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Abstract 

Matrix-assisted laser desorption/ionisation (MALDI) has rapidly been established as a 
suitable technique for lipid analysis. In MALDI lipids form a range of adducts 
(protonated ([M+H]+) and cationic ([M+Na]+, [M+K]+)), leading to spectral complexity. 
Promotion of a single adduct type is therefore desirable. This thesis describes optimised 
sample preparation strategies for MALDI-MS and imaging of lipids in biological 
samples. 
 
Inclusion of salt additives in MALDI matrix solutions for analysis of biological samples 
is considered. Nitrate salt additives are found to increase sensitivity of a given adduct 
type in extract samples. Similar preparations deposited via airspray for imaging are 
shown to have limited use owing to blockage of the spray nozzle. Incorporation of 
lithium into tissue samples via formal fixation is demonstrated, enabling in situ 
structural characterisation of highly abundant lithium-lipid adducts in MALDI-MS and 

imaging.  
 
Analysis of formal fixed tissues is also shown to be compatible with a relatively new 
surface sampling technique: liquid-extraction surface-an) complexes, was used to allow 
electron-transfer dissocation (ETD) of [Mg+L2]2+ and [Ca+L2]2+, giving rise to highly 
abundant fatty acid side-chain informative product ions. 
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1.  Introduction 

Mass spectrometry (MS) analysis was first developed in the late 1900s and enables 

analysts to measure the mass to charge ratio (m/z) of ionised species. To conduct a mass 

spectrometry (MS) experiment molecules must first be ionised. Once charged species 

have been formed these are separated according to their mass-to -charge ratio (m/z) in a 

mass analyser and then detected. Traditionally species were ionised by electron 

ionisation (EI). This ionisation technique leads to a large degree of molecule 

fragmentation; hence it is unsuitable for the analysis of larger molecules with masses of 

hundreds or thousands of Daltons, such as those found in biological systems. Softer 

desorption ionisation techniques such as electrospray ionisation (ESI) and matrix-

assisted laser desorption/ionisation (MALDI)  developed in the 1980s were shown to be 

more suitable for the analysis of biomolecules [1, 2].  

There is considerable interest in the analysis of biomolecules in order to improve 

scientific understanding of biological processes. The natural presence, relative 

abundance and/or the spatial distributions of biological molecules such as proteins, 

lipids and other metabolites in tissues can vary with the onset and/or progression of 

disease. Hence changes in the normal abundance and localisation of certain species can 

be considered as biomarkers for a particular disease. As mass spectrometry enables 

consideration of a large number of different analytes in a single analysis it is an 

attractive route to gaining understanding the natural composition of different species 
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(such as proteins, drugs or lipids) in a sample. Furthermore, with the introduction of 

mass spectrometry imaging (MSI) techniques such as secondary ion mass spectrometry 

(SIMS) [3], desorption electrospray ionisation [4] (DESI) and MALDI imaging [5], it is 

also possible to obtain spatial information, hence compositional changes can be 

considered alongside changes in localisation.  

In the presented work matrix-assisted laser desorption/ionisation (MALDI) will be the 

ionisation method considered. Both liquid and solid samples can be considered by 

MALDI-MS analysis and imaging experiments can also be conducted. For the analysis of 

liquid samples, solutions are generally spotted onto a multi well target plate and 

introduced to the mass spectrometer after drying, whereupon the laser is fired across 

the sample well. For the analysis of solid samples, such as thin tissue sections, the 

surface can either be analysed by manually selecting an area of interest and firing the 

laser in this selected area or large areas can be analysed in a single analysis by 

performing an imaging experiment. These can be performed either by firing the laser at 

discrete sequential and incremental locations across a pre-defined region of interest or 

by rastering the laser across the sample region. 
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1.1 Matrix-Assisted Laser Desorption/Ionisation (MALDI) 

Desorption ionisation was first described by Beckey with the introduction of field 

desorption [6]. This was the first technique to separately desorb and then ionise an 

analyte. A solution of the analyte sample is deposited on a filament covered with 

microneedles, where, upon heating, the sample melts and ions formed accumulate at the 

microneedle tips before being desorbed [7]. This forms ions with low internal energy, 

hence highly abundant molecular ions and little or no fragment ions are detected in the 

resultant mass spectrum. This is particularly suitable for the analysis of high molecular 

weight and/or thermally labile species. Laser desorption ionisation followed. In this 

approach, a laser beam is irradiated onto a surface on which the sample of interest has 

been deposited. This enabled the detection of intact molecules with biological relevance 

such as glycosides, nucleotides, amino acids and oligopeptides [8]. Laser desorption 

ionisation was first performed with an IR wavelength laser, however UV wavelength 

lasers were later shown to be useful also [9]. 
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Matrix-assisted laser desorption/ionisation (MALDI) was developed in the late 1980’s 

simultaneously by two groups; Karas and Hillenkamp [10] and Tanaka et al. [2]. Laser 

desorption ionisation, although enabling the analysis of biologically relevant molecules, 

was limited to those with relatively low molecular masses (hundreds of Daltons). 

Tanaka et al. showed, for the first time, the (UV) laser desorption ionisation of proteins 

with masses of thousands of Daltons by first preparing the sample surface with glycerol 

and cobalt powder [2]. Karas and Hillenkamp also showed (UV) laser desorption 

ionisation of high molecular weight proteins, however they used a conjugated organic 

acid (nicotinic acid) with a strong molar absorptivity at the laser wavelength as an 

absorbing matrix [10].   

Today, matrix-assisted laser desorption/ionisation is usually achieved by first 

introducing a matrix (either a single compound or a mixture) which efficiently absorbs 

energy at the wavelength of the laser employed. Laser irradiation of this mixed 

matrix/analyte sample mixture leads to desorption/ionisation of the sample material. 

Both IR and UV wavelength lasers have been described in MALDI, however only UV 

MALDI will be considered in this thesis. In UV MALDI, matrix molecules are generally 

low molecular weight and highly conjugated organic compounds which efficiently 

absorb energy at the specific wavelength of the laser employed, similar to the approach  

described by Karas and Hillenkamp [10]. Upon laser irradiation, energy is absorbed by 

matrix molecules and then transferred to the analyte species, leading to 

desorption/ionisation of both matrix and analyte species.  
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Matrix molecules are deposited in molar excess to analyte molecules; historically, ratios 

of up to 10 000 to 1 have been described, however more recently lower matrix to analyte 

ratios have been shown to provide better results for low molecular weight analytes [11, 

12]. Generally co-crystallisation of matrix molecules with analyte species is believed to 

be crucial for the ionisation process. For this reason, solvent selection is a particularly 

important parameter in the MALDI experiment. A simplified schematic of the process is 

provided in Figure 1. After ionisation, either positively or negatively charged species 

(depending on the ion mode selected) are extracted into the mass analyser and 

separated by, for example, their time-of flight (TOF), before detection as a mass to 

charge ratio (m/z). 
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Figure 1 A simplified schematic of the MALDI process. Matrix/analyte crystals deposited on a 
MALDI target plate are ablated with a pulsed laser. Energy from the laser is absorbed by matrix 
molecules and transferred to analyte species, aiding desorption and ionisation. Ionised species 
are extracted into the mass spectrometer. 
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1.1.1 Matrix selection 

A wide range of molecules have been reported as suitable matrix compounds for UV-

MALDI experiments. Studies have shown that different compounds are particularly 

suitable for the analysis of specific classes of analytes. A summary of recommended 

matrices for a range of different analytes is provided in Table 1. In addition, certain 

matrix molecules may be better suited to positive ion mode analysis than to negative ion 

mode. Generally, matrix structures should be vacuum-stable, soluble in a solvent system 

suitable for the analysis of the analyte in question whilst also exhibiting high molar 

absorptivity (Ɛ) at the laser wavelength and promote ion formation (such as protonation 

in positive ion mode).  

Owing to these many different requirements, the design of matrix compounds has 

proven challenging. The introduction of atmospheric pressure MALDI (AP-MALDI) and 

the use of solvent-free sample preparations such as dry-coating have reduced the 

number of different requirements. However, matrix selection and optimisation remains 

an intensive area of research and the reasons why one structure is particularly suited to 

the analysis of a specific analyte are still not often well understood. This thesis describes 

the analysis of lipid analytes only, hence these will be discussed in greater detail. 
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Matrix Compound Structure Analytes 

9-amino acridine  

(9-AA) 

 

Lipids [13] 

 

α-cyano-4-hydroxycinammic acid 
(CHCA) 

 

Peptides [14] 

Proteins 

2,5-Dihydroxybenzoic acid 

(DHB) 

 

Lipids [13] 

Polymers [15] 

Dithranol 

(DIT) 

 

Lipids [16] 

Polymers [15] 

3-hydroxypcolinic acid 

(HPA) 

 

Oligonucleotides [17] 

 

Sinapinic acid  

(SPA) 

 

Proteins [14] 

Trihydroxyacetophenone  

(THAP) 

 

Carbohydrates [18] 

Oligonucleotides 

Lipids [13, 19] 

 

 

Table 1 Common UV-MALDI matrices and analytes they are useful for. 
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Historically, low molecular weight organic acids were employed in MALDI experiments 

in order to promote protonation of analyte species during the ionisation process. 

However more recently a range of neutral and basic compounds have been shown to be 

useful also. To date the most commonly reported matrices for spot analysis of lipids are 

2,5-dihydroxybenzoic acid (DHB) [20-32], 2,6-dihydroxyacetophenone (DHA) [22, 33, 

34] and 2,4,6-trihydroxyacetophenone (THAP) [19, 35-38]. However the basic nature of 

9-aminoacridine (9-AA) and para-nitroaniline (PNA) matrices have been shown to 

improve negative ion mode lipid analysis compared to acidic matrices [39, 40].  

For tissue imaging, matrix properties such as the typical crystal size and vacuum 

stability, can have a limiting impact on the experiment. Although the use of DHB in 

imaging has been reported [23, 26, 41], many groups favour α-cyano-4-hydroxycinnamic 

acid (CHCA) [42-44] as smaller crystals are formed. Large crystals which are formed by 

DHB and THAP matrices can cause delocalisation (spreading) of analytes [45] which is 

detrimental to imaging experiments. Furthermore, DHA and PNA matrices have been 

shown to exhibit poor vacuum stability over long time periods [22, 46], hence they are 

unsuitable for lengthy imaging experiments in vacuum MALDI which can require hours 

of data acquisition for a single experiment. However, recently, matrices such as PNA 

have been shown to be suitable for MALDI imaging of lipids on intermediate-pressure 

instrumentation [39] and should not have limited use in AP-MALDI. 
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A number of different approaches have been considered in the search for suitable matrix 

compounds. Several groups have explored the use of binary matrix systems (a 

combination of two different matrix compounds) in an attempt to gain mutual benefits 

[47-51]. Shanta et al. reported that combining CHCA matrix, which is commonly 

reported in positive ion, but not in negative ion, mode analysis of lipids, with DHB 

increased signal intensities and/or signal to noise ratios of lipid species, enabling 

imaging analysis in both ionisation modes [48]. Gua et al. also describe improved 

spectral quality (reduced background peaks and better signal-to-noise) and lower laser 

fluence requirements when combining CHCA and 9-AA for positive and negative ion 

mode analysis [51]. In a different approach, Teuber et al. showed that design of a 

compound based on existing matrix compounds could be advantageous, thus, synthesis 

of α-cyano-2,4-difluorocinnamic acid (di-FCCA),which is not commercially available, 

gave rise to sensitivity improvements in the analysis of a variety of lipid species [52].  

Less conventional matrix structures based on aromatic molecules, which 

characteristically display a large degree of conjugation, have also been reported for lipid 

analysis, such as acenaphthene [27] and 1,5-diaminonaphthalene [53]. Thomas et al. 

showed the application of 1,5-diaminonaphthalene for dual polarity analysis of lipids in 

thin tissue sections [53]. Graphite and graphene structures have also been shown to be 

useful MALDI matrices; the delocalised electrons which exist in these structures act as 

UV absorbers, similar to the delocalised electrons in highly conjugated organic 

molecules. The use of graphite for the analysis of several lipid classes has been reported 
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for lipid standards, complex extracts and in situ tissue analysis of a range of lipid 

analytes [54-56]. A particular advantage of replacing an organic matrix compound with 

graphite or graphene is the reduced spectral complexity afforded by the removal of 

background matrix peaks which can mask the detection of some small-molecule 

analytes [55]. Other structures such as gold nanoparticles [28] and ionic matrices [57] 

have also been reported as useful matrix compounds in recent years. Gold nanoparticles 

enabled preferential detection of cerebroside lipid species for thin tissue sections, which 

were not typically detected when an organic matrix, DHB, was used [28]. Ionic liquid 

matrices based on the conjugate base of CHCA have been shown to reduce the extent of 

fragmentation of phospholipid species compared to traditional organic matrices, 

increase signal intensity and improve sample homogeneity [58]. 
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1.1.2 Matrix Deposition  

Once an appropriate matrix compound for analysis has been selected it must be 

deposited onto the MALDI target alongside the analyte. Generally, when handling 

liquid samples, solutions of matrices and analyte samples are spotted onto MALDI 

target well plates. A range of different spotting techniques have been described in the 

literature for spot sample analysis. Directly pipetting a solution containing a mixture of 

the analyte and matrix is described in dried-droplet preparation [59]. Alternatively, 

analyte and matrix solutions can be spotted separately, with the matrix solution applied  

as an overlayer after the analyte solution has dried [60]. Finally, the analyte sample can 

be ‘sandwiched’ between matrix layers.   

Traditionally it was believed that co-crystallisation of matrix and analyte molecules is 

integral to the MALDI ionisation process. For this reason, the choice of solvent has 

played a significant role in preparation procedures and has been investigated widely. 

However a number of studies have challenged this understanding. The use of a number 

of different positional isomers of DHB was considered by Horneffer et al. for protein 

analysis. The group showed that analyte incorporation into matrix crystals, although 

helpful, was not a requirement for MALDI [61].  

  



13 
 

The successful employment of solvent-free sample preparation methods also challenges 

this idea [62]. For sample preparations which involve lipid and matrix samples in 

solution, a particular advantage is the solubility of many lipid and organic matrix 

molecules in the same organic solvents [63]. When pipetting sample solutions, retention 

inside the sample well on the MALDI target plate is aided by the hydrophobic outer 

edge. The hydrophobic edge maintains water inside the well, hence even if sample 

solutions are prepared in organic solvents, a small amount of water is often still added. 

When performing tissue analysis, it is important to form a homogeneous layer of matrix 

crystals across a large sample area. For this reason, spraying techniques were the first 

sample preparation method considered. Commonly, manual deposition techniques such 

as using an artist’s airspray gun or a thin layer chromatography sprayer have been 

reported [64]. Nebulisation of the sprayed solution can also help to ensure small matrix 

crystals are formed [65]. The analyst must ensure that sufficient matrix molecules are 

deposited to enable ionisation, however care must be taken to ensure analyte 

delocalisation from solvent wetting does not occur. It can be advantageous in spraying 

techniques to incorporate a percentage of water into the solvent system as this reduces 

problems with evaporation of more volatile organic solvents before they reach the 

MALDI target plate. 
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Manual deposition methods have suffered from user dependency and problems with 

reproducibility, hence a number of automated deposition techniques have been 

developed to reduce these problems. Automated acoustic deposition[66], automated 

inkjet printing[67] and robotic sample preparation instrumentation  have all been 

described [68, 69]. More recently the use of solvent-free techniques in MALDI imaging 

analysis of lipids has been described. Hankin et al. describe sublimation of matrix 

powders onto MALDI target plates for improved (homogeneous) coverage [70]. 

Furthermore, Puolitaival et al. describe dry-coating of ground matrix powders through 

an analytical sieve (20 µm mesh) [62]. These solvent-free deposition techniques remove 

potential problems with analyte delocalisation. These methods could provide a less user 

dependent and therefore more reproducible alternative to manual spraying techniques. 
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1.1.3 Laser Selection 

Traditionally N2 (Nitrogen) gas lasers (337 nm) have been employed in UV MALDI-MS 

analysis [2]. These lasers are relatively cheap, commercially available and have a 

reasonable life span of approximately 2-6 x 107 shots [71]. The financial implications of 

maintaining the laser is an important consideration. MS imaging (which requires 

lengthier data acquisition) a drive towards improved instrumentation has led to the 

introduction of diode-pumped solid-state lasers (DPSS) [71], which typically have 

lifetimes of 1 x 109 shots. Most of these are based on Neodymium and all are frequency-

tripled: Nd:YAG (Yttrium Aluminium Garnet) [72], Nd:YVO4 (Yttrium Vanadate) [71] 

and Nd:YLF (Yttrium Lithium Fluoride) [73]. These lasers offer the advantage of higher 

repetition rates which can allow for shorter acquisition times for similar data collection 

and hence higher throughput analysis in comparison to N2 lasers [71, 73]. The typical 

properties of these lasers discussed are listed in Table 2. 

Characteristics N2 Nd:YAG Nd:YLF Nd:YVO4 

Wavelength (nm) 337 355 349 355 

Power (µJ per pulse) < 150 < 300 5 < 20 

Repetition Rate 1-60 Hz 200Hz-1 KHz 200Hz-5 KHz 1-20 KHz 

Pulse Width 800 ps – 3 ns < 500 ps n.r 1.5>t>1.25 ns 

 

Table 2 Typical properties of N2 and Neodymium-based UV-MALDI lasers according to the 

following publications [71, 74-79], n.r – not reported. 
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1.1.4 Ion Formation in Matrix-Assisted Laser Desorption-Ionisation (MALDI) 

MALDI was introduced nearly three decades ago and studies to probe the exact nature 

of the ion formation process continue to be explored. Knochenmuss proposed that ion 

formation is a two-step process involving generation of primary ions during, or shortly 

after, the laser pulse, followed by conversion to the ‘most favourable secondary ion 

products’ in the desorption plume via a number of different mechanisms [80, 81]. This 

two-step process is the most widely accepted model and subsequent literature has 

discussed the role of these primary [82-85] and secondary [86-89] processes in detail. 

Primary processes during laser ablation are not currently as well understood as 

secondary reactions in the MALDI plume because the formation of the ions that are 

detected masks these primary reactions. However a number of theories have been 

postulated, for example, energy pooling of excited states (M*) [81], leading to 

photoionisation of a single matrix (M) or analyte molecule (A) [83, 90]: 

 

   MM      M*M*  M+• + e- 

   M*M* + A    MM + A+• + e- 

  

2(hv) 
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As a single matrix compound may be useful in both positive and negative ionisation 

modes, the possibility of disproportionation reactions has also been proposed [90]: 

 

2M      (MM)*  (M-H)- + MH+ 

 

The possibility of desorbing ions that are pre-formed in the matrix-analyte solid solution 

has also been suggested [91]. Although this has remained difficult to prove, it is an 

interesting theory where salt doping studies are concerned. 

Radical cations (M+•) formed during primary ionisation (desorption) can undergo 

further reactions in the MALDI plume. A wide range of secondary reactions have been 

proposed, such as proton (H) and cation (C) transfer:  

 

Proton transfer M+• + M      (M-H) + MH+• 

M+• + A      (M-H) + AH+• 

 

Cation transfer MC+• + A      (M-C) + AC+• 

n(hv) 
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Electron capture and/or transfer have also been described in detail by Knochenmuss 

and Zenobi [88]. The potential role of matrix-analyte clusters has also been debated [92]. 

The importance of considering the effect of ionisation energy and the internal energy of 

matrix and analyte molecules has also been highlighted[76, 93]. Clearly the ionisation 

process is very complex and studies are on-going to determine the exact mechanisms 

occurring. Gas-phase thermodynamics are particularly important when considering in-

plume processes such as proton and cation transfer, which can only occur if the analyte 

has a greater (proton or cation) affinity than the matrix molecule. Proton and cation 

affinities and gas-phase interactions of a range of common matrix compounds and 

analyte species have been determined experimentally and/or computationally [89, 94-

96].  

Experimental reports agree that the formation of singly charged ions appears to be most 

favourable, even when multiply charged metal ions are included as cationising agents 

[97]. Karas et al. discussed in detail the possible reasons for this, such as neutralisation 

via proton transfer and electron capture [98], and a number of reviews provide 

comprehensive summaries of the many potential mechanisms postulated for both 

primary (initial laser irradiation) and secondary (in-plume) mechanisms [85, 90, 99].  

It has been shown that a number of experimental factors also affect the desorption 

and/or ionisation process. Sample preparation parameters, such as the matrix selected, 

alongside instrumental settings, such as the laser characteristics, must be considered 
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when attempting to understand the complex processes of ion formation [100-103]. In 

addition, the transfer of internal energy from matrix to analyte molecules has been 

shown to be affected by laser characteristics [76], further  highlighting the complexity of 

the ionisation process. 

1.1.5 Sample Analysis 

Data can be acquired in a number of ways and both liquid and solid samples can be 

analysed. In order to analyse liquid samples, such as lipid standard solutions or 

biological lipid extract samples, matrix and analyte solutions are generally pipetted 

manually onto a MALDI target plate which contains spot wells. These spot wells are 

surrounded by a hydrophobic cell wall in order to aid sample retention. The laser is 

often fired in random locations across the sample well, in order to generate a mean 

spectrum for each spot. 

Solid samples can also be analysed by MALDI; this provides the opportunity to directly 

analyse biological tissues. For the analysis of tissue organs or blocks, samples are 

sectioned in a cryostat before thaw mounting onto a plain MALDI target plate. 

Subsequent deposition of the matrix, often via a spraying technique, prepares the 

sample for introduction into the mass spectrometer. Imaging experiments can be 

conducted on tissue sections. This enables visualisation of the data in one of two ways, 

as a mass spectrum at each pixel location or by showing the spatial distribution of a 
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single m/z of interest (an image). A simplified scheme of MALDI-MS and mass 

spectrometry imaging (MSI) analysis is shown in Figure 2. 

 

 

 

Figure 2 Diagrammatic schemes of sample preparation, data acquisition and data viewing of 
liquid and solid biological samples by MALDI mass spectrometry. Pippetting of liquid samples 
onto multi-well target plates, followed by firing of the laser in random locations across each 
sample well is depicted. Spraying of matrix solutions onto plain MALDI target plates before 
raster imaging data acquisition is also portrayed. Spot sample data is viewed as a mean mass 
spectrum providing compositional information. Imaging datasets can be viewed as single pixel 
spectra or as images showing the spatial distribution of a single m/z of interest, providing spatial 
and compositional information. 
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1.2 Electrospray Ionisation (ESI) 

ESI operates via the application of a strong electric field to a liquid sample flowing 

through a capillary tube at atmospheric pressure [104]. The electric field generated 

induces charge accumulation at the liquid surface, forming highly charged droplets. 

Injection of a carrier gas disperses the spray and solvent molecules are removed via 

heating. Once the electric field is great enough, desorption from the droplet surface 

occurs [104]. Figure 3 provides a simplified schematic of the electrospray ionisation 

process. This was developed further to nano-electrospray, which creates a spray from a 

fine tip, hence it can handle low flow rates and generates smaller droplets [105]. 

 

 

Figure 3 Simplified schematic of the electrospray ionisation (ESI) process.  
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Traditionally ESI analysis of biological tissues has been achieved by performing an 

extraction procedure combined with chromatographic separation techniques such as LC 

or GC, which can be directly coupled to the ESI source ref. A range of lipids have been 

analysed previously by ESI in this way including ceramides [106, 107], sphingoid bases 

[107], phospholipids [108-110] and neutral species such as fatty acids [107],  cholesterol 

[106, 111], cholesterol esters [112] and triacylglycerols [113]. One of the main advantages 

of ESI over MALDI is that a wider variety of different analytes can be dissolved in a 

single solvent system and thus ionised, without the requirement for lengthy 

optimisation of experimental parameters such as matrix compound. In this way a wider 

variety of analyte species can be analysed in a single experiment, without the 

requirement for optimisation of parameters such as matrix selection for separate 

analytes. However ESI is less tolerant of salts than MALDI, which is particularly 

important when considering samples such as biological tissues which contain relatively 

high concentrations of salts. 
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1.2.1 Ion Formation in ESI 

There are two models which have been proposed for the mechanism of ionisation in 

electrospray. The ion evaporation model proposes that as the spray droplets reach a 

particular radius the electric field is sufficient to afford desorption of the solvated ions 

[114, 115]. Conversely, the charge residue model suggests that the spray droplets 

undergo evaporation and fission cycles, eventually leading to droplets containing one 

analyte ion or less [115, 116]. Gas phase ions are then formed by a process of solvent 

evaporation, leaving the analyte species with all the charges that were present. A 

schematic representation is provided in Figure 4. 

 

Figure 4 Schematic representations of the charge residue and ion evaporation models for the 
ionisation mechanism of electrospray 
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1.2.2 Liquid Extraction Surface Analysis (LESA) 

Owing to the lengthy sample preparation times (extraction and separation prior to mass 

spectrometry analysis), alternative mass spectrometry techniques, which offer direct 

tissue surface analysis and the opportunity for imaging, have been favoured by some 

groups. More recent developments in surface-sampling techniques, which are 

compatible with ESI sources such as liquid micro-junction surface sampling (LMJ-SS) 

and desorption electrospray ionisation (DESI), offer the opportunity to combine spatial 

information with compositional information.   

Liquid micro-junction surface sampling was reported in 2001 by Wachs and Henion, 

The miniaturised sprayer they described, can be used to form a liquid micro-junction 

with a sample surface prior to electrospray [117]. Van Berkel et al. introduced a similar 

device for automated liquid micro-junction surface sampling in 2005 [118] and later 

developed the device to allow automated formation and withdrawal of a liquid micro-

junction [119]. This was later commercialised and is commonly referred to as liquid-

extraction surface-analysis (LESA). A simplified schematic of the process is provided in 

Figure 5. 
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Liquid micro-junction surface sampling has been shown to be suitable for a wide range 

of different applications. Various surfaces and analytes have been successfully sampled; 

dyes on TLC plates [118], inks on paper [118], skin blanching agents [120], drug 

metabolites, lipids and drug analytes in thin tissue sections [119-123], drug metabolites 

and proteins in blood spots [124, 125] and lipids on used contact lenses (polymer 

surface) [126]. This final example is of particular interest as surface sampling allows the 

opportunity to separately assess the accumulation of lipid species on the air and eye 

sides of the lens which provides greater insight as to the biological condition [126]. 

 

 

Figure 5 Simplified schematic of the liquid-extraction surface-analysis (LESA) process. A solvent 
is dispensed onto the sample surface, maintaining a liquid micro-junction between the sample 
surface and the pipette tip, which enables analyte extraction from the sample before then solvent 
is the re-aspirated and introduced to the mass spectrometer via ESI. 
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Desorption electrospray was introduced in 2004 by Cooks et al. The technique involves 

electrospraying a solvent onto a surface, which extracts the analytes of interest, before 

the projectile droplets are desorbed from the surface by a combination of pneumatic and 

electrostatic forces [4]. A simplified schematic of the desorption electrospray process is 

provided in Figure 6.  

 

Figure 6 A simplified schematic of the desorption electrospray ionistion (DESI) process. Solvent 
molecules are ionised via electrospray and directed onto the sample surface. These ions extract 
analyte species, before they are extracted into the mass analyser.  

 

 Surface sampling and desorption electrospray techniques offer the advantage of 

reduced sample preparation and reduced spectral complexity in the low m/z region in 

comparison to MALDI-MS and MSI as no matrix is required [127]. However, in terms of 

MSI, DESI suffers with inferior spatial resolution of approximately 200 μm [127] when 

compared to MALDI and SIMS, which can resolve spatial information within 10 μm 

[128] and on the nm scale [129] respectively, hence using multiple techniques is often 

complimentary. 
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Both LESA and DESI have been shown to support MALDI mass spectrometry analysis. 

The corroboration of results between MALDI and LESA techniques from direct surface 

analysis strengthens results [120]. Although LESA cannot provide spatial resolution 

comparable to MALDI [120], it has been shown that analysis of MALDI spot samples by 

LESA-ESI, post MALDI analysis, can support the information obtained by MALDI, 

ionising species which are not detected in the first analysis [119]. Furthermore, DESI 

imaging has been used in support of MALDI imaging to separately analyse different 

analytes of interest, such as both lipids and proteins [130]. The analysis of thin tissue 

sections by LESA-ESI, to obtain data which supports that obtained in MALDI 

experiments will be presented in chapter 5 of this thesis. 
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1.3 Lipid ion formation in MALDI and ESI 

Lipid analytes form both protonated (denoted [M+H]+) and cationic adducts (such as 

sodium [M+Na]+ and potassium [M+K]+). It is important to note here that M denotes the 

analyte species in both MALDI and ESI in these annotations. This is the convention 

adopted in literature reports and should not be confused for the matrix. Phospholipids 

in particular can undergo laser-induced fragmentation in MALDI, leading to the 

detection of relatively highly abundant head-group peaks; however, the degree of 

fragmentation is affected to an extent by the matrix used. When analysing tissue 

samples, high concentrations of potassium and sodium salts in tissue samples, 

combined with the use of acidic matrix compounds and/or protic solvent systems, leads 

to the detection of a range of different lipid adducts when analysing tissue sections in a 

single experiment.  

Although tissue salts are removed during extraction procedures, trace soluble metal 

impurities present in commercially available matrix compounds and solvents means 

various lipid adducts are also detected in liquid analysis. Therefore, cationic adducts are 

still detected when analysing extract and lipid standard samples, leading to the 

formation of three different adducts for any given lipid species in a single analysis. This 

complicates analysis, introducing the problem of overlapping nominal mass to charge 

ratio (m/z) values of different adducts of different lipids, leading to decreased sensitivity 
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for the detection of a single analyte. Overlapping m/z values are a particular problem for 

instruments which do not have high mass resolution capabilities.  

Adducts of a limited number of different phosphocholine (PC) lipid species, which are 

detected at the same nominal mass, are highlighted in Table 3. The protonated adduct of 

PC 38:4 at m/z 810.6008 and the sodium adduct of PC 36:1 at m/z 810.5984 will be 

detected at the same m/z on instruments which can only have sufficient resolving power 

to report values in the region m/z 700-900 to one decimal place. The same problem will 

be encountered for the protonated adduct of PC 36:4 and the sodium adduct of PC 34:1, 

which would both be reported at m/z 782.6. In complex samples, such as biological 

tissues, it can be difficult to assign which lipid species have actually been detected in the 

experiment owing to such overlapping peaks. Thus routes to promote the formation of a 

single lipid adduct are desirable. Doping of MALDI matrix solutions with salt additives 

[19, 131-133] in an attempt to achieve spectral simplification have been described and is 

a major focus of this thesis. 
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Lipid Species m/z 

[M+H]+ 

m/z 

[M+Na]+ 

m/z 

 [M+K]+ 

PC 34:1 760.5851 782.5671 798.5411 

PC 36:1 788.6165 810.5984 826.5723 

PC 38:4 810.6008 832.5828 848.5567 

PC 36:4 782.6031 804.5850 820.5589 

 

Table 3 Mass to charge ratios (m/z) of protonated, sodium and potassium adducts of a range of 

phosphocholine (PC) lipid species. 
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1.4 Mass Analysis 

Once ions have been formed, they are separated by a mass analyser and then detected. 

