales.  
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Figure A7.10 Log-log plots: High SBP or treated BP compared with low and untreated 

BP 

 

Note: Both axes are on logarithmic scales.  
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Figure A7.11 Log-log plots: High or treated cholesterol compared with low and 

untreated cholesterol 

 

Note: Both axes are on logarithmic scales.  
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Management of diabetes and diabetic-related risks 

 

Table A7.2 Percentage of smokers continuing to smoke following diabetes diagnosis 

Years following 

diagnosis 

Percentage still 

smoking 

  

0 100% 

1 99% 

2 94% 

3 80% 

4 63% 

5 47% 

  

  



 

254 

 

Table A7.3 Percentage of cases prescribed or using drugs of interest before and after 

diabetes diagnosis 

 

One year 

prior to 

diagnosis 

At 

diagnosis 

3 months 

after 

diagnosis 

One year 

after 

diagnosis 

     

Diabetes management     

Any oral antidiabetic - 5% 32% 46% 

Biguanide - 3% 21% 34% 

Sulphonylurea - 2% 14% 21% 

Glitazone - 0% 6% 23% 

Meglitinide - 0% 2% 6% 

Acarbose / Guarnine - 0% 1% 2% 

     

Insulin - - 3% 3% 

     

Prevention of cardiovascular 

disease 
    

Blood pressure lowering drugs 58% 64% 69% 74% 

Lipid lowering drugs 14% 19% 29% 42% 

Aspirin (prescribed) 23% 28% 34% 41% 

Aspirin (OTC) 2% 4% 6% 8% 
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Results of multilevel models to predict baseline clinical values 

 

 

Table A7.4 Multilevel model used to estimate baseline systolic blood pressure 

          

Systolic BP coefficient  p          95% CI 

  

   

  
    

  

year of diagnosis 1998 0.34 0.525 -0.72 1.41 
(reference year = 2000) 1999 0.07 0.889 -0.86 0.99 

(1998 and 2001 omitted due 2001 -1.20 0.001 -1.93 -0.46 

to collinearity) 2002 -1.79 <0.001 -2.48 -1.10 

2003 -3.14 <0.001 -3.81 -2.46 

  
    

age at diagnosis 35-44 -10.10 <0.001 -10.96 -9.23 

(reference age group = 55-64) 45-54 -3.32 <0.001 -3.94 -2.70 

65-74 2.95 <0.001 2.42 3.47 
75-84 4.92 <0.001 4.28 5.57 

85-94 1.88 0.002 0.67 3.09 

95+ -10.37 0.001 -16.42 -4.32 

  

    male -1.95 <0.001 -2.36 -1.54 

smoker -0.28 0.069 -0.59 0.02 
  

    
Townsend quintile (least deprived) 1 -0.06 0.817 -0.52 0.41 

(reference quintile = 3) 2 -0.14 0.561 -0.60 0.33 

4 -0.42 0.072 -0.88 0.04 

(most deprived) 5  -0.55 0.030 -1.04 -0.05 
  

    
region north -0.21 0.391 -0.70 0.27 
(reference = middle) south -0.04 0.887 -0.52 0.45 

  

    comorbidities prior chd -1.40 <0.001 -1.91 -0.90 

prior chd 2.07 <0.001 1.62 2.51 

prior stroke 1.32 0.001 0.57 2.06 
  

    drug treatments insulin 2.52 <0.001 1.56 3.49 

sulphonylurea 0.40 0.005 0.12 0.67 
biguanide -0.14 0.216 -0.36 0.08 

acarbose -1.40 0.167 -3.37 0.58 

meglitinide 1.22 0.061 -0.06 2.49 

glitazone -0.06 0.824 -0.59 0.47 

statin -1.50 <0.001 -1.71 -1.28 
other lipid lowering -0.83 0.022 -1.53 -0.12 

antianginal(excl. CCB) -1.84 <0.001 -2.26 -1.41 

aspirin -0.01 0.954 -0.25 0.24 

OTC aspirin -9.58 0.104 -21.13 1.97 
other antiplatelet -0.88 0.006 -1.50 -0.25 

angiotensin-II receptor antagonist -1.11 <0.001 -1.46 -0.76 

ACE inhibitor -2.93 <0.001 -3.15 -2.71 
alphablocker -1.67 <0.001 -2.05 -1.29 

calcium channel blocker -2.42 <0.001 -2.71 -2.13 

diuretic -2.44 <0.001 -2.72 -2.15 
  

    slope(per day) -0.004 <0.001 -0.004 -0.003 

intercept 150.89 <0.001 150.05 151.74 
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Table A7.5 Multilevel model used to estimate baseline BMI 

