Novel processing routes for neural interfaces

Barrett, Richard (2014). Novel processing routes for neural interfaces. University of Birmingham. Ph.D.

[img]
Preview
Barrett14PhD_Redacted.pdf
PDF - Redacted Version

Download (8MB)

Abstract

The thesis describes novel processing routes that have been developed to fabricate neural interfaces.
A process has been investigated that uses microfabrication techniques to fabricate a multi-channel regenerative implant that can record nerve impulses in the peripheral nervous system (PNS), called the Spiral Peripheral Nerve Interface (SPNI). It is shown both theoretically and experimentally that the implant improves the ability to record signals in the PNS via micro-channels that act as axonal amplifiers. New processing routes are introduced to create robust interconnections from the SPNI to external electronics via ‘Microflex’ technology. To incorporate the new interconnection technology the SPNI had to be modified. During this modification the strain in the device was given specific consideration, for which a new bending model is presented. Modelling is used to show that electrochemical impedance spectroscopy can be used to assess the quality of the fabrication process. Electrochemical and mechanical tests show that the interconnection technology is suitable for a neural interfaces but the fabrication of perfectly sealed micro-channels was not evident. Thus, the SPNI was further improved by the introduction of a silicone sealing layer in the construction of the micro-channel array that was implemented using a novel adhesive bonding technique.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Supervisor(s):
Supervisor(s)EmailORCID
Tarte, EdwardUNSPECIFIEDUNSPECIFIED
Licence:
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Engineering, Department of Electronic, Electrical and Systems Engineering
Funders: None/not applicable
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering
URI: http://etheses.bham.ac.uk/id/eprint/5137

Actions

Request a Correction Request a Correction
View Item View Item

Downloads

Downloads per month over past year