Ions can be separated in a number of ways. A range of instrumentation is available 

commercially, such as time-of-flight, quadrupole and more recently ion trapping mass 

analysers. In the presented thesis, a tandem mass spectrometer, which contains two 

separate mass analysers was used. This enables further opportunities with respect to the 

type of experiments that can be performed. Tandem instruments can be used to perform 

dissociation studies; in these experiments, only a selected m/z (parent ion) is transmitted 

through the first mass analyser. Ions of the selected m/z are then dissociated 

(fragmented) in a collision cell before fragment (product) ions are separated in the 

second mass analyser.  

1.4.1 Quadrupole Time-of Flight (Q-TOF) 

Morris et al. reported the first use of a quadrupole orthogonal time-of-flight instrument 

(Q-TOF) in 1996 [134]. A schematic of the instrument is provided in Figure 8. Their ideas 

were developed as a variation of the triple quadrupole instrument (QQQ). They used 

collision-activated decomposition (now described as collision-induced dissociation or 

CID) to sequence a biopolymer. Replacement of the final quadrupole with a time-of-

flight (TOF) mass analyser improved the signal-to-noise ratio of obtained MS/MS 

spectra, providing mass accuracies in their study of product ions ‘within 0.1 Dalton’ 

[134], which enabled the determination of  isotope patterns in MS/MS spectra [134] and 
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significantly improved the ability to assign charge states of fragment ions, which is 

particularly important for the analysis of biological analytes.  

These initial experiments demonstrated the basic characteristics of the instrumental set-

up; signal-to-noise and product ion mass accuracy, resolution better than 3000 (FWHM) 

and the ability to produce MS/MS spectra from low concentrations of sample [134]. This 

was first described with an electrospray ion source, however instruments with other ion 

sources, such as MALDI are also available [77, 135]. Chernushevich et al. have presented 

a comprehensive review of Q-TOF instrumentation [136].  

1.4.1.1 Quadrupoles 

Quadrupole mass analysers separate ions according to trajectory. Positive ions entering 

the space in between the rods will be attracted to the negative rod. Changing the 

potential before the ion discharges onto the rod will change the direction of the ion. Ions 

travelling along the axis of the poles are subjected to a total electric field comprising a 

quadrupolar alternating field superposed on a constant field which is resultant from the 

application of potentials upon the rods: 

  ɸ0 = +(U – V cos ωt) and -ɸ0 = -(U – V cos ωt)  

where ɸ0 is the potential applied to the rods, ω is the angular frequency, U is the direct 

potential and V is the zero-to-peak amplitude of the radio frequency (RF) voltage. Only 

ions with a stable trajectory are transmitted. In, order to separate ions over a mass range, 

U is constant and V potentials are scanned across a predetermined range, transmitting 
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ions with stable trajectories over the desired m/z range. This is described as RF (V) only 

mode. 

However, during dissociation experiments (MS/MS) Q1 operates in mass-resolving 

mode via the application of a resolving DC voltage, only transmitting ions of a selected 

m/z (parent ions) and q0 and q2 remain in the RF only mode, transmitting ions across an 

m/z range. Figure 7 shows stable trajectories with changing or constant potentials. 

Fragment ions (product ions) formed by collision with a neutral gas (nitrogen) at a 

collision energy of up to 100 eV are detected across a chosen m/z range in the time-of-

flight mass analyser. 

 

 

Figure 7 Schematic of the potentials applied to the quadrupole rods and a graph showing the 
stability area of ions with increasing masses (m1 < m2 < m3) as a function of direct potential (U) 
and radio frequency potential (V). 
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Figure 8 Schematic of the quadrupole time-of-flight (Q-TOF) instrumentation used to acquire 
MALDI mass spectrometry data in this thesis. 
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1.4.1.2 Time-of Flight (TOF) 

Ions in the time-of-flight (TOF) mass analyser are separated according to their velocity 

when drifting in a free-field region (flight tube), after initial acceleration by an electric 

field. Ions are ejected from the source in packets, hence TOF mass analysers are 

particularly well suited to a pulsed laser source such as those used in MALDI. During 

acceleration all ions acquire the same kinetic energy; hence velocity differs according to 

mass. m/z ratios are calculated by measurement of the time taken to travel through the 

flight tube to the detector. An ion with mass m and charge q= ze is accelerated by a 

potential of Vx. The electric potential is converted into kinetic energy (KE):  

  KE = 
   

 
 = qVx  

Thus, velocity can be calculated by rearrangement of this equation: 

  v = (2zeVx/m)1/2 

The ion travels at constant velocity, taking time t to travel a distance L to the detector: 

  t = 
 

 
 

Rearrangement of this equation, substituting v for the value shown above gives the 

following:  t2 = 
 

 
  

  

    
  

Hence m/z can be calculated from measuring t2. 
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A reflectron, an electrostatic mirror, is also present in the TOF mass analyser. This 

creates a retarding field which deflects ions, sending them back through the flight tube. 

This achieves two things: first, increasing the flight path, enabling better separation of 

ions and secondly, correction of kinetic energy dispersion of ions accelerated with the 

same m/z. Ions with greater kinetic energy and thus greater velocity permeate the 

reflectron to a greater extent than ions with less kinetic energy. Therefore, faster ions 

spend longer in the reflectron, and reach the detector at the same time as slower ions 

with the same m/z according to the following equation: 

  d = 
  

  
 = 

   

     
 = 

   

  
 

where Vy is the potential inside the reflectron, D is the length inside and the electric field 

in the reflectron E = Vy/D. A schematic of the reflectron time-of-flight set-up is provided 

in Figure 9. 

 

Figure 9 Schematic of the reflectron TOF mass analyser. 
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1.4.2 Electrostatic Trapping Instruments 

The development of fourier transform ion cyclotron resonance [137] (FT ICR) mass 

spectrometry and the subsequent introduction of a number of trapping instruments 

[138, 139] provided the inspiration for the orbitrap mass analyser. Marakarov 

introduced the electrostatic field orbital trapping instrument in 2000 [140]. In this mass 

analyser, ions are trapped while orbiting an axial electrode, performing harmonic 

oscillations along the electrode [140]. Oscillations are converted into mass spectra using 

fourier transform, similar to FT ICR. The high mass resolution and mass accuracy 

afforded by FT ICR [137] lends the technique particularly suitable to the analysis of 

complex mixtures as molecules with very similar, but not the same, m/z can be separated 

with  1 000 000 ppm accuracy.  

Marakov went on to couple the orbitrap mass analyser to an electrospray ion source 

[141] for the analysis of complex biological samples. This is particularly useful in lipid 

analysis as many lipid species have similar nominal masses. Analysis of lipids on this 

type of instrument can dramatically reduce problems regarding overlapping peaks. 

Other benefits of this instrumental set-up include a good dynamic range and 

considerable mass to charge range [142]. Analysis of thin tissue sections by a surface 

sampling technique compatible with electrospray ionisation on an orbitrap mass 

analyser will be considered in Chapter 5 of this thesis. 
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1.4.2 Orbitrap  

Orbitrap mass analysers separate ions according to the frequency of their oscillation 

around an inner spindle shaped electrode which has an electrostatic voltage on the 

order of magnitude of several kilovolts and an outer barrel shaped electrode at ground 

potential. Ions with mass m and charge q = ze are introduced along the r axis (see Figure 

x) and are accelerated along the z axis owing the force induced by the electric field. The 

potential inside the trap (U) is defined according to the following equation: 

  U(r, z) = 
 

 
       

  

 
  + 

 

 
  (Rm)2 ln  

 

  
  + C 

where r and z are cylindrical coordinates, k is field curvature, Rm is the characteristic 

radius and C is a constant. Ions oscillate harmonically around the inner electrode. The 

frequency of oscillation ω of an ion is linked to the m/z as follows and is independent of 

its kinetic energy. 

  ω =   
 

 
   

Mass spectra are generated by performing a fourier transform of the broadband current 

created by the ions and converting it into individual frequencies and intensities. A 

schematic representation of the orbitrap mass analysis is provided in Figure 10. 
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Figure 10 Schematic representation of the orbitrap mass analyser and the oscillation of ions 
(red). 

  

1.4.3 Dissociation Studies 

During dissociation experiments (MS/MS) a single m/z of interest is selected and then 

dissociated, which can activated via numerous methods. The fragment (product) ions 

formed, hopefully at structurally informative locations, are then detected. Obtaining 

structural information is particularly important when attempting to identify biomarkers 

of disease.  

Dissociation of selected parent ions can be initiated in a number of ways. The most 

commonly report method is via collision with a neutral gas (such as nitrogen) in the 

collision cell. This is termed collision-induced dissociation (CID) and has been widely 

reported for lipid analytes [19, 34, 130, 143-145]. CID is the method which is available on 

the quadrupole time-of flight instrument used to acquire data presented in this thesis 

and is therefore the main focus of structural characterisation work.   
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Although CID is the only dissociation method available on the Q-TOF instrument, there 

is instrumentation available that can perform CID at comparatively higher energies, 

referred to as high energy-CID or HE-CID. Other available dissociation methods such as 

electron-mediated methods (electron transfer or capture dissociation (ETD or ECD)), 

infrared multiphoton dissociation (IRMPD), ultraviolet photo dissociation (UVPD), 

ozone- induced dissociation (OzID) and post-source decay (PSD), have all been reported 

in the structural analysis of lipids in recent years [146-150].  In order to perform electron-

mediated dissociation, multiply charged species are preferable as this technique only 

works well for higher charge state ions (≥2), hence this is not commonly reported for 

ions formed by MALDI as these are usually only singly charged. Conversely, PSD is 

specific to ions generated via MALDI. Both PSD and OzID have been reported for lipid 

ions generated by MALDI. 

PSD generates similar product ions to those described in CID studies [150, 151], 

however OzID has been shown to provide increased structural information with respect 

to double bond positioning in fatty acid side chains [152]. However, to date, few 

dissociation studies compare a range of different techniques for structural elucidation of 

lipid analytes. Yet, it has been suggested that the consideration of varied dissociation 

techniques can provide complimentary data. For example, Liang et al. report that ETD of 

doubly sodiated lipids generates similar product ions to CID in different relative 

abundances; hence a combination of techniques provided highly abundant productions 

which can together enhance structural elucidation [148]. 
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Dissociation studies can enable the analyst to determine not only which lipid adduct is 

detected (protonated, potassium or sodium adduct), but also the components which 

make up larger lipids, such as phospholipids. In these molecules, the identity of the 

phosphate head-group in addition to each fatty acid side-chain is required in order to 

allow complete structural identification of detected lipid species. Once the lipid adduct 

is detected and phosphate head-group is known, a general formula can be used to 

describe the species detected. For example, a phosphocholine lipid is denoted as a PC 

species. The combined numbers of carbon atoms which comprise the two fatty acid side-

chains are then described followed by the total number of double bonds in those fatty 

acid side-chains. Determination of the identity of each fatty acid and their relative 

positions along the glycerol backbone is also desirable. Figure 11 provides a schematic of 

a PC phospholipid and the side-chain annotations.  
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Figure 11 Phosphocholine (PC) lipid structure indicating the three substituents esterified along 
the glycerol backbone. Two fatty acids are esterified in the sn-1 and sn-2 positions and the PC 
head-group is denoted in the sn-3 position along the glycerol backbone, according to a 
stereochemical numbering system.  

 

The phosphate head-group is denoted in the sn-3 position along the glycerol backbone, 

with the two fatty acid acid side chains denoted in sn-1 and sn-2 positions. In shorthand 

nomenclature these lipids are described first using the head-group annotation shown in 

Table 4, section 1.2 of this thesis, PC for phosphcholine in this example, and then second 

by describing the number of carbons in the fatty acyl chains followed by the number of 

double bonds. If the identities of each fatty acid are unknown a general formula is used 

to describe the lipid, for example PC 34:1. If the identities of each fatty acid are known 

then they are described, for example PC (16:0, 18:1). The order in which the fatty acids 

are described is sn-2 then sn-1 after the head-group annotation. 
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The identities of the substituents along the glycerol back bone can be determined either 

by detection of a particular m/z or by a characteristic neutral loss. For example, the 

detection of acyl ions of fatty acid substituents (RC+=O) or the detection of a peak at m/z 

184 indicating the protonated PC head-group provide structural information. In 

addition, characteristic neutral losses such as that of the intact fatty acid side-chain 

(RCOOH) or the neutral loss of the zwitterionic head-group (183 u) also aid structural 

elucidation. As lipids form a variety of different adducts (protonated and cationic), it is 

important to consider whether the number and types of product ions detected upon 

dissociation of each adduct provides useful structural information. This issue will be 

discussed throughout this thesis. Salt additives will be considered in order to assess 

whether the formation of non-natural cationic lipid adducts can be advantageous in 

dissociation experiments. 

1.4.3.1 Collision-induced Dissociation in the Q-TOF 

In order perform MS/MS analysis in this instrument, Q1 acts as an ion filter in RF/DC 

mode, only allowing a selected m/z through to the collision cell q2. For further details of 

the working of the quadrupole mass analyser in this type of experiment refer to chapter 

1.1.7.1.1. Prior to introduction to the collision cell, the selected ions, described as parent 

ions, are accelerated by a potential voltage up to 100 eV. In the collision cell parent ions 

undergo fragmentation caused by collision with a neutral gas, which is nitrogen in this 

instrument. Ions are subsequently detected in the TOF analyser. A schematic is 

provided in Figure 12. 
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Figure 12 Diagrammatic scheme of a parent ion collision-induced dissociation (CID) experiment 
performed on a Q-TOF mass spectrometer. A chosen m/z is selectively transmitted through the 
quadrupole mass analyser (Q1) and then dissociated in a collision chamber (Q2) by bombarding 
with a neutral gas. Conditions are optimised with the aim of initiating bond breakages at 
structurally informative sites. Product (fragment) ions are detected in the time of flight (TOF) 
mass analyser.  
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1.4.3.2 Collision-induced Dissociation in the Orbitrap Mass Analyser 

As shown in Figure 13, the use of this mass analyser also provides the user with the 

opportunity to consider various dissociation techniques. A comparison of CID, HE-CID 

and ETD techniques for the analysis of lipid species will be considered in chapter 6 of 

this thesis. 

In this instrument parent ions for CID are mass selected by a quadrupole in-between the 

C-trap (ion trap) and the collision cell. An ion trap is based on similar principles to a 

quadrupole, however a ring electrode is surrounded by electrodes from above and 

below, hence the ions inside experience applied potentials in three dimensions. As a 

result only a particular range of ions are stable within the trap. This limits detection inn 

CID experiments to ions with approximately one third of the m/z of the parent ion or 

higher. 

1.1.4.2 High Energy- Collision-induced Dissociation (HE-CID) in a quadrupole  

As described earlier for the Q-TOF instrument, the quadrupole is in RF only mode in 

order to transmit ions across a mass range after collision with a neutral gas (nitrogen) 

before detection in the orbitrap mass analyser. The difference between CID and HE-CID 

is the relative voltages experienced by parent ions in the collision cell. In HE-CID, parent 

ions experience a field of the order of several keV, hence these ions and the subsequent 

product ions formed have much greater kinetic energies when compared to CID, which 

operates between 1 and 100 eV. 
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Figure 13 Schematic of the orbitrap instrumentation used to acquire ESI and LESA-ESI mass spectrometry data in this thesis. 
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A few recent lipid dissociation studies by HE-CID have suggested that increased 

structural information can be obtained in comparison to (lower energy) CID. Harvey et 

al. showed that the determination of double bond positioning was possible by 

performing HE-CID studies of fatty acid related species, proposing a charge associated 

mechanism[153]. Shimma et al. report similar data for phospholipids detected directly in 

situ [154]. Clearly consideration of this dissociation technique, alongside dissociation 

data, could provide enhanced structural information when compared to CID alone. 

1.4.3.4 Electron-transfer Dissociation in a quadrupole  

Electron-mediated dissociation techniques are a relatively recent development. Zubarev 

et al. introduced electron-capture dissociation, which involves bombardment of positive 

ions with low energy electrons [155, 156]. It is thought that charge state reduction leads 

to the formation of a radical positive ion which then dissociates. However this method is 

not compatible with ion trap based mass analyser, owing to practicalities concerning the 

strong electric field used in trapping instruments. Hence electron-transfer dissociation 

was introduced by Syka et al. [157]. This was first described for a Finnigan LTQ mass 

spectrometer [157] but has since been described for orbitrap instrumentation [158]. 

Electron transfer from a singly charged anthracene anion, generated in the reagent ion 

source indicated in Figure 13, occurs in order to achieve dissociative results analogous 

with ECD.  
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Initial studies have focussed on the analysis of multiply charged protein and peptide 

analytes, yielding greater structural information when performed alongside CID [157]. 

However, some recent ECD and ETD studies of lipid species have shown some 

promising results. For example, James et al. report that product ions indicative of fatty 

acyl chain identities are detected upon ECD of divalent metal-phospholipid complexes 

[146]. Furthermore, Liang et al. describe the detection of structurally informative product 

ions which enabled assignment of sn-1, sn-2 and sn-3 side-chains of phospholipid 

species upon ETD of doubly sodiated lipid species [148].  
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1.5 Lipids 

1.5.1 Lipidomics 

Mass spectrometry analysis offers the opportunity to consider a wide range of different 

molecules in a single analysis. Hence the introduction of MALDI and electrospray (ESI) 

ionisation techniques enables consideration of a range of different analytes of a 

particular molecule type (such as proteins, drugs or lipids) in a single analysis. The 

study of proteins to better understand their structure and functions in biological 

systems, defined as proteomics, is one of the most widely studied areas in MALDI. 

However, with improving understanding of biological functions, the need to explore the 

roles of other fundamental, smaller, biological species such as nucleotides, amino acids 

and lipids, is becoming increasingly important. Research in this thesis will concentrate 

on the analysis of lipid species.  

Lipids are important biological molecules involved in a range of biological processes. 

Lipids classify a range of different molecules and many types of lipid species have been 

shown to have biological relevance. For example, phospholipids are major components 

of cell membranes and are involved in cell signalling. It follows that changes in the 

metabolism of various lipid classes have been implicated in a variety of diseases. 

Changes in the natural presence of lipid species have been implicated in a range of 

diseases, for example Alzheimer’s disease [106, 159-161], liver diseases [162, 163] and a 
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range of cancers [47, 164-166]. Many of these diseases affect large numbers of the 

population; hence the importance of lipid research (lipidomics [167]).  

There are a great number and variety of lipids which can vary quite significantly in their 

structure and chemical properties; it follows that lipid species can differ considerably in 

their biological functions. Owing to these varied properties, a number of classification 

systems have been developed. Different systems classify lipids by different 

characteristics, such as polarity, solubility or degree of saturation. For simplicity the 

Fahy classification system will be adopted throughout this thesis [168, 169]. The Fahy 

system separates lipids into eight main categories of lipids based (chemically) on 

structure: fatty acyls (FA), glycerolipids (GL), glycerophospholipids (GP), sphingolipids 

(SP), saccharolipids (SL), sterol lipids (ST), prenol lipids (PR) and polyketides (PK). The 

basic structure of each lipid class is indicated in Figure 14. Sterol lipids, prenol lipids and 

polyketides are not included as they do not have a common generic structure. Sterol and 

prenol lipids are linked by way of their biosynthetic pathway, however they do not 

express structural similarities. Polyketides are an assorted group of molecules sourced 

from plants and microbacteria. There are a wide range of different sub-groups 

associated with each of these main categories. A summary of lipids discussed in this 

thesis, alongside shorthand notations, is provided in Table 4.  
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Figure 14 General chemical structure of lipid species according to their lipid classification.  
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Table 4 A summary of lipid species which will be discussed in this thesis in terms of their classification and sub-classification, 

according to the Fahy system, and their abbreviations. 

Lipid Class and Sub-Classes Abbreviation Lipid Class and Sub-Classes Abbreviation 

Glycerophospholipids GP  Fatty Acyls FA 
 

Phosphocholines 
Phosphoethanolamines 
Phosphoserines 
Phosphoglycerols 
Phosphoglycerolphosphates 
Phosphoinositols 
Phosphoinositol monophosphate 
Phosphoinositol biphosphate 
Phosphoinositol triphosphate 
Phosphates (Phosphatidic Acid) 
Pyrophosphates 
Phosphoglycerophosphoglycerols 
(Cardiolopins) 

PC 
PE 
PS 
PG 

PGP 
PI 

PIP 
PIP2 
PIP3 
PA 

PPA 
CL 

Fatty Acids and Conjugates 
Octadecanoids 
Eicosanoids 
Docosanoids 
Fatty Alcohols 
Fatty Aldehydes 
Fatty Esters 
Fatty Amides 
Fatty Nitriles 
Fatty Ethers 
Hydrocarbons 
Oxygenated Hydrocarbons 
Other 

 

Sphingolipids SP  Glycerolipids GL 
 

Sphingoid bases 
Ceramides 
Phosphosphingolipids 
Neutral glycosphingolipids 
Acidic glycosphingolipids 
Basic glycosphingolipids 
Amphoteric glycosphingolipids 
Arsenoshingolipids 
Other 

 
Cer 
SM 

[glycan]-Cer 
 

Monorady glycerols 
Diradyl glycerols 
Trirady glycerols 
Other 

MG 
DG 
TG 



53 
 

Mass spectrometric studies of diseased tissues samples have considered lipid species 

from a range of these main categories and their sub-groups. Fatty acids can be 

metabolised in biosystems to form part of larger lipid species. For example, a fatty acid 

may be esterified onto the glycerol backbone of a glycerophospholipid. Hence changes 

in lipid compositions and distributions can be implied by both smaller and larger lipid 

structures belonging to different lipid categories. Fatty acids are described by shorthand 

notation, first describing the total number of carbon atoms in the chain and then 

describing the total number of double bonds, separated by a semi colon. Examples of 

this shorthand notation are shown in Table 5. Reference to both the systematic 

(according to chain length and the presence of double bonds) and the corresponding 

trivial name often described in literature reports is also provided.  

It is worth noting that a number of fatty acids which have the same mass are present in 

various isomeric forms. For example, oleic and elaidic acids each have one double bond 

between carbon 9 and 10, however the double bond in oleic acid has the (z)- 

configuration and that in elaidic acid the (E)- configuration. In addition, a number of 

fatty acids can have the same number of carbon atoms and double bonds in the chain, 

yet these may be positioned between different carbons in the chain, hence they are 

different fatty acids. In Table 5 three fatty acids are listed with 20 carbon atoms and 3 

double bonds; however the double bonds are positioned differently along the carbon 

chain in each one. This further highlights the complicated nature of lipid species and the 

importance of developing methods for their structural characterisation.  
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Table 5 Examples of fatty acid systematic and trivial names with standard nomenclature.  

Systematic Fatty  

Acid Name 

Trivial Name Number of 
Carbons 

Number of 
Double Bonds 

Shorthand 

Tetradecanoic Acid Myristic Acid 14 0 14:0 

Hexadecanoic Acid Palmitic Acid 16 0 16:0 

c-9-Hexadecanoic Acid Palmitoleic  Acid 16 1 16:1 

Octadecanoic Acid Stearic  Acid 18 0 18:0 
c-9-Octadecenoic Acid Oleic  Acid 18 1 18:1 
t-9-Octadecenoic Acid Elaidic  Acid 18 1 18:1 

c-9,12-Octadecadienoic Linoleic  Acid 18 2 18:2 

Eiocosanoic Acid Arachidic  Acid 20 0 20:0 
c-9- Eiocosenoic Acid Gadoleic  Acid 20 1 20:1 
c-11,14- Eiocosadienoic Acid Dihomolinoleic  Acid 20 2 20:2 

c-11,14,17- Eiocosatrienoic Acid Dihomolinolenic  Acid 20 3 20:3 

c-8,11,14- Eiocosatrienoic Acid Dihomogammalinolenic  Acid 20 3 20:3 
c-5,8,11- Eiocosatrienoic Acid Mead  Acid 20 3 20:3 
c-5,8,11.14- Eiocosatetranoic Acid Arachidonic Acid 20 4 20:4 

c-5,8,11,14,17- Eiocosapentanoic Acid Eiocosapentanoic  Acid 20 5 20:5 

Docosanoic Acid Behenic Acid 22 0 22:0 
c-13- Docosenoic Acid Erucic Acid 22 1 22:1 
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1.5.2 Implication of lipids in Disease 

A variety of different lipid species have been implicated in Alzheimer’s disease. A 

number of recent reviews detail the role of the free fatty acid docosahexanoic acid and 

sphingolipids in Alzheimer’s disease [159-161, 170]. Changes in the abundances of 

cholesterol and oxidised lipids have been shown to be potential biomarkers of multiple 

sclerosis [171]. Changes in the ratio of two free fatty acids, arachidonic acid and α-

linolenic acid, have been observed in sufferers of coronary artery disease [172]. 

Furthermore, increased concentrations of oxidized lipids  have been detected in patients 

suffering from non-alcoholic steatohepatitis liver disease[163] and decreases in the ratio 

of phosphatidylcholine to phosphatidylethanolamine lipids have been reported in non-

alcoholic fatty liver disease [162]. Finally, changes in lipid abundances and spatial 

distributions have been indicated in a number of different cancers [50, 164, 166, 173-176]. 

It is clear from these selected examples that changes in both the relative abundance and 

spatial distribution of a wide range of lipid species can be informative of a particular 

disease. Therefore it is important to develop a detailed knowledge of normal lipid 

abundances and spatial localisations of lipid analytes in tissue and an understanding of 

lipid metabolism in biological systems. For this reason there has been increasing interest 

in the study of lipids in recent years. 
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Mass spectrometry is of particular interest when performing analytical studies owing to 

the ability to detect a large number of analytes in a single experiment with minimal 

sample preparation. A number of reports demonstrate that there is interest in both rapid 

profiling of lipid extract samples and direct surface sampling of thin tissue sections by 

ionisation techniques such as MALDI [47, 176, 177] and ESI [163, 178]. An increasing 

number of reports also consider the use of mass spectrometry imaging techniques, 

which combine compositional information similar to that obtained from analysing lipid 

extract samples with spatial information. 

Analysis of lipids by MALDI has been a topic of much recent interest and the technique 

has been used to identify lipid biomarkers in diseases such as Fabry disease [179], Tay 

Sachs/Sandhoff disease [65] and cancers [49, 50]. Both the relative abundances and 

localisation of lipid species have been implicated in these diseases, hence understanding 

the normal presence and distribution of lipids in biological samples is key to 

understanding these diseases and development of appropriate treatments. With 

opportunities for analysis of complex, unseparated lipid mixtures and direct analysis of 

thin tissue sections, MALDI imaging is an attractive method for profiling lipids in 

healthy and diseased tissue.  
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1.6 Aims and Objectives 

MALDI-MS and MS imaging have widespread applications in the analysis of biological 

molecules. Lipids are important biological species, the analysis of which is complicated 

by the fact that they form various different adducts in the MALDI experiment. Routes to 

improving the analysis of lipids by MALDI-MS can be addressed at the sample 

preparation stage by doping the MALDI matrix solution with an additive in order to 

promote the formation of a particular adduct. This strategy can lead to decreased 

spectral complexity and improved sensitivity for a given lipid analyte. 

Salt additive selection in matrix doping experiments for the analysis of a complex lipid 

extract sample will be discussed in detail in Chapter 2. Improved sensitivity and 

reduced spectral complexity afforded by the inclusion of a particular salt additive will 

be reviewed. Furthermore, as it is important to structurally characterise lipid analytes 

when considering lipids as disease biomarkers, collision-induced dissociation of the 

various lipid adducts formed will be considered. The inclusion of salt additives in 

MS/MS experiments will be explored in order to determine which lipid adduct(s) 

provides the most informative structural information in dissociation studies. 

The incorporation of salt additives into tissue samples will be discussed in Chapters 3 

and 4 as a route to improve in situ analysis and imaging of thin tissue sections. The 

inclusion of salt additives in matrix solutions or powders prior to matrix application will 

be described in Chapter 3. Formal fixation as a route to additive incorporation, leading 
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to the formation of highly abundant lipid adducts which provide useful structural 

information will be presented in Chapter 4.  

Direct surface sampling of fixed tissue samples by a relatively new technique, liquid-

extraction surface-analysis (LESA) for electrospray ionisation (ESI), will be considered in 

Chapter 5. This will be coupled to a type of trap mass analyser (orbitrap) which has high 

mass-resolving power. Structural information that can be obtained from lipid analytes 

using high-energy collision-induced dissociation and electron transfer dissociation 

techniques will be assessed in Chapter 6.  
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2. Investigations into the use of salt additives in MALDI-MS 

analysis of lipids 

2.1 Introduction 

The inclusion of additives to MALDI matrices has been investigated by a number of 

groups for the analysis of a range of analytes. Addition of these additives aims to favour 

a particular adduct, reduce the relative abundance of another adduct or act as a 

cationising agent [19] in MALDI-MS experiments. Salt additives have been included in 

the matrix solution [19], used in matrix washing procedures [132] and have also been 

used as tissue washing solutions [180]  prior to MALDI-MS analysis.   

Various salts have been considered for lipid analysis including ammonium acetate [181], 

ammonium citrate [19, 182] and diammonium hydrogen citrate [150, 181], sodium 

acetate [19, 150, 182-184], potassium acetate[72, 135], potassium chloride[182, 184], 

lithium acetate [19, 135, 145, 150] , lithium chloride [77, 143, 145], lithium citrate [145], 

lithium iodide [145] and lithium trifluoroacetate [145], caesium chloride [131-133, 185-

187] and silver nitrate [27] but few studies compare a selection. Furthermore, the 

concentrations of additives reported are varied. 

Several infrequently reported additives have also been shown to improve lipid analysis: 

such as urea [181], guanadinium chloride [181], calcium chloride [188] and 
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ethylenediaminetetraacetic acid ammonium salt [189], indicating that a trial of wider 

additive selections would be beneficial. External cationic sources such as lithium and 

caesium (sodium and potassium are present in the matrices themselves) might be 

advantageous as they could be utilised as internal standards in tissue investigations. It is 

also suggested that the lithium isotope pattern could be useful in adduct confirmation of 

complex mixtures [19]. Caesium in particular could be incredibly useful as caesium 

adducts form outside of the usual lipid m/z window of interest, again simplifying 

adduct confirmation and overcoming the problem of overlapping peaks of different 

adducts [187].  

A range of other additives have been used in the analysis of other analytes by MALDI. 

For example, ammonium acetate [190], ammonium citrate [190, 191] and ammonium 

phosphate [191, 192], diammonium citrate [190] and phosphoric acid [193] have all been 

used in phosphopetide and/or protein analysis to promote protonation. Lithium and 

caesium chlorides have been reported to show different selectivity’s for a range of 

polyethers [194]. In addition,  silver nitrate has been employed as a cationsing agent in 

the analysis of non-polar polymers such as polyisoprene, polystyrene, and 

polybutadiene, extending the detection range to a distribution of up to 6 000 u [195]. 

Furthermore, tetraamine spermine [196] and polyamine [197] have been reported to 

improve oligonucleotide analysis, simplifying spectra by eliminating cation adduction 

or acting as a proton sink respectively. Finally, zinc sulfate heptahydrate [198] was 
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reported to simplify spectra by enhancing the detection of protonated adducts, in the 

analysis of peptide toxins in cyanobacteria. 