          

BMI coefficient  p          95% CI 

  
   

  

    

  

year of diagnosis 1998 
-1.09 <0.001 -1.46 -0.72 

(reference year = 2000) 1999 0.78 <0.001 0.47 1.09 
(1998 and 2001 omitted due 2001 0.00 0.983 -0.25 0.25 

to collinearity) 2002 -0.66 <0.001 -0.90 -0.42 

2003 -0.18 0.141 -0.41 0.06 

  

 
   

age at diagnosis 35-44 
3.04 <0.001 2.74 3.33 

(reference age group = 55-64) 45-54 1.02 <0.001 0.82 1.23 

65-74 -1.88 <0.001 -2.05 -1.70 

75-84 -4.23 <0.001 -4.45 -4.01 

85-94 -6.25 <0.001 -6.73 -5.76 

95+ -8.36 <0.001 -11.52 -5.20 

  

 
   

male -1.28 <0.001 -1.42 -1.15 

smoker 
-0.23 <0.001 -0.27 -0.18 

  
 

   

Townsend quintile (least deprived) 1 
-0.69 <0.001 -0.86 -0.53 

(reference quintile = 3) 2 
0.18 0.033 0.01 0.34 

4 0.28 0.001 0.12 0.44 

(most deprived) 5  0.66 <0.001 0.49 0.83 

  

 
   

region north 
0.18 0.051 0.00 0.36 

(reference = middle) south -0.22 0.014 -0.40 -0.05 

  

 
   

comorbidities prior chd -0.07 0.382 -0.23 0.09 

prior chd 0.19 0.014 0.04 0.34 

prior stroke -0.01 0.969 -0.28 0.27 

  
 

   
drug treatments insulin 1.06 <0.001 0.94 1.18 

sulphonylurea 0.57 <0.001 0.53 0.60 

biguanide -0.28 <0.001 -0.30 -0.25 

acarbose -0.56 <0.001 -0.82 -0.31 

meglitinide 
0.14 0.105 -0.03 0.30 

glitazone 0.67 <0.001 0.61 0.74 
statin -0.08 <0.001 -0.11 -0.05 

other lipid lowering -0.09 0.073 -0.19 0.01 

antianginal(excl. CCB) 0.12 0.001 0.05 0.18 
aspirin 0.03 0.150 -0.01 0.06 

OTC aspirin 1.28 0.041 0.05 2.50 

other antiplatelet -0.15 0.002 -0.25 -0.05 

angiotensin-II receptor antagonist 0.21 <0.001 0.15 0.27 

ACE inhibitor -0.19 <0.001 -0.22 -0.15 

alphablocker 0.38 <0.001 0.32 0.45 
calcium channel blocker 0.06 0.031 0.01 0.11 

diuretic 0.08 0.003 0.03 0.13 

  

    slope(per day) -0.0003 <0.0010 -0.0003 -0.0002 

intercept 32.04 <0.0010 31.75 32.33 
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Table A7.6 Multilevel model used to estimate baseline total cholesterol 

          

Total cholesterol coefficient  p          95% CI 

  
   

  

    

  

year of diagnosis 1998 0.065 0.061 -0.003 0.133 

(reference year = 2000) 1999 -0.058 0.050 -0.116 0.000 
(1998 and 2001 omitted due 2001 -0.118 0.000 -0.163 -0.072 

to collinearity) 2002 -0.199 0.000 -0.242 -0.157 
2003 -0.263 0.000 -0.305 -0.222 

  

    
age at diagnosis 35-44 -0.061 0.022 -0.114 -0.009 

(reference age group = 55-64) 45-54 0.034 0.076 -0.004 0.072 

65-74 -0.092 0.000 -0.124 -0.059 

75-84 -0.213 0.000 -0.253 -0.173 

85-94 -0.398 0.000 -0.481 -0.316 

95+ -0.630 0.018 -1.152 -0.108 
  

    male -0.369 0.000 -0.395 -0.344 

smoker 0.071 0.000 0.051 0.091 

  
    