Comparison of the additive cation with various counteranions in positive ion mode 

experiments allows systematic evaluation of additive selection. A number of studies 

have considered groups of additives in this way. A range of lithium salts were 

investigated by Cerruti et al. for lipid analysis in tissue imaging[145]. A range of 

chlorides (lithium, potassium, caesium and rubidium) were investigated in the detection 

of aspirin [199]. In addition, a large study was conducted by Choi et al. in the analysis of 

carbohydrates [200]. Lithium, sodium, potassium and caesium were investigated as 

cationising agents in a number of salt forms: trifluoroacetates, hydroxides and chlorides. 

Various forms of silver salts have been investigated for the analysis of polybutadiene 

[201]. Several counteranions have been considered in negative ion mode analysis of 

oligonucleotides [202]. 

Furthermore, cation selection has been shown to have a profound effect on the relative 

number of different product ions in CID studies [19, 150, 203]. Lithium lipid adducts 

have been reported to provide the most useful product ions with respect to structural 

characterisation [19, 143, 150]. However dissociation studies of caesium lipid adducts (of 

the form [M+Cs]+) have not been reported. Here a comprehensive investigation into the 

structural information afforded by CID of various adducts of a PC lipid standard is 

presented, extending the range of investigated cations. 
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The aim of this research was to evaluate the use of various salt additives in various 

anionic and cationic forms, over a wide concentration range, for MALDI-MS analysis of 

lipids for a variety of applications: promotion of a particular adduct, improving 

sensitivity and reducing spectral complexity. A wide range of additives were 

considered, some of which have previously been considered for lipid analysis, others 

have been employed in the analysis of other analytes and some, such as nitrates, 

completely novel. In this study ammonium, sodium and potassium cations were 

investigated in a variety of salt forms; acetates, chlorides and nitrates. Lithium and 

caesium salts were also considered in order to evaluate the use of non-endogenous 

cations.  
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2.2 Experimental 

2.2.1 Materials 

All salts (NH4Cl, NH4CH3CO2, NaCH3CO2, NaCl, NaNO3, KCH3CO2, KCl, KNO3, LiCl, 

LiNO3, CsCl), trifluoroacetic acid (TFA, 99% purity) and matrices (α-cyano-4-

hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (DHB), and 2,4,6-

trihydroxyacetophenone (THAP)) were purchased from Sigma-Aldrich (Gillingham, 

Dorset, UK). Lipid standard 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine PC 

(16:0/18:1) was purchased from Avanti Polar Lipids Inc. (Delfzyl, The Netherlands). The 

water used was purified by an ELGA Option 3 system (Marlow, UK). Rat brain samples 

were supplied by AstraZeneca (Alderley Park, UK) and stored at -80 ○C. 

2.2.2 Sample Preparation  

2.2.2.1 Lipid Extraction 

Lipids were extracted from thawed rat brain according to a modified version of the 

Folch method[204]: 2 g of rat brain tissue was extracted with 50 mL of 2:1 CHCl3: 

CH3OH. No salts were added to the aqueous phase during the tissue washing stage. The 

mixture was allowed to separate whilst standing.  

2.2.2.2 Spotting of Lipid Extract Samples for MALDI-MS experiments  

Matrices were prepared at 10 mg mL-1 for matrix optimisation experiments. All matrix 

additives (NH4CH3CO2, NH4Cl, NaCH3CO2, NaCl, NaNO3, KCH3CO2, KCl, KNO3, LiCl, 
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LiNO3, and CsCl) were prepared in 80% CH3OH/20% H2O. DHB at 10 mg mL-1 (80% 

MeOH/20% H2O/0.1% TFA) was prepared incorporating 0, 5, 10, 20, 40, 80 mM of 

additive. All MALDI-MS samples were spotted as separate overlayers[60] on a stainless 

steel  MALDI target (AB SCIEX, Frammingham, USA) 0.25 µL of lipid extract followed 

by 0.5 µL matrix allowing approximately 2 minutes drying time between 

applications.[205, 206] Eight replicate spots of each sample were prepared for MS 

experiments. 

2.2.2.3 MALDI-MS/MS analysis of PC (18:1, 16:0) 

Samples prepared with – 0 or 5 mM (LiCl, or CsCl) were used for MS/MS analysis. All 

samples were spotted as overlayers. 0.5 µl  of 1 mg ml-1 PC (16:0/18:1) followed by 0.5 

µL of 10 mg mL-1 DHB matrix (with or without additive), with time allowed for drying 

between applications. Five replicate spots of each sample were prepared. 

2.2.3 Mass Spectrometry 

A hybrid quadrupole time of flight (Q-TOF) mass spectrometer (Qstar XL, AB Sciex, 

Frammingham, USA) equipped with an orthogonal MALDI ion source was used to 

acquire MALDI-MS and MS/MS data. A pulsed N2 laser (337 nm, operated at 20 Hz) 

delivered through a 200 µm fibre delivering 30 % of the available power was controlled 

by Analyst 1.1 software (Applied Biosystems). All data were acquired in positive ion 

mode. Spot samples were interrogated using a circular laser pattern, summing 15 scans 

per spectrum and ablating most material within the well. Ion transmission was 
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optimised and a focusing potential (FP) of 60 V and a declustering potential (DP2) of 20 

V were used in all experiments. For MS/MS experiments the number of scans summed 

was increased from 15 to 60. Nitrogen was used as a collision gas. The collision energy 

used was optimised in the range 10-100 eV. 

2.2.4 In-source Photographs of Matrix-Additive Crystals 

DHB matrix prepared with or without the inclusion of 5 mM additive 80% CH3OH 

(with 0.1% TFA). The lipid standard solution was prepared in CHCl3. 0.5µL of the lipid 

standard solution was spotted onto a stainless steel MALDI target plate (Waters Ltd, 

Elstree, UK), followed by 0.5µL of the matrix solution with time allowed for drying 

between applications. A MALDI-TOF (Time of Flight) instrument (MALDI micro MX, 

Waters) equipped with a pulsed N2 laser (337 nm, operated at 10 Hz) and a 1.24 m flight 

path, was controlled by Mass Lynx 4.1 software (Waters Ltd, Elstree, UK) and used to 

obtain screen shots showing crystal morphology. 
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2.3 Results and Discussion 

2.3.1 Matrix System Optimisation 

Initial investigations evaluated which matrix compound (CHCA, DHB or THAP) was 

optimal for the analysis of a complex lipid extract. DHB is the most commonly reported 

matrix for lipid analysis[65]. More recently 2,4,6-trihydroxyacetophenone (THAP) [19] 

has been shown to be a viable alternative for lipid analysis, hence it was included in this 

evaluation. Both were compared to CHCA which is also widely reported. All were 

evaluated with the addition of 0.1% trifluoroacetic acid (TFA)[65], which has been 

shown to enhance the signal to noise ratio in the mass spectra obtained [207] and 

enhance cationisation [132]. These properties can be attributed to the strong ion pairing 

ability of TFA [208]. 

A representative MALDI mass spectrum acquired when the complex biological lipid 

extract sample was analysed with CHCA matrix is shown in Figure 15. The most 

abundant ion in the spectrum is m/z 184 which is characteristic of the phosphocholine 

head-group of PC lipid species. Lower abundances of phospholipid head-group 

fragment ions were detected in the region m/z 50-300; m/z 86, 104, 125 and 146, shown in 

Table 6 below, have all been previously reported [135]. Other peaks in this region relate 

to CHCA matrix ions: m/z 190 [M+H]+, 212 [M+Na]+ and 228 [M+K]+.  

  



67 
 

m/z Fragment Identity 

86 

 

104 

 

125 

 

146 

 

184 
 

 

Table 6 Common phospholipid head-group fragments detected in MALDI analysis 

 

Intact lipid ions in the highlighted region between m/z 700-900 of phosphatidylcholine 

lipids such as PC 34:1, PC 32:0 and PC 36:1 were detected in relatively low abundance in 

comparison to other peaks in the spectrum. Further lipid fragment ions were detected in 

the region m/z 400-600; these ions can be attributed to neutral losses of the PC head-

group and the fatty acid side-chains as they are similar to those detected in CID 

experiments described in this chapter and in further detail in chapter 4 of this thesis. 

N
O

P
HO

O

OH
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Fragment ions in MALDI-MS experiments have previously been described to be similar 

to those detected in PSD and low-energy CID experiments [209]. Stubiger et al. also 

found that the use of CHCA matrix in lipid investigations led to extensive 

fragmentation during ionisation [19]. This is probably owing to the fact that CHCA is a 

hot matrix [93] for lipid analytes, typically producing analyte ions with greater internal 

energies compared to those generated using other matrix compounds [76]. Protonated 

lipid adducts [M+H]+ were detected in highest abundance when CHCA matrix was 

used. This is perhaps unsurprising owing to the fact that it is a carboxylic acid and is 

thus likely to promote protonation of analyte species.  

When THAP matrix was used to analyse this lipid sample the most abundant ion in the 

spectrum was m/z 169 which is the protonated adduct [M+H]+ of THAP matrix. Other 

matrix peaks [M+Na]+ and [M+K]+ at m/z 191 and 207, respectively, were detected in 

much lower abundance. Lipid fragment ions were also detected in lower abundances 

when compared to using the CHCA matrix. This is probably owing to the fact that 

THAP is a cool matrix for lipid analytes. In addition, ion counts of detected lipid species 

increased when the THAP matrix was used. High abundances of both protonated 

[M+H]+ and cationic lipid adducts ([M+Na]+ and [M+K]+) were detected, probably 

owing to the fact that THAP is a neutral compound, and therefore does not promote 

protonation to the same extent as CHCA, for example. As fewer lipid fragments and 

higher abundances of intact lipid species were detected when THAP was used for lipid 

analysis it was deemed more suitable than CHCA.   
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Figure 15 Representative MALDI-MS spectra of rat brain lipid extract sample prepared with 

DHB (top), THAP (middle) or CHCA (bottom) matrix. The phospholipid region m/z 700-900 is 

highlighted. Highest ion counts of lipid species were detected when DHB matrix was used. 
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The most abundant ion detected when DHB matrix is used to analyse the lipid extract 

sample was at m/z 184, indicating the PC head-group of lipid species. Matrix ions were 

not detected in significantly high abundance, except for [M+H-H2O]+  at m/z 137. 

Significantly higher ion count, double or triple that of other matrices, of intact 

phospholipid species were detected in the region m/z 700-900 when DHB matrix was 

used compared to THAP and CHCA matrices, as illustrated in Figure 15. Furthermore, 

cationic lipid adducts were detected in relatively high abundance; sodium lipid adducts 

[M+Na]+ were the most abundant detected of a range of lipid species as demonstrated in 

Figure 16.  

 

Figure 16 Mean ion counts of [M+H]+, [M+Na]+ and [M+K]+ adducts of 3 abundant 

phospholipids (PC 32:0, PC 34:1 and PC 36:1) detected when rat brain lipid extract is analysed 

with CHCA, DHB and THAP matrices. Error bars indicate one standard deviation above and 

below the mean. 
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It is perhaps surprising that similar abundances of protonated and cationic adducts are 

not detected as DHB is an acidic molecule and therefore it might be expected that use of 

this matrix would promote protonation. Even though protonated adducts were also 

detected in high abundance, the use of DHB matrix appeared to lead to the detection of 

a range of lipid adducts, all in relatively high abundance. DHB and THAP matrices have 

similar gas-phase basicities for both sodium and potassium [89]. Gas-phase basicity  is 

related to cation affinity and theoretical calculations have shown that their sodium 

binding energies differ by just 4 kJ mol-1 [96]. Low cation affinities and gas-phase 

basicities, shown in Table 7, of DHB and THAP matrix compounds could account for the 

increased abundances of cationic lipid adducts detected when these are used for lipid 

analysis, in comparison to CHCA. Overall DHB matrix was deemed a suitable candidate 

for additive studies.  

Although lipid fragment ions were detected in the region m/z 400-600, their abundance 

was relatively low in comparison to when CHCA matrix was used. Knochenmuss and 

Zenobi’s investigations of in-plume processes suggest that the internal energy of 

analytes in the MALDI plume is dependent on the exothermicity of the proton transfer 

reaction [88]. As this is greater for CHCA than DHB, and THAP is a neutral molecule, 

this could account for the trend in decreasing lipid fragmentation that is observed. As 

DHB matrix offered the particular benefit of significantly higher ion counts of lipid 

species, and promoted the formation of various different lipid adducts, this matrix was 

selected for a detailed study of salt additives. 
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MALDI 

matrix 

Proton 

Affinity 

(kJ mol-1) 

Sodium 

Cation 
Affinity 

 (kJ mol-1) 

Gas phase 

basicity  

(kJ mol-1) 

Gas-Phase  

 Sodium 
Basicity  

(kJ mol-1) 

Gas-Phase  

Potassium 
Basicity  

(kJ mol-1) 

CHCA 841 193 908 n.f n.f 

DHB 841-866 < 100 n.f 158 99 

THAP 892 > 114 864 154 97 

 

Table 7 Proton and cation affinities and gas-phase basicities of CHCA, DHB and THAP matrices, 
as reported in the following [89, 94, 96, 210-212]. n.f values not found. 
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2.3.2 Additives in MALDI-MS Analysis of Complex Lipid Samples 

2.3.2.1 Crystal Homogeneity 

The homogeneity of spotted crystals was markedly different upon addition of different 

salts to the matrix and with varying salt concentration, as shown in Table 8. When DHB 

matrix was spotted, rod-like crystals were formed largely around the outside of the 

sample well with smaller crystals inside. This is in agreement with previous reports of 

the type of crystal morphology exhibited when DHB matrix is prepared by the dried 

droplet method [213]. 

Upon addition of an acetate salt, crystal homogeneity was significantly improved. Much 

smaller and rounder crystals were formed and therefore homogeneity was increased. 

The addition of a chloride salt did not alter the crystal formation at most investigated 

concentrations, however it was slightly improved at higher chloride salt concentrations. 

The only exception in this study was caesium chloride, smaller crystals were detected 

when caesium chloride was added however these were not very homogeneous. The 

addition of a nitrate salt led to the formation of smaller and rounder crystals at higher 

additive concentrations (20 mM and above) however the characteristic (for DHB) rod-

like crystals formed at lower concentrations. Table 8 shows photos of crystal appearance. 

Although a number of other lipid studies have considered the effect of salt additives in 

MALDI at varied salt concentration [19, 182], the resultant crystal formation is not 
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commented upon. Most studies focus on describing the effect of salt addition on the 

detection of lipid analytes with respect to adduct formation. 

Investigations probing the crystallisation process in dried droplet samples have 

reported that alkali ions remain in solution for as long as possible during the drying 

process, leading to principal localisation in the central area of the sample well [214] . 

Hence they are segregated from the larger matrix crystals formed around the edge [214]. 

The same study revealed that drying time has a significant impact on crystal 

homogeneity; slower crystallisation leads to larger crystal formation and faster crystal 

formation leads to reduced component segregation. Increased solute (salt) 

concentrations will lead to faster evaporation of the solvent upon deposition; hence this 

could help explain why more homogeneous crystals are formed at higher salt 

concentrations. Furthermore, it has been shown that more polar analytes, with greater 

affinities for metal ions will co-crystallise [214]. Phospholipids are polar and will 

therefore have an affinity for alkali ions. Combined with the above described effects this 

could explain why overall increased homogeneous crystal formation between matrix, 

salt and analyte was observed at higher additive concentrations. This does not however 

explain why this was prevalent at lower salt concentrations for some additives but not 

others. 
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Table 8 In-source photographs of MALDI sample spots. Images show lipid extract prepared 

with 20 mg ml-1 DHB matrix with the addition of 0-80 mM of sodium acetate, sodium chloride 

or sodium nitrate. Sodium additives are shown as an example of general trends. Spot wells are 

2.5 mm in diameter. 

Additive 
concentration 

Sodium Acetate 
(NaOAc) 

Sodium Chloride 
(NaCl) 

Sodium Nitrate 
(NaNO3) 

 
 

0 mM  
(DHB only) 

   

 
 

5 mM 

   

 
 

10 mM 

   

 
 

20 mM 

   

 
 

40 mM 

   

 
 

80 mM 
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2.3.2.2 Acetate Salt Additives 

The inclusion of low concentrations of ammonium acetate in the MALDI matrix led to 

increased ion counts of all lipid species of various adducts. Based on a mean average, 

there is a two-fold increase in the ion counts of detected lipid species of any adduct type 

when 5 mM ammonium acetate is included in the matrix. This could be a route to 

increasing the sensitivity by detecting lipids which are present in low abundance 

and/or have lower ionisation efficiency than the readily ionised PC lipid species. 

However the standard deviation indicates that the reproducibility of this outcome is 

poor, as shown in Figure 18.  

Ammonium acetate has also proved useful as a tissue desalting wash, reducing sodium 

and potassium content in tissue and increasing ion counts of protonated adducts of lipid 

analytes, though in that study, a much more concentrated solution (160 mM) was 

considered [180]. Angel et al. agree that the use of an ammonium salt-based wash 

solution leads to the removal of potassium and sodium adducts [215]. The addition of 

this salt to MALDI matrices has also proven useful in the analysis of analytes such as 

phosphopeptides [190], leading to enhanced detection, however it has not been 

considered as a matrix dopant for lipids previously. 

The addition of sodium acetate to the matrix did not increase the ion counts for the 

sodium adducts. However suppression of potassium adducts at m/z 772 (PC 32:0), m/z 

798 (PC 34:1) and m/z 826 (PC 36:1) and protonated adducts at m/z 734, m/z 760 and m/z 
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788, respectively, in comparison to the control experiment, were noticeable, as 

demonstrated in Figure 17. In the presented study, overall the spectra were less complex 

than control samples. Stubiger et al. reported similar findings when sodium acetate was 

included in the matrix solution in complex lipid analysis; sodium adducts of PC lipids 

were detected in high abundance while signal intensity of other adducts decreased, 

relatively [19].  

The addition of potassium acetate to the matrix led to increased ion counts/relative 

abundance of potassium adducts at m/z 772 (PC 32:0), 798 (PC 34:1) and 826 (PC 36:1), in 

comparison to the control experiment, as shown in Figure 17.  Sugiura et al. also 

reported increased potassium adduct formation of PC lipids in rat brain homogenates 

by addition of this salt [72]. Sodium adducts of the same lipids were suppressed at m/z 

756, 772 and 810, respectively. Therefore reduced spectral complexity is achieved by 

inclusion of this salt. Reduced ion counts of protonated adducts were also detected, 

agreeing with Sugiura et al.; Reduced protonated adduct generation of a lyso-PC species 

has also been reported by addition of this salt [72].  

The inclusion of high concentrations of any of these acetate salts dramatically affected 

the detection of lipids. Spectral quality became poorer with increasing additive 

concentration and no lipid ions were detected when ≥ 40 mM of any of these acetate 

salts were added to the matrix, see Figure 18. Many reports of acetate salts in similar 

dopant studies only consider low salt concentrations (10-20 mM) [135, 145, 150, 183] and 
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it has been reported that the inclusion of high concentrations of sodium acetate (> 20 

mM) leads to a complete loss in lipid signal of PC species [182]. This was particularly 

interesting. Although crystal homogeneity was improved with increasing acetate 

additive concentration (Table 8) it would seem that MALDI-MS analysis of these samples 

is not enhanced. It has been demonstrated that the formation of more homogeneous 

matrix crystals leads to more homogenous analyte distribution leading to improved 

signal reproducibility [216], however this does not necessarily consider samples with 

particularly high salt composition. High salt concentrations have previously been shown 

to obstruct the formation of crystalline matrix crystals [217]. It is probable that the 

addition of high concentrations of salts impedes analysis by MALDI for this reason.  

Sugiura et al. reported that MALDI-MS spectra could not be obtained when 60 mM 

potassium acetate was added to DHB matrix, however this was possible at lower salt 

concentrations (10, 20 mM) [72]. In this study amorphous crystallisation is described to 

be the limiting factor [72]. This further supports the postulate that the addition of high 

salt concentrations has a marked effect on crystal formation which is detrimental to the 

MALDI experiment. We reveal similar findings in acetate salts across a wider surveyed 

concentration range. 
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Figure 17 Representative MALDI-MS spectra of rat brain lipid extract sample prepared with 

DHB matrix including A) no additive, B) 5 mM sodium acetate or C) 5 mM potassium acetate. 

The phospholipid region m/z 700-900 is shown. Changes in the most abundant lipid adduct 

detected with changing additive and the reduction in spectral complexity achieved by the 

inclusion of low concentrations of these acetate salts is shown. 
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Figure 18 Mean ion counts of [M+H]+, [M+Na]+ and [M+K]+ adducts of PC 34:1 detected in rat 

brain lipid extract sample in the presence of ammonium (top), sodium (middle) and potassium 

(bottom) acetate at varied additive salt concentration (0-80 mM). Error bars show one standard 

deviation above and below the mean ion count. No lipid ions were detected at high acetate 

concentrations. 
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2.3.2.3 Chloride Salt Additives 

The addition of ammonium chloride to the matrix solution led to decreased intensities 

of sodium and potassium adducts in comparison to control spectra containing no salt 

additive. The ion counts of the corresponding protonated species increased at low 

additive concentrations (≤ 10 mM), but decreased with increasing ammonium chloride 

concentration thereafter.  Despite this, decreases in the relative abundances of cationic 

adducts resulted in reduced spectral complexity. Although a range of ammonium salts 

have been considered in tissue washing protocols prior to MALDI analysis of lipids 

[215], only ammonium citrate had previously been investigated as a matrix additive in 

MALDI-MS analysis of lipids as a route to promoting protonation (over cationisation) 

[19, 182]. Here it is shown that the inclusion of ammonium chloride in the MALDI 

matrix solution gives rise to similar results; however the usefulness of this salt as a 

matrix additive exhibits a degree of concentration dependence within the investigated 

range. 

Similar observations were made when the chloride salts of sodium and potassium were 

added to the MALDI matrix. Lipid adducts of the additive cation appear to be 

preferably formed compared to other lipid adducts, such as protonated and other 

cationic adducts. The inclusion of sodium chloride in the matrix did not increase the ion 

counts of sodium lipid adducts (m/z 756, 782 and 810 (PC 32:0, 34:1 and 36:4)) or 

significantly suppress the detection of protonated adducts (m/z 734, 760, 788), however 
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potassium adducts appeared to be suppressed (m/z 772, 798 and 826), as shown in 

Figure 19. Therefore, overall spectral complexity was reduced to an extent. A 

significantly increased relative abundance of a phosphatidylinositol-monophosphate 

lipid when this salt is added to the matrix  has been reported by Muller et al.[188]. In 

these experiments it appeared that although the average ion counts of sodium adducts 

remain similar, the relative abundance of sodium adducts (in comparison to protonated 

and potassium adducts) increases.  

The use of potassium chloride as an additive increases the ion counts/relative 

abundance of potassium lipid adducts at m/z 772, 798 and 826 (PC 32:0, PC 34:1 and PC 

36:4), in comparison to protonated and sodium adducts, at additive concentrations ≤ 

20mM. Lower ion counts of protonated adducts (m/z 734, 760, 788) and sodium adducts 

(m/z 756, 782, 810) of these lipids were detected in comparison to the control sample, as 

illustrated in Figure 19. In this way, the inclusion of potassium chloride in the matrix led 

to reduced spectral complexity. This was observed across a range of additive 

concentrations; however, sensitivity in lipid detection decreased with increasing 

concentration. Here the range of potassium salts considered as matrix additives for the 

analysis of lipids is extended from acetates to chlorides, showing that chlorides exhibit 

similar benefits across a greater concentration range. 



83 
 

 

Figure 19 Mean ion counts of [M+H]+, [M+Na]+ and [M+K]+ adducts of PC 34:1 detected in rat 
brain lipid extract sample in the presence of A) ammonium, B) sodium and C) potassium 
chloride salts at varied additive salt concentration (0-80 mM). Error bars show one standard 
deviation above and below the mean ion count. 
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Detection of caesium lipid adducts eliminates the potential problems with overlapping 

adduct peaks of different lipids. The peak detected at m/z 810 could be attributed to the 

protonated adduct of PC 38:4 or the sodium adduct of PC 36:1. The addition of caesium 

chloride led to the detection of caesium lipid adducts of each of these lipids at m/z 920 

and 942. Therefore it is likely that both were present at m/z 810 in different adduct 

forms. The addition of caesium significantly reduced spectral complexity and aided 

lipid assignment. Caesium lipid adducts detected are in good agreement with previous 

reports [132, 133, 185, 187, 218] of PC 32:0, 34:1, 36:1and 38:4, respectively. Ion counts of 

all other adducts ([M+H]+, [M+Na]+ and [M+K]+) were significantly reduced, or no 

longer detected, resulting in less complex spectra. For example [M+H]+, [M+Na]+ and 

[M+K]+ adducts of PC 36:1 detected at m/z 734, 756 and 772, respectively, are replaced 

by a single peak at m/z 920.  

Furthermore, the formation of caesium adducts between m/z 850-1000 leads to a mass 

shift of 132 u from protonated adducts detected in the region m/z 700-850, as shown in 

Figure 20, shifting. This is particularly advantageous for assignment purposes as no 

overlapping peaks of other lipids are expected in this mass region. A number of other 

groups have reported the particular benefit of using caesium chloride as an auxiliary 

reagent in phospholipid analysis for this purpose in complex sample analysis [131, 132, 

187]. Here systems of known caesium ion concentration are investigated at a range of 

concentrations, demonstrating that only relatively low concentrations of this salt offer 

these benefits.  
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Other studies have considered caesium chloride addition at a low additive 

concentration (10 mM) [185, 186], however Wang et al. reported the formation of 

caesium-lipid adducts incorporating 200 mM caesium chloride into DHB matrix. This is 

clearly much higher than we found to be useful however their experiments were 

conducted in situ and so it is difficult to directly compare results with respect to lipid 

concentration and crystal formation [133].  

 

 

Figure 20 Representative spectra showing phospholipid species detected in the region m/z 700-

1000 in a non-additive doped sample (blue) and between 700-1000 with the addition of 5 mM 

caesium chloride (red) to rat brain extract. A table showing the detected m/z values of different 

adducts of a variety of PC lipid species is shown in the table to the right. Peaks detected in the 

non-additive doped sample are highlighted in blue in the table and those detected in the 

caesium chloride doped sample are shown in red.  
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The addition of lithium chloride to the matrix led to the formation of several lithium-

lipid adducts at m/z 740, 760 and 794 for PC 32:0, 34:1 and 36:1 respectively, in 

agreement with reported values from in situ tissue analysis by Jackson et al. [143]. 

Lithium cationisation appeared to be favoured over sodium and potassium 

cationisation; sodium and potassium adducts of these lipids were not detected when 

lithium chloride was included in the matrix. However protonated adducts (m/z 734, 760 

and 788) of these lipid species were detected at most of the investigated concentrations 

(5-80 mM). As lithium lipid adducts of many lipids are detected in the m/z window as 

protonated adducts of other lipids, overlapping m/z values remains problematic. For 

example, the protonated adduct of PC 36:1 and the lithium adduct of PC 36:4 are both 

expected at m/z 788. Thus, the employment of lithium chloride as a matrix additive led 

to reduced spectral complexity, but only to a limited extent.  

Few MALDI-MS studies consider the use of lithium chloride in lipid analysis with a 

view to reducing spectral complexity; most reports of lithium salts consider their use in 

CID studies [19, 143, 150]. Jackson et al. showed that the inclusion of a high 

concentration of lithium chloride (100 mM) in matrix solutions leads to the formation of 

lithium-lipid adducts in thin tissue sections, although protonated and potassium 

adducts were also detected [143]. Unfortunately, data collected without the inclusion of 

lithium chloride in the matrix is not reported. It is therefore difficult to comment upon 

the relative complexity of the spectrum. More commonly, lithium acetate has been 

considered in the analysis of complex lipid extracts and phospholipid standard, leading 
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to the formation of lithium-lipid adducts and providing useful structural information in 

CID studies [19, 182].  

In my experiment, at an additive concentration of 80 mM, only lithium- lipid adducts 

were detected. However the spectral quality deteriorated with increasing lithium 

chloride concentration. The signal to noise ratio of the spectra acquired decreases with 

increasing additive concentration. Furthermore, the ion counts of species detected in the 

lipid region of interest were significantly lower in the lithium-doped samples than those 

in the control samples over a range of additive concentrations (5-80 mM). Stubiger et al. 

reported that lithium-lipid adducts dominate spectra (compared to other adducts) at a 

lithium acetate additive concentration of 50 mM, however they do not comment upon 

whether or not the spectral quality is affected. 

Lithium chloride and lithium acetate have been considered as matrix additives by some 

groups as a route to forming lithium-lipid adducts for dissociation studies. These 

investigations do not offer commentary on the relative use of lithium salts in terms of 

spectral complexity and spectral quality. It is possible that the particular benefit of using 

lithium salts in lipid analysis will be indicated in dissociation studies which will be 

discussed in Chapter 2.3.4. This study shows that the inclusion of lithium chloride in the 

MALDI matrix is useful to an extent in terms of reducing spectral complexity; however 

its use is limited at high additive concentrations. 
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2.3.2.4 Nitrate Salt Additives 

The addition of sodium nitrate to the matrix led to decreased spectral complexity owing 

to increased [M+Na]+ (at m/zs 756, 782 and 810)  rather than [M+K]+, when compared to 

control samples, however protonated species were also detected. These observations 

were found over a range of additive concentrations (5-80 mM). Spectral quality 

appeared to be unaffected by increasing salt concentration unlike with other salts, as 

demonstrated in Figure 21 and Figure 22. Sodium nitrate has not been reported as an 

additive in MALDI-MS previously; here we demonstrate that significant improvements 

in sensitivity in the detection of sodium lipid adducts are afforded by inclusion of this 

salt at a range of salt concentrations in MALDI matrix solutions.   

The addition of potassium nitrate also led to increased detection of [M+K]+ rather than 

[M+Na]+ adducts, although protonated adducts were also detected. In this instance 

reduced ion counts of peaks detected at m/z 756, 782 and 810 ([M+Na]+ (PC 32:0, 34:0 

and PC 36:1 respectively) were observed. Again protonated adducts of these lipids were 

detected at m/z 734, 760 and 788 in similar relative abundance to the control (no 

additive) experiments. The potassium adducts of these lipids at m/z 772, 798 and 826 had 

significantly increased ion counts in the additive spectra when compared to the control 

sample, see Figure 21 and Figure 22. Again, this salt has not previously been considered 

as an additive in MALDI-MS of lipids and was found to increase sensitivity of 

potassium adducts over a range of additive concentrations (5-80 mM).  
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Spectral quality appeared to be unaffected by salt concentration. This work was 

published by me and Dr Josephine Bunch in 2012. More recently Lee et al. have also 

shown that nitrate salts were most useful in their lipid investigations, particularly for 

enhanced detection of cerebroside lipids [219]. 

 

 

Figure 21 Mean ion counts of [M+H]+, [M+Na]+ and [M+K]+ adducts of PC 34:1 detected in rat 
brain lipid extract sample in the presence of sodium (left) and potassium (right) nitrate at varied 
additive salt concentration (0-80 mM). Error bars show one standard deviation above and below 
the mean ion count. 
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Figure 22 Representative MALDI-MS spectra of lipid extract analysed with a) no additive, b) 80 
mM potassium acetate, c) 80 mM potassium chloride and d) 80 mM potassium nitrate. 
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2.3.3 Summary of Additives in MALDI-MS and MS/MS 

Evaluation of ammonium, sodium and potassium acetates and chlorides, alongside 

sodium and potassium nitrates and lithium and caesium chorides as salt additives has 

revealed one stark trend; overcoming cationisation pathways in favour of protonation 

was achieved more readily. The inclusion of ammonium chloride favoured protonation, 

suppressing cationic adduct signals. However, overcoming protonation in favour of any 

cationic pathway proved much more difficult. This seems to support Knochenmuss’ 

idea that protonated adduct formation has a lower activation barrier than cationisation 

[83]. 

The inclusion of a number of salts (potassium, sodium and ammonium acetates or 

lithium and caesium chlorides) at high concentrations led to poor spectral quality or no 

detection of lipid ions. This is clearly undesirable and therefore careful consideration of 

additive concentration is advised. A summary of results from this MALDI-MS analysis 

of the complex lipid extract is provided in Table 10. Applications for both improved ion 

counts and reduced spectral complexity are considered across a range of additive 

concentrations. 

It is not clear why some salts exhibit concentration-dependent effects when others do 

not in terms of their use in MALDI-MS detection of lipids as illustrated in Figure 23. 

Nitrates show no concentration dependence, chlorides show some concentration 

dependence and acetates show strong additive concentration dependence. 
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Consideration of anion size and basicity does not explain the observed trend between 

salt types. The lattice energy of the nitrate salts are lower in comparison to the respective 

chloride and acetate salts, as shown in Table 9 below, and could potentially account at 

least in part to the observations, however it is not known whether the same trend 

remains in the crystalline solid solution formed upon deposition of the salt-matrix 

solutions. A wide range of different experimental factors can be affected by the inclusion 

of salts in the MALDI matrices, such as the crystal morphology. For this reason it is 

difficult to postulate with any certainty which properties are responsible for the 

apparent trend. 

 

 

 

 

Table 9 Lattice Enthalpies of salts of Caesium, Potassium, Sodium and Lithium in the form of 
acetates, chlorides and nitrates [220]. n.r not reported.  

 Caesium Potassium Sodium Lithium 

Acetate 682 749 828 n.r 

Chloride 657 707 769 834 

Nitrate 648 685 755 662 
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Matrix Additive 

 

Additive Concentration 

 5 mM 10 mM  20 mM 40 mM 80 mM 

Ammonium Acetate (NH4OAc) - - - - - 

ooo ooo o - - 

Ammonium Chloride (NH4Cl) ++ ++ ++ ++ + 

- - - - - 

Sodium Acetate (NaOAc) - ++ + - - 

- - - - - 

Sodium Chloride (NaCl) + + + + + 

- - - - - 

Sodium Nitrate   (NaNO3) ++ ++ ++ ++ ++ 

o o oo ooo oo 

Potassium Acetate (KOAc) +++ +++ +++ - - 

oo - - - - 

Potassium Chloride (KCl) ++ + + + - 

oo - - - - 

Potassium Nitrate  (KNO3) ++ ++ + + - 

oo ooo ooo ooo ooo 

Lithium Chloride (LiCl) n.e + - - - 

n.e - - - - 

Caesium Chloride (CsCl) +++ ++ ++ - - 

o - - - - 

 

Table 10 Suitability of matrix additives for first altering the ionisation pathway (+) and secondly 
improving sensitivity (o) in the MALDI-MS analysis of PC lipids in positive ionisation mode 
with DHB matrix (- not useful, + useful, ++ very useful, +++ extremely useful) (- not useful, o 
useful, oo very useful, ooo extremely useful) (n.e not evaluated) 
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Figure 23 Mean ion counts of [M+H]+, [M+Na]+ and [M+K]+ adducts of PC 34:1 detected in rat 
brain lipid extract sample in the presence of sodium a) acetate b) chloride and c) nitrate at varied 
additive salt additive concentration (0-80 mM). Error bars show one standard deviation above 
and below the mean ion count. 
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2.3.4 Collision-induced dissociation Studies of Lipid Adducts 

A study of the collision-induced dissociation (CID) of various adducts of PC (18:1/16:0) 

was investigated. Dissociation of [M+H]+, [M+Na]+ and [M+K]+ adducts was explored 

with a sample prepared with DHB matrix only. In order to assess lithium ([M+Li]+) and 

caesium ([M+Cs]+) lipid adducts, 5 mM of the respective chloride salt was added to the 

matrix solution. The collision energy of the nitrogen gas introduced into the collision 

chamber was optimised between 10-100 eV and the most useful data in terms of 

structural characterisation is presented. 

A product ion at m/z 184 was detected in greatest abundance when the protonated lipid 

adduct ([M+H]+) was dissociated. This can most likely be attributed to the protonated 

phosphocholine head-group, as described in a number of literature reports of CID of 

protonated lipid adducts by different ionisation techniques [19, 143, 145, 221-223]. This 

ion has also been reported as the predominant product ion by other dissociation 

methods, such as post source decay[150]. Although some smaller m/z product ions were 

detected in low abundance these do not provide further insight into the identity of the 

lipid. Overall, only product ions indicative of the phospholipid head-group, in the sn-3 

position along the glycerol backbone, were detected, which is in good agreement with 

MS/MS reports of protonated adducts [19, 145, 224]. 
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Dissociation of the potassium adduct ([M+K]+) led to the detection of different product 

ions in comparison to that of the protonated adduct. The product ions detected were 

characeristic of the PC head-group identity via neutral losses: m/z 739 [M+K-59]+ where 

59 u is the mass of the choline moiety of the head-group (N(CH3)3), m/z 615 [M+K-183]+ 

where 183 u relates to the intact zwitterionic PC head-group (PO-
4C2H5N+(CH3)3) and 

m/z 577 indicates the further loss of potassium. The most abundant product ion was 

detected at m/z 163, which is indicative of the phosphate moiety of the head-group 

associated with potassium (PO4C2
+H5K). Once again only the identity of the (sn-3) head-

group could be confirmed. Hence, dissociation of the potassium lipid adduct did not 

prove to be useful for complete structural characterisation as product ions indicative of 

the two fatty acid side-chain identities were not detected. Similar product ions have 

been reported by Jackson et al. from MALDI-MS/MS of the potassium adduct of PC 32:0 

detected in situ who agree that dissociation of potassium adducts of PC species did not 

yield product ions indicative of fatty acid side-chain indicative product ions [143].  

Dissociation of the sodium adduct ([M+Na]+) led to the detection of similar product ions 

indicative of the PC head- to those described for dissociation of the potassium adduct. 

However, additional product ions were detected in relatively low abundance in the 

region m/z 200-550. Product ions detected at m/z 239 and 265 are indicative of the acyl 

ions (RCO+) of palmitic (16:0) and oleic (18:1) fatty acid side-chains, respectively. In 

addition, product ions detected at m/z 441 and 467 are indicative of the neutral loss of 

each fatty acid side-chain alongside the neutral loss of choline (59 u). The detection of 
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these fragments is adequate to enable elucidation of each fatty acid side-chain identity, 

but these were not detected consistently across five repeats. These product ions were 

detected in similar relative abundance to one another and hence no conclusions can be 

drawn as to which fatty acid resides in the sn-1 position on the glycerol backbone and 

which in the sn-2 position. 

Previous studies considering CID of sodium lipid adducts vary in their 

recommendations. Some groups have reported the dissociation of sodium lipid adducts 

enables complete structural assignment [183]. Other reports suggest that product ions 

that are characteristic of the fatty acid side-chain identities are not detected by 

dissociation of sodium adducts [143]. Although these results appear to agree with 

Garrett et al. [183] that dissociation of sodium adducts can provide product ions which 

aid structural assignment, they also appear to show that assignment of fatty acid 

esterification positions (sn-1 and sn-2) along the glycerol backbone may not be possible. 

This is critical when considering lipids as biomarkers of disease, consequently 

dissociation of alternative lipid adducts which are not naturally present in biological 

samples must be considered.  

The most informative product ion spectrum when the caesium-lipid [M+Cs]+ adduct 

was dissociated indicated neutral loss of 59 u (choline moiety of the head-group) and 

free caesium at m/z 133. Although caesium-lipid adducts were shown to be particularly 

useful in MALDI-MS experiments for reducing spectral complexity (and have been 
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included in MALDI-MS preparations by a number of groups for this reason [132]),  

clearly structural elucidation of PC lipid species cannot be achieved from CID of these 

adducts. Wang et al. reported that dissociation of [M+Cs+-2H]- adducts of cardiolipin 

lipid species were useful in structural characterisation [225], however CID of [M+Cs]+ 

adducts of lipid species have not been reported previously. Here it is demonstrated that 

dissociation of caesium-lipid adducts do not provide product ion spectra which enables 

complete structural characterisation of PC species. 

Dissociation of the lithium-lipid adduct [M+Li]+ provided the most product ion rich 

spectra compared to protonated and all other cationic lipid adducts ([M+K]+, [M+Na]+ 

and [M+Cs]+). The most abundant product ions detected were similar to those detected 

during dissociation of other cationic adducts; neutral loss of the choline moiety of the 

head-group (m/z 707) and neutral loss of the intact phosphocholine head-group (m/z 583, 

further loss of lithium at m/z 577). The lithium adduct of the phosphate moiety of the 

head-group (m/z 131) was also observed, however this was detected in much lower 

abundance than analogous product ions detected in dissociation experiments of sodium 

and potassium cationic adducts.  

In contrast to dissociation of other cationic adducts, or the protonated lipid adduct, a 

variety of product ions were detected in the region m/z 200-550 in relatively high 

abundance. All of the product ions detected in this region are indicative of the identities 

of the two fatty acid side-chains: neutral loss of palmitic and oleic fatty acid side-chains, 
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respectively (m/z 510 and 484), the further neutral loss of choline (m/z 451 and 425), 

neutral loss of the lithium salt of each fatty acid (m/z 504 and 478) and detection of acyl 

ions (RCO+) at m/z 239 and 265 as shown in Figure 24.  

 

 

Figure 24 Representative product ion spectrum acquired during dissociation of m/z 766 
corresponding to the [M+Li]+ adduct of PC (16:0/18:1) in DHB matrix. The structure of PC 
(16:0/18:1) is shown above the spectrum and the sn-1, sn-2 and sn-3 positions along the glycerol 
backbone indicated. Product ions detected are indicative of the sn-3 phosphocholine head-
group, the two fatty acid side-chain identities and their relative positions along the glycerol 
backbone. 
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Collision-induced dissociation of lithium-lipid adducts has commonly been reported as 

the most useful for gaining structurally characteristic information from phospholipid 

analytes (owing to the detection of the above described product ions in a single MALDI-

MS/MS experiment) [77, 143, 145, 151]. The structural information obtained from CID of 

a variety of other different lipid species such as tri- and diacylglycerols [203], fatty acids 

[226] and galactosyl ceramides [145] has also been reported to be enhanced by 

dissociation of lithium-lipid adducts compared to other adduct forms. Similar findings 

have also been described by groups investigating CID of lipid ions formed by ESI [113, 

227-230]. 

In this study, it was found that neutral loss of the fatty acid side-chain alongside that of 

choline were the most abundant product ions characteristic of the fatty acid side-chains. 

The product ion indicating neutral loss of the sn-1 fatty acid (m/z 451) alongside choline 

was repeatedly detected in greater abundance than neutral loss of the sn-2 fatty acid 

(m/z 425). Stubiger et al. described similar findings in MALDI-MS/MS experiments with 

a phospholipid standard [150]. Hence it is possible to assign fatty acid side-chain 

positions. This is particularly important when considering samples of unknown 

composition; understanding the trends in relative abundances of characteristic product 

ions is key to structurally characterising lipid species detected in situ, for example, when 

attempting to identify biomarkers.   
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2.3.5 Conclusions 

Overall the use of additives for a variety of applications is described. Careful 

consideration of the additive of choice with respect to the intended use is recommended. 

For the purpose of MALDI-MS analysis: if the detection of a particular adduct is 

required , specifically [M+H]+, [M+Na]+ or [M+K]+, the addition of ammonium chloride, 

sodium acetate or potassium acetate, respectively, are the recommended additives for 

affording improved sensitivity whilst simultaneously reducing spectral complexity. 

However their usefulness is limited at high concentrations. Inclusion of caesium 

chloride is recommended to reduce spectral complexity whilst simultaneously shifting 

the detected m/z outside of that region viewed in the control, allowing unambiguous 

assignment of caesium-lipid adducts. However this salt also has limited use at high 

additive concentrations. 

The addition of sodium or potassium nitrate to the matrix is recommended for 

improved sensitivity of sodium and potassium adducts respectively as a concentration-

tolerant additive. Sodium and potassium nitrates were the only additives which may be 

utilised as usefully across a range of concentrations and are shown to be particularly 

useful for increasing ion counts of a particular ion with benefit in MALDI-MS analysis of 

lipids. These salts could be particularly useful when considering the incorporation of 

additive salts in MALDI-MS and imaging analysis of thin tissue sections as optimisation 

of the additive concentration may not be required.  



102 
 

It is also clear from these studies that the relative degree of structural information 

obtained by CID of different cationic adducts of lipids increases with decreasing cation 

size. The structural information obtained by dissociation of [M+Li]+ >  [M+Na]+ > 

[M+K]+ >  [M+Cs]+ lipid adducts improve. Lithium lipid adducts are shown to provide 

the most structurally informative product ions.  These findings are in agreement with 

previous reports in the dissociative trends of different cationic lipid adducts [19, 150]. 

In order to achieve structural characterisation, dissociation of lithium-lipid adducts 

generated the most useful product ions reliably. These were detected in high relative 

abundance and reliably inferred the relative sn-1 and sn-2 positions of each fatty acid 

along the glycerol backbone. Lithium-lipid adducts are not naturally abundant in tissue 

samples. As these were most useful in dissociation studies, the need to pursue strategies 

leading to the introduction of lithium ions into tissue samples for imaging experiments, 

in order to achieve in situ structural characterisation of lipids in thin tissue sections is 

highlighted. 

Dissociation of sodium adducts yielded sufficiently informative product ions for 

determination of the head-group and fatty acid side-chain; however relative sn-1 and sn-

2 fatty acid side-chain positions could not be deduced. This could still be important 

when conducting in situ structural characterisation analysis as sodium lipid adducts are 

detected naturally in fresh tissue, hence promoting the detection of these adducts may 

prove more favourable than forming lithium adducts. The formation of  lithium adducts 
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in these MALDI-MS investigations via inclusion of lithium chloride in the matrix 

solution led to lower ion counts (reduced sensitivity) in comparison to other lipid 

adducts. 
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3. The inclusion of additives for MALDI-MS in situ analysis of lipids 

3.1 Introduction 

Mass spectrometry imaging offers analysts the opportunity to simultaneously acquire 

information regarding both the sample composition and the spatial distribution of 

analytes. Tissue features, such as white and grey matter, in murine brain can be 

distinguished in thin tissue sections at a spatial resolution of 100 μm, which is 

commonly reported in MALDI-S imaging analysis. Different lipid species are often 

preferentially localised in different tissue regions, for example certain species will be 

prevalent in white matter in brain cerebellum and other species will have a greater 

prevalence in the grey matter. This is particularly important when considering the 

analysis of disease model tissue sections when spatial distributions of some species may 

differ from normal. Gaining an understanding of both the lipid composition whilst also 

obtaining insight as to the spatial distributions of lipid species is of the utmost 

importance when investigating changes between normal and diseased state tissues.  

MALDI-MS imaging of lipids in tissue samples has been reported widely by a number 

of different groups. Murine, bovine [16] and porcine organs such as brain [48, 57], liver 

[57] and ocular tissue [128] have all been examined for tissue imaging analysis of lipids. 

These studies optimised parameters such as matrix selection [16, 39, 45, 48, 57], matrix 

deposition technique [23, 70] and processing options [42]. Optimised methods have been 
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described in lipid investigations of normal and diseased tissue models [23, 29]. A 

number of recent studies have considered human disease tissues or regions [53, 231]. 

As described in Chapter 2, lipids form protonated [M+H]+ and cationic adducts such as 

[M+Na]+ and [M+K]+ in MALDI-MS experiments. Therefore the inclusion of additive 

salts in MALDI matrix solutions has been considered as a route to decreasing spectral 

complexity and/or improving sensitivity in MALDI-MS experiments. The following 

additives have been investigated in MALDI-MS imaging analysis of lipids with a view 

to optimising in situ lipid analysis: ammonium acetate was employed in a tissue 

washing protocol to remove potassium and sodium ions from samples [180]. The 

inclusion of either sodium or potassium acetate in matrix solutions has been shown to 

lead to selective imaging of different lipid species [184]. Sodium acetate has also been 

included in matrix solutions as a cationising agent in lipid imaging studies and has been 

show to aid in situ structural characterisation of lipid species [183].  

Dissociation studies, such as those described in Chapter 2, have shown that lithium-

lipid adducts provide the most useful structural information. For this reason the 

incorporation of lithium salts into tissue is also of particular interest to lipid analysts. 

Lithium is not endogenous in most tissues and lithium-lipid adducts are not detected in 

MALDI-MS imaging experiments, hence the problem of lithium ion introduction arises. 

To date, this has been accomplished for in situ tissue profiling CID studies simply via 

pipetting a matrix solution containing a lithium salt directly onto the tissue [77, 143]. 
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However, analyte delocalisation is a concern with this approach, and hence structural 

elucidation of lipid species from a single specific anatomical region is unrealistic. 

Furthermore, imaging experiments cannot be prepared in this manner.  

A range of approaches have been considered for the introduction of lithium into tissue 

samples via spraying deposition methods for MALDI-MS imaging studies: Synthesis of 

a lithium salt of DHB matrix for the analysis of neutral lipids in plants and insects [232]. 

By this preparation lithium adducts of a number of wax ester analytes were detected 

and their spatial distribution (images) shown. A  range of lithium salts have been 

considered as additives to CHCA matrix solutions deposited as an aerosol using a robot 

via a heated nebuliser for tissue imaging analysis [145]. By this method, images of 

lithium adducts of phospholipid species in cerebellum tissue have been generated. 

Solvent-free matrix application preparations have also been considered in additive 

introduction strategies: mixing of matrix compounds with additive salts by ball milling 

or vortexing for dry-coating preparation for the analysis of polymers [233], free fatty 

acids [226] and peptides and proteins [234] has been described. Solvent-free dry-coating 

of matrix compounds onto tissue samples for imaging analysis of phospholipids has 

also been shown to be beneficial, enabling acquisition of high quality images of 

phospholipids [62]. Here the use of mixtures of matrix-salt powders as a route to 

additive introduction for imaging is considered. 
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In the present study, the range of sodium additives considered for tissue imaging of 

lipids is extended to chlorides and nitrates. Counteranion trends observed in lipid 

extract analysis are confirmed in imaging experiments and sodium nitrate is shown to 

be a useful cationising agent. Furthermore, the use of lithium salts for imaging is 

extended to lithium nitrate which has been shown to increase ion counts of lithium-lipid 

adducts in comparison to lithium chloride for lipid extract analysis [235]. Finally, the 

inclusion of additive salts in MALDI matrix solutions for airspray deposition is 

compared to a solvent-free dry-coating method in which additive salts are mixed with 

matrix powders.   
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3.2 Experimental 

3.2.1 Materials 

All salts (NaCH3CO2, NaCl, NaNO3, LiCl and LiNO3), α-cyano-4-hydroxycinnamic acid 

matrix (CHCA) , p-nitroaniline (PNA) and 2,5- dihydroxybenzoic acid (DHB) were 

purchased from Sigma Aldrich (Gillingham, UK). Methanol (HPLC grade) was 

purchased from Fisher Scientific (Leicestershire, UK). Water was purified by an ELGA 

Option 3 system (Marlow, UK). Stainless steel MALDI target plates were purchased 

from AB Sciex (Framingham, USA). 

3.2.2 Matrix Application 

Matrix solutions of PNA, CHCA and DHB (20 mg/mL, 80 % CH3OH) were used for 

initial investigations. CHCA (20 mg/mL, 80 % CH3OH) with or without the inclusion of 

5-20 mM NaCH3CO2, NaCl, NaNO3, LiCl or LiNO3 were deposited using an artist 

airbrush purchased from Draper (Hampshire, UK) propelled by dry N2. Two 

consecutive spray passes were followed by ten seconds drying time, until 10 mL was 

deposited, from a distance of 20 cm from the plate. For dry-coating[62], CHCA matrix (2 

g) was ground for 10 minutes in a pestle and mortar with or without 5 mM equivalent 

LiCl or LiNO3. Matrix samples were deposited onto the MALDI target plate through a 

20 µm mesh sieve. 
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3.2.3 Mass Spectrometry 

MALDI-MSI and MS/MS imaging studies of murine samples were carried out on a 

QSTAR XL Q-TOF mass spectrometer (AB Sciex). An Elforlight (Daventry, UK) 

Nd:YVO4 DPSS laser (355 nm) was triggered by a Thurlby Thandar Instruments 

(Huntingdon, Cambridgeshire) TGP110 10 MHz pulse generator, coupled to the MALDI 

source via a 100 μm core diameter fiber optic patchcord (Edmund Optics, NA=0.22) and 

operated at 5 kHz and approximately 8 μJ. Analysis was performed in positive ion mode 

with a pixel size of 100 by 100 μm, m/z range 400-900, focusing potential (FP) of 85 and 

declustering potential (DP2) of 35. For MS/MS imaging CID was performed with N2 gas 

at collision energy of 40 eV. Images were collected in raster mode at a speed of 1 mm s-1 

(acquired in ≈ 25 minutes per section), 0.3 mm s-1 (acquired in ≈ 70 minutes) or 0.2 mm  

s-1 (acquired in ≈ 100 minutes).  

3.2.4 Data Conversion and Analysis 

MALDI data acquired using the QSTAR XL were analysed using Analyst QS 1.1 and 

MATLAB. The data were converted from the AB Sciex .wiff proprietary file format to 

mzML using AB MS Data Converter (AB Sciex version 1.3) and then converted to 

imzML using imzMLConverter[236] and processed in MATLAB (version 7.8.0 (2009a), 

Math Works Inc, USA). For all of the images displayed, peak information is the summed 

ion intensity from within a 0.1 Dalton window centred on the peak of interest.  



110 
 

3.3 Results and Discussion 

3.3.1 MALDI-MS and Imaging of lipids using an Nd:YVO4 Laser 

With a view to developing techniques which could be suitable for tissue imaging it is 

important to consider sample analysis time. Conventional N2 lasers deliver relatively 

high energies (up to 100 µJ) at relatively low repetition rates (up to hundreds of Hz). 

More recent laser developments consider the use of high repetition rates (tens of 

thousands of Hz), which offer considerably greater throughput but also operate at lower 

laser energies (up to 10 µJ). Here the use of a diode-pumped solid-state (DPSS) laser 

(Nd:YVO4) is used.  

Preliminary experiments investigating the analysis of a PC lipid standard with a range 

of MALDI matrices acquired using an Nd:YVO4 laser showed that a different matrix 

compound is optimal for analysis with this laser compared to the N2 laser described in 

earlier work. Analysis of the lipid standard (PC 18:1/16:0) with CHCA, DHB and THAP 

matrices led to the detection of high relative abundances of lipid ions, such as 

protonated [M+H]+ and cationic adducts [M+Na]+ and [M+K]+ at m/z 760, 782 and 798, 

respectively. However the ion counts of the detected lipid species were significantly 

higher when CHCA matrix was employed using the Nd:YVO4 laser as illustrated in 

Figure 25. 
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Even though CHCA matrix is hot in character when analysing lipids, leading to the 

detection of high abundances of lipid fragment ions such as the neutral loss of the PC 

head-group (m/z 577) and each fatty acid side-chain (m/z 478 and 504) as demonstrated 

in Figure 26, the overall ion counts of lipid ions detected were so much greater that 

CHCA was selected for analysis. This result was surprising as DHB and THAP are the 

most commonly reported MALDI matrices for the analysis of lipid species with N2 lasers 

[19-21, 35] and had been found to be most useful in our previous studies.  

 

 

Figure 25 Average Ion Count of [M+H]+, [M+Na]+ and [M+K]+ adducts of PC (18:1/16:0) 
analysed with a range of organic matrices with an Nd:YVO4 laser.  
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Figure 26 Representative MALDI mass spectra of PC (18:1/16:0) analysed with A) DHB, B) 
THAP or C) CHCA matrices with an Nd:YVO4 laser.   
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A variety of different characteristics determine whether a molecule is a suitable matrix 

candidate for UV MALDI experiments. Some factors, such as vacuum stability are 

independent of the laser employed in the experiment and are unaffected by the laser 

used; others are very strongly dependent on the specific laser used or are affected by the 

laser properties such as the laser wavelength [237], laser fluence [79] and beam profile 

[79].  

Consideration of the differing laser properties could help to rationalise the observed 

results. Traditional N2 lasers are capable of delivering much higher laser powers than 

the high repetition rate Nd:YVO4 counterpart (up to 100 µJ compared to 10 µJ).  In the 

described experiments (in Chapter 2) the N2 laser was operated between 25-40 µJ and the 

Nd:YVO4 laser was operated at 8 µJ. It is possible that the decreased laser power 

available with the Nd:YVO4 laser contributes to the poorer ionisation efficiency. 

Although operated at different laser powers, the use of a smaller diameter fibre for 

delivery (100 μm compared to 200 μm) leads to a similar fluence experience (energy per 

unit area). It has been shown that light penetrates different depths of the prepared 

sample when the laser wavelength is changed [238]. Hence higher laser fluences are 

required in lasers operating at 355 nm (such as the Nd:YVO4 laser described here) in 

order to deposit the same energy on a certain unit volume when compared to lasers 

operating at 337 nm (such as N2). This could contribute to the apparent difference in 

matrix suitability of the same analytes when the laser is changed.  
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Furthermore, matrices that form larger or more dense crystals in comparison to those 

which form small crystals by dried droplet deposition often require even greater laser 

powers or fluences. THAP matrix forms quite dense crystals, DHB forms quite large 

rod-like crystals and CHCA forms much smaller and less dense crystals as shown in 

Table 11. As it was not possible to increase the laser power for experiments performed 

with the Nd:YVO4 laser at 355 nm, this could have contributed to the poor ionisation 

efficiency of these matrices when compared to CHCA. 
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Matrix compound Crystal 
Appearance In 

Source 
 

2,5-Dihydroxybenzoic acid (DHB) 

 
 

 

 
2,4,6-Trihydroxyacetophenone (THAP) 

 
 

 

 
α-Cyanohydroxycinnamic acid (CHCA) 

 
 

 

 

Table 11 Showing the structures of DHB, THAP and CHCA matrices and the appearance of the 
typical crystals formed upon spotting of these matrices onto a stainless steel MALDI target.  
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In addition, the absorption efficiency of each matrix compound varies with changing 

wavelength. As these lasers operate at different wavelengths, the molar absorptivity of 

these matrix compounds could be very different at each wavelength which can have a 

significant impact on detection [239]. Profiles of the UV-vis absorption of CHCA and 

DHB have been documented in the literature. The extinction coefficient (Ɛ) of CHCA is 

reported to be significantly higher than that of DHB in solution at both 337 nm and 355 

nm [209]. However solid-state absorption profiles have revealed that the molar 

absorptivity of the two compounds is actually similar at these wavelengths, see Table 12 

for details. Arguably it is therefore unlikely that this property of the matrix is causing 

the observed difference in selectivities of the two lasers. 

 

Matrix Extinction 
coefficient at 
337 nm (soln) 
dm3 mol-1 cm-1 

Absorptionsolid at 
337 nm (ss) 

rel. units 

Extinction 
coefficient (  at 
355 nm (soln) 
dm3 mol-1 cm-1 

Absorptionsolid at 
355 nm (ss) 

rel. units 

CHCA 27 500 0.95 12 500 0.95 

DHB 1 200 0.93 500 0.95 
 

Table 12 Molar absorptivity, extinct and DHB matrices at 337 nm 
and 355 nm in solution (soln) and by solid state experiments (ss). These valuas are approximated 
from data reported in [209]. 
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3.3.2 Incorporation of Sodium Additives via Inclusion in MALDI matrix solutions for 

Airspray Deposition 

Additive salts were prepared in CHCA matrix solutions prior to airspray deposition. 

Initial experiments considered the addition of 5 mM  sodium acetate, chloride or nitrate. 

Sample preparation via airspray deposition using an artist’s airspray gun was first used 

to deposit matrix solutions. This deposition technique necessitates a degree of skill in 

the user, which comes with a lot of practice. It is important when depositing the matrix 

solution onto tissue sections to wet the tissue section sufficiently for extraction of 

analyte molecules however it is also important not to wet the tissue too much as this can 

lead to analyte delocalisation.  

A large number of early attempts of image acquisition failed owing to insufficient tissue 

wetness or due to analyte delocalisation. Example images of fresh tissue sections which 

have been sprayed poorly with CHCA matrix via the airspray deposition technique are 

shown in Figure 27 a-c. The spatial distribution of potassium adducts of the three most 

abundant lipids in the tissue (PC 34:1, PC 32:0 and PC 36:1) are not confined to the tissue 

region but are delocalised around the tissue section on the MALDI target plate. 

Examples of more successful matrix deposition, which did not result in lipid 

delocalisation, are shown in Figure 27 d-i. These examples also demonstrate the 

importance of pixel size in imaging experiments. Example ion images acquired at 100 
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µm resolution (Figure 27 g-i) show anatomical features of the tissue more clearly than 

those acquired at 250 µm (Figure 27 d-f), enabling tissue features to be distinguished. 

 

 

Figure 27 Ion images showing the spatial distribution of three PC lipids detected in mouse brain 
prepared by airspray deposition with CHCA matrix. Examples of tissue sprayed too wettly 
leading to analyte delocalisation are show in (a) PC 32:0, (b) PC 34:1 and (c) PC 36:1 (250 µm x 
250 µm pixel resolution). Examples of tissue which has not been sprayed less wettly are show in 
(d) PC 32:0, (e) PC 34:1 and (f) PC 36:1 (250 µm x 250 µm pixel resolution). Examples of tissue 
which has not been sprayed too wettly are show in (g) PC 32:0, (h) PC 34:1 and (i) PC 36:1 (100 
µm x 100 µm pixel resolution).  Areas of no signal intensity are shown in black; regions of high 
signal intensity are shown in white.  
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It follows that ensuring reproducibility is a challenge for airspray deposition. A number 

of automatic deposition techniques have been developed in order to improve the 

reproducibility of matrix deposition for (tissue) imaging studies. Automated deposition 

technologies such as an acoustic droplet ejector [66], and an inkjet printer [67] have been 

described. A number of automated deposition robots, such as the TM Sprayer (Leap 

Technologies) and MALDI Sun Collect Spotter (SunChrom), are also now commercially 

available and have been used to prepare MALDI imaging tissue samples [145, 240, 241]. 

These automated instruments provide much greater controls of the deposition 

parameters in comparison to manual airspray deposition; small volumes of the matrix 

solution can be sprayed at precise flow rates of either 40 or 300 μL min-1 and higher 

temperatures than ambient, either 120 or 150 °C, depending on the salt. These 

deposition devices also offer the advantage of crystal size control (improved crystal 

homogeneity) and improved reproducibility. 