Townsend quintile (least deprived) 1 0.012 0.401 -0.016 0.041 

(reference quintile = 3) 2 0.039 0.008 0.010 0.067 
4 -0.001 0.970 -0.029 0.028 

(most deprived) 5  0.007 0.674 -0.024 0.037 

  

    
region north 0.054 0.000 0.024 0.084 

(reference = middle) south 0.003 0.830 -0.027 0.033 

  

    comorbidities prior chd 0.051 0.002 0.019 0.084 

prior chd 0.045 0.002 0.017 0.072 

prior stroke 0.022 0.349 -0.024 0.069 

  
    drug treatments insulin -0.074 0.019 -0.135 -0.012 

sulphonylurea -0.008 0.377 -0.027 0.010 

biguanide -0.046 0.000 -0.061 -0.030 

acarbose 0.143 0.027 0.017 0.269 

meglitinide 0.016 0.699 -0.065 0.097 

glitazone 0.117 0.000 0.084 0.150 
statin -1.162 0.000 -1.176 -1.148 

other lipid lowering -0.126 0.000 -0.168 -0.084 

antianginal(excl. CCB) 0.036 0.016 0.007 0.065 
aspirin -0.012 0.152 -0.029 0.005 

OTC aspirin 0.100 0.320 -0.097 0.297 

other antiplatelet -0.128 0.000 -0.172 -0.084 

angiotensin-II receptor antagonist -0.010 0.478 -0.036 0.017 

ACE inhibitor -0.041 0.000 -0.058 -0.024 

alphablocker -0.106 0.000 -0.135 -0.076 
calcium channel blocker 0.062 0.000 0.040 0.083 

diuretic 0.052 0.000 0.031 0.073 

  

    slope(per day) -0.0003 0.000 -0.0004 -0.0003 

time(CDF) 0.505 0.000 0.476 0.534 

intercept 5.999 0.000 5.946 6.051 
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Table A7.7 Multilevel model used to estimate baseline eGFR 

          

eGFR coefficient  p          95% CI 

  
   

  

    

  

year of diagnosis 1998 1.55 0.000 0.74 2.37 

(reference year = 2000) 1999 0.79 0.026 0.09 1.49 
(1998 and 2001 omitted due 2001 -0.34 0.215 -0.89 0.20 

to collinearity) 2002 -0.43 0.099 -0.94 0.08 
2003 -0.57 0.025 -1.07 -0.07 

  

    
age at diagnosis 35-44 5.07 0.000 4.43 5.71 

(reference age group = 55-64) 45-54 2.24 0.000 1.78 2.69 

65-74 -2.92 0.000 -3.30 -2.53 

75-84 -5.73 0.000 -6.20 -5.26 

85-94 -10.12 0.000 -10.98 -9.26 

95+ -14.07 0.000 -18.17 -9.96 
  

    male 2.39 0.000 2.09 2.70 

smoker 0.68 0.000 0.46 0.91 

  
    

Townsend quintile (least deprived) 1 -0.24 0.170 -0.58 0.10 

(reference quintile = 3) 2 -0.49 0.005 -0.83 -0.15 
4 0.11 0.506 -0.22 0.45 

(most deprived) 5  -0.17 0.345 -0.53 0.19 

  

    
region north -0.46 0.011 -0.82 -0.11 

(reference = middle) south -0.28 0.124 -0.63 0.08 

  

    comorbidities prior chd -1.45 0.000 -1.83 -1.08 

prior chd -19.36 0.000 -19.69 -19.03 

prior stroke -1.20 0.000 -1.75 -0.66 

  
    drug treatments insulin -1.85 0.000 -2.57 -1.13 

sulphonylurea -0.76 0.000 -0.96 -0.55 

biguanide 0.63 0.000 0.46 0.79 

acarbose -1.07 0.179 -2.63 0.49 

meglitinide -1.43 0.004 -2.40 -0.45 

glitazone -0.65 0.001 -1.02 -0.28 

statin 0.07 0.376 -0.09 0.23 

other lipid lowering -3.76 0.000 -4.27 -3.24 

antianginal(excl. CCB) -0.39 0.018 -0.71 -0.07 

aspirin 0.64 0.000 0.45 0.83 

OTC aspirin 1.12 0.305 -1.02 3.25 

other antiplatelet -0.55 0.024 -1.03 -0.07 

angiotensin-II receptor antagonist -0.81 0.000 -1.10 -0.52 

ACE inhibitor -0.49 0.000 -0.66 -0.31 

alphablocker -0.95 0.000 -1.28 -0.62 

calcium channel blocker 0.03 0.825 -0.21 0.26 

diuretic -1.56 0.000 -1.79 -1.33 
  

    slope(per day) -0.001 0.000 -0.001 -0.001 

intercept 81.62 0.000 81.00 82.25 
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