Initial experiments were conducted at a raster speed of 1 mm s-1; this is a compromise 

between acquiring data at 100 µm resolution at the fastest possible raster speed within 

the available instrumental parameters. Various lipid species were detected in tissue 

samples sprayed with CHCA matrix only. Relatively high abundances of potassium 

adducts of PC lipids were detected at m/z 798, 772 and 826 indicating the presence of PC 

lipids 32:0, 34:1 and 36:1, respectively. However, lipid ions were not readily detected in 

tissue sections sprayed with a solution containing a sodium salt. Very low intensity or 
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no lipid ions were detected in many locations when the tissue was sprayed with CHCA 

containing a salt additive, as illustrated in Figure 28. 

 

Figure 28 MALDI-MS single pixel spectra from imaging data sets acquired at a raster speed of 1 
mm s-1 and 100 µm x 100 µm pixel resolution. Tissue sections sprayed with (clockwise from top 
left) CHCA matrix only, CHCA matrix containing 5 mM sodium acetate, CHCA matrix 
containing 5 mM sodium nitrate and CHCA matrix containing 5 mM sodium chloride are 
shown. Abundant lipid ions are shown in the region m/z 700-900 in the matrix only (control) 
sample. No, or very low abundances of lipid ions were detected in samples sprayed with matrix 

solutions containing a sodium salt.  
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Observation of the matrix crystals after image acquisition revealed that the crystals 

formed on the MALDI target plate and tissue sections were fully ablated when the tissue 

was sprayed with a solution of CHCA matrix. However when an additive salt was 

included the crystals were not fully ablated by the Nd:YVO4 laser employed in this 

study. This laser delivers a relatively low energy per pulse at a higher repetition rate 

compared to traditional N2 lasers [71, 75]. It seems likely that the crystals formed when 

an additive is included in the matrix are different; although the crystalls looked the 

same on the MALDI target plate, it is possible that the inclusion of a salt leads to the 

formation of more dense or structurally different crystals. It is conceivable that these 

crystals could not be fully ablated owing to reasons such as those described for THAP 

and DHB matrices, discussed in Chapter 3.3.1. 

Previous MALDI-MS imaging studies considering the inclusion of salt additives to 

matrix solutions have not reported problematic acquisition at low salt concentration. 

Imaging data from tissue homogenates and thin tissue sections when 10 or 20 mM 

sodium or potassium acetate is included in the matrix solution have been described by 

Yuki and Mitsutoshi [184]. However a very different matrix deposition protocol, 

depositing only 200 µl of the matrix-salt solution in a single coating was used in the 

study. It is therefore unlikely that the crystals formed on tissue sections in our study 

(prepared by depositing 5 ml matrix solution in multiple coatings allowing drying time 

between applications) are comparable to those formed on tissue sections by the protocol 

used in the described investigation. Additionally, a Nd:YAG laser was used in Yuki and 
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Mitsutoshis investigation operated at a lower repetition rate than the Nd:YVO4 laser 

used in this study. 

A number of other studies have examined the use of acetate salts as cationising agents in 

tissue imaging studies of lipid species [135, 183]. These studies do not comment upon 

any problems encountered with matrix ablation, however these studies were each 

conducted with instrumentation fitted with either a N2 or an Nd:YAG laser, both of 

which operate at higher laser powers in comparison to the Nd:YVO4 laser used in the 

present study. This difference could account for the problems encountered with matrix 

ablation. However, the formation of compact structures when lithium citrate is included 

in CHCA matrix solutions and deposited onto a tissue surface has been described [145], 

requiring higher laser fluences to detect lipid ions in imaging experiments in 

comparison to control samples. Clearly additive selection, including counteranion 

choice, is important in MALDI-MS imaging experiments and can have a dramatic effect 

on the detection of lipid species. 

Slowing the raster speed (which increases the laser dwell time per pixel location) 

showed that lipid ions were detected in tissue sections sprayed with salt-doped matrix 

solutions only when the slowest available raster speed was used (0.2 mm s-1). Further 

data were therefore acquired at this raster speed. Acquiring data from a single sagittal 

section of mouse brain at a raster speed of 1 mm s-1 can be achieved in 25 minutes. 

Changing the raster speed to 0.2 mm s-1 increases the image acquistion time to 1 hour 30 
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minutes. This significantly reduces the potential for high-throughput analysis which is a 

potential disadvantage of this additive incorporation strategy.  

Inclusion of 5 mM sodium acetate led to significantly lower ion counts of detected 

species compared to the control experiment as demonstrated in Figure 29. Moreover 

spectral quality was poorer; few lipid species were detected above the accepted signal to 

noise ratio threshold (3:1). Inclusion of TFA in the MALDI matrix solution did not 

improve spectral quality. Compared to lipid extract analysis this resullt is very different. 

Inclusion of 5 mM sodium acetate in the matrix for extract analysis reduced spectral 

complexity owing to decreased ion counts of other adducts, however this was not true 

of tissue imaging analysis. It is likely that the inclusion of TFA in matrix solutions affects 

the analysis of samples very differently when prepared by airspray deposition rather 

than dried droplet. Increasing the sodium acetate additive concentration to 20 mM did 

not significantly change the spectral quality. This is perhaps unsurprising; addition of 

increased concentrations of an acetate salt to the MALDI matrix solution in lipid extract 

analysis discussed in Chapter 2.3.2.2 resulted in no lipid ion detection.  

A number of different lipid species were detected in tissue sections sprayed with matrix 

solutions containing 5 mM sodium chloride or nitrate. Potassium adducts of abundant 

PC lipids 32:0, 34:1, 36:1 and 38:6 were detected at m/z 798, 772 and 826, respectively, as 

shown in Figure 29. These m/z values correspond with lipid species detected in the 

control experiment when no additive salt was included in the matrix solution. 
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Furthermore, single ion images displaying the spatial distribution of PC 32:0, 34:1 and 

36:1, illustrated in Figure 30, demonstrate that data acquired from samples sprayed with 

or without the inclusion of an additive salt show correlating distributions. PC 32:0 is 

detected preferentailly in the grey matter, PC 36:1 in the white matter and PC 34:1 is 

reasonably homogeneously distributed.  

Clearly, these sodium salts are more useful additives in comparison to sodium acetate as 

they do not limit the detection of lipid ions in MALDI-MS imaging experiments. Sodium 

adducts of these lipids were also detected at m/z 756, 782 and 810. These lipid species 

were detected in the control experiment too, however the percentage relative 

abundances of sodium adducts detected for a single lipid species were lower than those 

of the potassium adducts. The relative abundance of sodium-lipid adducts was 

increased by addition of either of these sodium salts and were greater when sodium 

nitrate was included in the matrix. Here we show that both sodium chloride- and 

nitrate-doped matrix samples can be used to analyse tissue in imaging studies. 
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Figure 29 MALDI-MS mean spectra on tissue from imaging data sets acquired at a raster speed 
of 0.2 mm s-1 and 100 µm x 100 µm resolution. Tissue sections sprayed with A) CHCA matrix 
only, B) CHCA matrix containing 5 mM sodium acetate, C) CHCA matrix containing 5 mM 
sodium chloride and D) CHCA matrix containing 5 mM sodium nitrate are shown. Lipid ions 
detected in the region m/z 700-900 are highlighted.  
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Figure 30 MALDI-MS single ion images (normalised to the total ion current (TIC)) of A) 
[M+Na]+ adducts  and B) [M+K]+ adducts of PC 36:1 detected in mouse brain (100 µm x 100 µm 
pixel resolution). Images show samples sprayed with CHCA matrix including 0 or 5 mM 
sodium additive (left column), or CHCA matrix including 0 or 20 mM sodium additive (right 
column). Areas of zero counts are black and areas of maximum intensity are shown in white. 
The relative percentage of sodium and potassium adducts detected for three different lipid 
species PC lipids 32:0, 34:1 and 36:1 are shown in the bar charts E) with the inclusion of 5 mM 
sodium additives and F) 20 mM sodium additives. 
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Increasing the sodium additive concentration to 20 mM further increased the relative 

abundance of sodium adducts when either salt was included in the matrix solution. 

Nevertheless, the relative abundance of sodium adducts was more greatly increased 

when sodium nitrate was included in the matrix solution as shown in Figure 30 and 

Figure 31. Spectral quality decreased with increasing sodium chloride concentration 

whereas no significant change in spectral quality was observed with increasing sodium 

nitrate concentration. This indicates that the inclusion of sodium nitrate is more 

beneficial across a concentration range. Here it is shown that the nitrate counteranion 

yields superior results in comparison to the chloride, extending trends reported for lipid 

extract analysis in Chapter 2 to imaging analysis. 

Increasing the additive concentration to 40 mM led to clogging of the sprayer nozzle 

which made the practicality of spraying additive-doped matrix solutions very difficult, 

hence data were not acquired at higher salt additive concentrations. Here it is reported 

for the first time that the inclusion of sodium nitrate can significantly increase the 

relative abundance of the respective cationic adduct in MALDI-MS imaging tissue 

studies and might therefore be more useful as a cationising agent compared to the 

previously reported acetate salt. The relative utility of sodium acetate, chloride and 

nitrate salts with respect to increasing ion counts of a lipid adduct appears to agree with 

our previously described lipid extract data described in Chapter 2 [235]. 
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Figure 31 MALDI-MS mean spectra on tissue from imaging data sets acquired at a raster speed 
of 0.2 mm s-1 and 100 µm x 100 µm resolution. Tissue sections sprayed with CHCA matrix only 
(top), CHCA matrix containing 20 mM sodium chloride (middle) and CHCA matrix containing 
20 mM sodium nitrate (bottom) are shown. Lipid ions detected in the region m/z 700-900 are 
highlighted.  
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The relative abundance of potassium adducts (which are naturally highly abundant in 

fresh tissue samples) remains high when sodium salts are incorporated, indicating that 

influencing adduct formation via salt addition in thin tissue sections is more challenging 

in comparison to lipid extract analysis. At the same additive concentrations investigated 

here, sodium-lipid adducts were the most abundant in lipid extract samples (except 20 

mM sodium acetate). For further discussion refer to Chapter 2.However extract samples 

prepared by dried-droplet deposition cannot be directly compared with thin tissue 

sections prepared by airspray deposition.  

Previous imaging studies of lipids have considered the inclusion of sodium and 

potassium acetate salts in matrix solutions [184]. The inclusion of potassium acetate in 

matrix solutions reportedly leads to increased sensitivity of the detection of polar lipids 

such as PC species and lower sensitivity for non-polar lipids in homogenates. It is not 

explicitly commented whether sodium acetate gave similar results. Our study does not 

show promising results when sodium acetate is included in the matrix solution. 

Furthermore, inclusion of any of these additive salts did not change the types of lipids 

(polar or non-polar) detected in murine brain. Differences in results could be accounted 

for by the fact that different samples (tissue homogenates) and sample preparations 

were considered in each investigation.   
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3.3.3 Incorporation of Lithium Additives via Inclusion in MALDI matrix solutions for 

Airspray Deposition 

3.3.3.1 Airspray 

Airspray deposition of matrix solutions containing 20 mM lithium chloride or nitrate led 

to clogging of the sprayer nozzle due to crystallisation of the salt and/or CHCA matrix 

at the sprayer nozzle tip. This significantly impeded the success of the deposition 

technique. Similar issues had been described in a previous study which examined the 

incorporation of lithium salts into CHCA matrix solutions, even though solutions were 

deposited via a heated nozzle[145]. Difficulties with additive concentration optimisation 

were also described by Cerruti et al. They described the  formation of elongated clusters 

and compact crystal structures when some lithium salts were included in matrix 

solutions. These are undesirable as they can cause analyte delocalisation or require 

higher laser fluences for ablation.  

Tissue sections sprayed with matrix solutions containing lithium salts did not lead to the 

detection of lithium-lipid adducts and spectra were similar to those detected when no 

salt additive was included in the matrix as illustrated in Figure 32.High abundances of 

potassium adducts of PC 32:0, 34:1 and 36:1 were detected at m/z 772, 798 and 826, 

respectively. Lower abundances of sodium adducts of these lipids were also detected at 

m/z 756, 782 and 810, as is expected in freshly frozen tissue. Lithium-lipid adducts were 

not detected in these samples. Clearly this route to lithium ion incorporation was 



131 
 

unsuccessful. Which is perhaps surprising as the abundances of sodium-lipid adducts 

were increased in similar preparations. However doping of MALDI matrix solutions 

with lithium chloride did not prove as successful in lipid extract analysis in comparison 

to similar preparations with a range of sodium salts. 

Successful incorporation of lithium onto tissue samples via a similar strategy has been 

described previously and was achieved  by including one of a variety of lithium salts in 

the matrix solution [145]. It is therefore unexpected that our lithium ion incorporation 

strategy proved ineffective. However, an automated deposition apparatus, with which a 

number of parameters such as spray heating temperature and spraying flow rate could 

be controlled, was used in the described study. These parameters were optimised 

separately for each solution deposited and could explain why it was not possible to 

obtain similar results using a manual deposition technique. Also, faster flow rates and a 

higher spray heating temperature were used for CHCA matrix including lithium 

chloride in comparison to CHCA matrix with no salt additive. Clearly different salt 

additive approaches need to be considered in order to incorporate lithium ions into 

tissue samples.  
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Figure 32 Mean spectrum on tissue showing phospholipid region m/z 700-900 showing lipid 
adducts ([M+H]+, [M+Li]+, [M+Na]+, [M+K]+) detected in sagittal tissue sections of mouse brain 
sprayed with (left) CHCA matrix (no additive) or (right) CHCA with 20 mM lithium chloride.  
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3.3.3.2 Dry-coating 

As the main problem with lithium salt deposition appeared to be crystallisation of the 

salt-doped matrix solution leading to nozzle blockage of the sprayer, next the use of a 

solvent-free deposition technique which would eliminate the need to spray a solution 

was considered. In this approach, lithium salts were ground together with the CHCA 

matrix powder in a pestle and mortar before depositing onto the tissue via an analytical 

sieve. The preparation of samples for deposition by this method was relatively 

straightforward and less practice was required in order to deposit a homogeneous layer 

onto the tissue by this preparation method in comparison to airspray. Dry-coating is a 

solvent-free deposition method and therefore analyte delocalisation was not found to be 

a problem as with the airspray deposition method. This sample preparation method has 

previously been described as simple and used to reduce problems with delocalisation of 

analytes [62]. 

Inclusion of lithium chloride in CHCA matrix for dry-coating preparations proved 

troublesome. Grinding the matrix and lithium salt together led to the formation of 

agglomerates, probably owing to the hygroscopic nature of lithium chloride. This 

clumpy sample was unsuitable for this deposition technique as it could not be deposited 

through a 200 µm mesh sieve. A suitable sample was formed when lithium nitrate 

(which is less hygroscopic) was ground with CHCA matrix. Deposition of this 

powdered sample did not differ significantly to the salt-free sample. The employment of 
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this solvent-free method also eliminated the above described problems with laser 

ablation of the matrix-salt sample. As the powder sample adheres to the tissue surface, 

crystal formation is very different to that formed by airspray deposition. For this reason, 

data could be acquired at the optimal raster speed for 100 µm resolution images, hence 

the high-throughput capabilities of analysis using the Nd:YVO4 laser remain upon salt 

inclusion by this sample preparation strategy. 

This deposition method resulted in the detection of high abundances of protonated lipid 

adducts alongside lithium and other cationic adducts leading to very complex spectra. 

Very high abundances of protonated adducts at m/z 734, 760 and 788 (PC 32:0, 34:1 and 

36:1, respectively) as well as potassium and sodium cationic adducts (m/z 772, 798 and 

826, [M+K]+ and m/z 756, 782 and 810, [M+Na]+ of PC 32:0, 34:1 and 36:1) were evident 

in the control experiment as well as in experiments which included lithium nitrate, as 

shown in Figure 33. Relatively high abundances of protonated alongside cationic lipid 

adducts have been reported  previously using solvent-free methods [70].  

This additive incorporation strategy successfully led to the detection of lithium adducts 

of these lipids at m/z 740, 766 and 794. The detection of lithium-lipid adducts of pure 

fatty acid samples preloaded in Bacti plates has been reported by a similar preparation 

[226]. However the relative complexity of the mass spectra acquired from the tissue 

samples described herein was greatly increased by this deposition technique. This is in 

part owing to the fact that lithium-lipid adducts are detected in a similar m/z window to 
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protonated, sodium and potassium adducts, further compounding the problem of 

overlapping m/z values of different adducts of different lipids. Although solvent-free 

methods have proven useful for analytes which predominantly form protonated 

adducts [242], lipid analysis was further complicated.  

 

 

Figure 33 Mean spectrum on tissue showing phospholipid region m/z 700-900 showing lipid 
adducts ([M+H]+, [M+Li]+, [M+Na]+, [M+K]+) detected in sagittal tissue sections of mouse brain 
dry-coated with (left) CHCA matrix (no additive) or (right) CHCA with 5 mM lithium nitrate. 
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3.4 Conclusions 

The inclusion of a nitrate rather than a chloride or acetate salt led to a greater change in 

the relative abundance of the respective (sodium) cationic lipid adducts detected, which 

is in agreement with the results of lipid extract studies. However it is clear from these 

investigations that increasing sensitivity and decreasing spectral complexity by salt 

addition in MALDI-MS imaging experiments is not as straightforward when compared 

to affecting the same pathways in lipid extract studies.  

The number of experimental parameters affected by the inclusion of salts in matrix 

solutions is significantly increased when performing imaging experiments.  Firstly, the 

airspray sample preparation (compared to dried droplet) is more greatly affected by salt 

addition as inclusion of salts in matrix solutions appears to lead to nozzle blockage with 

increasing salt additive concentration. The ability to acquire high-throughput data is 

significantly reduced, most likely owing to differences in crystal formation. 

Furthermore, both spectral quality and overall sensitivity is decreased when an additive 

salt is included in the matrix solution for airspray deposition. Finally, decreased spectral 

complexity or increased sensitivity of a certain adduct was not achieved (as in lipid 

extract experiments) by salt addition in MALDI-MS imaging experiments.  

Consideration of a solvent-free matrix deposition technique as an additive incorporation 

strategy suffered fewer practical problems; difficulties experienced with sample 

deposition and laser ablation were not encountered when tissue samples were dry-
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coated with an additive-doped matrix sample. However, increased spectral complexity 

arising from the detection of protonated alongside a variety of cationic lipid adducts 

leads to decreased sensitivity and introduces increased problems with overlapping m/z 

values of different adducts of different lipids. Clearly there is a need to pursue 

alternative cation introduction strategies for lipid imaging experiments. Further work 

will consider alternative routes to additive incorporation. 

Analysis of fixed tissue samples by MALDI-MS imaging has shown that high 

abundances of sodium lipid adducts are detected in these samples [241], owing to the 

use of sodium salts to buffer fixative solutions. It is hypothesised that this could be a 

promising route to ion incorporation and will consider whether substitution of these 

buffering salts with lithium salts is a suitable lithium ion introduction strategy in 

Chapter 4.  
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4. Formal Lithium Fixation as a Route to Lithium Ion Incorporation 

into tissue for improved in situ analysis of phospholipids by 

MALDI 

4.1 Introduction 

Fixation of tissue samples is important to prevent proteolytic degradation[243], stabilise 

fine structure and obstruct bacterial growth. Formaldehyde is a non-coagulant fixative 

which fixes tissue via the formation of cross-linking methylene bridges between neutral 

amino or similar groups in proteins [244, 245]. The chemical process of formaldehyde 

fixation is slow and complete fixation is limited by the rate of chemical reaction and so 

tissue must be immersed long enough for cross-linking to occur [246, 247]. 

Formaldehyde is generally used as a 4% solution in water, known commercially as 

formalin. 

Formalin is widely reported to be compatible with histological staining and is 

extensively used. With a view to tissue storage formalin is often used as an isotonic 

solution such as formal saline i.e.sodium chloride in formalin. The isotonic nature of 

such formal solutions (containing formaldehyde as a chemical tissue fixative) limits 

diffusion of tissue components. Formal saline is acidic. For this reason, some 

laboratories prefer to use sodium phosphate salts to neutrally buffer the solution. Both 

preparations involve sodium salts to maintain physiological conditions [248].  
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A number of other salts have been included in formalin (formal solutions) with a view 

to improving tissue studies by analytical techniques such as microscopy.  Mercuric 

chloride has been included in formalin combined with acetic acid to enhance nuclear 

detail in light microscopy. Alternatives based on zinc have also proven successful for 

improved tissue contrast for  light microscopy [249], increasing staining density of cell 

nuclei [250]. 

Contrast of tissue or cell features can be amplified for electron microscopy by staining 

with heavy metals which efficiently scatter electrons [251, 252]. Suitable stains should 

preferentially bind a particular structural constituent or species [252]. Heavy metals 

such as osmium [253, 254], lead [255] and uranium [256] have all been included in 

fixation and staining preparations for electron microscopy. Many are described in 

targeted approaches for a specific analyte; osmium tetroxide stains for unsaturated 

lipids [257], ruthenium for polymers [258], lead hydroxide for RNA containing cell 

components [259] and barium hydroxide for the golgi regions of hepatic cells [259]. 

Formal solutions can also be used as  primary fixatives prior to other treatment to 

improve a particular analysis [260]. Clearly careful consideration of the analyte of 

interest is important when choosing a staining or fixation method and  it is not unusual 

to use numerous fixation techniques for multiple analysis of a single tissue sample [247]. 

Mass spectrometry imaging offers analysts the opportunity to simultaneously acquire 

information regarding both composition and spatial distribution of analytes.  Osmium 
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tetroxide (OsO4) staining for targeted analysis of lipids by time-of-flight secondary ion 

mass spectrometry (TOF-SIMS) has been reported previously [261], hence it is possible 

to direct mass spectrometry analysis using stains and fixatives. Formaldehyde does not 

act as a fixative for lipids and is therefore a suitable medium to consider for their 

analysis [262, 263]. MALDI-MS imaging of tissue fixed in formal saline or phosphate 

buffered formalin have been shown to lead to the detection of high abundances of 

sodium adducts of lipids [241, 264].  Lipids form multiple adducts in tissue and 

dissociation studies of different adducts have shown that greater product ion 

information is obtained when lithium-lipid adducts are dissociated [19, 22, 143, 145, 150, 

230, 235, 265, 266]. Furthermore, the sn-1 and sn-2 side-chains can be assigned; loss of 

the sn-1 fatty acid side-chain will be detected with greater abundance [223, 230]. This 

becomes particularly important when identifying potential disease biomarkers in 

complex tissue samples by mass spectrometry [163, 177, 179, 267, 268].  

Lithium salts are not naturally abundant in tissue and so the task of lithium ion 

introduction arises. Conventional approaches to lithium incorporation into tissue, by 

mixing salts with the matrix compounds prior to matrix deposition, were discussed in 

chapter 3 of this thesis. Owing to the failure of these approaches to incorporate high 

abundances of lithium lipid adducts, without compromising the sensitivity of the 

experiment through detection of multiple lipid adduct types, the need to pursue 

alternative ion incorporation strategies was highlighted.  
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In this Chapter, fixation in a formal lithium solution is presented as a tissue treatment in 

a targeted approach for the improved analysis of lipid species by MALDI-MS and 

imaging. The formation of lithium-lipid adducts in situ by this route allows the analyst 

to acquire compositional information that can also be mapped in ion images, showing 

the spatial distribution of particular lipid species within the tissue, as well as enhancing 

their identification by CID. Using this sample preparation technique MS/MS images of 

lipids in which structurally characteristic product ions of a particular lipid can be 

mapped were also acquired, showing the spatial location of a single identifiable analyte. 

The compatibility of formal lithium fixation with a number of common histological 

staining techniques was established using sections of human liver from normal and 

diseased specimens, thus highlighting the potential of this approach for biomarker 

identification. 
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4.2 Experimental 

4.2.1 Materials 

All salts (NaCl, LiCl and LiNO3), α-cyano-4-hydroxycinnamic acid matrix (CHCA) and 

formic acid (FA) were purchased from Sigma Aldrich (Gillingham, UK). Formaldehyde 

was purchased from Adams Healthcare (Swindon, UK). Methanol (HPLC grade) was 

purchased from Fisher Scientific (Leicestershire, UK). Water was purified by an ELGA 

Option 3 system (Marlow, UK). Haematoxylin and eosin (H&E), van Gieson, Oil Red O 

and Celestine Blue stains, Scott’s tap water substitute, acid alcohol and alcohol were 

purchased from Leica Biosystems (UK). DPX mountant (a mix of distyrene, plasticiser, 

and xylene), acetone, and Immu-Mount were all purchased from Thermo Scientific 

(Shandon, UK). Stainless steel MALDI target plates were purchased from AB Sciex 

(Framingham, USA), conductive ITO-coated glass slides from Bruker Daltonik (Bremen, 

Germany) and plain glass and poly-lysine-coated glass slides from Leica (UK). 

4.2.2 Human Tissue Samples 

Explanted liver tissue from patients being transplanted for chronic end-stage liver 

disease (Non-alcoholic steatohepatitis, NASH) was obtained from the Queen Elizabeth 

Hospital, Birmingham, UK. Fresh tissue was cut into approximately 1cm3 pieces and 

immediately frozen by immersion in liquid nitrogen. Samples were then stored at -80 ˚C 

until cryosectioning was performed. All tissue was collected with informed written 

consent under local ethics committee approval.  
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4.2.3 Fixative Solutions 

Formal saline was prepared according to standard protocols, 0.154 M NaCl in formalin, 

where formalin is a solution of 10% formaldehyde solution (40% in methanol) in water 

resulting in a solution which contains 4% formaldehyde. Formal lithium solutions were 

prepared similarly: 0.154 M LiCl or LiNO3 salt in formalin. 

4.2.4 Tissue Block Fixation 

A snap-frozen whole rat brain was sectioned into four. Each sector was treated 

differently. The first remained frozen and was stored at -80˚C, the rest were immersion-

fixed in either formal saline or formal lithium (LiCl or LiNO3) at room temperature. 

Immersion fixation of tissue blocks was achieved by immersing tissue blocks in formal 

saline or formal lithium (LiCl or LiNO3 salt) in a volume 20x their mass for 48 hours. 

Once fixed, tissue blocks were stored at -80 ˚C until sectioning at -18 ˚C (Leica CM 1850 

Cryostat (Milton Keynes, UK)) at 12 μm before thaw-mounting onto a stainless steel 

MALDI imaging target or plain glass slides for LESA-ESI-MS or at 6 µm before thaw-

mounted onto poly-lysine-coated glass slides for staining. Freezing of fixed tissue 

facilitates the preparation of tissue blocks for sectioning.  

4.2.5 Single Section Fixation 

Snap-frozen mouse brain tissue was sectioned differently for mass spectrometry (12 μm) 

and staining (6 μm) (Leica CM 1850 Cryostat (Milton Keynes, UK)). Human liver tissue 

blocks were sectioned 6 μm thick (Bright OTF (Cambridgeshire, UK)). Tissue sections 
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were thaw-mounted onto ITO coated glass slides for MALDI analysis on an 

ultrafleXtreme instrument, plain glass slides for LESA-ESI analysis or poly-lysine-coated 

glass for staining. Slides were then submerged in a fixative solution for 30 minutes. 

Control (fresh) sections were not treated with a fixative. 

4.2.6 Staining 

Serial tissue sections to those used for mass spectrometry were treated by fixation in a 

formal solution or not fixed (control fresh tissue) and stained. Groups of serially treated 

tissue sections were stained with H&E, van Gieson or Oil Red O according to standard 

protocols. A Ziess Axioskop 40 microscope, 10 x objectives, was used to obtain 

microscopic images using Ziess AxioVision software. 

4.2.7 Matrix Application 

Matrix solutions of CHCA (20 mg/mL, 80 % CH3OH) were deposited using an artist’s 

airbrush purchased from Draper (Hampshire, UK) propelled by dry N2. Two 

consecutive spray passes were followed by ten seconds drying time, until 10 mL was 

deposited, from a distance of 20 cm from the plate.  

4.2.8 Mass Spectrometry 

MALDI-MSI, MS/MS and MS/MS imaging studies of murine samples were carried out 

on a QSTAR XL Q-TOF mass spectrometer (AB Sciex). An Elforlight (Daventry, UK) 

Nd:YVO4 DPSS laser (355 nm) was triggered by a Thurlby Thandar Instruments 
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(Huntingdon, Cambridgeshire) TGP110 10 MHz pulse generator, coupled to the MALDI 

source via a 100 μm core diameter fiber optic patch cord (Edmund Optics, NA=0.22) and 

operated at 5 kHz and approximately 8 μJ. Analysis was performed in positive ion mode 

with a pixel size of 100 by 100 μm, m/z range 400-900, focusing potential (FP) of 85 and 

declustering potential (DP2) of 35. For MS/MS imaging, CID was performed with N2 

gas at collision energy of 40 eV. All images were collected in raster mode at a speed of 1 

mm s-1 and acquired in ≈ 25 minutes.  

MALDI-MSI of human liver tissue was acquired on an ultrafleXtreme TOF/TOF mass 

spectrometer (Bruker Daltonics) with a smartbeam-II Nd:YAG (355 nm) laser operated 

at 1 kHz and laser energy was optimised between 35%-55% of the available power. 

Analysis was performed in reflectron TOF and positive ion mode with a pixel size 100 

by 100 µm, m/z region 60-1000. Images were acquired in spot-imaging mode summing 

500 laser shots per pixel. Each full tissue section image was acquired in ≈ 5 hours. 
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4.2.9 Data Conversion and Analysis 

MALDI data acquired using the QSTAR XL was analysed using Analyst QS 1.1 and 

MATLAB. The data were converted from the AB Sciex .wiff proprietary file format to 

mzML using AB MS Data Converter (AB Sciex version 1.3) and then converted to 

imzML using imzMLConverter [236] and processed in MATLAB (version 7.8.0 (2009a), 

Math Works Inc., USA). For all images displayed, peak information is the summed ion 

intensity from within a 0.1 Dalton window centred on the peak of interest. MALDI data 

acquired using the ultrafleXtreme was analysed using MATLAB. Data were converted 

from the Bruker proprietary format to mzML using a custom MATLAB script and then 

converted to imzML using imzMLConverter.  
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4.3 Results and Discussion  

4.3.1 MALDI-MS Imaging analysis of Formal Fixed Tissues 

Preparation of formal saline according to the standard protocol (0.154 M in formalin) 

substituting sodium chloride with a lithium salt did not alter the final pH of the 

solution. Furthermore, no lipids were detected by MALDI-MS analysis of the fixative 

solutions post fixation of tissue, indicating that there was no lipid migration into the 

supernatant solution. In addition, formal lithium fixation led to similar indicative 

discolouration of the tissue as that using formal saline. Sectioning of tissue fixed in 

formal lithium did not appear to differ to the standard formal saline preparation and 

thaw-mounting of the tissue sections onto either stainless steel MALDI target plates, 

plain or coated glass slides was unaffected by treatment in this fixative.  

Preparing formal lithium fixed tissue samples for imaging analysis by the widely 

employed deposition method of airspray, with CHCA matrix solutions, led to similar 

matrix crystal homogeneity as when spraying freshly frozen and formal saline-fixed 

tissue sections. Introducing lithium during tissue fixation removes the need for salt 

inclusion in MALDI matrix solutions during the matrix deposition procedure; the 

crystal homogeneity is unchanged by formal preparations hence many of the problems 

described in Chapter 3 of this thesis in previous studies [145] are removed by immersion 

fixation. Furthermore, these images were acquired at a raster speed of 1 mm s-1, enabling 
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relatively high-speed imaging of lithium adducts, and hence this methodology lends 

itself to high-throughput analysis. 

Lipid species detected in formal saline-fixed tissue were similar to those detected in 

freshly frozen tissue. Predominantly sodium-lipid adducts were detected when 

analysing fixed tissue prepared with a sodium salt, agreeing with previous literature 

[241]. The three most abundant lipid peaks in the m/z region 700-900 in freshly frozen-

tissue analysis are m/z 772, 798 and 826, corresponding to [M+K]+ of PC 32:0, 34:1 and 

36:1, respectively. The most abundant peaks in the lipid region shift to m/z 756, 782 and 

810 in formal saline fixed tissue, indicating a change in predominant adduct formation 

to [M+Na]+ lipid adducts, as shown in Figure 34.  

The lipid species detected in formal lithium-fixed tissue were also comparable to those 

detected in freshly frozen and formal saline samples, with a mass shift of Δ-32 compared 

to freshly frozen ([M+K]+ to [M+Li]+). When analysing formal lithium-fixed tissue 

samples the most abundant peaks detected in the region m/z 700-900 were 740, 766 and 

794, [M+Li]+ of PC 32:0, 34:1 and 36:1 respectively as illustrated in Figure 34. Similar 

species were reported in tissue studies which describe lithium ion introduction via 

inclusion in matrix solutions [145]. It would appear that fixing tissue in an isotonic 

lithium salt fixative solution leads to a shift in predominant adduct formation similar to 

that previously reported in isotonic or buffered sodium salt fixative solutions.  
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Figure 34 Mean spectra of species detected between m/z 700-900 on tissue during acquisition of 
MALDI-MS images. A) Freshly frozen tissue B) Formal saline fixed (NaCl) C) Formal lithium 
fixed (LiCl). Adducts of lipid species are highlighted in the spectra: potassium adducts are red, 
sodium adducts are green, protonated adducts are in blue and lithium adducts are yellow. The 
spectral quality and species detected by each sample preparation do not change, only the 
dominant lipid adduct. 
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Mean spectra of species detected in tissue during imaging analysis are shown in Figure 

34. It is clear from this figure just how successful this preparation method is for forming 

the predominant lipid adducts detected. Further adduct confirmation can be achieved 

via MS/MS analysis as the head-group product ion changes corresponding to the lipid 

adduct dissociated [150]. The spectral quality of formal lithium-fixed samples is similar 

to that of freshly frozen and formal saline-fixed tissue. There did not appear to be a 

significant change in the signal to noise ratio by preparing the tissue using this method 

and the ion counts of detected lipid species were of a similar order of magnitude. In 

short, introducing lithium by formal lithium fixation does not appear to compromise 

spectral quality in any way.  

However, Figure 35 showing the relative abundances of detected lipid adducts 

demonstrates that although lithium-lipid adducts are detected in high relative 

abundance in formal lithium-fixed tissue samples, they are not the only adducts 

detected. Potassium, sodium and protonated lipid adducts are detected in lower 

abundances. As the relative abundances of lithium adducts of each lipid were much 

higher than all other adducts, spectral complexity was not significantly increased, 

certainly not to the same extent as additive incorporation via tissue dry-coating 

(discussed in Chapter 3.3.3.2). Furthermore, immersion fixation of single sections of 

freshly frozen tissue sections 12-6 µm thick were thaw mounted on to MALDI target 

plates in a formal lithium solution for 20 minutes gave similar results (data not shown), 
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showing the versatility of this methodology for targeted lipid analysis of either whole 

organs or single sections. 

 

 

 
 

Figure 35 Graph showing the percentage relative abundance of PC 32:0, 34:1 and 36:1 detected 
during imaging experiments of thin tissue sections in freshly frozen tissue and tissue fixed in 
either a formal saline solution containing sodium chloride or a formal lithium solution 
containing either lithium chloride or lithium nitrate. Anomalous results for [M+Li]+ of PC 32:0 in 
freshly frozen tissue and [M+H]+ of PC 36:1 in formal lithium fixed tissue can be explained thus; 
[M+Li]+ of PC 32:0 is expected at m/z 740, the high abundance of this detected in freshly frozen 
tissue is an isotope peak of m/z 739 which is a fragment ion of m/z 798 (PC 34:1 [M+K-N(CH3)3]+). 
The [M+H]+ of PC 36:1 is detected at m/z 788, the  [M+Li]+ of PC 36:4 is also detected at the same 
m/z and therefore it is likely that both contribute. 
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Protonated adducts are not detected in significant abundance in fresh tissue, however 

they are detected in both formal saline- and formal lithium-fixed tissues. It is therefore 

most likely that it is the formal solution and not the use of a lithium salt in such 

preparations that is the main contributing factor to the introduction of protonated lipid 

adducts. These formal solutions, although isotonic, are all acidic, which would account 

for the detection of protonated lipid adducts in the MALDI-MS experiment. Previous 

reports of the analysis of formalin-fixed tissue samples have not commented upon the 

relative abundances of other adducts.  

Nitrate salts have recently been reported to increase ion counts of a desired lipid adduct 

in MALDI-MS [235] but had limited use as a matrix additive in imaging experiments 

described in chapter 3 of this thesis. Substitution of lithium chloride for lithium nitrate 

did not lead to a significant increase in ion counts of detected species. Results indicate 

that this method is tolerant of different salt types and differences in anatomical 

localisation of specific lipid species can be identified equally well with both fixatives, as 

demonstrated in Figure 36. The use of  different counteranions of a salt has been 

described for a number of other formal preparations; for example with formal zinc 

solutions prepared with zinc salicylate [249] or both acetate and chloride salts [250].  

Substitution of the lithium chloride or nitrate salt with alternative lithium salts could 

therefore prove advantageous. Sodium phosphate salts are routinely employed in 

formal solutions in order to maintain neutral pH. This could be advantageous in 
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MALDI-MS and imaging experiments as it may reduce the relative abundance of 

protonated adducts detected.  

 

 

Figure 36 MALDI-MS imaging of rat brain quarters on a Q-TOF instrument. Freshly frozen 
(control) and formal fixative treated samples; formal saline (NaCl) or formal lithium (LiCl or 
LiNO3). Single ion images of [M+K]+, [M+Na]+ and [M+Li]+ adducts of PC 36:1 (m/z 826, 810, 794 
respectively) are shown on the left-hand side and the same adducts of PC 32:0 (m/z 772, 756, 740) 
are shown on the right-hand side. The intensity scale shows the peak area of all adducts for a 
particular lipid. Areas of zero counts are black and areas of maximum intensity are shown in 
white. The maximum intensity is 2000 ion counts for PC 36:1 on the left and 2500 for PC32:0 on 
the right. The change in the predominant lipid adduct detected as dictated by tissue treatment is 
shown. 
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There was one stark difference between spectra acquired from formal lithium- or 

sodium-fixed tissue and freshly frozen tissue samples. The numbers of ions detected in 

the region m/z 400-650 in data acquired from fresh tissue sections were lower in 

comparison to fixed tissue sections. Higher abundances of species detected in this region 

were evident in formal saline-fixed tissue samples in comparison to fresh tissue, as 

illustrated in Figure 37; however these were higher still when formal lithium tissue was 

analysed. Generally the peaks detected in this mass region can be accounted for by 

laser-induced fragmentation; peaks detected at m/z 451 and 478, for example, were also 

detected upon CID of a lipid standard of a PC 34:1 species described in chapter 2 o this 

thesis. This was the most abundant lipid detected in fresh tissue samples. The detection 

of fragment peaks is not uncommon in samples analysed with a ‘hot’ matrix such as 

CHCA[19]. This is discussed in greater detail in Chapter 2.3.1.  

However, as all of these samples were analysed with the same CHCA matrix solution, it 

is probable that the sample preparation is responsible for these observed differences. In 

formal lithium-fixed tissue samples there are two distinct regions of fragment ions; 

between 550-650 and 400-550 u. The peaks detected in these two regions correspond to 

the expected m/z of neutral losses from the phosphocholine species detected in the 

region m/z 700-900. Neutral losses in the region m/z 550-650 can be attributed to neutral 

loss of the PC head-group and those detected in the lower region of m/z 400-550 can be 

attributed to neutral loss of fatty acid side-chains. Although MALDI-MS imaging data of 

lithium-lipid adducts has been described previously, data was only acquired between 
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m/z 700-900 [145]. Many groups acquire data in small mass windows in order to 

improve sensitivity in tissue studies. This unfortunately means it is not possible to 

comment as to whether similar observations have been made by other groups in tissue 

imaging studies of lithium lipid adducts. 

 

Figure 37 Mean spectra of ions detected on tissue in MALDI-MS imaging of rat brain tissue. 
Panels show A) Freshly frozen (control) and formal fixative treated samples; B) formal saline 
(NaCl) or C) and D) formal lithium (LiCl or LiNO3). The change in the relative percentage 
abundance of ions detected in the region m/z 400-600 with varying tissue treatment is shown. 
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4.3.2 In situ structural Characterisation of Lipids  

A particular advantage of driving ionisation towards lithium adduct formation is the 

improved structural characterisation afforded by CID of these adducts when compared 

to sodium- and potassium-lipid adducts, as discussed in Chapter 2.3.4. Lipid profiling of 

different lipid adducts in situ shows that dissociation of either the potassium-, sodium- 

or lithium-lipid adduct allows head-group assignment via neutral loss of 59 u (choline) 

and of 183 u (PC head-group) and the detection of the sodiated phosphate head-group 

at m/z 147. As described in CID of lipid standard analysis in chapter 2 of this thesis, 

greater structural information is expected from CID of sodium-lipid adducts as would 

be detected in high abundance in formal saline fixed tissue samples in comparison to 

potassium which are detected in high abundance in freshly frozen tissue.  

Dissociation of sodium-lipid adducts enabled identification of fatty acid side-chains via 

the detection of product ions relating to the neutral loss of a fatty acid or a fatty acid 

alongside loss of the choline moiety of the PC head-group (59 u). For example, product 

ions detected at m/z 500 and 441 upon CID of the sodium ([M+Na]+) adduct of PC 32:0 

can be attributed to the neutral loss of 256 u and the neutral loss of 256+59 u indicating 

the presence of a 16:0 fatty acid. The product ion detected at m/z 239 supports this 

assignment as it can be attributed to the acyl ion (RCO+) of 16:0. Previous in situ studies 

of CID analysis of sodium adducts of lipids in formal-fixed tissue samples have shown 

similar product ions for PC lipid species [264, 269]. However, in the presented study 
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similar analysis of PC 34:1 and 36:1 did not lead to the detection of all of these product 

ions by in situ profiling, as illustrated in Figure 38.  

More product ions were detected in high relative abundance which inform the fatty acid 

side-chain identities when lithium-lipid adducts were dissociated in formal lithium 

fixed tissue compared to potassium adducts detected in freshly frozen tissue or sodium 

adducts in formal saline-fixed tissue. This is demonstrated for a number of lipid species 

in Figure 38 and is in agreement with previous lipid studies that lithium adducts 

provide greater structural information in in situ studies [19, 34, 143, 270]. 

The ability to dissociate highly abundant lithium-lipid ions in situ enables structural 

assignment via detection of the following types of product ions; neutral loss of the fatty 

acid, neutral loss of the fatty acid lithium salt and neutral loss of the fatty acid alongside 

the neutral loss of choline. The detection of three product ions in the region m/z 340-540 

indicates that the two fatty acid side-chains are the same. Dissociation of the lithium 

adduct ([M+Li]+) of PC 32:0 at m/z 740 results in three highly abundant product ions; m/z 

484 (neutral loss of 256 u, 16:0 fatty acid), m/z 478 (neutral loss of 262 u, lithium salt of 

16:0 fatty acid), and m/z 425 (neutral loss of 315 u, 16:0 fatty acid (256) and choline (59)). 

PC 32:0 can therefore be assigned as PC 16:0/16:0 from CID of the [M+Li]+ adduct in 

formal lithium-fixed tissue as illustrated in Figure 39 a. This assignment is in agreement 

with previous reports of in situ lipid profiling of murine brain [130, 133] and is further 

supported by the detection of the acyl ion (RCO+) of 16:0 fatty acid at m/z 239. 
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Figure 38 Representative MALDI-MS/MS spectra showing product ions detected by CID of (top) [M+K]+ adducts in fresh tissue , 

(middle) [M+Na]+ adducts in formal saline fixed tissue, and (bottom) [M+Li]+ adducts in formal lithium fixed tissue of a) PC 32:0, b) 

PC 34:1 and c) PC 36:1. Direct tissue profiling of formal lithium fixed tissue leads to the detection of a greater number of fatty acid 

side-chain informative product ions in the region m/z 350-540, aiding structural elucidation. 
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Figure 39 Representative MALDI-MS/MS spectra showing the structurally informative product 
ions detected by collision-induced dissociation of [M+Li]+ adducts of lipids from direct tissue 
profiling of formal lithium fixed tissue. [M+Li]+ adducts of a) PC 32:0 (parent ion m/z 740), b) PC 
34:1 (parent ion m/z 766) and c) PC 36:1 (parent ion m/z 794). The full product ion mass spectrum 
(m/z 50-750, 770 or 800 respectively) is shown on the left and a magnification of the m/z region 

350-540 showing side-chain characteristic product ions.  
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Dissociation of [M+Li]+ of PC 34:1 at m/z 766 results in six product ions in the region m/z 

340-540, as shown in Figure 39 b, indicating that the two fatty acid side-chains are 

different. Product ions detected at m/z 510 (neutral loss of 256 u), m/z 504 (neutral loss of 

262 u), and m/z 451 (neutral loss of 315 u) indicate the presence of a 16:0 fatty acid in this 

species also. In this example, the acyl ion of this fatty acid is also detected at m/z 239. 

Further product ions at m/z 484 (neutral loss of 282 u), m/z 478 (neutral loss of 288 u, 

(282+6)) and m/z 425 (neutral loss of 341 u (282 + 59)) all indicate that the other side-

chain is an 18:1 fatty acid. Again, the acyl ion is also detected at m/z 265 supporting this 

assignment. As the ions corresponding to loss of the sn-1 fatty acid are detected in 

greater abundance than those of the sn-2 loss [19, 271], complete structural assignment is 

possible. Product ions indicating loss of a 16:0 fatty acid are detected in greater 

abundance than those indicating an 18:1 fatty acid, signifying that the 16:0 fatty acid 

resides in the sn-1 position , therefore this lipid can be confirmed as PC 18:1/16:0 (sn-3 

sn-2/sn-1). This data is in agreement with previous in situ studies of murine brain of 

lithium-lipid adducts where lithium was introduced to the tissue via pipetting[143].  

Dissociation of [M+Li]+ of PC 36:1 at m/z 794.6 presented in Figure 39 c results in twelve 

product ions indicating the presence of two isobaric lipids with two sets of different 

fatty acid side-chains. Product ions detected at m/z 538 (neutral loss of 256), m/z 532 

(neutral loss of 262) and m/z 479 (neutral loss of 315) all indicate the presence of a 16:0 

fatty acid. An 18:1 fatty acid side-chain is also indicated by similar product ions at m/z 

512 (neutral loss of 282), m/z 506 (neutral loss of 288) and m/z 453 (neutral loss of 341). 
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Product ions detected at m/z 510 (neutral loss of 284), m/z 504 (neutral loss of 300) and 

m/z 451 (neutral loss of 343) indicate the presence of an 18:0 fatty acid. Finally, a 20:1 

chain is indicated by similar characteristic ions detected at m/z 484 (neutral loss of 310), 

m/z 478 (neutral loss of 316) and m/z 425 (neutral loss of 369). In this example, acyl ions 

of each fatty acid were not detected; hence it was concluded that these are less reliable 

for assignment in comparison to the above described neutral loss product ions. The 

product ion at m/z 479 was detected in greater abundance than that at m/z 369 and the 

product ion at m/z 451 was detected in greater abundance than that at m/z 453, thus the 

lipid composition can be assigned as a mixture of PC 20:1/16:0 and PC 18:1/18:0.  

Overall, the improved structural information obtained from CID analysis of lithium-

lipid adducts detected in high abundance in formal lithium-fixed tissue in comparison 

to similar analysis of sodium adducts detected in formal saline-fixed tissue or potassium 

adducts in freshly frozen tissue is demonstrated. Furthermore, it is shown that 

dissociation of lithium adducts more reliably provides structural information which 

enables elucidation of each substituent, indicating not only the lipid head-group and 

both fatty acid side-chains but also informing the relative positions of each along the 

glycerol backbone.  
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Lithium-lipid adducts have been analysed in situ previously via depositing a small 

volume of a matrix solution containing lithium salt [77, 143]. This type of preparation 

leads to delocalisation of lipid species in the sampled region, forming a spot 800-1500 

µm in size [143], and does not enable separate analysis of small tissue features. The 

presented methodology does not suffer from lipid delocalisation, therefore analysis of 

specific anatomical features is only limited by the laser beam profile incident on the 

tissue.  

In situ analysis of lithium-lipid adducts from tissue prepared by spraying a matrix 

solution containing a lithium salt, has also been reported by Cerruti et al.[145]. This 

approach also maintains spatial information however the formation of compact crystals 

and problems encountered with deposition of these matrix-salt solutions reduces the 

universality of their approach[145]. Here a method which enables rapid data acquisition 

using standard sample preparation protocols using lithium salts which did not prove 

useful in Cerruti’s study is described. Furthermore, as the presented methodology 

incorporates lithium ions independently of MALDI sample preparation it should lend 

itself as a suitable lithium ion introduction technique for tissue analysis by other 

surface-sampling techniques such as LESA (discussed in detail in Chapter 5) or SIMS, 

which commonly operates using ion sources with beam profiles on the nanometre scale 

[272]. The potential benefits of combining MS/MS analysis with spatial information are 

demonstrated herein by performing MS/MS imaging studies.  
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4.3.3 MALDI-MS/MS Imaging 

MS/MS imaging of lithium-fixed tissue sections enables generation of ion images 

showing the spatial distribution of structurally characteristic product ions. The mean 

spectrum acquired from tissue regions during MS/MS imaging of PC 34:1 [M+Li]+ (m/z 

766.6) is shown in Figure 40 a. Mapping the spatial distribution of the most abundant 

product ions that were characteristic of the fatty acid side-chain identities, at m/z 425 

(neutral loss of 18:1 fatty acid side-chain alongside choline) and m/z 451 (neutral loss of 

16:0 fatty acid and choline), clearly shows that this lipid is detected homogeneously in 

the cerebellum. MS/MS imaging of PC 32:0 [M+Li]+ (m/z 740.6) is shown in Figure 40 b. 

This time there is only one fatty acid side-chain. Mapping the spatial distribution with 

the most abundant fatty acid side-chain indicative peak at m/z 425 (neutral loss of 16:0 

fatty acid and choline) and m/z 551 (neutral loss of the lithium adduct of the PC head-

group) clearly shows that this lipid is detected only in the grey matter in the cerebellum. 

These spatial distributions directly correlate and concur with the distributions in the 

original MS imaging data set. Therefore it is possible to map ion images of structurally 

characteristic product ions by preparing tissue in a formal lithium fixative. Moreover, 

these data were acquired by the same rapid acquisition parameters described for 

MALDI-MS imaging. This capability is particularly important if two different lipid 

species are present at the exact same m/z. For example, it should be possible to 
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separately show the spatial distributions of PC (18:1/18:0) and PC (20:1/16:0) by 

MS/MS imaging of a lithium-fixed sample.  

 

Figure 40 Panel a: MALDI-MS/MS of PC 34:1 [M+Li]+ Single ion images of m/z 451 (neutral loss 
of palmitic acid) and 425 (neutral loss of 18:1 fatty acid) and the mean spectrum of ions detected 
on tissue are shown. Panel b: MALDI-MS/MS of PC 32:0 [M+Li]+ Single ion images of m/z 551 
(neutral loss of 189) and 425 (neutral loss of palmitic acid and choline) and the mean spectrum of 
ions detected on tissue by are shown. A schematic illustrating dissociation sites is shown above 
each spectrum (annotation of NL is neutral loss). Ion image areas of high signal intensity are 
shown in pink. The potential to spatially map distributions of a single lipid using MS/MS 
imaging with greater confidence than may be possible with MS imaging is shown.  
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MS/MS imaging is widely documented for other analytes[273-276] and recent studies 

have considered sodium adducts of fatty acids and triacylglycerols in fingerprints[277] 

and sodium adducts of phosphocholine lipids in formal saline or phosphate buffered 

formalin-fixed tissue samples [269, 278]. Previous reports of MS/MS imaging of sodium- 

lipid adducts in formal saline and phosphate-buffered formalin-fixed tissue samples 

have shown that fatty acid side-chain informative product ions can be spatially mapped; 

Steven et al. showed that acyl ions are detected when a number of sodium adducts of PC 

lipid species are analysed by MS/MS imaging of formal saline-fixed samples [278].  

The detection of further product ions that are characteristic of the fatty acid side-chain 

identities were not commented upon and spectra are not provided, hence it is not 

possible to comment upon the relative abundance of these ions. However, although 

MS/MS imaging studies of sodium-lipid adducts detected in phosphate-buffered 

formalin-fixed tissue samples describe product ions relating to the neutral loss of the 

fatty acid side-chain upon CID [269], only head-group indicative product ion images are 

presented. Here it is shown that MS/MS imaging of lithium lipid ions in formal lithium 

fixed tissue samples leads to the detection of relatively high abundances of a range of 

peaks indicative of the fatty acid side-chain identities, the distributions of which can be 

used to show the spatial distribution of a single, identified, lipid. In this way the ability 

to perform MS/MS imaging from lithium lipid adducts shows real opportunity for in 

situ tissue analysis of a range of lipid species. 
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4.3.4 Human Liver Case Study - Compatibility of Formal Metal Fixatives with 

Common Staining Methods 

In order to assess the compatibility of our fixing strategy with standard histological 

staining techniques, a study using human tissue was performed. Specimens from 

patients with non-alcoholic steatohepatitis (NASH) were analysed by MALDI-MS 

imaging. Serial sections were stained using traditional chromogenic stains to evaluate 

any effect of tissue fixation on histological information. 

MALDI-MS images of PC 34:1 show lipid distributions that correlate well with the 

morphology of the tissue section. This lipid is localised within the hepatocyte nodules in 

the NASH specimen; intensity varies between individual features and there is a 

tendency for increased signal closest to the fibrotic areas. Mapping of the [M+K]+ adduct 

in freshly frozen tissue and the [M+Li]+ adduct in formal lithium-fixed tissue shows 

similar distributions in fresh and fixed tissue samples as illustrated in Figure 41.   

Due to the heterogeneous nature and complex composition of biological samples it is 

extremely important to identify the composition and morphology of different tissue 

types. Currently diagnosis depends on the routine fixation of tissue with (pH neutral) 

phosphate-buffered formalin and subsequent histopathological analysis using light 

microscopy. However with the additional molecular information available from 

techniques such as MALDI-MSI, the integration of MS techniques is desirable, and 
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standard protocols suitable for use with histopathology and MS imaging could be 

beneficial for histology-driven studies [279-282].  

 

Figure 41 MALDI-MS images of lipid PC 34:1 detected in NASH liver sections. A summed 
spectrum of peaks detected in the region m/z 750-850 is presented in the top panel and ion 
images are shown below. There is a clear change in the predominant adduct detected in freshly 
frozen ([M+K]+) and formal lithium (LiCl) ([M+Li]+) fixed tissue samples.  Gross and 
microscopic images of serial sections of tissue stained with H&E, van Gieson and Oil Red O are 
shown below each tissue image. Scale bars show 100 µm, larger pictures can be viewed in 
Figures 34 and 35. The opportunity to correlate MS images with histological staining techniques 
from formal lithium fixed samples, similar to fresh tissue samples, is shown.  
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The effect of formal metal fixation on common staining techniques (H&E, van Gieson 

and Oil Red O) was considered. Fresh tissue, formal saline and formal lithium prepared 

with either lithium chloride or nitrate were assessed. NASH liver tissue is characterised 

by chronic inflammation steatosis and extensive fibrosis, which causes major 

disruptions to the architecture of the tissue. Staining of thin tissue sections of the NASH 

specimen confirmed inflammation contains major fibrotic septa (stained pink in the van 

Giesen stain) and abundant steatosis (highlighted by red neutral lipid accumulations in 

the Oil Red O samples). Microscopic observation confirmed that both micro-vesicular 

and macro-vesicular steatosis was evident and distribution was not uniform with some 

regenerative nodules being more intensely steatotic than others. Visualisation of this 

architecture was possible irrespective of tissue treatment and all features were 

identifiable in all samples, as demonstrated in Figure 42 and Figure 43. 

Importantly, this examination of the histological sections appears to show that all formal 

preparations facilitated the uptake of each dye and maintained the microarchitecture of 

the tissue samples. All tissue features remain evident and distinguishable when tissue 

sections are treated with a formal fixative and subsequently stained with common 

histological reagents. Formal lithium-fixed tissue sections appeared to closely resemble 

those from freshly frozen samples (Figure 41, 42 and 43). Therefore it would seem that 

treating the sample with formal lithium does not limit histology and would be suitable 

for histology-driven lipid imaging studies owing to the improved characterisation 

afforded by lithium adducts.  
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Figure 42 Representative gross images showing staining of sections from blocks of NASH tissue 
treated with either no fixative (freshly frozen) or formal saline (NaCl) or a  formal lithium 
fixative solution prepared with either LiCl or LiNO3 stained with either H&E, Van Giessen or 
Oil Red O stains. Similar results from each staining technique are observed irrespective of tissue 
treatment.  

  



170 
 

 Freshly frozen Formal Saline 
(NaCl) Fixed 

Formal Lithium 
(LiCl) Fixed 

Formal Lithium 
(LiNO3) Fixed 

 
H&E 

    
 

Van 
Giessen 

    
 

Oil 
Red O 

    
 
Figure 43 Representative microscopic images centred on portal areas within NASH tissue sections (matched to those in images Figure 
34) treated with either no fixative (freshly frozen), formal Saline (NaCl) or a  formal lithium fixative solution prepared with either 
LiCl or LiNO3 stained with either H&E, Van Giessen or Oil Red O stains. Similar results from each staining technique are observed 
irrespective of tissue treatment.  
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MALDI imaging studies are typically conducted alongside standard histological 

evaluations of tissue sections. This is becoming increasingly important in clinical studies 

in which spectra and single ion images can be spatially correlated to different tissue 

regions in stained sections providing unrivalled insight into the molecular composition 

and cellular organisation of samples. Correlation of imaging data with histological 

information (staining) usually involves analysis of a first section by MALDI and a serial 

section for staining. Less commonly, the same tissue section may be surveyed by both 

approaches. Tissue staining has been performed both pre- and post MALDI imaging. 

Although common dyes such as haematoxylin and eosin have not lent themselves to 

this strategy, other routinely used dyes such as cresyl violet and methylene blue have 

proven more compatible [282, 283]. None the less, it is widely accepted that structural 

stains such as haematoxylin and eosin provide the most useful detail of cellular 

structure and tissue architecture which is required for histopathological surveys and 

grading of clinical samples.  
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4.4 Conclusions 

Treatment of tissues by formal-lithium fixation is a simple and reproducible method for 

incorporating lithium salts into tissue. High abundances of lithium lipid ions are 

detected without compromising sensitivity or increasing spectral complexity. 

Importantly, the distributions of selected lipids were not found to differ between fresh 

and fixed tissues proving this is a viable sample preparation strategy for tissue imaging 

by MALDI and other mass spectrometry techniques. Moreover, CID studies show that 

in situ structural characterisation of lipids is significantly enhanced by the opportunity 

to dissociate lithium lipid adducts in MALDI experiments when compared to other 

adducts detected in freshly frozen or formal saline-fixed tissues.  

The compatibility of formal lithium fixation with three common stains has also been 

confirmed by examination of liver tissue. Hence it is shown that formal lithium fixation 

not only enhances the in situ information that can be obtained in MALDI-MS and 

MS/MS imaging studies, but also that the uptake and usefulness of haematoxylin and 

eosin, as well as van Gieson and Oil Red O stains are not compromised. With increasing 

pressure to identify potential biomarkers in clinical investigations we hope that this 

methodology will provide lipid analysts with a single, histology-compatible protocol for 

multi-modal analysis of tissue sections: Formal lithium is a useful tissue preservative, 

offers an effective route to introducing lithium for CID in MALDI studies and is 

compatible with common histological stains. 
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5. Liquid-Extraction Surface-Analysis (LESA) –Electrospray (ESI) 

Mass Spectrometry of Fixed Tissue Samples 

5.1 Introduction 

Liquid-extraction surface-analysis (LESA) enables surfaces to be probed with a solvent 

by maintaining a liquid micro-junction on the sample surface prior to electrospray 

ionisation (ESI). As the mechanisms of ionisation of MALDI and ESI differ greatly (refer 

to chapter 1.x.x), analysing samples by each technique can provide supporting and 

complimentary data. The corroboration of results between MALDI and LESA 

techniques from direct surface analysis strengthens results [120]. Although LESA cannot 

provide spatial resolution comparable to MALDI [120], it has been shown that analysis 

of MALDI spot samples by LESA-ESI, post MALDI analysis, can support the information 

obtained by MALDI, ionising species which are not detected in the first analysis [119]. 

Furthermore, DESI imaging has been used in support of MALDI imaging to separately 

analyse different analytes of interest, such as both lipids and proteins [130]. 

A range of neutral and polar lipids have been analysed previously by ESI [106-110] [106, 

107, 111-113]. However to date very few LESA experiments have considered surface 

sampling analysis of lipid analytes. Stegemann et al. considered LESA for the analysis of 

human atherosclerotic plaques, showing the application of direct surface-sampling and 

ESI of lipids [121]. Furthermore, they were able to perform MS/MS studies of analytes 
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extracted directly from the tissue surface. In addition, Brown et al. showed the 

applicability of LESA for the separate analysis of each side of contact lenses in order to 

gain an understanding of the lipid deposits on each side [126]. 

Furthermore, lithium adducts of a wide variety of lipid species have been shown to 

provide superior structural information in CID experiments performed after ionisation 

by electrospray, analogous to that described in MALDI. Therefore the formation of 

abundant lithium-lipid adducts in ESI experiments would be advantageous. In this 

chapter the compatibility of LESA to sample tissue surfaces of formalin fixed samples 

for electrospray ionisation is considered. The LESA-ESI sampling-ionisation set-up will 

be coupled to an orbitrap mass analyser.  
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5.2 Experimental 

5.2.1 Materials 

All salts (NaCl, LiCl and LiNO3) and formic acid (FA) were purchased from Sigma 

Aldrich (Gillingham, UK). Formaldehyde was purchased from Adams Healthcare 

(Swindon, UK). Methanol (HPLC grade) was purchased from Fisher Scientific 

(Leicestershire, UK). Water was purified by an ELGA Option 3 system (Marlow, UK). 

Plain glass slides were purchased from Leica (UK). 

5.2.2 Fixative Solutions 

Formal Lithium was prepared according to standard protocols (0.154 M LiCl in 

formalin) where formalin is a solution of 10% (by volume) formaldehyde solution (40% 

in methanol) in water (90% volume) resulting in a solution which contains 4% 

formaldehyde. Formal calcium solutions were prepared similarly (0.077 M CaCl2 salt in 

formalin). 

5.2.3 Tissue Block Fixation 

The cerebellum tissue from a snap-frozen mouse brain was sectioned into two. Each was 

treated differently; one remained frozen and was stored at -80 ˚C, the other was 

immersion-fixed in formal lithium (LiCl) at room temperature. Immersion fixation of 

tissue blocks was achieved by immersing tissue blocks in formal lithium (LiCl) in a 

volume 20x its mass for 48 hours. Once fixed, tissue blocks were stored at -80˚C until 
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sectioning at -18 ˚C (Leica CM 1850 Cryostat (Milton Keynes, UK)) at 10 μm before 

thaw-mounting onto plain glass slides for LESA-ESI-MS.  

 

5.2.4 Single Tissue Section Fixation 

Snap-frozen mouse brain tissue was sectioned at 10 μm (Leica CM 1850 Cryostat (Milton 

Keynes, UK)) and then thaw-mounted onto plain glass slides. The slides were then 

submerged in a formal calcium fixative solution for 30 minutes. Control (fresh) sections 

were not treated with a fixative. 

5.2.5 LESA Sampling 

Automated sample analysis was performed using the LESA Points software (Advion 

Ithaca, NY) which controls the TriVersa Nanomate. This platform was used to select the 

location or locations on the tissue surface (x and y co-ordinates) and the z position, 

relative to the plate height, for sampling routines using the Nanomate probe. The LESA 

sampling routine involved the collection of a conductive tip from the Advion tip rack 

before moving to a solvent well containing the electrospray solvent solution. The 

Nanomate probe aspirated 2.5 L into the conductive tip and then the probe was 

relocated to the predetermined location on the surface and then descended to 0.4 mm 

above the surface. The tip dispensed a proportion of the volume of the solution (1.5 L) 

for single position sampling onto the sample forming a liquid micro-junction (LMJ) 

between the tip and the surface. The LMJ was maintained to allow sufficient time for 
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analytes to dissolve (10 s). The solvent was then re-aspirated into the tip. Finally the tip 

was rotated and engaged with the back of the ESI chip, and nanospray ionisation was 

initiated. The Triversa Nanomate was coupled with a Thermo Fisher Scientific Orbitrap 

Velos mass spectrometer. MS data were collected for 3 minutes per extraction.  

5.2.6 Mass Spectrometry 

Electrospray analysis was performed on an LTQ Orbitrap Velos from Thermo Fisher 

Scientific (Leicestershire UK). Tissue sections were surface sampled by LESA (Advian 

Ithaca, NY) with solvents comprised of 70:30:0.1 CH3OH:H2O:FA. Samples were 

introduced at a flow rate of ~80 nL/min with a gas pressure of 0.3 psi, a tip voltage of 

1.75 kV and a capillary temperature of 250 C. MS data were collected in full scan mode 

(m/z 500-1500) with a resolution of 100 000 at m/z 400. Each scan comprised 20 co-added 

microscans. The Automatic Gain Control (AGC) was used to accumulate sufficient ions 

for analysis. The AGC target was 1x106 with a maximum fill time of 2 s in full scan 

mode.  

5.2.7 Data Conversion 

LESA data were converted to mzML using msconvert as part of ProteoWizard [284]. 

Spectra acquired from a single injection were summed using a custom MATLAB script 

and output to mzML. The summed spectra were then converted to imzML using 

imzMLConverter [236] and processed in MATLAB.  
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5.3 Results and Discussion 

5.3.1 LESA-ESI analysis of Freshly Frozen Tissue Sections 

LESA coupled to electrospray ionisation (ESI) [125] and a high-resolution mass 

spectrometer allowed further identification of lipids in freshly frozen and formal-fixed 

specimens when compared to MALDI analysis on a Q-TOF instrument. The orbitrap 

instrumentation has high mass-resolving power and high mass-accuracy capabilities. 

Data acquired on a Q-TOF mass spectrometer is capable of reporting data in the region 

m/z 700-900 within 0.1 m/z whereas data acquired on an orbitrap mass spectrometer is 

reported to within 5 ppm (parts per million). Therefore, different adducts of different 

lipid species can be better separated on an orbitrap mass spectrometer. 

The superiority in mass-resolving capabilities of the orbitrap mass analyser is 

demonstrated in Figure 44 over MALDI data acquired on a Q-TOF mass spectrometer. 

The ion detected at m/z 798 is shown in example spectra of data acquired on each 

instrument; data acquired on the orbitrap mass analyser is clearly much better resolved. 

The mass resolving power (R) can be determined by the following equation; 

 R = m/∆m at FWHM 

Where m is the mass of the ion and ∆m at FWHM is the change in mass at Full Width 

Half Maximum of the peak. The mass-resolving power of the orbitrap mass is calculated 
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as 93 000 and that of the Q-TOF mass analyser is 7 000 (to the nearest thousand) for m/z 

798.5 shown in Figure 44. 

 

 

Figure 44 Example mass spectra of peak detected at m/z 798 in mouse brain analysis by (left) 
MALDI on a Q-TOF mass spectrometer and (right) by LESA-ESI  on an orbitrap mass 
spectrometer.   
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Lipid species detected from surface-sampling fresh tissue sections were preferentially 

detected as potassium adducts. The mass spectrum displayed in Figure 45 shows 

phospholipid adducts assigned by accurate mass (within 5 ppm). Lower abundances of 

sodium and protonated adducts were also detected. A range of different phospholipid 

species were identified by their accurate mass in the LESA-ESI experiment. In the 

phospholipid region between m/z 700-900 the most abundant species detected were 

phosphocholine lipids. These lipids were also detected in greatest abundance in 

MALDI-MSI analysis of thin tissue sections of mouse brain. This is perhaps 

unsurprising as these are inherently charged (zwitter ionic).  

It should be noted that despite the vastly improved peak resolution and mass accuracy 

afforded by this instrumentation, a number of different lipid species remain detected 

within 5 ppm of one another. Although peak assignment is enhanced in this analysis, 

overlapping theoretical m/z values of different adducts of different lipids remains 

problematic in terms of assignment by accurate mass. Hence tandem mass spectrometry 

experiments remain an important method of identification of lipids and routes to the 

formation of a single adduct type remain desirable in LESA-ESI analysis on accurate 

mass instrumentation. 
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Figure 45 Typical LESA-ESI mass spectrum acquired from surface-sampling freshly frozen 
tissue in the m/z region 700-900.  
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Predominantly PC species, were detected in the MALDI experiment, however more 

species were identified by accurate mass in this analysis. Preferential detection of PC 

and SM species could be owing to the zwitterionic moiety facilitating ionisation and 

protonation/cationisation. It is possible that the increased detection of PC species and 

other phospholipid species, displayed in Figure 46, is owing to the improved sensitivity 

afforded by the orbitrap mass analyser. However, the sampling technique could also 

contribute to an improvement in sensitivity of the analysis.  

 

 

Figure 46 Pie charts showing the relative numbers of lyso-phospholipid and phospholipid 
species detected in LESA-ESI analysis of freshly frozen mouse tissue, assigned by accurate mass. 
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The formation of a liquid micro-junction on the tissue surface with 1.5 μl solvent leads to 

a sampling area approximately 3 mm2, which is much larger than that considered in 

MALDI-MSI analysis presented in Chapters 2 and 3 of this thesis which is 

approximately 0.05 mm2. This impacts on MSI data acquisition by LESA sampling; 

currently the highest possible spatial resolution reported in the literature is 1 mm [285], 

which does not enable differentiation of histological features in many tissue types. This 

maximum resolution is also inferior to the best achieved in MALDI-MSI; typically tissue 

imaging is conducted at a spatial resolution of 100 μm, however high resolution data  of 

10 μm has been reported recently [128]. A number of groups have reported studies 

considering solvent-based methods (such as LESA or DESI) and MALDI-MSI analysis to 

obtain improved compositional and spatial information from tissue samples [120, 130].  

A number of different lyso-phospholipid species were also identified in the LESA 

experiment, as shown in Figure 46. Comparison of mean spectra between m/z 500-900 

shown in Figure 47 reveals lyso-phospholipids were detected in high relative 

abundances in LESA-ESI analysis in the region m/z 500-700. However these species were 

not detected in MALDI experiments. Although the orbitrap mass analyser offers 

improved sensitivity over the Q-TOF set  up, this cannot account for the poor detection 

of lyso-phospholipid species in MALDI experiments, which were shown to be present in 

higher abundance than phospholipid species in the LESA-ESI study. This is most likely 

due to the ionisation technique; clearly the experimental conditions of the MALDI study 

did not lead to efficient extraction and/or ionisation of lyso-phospholipid species. Poor 
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detection of lyso-phospholipid species in the MALDI study could be due to a range of 

different experimental factors, such as solvent or matrix selection and in source 

dissociation. 

 

 

Figure 47 Mean mass spectra showing lipids detected in the region m/z 500-900 from (left) 

surface-sampling of freshly frozen tissue sections via LESA prior to ESI and (right) MALDI mass 
spectrometry imaging analysis. Lyso-phospholipids are detected in the region m/z 500-700 and 
phospholipids in the region m/z 700-900. 



185 
 

LESA-ESI is a relatively new surface-sampling technique. Many groups have explored 

the use of LESA for the analysis of drugs and/or drug metabolites [122-124, 286, 287] 

and protein or peptide species [125]; however only a few groups have considered its use 

for the analysis of lipid analytes. Brown et al. used LESA for the detection of both polar 

and non-polar lipid species, such as phosphatidylcholines and wax esters, directly from 

contact lens material [126]. The ability to ionise both polar and non-polar analytes under 

the same conditions is a particular advantage of ESI in comparison to MALDI; matrix 

compound selection must be carefully optimised for each analyte in MALDI, few matrix 

compounds lead to the simultaneous detection of both polar and non-polar species. 

Optimisation of these experimental parameters is a large area of research in the field of 

MALDI-MS and MSI. Brown’s study also demonstrates the compatibility of LESA with 

concave surfaces; laser ablation is not so tolerant of samples with such varying heights 

incident to the laser beam. 

A further advantage of LESA over traditional ESI analysis of lipids is the ability to 

extract analytes directly from the sample surface, removing the need for time-

consuming extraction procedures methods such as Folch [204]. Stegemann et al. showed 

that direct extraction of lipid species from human atherosclerotic plaques provides 

similar results to bulk lipid extraction. Furthermore, the particular advantage of LESA to 

sample a single surface was exploited by Brown’s analysis of both sides of contact lenses 

(eye side and air side). It would be difficult to ensure lipid extraction from a single side 
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of the lens by manual techniques and the efficiency of the process would be limited as 

the sample could not be homogenised. 

A number of groups that have performed LESA-ESI analysis of lipids directly from 

tissue surfaces have also considered MS/MS profiling of detected lipid analytes in 

clinical samples [121, 126]. Dissociation of lithium adducts of a number of different lipid 

classes have been reported to provide similar improvements in structural 

characterisation studies when ions are formed by electrospray to those shown in 

Chapters 1 and 3 of this thesis by MALDI [230, 288]. Furthermore, assignment of the 

fatty acid residues of triacylglycerol lipids is reportedly enriched by lithium adduction 

[113] and double-bond assignment of unsaturated fatty acids has been enhanced by 

dissociation of lithium-lipid adducts [227]. Here we explore the analysis of formal 

lithium-fixed tissue samples by LESA-ESI; the formation of lithium adducts of a variety 

of lipid species is desirable for structural studies. 
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5.3.2 LESA-ESI analysis of Formal Lithium Fixed Tissue Sections 

Lithium-lipid adducts were detected in high abundance in formal lithium-fixed tissue as 

shown in Figure 48. Peaks relating to protonated, sodium or potassium adducts were 

found to be significantly less abundant in comparison to fresh tissue sections. 

Protonated lipid adducts were detected in higher abundance in freshly frozen samples 

when sampled by LESA when compared with MALDI-MSI data. The increased relative 

abundances of protonated adducts detected in the  LESA study could be owing to the 

nature of the ionisation process and/or the solvent system used to sample the tissue 

surface and form the spray in the experiment. A solvent system comprising 70% 

methanol with the addition of 0.1% formic acid was used in this analysis. As methanol 

and water are both protic solvents and formic acid is also a proton donor it is perhaps 

unsurprising that protonated adducts form in relatively high abundance. It follows that 

higher relative abundances of protonated adducts were also detected in LESA-ESI 

sampling of formal-lithium fixed tissue. 
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Figure 48 Mean spectra showing phospholipids species detected in the region m/z 700-900. Lipid 
adducts of three PC lipid species (PC 32:0, 34:1 and 36:4) detected in freshly frozen tissue (above) 
and formal lithium fixed tissue (below) are highlighted. Highly abundant lithium lipid adducts 
were detected in the formal lithium preparation. 
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 Again, a range of phospholipid and lyso-phospholipid species such as phosphocholine 

(PC), lyso- phosphocholine (LPC), phosphethanolamine (PE) lyso-phosphethanolamine 

(LPE), phosposerine (PS), lyso-phosposerine (LPS), phosphoglycerol (PG) and a number 

of phophnositol (PI) and sphingomyelin (SM) species were detected. A number of 

neutral lipids such as diacylglycerol and triacylglycerol lipid species were also identified 

by their accurate mass. The pie charts in Figure 49 describe the range of lyso-, 

phospholipid and other lipid species detected in formal lithium-fixed tissue samples. 

Although a number of neutral lipids can be assigned by accurate mass, many of these 

were not lithium-lipid adducts. As tissue fixation removes protein analytes which have 

a high number of charged sites from the extracted sample, it is possible that a higher 

number of neutral lipid analytes can successfully compete for protons or cations. 

Furthermore, increased acidity of the fixed sample in comparison to fresh samples could 

explain increased detection of protonated adducts of neutral and other lipids. 

Collision-induced dissociation of selected peaks in Chapter 4 of this thesis showed that 

lithium adducts provide structurally informative product ions relating to both the lipid 

head-group and fatty acid side-chain identities whereas other lipid adducts do not. It 

follows that analysis of formal-lithium tissue samples by imaging techniques such as 

desorption electrospray ionisation (DESI) should enable the acquisition of similar data 

to that presented herein by MALDI and LESA. 

 



190 
 

 

Figure 49 Pie charts showing the relative numbers of lyso-phospholipid and phospholipid 
species detected in LESA-ESI analysis of formal lithium-fixed tissue, assigned by accurate mass. 
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5.3.3 LESA-ESI analysis of Formal Calcium-Fixed Tissue Sections 

Fixation of tissues in a formal calcium solution has been shown to aid lipid retention 

[289]. This could be beneficial in the preservation of lipid species in archived tissue 

samples. In order to evaluate whether this type of sample preparation is compatible 

with mass spectrometry analysis of lipid analytes, tissue was fixed in a solution of 

calcium chloride in formalin (formal calcium). LESA-ESI sampling of the tissue 

surface led to the detection of a number of lipid species. As shown in Figure 50, 

highly abundant protonated adducts of lipid analytes were detected in formal 

calcium-fixed tissue. The detected species in the phospholipid region m/z 700-900 

were comparable to those detected in freshly frozen tissue described in the previous 

section of this chapter. The agreement in detected lipid species between freshly 

frozen and formal calcium-fixed tissue samples is particularly important as it shows 

that mass spectrometry analysis of formal-fixed samples is tolerant of a variety of 

salts. 
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Figure 50 Mass spectrum acquired from surface sampling formal calcium-fixed murine brain 
by LESA in the m/z region 700-900.  
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Predominantly singly charged protonated adducts of lipid species were detected, 

alongside lower abundances of sodium and potassium adducts. Adducts of the most 

abundant phosphocholine lipid detected, PC 34:1, in both freshly frozen tissue and 

the formal calcium-fixed sample are shown in Figure 45 and Figure 50 respectively.  

There is a very clear difference in the dominant adduct formation. Potassium adducts 

were most abundant in freshly frozen tissue whereas protonated lipid adducts were 

most abundant in the formal calcium-fixed sample. 

Doubly charged species were also detected in low relative abundance in the formal 

calcium-fixed specimen. These are most obvious above m/z 1000. A number of 

doubly charged species were detected in the region m/z 1140-1190 as shown in Figure 

51. These doubly charged species cannot be attributed to protein species because the 

process of chemical fixation cross-links proteins, hence they are not detected in fixed 

tissue samples. Therefore these species are most likely attributed to multiply charged 

lipid adducts formed with the doubly charged calcium cation. For example, the 

doubly charged peaks centred on m/z 1159.85 could be attributed to a lipid metal 

complex of Ca2+ and three PC 34:1 lipid molecules [Ca+(PC 34:1)3]2+ and those 

centred on m/z 1146.84 could be attributed to a lipid metal complex of Ca2+, two PC 

34:1 and one PC 32:0 lipid molecules [Ca+(PC 34:1)2(PC 32:0)]2+. 
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Figure 51 Mass spectrum showing species detected in the region m/z 1000-1500 from LESA-

ESI analysis of formal calcium-fixed tissue. Insets a) to d) show magnifications of regions 
showing doubly charged species. 
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Closer inspection of the detected species in the region m/z 700-900, displayed in 

Figure 52, reveals that a number of doubly charged species were detected in low 

abundance. Peaks at m/z 779.56 can be attributed to the presence of the calcium 

adduct of PC 34:1 with two lipid species associated around the metal centre [Ca+(PC 

34:1)2]2+ which has been detected in previous electrospray studies considering the 

analysis of PC lipids in the presence of calcium ions [146].  

The detection of multiply charged lipid species alongside protonated adducts in 

complex biological samples such as tissue leads to decreased sensitivity and 

increased spectral complexity. However, the fact that multiply charged lipid species 

can be formed by the inclusion of a divalent cation enables the opportunity to 

explore dissociation techniques that require a multiply charged species, such as 

electron capture or electron transfer dissociation, which cannot usually be considered 

in MALDI. 
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Figure 52 Mass spectra showing adducts of PC 34:1 detected in freshly frozen tissue (top) 
and formal calcium-fixed tissue (bottom) analysed by LESA-ESI. Insets a and b show doubly 
charged peaks at m/z 765.54 and 766.05 and 779.56 and 780.06 respectively, characterised by a 
separation of 0.5 u. 
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5.4 Conclusions  

Surface sampling of thin tissue sections by LESA-ESI is shown to be compatible with 

both freshly frozen and formal-fixed tissue samples. Coupling sample ionisation to a 

high resolution mass analyser (orbitrap) enables the assignment of species with 

greater confidence. Furthermore, the improved sensitivity of this technique, 

compared to MALDI-MS on a Q-TOF mass analyser, is displayed in the number of 

different phospholipid species determined in this analysis. In addition, improved 

sensitivity for lyso phospholipid species is shown.  

LESA of formal lithium-fixed tissue samples leads to the detection of abundant 

lithium-lipid adducts. Although lipids can be readily assigned, owing to the ability to 

acquire high mass accurate data, a range of different lipid adducts were still detected. 

Lithium ion introduction via tissue fixation in a formal fixative solution did not lead 

to as great an extent of control of adduct formation when compared to the MALDI-

MSI data presented in Chapter 3 of this thesis; the relative abundances of, for 

example, protonated adducts remains high. An alternative approach to lithium ion 

introduction, such as in the sampling solvent system, may be more beneficial for this 

technique. Collision-induced dissociation of lithium adducts leads to the detection of 

more product ions that provide greater structural information than other lipid 

adducts. Hence lipid profiling of clinical samples could potentially be enhanced by 

the analysis of these types of samples.  
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Analysis of formal-fixed samples prepared with a doubly charged calcium cation is 

also shown to be compatible with LESA-ESI. Different lipid adducts are predominant 

in different samples; potassium adducts are most abundant in fresh tissue whereas 

protonated adducts are most abundant in formal calcium-fixed tissue sections. 

However, the detection of a number of doubly charged lipid species in the formal 

calcium sample indicates that data interpretation of these formal-fixed samples may 

not be as straightforward as those prepared with a singly charged metal cation, such 

as lithium. 

Although the detection of doubly charged lipid species directly from complex 

biological samples may not be advantageous, the fact that these can be formed 

enables the opportunity to consider electron-mediated dissociation techniques for 

structural studies. Further work will consider the addition of doubly charged metal 

cations to solutions of lipid standards in dissociation studies, including electron-

transfer dissociation.   
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6. Fragmentation chemistry of [MII+Ln]2+ complexes of 

phosphocholines 

6.1 Introduction 

The use of additive salts in collision-induced dissociation (CID) studies of lipid 

analytes (L) has thus far predominantly considered the inclusion of Group 1 metal 

salts (M), forming singly charged [L+M]+ adducts in electrospray ionisation (ESI) 

[228, 290]. Investigations into the dissociation of singly charged lipid species by Hsu 

et al. have shown that lipid adducts of the smallest Group 1 metal (lithium) provide 

the most useful dissociation product ions with respect to structural information of 

lipid analytes [113, 228-230, 290]. Multiply charged species as well singly charged 

ions can be formed by ESI and the formation of such species enables the opportunity 

to consider electron-mediated dissociation techniques such as electron-transfer 

dissociation (ETD) and electron-capture dissociation (ECD). 

Ho et al. have reported a comprehensive evaluation of CID of lipid adducts formed 

with monovalent, divalent and trivalent cations [265]. Salts of lithium, sodium, 

potassium, strontium, barium and the whole of the first transition metal series were 

considered for CID of a range of phospholipid standards (PE, PG and PC). CID of 

divalent metal-lipid adducts of the form [L-H+MII]+ were shown to provide product 

ions indicative of the identities of the head-group designated in the sn-3 position and 

the fatty acid side-chains residing in the sn-1 and sn-2 positions. Multiply charged 

lipid species can be readily formed by electrospray ionisation and investigations into 
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the dissociation of doubly charged metal-lipid samples have been recently reported 

in the literature [146, 291]. 

James et al. have shown that lipid-metal complexes of the form [Ln+MII]2+ up to n=8 

can be detected by ESI analysis of a PC lipid in the presence of copper (II). Their 

study of the CID fragmentation pathways of the different lipid-metal clusters 

detected, showed that when n > 4 the dominant product ions indicated the neutral 

loss of one or more lipid molecules [291]. More informative product ions were 

detected by dissociation of smaller complexes. 

The formation of divalent metal-lipid complexes offers the opportunity to consider 

ECD or ETD for which multiply charged ions are required. James et al. later reported 

ECD of PC lipid standards formed by the incorporation of 4 mM metal salt (CaCl2, 

MgCl2, CoCl2 or CuCl2). A number of factors were considered in the ECD analysis of 

divalent metal-lipid complexes; the size of the lipid ligand, the number of ligands 

and also the effect of changing M2+. It was shown that to obtain product ions which 

are indicative of fatty acyl chains, calcium and magnesium divalent cations in the 

smallest complex form ([L2+MII]2+) were most informative [146]. These divalent 

metals have not been considered previously in CID or ETD analysis of phospholipids 

by ESI.  
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ETD and CID of phospholipids were compared by Liang et al.; they generated 

multiply charged species from doubly sodiated-lipid species [148]. Electron transfer 

dissociation of a doubly sodiated PC lipid was shown to provide structurally 

informative product ions enabling assignment of sn-1, sn-2 and sn-3 side-chains. 

Although this dissociation technique has proven useful for structural analysis of 

lipids, to date, ETD of doubly charged lipid complexes formed with doubly charged 

metal cations has not been considered.  

High-energy collision-induced dissociation (HE-CID) of lipid species has also been 

shown to be beneficial in the structural analysis of PC lipid species. Shimma et al. 

showed that the double-bond location can be determined by HE-CID analysis of 

singly charged Group 1 cationic metal-lipid adducts [154]. The dissociation of doubly 

charged lipid species by HE-CID however has not been reported. 

The aim of this investigation was therefore to determine whether other divalent 

cations could provide useful dissociation data. The opportunity to perform electron 

transfer dissociation enables comparisons with the types of product ions detected 

with collision-induced dissociation and high energy-CID to be made. Inclusion of a 

Group 2 metal cation in PC lipid solutions led to the detection of a range of lipid-

metal complexes of varying size (increasing number of lipid species associated with 

the metal centre). For simplicity, only the dissociation of the smallest lipid-metal 

complexes [L2+M]2+ formed with Group 2 metals cations will be considered (as these 

were shown to yield the most useful dissociation data by James et al.) [291]. The three 

smallest Group 2 metals (Be2+, Mg2+ or Ca2+) will be evaluated in order to determine 
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whether similar trends with respect to cation size to those reported for CID of singly 

charged Group 1 metal-lipid adducts are apparent. Collision-induced dissociation 

will be first considered and then compared to high energy-collision-induced 

dissociation (HE-CID) and electron-transfer dissociation (ETD). 
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6.2 Experimental  

6.2.1 Materials 

Lipid standards 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine PC (18:1/16:0) and 

1-palmitoyl-2-steroyl-sn-glycero-3-phosphocholine PC (18:0/16:0) were purchased 

from Avanti Polar Lipids Inc. (Delfzyl, The Netherlands). All salts (BaSO4, MgCl2 and 

CaCl2) and formic acid (FA) were purchased from Sigma Aldrich (Gillingham, UK). 

Methanol (HPLC grade) was purchased from Fisher Scientific (Leicestershire, UK). 

Water was purified by an ELGA Option 3 system (Marlow, UK). Plain glass slides 

were purchased from Leica (UK). 

6.2.2 Sample Solutions 

Solutions of final concentration 5 μg ml-1 lipid with the inclusion of 0.5 mM salt in 

70% MeOH/0.1% FA were used for direct infusion experiments. 

6.2.3 Direct Infusion 

Automated sample analysis was performed using the LESA Points software (Advion 

Ithaca, NY) which controls the TriVersa Nanomate. This platform was used to select 

the locations of the sample wells for sampling routines using the Nanomate probe. 

The LESA sampling routine involved the collection of a conductive tip from the 

Advion tip rack before moving to the sample well. The Nanomate probe aspirated 5 

L into the conductive tip and then the tip was rotated and engaged with the back of 

the ESI chip, and nanospray ionisation was initiated. The Triversa Nanomate was 

coupled with a Thermo Fisher Scientific Orbitrap Velos mass spectrometer.  
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6.2.4 Mass Spectrometry 

Electrospray analysis was performed on an LTQ Orbitrap Velos from Thermo Fisher 

Scientific (Leicestershire UK). Samples were introduced by direct infusion (Advion 

Ithaca, NY) with solvents comprising 70:30:0.1 CH3OH:H2O:FA. Samples were 

introduced at a flow rate of ~80 nL/min with a gas pressure of 0.3 psi, a tip voltage 

of 1.75 kV and a capillary temperature of 250 C. MS data were collected in full scan 

mode (m/z 500-1500) with a resolution of 100 000 at m/z 400. The Automatic Gain 

Control (AGC) was used to accumulate sufficient ions for analysis. The AGC target 

was 1x106 with a maximum fill time of 2 s in full scan mode. For CID and HE-CID 

MS/MS experiments collision energy was optimised between 0-50. Nitrogen was 

used as a collision gas. For ETD MS/MS experiments activation time was optimised 

between 0-500 ms. All data were acquired for 3 minutes.  

6.2.5 Data Conversion 

LESA data were converted to mzML using msconvert as part of ProteoWizard [284]. 

Spectra acquired from a single injection were summed using a custom MATLAB 

script and output to mzML. The summed spectra were then converted to imzML 

using imzMLConverter [236] and processed in MATLAB.  
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6.3 Results and Discussion 

6.3.1 Mass Spectrometry analysis of PC lipids in the presence of Group 2 metals 

Direct infusion ESI-MS analysis of phosphocholine lipid standards PC 18:1/16:0 and 

PC 18:0/16:0 in the presence of 0.5 mM magnesium (Mg2+) or calcium (Ca2+) ions led 

to the detection of a number of lipid-metal adducts. Doubly charged lipid-metal 

complexes of the type [L2+MII]2+ for M = Mg at m/z 774.59 and [L3+M]2+  m/z at 

1155.39 (where M designates the divalent metal cation and L denotes the lipid 

species) were detected in the mass range 700-2000 alongside singly charged species 

of the form [L+H]+ at m/z 762.60 (protonated lipid species) and [L-H+M]+ at m/z 

784.59 (loss of a hydrogen and association of the doubly charged metal cation). These 

lipid-metal adducts are shown in Figure 53. 

Larger lipid-metal complexes of the form [L4+M]2+ and [L5+M]2+ were detected in 

some experiments, however the relative intensity of these was low. Analysis of these 

PC lipid standards in the presence of beryllium (Be2+) ions led to variable results. The 

above described metal-lipid complexes were detected in some experiments however 

this proved irreproducible. As beryllium-lipid complexes could not be reliably 

formed, the dissociation of these adducts was not considered. 
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The detection of multiple complexes of varied size led to a complex spectrum of a 

single lipid species when compared to experiments where only a singly charged 

metal is present. James and coworkers described similar doubly charged lipid-metal 

complexes in their CID study of PC species upon the inclusion of copper (II) metal 

cations in lipid solutions [291]. This study helps explain the complicated spectra 

shown in Figure 51 in Chapter 4 of this thesis and could be a potential disadvantage 

to analysis of lipids with doubly charged cations as increasing spectral complexity is 

undesirable. Nevertheless if these adducts provide greater structural information 

than singly charged lithium-lipid adducts in dissociation experiments, their 

formation would be beneficial. 
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Figure 53 ESI mass spectrum showing lipid adducts and complexes detected when PC 34:0 
(18:0/16:0) was analysed in the presence of magnesium ions. The full mass spectrum (m/z 
700-2000) acquired by direct infusion ESI is presented with insets showing lipid-metal 
complexes of the form [Mg+L2]2+, [Mg+L3]2+ and [Mg+L4]2+.  
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When the PC lipid containing only saturated fatty acid side-chains was analysed (PC 

18:0/16:0) in the presence of magnesium or calcium ions, the most abundant lipid 

adduct detected was the protonated lipid [L+H]+ followed by the [MII+L2]2+ complex. 

The opposite was true when the lipid species containing an unsaturated fatty acid 

side-chain was analysed (PC 18:1/16:0), which could indicate that the doubly 

charged metal cation associates with the electron rich double bond in the unsaturated 

fatty acid side-chain, hence the increased relative abundance of the doubly charged 

lipid-metal complex.  

The singly charged [MII+L-H]+ adduct was also detected in each experiment, 

however the relative abundance of this species depended on the  metal cation and 

lipid. Similar abundances of the [Mg+L2]2+ complex and [Mg+L-H]+ adduct were 

detected when PC 18:0/16:0 was analysed. However the [Mg+L-H]+ adduct was 

detected lower in abundance than the [L+H]+ adduct and [Mg+L2]2+ complex when 

PC 18:1/16:0 was analysed. The [Ca+L-H]+ adduct was detected in lowest abundance 

when PC 18:0/16:0 was analysed and yet this was detected in similar abundance to 

the [L+H]+ adduct when PC 18:1/16:0 was analysed, as shown in Figure 54.  It is not 

clear why this might be the case. As the [MII+L-H]+ adduct was not the most 

abundant in most experiments, dissociation of these singly charged species was not 

considered in the presented study. 
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Figure 54 Mass spectra showing the relative abundance of [L+H]+, [Mg+L2]2+ and [L-H+Mg]+ 
when PC 34:0 (18:0/16:0) and PC 34:1 (18:1/16:0) were analysed by direct infusion ESI. 
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Ho et al. investigated CID of a range of lipid-metal adducts, reporting that the 

inclusion of a divalent metal in lipid standard solutions leads to the formation of 

adducts of the form [MII+L–H]+ for PE and PG lipid species [265]. However, their 

study did not consider PC lipid species or any of the divalent cations reported in this 

investigation. All first row transition metals were considered alongside strontium 

and barium. Doubly charged lipid-metal complexes similar to those described herein 

were not considered in their study, only [MII+L–H]+ adducts are described. It is 

therefore possible that different lipid adducts are preferentially formed by 

electrospray analysis with changing Group 2 metal cation, with larger cations such as 

strontium and barium forming [MII+L–H]+ adducts preferentially to [MII+Ln]2+ lipid-

metal complexes. Further studies considering a wider range of Group 2 metal cations 

in a single experiment could therefore be beneficial. 

The relative complexity of the spectra suggests that the use of divalent cations in 

complex lipid samples could be limited. Mass spectrometry analysis of doubly 

charged lipid-metal complexes could potentially be improved by utilising an ion 

mobility cell which separates ions by mobility in a carrier gas as ion mobility differs 

for ions with the same m/z value. Despite these possible complexities, these doubly 

charged ions may still be helpful in the analysis of a single lipid species after lipid 

separation. The main aim of this investigation was to determine whether the use of 

divalent cations could provide useful dissociation data, allowing the opportunity for 

ETD. For simplicity, only dissociation of the [MII+L2]2+ lipid complex formed with 
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Mg2+ or Ca2+ cations will be considered. CID will be first considered and then 

compared to ETD. 

 

6.3.2 Collision-Induced Dissociation (CID) of [MII+L2]2+ lipid-metal 

complexes 

CID of the [Mg+L2]2+ complex of PC 18:1/16:0 (m/z 772.07) led to the detection of a 

variety of product ions, most of which were singly charged. The most abundant 

product ion displayed in Figure 55A was indicative of one of the fatty acid side-chain 

identities, detected at m/z 504.344. This product ion is indicative of the neutral loss of 

the magnesium adduct less hydrogen of the sn-1 16:0 fatty acid [Mg+L2-H–

R1COOMg-H]+ from the [Mg+L–H]+ species detected at m/z 782.55. The next most 

abundant product ion was detected at m/z 478.328 and is indicative of a similar loss 

of the 18:1 sn-2 fatty acid [Mg+L2-H–R2COOMg-H]+. Comparable product ions were 

detected upon CID of the [Ca+L2]2+ complex of PC 18:1/16:0 (m/z 780.06), and when a 

saturated lipid PC 18:0/16:0 was dissociated in the form [Mg+L2]2+ (m/z 774.08) or 

[Ca+L2]2+ (m/z 784.59), as shown in Figure 55.  
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Figure 55 Representative ESI-MS/MS spectra showing product ions detected following 
collision-induced dissociation of (A) m/z 772.07 [Mg+L2]2+ lipid-metal complex of PC 34:1 
(18:1/16:0), (B) m/z 774.08 [Mg+L2]2+ lipid-metal complex of PC 34:0 (18:0/16:0),  (C) m/z 
782.58 [Ca+L2]2+ lipid-metal complex of PC 34:1 (18:1/16:0) and (D) m/z 784.59 [Ca+L2]2+ 
lipid-metal complex of PC 34:0 (18:0/16:0). 
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The detection of product ions at m/z 504.344 and 478.328 are commonly reported in 

CID studies of lithium adducts [L+Li]+ of PC 18:1/16:0 and are indicative of the 

neutral loss of the lithium salt of each respective fatty acid side-chain from the 

[L+Li]+ parent [143, 235]. This study suggests that similar product ions are formed by 

CID of doubly charged Group 2 lipid-metal complexes when compared to those 

formed by CID of singly charged Group 1 cationic lipid adducts. However, whilst 

these fatty acid side-chain indicative product ions are detected in relatively low 

abundance in CID studies of singly charged Group 1 cationic lipid adducts, in 

comparison to other detected product ions, they were the most abundant product 

ions detected upon CID of these [MII+L2]2+ lipid metal complexes.  

Collision-induced dissociation studies conducted by Ho et al.. of singly charged 

adducts of the form [MII-H+L]+ (where MII = Sr or Ba) also led to the detection of 

product ions which were indicative of the neutral loss of each fatty acid along the 

glycerol backbone for a range of phospholipids [265]. Neutral losses of the sn-1 fatty 

acid side-chain were detected in greater abundance and enabled determination of the 

relative positions of each fatty acid. One stark difference between the product ion 

spectra described by Ho et al. and those presented herein is the relative abundances 

of product ions indicative of the head-group and fatty acid side-chain identities; 

neutral losses, characteristic of fatty acid losses, were detected in highest abundance 

in our study but were detected in lower abundance than head-group-specific product 

ions in Ho‘s study. 
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The next most abundant product ions detected were also indicative of the fatty acid 

side-chain identities. Peaks detected at m/z 1038.79 and 1064.81 upon CID of the 

[Mg+L2]2+ complex of  PC 18:1/16:0  suggest the loss of 504 u and 478 u from the 

singly charged lipid-metal complex [Mg+L2]+. These masses correspond to the singly 

charged product ions detected at m/z 504 and 478 indicating the loss of each fatty acid 

side chain, or the detection of [Mg(L)+C16H31O2]+ and [Mg(L)+C18H33O2]+. Similar 

peaks detected at m/z 1040.81 and 1068.84 upon CID of the [Mg+L2]2+ complex of PC 

18:0/16:0, suggest the loss of 506 u and 478 u from the singly charged lipid-metal 

complex [Mg+L2]+. Similar product ions were detected upon CID of calcium-lipid 

complexes of both PC species. Analogous product ions were reported by James et al. 

in their investigation of CID pathways of PC lipid-copper complexes and can be 

described as a carboxylate abstraction [291]. A phosphate abstraction pathway 

leading to the detection of [Cu(L)+PC]+ was also described in the dissociation of 

[Cu+L2]2+, however comparable product ions were not detected in this study when 

either magnesium or calcium lipid-metal complexes were dissociated by CID.  

Here it is shown that very high relative abundances of product ions informative of 

the fatty acid side-identities are detected upon collision-induced dissociation of 

[MII+L2]2+ complexes of PC lipid species formed with either magnesium or calcium 

metal ions. Relatively high abundances of product ions informative of the sn-1 and 

sn-2 fatty acid side-chain identities were also reported by Ho et al. upon CID of singly 

charged divalent metal lipid adducts of the form [L-H+MII]+ [265]. Although the 

relative abundances of fatty acid-indicative product ions varied with changing M2+ 
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cation in Ho et al.’s study, generally they were detected in much greater abundance 

than dissociation of cationic lipid adducts of PE, PG and PS species formed with 

monovalent Group 1 cations. Similar benefits from CID of doubly charged complexes 

of the type [MII+L2]2+ are demonstrated herein. 

Additional product ions characteristic of the fatty acid side-chain identities, shown in 

Figure 56, were detected when the calcium [Ca+L2]2+ lipid-metal complexes of PC 

18:1/16:0 (m/z 780.06) and PC 18:0/16:0 (m/z 782.07) were dissociated. Doubly 

charged peaks at m/z 651.94 and 638.93, detected following CID of [Ca+L2]2+ when 

L=PC 18:1/16:0 and m/z 653.95 and 639.94 when L=PC 18:0/16:0, correspond to 

neutral loss of the sn-1 and sn-2 fatty acid side-chains, respectively, from the 

[Ca+L2]2+ complex. These correspond to the neutral loss of the sn-1 fatty acid and the 

sn-2 fatty acid side-chain respectively from the doubly charged complex.  Therefore, 

although the MS/MS mass spectra of calcium-lipid species contain a greater number 

of peaks, these are usefully informative product ions. 

The relative abundance of product ions indicative of the identity of each fatty acid 

side-chain has been shown to be informative of the relative positions of the fatty acid 

side-chains along the glycerol backbone in previous ESI studies of lithium-lipid 

adducts[266]. In the present study (dissociation of [M+L2]2+ where L= either 

PC(18:0/16:0) or PC (18:1/16:0)), the relative abundance of the peak indicative of the 

loss of the metal salt of the sn-1 fatty acid was greater than the corresponding sn-2 

fatty acid loss when the magnesium lipid complex was dissociated.  
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Figure 56 Representative ESI-MS/MS spectra showing product ions detected between m/z 
560 and 800 following collision-induced dissociation of (top) [Ca+L2]2+ of PC 18:1/16:0 and 
(bottom) [Ca+L2]2+ of PC 18:0/16:0. 
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However, the opposite was true when the calcium-lipid complexes were subjected to 

CID. In these examples the loss of the sn-2 calcium lipid salt was detected in greater 

abundance than that of the sn-1 fatty acid. Moreover, further doubly charged product 

ions indicative of the neutral loss of each fatty acid side-chain from the calcium lipid 

complex were detected in the opposite relative abundance to the, similar, singly 

charged product ions; peaks indicative of the neutral loss of the sn-1 fatty acid were 

detected in greater relative abundance than the corresponding product ions 

indicative of the sn-2 fatty acid. 

The identity of each of the sn-1 and sn-2 fatty acid side-chains is inferred by CID of 

these lipid-metal complexes irrespective of the metal. This result is in contrast to CID 

studies of monovalent cationic lipid adducts in which only dissociation of the 

lithium-lipid adduct has been shown to lead reliably to the detection of informative 

product ions in high relative abundance. CID studies of lithium-lipid adducts of a 

variety of different lipid species have shown that neutral loss of the sn-1 fatty acid (or 

the metal salt of such) is detected in greater relative abundance than corresponding 

sn-2 fatty acid losses. It would seem that the trends differ depending on the divalent 

metal cation in the presented study; however a much more detailed study 

considering a wider range of lipids with different fatty acid side-chains is needed to 

enable a more confident determination of these trends. 

A further product ion was detected at m/z 577.518 upon CID of each lipid-metal 

complex ([Mg+L2]2+ or [Ca+L2]2+) when L = PC 18:1/16:0 and at m/z 579.533 upon 

CID of each lipid-metal complex ([Mg+L2]2+ or [Ca+L2]2+) when L = PC 18:0/16:0. 
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This product ion corresponds to the neutral loss of 205.04 from the [Mg+L-H]+ 

adduct and is indicative of the loss of the magnesium adduct of the PC head-group 

minus hydrogen. This is a very important neutral loss as this indicates the head-

group identity. Similar product ions have been reported upon CID of singly charged 

cationic lipid adducts, however these were the most abundant product ions detected 

when cationic lipid adducts of the type [M+L]+ are dissociated but were not found to 

be highly abundant product ions in these investigations of divalent cationic lipid 

adducts. 

No other product ions were detected which assist in the identification of the head-

group moiety, which is in part owing to the reduced m/z window in which the data 

was acquired (m/z 210-2000). These settings are a function of the orbitrap 

instrumentation and cannot be changed in CID experiments as it is dictated by the 

parent ion mass selected.  The magnesium or calcium adduct of the PC head-group 

would be expected at a lower m/z than 210. In order to determine whether these 

types of product ions can be detected by dissociation of these divalent metal-lipid 

complexes a lower m/z region can be considered by performing high-energy CID 

(HE-CID). This will discussed next. 
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6.3.3 High Energy-CID (HE-CID) of [MII+L2]2+ lipid-metal complexes 

High-energy collision-induced dissociation (HE-CID) of the magnesium [Mg+L2]2+ 

complex where L is PC 18:1/16:0 (m/z 772.07) led to the detection of highly abundant 

product ions at m/z 504.35 and 478.33, which are indicative of the two fatty acid side-

chain identities. Similar product ions were detected in CID experiments and these 

product ions are discussed in greater detail above. In addition, detection of a product 

ion at m/z 577.52 when L = PC 18:1/16:0 was indicative of the loss of the PC head-

group. In this way, the identity of each substituent along the glycerol backbone could 

be determined by this dissociation technique, see Figure 57. Corresponding product 

ions were detected upon HE-CID of the [Mg+L2]2+ complex of PC 18:0/16:0. 

HE-CID of calcium [Ca+L2]2+ complexes of these two lipid standards led to the 

detection of similar product ions indicative of the fatty acid side-chain identities as 

well as the PC head-group. However further doubly charged product ions were 

detected at m/z 651.94 and 638.93 upon HE-CID of PC 18:1/16:0. These product ions 

correspond to neutral loss of the 16:0 sn-1 fatty acid and loss of the 18:1 sn-2 fatty acid 

side-chain, respectively, from the doubly charged complex. Similar product ions 

were also detected when PC 18:0/16:0 was analysed in the presence of calcium ions. 

These additional product ions were also detected when the calcium-lipid complexes 

were dissociated by CID. Again, it is unclear as to why these additional doubly 

charged product ions would be detected only when calcium lipid complexes were 

dissociated and not following dissociation of magnesium complexes. 
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The relative abundances of peaks that are indicative of the fatty acid side-chain 

identities displayed similar trends upon high-energy dissociation of either metal 

adduct with either lipid; the detection of the peak indicating loss of the sn-1 fatty acid 

metal salt was detected in greater abundance than that of the sn-2 fatty acid metal 

salt. The difference in relative abundances of these product ions was much larger 

when magnesium metal complexes were dissociated. Additional doubly charged 

product ions, indicative of the neutral loss of each fatty acid from the complex, were 

detected when calcium-lipid complexes were dissociated, showing the same 

preferential loss of the sn-1 fatty acid. The difference in relative abundances of these 

product ions was far greater than the singly charged product ions indicative of the 

loss of the lipid-metal salt. Therefore monitoring of this loss further aids assignment 

upon HE-CID of lipid metal adducts formed with calcium. 

Head-group product ions indicative of the metal cation associated with the 

phosphate moiety of the head-group have been reported in CID of Group 1 cationic 

lipid adducts. These characteristic product ions are detected at m/z’s lower than those 

considered in CID analysis but can be monitored in HE-CID experiments. A singly 

charged product ion, indicative of the magnesium phosphate moiety, would be 

expected at m/z 146.97 and 162.95 for the magnesium and calcium adduct, 

respectively. These were not detected in HE-CID experiments which suggests that 

the dissociation pathways of at least the head-group differs when dissociating 

[MII+L2]2+ complexes of Group 2 metals rather than [M+L]+ adducts of Group 1 

metals. 
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Figure 57 Representative ESI-MS/MS spectra showing product ions detected following high-
energy collision-induced dissociation of (top) [Mg+L2]2+ lipid-metal complexes of PC 34:1 
(18:1/16:0) and PC 34:0 (18:0/16:0) and (bottom)  [Ca+L2]2+ lipid-metal complexes of PC 34:1 
(18:1/16:0) and PC 34:0 (18:0/16:0). 
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6.3.4 Electron-Transfer Dissociation (ETD) of [MII+L2]2+ lipid-metal 

complexes 

Electron-transfer dissociation of the magnesium [Mg+L2]2+ complex led to the 

detection of a number of different product ions indicative of the fatty acid side-chain 

identities. The most abundant product ions were indicative of the loss of the acyl 

chain of the sn-1 fatty acid and sn-2 fatty acid side-chains, respectively. Product ions 

were detected at m/z 1303.91 and m/z 1307.91 upon ETD of [Mg+L2]2+ complexes 

where L = PC 18:1/16:0 and PC 18:0/16:0, respectively. The same trend was true 

when calcium complexes of PC 18:1/16:0 and PC 18:0/16:0 were dissociated by ETD. 

Therefore, as highlighted in Figure 58, it is possible that the relative positions of the 

sn-1 and sn-2 fatty acid side-chains can be determined by ETD of lipid-metal 

complexes of the type [MII+L2]2+. 

This loss of a radical RC=O has been reported previously by Liang et al. upon ETD of 

doubly sodiated [M+2Na]2+ PC lipid adducts [148]. Doubly charged, doubly sodiated 

lipid adducts are not widely reported in the literature. Singly charged singly sodiated 

lipid adducts are more commonly reported in high abundance in lipid studies by ESI. 

However, Liang’s study demonstrates that doubly charged lipid species can be 

formed with monovalent cations via doping with a salt, thus highlighting the 

potential benefit of future studies considering Group 1 metals in electron-mediated 

dissociation techniques. Loss of the acyl chain radical of PC lipid species has also 

been reported by James et al. in electron-capture dissociation (ECD) studies of 

calcium and magnesium lipid-metal complexes [146]. Clearly, similar product ions, 
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indicative of the fatty acid side-chain identities, are formed by both electron-

mediated dissociation techniques. 

Other abundant product ions detected in each experiment corresponded to the 

expected m/zs of the doubly charged parent ions [MII+L2]2+ and singly charged 

complex [MII-H+L2]+. Electron transfer leading to the loss of a methyl radical was 

detected in the present study in relatively low abundance. This type of product ion 

was also described by Liang et al. in their ETD experiments of doubly sodiated PC 

species. Loss of the choline moiety of the head-group was also described in their 

study. Similar product ions were detected in this study in low abundance. It is 

possible that this head-group-characteristic product ion is enough to determine that a 

phosphocholine species has been dissociated, even though loss of the whole PC 

species is not indicated. James et al. reported similar findings in their ECD study of 

PC lipid species: loss of the choline moiety of the PC head-group was detected, 

however loss of the intact PC head-group was not [146]. 

Overall, electron-transfer dissociation of these doubly charged Group 2 metal-lipid 

complexes provides highly abundant product ions that are characteristic of the two 

fatty acid side-chain identities. These product ions combined with the loss of 59.07 u, 

which is indicative of the choline (N(CH3)3) moiety of the head-group, enables 

complete structural assignment of the PC lipid species. Electron transfer dissociation 

of lipid complexes formed with divalent metal cations has not previously been 

reported. Here it is shown that highly abundant structurally informative products 

ions are detected. 
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Figure 58 Representative ESI-MS/MS spectra showing product ions detected following 
electron- transfer dissociation of (A) [Mg+L2]2+ lipid-metal complexes of PC 34:1 (18:1/16:0) 
and PC 34:0 (18:0/16:0) and (bottom)  [Ca+L2]2+ lipid-metal complexes of PC 34:1 (18:1/16:0) 
and PC 34:0 (18:0/16:0). 
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6.4 Conclusions 

Dissociation of lipid-metal complexes of the form [MII+L2]2+ led to the detection of 

highly abundant product ions indicating the fatty acid side-chain identities by 

collision-induced dissociation, high-energy- collision-induced dissociation and 

electron-transfer dissociation techniques. Therefore dissociation of these types of 

lipid adducts could be useful in structural characterisation studies of lipid analytes. 

Furthermore, there is strong indication that the relative abundances of product ions 

indicative of the fatty acid side-chains are informative of their relative sn-1 and sn-2 

positions along the glycerol backbone.  

It appears from this study that the size of the Group 2 metal cation in the lipid-metal 

complex does not affect dissociation to the same extent as in CID analysis of lipid 

adducts formed with singly charged Group 1 metal cations. Structurally informative 

product ions, indicating the identity of the two fatty acid side-chains, were detected 

irrespective of the Group 2 metal cation added.  

Nonetheless, there is stark contrast between the dissociation spectra of these doubly 

charged metal-lipid complexes and singly charged Group 1 metal-lipid adducts in 

terms of the head-group ions detected. Although neutral losses characteristic of the 

PC head-group were detected upon CID or HE-CID dissociation of these lipid-metal 

complexes, no such product ions were detected when they were dissociated by ETD. 

Moreover, the head-group-informative peaks were detected in much lower 

abundance than product ions informative of the fatty acid side-chain identities. The 

opposite is true when Group 1 metal-lipid adducts are dissociated by CID.  
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Overall, dissociation of [MII+L2]2+ lipid-metal adducts could provide more sensitive, 

fatty acid-informative dissociation data. Although head-group-indicative peaks were 

only detected by CID or HE-CID, it would be possible to perform two experiments in 

succession to obtain fatty acid side-chain information from ETD and then head-

group information from CID or HE-CID. As even low sample concentrations can lead 

to long analysis times in electrospray ionisation, this should be possible even for 

minor components of a complex sample. This type of analysis would probably be 

best used post chromatographic separation. 

Analysis of PC lipid species with a doubly charged Group 2 metal led to the 

formation of a wide range of different lipid-metal complexes leading to a 

complicated mass spectrum. Therefore the employment of these metal cations in 

dissociation studies of biological samples would be complicated; however they could 

still be incredibly useful for structural characterisation of lipids after 

chromatographic separation. 
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7. Conclusions and Further work 

This study has shown that MALDI-MS and MSI techniques are practical tools for the 

analysis of lipids in complex lipid extracts and for direct surface analysis of tissue 

samples. Optimisation of sample preparation procedures for lipid analytes further 

improves analysis and this thesis offers sample preparation strategies for the 

improved analysis of lipids in complex samples by MALDI-MS and MSI. 

A comprehensive survey of the inclusion of a range of salt additives in MALDI 

matrix solutions for the MALDI-MS analysis of a complex biological extract in 

Chapter 2 of this thesis revealed the significance of both cation and counteranion 

selection. The inclusion of a singly charged cation with a high molecular mass (such 

as caesium) led to the formation of cationic lipid adducts in a different m/z window 

to that of naturally abundant adducts. This significantly improves the confidence 

with which detected species can be assigned in MS experiments.  

Acetate salts were shown to lead generally to decreased spectral complexity and 

nitrate salts to improved sensitivity for the respective cationic lipid adduct. 

Furthermore, acetate salts exhibited concentration-dependent results, whereas nitrate 

salts increased sensitivity across a concentration range. It is unclear why nitrate salts 

lead to significantly improved sensitivity and do not exhibit concentration-

dependent results within the studied range. Although nitrate salts have a lower 

lattice enthalpy than the respective chloride or acetate salt, it cannot be assumed that 

the same trend is true after crystallisation with matrix molecules. 
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In order to improve understanding as to why certain counteranions appear to be 

more useful it may be beneficial to probe the crystal structure when additive salts are 

incorporated into matrices. Solid-state UV-vis experiments would allow 

determination of whether the nitrate anion associates with the matrix molecule, and 

changes the absorptive properties. X-ray diffraction (XRD) analysis could also offer 

insight as to the nature of the crystal structure, and how this changes upon inclusion 

of the additive salt. In addition, scanning electron microscopy (SEM) would enable 

analysis of the surface topography, allowing comparison of crystal structure of 

matrix/salt mixtures upon deposition on to the MALDI target plate with changing 

additive salt. 

Repeating the above described study in negative ionisation mode could also prove 

beneficial. A number of phospholipids have been shown to ionise preferentially in 

negative ionisation mode [13, 22] and useful dissociation data from negative ions of a 

range of lipids has also been described [34]. Consideration of a range of different 

negative ions and counter cations in lipid MS and MS/MS experiments could 

therefore be of potential benefit. 

As commercially available MALDI matrices often contain low abundances of metal 

ions such as sodium and potassium, ion removal strategies such as crown ether 

addition [292, 293] have also been considered as a strategy for simplifying mass 

spectra. This is an interesting alternative approach to the salt-doping strategy 

described herein. Crown ethers have a circular cavity which can hold a cation via 

electrostatic (dipole-dipole) interactions. The size of the crown ether can be varied 
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and therefore different crown ethers are selective for different cations, according to 

size. 

Evason et al. included 18-crown-6 in 5-chloro-mercaptobenzothiazole (CMBT) for the 

analysis of bacteria [292]. A combination of formic acid for promoting protonation of 

analytes alongside crown ether addition for ion suppression gave favourable results 

in terms of spectral complexity. They comment that suppression of certain ions is 

achieved by chelation of the crown ether with sodium and potassium metal ions. 

Krader et al. also successfully utilised similar matrix additive systems for the analysis 

of archea bacteria [293]. Furthermore, Harris et al. successfully employed 18-crown-6 

to reduce or remove cationic matrix adducts detected in the analysis of trypsin and 

hemoglobin protein analytes [294]. This approach aimed at mass spectra 

simplification is certainly an idea worth exploring in MALDI-MS analysis of lipid 

samples. 

For structural characterisation of lipid analytes by CID MS/MS, it is also shown in 

Chapter 2 that adduct ion selection of parent ions is particularly important. Lithium 

lipid adducts provide abundant product ions indicative of the fatty acid side-chain 

identities, alongside head-group-indicative peaks, more reliably than any naturally 

abundant lipid adducts. Hence the use of additive salts in sample preparations can 

be a useful tool for forming abundant metal-lipid adducts which provide structurally 

informative information. These were considered in further detail in MALDI imaging. 

Analysis of thin tissue sections by MALDI-MS imaging in Chapter 3 was shown to be 

a useful route to combining compositional with spatial information. A high 
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repetition-rate SSDP laser with high-throughput capabilities enabled the acquisition 

of high quality imaging data. Rapid data acquisition in this way has potential 

benefits in clinical applications. The inclusion of sodium salt additives in MALDI 

matrix solutions for airspray deposition onto thin tissue sections proved successful 

for MALDI imaging analysis. However, lithium salts were not successfully 

introduced by this strategy.  

Consideration of dry-coating preparations proved problematic, leading to the 

detection of highly abundant protonated lipid adducts and greater spectral 

complexity. This observation is in agreement with previous reports and has reignited 

debate as to the nature of the ionisation mechanisms in MALDI. From these 

preparations it is clear that co-crystallisation of matrix molecules with analyte species 

is not imperative to the ionisation process, as previously thought. As stark 

differences are observed in the abundant lipid adducts detected, it seems likely that 

solvated deposition methods aid extraction of the endogenous salts in the tissue 

leading to predominant potassium adduct formation. Conversely, solvent-free 

methods of matrix application do not appear to aid extraction of endogenous salts. 

Protonated adducts are detected in high abundance by dry-coating with an acidic 

matrix compound. Therefore it is likely that proton transfer from matrix molecules to 

analyte molecules occurs.  

Consideration of tissue fixation as a targeted ion introduction strategy, described in 

Chapter 4 , appears to be the most effective approach to introducing lithium ions into 

tissue samples and is a promising route to detecting lithium-lipid adducts in situ 
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without compromising spatial information. The ability to form highly abundant 

metal-lipid adducts in tissue, from which informative CID spectra can be obtained, is 

particularly important for lipid biomarker discovery studies. 

Nevertheless, low abundances of other lipid adducts were also detected when formal 

tissues were analysed by MALDI. The presence of protonated lipid adducts could be 

caused by the fact that an acidic fixative solution was used. The detection of 

protonated-lipid adducts could be reduced by using lithium phosphate salts to 

prepare the formal lithium solution which would form a neutral pH solution. 

However, overcoming spectral complexity is less straightforward when sampling 

formal lithium-fixed tissue by LESA; the solvents used in lipid analysis (70% 

methanol with 0.1% formic acid) are an inherent source of protons. The detection of 

low abundances of sodium- and potassium-lipid adducts in formal lithium-fixed 

tissue samples could potentially be reduced by washing the tissue with a solvent to 

remove endogenous salts prior to fixation. Careful consideration of the solvent 

system would be required in order to ensure lipid analytes are not removed during 

cation removal, as described by Wang et al. and Steven et al. [180, 278]. 

Recently Steven et al. showed that para-nitroaniline is a suitable matrix compound for 

the analysis of lipid species in MALDI-MS imaging experiments with an Nd:YVO4 

laser [39]. Comparison of this matrix to CHCA for tissue imaging of thin tissue 

sections has revealed that image quality can be improved and suggests that para-

nitroaniline is a cooler matrix for lipid analytes. This result is significant as it is 

possible that the prominent number of ions detected as a result of laser-induced 
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fragmentation described in the analysis of formal lithium-fixed tissue samples might 

be reduced if the same investigation was conducted with a cooler matrix compound. 

Steven et al. have also described re-analysis of a single thin tissue section [278]. The 

methodology described gives rise to a number of exciting opportunities: firstly, the 

opportunity for optimal protein and lipid analysis using different matrix compounds 

for each analyte. As shown n this thesis, it is possible to fix a single tissue section 

after thaw mounting onto a MALDI or LESA target, it might be possible to acquire 

protein data before fixing the same tissue section in a formal lithium solution for 

optimised lipid data acquisition from the same tissue section.  

The potential to acquire MALDI-MS data and then subsequently MS/MS imaging 

data of sodium adducts of lipid species from a single tissue section was also shown 

as a possibility by repeat analysis [278]. However detection of product ions 

characteristic of the fatty acid side-chain identities are not described by CID of 

sodium adducts. It is therefore plausible that similar data could be acquired from 

formal lithium-fixed tissue sections which would provide greater structural 

information. It would be beneficial for future biomarker discovery investigations, to 

know whether the sensitivity is sufficient to perform MS/MS imaging analysis on 

multiple analytes (m/z values) from a single tissue section. 

A number of reports of lipid studies using the Nd:YVO4  laser have reported CHCA, 

and not DHB matrix (which is commonly reported with nitrogen lasers) [43, 71, 77, 

278]. However few groups are currently using this laser and to date the relative 

utility of other lasers has not been examined in detail. Clearly there is scope for an 
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investigation as to which MALDI matrices are useful for analysis of lipids with this 

particular laser as the usual matrix compounds are not exhibiting the same trends in 

terms of their use with lipid analytes. This is a large field of research and is generally 

achieved by trial and error studies using established matrix compounds and novel 

alternatives. This type of investigation was not within the scope of the work. 

It is also shown in Chapters 5 and 6 of this thesis that the inclusion of a divalent 

metal cation in sample preparations leads to the formation of lipid-metal complexes 

of the form [MII + Ln]2+ ranging in size from n=2 to n=4. These metal additives may 

not therefore be useful for direct analysis of complex biological samples. However, 

consideration of CID, HE-CID and ETD of doubly charged metal-lipid complexes of 

the form [MII + L2]2+ reveals that highly abundant structurally informative product 

ions are detected upon dissociation of these species. Although product ions 

indicative of both head-group- and fatty acid side-chain identities were not detected 

in very high abundance by a single dissociation technique, a combination of HE-CID 

and ETD provides highly abundant head-group- and side-chain-indicative product 

ions, respectively. It is possible that utilising both of these dissociation techniques 

could be a suitable method for the analysis of a complex lipid sample post 

chromatographic separation. 

In the scope of this thesis CID, HE-CID and ETD techniques have been evaluated for 

structural characterisation of lipid species. However, elucidation of the double bond 

position of unsaturated lipids has not been achieved using the described methods. A 

relatively new dissociation technique, ozone-induced dissociation, has been shown to 
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be particularly useful for assigning double positioning of unsaturated lipids  [152]. 

This dissociation technique provides superior information with regards to double-

bond positioning in a wide range of lipid species; however this is performed in 

conjunction with CID, or a similar technique, as a method of obtaining additional 

information.  

Although double bond positioning was not determined in dissociation studies 

presented in this thesis, preliminary ETD studies indicate that lipids containing 

saturated and unsaturated fatty acid side-chains preferentially form different lipid-

metal adducts upon inclusion of a Group 2 metal. This is a promising result and 

further studies, considering a number of lipid standards with varying degrees of 

unsaturation, could be beneficial to determine whether the relative abundance of 

different lipid-metal adducts can infer the degree of unsaturation (or that a lipid is 

completely saturated) in a fatty acid side-chain. 

However detailed mechanistic studies, considering a wide range of lipids with both 

saturated and unsaturated fatty acid side-chains, would be required in order to 

determine whether this is the case.  
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